
Energy Conservation (Industry) Sector

Sub-sector :

- 7. Energy Efficiency Improvement
- 8. Electricity and Heat Supply
- 9. Fuel Switching

(1) Baseline Emissions Baseline emission shall be determined by multiplying measured electricity consumption and fuel consumption (Continuation) without replacement, upgrading and improvement of facilities with their respective emission factors. In the case of new facilities, electricity consumption and fuel consumption necessary to generate the production capacity, equivalent to the existing facilities, shall be used as input. $BE_y = (BE_{elec.y} + BE_{i.y}) \times (P_{out} / B_{out})$ (Emission with electricity consumption)(Emission with fuel consumption)(Production scale ratio) $= \{ (EC_{BL,y} \times EF_{BL,y}) + (BC_{i,y} \times NCV_i \times COEF_i) \} \times (P_{out} \swarrow B_{out}) \}$ Туре Items Description Baseline emission : Output BE_v GHG emission without project activity (t-CO₂/y) EC BL,y Electricity consumption before project activity (MWh/y) Input CO2 Emissions Factor of the electricity(t-CO2/MWh) $EF_{BL,y}$ Fuel consumption before project activity(kL, m³, t etc./y) $BC_{i,y}$ NCV_i Net Calorific Value of fuel i (GJ/kL, m³,t etc.,) $COEF_i$ CO2 Emission Factor of fuel i(t-CO2/TJ) Bout Production capacity before project activity P_{out} Production capacity after project activity **Determination** of EF_{BL,v} [New facility] [Existing facility] CO_2 emissions factor of electricity is defined as the emission factor of one or two typical power plants existing in the gird. Emission factor for the target power plant should be obtained through interview to the electric power management entity concerned. In selecting the target power plant, confirm that the emission factor is comparable to the average grid emission factor (Ref. Annex C-1) determined based on published values in the target country or data adopted by Kyoto Mechanisms or data based on IEA. If the emission factor is not available, it should be calculated using the net electrical output of the target power plant, fuel type, net fuel consumption, net calorific value and caloric CO₂ emission factor (Ref. Annex C-4). (2) Project Emission To calculate project GHG emission, monitor electricity consumption and fuel consumption from facilities that are replaced, upgraded and improved after project activity. That measured consumption is multiplied by the respective emission factor. $PE_y = PE_{elecx} + PE_{ix}$ (Emission with electricity consumption) (Emission with fuel consumption) = $(EC_{PJ,y} \times EF_{BL,y}) + (PC_{i,y} \times NCV_i \times COEF_i)$

Туре	Items	Description			
Output	PE_y	Project emission :			
		GHG emission after project activity (t-CO ₂ /y)			
Input	EC _{PJ,y}	Electricity consumption after project activity (MWh/y)			
	$EF_{BL,y}$	CO ₂ Emissions Factor of the electricity(t-CO ₂ /MWh)			
	$PC_{i,y}$	Fuel consumption after project activity(kL, m ³ , t etc./y)			
	NCV_i	Net Calorific Value of fuel i (GJ/kL, m ³ , t etc.)			
	$COEF_i$	CO ₂ Emission Factor of fuel i (t-CO ₂ /TJ)			

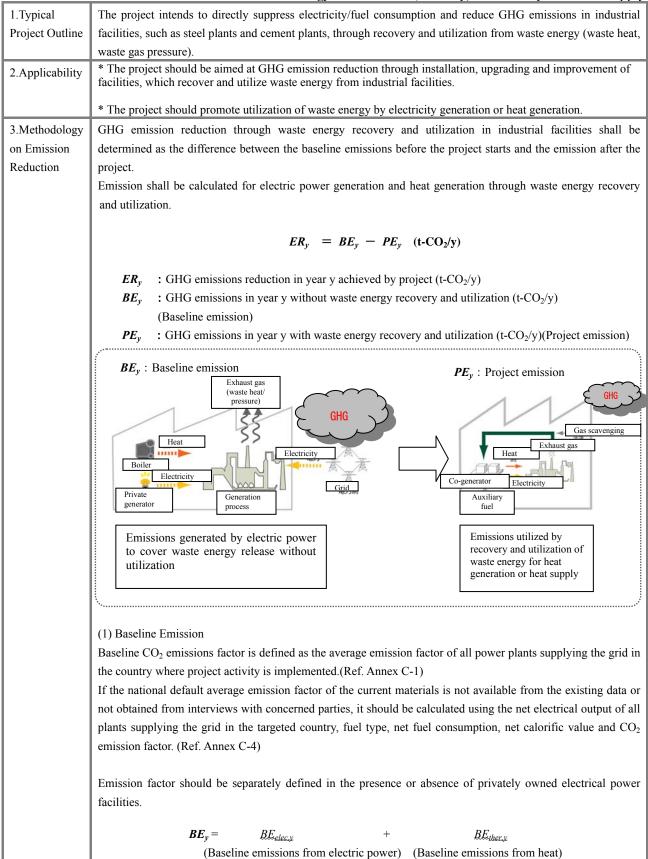
7. Energy Conservation(Industry) / Energy Efficiency Improvement

4. Data

required for estimation and

monitoring

[New facilities]


				Data Acquisitio	on Methods		
De	ta Type	Description of Data	Baseline Emissions		Project Emissions		
		Description of Data	Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion	
Amount of electricity consumption Before : $EC_{BL,y}$		Amount of electricity consumption without the project (MWh/y)	Electricity consumption after project activity		(Not necessary because data is not involved in the calculation)		
-	After : <i>EC</i> _{<i>PJ</i>,y}	Amount of electricity consumption by the project activity (MWh/y)	(Not necessary because data is not involved in the calculation)		Planned data	Measured data	
Amount of fuel consumptionBefore : $BC_{i,y}$		Amount of fuel consumption without the project (kL, m ³ , t etc./y)	Electricity consumption after project activity			(Not necessary because data is not involved in the calculation)	
	After : $PC_{i,y}$	Amount of fuel consumption by the project activity (kL, m ³ , t etc./y)	(Not necessary because data is not involved in the calculation)		Planned data	Measured data	
Production capacity	Before : <i>B</i> _{out}	Production capacity without the project	Measured data		(Not necessary because data is		
	After : Pout	Production capacity by the project activity	Planned data	Measured data	not involved in the calculation		
$\begin{array}{c cccc} CO_2 & emissions \\ factor & of \\ electricity \\ CO_2 \end{array} \qquad \begin{array}{c cccccc} EF_{BLy} \end{array} \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ant and obtaining CC o the electric power m values in the target cou	D ₂ emissions factor anagement entity antry	or specific to the			
factor	CO ₂ emission factor of each fuel type (<i>COEF_i</i>)	CO ₂ emission factor of each fuel type (t-CO ₂ /TJ)	Data availability is validated in the following order because it is preferable calculated using data and information unique to the project. i) Unique data obtained from interview with power management entit ii) National default			ct.	
Net Calorific Value (NCV _i)		Net calorific value of each fuel type (GJ/kL, m ³ , t etc.)	iii) IPCC Gu	ideline default data (A	nnex C-2,3)		

[Existing facilities]

	-			Data Acquisiti	on Methods	
Data	Type	Description of Data	Baseline	e Emissions	Project Emissions	
Data	Туре	Description of Data	Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion
Amount of electricity consumption	Before : <i>EC</i> _{BLy}	Amount of electricity generation consumption Measured data without the project (MWh/y)			y because data is 1 the calculation)	
After : <i>EC</i> _{PJ,y}		Amount of electricity consumption by the project activity (MWh/y)	(Not necessary because data is not involved in the calculation)		Planned data	Measured data
Amount of fuel consumption	Before : <i>BC_{i,y}</i>	Amount of fuel consumption without the project (kL, m ³ , t etc./y)	Measured data		(Not necessary because data is not involved in the calculation)	
	After : <i>PC</i> _{<i>i</i>,<i>y</i>}	Amount of fuel consumption by the project activity (kL, m ³ , t etc./y)	(Not necessary because data is not involved in the calculation)		Planned data	Measured data
Production capacity	Before : <i>B</i> _{out}	Production capacity without the project	Meas	ured data	(Not pagage	y haaawaa data is
	After : Pout	Production capacity by the project activity	Planned data Measured data		(Not necessary because data is not involved in the calculation	
CO ₂ emission factor	CO ₂ emissions factor of electricity (Before : $EF_{BL,v}$) CO ₂ emission factor of each fuel type (<i>COEF</i> _i)			Same as [New:	facilities	
Net Calorific Val (NCV _i)	Net Calorific Value					

 5.Others (1) Project Boundary The physical boundary for measuring GHG emissions includes power facilities whe implemented. (2)Leakage Leakage associated with improvement of industrial facilities includes CO₂ emission and disposal in relation to equipment renewal. However, such emissions are temp comparison with the project size, thus they are not considered. (3) Reviewed Methodologies and Major Differences 1) AMS-II.C.(ver13.0) : Demand side energy efficiency activities for specific tech [Differences] 	ons due to production, transport porary and negligibly small in
 Leakage associated with improvement of industrial facilities includes CO₂ emission and disposal in relation to equipment renewal. However, such emissions are tem comparison with the project size, thus they are not considered. (3) Reviewed Methodologies and Major Differences AMS-II.C.(ver13.0) : Demand side energy efficiency activities for specific tech [Differences] 	porary and negligibly small in
 Leakage associated with improvement of industrial facilities includes CO₂ emission and disposal in relation to equipment renewal. However, such emissions are tem comparison with the project size, thus they are not considered. (3) Reviewed Methodologies and Major Differences AMS-II.C.(ver13.0) : Demand side energy efficiency activities for specific tech [Differences] 	porary and negligibly small in
 and disposal in relation to equipment renewal. However, such emissions are tem comparison with the project size, thus they are not considered. (3) Reviewed Methodologies and Major Differences AMS-II.C.(ver13.0) : Demand side energy efficiency activities for specific tech [Differences] 	porary and negligibly small in
 comparison with the project size, thus they are not considered. (3) Reviewed Methodologies and Major Differences 1) AMS-II.C.(ver13.0) : Demand side energy efficiency activities for specific tech [Differences] 	
1) AMS-II.C.(ver13.0) : Demand side energy efficiency activities for specific tech [Differences]	hnologies
1) AMS-II.C.(ver13.0) : Demand side energy efficiency activities for specific tech [Differences]	hnologies
[Differences]	
* Because reviewed methodology is applied to small-scale project, it covers pro	ojects aiming 60 GWh or less
annual electricity reduction through energy efficiency improvement. This method regards to applying the formula.	
* This formula mainly applies to the calculation of GHG emission reduction in ele	etricity consumption as well as
the effects of fuel reduction.	······
* The CO_2 emission factor of the electricity can be used a combined margin (CM	() (*1) or the weighted average
emissions of the current generation mix. In this methodology, emissions factor emission factor of one or two typical power plants existing in the gird to calculate emission factor.	
* Although emission in electricity consumption is comprised of a number of d	
operation hours and average annual technical grid losses in the reviewed method	
calculated simply by multiplying the electricity consumption with the baseline emis	
* Leakage from introducing and operating the new facility can be ignored by the e	
disposal in the reviewed methodology. The formula in this section does not conside	er these disposals.
*1: A combined margin (CM) is a combination of operating margin (OM) and but the procedures prescribed in the "Tool to calculate the Emission Factor for an	
2) AMS-II.D.(ver12.0) : Energy efficiency and fuel switching measures for indust [Differences]	trial facilities
* Reviewed methodology is applied to fossil fuel switching measures; however measures because another methodology is applied.	er, this formula excludes such
* In the reviewed methodology, baseline emission reduction is not considered at	fter facility replacement in the
context of respective time of existing facility replacement, upgrading and improve consider these conditions.	
* The CO_2 emission factor of the electricity can be used a combined margin (CM	() (*1) or the weighted average
emissions of the current generation mix. In this methodology, emissions factor	
emission factor of one or two typical power plants existing in the gird to calculate e	-
* Leakage from introducing the new facility or uses can be ignored by the ex	
disposal in the reviewed methodology. The formula in this section does not conside	er these disposals.
3) J-MRV002 : Methodologies for energy efficiency project (Revised on Februar	ry 2011)
[Differences]	
* Any of the methods of data acquisition can be selected with reviewed methodole	ogy where several methods are
available; however, in this formula, priority for data acquisition methods is clearly	
* Although emission in electricity consumption is comprised of a number of d	
operation hours and average annual technical grid losses in the reviewed method	dology, the project emission is
calculated simply by multiplying the electricity consumption with the baseline emis	
* In the reviewed methodology, baseline emission reduction is not considered at	
context of respective time of existing facility replacement, upgrading and improv	vement. This formula does not

consider these conditions.
* In the reviewed methodology, the CO ₂ emission factor of the electricity is the average of all power plants in the
target country. In this methodology, emissions factor of electricity is defined as the emission factor of one or two
typical power plants existing in the gird to calculate easily.
* The reviewed methodology excludes the leakage potential unless there are great influences. This formula also
excludes the leakage in the same manner.

 $= (EG_{PJ,y} \times EF_{BL,y}) + (HG_{PJ,y} \times EF_{heat})$

(Continuation)

Туре	Items	Description			
Output	BE_y	Baseline emission :			
		GHG emissions without waste energy utilization (t-CO ₂ /y)			
Input	$EG_{PJ,y}$	The quantity of electricity generated with waste energy recovery and utilization by the project (MWh/y)			
	$EF_{BL,y}$	CO ₂ emissions factor of the electricity(t-CO ₂ /MWh)			
	$HG_{PJ,y}$	The quantity of heat recovered and utilized after the project(TJ/y)			
	EF_{heat}	CO ₂ emission factor of heat(t-CO ₂ /TJ)			

Determination of EF_{BL,y}

[Case: currently owned or has plan to install private generating facility]

In the environment where the waste energy collecting facilities are installed with private generating facilities, or where waste energy collecting facilities are newly constructed and private generating facilities are planned to be installed, select whichever higher by comparing with the CO_2 emissions factor for the grid supplying electricity.

The emissions factor should be determined base on one or two typical plants among existing power plants in the target grid.

The emissions factor should be obtained through interview to the electric power management entity concerned.

In selecting the target power plant, confirm that the emissions factor is comparable to the average grid emission factor based on published values in the target country, data adopted by Kyoto Mechanism or IEA (Ref. Annex C-1).

If CO_2 emission factor is not available, it should be calculated using the annual electrical output of the target plant, fuel type, annual fuel consumption, average net calorific value, and caloric CO_2 emission factor (Ref. Annex C-4).

[Case: currently not owned or has no plan to install private generating facility]

Where the existing waste energy generating facilities have no private generating facilities or such facilities are not planned to be installed in new waste energy generating facilities, CO_2 emissions factor in the grid supplying electricity should be used.

Determination of EF_{heat}

ws

 EF_{heat} shall be recalculated by the following equation:

$$EF_{heat} = ws \frac{EF_{CO2}}{\eta_{EP}}$$

 EF_{CO2} : CO₂ emission factor of the boiler fuel consumed without the project

 η_{EP} : Boiler efficiency

: Rate of total heat from boiler without the project to heat capacity with waste energy recovery and utilization

(2) Project Emission

To calculate project GHG emission, monitor electricity consumption and supplemental fuel consumption from facilities with waste energy recovery and utilization. That measured consumption is multiplied by their respective emission factors.

$$PE_y =$$

=

PE_{elec.y}

+

PEix

(Emission with electricity consumption) (Emission with fuel consumption)

$$= (PC_y \times EF_{BL,y}) + (PC_{i,y} \times NCV_i \times COEF_i)$$

		Туре	Items		Description		
		Output	PE_y	Project emission	^		7
			5	-	fter project activity (t-	$CO_2/y)$	
		Input	PC_{y}		imption after project in	• /	1
			$EF_{i,y}$	-	actor of electricity(t-C		1
			$FC_{i,y}$		n i after the project in		
				$(kL, m^3, t \text{ etc./y})$	* 5		
			NCV _i		lue of fuel i (GJ/kL, m	3 , t etc.)	
			COEF _i		actor of fuel $i(t-CO_2/T)$		
Data							
	for						
quired timatic							
onitori	ng						
	I				Data Acquisition	Methods	
	Data Type	Descrip	ion of Data		Emissions	Project En	
	21			Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion
Amou	int of electric powe	r Amount	of electric	Statts	Completion	Statts	Completion
suppl	y with waste energy	y power su	upply with				
	ery and utilization	waste er recovery		Planned data	Measured data	(Not necessary bea involved in the	
(仮:	$EG_{PJ,y})$	utilizatio		Planned data	Measured data	involved in the	calculation)
		project a	ctivity				
	Fither bi-b	(MWh/y		where the V	tly own the private gener	noting focilities 1	to inst-11
f	CO_2 emissions		ns factor of		alidated in the following		
acto	factor of	a typical		plant and obtaining CO	D2 emissions factor speci	fic to the target.	ne typical power
	electricity	plants			electric power managen	nent entity concerned	
emis fore	CO ₂ emission	(t-CO ₂ /N	1Wh) ssion factor	ii) Published value	s in the target country		
CO ₂ emission or(Before : <i>E</i>	factor in private	every fu			T (1 14		
$CO_2 emission$ factor(Before : $EF_{BL,y}$)	generating	(t-CO ₂ /7	J)		Interview with power m	anagement entity	
<u> </u>	facilities	or cumplying	to grid for the	a aaga wahara 🌡 aurrantiy	do not own the private g	anarating facilities no	r nlan ta inatall]

				Data Acquisition			
	Data Type	Description of Data		Emissions	Project Er	1	
		Ĩ	Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion	
Amount of heat with waste energy recovery and utilization (After : <i>HG</i> _{PJ,y})		Amount of heat with waste energy recovery and utilization by the project activity (TJ/y)	Planned data	Measured data	(Not necessary be involved in the	cause data is no	
CO ₂ emission		The CO ₂ emission factor of the boiler fuel consumed without the project (t-CO ₂ /TJ)	following order preferably be calcul information unique to i) Unique data ob	ated using data and the project: otained from interview nagement entity It			
CO_2 emission factor(Before : $EF_{heat,y}$)	Heat efficiency (η _{EP})	Heat efficiency from boiler(%)				y because data is not n the calculation)	
$r_{heat,y}$)	Heat ratio (ws)	Rate of total heat from boiler without the project to heat capacity with waste energy recovery and utilization					
Amount of electricity consumption by the project activity (After : $PC_{,y}$) Amount of fuel consumption by the project activity (After : $PC_{i,y}$)		Amount of electricity consumption by the project activity (MWh/y)	(Not necessary because data is not involved in the calculation)		Planned data	Measured data	
		Amount of fuel consumption by the project activity for every fuel type (kL/y, m ³ /y, t/y)		ecause data is not ne calculation)	Planned data	Measured data	
Other	Net calorific value of each fuel type (<i>NCV_i</i>)	Net calorific value of each fuel type (GJ/kL, m ³ ,t etc.,)	Data availability is validated in the following order because it should be calculated using data and information unique to the project: i) Unique data obtained from interview with power management en ii) National default		-		
factors	CO ₂ emissions factor of each fuel type (<i>COEF_i</i>)	CO ₂ emissions factor of each fuel type (t-CO ₂ /TJ)	iii) IPCC Guidelin	ii) IPCC Guideline default data (Annex C-2,3)			
others	(2) Leakage Recovery an the indirect	al boundary for meas d. d utilization of waste e emissions that potential	energy in industrial fa	icilities:			
	materials tra This corresp ignored.	nsport. ponding emission is ter	mporary and negligi	ble considering the p	project scale. Ther	efore, this car	
		d Methodologies and M 12(ver4.0.0) : Consolid	-	dology for GHG em	ission reductions f	rom waste ene	

[Differences]

* Waste energy is utilized in the project. Thus, without the project, waste energy flared or released into the atmosphere should be proved by directly measuring the amount of waste energy over three years before project implementation. This formula excludes these conditions.

* Reviewed methodology adopts several formulas depending on current situations and projects; however, in this formula, it is simplified by multiplying the electric power supply from waste energy with CO₂ emissions factor.

* In the reviewed methodology, the CO_2 emission factor of the electricity is the grid average value calculated by the "Tool to calculate the Emission Factor for an electricity system" for CDM. In this methodology, emissions factor of electricity is defined as the emission factor of one or two typical power plants existing in the gird to calculate easily.

* This formula does not consider the leakage because the reviewed methodology also mentions that there is no leakage to be considered.

2) AM0024(ver02.1) : Baseline methodology for GHG reductions through waste heat recovery and utilization for power generation in cement plants

[Differences]

* Though the reviewed methodology is applied to waste heat recovery and utilization during clinker making process in cement plants, the formula in this section is also applied to plants other than cement plants.

* In the reviewed methodology, the CO_2 emission factor of the electricity is the grid average value calculated by the "Tool to calculate the Emission Factor for an electricity system" for CDM. In this methodology, emissions factor of electricity is defined as the emission factor of one or two typical power plants existing in the gird to calculate easily.

* Though the reviewed methodology is applied to waste heat recovery and utilization during clinker making process in cement plants, the formula in this section is applied to waste gas not limited to waste heat.

* Emission from gas leak from the construction of power plants or fuel processing facilities may be considered as leakage which can be ignored in the reviewed methodology. This formula also ignores it the same manner.

3) ACM0013(ver4.0.0) : Consolidated baseline and monitoring methodology for new grid connected fossil fuel fired power plants using a less GHG intensive technology

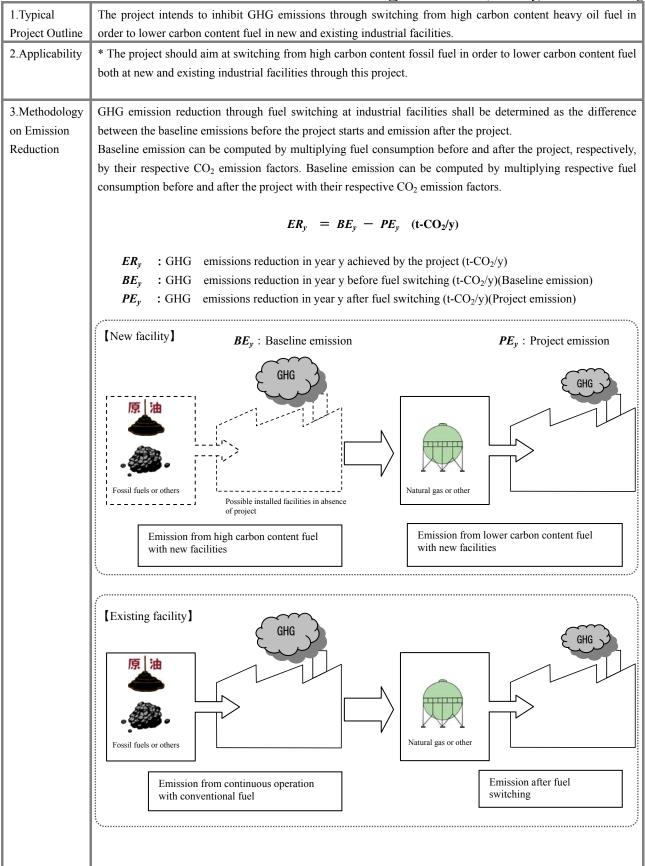
[Differences]

* Though the reviewed methodology excludes new facilities as element, new facilities are used in this formula.

* Regarding the baseline emission based on the reviewed methodology, applicability of the formula is for fossil fuel used in the absence of the project, which is more than 50% of the net electricity power supply in the last three years. This formula excludes these conditions.

* In the reviewed methodology, the CO_2 emission factor of the electricity is one of the value calculated by the caloric CO_2 emission factor of each fuel type and efficiency in power generation or the value calculated by the amount of power generation, type of fossil fuel, amount of fuel consumption, net calorific value, caloric CO_2 emissions factor of each fuel type. In this methodology, emissions factor of electricity is defined as the emission factor of one or two typical power plants existing in the gird to calculate easily.

* This formula does not consider the leakage because the reviewed methodology also mention that there is no leakage to be considered.


4) AMS-III.Q(ver4.0) : Waste Energy Recovery (Gas/Heat/Pressure) Projects

[Differences]

* The formula in the reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aim at 60 GWh or less annual electricity reduction, through energy efficiency improvement. There is no restriction in applying the formula from this methodology.

* In the reviewed methodology, the CO_2 emission factor of the electricity is calculated by the caloric CO_2 emission factor of each fuel type and efficiency in power generation. In this methodology, emissions factor of electricity is defined as the emission factor of one or two typical power plants existing in the gird to calculate easily.

* In the reviewed methodology, if the power plants are transferred from other projects, leakage should be
considered. However, this formula excludes these conditions.
5)J-MRV003: Methodology for waste energy recovery and utilization project (Revised on February 2011)
[Differences]
*Any of the methods on data acquisition can be selected from reviewed methodology where several methods are
available; however, in this formula, prior selection is clearly defined.
* In the reviewed methodology, the formula for baseline emission is intended for electricity use. This formula
here also includes heat use.
* In the reviewed methodology, the CO ₂ emission factor of the electricity is the average of all power plants in the
target country. In this methodology, emissions factor of electricity is defined as the emission factor of one or two
typical power plants existing in the gird to calculate easily.
* The reviewed methodology excludes the leakage potential unless there are great influences. This formula also
excludes the leakage in the same manner.

(1) Baseline Emissions (Continuation) Baseline emission shall be determined by multiplying measured fuel consumption in the absence of fuel switching by their respective emission factors In the case of new facilities, fuel consumption necessary to generate the production capacity equivalent to the existing facilities after the project start shall be used as input. $BE_{y} = EG_{PJ,y} \times \left(\frac{BC_{BL,y} \times NCV_{i} \times COEF_{i}}{PG_{BL,y}}\right)$ Type Items Description Baseline emission : Output BE_v GHG emission without project activity $(t-CO_2/y)$ Production capacity before project activity Input $EG_{BL,v}$ Production capacity after project activity $EG_{PJ,v}$ Fuel consumption before the project (kL, m³, t etc./y) $BC_{i,y}$ Net Calorific Value of fuel i (GJ/kL, m³, t etc.) NCV_i $COEF_i$ CO2 Emission Factor of fuel i(t-CO2/TJ) (2) Project Emission To calculate project GHG emission, monitor fuel consumption from facilities with fuel switching after project activity. Such measured consumption is multiplied by a corresponding emission factor. $PE_{v} = PC_{i,v} \times NCV_{i} \times COEF_{i}$ Items Type Description Output PE_v Project emission : GHG emission after project activity $(t-CO_2/y)$ Input $PC_{i,y}$ Fuel consumption after project activity (kL, m³, t etc./y) NCV_i Net Calorific Value of fuel i (GJ/kL, m3,t etc.) $COEF_i$ CO2 Emission Factor of fuel i(t-CO2/ TJ)

4.Data Required for

Estimation and

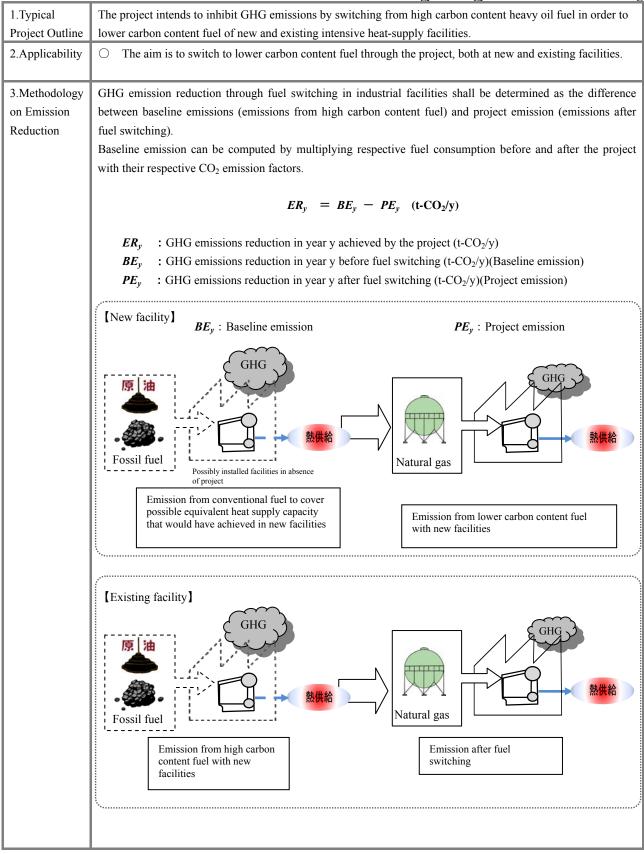
Monitoring

[New facilities]

_				Data Acquisitio	on Methods	
Data	Truno	Description of Data	Baseline Er	nissions	Project Em	issions
Data	Туре	Description of Data	Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion
Production capacity	Before: $EG_{BL,y}$	Production capacity without the project Measured data (Output)		(Not necessary because data is		
	After : $EG_{PJ,y}$	Production capacity by the project activity	Planned data	Measured data	not involved in th	e calculation)
Fuel consumption	Before : <i>BC_{i,y}</i>	Fuel consumption without the project $(kL, m^3, t \text{ etc. /y})$	out the project Estimated data based on results from		(Not necessary because data is not involved in the calculation)	
	After : $PC_{i,y}$	Fuel consumption by the project activity (kL, m ³ , tetc. /y)	(Not necessary bec involved in the		Planned data	Measured data
Net calorific value (<i>NCV_i</i>)		Net calorific value of each fuel type (GJ/kL, m ³ , t etc.)	Data availability is validated in the following order because it shou preferably be calculated using data and information unique to the project. i) Unique data obtained from interview with power management entit			the project.
CO_2 emissions factor ($COEF_i$)		CO ₂ emissions factor of each fuel type (t-CO ₂ /TJ)	ii) National defauiii) IPCC Guidelin	lt e default data (Anr	tex C-2,3)	

[Existing facilities]

			Data Acquisition Methods				
Data Type			Baseline Emissions		Project Emissions		
		Description of Data	Before the Project	After Project	Before the	After Project	
			Starts	Completion	Project	Completion	
					Starts		
Production	Before: $EG_{BL,y}$	Production capacity					
capacity		without the project	Measure	ed data			
		(Output)		-	(Not necessary because data is		
	After : $EG_{PJ,y}$	Production capacity			not involved	in the calculation)	
		by the project	Planned data	Measured data			
		activity					
Fuel	Before : $BC_{i,y}$	Fuel consumption			(Not necessary because data		
consumption		without the project	Measured data			t involved in the calculation	
		$(kL, m^3, t \text{ etc./y})$			not involved in the calculati		
	After : $PC_{i,y}$	Fuel consumption					
		by the project	(Not necessary because data is not involved in the calculation)		Planned	Measured data	
		activity			data	Measured data	
		$(kL, m^3, t \text{ etc./y})$					
Net calorific val	ue						
(NCV_i)		Same as [New facilities]					
CO ₂ emissions factor							
$(COEF_i)$							


5.Others	(1) Project Boundary The physical boundary for measuring GHG emissions includes facilities where project activity is implemented.
	 (2) Leakage Fuel switching in industrial facilities: indirect emissions potentially leading to leakage due to activities such as product manufacturing or materials transport. This corresponding emission is temporary and negligible considering the project scale. Therefore, it can be ignored. Fugitive CH₄ emissions associated with the fuel extraction, processing, liquefaction, transportation, re-gasification and distribution, or CO₂ emissions from natural gas transportation and distribution and compression shall be calculated in reference to the Annex C-5&6, if it consists around 10-20% of the project emission, it should be subtracted from GHG emission reduction.
	 (3) Reviewed Methodologies and Major Differences 1) ACM0009 (ver3.2) : Consolidated baseline and monitoring methodology for fuel switching from coal or petroleum fuel to natural gas [Differences]
	* Reviewed methodology is applied to fuel switching in the heat generation process; however, this formula is not limited to fuel switching.
	 * Though the reviewed methodology is applied to fuel switching from coal or petroleum fuel to natural gas, the formula in this section is also applied to any other kind of fuel. * Though reviewed methodology expects that the condition where the amount of heat supply before and after
	the project are the same, the methodology here adopts the formula corresponding to the amount of heat supply increase.
	*Leakage emissions comprise mainly fugitive CH_4 emissions from fuel production and, in the case of natural gas, from fuel transportation and distribution. This formula should consider in the same manner.
	2) AMS-III.B (ver15.0) : Switching fossil fuels [Differences]
	* The formula in the reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual GHG emission reduction through fuel switching. There is no restriction for applying the formula in this methodology.
	* In the reviewed methodology, fugitive CH_4 emissions from fuel extraction, processing, liquefaction, transportation, re-gasification and distribution, or CO_2 emissions from natural gas transportation, distribution and compression should be considered for leakage. This formula considers it also.
	3) AMS-III.AN (ver2.0) : Fossil fuel switch in existing manufacturing industries [Differences]
	* The formula in the reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual GHG emission reduction through fuel switching. There is no restriction for applying formula in this methodology.
	 * In the reviewed methodology, the formula for project emission is intended to include emissions generated by electricity consumption in the project. This formula here excludes the corresponding emission because it is negligible considering the project scale.
	* In the reviewed methodology, if the power plants or equipments are transferred from other projects, leakage should be considered. In this methodology, fugitive CH_4 emissions associated with fuel production in the case of natural gas, from fuel transportation and distribution should be considered.

Energy Sector

Sub-sector :

- **10. Energy Plant with Fuel Switching**
- 11. Thermal Power with Electricity and Heat Supply
- 12. Thermal Power with Fuel Switching
- 13. Thermal Power with Higher Efficiency
- 14. Power Transmission with Improved Efficiency
- **15.** Power Distribution with Improved Efficiency
- **16. Rural Electrification**

10. Energy / Energy Plant with Fuel Switching

3.Methodology(1) Baseline EmissiononEmissionTo calculate baselineReductionconsumption is multip(Continuation)

To calculate baseline emission, monitor fuel consumption in the absence of fuel switching. Such measured consumption is multiplied by a corresponding emission factor.

In the case of new facilities, measure fuel consumption necessary to generate the amount of heat supply capacity after the project start, equivalent to that of the existing facilities.

$$BE_{y} = HG_{PJ,y} \times \left(\frac{BC_{BL,y} \times NCV_{i} \times COEF_{i}}{HG_{BL,y}}\right)$$

Туре	Items	Description	
Output	BE_y	Baseline emission : GHG emission without project activity (t-CO ₂ /y)	
Input	$HG_{BL,y}$	Amount of heat supply before the project starts(TJ/y)	
	$HG_{PJ,y}$	Amount of heat supply after the project(TJ/y)	
	$BC_{i,y}$	Fuel consumption before project activity(kL, m ³ , t etc./y)	
	NCV _i	Net Calorific Value of fuel i (GJ/kL, m ³ , t etc.)	
	$COEF_i$	CO ₂ Emission Factor of fuel i (t-CO ₂ /TJ)	

(2)Project Emission

To calculate project GHG emission, monitor fuel consumption from facilities that adopt fuel switching after project activity. Such measured consumption is multiplied by a corresponding emission factor.

$$PE_y = PC_{i,y} \times NCV_i \times COEF_i$$

Туре	Items	Description	
Output	PE_y	Project emission :	
		GHG emission after project activity (t-CO ₂ /y)	
Input	$PC_{i,y}$	Fuel consumption after project activity(kL, m ³ , t etc./y)	
	NCVi	Net Calorific Value of fuel i (GJ/kL, m ³ , t etc.)	
	$COEF_i$	CO ₂ Emission Factor of fuel i(t-CO ₂ /TJ)	

10. Energy / Energy Plant with Fuel Switching

4. Data Required for Estimation and

Monitoring

[New facilities]

Data Type			Data Acquisition Methods			
		Description of Data	Baseline Emissions		Project Emissions	
Da	la Type	Description of Data	Before the	After Project	Before the	After Project
			Project Starts	Completion	Project Starts	Completion
Amount of heat supply	Before : $HG_{BL,y}$	Amount of heat supply without the project (TJ/y)		ased on the results similar facilities	(Not necessary because data is not involved in the calculation)	
	After : $HG_{PJ,y}$	Amount of heat supply by the project activity (TJ/y)	Planned data	Measured data		
Amount of fuel consumption	Before : $BC_{i,y}$	Amount of fuel consumption without the project (kL, m ³ , t etc./y)	Estimated data based on the results obtained from similar facilities		(Not necessary because data is not involved in the calculation)	
	After : <i>PC_{i,y}</i>	Amount of fuel consumption by the project activity (kL, m ³ , t etc./y)	<	ecause data is not ne calculation)	Planned data	Measured data
Net calorific value (NCV_i)		Net calorific value of each fuel type (GJ/kL, m ³ , t etc.)	Data availability is validated in the following order because it s preferably be calculated with data and information unique to the projec i) Unique data obtained from interview with power management et		o the project :	
CO_2 emissions factor ($COEF_i$)		CO ₂ emissions factor of each fuel type (t-CO ₂ /TJ)	 i) Unique data obtained from interview with power manageme ii) National default iii) IPCC Guideline default data (Annex C-2,3) 		2	

[Existing facilities]

				Data Acquisiti	on Methods	
Data Type		Description of Data	Baseline Emissions		Project Emissions	
			Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion
Amount of heat supply	Before : $HG_{BL,y}$	Amount of heat supply without the project (TJ/y)	Measur	ed data	(Not necessary b	ecause data is not
	After : <i>HG_{PJ,y}</i>	Amount of heat supply by the project activity (TJ/y)	Planned data	Measured data	involved in th	ne calculation)
Amount of fuel consumption	Amount of fuel Before : $BC_{i,y}$ Amount of fuel consumption without Measure		ed data	· ·	ecause data is not ne calculation)	
	After : $PC_{i,y}$	Amount of fuel consumption by the project activity (kL, m ³ , t etc./y)	(Not necessary be involved in th		Planned data	Measured data
Net calorific value (NCV _i) CO ₂ emissions factor (COEF _i)			Same as	s 【New facilities】		

5.Others	(1) Project Boundary The physical boundary for measuring GHG emissions includes power facilities where project activity is implemented.
	(2) Leakage
	Fuel switching: the indirect emissions that potentially lead to leakage due to activities such as product manufacturing or materials transport. This corresponding emission is temporary and negligible considering the project scale. Therefore, it can be ignored.
	Fugitive CH_4 emissions associated with fuel production in the case of natural gas, from fuel transportation and distribution shall be calculated in reference to the Annex C-5&6, If it consists around 10-20 % of the project emission, it should be subtracted from GHG emission reduction.
	(3) Reviewed Methodologies and Major Differences
	 ACM0009 (ver3.2) : Consolidated baseline and monitoring methodology for fuel switching from coal or petroleum fuel to natural gas [Differences]
	* Reviewed methodology is applied to fuel switching in heat generation process; however, this formula is not limited to fuel switching.
	* Though reviewed methodology expects the condition where the amount of heat supply before and after the project are the same, the methodology here uses the formula corresponding to the amount of heat supply increase.
	* Leakage emissions comprise mainly fugitive CH_4 emissions from fuel production and, in the case of natural gas, from fuel transportation and distribution. This formula should consider in the same manner.
	2) AMS-III.B (ver15) : Switching fossil fuels [Differences]
	* The formula in the reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual GHG emission reduction through fuel switching. There is no restriction for applying the formula on this methodology.
	* The reviewed methodology ignores the leakage with fugitive CH_4 emissions associated with fuel production in the case of natural gas, from fuel transportation and distribution. However, in this formula, leakage shall be considered
	3) AMS-III.AN(ver2.0) : Fossil fuel switch in existing manufacturing industries [Differences]
	* The formula in the reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual GHG emission reduction through fuel switching. There is no restriction for applying the formula on this methodology.
	* In the reviewed methodology, the formula for project emission is intended to include emissions generated by
	electricity consumption in the project. This formula here excludes the corresponding emission because it is negligible considering the project scale.
	* In the reviewed methodology, if the power plants or equipments are transferred from other projects, leakage should be considered. This formula consider the fugitive CH_4 emissions from fuel production and, in the case of
	natural gas, from fuel transportation and distribution.

The project intends to directly reduce GHG emissions and suppress fuel consumption for electricity generation through recovery and utilization (new construction of combined cycle power plants etc.) from waste energy (waste heat, waste) at fossil fuel fired power plants.
 The project should aim at GHG emission reduction through installation, upgrading and improvement of facilities, which recover and utilize waste energy at fossil fuel fired power plant. The project should promote utilization of waste energy by electricity generation or heat generation.
GHG emission reduction through waste energy recovery and utilization in fossil fuel fired facilities shall be determined as the difference between baseline emissions before the project starts and emissions after the project. Emission can be calculated for electric power generation and heat generation through waste energy recovery and utilization.
$ER_y = BE_y - PE_y$ (t-CO ₂ /y)
 ER_y : GHG emissions reduction in year y achieved by the project (t-CO₂/y) BE_y : GHG emissions in year y without waste energy recovery and utilization (t-CO₂/y) (Baseline emission) PE_y : GHG emissions in year y with waste energy recovery and utilization (t-CO₂/y) (Project emission)
$\begin{array}{c} & \textbf{BE}_{y}: \text{Baseline emission} & \textbf{Figure emission} & Figure$

3.Methodology of Emission Reduction (Continuation)

Туре	Items	Description
Output	BEy	Baseline emission : GHG emission without recovery and utilization of waste energy (project activity) (t-CO ₂ /y)
Input	$EG_{PJ,y}$	Amount of electric power supply after the project activity(MWh/y)
	$EF_{BL,y}$	CO ₂ emissions factor of the electricity(t-CO ₂ /MWh)
	HG _{PJ,y}	Amount of heat supply after the project activity (TJ/y)
	EFheat	CO ₂ emission factor of heat(t-CO ₂ /TJ)

Determination of EF_{BL,y}

Baseline CO_2 emissions factor of the electric power is defined as the emission factor of the target power plant where project activity is expected to reduce emission.

Emission factor for the target power plant should be obtained through interview to the electric power management entity concerned or based on published values.

If the emission factor is not available, it should be calculated using the net electrical output of the target power plant, fuel type, net fuel consumption, net calorific value and caloric CO_2 emission factor (Ref. Annex C-4).

Determination of EF_{heat}

 EF_{heat} shall be calculated by the following equation:

$$EF_{heat} = ws \frac{EF_{CO2}}{\eta_{EP}}$$

 EF_{CO2} : The CO₂ emission factor per unit of energy of the boiler fuel consumption without the project

 η_{EP} : Boiler efficiency ws : Rate of total heat from b

s : Rate of total heat from boiler without the project

(2) Project Emission

To calculate project GHG emission, monitor electricity consumption and supplemental fuel consumption from facilities with waste energy recovery and utilization. That measured consumption is multiplied by each respective emission factor.

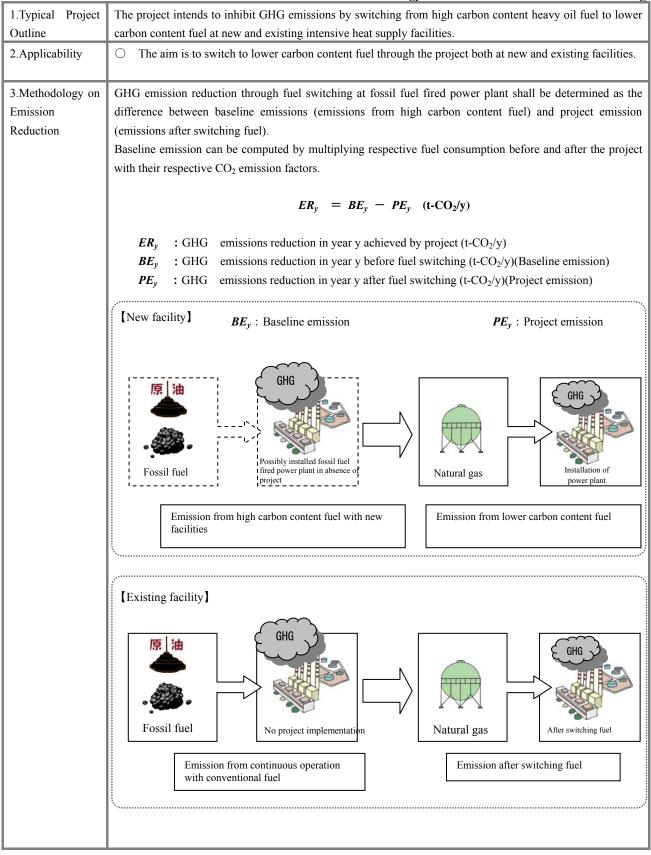
 $PE_{y} = PE_{elec,y} + PE_{i,y}$ (Emission with electric consumption) (Emission with fuel consumption)

 $= (PC_{v} \times EF_{BL,v}) + (PC_{i,v} \times NCV_{i} \times COEF_{i})$

Туре	Items	Description			
Output	PE_y	Project emission :			
		GHG emission after project activity (t-CO ₂ /y)			
Input	PC_y	Electricity consumption after the project in year y(MWh/y)			
	$EF_{BL,y}$	CO ₂ emissions factor of the electricity(t-CO ₂ /MWh)			
	$PC_{i,y}$	Fuel consumption i after the project in year y (kL, m ³ , t etc./y)			
	NCVi	Net Calorific Value of fuel i (GJ/kL, m ³ , t etc.)			
	$COEF_i$	CO ₂ Emission Factor of fuel i(t-CO ₂ /TJ)			
	COEF _i				

4. Data

Required for


Estimation and

Monitoring

				Data Acquisitio		
Data Type		Description of Data	Baseline Emissions		Project Emissions	
		I. I. I. I. I.	Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion
Amount of electricity power supply with waste energy recovery and utilization (After: $EG_{PJ,y}$)		Amount of electricity power supply with waste energy recovery and utilization by the project activity (MWh/y)	Planned data	Measured data	(Not necessary b	because data is not he calculation)
CO_2 emision facto(Before : EF_{BLy})	CO ₂ emissions factor of electricity	Emissions factor of the target power plants (t-CO ₂ /MWh)	following order preferably be cal national data and ir i) Data speci obtained thr electric pow concerned	is validated in the because it should culated with unique formation: fic to the project ough interview to the er management entity values in the target		because data is not he calculation)
		Amount of heat from waste energy recovery and utilization by the project activity (TJ/y)	Planned data	Measured data		because data is not he calculation)
CO ₂ emission factor (η_{EP}) Heat ratio Heat ratio (η_{P})		The CO ₂ emission factor of the boiler fuel type without the project (t-CO ₂ /TJ)	following order preferably be calcu information unique i) Unique data power manag ii) National defa	from interview with gement entity		
		Heat efficiency form boiler(%) Rate of total heat from	Data availability following order: i) Unique dat interviews management ii) Measured dat Heat capacity	with power entity a of similar cases with waste energy		because data is not he calculation)
_	(ws)	boiler without the project		ation = heat capacity e absence of project 		
Electricity consumption by the project activity (After: $PC_{,y}$)		Net electricity consumption(MWh/y)		because data is not he calculation)	Planned data	Measured data
Fuel consumption by the project activity $(After: PC_{i,v})$		Net fuel consumption of each fuel type (kL, m ³ , t etc./y)	involved in t	because data is not the calculation)	Planned data	Measured data
Net calorific value of each fuel type (NCV_i) Other factors (NCV_i) CO2 emissions factor of each fuel type $(COEF_i)$		Net calorific value of each fuel type (GJ/kL, m ³ , t etc.)	be calculated using i) Unique data ii) National defa		nique to the project: ver management en	*
		CO ₂ emissions factor of each fuel type (t-CO ₂ /TJ)	iii) IPCC Guidel	IPCC Guideline default data (Annex C-2,3)		

5.Others	(1) Project BoundaryThe physical boundary for measuring GHG emissions includes power facilities where project activity is implemented.				
	(2) LeakageRecovery and utilization of waste energy in power plant: the indirect emissions potentially leading to leakage due to activities such as product manufacturing or materials transport.This corresponding emission is temporary and negligible considering the project scale. Therefore, it can be ignored.				
	(3) Reviewed Methodologies and Major Differences1) ACM0012(ver4.0.0) : Consolidated baseline methodology for GHG emission reductions from waste energy recovery projects				
	[Differences] * Waste energy utilized in the project. Thus, without the project, waste energy that would be flared or released into the atmosphere should be proved by directly measuring waste energy amount over three years before project implementation.				
	 This formula excludes these conditions. * Reviewed methodology adopts several formulas depending on current situations and projects; however, in this formula, it is simplified by multiplying the electric power supply from waste energy by CO₂ emissions factor. * In the reviewed methodology, the CO₂ emission factor of the electricity is the grid average value calculated by the "Tool to calculate the Emission Factor for an electricity system" for CDM. In this methodology, emissions factor of the target power plants. 				
	* This formula does not consider the leakage because the reviewed methodology also mentions that there is no leakage to be considered.				
	2) AM0048(ver03) : New cogeneration facilities supplying electricity and/or steam to multiple customers and displacing grid/off-grid steam and electricity generation with more carbon-intensive fuels [Differences]				
	 * Baseline emission in the reviewed methodology is calculated for each electric power supply to each individual customer and electricity supplying the grid; however, all electricity is assumed to supply the grid in applying the formula in this section. 				
	* In the reviewed methodology, the CO ₂ emission factor of the electricity is the grid average value calculated by the "Tool to calculate the Emission Factor for an electricity system" for CDM. In this methodology, emissions factor of electricity is defined as the emission factor of the target power plants.				
	* Leakage may be calculated with the fugitive CH_4 from the extraction, processing, liquefaction, transportation, re-gasification and CO_2 emissions from associated fuel combustion and flaring in transportation, re-gasification and pressure of natural gas. This formula here excludes the corresponding emission because it is negligible considering the project scale.				

12. Energy / Thermal Power with Fuel Switching

(Continuation)

To calculate baseline emission, monitor fuel consumption in the absence of fuel switching. Such measured consumption is multiplied by its corresponding emission factor.

In the case of new facilities, measure fuel consumption necessary to generate the amount of electric power supply capacity after the project start equivalent to the existing facilities.

$$BE_{y} = EG_{PJ,y} \times \left(\frac{BC_{BL,y} \times NCV_{i} \times COEF_{i}}{EG_{BL,y}}\right)$$

Туре	Items	Description	
Output	BE_v	Baseline emission :	
_	2	GHG emission with no project activity (t-CO ₂ /y)	
Input	$EG_{BL,y}$	Electricity generating capacity before the project(MWh/y)	
	$EG_{PJ,y}$	Electricity generating capacity after the project(MWh/y)	
	$BC_{i,y}$	Fuel consumption before project activity(kL, m ³ , t etc./y)	
	NCV _i	Net Calorific Value of fuel i (GJ/kL, m ³ , t etc.)	
	$COEF_i$	CO ₂ Emission Factor of fuel i (t-CO ₂ /TJ)	

(2) Project Emission

(1) Baseline Emissions

To calculate project GHG emission, monitor fuel consumption from facilities with fuel switching after project activity. That measured consumption is multiplied by its corresponding emission factor.

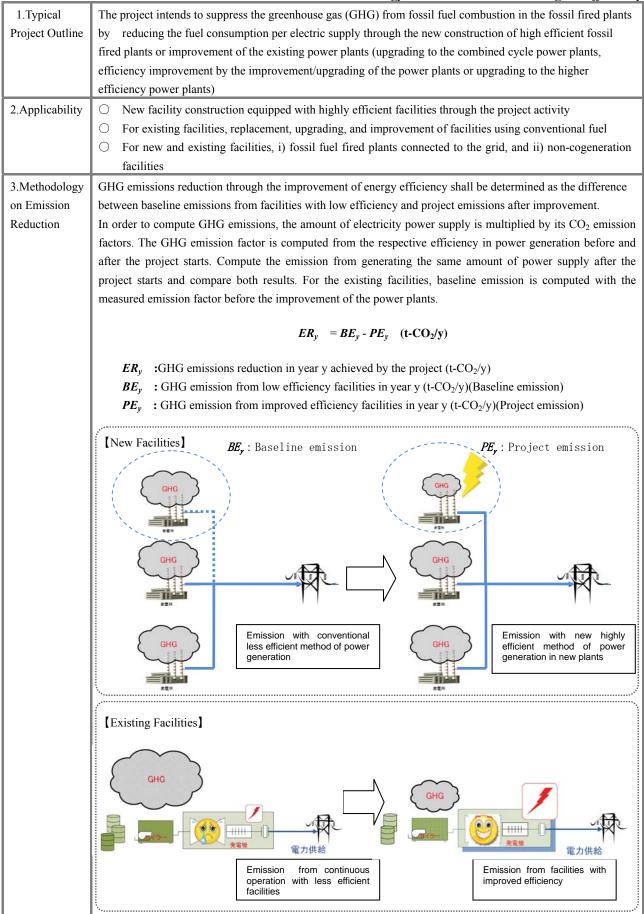
$$PE_y = PC_{i,y} \times NCV_i \times COEF_i$$

Туре	Items	Description	
Output	PE_y	Project emission :	
		GHG emission after project activity (t-CO ₂ /y)	
Input	$PC_{i,y}$	Fuel consumption after project activity(kL, m ³ , t etc./y)	
	NCVi	Net Calorific Value of fuel i (GJ/kL, m ³ , t etc.)	
	$COEF_i$	CO ₂ Emission Factor of fuel i (t-CO ₂ /TJ)	

4. Data Required

for Estimation and

Monitoring


[New facilities]

			Data Acquisitic		on Methods	
Data Type		Description of Data	Baseline Emissions		Project Emissions	
			Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion
Amount of power supply	Before : $EG_{BL,y}$	Electricity generating capacity without the project (MWh/y)	Estimated data based on the results of similar facilities		(Not necessary because data is not	
	After : $EG_{PJ,y}$	Electricity generating capacity by the project activity (MWh/y)	Planned data	Measured data	involved in the calculation)	
Fuel consumption	Before : <i>BC_{i,y}</i>	Fuel consumption without the project (kL, m ³ , t etc./y)	Estimated data based on the results of similar facilities (Not necessary because data is not involved in the calculation)		(Not necessary because data is not involved in the calculation)	
	After : $PC_{i,y}$	Fuel consumption by the project activity (kL, m ³ , t etc./y)			Planned data	Measured data
Net calorific value (<i>NCV_i</i>)		Net calorific value of each fuel type (GJ/kL, m ³ ,t etc.,)	Data availability is validated in the following order because it preferably be calculated using data and information unique to the proje		to the project:	
CO ₂ emissions factor (<i>COEF_i</i>)		CO ₂ emissions factor of each fuel type (t-CO ₂ /TJ)	 i) Unique data from interview with power management entity ii) National default iii) IPCC Guideline default data (Annex C-2,3) 			t ontry

[Existing facilities]

			Data Acquisition Methods				
Data Type		Description of Data	Baseline Emissions		Project Emissions		
			Before the	After Project	Before the	After Project	
			Project Starts	Completion	Project Starts	Completion	
Amount of power supply	Before: $EG_{BL,y}$	Electricity generating capacity without the project (MWh/y)	Meas	sured data	(Not necessary because data is not involved in the calculation)		
	After : $EG_{PJ,y}$	Electricity generating capacity by the project activity (MWh/y)	Planned data	Measured data			
Fuel consumption	Before : <i>BC_{i,y}</i>	Fuel consumption without the project (kL, m ³ , t etc./y)	Meas	sured data	· · ·	(Not necessary because data is not involved in the calculation)	
	After : $PC_{i,y}$	Fuel consumption by the project activity (kL, m ³ , t etc./y)	· · · · · ·	because data is not the calculation)	Planned data	Measured data	
Net calorific value (NCV _i)		Same as [New facilities]					
CO ₂ emissions (COEF _i)	factor						

 The physical boundary for measuring GHG emissions includes power facilities where project activity is implemented. (2) Leakage Switching fuel at fossil fuel fired power plants: the indirect emissions that potentially lead to leakage due to activities such as product manufacturing or materials transport. This corresponding emission is temporary and negligible considering the project scale. Therefore, it can be ignored. Fugitive CH₄ emissions associated with the fuel extraction, processing, liquefaction, transportation, re-gasification and distribution, or CO₂ emissions from natural gas transportation and distribution and compression shall be calculated in reference to the Annex C-5&6, if it consists around 10-20% of the project emission, it should be subtracted from GHG emission reduction. (3) Reviewed Methodologies and Major Differences 1) ACM0011 (ver2.2): Consolidated baseline methodology for fuel switching from coal and/or petroleum fuels to natural gas in existing power plants for electricity generation. [Differences] Reviewed methodology consists of approved consolidated methodologies and show comes formulas for every scenario; however, it is simply calculated based on fuel consumption in this formula. 2)AMS-III.B (ver15.0) : Switching fossil fuels [Differences] The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. "The Reviewed methodology does not consider, however, fugitive CH₄ emission from fuel extraction, mecessing lineefaction, transportation <i>m</i>-gasification and distribution of fuel CO₂ emission from natural 	5.Others	(1) Project Boundary				
 (2) Leakage Switching fuel at fossil fuel fired power plants: the indirect emissions that potentially lead to leakage due to activities such as product manufacturing or materials transport. This corresponding emission is temporary and negligible considering the project scale. Therefore, it can be ignored. Fugitive CH₄ emissions associated with the fuel extraction, processing, liquefaction, transportation, re-gasification and distribution, or CO₂ emissions from natural gas transportation and distribution and compression shall be calculated in reference to the Annex C-5&6, if it consists around 10-20% of the project emission, it should be subtracted from GHG emission reduction. (3) Reviewed Methodologies and Major Differences 1) ACM0011 (ver2.2): Consolidated baseline methodology for fuel switching from coal and/or petroleum fuels to natural gas in existing power plants for electricity generation. [Differences] Reviewed methodology consists of approved consolidated methodologies and show comes formulas for every scenario; however, it is simply calculated based on fuel consumption in this formula. 2)AMS-III.B (ver15.0) : Switching fossil fuels [Differences] The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. 		The physical boundary for measuring GHG emissions includes power facilities where project				
 Switching fuel at fossil fuel fired power plants: the indirect emissions that potentially lead to leakage due to activities such as product manufacturing or materials transport. This corresponding emission is temporary and negligible considering the project scale. Therefore, it can be ignored. Fugitive CH₄ emissions associated with the fuel extraction, processing, liquefaction, transportation, re-gasification and distribution, or CO₂ emissions from natural gas transportation and distribution and compression shall be calculated in reference to the Annex C-5&6, if it consists around 10-20% of the project emission, it should be subtracted from GHG emission reduction. (3) Reviewed Methodologies and Major Differences 1) ACM0011 (ver2.2): Consolidated baseline methodology for fuel switching from coal and/or petroleum fuels to natural gas in existing power plants for electricity generation. [Differences] Reviewed methodology consists of approved consolidated methodologies and show comes formulas for every scenario; however, it is simply calculated based on fuel consumption in this formula. 2)AMS-III.B (ver15.0) : Switching fossil fuels [Differences] The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. 		activity is implemented.				
 Switching fuel at fossil fuel fired power plants: the indirect emissions that potentially lead to leakage due to activities such as product manufacturing or materials transport. This corresponding emission is temporary and negligible considering the project scale. Therefore, it can be ignored. Fugitive CH₄ emissions associated with the fuel extraction, processing, liquefaction, transportation, re-gasification and distribution, or CO₂ emissions from natural gas transportation and distribution and compression shall be calculated in reference to the Annex C-5&6, if it consists around 10-20% of the project emission, it should be subtracted from GHG emission reduction. (3) Reviewed Methodologies and Major Differences 1) ACM0011 (ver2.2): Consolidated baseline methodology for fuel switching from coal and/or petroleum fuels to natural gas in existing power plants for electricity generation. [Differences] Reviewed methodology consists of approved consolidated methodologies and show comes formulas for every scenario; however, it is simply calculated based on fuel consumption in this formula. 2)AMS-III.B (ver15.0) : Switching fossil fuels [Differences] The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. 						
 activities such as product manufacturing or materials transport. This corresponding emission is temporary and negligible considering the project scale. Therefore, it can be ignored. Fugitive CH₄ emissions associated with the fuel extraction, processing, liquefaction, transportation, re-gasification and distribution, or CO₂ emissions from natural gas transportation and distribution and compression shall be calculated in reference to the Annex C-5&6, if it consists around 10-20% of the project emission, it should be subtracted from GHG emission reduction. (3) Reviewed Methodologies and Major Differences 1) ACM0011 (ver2.2): Consolidated baseline methodology for fuel switching from coal and/or petroleum fuels to natural gas in existing power plants for electricity generation. [Differences] Reviewed methodology consists of approved consolidated methodologies and show comes formulas for every scenario; however, it is simply calculated based on fuel consumption in this formula. 2)AMS-III.B (ver15.0) : Switching fossil fuels [Differences] * The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. * The Reviewed methodology does not consider, however, fugitive CH₄ emission from fuel extraction, 		(2) Leakage				
 negligible considering the project scale. Therefore, it can be ignored. Fugitive CH₄ emissions associated with the fuel extraction, processing, liquefaction, transportation, re-gasification and distribution, or CO₂ emissions from natural gas transportation and distribution and compression shall be calculated in reference to the Annex C-5&6, if it consists around 10-20% of the project emission, it should be subtracted from GHG emission reduction. (3) Reviewed Methodologies and Major Differences 1) ACM0011 (ver2.2): Consolidated baseline methodology for fuel switching from coal and/or petroleum fuels to natural gas in existing power plants for electricity generation. [Differences] Reviewed methodology consists of approved consolidated methodologies and show comes formulas for every scenario; however, it is simply calculated based on fuel consumption in this formula. 2)AMS-III.B (ver15.0): Switching fossil fuels [Differences] * The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. *The Reviewed methodology does not consider, however, fugitive CH₄ emission from fuel extraction, 		Switching fuel at fossil fuel fired power plants: the indirect emissions that potentially lead to leakage due to				
 Fugitive CH₄ emissions associated with the fuel extraction, processing, liquefaction, transportation, re-gasification and distribution, or CO₂ emissions from natural gas transportation and distribution and compression shall be calculated in reference to the Annex C-5&6, if it consists around 10-20% of the project emission, it should be subtracted from GHG emission reduction. (3) Reviewed Methodologies and Major Differences 1) ACM0011 (ver2.2): Consolidated baseline methodology for fuel switching from coal and/or petroleum fuels to natural gas in existing power plants for electricity generation. [Differences] • Reviewed methodology consists of approved consolidated methodologies and show comes formulas for every scenario; however, it is simply calculated based on fuel consumption in this formula. 2)AMS-III.B (ver15.0) : Switching fossil fuels [Differences] * The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. *The Reviewed methodology does not consider, however, fugitive CH₄ emission from fuel extraction, 		activities such as product manufacturing or materials transport. This corresponding emission is temporary and				
 re-gasification and distribution, or CO₂ emissions from natural gas transportation and distribution and compression shall be calculated in reference to the Annex C-5&6, if it consists around 10-20% of the project emission, it should be subtracted from GHG emission reduction. (3) Reviewed Methodologies and Major Differences ACM0011 (ver2.2): Consolidated baseline methodology for fuel switching from coal and/or petroleum fuels to natural gas in existing power plants for electricity generation. [Differences] Reviewed methodology consists of approved consolidated methodologies and show comes formulas for every scenario; however, it is simply calculated based on fuel consumption in this formula. 2)AMS-III.B (ver15.0): Switching fossil fuels [Differences] The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. 		negligible considering the project scale. Therefore, it can be ignored.				
 compression shall be calculated in reference to the Annex C-5&6, if it consists around 10-20% of the project emission, it should be subtracted from GHG emission reduction. (3) Reviewed Methodologies and Major Differences 1) ACM0011 (ver2.2): Consolidated baseline methodology for fuel switching from coal and/or petroleum fuels to natural gas in existing power plants for electricity generation. [Differences] Reviewed methodology consists of approved consolidated methodologies and show comes formulas for every scenario; however, it is simply calculated based on fuel consumption in this formula. 2)AMS-III.B (ver15.0): Switching fossil fuels [Differences] The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. *The Reviewed methodology does not consider, however, fugitive CH₄ emission from fuel extraction, 		Fugitive CH ₄ emissions associated with the fuel extraction, processing, liquefaction, transportation,				
 emission, it should be subtracted from GHG emission reduction. (3) Reviewed Methodologies and Major Differences ACM0011 (ver2.2): Consolidated baseline methodology for fuel switching from coal and/or petroleum fuels to natural gas in existing power plants for electricity generation. [Differences] Reviewed methodology consists of approved consolidated methodologies and show comes formulas for every scenario; however, it is simply calculated based on fuel consumption in this formula. 2)AMS-III.B (ver15.0) : Switching fossil fuels [Differences] The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. 		re-gasification and distribution, or CO ₂ emissions from natural gas transportation and distribution and				
 (3) Reviewed Methodologies and Major Differences (3) ACM0011 (ver2.2): Consolidated baseline methodology for fuel switching from coal and/or petroleum fuels to natural gas in existing power plants for electricity generation. [Differences] Reviewed methodology consists of approved consolidated methodologies and show comes formulas for every scenario; however, it is simply calculated based on fuel consumption in this formula. 2)AMS-III.B (ver15.0) : Switching fossil fuels [Differences] The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. *The Reviewed methodology does not consider, however, fugitive CH₄ emission from fuel extraction, 		compression shall be calculated in reference to the Annex C-5&6, if it consists around 10-20% of the project				
 1) ACM0011 (ver2.2): Consolidated baseline methodology for fuel switching from coal and/or petroleum fuels to natural gas in existing power plants for electricity generation. [Differences] Reviewed methodology consists of approved consolidated methodologies and show comes formulas for every scenario; however, it is simply calculated based on fuel consumption in this formula. 2)AMS-III.B (ver15.0) : Switching fossil fuels [Differences] * The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. *The Reviewed methodology does not consider, however, fugitive CH₄ emission from fuel extraction, 						
 1) ACM0011 (ver2.2): Consolidated baseline methodology for fuel switching from coal and/or petroleum fuels to natural gas in existing power plants for electricity generation. [Differences] Reviewed methodology consists of approved consolidated methodologies and show comes formulas for every scenario; however, it is simply calculated based on fuel consumption in this formula. 2)AMS-III.B (ver15.0) : Switching fossil fuels [Differences] * The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. *The Reviewed methodology does not consider, however, fugitive CH₄ emission from fuel extraction, 						
 fuels to natural gas in existing power plants for electricity generation. [Differences] Reviewed methodology consists of approved consolidated methodologies and show comes formulas for every scenario; however, it is simply calculated based on fuel consumption in this formula. 2)AMS-III.B (ver15.0) : Switching fossil fuels [Differences] * The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. *The Reviewed methodology does not consider, however, fugitive CH₄ emission from fuel extraction, 		(3) Reviewed Methodologies and Major Differences				
 fuels to natural gas in existing power plants for electricity generation. [Differences] Reviewed methodology consists of approved consolidated methodologies and show comes formulas for every scenario; however, it is simply calculated based on fuel consumption in this formula. 2)AMS-III.B (ver15.0) : Switching fossil fuels [Differences] * The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. *The Reviewed methodology does not consider, however, fugitive CH₄ emission from fuel extraction, 		1) ACM0011 (ver2.2): Consolidated baseline methodology for fuel switching from coal and/or petroleum				
 Reviewed methodology consists of approved consolidated methodologies and show comes formulas for every scenario; however, it is simply calculated based on fuel consumption in this formula. 2)AMS-III.B (ver15.0) : Switching fossil fuels [Differences] * The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. *The Reviewed methodology does not consider, however, fugitive CH₄ emission from fuel extraction, 						
 every scenario; however, it is simply calculated based on fuel consumption in this formula. 2)AMS-III.B (ver15.0) : Switching fossil fuels [Differences] * The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. *The Reviewed methodology does not consider, however, fugitive CH₄ emission from fuel extraction, 		[Differences]				
 2)AMS-III.B (ver15.0) : Switching fossil fuels [Differences] * The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. *The Reviewed methodology does not consider, however, fugitive CH₄ emission from fuel extraction, 		• Reviewed methodology consists of approved consolidated methodologies and show comes formulas for				
 [Differences] * The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. *The Reviewed methodology does not consider, however, fugitive CH₄ emission from fuel extraction, 		every scenario; however, it is simply calculated based on fuel consumption in this formula.				
 [Differences] * The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. *The Reviewed methodology does not consider, however, fugitive CH₄ emission from fuel extraction, 						
 * The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. *The Reviewed methodology does not consider, however, fugitive CH₄ emission from fuel extraction, 		2)AMS-III.B (ver15.0) : Switching fossil fuels				
 projects, which aims at 60 kg or less annual CO₂ emissions reduction through switching fuel. There is no restriction for applying the formula in this methodology. *The Reviewed methodology does not consider, however, fugitive CH₄ emission from fuel extraction, 		[Differences]				
restriction for applying the formula in this methodology. *The Reviewed methodology does not consider, however, fugitive CH ₄ emission from fuel extraction,		* The formula in the Reviewed methodology is applied to approve methodologies for small-scale CDM				
*The Reviewed methodology does not consider, however, fugitive CH ₄ emission from fuel extraction,						
		restriction for applying the formula in this methodology.				
processing liquefaction transportation re-gasification and distribution of fuel CO ₂ emission from natural		*The Reviewed methodology does not consider, however, fugitive CH4 emission from fuel extraction,				
processing, induction, transportation, to gustification and distribution of fact, CO ₂ emission from natural		processing, liquefaction, transportation, re-gasification and distribution of fuel, CO ₂ emission from natural				
gas transportation and distribution in the case of, compression should be considered in this formula.						

(1) Baseline Emission

(Continuation)

The CO₂ emission factor is computed from the power generation efficiency without the replacement, upgrading and improvement of power generator before the project starts. GHG emissions necessary to generate the amount of electricity equivalent to the existing power generators after the project starts.

$$BE_y = EG_{PJ,y} \times EF_{BL,y}$$

Туре	Items	Description	
Output	BE_y	Baseline emission:	
		GHG emission from low efficiency power generators	
		(t-CO ₂ /y)	
Input	$EG_{PJ,y}$	annual energy production after the project starts at the	
		transmission edge (MWh)	
	$EF_{BL,y}$	CO ₂ emission factor per electricity supplied	
		(t-CO ₂ /MWh)	

Determination of EF_{BL,y}

For new facilities:

 CO_2 emission factor of electricity in the new facilities is defined from the efficiency in power generation of one or two old and typical power plants existing in the gird.

The efficiency in power generation of the target power plant should be obtained through interview to the electric power management entity concerned of the target country or neighborhood countries.

$$EF_{BL,y} = \frac{COEF_i}{\eta_{BLy}} \times 3.6 \ (\frac{GJ}{MWh})$$

 $COEF_i$: CO₂ emission factor of fuel i (t-CO₂/TJ)

 $\eta_{BL,y}$: Measured efficiency in power generation in the power plants without improvement

3.6 : Electrical output per electric energy(1 MWh=3.6 GJ)

For existing facilities:

The measured emission factor in the power plants without improvement is used as the CO_2 emission factor for the existing plants with improvement/upgrading (*1).

$$EF_{BL,y} = \frac{COEF_i}{\eta_{BL,y}} \times 3.6 \ (\frac{GJ}{MWh})$$

 $COEF_i$: CO₂ emission factor of fuel i (t-CO₂/TJ)

 $\eta_{BL,v}$: Measured efficiency in power generation in the power plants without improvement

3.6 : Electrical output per electric energy(1 MWh=3.6 GJ)

*1: When the measured emission factor in the power plants without improvement is unavailable, use the designed data.

(2) Project Emission

In order to calculate project GHG emission, monitor CO_2 emission from the power generation efficiency with the power generators that are replaced, upgraded and improved after project activity.

$$\boldsymbol{P}\boldsymbol{E}_{\boldsymbol{y}} = E\boldsymbol{G}_{PJ,\boldsymbol{y}} \times E\boldsymbol{F}_{PJ,\boldsymbol{y}}$$

Туре	Items	Description		
Output	PE_y	Project emission:		
		GHG emission after the project starts (t-CO ₂ /y)		
Input	$EG_{PJ,y}$	Annual energy production after the project starts at the transmission edge (MWh)		
	$EF_{PJ,y}$	CO ₂ emission factor per electricity supplied (t-CO ₂ /MWh)		

Determination of EF_{PJ,y}

For new and existing facilities

The CO₂ emission factor per electricity supplied after the project starts is computed using the efficiency after improvement. In order to compute $\underline{EF}_{PI,v}$, use the planned data before the project starts and the monitoring data after the project starts.

$$EF_{PJ,y} = \frac{COEF_i}{\eta_{PJ,y}} \times 3.6 \ (\frac{GJ}{MWh})$$

COEF_i :CO₂ emission factor of fuel i (t-CO₂/TJ)

 $\eta_{PJ,y}$: Planned or monitoring efficiency data after the efficiency improvement of the power generation

3.6 : Electrical output per electric energy(1 MWh=3.6 GJ)

4. Data Required for Estimation and

Monitoring

[New Facilities]

				Data Acquisiti	on Methods	
Data Type		Description of Data	Baseline Emissions		Project Emissions	
	ata Type	Description of Data	Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion
Quantity of power supply (After : <i>EG</i> _{<i>PJ</i>,y})		Quantity of power supply of the fossil fuel fired plants by the project activity(MWh/y)	Planned data	Measured data	Planned data	Measured data
Efficiency of power generation (Before : $\eta_{BL,y}$) (After : $\eta_{PJ,y}$)		Efficiency of power generation in the fossil fuel-fired plants	Measured data of one or two old and typical power plants existing in the gird.		Measured data	
CO ₂ emission factor	CO_2 emission factor of each fuel type(<i>COEF_i</i>)	CO ₂ emissions factor of each fuel type (t-CO ₂ /TJ)	 Data availability is validated in the following order because i preferable to calculate using data and information unique to the projection in Unique data obtained from interview with power managementity ii) National default iii) IPCC Guideline default data(Annex C-3) 		to the project:	

Existing Facilities

			Data Acquisition Methods			
г	Data Type	Description of Data	Baseline Emissions		Project Emissions	
L	Jata Type	Description of Data	Before the	After Project	Before the	After Project
			Project Starts	Completion	Project Starts	Completion
Quantity of power supply (After : <i>EG</i> _{<i>PJ</i>,<i>y</i>})		Quantity of power supply of the fossil fuel fired plants by the project activity(MWh/y)	Planned data	Measured data	Planned data	Measured data
Efficiency of (Before : η_{B}) (After : $\eta_{PJ,y}$)		Efficiency of power generation in the fossil fuel-fired plants		Before the Project arts	Planned data	Measured data
CO ₂ emission factor	CO ₂ emission factor of each fuel type(<i>COEF_i</i>)	CO ₂ emissions factor of each fuel type (t-CO ₂ /TJ)	 r Data availability is validated in the following order because it preferable to calculate using data and information unique to the project: i) Unique data obtained from interview with power manageme entity ii) National default iii) IPCC Guideline default data(Annex C-3) 		to the project:	

5.Others	(1) Project Boundary
	The physical boundary for measuring GHG emissions includes power facilities where project activity is implemented.
	(2) Leakage
	Higher efficiency at fossil fuel fired power plants: the indirect emissions that potentially lead to leakage due to activities such as product manufacturing or materials transport. This corresponding emission is temporary and
	negligible considering the project scale. Therefore, it can be ignored.
	(3) Reviewed Methodologies and Major Differences
	1) AM0061 (Ver.2.1): Methodology for Rehabilitation and/or Energy Efficiency Improvement in Existing
	Power Plants
	[Differences]
	• Though the reviewed methodology excludes new facilities as its element, new facilities are considered in this methodology.
	• Power plants which run over ten years and having available data in the five most recent years are used in the reviewed methodology. The formula in this methodology excludes these conditions.
	· Different calculation method is used for baseline emission when it exceeds the average electric power
	supply. It is determined using the efficiency in power supply with a specific formula. However, it is
	determined simply using the net power supply or the amount of power supply of the representative year in this methodology.
	• The reviewed methodology excludes the leakage potential unless there are great influences. The formula
	in this methodology also excludes the leakage in the same manner.
	2)AM0062 (Ver.2.0): Energy Efficiency Improvement of a Power Plant through Retrofitting Turbines
	[Differences]
	• Though the reviewed methodology excludes new facilities as its element, new facilities are used in this formula.
	• The reviewed methodology is applied to steam and gas turbines. The amount of steam and the power supplied by the steam turbine will indicate which should be improved in the turbine. However, the
	formula in this methodology excludes these conditions.
	 Different calculation method is used for baseline emission when it exceeds the average electric power
	supply. It is determined using the efficiency in power supply with a specific formula. However, it is
	determined simply using the net power supply or the amount of power supply of the representative year in this methodology.
	 The reviewed methodology excludes the leakage potential unless there are great influences. The formula
	in this methodology also excludes the leakage in the same manner.
	3)ACM0013 (Ver. 02): Consolidated Baseline and Monitoring Methodology for New Grid Connected Fossil
	Fuel-Fired Power Plants using a Less GHG Intensive Technology
	[Differences]
	• Though the reviewed methodology excludes new facilities as element, new facilities are used in the
	formula of this methodology.
	• Regarding the baseline fuel based on the reviewed methodology, the formula is applicable for fossil fuel used without the project, which is more than 50% of the net electricity power supply in the last three
	years. This formula excludes these conditions.
	• In the reviewed methodology, the CO_2 emission factor of the electricity is one of the value calculated by
	the caloric CO_2 emission factor of each fuel type and efficiency in power generation or the value
	calculated by the amount of power generation, type of fossil fuel, amount of fuel consumption, net
	calorific value, caloric CO_2 emissions factor of each fuel type. In this methodology, emissions factor of electricity is defined as the emission factor of one or two typical power plants existing in the gird to

(
	calculate easily.
	• Project emission is computed from the fuel consumption in the reviewed method. This project computes
	the efficiency in power generation after implementation.
	• The reviewed methodology excludes the leakage potential unless there are great influences. The formula
	in this methodology also excludes the leakage in the same manner.
	4)AMS-II.B (Ver. 09): Supply Side Energy Efficiency Improvements-Generation
	[Differences]
	 The reviewed methodology is applied to reduce electric power to 60 GWh or less, and to reduce fuel consumption through thermal application with the improvement of existing facilities. However, the formula in this methodology does not restrict the quantity of electricity and excludes heat supply. The reviewed methodology applies to the cogeneration facilities. However, cogeneration facilities are not
	applicable in this methodology since these are categorized into the different sub sectors.
	• In the reviewed methodology, if the efficiency technology or existing facilities and equipment are transferred from other projects, leakage should be considered. However, the formula in this methodology excludes leakage.
	5)J-MRV004: Fossil Fuel-Fired Power Generation Projects introducing Low Carbon Technology (Revised on February 2011)
	[Differences]
	 Any of the methods on data acquisition can be selected from the reviewed methodology where several methods are available. However, in the formula of this methodology, selection priority is clearly defined. Project emission is computed from the fuel consumption in the reference method. This project computes the efficiency in power generation after implementation.
	• In the reviewed methodology, the CO ₂ emission factor of the electricity is the average of all power plants in the target country. In this methodology, emissions factor of electricity is defined as the emission factor of one or two typical power plants existing in the gird to calculate easily.
	 When there are small emission sources within the boundary, emissions should be reduced by 5% as stated in the reviewed methodology. In this methodology, leakage can be assumed to be 0.
	• The reviewed methodology excludes the leakage potential unless there are great influences. The formula in this methodology also excludes leakage in the same manner.
	<u> </u>

1.Typical Project Outline	The project intends to directly suppress GHG emissions associated with transmission loss, through reducin power loss in the transmission grid or through maintenance of high voltage substation at new and existin
Outline	power loss in the transmission grid or through maintenance of high voltage substation at new and existin
	facilities for electric energy transmission-transformation.
2.Applicability	O The project should aim at reducing fuel consumption through transmission loss reduction compared to losses in the existing transmission-transformation facilities, by maintaining transmission wire, improving, reduction in power loss, maintaining/upgrading/improving high voltage substation.
3.Methodology on Emission Reduction	GHG emission reduction through streamlining of transmission-transformation facilities in the transmission grid shall be determined as the difference between baseline emissions (high transmission power loss) and project emissions (after streamlining). Baseline emissions are computed by multiplying transmission power loss with respective emission factors. In order to be more precise, compute each transmission power loss before and after the project starts, the multiply each with their respective emission factors.
	$ER_y = BE_y - PE_y$ (t-CO ₂ /y)
	 <i>ER_y</i>:GHG emissions reduction in year y achieved by the project (t-CO₂/y) <i>BE_y</i>:GHG emissions in year y without streamlining facilities in transmission grid (t-CO₂/y) (Baseline emission) <i>PE_y</i>:GHG emissions in year y after streamlining facilities in transmission grid (t-CO₂/y) (Project emission)
	[New facilities] BE_y : Baseline emission PE_y : Project emission
	GHG REF Greater Distribution Loss Less Distribution Loss
	Emission from conventional facilities in transmission grid Emission from streamlined facilities in new transmission grid
	[Existing facilities]
	GHG REF Greater Distribution Loss GHG REF Creater Distribution Loss Less Distribution Loss
	Emission with high transmission power

14. Energy / Power Transmission with Improved Efficienc

(Continuation)

(1) Baseline Emission

In order to compute GHG emission, monitor transmission power loss without streamlining facilities in the transmission grid (in transmitting the amount of electricity which is equivalent to the quantity of electricity supplied after the project starts). Such measured quantity of power loss is multiplied with the GHG emission factor.

 $BE_y = BL_y \times EF_{BL,y}$

Туре	Items	Description
Output	BE_y	Baseline emission:
		GHG emissions without streamlining facilities in the transmission grid
		(t-CO ₂ /y)
Input	BL_y	Transmission power loss before the project starts (MWh/y)
	$EF_{BL,y}$	CO2 Emission factor of a power plant where emission reduction is
		expected by the project activity.(t-CO ₂ /MWh)

Determination of EF_{BL,y}

[New facilities] [Existing facilities]

Baseline CO_2 emissions factor from electricity is defined as the emission factor of the power plant where emission reduction is highly expected through the project activity on the basis of the concept to eliminate the worst fuel-efficient power plants in grid-connected plants.

The emission factor for the target should be determined through interview to the electric power management entity or based on published data in the target country. If emission factor is not available, it should be calculated using the net electrical output of the target power plant, fuel type, net fuel consumption, net calorific value and caloric CO_2 emission factor (Ref. Annex C-4).

(2) Project Emission

In order to calculate project GHG emission, monitor power loss in transmission-transformation facilities after the project starts (streamlining in facilities in transmission grid). Such measured power loss is multiplied with the CO_2 emission factor.

$$PE_y = PL_y \times EF_{BL,y}$$

Туре	Items	Description		
Output	PE_y	Project emission:		
		GHG emission after the project starts (t-CO ₂ /y)		
Input	PL_y	Transmission power loss after the project starts (MWh/y)		
	$EF_{BL,y}$	CO ₂ Emission factor of a power plant where emission reductio		
		is expected by the project activity.(t-CO2/MWh)		

4. Data Required for

Estimation and

Monitoring

[New facilities]

			Data Acquisition Methods			
Data Type		Description of Data	Baseline Emissions		Project Emissions	
Du	u type	Description of Data	Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion
Transmission power loss	Before : BL_y	Transmission power loss without the project (MWh/y)	Simulated data (Not necessary		because data is not he calculation)	
	After : PL_y	Transmission power loss by the project activity (MWh/y)	(Not necessary l not involved in t		Simulated data	Measured data
CO ₂ emission factor	CO_2 Emission factor of a power plant where emission reduction is expected(EF_{BL_y})	Emission factor of a power plant where emission reduction is expected by the project activity (t-CO ₂ /MWh)	 Data availability is validated in the following order in filtering power plants where emission reduction is expected through project activity are obtaining the emission factor. i) Interview to the electric power management entity concerned ii) Published values in the target country 		project activity and	

[Existing facilities]

			Data acquisition methods			
Data Type		Description of Data	Baseline Emissions		Project Emissions	
		Description of Data	Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion
Transmission power loss	Before : BL_y	Transmission power loss without the project (MWh/y)	Measured data (Not necessary because data is not involved in the calculation)		(Not necessary because data is not involved in the calculation)	
	After : PL_y	Transmission power loss by the project activity (MWh/y)			Simulated data	Measured data
CO ₂ emission factor	CO_2 Emission factor of a power plant where emission reduction is expected($EF_{BL,y}$)	Emission factor of a power plant where emission reduction is expected by the project activity (t-CO ₂ /MWh)	plants where emission reduction is obtaining the emission factor.		the following order in filtering power s expected through project activity and wer management entity concerned et country	

5.Others	(1) Project Boundary The physical boundary for measuring GHG emissions includes transmission grid where project activity is implemented.
	(2) Leakage
	Leakage associated with improvement of transmission grid efficiency includes CO_2 emissions due to
	production and transport in relation to equipment renewal. However, such emissions are temporary and
	negligibly small in comparison with the project size, thus they are not considered.
	(3) Reviewed Methodologies and Major Differences
	1)AM0067(ver02):Methodology for installation of energy efficient transformers in a power distribution grid
	[Differences]
	* Reviewed methodology is applied to distribution grid, which distributes medium voltage electricity (around
	less than 50,000 volts) to consumers; however, the formula in this section is applied for transmission grid.
	Hence, conditions on transmission voltage can be ignored.
	* Transformer used should meet the International QA/QC criteria in the reviewed methodology; however,
	this formula excludes these conditions.
	* The reviewed methodology recommends the introduction of systems, which validates that such transformer is not used at other places within the grid; however, this formula excludes these conditions.
	* The reviewed methodology requires a transformer with positional information so that it can identify each
	location; however, this formula excludes these conditions.
	* Project emission in the reviewed methodology is calculated by multiplying load loss of all transformers
	with CO_2 emission factor. The formula in this section simply is computed from the simulated transmission power loss in the whole transmission grid.
	 * In the reviewed methodology, the CO₂ emission factor of the electricity is the grid average value calculated by the "Tool to calculate the Emission Factor for an electricity system" for CDM. In this methodology, emissions factor of electricity is defined as the emission factor of the target power plants. * In the reviewed methodology, disposal of the converted transformer does not consider leakages; however, such disposal should be evident. This formula excludes these conditions.
	2)AMS-II.A(ver10):Supply side energy efficiency improvements – transmission and distribution. [Differences]
	 * The reviewed methodology is applied to transmission grid and distribution grid; however, this formula is applied only to transmission grid.
	* The reviewed methodology is applied to fuel consumption reduction from electric power at 60 GWh or less, or thermal application at 180GWh or less, through improvement of existing facilities; however, the formula here has neither restrictions with respect to the quantity of electricity nor excludes heat supply.
	* In the reviewed methodology, emission reduction is not considered after facilities replacement in the context of respective time of existing facilities replacement, upgrading and improvement. This formula
	excludes these conditions.
	* In the reviewed methodology, the CO ₂ emission factor of the electricity is the grid average value calculated by the "Tool to calculate the Emission Factor for an electricity system" for CDM. In this methodology, emissions factor of electricity is defined as the emission factor of the target power plants.
	 * In the reviewed methodology, if efficient technology is transferred from other projects, then it should be considered. However, this formula excludes these conditions.

	15. Energy / Power Distribution with Improved Efficiency
1.Typical Project Outline	The project intends to directly suppress GHG emissions associated with distribution loss, through reducing power loss in the distribution grid or efficiency improvements of distribution equipment at new and existing facilities for electric energy distribution.
2.Applicability	• The project should aim at reducing fuel consumption by electric loss reduction in the existing distribution equipment resulting from upgrade, rehabilitation or improvement of distribution lines and other equipment.
3.Methodology on Emission Reduction	GHG emission reduction through improvement of the distribution equipment efficiency shall be determined as the difference between baseline emissions (with more distribution loss) and project emissions (after improvement of efficiency). Baseline emissions are computed by the multiplying distribution power loss by emission factors. Distribution power loss should be computed for before and after the project activity, respectively by multiplying the loss by applicable CO_2 emission factors.
	$ER_y = BE_y - PE_y$ (t-CO ₂ /y)
	 <i>ER_y</i>:GHG emissions reduction in year y achieved by the project (t-CO₂/y) <i>BE_y</i>:GHG emissions in year y in absence of improvement of distribution equipment efficiency (t-CO₂/y)(Baseline emission) <i>PE_y</i>:GHG emissions in year y after improvement of distribution equipment efficiency (t-CO₂/y)(Project emission)
	New facilities BE _y : Baseline emission PE _y : Project emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission Image: PEy is a seline emission </td
	[Existing facilities]
	Image: construction loss Image: construction loss

(1) Baseline Emission

(Continuation)

In order to compute GHG emission, monitor distribution power loss without streamlining facilities in the distribution grid (in distributing the amount of electricity, which is equivalent to the quantity of electricity supplied after the project starts). Such measured quantity of power loss is multiplied with a GHG emission factor.

 $BE_y = _BL_y \times EF_{BL_y}$

Туре	Items	Description		
Output	BE_y	Baseline emission:		
		GHG emissions in absence of improvement of distribution		
		equipment efficiency (t-CO ₂ /y)		
Input	BL_y	Distribution power loss before the project activity (MWh/y)		
	$EF_{BL,y}$	CO ₂ Emission factor of a power plant where emission reduction		
		is expected by the project activity.(t-CO2/MWh)		

Determination of EF_{BL,y}

[New facilities] [Existing facilities]

Baseline CO_2 emissions factor from electricity is defined as the emission factor of the power plant where emission reduction is highly expected through the project activity on the basis of the concept to eliminate the worst fuel-efficient power plants in grid-connected plants.

The emission factor for the target should be determined through interview to the electric power management entity or based on published data in the target country. If emission factor is not available, it should be calculated using the net electrical output of the target power plant, fuel type, net fuel consumption, net calorific value and caloric CO_2 emission factor (Ref. Annex C-4).

(2) Project Emission

In order to calculate the project GHG emission, monitor power loss in distribution equipment after the project starts (streamlining in facilities in distribution grid). Such measured power loss is multiplied with the CO_2 emission factor.

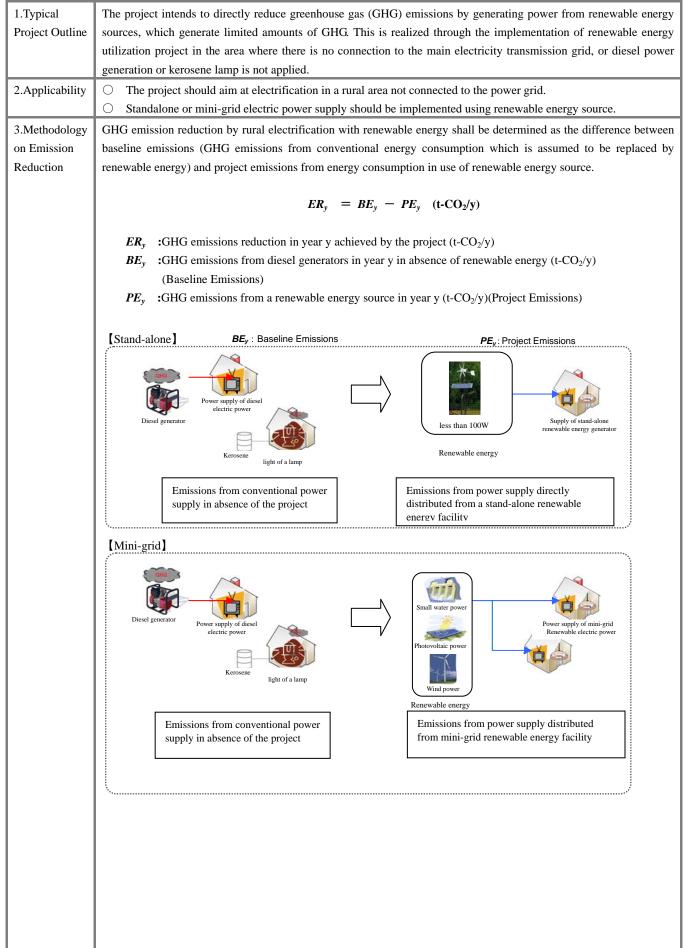
$$PE_y = PL_y \times EF_{BL,y}$$

Туре	Items	Description		
Output	PEy	Project emission:		
		GHG emission after the project starts (t-CO ₂ /y)		
Input	PL_y	Distribution power loss after the project activity (MWh/y)		
	$EF_{BL,y}$	CO2 Emission factor of a power plant where emission reduction		
		is expected by the project activity.(t-CO ₂ /MWh)		

4. Data Required for

Estimation and

Monitoring


[New facilities]

	Data Type		Data Acquisition Methods			
			Baseline Emissions		Project Emissions	
			Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion
Distribution power loss	Before : BL_y	Distribution power loss without the project (MWh/y)	Simulated data (Not necessary because data is not involved in the calculation)		(Not necessary because data is not involved in the calculation)	
	After : PL_y	Distribution power loss by the project activity (MWh/y)			Simulated data	Measured data
CO ₂ emission factor	CO_2 Emission factor of a power plant where emission reduction is expected($EF_{BL,y}$)	Emission factor of a power plant where emission reduction is expected by the project activity (t-CO ₂ /MWh)	plants where emission reduction is obtaining the emission factor.		the following order in filtering power is expected through project activity and wer management entity concerned get country	

[Existing facilities]

			Data acquisition methods			
Data Type		Description of Data	Baseline Emissions		Project Emissions	
	Dutu Type	Description of Duta	Before the	After Project	Before the	After Project
			Project Starts	Completion	Project Starts	Completion
Distribution power loss	(Before : BL_y)	Distribution power loss without the project (MWh/y)	Measured data (Not necessary because data is not involved in the calculation)		(Not necessary because data is not involved in the calculation)	
	(After : PL_y)	Distribution power loss by the project activity (MWh/y)			Simulated data	Measured data
CO ₂ emission factor	CO ₂ Emission factor of a power plant where emission reduction is expected($EF_{BL,y}$)	Emission factor of a power plant where emission reduction is expected by the project activity (t-CO ₂ /MWh)	Data availability is validated in the plants where emission reduction is obtaining the emission factor. i) Interview to the electric pow ii) Published values in the target		s expected through p	project activity and

5.Others	(1)Project Boundary The physical boundary for measuring GHG emissions includes is distribution grid where the project activity is implemented.
	(2)Leakage Leakage associated with improvement of distribution facilities efficiency includes CO ₂ emissions due to production and transport in relation to equipment renewal. However, such emissions are temporary and negligibly small in comparison with the project size, thus they are not considered.
	 (3) Reviewed Methodologies and Major Differences 1)AM0067(ver02): Methodology for installation of energy efficient transformers in a power distribution grid. [Differences]
	* Reviewed methodology is applied to distribution grid, which distributes electricity with medium voltage (around less than 50,000 volts) to consumers; however, the formula in this section does not include voltage conditions.
	* Transformer used should meet the International QA/QC criteria in the reviewed methodology; however, this formula excludes these conditions.
	* The reviewed methodology recommends the introduction of systems, which validates that such transformer is not used at other places within grid; however, this formula excludes these conditions.
	* The reviewed methodology requires transformer with positional information so that it can identify each location; however, this formula excludes these conditions.
	* Project emission in the reviewed methodology is calculated by multiplying load loss of all transformers with CO_2 emission factor. The formula in this section simply is computed from the electricity consumption in whole distribution grid.
	* In the reviewed methodology, the CO_2 emission factor of the electricity is the grid average value calculated by the "Tool to calculate the Emission Factor for an electricity system" for CDM. In this methodology, emissions factor of electricity is defined as the emission factor of the target power plants.
	* In the reviewed methodology, disposal of the converted transformer does not consider leakage but such disposal should be evident. This formula excludes these conditions.
	2)AMS-II.A(ver10):Supply side energy efficiency improvements – transmission and distribution. [Differences]
	 * The reviewed methodology is applied to transmission grid and distribution grid; however, this formula is applied only to distribution grid from high voltage substation to consumers (excluding transmission grid). * The reviewed methodology is applied to fuel consumption reduction from electric power at 60 GWh or less or thermal application at 180 GWh or less, through improvement of existing facilities; however, the formula here has neither restriction with respect to quantity of electricity nor excludes heat supply. * In the reviewed methodology, emission reduction is not considered after facilities replacement in the context of respective time of existing facilities replacement, upgrading and improvement. This formula excludes these
	conditions. * In the reviewed methodology, the CO ₂ emission factor of the electricity is the grid average value calculated by
	the "Tool to calculate the Emission Factor for an electricity system" for CDM. In this methodology, emissions factor of electricity is defined as the emission factor of the target power plants. * In the reviewed methodology, if efficient technology is transferred from other projects, it should be considered.
	However, this formula excludes these conditions.

(1) Baseline Emission

In absence of renewable energy power facilities, conventional electric power may be continuously supplied. By replacing fuel with renewable energy, conventional fuel consumption may be reduced. Thus, reduction in GHG emissions can be computed based on reduction of conventional fuel consumption. In most of these rural areas without access to electricity, diesel generator and kerosene for lighting will continue to be used in absence of power supply. Therefore, diesel oil and kerosene are assumed as the target fuel for reduction.

Туре	Items	Description		
Output	BE_y	Baseline Emissions:		
		GHG emissions from using renewable energy as substitute fuel (t-CO ₂ /y)		
Input	$EC_{diesel,y}$	Amount of diesel oil consumption without the project, in case that diesel		
		generator is used for television (kL/y)		
	NCV _{diesel,y}	Net Calorific Value of diesel oil (GJ/kL)		
	$CEF_{diesel,y}$	CO ₂ Emission Factor of diesel oil(t-CO ₂ /TJ)		
	$EC_{kerosene,y}$	Amount of kerosene consumption without the project, in case kerosene		
		lamp is used for lighting (kL/y)		
	NCV _{kerosene,y}	Net Calorific Value of kerosene(GJ/kL)		
	$CEF_{kerosene,y}$	CO ₂ Emission Factor of kerosene(t-CO ₂ /TJ)		

$BE_{y} = EC_{diesel,y} \times NCV_{diesel,y} \times CEF_{diesel,y} + EC_{kerosene,y} \times NCV_{kerosene,y} \times CEF_{kerosene,y}$

(2) Project Emission

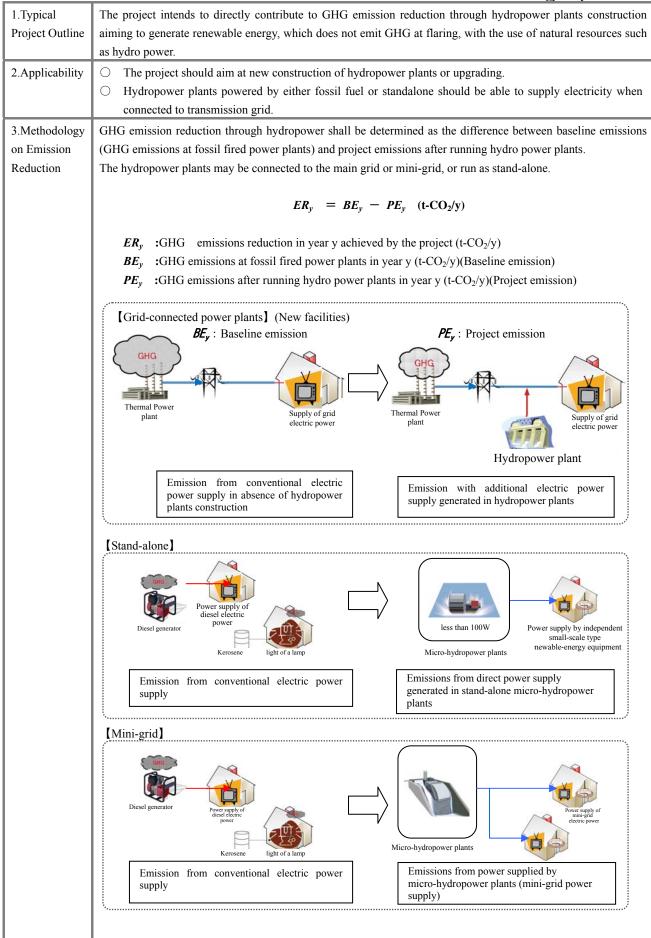
GHG emissions from renewable energy power supply after the project starts will be "0".

16. Energy / Rural Electrification

4. Data Required for Estimation and Monitoring

[Stand-alone] [Mini-grid]

			Data Acquisition Methods			
			Baseline	Emissions	Project	Emissions
]	Data Type	Description of Data	Before the	After Project	Before the	After
			Project	Completion	Project	Project
			Starts		Starts	Completion
Amount of fuel consumption	Before : <i>EC</i> _{diesel,y}	Amount of diesel oil consumption without the project, in case that diesel Planned data generator is used for television. (kL/y)				
	Before : <i>EC</i> _{kerosene,y}	Amount of kerosene consumption without the project, in case kerosene lamp is used for lighting (kL/y)		ed data		
Net calorific value	Before : <i>NCV</i> _{diesel,y}	Net calorific value of diesel oil (GJ/kL)	validated in the following order because it is preferably calculated using data and information unique to the project: i) Unique data obtained from interview with power management entity ii) National default iii) IPCC Guideline default data (Annex C-2) or of Data availability is validated in the following order because it is preferably calculated using data and information unique r of to the project.			
	Before : <i>NCV_{kerosene,y}</i>	Net calorific value of kerosene(GJ/kL)			data is not	involved in
CO ₂ emission factor	Before : <i>CEF</i> _{diesel,y}	CO ₂ emission factor of diesel oil (t-CO ₂ /TJ)				
	Before : <i>CEF</i> _{kerosene,y}	CO ₂ emission factor of kerosene (t-CO ₂ /TJ)				


5.Others	(1) Project Boundary
	The physical boundary for measuring GHG emissions includes power facilities where project activity is implemented.
	(2)Leakage
	Leakage associated with renewable energy includes CO2 emissions due to production and transport in relation to
	renewable energy plant construction. However, such emissions are temporary and negligibly small in comparison with
	the project size, thus they are not considered.
	(3) Reviewed Methodologies and Major Differences
	1)AMS-I.A(ver14.0): Electricity generation by the user
	[Differences]
	• Since the reviewed methodology is intended for small-scale generation, it is applied to plants with power supply
	from renewable energy of 15 MW or less, or CO ₂ emission reduction from kerosene lamp which is 5t-CO ₂ or less;
	however, there is no restriction on these conditions in the formula in this section.
	• The reviewed methodology is applied to plants with power density of over 4 W/m^2 from water reservoirs of
	hydropower plants; however, there is no restriction on scale capacity in the formula in this section.Baseline emission from the reference GHG emission level is computed from the equivalent diesel power source
	substitute. The applied formula in this section is based on the substitution of diesel power generation and
	kerosene lamp uses.
	• In the reviewed methodology, if power plants are transferred from other projects, or vice versa, leakages should
	be considered. However, this formula excludes such conditions for simplification purpose.
	2)AM0019(ver2.0): Renewable energy projects replacing the electric power produced from fossil fuel-fired power
	plant that either stands alone, or supplies to a grid, excluding biomass projects
	[Differences]
	• The reviewed methodology is applied to new plants with power density of over $4W/m^2$ from water reservoirs of
	 hydropower plants; however, there is no restriction on scale capacity in the formula in this section. Although the reviewed methodology shall account for GHG (CH₄ and CO₂) emissions from water reservoirs as
	the project emissions, this formula excludes these conditions because it is applied only to small-scale hydropower
	generation in the rural area without electrification.
	• In the reviewed methodology, the CO_2 emission factor of the electricity of baseline emission is calculated by
	emission for fuel consumption and amount of power generation. In this methodology, amount of diesel power
	 generation and kerosene consumption is substituted by renewable energy. No consideration for leakage is required in the reviewed methodology in the same way this formula is applied.
	The consideration for realize is required in the reviewed includes of finance way this formation is appread
	3) AMS-I.F.(ver1.0) : Renewable energy generation for captive use and mini-grid[Differences]
	• In addition to construction of new power plants, capacity increase, upgrading and replacement of the existing
	plants are targeted for application of the formula in the reviewed methodology. The applicable conditions are as
	follows: renewable energy power supply should be 15 MW or less; power density of hydropower plants with
	reservoir should be 4W/m ² or higher; power plants are connected to the mini-grid. This formula excludes these
	conditions.
	• A baseline emission in the reviewed methodology is computed by multiplying power supplied by the project
	activity with the CO_2 emission factor of grid (*2). When the project involves substitution of crude oil or diesel
	fuel power plants, emission factor per power supply is as shown in the methodology. On the other hand, amount of diesel power generation and kerosene consumption is substituted by renewable energy.
	 In the reviewed methodology, GHG emission (CH₄ and CO₂) from reservoir as project emission should be
	considered for the hydro power plants with reservoirs; however, there is no restriction in the formula in this
	section because the hydropower generation applied is relatively small.
	· In the reviewed methodology, if the power plants are transferred from other projects, leakage should be
	considered. However, this formula excludes these conditions.

Renewable Energy Sector

Sub-sector:

- 17. Hydro Power
- 18. Wind Power
- **19.** Photovoltaic Power / Solar Heat
- 20. Geothermal Power

21. Biomass

(1)Baseline Emission

If hydropower plants are not constructed, electric power is continuously supplied from the fossil fired power plants. Amount of electric power supply is reduced through the replacement of conventional fossil fired power plants with hydropower plants. Thus, GHG emission should be equal to that from suppressed fuel combustion. When the existing hydropower plants decrease in performance by deterioration, plant improvement increases the power generation efficiency and reduces the electric power supply from the existing power plants. Thus, GHG emission should be equal to that from suppressed fuel combustion.

$$BE_y = \Sigma FC_i \times NCV_i \times COEF_i$$

Туре	Items	Description		
Output	BE_y	Baseline emission:		
		GHG emissions of fuel consumption replaced by the		
		hydropower (t- CO_2/y)		
Input	$FC_{i,y}$	Suppressed amount of fuel i (kL,m ³ ,t etc./y)		
	NCVi	Net Calorific Value a of each fuel type (GJ/ kL, m ³ , t etc.)		
	$COEF_i$	CO ₂ emission factor of each fuel type (t-CO ₂ /TJ)		

Determination of FC_{i,v}

[Grid-connected power plants]

When hydro power plants connect to grid, the existing power plants in the grid should be replaced in the decreasing order of unit fuel cost. Reducing fuel type and its priority should be determined on such view.

a) Monitoring electric power supply in each fuel type of national grid power

Monitor type of fuels and its electric power supply (GWh/y) and consumption (kL,m³,t etc./y) in each fuel type which comprise the national grid power.

b)Determining priority of target fuel for reducing

Verify unit fuel cost used in existing plants connected to the national grid, and utilize them as target for reducing the order of unit fuel cost (*1). Determine the priority for reduction in consideration of the target nation's future plans (energy plans), as required.

*1:If the national unit fuel cost is unknown, set fuel unit cost in the order of petroleum, gas, and coal for evaluation.

c)Checking essential amount of fuels

In the target nation, because of energy source diversification promotion, multiple fuel types (petroleum, gas, coal etc.) can be used within the grid. Therefore, fuels at some level of amount should be set aside for minimum operation of plants for each fuel type. In conclusion, 5% of the total electric power supply is set aside as essential amount of fuels.

When the actual power supply is less than the essential amount of fuels, total amount of actual power supply is applicable as the essential amount of fuels.

d)Monitoring power supply contribution from target fuel for reduction

Excluding the essential amount of fuels computed in c), identify the reducible amount of fuels in the decreasing order of unit fuel cost, and compute the reducible fuel type and electric power supply.

e)Determination of CO_2 emission from hydro power Based on the reducible amount of fuels in d), compute GHG emissions in order to generate electric power supply, replacing hydro power supply $(EG_{pj,y})$.

[Standalone] [Mini-grid]

The target area of standalone or mini-grid is non-electrification area. If hydropower facilities are not constructed, electric power is continuously supplied from the existing power facilities. Amount of fuel consumption in conventional power facilities is reduced through substitution with renewable energy from hydropower facilities. Thus, GHG emission should be equal to such emission from the decrease in suppression of fuel combustion. In most of these rural areas without access to electricity, diesel generator and kerosene for lighting will continue to be used in absence of power supply. Therefore, diesel oil and kerosene are assumed as the target fuel for reduction.

Туре	Items	Description		
出力	BE_y	Baseline Emissions:		
		GHG emissions from using renewable energy as substitute fuel (t-CO ₂ /y)		
Input	$EC_{diesel,y}$	Amount of diesel oil consumption without the project, in case that diesel		
		generator is used for television (kL/y)		
	$NCV_{diesel,y}$	Net Calorific Value of diesel oil (GJ/kL)		
	$CEF_{diesel,y}$	CO2 Emission Factor of diesel oil(t-CO2/TJ)		
	$EC_{kerosene,y}$	Amount of kerosene consumption without the project, in case kerosene		
		lamp is used for lighting (kL/y)		
	$NCV_{kerosene,y}$	Net Calorific Value of kerosene(GJ/kL)		
	$CEF_{kerosene,y}$	CO ₂ Emission Factor of kerosene(t-CO ₂ /TJ)		

$\textit{BE}_{y} = EC_{diesel,y} \times NCV_{diesel,y} \times CEF_{diesel,y} + EC_{kerosene,y} \times NCV_{kerosene,y} \times CEF_{kerosene,y}$

(2)Project Emission

GHG emissions from hydropower supply after the project starts will be "0".

 $PE_y = 0$

If the hydropower plant has reservoir, methane will be generated from landfill. If this is the case, the formula below shall be applied. When methane is less than 1 % of baseline emission, it can be ignored.

: Amount of power supply from hydropower plants in year y(MWh/y)

$$PE_y = \frac{EF_{Res} \times EG_{PJ,y}}{1000}$$

 EF_{Res}

: Default GHG emission factor from reservoir

(Default vale at 23rd CDM conference: 90kg-CO₂/MWh)

EG_{PJ,y} 1000

: Net conversion factor(1t-CO₂=1000kg-CO₂)

4. Data

Required for

Estimation and

Monitoring

[Grid-connected power plants]

	-		Data Acquisition	Methods		
Data Type	Description of Data	Baseline Emissions		Project Emissions		
Data Type	Description of Data	Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion	
Amount of electric power supply (After : EG_{PJy})	Amount of electric power supply from hydro power plants by the project activity (MWh/y)	ectric power nydro power				
Suppressed amount of fuel i (Before : <i>FC_{i,y}</i>)	Suppressed amount of fuel i by the project activity (GJ/kL, m ³ , t etc.)	 Data availability is validated in the following order because it is preferably calculated using data and information unique to the project. i) Unique data obtained from interview with power management entity ii) National default iii) IEA Energy balance sheet 		-		
Net calorific value of each fuel type (NCV_i) CO ₂ emission factor of each fuel type	Net calorific value of each fuel type (GJ/kL, m ³ , t etc.) CO ₂ emission factor of each fuel type (t-CO ₂ /TJ)	Data availability is following order becau calculated using data unique to the project. i) Unique data	validated in the use it is preferably			
(COEF _i)		 interview with power management entity ii) National default iii) IPCC Guideline default data (Annex C-2,3) 				
DefaultGHGemission factorfromreservoir(EF_{Res})	Default vale at 23 rd CDM conference(kg-CO ₂ /MWh)	(Annex C-2,3) (Not necessary because data is not involved in the calculation)		90	90	

					17. Kenewad	ie Energy/	nyaro Power
	Stand-alone	e] 【Mini-grid】					
Г				Data Acquisition Methods			
				Baseline Emissions		Project Emissions	
	Data type		Description of Data	Before the	After Project	Before the	After
		Duiu type	Description of Data	Project	Completion	Project	Project
				Starts	Completion	Starts	Completion
-	Amount of	Before : $EC_{diesel,v}$	Amount of diesel oil	Starts	50015		completion
	fuel						
	consumption		consumption without the project, in case	51			
	p		that diesel generator is	Plann	ed data		
			used for television.				
			(kL/y)				
		Before : $EC_{kerosene,y}$	Amount of kerosene				
			consumption without				
			the project, in case	Plann	ed data		
			kerosene lamp is used				
-			for lighting (kL/y)		•• • ••		
	Net calorific	Before : <i>NCV</i> _{diesel,y}	Net calorific value		ulability is		
	value		of diesel oil (GJ/kL)	order beca	the following ause it is		
			(UJ/KL)		alculated using		
					rmation unique		
		Before : $NCV_{kerosene,v}$	Net calorific value	to the project			
			of kerosene(GJ/kL)	i) Unique	data obtained	(Not neces	sary because
				-	nterview with		involved in
				power	management	the calculation)	
		entity ii) National default iii) IPCC Guideline defa		1.0.1			
				data (Annex C-2)			
-	CO ₂	Before : $CEF_{diesel,v}$	CO ₂ emission factor	Data availability is			
	emission	Derore : CEI alesel,y	of diesel oil	validated in the following order because it is			
	factor		$(t-CO_2/TJ)$				
			` - <i>`</i>	preferably ca	alculated using		
					rmation unique		
		Before : $CEF_{kerosene,y}$	CO_2 emission factor	to the project			
			of kerosene		data obtained		
			$(t-CO_2/TJ)$		nterview with		
				power entity	management		
				ii) National default iii)IPCC Guideline default			
				data (Annex C-3)			
5.0	Others	(1)Project Boundary					
		The physical boundary for	or measuring GHG emis	ssions includes	power facilities	where the pr	oject activity is
		implemented.	0		•	•	<i>.</i>
		implemented.					
		(2)Leakage					
		Project activity could lead	to the following leakage	s:			
		Hydropower plants constr			ly leading to leak	age due to a	ctivities such as
		product manufacturing or	-	-	-		-
		the project scale. Therefore	e, it can be ignored. Leak	kage may result	trom extraction, p	processing or	transportation of
		the fuel. Regarding the ren	ewable energy, this fuel-	handling situati	on can be ignored	l.	
		(3) Reviewed Methodolog	ies and Major Difference	AC			
			-			1	
		1)ACM0002(ver12.1):Con	solidated baseline me	thodology for	grid-connected	electricity g	eneration from
		renewable sources.					
		Differences					
		-					

- Reviewed methodology is applied to plants with power density of over $4W/m^2$ from water reservoirs of hydro power plants; however, there is no restriction on scale capacity in the formula in this section.
- Baseline emission in the reviewed methodology is computed by multiplying the electric power supply by the project activity, with the CO₂ emission factor of grid (*2). In this formula, amount of fuel required for grid power generation by replaced hydro power supply is multiplied with emission factor.
- Leakage may result from the emission increased by power plants construction, fuel handling (extraction, processing or transportation) or flooding. These conditions are excluded in the reviewed methodology as confirmed by the study team.
- *2: CO₂ emission factor of grid is a combined margin (CM) computed by the combination of operating margin (OM) and build margin (BM).

2)AM0019(ver2.0):Renewable energy projects replace part of the electricity production of a single fossil fuel fired power plant that stands alone or supplies to a grid, excluding biomass projects.

- [Differences]
- Reviewed methodology is applied to new plants with power density of over 4 W/m² from water reservoirs of hydro power plants; however, there is no restriction on scale capacity in the formula in this section.
- In the reviewed methodology, the CO_2 emission factor of the electricity of baseline emission is calculated by emission for fuel consumption and amount of power generation. In this methodology, emission is calculated by the amount of suppressed fuel.
- No consideration for leakage is required in the reviewed methodology in the same way this formula is applied.

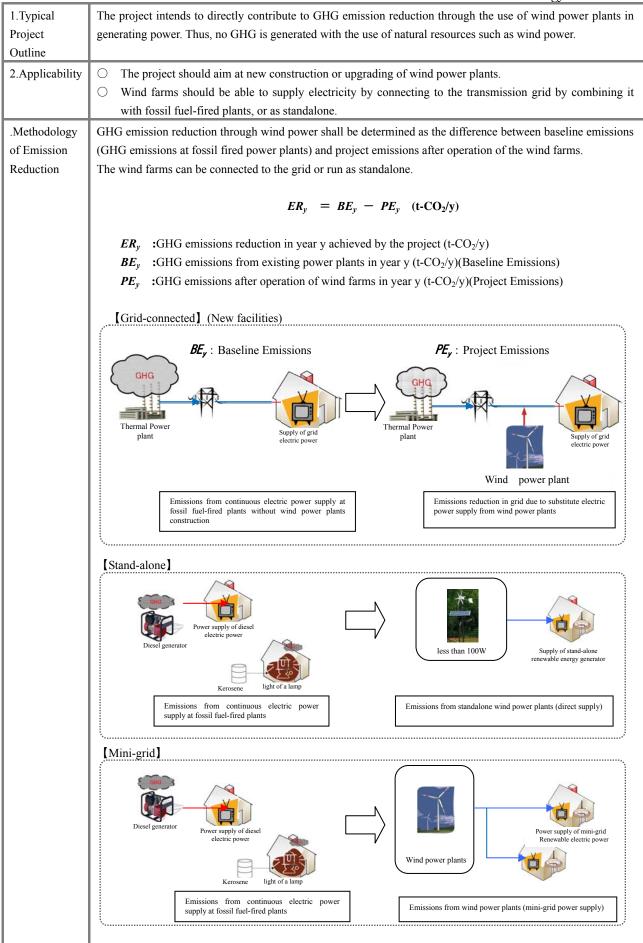
3)AMS-I.D.(ver16.0):Grid connected renewable electricity generation.

[Differences]

- Reviewed methodology is applied to plants with power density of over 4 W/m² from water reservoirs of hydro power plants and power supply from renewable energy at 15 MW or less; however, there is no restriction on scale capacity in the formula in this section.
- Baseline emission in the reviewed methodology is computed by multiplying the electric power supply by the project activity, with the CO_2 emission factor of grid (*2) In this formula, amount of fuel required for grid power generation by replaced hydro power supply is multiplied by the emission factor.
- Although the reviewed methodology shall account for GHG (CH₄ and CO₂) emission form water reservoirs into project emission. This formula excludes these conditions.
- In the reviewed methodology, it should consider if the power plants are transferred from other projects or the existing plants are transferred to other projects. However, this formula excludes these conditions.

4)AMS-I.F.(ver1.0):Renewable electricity generation for captive use and mini-grid.

[Differences]


- Reviewed methodology is applied to plants with power density of over $4W/m^2$ from water reservoirs of hydro power plants and power supply from renewable energy at 15MW or less, plants connecting to min-grid; however, there is no restriction on scale capacity of the formula in this section.
- Baseline emission in the reviewed methodology is computed by multiplying the electric power supply by the project activity, with the CO₂ emission factor of grid. Also, emission factor per power supply is defined in the reviewed methodology when the crude oil or diesel fired power plant is replaced in the project. In this formula, amount of fuel required for grid power generation by replaced hydro power supply is multiplied by emission factor.
- In the reviewed methodology, it should consider if the power plants are transferred from other projects. However, this formula excludes these conditions.

5)J-VER E015(ver2.0): Substitution of grid electric power with small scale hydropower.

[Differences]

· Reviewed methodology is applied to plants with capacity of less than 10,000 kW. This formula excludes these

conditions.
· Baseline emission is computed by multiplying the total of "electric power supply after the project starts" and
"grid power supply which would be consumed without hydro power plants", with the CO2 emission factor of
grid. In this formula, amount of fuel required to generate grid power supply replaced by hydro power
generation is multiplied with emission factor.
· For project emission in the referenced methodology, GHG emission generated from the use of grid power
through the operation of power plants (operation of supplementary facilities etc.), and uses of in-house power
generating supply. This formula excludes these emissions.
Leakage is not mentioned in the reviewed methodology.

(1)Baseline Emission

If wind power plants are not constructed, electric power will be continuously supplied by fossil fuel-fired power plants. The amount of electric power supply is reduced through the replacement of conventional fossil-fired power plants with wind power plants. Thus, the reduction in GHG emissions should be equal to the emissions from suppressed fossil fuel combustion. When existing wind power plants decrease in performance due to deterioration, improving the plant will increase the power generation efficiency and reduce the electric power supply from the existing fossil fuel-fired power plants. Thus, reduction in GHG emissions due to plant improvement should be equivalent to the suppressed emissions from fossil fuel combustion.

$$BE_v = \Sigma FC_i \times NCV_i \times COEF_i$$

Туре	Items	Description		
Output	BE_y	Baseline emission:		
		GHG emissions of fuel consumption replaced by the wind		
		power $(t-CO_2/y)$		
Input	$FC_{i,y}$	Suppressed amount of fuel i (kL, m ³ , t etc. /y)		
	NCV_i	Net Calorific Value of each fuel type (GJ/ kL,m ³ ,t etc.)		
	$COEF_i$	CO ₂ emission factor of each fuel type (t-CO ₂ /TJ)		

Determination of FC_{i,v}

[Grid-connected power plants]

When wind power plants connect to the grid, existing fossil-based power plants connected to the grid should be successively replaced by starting from the power plant with the lowest unit fuel cost. Reducing dependence on the fossil fuel type and the priority levels should be established considering the following criteria.

a) Monitoring electric power supply share of each fuel type on the national power grid Monitor types of fuel and its electric power supply contribution (GWh/y) and consumption (kL,m³,t etc/y), which comprise the national power grid.

b) Selection of fuel types for reduction

Verify unit fuel costs used at the existing plants within the national grid, and utilize them as criteria for reduction based on the decreasing order of unit fuel cost (*1). Determine the priority for such reduction in consideration of the target nation's future energy plans.

*1:If national unit fuel cost is unknown, set fuel unit cost in the order of petroleum, gas, coal for evaluation.

c) Establish essential amount of fuels

In the target nation, because of energy source diversification promotion, multiple fuel types (petroleum, gas, coal etc.) can be used within the grid. Therefore, for each fuel type, a specific level of amount should be set aside for the minimum operation of each plant. In principle, 5% of total electric power supply is set aside as the essential amount of fuel.

When the actual power supply is less than the essential amount of fuel, total amount of actual power supply is applicable as the essential amount of fuel.

d) Monitoring power supply contribution from target fuel for reduction

Excluding the essential amount of fuel computed in c), identify the reducible amount of fuel, in the decreasing order of unit fuel cost, and compute the reducible fuel type and electric power supply.

e) Determination of CO₂ emission from wind power

Based on the reducible amount of fuel in d), compute GHG emissions in order to generate electric power supply to replace wind power supply $(EG_{pi,y})$.

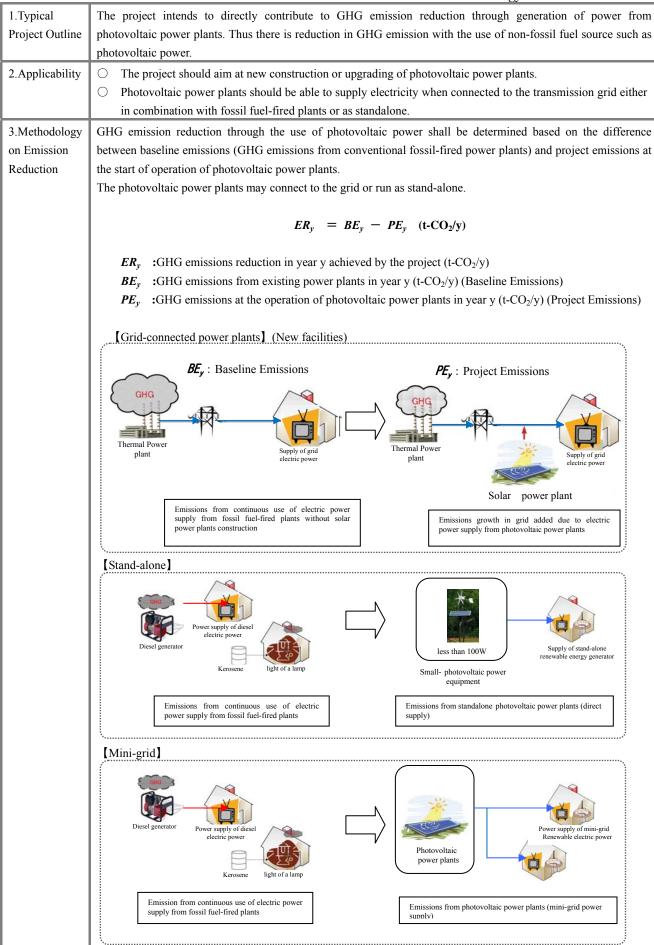
[Standalone] [Mini-grid]

The target area of standalone or mini-grid is non-electrification area. If hydropower facilities are not constructed, electric power is continuously supplied from the existing power facilities. Amount of fuel consumption in conventional power facilities is reduced through substitution with renewable energy from hydropower facilities. Thus, GHG emission should be equal to such emission from the decrease in suppression of fuel combustion.

In most of these rural areas without access to electricity, diesel generator and kerosene for lighting will continue to be used in absence of power supply. Therefore, diesel oil and kerosene are assumed as the target fuel for reduction.

Туре	Items	Description		
Output	BE_y	Baseline Emissions:		
		GHG emissions from using renewable energy as substitute fuel (t-CO ₂ /y)		
Input	$EC_{diesel,y}$	Amount of diesel oil consumption without the project, in case that diesel		
		generator is used for television (kL/y)		
	$NCV_{diesel,y}$	Net Calorific Value of diesel oil (GJ/kL)		
	$CEF_{diesel,y}$	CO ₂ Emission Factor of diesel oil(t-CO ₂ /TJ)		
	$EC_{kerosene,y}$	Amount of kerosene consumption without the project, in case kerosene		
		lamp is used for lighting (kL/y)		
	$NCV_{kerosene,y}$	Net Calorific Value of kerosene(GJ/kL)		
	$CEF_{kerosene,y}$	CO ₂ Emission Factor of kerosene(t-CO ₂ /TJ)		

 $BE_{y} = EC_{diesel,y} \times NCV_{diesel,y} \times CEF_{diesel,y} + EC_{kerosene,y} \times NCV_{kerosene,y} \times CEF_{kerosene,y}$


(2) Project Emission

GHG emissions from wind power supply after the project starts will be "0".

	▲		Data Acquisition	Methods	
Data Type	Description of Data	Baseline Emissions		Project Emissions	
Data Type	Description of Data	Before the Project	After Project	Before the	After Project
		Starts	Completion	Project Starts	Completion
Amount of electric power supply (After : <i>EG</i> _{<i>PJy</i>})	Amount of electric power supply from wind power plants by the project activity (MWh/y)	Planned data	Measured data		
Suppressed amount of fuel i (Before : <i>FC_{i,y}</i>)	Suppressed amount of fuel i by the project activity (GJ/kL, m ³ , t etc.)	Data availability is following order becau calculated using data unique to the project. i) Unique data interview with entity ii) National default iii) IEA Energy bala	use it is preferably a and information obtained from power management	· ·	ecause data is not ae calculation)
Net calorific value of each fuel type (<i>NCV_i</i>)	Net calorific value of each fuel type (GJ/kL, m ³ , t etc.)	Data availability is validated in the following order because it is preferably calculated using data and information			
CO ₂ emission factor of each fuel type (<i>COEF_i</i>)	CO ₂ emission factor of each fuel type (t-CO ₂ /TJ)	unique to the project. i) Unique data obtained from interview with power management entity ii) National default iii) IPCC Guideline default data (Annex C-2,3)			

_					10. Kene	ewable Ener	gy/ wina Powe
	Stand-alone	e】【Mini-grid】					
lI					Data Acquisi	tion Methods	
				Baseline E		Project Emissions	
]	Data Type Description of Data	Description of Data	Before the	After	Before the	After Project
		51		Project Starts	Project	Project	Completion
				- j	Completion	Starts	r r
	Amount of	Before : $EC_{diesel,v}$	Amount of diesel oil		•		•
	fuel	~	consumption without the				
	consumption		project, in case that diesel	Planne	d data		
			generator is used for				
			television. (kL/y)			4	
		Before : $EC_{kerosene,y}$	Amount of kerosene				
			consumption without the	Planne	d data		
			project, in case kerosene lamp is used for lighting	Flainte	u uata		
			(kL/y)				
Ì	Net calorific	Before : $NCV_{diesel,v}$	Net calorific value of	Data availabi	lity is	-	
	value	Denote + 11 C + alesel,y	diesel oil	validated in t			
			(GJ/kL)	following or	ler because		
			× ,	it is preferabl			
				using data an			
		Before : NCV _{kerosene,y}	Net calorific value of	information u	inique to		
			kerosene(GJ/kL)	the project:			
				i) Unique data obtained from interview with			
						(Not poos	any bassues
				entity	anagement		sary because nvolved in the
				ii) National default			lation)
				 iii) IPCC Guideline default data (Annex C-2) Data availability is validated in the 			
						_	
	CO ₂	Before : <i>CEF</i> _{diesel,y}	CO ₂ emission factor of				
	emission		diesel oil				
	factor		$(t-CO_2/TJ)$	following or			
				it is preferabl			
		Before : $CEF_{kerosene,v}$	CO ₂ emission factor of	using data and information unique to			
		Delote : CEI kerosene,y	kerosene (t- CO_2/TJ)	the project.	inque to		
				i) Unique	data		
				obtained			
				interviev	w with		
				power n	nanagement		
				entity			
				ii) Nationa			
				iii) IPCC G			
				default o (Annex C			
				``````````````````````````````````````			
~	0.1	(1) <b>D</b> $(1)$ <b>D</b> $(1)$					
5	.Others	(1)Project Boundary					
The physical boundary for measuring GHG emissions includes power facilities where			lities where p	project activity is			
	implemented.						
		•					
		$(2)\mathbf{I} = 1$					
		(2)Leakage					
		Leakage associated wi	th wind power generation	includes CO ₂	emissions due	to production	n and transport ir
		relation to wind powe	r plant construction. How	ever, such emi	ssions are tem	porary and n	egligibly small ir
		-	-				
comparison with the project size, thus they are not considered. In addition, fuel handling processing, transportation, and others should not be considered for renewable energy.					aon as extraction		
		processing, transportati	on, and others should not b	e considered for	renewable en	ergy.	

gies and Major Differences
Consolidated baseline methodology for grid-connected electricity generation from
e reviewed methodology is computed by multiplying the electric power supply by the $CO_2$ emission factor of grid(*2). In this formula, amount of fuel required for grid red with wind power supply is multiplied by the emission factor. From the emissions increase attributed to power plant construction, fuel handling or transportation) or flood. These conditions are excluded in the reviewed
ned by the study team.
of grid is a combined margin (CM) computed by the combination of operating margin gin (BM).
newable energy projects replacing the electric power produced from fossil fuel-fired nds alone or supplies to a grid, excluding biomass projects
ology, the $CO_2$ emission factor of the electricity of baseline emission is calculated by mption and amount of power generation. In this methodology, emission is calculated essed fuel.
kage is required in the reviewed methodology in the same way this formula is applied.
id-connected renewable electricity generation.
logy is applied to power supply from renewable energy of 15 MW or less; however, a scale capacity in the formula in this section.
the reviewed methodology is computed by multiplying the electric power supply by h the $CO_2$ emission factor of grid (*2). In this formula, amount of fuel required for grid ced by wind power supply is multiplied with the emission factor.
ved methodology shall account for GHG (CH ₄ and CO ₂ ) emissions from water
ject emissions, this formula excludes these conditions because it is applied only to ver generation in the rural area without electrification.
odology, if the power plants are transferred from other projects or vice versa, leakage
However, this formula excludes these conditions.
ewable electricity generation for captive use and mini-grid.
dology is applied to wind power plants with power supply from renewable energy of
plants connected to mini-grid; however, there is no restriction on the scale capacity of ction.
the reviewed methodology is computed by multiplying the electric power supply by
with the $CO_2$ emission factor of grid. Also, emission factor per power supplied is
ved methodology when heavy fuel oil or diesel-fired power plant is replaced in the
ced by wind power supply is multiplied with the emission factor. wed methodology shall account for GHG (CH ₄ and CO ₂ ) emissions from ject emissions, this formula excludes these conditions because it is applied or ver generation in the rural area without electrification. odology, if the power plants are transferred from other projects or vice versa, le . However, this formula excludes these conditions. ewable electricity generation for captive use and mini-grid. dology is applied to wind power plants with power supply from renewable ener plants connected to mini-grid; however, there is no restriction on the scale capacitor. the reviewed methodology is computed by multiplying the electric power supply with the CO ₂ emission factor of grid. Also, emission factor per power supply



#### (1)Baseline Emission

If photovoltaic power plants are not constructed, electric power will be continuously supplied from fossil fuel-fired power plants. Amount of electric power supply is reduced through the replacement of conventional fossil fuel-fired power plants with photovoltaic power plants. Thus, GHG emission should be equal to such emission from suppressed fuel combustion. When the existing photovoltaic power plants decrease in performance due to deterioration, improving the plant will increase the power generation efficiency and reduce dependence on electric power supply from the existing power plants. Thus, GHG emission reduction should be equal to the emission from suppressed fossil fuel combustion.

$$BE_v = \Sigma FC_i \times NCV_i \times COEF_i$$

Туре	Items	Description				
Output	$BE_y$	Baseline Emissions:				
		GHG emissions of fuel consumption replaced by the				
		photovoltaic power (t-CO ₂ /y)				
Input	$FC_{i,y}$	Suppressed amount of fuel i (kL, m ³ , t etc./y)				
	NCVi	Net Calorific Value of each fuel type (GJ/ kL, m ³ , t etc.)				
	$COEF_i$	CO ₂ Emission Factor of each fuel type (t-CO ₂ /TJ)				

#### **Determination of FC**_{i,y}

[Grid-connected power plants]

When photovoltaic power plants are connected to the grid, the existing power plants connected to the grid should be replaced based on their ranking on unit fuel cost, starting with the highest unit fuel cost. Reducing dependence on fossil fuel based fuel type and its priority should be determined on such view.

a) Monitoring electric power supply in each fuel type of national power grid

Monitor different types of fuel and the proportion of its contributed electric power supply (GWh/y) and consumption (kL, m³, t etc./y) to the national power grid.

b)Determining priority of target fuel for reduction

Verify unit fuel cost used at the existing plants within the national grid and make them target for the reduction in decreasing order of unit fuel cost (*1). Determine the priority for such reduction in consideration of the target nation's future plans (energy plans).

*1:If national unit fuel cost is unknown, set fuel unit cost in the order of petroleum, gas, coal for evaluation.

c) Checking essential amounts of fuel

In the target nation, because of energy source diversification promotion, multiple fuel types (petroleum, gas, coal etc.) can be used within the grid. Therefore, for each fuel type, a specific level of amount should be set aside for the minimum operation of each plant. In principle, 5% of total electric power supply is set aside as the essential amount of fuel.

When the actual power supply is less than the essential amount of fuel, total amount of actual power supply is applicable as the essential amount of fuel.

d)Monitoring power supply contribution from target fuel for reduction

Excluding the essential amount of fuel computed in c), identify the reducible amount of fuel, in the decreasing order of unit fuel cost, and compute the reducible fuel type and electric power supply

e)Determination of CO₂ emission from photovoltaic power

Based on the reducible amount of fuel in d), compute GHG emissions in order to generate power supply to replace photovoltaic power supply  $(EG_{pi,y})$ .

#### [Standalone] [Mini-grid]

The target area of standalone or mini-grid is non-electrification area. If hydropower facilities are not constructed, electric power is continuously supplied from the existing power facilities. Amount of fuel consumption in conventional power facilities is reduced through substitution with renewable energy from hydropower facilities. Thus, GHG emission should be equal to such emission from the decrease in suppression of fuel combustion. In most of these rural areas without access to electricity, diesel generator and kerosene for lighting will continue to be used in absence of power supply. Therefore, diesel oil and kerosene are assumed as the target fuel for reduction.

Туре	Items	Description
Output	$BE_y$	Baseline Emissions:
		GHG emissions from using renewable energy as substitute fuel (t-CO ₂ /y)
Input	$EC_{diesel,y}$	Amount of diesel oil consumption without the project, in case that diesel
		generator is used for television (kL/y)
	$NCV_{diesel,y}$	Net Calorific Value of diesel oil (GJ/kL)
	$CEF_{diesel,y}$	CO2 Emission Factor of diesel oil(t-CO2/TJ)
	$EC_{kerosene,y}$	Amount of kerosene consumption without the project, in case kerosene
		lamp is used for lighting (kL/y)
	$NCV_{kerosene,y}$	Net Calorific Value of kerosene(GJ/kL)
	$CEF_{kerosene,y}$	CO ₂ Emission Factor of kerosene(t-CO ₂ /TJ)

 $BE_{y} = EC_{diesel,y} \times NCV_{diesel,y} \times CEF_{diesel,y} + EC_{kerosene,y} \times NCV_{kerosene,y} \times CEF_{kerosene,y}$ 

(2) Project Emission

GHG emissions from photovoltaic power supply after the project starts will be "0".

## 4. Data Required for Estimation and Monitoring

## [Grid-connected power plants]

		Data Acquisition Methods				
Data Type	Description of Data	Baseline Er	nissions	Project Emissions		
Data Type	Description of Data	Before the Project	After Project	Before the	After Project	
	A ( C 1 ( )	Starts	Completion	Project Starts	Completion	
Amount of electric power supply (After : $EG_{PJ,y}$ )	Amount of electric power supply from Photovoltaic power plants by the project activity (MWh/y)	Planned data	Measured data			
$\begin{array}{c} (MWh/y) \\ \hline Suppressed amount of fuel i \\ of fuel i \\ (Before : FC_{i,y}) \\ \end{array} \\ \begin{array}{c} (GJ/kL, m^3, t \ etc.) \\ \end{array}$		Data availability is validated in the following order because it is preferably calculated using data and information unique to the project. i) Unique data obtained from interview with power management entity ii) National default iii) IEA Energy balance sheet		(Not necessary because data is not involved in the calculation)		
Net calorific value of each fuel type ( <i>NCV_i</i> )	Net calorific value of each fuel type (GJ/kL, m ³ , t etc.)	Data availability is following order becau calculated using data	validated in the use it is preferably			
$CO_2$ emission factor of each fuel type $(COEF_i)$	CO ₂ emission factor of each fuel type (t-CO ₂ /TJ)	<ul> <li>unique to the project.</li> <li>i) Unique data obtained from interview with power management entity</li> <li>ii) National default</li> <li>iii) IPCC Guideline default data (Annex C-2,3)</li> </ul>				

				19.1 K	enewable Ener	rgy / Pholo	vollate Fower
	Stand-alon	e】【Mini-grid】					
Γ		-			Data Acquisitio	on Methods	
				Baseline	Emissions		Emissions
		Data Type	Description of Data	Before the After Project		Before the After	
		)		Project	Completion	Project	Project
				Starts	compietion	Starts	Completion
ŀ	Amount of	Before : $EC_{diesel,v}$	Amount of diesel oil	~		~	
	fuel	= • • • • = • ulesel, y	consumption without				
	consumption		the project, in case	Diama	. 1 1.4.		
	-		that diesel generator is	Plann	ed data		
			used for television.				
			(kL/y)				
		Before : $EC_{kerosene,y}$	Amount of kerosene				
			consumption without	DI	1.1.		
			the project, in case	Plann	ed data		
			kerosene lamp is used				
-	Net calorific	Before : $NCV_{diesel,v}$	for lighting (kL/y) Net calorific value	Data availabi	literia	-	
	value	Belore . IVC V diesel,y	of diesel oil				
	value		(GJ/kL)		validated in the following order because it is		
			((())))		lculated using		
					rmation unique		
		Before : $NCV_{kerosene,y}$	Net calorific value	to the project			
			of kerosene(GJ/kL)		ata obtained		sary because
					erview with		involved in
					anagement	the cale	culation)
				entity ii) National	default		
					ideline default		
				data (Ani			
ŀ	CO ₂	Before : $CEF_{diesel,v}$	CO ₂ emission factor	Data availabi			
	emission	uteset,y	of diesel oil	validated in the following order because it is			
	factor		$(t-CO_2/TJ)$				
					lculated using		
					rmation unique		
		Before : $CEF_{kerosene,y}$	CO ₂ emission factor of kerosene	to the project	lata obtained		
			$(t-CO_2/TJ)$		erview with		
			(1-002/13)		anagement		
				entity	anaBernein		
				ii) National	default		
					ideline default		
				data (Ani	nex C-3)		
5 (	Others	(1) Project Boundary					
2.0	I		m magazine CUC	inciona in 1 1	6 norma f. 11:0	o milione -	iaat anti-it :
		The physical boundary for	or measuring GHG em	issions include	s power facilitie	es where pro	ject activity is
	I	implemented.					
	I						
	I	(2)Leakage					
		Leakage associated with s	olar nower generation	includes CO a	missions due to	production a	nd transport in
		-				-	-
		relation to solar power pl					
		comparison with the proje	ct size, thus they are n	ot considered.	In addition, fuel	handling suc	h as extraction,
		processing or transportation	should not be considere	d for renewable	energy.		
		(3) Reviewed Methodologie	es and Major Differences				
			-		amid annual 1	فأعطينا	anaration Com
		1) ACM0002(ver12.1):Co	isolidated baseline me	ennoaology for	grid-connected	electricity g	eneration from
		renewable sources.					
	I	Differences					
	I	Baseline emission in fl	ne reviewed methodolog	v is computed h	ov multiplying the	e electric now	er supply by the
				,	,	power power	

project activity, with the  $CO_2$  emission factor of grid(*2). In this formula, amount of fuel required for grid power generation replaced by photovoltaic power supply is multiplied with the emission factor.

- For the baseline emission calculation, CO₂ emission from the supplemental fuel (fossil fuel) in the power plants should be considered in the reviewed methodology. This formula excludes this condition.
- Leakage may result from the emissions increase attributed to power plant construction, fuel handling (extraction, processing or transportation) or flood. These conditions are excluded in the reviewed methodology as confirmed by the study team.
- *2: CO₂ emission factor of grid is a combined margin (CM) computed by the combination of operating margin (OM) and build margin (BM).

2) AM0019(ver2.0):Renewable energy projects replacing part of the electricity production of a single fossil fuel fired power plant that stands alone or supplies to a grid, excluding biomass projects.

#### [Differences]

- In the reviewed methodology, the  $CO_2$  emission factor of the electricity of baseline emission is calculated by emission for fuel consumption and amount of power generation. In this methodology, emission is calculated by the amount of suppressed fuel.
- No consideration for leakage is required in the reviewed methodology in the same way this formula is applied.

3) AMS-I.D.(ver16.0): Grid connected renewable electricity generation.

#### [Differences]


- The reviewed methodology is applied to plants with power density of over  $4W/m^2$ ; however, there is no restriction on scale capacity in the formula in this section.
- Baseline emission in the reviewed methodology is computed by multiplying the electric power supply by the project activity, with the  $CO_2$  emission factor of grid (*2). In this formula, amount of fuel required for grid power generation replaced by photovoltaic power supply, is multiplied with the emission factor.
- In the reviewed methodology, if the power plants are transferred from other projects or vice versa, leakage should be considered. However, this formula excludes these conditions.

4) AMS-I.F.(ver1.0): Renewable electricity generation for captive use and mini-grid.

#### [Differences]

- The reviewed methodology is applied to power supply from renewable energy is 15MW or less, and plants connected to min-grid; however, there is no restriction on scale capacity of the formula in this section.
- Baseline emission in the reviewed methodology is computed by multiplying the electric power supply by the project activity, with the  $CO_2$  emission factor of grid. Also, emission factor per power supply is defined in the reviewed methodology when the heavy fuel oil or diesel fired power plant is replaced in the project. In this formula, amount of fuel required for grid power generation replaced by hydro power supply is multiplied with the emission factor.
- In the reviewed methodology, if the power plants are transferred from other projects, leakage should be considered. However, this formula excludes these conditions.
- 5) J-VER E024(ver2.0): Methodology for grid-connected electricity generation from photovoltaic power system [Differences]
- The reviewed methodology is applied to plants that consume electricity, while that from photovoltaic power system is self-consumed. This formula excludes these conditions.
- Baseline emission is computed by multiplying the total of "electric power supply after the project starts" and "grid power supply which would be consumed without photovoltaic power plants", with the CO₂ emission factor of grid. In this formula, amount of fuel required to generate grid power supply replaced by photovoltaic power generation is multiplied with the emission factor.
- For project emission in the reviewed methodology, GHG emission generated from the uses of power grid through operation of power plants (operation of supplementary facilities etc.), and the uses of in-house power generating

supply. This formula excludes these emissions.
Leakage is not mentioned in the reviewed methodology.



#### (1)Baseline Emissions

If concentrated solar power plants are not constructed, electric power is continuously supplied from the fossil fuel-fired power plants. Amount of electric power supply generated from conventional fossil fuel-fired power plants is replaced with concentrated solar power plants. Thus, GHG emission reduction should be equal to emissions from suppressed fossil fuel combustion.

#### $BE_y = \Sigma FC_i \times NCV_i \times COEF_i$

Туре	Items	Description			
Output	$BE_y$	Baseline Emissions: GHG emissions of fuel consumption replaced by the solar power $(t-CO_2/y)$			
Input	$FC_{i,y}$	Suppressed amount of fuel i (kL,m ³ ,t etc./y)			
	NCVi	Net Calorific Value of each fuel type (GJ/kL,m ³ ,t etc.)			
	$COEF_i$	CO ₂ Emission Factor of each fuel type (t-CO ₂ /TJ)			

#### **Determination of FC**_{*i*,*v*}

[Grid-connected power plants]

When concentrated solar power plants connect to grid, the existing power plants in the grid should be replaced in decreasing order of unit fuel cost. Reducing fuel type and its priority should be determined with such view.

a) Monitoring electric power supply in each fuel type of national power grid

Monitor types of fuel, its proportion of electric power supply (GWh/y) and consumption ( $kL,m^3,t$  etc /y) supplied to the national power grid.

#### b) Determining priority of target fuel to be reduced

Verify unit fuel cost used at existing plants within the national grid and utilize them as target for reducing the decreasing order of unit fuel cost (*1). Determine the priority for reduction in consideration of the target nation's future plans (energy plans) as required.

*1:If national unit fuel cost is unknown, set fuel unit cost in the order of petroleum, gas, and coal for evaluation.

c) Checking essential amounts of fuel

In the target nation, because of energy source diversification promotion, multiple fuel types (petroleum, gas, coal etc.) can be used within grid. Therefore, for each fuel type, a specific level of amount should be set aside for the minimum operation of each plant. In principle, 5% of total electric power supply is set aside as essential amount of fuel.

When the actual power supply is less than essential amount of fuel, total amount of actual power supply is applicable as essential amount of fuels.

d) Monitoring power supply from target fuel for reduction

Excluding the essential amount of fuel computed in c), identify the reducible amount of fuel, in the decreasing order of unit fuel cost, and compute the reducible fuel type and electric power supply.

e) Determination of CO₂ emission from concentrated solar power

Based on the reducible amount of fuel in d), compute GHG emissions in order to generate power supply to replace concentrated solar power supply  $(EG_{pj,y})$ .

[Standalone]

Electric power is not supplied from grid in areas where concentrated solar power equipment run as standalone and solar water heater is not equipped. If concentrated solar power equipments are not constructed, electric power will be continuously supplied from the existing power plants. Amount of fuel consumption in the conventional power plants is reduced by utilizing renewable energy from concentrated solar power plants as alternative. Thus, GHG emissions reduction should be equal to the emissions from suppressed in fuel combustion.

$$BE_{y} = EC_{BL,y} \times EF_{BL,y}$$

Туре	Items	Description			
Output	$BE_y$	Baseline Emission: GHG emissions of fuel consumption replaced by the solar pow (t-CO ₂ /y)			
Input	EC BL,y	Amount of electricity consumption to supply hot water equivalent to that of solar water heater (MWh/y)			
	$EF_{BL,v}$	CO ₂ emission factor of the electricity(t-CO ₂ /MWh)			

#### Determination of EC_{BL,y}

Amount of electricity consumption to supply hot water equivalent to the one with solar water heater after the project starts shall be computed using the following formula.

$$EC_{BL,y} = \frac{Q_y \times \Delta T \times CUF}{EF_{wh} \times 860}$$

$Q_y$	: Amount of hot water supplied by solar water heater(kL/y)
$\Delta T$	: Temperature increase of water( ^O C ^o C)
CUF	: Production ratio(%)
$EF_{wh}$	: Efficiency of solar water heater(%)
060	$C_{\rm e} = \frac{1}{2} \left[ \frac{1}{2} \frac{1}{2}$

# 860 : Calorific value per electric capacity(1kWh=860kcal)

#### Determination of EF_{BL,y}

CO₂ emissions factor of electricity is defined as the emission factor of one or two typical power plants existing in the gird.

Emission factor for the target power plant should be obtained through interview to the electric power management entity concerned.

In selecting the target power plant, confirm that the emission factor is comparable to the average grid emission factor (Ref. Annex C-1) determined based on published values in the target country or data adopted by Kyoto Mechanisms or data based on IEA.

If the emission factor is not available, it should be calculated using the net electrical output of the target power plant, fuel type, net fuel consumption, net calorific value and caloric  $CO_2$  emission factor (Ref. Annex C-4).

(2) Project Emission

GHG emissions from concentrated Solar power supply after the project starts will be "0".

# 4. Data

Required for

Estimation and

Monitoring

[Grid-connected power plants]

*		Data Acquisition Methods				
Data Type	Description of Data	Baseline Er	nissions	Project Emissions		
Data Type	Description of Data	Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion	
Amount of electric power supply (After : $EG_{PJy}$ )	Amount of electric power supply from solar power plants by the project activity (MWh/y)	Planned data	Measured data			
Suppressed amount of fuel i (Before : $FC_{i,y}$ )Suppressed amount of fuel i by the project activity (GJ/kL, m³, t etc.)		Data availability is validated in the following order because it is preferably calculated using data and information unique to the project. i) Unique data obtained from interview with power management entity ii) National default iii) IEA Energy balance sheet		(Not necessary because data is not involved in the calculation)		
Net calorific value of each fuel type ( <i>NCV_i</i> )	Net calorific value of each fuel type (GJ/kL, m ³ , t etc.)	Data availability is validated in the following order because it is preferably calculated using data and information				
$CO_2$ emission factor of each fuel type $(COEF_i)$	CO ₂ emission factor of each fuel type (t-CO ₂ /TJ)	<ul> <li>unique to the project.</li> <li>i) Unique data obtained from interview with power management entity</li> <li>ii) National default</li> <li>iii) IPCC Guideline default data (Annex C-2,3)</li> </ul>				

# [Stand-alone (supplying hot water)]

			n methods			
Data Type	Description of Data	Baseline E	missions	Project Emissions		
Data Type	Description of Data	Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion	
Amount of electricity consumption (Before : <i>EC</i> _{<i>BL,y</i>)}	Amount of electricity consumption to supply hot water equivalent to the that using solar water heater(MWh/y)	Planned data	Measured data			
Temperature increase of water( $\Delta T$ )	Water temperature         Water temperature           increase of         increase from solar water		Measured data or Design value			
Efficiency of solar water heater(CUF)	Net production rate of solar water heater (%)	Planned data	Measured data			
Efficiency of solar water heater(Before : $EF_{wh}$ )	Efficiency of solar water heater to supply the hot water equivalent to the one with solar water heater (%)	Planned data	Planned data	(Not necessary because data is not involved in the calculation)		
$CO_2$ emission factor of the electricity( $EF_{BL,y}$ )	Emission factor of the typical power plant (t-CO ₂ /MWh)	Data availability should be validated in the following order in selecting the typical power plant and obtaining CO ₂ emissions factor specific to the target. i) Interview to the electric power management entity concerned ii) Published values in the target country				

5.Others	(1)Project Boundary
	The physical boundary for measuring GHG emissions includes power facilities where project activity is implemented.
	(2)Leakage
	Leakage associated with solar power/ heat generation includes $CO_2$ emissions due to production and transport in relation
	to solar power plant and/or solar water heater construction. However, such emissions are temporary and negligibly small in comparison with the project size, thus they are not considered. In addition, fuel handling such as extraction,
	processing or transportation should not be considered for renewable energy.
	processing of transportation should not be considered for renewable energy.
	(3) Reviewed Methodologies and Major Differences
	1)ACM0002(ver12.1):Consolidated baseline methodology for grid-connected electricity generation from renewable
	sources.
	[Differences]
	• Baseline emission in the reviewed methodology is computed by multiplying the electric power supply by the
	project activity, with the $CO_2$ emission factor of grid(*2). In this formula, amount of fuel required for grid power
	generation replaced by concentrated solar power supply is multiplied with the emission factor.
	• For the baseline emission calculation, CO ₂ emission from the supplemental fuel (fossil fuel) in the power plants
	<ul> <li>should be considered in the reviewed methodology. This formula excludes this condition.</li> <li>Leakage may result from the emission increase by the power plants construction, fuel handling (extraction,</li> </ul>
	processing or transportation) or flood. These conditions are excluded in the reviewed methodology as confirmed by
	the study team.
	*2: CO ₂ emission factor of grid is a combined margin (CM) computed by the combination of operating margin (OM)
	and build margin (BM).
	2)AM0019(ver2.0):Renewable energy projects replacing part of the electricity production of a single fossil fuel fired
	power plant that stands alone or supplies to a grid, excluding biomass projects. [Differences]
	• In the reviewed methodology, the $CO_2$ emission factor of the electricity of baseline emission is calculated by emission
	for fuel consumption and amount of power generation. In this methodology, emission is calculated by the amount of
	suppressed fuel.
	• No consideration for leakage is required in the reviewed methodology in the same way this formula is applied.
	3)AMS-I.D.(ver16.0):Grid connected renewable electricity generation .
	<ul><li>(Differences)</li><li>The reviewed methodology is applied to power supply from renewable energy of 15 MW or less; however, there is</li></ul>
	no restriction on scale capacity in the formula in this section.
	<ul> <li>Baseline emission in the reviewed methodology is computed by multiplying the electric power supply by the</li> </ul>
	project activity, with the $CO_2$ emission factor of grid (*2). In this formula, amount of fuel required for grid power
	generation by replaced concentrated solar power supply, is multiplied with the emission factor.
	• In the reviewed methodology, if the power plants are transferred from other projects or vice versa, leakage should
	be considered. However, this formula excludes these conditions.

		0. Renewable Energy / Geothermal Por
1.Typical Project Outline	The project intends to directly reduce GHG emissions by ge which generate limited amounts of GHG. The requirement the use of natural resources such as geothermal power, is elir	for flaring of GHGs to reduce emissions with
2.Applicability	<ul> <li>The project should aim at new construction or upgrading</li> <li>Geothermal power plants should be able to supply ele with fossil fuel fired plants.</li> </ul>	
3.Methodology on Emission Reduction	GHG emissions reduction through geothermal power sha baseline emissions (GHG emissions at fossil fired power geothermal power plants.	
	$ER_y = BE_y - PE_y$	, (t-CO ₂ /y)
	$ER_y$ :GHG emissions reduction in year y achieved by $BE_y$ :GHG emissions at existing power plants in year $PE_y$ :GHG emissions after running geothermal power [Grid-connected] (New facilities)	y (t-CO ₂ /y)(Baseline Emissions)
	BE _y : Baseline emission	PE _y : Project emission GFG termal Power plant Upper Grid Supply of grid electric power
	Emissions from continuous use of electric power supply generated from fossil fuel-fired plants without geothermal power plants construction	Geothermal power plant Emissions growth in grid added by electric power supply at geothermal power plants

If geothermal power plants are not constructed, electric power is continuously supplied from the fossil fired power plants. Amount of electric power supply is reduced by replacing conventional fossil fired power plants with geothermal power plants. Thus, GHG emission should be equal to such emission from suppressed fuel combustion.

$$\boldsymbol{BE}_{\boldsymbol{y}} = \Sigma F C_{i, y} \times N C V_i \times C O E F_i$$

Туре	Items	Description
Output	$BE_y$	Baseline emission: GHG emissions of fuel consumption replaced by the geothermal (t-CO ₂ /y)
Input	$FC_{i,y}$	Suppressed amount of fuel i (kL,m ³ ,t etc./y)
	NCV _i	Net Calorific Value of each fuel type (GJ/ kL,m ³ ,t etc.)
	$COEF_i$	CO ₂ Emission Factor of each fuel type (t-CO ₂ /TJ)

## <u>Determination of FC_{i,y}</u>

When geothermal power plants connected to grid, existing power plants connected to the grid should be replaced in decreasing order of unit fuel cost. Reducing fuel type and its priority should be determined with such view.

a) Monitoring electric power supply in each fuel type of national power grid

Monitor type of fuels and its electric power supply (GWh/y) and consumption ( $kL,m^3$ ,t etc /y) in each fuel type, which comprise the national power grid.

b) Determining priority of target fuel for reduction

Verify unit fuel cost used at existing plants within the national grid and utilize them as target for reduction the decreasing order of unit fuel cost (*1). Determine the priority for such reduction in consideration of the target nation's future plans (energy plans) as required.

*1: If national unit fuel cost is unknown, set fuel unit cost in the order of petroleum, gas, and coal for evaluation.

## c) Checking essential amount of fuels

In the target nation, because of energy source diversification promotion, multiple fuel types (petroleum, gas, coal etc.) can be used within the grid. Therefore, for each fuel type, a specific level of amount should be set aside for the minimum operation of each plant. In principle, 5% of total electric power supply is set aside as the essential amount of fuel.

When the actual power supply is less than essential amount of fuel, total amount of actual power supply is applicable as the essential amount of fuel.

d) Monitoring power supply from target fuel for reduction

Excluding the essential amount of fuel computed in c), identify the reducible amount of fuel, in the decreasing order of unit fuel cost, and compute the reducible fuel type and electric power supply.

e) Determination of CO₂ emission from geothermal power

Based on the reducible amount of fuel in d), compute GHG emissions reduction from the replacement of power supply from fossil-based power plants with geothermal power supply  $(EG_{pj,y})$ .

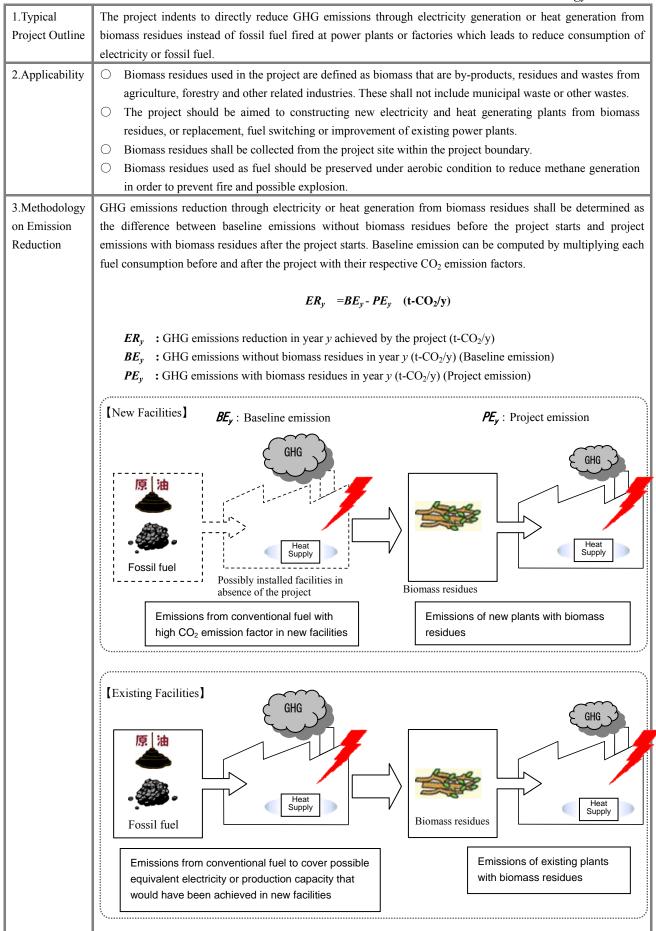
## (2)Project Emission

GHG emissions from geothermal power supply after the project starts will be "0".

Туре	Items	Description
Output	$PE_y$	Project Emissions:
	-	GHG emission after project activity $(t - CO_2/y)$
Input	$PES_y$	$CO_2 \cdot CH_4$ emission with vapor emission(t- $CO_2/y$ )
	$PEFF_{y}$	CO ₂ emission with fuel combustion in the geothermal
		power plants
		$(t-CO_2/y)$

## $PE_y = PES_y + PEFF_y$

## Determination of PES_y


 $CO_2 \cdot CH_4$  emission with vapor emission shall be calculated as follows:

 $PES_y = (w_{Main,CO2} + w_{Main,CH4} \times GWP_{CH4}) \times M_{S,y}$ 

Continue	ed)	$w_{Main,CO2}$ : Average molecular mass for carbon dioxide in generated vapor(t-CO2/t) $w_{Main,CH4}$ : Average molecular mass for methane in generated vapor(t-CH4/t) $GWP_{CH4}$ : Methane global warming potential (GWP)(-) $M_{S,y}$ : Amount of vapor in year y (t)										
	<u>Determination</u> CO ₂ emissio	<u>of PEFF_y</u> n with fuel combustion in	the geothermal po	ower plants shall	l be calculated as	follows:						
		50	$PEFF_y = \Sigma FC_{i,y} \times NCV_i \times COEF_i$									
		FC _{i,y} NCV _i COEF		e of each fuel type	e(GJ/kL,m ³ ,t etc	-	tc./y)					
l. Data Required Estimatio Monitorii	on and											
					Data Acquisit	tion Methods						
	Dat	ta Type	Description of Data	Baseline E		Project Emissions						
			-	Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion					
Amount of electric power supply (After : $EG_{PJ,y}$ )Base initiation set initiation Base initiation Base initiation Base initiation Base initiation Base initiation Base initiation Suppressed amount of fuel i (Before : $FC_{i,y}$ )		р _{Ј,у} )	Amount of electric power supply from geothermal power plants a by the project activity (MWh/y)	Planned data	Measured data	. <u>,</u>						
		int of fuel i fuel i by the project		interview v manageme ii) National d iii) IEA Energ	ler because it is ated using data unique to the ta obtained from with power nt entity efault y balance sheet	(Not necessary because data is not involved in the calculation)						
	each	alorific value of fuel type ( <i>NCV_i</i> ) emission factor	Net calorific value of each fuel type (GJ/kL, m ³ ·t etc.) CO ₂ emission factor of	the following ord	Data availability is validated in the following order because it is preferably calculated using data							
		each fuel type $EF_i$	each fuel type (t-CO ₂ /TJ)	project:	a obtained from with power							

Continued)										
					uisition Methods					
			Baseline I		Project Er					
	Data Type	Description of Data	Before the	After	Before the	After Project				
			Project Starts	Project Completion	Project Starts	Completion				
GHG emission	Average molecular mass for CO ₂	Average molecular mass for $CO_2$ in	Starts	Completion	Planned data based on the	Measured data				
with vapor emission	(After : $w_{Main,CO2}$ )	vapor generated in year $y(t-CO_2/t)$		Measured data of similar cases						
	Average molecular	Average molecular	1		Planned data	Measured				
	mass for CH ₄ (After : <i>w</i> _{Main,CH4} )	mass for CH ₄ in vapor generated in year y(t-CH ₄ /t)			based on the Measured data of similar cases	data				
	GWP for $CH_4(After : GWP_{cru})$	21(-)			21					
	Amount of vapor in(After : $M_{S,y}$ )	$\begin{array}{c c} CH_4(After: GWP_{CH4}) \\ \hline \\ Amount of vapor \\ \hline \\ Amount of vapor in \\ \hline \\ \end{array}$			Planned data	Measured				
GHG emission with fuel combustion	Fuel consumption of fuel i (Before : $FC_{i,y}$ )	Energy consumption required to generate electric power supply of fuel i . (kL,m ³ ,t etc/y)	(Not necessar data is not inv calculation)	data         Data availability is validated in         the following order because it         is preferably calculated using         data and information unique to         the project:         i)       Unique data obtained from         interview with power         management entity         ii)       National default						
	Net calorific value of each fuel type $(NCV_i)$	Net calorific value of each fuel type (GJ/kL,m ³ ,t etc)	-		iii) IEA Energy balance sheet Data availability is validated in the following order because it is preferably calculated using data and information unique to					
	CO ₂ emission factor of each fuel type ( <i>COEF_i</i> )	CO ₂ emission factor of each fuel type (t-CO ₂ /TJ)			<ul> <li>the project:</li> <li>i) Unique data obtained from interview with power management entity</li> <li>ii) National default</li> <li>iii) IPCC Guideline default data (Annex C-2,3)</li> </ul>					
Others	(1) Project Boundary The physical bounda implemented.	ry for measuring GH0	G emissions in	cludes power	facilities where	project activity i				
	transport in relation t	2)Leakage Leakage associated with geothermal power generation includes $CO_2$ emissions due to production and ransport in relation to geothermal power plant construction. However, such emissions are temporary and negligibly small in comparison with the project size, thus they are not considered.								
	a)ACM0002(ver12.1) renewable sources. [Differences]	lologies and Major Dif Consolidated baseling in the reviewed method	e methodology	-		-				

grid power generation by replaced geothermal power supply is multiplied with the emission factor. • Leakage may result from the emissions increase due to power plant construction, fuel handling (extraction, processing or transportation) or flood. These conditions are excluded in the reviewed methodology as confirmed by the study team.
*2: CO ₂ emission factor of grid is a combined margin (CM) computed by the combination of operating margin (OM) and build margin (BM).
<ul><li>b) AM0019(ver2.0) : Renewable energy projects replacing the electricity produced from a fossil fuel-fired power plant that either stands alone or supplies to a grid, excluding biomass projects.</li><li>[Differences]</li></ul>
• In the reviewed methodology, the CO ₂ emission factor of the electricity of baseline emission is calculated by emission for fuel consumption and amount of power generation. In this methodology, emission is calculated by the amount of suppressed fuel.
• No consideration for leakage is required in the reviewed methodology in the same way this formula is applied.
c) AMS-I.D.(ver16.0):Grid connected renewable electricity generation. [Differences]
• Reviewed methodology is applied when the power supply from renewable energy is 15 MW or less; however, there is no restriction on scale capacity in the formula in this section.
<ul> <li>Baseline emission in the reviewed methodology is computed by multiplying the electric power supply by the project activity, with the CO₂ emission factor of grid (*2). In this formula, amount of fuel required for grid power generation replaced by geothermal power supply is multiplied with the emission factor.</li> <li>In the reviewed methodology, if the power plants are transferred from other projects or vice versa, leakage should be considered. However, this formula excludes these conditions.</li> </ul>
4) AMS-I.F.(ver1.0) : Renewable electricity generation for captive use and mini-grid. [Differences]
• Reviewed methodology is applied when the power supply from renewable energy is 15 MW or less, or plants are connected to the mini-grid. However, there is no restriction on scale capacity of the formula in this section.
<ul> <li>Baseline emissions in the reviewed methodology is computed by multiplying the electric power supply by the project activity, with the CO₂ emission factor of grid. Also, emissions factor per unit of power supply is defined in the reviewed methodology when heavy fuel oil or diesel-fired power plant is replaced in the project. In this formula, amount of fuel required for grid power generation replaced by geothermal power supply is multiplied with the emission factor.</li> <li>In the reviewed methodology, if the power plants are transferred from other projects, leakage should be considered. However, this formula excludes these conditions.</li> </ul>
<ul> <li>the project activity, with the CO₂ emission factor of grid. Also, emissions factor per unit of power sup is defined in the reviewed methodology when heavy fuel oil or diesel-fired power plant is replaced in project. In this formula, amount of fuel required for grid power generation replaced by geothermal posupply is multiplied with the emission factor.</li> <li>In the reviewed methodology, if the power plants are transferred from other projects, leakage shows a supply is methodology.</li> </ul>



#### (1) Baseline Emission (Continuation) When biomass residues are not used as fuel, GHG emission is computed by electricity consumption to generate the quantity of electric power generation and heat generation after the project starts. Baseline emission shall be determined by multiplying the quantity of fuel consumption from electricity generation (MWh/y) and heat generation (TJ/y) equivalent to the electricity and heat generated from biomass residues after the project starts with their respective GHG emission factors. The emission factors should be individually applied for plants of public and private generating facilities. $BE_y =$ BE_{elec.x} BE_{ther.y} (Emissions generated by electricity supplied) (Emissions generated by heat supplied) $= (EG_{PJ,y} \times EF_{BL,y}) + (HG_{PJ,y} \times EF_{heat})$ Type Items Description Output $BE_v$ Baseline emission: GHG emissions without waste energy recovery (t-CO₂/y) Input Quantity of electric power generation through waste $EG_{PJ,v}$ energy recovery and utilization after the project starts (MWh/y) $EF_{BL,y}$ CO₂ emissions per electric power supplied (t-CO₂/MWh) $HG_{PJ,v}$ Quantity of heat generation recovered and utilized after the project starts (MWh/y) EFheat CO₂ emission factor (t-CO₂/TJ)

## Determination of EF_{BL,v}

[Case: currently owned or has plan to install private generating facility]

In the environment where the biomass residual power plants are installed with private generating facilities, or where biomass residual power plants are newly constructed and private generating facilities are planned to be installed, select whichever higher by comparing with the  $CO_2$  emissions factor for the grid supplying electricity (Annex C-1).

The emissions factor should be determined base on one or two typical plants among existing power plants in the target grid. The emissions factor should be obtained through interview to the electric power management entity concerned.

In selecting the target power plant, confirm that the emissions factor is comparable to the average grid emission factor based on published values in the target country, data adopted by Kyoto Mechanism or IEA (Annex C-1).

If  $CO_2$  emission factor is not available, it should be calculated using the annual electrical output of the target plant, fuel type, annual fuel consumption, average net calorific value, and caloric  $CO_2$  emission factor (Annex C-4).

[Case: currently not owned or has no plan to install private generating facility]

Where the existing biomass residual power plants have no private generating facilities or such facilities are not planned to be installed in new biomass residual power plants,  $CO_2$  emissions factor in the grid supplying electricity should be used.

## **Determination of EF_{heat}**

 $EF_{heat}$  shall be calculated by the following equation:

					4	21. Kenewable En	iergy / Diomass				
(Continuation)				E E	$= ws \frac{EF_{CO2}}{m}$						
				<b>EF</b> heat	$= WS - \frac{\eta_{EP}}{\eta_{EP}}$						
		$EF_{CO2}$ : CO ₂ emission factor per unit of energy of the boiler fuel consumption without the									
		project									
		$\eta_{EP}$ : Boiler efficiency									
		WS	: Rate	of total heat from boild	er without the project	to heat capacity with	biomass residues				
	(2) Project	ject Emission									
	In order to	rder to calculate project GHG emission, electricity consumption and supplemental fuel consumption from									
	plants with	ts with biomass residues and fuel consumption for transporting biomass residues after the project starts must									
	be measur	ed. The r	neasured co	nsumption is multiplie	d by their respective of	emission factors.					
			$E_y =$	$PE_{elec,x}$	+	PEix					
		(1	Emision wit	h electricity consumpt	ion) (Emision with	fuel consumption)					
			= (PC _y	$\times EF_{BL,y}) + (PC_{i,y} \times N)$	$CV_i \times COEF_i$ )						
	Г	Туре	Items		Description						
		Output	PEy	Project emission:							
		_		-	ter the project starts (	$t-CO_2/y)$					
	Γ.	Input	$PC_{v}$	Electricity consu	mption after the proj	ect starts in year y					
			-	(MWh/y)							
			$EF_{BL,y}$	CO ₂ emissions supply(t-CO ₂ /MV		etric power grid					
			$PC_{i,y}$	Fuel consumption (kL, m ³ , t etc./y)	n i after the project sta	urts in year y					
			NCVi		e of fuel i (GJ/kL, m ³	. t etc.)					
			$COEF_i$		tor of fuel i $(t-CO_2/T)$						
			1		(****2	,	1				
4. Data											
Required for											
Estimation and											
Monitoring											
	-				Data acquisitior	methods	]				
Data T	wna	Decarint	tion of Data	Baseline I		Project Em	issions				
	урс	Descript	ion of Data	Before the Project	After Project	Before the Project	After Project				
Amount of	electricity	Amount	of	Starts	Completion	Starts	Completion				
power supp	ply with	electricit	y power	Planned data	Measured data	(Not necessary beca					
biomass resid	ues(After :		$\sqrt{(1+1)}$	i iuniou uutu	moustion una	involved in the	calculation)				
$EG_{PJ,y}$ ) Either l	higher rate of	project(N factor in tl		the plant is currently ow	ned or has plan to instal	private generating faci	lities				
C CO ₂	emissions	Emission	ns factor of	Data availability is val	idated in the following of	order in selecting the ty					
factor	of		typical power     and obtaining CO ₂ emissions factor specific to the target.       lants     i)       Interview to the electric power management entity concerned								
E electri	city	plants (t-CO ₂ /N	(Wh)		in the target country	ent entity concerned					
$EF_{BL,y}$	emission	CO ₂ emi	ssion factor	, , , , , , , , , , , , , , , , , , , ,							
₩ [™] ĝ factor ⊕ generat	in private	of every (t-CO ₂ /	fuel type		Interview with power m	anagement entity					
$ \begin{array}{c} CO_2 \\ CO_2 \\ emission \\ EF_{sL_3} \\ F_{sL_3} \\ \end{array} $ $ \begin{array}{c} CO_2 \\ electrively \\ CO_2 \\ electrively \\ CO_2 \\ electrively \\ F_{sL_3} \\ CO_2 \\ electrively \\ F_{sL_3} \\ F_{sL_3} \\ CO_2 \\ electrively \\ F_{sL_3} \\ F_{sL_3} \\ CO_2 \\ F_{sL_3} \\ F_{sL_3}$	0	(1-002/	13)								
CO ₂ en	nission factor	supplying	to the grid in	the case where the plant	is currently not owned c	or has no plan to install J	private generating				
facilitie	28.										

Continua	ation)							
			D 1	Data Acquisition Emissions		Emission -		
	Data type	Description of Data	Baseline Before the Project	After Project	Before the	Emissions After Project		
			Starts	Completion	Project Starts	Completion		
	of heat with	Amount of heat by		N 11/	(Not necessary b	because data is not		
	residues $HG_{PJ,y}$ )	the project activity (TJ/y)	Planned data	Measured data	involved in t	he calculation)		
	Before : <i>EF</i>	CO ₂ emission factor of the boiler fuel consumption without the project (t-CO ₂ /TJ)	following order bec calculated using d unique to the project:	t				
CO ₂ emission factor(Before : $EF_{heat_{sy}}$ ) Heat ratio		cy Heat efficiency form boiler(%) Rate of total heat from boiler without	following order: i) Unique data power manager ii) Monitoring data Heat capacity with bio	of similar case	(Not necessary because data is not involved in the calculation)			
Amount	(ws)	the project to heat capacity with biomass residues Amount of	to heat capacity from project The ratio is "1".	boiler without the				
	ption by the pro			se data is not involved lculation)	Planned data	Measured data		
Amount consump activity (After :	ption by the pro	Amount of fuel consumption by the project activity for every fuel type (kL/y, m ³ /y, t/y)	,	se data is not involved lculation)	Planned data	Measured data		
Other factors	Net calorific of each fuel t ( <i>NCV_i</i> ) CO ₂ emission factor of eac type( <i>COEF_i</i> )	ypeof each fuel type (GJ/kL, $m^3$ ,t)nCO2 emission	<ul> <li>Data availability is validated in the following order because it is preferably calculat using data and information unique to the project:</li> <li>i) Unique data from interview with power management entity</li> <li>ii) National default</li> <li>iii) IPCC Guideline default data (Annex C-2, 3)</li> </ul>					
.Others	The imp (2) I Hig activ negi Wha emi redu (3) I	Project Boundary physical boundary for a lemented and areas where Leakage her efficiency at fossil fue vities such as product man igible considering the proj ereas cereal crops potenti ssions (from fertilization, action (reduced emission b Reviewed methodologies a	biomass residues are g al fired power plants: nufacturing or materia fect scale. Therefore, i fail for biomass fuel transportation etc.) ar y biomass residues).	generated. the indirect emissions als transport. This con t can be ignored. by plantation are use e calculated with pla	that potentially l rresponding emiss ed instead of bio ntation as leakage	ead to leakage due sion is temporary at mass residues, GH e and subtracted fro		
	Res 【D	ACM0006 (Ver.11.1): C dues ifferences] n the reviewed methodo						

processing capacity of raw materials such as sugar, rice, and lumber. The formula in this methodology excludes these conditions.

- Baseline emission in the reviewed methodology includes emissions from decayed and artificially fired biomass residues. However, the formula in this methodology excludes such emission because biomass residues are preserved under aerobic conditions to prevent the generation of methane¥.
- There are two ways to compute project emission from transporting biomass residues in the reviewed methodology. One is to compute from distance and transportation frequency, and the other is to compute from the quantity of fuel consumption. The latter is applied to the formula in this methodology for simplification.
- Project emission in the reviewed methodology includes methane emission from biomass residues, water discharge and production process of biogas. This corresponding emission is temporary and negligible compared to the project scale. Therefore, it can be ignored.
- GHG emissions may increase outside the project boundary because fossil fuel consumption and other emission sources may increase to compensate the biomass residues fuel which are moved to the project boundary. With regard to leakage, the reviewed methodology requires to prove that the above potential emission increase does not influence the emissions outside of the project boundary. However, the formula in this methodology excludes these conditions.

2) AMS-I.D.(Ver. 16.0): Grid Connected Renewable Electricity Generation

## [Differences]

- Reviewed methodology is applied to power supply from renewable energy at 15 MW or less. However, the handbook does not restrict scale capacity.
- Baseline emission in the reviewed methodology is computed by multiplying the electricity supplied by the project activity, with the CO₂ emission factor of grid (*1). In this methodology, emissions factor of electricity is defined as the emission factor of one or two typical power plants existing in the gird to calculate easily.
- In the reviewed methodology, if the power plants are transferred from other projects or existing plants are transferred to other projects, leakage should be considered. However, this methodology excludes these conditions.
- GHG emissions may increase outside the project boundary because fossil fuel consumption or other emission sources may increase to compensate the biomass residues fuel which are moved to the project boundary. With regard to leakage, the reviewed methodology requires to prove that the potential increase in emission does not influence the emissions outside the project boundary. However, the formula in this methodology excludes these conditions.
- *1: CO₂ emission factor of grid is a combined margin (CM) computed by the combination of operating margin (OM) and build margin (BM).

3) J-MRV001: Methodology for the Power and Heat Supply Projects using Biomass Residue (Revised on February 2011)

[Differences]

- Any of the methods on data acquisition can be selected from the reviewed methodology where several methods are available. However, this methodology clearly defines the selection priority.
- It is unclear that emissions from the transportation of biomass residues is included in the project emission of the reviewed methodology. However, the formula in this methodology includes emission generated by transportation.
- In the reviewed methodology, the CO₂ emission factor of the electricity is the average of all power plants in the target country. In this methodology, emissions factor of electricity is defined as the emission factor of one or two typical power plants existing in the gird to calculate easily.

The reviewed methodology excludes the leakage potential unless there are great influences. This methodology also excludes the leakage in the same manner.

Region	Country	Local Region		Emission		Source / PDD Title	Registration Date		Emission		Source / PDD Title	Registration Date
-			OM ¹	BM ²	CM ³			OM ¹	BM ²	CM ³		
Published Values in th	e Target Country		4 0 0 7	0.700	0.004							1
		North China	1.007	0.780	0.894		_					
		North East Chine	1.129	0.724	0.927		_					
	01	East Chine	0.883	0.683	0.783	China's Regional Grid Baseline Emission Factors 2009 (Chinese Version),	0000 (0 (0	4 000				0044/4/00
	China	Central Chine	1.126	0.580	0.853	Department of Climate Change,NDRC http://cdm.ccchina.gov.cn/english/NewsInfo.asp?NewsId=3840	2009/9/3	1.033	0.649	0.840	Institute for Global Environmental Strategies	2011/4/23
		North West Chine	1.025	0.643	0.834	http://camboomhaigonom/onglion/nonominalapintonola_oono	_					
		South Chine	0.999	0.577	0.788		-					
		Hainan Province	0.815	0.730	0.773							
Asian and Oceanian		India	0.980	0.800	0.890	Baseline Carbon Dioxide Emission Database Version 6.0 - LATEST Central	0040/0/44	4 000	0.500			0011110
	India	NEWNE	0.990	0.810	0.900	Electricity Authority, Ministry of Power, Government of India http://www.cea.nic.in/reports/planning/cdm_co2/cdm_co2.htm	2010/3/11	1.009	0.598	0.906	Institute for Global Environmental Strategies	2011/4/9
-		South	0.940	0.760	0.850							
	Indonesia	Sumatera	-	-	0.743	Baseline Emission Factor (Updated) http://dna-cdm.menlh.go.id/id/database/	2009/2/13	0.873	0.560	0.717	Institute for Global Environmental Strategies	2011/2/12
-		JAMALI			0.891	-						
		Peninsular Malaysia	0.603	0.741	0.672	Study on Grid Connected Electricity Baselines in Malaysia Year:2008, CDM		_				
	Malaysia	Sarawak	0.813	0.837	0.825	Baseline 2008(339KB), CDM Energy Secretariat http://cdm.eib.org.my/subindex.php?menu=9&submenu=85	2010/3/1	0.828	0.844	0.836	Institute for Global Environmental Strategies	2011/2/26
		Sabah	0.705	0.597	0.651							-
Latin America and Caribbean	Argentina	Argentina	0.516	0.335	0.425	MODELO DE CALCULO DEL FACTOR DE EMISIONES DE CO2 DE LA RED, ARGENTINA DE ENERGIA ELECTRICA. A NO 2006.	2007/8/22	0.484	0.362	0.423	Institute for Global Environmental Strategies	2010/12/18
						http://www.ambiente.gov.ar/?idarticulo=7362						
Kyoto Mechanisms		1										
	Republic of Korea	-	0.682	0.393		3MW Shinan Wind power project	2010/4/18	0.682	0.394	0.610	Institute for Global Environmental Strategies	2011/2/4
	Mongol	-	1.050	1.070		Durgun hydropower project in Mongolia	2007/3/23	1.150	1.170	-	Institute for Global Environmental Strategies	2009
	Bangladesh	-	0.670	0.712		Composting of Organic Waste in Dhaka	2006/5/18	0.670	0.712	0.691	Institute for Global Environmental Strategies	2006/5/18
-	Bhutan,India	-	1.160	0.850	1.004	Dagachhu Hydropower Project, Bhutan	2010/2/26	1.160	0.850	1.004	Institute for Global Environmental Strategies	2010/2/10
Asian and Oceanian	Philippines	-	0.549	0.329		Republic Cement Corporation Teresa Plant Waste Heat Recovery Project	2011/3/29	0.549	0.329	0.439	Institute for Global Environmental Strategies	2011/3/29
	Vietnam	-	0.635	0.502		Lao Cai - Lai Chau - Kontum Bundled Hydropower Project	2011/3/24	0.620	0.451	0.536	Institute for Global Environmental Strategies	2011/4/8
	Thailand	-	0.512	0.546		UB Tapioca Starch Wastewater Treatment Project	2011/3/22	0.507	0.554	0.530	Institute for Global Environmental Strategies	2011/4/9
	Sri Lanka	-	0.707	0.646	0.677	Adavikanda, Kuruwita Division Mini Hydro Power Project	2010/8/24	0.707	0.646	0.677	Institute for Global Environmental Strategies	2010/8/24
	Pakistan	-	0.724	0.242	0.483	Biogas-based Cogeneration Project at Shakarganj Mills Ltd., Jhang, Pakistan	2010/12/2	0.724	0.242	0.483	Institute for Global Environmental Strategies	2010/12/2
0.1.5.1	United Arab Emirates	-	0.938	0.708	0.881	Abu Dhabi solar thermal power project, Masdar	2009/8/13	0.938	0.708	0.881	Institute for Global Environmental Strategies	2009/8/13
Central-Eastern Europe,Central Asia	Uzbekistan	-	-	-	0.617	Akhangaran Landfill Gas Capture Project in Tashkent	2009/12/19				Institute for Global Environmental Strategies	
Lutope, central Asia	Israel	-	0.797	0.695	0.746	Evlayim Landfill Project	2011/2/12	0.797	0.695	0.746	Institute for Global Environmental Strategies	2011/2/12
	Brasil	-	0.487	0.078	0.282	CDM project of Moinho and Barracao Small Hydropower Plant	2010/1/11	0.291	0.078	0.184	Institute for Global Environmental Strategies	2011/1/12
	Columbia	-	0.469	0.237	0.353	Amaime Minor Hydroelectric Power Plant	2009/10/29	0.471	0.212	0.342	Institute for Global Environmental Strategies	2011/1/17
İ	Uruguay	-	0.338	0.181		Fray Bentos Biomass Power Generation Project (FBBP Project)	2008/5/8	0.580	0.733	0.618	Institute for Global Environmental Strategies	2011/1/29
	Bolivia	-	0.730	0.349	0.540	Conversion of existing open cycle gas turbine to combined cycle at Guaracachi power station, Santa Cruz, Bolivia	2010/4/13	0.730	0.349	0.540	Institute for Global Environmental Strategies	2010/4/13
	Argentina	-	0.510	0.347	0.429	Biogas recovery and Thermal Power production at CITRUSVIL Citric Plant in Tucumán. Argentina	2010/12/1					
	Chile		0.718	0.490	0.604	Trueno River Hydroelectric Power Plant	2011/4/1	0.718	0.490	0.604	Institute for Global Environmental Strategies	2011/4/9
Latin America and . Caribbean	Costa Rica	-	0.485	0.490		Guanacaste Wind Farm	2011/2/11	0.485	0.490	0.388	Institute for Global Environmental Strategies	2011/2/11
Ganbbean		-	1									
	Honduras	-	0.629	0.559	0.594	Mezapa Small-Scale Hydroelectric Project Landfill biogas extraction and combustion plant in El Inga I and II landfill	2011/2/8	0.629	0.559	0.594	Institute for Global Environmental Strategies Institute for Global Environmental Strategies	2010/3/8 2011/1/22
						(Quito, Ecuador)		_				
	Mexico	-	0.715	0.347		Alternative fuels and biomass project at Zapotiltic cement plant	2010/12/25	0.704	0.375	0.539	Institute for Global Environmental Strategies	2011/1/4
	Peru	-	0.720	0.480		Yanapampa Hydroelectric Power Plant	2010/12/18	0.720	0.480	0.600	Institute for Global Environmental Strategies	2010/12/18
-	Dominican Republic	-	0.619	0.444		Bionersis project on La Duquesa landfill, Dominican Republic	2010/4/9	0.619	0.444	0.532	Institute for Global Environmental Strategies	2010/4/8
	El Salvador	-	0.716	0.718		El Chaparral Hydroelectric Project (El Salvador)	2010/3/1	0.716	0.718	0.717	Institute for Global Environmental Strategies	2010/3/1
ļ	Morocco	-	0.734	0.752	0.743		2005/10/29	0.734	0.752	0.743	Institute for Global Environmental Strategies	2005/10/29
	Kenya	-	0.710	0.480		Olkaria Phase 2 Geothermal Expansion Project in Kenya	2010/3/4	0.761	0.426	0.594	Institute for Global Environmental Strategies	2010/12/4
	South Africa	-	0.990	1.050		Bethlehem Hydroelectric project	2009/10/8	0.990	1.050	1.020	Institute for Global Environmental Strategies	2010/10/26
ļ	Uganda	-	0.569	0.677		Bugoye 13.0 MW Run-of-River Hydropower Project	2011/1/1	0.569	0.677	0.623	Institute for Global Environmental Strategies	2011/1/1
Africa	Senegal	-	0.701	0.651		Energy efficiency improvement Project of CSS sugar mill	2010/12/28	0.701	0.651	0.676	Institute for Global Environmental Strategies	2010/12/28
	Nigeria	-	0.670	0.580	0.630	Municipal Solid Waste (MSW) Composting Project in Ikorodu, Lagos State	2010/12/15	0.670	0.580	0.630	Institute for Global Environmental Strategies	2010/12/15
[	Egypt	-	0.557	0.428	0.525	Zafarana 8 - Wind Power Plant Project, Arab Republic of Egypt	2010/9/23	0.557	0.428	0.525	Institute for Global Environmental Strategies	2010/9/23
ſ	Madagascar	-	0.518	0.579	0.548	Small-Scale Hydropower Project Sahanivotry in Madagascar	2010/8/28	0.518	0.579	0.548	Institute for Global Environmental Strategies	2010/8/28
	Rwanda		0.661	0.647	0.654	Rwanda Electrogaz Compact Fluorescent Lamp (CFL) distribution project	2010/5/30	0.661	0.647	0.654	Institute for Global Environmental Strategies	2010/5/30

Annex Table C-1 County-specific CO₂ emission factor of grid power (1)

Region	Country	Local Region		n Emissior		Source / PDD Title	Latest Year		n Emission		Source / PDD Title	Registration D
Ŷ			OM1	BM ²	CM ³			OM ¹	BM ²	CM ³		
ternational Energy A				1			1					
	Brunei	-	-	-	0.755	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Cambodia	-	-	-	1.160	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Taiwan	-	-	-	0.650	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	North Korea	-	-	-	0.481	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
Asian and Oceanian	Myanmar	-	-	-	0.285	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Nepal	-	-	-	0.003	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Singapore	-	-	-	0.531	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.502	0.411	-	Institute for Global Environmental Strategies	2010
	Fiji	-	-	-	-	-	-	0.660	0.650	0.656	Institute for Global Environmental Strategies	2005/10
	Papua New Guinea	-	-	-	-	-	-	0.704	0.653	0.679	Institute for Global Environmental Strategies	2006/5/
	Bahrain	-	-	-	0.651	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Iran	-	-	-	0.582	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Iraq	-	-	-	0.812	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
_	Jordan	-	-	-	0.589	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.675	0.551	0.613	Institute for Global Environmental Strategies	2009/12
	Kuwait	-	-	-	0.614	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
Middle East	Lebanon	-	-	-	0.705	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Oman	-	-	-	0.858	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
L	Qatar	-	-	-	0.534	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Saudi Arabia	-	-	-	0.754	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Syria	-	-	-	0.613	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Yemen	-	-	-	0.636	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Albania	-	-	-	0.014	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Bosnia and Herzegovina	-	-	-	0.928	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Bulgaria	-	-	-	0.489	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Croatia	-	-	-	0.341	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Cyprus	-	-	-	0.759	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.846	0.735	0.818	Institute for Global Environmental Strategies	2010/2
Europe	Gibraltar	-	-	-	0.757	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008				, , , , , , , , , , , , , , , , , , ,	
	Macedonia	-	-	-	0.786	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.772	1.004	0.888	Institute for Global Environmental Strategies	2009/12
	Malta	-	-	-	0.849	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Romania	-	-	-	0.417	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Serbia	-	-	-	0.671	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Slovenia	-	-	-	0.329	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Armenia	_	-	-	0.165	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.535	0.398	0.437	Institute for Global Environmental Strategies	2009/7/
	Azerbaijan	-	-	-	0.416	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.000	0.000	0.407	institute for Global Environmental Ottategies	2003/17
	Belarus	-	-	-	0.303	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Estonia	-	-	-	0.752	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Georgia	-		-	0.081	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	-	-	0.093	Institute for Global Environmental Strategies	2007/4
	Kazakhstan		-	-	0.439	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	-	-	0.035	Institute for Global Environmental Strategies	200774
		-	-	-	0.439	IEA CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION	2008					
ormer Soviet Union	Kyrgyzstan Latvia	-	-	-	0.094	IEA CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION	2008					
	Lithuania	-	-	-	0.102	IEA CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION	2008					
		-		-	0.114							
	Moldova		-	-		IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Russia	-	-	-	0.326	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Tajikistan		-	-	0.031	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Turkmenistan	-	-	-	0.795	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Ukraine	-	-	-	0.386	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Cuba	-	-	-	0.913	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.808	0.875	0.841	Institute for Global Environmental Strategies	2009/2
	Guatemala	-	-	-	0.336	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.811	0.468	0.640	Institute for Global Environmental Strategies	2008/12
	Haiti	-	-	-	0.480	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008		1			
	Jamaica	-	-	-	0.785	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.893	0.776	0.834	Institute for Global Environmental Strategies	2006/3/
atin America and	Antilles	-	-	-	0.707	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
Caribbean	Nicaragua	-	-	-	0.477	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.754	0.589	0.713	Institute for Global Environmental Strategies	2009/4
	Panama	-	-	-	0.273	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.713	0.503	0.660	Institute for Global Environmental Strategies	2009/2
	Trinidad and Tobago	=	-	-	0.687	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Venezuela	-	-	-	0.203	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Guyana	-	-	-	-	•	-	0.948	-	0.948	Institute for Global Environmental Strategies	2008/5

#### Annex Table C-1 County-specific CO₂ emission factor of grid power (2)

Region	Country	Local Region	Carbon	on Emission Factor		Source / PDD Title	Latest Year	Carbor	Emission	n Factor	Source / PDD Title	Registration Dat
Region	Country	Local Region	OM ¹ BM ² CM ³ Source 7 FDD The Latest re-	Latest rear	OM1	BM ²	CM ³	Source 7 PDD Title	Registration Da			
nternational Energy A	Agency											
	Algeria	-	-	-	0.596	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Angora	-	-	-	0.038	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Benin	-	-	-	0.697	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Botswana	-	-	-	1.789	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Cameroon	-	-	-	0.230	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Congo	-	-	-	0.108	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Cote d'Ivoire	-	-	-	0.449	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.713	0.661	0.687	Institute for Global Environmental Strategies	2010/11/25
	Eritrea	-	-	-	0.669	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Ethiopia	-	-	-	0.119	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Gabon	-	-	-	0.401	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
Africa	Ghana	-	-	-	0.214	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
Amca	Libya	-	-	-	0.885	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Morocco	-	-	-	0.718	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Mozambique	-	-	-	0.000	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Namibia	-	-	-	0.424	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Sudan	-	-	-	0.609	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Tanzania	-	-	-	0.242	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Togo	-	-	-	0.206	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Tunisia	-	-	-	0.522	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Zambia	-	-	-	0.003	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Zimbabwe	-	-	-	0.619	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Mali,Senegal,Mauritania	-	-	-	-		-	0.518	0.647	0.582	Institute for Global Environmental Strategies	2010/5/6

Annex Table C-1 County-specific CO₂ emission factor of grid power (3)

OM:Operating Margin Emission factor of existing plants
 BM:Build Margin Emission factor of plants built recently

3) CM: Combined margin Average of emission factor of OM and BM

	Annex Table C-2 IPCC default of N	ABLE 1.2	$(v_i)$ of each fueld	Lype
DEFAULT	NET CALORIFIC VALUES (NCVS) AND LOWER		THE 95% CONFIDENC	CE INTERVALS ¹
Fuel type Er	nglish description	Net calorific value (TJ/Gg)	Lower	Upper
Crude Oil		42.3	40.1	44.8
Orimulsion		27.5	27.5	28.3
Natural Gas I	Liquids	44.2	40.9	46.9
е	Motor Gasoline	44.3	42.5	44.8
Gasoline	Aviation Gasoline	44.3	42.5	44.8
Ga	Jet Gasoline	44.3	42.5	44.8
Jet Kerosene		44.1	42.0	45.0
Other Kerose	ene	43.8	42.4	45.2
Shale Oil		38.1	32.1	45.2
Gas/Diesel O	bil	43.0	41.4	43.3
Residual Fue	1 Oil	40.4	39.8	41.7
Liquefied Pe	troleum Gases	47.3	44.8	52.2
Ethane		46.4	44.9	48.8
Naphtha		44.5	41.8	46.5
Bitumen		40.2	33.5	41.2
Lubricants		40.2	33.5	42.3
Petroleum Co	oke	32.5	29.7	41.9
Refinery Fee	dstocks	43.0	36.3	46.4
	Refinery Gas ²	49.5	47.5	50.6
Other Oil	Paraffin Waxes	40.2	33.7	48.2
ther	White Spirit and SBP	40.2	33.7	48.2
0	Other Petroleum Products	40.2	33.7	48.2
Anthracite		26.7	21.6	32.2
Coking Coal		28.2	24.0	31.0
Other Bitumi	inous Coal	25.8	19.9	30.5
Sub-Bitumin	ous Coal	18.9	11.5	26.0
Lignite		11.9	5.50	21.6
Oil Shale and	1 Tar Sands	8.9	7.1	11.1
Brown Coal	Briquettes	20.7	15.1	32.0
Patent Fuel	•	20.7	15.1	32.0
o	Coke Oven Coke and Lignite Coke	28.2	25.1	30.2
Coke	Gas Coke	28.2	25.1	30.2
Coal Tar ³	1	28.0	14.1	55.0
	Gas Works Gas 4	38.7	19.6	77.0
Derived	Coke Oven Gas ⁵	38.7	19.6	77.0
Gases	Blast Furnace Gas ⁶	2.47	1.20	5.00
	Oxygen Steel Furnace Gas ⁷	7.06	3.80	15.0
Natural Gas		48.0	46.5	50.4
	astes (non-biomass fraction)	10	7	18
Industrial Wa		NA	NA	NA
Waste Oil ⁸		40.2	20.3	80.0
Peat		9.76	7.80	12.5

## Energy Conservation(Industry), Energy, Renewable Energy / Annex Table

Annex Table C-2 IPCC default of Net calorific value  $(NCV_i)$  of each fuel type¹

¹ 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy Table1.2 http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_1_Ch1_Introduction.pdf

## Energy Conservation(Industry), Energy, Renewable Energy / Annex Table

		LT EMISSION FA	ACTORS FOR S	TABLE 2. TATIONARY C gas per TJ o	2 COMBUSTION	IN THE ENE	RGY INDUS		51	
		(	CO ₂	5 I		СН4			N ₂ O	
	Fuel	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper
Crud	e Oil	73 300	71 100	75 500	r 3	1	10	0.6	0.2	2
Orim	ulsion	r 77 000	69 300	85 400	r 3	1	10	0.6	0.2	2
Natu	ral Gas Liquids	r 64 200	58 300	70 400	r 3	1	10	0.6	0.2	2
	Motor Gasoline	r 69 300	67 500	73 000	r 3	1	10	0.6	0.2	2
Gasoline	Aviation Gasoline	r 70 000	67 500	73 000	r 3	1	10	0.6	0.2	2
Gase	Jet Gasoline	r 70 000	67 500	73 000	r 3	1	10	0.6	0.2	2
Jet K	erosene	r 71 500	69 700	74 400	r 3	1	10	0.6	0.2	2
Othe	r Kerosene	71 900	70 800	73 700	r 3	1	10	0.6	0.2	2
Shale	e Oil	73 300	67 800	79 200	r 3	1	10	0.6	0.2	2
Gas/	Diesel Oil	74 100	72 600	74 800	r 3	1	10	0.6	0.2	2
Resid	lual Fuel Oil	77 400	75 500	78 800	r 3	1	10	0.6	0.2	2
Liqu	efied Petroleum Gases	63 100	61 600	65 600	r 1	0.3	3	0.1	0.03	0.3
Etha	ne	61 600	56 500	68 600	r 1	0.3	3	0.1	0.03	0.3
Naph	itha	73 300	69 300	76 300	r 3	1	10	0.6	0.2	2
Bitu		80 700	73 000	89 900	r 3	1	10	0.6	0.2	2
Lubr	icants	73 300	71 900	75 200	r 3	1	10	0.6	0.2	2
Petro	leum Coke	r 97 500	82 900	115 000	r 3	1	10	0.6	0.2	2
Refi	nery Feedstocks	73 300	68 900	76 600	r 3	1	10	0.6	0.2	2
	Refinery Gas	n 57 600	48 200	69 000	r 1	0.3	3	0.1	0.03	0.3
	Paraffin Waxes	73 300	72 200	74 400	r 3	1	10	0.6	0.2	2
oil	White Spirit and SBP	73 300	72 200	74 400	r 3	1	10	0.6	0.2	2
Other Oil	Other Petroleum Products	73 300	72 200	74 400	r 3	1	10	0.6	0.2	2
-	racite	98 300	94 600	101 000	1	0.3	3	r 1.5	0.5	5
	ng Coal	94 600	87 300	101 000	1	0.3	3	r 1.5	0.5	5
	r Bituminous Coal	94 600	89 500	99 700	1	0.3	3	r 1.5	0.5	5
	Bituminous Coal	96 100	92 800	100 000	1	0.3	3	r 1.5	0.5	5
Lign		101 000	90 900	115 000	1	0.3	3	r 1.5	0.5	5
-	hale and Tar Sands	107 000	90 200	125 000	1	0.3	3	r 1.5	0.5	5
	n Coal Briquettes	97 500	87 300	109 000	n 1	0.3	3	r 1.5	0.5	5
	nt Fuel	97 500	87 300	109 000	1	0.3	3	n 1.5	0.5	5
	Coke Oven Coke and Lignite Coke	r 107 000	95 700	119 000	1	0.3	3	r 1.5	0.5	5
Coke	Gas Coke	r 107 000	95 700	119 000	r 1	0.3	3	0.1	0.03	0.3
Coal	Tar	n 80 700	68 200	95 300	n 1	0.3	3	r 1.5	0.5	5
	Gas Works Gas	n 44 400	37 300	54 100	n 1	0.3	3	0.1	0.03	0.3
iases	Coke Oven Gas	n 44 400	37 300	54 100	r 1	0.3	3	0.1	0.03	0.3
/ed C	Blast Furnace Gas	n 260 000	219 000	308 000	r 1	0.3	3	0.1	0.03	0.3
Derived Gases	Oxygen Steel Furnace Gas	n 182 000	145 000	202 000	r 1	0.3	3	0.1	0.03	0.3
	ral Gas	56 100	54 300	58 300	1	0.3	3	0.1	0.03	0.3

## Annex Table C-3 IPCC default Co2 emission factors per electric grid power supply (COEF_i) of each fuel type²

² 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy Table2.2, Table2.3 http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf

	DEFAU	LT EMISSION F.A (kg of			COMBUSTION			TRIES		
		Ī	CO ₂		1	CH4			N ₂ O	
	Fuel	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper
Munic fractio	ipal Wastes (non-biomass n)	n 91 700	73 300	121 000	30	10	100	4	1.5	15
Indust	rial Wastes	n 143 000	110 000	183 000	30	10	100	4	1.5	15
Waste	Oils	n 73 300	72 200	74 400	30	10	100	4	1.5	15
Peat		106 000	100 000	108 000	n 1	0.3	3	n 1.5	0.5	5
	Wood / Wood Waste	n 112 000	95 000	132 000	30	10	100	4	1.5	15
els	Sulphite lyes (Black Liquor) ^a	n 95 300	80 700	110 000	n 3	1	18	n 2	1	21
Solid Biofuels	Other Primary Solid Biomass	n 100 000	84 700	117 000	30	10	100	4	1.5	15
Soli	Charcoal	n 112 000	95 000	132 000	200	70	600	4	1.5	15
	Biogasoline	n 70 800	59 800	84 300	r 3	1	10	0.6	0.2	2
Liquid Biofuels	Biodiesels	n 70 800	59 800	84 300	r 3	1	10	0.6	0.2	2
Liqu Biot	Other Liquid Biofuels	n 79 600	67 100	95 300	r 3	1	10	0.6	0.2	2
	Landfill Gas	n 54 600	46 200	66 000	r 1	0.3	3	0.1	0.03	0.3
Gas Biomass	Sludge Gas	n 54 600	46 200	66 000	r 1	0.3	3	0.1	0.03	0.3
Gas Bior	Other Biogas	n 54 600	46 200	66 000	r 1	0.3	3	0.1	0.03	0.3
Other non- fossil fuels	Municipal Wastes (biomass fraction)	n 100 000	84 700	117 000	30	10	100	4	1.5	15

r indicates an emission factor that has been revised since the 1996 Guidelines

	DEFAULT EMISSION FACTO			TABLE 2.3 MBUSTION IN <u>MA</u> per TJ on a N			TRIES ANI	O CONSTRUC	<u>TION</u>		
		CO2			Ī	CH4		N ₂ O			
	Fuel	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper	
Crude Oil		73 300	71 100	75 500	r 3	1	10	0.6	0.2	2	
Orimulsion	1	r 77 000	69 300	85 400	r 3	1	10	0.6	0.2	2	
Natural Ga	s Liquids	r 64 200	58 300	70 400	r 3	1	10	0.6	0.2	2	
	Motor Gasoline	r 69 300	67 500	73 000	r 3	1	10	0.6	0.2	2	
Gasoline	Aviation Gasoline	r 70 000	67 500	73 000	r 3	1	10	0.6	0.2	2	
Gaso	Jet Gasoline	r 70 000	67 500	73 000	r 3	1	10	0.6	0.2	2	
Jet Keroser	ne	71 500	69 700	74 400	r 3	1	10	0.6	0.2	2	
Other Kero	sene	71 900	70 800	73 700	r 3	1	10	0.6	0.2	2	
Shale Oil		73 300	67 800	79 200	r 3	1	10	0.6	0.2	2	
Gas/Diesel	Oil	74 100	72 600	74 800	r 3	1	10	0.6	0.2	2	
Residual F	uel Oil	77 400	75 500	78 800	r 3	1	10	0.6	0.2	2	
Liquefied I	Petroleum Gases	63 100	61 600	65 600	r 1	0.3	3	0.1	0.03	0.3	
Ethane		61 600	56 500	68 600	r 1	0.3	3	0.1	0.03	0.3	
Naphtha		73 300	69 300	76 300	r 3	1	10	0.6	0.2	2	
Bitumen		80 700	73 000	89 900	r 3	1	10	0.6	0.2	2	
Lubricants		73 300	71 900	75 200	r 3	1	10	0.6	0.2	2	
Petroleum Coke		r 97 500	82 900	115 000	r 3	1	10	0.6	0.2	2	
Refinery F		73 300	68 900	76 600	r 3	1	10	0.6	0.2	2	
1	Refinery Gas	n 57 600	48 200	69 000	r 1	0.3	3	0.1	0.03	0.3	
	Paraffin Waxes	73 300	72 200	74 400	r 3	1	10	0.6	0.05	2	
Oil	White Spirit and SBP	73 300	72 200	74 400	r 3	1	10	0.6	0.2	2	
Other Oil	Other Petroleum Products	73 300	72 200	74 400		1	10	0.6	0.2	2	
<ul> <li>Anthracite</li> </ul>		98 300				-	30			5	
		98 300	94 600 87 300	101 000	10	3	30	r 1.5 r 1.5	0.5	5	
Coking Co				99 700		3				5	
	minous Coal	94 600	89 500		10		30	r 1.5	0.5		
	inous Coal	96 100	92 800	100 000	10	3	30	r 1.5	0.5	5	
Lignite		101 000	90 900	115 000	10	3	30	r 1.5	0.5	5	
	nd Tar Sands	107 000	90 200	125 000	10	3	30	r 1.5	0.5	5	
	al Briquettes	n 97 500	87 300	109 000	n 10	3	30	n 1.5	0.5	5	
Patent Fuel	1	97 500	87 300	109 000	10	3	30	r 1.5	0.5	5	
Coke	Coke Oven Coke and Lignite Coke	r 107 000	95 700	119 000	10	3	30	r 1.5	0.5	5	
S Gas Coke		r 107 000	95 700	119 000	r 1	0.3	3	0.1	0.03	0.3	
Coal Tar	1	n 80 700	68 200	95 300	n 10	3	30	n 1.5	0.5	5	
S	Gas Works Gas	n 44 400	37 300	54 100	r 1	0.3	3	0.1	0.03	0.3	
Gasi	Coke Oven Gas	n 44 400	37 300	54 100	r 1	0.3	3	0.1	0.03	0.3	
Derived Gases	Blast Furnace Gas	n260 000	219 000	308 000	r 1	0.3	3	0.1	0.03	0.3	
Der	Oxygen Steel Furnace Gas	n 182 000	145 000	202 000	r 1	0.3	3	0.1	0.03	0.3	
Natural Ga	s	56 100	54 300	58 300	r 1	0.3	3	0.1	0.03	0.3	

	DEFAULT EMISSION FACTO		IONARY COM	E 2.3 (CONTINUE IBUSTION IN <u>MA</u> per TJ on a N	NUFACTURE		TRIES ANI	O CONSTRUC	<u>HON</u>	
		[	CO ₂		Ī	CH ₄		[	$N_2O$	
	Fuel	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper
Municipal V	Wastes (non-biomass fraction)	n 91 700	73 300	121 000	30	10	100	4	1.5	15
Industrial W	/astes	n143 000	110 000	183 000	30	10	100	4	1.5	15
Waste Oils		n 73 300	72 200	74 400	30	10	100	4	1.5	15
Peat		106 000	100 000	108 000	n 2	0.6	6	n 1.5	0.5	5
10	Wood / Wood Waste	n 112 000	95 000	132 000	30	10	100	4	1.5	15
ofuels	Sulphite lyes (Black Liquor) ^a	n 95 300	80 700	110 000	n 3	1	18	n 2	1	21
Solid Biofuels	Other Primary Solid Biomass	n 100 000	84 700	117 000	30	10	100	4	1.5	15
Soli	Charcoal	n 112 000	95 000	132 000	200	70	600	4	1.5	15
	Biogasoline	n 70 800	59 800	84 300	r 3	1	10	0.6	0.2	2
Liquid Biofuels	Biodiesels	n 70 800	59 800	84 300	r 3	1	10	0.6	0.2	2
Liqu Biot	Other Liquid Biofuels	n 79 600	67 100	95 300	r 3	1	10	0.6	0.2	2
	Landfill Gas	n 54 600	46 200	66 000	r 1	0.3	3	0.1	0.03	0.3
Gas Biomass	Sludge Gas	n 54 600	46 200	66 000	r 1	0.3	3	0.1	0.03	0.3
Gas Bior	Other Biogas	n 54 600	46 200	66 000	r 1	0.3	3	0.1	0.03	0.3
Other non-fossil fuels	Municipal Wastes (biomass fraction)	n100 000	84 700	117 000	30	10	100	4	1.5	15
n indica	the biomass-derived CO ₂ emitted tes a new emission factor which tes an emission factor that has be	was not presen	t in the 1996 (	Juidelines	ne biomass-der	rived CO ₂ e	mitted from	m the kraft mi	ll lime kiln	L

Annex Table C-4 Calculation of CO₂ emissions factor for electric power supplied in grid when values are not publicly available³

When  $CO_2$  emissions factor is not publicly available for electric power supplied in grid, it should be calculated in the following formula using annual electric output, fuel seeds, annual fuel consumption, fuel unit heat output, and caloric  $CO_2$  emissions factor of all grid-connected power plants in the target country.

$$EF_{BL,y} = \frac{\sum_{m} EG_{m,y} \times EF_{m,y}}{\sum_{m} EG_{m,y}}$$

*m* : all power plants in the target country

 $EG_{m,y}$ : total of annual electric output (transmission) of power plants m (MWh)

 $EF_{m,y}$  : CO₂ emissions factor per unit power output of power plants m (t-CO₂/ MWh)

 $EF_{m,v}$  is calculated in the following formula.

$$EF_{m,y} = \frac{\sum_{i} FC_{i,m,y} \times NCV_{i} \times COEF_{i}}{EG_{m,y}}$$

 $FC_{i,m,y}$  : annual fuel consumption of power plants m (kL, m³, t/y)

*NCVi* : unit heat output for fuel type i (GJ/kL, m³, t)

*COEFi* : caloric CO₂ emissions factor for fuel type i (t-CO₂/TJ)

³ UNFCCC :http://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-07-v2.2.0.pdf

Annex Table C-5 Calculation of leakage resulted from fuel extraction, processing, liquefaction, transportation, re-gasification and distribution⁴

The following two emission sources shall be considered for leakage resulted from fuel extraction, processing, liquefaction, transportation, re-gasification and distribution.

- Fugitive CH₄ emissions associated with fuel extraction, processing, liquefaction, transportation, re-gasification and distribution of natural gas used in the project plant and fossil fuels used in the grid in the absence of the project activity.
- In the case LNG is used in the project plant, CO₂ emissions from fuel combustion/ electricity consumption associated with the liquefaction, transportation, re-gasification, and compression into a natural gas transmission or distribution system.

 $LE_v = LE_{CH4,v} + LE_{LNG,CO2,v}$ 

- Thus, leakage emissions are calculated as follows:

$LE_y$	: Leakage emissions during the year y (t-CO ₂ /y)
$LE_{CH4,y}$	: Leakage emissions due to fugitive upstream $CH_4$ emissions in the year y (t- $CO_2/y$ )
LE _{LNG,CO2, y}	: Leakage emissions due to fossil fuel combustion/ electricity consumption associated with the
	liquefaction, transportation, re-gasification and compression of LNG into natural gas transmission or
	distribution system during the year y (t-CO ₂ /y)

#### LE_{CH4,y} calculation

 $CH_4$  leakage emissions associated with fuel production, one should multiply the quantity of natural gas consumed in the project by  $CH_4$  emission factor for these upstream emissions, and subtract for fuel types which would be used in the absence of the project activity the fuel quantities multiplied by respective  $CH_4$  emission factors.

$$LE_{CH4,y} = [FC_{PJ,y} \times NCV_{NG} \times EF_{NG,upstream,CH4} - \sum FC_{BL,i,y} \times NCV_i \times EF_{i,upstream,CH4}] \times GWP_{CH4}$$

$FC_{PJ,y}$	: Natural gas quantity combusted in the all element processes during the year y (m ³ )	
$NCV_{NG}$	: Average net calorific value of natural gas (GJ/ m ³ )	
$EF_{NG,upstream,CH4}$	: Emission factor for upstream fugitive CH ₄ emissions from production, transportation and distribution o	f
	natural gas (t-CH ₄ /PJ)	
$FC_{BL, i, y}$	: Quantity of fuel type i that would be combusted in the absence of the project activity in all elemen	t
	process (kL, t)	
$NCV_i$	: Average net calorific value of the fuel type i (GJ/kL, t)	
EF _{i,upstream,CH4}	: Emission factor for upstream fugitive CH ₄ emissions from production of fuel type i (t-CH ₄ /PJ)	
$GWP_{CH4}$	: Global warming potential of $CH_4(-)$	

Data type	Description	Data acquisition method
Quantityofnatural gas $(FC_{PJ,y})$	Quantity of natural gas combusted in the all element processes in the year y (m ³ )	This data is specific to the target country; data should be validated in the following order to use. i) Interview to parties concerned ii) Project design value
Average net calorific value (NCV _i )	Average net calorific value of natural gas (GJ/ m ³ ) Average net calorific value of fuel type i (GJ/kL, t)	Data specific to the target project should be used for calculation. Data should be validated in the following order to used. i) Project-specific data acquired through interview to electric power company ii) Publicized values in the target country iii) IPCC guideline, default values (see Annex Table C-2)
Emission factor for $CH_4$ leakage emissions $(EF_{i,upstream,CH4})$	Emission factor for upstream CH ₄ emissions from production, transportation and distribution (t-CH ₄ /PJ) Emission factor for upstream CH ₄ emissions from production of fuel type i (t-CH ₄ /PJ)	See Annex Table C-6
Global warming potential	Global warming potential for $CH_4$ (-)	21

⁴UNFCCC:http://cdm.unfccc.int/filestorage/K/4/P/K4P3YG4TNQ5ECFNA8MBK2QSMR6HTEM/Consolidated%20methodology%20for%20indus trial%20fuel%20switching%20from%20coal%20or%20petroleum%20fuels%20to%20natural%20gas.pdf?t=Sm98MTMwODYzODQ0Ni43Mg==| sIB62MGPb49uM001aAJzL50hppM=

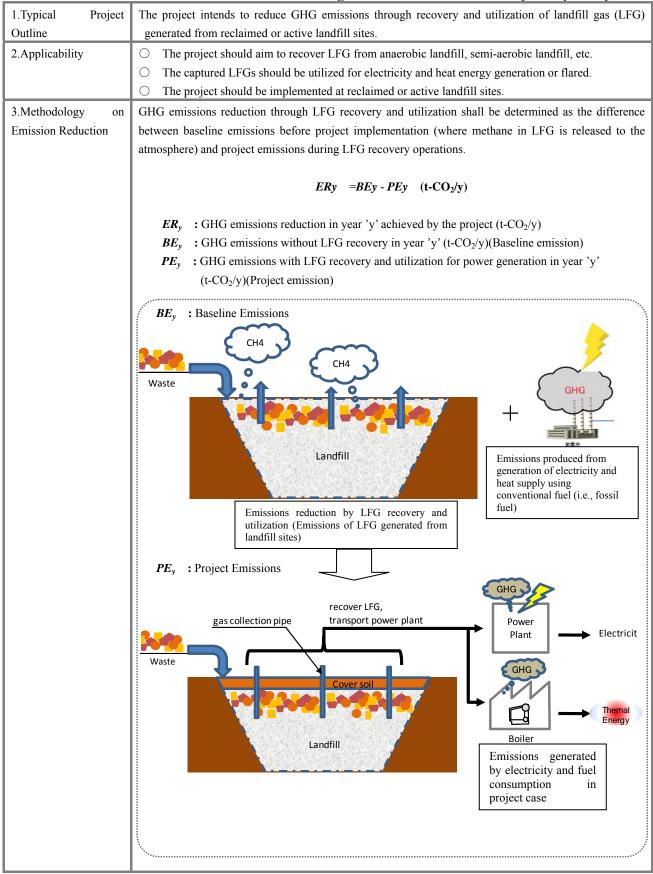
## LE_{LNG,CO2, y} Calculation

CO₂ emissions from fuel combustion/ electricity consumption associated with the liquefaction, transportation, re-gasification and compression of LNG into a natural gas transmission or distribution system should be calculated in the following formula by multiplying the quantity of natural gas combusted in the project by an appropriate emission factor.

 $LE_{LNG,CO2, y} = FC_{PJ,y} \times NCV_{LNG} \times EF_{upstream,LNG}$ 

 $FC_{PJ,y}$  $NCV_{LNG}$  $EF_{upstream,LNG}$  : Quantity of natural gas combusted in all element processes during the year y (m³)
: Average net calorific value for LNG (GJ/m³)
: Emission factor for upstream CO₂ emissions due to fossil fuel combustion/ electricity consumption associated with the liquefaction, transportation, re-gasification and compression of LNG into a natural gas transmission or distribution system (t-CO₂/TJ)

Data type	Description	Data acquisition method
Quantity of natural gas ( <i>FC</i> _{<i>PJ</i>,<i>y</i>} )	Quantity of natural gas combusted in all element processes during the year y (m ³ )	<ul><li>This data is specific to the target project. Data should be validated in the following order to use.</li><li>i) Interview to parties concerned</li><li>ii) Project design values</li></ul>
Average net calorific value $(NCV_{LNG})$	Average net calorific value for natural gas (GJ/ m ³ )	<ul> <li>Project-specific data/ information should be used for calculation preferably. Data should be validated in the following order to use.</li> <li>i) Project-specific data acquired through interview to electric power management entity.</li> <li>ii) Publicized values in the target country</li> <li>iii) Default values adopted in IPCC guideline (Annex C-2)</li> </ul>
CO ₂ emission factor for LNG ( <i>EF</i> _{upstream,LNG} )	Emission factor for upstream $CO_2$ emissions from fossil fuel combustion/ electricity consumption associated with the liquefaction, transportation, re-gasification, and compression of LNG into a natural gas transmission or distribution system (t-CO ₂ /TJ)	Project-specific data/ information should be used for calculation preferably. If the data are hardly acquired from parties concerned, use the following default values (*1) for calculation. 6 (t-CO ₂ /TJ)


Source: Consolidated baseline and monitoring methodology for fuel switching from coal or petroleum fuel to natural gas, UNFCCC (Translated by project team)

# Sewerage, Urban Sanitation Sector

Sub-sector :

- 22. Landfill Disposal of Waste
- 23. Intermediate Treatment of Waste
- 24. Wastewater Treatment
- 25. Sewerage

## 22. Sewerage and Urban Sanitation / Landfill Disposal of Waste



(1)Determination of baseline emission

The baseline emissions are comprised of uncaptured methane emitted to the atmosphere from landfill sites and the  $CO_2$  emissions produced from generation of electric power, which with project activity will be replaced by electricity generated by LFG-fueled power plants.

Туре	Items	Description
Output	BE _y	Baseline Emissions: GHG emission from methane released to the atmosphere without LFG recovery (t- CO ₂ /y)
Input	$MD_{PJ,y}$	Methane (CH ₄ ) recovered and destroyed after the project starts (t-CH ₄ /y) ( $\doteqdot$ CH ₄ emission from landfill sites before the project starts)
	MD _{reg,y}	$CH_4$ quantity as required by National Regulations to be flared and combusted, before the project starts (t- $CH_4/y$ ) It shall be "0" where developing countries have very limited regulatory policies on $CH_4$ emissions.
	GWP _{CH4} BE _{EN,y}	Methane Global Warming Potential $(= 21 \text{ t-CO}_2/\text{t-CH}_4)$ GHG emissions from generation of energy displaced by the project activity $(\text{t-CO}_2/\text{y})$

$$\boldsymbol{BEy} = (MD_{PJ,y} - MD_{reg,y}) \times GWP_{CH4} + BE_{EN,y}$$

#### Determination of MD_{PJ,v}

The  $MD_{PJ,y}$  is computed from  $LFG_{PJ,y}$ , which is the combined emission quantities of LFG used for power generation, heat supply and decompose/combustion, modified by fraction CH₄ and CH₄ density, as shown in the following formula.

$$MD_{PJ,y} = LFG_{PJ,y} \times W_{Ch4,y} \times D_{CH4,y}$$

LFG_{PJ,y}: Total amount of LFG fed electricty generator and the boiler/air heater/heat

generating equipment, the flare after the project  $starts(m^3)$ 

- $w_{Ch4,y}$  : Fraction CH₄ in LFG recovered after the project starts(%)
- $D_{CH4,y}$  : Methane density(t-CH₄/m³)

If the above data is not available during project planning process, the formula below can be used.  $CH_4$  quantity from landfill (  $CH_4$  quantity recovered and destroyed after the project started) shall be determined by monitoring the quantity of degradable organic carbon reclaimed in the landfill in consideration of decomposition rate.

$$\begin{split} MD_{PJ,y} &= \varPhi \times (1 - OX) \times \frac{16}{12} \times DOC_f \times MCF_p \times \sum_{x=l}^{y} \sum_{j=1}^{n} W_j \times DOC_j \times e^{-k_j(y-x)} \times (1 - e^{-k_j}) \\ \varPhi &= \text{Model correction factor to account for model uncertainties} \\ OX &= \text{Oxidation rate}(-) \\ F &= \text{Fraction of CH}_4 \text{ in LFG } (-) \\ DOC_f &= \text{Fraction of degradable organic carbon (DOC) that can decompose } (-) \\ MCF_p &= \text{CH}_4 \text{ correction factor } (-) \\ j &= \text{Waste type category (wood, paper, organics, fabric, yard waste)} \\ W_j &= \text{Average annual quantity of the waste type j disposed in the SWDS before the project starts (t/y) } \\ DOC_j &= \text{Fraction of degradable organic carbon (by weight) in the waste type j (-)} \end{split}$$

*Wj* shall be computed as follows:

 $W_i = W \times W_i$ 

- *W* : Average annual quantity of the waste disposed in the SWDS before the project starts (t/y)
- $w_j$ : Weight fraction of the waste type j in solid waste (weight basis)(%)

## Determination of MD_{reg,v}

 $CH_4$  quantity reduction by destroy and combustion, as required under National Regulations, before the project starts, shall be determined by multiplying the  $CH_4$  quantity from landfill ( $MB_y$ ) with the fraction of decomposed and combusted.

$$MD_{reg,y} = MD_{PJ,y} \times AF$$

 $MD_{PJ,y}$  :CH₄ quantity recovered from landfill after the project started

 AF :CH₄ fraction required for flare and combustion under the National Regulations before the project starts (-) It shall be "0" where developing countries have very little regulation.

## Determination of BE_{EN,y}

 $BE_{EN,y}$  shall be determined by the quantity of electricity and thermal energy generated after the project started, and CO₂ baseline emission factors.

$$BE_{EN,y} = BE_{elec,y} + BE_{ther,y}$$
$$= EG_{d,y} \times CEF_d + \frac{Q_y}{\varepsilon_b \cdot NCV_{fuel}} \times EF_{fuel}$$

 $BE_{elec,y}$ : Baseline emissions from electricity generated from utilizing LFG in the project activity and exported to the grid or displacing onsite/offsite fossil fuel (t-CO₂/y)  $BE_{ther,y}$ : Baseline emissions from thermal energy produced utilizing the LFG in the project activity displacing thermal energy from onsite/offsite fossil fuel-fueled boiler(t-CO₂/y)

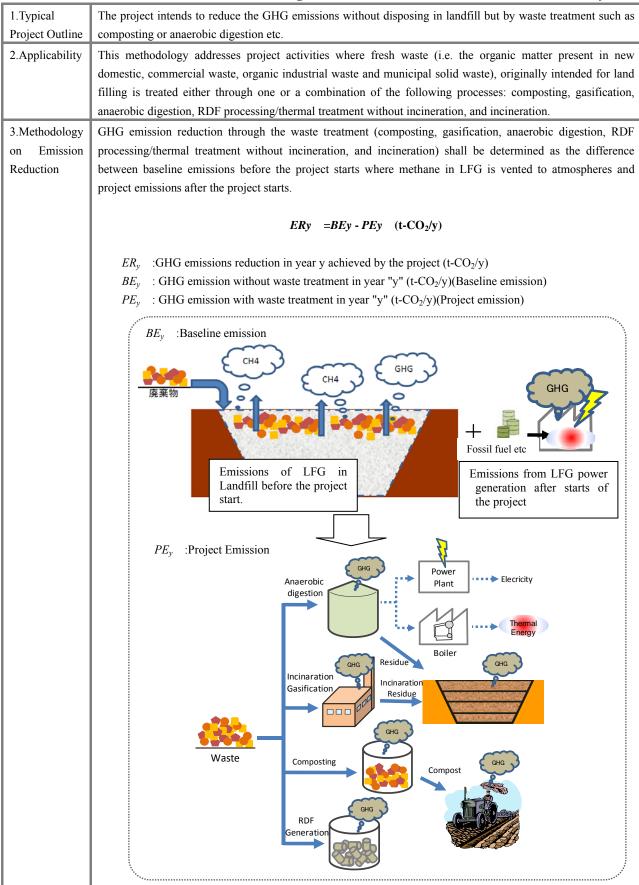
 $EG_{d,y}$ : Amount of electricity generated after the project starts(MWh/y)

- $CEF_d$  : CO₂ emissions factor for the displaced electricity source in the project scenario (t-CO₂/MWh)
- $Q_y$  : Amount of thermal energy generated after the project starts (TJ/y)
- $\varepsilon_b$  : Energy efficiency of the boiler/air heater used in the absence of the project activity to generate the thermal energy(-)  $\varepsilon_b$  shall be "1" as conservative value.
- *NCV_{fuel}*: Net calorific value of fuel, as identified through the baseline identification procedure, used in the boiler/air heater to generate the thermal energy in the absence of the project activity(GJ/kL, m³, t, etc.)
- $EF_{fuel}$  : Emission factor of the fuel, as identified through the baseline identification procedure, used in the boiler/air heater to generate the thermal energy in the absence of the project activity(t-CO₂/TJ)

		22. S	ewerage and Urban Sanitation / Landfill Disposal of Waste							
	ect emissio									
	The project emissions is comprised of the GHG emission from electricity and fuel consumption in the LFG recovery plants or power generating plants after the project starts as follows;									
LFG re	ecovery plai	nts or power gen	herating plants after the project starts as follows;							
	$PE_{y} = PE_{EC,y} + PE_{FC,j,y}$									
	Туре	Items	Description							
	Output	$PE_y$	GHG emission after the project start (t-CO ₂ /y)							
	Input	$PE_{EC,y}$	GHG emission from electricity consumption after the project started (t-CO ₂ /y)							
		$PE_{FC,j,y}$	GHG emission from fossil fuel consumption after the project started (t-CO ₂ /y)							
	<i>nination of I</i> emission f		sumption after the project starts shall be calculated as follows:							
			$PE_{EC,y} = EL_{PJ,y} \times EF_{PJ,y}$							
	$EL_{PJ,y}$		electricity consumption after the project starts (MWh)							
	$EF_{PJ,y}$	: CO ₂ baselin	e emission factor per electric supply (t-CO ₂ /MWh)							
	<i>ination of I</i> emission f		nption after the project starts shall be calculated as follows:							
			$PE_{FC,y} = \sum_{i} (FC_i \times NCV_i \times COEF_i)$							
	$FC_i$ $NCV_i$		tuel consumption after the project starts (kL, $m^3$ , t, etc./y) e value of fuel i(GJ/kL, $m^3$ , t etc.)							
			n factor per fuel (t-CO ₂ /TJ)							

# 4.Data Required for

Monitoring and


Estimating Emission

				Data Acquisition Metho		
	Data Trma	Description of Data	Baseline	Project E	missions	
	Data Type	Description of Data	Before the Project Starts	After Project Completion	Before the	After Project
					Project Starts	Completion
	Quantity of LFG recovered and destroyed <i>LFG</i> _{PJ,y}	Quantity of LFG recovered and destroyed after the project starts (m ³ )	Planned data	Monitoring data		
and destroy	Average methane fraction of the LFG <i>w</i> _{CH4,y}	Average methane fraction of the LFG after the project starts (%)	Planned data	Monitoring data		
Methane recovered and destroy	Methane Density $D_{CH4,y}$	Methane density at temperature or pressure during recovery phase, (t-CH ₄ /m3)	Planned data	Monitoring data		
Meth	Model correctionfactor to accountformodeluncertainties $\Phi$ Decompositionrateof	Model correction factor to account for model uncertainties (-) oxidation rate (-)	(default data of Metho	waste disposal sites that		
	degradable organic carbon oxidation <i>OX</i>		compost. Use 0 for other types of sol (IPCC Guidelines for N Inventories Volume		1 17 -	
Before : MD _{PJ,y}	Fraction of methane in LFG F	Fraction of methane in LFG from landfill (-)	( IPCC Guidelines for N	.5 Jational Greenhouse Gas Jume 5 Waste)	(Not necessary not involved in	
	Fraction of degradable organic carbon that can decompose, $DOC_f$	Fraction of degradable organic carbon (DOC) that can decompose (-)		.5 for National Greenhouse /olume 5 Waste)		
	Methane correction factor, $MCF_p$	tion factor,factor (-)IPCC default data (Refer to Appendix D-1)on ofFractionoflabledegradable organici) Data availability is validated in the following order:i) Data unique to the national or areasii) IPCC default data (Refer to Appendix D-2)waste typein the waste type j				
	Fraction of degradable organic carbon in the waste type j, <i>DOC_j</i>					
	Decay rate $k_j$ Decay rate of waste j (-)Data availability is validated in the following order: i) Data unique to the national or areas ii) IPCC default data (Refer to Appendix D-3)Average annual quantity of the waste, WAverage annual disposed in the SWDS (t/y)Data availability is validated in the following order: i) Data availability is validated in the following order: i) Data availability is validated in the following order: i) Data from interview with landfill managers ii) Planned data from the landfill capacity potential		nal or areas			
			i) Data from interview with			

				Data Acquisit	tion Methods	
	<b>D</b> . <b>T</b>		Baseline e	emissions	Project er	nissions
	Data Type	Description of Data	Before the Project	After Project	Before the Project	After Project
			Starts	Completion	Starts	Completion
Before : <i>MD_{PJy}</i> (Contin -uation)	Composition rate of waste j in(weight basis), <i>w_j</i>	Composition rate of waste j in solid waste (weight basis)(%)	Data availability is validated in the following order: i) Data from interview with landfill managers ii) Data unique to the national or areas iii) IPCC default data (Refer to Appendix D-4)	Monitoring data	(Not necessary be involved in the	
Emission displaced by electricity and thermal energy generation Before BE _{ENY}	Amount of electricity generated $EG_{d,y}$	The quantity of electricity generated after the project starts ( MWh )	Planned data	Monitoring data	(Not necessary be involved in the	
	Baseline $CO_2$ emission factor $CEF_d$ (= $EF_{PLy}$ )	Emission factor of the typical power plant (t-CO ₂ /MWh)	<ul> <li>Data availability should be validated in the following order in selecting the typical power plant and obtaining CO₂ emissions factor specific to the target.</li> <li>Interview to the electric power management entity concerned</li> <li>Published values in the target country</li> </ul>			
	Quantity of thermal energy produced $Q_y$	The quantity of thermal energy generated after the project start (TJ/y)	Planned data	Monitoring data	(Not necessary becan involved in the calcu	
	Net calorific value $NCV_{fuel}$ ( = $NCV_i$ ) CO ₂ emission factor	Net calorific value according to fuel seed (GJ/kL, m ³ t etc.) CO ₂ emission factor per fuel seed	Data availability is validated in the following order because it is preferably calculated using data and information unique to the project. i) Unique data obtained from interview with power management entity ii) National default iii) IPCC Guideline default data			
~	$EF_{fuel}$ ( $COEF_i$ )	( t-CO ₂ /TJ )	( Refer to Appendix	D-6.7)		
Electricity of (After : E	consumption	Electricity consumption after the project start ( MWh/y )	(Not necessary be involved in th		Planned data	Monitoring dat
Fuel consumption (After : $FC_i$ )		Fuel consumption after the project start	(Not necessary be	ecause data is not	Planned data	Monitoring dat

6.Other data	(1)Project boundary
	The project boundary is the site where the project activity is being done, where the gas is captured and
	destroyed/used.
	(2)Leakage
	Project activity could lead to the following leakages:
	Construction of power plants, replacement of facility: the indirect emissions potentially leading to
	leakage due to activities such as product manufacturing or materials transport in consideration of Life
	Cycle Assessment, LCA of disposal of waste at a solid waste disposal site. The contribution of this
	emission is relatively small and negligible compared with the GHG emission reduction after the project
	starts. This formula ignores the leakage because ACM0001 methodology also ignores it.
	(3) Reference methodology and differences
	1)ACM 0001(Ver.11) : Consolidated baseline and monitoring methodology for landfill gas project
	activity
	This formula partially simplifies the formula used in the methodology "ACM 0001".
	• In the reviewed methodology, in the case of using the electricity generated by captive power plant,
	the emissions factor of electricity is the default date "0.8 CO2/MWh" or determined by generating
	efficiency and CO ₂ emission factor of fuel and etc. In the case of using the grid electricity, the
	emission factor is calculated by the CDM methodology "Tool to calculate the Emission Factor for
	an electricity system" In this methodology, emissions factor of electricity is defined as the emission
	factor of one or two typical power plants existing in the gird to calculate simlply.
	<ul> <li>Leakage is ignored in the formula of the reference methodology as well as in this formula.</li> </ul>
	Loukage is ignored in the formatic of the forefore methodology as went as in this formatic.
	2)AMS-III.G.(Ver.6.0) : Landfill methane recovery
	[Differences]
	• Baseline emission in the reviewed methodology is computed by or the CO ₂ emission factor of grid
	(*1). In this methodology, emissions factor of electricity is defined as the emission factor of one or
	two typical power plants existing in the gird to calculate easily.
	• Emission from the transport of the existing or new facilities is considered as the leakage in the
	reference methodology. This formula however excludes this condition.
	*1: CO ₂ emission factor of grid is a combined margin (CM) computed by the combination of operating
	margin (OM) and build margin (BM) in the CDM methodology "Tool to calculate the Emission
	Factor for an electricity system".
	3)AM0025 (Ver.10) : Avoided emissions from organic waste through alternative waste treatment
	processes
	[Differences]
	• The formula in the reference methodology is applied for the waste which will be reclaimed;
	however, this formula is applied for the waste which has been reclaimed.
	• In the reviewed methodology, in the case of using the grid electricity generated by heat power plant,
	the $CO_2$ emission factor of the electricity is "0.8 $CO_2$ /MWh" as the default date. In this
	methodology, emissions factor of electricity is defined as the emission factor of one or two typical
	power plants existing in the gird to calculate easily.
	• The formula in the reference methodology is applied for composting, LFG capture, and flaring,
	gasification and solid fuel. This formula is applied for only LFG captured and power generation.
	• In the reviewed methodology, the leakage is composed of emissions from traffic increased,
	emissions from the incineration residues, emissions from the end-user of the sustainable biomass
	and emissions from residual waste from anaerobic digester, gasifier, and processing/combustion of
	RDF/stabilized biomass or compost in case it is disposed of in landfills. In this methodology, the

22. Sewerage and Orban Sanitation / Lanajiti Disposal of Waste
leakage is only emissions from residual waste from anaerobic digester, gasifier, and
processing/combustion of RDF/stabilized biomass or compost in case it is disposed of in landfills.
4) CCX : Landfill Methane Offset
[Differences]
• The formula in the reference methodology is applied to calculate the GHG emissions reduction only
after the project started. This formula is applied to calculate the GHG emission reduction for both
before and after the project starts.
• The formula of CCX for the quantity of captured methane after the project starts determines quantity of
captured methane by the quantity of captured methane and fraction methane in LFG in the reference
methodology. This formula determines the quantity of captured methane by quantity of captured
methane, fraction methane in LFG and methane density at recovery.
5) Climate Action Reserve : Landfill Project Protocol (ver2.1)-Collecting and Destroying Methane from
Landfill sites
[Differences]
• The formula in the reference methodology is applied to calculate the GHG emission reductions only
after the project starts. This formula is applied to calculate the GHG emission reduction for both
before and after the project start.



(Continuation) (1)Determination of baseline emission Baseline emission is comprised of GHG emissions which the methane produced in the landfill in the absence of the project activity and GHG emissions from generation of energy displaced by the project activity.  $BE_v = MB_v - MD_{reg,v} + BE_{EN,v}$ Type Items Description Output BE Baseline emission: GHG emission from CH₄ released into the atmosphere before the project starts which the waste treatment is installed  $(t-CO_2/y)$ GHG emission from methane produced in landfill before the Input  $MB_{v}$ project starts  $(t-CO_2/y)$ GHG emission reduction of methane destroyed by national MD_{reg,y} regulation before the project starts( $t-CO_2/y$ ) This shall be "0" where developing countries have a very few regulation. GHG emissions from generation of energy displaced by the BE_{EN,y} project activity  $(t-CO_2/y)$ **Determination of MD**_{BLy} Quantity of methane produced in landfill before the project starts shall be determined by monitoring the quantity of degradable organic carbon (DOC) that can decompose in landfill from the data below in consideration of the decay rate for organic waste.  $MB_{y} = \phi \times (1 - OX) \times \frac{16}{12} \times F \times DOC_{f} \times MCF_{p} \times GWP_{CH4} \times \sum_{x=1}^{y} \sum_{j=1}^{n} \left\{ W_{j,x} \times DOC_{j} \times e^{-k_{j}(y-x)} \times (1 - e^{-k_{j}}) \right\}$ : Model correction factor to account for model uncertainties(-) ø : Oxidation factor (reflecting the amount of methane from SWDS that is oxidised in OXthe soil or other material covering the waste) F : Fraction of methane in the biogas (volume fraction) (-)(=0.5)  $DOC_{f}$ : Fraction of degradable organic carbon (by weight) that can decompose  $MCF_p$ :CH₄ correction factor : Classification of waste(wood, papre, organic, fabric, yard waste) j : Amount of organic waste type j prevented from disposal in the disposal site (t/y)  $W_{i,v}$ : Fraction of degradable organic carbon (by weight) in the waste type j  $DOC_i$ : Decay rate for the waste type j  $k_i$  $GWP_{CH4}$ : Methane global warming potential (t-CO₂/t-CH₄) (=21)  $W_{i,v}$  shall be calculated as follow;  $W_{i,y} = W_y \times w_i$  $W_{v}$ :Weight of organic waste prevented from disposal in the disposal site (t/y) :Weight fraction of the waste type j in solid waste (weight basis)(%) Wj

(Continuation)	Determination of MD _{reg,y}
	CH ₄ quantity reduction by decomposition and combustion by national regulation before the project starts
	shall be determined by multiplying the $CH_4$ quantity from landfill ( $MB_y$ ) with the fraction of methane
	combusted.
	$MD_{reg,y} = MB_y \times AF$
	$MB_y$ : GHG emission from methane from landfill before the project starts (t-CO ₂ /y)
	AF : CH ₄ fraction with combustion by national regulation before the project starts (-) It shall
	be "0" where developing countries have a very few regulation.
	<u>Determination of $BE_{EN,y}$</u>
	$BE_{ENy}$ shall be determined by the quantity of electricity and thermal energy generation after the project starts
	and $CO_2$ baseline emission factors.
	$BE_{EN,y} = BE_{elec,y} + BE_{ther,y}$
	$BE_{EN,y} = BE_{elec,y} + BE_{ther,y}$ $= EG_{d,y} \times CEF_d + \frac{Q_y}{\varepsilon_b \cdot NCV_{fuel}} \times EF_{fuel}$
	$BE_{elec,y}$ : Baseline emissions from electricity generated from utilizing biogas in the project activity and exported to the grid or displacing onsite/offsite fossil fuel (t-CO ₂ /y)
	$BE_{ther,y}$ : Baseline emissions from thermal energy produced utilizing biogas in the project activity displacing thermal energy from onsite/offsite fossil fuel-fueled boiler(t-CO ₂ /y)
	$EG_{d,y}$ : Amount of electricity generated after the project starts(MWh/y)
	$CEF_d$ : CO ₂ emissions factor for the displaced electricity source in the project scenario (t-CO ₂ /MWh)
	$Q_y$ : Amount of thermal energy generated after the project starts (TJ/y)
	$\varepsilon_b$ : Energy efficiency of the boiler/air heater used in the absence of the project activity to generate the thermal energy(-) $\varepsilon_b$ shall be "1" as conservative value.
	<i>NCV_{fuel}</i> : Net calorific value of fuel, as identified through the baseline identification procedure, used in the boiler/air heater to generate the thermal energy in the absence of the project activity(GJ/kL, m ³ , t, etc.)
	$EF_{fuel}$ : Emission factor of the fuel, as identified through the baseline identification procedure, used in the boiler/air heater to generate the thermal energy in the absence of the project activity(t-CO ₂ /TJ)

(Continuation)		n from electricity and	d fuel consumption at water recycling facilities and other emissions, after				
	the project starts, s	hall be determined	as follows:				
		$PE_y = PE_{elec,y} + PE_{elec,y}$	$E_{fuel,on-site,y} + PE_{e,y} + PE_{a,y} + PE_{g,y} + PE_{r,y} + PE_{i,y} + PE_{w,y}$				
	Туре	Items	Description				
	Output	$PE_{y}$	GHG emission after the project starts (t-CO ₂ /y)				
	Input	PE _{elec,y}	GHG emission from electricity consumption after the project starts(t-CO ₂ /y)				
		$PE_{FC,y}$	GHG emission from fossil fuel consumption after the project starts (t-CO ₂ /y)				
		$PE_{c,y}$ *	GHG emission during the composting process after the project starts $(t-CO_2/y)$				
			If $CH_4$ produced in the composting process is recovered and destroyed by energy generation or				
			flare after the project starts, this term shall be neglected.				
		$PE_{a,y}^{*}$	GHG emission from the anaerobic digestion process after the project starts (t-CO ₂ /y)				
			If $CH_4$ produced in the anaerobic digestion process is recovered and destroyed by energy				
			generation or flare after the project starts, this term shall be neglected.				
		$PE_{g,y}^*$	GHG emission from the gasification process after				
			the project starts (t-CO ₂ /y)				
		$PE_{r,y}^*$	GHG emission from the combustion of RDF after the president starts ( $4, CO, (x)$ )				
		$PE_{i,v}^*$	the project starts (t-CO ₂ /y)         GHG emissions from waste incineration after the				
		$I L_{i,y}$	project starts (t- $CO_2/y$ )				
		$PE_{w,y}$	GHG emissions from wastewater treatment after				
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	the project starts $(t-CO_2/y)$				
	* : Only	the parameters relation	ated to the project is calculated. If not, parameter is "0".				
	Determination of F						
	$\frac{Determination of E_{EC,v}}{GHG emission from electricity consumption after the project starts is calculated using the following formula.}$						
	$PE_{EC,y} = EL_{PJ,y} \times EF_{PJ,y}$						
	$EL_{PJ,y}$		etricity consumption in facilities on site after the project start (MWh)				
	$EF_{PJ,y}$	: Carbon emissio	ns factor for electricity generation (t-CO ₂ /MWh)				
	Determination of	<u>PE_{FC,y}</u>					
	GHG emission fr	-	on after the project starts is calculated using the following formula. $PE_{FC,y} = \sum_{i} (FC_i \times NCV_i \times COEF_i)$				
	$FC_i$	: Quantity of fuel	<i>i</i> consumed on site (kL, $m^3$ , t etc./y)				
	NCVi	: Net calorific val	lue of fuel $i$ (GJ/kL, m ³ , t, etc.)				
	COEF _i	: CO ₂ emissions f	factor of fuel $i$ (t-CO ₂ /TJ)				

Determination of PE	Z _{c.v}
GHG emission from	n composting after the project starts is calculated using the following formula.
	$PE_{c,y} = Q_{c,y} \times (EF_{c,N2O} \times GWP_{N2O} + EF_{c,CH4} \times GWP_{CH4})$
$Q_{c,y}$	: Quantity of organic waste composted(t/y)
$EF_{c,N2O}$	: Emission factor for $N_2O$ emissions from the composting process (t- $N_2O$ /t-waste)
$GWP_{N2O}$	: Global Warming Potential of N ₂ O(t-CO ₂ /t-N ₂ O)
$EF_{c,CH4}$	: Emission factor for $CH_4$ emissions from the composting process(t- $CH_4$ /t-waste)
$GWP_{CH4}$	: Global Warming Potential of CH ₄ (t-CO ₂ /t-CH ₄ )
Determination of PE	$Z_{a,y}$
At the project pla	nning, GHG emission from anaerobic digestion process after the project start shall be
determined with the	following formula.
	$PE_{a,y} = Q_{a,y} \times EF_{a,CH4} \times GWP_{CH4}$
$Q_{a,y}$	: Amount of organic waste fed into anaerobic digestion(t/y)
$EF_{a,y,CH4}$	: Emission factor for CH ₄ emissions from the anaerobic digestion(t-CH ₄ /t-waste)
GWP _{CH4}	: Global Warming Potential of CH ₄ (t-CO ₂ /t-CH ₄ )
At the monitoring	process, GHG emission shall be determined with the following formula.
	$PE_{a,y} = SG_{a,y} \times MC_{CH4,a,y} \times GWP_{CH4}$
$SG_{a,y}$	: Total volume of stack gas from anaerobic digestion(m ³ /y)
$MC_{CH4,a,y}$	: Monitored content of $CH_4$ in the stack gas from anaerobic digestion(t- $CH_4/m^3$ )
$GWP_{CH4}$	: Global Warming Potential of CH ₄ (t-CO ₂ /t-CH ₄ )
	$E_{g,y}$ (PE _{r,y} , PE _{j,y} are caluculated in the same way.)
	$E_{g,y}(PE_{r,y}, PE_{j,y})$ are caluculated in the same way.) m gasification after the project starts shall be determined with the following formula.
	$E_{g,y}$ (PE _{r,y} , PE _{j,y} are caluculated in the same way.) m gasification after the project starts shall be determined with the following formula. $PE_{g,y} = PE_{g,f,y} + PE_{g,s,y}$
	$E_{g,y}(PE_{r,y}, PE_{j,y})$ are caluculated in the same way.) m gasification after the project starts shall be determined with the following formula.
GHG emission fro	$E_{g,y}$ (PE _{r,y} , PE _{j,y} are caluculated in the same way.) m gasification after the project starts shall be determined with the following formula. $PE_{g,y} = PE_{g,f,y} + PE_{g,s,y}$
GHG emission fro $PE_{g,f,y}$ $PE_{g,s,y}$	$E_{g,y}$ (PE _{r,y} , PE _{j,y} are caluculated in the same way.) m gasification after the project starts shall be determined with the following formula. $PE_{g,y} = PE_{g,f,y} + PE_{g,s,y}$ : Fossil-based waste CO ₂ emissions from gasification(t-CO ₂ /y) : N ₂ O and CH ₄ emissions from the final stacks from gasification,(t-CO ₂ /y) ermined with the following formula.
GHG emission fro $PE_{g,f,y}$ $PE_{g,s,y}$	$E_{g,y}$ (PE _{r,y} , PE _{j,y} are caluculated in the same way.) m gasification after the project starts shall be determined with the following formula. $PE_{g,y} = PE_{g,f,y} + PE_{g,s,y}$ : Fossil-based waste CO ₂ emissions from gasification(t-CO ₂ /y) : N ₂ O and CH ₄ emissions from the final stacks from gasification,(t-CO ₂ /y)
GHG emission fro $PE_{g,f,y}$ $PE_{g,s,y}$	$E_{g,y}$ (PE _{r,y} , PE _{j,y} are caluculated in the same way.) m gasification after the project starts shall be determined with the following formula. $PE_{g,y} = PE_{g,f,y} + PE_{g,s,y}$ : Fossil-based waste CO ₂ emissions from gasification(t-CO ₂ /y) : N ₂ O and CH ₄ emissions from the final stacks from gasification,(t-CO ₂ /y) ermined with the following formula.
GHG emission fro $PE_{g,f,y}$ $PE_{g,s,y}$ $PE_{g,f,y}$ shall be determined	$E_{g,y}$ (PE _{r,y} , PE _{j,y} are caluculated in the same way.) m gasification after the project starts shall be determined with the following formula. $PE_{g,y} = PE_{g,f,y} + PE_{g,s,y}$ : Fossil-based waste CO ₂ emissions from gasification(t-CO ₂ /y) : N ₂ O and CH ₄ emissions from the final stacks from gasification,(t-CO ₂ /y) ermined with the following formula. $PE_{g,y} = \Sigma A_i \times CCW_i \times FCF_i \times EF_i \times 44/12$
GHG emission fro $PE_{g,f,y}$ $PE_{g,s,y}$ $PE_{g,f,y}$ shall be detored	$E_{g,y}$ (PE _{r,y} , PE _{j,y} are caluculated in the same way.) m gasification after the project starts shall be determined with the following formula. $PE_{g,y} = PE_{g,f,y} + PE_{g,s,y}$ : Fossil-based waste CO ₂ emissions from gasification(t-CO ₂ /y) : N ₂ O and CH ₄ emissions from the final stacks from gasification,(t-CO ₂ /y) ermined with the following formula. $PE_{g,y} = \Sigma A_i \times CCW_i \times FCF_i \times EF_i \times 44/12$ : Amount of waste type i fed into the gasifier (t/y)
GHG emission fro $PE_{g,f,y}$ $PE_{g,s,y}$ $PE_{g,f,y}$ shall be deter $A_i$ $CCW_i$	$E_{g,y}$ (PE _{r,y} , PE _{j,y} are caluculated in the same way.) m gasification after the project starts shall be determined with the following formula. $PE_{g,y} = PE_{g,fy} + PE_{g,s,y}$ : Fossil-based waste CO ₂ emissions from gasification(t-CO ₂ /y) : N ₂ O and CH ₄ emissions from the final stacks from gasification,(t-CO ₂ /y) ermined with the following formula. $PE_{g,y} = \Sigma A_i \times CCW_i \times FCF_i \times EF_i \times 44/12$ : Amount of waste type i fed into the gasifier (t/y) : Fraction of carbon content in waste type i(-)

	1	25. Seweruge und er sun Sandadon / Intermediate Treatment of Traste
(Continuation)	$PE_{g,s,y}$ shall be determined	nined using the following formula.
	1) At the time of pro	piect planning
	, <b>r</b>	$PE_{g,s,y} = Q_{BIO,y} \times (EF_{N2O} \times GWP_{N2O} + EF_{CH4} \times GWP_{CH4}) \times 10^{-3}$
	0	
	$Q_{BIO,y}$	: Amount of waste gasified (t/y)
	$EF_{N2O}$	: Emission factor for N ₂ O emissions from combustion(kg-N ₂ O/t)
	$EF_{CH4}$	: Emission factor for CH ₄ emissions from combustion(kg-CH ₄ /t)
	$GWP_{N2O}$	: Global Warming Potential of N ₂ O(t-CO ₂ /t-N ₂ O)
		: Global Warming Potential of CH ₄ (t-CO ₂ /t-CH ₄ )
	0 (114	
	2) At the time of mo	nitoring
		$PE_{g,s,v} = SG_{g,v} \times MC_{N2O,g,v} \times GWP_{N2O} + SG_{g,v} \times MC_{CH4,g,v} \times GWP_{CH4}$
		o, o, o, o,
	$SG_{g,s,y}$	: Total volume of stack gas from(m ³ /y)
	$MC_{N2O,g,y}$	: Monitored content of nitrous oxide in the stack gas from gasification(t-N ₂ O/m ³ )
	$MC_{CH4,g,y}$	: Monitored content of methane in the stack gas from from gasification(t- $CH_4/m^3$ )
	$GWP_{N2O}$	: Global Warming Potential of nitrous oxide(t-CO ₂ /t-N ₂ O)
	GWP _{CH4}	: Global Warming Potential of methane(t-CO ₂ /t-CH ₄ )
	CII4	
	Determination of PE	
	GHG emission from	$CH_4$ in wastewaterafter the project start shall be determined with the following formula.
		$PE_{w,y} = Q_{COD,y} \times P_{COD,y} \times B_0 \times MCF_d \times GWP_{CH4}$
	$Q_{COD,y}$	: Amount of wastewaster treated anaerobically or released untreated from the project
		activity(m ³ /y)
	$P_{COD,y}$	: Chemical Oxygen Demand (COD) of wastewaster(t-COD/m ³ )
	$B_0$	: Maximum methane producing capacity(t-CH ₄ /t-COD)
	$MCF_d$	: Methane correction factor(-)
	$GWP_{CH4}$	: Global Warming Potential of methane(t-CO ₂ /t-CH ₄ )

## 4.Data

Required for

itequiteu i

Monitoring

and Estimating Emission

23. Sewerage and Urban Sanitation / Intermediate Treatment of	f Waste

			ד 'ו ת	Data Acquisition Metho		·
T	Data Type	Description of Data	Baseline E			Emissions
	Suu Type	Description of Data	Before the Project	After Project Completion	Before the	After Proje
Methane produced in landfill before the project			Starts		Project Starts	Completio
	Model correction factor $\Phi$ oxidation rate OX	Model correction factor to account for model uncertainties (-) oxidation rate (-)	0.9 (default data of Methodological tool "Tool to determine methane emissions avoided from dumping waste at a solid waste disposal site"(ver.05)) Use 0.1 for managed solid waste disposal sites that are covered with oxidizing material such as soil or compost.			
ced in landf	Fraction of	Fraction of methane	Use 0 for other types of so (IPCC Guidelines for Na Inventories Volume 5 Wast	ational Greenhouse Gas		
ill before th	Fraction of methane in LFG F	in LFG from landfill (-)	0.5 ( IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste)			
the project	$r$ $r$ FractionofGegradabledegradableorganiccarboncarbon(DOC)thatcandecompose(-) $DOC_f$ MethaneMethanecorrectionfactor (-)factor $MCF_p$		0.5 ( IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste) IPCC default data (Refer to Appendix D-1)		(Not necessary because data not involved in the calculation	
efore By						
	Fraction of degradable organic carbon DOC _j	Fraction of degradable organic carbon in the waste type j (-)	Data availability is validated in the following order: i) Data unique to the national or areas ii) IPCC default data (Refer to Appendix D-2) Data availability is validated in the following order: i) Data unique to the national or areas ii) IPCC default data (Refer to Appendix D-3)			
	Decay rate $k_j$	Decay rate for the waste type j (-)				
	Total amount of organic waste $(W_y)$	Total amount of organic waste prevented from disposal in the fandfill saite (t/y)	Data availability is validat i) Data unique to the nation ii) IPCC default data (Ref	nal or areas fer to Appendix D-4)		
	Weight fraction of waste type j $(w_j)$	Weight fraction of waste type j (%)	Data availability is validated in the following order: i) Data unique to the national or areas ii) IPCC default data (Refer to Appendix D-5)	Monitoring data		

				-	sition Methods		
Data Type		Data Trans		Baseline Emissions		Project Emissions	
		Description of Data	Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion	
	Amount of electricity generated EG _{d,y}	The quantity of electricity generated after the project start (MWh)	Planned data	Monitoring data	(Not necessary b	because data is not the calculation)	
Emission displaced by electricity and thermal energy generation	Baseline $CO_2$ emission factor $CEF_d$ $(=EF_{PJ,y})$	CO ₂ Emission factor of the typical		lant and obtaining		ctor specific to t	
ed by electri rgy generati	Quantity of thermal energy generated $Q_y$	The quantity of thermal energy generated after the project starts (TJ/y)	Planned data	Monitoring data	(Not necessary bed involved in the cal		
on city	Net calorific value $NCV_{fuel}$ $(=NCV_i)$ CO ₂ emission	Net calorific value according to fuel seed (GJ/kL, m ³ ·t etc.) CO2 emission factor per fuel	preferably calcul	Data availability is validated in preferably calculated using data and i) Unique data obtained from intervie		to the project.	
: BE _{EN,y}	factor $EF_{fuel}$ (COEF _i )	seed (t-CO2/TJ)	iii) IPCC Guideli	ne default data (R	efer to Appendix D-	7,8)	
	icity consumption After : $EL_{PJ,y}$ )	Electricity consumption after the project start (MWh/y)	(Not necessary because data is not involved in the calculation)		Planned data	Monitoring da	
Fuel consumption (After : FC _i )		Fuel consumption after the project start (kL, m ³ , t etc./y)	(Not necessary not involved in	because data is the calculation)	Planned data	Monitoring da	
Emii compo	Quantityoforganicwastecomposted( $Q_{c,v}$ )	Quantity of organic waste composted(t)	(Not necessary because data is not involved in the calculation)		Planned data	Monitoring da	
Emission from composting process	$N_2O$ emission factor( $EF_{c,N2O}$ )	N ₂ O emission factor for composting process(tN2O/t waste)			0.043 (default data metholodogy"AM0025")		
after: PE _{c,y}	$CH_4$ emission factor( $EF_{c,CH4}$ )	CH ₄ emission factor for composting process(t-CH ₄ /t-waste)			(Refer to Appendix D-9)		
	Quantityoforganicwaste $(Q_{a,y})$	Quantity of organic waste fed into anaerobic digestion (t/y)	n       (Not necessary because data is not involved in the calculation)       (Refer to Appendix D-9)       n         n       (Not necessary because data is not involved in the calculation)       (Not necessary because data is not involved in the calculation)         ne       (Not necessary because data is not involved in the calculation)       N		Planned data	Monitoring dat	
Emission from anearobic digestion	CH ₄ emission factor $(EF_{a,CH4})$	CH₄ emission factor for anaerobic digestion (t-CH₄/t-waste)			Appendix D-9)	(Not necessar because data i not involved i the calculation	
from igestion	Total volume of stack gas $(SG_{a,y})$	Total volume of stack gas from anaerobic digestion (m ³ /y)			because data is not involved in	Monitoring da	
after :	Monitored content of $CH_4$ $(MC_{CH4,a,y})$	Monitored content of $CH_4$ in the stack gas from anaerobic digestion $(t-CH_4/m^3)$			Monitoring da		

			Data Acquisition Methods Baseline Emissions Project Emissions			
Data Type		Description of Data	Before the	After Project	Before the Project	After Project
	Amount of waste type i $(A_i)$	Amount of waste type i fed into the gasifier (t/y)			Starts Planned data	Completion Monitoring data
Emissic	Fraction of carbon content (CCW _i )	Fraction of carbon content in waste type i (-)			IPCC Guideline default data (Refer to Appendix D-2)	Monitoring data
n from Ga	Fraction of fossil carbon ( <i>FCF_i</i> )	Fraction of fossil carbon in total carbon of waste type i (-)				Monitoring data
Emission from Gasification process	Combustion efficiency (EF)	Combustion efficiency for waste (-)			l (default data of IPCC Guidelines Vol.5 Waste)	Monitoring data
ocess	Amount of waste $(Q_{BIO,y})$	Amount of waste gasified (t/y)				(Not necessary because data is not involved in the calculation)
After: PEg/r/i,y	$N_2O$ emission factor ( $EF_{N2O}$ )	N ₂ O emission factor for waste combustion (kg-N ₂ O/t)	(Not necessary because data is not involved in the calculation)		IPCC Guideline default data (Refer to Appendix D-11)	(Not necessary because data is no involved in the calculation)
	$\begin{array}{c} CH_4  \text{emission} \\ \text{factor}  (EF_{CH4}) \end{array}$	CH ₄ emission factor for waste combustion (kg-CH ₄ /t)			IPCC Guideline default data (Refer to Appendix D-12)	(Not necessary because data is no involved in the calculation)
	Total volume of stack gas $(SG_{g/r/i,y})$	Total volume of stack gas from gasification (m ³ /y)			(Not necessary because data is not involved in the calculation)	Monitoring data
	Monitored content of $N_2O$ $(MC_{N2O})$	$\begin{array}{c} \text{Monitored content of} \\ N_2O \text{ in the stack gas} \\ \text{from } & \text{gasification} \\ & (t\text{-}N_2O/m_3) \end{array}$			(Not necessary because data is not involved in the calculation)	Monitoring data
	Monitored content of $CH_4$ $(MC_{CH4})$	Monitored content of $CH_4$ in the stack gas from gasification $(t-CH_4/m_3)$			(Not necessary because data is not involved in the calculation)	Monitoring data
Emis t	Amountofwastewater $(Q_{COD,y})$	Amount of wastewater after the project starts $(m^3/y)$			Planned data	Monitoring data
ssion from wastev treatment process	COD (t-COD/m ³ )	Chemical Oxygen Demand (COD) of wastewater (t-COD/m ³ )			Planned data	Monitoring data
Emission from wastewater treatment process	Maximum $CH_4$ producing capacity $(B_0)$	Maximum CH ₄ producing capacity (t-CH ₄ /t-COD)		(Not necessary because data is not involved in the calculation)		265 ine default data)
हि after : PE _{wy}	$CH_4$ correction factor ( $MCF_d$ )	$CH_4$ correction factor for the wastewater treatment process (-)			Data availability is validated in following order because it is prefera calculated using data and informat unique to the project. i) National default ii) IPCC Guideline default data (Refer Appendix D-10)	

5.Others	(1)Project boundary
	The project boundary is the site where the project activity is being done and where the waste is treated or
	disposed.
	(2)Leakage
	The project activity could lead to the following leakages:
	Construction of treatment plants: the indirect emissions potentially lead to leakage due to activities such as
	product manufacturing or materials transport. This respective emission is temporary and negligible considering
	the scale of the project. Therefore, it can be ignored.
	(3)Reference methodology and differences
	1) AM0025(Ver.12): Avoided emissions from organic waste through alternative waste treatment processes
	•This formula partially simplifies that used in the methodology "AM0025".
	[Differences]
	• In the reviewed methodology, the $CO_2$ emission factor of the electricity is the default data "0.8 $CO_2$ /MWh".
	In this methodology, emissions factor of electricity is defined as the emission factor of one or two typical
	power plants existing in the gird to calculate easily.
	• Leakage is ignored in the formula of the reference methodolgy, same with this formula.
	2) AMS-III.F(Ver.10.0): Avoidance of methane emissions through composting.
	[Differences]
	• The formula in the reference methodology is applied only for composting as waste treatment, after the project
	starts. This formula is applied for composting, gasfication, anerobic digestion, and RDF processing/thermal
	treatment without incineration, and incineration.
	• Transportation of compost generated after the project starts is considered in the calculation of the project
	emission in the referenced method. This formula however excludes these conditions.
	• GHG emission from transferring the facilities from other places or vice versa is considered as the leakage in
	the referenced methodology. On the other hand, this formula excludes these conditions.

1.Typical Project The project intends to reduce GHG emission by improving the living condition and reducing CH₄ from sewer Outline water from the houses or factories, through wastewater treatment. 2.Applicability Ο The project should be applied where the sewer water or sludge treatment system before the project starts, run under aerobic condition or anerobic condition or treatment system does not run.  $\bigcirc$ The project should be applied where the sewer water or sludge treatment system after the project starts should run under aerobic condition or anerobic condition. 3.Methodology on GHG emission reduction shall be determined as the difference between baseline emissions before the project **Emission Reduction** starts without wastewater treatment, and the project emissions with wastewater treatment after the project starts. ERy = BEy - PEy (t-CO₂/y)  $ER_y$  :GHG emissions reduction in year y achieved by the project (t-CO₂/y)  $BE_y$  : GHG emission without wastewater treatment in year y (t-CO₂/y)(Baseline emission)  $PE_y$  : GHG emission with wastewater treatment in year y (t-CO₂/y)(Project emission) BE : Baseline emission GHG Discharge into Domestic sludge sea/river/lake GHG ГТ Wastewater Sludge Industry sludge GHG GHG Wastewater Treatment Plant Disposal in landfill : Project Emission  $PE_v$ GHG Energy Generation Domestic sludge GHG  $CH_4$ recovery Wastewate GHG Sludge Wastewater Treatment Plant Industry sludge GHG GHG Disposal in landfill Composting

Continuation)	(1)Determination of	of baseline emi	24. Sewerage and Orban Santation / Wastewater in			
,	Baseline emission shall be equivalent to the summation of the following items:					
	• GHG emissions from electricity or fuel consumption on site					
	GHG emission	ns of the waste	ewater treatment system			
	• GHG emissio	ns from degrad	dable organic carbon in treated wastewater discharged into sea/river/	lake		
	GHG emissio	ns from anaero	bic decay of the final sludge in wastewater treatment			
	BI	$E_{y} = BE_{EC,y}$	$_{y} + BE_{FC,y} + BE_{ww,t,y} + BE_{s,t,y} + BE_{ww,d,y} + BE_{s,f,y} + BE_{EN}$			
	Туре	Items	Description			
	Output	$BE_y$	Baseline emission:			
			GHG emission from CH ₄ released into the atmosphere before			
			the project starts where the sludge treatment is installed or			
			revised (t-CO ₂ /y)			
	Input	$BE_{EC,y}$	GHG emissions from electricity consumption on site before			
			the project starts $(t-CO_2/y)$			
		$BE_{FC,y}$	GHG emissions from fuel consumption on site before the			
			project starts(t-CO ₂ /y)			
		$BE_{ww,t,y}$	GHG emissions of the wastewater treatment system before the			
			project starts (t-CO ₂ /y)			
		$BE_{ww,d,y}$	GHG emissions from degradable organic carbon in treated			
			wastewater discharged into sea/river/lake before the project			
		DE	starts(t-CO ₂ /y)			
		$BE_{s,t,y}$	GHG emissions of the sludge treatment system before the project starts(t- $CO_2/y$ )			
		$BE_{s,f,y}$	GHG emissions from anaerobic decay of the final sludge in			
			wastewater treatment before the project starts (t-CO ₂ /y)			
			If the sludge is controlled, combusted, and disposed in a			
			landfill with biogas recovery, or used for soil application			
			before the project, this term shall be neglected.			
		$BE_{EN,y}$	GHG emissions from generation of energy displaced by the			
			project activity $(t-CO_2/y)$			
	Determination of E GHG emissions	<u>BE_{EC,y}</u>	GHG emissions from generation of energy displaced by th			

GHG emissions from electricity consumption on site shall be determined by multiplying fuel comsumption with  $CO_2$  emission factor.

$$BE_{EC,y} = EL_{BL,y} \times EF_{BL,y}$$

 $EL_{BLy}$  : Quantity of electricity consumption on site before the project start (MWh/y)  $EF_{BLy}$  : Carbon emissions factor for electricity generation (t-CO₂/MWh)

Determination of BE_{FC,y}

GHG emissions from fuel consumption on site shall be determined by multiplying fuel consumption with net calorific value of fuel and  $CO_2$  emission factor.

$$BE_{FC,y} = \sum_{i} (FC_{BL,i} \times NCV_i \times COEF_i)$$

 $FC_{BL,i}$  : Quantity of fuel *i* consumed on site before the project(kL, m³, t etc./y)

 $NCV_i$  : Net calorific value of fuel *i*(GJ/kL,m³,t etc.,)

 $COEF_i$  : CO₂ emissions factor of fuel *i*(t-CO₂/TJ)

3.Methodology on Emission Reduction (Continuation) <u>Determination of  $BE_{ww.ty}$ </u> GHG emissions of the wastewater treatment system before the project starts shall be determined by multiplying the volume of wastewater treated in the system, by the COD removed through the treatment process, CH₄ producing capacity, and global warming potential.

	$BE_{ww,y} = Q_{ww,t,BL,y} \times COD_{r,BL,y} \times MCF_{ww,BL} \times B_{0,ww} \times UF_{BL} \times GWP_{CH4}$
$Q_{ww,t,BL,y}$	: Volume of wastewater treated in wastewater treatment system before the project starts $(m^3/y)$
$COD_{r,BL,y}$	: Chemical oxygen demand removed by the wastewater treatment system before the project starts (t-COD/m ³ )
$MCF_{ww,BL}$	: CH4 correction factor for the wastewater treatment system before the project starts
$B_{o,ww}$	: CH4 producing capacity of the wastewater (kg-CH4/kg-COD)
$UF_{BL}$	: Model correction factor to account for model uncertainties (-)(=0.94)
$GWP_{CH4}$	: Global Warming Potential of CH ₄ (t-CO ₂ /t-CH ₄ )

#### **Determination of BE**_{s.t.y}

GHG emissions of the sludge treatment system before the project stasts shall be determined by the volume of sludge,  $CH_4$  correction factor for the sludge treatment system, degradable organic content of the untreated sludge, fraction of DOC dissimilated to biogas, model correction factor, fraction of  $CH_4$  in biogas, etc.

	$BE_{s,t,y} = S_{BL,y} \times MCF_{s,t,BL} \times DOC_s \times UF_{BL} \times DOC_F \times 16/12 \times GWP_{CH4}$
$S_{BL,y}$	: Amount of dry matter in the sludge that would have been treated by the sludge
	treatment system (t/y)
$MCF_{s,t,BL}$	: $CH_4$ correction factor for the sludge treatment system before the project starts (-)
$DOC_s$	: Degradable organic content of the untreated sludge generated (dry basis)(-)
$UF_{BL}$	: Model correction factor to account for model uncertainties (-)
$DOC_F$	: Fraction of DOC dissimilated to biogas (-)
F	: Fraction of CH ₄ in biogas (-)
$GWP_{CH4}$	: Global Warming Potential of CH ₄ (t-CO ₂ /t-CH ₄ )

If the baseline wastewater treatment system is different from the treatment system in the project scenario, the sludge generation rate (amount of sludge generated per unit of COD removed) in the baseline may differ significantly from that of the project scenario. Therefore, for these cases, the monitored values of the amount of sludge generated during the credited period will be used to estimate the amount of sludge generated in the baseline, as follows:

$$S_{BL,y} = S_{PJ,y} \times \frac{SGR_{BL}}{SGR_{PI}}$$

 $S_{PJ,y}$  : Amount of dry matter in the sludge treated by the sludge treatment system after the project started(t)

- *SGR*_{BL} : Sludge generation ratio of the wastewater treatment plant before the project starts (t-dry matter in sludge/t-COD removed)
- *SGR*_{*PJ*} : Sludge generation ratio of the wastewater treatment plant after the project starts (t-dry matter in sludge/t-COD removed)

(Continuation)	<u>Determination of BE_{ww,d,v}</u>					
	GHG emissions from degradable organic carbon in treated wastewater discharged into sea/river/lake shall be					
	determined by the volume of wastewater discharged, COD of the wastewater, CH ₄ correction factor based on					
	discharge pathway, etc.					
	$BE_{ww,d,y} = Q_{ww,d,BL,y} \times GWP_{CH4} \times B_{0,ww} \times UF_{BL} \times COD_{ww,d,BL,y} \times MCF_{ww,BL,y}$					
	$Q_{WW,d,BL}$ : Volume of treated or untreated wastewater discharged (m ³ )					
	$B_{o,ww}$ : CH ₄ producing capacity of the wastewater (kg-CH ₄ /kg-COD)					
	$UF_{BL}$ : Model correction factor to account for model uncertainties (-) (=0.94)					
	<i>COD</i> _{ww,d,BL,v} : Chemical oxygen demand of the treated and untreated wastewater discharged into sea,					
	river or lake before the project starts (t/m ³ )					
	$MCF_{ww,BL,d}$ : CH ₄ correction factor based on discharge pathway before the project starts (-)					
$GWP_{CH4}$ : Global Warming Potential of CH ₄ (t-CO ₂ /t-CH ₄ )						
	$GWF_{CH4}$ . Grouter warning Folential of $CH_4$ (I- $CO_2/I$ - $CH_4$ )					
	Determination of BE _{s.f.y}					
	GHG emissions from anaerobic decay of the final sludge shall be determined considering the volume of the					
	final sludge, degradable organic content of the final sludge, $CH_4$ correction factor of the disposal site,					
	degradable organic content of the final sludge, fraction of DOC dissimilated to biogas model correction factor,					
	fraction of $CH_4$ in biogas, etc.					
	$BE_{s,f,y} = S_{f,BL,y} \times DOC_s \times UF_{BL} \times MCF_{s,BL,f} \times DOC_F \times F \times 16/12 \times GWP_{CH4}$					
	$S_{f,BL,y}$ : Amount of dry matter in the final sludge generated by the baseline wastewater					
	treatment system (t/y)					
	$DOC_s$ : Degradable organic content of the final sludge generated (dry basis)(-)					
	$MCF_{s,BLf}$ : CH ₄ correction factor of the disposal site that receives the sludge before the poject					
	starts					
	$UF_{BL}$ : Model correction factor to account for model uncertainties (-)					
	$DOC_F$ : Fraction of DOC dissimilated to biogas (-)					
	F : Fraction of CH ₄ in biogas (-)					
	$GWP_{CH4}$ : Global Warming Potential of CH ₄ (t-CO ₂ /t-CH ₄ )					

	24. Sewerage and Urban Sanitation /Wastewater treatme
Determination of B	$E E_{EN,y}$
$BE_{EN,y}$ shall be d	etermined by the quantity of electricity and thermal energy generation after the proj
starts and CO ₂ base	line emission factors.
	$BE_{EN,y} = BE_{elec,y} + BE_{ther,y}$ $= EG_{d,y} \times CEF_d + \frac{Q_y}{\varepsilon_b \cdot NCV_{fuel}} \times EF_{fuel,b}$
	$O_{v}$
	$= EG_{d,y} \times CEF_d + \frac{c_y}{\varepsilon_b \cdot NCV_{fucl}} \times EF_{fucl,b}$
$BE_{elec,y}$	: Baseline emissions from electricity generated from utilizing biogas in the project
0,000,7	activity and exported to the grid or displacing onsite/offsite fossil fuel (t-CO ₂ /y)
$BE_{ther,y}$	: Baseline emissions from thermal energy produced utilizing the biogas in the project
	activity displacing thermal energy from onsite/offsite fossil fuel-fueled boiler(t-CO ₂ /
$EG_{d,v}$	: Amount of electricity generated after the project starts(MWh/y)
$CEF_d$	: CO ₂ emissions factor for the displaced electricity source in the project scenario
cilli u	(t-CO ₂ /MWh)
$Q_y$	: Amount of thermal energy generated after the project starts (TJ/y)
$\mathcal{L}_{y}$ $\mathcal{E}_{b}$	: Energy efficiency of the boiler/air heater used in the absence of the project activity to
06	generate the thermal energy(-) $\varepsilon b$ shall be "1" as conservative value.
NCV _{fuel}	: Net calorific value of fuel, as identified through the baseline identification procedure
IVC V fuel	used in the boiler/air heater to generate the thermal energy in the absence of the proje
	activity(GJ/kL, m ³ , t, etc.)
$EF_{fuel,b}$	: Emission factor of the fuel, as identified through the baseline identification procedur
ET fuel,b	used in the boiler/air heater to generate the thermal energy in the absence of the projectual
	activity(t-CO ₂ /TJ)
	$activity(t-CO_2/13)$

			24. Sewerage and Orban Sanitation /wastewater treatment					
(Continuation)	(2)Project emissio	n						
	Project emission shall be equivalent to the summation of the following items:							
	• GHG emission from electric or fuel consumption after the project starts							
			astewater treatment system after the project starts					
			sludge treatment systems after the project starts					
			gradable organic carbon in treated wastewater discharged into sea/river/lake					
			aerobic decay of the final sludge in wastewater treatment after the project starts					
	· Ono emissio		deroole decay of the final studge in wastewater treatment after the project starts					
		<b>PEy</b> =	$PE_{EC,y} + PE_{FC,y} + PE_{ww,t,y} + PE_{s,t,y} + PE_{ww,d,y} + PE_{s,f,y}$					
	Туре	Items	Description					
	Output	$PE_{v}$	Project emission:					
		5	GHG emission from CH ₄ released into the atmosphere before the project					
			starts, where the wastewater treatment is installed or revised (t- $CO_2/y$ )					
	Input	$PE_{EC,y}$	GHG emission from electric consumption after the project starts $(t-CO_2/y)$					
		$PE_{FC,y}$	GHG emission from fossil fuel consumption after the project starts $(t-CO_2/y)$					
		$\frac{PE_{FC,y}}{PE_{ww,t,y}}$	GHG emissions of the wastewater treatment system after the project starts					
		1 1 ww.i,y	$(t-CO_2/y)$					
			If CH ₄ produced in the wastewater treatment system is recovered and					
			destroyed by energy generation or flare after the project starts, this term shall					
			be neglected.					
		$PE_{s,t,y}$	GHG emissions from the sludge treatment systems after the project starts					
		$I L_{s,t,y}$	$(t-CO_2/y)$					
			If CH ₄ produced in the sludge treatment system is recovered and destroyed					
			by energy generation or flare after the project starts, this term shall be					
			neglected.					
		$PE_{ww,d,y}$	GHG emissions from degradable organic carbon in treated					
			wastewater discharged into sea/river/lake after the project starts (t-CO ₂ /y)					
		$PE_{s,f,y}$	GHG emissions from anaerobic decay of the final sludge in wastewater treatment after the project starts $(t-CO_2/y)$					
			If the sludge is controlled combusted, disposed in a landfill with biogas					
			recovery, or used for soil application after the project starts, this term shall					
			be neglected.					
	Determination of	<u>E_{EC,y}</u>						
	GHG emission f	rom electric	ity consumption after the project starts is calculated from the following formula.					
			$PE_{EC,y} = EL_{PJ,y} \times EF_{PJ,y}$					
	$EL_{PJ,v}$ : Quantity of electricity consumption in facilities on site after the project starts (1)							
	$EF_{PJ,y}$ : Carbon emissions factor for electricity generation (t-CO ₂ /MWh)							
	Determination of	<u>PE_{FC,y}</u>						
	GHG emission f	rom fuel co	nsumption after the project starts is calculated from the following formula.					
			$PE_{FC,y} = \sum_{i} \left( FC_{PJ,y} \times NCV_{i} \times COEF_{i} \right)$					
	$FC_{PJ,i}$	: Quantity	y of fuel <i>i</i> consumed on site (kL, $m^3$ , t, etc./y)					
	NCVi	: Net calo	rific value of fuel $i$ (GJ/kL, m ³ , t, etc.)					
	$COEF_i$	: CO ₂ em	issions factor of fuel (t-CO ₂ /TJ)					

ī.

(Continuation)	Determination of PE _{www,ty}
	GHG emissions of the wastewater treatment system after the project starts shall be determined by
	multiplying the volume of wastewater treated, by the COD removed through the treatment, CH ₄ producing
	capacity, and by the Global Warming Potential.
	$PE_{ww,v} = Q_{ww,t,PJ,v} \times COD_{r,PJ,v} \times MCF_{ww,t,v} \times B_{0,ww} \times UF_{PJ} \times GWP_{CH4}$
	$Q_{ww,t,PJ,v}$ : Volume of wastewater treated in wastewater treatment system after the project starts
	$(m^3/y)$
	$COD_{r,PJ,y}$ : Chemical oxygen demand removed by the wastewater treatment system after the
	project $(t-COD/m^3)$
	$MCF_{WW,PJ}$ : CH ₄ correction factor for the wastewater treatment system after the project starts
	$B_{o,ww}$ : CH ₄ producing capacity of the wastewater (kg-CH ₄ /kg-COD)
	$UF_{PJ}$ : Model correction factor to account for model uncertainties (-)(=1.12)
	$GWP_{CH4}$ : Global Warming Potential of CH ₄ (t-CO ₂ /t-CH ₄ )
	Determination of PE _{s.t.y}
	GHG emissions of the sludge treatment system after the project shall be determined by multiplying the
	volume of the sludge, by CH ₄ correction factor for the sludge treatment system, degradable organic content of
	the untreated sludge, fraction of DOC dissimilated to biogas, model correction factor, fraction of CH ₄ in
	biogas, etc.
	$PE_{s,t,y} = S_{PJ,y} \times MCF_{s,t,PJ} \times DOC_s \times UF_{PJ} \times DOC_F \times F \times 16/12 \times GWP_{CH4}$
	$S_{PJ,y}$ : Amount of dry matter in the treated sludge by the sludge treatment system after the
	project (t/y)
	$MCF_{s,t,PJ}$ : CH ₄ correction factor of the disposal site that receives the sludge after the poject (-)
	<i>DOC</i> _s : Degradable organic content of the final sludge generated (dry basis)(-)
	$UF_{PJ}$ : Model correction factor to account for model uncertainties (-)
	$DOC_F$ : Fraction of DOC dissimilated to biogas (-)
	F : Fraction of CH ₄ in biogas (-)
	$GWP_{CH4}$ : Global Warming Potential of CH ₄ (t-CO ₂ /t-CH ₄ )
	In case sludge is composted, $BE_{s,t,y}$ shall be determined from the following formula.
	$PE_{s,ty} = S_{PJ,y} \times EF_C \times GHP_{CH4}$
	$S_{PJ,y}$ : Amount of dry matter in the treated sludge by the sludge treatment system after the
	project (t/y)
	$EF_C$ : CH ₄ emission factor for composting sluge (t-CH ₄ /t-sludge)
	$GWP_{CH4}$ : Global Warming Potential of CH ₄ (t-CO ₂ /t-CH ₄ )
	Determination of PE _{ww,d,y}
	GHG emissions from degradable organic carbon in treated wastewater discharged into sea/river/lake after the
	project starts shall be determined by multiplying the volume of the wastewater discharged, COD of the
	wastewater, CH ₄ correction factor based on discharge pathway, etc.
	$PE_{ww,d,y} = Q_{ww,d,PJ,y} \times GWP_{CH4} \times B_{0,ww} \times UF_{PJ} \times COD_{ww,d,PJ,y} \times MCF_{ww,PJ,d}$
	$Q_{ww,d,PJ,y}$ : Volume of treated or untreated wastewater discharged (m ³ /y)
	$UF_{PJ}$ : Model correction factor to account for model uncertainties (-) (=0.94)
	COD _{ww,d,PJ,y} : Chemical oxygen demand of the treated wastewater discharged into sea, river or lake
	after the project starts (t/m ³ )
	$MCF_{WW,PJ,d}$ : CH ₄ correction factor based on discharge pathway after the project starts (-)
	<i>GWP</i> _{CH4} : Global Warming Potential of CH ₄ (t-CO ₂ /t-CH ₄ )

*Bo,ww* : CH₄ producing capacity of the wastewater (kg-CH₄/kg-COD)

	24. Seweruge und Orban Summation /masewater treatment
(Continuation)	<u>Determination of $PE_{s,fy}$</u>
l` í	GHG emissions from anaerobic decay of the final sludge after the project starts shall be determined by
	multiplying the volume of thefinal slidge, degradable organic content of the final sludge, CH ₄ correction factor
	of the disposal site, degradable organic content of the final sludge, fraction of DOC dissimilated to biogas
	model correction factor, fraction of CH ₄ in biogas, etc.
	$PE_{s,f,y} = S_{f,PJ,y} \times DOC_s \times UF_{PJ} \times MCF_{s,PJ,f} \times DOC_F \times F \times 16/12 \times GWP_{CH4}$
	$TL_{s,f,y} = S_{f,p}J_{,y} \land DOC_{s} \land OT pj \land MCT_{s,p}J_{f} \land DOC_{F} \land T \land T0/12 \land OWT CH4$
	$S_{f,PJ,y}$ : Amount of dry matter in the final sludge generated by wastewater treatment systems
	after the project (t)
	$MCF_{s,PJ,f}$ : CH ₄ correction factor of the disposal site that receives the final sludge after the project
	(-)
	$UF_{PJ}$ : Model correction factor to account for model uncertainties (-)
	$DOC_s$ : Degradable organic content of the final sludge generated (dry basis)(-)
	$DOC_F$ : Fraction of DOC dissimilated to biogas (-)
	F : Fraction of CH ₄ in biogas (-)
	$GWP_{CH4}$ : Global Warming Potential of CH ₄ (t-CO ₂ /t-CH ₄ )
	<u> </u>

4.Data Rec Monitorin Estimatin	ng and							
Emission				I				
				Baseline	Data Acquisi Emissions		Emissions	
	Data Type		Description of Data	Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion	
Emission	Quantity electricity consumpti (before : <i>H</i> (after : <i>EL</i>	$EL_{BL,y}$ )	Quantity of electricity consumption on site (MWh/y)	Monitoring data	Monitoring data	Planned data	Monitoring data	
n by energy (	Baseline emission f	Baseline $CO_2$ Emission factor of the typicalemission factorpower plant(t- $CO_2/MWh$ ) $EF_{BL,y} = CEF_d$			Data availability should be validated in the following order in selecting the typical power plant and obtaining CO ₂ emissions factor specific to the target. i) Interview to the electric power management entity concerned Published values in the target country			
omsumption	Quantity consumption (before : H (after : FC	on on site $FC_{BL,i}$ ) $C_{PJ,i}$ )	Fuel consumption after the project starts (kL, m ³ ,t etc/y)	Monitoring data	Monitoring data	Planned data	Monitoring data	
Emission by energy comsumption and generation	Netcalorificvalue $NCV_i$ $(=NCV_{fuel})$ $CO_2$ emission factor $(COEF_i)$		Net calorific value according to fuel seed (GJ/kL, m ³ ·t etc.) CO ₂ emission factor per fuel seed	Data availability is validated in the following order because it is preferably calculated using data and information unique to the project: i) National default ii) IPCC Guideline default data (Refer to Appendix D-7,8)				
Emission trea	Volume wastewate (before : Q (after : Q _w	$Q_{ww,t,BL,y})$	(t-CO ₂ /TJ) Volume of wastewater tereated in the wastewater teratment system (m ³ /y)	Monitoring data	Monitoring data	Planned data	Monitoring data	
Emission from wastewater treatment process	COD (before : C (after : CC	$COD_{r,BL,y}$ )	COD of the wastewater inflow to the treatment system (t-COD/m ³ )	Monitoring data	Monitoring data	Planned data	Monitoring data	
before:	CH ₄ factor (before : <i>M</i> (after : <i>M</i>		CH ₄ correction factor for the wastewater treatment system (-)	IPCC Guideline default data (Refer to Appendix D-10)				
$BE_{ww,t,y}$ before: $PE_{ww,t,y}$	$\begin{array}{c} CH_4 \\ capacity \\ (B_{o,ww}) \end{array}$	producing	CH ₄ producing capacity of the wastewater (kg-CH ₄ /kg-COD)	č				
Emission	Amount matter in the form $(before : S_{PJ})$ (after $: S_{PJ}$ )	$S_{BL,y}$ )	Amount of dry matter in the sludge treated (t)	Monitoring data	Monitoring data	Planned data	Monitoring data	
from sludg	Degradabl content (DOC _s )	e organic	Degradable organic content of the untreated sludge generated (dry basis)(-)	Data availability is validated in the following order because it is preferably calculated using data and information unique to the project: i) National default ii) IPCC Guideline default data (Refer to Appendix D-14)				
Emission from sludge treatment process	CH ₄ factor (before: <i>M</i> ( (after: <i>MC</i> )		CH ₄ correction factor for the sludge treatment system (-)	IPCC Guideline default data (Refer to Appendix D-10)				
before : $BE_{s,t,y}$ after :	Fraction dissimilate (DOC _F )	d	Fraction of DOC dissimilated to biogas (-)	0.5 ( IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste)				
PE _{s,t,y}	Fraction of (F)	f CH ₄	Fraction of CH ₄ in biogas (-)					

		-				ition Methods	
Data Type		3	Description of Data	Baseline Emissions		Project Emissions	
			Description of Data	Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion
$\begin{array}{c c} \mbox{treatment}\\ \mbox{treatment}\\ \mbox{treatment}\\ \mbox{sind}\\ s$		$dge(S_{PJ,y})$ the treated sludge by the sludge treatment system after the project start s(t)		ž	ecause data is not	Planned data	Monitoring dat
		he wastewater ore : $SGR_{BL}$ )	Sludge generation ratio of the wastewater treatment plant before the project starts (t-sludge/t-COD removed)	Monitoring data	Monitoring data	Planned data	Monitoring da
before : $CH_4$ emission factor $BE_{s,t,y}$ for composting sludge after : $(EF_C)$ $PE_{s,t,y}$			CH ₄ emission factor for composting sludge (t-CH ₄ /t-sludge)	Data availability is validated in the following order because it is preferabl calculated using data and information unique to the project: i) Planned data of the sludge treatment plant ii) National default iii) IPCC Guideline default data(Refer to Appendix D-8)			
Emisiion	discharge (before : (after : Q	Qww,d,BL,y) ww,d,PJ,y)	Volume of treated or untreated wastewater discharged(m ³ /y)	Monitoring data	Monitoring data	Planned data	Monitoring da
on disch	$\begin{array}{c} CH_4 \\ capacity \\ (B_{o,ww}) \end{array}$	producing	CH ₄ producing capacity of the wastewater (kg-CH ₄ /kg-COD)	(IPCC Guide	elines for National G	sludge : 0.25 reenhouse Gas Inve ste)	ntories Volume 5
Emisiion on discharge pathway	COD of wastewate	the treated er discharged COD _{ww,d,BL,y} ) DD _{ww,d,PJ,y} )	COD of the treated wastewater discharged into sea, river or lake(t/m ³ )	Monitoring data	Monitoring data	Planned data	Monitoring da
before: $BE_{ww,d,y}$ offer: $PE_{ww,d,y}$	$CH_4 \text{ correction factor} (before : MCF_{ww,BL,d}) (after : MCF_{ww,PJ,d})$		CH ₄ correction factor based on discharge pathway(-)				ix D-10)
	Amount sludge (before : $S_{f}$		Amount of dry matter in the final sludge generated by wastewater treatment (t)	Monitoring data	Monitoring data	Planned data	Monitoring da
Emission by decay of the final sludg	Degradab content(D		Degradable organic content of the untreated sludge generated (dry basis)(-)	Data availability is validated in the following order because it is preferable calculated using data and information unique to the project: i) National default ii) IPCC Guideline default data (Refer to Appendix D-14)			
cay Idg	CH4 corre (before : . (after : <i>M</i>		$CH_4$ correction factor of the disposal site that receives the final sludge(-)	IPCC Guideline default data (Refer to Appendix D-1)			
before : $BE_{s,f,y}$ after :	Fraction dissimilat (DOC _F )		Fraction of DOC dissimilated to biogas (-)	( IPCC Guide	lines for National Gr Wa	aste)	ntories Volume 5
$PE_{s,f,y}$	Fraction c (F)	of CH ₄	Fraction of CH ₄ in biogas(-)	0.5 ( IPCC Guidelines for National Greenhouse Gas Inventories Volume Waste)			ntories Volume 5
Model correction factor (before : $UF_{BL}$ ) (after : $UF_{PJ}$ )		)T	Model correction factor to account for model uncertainties (-)	0.94 (Default data of FCCC/SBSTA/2003/10/Add.2) 1.06 (Default data of FCCC/SBSTA/2003/10/Add.2)		ilt data of	
Global Warming Potential GWP _{CH4}		ntial	Global Warming Potential of CH4 (-)	21 ( IPCC Guidelines for National Greenhouse Gas Inventories Volume : Waste)			ntories Volume 5
Global Warming Potential GWP _{N2O}		ntial	Global Warming Potential of N ₂ O (-)	( IPCC Guide	lines for National Gr	10 reenhouse Gas Inver aste)	ntories Volume 5
Before: BE _{EN,y}		of electricity n, $EG_{elec,y}$	Amount of electricity generation(MWh/y)	Planned data	Monitoring data		because data is no he calculation)
Amount of thermal		of thermal pply, $Q_v$	Amount of thermal energy supply(TJ/y)	Planned data	Monitoring data		because data is no he calculation)

1

5.Others	(1)Project boundary
	The project boundary is the site where project activity is being done and where the wastes are reclaimed or
	treated.
	(2)Leakage
	Project activity could lead to the following leakages:
	Construction of treatment plant: the indirect emissions potentially lead to leakage due to activities such as
	product manufacturing or materials transport. This respective emission is temporary and its constituent value is
	almost negligible considering the project scale. Therfore, it can be ignored.
	(3)Reference Methodology and Differences
	1) AMS III.H(Ver.16):Methane recovery in wastewater treatment
	• This formula pratically simplifies the formula used in the methodology "AMS III.H".
	[Differences]
	• In the reviewed methodology, when using the grid electric power only the $CO_2$ emission factor of the
	electricity will be chosen from alternatives that the grid average value calculated by the CDM
	Methodology "Tool to calculate the Emission Factor for an electricity system" or one of some default
	values. In this methodology, emissions factor of electricity is defined as the emission factor of one or two
	typical power plants existing in the gird to calculate easily.
	<ul> <li>GHG emission from transporting the facilities to other places or transporting the existing facilities to</li> </ul>
	other places is considered as leakage in the reference methodology.
	• GHG emission from methane incineration, flare incompleteness and biomass strain under anerobic
	condition after the project started is considered as leakage in the reference methodology.
	2) AMS-III.I(Ver.8.0): Avoidance of methane production in wastewater treatment facilities through
	modification of the process from anaerobic systems to aerobic systems.
	Differences
	• Baseline emission in the reviewed methodology is computed by or the $CO_2$ emission factor of grid (*1).
	In this methodology, emissions factor of electricity is defined as the emission factor of one or two typical
	power plants existing in the gird to calculate easily.
	• The formula in the reference method is quite limited and applied to anerobic treatment before and aerobic
	after the project starts. This formula as well is applied for both aerobic and anerobic treatment before and
	after the project starts.
	• GHG emission from transporting the facilities to other places or transporting the existing facilities to
	other places is considered as leakage in the reference methodology.
	*1: CO ₂ emission factor of grid is a combined margin (CM) computed by the combination of operating margin
	(OM) and build margin (BM) in the CDM methodology "Tool to calculate the Emission Factor for an
	electricity system".
	3)ACM0014(Ver. 04.1.0):Mitigation of greenhouse gas emissions from treatment of industrial wastewater
	[Differences]
	• In the reference methodology, the GHG emission contributed by CH ₄ in treating wastewater is not
	considered because the biogas from the treatment of wastewater after the project starts is expected to be
	disposed by flaring, power generation or thermal treatment. This formula does not limit the type of biogas
	treatment in wastewater treatment but considers the GHG emission from CH ₄ in wastewater treatment
	process.
	• In the case of connecting the captive power plant, the emission factor of electricity, the smaller one
	between the emission factor of electricity generated by captive power plant and that of the grid electricity
	is adopted. The emission factor of the grid electric power is calculated by the "Tool to calculate the
	Emission Factor for an electricity system" for CDM. In this methodology, emissions factor of electricity

<ul> <li>is defined as the emission factor of one or two typical power plants existing in the gird to calculate easily.</li> <li>Though the reference methodology expects the condition where the final sludge after treatment should be disposed definitely under aerobic condition and although it does not consider the GHG emission the final sludge decay, this formula does not limit the type of treatment for final sludge and consider GHG emission for final sludge decay.</li> </ul>
<ul> <li>4)AM0080(Ver01):Mitigation of GHG emissions through treatment of wastewater in aerobic wastewater treatment plants</li> <li>[Differences]</li> <li>The reference methodology considers the GHG emission from sludge transportation after the project starts and GHG emission from N₂O in sludge treatment after the project starts. This formula however excludes these conditions.</li> <li>In the reviewed methodology, when using the grid electric power only the CO₂ emission factor of the electricity will be chosen from alternatives that the grid average value calculated by the "Tool to calculate the Emission Factor for an electricity system" for CDM or some default values. In this methodology, emissions factor of electricity is defined as the emission factor of one or two typical power plants existing in the gird to calculate easily.</li> </ul>
1

	25. Sewerage and Urban Sanitation / Sewerage				
1.Typical Project	The project intends to reduce the GHG emissions by suppressing $CH_4$ from the sewage sludge decay,				
Outline 2.Applicability	through composting the sewage sludge.         O       This methodology addresses the case where the sewage sludge is decayed under the anerobic				
	condition, and $CH_4$ is generated before the project starts.				
	• This methodology addresses the case where the sewage sludge is composted and generated compost is used under the perception of the the project storts.				
	<ul> <li>is used under the aerobic condition after the project starts.</li> <li>This methodology addresses both cases where wastewater is recycled or not in composting the</li> </ul>				
	sewage sludge after the project starts.				
3.Methodology on	GHG emission reduction with composting of the sewage sludge or anaerobic digestion of the sewage				
Emission Reduction	sludge and biogas utilization shall be determined as the difference between baseline emission before the project starts where decay is not composted, and emissions after the project starts.				
	project starts where decay is not composed, and emissions arer the project starts.				
	$ERy = BEy - PEy  (t-CO_2/y)$				
	$ER_y$ :GHG emissions reduction in year" y" achieved by the project (t-CO ₂ /y)				
	$BE_y$ : GHG emission without composting the sewage sludge decay in year "y" (t-CO ₂ /y)				
	(Baseline emission) <b>PE</b> _y : GHG emission with composting the sewage sludge decay in year "y" (t-CO ₂ /y)				
	(Project emission)				
	BE _y : Baseline Emission				
	GHG GHG				
	Sludge treatment				
	Sludge CHG				
	Project Boundary				
	PE _v : Project Emission				
	Sludge				
	treatment plant				
	Project Boundary				
	GHG GHG				
	Sludge GHG				
	Electricity and				
	Thermal Energy Anearobic Composting				

(Continuation)

(1)Determination of baseline emission

Baseline emission shall be determined by the summation of the following:

- $\boldsymbol{\cdot}$  GHG emission from the sewage sludge decay before the project starts
- · Baseline emissions from generation of energy displaced by the project activity

$$BEy = BE_{CH4,S,y} - MD_{reg,y} + BE_{ww,y}$$

Туре	Items	Description
Output	BE _y	Baseline emission :
		GHG emission from methane released into the atmosphere
		before the project starts $(t-CO_2/y)$
Input	BE _{CH4,S,y}	Baseline emissions for CH ₄ generation potential of decay
		of sludge $(t-CO_2/y)$
	$MD_{reg,y}$	Amount of CH4 that would have to be captured and
		combusted to comply with the prevailing regulations
		(t-CO ₂ /y)
	$BE_{EN,y}$	GHG emissions from generation of energy displaced by the
		project activity (t-CO ₂ /y)

## Determination of BE_{CH4,S,y}

Baseline emissions or  $CH_4$  generation potential of decay of sludge shall be determined by multiplying the volume of the sludge by  $CH_4$  correction factor of the disposal site, degradable organic content of the untreated sludge, fraction of DOC dissimilated to biogas, model correction factor, fraction of  $CH_4$  in biogas, and methane global warming potential.

$H_{4,S,y} = S_{PJ,y} \times DOC_s \times MCF_S \times DOC_F \times F \times UF_{BL} \times 16/12 \times GWP_{CH4}$
: Amount of sludge treated after the poject starts (dry basis)(t/y)
: Degradable organic content of the untreated sludge (dry basis)(-)
: $\mathrm{CH}_4$ correction factor of the disposal site that receives the sludge before
the poject starts (-)
: Fraction of DOC dissimilated to biogas(-)
: Fraction of CH ₄ in biogas(-)
: Model correction factor to account for model uncertainties(-)
: Methane global warming potential(-)( $=21$ )

### Determination of MD_{reg,y}

 $BE_{EN,y}$  shall be determined by multiplying the amount of electricity produced using biogas after the project starts (MWh/y) and heat supply (TJ/y), with respective CO₂ emission factor before connecting to the grid.

$$MD_{reg,v} = BE_{CH4,S,v} \times AF$$

 $BE_{CH4,S,y}$ : GHG emission from the sewage sludge decay before the project starts (t-CO₂/y)₀

*AF* : CH₄ fraction with combustion by national regulation before the project starts (-) It shall be "0" where developing countries have a very few regulation.

(Continuation)	$\underline{Determination of BE_{EN,y}}$
(Commutation)	$BE_{EN,y}$ shall be determined by the quantity of electricity and thermal energy generation after the project
	$SE_{ENy}$ shall be determined by the quantity of electricity and thermal energy generation after the project starts and CO ₂ baseline emission factors.
	$BE_{EN,y} = BE_{elec,y} + BE_{ther,y}$
	$= EG_{d,y} \times CEF_d + \frac{Q_y}{\varepsilon_b \cdot NCV_{fuel}} \times EF_{fuel}$
	$\varepsilon_b \cdot NCV_{fuel}$
	$BE_{elec,y}$ : Baseline emissions from electricity generated from utilizing biogas in the project activity and exported to the grid or displacing onsite/offsite fossil fuel (t-CO ₂ /y)
	<i>BE_{ther,y}</i> : Baseline emissions from thermal energy produced utilizing the biogas in the project activity displacing thermal energy from onsite/offsite fossil fuel-fueled
	boiler(t-CO ₂ /y)
	$EG_{d,y}$ : Amount of electricity generated after the project starts(MWh/y)
	$CEF_d$ : CO ₂ emissions factor for the displaced electricity source in the project scenario (t-CO ₂ /MWh)
	$Q_y$ : Amount of thermal energy generated after the project starts (TJ/y)
	$\varepsilon_b$ : Energy efficiency of the boiler/air heater used in the absence of the project activity to generate the thermal energy(-) $\varepsilon_b$ shall be "1" as conservative value.
	$NCV_{fuel}$ : Net calorific value of fuel, as identified through the baseline identification
	procedure, used in the boiler/air heater to generate the thermal energy in the
	absence of the project activity(GJ/kL, m ³ , t, etc.)
	$EF_{fuel}$ : Emission factor of the fuel, as identified through the baseline identification
	procedure, used in the boiler/air heater to generate the thermal energy in the
	absence of the project activity(t-CO ₂ /TJ)
	1

(Continuation)

#### (2)Project emission

Project emission shall be determined by the summation of the following:

 $\boldsymbol{\cdot}$  GHG emission from electric and fuel consumption after the project starts

 $\boldsymbol{\cdot}$  GHG emission with compositng the sewage sludge after the project starts

Туре	Items	Description
Output	$PE_y$	Project emission:
		GHG (t-CO ₂ /y)
Input	$PE_{EC,y}$	GHG emission from electric consumption after the project
		starts
		(t-CO ₂ /y)
	$PE_{FC,y}$	GHG emission from fossil fuel consumption after the
		project starts
		(t-CO ₂ /y)
	$PE_{C,y}$	GHG emission with composting the sewage sludge after
		the project starts $(t-CO_2/y)$

$$PEy = PE_{EC,y} + PE_{FC,y} + PE_{C,y}$$

## Determination of PE_{EC,y}

GHG emission from electricity consumption after the project starts is calculated using the following formula.

 $PE_{EC,y} = EL_{PJ,y} \times EF_{PJ,y}$ 

*EL*_{*PJ*,*y*} : Quantity of electricity consumption on site(MWh)

 $EF_{PJ,y}$  : Carbon emissions factor for electricity generation (t-CO₂/MWh)

## Determination of PE_{FC,y}

GHG emission from fuel consumption after the project starts is calculated using the following formula.

$$PE_{FC,y} = \sum_{i} (FC_i \times NCV_i \times COEF_i)$$

 $FC_i$  : Quantity fuel consumption on site(kL, m³, t etc./y)

 $NCV_i$  : Net calorific value of fuel i(GJ/kL,m³,t etc.,)

 $COEF_i$  : CO₂ emissions factor of fuel (t-CO₂/TJ)

### Determination of PE_{C,y}

GHG emission with composting the sewage sludge after the project starts shall be determined by multyplying the quantity of sludge by the  $CH_4$  emission factor and global warming potential.

$$PE_{C,y} = S_{PJ,y} \times EF_C \times GHP_{CH4}$$

 $S_{PJ,y}$  :Amount of sludge composted after the project starts (dry base)(t/y)

 $EF_C$  : Emission factor for CH₄ emissions from the composting process (t-CH₄/t-sludge)

 $GWP_{CH4}$  : Global Warming Potential of CH₄ (-)(=21)

			Data Acquisition Methods Baseline Emissions Project Emissions				
	Data Type	Description of Data	Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion	
Amount of sludge $(S_{PL,y})$		Amount of sludge treated after the poject(dry basis) (t/y)	Planned data	Monitoring data	Planned data	Monitoring data	
Em.		Degradable organic content of the untreated sludge(weight basis) (-)	Data availability is validated in the following order: i) Data unique to the national or areas ii) IPCC default data (Refer to Appendix D-13)				
Emission from untreated sludge decay	CH ₄ correction factor (bofore : <i>MCF_S</i> )	$CH_4$ correction factor of the disposal site that receives the sludge (-)	IPCC default data Appendix D-1)	(Refer to		(Not necessary because data is not involved in the calculation)	
ated	Fraction of DOC dissimilated (DOC _F )	Fraction of DOC dissimilated to biogas (-)	0.5 ( IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste)				
Before: BE _{CH4,S,y}	Fraction of $CH_4$ in biogas $(F)$	Fraction of $CH_4$ in biogas (-)	( IPCC Guidelin Greenhouse Gas I	.5 nes for National nventories Volume aste)			
Emiss er t	Amount of electricity produced using biogas ( <i>EG_{d,y}</i> )	The quantity of LFG power supply after the project start (MWh/y)	Planned data	Monitoring data	(Not necessary because data is no involved in the calculation)		
Emissions from generation of energy displaced by the project activity	Baseline $CO_2$ emission factor $CEF_d$ $(=EF_{PJ,y})$	Emission factor of the typical power plant (t-CO ₂ /MWh)	Data availability should be validated in the following order in selecting typical power plant and obtaining CO ₂ emissions factor specific to the tar i) Interview to the electric power management entity concerned ii) Published values in the target country			ecific to the target.	
neration of ed by livity	Quantity of thermal energy produced Q _y	The quantity of thermal energy produced after the project starts (TJ/y)	Planned data	Monitoring data	(Not necessary because data is not involved in the calculation)		
Before: BE _{EN,y}	Net calorific value $NCV_{fuel}$ $(=NCV_i)$ CO2 emission factor	Net calorific value according to fuel seed (GJ/kL, m ³ , t etc.) CO2 emission factor per fuel	Data availability is validated in the following order because it is prefe calculated using data and information unique to the project. i) Unique data obtained from interview with power management entity				
	$EF_{fuel}$ (COEF _i )	seed (t-CO2/TJ)	<ul><li>ii) National defaul</li><li>iii) IPCC Guidelin</li></ul>	t e default data (Refe	er to Appendix C-6,7	7)	
Modelcorrectionfactor(before : $UF_{BL}$ )		Model correction factor to account for model uncertainties (-)	0.94 (default data of "FCCC/SBSTA/2003/10/Add.2")		(Not necessary because data is not involved in the calculation)		

(Continuati	on)				6		atton / Server age
		-			Data Acqui	sition Methods	
				Baseline	Emissions	Project I	Emissions
	Data Type		Description of Data	Before the	After Project	Before the	After Project
				Project Starts	Completion	Project Starts	Completion
Emission for electricity after : $PE_{ECy}$	Quantity of el consumption <i>EL_{PJy}</i> )		Quantity of Electricity consumption after the project starts (MWh/y)	(Not necessary b	because data is not he calculation)	Planned data	Monitoring data
Emission for fuel comsumption after : $PE_{FC,y}$	Quantity of consumption (after : <i>FC_{PJ}</i>	on site	Fuel consumption after the project starts (kL, m ³ , t etc./y)		because data is not he calculation)	Planned data	Monitoring data
Emission from composting process after : $PE_{Cy}$	Compositing process after :		CH ₄ emissions factor from the composting process(dry basis) (t-CH ₄ /t-sludge)		because data is not he calculation)	Data availability i following order preferably calculat information unique i) Unique data interview with po entity ii) National defaul iii) IPCC Guide (Refer to Append	because it is ted using data and e to the project. obtained from ower management t eline default data
Global Wa GWP _{CH4}	rming Potential		Global Warming Potential of CH ₄ (-)	Default data	of "2006 IPCC Guid	21 delines for National G /olume 5 Waste"	Greenhouse Gas

5.Others	(1)Project boundary
	The project boundary is the site where project activity is being done and where the wastewater and sludge
	are treated.
	(2)Leakage
	Project activity could lead to the following leakages:
	Construction of composting plant: the indirect emissions potentially lead to leakage due to activities such
	as product manufacturing or materials transport. This respective emission is temporary and negligible
	considering the project scale and therefore it can be ignored.
	(3)Reference methodology and differences
	1) AMS-III.F(Ver.10.0): Avoidance of methane emissions through composting
	[Differences]
	• The formula in the reference methodology is applied for manure as the CH ₄ generating factor (raw
	materials for composting) before the project starts. This formula is only applied to sewage sludge.
	The formula in the reference methodology considers the generated compost transportation, sewer
	water discharge, GHG emission from decay in compost or residual waste after the project start for
	the project emission. This formula is only applied to sewage sludge.
	• Baseline emission in the reviewed methodology is computed by or the CO ₂ emission factor of grid
	(*1). In this methodology, emissions factor of electricity is defined as the emission factor of one or
	two typical power plants existing in the gird to calculate easily.
	• GHG emission from transporting the facilities to other places or vice versa is considered as the
	leakage in the reference methodology. This formula however excludes this condition.
	*1: CO ₂ emission factor of grid is a combined margin (CM) computed by the combination of operating
	margin (OM) and build margin (BM) in the CDM methodology "Tool to calculate the Emission
	Factor for an electricity system".
	2) AM0025(Ver.12): Avoided emissions from organic waste through alternative waste treatment processes
	[Differences]
	• The formula in the reference methodology is applied for organic waste in general as the $CH_4$
	generating factor (raw materials for composting) before the project starts. This formula is only
	applied to sewage sludge.
	• In the reviewed methodology, in the case of using the grid electricity generated by heat power plant,
	the $CO_2$ emission factor of the electricity is "0.8 $CO_2$ /MWh" as the default date. In this methodology,
	emissions factor of electricity is defined as the emission factor of one or two typical power plants
	existing in the gird to calculate easily.
	• The formula in the reference methodology is applied to the methane capture, flare treatment, power generation, heat supply, incineration, RDF processing and composting as the measures to generate
	$CH_4$ by decay and to reduce emission. This formula however is only applied for composting.
	<ul> <li>GHG emission from transportation increase and decay in residual waste is considered as the leakage</li> </ul>
	in the reference methodology. On the other hand, this formula excludes this condition.
	3) AM0039(Ver. 02)Methane emissions reduction from organic wastewater and bioorganic solid waste
	using co-composting
	[Differences]
	• GHG emission from N ₂ O generation a transportation of generated compost, wastewater discharge,
	decay in residual waste or compost after the project starts is considered in the calculation of the
	project emission. This formula however excludes these conditions.
	• In the reviewed methodology, in the case of connecting to the grid the $CO_2$ emission factor of the
	electricity is calculated by the "Tool to calculate the Emission Factor for an electricity system" for

23. Sewerage and Orban Sanitation /Sewerage
CDM. In this methodology, emissions factor of electricity is defined as the emission factor of one or
two typical power plants existing in the gird to calculate easily.
4) AMS III.H(Ver.16):Methane recovery in wastewater treatment
[Differences]
• The formula in the reference methodology includes wastewater treatment in project boundary while
this formula excludes this.
• In the reviewed methodology, when using the grid electric power only the $CO_2$ emission factor of the
electricity will be chosen from alternatives that the grid average value calculated by the CDM
Methodology "Tool to calculate the Emission Factor for an electricity system" or one of some
default values. In this methodology, emissions factor of electricity is defined as the emission factor
of one or two typical power plants existing in the gird to calculate easily.
• GHG emission from transporting the facilities to other places or vice versa is considered as the
leakage in the reference methodology. This formula however excludes this condition.

	Sewerage and Urban Sanitation / Annex T	Table
Annex Table D-1	Default data for $MCF_p^{l}$	

TABLE 3.1 SWDS classification and Methane Correction Factors (MCF)											
Type of Site	Methane Correction Factor (MCF) Default Values										
Managed – anaerobic ¹	1.0										
Managed – semi-aerobic ²	0.5										
Unmanaged 3 – deep ( $>$ 5 m waste) and /or high water table	0.8										
Unmanaged ⁴ – shallow (<5 m waste)	0.4										
Uncategorised SWDS ⁵	0.6										
¹ Anaerobic managed solid waste disposal sites: These must have co deposition areas, a degree of control of scavenging and a degree of co cover material; (ii) mechanical compacting; or (iii) levelling of the w	ontrol of fires) and will include at least one of the following: (i)										
² Semi-aerobic managed solid waste disposal sites: These must have following structures for introducing air to waste layer: (i) permeable pondage; and (iv) gas ventilation system.	controlled placement of waste and will include all of the cover material; (ii) leachate drainage system; (iii) regulating										
³ Unmanaged solid waste disposal sites – deep and/or with high wa and which have depths of greater than or equal to 5 metres and/or hig filling inland water, such as pond, river or wetland, by waste.											
⁴ Unmanaged shallow solid waste disposal sites; All SWDS not meet than 5 metres.	ting the criteria of managed SWDS and which have depths of less										

⁵ Uncategorised solid waste disposal sites: Only if countries cannot categorise their SWDS into above four categories of managed and unmanaged SWDS, the MCF for this category can be used.

Sources: IPCC (2000); Matsufuji et al. (1996)

Souces : 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste Table3.1

¹ IPCC:http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_3_Ch3_SWDS.pdf

 Sewerage and Urban Sanitation / Annex Table

 Annex TableD-2
 Default data for  $CCW_i$ ,  $FCF_i$ ,  $DOC_j^2$  

 TABLE 2.4

 DEFAULT DRY MATTER CONTENT, DOC CONTENT, TOTAL CARBON CONTENT AND FOSSIL CARBON FRACTION OF DIFFERENT MSW COMPONENTS

 V component

 DOC content

 DOC content

 Total carbon

 Eassil carbon

DIFFERENT MES IN COMPONENTS													
MSW component	Dry matter content in % of wet weight ¹		content wet waste		content dry waste	con	carbon itent Iry weight	fraction	carbon 1 in % of 1 arbon				
	Default	Default Range		Default	Range ²	Default	Range	Default	Range				
Paper/cardboard	90	40	36 - 45	44	40 - 50	46	42 - 50	1	0 - 5				
Textiles ³	80	24	20 - 40	30	25 - 50	50	25 - 50	20	0 - 50				
Food waste	40	15	8 - 20	38	20 - 50	38	20 - 50	-	-				
Wood	85 ⁴	43	39 - 46	50	46 - 54	50	46 - 54	-	-				
Garden and Park waste	40	20	18 - 22	49	45 - 55	49	45 - 55	0	0				
Nappies	40	24	18 - 32	60	44 - 80	70	54 - 90	10	10				
Rubber and Leather	84	(39) 5	(39) 5	(47) ⁵	(47) ⁵	67	67	20	20				
Plastics	100	-	-	-	-	75	67 - 85	100	95 - 100				
Metal ⁶	100	-	-	-	-	NA	NA	NA	NA				
Glass ⁶	100	-	-	-	-	NA	NA	NA	NA				
Other, inert waste	90	-	-	-	-	3	0 - 5	100	50 - 100				

The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.

² The range refers to the minimum and maximum data reported by Dehoust *et al.*, 2002; Gangdonggu, 1997; Guendehou, 2004; JESC, 2001; Jager and Blok, 1993; Würdinger *et al.*, 1997; and Zeschmar-Lahl, 2002.

³ 40 percent of textile are assumed to be synthetic (default). Expert judgement by the authors.

⁴ This value is for wood products at the end of life. Typical dry matter content of wood at the time of harvest (that is for garden and park waste) is 40 percent. Expert judgement by the authors.

⁵ Natural rubbers would likely not degrade under anaerobic condition at SWDS (Tsuchii et al., 1985; Rose and Steinbüchel, 2005).

⁶ Metal and glass contain some carbon of fossil origin. Combustion of significant amounts of glass or metal is not common.

Souces: 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste Table2.4

² IPCC:http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_2_Ch2_Waste_Data.pdf

Sewerage and Urban Sanitation / Annex Table

(Derived	TABLE 3.3 RECOMMENDED DEFAULT METHANE GENERATION RATE (k) VALUES UNDER TIER 1 (Derived from k values obtained in experimental measurements, calculated by models, or used in greenhouse gas													
inventories and other studies) Climate Zone*														
Тупе	of Waste		Boreal and (MAT s		te			pical ¹ > 20°C)						
1)pe	or waste		Dry /PET < 1)		Wet /PET > 1)		Dry (1000 mm)	Moist and Wet (MAP ≥ 1000 mm)						
		Default	Range ²	e ² Default Range ²		Default	Range ²	Default	Range ²					
Slowly degrading	Paper/textiles waste	0.04	0.03 ^{3,5} - 0.05 ^{3,4}	0.06	0.05 - 0.07 ^{3,5}	0.045	0.04 - 0.06	0.07	0.06 - 0.085					
waste	Wood/ straw waste	0.02	0.01 ^{3,4} - 0.03 ^{6,7}	0.03	0.02 - 0.04	0.025	0.02 - 0.04	0.035	0.03 - 0.05					
Moderately degrading waste	Other (non – food) organic putrescible/ Garden and park waste	0.05	0.04 – 0.06	0.1	0.06 – 0.1 ⁸	0.065	0.05 - 0.08	0.17	0.15 - 0.2					
Rapidly Food degrading waste/Sewage waste sludge		0.06	0.05 - 0.08	0.1854	0.1 ^{3,4} - 0.2 ⁹	0.085	0.07 - 0.1	0.4	0.17 - 0.710					
Bulk Waste		0.05	0.04 - 0.06	0.09	0.08 ⁸⁻ 0.1	0.065	0.05 - 0.08	0.17	0.15 ¹¹ – 0.2					

Annex TableD-3 Default data for  $k_j^3$ 

Sources : 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste Table3.3

³ IPCC:http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_3_Ch3_SWDS.pdf

Sewerage and Urban Sanitation / Annex Table

		TABLE 2.	.1		
	MSW GENERATIO	N AND TREATMENT	DATA - REGIONA	L DEFAULTS	-
Region	MSW Generation Rate ^{1, 2, 3} (tonnes/cap/yr)	Fraction of MSW disposed to SWDS	Fraction of MSW incinerated	Fraction of MSW composted	Fraction of other MSW management, unspecified ⁴
Asia					
Eastern Asia	0.37	0.55	0.26	0.01	0.18
South-Central Asia	0.21	0.74	-	0.05	0.21
South-East Asia	0.27	0.59	0.09	0.05	0.27
Africa ⁵	0.29	0.69	-	-	0.31
Europe					
Eastern Europe	0.38	0.90	0.04	0.01	0.02
Northern Europe	0.64	0.47	0.24	0.08	0.20
Southern Europe	0.52	0.85	0.05	0.05	0.05
Western Europe	0.56	0.47	0.22	0.15	0.15
America					
Caribbean	0.49	0.83	0.02	-	0.15
Central America	0.21	0.50	-	-	0.50
South America	0.26	0.54	0.01	0.003	0.46
North America	0.65	0.58	0.06	0.06	0.29
Oceania ⁶	0.69	0.85	-	-	0.15

Annex TableD-4 Default data for  $W_v^4$ 

¹ Data are based on weight of wet waste.

² To obtain the total waste generation in the country, the per-capita values should be multiplied with the population whose waste is collected. In many countries, especially developing countries, this encompasses only urban population.

³ The data are default data for the year 2000, although for some countries the year for which the data are applicable was not given in the reference, or data for the year 2000 were not available. The year for which the data are collected, where available, is given in the Annex 2A.1.

⁴ Other, unspecified, includes data on recycling for some countries.

⁵ A regional average is given for the whole of Africa as data are not available for more detailed regions within Africa.

⁶ Data for Oceania are based only on data from Australia and New Zealand.

Sources : 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste Table2.1

⁴ IPCC:http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_2_Ch2_Waste_Data.pdf

		MSW composi		le 2.3 percent - regi	ONAL DEFAULTS				
Region	Food waste	Paper/cardboard	Wood	Textiles	Rubber/leather	Plastic	Metal	Glass	Other
Asia									
Eastern Asia	26.2	18.8	3.5	3.5	1.0	14.3	2.7	3.1	7.4
South-Central Asia	40.3	11.3	7.9	2.5	0.8	6.4	3.8	3.5	21.9
South-Eastern Asia	43.5	12.9	9.9	2.7	0.9	7.2	3.3	4.0	16.3
Western Asia & Middle East	41.1	18.0	9.8	2.9	0.6	6.3	1.3	2.2	5.4
Africa									
Eastern Africa	53.9	7.7	7.0	1.7	1.1	5.5	1.8	2.3	11.6
Middle Africa	43.4	16.8	6.5	2.5		4.5	3.5	2.0	1.5
Northern Africa	51.1	16.5	2	2.5		4.5	3.5	2	1.5
Southern Africa	23	25	15						
Western Africa	40.4	9.8	4.4	1.0		3.0	1.0		
Europe									
Eastern Europe	30.1	21.8	7.5	4.7	1.4	6.2	3.6	10.0	14.6
Northern Europe	23.8	30.6	10.0	2.0		13.0	7.0	8.0	
Southern Europe	36.9	17.0	10.6						
Western Europe	24.2	27.5	11.0						
Oceania									
Australia and New Zealand	36.0	30.0	24.0						
Rest of Oceania	67.5	6.0	2.5						
America									
North America	33.9	23.2	6.2	3.9	1.4	8.5	4.6	6.5	9.8
Central America	43.8	13.7	13.5	2.6	1.8	6.7	2.6	3.7	12.3
South America	44.9	17.1	4.7	2.6	0.7	10.8	2.9	3.3	13.0
Caribbean	46.9	17.0	2.4	5.1	1.9	9.9	5.0	5.7	3.5

Annex TableD-5 Default data for  $w_j^5$ 

Sources : 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste Table2.3

⁵ IPCC:http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_2_Ch2_Waste_Data.pdf

	THINCK TUDICE 0	County 5	peen		2 0111	ssion nettor of gire power		Carbon Emission Factor							
Region	Country	Local Region		Emission BM ²		Source / PDD Title	Registration Date		Emission BM ²		Source 🗸 PDD Title	Registration Date			
Published Values in th	he Target Country										•				
		North China	1.007	0.780	0.894										
		North East Chine	1.129	0.724	0.927										
		East Chine	0.883	0.683	0.783	China'sRegional Grid Baseline Emission Factors 2009 (Chinese Version),									
	China	Central Chine	1.126	0.580	0.853	Department of Climate Change,NDRC	2009/9/3	1.033	0.649	0.840	Institute for Global Environmental Strategies	2011/4/23			
		North West Chine	1.025	0.643	0.834	http://cdm.ccchina.gov.cn/english/NewsInfo.asp?NewsId=3840									
		South Chine	0.999	0.577	0.788										
		Hainan Province	0.815	0.730	0.773										
Asian and Oceanian		India	0.980	0.800	0.890	Baseline Carbon Dioxide Emission Database Version 6.0 - LATEST Central									
	India	NEWNE	0.990	0.810	0.900	Electricity Authority, Ministry of Power, Government of India	2010/3/11	1.009	0.598	0.906	Institute for Global Environmental Strategies	2011/4/9			
		South	0.940	0.760	0.850	http://www.cea.nic.in/reports/planning/cdm_co2/cdm_co2.htm		_							
	Indonesia	Sumatera	-	-		Baseline Emission Factor (Updated)	2009/2/13	0.873	0.560	0.717	Institute for Global Environmental Strategies	2011/2/12			
		JAMALI	-	-	0.891	http://dna-cdm.menlh.go.id/id/database/									
		Peninsular Malaysia	0.603	0.741	0.672	Study on Grid Connected Electricity Baselines in Malaysia Year:2008, CDM		_							
	Malaysia	Sarawak	0.813	0.837	0.825	Baseline 2008(339KB), CDM Energy Secretariat	2010/3/1	0.828	0.844	0.836	Institute for Global Environmental Strategies	2011/2/26			
		Sabah	0.705	0.597	0.651	http://cdm.eib.org.my/subindex.php?menu=9&submenu=85		_							
Latin America and Caribbean	Argentina	Argentina	0.516	0.335	0.425	MODELO DE CALCULO DEL FACTOR DE EMISIONES DE CO2 DE LA RED, ARGENTINA DE ENERGIA ELECTRICA. A NO 2006. http://www.ambiente.gov.ar/?idarticulo=7362	2007/8/22	0.484	0.362	0.423	Institute for Global Environmental Strategies	2010/12/18			
Kyoto Mechanisms	1														
	Republic of Korea	-	0.682	0.393	0.610	3MW Shinan Wind power project	2010/4/18	0.682	0.394	0.610	Institute for Global Environmental Strategies	2011/2/4			
	Mongol	-	1.050	1.070	1.060	Durgun hydropower project in Mongolia	2007/3/23	1.150	1.170	-	Institute for Global Environmental Strategies	2009			
	Bangladesh	-	0.670	0.712	0.691	Composting of Organic Waste in Dhaka	2006/5/18	0.670	0.712	0.691	Institute for Global Environmental Strategies	2006/5/18			
	Bhutan,India	-	1.160	0.850	1.004	Dagachhu Hydropower Project, Bhutan	2010/2/26	1.160	0.850	1.004	Institute for Global Environmental Strategies	2010/2/10			
Asian and Oceanian	Philippines	-	0.549	0.329	0.439	Republic Cement Corporation - Teresa Plant Waste Heat Recovery Project	2011/3/29	0.549	0.329	0.439	Institute for Global Environmental Strategies	2011/3/29			
	Vietnam	-	0.635	0.502	0.568	Lao Cai - Lai Chau - Kontum Bundled Hydropower Project	2011/3/24	0.620	0.451	0.536	Institute for Global Environmental Strategies	2011/4/8			
	Thailand	-	0.512	0.546		UB Tapioca Starch Wastewater Treatment Project	2011/3/22	0.507	0.554	0.530	Institute for Global Environmental Strategies	2011/4/9			
	Sri Lanka	-	0.707	0.646		Adavikanda, Kuruwita Division Mini Hydro Power Project	2010/8/24	0.707	0.646	0.677	Institute for Global Environmental Strategies	2010/8/24			
	Pakistan	-	0.724	0.242		Biogas-based Cogeneration Project at Shakarganj Mills Ltd., Jhang, Pakistan	2010/12/2	0.724	0.242	0.483	Institute for Global Environmental Strategies	2010/12/2			
	United Arab Emirates	-	0.938	0.708	0.881	Abu Dhabi solar thermal power project, Masdar	2009/8/13	0.938	0.708	0.881	Institute for Global Environmental Strategies	2009/8/13			
Central-Eastern Europe,Central Asia	Uzbekistan	-	-	-	0.617	Akhangaran Landfill Gas Capture Project in Tashkent	2009/12/19				Institute for Global Environmental Strategies				
Europe, Gentral Asia	Israel	-	0.797	0.695	0.746	Evlayim Landfill Project	2011/2/12	0.797	0.695	0.746	Institute for Global Environmental Strategies	2011/2/12			
	Brasil	-	0.487	0.078	0.282	CDM project of Moinho and Barracao Small Hydropower Plant	2010/1/11	0.291	0.078	0.184	Institute for Global Environmental Strategies	2011/1/12			
	Columbia	-	0.469	0.237	0.353	Amaime Minor Hydroelectric Power Plant	2009/10/29	0.471	0.212	0.342	Institute for Global Environmental Strategies	2011/1/17			
	Uruguay	-	0.338	0.181	0.259	Fray Bentos Biomass Power Generation Project (FBBP Project)	2008/5/8	0.580	0.733	0.618	Institute for Global Environmental Strategies	2011/1/29			
	Bolivia	-	0.730	0.349	0.540	Conversion of existing open cycle gas turbine to combined cycle at Guaracachi power station, Santa Cruz, Bolivia	2010/4/13	0.730	0.349	0.540	Institute for Global Environmental Strategies	2010/4/13			
	Argentina	-	0.510	0.347	0.429	Biogas recovery and Thermal Power production at CITRUSVIL Citric Plant in Tucumán, Argentina	2010/12/1								
Latin America and	Chile	-	0.718	0.490	0.604	Trueno River Hydroelectric Power Plant	2011/4/1	0.718	0.490	0.604	Institute for Global Environmental Strategies	2011/4/9			
Caribbean	Costa Rica	-	0.485	0.098	0.388	Guanacaste Wind Farm	2011/2/11	0.485	0.098	0.388	Institute for Global Environmental Strategies	2011/2/11			
	Honduras	-	0.629	0.559	0.594	Mezapa Small-Scale Hydroelectric Project	2011/2/8	0.629	0.559	0.594	Institute for Global Environmental Strategies	2010/3/8			
	Ecuador	-	0.732	0.389	0.646	Landfill biogas extraction and combustion plant in El Inga I and II landfill (Quito, Ecuador)	2011/1/8	0.731	0.548	0.640	Institute for Global Environmental Strategies	2011/1/22			
	Mexico	-	0.715	0.347	0.531	Alternative fuels and biomass project at Zapotiltic cement plant	2010/12/25	0.704	0.375	0.539	Institute for Global Environmental Strategies	2011/1/4			
	Peru	-	0.720	0.480	0.600	Yanapampa Hydroelectric Power Plant	2010/12/18	0.720	0.480	0.600	Institute for Global Environmental Strategies	2010/12/18			
	Dominican Republic	-	0.619	0.444	0.532	Bionersis project on La Duquesa landfill, Dominican Republic	2010/4/9	0.619	0.444	0.532	Institute for Global Environmental Strategies	2010/4/8			
	El Salvador	-	0.716	0.718	0.717	El Chaparral Hydroelectric Project (El Salvador)	2010/3/1	0.716	0.718	0.717	Institute for Global Environmental Strategies	2010/3/1			
	Morocco	-	0.734	0.752	0.743	Essaouira wind power project	2005/10/29	0.734	0.752	0.743	Institute for Global Environmental Strategies	2005/10/29			
	Kenya	-	0.710	0.480		Olkaria 🎞 Phase 2 Geothermal Expansion Project in Kenya	2010/3/4	0.761	0.426	0.594	Institute for Global Environmental Strategies	2010/12/4			
	South Africa	-	0.990	1.050		Bethlehem Hydroelectric project	2009/10/8	0.990	1.050	1.020	Institute for Global Environmental Strategies	2010/10/26			
	Uganda	-	0.569	0.677		Bugoye 13.0 MW Run-of-River Hydropower Project	2011/1/1	0.569	0.677	0.623	Institute for Global Environmental Strategies	2011/1/1			
Africa	Senegal	-	0.701	0.651		Energy efficiency improvement Project of CSS sugar mill	2010/12/28	0.701	0.651	0.676	Institute for Global Environmental Strategies	2010/12/28			
	Nigeria	-	0.670	0.580		Municipal Solid Waste (MSW) Composting Project in Ikorodu, Lagos State	2010/12/15	0.670	0.580	0.630	Institute for Global Environmental Strategies	2010/12/15			
	Egypt	-	0.557	0.428	0.525	Zafarana 8 - Wind Power Plant Project, Arab Republic of Egypt	2010/9/23	0.557	0.428	0.525	Institute for Global Environmental Strategies	2010/9/23			
	Madagascar	-	0.518	0.579		Small-Scale Hydropower Project Sahanivotry in Madagascar	2010/8/28	0.518	0.579	0.548	Institute for Global Environmental Strategies	2010/8/28			
	Rwanda	-	0.661	0.647	0.654	Rwanda Electrogaz Compact Fluorescent Lamp (CFL) distribution project	2010/5/30	0.661	0.647	0.654	Institute for Global Environmental Strategies	2010/5/30			

Unit : t-CO2/MWh

						on factor of grid power (2)					O2/MWh	
Region	Country	Local Region		Emission BM ²		Source / PDD Title	Latest Year		Emission BM ²		Source / PDD Title	Registration Dat
ternational Energy A	lgency		UNI		OW				DIM			1
	Brunei	-	-	-	0.755	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Cambodia	-	-	-	1.160	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Taiwan	-	-	-	0.650	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	North Korea	-	-	_	0.481	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
Asian and Oceanian	Myanmar	-	-	_	0.285	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Nepal	-	-	-	0.003	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Singapore	-	-	-	0.531	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.502	0.411	-	Institute for Global Environmental Strategies	2010
	Fiji	-	-	-	-	-	-	0.660	0.650	0.656	Institute for Global Environmental Strategies	2005/10/1
	Papua New Guinea	-	-	-	-	-	-	0.704	0.653	0.679	Institute for Global Environmental Strategies	2006/5/29
	Bahrain	-	-	-	0.651	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Iran	-	-	-	0.582	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Iraq	-	-	-	0.812	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Jordan	-	-	-	0.589	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.675	0.551	0.613	Institute for Global Environmental Strategies	2009/12/11
	Kuwait	-	-	-	0.614	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
Middle East	Lebanon	-	-	-	0.705	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Oman	_	-	-	0.858	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Qatar	-	-	-	0.534	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Saudi Arabia	-	-	-	0.754	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Syria	-	-	-	0.613	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Yemen	-	-	-	0.636	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Albania	-	-	-	0.014	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Bosnia and Herzegovina	-	-	-	0.928	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Bulgaria	-	-	-	0.489	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Croatia	-	-	-	0.341	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Cyprus	-	-	-	0.759	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.846	0.735	0.818	Institute for Global Environmental Strategies	2010/2/7
Europe	Gibraltar	-	-	-	0.757	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Macedonia	-	-	-	0.786	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.772	1.004	0.888	Institute for Global Environmental Strategies	2009/12/4
	Malta	-	-	-	0.849	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Romania	-	-	-	0.417	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Serbia	-	-	-	0.671	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Slovenia	-	-	-	0.329	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Armenia	-	-	-	0.165	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.535	0.398	0.437	Institute for Global Environmental Strategies	2009/7/10
	Azerbaijan	-	-	-	0.416	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Belarus	-	-	-	0.303	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Estonia	-	-	-	0.752	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Georgia	-	-	-	0.081	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	-	-	0.093	Institute for Global Environmental Strategies	2007/4/6
	Kazakhstan	-	-	-	0.439	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
ormer Soviet Union	Kyrgyzstan	-	-	-	0.094	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Latvia	-	-	-	0.162	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Lithuania	-	-	-	0.114	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Moldova	-	-	-	0.468	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Russia	-	-	-	0.326	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Tajikistan	-	-	-	0.031	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Turkmenistan	-	-	-	0.795	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Ukraine	-	-	-	0.386	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Cuba	-	-	-	0.913	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.808	0.875	0.841	Institute for Global Environmental Strategies	2009/2/27
	Guatemala	-	-	-	0.336	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.811	0.468	0.640	Institute for Global Environmental Strategies	2008/12/23
	Haiti	-	-	-	0.480	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Jamaica	-	-	-	0.785	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.893	0.776	0.834	Institute for Global Environmental Strategies	2006/3/19
Latin America and	Antilles	-	-	-	0.707	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
Caribbean	Nicaragua	-	-	-	0.477	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.754	0.589	0.713	Institute for Global Environmental Strategies	2009/4/12
	Panama	-	-	-	0.273	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0.713	0.503	0.660	Institute for Global Environmental Strategies	2009/2/23
	Trinidad and Tobago	-	-	-	0.687	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Venezuela	-	-	-	0.203	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008					
	Guyana	_	-	_	_		_	0.948	_	0.948	Institute for Global Environmental Strategies	2008/5/4

## Annex TableD-6 County-specific CO₂ emission factor of grid power (2)

D :	0.1	Local Region	Carbon	Emission	Factor	Source / PDD Title	Latest Year	C	arbon	Emission	Factor	Source / PDD Title	D
Region	Country	Local Region	OM ¹	BM ²	CM ³	Source / PDD Title	Latest Year	(	DM ¹	BM ²	CM ³	Source / PDD Title	Registration Date
International Energy /	Agency												
	Algeria	-	-	-	0.596	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
	Angora	-	-	-	0.038	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
	Benin	-	-	-	0.697	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
	Botswana	-	-	-	1.789	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
	Cameroon	-	-	-	0.230	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
	Congo	-	-	-	0.108	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
	Cote d'Ivoire	-	-	-	0.449	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008	0	713	0.661	0.687	Institute for Global Environmental Strategies	2010/11/25
	Eritrea	-	-	-	0.669	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
	Ethiopia	-	-	-	0.119	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
	Gabon	-	-	-	0.401	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
Africa	Ghana	-	-	-	0.214	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
Arrica	Libya	-	-	-	0.885	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
	Morocco	-	-	-	0.718	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
	Mozambique	-	-	-	0.000	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
	Namibia	-	-	-	0.424	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
	Sudan	-	-	-	0.609	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
	Tanzania	-	-	-	0.242	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
	Togo	-	-	-	0.206	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
	Tunisia	-	-	-	0.522	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008		_				
	Zambia	-	-	-	0.003	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
	Zimbabwe	-	-	-	0.619	IEA "CO2 EMISSIONS FROM FUEL CONBUSTION, 2010 EDITION"	2008						
	Mali,Senegal,Mauritania	-	-	-	-	-	-	0	.518	0.647	0.582	Institute for Global Environmental Strategies	2010/5/6

Unit : t-CO2/MWh

#### Annex TableD-6 County-specific CO₂ emission factor of grid power (3)

4-221

1) OM:Operating Margin Emission factor of existing plants

BM:Build Margin Emission factor of plants built recently
 CM: Combined margin Average of emission factor of OM and BM

DEFAULT	I NET CALORIFIC VALUES (NCVS) AND LOWE	ABLE 1.2 R AND UPPER LIMITS OF TH	HE 95% CONFIDENC	E INTERVALS ¹
Fuel type Er	nglish description	Net calorific value (TJ/Gg)	Lower	Upper
Crude Oil		42.3	40.1	44.8
Orimulsion		27.5	27.5	28.3
Natural Gas I	Liquids	44.2	40.9	46.9
	Motor Gasoline	44.3	42.5	44.8
Gasoline	Aviation Gasoline	44.3	42.5	44.8
Gas	Jet Gasoline	44.3	42.5	44.8
Jet Kerosene	1	44.1	42.0	45.0
Other Kerose	ene	43.8	42.4	45.2
Shale Oil		38.1	32.1	45.2
Gas/Diesel C	Dil	43.0	41.4	43.3
Residual Fue	4 Oil	40.4	39.8	41.7
Liquefied Pe	troleum Gases	47.3	44.8	52.2
Ethane		46.4	44.9	48.8
Naphtha		44.5	41.8	46.5
Bitumen		40.2	33.5	41.2
Lubricants		40.2	33.5	42.3
Petroleum Coke		32.5	29.7	41.9
Refinery Fee	dstocks	43.0	36.3	46.4
	Refinery Gas ²	49.5	47.5	50.6
Oil	Paraffin Waxes	40.2	33.7	48.2
Other Oil	White Spirit and SBP	40.2	33.7	48.2
õ	Other Petroleum Products	40.2	33.7	48.2
Anthracite		26.7	21.6	32.2
Coking Coal		28.2	24.0	31.0
Other Bitumi		25.8	19.9	30.5
Sub-Bitumin		18.9	11.5	26.0
Lignite		11.9	5.50	21.6
Oil Shale and	1 Tar Sands	8,9	7.1	11.1
Brown Coal		20.7	15.1	32.0
Patent Fuel		20.7	15.1	32.0
	Coke Oven Coke and Lignite Coke	28.2	25.1	30.2
Coke	Gas Coke	28.2	25.1	30.2
Coal Tar ³	Cas Conc	28.0	14.1	55.0
	Gas Works Gas 4	38.7	19.6	77.0
Derived	Coke Oven Gas ⁵	38.7	19.6	77.0
Gases	Blast Furnace Gas 6	2.47	1.20	5.00
	Oxygen Steel Furnace Gas ⁷	7.06	3.80	15.0
Natural Gas	ongen steer i unace das	48.0	46.5	50.4
	astes (non-biomass fraction)	10	7	18
Industrial Wa	· · · · · · · · · · · · · · · · · · ·	NA	NA	NA
	asues	40.2	20.3	80.0
Waste Oil ⁸ Peat		-10.2	20.3	00.0

# Annex TableD-7 Default data for $NCV_i^6$

Sources: 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy Table 1.2

 $^{^{6}\} IPCC:\ http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_1_Ch1_Introduction.pdf$ 

	DEFAU	LT EMISSION F.	ACTORS FOR S greenhouse		OMBUSTION			STRIES		
CO2 CH4 N20										
	Fuel	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper
Crud	e Oil	73 300	71 100	75 500	r 3	1	10	0.6	0.2	2
Orin	ulsion	r 77 000	69 300	85 400	r 3	1	10	0.6	0.2	2
Natu	ral Gas Liquids	r 64 200	58 300	70 400	r 3	1	10	0.6	0.2	2
	Motor Gasoline	r 69 300	67 500	73 000	r 3	1	10	0.6	0.2	2
Gasoline	Aviation Gasoline	r 70 000	67 500	73 000	r 3	1	10	0.6	0.2	2
Gasc	Jet Gasoline	r 70 000	67 500	73 000	r 3	1	10	0.6	0.2	2
Jet K	erosene	r 71 500	69 700	74 400	r 3	1	10	0.6	0.2	2
Othe	r Kerosene	71 900	70 800	73 700	r 3	1	10	0.6	0.2	2
Shale	e Oil	73 300	67 800	79 200	r 3	1	10	0.6	0.2	2
Gas/	Diesel Oil	74 100	72 600	74 800	r 3	1	10	0.6	0.2	2
Resi	dual Fuel Oil	77 400	75 500	78 800	r 3	1	10	0.6	0.2	2
Liqu	efied Petroleum Gases	63 100	61 600	65 600	r 1	0.3	3	0.1	0.03	0.3
Etha		61 600	56 500	68 600	r 1	0.3	3	0.1	0.03	0.3
Napl	ntha	73 300	69 300	76 300	r 3	1	10	0.6	0.2	2
Bitu		80 700	73 000	89 900	r 3	1	10	0.6	0.2	2
	icants	73 300	71 900	75 200	r 3	1	10	0.6	0.2	2
	leum Coke	r 97 500	82 900	115 000	r 3	1	10	0.6	0.2	2
	nery Feedstocks	73 300	68 900	76 600	r 3	1	10	0.6	0.2	2
	Refinery Gas	n 57 600	48 200	69 000	r 1	0.3	3	0.1	0.03	0.3
	Paraffin Waxes	73 300	72 200	74 400	r 3	1	10	0.6	0.03	2
Oil	White Spirit and SBP	73 300	72 200	74 400	r 3	1	10	0.6	0.2	2
Other Oil	Other Petroleum Products	73 300	72 200	74 400	r 3	1	10	0.6	0.2	2
-	racite	98 300	94 600	101 000	1	0.3	3	r 1.5	0.2	5
					1	0.3	3		0.5	5
	ng Coal	94 600	87 300	101 000						-
	r Bituminous Coal	94 600	89 500	99 700	1	0.3	3	r 1.5	0.5	5
	Bituminous Coal	96 100	92 800	100 000	1	0.3	3	r 1.5	0.5	5
Lign		101 000	90 900	115 000	1	0.3	3	r 1.5	0.5	5
	shale and Tar Sands	107 000	90 200	125 000	1	0.3	3	r 1.5	0.5	5
	vn Coal Briquettes	97 500	87 300	109 000	n 1	0.3	3	r 1.5	0.5	5
Pater	nt Fuel	97 500	87 300	109 000	1	0.3	3	n 1.5	0.5	5
ke	Coke Oven Coke and Lignite Coke	r 107 000	95 700	119 000	1	0.3	3	r 1.5	0.5	5
Coke	Gas Coke	r 107 000	95 700	119 000	r 1	0.3	3	0.1	0.03	0.3
Coal	Tar	n 80 700	68 200	95 300	n 1	0.3	3	r 1.5	0.5	5
s	Gas Works Gas	n 44 400	37 300	54 100	n 1	0.3	3	0.1	0.03	0.3
Gase	Coke Oven Gas	n 44 400	37 300	54 100	r 1	0.3	3	0.1	0.03	0.3
Derived Gases	Blast Furnace Gas	n 260 000	219 000	308 000	r 1	0.3	3	0.1	0.03	0.3
Der	Oxygen Steel Furnace Gas	n 182 000	145 000	202 000	r 1	0.3	3	0.1	0.03	0.3
Natu	ral Gas	56 100	54 300	58 300	1	0.3	3	0.1	0.03	0.3

## Sewerage and Urban Sanitation / Annex Table

Annex TableD-8 Default data for  $COEF_i^7$ 

⁷ IPCC: http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf

		Ī	CO ₂			CH ₄		Ī	$N_2O$	
	Fuel	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Uppe
Munic fractio	ipal Wastes (non-biomass n)	n 91 700	73 300	121 000	30	10	100	4	1.5	15
Indust	rial Wastes	n 143 000	110 000	183 000	30	10	100	4	1.5	15
Waste	Oils	n 73 300	72 200	74 400	30	10	100	4	1.5	15
Peat		106 000	100 000	108 000	n 1	0.3	3	n 1.5	0.5	5
	Wood / Wood Waste	n 112 000	95 000	132 000	30	10	100	4	1.5	15
els	Sulphite lyes (Black Liquor) ^a	n 95 300	80 700	110 000	n 3	1	18	n 2	1	21
Solid Biofuels	Other Primary Solid Biomass	n 100 000	84 700	117 000	30	10	100	4	1.5	15
Soli	Charcoal	n 112 000	95 000	132 000	200	70	600	4	1.5	15
	Biogasoline	n 70 800	59 800	84 300	r 3	1	10	0.6	0.2	2
Liquid Biofuels	Biodiesels	n 70 800	59 800	84 300	r 3	1	10	0.6	0.2	2
Liqu Biot	Other Liquid Biofuels	n 79 600	67 100	95 300	r 3	1	10	0.6	0.2	2
	Landfill Gas	n 54 600	46 200	66 000	r 1	0.3	3	0.1	0.03	0.3
Gas Biomass	Sludge Gas	n 54 600	46 200	66 000	r 1	0.3	3	0.1	0.03	0.3
Gas Bior	Other Biogas	n 54 600	46 200	66 000	r 1	0.3	3	0.1	0.03	0.3
Other non- fossil fuels	Municipal Wastes (biomass fraction)	n 100 000	84 700	117 000	30	10	100	4	1.5	15

r indicates an emission factor that has been revised since the 1996 Guidelines

Sources : 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy Table2.2

	DEFAULT EMISSION FACTO			TABLE 2.3 MBUSTION IN <u>MA</u> per TJ on a N			TRIES ANI	O CONSTRUC	<u>TION</u>	
			CO2		Ī	CH ₄		N ₂ O		
	Fuel	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper
Crude Oil		73 300	71 100	75 500	r 3	1	10	0.6	0.2	2
Orimulsion		r 77 000	69 300	85 400	r 3	1	10	0.6	0.2	2
Natural Gas	Liquids	r 64 200	58 300	70 400	r 3	1	10	0.6	0.2	2
	Motor Gasoline	r 69 300	67 500	73 000	r 3	1	10	0.6	0.2	2
Gasoline	Aviation Gasoline	r 70 000	67 500	73 000	r 3	1	10	0.6	0.2	2
Gase	Jet Gasoline	r 70 000	67 500	73 000	r 3	1	10	0.6	0.2	2
Jet Kerosen	e	71 500	69 700	74 400	r 3	1	10	0.6	0.2	2
Other Kero	sene	71 900	70 800	73 700	r 3	1	10	0.6	0.2	2
Shale Oil		73 300	67 800	79 200	r 3	1	10	0.6	0.2	2
Gas/Diesel	Oil	74 100	72 600	74 800	r 3	1	10	0.6	0.2	2
Residual Fu	iel Oil	77 400	75 500	78 800	r 3	1	10	0.6	0.2	2
Liquefied P	etroleum Gases	63 100	61 600	65 600	r 1	0.3	3	0.1	0.03	0.3
Ethane		61 600	56 500	68 600	r 1	0.3	3	0.1	0.03	0.3
Naphtha		73 300	69 300	76 300	r 3	1	10	0.6	0.2	2
Bitumen		80 700	73 000	89 900	r 3	1	10	0.6	0.2	2
Lubricants		73 300	71 900	75 200	r 3	1	10	0.6	0.2	2
Petroleum (	Petroleum Coke		82 900	115 000	r 3	1	10	0.6	0.2	2
Refinery Fe	edstocks	73 300	68 900	76 600	r 3	1	10	0.6	0.2	2
	Refinery Gas	n 57 600	48 200	69 000	r 1	0.3	3	0.1	0.03	0.3
	Paraffin Waxes	73 300	72 200	74 400	r 3	1	10	0.6	0.2	2
lio	White Spirit and SBP	73 300	72 200	74 400	r 3	1	10	0.6	0.2	2
Other Oil	Other Petroleum Products	73 300	72 200	74 400	r 3	1	10	0.6	0.2	2
Anthracite		98 300	94 600	101 000	10	3	30	r 1.5	0.5	5
Coking Coa	1	94 600	87 300	101 000	10	3	30	r 1.5	0.5	5
	ninous Coal	94 600	89 500	99 700	10	3	30	r 1.5	0.5	5
Sub-Bitumi		96 100	92 800	100 000	10	3	30	r 1.5	0.5	5
Lignite	lious cour	101 000	90 900	115 000	10	3	30	r 1.5	0.5	5
-	nd Tar Sands	107 000	90 200	125 000	10	3	30	r 1.5	0.5	5
Brown Coa		n 97 500	87 300	109 000	n 10	3	30		0.5	5
Patent Fuel	-	97 500	87 300	109 000	10	3	30	n 1.5 r 1.5	0.5	5
	Coke Oven Coke and Lignite Coke	r 107 000	95 700	119 000	10	3	30	r 1.5	0.5	5
Coke	Gas Coke	r 107 000	95 700	119 000		0.3	3	0.1	0.03	0.3
	Gas Coke	n 80 700			r 1	0.3	30		0.03	5
Coal Tar	Gas Works Gas	n 80 700 n 44 400	68 200 37 300	95 300 54 100	n 10 r 1	0.3	30	n 1.5 0.1	0.03	0.3
Ises										
d Ga	Coke Oven Gas	n 44 400	37 300	54 100	r 1	0.3	3	0.1	0.03	0.3
Derived Gases	Blast Furnace Gas	n260 000	219 000	308 000	r 1	0.3	3	0.1	0.03	0.3
	Oxygen Steel Furnace Gas	n 182 000	145 000	202 000	r 1	0.3	3	0.1	0.03	0.3
Natural Gas	5	56 100	54 300	58 300	r 1	0.3	3	0.1	0.03	0.3

			CO ₂		Ī	CH ₄		[	$N_2O$	
	Fuel	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper	Default Emission Factor	Lower	Upper
Municipal	Wastes (non-biomass fraction)	n 91 700	73 300	121 000	30	10	100	4	1.5	15
Industrial V	Wastes	n143 000	110 000	183 000	30	10	100	4	1.5	15
Waste Oils	i i	n 73 300	72 200	74 400	30	10	100	4	1.5	15
Peat		106 000	100 000	108 000	n 2	0.6	6	n 1.5	0.5	5
	Wood / Wood Waste	n 112 000	95 000	132 000	30	10	100	4	1.5	15
Solid Biofuels	Sulphite lyes (Black Liquor) ^a	n 95 300	80 700	110 000	n 3	1	18	n 2	1	21
d Bio	Other Primary Solid Biomass	n 100 000	84 700	117 000	30	10	100	4	1.5	15
Soli	Charcoal	n 112 000	95 000	132 000	200	70	600	4	1.5	15
	Biogasoline	n 70 800	59 800	84 300	r 3	1	10	0.6	0.2	2
Liquid Biofuels	Biodiesels	n 70 800	59 800	84 300	r 3	1	10	0.6	0.2	2
Liqu Biof	Other Liquid Biofuels	n 79 600	67 100	95 300	r 3	1	10	0.6	0.2	2
	Landfill Gas	n 54 600	46 200	66 000	r 1	0.3	3	0.1	0.03	0.3
Gas Biomass	Sludge Gas	n 54 600	46 200	66 000	r 1	0.3	3	0.1	0.03	0.3
Gas Bion	Other Biogas	n 54 600	46 200	66 000	r 1	0.3	3	0.1	0.03	0.3
Other non-fossil fuels	Municipal Wastes (biomass fraction)	n100 000	84 700	117 000	30	10	100	4	1.5	15

Sources : 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy Table2.3

DEFAU	TABLE 4.1 DEFAULT EMISSION FACTORS FOR $CH_4$ and $N_2O$ emissions from Biological treatment of waste										
Type of	-	ion Factors raste treated)	-	ion Factors raste treated)	Demoche						
biological treatment	on a dry weight basis	on a wet weight basis	on a dry weight basis	on a wet weight basis	Remarks						
Composting	10 (0.08 - 20)	4 (0.03 - 8)	0.6 (0.2 - 1.6)	0.3 (0.06 - 0.6)	Assumptions on the waste treated: 25-50% DOC in dry matter, 2% N in dry matter, moisture content 60%.						
Anaerobic digestion at biogas facilities21Assumed negligibleThe emission factors for dry was are estimated from those for wet waste assuming a moisture control of 60% in wet waste.											
	M.(2005) Personal ( Vesterinen (1996).	communication; Be	ck-Friis (2002); Det	zel <i>et al.</i> (2003); Pe	tersen <i>et al.</i> 1998; Hellebrand 1998;						

# Annex TableD-9 Default data for $EF_{c,CH4}$ , $EF_{a,CH4}^{8}$

Sources: 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste Table4.1

 $[\]label{eq:linear} {}^8\ IPCC: http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_4_Ch4_Bio_Treat.pdf$ 

TABLE 6.3 DEFAULT MCF VALUES FOR DOMESTIC WASTEWATER						
Type of treatment and discharge pathway or system	Comments	MCF ¹	Range			
Untreated system						
Sea, river and lake discharge	Rivers with high organics loadings can turn anaerobic.	0.1	0 - 0.2			
Stagnant sewer	Open and warm	0.5	0.4 - 0.8			
Flowing sewer (open or closed)	Fast moving, clean. (Insignificant amounts of CH ₄ from pump stations, etc)	0	0			
Treated system						
Centralized, aerobic treatment plant	Must be well managed. Some CH ₄ can be emitted from settling basins and other pockets.	0	0 - 0.1			
Centralized, aerobic treatment plant	Not well managed. Overloaded.	0.3	0.2 - 0.4			
Anaerobic digester for sludge	CH ₄ recovery is not considered here.	0.8	0.8 - 1.0			
Anaerobic reactor	CH ₄ recovery is not considered here.	0.8	0.8 - 1.0			
Anaerobic shallow lagoon	Depth less than 2 metres, use expert judgment.	0.2	0 - 0.3			
Anaerobic deep lagoon	Depth more than 2 metres	0.8	0.8 - 1.0			
Septic system	Half of BOD settles in anaerobic tank.	0.5	0.5			
Latrine	Dry climate, ground water table lower than latrine, small family (3-5 persons)	0.1	0.05 - 0.15			
Latrine	Dry climate, ground water table lower than latrine, communal (many users)	0.5	0.4 - 0.6			
Latrine	Wet climate/flush water use, ground water table higher than latrine	0.7	0.7 - 1.0			
Latrine	Regular sediment removal for fertilizer	0.1	0.1			

 $Sewerage and Urban Sanitation / Annex Table Annex TableD-10 Default data for <math>MCF^{9}$ 

Sources : 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste Table6.3

 $^{^9\} IPCC:http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_6_Ch6_Wastewater.pdf$ 

Sewerage and Urban Sanitation / Annex Table

TABLE 5.6           Default N2O emission factors for different types of waste and management practices								
Technology / Management practice	Emission factor (g N ₂ O / t waste)	weight basis						
continuous and semi-continuous incinerators	50	wet weight						
batch-type incinerators	60	wet weight						
open burning	150	dry weight						
all types of incineration	100	wet weight						
all types of incineration	450	wet weight						
incineration	990	dry weight						
memeration	900	wet weight						
	SION FACTORS FOR DIFFERENT TYPES OF WASTE A Technology / Management practice continuous and semi-continuous incinerators batch-type incinerators open burning all types of incineration	SION FACTORS FOR DIFFERENT TYPES OF WASTE AND MANAGEMENT PRACETechnology / Management practiceEmission factor (g N2O / t waste)continuous and semi-continuous incinerators50batch-type incinerators60open burning150all types of incineration100all types of incineration450incineration990						

Annex TableD-11	Default data for $EF_{N20}^{I0}$
-----------------	----------------------------------

Sources: 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste, Table 5.6

TABLE 5.3CH4 EMISSION FACTORS FOR INCINERATION OF MSW							
Type of incineration	/technology	CH ₄ Emission Factors (kg/Gg waste incinerated on a wet weight basis)					
Continuous incineration	stoker	0.2					
	fluidised bed Note1	~0					
Semi-continuous incineration	stoker	6					
Semi-continuous incineration	fluidised bed	188					
Datch true incincultion	stoker	60					
Batch type incineration	fluidised bed	237					

Annex TableD-12 Default data for  $EF_{CH4}^{II}$ 

Source: Greenhouse Gas Inventory Office of Japan, GIO 2004.

Sources : 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste, Table5.3

¹⁰ IPCC:http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_5_Ch5_IOB.pdf
¹¹ IPCC:http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_5_Ch5_IOB.pdf

Emissions from residual	waste from anaerobic digester, gasifier, and processing/combustion of RDF/stabilized biomass or compost
in case it is disposed of in l	andfills as leakage of intermediate treatment shall be calculated as follows:
	$L_{r,y} = S_{LE} \times MB_{r,y}$
$L_{r,y}$	: leakage emissions from the residual waste from the anaerobic digester, the
	gasifier, the processing/combustion of RDF/stabilized biomass, or compost in case it is disposed of
	in landfills in year y
$S_{LE}$	: Fraction of the residual waste under anaerobic condition in total residual the waste (-)
$MB_{r,y}$	: $CH_4$ puroduced in landfill in case all the residual waste is under anaerobic condition $(t-CO_2/y)$
$S_{LE}$ shall be calculated as	follows:
	$S_{LE} = S_{OD,LE} / S_{LE,total}$
S _{OD,LE}	: number of samples per year with an oxygen deficiency (i.e. oxygen content below 10%)
$S_{LE,total}$	: total number of samples taken per year, where Stotal should be chosen in a manner that ensures the
	estimation of Sa with 20% uncertainty at a 95%
	confidence level

 $MB_{ry}$  shall be calculated as follws:

$$MB_{r,y} = \Phi \times (1 - OX) \times \frac{16}{12} \times F \times DOC_f \times MCF_p \times GWP_{CH4} \times \sum_{x=1}^{y} \sum_{i}^{n} \left\{ A_{i,x} \times DOC_j \times e^{-\frac{k}{y-x}} \times (1 - e^{-kj}) \right\}$$

$$A_{i,y} \qquad : \text{ Quantity of the residual waste (t)}$$

$$i \qquad : \text{ Waste type}$$

Refer to above tool to determine  $MB_{\nu}$  for information and data acquisition methods of the other parameters.

Source: AM0025 (Ver.12) : Avoided emissions from organic waste through alternative waste treatment processes, UNFCCC

	01 1	Default DOC(-)			
	Sludge type	Wet matter	Dry matter		
Domestic sludge		0.05	0.50		
Industrial	Rough default	0.09	0.35		
sludge	Pulp and paper industry	-	0.27		
	Food industry	-	0.30		
	Chemical industry	-	0.52		

Annex TableD-14	Default data for $DOC_{S}$
-----------------	----------------------------

Sources : 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste(summarized by )

¹² UNFCCC:

http://cdm.unfccc.int/filestorage/9/W/V/9WVIN7Z06A8UGLFPO4Y51BDMJ23QXT/EB55_repan04_AM0025_ver12.pdf?t=RXd8MTMwODg3OT MyNC4y|aDzPHqXGfi2kTBVlitVZTAMDI0w=

## Annex TableD-15 CDM project registered on Sewer and Urban Sanitation Sector¹³

#### Landfill Disposal of Waste

Landfill Disposal of Waste								unit:t-CO ₂ /y
THE CHE STREET	Type of Treatment	Volume of Waste	Estimation of project	Methane	Estimation of	Estimation of	Estimation of overall	Total number of
Title of the project activity		in landfill (t/y)	activity emissions	emissions	baseline emissions	leakage	emission reductions	crediting years
Taman Beringin Integrated Landfill	Flare	3.934.665	6.229	59.316	64.723	0	53.090	10
Management Project, Kuala Lumpur, Malaysia.	Flare	3,934,005	0,229	59,510	04,723	0	53,090	10
Luoyang Landfill Site LFG Recovery to	Electricity	9.352.800	0	95,163	103.715	0	103.715	10
Electricity Project	generation	9,352,800	0	95,105	103,713	0	103,715	10
Landfill biogas extraction and combustion	Flare, Electricity	9,766,255	141,495	349.825	355.430	0	213.935	7
plant in El Inga I and II landfill	generation	9,700,233	141,495	349,823	333,430	0	213,933	/

#### Intermediate Treatment of Waste Estimation of project Volume Title of the project activity Type of Treatment

The of the project activity	Type of Treatment	of Waste (t/y)	activity emissions	emissions	baseline emissions	leakage	emission reductions	crediting years
Composting of organic waste in Wuzhou	Composting	84,701	2,530		64,723	0	41,880	7
Municipal Solid Waste (MSW) Composting	Composting	219.000	4.214		22.818	2.539	16.065	-
Project in Urumqi, China		Compositing	219,000	4,214	4	22,010	2,339	10,003
Huzhou Municipal Solid Waste Incineration for	Incineration , Electricity generation	266.000	42.788		135.425	7.239	85.398	10
Power Generation Project		200,000	42,700		130,420	7,239	00,090	10
Chengdu Luodai Municipal Solid Waste	Incineration , Electricity	400.000	83.111		189.105	7.964	98.030	7
Incineration Project		400,000	03,111		189,105	7,904	98,030	/

Methane

Estimation of

Wastewater treament unit:t-C								unit:t-CO ₂ /y
THE CALL AND A MARK	<b>T</b> ( <b>T</b> ) )	Volume of	Estimation of project	Methane	Estimation of	Estimation of	Estimation of overall	Total number of
Title of the project activity	Type of Treatment	Wastewater (m3/y)	activity emissions	emissions	baseline emissions	leakage	emission reductions	crediting years
Methane recovery and utilization through organic wastewater treatment in Malaysia	anaerobic treatment, Flare	288,000	7,651		64,723	0	43,152	7
NHR Co-Composting Project	Heat/Electricity Generation and Flare on existing anaerobic treatment system	165,529	6,944		54,600	0	47,655	7

Sewerage unit:t-CO ₂ ,							unit:t-CO ₂ /y	
Title of the project activity	Type of Treatment	Volume	Estimation of project	Methane	Estimation of	Estimation of	Estimation of overall	Total number of
		of Sludge (t/y)	activity emissions	emissions	baseline emissions	leakage	emission reductions	crediting years
Introduction of the recovery and combustion	Digestion, Energy							
of methane in the existing sludge treatment	Generation, Flare on	1.884.371	8.090		64.723	0	56.633	10
system of the Cañaveralejo Wastewater	existing treatment	1,884,371	0,090		04,723	0	50,055	10
Treatment Plant of EMCALI in Cali, Colombia	system							

Sources : UNFCCC HP (http://cdm.unfccc.int/Projects/projsearch.html)

unit:t-CO₂/y

Estimation of Estimation of overall Total number of

¹³ UNFCCC:http://cdm.unfccc.int/Projects/projsearch.html

## References

Forest and Natural Resources Conservation Sector(1.2)

- AR-AM0002(ver3.0) : Restoration of degraded lands through afforestation/reforestation
- AR-AM0007(ver5.0) : Afforestation and Reforestation of Land Currently Under Agricultural or Pastoral Use
- J-VER003(ver3.2) : Increase of CO₂ absorption through forestation activities
- The Carbon Assessment Tool for Afforestation Reforestation(CAT-AR)
- The Carbon Assessment Tool for Sustainable Forest Management (CAT-SFM)
- WB Methodology of BioCarbonFund"Methodology for Estimating Reductions of GHG Emissions from Mosaic Deformation" (Proposed)

Traffic and Transportation Sector(3.4.5.6)

- AM0031(ver3.1.0) : Methodology for Bus Rapid Transit Projects
- ACM0016(ver2.0) : Baseline Methodology for Mass Rapid Transit Projects
- AMS-III-U(ver1.0) : Cable Cars for Mass Rapid Transit Projects

Energy Conservation (Industry) Sector(7.8.9)

- AMS-II.C.(ver13.0) : Demand-side energy efficiency activities for specific technologies
- AMS-II.D.(ver12.0) : Energy efficiency and fuel switching measures for industrial facilities
- J-MRV002: Methodologies for energy efficiency project (Revised on February 2011)
- ACM0012(ver4.0.0) : Consolidated baseline methodology for GHG emission reductions from waste energy recovery projects
- AM0024(ver02.1) : Baseline methodology for greenhouse gas reductions through waste heat recovery and utilization for power generation at cement plants
- ACM0013(ver4.0.0): Consolidated baseline and monitoring methodology for new grid connected fossil fuel fired power plants using a less GHG intensive technology
- AMS-III.Q(ver4.0) : Waste Energy Recovery (gas/heat/pressure) Projects
- J-MRV003: Methodology for waste energy recovery and utilization project (Revised on February 2011)
- ACM0009(ver3.2):Consolidated baseline and monitoring methodology for fuel switching from coal or petroleum fuel to natural gas
- AMS-III.B.(ver15.0):Switching fossil fuels
- AMS-III.AN(ver2.0) : Fossil fuel switch in existing manufacturing industries

Energy Sector(10.11.12.13.14.15.16)

- ACM0009(ver3.2):Consolidated baseline and monitoring methodology for fuel switching from coal or petroleum fuel to natural gas
- AMS-III.B.(ver15.0):Switching fossil fuels
- AMS-III.AN(ver2.0) : Fossil fuel switch in existing manufacturing industries
- ACM0012(ver4.0.0) : Consolidated baseline methodology for GHG emission reductions from waste energy recovery projects
- AM0048(ver03) : New cogeneration facilities supplying electricity and/or steam to multiple customers and displacing grid/off-grid steam and electricity generation with more carbon-intensive fuels
- ACM0011(ver2.2): Consolidated baseline methodology for fuel switching from coal and/or petroleum fuels to natural gas in existing power plants for electricity generation
- AM0061(ver2.1) : Methodology for rehabilitation and/or energy efficiency improvement in existing power plants
- AM0062(ver2.0) : Energy efficiency improvements of a power plant through retrofitting turbines
- ACM0013(ver02) : Consolidated baseline and monitoring methodology for new grid connected fossil fuel fired power plants using a less GHG intensive technology
- AMS-II.B.(ver9.0): Supply side energy efficiency improvements generation
- J-MRV004: Methodology for the projects to introduce a low-carbon power generation technologies at fossil fuel-fired power (Revised on February 2011)
- AM0067(ver02) : Methodology for installation of energy efficient transformers in a power distribution grid
- AMS-II.A(ver10) : Supply side energy efficiency improvements transmission and distribution
- AMS-I.A(ver14.0) : Electricity generation by the user
- AM0019(ver2.0): Renewable energy projects replacing part of the electricity production of one single fossil fuel fired power plant that stands alone or supplies to a grid, excluding biomass projects
- AMS-I.D.(ver16.0) : Grid connected renewable electricity generation
- AMS-I.F.(ver1.0) : Renewable electricity generation for captive use and mini-grid

Renewable Energy(17.18.19.20.21)

- ACM0002(ver12.1) : Consolidated baseline methodology for grid-connected electricity generation from renewable sources
- AM0019(ver2.0) : Renewable energy projects replacing part of the electricity production of one single fossil fuel fired power plant that stands alone or supplies to a grid, excluding biomass projects
- AMS-I.F.(ver1.0) : Renewable electricity generation for captive use and mini-grid
- J-VER E015(ver2.0) : Substitution of grid electric power with small scale hydropower
- ACM0006(ver11.1) : Consolidated methodology for electricity and heat generation from biomass residues
- AMS-I.D.(ver16.0) : Grid connected renewable electricity generation
- J-MRV001: Methodology for the power and heat supply projects using biomass residue (Revised on February 2011)

Sewerage, Urban Sanitation(22.23.24.25)

- ACM 0001(Ver.11) : Consolidated baseline and monitoring methodology for landfill gas project activity
- Tool to determine methane emissions avoided from disposal of waste at a solid waste disposal site(Ver.05.1.0)
- ASM-III.G.(Ver.6.0) : Landfill methane recovery
- AM0025(Ver.12) : Avoided emissions from organic waste through alternative waste treatment processes
- CCX : Landfill Methane Offset
- Climate Action Reserve : Landfill Project Protocol(ver3.0)-Collecting and Destroying Methane from Landfills
- ACM0014 (Ver.0.4.1.0): Mitigation of greenhouse gas emissions from treatment of industrial wastewater
- AM0080 (ver01): Mitigation of greenhouse gases emissions with treatment of wastewater in aerobic wastewater treatment plants
- AMS-III.F(Ver.10.0): Avoidance of methane emissions through composting
- AM0039(Ver. 02)Methane emissions reduction from organic waste water and bioorganic solid waste using co-composting
- AMS III.H(Ver.16) : Methane recovery in wastewater treatment
- AMS-III.I(Ver.8.0): Avoidance of methane production in wastewater treatment through replacement of anaerobic systems by aerobic systems