

Japan International Cooperation Agency (JICA) Climate Finance Impact Tool for Mitigation

JICA Climate-FIT (Mitigation) Draft Ver. 1.0

June 2011

Office for Climate Change JICA Global Environment Department

Final Report for Study on Mainstreaming Climate Change Considerations into JICA Operation (Mitigation) by NIPPON KOEI CO., LTD.

Table of Contents

Chapter 1	Outline of the Survey	1-1		
1.1	Background and Objective	1-1		
1.2	Selection of Target Sub-sectors and Review of Existing Methodologies			
1.3	Basic Concept and Guidelines for the Quantitative Evaluation of GHG Emissio			
	Reduction (Sequestration)	1-1		
1.4	Framework of the Report			
Chapter 2	Selection of Target Sub-sectors and Review of Existing Methodologies	2-1		
2.1	Selection of Target Sub-sectors	2-1		
2.1.1	Identification of Sectors and Sub-sectors Based on Past JICA ODA Loan Pro	jects2-2		
2.1.2	Trend of Projects by Other Donors	2-4		
2.2	Methodologies of Other Certification Organizations, etc	2-10		
2.2.1	Reviewed Methodologies			
2.2.2	Existing Methodologies for Targeted Sub-sectors	2-13		
Chapter 3	Basic Concept and Guidelines for the Quantitative Evaluation of GHG	Emission		
	Reduction (Sequestration)			
3.1	Basic Concept	3-1		
3.1.1	Quantitative Evaluation	3-1		
3.1.2	Basic Concept of Estimation			
3.2	Framework of Methodology Sheet and Calculation Sheet (Excel)			
3.2.1	Aim and Application of Methodology Sheet and Calculation Sheet (Excel)			
3.2.2	Outline of Methodology Sheet			
3.2.3	Outline of Calculation Sheet (Excel)			
Chapter 4	Methodology Sheets and Calculation Sheets	4-1		
4.1	Typical Project Outlines in Targeted Sub-sectors			
4.2	Methodology Sheets and Calculation Sheets (Excel) for Each Sub-sector			
Forest	and Natural Resources Conservation Sector	4-6		
1. A	fforestation	4-7		
2. Fo	prest Conservation	4-19		
Traffic	and Transportation Sector	4-42		
3. Fr	eight/Passenger Transportation Improvement			
4. M	RT (Mass Rapid Transit)			
5. M	onorail, LRT			
6. Bi	us (BRT, Trunk Bus)			
	Conservation (Industry) Sector			
	nergy Efficiency Improvement			
	ectricity and Heat Supply			
	el Switching			

Energy Sector	4-97
10. Energy Plant with Fuel Switching	4-98
11. Thermal Power with Electricity and Heat Supply	
12. Thermal Power with Fuel Switching	
13. Thermal Power with Higher Efficiency	
14. Power Transmission with Improved Efficiency	
15. Power Distribution with Improved Efficiency	
16. Rural Electrification	
Renewable Energy Sector	
17. Hydro Power	
18. Wind Power	
19. Photovoltaic Power /Solar Heat	
20. Geothermal Power	
21. Biomass	
Sewerage and Urban Sanitation Sector	
22. Landfill Disposal of Waste	
23. Intermediate Treatment of Waste	
24. Wastewater Treatment	4-194
25. Sewerage	

References

Appendix Calculation Sheets

List of Figures

Figure 2.1.1	Process of Selecting Sub-sectors	2-1
Figure 2.1.2	Summary of Sector Classification of World Bank Mitigation Projects2	2-6
Figure 2.1.3	Sector Classification of GEF Registered Mitigation Projects Implemented by Various	
	International Organizations	2-7
Figure 2.1.4	Summary of Sector Classification of ADB Mitigation Projects2	2-8
Figure 4.1	Process for Formulating Mitigation Projects Sector	i -1

List of Tables

Table 2.1.1 Projects in Mitigation Sub-sectors among Japan's Yen Loan Projects	2-3
Table 2.1.2 Sector Classification of World Bank Mitigation Projects and this Survey	2-5
Table 2.1.3 Sub-sectors for Mitigation Measures	2-9
Table 2.2.1 Target and Outline of Existing GHG Estimation Methodologies	2-10
Table 2.2.2 Existing Methodologies in Forest and Natural Resources Conservation Sector	2-14
Table 2.2.3 Existing Methodologies in Traffic and Transportation Sector	2-16
Table 2.2.4 Existing Methodologies in Energy Conservation (Industry) Sector(1)	2-17
Table 2.2.5 Existing Methodologies in Energy Conservation (Industry) Sector(2)	2-19
Table 2.2.6 Existing Methodologies in Energy Sector	2-20
Table 2.2.7 Existing Methodologies in Renewable Energy Sector	2-21
Table 2.2.8 Existing Methodologies in Sewerage and Urban Sanitation Sector	2-22
Table 4.1.1 Outlines of Supposed Projects for Target Sub-sector	4-2

	List of Abbreviations
ADB	Asian Development Bank
ALOS	Advanced Land Observing Satellite
AR-CDM	Afforestation/Reforestation Clean Development Mechanism
ASTER	Advanced Spaceborne Thermal Emission and Reflection Radiometer
BM	Build Margin
BRT	Bus Rapid Transit
CDM	Clean Development Mechanism
СМ	Combined Margin
СОР	Conference of the Parties
COD	Chemical Oxygen Demand
CSP	Concentrated Solar Thermal Power
E10	Fuel containing 10% Ethanol
GEF	Global Environment Facility
GHG	Greenhouse Gas
GREEN	Global Action for Reconciling Economic Growth and Environmental Preservation (JBIC)
Green-e	Green-e
IEA	International Energy Agency
IPCC	Intergovernmental Panel on Climate Change
IPCC GPG	IPCC Good Practice Guidance
IPCC GPG for	IPCC Good Practice Guidance for Land Use, Land Use
LULUCF	Change, and Forestry
IPCC-GNGGI	IPCC Guidelines for National Greenhouse Gas Inventories
JBIC	Japan Bank for International Cooperation
J-MRV	Measurement, Reporting and Verification of GHG Emission Reductions in JBIC's GREEN
J-VER	Japan Verified Emission Reduction
LANDSAT	LANDSAT
LCA	Life Cycle Assessment
LFG	Landfill Gas
LRT	Light Rail Transit
MRT	Mass Rapid Transit
MRV	Measurement, Reporting and Verification
MSW	Municipal Solid Waste
OM	Operational Margin
QuickBird	QuickBird
RDF	Refuse. Derived. Fuel
REDD	Reducing Emissions from Deforestation and Forest Degradation
SBSTA	Subsidiary Body for Scientific and Technological Advice
SPOT	Satellite Pour l'Observation de la Terre
UNFCCC	United Nations Framework Convention on Climate Change
LIG ED I	
US-EPA	US Environmental Protection Agency
VCS	

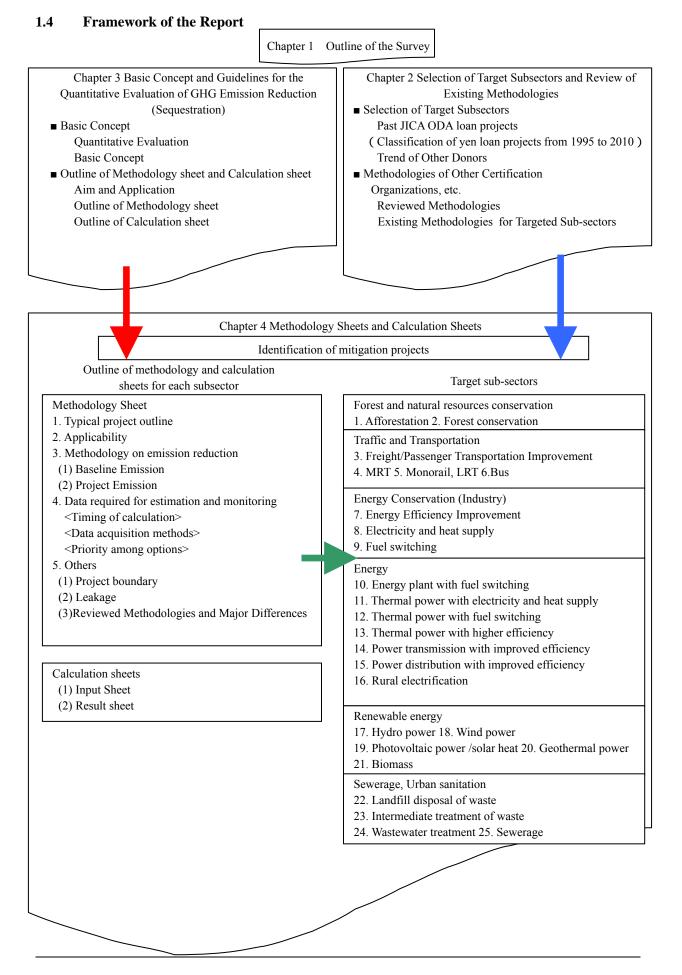
Chapter 1 Outline of the Survey

1.1 Background and Objective

The 16th Conference of the Parties (COP16) of the United Nations Framework Convention on Climate Change (UNFCCC) adopted the Cancun Agreements. The agreements clearly state the commitment by developed countries to provide financial support to developing countries in the field of climate change, which include i) collective commitment approaching USD 30 billion for three years from 2010 to 2012 (as Fast-start finance) and ii) joint mobilization of USD 100 billion per year by 2020 (as Long-term finance). The direction of future framework on climate change after 2013 is still under discussion. It is considered that Official Development Assistance (ODA) will continue to be actively utilized as part of the support for the developing countries in the field of climate change. The Cancun Agreements request implementation of measurement, reporting and verification (MRV) regarding quantitative evaluations of greenhouse gas (GHG) emission reduction (sequestration) through supported mitigation actions.

Taking into account the above situations, JICA is faced with the task to consider MRV regarding GHG emission reduction (sequestration) during the planning stages of country assistance strategies and individual projects to ensure its implementation. This survey presents a reference document providing estimation methodologies of quantitative evaluations of GHG emission reduction (sequestration), in order to facilitate consideration of MRV during the planning stages of country assistance strategies and individual projects. This survey is not intended to provide methodologies for estimating emission reduction credits, such as those generated by the Clean Development Mechanism (CDM). The purpose of this survey is to calculate the impacts of projects assisted by JICA. Therefore, this survey does not take into account additionality considerations required by the CDM.

This report contains survey on mitigation measures as part of the "Study on Mainstreaming Climate Change Considerations into JICA Operation". The reports for survey on adaptation measures and national and regional climate impacts are prepared separately.

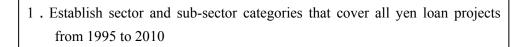

1.2 Selection of Target Sub-sectors and Review of Existing Methodologies

After reviewing past JICA ODA loan projects and the trend of other donors' assistance, 25 sub-sectors were chosen as potential areas of future JICA ODA loan assistance. In order to establish the estimation methodologies for quantitative evaluation of GHG emission reduction (sequestration), the survey reviewed existing methodologies and tools including those used by other donors and by credit generating mechanisms like the CDM.

1.3 Basic Concept and Guidelines for the Quantitative Evaluation of GHG Emission Reduction (Sequestration)

For the selected 6 sectors and 25 sub-sectors, methodology sheets summarizing GHG emission reduction methodologies were prepared. The five items included in the methodology sheets are: i) typical project outline, ii) applicability, iii) methodology on emission reduction, iv) data required for

estimation and monitoring, and v) others. In developing countries, it can be easily anticipated that there exists great limitation in data availability. In order to overcome this limitation, the presented methodology allows flexibility by indicating several options when possible, along with the order of priority. Furthermore, excel sheets with embedded estimation formula were prepared to enable estimating actual GHG emission reductions (calculation sheets).


Chapter 2 Selection of Target Sub-sectors and Review of Existing Methodologies

2.1 Selection of Target Sub-sectors

In this section, target sub-sectors are selected for discussion in Chapters 3 and 4. The following items are considered for selection of the sub-sectors.

- Past JICA ODA loan projects
- · Potential for formulating future mitigation projects

The process of selection is as follows:

- 2. Classify all yen loan projects into mitigation sub-sectors and non-mitigation sub-sectors
- 3. Compare yen loan projects with mitigation projects by other donors and check whether mitigation sub-sectors supported by other donors are included

- 4. Consider future high-potential sectors and sub-sectors for mitigation measures based on the second and third steps.
- 5. Select target sub-sectors.
 - Figure 2.1.1 Process of Selecting Sub-sectors

2.1.1 Identification of Sectors and Sub-sectors Based on Past JICA ODA Loan Projects

First, in order to classify and identify sectors and sub-sectors based on past JICA ODA loan projects¹, projects classified in mitigation sub-sectors are extracted from all projects committed from 1995 to 2010 (1,139 projects). The mitigation and non-mitigation sub-sectors and the number of projects classified in each group are shown in Table 2.1.1.

There are 503 projects classified into 6 mitigation sectors (forestry/natural environment, disaster prevention, traffic and transportation, mining and industry, energy, and public utility) and 29 mitigation sub-sectors. On the other hand, there are 793 projects classified into 14 non-mitigation sectors (including miscellaneous sector) and 52 non-mitigation sub-sectors. Projects classified into more than one sub-sector are counted in their respective sub-sectors, resulting in a total of 1,296 counted projects.

¹ http://www2.jica.go.jp/ja/yen_loan/index.php

Table 2.1.1 Projects in Mitigation Sub-sectors among Japan's Yen Loan Projects

(Target: Committed Projects from 1995 to $2010)^{1/2}$

Mitigation	Sub-sectors
------------	-------------

Sector	Sub-sector	projects
3 Forestry/natural	01 Forestry	37
resources	02 Forest conservation , Slope	15
conservation	conservation/Soil conservation 03 Mangrove conservation	0
	03 Mangrove conservation 05 Ecosystem (biodiversity)	5
4 Disaster	07 Forest disaster prevention	0
management	08 Landslide disaster management	ů 0
6 Transportation	04 Railway	
	001 Freight (a new railway double track	21
	002 Passenger (a new railway, a double track	9
	railway, or a quadruple track railway) 003 MRT (City and suburb rapid railway:	46
	Subway, Elevated railway)	40
	004 Monorail, LRT	2
	005 Improvement of rails, High	10
	standardization , Rehabilitation of railway	
	006 Rehabilitation of train cars and railway	8
	facilities	
9 Mining and	01 Industry	4
manufacturing industries	02	16
industries	Factory, Plant	
	03 Mining industry	3
11 Energy	01 Energy conservation	2
	02 Intensive heat-supply system with fuel	26
	switching 03 Thermal power plants with electricity and	4
	heat supply	
	04 Thermal power plants with fuel switching	12
	05 Thermal power plants with higher energy	39
	efficiency 06 Transmission and distribution	64
	07 Hydro power plants (except for small	42
	hydropower and pumped and storage	
	hvdropower)	12
	08 Renewable energy 09 Rural electrification	12
	10 Energy facilities (construction of new	2
	natural gas pipelines)	2
13 Public utilities	02 Urban health (waste disposal)	16
	03 Sewerage	56
	03 Wastewater treatment	35
	Total	503

Non-mitigation Sub-sectors

Sector	Sub-sector	projec
1 Water resources	01 Proper management of water resources	
	02 Water resources development, facility	
	03 Utilization of water resources	
	03 Utilization of water resources 04 Water and sanitary reform	
2 Agriculture, Food	01 Irrigation, drainage	
/2	02 Cultivation management (Assistance of	
12	agricultural management), enhancement	
	of irrigation association	
	03 Crop development	h
	04 Information system	
	05 Livestock	
	06 Fisheries	
	07 Agro- economy	
	07 Agro- economy 08 Sustainable agriculture	
	09 Development/improvement of farmland	
	10 Agricultural process	
3 Forestry/natural	04 Coastal/lakefront protection/restoration	
resource		
conservation		
4 Disaster	01 Coastal protection	,
management	02 River prevention (flood control) 03 Disaster-relief	
	04	
	Information system	
	05 Development of human resources,	
	Environmental control ability	
	06 Urban disaster prevention	
	09 Land-use management	
5 Urban-regional	01	
development	Rural development	
	02 Urban community improvement	
6 Transportation	02 Urban community improvement 01 Road, bridge	1
o manoportation	02	
	Airport	
	03 Port	
	05 Marine transportation	
	06 TDM and other soft measures	ļ
	07 Logistic facilities 08 ICT	ļ
7 Health	08 101	
/ Incanui	01 Adaptation capacity development 02 Adaptations for high risk area	
	02 Adaptations for high risk area 03 Heat prevention	h
	04 Malaria control	<u> </u>
	05 Waterborne (infectious) disease control	
	06 Medical care	
8 Architect	01 Architect	
o Anniell		
10 Government	01 Finance, monetary	
	01 Finance, monetary 02 Environmental-related issues	
10 Government	01 Finance, monetary 02 Environmental-related issues 03 Survey/cartography	
10 Government	01 Finance, monetary 02 Environmental-related issues 03 Survey/cartography 04 General government	
10 Government	01 Finance, monetary 02 Environmental-related issues 03 Survey/cartography 04 General government 05 Assistance in policy-making system	
10 Government	01 Finance, monetary 02 Environmental-related issues 03 Survey/cartography 04 General government	
10 Government	01 Finance, monetary 02 Environmental-related issues 03 Survey/cartography 04 General government 05 Assistance in policy-making system 06 Assistance for rehabilitation and reconstruction 01 Education	
 Government administration Human resources 	01 Finance, monetary 02 Environmental-related issues 03 Survey/cartography 04 General government 05 Assistance in policy-making system 06 Assistance for rehabilitation and reconstruction 01 Education 02 Healthcare education	
 Government administration Human resources Public Utility 	01 Finance, monetary 02 Environmental-related issues 03 Survey/cartography 04 General government 05 Assistance in policy-making system 06 Assistance for rehabilitation and reconstruction 01 Education 02 Healthcare education 01 Water Supply	
 Government administration Human resources Public Utility Commerce 	01 Finance, monetary 02 Environmental-related issues 03 Survey/cartography 04 General government 05 Assistance in policy-making system 06 Assistance for rehabilitation and reconstruction 01 Education 02 Healthcare education 01 Water Supply 01 Tourism	
 Government administration Human resources Public Utility Commerce Communications 	01 Finance, monetary 02 Environmental-related issues 03 Survey/cartography 04 General government 05 Assistance in policy-making system 06 Assistance for rehabilitation and reconstruction 01 Education 02 Healthcare education 01 Water Supply 01 Tourism 01 Telecommunications	
 Government administration Human resources Public Utility Commerce 	01 Finance, monetary 02 Environmental-related issues 03 Survey/cartography 04 General government 05 Assistance in policy-making system 06 Assistance for rehabilitation and reconstruction 01 Education 02 Healthcare education 01 Water Supply 01 Tourism	

<u>/1</u> 1,139 projects are extracted from JICA's database of Japan's ODA loan projects from 1995 to 2010, and classified into sectors.

<u>/2</u> As for agricultural and food sectors, countermeasures and utilization for "methane emissions from paddy fields", "domestic animals' waste", "loss of soil organic material due to surface soil runoff", "nitrous oxide originated from fertilizers", and "methane emissions from paddy fields" are expected as promising projects in the future.

2.1.2 Trend of Projects by Other Donors

The trend of mitigation projects implemented by other donors is as follows:

(1) World Bank (WB)

Projects whose major theme is climate change are extracted from WB database² and classified into project fields. Project fields are divided into major sectors and sectors. The WB database system allows projects to be classified into more than one major sector and/or sector as shown in Figure 2.1.2. The figure summarizes the result for 193 projects classified into major sectors and sectors. Among the major sectors, energy has 124 projects, which is overwhelmingly greater than that of other major sectors. Sectors with a larger number of projects include, power generation, renewable energy, agriculture, forestry, and public utility (sewerage, etc.).

(2) Global Environment Facility (GEF)

From GEF's database³, 645 projects whose focal area is climate change and implemented after year 2000 are extracted. 385 projects are classified as mitigation projects. These projects are further classified into project fields and implementing international organizations (Figure 2.1.3). 298 of the total 385 projects are energy projects.

(3) Asian Development Bank (ADB)

From ADB's database⁴, 38 loan projects related to mitigation measures are extracted. ADB's project classification system allows selection of multiple sectors and sub-sectors for one project (Figure 2.1.4). It is noted that there are more mitigation projects in the energy sector than other sectors.

² http://www.worldbank.org/

³ http://www.gefonline.org/

⁴ http://www.adb.org/Climate-Change/projects.asp#promoting

Major Sector	Sect	or				unt		
			· · ·		2nd		4th	
	AB	Agricultural extension and research	1	1	3			
		Animal production	0		0			
Agriculture, Fishing, and Forestry		Crops	2					
		Irrigation and drainage	2					
		Forestry	12		10			
	AZ	General agriculture, fishing and forestry	19					
		Central government administration	7					
		Compulsory pension and unemployment insurance	0					
		Law and justice	0					
		Sub-national government administration	6					
		Compulsory health finance	0					
		General public administration	2					
	BL	Public administration - Agriculture, fishing and forestry	0					
Public Administration, Law and Justice		Public administration - Information and communications	0					
		Public administration - Education	0		0			
		Public administration - Finance	0					
		Public administration - Health	0					
		Public administration - Other social services	0					
		Public administration - Industry and trade	0					
		Public administration - Energy and mining	0					
	BV	Public administration - Transportation	0					
		Public administration - Water, sanitation and flood protection	0					
		Information technology	0					
Information and Communications		Media	0					
		Telecommunications	0					
		General information and communications	0					
		Adult literacy/non-formal education	0					
		Pre-primary education	0					
		Primary education	0					
Education		Secondary education	0					
	ET	Tertiary education	0					
	EV	Vocational training	0				0	
	ΕZ	General education	0					
	FA	Banking	0					
		Non-compulsory health finance	0					
	FC	Housing finance and real estate markets	0					
Finance	FD	Non-compulsory pensions, insurance, and contractual savings	0					
manoo		Micro- and SME finance	0					
		Payment systems, securities clearance, and settlement	0					
		Capital markets	0					
		General finance	0					
Health and Other Social Services		Health	0					
	JB	Other social services	0					
		Agricultural marketing and trade	0					
		Agro-industry	0					
		Housing construction	0					
Industry and Trade		Petrochemicals and fertilizers	0					
		Other industry	2					
		Other domestic and international trade	0					
	ΥZ	General industry and trade	0					
	LA	District heating and energy efficiency services	12		0			
	LB	Mining and other extractive	1	5				
Energy and Mining	LC	Oil and gas	2	0				
Energy and winning	LD	Power	29					
		Renewable energy	23					
	LZ	General energy	6					
		Roads and highways	1					
		Aviation	0					
Transportation		Ports, waterways and shipping	0					
		Railways	2					
	ΤZ	General transportation	3					
		Flood protection	3					
		Sanitation	0					
Water, Sanitation, and Flood Protection	WS	Sewerage	1					
water, Sanitation, and Flood Protection	WB	Solid waste management	8			0	2	
		Water supply	0					
				0	13			

Table 2.1.2 Sector Classification of World Bank Mitigation Projects

Project Total 193

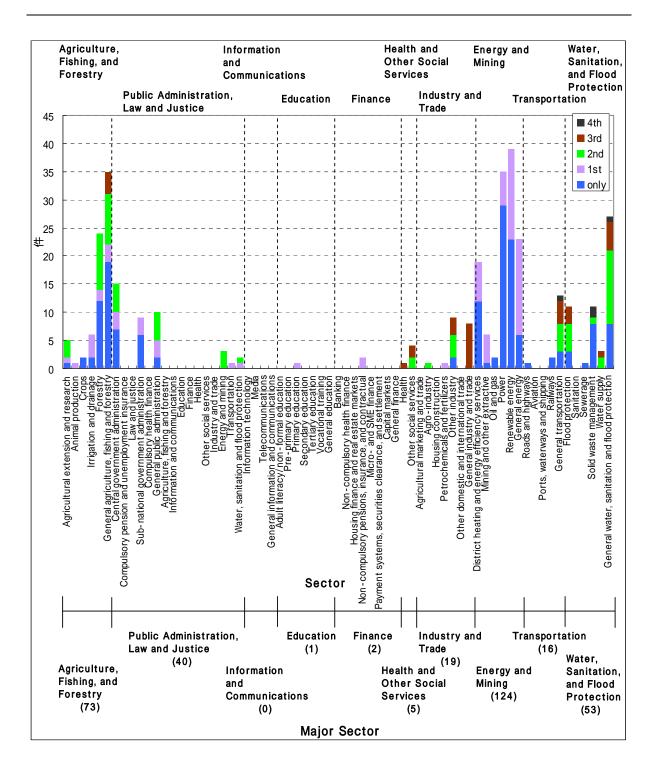
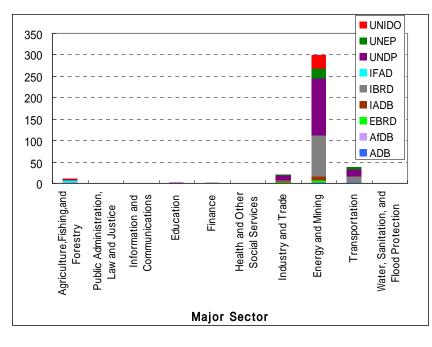



Figure 2.1.2 Summary of Sector Classification of World Bank Mitigation Projects

ADB	Asian Development Bank
AfDB	African Development Bank
EBRD	European Bank for Reconstruction and Development
IADB	Inter-American Development Bank
IBRD	International Bank for Reconstruction and Development
IFAD	International Fund for Agricultural Development
UNDP	United Nations Development Programme
UNEP	United Nations Environment Programme
UNIDO	United Nations Industrial Development Organization

Figure 2.1.3 Sector Classification of GEF Registered Mitigation Projects Implemented by Various International Organizations

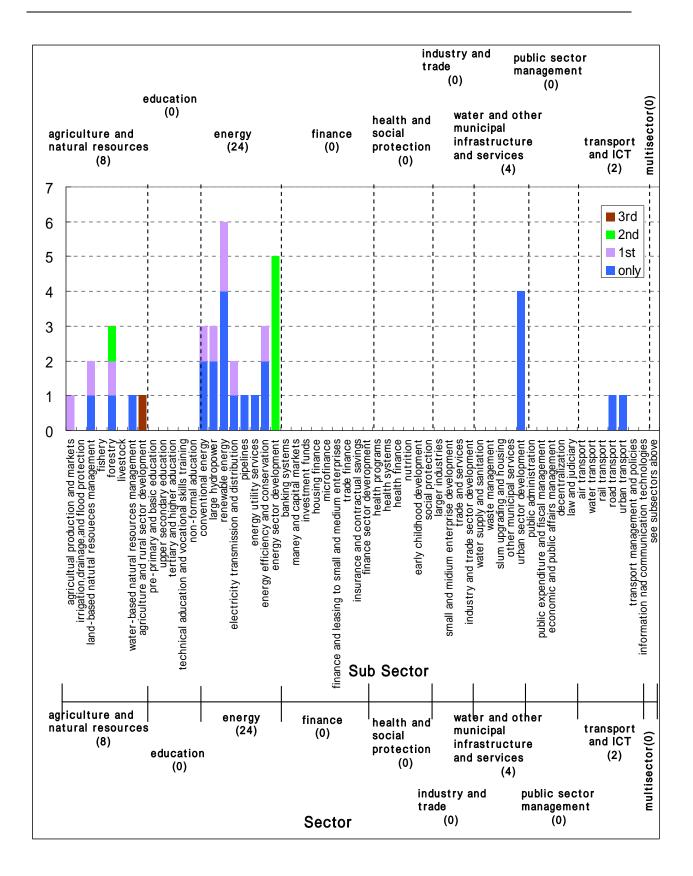


Figure 2.1.4 Summary of Sector Classification of ADB Mitigation Projects

(4) Selection of Target Sub-sectors

Based on the above investigation, the potential of mitigation actions in each sub-sector are re-classified. As a result, the following 6 sectors and 25 sub-sectors shown in Table 2.1.3 are selected.

Sector	Sub-sector	Examples of mitigation measures
Forest/natural resource	1.Afforestation	Afforestation, reforestation
conservation	2.Forest conservation	Forest conservation
Transportation	3.Passenger/Freight transportation improvement	Passenger (a new railway, a double track railway, or a quadruple track railway) Freight (a new railway, double track railway) Improvement of rails, High standardization
	4.MRT(Mass Rapid Transit)	City and suburb rapid railway (Subway, Elevated railway)
	5.Monorail, LRT	Monorail and Light Rail Transits
	6.Bus(BRT,Trunk bus)	BRT, Trunk bus
Energy conservation (Industry)	 Energy efficiency improvement in industrial facilities 	Introduction of high efficiency facilities and technology
	8.Electricity and heat supply in industrial facilities	Effective utilization of waste heat and waste gas
	9.Fuel switching in industry facilities	Fuel switching from coal or petroleum to natural gas
Energy	10.Energy plant construction with fuel	Natural gas pipeline
	switching	Natural gas supply system
		Intensive heat-supply facilities
	11. Thermal power with electricity and heat supply	Cogeneration(waste heat and waste gas use)
	12.Thermal power with fuel switching	Natural gas plants Natural gas pipeline Fuel switching from coal or petroleum to natural gas for existing thermal power plants
	13.Thermal power with high efficiency	Combined-cycle electric generation High efficient coal thermal power plants Thermal power plants improvement
	14.Power transmission with improved efficiency	Decreasing of electrical loss due to improved power transmission systems
	15.Power distribution with improved efficiency	Decreasing of electrical loss due to improved power distribution systems
	16.Rural electrification	Rural electrification project by renewable energy use
Renewable energy	17.Hydro power	Small hydro power, river-runoff hydro power Reservoir hydro power (except for pumped and storage hydro power)
	18.Wind power	Wind power plants
	19.Photovoltaic power/Solar heat	Solar power plants
	20.Geothermal	Geothermal plants
	21.Biomass	Biomass power generation and heat-supply
Sewerage,	22.Landfill disposal of waste	Landfill LFG power generation
Urban sanitation	23.Intermediate treatment of waste	Waste power plants , waste composition
	24.Wastewater treatment	Methane emission reduction by improving wastewater treatment
	25.Sewerage	Biomass generation and composting sewage sludge

Table 2.1.3	Sub-sectors	for Mitigati	on Measures
1 4010 2.1.0	Dub Sectors	tor minigun	on micubal co

2.2 Methodologies of Other Certification Organizations, etc.

Existing methodologies and tools are reviewed in order to clarify the basic concept and guidelines to be provided under this survey.

2.2.1 Reviewed Methodologies

This survey mainly reviews CDM methodologies. Other methodologies, including domestic and international Voluntary Emissions Trading methodologies, GHG emission reduction calculation manual or tool used by international organization for assistance to developing countries, and VER certification organization methodologies are also considered.

Table 2.2.1 below shows the surveyed methodologies and their outlines.

Surv	vey Targets	Overview
CDM Methodology	Approved methodologies, Approved consolidated methodologies, Small-scale CDM methodology, Afforestation/reforestation CDM methodology Approved consolidated afforestation/reforestation CDM methodology, Small-scale approved consolidated afforestation/reforestation CDM methodology	International standard method for project-based GHG emission reductions as a method to quantify. Covering all sectors, there are 179 methodologies applied to more than 2,400 projects, as of April 28, 2011.
	J-VER (offset-credit system: Ministry of the Environment, Japan)	This is the methodology for calculation and certification of project-based voluntary GHG emission reduction (sequestration). ² Energy:24, Forestry:3, Waste:1
Domestic Voluntary Emissions Trading methodologies	Domestic Credit System (Domestic emission certification system) (Ministry of the Environment, Ministry of the Environment, Ministry of Agriculture, Forestry and Fisheries, Japan)	This is the methodology for authentication and GHG estimation done by small businesses ³ Energy, Waste, etc.:34
	J-MRV (Japan Finance Corporation, Japan Bank For International Cooperation)	This is JBIC's tool for MRV for environmental protection activities (GREEN: Global action for Reconciling Economic growth and ENvironmental preservation) ⁴ Energy Sector: 4, as of February 28, 2011.
		The handbook has been published.
Manual or tool to estimate	WB (The World Bank/Carbon Finance Unit)	CDM projects are in accordance with the CDM methodology while other projects conform to the GEF manual. ⁵
GHG emission reduction by international organization(Developing country support)	IFC (International Finance corporation)	IFC offers project-GHG calculation sheet for sectors such as forestry, water supply and sewerage and drainage, urban sanitation, others) 6
country supporty	OECD Organization for Economic Co-operation and Development)	Published a power sector manual for calculating GHG. ⁷
	ADB(Asian Development Bank)	Released a transportation and energy sector manual on basic concept for GHG estimation. ⁸

 Table 2.2.1 Target and Outline of Existing GHG Estimation Methodologies (1)

Surv	vey Targets	Overview
	UNEP (United Nations Environment Program)	Released energy, transportation and industrial processes GHG calculation sheets. ⁹
	GEF(Global Environment Facility)	In the published manual, CDM-like approach is used to quantify GHG. ¹⁰
	GHG protocol (the Greenhouse Gas Protocol Initiative)	Released energy consumption, transportation and industrial processes GHG calculation sheets. ¹¹
	USAID (United States Agency for International Development)	Released forestry and transportation sectors GHG calculation sheets (outline). ¹²
Manual or tool to estimate GHG emission reduction by international organization(Developing	CIDA (Canadian International Development Agency)	GHG calculations are conducted under a fund targeting climate change operations. Details of the program are unknown.
country support)	GTZ(Deutsche Gesellschaft fur Technische Zusammenarbeit) (*Now GIZ : The Deutsche Gesellschaft für Internationale Zusammenarbeit)	GHG calculator is released in the waste sector. ¹³
	KFW (Kreditanstalt für Wiederaufbau)	Released tool for GHG calculation for landfill. ¹⁴
	PROPARCO (single pour Promotion et Participation pour la Coopération économique)	Estimates GHG of the project they assist Information on the program is unknown. ¹⁵
	Gold Standard	 In addition to the verification and certification of CDM projects, the following criteria is used to determine the quality of CDM /JI projects:¹⁶ i) Project Eligibility, ii) Additionality and baseline iii) Contribution to sustainable development
	VER+	Certification audit is basically being done using the same methodology as with CDM and JI projects. ¹⁷
	CCB Standards(The Climate, Community and Biodiversity Project Design Standards)	Assessment of biodiversity, climate change mitigation effects and impact to the local community. ¹⁸
Methodology of VER Certification agency	Green-e	Green Power Certification Program (Green-e) is aimed at consumer protection when power credits are sold, verifying whether the goods satisfy environmental standards. ¹⁹
	VOS(Voluntary Offset Standard)	Certification system equivalent to the standard of the Kyoto credits. Target countries are mainly countries that did not ratify the Kyoto Protocol, and in particular, the U.S. and Australia (Australia ratified the Protocol). ²⁰
	CCX(Chicago Climate Exchange)	System has its own validation criteria. Provides manuals for calculation of GHG in multiple sectors. ²¹
	CCAR(California Climate Action Registry)	The methodology of California NPO. Provides manuals for calculation of GHG in multiple sectors. ²²
	Plan Vivo	Grass root criteria that offer high standard for environmental protection and local benefits. The methodology is an expensive option compared to those used in the global carbon market. ²³

 Table 2.2.1 Target and Outline of Existing GHG Estimation Methodologies (2)

Surv	vey Targets	Overview
Methodology of VER Certification agency	Social Carbon	The feature of the methodology is to evaluate and verify the long-term impact assessment of sustainable development. ²⁴
Certification agency	NCOS(National Carbon Offset Standard)	Efforts by the Australian Government started in July 2010, replacing Greenhouse Friendly TM . The targets are Australian companies. ²⁵

 Table 2.2.1 Target and Outline of Existing GHG Estimation Methodologies (3)

- 6 http://www.ifc.org/ifcext/climatebusiness.nsf/Content/GHGaccou
- ¹ http://www.oecd.org/dataoecd/45/43/1943333.pdf

⁸ http://www.adb.org/documents/papers/adb-working-paper-series/ADB-WP09-Transport-CO2-Emissions.pdf

⁹http://www.unemg.org/MeetingsDocuments/IssueManagementGroups/SustainabilityManagement/UnitedNationsGreenhouseGasCalculator /tabid/3975/Default.aspx

- 10 http://www.thegef.org/gef/node/313
- ¹¹ http://www.ghgprotocol.org/calculation-tools
- ¹² http://www.usaid.gov/our_work/environment/climate/docs/forest_carbon_calculator_jan10.pdf
- ¹³ http://www.gtz.de/en/themen/umwelt-infrastruktur/abfall/30026.htm

¹⁴http://www.kfw-entwicklungsbank.de/EN_Home/Sectors/Waste_management/Solid_Waste_Management_Greenhouse_Gas_Calculator/in dex.jsp

- ¹⁵http://www.proparco.fr/jahia/webdav/site/afd/shared/PUBLICATIONS/INSTITUTIONNEL/plaquettes-presentation/AFD-Brochure-englis h-2008.pdf
- ¹⁶ http://www.cdmgoldstandard.org/Current-GS-Rules.102.0.html
- ¹⁷ http://www.netinform.de/KE/Beratung/Service_Ver.aspx
- ¹⁸ http://www.climate-standards.org/standards/pdf/second_edition/CCB_Standards_2nd_Edition_JAPANESE.pdf
- ¹⁹ http://www.green-e.org/getcert_ghg_products.shtml
- ²⁰ http://www.carboninvestors.org/ECISVoluntaryOffsetStandardFINALJune.pdf
- ²¹ https://registry.chicagoclimatex.com/public/projectsReport.jsp
- ²² http://www.climateregistry.org/
- ²³ http://planvivo.org.34spreview.com/documents/standards.pdf
- ²⁴ http://www.socialcarbon.org/

¹ http://www.kyomecha.org/cdm.html#method

² http://www.4cj.org/jver/system_doc/methodology.html

³ http://jcdm.jp/process/methodology.html

⁴ http://www.jbic.go.jp/ja/about/environment/j-mrv/pdf/jmrv-guideline.pdf

⁵http://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/ENVIRONMENT/EXTCARBONFINANCE/0,,contentMDK:22366206~pageP K:64168445~piPK:64168309~theSitePK:4125853,00.html

 $^{^{25}\} http://www.climatechange.gov.au/en/government/initiatives/national-carbon-offset-standard.aspx$

2.2.2 Existing Methodologies for Targeted Sub-sectors

The existing methodologies and tools are classified into each of the mitigation sub-sectors chosen in the earlier section "Selection of Targeted Sub-sectors" and served as basic data for discussion of this survey. Some of the applied methodologies in past projects were introduced. (All existing methodologies and tools are shown in Table2.2.2, including those in sectors with a relatively small number of or no past applications.)

(1) Forest and Natural Resources Conservation Sector

Some of the methodologies of CDM and J-VER are applied in the forestry sector. CDM is only applicable for afforestation and reforestation in the first commitment period (2008 ~ 2012), excluding forest management (REDD) or farmland management. Application of CDM to afforestation projects is limited. AR-AM003 has the most applied numbers, with only 4 approved projects. On the other hand, there is progress in application of Japan's J-VER methodologies to domestic forest management projects. There are two methodologies on increase of CO_2 sequestration through forest management activities, with 51 applications for one of the methodologies (Thinning Promotion R001).

The 'forest conservation' explained here means the "Reduced Emission from Deforestation and Forest Degradation (REDD)". The VCS guideline is referred to because the United Nations has not approved any of the REDD methodologies at the timing of the survey.

Sub-		CDM			J-VER			VCS		ODA Loan Proj	ects
sector	Method No.	Title	Project	Method No.	Title	Project	Method No.	Title	Project	Classification	Project
	AR- AM0003	Afforestation and reforestation of degraded land through tree planting, assisted natural regeneration and control of animal grazing	4								
	AR- AM0002	Restoration of degraded lands through afforestation/reforestation	1								
	AR- AM0001	Reforestation of degraded land	2								
Affore station	AR- ACM0001	Afforestation and reforestation of degraded land	2		-			-		Forestation	37
	AR- AM0004	Reforestation or afforestation of land currently under agricultural use	1								57
	AR- AM0005	Afforestation and reforestation project activities implemented for industrial and/or commercial uses	1								
	AR- AM0010	Afforestation and reforestation project activities implemented on unmanaged grassland in reserve/protected areas	1								
Forest conserv ation		-					VM0003	Methodology for Improved Forest Management through Extension of Rotation Age, v1.0	Unknown	Forest Conservation, Slope Conservation/ Soil Conservation,	31
uton					Increase in CO ₂ sequestration through		VM0004	Methodology for Conservation Projects that Avoid Planned Land Use Conversion in Peat Swamp Forests, v1.0		Mangrove Conservation, Ecosystem (Biodiversity)	
			R001	forest management activity (Thinning Promotion Project)	51	VM0005	Methodology for Conversion of Low-productive Forest to High-productive Forest		conservation, Restoration, Forest disaster		
						VM0006	Methodology for Carbon Accounting in Project Activities that Reduce Emissions from Mosaic Deforestation and Degradation		prevention		

Sub-		CDM			J-VER			VCS		ODA Loan Projects	
sector	Method No.	Title	Project	Method No.	Title	Project	Method No.	Title	Project	Classification	Project
			·				VM0007	REDD Methodology Modules (REDD-MF)			
					Increase in CO ₂		VM0009	Methodology for Avoiding Mosaic Deforestation of Tropical Forests			
				R002	sequestration through forest management activity (Thinning Promotion Project)	9	VM0010	Methodology for Improved Forest Management: Conversion from Logged to Protected Forest			
							VM0003	Methodology for Improved Forest Management through Extension of Rotation Age, v1.0			

(2) Traffic and Transportation Sector

Some methodologies are currently available for CDM and J-VER in traffic and transportation sector. However, only CDM methodologies have been applied to actual project activities. There are only 6 projects because of the geographically large project boundary and difficulties in estimating/verification/monitoring of GHG emission reductions effect. As shown in Table 2.2.3, there are 5 modal shift projects applied, including 2 for bus rapid transit or BRT projects, 1 for railway, 1 for rolling stock cars for subways, 1 for cable cars, and 1 for bio-diesel production projects.

		CDM		ODA Loan Projects	
Sub-sector	Method No.	Title	Project	Classification	Project
Freight/Passenger Transportation Improvement	AM0090	Modal shift in transportation of cargo from road transportation to water or rail transportation	0	Freight (a new railway, double track railway) Passenger (a new railway, a double track railway,	
	AMS-III.C.	Emission reductions by electric and hybrid vehicles	1	or a quadruple track railway) Improvement of railway facilities, High standardization, Rehabilitation of railway bridges	48
MRT (Mass	ACM0016	Baseline and monitoring methodology for Mass Rapid Transit Projects	0	MRT (City and suburb rapid railway: Subway,	
Rapid Transit)	AMS-III.U.	Cable Cars for Mass Rapid Transit System (MRTS)	1	Elevated railway)	46
	ACM0016	Baseline and monitoring methodology for Mass Rapid Transit Projects	0		
Monorail, LRT	AMS-III.U.	Cable Cars for Mass Rapid Transit System (MRTS)	1	Monorail, LRT	2
Bus(BRT , Trunk	ACM0016	Baseline and monitoring methodology for Mass Rapid Transit Projects	0		
bus)	AM0031	Cable Cars for Mass Rapid Transit System (MRTS)	2		0

Table2.2.3 Existing Methodologies in Traffic and Transportation Sector

(3) Energy Conservation (Industry) Sector

Energy conservation (Industry) sector has methodologies and actual application examples in the CDM, J-VER, Domestic Credit System and J-MRV. Domestic Credit System 001 is ranked highest at 248 applications in the sub-sector of energy efficiency improvement for industrial facilities. Also, the small-scale approved methodologies, AMS-II.D, ranked highest at 42 among other methodologies for the CDM. These are projects that include upgrading of boilers in industrial facilities.

The CDM-approved consolidated methodology, ACM0012, ranked highest at 22 in cogeneration (supply of electricity and heat) for industrial facilities. There are many scenarios in approved consolidated methodologies; however, cogeneration (supply of electricity and heat) by effective utilization of waste energy (waste gas, waste heat, waste pressure) is the target.

Small-scale CDM methodology AMS-III.B and consolidated methodology ACM0003, both with 13 applications each, rank the highest among the methodologies in the sub-sector of fossil fuel switching measure for industrial facilities. These involve fuel switching to low-carbon fuel, from fossil fuel to natural gas, etc..

		CDM			J-VER		Do	omestic Credit System			J-MRV		ODA Loan P	rojects	
	Method No.	Title	Project	Method No.	Title	Project	Method No.	Title	Project	Method No.	Title	Project	Classification	Project	
	AMS-II.D.	Energy efficiency and fuel switching measures for industrial facilities	42	E011	Upgrade fuel switch of boiler equipment	Update of boiler.	001	Upgrading of boiler.	248	J-MRV002	Methodology for Energy conservation project	Unknown			
	AMS-II.C.	Demand-side energy efficiency activities for specific technologies					004	Upgrading of air-conditioning equipment.	109						
	AMS-II.C.	Baseline Methodology for steam optimization systems	11				001-A	Installing a new boiler.	33						
ement	AM0018	Energy efficiency measures through centralization of utility provisions of an industrial facility	10				002	Upgrading of heat source equipment by introducing a heat pump.	28						
Energy Efficiency Improvement	Methodology for improved electrical energy efficiency of an existing	improved electrical energy efficiency of an existing submerged electric	dology for yed electrical efficiency of sting 1				002-A	Upgrading of heat source equipment by introducing a heat pump. (Heat-collecting type)	8		_		Energy conservation	2	
Energy E		arc furnace used for the production of SiMn					002-В	Installing a new heat source equipment by introducing a heat pump	3						
		Energy efficiency and fuel switching					003	Upgrading of industrial furnace	14						
	AM0038	measures for industrial facilities; Demand-side energy efficiency activities for specific technologies	1			005 Intermittent operational control, Inverter control, or Install of regulating equipments for pumps and fans 43									
		Baseline methodology for steam optimization systems	Baseline					010	Upgrading of transformer	5					
	AM0059		thodology for 1				022	Upgrading of refrigeration equipment	2						

Table 2.2.4 Existing Methodologies in Energy Conservation (Industry) Sector (1)

		CDM			J-VER		De	omestic Credit System			J-MRV		ODA Loan F	rojects
	Method No.	Title	Project	Method No.	Title	Project	Method No.	Title	Project	Method No.	Title	Project	Classification	Project
	ACM0012	Consolidated baseline methodology for GHG emission reductions for waste gas or waste heat or waste pressure based energy system	22(1)	E006	Recovery and utilization of waste heat	2	014	Introduction of a small steam generator by utilizing excess steam	5	J-MRV003	Recovery and utilization of waste energy project	Unknown	Industry	
	AMS-III. Q.	Waste gas based energy systems	11(1)				009	Energy utilization of hot spring heat and waste heat	2					15
ty and heat supply	AM0024	Methodology for greenhouse gas reductions through waste heat recovery and utilization for power generation at cement plants	9		-		013	Switching to thermal applications from the external high-efficiency	1				Factory, plant Mining industry	15
Electricity	AMS-III.P	Recovery and utilization of waste gas in refinery facilities	4					heating equipment						

		CDM			J-VER		Dor	nestic Credit System	1		J-MRV		ODA Loan Pr	ojects
	Method No.	Title	Project	Method No.	Title	Project	Method No.	Title	Project	Method No.	Title	Project	Classification	Project
	AMS-III.B	Supply side energy efficiency improvements – generation	13(1)	E001	Switch from fossil fuel to unused woody biomass for boiler fuel	8	012	Switch from coke to biocoke in melting furnace	1					
	AMS-II.D.	Methodology for conversion from single cycle to combined cycle power generation	42	E002	Switch from fossil fuel to unused wood pellets for boiler fuel	5								
Fuel switching	ACM0003	Consolidated baseline and monitoring methodology for new grid connected fossil fuel fired power plants using a less GHG intensive technology	13(1)								-		Factory, plant Mining industry	8
Fue	ACM0009	Supply side energy efficiency improvements – transmission and distribution	5					-						
	AM0036	Methodology for installation of energy efficient transformers in a power distribution grid	3											
	AMS-II.G.	Supply side energy efficiency improvements – transmission and distribution	1											

Table 2.2.5 Existing Methodologies in Energy Conservation (Industry) Sector (2)

(4) Energy Sector

The energy sector has methodologies and actual application examples in the CDM and VCS. Projects under CDM-approved methodology AM0029 ranked highest at 31 in the sub-sector of plant supplying energy maintenance with fuel switching, targeting projects that supply natural gas originated electricity to a grid.

Projects under CDM-approved consolidated methodology ACM0012 ranked second at 22 in the sub-sector of fossil fuel fired power plants for supplying electricity. Projects under CDM small-scale methodology MS-III.B ranked third at 13 in the sub-sector of fossil fuel-fired power plants for fuel switching.

10 projects have applied CDM small-scale methodology AMS-II.B in the sub-sector of fossil fuel-fired power plants for efficiency improvement, targeting projects that replace plants such as boilers in fossil fuel-fired power plants.

Sub-sector		CDM		ODA Loan Projects	
Sub-sector	Method No.	Title	Project	Classification	Project
Energy plant	AM0029	Baseline Methodology for Grid-Connected Electricity Generation Plants using Natural Gas	31	Intensive heat-supply system with fuel switching	
with fuel switching	AM0014	Natural gas-based package cogeneration	5	Energy facilities(Establishment of	28
	AM0058	Introduction of a new primary district heating system	0(1)	natural gas pipeline)	
Thermal power with electricity	ACM0012	Consolidated baseline methodology for GHG emission reductions for waste gas or waste heat or waste pressure based energy system	22(1)	Thermal power with electricity and	4
and heat supply	AM0055	Baseline and Monitoring Methodology for the recovery and utilization of waste gas in refinery facilities	1	heat supply	4
Thermal	AMS-III.B.	Switching fossil fuels	13(1)		
power with	ACM0011	natural gas in existing power plants for electricity generation		Intensive heat-supply system with fuel switching	12
	AMS-II.B.	Supply side energy efficiency improvements – generation	10		
Thermal power with	ACM0007	Methodology for conversion from single cycle to combined cycle power generation	4		39
higher efficiency	ACM0013	Consolidated baseline and monitoring methodology for new grid-connected fossil fuel-fired power plants using a less GHG-intensive technology	3	Thermal power with high efficiency	39
Power transmission	AMS-II.A.	Supply side energy efficiency improvements – transmission and distribution	0		
with improved efficiency	AM0067	Methodology for installation of energy efficient transformers in a power distribution grid	0	Transmission and distribution	53
Power distribution	AMS-II.A.	Supply side energy efficiency improvements – transmission and distribution	0		
with improved efficiency	AM0067	Methodology for installation of energy efficient transformers in a power distribution grid	0	Transmission and distribution	11
Rural electrification	AMS-I.F.	Renewable electricity generation for captive use and mini-grid	0	Renewable energy Rural electrification	31

Table 2.2.6 Existing Methodologies in the Energy Sector

(5) Renewable Energy Sector

The renewable energy sector has some methodologies available with the CDM, J-VER, and Domestic Credit System. However, only the CDM and Domestic Credit System exhibit actual application examples. Most CDM methodologies fall into two sub-sectors. One group is categorized into hydro, wind, photovoltaic and geothermal. The other is biomass.

Projects under approved consolidated methodology ACM0002 ranked highest at 900, while projects under small-scale approved methodology AMS-I.C ranked second at 846 in the sub-sector group of hydro, wind, photovoltaic and geothermal. These are all projects for grid-connected electricity generation from renewable sources. The above 2 methodologies account for about half of the current CDM approved projects.

Bio-diesel production and use for transportation applications are referred separately in the fuel switching methodologies. In this chapter, approved consolidated methodology for electricity generation with biomass residues under ACM0006 is regarded as the highest ranking methodology with 93 application cases.

0.1		CDM		Dom	estic Credit System		Yen Loan Aid	Projects
Sub-sector	Method No.	Title	Project	Method No.	Title	Project	Classification	Project
Hydro power, Wind power, Photovoltaic power /solar heat, Geothermal power	ACM0002	Consolidated baseline methodology for grid-connected electricity generation from renewable sources	900(29)				Hydro power plants (except for small hydropower and pumped and storage hydropower) Renewable energy	
	AMS-I.D.	Grid-connected renewable electricity generation	846(21)		Methodology for grid-connected electricity generation from			
	AMS-I.C.	Thermal energy production with or without electricity	114(4)	008		21		54
	AM0026	Methodology for zero emissions grid-connected electricity generation from renewable sources in Chile or in countries with merit order based dispatch grid	4		photovoltaic power system			
Biomass	ACM0006 Consolidated methodology for 93(1) electricity and heat generation from biomass residues		93(1)	-			Renewable energy	0

Table 2.2.7 Existing Methodologies in Renewable Energy Sector

(6) Sewerage and Urban Sanitation Sector

Sewerage and urban sanitation sector have methodologies, but only the CDM has actual application examples. In the sub-sector of waste management, projects under approved consolidated methodology ACM0001 ranked highest at 129. These include the methodologies for landfill gas capture projects.

In the 2 sub-sectors of treatment of wastewater and sewerage, 93 projects have applied small-scale approved methodology, targeting projects for methane recovery in wastewater treatment.

		CDM		Yen Loan Aid Projec	ts
Sub-sector	Method No.	Title	Project	Classification	Project
	ACM0001	Consolidated baseline and monitoring methodology for landfill gas project activities	129		
Landfill	AMS-III.E.	Avoidance of methane production from decay of biomass through controlled combustion, gasification or mechanical/thermal treatment	27		_
disposal of waste	AMS-III.G.	Landfill methane recovery	13	Urban sanitation (waste disposal)	7
waste	AM0083	Avoidance of landfill gas emissions by in-situ aeration of landfills	1		
	AM0025	Avoided emissions from organic waste through alternative waste treatment processes	17		
Intermediate	AMS-III.F.	Avoidance of methane emissions through composting	36		
Intermediate treatment of waste	AM0039 Methane emissions reduction from organic waste water and bioorganic solid waste using co-composting		2	Urban sanitation(waste disposal)	9
	AMS-III.H.	Methane recovery in wastewater treatment	93(5)		
Wastewater treatment	AMS-III.I.	Avoidance of methane production in wastewater treatment through replacement of anaerobic lagoons by aerobic systems	7	Drainage	35
	AMS-III.Y.	Methane avoidance through separation of solids from wastewater or manure treatment systems	1		
	AMS-III.H.	Methane recovery in wastewater treatment	93(5)		
Sewerage	AMS-III.I.	Avoidance of methane production in wastewater treatment through replacement of anaerobic lagoons by aerobic systems	7	Sewerage	56
Seweidge	AMS-III.Y.	Methane avoidance through separation of solids from wastewater or manure treatment systems	1	Sewelage	30
	ACM0014	Mitigation of greenhouse gas emissions from treatment of industrial wastewater	2		

Table 2.2.8 Existing Methodologies in Sewerage and Urban Sanitation Sector

		1	CDM		1	J-VER		Comp	vcs	(1)	1	Domestic Credit System			J-MRV		Yen loan aid projects
ector	Sub-Sector	Method No.	Title	Project	Method No.	Title	Project	Method No.	Title	Project	Method No.	Title	Project	Method No.	Title	Project	Classification Project
			Afforestation and reforestation of degraded land through tree planting, assisted natural regeneration and control of animal														
		AR-AM0003	grazing		4												
		AK-AM0005			4												
			Restoration of degraded lands through		1												
	Afforestation	AR-AM0001	Reforestation of degraded land		2												Afforestation
			Afforestation and reforestation of degraded land Reforestation or afforestation of land currently under		2												
		AR-AM0004	agricultural use		1												
		AR-AM0005	Afforestation and reforestation project activities implemented for industrial and/or commercial uses		1												
Forest		AR-AM0010	Afforestation and reforestation project activities implemented		1												
and natural			on unmanaged grassland in reserve/protected areas			Increase in CO2 sequestration through			Methodology for Improved Forest Management								
esources	i				R001	forest management activity (Thinning	51	VM0003	through Extension of Rotation Age, v1.0	Unknown	n						
onserva tion						Promotion Project)			Mathedalase Concentration Deviced attest								
					R002	Increase in CO2 sequestration through forest management activity (Thinning	9	VM0004	Methodology for Conservation Projects that Avoid Planned Land Use Conversion in Peat	Unknown	n						
						Promotion Project)			Swamp Forests, v1.0 Methodology for Conversion of Low-productive								· Forest conservation , Slope
	Forest							VM0005	Forest to High-productive Forest	Unknown	1						conservation/Soil conservation · Mangrove conservation
	conservation							VM0006	Methodology for Carbon Accounting in Project Activities that Reduce Emissions from Mosaic	Unknown	1						·Ecosystem (biodiversity)
									Deforestation and Degradation								integrity/restoration · Forest disaster prevention
								VM0007	REDD Methodology Modules (REDD-MF) Methodology for Avoided Mosaic Deforestation	Unknown							rolest disaster prevention
								VM0009	of Tropical Forests	Unknown	1						
								VM0010	Methodology for Improved Forest Management: Conversion from Logged to Protected Forest	Unknown	n						
								VM0003	Methodology for Improved Forest Management	Unknowr	n						
		AM0090	Modal shift in transportation of cargo from road transportation		0 E023	Eco-drive with mounted digital	0		through Extension of Rotation Age, v1.0		1						· Freight (a new railway double
			to water or rail transportation Emission reductions by electric and hybrid vehicles		0 1:023	tachographs	0										track railway) • Passenger (a new railway, a
	Freight/Passe nger		Emission reductions by creatic and nyolid venicies								1						double track railway, or a
	Transportatio																quadruple track railway) ·Improvement of rails, High
Traffic	n Improvement	AMS-III.C.			1												standardization, Rehabilitation of
and ranspor																	railway bridges · Rehabilitation of train cars and
tation		AMS-III.U.	Cable Cars for Mass Rapid Transit System (MRTS)		1												railway facilities
	MRT	ACM0016	Baseline Methodology for Mass Rapid Transit System (MRTS)		0												MRT(City and suburb rapid railway: Subway, Elevated
	Mono-	AMS-III.U.	Cable Cars for Mass Rapid Transit System (MRTS)		1												milana)
	rail,LRT	ACM0016 ACM0016	Baseline Methodology for Mass Rapid Transit Projects Baseline Methodology for Mass Rapid Transit Projects		0												Monorail, LRT
	Bus	AM0031	Baseline Methodology for Bus Rapid Transit Projects		2												BRT,Trunk Bus
		AMS-II.D.	Energy efficiency and fuel switching measures for industrial facilities	4	2 E011	Upgrade · fuel switch of boiler equipment	5				001	Upgrading of boiler.	248	J-MRV002	Methodology for Energy conservation project	Unknown	
			Demand-side energy efficiency activities for specific									Upgrading of air-conditioning			conservation project		
		AMS-II.C.	technologies	1	1						004	equipment.	109				
		AM0018	Baseline methodology for steam optimization systems	1	0						001-A	Installing a new boiler.	33				
			Energy efficiency measures through centralization of utility	1	0							Upgrading of heat source	33				
		AMS-II.H.	provisions of an industrial facility		1						002	equipment by introducing a heat	28				Energy Conservation 2
		AM0038	Methodology for improved electrical energy efficiency of an existing submerged electric arc furnace used for the		1						002-A	Upgrading of heat source equipment by introducing a heat	8				
	Energy Efficiency		production of SiMn									pump.					
	Improvement	AM0059	Reduction in GHGs emission from primary aluminium smelters		1						002-B	Installing a new heat source equipment by introducing a heat	3				Energy Conservation
												pump					
											003	Upgrading of industrial furnace	14				
												Intermittent operational control, Inverter control, or					
											005	Install of regulating equipments	43				
					+						1	for pumps and fans Upgrading of transformer					
											010		5				
nergy					1							Upgrading of refrigeration					
onserva on											022	equipment	2				
industry		ACM0012	Consolidated baseline methodology for GHG emission	22/1) E006	Recovery and utilization of waste heat	n				014	Introduction of a small steam	-	I-MRV002	Recovery and utilization of	Unknown	
		ACM0012	reductions from waste energy recovery projects	22(1	12000		2				014	generator by utilizing excess steam		3-IVIR V 003	waste energy project	Uliknown	
	Electricity	AMS-III.Q.	Waste energy recovery (gas/heat/pressure) projects	11(1)						009	Energy utilization of hot spring heat and waste heat	2				
	and heat supply		Baseline methodology for greenhouse gas reductions through									Switching to thermal applications					Factory, Plant Mining
		AM0024	waste heat recovery and utilization for power generation at cement plants		9						013	from the external high-efficiency heating equipment	1				
		AMS-III.P.	Recovery and utilization of waste gas in refinery facilities		4						1						
			Switching fossil fuels		1	Switch from fossil fuel to unused woody						Switch from coke to biocoke in					
		AMS-III.B.		13(1) E001	biomass for boiler fuel	8				012	melting furnace	1				
			Energy efficiency and fuel switching measures for industrial			Switch from fossil fuel to unused wood											
		AMS-II.D.	facilities	4	2 E002	pellets for boiler fuel	5				1						
			Emissions reduction through partial substitution of fossil fuels		J						1						
	Fuel	ACM0003	with alternative fuels or less carbon intensive fuels in cement or quicklime manufacture	13(1)						1						Feetory Plant
	switching	ACM0009	Consolidated baseline and monitoring methodology for fuel		5						1						Factory, Plant Mining
			switching from coal or petroleum fuel to natural gas Fuel switch from fossil fuels to biomass residues in heat		+						ł						
		1	generation equipment		2						1						
		AM0036			5												
		AM0036			5												
		AM0036 AMS-II.G.	Energy efficiency measures in thermal applications of non- renewable biomass		1												

Reference-1 Comparison of Methodologies (1)

Reference-2 Comparison of Methodologies (2)

Sector	Sub-Sector		CDM			J-VER			VCS		Domestic Credit System			J-MRV		Yen loan aid projects	1
		Method No.		Project	Method No.	Title	Project	Method No.	Title Pr	ject Method No.	Title	Project	Method No.	Title	Project	Classification	Project
	L .	AM0029	Baseline Methodology for Grid Connected Electricity Generation Plants using Natural Gas	31												· Intensive heat-supply system	
	Energy plant	AM0014	Natural gas-based package cogeneration	5								1	1			with fuel switching	
	with fuel switching		Introduction of a new primary district heating system									1				· Energy Facilities (Construction	
	switching	AM0058	1 5 65	0(1)												of Natural gas ipelines)	
	The sum of																+
	Thermal power	ACM0012	Consolidated baseline methodology for GHG emission reductions from waste energy recovery projects	22(1)												Thermal power plants with	
	electricity	AM0055	Recovery and utilization of waste gas in refinery	1												electricity and heat supply	
	cicculony	100000	Switching fossil fuels														
	Thermal	AMS-III.B.	C C	13(1)													
	power with															Thermal power plants with fuel	
	fuel		Consolidated baseline methodology for fuel switching from													switching	
	switching	ACM0011	coal and/or petroleum fuels to natural gas in existing power	1													
			plants for electricity generation														
			Supply side energy efficiency improvements - generation											Methodology for fossil fuel			
		AMS-II.B.		10									J-MRV004	fired power plants using a	Unknown		
	Thermal													less GHG intensive			
	power with		Conversion from single cycle to combined cycle power		-									technology		Thermal power plants with higher	
Energy	higher	ACM0007	generation	4												energy efficiency	
	efficiency		-														
			Consolidated baseline and monitoring methodology for new														
		ACM0013	grid connected fossil fuel fired power plants using a less GHG	3													
			intensive technology Supply side energy efficiency improvements – transmission														
	Dowor		and distribution														
	Power transmission	AMS-II.A.		0													
	with															Electricity Transmission	
	improved		Methodology for installation of energy efficient transformers														
	efficiency	AM0067	in a power distribution grid	0													
	Power	AMS-II.A.	Supply side energy efficiency improvements - transmission	0													
	distribution	AM5-II.A.	and distribution	0												_	
	with		Methodology for installation of energy efficient transformers													Electrical Distribution	
	improved	AM0067	in a power distribution grid	0													
	efficiency																
	Rural	AMS-I.F.	Renewable electricity generation for captive use and mini-grid	0												Renewable energy	
	electrificatio	AM3-1.1 .		0												Rural electrification	
	Hydro power	ver ACM0002	Consolidated baseline methodology for grid-connected	000(20)						000	Methodology for grid-connected electricity generation from photovoltaic power system						
	Wind Power	er,	electricity generation from renewable sources	900(29)						008		21				Hydro power plants (except for	
	Photovoltaic		Grid connected renewable electricity generation	846(21)							photovortate power system					small hydropower and pumped	
Renewa	power /	AMS-I.C.	Thermal energy production with or without electricity	114(4)												and storage hydropower) Renewable energy	
le energ	solar heat,		Methodology for zero-emissions grid-connected electricity													Kenewable energy	
ie energ.	Geothermal	AM0026	generation from renewable sources in Chile or in countries	4													
			with merit order based dispatch grid											Mathadalaan faa alaataisita			+
	Biomass	ACM0006	Consolidated methodology for electricity and heat generation from biomass	93(1)									LMRV0001	Methodology for electricity and heat generation from		Renewable energy	
	Diomass	ACM0000	from bromass	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									J-WIK V 0001	biomass residues	UIKIOWI	Renewable energy	
		4 (3) (00001	Consolidated baseline and monitoring methodology for landfill	120										oronnass residues			<u> </u>
		ACM0001	gas project activities	129													
1		AMS-III.E.	Avoidance of methane production from decay of biomass	27			T	T							_		
	Landfill		through controlled combustion, gasification or													Urban Sanitation	
	disposal of	AMS-III.G.	Landfill methane recovery	13	i											(Disposal of waste)	
	waste	110000	Avoidance of landfill gas emissions by in-situ aeration of		1						1	1			<u> </u>	(Disposar or waste)	
		AM0083	landfills	1													
		AM0025	Avoided emissions from organic waste through alternative	17	,												
	T		waste treatment processes	.,													_
Seweree	Intermediate treatment of	AMS-III.F.	Avoidance of methane emissions through composting Methane emissions reduction from organic waste water and	36	1							-				Urban Sanitation	
	waste	AM0039	bioorganic solid waste using co-composting	2	2											(Disposal of waste)	
sanitatio		AMS III II	Methane recovery in wastewater treatment	93(5)	İ						1					1	<u> </u>
n		AMS-III.H.	-	95(5)												1	
	Wastewater	AMS-III.I.	Avoidance of methane production in wastewater treatment	7	,											Wastewater	
	treatment		through replacement of anaerobic systems by aerobic systems													-	
		AMS-III.Y.	Methane avoidance through separation of solids from wastewater or manure treatment systems	1													
			Methane recovery in wastewater treatment													1	+
		AMS-III.H.		93(5)]	
												1					
			Avoidance of methane production in wastewater treatment					1	1							Sewerage	
	Sewerage		through replacement of anaerobic systems by aerobic systems	7												Sewerage	
	Sewerage		through replacement of anaerobic systems by aerobic systems Methane avoidance through separation of solids from	7												Sewerage	
	Sewerage	AMS-III.I.	through replacement of anaerobic systems by aerobic systems	7												Sewerage	

Reference-3 Methodologies of International Organization (1)

Established agency / Institution	WB (The Worlds Bank/Carbon Finance Unit)	IFC (International Finance corporation)	OECD (Organization for Economic Co-operation and Development)	ADB (Asian Development Bank)	UNEP (United Nations Environment Programme)	GEF (Global Environment facility)	GHG protocol (The Greenhouse Gas Protocol Initiative)	(Uni
Multi / Bilateral	Multi	Multi	Multi	Multi	Multi	Multi	Multi	
Outline	The handbook has been published. CDM projects are in accordance with the CDM methodology while other projects conform to the GEF manual.	IFC offers project-GHG calculation sheet for sectors such as forestry, water supply and sewerage and drainage, urban sanitation, others)	Published a power sector manual for calculating GHG.	Released a transportation and energy sector manual on basic concept for GHG estimation.	r Released energy, transportation and industrial processes GHG calculation sheets.	In the published manual, CDM-like approach is used to quantify GHG.	Released energy consumption, transportation and industrial processes GHG calculation sheets.	Release
Forest and natural resources conservation	· Forestry	· Forestry · Land use	Provide estimation methodology for GHG emission reductions in Agriculture sector •EX-ACT, EX-ante					Carb FORES
Traffic and Transportation	 Transport (modal shift) Infrastructures (Construction of Port, Bridge, etc.) 			Transport and Carbon Dioxide Emissions: Forecasts, Options Analysis, and Evaluation		Others: MANUAL FOR CALCULATING GREENHOUSE GAS BENEFITS FOR GLOBAL ENVIRONMENT FACILITY TRANSPORTATION PROJECTS	GHG estimation sheet for traffic and transportation ·WRI_Transport_Tool	
Energy Conservation (Industry)	• Cement • Fertilizer	· Cement · Metal · Chemistry · Glasses · Lime production · Oil, Mining				•Energy conservation in general	GHG estimation sheet for industry GHG emissions from the production of aluminum ·CO2 emissions from the production of lime ·CO2 emissions from the production of iron and steel ·CO2 emissions from the production of cement (US EPA) ·CO2 emissions from the production of ammonia	
c c t r Energy	Fuel switch from fossil fuel Cogeneration Updating of refinery Updating of electricity transmission Updating of electric power substation Construction of natural gas pipeline		PRACTICAL BASELINE RECOMMENDATIONS FOR GREENHOUSE GAS MITIGATION PROJECTS IN THE ELECTRIC POWER SECTOR	EVALUATION KNOWLEDGE BRIEF ON GREENHOUSE GAS IMPLICATIONS OF ADB'S ENERGY SECTOR OPERATIONS		·Higher efficiency of energy		
Renewable energy	· · Fuel switch from fossil fuel					·Renewable energy in general		
Sewerage, Urban sanitation	Landfill wetland reclamation 'Reservoir Others: Evaluation tool for GHG emissions reduction in the field of waste Simplified Toolkit for Manure Management Processe 'Simplified toolkit for wastewater treatment projects Simplified toolkit for solid waste management projects 'Simplified toolkit for landfill gas capture projects	·Waste disposal ·Waste water treatment						
all	Greenhouse Gas Assessment Handbook(1998)	GHG estimation sheet IFC Carbon Emissions Estimation Tool (CEET) •Fuel consumption •Electricity consumption •Refrigerator, Air conditioner	GHG MitiGation actions: MRV issues and options		GHG estimation sheet · Spreadsheet for calculating greenhouse gas (GHG) emissions based on the UNEP GHG Calculator · United Nations Greenhouse Gas Calculator	Manual for Calculating GHG Benefits o GEF Projects: Energy Efficiency and Renewable Energy Projects Others: GHG estimation tool for GEF project GHG Benefits of GEF Projects: Carbon Dioxide Calculator	f GHG estimation tool for fixed sources ·Stationary_combustion_tool GHG estimation tool using electrical consumption ·GHG emissions from purchased electricity HFC, PFC emissions tool ·hfc-pfc	
Source	http://web.worldbank.org/WBSITE/EXTE RNAL/TOPICS/ENVIRONMENT/EXTC ARBONFINANCE/0, contentMDK:22366 206~pagePK:64168445~piPK:64168309~t heSitePK:4125853,00.html		http://www.oecd.org/dataoecd/45/43/19433 33.pdf	http://www.adb.org/documents/papers/adb- working-paper-series/ADB-WP09- Transport-CO2-Emissions.pdf	http://www.unemg.org/MeetingsDocument s/IssueManagementGroups/Sustainability Management/UnitedNationsGreenhouseGa sCalculator/tabid/3975/Default.aspx	http://www.thegef.org/gef/node/313	http://www.ghgprotocol.org/calculation- tools	http://v nt/clim an10.p
			http://www.oecd.org/dataoecd/26/44/42474 623.pdf	http://www.adb.org/Documents/Evaluation /Knowledge-Briefs/REG/EKB-REG-2009- 38.pdf		http://www.thegef.org/gef/GEF_C39_Inf.1 6_Manual_Greenhouse_Gas_Benefits	http://www.ghgprotocol.org/calculation- tools/all-tools	

USAID (United States Agency for International Development)	CIDA (Canadian International Development Agency)
Bi	Bi
Released forestry and transportation sectors GHG calculation sheets (outline).	Canada Climate Change Development Fund estimates GHG, but the details including an estimation program are unknown.
Carbon estimation tool FOREST CARBON CALCULATOR	
http://www.usaid.gov/our_work/environme nt/climate/docs/forest_carbon_calculator_j an10.pdf	

Established agency / Instit	ution GTZ (Deutsche Gesellschaft fur Technische Zusammenarbeit)	KFW (Kreditanstalt für Wiederaufbau)	PROPARCO (sigle pour Promotion et Participation pour la Coopération économique)	U.S. Department of Commerce	US Environmental Protection Agency	U.S. Department of Transportation	Defra:Department for I and Rural A
Multi / Bilateral Outline	Bi GHG calculations are conducted under a fund targeting climate change operations. Details of the program are unknown.	Bi Released tool for GHG calculation for landfill.	Bi Estimates GHG of the project they assist. Information on the program is unknown.	- GHG calculation tool for Landuse,Traffic Sector has been released.	GHG calculation tool for Traffic Sector and Climate Change has been released.	GHG Model for Traffic Sector has been released.	GHG calculation Guideli Energy Sector has been r
Forest and natural resources of	conservation						
Traffic and Transportation				Calculation sheets for Simulation of Traffic Network 'VMT Spreadsheet 'Trip Generation with 4Ds Spreadsheet 'TDF Model 'Enhanced TDF Model GHG Calculation software 'URBEMIS Software 'ICLEI CACP Software 'Place3s Software 'INDEX Software	Optimization Model for Reducing Emissions of Greenhouse Gases from Automobiles (OMEGA)	GHG Calculation Model for traffic Sector ·MOBILE6 ·NONROAD ·NMIM ·COMMUTER ·SIT ·SIPT ·CLIP etc. 17Models.	Guidance on measuring reporting Greenhouse Gas (GHG) emissions from fra transport operations
Energy Conservation (Industr	y)						
c c t r Energy							• 2010 Guidelines to Defr Conversion Factors for C
Renewable energy							
	GHG estimation tool for waste management GHG calculator for waste management	SWM Greenhouse Gas Calculator (the solid waste and wastewater management sector)			*Waste Reduction Model (WARM) *Recycled Content (ReCon) Tool		
Sewerage, Urban sanitation							
all			Calculation of GHG emission program for each project •Bilan Carbone				
Source	http://www.gtz.de/en/themen/umwelt- infrastruktur/abfall/30026.htm		http://www.proparco.fr/jahia/webdav/site/afd //shared/PUBLICATIONS/INSTITUTIONNE L/plaquettes-presentation/AFD-Brochure- english-2008.pdf	http://www.commerce.wa.gov/DesktopModu es/CTEDPublications/CTEDPublicationsVie w.aspx?tabID=0&ttemID=7797&MId=944& wversion=Staging	http://www.epa.gov/otaq/climate/models.htm	http://climate.dot.gov/methodologies/analysi -resources.html	s http://www.defra.gov.uk/ ss/reporting/pdf/ghg-freig
				http://www.newpartners.org/2010/docs/prese ntations/thursday/np10_samdahl.pdf	http://www.epa.gov/climatechange/wycd/was te/calculators/Warm_home.html		http://www.defra.gov.uk/ ss/reporting/pdf/100805-g conversion-factors.pdf
		1	•	VMT:Vehicle-Miles Traveled	1	•	

VMT:Vehicle-Miles Traveled TDF: Travel Demand Forecasting

r Environment, Food l Affairs	Co-Benefit Manual of Quantitative evaluation (Ministry of Environment,JAPAN)
linel for Traffic and n released.	Bl The conditions required to organize a quantitative assessment of global warming co-benefits.
ng and ias freight	•Air quality improvement (Calculation formula by mobile sources)
fra / DECC's GHG Company Reporting	
	Water Pollution Control (GHG emission reduction from Wastewater treatment system : small scale CDM AMSIII-1) ·Air quality improvement (Calculation formula by fixed sources) ·Waste Management (Landfill methane recovery tool)
ight-guide.pdf	http://www.env.go.jp/press/file_view.php?ser ial=13728&hou_id=11242
k/environment/busine 5-guidelines-ghg-	

Reference-5 Methodologies of VER Certification Organization

VER Certification agency	Gold Standard	VER+	CCB Standards (The Climate, Community and Biodiversity Project Design Standards)	Green-e	VOS (Voluntary Offset Standard)	CCX (Chicago Climate Exchange)	CCAR (California Climate Action Registry)	Plan Viivo	Social Carbon	NCOS (National Carbon Offset Standard)
Established Institutions Multi / Bilateral	WWF(World Wide Fund for Nature), SSN (SouthSouthNorth), Helio International etc.	TÚV SÜD Group, 3C Group	CCBA(Company, NGO etc.)	CRS(Center for Resource Solution, NPOs in US)	International Carbon Investors and Services (INCIS), Morgan Stanley INCIS was established by financial institutions for the development of emissions trading markets GHG.	CCX(Private Sector)	California	ECCM(Edinburgh Centre for Carbon Management), BR&D (BioClimate Research & Development)	NGO of Brazil: Ecologica Institute (IE)	Australian Government
Outline		Certification audit is basically being done using the same methodology as with CDM and JI projects.	community.	Green Power Certification Program (Green-e) is aimed at consumer protection when electric credits are sold, verifiying whether the goods satisfy environmental standards.	Certification system equivalent to the standard of the Kyoto credits. Target countries are mainly countries that did not ratify the Kyoto Protocol, and in particular, the U.S. and Australia (Australia ratified the Protocol).	criteria. Provides manuals for calculation of GHG in multiple sectors.	The methodology of California NPO. Provides manuals for calculation of GHG in multiple sectors.	Grass root criteria that offer high standard for environmental protection and local benefits. The methodology is an expensive option compared to those used in the global carbon market.	The feature of the methodology is to evaluate and verify the long-term impact assessment of sustainable development.	Government started in July
Forest and natural resources conservation		*Afforestation	*Forest Conservation, Forest Management *Afforestation *Nature Restoration			*Forest Conservation, Forest Management *Afforestation	*Forest Conservation, Forest Management *Afforestation	*Forest Conservation, Forest Management *Afforestation *Agroforestry	*Afforestation/reafforestation	*Forest management (forests established before 1990) *Revegetation (establishment woody biomass that does not meet forest criteria)
Traffic and Transportation	*Energy efficiency TargetIndustry Residential · Transportation · Public· Agricultural · Business Sector	Suppression of methane emission in Area circulation								
Energy Conservation (Industry)	*Energy efficiency Target:Industry·Residential · Transportation ·Public · Agricultural ·Business Sector									
Energy	*Energy efficiency Target:Industry · Residential · Transportation · Public · Agricultural · Business Sector	*Energy efficiency				*Energy efficiency *Fuel Switching			*Water power	
Renewable energy	*Renewable Energy photovoltaic/Solar Heat(Electricity/Heat),Biomass/ Biogas /Liquid biofuels,Wind power,Geothermal power,Water power	*Renewable Energy Biomass,Water power,Wind power etc.		*Renewable Energy photovoltaic,Wind power,Geothermal power,Small Water power,Biomass,Bio Diesel,Hydrogen battery		*Renewable Energy Wind power,Biomass,Biogas, etc.				
Sewerage, Urban sanitation		*Landfill methane recovery				*Landfill methane recovery *Proper disposal of ozone - depleting substances *Effective use of methane in the organic waste treatment	*Landfill methane utilization *Composition of organic refuse *Decomposition of organic refuse (proper disposal) *Proper disposal of ozone- depleting substances		*Landfill	
all										
Source		http://www.netinform.de/KE/Be ratung/Service_Ver.aspx		http://www.green- e.org/getcert_ghg_products.shtm		https://registry.chicagoclimatex. com/public/projectsReport.jsp	http://www.climateregistry.org/	http://planvivo.org.34spreview.c om/documents/standards.pdf	http://www.socialcarbon.org/	http://www.climatechange.gov u/en/government/initiatives/r ional-carbon-offset- standard.aspx
	climate/cat1297/cat1299/index. html	http://www.netinform.de/KE/We gweiser/Ebene1_Projekte2.aspx? Ebene1_ID=49&mode=4	http://www.climate- standards.org/projects/index.ht ml			http://www.chicagoclimatex.com /docs/offsets/CCX_Rulebook_C hapter09_OffsetsAndEarlyAction Credits.pdf			http://www.socialcarbon.org/upl oadDocs/Documents/SOCIALC ARBON_STANDARD_v.4.1.pdf	
	http://goldstandard.apx.com/res ources/AccessReports.asp									

Chapter 3 Basic Concept and Guidelines for the Quantitative Evaluation of GHG Emission Reduction (Sequestration)

3.1 Basic Concept

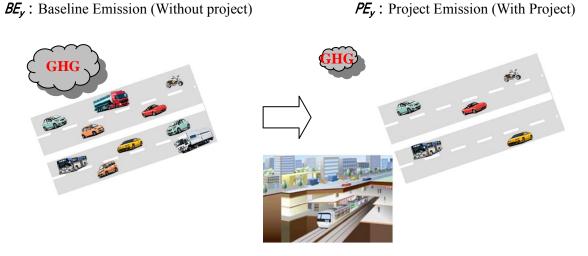
3.1.1 Quantitative Evaluation

Mitigation measures against global warming are intended to stop the progress of global warming by reducing (or sequestrating) GHG emissions and stabilize the concentrations of GHG in the atmosphere. The mitigation measures need time to show their effects but are the fundamental solutions. Actual mitigation measures such as effective use of energy and energy conservation, carbon dioxide capture and storage, and increasing carbon sinks are being implemented.

Quantification of GHG emission reduction (sequestration) aims to calculate the impact of mitigation through individual measures.

3.1.2 Basic Concept of Estimation

 Traffic and Transportation, Energy Conservation, Energy, Renewable Energy, Sewerage and Urban Sanitation Sectors


The effects of GHG emission reductions through a mitigation measure (ER_y) can be estimated as the difference between the GHG emissions without the mitigation measure (baseline emissions: BE_y) and those with the mitigation measure (project emission: PE_y). For example, the mitigation measure involving implementation of mass rapid transportation (MRT) is as follows:

$$ER_y = BE_y - PE_y$$

Basically, the baseline emission is the GHG emission in case present conditions would continue without project implementation (other concepts can be adopted depending on individual circumstances in each project). To compare between 'with' and 'without' mitigation measure, GHG is estimated based on the assumption that the level of activities is equivalent to the 'with' mitigation measure case (such as the amount of electricity used or the volume of production).

On the other hand, the project emission is determined as the GHG emission by implementing the project. Generally, the volume of project emission is smaller than that of the baseline emission. Also, the project emission of a renewal energy project activity becomes zero.

For financial intermediary loans (two-step loans) which provide assistance to numerous small-scale or medium-scale projects through intermediate financial organizations, etc., a simplified methodology based on the methodologies presented in this report can be applied to estimate the effects of GHG emission reductions, considering the availability of the required data and work volume.

Ex. MRT Project

(2) Forestry and Natural Resources Conservation Sectors

Because trees grow by sequestrating carbon dioxide from the air through photosynthesis and capturing of carbon, a forested site can be considered as a sink of carbon dioxide (or carbon). According to IPCC guidelines, net anthropogenic GHG removals by sinks ($ER_{AR,y}$) can be estimated by extracting the increase (or the decrease) without the forestry (baseline absorptions: $\Delta C_{BSL,y}$). Meanwhile, GHG emissions at the initial stage of the forestry project (project emissions: $GHG_{PRJ,y}$) can be estimated from the increase of carbon dioxide sink after the forestry project progresses over a certain period (or the decrease by thinning and harvesting) (project absorptions: $\Delta C_{PRJ,y}$).

The details are also shown in the explanatory sheets for forestry and natural resources conservation sub-sectors in Chapter 4.

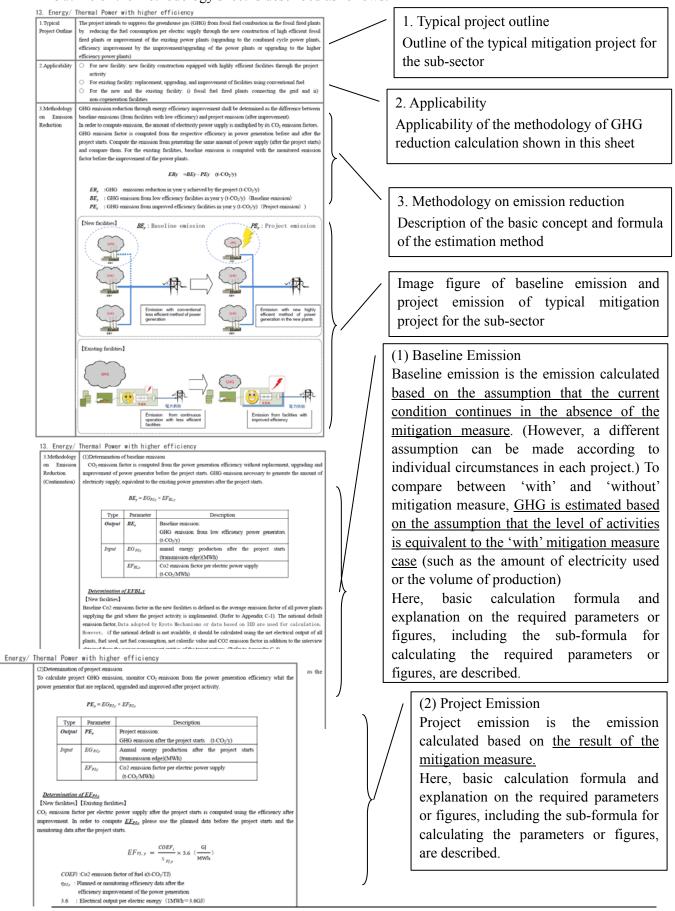
$$ER_{AR,y} = \Delta C_{PRJ,y} - \Delta C_{BSL,y} - GHG_{PRJ,y}$$

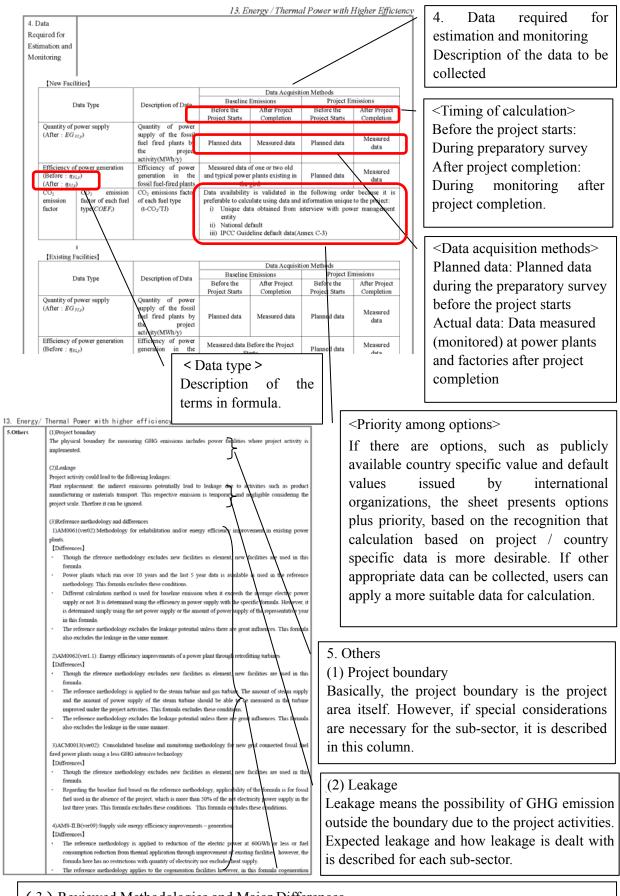
3.2 Framework of Methodology Sheet and Calculation Sheet (Excel)

3.2.1 Aim and Application of Methodology Sheet and Calculation Sheet (Excel)

Methodology sheets are prepared to simply estimate the quantitative effects of the GHG emission reduction at the pre-project and post-project stages on the individual project. Workflow and utilization of the methodology sheet and calculation sheets are shown in the figure below.

STEP-1	Confirmation of the target project and the guidelines for related sector/sub-sector	
Consider which sector or sub-sector is suitable for the purpose of the target project.		
Refer to Table2.1.3 and select the sector/sub-sector.		

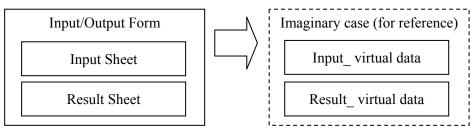

STEP-2Confirmation of the estimation methodologyRefer to "Methodology Sheet" prepared for each sub-sector selected in Step-1.This step includes review of the applicability of typical project outline and
methodology in the sub-sector, before confirmation of the estimation
methodologies, required data for calculating and monitoring of GHG emission
reductions.



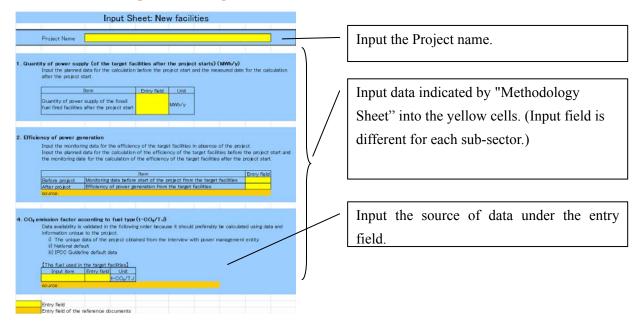
STEP-3Implementation of the estimationBased on the methodology confirmed in Step 2, fill in project specific
value/coefficient published value applicable in the country, etc. in the "Calculation
Sheet".

3.2.2 Outline of Methodology Sheet

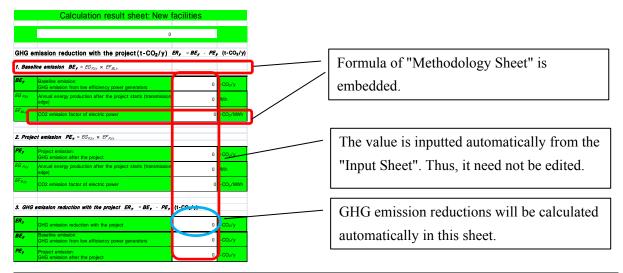
Outline of the methodology sheet is described as follows:



(3) Reviewed Methodologies and Major Differences Brief description of major differences between reviewed methodologies and the methodology presented in this sheet is shown

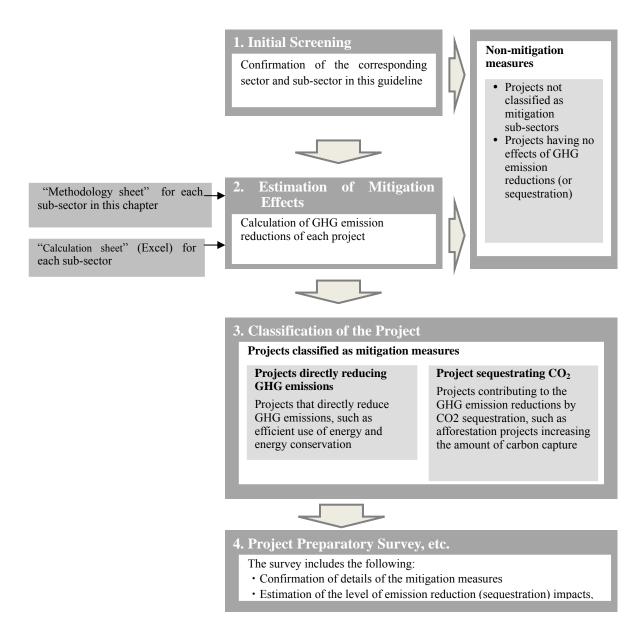

3.2.3 Outline of Calculation Sheet (Excel)

Calculation sheet is composed of two sheets: "Input Sheet" and "Result Sheet.". For each sub-sector, an imaginary case using virtual data is attached to help users understand how the sheets can be utilized.


(1) Input Sheet

The contents of the "Data required for monitoring and estimation" indicated in the "Methodology Sheet" serve as inputs to the "Input Sheet".

(2) Result Sheet


The calculation results are shown in the "Result Sheet".

Chapter 4 Methodology Sheets and Calculation Sheets

This chapter shows how to formulate the mitigation measures.

In Figure 4.1, a workflow shows how to identify a mitigation project, and how corresponding information should be provided to the partner nation at the preparatory survey.

Figure 4.1 Process for Formulating Mitigation Projects

4.1 Typical Project Outlines in Targeted Sub-sectors

A typical project is outlined before preparing a guideline for each sub-sector, based on past JICA ODA loan project information. The outlines of the typical projects are shown in Table 4.1.1.

Sub-sector		Typical Project Outline
1. Afforestation		The project intends to expand CO_2 sink through afforestation in non-forest lands including degraded, pasture or agricultural lands. For reducing emissions from deforestation and forest degradation (REDD), refer to "2. Forest Conservation".
2. Forest conservation		The project intends to reduce GHG emission through prevention of deforestation such as unregulated logging in developing countries (REDD). Refer to "1. Afforestation" for CO2 sinks increase through afforestation.
3. Passenger /Freight	3.1 Railway ,passengers	The project intends to reduce GHG emissions by realizing "modal shift" from existing passenger transport systems (i.e., conventional buses, passenger cars, taxies and bikes) to passenger railway systems such as a new railway, a double track railway, or a quadruple track railway. In addition, "electrification" of passenger railway systems will reduce GHG emissions.
transportation improvement	3.2 Railway , freight	The project intends to reduce GHG emissions by realizing "modal shift" from existing freight transport systems (i.e., conventional trucks and trailers) to freight railway systems such as a new railway, a double track railway. In addition, "electrification" of freight railway systems will reduce GHG emissions.
4.MRT(Mass Rapid Transit)		The project intends to reduce GHG emissions by realizing "modal shift" from existing transport systems (i.e., buses, private cars, taxies and bikes) to a Mass Rapid Transit (MRT) system.
5.Monorail, LRT		The project intends to reduce GHG emissions by realizing "modal shift" from existing transport systems (i.e., buses, private cars, taxies and bikes) to a light or medium transport system such as monorail and LRT (Light Rail Transit).
6.Bus (BRT, Trunk bus)		The project intends to reduce GHG emissions by realizing "modal shift" from existing transport systems (i.e., buses, private cars, taxies and bikes) to Bus Rapid Transit (BRT) or trunk bus systems.
7.Energy efficiency improvement	ent	The project intends to inhibit greenhouse gas (GHG) emissions by reducing fuel consumption in industrial facilities through energy efficiency improvements such as efficient motors adoption.
8. Electricity and heat supply		The project intends to directly suppress electricity/fuel consumption and reduce GHG emissions in industrial facilities, such as steel plants and cement plants, through recovery and utilization from waste energy (waste heat, waste gas pressure).
9.Fuel switching		The project intends to inhibit GHG emissions through switching from high carbon content heavy oil fuel in order to lower carbon content fuel in new and existing industrial facilities.
10.Energy plant with fuel switching		The project intends to inhibit GHG emissions by switching from high carbon content heavy oil fuel in order to lower carbon content fuel of new and existing intensive heat-supply facilities.
11.Thermal power with electricity and heat supply		The project intends to directly reduce GHG emissions and suppress fuel consumption for electricity generation through recovery and utilization (new construction of combined cycle power plants etc.) from waste energy (waste heat, waste) at fossil fuel fired power plants.

 Table 4.1.1
 Outlines of Supposed Projects for Target Sub-sector(1)

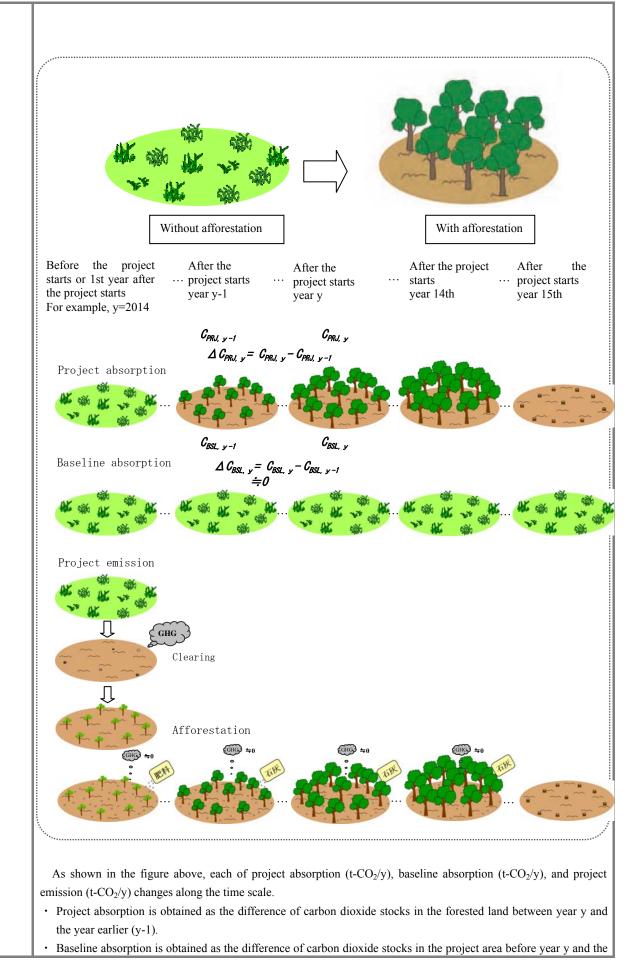
Sub-sect	or	Typical Project Outline
		The project intends to inhibit GHG emissions by switching from
12.Thermal power with fuel switching		high carbon content heavy oil fuel to lower carbon content fuel at
		new and existing intensive heat supply facilities.
		The project intends to suppress the greenhouse gas (GHG) from
		fossil fuel combustion in the fossil fired plants by reducing the
		fuel consumption per electric supply through the new construction of
13.Thermal power with higher	efficiency	high efficient fossil fired plants or improvement of the existing
15. Thermai power with higher	entenety	power plants (upgrading to the combined cycle power plants,
		efficiency improvement by the improvement/upgrading of the power
		plants or upgrading to the higher efficiency power plants)
		The project intends to directly suppress GHG emissions associated
	1 00 -	with transmission loss, through reducing power loss in the
14.Power transmission with im	proved efficiency	transmission grid or through maintenance of high voltage substation
		at new and existing facilities for electric energy
		transmission-transformation.
		The project intends to directly suppress GHG emissions associated
		with distribution loss, through reducing power loss in the
15.Power distribution with imp	roved efficiency	distribution grid or efficiency improvements of distribution
		equipment at new and existing facilities for electric energy
		distribution.
		The project intends to directly reduce greenhouse gas (GHG)
		emissions by generating power from renewable energy sources,
16.Rural electrification		which generate limited amounts of GHG. This is realized through the
10.Rulai electrification		implementation of renewable energy utilization project in the area
		where there is no connection to the main electricity transmission
		grid, or diesel power generation or kerosene lamp is not applied.
		The project intends to directly contribute to GHG emission reduction
17 Undre neuver		through hydropower plants construction aiming to generate
17.Hydro power		renewable energy, which does not emit GHG at flaring, with the use
		of natural resources such as hydro power.
		The project intends to directly contribute to GHG emission reduction
10 Wind a server		through the use of wind power plants in generating power. Thus, no
18.Wind power		GHG is generated with the use of natural resources such as wind
		power.
		The project intends to directly contribute to GHG emission reduction
	19.1 Photovoltaic	through generation of power from photovoltaic power plants. Thus
	power	there is reduction in GHG emission with the use of non-fossil fuel
19.Photovoltaic power /Solar heat	ponor	source such as photovoltaic power.
		The project intends to directly reduce GHG emissions by generating
		power from solar power plants, which generate limited amounts of
	19.2 Solar heat	GHG. The requirement for flaring of GHGs to reduce emissions,
		with the use of natural resources such as concentrated solar power, is
		eliminated.
		The project intends to directly reduce GHG emissions by generating
		power from geothermal power plants, which generate limited
20.Geothermal power		amounts of GHG. The requirement for flaring of GHGs to reduce
		emissions with the use of natural resources such as geothermal
		power is eliminated.
		The project indents to directly reduce GHG emissions through
		electricity generation or heat generation from biomass residues
21.Biomass		instead of fossil fuel fired at power plants or factories which leads to
21.21011035		reduce consumption of electricity or fossil fuel.
		reduce consumption of electricity of rossil fuct.

Table 4.1.1	Outlines of Supposed Projects for Target Sub-sector(2)
1 able 4.1.1	Outlines of Supposed Projects for Target Sub-sector(2)

Sub-sector	Typical Project Outline
	The project intends to reduce GHG emission through recovery and
22.Landfill disposal of waste	utilization of landfill gas (LFG) generated from landfill after the
	completion of reclamation and from active landfill.
	The project intends to reduce the GHG emissions without disposing
23.Intermediate treatment of waste	in landfill but by waste treatment such as composting or anaerobic
	digestion etc.
	The project intends to reduce the GHG emissions by suppressing
24.Wastewater treatment	CH4 from the sewage sludge decay through composting the sewage
	sludge.
	The project intends to reduce GHG emission through improving the
25.Sewerage	living condition and reducing CH4 from sewer water with
	wastewater treatment from the houses or factories.

Table 4.1.1	Outlines of Supposed Projects for Target Sub-sector(3)
--------------------	---

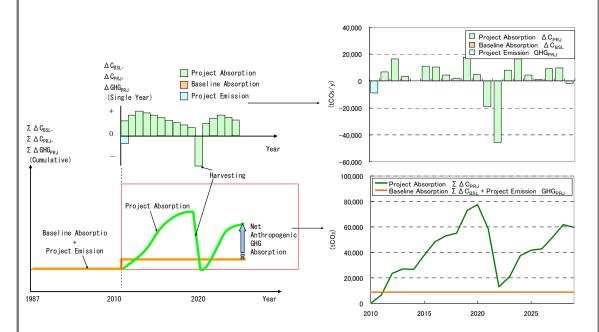
4.2 Methodology Sheets and Calculation Sheets (Excel) for Each Sub-sector


Methodology sheets are shown below and calculation sheets are attached in Appendix "Calculation Sheet".

Forest and Natural Resources Conservation Sector

Sub-sector :

- 1. Afforestation
- 2. Forest Conservation


	1. Forest and Natural Resources Conservation/Afforestation		
1. Typical Project Outline	The project intends to increase CO ₂ sink through afforestation of non-forest lands including degraded, pasture agricultural lands.		
	For reducing emissions from deforestation and forest degradation (REDD), refer to "2. Forest Preservation".		
2. Applicability	 OThis project is not applicable to the lands defined as forests in the target country. OAR-CDM defines afforestation lands as non-forests for the past 50 years and reforestation lands as non-forests since 1990, respectively. Formulas presented below are to estimate the amount of GHG emission reduction as the outcome resulted from afforestation regardless of time constraints. OThe forests should be sustainably managed after afforestation with appropriate management tasks including thinning in place. 		
3. Methodology of	Since trees absorb and fix carbons in atmosphere for growth in photosynthesis, they are regarded as the carbon		
GHG reduction	dioxide (or carbon) reservoirs. Thus, the net anthropogenic GHG absorption through afforestation is calculated as the		
calculation	difference between increase in carbon dioxide sink in forested lands (or reduction due to thinning and harvesting) (project absorption) and assumed increase (or decrease) in carbon dioxide sinks without afforestation project		
	(baseline absorption) plus GHG emission associated with the afforestation project (project emission) in a certain period after the project.		
	$ER_{AR,y} = \Delta C_{PRJ,y} - \Delta C_{BSL,y} - GHG_{PRJ,y}$		
	$ER_{AR,y}$: Net anthropogenic GHG absorption with afforestation project in Year y (t-CO2/y) $\Delta C_{PRJ,y}$: Annual GHG absorption with afforestation project in year y (t-CO2/y)(Project absorption) $\Delta C_{BSL,y}$: Annual GHG absorption without afforestation project in year y (t-CO2/y)(Baseline absorption) $GHG_{PRJ,y}$: GHG emission associated with afforestation project in Year y (t-CO2/y)(Project emission)		
	where Conv. = Conv.		
	$\Delta C_{PRJ,y} = \frac{C_{PRJ,y} - C_{PRJ,y-t}}{t}$		
	$\Delta C_{BSL,y} = \frac{C_{BSL,y} - C_{BSL,y-t}}{t}$		
	$C_{PRJ,y}$: CO ₂ absorbed by planted trees until year y (CO ₂ sink of forested lands in year y)(t-CO ₂ /y) $C_{PRJ,y-I}$: CO ₂ absorbed by planted trees until year y-t (CO ₂ sink of forested lands in year y-t)(t-CO ₂ /y) $C_{BSL,y}$: GHG absorbed by non-woody plants without afforestation project until year y (CO ₂ stock in year y)(t-CO ₂ /y)		
	$C_{BSL, y-I}$: GHG absorbed by non-woody plants without afforestation project until year y-t (CO ₂ stock in year y-t)(t-CO ₂ /y)		
	The difference of CO ₂ sink in the forested lands can be obtained as the difference between year y and the year earlier (y-1) as well as between year y and year y-t (i.e., t=3 or 5 years). Per year GHG absorption can be calculated by dividing the calculated GHG absorption by t years. To simplify and generalize descriptions here, t is assumed as 1 year.		
	Then, the cumulative net anthropogenic GHG absorption stored after the project implementation until year y can be expressed in the following formula.		
	$cumER_{AR} = \sum_{y}^{Y} ER_{AR,y}$		
	The figure below illustrates the above-mentioned concept (formula).		

year earlier (y-1) assumed without afforestation project. If the vegetation originally grown in the land is reproduced in the same cycle over years, $\Delta C_{BSL,y} = 0$ is derived as the baseline absorption as $B_{y,i}=B_{y-1,i}=$ constant, thus $C_{BSL,y}=C_{BSL,y-I}=$ constant.

 Project emission includes dinitrogen monoxide (N₂O) emission due to fertilization (nitrogen fertilizer, caustic lime) and GHG emission due to clearing grasses, crops and trees originally grown on the project area. The former is usually negligibly small, thus treated as zero here. The latter is limited only to the initial stage to prepare for afforestation, however, it is not always negligible.

The figures below show changes and cumulatives (carbon dioxide stocks in the forested land, t- CO_2) of project absorption (t- CO_2/y), baseline absorption (t- CO_2/y), and project emission (t- CO_2/y) along the time scale in a typical afforestation project. In this afforestation project, seedlings were planted in 2010 and trees are harvested in 2020. Subsequently planting and harvesting will be repeated in the cycle of 10 years. The figure on the left shows the overall view, while the figures on the right are enlarged versions.

In 2010, project emission should be considered for clearance of the afforestation land. From 2012 to 2020, project absorption is expected along with tree growth, however, as trees are harvested in 2020, project absorption turned to negative. Baseline absorption remains at zero throughout the project period.

On the other hand, the cumulative shown on the left bottom shows constant increase of carbon dioxide stocks absorbed by original vegetation from 1987 to 2009. After 2010 until 2020, cumulative project absorption continues to increase along with tree growth in a sigmoid curve. Once trees are harvested in 2020, the cumulative absorption reduces to the baseline level. Cumulative baseline absorption and project emission level off from 2010 when project emission occurred. The difference between cumulative project absorption and cumulative project emission represents cumulative net anthropogenic GHG absorption or the carbon dioxide stocks in the forested land until the specific year.

(1) Boundary and land use of afforestation land

Afforestation in lands with low CO₂ stocks (degraded/ pasture land) may effectively increase CO₂ absorption. In this regard, the boundary and historical land use need to be accurately understood using the following means.

· Arial photos or satellite images that show historical land use in the target area.

· Documents that provide land use information, i.e., land use map, vegetation map or land cover map

In developing countries where the afforestation land usually extends in a wider area (or scattered in a wider extent) and land cover and/or land use are not well-documented, satellite images from LANDSAT, ASTER, SPOT, ALOS, or QuickBird will provide useful data.

3. Methodology ofGHGreductioncalculation (cont'd)

(2) Calculation of project absorption

Annual project absorption after project implementation can be obtained as the difference of carbon dioxide stocks in the afforested area between Year y and the year earlier (y-1). Carbon dioxide stocks can be obtained by multiplying the forested tree biomass (dry matter) by the forested acreage and CO_2 conversion factor for carbon.

$$\Delta C_{PRJ,y} = C_{PRJ,y} - C_{PRJ,y-l}$$
$$C_{PRJ,y} = \sum_{i} (N_{y,i} \times A_{PRJ,i} \times 44/12)$$

$$C_{PRJ,y-l} = \sum_{i} (N_{y-l,i} \times A_{PRJ,i} \times 44/12)$$

Туре	Term	Description	
Output	$\Delta C_{PRJ,y}$	Project absorption:	
		Annual GHG absorption by planted trees in Year y after project	
		implementation (t-CO ₂ /y)	
Input	$N_{y,i}$	Carbon stocks in strata in Year y after project implementation (t-C ha)	
	$A_{PRJ,i}$	F r sted acreage of stratum I (ha)	
	44/12	CO ₂ conversion factor for carbon	

Note: Strata represent forest growth attributes such as species, density, forested year, degree (grade of land fertility) in the forested land. All attribute data are required per stratum. Since there is no standardized stratification, strata can be specifically defined in each project. In the land with uniform degree, the required stratum may be species only even in a wide area. More numbers of strata are required in lands with diverse species and degrees. The past projects registered in CDM typically defined 2 -16 strata. Stratification can be simplified, for example, trees can be roughly classified into 3 strata based on growth rate where diverse species are found. Annex table A-7 shows the sample stratification.

Determination of N_{y,i}

Carbon stocks acquired through afforestation are calculated for aboveground and belowground, respectively.

$$N_{y,i} = (N_{A,y,i} + N_{B,y,i})$$

 $N_{A,y,i}$: carbon stock in aboveground (t-C/ha) $N_{B,y,i}$: carbon stock in belowground (t-C/ha)

Aboveground and belowground carbon stocks are calculated by multiplying aboveground biomass (dry matter stem, branches, and leaves) and belowground biomass (dry matter roots), respectively, by tree carbon fraction.

$$\begin{split} \boldsymbol{N}_{A,y,i} &= \boldsymbol{T}_{A,y,i} \times \boldsymbol{CF}_i \\ \boldsymbol{N}_{B,y,i} &= \boldsymbol{T}_{B,y,i} \times \boldsymbol{CF}_i \end{split}$$

 $T_{A,y,i}$: Aboveground biomass (t-dm/ha: ton dry matter/ha) $T_{B,y,i}$: Belowground biomass (t-dm/ha) CF_i : Carbon fraction

Aboveground biomass is calculated by multiplying the tree volume by the biomass expansion factor and bulk density.

$$T_{A,y,i} = SV_{y,i} \times BEF_i \times WD$$

 $SV_{y,i}$: Tree volume (m³/ha) BEF_i : Biomass expansion factor (-)

 WD_i : Bulk density (t-dm/m³)

- Tree volume $(SV_{y,i})$ means the stem volume. Based on "the yield table" listing the average tree volumes in relation to species and tree ages, develop "the yield projection table" for the project. The yield table shows the course of tree growth under the standard management for a specific region/ species/ degree. Use the country-specific table if available.
- If the yield table is not available, measure the breast-height diameter and tree height to calculate tree volumes in the tree volume equation.
- Biomass expansion factor (*BEF_i*) is the factor to expand the tree volume to the whole tree including branches, leaves and roots. One should apply factors specific to species and ages. Preferably the country-specific factor should be applied, however, values in Table 3A. 1. 10 (Annex Table A-1) in IPCC Good Practice Guidance (GPG) for Land Use, Land Use Change, and Forestry (LULUCF) are also applicable where no specific factor is available in the country.
- Bulk density is the coefficient to convert volume into weight. Various coefficients are available specific to species. Preferably the country-specific coefficient should be applied, however, values in Table 3A. 1. 9 (Annex Table A-2) are also applicable where no specific coefficient is available in the country).
- Carbon fraction (*CF_i*) is the carbon ratio to the whole tree weight. Preferably the country-specific ratio should be applied, however, values in Table 4.3 (Annex Table A-3) in IPCC Guidelines for National Greenhouse Gas Inventories (GNGGI), Volume4. Agriculture, Forestry, and Other Land Use are also applicable where no specific rate is available in the country.
- Aboveground biomass can be obtained based on the tree volume (indirect approach) as well as the allometry formula (direct approach). If these approaches are not applicable, values in Table 3A. 1.6 in IPCC GPG for LULUCF (Annex Table A-4) is also applicable.

Belowground biomass can be obtained in the following formula.

$$T_{B,v,i} = R_i \times T_{A,v,i}$$

 R_i : Ratio of belowground biomass to above ground biomass (ratio of belowground vs. above ground) (-)

• The ratio of belowground biomass to aboveground biomass is specific to species. Preferably, the country-specific values should be applied, however, values in Table 3A.1.8 of IPCC GPG for LULUCF (Annex Table A-5) are also applicable where no specific value is available.

(3) Baseline absorption calculation

Baseline absorption would be zero under the assumption that the vegetation grows in the same cycle over years without afforestation project.

Baseline absorption can be obtained as the difference of carbon dioxide stocks in vegetation originally grown on the afforestation land between year y when afforestation is implemented and the year earlier (y-1). Carbon dioxide stocks are calculated by multiplying biomass such as grasses (dry matter) by the acreage and CO_2 conversion factor for carbon.

$$\Delta C_{BSL,y} = C_{BSL,y} - C_{BSL,y-1}$$

$$C_{BSL,y} = \sum_{j} (B_{y,j} \times A_{BSL,j} \times 44/12)$$
$$C_{BSL,y-I} = \sum_{j} (B_{y-I,j} \times A_{BSL,j} \times 44/12)$$

Туре	Term	Description
Output	$\Delta C_{BSL,y}$	Baseline absorption
		CO ₂ absorption by original vegetation in Year y without afforestation project (t-CO ₂ /y)
Input	$B_{y,j}$	Carbon stock in stratum j in year y (t-C/ha)
	$A_{BSL,j}$	Acreage of stratum j (ha)
	44/12	CO ₂ conversion factor for carbon

Determination of B_{y,j}

Carbon stocks in vegetation without afforestation project are calculated for aboveground and belowground, respectively.

$$B_{y,i} = (B_{A,y,j} + B_{B,y,j})$$

 $B_{A,yj}$: Aboveground carbon stocks (in grasses, crops)(t-C/ha) $B_{B,yj}$: Belowground carbon stocks (in grasses, crops)(t-C/ha)

Aboveground and belowground carbon stocks are calculated by multiplying aboveground biomass (dry matter stem, branches, and leaves) and belowground biomass (dry matter roots), respectively, by carbon fraction for vegetation.

$$B_{A,y,j} = M_{A,y,j} \times 0.5$$
$$B_{B,y,j} = M_{B,y,j} \times 0.5$$

$M_{A,y,j}$: Aboveground biomass (t-dry matter/ha)
$M_{B,y,j}$: Belowground biomass (t-dry matter/ha)
0.5	: Carbon fraction for vegetation

Belowground biomass is calculated in the following formula.

$$M_{B,y,i} = R_j \times M_{A,y,i}$$

 R_{j} : Ratio of belowground biomass to above ground biomass (ratio of belowground vs. above ground) (-)

Baseline absorption $\Delta C_{BSL,v}=0$

In the land without afforestation project, under the assumption that the vegetation grows in the same cycle over years, baseline absorption would be $\Delta C_{BSL,y} = 0$ as $B_{y,i} = B_{y-1,i} = \text{constant}$, thus $C_{BSL,y} = C_{BSL,y-I} = \text{constant}$.

(4)Project emission calculation

Project emission may include emission of dinitrogen monoxide (N₂O) associated with fertilization and GHG emission associated with clearing grasses and crops to prepare for afforestation.

Туре	Term	Description	
Output	GHG _{PRJ,y}	Project emission	
		CO ₂ emission after project implementation (t-CO ₂ /y)	
Input	N_2O_y	N2O emission associated with fertilization (t-CO2e/ha)	
	$C_{RMV,y}$	Carbon stocks in vegetation to be cleared for afforestation (t-C/ha)	

Emission of dinitrogen monooxide associated with fertilization

This emission is usually negligibly small compared to CO₂ absorption after project implementation, thus disregarded. CO₂ emission resulted from fertilizing are listed in Annex Table A-6 in CDM registered projects for your reference.

Therefore,

 $N2O_v = 0$

GHG emission associated with clearing vegetation originally grown on the afforestation land

This GHG emission corresponds to carbon stocks in vegetation originally grown on the afforestation land. It can be calculated by multiplying biomass (dry matter) such as grasses before the project by the acreage and CO2 conversion factor for carbon. Note that this emission is calculated for the year of clearance for afforestation only.

$$C_{RMV,y} = \sum_{i} (O_{py,j} \times A_{orj,j} \times 44 / 12)$$

 O_{pyj} : Carbon stocks in stratum j in the year of clearance for afforestation (t-C/ha) A_{orjj} : Acreage of stratum j (ha)44/12: CO₂ conversion factor for carbon

Determination of O_{y.i}

 $V_{A,py,i}$

 $V_{B,py,i}$

Carbon stocks in vegetation cleared in the afforestation land are calculated for aboveground and belowground, respectively.

$$O_{y,j} = (R_{A,y,j} + R_{B,y,j})$$

 $R_{A,py,j}$: Aboveground carbon stocks in the year of clearance (year py)(t-C/ha) $R_{B,py,j}$: Belowground carbon stocks in the year of clearance (year py)(t-C/ha)

Aboveground and belowground carbon stocks are calculated by multiplying aboveground biomass (dry matter stem and leaves) and belowground biomass (dry matter roots), respectively, by carbon fraction for vegetation.

$$R_{A,py,i} = V_{A,py,i} \times 0.5$$
$$R_{B,py,i} = V_{B,py,i} \times 0.5$$

: Aboveground biomass in the year of clearance (year py)(t-C/ha)

: Belowground biomass in the year of clearance (year py)(t-C/ha)

0.5 : Carbon fraction to vegetation biomass

• Preferably, the country-specific aboveground biomass should be used; however, values in Table 3A.1.8 of IPCC GPG for LULUCF (Annex Table A-5) are also applicable where the specific value is not available.

Belowground biomass is calculated in the following formula.

$$V_{B,y,i} = R_j \times V_{A,y,i}$$

 R_{j} : Ratio of belowground biomass to above ground biomass (ratio of belowground vs. above ground) (-)

Preferably, the country-specific ratio of belowground biomass to aboveground biomass (R) should be used; however, values in Table 6.1 of PCC-GNGGI are also applicable where specific values are not available.

Vegetation in scope of biomass calculation

Among vegetation in pasture or agricultural lands, perennial plants are included in carbon stock calculation. Perennial plants prefer to grow in pasture lands. In addition, shrubs grown on pasture lands are also in scope of calculation. Among crops on agricultural lands, perennial orchards and horticultural trees such as gum trees and date palms are also in scope of calculation. Annual crops (vegetables, corns and cottons) are grown and harvested in a year, thus contribution to carbon stocks would be almost zero.

CO2 stock calculation per land use

Biomass in pasture and agricultural lands is preferably calculated for aboveground and belowground, respectively. However, biomass per land use issued in the target country can be used to estimate CO_2 stocks per hectare. The tables below show some samples.

< Biomass and CO₂ stocks per land use>

Land	use category		Biomass (t-dm ha)	Carbon fraction (t-C/t-dm)	Conversion factor from carbon to carbon dioxide	CO ₂ stock (t-CO ₂ /ha)
_	Agricultural	Paddy	0.00			0.00
re ersion	land	Upland	0.00			0.00
ore 'ers		Orchard	30.63	0.5	44/12	56.16
Before	Pasture		13.50			24.75
g S	Wetland, deve	Wetland, developed land, others				0.00

Extracted from "Report of Greenhouse Gas Inventory of Japan"

	Biomass	Carbon	Conversion	CO ₂ stock
Land use category	(t-dm ha)	fraction (t-C/t-dm)	factor from carbon to carbon dioxide	(t-CO ₂ /ha)
1. Glass land	11			20
2. Glass land with shrubs	16			29
3. Annual crops/fa low land (slas and burn)	0	0.5	44/12	0
4. Perennial crops	24	7		44

PDD:CARBON SEQUESTRATION THROUGH REFORESTATION IN THE BOLIVIAN TROPICS BY SMALLHOLDERS OF "The Federación de Comunidades Agropecuarias de Rurrenabaque (FECAR)" extracted from Version 2.03 4th of December 2008 Page28 04.Data

for

estimation

and

monitoring

			Data A	cquisition method		
Data Type	Description of Data	Baseline Absorption		Project Absorption		
	Data	Before project	After project	Before Project	After Project	
Acreage (A_i)	Forested acreage after project (ha)	(Not required; out of the scope of calculation)		Planned value	Measured value	
Aboveground biomass (T_{yi})	Biomass of planted trees (t-C/ha)	(Not required; out of the scope of calculation)		Planned value	Measued value	
Tree volume (Sv_i)	Tree volume after project (t-dm/ha)	(Not required; ou calcul	ation)	Planned value	Measured value	
Biomass expansion factor (<i>BEF_i</i>)	Biomass expansion factor of planted trees	(Not required; ou calcul		data specifically t ii Values announced	used for calculation.	
Bulk density (WDi)	Bulk density of planted trees (t-dm/m ³)	(Not required; ou calcul	it of the scope of ation)	ii Values announced	e used for calculation. elow to check data npetent authorities for used in this project d in the target country data provided by IPCC	
Carbon fraction (<i>CF_i</i>)	Carbon ratio to the total tree weight (-)	(Not required; ou calcul		data specifically of ii Values announced iii Values based on of or others (See Annex Table A-3	e used for calculation. elow to check data npetent authorities for used in this project d in the target country data provided by IPCC) 5 is applied regardless	

Data trea	Description of	Data Ac Baseline Absorption	quisition Method
Data type	Data	Baseline Absorption Before Project After Project	Project Absorption Before Project After Proj
Ratio of aboveground and belowground	Ratio of belowground biomass (dry matter roots) to	Before Project After Project	Preferably, the country-specific da information should be used for calc Follow the steps below to chec
biomass (<i>Ri</i>)	aboveground biomass (dry matter stem, branches and leaves) (-)	(Not required; out of the scope of calculation)	 availability. i Interview to competent authoridata specifically used in this program values announced in the target c iii Values based on data provided b or others (See Annex Table A-5)
Biomass of cleared vegetation (M_{yi})	Dry matter stems, branches, leaves and roots of vegetation grown originally on the project area (t-dm/ha)	Not required: baseline absorption is assumed as 0	(Not required; out of the scope of calculation)
		Data Ac	quisition Method
Data Type	Description of		ect Emission
Dum Type	Data	Before Project	After Project
Original acreage (A_j)	Acreage of vegetation coverage originally grown on the project area (ha)	Measured value	(Not required; out of the scope calculation)
Original aboveground biomass (<i>M</i> _{yi})	Aboveground biomass of vegetation originally grown on the project area (t-C/ha)	 Preferably, the country-specific data and information should be used for calculation of aboveground biomass. Follow the steps below to check data availability. i Interview to competent authorities for data specifically used in this project ii Values announced in the target country iii Values based on data provided by IPCC or others (See Annex Table A-4) 	(Not required; out of the scope calculation)
Original ratio of underground biomass to aboveground biomass (<i>R</i>)	Ratio of underground biomass to aboveground biomass (-)	 Preferably, the country-specific data and information should be used for calculation. Follow the steps below to check data availability. i Interview to competent authorities for data specifically used in this project ii Values announced in the target country iii Values based on data provided by IPCC or others (See Annex Table A-5) 	(Not required; out of the scope of calculation)

5. Others (1) Project boundary

Afforestation lands in the project area are in the scope of GHG estimation.

(2) Leakage

If residents and/ or farming activities (cultivation, animal husbandry) need to be migrated in the course of project implementation, loss of carbon stocks (leakage) might be a concern in relation to deforestation out of the project boundary. Although pasture and agricultural lands are in scope of afforestation in this estimation formula, migration of many farmers and farming activities out of the project boundary is not assumed in the course of the project implementation. Therefore, leakage is deemed as zero. However, migration of residents and farming activities (cultivation, animal husbandry) needs to be counted as a concern, leakage should be calculated in consideration of cultivated acreage and number of livestock migrated out of the project boundary. For example, in CDM methodology (AR-AMS001), 15% of anthropogenic GHG reduction is calculated as leakage for cases where 10-50% of cultivated lands are migrated out of the project boundary (50% or more cultivated land migration may not regard as feasible as a project).

(3) Monitoring

JICA ODA loan projects usually require post-project evaluation only once after project completion. Baseline absorption (BC_y) monitoring is not required in afforestation projects. Other items (project absorption and project emission) need monitoring at the timing when the afforestation outcomes can be confirmed for the purpose of post-project estimation. Challenges inherent to afforestation projects include difficulties to know the timing to implement post-project evaluation as well as the wide extent of the project area. To cope with such challenges, satellite images may provide useful means. The use of QuickBird in resolution of 1.0 m enabled to identify individual trees planted in a past afforestation project.

For the long-term monitoring for 10-30 years throughout the forest growth period, set up the permanent sampling plots and temporary sampling plots (for soil plots) to monitor states after afforestation (2-3 years) and for several times after 5, 10 and following years. A permanent sampling plot is the site to monitor carbon pool changes throughout the project period. Such plots should be maintained at the same level as the other plots within the project boundary and never be destroyed during the monitoring period. A soil plot is the site to measure soil organic carbons.

(4) Reference methods and the differences

1) AR-AM0001 : Reforestation of degraded land

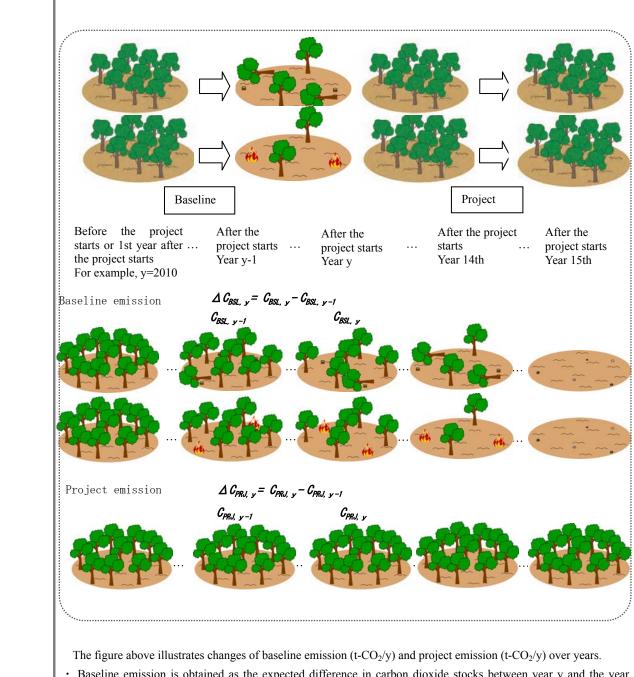
[Difference]

• The target area should be stratified based on the site category map/ chart, latest land use/ cover map or satellite images, soil map, vegetation map, topographical map and additional studies. It is required to define baseline scenarios by stratum; however, this requirement is integrated and simplified under this estimation formula, classifying the area up to 5 to 7 strata for species and the characteristic of the certain afforestation project.

2) AR-AM0007 : Afforestation and Reforestation of Land Currently Under Agricultural or Pastoral Use [Difference]

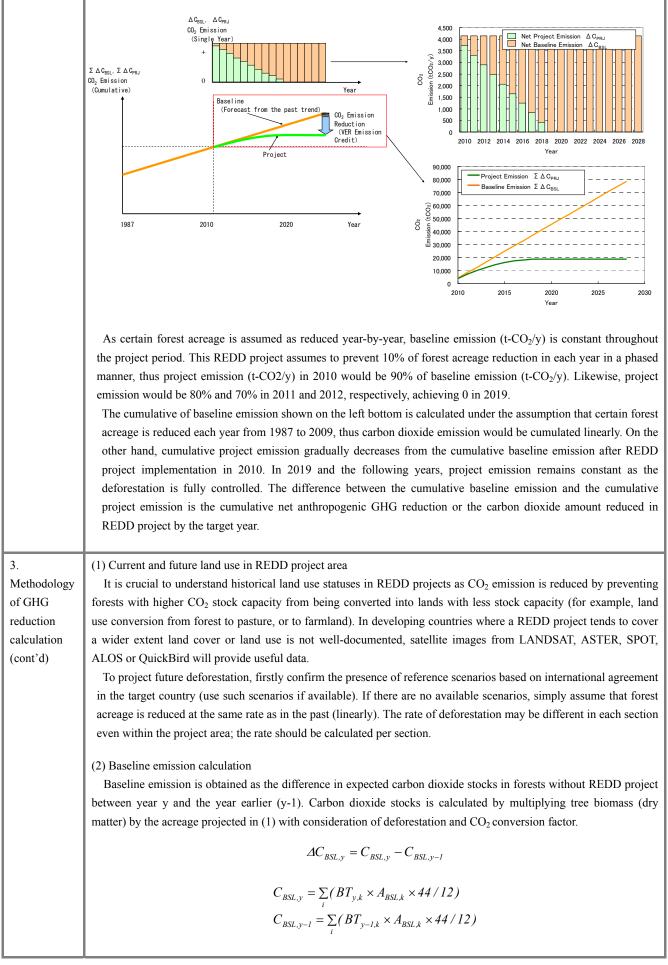
- Baseline carbon pool changes should be defined based on the land use scenarios, however, this is not applied in this estimation formula.
- Baseline absorption is estimated for littered or dead trees based on carbon stocks, however, it is not considered in this estimation formula.
- Leakage associated with migration of residents and agricultural activities (cultivation, animal husbandry) is considered in relation to the project implementation, however, leakage is deemed as zero in this estimation formula.

3) J-VER003 : Increase of CO2 absorption through afforestation activities


[Difference]

• The following conditions are required to meet, however, they are not considered in this estimation formula.

a) The project area does not fall in the forest prescribed in Article 5 or Article 7-2 of Forest Act as of March 31, 2008, and does not satisfy the following forest definitions.


	♦ Japan's forest definitions	
	Definition	Threshold
	Minimum forest area	0.3ha
	Minimum canopy coverage	30%
	Minimum tree height	5m
	Minimum forest width	20m
	b) The project is implemented for	afforestation.
	c) The project area is well-planned	to be included within the forest planning area. Alternatively, the project area has been
	designated as the forest plannin	g area at the inception of this project.
	d) Follow the monitoring guideline	e (for forestry management projects) under offset credit (J-VER) scheme in monitoring.
	4) The Carbon Assessment Tool for A [Difference]	Afforestation Reforestation (CAT-AR)
	Kyoto Protocol defines three appro	baches for carbon dioxide absorption by forests, namely "afforestation", "reforestation",
	and "forestry management". CA	T-AR is the tool developed for "afforestation" and "reforestation" compatible to
	AR-CDM, however, this estimation	n formula is not AR-CDM compatible.

	2. Forest and Natural Resources Conservation/Forest Conservation			
1. Typical project	This project intends to reduce GHG emission through prevention of deforestation due to unregulated logging in developing countries (REDD).			
outline	Refer to 1. Afforestation for GHG sinks increase through afforestation.			
2. Applicability	OThis project is applicable to sustainably managed forests.			
3. Methodology of GHG reduction calculation	This project aims at reducing GHG emission (REDD) by preventing forests from converting into farmlands through clearing and swiddening. As trees absorb and fix carbon dioxide for growth in photosynthesis, forests are regarded as carbon dioxide (or carbon) stocks. The net anthropogenic GHG emission reduction through afforestation is calculated as the difference between carbon dioxide stock reduction without project in a certain period (baseline emission) and carbon dioxide stock reduction after project implementation (project emission).			
	$ER_{REDD,y} = \Delta C_{BSL,y} - \Delta C_{PRJ,y}$			
	ER_{REDDy} : Net anthropogenic GHG reduction through REDD in year y (t-CO2/y) $\Delta C_{BSL,y}$: Annual GHG emission without REDD in year y (t-CO2/y)(baseline emission) $\Delta C_{PRJ,y}$: Annual GHG emission with REDD in year y (t-CO2/y)(project emission)			
	where $\Delta C_{BSL,y} = \frac{C_{BSL,y} - C_{BSL,y-t}}{t}$ $\Delta C_{PRJ,y} = \frac{C_{PRJ,y} - C_{PRJ,y-t}}{t}$			
	$C_{BSL, y}$: CO ₂ stocks in forest without REDD in year y (t-CO ₂ /y) $C_{BSL, y-1}$: CO ₂ stocks in forest without REDD in year y-t (t-CO ₂ /y) $C_{PRJ, y}$: CO ₂ stocks in forest after REDD implementation in year y (t-CO ₂ /y) $C_{PRJ, y-1}$: CO ₂ stocks in forest after REDD implementation in year y-t (t-CO ₂ /y)			
	The difference of CO ₂ stock in REDD project area can be obtained for a year or as the change between year y and year y-t (i.e., t=3 or 5 years). Per year GHG absorption is calculated by dividing the difference by t years. To simplify and generalize descriptions here, t is assumed as 1 year. Thus, the cumulative of net anthropogenic GHG emission from project implementation to year Y is calculated in the following formula.			
	$cumER_{REDD} = \sum_{y}^{Y} ER_{REDD,y}$			
	The figure below illustrates the above-mentioned concept (formula).			

- Baseline emission is obtained as the expected difference in carbon dioxide stocks between year y and the year earlier (y-1) without REDD project.
- Project emission with REDD project is obtained as the difference in forest carbon dioxide stocks between the year y and the year earlier (y-1).

Graphs in the next page show changes in baseline emission $(t-CO_2/y)$ and project emission $(t-CO_2/y)$, and cumulative $(t-CO_2)$ over years for a typical REDD project. This project started in 2010. The figure on the left shows the overall view and the figures on the right are enlarged ones.

Туре	Term	Description			
Output	$\Delta C_{BSL,y}$	Baseline emission:			
		Annual CO ₂ emission in year y without REDD project (t-CO2/y)			
Input	$BT_{y,k}$	Carbon stock in stratum k in year y without REDD project (t-C/h)			
	$A_{BSL,k}$	Forest acreage of stratum k (ha)			
	44/1	CO ₂ conversion factor for carbon			

Note: Strata represent attributes relating to forest growth such as species, density, forested year, and degree (grade of soil fertility). All attribute data are required per stratum for estimation. There is no standardized stratification. Strata can be set specifically for a project. In lands with uniform degree, the required stratum may be species even in a wide forest area. More numbers of strata may be needed for diverse species and degrees. In projects registered in CDM so far, 2 - 16 strata are usually set. Stratification can be simplified, for example, by classifying species into three categories based on growth rate if many species are found in the area. Annex Table A-7 shows the sample stratification.

Determination of BT_{v.k}

Carbon stocks acquired through forestation can be calculated for aboveground and belowground, respectively.

$$BT_{y,k} = (BT_{A,y,k} + BT_{B,y,k})$$

 $BT_{A,y,k}$: Aboveground carbon stock (t-C/ha) $BT_{B,y,k}$: Belowground carbon stock (t-C/ha)

Aboveground and below ground carbon stocks are calculated by multiplying aboveground biomass (stem, branches and leave dry matter) and belowground biomass (root dry matter), respectively, by tree carbon fraction.

$$BT_{A,y,k} = TU_{A,y,k} \times CF_k$$
$$BT_{B,y,k} = TU_{B,y,k} \times CF_k$$

$TU_{A,y,k}$: Aboveground biomass (t-C/ha)
$TU_{B,y,k}$: Belowground biomass (t-C/ha)
CF_k	: tree carbon fraction

Aboveground biomass is calculated in the formula below, by multiplying tree volume by biomass expansion factor and bulk density.

$$TU_{A,v,k} = SV_{v,k} \times BEF_k \times WD_k$$

$SV_{y,k}$: Tree volume (m ³ /ha)
BEF_k	: Biomass expansion factor (-)
WD_k	: Bulk density (t-dm/m ³)

- Tree volume $(SV_{y,i})$ means the stem volume. Based on "the yield table" listing the average tree volumes in relation to species and tree ages, develop "the yield projection table" for the project. The yield table shows the course of tree growth under the standard management for a specific region/ species/ degree. Use the country-specific table if available.
- If the yield table is not available, measure the breast-height diameter and tree height to calculate tree volumes in the tree volume formula.
- Biomass expansion factor (BEF_i) is the factor to expand the tree volume to the whole tree including branches, leaves and roots. One should apply factors specific to species and ages. Preferably the country-specific factor should be applied, however, values in Table 3A. 1. 10 (Annex Table A-1) in IPCC Good Practice Guidance (GPG)

for Land Use, Land Use Change, and Forestry (LULUCF) are also applicable where no specific factor is available in the country.

- Bulk density (*WD*_k) is the coefficient to convert volume into weight. Various coefficients are available specific to species. Preferably the country-specific coefficient should be applied, however, values in Table 3A. 1. 9 (Annex Table A-2) are also applicable where no specific coefficient is available in the country.
- Carbon fraction (*CF_i*) is the carbon ratio to the whole tree weight. Preferably the country-specific ratio should be applied, however, values in Table 4.3 (Annex Table A-3) in IPCC Guidelines for National Greenhouse Gas Inventories (GNGGI), Volume4. Agriculture, Forestry, and Other Land Use are also applicable where no specific rate is available in the country.
- Aboveground biomass can be obtained based on the tree volume (indirect approach) as well as the allometry formula (direct approach). If these approaches are not applicable, values in Table 3A. 1.6 in IPCC GPG for LULUCF (Annex Table A-4) is also applicable.

Belowground biomass is calculated in the formula below.

$$T_{B,y,k} = R_k \times T_{A,y,k}$$

 R_k : Ratio of underground biomass to above ground biomass (ratio of below ground vs. above ground) (-)

• The ratio of underground biomass to aboveground biomass is specific to species. Preferably, the country-specific value should be used; however, values in Table 3A.1.8 of IPCC GPG for LULUCF (Annex Table A-5) are also available where no specific values are available.

(3) Project emission calculation

Project emission after REDD project implementation can be obtained as the difference of carbon dioxide stocks in forests between Year y and the year earlier (y-1). Carbon dioxide stock is calculated by multiplying dry matter biomass by forest acreage and CO_2 conversion factor for carbon.

$$\Delta C_{PRJ,y} = C_{PRJ,y} - C_{PRJ,y-1}$$
$$C_{PRJ,y} = \sum_{k} (NT_{y,k} \times A_{PRJ,k} \times 44/12)$$

$$C_{PRJ,y-1} = \sum_{i} (NT_{y-1,k} \times A_{PRJ,k} \times 44/12)$$

Туре	Term	Description			
Output	$\Delta C_{PRJ,y}$	Project emission:			
		Annual CO_2 emission in year y with REDD (t- CO_2/y)			
Input	$NT_{y,k}$	Carbon stock in stratum j in year y with REDD (t-C/ha)			
	$A_{PRJ,k}$	Acreage of stratum i (ha)			
	44/12	CO ₂ conversion factor for carbon			

Carbon stocks are calculated for aboveground and belowground, respectively.

$$NT_{y,k} = (NT_{A,y,k} + NT_{B,y,k})$$

 $NT_{A,y,k}$: Aboveground carbon stock (t-C/ha)

 $NT_{B,y,k}$: Belowground carbon stock (t-C/ha)

Aboveground and belowground carbon stocks are calculated by multiplying aboveground biomass (dry matter stem, branches, and leaves) and belowground biomass (dry matter roots) by carbon fraction of tree.

$$NT_{A,y,k} = TT_{A,y,k} \times CF_k$$
$$TT_{B,y,k} = TT_{B,y,k} \times CF_k$$

 $TT_{A,y,k}$: Aboveground biomass (t-C/ha) $TT_{B,y,k}$: Belowground biomass (t-C/ha) CF_k : Carbon fraction of tree

Aboveground biomass is calculated in the formula below, by multiplying tree volume by biomass expansion factor and bulk density.

$$TT_{A,v,k} = SV_{v,k} \times BEF_k \times WD_k$$

 $SV_{y,k}$: Tree volume (m³/ha) BEF_k : Biomass expansion factor (-) WD_k : Bulk density (t-dm/m³)

Belowground biomass is calculated in the formula below.

$$T_{B,y,k} = R_k \times T_{A,y,k}$$

 R_k : Ratio of underground biomass to above ground biomass (ratio of below ground vs. above ground) (-)

• The ratio of underground biomass to above ground biomass is specific to species. Preferably, the country-specific value should be used; however, values in Table 3A.1.8 of IPCC GPG for LULUCF (Annex Table A-5) can be also applicable where specific values are not available.

4. Data for

estimation

and monitoring

	Description of	Data acquisition method			
Data type	Data	Baseline emission		Project emission	
		Before project	After project	Before project	After project
Acreage (A_i)	Forested acreage after project implementation (ha)	Projected value	(Not required: not in scope of calculation)	Planned value	Measured value
Aboveground biomass (T_{yi})	Aboveground biomass of planted trees (t-C/ha)	Planned value	(Not required: not in scope of calculation)	Planned value	Measured value
Tree volume (Sv _i)	Tree volume of planted trees (t-dm/ha)	Planned value	(Not required: not in scope of calculation)	Planned value	Measured value
Biomass expansion factor (<i>BEF_i</i>)	Biomass expansion factor of planted trees	Preferably, the country-specific data and information should be used for calculati Follow the steps below to check data availability. i Interview to competent authorities for data specifically used in this project ii Values announced in the target country iii Values based on data provided by IPCC or others (See Annex Table A-1)			
Bulk density (WDi)	Bulk density of planted trees (t-dm/m ³)	Preferably, the country-specific data and information should be used for calculation Follow the steps below to check data availability. i Interview to competent authorities for data specifically used in this project ii Values announced in the target country iii Values based on data provided by IPCC or others (See Annex Table A-2)			
Carbon fraction (<i>CF_i</i>)	Carbon ratio to the whole tree weight (-)	 Preferably, the country-specific data and information should be used for calculation. Follow the steps below to check data availability. iv Interview to competent authorities for data specifically used in this project v Values announced in the target country vi Values based on data provided by IPCC or others (See Annex Table A-3) vii 0.5 (Note that 0.5 is applied in J-VER R003 regardless of species) 			
Ratio of belowground biomass to aboveground biomass (<i>Ri</i>)	Ratio of belowground biomass (dry matter roots) to aboveground biomass (drymatter stem, branches and leaves)(-)	Follow the steps b i Interview to c	elow to check data a ompetent authoritie need in the target co a provided by IPCC	s for data specifically upuntry	

5. Others (1) Project boundary

Forestation lands in the project area are in the scope of GHG estimation.

(2) Leakage

If residents and/ or farming activities (cultivation, animal husbandry) need to be migrated in the course of project implementation, loss of carbon stocks (leakage) might be a concern in relation to deforestation out of the project boundary. Although pasture and agricultural lands are in scope of forestation in this estimation formula, migration of many farmers and farming activities out of the project boundary is not assumed in the course of the project implementation. Therefore, leakage is deemed as zero. However, migration of residents and farming activities (cultivation, animal husbandry) needs to be counted as a concern, leakage should be calculated in consideration of cultivated acreage and number of livestock migrated out of the project boundary. For example, in CDM methodology (AR-AMS001), 15% of anthropogenic GHG reduction is calculated as leakage for cases where 10-50% of cultivated lands are migrated out of the project boundary (50% or more cultivated land migration may not regard as feasible as a project).

(3) Monitoring

JICA ODA loan projects usually require post-project evaluation only once after project completion. Baseline absorption (BC_y) monitoring is not required in afforestation projects. Other items (project absorption and project emission) need monitoring at the timing when the afforestation outcomes can be confirmed for the purpose of post-project estimation. Challenges inherent to afforestation projects include difficulties to know the timing to implement post-project evaluation as well as the wide extent of the project area. To cope with such challenges, satellite images may provide useful means. The use of QuickBird in resolution of 1.0 m enabled to identify individual trees planted in a past afforestation project.

For the long-term monitoring for 10-30 years throughout the forest growth period, set up the permanent sampling plots and temporary sampling plots (for soil plots) to monitor states after afforestation (2-3 years) and for several times after 5, 10 and following years. A permanent sampling plot is the site to monitor carbon pool changes throughout the project period. Such plots should be maintained at the same level as the other plots within the project boundary and never be destroyed during the monitoring period. A soil plot is the site to measure soil organic carbons.

(4) Differences between REDD + and REDD

Reduce Emission from Deforestation and forest Degradation (REDD) is a mechanism to reduce GHG emission through mitigation of deforestation and forest degradation in developing countries. Currently discussion centers on legally binding force of this mechanism under the future climate change framework. Under REDD mechanism, a mitigation measure for deforestation and degradation taken in developing countries is deemed as GHG removal that might be emitted without measures. Such efforts are conferred with credit and compensation. REDD+ (REDD plus) adds active carbon stock increase efforts through afforestation and forest management (mitigating degradation under appropriate forest management).

(5) Reference methods and the differences

- 1) World Bank BioCarbonFund "Methodology for Estimating Reductions of GHG Emissions from Mosaic Deformation"
- [Difference]
- Although REDD comprehensive methodology consists of 5 modules (Carbon Pool, Baseline, Leakage, Emission, Monitoring, Miscellaneous), this estimation formula focuses on the basic only.

2)The Carbon Assessment Tool for Sustainable Forest Management (CAT-SFM) [Difference]

- This is the tool developed for "Forestry Management" of AR-CDM, however, this estimation formula is not for AR-CDM.
- The specifications include calculation of emission, absorption, credit and parameters comprehensively; however, this estimation formula focuses on the basic.

	(BEF 2 to be	AULT VALUES OF BI used in connection wi	CABLE 3A.1.10 OMASS EXPANSION FACTORS (BEF) ith growing stock biomass data in Equat action with increment data in Equation 3	ion 3.2.3;
Climatic zone	Forest type	Minimum dbh (cm)	BEF₂ (overbark) to be used in connection to growing stock biomass data (Equation 3.2.3)	BEF ₁ (overbark) to be used in connection to increment data (Equation 3.2.5)
Boreal	Conifers	0-8.0	1.35 (1.15-3.8)	1.15 (1-1.3)
Boreal	Broadleaf	0-8.0	1.3 (1.15-4.2)	1.1 (1-1.3)
Temperate	Conifers: Spruce-fir Pines	0-12.5	1.3 (1.15-4.2) 1.3 (1.15-3.4)	1.15 (1-1.3) 1.05 (1-1.2)
	Broadleaf	0-12.5	1.4 (1.15-3.2)	1.2 (1.1-1.3)
Tranical	Pines	10.0	1.3 (1.2-4.0)	1.2 (1.1-1.3)
Tropical	Broadleaf	10.0	3.4 (2.0-9.0)	1.5 (1.3-1.7)

Annex Table A-1 Default values of biomass expansion factors (BEF)

Note: BEF₂s given here represent averages for average growing stock or age, the upper limit of the range represents young forests or forests with low growing stock; lower limits of the range approximate mature forests or those with high growing stock. The values apply to growing stock biomass (dry weight) including bark and for given minimum diameter at breast height; Minimum top diameters and treatment of branches is unspecified. Result is above-ground tree biomass.

Sources: Isaev et al., 1993; Brown, 1997; Brown and Schroeder, 1999; Schoene, 1999; ECE/FAO TBFRA, 2000; Lowe et al., 2000; please also refer to FRA Working Paper 68 and 69 for average values for developing countries (http://www.fao.org/forestry/index.jsp)

Source : IPCC Good Practice Guidance for Land Use, Land Use Change, and Forestry (LULUCF) Table3A.1.10, 2003¹

¹ IPCCC: http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/Chp3/Anx_3A_1_Data_Tables.pdf

FOR BORE	TABLE 3A.1.9-1 EMWOOD (tonnes dry matter/m ³ CAL AND TEMPERATE SPECIES				
(To be used for D in Equations 3.2.3., 3.2.5, 3.2.7, 3.2.8) Basic wood density Superior Service					
Species or genus	m ₀ /V _{wet}	Source			
Abies	0.40	1			
Acer	0.52	1			
Alnus	0.45	1			
Betula	0.51	1			
Carpinus betulus	0.63	3			
Castanea sativa	0.48	3			
Fagus sylvatica	0.58	1			
Fraxinus	0.57	1			
Juglans	0.53	3			
Larix decidua	0.46	1			
Larix kaempferi	0.49	3			
Picea abies	0.40	1			
Picea sitchensis	0.40	2			
Pinus pinaster	0.44	5			
Pinus strobus	0.32	1			
Pinus sylvestris	0.42	1			
Populus	0.35	1			
Prunus	0.49	1			
Pseudotsuga menziesii	0.45	1			
Quercus	0.58	1			
Salix	0.45	1			
Thuja plicata	0.31	4			
Tilia	0.43	1			
Tsuga	0.42	4			

Annex Table A-2 Basic wood densities of stemwood WD (1) (t-dry matter/m³)

Source:

1. Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141

2. Knigge, W.; Schulz, H. 1966: Grundriss der Forstbenutzung. Verlag Paul Parey, Hamburg, Berlin

3. EN 350-2 (1994): Durability of wood and wood products - Natural durability of solid wood - Part 2: Guide to the natural durability and treatability of selected wood species of importance in Europe

4. Forest Products Laboratory: Handbook of wood and wood-based materials. Hemisphere Publishing Corporation, New York, London

5. Rijsdijk, J.F.; Laming, P.B. 1994: Physical and related properties of 145 timbers. Kluwer Academic Publishers, Dordrecht, Boston, London

6. Kollmann, F.F.P.; Coté, W.A. 1968: Principles of wood science and technology. Springer Verlag, Berlin, New York

Source : IPCC Good Practice Guidance for LULUCF, Table3A.1.9, 2003²

 $^{^2 \} IPCCC: \ http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/Chp3/Anx_3A_1_Data_Tables.pdf$

	<u>`````````````````````````````````````</u>	used for D in Equations 3			
TROPICAL ASIA	D	TROPICAL AMERICA	D	TROPICAL AFRICA	D
Acacia leucophloea	0.76	Albizia spp.	0.52	Afzelia spp.	0.67
Adina cordifolia	0.58, 0.59+	Alcornea spp.	0.34	Aidia ochroleuca	0.78*
Aegle marmelo	0.75	Alexa grandiflora	0.6	Albizia spp.	0.52
Agathis spp.	0.44	Alnus ferruginea	0.38	Allanblackia flori bunda	0.63*
Aglaia Ilanosiana	0.89	Anacardium excelsum	0.41	Allophyllus africanus f. acuminatus	0.45
Alangium longiflorum	0.65	Anadenanthera macrocarpa	0.86	Alstonia congensis	0.33
Albizzia amara	0.70*	Andira retusa	0.67	Amphimas pterocarpoides	0.63*
Albizzia falcataria	0.25	Aniba riparia lduckei	0.62	Anisophyllea obtusifolia	0.63*
Alcurites trisperma	0.43	Antiaris africana	0.38	Annonidium mannii	0.29*
Alnus japonica	0.43	Apeiba echinata	0.36	Anopyxis klaineana	0.74*
Alphitonia zizyphoides	0.5	Artocarpus comunis	0.7	Anthocleista keniensis	0.50*
Alphonsea arborea	0.69	Aspidosperna spp. (araracanga group)	0.75	Anthonotha macrophylla	0.78*
Alseodaphne longipes	0.49	Astronium Iccointei	0.73	Anthostemma aubryanum	0.32*
Alstonia spp.	0.37	Bagassa guianensis	0.68,0.69+	Antiaris spp.	0.38
Amoora spp.	0.6	Banara guianensis	0.61	Antrocaryon klaincanum	0.50*
Anisophyllea zeylanica	0.46*	Basiloxylon exelsum	0.58	Aucoumea klaineana	0.37
Anisoptera spp,	0.54	Beilschmiedia sp.	0.61	Autranella congolensis	0.78
Anogeissus latifolia	0.78, 0.79+	Berthollettia excelsa	0.59, 0.63+	Baillonella toxisperma	0.71
Anthocephalus chincusis	0.36,0.33+	Bixa arborea	0.32	Balanites aegyptiaca	0.63*
Antidesma pleuricum	0.59	Bombacopsis sepium	0.39	Baphia kirkii	0.93*
Aphanamiris perrottetiana	0.52	Borojoa patinoi	0.52	Beilschmicdia louisii	0.70*
Araucaria bidwillii	0.43	Bowdichia spp.	0.74	Beilschmicdia nitida	0.50*
Artocarpus spp.	0.58	Brosimum spp. (alicastrum group)	0.64, 0.66+	Berlinia spp.	0.58
Azadirachta spp.	0.52	Brosimum utile	0.41, 0.46+	Blighia welwitschii	0.74*
Balanocarpus spp.	0.76	Brysenia adenophylla	0.54	Bombax spp.	0.4
Barringtonia edulis *	0.48	Buchenauia capitata	0.61, 0.63+	Brachystegia spp.	0.52
Bauhinia spp.	0.67	Bucida buceras	0.93	Bridelia micrantha	0.47*
Beilschmiedia tawa	0.58	Bulnesia arborea	1	Calpocalyx klainei	0.63*
Berrya eordifolia	0.78*	Bursera simaruba	0.29, 0.34+	Canarium schweinfurthii	0.40*
Bischofia javanica	0.54,0.58,0.62+	Byrsonima coriacea	0.64	Canthium rubrocostratum	0.63*
Bleasdalea vitiensis	0.43	Cabralea eangerana	0.55	Carapa procera	0.59
Bombax cciba	0.33	Caesalpinia spp.	1.05	Cascaria battiscombei	0.5
Bombycidendron vidalianum	0.53	Calophy]]um sp.	0.65	Cassipourea curyoides	0.70*
Boswellia scrrata	0.5	Campnosperma panamensis	0.33,0.50+	Cassipourea malosana	0.59*
Bridelia squamosa	0.5	Carapa sp.	0.47	Ceiba pentandra	0.26
Buchanania latifolia	0.45	Caryocar spp.	0.69, 0.72+	Celtis spp.	0.59
Bursera serrata	0.59	Casearia sp.	0.62	Chlorophora ercelsa	0.55
Butea monosperma	0.48	Cassia moschata	0.71	Chrysophyllum albidum	0.56*
Calophyllum spp.	0.53	Casuarina cquisctifolia	0.81	Cleistanthus mildbraedii	0.87*
Calycarpa arborea	0.53	Catostemma spp.	0.55	Cleistopholis patens	0.36*
Cananga odorata	0.29	Cecropia spp.	0.36	Coelocaryon preussii	0.56"
Canarium spp.	0.44	Cedrela spp.	0.40, 0.46+	Cola sp.	0.70"
Canthium monstrosum	0.42	Cedrelinga catenaeformis	0.41, 0.53+	Combretedendron macrocarpum	0.7
Carallia calycina	0.66*	Ceiba pentandra	0.23,0.24,0.25,	Conopharyngia holstii	0.50*

Basic wood densities of stemwood WD (2) (t-dry matter/m³) Annex Table A-2

¹ The wood densities specified pertain to more than one bibliographic source.
 * Wood density value is derived from the regression equation in Reyes *et al.* (1992).
 Source: Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

BASIC WOOD DENSITIES (D) OF STEMWOOD (tonnes dry matter/m ³ fresh volume) FOR TROPICAL TREE SPECIES (To be used for D in Equations 3.2.3., 3.2.5, 3.2.7, 3.2.8)					
TROPICAL ASIA	D	TROPICAL AMERICA	D	TROPICAL AFRICA	D
Cassia javanica	0.69	Centrolobium spp.	0.65	Copaifera religiosa .	0.50"
Castanopsis philippensis	0.51	Cespedesia macrophylla	0.63	Cordia millenii	0.34
Casuarina equisetifolia	0.83	Chaetocarpus schomburgkianus	0.8	Cordia platythyrsa	0.36"
Casuarina nodiflora	0.85	Chlorophora tinctoria	0.71,0.75+	Corynanthe pachyceras	0.63"
Cedrela odorata	0.38	Clarisia racemosa	0.53,0.57+	Coda edulis	0.78*
Cedrela spp.	0.42	Clusia rosea	0.67	Croton megalocarpus	0.57
Cedrela toona	0.43	Cochlospermum orinocensis	0.26	Cryptosepalum staudtii	0.70*
Ceiba pentandra	0.23	Copaifera spp.	0.46, 0.55+	Ctenolophon englerianus	0.78*
Celtis Iuzonica	0.49	Cordia spp. (gerascanthus group)	0.74	Cylicodiscus gabonensis	0.8
Chisocheton pentandrus	0.52	Cordia spp. (alliodora group)	0.48	Cynometra alexandri	0.74
Chloroxylon swietenia	0.76, 0.79, 0.80+	Couepia sp.	0.7	Daeryodes spp.	0.61
Chukrassia tabularis	0.57	Couma macrocarpa	0.50,0.53+	Daniellia ogea	0.40*
Citrus grandis	0.59	Couratari spp.	0.5	Desbordesia pierreana	0.87"
Cleidion speciflorum	0.5	Croton xanthochloros	0.48	Detarium senegalensis	0.63*
Cleistanthus eollinus	0.88	Cupressus lusitanica	0.43, 0.44+	Dialium excelsum	0.78*
Cleistocalyx spp.	0.76	Cyrilla racemiflora	0.53	Didelotia africana	0.78"
Cochlospermum gossypium+religiosum	0.27	Dactyodes colombiana	0.51	Didelotia letouzeyi	0.5
Cocos nucifera	0.5	Dacryodes excelsa	0.52, 0.53+	Diospyros spp.	0.82
Colona serratifolia	0.33	Dalbergia retusa.	0.89	Discoglypremna caloneura	0.32*
Combretodendron quadrialatum	0.57	Dalbergia stevensonii	0.82	Distemonanthus benthamianus	0.58
Cordia spp.	0.53	Declinanona calycina	0.47	Drypetes sp.	0.63*
Cotylelobium spp.	0.69	Dialium guianensis	0.87	Ehretia acuminata	0.51*
Crataeva religiosa	0.53*	Dialyanthera spp.	0.36, 0.48+	Enantia chlorantha	0.42"
Cratoxylon arborescens	0.4	Dicorynia paraensis	0.6	Endodesmia calophylloides	0.66"
Cryptocarya spp.	0.59	Didymopanax sp.	0.74	Entandrophragma utile	0.53
Cubilia cubili	0.49	Dimorphandra mora	0.99*	Eribroma oblongum	0.60*
Cullenia excelsa	0.53	Diplotropis purpurea	0.76, 0.77, 0.78+	Eriocoelum microspermum	0.50"
Cynometra spp.	0.8	Dipterix odorata	0.81,0.86,0.89+	Erismadelphus ensul	0.56*
Daorycarpus imbricatus	0.45, 0.47+	Drypetes variabilis	0.69	Erythrina vogelii	0.25"
Dacrydium spp.	0.46	Dussia lehmannii	0.59	Erythrophleum ivorense	0.72
Dacryodes spp.	0.61	Ecclinusa guianensis	0.63	Erythroxylum mannii	0.5
Dalbergia paniculata	0.64	Endlicheria coovirey	0.39	Fagara macroph ylla	0.69
Decussocarpus vitiensis	0.37	Enterolobium schomburgkii	0.82	Ficus iteophylla	0.40"
Degeneria vitiensis	0.35	Eperua spp.	0.78	Fumtumia latifolia	0.45*
Dehaasia triandra	0.64	Eriotheca sp.	0.4	Gambeya spp.	0.56*
Dialium spp.	0.8	Erisma uncinatum	0.42, 0.48+	Garcinia punctata	0.78"
Dillenia spp.	0.59	Erythrina sp.	0.23	Gilletiodendron mildbraedii	0.87"
Diospyros spp.	0.7	Eschweilera spp.	0.71,0.79,0.95+	Gossweilerodendron balsamiferum	0.4
Diplodiscus paniculatus	0.63	Eucalyptus robusta	0.51	Guarea thompsonii	0.55"
Dipterocarpus caudatus	0.61	Eugenia stahlii	0.73	Guibourtia spp.	0.72
Dipterocarpus eurynchus	0.56	Euxylophora paraensis	0.68,0.70+	Hannoa klaineana	0.28"
Dipterocarpus gracilis	0.61	Fagara spp.	0.69	Harungana madagascariensis	0.45"
Dipterocarpus grandiflorus	0.62	Ficus sp.	0.32	Hexalobus crispiflorus	0.48"
Dipterocarpus kerrii	0.56	Genipa spp.	0.75	Holoptelea grandis	0.59"

Basic wood densities of stemwood WD (3) (t-dry matter/m³) Annex Table A-2

The wood densities specified pertain to more than one bibliographic source.
 Wood density value is derived from the regression equation in Reyes et al. (1992).
 Source: Reyes, Gisel, Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

PRODUCE	(To be used for D in Equations 3.2.3., 3.2.5, 3.2.7, 3.2.8)					
TROPICAL ASIA	D	TROPICAL AMERICA	D	TROPICAL AFRICA	D	
Dipterocarpus kunstlerii	0.57	Goupia glabra	0.67, 0.72+	Homalium spp.	0.7	
Dipterocarpus spp.	0.61	Guarea chalde	0.52	Hylodendron gabonense.	0.78"	
Dipterocarpus warburgii	0.52	Guarea spp.	0.52	Hymenostegia pellegrini	0.78"	
Dracontomelon spp.	0.5	Guatteria spp.	0.36	Irvingia grandifolia	0.78"	
Dryobalanops spp.	0.61	Guazuma ulmifolia	0.52, 0.50+	Julbernardia globiflora	0.78	
Dtypetes bordenii	0.75	Guettarda scabra	0.65	Khaya ivorensis	0.44	
Durio spp.	0.53	Guillichna gasipac	0.95, 1.25+	Klainedoxa gabonensis	0.87	
Oyera costulata	0.36	Gwtavia sp.	0.56	Lannea welwitschii	0.45""	
Dysoxylum quereifolium	0.49	Helicostylis tomentosa	0.68, 0.72+	Lecomtedoxa klainenna	0.78"	
Elaeocarpus serratus	0.40*	Hernandia Sonora	0.29	Letostua durissima	0.87"	
Emblica officinalis	0.8	Hevea brasiliense	0.49	Lophira alata	0.87"	
Endiandra laxiflora	0.54	Himatanthus articulata	0.40,0.54+	Lovoa trichilioides	0.45"	
Endospermum spp.	0.38	Hirtella davisii	0.74	Macaranga kilimandscharica	0.40*	
Enterolobium cyclocarpum	0.35	Humiria balsamifera	0.66,0.67+	Maesopsis eminii	0.41	
Epicharis cumingiana	0.73	Humiriastrum procera	0.7	Malacantha sp. aff. alnifolia	0.45"	
Erythrina subumbrans	0.24	Hura crepitans	0.36, 0.37, 0.38+	Mammea africana	0.62	
Erythrophloeum lensiflorum	0.65	Hyeronina alchorneoides	0.60,0.64+	Manilkara lacera	0.78"	
Eucalyptus citriodora	0.64	Hyeronima laxiflora	0.59	Markhamia platycalyx	0.45*	
Eucalyptus deglupta	0.34	Hymenaea davisii	0.67	Memecylon capitellatum	0.77"	
Eugenia spp.	0.65	Hymenolobium sp.	0.64	Microberlinia brazzavillensis	0.7	
agraea spp.	0.73	Inga sp.	0.49,0.52,0.58, 0.64+	Microcos coriaceus	0.42"	
ficus benjamina	0.65	Iryanthera spp.	0.46	Milletia spp.	0.72	
ficus spp.	0.39	Jacaranda sp.	0.55	Mitragyna stipulosa	0.47	
Ganua obovatifolia	0.59	Joannesia heveoides	0.39	Monopetalanthus pellegrinii	0.47"	
Garcinia myrtifolia	0.65	Lachmellea speciosa	0.73	Musanga cccropioides	0.23	
Garcinia spp.	0.75	Lactia procera	0.68	Nauclea diderrichii	0.63	
Gardenia turgida	0.64	Lecythis spp.	0.77	Neopoutonia macrocalyx	0.32"	
Garuga pinnata	0.51	Licania spp.	0.78	Nesogordonia papaverifera	0.65	
Gluta spp.	0.63	Licaria spp.	0.82	Ochtocosmus africanus	0.78'	
Imelina arborea	0.41,0.45+	Lindackeria sp.	0.41	Odyendea spp.	0.32	
Gmelina vitiensis	0.54	Linocicra domingensis	0.81	Oldfieldia africana	0.78*	
Jonocaryum calleryanum	0.64	Lonchocarpus spp.	0.69	Ongokea gore	0.72	
Jonystylus punctatus	0.57	Loxopterygium sagotü	0.56	Oxystigma oxyphyllum	0.53	
Grewia tiliaefolia	0.68	Lucuma spp.	0.79	Pachyelasma tessmannii	0.70"	
lardwickia binata	0.73	Luchea spp.	0.5	Pachypodanthium staudtii	0.58"	
Iarpullia arborca	0.62	Lueheopsis duckeana	0.64	Paraberlinia bifoliolata	0.56"	
leritiera spp.	0.56	Mabea piriri	0.59	Parinari glabra	0.87"	
levea brasiliensis	0.53	Machaerium spp.	0.7	Parkia bicolor	0.36"	
libiscus tiliaceus	0.57	Macoubca guianensis	0.40*	Pausinystalia brachythyrsa	0.56"	
Iomalanthus populneus	0.38	Magnolia spp.	0.52	Pausinystalia cf. talbotii	0.56"	
Iomalium spp.	0.76	Maguira sclerophylla	0.52	Pentaclethra macrophylla	0.78"	
Hopea acuminata	0.62	Mammea americana	0.62	Pentadesma butyracea	0.78"	
Topca spp.	0.64	Mangifera indica	0.55	Phyllanthus discoideus	0.76"	
ntsia palembanica	0.68	Manilkara sp.	0.35	Pierreodendron africanum	0.70;"	
and a paremonition	0.04	inimitata sh	0.07	r terreouchuron arricanum	0.70;	

Annex Table A-2	Basic wood densities of stemwood WD (4) (t-dry matter/m ³)	

The wood densities specified pertain to more than one bibliographic source.
 Wood density value is derived from the regression equation in Reyes et al. (1992).
 Source: Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

BASIC WOOD DENSI		TABLE 3A.1.9-2 (C EMWOOD (tonnes dry ma	tter/m³ fresh vo		EE SPECIES
TROPICAL ASIA	(To be D	used for D in Equations 3	.2.3., 3.2.5, 3.2.1	7, 3.2.8)	D
Kingiodendron alternifolium	0.48	Marmaroxylon racemosum	0.78*	Plagiostyles africana	0.70"
Kleinhovia hospita	0.36	Matayba domingensis	0.7	Poga oleosa	0.36
Knema spp.	0.53	Matisia hirta	0.61	Polyalthia suavcolens	0.66"
Koompassia excelsa	0.63	Maytenus spp.	0.71	Premna angolensis	0.63"
Koordersiedendron pinnatum	0.65, 0.69+	Mezilaurus lindaviana	0.68	Pteleopsis hylodendron	0.63*
Kydia calycina	0.72	Michropholis spp.	0.61	Pterocarpus soyauxii	0.61
Lagerstroemia spp.	0.55	Minquartia guianensis	0.76,0.79+	Pterygota spp.	0.52
Lannea grandis	0.5	Mora sp.	0.71	Pycnanthus angolensis	0.4
Leucaena leucocephala	0.64	Mouriria sideroxylon	0.88	Randia cladantha	0.78*
Litchi chinensis ssp. philippinensis	0.88	Myrciaria floribunda	0.73	Rauwolfia macrophylla	0.47*
Lithocarpus soleriana	0.63	Myristica spp.	0.46	Ricinodendron heudelotii	0.2
Litsea spp.	0.4	Myroxylon balsamum	0.74, 0.76, 0.78+	Saccoglottis gabonensis	0.74**
Lophopetalum spp.	0.46	Nectandra spp.	0.52	Santiria trimera	0.53*
Macaranga denticulata	0.53	Ocoteaspp.	0.51	Sapium ellipticum	0.50*
Madhuca oblongifolia	0.53	Onychopetalum amazonicum	0.64	Schrebera arborea	0.63*
Mallotus philippensis	0.64	Ormosia spp.	0.59	Selorodophloeus zenkeri	0.68*
Mangifera spp.	0.52	Ouratea sp.	0.66	Scottellia coriacea	0.56
Maniltoa minor	0.76	Pachira acuatica	0.43	Scyphocephalium ochocoa	0.48
Mastixia philippinensis	0.47	Paratecoma peroba	0.6	Scytopetalum tieghemii	0.56"
Melanorrhea spp.	0.63	Parinari spp.	0.68	Sindoropsis letestui	0.56*
Melja dubia	0.4	Parkia spp.	0.39	Staudtia stipitata	0.75
Melicope triphylla	0.37	Peltogyne spp.	0.79	Stemonocoleus micranthus	0,56"
Meliosma macrophylla	0.37	Pentaclethra maeroloba	0.65,0.68+	+	0.64
Melochia umbellata	0.27		· · ·	Sterculia rhinopetala	
Melocina unidenata Melka ferrea		Peru glabrata	0.65	Strephonema pseudocola	0.56*
	0.83,0.85+	Peru schomburgkiana	0.59	Strombosiopsis tetrandra	
Metrosideros collina	0.70,0.76+	Persea spp.	0.40, 0.47, 0.52+	Swartzia fistuloides	0.82
Michelia spp.	0.43	Petitia domingensis	0.66	Symphonia globulifera	0.58"
Vicrocos stylocarpa	0.4	Pinus caribaea	0.51	Syzygium cordatum	0.59*
Micromelum compressum	0.64	Pinus oocarpa	0.55	Terminalia superba	0.45
Milliusa velutina	0.63	Pinus patula	0.45	Tessmania africana	0.85"
Mimusops elengi	0.72*	Piptadenia sp.	0.58	Testulea gabonensis	0.6
Mitragyna parviflora	0.56	Piranhea longepedunculata	0.9	Tetraberlinia tubmaniana	0.60"
Myristica spp.	0.53	Piratinera guianensis	0.96	Tetrapleura tetraptera	0.50"
Jeesia spp.	0.53	Pithecellobium guachapele (syn. Pseudosamea)	0.56	Tieghemella heckelii	0.55"
Neonauclea bernardoi	0.62	Platonia insignis	0.70'	Trema sp.	0.40*
Neotrewia cumingii	0.55	Platymiscium spp.	0.71, 0.84+	Trichilia prieureana	0.63"
Ochna foxworthyi	0.86	Podocarpus spp.	0.46	Trichoscyplia arborea	0.59"
Ochroma pyramidale	0.3	Pourouma aff. melinonii	0.32	Triplochiton scleroxylon.	0.32
Octomeles sumatrana	0.27, 0.32+	Pouteria spp.	0.64, 0.67+	Uapaca spp.	0.6
Droxylon indicum	0.32	Prioria copaifera	0.40,0.41+	Vepris undulata	0.70"
Dugenia dalbergiodes	0.7	Protium spp.	0.53,0.64+	Vitex doniana	0.4
Palaquium spp.	0.55	Pseudolmedia laevigata	0.64	Xylopia staudtii	0.36*
Pangium edule	0.5	Pterocarpus spp.	0.44		
Parashorea malaanonan Parashorea stellata	0.51	Pterogyne nitens	0.66		
Parashorea stellata Paratrophis glabra	0.59	Qualca albiflora Qualca cf. lancifolia	0.5		······
aranopins giabra	0.77	Qualea el laffellolla	0.58	· · · · · ·	

Basic wood densities of stemwood WD (5) (t-dry matter/m³) Annex Table A-2

Wood density value is derived from the regression equation in Reyes *et al.* (1992).
 Source: Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

BASIC WOOD DENSITIES (D) OF STEMWOOD (tonnes dry matter/m ³ fresh volume) FOR TROPICAL TREE SPECIES (To be used for D in Equations 3.2.3., 3.2.5, 3.2.7, 3.2.8)						
TROPICAL ASIA	D	TROPICAL AMERICA	D	TROPICAL AFRICA	D	
Parkia roxburghii	0.34	Qualea spp.	0.55			
Payena spp.	0.55	Quararibaea guianensis	0.54			
Peltophorum pterocarpum	0.62	Quercus alata	0.71			
Pentace spp.	0.56	Quercus costaricensis	0.61			
Phaeanthus ebracteolatus	0.56	Quercus eugeniaefolia	0.67			
Phyllocladus hypophyllus	0.53	Quercus spp.	0.7			
Pinus caribaea	0.48	Raputia sp.	0.55			
Pinus insularis	0.47,0.48+	Rheedia spp.	0.72	·····		
Pinus merkusii	0.54	Rollinia spp.	0.36			
Pisonia umbellifera	0.21	Saccoglottis cydonioides	0.72			
Pittosporum pentandrum	0.51	Sapium ssp.	0.47,0.72+			
Planchonia spp.	0.59	Schinopsis spp.	1			
Podocarpus spp.	0.43	Sclerobium spp.	0.47			
Polyalthia flava	0.51	Sickingia spp.	0.52			
Polyscias nodosa	0.38	Simaba multiflora	0.51			
Pometia spp.	0.54	Simarouba amara	0.32, 0.34,0.38+			
Pouteria villamilii	0.47	Sloanca guianensis	0.79			
Premna tomentosa	0.96	Spondias mombin	0.30, 0.40, 0.41+			
Pterocarpus marsupium	0.67	Sterculia spp.	0.55			
Pterocymbium tinctorium	0.28	Stylogyne spp.	0.69			
Pyge'um vulgare	0.57 Swartzia spp.		0.95			
Quercus spp.	0.7 Swietenia macro		0.42,0.45,0.46, 0.54+			
Radennachera pinnata	0.51	Symphonia globulifera	0.54+			
Salmalia malabarica	0.32,0.33+	Tabebuia spp. (lapacho	0.91			
Samanea saman	0.45, 0.46+	group) Tabebuia spp. (roble)	0.52			
Sandoricum vidalii	0.43	Tabebula spp. (white cedar)	0.52			
Sapindus saponaria	0.58	Tabebuia stenocalyx	0.55,0.57+			
Sapium luzonteum	0.38	Tachigalia myrmecophylla	0.56			
Schleichera oleosa	0.96	Talisia sp.	0.84			
Schrebera swietenoides	0.82	Tapirira guianensis	0.47*			
· · · · · · · · · · · · · · · · · · ·		1	0.50, 0.51,			
Semicarpus anacardium	0.64	Terminalia sp.	0.58+			
Serialbizia acle	0.57	Tetragastris altisima	0.61			
Serianthes melanesica	0.48	Toluifera balsamum	0.74			
Sesbania grandiflora	0.4	Torrubia sp.	0.52			
Shorea assamica forma shilippinensis	0.41	Toulicia pulvinata	0.63			
Shorea astylosa	0.73	Tovomita guianensis	0.6			
Shorea ciliata	0.75	Trattinickia sp.	0.38			
Shorea contorta	0.44	Trichilia propingua	0.58			
Shorea gisok	0.76	Trichosperma mexicanum	0.41			
Shorea guiso	0.68	Triplaris spp.	0.56			
Shorea hopeifolia	0.44	Trophis sp.	0.54			
Shorca malibato	0.78	Vatairea spp.	0.6			
Shorea negrosensis	0.44	Virola spp.	0.40, 0.44,			
Shorea palosapis	0.39		0.48+			
	<u> </u>	Vismia spp.	0.41			
Shorea plagata	0.7	Vitex spp.	0.32,0.36,			

Basic wood densities of stemwood WD (6) (t-dry matter/m³) Annex Table A-2

Wood density value is derived from the regression equation in Reys *et al.* (1992).
 Source: Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

	(1000	used for D in Equations 3.2		7, 5.2.0)	
TROPICAL ASIA	D	TROPICAL AMERICA	D	TROPICAL AFRICA	D
Shorea polita	0.47	Vitex stahelii	0.6		
Shorea polysperma	0.47	Vochysia spp.	0.40,0.47, 0.79+		
Shorea robusta	0.72	Vouacapoua americana	0.79		
Shorea spp. balau group	0.7	Warszewicsia coccinea	0.56		
Shorea spp. dark red meranti	0.55	Xanthoxylum martinicensis	0.46		
Shorea spp. light red meranti	0.4	Xanthoxylum spp.	0.44		
Shorea spp. white meranti	0.48	Xylopia frutescens	0 64"		
Shorea spp. yellow meranti	0.46		·		
Shorca virescens	0.42				
Sloanca javanica	0.53				
Soymida febrifuga	0,97				
Spathodea campanulata	0.25				
Stemonurus luzoniensis	0.37				
Sterculia vitiensis	0.31				
Stereospermum suaveolens	0.62				
Strombosia philippinensis	0.71				
Strychnos potatorum	0.88				
Swietenia macrophylla	0.49,0.53+				
Swintonia foxworthyi	0.62				
Swintonia spp.	0.61				
Syeopsis dunni	0.63				
Syzygium spp.	0.69, 0.76+				
Tamarindus indica	0.75				
Tectona grandis	0.50,0.55+				
Teijsmanniodendron ahemianum	0.9				
Terminalia citrina	0.71				
Terminalia copelandii	0.46				
Terminalia foetidissima	0.55				
Terminalia microcarpa	0.53				
Terminalia nitens	0.58				
Terminalia pterocarpa	0.48				
Tenninalia tomentosa	0.73,0.76, 0.77+				
Fernstroemia megacarpa	0.53				
Tetrameles nudiflora	0.3				
Fetramerista glabra	0.61				
Thespesia populnea	0.52			1	
Toona calantas	0.29				
Irema orientalis	0.31			1	

Annov Table A 2	Basic wood densities of stemwood WD (7)	$(t dry matter/m^3)$
Alliex Table A-2	Basic wood densities of stellwood wD (7)	(t-dry matter/m)

Wood density value is derived from the regression equation in Reyes et al. (1992).
 Source: Reyes, Giscl; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

	TABLE 4.3 CARBON FRACTION OF ABOVEGROUND FOREST BIOMASS						
Domain	Part of tree	Carbon fraction, (CF) [tonne C (tonne d.m.) ⁻¹]	References				
Default value	All	0.47	McGroddy et al., 2004				
	All	0.47 (0.44 - 0.49)	Andreae and Merlet, 2001; Chambers <i>et al.</i> , 2001; McGroddy <i>et al.</i> , 2004; Lasco and Pulhin, 2003				
	wood	0.49	Feldpausch et al., 2004				
	wood, tree d < 10 cm	0.46	Hughes <i>et al.</i> , 2000				
Tropical and Subtropical	wood, tree $d \ge 10$ cm	0.49	Hughes et al., 2000				
	foliage	0.47	Feldpausch et al., 2004				
	foliage, tree d < 10 cm	0.43	Hughes et al., 2000				
	foliage, tree d ≥ 10 cm	0.46	Hughes et al., 2000				
	All	0.47 (0.47 - 0.49)	Andreae and Merlet, 2001; Gayoso et al., 2002; Matthews, 1993; McGroddy et al., 2004				
Temperate and Boreal	broad-leaved	0.48 (0.46 - 0.50)	Lamlom and Savidge, 2003				
	conifers	0.51 (0.47 - 0.55)	Lamlom and Savidge, 2003				

Source : IPCC Guidelines for National Greenhouse Gas Inventories (GNGGI), Volume4. Agriculture, Forestry, and Other Land Use, Table 4.3, 2006³

³ IPCCC:http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_04_Ch4_Forest_Land.pdf

Forest and Natural Resources Conservation/ Annex Table

Annex Table A-4 Annual average aboveground biomass increment in plantations by broad category

	Age Class	Wet	Moist with Short Dry Season	Moist with Long Dry Season	Dry	Montane Moist	(t/ha Montane Dry
		R>2000	2000>F	>1000	R<1000	R>1000	R<1000
Africa							
Eucalyptus spp	≤20 years	-	20.0	12.6	5.1 (3.0-7.0)	-	-
	>20 years	-	25.0	-	8.0 (4.9-13.6)	-	-
Pinus sp	≤20 years	18.0	12.0	8.0	3.3 (0.5-6.0)	-	-
	>20 years		15.0	11.0	2.5	-	-
others	≤20 years	6.5 (5.0-8.0)	9.0 (3.0-15.0)	10.0 (4.0-16.0)	15.0	11.0	-
	>20 years	-	-	-	11.0	-	-
Asia							
Eucalyptus spp	A11	5.0 (3.6-8.0)	8.0	15.0 (5.0-25.0)	-	3.1	-
other species	-	5.2 (2.4-8.0)	7.8 (2.0-13.5)	7.1 (1.6-12.6)	6.45 (1.2-11.7)	5.0 (1.3-10.0)	-
America	-	-	-	-	-	-	-
Pinus	-	18.0	14.5 (5.0 – 19.0)	7.0 (4.0 - 10.3)	5.0	14.0	-
Eucalyptus	-	21.0 (6.4 - 38.4)	16.0 (6.4 - 32.0)	16.0 (6.4 - 32.0)	16.0	13.0 (8.5 - 17.5)	-
Tectona	-	15.0	8.0 (3.8 - 11.5)	8.0 (3.8 - 11.5)	-	2.2	-
other broadleaved	-	17.0 (5.0 - 35.0)	18.0 (8.0 - 40.0)	10.5 (3.2 - 11.8)	-	4.0	-

Note 1 : R= annual rainfall in mm/yr

Note 2 : Data are given as mean value and as the range of possible values.

Note 3 : Some Boreal data were calculated from original values in Zakharov et al. (1962), Zagreev et al. (1993), Isaev et al. (1993) using 0.23 as belowground/aboveground biomass ratio and assuming a linear increase in annual increment from 0 to 20 years.

Note 4 : For plantations in temperate and boreal zones, it is good practice to use stemwood volume increment data (I_v in Equation 3.2.5) instead of above ground biomass increment as given in above table.

Source : IPCC Good Practice Guidance for LULUCF Annex 3A.1, Table 3A.1.6⁴

 $^{^{4}\} IPCCC:\ http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/Chp3/Anx_3A_1_Data_Tables.pdf$

	Vegetation type	Aboveground biomass (t/ha)	Mean	SD	lower range	upper range	References
sub- orest	Secondary tropical/sub-tropical forest	<125	0.42	0.22	0.14	0.83	5, 7, 13, 25, 28, 31, 48, 71
Tropical/sub- tropical forest	Primary tropical/sub-tropical moist forest	NS	0.24	0.03	0.22	0.33	33, 57, 63, 67, 69
Ęβ	Tropical/sub-tropical dry forest	NS	0.27	0.01	0.27	0.28	65
=	Conifer forest/plantation	<50	0.46	0.21	0.21	1.06	2, 8, 43, 44, 54, 61, 75
Conifer forest/ lantation	Conifer forest/plantation	50-150	0.32	0.08	0.24	0.50	6, 36, 54, 55, 58, 61
Conifer forest/ plantation	Conifer forest/plantation	>150	0.23	0.09	0.12	0.49	1, 6, 20, 40, 53, 61, 67, 77, 79
Ľ	Oak forest	>70	0.35	0.25	0.20	1.16	15, 60, 64, 67
ores	Eucalypt plantation	<50	0.45	0.15	0.29	0.81	9, 51, 59
eaf f	Eucalypt plantation	50-150	0.35	0.23	0.15	0.81	4, 9, 59, 66, 76
te broadle: plantation	Eucalypt forest/plantation	>150	0.20	0.08	0.10	0.33	4, 9, 16, 66
te br plan	Other broadleaf forest	<75	0.43	0.24	0.12	0.93	30, 45, 46, 62
Temperate broadleaf forest/ plantation	Other broadleaf forest	75-150	0.26	0.10	0.13	0.52	30, 36, 45, 46, 62, 77, 78, 81
E	Other broadleaf forest	>150	0.24	0.05	0.17	0.30	3, 26, 30, 37, 67, 78, 81
р	Steppe/tundra/prairie grassland	NS	3.95	2.97	1.92	10.51	50, 56, 70, 72
Grassland	Temperate/sub-tropical/ tropical grassland	NS	1.58	1.02	0.59	3.11	22, 23, 32, 52
0	Semi-arid grassland	NS	2.80	1.33	1.43	4.92	17-19, 34
2	Woodland/savanna	NS	0.48	0.19	0.26	1.01	10-12, 21, 27, 49, 65, 73, 74
Other	Shrubland	NS	2.83	2.04	0.34	6.49	14, 29, 35, 38, 41, 42, 47, 67
	Tidal marsh	NS	1.04	0.21	0.74	1.23	24, 39, 68, 80
NS = Not	specified					•	•

Annex Table A-5 Average belowground to aboveground biomass ratio (Root-Shoot ratio, R) in natural regeneration by broad category (R)

Source: IPCC Good Practice Guidance for LULUCF Annex 3A.1, Table 3A.1.8⁵

⁵ IPCCC: http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/Chp3/Anx_3A_1_Data_Tables.pdf

			Estimation of baseline	Estimation of actual net	Estimation of leakage	Estimation of net anthropogenic GHG	
	Host Parties	fertilizer (tonnes of CO2 e)		GHG removals by sinks (tonnes of CO2 e)	(tonnes of CO2 e) [A]	removals by sinks (tonnes of CO2 e) [B]	Ratio of leakage [A]/[B]
Comunidades Agropecuarias de Rurrenabaque (FECAR)"	Bolivia	zero	0	11,529	24,124	91,165	26%
or Faraguari Department, Faraguay	Paraguy	3	8,737	58,188	18,983	30,468	62%
River Basin	China	zero	531	794,225	19,852	773,842	3%
Nadu, India	India	zero	0	107,810	0	107,810	0%
	Moldova	zero	109,962	3,702,513	7,705	3,584,846	0%
	Nicaragua	zero	0	237,448	0	237,448	0%
	Uganda	zero	0	111,798	0	111,798	0%
in José Ignacio Távara is dry forest, Piura, Peru	Peru	zero	171,545	1,145,332	0	973,788	0%
	China		15,394	1,761,552	0	1,746,158	0%
	Argentina	zero	21,366	1,342,140	0	1,320,775	0%
	Albania	zero	6,250	465,537	0	459,287	0%
	Uruguay	zero	0	659	0	659	0%
and Productive Alternative for the City and the Region .	Columbia	zero	0	755,678	0	755,678	0%
Ibi Batéké degraded savannah afforestation project for fuelwood production (Democratic Republic of Congo)	Congo	zero	0	1,635,338	0	1,635,338	0%
AES Tietê Afforestation/Reforestation Project in the State of São Paulo, Brazil	Brasil	-	59,257	4,788,332	0	4,729,074	0%
Humbo Ethiopia Assisted Natural Regeneration Project	Ethiopia	zero	0	880,296	0	880,296	0%
Cao Phong Reforestation Project	Vietnam	22	0	53,735	11,090	42,645	26%
India: Himachal Pradesh Reforestation Project - Improving Livelihoods and Watersheds	India	zero	0	828,016	0	828,016	0%
Improving Rural Livelihoods Through Carbon Sequestration By Adopting Environment Friendly Technology based Agroforestry Practices	India	-	0	146,888	0	146,888	0%
	Brasil	-	751,894	30,409,091	15,522	2,273,493	
commercial use.	Columbia	-	133,021	1,079,384	23,100	923,263	3%
Small Scale Cooperative Afforestation CDM Pilot Project Activity on Private Lands Affected by Shifting Sand Dunes in Sirsa, Haryana.	India	zero	43	29,785	0	231,920	0%
Inoculation in Chile	Chile	zero	0	185,836	0	185,836	0%
Forestry Project in Strategic Ecological Areas of the Colombian Caribbean Savannas	Columbia	zero	279	1,999,849	0	1,999,571	0%

Annex Table A-6 CO₂ emissions from fertilizer, leakages and effects of GHG emissions reduction⁶

4-38

Annex Table A-7 Examples of stratum (CDM Project)⁷

Country :	Paraguay
Project participants	: Japan International Research Center for Agricultural Sciences
	Instituto Forestal Nacional (Public entity)
Title :	Reforestation of croplands and grasslands in low income communities of Paraguari
	Department, Paraguay
CDM registered	2009

Stratum	Tree species	Tree spacing(m)	Plant age	Forested area (ha)
S1	Eucalyptus grandis	3.0×2.5	2007	30.05
S2	Eucalyptus grandis	3.0×2.5	2008	31.17
S 3	Eucalyptus camaldulensis	3.0×2.5	2007	16.36
S4	Eucalyptus camaldulensis	3.0×2.5	2008	64.48
S5	Grevillea robusta	3.0×2.5	2007	5.59
S6	Grevillea robusta	3.0×2.5	2008	15.16
S7	Grevillea robusta	5.0×4.0	2007	14.05
S 8	Grevillea robusta	5.0×4.0	2008	38.30
Total				215.16

Country :	Chile
Project participants	: Mikro-Tek Inc. , Natsource Europe Limited
Title :	Nerquihue Small-Scale CDM Afforestation Project using Mycorrhizal Inoculation in
	Chile
CDM registered	2009

Stratum	Tree species	Tree spacing(m)	Plant age	Forested area (ha)
S 1	Eucalyptus grandis	3.0×2.5	2007	30.05
S2	Eucalyptus grandis	3.0×2.5	2008	31.17
Total				215.16

 Country :
 India

 Project participants :
 Haryana CDM Variksh Kisan Samiti, Ellenabad, Sirsa

 Title :
 Small Scale Cooperative Afforestation CDM Pilot Project Activity on Private Lands

 Affected by Shifting Sand Dunes in Sirsa, Haryana.

CDM registered 2008

Stratum	Tree species	Tree spacing(m)	Plant age	Forested area (ha)
S1	Eucalyptus hybrid		2007	26.30
S2	Ailanthus excelsa		2007	57.86
\$3	Acacia tortilis		2007	61.65
S4	Dalbergia sissoo		2007	53.65
85	Acacia nilotica		2007	60.75
86	Prosopis cineraria		2007	74.20
S 7	Zizyphus mauritiana		2007	35.46
Total				369.87

⁷ UNFCCC: http://cdm.unfccc.int/Projects/projsearch.html

Country :VietnamProject participants :Forest Development FundTitle :Cao Phong Reforestation ProjectCDM registered2009

Stratum	Tree species	Tree spacing(m)	Plant age	Forested area (ha)
S1	A.mangium	2.5×2.5	2008	166.65
82	A.mangium	2.5×2.5	2009	166.65
83	A.auriculiformis	2.0×2.0	2009	31.96
Total				365.26

Country :	India
Project participants	: ITC Limited, Paperboards and Specialty Papers Division (PSPD), Unit: Bhadrachalam
Title :	Reforestation of severely degraded landmass in Khammam District of Andhra Pradesh,
	India under ITC Social Forestry Project

Stratum	Tree species	Tree spacing(m)	Plant age	Forested area (ha)
S1	Eucalyptus tereticornis Smith and Eucalyptus camaldulensis Dhen 1 year old tree	_	2001	979.79
S2	Eucalyptus tereticornis Smith and Eucalyptus camaldulensis Dhen 2 yeasr old tree	_	2002	556.65
\$3	Eucalyptus tereticornis Smith and Eucalyptus camaldulensis Dhen 3 yeasr old tree	_	2003	971.33
S4	Eucalyptus tereticornis Smith and Eucalyptus camaldulensis Dhen 4 yeasr old tree	_	2004	562.42
Total				3070.19

Country :BoliviaProject participants :FECAR (community organization), (Private entity)
Foundation Centro Tecnico Forestal (CETEFOR) (Private entity)
Asociación Accidental Cetefor-Sicirec (Private entity)
Vlaams Gewest (Public entry)Title :CARBON SEQUESTRATION THROUGH REFORESTATION IN THE BOLIVIAN
TROPICS BY SMALLHOLDERS OF "The Federación de Comunidades Agropecuarias
de Rurrenabaque (FECAR)" Version 2.03CDM registered2009

Stratum	Tree species	Tree spacing(m)	Plant age	Forested area (ha)
S1	Fast growing/ plantation		_	_
82	Fast growing/Agroforestry System	_	_	_
83	Fast growing/ Silvipastoral System	-	_	_
S4	Midium growing/ plantation	_	_	_
85	Midiumgrowing/AgroforestrySystem	_	_	_
S6	Midium growing/ Silvipastoral System	_	_	_
S7	Slow growing/ plantation	_		_
S8	Slow growing/Agroforestry System	_	_	_
S9	Slow growing/ Silvipastoral System	_	_	_
Total				317ha

Country :	Uganda
Project participants	: National Forest Authority (NFA)
	International Bank for Reconstruction and Development as trustee of the BioCarbon
	Fund
Title :	Uganda Nile Basin Reforestation Project No 3
CDM registered	2009

Stratum	Tree species	Tree	Plant age	Forested area (ha)
		spacing(m)		
S1	Pine	_	_	
	/Maesopsis (&Prunus)			
S2	Pine		_	
	/Maesopsis (&Prunus)			
S3	Pine	_	_	_
	/Maesopsis (&Prunus)			
S4	Pine	_		_
	/Maesopsis (&Prunus)			
85	Pine	_		_
	/Maesopsis (&Prunus)			
Total				2014ha

Forest and Natural Resources Conservation/ Annex Table

Traffic and Transportation Sector

Sub-sector :

- 3. Freight/Passenger Transportation Improvement
- **4. MRT**
- 5. Monorail, LRT
- 6. Bus (BRT, Trunk bus)

3.1 Traffic and Transportation /Railway, Passengers

	3.1 Traffic and Transportation /Railway, Passengers
1.Typical Project Outline	The project intends to reduce GHG emissions by realizing "modal shift" from existing passenger transport systems (i.e., conventional buses, passenger cars, taxies and bikes) to passenger railway systems such as a new railway, a double track railway, or a quadruple track railway. In addition, "electrification" of passenger railway systems will reduce GHG emissions.
2.Applicability	 After the project completes, the passenger rail system will have its own rail-based infrastructure and it will provide rapid transportation for a large number of passengers. The current baseline transport system should be road based (i.e., buses, private cars, taxies and bicycles). Hence, the current transport system does not involve ships or civil aviation. Railway electrification projects are also targeted. In such cases, the current baseline transportation systems are non-electrified railways. The motive power of passenger railways should be electricity or of internal-combustion (engine).
3. Methodology on Emission Reduction	GHG emissions reduction due to passenger railway projects is calculated as the difference between the GHG emissions with the existing transport systems (baseline) and those after the success of the modal shift to a passenger railway system (project emission). In addition, GHG emissions reduction due to railway electrification is calculated as the difference between the GHG emissions with the existing non-electrified railway (baseline) and those with the electrified railway (Project).
	$ER_{y} = BE_{y} - PE_{y} \text{ (t-CO_{2}/y)}$ $ER_{y} : \text{GHG emissions reduction due to project activity in year y (t-CO_{2}/y)}$ $BE_{y} : \text{GHG emissions with existing transport systems in year y (t-CO_{2}/y) (Baseline emissions)}$ $PE_{y} : \text{GHG emissions after the success of modal shift to the passenger railway from the existing transport systems in year y (t-CO_{2}/y) (Project emissions)$ $BE_{y} : \text{Baseline emissions}$ $PE_{y} : \text{Project emissions}$
	GHG Since Sinc
	Emissions with existing transport systems in absence of a passenger railway system

 Methodology on Emission Reductions (Continuation) (1) Baseline Emissions Estimation

1) Road-based Transportation Systems

In case the existing transport systems would share a similar number of passengers transported by the projected railway, the baseline emissions for various types of vehicles are estimated by multiplying the shared number of passengers with the respective CO_2 emission factors per passenger before the project starts.

$$BE_{y} = \sum_{i} \left(EF_{P,i,y} \times P_{PJ,i,j} \right)$$

Туре	Items	Description
Output	BE _y	Baseline emissions :
		GHG emissions in the absence of the passenger railway project (gr-CO ₂ /y)
Input	$EF_{P,i,y}$	CO2 emission factor per passenger for vehicle category i (gr-CO2/passenger)
	$P_{PJ,i,y}$	Annual number of passengers transported by vehicle category i after the project
		has completed

Determination of EF_{P,i,y}

Involving parameters such as CO_2 emission factor per kilometer, average trip distance, and average occupation rate of vehicle before the project starts, the CO_2 emission factor per passenger for each vehicle category is estimated using the following formula:

$$EF_{P_{i,y}} = \frac{EF_{KM,i} \times TD_{i}}{OC_{i}}$$

 $EF_{KM,i}$: CO₂ emission factor per km for vehicle category i before the project starts (gr-CO₂/km)

 TD_i : Average daily trip distance driven by vehicle category i (km/vehicle)

 OC_i : Average daily occupancy rate for vehicle category i (person/vehicle)

 $EF_{KM,i}$ is calculated using the following formula:

$$EF_{KM,i} = \sum_{x} \left[\frac{(1 - \alpha_{x,i})}{SEC_{x,i}} \times EF_{CO2,x} \times \left(\frac{N_{x,i}}{N_i} \right) \right]$$

 $SEC_{x,i}$: Specific fuel consumption per vehicle category i (km/L)

 $EF_{CO2.x}$: CO₂ emission factor of fuel category x (gr-CO₂/L)

 $N_{x,i}$: Number of vehicle category i using fuel category x (vehicle)

 N_i : Number of vehicle category i (vehicle)

 $\alpha_{x,i}$: Mixing rate of biofuel (e.g., = 0.1 for biodiesel 10% mixing fuel)

2) Non-electrified railways

Baseline emissions are calculated by multiplying the total annual fuel consumption of non-electrified passenger trains (diesel trains or internal-combustion locomotives) with the CO₂ emission factor of fuel.

$$BE_y = TC_{dty} \times EF_{CO_2,x}$$

Туре	Item	Description
Output	BE _y	Baseline emissions:
		GHG emissions of non-electrified trains (t-CO ₂ /y)
Input	$TC_{dt,y}$	Total annual fuel consumption of non-electrified trains (diesel trains or internal-combustion locomotives) after the project has completed (L/y)
	$EF_{CO2,x}$	CO_2 emission factor of fuel category x (gr- CO_2/L)

Determination of EF_{P,i,y}

The total annual fuel consumption of the non-electrified passenger trains is estimated considering their specific fuel consumption multiplied by their total annual trip distance. By involving a mixing rate of biofuel in fuel consumption, the formula is as follows:

$$TC_{dt,y} = \frac{(1 - \alpha_{x,bs})DD_y}{SEC_{x,dt}}$$

 $SEC_{x.dt}$: Specific fuel consumtion (km/L)

 DD_{v} : Total annual trip distance of passenger trains (train km/y)

 $\alpha_{x,bs}$: Mixing ratio of biofuel

(2) Project Emissions Estimation

1) Electric-powered Freight Trains

Project emissions are calculated by multiplying the total annual electricity consumption of passenger trains (electric train/electric locomotive) after project completion (planned value) with the CO₂ emission factor of electricity.

$$PE_y = TC_y \times EF_{CO_2,x}$$

Туре	Item	Description			
Output	PE _y	Project emissions: GHG emissions of passenger trains (electric train/electric			
Input	TCy	locomotive) after project completion (t-CO ₂ /y) Total annual electricity consumption of passenger trains after project completion (kWh/y)			
	EF _{CO2,x}	CO ₂ emission factor of electricity (gr-CO ₂ /kWh)			

Determination of TC_v

The total electricity consumption of pasenger trains is estimated considering their electricity consumption rate multiplied by the total annual trip distance as follows:

$$TC_{et_{v}} = DD_{v} \cdot SEC_{et,v}$$

 $SEC_{et,v}$: Electricity consumption rate (kWh/km)

 DD_{v} : Total annual trip distance driven by passenger trains (train km/y)

2) Engine-powered Passenger Trains (Internal Combustion).

Project emissions are calculated by multiplying the total annual fuel consumption of passenger trains (diesel trains or internal-combustion locomotives) after project completion (planned value) with the CO₂ emission factor of fuel.

$$PE_{y} = TC_{y} \times EF_{CO_{2},x}$$

Туре	Item	Description				
Output	PEy	Project emissions:				
		GHG emissions of passenger trains (diesel train				
		/internal-combustion locomotive) after project completion				
		(t-CO ₂ /y)				
Input	TC_y	Total annual fuel consumption of passenger trains after project				
		completion (L/y)				
	$EF_{CO2,x}$	CO_2 emission factor of fuel category x (gr- CO_2/L)				

Determination of TC_y

The total fuel consumption of pasenger trains is estimated considering their fuel consumption rate multiplied by their total annual trip distance.By involving a mixing rate of biofuel in the fuel consumption, the formula is as follows:

$$TC_{dt,y} = \frac{(1 - \alpha_{x,bs})DD_y}{SEC_{x,dt,y}}$$

 $SEC_{x,dt,y}$: Specific fuel consumtion (km/L)

 DD_{y} : Total annual trip distance of passenger trains (train km/y)

 $\alpha_{x,dt}$: Mixing ratio of biofuel

4-46

4. Data Required

for Estimation and Monitoring

			Data Acquisition Methods				
	Data Type	Description of Data	Baseline	Emissions	Project Emissions		
		Description of Data	Before the Project Starts	After Project Completion	Before the Project Starts	After Project Completion	
Passengers of existing transport systems (After : <i>P</i> _{PJ,i,y})		Passengers of existing transport systems that would be shared in the absence of the passenger train project. The total number of passengers of existing transport systems is equal to the passenger sof passenger trains	Planned values	Measured values	(Not necessary be involved in the ca	ecause data are not alculation)	
driven by	ual trip distance unelectrified trains (After: <i>DD_y</i>)	Total annual trip distance driven by unelectified passenger trains	Planned values	Measured values	(Not necessary because data are no involved in the calculation)		
Specific fuel consumption of unelectirfied passenger trains in fuel type x, vehicle category i, $(SEC_{x,dt})$		Fuel consumption rate per liter (km/L)	Planned values	Measured values	(Not necessary because data are n involved in the calculation)		
Total annual trip distance driven by passenger trains (After: DD_y)		Total annual trip distance driven by passenger trains after projet completion	(Not necessary because data are not involved in the calculation)		Planned values	Measured values	
Electricity consumption rate of passenger trains $(SEC_{x,bs,s})$		Electricity consumption rate of passenger trains	(Not necessary because data are not involved in calculation)		Planned values	Measured values	
Total number of existing vehicles in fuel type x, and vehicle category i, $(N_{x,i})$		Total number of vehicles in a vehicle category and a fuel type	Measured values	Measured values	(Not necessary be involved in the ca	ecause data are not alculation)	
Total number of existing vehicles CO_2 in vehicle categoryemissioi, $(N_{x,i})$		Total number of vehicles in a vehicle category	Measured values	Measured values	(Not necessary because data are not involved in the calculation)		
ns factor	Average trip distance driven by existing vehicles in vehicle category i,(<i>OD</i> _i)	Trip distance for each vehicle category before the project starts	Measured values	Measured values	(Not necessary be involved in the ca	ecause data are not alculation)	
	Average occupation rate of existing vehicles in vehicle	Occupation rate of each vehicle category before the project starts	Measured values	Measured values	(Not necessary because data are no involved in the calculation)		

			Data Acquisition Methods			
Data Type	28	Description of Data	Baseline Emissions		Project Emissions	
51		Desemption of Dut	Before the	After Project	Before the	After Project
			Project Starts	Completion	Project starts	Completion
	Specific fuel consumption of existing vehicles in fuel type x, vehicle category i, $(SEC_{x,i})$	Fuel consumption rate per liter (km/L)	data and inform justified and used order (see the table i) Specific data obtained throug transport manag ii) Published value	information of the ilability of relevant nation should be l in the following es hereinafter): in the project the interviews with gement authorities es in the country	(Not necessary because data are n involved in the calculation) nal data and information of the projected information should be justified an	
CO ₂ emissio ns factor	CO_2 emission factor of fuel (<i>EFCO</i> _{2,x})	CO ₂ emission factor of fuel per liter, such as gasoline, diesel	so the availability used in the followin i) Specific data in transport manag	n IPCC database se national or region of relevant data and ng order (see the tab n the project obtain gement authorities s in the country whe		
	Mixing ratio of biofuel	Mixing ratio of biofuel in gasoline, diesel	 In y values outed on in CC databate It is desirable to use national or regional data and information of the project so the availability of relevant data and information should be justified and used in the following order (see the tables hereinafter): i) Specific data in the project obtained through interviews, etc. for the transport management authorities ii) Published values in the country where the project exists 			

5. Others (1) Project boundary

The project delineation for GHG estimations is defined by the outreach of the passenger train project.

(2) Leakage

Considering the life cycle assessment (LCA) related to the passenger train project, the production and freight of raw materials needed for passenger trains and the energy consumed during construction and manufacturing of raw materials are expected as leakages of GHG emissions. However, these are significantly small as compared with the GHG emissions reduction caused by the project. Hence, these are not counted as leakages in this estimation methodology. Looking at five CDM registered projects, only the Bagota Bus Rapid Transit (BRT) Project took account of leakage, while the other projects counted leakage as zero. For reference, the estimated leakages of the Bogota BRT Project are shown in the appended Table B-3 attached herewith. The total volume of leakages is 0.8% as compared with that of the GHG emissions reduction due to the BRT project.

(3) Relevant methodologies and their differences with this estimation methodology

ACM0090 : Modal Shift in Transportation of Cargo from Road Transportation to Water or Rail Transportation [Differences]

- A cargo (freight) railway project can be the target for GHG emissions estimation; however, this estimation methodology targets passenger train projects.
- At least 50% of investments for water or railway transport systems should be used for the cargo transportation systems including construction of facilities (i.e., railway stations) or purchase of equipments.
- The cargo is transported from the same origin (point A) to the same destination (point B); however, this condition is not considered in this estimation methodology.

ACM0016 : Baseline Methodology for Mass Rapid Transit Projects

[Differences]

- All mass rapid transit (MRT) systems including not only rail-based systems such as subways and light rail transit (LRT) but also bus systems such as BRT; however, only passenger train systems are considered in this estimation methodology.
- CH₄, N₂O other than CO₂ can be counted as GHG emissions; however, only CO₂ emission is counted in this estimation methodology.
- The effects of GHG emission reduction by the improvement of technology can be counted; however, these are not counted in this estimation methodology.
- The effects of GHG emission reduction due to the improvement of technology can be counted; however, these are not counted in this estimation methodology. In particular, a technology improvement factor is assumed 0.99/year (or 1%/year) and the GHG emissions are expected to reduce by 1% per year with the technology improvement. In 10th year, 0.99 to the 9th power equals 0.91, and so the baseline emissions from the existing transport systems becomes 0.91 times due to their technological improvement. Simply assuming annual GHG emissions is constant over 10 years, the difference between with and without the technology improvement factors is around 4%. Thus, the baseline GHG emissions over 10 years would reduce by 4% due to technology improvement, and so the effects of GHG emission reduction lessen by 4%, meaning it is on the safety side. In developing countries, however, it is reasonable to consider that old vehicles will be continuously used rather than acquiring brand-new vehicles. Because of this, the technological improvement factors are not considered in this estimation methodology.
- Once the MRT system has been newly introduced, passengers must utilize the MRT stations that were not available before the project has started in order to reach their destinations. This results in producing additional GHG emissions. These indirect GHG emissions can be counted; however, these are not considered in this estimation methodology.
- The reduction of traffic congestions after the project has started may reduce GHG emissions since vehicle operation will speed due to reduced traffic congestion. On the other hand, it may induce an increase in GHG emissions because of the increasing traffic caused by transport systems other than passenger trains. These are involved in AM0016 but not considered in this estimation methodology.

 CO₂ emission factors for passenger cars and taxies are a function of speed; however, these are not considered as a function of speed (constant for average speed) in this estimation methodology. The changes in load factors of conventional buses and taxies after the MRT project has started are involved in its GHG emissions estimation; however, these factors are not considered in this estimation methodology.
 The motive power of transport systems may be either through an internal combustion (engine) or electricity; however, only an internal combustion is considered in this estimation methodology.
AMS-III-U : Cable Cars for Mass Rapid Transit Projects
• Cable car projects can be the target for GHG emissions estimation; however, the passenger railway project is the target in this estimation methodology.
• CH ₄ and N ₂ 0 can be counted as GHG emissions other then CO ₂ ; however, only CO ₂ emissions are counted in this estimation methodology.
• The effects of GHG emissions reduction due to technology improvements can be counted; however, these are not counted in this estimation methodology.
• Once the cable car system has been introduced, passengers must utilize the cable car stations which were not available before the project started in order to reach their destinations. This results in additional GHG emissions.
 These indirect GHG emissions can be counted; however, these are not considered in this estimation methodology. Cable cars are powered by electricity; however, both electricity and engine (internal combustion) is considered in this estimation methodology.

3.2 Traffic and Transportation /Railway, Freight

		3.2 Traffic and Transportation /Railway, Freight
1. Typical Project Outline		izing "modal shift" from existing freight transport systems (i.e., systems such as a new railway, a double track railway. In will reduce GHG emissions.
2. Applicability	rapid transportation for a large volume of freight. OThe current baseline transport system should be roa current transport system does not involve ships or	In such cases, the current baseline transportation systems are
3. Methodology on Emission Reduction	with the existing transport systems (baseline) and thos (project emission). In addition, GHG emissions reduc	ects is calculated as the difference between the GHG emissions as after the success of the modal shift to a freight railway system tion due to railway electrification is calculated as the difference ctrified railway (baseline) and those after the electrified railway
		ystems in year y (t-CO ₂ /y) (Baseline emissions) lal shift to a freight railway system from the existing transport

 Methodology on Emission Reductions (Continuation) (1) Baseline Emissions Estimation

1) Road-based Transportation Systems

In case the existing transport systems would share a similar volume of freights transported by the projected railway, baseline emissions for various types of vehicles are estimated by multiplying the shared volume of freights with the CO_2 emission factors per 1 ton of freight before the project starts.

$$BE_{y} = \sum_{i} \left(EF_{P,i,y} \times P_{PJ,i,j} \right)$$

Туре	Items	Description				
Output	BE _y	Baseline emissions :				
		GHG emissions in the absence of the freight railway project (gr-CO ₂ /y)				
Input	$EF_{P,i,y}$	CO ₂ emission factor per 1 ton of freight for vehicle category i (gr-CO ₂ /passenger)				
	$P_{PJ,i,y}$	Annual volume of freights transported by vehicle category i after the project has completed				

Determination of EF_{P,i,y}

Involving parameters such as CO_2 emission factor per kilometer, average trip distance, and average loading ratio of vehicle before the project starts, the CO_2 emission factor per 1 ton of freight for each vehicle category is estimated by the following formula:

$$EF_{P,i,y} = \frac{EF_{KM,i} \times TD_i}{OC_i}$$

 $EF_{KM,i}$: CO₂ emission factor per km for vehicle category i before the project starts (gr-CO₂/km)

 TD_i : Average daily trip distance driven by vehicle category i (km/vehicle)

 OC_i : Average daily loading for vehicle category i (ton/vehicle)

 $EF_{KM,i}$ is calculated using the following formula:

$$EF_{KM,i} = \sum_{x} \left[\frac{(1 - \alpha_{x,i})}{SEC_{x,i}} \times EF_{CO2,x} \times \left(\frac{N_{x,i}}{N_i} \right) \right]$$

 $SEC_{x,i}$: Specific fuel consumption per vehicle category i (km/L)

 $EF_{CO2,x}$: CO₂ emission factor of fuel category x (gr-CO₂/L)

 $N_{x,i}$: Number of vehicle category i using fuel category x (vehicle)

 N_i : Number of vehicle category i (vehicle)

 $\alpha_{x,i}$: Mixing rate of biofuel (ex. = 0.1 for biodiesel 10% mixing fuel)

2) Non-electrified railways

Baseline emissions are calculated by multiplying the total annual fuel consumption of non-electrified freight trains (diesel trains or internal-combustion locomotives) with the CO₂ emission factor of fuel.

$$BE_{v} = TC_{dt_{v}} \times EF_{CO_{2},x}$$

Туре	Item	Description			
Output	BE _y	Baseline emissions:			
		GHG emissions of non-electrified trains (t-CO ₂ /y)			
Input	$TC_{dt,y}$	Total annual fuel consumption of non-electrified trains (diesel trains or internal-combustion locomotives) after the project has completed (L/y)			
	$EF_{CO2,x}$	CO_2 emission factor of fuel category x (gr- CO_2/L)			

Determination of EF_{P,i,y}

The total annual fuel consumption of the non-electrified freight trains is estimated considering their specific fuel consumption multiplied by their total annual trip distance. By involving a mixing rate of biofuel in fuel consumption, the formula is as follows:

$$TC_{dt,y} = \frac{(1 - \alpha_{x,bs})DD_y}{SEC_{x,dt}}$$

 $SEC_{x,dt}$: Specific fuel consumtion (km/L)

 DD_y : Total annual trip distance of freight trains (train km/y)

 $\alpha_{x,bs}$: Mixing ratio of biofuel

(2) Project Emissions Estimation

1) Electric-powered Freight Trains

Project emissions are calculated by multiplying the total annual electricity consumption of freight trains (electric locomotive) after the project has completed (planned value) with the CO_2 emission factor of electricity.

$$PE_y = TC_y \times EF_{CO_2,x}$$

Туре	Item	Description		
Output	PE _y	Project emissions:		
		GHG emissions of freight trains (electric locomotive) after the		
		project has completed (t-CO ₂ /y)		
Input	TC_y	Total annual electricity consumption of freight trains after the		
		project has completed (kWh/y)		
	$EF_{CO2,x}$	CO ₂ emission factor of electricity (gr-CO ₂ /kWh)		

Determination of TC_y

The total electricity consumption of freight trains is estimated considering their electricity consumption rate multiplied by their total annual trip distance as follows:

$$TC_{et_{v}} = DD_{v} \cdot SEC_{et,v}$$

 $SEC_{et,y}$: Electricity consumption rate (kWh/km)

 DD_{y} : Total annual trip distance driven by freight trains (train km/y)

2) Engine-powered Passenger Trains (Internal Combustion)
 Project emissions are calculated by multiplying the total annual fuel consumption of freight trains (diesel train/internal-combustion locomotive) after the project has completed (planned value) with the CO₂ emission factor of

$$PE_y = TC_y \times EF_{CO_2,x}$$

Туре	Item	Description			
Output	PE _y	Project emissions:			
		GHG emissions of freight trains (diesel train /internal-combustion			
		locomotive) after the project has completed (t-CO ₂ /y)			
Input	TC_y	Total annual fuel consumption of freight trains after the project has			
		completed (L/y)			
	$EF_{CO2,x}$	CO_2 emission factor of fuel category x (gr- CO_2/L)			

Determination of TC_y

fuel.

The total fuel consumption of freight trains is estimated considering their fuel consumption rate multiplied by their total annual trip distance.By involving a mixing rate of bio-fuel in the fuel consumption, the formula is as follows:

$$TC_{dt,y} = \frac{(1 - \alpha_{x,bs})DD_y}{SEC_{x,dt,y}}$$

 $SEC_{x,dt,y}$: Specific fuel consumtion (km/L)

 DD_{y} : Total annual trip distance of freight trains (train km/y)

 $\alpha_{x,dt}$: Mixing ratio of bio-fuel

4. Data Required for Estimation and Monitoring

		Data Acquisitie Baseline Emissions		Project Emissions		
	Data Type	Description of Data				
		-	Before the	After project	Before the	After project
Freights by existing transport systems (After : $P_{PJ,i,y}$)		Freights of existing	project starts	completion	project starts	completion
		transport systems that would be shared in the absence of the freight train project. The total freights of existing transport systems is equal to the freight carried by freight trains	Planned values	Measured values	(Not necessary be involved in the ca	
Total annual trip distance driven by unelectrified passenger trains (After: <i>DD_y</i>)		Total annual trip distance driven by unelectified passenger trains	Planned values	Measured values	(Not necessary be involved in the ca	
Specific fuel consumption of unelectirfied freight trains in fuel type x, vehicle category i, $(SEC_{x,dt})$		Fuel consumption rate per liter (km/L)	Planned values	Measured values	(Not necessary because data are no involved in the calculation)	
Total annual trip distance driven by freight trains (After: DD_{y})		Total annual trip distance driven by freight trains	(Not necessary because data are not involved in the calculation)		Planned values	Measured value
Electricity consumption rate of freight trains $(SEC_{x,bs,s})$		Electricity consumption rate of freight trains	(Not necessary because data are not involved in calculation)		Planned values	Measured value
$\begin{array}{c} (\ N_{x,i}) \\ Total \ number \ of \\ existing \ vehicles \\ in \ fuel \ type \ x, \ and \\ vehicle \ category \ i, \\ (N_{x,i}) \end{array}$ $\begin{array}{c} CO_2 \\ emissio \\ ns \ factor \\ ns \ factor \\ ns \ factor \\ existing \ vehicles \\ in \ vehicle \ category \\ existing \ vehicles \\ in \ vehicle \\ sin \ vehicle \\ sin \ vehicle \\ sin \ vehicle \\ in \ vehicle \\ sin		Total number of vehicles in a vehicle category and a fuel type	Measured values	Measured values	(Not necessary be involved in the ca	
		Total number of vehicles in a vehicle category	Measured values	Measured values	(Not necessary because data are no involved in the calculation)	
		Trip distance for each vehicle category before the project starts	Measured values	Measured values	(Not necessary because data are no involved in the calculation)	
	Average occupation rate of existing vehicles in vehicle category i, (OC _i)	Occupation rate of each vehicle category before the project starts	Measured values	Measured values	(Not necessary because data are involved in the calculation)	

		I	1	3.2 Traffic and Tr	1	<u>, </u>
				Data Acquisit		
Γ	Data Type	Description of	-	Emissions		Emissions
		Data	Before the project starts	After project completion	Before the project starts	After project completion
	Specific fuel consumption of existing vehiclesFuel consumption rate per liter (km/L)in fuel type x, vehicle category		It is best desirable to use national or regional data and information of the project, so the availability of relevant data and information should be justified and used in the following			
CO ₂ emissions	i, (SEC _{x,i})		-	the project h interviews with gement authorities s in the country ct exists	involved in the calculation)	
factor	CO ₂ emission	CO ₂ emission	It is desirable to us	e national or regiona	al data and inform	ation of the project
	factor of	factor of fuel per	so the availability	of relevant data and	information shoul	d be justified and
	fuel (EFCO _{2,x})	liter, such as	used in the following order (see the tables hereinafter):			
		gasoline, diesel	i) Specific data in the project obtained through interviews, etc. with		vs, etc. with the	
			transport management authorities			
			ii) Published values in the country where the project existsiii) Values based on IPCC database			
	biofuel biofuel in gasoline, diesel		 so the availability of relevant data and information should be justified and used in the following order (see the tables hereinafter): i) Specific data in the project obtained through interviews, etc. for the transport management authorities ii) Published values in the country where the project exists 			

5. Others	(1) Project boundary
	The project delineation for GHG estimations is defined by the outreach of the MRT project.
	(2) Leakage
	Considering the life cycle assessment (LCA) related to the freight train project, the production and freight of raw
	materials needed for freight trains, and the energy consumed during construction and manufacturing of raw
	materials are expected as leakages of GHG emissions. However, these are significantly small as compared with the
	GHG emissions reduction caused by the project. Hence, these are not counted as leakages in this estimation
	methodology. Looking at five CDM registered projects, only the Bagota Bus Rapid Transit (BRT) Project took
	account of leakage, while the other projects counted leakage as zero. For reference, the estimated leakages of the
	Bogota BRT Project are shown in the appended Table B-3 attached herewith. The total volume of leakages is 0.8%
	as compared with that of the GHG emissions reduction due to the BRT project.
	(3) Relevant methodologies and their differences with this estimation methodology
	ACM0090 : Modal shift in transportation of cargo from road transportation to water or rail transportation
	[Differences]
	• At least 50% of investments for water or railway transport systems should be used for the cargo transportation systems including construction of facilities (i.e., railway stations) or purchase of equipments.
	 The cargo is transported from the same origin (point A) to the same destination (point B); however, this condition
	is not considered in this estimation methodology.
	ACM0016 : Baseline Methodology for Mass Rapid Transit Projects
	[Differences]
	· All mass rapid transit (MRT) systems including not only rail-based systems such as subways and light rail transit
	(LRT) but also bus systems such as BRT; however, only freight train systems are considered in this estimation
	methodology.
	• CH ₄ and N ₂ O can be counted as GHG emissions other than CO ₂ ; however, only CO ₂ emission is counted in this
	estimation methodology.
	• The effects of GHG emission reduction by the improvement of technology can be counted; however, these are not
	counted in this estimation methodology.
	• The effects of GHG emission reduction due to the improvement of technology can be counted; however, these are not counted in this estimation methodology. In particular, a technology improvement factor is assumed 0.99/year
	(or 1%/year) and the GHG emissions are expected to reduce by 1% per year with the technology improvement. In
	10th year, 0.99 to the 9th power equals 0.91, and so the baseline emissions from the existing transport systems
	becomes 0.91 times due to their technological improvement. Simply assuming annual GHG emissions is constant
	over 10 years, the difference between with and without the technology improvement factors is around 4%. Thus,
	the baseline GHG emissions over 10 years would reduce by 4% due to technology improvement, and so the
	effects of GHG emission reduction lessen by 4%, meaning it is on the safety side. In developing countries,
	however, it is reasonable to consider that old vehicles will be continuously used rather than acquiring brand-new
	vehicles. Because of this, the technological improvement factors are not considered in this estimation
	methodology.
	• Once the freight railway system has been newly introduced, freight must utilize the freight stations that were not
	available before the project has started in order to reach their destinations. This results in producing additional
	GHG emissions. These indirect GHG emissions can be counted; however, these are not considered in this
	estimation methodology.
	• The reduction of traffic congestions after the project has started may reduce GHG emissions since vehicle
	operation will speed due to reduced traffic congestion. On the other hand, it may induce an increase in GHG
	emissions because of the increasing traffic caused by transport systems other than freight trains. These are involved in AM0016 but not considered in this estimation methodology.
	 involved in AM0016 but not considered in this estimation methodology. CO₂ emission factors for passenger cars and taxies are a function of speed; however, these are not considered as a
	function of speed (constant for average speed) in this estimation methodology.

	• The changes in load factors of conventional buses and taxies after the MRT project has started are involved in its
	GHG emissions estimation; however, these factors are not considered in this estimation methodology.
	AMS-III-U : Cable Cars for Mass Rapid Transit Projects
	[Differences]
	· Cable car projects can be the target for GHG emissions estimation; however, the freight railway project is the
	target in this estimation methodology.
	+ CH_4 and N_20 can be counted as GHG emissions other then CO_2 ; however, only CO_2 emissions are counted in this
	estimation methodology.
	• The effects of GHG emissions reduction due to technology improvements can be counted; however, these are not
	counted in this estimation methodology.
	· Once the cable car system has been introduced, passengers must utilize the cable car stations which were not
	available before the project started in order to reach their destinations. This results in additional GHG emissions.
	These indirect GHG emissions can be counted; however, these are not considered in this estimation methodology.
	• Cable cars are powered by electricity; however, both electricity and engine (internal combustion) is considered in
	this estimation methodology.

	4. Irajic and Iransportation /MRT		
1. Typical	The project intends to reduce GHG emissions by realizing "modal shift" from existing transport systems (i.e., buses,		
Project Outline	private cars, taxies and bikes) to a Mass Rapid Transit (MRT) system.		
2. Applicability	 After the project completes, the MRT system will have its own rapid railways (a subway or elevated railway) infrastructures connecting a city center and its suburbs, and will provide rapid transportation for a large number of passengers. The baseline transport system should be road based, such as buses, private cars, taxies and bikes. Hence, the current transport system does not involve railways, ships, or civil aviation. The motive power of rapid railways should be electric-powered. 		
3.	GHG emissions reduction due to MRT is calculated as the difference between the GHG emissions with the existing		
Methodology on	transport systems (baseline) and those after the success of the modal shift to MRT (project emission).		
Emission			
Reduction	$ER_y = BE_y - PE_y$ (t-CO ₂ /y)		
	 BE_y : GHG emissions with existing transport systems in year y (t-CO₂/y) (Baseline emissions) PE_y : GHG emissions after the success of modal shift to MRT from the existing transport systems in year y (t-CO₂/y) (Project emissions) 		
	BE, : Baseline emissions PE, : Project emissions GHG Image: Comparison of the c		
	(1) Baseline emissions estimation In case the existing transport systems would share a similar number of passengers transported by the projected MRT baseline emissions for various types of vehicles are estimated by multiplying their shared number of passengers with their CO ₂ emission factors per passenger before the project starts.		

$$BE_{y} = \sum_{i} \left(EF_{P,i,y} \times P_{PJ,i,j} \right)$$

Items	Description		
BE _y	Baseline emissions :		
	GHG emissions in the absence of MRT (gr-CO ₂ /y)		
$EF_{P,i,y}$	CO ₂ emission factor per passenger for vehicle category i (gr-CO ₂ /passenger)		
$P_{PJ,i,y}$	Annual number of passengers transported by vehicle category i after the project		
	has completed		
	BE _y EF _{P,i,y}		

Determination of EF_{P,i,v} 3. Methodology Involving parameters such as CO₂ emission factor per kilometer, average trip distance, and average occupation rate of on Emission vehicle before the project starts, the CO₂ emission factor per passenger for each vehicle category is estimated by the Reductions following formula: (Continuation)

$$EF_{P,i,y} = \frac{EF_{KM,i} \times TD_i}{OC_i}$$

 $EF_{KM,i}$: CO₂ emission factor per km for vehicle category i before the project starts (gr-CO₂/km)

 TD_i : Average daily trip distance driven by vehicle category i (km/vehicle)

 OC_i : Average daily occupancy rate for vehicle category i (person/vehicle)

 $EF_{KM,i}$ is calculated using the following formula:

$$EF_{KM,i} = \sum_{x} \left[\frac{(1 - \alpha_{x,i})}{SEC_{x,i}} \times EF_{CO2,x} \times \left(\frac{N_{x,i}}{N_i} \right) \right]$$

 $SEC_{x,i}$: Specific fuel consumption per vehicle category i (km/L)

 EF_{CO2x} : CO₂ emission factor of fuel category x (gr-CO₂/l)

 $N_{x,i}$: Number of vehicle category i using fuel category x (vehicle)

 N_i : Number of vehicle category i (vehicle)

 $\alpha_{x,i}$: Mixing rate of biofuel (ex. = 0.1 for biodiesel 10% mixing fuel)

(2) Project emissions estimation

Project emissions are calculated by multiplying the total annual electricity consumption of MRT trains (subways or elevated trains) after the project starts (planned value), with the CO₂ emission factor of electricity.

$$PE_y = TC_y \times EF_{CO_2,x}$$

Туре	Items	Description	
Output	PE _y	Project emissions:	
		GHG emissions of MRT trains after the project starts (t-CO ₂ /y)	
Input	TC_y	Total annual electricity consumption of MRT trains after the	
		project has started (kWh/y)	
	$EF_{CO2,x}$	CO ₂ emission factor of fuel category x (gr-CO ₂ /l)	

Determination of TC_v

The total annual fuel consumption of MRT trains is estimated considering their electricity consumption rate multiplied by their total annual trip distance as follows:

$$TC_{etv} = DD_v \cdot SEC_{etv}$$

 $SEC_{et,v}$

: Electricity consumption rate (kWh/km) DD_{v} : Total annual trip distance traveled by MRT trains (train km/y) For subway cars with electric power regeneration brake, a regeneration ratio is involved in their electrical consumption as follows:

$$TC_{\gamma} = DD_{\gamma} \times SEC_{rt,\gamma} \times (l - \beta \times \gamma)$$

: Ratio of electric power regeneration

β

γ

: Ratio of electrical power used for othare subway cars to total regenerateded power

4. Data Required for Estimation and Monitoring

				Data Acquisit	ion Methods	
Data Type		Description of Data	Baseline Emissions		Project Emissions	
	51	1	Before the	After Project	Before the	After Project
Passengers transport sy	of existing stems	Passengers of existing transport	Project Starts	Completion	Project Starts	Completion
(After : $P_{PJ,i,y}$)		systems that would be shared in the absence of the MRT project. The total number of passengers of existing transport systems is equal to the passengers of MRT trains	Planned values	Measured values	(Not necessary bec involved in the cal	
Total annua traveled by trains (Afte		Total annual trip distance traveled by MRT trains	(Not necessary because data are not		Planned values	Measured values
Electricity consumption rate of MRT trains $(SEC_{x,bs,s})$		Electricity consumption rate of MRT trains	(Not necessary because data are not involved in calculation)		Planned values	Measured values
CO ₂ emissions factor	($N_{x,i}$) Total number of existing vehicles in fuel type x, and vehicle category i, ($N_{x,i}$)	Total number of vehicles in a vehicle category and a fuel type	Measured values	Measured values	(Not necessary because data are no involved in the calculation)	
	Total number of existing vehicles in vehicle category $i, (N_{x,i})$	Total number of vehicles in a vehicle category	Measured values	Measured values	(Not necessary bed involved in the cal	
	Average trip distance driven by existing vehicles in vehicle category i,(<i>OD</i> _i)	Trip distance for each vehicle category before the project starts	Measured values	Measured values	(Not necessary because data are no involved in the calculation)	
	Average occupation rate of existing vehicles in vehicle category i, (OC _i)	Occupation rate of each vehicle category before the project starts	Measured values	Measured values	(Not necessary because data are n involved in the calculation)	

			Data Acquisition Methods			
D	ata Type	Description of Data	Baseline	Emissions	Baseline Emissions	
D	alla Type	Description of Dum	Before the	After Project	Before the	After Project
			Project Starts	Completion	Project Starts	Completion
	Specific fuel	Fuel consumption	It is best desirable			
	consumption of	rate per liter (km/L)	regional data and i			
	existing		x 5 ·	ilability of relevant		
	vehicles in fuel		data and informati			
	type x, vehicle		justified and used	e		
	category i,		order (see the table	,	(Not necessary be	
	$(SEC_{x,i})$		i) Specific data in		involved in the cal	lculation)
			-	h interviews with		
				gement authorities		
			ii) Published value	-		
CO_2			where the proje			
emissions			iii) Values based o			
factor	CO_2 emission	CO_2 emission	It is desirable to use national or regional data and information of the proje so the availability of relevant data and information should be justified and			
	factor of	factor of fuel per	-			be justified and
	fuel ($EFCO_{2,x}$	liter, such as gasoline, diesel		ing order (see the tab the project obtained		ata with the
	/	gasonne, uteser	· •	gement authorities	unough interviews,	etc. with the
				-	here the project exists	
			ii) Published values in the country where the project exists iii) Values based on IPCC database			
	Mixing ratio of	Mixing ratio of		se national or regiona	al data and informati	on of the projec
	e e		so the availability of relevant data and information should be justified and			
	bioluei	biofuel in gasoline,		ng order (see the tab		
		diesel	 Specific data in transport manage 	the project obtained ment authorities	through interviews,	etc. for the
			ii) Published value	es in the country whe	re the project exists	

5. Others	(1) Project boundary
	The project delineation for GHG estimations is defined by the outreach of the MRT project.
	(2) Leakage
	Considering the life cycle assessment (LCA) related to the passenger train project, the production and freight of raw
	materials needed for MRT facilities and trains, and the energy consumed during construction and manufacturing of
	raw materials are expected as leakages of GHG emissions. However, these are significantly small as compared with
	the GHG emissions reduction caused by the project. Hence, these are not counted as leakages in this estimation
	methodology. Looking at five CDM registered projects, only the Bagota Bus Rapid Transit (BRT) Project took
	account of leakage, while the other projects counted leakage as zero. For reference, the estimated leakages of the
	Bogota BRT Project are shown in the appended Table B-3 attached herewith. The total volume of leakages is 0.8% as
	compared with that of the GHG emissions reduction due to the BRT project.
	(3) Relevant methodologies and their differences with this estimation methodology
	ACM0016 : Baseline Methodology for Mass Rapid Transit Projects
	[Differences]
	• All mass rapid transit (MRT) systems including not only rail-based systems such as subways and light rail transit
	(LRT) but also bus systems such as BRT; however, only subway and elevated train systems are considered in this
	estimation methodology.
	• CH_4 and N_2O can be counted as GHG emissions other than CO_2 ; however, only CO_2 emission is counted in this
	estimation methodology.The effects of GHG emission reduction by the improvement of technology can be counted; however, these are not
	counted in this estimation methodology.
	 The effects of GHG emission reduction due to the improvement of technology can be counted; however, these are
	not counted in this estimation methodology. In particular, a technology improvement factor is assumed 0.99/year
	(or 1%/year) and the GHG emissions are expected to reduce by 1% per year with the technology improvement. In
	10th year, 0.99 to the 9th power equals 0.91, and so the baseline emissions from the existing transport systems
	becomes 0.91 times due to their technological improvement. Simply assuming annual GHG emissions is constant
	over 10 years, the difference between with and without the technology improvement factors is around 4%. Thus,
	the baseline GHG emissions over 10 years would reduce by 4% due to technology improvement, and so the
	effects of GHG emission reduction lessen by 4%, meaning it is on the safety side. In developing countries,
	however, it is reasonable to consider that old vehicles will be continuously used rather than acquiring brand-new
	vehicles. Because of this, the technological improvement factors are not considered in this estimation
	methodology.
	• Once the MRT system has been newly introduced, passengers must utilize the MRT stations that were not
	available before the project has started in order to reach their destinations. This results in producing additional
	GHG emissions. These indirect GHG emissions can be counted; however, these are not considered in this
	estimation methodology.
	• The reduction of traffic congestions after the project has started may reduce GHG emissions since vehicle
	operation will speed due to reduced traffic congestion. On the other hand, it may induce an increase in GHG
	emissions because of the increasing traffic caused by transport systems other than MRT trains. These are involved in AM0016 but not considered in this estimation methodology.
	 in AM0016 but not considered in this estimation methodology. CO₂ emission factors for passenger cars and taxies are a function of speed; however, these are not considered as a
	function of speed (constant for average speed) in this estimation methodology.
	 The changes in load factors of conventional buses and taxies after the MRT project has started are involved in its
	GHG emissions estimation; however, these factors are not considered in this estimation methodology.
	AMS-III-U : Cable Cars for Mass Rapid Transit Projects
	[Differences]
	• Cable car projects can be the target for GHG emissions estimation; however, the MRT project is the target in this

estimation methodology.

• CH ₄ and N ₂ 0 can be counted as GHG emissions other then CO ₂ ; however, only CO ₂ emissions are counted in this
estimation methodology.
• The effects of GHG emissions reduction due to technology improvements can be counted; however, these are not
counted in this estimation methodology.
· Once the cable car system has been introduced, passengers must utilize the cable car stations which were not
available before the project started in order to reach their destinations. This results in additional GHG emissions.
These indirect GHG emissions can be counted; however, these are not considered in this estimation methodology.

	5. Traffic and Transportation /Monorall, LRT
1.Typical Project	The project intends to reduce GHG emissions by realizing "modal shift" from existing transport systems (i.e., buses,
Outline 2.Applicability	 private cars, taxies and bikes) to a light or medium transport system such as monorail and LRT(Light Rail Transit). After the project completes, the light or medium transport system will have its own rail-based infrastructure (monorail or LRT) infrastructures connecting a city center and its suburbs and will provide rapid transportation for a large number of passengers. The current baseline transport system should be road based, such as buses, private cars, taxies and bikes. Hence,
	the current transport system does not involve railways, ships, or civil aviation.
	OThe motive power of monorail and LRT should be electricity.
3. Methodology on Emission Reduction	GHG emissions reduction due to monorail or LRT systems is calculated as the difference between the GHG emissions with the existing transport systems (baseline) and those after the success of the modal shift to monorail or LRT systems (project emission).
	$ER_y = BE_y - PE_y$ (t-CO ₂ /y)
	 ER_y : GHG emissions reduction due to project activity in year y (t-CO₂/y) BE_y : GHG emissions with existing transport systems in year y (t-CO₂/y) (Baseline emissions) PE_y : GHG emissions after the success of modal shift to monorail or LRT from the existing transport systems in year y (t-CO₂/y) (Project emissions)
	<i>BE_v</i> : Baseline emissions <i>PE_v</i> : Project emissions
	GHG SHG SHG SHG SHG SHG SHG SHG
	Emissions with existing transport systems in absence of a monorail system
	Monorail System
	GHG GHG CHG CHG CHG CHG CHG CHG
	Emissions with existing transport systems in absence of a LRT system LRT system

3. Methodology on Emission Reductions (Continuation)

In case the existing transport systems would share a similar number of passengers transported by the projected monorail or LRT, baseline emissions for various types of vehicles are estimated by multiplying their shared number of passengers with their CO₂ emission factors per passenger before the project starts.

$$BE_{y} = \sum_{i} \left(EF_{P,i,y} \times P_{PJ,i,j} \right)$$

Туре	Items	Description	
Output	BE _y	Baseline emissions :	
		GHG emissions in the absence of MRT (gr-CO ₂ /y)	
Input	$EF_{P,i,y}$	CO2 emission factor per passenger for vehicle category i (gr-CO2/passenger)	
	$P_{PJ,i,y}$	Annual number of passengers transported by vehicle category i after the project	
		has completed.	

Determination of EF_{P,i,v}

(1) Baseline emissions estimation

Involving parameters such as CO_2 emission factor per kilometer, average trip distance, and average occupation rate of vehicle before the project starts, the CO_2 emission factor per passenger for each vehicle category is estimated by the following formula:

$$EF_{P,i,y} = \frac{EF_{KM,i} \times TD_i}{OC_i}$$

 $EF_{KM,i}$: CO₂ emission factor per km for vehicle category i before the project starts (gr-CO₂/km)

 TD_i : Average daily trip distance driven by vehicle category i (km/vehicle)

 OC_i : Average daily occupancy rate for vehicle category i (person/vehicle)

 $EF_{KM,i}$ is calculated using the following formula:

$$EF_{KM,i} = \sum_{x} \left[\frac{(1 - \alpha_{x,i})}{SEC_{x,i}} \times EF_{CO2,x} \times \left(\frac{N_{x,i}}{N_i} \right) \right]$$

 $SEC_{x,i}$: Specific fuel consumption per vehicle category i (km/L)

 $EF_{CO2,x}$: CO₂ emission factor of fuel category x (gr-CO₂/l)

 $N_{x,i}$: Number of vehicle category i using fuel category x (vehicle)

 N_i : Number of vehicle category i (vehicle)

 $\alpha_{x,i}$: Mixing rate of biofuel (ex. = 0.1 for biodiesel 10% mixing fuel)

(2) Project emissions estimation

Project emissions are calculated by multiplying the total annual electricity consumption of monorail or LRT trains after the project has completed (planned value), with the CO_2 emission factor of electricity.

$$PE_y = TC_y \times EF_{CO_2,x}$$

Туре	Items	Description	
Output	PE _y	Project emissions:	
		GHG emissions of monorail or LRT trains after the project has	
		completed (t- CO_2/y)	
Input	TC_y	Total annual electricity consumption of monorail or LRT trains	
		after the project has completed (kWh/y)	
	$EF_{CO2,x}$	CO ₂ emission factor of fuel category x (gr-CO ₂ /l)	

Determination of TC_v The total annual electricity consumption of monorail or LRT trains is estimated considering their electricity consumption rate multiplied by their total annual trip distance as follows: $TC_{ety} = DD_y \cdot SEC_{et,y}$ $SEC_{et,y}$: Electricity consumption rate (kWh/km) DD_{v} : Total annual trip distance driven by MRT trains (train km/y)

4. Data Required	1
for Estimation	

and Monitoring

			Data Acquisition Methods			
D	ata Type	Description of Data	Baseline Emissions			Emissions
		_	Before the	After Project Completion	Before the	After Project
Passengers of existing transport systems (After : $P_{PJ,i,y}$)		Passengers of existing transport systems that would be shared in the absence of the monorail/LRT project. The total number of passengers of existing transport systems is equal to the passengers of monorail/LRT trains	Project Starts Planned values	Measured values	Project Starts Completion (Not necessary because data are not involved in the calculation)	
	l trip distance onorail or LRT r: <i>DD_v</i>)	Total annual trip distance driven by monorail/LRT trains	(Not necessary be involved in the cale	cause data are not culation)	Planned values	Measured values
Electricity consumption rate of monorail or LRT trains $(SEC_{x,bs,s})$		Electricity consumption rate of monorail/LRT trains	(Not necessary because data are not involved in calculation)		Planned values	Measured value
CO ₂ emissions factor	Total number of existing vehicles in fuel type x, and vehicle category $i, (N_{x,i})$	Total number of vehicles in a vehicle category and a fuel type	Measured values	Measured values	(Not necessary because data are r involved in the calculation)	
	Total number of existing vehicles in vehicle category $i, (N_{x,i})$	Total number of vehicles in a vehicle category	Measured values	Measured values	(Not necessary be involved in the ca	ecause data are no ilculation)
	Average trip distance driven by existing vehicles in vehicle category i,(<i>OD</i> _i)	Trip distance for each vehicle category before the project starts	Measured values	Measured values	(Not necessary be involved in the ca	ecause data are no alculation)
	Average occupation rate of existing vehicles in vehicle category i, (OC _i)	Occupation rate of each vehicle category before the project starts	Measured values	Measured values	(Not necessary because data are involved in the calculation)	

			Data Acquisition Methods					
Data Type		Description of Data	Baseline Emissions		Project Emissions			
D	ata Type	Description of Data	Before the	After Project	Before the	After Project		
	<u>.</u>		Project Starts	Completion	Project Starts	Completion		
CO ₂	Specific fuel consumption of existing vehicles in fuel type x, vehicle category i, (SEC _{x,i})	Fuel consumption rate per liter (km/L)	It is best desirable to use national or regional data and information of the project, so the availability of relevant data and information should be justified and used in the following order (see the tables hereinafter):		r e tt e g (Not necessary because data are not involved in the calculation)			
emissions facto	CO_2 emission factor of fuel (<i>EFCO</i> _{2.x})	CO ₂ emission factor of fuel per liter, such as gasoline, diesel	 It is desirable to use national or regional data and information of the priso the availability of relevant data and information should be justified used in the following order (see the tables hereinafter): i) Specific data in the project obtained through interviews, etc. with transport management authorities ii) Published values in the country where the project exists iii) Values based on IPCC database 					
	Mixing ratio of biofuel	Mixing ratio of biofuel in gasoline, diesel	 In yourdes observed on in ecc additional It is desirable to use national or regional data and information of the project so the availability of relevant data and information should be justified and used in the following order (see the tables hereinafter): i) Specific data in the project obtained through interviews, etc. for the transport management authorities ii) Published values in the country where the project exists 					

5. Others	(1) Project boundaryThe project delineation for GHG estimations is defined by the outreach of the monorail or LRT project.
	(2) Leakage Considering the life cycle assessment (LCA) related to the monorail or LRT project, the production and freight of raw materials needed for monorail or LRT trains, and the energy consumed during construction and manufacturing of raw materials are expected as leakages of GHG emissions. However, these are significantly small as compared with the GHG emissions reduction caused by the project. Hence, these are not counted as leakages in this estimation methodology. Looking at five CDM registered projects, only the Bagota Bus Rapid Transit (BRT) Project took account of leakage, while the other projects counted leakage as zero. For reference, the estimated leakages of the Bogota BRT Project are shown in the appended Table B-3 attached herewith. The total volume of leakages is 0.8% as compared with that of the GHG emissions reduction due to the BRT project.
	 (3) Relevant methodologies and their differences with this estimation methodology ACM0016 : Baseline Methodology for Mass Rapid Transit Projects
	 [Differences] All mass rapid transit (MRT) systems including not only rail-based systems such as subways and light rail transit (LRT) but also bus systems such as BRT; however, only monorail and LRT systems are considered in this estimation methodology.
	 CH₄ and N₂O can be counted as GHG emissions other than CO₂; however, only CO₂ emission is counted in this estimation methodology.
	• The effects of GHG emission reduction by the improvement of technology can be counted; however, these are not counted in this estimation methodology.
	• The effects of GHG emission reduction due to the improvement of technology can be counted; however, these are not counted in this estimation methodology. In particular, a technology improvement factor is assumed 0.99/year (or 1%/year) and the GHG emissions are expected to reduce by 1% per year with the technology improvement. In 10th year, 0.99 to the 9th power equals 0.91, and so the baseline emissions from the existing transport systems becomes 0.91 times due to their technological improvement. Simply assuming annual GHG emissions is constant over 10 years, the difference between with and without the technology improvement factors is around 4%. Thus, the baseline GHG emission reduction lessen by 4%, meaning it is on the safety side. In developing countries, however, it is reasonable to consider that old vehicles will be continuously used rather than acquiring brand-new vehicles. Because of this, the technological improvement factors are not considered in this estimation methodology.
	• Once the MRT system has been newly introduced, passengers must utilize the MRT stations that were not available before the project has started in order to reach their destinations. This results in producing additional GHG emissions. These indirect GHG emissions can be counted; however, these are not considered in this estimation methodology.
	 The reduction of traffic congestions after the project has started may reduce GHG emissions since vehicle operation will speed due to reduced traffic congestion. On the other hand, it may induce an increase in GHG emissions because of the increasing traffic caused by transport systems other than monorail or LRT trains. These are involved in AM0016 but not considered in this estimation methodology.
	 CO₂ emission factors for passenger cars and taxies are a function of speed; however, these are not considered as a function of speed (constant for average speed) in this estimation methodology. The changes in load factors of conventional buses and taxies after the MRT project has started are involved in its
	GHG emissions estimation; however, these factors are not considered in this estimation methodology.
	AMS-III-U : Cable Cars for Mass Rapid Transit Projects
	• Cable car projects can be the target for GHG emissions estimation; however, the passenger railway project is the

target in this estimation methodology.

• CH ₄ and N ₂ 0 can be counted as GHG emissions other then CO ₂ ; however, only CO ₂ emissions are counted in this
estimation methodology.
• The effects of GHG emissions reduction due to technology improvements can be counted; however, these are not
counted in this estimation methodology.
• Once the cable car system has been introduced, passengers must utilize the cable car stations which were not
available before the project started in order to reach their destinations. This results in additional GHG emissions.
These indirect GHG emissions can be counted; however, these are not considered in this estimation methodology.

			6. Irajjic and Iransportation /Bus (BRI, Irank Bus)					
1.Typical Project	1 5		G emissions by realizing "modal shift" from existing transport systems (i.e., buses,					
Outline	private cars, taxies and bikes) to Bus Rapid Transit (BRT) or trunk bus systems.							
2.Applicability	transport system OThe current base current transpor	ns, and will pro- line transport s t system does n	the BRT or trunk bus system will have its own bus lanes, separating it from other ovide rapid transportation for a large number of passengers. system should be road based (i.e., buses, private cars, taxies and bikes). Hence, the not involve railways, ships, or civil aviation. nould be through an internal combustion (engine), meaning not electricity.					
3.	GHG emissions red	luction due to B	RT or trunk bus systems is calculated as the difference between the GHG emissions					
Methodology on Emission		ransport system	is (baseline) and those after the success of the modal shift to BRT or trunk bus					
Reduction			$ER_{y} = BE_{y} - PE_{y}$ (t-CO ₂ /y)					
			, , , ,					
	$BE_y : GHG$ $PE_y : GHG e$	emissions with missions after	ction due to project activity in year y (t- CO_2/y) existing transport systems in year y (t- CO_2/y) (Baseline emissions) the success of modal shift to BRT or trunk bus systems from the existing transport CO_2/y) (Project emissions)					
	<i>BE_v</i> : Baseline	e emissions	PE , : Project emissions					
	GHG CHG CHG	5000 1000 1000 1000 1000	RTbuskare					
	transport	s with existing systems in the of BRT or trunk ms	Emissions with BRT or trunk bus systems					
		sions estimation	n ems would share a similar number of passengers transported by the projected BRT					
	baseline emissions	for various typ	es of vehicles are estimated by multiplying their shared number of passengers with senger before the project starts.					
			$BE_{y} = \sum_{i} \left(EF_{P,i,y} \times P_{PJ,i,j} \right)$					
	Туре	Items	Description					
	Output	BE _v	Baseline emissions :					
	Supu	y	GHG emissions in the absence of BRT (gr-CO ₂ /y)					
	Input	$EF_{P,i,y}$	CO ₂ emission factor per passenger for vehicle category i (gr-CO ₂ /passenger)					
		$P_{PJ,i,y}$	Annual number of passengers transported by vehicle category i after the project					
			completes					

3. Methodology
on Emission
ReductionsDetermination of $EF_{P,i,v}$
The CO2 emission factor per passenger for each vehicle category is estimated by the following formula, involving
variables such as CO2 emission factor per kilometer, average trip distance, and average occupation rate of vehicle
before the project starts:

$$EF_{P,i,y} = \frac{EF_{KM,i} \times TD_i}{OC}$$

 $EF_{KM,i}$: CO₂ emission factor per km for vehicle category i before the project starts (gr-CO₂/km)

 TD_i : Average daily trip distance driven by vehicle category i (km/vehicle)

 OC_i : Average daily occupancy rate for vehicle category i (person/vehicle)

 $EF_{KM,i}$ is calculated using the following formula:

$$EF_{KM,i} = \sum_{x} \left[\frac{(1 - \alpha_{x,i})}{SEC_{x,i}} \times EF_{CO2,x} \times \left(\frac{N_{x,i}}{N_i} \right) \right]$$

 $SEC_{x,i}$: Specific fuel consumption per vehicle category i (km/L)

 $EF_{CO2,x}$: CO₂ emission factor of fuel category x (gr-CO₂/L)

 $N_{x,i}$: Number of vehicle category i using fuel category x (vehicle)

 N_i : Number of vehicle category i (vehicle)

 $\alpha_{x,i}$: Mixing rate of biofuel (i.e., = 0.1 for biodiesel 10% mixing fuel)

(2) Project emissions estimation

Project emissions are calculated by multiplying the total annual fuel consumption of BRT or trunk buses after the project starts (planned value), with the CO₂ emission factor of fuel.

$$PE_{y} = TC_{y} \times EF_{CO_{2},x}$$

Туре	Item	Description
Output	PEy	Project emissions:
		GHG emissions of BRT or trunk buses after the project has
		completed $(t-CO_2/y)$
Input	TC_y	Total annual fuel consumption of BRT or trunk buses after the
		project has completed (L/y)
	$EF_{CO2,x}$	CO ₂ emission factor of fuel category x (gr-CO ₂ /L)

Determination of TC_y

The total annual fuel consumption of BRT buses is estimated considering their specific fuel consumption multiplied by their total annual trip distance. By involving a mixing rate of biofuel in fuel consumption, the formula is as follows:

$$TC_{y} = \frac{(1 - \alpha_{x,bs})DD_{y}}{SEC_{x,bs,y}}$$

 $SEC_{x,bs,y}$: Specific fuel consumtion (km/L)

$$DD_y$$
 : Total annual trip distance driven by BRT buses (vehicle km/y)

 $\alpha_{x,bs}$: Mixing ratio of biofuel

4. Data Required for Estimation and Monitoring

			Data Acquisition Methods			
D	ata Type	Description of Data	Baseline Emissions		Project Emissions	
		· ·····puon or Dum	Before the	After project	Before the	After project
			project starts	completion	project starts	completion
Passengers of existing transport systems (After : $P_{PJ,i,y}$)		Passengers of existing transport systems that would be shared in the absence of the BRT project. The total number of passengers of existing transport systems is equal to the passengers of BRT buses	Planned values	Measured values	(Not necessary because data are involved in the calculation)	
Total annual driven by B buses (Afte		Total annual trip distance driven by BRT buses	(Not necessary bea involved in the calo		Planned values	Measured value
Specific fuel consumption rate of BRT buses $(SEC_{x,bs,s})$		Specific fuel consumption of BRT buses	(Not necessary because data are not involved in calculation) Planned values Meas		Measured value	
CO ₂ emissions factor	Total number of existing vehicles in fuel type x, and vehicle category $i, (N_{x,i})$	Total number of vehicles in a vehicle category and a fuel type	Measured values	Measured values	(Not necessary because data are n involved in the calculation) (Not necessary because data are n involved in the calculation)	
	Total number of existing vehicles in vehicle category $i, (N_{x,i})$	Total number of vehicles in a vehicle category	Measured values	Measured values		
	Average trip distance driven by existing vehicles in vehicle category i,(<i>OD</i> _i)	Trip distance for each vehicle category before the project starts	Measured values	Measured values	(Not necessary be involved in the ca	
	Average occupation rate of existing vehicles in vehicle category i, (OC _i)	Occupation rate of each vehicle category before the project starts	Measured values	Measured values	(Not necessary because data are r involved in the calculation)	

				Data Acquisition Methods				
Data Type		Description of Data	Baseline H	Emissions	Project Emissions			
		Desemption of Data	Before the	After project	Before the	After project		
			project starts	completion	project starts	completion		
	Specific fuel consumption of existing vehicles in fuel type x, vehicle category i, (SEC _{x,i})	Fuel consumption rate per liter (km/L)	It is best desirable to use national or regional data and information of the project, so the availability of relevant data and information should be justified and used in the following order (see the tables hereinafter):					
CO ₂ emissions factor	CO ₂ emission factor of fuel (<i>EFCO_{2.x}</i>)	CO ₂ emission factor of fuel per liter, such as gasoline, diesel	so the availability used in the followin i) Specific data in transport manag	e national or region of relevant data and ng order (see the tab the project obtain ement authorities s in the country whe	hal data and information of the project ad information should be justified and bles hereinafter): ned through interviews, etc. with the ere the project exists			
	Mixing ratio of biofuel	Mixing ratio of biofuel in gasoline, diesel	so the availability of used in the followin i) Specific data in t transport manager	e national or regiona of relevant data and in og order (see the tab he project obtained to nent authorities s in the country whe	information should l les hereinafter): through interviews,	be justified and		

5. Others	(1) Project boundary
	The project delineation for GHG estimations is defined by the outreach of the BRT or trunk bus project.
	(2) Leakage
	Considering the life cycle assessment (LCA) related to the freight train project, the production and freight of raw
	materials needed for BRT or trunk buses, and the energy consumed during construction and manufacturing of raw
	materials are expected as leakages of GHG emissions. However, these are significantly small as compared with the
	GHG emissions reduction caused by the project. Hence, these are not counted as leakages in this estimation
	methodology. Looking at five CDM registered projects, only the Bagota Bus Rapid Transit (BRT) Project took
	account of leakage, while the other projects counted leakage as zero. For reference, the estimated leakages of the
	Bogota BRT Project are shown in the appended Table B-3 attached herewith. The total volume of leakages is 0.8%
	as compared with that of the GHG emissions reduction due to the BRT project.
	(3) Relevant methodologies and their differences with this estimation methodology
	AM0031 : Methodology for Bus Rapid Transit Projects
	[Differences]
	• CH ₄ and N ₂ O can be counted as GHG emission other then CO ₂ , while CO ₂ emission is only counted in this estimation methodology.
	• The effects of GHG emission reduction by technology improvements can be counted; however, these are not counted in this estimation methodology.
	• GHG emissions including construction for BRT bus lanes and related facilities such bus stations with platforms,
	production of new BRT buses, scrap of conventional buses, and GHG emission reductions by decreasing fuel
	finery volume, are considered as leakages; however, these leakages are not considered in this estimation
	methodology.
	• Reduction of traffic congestions after the project has started may cause GHG emission reductions from speeding
	up vehicle operation due to reduced traffic congestion. On the other hand, it may induce an increase in GHG
	emissions because of the increasing traffic caused by transport systems other than BRT buses. These are involved
	in AM0016 but not considered in this estimation methodology.
	• The changes in load factors of conventional buses and taxies after the BRT project starts is involved in its GHG
	emissions estimation; however, these factors are not considered in this estimation methodology.
	• Biofuels cannot be considered in GHG emissions estimation; thus these factors are not suitable in this estimation
	methodology.
	ACM0016 : Baseline Methodology for Mass Rapid Transit Projects
	[Differences]
	• All mass rapid transit (MRT) systems including not only rail-based systems such as subways and light rail transit
	(LRT) but also bus systems such as BRT; however, only BRT or trunk bus systems are considered in this
	estimation methodology.
	• CH ₄ and N ₂ O can be counted as GHG emissions other than CO ₂ ; however, only CO ₂ emission is counted in this
	estimation methodology.
	• The effects of GHG emission reduction by the improvement of technology can be counted; however, these are not
	counted in this estimation methodology.The effects of GHG emission reduction due to the improvement of technology can be counted; however, these are
	not counted in this estimation methodology. In particular, a technology improvement factor is assumed 0.99/year
	(or 1%/year) and the GHG emissions are expected to reduce by 1% per year with the technology improvement. In
	10th year, 0.99 to the 9th power equals 0.91, and so the baseline emissions from the existing transport systems
	becomes 0.91 times due to their technological improvement. Simply assuming annual GHG emissions is constant
	over 10 years, the difference between with and without the technology improvement factors is around 4%. Thus,
	the baseline GHG emissions over 10 years would reduce by 4% due to technology improvement, and so the
	effects of GHG emission reduction lessen by 4%, meaning it is on the safety side. In developing countries,

however, it is reasonable to consider that old vehicles will be continuously used rather than acquiring brand-new
vehicles. Because of this, the technological improvement factors are not considered in this estimation
methodology.
• Once the freight railway system has been newly introduced, freight must utilize the freight stations that were not
available before the project has started in order to reach their destinations. This results in producing additional
GHG emissions. These indirect GHG emissions can be counted; however, these are not considered in this
estimation methodology.
· The reduction of traffic congestions after the project has started may reduce GHG emissions since vehicle
operation will speed due to reduced traffic congestion. On the other hand, it may induce an increase in GHG
emissions because of the increasing traffic caused by transport systems other than BRT or trunk buses. These are
involved in AM0016 but not considered in this estimation methodology.
• CO ₂ emission factors for passenger cars and taxies are a function of speed; however, these are not considered as a
function of speed (constant for average speed) in this estimation methodology.
• The changes in load factors of conventional buses and taxies after the MRT project has started are involved in its
GHG emissions estimation; however, these factors are not considered in this estimation methodology.
AMS-III-U: Cable Cars for Mass Rapid Transit Projects
[Differences]
· Cable car projects can be the target for GHG emissions estimation; however, the freight railway project is the
target in this estimation methodology.
• CH_4 and N_20 can be counted as GHG emissions other then CO_2 ; however, only CO_2 emissions are counted in this
estimation methodology.
• The effects of GHG emissions reduction due to technology improvements can be counted; however, these are not
counted in this estimation methodology.
• Once the cable car system has been introduced, passengers must utilize the cable car stations, which were not
available before the project started in order to reach their destinations. This results in additional GHG emissions.
These indirect GHG emissions can be counted; however, these are not considered in this estimation methodology.
• Cable cars are powered by electricity; however, internal combustion is considered in this estimation methodology.

Traffic and Transportation / Annex Table

Annex Table B-1 Specific fuel consumption rates and CO2 emission factors per liter for various types of vehicles

Vehicle Type	Fuel economy	CO ₂ /km traveled	EF _{CO2, x}	
veniele Type	L/100 km	gCO ₂ /km	gCO ₂ /L	
New small gas/electric hybrid	4.2	100.1	2, 383	
Small gas auto, highway	7.3	175.1	2, 399	
Small gas auto, city	9.0	215.5	2,394	
Medium gas auto, highway	7.8	186.8	2, 395	
Medium gas auto, city	10.7	254.7	2,380	
Large gas automobile, highway	9.4	224.1	2,384	
Large gas automobile, city	13.1	311.3	2,376	
Medium Station wagon, highway	8.7	207.5	2, 385	
Med Station wagon, city	11.8	280.1	2,374	
Mini Van, highway	9.8	233. 5	2, 383	
Mini Van, city	13.1	311.3	2,376	
Large Van, highway	13.1	311.3	2,376	
Large Van, city	16.8	400.2	2, 382	
Mid size. Pick-up Trucks, highway	10.7	254.7	2,380	
Pick-up Trucks, city	13.8	329.6	2, 388	
Large Pick-up Trucks, highway	13.1	311.3	2,376	
Large Pick-up Trucks, cuty	15.7	373.5	2,379	
LPG automobile	11.2	266	2,375	
Diesel automobile	9.8	233	2,378	
Gasoline light truck	16.8	400	2, 381	
Gasoline heavy truck	39.2	924	2,357	
Diesel light truck	15.7	374	2, 382	
Diesel heavy truck	33.6	870	2, 589	
Light motorcycle	3. 9	93	2, 385	
Diesel bus	35.1	1034.6	2,948	

Sources : Miles per gallon for typical vehicles based on averages from US-EPA 2001 Guide.¹

GHG mission activity	Fuel type	Unit	Values
Combustion of fuels	Gasoline	gr-CO ₂ /L	2,320
	Diesel	gr-CO ₂ /L	2,580

Source: A List for Estimation Methodologies and Emissions Factors in Regulations for Estimation, Reporting, and Publication²

Vehicle category	CO ₂ emission
(Fuel type)	factor
	$(\text{gr-CO}_2/\text{L})$
Passenger car and taxi	2,313
(Gasoline)	
Bus	2,661
(Diesel)	

Source: AM0031

(Original source: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual³)

EPA: http://www.epa.gov/greenvehicles/Index.do

 ² Ministry of the Environment, Ministry of Economy, Trade and Industry : http://www.env.go.jp/earth/ghg-santeikohyo/material/itiran.pdf
 ³ IPCC : http://www.ipcc-nggip.iges.or.jp/public/gl/invs6.html

Vehicle category		Fuel type	Specific fuel	Fuel consumption
			consumption (L/km)	(km/L)
Commercial Normal		gasoline	0.19	5.26
use		diesel	0.25	4.00
	Compact	gasoline	0.12	8.33
		diesel	0.12	8.33
	Special-purpose	gasoline	0.11	9.09
		diesel	0.23	4.35
	Light motor	gasoline	0.09	11.11
		diesel	-	-
Personal use	Normal	gasoline	0.15	6.67
		diesel	0.19	5.26
	Compact	gasoline	0.11	9.09
		diesel	0.11	9.09
	Special-purpose	gasoline	0.13	7.69
		diesel	0.19	5.26
	Light motor	gasoline	0.09	11.11
		diesel	-	-

Annex Table B-2 Specific fuel consumption

Source: Year book of survey on motor vehicle transport, Ministry of Land, Infrastructure, Transport and Tourism, 2009⁴

Comparison between	leakage and CO ₂ emissions re-	duction effect in Bogota BRT project
		FJ

Year	Estimation of project activity emissions (tCO _{2eq})	Estimation of baseline emissions (tCO _{2eq})	Estimation of leakage (tCO _{2eq}) [A]	Estimation of emisson reductions (tCO _{2eq}) [B]	Ratio of leakage [A]/[B]
2006	56,179	154,569	3,823	94,567	4%
2007	79,391	216,246	2,845	134,011	2%
2008	135,685	365,885	0	230,201	0%
2009	182,336	486,767	0	304,432	0%
2010	182,336	481,900	845	298,719	0%
2011	208,634	545,890	521	336,735	0%
2012	208,634	540,431	4,521	327,276	1%
Total (tCO _{2eq})	1,053,194	2,791,689	12,555	1,725,940	1%

Source : BRT Bogotá, Colombia: TransMilenio Phase II to IV⁵

 ⁴ Ministry of Land, Infrastructure and Transport : http://www.mlit.go.jp/k-toukei/06/annual/06a0excel.html
 ⁵ UNFCCC CDM http://cdm.unfccc.int/Projects/projsearch.html