Brazil Santa Catarina State

# PREPARATORY SURVEY FOR THE PROJECT ON DISASTER PREVENTION AND MITIGATION MEASURES FOR THE ITAJAI RIVER BASIN

# FINAL REPORT

# VOLUME III : SUPPORTING REPORT

# NOVEMBER 2011 JAPAN INTERNATIONAL COOPERATION AGENCY

NIPPON KOEI CO., LTD



Brazil Santa Catarina State

# PREPARATORY SURVEY FOR THE PROJECT ON DISASTER PREVENTION AND MITIGATION MEASURES FOR THE ITAJAI RIVER BASIN

# FINAL REPORT

# VOLUME III : SUPPORTING REPORT

# NOVEMBER 2011 JAPAN INTERNATIONAL COOPERATION AGENCY

NIPPON KOEI CO., LTD

# FINAL REPORT

# **Composition of Reports**

| VOLUME I | EXECUTIVE SUMMARY |
|----------|-------------------|
| VOLUME I | EAECUITVE SUMMART |

## VOLUME II MAIN REPORT

Part I : Master Plan Study

Part II : Feasibility Study

| VOLUME III | SUPPORTING REPORT |                                         |  |
|------------|-------------------|-----------------------------------------|--|
|            | (A)               | Hydrology                               |  |
|            | (B)               | Flood Mitigation Plan                   |  |
|            | (C)               | Natural Condition and Landslide         |  |
|            |                   | Management Plan                         |  |
|            | (D)               | Flood Forecasting and Warning System    |  |
|            | (E)               | Water Storage in Paddy Fields           |  |
|            | (F)               | Environmental and Social Considerations |  |
|            | (G)               | Structural Design and Cost Estimate     |  |
|            | (H)               | Economic Evaluation                     |  |
| VOLUME IV  | DATA              | A BOOK CD                               |  |

EXCHANGE RATE

| The exchange rate used in this Study is:                                                   |                                                                     |  |  |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| Master Plan (2010/10)Brazilian Real (R\$1.0 )=US Dollar (US\$0.58 ) = Japanese Yen(Y47.87) |                                                                     |  |  |
| Feasibility Study(2011/06)                                                                 | Brazilian Real (R\$1.0)=US Dollar (US\$0.63) = Japanese Yen(Y50.71) |  |  |

# Supporting Report

- (A) Hydrology
- (B) Flood Mitigation Plan
- (C) Natural Condition and Landsliding Management Plan
- (D) Flood Forecasting and Warning System
- (E) Water Storage in Paddy fields
- (F) Environmental and Social Considerations
- (G) Structural Design and Cost Estimate

# Supporting Report (A) Hydrology

#### PREPARATORY SURVEY FOR THE PROJECT ON DISASTER PREVENTION AND MITIGATION MEASURES FOR THE ITAJAI RIVER BASIN

#### FINAL REPORT

## VOLUME III : SUPPORTING REPORT ANNEX A : HYDROLOGY

## Table of Contents

|           |                                                                         | Page |
|-----------|-------------------------------------------------------------------------|------|
| CHAPTER 1 | INTRODUCTION                                                            | A-1  |
| CHAPTER 2 | ITAJAÍ RIVER                                                            | A-2  |
| CHAPTER 3 | METEOROLOGY AND CLIMATOLOGY                                             | А-б  |
| 3.1       | Temperatures                                                            | A-6  |
| 3.2       | Monthly Rainfall                                                        | A-7  |
| 3.3       | Monthly Mean of Rainy Days                                              | A-8  |
| 3.4       | Maximum Rainfall in 24 hours                                            | A-9  |
| 3.5       | Relative Humidity                                                       | A-10 |
| 3.6       | Evaporation - Class A Pan                                               | A-11 |
| 3.7       | Insolation                                                              | A-12 |
| 3.8       | Annual Mean of Rainfall                                                 | A-13 |
| CHAPTER 4 | HYDROLOGY                                                               | A-15 |
| 4.1       | Monthly Mean of Discharge                                               | A-15 |
| 4.2       | Sediments                                                               | A-18 |
| 4.3       | Flood Rainfall                                                          | A-22 |
| 4.4       | Maximum Annual Discharge                                                | A-24 |
| 4.5       | Flood Frequency Analysis for Sul Dam Heightening                        | A-28 |
| 4.6       | Flood Frequency Analysis for Oeste Dam Heightening                      | A-29 |
| 4.7       | Recurrence Interval from July, 1983 and August, 1984 Floods in Blumenau | A-31 |
| CHAPTER 5 | TIDE LEVELS                                                             | A-34 |
| CHAPTER 6 | ITAJAÍ RIVER FLOOD AND INUNDATION FEATURES                              | A-35 |
| 6.1       | Main Floods Records                                                     | A-35 |
| 6.2       | Scale of Major Flood                                                    | A-38 |
| 6.2.1     | Return Period of the Rain that Caused the Major Flood events            | A-38 |
| 6.2.2     | Return Period of the 2008 Flood Event                                   | A-39 |
| 6.3       | Main Flood Events Features                                              | A-41 |
| 6.3.1     | 1983 Flood Event                                                        | A-41 |
| 6.3.2     | 1984 Flood Event                                                        | A-43 |
| 6.3.3     | 2008 Flood Event                                                        | A-45 |

| 6.3.4     | 2010 Flood Event                                             |
|-----------|--------------------------------------------------------------|
| CHAPTER 7 | FLOOD OUTFLOW ANALYSIS                                       |
| 7.1       | Synthesis                                                    |
| 7.2       | Rainfall Design Rainfall Analysis                            |
| 7.2.1     | Duration Time                                                |
| 7.2.2     | Mean of Rainfall Calculation on the Basin                    |
| 7.2.3     | Rainfall Design Determination                                |
| 7.3       | Choice of the Flood Design                                   |
| 7.4       | Analysis and Calibration Model                               |
| 7.4.1     | Division of the BasinA-59                                    |
| 7.4.2     | Analysis Methodoly                                           |
| 7.4.3     | Results of the Constant Calibration of the Model             |
| 7.5       | Design Discharge Resolution                                  |
| 7.5.1     | Extending (extrapolating) Rainfall                           |
| 7.5.2     | Calculation MethodologyA-77                                  |
| 7.5.3     | Calculation Results                                          |
| 7.5.4     | Design Discharge Estimate Results for Each Return PeriodA-79 |
| 7.5.5     | Flood Contention Dam Discharge AdjustmentsA-82               |
| 7.5.6     | Oeste Dam Gate                                               |

# Tables

## Page

| Table 2.1.1 | Drainage Areas                                                          | A-2  |
|-------------|-------------------------------------------------------------------------|------|
| Table 2.1.2 | Main Itajaí Basin Rivers Length                                         | A-3  |
| Table 3.1.1 | Means of monthly and annual temperatures (°C)                           | A-6  |
| Table 3.2.1 | Mean of Annual and Monthly Rainfall (mm)                                | A-7  |
| Table 3.3.1 | Mean of Monthly and Annual Rainfall Days                                | A-8  |
| Table 3.4.1 | Maximum Rainfall (mm) in 24 hours and Occurrence Time                   | A-9  |
| Table 3.5.1 | Relative Humidity Monthly and Annual                                    | A-10 |
| Table 3.6.1 | Mean Monthly and Annual Class A Pan Evaporation                         | A-11 |
| Table 3.7.1 | Mean of Monthly and Annual Insolation (hours)                           | A-12 |
| Table 3.8.1 | Annual Mean of Rainfall (mm) – 1980 to 2009                             | A-13 |
| Table 4.2.1 | Suspended and Total Solid Discharge                                     | A-22 |
| Table 4.3.1 | Flood Rainfall                                                          | A-23 |
| Table 4.4.1 | Maximum Annual Mean of Daily Discharge (m <sup>3</sup> /s)              | A-24 |
| Table 4.5.1 | Maximum Discharges for Sul Dam - Itajaí do Sul River                    | A-29 |
| Table 4.6.1 | Maximum Discharge in the Oeste Dam – Itajaí do Oeste River              | A-31 |
| Table 4.7.1 | Itajaí Maximum Discharge (m <sup>3</sup> /s) in Indaial City (83690000) | A-32 |
| Table 4.7.2 | Itajaí River Maximum Discharges (m³/s) in Indaial (83690000)            | A-33 |
| Table 6.1.2 | Main Damage Occurrences Caused by Flood                                 | A-37 |

| Table 6.2.1  | Main Flood Events Return Period                                                                                                                      | A-38 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 6.2.2  | Return Period of 4 Consecutive Intense Rainfall Days and<br>Observed Rainfall (November 21th to 24th) From Each Sub-basin<br>in the 2008 Flood Event | A-39 |
| Table 6.2.3  | Return Periods of the Intense Rainfall from 1 to 4 days in<br>Blumenau and Observed Values in the 2008 Flood Event                                   | A-40 |
| Table 6.3.1  | Daily Rainfall Record in July 1983 Flood Event                                                                                                       | A-41 |
| Table 6.3.2  | Daily Rainfall in the 2008 Flood Event                                                                                                               | A-45 |
| Table 6.3.3  | Data Source and Organization Manners                                                                                                                 | A-48 |
| Table 7.2.1  | Results of the Rainfall Design Calculation for the Whole Itajaí<br>River Basin                                                                       | A-56 |
| Table 7.2.2  | Mean of Rainfall for Each Sub-basin of the Tributaries (1950 – 2009)                                                                                 | A-57 |
| Table 7.2.3  | Itajaí River Rainfall Design and its Tributaries                                                                                                     | A-58 |
| Table 7.3.1  | Flood for the purpose of the Survey                                                                                                                  | A-58 |
| Table 7.4.1  | Main Tributaries and Discharge Calculation Place Which Were<br>Considered in the Basin Division                                                      | A-59 |
| Table 7.4.10 | Results of the Constant Calibration of the Basin Model (April 23th to 26th, 2010)                                                                    | A-70 |
| Table 7.4.2  | Initial Loss Ia                                                                                                                                      | A-61 |
| Table 7.4.3  | Soils group SCS and Infiltration Rate (loss) (SCS, 1986; Skaggs and Khaleel, 1982)                                                                   | A-62 |
| Table 7.4.4  | Proposed Value for the Constant of Regression k                                                                                                      | A-64 |
| Table 7.4.5  | Input Data in Muskingum Cunge Method                                                                                                                 | A-65 |
| Table 7.4.6  | H-Q e H-V Curve Equation                                                                                                                             | A-66 |
| Table 7.4.7  | Initial Value from the Constant Model of the Basin (before calibration)                                                                              | A-69 |
| Table 7.4.8  | Results of the Constant Calibration of the Basin Model (1984 Flood<br>Event)                                                                         | A-69 |
| Table 7.4.9  | Results of the Constant Calibration of the Basin Model (April, 21th to 24th, 2010)                                                                   | A-70 |
| Table 7.5.1  | Largest Discharge Peak Time from each City, by Return Period                                                                                         | A-80 |
| Table 7.5.2  | Influx and Discharge of each Dam per Return Period                                                                                                   | A-82 |
|              | Figures                                                                                                                                              |      |

# Page

| Figure 2.1.1 | Itajaí River Basin map including drainage areas                                      | A-4  |
|--------------|--------------------------------------------------------------------------------------|------|
| Figure 2.1.2 | Rivers of Itajaí River Basin longitudinal profile and distances from the main rivers | A-4  |
| Figure 3.1.1 | Monthly mean of temperatures (°C)                                                    | A-7  |
| Figure 3.2.1 | Monthly Mean of Rainfall                                                             | A-8  |
| Figure 3.3.1 | Monthly mean of rainy days                                                           | A-9  |
| Figure 3.4.1 | Maximum rainfall in 24 hours                                                         | A-10 |
| Figure 3.5.1 | Relative Humidity (°C) Monthly                                                       | A-11 |
| Figure 3.6.1 | Monthly mean evaporation of the A Pan                                                | A-12 |

| Figure 3.7.1 | Monthly and Annual Mean of Insolation (Hours)                                                                                                | A-13 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 3.8.1 | Annual mean of precipitation in the Itajaí River Basin                                                                                       | A-14 |
| Figure 4.1.1 | Monthly mean of discharge in the Itajaí do Sul River which is located in Ituporanga (83250000)                                               | A-15 |
| Figure 4.1.2 | Monthly mean of discharge in the Itajaí do Oeste River which is located in Taió (83050000)                                                   | A-15 |
| Figure 4.1.3 | Monthly mean of discharge in the Itajaí do Norte River located in Ibirama (83440000)                                                         | A-16 |
| Figure 4.1.4 | Monthly mean of discharge in the Itajaí which is located in Rio do Sul (83690000)                                                            | A-16 |
| Figure 4.1.5 | Monthly mean of discharge in the Itajaí River which is located in<br>Ituporanga Vazões Médias Mensais do Rio Itajaí em Indaial<br>(83690000) | A-16 |
| Figure 4.1.6 | Monthly mean of discharge in the Benedito River which is located in Timbó Novo (83677000)                                                    | A-17 |
| Figure 4.1.7 | Monthly mean of discharge in the Benedito River which is located in Timbó (83680000)                                                         | A-17 |
| Figure 4.1.8 | Monthly mean of discharge in the Itajaí-Mirim River which is located in Brusque (83900000)                                                   | A-17 |
| Figure 4.2.1 | Suspended sediments rating curve (t/day) on Itajaí do Sul River which is located Ituporanga (83250000)                                       | A-18 |
| Figure 4.2.2 | Suspended sediments rating curve (t/day) on Rio do Oeste River which is located in Taió (83050000)                                           | A-19 |
| Figure 4.2.3 | Suspended sediments rating curve (t/day) on Itajaí River which is located in Rio do Sul Novo (83300200)                                      | A-19 |
| Figure 4.2.4 | Suspended sediments rating curve (t/day) on Rio do Oeste River which is located in Ibirama (83440000)                                        | A-20 |
| Figure 4.2.5 | Suspended sediments rating curve (t/day) on Itajaí River which is located in Indaial                                                         | A-20 |
| Figure 4.2.6 | Suspended sediment rating curve (t/day) on Benedito River which is located in Timbó Novo (83677000)                                          | A-21 |
| Figure 4.2.7 | Suspended sediment rating curve (t/dia) on Itajaí-Mirim River whih is located in Brusque (83900000)                                          | A-21 |
| Figure 4.3.1 | Rainfall (occurred in July, 1983) for 1, 4 and 7 days duration in the Itajaí-Açu River Basin                                                 | A-22 |
| Figure 4.3.2 | Rainfall (occurred in August, 1984) for 1 and 3 days duration in the Itajaí River Basin                                                      | A-23 |
| Figure 4.3.3 | Rainfall (occurred in August, 1984) for 1 and 3 days duration in the Itajaí-Açu River Basin                                                  | A-23 |
| Figure 4.4.1 | Itajaí do Sul River daily mean of the annual maximum discharge in Ituporanga                                                                 | A-26 |
| Figure 4.4.2 | Itajaí do Oeste River daily mean of the annual maximum discharge in Taió                                                                     | A-26 |
| Figure 4.4.3 | Itajaí do Norte River daily mean of the annual maximum discharge in Ibirama                                                                  | A-27 |
| Figure 4.4.4 | Itajaí River daily mean of the annual maximum discharge in Indaial                                                                           | A-27 |
| Figure 4.4.5 | Itajaí-Mirim River daily mean of the annual maximum discharge in                                                                             |      |
|              |                                                                                                                                              |      |

|               | Brusque                                                                                                          | A-28 |
|---------------|------------------------------------------------------------------------------------------------------------------|------|
| Figure 4.5.1  | Maximum Flood in Ituporanga (83250000) in Rio do Sul                                                             | A-29 |
| Figure 4.6.1  | Maximum Flood in Taió (83050000) in Rio do Oeste                                                                 | A-30 |
| Figure 4.7.1  | Itajaí River Maximum flood in Indaial (83690000)                                                                 | A-32 |
| Figure 5.1.1  | Tide level in Itajaí Port                                                                                        | A-34 |
| Figure 6.3.1  | Rainfall and discharge Curve in the 1983 Flood event                                                             | A-43 |
| Figure 6.3.10 | 2010 Flood Discharges                                                                                            | A-51 |
| Figure 6.3.11 | Operational situation of both Oeste and Sul dams in the 2010 Flood event                                         | A-52 |
| Figure 6.3.2  | Rainfall total distribution in the 1984 Flood event                                                              | A-43 |
| Figure 6.3.3  | Hourly rainfall distribution in the 1984 Flood event                                                             | A-44 |
| Figure 6.3.4  | Discharge records in each station on the 1984 Flood event                                                        | A-44 |
| Figure 6.3.5  | Hourly rainfall distribuction by each station in 2008 Flood event                                                | A-46 |
| Figure 6.3.6  | Rainfall Level records on the 2008 Flood event                                                                   | A-47 |
| Figure 6.3.7  | Outflow calculation results in 2008 Flood event (1/2)                                                            | A-47 |
| Figure 6.3.7  | Outflow calculation results in 2008 Flood event (2/2)                                                            | A-48 |
| Figure 6.3.8  | Mean of hourly rainfall in the 2010 Flood event (mid-valley)                                                     | A-50 |
| Figure 7.1.1  | Flood discharge calculation flowchart                                                                            | A-53 |
| Figure 7.2.1  | Total rainfall of the frequency distribution duration bigger than 50mm                                           | A-54 |
| Figure 7.2.2  | Total rainfall of the frequency distribution duration bigger than 100 mm                                         | A-54 |
| Figure 7.2.3  | Maximum daily rainfall of each year in the whole Itajaí River Basin (1950 - 2009)                                | A-55 |
| Figure 7.2.4  | Mean of Rainfall in the main tributaries rivers of the basin (1950-2009)                                         | A-56 |
| Figure 7.4.1  | Itajaí River Basin division (outflow analysis model)                                                             | A-60 |
| Figure 7.4.10 | Results of the 2010 Flood event calibration (3/3)                                                                | A-76 |
| Figure 7.4.2  | Compared discharge from the 1984 Flood event (Ibirama e Timbó)                                                   | A-64 |
| Figure 7.4.3  | Modeling of the channel form                                                                                     | A-65 |
| Figure 7.4.4  | Dam operation during the 1984 Flood event (the discharge volume was estimated based in the H-Q elaborated curve) | A-67 |
| Figure 7.4.6  | Results of the 1984 Flood event calibration (2/3)                                                                | A-72 |
| Figure 7.4.7  | Results of the 1984 Flood event calibration (3/3)                                                                | A-73 |
| Figure 7.4.8  | Results of the 2010 Flood event calibration (1/3)                                                                | A-74 |
| Figure 7.4.9  | Results of the 2010 Flood event calibration (2/3)                                                                | A-75 |
| Figure 7.5.1  | Extension of the rainfall standards                                                                              | A-77 |
| Figure 7.5.2  | Probable flood discharge in each main city for their respective floods                                           | A-78 |
| Figure 7.5.3  | Flood discharge from each reference place                                                                        | A-79 |
| Figura 7.5.4  | Design Flood Hydrograph for each reference place (1/2)                                                           | A-80 |
| Figure 7.5.4  | Design Flood Hydrograph for each reference place (2/3)                                                           | A-81 |
| Figure 7.5.4  | Design Flood Hydrograph for each reference place (3/3)                                                           | A-82 |

| Figure 7.5.5 | Inflow, discharge, flood peak by Return Period, from the three dams<br>and reservoir water level                              | A-83 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 7.5.5 | Results of the 1984 Flood event calibration (1/3)                                                                             | A-71 |
| Figure 7.5.6 | Norte dam: discharge and inflow hydrograph for each Return<br>Period and water level hydrograph and reservoir capacity        | A-84 |
| Figure 7.5.7 | Oeste Dam: discharge and affluence hydrograph for each Return<br>Period and water level hydrograph and reservoir capacity     | A-85 |
| Figure 7.5.8 | Sul Dam: Discharge and inflow hydrograph (for each Return Period), water level hydrograph and reservoir capacity              | A-86 |
| Figure 7.5.9 | Variation of the maximum level contention when the Oeste dam is<br>used and relation between the flood discharge in Taió City | A-87 |

# CHAPTER 1 INTRODUCTION

The main purposes of the hydrological studies for the "Preparatory Survey for the Project on the Disaster Prevention and Mitigation Measures for Itajaí River Basin" are the high intensitive rainfall and flood discharges. However, in order to comprehend better these phenomena in the watershed it is necessary to take into account its physiographic, meteorological, climatological and hydrological characteristics.

# CHAPTER 2 ITAJAÍ RIVER

The Itajaí-Açu River, or simply Itajaí River how it is usually called, is a brazilian river located in the South region, on the Santa Catarina State and its basin is located in the Atlantic Forest area, running from west to east direction, until it achieves the Atlantic Ocean. The size of the basin is medium and the total drainage area is about 14.933 km<sup>2</sup>.

The river becomes to be called Itajaí from the municipality of Rio do Sul, by the confluence between Itajaí do Sul River and Itajaí do Oeste River. The major tributaries by the left bank are the Itajaí do Norte River or Hercílio (on the boundary of Lontras and Ibirama), the Benedito River (and its tributary the Cedros River, in Indaial), and the Luís Alves (in Ilhota). Itajaí River receives water from its main tributary by the right bank, the Itajaí-Mirim River in Itajaí city, 8 kilometers before its river mouth on the Atlantic Ocean. The Itajaí River, therefore is composed by six large sub-basins of tributaries rivers and also the incremental area between these sub-basins, as showed in the Figure 2.1.1.

The basin territory is divided in three big natural compartments due to its geological and geomorphological characteristics – the upper valley, the mid-valley and the low valley. The upper valley includes the entire drainage area by the upstream and the confluence between the rivers Itajaí do Norte (Hercílio) and Itajaí. On this area is also located the headborders of the Itajaí-Mirim river. The mid-valley includes the area between the mencioned confluence and the Blumenau City; from this place the low valley starts and it is influenced by the tide conditions because of its low slope in this strecht.

The drainage areas of major rivers and main fluviometric stations are presented on the Table 2.1.1.

| Table 2.1.1 Drainage Areas                |                                                        |                                               |          |  |
|-------------------------------------------|--------------------------------------------------------|-----------------------------------------------|----------|--|
| Area de Drenagem das Subbacias            |                                                        |                                               |          |  |
| Area (km²)                                |                                                        |                                               |          |  |
| SUBBACIA                                  | SUBBACIA Area (km <sup>2</sup> ) Estação Fluviométrica |                                               |          |  |
| RIO ITAJAÍ DO NORTE OU                    | 3 353 98                                               | Barragem Norte                                | 2.330,5  |  |
| HERCÍLIO                                  | 0.000,00                                               | Ibirama                                       | 3.335,4  |  |
|                                           |                                                        | Barragem Oeste                                | 851,2    |  |
| RIO ITAJAÍ DO OESTE                       | 3.014,37                                               | Rio Trombudo                                  | 590,9    |  |
|                                           |                                                        | Taio                                          | 1.569,9  |  |
| RIO ITA JAÍ DO SUI                        | 2 026 87                                               | Barragem Sul                                  | 1.165,4  |  |
| 110 11/10/11 20 002                       | 21020101                                               | Ituporanga                                    | 1.645,3  |  |
|                                           |                                                        | Rio Benedito                                  | 830,9    |  |
|                                           |                                                        | Rio dos Cedros                                | 600,3    |  |
| RIO BENEDITO                              | 1.500,30                                               | Barragem Pinhal                               | 179,9    |  |
|                                           |                                                        | Barragem Rio Bonito                           | 119,8    |  |
|                                           |                                                        | Timbo Novo                                    | 1.431,3  |  |
| LUIS ALVES                                | 580,01                                                 | Luis Alves                                    | 157,3    |  |
|                                           | 1 679 96                                               | Brusque                                       | 1.206,6  |  |
|                                           | 1.070,00                                               | Canal Junction                                | 1.540,3  |  |
|                                           |                                                        | Rio do Sul Novo                               | 5.041,6  |  |
|                                           |                                                        | Apiuna Nova                                   | 9.288,8  |  |
|                                           |                                                        | Indaial                                       | 11.276,4 |  |
|                                           |                                                        | Ribeirão da Velha                             | 56,6     |  |
|                                           |                                                        | Blumenau                                      | 11.922,7 |  |
| RIO ITAJAÍ AÇÚ<br>(Entre confluências)    |                                                        | Rio Garcia                                    | 158,3    |  |
| (Entre connuencias)                       |                                                        | Gaspar                                        | 12.271,9 |  |
|                                           |                                                        | llhota                                        | 12.498,6 |  |
|                                           |                                                        | Após a confluência com<br>o Rio de Luís Alves | 13.093,8 |  |
|                                           |                                                        | Após a confluência com<br>o Rio Itajaí-Mirim  | 14.914,8 |  |
|                                           |                                                        | Desembocadura                                 | 14.933,2 |  |
| Total área de captação<br>da Bacia Itajaí | 14.933,23                                              |                                               |          |  |

## \_\_\_\_

Source: JICA Survey Team

The major part of the Itajaí basin area is composed by forest and large extension of grazing pasture. The population is concentrated nearby the river banks. On this place there are big cities where the density is around 100 thousand to 300 thousand people, such as Itajaí (in the river mouth), Blumenau (70 km from the river mouth) and Rio do Sul (191 km from the river mouth).

In relation to the fluviometric channel, the Itajaí River has a riverbed slope between 1/15.000 and 1/20.000, from the river mouth until Blumenau City. So, it is a very flat stretch. The altitude of the riverbed in Blumenau is lower than the mean of the sea level. The intermediate river stretch, by the Blumenau upstream to the Lontras City (around 170 km from the mouth), has a very steep slope between 1/100 and 1/1.500. And the Rio do Sul and Lontras stretch slope is reasonably flat with a slope of 1/3.000.

The river width is from 200 to 300 meters in the lower valley stretch; between 150 to 200 meters near to Blumenau; between 100 to 150 meters in Rio do Sul. And as it moves upstream, it becomes increasingly narrow.

Currently, in the Itajaí River there are no dykes ou remarkable rectified channel, except partial interventions, such as the concrete cribs from the port complex and the Itajaí Mirim River rectified channel. The Itajaí River channel keeps almost all of its natural shape.

The length of the main thalwegs are presented in the Table 2.1.2.

| Comp                               | rimen        | to de Dren<br>Distancia (                | agem dos Rios<br>(km)                          |                   |
|------------------------------------|--------------|------------------------------------------|------------------------------------------------|-------------------|
| RIO                                | Cor          | nprimento<br>icipal (km)                 | Ponto de coleta de<br>dados                    | Distancia<br>(km) |
| RIO ITAJAI DO NORTE OU             |              | 150.00                                   | Barragem Norte                                 | 46,22             |
| HERCILIO                           |              | 150,28                                   | Ibirama                                        | 4,04              |
| DID ITA IAI DO OFSTE               |              | 120.00                                   | Barragem Oeste                                 | 77,58             |
| RIO TIAJAI DO DESTE                | 1.1          | 120,20                                   | Taio                                           | 68,15             |
| PIO ITA IAI DO SUI                 |              | 110.62                                   | Barragem Sul                                   | 43,81             |
| NO TRASE DO SUL                    | 127          | 110,05                                   | Ituporanga                                     | 25,46             |
| RIO BENEDITO                       | · · · · · ·  | 84,21                                    | Timbo Novo                                     | 10,25             |
| LUIS ALVES                         | Com<br>Canal | 61,12                                    | Luis Alves                                     | 40,30             |
|                                    | Rio          | 73,95                                    | Luis Alves                                     | 53,14             |
|                                    | Com          | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | Brusque                                        | 37,72             |
| RIO ITAJAI-MIRIM                   | Canal        | 169,49                                   | Até a confluência com o<br>canal Junction      | 8,44              |
|                                    |              |                                          | Brusque                                        | 49,57             |
|                                    | Rio          | 181,33                                   | Até a confluencia com o<br>canal Junction      | 20,28             |
| -                                  |              | 2 7                                      | Até a confluência com o<br>Rio Itajal do Oeste | 190,51            |
|                                    |              |                                          | Rio do Sul Novo                                | 189,94            |
|                                    |              |                                          | Até a confluência com o<br>Rio Itajai do Norte | 151,07            |
|                                    |              |                                          | Apiuna Nova                                    | 130,96            |
|                                    |              |                                          | Warnow                                         | 106,55            |
|                                    |              |                                          | Até a confluência com o<br>Rio Benedito        | 97,59             |
| DIGUTA (ALLON)                     |              | 100 54                                   | Indatal                                        | 97,50             |
| RIO TIAJAI AÇU                     |              | 190,01                                   | Ribeirão da Velha                              | 20,18             |
|                                    |              |                                          | Blumenau                                       | 69,04             |
|                                    |              | Rio Garcia                               |                                                | 42,10             |
|                                    |              |                                          | Até Gaspar                                     | 52,07             |
|                                    |              |                                          | Até lihota                                     | 36,63             |
|                                    |              |                                          | Até a confluência com o<br>Rio de Luis Alves   | 31,31             |
|                                    |              |                                          | Até a confluência com o<br>Rio Itajai-Mírim    | 7,21              |
| Total comprimento do<br>Rio Italal |              | 301,14                                   |                                                | -                 |

Table 2.1.2 Main Itajaí Basin Rivers Length

Source: JICA Survey Team

The Figure 2.1.1 presentes the Itajaí River Basin map. In the Figure 2.2 the longitudinal profile of the main rivers form the basin is presented.



Source: JICA Survey Team (Based on data from IBGE, EPAGRI, CIRAM, ANA)





Source: JICA Survey Team (Based on data from IBGE, EPAGRI, CIRAM, ANA)

Figure 2.1.2 Rivers of Itajaí River Basin longitudinal profile and distances from the main rivers

Blumenau, located in the Itajaí River basin, is one of the cities which are suffering with the often floods. The representative Flood events that occurred recently were: July, 1983; August, 1984 and November, 2008. The largests flood disasters happened in the lower valley (Itajaí, Gaspar and Blumenau). In the upper valley (Rio do Sul) and in certain small and average size cities in the tributaries rivers bank floods are becoming more frequent. In Indaial city and in the mid-valley, where the slope is steep, the disasters were smaller.

The Santa Catarina State has implemented some protection measures against flood through the exclusive flood contention dam buildings; such as the Oeste and Sul dams, in the 70's and the Norte dam in the 90's. There are no significative flood contention infrastructure and no large structural measures, except those dams mentioned before. However, the Civil Defenses from the main cities, as Blumenau, had firmed a cooperation agreement with FURB and CIRAM and implemented the prevention system and warning due to mitigate disasters.

# CHAPTER 3 METEOROLOGY AND CLIMATOLOGY

The Itajaí River Basin climate, according to the Köppen climate classification, belongs to the category 'Cfa' humid temperate with hot summers. For the climate classification and characterization of the climate variables were used provided data from the Itajaí River basin stations by EPAGRI-CIRAM. The used data came from the following stations: Rio do Campo Meteorological Station – 639 (from June 1<sup>st</sup>, 1994 to July 31<sup>th</sup>, 2010), Ituporanga Meteorological Station – 191 (from October 1<sup>st</sup>, 1985 to July 31<sup>th</sup>, 2010), Indaial Meteorological Station – 167 (from December 1<sup>st</sup>, 1970 to July 31<sup>th</sup>, 2010) and Itajaí Meteorological Station – 83 (from August 4<sup>th</sup>, 1980 to July 31<sup>th</sup>, 2010). The variable seasonality analysis observed in these stations is impaired due to the limited information availability and different periods observed at each station. According to EPAGRI, the Rio do Campo Station – 639 presents a disable observation, furthermore its observed data present the shortest duration. Therefore, some information seems to be inconsistent, mainly when its observations are compared to the other stations.

### 3.1 Temperatures

The hottest trimester includes the months: December, January and February, the mean of temperature on this trimester is around 22° C in the upper valley and 24° C in both lower and mid-valley. The absolute maximum range from 28°C to 43°C in the entire basin; the lower temperature happens in winter season in July, and the higher one in the summer season, generally in January.

The coldest trimester occurs from June to August, the mean of temperature is around 13°C in the upper valley and 16°C in the lower and mid-valley. The absolute minimum range of -5,4°C to 15°C. The lower temperatures happen in the winter in the upper valley; the higher temperatures happen in the summer in the lower and mid-valley.

The Table 3.1.1 presents the monthly mean of temperature in the indicated stations:

| Month     | Rio do Campo | Ituporanga | Indaial | Itajaí |
|-----------|--------------|------------|---------|--------|
| January   | 23,0         | 22,8       | 24,5    | 24,7   |
| February  | 23,0         | 22,7       | 24,8    | 24,8   |
| March     | 22,3         | 21,9       | 23,9    | 23,9   |
| April     | 19,3         | 19,1       | 21,3    | 21,7   |
| May       | 15,0         | 14,9       | 18,0    | 18,4   |
| June      | 13,1         | 13,2       | 16,1    | 16,3   |
| July      | 13,0         | 12,6       | 15,6    | 15,6   |
| August    | 14,6         | 14,4       | 17,0    | 16,6   |
| September | 16,3         | 15,8       | 18,1    | 17,9   |
| October   | 18,7         | 18,3       | 20,3    | 20,1   |
| November  | 20,8         | 20,3       | 22,1    | 22,1   |
| December  | 22,3         | 22,0       | 23,8    | 23,7   |
| Annual    | 18,5         | 18,2       | 20,5    | 20,5   |

Source: JICA Survey Team

In the following Figure 3.1.1 presents the plot of monthly mean of temperatures.



It is notable that in places near to the coast the temperature variation is lower; the months are hotter in summer and less cold in winter.

### 3.2 Monthly Rainfall

The rainiest trimester occurs in the summer months of December, January, February, while the driest period occurs in the winter. It is relative, however, a month can be extremelly humid in a certain year, and extremelly dry in another. Rainfalls that cause floods can happen in any period of the year.

The monthly mean of rainfall of the indicated stations is presented in the Table 3.2.1.

| Table 5.2.1 Weat of Annual and Wontiny Kannan (mm) |              |            |         |         |  |  |  |
|----------------------------------------------------|--------------|------------|---------|---------|--|--|--|
| Month                                              | Rio do Campo | Ituporanga | Indaial | Itajaí  |  |  |  |
| January                                            | 227,0        | 191,4      | 224,6   | 238,2   |  |  |  |
| February                                           | 205,6        | 152,7      | 180,4   | 189,3   |  |  |  |
| March                                              | 174,9        | 108,2      | 138,5   | 169,6   |  |  |  |
| April                                              | 108,4        | 103,6      | 107,6   | 121,7   |  |  |  |
| May                                                | 97,3         | 118,8      | 111,3   | 110,0   |  |  |  |
| June                                               | 99,5         | 96,0       | 100,7   | 95,6    |  |  |  |
| July                                               | 126,1        | 125,0      | 118,9   | 117,7   |  |  |  |
| August                                             | 104,2        | 97,7       | 117,0   | 94,0    |  |  |  |
| September                                          | 171,9        | 159,9      | 157,6   | 148,8   |  |  |  |
| October                                            | 226,9 *      | 170,4      | 165,7   | 156,9   |  |  |  |
| November                                           | 160,5        | 140,5      | 150,3   | 169,7   |  |  |  |
| December                                           | 163,5        | 141,4      | 169,7   | 160,3   |  |  |  |
| Annual                                             | 1.865,8 *    | 1.605,6    | 1.742,3 | 1.771,8 |  |  |  |

 Table 3.2.1 Mean of Annual and Monthly Rainfall (mm)

\* Value apparently inconsistent Source: JICA Survey Team In the following Figure 3.2.1 the monthly mean of the rainfall plot is presented.



Figure 3.2.1 Monthly Mean of Rainfall

In general, the mean of rainfall deacreses from the cost to the inland. The Rio do Campo rainfall station is an exception to this standard, because of the reasons mentioned before.

## 3.3 Monthly Mean of Rainy Days

In the Table 3.3.1 the monthly mean of rainy days is presented.

| Month     | Rio do Campo | Ituporanga | Indaial | Itaiaí |
|-----------|--------------|------------|---------|--------|
| January   | 14           | 16         | 16      | 18     |
| February  | 13           | 14         | 14      | 15     |
| March     | 12           | 12         | 12      | 16     |
| April     | 9            | 10         | 9       | 13     |
| May       | 7            | 10         | 9       | 12     |
| June      | 8            | 10         | 8       | 11     |
| July      | 8            | 10         | 8       | 11     |
| August    | 7            | 9          | 8       | 10     |
| September | 12           | 12         | 13      | 13     |
| October   | 15           | 13         | 13      | 15     |
| November  | 12           | 12         | 13      | 15     |
| December  | 12           | 12         | 13      | 15     |
| Annual    | 129          | 140        | 136     | 164    |

 Table 3.3.1 – Mean of Monthly and Annual Rainfall Days

Source: JICA Survey Team

In the Figure 3.3.1 the monthly mean of rainfall days is presented.



Figure 3.3.1 Monthly mean of rainy days

As the monthly mean of rainfall, the mean of rainy days also decreases from the coast to the inland. Possible outliers values are due to different periods of data observation.

## 3.4 Maximum Rainfall in 24 hours

In the following Table 3.4.1 it is presented the maximum rainfall observed in 24 hours in the considered stations for each month.

| Month     | Rio o | do Campo   | Ituporanga |            | Indaial |            | Itajaí |            |
|-----------|-------|------------|------------|------------|---------|------------|--------|------------|
| January   | 78,0  | 17/01/2009 | 99,0       | 15/01/2000 | 133,5   | 10/01/2002 | 187,5  | 24/01/1999 |
| February  | 103,6 | 01/02/1998 | 77,8       | 01/02/1997 | 82,6    | 28/02/1998 | 100,7  | 14/02/1987 |
| March     | 98,0  | 07/03/2003 | 103,8      | 09/03/2009 | 92,4    | 03/03/2003 | 108,0  | 25/03/1982 |
| April     | 140,0 | 23/04/2010 | 89,7       | 26/04/2004 | 131,8   | 04/04/2005 | 100,8  | 21/04/2008 |
| May       | 97,2  | 18/05/2007 | 97,8       | 04/05/2001 | 102,7   | 29/05/1992 | 133,1  | 29/05/1992 |
| June      | 72,6  | 19/06/1998 | 75,5       | 30/06/2002 | 96,3    | 21/06/1991 | 81,5   | 27/06/1997 |
| July      | 115,1 | 30/07/1999 | 83,0       | 09/07/2007 | 112,1   | 03/07/1999 | 97,3   | 03/07/1999 |
| August    | 86,4  | 01/08/2009 | 101,0      | 31/08/2005 | 119,3   | 31/08/2005 | 91,2   | 06/08/1984 |
| September | 71,4  | 25/09/1997 | 110,2      | 14/09/2004 | 121,7   | 14/09/2004 | 88,8   | 28/09/2009 |
| October   | 136,2 | 01/10/2001 | 121,4      | 01/10/2001 | 147,2   | 01/10/2001 | 123,6  | 01/10/2001 |
| November  | 105,0 | 29/11/2002 | 112,6      | 21/11/2000 | 119,9   | 23/11/2008 | 190,5  | 23/11/2008 |
| December  | 94,2  | 06/12/2007 | 71,4       | 16/12/2003 | 134,4   | 03/12/1972 | 140,8  | 29/12/1995 |

Table 3.4.1 Maximum Rainfall (mm) in 24 hours and Occurrence Time

Source: JICA Survey Team

In the following Figure 3.4.1 is presented the maximum rainfall plot in 24 hours in each considerated station.



### Figure 3.4.1 Maximum rainfall in 24 hours

The intense rainfall occurs in all the months of the year, generally.

#### 3.5 **Relative Humidity**

In the following Table 3.5.1 the monthly mean of the relative humidity in the considered stations is presented.

| Table 3.5.1 Relative Humidity Monthly and Annual |              |            |         |        |  |  |  |  |
|--------------------------------------------------|--------------|------------|---------|--------|--|--|--|--|
| Month                                            | Rio do Campo | Ituporanga | Indaial | Itajaí |  |  |  |  |
| January                                          | 80,6         | 79,6       | 79,0    | 82,6   |  |  |  |  |
| February                                         | 83,0         | 79,6       | 80,8    | 83,0   |  |  |  |  |
| March                                            | 81,8         | 80,4       | 80,5    | 83,4   |  |  |  |  |
| April                                            | 81,4         | 82,7       | 81,4    | 84,3   |  |  |  |  |
| May                                              | 81,7         | 84,7       | 81,8    | 84,7   |  |  |  |  |
| June                                             | 83,5         | 86,5       | 83,6    | 86,5   |  |  |  |  |
| July                                             | 83,7         | 85,8       | 83,3    | 86,2   |  |  |  |  |
| August                                           | 81,8         | 83,0       | 81,4    | 85,5   |  |  |  |  |
| September                                        | 81,5         | 82,0       | 81,8    | 84,0   |  |  |  |  |
| October                                          | 82,2         | 80,6       | 80,4    | 82,3   |  |  |  |  |
| November                                         | 78,0         | 76,5       | 78,1    | 80,8   |  |  |  |  |
| December                                         | 75,1         | 76,1       | 77,5    | 80,6   |  |  |  |  |
| Annual                                           | 81,2         | 81,5       | 80,8    | 83,7   |  |  |  |  |

Source: JICA Survey Team

The monthly mean of relative humidity are plot in the following Figure 3.5.1. It is notable that the quarter (from May to August) presents the highest monthly mean of relative humidities.



Figure 3.5.1 Relative Humidity (°C) Monthly

#### 3.6 **Evaporation - Class A Pan**

The Class A Pan evaporation observed in the mentioned stations is presented in the Table 3.6.1, except the Rio do Campo station where the observations are not enough for a representative mean. In Indail there is no observations on the Class A Pan.

| Tuble 5.011 friem friending and frinduit Cluss fiff an Druporation |              |            |         |         |  |  |  |  |
|--------------------------------------------------------------------|--------------|------------|---------|---------|--|--|--|--|
| Month                                                              | Rio do Campo | Ituporanga | Indaial | Itajaí  |  |  |  |  |
| January                                                            | -            | 158,1      | -       | 143,3   |  |  |  |  |
| February                                                           | -            | 137,2      | -       | 121,2   |  |  |  |  |
| March                                                              | -            | 130,7      | -       | 116,2   |  |  |  |  |
| April                                                              | -            | 91,8       | -       | 90,9    |  |  |  |  |
| May                                                                | -            | 65,6       | -       | 70,4    |  |  |  |  |
| June                                                               | -            | 47,0       | -       | 52,9    |  |  |  |  |
| July                                                               | -            | 52,4       | -       | 51,3    |  |  |  |  |
| August                                                             | -            | 68,7       | -       | 65,6    |  |  |  |  |
| September                                                          | -            | 82,9       | -       | 73,9    |  |  |  |  |
| October                                                            | -            | 108,6      | -       | 101,1   |  |  |  |  |
| November                                                           | -            | 142,7      | -       | 122,7   |  |  |  |  |
| December                                                           | -            | 161,9      | -       | 140,4   |  |  |  |  |
| Annual                                                             | -            | 1.247,6    | -       | 1.149,9 |  |  |  |  |
| a nata                                                             | m            |            |         |         |  |  |  |  |

Table 3.6.1 Mean Monthly and Annual Class A Pan Evanoration

Source: JICA Survey Team

The monthly mean of the evaporation plot is presented in the Figure 3.6.1. The months which have a lowest evaporation are on the quarter (from May to August), according to the higher relative humidity.



Source: JICA Survey Team

Figure 3.6.1 Monthly mean evaporation of the A Pan

### 3.7 Insolation

The monthly mean of insolation observed in the mentioned stations is presented in the Table 3.7.1, except the Rio do Campo station where the observations are not enough for a representative mean.

| Month     | Rio do Campo | Ituporanga | Indaial | Itaiaí  |
|-----------|--------------|------------|---------|---------|
| January   | -            | 159,1      | 160,6   | 181,1   |
| February  | -            | 150,7      | 150,2   | 166,2   |
| March     | -            | 164,6      | 160,7   | 180,8   |
| April     | -            | 138,7      | 147,5   | 156,8   |
| May       | -            | 132,8      | 145,4   | 156,4   |
| June      | -            | 108,2      | 126,9   | 138,1   |
| July      | -            | 118,6      | 129,5   | 139,8   |
| August    | -            | 132,4      | 124,6   | 140,3   |
| September | -            | 106,7      | 101,6   | 109,9   |
| October   | -            | 124,9      | 118,2   | 127,1   |
| November  | -            | 156,7      | 144,5   | 153,6   |
| December  | -            | 170,6      | 134,3 * | 175,5   |
| Annual    | -            | 1.664,0    | 1.644,0 | 1.825,6 |

 Table 3.7.1 Mean of Monthly and Annual Insolation (hours)

\* Value apparently inconsistent

Source: JICA Survey Team

The monthly mean of insolation plot is presented in the Figure 3.7.1 bellow. The obtained value for Indaial on December seems to be inconsistent. The summer months present a larger number of hours of sunshine, as expected. The insolation in the Itajaí River Basin decreases from the coast to the inland. Possible outliers values are due to different periods of data observation.



Source: JICA Survey Team



### 3.8 Annual Mean of Rainfall

The isohyetal drawing map showed in Figure 3.8.1 was traced based on the annual mean of rainfall observed in 39 rainfall stations located in the Itajaí River Basin in the period of 1980 to 2009 (30 years). In the Table 3.8.1 the stations and the annual mean of rainfall are related.

| Rainfall Station    | Code     | Latitude  | Longitude | Mean |
|---------------------|----------|-----------|-----------|------|
| Ilhota              | 02648001 | -26:55:18 | -48:50:21 | 1519 |
| Luiz Alves          | 02648002 | -26:43:27 | -48:55:54 | 1777 |
| Warnow              | 02649001 | -26:56:37 | -49:17:22 | 1629 |
| Pomerode            | 02649002 | -26:44:08 | -49:10:13 | 1926 |
| Benedito novo       | 02649003 | -26:46:52 | -49:21:54 | 1593 |
| Timbó Novo          | 02649004 | -26:49:47 | -49:16:19 | 1705 |
| Indaial             | 02649005 | -26:54:49 | -49:16:03 | 1536 |
| Blumenau            | 02649007 | -26:55:05 | -49:03:55 | 1618 |
| Arrozeira           | 02649008 | -26:44:27 | -49:16:14 | 1726 |
| Garcia de Blumenau  | 02649009 | -26:58:06 | -49:04:27 | 1754 |
| Itoupava central    | 02649010 | -26:47:35 | -49:05:00 | 1766 |
| Doutor Pedrinho     | 02649017 | -26:43:02 | -49:28:59 | 1721 |
| Witmarsum           | 02649053 | -26:55:34 | -49:48:09 | 1260 |
| Barra do prata      | 02649058 | -26:41:51 | -49:49:41 | 1177 |
| Barragem norte      | 02649061 | -26:53:42 | -49:40:20 | 1224 |
| Barra do Avencal    | 02649065 | -26:34:08 | -49:29:30 | 1252 |
| Rio do campo        | 02650014 | -26:56:42 | -50:08:36 | 1349 |
| Iracema             | 02650022 | -26:27:31 | -49:59:11 | 1255 |
| Nova Cultura        | 02650023 | -26:41:35 | -50:08:52 | 1243 |
| Brusque             | 02748000 | -27:06:02 | -48:55:04 | 1926 |
| Apiuna - Régua Nova | 02749000 | -27:02:17 | -49:23:42 | 1578 |
| Ibirama             | 02749001 | -27:03:14 | -49:31:00 | 1485 |
| Ituporanga          | 02749002 | -27:23:55 | -49:36:21 | 1535 |
| Taió                | 02749003 | -27:06:47 | -49:59:40 | 1601 |
| Nova Bremen         | 02749005 | -27:02:03 | -49:35:23 | 1423 |
| Pouso Redondo       | 02749006 | -27:15:26 | -49:56:27 | 1564 |
| Lomba Alta          | 02749007 | -27:43:50 | -49:22:58 | 1590 |
| Trombudo Central    | 02749013 | -27:17:25 | -49:46:08 | 1514 |
| Neisse Central      | 02749016 | -27:02:25 | -49:22:53 | 1643 |
| Sul Dam             | 02749017 | -27:30:07 | -49:33:11 | 1489 |
| Vidal Ramos         | 02749033 | -27:23:33 | -49:21:56 | 1205 |
| Saltinho            | 02749037 | -27:41:00 | -49:21:55 | 1225 |
| Rio do sul          | 02749039 | -27:12:20 | -49:37:54 | 1205 |

Table 3.8.1 Annual Mean of Rainfall (mm) – 1980 to 2009

| Rainfall Station           | Code     | Latitude  | Longitude | Mean |
|----------------------------|----------|-----------|-----------|------|
| Agrolândia                 | 02749041 | -27:24:41 | -49:49:53 | 1201 |
| Ituporanga                 | 02749043 | -27:25:07 | -49:38:46 | 1206 |
| Botuverá                   | 02749045 | -27:11:48 | -49:05:14 | 1193 |
| Salseiro                   | 02749046 | -27:19:55 | -49:19:42 | 1134 |
| Dam                        | 02750014 | -27:05:50 | -50:02:02 | 1548 |
| Cabeceira Ribeirão Caetano | 02750021 | -27:08:28 | -50:15:52 | 1401 |



Figure 3.8.1 Annual mean of precipitation in the Itajaí River Basin

# CHAPTER 4 HYDROLOGY

## 4.1 Monthly Mean of Discharge

The following Figures 4.1.1 to 4.1.8 present a brief of the monthly mean discharge and the seasonality of these discharges in many fluviometric stations located in the main rivers.

There is no only one dry season due to the occurrency of the rain in all the months of the year. Any month can be extremely humid on a specific year and extremely dry in another; July is the month that presents a notable contrast between these two characteristics.



Source: JICA Survey Team Figure 4.1.1 Monthly mean of discharge in the Itajaí do Sul River which is located in Ituporanga

(83250000)



Source: JICA Survey Team

Figure 4.1.2 Monthly mean of discharge in the Itajaí do Oeste River which is located in Taió (83050000)



Figure 4.1.3 Monthly mean of discharge in the Itajaí do Norte River located in Ibirama (83440000)



Source: JICA Survey Team





Source: JICA Survey Team





Figure 4.1.6 Monthly mean of discharge in the Benedito River which is located in Timbó Novo (83677000)



Figure 4.1.7 Monthly mean of discharge in the Benedito River which is located in Timbó (83680000)





## 4.2 Sediments

In the Itajaí River Basin there are only measurements of suspended sediment concentration, there is no bed sediments measurements. The sediment concentration measurements are implemented in the main rivers of the basin. These measurements were made by ANA (National Water Agency) and they are published on the internet (Hidro Web).

The solid discharges of the suspended sediments were calculated through the concentration (mg/l ou ppm) determined in laboratory using the following expression:

 $QSS = 0,0864 \times QL \times C$ 

Where:

C = Concentration of sediment (mg/l ou ppm) QL = Liquid discharge (m<sup>3</sup>/s)QSS = Solid suspended discharge (ton/dia)

After the solid suspended discharges had been obtained from each one of the considered stations the sediments rating curve for each one of them had been determined. This rating curve relates the suspended solid discharge to the liquid discharges measured in field survey by the suspended sediments collection. In the Figures 4.2.1 to 4.2.7 these curves are being presented:



Source: JICA Survey Team

Figure 4.2.1 Suspended sediments rating curve (t/day) on Itajaí do Sul River which is located Ituporanga (83250000)



Source: JICA Survey Team

Figure 4.2.2 Suspended sediments rating curve (t/day) on Rio do Oeste River which is located in Taió (83050000)



Figure 4.2.3 Suspended sediments rating curve (t/day) on Itajaí River which is located in Rio do Sul Novo (83300200)



Figure 4.2.4 Suspended sediments rating curve (t/day) on Rio do Oeste River which is located in Ibirama (83440000)



Source: JICA Survey Team

Figure 4.2.5 Suspended sediments rating curve (t/day) on Itajaí River which is located in Indaial



Figure 4.2.6 Suspended sediment rating curve (t/day) on Benedito River which is located in Timbó Novo (83677000)



Source: JICA Survey Team



In the Table 4.2.1 it is presented the suspended solid discharge brief for each station, which were obtained by the suspended sediment rating curve, mentioned above, and by the monthly mean of observed discharge. As there is no solid discharge derived the riverbed, this portion was estimated as 20% from the suspended solid discharge, in order to obtain the total solid discharge. The fact of the concetration measurements had happened in different time and in each station should be considerated. Likewise, the discharge observation period is also different in each hydrosedimentometric station.

| Station       | Code     | River              | Area<br>(km²) | QSS Mean<br>Anual<br>Suspended<br>Load<br>(t/day) | Mean<br>Annual<br>Bed Load<br>QBL=0,20<br>QSS<br>(t/day) | Mean<br>Annual<br>Load<br>(t/day) | Specific<br>Sediment<br>Load<br>(t/day/km <sup>2</sup> ) | Annual<br>Specific<br>Sediment<br>Load<br>(t/year/<br>km <sup>2</sup> ) |
|---------------|----------|--------------------|---------------|---------------------------------------------------|----------------------------------------------------------|-----------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|
| Ituporanga    | 83250000 | Itajaí do Sul      | 1,669.49      | 90.4                                              | 18.08                                                    | 108.48                            | 0.065                                                    | 23.717                                                                  |
| Taió          | 83050000 | Itajaí do<br>Oeste | 1,575.00      | 105.11                                            | 21.022                                                   | 126.132                           | 0.08                                                     | 29.231                                                                  |
| Rio do Sul    | 83300200 | Itajaí -Açú        | 5,100.00      | 463.65                                            | 92.73                                                    | 556.38                            | 0.109                                                    | 39.819                                                                  |
| Ibirama       | 83440000 | Itajaí do<br>Norte | 3,314.00      | 183.04                                            | 36.608                                                   | 219.648                           | 0.066                                                    | 24.192                                                                  |
| Indaial       | 83690000 | Itajaí             | 11,151.00     | 1044.17                                           | 208.834                                                  | 1253.004                          | 0.112                                                    | 41.014                                                                  |
| Timbó<br>Novo | 83677000 | Benedito           | 1,342.00      | 174.62                                            | 34.924                                                   | 209.544                           | 0.156                                                    | 56.992                                                                  |
| Brusque       | 83900000 | Itajaí-Mirim       | 1,240.00      | 260.43                                            | 52.086                                                   | 312.516                           | 0.252                                                    | 91.991                                                                  |

 Table 4.2.1 Suspended and Total Solid Discharge

Obs: The QBL was supposed to be 20% of the QSS

Source: JICA Survey Team

## 4.3 Flood Rainfall

After the building of the Sul and Norte dams (in the Itajaí do Sul and Itajaí do Norte rivers) occurred the largest flood registered in the Itajaí River Basin (July, 1983 and in August, 1984). In November, 2008, after a previously heavy rainy period some instense rainfall happened in the lower and mid-valley cities, especially in Itajaí, where a large Flood event happened. In Blumenau and other upper and mid-valley cities the flood level was large and caused several damage, but it did not achieve the 1983 and 1984 Flood event level. Many landslides, however, could be noticed such as the most serious event occurred in Ilhota where many lives were lost.

In April, 2010, after the beginning of this current survey, many intense rainfall happened in the Itajaí River Basin.

The Figure 4.3.1 presents the isohyetal rainfall in the Itajaí River Basin for a day, four days and seven days duration occurred in July, 1983 and the mean of rainfall in the basin for each of these durations.



Source: JICA Survey Team (Based on data from EPAGRI, CIRAM)

Figure 4.3.1 Rainfall (occurred in July, 1983) for 1, 4 and 7 days duration in the Itajaí-Açu River Basin

The Figure 4.3.2 presents the isohyetal rainfall in the Itajaí River Basin for a day and three days duration occurred in August, 1984 and the mean of rainfall in the basin for each of these durations.



Source: JICA Survey Team (Based on data from EPAGRI, CIRAM) Figure 4.3.2 Rainfall (occurred in August, 1984) for 1 and 3 days duration in the Itajaí River Basin

The Figure 4.3.3 presents the isohyetal rainfall in the Itajaí River Basin for a day and four days duration occurred in April, 2010 and the mean of rainfall in the basin for each of these durations.



Source: JICA Survey Team (Based on data from EPAGRI, CIRAM)



The Table 4.3.1 presents the mean of rainfall in the Itajaí River Basin occurred in many days duration during the flood above mentioned.

| Table 4.3.1 Flood Rainfall |                                    |             |             |  |  |  |  |  |
|----------------------------|------------------------------------|-------------|-------------|--|--|--|--|--|
| Duration                   | Mean of Rainfall in the Basin (mm) |             |             |  |  |  |  |  |
|                            | July, 1983                         | August,1984 | April, 2010 |  |  |  |  |  |
| 1 day                      | 69                                 | 106         | 61          |  |  |  |  |  |
| 3 days                     | -                                  | 199         | -           |  |  |  |  |  |
| 4 days                     | 228                                | -           | 145         |  |  |  |  |  |
| 7 days                     | 347                                | -           | -           |  |  |  |  |  |

Source: JICA Survey Team

The isohyetal rainfall that led to the floods of July, 1983 and August, 1984 were obtained from the JICA report, from January 1988: "Final Report on the Itajaí River Basin Flood Control Project – Part 1 – Master Plan Study – Supporting Report". These isohyetal presented in the report were scanned at this current stage of studies. The maximum rainfall values in the basin (for various durations presented in the table above) were also calculated at this stage of studies.

The rainfall observed at hourly intervals, for four days duration, occurred in the Itajaí River basin (August, 1984 and April,2010) were used for calibration of HEC-HMS rainfall-discharge model developed by the U.S. Army (U.S. Army - Corps of Engineers) and freely available on the INTERNET for download.

### 4.4 Maximum Annual Discharge

The Table 4.4.1 presents the maximum annual of mean daily discharges occurred in different fluviometric stations in the Itajaí River Basin. These discharges were updated until 2004 in the ANA (National Water Agency) website on the internet (hidroweb).

| RiverITAJAÍ SUStationITUPORANANA Code83250000 |           | UL ITAJAÍ OESTE |           | ITAJAÍ NORTE |           | ITAJAÍ   |           | ITAJAÍ MIRIM |           |     |
|-----------------------------------------------|-----------|-----------------|-----------|--------------|-----------|----------|-----------|--------------|-----------|-----|
|                                               |           | NGA             | GA TAIÓ   |              | IBIRAMA   |          | INDAIAL   |              | BRUSQUE   |     |
|                                               |           | 0 83050000      |           | 83440000     |           | 83690000 |           | 83900000     |           |     |
| Year                                          | Month     | Q               | Month     | Q            | Month     | Q        | Month     | Q            | Month     | Q   |
| 1929                                          |           |                 | October   | 437          | October   | 426      | October   | 1.736        |           |     |
| 1930                                          | February  | 129             | August    | 247          | February  | 339      | August    | 1.362        | January   | 181 |
| 1931                                          | September | 169             | May       | 518          | May       | 800      | September | 2.636        | September | 340 |
| 1932                                          | May       | 133             | May       | 482          | April     | 628      | May       | 1.887        | May       | 356 |
| 1933                                          | October   | 189             | October   | 725          | October   | 638      | October   | 2.580        | October   | 285 |
| 1934                                          | February  | 53              | February  | 388          | February  | 532      | April     | 1.439        | February  | 247 |
| 1935                                          | August    | 64              | September | 470          | September | 1.282    | September | 2.807        | October   | 260 |
| 1936                                          | August    | 161             | June      | 270          | August    | 528      | August    | 1.935        | August    | 352 |
| 1937                                          | October   | 108             | November  | 277          | November  | 575      | October   | 1.129        | May       | 242 |
| 1938                                          | February  | 58              | June      | 308          | June      | 729      | June      | 1.713        | June      | 182 |
| 1939                                          | November  | 180             | June      | 368          | November  | 1.156    | November  | 2.229        | November  | 420 |
| 1940                                          | August    | 94              | March     | 261          | August    | 240      | August    | 1.226        | October   | 269 |
| 1941                                          | November  | 130             | March     | 314          | October   | 247      | November  | 893          | November  | 178 |
| 1942                                          | March     | 63              | February  | 201          | February  | 545      | February  | 1.376        | February  | 198 |
| 1943                                          | August    | 973             | August    | 427          | August    | 575      | August    | 2.273        | August    | 400 |
| 1944                                          | March     | 118             | March     | 280          | January   | 206      | March     | 574          | January   | 168 |
| 1945                                          | April     | 63              | February  | 153          | July      | 255      | February  | 787          | February  | 148 |
| 1946                                          | August    | 446             | February  | 397          | February  | 659      | February  | 1.667        | February  | 229 |
| 1947                                          | October   | 345             | September | 249          | September | 548      | September | 1.369        | October   | 333 |
| 1948                                          | August    | 809             | May       | 501          | May       | 894      | May       | 2.673        | May       | 398 |
| 1949                                          | April     | 172             | June      | 187          | April     | 396      | April     | 781          | March     | 206 |
| 1950                                          | October   | 276             | October   | 428          | October   | 551      | October   | 2.282        | October   | 253 |
| 1951                                          | October   | 176             | October   | 391          | October   | 515      | October   | 1.526        | November  | 182 |
| 1952                                          | October   | 206             | September | 321          | October   | 354      | September | 1.206        | October   | 214 |
| 1953                                          | October   | 325             | November  | 388          | October   | 525      | October   | 2.711        | November  | 255 |
| 1954                                          | October   | 879             | October   | 592          | October   | 770      | October   | 3.990        | October   | 555 |
| 1955                                          | July      | 586             | May       | 356          | May       | 890      | May       | 2.654        | May       | 184 |
| 1956                                          | September | 391             | January   | 249          | January   | 235      | September | 1.017        | September | 181 |
| 1957                                          | August    | 861             | August    | 564          | August    | 1.242    | August    | 5.767        | August    | 364 |
| 1958                                          | November  | 324             | March     | 430          | March     | 502      | March     | 1.504        | March     | 283 |
| 1959                                          | April     | 532             | September | 155          | September | 444      | September | 1.047        | April     | 153 |
| 1960                                          | August    | 354             | October   | 365          | November  | 444      | August    | 1.266        | February  | 321 |
| 1961                                          | November  | 867             | September | 463          | September | 796      | November  | 2.515        | November  | 560 |
| 1962                                          | May       | 484             | September | 328          | September | 545      | September | 1.592        | March     | 195 |
| 1963                                          | September | 1.067           | February  | 634          | November  | 482      | September | 1.951        | September | 275 |
| 1964                                          | October   | 167             | May       | 189          | May       | 334      | May       | 771          | October   | 102 |
| 1965                                          | August    | 267             | August    | 297          | August    | 571      | August    | 1.984        | December  | 190 |
| 1966                                          | February  | 461             | February  | 480          | February  | 785      | February  | 2.204        | February  | 226 |
| 1967                                          | September | 215             | February  | 322          | December  | 360      | February  | 1.253        | February  | 236 |
| 1968                                          | December  | 354             | December  | 212          | December  | 260      | September | 728          | December  | 80  |
| 1969                                          | April     | 556             | February  | 481          | April     | 842      | April     | 2.433        | April     | 182 |
| 1970                                          | October   | 254             | June      | 221          | July      | 408      | July      | 1.273        | July      | 127 |
| 1971                                          | July      | 473             | June      | 445          | June      | 774      | June      | 2.238        | April     | 143 |
| 1972                                          | August    | 539             | August    | 428          | August    | 927      | August    | 2.344        | August    | 420 |

Table 4.4.1 Maximum Annual Mean of Daily Discharge (m³/s)

| River ITAJAÍ SUL<br>Station ITUPORANGA |           | ITAJAÍ OESTE |           | ITAJAÍ NORTE |           | ITAJAÍ  |           | ITAJAÍ MIRIM |           |     |
|----------------------------------------|-----------|--------------|-----------|--------------|-----------|---------|-----------|--------------|-----------|-----|
|                                        |           | TAIÓ         |           | IBIRAMA      |           | INDAIAL |           | BRUSQUE      |           |     |
| ANA Code                               | 83250000  |              | 83050000  |              | 83440000  |         | 83690000  |              | 83900000  |     |
| Year                                   | Month     | Q            | Month     | Q            | Month     | Q       | Month     | Q            | Month     | Q   |
| 1973                                   | August    | 470          | August    | 279          | June      | 1.161   | August    | 3.062        | August    | 279 |
| 1974                                   | September | 176          | February  | 225          | July      | 624     | March     | 1.432        | March     | 243 |
| 1975                                   | September | 412          | October   | 375          | October   | 1.186   | October   | 2.533        | October   | 301 |
| 1976                                   | January   | 249          | December  | 317          | May       | 722     | May       | 1.768        | August    | 247 |
| 1977                                   | November  | 278          | August    | 362          | October   | 712     | August    | 1.870        | August    | 416 |
| 1978                                   | December  | 240          | December  | 245          | December  | 975     | December  | 2.589        | December  | 430 |
| 1979                                   | October   | 206          | July      | 257          | May       | 886     | October   | 2.186        | October   | 215 |
| 1980                                   | August    | 356          | December  | 412          | December  | 2.099   | December  | 3.380        | December  | 272 |
| 1981                                   | January   | 148          | January   | 217          | December  | 447     | January   | 1.341        | October   | 284 |
| 1982                                   | November  | 210          | November  | 265          | November  | 663     | November  | 1.903        | May       | 193 |
| 1983                                   | July      | 1.408        | August    | 483          | July      | 2.442   | July      | 5.078        | July      | 484 |
| 1984                                   | August    | 1.096        | August    | 516          | August    | 1.533   | August    | 5.256        | August    | 542 |
| 1985                                   | July      | 143          | November  | 253          | April     | 280     | April     | 819          | November  | 99  |
| 1986                                   | November  | 247          | November  | 308          | November  | 307     | October   | 744          | November  | 188 |
| 1987                                   | May       | 352          | January   | 297          | May       | 656     | May       | 1.562        | May       | 134 |
| 1988                                   | September | 186          | May       | 259          | May       | 638     | May       | 1.540        | September | 57  |
| 1989                                   | May       | 280          | September | 301          | September | 785     | November  | 1.721        | January   | 145 |
| 1990                                   | October   | 244          | June      | 434          | July      | 793     | October   | 2.084        | October   | 149 |
| 1991                                   | October   | 189          | December  | 257          | August    | 453     | October   | 1.141        | November  | 113 |
| 1992                                   | June      | 289          | May       | 437          | May       | 1.614   | May       | 3.811        |           |     |
| 1993                                   | July      | 261          | September | 375          | September | 548     | September | 1.807        |           |     |
| 1994                                   | April     | 261          | May       | 318          | July      | 472     | May       | 1.637        |           |     |
| 1995                                   | January   | 304          | January   | 363          | July      | 375     | January   | 1.783        |           |     |
| 1996                                   | June      | 170          | February  | 368          | July      | 348     | July      | 1.116        | March     | 138 |
| 1997                                   | February  | 432          | November  | 382          | October   | 578     | February  | 2.406        | February  | 432 |
| 1998                                   | April     | 235          | April     | 407          | April     | 614     | April     | 2.264        | April     | 391 |
| 1999                                   | October   | 221          | July      | 414          | July      | 565     | July      | 1.919        | October   | 165 |
| 2000                                   | September | 197          | September | 316          | December  | 444     | October   | 1.390        | October   | 114 |
| 2001                                   | October   | 325          | September | 498          | October   | 850     | October   | 3.133        | October   | 378 |
| 2002                                   | August    | 179          | October   | 254          | November  | 297     | December  | 1.145        | August    | 155 |
| 2003                                   | December  | 239          | February  | 167          | October   | 204     | December  | 755          |           |     |
| 2004                                   | September | 234          | September | 205          | October   | 528     | October   | 1.683        |           |     |

The Figures 4.41 to 4.45 presents the cronological plot of the annual maximum mean daily discharge in the considered stations.


Source: JICA Survey Team

Figure 4.4.1 Itajaí do Sul River daily mean of the annual maximum discharge in Ituporanga



Figure 4.4.2 Itajaí do Oeste River daily mean of the annual maximum discharge in Taió



Source: JICA Survey Team Figure 4.4.3 Itajaí do Norte River daily mean of the annual maximum discharge in Ibirama



Figure 4.4.4 Itajaí River daily mean of the annual maximum discharge in Indaial



Figure 4.4.5 Itajaí-Mirim River daily mean of the annual maximum discharge in Brusque

The flood on the basin can happen any time of the year, however the larger Flood events usually happen in the winter, on the months of July and August.

# 4.5 Flood Frequency Analysis for Sul Dam Heightening

The hydraulic heightening of the Sul dam, located in the Itajaí do Sul river, aims to increase the capacity of the reservoir by the spillway crest heightening. In order to verify the new capacity of the spillway, many frequency flood studies based on the maximum annual mean daily discharge were carried out at the Ituporanga (83250000) station. Ituporanga station is located in the Itajaí do Sul River, its drainage area is about 1,645.41 km<sup>2</sup>, while the Sul dam covers an area of 1,273 Km<sup>2</sup>. Due to the proximity of the areas and the fluviometric observations absence in the dam place, the resultants discharges of the fluviometric station for some recurrence intervals were transfered to the dam place by drainage area relation. Taking into account that the Sul dam was built in the year of 1976, two alternatives for maximum flood survey were considereted:

a) Historial range of maximum dicharges after 1975 were not considered;

b) Historical range mean of annual maximum discharges were considered.

As the "a" alternative leads to higher values and it is in favor of the safety, it was the chosen option.

Two probable distribuctions were adjusted to the daily mean of the annual maximum discharge of the Itupornaga (83250000) fluviometric station: Gumbel and 2 Paramenters Exponential, according to the methodology of the guide "Guia para Cálculo de Cheia de Projeto de Vertedores, ELETROBRÁS/CEPEL, Rio de Janeiro, 1987". The Guidelines consider the 2 Parameters Exponential distribution as the most robust, but says it can be used Gumbel distribution if the asymmetry coefficient of the population is less than 1,5.

In the case of the sample, the skewness coefficient is 1,114. Even so it is recommended the 2 Parameters Exponential distribution, because its values takes to largest floods than Gumbel distribution, as shown in Figure 4.6.1. Besides the exponential leads to higher values, therefore it is in favor of the security.



Figure 4.5.1 Maximum Flood in Ituporanga (83250000) in Rio do Sul

The Table 4.5.1 below presents the maximum discharge in Ituporanga (83250000) and the site of the Sul dam for 1,000 and 10,000 years of recurrence period, which are commonly used in Brazil to design the hydraulic capacity of the spillways. In the case of Sul dam, due to the height of the dam and the size of the reservoir, the recurrence period of 10,000 years can be used. As the daily mean of maximum annual discharge was used, the instantaneous peak of the Oeste dam place was calculated by the Füller method:

$$Qi = Q \times (1+2,66 \times A^{-0,3})$$

Where:

 $Q_i$  = Instantaneous discharge (m<sup>3</sup>/s), Q = Daily mean of discharge (m<sup>3</sup>/s) A = Drainage area (km<sup>2</sup>)

| T(years) | Maximum dis | scharge (m <sup>3</sup> /s) | 2 Parameters Exponential    |  |  |  |  |  |
|----------|-------------|-----------------------------|-----------------------------|--|--|--|--|--|
|          | Ituporanga  |                             | Barragem Sul                |  |  |  |  |  |
|          | Daily mean  | Daily mean                  | Instantaneous peak (Füller) |  |  |  |  |  |
| 1,000    | 1,929       | 1,493                       | 1,958                       |  |  |  |  |  |
| 10,000   | 2,545       | 1,969                       | 2,582                       |  |  |  |  |  |

Table 4.5.1 Maximum Discharges for Sul Dam - Itajaí do Sul River

Remark 1: Sul dam was built in 1976 Remark 2: Data after 1975 were not considered

Remark 2: Data after 1975 were not considered Source: JICA Survey Team

## 4.6 Flood Frequency Analysis for Oeste Dam Heightening

The hydraulic heightning of the Oeste dam, located in the Itajaí do Oeste river, aims to increase the capacity of the reservoir by the spillway crest heightening and also increase the capacity of the spillways background. In order to verify the new capacity of the spillway a frequency flood study

based on the annual mean of maximum daily discharge were carried out on the Taió (83050000) station. This station is located in the Itajaí do Oeste River, its drainage area is about 1,570.13 Km<sup>2</sup>, while the Oeste dam covers an area of 1,042 Km<sup>2</sup>. Due to the proximity of the areas and the fluviometric observation absence in the dam place, the resultants discharges of the fluviometric station flood survey were transfered to the dam place by drainage area relation. Taking into account that the Oeste dam was built in the year of 1973, two alternatives for maximum flood frequency study were considereted:

- a) Historial range of maximum dicharges after 1972 were not considered;
- b) Historical range mean of annual maximum discharges were considered.

As the "a" alternative leads to higher values and it is in favor of the safety, it was the chosen option.

Two probability distributions were fitted to daily mean of maximum annual discharge on the Taió fluviometric station (83050000): Gumbel and 2 Parameters Exponential, according to the methodology of the "Guia para Cálculo de Cheia de Projeto de Vertedores, ELETROBRÁS/CEPEL, Rio de Janeiro, 1987". The Guidelines consider the 2 Parameters Exponential distribution as the most robust, but says it can be used Gumbel distribution if the asymmetry coefficient of the population is less than 1,5. In the case of the sample, the skewness coefficient is 0.469. Even so it is recommended the 2 Parameters Exponential distribution, because its values takes to largest floods than Gumbel distribution, as shown in Figure 4.6.1. Besides the exponential leads to higher values, therefore it is in favor of the safety.



Source: JICA Survey Team

Figure 4.6.1 – Maximum Flood in Taió (83050000) in Rio do Oeste

The Table 4.6.1 below presents the maximum discharge in Taió (83050000) and the site of the Oeste dam for 10,000 and 1,000 years of recurrence period, which are commonly used in Brazil to design the hydraulic capacity of the spillways. In the case of Oeste dam, due to the height of the dam and the size of the reservoir, the recurrence period of 1,000 years can be used.

As the daily mean of maximum annual discharge was used, the instantaneous peak of the Oeste dam place was calculated by the Füller method.

$$Qi = Q \times (1+2,66 \times A^{-0,3})$$

Where:

 $Q_i$  = Instantaneous discharge (m<sup>3</sup>/s), Q = Daily mean of discharge (m<sup>3</sup>/s)

A = Drain area (km<sup>2</sup>)

| Table 4.0.1 Maximum Discharge in the Oeste Dam – Itajai do Oeste Kive | Table 4.6.1 Maxir | mum Discharge in | the Oeste Dam - | Itajaí do Oeste Rive |
|-----------------------------------------------------------------------|-------------------|------------------|-----------------|----------------------|
|-----------------------------------------------------------------------|-------------------|------------------|-----------------|----------------------|

| T(years) | Maximum d       | lischarge (m <sup>3</sup> /s) | 2 Parameters Exponential    |  |  |  |
|----------|-----------------|-------------------------------|-----------------------------|--|--|--|
|          | Taio            | В                             | arragem Oeste               |  |  |  |
|          | Daily mean      | Daily mean                    | Instantaneous peak (Füller) |  |  |  |
| 1,000    | 1,143           | 759                           | 1,010                       |  |  |  |
| 10,000   | 1,445           | 959                           | 1,276                       |  |  |  |
| Ob       | The Oreste dama | h:14 in 1072                  |                             |  |  |  |

Observation 1: The Oeste dam was built in 1973 Observation 2: Data after 1972 were not considered

Source: JICA Survey Team

## 4.7 Recurrence Interval from July, 1983 and August, 1984 Floods in Blumenau

The flood contention plan in the Itajaí Basin will be formulated for 5, 10, 25 and 50 years of recurrence interval. These flood calculations was carried out through the transformation of the intense rainfall into discharges evaluated for these recurrence times assuming that the flood peaks have the same recurrence of rains.

The rain-flow transformations were effected through the model HEC-HMS (U.S. Army - Corps of Engineers) available for free download in INTERNET.

The evaluation of the maximum discharges for various reccurrence periods carried out by the observed discharge, besides being a reference, it has to verify the probability of floods in July, 1983 and August, 1984.

In order to evaluate the maximum floods recurrence period in Blumenau the daily mean of the maximum annual discharge observed in the Indaial rainfall station (83690000) in Itajaí –Açu River. In this section, the Itajaí drains an approximately 11,276 km<sup>2</sup> area.

There is a fluviometric station at Blumenau, however, the data from this station present a smaller observation period and do not present the same reliable data as Indaial (83690000) does.

The Itajaí drain area in Blumenau is approximately around 11,923 km<sup>2</sup>. Therefore, in view of the small drainage area difference, it is reasonable to presume that the floods in July, 1983 and August, 1984 have the same recurrence time in both Indail (83690000) and Blumenau cities.

The methodoly described on the "Guia para Cálculo de Cheia de Projeto de Vertedores, ELETROBRÁS/CEPEL, Rio de Janeiro, 1987" was used in this frequency study . The Gumbel distribution probalities and 2 Parameters Exponential were adjusted to the maximum discharge of Indaial. The guide considers the 2 Parameters Exponential as the most efficient one, although the Gumbel distribution can be used if the skewness coefficient of the population is below than 1,5. In case of the Indaial (83690000) sample, the asymmetry coefficient is about 1.659, and in order to follow the guide, the 2 Parameters Exponential distribution was chosen.

In the Figure 4.7.1 it is presented the sample discharge plot, the Gumbel distribution and the 2 Parameters Exponential fittings.



Source: JICA Survey Team Figure 4.7.1 Itajaí River Maximum flood in Indaial (83690000)

In the Table 4.7.1 it is presented the maximum discharge in Indaial (83690000), for a specific recurrence time. The maximum mean of discharges are daily, not the instantaneous discharge, therefore the instantaneous peak values are higher than those presented.

| T(years) | Gumbel | 2 Parameters<br>Exponential |
|----------|--------|-----------------------------|
| 2        | 1,784  | 1,640                       |
| 5        | 2,676  | 2,564                       |
| 10       | 3,266  | 3,263                       |
| 20       | 3,832  | 3,962                       |
| 25       | 4,012  | 4,187                       |
| 50       | 4,565  | 4,886                       |
| 100      | 5,114  | 5,585                       |
| 500      | 6,383  | 7,208                       |
| 1.000    | 6,928  | 7,906                       |
| 10.000   | 8,739  | 10,228                      |

| Table 4.7 | .1 Itajaí Max | imum Discharge | (m <sup>3</sup> /s) i | in Indaial Ci | <u>ity (8</u> 369 | (0000 |
|-----------|---------------|----------------|-----------------------|---------------|-------------------|-------|
|           |               |                |                       |               |                   |       |

Source: JICA Survey Team

In July, 1983 and August, 1984 the daily mean of maximum flood in Indaial (83690000) were about  $5,078 \text{ m}^3/\text{s}$  and  $5,256 \text{ m}^3/\text{s}$ . Therefore, it is possible to say that those floods are 100 years – reccurrence floods in Indaial (8369000) and also in Blumenau. In the Table 4.7.2 it is presented the maximum floods in Blumenau for some recurrence intervals, being this transferred from Indaial (83690000) by drainage area relation.

Q(Blumenau) = [A(Blumenau)/A(Indaial)] \* Q(Indaial)Q(Blumenau) = (11,923/11,276) \* Q(Indaial)

| T (years) | Gumbel | 2 Parameters<br>Exponential |
|-----------|--------|-----------------------------|
| 2         | 1,886  | 1,734                       |
| 5         | 2,830  | 2,711                       |
| 10        | 3,453  | 3,450                       |
| 20        | 4,052  | 4,189                       |
| 25        | 4,242  | 4,427                       |
| 50        | 4,827  | 5,166                       |
| 100       | 5,407  | 5,905                       |
| 500       | 6,749  | 7,622                       |
| 1.000     | 7,326  | 8,360                       |
| 10.000    | 9,240  | 10,815                      |

# Table 4.7.2 Itajaí River Maximum Discharges (m³/s) in Indaial (83690000)

Source: JICA Survey Team

# CHAPTER 5 TIDE LEVELS

The tide level were obtained from the "Associação dos Práticos do Porto de Itajaí". The largest high tide period observed was 1.75 meters on April 24<sup>th</sup>, 2010 and this value, the most critical of the sample, will be used in the calculations of the water levels profiles on various flood situations in order to define the flood plain.

It is noteworthy that the values are not measured in the same time, the number of tide level readings is variable on each day. The absolute maximum and minimum values for each day may not had been read properly, however more than 30 readings are usually carried out by day.

The Figure 5.1.1 presents the high tide and low tide daily levels in the mentioned period.



Source: JICA Survey Team

Figure 5.1.1 Tide level in Itajaí Port

# CHAPTER 6 ITAJAÍ RIVER FLOOD AND INUNDATION FEATURES

# 6.1 Main Floods Records

The table 6.1.1 indicates the floods which occurred in the last years in the Itajaí Basin and the damages caused in each municipality. The Table 6.1.2 indicates the numbers of the victims and the prejudices in each flood. Then, the request measures for the protection against floods was summarized, taking into consideration the frequencies and the damage level.

- In the last years five floods were recorded which have caused relevant damage: July, 1983; August, 1984; May, 1992; October, 2001 and November, 2008.
- The most relevant damages caused by the flood happened in the municipality of Blumenau, and also were relatively large in the municipality of Itajaí, Gaspar and Rio do Sul. These four municipalities have high density and large number of industries, and they can be considered as cities ready for implementation of measures against floods.
- In relation to the other municipalities, there are more complaining against damage caused by flood in Taió and Timbó, implying that this municipality requires measures just like the other four cities mentioned above. In Timbó is necessary to examine the interference caused by hydroelectric dams (Rio Bonito and Pinhal dams) located by the upstream of the Cedros River. In the city of Taió prejudices are caused by the overflowing of the Oeste dam.
- The municipalities of Navegantes and Ilhota also had suffered reasonable damage, but the safety level in these cities will increase automatically with the measures that will be adopted in the major cities, such as Itajaí, Blumenau and Gaspar.
- By the other hand, the municipality of Brusque and Ituporanga suffered the damages in the large flood Return Periods, greater than or equal to 50 years, such as 1983, 1984 and 2008 (See Table 6.2.1), but in relation to the other municipalities, the current riverbed presents high safety level, decreasing the priority order of the measures.
- The upstream region of Blumenau until the junction with the North Itajaí River is an area where a large discharge level is presented. The cities located on this region, like Indaial and others, present low priority of measures because the damage caused by flood is lower.

| tajai D      | Pouso Itupoa-<br>Redondo ranga |      |     | (   | 0   | (   | c   |      |     |     |      |   |     |     |     |     |   |     |     |     | 4   |     |      | _             |                                         |                             |              |                                                       |             |        |
|--------------|--------------------------------|------|-----|-----|-----|-----|-----|------|-----|-----|------|---|-----|-----|-----|-----|---|-----|-----|-----|-----|-----|------|---------------|-----------------------------------------|-----------------------------|--------------|-------------------------------------------------------|-------------|--------|
| Trombud      | ud Bracodc<br>Trombud<br>al o  |      |     |     |     |     |     |      |     |     |      |   |     |     |     |     |   |     |     | _   | ⊲   |     |      |               |                                         |                             |              |                                                       |             |        |
|              | o Tromb<br>o Centr             |      |     | (   | 0   | (   | c   |      |     |     |      |   |     | _   | _   |     | - |     |     | ⊲   |     |     |      | _             |                                         |                             |              |                                                       |             |        |
| 9            | te Camp                        |      |     |     | _   | _   |     |      |     |     |      |   |     | -   | ⊲   |     | - |     |     | +   |     |     |      | _             | aí)                                     |                             |              |                                                       |             |        |
| ijai Do Oes  | ren Rio I                      |      |     |     | 0   |     |     |      |     |     |      |   |     |     |     |     |   |     |     |     |     |     |      | _             | t do Rio Itaj                           |                             |              |                                                       |             |        |
| Ita          | aio Laur                       |      |     |     | 0   |     | 2   |      |     |     |      |   |     |     |     |     |   |     |     | 4   | ⊲   |     |      |               | ara a Bacia                             |                             |              |                                                       |             |        |
| nte          | idente T<br>tulio              |      |     |     |     |     |     |      |     |     |      |   |     |     |     |     |   |     |     | 0   |     |     |      |               | Naturais p                              |                             |              |                                                       |             |        |
| Itajai Do No | ama Pres<br>Ge                 |      |     |     |     |     |     |      |     |     |      |   |     |     |     |     |   |     |     |     |     |     |      | _             | Desastres                               |                             |              |                                                       |             |        |
|              | o Dos Ibir<br>edros            |      |     |     |     |     |     |      |     |     |      |   |     |     |     |     |   |     |     | +   |     | 4   |      | _             | evenção de                              |                             |              |                                                       |             |        |
| enedito      | enedito R<br>Novo C            |      |     |     |     |     |     |      |     |     |      |   |     |     |     |     |   |     |     |     |     | 4   |      | _             | plano de Pr                             |                             |              |                                                       |             |        |
| æ            | Timbo                          |      |     | (   | 0   |     |     |      |     |     |      | 0 |     |     |     |     |   |     | Q   | ⊲   |     | ⊲   |      | c             | ttório 1 do F                           |                             |              |                                                       |             |        |
| L.A.         | Luiz<br>Alves                  |      |     |     |     |     |     |      |     |     |      |   |     |     |     |     |   |     |     |     |     | ⊲   |      | -             | io Itajaí)<br>2008 (Rela                |                             |              |                                                       |             |        |
| Mirim        | Guabiruma                      |      |     |     |     |     |     |      |     | 0   |      |   |     |     |     |     |   |     |     |     |     |     |      |               | Bacia do R<br>vembro de                 |                             | <i></i>      |                                                       | edida       |        |
| Itajai       | I Brusque                      |      |     |     |     | •   | •   |      |     |     |      |   |     | ٩   |     |     |   |     |     |     |     | 0   |      |               | rais para a<br>e 25 de no               |                             | ) da medid¢  | nedida                                                | dade da m   |        |
|              | s Rio Do St                    |      |     | 0   | •   |     |     |      |     |     |      | ⊲ |     |     |     |     | ⊲ | ⊲   |     | 0   | C   | ]   |      |               | istres Natur<br>tos dias 24             |                             | a prioridade | sessita de n                                          | ixa necessi |        |
|              | o Lontras                      |      |     | (   | 0   |     |     |      |     |     |      |   |     |     |     | <   | 1 |     |     | ⊲   |     |     |      | A CATARIN     | ão de Desa<br>Catarina, n               | opulações)                  | ide com alta | oeu ente epu                                          | ide com bai |        |
|              | aial Rodei                     |      |     |     | -   |     |     |      |     |     |      | 4 |     | _   |     |     |   |     |     | <   |     | 4   |      | DE SANT       | de Prevenç<br>il de Santa<br>O 2008     | is e suas po                | Cida         | 8<br>3<br>1                                           | Cida        |        |
|              | nerode Ind                     |      |     |     |     |     |     |      |     |     |      | ~ |     | +   | +   |     |   |     |     |     |     | □   |      | O ESTADC      | l do Plano (<br>Defesa Civ<br>NOVEMBR   | uAI<br>e vilas loca         |              |                                                       | _ <u>-</u>  |        |
| Itajai Acu   | umenau Por                     |      |     | •   | • @ | 0   | •   | <    | 1 0 | 0   | 4    | • |     | 4   | <   | 1   |   |     |     | 4   |     | Ø   |      | ATURAIS D     | (Relatório<br>iunicípios à<br>DAÇÕES -  | ALE UU II /<br>is, cidades  | as casas     | as casas<br>s casas<br>uas casas                      | Ţ           |        |
|              | Gaspar BI                      |      |     |     | 0   |     | • 0 | >    |     |     |      | 0 |     |     | 6   | >   |   |     |     | 4   |     | 0   |      | STRES N/      | to pelo GTC<br>los pelos m<br>DAS INUNE | a (Municípia                | erderam su   | erderam sua<br>deram sua<br>erderam si                |             |        |
|              | Ilhota                         |      |     |     | T   |     |     |      |     |     |      | 0 |     |     |     |     |   |     |     | 1   |     | 0   |      | S DE DESA     | AMENTO I                                | s I KE UE z<br>ncia pública | pessoas pi   | pessoas pe<br>essoas per<br>) pessoas p               |             |        |
|              | Navegan-<br>tes                |      |     | (   | 0   |     |     |      |     |     |      | 0 |     |     |     |     |   |     |     |     |     |     |      | ATLA          | Dados<br>AVAD<br>MAPE                   | DE SA<br>Audiêi             | de 10.000    | 0 a 10.000<br>0 a 5.000 p<br>os de 1.000              | dados       | , Team |
|              | Itajai                         | 0    | 0   | 10  | •   | (   | D   |      |     |     |      | • | 4   |     |     |     |   | -   | 0   | 4   | - 0 | 0   | 0    | 30 a 2004     | )5 а 2009<br>)8                         | 0                           | •<br>Mais    | <ul> <li>○ 5.00</li> <li>1.00</li> <li>Men</li> </ul> | C Sem       | Survey |
|              | Month                          | 0 10 | 1   | e . |     |     | 4 0 |      | 1   | -   | 2    |   | 3   | 2   | 0 1 |     |   | 6   | 0   | =   | 2 2 | -   | 9 10 | 96 ;<br>196 ; | 50 50                                   | 20,                         | ndas         |                                                       | I           | ·      |
|              | Year                           | 198  | 198 | 198 |     | 001 | 198 | 1001 | 88- | 199 | 199. |   | 199 | 199 | 199 | 661 |   | 199 | 200 | 200 | 200 | 200 | 200  | 201<br>Fonté  |                                         |                             | Lege         |                                                       |             | Source |

Nippon Koei Co., Ltd.

|      |    | Level |                    |        |    |         | Victims | (R\$)     |
|------|----|-------|--------------------|--------|----|---------|---------|-----------|
| 1980 | 10 |       | Blumenau           | S/R    | 1  | 157.258 | -       |           |
| 1981 | 10 |       | Guabiruba          |        | 2  | 7.362   |         |           |
| 1983 | 5  | 12.46 | Blumenau           | 10.000 | 2  | 170.491 | 5.86    |           |
|      | 7  | 15.34 | Blumenau           | 50.000 | 8  |         | 29.3    |           |
|      | 12 |       | Blumenau           | 5.000  | 1  |         | 2,93    |           |
|      | 7  |       | Gaspar             | 3.981  | 2  | 28.012  | 14,2    |           |
|      | 7  |       | Itajaí             | 40.000 | 5  | 94.449  | 42,3    |           |
|      | 7  |       | Ituporanga         | 1.820  |    | 18.149  | 10      |           |
|      | 7  |       | Lontra             | 4.000  |    | 7.390   | 54,1    |           |
|      | 7  |       | Navegantes         | 3.070  |    | 15.747  | 19,49   |           |
|      | 7  |       | Rio do Oeste       | 2.820  |    | 7.280   | 38,7    |           |
|      | 7  |       | Rio do Sul         | 25.000 | 5  | 38.616  | 64.74   |           |
|      | 7  |       | Taio               | 5.079  | 1  | 18.809  | 27      |           |
|      | 7  |       | Timbo              | 1.610  |    | 19.368  | 8,31    |           |
|      | 7  |       | Trombudo Central   | 2.980  |    | 7.404   |         |           |
| 1984 | 8  | 15.46 | Blumenau           | 70.000 |    | 175.145 | 39,96   |           |
|      | 8  |       | Brusque            | 20.000 |    | 46.558  | 42.95   |           |
|      | 8  |       | Gaspar             | 10.000 |    | 28.863  | 34,64   |           |
|      | 8  |       | Itajaí             | 1.000  | 2  | 97.273  | 1,02    |           |
|      | 8  |       | Ituporanga         | 1.000  |    | 18.499  | 5,4     |           |
|      | 8  |       | Taio               | 1.500  |    | 18.878  | 7.94    |           |
|      |    |       | Trombudo Central   | 1.000  |    | 7.511   |         |           |
| 1989 | 1  |       | Gaspar             | 167    |    | 33.523  | 0,49    |           |
| 1990 | 1  |       | Blumenau           | 594    |    |         | 0,26    |           |
|      | 10 |       | Blumenau           | 1.310  | 20 | 220.741 | 0,59    |           |
| 1991 | 11 | 12.8  | Blumenau           | 8.528  | 10 | 212.025 | 4,02    |           |
|      | 11 |       | Guabiruba          | 1.038  |    | 9.905   | 10,47   |           |
| 1992 | 1  | 10.62 | Blumenau           | 21     |    |         | 0,01    |           |
|      | 5  |       | Blumenau           | 35.000 | 2  | 216.422 | 16.17   |           |
|      | 5  |       | Rio do Sul         | 800    |    | 46.827  | 1,7     |           |
|      | 5  |       | Gaspar             | 2.830  |    | 36.516  | 7,75    |           |
|      | 5  |       | Ilhota             | 5.580  |    | 9.548   | 58,44   |           |
|      | 5  |       | Indaial            | 817    |    | 30.853  | 2,64    |           |
|      | 5  |       | Itajaí             | 11.938 |    | 122.401 | 9,75    |           |
|      | 5  |       | Navegante          | 4.780  |    | 24.204  | 19,74   |           |
|      | 5  |       | Timbo              | 1.544  |    | 24.434  | 6,31    |           |
| 1993 | 2  |       | Itajaí             | 750    |    | 125.266 | 0,59    |           |
|      | 7  |       | Alfredo Wagner     | 3.244  |    | 9.856   |         |           |
| 1995 | 1  |       | Blumenau           | 600    |    | 225.556 | 0,26    |           |
|      | 1  |       | Brusque            | 520    |    | 62.328  | 0,83    |           |
| 1996 | 2  |       | Rio do Campo       | 196    |    | 6.576   |         |           |
| 1997 | 1  | 9.44  | Blumenau           | 353    |    | 231.401 | 0,15    |           |
|      | 2  |       | Lontra             | 300    |    | 7.936   | 3,78    |           |
|      | 10 |       | Rio do Sul         | 336    |    | 47.822  | 0,7     |           |
|      | 1  |       | Gaspar             | 6.000  |    | 40.584  | 14,78   |           |
| 1999 | 7  |       | Rio do Sul         | 201    |    | 47.822  | 0,42    |           |
| 2000 | 2  |       | Timbo              | 150    |    | 26.497  | 0,56    | 1.473.000 |
| 2001 | 10 |       | Rio do Sul         | 2.885  | 1  | 47.822  | 6,03    | 2.071.076 |
|      | 10 |       | Presidente Getulio | 2.100  |    | 11.523  | 18,22   | 4.648.600 |
|      | 10 |       | Gaspar             | 469    |    | 40.584  | 1,15    | 549.000   |
|      | 10 | 11.02 | Blumenau           | 400    |    | 231.401 | 0,12    | 2.999.300 |
|      | 10 |       | Itajaí             | 383    |    | 134.942 | 0,28    | 2.385.381 |
|      | 10 |       | Timbo              | 350    |    | 26.497  | 1,32    | 57.000    |
|      | 10 |       | Rodeio             | 175    |    | 9.623   | 1,81    | 1.252.200 |
|      | 10 |       | Indaial            | 144    |    | 35.400  | 0,4     | 524.083   |
|      | 10 |       | Lontras            | 144    |    | 7.936   | 1,81    | 786.300   |
|      | 10 |       | Laurentino         | 120    |    | 4.532   |         | 732.490   |
|      | 10 |       | Trombudo Central   | 120    |    | 5.895   |         | 244.500   |
| 2002 | 11 |       | Taio               | 257    |    | 15.997  | 1,6     | 1.730.302 |
|      | 11 |       | Pouso Redondo      | 450    |    | 11.778  | 3,82    | 1.233.946 |
|      | 12 |       | Braco do Trombudo  | 120    |    | 3,531   | 3,39    | 1 325 000 |

Source: Natural Disasters Atlas of Santa Catarina State

## 6.2 Scale of Major Flood

## 6.2.1 Return Period of the Rain that Caused the Major Flood events

The Return Period of the rain that caused the major Flood events were calculated from the weighted mean of rainfall intensities of the 4 consecutive days' duration in the basin, and the results are indicated on the Table 6.2.1 (See details on the item 7). The rainfalls that caused the 1983 and 1984 floods, the ones that promoved large losses, have Return Period of 76 and 66 years, respectively, succeed by the rainfall occurred in the 1992 Flood event whose Return Period is equivalente to 33 years. Rainfalls that caused other Flood events have Return Period around 5 to 10 years.

The rainfall that provoked the 2008 Flood event, taking into consideration the balance of the 4 days duration in the basin, has a Return Period of approximately 5 years. Due to the spice distribuction, the torrential rainfalls were located at the lower valley, decreasing considerably from the coast to the inland.

| Date of flood<br>occurrence | for 4 days<br>(mean of the<br>entire basin) | Return<br>period<br>(year) | Status of damages                                                                                                                                                                                                        |
|-----------------------------|---------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31.10.1961                  | 139,3 mm                                    | 6                          | -                                                                                                                                                                                                                        |
| 26.09.1963                  | 149,0 mm                                    | 8                          | -                                                                                                                                                                                                                        |
| 25.08.1972                  | 165,7 mm                                    | 13                         | -                                                                                                                                                                                                                        |
| 19.12.1980                  | 147,3 mm                                    | 7                          | -                                                                                                                                                                                                                        |
| 06.07.1983                  | 222,8 mm                                    | 76                         | Great damage in the cities of Itajaí and Blumenau.<br>Great damage in the cities of Lontras and Rio do Sul.<br>Medium and large damage proportion in the cities of<br>Timbó, Taió, Rio do Sul and Ituporanga.            |
| 05.08.1984                  | 218,4 mm                                    | 66                         | Great damage in the cities of Itajaí, Gaspar and Blumenau.<br>Great damage Brusque.<br>Medium damage proportion in the cities of Taió and<br>Ituporanga.                                                                 |
| 28.05.1992                  | 195,7 mm                                    | 33                         | Great damage in the cities of Itajaí and Blumenau.<br>Relatively minor damage in the city of Rio do Sul.<br>Mid-size damage in the city of Timbó.                                                                        |
| 31.01.1997                  | 133,7 mm                                    | 5                          | Relatively large damage in the city of Gaspar.<br>Minor damage in the city of Blumenau.                                                                                                                                  |
| 02.07.1999                  | 150,3 mm                                    | 8                          | Minor damage in the city of Rio do Sul.                                                                                                                                                                                  |
| 29.09.2001                  | 146,8 mm                                    | 7                          | Minor damage in the cities of Itajaí, Gaspar, Blumenau,<br>Indaial e Lontras. Medium damage proportion in the city of<br>Rio do Sul. Minor damage in the cities of Timbó and Taió.                                       |
| 18.05.2005                  | 144,3 mm                                    | 7                          | No significant damage.                                                                                                                                                                                                   |
| 21.11.2008                  | 135,1 mm                                    | 5                          | There were unprecedented torrential rains in the<br>downstream region, causing major damage. However,<br>because it is localized torrential rains, in the middle of the<br>basin it is computed with less return period. |
| 23.04.2010                  | 130,3 mm                                    | 4                          | There are no official data. In the field survey there were<br>reports of minor damage in the cities of Rio do Sul, Timbo<br>and Taió                                                                                     |

# Table 6.2.1 Main Flood Events Return Period

\*The calculation of the Return Period of rainfall causing floods is based on the correlation formula showed below. Source: JICA Survey Team



## 6.2.2 Return Period of the 2008 Flood Event

Just like showed in Table 6.2.2, the intensities of the rainfalls in 4 consecutive days were low in the Itajaí Oeste, Sul and Norte basin. But, the rainfalls on the Benedito River and Itajaí Açu River are equivalent to 30 and 60 years of Return Period, respectively. The intensity of the rain in Itajaí-Mirim Basin is equivalent to 10 years.

Table 6.2.2 Return Period of 4 Consecutive Intense Rainfall Days and Observed Rainfall(November 21th to 24th) From Each Sub-basin in the 2008 Flood Event

| Sub-bas                                       | sin       | Itajaí Do<br>Oeste | Itajaí Do<br>Sul | Itajaí Do<br>Norte | Benedito | Itajaí Acu | Itajaí do<br>Mirim |
|-----------------------------------------------|-----------|--------------------|------------------|--------------------|----------|------------|--------------------|
| 4 consecutive days in the 2008<br>Flood event |           | 49                 | 36               | 31                 | 214      | 236        | 160                |
|                                               | 5 anos    | 153                | 141              | 140                | 155      | 144        | 140                |
|                                               | 10 anos   | 175                | 161              | 160                | 179      | 169        | 161                |
|                                               | 20 anos   | 196                | 181              | 179                | 202      | 194        | 180                |
|                                               | 25 anos   | 202                | 186              | 184                | 208      | 205        | 185                |
| Rainfall intensity                            | 50 anos   | 224                | 207              | 204                | 232      | 230        | 205                |
|                                               | 80 anos   | 238                | 220              | 217                | 248      | 249        | 218                |
|                                               | 100 anos  | 244                | 226              | 223                | 255      | 258        | 224                |
|                                               | 150 anos  | 256                | 237              | 233                | 268      | 276        | 235                |
|                                               | 200 anos  | 265                | 245              | 241                | 277      | 288        | 243                |
| Return Period                                 | d (years) | -                  | -                | -                  | 30       | 60         | 10                 |

\* The return time calculation of each flood was based in the Correlation Formule presented in the figure bellow.

Source: JICA Survey Team



Source: JICA Survey Team

In terms of runoff the results of the torrential rainfall analysis are as follows;

- The torrential rainfall concentration on the Itajaí basin (main river), especially by the downstream of the Indaial City and the greatest rainfall volum occurred in Blumenau City, reached in 4 days (November 21<sup>th</sup> 24<sup>th</sup>) the mark of 576mm.
- The rainfalls are concentrated specially in November, 23<sup>th</sup> and 24<sup>th</sup> reaching the mark of 494, 4 mm in 2 days and 251 mm in November 25<sup>th</sup>, this being the biggest rainfall in 1 day.

In the rainfall Return Period intensity evaluation in Blumenau City, the intensity of the 1 day raining was equivalent to the 270 years of Return Period. The following Table 6.2.3 indicates the probable rainfall intensity.

|                          | values III | the 2008 Flood F | -vent           |                 |  |
|--------------------------|------------|------------------|-----------------|-----------------|--|
|                          |            | Blumenau         | Blumenau        | Blumenau        |  |
|                          |            | daily rainfall   | 2 days rainfall | 4 days rainfall |  |
| Rainfall in the 2008 Flo | od event   | 251              | 494             | 575             |  |
|                          | 5 years    | 113              | 150             | 173             |  |
|                          | 10 years   | 135              | 182             | 208             |  |
|                          | 20 years   | 158              | 216             | 243             |  |
| T C 1 11                 | 25 years   | 171              | 236             | 265             |  |
| Intensity of probable    | 50 years   | 189              | 263             | 293             |  |
| rainian                  | 80 years   | 207              | 289             | 320             |  |
|                          | 100 years  | 215              | 301             | 333             |  |
|                          | 150 years  | 231              | 325             | 357             |  |
|                          | 200 years  | 242              | 342             | 375             |  |
| Return Perido (yea       | ars)       | 270              | -               | -               |  |

 Table 6.2.3 Return Periods of the Intense Rainfall from 1 to 4 days in Blumenau and Observed

 Values in the 2008 Flood Event

\*The calculation of the return period from each flood is based on the correlation formule as shown in the figure bellow. Source: JICA Survey Team



## 6.3 Main Flood Events Features

Among the main flood mentioned before, the flood (1983, 1984, 2008 and 2010 events) features that possess enough rainfall or discharge data were evaluated on this chapter.

6.3.1 1983 Flood Event

The 1983 Flood event had torrentials rainfalls during the period of 8 days, from de July 5<sup>th</sup> to  $12^{th}$ , the higher intensity occurred between the 6<sup>th</sup> to 9<sup>th</sup> days. The mean of rainfall intensity from 4 consecutive days in all the whole basin was approximately 210mm and it was distributed in all sub-basin around 200mm.

|            |                          |     |      |      | Т    | ìme   |      |      |      | Total       | Total    |
|------------|--------------------------|-----|------|------|------|-------|------|------|------|-------------|----------|
| Sub-basin  | Station                  | 7/5 | 7/6  | 7/7  | 7/8  | 7/9   | 7/10 | 7/11 | 7/12 | (4<br>days) | (8 days) |
|            | Luiz                     | 0,0 | 39,2 | 50,4 | 48,4 | 62,2  | 38,4 | 20,2 | 20,2 | 200,2       | 279.0    |
|            | Planalsucar              | 0,0 | 58,0 | 47,0 | 46,0 | 53,0  | 39,0 | 12,0 | 12,0 | 204,0       | 267.0    |
|            | Pomerode                 | 0,1 | 41,0 | 60,2 | 67,0 | 70,0  | 49,2 | 7,5  | 7,5  | 238,2       | 302.5    |
|            | Blumenau                 | 0,0 | 54,4 | 62,8 | 43,8 | 54,4  | 38,2 | 30,4 | 30,4 | 215,4       | 314.4    |
| Itajaí-Acú | Garcia De Blumenau       | 0,0 | 54,0 | 63,6 | 43,8 | 54,4  | 38,2 | 30,4 | 30,4 | 215,8       | 314.8    |
|            | Apiuna Regua Nova        | 0,0 | 62,0 | 58,8 | 49,0 | 31,4  | 29,9 | 25,2 | 25,2 | 201,2       | 281.5    |
|            | Neisse Central           | 0,0 | 60,0 | 56,0 | 53,0 | 25,0  | 30,0 | 25,0 | 25,0 | 194,0       | 274.0    |
|            | Rio Do Sul               | 0,0 | 59,5 | 70,2 | 52,5 | 54,0  | 50,0 | 33,0 | 33,0 | 236,2       | 352.2    |
|            | Mean of the<br>Sub-bacia | 0,0 | 53,5 | 58,6 | 50,4 | 50,6  | 39,1 | 23,0 | 23,0 | 213,1       | 298.2    |
|            | Benedito Novo            | 0,0 | 68,9 | 63,6 | 36,2 | 32,2  | 35,5 | 16,2 | 16,2 | 200,9       | 268.8    |
|            | Timbo Novo               | 0,0 | 58,2 | 65,1 | 39,0 | 40,0  | 12,5 | 18,5 | 18,5 | 202,3       | 251.8    |
| Benedito   | Arrozeira                | 0,0 | 68,0 | 62,6 | 52,0 | 75,4  | 38,2 | 0,0  | 0,0  | 258,0       | 296.2    |
|            | Doutor Pedrinho          | 0,0 | 57,2 | 78,2 | 68,2 | 75,6  | 44,0 | 20,0 | 20,0 | 279,2       | 363.2    |
|            | Mean of the<br>Sub-bacia | 0,0 | 63,1 | 67,4 | 48,9 | 55,8  | 32,6 | 13,7 | 13,7 | 235,1       | 295.0    |
|            | Witmarsum                | 0,0 | 47,0 | 86,8 | 53,2 | 40,2  | 26,4 | 21,8 | 21,8 | 227,2       | 297.2    |
|            | Barra Do Prata           | 0,0 | 52,4 | 83,6 | 69,2 | 73,4  | 45,6 | 32,2 | 32,2 | 278,6       | 388.6    |
| Itajaí Do  | Barragem Norte           | 0,0 | 57,6 | 65,4 | 59,2 | 44,4  | 24,8 | 24,2 | 24,2 | 226,6       | 299.8    |
| Norte      | Ibirama                  | 0,0 | 52,2 | 58,3 | 47,0 | 31,5  | 34,0 | 16,5 | 16,5 | 189,0       | 256.0    |
|            | Iracema                  | 0,0 | 44,1 | 93,2 | 84,0 | 103,6 | 64,5 | 16,4 | 16,4 | 324,9       | 422.2    |
|            | Nova Bremen              | 0,0 | 58,1 | 58,9 | 47,1 | 38,2  | 38,3 | 23,4 | 23,4 | 202,3       | 287.4    |

 Table 6.3.1 Daily Rainfall Record in July 1983 Flood Event

|               | Cr. ci                   | Time |      |      |      |      |      |      |      |             | Total    |
|---------------|--------------------------|------|------|------|------|------|------|------|------|-------------|----------|
| Sub-basin     | Station                  | 7/5  | 7/6  | 7/7  | 7/8  | 7/9  | 7/10 | 7/11 | 7/12 | (4<br>days) | (8 days) |
|               | Mean of the<br>Sub-basin | 0,0  | 51,9 | 74,4 | 60,0 | 55,2 | 38,9 | 22,4 | 22,4 | 241,4       | 325.2    |
|               | Taio                     | 0,0  | 63,4 | 71,4 | 67,8 | 34,0 | 63,8 | 28,0 | 28,0 | 236,6       | 356.4    |
|               | Rio Do Campo             | 52,0 | 80,8 | 68,6 | 41,4 | 33,8 | 21,4 | 33,4 | 33,4 | 224,6       | 364.8    |
|               | Pouso Redondo            | 0,0  | 50,4 | 66,3 | 49,4 | 73,0 | 60,4 | 39,4 | 39,4 | 239,1       | 378.3    |
| Itajaí Do     | Trombudo Central         | 0,4  | 43,0 | 62,2 | 58,5 | 60,8 | 61,8 | 40,6 | 40,6 | 224,5       | 367.9    |
| Oeste         | Agrolandia               | 0,0  | 52,8 | 73,0 | 54,2 | 49,0 | 50,6 | 45,0 | 45,0 | 229,0       | 369.6    |
|               | Barragem Oeste           | 0,0  | 63,0 | 74,0 | 66,6 | 34,0 | 63,8 | 28,0 | 28,0 | 237,6       | 357.4    |
|               | Mean of the<br>Sub-basin | 8,7  | 58,9 | 69,3 | 56,3 | 47,4 | 53,6 | 35,7 | 35,7 | 231,9       | 365.7    |
|               | Lomba Alta               | 0,0  | 41,2 | 63,8 | 42,8 | 32,6 | 44,4 | 74,0 | 74,0 | 180,4       | 372.8    |
|               | Saltinho                 | 0,0  | 46,7 | 61,6 | 45,0 | 26,3 | 45,3 | 73,4 | 73,4 | 179,6       | 371.7    |
|               | Ituporanga               | 0,0  | 47,9 | 61,8 | 42,6 | 36,8 | 56,4 | 59,6 | 59,6 | 189,1       | 364.7    |
| Itajaí Do Sul | Barragem Sul             | 0,0  | 40,8 | 76,3 | 51,6 | 42,4 | 47,6 | 43,2 | 43,2 | 211,1       | 345.1    |
|               | Ituporanga               | 35,0 | 45,0 | 43,0 | 49,0 | 41,0 | 65,0 | 46,0 | 46,0 | 178,0       | 370.0    |
|               | Mean of the<br>Sub-basin | 7,0  | 44,3 | 61,3 | 46,2 | 35,8 | 51,7 | 59,2 | 59,2 | 187,6       | 364.9    |
|               | Vidal Ramos              | 27,4 | 36,5 | 34,6 | 31,7 | 42,3 | 38,5 | 27,4 | 27,4 | 145,1       | 265.8    |
| Itajaí Mirim  | Mean of the<br>Sub-basin | 27,4 | 36,5 | 34,6 | 31,7 | 42,3 | 38,5 | 27,4 | 27,4 | 145,1       | 265.8    |
| Total Mea     | n of the Sub-basin       | 7.2  | 51,4 | 60,9 | 48,9 | 47,9 | 42,4 | 30,2 | 30,2 | 209,0       | 319,1    |

Source: ANA Measurements reformulated by JICA Survey Team

In the 1983 Flood there was only hourly rainfall data (however, in Timbó Novo there are gaps not recorded in July 8<sup>th</sup> to 9<sup>th</sup>) in two locations: Doutor Pedrinho and Timbó Grande (both located in Benedito River Basin). The discharge records (converted values from the streamflow levels) exist in 6 locations. It is noteworthy that these data are basically recorded twice a day (7 a.m and 7 p.m), but in the Rio do Sul case, they are recorded in 1 to 3 hours.

The Figure 6.3.1 indicates the hourly rainfall and discharge data from both locations.

- The rainfall had more intensity in the first half of the flood period (Days 6<sup>th</sup> and 7<sup>th</sup>), when the maximum hourly rainfall reached 21mm/h in Doutor Pedrinho, and the other hours around 15mm/h.
- The peak of the discharge occurred between July 8<sup>th</sup> and 9<sup>th</sup>, lagged by more than one day of the rainfall peak. There was only a delay on the peak in Rio do Sul e its cause was unknown, due to the lack of the hourly data, but it seems that a retention had happened on the Sul and Oeste dams.

The maximum discharge was 4.760 m<sup>3</sup>/s which happened in Indaial. In Rio do Sul and Ibirama the discharges was about 2000 to 2500 m<sup>3</sup>/s and about 500 to 1000 m<sup>3</sup>/s in Brusque.



Source: Final Report on The Itajaí River Basin Flood Control Project Part II Data Book, JICA, 1988

Figure 6.3.1 Rainfall and discharge Curve in the 1983 Flood event

## 6.3.2 1984 Flood Event

There are records of hourly rainfall in eight station about the flood that occurred in August (1984). The Figure 6.3.2 indicates a consecutive rainfall in the four days.

In the 1984 Flood event rained in four consecutive days, from August 5<sup>th</sup> to 8<sup>th</sup>, the rainfall recorded in the stations ranged from 160mm to 300mm. The higher rainfall level was about 300mm in Ituporanga and the rainfall was relatively high in Rio do Sul and Blumenau. Generally, there were more rain in the central and southwest regions and propensity for lower rain in northwest, north and east regions.



measurements were completed according to the Table 6.1.7). Figure 6.3.2 Rainfall total distribution in the 1984 Flood event

The Figure 6.3.3 indicates the hourly rainfall distribution in four days (mean of the basin is 213mm). The rainfall focused in Agust  $5^{th}$  and  $6^{th}$  and the recorded peak was 10mm/h at midday in

the second day (maximum per station was 18mm). From Agust 7<sup>th</sup> the rainfall was decreasing to the ratio of 1 to 2 mm per hour.



Source: Final Report on The Itajaí River Basin Flood Control Project Part II Data Book, JICA, 1988, reformulated by JICA Survey Team

## Figure 6.3.3 Hourly rainfall distribution in the 1984 Flood event

In the Figure 6.3.4 it is indicated the river discharges (converted values from water stages). There are water stages data in 6 locations, basically 2 daily readings carried out, but in Ibirama there are records from 1 to 3 hours.

- The discharges peaks in the 1984 flood (peak values among twice a day data) were: 5.000m<sup>3</sup>/s in Indaial and 4,300 m<sup>3</sup>/s in Apiúna, reaching the peak at 7 a.m in Agust 7<sup>th</sup>. Then, there is a lack of approximately 20 hours in relation to the rainfall peak.
- In the 1894 Flood event there was a delay in the peak occurrence in Rio do Sul in relation to the others, highlighting the interference of the dam. The discharge peak in each station was around 4,000m<sup>3</sup>/s in Apiúna, 2,000m<sup>3</sup>/s in Rio do Sul and Ibirama and 1,000m<sup>3</sup>/s in Timbó.



Figure 6.3.4 Discharge records in each station on the 1984 Flood event

## 6.3.3 2008 Flood Event

In the 2008 Flood event it started raining around November 18<sup>th</sup>, and then it remained until November 27<sup>th</sup>. The most of the rainfall happened during 4 days, among November 21<sup>th</sup> to 24<sup>th</sup>, reaching the mean of mark of 120,9mm in four days. However, as mentioned before, this flood focused in the downstream of the basin, reaching 266mm on the Itajaí (Lower Valley), 214mm on the Benedito river basin and 160mm on the Itajaí-Mirim river basin.

Hourly rainfall data were indicated on the Figure 6.3.5 and in the Table 6.3.2. The larger hourly rainfall recorded was 40,4mm/h in Agust 22<sup>th</sup> in Blumenau.

| C1             |                          |       |       |       | ¢     | Da    | ate   |       |       |       |       | Total       | Total        |
|----------------|--------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------------|--------------|
| basin          | Station                  | 11/18 | 11/19 | 11/20 | 11/21 | 11/22 | 11/23 | 11/24 | 11/25 | 11/26 | 11/27 | (4<br>days) | (11<br>days) |
|                | Pomerode                 | 2.5   | 9.8   | 11.4  | 41.5  | 34.3  | 114.3 | 62.3  | 15.3  | 11.2  | 25.5  | 252.4       | 328.1        |
|                | Blumenau                 | 0.2   | 30.8  | 13.9  | 38.0  | 43.3  | 243.5 | 250.9 | 10.5  | 9.6   | 20.8  | 575.7       | 661.5        |
| Acu            | Apiuna Regua<br>Nova     | 0.7   | 14.3  | 4.8   | 3.6   | 10.6  | 55.5  | 83.1  | 8.3   | 9.7   | 8.9   | 152.8       | 199.5        |
| tajaí <i>i</i> | Neisse<br>Central        | 0.5   | 15.6  | 0.5   | 3.7   | 0.0   | 65.5  | 66.5  | 8.3   | 11.0  | 6.5   | 135.7       | 178.1        |
|                | Rio Do Sul               | 1.0   | 2.4   | 0.5   | 1.6   | 8.6   | 17.4  | 35.9  | 1.6   | 2.6   | 1.8   | 63.5        | 73.4         |
|                | Mean of the<br>Sub-basin |       |       |       | 17.7  | 19.4  | 99.2  | 99.7  |       |       |       | 236.0       | 288.1        |
|                | Arrozeira                | 1.4   | 11.7  | 8.3   | 36.6  | 28.9  | 125.2 | 72.7  | 7.8   | 12.9  | 32.6  | 263.4       | 338.1        |
| 0              | Timbo Novo               | 1.4   | 15.8  | 14.5  | 11.0  | 21.6  | 184.9 | 63.4  | 55.2  | 36.9  | 29.4  | 280.9       | 434.1        |
| enedit         | Doutor<br>Pedrinho       | 1.4   | 8.2   | 9.0   | 28.8  | 11.1  | 36.0  | 22.1  | 0.0   | 31.0  | 6.8   | 98.0        | 154.4        |
| B              | Mean of the<br>Sub-basin |       |       |       | 25.5  | 20.5  | 115.4 | 52.7  |       |       |       | 214.1       | 308.9        |
|                | Witmarsum                | 0.9   | 0.0   | 1.0   | 4.9   | 13.1  | 11.2  | 9.7   | 4.8   | 1.6   | 0.0   | 38.9        | 47.2         |
| e              | Barra Do<br>Prata        | 0.0   | 0.0   | 4.0   | 0.0   | 3.2   | 0.0   | 2.7   | 0.0   | 0.0   | 0.0   | 5.9         | 9.9          |
| Norte          | Barragem<br>Norte        | 0.0   | 0.0   | 0.0   | 0.0   | 4.4   | 7.8   | 20.0  | 0.0   | 0.0   | 7.0   | 32.2        | 39.2         |
| ğ              | Iracema                  | 3.4   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0         | 3.4          |
| ajai           | Nova Cultura             | 0.0   | 2.3   | 2.0   | 1.8   | 0.9   | 2.1   | 0.0   | 18.0  | 2.3   | 0.0   | 4.8         | 29.4         |
| It             | Ibirama                  | 0.0   | 0.0   | 0.0   | 0.0   | 10.0  | 55.0  | 40.0  | 9.0   | 4.0   | 0.0   | 105.0       | 118.0        |
|                | Mean of the<br>Sub-basin |       |       |       | 1.1   | 5.3   | 12.7  | 12.1  |       |       |       | 31.1        | 41.2         |
|                | Taio                     | 0.0   | 5.0   | 5.5   | 10.0  | 18.1  | 24.7  | 8.9   | 6.3   | 1.7   | 0.0   | 61.7        | 80.2         |
|                | Pouso<br>Redondo         | 1.0   | 3.3   | 7.7   | 8.0   | 26.1  | 15.8  | 20.8  | 2.1   | 2.3   | 4.0   | 70.7        | 91.1         |
| Jeste          | Trombudo<br>Central      | 1.2   | 0.2   | 1.3   | 1.6   | 7.4   | 15.2  | 11.5  | 1.0   | 0.7   | 1.5   | 35.7        | 41.6         |
| (Do C          | Barragem<br>Oeste        | 0.4   | 2.1   | 2.9   | 0.0   | 24.7  | 14.2  | 6.6   | 8.7   | 1.4   | 3.5   | 45.5        | 64.5         |
| Itaja          | C. Ribeirão<br>Caetano   | 56.6  | 15.8  | 6.6   | 3.0   | 2.1   | 0.6   | 36.2  | 14.4  | 20.5  | 1.4   | 41.9        | 157.2        |
|                | Agrolandia               | 0.0   | 0.0   | 0.0   | 11.0  | 8.2   | 10.0  | 6.0   | 2.0   | 1.8   | 0.0   | 35.2        | 39.0         |
|                | Mean of the Sub-basin    |       |       |       | 5.6   | 14.4  | 13.4  | 15.0  |       |       |       | 48.5        | 78.9         |
| _              | Ituporanga               | 0.5   | 2.9   | 2.7   | 2.1   | 4.0   | 8.9   | 11.0  | 1.6   | 2.3   | 2.5   | 26.0        | 38.5         |
| Sul            | Lomba Alta               | 0.2   | 0.0   | 7.4   | 5.1   | 12.0  | 19.6  | 7.8   | 4.6   | 3.2   | 0.9   | 44.5        | 60.8         |
| Ô              | Barragem Sul             | 0.0   | 0.3   | 7.2   | 0.5   | 18.7  | 13.5  | 7.6   | 1.8   | 0.2   | 1.4   | 40.3        | 51.2         |
| jaí ]          | Saltinho                 | 0.0   | 1.8   | 7.3   | 0.0   | 12.8  | 13.8  | 5.4   | 0.0   | 0.0   | 0.0   | 32.0        | 41.1         |
| Itaj           | Mean of the<br>Sub-basin |       |       |       | 1.9   | 11.9  | 14.0  | 8.0   |       |       |       | 35.7        | 47.9         |
|                | Salseiro                 | 0.6   | 12.6  | 6.8   | 6.6   | 6.6   | 53.6  | 24.7  | 6.7   | 2.4   | 3.9   | 91.5        | 124.5        |
| m a'           | Botuvera                 | 0.0   | 5.1   | 15.5  | 26.5  | 35.9  | 165.2 | 106.5 | 22.5  | 6.0   | 15.7  | 334.1       | 398.9        |
| ltaj:<br>Airi  | Vidal Ramos              | 0.0   | 24.9  | 7.4   | 28.5  | 7.0   | 9.4   | 8.9   | 25.4  | 6.0   | 5.0   | 53.8        | 122.5        |
|                | Mean of the<br>Sub-basin |       |       |       | 20.5  | 16.5  | 76.1  | 46.7  |       |       |       | 159.8       | 215.3        |
| Total M        | ean of the Basin         |       |       |       | 12.1  | 14.7  | 55.1  | 39.0  |       |       |       | 120.9       | 120.9        |

| Table 6.3.2 Daily | Rainfall in th | e 2008 Floor  | l Event |
|-------------------|----------------|---------------|---------|
| Table 0.3.2 Daily | Kaiman m ui    | e 2006 F 1000 | і Елепі |

Source: ANA measurements reshaped by JICA Survey Team



Preparatory Survey for the Project on Disaster Prevention and

Mitigation Measures for the Itajai River Basin

Related to the 2008 Flood event, the rainfall data indicated on the report "Desastre de 2008 no vale do Itajaí" is as following:



Source: Disaster of 2008 in the valley of Itajaí

#### Figure 6.3.6 Rainfall Level records on the 2008 Flood event

The Figure 6.3.7 shows the 2008 flood simulation about the result hydrograph (See details in the 7 item model). Due to the focused rainfall distribution and the scarcity of simulated rainfall recorded information it is difficult to calibrate the rainfall, but the discharge were calculated around 4000m<sup>3</sup>/s in Blumenau, 1200m<sup>3</sup>/s in Brusque and around 100m<sup>3</sup>/s in Timbó. The discharge was estimated around 6500m<sup>3</sup>/s in Itajaí, but due to the large flood occurrences, the discharge is believed to be lower.



Figure 6.3.7 Outflow calculation results in 2008 Flood event (1/2)



Figure 6.3.7 Outflow calculation results in 2008 Flood event (2/2)

## 6.3.4 2010 Flood Event

In the 2010 Flood event the intense rainfall started in April 21<sup>th</sup> and continued until 26<sup>th</sup>. Rainfall data from this flood were recorded in 18 stations. However, different agencies carried out the measurements in many places; and, due to the unreliability or high number of missing measurements in some stations, data source and organization manners were adopted and showed in the following Table 6.3.3.

| Sub<br>Basin     | Station                                                                                                            | Source                 | Data Reability and Failure Data Interpolation                                                                                                                             | Interpolation<br>Equation |
|------------------|--------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| do               | Alfredo<br>Wagner                                                                                                  | FURB                   | Good correlation with Ituporanga, no reability problems. Missing measurements were supplemented by the Ituporanga INMET data.                                             | y = 0.7425x + 0.1077      |
| Rio Itaja<br>Sul | Ituporanga                                                                                                         | INMET,<br>FURB,<br>ANA | The correlation between INMET and FURB is good, implying that the reliabilities are also good. Thus, the missing measurements were complemented with INMET based on FURB. | y = 1.0021x - 0.00687     |
| ajaí do Oeste    | Rio do<br>Campo                                                                                                    | INMET                  | Correlation was observed with Dam West, and they are reliable. Missing measurements complemented with Dam West.                                                           | y = 0.7593x + 0.6886      |
|                  | Oeste dam                                                                                                          | ANA                    | Good and reliable correlation with Taió (FURB). Missing measurements complemented with the same.                                                                          | y = 1.2405x + 0.0829      |
|                  | Pouso<br>Redondo FURB Some correlat<br>because of mis                                                              |                        | Some correlation with Taió and Rio do Oeste are reliable; The data is reset because of missing measurements.                                                              | -                         |
| Rio It           | Taió         FURB,<br>ANA         Good and reliable correlation between F<br>FURB data was used with minor missing |                        | Good and reliable correlation between FURB and ANA with similar values.<br>FURB data was used with minor missing measurements, the missing ones were                      | y = 0.7737x + 0.1200      |

Table 6.3.3 Data Source and Organization Manners

| Sub<br>Basin          | Station           | Source                                    | Data Reability and Failure Data Interpolation                                                                                                                                                                                                                                                                                                                                                | Interpolation<br>Equation |
|-----------------------|-------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                       |                   |                                           | supplied with ANA data.                                                                                                                                                                                                                                                                                                                                                                      |                           |
|                       | Rio do Oeste      | Salto Pilão,<br>FURB                      | Good correlation between Salto Pilão and FURB, but Salto Pilão values are<br>approximately the double. By the other hand, the correlations between Taió and<br>FURB are not good enough, but the rainfall volumes are virtually the same.<br>Thus, the decision was consider the FURB as the superior one. The missing<br>measurements were supplied by Salto Pilão with larger correlation. | y = 0.5189x - 0.0159      |
| ajaí<br>orte          | Boiteux dam       | Salto Pilão                               | Some correlation with Ibirama are reliable. The missing measurements were supplied with Ibirama.                                                                                                                                                                                                                                                                                             | y = 1.4989x + 0.5459      |
| Rio It<br>do No       | Ibirama           | Celesc e<br>ANA,<br>FURB                  | Good correlation between FURB and Celesc, similar and reliable values. The missing measurements were supplied with ANA, based on FURB.                                                                                                                                                                                                                                                       | y = 0.9013x + 0.0383      |
| e                     | Rio do Sul        | FURB,<br>ANA                              | Good and reliable correlation between FURB and Salto Pilão. The missing measurements were supplied with ANA, based on FURB with minor flood missing measurements.                                                                                                                                                                                                                            | y = 1.1004x - 0.0096      |
| the upstrear          | Apiúna            | y = 0.6311x + 0.1298                      |                                                                                                                                                                                                                                                                                                                                                                                              |                           |
| Itajaí by t           | Indaial           | -                                         |                                                                                                                                                                                                                                                                                                                                                                                              |                           |
|                       | Pinhal dam        | Celesc                                    | The rainfall is not detected mainly in the second half. There are many missing measurements. Being close to the Bonito Station, despised the Pinhal.                                                                                                                                                                                                                                         | -                         |
|                       | Rio Bonito<br>dam | Celesc                                    | Some correlations in Timbó are low. However, there is no problem because there are no missing measurements. The missing measurements were supplied with Timbó.                                                                                                                                                                                                                               | y = 0.6111x + 0.8844      |
| Benedito              | Timbó             | FURB                                      | Correlation with Indaial, and values are consistent. Thus, the measurements were complemented with Indaial missing measurements.                                                                                                                                                                                                                                                             | y = 0.8860x + 0.1164      |
| the<br>sam            | Blumenau          | Celesc                                    | Correlation with Indaial, and values are consistent. Thus, the measurements were complemented with Indaial missing.                                                                                                                                                                                                                                                                          | y = 0.6532x + 0.3515      |
| Itajaí by<br>downstre | Itajaí            | Cepsul<br>Ibama,<br>Pesquisador<br>Robert | There are correlations in both. There is no problem on the values which are similar. Average values for both, due to there are no missing measurements.                                                                                                                                                                                                                                      | -                         |
|                       | Salseiro          | ANA                                       | Many missing measurements, which are important as data since the rainfall<br>characteristic is different about Brusque. Missing measurements complemented<br>with Ituporanga that showed reasonable correction.                                                                                                                                                                              | y = 1.4944x + 0.1234      |
| Itajaí Mirim          | Brusque           | ANA                                       | No metering station nearby, but is relatively high the correction with Indaial (Itajaí is low, Blumenau with high number of missing measurements, discarded). Missing measurements complemented with Indaial, because the values are also consistent.                                                                                                                                        | y = 1.0431x + 0.0793      |

The Figure 6.3.2 indicates the hourly rainfall distribution and rainfall level (by each station) in the 2010 Flood event.

- The 2010 Flood event had two peaks: Between the days 21<sup>th</sup> and 23<sup>th</sup> and between 24<sup>th</sup> and 26<sup>th</sup>. The rainfall volume was practically the same in both times.
- The maximum value of the hourly rainfall in the basin was around 9 mm/h. The values remained on the level of 10 to 30 mm/h; like in Brusque (30mm/h) and Boiteux dam (28mm/h).
- The total rainfall was rised specially in the Boiteux (Itajaí do Norte Basin total rainfall: 400mm), in Rio do Campo and Oeste Dam in the Itajaí do Oeste Basin, and in Rio Bonito Dam in the Benedito Basin. The rainfall seems to be larger in the north and northeast regions.
- By the other hand, the rainfall was relatively weaker in the Itajaí do Sul Basin, as Alfredo Wagner and Ituporanga.



Source: JICA Survey Team

Figure 6.3.8 Mean of hourly rainfall in the 2010 Flood event (mid-valley)

The river level data were obtained in 7 locations. In the Figure 6.3.9 were indicated the river level recorded and in the Figure 6.3.10, the discharge convertion results made by the relation discharge-level.

- The peak discharge at Rio do Sul was approximately 850m<sup>3</sup>/s. According to the researches made in Rio do Sul , *in loco*, part of the city overflowed.
- The peak occurrence in Taió was delayed because of the dam. The Oeste dam overflowed on this event. A flood close to the prefecture happened in Taió City
- Discharge variation on the opening of the Sul Dam gates occurred in Ituporanga. The Sul Dam did not overflow, fulfilling its role as regulator of flooding, and there was no flood in that city.
- The discharge peak was approximately 800 m<sup>3</sup>/s in Ibirama. The Norte Dam fulfiled its role as regulator of flooding, and there was no flood in that city.
- The peak discharge at Timbó was approximately 600m<sup>3</sup>/s. According to the municipality information part of this city overflowed.
- The discharge peak in Blumenau was approximately 2,600m<sup>3</sup>/s.



Source: Rainfall data measured by JICA Survey Team

Figure 6.3.9 River Level record in the 2010 Flood event



Source: Rainfall data measured and converted in discharge by JICA Survey Team

Figure 6.3.10 2010 Flood Discharges

The operational situation of the Sul and Oeste dams in the 2010 Flood event are indicated in the Figure 6.3.11.

The Oeste dam started the gates closing in the  $22^{th}$  day, in the first period of the flood; and in the  $23^{th}$  day closed 5 gates, keeping open 2 others. As the rain got lighter, the dam opened the gates again, letting 4 gates opened in the  $25^{th}$  day. However, it restarted to rain pouring and all the gates were closed in the middle of the day  $26^{th}$ . Consequently, the reservoir began filling on the afternoon of the day  $26^{th}$ , starting the overflow. The overflow discharge reached the peak in the morning of the day  $27^{th}$ , but by that time the rain had ceased.

On the other hand, the Sul dam began closing the gates on the 25<sup>th</sup> afternoon, closing them completely in 27<sup>th</sup>. However, the river level reached the overflow maximum quota EL. 396.1 m, leaving approximately 3m to the overflow elevation (EL 399m).

In both operations the dam guidelines were not followed as mentioned in the Annex B.



Figure 6.3.11 Operational situation of both Oeste and Sul dams in the 2010 Flood event

# CHAPTER 7 FLOOD OUTFLOW ANALYSIS

# 7.1 Synthesis

According to the explanation in the Annex D, there are difficults to define the security level against floods, which is a adequacy planning measure. Then, the calculated flood discharge to 5, 10, 25, 50 years of Return Period project. The flood discharge will be calculated by outflow analysis based on the rainfall design, the bellow figure contains the analysis flow.



Source: Equipe de Estudos da JICA

#### Figure 7.1.1 Flood discharge calculation flowchart

# 7.2 Rainfall Design Rainfall Analysis

## 7.2.1 Duration Time

When calculating the rainfall design, there are some points that should be considerated, such as the rainfall features and the flood outflow way due to determine the rainfall design time duration. There are cases that the rainfall time duration is indicated by hours; however, in the Rio Itajaí Basin the rainfall time duration during the flood (time when the flood arrives at the downstream) is larger than the first day. As the daily rainfall data are more reliable (only part of the recorded data are hourly rates) the time unit used is considerated as daily.

The Figures 7.2.1 and 7.2.2 illustrate the distribution of total rainfall during frequency which is bigger than 50mm and 100mm, respectively. The total rainfall time bigger than 50mm is from 5 to 6 days, maximum. The rainfall time duration bigger than 100mm is from 5 to 6 days, maximum,

but the biggest frequency corresponds to 4 days. Thus, rainfall design time duration was established as 4 days.



Souce: JICA Survey Team Figure 7.2.1 Total rainfall of the frequency distribution duration bigger than 50mm



Figure 7.2.2 Total rainfall of the frequency distribution duration bigger than 100 mm

# 7.2.2 Mean of Rainfall Calculation on the Basin

For determinating the rainfall design (4 days duration), firstly the mean of the basin rainfall was calculated using the daily rainfall data recorded on the Itajaí River Basin stations. The calculation methodology is described bellow.

- As basis for the calculation, selected daily rainfall data recorded by ANA since 1950 and on were used, because of its reliability.
- The Thiessen method was used for determing the mean of rainfall in the basin. The stations that lack daily records were neglected in the calculation (then, when the daily measurement is neglected, the ponderation of the coefficient and Thiessen changes.)

To indentify the rain trend, it was calculated the mean of rainfall in the whole Itajaí River Basin and the mean of rainfall in each sub-basin of the main tributaries rivers (See Figure 2.3.1 - ANA Rainfall Station Localization Map).

# 7.2.3 Rainfall Design Determination

The rainfall design was determinated based on the rainfall highest rates from 4 days since 1950. Furthermore, it was calculated according to the following guidelines for the whole basin and for each sub-basin of the main tributaries.

- The extreme value distribution (Gumbel distribution), which has a high degree of compatibility with the short-term hydrological phenomenon; also its variants, extreme value distribution and generic (GEV) and exponential distribution maximum value (SQRT-ET) were considered as a distribution model.
- It was used the SLSC as an indicator more consistent and the jackknife error standard estimated as an indicator of stability, where the SLSC is less than 0.04 into the distribution, following the model of distribution that minimizes jackknife error.
- (1) Rainfall Design for the Whole Itajaí Basin
- 1) Mean of Rainfall in the Basin

The maximum rainfall of 4 days for each year was extracted by the Thiessen method (which was determined by the mean of rainfall in the whole Itajaí River Basin). As illustrated on the Figure 7.2.3, the biggest rainfall of 4 days happened in 1983, 222,2 mm rate, the rate of 1984, 218.4mm was the second biggest, and 1992 was 195.7mm. In the 2008 Flood event, which has caused serious damages, the rainfall was focused in some regions; so, the mean of the basin rates was 144,3 which is considered a average size Flood event.





# 2) Rainfall Design

The mean of the whole Itajaí River Basin complies to the exponential distribuction of maximum value (extreme value). The rainfall design of 5 return years is 134,7mm; 10 return years is 156,3 mm; 25 return years is 178,5 mm and 50 return years is 209,2 mm. The 1983 and 1984 Flood event are equivalent to 30 return years flood. The 2008 Flood event, considering the whole basin, is equivalent to the 5 and 10 return years.

| I oda Bacia                               |                   |                              |                           |                                           |                                                    |                                        |                                           |                                           |                                           |
|-------------------------------------------|-------------------|------------------------------|---------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Função d istribuição de<br>probab ilidade |                   | Distribuição<br>e xponencial | Distribuição<br>de Gumbel | Distribuição raiz<br>quadrada exponencial | Distribuição<br>genérica de<br>valores<br>extremos | Distribuição<br>de Pearson<br>tipo III | Distribuição<br>log-normal<br>parâmetro 3 | Distribuição<br>log-normal<br>parâmetro 3 | Distribuição<br>log-normal<br>parâmetro 2 |
| Estimação de                              | parâmetros        | Método<br>momento L          | Método<br>momento L       | Máxima<br>verossimilhança                 | Método<br>momento L                                | Método<br>momento L                    | Método Iwai                               | Método<br>Ishihara/Takase                 | Método<br>momento L                       |
| Abreviação                                |                   | Exp                          | Gumbel                    | SqrtEt                                    | Gev                                                | LogP3                                  | Iwai                                      | Ishitaka                                  | LN2LM                                     |
|                                           | 1/2               | 100.8                        | 1 06.3                    | 104.8                                     | 105.1                                              | 105.2                                  | -                                         | -                                         | -                                         |
|                                           | 1/3               | 115.2                        | 120                       | 118.5                                     | 118.4                                              | 118.8                                  | -                                         | -                                         | -                                         |
| Valor                                     | 1/5               | 133.2                        | 1 35.2                    | 134.7                                     | 133.9                                              | 134.3                                  | -                                         | -                                         | —                                         |
| hidrológico                               | 1/10              | 157.7                        | 1 54.3                    | 156.3                                     | 154.2                                              | 154.6                                  | -                                         | -                                         | -                                         |
| provável                                  | 1/20              | 182.2                        | 172.7                     | 178.5                                     | 174.6                                              | 174.8                                  | -                                         | -                                         | -                                         |
| (estimação de                             | 1/30              | 196.5                        | 1 83.2                    | 191.9                                     | 186.8                                              | 186.7                                  | -                                         | -                                         | -                                         |
| parâmetros em                             | 1/50              | 214.6                        | 196.4                     | 209.2                                     | 202.6                                              | 202.1                                  | -                                         | -                                         | -                                         |
| todas as                                  | 1/80              | 231.2                        | 2 08.5                    | 225.7                                     | 217.4                                              | 216.7                                  | -                                         | -                                         | -                                         |
| amostras)                                 | 1/100             | 239.1                        | 214.2                     | 233.7                                     | 224.7                                              | 223.8                                  | -                                         | -                                         | -                                         |
|                                           | 1/150             | 253.4                        | 224.6                     | 248.5                                     | 238                                                | 236.8                                  | -                                         | -                                         | -                                         |
|                                           | 1/200             | 263.6                        | 232                       | 259.3                                     | 247.7                                              | 246.3                                  | -                                         | -                                         | -                                         |
| Coeficiente de                            | correlação        | 0.942                        | 0.996                     | 0.996                                     | 0.997                                              | 0.996                                  | -                                         | -                                         | —                                         |
| SLS                                       |                   | 0.04                         | 0.035                     | 0.026                                     | 0.027                                              | 0.025                                  | -                                         | -                                         | —                                         |
| Método<br>Jackknife                       | Valor<br>estimado | 214.6                        | 196.4                     | 210.5                                     | 202.5                                              | 201.6                                  | _                                         | _                                         | _                                         |
| 1/50                                      | Erro<br>estimado  | 16.8                         | 14.4                      | 14.1                                      | 21.9                                               | 20.3                                   | _                                         | _                                         | _                                         |
| Método ap                                 | licado            |                              |                           | ?                                         |                                                    |                                        |                                           |                                           |                                           |
|                                           |                   |                              |                           |                                           |                                                    |                                        |                                           |                                           |                                           |

Table 7.2.1 Results of the Rainfall Design Calculation for the Whole Itajaí River Basin

## (2) Rainfall Design for the Tributaries Rivers

1) Mean of Rainfall in the Basin

The Figure 7.2.4 and the Table 7.2.2 illustrates the mean of rainfall in each sub-basin of tributaries rivers.

- In the large 1983, 1984 and 1992 Flood events the maximum rainfall of 4 days occurred in the same period. By the other hand, in the 2008 Flood event, in the Itajaí River Basin, Benedito River Sub-basin and Itajaí Mirim River the largest Flood event occurred in the month of November; in the High Valley, the rainfall rate was low and the rainfall of four days occurred in different periods.
- In the 1983 and 1984 Flood events the rainfall rates were around 200/250 mm in the whole basin; but, in 2008 rainfall with different rates occurred in the whole basin; in the biggest basin, Itajaí River Basin, the rate was higher than 300 mm.





|      | Itaiai D | o Oeste       | Itaiai | Do Sul | Itaiai D | o Norte | Bon   | edito  | Itaia | i A cu       | Itaiai d     | Mirim |
|------|----------|---------------|--------|--------|----------|---------|-------|--------|-------|--------------|--------------|-------|
| 1050 |          | 122.0         | 2/1    | 110 6  |          | 105.0   | 2/1   |        | 2/1   | 102.2        |              | 07.1  |
| 1950 | 3/1      | 122.9         | 3/1    | 110.6  | 3/1      | 105.8   | 3/1   | 106.8  | 3/1   | 103.3        | 3/1          | 87.1  |
| 1951 | 10/15    | 102.9         | 10/14  | 115.2  | 10/15    | 98.1    | 10/15 | 88.4   | 10/18 | 82.6         | 10/15        | 84.1  |
| 1952 | 1/23     | 115.3         | 1/23   | 99.8   | 9/3      | 97.9    | 9/2   | 76.3   | 1/23  | 89.7         | 1/23         | 103.5 |
| 1953 | 10/28    | 108.0         | 10/28  | 98.7   | 10/28    | 93.3    | 11/11 | 70.8   | 10/28 | 96.6         | 10/28        | 93.5  |
| 1954 | 10/19    | 105.5         | 10/18  | 142.7  | 10/19    | 102.5   | 3/31  | 140.5  | 3/31  | 161.7        | 3/31         | 159.9 |
| 1955 | 5/17     | 117.3         | 7/4    | 90.4   | 5/17     | 145.8   | 5/17  | 164.8  | 5/17  | 124.8        | 5/17         | 127.6 |
| 1956 | 1/16     | 72.2          | 1/29   | 88.7   | 1/22     | 76.1    | 1/21  | 80.7   | 5/5   | 53.5         | 9/18         | 68.3  |
| 1957 | 8/16     | 155.8         | 7/30   | 125.7  | 8/16     | 135.1   | 8/16  | 97.6   | 8/16  | 112.2        | 7/30         | 123.2 |
| 1958 | 3/14     | 145.2         | 8/6    | 104.2  | 3/13     | 139.3   | 2/18  | 143.9  | 3/13  | 128.8        | 3/13         | 136.6 |
| 1050 | 2/20     | 78.0          | 4/22   | 06.2   | 8/20     | 07.6    | 2/10  | 110.6  | 8/20  | 102.5        | 8/20         | 116.6 |
| 1939 | 2/20     | 78.0          | 4/23   | 90.3   |          | 97.0    | 6/30  | 121.5  | 6/30  | 102.5        | 6/30         | 106.7 |
| 1960 | 11/10    | /8.0          | 1/31   | 102.1  | //31     | /0./    | 11/20 | 121.5  | 11/27 | 134.0        | 1/51         | 100.7 |
| 1961 | 9/9      | 196.3         | 10/31  | 129.5  | 9/9      | 135.5   | 10/31 | 141.6  | 10/31 | 185.5        | 10/31        | 1/8.2 |
| 1962 | 9/19     | 90.0          | 9/17   | 95.2   | 9/19     | 89.6    | 9/19  | 76.0   | 9/19  | 99.1         | 9/18         | 111.4 |
| 1963 | 9/26     | 160.5         | 9/25   | 205.7  | 9/26     | 140.3   | 9/26  | 135.4  | 9/26  | 137.6        | 9/26         | 155.3 |
| 1964 | 1/31     | 86.6          | 4/28   | 78.5   | 2/16     | 59.3    | 4/28  | 73.4   | 4/28  | 61.9         | 4/28         | 78.0  |
| 1965 | 8/18     | 100.8         | 8/17   | 104.7  | 8/18     | 91.3    | 8/18  | 86.6   | 4/28  | 93.7         | 8/18         | 90.4  |
| 1966 | 2/9      | 150.8         | 2/12   | 126.0  | 2/9      | 122.1   | 2/9   | 95.6   | 2/9   | 135.7        | 2/9          | 118.0 |
| 1967 | 8/21     | 75.2          | 9/20   | 98.5   | 2/23     | 67.8    | 2/10  | 77.5   | 2/23  | 94.7         | 2/10         | 82.1  |
| 1968 | 12/21    | 144.0         | 12/22  | 128.1  | 12/22    | 117.5   | 10/27 | 91.2   | 12/22 | 84.9         | 12/22        | 100.1 |
| 1969 | 2/16     | 153.2         | 2/16   | 120.2  | 2/17     | 114.1   | 11/13 | 126.3  | 2/27  | 85.8         | 6/15         | 90.5  |
| 1970 | 12/10    | 81.6          | 1/1    | 83.0   | 12/24    | 81.9    | 12/22 | 88.7   | 1/1   | 96.1         | 2/2          | 94.4  |
| 1970 | 12/10    | 07.0          | 7/2    | 00.2   | 6/5      | 01.7    | 10/10 | 0/ 2   | 5/5   | 70.0         | 5/5          | 74.9  |
| 19/1 | 1/9      | 97.0          | 0/25   | 77.3   | 0/3      | 90.7    | 0/25  | 74.3   | 3/3   | 144.9        | 3/3          | 150.0 |
| 1972 | 8/25     | 199.5         | 8/25   | 155.8  | 8/25     | 165.5   | 8/25  | 164.3  | 8/25  | 144.8        | 8/25         | 159.9 |
| 1973 | 8/11     | 111.6         | 7/19   | 105.1  | 8/26     | 115.4   | 8/25  | 139.5  | 8/26  | 114.8        | 7/19         | 132.7 |
| 1974 | 2/17     | 121.2         | 8/31   | 77.0   | 7/22     | 116.2   | 7/22  | 162.5  | 7/21  | 113.1        | 3/21         | 123.2 |
| 1975 | 9/30     | 139.2         | 9/30   | 79.9   | 9/30     | 127.6   | 9/30  | 113.4  | 9/30  | 119.2        | 1/6          | 125.1 |
| 1976 | 11/29    | 141.0         | 11/29  | 98.2   | 11/29    | 96.3    | 5/26  | 96.7   | 5/25  | 85.9         | 5/26         | 92.4  |
| 1977 | 8/15     | 163.1         | 8/15   | 175.9  | 8/15     | 123.3   | 1/17  | 128.5  | 8/15  | 107.6        | 8/15         | 102.2 |
| 1978 | 12/25    | 124.9         | 12/23  | 115.9  | 12/25    | 138.3   | 12/23 | 120.3  | 12/23 | 121.8        | 12/23        | 138.1 |
| 1979 | 5/7      | 116.1         | 5/7    | 100.7  | 5/7      | 112.7   | 10/6  | 100.8  | 4/3   | 96.3         | 5/7          | 92.9  |
| 1980 | 12/19    | 195.4         | 12/19  | 155.3  | 12/19    | 135.2   | 12/19 | 156.8  | 12/19 | 123.1        | 12/19        | 121.4 |
| 1981 | 12/20    | 118.7         | 12/20  | 81.9   | 12/21    | 81.8    | 3/27  | 99.2   | 10/27 | 116.5        | 10/27        | 140.1 |
| 1082 | 11/3     | 111.2         | 11/3   | 102.4  | 11/3     | 94.1    | 2/4   | 127.0  | 2/2   | 103.4        | 10/27        | 73.3  |
| 1962 | 7/6      | 221.6         | 7/7    | 102.4  | 7/6      | 260.0   | 2/4   | 252.0  | 2/2   | 207.4        | 7/6          | 172.4 |
| 1965 | 9/5      | 231.0         | 0/5    | 251.6  | 9/5      | 200.0   | 9/5   | 232.0  | 9/5   | 207.4        | 9/5          | 226.9 |
| 1984 | 8/3      | 229.0         | 8/3    | 231.0  | 8/3      | 191.0   | 8/3   | 207.8  | 8/3   | 213.2        | 8/J<br>11/20 | 220.8 |
| 1985 | 2/12     | 158.8         | 2/12   | 69.2   | 2/13     | 92.2    | 4/5   | 109.4  | 2/12  | 87.9         | 11/20        | 100.2 |
| 1986 | 11/3     | 118.0         | 11/3   | 108.4  | 4/4      | 92.0    | 9/18  | 93.0   | 9/19  | 90.4         | 10/9         | 114.6 |
| 1987 | 1/11     | 107.8         | 5/12   | 117.2  | 6/13     | 109.9   | 2/13  | 176.4  | 2/14  | 140.3        | 2/14         | 113.1 |
| 1988 | 5/21     | 80.0          | 9/20   | 69.8   | 5/21     | 93.0    | 5/21  | 94.7   | 9/19  | 79.1         | 9/20         | 69.6  |
| 1989 | 5/3      | 105.2         | 5/3    | 109.0  | 9/11     | 105.1   | 1/4   | 145.0  | 1/5   | 178.7        | 1/6          | 132.2 |
| 1990 | 5/30     | 154.1         | 2/10   | 139.2  | 5/29     | 137.0   | 7/18  | 105.4  | 7/18  | 113.4        | 5/30         | 118.8 |
| 1991 | 6/20     | 121.6         | 6/20   | 106.1  | 6/20     | 126.1   | 6/20  | 143.8  | 1/23  | 115.2        | 1/23         | 115.2 |
| 1992 | 5/27     | 165.5         | 5/28   | 159.3  | 5/28     | 217.8   | 5/28  | 224.8  | 5/28  | 179.7        | 5/28         | 179.7 |
| 1993 | 9/21     | 137.8         | 7/2    | 126.0  | 9/21     | 157.6   | 9/21  | 130.2  | 9/21  | 110.2        | 9/21         | 110.2 |
| 1994 | 5/10     | 109.6         | 6/19   | 82.1   | 5/10     | 108.9   | 5/10  | 137.3  | 5/10  | 96.4         | 5/10         | 96.4  |
| 1995 | 1/10     | 110.8         | 1/10   | 111.7  | 1/10     | 86.6    | 7/5   | 127.8  | 1/7   | 129.7        | 1/7          | 129.7 |
| 1006 | 6/17     | 0/ 6          | 1/1/   | 81.0   | 6/17     | 140.2   | 6/17  | 11/1.0 | 6/17  | 85.5         | 6/17         | 85.5  |
| 1990 | 1/20     | 94.0<br>112.7 | 1/14   | 01.7   | 10/17    | 140.5   | 1/20  | 114.5  | 1/21  | 167.0        | 1/21         | 05.5  |
| 1997 | 1/30     | 115./         | 1/30   | 191.1  | 10/0     | 123.3   | 0/12  | 100.5  | 1/31  | 107.2        | 1/31         | 107.2 |
| 1998 | 4/20     | 115.0         | 4/27   | 90.8   | 1/31     | 95.5    | 8/13  | 108.5  | 4/26  | 101./        | 4/26         | 101./ |
| 1999 | 1/2      | 163.4         | 1/2    | 113.4  | 1/2      | 166.2   | 1/2   | 176.5  | 1/2   | 117.5        | 1/2          | 117.5 |
| 2000 | 9/12     | 112.1         | 9/12   | 115.4  | 9/12     | 119.9   | 2/14  | 146.8  | 2/14  | 113.4        | 2/14         | 113.4 |
| 2001 | 9/28     | 156.1         | 9/29   | 152.0  | 9/29     | 150.9   | 9/29  | 148.6  | 9/29  | 145.2        | 9/29         | 122.5 |
| 2002 | 11/27    | 128.6         | 4/18   | 91.5   | 7/31     | 79.5    | 7/31  | 92.9   | 1/10  | 94.6         | 4/1          | 76.6  |
| 2003 | 12/12    | 74.5          | 12/12  | 99.2   | 12/11    | 78.9    | 12/12 | 86.6   | 3/2   | 93.8         | 12/12        | 102.5 |
| 2004 | 9/12     | 107.8         | 9/12   | 119.7  | 10/22    | 104.3   | 10/22 | 159.1  | 10/23 | 101.5        | 9/12         | 86.5  |
| 2005 | 5/18     | 160.8         | 5/18   | 178.2  | 5/18     | 134.1   | 8/30  | 109.8  | 5/18  | 129.4        | 8/30         | 125.1 |
| 2006 | 11/18    | 92.2          | 1/23   | 97 3   | 11/17    | 89.1    | 9/30  | 57.1   | 11/18 | 94 /         | 11/18        | 82.1  |
| 2000 | 11/10    | 71.1          | 1/25   | 5/ 2   | 12/5     | 87.2    | 12/4  | 115.5  | 11/10 | 29.9<br>80.0 | 11/10        | 70.7  |
| 2007 | 10/16    | 126.4         | 10/16  | 977    | 10/15    | 112.6   | 12/4  | 259.7  | 11/2  | 200.2        | 11/1         | 222.7 |
| 2008 | 10/10    | 120.4         | 10/10  | 0/./   | 10/13    | 115.0   | 11/21 | 230.7  | 11/21 | 309.3        | 11/21        | 222.1 |
| 2009 | 9/28     | 129.3         | 9/28   | 114.2  | 9/28     | 116.3   | 9/28  | 121.8  | 9/28  | 122.3        | 4/23         | 75.0  |

## 2) Rainfall design

The Table 7.2.3 ilustrates the rainfall design in the Itajaí river and its tributaries.

- The rainfall design is relatively large in the Itajaí do Oeste Basin, Bendito basin and Itajaí Basin
- The Itajaí do Sul, Itajaí Mirim (both located in the south region) Rainfall Volume and Itajaí do Norte basin are relatively small.
- The rainfall design of the whole basin is relatively small, because of the focused pouring rainfall are balanced and the level is lower.

|                 | 1/5   | 1/10  | 1/20  | 1/25  | 1/50  |
|-----------------|-------|-------|-------|-------|-------|
| Total da Bacia  | 134.7 | 156.3 | 178.5 | 187.7 | 209.2 |
| Itajai do Oeste | 153.1 | 175.2 | 196.3 | 201.7 | 223.8 |
| Itajai do Sul   | 140.8 | 161.4 | 181.1 | 186.1 | 206.7 |
| Itajai do Norte | 140.4 | 160.3 | 179.3 | 184.1 | 204   |
| Benedito        | 154.8 | 179   | 202.3 | 208.1 | 232.4 |
| Itajaí-açu      | 144.1 | 168.9 | 194.4 | 205.2 | 229.9 |
| Itajai Mirim    | 140.1 | 160.5 | 179.9 | 184.8 | 205.2 |
|                 |       |       |       |       |       |

## 7.3 Choice of the Flood Design

The flood that will be used for Flood Plan evaluation (based on the recurrence time) will be choosen from the flood group obtained of the outflow calculation using the hyetograph of precipitation for the extended real rain project. In order to formulate flood prevention measures for different modalities of rainfall (different hyetograph) the ideal would be choosing several types of floods.

In the Main Plan was formulated a plan for 5 return years (mean of rainfall volume in 4 days in the whole basin = 135mm) until 50 return years (mean of rainfall volume in four day in the whole basin = 209mm); therefore, the four days precipitation was considered as 130mm to 220mm. The Table 7.3.1 bellow show the extract flood; the hourly data available needed for the outflow analysis refers to six passed floods (1972, 1980,1984,2005 and 2010); the rainfall rates were based on these six floods were. In relation to the1984 and 2010 Flood events, there are rainfall and discharge data measured in differents stations; thus, they will be used on the elaboration of the outflow analysis model (gauge of the rainfall-discharge model: HEC-HMS).

| Flood Occurrence<br>Time | Rainfall volume for 4 days<br>(mean of all the basin) | Choise | Choice of flood / Reason for disposal             |
|--------------------------|-------------------------------------------------------|--------|---------------------------------------------------|
| 31/10/1961               | 139,3 mm                                              |        | There is no record of hourly data of rainfall /   |
|                          |                                                       |        | discharge                                         |
| 26/09/1963               | 149,0 mm                                              |        | There is no record of hourly data of rainfall /   |
|                          |                                                       |        | discharge                                         |
| 25/08/1972               | 165,7 mm                                              | 0      | There are hourly records of rainfall (1 station)  |
| 19/12/1980               | 147,3 mm                                              | 0      | There are hourly records of rainfall (2 stations) |
| 06/07/1983               | 222,8 mm                                              | 0      | There are hourly records of rainfall (2 stations) |
| 05/08/1984               | 218,4 mm                                              | ¤      | Discharge and hourly data are consistent          |
| 28/05/1992               | 195,7 mm                                              |        | There is no record of hourly data of rainfall     |
| 31/01/1997               | 133,7 mm                                              |        | There is no record of hourly data of rainfall     |
| 02/07/1999               | 150,3 mm                                              |        | There is no record of hourly data of rainfall /   |
|                          |                                                       |        | discharge                                         |
| 29/09/2001               | 146,8 mm                                              |        | There are hourly records od rainfall              |
| 18/05/2005               | 144,3 mm                                              | 0      | There are hourly records of rainfall (8 stations) |
| 21/11/2008               | 135,1 mm                                              |        | The rainfall is extremely biased                  |
| 23/04/2010               | 130,3 mm                                              | ¤      | Discharge data and Hourly Rainfall are complete   |

Table 7.3.1 Flood for the purpose of the Survey

<sup>⊭</sup> Choosen for the outflow analysis calibration and flood plan. ○ Choosen for flood plan Source: JICA Survey Team

## 7.4 Analysis and Calibration Model

## 7.4.1 Division of the Basin

The basin division model for the purpose of outflow analysis, according to the illustrated on the Table 7.4.1 bellow, was elaborated taking into consideration: i) Main tributaries and ii) Determination of the necessary place or the cross section for the discharge calculation. The stretch between those determined places were connected to the chanel model. The Itajaí River Basin is presented on the the Figure 7.4.1 (Outflow model).

| Table 7.4.1 Main | Tributaries and  | l Discharge | Calculation | Place Which  | Were | Considered | in f | he Basin |
|------------------|------------------|-------------|-------------|--------------|------|------------|------|----------|
| Table 7.4.1 Main | 11 IDutaries and | i Discharge | Calculation | I lace which | were | Constacted | m u  | ne Dasin |

| Division                                                                                      |                                        |                     |                                                 |                                                                                                                                                          |  |  |
|-----------------------------------------------------------------------------------------------|----------------------------------------|---------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Name of the<br>Tributary river                                                                | Place                                  | Basin Area<br>(km2) | Distância de foz<br>/encontro dos rios<br>(km2) | Motivo da escolha do lugar para cálculo da vazão                                                                                                         |  |  |
| C.A=3.014,9 km2                                                                               | Barragem Oeste                         | 1.042,0             | 81,4                                            | Volume de contenção e descarga, e plano de reforma da barragem                                                                                           |  |  |
|                                                                                               | Taio                                   | 1.570,1             | 68,2                                            | Medidas contra enchentes de Taió: calibração com<br>os valores de medição                                                                                |  |  |
|                                                                                               | Antes do encontro<br>com Rio principal | 3.014,9             | 0,0                                             | Medidas contra enchentes da cidade de Rio do Sul<br>(antes do encontro dos Rios)                                                                         |  |  |
| Itajaí do Sul<br>C.A=2.026,7 km2                                                              | Barragem Sul                           | 1.273,0             | 43,4                                            | Volume de contenção e descarga, e plano de reforma da barragem.                                                                                          |  |  |
|                                                                                               | Ituporanga                             | 1.645,4             | 25,3                                            | Calibração com os valores de medição (o problema de enchentes é insignificante)                                                                          |  |  |
|                                                                                               | Antes do encontro<br>com Rio principal | 2.026,7             | 0,0                                             | Medidas contra enchentes da cidade de Rio do Sul<br>(antes do encontro dos Rios)                                                                         |  |  |
| Itajaí do Norte<br>C.A=3.353,8 km2                                                            | Barragem Norte                         | 2.318,0             | 48,1                                            | Volume de contenção e descarga da barragem (não há necessidade de reforma)                                                                               |  |  |
|                                                                                               | Ibirama                                | 3.341,0             | 4,0                                             | Calibração com os valores de medição (o<br>problema de enchente é insignificante)                                                                        |  |  |
| Rio Benedito<br>Rio Dos Cedros                                                                | Antes do encontro                      | 831,1               | 0,0                                             | Medidas de enchentes da cidade de Timbó (antes                                                                                                           |  |  |
|                                                                                               | com Rio principal                      | 600,3               | 0,0                                             | do encontro dos Rios)                                                                                                                                    |  |  |
| Luis Alves                                                                                    | Antes de encontro                      | 1,431.3             | 10.5                                            | Lidade de<br>Hé possibilidade de evalier lagos de reterdemente                                                                                           |  |  |
| C.A=580.0km2                                                                                  | com Rio Principal                      | 580,0               | 0,0                                             | como medida contra enchentes da cidade de Itajaí                                                                                                         |  |  |
| Itajaí Mirim<br>1,678.9 km2                                                                   | Brusque                                | 1.206,6             | 56,8                                            | Calibração com os valores de medição (o problema de enchentes é insignificante)                                                                          |  |  |
|                                                                                               | Antes do encontro<br>com Rio principal | 1.678,9             | 0,0                                             | Medidas contra enchentes da cidade de Itajaí<br>(Inundação do Rio Itajaí Mirim)                                                                          |  |  |
| Itajaí<br>C.A=14,933.2 km2<br>( Toda a Bacia,<br>incluindo as bacias dos<br>rios tributários) | Rio do Sul                             | 5.041,6             | 189,2                                           | Calibração com os valores de medição e medidas<br>de enchentes de Rio do Sul                                                                             |  |  |
|                                                                                               | Apiúna                                 | 9.288,8             | 132,0                                           | Calibração com os valores de medição (o<br>problema de enchentes é insignificante)                                                                       |  |  |
|                                                                                               | Indaial                                | 11.276,4            | 97,7                                            | Calibração com os valores de medição (o<br>problema de enchentes é insignificante)                                                                       |  |  |
|                                                                                               | Blumenau                               | 11.922,7            | 70,6                                            | Calibração com os valores de medição e medidas<br>de enchentes de Blumenau                                                                               |  |  |
|                                                                                               | Gaspar                                 | 12.271,9            | 52,9                                            | Medidas de enchentes de Gaspar                                                                                                                           |  |  |
|                                                                                               | Ilhota                                 | 12.498,6            | 37,3                                            | Medidas contra enchentes de Ilhota: há<br>possibilidade de avaliar planície de retardamento e<br>outras medidas para prevenção de enchentes de<br>Itajaí |  |  |





# 7.4.2 Analysis Methodoly

## (1) Software used on the analysis

The *software* that will be used on the outflow analysis should have versatility; the program HEC-HMS (which belongs to the HEC family and was developed by the USA Army, and it is largely used in Brazil) will be used in the outflow analysis.

## (2) Determination of effective rainfall

The effective rainfall height will be the total rainwater height, discounted the losses caused by seepage, evapo-transpiration, etc. The rainwater losses height will be subdivided into initial loss rate and constant loss rate. Therefore, the rainfall height with the initial loss (Ia) is not considered straightly in the outflow, from the time that the volume overcome the Ia, there will be a constant loss (fc), every hour, considered in the rainfall height (pt),

$$pet = \begin{cases} 0 & if \quad \sum p_i < I_a \\ pt - fc & if \quad \sum p_i > I_a \text{ and } p_t > f_c \\ 0 & if \quad \sum p_i > I_a \text{ and } p_t < f_c \end{cases}$$

## I<sub>a</sub> (Initial Loss) :

According to the historical data, the initial loss value proposed is in accordance with the table bellow.

| Loss of Surface                                   |                    |                      |  |  |  |
|---------------------------------------------------|--------------------|----------------------|--|--|--|
| Inicial Loss (área agrícola)                      |                    |                      |  |  |  |
| Cultivo                                           | Altura Pie         | Intercepção polegada |  |  |  |
| Corn                                              | 6                  | 0,03                 |  |  |  |
| Cotton                                            | 4                  | 0,33                 |  |  |  |
| Tabaco                                            | 4                  | 0,07                 |  |  |  |
| Cereais                                           | 3                  | 0,16                 |  |  |  |
| Pastagem                                          | 1                  | 0,08                 |  |  |  |
| Alfafa                                            | 1                  | 0,11                 |  |  |  |
| desde Linsley, Kohler, and Paulhus 1975)          |                    |                      |  |  |  |
| Área Floresta (desde Viessman et al. 1977)        |                    |                      |  |  |  |
| 10-20% total de precipitação, maxima 0.5 polegada |                    |                      |  |  |  |
| Armazenamento de Detenção (desde Horton 1935)     |                    |                      |  |  |  |
| Área agrícola                                     | 0,5 - 1,5          |                      |  |  |  |
| (Depende de tempo de arado)                       |                    |                      |  |  |  |
| Florestas/Pastagens                               | 0,5 – 1,5 polegada |                      |  |  |  |
| Perda Total Superficial                           |                    |                      |  |  |  |
| Urban Area                                        | 0,1-0,5 polegada   |                      |  |  |  |
| Área Aberta                                       |                    |                      |  |  |  |
| Área Impermeável                                  | 0,1 – 0,2 polegada |                      |  |  |  |

#### Table 7.4.2 Initial Loss Ia

Source: EM 1110-2-1417 Engineering and Design - Flood-Runoff Analysis

The biggest part of the Itajaí Basin is covered by forests, fields and agriculture, the urban area occupies a significant part. The quantity of initial losses in the agricultural areas, forests and fields, according to the Detention Storage (from Horton, 1935) from the table above, is from 0,5 to 1,5 inches (12,7 to 38,1mm). Additionally, according to the value for Forest Area (from Viessman et al. 19744), also from the above table, it is defined as being 10% to 20% from the total of the rainfall height (maximum 0,5 inches = 12,7 mm), existing different versions among the researchers. In this analysis, it will be defined the initial loss as being 20 mm, based in the above information and it will be adjusted through the real flood calibration, according to the necessity.
#### Constant Loss Rates fc\_

According to the historical data, the constant loss rate is proposed as shows the Table 7.4.3 bellow.

| Soils Group | Description                                                      | Loss Rate Range |
|-------------|------------------------------------------------------------------|-----------------|
| Solis Gloup | Description                                                      | (inch/h)        |
| А           | Deep Sand, Deep loss, added mud                                  | 0,30-0,45       |
| В           | Moderate Loss, Sandy Mud                                         | 0,15-0,30       |
| С           | Clay, mud moderately sandy, soil with organic content, soil with | 0,05-0,15       |
|             | high clay content                                                |                 |
| D           | Highly moist soil, heavy clay and soil salinity                  | 0,00-0,05       |

| Table 7.4.3 Soils group | SCS and Infiltration | Rate (loss) (SCS. | . 1986: Skaggs and | l Khaleel. 1982) |
|-------------------------|----------------------|-------------------|--------------------|------------------|

Source: SCS, 1986; Skaggs and Khaleel, 1982

In the mountain region of the Itajaí Basin there are stones, mud, metamorphic rocks derived from the fine sand which are distributed in relatively thick layers throughout the region. Moreover, the alluvial deposits downstream are clays that were transported from the upstream and are grounded in thick layers.

Therefore, the constant loss value corresponds to the soil group B or C from the Table above, close to the value of 0,15 inches/m<sup>3</sup> (8mm/h); or corresponds to the Soil Group D, with the value of 0,05 inches (1,27mm/h), supposing that the ground is wet. In this study, the constant loss will be defined as being 2,0mm/h by the analysis from the table above. The adjustments will be done using real flood calibration, according to the necessity. Beyond the loss above, the waterproof area rate as being 5%.

Intensity of the rainfall

1/tr

#### (3) Direct outflow model

The Snyder (Snyder's UH Model) unit hidrogram method will be used for the direct outflow model.

The Snyder method elaborates the effective rainfall unit hidrogram versus the normal duration TR, based in the elements: discharge peak, basic length and delay time.

The usual effective rainfall duration is established according to the delay time formule bellow.

$$t_r = \frac{t_p}{5.5}$$

In addition, the delay time tp, discharge peak (compared discharge qp) and the basic length tb are obtained as bellow.

$$t_{p} = C \cdot C_{t} (L \cdot L_{c})^{0.3}$$
$$q_{p} = \frac{C \cdot C_{p}}{t_{p}}$$
$$t_{b} = 3 + \frac{t_{p}}{8}$$

L is the output length until the river bank from the main river; Lc is the output length of the basin until the closest point to the basin centroid; the unit of convertion factor C is 0,75 in the Unit SI, this means 1,0 in the english system for units. Furthermore, the  $C_t$  parameter will be obtained



through calibration, but in general it uses a value between 1,8 to 2,0.

The convertion factor C related to the discharge peak is 2,75 in the unit SI and 640 in english units. The peak coeficient  $C_p$  will be obtained through calibration, but in general this value is between 0,4 to 0,8. The defined standards in the calibration are Ct and Cp. In the current analyses, the initial value will be adopted as: Ct= 1,9 and Cp= 0,6; these values will be adjusted through the real flood calibration, according to necessity.

However, the rainfall duration  $t_R$  for any other time from the standard duration  $t_r$  will be obtained by the delay time equation  $t_{pR}$ , compared discharge peak  $q_{pR}$  and the basic length  $t_{bR}$ .

$$t_{pR} = t_{p} + 0.25(t_{R} - t_{r})$$

$$q_{pR} = \frac{640C_{p}}{t_{pR}}$$

$$t_{bR} = 3 + \frac{t_{pR}}{8}$$
(4) Basis Outflow Volume Establishing

(4) Basic Outflow Volume Establishment

For the basic outflow volume the *Exponential Regression Model* will be used; the initial discharge value (*Initial baseflow*)  $Q_0$  and the Regression rate k will be calculated throught the equation bellow.

$$Q_t = Q_0 k^t$$

As the basic outflow should be calculated before and after the flood, both situations should establish the beggining (*threshold*) (after the flood peak and, when the flood discharge reduce until the recession point (*threshold*)) and implement the exponential regression (similar to the initial basic flow). The initial rate (*threshold*) will be represented by the flow peak (*ratio-to-peak*).



#### Initial Discharge: Q<sub>0</sub>

The initial flow  $Q_0$  is different for each flood (seasonality or proximity to the flood); in the 2010 Flood event was  $0 \sim 5m^3/s/100 \text{ km}^2$  (However, in Timbó it was more than  $2m^3/s/100 \text{ Km}^2$ ) and in the 1984 Flood event it was  $4 \sim 5m^3/s/100 \text{ Km}^2$  (However, in Brusque it was less than  $0.5m^3/s/100 \text{ Km}^2$ ). In the calibration the measurements above will be used, but in the Flood design calculation it will be estimated  $5m^3/s/100 \text{ Km}^2$ , predicting the safety margin.

#### Constant of Regression k

For the constant of regression k, according to the existing literature, the values illustrated in the Table 7.4.4 are suggested. The applicable extent in the chart bellow is less than 300~16,000 Km<sup>2</sup>. The larger the dimension of the basin, the constant value will trend to the bigger extent. The Itajaí River Basin basin dimension is close to the superior extent limit of expansion, therefore, the

constant of reduction will be the superior limit value of the extent from the Table 7.4.4 bellow. Furthermore, the basic discharge will be structured according to the groundwater or the interflow outflow.

| Table 7.4.4 Proposed Value for   | the constant of Regression K |  |  |  |  |  |
|----------------------------------|------------------------------|--|--|--|--|--|
| Flow component                   | Recession constant, daily    |  |  |  |  |  |
| Groundwater                      | 0,95                         |  |  |  |  |  |
| Interflow                        | 0,8-0,9                      |  |  |  |  |  |
| Surface runoff 0,3-0,8           |                              |  |  |  |  |  |
| Source: Pilgrim and Cordery 1992 |                              |  |  |  |  |  |

| Table 7.4.4 Prop | nosed Value | e for the Co | nstant of <b>R</b> | egression l |
|------------------|-------------|--------------|--------------------|-------------|
| 10010 7.4.4 1 10 | poscu valu  | for the Co   | motant of h        | cgression i |

Relation between the discharge peak and recession peak (ratio-to-peak)

The exponential regression curve from the relation between the discharge peak and the recession point was analysed after the flood, based in the 1984 discharge data, in Ibirama and Timbó, places where there is no dam influences. According to the Figure 7.4.2, supposing that the exponential regression time (represented as a straight line in the logarithmic scale, and this compared discharge is around 8 m<sup>3</sup>/s/100 Km<sup>2</sup>). The compared discharge in the peak time is 60 m<sup>3</sup>/s/100km<sup>2</sup>; so, the relation 8/60=0,14. Therefore, in the current analysis the relation between the discharge peak and the recession point was established as 0,14.



Source: Equipe de Estudos da JICA Figure 7.4.2 Compared discharge from the 1984 Flood event (Ibirama e Timbó)



If the HEC-HMS was used as river channel model for flood propagation it would be possible choosing among 5 calculation methods, according to the relation bellow:

- (1) Lag
- (2) Muskingum
- (3) Modified Plus
- (4) Kinematic Wave
- (5) Muskingum Cunge

There is a delay in the outflow due to the effect of the natural flood plan contention from the Itajaí River bank. Therefore, the Muskingum-Cunge method (which enables the physical reproduction of this contention effect as channel model) will be adopted. The Muskingum Cunge is a method based on the wave propagation which is close to the continuous expression of the open channel one-dimentional movement equation.

Continuous Equation 
$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = q_L$$
  
Movement Equation  $S_f = S_0 - \frac{\partial y}{\partial x}$  (Wave Propagation)

In the current analysis, the modeling for each strech of the river channel will be implemented, according to the figure 7.4.3. Using the river cross section data in which the survey was performed previously (measurements at ANA's stations data) establishing: representative width of the channel = B, Depth = H and plan width = W. The input data in the Muskingum Cunge model are showed in the Table 7.4.5 bellow.



Source: JICA Survey Team

Figure 7.4.3 Modeling of the channel form

| River      |                          | Cha                      | nnel Shape |                | Tilt of the | Roughness<br>coefficient |                |  |
|------------|--------------------------|--------------------------|------------|----------------|-------------|--------------------------|----------------|--|
| Channel    | Stretch                  | Width of the<br>Riverbed | Depth      | Width<br>Plain | Riverbed    | Channel                  | Flood<br>Plain |  |
| Channel 1  | Taió/Rio do Sul          | 30                       | 12.000     | 600            | 0.0003      | 0.035                    | 0.050          |  |
| Channel 2  | Ituporanga/Rio<br>do Sul | 25                       | 8.500      | 55             | 0.0010      | 0.035                    | 0.050          |  |
| Channel 3  | Rio do<br>Sul/Apiuna     | 60                       | 12.000     | 600            | 0.0003      | 0.035                    | 0.050          |  |
| Channel 4  | B.Norte/Ibirama          | 45                       | 12.000     | 60             | 0.0042      | 0.035                    | 0.050          |  |
| Channel 5  | Apiuna/Indaial           | 90                       | 19.000     | 40             | 0.0010      | 0.035                    | 0.050          |  |
| Channel 6  | Indaial/Blumenau         | 90                       | 19.000     | 40             | 0.0020      | 0.035                    | 0.050          |  |
| Channel 7  | Blumenau/Gaspa<br>r      | 90                       | 14.000     | 330            | 0.0001      | 0.035                    | 0.050          |  |
| Channel 8  | Gaspar/Ilhota            | 100                      | 17.000     | 600            | 0.0001      | 0.035                    | 0.050          |  |
| Channel 9  | Ilhota/Itajai            | 180                      | 8.000      | 600            | 0.0001      | 0.035                    | 0.050          |  |
| Channel 10 | Brusque/Itajaí           | 20                       | 11.000     | 600            | 0.0004      | 0.035                    | 0.050          |  |

Table 7.4.5 Input Data in Muskingum Cunge Method

## (6) Contention of Dam Model

Along with the program HEC-HMS, the flood modeling for dam facilities will be carried out. In the Itajaí River Basin there are three exclusive dams for flood control: Oeste Dam, Sul Dam and Norte Dam.

The data referring to the discharge features (H-Q) and H-V of the each dam reservoir are not available, according to the DEINFRA information (that manages the dams of the Santa Catarina State) (Old drawings in paper about the dams were accessed and the curves H-Q and H-V were extracted). The dam control data that have been recorded only on the reservoir level and the opening and closing situation of the gates (there is a improvement possibility in the dam management).

As there is a necessity of the H-Q rating curve from the dam and H-V curve from the reservoir these curves were elaborated adjusting the constant curve scale in the drawings in paper, based on the generic discharge formule, according to the Table 7.4.6 bellow.

|                  |               |                                     |                                                 | H-Q、H-V                                                | 7                            |                       |  |  |  |  |  |
|------------------|---------------|-------------------------------------|-------------------------------------------------|--------------------------------------------------------|------------------------------|-----------------------|--|--|--|--|--|
|                  |               | Usual                               | Ç                                               | $Q = C \cdot n \cdot A \sqrt{2}$                       | $2g(H-H_0)$                  |                       |  |  |  |  |  |
| Generic Expressi | on            | Unusual                             | Q                                               | $Q = C \cdot B \cdot H^{1}$                            | 5                            |                       |  |  |  |  |  |
|                  |               | Reservoir capacity                  | V                                               | $V = a(H-b)^2$                                         |                              |                       |  |  |  |  |  |
|                  |               | Usual                               | Ç                                               | $Q = 0.6667 \times 7$                                  | $7 \times 1.7663 \sqrt{2}$   | g(H - 340.05)         |  |  |  |  |  |
|                  | Oeste Dam     | Unusual                             | Ç                                               | $Q = 2.1658 \times 100 \times (H - 360)^{1.5}$         |                              |                       |  |  |  |  |  |
|                  |               | Reservoir capacity                  | $V = 0.18192 \times (H - 338.64)^2 \times 10^6$ |                                                        |                              |                       |  |  |  |  |  |
|                  |               | Usual                               | Ç                                               | $Q = 0.8901 \times 5 \times 1.7663 \sqrt{2g(H - 368)}$ |                              |                       |  |  |  |  |  |
|                  | Sul Dam       | Unusual                             | $Q = 2.0758 \times 65 \times (H - 399)^{1.5}$   |                                                        |                              |                       |  |  |  |  |  |
| Adjustament      |               | Reservoir capacity                  | V                                               | $v = 0.17033 \times$                                   | (H - 375.57)                 | $)^{2} \times 10^{6}$ |  |  |  |  |  |
| Aujustament      |               | Usual                               | <i>Q</i> :                                      | = 74H - 1909                                           | 92 (H=EL.2                   | 258m~EL.259m)         |  |  |  |  |  |
|                  |               |                                     | Q :                                             | Q = 3.8H - 910.2 (H=EL.259m~EL.264m)                   |                              |                       |  |  |  |  |  |
|                  |               |                                     | Q :                                             | = 92H - 2419                                           | 95 (H=EL.)                   | 264m~EL.265m)         |  |  |  |  |  |
|                  | Norte Dam     |                                     | Q :                                             | = 0.89513×2                                            | $2 \times 6.76 \sqrt{2g(l)}$ | H - 253 (H=EL.265m~)  |  |  |  |  |  |
|                  |               | Unusual                             | Q :                                             | = 2.0506×10                                            | $0 \times (H - 295)$         | ) <sup>1.5</sup>      |  |  |  |  |  |
| Executado por:   |               | Reservoir capacity                  | V =                                             | $= 0.17825 \times (.100)$                              | $H - 250.69)^2$              | ×10 <sup>6</sup>      |  |  |  |  |  |
|                  |               |                                     |                                                 |                                                        |                              | APROV.                |  |  |  |  |  |
|                  | Bacia do rio  | Itajai subsidios para o plano integ | grado                                           |                                                        | MME                          | DNAEE                 |  |  |  |  |  |
| CNEC             | de aproveitar | mento e controle dos recursos hid   | lricos                                          | CAEEB                                                  | DNAEE                        | No.3.1 (Sul)          |  |  |  |  |  |
| CIVEC            | Obras exister | tentes de controle de cheias        |                                                 |                                                        | DIMEL                        | No.3.2 (Oeste)        |  |  |  |  |  |
|                  | Barregem Su   | Il, Oeste, Norte (em Construção)    |                                                 |                                                        |                              | No.3.3 (Norte)        |  |  |  |  |  |

Table 7.4.6 H-Q e H-V Curve Equation

Source: JICA Survey Team

The information about the dam operation referring to the 1984 Flood event was organized based on the H-Q curves elaboreted by the team, according to the following Figure 7.4.4.



Figure 7.4.4 Dam operation during the 1984 Flood event (the discharge volume was estimated based in the H-Q elaborated curve)

### 7.4.3 Results of the Constant Calibration of the Model

Among the constants of the outflow analysis model explained until now,

- The values of the basic discharge constants (Initial discharge Q0, attenuation constant K and the peak rate) were established according to the measurement values.
- However, for the parameters relationed to the effective rainfall (Initial loss Ia, Constant Loss fc) and the parameters related to the straight outflow model (Ct, Cp from the Schneider Unit Hydrograph) were considered the generic values; so, a calibration is necessary for helping the real flood.
- Using the real discharge volume in the dam on the calibration phase would be the correct action. However as there is no record from these data, the obtained discharge value was introduced according to the water level calculated by the H-Q curve equation.

The model constant of the initial value was ordered on the Table 7.4.7. The calibration result is showed bellow.

#### Calibration results from the 1984 Flood event (Table 7.4.7 and Figure 7.4.6)

- After the analysis using the initial parameters, the rise time of the flood was reproduced satisfactorily.
- The reproduction discharge peak and total outflow volume on the Itajaí do Norte River Basin and Benedito River Basin were less than the real flood and relatively large in other basins.
- The initial loss was not modified; the constant loss rate value on the Itajaí do Norte River Basin and Benedito River Basin was reduced and a modification relatively significant was carried out in other basins. The Itajaí do Norte and Benedito Rivers Basins present relatively steep terrain and the weathering is lower. Therefore, from the physical point of view, this modification is adequated.
- After the sensitivity analysis, Ct e Cp did not influence the outflow wave. Therefore, the decision was do not change the parameters.
- The calculation showed that the peak time was relatively faster than in the Timbó real Flood event and relatively slower in Bruque; Therefore, the maximum values were changed from Ct (Benedito River Basin) to the generic value, and the Itajaí-Mirim Basin to the maximum value (at the same time, the Cp was changed due to the adjustment from the peak discharge).

• Accordingly, the 1984 Flood event was reproduced satisfactorily.

Calibration results of the 2010 Flood event (Table 7.4.8 e Table 7.4.9, Figure 7.4.7)

- 2010 Flood event was calibrated based on the calibration results from the 1984 Flood event.
- In the 2010 Flood event there was two peaks flood, the effective rainfall and the basic discharges are different. So, the calibration was carried out in two phases.
- The rainfall at the first phase of the occurred 2010 Flood event was less; therefore, the initial loss value was increased and the constant loss rate (Initial Loss, Constant Loss Rate) and a lesser basic discharge value was established.
- The flood from the second phase suffers the impact of the previous phase; therefore, the loss value was reduced and a larger value for the basic discharge was established.
- The results of the 2010 Flood reproduction is not good enough if it was compared to the 1984 Flood event. Mainly, Rio do Sul's upstream flood reproduction results, from the both first and second phases are not good enough.

- The possible reason for bad results on the flood initial reproduction should be the following: The large loss value was established because of the little rainfall on the flood initial phase; There is a possibility of a fast outflow on the surface due to the the underground infiltration difficulty in the interflow. This kind of interflow is difficult to reproduce on the Unique Model.
- The possible reason for bad results on the flood initial reproduction should be the following: the large difference on the discharge volum between the Oeste and Sul dams. Furthermore, there is a possibility of mistake on the reservoir level data of both dams or a mistake on the water data level by the downstream of the dams.

|           | perda          |                     |                   |                         |                       |     | Transforma | ção                |                 | Vazão básica                      |                                      |                     |                       |                                           |
|-----------|----------------|---------------------|-------------------|-------------------------|-----------------------|-----|------------|--------------------|-----------------|-----------------------------------|--------------------------------------|---------------------|-----------------------|-------------------------------------------|
| Tipo      | Nome           | Área de<br>Drenagem | Perda<br>Inicial* | Taxa<br>Constante*<br>* | Impermea-<br>bilidade | L   | Lc         | Parâmetro<br>Ct*** | Standard<br>Lag | Peaking<br>Coefficient<br>Cp* *** | Descarga inicial<br>específico*****  | Descarga<br>Inicial | Recessão<br>constante | Pico de<br>recessão<br>(Ratio to<br>peak) |
|           |                | km <sup>2</sup>     | mm                | mm/h                    | %                     | km  | km         | -                  | hr              | -                                 | m <sup>3</sup> /s/100km <sup>2</sup> | m <sup>3</sup> /s   | -                     | -                                         |
|           | Barragem Oeste | 1.042.0             | 20                | 2                       | 5                     | 55  | 28         | 1.9                | 12.9            | 0.6                               | 5                                    | 52                  | 0.95                  | 0.14                                      |
|           | Bacia 1        | 528.1               | 20                | 2                       | 5                     | 40  | 15         | 1.9                | 9.7             | 0.6                               | 5                                    | 26                  | 0.95                  | 0.14                                      |
|           | Bacia 2        | 1.444.8             | 20                | 2                       | 5                     | 68  | 34         | 1.9                | 14.6            | 0.6                               | 5                                    | 72                  | 0.95                  | 0.14                                      |
|           | Barragem Sul   | 1.273.0             | 20                | 2                       | 5                     | 62  | 31         | 1.9                | 13.8            | 0.6                               | 5                                    | 64                  | 0.95                  | 0.14                                      |
|           | Bacia 3        | 372.0               | 20                | 2                       | 5                     | 25  | 13         | 1.9                | 8.1             | 0.6                               | 5                                    | 19                  | 0.95                  | 0.14                                      |
|           | Bacia 4        | 381.3               | 20                | 2                       | 5                     | 25  | 13         | 1.9                | 8.1             | 0.6                               | 5                                    | 19                  | 0.95                  | 0.14                                      |
|           | Barragem Norte | 2.318.0             | 20                | 2                       | 5                     | 102 | 51         | 1.9                | 18.6            | 0.6                               | 5                                    | 116                 | 0.95                  | 0.14                                      |
|           | Bacia 5        | 1.023.0             | 20                | 2                       | 5                     | 44  | 22         | 1.9                | 11.2            | 0.6                               | 5                                    | 51                  | 0.95                  | 0.14                                      |
|           | Bacia 6        | 906.2               | 20                | 2                       | 5                     | 57  | 29         | 1.9                | 13.2            | 0.6                               | 5                                    | 45                  | 0.95                  | 0.14                                      |
| Sub-bacia | Rio Benedito   | 831.0               | 20                | 2                       | 5                     | 74  | 37         | 1.9                | 15.3            | 0.6                               | 5                                    | 42                  | 0.95                  | 0.14                                      |
|           | Rio dos Cedros | 600.3               | 20                | 2                       | 5                     | 70  | 35         | 1.9                | 14.8            | 0.6                               | 5                                    | 30                  | 0.95                  | 0.14                                      |
|           | Bacia 7        | 556.3               | 20                | 2                       | 5                     | 34  | 17         | 1.9                | 9.6             | 0.6                               | 5                                    | 28                  | 0.95                  | 0.14                                      |
|           | Bacia 8        | 646.3               | 20                | 2                       | 5                     | 27  | 14         | 1.9                | 8.5             | 0.6                               | 5                                    | 32                  | 0.95                  | 0.14                                      |
|           | Bacia 9        | 349.2               | 20                | 2                       | 5                     | 20  | 10         | 1.9                | 7.0             | 0.6                               | 5                                    | 17                  | 0.95                  | 0.14                                      |
|           | Bacia 10       | 226.7               | 20                | 2                       | 5                     | 20  | 10         | 1.9                | 7.0             | 0.6                               | 5                                    | 11                  | 0.95                  | 0.14                                      |
|           | Luis Alves     | 580.0               | 20                | 2                       | 5                     | 81  | 40         | 1.9                | 16.1            | 0.6                               | 5                                    | 29                  | 0.95                  | 0.14                                      |
|           | Itajaí Mirim   | 1.206.6             | 20                | 2                       | 5                     | 133 | 67         | 1.9                | 21.8            | 0.6                               | 5                                    | 60                  | 0.95                  | 0.14                                      |
|           | Bacia 11       | 472.3               | 20                | 2                       | 5                     | 57  | 29         | 1.9                | 13.2            | 0.6                               | 5                                    | 24                  | 0.95                  | 0.14                                      |
|           | Bacia 12       | 175.7               | 20                | 2                       | 5                     | 30  | 15         | 1.9                | 8.9             | 0.6                               | 5                                    | 9                   | 0.95                  | 0.14                                      |

#### Table 7.4.7 Initial Value from the Constant Model of the Basin (before calibration)

\* A perda inicial deve ser entorno de 0,5 a 1,5 polegadas, confome tabela 3.5.7, então i remos ajustar dentro da faixa a esquerda durante a calibração

\*\* A perda deve ser entre 0.0 e 0.3 polegada (0.0~7.6mm) , conforme tabela 3.5.8, então iremos ajustar dentro da faixa a esquerda durante a calibração

\*\*\* Ct normalmente é entorno de 1.8 $\sim$ 2.0, então iremos calibrar dentro dessa faixa.

\*\*\*\* Cp normalmente é entorno de 0.4~0.8, então iremos calibrar dentro dessa faixa.

\*\*\*\*\* Na calibração, a vazão básica inicial será utilizado o valor de medição real.

Source: JICA Survey Team

| Та | ble 7.4.8 | 8 Resul | ts of the Constan | t Calibration of the Basin M | odel (1984 Flood Event) |
|----|-----------|---------|-------------------|------------------------------|-------------------------|
|    |           |         | a sa da           | T                            | V                       |

|           |                |                     |                   | perda                   |                       |     | Transformação |                    |                 |                                  | Vazao basica                         |                     |                       |                       |  |
|-----------|----------------|---------------------|-------------------|-------------------------|-----------------------|-----|---------------|--------------------|-----------------|----------------------------------|--------------------------------------|---------------------|-----------------------|-----------------------|--|
| Tipo      | Nome           | Área de<br>Drenagem | Perda<br>Inicial* | Taxa<br>Constante*<br>* | Impermea-<br>bilidade | L   | Lc            | Parâmetro<br>Ct*** | Standard<br>Lag | Peaking<br>Coefficient<br>Cp**** | Descarga inicial<br>específico*****  | Descarga<br>Inicial | Recessão<br>constante | recessão<br>(Ratio to |  |
|           |                | km <sup>2</sup>     | mm                | mm/h                    | %                     | km  | km            | -                  | hr              |                                  | m <sup>3</sup> /s/100km <sup>2</sup> | m <sup>3</sup> /s   | -                     | -                     |  |
|           | Barragem Oeste | 1.042.0             | 20                | 2.1                     | 5                     | 55  | 28            | 1.9                | 12.9            | 0.6                              | 5                                    | 52                  | 0.95                  | 0.14                  |  |
|           | Bacia 1        | 528.1               | 20                | 2.1                     | 5                     | 40  | 15            | 1.9                | 9.7             | 0.6                              | 5                                    | 26                  | 0.95                  | 0.14                  |  |
|           | Bacia 2        | 1.444.8             | 20                | 2.1                     | 5                     | 68  | 34            | 1.9                | 14.6            | 0.6                              | 5                                    | 72                  | 0.95                  | 0.14                  |  |
|           | Barragem Sul   | 1.273.0             | 20                | 2.1                     | 5                     | 62  | 31            | 1.9                | 13.8            | 0.6                              | 5                                    | 64                  | 0.95                  | 0.14                  |  |
|           | Bacia 3        | 372.0               | 20                | 2.1                     | 5                     | 25  | 13            | 1.9                | 8.1             | 0.6                              | 5                                    | 19                  | 0.95                  | 0.14                  |  |
|           | Bacia 4        | 381.3               | 20                | 2.1                     | 5                     | 25  | 13            | 1.9                | 8.1             | 0.6                              | 5                                    | 19                  | 0.95                  | 0.14                  |  |
|           | Barragem Norte | 2.318.0             | 20                | 1.0                     | 5                     | 102 | 51            | 1.9                | 18.6            | 0.6                              | 5                                    | 116                 | 0.95                  | 0.14                  |  |
|           | Bacia 5        | 1.023.0             | 20                | 1.0                     | 5                     | 44  | 22            | 1.9                | 11.2            | 0.6                              | 5                                    | 51                  | 0.95                  | 0.14                  |  |
|           | Bacia 6        | 906.2               | 20                | 2.1                     | 5                     | 57  | 29            | 1.9                | 13.2            | 0.6                              | 5                                    | 45                  | 0.95                  | 0.14                  |  |
| Sub-bacia | Rio Benedito   | 831.0               | 20                | 1.2                     | 5                     | 74  | 37            | 2.0                | 16.1            | 0.63                             | 5                                    | 42                  | 0.95                  | 0.14                  |  |
|           | Rio dos Cedros | 600.3               | 20                | 1.2                     | 5                     | 70  | 35            | 2.0                | 15.6            | 0.63                             | 5                                    | 30                  | 0.95                  | 0.14                  |  |
|           | Bacia 7        | 556.3               | 20                | 2.1                     | 5                     | 34  | 17            | 1.9                | 9.6             | 0.6                              | 5                                    | 28                  | 0.95                  | 0.14                  |  |
|           | Bacia 8        | 646.3               | 20                | 2.1                     | 5                     | 27  | 14            | 1.9                | 8.5             | 0.6                              | 5                                    | 32                  | 0.95                  | 0.14                  |  |
|           | Bacia 9        | 349.2               | 20                | 2.1                     | 5                     | 20  | 10            | 1.9                | 7.0             | 0.6                              | 5                                    | 17                  | 0.95                  | 0.14                  |  |
|           | Bacia 10       | 226.7               | 20                | 2.1                     | 5                     | 20  | 10            | 1.9                | 7.0             | 0.6                              | 5                                    | 11                  | 0.95                  | 0.14                  |  |
|           | Luis Alves     | 580.0               | 20                | 2.1                     | 5                     | 81  | 40            | 1.9                | 16.1            | 0.6                              | 5                                    | 29                  | 0.95                  | 0.14                  |  |
|           | Itajaí Mirim   | 1.206.6             | 20                | 2.1                     | 5                     | 133 | 67            | 1.8                | 20.7            | 0.57                             | 5                                    | 60                  | 0.95                  | 0.14                  |  |
|           | Bacia 11       | 472.3               | 20                | 2.1                     | 5                     | 57  | 29            | 1.8                | 12.5            | 0.57                             | 5                                    | 24                  | 0.95                  | 0.14                  |  |
|           | Bacia 12       | 175.7               | 20                | 2.1                     | 5                     | 30  | 15            | 1.9                | 8.9             | 0.6                              | 5                                    | 9                   | 0.95                  | 0.14                  |  |

: Modificação de imput inicial

#### Table 7.4.9 Results of the Constant Calibration of the Basin Model (April, 21th to 24th, 2010)

|           | perda          |                     |                   |                         |                       |     |    | Transforma         | ção             |                                  | Vazão básica                         |                     |                       |                                  |
|-----------|----------------|---------------------|-------------------|-------------------------|-----------------------|-----|----|--------------------|-----------------|----------------------------------|--------------------------------------|---------------------|-----------------------|----------------------------------|
| Tipo      | Nome           | Área de<br>Drenagem | Perda<br>Inicial* | Taxa<br>Constante*<br>* | Impermea-<br>bilidade | L   | Lc | Parâmetro<br>Ct*** | Standard<br>Lag | Peaking<br>Coefficient<br>Cp**** | Descarga inicial<br>específico*****  | Descarga<br>Inicial | Recessão<br>constante | Pico de<br>recessão<br>(Ratio to |
|           |                | km <sup>2</sup>     | mm                | mm/h                    | %                     | km  | km | -                  | hr              | -                                | m <sup>3</sup> /s/100km <sup>2</sup> | m <sup>3</sup> /s   | -                     | -                                |
|           | Barragem Oeste | 1.042.0             | 38                | 6.7                     | 5                     | 55  | 28 | 1.9                | 12.9            | 0.6                              | 0.5                                  | 5                   | 0.95                  | 0.14                             |
|           | Bacia 1        | 528.1               | 38                | 6.7                     | 5                     | 40  | 15 | 1.9                | 9.7             | 0.6                              | 0.5                                  | 3                   | 0.95                  | 0.14                             |
|           | Bacia 2        | 1.444.8             | 38                | 6.7                     | 5                     | 68  | 34 | 1.9                | 14.6            | 0.6                              | 0.5                                  | 7                   | 0.95                  | 0.14                             |
|           | Barragem Sul   | 1.273.0             | 38                | 6.7                     | 5                     | 62  | 31 | 1.9                | 13.8            | 0.6                              | 0.5                                  | 6                   | 0.95                  | 0.14                             |
|           | Bacia 3        | 372.0               | 38                | 6.7                     | 5                     | 25  | 13 | 1.9                | 8.1             | 0.6                              | 0.5                                  | 2                   | 0.95                  | 0.14                             |
|           | Bacia 4        | 381.3               | 38                | 6.7                     | 5                     | 25  | 13 | 1.9                | 8.1             | 0.6                              | 0.5                                  | 2                   | 0.95                  | 0.14                             |
|           | Barragem Norte | 2.318.0             | 38                | 6.4                     | 5                     | 102 | 51 | 1.9                | 18.6            | 0.6                              | 0.5                                  | 12                  | 0.95                  | 0.14                             |
|           | Bacia 5        | 1.023.0             | 38                | 6.4                     | 5                     | 44  | 22 | 1.9                | 11.2            | 0.6                              | 0.5                                  | 5                   | 0.95                  | 0.14                             |
|           | Bacia 6        | 906.2               | 38                | 6.7                     | 5                     | 57  | 29 | 1.9                | 13.2            | 0.6                              | 0.5                                  | 5                   | 0.95                  | 0.14                             |
| Sub-bacia | Rio Benedito   | 831.0               | 38                | 6.4                     | 5                     | 74  | 37 | 2.0                | 16.1            | 0.63                             | 0.5                                  | 4                   | 0.95                  | 0.14                             |
|           | Rio dos Cedros | 600.3               | 38                | 6.4                     | 5                     | 70  | 35 | 2.0                | 15.6            | 0.63                             | 0.5                                  | 3                   | 0.95                  | 0.14                             |
|           | Bacia 7        | 556.3               | 38                | 6.7                     | 5                     | 34  | 17 | 1.9                | 9.6             | 0.6                              | 0.5                                  | 3                   | 0.95                  | 0.14                             |
|           | Bacia 8        | 646.3               | 38                | 6.7                     | 5                     | 27  | 14 | 1.9                | 8.5             | 0.6                              | 0.5                                  | 3                   | 0.95                  | 0.14                             |
|           | Bacia 9        | 349.2               | 38                | 6.7                     | 5                     | 20  | 10 | 1.9                | 7.0             | 0.6                              | 0.5                                  | 2                   | 0.95                  | 0.14                             |
|           | Bacia 10       | 226.7               | 38                | 6.7                     | 5                     | 20  | 10 | 1.9                | 7.0             | 0.6                              | 0.5                                  | 1                   | 0.95                  | 0.14                             |
|           | Luis Alves     | 580.0               | 38                | 6.7                     | 5                     | 81  | 40 | 1.9                | 16.1            | 0.6                              | 0.5                                  | 3                   | 0.95                  | 0.14                             |
|           | Itajaí Mirim   | 1.206.6             | 38                | 6.7                     | 5                     | 133 | 67 | 1.8                | 20.7            | 0.57                             | 0.5                                  | 6                   | 0.95                  | 0.14                             |
|           | Bacia 11       | 472.3               | 38                | 6.7                     | 5                     | 57  | 29 | 1.8                | 12.5            | 0.57                             | 0.5                                  | 2                   | 0.95                  | 0.14                             |
|           | Bacia 12       | 175.7               | 38                | 6.7                     | 5                     | 30  | 15 | 1.9                | 8.9             | 0.6                              | 0.5                                  | 1                   | 0.95                  | 0.14                             |

: Modificação de Imput para enchente de 1984 Source: JICA Survey Team

# Table 7.4.10 Results of the Constant Calibration of the Basin Model (April 23th to 26th, 2010)

|           |                |                     |                   | perua                   |                       |     |    | Transform          | laçao           |                                  |                                      | vazao bas           | ic a                  |                                           |
|-----------|----------------|---------------------|-------------------|-------------------------|-----------------------|-----|----|--------------------|-----------------|----------------------------------|--------------------------------------|---------------------|-----------------------|-------------------------------------------|
| Tipo      | Nome           | Área de<br>Drenagem | Perda<br>Inicial* | Taxa<br>Constante*<br>* | Impermea-<br>bilidade | L   | Lc | Parâmetro<br>Ct*** | Standard<br>Lag | Peaking<br>Coefficient<br>Cp**** | Descarga inicial<br>específico****   | Descarga<br>Inicial | Recessão<br>constante | Pico de<br>recessão<br>(Ratio to<br>peak) |
|           |                | km <sup>2</sup>     | mm                | mm/hr                   | %                     | km  | km | -                  | hr              | -                                | m <sup>3</sup> /s/100km <sup>2</sup> | m <sup>3</sup> /s   | -                     | -                                         |
|           | Barragem Oeste | 1.042.0             | 13                | 2.5                     | 5                     | 55  | 28 | 1.9                | 12.9            | 0.6                              | 12                                   | 125                 | 0.95                  | 0.14                                      |
|           | Bacia 1        | 528.1               | 13                | 2.5                     | 5                     | 40  | 15 | 1.9                | 9.7             | 0.6                              | 12                                   | 63                  | 0.95                  | 0.14                                      |
|           | Bacia 2        | 1.444.8             | 13                | 2.5                     | 5                     | 68  | 34 | 1.9                | 14.6            | 0.6                              | 12                                   | 173                 | 0.95                  | 0.14                                      |
|           | Barragem Sul   | 1.273.0             | 13                | 2.5                     | 5                     | 62  | 31 | 1.9                | 13.8            | 0.6                              | 12                                   | 153                 | 0.95                  | 0.14                                      |
|           | Bacia 3        | 372.0               | 13                | 2.0                     | 5                     | 25  | 13 | 1.9                | 8.1             | 0.6                              | 12                                   | 45                  | 0.95                  | 0.14                                      |
|           | Bacia 4        | 381.3               | 13                | 2.0                     | 5                     | 25  | 13 | 1.9                | 8.1             | 0.6                              | 12                                   | 46                  | 0.95                  | 0.14                                      |
|           | Barragem Norte | 2.318.0             | 13                | 2.0                     | 5                     | 102 | 51 | 1.9                | 18.6            | 0.6                              | 12                                   | 278                 | 0.95                  | 0.14                                      |
|           | Bacia 5        | 1.023.0             | 13                | 4.0                     | 5                     | 44  | 22 | 1.9                | 11.2            | 0.6                              | 40                                   | 409                 | 0.95                  | 0.14                                      |
|           | Bacia 6        | 906.2               | 13                | 0.5                     | 5                     | 57  | 29 | 1.9                | 13.2            | 0.6                              | 12                                   | 109                 | 0.95                  | 0.14                                      |
| Sub-bacia | Rio Benedito   | 831.0               | 13                | 2.3                     | 5                     | 74  | 37 | 2.0                | 16.1            | 0.63                             | 12                                   | 100                 | 0.95                  | 0.14                                      |
|           | Rio dos Cedros | 600.3               | 13                | 2.3                     | 5                     | 70  | 35 | 2.0                | 15.6            | 0.63                             | 12                                   | 72                  | 0.95                  | 0.14                                      |
|           | Bacia 7        | 556.3               | 13                | 4.0                     | 5                     | 34  | 17 | 1.9                | 9.6             | 0.6                              | 12                                   | 67                  | 0.95                  | 0.14                                      |
|           | Bacia 8        | 646.3               | 13                | 4.0                     | 5                     | 27  | 14 | 1.9                | 8.5             | 0.6                              | 12                                   | 78                  | 0.95                  | 0.14                                      |
|           | Bacia 9        | 349.2               | 13                | 4.0                     | 5                     | 20  | 10 | 1.9                | 7.0             | 0.6                              | 12                                   | 42                  | 0.95                  | 0.14                                      |
|           | Bacia 10       | 226.7               | 13                | 4.0                     | 5                     | 20  | 10 | 1.9                | 7.0             | 0.6                              | 12                                   | 27                  | 0.95                  | 0.14                                      |
|           | Luis Alves     | 580.0               | 13                | 4.0                     | 5                     | 81  | 40 | 1.9                | 16.1            | 0.6                              | 12                                   | 70                  | 0.95                  | 0.14                                      |
|           | Itajaí Mirim   | 1.206.6             | 13                | 4.0                     | 5                     | 133 | 67 | 1.8                | 20.7            | 0.57                             | 12                                   | 145                 | 0.95                  | 0.14                                      |
|           | Bacia 11       | 472.3               | 13                | 4.0                     | 5                     | 57  | 29 | 1.8                | 12.5            | 0.57                             | 12                                   | 57                  | 0.95                  | 0.14                                      |
|           | Bacia 12       | 175.7               | 13                | 4.0                     | 5                     | 30  | 15 | 1.9                | 8.9             | 0.6                              | 12                                   | 21                  | 0.95                  | 0.14                                      |

: Modificaçõa de Imput para enchente de 1984











Figure 7.4.7 Results of the 1984 Flood event calibration (3/3)







Figure 7.4.9 Results of the 2010 Flood event calibration (2/3)

Final Report Supporting Report Annex A



Figure 7.4.10 Results of the 2010 Flood event calibration (3/3)

# 7.5 Design Discharge Resolution

The real rainfall occurs in differents standards, from region to region and according to the duration time. Even if rainfall rates are equal, if this rainfall standard are different, there will be difference in the flood discharge outflow also. Therefore, beyond the rainfall design, there is the necessity of establishing the distribution by region and time due to determine this rainfall design. Based on the past standard of flood rainfall, the standard for rainfall design should be established

Based on this kind of flood rainfall on the past, a standard of a extending (extrapolating) rainfall design should be established, also the outflow modeling (as explained in the sections at this chapter before) and the discharge design calculated for each Return Period.

7.5.1 Extending (extrapolating) Rainfall

As ilustrated in the figure bellow, four representative flood were choosen: April, 1983; May, 2005; April, 2010; and May, 2010. The extention of the rainfall was carried out due to establish the discharge rainfall design.



Source: JICA Survey Team

Figure 7.5.1 Extension of the rainfall standards

# 7.5.2 Calculation Methodology

The value obtained by the calibration of August, 1984 and April, 2010 will be adopted for the constant that will be used on the outflow calculation model. Based on the rainfall hyetograph for each flood, the calibration value from August, 1984 was adopted to July, 1983; 08/1984 and May, 2005; and the rainfall from the posterior phase from April, 2010 to April, 2010. Besides that, it was considered that all the gates of the three contention dams were opened.

## 7.5.3 Calculation Results

The results of each rainfall design calculation are illustrated in the Figure 7.5.2 bellow.

|    | 5 years        |       |       |       |       |  |  |  |  |  |  |  |  |
|----|----------------|-------|-------|-------|-------|--|--|--|--|--|--|--|--|
| ID | Cities / Towns | 1983  | 1984  | 2005  | 2010  |  |  |  |  |  |  |  |  |
| 1  | ITUPORANGA     | 250   | 310   | 370   | 350   |  |  |  |  |  |  |  |  |
| 2  | TAIO           | 280   | 430   | 440   | 300   |  |  |  |  |  |  |  |  |
| 3  | RIO DO SUL     | 930   | 1,250 | 1,350 | 1,020 |  |  |  |  |  |  |  |  |
| 4  | APIUNA         | 1,580 | 2,060 | 2,060 | 1,440 |  |  |  |  |  |  |  |  |
| 5  | IBIRAMA        | 620   | 840   | 810   | 650   |  |  |  |  |  |  |  |  |
| 6  | INDAIAL        | 2,200 | 2,830 | 2,760 | 1,610 |  |  |  |  |  |  |  |  |
| 7  | TIMBO          | 500   | 760   | 780   | 230   |  |  |  |  |  |  |  |  |
| 8  | BLUMENAU       | 2,330 | 2,990 | 2,960 | 1,650 |  |  |  |  |  |  |  |  |
| 9  | GASPAR         | 2,320 | 2,940 | 2,820 | 1,590 |  |  |  |  |  |  |  |  |
| 10 | ΙΙΗΟΤΑ         | 2,310 | 2,840 | 2,700 | 1,560 |  |  |  |  |  |  |  |  |
| 11 | ITAJAI         | 2,680 | 3,210 | 3,020 | 1,680 |  |  |  |  |  |  |  |  |
| 12 | BRUSQUE        | 250   | 350   | 380   | 130   |  |  |  |  |  |  |  |  |







| 25 years |                |       |           |       |       |  |  |  |  |
|----------|----------------|-------|-----------|-------|-------|--|--|--|--|
| ID       | Cities / Towns | 1983  | 1984      | 2005  | 2010  |  |  |  |  |
| 1        | ITUPORANGA     | 330   | 430       | 490   | 470   |  |  |  |  |
| 2        | TAIO           | 380   | 620       | 600   | 400   |  |  |  |  |
| 3        | RIO DO SUL     | 1,340 | 0 1,860 1 |       | 1,450 |  |  |  |  |
| 4        | APIUNA         | 2,280 | 3,100     | 2,960 | 1,920 |  |  |  |  |
| 5        | IBIRAMA        | 790   | 1,120     | 1,040 | 770   |  |  |  |  |
| 6        | INDAIAL        | 3,230 | 4,300     | 4,080 | 2,320 |  |  |  |  |
| 7        | TIMBO          | 740   | 1,120     | 1,140 | 390   |  |  |  |  |
| 8        | BLUMENAU       | 3,480 | 4,600     | 4,270 | 2,420 |  |  |  |  |
| 9        | GASPAR         | 3,510 | 4,570     | 4,130 | 2,340 |  |  |  |  |
| 10       | ΙΙΗΟΤΑ         | 3,470 | 4,400     | 3,930 | 2,270 |  |  |  |  |
| 11       | ITAJAI         | 4,090 | 5,000     | 4,530 | 2,510 |  |  |  |  |
| 12       | BRUSQUE        | 380   | 540       | 580   | 220   |  |  |  |  |

50 years

1983

370

430

1,530

2,580

870

3,680

840

3,990

4,060

4,010

4,750

450

1984

490

710

2,150

3,590

1,250

5,020

1,280

5,410

5,380

5,200

5,930

630

2005

550

810

2,110

3,380

1,170

4,710

1,300

4,960

4,780

4,550

5,240

660





BRUSQUE Source: JICA Survey Team

ID Cities / Towns

1

2

3

4

5

6

7

8

9

10

11

12

ITUPORANGA

TAIO

RIO DO SUL

APIUNA

IBIRAMA

INDAIAL

TIMBO

BLUMENAU

GASPAR

ΙΙΗΟΤΑ

ITAJAI



2010

520

450

1,680

2,180

830

2,680

500

2,820

2,750

2,660

2,970

270

#### 7.5.4 Design Discharge Estimate Results for Each Return Period

The flood discharge from April, 1984 was selected based on the probable flood discharge calculated. This selection takes into consideration its larger values (in general terms), as flood discharge for the design purpose (safety margin). The probable flood discharge for each reference place is illustrated in the Table 7.5.3 bellow.



Figure 7.5.3 Flood discharge from each reference place

The arriving flood peak time calculated is illustrated in the Table 7.5.1. The difference of peak time between Rio do Sul and Blumenau city is from 7 to 10 hours; between Blumenau and Itajaí is from 14 to 17 hours. After 1 flood peak day in Rio do Sul the flood peak occurs in Itajaí. The design flood hydrograph for each city (reference place) is illustrated in the Figure 7.5.4.

|    | Citys and Towns | Catchment Area<br>km2 | 5 years             |             | 10 years            |             | 25 years            |             | 50 years            |             |
|----|-----------------|-----------------------|---------------------|-------------|---------------------|-------------|---------------------|-------------|---------------------|-------------|
|    |                 |                       | Discharge<br>(m3/s) | Peak        | Discharge<br>(m3/s) | Peak        | Discharge<br>(m3/s) | Peak        | Discharge<br>(m3/s) | Peak        |
| 1  | ITUPORANGA      | 1,645                 | 310                 | 08/06 23:00 | 370                 | 08/06 23:00 | 430                 | 08/06 23:00 | 490                 | 08/06 23:00 |
| 2  | TAIO            | 1,570                 | 430                 | 08/06 16:00 | 520                 | 08/06 16:00 | 620                 | 08/06 16:00 | 710                 | 08/06 16:00 |
| 3  | RIO DO SUL      | 5,041                 | 1,300               | 08/06 22:00 | 1,600               | 08/06 22:00 | 1,900               | 08/06 22:00 | 2,200               | 08/06 22:00 |
| 4  | APIUNA          | 9,288                 | 2,100               | 08/07 07:00 | 2,600               | 08/07 07:00 | 3,100               | 08/07 06:00 | 3,600               | 08/07 06:00 |
| 5  | IBIRAMA         | 3,341                 | 840                 | 08/06 17:00 | 970                 | 08/06 17:00 | 1,200               | 08/06 17:00 | 1,300               | 08/06 17:00 |
| 6  | INDAIAL         | 11,275                | 2,900               | 08/07 08:00 | 3,500               | 08/07 07:00 | 4,300               | 08/07 06:00 | 5,100               | 08/07 06:00 |
| 7  | TIMBO           | 1,430                 | 760                 | 08/06 22:00 | 920                 | 08/06 22:00 | 1,200               | 08/06 22:00 | 1,300               | 08/06 22:00 |
| 8  | BLUMENAU        | 11,921                | 3,000               | 08/07 08:00 | 3,700               | 08/07 07:00 | 4,600               | 08/07 05:00 | 5,500               | 08/07 05:00 |
| 9  | GASPAR          | 12,421                | 3,000               | 08/07 10:00 | 3,700               | 08/07 09:00 | 4,600               | 08/07 07:00 | 5,400               | 08/07 06:00 |
| 10 | ΙΙΗΟΤΑ          | 12,673                | 2,900               | 08/07 15:00 | 3,500               | 08/07 13:00 | 4,400               | 08/07 12:00 | 5,200               | 08/07 10:00 |
| 11 | ITAJAI          | 15,092                | 3,300               | 08/08 01:00 | 4,000               | 08/07 22:00 | 5,000               | 08/07 19:00 | 6,000               | 08/07 17:00 |
| 12 | BRUSQUE         | 1,207                 | 350                 | 08/07 04:00 | 430                 | 08/07 04:00 | 540                 | 08/07 04:00 | 630                 | 08/07 03:00 |

Table 7.5.1 Largest Discharge Peak Time from each City, by Return Period







Source: JICA Survey Team

Figure 7.5.4 Design Flood Hydrograph for each reference place (2/3)





7.5.5 Flood Contention Dam Discharge Adjustments

The Figures 7.5.5 to 7.5.8 show the way that each dam works for each Return Period. In the table bellow, the effect of the flood control for each dam is orderly exposed.

Unit : m<sup>3</sup>/sec

| Returen  | Norte Dam |           | Oeste Dam    |          |           | Sul Dam      |          |           |              |
|----------|-----------|-----------|--------------|----------|-----------|--------------|----------|-----------|--------------|
| Period   | N-Inflow  | N-Outflow | N-Regulation | 0-Inflow | 0-Outflow | O-Regulation | S-Inflow | S-Outflow | S-Regulation |
| 5 years  | 1,200     | 280       | 920          | 550      | 150       | 400          | 460      | 160       | 300          |
| 10 years | 1,400     | 300       | 1,100        | 690      | 160       | 530          | 590      | 170       | 420          |
| 25 years | 1,700     | 320       | 1,380        | 860      | 170       | 690          | 740      | 180       | 560          |
| 50 years | 1,900     | 330       | 1,570        | 1,000    | 340       | 660          | 880      | 190       | 690          |

\* : Overflow situation

Source: JICA Survey Team

The reservoir water level in the Norte and Sul dams will not raise until achieve the spillway, even with 50 years of Return Period. So, there will not happen an overflow by the spillway. By the other side, in the Oeste dam, the reservoir will be almost full with the 25 return years flood; with 50 return years the waterlevel will exceed 0,9m higher from the spillway.



Figure 7.5.5 Inflow, discharge, flood peak by Return Period, from the three dams and reservoir water level



Figure 7.5.6 Norte dam: discharge and inflow hydrograph for each Return Period and water level hydrograph and reservoir capacity



Figure 7.5.7 Oeste Dam: discharge and affluence hydrograph for each Return Period and water level hydrograph and reservoir capacity



Figure 7.5.8 Sul Dam: Discharge and inflow hydrograph (for each Return Period), water level hydrograph and reservoir capacity

#### 7.5.6. Oeste Dam Gate

In the 2010 Flood event occurred a overflow on the spillway, despite the flood was equivalent to 5

return years. The gates should be completely opened due to obtain the maximum flood control. The Flood event had two peaks and the gates were closed and opened separately, according to the Figure 7.4.5.

The Figure 7.5.9 shows the maximum contention level when the gates operations are working (7 gates in the ducts of adduction) in the Oeste Dam; and the Flood discharge of Taió City which is located by the downstream of the dam. The more the number of completely opened gates, the less the discharge; this causes an increase on the water level of the reservoir and makes the spillway overflow. In the Oeste dam, even if the four of the seven existing gates were closed and if 5 return years flood happen, the spillway overflow occurs.

Furthermore, the outflow capacity of the river channel near to Taió City is around 400-500  $m^{3}$ /sec; the discharge will overpass the outflow capacity for floods larger than 25 return years and when using seven openings gates.



Source: JICA Survey Team

3-gate

1-gate

Figure 7.5.9 Variation of the maximum level contention when the Oeste dam is used and relation between the flood discharge in Taió City

7-gate

5-gate