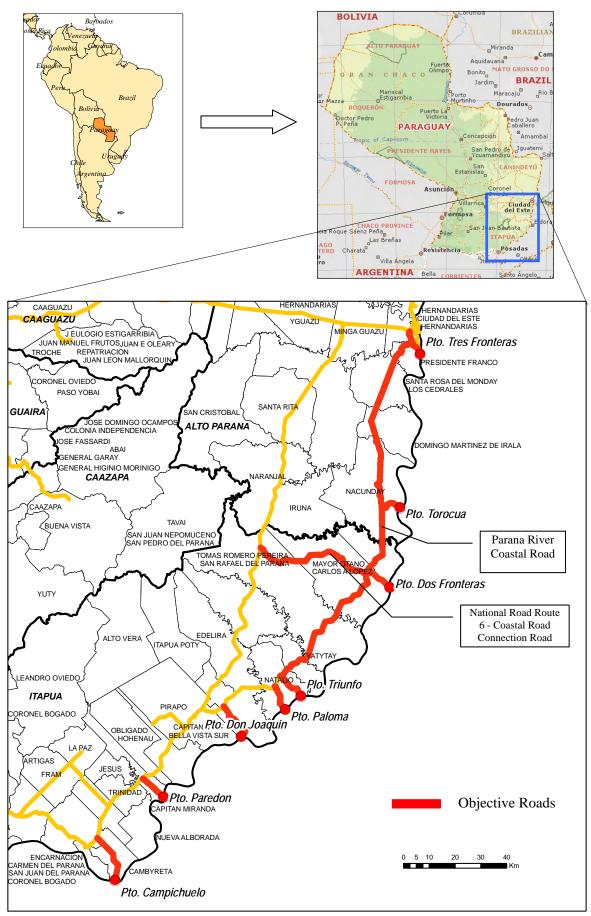
Ministry of Public Works and Communications (MOPC) Republic of Paraguay

# Preparatory Survey on the Eastern Region

# **Export Corridor Improvement Project**

# in the Republic of Paraguay

**Final Report** 


(Summary)

October 2011

Japan International Cooperation Agency (JICA)

Yachiyo Engineering Co., Ltd. Central Consultant Inc.

Exchange Rates : May 2011 US1.00\$ =Guaranies Gs 4,000 US1.00\$ = ¥80.00



# Survey Area



Typical cross-section of the Parana River Coastal Road (W=6.0m)



Typical cross-section of the Parana River Coastal Road (W=9 $\sim$ 11m)



When it rains, road condition become worse and it will be hard to traffic (Parana River Coastal Road)



Pontoon Bridge crossing the Ñacunday River (Parana River Coastal Road)



Timber Bridge crossing the Yacuy Guazu River (Parana River Coastal Road)



Typical Stone Pavement Section near the Ciudad del Este (Parana River Coastal Road)

**Present Objective Road (1)** 



Typical cross-section of the National Road Route 6 - Coastal Road Connection Road (Stone Pavement Section)



Typical cross-section of the National Road Route 6 - Coastal Road Connection Road (Dirt Section)



Port Access Road (to Pt. Paloma) (Trucks are forming a long queue)



Port Access Road (to Pt. Don Joaquín)



Bridge on the Port Access Road (to Pt. Torocua)



Rolling Port Access Road (to Pt. Paloma)

Present Objective Road (2)

#### 1. Study Background and Purpose

Promoting agricultural production and exporting agricultural products are vital means for the Republic of Paraguay ("Paraguay") to obtain foreign currency and its growth is important for the nation's economy. JICA carried out a Study on the Export Corridor and Grain Ports in Paraguay (the "F/S") in 2006, which covered the Eastern Corridor and ancillary harbor facilities and clarified the necessity of making improvements to the Export Corridor. Based on the results of the study, the Paraguayan Government has been considering a yen loan request. As almost five years have elapsed since the study was completed, socioeconomic conditions have changed and worldwide concern about environmental protection has grown. For these reasons and in view of the need for climate change countermeasures, a review of the F/S has become necessary.

The objectives of conducting this study review are to confirm the appropriateness of the project under consideration as a candidate for a new ODA loan item, and based on the substance of the previous F/S, to review information needed to consider execution as an ODA loan project.

#### 2. Confirmation of Necessity and Importance of the Project

#### (1) Response to increased production of agricultural products

The production of major agricultural products greatly increased in the 10 years from 2000 to 2010, with soybean production growing 2.50 times, corn 4.80 times and wheat 6.07 times. Except for soybeans, the figures largely exceed the estimates in the former F/S. This production is the driving force for economic growth in Paraguay. The major production centers for these agricultural products are the Alto Parana Department and Itapua Department. This is the key reason for saying that the necessity of developing an export corridor through the grain centers is very high.

#### (2) Response to increasing need for river transportation

Along with the increased production of grains, the volume of exports shipped via the Parana River is increasing. The export volume in 2010 was 1.59 times that of 2006. These exports have been, and growing more than 12% on average annually. The export volume in 2010 is equivalent to that forecasted for 2015 volume in the 2006 F/S. The importance of exports shipped via the Parana River and the need to develop the export corridor is higher than it was in 2006.

# (3) Response to impassability of roads due to rainfall

Prefectural and local roads may be closed for the purpose of maintenance during rainfall. Even in sections where roads are not closed, the roads may become muddy, which in effect makes passage of vehicles impossible. For the area under study, the number of rainy days is about 6 to 9 days a month, except for July to August. At a minimum the roads remain impassable during these periods of rain, which causes shipment delays and increased vehicle running costs. This indicates the urgent need for developing the export corridor — for reconstruction to convert the roads to all-weather roads.

#### (4) Responding to the needs of peasants

The problems faced by the peasants, whose population accounts for 80% of the agricultural population, must be solved to reduce poverty in Paraguay. Developing the export corridor will enable stable shipments unaffected by weather, and the time required for transportation to major consumption areas can be reduced. Realizing these objectives will support the livelihood of the peasants. Peasants produce unprofitable traditional crops such as cassava, corn, and cotton. To enable them to produce highly profitable crops such as soybeans, it is necessary to assure production volumes and the quality

i

and reliability of shipments. It can be said that the underdeveloped infrastructure, mainly roads, prevents improving the conditions faced by the peasantry. Development of the export corridor will meet the conditions for progress and enable peasants to grow soybeans, which will contribute to solving their problems.

# 3. Results of Reviewing the Project

#### (1) Design speed

Similarly to the case of previous F/S survey, the design speed was set to 100 km/h for the Parana River Coastal Road and 80 km/h for National Road Route 6 - coastal road connection road. A design speed of 80 km/h was established for the port access road by assuming the road would be paved with asphalt, and a speed of 50 km/h was used for sections with geographical constraints or for those passing through urban areas.

# (2) Route plan

For the plan established as a result of previous F/S survey, a review was conducted of three sections and the following changes are recommended:

- Deletion of the route through Este as the second Amista Road is brought into shape
- Change of the route to bypass the site planned for a national park in the Nacunday area
- Change of the route in line with the relocation of Campichuelo Port

In regard to the section with the ANDE electric power transmission line, the plan to separate the up and down lanes and the plan for partial utilization were reviewed. It was decided that the plan to place them both on one side should be adopted, as was recommended in the previous F/S survey.

# (3) Review of pavement design

A study was made of the pavement design based on a review of the design traffic volume. Since the volume of large vehicle traffic is expected to increase, the analysis period was set to 20 years and the wearing course thickness was set to a minimum of 10 cm.

#### (4) Preliminary design of structures

As certain bridges were repaired after the previous F/S survey, the integrity of existing bridges was examined again to select those requiring servicing. The results indicated that the number of bridges to be improved and serviced remained the same, and that widening of three bridges was required. (Replacement was proposed in the previous F/S survey.)

# 4. Environment and Social Considerations

After the previous F/S survey, MOPC implemented an environmental impact assessment (EIA) and completed the report in September 2009. Since five years have passed since the previous F/S survey, current conditions in the region were studied along with a review of environmental and social considerations due to changes in the plan.

Throughout the survey period, workshops in which residents participated were held to publicize the plan and to have the plan reflect the opinions of residents. In all areas, it was confirmed that the participating residents as well as mayors hoped for the early realization of this project and they said they would offer total cooperation for promotion of the project. Based on the assessment of the impact of the project on the environment, it was considered necessary to develop facilities for animals to cross the roads, to change the route to bypass the national park, to plan to link road development to regional development, and to take adequate measures for land acquisition and resettlement of residents.

# 5. Cost Estimation

The approximate project cost was computed by taking into account the changes of unit price since F/S survey in 2006, changes in work quantities due to the review of the design, etc. The results led to an estimated total project cost of \$330 million. When compared with the previous results, this is a 2.3-fold increase on a dollar basis and a 1.6-fold increase on a yen basis.

|                                                               |                              |                                                 |          | (U                  | Unit: million US\$) |
|---------------------------------------------------------------|------------------------------|-------------------------------------------------|----------|---------------------|---------------------|
| Construction site                                             | Parana River<br>coastal road | Route No.6 •<br>Coastal Road<br>Connection Road | Subtotal | Port Access<br>Road | Total               |
| Length (km)                                                   | 147.0                        | 54.4                                            | 201.4    | 85.6                | 287.0               |
| (a) Preparatory work                                          | 4.8                          | 1.2                                             | 6.0      | 1.5                 | 7.5                 |
| (b) Earth work                                                | 63.7                         | 6.4                                             | 70.1     | 9.0                 | 79.0                |
| (c) Pavement work                                             | 89.3                         | 32.2                                            | 121.5    | 40.8                | 162.3               |
| (d) Pipe and culvert work                                     | 1.0                          | 0.0                                             | 1.0      | 0.4                 | 1.4                 |
| (e) New bridge construction &<br>Widening work                | 6.4                          | 0.0                                             | 6.4      | 0.4                 | 6.9                 |
| <pre>①Building expense<br/>=(a)+(b)+(c)+(d)+(e)</pre>         | 165.3                        | 39.7                                            | 205.0    | 52.1                | 257.1               |
| <pre>②Design/Construction administrative expense =①×13%</pre> | 21.5                         | 5.2                                             | 26.6     | 6.8                 | 33.4                |
| ③Land expense                                                 | 6.0                          | 2.0                                             | 8.0      | 3.4                 | 11.4                |
| ④Compensation expense                                         | 0.0                          | 0.7                                             | 0.7      | 0.1                 | 0.8                 |
| 5 <b>Subtotal</b><br>= 1+2+3+4                                | 192.7                        | 47.6                                            | 240.3    | 62.4                | 302.7               |
| Contingency<br>= ⑤×10%                                        | 19.3                         | 4.8                                             | 24.1     | 6.2                 | 30.3                |
| Total                                                         | 212.0                        | 52.4                                            | 264.4    | 68.6                | 333.0               |

# **Project Expense Resume**

Source: JICA Study Team

# 6. Project Evaluation

# (1) Economic evaluation

The internal rate of return acquired from such a cash flow is as high as 23.4%, significantly surpassing the 12% economic discount rate and project judged to be feasible (Table 10.1-7.) Even the 2006 study estimated that the internal rate of return was 14.3% and judged feasible. The current study substantially exceeds that figure. The reason why economic efficiency was enhanced is due to the significant increase in soy bean production shored up by the steep rise of its international price and because of an upward adjustment of future transportation demand.

| Project Economic Evaluation muex |           |            |               |  |
|----------------------------------|-----------|------------|---------------|--|
| Evaluation index                 | Unit      | 2006 Study | Current study |  |
| Internal rate of return (IRR)    | %         | 14.3       | 23.4          |  |
| Net Present Value (NPV)          | US\$1,000 | 33,178     | 274,668       |  |
| Benefit Cost ratio (B/C)         | —         | 1.32       | 2.35          |  |

Source: JICA Study Team

# (2) Financial evaluation (annual repayment provisional estimate)

The repayment schedule and amount of annual repayment will be as indicated in Figure 10-4. The mean annual repayment amount will be US\$11.7 million, including principal and interest. This corresponds to 4.0% of MOPC's mean road department aggregate budget. Although dependent on the cumulative total of loans and what repayment amounts to, it is thought that project repayment itself will not be unbearable, given MOPC's road fiscal resources.

# 7. Study of Project Execution System

# (1) Execution Schedule

The Paraguayan Government is to select consultants separately for detailed engineering and construction management in accordance with national law, and we shall comply accordingly. Upon completion of this study, a consultant for detailed engineering will be selected in 2012 and detailed engineering will be done in 2013. Thereafter, in 2014, a consultant for construction management will be selected along with the company to undertake construction. Construction could be expected to commence in 2015.

# (2) Cost of residents resettlement and land acquisition

We decided the scope of land acquisition by confirming the status of houses. To do this we used field surveys, the road designs and map data. The number of obstacles and number of site acquisitions are as follows:

|     | [Number of land acquisitions | 5. 1,010 III (0tal] |
|-----|------------------------------|---------------------|
| 9   | • Total area:                | 268                 |
|     | • Partial area:              | 1,542               |
| 2   |                              |                     |
| 5   |                              |                     |
| 225 | 25                           | • Partial area:     |

Source: JICA Study Team

On the basis of re-acquisition costs, the compensation amount for lost assets was calculated to be a maximum of US\$ 12.156 million. This is equivalent to about 4% of the total project costs.

| Items                                   | Amount (1,000 US\$) | Remarks                             |
|-----------------------------------------|---------------------|-------------------------------------|
| Land acquisition cost                   | 11,356              | Acquire all basic land width        |
| Compensation for residents resettlement | 800                 | Cost of resettlement and rebuilding |
| Total                                   | 12,156              |                                     |

# 8. Conclusion and Proposals

All Export Corridor concepts subject to this study were appropriate, and facilitating execution of the project is proposed for the following reasons.

- The project aims at reducing the fragility of Paraguay's entire transportation infrastructure. The substance of the project corresponds to a national program. Implementation of the project will improve transportation efficiency, improve productivity of export activity, enhance competitiveness and, as a result, contribute toward vitalizing the economy of Paraguay.
- If construction and maintenance are properly carried out, the project's EIRR would be 23.4%. This indicates that the project is amply feasible. Furthermore, projecting it can help mitigate poverty and improve the living environment.

# (1) Facilitating Improvement of Rio Parana Coastal Road, National Road Route 6 and Coastal Road Connection Road

- These arterial roads are positioned as "Southern Union Roads" forming the framework of southern Paraguay. The benefits from expediting the project are acknowledged for the following reasons.
- Southern Union Roads are arterial roads connecting Paraguay's southern departments where revitalized economies are promising. It is an effective project as an anti-poverty measure
- These roads will function as international roads forming the Paraguay link of a Both Oceans Traverse Road along the IIRSA Capriconio axis (The Tropic of Capricorn axis).

Improving these roads can lead to lower transportation costs for exports and contribute to economic development, competiveness, social development, and poverty mitigation.

# (2) Improving Port Access Road

- Improving the Rio Parana Coastal Road and the road linking the ports lining Rio Parana will enhance export competitiveness. In other words, by paving the access roads to ports, being at the mercy of bad weather can be avoided, and the port facilities could be used at all times. As a result, the efficiency of transportation of export products will improve significantly, and enhanced convenience for coastal inhabitants can be anticipated.
- Independent efforts have achieved small-scale improvements on port access roads. However, these are limited to minimum improvements, and their future remains obscure. Therefore, the need for the public sector to become involved in port access roads is high.

# (3) Recommended items to facilitate project execution

For the project to be implemented in a smooth manner, the items indicated below are those we recommend that Government of Paraguay implement.

- > Implement appropriate EIA and facilitate procedures for land expropriation.
- Expeditiously request financial assistance such as yen loan, and secure budgetary means for counterpart.

#### (4) Proposals to further develop project efficiency

The items indicated below are those the Government of Paraguay should implement to further enhance the effects of the project.

- Enhance positioning of the project within IIRSA and facilitate development of a regional road network connecting the country to adjacent nations.
- Post-project maintenance and operation.
- ▶ Facilitate regional development when road improvements are taking place.
- > Upgrade Rio Parana coastal facilities and support stabilization of water transportation.

# **Table of Contents**

| 1. Preface                                                                  | 1  |
|-----------------------------------------------------------------------------|----|
| 1.1 Overview of Study                                                       | 1  |
| 1.2 Area Covered by Study                                                   | 1  |
| 2. Confirmation of the project background                                   |    |
| 2.1 The region's socioeconomic conditions                                   |    |
| 2.2. Current road transportation situation                                  | 5  |
| 2.3 Export and import structure in Paraguay                                 | 7  |
| 2.4 Management and operation of roads and ports                             |    |
| 2.5 Related policies, plans and systems                                     |    |
| 2.6 Confirmation of necessity and importance of projects                    | 19 |
| 3. State of the Target Routes                                               |    |
| 3.1 Development state of the target routes                                  |    |
| 3.2 Road traffic volume on target routes                                    | 23 |
| 4. Review of the Route Plan                                                 | 24 |
| 4.1 Design conditions                                                       |    |
| 4.2 Road widths                                                             |    |
| 4.3 Review of proposed alternative routes                                   |    |
| 4.4 Review of road structures                                               |    |
| 5. Prediction of future traffic volme                                       |    |
| 5.1 Setting socioeconomic frame                                             |    |
| 5.2 Prediction of materials flow                                            |    |
| 5.3 Prediction of future traffic demand                                     |    |
| 6. Environmental and Social Considerations                                  |    |
| 6.1 Background for survey of environmental and social considerations        |    |
| 6.2 A review of environmental and social conditions and issues              |    |
| pertaining to the project and proposed countermeasures                      |    |
| 6.3 Schedule for acquiring environmental certification                      |    |
| 6.4 Assistance in preparing plan for resetting residents and acquiring land |    |

| 7. Preliminary Design                                             |    |
|-------------------------------------------------------------------|----|
| 7.1 Preliminary road design                                       |    |
| 7.2 Pavement design                                               | 45 |
| 7.3 Designing the road drainage facilities                        | 47 |
| 7.4 Preliminary design of structures                              |    |
|                                                                   |    |
| 8. Development of the Construction Plan and Implementation Plan   |    |
| 8.1 Construction policy                                           |    |
| 8.2 Material and equipment procurement policy                     | 51 |
| 8.3 Schedule plan                                                 |    |
| 9. Estimated Project Expense Quantity Survey                      |    |
| 10. Economic Evaluation                                           |    |
| 10.1 Economic Evaluation                                          | 55 |
| 10.2 Evaluation Method                                            |    |
| 10.3 Project Economic Cost                                        |    |
| 10.4 Economic Benefit Estimation                                  |    |
| 10.5 Economic Evaluation                                          |    |
| 10.6 Financial Evaluation (annual repayment provisional estimate) |    |
| 10.7 Socioeconomic Impact                                         |    |
| 11. Study of Project Execution System                             | 60 |
| 11.1 Project Execution Structure                                  |    |
| 11.2 Execution Schedule                                           |    |
| 11.3 Operation and Maintenance Structure                          |    |
| 12. Conclusion and Proposals                                      | 61 |
| 12.1 Main Changes since F/S                                       | 61 |
| 12.2 Conclusion and Proposals                                     |    |

# LIST OF FIGURES

| 1. | Preface                                                            |
|----|--------------------------------------------------------------------|
|    | Figure 1- 1 Study Area 1                                           |
|    |                                                                    |
| 2. | Confirmation of the project background                             |
|    | Figure 2- 1 Changes in departmental populations 2                  |
|    | Figure 2- 2 Comparison with previous prediction (population) 2     |
|    | Figure.2- 3 Comparison with previously predicted GDP 3             |
|    | Figure 2- 4 Major products by department                           |
|    | Figure 2- 5 Locations of Ports                                     |
|    | Figure 2- 6 Changes in Exports and Imports                         |
|    | Figure 2-7 Export product transportation                           |
|    | Figure 2- 8 Means of transporting export products (2010)           |
|    | Figure 2- 9 Changes in imports by means                            |
|    | Figure 2-10 Imports handled by each means of transportation (2010) |
|    | Figure 2-11 Export routes (Soybeans) 10                            |
|    | Figure 2-12 Export routes (wheat) 11                               |
|    | Figure 2-13 Export routes (corn) 11                                |
|    | Figure 2-14 Import routes (petroleum) 12                           |
|    | Figure 2-15 Import routes (fertilizers) 12                         |
|    | Figure 2-16 Implementation of GMANS and its locations 14           |
|    | Figure 2-17 MOPC Road Bureau Budget (amounts spent) 15             |
|    | Figure 2-18 Plan for the Second Amista Bridge 16                   |
|    | Figure 2-19 construction projects 17                               |
|    | Figure 2-20 Trunk Road Networks in Paraguay 18                     |
|    | Figure 2-21 Loc Railway ation of Export Corridor Projects 18       |
|    | Figure 2-22 Figure 2-22 Location of Urgent Road Projects 18        |
|    | Figure 2-23 Changes in volume of exports shipped on Parana River   |
| 3. | State of the Target Routes                                         |
|    | Figure 3- 1 Target structures                                      |
|    | Figure 3- 2 Traffic survey result (all vehicles)                   |
| 4. | Review of the Route Plan                                           |
|    | Figure 4-1 Standard width                                          |
|    | Figure 4- 2 Width of the auxiliary lane                            |
|    | Figure 4- 3 Width of new bridge                                    |

| Figure 4- 4 Section parallel to transmission line    2                    | 7 |
|---------------------------------------------------------------------------|---|
| Figure 4- 5 Proposed section structure    2                               | 8 |
| Figure 4- 6 Proposed alternative route through the Este area              | 9 |
| Figure 4- 7 Proposed alternative route through Nacunday area              | 0 |
| Figure 4- 8 Proposed alternative route to Campichuelo Port                | 0 |
| Figure 4- 9 Standard bridge section    32                                 | 2 |
| Figure 4-10 Reusable bridge width    32                                   | 2 |
| 5. Prediction of future traffic volme                                     |   |
| Figure 5-1. Predictions of annual production    3-                        | 4 |
| Figure 5- 2. Traffic volume by section in 2020    30                      | 6 |
| 7. Preliminary Design                                                     |   |
| Figure 7- 1 Sectioning map    42                                          |   |
| Figure 7- 2 Configuration of gutter at end of slope    4                  | 7 |
| Figure 7- 3 Configuration in immediate vicinity of water pipes 4          | 7 |
| Figure 7- 4 Bridge girder section    4                                    | 9 |
| Figure 7- 5 Pier types    50                                              | 0 |
| 8. Development of the Construction Plan and Implementation Plan           |   |
| Figure 8- 1 Positions of the sections    52                               | 2 |
| Figure 8- 2 Paraguay export corridor development plan work schedule    5. | 3 |
| 10. Economic Evaluation                                                   |   |
| Figure 10- 1 Perspective of Project Evaluation    5.                      | 5 |
| Figure 10- 2 Work Procedures for Economic Evaluation    50                | 6 |
| Figure 10- 3 Project expenses and flow of benefits                        | 8 |
| Figure 10- 4 Loan Repayment Schedule (Example)    59                      | 9 |

# LIST OF TABLES

| 2. | Confirmation of the project background                                                |
|----|---------------------------------------------------------------------------------------|
|    | Table 2- 1 Changes in GDP (1994 prices)         3                                     |
|    | Table 2- 2 Production growth    4                                                     |
|    | Table 2- 3 Roads, road length by paving method    5                                   |
|    | Table 2- 4 Outline of the subject ports    6                                          |
|    | Table 2- 5 Traffic at toll gates    7                                                 |
|    | Table 2- 6 Progress under GMANS    13                                                 |
| 3. | State of the Target Routes                                                            |
|    | Table 3- 1 Result of survey of present condition of roads    20                       |
|    | Table 3- 2 Result of survey on existing road structures22                             |
|    | Table 3- 3 Traffic survey results    24                                               |
| 4. | Review of the Route Plan                                                              |
|    | Table 4- 1 Geometric design standards    25                                           |
|    | Table 4- 2 Comparative study on the section parallel to the transmission line    28   |
|    | Table 4- 3 Bridge development plans    31                                             |
| 5. | Prediction of future traffic volme                                                    |
|    | Table 5- 1 Future population by department.    33                                     |
|    | Table 5- 2 Annual economic growth rates    33                                         |
|    | Table 5- 3 Traffic switching from National Road Route 6 to the subject road in 202035 |
|    | Table 5- 4 Conversion of crops in 2020    35                                          |
| 6. | Environmental and Social Considerations                                               |
|    | Table 6- 1 Current issues and proposed responses    38                                |
|    | Table 6- 2 Procedures related to environmental and social considerations    39        |
|    | Table 6- 3 Implementation schedule    41                                              |
| 7. | Preliminary Design                                                                    |
|    | Table 7- 1 List of pavement composition    46                                         |
|    | Table 7- 2 List of pipe culverts    48                                                |
|    | Table 7- 3 Standard structural type by bridge length    48                            |
|    | Table 7- 4 Superstructure type    49                                                  |
|    | Table 7- 5 Abutment type and standard structural height    50                         |

| 8. Development of the Construction Plan and Implementation Plan                        |
|----------------------------------------------------------------------------------------|
| Table 8- 1 Construction sections    52                                                 |
| 9. Estimated Project Expense Quantity Survey                                           |
| Table 9- 1 Project Expense Resume    54                                                |
| 10. Economic Evaluation                                                                |
| Table 10- 1 Project Economic Cost    50                                                |
| Table 10- 2 Compiled Economic Benefits    57                                           |
| Table 10- 3 Project Economic Evaluation Index    58                                    |
| 11. Study of Project Execution System                                                  |
| Table 11- 1 Duration of Bid Tender, etc. pertaining to Project Implementation       60 |
| Table 11- 2 Road Maintenance Expenses    6                                             |

# Abbreviation

# English

#### Spanish

| AASHTO   | American Association of State Highways<br>and Transport Officials | Asociación Americana de Funcionarios de<br>Carreteras Estatales y Transporte     |
|----------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|
| ANDE     | National Administration of Electricity                            | Administración Nacional de Electricidad                                          |
| ANNP     | National Administration of Navigation and Ports                   | Administración Nacional de Navigación y<br>Puertos                               |
| ASTM     | American Society for Testing and<br>Materials                     | -                                                                                |
| B/C      | Cost-Benefit Ratio                                                | Relación Costo - Beneficio                                                       |
| BID      | Inter-American Development Bank                                   | Banco Interamericano de Desarrollo                                               |
| ВСР      | Central Bank of Paraguay                                          | Banco Central del Paraguay                                                       |
| BIRF     | International Bank for Reconstruction and Development (IBRD)      | Banco Internacional de Reconstrucción y<br>Fomento                               |
| BNDES    | Brazilian Development Bank                                        | Banco Nacional de Desarrollo Económico<br>y Social                               |
| CAF      | Andean Corporation of Promotion                                   | Corporación Andina de Fomento                                                    |
| CAPECO   | Chamber of Cereals and Paraguayan<br>Exporters                    | Cámara Paraguaya de Exportadores de<br>Cereales y Oleaginosas                    |
| CBR      | California Bearing Ratio                                          | -                                                                                |
| CONAM    | National Environment Council                                      | Consejo Nacional del Ambiente                                                    |
| CONATEL  | National Telecommunication Committee of Paraguay                  | Comisión Nacional de<br>Telecomunicaciones de Paraguay                           |
| COPACO   | Paraguayan Telecommunication Company                              | Compañia Paraguaya de<br>Telecomunicaciones                                      |
| DGEEC    | Statistics and Census Bureau, STP                                 | Dirección General de Estadísticas<br>Encuestas y Censos, STP                     |
| DINATRAN | Direction of National Transports                                  | Dirección Nacional de Transporte                                                 |
| DMR      | Direction of Meteorology and Hydrology                            | Dirección de Meteorología e Hidrología                                           |
| DSR      | Debt Service Ratio                                                | Razón del servicio de la deuda                                                   |
| EDEP     | The Study on the Economic Development of the Republic of Paraguay | Estudio sobre el Desarrollo Económico de<br>la República del Paraguay            |
| EIA      | Environmental Impact Assessment                                   | Evaluación de Impacto Ambiental                                                  |
| ESAL     | Equivalent Single Axle Load                                       | Carga de Eje Único Equivalente                                                   |
| ETNA     | National Transport Master Plan Study                              | Estudio del Plan Maestro del Transport<br>Nacional                               |
| FAO      | Food and Agriculture Organization                                 | Organización para la Agricultura y la<br>Alimentación                            |
| FOB      | Free On Board                                                     | Franco del Bordo                                                                 |
| E/N      | Exchange of Notes                                                 | Canje de Notas                                                                   |
| FOCEM    | Fond of Structural Convergent of Mercosur                         | Fondos de Convergencia Estructural del<br>Mercosur                               |
| FONPLATA | Financial Fond for development of La Plata Basin                  | Fondo Financiero para el Desarrollo de la Cuenca del Plata                       |
| F/S      | Feasibility Study                                                 | Estudio de Viabilidad                                                            |
| GMANS    | Management and maintenance of road pavement for service level     | Gestión y Mantenimiento de<br>Carreteras Pavimentadas por Niveles<br>de Servicio |
| GDP      | Gross Domestic Products                                           | Producto Interno Bruto (PIB)                                                     |
| HWL      | High Water Level                                                  | Alto nivel del agua                                                              |

# English

# Spanish

| IEE     | Initial Environment Examine                                       | Examen Ambiental Inicial                                                      |
|---------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|
| IIRSA   | South American Regional Infrastructure<br>Integration Action Plan | Iniciativa para la Integracion de la<br>Infraestructura Regional Sudamericana |
| INCOOP  | National Institute of Cooperativism                               | Instituto Nacional de Cooperativismo                                          |
| IRR     | Internal Rate of Return                                           | Tasa Interna de Retorno (TIR)                                                 |
| IVA     | Value Added Tax                                                   | Impuesto al Valor Agregado                                                    |
| JBIC    | Japan Bank for International Cooperation                          | Banco del Japón para Cooperación<br>Internacional                             |
| JETRO   | Japan External Trade Organization                                 | Organación de Comercio Internacional del Japón                                |
| JICA    | Japan International Cooperation Agency                            | Agencia de Cooperación Internacional del Japón                                |
| KOICA   | Korea International Cooperation Agency                            | Agencia de Cooperación Internacional del<br>Corea                             |
| L/A     | Loan Agreement                                                    | Acuerdo de Préstamo                                                           |
| MAG     | Ministry of Agriculture and Livestock                             | Ministerio de Agricultura y Ganadería                                         |
| MOPC    | Ministry of Publics Works and<br>Communications                   | Ministerio de Obras Públicas y<br>Comunicaciones                              |
| NGO     | Non-governmental Organization                                     | Organización No Gubernamental                                                 |
| NPV     | Net Present Value                                                 | Valor Presente Neto (VPN)                                                     |
| OD      | Origin-Destination                                                | Origin-Destino                                                                |
| OP      | Operational Policies                                              | Políticas Operacionales                                                       |
| OPEC    | Organization of Exporting Petroleum<br>Countries                  | Organización de Países Exportadores de<br>Petróleos                           |
| PC      | Prestressed Concrete                                              | Hormigón Pretensado                                                           |
| PCU     | Passenger Car Unit                                                | Unidad (equivalencia) de coche pasajero                                       |
| PMU     | Project Management Unit                                           | Unidad de la gestión de proyecto                                              |
| P/Q     | Prequalification                                                  | Pre Quolificación                                                             |
| RC      | Reinforced Concrete                                               | Hormigón Reforzado                                                            |
| SEAM    | Secretariat of Environment                                        | Secretaría del Ambiente                                                       |
| SIVIPAR | System of Road Infrastructure of Paraguay                         | Sistema de Infraestructura Vial del<br>Paraguay                               |
| STP     | Technical Secretariat of Planning                                 | Secretaría Técnica de Planificación                                           |
| SWR     | Shadow Wage Rate                                                  | Tasa de sueldo sombra                                                         |
| UA      | Environmental Unit                                                | Unidad de Ambiental                                                           |
| UBI     | Real estate Unit                                                  | Unidad de Bienes Inmobiliarious                                               |
| UE      | Execution Unit                                                    | Unidad ejección                                                               |

# 1. Preface

# 1.1 Overview of Study

Promoting agricultural production and exporting agricultural products are vital means for the Republic of Paraguay ("Paraguay") to obtain foreign currency and its growth is important for the nation's economy. JICA carried out the Study on the Export Corridor and Grain Port in Paraguay (hereinafter referred to as "F/S") in 2006, which covered the Eastern Corridor and ancillary harbor facilities and clarified the necessity of making improvements to the Export Corridor. Based on the results of the study, the Paraguayan Government has been considering a yen loan request. As almost five years have elapsed since the study was completed, socio-economic conditions have changed and environmental preservation awareness has risen, and, in view of the need for climate change countermeasures, a review has become necessary.

The objectives of conducting this study are to confirm the appropriateness of the project under consideration as a candidate for a new ODA loan item, and based on the substance of the previous F/S, to review information needed to consider execution as an ODA loan project.

# **1.2** Area Covered by Study

The routes to be studied are those routes passing through Alto Parana and Itapua departments.

- > Local road (Parana River Coastal Road) Ciudad del Este to Natalio (approx.158km)
- National Road Route 6 Coastal Road Connection Road, National Road Route 6 Naranjito
   Parana River Coastal Road (approx. 54km)
- Port Access Road (8 ports altogether) (total length approx. 92km)

All routes are to be two-lane roads based on planned traffic volume. Project locations are as shown Figure 1-1.

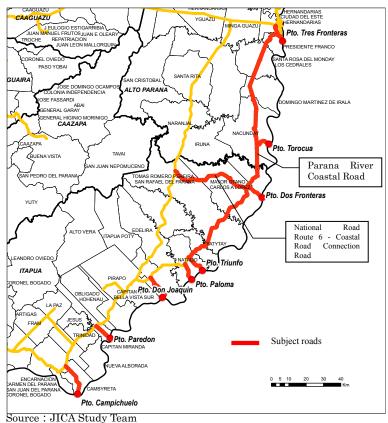



Figure 1-1 Study Area

# 2. Confirmation of the project background

# 2.1 The region's socioeconomic conditions

# (1) **Population**

The population of Alto Paraná Department has always grown at a higher rate than the national average.

Two departments Alto Parana and Itapúa account for 20% of the entire population of Paraguay, and the rate is growing year by year.

Compared to the forecast at the time of the previous F/S, the projected national population is reduced by 640,000 (-10%) and Itapua and Alto Parana by 520,000, although with some difference between 2009 and 2010. With the cultivated land in Itapua and Alto Parana almost saturated, it is probable that population growth has slowed down.

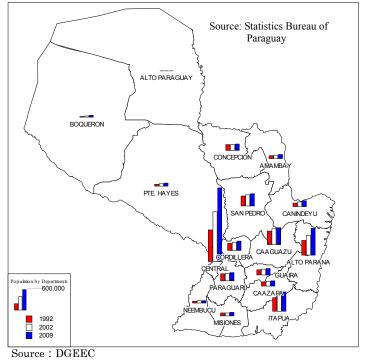



Figure 2-1 Changes in departmental populations

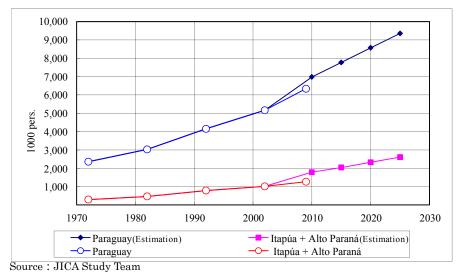
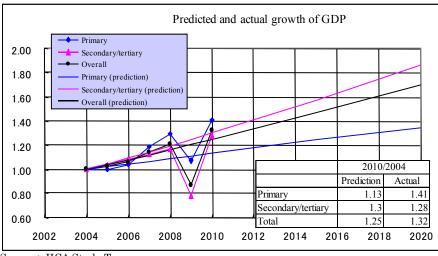



Figure 2-2 Comparison with previous prediction (population)

2

Final Report (Summary)

# (2) Economic situation


For the five years between 2006 and 2010, the GDP of Paraguay increased 1.24 times, with annual average growth at 5.6%. The primary sector is large, and the agricultural sector accounts for 27% of total GDP. Agricultural sector GDP has grown 1.5 times in the past five years.

| Inductorial constant                      | 9004       | 9005            | 9000       | 9007        | 9009       | 9000        | 2010*      | 2010  | Shar  | e(%)  |
|-------------------------------------------|------------|-----------------|------------|-------------|------------|-------------|------------|-------|-------|-------|
| Industrial sector                         | 2004       | 2005            | 2006       | 2007        | 2008       | 2009        | 2010*      | /2006 | 2006  | 2010  |
| Agriculture                               | 2,838,870  | $2,\!684,\!907$ | 2,717,962  | 3,372,656   | 3,726,784  | 2,795,088   | 4,108,780  | 1.51  | 22.2  | 27.0  |
| Atock raising                             | 857,751    | 987,244         | 1,092,327  | 1,022,313   | 1,089,038  | 1,141,311   | 1,238,323  | 1.13  | 8.9   | 8.1   |
| Forestry                                  | 285,285    | 304,685         | 310,778    | $318,\!548$ | 331,502    | $317,\!248$ | 269,660    | 0.87  | 2.5   | 1.8   |
| Fisheries                                 | 13,439     | 13,641          | 13,845     | 13,984      | 14,124     | 14,335      | 13,762     | 0.99  | 0.1   | 0.1   |
| Subtotal of primary<br>industry           | 3,995,346  | 3,990,477       | 4,134,913  | 4,727,500   | 5,161,448  | 4,267,983   | 5,630,525  | 1.36  | 33.8  | 37.0  |
| Mining                                    | 16,415     | 17,695          | 17,306     | 17,912      | 18,808     | 19,372      | 20,398     | 1.18  | 0.1   | 0.1   |
| Manufactuning                             | 2,198,170  | $2,\!256,\!894$ | 2,314,015  | 2,285,359   | 2,330,018  | 2,311,687   | 2,473,556  | 1.07  | 18.9  | 16.2  |
| Construction                              | 589,487    | 616,014         | 594,454    | 637,254     | 707,352    | 721,499     | 816,737    | 1.37  | 4.9   | 5.4   |
| Subtotal of secondary sector              | 2,804,072  | 2,890,603       | 2,925,775  | 2,940,525   | 3,056,178  | 3,052,558   | 3,310,691  | 1.13  | 23.9  | 21.7  |
| Electncpower,water<br>supply and sewerage | 264 501    | 271,945         | 295,061    | 312,469     | 323,406    | 338,929     | 360,960    | 1.22  | 2.4   | 2.4   |
| Transportation                            | 613,244    | 626,774         | 675,035    | 739,164     | 779,818    | 697,937     | 753,772    | 1.12  | 5.5   | 4.9   |
| Commerce, financing                       | 2,826,106  | 2,893,268       | 3,061,078  | 3,220,254   | 3,352,284  | 3,238,306   | 3,591,945  | 1.17  | 25.0  | 23.6  |
| Administrative service                    | 1,025,517  | 1,105,104       | 1,154,456  | 1,189,090   | 1,230,708  | 1,417,775   | 1,589,762  | 1.38  | 9.4   | 10.4  |
| Subtotal of tertiary<br>industry          | 4,729,370  | 4,897,092       | 5,185,630  | 5,460,977   | 5,686,216  | 5,692,948   | 6,296,438  | 1.21  | 42.3  | 41.3  |
| Total                                     | 11,528,788 | 11,778,172      | 12,246,317 | 13,129,002  | 13,903,842 | 13,013,489  | 15,237,655 | 1.24  | 100.0 | 100.0 |

# Table 2-1 Changes in GDP (1994 prices)

Source : BCP \*:Estimate

If the GDP for 2004 is set at 1.00, the performance exceeded the predicted values in the F/S in 2006, excluding the drop in 2009.



Source : JICA Study Team

Figure 2-3 Comparison with previously predicted GDP

# (3) Changes in agricultural production

# 1) Outline

The production of major agricultural products in Paraguay is increasing other than cotton. The great growth was achieved in soybeans and corn. Corn was produced 2.85 times more. As compared to the prediction in the 2006 F/S, soybean was produced according to the prediction but corn and wheat were produced much more than the previously predicted figures. Due to the soaring market price, it is thought that planting of these agricultural products were promoted as secondary crop of soybean.

The major sites of production of soybean are Itapua Department, Alto Paraná Department, Canindeyú Department, Caaguazú Department, Amambay Department, San Pedro Department, etc. in the east and the north of Paraguay. In these Departments, corn and wheat are produced as secondary crop of soybean. In contrast, the central Guaira Department, Paraguari Department and Cordillera Department produce sugar canes and cassava much, and do not produce much soybean, corn and wheat.

|             | Production v | olume (1000/ | ton / year ) | Growth rate |           |           |  |
|-------------|--------------|--------------|--------------|-------------|-----------|-----------|--|
|             | 2000         | 2005         | 2010         | 2005/2000   | 2010/2005 | 2010/2000 |  |
| Soy beans   | 2,980        | 3,988        | 7,460        | 1.34        | 1.87      | 2.50      |  |
| Sugar canes | 2,245        | 3,583        | 5,131        | 1.60        | 1.43      | 2.29      |  |
| Corn        | 647          | 1,090        | 3,109        | 1.68        | 2.85      | 4.80      |  |
| Cotton      | 247          | 198          | 15           | 0.80        | 0.08      | 0.06      |  |
| Wheat       | 231          | 800          | 1,402        | 3.46        | 1.75      | 6.07      |  |

#### Table 2-2 Production growth

Source: MAG

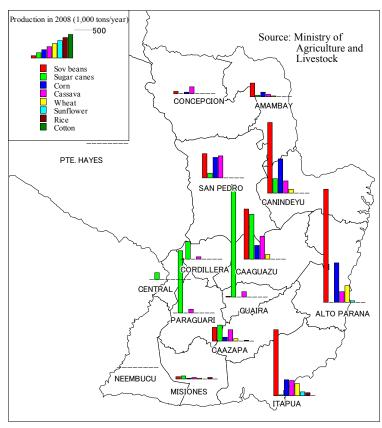





Figure 2-4 Major products by department

# (4) Peasant problem

According to a survey conducted by the Statistics Bureau in 2002, 48% of the country's population, which is 6 million, lives in farming villages, and agricultural production in them accounts for 40% of the country's total exports and 27.2% of GDP. Especially, the eastern areas where 97% of the population lives are suitable for agricultural production. Soybeans and wheat, the country's major export products, are produced in this zone, which constitutes the production zone supporting the economy. In this area, peasants cultivating 20ha or less live in the vicinity of large-scale farmers, mainly producing traditional crops of cassava, corn and cotton. A Food and Agriculture Organization (FAO) survey found the per capita annual GDP contributed by large farmers mainly producing soy beans is US\$12,000; for peasants it is US\$360. This income gap is expanding year by year, posing a social problem. The peasants grow unprofitable traditional crops (cassava, corn and cotton), are unable to obtain low-interest, timely loans, lack knowledge of the best land utilization methods, cultivation technology and distribution and sales know-how. Public services providing technical guidance are not fully functioning. Peasants account for 80% of the agricultural population and the response to their issues is an important point in reducing poverty in Paraguay.

# 2.2 Current road transportation situation

# (1) Development of transportation facilities

#### 1) Roads

The total length of highways in Paraguay has increased by about 10% since the previous survey. National roads account for about 4% of, this total; departmental routes account for 22%; and municipal routes account for about 10%. About 33% of the roads are paved with asphalt and concrete and, stone pavement has increased by about 418%. This is due to largely increased stone-paving of departmental roads as part of improvement of agricultural roads pursued according to a local road development plan (phase 1) of the Inter-American Development Bank (IDB) and a JICA's PG-P14 (agricultural sector strengthening plan).

Table 2-3 provides a breakdown of roads, road length by paving method and its growth.

|                       | Pave  | ement | Pavement<br>(Rock) |       | Non Pavement |        | Total  |        | Growth |  |
|-----------------------|-------|-------|--------------------|-------|--------------|--------|--------|--------|--------|--|
| Fiscal year           | 2005  | 2010  | 2005               | 2010  | 2005         | 2010   | 2005   | 2010   | rate   |  |
| National<br>road      | 3,153 | 3,984 | 12                 | 71    | 6,382        | 5,855  | 9,547  | 9,910  | 3.8    |  |
| Department<br>al road | 469   | 871   | 196                | 599   | 4,818        | 5,200  | 5,483  | 6,670  | 21.6   |  |
| Municipal<br>road     | 21    | * 5   | 69                 | 768   | 14,038       | 14,707 | 14,129 | 15,480 | 9.6    |  |
| Total                 | 3,643 | 4,860 | 277                | 1,438 | 25,239       | 25,762 | 29,159 | 32,060 | 9.9    |  |
| Percentage<br>(%)     | 12.5  | 15.1  | 1.2                | 4.5   | 86.3         | 80.4   | 100.0  | 100.0  |        |  |
| Growth (%)            | 33    | 3.4   | 5                  | 19.1  | 2            | .1     | 9.     | .9     |        |  |

Table2-3 Roads, road length by paving method

\* This decrease is considered to be due to the method used to classify departmental and municipal roads. Source: MOPC, as of June 2010

#### Final Report (Summary)

# 2) Ports

The ports along the Parana River and Paraguay River are shown in Figure 2-5, and there are many in and around Asuncion City and Este City. In neighboring Argentina, there are many ports. The object of this study is shown in Table 2-4. Pt. Campichuelo cannot be used due to rise of the water level as affected by the expansion work at Yacyreta Dam. A new port is under construction 400 meters upstream.

# 3) Railway

The railway in Paraguay is not in service. The Argentina Railway in Encarnación has been out of service since October last year due to submergence by the water in Yacyreta dam.



Figure 2-5 Locations of Ports

| Name of port                                  | Tres<br>Fronteras             | Trocua                                              | Dos<br>Fronteras                              | Triunfo                                        | La Paloma                                                     | Don Joaquin                                 | Paredon                                      |
|-----------------------------------------------|-------------------------------|-----------------------------------------------------|-----------------------------------------------|------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|----------------------------------------------|
| Owner                                         | OTS S.A.                      | TOROCUA<br>Terminal de<br>Embarque<br>S.A.(TOTEMSA) | Puertos del<br>Sur SA                         | Ministry of<br>Agriculture<br>and<br>Livestock | Cargill<br>Agropecuaria<br>SACI                               | Trans Agro<br>S.A.                          | Gical S.A.                                   |
| Administered and managed by:                  | Martin<br>Arturo<br>Gimenez   | Ditto.                                              | Martin<br>Arturo<br>Gimenez                   | Diagro S.A.                                    | Ditto.                                                        | Osmar<br>Herebia                            | Ditto.                                       |
| Area                                          | 19.5 ha                       | 7 ha                                                | 19 ha                                         | 6 ha                                           | 43 ha                                                         | 22 ha                                       | 6 ha                                         |
| Total receipt at peak hours                   | 200 cars/day                  | 120 cars/day                                        | 80 cars/day                                   | 70 cars/day<br>2,000t/day                      | 240 cars/day                                                  | 150 cars/day<br>4,050t/day                  | 120<br>cars/day                              |
| Annual export/import<br>by items<br>Soy beans | 200,000 ton                   | 106,000 ton                                         | 200,000 ton                                   | 100,000 ton                                    | 160,000 ton                                                   | 195,000 ton                                 | 90,000 ton                                   |
| Soybean oil                                   | 200,000 ton                   | -                                                   | -                                             | -                                              | -                                                             | -                                           | -                                            |
| Soybean grounds                               | 700,000 ton                   | -                                                   | -                                             | -                                              | -                                                             | -                                           | 2,000 ton                                    |
| Wheat                                         | -                             | -                                                   | 10,000 ton                                    | -                                              | 46,000 ton                                                    | 81,000 ton                                  | 50,000 ton                                   |
| Corn<br>Fuel (import)                         | 50,000 ton                    | -                                                   | 60,000 ton<br>-                               | -                                              | -                                                             | -                                           | -                                            |
| Peak period                                   | JanMay                        | FebJun.                                             | FebJun.                                       | Jan. Feb.                                      | FebMay                                                        | FebJun.                                     | JanApr.                                      |
| Mayjor shiping zone                           | Alto Parana                   | Alto Parana,<br>Itapua<br>(northern side)           | Itapua-Alto<br>Parana                         | Itapua-Alto<br>Parana                          | Cooperative in the south of Itapua                            | Itapua, Alto<br>Parana                      | Itapua                                       |
| Conditions of access<br>road                  | Stone<br>pavement<br>and soil | Earth<br>road/regular<br>maintenance                | Red clay<br>road/cannot<br>be used in<br>rain | Stone<br>pavement in<br>good<br>condition      | During stone<br>pavement/difficult<br>to pass at peak<br>time | 14kmstone<br>pavement<br>2kmgravel<br>road. | 6 km stone<br>pavement<br>5km gravel<br>road |

Table 2-4 Outline of the subject ports

Source : JICA Study Team

# (2) Current road traffic conditions

When we examined the traffic at the toll gates managed by MOPC, we found that about 6,000 cars pass Ypacarai per day, which is the most frequent. Next, about 4,000 cars pass through Remaso. As compared to the traffic in 2003, traffic at all toll gates except Cerrito has increased. The traffic more than doubled in seven years at Acceso Sur and Cuero Fresco. Iruna and Trinidad, the toll gates on National Road Route 6 pertaining to this study was 700 and 1,600 in one direction an increase of 30-40% from 2003.

|                         | (Unit: | cars/day, one | way direction) |
|-------------------------|--------|---------------|----------------|
| Toll booth              | 2010   | 2003          | Groth rate     |
| Ypacarai                | 5,919  | 5,578         | 6.1%           |
| Remanso                 | 3,529  | 2,644         | 33.5%          |
| Ybyrato                 | 2,195  | 1,277         | 71.9%          |
| Coronel Oviedo          | 2,356  | 2,318         | 1.6%           |
| Villa Florida           | 837    | 506           | 65.4%          |
| Cerrito                 | 405    | 412           | -1.7%          |
| Ciudad del Este (Iruña) | 663    | 509           | 30.3%          |
| Encarnacion (Trinidad)  | 1,561  | 1,100         | 41.9%          |
| Coronel Bogado          | 1,101  | 610           | 80.5%          |
| Tacuara                 | 622    | 520           | 19.6%          |
| Acceso Sur              | 1,586  | 791           | 100.5%         |
| Cuero Fresco            | 334    | 162           | 106.2%         |
| Emboscada               | 1,888  | -             | -              |
| 25 de Diciembre         | 1,339  | -             | -              |
| Pozo Colorado           | 221    | -             | -              |
| Source · MOPC           |        |               |                |

Table 2-5 Traffic at toll gates

Source : MOPC

#### 2.3 Export and import structure in Paraguay

# (1) Export and import trends

# 1) Volume of exports and imports

Both exports and imports are increasing but exports are markedly growing. This is due to the fact that international demand for grains has grown.

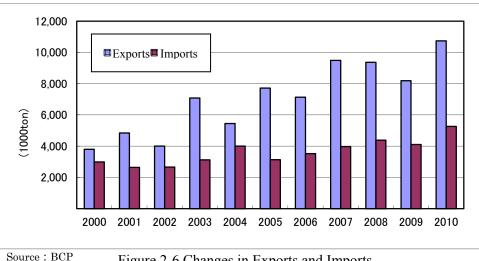



Figure 2-6 Changes in Exports and Imports

# 2) Means of transportation

Since 2004, river transportation has surpassed truck transportation as the main means of transport of export products. River transportation now accounts for 60-70% of shipments. The share of railway transportation is low, only 1.0% in 2010. In truck transportation, Este City to Brazil accounts for 12.6% of export product transport and Asuncion City to Argentina accounts for 9.5%. River transportation accounts for 20.9% on the Parana River and 48.5% on the Paraguay River.

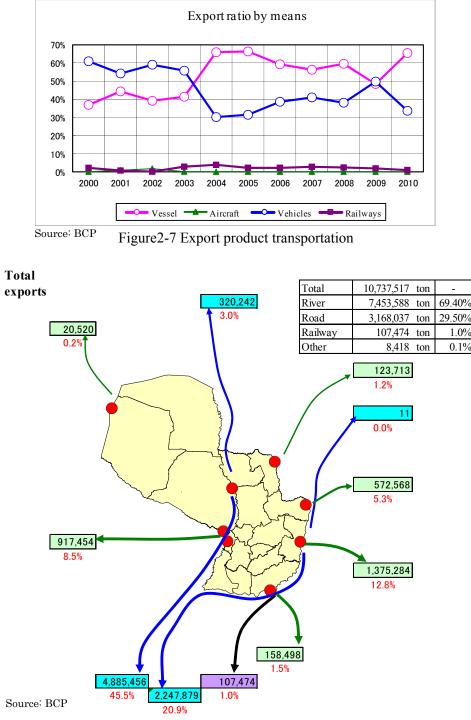
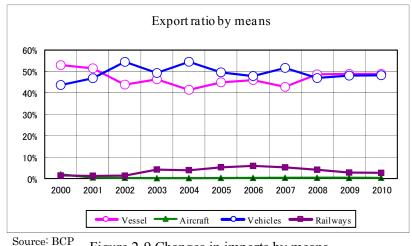



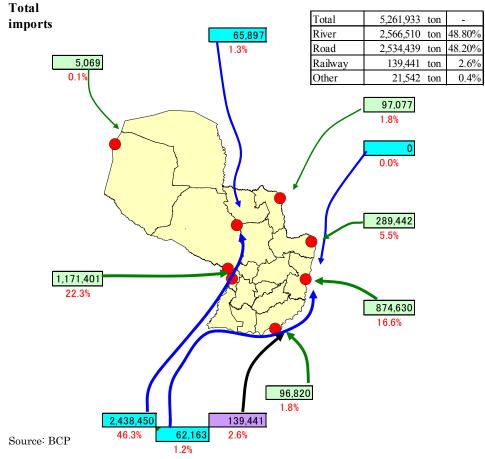

Figure 2-8 Means of transporting export products (2010)

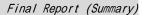
Truck transportation and river transportation account for about 50% each of transportation of imported products. Railways, which is gradually declining, accounted for 2.7% of import shipments in 2010.

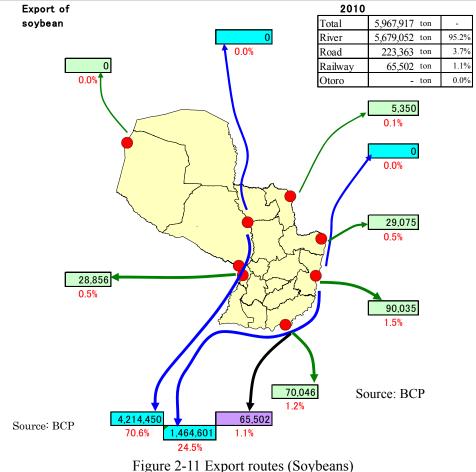
In truck transportation, Este City from Brazil accounts for 15.3% of total shipments, and Asuncion from Argentina 22.3%. Unlike exports, the cargos from Argentina handled by truck are greater. Parana River traffic accounts for about 1.2% of river transportation, and Paraguay River traffic accounts for an overwhelmingly high 47.5%. The ports along Parana River are mainly for grain shipments and there are no piers to offload other cargos.









Figure 2-10 Imports handled by each means of transportation (2010)


# (2) Characteristics of exports and imports by items

Transportation means and routes for major items are shown in Figures 2-11 to 2-15.

 $\geq$ Soybeans are exported via Paraguay River (60.8%) and Parana River (30.5%). In total, 91.3% is exported by rivers. In terms of the locations of production sites, Parana River is advantageous but the Paraguay River is used more often. This is due to lack of credibility of the transportation routes to the ports, and a shortage of storage facilities, ports and vessels on the Parana River. (Fig. 2-11).

Preparatory Survey on The Eastern Region Export Corridor Improvement Project in the Republic of Paraguay





- For wheat, road transportation is used more than river transportation. In road transportation (truck transportation), the cargos are transported from Este City and Salto del Guaira City to Brazil. In river transportation, almost the same amount is transported to Uruguay via the Paraguay River (20.9%) and Parana River (22.1%). The wheat produced in Alto Parana Department and Itapua Department is transported via the Parana River. (Fig. 2-12)
- Corn shipments are transported via road (32%) and river (68%), not via railway. Mainly, it is exported to Brazil, Argentina and Uruguay. To brazil, it is transported by truck from Este City and Salto del Guaira City. To Argentina and Uruguay, it is exported via Paraguay River. What was produced in Itapua Department and Alto Parana Department is transported by truck to Brazil, and what is produced elsewhere is transported via Paraguay River to Uruguay and Argentina. (Fig. 2-13)
- Ninety-five percent of the petroleum products (crude oil and gasoline) are imported by water transportation. Most of them are transported via the Paraguay River to the refinery in Asuncion. Major suppliers are Argentina and Brazil, but imports from Venezuela are increasing. (Fig. 2-14).
- Fertilizers are imported 88% by land transportation, including trucks and railways: truck (70%), railways (18%). Imports from Brazil are the greatest and transported by trucks and rivers. Imports from Argentina and Uruguay are by railways (Fig. 2-15).

Preparatory Survey on The Eastern Region Export Corridor Improvement Project in the Republic of Paraguay

Final Report (Summary)

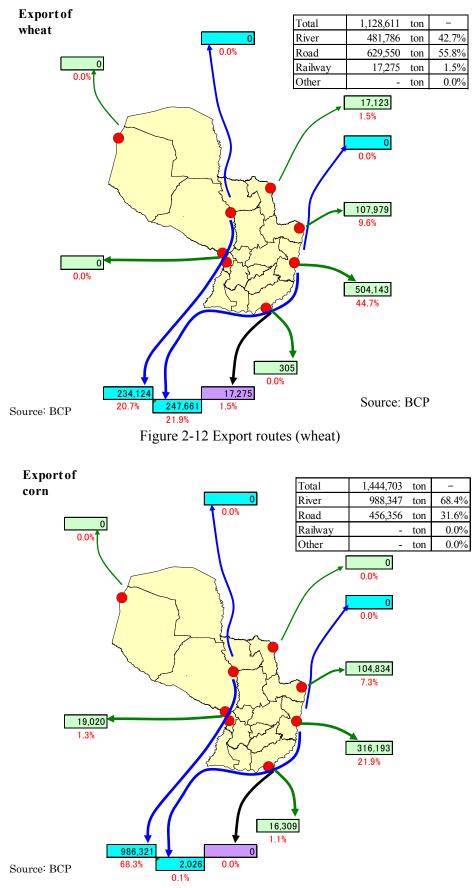



Figure 2-13 Export routes (corn)

Preparatory Survey on The Eastern Region Export Corridor Improvement Project in the Republic of Paraguay

Final Report (Summary)

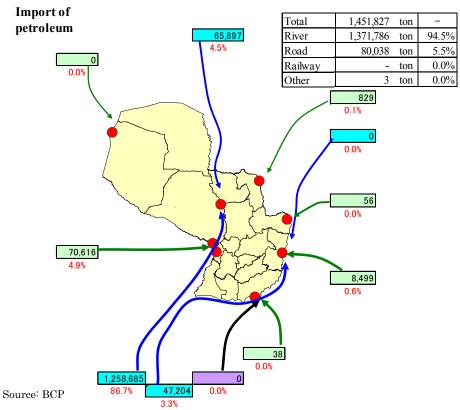
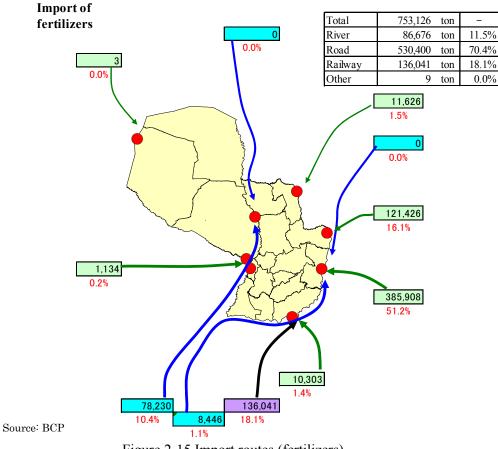
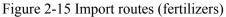





Figure 2-14 Import routes (petroleum)





# 2.4 Management and operation of roads and ports

# (1) Roads

# 1) Administrative districts and maintenance

Roads in Paraguay are classified into national roads, departmental roads, and municipal roads. MOPC has a Road Bureau and Local Road Bureau. The Road Bureau manages national roads, and the Local Road Bureau manages departmental roads and municipal roads. MOPC oversees 17 local offices to implement of road maintenance. Departments have their own maintenance organizations, but in practice the local offices of MOPC often handle this function. Paraguay has 32,000 km (as of 2010) of national roads, departmental roads and municipal roads and municipal roads.

What is noteworthy in maintenance is that, with World Bank assistance, a "Maintenance, Improvement and Administration Program for the Road Network (GMANS) has been in progress since 2008. A maintenance project, the aim of GMANS is "maintenance of paved roads and improvement of service." It improves paved roads to a certain extent backed by World Bank (WB) and Inter-American Development Bank (IDB) funds, and private entities are entrusted to preserve the level of pavement. (Formerly, WB was the only party, but now IDB is participating.)

Table 2-6 shows the progress of GMANS. Table 2-16 shows the locations of GMANS.

| Gmans  | Road development | Maintenance                  |
|--------|------------------|------------------------------|
| 1      | Ongoing          | -                            |
| 2      | Ongoing          | -                            |
| 3      | Completed        | To be started from Aug. 2011 |
| 4      | Completed        | To be started from Aug. 2011 |
| 5      | Completed        | To be started from Sep. 2011 |
| 6      | -                | -                            |
| Urbano | Ongoing          | -                            |

Table 2-6 Progress under GMANS

Source : MOPC

# 2) Toll road system (concession method)

It remains unchanged that fees are collected for driving on the national highways in Paraguay. This is done according to the principle that those who benefit should pay. However, the fees are treated as state revenue and not directly used for road development. It is planned that the fees collected under a a private concession system at two points in National Road Route 7 will be used for improvement work and maintenance, and that this approach will be further extended to National Road Routes Nos. 1, 2 and 6. The bill authorizing this program is awaiting approval of the national assembly.

# 3) Roads budget

Financial resources for the roads budget comes from domestic sources and loans from international organizations. This budget changes greatly year by year depending on the country's financial situation. Approximately half of the funding for road construction comes from domestic sources and and the other half from foreign loans. Maintenance costs have been on the rise in recent years.

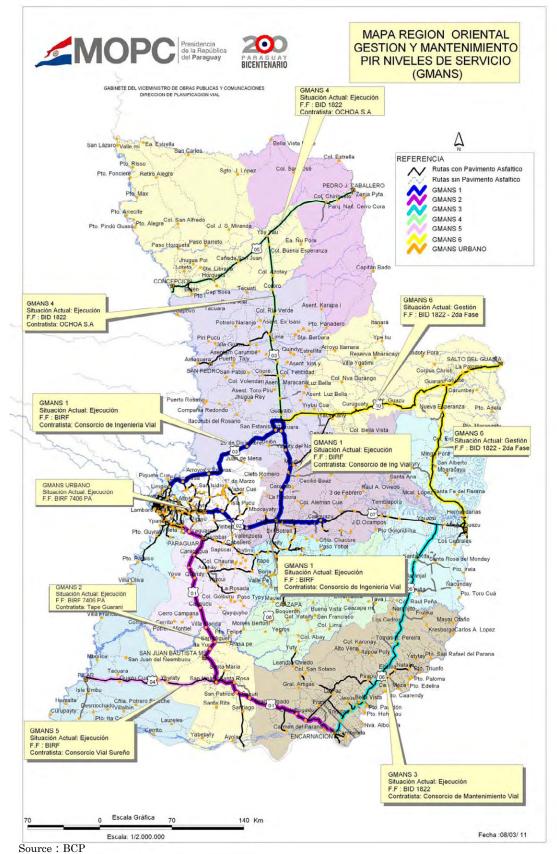



Figure 2-16 Implementation of GMANS and its locations

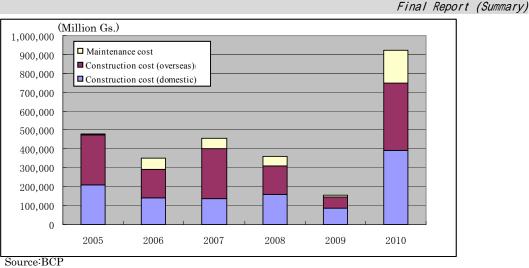



Figure 2-17 MOPC Road Bureau Budget (amounts spent)

# (2) Ports

Development, maintenance of ports and water courses are conducted by ANNP (Administración Nacional de Navigación y Puertos) under the auspice of MOPC. However, ports have been licensed to be operated by private parties since 1994, and privatization has advanced. Since August 2001, private ports operate businesses as authorized by the Marina Mercante of MOPC, which sets standards for the development of private ports.

# 2.5 Related policies, plans and systems

# (1) Economic strategy plan

No state development plan was established under the Lugo Administration, which began in August 2008. Alternatively, development was pursued under the "2008-2013 Socioeconomic Strategy Plan," a government development plan, which focuses on economic and social development, modernization of administrative organizations, strengthening the independence of the judiciary, strengthening competitiveness, agricultural reform, poverty reduction and anti-corruption measures.

The development of the export corridor considered here will have an important role in strengthening the competitiveness of agricultural products indispensable to the economic development of Paraguay. It will also play a significant role in the social development along the corridor. The subject areas have many granaries important to the economy in Paraguay, and improving the corridor can be expected to contribute significantly to reduce the poverty among the large peasants population. Therefore, the development of the export corridor is in line with the many focal areas in the socioeconomic strategy plan and this development is necessary as viewed at the highest level of planning.

# (2) Initiative for the Integration of the Regional Infrastructure of South America (IIRSA<sup>1</sup>)

The IIRSA was adopted at the first South American summit meeting held in 2000 with the aim of raising the competitiveness of the South American economies, and to promote socioeconomic development through integration and modernization of infrastructure in the 12 countries in the region. The IIRSA projects summarized below are related to this study.

# 1) Plan to develop the Second Amista Bridge No. 2

A "Plan to Construct the Second Amista Bridge" is being promoted as a major project to develop the

 $<sup>^1\,</sup>$  IIRSA: Initiative for Integration of Regional Infrastructure in South America

# Final Report (Summary)

tropic of Capricorn axis of IIRSA. This project is being handled by the Dep. Nacional Infraestructura y Transporte of Ministerio de Transporte of Brazil. Detailed design work was to have been completed in December last year, an offer for tender was to have been conducted in February this year, and construction was to have begun in June. There was some change in the detailed design, and the offer for tender had not been made as of May 2011. However, the plan is for construction to start within this year.

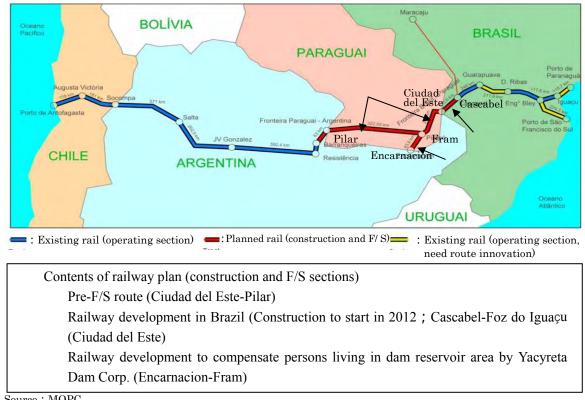
On the other hand, the Plan to Develop the Connection Road for the Second Amista Bridge was started from a F/S and detailed design with assistance from the BID fund began in February 2011. The plan is for the project to be completed in December this year. No decision has been made as to funding for the connection road. We have heard that the funds for the Forcen Dam or Itaipu Dam will be appropriated.

Figure 2-18 shows the Plan for the Access Road to the Second Amista Bridge



Source : MOPC Figure 2-18 Plan for the Second Amista Bridge

# 2) Development of the Parana River Axis


This axis runs north-south through the central axis between the two oceans, the Tropic of Capricorn axis, and the Merco Sur-Chile axis. The aims of the projects along these axes are the following: to develop water transportation facilities, mainly in La Plata and the Paraguay drainage systems; and to develop roads connected to the port facilities. The access roads to the ports along the Parana River and roads connecting these ports subject to this study are included among the related projects being proposed.

# 3) Railway construction under the IIRSA plan

As written in the 2006 report, the railway connecting the Atlantic and the Pacific has been held up by the missing link of Paraguay. However, Paraguay has been slowly studying it under the IIRSA plan. The plan related to railways and information on studies are as follows:

- a. F/S of the railway connecting Ciudad del Este-Fram (Itapua Department)-Pilar: conducted by KOICA.
- b. A railway construction project connecting Cascavel and Foz do Iguacu will be started in 2012.

According to an person IISRA executive, the cost of the railway construction in Paraguay will be about US\$1,300,000-1,900,000/km. The possibility of realizing such a plan seems low.



Source : MOPC

Figure 2-19 Railway construction projects

# (3) MOPC development plan

As the master plan for road networks by MOPC, integrated national transport planning study(ENNA) was done in 1992 by JICA aiming at settling mid-term span road planning policy, which is fundamental rule for road network policy today (See Fig. 2-20).

In addition, economic development study (EDEP), which was done in 2000 by JICA, gave indication of future course of economic prosperity in Pakistan considering Mercosur and settlement action plan toward 2006. Among this investigation, promoting export is most necessary policy for economic prosperity in Pakistan. Therefore, implementation of the export corridor which includes this project is recommended (See Fig. 2-21).

Preparatory Survey on The Eastern Region Export Corridor Improvement Project in the Republic of Paraguay

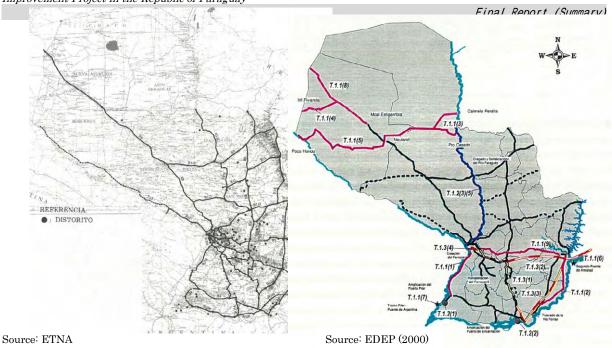



Figure 2-20 Trunk Road Networks in Paraguay

Figure 2-21 Location of Export Corridor Projects

Figure 2-22 shows the location of urgent road projects planned by MOPC.

Parana River Coastal Road and Port Access Roads are included in the urgent projects list, and MOPC put those routes to the high priority.

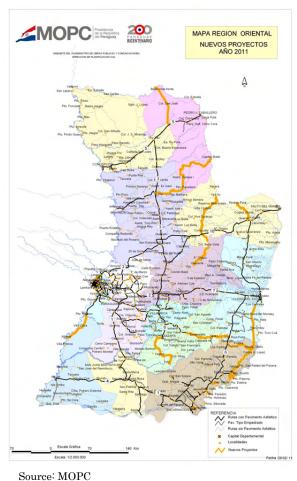
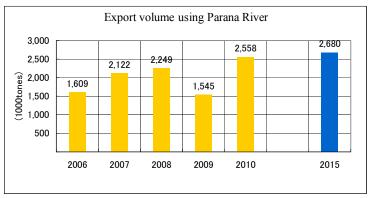
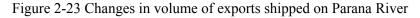



Figure 2-22 Location of Urgent Road Projects

## 2.6 Confirmation of necessity and importance of projects


In view of the regional conditions and trends that have been considered, the necessity and importance of the projects (export corridor) can be confirmed. The following are the main points to consider.

## (1) Response to increased production of agricultural products


The production of major agricultural products greatly increased in the 10 years from 2000 to 2010, with soybean production growing 2.50 times, corn 4.80 times and wheat 6.07 times. Except for soybeans, the figures largely exceed the estimates in the former F/S. This growth is driving the economy of Paraguay. The major centers for these agricultural products are the Alto Parana and Itapua departments. This is a key reason for saying that the need to develop an export corridor through the grain centers is very high.

### (2) Response to increasing need for river transportation

Along with the increased production of grains, the volume of exports shipped via the Parana River is increasing. Figure 2-23 shows the changes in exports shipped via the Parana River between 2006 and 2010. That in 2010 was 1.59 times more than that of 2006. These exports have been growing more than 12% on average annually. The export volume in 2010 is equivalent to that in the forecasted for 2015 in the 2006 F/S. The importance of exports shipped via the Parana River and the need to develop the export corridor is higher than it was in 2006.



Source: 2006-2010:CAPECO, 2015: Estimation



### (3) Devised method for road suspension on rainy days

Local roads are often suspended on rainy days because of road maintenance. In addition, some local roads which are not suspended are often interrupted when surface of a road becomes muddy as rain falling. Rainfall days are between 6 to 9 days per month except July and August in the study area, and then road suspension occurs during rainfall days. Because of this situation, delay of logistics occur cost increase. Therefore the export corridor is required to be improved for all-weather conditions.

### (4) Responding to the needs of peasants

The problems faced by the peasants, whose population accounts for 80% of the agricultural population, must be solved to reduce poverty in Paraguay. Developing the export corridor will enable stable shipments unaffected by weather and the time required for transportation to major consumption areas can be reduced. Realizing these objectives will support the livelihood of the peasants. Peasants produce unprofitable traditional crops such as cassava, corn, and cotton. To enable them to produce

highly profitable crops such as soybeans, it is necessary to assure production volumes and the quality and reliability of shipments. It can be said that the underdeveloped infrastructure, mainly roads, prevents improving the conditions faced by the peasantry. Development of the export corridor will meet the conditions for progress and enable peasants to grow soybeans, which would contribute to solving their problems.

## **3.** State of the Target Routes

## **3.1** Development state of the target routes

## (1) Present-state survey of the roads

Paved roads have increased considerably since the previous survey. Approximately 40 km of dirt roads have been paved with stone or asphalt. In particular, the entire length of the access road to Tres Fronteras Port has been completely paved with asphalt. Therefore, this road is excluded from the scope of this development project.

|                                    |             | 10                             | ble 3-1 Resul      | it of su | 2             | 1                 |                     |               | loaus             |                     |                                          |
|------------------------------------|-------------|--------------------------------|--------------------|----------|---------------|-------------------|---------------------|---------------|-------------------|---------------------|------------------------------------------|
| <b>m</b>                           | Section     |                                |                    | Length   |               | 006 年 F/Sre       |                     |               | ery result of     | ř                   | Remarks                                  |
| Target section                     | name        | Start point                    | End point          | (km)     | Earth<br>road | Stone<br>pavement | Asphalt<br>pavement | Earth<br>road | Stone<br>pavement | Asphalt<br>pavement |                                          |
|                                    |             | Natalio                        | Rio Tembey         | 12.1     | 5.3           | 6.8               | 0.0                 | 5.3           | 6.8               | 0.0                 |                                          |
|                                    | M-2         | Rio Tembey<br>(inc.bridge)     | Ao. Gurapay        | 23.9     | 23.9          | 0.0               | 0.0                 | 23.9          | 0.0               | 0.0                 |                                          |
|                                    | M-3         | Ao. Gurapay                    | Connection         | 23.3     | 23.3          | 0.0               | 0.0                 | 23.3          | 0.0               | 0.0                 |                                          |
|                                    | <b>M-</b> 4 | Connection                     | Rio Yacuyguazu     | 13.0     | 13.0          | 0.0               | 0.0                 | 13.0          | 0.0               | 0.0                 |                                          |
| Parana River<br>coastal road       | M-5         | Rio Yacuyguazu<br>(inc.bridge) | Rio Nacunday       | 24.8     | 24.8          | 0.0               | 0.0                 | 24.8          | 0.0               | 0.0                 |                                          |
|                                    | M-6         | Rio Nacunday<br>(inc.Rio)      | Los Cederales      | 43.0     | 43.0          | 0.0               | 0.0                 | 43.0          | 0.0               | 0.0                 |                                          |
|                                    | M-7         | Los Cederales                  | Prte. Franco       | 7.4      | 0.0           | 7.4               | 0.0                 | 0.0           | 0.0               | 7.4                 |                                          |
|                                    | M-8         | Prte. Franco                   | Super Carreterra   | 10.1     | 0.0           | 10.1              | 0.0                 | 0.0           | 0.0               | 10.1                |                                          |
|                                    |             | Sub-tota                       | 1                  | 157.6    | 133.3         | 24.3              | 0.0                 | 133.3         | 6.8               | 17.5                |                                          |
|                                    | PAR-1       | Route6                         | Pt. Campichuelo    | 19.7     | 19.3          | 0.4               | 0.0                 | 19.3          | 0.0               | 0.4                 |                                          |
|                                    | PAR-2       | Route6                         | Pt. Paredon        | 11.0     | 6.6           | 4.4               | 0.0                 | 0.0           | 11.0              | 0.0                 | Under construction<br>for stone pavement |
|                                    | PAR-3       | Parana<br>Rivercoastal road    | Pt. Don Joaquin    | 16.8     | 16.0          | 0.0               | 0.8                 | 3.9           | 12.1              | 0.8                 |                                          |
|                                    | PAR-4       | Parana<br>Rivercoastal road    | Pt. Paloma         | 10.5     | 10.5          | 0.0               | 0.0                 | 0.0           | 10.5              | 0.0                 | Under construction<br>for stone pavement |
| Access road<br>to the port         | PAR-5       | Parana<br>Rivercoastal road    | Pt. Triunfo        | 11.8     | 9.4           | 2.4               | 0.0                 | 0.0           | 11.8              | 0.0                 |                                          |
|                                    | PAR-6       | Parana<br>Rivercoastal road    | Pt. Dos Fronteras  | 5.7      | 5.7           | 0.0               | 0.0                 | 5.7           | 0.0               | 0.0                 |                                          |
|                                    | PAR-7       | Parana<br>Rivercoastal road    | Pt. Torocua        | 8.7      | 8.7           | 0.0               | 0.0                 | 8.7           | 0.0               | 0.0                 |                                          |
|                                    | PAR-8       | Parana<br>Rivercoastal road    | Pt. Tres Fronteras | 7.9      | 1.2           | 0.7               | 6.0                 | 0.0           | 0.0               | 7.9                 |                                          |
|                                    | Sub-total   |                                | 1                  | 92.1     | 77.4          | 7.9               | 6.8                 | 37.6          | 45.4              | 9.1                 |                                          |
| Road connecting                    | C-1         | Route6                         | Frutika            | 24.8     | 0.0           | 24.8              | 0.0                 | 0.0           | 24.8              | 0.0                 |                                          |
| National Road<br>Route 6 and river | C-2         | Frutika                        | Main Corridor      | 29.6     | 29.6          | 0.0               | 0.0                 | 29.6          | 0.0               | 0.0                 |                                          |
| coastal road                       |             | Sub-tota                       | 1                  | 54.4     | 29.6          | 24.8              | 0.0                 | 29.6          | 24.8              | 0.0                 |                                          |
|                                    | (           | Grand total                    |                    | 304.1    | 240.3         | 57.0              | 6.8                 | 200.5         | 77.0              | 26.6                | е                                        |

 Table 3-1 Result of survey of present condition of roads

Source : JICA Study Team

### (2) State of repair of structures

A repair state survey of existing road structures, mainly 32 structures, including two new ones, was conducted for the purposes indicated below (also see Figure 3-1). The previous survey identified the necessity of either a bridge or box culvert for these structures.

Points studied:

> Change, such as reconstruction, in the state of existing road structures

- Integrity of the existing road structures to be reused
- > Changes in the surrounding conditions at locations where new construction is planned
- > Whether or not there are locations for construction of new road structures

Details concerning the change in state and the integrity are shown in Table 3.2. As is known from the table, eight bridges were repaired and one bridge was washed away after the previous survey.

Parana River Coastal Road N° Estación Tipo Longitud B/C 3+2502-4,50x2,85x11,80 1  $\mathbf{2}$ 5 + 553B/C 2-4,50x2,85x13,20 12+093  $70,00 \times 8,50$ 3 Br 4 22+768B/C 1-3,00x3,00x17,00 B/C 5 23+6231-3,00x3,00x13,80 B/C No 27 6 27 + 7772-4,50x2,80x11,50 Pdte. Franco 7 48,00x8,50 35 + 989 $\mathbf{Br}$ Los Ce 47+616 48,00×8,50 8  $\mathbf{Br}$ B/C 9 2-3,50x3,00x16,00 55 + 13710 56+642B/C 2-3,50x3,00x16,00 10 25 B/C 11 64 + 4302-4,50x3,00x16,00 12  $\mathbf{Br}$ 64 + 56220,00×10,00 10 24 No 23 1370 + 447 $\mathbf{Br}$ 20,00x10,00 No 22 72 + 250 $\mathbf{Br}$ 75,00x10,00 14B/C 2-4,50x3,00x16,00 15 83+566 16 88 + 291 $\mathbf{Br}$  $15,00 \times 10,00$ No 21 Rio Nacunday B/C 1789 + 4252-4,00x3,00x16,00 No 19 18 90+000 B/C 1-3,50x3,00x16,00 No 18 Br 94 + 24019 20.00x10.00 No 17 No 16 Torocua 20 97+048 Br 100,00×10,00 No 15 PAR. 99+782 B/C 211-3,50x3,00x16,00 22  $\mathbf{Br}$ 7,70×10,00 111 + 462Rio Yacuyguazu 20,00x10,00 23114 + 575 $\mathbf{Br}$ Route 6 No 13  $\operatorname{Br}$  $16,00 \times 8,00$ 24117 + 337No 12 No 11 126 + 177 $25,70 \times 8,00$ 25  $\mathbf{Br}$ Frutik 26134+683  $\mathbf{Br}$  $15,00 \times 10,00$ No 10 Pt. Dos Fronteras 2-2,00x2,00x21,60 27 B/C 146 + 413Port Access Road Tipo Longitud N° Estación No 7 1-1 2+635 $\mathbf{Br}$ 6,00x8,00 No 6 1-2 3+223 6,10×10,00  $\mathbf{Br}$ 1-3 6+088 $\mathbf{Br}$  $15,00 \times 10,00$ 8+711B/C 2-4,00x3,00x16,00 3-1B/C 6-1 5+6501-2,50x2,50x16,00Br Bridge Natalio B/C Box Culvert Triunfo 3.1 t. Don Pt. Paredon 1.3 Source : JICA Study Team Encarnacion Pt. Campichuelo

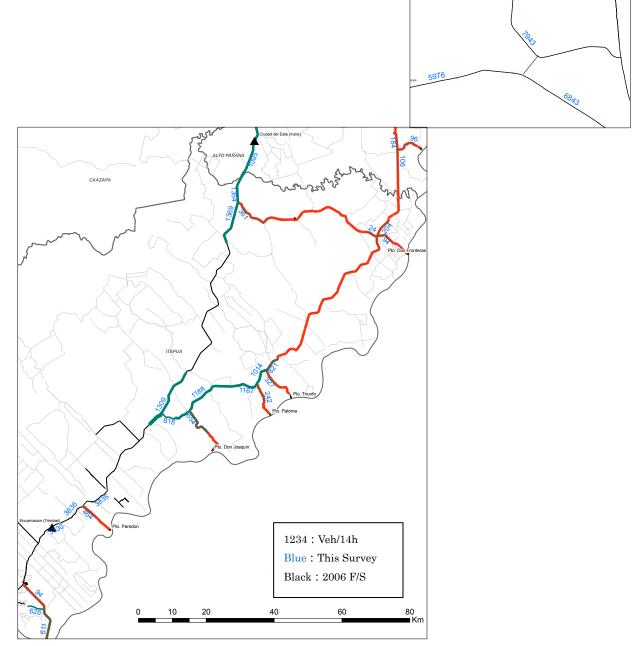
Figure 3-1 Target structures

|                    | р.          |         | lable 3-2 Result        |                      | Previous suve | <u>y road struc</u> | Suvey this time      |              |           |
|--------------------|-------------|---------|-------------------------|----------------------|---------------|---------------------|----------------------|--------------|-----------|
|                    | Basin<br>No | No      | River name              | Type of<br>structure | Material      | Condition           | Type of<br>structure | Material     | Condition |
|                    | 1           | 3+250   | Aro. Pai Curuzu(1)      | Br.                  | Concrete      | Good                | Br.                  | Concrete     | Good      |
|                    | 2           | 5+553   | Aro. Pai Curuzu(2)      | B/C                  | Concrete      | Good                | B/C                  | Concrete     | Good      |
| [                  | 3           | 12+093  | Rio Tembey              | Br.                  | Concrete      | Good                | Br.                  | Concrete     | Good      |
|                    | 4           | 22+768  | M-2-1                   | B/C                  | Concrete      | Good                | B/C                  | Concrete     | Good      |
|                    | 5           | 23+623  | M-2-2                   | B/C                  | Concrete      | Good                | B/C                  | Concrete     | Good      |
|                    | 6           | 27+777  | Aro. San Rafael         | B/C                  | Concrete      | Good                | B/C                  | Concrete     | Good      |
| -                  | 7           | 35+989  | Aro. Guarapay           | Br.                  | Concrete      | Good                | Br.                  | Concrete     | Good      |
|                    | 8           | 47+616  | Aro. Yhaca Guazu        | Br.                  | Concrete      | Good                | Br.                  | Concrete     | Good      |
|                    | 9           | 55+137  | Aro. Alegre             | no existing          |               |                     | no existing          |              |           |
| ·                  | 10          | 56+642  | Aro. Cure-Ky            |                      | no existing   |                     |                      | no existing  |           |
|                    | 11          | 64+430  | Aro. Emilia             | Br.                  | Wooden        | Normal              | Br.                  | Concrete     | Good      |
|                    | 12          | 64+562  | Aro. San Juan           | Br.                  | Wooden        | Normal              | Br.                  | Concrete     | Good      |
| Ruta               | 13          | 70+447  | Aro. Yhaca-Mi           | B/C                  | Concrete      | Good                | B/C                  | Concrete     | Good      |
| Costanera          | 14          | 72+250  | Rio Yacuy Guazu.        | Br.                  | Wooden        | Poor                | F/Br.                | Potoon       | Normal    |
| del Rio<br>Paranā  | 15          | 83+566  | Aro. Diamante           | Br.                  | Wooden        | Normal              | Br.                  | Wooden       | Normal    |
|                    | 16          | 88+291  | Aro. Imperial           | Br.                  | Concrete      | Normal              | Br.                  | Concrete     | Normal    |
|                    | 17          | 89+425  | Aro. Imperial Afluen.1  | Br.                  | Wooden        | Normal              | Br.                  | Wooden       | Normal    |
|                    | 18          | 90+000  | Aro. Imperial Afluen.2  | Br.                  | Wooden        | Normal              | Br.                  | Wooden       | Normal    |
|                    | 19          | 94+240  | Aro. Carpincho          | Br.                  | Wooden        | Normal              | Br.                  | Wooden       |           |
| -                  | 20          | 97+048  | Rio Nacunday            | F/Br.                | Pontoon       |                     | F/Br.                | Pontoon      | Normal    |
|                    | 21          | 99+782  | Rio Nacunday Afluente   | Br.                  | Wooden        | Normal              | Br.                  | Wooden       | Good      |
|                    | 22          | 111+462 | Aro. Pira Pyta Afluen.1 | Br.                  | Wooden        | Normal              | Br.                  | Concrete     | Normal    |
|                    | 23          | 114+575 | Aro. Pira Pyta          | Br.                  | Wooden        | Normal              | Br.                  | Wooden       | Good      |
|                    | 24          | 117+337 | Aro. Pira Pyta Afluen.2 | Br.                  | Concrete      | Good                | Br.                  | Concrete     | Good      |
|                    | 25          | 126+177 | Aro. Y-Tuti             | Br.                  | Concrete      | Good                | Br.                  | Concrete     | Good      |
|                    | 26          | 134+683 | Aro. Yta Coty           | Br.                  | Wooden        | Poor                | Br.                  | Concrete     | Good      |
| -                  | 27          | 146+413 | M-7-1                   | Br.                  | Concrete      | Good                | Br.                  | Concrete     | Good      |
|                    | 1-1         | 2+635   | Aro. Maestora           | Br.                  | Wooden        | Normal              | Br.                  | Concrete     | Good      |
| Ruta               | 1-2         | 3+223   | Aro. Pe                 | Br.                  | Wooden        | Normal              | Br.                  | Concrete     | Good      |
| Kuta .<br>Acceso a | 1-3         | 6+088   | Aro. Curi-Y             | Br.                  | Concrete      | Good                | Br.                  | Concrete     | Good      |
| Puertos            | 3-1         | 8+711   | Aro. Pora               | Br.                  | Wooden        | Normal              | B/C                  | Concrete     | Good      |
|                    | 6-1         | 5+650   | Aro. Cure-ky            | Br.                  | Steel I-Beem  | Normal              | Br.                  | Steel I-Beem | Normal    |

#### Table 3-2 Result of survey on existing road structures

Final Report (Summary)

Source: JICA Study Team Br. : Bridge B/C : Box Culvert F/Br. : Floating Bridge Repaired structures


#### **3.2** Road traffic volume on target routes

The traffic volume on target routes is shown in Figure 3-2 and Table 3-3.

Traffic on National Road Route 6 at the point where it connects with the road from Paredon Port was 3,600-3,800 units/14h. Traffic on target route after branching from National Road Route 6 was counted at 800-1,200 units/14h. Traffic at Natalio counted was 180-200 units/14h; and that at Tres Fronteras Port was 6,000-8,000 units/14h.

The percentage of trucks in all the traffic was 21-28% for the target route after branching from National Road Route 6, and as high as 38-48% around Natalio. On the other hand, it was as low as 6% around Tres Fronteras Port.

When compared with the result of the traffic survey of 2005, traffic on the target routes increased substantially, by about 30% for the route branched from the National Road Route 6, and by 130-320% around Tres Fronteras Port.



Source: JICA Study Team

Figure 3-2 Traffic survey result (all vehicles)

|               |              | (veh  | icles/14h) |            |        |               |         |        |
|---------------|--------------|-------|------------|------------|--------|---------------|---------|--------|
|               |              |       | Vo         | lume in 20 | Volume | Rate of       |         |        |
| Survey Point  | Entry        | Car   | Bus        | Truck      | Total  | Truck<br>rate | in 2005 | Change |
|               | Ν            | 92    | 0          | 2          | 94     | 2%            | 60      | 57%    |
| P2            | E            | 27    | 0          | 6          | 33     | 18%           | 50      | -34%   |
| Campichuelo   | S            | 473   | 73         | 65         | 611    | 11%           | 272     | 125%   |
|               | W            | 484   | 73         | 69         | 626    | 11%           | 310     | 102%   |
|               | Ν            | 2,682 | 186        | 967        | 3,835  | 25%           | 2,317   | 66%    |
| P3            | E            | 373   | 5          | 86         | 464    | 19%           | 334     | 39%    |
| Paredon       | $\mathbf{S}$ | 2,534 | 183        | 919        | 3,636  | 25%           | 2,207   | 65%    |
|               | W            | 287   | 4          | 30         | 321    | 9%            | 254     | 26%    |
| P4            | Ν            | 813   | 57         | 439        | 1,309  | 34%           | 1,034   | 27%    |
| R6xNewRd      | E            | 637   | 22         | 159        | 818    | 19%           | 697     | 17%    |
|               | S            | 1,322 | 73         | 570        | 1,965  | 22%           | 1,675   | 17%    |
|               | Ν            | 636   | 2          | 190        | 828    | 23%           | 398     | 108%   |
| P5            | E            | 914   | 21         | 253        | 1,188  | 21%           | 932     | 27%    |
| Don Juaquin   | S            | 510   | 1          | 143        | 654    | 22%           | 637     | 3%     |
|               | W            | 934   | 22         | 258        | 1,214  | 21%           | 743     | 63%    |
| P6            | Е            | 777   | 32         | 268        | 1,077  | 25%           | 824     | 31%    |
| Paloma        | $\mathbf{S}$ | 57    | 0          | 185        | 242    | 76%           | 107     | 126%   |
| 1 aloilla     | W            | 804   | 32         | 331        | 1,167  | 28%           | 927     | 26%    |
|               | Ν            | 70    | 0          | 14         | 84     | 17%           | 66      | 27%    |
| $\mathbf{P7}$ | E            | 574   | 22         | 225        | 821    | 27%           | 646     | 27%    |
| Triunfo       | S            | 237   | 10         | 80         | 327    | 24%           | 204     | 60%    |
|               | W            | 725   | 28         | 261        | 1,014  | 26%           | 824     | 23%    |
| Do            | Ν            | 846   | 57         | 451        | 1,354  | 33%           | 1,076   | 26%    |
| P8<br>R6xR15  | E            | 258   | 0          | 103        | 361    | 29%           | 349     | 3%     |
| R6XR15        | $\mathbf{S}$ | 850   | 57         | 462        | 1,369  | 34%           | 1,055   | 30%    |
| Do            | Ν            | 121   | 0          | 83         | 204    | 38%           | -       | -      |
| P9<br>D       | E            | 55    | 0          | 39         | 94     | 41%           | -       | -      |
| Dos           | $\mathbf{S}$ | 83    | 0          | 53         | 136    | 41%           | -       | -      |
| Fronteras     | W            | 15    | 0          | 9          | 24     | 39%           | -       | -      |
| P10           | Ν            | 93    | 2          | 89         | 184    | 48%           | -       | -      |
| P10<br>Trocua | Е            | 21    | 0          | 75         | 96     | 78%           | -       | -      |
| Trocua        | $\mathbf{S}$ | 84    | 2          | 20         | 106    | 19%           | -       | -      |
| P11           | Ν            | 7,200 | 235        | 508        | 7,943  | 6%            | 1,908   | 316%   |
| Tres          | Е            | 6,077 | 305        | 461        | 6,843  | 7%            | 2,024   | 238%   |
| Fronteras     | W            | 5,279 | 384        | 313        | 5,976  | 5%            | 2,568   | 133%   |

(Shadowed portions show the traffic volume of access roads to the ports.) Source : JICA Study Team

#### 4. **Review of the Route Plan**

#### 4.1 **Design conditions**

### (1) Road standard and design speed

#### 1) Parana River coastal road

- $\triangleright$ This road connects existing port facilities scattered along the Parana River to enable efficient port operation.
- $\triangleright$ This is a trunk road connecting departments: Canindeyú to Alt Parana to Itapua.
- $\triangleright$ This is a road to create the interoceanic road link along the IIRSA tropico de Capricornio axis.

Considering these characteristics, the road design standard speed will be set at 100km/h, and a design standard similar to that for the national roads in Paraguay will be applied.

### 2) Road connecting National Road Route 6 and coastal road

Proposed in the 1992 National Overall Traffic Survey,(ETNA) this route runs from the Capital Asuncion, via Paraguari, Guaira, and Caazapá departments, to Itapúa department. This road is a vital link between the les-developed Caazapá department in the eastern part of Paraguay with the Parana River coastal ports. The design speed is 80 km for this road, which is the same as for the national roads.

#### 3) Port access roads

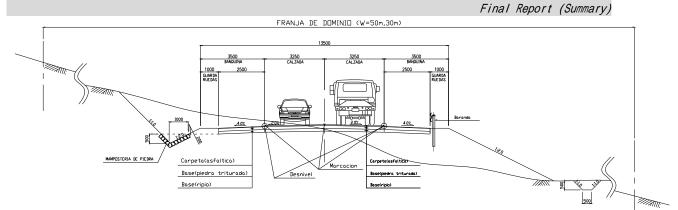
The approximate length of each access road is less than 20 km, so that the time reduction effect by increasing the design speed is small. In addition, these roads are expected to handle large numbers of trucks carrying crop exports and to function as service roads to wayside urban areas. In view of these factors, it is considered reasonable that their design speed be 50 km/h. However, vehicles tend to run at higher speeds on asphalt roads, and the normal traffic speed in Paraguay is actually about 80 km/h. Considering this, a design speed of 80 km/h will be used. However, it will be reduced to 50 km/h for the geologically constrained sections and sections running through urban areas.

### (2) Geometric design standard

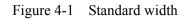
Basically, the AASHTO standard will be applied as the geometric design standard. Table 4-1 shows a list of geometric design standards.

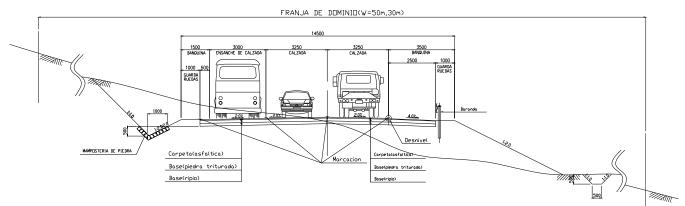
|                                     |                     |      |                               | 0                                                                              |                                                        |
|-------------------------------------|---------------------|------|-------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------|
| Parameters                          |                     | Unit | Parana River<br>coastal roads | Roads connecting National<br>Road 6 and coastal road, and<br>port access roads | Remarks                                                |
| Design speed                        |                     | km/h | 100                           | 80                                                                             |                                                        |
| Minimum radius of curvature         |                     | m    | 360                           | 210                                                                            |                                                        |
|                                     | Flat land           | %    | 3                             | 4                                                                              |                                                        |
| Maximum grade                       | Hilly terrain       | %    | 4                             | 5                                                                              |                                                        |
|                                     | Mountainous<br>area | %    | 6                             | 7                                                                              |                                                        |
| Minimum radius<br>of vertical curve | Convex              | m    | 52                            | 26                                                                             | Li wiininum verticai                                   |
|                                     | Concave             | m    | 45                            | 30                                                                             | curve length<br>A = (Algebraic difference<br>of grade) |

 Table 4-1.
 Geometric design standards


Source : JICA Study Team

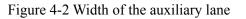
## 4.2 Road widths

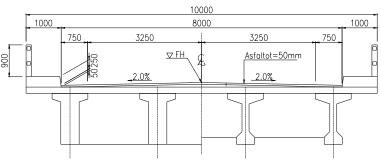

Roads equivalent to national roads in Paraguay generally consist of a cross-section structure as shown below. This is slightly narrower than the AASHTO standard. In this project, road widths will be designed while referring to the widths shown below, and by taking into account the integrity with other roads and economic efficiency:


- Lane : Width 3.25m, crossfall 2.0%
- Shoulder : Width 2.50m, crossfall 4.0%
- Bridge : Total width 10.0m, roadway width 8.0m, curb (wheel guard ) width 1.0m

Preparatory Survey on The Eastern Region Export Corridor Improvement Project in the Republic of Paraguay




Note: The right-of-way of Parana River coastal roads is 50m while that of others is 30m. Source : JICA Study Team






Note: Considering economic efficiency, since continuous trafficability and safety, not traveling performance, are critical for the access road, no auxiliary lanes will be provided.

Source : JICA Study Team

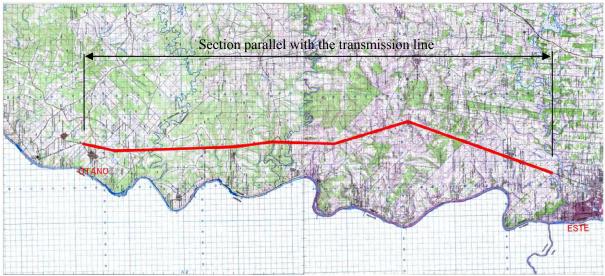




Source : JICA Study Team

Figure 4-3 Width of new bridge

## 4.3 Review of proposed alternative routes


Route selection was completed in the previous year. As new control points have been extracted in the course of the survey this year, a review was made of proposed alternative routes for the target section.

#### (1) Parana River coastal roads

#### 1) Section parallel with the transmission line

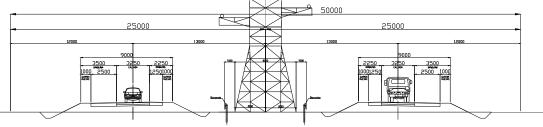
The section parallel to the 220 kV transmission line is shown below. To ensure safety and to facilitate maintenance, a total width of 50 meters, 25 meters on each side of the transmission line, is under control of ANDE. Note that land acquisition for this purpose has not been made. In addition, the following regulations apply to the section concerned:

- Crops can be grown, but structures are not allowed.
- A road may be built (installation of transmission line in the right-of-way also permitted).
- A distance of 9.0 meters or more should be secured between the transmission line and the road surface.

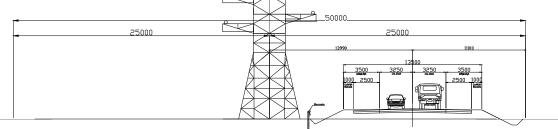


Source : JICA Study Team

Figure 4-4 Section parallel to transmission line


Since the 50 meter-width section along the transmission line is already subject to various constraints set by ANDE, acquisition of right-of-way for a road is considered to be relatively easy. A review was made of the three plans below according to the road development pattern. The result was that "Plan 2: Plan to utilize the right-of-way for a transmission line (one side)" was adopted.

Plan 1: Plan to utilize the right-of-way for transmission line (UP/DOWN line separated)


Plan 2: Plan to utilize the right-of-way for transmission line (integrated, one side)

Plan 3: Plan to utilize a part of the right-of-way for transmission line

## ■ Plan 1: Plan to utilize the right-of-way for transmission line (UP/DOWN line separated)



Plan 2: Plan to utilize the right-of-way for transmission line (integrated, one side)



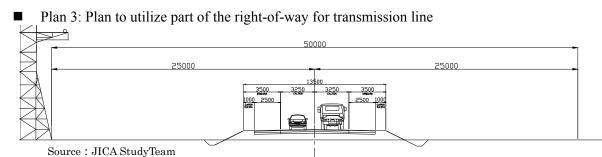
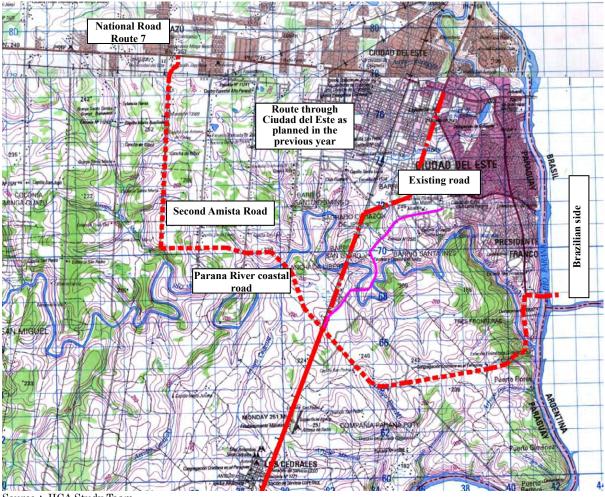



Figure 4-5 Proposed section structure

| Ite<br>m        | Plan 1                                                                                                                                                                                                                                                                                                                                                                                                                          | Plan 2                                                                                                                                                                                                                                                                          | Plan 3                                                                                                                                                                                                                                  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Merits          | • Road construction in land<br>under control of ANDE.<br>Land acquisition is<br>considered relatively easy.                                                                                                                                                                                                                                                                                                                     | <ul> <li>Road construction is in land<br/>controlled by ANDE. Land<br/>acquisition considered to be<br/>relatively easy.</li> <li>Expansion of road functions is<br/>easy because similar land is<br/>available on opposite side<br/>with reference to steel towers.</li> </ul> | <ul> <li>As there is no constraint on<br/>right-of-way for road,<br/>planning can be made easily.</li> <li>Expansion of road functions is<br/>easy because no obstructive<br/>materials in right-of-way for<br/>road (ANDE).</li> </ul> |
| Demerits        | <ul> <li>Sections requiring cut or fill,<br/>if any, may require<br/>diversion of road toward<br/>private land so as to prevent<br/>adverse effect on ANDE's<br/>steel towers.</li> <li>As UP and DOWN lines are<br/>separated, it is necessary to<br/>provide U-turn and passing<br/>lanes for each section.</li> <li>The road development area is<br/>the largest, so this plan has<br/>the highest project costs.</li> </ul> | • For the sections with cut and<br>fill, the measures as described<br>in Plan 1 are necessary. But<br>the adverse effect caused by<br>such measures can be smaller<br>than the case of Plan 1<br>because the lanes are<br>integrated on one side.                               | • Since the most of area for<br>acquisition is not the land of<br>ANDE's possession, it is<br>possible that lot of time may<br>be required for acquisition.                                                                             |
| Evalu-<br>ation | Δ                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                               | Δ                                                                                                                                                                                                                                       |

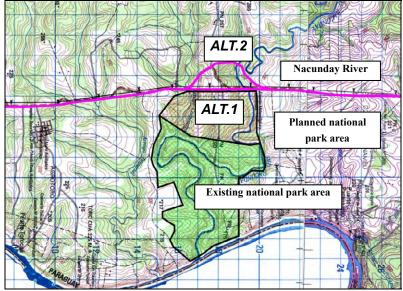

#### Table 4-2 Comparative study on the section parallel to the transmission line

### 2) Route through Ciudad del Este

At present, a road connecting to the second Amista Bridge is being planned in Ciudad del Este. The second Amista road crosses the Prana River from the Brazilian side, bypassing Ciudad del Este, while keeping a considerable distance on its south side and connecting to National Road Route 7. This road will intersect with the export corridor on the south bank of the Monday River flowing in a suburb of Ciudad del Este.

The plan for the second Amista Road was not completed officially in the previous years, so the access was planned up to National Road Route 7. In the review this time, the Parana River coastal road was planned up to the intersection with the second Amista Road.

- The Parana River coastal road is expected to be used by large numbers of trucks. The  $\geq$ surrounding environment will be heavily impacted if it passes through the urban area.
- $\geq$ When this road passes through Ciudad del Este, land acquisition issues may arise along with relocation of residents. Project costs will rise and implementation issues may increase.
- $\triangleright$ Trucks have access to National Road Route 7 or to Brazilian side via second Amista Road.
- $\triangleright$ Small vehicles have access to Ciudad del Este via the existing connected road.




Source : JICA Study Team

Figure 4-6 Proposed alternative route through the Este area

#### 3) Nacunday section

In the course of the environmental survey this year, it was found out that there is a plan of expanding the national park area toward the upstream side along the Nacunday River, as shown below. For this section, priority will be given to environmental protection. Namely, ALT. 1 proposed in the previous year was reviewed and ALT. 2 was selected to avoid the national park area and bypass it on the west.



Source : JICA Study Team

Figure 4-7 Proposed alternative route through Nacunday area

#### (2) Port access roads

Campichuelo Port will be submerged on completion of the Yacyreta Dam. It will be relocated to a point about 400 meters upstream. Accordingly, the connection point to the port has been slightly changed as shown in Figure 4-8.

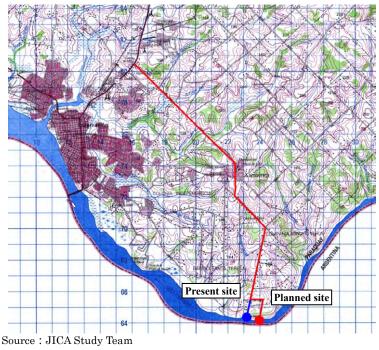



Figure 4-8 Proposed alternative route to Campichuelo Port

#### 4.4 Review of road structures

#### (1) Policy for bridge development plans

The target route has 32 sites (including two newly planned sites) that require drainage facilities with the total length of 2 meters or more (box culvert or larger), as shown in Table 3-2. For these structures, the development plan was established according to the policies outlined below:

- Maximum utilization of existing bridges. Existing sound bridges with a roadway width of 7.0m (3.25×2 + 0.25×2) or more will be effectively used. If the roadway width is less than 7.0 m, sound existing bridges may be used after widening.
- > All wooden bridges will be replaced.
- Structures with a flow capacity equivalent to or greater than the existing one will be provided.
- The size (flow section, etc.) of structures will be determined on the basis of hydraulic/hydrographic analysis.
- ➤ In addition, the bridge will be replaced if it is desirable when considering the location of structures and the river flow state.

#### (2) Bridge development plans

A development plan for target 32 sites has been established on the basis of these policies (Table 4-3).

| Basin    |           |                         | Area    | Length  | Culvert Box                  |         | Bridge | es         | Remarks                |
|----------|-----------|-------------------------|---------|---------|------------------------------|---------|--------|------------|------------------------|
| No       | No        | River name              | (ha)    | (m)     | n  b(m)  h(m)                | L(m)    | B(m)   | H.W.L.(m)  | itemarino              |
| 1        | 3+250     | Aro. Pai Curuzu(1)      | 1,310   | 5,300   | $2 - 4.500 \times 2.850$     | -       |        |            | Reuse                  |
| 2        | 5+553     | Aro. Pai Curuzu (2)     | 850     | 4,300   | $2 - 4.500 \times 2.850$     | -       |        |            | Reuse                  |
| 3        | 12+093    | Rio. Tembey             | 116,140 | 153,700 | -                            | 70.000  | 8.500  | 134.400    | Reuse                  |
| 4        | 22+768    | M-2-1                   |         |         | $1 - 3.000 \times 3.000$     | -       |        |            | Reuse                  |
| <b>5</b> | 23+623    | M-2-2                   |         |         | $1 - 3.000 \times 3.000$     | -       |        |            | Reuse                  |
| 6        | 27+777    | Aro. San Rafael         | 1,140   | 3,500   | 2 - 4.500 × 2.800            | -       |        |            | Reuse                  |
| 7        | 35+989    | Rio. Guarapay           | 32,840  | 48,700  | -                            | 48.000  | 8.500  | 166.200    | Reuse                  |
| 8        | 47+616    | Aro. Yhaca Guazu        | 23,770  | 35,700  | -                            | 48.000  | 8.500  | 173.200    | Reuse                  |
| 9        | 55+137    | Aro. Alegre             | 2,240   | 7,900   | 2 - 3.500 × 3.000            | -       |        |            | Construction           |
| 10       | 56+642    | Aro. Cure-Ky            | 1,160   | 4,700   | $2 - 3.500 \times 3.000$     | -       |        |            | Construction           |
| 11       | 64+430    | Aro. Emillia            | 2,466   | 8,250   | 2 - 4.500 × 3.000            | -       |        |            | Reconstruction         |
| 12       | 64+562    | Aro. San Juan           | 8,660   | 18,700  | -                            | 20.000  | 10.000 | 155.320 *1 | Reconstruction         |
| 13       | 70+447    | Aro. Yhaca-Mi           | 6,810   | 19,600  | -                            | 20.000  | 10.000 | 164.689    | Reconstruction         |
| 14       | 72 + 250  | Rio. Yacuy Guazu        | 73,000  | 117,500 | -                            | 75.000  | 10.000 | 173.200    | Reconstruction         |
| 15       | 83+566    | Aro. Diamante           | 2,250   | 6,300   | $2 \cdot 4.500 \times 3.000$ | -       |        |            | Reconstruction         |
| 16       | 88+291    | Aro. Imperial           | 3,940   | 14,300  | -                            | 15.000  | 10.000 | 163.100 *1 | Reconstruction         |
| 17       | 89+425    | Aro. Imperial Afluen.1  | 1,750   | 8,300   | 2 · 4.000 × 3.000            | -       |        |            | Reconstruction         |
| 18       | 90+000    | Aro. Imterial Afluen.2  | 370     | 3,400   | $1 - 3.500 \times 3.000$     | -       |        |            | Reconstruction         |
| 19       | 94+240    | Aro. Carpincho          | 5,580   | 15,100  | -                            | 20.000  | 10.000 | 147.800 *1 | Reconstruction         |
| 20       | 97+048    | Rio. Nacunday           | 243,820 | 237,600 | -                            | 100.000 | 10.000 | 154.419    | Construction           |
| 21       | 99+782    | Rio. Nacunday Afluente  | 490     | 3,400   | $1 - 3.500 \times 3.000$     | -       |        |            | Reconstruction         |
| 22       | 111 + 462 | Aro. Pira Pyta Afluen.1 | 1,390   | 5,400   | -                            | 7.700   | 10.000 |            | Reuse Widening of Wid  |
| 23       | 114 + 575 | Aro. Pira Pyta          | 16,730  | 25,900  | -                            | 20.000  | 10.000 | 188.700 *1 | Reuse od Existing Pier |
| 24       | 117+337   | Aro. Pira Pyta Afluen.2 | 3,550   | 9,800   | -                            | 16.000  | 8.000  | 192.300 *1 | Reuse Widening of Wid  |
| 25       | 126+177   | Aro. Y-Tuti             | 9,310   | 14,200  | -                            | 25.700  | 8.000  | 199.400 *1 | Reuse Widening of Wid  |
| 26       | 134+683   | Aro. Yta Coty           | 7,210   | 14,900  | -                            | 15.000  | 10.000 | 199.000 *1 | Reconstruction         |
| 27       | 146+413   | M-7-1                   |         |         | $2 - 2.000 \times 2.000$     | -       |        |            | Reuse                  |
| PORT     | ACCESS F  | ROAD                    |         |         |                              |         |        |            |                        |
| 1-1      | 2+635     | Aro. Maestora           | 1,350   | 5,900   | -                            | 6.000   | 8.000  |            | Reuse Widening of Wid  |
| 1-2      | 3+223     | Aro. Pe                 | 920     | 3,400   | -                            | 6.100   | 10.000 |            | Reuse Widening of Wid  |
| 1-3      | 6+088     | Aro. Curi-Y             | 6,700   | 16,900  | -                            | 15.000  | 10.000 | 124.000 *1 | Reconstruction         |
| 3-1      | 8+711     | Aro. Pora               | 1,850   | 6,600   | $2 - 4.000 \times 3.000$     | -       |        |            | Reconstruction         |
| 6-1      | 5+650     | Aro. Cure-ky            | 860     | 102,000 | $1 - 2.500 \times 2.500$     | -       |        |            | Reconstruction         |

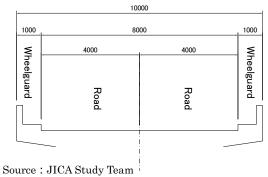
Table 4-3 Bridge development plans

(Note) Area: Catchments Area : Catchments Area

Length: River Length : River Length

\*1 is presumed he height than topographical map

Source : JICA Study Team


#### (3) Establishing the design conditions

#### 1) Applicable design standards

Paraguay is currently developing a road planning manual. Since the present design standard is based on AASHTO, this study will also use AASHTO.

### 2) Bridge width

As negotiated with MOPC, the bridge width will be as shown below.



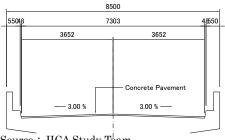



Figure 4-9 Standard bridge section

Source : JICA Study Team

Figure 4-10 Reusable bridge width

## 3) Design live load

As specified in AASHTO the design live load in Paraguay is "HS20-44." The total weight of vehicles permitted is 49.5 tons. Since the surcharge load per axle is about 100kN, "HS20-44" specified in AASHTO is applied to the design of structures. Note however that the detailed design must employ the design live load specified in the road planning manual currently under review.

## 5. Prediction of future traffic volume

#### 5.1 Setting socioeconomic frame

#### (1) **Population**

Population data for the period from 2000 to 2009 was used by the Government of Paraguay to predict future population trends by department, sex and age by cohort method. It is predicted that the population of Paraguay will be about 7 million in 2015 and about 7.5 million in 2020. The population in Central Department grew the most, and the population in the subject area in Alto Parana Department grew more than the national average.

| Departamentos    | 2000      | 2005      | 2010      | 2015      | 2020      | 2015/2010 | 2020/2010 |  |  |  |
|------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|
| Asunción         | 513,405   | 519,647   | 518,222   | 511,523   | 500,665   | 0.99      | 0.97      |  |  |  |
| Concepción       | 186,666   | 189,749   | 190,464   | 189,083   | 185,535   | 0.99      | 0.97      |  |  |  |
| San Pedro        | 331,955   | 346,564   | 357,251   | 364,275   | 367,229   | 1.02      | 1.03      |  |  |  |
| Cordillera       | 242,158   | 260,248   | 276,945   | 291,971   | 304,680   | 1.05      | 1.10      |  |  |  |
| Guaira           | 185,858   | 192,530   | 197,030   | 199,490   | 199,807   | 1.01      | 1.01      |  |  |  |
| Caaguazú         | 453,037   | 469,910   | 480,786   | 486,331   | 486,419   | 1.01      | 1.01      |  |  |  |
| Caazapá          | 145,728   | 149,399   | 151,288   | 151,570   | 150, 157  | 1.00      | 0.99      |  |  |  |
| Itapúa           | 470,084   | 504,736   | 535,512   | 561,418   | 581,246   | 1.05      | 1.09      |  |  |  |
| Misiones         | 105,014   | 111,438   | 116,953   | 121,537   | 124,943   | 1.04      | 1.07      |  |  |  |
| Paraguarí        | 231,650   | 236,945   | 239,576   | 239,665   | 236,968   | 1.00      | 0.99      |  |  |  |
| Alto Paraná      | 585,131   | 670,072   | 753,658   | 833,703   | 907,668   | 1.11      | 1.20      |  |  |  |
| Central          | 1,414,788 | 1,722,691 | 2,068,066 | 2,450,360 | 2,863,314 | 1.18      | 1.38      |  |  |  |
| Ñeembucú         | 79,581    | 82,188    | 83,833    | 84,539    | 84,203    | 1.01      | 1.00      |  |  |  |
| Amambay          | 118,474   | 122,874   | 125,341   | 125,989   | 124,846   | 1.01      | 1.00      |  |  |  |
| Canindeyú        | 143,228   | 163,610   | 183,668   | 203,073   | 221,178   | 1.11      | 1.20      |  |  |  |
| Presidente Hayes | 85,171    | 94,532    | 103,436   | 111,886   | 119,617   | 1.08      | 1.16      |  |  |  |
| Boquerón         | 42,382    | 49,809    | 57,752    | 66,125    | 74,777    | 1.14      | 1.29      |  |  |  |
| Alto Paraguay    | 11,955    | 11,708    | 11,339    | 10,866    | 10,297    | 0.96      | 0.91      |  |  |  |
| Paraguay Total   | 5,346,265 | 5,898,650 | 6,451,120 | 7,003,404 | 7,543,549 | 1.09      | 1.17      |  |  |  |

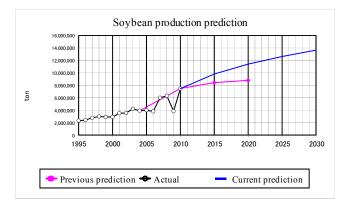
Table 5-1 Future population by department

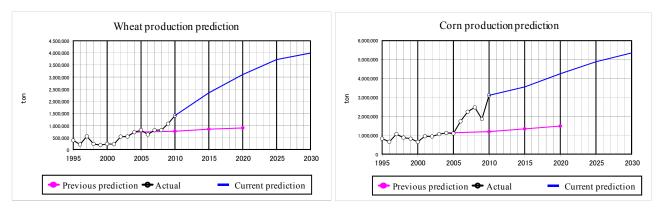
Source:DGEEC/STP

#### (2) Future economic growth

Rapid growth has mainly been seen in the primary industries since 2005. Therefore, based on GDP data between 2005 and 2010 (excluding 2009), we projected GDP growth up to 2020, using linear regression and exponential regression (growth rate curve). The result of using the linear regression method indicates that economic growth in the ten-year period from 2011 through 2020 will be 3.9%; the result of applying exponential regression indicates 5.7% growth for the same period. The economic development plan (EDEP) drawn up in 2000 projected annual economic growth of 6% per annum until 2020. We decided that the future frame will be GDP based on a growth rate curve resulting from exponential regression.

| Iable 5-2 Annual economic growth rates |                   |                        |  |  |  |  |  |
|----------------------------------------|-------------------|------------------------|--|--|--|--|--|
| Annual economic growth rate (%)        | Linear regression | Exponential regression |  |  |  |  |  |
| 2000 - 2005                            | 2.89              | 2.89                   |  |  |  |  |  |
| 2006 - 2010                            | 5.62              | 5.62                   |  |  |  |  |  |
| 2000 - 2010                            | 4.08              | 4.08                   |  |  |  |  |  |
| 2011 - 2020                            | 3.92              | 5.72                   |  |  |  |  |  |


Table 5-2 Annual economic growth rates


Source: JICA Study Team

#### 5.2 Prediction of materials flow

#### (1) Projected growth in major agricultural products

- Soybeans: Predicted by Planted area x Yield per 10 are. The total production is predicted to be 11.41 million tons in 2020, 1.53 times more than the 7.46 tons in 2010 (1.30 times more than the previously predicted 8.8 million tons).
- Wheat: Predicted by Planted area x Yield per 10 are. Total production is predicted to be 3.1 million tons in 2020, 2.2 times more than the 1.4 million tons in 2010 (3.5 times more than the previously predicted 0.89 million tons).
- Corn: Predicted by Planted area x Yield per 10 are. Total production is predicted to be 4.25 million tons in 2020, 1.37 times more than the 3.11 million tons in 2010 (2.9 times more than the previously predicted 1.48 tons).





Source : JICA Study Team

Figure 5-1 Predictions of annual production

## 5.3 Prediction of future traffic demand

### (1) Traffic on the subject roads

Transportation on the subject roads is composed of intra-regional transportation used by the residents and crop transportation to ship export crops to Parana River ports.

If the subject roads are developed, a part of the traffic now using National Road Route 6 will be shifted to them. If built the new roads will also be used for new traffic generated by economic development in the areas along them.

In this study, we will predict future traffic demand from intra-regional traffic, crop transportation traffic and traffic shifting to the new roads.

(Unit: cars/day)

## (2) Prediction method and results

## 1) Intra-regional traffic

The intra-regional traffic in 2020 was obtained by: (Transportation survey – Crop-related transportation) x Day and night ratio x Traffic growth.

## 2) Conversion traffic

The conversion traffic in 2020 was obtained by: (Current OD table obtained from the transportation survey implemented in Iruna and Trinidad toll gates in National Road Route 6 – Crop related transportation) x Traffic growth. Aformula representing the rate of traffic shifting from the subject road to National Road Route 6 was used to calculate the conversion traffic volume.

Traffic using the toll gates in 2020 was projected to be 6,600 cars/day, 1,400 cars/day of this would come from vehicles arriving earlier by using the subject road rather than National Road Route 6. Actual converted traffic was 1,000 cars/day, 16% of all traffic.

| Table 5-3 Traffic switching from National Road Route 6 to the subject road in 2020 | ) |
|------------------------------------------------------------------------------------|---|
|------------------------------------------------------------------------------------|---|

|                               |                   |       |                    |                       |          | (Unit. | cars/day) |
|-------------------------------|-------------------|-------|--------------------|-----------------------|----------|--------|-----------|
|                               | Passenger<br>cars | Buses | Two axes<br>trucks | Three axes<br>or more | Trailers | Tot    | al        |
| Toll gate passing traffic     | 4,910             | 210   | 350                | 560                   | 610      | 6,640  | -         |
| Traffic subject to conversion | 920               | 120   | 90                 | 130                   | 170      | 1,430  | (21%)     |
| Conversion traffic            | 690               | 80    | 70                 | 90                    | 110      | 1,040  | (16%)     |

Source: JICA Study Team

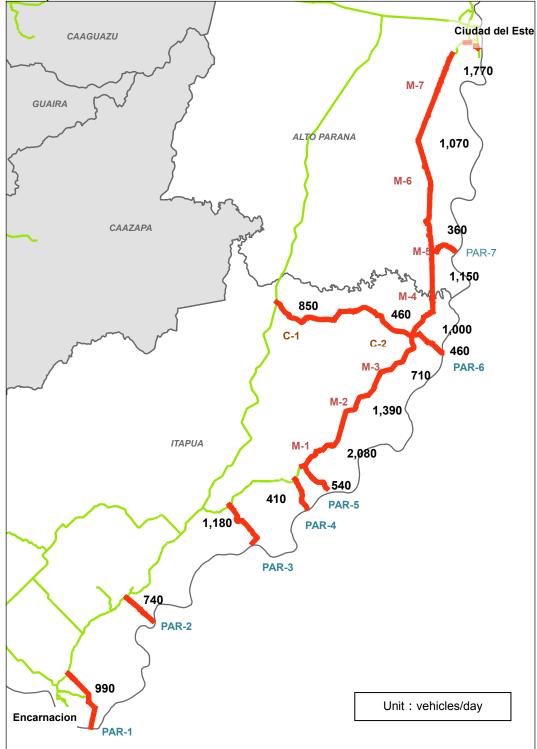
### **3)** Crop transportation traffic

If the subject road is completed, crops from specific zones will be shipped via the Parana River with less transportation cost due to shifting from shipment via the currently used Paraguay River.

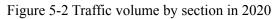
In this study, we created a river selection model using the land transportation cost to the ports of two rivers for soybeans and wheat, and water transportation cost to Buenos Aires. Corn is mostly exported via the Paraguay River, and we assumed that the current condition would continue.

Predictions for 2020 using this model indicated that opening the subject road would promote shifting shipments of 0.6 million tons of soybeans and 0.2 million tons of wheat from the Paraguay River to Parana River. If we convert the annual tonnage to daily number of cars, the traffic shifted to the Parana River after opening of the subject road would be equivalent to an increase of 300 vehicles.

| Table 5-4 | Conversio | n of crops | in 2020 |
|-----------|-----------|------------|---------|
|           |           |            |         |


|         |                     |                 | (Unit: million | n tons/year) |
|---------|---------------------|-----------------|----------------|--------------|
|         |                     | Use of Paraguay | Use of Parana  | Conversion   |
|         |                     | River           | River          |              |
| Q. 1    | Without development | 7.2 (79%)       | 2.0 (21%)      | 0.6          |
| Soybean | With development    | 6.6 (72%)       | 2.6 (28%)      | 0.6          |
| Wheat   | Without development | 0.5 (49%)       | 0.6 (51%)      | 0.1          |
|         | With development    | 0.4 (35%)       | 0.7 (65%)      | 0.1          |

Source: JICA Study Team


#### 4) Traffic volume by section

Given below is the projected traffic volume in the indicated sections in 2020, a total of intra-regional traffic, shifted traffic and crop transportation traffic.

In 2020, 700-2,080 cars per day will use the road along the Parana River; 460-850 cars per day will use the National Road Route 6 - the river coastal road connection road; and 360-1,180 cars per day will use the port access road.



Source : JICA Study Team



## 6. Environmental and Social Considerations

## 6.1 Background for survey of environmental and social considerations

During the previous F/S, we retained a local consultant to conduct an initial environmental survey (IEE). Thereafter, MOPC prepared a basic environmental questionnaire and submitted it to the Environmental Agency (SEAM). SEAM decided that MOPC needs to conduct an environmental assessment as the project party.

MOPC retained Consorcio Elintec, a local consultant, to conduct an environmental impact assessment (EIA). This report was completed in September 2009. Originally, the EIA was to have been sent to SEAM after local hearings for its evaluation, but five years has passed since the previous F/S, involving changes in routes, road structures and road plans. No hearing was held and no EIA was submitted to SEAM.

As a result of screening summarized below, the category is set as B and there has been no change from the previous survey.

# 6.2 A review of environmental and social conditions and issues pertaining to the project and proposed countermeasures

Table 6-1 arranges issues and countermeasures based on the results of the commissioned survey, site surveys, and hearings with related organizations.

|                         | Table 6-1 Current issues and proposed                                                   | *                                                                                                       |
|-------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Item                    | Current status                                                                          | Response                                                                                                |
| (1) Relationship        | In not only the rivers but also their branches,                                         | Where the road crosses streams,                                                                         |
| with the natural        | i.e. small streams where the proposed road                                              | destruction of vegetation will be                                                                       |
| environment             | crosses, there is much vegetation. Such                                                 | minimized. Structures for animals to                                                                    |
|                         | places are habitats of small animals.                                                   | safely cross the road (eco-road) will be                                                                |
|                         |                                                                                         | provided.                                                                                               |
| (2) Relationship        | Nacunday National Park will be created                                                  | Recommended circumvention route not                                                                     |
| with the Nacunday       | near the point where high voltage cables of                                             | going through the national park.                                                                        |
| National Park           | ANDE cross the Nacunday River. The basin<br>of this river is a natural treasure, and is |                                                                                                         |
|                         | expected to be a precious resource for                                                  |                                                                                                         |
|                         | tourism.                                                                                |                                                                                                         |
|                         | As a substitute of the routes nearby, there is                                          |                                                                                                         |
|                         | a route to run directly under the high voltage                                          |                                                                                                         |
|                         | cable and to largely circumvent the current                                             |                                                                                                         |
|                         | road.                                                                                   |                                                                                                         |
| (3) Traffic safety      | We often see shoulders of arterial roads that                                           | To enhance traffic safety, shoulders                                                                    |
|                         | are not paved in Paraguay. In consideration                                             | should be paved. In sections passing                                                                    |
|                         | of the safety of motorcycle and bicycle riders                                          | through the city center, sidewalks                                                                      |
|                         | and pedestrians, it is necessary to design a                                            | should be created and the road paved.                                                                   |
|                         | proper pavement structure. Parking for                                                  | Parking zones at certain intervals (e.g.,                                                               |
|                         | long-distance trucks is another necessity.                                              | every 20km) should be created to enable truck drivers to rest                                           |
| (4) Relationship        | The relationship between the arterial road                                              | Some of the devices listed below are                                                                    |
| with communities        | where cargo trucks drive at high speeds and                                             | needed to link development of arterial                                                                  |
|                         | the surrounding rural communities and the                                               | roads to development of local                                                                           |
|                         | residents living could be estranged.                                                    | communities.                                                                                            |
|                         |                                                                                         | 1) Goods sales at parking belts                                                                         |
|                         |                                                                                         | 2) Installation of Michinoeki (road                                                                     |
|                         |                                                                                         | station)                                                                                                |
|                         |                                                                                         | <ul><li>3) Development of branches to hamlets</li><li>4) Development of resources for tourism</li></ul> |
|                         |                                                                                         | 5) Strengthen ties with surrounding                                                                     |
|                         |                                                                                         | cities                                                                                                  |
| (5) Existence of        | Under the high voltage cable of ANDE near                                               | We need to request INDERT in charge                                                                     |
| farmer tents            | the Nacunday River, farmers demanding                                                   | of agrarian reforms, and departments                                                                    |
| demanding agrarian      | agrarian reforms have set up tents,                                                     | and cities as local governments to                                                                      |
| reforms                 | occupying the land of ANDE, to demonstrate                                              | consider proper solutions, and make                                                                     |
|                         | their demands. These farmers have                                                       | preparations so that land acquisition by                                                                |
|                         | demanded agrarian reforms to the Regional                                               | MOPC will not be hindered in the                                                                        |
|                         | Development Agency (INDERT) as a farmers                                                | future.                                                                                                 |
| (G) I and accritication | union of 3,000 families.                                                                | Limit the need construction of much                                                                     |
| (6) Land acquisition    | Between Natalio and Mayor Otano on the<br>road along the Parana River, there will be    | Limit the road construction as much as possible to widths in line with the                              |
|                         | not much problem in land acquisition and                                                | current ones (50m, 30m, etc.). Minimize                                                                 |
|                         | compensation. The area surrounding Mayor                                                | land acquisition and compensation.                                                                      |
|                         | Otano City needs new construction, and land                                             | Pursue solutions in good faith with                                                                     |
|                         | acquisition and compensation issues arise.                                              | sufficient discussions with local                                                                       |
|                         | Under the high voltage cable of ANDE,                                                   | governments and local residents.                                                                        |
|                         | ANDE has the right to use, but when                                                     |                                                                                                         |
|                         | building a new road, MOPC needs to acquire                                              |                                                                                                         |
|                         | the land. In the sections of National Road                                              |                                                                                                         |
|                         | Route 6 - the river coastal road connection                                             |                                                                                                         |
|                         | road, it is necessary to consider acquisition of                                        |                                                                                                         |
|                         | land surrounding the Frutika Company. In                                                |                                                                                                         |
|                         | the access road to each port, it is necessary to                                        |                                                                                                         |
|                         | consider sections in city areas.                                                        |                                                                                                         |

#### Table 6-1 Current issues and proposed responses

#### 6.3 Schedule for acquiring environmental certification

MOPC projects and other projects requiring an environmental impact assessment must obtain an environmental license (Licencia Ambiental) from SEAM. The process and schedule for its acquisition are shown in Table 6-2.

| Implementation item                                                    |  |   |   |   |   | 20 | 11 |   |   |    |    |    |   |   |   |   |   | 20 | )12   |   |   |    |    |    |
|------------------------------------------------------------------------|--|---|---|---|---|----|----|---|---|----|----|----|---|---|---|---|---|----|-------|---|---|----|----|----|
| implementation item                                                    |  | 2 | 3 | 4 | 5 | 6  | 7  | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6  | 7     | 8 | 9 | 10 | 11 | 12 |
| F/S(SAPROPF)                                                           |  |   | - |   |   |    |    |   |   |    |    |    |   |   |   |   |   |    |       |   |   |    |    |    |
| Environmental assessment(final)                                        |  |   |   |   |   |    |    |   |   | —  |    |    |   |   |   |   |   |    |       |   |   |    |    |    |
| Summary of environmental assessment                                    |  |   |   |   |   |    |    |   |   |    |    |    |   |   |   |   |   |    |       |   |   |    |    |    |
| Distribition to municip alities of summary of environmental assessment |  |   |   |   |   |    |    |   |   |    | -  | -  |   |   |   |   |   |    |       |   |   |    |    |    |
| Hearing(as necessary)                                                  |  |   |   |   |   |    |    |   |   |    |    | _  |   |   |   |   |   |    |       |   |   |    |    |    |
| Examination and approval by SEAM                                       |  |   |   |   |   |    |    |   |   |    |    | •  |   |   | - |   |   |    |       |   |   |    |    |    |
| Environmental assessment approval                                      |  |   |   |   |   |    |    |   |   |    |    |    |   |   |   |   |   |    |       |   |   |    |    |    |
| publication                                                            |  |   |   |   |   |    |    |   |   |    |    |    |   |   |   |   |   |    |       |   |   |    |    |    |
| Environmental certification                                            |  |   |   |   |   |    |    |   |   |    |    |    |   |   |   |   |   |    |       |   |   |    |    |    |
| (effective for 2 years)                                                |  |   |   |   |   |    |    |   |   |    |    |    |   |   |   |   |   |    | 00000 |   |   |    |    |    |

#### Table 6-2 Procedures related to environmental and social considerations

Source: JICA Study Team

## 6.4 Assistance in preparing plan for resettling residents and acquiring land

#### (1) Land ownership of the current roads

# 1) River coastal road, National Road Route 6- the river coastal road connection road (national roads)

- Roads were developed without acquiring the land in 1970s. There is a de facto use right, but it may be that the certificate of title and similar documents do not exist.
- A provision for the current road site exists on the land register, but the owner is not specified..
- ANDE has the permanent right of use for the power cable sections but not land ownership.

#### 2) Port access roads

- It is possible that they have been owned by the local municipality since the development of the roads.
- It is necessary to verify ownership relations, acquire land as needed.

In other words, although the current road sites may be acquired free of charge, it is necessary to ensure that the road sites are owned by the public. Therefore, plans should provide for official land acquisition.

#### **Basic concepts in land acquisition**

The scope of land acquisition should be right of way (ROW) in principle. The ROW of the subject road is 50 meters for the Parana River riverside road, and 30 meters for other roads. However, the underlying principle regarding existing roads has traditionally been the width used. These are 20 meters in local areas and 16 meters in urban areas. Therefore, the scope of land acquisition for each road is set as follows:

- Parana River coastal road 50m
- National Road Route 6 the river coastal road connection road 20m to 50m
- Port access road 16m to 30m

#### (2) Cost of residents resettlement and land acquisition

We decided the scope of land acquisition by confirming the status of houses. To do this we used field surveys, the road designs and map data. The number of obstacles and number of site acquisitions are as follows:

| Nu | umber of obstacles 26 in total |    | Numbe | er of land acquisition | ons 1,810 in total |
|----|--------------------------------|----|-------|------------------------|--------------------|
|    | Parana River coastal road:     | 9  | · Tot | tal area:              | 268                |
|    | National Road Route 6 –        |    | · Par | rtial area:            | 1,542              |
|    | the river coastal road         |    |       |                        |                    |
|    | connection road :              | 12 |       |                        |                    |
| •  | Port access roads:             | 5  |       |                        |                    |

Source: JICA Study Team

The calculation of compensation for lost assets based on repurchase cost is as follows:

Land acquisition cost:

Acquire all basic land width : US\$11,356,000

Compensation for loss and residents resettlement:

US\$800,000 (cost for resettlement and rebuilding)

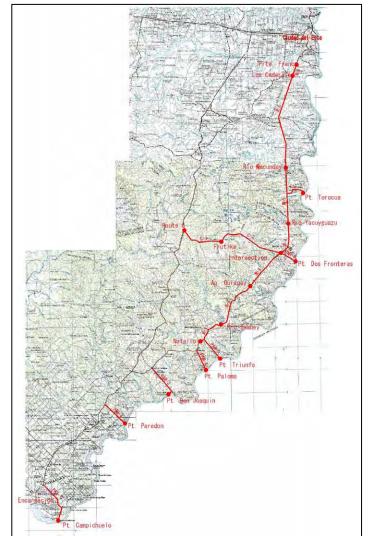
In other words, the total would be US\$12,156,000 at maximum in total, which is about 4% of the total project cost discussed later.

#### (3) Schedule for resident resettlement and land acquisition

MOPC has experience carrying out resettlement of residents and acquisition of land for projects undertaken in cooperation with the World Bank and IDB It has prepared RAP and understands its necessity. MOPA can be expected to properly respond.

|   | Year                                                                                |   |   |   |   |   | 20 | 12 |   |   |    |    |    |   |   |   |   |   | 20 | 13 |   |   |    |    |    |    |      |      |       |      | 20   | 14  |       |      |     |    |
|---|-------------------------------------------------------------------------------------|---|---|---|---|---|----|----|---|---|----|----|----|---|---|---|---|---|----|----|---|---|----|----|----|----|------|------|-------|------|------|-----|-------|------|-----|----|
|   | Month                                                                               | 1 | 2 | 3 | 4 | 5 | 6  | 7  | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6  | 7  | 8 | 9 | 10 | 11 | 12 | 1  | 2    | 3    | 4     | 5    | 6    | 7   | 8     | 9    | 10  | 11 |
| 1 | Populat on census/Cut off date                                                      |   |   | — | _ |   |    |    |   |   |    |    |    |   |   |   |   |   |    |    |   |   |    |    |    |    |      |      |       |      |      |     |       |      |     |    |
| 2 | Promulgat on of Land Ac ust on Act                                                  |   |   |   |   | - |    |    |   |   |    |    |    |   |   |   |   |   |    |    |   |   |    |    |    |    |      |      |       |      |      |     |       |      |     |    |
| 3 | Land(o ner) nvest gat on                                                            |   |   |   |   |   |    |    | - |   |    |    |    |   |   |   |   |   |    |    |   |   |    |    |    |    |      |      |       |      |      |     |       |      |     |    |
| 4 | Assessment and nspect on of<br>real estate                                          |   |   |   |   |   |    |    |   |   |    |    | _  |   |   |   |   |   |    |    |   |   |    |    |    |    |      |      |       |      |      |     |       |      |     |    |
| 5 | Legal dec s on by the counsel of<br>MOPC                                            |   |   |   |   |   |    |    | - |   |    |    |    |   |   |   |   |   |    |    |   |   |    |    |    |    |      |      |       |      |      |     |       |      |     |    |
| 6 | Perm t for compensat on by the M n ster s<br>dec s on and change of the nstrument   |   |   |   |   |   |    |    |   |   |    |    |    |   |   |   |   |   |    |    |   |   |    |    |    |    |      | _    |       |      |      |     |       |      |     |    |
| 7 | Confrmat on of real estate reg ster by the<br>ch ef notary publ c of the government |   |   |   |   |   |    |    |   |   |    |    |    |   |   |   |   |   |    |    |   |   |    |    |    |    |      |      |       |      |      |     |       |      |     |    |
|   | Change name of the real estate reg ster to<br>MOPC                                  |   |   |   |   |   |    |    |   |   |    |    |    |   |   |   |   |   |    |    |   |   |    |    |    |    |      |      |       | —    |      |     |       |      |     |    |
| 9 | Payment of compensat on by MOPC                                                     |   |   |   |   |   |    |    |   |   |    |    |    |   |   |   |   |   |    |    |   |   |    |    |    | То | be d | :om  | ple   | ted  | byt  | he  | :on   | ıme  | nce | me |
| 0 | Handover of the lands/res dents<br>resettlement                                     |   |   |   |   |   |    |    | - |   |    |    |    |   |   |   |   |   |    |    |   |   |    |    |    | ot | con  | stru | ictio | on b | y Ja | nua | iry 2 | 2015 | 4   | _  |

#### Table 6-3 Implementation schedule


Source: JICA Study Team

## 7. Preliminary Design

## 7.1 Preliminary road design

The target section was divided into 16 sub-sections, and the road alignment was reviewed for each sub-section. Horizontal and vertical alignments were determined on the basis of the results.

| Section | Start po                 | int   | Е      | nd poi          | nt      | Length<br>(km) |
|---------|--------------------------|-------|--------|-----------------|---------|----------------|
| N 1     | Natali                   | .0    | Tem    | bey R           | liver   |                |
| M-1     | 0 +                      | 0.000 | 12     | +               | 93      | 12.1           |
| M-2     | Tembey F<br>(inc. brid   |       | Gura   | pay S           | tream   |                |
|         | 12 +                     | 93    | 35     | +               | 989     | 23.9           |
| M-3     | Gurapay S                | tream | Co     | nnect           | ion     |                |
| M 5     | 35 +                     | 989   | 59     | +               | 315     | 23.3           |
| M-4     | Connect                  | ion   | Yacuy  | guazu           | River   |                |
| 141 .4  | 59 +                     | 315   | 72     | +               | 285     | 13.0           |
| M-5     | Yacuyguazu<br>(inc. brid |       | Nacu   | mday            | River   |                |
|         | 72 +                     | 285   | 97     | +               | 56      | 24.8           |
| M-6     | Nacumday<br>(inc. brid   |       | Los    | Cedr            | ales    |                |
|         | 97 +                     | 56    | 140    | +               | 72      | 43.0           |
| M-7     | Los Cedr                 | ales  | Prt    | e.Fra           | nco     |                |
|         | 140 +                    | 72    | 147    | +               | 0       | 6.9            |
| PAR-1   | Route                    | 6     | Pt. Ca | ampic           | huelo   |                |
| 11110-1 | 0 +                      | 0     | 19     | +               | 50      | 19.1           |
| PAR-2   | Route                    | 6     | Pt.    | Pare            | don     |                |
| 11110 2 | 0 +                      | 0     | 11     | +               | 0       | 11.0           |
| PAR-3   | Parana R<br>coastal r    |       | Pt. D  | on Jo           | aquin   |                |
|         | 0 +                      | 0     | 16     | +               | 750     | 16.8           |
| PAR-4   | Parana R<br>coastal r    |       | Pal    | oma I           | Port    |                |
|         | 0 +                      | 0     | 11     | +               | 830     | 11.8           |
| PAR-5   | Parana R<br>coastal r    |       | Tri    | unfo I          | Port    |                |
|         | 0 +                      | 0     | 11     | +               | 870     | 11.9           |
| PAR-6   | Parana R<br>coastal r    |       | Dos Fr | onter           | as Port |                |
|         | 0 +                      | 0     | 6      | +               | 360     | 6.4            |
| PAR-7   | Parana R<br>coastal r    |       | Tor    | ocua l          | Port    |                |
|         | 0 +                      | 0     | 8      | +               | 720     | 8.7            |
| C-1     | Route                    | 6     | F      | rutik           | a       |                |
| 01      | 0 +                      | 0     | 24     | +               | 800     | 24.8           |
| C-2     | Frutik                   | a     |        | ana R<br>stal r |         |                |
|         | 24 +                     | 800   | 54     | +               | 430     | 29.6           |



Source: JICA Study Team

Figure 7-1 Sectioning map

#### (1) Parana River coastal road

#### 1) Itapúa Department (M-1 to M-3 sections)

Basically, the horizontal alignment was matched to that of existing roads for the following reasons:

- > Easy implementation with limited land acquisition
- > Future applicability of existing structures (bridges, box culverts) to an appropriate degree

Any curved section of existing roads that could not meet the design speed (V=100km/h), will be improved by applying the radius of curvature compatible with the standard.

The existing road is not to be used for the intersection with the road between National Road Route 6 and coastal roads in the M-3 section. Instead, the plan is to have the road pass in the neighborhood of Otano and Lopez.

Basically, the vertical alignment was matched to that of existing roads for the following reasons:

- > To reduce impact on private land areas
- > To utilize existing structures to a maximum degree

Any steep slope on existing road, which could not meet the design speed (V=100km/h), will be improved to the gentle vertical grade (steepest vertical grade I=6.0%).

#### 2) Alto Paraná Department (M-4 to M-7 sections)

The horizontal alignment was planned while taking the following factors into account:

- ➤ To have the right to use the land which ANDE has rights for the road plan of the section concerned.
- ➤ Where the cut or fill of the local ground may affect the steel towers, the alignment will be set to divert in such a manner to avoid the effect.
- ➢ For the south bank of Nacunday River, the route will be established in a way to bypass the area planned for the national park.
- At the Nacunday River crossing point, the alignment will be set to cross the river at a right angle to reduce the bridge length.

Basically, the vertical alignment was matched to that of existing roads for the following reasons:

- > The alignment plan will be appropriate for the local ground as much as possible.
- At the Nacunday River crossing point, the vertical alignment was planned by controlling structure height in the preliminary design.

Any steep slope section of existing road, which could not meet the standard was improved to a gentler slope that can meet the design speed (V=100km/h) (steepest vertical grade I=6.0%).

The M-7 section is already improved to the asphalt pavement road, offering smooth alignment both horizontally and vertically. Accordingly, it was decided to utilize the existing road while performing over-lay and shoulder work.

#### (2) Road connecting National Road Route 6 and the coastal roads (C-1 to C-2)

Basically, the horizontal alignment was matched to that of existing roads for the following reasons:

As C-1 is already paved with stone, the plan will be matched to the existing road as much as possible to reduce construction costs.

- C-2 can be readily implemented in terms of land acquisition, etc. by matching it to the horizontal alignment of existing road.
- Any existing section with a small curve that did not meet the standard will be improved to a radius of curvature compatible with the design speed of V=80km/h. (Minimum radius of curvature is R=210m.)

The vertical alignment was planned while taking the following factors into account:

- The vertical design of C-1 will be based on the existing vertical alignment because the existing vertical grade offers the smooth alignment. (Vertical grade meets the standard of design speed of V=80km/h. Steepest vertical grade is I=7.0%)
- The impact of C-2 on private land areas can be reduced by matching the vertical alignment of the existing road.
- Existing sections with steep grade that do not meet the standard will be improved to a gentler vertical grade meeting the standard of design speed of V=80km/h. (Steepest vertical grade is I=7.0%.)
- Since the end point becomes the intersection with the Parana River coastal road, its design height will be matched to that of the intersection.

#### (3) Port access road plan

There are a total of seven routes for port access roads. All begin at either the Parana River coastal road or National Road Route 6 and end at the entrance to the ports. Apart from the access roads listed below, port access roads are dirt roads:

PAR-2 (Paredon Port): Stone pavement over entire route PAR -3 (Don Joaquin Port): Stone pavement over almost entire route PAR -4 (Paloma Port9: Stone pavement over entire route PAR -5 (Triunfo Port): Stone pavement over entire route

Basically, the horizontal alignment was matched to that of existing roads for following reasons:

- Ready implementation in terms of land acquisition, etc. by matching it to the horizontal alignment of existing road
- The basic policy is that any section with a small curve that does not meet the standard will be improved to a radius of curvature compatible with the design speed of V=80km/h. However, the design speed will be V = 50 km/h for geologically constrained sections or urban areas. (The minimum radius of curvature will be R=70m.)

Basically, the vertical alignment was matched to that of existing roads for the following reasons:

- > To reduce its impact on private land areas by matching the vertical alignment of existing road
- Particularly for roads already paved with stone, the plan will be matched to existing road as much as possible to reduce construction costs.
- The basic policy is that any section with a steep slope that does not meet the standard will be improved to a vertical grade compatible with the design speed of V=80km/h. However, the design speed will be V = 50 km/h for geologically constrained sections (with lots of cuts and fills) (steepest vertical grade I=10.0%).
- The height of start and end points will be matched to the planned Parana River coastal roads and residual elevation of ports.

#### (4) Auxiliary facilities

#### 1) Safety facilities

#### Installing guardrails

Guardrails will be installed at the following points:

- Sections with fills, where the difference between high and low points is large. (Sections where the the difference is about 2.0 meters or more.)
- In sections where the planned road will be built in close proximity to the steel towers, guardrails will be provided as if encircling the towers.
- Apart from the above, sections where structures requiring guardrails are located in the neighborhood

#### Installing traffic signs and markings

Traffic signs and markings will be provided at the following points:

- Regulatory signs for speed limits and pedestrian crossings will be installed in an adequate layout.
- Informational signs showing direction and distance to destinations, toll gates, etc. will be installed in an adequate layout.
- > Warning signs at intersections or curves will be installed in an adequate pattern.
- > Marking for center strips and side strips will be provided.

#### 2) Traffic control facilities

Axle load scale yards to prevent truck overloading and toll gates to collect tolls for road maintenance will be provided.

#### 3) Parking areas

Parking areas will be provided for disabled cars or as rest areas. The interval will be about one area per km.

#### 4) Climbing lanes

The low speeds of trucks on upgrades will lead to decreased traffic capacity and lower levels of safety and comfort. Accordingly, a climbing lane will be provided on upgrades where the speed of large vehicles may drop to 50 km/h or less. By eliminating the low-speed vehicles from the through lane, the originally intended capacity, safety and comfort will be secured.

#### 5) Roadside station (Michi no Eki)

Roadside stations are facilities with rest areas integrated with regional development facilities. They have three functions: to provide road users with an opportunity to rest and shop; they will have facilities to provide information for road users and regional residents, and they will provide a "regional liaison function" to promote regional tie-ups around the station. Installation of these facilities is considered to be desirable.

#### 6) Study of eco-roads

The aim is to construct the road based on consideration of coexistence and matching with the natural environment of the region. For sections running through forests, the road structure will allow installation of pipe culverts enabling passage of animals to prevent division of animals' habitats or accidental contact with cars.

#### 7.2 Pavement design

#### (1) Design conditions

#### 1) Subgrade strength

CBR tests were conducted at four points: on both banks of the Nacunday River and on both banks of the Yacuy Guazu River. The test results are summarized below:

- CBR tests on both banks of the Nacunday River produced a value of 4,9.
- CBR tests on both banks of the Yacuy Guazu River produced a value of 9,12.

The design CBR value was set based on the above CBR test results. It was decided to design with CBR = 5.

#### 2) Materials used in each course

Materials used are those commonly used in Paraguay:

- Surface and binder courses : Asphalt mixture
- ➢ Base course
- : Crushed stone for mechanical stabilization
- Subbase course : Crusher run

#### 3) Other conditions

- Reliability: 90
- ➢ Design CBR: 5%
- Present serviceability index Po (initial value): 4.5 Pt (ultimate value): 2.5
- Analysis period: 20 years
- Traffic volume growth rate: 5.93%
- > The surface course of shoulders is to be subject to surface down, with a thickness of 3 cm.

#### (2) Pavement composition

The pavement composition of each section was determined on the basis of the following conditions. The results are shown in Table 7-1.

| Name of section | DesignESAL<br>( million ESAL ) | Surface course | Base course | Subbase course | Pavement<br>thickness | Name of type |
|-----------------|--------------------------------|----------------|-------------|----------------|-----------------------|--------------|
| M-1             | 2.939                          | 10             | 25          | 35             | 70                    | Type1        |
| M-2             | 2.115                          | 10             | 25          | 30             | 65                    | Type 2       |
| M-3             | 1.524                          | 10             | 25          | 30             | 65                    | Type 2       |
| M-4             | 3.818                          | 15             | 25          | 25             | 65                    | Type 4       |
| M-5             | 3.671                          | 15             | 25          | 25             | 65                    | Type 4       |
| M-6             | 3.230                          | 15             | 25          | 25             | 65                    | Type 4       |
| M-7             | 6.005                          | 15             | 25          | 30             | 70                    | Type 5       |
| C-1             | 4.444                          | 15             | 25          | 25             | 65                    | Type 4       |
| C-2             | 4.885                          | 15             | 25          | 25             | 65                    | Type 4       |
| PAR-1           | 1.114                          | 10             | 20          | 30             | 60                    | Туре 3       |
| PAR-2           | 1.068                          | 10             | 20          | 30             | 60                    | Туре 3       |
| PAR-3           | 2.945                          | 10             | 25          | 35             | 70                    | Type 1       |
| PAR-4           | 3.039                          | 10             | 25          | 35             | 70                    | Type 1       |
| PAR-5           | 0.526                          | 10             | 20          | 20             | 50                    | Type 6       |
| PAR-6           | 4.319                          | 15             | 25          | 25             | 65                    | Type 4       |
| PAR-7           | 3.640                          | 15             | 25          | 25             | 65                    | Type 4       |

Table 7-1 List of pavement composition

## 7.3 Designing the road drainage facilities

For the drainage facilities, a study was conducted of the cross-sectional drainage facilities (pipe culvert) and longitudinal drainage facilities (gutter at toe of slopes).

#### (1) Cross-sectional drainage facilities

The cross-sectional drainage facilities are classified into the following types:

- Gutters at toes of slopes (fill and cut sections )
- Stone-built gutter at toe of slope (immediate vicinity of water plumbing)

The gutters at toes of slopes were configured as shown below.

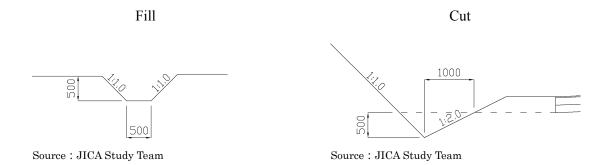



Figure 7-2 Configuration of gutter at end of slope

Erosion may occur because the flow increases and the flow rate rises in the immediate vicinity of water pipes. channel, stone gutters were to be used in view of need for reinforcement of channel.

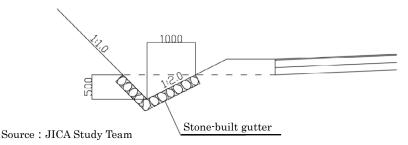



Figure 7-3 Configuration in immediate vicinity of water pipes

### (2) Cross-sectional drainage facilities

Since pipe culverts cover small drainage areas, it is difficult to accurately identify drainage areas on a plan view used for design. Basically, therefore, the plan is to replace existing culverts found in the road inventory survey. Since maintenance to reduce areas filled with soil sedimentation is difficult to perform, a maximum size of  $\varphi$ 1.0m currently available will be used in view of the margin of the section. Apart from existing installation locations, the sag point in the longitudinal plan will allow accumulation of surface drainage, so that pipe new culverts will be provided. Table 7-2 shows the number of pipe culverts installed in each section.

|                 |                              | 11                        | 1         | 1                  |
|-----------------|------------------------------|---------------------------|-----------|--------------------|
| Name of section | Start point                  | End point                 | Pipe size | No of<br>locations |
| M-1             | Natalio                      | Rio. Tembey               | φ1.0      | 3                  |
| M-2             | Rio. Tembey(inc. bridge)     | Ao. Gurapay               | φ1.0      | 7                  |
| M-3             | Ao. Gurapay                  | Connection                | φ1.0      | 9                  |
| M-4             | Connection                   | Rio. Yacuyguazu           | φ1.0      | 9                  |
| M-5             | Rio. Yacuyguazu(inc. bridge) | Rio. Nacunday             | φ1.0      | 11                 |
| M-6             | Rio. Nacunday(inc. bridge)   | Los Cedrales              | φ1.0      | 18                 |
| M-7             | Los Cedrales                 | Prte. Franco              | φ1.0      | 1                  |
| PAR-1           | Route No.6                   | Pt. Campichuelo           | φ1.0      | 7                  |
| PAR-2           | Route No.6                   | Pt. Paredon               | φ1.0      | 11                 |
| PAR-3           | Parana River coastal road    | Pt. Don Joaquin           | φ1.0      | 10                 |
| PAR-4           | Parana River coastal road    | Pt. Paloma                | φ1.0      | 8                  |
| PAR-5           | Parana River coastal road    | Pt. Triunfo               | φ1.0      | 8                  |
| PAR-6           | Parana River coastal road    | Pt. Dos Fronteras         | φ1.0      | 7                  |
| PAR-7           | Parana River coastal road    | Pt. Torocua               | φ1.0      | 5                  |
| C-1             | Route No.6                   | Frutika                   | -         | 0                  |
| C-2             | Frutika                      | Parana River coastal road | φ1.0      | 19                 |

Table 7-2 List of pipe culverts

Source: JICA Study Team

## 7.4 Preliminary design of structures

### (1) Selecting bridge types

For small-scale bridges less than 30 meters long, the bridge types shown in Table7-3 will be applied because they have proven to be economically superior and because of past construction experience in Paraguay.

As the result of a comparative study, pre-stressed concrete continuous composite girders were selected for the two bridges more the 30 meters long that cross the Nacunday and Yacuy Guazu Rivers.

| Tuble / 5 Bluildurd | structurur type by bridge tength |
|---------------------|----------------------------------|
| Bridge length L(m)  | Bridge type                      |
| 10 m< L < 15 m      | Reinforced concrete structure    |
| 15 m< L < 30m       | Pre-stressed concrete structure  |

Table 7-3 Standard structural type by bridge length

Source: JICA Study Team

#### (2) Preliminary design of bridges

#### 1) Superstructure

The superstructure types used for bridges are shown in Table 7-4.

|         |    |           | Table 7-4 Supe    | erstructure             | type         |                                       |
|---------|----|-----------|-------------------|-------------------------|--------------|---------------------------------------|
| Section | No |           | Name of river     | Bridge<br>length<br>(m) | Width<br>(m) | Structural type                       |
| M-4     | 12 | 64 + 562  | San Juan Stream   | 20.00                   | 10.00        | PC simple composite girder            |
| M-3     | 13 | 70+447    | Yhaca Mi Stream   | 20.00                   | 10.00        | PC simple composite girder            |
|         | 14 | 72+250    | Yacuy Guazu River | 75.00                   | 10.00        | PC 3 span continuous composite girder |
|         | 16 | 88+291    | Imperial Stream   | 15.00                   | 10.00        | PC simple composite girder            |
|         | 19 | 94 + 240  | Carpincho Stream  | 20.00                   | 10.00        | PC simple composite girder            |
| M-6     | 20 | 97+048    | Nacunday River    | 100.00                  | 10.00        | PC 4 span continuous composite girder |
|         | 23 | 114 + 575 | Pira Pyta Stream  | 20.00                   | 10.00        | PC simple composite girder            |
|         | 26 | 134 + 683 | Yta Coty Stream   | 15.00                   | 10.00        | PC simple composite girder            |
| PAR-0   | 32 | 0.0+6.2   | Curi-Y Stream     | 15.00                   | 10.00        | PC simple composite girder            |

seistidetale types used for offages are shown in fable 7.

Source: JICA Study Team

The section of bridge is shown in Figure 7-4. For the PC simple composite girder, the ratio of the height of beam with the span of 1/17 proves most economical. In this review, the heights of girder of 1.0 m, 1.15 m, and 1.45 m will be employed for the necessary bridges of 15.0 m, 20.0 n, and 25.0 m. As regards the number of girders, four main girders will be used, with the distance between main girders being 2.35m-2.5m, for the two-lane road (width 10 m).

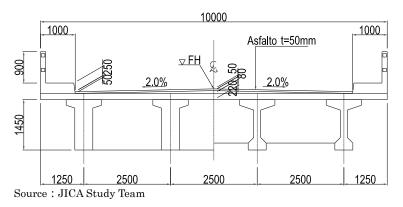



Figure 7-4 Bridge girder section

#### 2) Substructures

#### **Geological characteristics**

The geological composition at bridge locations consists of sandy silt, clay, and rock.

The bearing layer is a soil layer with an N value of 30 or more as determined from a standard penetration test. The layer is located 1.0 to 5.0 meters below the ground surface.

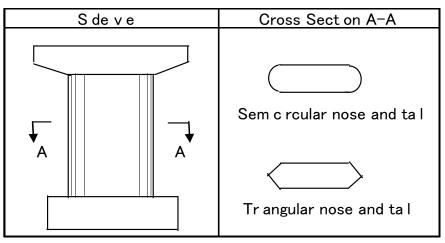
#### Foundation type

For the foundation type, it is necessary to identify the superstructure, geology, and construction method with considerable accuracy if the most economical type is to be selected. At present, layers with an N value of 30 or more are considered as the bearing layer after studying economic feasibility,

constructability, groundwater levels, and work width. A spread foundation will be chosen if the bearing layer depth is less than 4.0 meters. The pile foundation will be chosen if the bearing layer depth is 4.0 meters or more. Based on the terrain survey, the bearing layer is located at a depth of approximately 4.5 m within the survey area this time. Therefore, a spread foundation will be used.

#### Abutments

Appropriate abutments will be chosen according to height, as shown in Table 7-5. The abutment type is affected by the conditions of the local bearing layer, the abutment height, and economic feasibility. Since the planned abutment height is 5.0 to 12.0 meters, an inverted T-type abutment will be used.


| A harden out Trans | • • | Height (m) |    |
|--------------------|-----|------------|----|
| Abutment Type      | 10  | 20         | 30 |
| Gravity Type       |     |            |    |
| Semi-gravity Type  |     |            |    |
| Cantilever Type    |     |            |    |
| Counterfort Type   |     |            |    |
| Rigid FrameType    |     |            |    |

| Table 7-5 Abutment type    | e and standard | structural height |
|----------------------------|----------------|-------------------|
| ruble / 5 ributilient type | / und Stundurd | Su dotarar norgin |

#### Pier type

Paraguay does not have earthquakes, which means that small piers can be used. When reviewing pier types, it is essential to comply with the required structure performance. It is also desirable to minimize materials consumption while ensuring the economically superior structure.

However, the Nacunday and Yacuy Guazu Rivers where piers are to be built have high flow rates. In particular, bridges across the Nacunday River have been swept away by floods. Accordingly, wall piers as shown in the figure will be employed on this route because they do not hinder river flow.



Source: JICA Study Team

Figure 7-5 Pier types

Source: JICA Study Team

## 8. Development of the Construction Plan and Implementation Plan

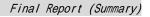
## 8.1 Construction policy

Since this project will be implemented based on the technical capabilities of the counterpart government, a construction policy as described below was established:

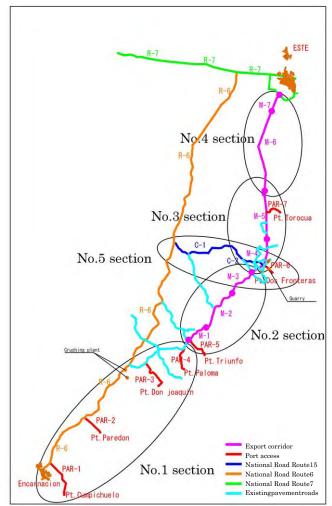
- Construction sites will be areas purchased as the right-of-way for roads.
- Work in the rivers is planned to be done in the dry season. Erection will be done by using a truck crane, which is the common practice in Paraguay.
- There are many uncertainties related to procuring equipment and materials and undertaking construction in the river. Accordingly, the work schedule will have sufficient leeway.
- The amount of earth handled by the earth work is as great as 9.8 million m<sup>3</sup>, which means that the soil distribution plan must be implemented efficiently.
- The ANDE's administrative road is currently in service. During the work, diversion will be planned and, in principle, road blockage will not be considered.

## 8.2 Material and equipment procurement policy

Materials are mostly procurable in cities around the site. However, quality sand (fine aggregate) is difficult to procure around the site and must be procured from Encarnación. There are no particular problems in regard to construction machinery because contractors have their own. The principal material, cement, is produced in Paraguay. Asphalt and rebars are imported from Argentina and Brazil, but the supply is sufficient and there is no problem. PC steel wires and other special materials are imported from Brazil.


### 8.3 Schedule plan

Prior to drafting the work schedule plan, the whole construction section was divided as follows. The schedule was drafted in a way to enable ordering five construction sections simultaneously. The overall work period will be planned as three years and two months at the longest. Figure 8-1 shows the proposed schedule.


- The construction scale of sections 2 and 3 allow the entry of leading contractors. Sections 1, 4, and 5 were supposed to be of a scale allowing entry of medium-size contractors.
- The work period was organized so that each sub-period is equal (two years, eight months to three years, two months).
- The intersection with the road connecting National Road Route 6 with the coastal roads will be a node of construction sections. The section on the north side was divided into two, while, on the south side, four port access roads were put together into one construction section.
- > The end point of the export corridor was set at the intersection with the second Amista road.
- The sectioning described above is one without the M-8 section falling outside the Parana River coastal road. This is because the second Amista road intersection was used as the end point for the sectioning during the F/S in 2006, except for the port access roads to Caarendy and Tores Froteras ports.

|                    |                                                                      | Idole                      | 8-1 Construction sector   | 0115       |           |                              |
|--------------------|----------------------------------------------------------------------|----------------------------|---------------------------|------------|-----------|------------------------------|
| Name of<br>section | Name of<br>route                                                     | Start point                | End point                 | Length(km) | Total(km) | Remarks                      |
|                    | PAR-1                                                                | Route No.6                 | Pt. Campichuelo           | 19.1       |           |                              |
| No.1               | PAR-2                                                                | Route No.6                 | Pt. Paredon               | 11.0       | 58.7      | One bridge                   |
| section            | n PAR-3 Parana River coastal road<br>PAR-4 Parana River coastal road |                            | Pt. Don Joaquin           | 16.8       | 56.7      | One C-BOX                    |
|                    |                                                                      |                            | Pt. Paloma                | 11.8       |           |                              |
|                    | M-1                                                                  | Natalio                    | Rio. Tembey               | 12.1       |           |                              |
| No.2               | M-2                                                                  | Rio. Tembey(inc. bridge)   | Ao. Gurapay               | 23.9       | 71.2      |                              |
| section            | M-3                                                                  | Ao. Gurapay                | Connection                | 23.3       | (1.Z      |                              |
|                    | PAR-5 Parana River coastal road                                      |                            | Pt. Triunfo               | 11.9       |           |                              |
| NL 0               | M-4                                                                  | Connection                 | Rio. Yacuyguazu           | 13.0       |           | TP: 1 · 1                    |
| No.3<br>section    | M-5 Rio Yacuvouazu(inc bridge)                                       |                            | Rio. Nacunday             | 24.8       | 46.5      | Five bridges<br>Six C-BOXes  |
| section            | PAR-7                                                                | Parana River coastal road  | Pt. Torocua               | 8.7        |           | DIX O DOMES                  |
| No.4               | M-6                                                                  | Rio. Nacunday(inc. bridge) | Los Cedrales              | 43.0       | 49.9      | Three bridges                |
| section            | M-7                                                                  | Los Cedrales               | Prte. Franco              | 6.9        | 49.9      | One C-BOX                    |
|                    | C-1                                                                  | Route No.6                 | Frutika                   | 24.8       |           |                              |
| No.5<br>section    | C-2                                                                  | Frutika                    | Parana River coastal road | 29.2       | 60.4      | One C-BOX                    |
| Section            | PAR-6                                                                | Parana River coastal road  | Pt. Dos Fronteras         | 6.4        |           |                              |
| То                 | tal                                                                  |                            |                           |            | 286.7     | Nine bridges<br>Nine C-BOXes |

#### Table 8-1 Construction sections



Source: JICA Study Team



Source : JICA Study Team

Figure 8-1 Positions of the sections

Preparatory Survey on The Eastern Region Export Corridor Improvement Project in the Republic of Paraguay

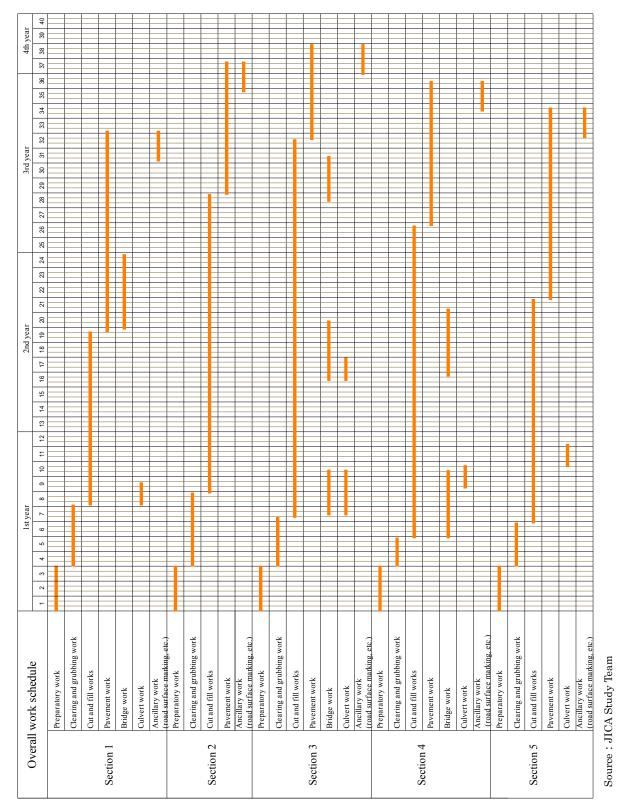



Figure 8-2 Paraguay export corridor development plan work schedule

Final Report (Summary)

## 9. Estimated Project Expense Quantity Survey

The costs of bridge construction, pipe and culvert work, and road construction were calculated based on changes to unit costs since the 2006 F/S. The calculated result was a project cost of US\$333 million. It has increased by US dollar base by 2.3 times compared with the previous F/S Survey in 2006.

| (F/S Survey in 2006)                                    |                              |                                                  |          | (Un                 | it:million US\$) |
|---------------------------------------------------------|------------------------------|--------------------------------------------------|----------|---------------------|------------------|
| Construction site                                       | Parana River<br>coastal road | Route No.6 •<br>Coastral Road<br>Connection Road | Subtotal | Port Access<br>Road | Total            |
| Length (km)                                             | 157.6                        | 54.4                                             | 212.0    | 107.6               | 319.6            |
| (a) Preparatory work                                    | -                            | -                                                | -        | -                   | -                |
| (b) Earth work                                          | 14.8                         | 1.7                                              | 16.5     | 3.1                 | 19.6             |
| (c) Pavement work                                       | 51.8                         | 10.5                                             | 62.3     | 24.1                | 86.4             |
| (d) Pipe and culver work                                | 0.6                          | 0.0                                              | 0.6      | 0.3                 | 0.9              |
| (e) New bridge construction &<br>Widening work          | 5.5                          | 0.0                                              | 5.5      | 0.2                 | 5.7              |
| Building expense<br>=(a)+(b)+(c)+(d)+(e)                | 72.1                         | 12.2                                             | 84.3     | 27.8                | 112.1            |
| Desigb/Construction<br>administrative expense<br>= ×13% | 9.4                          | 1.6                                              | 11.0     | 3.6                 | 14.6             |
| Land expense                                            | 1.6                          | 0.3                                              | 1.9      | 0.5                 | 2.4              |
| Compensation expecse                                    | 0.0                          | 0.0                                              | 0.0      | 0.0                 | 0.0              |
| Subtotal<br>= + + +                                     | 83.1                         | 14.1                                             | 97.2     | 31.9                | 129.1            |
| Contingency<br>= ×10%                                   | 8.3                          | 1.4                                              | 9.7      | 3.2                 | 12.9             |
| Total                                                   | 91.4                         | 15.4                                             | 106.8    | 35.1                | 141.9            |

#### Table 9-1 Project Expense Resume

(This Study in 2011)

(Unit:million US\$)

| Construction site                                                  | Parana River<br>coastal road | Route No.6 •<br>Coastral Road<br>Connection Road | Subtotal | Port Access<br>Road | Total |
|--------------------------------------------------------------------|------------------------------|--------------------------------------------------|----------|---------------------|-------|
| Length (km)                                                        | 147.0                        | 54.4                                             | 201.4    | 85.6                | 287.0 |
| (a) Preparatory work                                               | 4.8                          | 1.2                                              | 6.0      | 1.5                 | 7.5   |
| (b) Earth work                                                     | 63.7                         | 6.4                                              | 70.1     | 9.0                 | 79.0  |
| (c) Pavement work                                                  | 89.3                         | 32.2                                             | 121.5    | 40.8                | 162.3 |
| (d) Pipe and culver work                                           | 1.0                          | 0.0                                              | 1.0      | 0.4                 | 1.4   |
| (e) New bridge construction &<br>Widening work                     | 6.4                          | 0.0                                              | 6.4      | 0.4                 | 6.9   |
| Building expense<br>=(a)+(b)+(c)+(d)+(e)                           | 165.3                        | 39.7                                             | 205.0    | 52.1                | 257.1 |
| Desigb/Construction<br>administrative expense<br>= ×13%            | 21.5                         | 5.2                                              | 26.6     | 6.8                 | 33.4  |
| Land expense                                                       | 6.0                          | 2.0                                              | 8.0      | 3.4                 | 11.4  |
| Compensation expecse                                               | 0.0                          | 0.7                                              | 0.7      | 0.1                 | 0.8   |
| $   Subtotal \\   = + + + $                                        | 192.7                        | 47.6                                             | 240.3    | 62.4                | 302.7 |
| $\begin{array}{l} \text{Contingency} \\ = \times 10\% \end{array}$ | 19.3                         | 4.8                                              | 24.1     | 6.2                 | 30.3  |
| Total                                                              | 212.0                        | 52.4                                             | 264.4    | 68.6                | 333.0 |

Source: JICA Study Team

## **10. Economic Evaluation**

#### **10.1 Summary of Economic Evaluation**

The subject project is to be evaluated from several viewpoints indicated in Figure 10-1. In (1), the Economic Evaluation, the project will be evaluated by cost-benefit analysis comparing direct economic benefits and economic cost (actual amount of investment and maintenance costs) brought about by the project

This is not a toll road project. Consequently, in (2), the Financial evaluation will not include a financial analysis suggesting the extent to which the investment can be recovered by toll revenue. Instead, as the project assumes yen loan as source of funding, and the significance of the project being financed by the government will be considered.

(3) Environmental Impact Evaluation has already been discussed in Chapter 6. As far as this aspect is concerned, whether or not the project will have any negative impacts on the natural and social environment will be mainly investigated. If there are any, eliminating or minimizing them have been proposed. Here, as for (4), the Social Impacts, positive aspects which the project will bring about will be mainly considered.

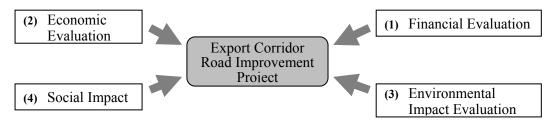



Figure 10-1 Perspective of Project Evaluation

### **10.2 Evaluation Method**

This Export Corridor Road Improvement project will be evaluated from an economic viewpoint according to cost-benefit analysis. The evaluation process will be as indicated in Figure 10-2.

Both cost and benefit will be measured by Economic Price. Therefore, project expenses estimated by market price will be converted to Economic Price. Conversion will be performed by eliminating tax included in project expenses, eliminating price contingency, eliminating financial cost incidental to loan borrowing, and by applying the Shadow Wage Rate (SWR) labor cost of the unskilled work force.

As for benefit, limited to benefit which can be anticipated to accrue most directly, three types of benefits, i.e. (1) cutting down on car running cost, (2) reducing travel time of those on the road and, (3) reducing road maintenance expense. Traffic volume forecasts will be made to calculate benefits if the project is carried out and if it is not, and the results will be measured by "with" and "without" comparison.

The conditions denoted below were assumed for the economic evaluation.

- Duration of project evaluation to be 25 years (2018 2042) following date of being opened to traffic.
- Economic discount factor to be  $12\%^1$ .

<sup>&</sup>lt;sup>1</sup> An economic discount factor of 11% was used in the JICA 2006 F/S, but as MOPC pointed out in the interim report for the project (June 26, 2011) that 12% was presently being used, 12% is used here.

Car running cost to be that estimated annually by DINATRAN<sup>3</sup> (MOPC affiliate) per model similar to JICA's 2006 F/S. This running cost differs depending on road conditions, not traffic volume. In other words, traffic congestion is not assumed.

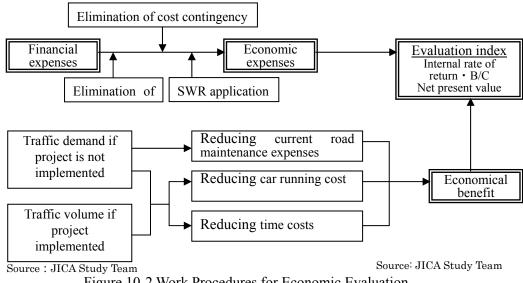



Figure 10-2 Work Procedures for Economic Evaluation

## **10.3** Project Economic Cost

The economic cost converted from financial expenses is estimated to be US\$265.0 million as indicated in Table 10-1. This corresponds to 80.0% of financial expenses.

|                                    | (US\$ 1,000, 2011 quotation) |            |  |
|------------------------------------|------------------------------|------------|--|
| Cost item                          | Financial                    | Economical |  |
| Cost Item                          | expenses                     | expenses   |  |
| (1) Preparatory work               | 7,489                        | 6,133      |  |
| (2) Earthwork                      | 79,008                       | 64,700     |  |
| (3) Pavement work                  | 162,342                      | 132,942    |  |
| (4) Pipe and culvert work          | 1,433                        | 1,173      |  |
| (5) New bridge design • Widening   | 6,858                        | 5,616      |  |
| a. Total (1) ~ (5)                 | 257,130                      | 210,564    |  |
| b. Supervising expenses ((a) x13%) | 33,427                       | 27,373     |  |
| c. Land expense                    | 11,356                       | 11,356     |  |
| d. Indemnity cost                  | 800                          | 800        |  |
| e. Total (a-d)                     | 302,713                      | 250,093    |  |
| f. Contingency ((e) x10%)          | 30,271                       | 15,136     |  |
| Grand total                        | 332,984                      | 265,229    |  |

 Table 10-1 Project Economic Cost

Source: JICA Study Team

### **10.4 Economic Benefit Estimation**

Three types of economic benefits would be obtained by the road improvement in the project, namely, lower car running costs, shortened travel times and less maintenance and repair expenses if roads were not to remain as they currently are. As for future traffic demand, it can be classified into two categories, namely, trucks carrying the three major grains from farms to port of export and other general traffic. If the roads are improved, some of the trucks now carrying grain for export along Rio Paraguay would convert to Rio Parana. In this respect, it would not be the transportation cost from

the field to the loading port, but a comparison of the cost to the port of exportation located at Rio de la Plata estuary. Here the curtailment will be a benefit.

The results of the various economic benefits are indicated in Table 10-2. The 2010 figures are fictitious benefits assumed to have been obtained if the road project had been completed. Approximately 60% of the total is accounted for by the running cost reduction for trucks carrying grain. This benefit would be allocated among grain producers, distributors and grain dealers, but when intensified grain purchasing price competition is taken into consideration, the main beneficiary could turn out to be the producers. The benefit of better and improved roads would lead to increased income for producers, and if it would bring about further incentive to produce, the project will have achieved its primary objective.

|                              |                      | <b>(</b> US \$ | \$ million/year ) |  |
|------------------------------|----------------------|----------------|-------------------|--|
| Type of benefit              |                      | Fiscal year    |                   |  |
|                              |                      | 2010/2011      | 2020              |  |
| Car running cost curtailment | Grain transportation | 35.4           | 51.9              |  |
| Car running cost curtaiment  | Other traffic        | 9.5            | 12.5              |  |
| Time cost curtailment        | Other traffic        | 9.9            | 13.1              |  |
| Maintenance expense curtailm |                      | 3.3            |                   |  |
| Total                        |                      | 80.8           |                   |  |

Note: Grain transportation benefit pertains to 2010 and others are 2011 values. Source: JICA Study Team

#### **10.5 Economic Evaluation**

Cash flow figures will be derived comparing annual benefits measured by economic costs. The cash flow will be projected using the following assumptions:

- Economic life of the project shall be thirty-five years.
- Duration for evaluation shall be a further shortened twenty-five years after being opened to traffic. Due to this, 28.6% (= (35-25)/35) of the project expenses excluding land cost which is a residual value and total land cost have been treated as negative cost.
- Production of export grain including soy beans and others is gradually nearing maximum in Alto Parana and Itapua departments and the production center is shifting westward, to the hinterlands of Rio Paraguay. Therefore, as exports via Rio Parana will not increase without any limitation, all benefits are at the plateau reached in 2025.

The internal rate of return from such a cash flow is as high as 21.7%, significantly surpassing the 12% economic discount rate and project judged to be feasible (Table 10.1-7.) The net present value exceeding US\$200 million and a B/C ratio over 2.0. Even the 2006 study estimated that the internal rate of return was 14.3% and judged feasible. The current study substantially exceeds that figure. The reason why economic efficiency was enhanced is due to the significant increase in soy bean production shored up by the steep rise of its international price and because of an upward adjustment of future transportation demand.

т 1

| Table 10-3 Project Economic Evaluation Index |           |            |               |  |  |
|----------------------------------------------|-----------|------------|---------------|--|--|
| Evaluation index                             | Unit      | 2006 Study | Current study |  |  |
| Internal rate of return (IRR)                | %         | 14.3       | 23.4          |  |  |
| Net Present Value (NPV)                      | US\$1,000 | 33,178     | 274,668       |  |  |
| Benefit Cost ratio (B/C)                     | -         | 1.32       | 2.35          |  |  |

Table 10.2 Devicest Economic Evolution

Source: JICA Study Team

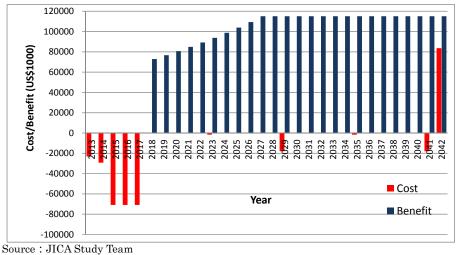



Figure 10-3 Project expenses and flow of benefits

## **10.6** Financial Evaluation (annual repayment provisional estimate)

The Export Corridor of the project is basically not a toll road. Therefore, a financial evaluation to determine whether or not funds invested can be recovered will not be performed. Given the financial situation of Paraguay's road development, let us now consider what impact annual repayment will have on MOPC's finances if the project is financed by loans.

(Provisional estimate conditions)

- The total loan would be US\$300 million
- The loan to be provided over three years, US\$100 million per annum
- Interest to be 2.7% per annum, five year period of deferment, repayment over thirty years

(Results of provisional estimate)

The repayment schedule and amount of annual repayment will be as indicated in Figure 10-4. The mean annual repayment will be US\$11.7 million, including principal and interest. This corresponds to 4.0% of MOPC's mean road department aggregate budget. Although dependent on the cumulative total of loans and what repayment amounts to, it is thought that project repayment itself will not be unbearable, given MOPC's road fiscal resources.

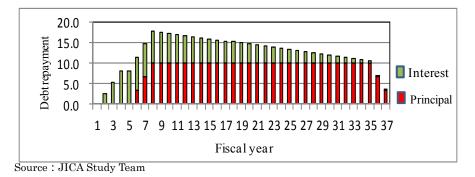



Figure 10-4 Loan Repayment Schedule (Example)

### **10.7** Socioeconomic Impact

The economic benefits referred to in the economic evaluation are the most direct benefits brought about by road improvements and other indirect effects and long-term impacts to regional development, affecting daily life of roadside inhabitants, including those which are diversified. Impacts which are comparatively large will be taken up at this time for further consideration.

### (1) Employment Creation Effect during Road Improvement

In road improvement projects, labor accounts for approximately 20% of construction costs, and about 50% of that is for unskilled labor procured in the neighborhood of construction sites. Job opportunities at construction sites are enhanced in adjacent cities, towns and villages. As of July 2011, the legal monthly minimum wage is 1,685,232 *guaranies* (US\$398.00) equivalent to 11,280 *guaranies* (US\$2.70) per hour. If aggregate wage paid to unskilled labor force is divided by this monthly wage, the total unskilled force mobilized would turn out to be 809 workers per month.

### (2) Living Space Expansion

Paved roads bring about shortened travel time thus expanding living space. If mean cruising speed on a paved road is assumed to be 80km/hr, and if the same speed on a dirt (earth) road prior to the project is assumed to be 25km/hr, reaching Mayor Otano from Ciuadad del Este or Encarnacion separated by almost equal distances would require four hours prior to improved road conditions but only 1.4 hours from the former and 2.3 hours for the latter after improvements. The transformation of being able to travel to a major city from an isolated village served by public transport only once a week within less than an hour, when it used to take 3 to 4 hours is significant. Improved accessibility to educational facilities, medical institutions and cultural facilities would bring about positive changes in livelihood.

Villagers hopefully say, "A weekly trip to Este to purchase sundries and going to Brazil by boat on the other side of the river to sell merchandise is now routine, but if a road is developed and a bus route established, daily trips will become possible." Even women who kept to themselves at home and seldom had the opportunity to go outside would be able to go to cities, come into contact with various cultures if and when family income improves. Might not "Getting to know" and "Getting involved" be the very first steps to improve the status of women?

### (3) Other Assumable Impacts

The facilitation of regional development (tourism and agriculture-related industries) and employment and a revitalized regional economy are other expected effects. Tourism could be promoted by attracting tourists in cooperation with Argentina and Brazil without limiting such activity to relying on regional resources would be an option. This type of assistance should be pursued for agriculture-related industries such as grain processing, flour milling, and oil extraction, for businesses supplying agricultural inputs such as fertilizers, pesticides, and herbicides and for support industries such as agricultural machinery and equipment, and parts manufacturing and repairs. Developing the Export Corridor is one precondition for increasing grain transportation. Exerting efforts in a wide range of fields is required to sufficiently make use of road improvements.

## 11. Study of Project Execution System

## **11.1 Project Execution Structure**

The project will be executed by the MOPC. In the actual implementation, a project implementation unit similar to PG-P13 execution will be set up. As stated in the F/S in 2006, environmental impact analysis (EIA) procedures for land expropriation, relocation of inhabitants, etc. will have to be performed by commencing construction subsequent to decision for project execution. Such procedures will be handled by the Environment Department and Estate Department of MOPC.

#### **11.2 Execution Schedule**

This project is being planned with the precondition of a yen loan becoming available. A proposed execution schedule is indicated in Table 11-1. The Paraguayan Government is to select consultants separately for detailed engineering and construction management in accordance with national law, and we shall comply accordingly. Upon completion of this study, a consultant for detailed engineering will be selected in 2012 and detailed engineering will be done in 2013. Thereafter, in 2014, a consultant for construction management will be selected along with the company to undertake construction. Construction could be expected to commence in 2015.

|                                                                               | Duration                    | Remarks                                                      |
|-------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------|
| 1) Exchange of official notes (E/N)                                           | 2012 · March · April        |                                                              |
| 2) Loan Agreement (L/A)                                                       | 2012 • May • June           |                                                              |
| 3) Consultant selection (detailed engineering)                                | July to December, 2012      | 6 months                                                     |
| Proposal preparation     submittal                                            | 45 days                     | Site survey, preparation 30 days                             |
| Technological Cost evaluation, JICA consent                                   | 90 days                     |                                                              |
| Agreement• JICA approval                                                      | 45 days                     |                                                              |
| <ol> <li>Detailed engineering, preparation of tender<br/>documents</li> </ol> | January to October, 2013    | 10 months                                                    |
| 5) Consultant selection (construction management))                            | November 2013 to April 2014 | 6 months<br>(breakdown identical to detailed<br>engineering) |
| 6) Contractor selection                                                       | May to December, 2014       | 8 months                                                     |
| • P/Q examination• evaluation/JICA consent                                    | 45 days                     |                                                              |
| Proposal preparation     Submittal                                            | 60 days                     | Site survey 20 days. Preparation 40 days                     |
| Technological Cost evaluation, JICA consent                                   | 90 days                     |                                                              |
| Agreement• JICA approval                                                      | 45 days                     |                                                              |
| 7) Construction commenced                                                     | January 2015 onwards        |                                                              |

Table 11-1 Duration of Bid Tender, etc. pertaining to Project Implementation

Source: JICA Study Team

#### **11.3 Operation and Maintenance Structure**

The project is to be undertaken by MOPC's Operations and Finance Bureau. Maintenance subsequent to completion would be handled by MOPC's Public Works and Communication Department (Departamento de Conservacion Rutas.)

As for the budget of the Departamento de Conservacion Rutas, about 10% of the planned budget was utilized in the past. However, the execution ratio of the maintenance budget has increased more than six-fold since 2009. It is thought that GMANS's influence had much to do with that, and it is felt that adopting CMANS system also for the project is desirable. No zones would require repair and maintenance immediately after construction is completed. It is also thought to be possible to improve the service life of the pavement by carrying out daily and periodical maintenance, resulting in low-cost maintenance. However, for maintenance of this project, in the F/S performed in 2006, it was verified that daily and periodical maintenance expenses could be covered by tolls collected at two toll gates installed at Natalio and Cedrales on the route . In other words, it is considered amply possible even if the contemporary maintenance system were to be implemented subsequent to completion of the project.

|      | Maintenanc     | Implementation          |       |
|------|----------------|-------------------------|-------|
|      | Budgetary plan | Budget implementation   | ratio |
| 2009 | 150,000,000    | 90,000,000              | 60%   |
| 2010 | 178,000,000    | 157,000,000             | 88%   |
| 2011 | 150,000,000    | 110,000,000 (Finalized) | 73%   |

Source: MOPC

## **12.** Conclusion and Proposals

### **12.1** Main Changes since F/S

- ➤ In comparison to the assumed figures the F/S was conducted in 2006, the populations of Itapua and Alto Parana departments in 2010 have decreased by more than 500,000. Along with the delay in improving the Export Corridor, this is thought to be due to the fact that arable land within the district has almost been fully cultivated. It is thought that the population of the regions concerned would increase in the years ahead if the Export Corridor is improved and accessibility to Este and Encarnacion is upgraded,.
- Although overall agricultural production in Paraguay once dropped due to the steep rise in the grain market and a drought in 2009, a sharp rise has occurred since 2007 due to improved plant breeding and other causes. The rate of increase is building up at a faster speed than assumed in the 2006 F/S. It is expected that this trend will continue for Paraguay as a whole.
- Both exports and imports are increasing for all of Paraguay, particularly exports of grain. Road transportation and river transportation play equal roles in the handling of imports, but about 60% of the exports are transported via river and the role played by river transportation is becoming significant.
- > The necessity for an Export Corridor and improving transportation has increased since 2006. It is thought that expeditiously improving the Export Corridor will help sustain the booming Paraguayan economy, contribute to the development of the regional economy, and lead to an effective means or solving the problems faced by impoverished small farmers.
- Not many amendments have been made to the route plans since the F/S was conducted in 2006. The route through Este requires certain adjustments between the second Amista Bridge and its

access road.

- Independent and original efforts exerted by parties concerned have improved the condition of the port access road compared to 2006, but stone pavement seems to have been the order of the day. It goes without saying that asphalt pavement is desirable from the point of view of improving traffic flow and comfort. Urgently improving unpaved sections and repaving stone pavement sections with asphalt is required.
- The recent study has revealed that sections secured as road sites for the planned road are extremely limited. However, portions are actually being used as roads, and roadside inhabitants look forward to roads being improved. It can be assumed that land purchases will take place without hindrance. In addition, only a limited number of obstructing objects will have to be removed.

## **12.2** Conclusion and Proposals

All Export Corridor concepts subject to this study were appropriate, and facilitating execution of the project is proposed for the following reasons.

- The project aims at reducing the fragility of Paraguay's entire transportation infrastructure. The substance of the project corresponds to a national program. Implementation of the project will improve transportation efficiency, improve productivity of export activity, enhance competitiveness and, as a result, contribute toward vitalizing the economy of Paraguay.
- If construction and maintenance are properly carried out, the project's EIRR would be 23.4%. This indicates that the project is amply feasible. Furthermore, projecting it can help mitigate poverty and improve the living environment.

## (1) Facilitating Improvement of Rio Parana Coastal Road, National Road Route 6 and Coastal Road Connection Road

- These arterial roads are positioned as "Southern Union Roads" forming the framework of southern Paraguay. The benefits from expediting the project is acknowledged for the following reasons.
- Southern Union Roads are arterial roads connecting Paraguay's southern departments where revitalized economies are promising. It is an effective project as an anti-poverty measure
- These roads will function as international roads forming the Paraguay link of a Both Oceans Traverse Road along the IIRSA Capriconio axis (The Tropic of Capricom axis).
- Improving these roads can lead to lower transportation costs for exports and contribute to economic development, competiveness, social development, and poverty mitigation.

### (2) Improving Port Access Road

- ➤ Improving the Rio Parana Coastal Road and the road linking the ports lining Rio Parana will enhance export competitiveness. In other words, by paving the access roads to ports, being at the mercy of bad weather can be avoided, and the port facilities could be used at all times. As a result, the efficiency of transportation of export products will improve significantly, and enhanced convenience for coastal inhabitants can be anticipated.
- Independent efforts have achieved small-scale improvements on port access roads. However, these are limited to minimum improvements, and their future remains obscure. Therefore, the need for the public sector to become involved in port access roads is high.

### (3) Recommended items to facilitate project execution

For the project to be implemented in a smooth manner, the items indicated below are those we recommend that Government of Paraguay implement.

- > Implement appropriate EIA and facilitate procedures for land expropriation.
- Expeditiously request financial assistance such as yen loan, and secure budgetary means for counterpart.

#### (4) Proposals to further develop project efficiency

The items indicated below are those the Government of Paraguay should implement to further enhance the effects of the project.

- Enhance positioning of the project within IIRSA and facilitate development of a regional road network connecting the country to adjacent nations.
- > Post-project maintenance and operation.
- > Facilitate regional development when road improvements are taking place.
- > Upgrade Rio Parana coastal facilities and support stabilization of water transportation.