Lao People's Democratic Republic Department of Electricity, Ministry of Energy and Mines Electricité du Laos

Lao People's Democratic Republic Data Collection Survey on Power System Development in Southern Region in Lao PDR

Final Report

September 2011

Japan International Cooperation Agency

Tokyo Electric Power Company Inc. Tokyo Electric Power Services Co., Ltd. Nippon Koei Co. Ltd.

Table of Contents

Chapter	Policy of the Study	1-1
1.1	Objectives and Targets of the Study	1-1
Chapter	2 Review of PDP2010-2020	2-1
2.1	Demand forecast	
2.2	Power Development Plan	
2.3	Power System Development Plan	
2.4	Power System Analysis	
Chapter	3 Support from Other Donors	3-1
3.1	Plan of 230 kV Transmission Line Project between Seno S/S and Saravan S/S	
3.2	Support by Other Donors	
Chapter	4 Power Demand Forecast	4-1
4.1	Confirmation of Power Demand Forecast	4-1
4.2	Plan of Southern Mine Development	
4.3	Special Economic Zone (SEZ)	4-5
4.4	Power Demand Forecast of Each Substation	
4.4	1 Actual Power Demand Record of Each Substation	
4.4	2 Power Demand Forecast of Each Substation	4-7
Chapter	5 Power Development Plan	5-1
Chapter 5.1	5 Power Development Plan Power Development Plan	5-1
Chapter 5.1 5.2	5 Power Development Plan Power Development Plan Current Status of M Kaleum Development	 5-1 5-1 5-1
Chapter 5.1 5.2 5.3	5 Power Development Plan Power Development Plan Current Status of M Kaleum Development Interconnection Transmission Lines with Neighboring Countries	
Chapter 5.1 5.2 5.3 Chapter	 5 Power Development Plan Power Development Plan Current Status of M Kaleum Development Interconnection Transmission Lines with Neighboring Countries 6 Power Development Scenarios 	5-1 5-1 5-5 6-1
Chapter 5.1 5.2 5.3 Chapter 6.1	 5 Power Development Plan Power Development Plan Current Status of M Kaleum Development Interconnection Transmission Lines with Neighboring Countries 6 Power Development Scenarios Scenarios for the Study 	
Chapter 5.1 5.2 5.3 Chapter 6.1 6.2	 5 Power Development Plan Power Development Plan Current Status of M Kaleum Development Interconnection Transmission Lines with Neighboring Countries 6 Power Development Scenarios Scenarios for the Study Conditions of yearly Supply and Demand Balancing Simulation 	
Chapter 5.1 5.2 5.3 Chapter 6.1 6.2 6.3	 5 Power Development Plan Power Development Plan Current Status of M Kaleum Development Interconnection Transmission Lines with Neighboring Countries 6 Power Development Scenarios Scenarios for the Study Conditions of yearly Supply and Demand Balancing Simulation Supply and Demand Balancing by Cases 	
Chapter 5.1 5.2 5.3 Chapter 6.1 6.2 6.3 6.4	 5 Power Development Plan Power Development Plan Current Status of M Kaleum Development Interconnection Transmission Lines with Neighboring Countries 6 Power Development Scenarios Scenarios for the Study Conditions of yearly Supply and Demand Balancing Simulation Supply and Demand Balancing by Cases Benefits from Interconnection Transmission Line in the Southern System 	
Chapter 5.1 5.2 5.3 Chapter 6.1 6.2 6.3 6.4 Chapter	 5 Power Development Plan Power Development Plan Current Status of M Kaleum Development Interconnection Transmission Lines with Neighboring Countries 6 Power Development Scenarios Scenarios for the Study Conditions of yearly Supply and Demand Balancing Simulation Supply and Demand Balancing by Cases Benefits from Interconnection Transmission Line in the Southern System 7 Power System Issues 	
Chapter 5.1 5.2 5.3 Chapter 6.1 6.2 6.3 6.4 Chapter 7.1	 5 Power Development Plan Power Development Plan Current Status of M Kaleum Development Interconnection Transmission Lines with Neighboring Countries 6 Power Development Scenarios Scenarios for the Study Conditions of yearly Supply and Demand Balancing Simulation Supply and Demand Balancing by Cases Benefits from Interconnection Transmission Line in the Southern System 7 Power System Issues Regional Power Demand and Power Supply Ability 	
Chapter 5.1 5.2 5.3 Chapter 6.1 6.2 6.3 6.4 Chapter 7.1 7.2	 5 Power Development Plan Power Development Plan Current Status of M Kaleum Development Interconnection Transmission Lines with Neighboring Countries 6 Power Development Scenarios Scenarios for the Study Conditions of yearly Supply and Demand Balancing Simulation Supply and Demand Balancing by Cases Benefits from Interconnection Transmission Line in the Southern System 7 Power System Issues Regional Power Demand and Power Supply Ability Situations of Power Supply and Demand in Target Area 	
Chapter 5.1 5.2 5.3 Chapter 6.1 6.2 6.3 6.4 Chapter 7.1 7.2 7.3	 5 Power Development Plan Power Development Plan Current Status of M Kaleum Development Interconnection Transmission Lines with Neighboring Countries 6 Power Development Scenarios Scenarios for the Study Conditions of yearly Supply and Demand Balancing Simulation Supply and Demand Balancing by Cases Benefits from Interconnection Transmission Line in the Southern System 7 Power System Issues Regional Power Demand and Power Supply Ability Situations of Power Supply and Demand in Target Area Methodology of Power Supply to Target Area 	5-1 5-1 5-5 6-1 6-1 6-1 6-6 6-6 7-1 7-1 7-3
Chapter 5.1 5.2 5.3 Chapter 6.1 6.2 6.3 6.4 Chapter 7.1 7.2 7.3 7.4	 5 Power Development Plan Power Development Plan Current Status of M Kaleum Development Interconnection Transmission Lines with Neighboring Countries 6 Power Development Scenarios Scenarios for the Study Conditions of yearly Supply and Demand Balancing Simulation Supply and Demand Balancing by Cases Benefits from Interconnection Transmission Line in the Southern System 7 Power System Issues Regional Power Demand and Power Supply Ability Situations of Power Supply and Demand in Target Area Methodology of Power Supply to Target Area Role of 500kV/230kV/115kV and Power Supply to SLACO 	5-1 5-1 5-5 6-1 6-1 6-20 7-1 7-1 7-1 7-3 7-4
Chapter 5.1 5.2 5.3 Chapter 6.1 6.2 6.3 6.4 Chapter 7.1 7.2 7.3 7.4 Chapter	 5 Power Development Plan	
Chapter 5.1 5.2 5.3 Chapter 6.1 6.2 6.3 6.4 Chapter 7.1 7.2 7.3 7.4 Chapter 8.1	 5 Power Development Plan Power Development Plan Current Status of M Kaleum Development Interconnection Transmission Lines with Neighboring Countries 6 Power Development Scenarios Scenarios for the Study Conditions of yearly Supply and Demand Balancing Simulation Supply and Demand Balancing by Cases Benefits from Interconnection Transmission Line in the Southern System 7 Power System Issues Regional Power Demand and Power Supply Ability Situations of Power Supply to Target Area Methodology of Power Supply to Target Area Role of 500kV/230kV/115kV and Power Supply to SLACO 8 Scenarios of Power System Plan in South Region 	5-1 5-1 5-5 6-1 6-1 6-1 6-1 6-6 6-20 7-1 7-1 7-1 7-1 7-3 7-4 8-1

8.3	Study Cases	
8.3.	Application of Case TA to Case G1 (Construction of the 115 kV Pakbo-Saravan	
	Transmission Line in 2015)	
8.3.	2 Application of Case TB to Case G1 (Construction of the 230kV Seno-Saravan	
	Transmission Line Instead of the Construction of the 115 kV Pakbo-Saravan	
	Transmission Line in 2015)	
8.3.	Application of Case TA (1) to Case G2 (Construction of 115 kV Pakbo-Saravan	
	Transmission Line in 2015) (Deficit in Power in S1 and S2 in 2015 Eliminated by	
	Supplying via the Transmission Line to SLACO)	
8.3.	4 Application of Case TA (2) to Case G2 (Construction of 115 kV Pakbo-Saravan	
	Transmission Line in 2015) (Deficit in Power in S1 and S2 in 2015 Eliminated by	
	Supplying via the Interconnection from EGAT)	
8.3.	5 Application of Case TB (1) to Case G2 (Construction of 230kV Seno-Saravan	
	Transmission Line Instead of Construction of 115 kV Pakbo-Saravan Transmission	
	Line in 2015) (Deficit in Power in S1 and S2 in 2015 Eliminated by Supplying via	
	the Transmission Line to SLACO)	
8.3.	6 Application of Case TB (2) to Case G2 (Construction of 230kV Seno-Saravan	
	Transmission Line Instead of Construction of 115 kV Pakbo-Saravan Transmission	
	Line in 2015) (Deficit in Power in S1 and S2 in 2015 Eliminated by Supplying via	
	the Interconnection from EGAT)	
Chapter	9 Power System Analysis of Central-South Transmission System Development . 9-1	
9.1	Conditions for Analysis	
9.2	Power Flow Control	
9.3	Power Supply to Taothan Area by 22kV Distribution Line from Saravan S/S	
9.4	Power Flow and Voltage Analysis in the Year 2015	
9.5	Power Flow and Voltage Analysis in the Year 2020	
9.6	Fault Current Calculation	
9.7	Stability Analysis	
Chapter	10 Candidates of Measures in South 1 Area and Prioritized Project 10-1	
10.1	Candidates of Measures in South 1 Area 10-1	
10.2	Power System in Target Area After 2020	
10.3	Comparison between Case TA and Case TB 10-5	
10.4	The Number of Circuits of the 115 kV Pakbo-Saravan Transmission Line and its	
	Conductors	
Chapter 11 Design Confirmation of the Facilities of the Highest Prioritized Project in		
	Central-South Area11-1	

11.1	Tran	smission Line Facilities	. 11-1
11.1	.1	Present Situation of Transmission Line Route of the Highest Prioritized Project .	11-1
11.1	.2	New Transmission Line Route	11-3
11.1	.3	Design of the Transmission Line Facilities	11-4
11.1	.4	Quantities of Transmission Line Materials	11-5
11.2	Subs	station Facilities	11-7
11.2	.1	Pakbo Substation	11-7
11.2	.2	Taothan Substation	11-7
11.2	.3	Saravan Substation	11-7
11.2	.4	Nongdeun Substation	11-7
11.3	Imp	lementation Schedule of the Highest Prioritized Project	.11-11
11.4	Cost	t of the Highest Prioritized Project	11-12
11.4	.1	Compensation for Lands and Right of Way (ROW), Costs for UXO Investigation	on and
		Clearance	11-12
11.4	.2	Construction Cost of Transmission Line Facilities	11-12
11.4	.3	Construction Cost of Substation Facilities	11-15
11.4	.4	Total Project Costs	11-21
11.4	.5	Disbursement Schedule of the Costs	11-22
Chapter	12	Economic Evaluation of the First Priority Project of the Central-South Syst	tem
			. 12-1
12.1	Ben	efit of First Priority Project	. 12-1
12.2	Eco	nomical and Financial Analyses of Highest Prioritized Project	12-2
Chapter	13	Recommendations	. 13-1
13.1	The	Transmission Line from Other Areas to Target Area in South Area	13-1
13.2	Inter	rconnections between Target Area and the Neighboring Country	. 13-1
13.3	Inter	rconnections between Laos and Neighboring Countries and Plan of Thermal	Power
	Stati	ion	. 13-2
13.4	Reco	ommendation of Power Demand Forecast	. 13-2

List of Table

Table 1-1	Regions of Power Network System of Laos 1-2			
Table 1-2	Main Tasks of Study 1-4			
Table 2-1	Electric Energy Forecast by EDL			
Table 2-2	Peak Load Forecast by EDL			
Table 2-3	Assumption of System Load Factor			
Table 2-4	Plan of 115 kV and 230 kV Transmission Lines from 2010 to 2020 (North) 2-11			
Table 2-5	Plan of 115 kV and 230 kV Transmission Lines from 2010 to 2020 (Central) 2-11			
Table 2-6	Plan of 115 kV and 230 kV Transmission Lines from 2010 to 2020 (South) 2-12			
Table 2-7	Plan of 500 kV Transmission Lines from 2010 to 2020 2-12			
Table 2-8	Plan of 500 kV Substations			
Table 4-1	Power Demand Forecast by EDL			
Table 4-2	Classification of Each Case			
Table 4-3	Detailed Supply-Demand Balance of the South 1 and 2 4-3			
Table 4-4	Demand Forecast of Mining Development in Southern Area			
Table 4-5	Planed Mining Development in Southern Area			
Table 4-6	Demand Forecast of Large Scale Developing Projects			
Table 4-7	Demand Forecast of Nongdeun S/S			
Table 4-8	Peak Power Demand of Each Substation in 2010			
Table 4-9	Power Demand Forecast of Each Substation			
Table 4-10	Power Demand Forecast of Each Substation (Continued)			
Table 5-1	Power Development Plan for Domestic by EDL			
Table 5-2	Power Development Plan by Domestic IPP			
Table 5-3	Power Development Plan for Domestic by Export IPP 5-4			
Table 5-4	Interconnection Capacities EDL Southern System and EGAT 5-5			
Table 6-1	Interconnection Capacities of Each Case			
Table 6-2	Peak Demands by Systems			
Table 6-3	Energy Consumptions by Systems			
Table 6-4	Benefits of 115kV Transmission Line			
Table 6-5	Benefits of 115kV Transmission Line(Import Export Expense Difference) 6-21			
Table 7-1	Surplus Power of Laos in Wet and Dry Seasons up to 2020			
Table 7-2	Balance between Power Supply Ability and Peak Power Demand in Target Area 7-3			
Table 7-3	Thermal Capacities of Interconnection Lines			
Table 8-1	Power Flow Limitation from Other Regions to Target Area			
Table 8-2	Power Flow Limitation from Other Regions to Target Area (Restriction by			
Transi	Transient Stability)			

Table 8-3	Regional Surplus Power of Case G1
Table 8-4	Regional Surplus Power of Case G2 Including SLACO
Table 8-5	Regional Surplus Power in Case G2 Excluding SLACO
Table 9-1	Voltage Range of Planning Criteria
Table 9-2	Maximum Fault Current
Table 9-3	Impedance of Transmission Lines in Target Area
Table 9-4	Study Conditions for Preliminary Study of 22kV Distribution Line
Table 9-5	Required Number of 22kV Distribution Line for Saravan-Taothan
Table 9-6	Transmission System Losses of Target Area in the Year 2015
Table 9-7	Transmission System Losses of Target Area in the Year 2020
Table 9-8	Results of Fault Current Calculation
Table 9-9	Power Flow Limitations Restricted by Transient Stability
Table 10-1	Conditions for Cost Comparison 10-6
Table 10-2	Cost Comparison of Both Cases 10-7
Table 11-1	Number and Total Weight of Towers 11-5
Table 11-2	Quantities of Conductor and Ground Wire 11-5
Table 11-3	Quantities of Insulators and Insulator Assemblies 11-6
Table 11-4	Quantities of Fittings of Conductor and Ground Wire 11-6
Table 11-5	Quantities of Tower Foundations 11-6
Table 11-6	Quantity of Major Equipment11-11
Table 11-7	Construction Cost of Transmission Line Facilities (1,000USD) 11-13
Table 11-8	Construction Cost of Transmission Line Facilities in MP study and Increased
Amour	nt in this Study (1,000USD) 11-13
Table 11-9	Breakdown of Construction Cost for Transmission Line Facilities 11-14
Table 11-10	Construction Cost of Substation Facilities (1,000USD) 11-15
Table 11-11	Construction Cost of Substation Facilities in MP Study and Increased Amount in
This St	tudy (1,000USD) 11-15
Table 11-12	Construction Cost of Pakbo Substation 11-16
Table 11-13	Construction Cost of Nongdeun Substation 11-17
Table 11-14	Construction Cost of Taothan Substation 11-18
Table 11-15	Construction Cost of Saravan Substation 11-20
Table 11-16	Total Project Costs (1,000USD) 11-21
Table 11-17	Disbursement Schedule (1,000USD) 11-23
Table 12-1	Total Cost and Economical Cost of the Project 12-3
Table 12-2	Calculated EIRR 12-4
Table 12-3	Calculated FIRR

List of Figure

Figure 2-1	Real GDP Growth Rate and Elasticity of Electric Energy per GDP in Laos 2-1
Figure 2-2	Power Development Project Status
Figure 2-3	Share of Power Plant Development by Investors
Figure 2-4	Power Development by Region
Figure 2-5	Firm Capacity by Region
Figure 2-6	Power System of Laos in 2010
Figure 2-7	Power System of Laos in 2015
Figure 2-8	Power System of Laos in 2020
Figure 3-1	Nongdeun S/S planned Construction Site
Figure 4-1	Peak Load
Figure 4-2	Supply-Demand Balance (Case G1)
Figure 4-3	Supply-Demand Balance (Case G2)
Figure 4-4	Supply-Demand Balance (Case G3)
Figure 4-5	Supply-Demand Balance (Case G4)
Figure 4-6	Savan Park
Figure 6-1	System Configuration of Supply/Demand Balancing Simulation
Figure 6-2	Daily Load Curves by Systems in 2015
Figure 6-3	Daily Load Curves by Systems in 2018
Figure 6-4	Daily Load Curves by Systems in 2020
Figure 6-5	Nam Ou1 Monthly Outputs (North System)
Figure 6-6	Xepon3 (Up) Monthly Outputs (South System)
Figure 6-7	Supply and Demand Balancing of the North & Central System (CaseG1 2015). 6-6
Figure 6-8	Supply and Demand Balancing of the South 1 System (CaseG1 2015)
Figure 6-9	Supply and Demand Balancing of the South 2 System (CaseG1 2015)
Figure 6-10	Supply and Demand Balancing of the North & Central System (Case G1 2020)
Figure 6-11	Supply and Demand Balancing of the South 1 System (CaseG1 2020)
Figure 6-12	Supply and Demand Balancing of the South 2 System (CaseG1 2020)
Figure 6-13	Electricity Energy Power Exchange of CaseG1 in 2020
Figure 6-14	Supply and Demand Balancing of the North & Central System (CaseG2 2015)
Figure 6-15	Supply and Demand Balancing of the South 1 System (CaseG2 2015)
Figure 6-16	Supply and Demand Balancing of the South 2 System (CaseG2 2015)
Figure 6-17	Daily Operation in the South 2 System (May 2015 CaseG2)
Figure 6-18	Supply and Demand Balancing of the North & Central System (CaseG2 2020)

Figure 6-19	Supply and Demand Balancing of the South 1 System (CaseG2 2020)
Figure 6-20	Supply and Demand Balancing of the South 2 System (CaseG2 2020)
Figure 6-21	Electricity Power Exchange of Case 2 in 2020
Figure 6-22	Supply and Demand Balancing of the North & Central System (CaseG3 2015)
Figure 6-23	Supply and Demand Balancing of the South 1 System (CaseG3 2015)
Figure 6-24	Supply and Demand Balancing of the South 2 System (CaseG3 2015)
Figure 6-25	Supply and Demand Balancing of the North & Central System (CaseG3 2020)
Figure 6-26	Supply and Demand Balancing of the South 1 System (CaseG3 2020)
Figure 6-27	Supply and Demand Balancing of the South 2 System (CaseG3 2020) 6-16
Figure 6-28	Daily Operation in the South 2 System (CaseG3 May 2020) 6-16
Figure 6-29	Electricity Energy Power Exchange of CaseG3 in 2020
Figure 6-30	Supply and Demand Balancing of the North & Central System (CaseG4 2015)
Figure 6-31	Supply and Demand Balancing of the South 1 System (CaseG4 2015) 6-18
Figure 6-32	Supply and Demand Balancing of the South 2 System (CaseG4 2015) 6-18
0	
Figure 6-33	Supply and Demand Balancing of the North & Central System (CaseG4 2020)
Figure 6-33	Supply and Demand Balancing of the North & Central System (CaseG4 2020)
Figure 6-33 Figure 6-34	Supply and Demand Balancing of the North & Central System (CaseG4 2020) 6-19 Supply and Demand Balancing of the South 1 System (CaseG4 2020)
Figure 6-33 Figure 6-34 Figure 6-35	Supply and Demand Balancing of the North & Central System (CaseG4 2020) Supply and Demand Balancing of the South 1 System (CaseG4 2020)
Figure 6-33 Figure 6-34 Figure 6-35 Figure 6-36	Supply and Demand Balancing of the North & Central System (CaseG4 2020) 6-19 Supply and Demand Balancing of the South 1 System (CaseG4 2020)
Figure 6-33 Figure 6-34 Figure 6-35 Figure 6-36 Figure 7-1	Supply and Demand Balancing of the North & Central System (CaseG4 2020) 6-19 Supply and Demand Balancing of the South 1 System (CaseG4 2020)
Figure 6-33 Figure 6-34 Figure 6-35 Figure 6-36 Figure 7-1 Figure 7-2	Supply and Demand Balancing of the North & Central System (CaseG4 2020) 6-19 Supply and Demand Balancing of the South 1 System (CaseG4 2020)
Figure 6-33 Figure 6-34 Figure 6-35 Figure 6-36 Figure 7-1 Figure 7-2 2010	Supply and Demand Balancing of the South 2 System (CaseG 1200) Supply and Demand Balancing of the South 1 System (CaseG 2020) Supply and Demand Balancing of the South 1 System (CaseG 2020) Supply and Demand Balancing of the South 2 System (CaseG 2020) Supply and Demand Balancing of the South 2 System (CaseG 2020) Supply and Demand Balancing of the South 2 System (CaseG 2020) Supply and Demand Balancing of the South 2 System (CaseG 2020) Supply and Demand Balancing of the South 2 System (CaseG 2020) Supply and Demand Balancing of the South 2 System (CaseG 2020) Supply and Demand Balancing of the South 2 System (CaseG 2020) Supply and Demand Balancing of the South 2 System (CaseG 2020) Supply and Demand Balancing of the South 2 System (CaseG 2020) Supply and Demand Balancing of the South 2 System (CaseG 2020) Supply and Demand Balancing of the South 2 System (CaseG 2020) Supply and Demand Balancing of CaseG 2020 Power System in Target Area 7-2 Amount of Power Demand of Substations and Large Power Consumers of Laos in 7-5
Figure 6-33 Figure 6-34 Figure 6-35 Figure 6-36 Figure 7-1 Figure 7-2 2010 Figure 7-3	Supply and Demand Balancing of the North & Central System (CaseG4 2020) 6-19 Supply and Demand Balancing of the South 1 System (CaseG4 2020)
Figure 6-33 Figure 6-34 Figure 6-35 Figure 6-36 Figure 7-1 Figure 7-2 2010 Figure 7-3 2020	Supply and Demand Balancing of the South 2 System (CaseG + 2020) 6-19 Supply and Demand Balancing of the South 1 System (CaseG + 2020) 6-19 Supply and Demand Balancing of the South 1 System (CaseG + 2020) 6-19 Supply and Demand Balancing of the South 2 System (CaseG + 2020) 6-20 Electricity Energy Power Exchange of CaseG + in 2020 Power System in Target Area 7-2 Amount of Power Demand of Substations and Large Power Consumers of Laos in 7-5 Amount of Power Demand of Substations and Large Power Consumers of Laos in 7-6
Figure 6-33 Figure 6-34 Figure 6-35 Figure 6-36 Figure 7-1 Figure 7-2 2010 Figure 7-3 2020 Figure 8-1	Supply and Demand Balancing of the South 2 System (CaseG + 2020) 6-19 Supply and Demand Balancing of the South 1 System (CaseG + 2020) 6-19 Supply and Demand Balancing of the South 1 System (CaseG + 2020) 6-19 Supply and Demand Balancing of the South 2 System (CaseG + 2020) 6-20 Electricity Energy Power Exchange of CaseG + in 2020 Power System in Target Area 7-2 Amount of Power Demand of Substations and Large Power Consumers of Laos in 7-5 Amount of Power Demand of Substations and Large Power Consumers of Laos in 7-6 Location of Power Stations and Large Power Consumers 8-1
Figure 6-33 Figure 6-34 Figure 6-35 Figure 6-36 Figure 7-1 Figure 7-2 2010 Figure 7-3 2020 Figure 8-1 Figure 8-2	Supply and Demand Balancing of the North & Central System (CaseG4 2020) 6-19 Supply and Demand Balancing of the South 1 System (CaseG4 2020) 6-19 Supply and Demand Balancing of the South 1 System (CaseG4 2020) 6-19 Supply and Demand Balancing of the South 2 System (CaseG4 2020) 6-20 Electricity Energy Power Exchange of CaseG4 in 2020 Power System in Target Area 7-2 Amount of Power Demand of Substations and Large Power Consumers of Laos in 7-5 Amount of Power Demand of Substations and Large Power Consumers of Laos in 7-6 Location of Power Stations and Large Power Consumers 8-1 Transmission Lines in Case TA corresponding to Case G1
Figure 6-33 Figure 6-34 Figure 6-35 Figure 6-36 Figure 7-1 Figure 7-2 2010 Figure 7-3 2020 Figure 8-1 Figure 8-2 Figure 8-3	Supply and Demand Balancing of the South 2 System (CaseG 2020) 6-19 Supply and Demand Balancing of the South 1 System (CaseG4 2020) 6-19 Supply and Demand Balancing of the South 1 System (CaseG4 2020) 6-20 Electricity Energy Power Exchange of CaseG4 in 2020 6-20 Power System in Target Area 7-2 Amount of Power Demand of Substations and Large Power Consumers of Laos in 7-5 Amount of Power Demand of Substations and Large Power Consumers of Laos in 7-6 Location of Power Stations and Large Power Consumers 8-1 Transmission Lines in Case TB corresponding to Case G1 8-3 Transmission Lines in Case TB corresponding to Case G1
Figure 6-33 Figure 6-34 Figure 6-35 Figure 6-36 Figure 7-1 Figure 7-2 2010 Figure 7-3 2020 Figure 8-1 Figure 8-2 Figure 8-3 Figure 8-4	Supply and Demand Balancing of the North & Central System (CaseG4 2020) 6-19 Supply and Demand Balancing of the South 1 System (CaseG4 2020) 6-19 Supply and Demand Balancing of the South 1 System (CaseG4 2020) 6-19 Supply and Demand Balancing of the South 2 System (CaseG4 2020) 6-20 Electricity Energy Power Exchange of CaseG4 in 2020 Power System in Target Area 7-2 Amount of Power Demand of Substations and Large Power Consumers of Laos in 7-5 Amount of Power Demand of Substations and Large Power Consumers of Laos in 7-6 Location of Power Stations and Large Power Consumers 8-1 Transmission Lines in Case TA corresponding to Case G1 8-3 Transmission Lines in Case TA (1) corresponding to Case G2
Figure 6-33 Figure 6-34 Figure 6-35 Figure 6-36 Figure 7-1 Figure 7-2 2010 Figure 7-3 2020 Figure 8-1 Figure 8-1 Figure 8-3 Figure 8-4 Figure 8-5	Supply and Demand Balancing of the South 2 System (CaseG 2020)6-19Supply and Demand Balancing of the South 1 System (CaseG 2020)6-19Supply and Demand Balancing of the South 2 System (CaseG 2020)6-20Electricity Energy Power Exchange of CaseG 4 in 2020Power System in Target Area7-2Amount of Power Demand of Substations and Large Power Consumers of Laos in7-5Amount of Power Demand of Substations and Large Power Consumers of Laos in7-6Location of Power Stations and Large Power Consumers8-1Transmission Lines in Case TA corresponding to Case G18-3Transmission Lines in Case TA (1) corresponding to Case G28-6
Figure 6-33 Figure 6-34 Figure 6-35 Figure 6-36 Figure 7-1 Figure 7-2 2010 Figure 7-3 2020 Figure 8-1 Figure 8-1 Figure 8-2 Figure 8-3 Figure 8-4 Figure 8-5 Figure 8-6	Supply and Demand Balancing of the North & Central System (CaseG4 2020) 6-19 Supply and Demand Balancing of the South 1 System (CaseG4 2020) 6-19 Supply and Demand Balancing of the South 2 System (CaseG4 2020) 6-20 Electricity Energy Power Exchange of CaseG4 in 2020 6-20 Power System in Target Area 7-2 Amount of Power Demand of Substations and Large Power Consumers of Laos in 7-5 Amount of Power Demand of Substations and Large Power Consumers of Laos in 7-6 Location of Power Stations and Large Power Consumers 8-1 Transmission Lines in Case TA corresponding to Case G1 8-3 Transmission Lines in Case TA (1) corresponding to Case G2 8-5 Transmission Lines in Case TA (2) corresponding to Case G2 8-6 Transmission Lines in Case TB (1) corresponding to Case G2 8-7
Figure 6-33 Figure 6-34 Figure 6-35 Figure 6-36 Figure 7-1 Figure 7-2 2010 Figure 7-3 2020 Figure 8-1 Figure 8-1 Figure 8-2 Figure 8-3 Figure 8-3 Figure 8-4 Figure 8-5 Figure 8-6 Figure 8-7	Supply and Demand Balancing of the South 2 System (CaseG1 2020) 6-19 Supply and Demand Balancing of the South 1 System (CaseG4 2020) 6-19 Supply and Demand Balancing of the South 2 System (CaseG4 2020) 6-20 Electricity Energy Power Exchange of CaseG4 in 2020 6-20 Power System in Target Area 7-2 Amount of Power Demand of Substations and Large Power Consumers of Laos in 7-5 Amount of Power Demand of Substations and Large Power Consumers of Laos in 7-6 Location of Power Stations and Large Power Consumers 8-1 Transmission Lines in Case TA corresponding to Case G1 8-3 Transmission Lines in Case TA (1) corresponding to Case G2 8-6 Transmission Lines in Case TB (2) corresponding to Case G2 8-7 Transmission Lines in Case TB (2) corresponding to Case G2 8-7

Figure 9-2	Power Flow Map in Dry Season in the Year 2015 – Case TA
Figure 9-3	Power Flow Map in Dry Season in the Year 2015 – Case TB
Figure 9-4	Simplified Power Flow Map in Dry Season in the Year 2020
Figure 9-5	Power Flow Map in Dry Season in the Year 2020 – Case TA
Figure 9-6	Power Flow Map in Dry Season in the Year 2020 – Case TB
Figure 9-7	Model for Stability Analysis
Figure 9-8	System Model of 230 kV 2 Circuits and 115 kV 2 Circuits with 250 MW Power
Transm	ission
Figure 9-9	Power Swing Curves in the System of 230 kV 2 Circuits and 115 kV 2 Circuits -
Single (Circuit Fault on 230 kV Line (250 MW)
Figure 9-10	Power Swing Curves in the System of 230 kV 2 Circuits and 115 kV 2 Circuits -
Single (Circuit Fault on 230 kV (400 MW at left side/450 MW at right side)
Figure 10-1	Power System of Target Area in Case TA (2015) 10-1
Figure 10-2	Power System of Target Area in Case TA (2020) 10-2
Figure 10-3	Power System of Target Area in Case TB (2015) 10-3
Figure 10-4	Power System of Target Area in Case TB (2020) 10-4
Figure 10-5	Power System of Target Area in Case TA and TB (after 2020) 10-5
Figure 10-6	Project of 115 kV Pakbo-Saravan 2 Circuits
Figure 11-1	Incoming Tower Location of Pakbo Substation 11-1
Figure 11-2	Present Situation in the SEZ
Figure 11-3	Existing 115kV Present Situation around Planned Nongdeun Substation Site (left:
Pakbo s	ide, right: Kengkok side) 11-2
Figure 11-4	Transmission Line Rerouting near Nongdeun Substation 11-4
Figure 11-5	Sign Board in the Planned Construction Site of Taothan S/S by EDL 11-7
Figure 11-6	Nongdeun Substation, 115kV Switchyard Layout Plan 11-8
Figure 11-7	Assumed Implementation Schedule
Figure 11-8	Drawing No. SS_NON_01: Nongdeun Substation – Single Line Diagram 11-24
Figure 11-9	Drawing No. SS_NON_02: Nongdeun Substation – Layout 11-25
Figure 11-10	Drawing No. SS_NON_03: Nongdeun Substation – Section 11-26

Abbreviations

А	Ampere
ACSR	Aluminum Conductor Steel Reinforced
ADB	Asian Development Bank
CA	Concession Agreement
cct	Circuit
CIF	Cost, Insurance and Freight
COD	Commercial Operation Date
CSG	China Southern Power Grid Co.
DC	Direct Current
DOE	Department of Electricity in MEM
EDL	Electricité du Laos
EGAT	Electricity Generating Authority of Thailand
EIRR	Economic Internal Rate of Return
EPZ	Economic Private Zone
FS	Feasibility Study
FC	Foreign Currency
FIRR	Financial Internal Rate of Return
FY	Fiscal Year
GDP	Gross Domestic Product
GMS	Greater Mekong Sub-Region
GW	Giga Watt
GWh	Giga Watt hour
HVDC	High Voltage Direct Current
Hz	Hertz
IEC	International Electrotechnical Commission
IPP	Independent Power Producer
IRR	Internal Rate of Return
ЛСА	Japan International Cooperation Agency
JPY	Japanese Yen
kA	Kilo- Ampere
kV	Kilo-Volt
Lao PDR	Lao People's Democratic Republic
LC	Local Currency
LDC	Load Dispatching Center

Abbreviations

LDC	Least Developed Country
LEPTS	Lao Electric Power Technical Standards
MEM	Ministry of Energy and Mines (Lao PDR)
MOM	Minutes of Meeting
MOU	Minutes of Understanding
MV	Medium Voltage
MW	Mega Watt
MWh	Mega Watt hour
NPV	Net Present Value
O&M	Operation & Maintenance
ODAF	Oil Directed Air Forced
ONAF	Oil Natural Air Forced
OPGW	Optical fiber Ground-wire
PDA	Project Development Agreement
PDEM	Provincial Department of Energy and Mines
PDP	Power Development Plan
pF	Pico Farad
PLC	Power Line Carrier
PPA	Power Purchase Agreement
PSS	Power System Stabilizer
PSS/E	Power System Simulation/Engineering
ROW	Right Of Way
S/W	Scope of Work
SLACO	Sino Lao Aluminum Company
SEZ	Special Economic Zone
S/S	Substation
TL	Transmission Line
TR	Transformer
UHV	Ultra High Voltage
UNOSAP	United Nations Operational Satellite Applications Programme
USD	United States Dollar
UXO	Unexploded Ordnance
WB	World Bank

Chapter 1 Policy of the Study

1.1 Objectives and Targets of the Study

(1) Objectives of the Study

The objectives of the study is to prepare a report for the formation of a future yen loan-financed project by reviewing the latest PDP2010-2020(draft) of Lao PDR, developing some power development scenarios through discussions with the Laos side and analyzing the electric power system in Lao PDR. Specifically, the Study Team will conduct the following activities.

- To conduct a power system analysis of the interconnection link between the central and southern systems and the local system of the southern area for the period of PDP2010-2020
- To develop a basic design for the transmission lines / substations projects in the interconnection link between the central and southern systems and the local system of the southern area

(2) Outputs of the Study

The outputs of the Study are as follows:

- To collect information on power supply-demand (development in mining and industrial parks, growth of commercial demand, progress of power development plan, etc.)
- To develop four realistic power development scenarios by analyzing information that can presently be obtained for the period of PDP2010-2020
- Based on the aforementioned scenarios, the power system analysis of the interconnection link between the central and southern systems and the local system in the southern area will be mainly carried out, and will bring to light the problems concerning system development
- To propose measures concerning problems of the aforementioned issues and create a concrete system development plan

(3) Study Area

The Study covered the entire area of the Lao PDR territory. (Especially the interconnection link between the central and southern systems and the local system of the southern area. Concerning power supply-demand information, the information on the local system of the northern and central areas was also collected.)

The counterpart divided the system into three regions, North, Central and South, however, we

divided the South system into two regions, South 1 and South 2 to distinguish the location at the sending point and at the receiving point of the interconnection targeted in this study.

Area	Provinces	
North (N)	Phongsaly, Bokeo, Luang Namtha, Oudomxai, Huaphanh Xiengkhuang, Luang Prabang, Sayaboury	
Central (C)	Vientiane Province, Vientiane Capital, Bolikhamxai	
South 1 (S1)	Khammouan, Savannakhet	
South 2 (S2)	Champasak, Saravan, Xekong, Attapeu	

Table 1-1 Regions of Power Network System of Laos

(4) Implementing Agencies of Lao PDR

*	Supervisor Government Office:	Department of Energy (DOE)
		Ministry of Energy and Mines (MEM)
*	Implementing Agency:	Electricité du Laos (EDL)

(5) Contents of the Study

In order to accomplish the aforementioned objective, the Study Team set up four stages shown in Table 1-2 that were conducted as follows:

In STAGE-1, an inception report was created through domestic preparation work with the following tasks being carried out in the first field survey.

- Explanation and discussion of the inception report
- Collection and review of necessary information and data

In STAGE-2 (the first field survey), PDP2010-2020(draft) in the process of creation was reviewed in collaboration with the counterparts. At this stage, the power development project, which was proposed by the "THE STUDY ON THE POWER NETWORK SYSTEM PLAN IN LAO PDR (2010.1)", was reviewed in collaboration with the counterparts, because this is one of the candidate yen loan-financed projects. Moreover, the role and adequacy of the voltage class criteria such as the 500kV, 230kV and 115kV was discussed using the results of the demand forecast and the power system analysis, because it deems standardization as important with respect to the efficient planning of the future power system in Lao PDR.

At STAGE-3, based on the results of the first field survey, the following analyses were carried out.

- Development of some power development scenarios
- Implementation of the system analysis based on power development scenarios

- Specification of the problem for power system operations, and an examination of countermeasures
- Preparation and submission of a draft final report

At this stage, it strived to arrive at a decision of realistic power development scenarios. This is based on a realistic power demand forecast in consideration of the increase of power demand by the southern part mining development which will hit its stride from around 2015, and the special economic zone (SEZ) development in the Savannakhet prefecture, etc. Furthermore, the procedures required for commercialization, such as the feasibility study and a financial analysis was also confirmed.

The following STAGE-4 Finalization tasks were carried out in the second field survey.

- Specification of the problem for power system operations, and countermeasure proposals
- Preparation, explanation and discussion of the final report

STAGE	Main Tasks of Study								
	a) Collection and review of necessary information and data 【Domestic preparation								
STAGE-1	work and first field survey]								
Collection of information	b) Explanation and discussion of inception report 【Domestic preparation work and								
	first field survey]								
	a) Review of power demand forecast [First field survey]								
STAGE-2	b) Review of power development plan [First field survey]								
Review of	c) Review of power system development plan [First field survey]								
PDP2010-2020	d) Review of power system analysis [First field survey]								
	e) Discussion with organizations concerned [First field survey]								
	a) Developing power development scenarios \ensuremath{I} First field survey and first domestic								
	work]								
	b) Implementation of the power system analysis based on power development								
STAGE-3	scenarios								
Power system analysis	[First field survey and first domestic work]								
-	c) Specification of the problem for power system operations, and examination of								
	countermeasures [First domestic work]								
	d) Preparation and submission of draft final report [First domestic work]								
	a) Specification of the problems for power system operations, and proposal of								
STAGE-4	countermeasures [Second field survey]								
Finalization	b) Preparation, explanation and discussion of the final report								
	[Second field survey and second domestic survey]								

Table 1-2 Main Tasks of Study

Chapter 2 Review of PDP2010-2020

2.1 Demand forecast

EDL's power demand forecast is in the power development plan and it has been recognized by the government. However, there is no participation of an economic related government agency which assumes GDP at the power demand forecast stage. Moreover, large scale development projects, which are considered for other infrastructure such as a road and water services, are directly requested to EDL minus undergoing a comprehensive government examination. Since energy supply to large scale development projects which should be due to a national comprehensive development plan that exceeds the system scale of the present whole EDL is performed only by EDL, there is the serious problem concerning the decision for the power development plan.

(1) Elasticity of Energy Demand per GDP

In the power demand forecast by EDL, the growth rate of the electric energy is 22.6% from 2010 to 2020 in the whole country. The demand of the large scale aluminum refining plants (SLACO) planned by the southern part is woven into this demand.

Figure 2-1 shows the real GDP growth rate and the elasticity of electric energy per GDP from 2007 to 2012. The real GDP was 8.4% in 2010 and the elasticity of electric energy per GDP was 2.38 in 2010. (The elasticity of electric energy per the GDP of Thailand was 1.36 in 2010.) The elasticity of electric energy per the GDP shows the efficiency which contributes to the GDP of electric power demand, and it can be estimated that the efficiency is high if it is low. The elasticity of electric energy per the GDP is improvable by introducing efficient apparatus. Generally the elasticity of electric energy per the GDP of developing countries can be made low based on the experience of developed countries. Especially in Laos, it seems that the application of efficient apparatus to the mining contributes to efficiency improvements.

Figure 2-1 Real GDP Growth Rate and Elasticity of Electric Energy per GDP in Laos

(2) Assumption of Electric Energy

The electric energy in 2015 and afterwards is pushed up by the demand of the mines and metal refining plants which plan to start operations from around 2015. Although the situation of the mining development project varies with the conditions of a development subject or a mine, under present circumstances, many projects are under investigation. Especially large scale mining development is SLACO in the southern part 2 area. According to the information from DOE and EDL, SLACO is planning to start operations from 2015. The demand of SLACO is the assumption which occupies 30 percent of the national demand with electric energy in 2020, and the annual average growth of electric energy is pushed up 18% by SLACO.

The electric power demand of SLACO assumes 900 MW and 6701.4 GWh. However, according to the information from DOE and EDL, it seems that the plan of SLACO is under investigation and there is a big deviation between the setting power rates by SLACO and the power rates which can be supplied. Although it asked for an offer of the information concerning plants and equipment of SLACO from the Laos side, only the minutes in which the information on application electric power (900 MW) and electric energy (8,500 GWh) were indicated was provided. It was corrected to 85% of the load factor although there is a deviation between the electric energy at the time of the application and the electric energy which EDL presently assumes.

				(Unit: GWh)
Areas	2010	2015	2020	Annual growth rate
Northern	284.0	2,828.0	2,056.8	21.9%
Central	1,634.8	4,909.5	7,060.4	15.8%
Southern1	786.7	1,814.4	3,417.4	15.8%
Southern2	261.2	2916.6	10,144.4	44.2%
Southern2 (without SLACO)	224.9	1823.6	2,396.8	26.7%
Total	2,966.8	1,2468.5	22,679.0	22.6%
Total (without SLACO)	2,930.4	1,1375.5	14,931.4	17.7%

Table 2-1 Electric Energy Forecast by EDL

(Source: Data for preparing PDP 2010-2020 provided by EDL, June 2011)

(3) Assumption of Peak Load

In EDL's power demand forecast, the growth of the peak load from 2010 to 2020 is 19.6% of the whole country. SLACO gives a large impact on the peak demand since it occupies 26 % of the whole demand. In the South 2 area, 2/3 is SLACO demand.

In the northern area, it is assumed that the load will peak in 2015 and will decrease in 2020. This is because the electric power for construction required for hydraulic power development is accumulated on the transformer capacity basis, and the non-isochrones of electric power demand is not taken into consideration. Since the detailed analysis of actual electric power at the time of hydraulic power station construction is not conducted, the slightly higher demand for the construction will be taken into account. Moreover, in the present electric power development plan, many projects will start commercial operations in 2015 and afterwards, and for this reason, much electric power demand for construction is assumed in about 2015. It is thought that this is the average progress of future Electric Power Development. If it is not concentrated over a short period of time, the influence decreases according to the growth of peak load. However, training the EDL staff is required regarding the assumption method in consideration of the non-isochrones of electric power demand.

				(Unit: MW)
Areas	2010	2015	2020	Annual growth rate
Northern	47.0	479.6	336.0	17.7%
Central	318.0	869.2	1,273.9	14.8%
Southern1	136.8	363.8	558.2	15.5%
Southern2	56.3	415.8	1,298.7	36.1%
Southern2 (without SLACO)	56.3	315.8	398.7	21.0%
Total	558.1	2,128.4	3,466.8	19.6%
Total (without SLACO)	558.1	2,028.40	2,566.8	16.1%

Table 2-2 Peak Load Forecast by EDL

(Source: Data for preparing PDP 2010-2020 provided by EDL, June 2011)

(4) Assumption of System Load Factor

It has a tendency to improve the system load factor as the development of mining and industry progresses. It is assumed that it will be 74% in 2020. Also in Thailand, the system load factor is 75%. Thus the system load factor of Laos was normal in 2010.

In the South 2 area, the system load factor will be nearly 90% by operation of SLACO in 2020. This means that the peak load has always arisen in the southern part 2 area. It is necessary

to nearly maximize the supply of electric power all day and night also during the dry season, and much investment is needed for the measure against the system reliability fall via the forced outage of SLACO and the shortage of power in the dry season.

	Assump	lion of Sys		
Areas		2010	2015	2020
Northern		49.2%	67.3%	69.9%
Central		58.0%	63.4%	63.2%
Southern1		65.6%	68.2%	67.4%
Southern2		50.2%	80.1%	89.2%
Southern2 (without S	SLACO)	43.3%	65.9%	68.6%
Total		58.0%	68.3%	74.2%
Total (without SLA	(CO)	57.3%	65.5%	65.9%

Table 2.2	Accumption	of System	Lood Easter
Table 2-5	Assumption	or system	LUAU FACIOI

(Source: Data for preparing PDP 2010-2020 provided by EDL, June 2011)

2.2 Power Development Plan

The draft PDP2010-2020 reflects and assumes the industrial promotion policy of the GOL, rapid demand growth in the southern region, reinforcement of the transmission system to supply demand in the southern region and facilitating domestic hydropower IPP project developments. A number of power plants are increased in the draft PDP2010-2020 by utilizing the IPP scheme compared to the last PDP2007-2016.

According to the draft PDP2010-2020, 19% of the power plants exist at present, 21% of the same are under construction and the majority are under plans among the power plants assumed in the year 2015 in the draft. This is to ensure that the power supply largely depends on the progress of the power plant developments under construction and planned.

(Source: EDL Power Development Plan June 2011)

The following investments are assumed: direct investment by EDL is 17%, the investment by others is 71%, 12% of the investment is provided by the domestic portion of the IPP projects for power exports. The developments of EDL undergo a relative decrease. Though there is the advantage that EDL can avoid initial investment, EDL cannot control the progress of development easily. IPP plants are operated according to the PPA, it tends to become an operation of the constant output. In that case, the system operation will become difficult if an article to secure ancillary service is not included in the PPA.

Figure 2-3 Share of Power Plant Development by Investors

The total amount of the power development in 2020 is 6,471MW which is larger than 3,488.4MW of the peak demand forecast including SLACO of 900MW. The firm power supply in consideration of the dry season outputs is 3,317MW which is less than the peak demand forecast, since almost all power supplies are hydropower plants.

The installed capacity by region and the firm capacity by region (dry season) are shown in Figure 2-4 and Figure 2-5. The plan assumes a large amount of power development in the northern region, and a small amount of power development in the South 1 region due to a lack of hydropower development potential sites. The Hongsa thermal power plant (100MW) is planned for the northern region, and M Kaleum thermal power plant (300MWx2) is planned for the South 2 region. Thus far, there is no thermal power plant development plan in the other regions. The share of the thermal power capacity will be 11% in 2020.

There are a lot of hydropower development plans with a capacity factor over 60%. The power outputs of these plants can be improved by optimizing reservoir operations. A review of the plan should be necessary to avoid spilled water due to lack of space for absorbing output control.

Figure 2-4 Power Development by Region

2.3 Power System Development Plan

Figure 2-6 shows the current power network system of Laos (PDP 2010-2020 Draft, Aug 2010). Figure 2-7 and Figure 2-8 show the power network system of 2015 and 2020 respectively. The construction of the transmission line from Thakhek to Pakbo was completed at the beginning of 2011 and from Pakxan to Thakhek in June 2011. While the transmission line project from Hinheup to Naxaythong is currently under construction as the first 230kV system in Laos, its construction work for transmission lines has been completed. Although the 230kV transmission line from Saravan to Seno was proposed in the JICA Study of Power Network System Plan in 2010 as the plan to be completed by 2030, it is under plans to be completed in 2015 in the latest PDP Draft. The plan of the 115 kV transmission line from Pakbo to Saravan

that was proposed as the highest prioritized project in the JICA Study of Power System Network Plan was changed in the construction interval to Kengkok-Saravan. However, as explained later, DOE, EDL and JICA agreed to set out the interval as from Pakbo to Saravan in this study.

The construction of 115kV Pakbo-Saravan Transmission line was recommended to be urgently needed to contribute the reduction of imported power by utilizing the surplus power in the south (currently in the South 2) via the interconnection between the south and the central (currently South 1) in line with Power Sector Policy Statement of Lao PDR. (Stable and continuous domestic power supply at a reasonable price will be maintained and expanded to promote economic and social development.)

Table 2-4 to Table 2-8 show the transmission line and 500kV substation plans from 2010 to 2020.

The 115 kV substations plan is described in Table 4-9 and Table 4-10.

Figure 2-6 Power System of Laos in 2010

Figure 2-7 Power System of Laos in 2015

Figure 2-8 Power System of Laos in 2020

No	From	То	Voltage	No. of	Conductor	Length	Circuit	Vear	Owner	Loan	etatue	Area
INU	11011	10	voltage	Circuits	Conductor	(km)	Length (km)	Tear	Owner	LUan	Status	Alea
1	Nam Nhon	Houayxay	22	1	1X95	32	32	2008-2010	IPP(d)	GMS	Constuction	Northern
2	Nam Ngum 5	Phonsavan	115	1	1X240	67	67	2008-2011	EDL	Exim bank China	Constuction	Northern
3	Nam Ngum 5	Vangvieng	115	2	1X450	75	150	2008-2011	EDL	Exim bank China	Constuction	Northern
4	Nam Tha 3	Luangnamtha 1	22	1	1x150	5	5	2009-2011	EDL	Lao Company	Discussion	Northern
5	M. Kham	Xam Nuea 1	115	1	1x240	120	120	2009-2012	EDL	Exim Bank China	Constuction	Northern
6	Phonsavan	M. Kham	115	1	1x240	56	56	2009-2012	EDL	Exim Bank China	Constuction	Northern
7	Luangprabang 1	Pakmong	115	1	1x240	77	77	2009-2012	EDL	Exim Bank Malaysia	Constuction	Northern
8	Pakmong	Oudomxai	115	1	1x240	52	52	2009-2012	EDL	Exim Bank Malaysia	Constuction	Northern
9	Oudomxai	Na Mo	115	1	1x240	41	41	2009-2012	EDL	Exim Bank Malaysia	Constuction	Northern
10	Sansouk	Pakmong	115	1	2x240	1.7	1.7	2009-2012	EDL	Kungthai Bank	Planned	Northern
11	Nam Long	Luangnamtha 2	22	1	1X95	44	44	2009-2012	IPP(d)	Lao Company	Constuction	Northern
12	Paklay	Tha Li	115	2 (1c)	1x240	86	172	2009-2013	EDL	ADB	Loan	Northern
13	Paklay	Sayaboury	115	2 (1c)	1x240	134	268	2009-2013	EDL	ADB	Loan	Northern
14	Paklay	Non Hai	115	2 (1c)	1x240	104	208	2009-2013	EDL	ADB	Loan	Northern
15	Na Mo	Boun Neua	115	2 (1c)	1x240	102	204	2009-2013	EDL	ADB	Loan	Northern
16	M. Houn	Oudomxai	115	1	1x240	83	83	2010-2013	EDL	-	Planned	Northern
17	Nam Ham 2	Paklay	22	1	1X150	50	50	2010-2013	EDL	Cobri / PEA	Planned	Northern
18	Nam Sim	Xam Nuea 1	22	1	1X150	50	50	2010-2013	IPP(d)	NURAD	status	Northern
19	Luangprabang 1	Luangprabang 2	115	1	1x240	15	15	2009-2014	EDL	-	Planned	Northern
20	Luangprabang 1	Luangprabang 2	115	1	1x240	15	15	2009-2014	EDL	-	Planned	Northern
21	Hinheup	Luangprabang 2	230	2	1x630	210	420	2009-2014	EDL	Exim Bank China	Constuction	Northern
22	Nam Khan 2	Luangprabang 2	115	2	1x450	36	72	2011-2014	EDL	Exim bank China	Constuction	Northern
23	Nam tha 1	Nam Thoung	115	2	1X300	42	84	2009-2014	EDL	CSG	Planned	Northern
24	Nam Thoung	Houayxay	115	2	1x450	40	80	2009-2014	EDL	EDL	Planned	Northern
25	Nam Boun 2	Boun Neua	22	2	1X150	45	90	2011-2014	EDL	-	Planned	Northern
26	Viengphouka Lignite	Luangnamtha 2	230	2	1X630	9	17	2011-2014	EDL	-	Planned	Northern
27	Houayxay	Xieng Khong	115	1	1x185	16	16	2010-2014	EDL	-	Planned	Northern
28	Luangnamtha 2	M. Houn	230	2	2x630	96	192	2010-2014	EDL	-	Planned	Northern
29	Thavieng	Tha Bok	230	2	4x630	120	240	2010-2014	EDL	-	Planned	Northern
30	I on phueng	Houayxay	115	2	1X240	62	124	2010-2014	EDL	PEA & EDL	Planned	Northern
31	M. Houn	Luangprabang 2	230	2	2x630	80	160	2010-2014	EDL	-	Planned	Northern
32	Nam Nglew	Inavieng	115	1	1X150	14	14	2011-2014	IPP(d)	01111	MOU EDL Share Holder	Northern
33	Nam Beng	M. Houn	115	1	1X240	35	35	2011-2014	IPP(d)	China	Planned	Northern
34	Nam Pol	Thavieng	115		1X150	10	10	2011-2014	IPP(0)	Lao Company	Planned	Northern
30	Nam Ken	Nam Sana	22		1X150	10	10	2011-2014	IPP(d)	- Deneu	Planned	Northern
30	Hongsa Lignite	Luangprabang 2	115	2	1x240	105	210	2010-2014		Banpu	Planned	Northern
20		Nam moung	115	1	1x240	42	102	2009-2015	EDL	Kuwate	Loan	Northern
30	No Mo	Roup Nous	115	1	1x240	43	43	2009-2015	EDL	Kuwale	Diapped	Northern
39	Nam Chion	Theyiong	110	2	1X240	90	30	2014-2015	EDL	-	Planned	Northern
40	Nom Dhok	No Mo	115	1	1X240	30	70	2012-2015	EDL	-	Planned	Northern
41		Nom Noum 4	220	2	1/240	29	29	2012-2015		-	Planned	Northern
42	Nam Noum 4	Thavieng	230	2	4x030	90	112	2012-2015	EDL	-	Planned	Northern
40	Nam Ou 6	Boun Neua	115	2	18240	45	90	2012-2015	IPP(d)		Planned	Northern
44	Nam Ngein 2	Thavieng	230	2	1X630	19	30	2012-2015	IPP(d)		Planned	Northern
46	Nam Pha	Luangnamtha 2	115	2	18410	50	100	2012 2015			Planned	Northern
40	Nam Khan 3	Nam Khan 2	115	2	1x150	45	90	2012-2016	EDI	Exim bank China	Planned	Northern
48	Nam Xam1	Xam Nuea 1	115	1	1x240	24	24	2013-2016	IPP(e)	-	Planned	Northern
49	Luangprabang 2	Savabouly	115	1	1X240	76	76	2014-2017	FDI	-	Planned	Northern
50	Mekong Luangprabang	Sensouk	115	2	1X410	16	32	2014-2017	IPP(e)	-	Planned	Northern
51	Mekong Savaboury	Savabouly	115	2	1X240	21	42	2014-2017	IPP(e)	-	Planned	Northern
52	Nam San 3 (Down)	Thavieng	115	1	1X240	16	16	2015-2018	IPP(d)	-	Planned	Northern
53	Mekong Pakbeng	M. Houn	115	2	1x410	43	86	2015-2019	IPP(e)	-	Planned	Northern
54	Nam Ou 6	Nam Ou 5	230	2	2x630	65	130	2010-2016	IPP(d)	China	Planned	Northern
55	Nam Ou 5	Nam Ou 2	230	2	4x630	198	396	2010-2016	IPP(d)	China	Planned	Northern
56	Nam Ou 2	Luangprabang 2	230	2	4x630	120	240	2012-2016	IPP(d)	China	Planned	Northern
57	Nam Ou 6	Nam Ou 7	230	2	1x630	55	110	2012-2018	IPP(d)	China	Planned	Northern
1		4							/			

Table 2-4Plan of 115 kV and 230 kV Transmission Lines from 2010 to 2020
(North)

Table 2-5Plan of 115 kV and 230 kV Transmission Lines from 2010 to 2020(Central)

No	From	То	Voltage	No. of	Conductor	Length	Circuit	Vear	Owner	Loan	etatue	Area
140	11011	10	voltage	Circuits	Conductor	(km)	Length (km)	rear	Owner	Eban	36663	Alca
1	Pakxan	Thakhek	115	2	1x240	198	396	2007-2011	EDL	JBIC	Constuction	Central
2	Nam Song	Vangvieng	22	1	1x150	28	28	2007-2011	EDL	India+EDL	Constuction	Central
3	Hinheup	Naxaythong	230	2	1x630	72	143	2007-2011	EDL	CWE (China)	Constuction	Central
4	Naxaythong	Lukhin	115	2	1x240	12	24	2009-2012	EDL	Malaysia	Constuction	Central
5	Nam Gnuang 8	Khonsong	115	2	1X240	58	116	2009-2012	EDL	THPC	Constuction	Central
6	Vangvieng	Hinheup	115	1	1x240	41	41	2009-2012	EDL	Exim Bank Malaysia	Constuction	Central
7	Nam Sana	Vangvieng	22	2	1X150	40	80	2011-2013	EDL	Kungthai Bank+EDL	Loan	Central
8	Phontong	Thanaleng	115	1	1x240	18	18	2010-2013	EDL	-	Planned	Central
9	Nam Ngum 1	Naxaythong	115	2	1x455	61	122	2011-2013	EDL	-	Planned	Central
10	Naxaythong	Nabong 1	230	2	4x630	40	80	2009-2014	EDL	-	Planned	Central
11	Ban Don	Non Hai	115	1	1x240	54	54	2010-2014	EDL	-	Planned	Central
12	Nam Lik 1	Hinheup	115	2	1X240	10	20	2011-2014	IPP(d)	Thai	Planned	Central
13	Nam Mang 1	Tha Bok	115	1	1X240	12	12	2011-2014	IPP(d)		Planned	Central
14	Khoksa at	Nabong 1	115	2	1x450	22	44	2010-2015	EDL	-	Planned	Central
15	Tha Bok	Nabong 1	230	2	4x630	52	104	2010-2015	EDL	-	Planned	Central
16	Nam Gnuang 8	Kengseuaten	115	1	1X240	20	20	2012-2015	EDL	-	Planned	Central
17	Nabong 1	Nong Khai 2	230	2	4x630	37	74	2010-2016	EDL	-	Planned	Central
18	Nam Phai	Hinheup	115	2	1X240	57	114	2012-2015	IPP(d)	-	Planned	Central
19	Nam Bak	Tha Bok	230	2	1X410	50	100	2012-2015	IPP(d)	-	Planned	Central
20	Nam Theun 1	Khonsong	115	1	1X240	35	35	2014-2017	IPP(d)	-	Planned	Central
21	Nam mouan	Thasala	115	2	2X455	68	136	2014-2017	IPP(d)	-	Planned	Central
22	Pakxan	Bung kan	115	1	1x240	2	2	2015-2019	EDL	-	Planned	Central
23	Nam Ngum (Down)	Nabong 1	115	2	1X240	18	36	2015-2018	IPP(d)	-	Planned	Central
24	Nam Ngiep 1	Pakxan	115	1	1X240	35	35	2015-2018	IPP(e)	-	Planned	Central
25	Nam Pouan	Thavieng	115	2	1X240	38	76	2015-2019	EDI		Planned	Central

(South) Length (km) Voltage No. of Circuits Circuit Length (km) То Conductor No From Year Owne Loan status Area Year Owner 2008-2010 EDL 2007-2011 EDL 2007-2011 EDL 2008-2011 EDL 2008-2011 IPP(d) 2008-2011 IPP(d) 2010-2012 EDL 2010-2013 EDL 2010-2014 EDL 2011-2014 EDL 2011-2015 EDL Bang Yo Thakhek Thakhek Xeset 1 Xekaman 3 Mahaxai Tadsalen Sarayan India JBIC Malaysia WB 115 1x240 Contuction Contuction Southern engxay-Pakxong 115 115 115 1x240 1x240 1x240 1x240 1x240 1x240 1x150 1x450 1x240 1x240 1x240 1x240 174 Pakbo Cement factory at Mahaxa 27 Contuction Contuction WB Kungthai Bank Sepon minning Exim Thai Kungthai Bank ADB + Viet <u>5.</u> <u>100</u> <u>117</u> 7 Safavan Sekong M. Nong Sekong Saphaothong Pak Xong Sekong Sekong Bang yo 115 Contuction Contuction 22 115 115 115 115 115 115 115 37 100 102 Contuction Contuction Planned Planned Planned Planned Planned Saravan Hat Xan Xeset 3 Houaylamphan Gnai China Exim bank China 6 36 61 61 Sirinthorn Bang yo 1x240 1x240 1x450 1x630 1X150 2x630 Taothan Baravan 115 115 130 230 JBIC Planned Southerr 65 115 Kengkok Taothan Planned Southerr Pakbo Ban Hat Ban Lao Suliya 115 230 48 112 96 224 Planned Planned Southern Southern Stungtreng HouayChampi Lao Company Salabam Ban Hat 22 230 38 315 38 630 Planned Planned Southern Southern Saravan 14 340 280 2014-2015 EDL 2013-2015 EDL 2013-2015 EDL Pakbo Mukdahan 115 1x240 Planned Southern Pakbo Ban Lao Suliya Ban Lao Suliya M. Phin Nam Hinboun 1 M. Phin Xeset 3 20 Saravan M. Phin 230 115 4x630 1x240 170 140 Planned Planned Southern Southern Sepon Mining 115 115 1x240 1X240 56 15 112 15 2013-2015 EDL 2012-2015 EDL Planned Planned Southern Khonsong 1x240 1x240 1x150 1X240 1X240 1X630 2012-2013 EDL 2013-2015 EDL 2012-2015 EDL 2012-2015 IPP(d 2012-2015 IPP(d 2012-2015 IPP(d 115 115 115 115 115 230 M. Nong 89 178 Planned Southerr Xeset 4 Planned Southern Southern Southern Southern Sepon 3 (Up) Sepon 3 (Up) M. Kalum Sepon 3 (Down) M. Nong Planned Planned 49 aravar Planned 1X630 1x150 4x630 4x630 1X240 1X240 1X240 1X240 1X450 1X630 1X630 1X630 Mekong Tha kho 230 230 230 230 230 115 Tha kho T-Off 2012-201 5 IPP(c Planned Southerr Planned Planned Planned Planned Planned Planned Planned Thavieng Thasala Mahaxai Kekatam Thasala Mahaxai Ban Lao Suliya Pak Xong 2012-2013 IPP(d) 2013-2016 EDL 2013-2016 EDL 2013-2016 EDL 2013-2016 IPP(d) Southern Southern Southern Southern 344 220 200 70 30 110 100 Kekatam Sekong 4 Pak Xong Vam Phak/Houaykatam Mekong Donsahong Kelanong 1 Keneua Kelanong 2 Kelanong 2 Pak Xong Sekong Ban Jiengxai Pak Xong Thakho T-Off M. Nong Sepon Mining Sarayan 2013-2016 IPP(e Southerr 115 Russia IPP(e EDL IPP(d IPP(d IPP(d IPP(d IPP(d 115 115 115 230 4 2014-20 Planned Planned Planned Planned Planned 2014-201 2014-201 outhern Norway 115 1X240 2015-2018 60 176 100 41 115 115 115 115 115 115 115 1X240 1X240 1X240 1x240 1X240 1X240 1x240 2015-201 2015-201 2015-201 Planned Planned Planned Planned Planned Planned Saravan Sepon 3 (Up) outher elanong 2 IPP(d IPP(d Southerr Southerr edon 2 lam Kong 2 Saravan Nam Kong 3 20 Souther ebanghieng am Kong 3 Ban Lao Suliya Saphaothong Souther

Table 2-6Plan of 115 kV and 230 kV Transmission Lines from 2010 to 2020

Table 2-7Plan of 500 kV Transmission Lines from 2010 to 2020

No	From	То	Voltage	No. of Circuits	Conductor	Length (km)	Circuit Length (km)	Year	Owner	Loan	status
1	Nabong	Udon	500	2	4x630	27	54	2000-2010	Nam Ngum 2	ADB+Nam Ngum 2	Competed 100%
2	Hongsa	Mae Moh	500	2	4x630	24	48	2000-2015	EDL		Planned
3	Ban Hat	Xan Pei Ku	500	2	4x630	40	80	2006-2016	EDL	ADB+Vietnam	Study
4	Luangprabang	Hongsa	500	2	4x630	100	200	2011-2020	EDL		Planned
5	Hongsa	Sayabyry	500	2	4x630	76	152	2011-2020	EDL		Planned
6	Sayabury	Paklay	500	2	4x630	122	244	2011-2020	EDL		Planned
7	Paklay	Khon Ken	500	2	4x630	48	96	2011-2020	EDL		Planned
8	Nabong	Namtheun 2	500	2	4x630	280	560	2011-2020	EDL		Planned
9	Namtheun 2	Hating	500	2	4x630	58	116	2011-2020	EDL		Planned
10	Savannaket	Ban Lak 25	500	2	4x630	252	504	2011-2020	EDL		Planned
11	Ban Lak 25	Xepieng-Xenamno	500	2	4x630	100	200	2011-2020	EDL		Planned
12	Ban Lak 25	Ubon	500	2	4x630	53	106	2011-2020	EDL		Planned
13	Xepieng-Xenamno	Ban Hat Xan	500	2	4x630	34	68	2011-2020	EDL		Planned
14	Luangprabang	Xam Neua	500	2	4x630	207	414	2011-2025	EDL		Planned
15	Xam Neua	Vietnam	500	2	4x630	40	80	2011-2025	EDL		Planned
16	Paklay	Nabong	500	2	4x630	151	302	2011-2025	EDL		Planned

No	Name	Year	Owner	Status
1	Nabong	2006-2016	Nam Ngum 2	Completed 30%
2	Xam Neua	2015-2017	EDL	Planned
3	Ban Lak 25	2015-2018	EDL	Planned
4	Hat Xan	2015-2018	EDL	Planned
5	Xepieng-Xenamnoy	2015-2018	EDL	Planned

Table 2-8	Plan	of 500	kV	Substations
	i iaii	01 300	N W	oubstations

2.4 Power System Analysis

EDL carries out the study of power flow of the system planned in PDP based on the N-1 criteria using the PSS/E software (Power System Simulation for Engineering).

Chapter 3 Support from Other Donors

Regarding the official development assistance in the development of the 115 kV transmission lines in Lao PDR, the World Bank mainly assists related projects in the country's southern region, while the Asian Development Bank assists those in the northern region. Considering that the Japanese Government mainly assists in projects in the central region and backbone transmission line projects, the development of the 115 kV network was conducted efficiently in Lao PDR. However, Thailand and China were developing positive support recently, thus the grasp concerning the trend of support is important. The trend of a project to especially be taken into consideration is described below at the time of the transmission line project between Pakbo S/S and Saravan S/S.

3.1 Plan of 230 kV Transmission Line Project between Seno S/S and Saravan S/S

There is the plan of the 230 kV transmission line project between Seno S/S and Saravan S/S. The outline is shown below.

- Donor : China
- Section : About 215km from Seno S/S to Saravan S/S
- Situation : MOU conclusion of the feasibility study
- Construction cost : About 162 million USD

China and EDL concluded the MOU of the feasibility study of a 230 kV transmission line project between Seno S/S and Saravan S/S, and have started investigation. Although there is no telling whether the project starts or not, the construction costs for the transmission line and substation seems to be about 162 million USD. However, it is a mountainous area and it seems that it will become over 162 million USD, if the UXO exclusion is taken into consideration.

3.2 Support by Other Donors

(5) Plan of Nongdeun S/S Project

There is a plan for the Nongdeun S/S construction project to supply SEZ, which is located in SEZ No.359-360. (approx. 5km from Pakbo S/S) The outline is shown below.

- Donor : Thailand
- Capacity : 50 MVA and 30 MVA
- Situation : This term groundbreaking schedule

The design has completed Nongdeun S/S by A Engineering Construction and Supply Co., Ltd of Thailand. Construction work will be started this year and completion is planned for 2012 in

12 months. The loan agreement has also been completed and the related papers have been prepared. However, the Nongdeun S/S planned construction site is not developed at all. Figure 3-1 shows that site on June 20, 2011.

The EPC contract of the Nongdeun S/S is signed between EDL and a engineering construction and supply Co., Ltd of Thailand in July 26, 2011.

Figure 3-1 Nongdeun S/S planned Construction Site

(6) Plan of 115kV Transmission Line Project between Nongdeun S/S and Seno S/S and M.Phin

Moreover, there is a plan for a 115 kV transmission line project between Nongdeun S/S and Seno S/S and M.Phin S/S. The outline is shown below.

- ✤ Donor : China
- Section : From Nongdeun S/S to Seno S/S to M.Phin S/S
- Situation : The land of Seno S/S and M.Phin S/S has been acquired

(7) Plan of 230 kV Transmission Line Project between Cambodia and Laos(Ban Hat and Stung Treng)

There is no description of a System Interconnection with the neighboring country in PDP2010-2020 of EDL. However, there are plans to affect the supply-demand balance of the southern system and northern-central part.

As a plan to affect the southern supply-demand balance, there is a plan for a 230kV transmission line project between Cambodia and Laos (Ban Hat and Stung treng) by the World Bank. The plan will go into commercial operations in 2013 and 200 MW is planned to be transmitted to Cambodia from Laos. Now, the consultant selection of Laos is just going to be started in the Laos side. However, the World Bank has decided that Cambodia is an unqualified

loan recipient, thus the plan on the Cambodian side has been discontinued.

- Donor : World Bank
- Section : From Ban Hat to Stung treng
- Situation : Under consultant selection in Laos side and under discontinuation in Cambodia side

(8) Plan of 230 kV Transmission Line Project between China and Laos (Yunnan and Luangprabang)

According to PDP2010-2020 of EDL, the lack of power supply happens in the northern-central system till 2018. Thus, it is necessary to import power from the neighboring country.

There is a plan for a 230 kV transmission line project between China and Laos as one of the important measures. 230 kV double circuits construction is planned from Yunnan to Luangprabang. According to EDL, the China side is under construction. (As of June, 2011) "

- Donor : China
- Section : From Yunnan to Luangprabang
- Situation :Under construction on the China side

Chapter 4 Power Demand Forecast

4.1 Confirmation of Power Demand Forecast

Figure 4-1 shows the latest demand forecast in PDP2010-2020 which is under creation .It is estimated that the peak demand will grow to about 3,488 MW, which is about 10 times more than the 350 MW recorded in 2006. The growth rates during the period 2014-2016, 2010-2016 and 2010-2020 are 50%, 33% and 21% respectively. The reason why the growth rate of the first 6 years is the highest is that this forecast takes into account many specific loads by newly developed industries such as mining companies and special economic zones.

Figure 4-1 Peak Load Table 4-1 Power Demand Forecast by EDL

							-				
Description	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Energy Demand (GWh)	2,548	3,645	4,943	5,721	7,101	10,989	18,624	19,052	19,640	19,696	20,216
System Losses (%)	14%	14%	13%	13%	12%	12%	11%	11%	11%	11%	11%
Energy Demand (GWh) (Including System Losses)	2,967	4,219	5,675	6,553	8,097	12,468	21,003	21,448	22,099	22,128	22,679
Peak Load (MW)	584	786	1,021	1,165	1,419	2,083	3,180	3,290	3,401	3,403	3,488
Load Factor (%)	58%	61%	63%	64%	65%	68%	75%	74%	74%	74%	74%

(Source: Data for preparing PDP 2010-2020 provided by EDL, June 2011)

The EDL is analyzing four cases of the supply-demand balance. The difference in each case is based on the existence of the SLACO demand, and the existence of each plant of M Kaleum, Xekong 4 & 5, Nam Khon 1 and DonSahong-Thakho (Mekong). Xekong 4 & 5 and Nam Khon 1 shown in Table 5-2. Table 4-2 shows the classification of each case. Figure 4-2 to Figure 4-5

	Table 4-2	Classification of		
Case	M Kaleum	Xekong 4 & 5	DonSahong Thakho	SLACO
		Nam Khon 1	(Mekong)	
Case G1	v		~	
Case G2		~	\checkmark	~
Case G3	~	~	~	~
Case G4				~

shows the supply-demand balance in the rainy season of each case.

The supply-demand balance of the South 1 is bad in all the cases, and it turns out that in the cases G2 and G4 without M Kaleum, there is no margin in the supply power also in the South 2. Table 4-3 shows the details of the supply-demand balance of the South 1 and 2.

M Kaleum	Region		Item	2015	2020
Existing			Generation Capacity (MW)	86	339
		S1	Power Demand (MW)	364	558
			Balance (MW)	-278	-219
	S2	No SLACO	Generation Capacity (MW)	1079	1544
			Power Demand (MW)	316	399
			Balance (MW)	763	1145
		SLACO	Generation Capacity (MW)	1079	2109
			Power Demand (MW)	416	1299
			Balance (MW)	663	810
No			Generation Capacity (MW)	86	339
		S1	Power Demand (MW)	364	558
			Balance (MW)	-278	-219
	S2		Generation Capacity (MW)	479	704
		No SLACO	Power Demand (MW)	316	399
			Balance (MW)	163	305
		SLACO	Generation Capacity (MW)	479	1269
			Power Demand (MW)	416	1299
			Balance (MW)	63	-30

Table 4-3	Detailed Supply-Demand Balance of the South 1 and 2
-----------	---

Note) S1:Khammouan, Savannakhet

S2: Champasak, Saravan, Attapeu

(Source: Data for preparing PDP 2010-2020 provided by EDL, June 2011)

4.2 Plan of Southern Mine Development

Table 4-4 shows the demand forecast about the southern part mining development which EDL made. The demand is quickly developed from 2015 and the peak is reached mostly in 2016. However, there are many indefinite elements in development.

											(Un	nit: MW)
Province	Substation	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
CHAMPASAK	Aluminium at Paksong District(SLACO)for the entire mine	0	0	7.5	15	30	100	100	100	100	100	100
ATTAPEU	Aluminium at Sanamxai District(SLACO) for Alumina refinery	0	0	0	0	0	100	900	900	900	900	900
	Total	0	0	7.5	15	30	200	1000	1000	1000	1000	1000

Table 4-4 Demand Forecast of Mining Development in Southern Area

(Source: Data for preparing PDP 2010-2020 provided by EDL, June 2011)

According to the information from EDL, the following demand by the southern part mining development has been planned.

Mine	Province	Capacity (MW)	Energy (GWh)	Load Factor (%)	Start Operation						
Jiaxi Mining	Khammouane	22	124	64	2015						
Metal Melting	Khammouane	20	113.2	65	2016						
Xepon Gold/Cupper Ext.	Savanakhet	30.5	225.3	84	2016						
SLACO at Paksong	Champasak	100	744.6	85	2012						
SINOMA Aluminium	Champasak	8	30.7	44	2012						
SINOMA Almina Refinery	Champasak	20	145	83	2012						
Aluminium	Xekong	40	245.3	70	2016						
Gold/Copper Mining	Attapeu	50	350	80	2016						
SLACO Almina Refinery	Attapeu	900	6701.4	85	2016						

Table 4-5 Planed Mining Development in Southern Area

(Source: Data for preparing PDP 2010-2020 provided by EDL, June 2011)

72.5 MW additional demand by the southern part mining development is planned by 2016 in southern Khammouane and Savanakhet. And 1,118 MW of additional demand by the southern part mining development is planned from 2012 to 2016 in Champasak, Xekong, and Attapeu.

These mining demands have a high load factor, and constant supply is needed over the years. The mining developments submit to supply power. Especially the SLACO aluminum refining plant which is planned to be built in Attapeu, since 2/3 of the whole Laos demand is consumed only by this consumer, the influence of the power system plan is serious. According to DOE and EDL, the key to building the SLACO aluminum refining plant is low electric power prices, thus there is no telling whether the plan will be started or not. An analyzing scenario has set two cases which are with the SLACO demand or not because of this uncertain state.

4.3 Special Economic Zone (SEZ)

Many developing projects are planned in SEZ. Table 4-6 shows the demand forecast of the large scale developing projects.

											(Unit: MW)			
Name of Site	Category	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020		
Savan City	Commercial	0.00	1.00	2.32	3.98	6.31	9.63	13.61	17.93	22.58	27.56	33.20		
Logistic Park	Service	0.00	0.11	0.26	0.44	0.70	1.07	1.51	1.99	2.51	3.06	3.69		
Savan Park	Industrial	4.47	10.57	17.98	25.38	31.38	37.30	44.37	50.09	54.79	55.44	56.09		
Chansanh	Household	0.00	0.06	0.13	0.22	0.35	0.53	0.75	0.99	1.25	1.53	1.84		
EPZ	Industrial	0.00	0.00	0.00	0.00	0.00	9.38	20.63	32.81	56.25	75.00	93.75		
	Total	4.47	11.74	20.69	30.03	38.74	57.91	80.86	103.81	137.38	162.59	188.57		

Table 4-6 Demand Forecast of Large Scale Developing Projects

(Source: Data for preparing PDP 2010-2020 provided by EDL, June 2011)

Transtech Engineering Co. which is a Chinese building constructor is developing in Savan Park. A lot will be concluded with an acquisition. The construction of Nongdeun S/S is planned via internal 360 partition of this industrial complex for the power supply to SEZ. Table 4-7 shows the demand forecast of the Nongdeun S/S which EDL made. It is planned to start operations in 2012 and peak in two years mostly. However, in June 20, 2011, the developing situation of SEZ was almost the same as two years before as is shown in Figure 4-6 taken on June 20, 2011, and there are a few factories in SEZ. The power demand submits to the progress of welcome enterprises.

Table 4-7	Demand	Forecast of	Nongdeun	S/S
-----------	--------	-------------	----------	-----

										(Uni	t: MW)
Substation	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Nongdeun	0	0	10	53	133	111	111	111	121	121	121

(Source: Data for preparing PDP 2010-2020 provided by EDL, June 2011)

4.4 Power Demand Forecast of Each Substation

The results of the demand forecast of each substation in the whole country are described in this section.

4.4.1 Actual Power Demand Record of Each Substation

Table 4-8 shows the actual peak power demand of each substation in 2010.

1

No	Substation	Province	Operation	MW
1	Luangnamtha 1 SS	Luangnamtha	2009	6.4
2	Oudomxay SS	Oudomxai	2009	5.1
3	Phonsvan SS	Xieng Khuang	2003	7.9
4	Luangprabang 1 SS	Luang Prabang	1994	17.3
5	Pakmong SS	Luang Prabang	2009	3.8
6	Sayaboury SS	Xayabuly	2003	6.5
7	Vangvieng SS	Vietiane Province	1994	15.9
8	Phonsoung SS	Vietiane Province	1990	10.7
9	Ban Don SS	Vietiane Province	2003	2.8
10	Non Hai SS	Vietiane Province	2003	5.2
11	Thalat SS	Vietiane Province	2006	8.4
12	Phontong SS	Vientiane Capital	1968	100.5
13	Thanaleng SS	Vientiane Capital	1977	52.5
14	Tha Ngon SS	Vientiane Capital	1989	20.6
15	Khok sa at SS	Vientiane Capital	2004	32.0
16	Naxaythong SS	Vientiane Capital	2006	22.8
17	Pakxan SS	Bolikhamxay	2000	14.6
18	Thakhek SS	Khammouan	2003	24.0
19	Mahaxai SS	Khammouan	2009	5.4
20	Nam Theun 2 SS	Khammouan	2009	2.6
21	Pakbo SS	Svannakhet	1996	29.1
22	Kengkhok SS	Svannakhet	2004	15.7
23	Saravan SS	Saravan	2010	10.6
24	Bang Yo SS	Champasak	1991	29.7
25	Ban Na SS	Champasak	2005	6.6
26	Ban Hat SS	Champasak	2005	5.0
27	Saphaothong SS	Attappeu	2006	4.4
	Total			466.1

Table 4-8 Peak Power Demand of Each Substation in 2010

(Source: Data for preparing PDP 2010-2020 provided by EDL, June 2011)

4.4.2 Power Demand Forecast of Each Substation

Table 4-9 and Table 4-10 show the peak demand forecast of each substation from 2011 to 2020.

										ι	Jnit: MW
No Name of Substations	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Boun Neua	0.0	0.0	0.0	1.9	4.6	28.4	46.5	33.7	34.5	35.3	36.0
Copper Mining 1at Yot Ou District				1.0	2.0	10.0	10.1	10.2	10.2	10.3	10.4
Copper Mining 2 at Yot Ou District							20.0	20.2	20.3	20.5	20.6
Total Load during Construction of Hydro Power Plants					2.3	15.8	13.5	-	-	-	-
2 BOKEO	0.0	0.0	0.0	9.2	9.4	29.4	29.8	30.1	30.7	31.1	31.7
				0.2	9.2	20.0	20.2	20.3	20.5	20.6	20.8
3 LUANGNAMTHA	6.4	6.8	17.7	22.9	73.1	105.8	68.4	49.3	49.6	50.0	50.5
Luangnamtha 1	6.4	6.6	6.8	7.0	3.9	4.0	4.1	4.2	4.3	4.4	4.5
Copper Mining at Houay Mo, Long District			10.0	10.1	10.2	10.2	10.3	10.4	10.5	10.6	10.7
Viengphoukha (Luangnamtha 2)		0.2	0.0	0.0	3.3	3.4	3.5	3.7	3.8	4.0	4.3
Fconomic Spacial Zone (Boten)		0.2	0.9	5.0	47.7	10.0	20.0	20.0	20.0	20.0	20.0
Railway station				0.0	0.0	1.0	1.0	1.0	1.0	1.0	1.0
Train running						10.0	10.0	10.0	10.0	10.0	10.0
4 OUDOMXAI	5.1	57.8	68.2	68.8	74.5	62.7	58.5	58.7	59.5	60.4	61.5
Oudomxay	5.1	5.8	4.3	4.7	3.6	3.8	4.1	4.3	4.6	4.9	5.2
Iron meiting factory at Phu Phan Village La District			1.0	2.0	1 9	10.0	10.1	10.2	10.2	10.3	10.4
Cement Factory at Thong Na Village Namo District			10.0	10.1	10.2	10.2	10.3	10.4	10.5	10.6	10.7
Copper Mining at Kiew Chep Village Namo District			10.0	10.1	10.2	20.0	20.2	20.3	20.5	20.6	20.8
Lead-Zinc Factory at Nam Pheng Village Namo District						5.0	5.0	5.1	5.1	5.2	5.2
Pakbeng					1.8	1.9	2.0	2.2	2.3	2.4	2.6
Total Load during Construction of Hydro Power Plants		50.0	50.0	50.0	5.1	5.9	0.8				
Railway station		52.0	52.0	52.0	52.0	40	4.0	4.0	4.0	4.0	40
5 HUAPHANH	0.0	0.0	5.6	7.6	8.4	7.8	17.5	18.1	9.6	10.2	10.8
Xam Neua 1			5.6	6.4	7.2	7.8	8.5	9.1	9.6	10.2	10.8
Total Load during Construction of Hydro Power Plants				1.2	1.2		9.0	9.0			
6 XIENG KHUANG	7.9	26.7	27.2	9.8	16.3	109.0	103.8	32.4	33.0	33.7	34.6
Phonsvan	7.9	8.7	6.0	6.4	6.7	5.5	6.4	6.6	6.9	10.2	7.6
M Kham			3.2	3.4	3.6	3.3	3.5	3.6	3.8	3.9	4.1
Iron melting factory at Yot Pieng Village Pek District Khoun District				••••		10.0	10.1	10.2	10.2	10.3	10.4
Thavieng						2.2	1.7	1.8	1.9	2.0	2.1
Total Load during Construction of Hydro Power Plants		18.0	18.0		6.0	78.0	72.0				
7 LUANG PRABANG	21.1	68.5	69.4	71.3	115.3	98.7	87.8	69.8	64.3	43.5	45.2
Pakmong	3.8	3.9	23	24	2.5	2.0	27	2.8	29	15.5	33
Cement factory at Many Village Nambak District	0.0	7.0	7.1	7.1	7.2	7.2	7.3	7.3	7.4	7.5	7.5
Sansouk			3.4	4.7	4.9	5.1	5.3	5.6	5.9	6.2	6.5
Gold Mining at Phapon Village Pak Ou District				1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.1
Luangprabang 2					4.9	5.1	5.3	5.6	5.9	6.2	6.5
Total Load during Construction of Hydro Power Plants		30.6	30.6	30.6	42.9	60.9	48.9	29.6	22.5		
Railway station		55.0	55.0	55.0	33.0	4.0	4.0	4.0	4.0	4.0	4.0
8 XAYABULY	6.5	6.9	7.4	8.4	17.2	37.8	73.8	69.3	70.9	63.8	65.7
Sayaboury	6.5	6.9	7.4	7.9	10.0	10.7	9.4	10.0	10.7	11.4	12.2
Paklay					6.7	7.1	6.0	6.4	6.8	7.3	7.8
Copper Mining at Pang Kham Pakiay District						5.0	40.0	40.3	40.6	41.0	41.3
Total Load during Construction of Hydro Power Plants				0.5	0.5	15.0	15.0	9.0	9.0	4.1	4.4
Total Northen Area Demand	47.0	166.7	195.5	199.9	318.8	479.6	486.1	361.4	352.1	328.0	336.0
9 VIETIANE PROVINCE	75.0	105.0	178.5	215.0	260.4	432.1	461.9	625.5	603.9	621.8	631.3
Vangvieng	15.9	16.9	18.0	19.2	20.5	22.0	23.6	25.4	27.7	30.4	33.4
Iron melting factory at Vangvieng District			20.0	12.0	20.3	20.5	12.3	12.4	12.5	12.6	12.7
Phonsoung	10.7	11.4	10.7	11.4	12.2	13.1	14.0	15.1	16.5	18.1	19.9
Ban Don	2.8	3.0	3.9	4.1	4.4	4.7	5.1	5.5	6.0	6.6	7.2
Gold/Copper Mining at Malpakphoun Village Sanakham District	5.2	5.5	4.0	5.0	55	5.0	40.0	40.3	40.6	41.0	41.3
Thalat	8.4	5.5	4.9 9.7	5.2 10.4	5.5 11.1	11.9	12.7	13.7	15.0	0.2	9.0
Hinheup	0.7	0.0	1.5	1.6	1.7	1.8	1.9	2.1	2.2	2.5	2.7
Iron melting factory at Vangvieng District (sinhouang)			30.0	50.0	50.0	200.0	200.0	390.0	390.0	390.0	390.0
Phubla Gold/copper Mining (Existing)	32.0	33.0	43.0	43.3	43.7	44.0	44.4	44.7	45.1	45.5	45.8
Thongkhoun 2		0.9	10.5	11.0	11.5	12.0	12.5	13.0	5.0	5.5	6.0
Iron mine at Nam chan Village (sinhouang)					25.0	25.2	25.4	25.6	25.8	26.0	26.2
Total Load during Construction of Railway		25.4	25.4	25.4	25.4	40.0	40.0	40.0	40.0	40.0	40.0
Railway station	I					10.0	10.0	10.0	10.0	10.0	10.0

Table 4-9 Power Demand Forecast of Each Substation

(Source: Data for preparing PDP 2010-2020 provided by EDL, June 2011)

Table 4-10	Power Demand Forecast of Each Substation (Continued)

											Jnit: MW
No Name of Substations	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
10 VIENTIANE CAPITAL	228.4	251.2	300.4	363.8	380.3	397.6	426.7	458.0	505.3	548.9	583.8
Phontong	100.5	101.0	102.0	99.1	102.3	108.8	116.0	118.0	120.0	128.0	134.0
Gold Mining at Khok Pheung Village Sangthong District			5.0	5.0	5.1	5.1	5.2	5.2	5.2	5.3	5.3
Thanaleng	52.5	55.3	58.3	37.5	39.8	42.3	45.1	48.2	52.8	53.9	59.6
The Ngon	20.6	21.6	22.8	21.4	22.7	24.2	25.8	27.6	30.2	33.2	36.7
	20.0	21.0	22.0	21.4	22.1	24.2	20.0	21.0	40.0	50.2	50.7
Knok sa at	32.0	33.0	35.5	34.8	30.9	39.3	41.9	44.8	49.0	53.9	59.6
Kea Potash Factory at Thongmang Village Saythany District		8.0	8.1	8.1	8.2	8.3	8.3	8.4	8.5	8.5	8.6
Japanese Industy Zone							9.0	17.8	23.5	29.3	29.3
Naxaythong	22.8	28.8	34.8	17.4	18.5	19.6	20.9	22.4	24.5	27.0	29.8
Pak Thang			••	13.4	14.2	15.1	16.1	17.2	18.0	20.7	22.0
Nong Viongkhom				10.7	14.5	15.1	16.4	17.6	10.0	20.7	22.0
Nong viengknam				13.7	14.5	15.4	10.4	17.0	19.2	21.2	23.4
Don Koi				24.6	26.1	28.7	29.0	35.0	42.0	48.0	56.0
Na Bong 1				5.9	9.1	8.8	11.0	13.8	20.5	28.9	36.6
Iron melting factory at Ban Hai Village (Tha Ngon) Xaythany District			31.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
Load during railway construction /Railway station		29	29	2.9	29	2.0	2.0	20	20	20	2.0
Total Load during Construction of Hydro Power Plants									0.0	0.0	
	44.0	45.7	00.0	24.0	20.0	20.5	50.7	70.0	00.0	0.0	50.0
TT BULIKHAMAAY	14.0	15.7	29.9	31.0	30.9	39.5	53.7	12.0	82.0	0Z.3	58.8
Pakxan	14.6	15.5	15.5	16.5	17.6	16.3	17.5	18.9	20.6	22.6	24.9
Tha Bok						3.8	4.0	4.4	4.8	5.2	5.7
Khonsong			31	33	3.5	2.5	26	28	31	34	37
Metal Melting Factory at Nong Choon-Borneng Village Hinboon District	1		U . 1	0.0	0.0	2.5	20.0	20.2	20.3	20.5	20.6
These a	1		2.4	2.0	2.2	2.0	20.0	20.2	20.0	20.0	20.0
			2.1	2.2	2.3	2.6	2.8	3.0	3.3	3.6	3.9
I otal Load during Construction of Hydro Power Plants		0.2	9.2	9.0	7.5	14.3	6.8	23.3	30.5	7.2	
Total Central Area Demand	318.0	371.9	508.8	609.8	671.6	869.2	942.3	1156.1	1191.8	1233.2	1273.9
12 KHAMMOUAN	49.0	51.0	53.2	55.5	78.0	113.8	192.9	192.7	213.9	219.6	219.7
Thakhek	24.0	25.5	27.1	273	20.1	31.1	33.2	35.6	38.0	42.6	46.6
liovi Mining at Thakhak District	27.0	20.0	£1.1	21.3	20.1	20.0	22.0	22.0	22.0	22.0	-10.0
Orment Festers at Nelsberg Ville - Think is District (Fight)	17.0	47.0	47.0	47.0	47.0	22.0	22.0	22.0	22.0	22.0	22.0
Cement Factory at Nakham Village Thakhek District (Existing)	17.0	17.0	17.0	17.0	17.0	17.0	17.1	17.3	17.4	17.6	17.7
Cement Factory at Nakham Village Thakhek District (Phase2)							43.0	43.3	43.7	44.0	44.4
Mahaxai	5.4	5.8	5.8	6.2	6.6	7.0	7.5	8.0	8.8	9.6	10.5
Potassium at Yang Koung Village (Noom Ma Lat) Thakhek District					20.0	20.0	50.0	50.0	50.0	50.0	50.0
Nem Theur 2 (Substation)	26	2.7	2.2	5.0	E 2	E 7	6.1	6.5	7.1	7.0	00.0
Nam meur 2 (Substation)	2.0	Z.1	ა.ა	5.0	5.5	5.7	0.1	0.5	1.1	1.0	0.0
Total Load during Construction of Hydro Power Plants						6.0	6.0		6.0	6.0	
Economic Spacial Zone						5.0	8.0	10.0	20.0	20.0	20.0
13 SVANNAKHET	87.8	92.6	106.7	160.4	245.0	250.0	285.8	292.3	319.7	337.6	338.5
Pakho	29.1	31.6	34.3	44 0	47.0	46.9	50.1	53.6	58.2	63.3	68.8
Keng Kok	15.7	17.0	18.4	10.0	21.5	12.0	12.0	14.0	15.4	16.0	18.6
Nerghun	15.7	17.0	10.4	19.9	400.0	12.0	12.9	14.0	10.4	10.9	10.0
Nongdeun			10.0	53.0	133.0	111.0	111.0	111.0	121.0	121.0	121.0
Ban na (Seno)						31.3	32.0	32.9	34.0	35.1	36.4
Residential						9.3	10.0	10.9	12.0	13.1	14.4
SAZE						22.0	22.0	22.0	22.0	22.0	22.0
M Phin						33	36	30	43	47	5.2
MNong						2.0	2.0	2.2	2.6	20	2.1
						2.0	2.2	2.3	2.0	2.0	3.1
Xepon Gold/Copper Minning at Vilabury District (Existing)	43.0	43.5	43.5	43.5	43.5	43.5	74.0	/4.6	75.2	75.8	/6.4
Total Load during Construction of Hydro Power Plants		0.5	0.5						9.0	18.0	9.0
Total Southen1 Area Demand	136.8	143.6	159.9	215.9	323.0	363.8	478.7	485.0	533.6	557.2	558.2
14 SARAVAN	10.6	24.0	24.9	25.9	27.7	43.8	44.2	30.5	47.7	49.5	35.9
Sarayan	10.6	11.4	12.3	13.3	10.0	10.8	11.6	12.5	13.7	15.0	16.3
Coment Eastery at Tail on Village Persyon District	10.0	10.4	12.0	10.0	10.0	10.0	10.0	10.0	10.7	10.0	10.0
Cement Factory at Ta Leo Village Saravan District		12.6	12.6	12.6	12.0	12.6	12.6	12.6	12.6	12.6	12.6
Laothan	L				4.3	4.6	5.0	5.4	5.9	6.4	7.0
Total Load during Construction of Hydro Power Plants					0.8	15.8	15.0		15.5	15.5	
15 SEKONG	0.0	0.0	4.4	14.7	28.5	64.4	100.8	56.5	48.4	49.5	50.5
Sekona			4.4	5.1	5.7	6.2	6.8	7.2	7.8	8,5	9.2
Aluminium at Daklan Village Dakiung District	1						40.0	40.3	40.6	410	41 3
Total Load during Construction of Hydro Power Plants	1			0.6	22.0	50.0	54.0	-70.3	-10.0	-11.0	-11.0
	44.0			9.0	22.0	00.2	04.0	9.0	074.5	007 -	005 1
TO CHAMPASAK	41.3	44.1	82.7	98.1	117.5	200.4	216.0	267.9	2/4.9	221.7	235.1
Bang Yo	29.7	27.4	29.3	31.3	33.5	35.9	38.5	41.4	45.2	49.4	54.0
Ban Na	6.6	6.6	7.1	7.6	8.1	8.7	9.3	10.0	10.9	11.9	13.1
Ban Hat	5.0	4.0	4.2	4.5	4.9	5.2	5.6	6.0	6.6	7.2	7.8
Pakxong	1	35	3.8	40	43	4.6	5.0	53	5.8	6.4	70
Aluminium at Pakeong District/SLACO/for the antire mine	1	0.0	7.5	15.0	20.0	100.0	100.0	100.0	100.0	100.4	100.0
Auminium at Paksong District(SLACO)for the entire mine			C.1	15.0	30.0	100.0	100.0	100.0	100.0	100.0	100.0
Aluminium at Paksong District(SINOMA) for the entire mine			8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
Aluminium at Paksong District(SINOMA) for Alumina refinery	L		20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Ban Jiangxai		2.6	2.8	3.0	3.2	3.5	3.7	4.0	4.4	4.8	5.2
Total Load during Construction of Hydro Power Plants	1			47	5.5	95	17.9	63.2	54.0		
Economic Spacial Zone (Bolaven plateau)	1				0.0	5.0	0 0	10.0	20.0	20.0	20.0
	· · ·	<u> </u>	0.0		0.0	5.0	0.0	10.0	20.0	20.0	20.0
1/ ATTAPEU	4.4	8.7	9.2	6.0	6.6	107.2	957.8	958.9	960.1	900.8	9/1.2
Saphaothong	4.4	4.9	5.4	6.0	6.6	7.2	7.8	8.5	9.3	10.3	11.3
Gold/Copper Mining at Vangtun Village Xanxai District							50.0	50.4	50.8	51.2	51.6
Aluminium at Sanamxai District(SLACO) for Alumina refinery						100.0	900.0	900.0	900.0	900.0	900.0
Total Load during Construction of Hydro Power Plants	1	2.5	2.0				000.0	000.0	000.0	5000.0	1/ 2
Total Southen? Area Domand	EG O	76.0	121.0	1447	100.0	415.0	1210.0	1212.0	1224.4	1202 5	1200 7
	30.3	10.8	121.2	144./	100.3	410.0	1318.8	1313.8	1331.1	1293.5	1298.7
		111C 4		11674	14490	UNAE O	- 1-1-1 O O	1 24/19 4		- W OC 4	

(Source: Data for preparing PDP 2010-2020 provided by EDL, June 2011)

Chapter 5 Power Development Plan

5.1 Power Development Plan

Developers of power development for Laos domestic usage are categorized into the following three investors, i) EDL, ii) IPP for domestic supply, iii) power export IPP of domestic supply portions. The power development plan is described in Table 5-1 to Table 5-3. The progress status of the power development project is caught up from the status of authorization from the Laos government. First of all, a developer creates a MOU with the DOE for conducting a feasibility study (FS) of a power plant development project after the developer proposed the project to the Laos government. After the DOE approves the FS report, the DOE approves the PDA to the project and the developer can start negotiations between the PPA and EDL. After the conclusion of the PPA, the DOE approves the CA to the developer in examining the project plan. Consequently, the power development project will progress onto the construction stage and then onto the operation stage.

5.2 Current Status of M Kaleum Development

The Phonesack group has already acquired the development right of the M Kaleum coal mining. It plans to export high quality coal and generate electricity by using middle-low quality coal. It consists of three phases and 600MW generation is planed to be developed in each phase (1,800MW in total). The electricity generation project in M Kaleum is basically approved by the Lao government, but there is no Power Development Agreement and/or Memorandum of Understanding for the generation project. The detailed planning and EIA of the project have not been implemented yet and it is still seeking investors.

The current demand in the southern area is very low. This generation project will be an IPP project to supply the electricity to the aluminum refining plants and to export power to Cambodia. However, it has uncertainty of the developments of these aluminum refining plants. If these projects are aborted, the developer needs to seek other customers to sell their products. This leads to difficulty of the development.

The generation cost in the southern area in Laos is approximately 6 cent/kWh. The project will be approved, only if the cost is equivalent to or less than 6 cent/kWh according to the Energy Promotion and Development Department of MEM. It will take at least 5 years from the financial decision (1 year) to construction and commissioning (4 year).

Region	Plant	Inst. Cap. (MW)	Firm Cap. (MW)	Gen. Eng. (GWh/Y)	Capacity Factor (%)	COD	Status
Northern	Nam Dong	1.0	0.3	5	53.7%	1969	Operation
Northern	Nam Ko	1.5	0.5	8	60.4%	1996	Operation
Northern	Nam Ngay	1.2	0.4	8	76.1%	2006	Operation
Northern	Nam Boun 2	15.0	8.0	80	60.9%	2014	FS
Northern	Nam Chiene	80.0	36.0	330	47.1%	2015	FS
Northern	Nam Khan 2	130.0	43.3	558	49.0%	2015	Under Construction
Northern	Nam Phak	30.0	15.0	170	64.7%	2015	FS
Northern	Nam Khan 3	47.0	32.3	222	53.9%	2016	FS
Central	Nam Ngum 1	155.0	97.3	1003	73.9%	1971	Operation
Central	Nam Leuk	60.0	22.4	218	41.5%	2000	Operation
Central	Nam Mang 3	40.0	12.8	150	42.8%	2005	Operation
Central	Nam Song (Ex)	6.0	2.6	25	47.6%	2011	Under Construction
Central	Nam Sana	14.0	4.5	50	40.4%	2013	Under Construction
Central	Nam Ngum 1 (Ex)	40.0	18.0	88	25.1%	2014	FS
Central	Kengseuaten	54.0	30.0	214	45.1%	2016	Study
Central	Nam Hinboun	40.0	25.0	220	62.8%	2016	Study
Southern 2	Xelabam	5.0	0.6	21	49.0%	1969	Operation
Southern 2	Xeset 1	45.0	8.4	134	34.0%	1991	Operation
Southern 2	Xeset 2	76.0	30.4	310	46.6%	2009	Operation
Southern 2	Selabam (Ex)	7.7	3.1	37	54.9%	2013	FS
Southern 2	Xeset 3	23.0	8.9	86	42.7%	2013	Study
Southern 2	Houay LamphanGnai	88.0	43.4	495	64.2%	2014	Under Construction
Southern 2	Xeset 4	10.0	5.0	40	45.7%	2015	MOU
Operation		385.0	173.0	1857			
Under Const	ruction	238.0	94.0	1128			
Plan		347.0	181.0	1487			
Total		969.0	448.0	4471			

Table 5-1 Power Development Plan for Domestic by EDL

Note) Development status as following order: MOU, Study (FS on going), FS, PDA, PPA, CA, Under Construction, Operation

(Source: Data for preparing PDP 2010-2020 provided by EDL, June 2011)

Table 5-2	Power Development Plan by Domestic IPP

Region	Plant	Inst. Cap. (MW)	Firm Cap. (MW)	Gen. Eng. (GWh/Y)	Capacity Factor (%)	COD	Status
Northern	Nam Nhon	2.4	1.0	12	55.1%	2011	Under Construction
Northern	Nam Tha 3	1.3	0.5	6	50.2%	2011	Repair
Northern	Nam Ngum 5	120.0	84.0	500	47.6%	2012	Under Construction
Northern	Nam Ham 2	5.0	3.0	16	36.5%	2013	CA
Northern	Nam Long	5.0	5.0	37	84.5%	2013	Under Construction
Northern	Nam Ngiew	20.0	10.0	63	36.0%	2014	Study
Northern	Nam Beng	34.0	13.5	137	46.0%	2015	FS
Northern	Nam Ngiep 2	180.0	81.0	723	45.9%	2015	PDA
Northern	Nam Pha	130.0	65.0	720	63.2%	2015	FS
Northern	Nam Pot	15.0	10.0	71	53.7%	2015	FS
Northern	Nam Sim	8.6	3.2	33	43.3%	2015	PPA/CA
Northern	Nam Ou 2	120.0	54.0	546	51.9%	2016	PDA
Northern	Nam Ou 5	240.0	72.0	1156	55.0%	2016	PDA
Northern	Nam Ou 6	180.0	40.5	818	51.9%	2016	PDA
Northern	Nam Tha 1	168.0	75.6	721	49.0%	2016	PDA
Northern	Nam Seung 1	42.0	12.6	167	45.4%	2017	FS
Northern	Nam Seung 2	134.0	40.2	621	52.9%	2017	FS
Northern	Nam Ou 1	160.0	48.0	799	57.0%	2018	PDA
Northern	Nam Ou 3	150.0	45.0	710	54.0%	2018	PDA
Northern	Nam Ou 4	116.0	34.8	569	56.0%	2018	PDA
Northern	Nam Ou 7	190.0	57.0	915	55.0%	2018	PDA
Northern	Nam Ngum 4	33.0	11.0	165	57.1%	2019	FS
Northern	Namma 1,2,3,4,5	22.4	6.7	76	38.7%	2019	FS
Central	Nam Lik 1/2	100.0	70.0	435	49.7%	2010	Operation
Central	Nam Phao	1.6	0.7	9	60.6%	2012	MOU
Central	Nam Kene	5.0	2.0	20	45.0%	2014	FS
Central	Nam Lik 1	60.0	30.0	256	48.7%	2014	PPA/CA
Central	Nam Bak	160.0	100.0	744	53.1%	2015	FS
Central	Nam Mang 1	64.0	35.0	225	40.1%	2015	PDA/PPA
Central	Nam Phai	60.0	27.0	280	53.3%	2015	FS
Central	Nam Phouan	30.0	15.0	140	53.3%	2015	FS
Central	Nam San 3	48.0	30.0	325	77.3%	2015	FS
Central	Nam Ngum (Down)	60.0	27.0	300	57.1%	2018	FS
Central	Nam San 3 (Down)	30.0	20.0	120	45.7%	2018	FS
Southern1	Sepon 3 (Down)	30.0	21.0	150	57.1%	2016	MOU
Southern1	Sepon 3 (Up)	70.0	49.0	280	45.7%	2016	MOU
Southern1	Xeneua	53.0	20.3	209	45.0%	2018	FS
Southern1	Xe Lanong 1	60.0	27.0	300	57.1%	2018	FS
Southern2	Tadsalen	3.2	1.3	17	60.6%	2013	Under Construction
Southern2	Xenamnoy1	15.0	10.0	100	76.1%	2013	PDA
Southern2	Houay Champi	5.0	1.6	27	62.3%	2014	MOU
Southern2	Houay Kaphuek	5.0	2.0	21	47.9%	2014	MOU
Southern2	M Kaleum (Coal)	300.0	300.0	2100	79.9%	2014	Study
Southern2	Nam Kong 2	66.0	27.0	263	45.5%	2015	PDA
Southern2	Nam Kong 3	42.0	9.0	158	42.8%	2015	PDA

Region	Plant	Inst. Cap. (MW)	Firm Cap. (MW)	Gen. Eng. (GWh/Y)	Capacity Factor (%)	COD	Status
Southern2	M Kaleum (Coal)	300.0	300.0	2100	79.9%	2015	Study
Southern2	Nam Kong 1	75.0	50.0	469	71.4%	2016	FS
Southern2	Nam Phak/Houay katam	45.0	30.0	307	77.9%	2016	PDA
Southern2	Xekong 4	300.0	180.0	1901	72.3%	2016	FS
Southern2	Xekong 5	190.0	100.0	1131	68.0%	2016	FS
Southern2	Thakho (Mekong)	50.0	22.5	360	82.2%	2016	FS
Southern2	Donsahong	240.0	185.0	1756	83.5%	2017	PDA
Southern2	Xekatam	75.0	45.0	381	58.0%	2017	PPA
Southern2	Xe don 2	20.0	15.0	80	45.7%	2018	MOU
Southern2	Xe Lanong 2	45.0	28.0	170	43.1%	2018	MOU
Operation		100.0	70.0	435.0			
Under Const	truction	132.0	92.0	571.0			
Plan		4453.0	2402.0	23705.0			
Total		4684.0	2564.0	24712.0			

Note) Development status as following order: MOU, Study (FS on going), FS, PDA, PPA, CA, Under Construction, Operation

(Source: Data for preparing PDP 2010-2020 provided by EDL, June 2011)

Table 5-3	Power Development Plan for Domestic by Export IPP

Region	Plant	Inst. Cap. (MW)	Firm Cap. (MW)	Gen. Eng. (GWh/Y)	Capacity Factor (%)	COD	Status
Northern	Hongsa (Local)	100.0	100.0	701	80.0%	2015	Under Construction
Northern	Nam Xam 1 (Local)	47.0	30.0	143	34.7%	2016	PDA
Northern	Xayabury	60.0	30.0	420	79.9%	2019	CA
Northern	Laung Prabang	150.0	108.0	660	50.2%	2020	PDA
Northern	Pak Beng	114.0	80.0	599	60.0%	2020	PDA
Central	Nam Gnuang 8	60.0	42.0	316	60.1%	2012	Under Construction
Central	Nam Ngiep1	22.0	8.1	122	63.3%	2018	PDA
Central	Nam Theun 1	50.0	9.1	250	57.1%	2018	PDA
Southern 2	Nam Theun 2	75.0	52.5	300	45.7%	2010	Operation
Southern 2	Theun Hinboun (Local)	8.0	3.0	25	35.7%	1998	Operation
Southern 2	Houay Ho (Local)	2.1	2.1	8	44.6%	1999	Operation
Southern 2	Xekaman 3 (Local)	25.0	15.0	96	43.8%	2012	Under Construction
Southern 2	XeKaman 1 +Xanxai	64.0	31.5	240	42.8%	2014	Under Construction
Southern 2	Sepian-Xenamnoy	40.0	20.0	179	51.0%	2016	PDA
Operation		85.0	58.0	333.0			
Under Cons	truction	249.0	189.0	1353.0			
Plan		483.0	285.0	2373.0			
Total		817.0	531.0	4059.0			

Note) Development status as following order: MOU, Study (FS on going), FS, PDA, PPA, CA, Under Construction, Operation

(Source: Data for preparing PDP 2010-2020 provided by EDL, June 2011)

5.3 Interconnection Transmission Lines with Neighboring Countries

The team and the EDL counterpart personnel visited the EGAT dispatching center in Khon Kean and EGAT HQs, to discuss the interconnection plan with the EDL system and conditions of the interconnection tie line operation, which deeply affects the supply and demand balancing act in the Southern region of Laos.

The capacities of the interconnection lines between the EDL southern system and EGAT were described in the following table.

EGAT	EDL	kV	Circuit	Capacity (MW)	Conductor
Nakhon Dhanom	Thakbok	115	c	100	ACSR 477 MCM
Nakiion Fildiion	Indrier	115	2	70	ACSR 336.4 MCM
Mukdahan	Pakbo	115	1	100	ACSR 477 MCM
Sirindhom	Bang Yo	115	1	100	ACSR 477 MCM

Table 5-4 Interconnection Capacities EDL Southern System and EGAT

The interconnection between EDL Thakhek SS and EGAT Nakhon Phanom SS consists of double circuits. The capacity of the interconnection is limited to up to 70MW with N-1 criteria, because there is an imbalance among them. According to the EGAT HQs planning office, there is not a power supply to the EDL system via an interconnection between the EGAT Sirindhorn SS and EDL Bang Yo SS due to EGAT system constraints and severe conditions of supply and power balance in the Sirindhorn area. There is no plan in the EGAT PDP of reinforcing the interconnection to EDL system. The EGAT will study the interconnection reinforcements with EDL, when EDL requests reinforcements. There is little room for exports to EDL because of electricity demand increase and limited power development in the northeast Thailand.

According to EGAT, they were not requested to supply SLACO and not proposed to export power from M Kaleum thermal power plant in Laos. The 500kV system reinforcement in EGAT should be required to receive 600MW of imported power and 900MW of exported power. The 500kV system reinforcement will not be achieved within several years.

Chapter 6 Power Development Scenarios

6.1 Scenarios for the Study

The scenarios of the Case G1 to Case G4 for the study are assumed through discussions with DOE and EDL as shown in Table 4-2. The scenarios were considered with and without the conditions following the issues, the large consumer SLACO, the large thermal power plant M Kaleum, Mekong main stream hydropower Don Sahong hydropower plant and Xekong 4, 5 & Nam Khon 1 hydropower as power suppliers to SLACO. These cases are set up based on the draft PDP 2010-2020 (as of June 2011) that was studied by EDL. The power supply shortage that could have occurred in the PDP draft EDL. EDL assumed that the deficit of supply power should be compensated by power import from China.

(1) Case G1

This case is that SLACO (900MW) and Xekong4, 5 & Nam Khon 1 (75 MW) which are expected to supply to SLACO are not developed from the draft PDP2010-2011 by EDL. The power shortage in the S2 region is expected in the case G1.

(2) Case G2

This case is that the large thermal power plant M Kaleum (600MW) has not been developed from the draft PDP2010-2020 by EDL. The power supply deficit for the SLACO demand is expected. It is assumed that the deficit power supply should be provided from China, CSG. The power supply from China to SLACO is assumed with the HVDC system from China directly.

(3) Case G3

This case is same as the draft PDP2010-2011 by EDL. The imported power from China is assumed in the north & central system.

(4) Case G4

This case does not assume the power development of M Kaleum thermal power plant (600MW), Don Sahong hydropower plant (240MW) and Xekong 4, 5 & Nam Khon 1(565MW). The power supply deficit still remains, when SLACO is supplied from China directly. The remaining supply power deficit is assumed by supplying via the transmission line of SLACO supply.

6.2 Conditions of yearly Supply and Demand Balancing Simulation

The interconnection capacities of EGAT and CSG are assumed in the supply and demand balancing simulation. The conditions of supply and demand of EGAT and CSG are assumed by

the study team based on the JICA Indochina study and in consideration of the present situations obtained through a series of interviews. The simulations have been conducted in the years 2015, 2018 and 2020^{1} .

(1) System Configuration for Supply and Demand Simulation

The following figure shows the system configuration for the supply and demand balancing simulation. The Laos system is divided into three systems, the north & central system, the South 1 system, the South 2 system, and they are assumed to be connected to the Thai northeast system in consideration of the present situations and the plan. The direct interconnections with the China CSG are assumed to settle the supply power deficit in the northern & central system and the South 2 system in Laos following the EDL proposal.

Figure 6-1 System Configuration of Supply/Demand Balancing Simulation

The capacities of the interconnections in Cases G1 - G4 are illustrated in the table below respectively. The interconnection patterns between S1 and S2 are assumed by the cases below in the definitions in section 8.2.

- Case TA: 115kV Pakbo-Saravan transmission line installed in 2015
- Case TB: 230kV Seno-Saravan transmission line installed in 2015, instead of the 115kV Pakbo-Saravan transmission line

Cases TA and TB have the same interconnection capacity. Although EDL Bang Yo SS in the S2 system and EGAT Sirindorn SS are connected by the interconnection line, the power cannot be supplied from EGAT to EDL around the area due to tight supply and demand balance and EGAT system constraints. The study assumes power supply from EDL to EGAT only via this interconnection.

There is no interconnection between S2 to CSG in Cases G1 and G3. There are

¹ Simulations have been conducted by PDPATII software.

interconnections between S2 to CSG to supply SLACO demand in Cases G2 and G4.

						(Unit: MW)
Case		G1 & G3			G2 & G4	
Area	2015	2018	2020	2015	2018	2020
N&C-S1	100	100	100	100	100	100
S1-S2	100	250	250	100	250	250
EGAT-N&C	200	200	200	200	200	200
EGAT-S1	160	160	160	160	160	160
EGAT<-S2	100	100	100	100	100	100
CSG-N&C	1,100	1,100	1,100	1,100	1,100	1,100
CSG-S2	0	0	0	1,100	1,100	1,100

Table 6-1 Interconnection Capacities of Each Case

(2) System Conditions for Supply and Demand Simulation

(a) Peak demand and Energy consumption

The following tables show the peak demand and energy consumption by systems.

Table 6-2	Peak Deman	ds by S	systems
-----------	------------	---------	---------

			(Unit: MW)
System	2015	2018	2020
Northern & Central	1,348.8	1,543.9	1,609.9
Southern1	363.8	533.6	558.2
Southern2	415.8	1,331.1	1,298.7
S1 without SLACO	315.8	431.1	398.7

Table 6-3 Energy Consumptions by Systems

			(Unit: GWh)
System	2015	2018	2020
Northern & Central	7,737.5	8,678.5	9,117.2
Southern1	1,814.4	3,074.0	3,417.4
Southern2	2,916.6	10,346.4	10,144.4
S1 without SLACO	1,823.6	2,552.4	2,396.8

(b) Daily load curve at peak demand

The following figures show the daily load curves. These load curves have been assumed by the study team based on the hourly demand data of Phontong SS, Thakhek SS and Vangvieng SS provided by EDL in the JICA Laos system master plan study and in

consideration of the latest demand forecasts and load factors. The daily load curve in the S2 system becomes flat due to the SLACO demand.

(c) Power Development Plan

Power development plans are assumed based on the EDL PDP and under the cases aforementioned, as with and without SLACO, M Kaleum thermal plant, Don Sahong hydropower in Mekong main stream and Xekong 4, 5 & Nam Khon 1 which are expected to supply to SLACO.

(d) Hydropower Plant outputs

Hydropower plant outputs are assumed monthly based on the planned yearly generating energy, installed capacity and firm capacity in the dry season by plants in referred actual records from existing hydropower plants. Nam Ngum 1 hydropower plant output is referred to the north & central system plants. Xeset 1 hydropower output is referred to the S1 system and S2 system. The data is restricted to the year 2010. The average water in the flow data could not be utilized in the simulations.

Examples of hydropower plant outputs are illustrated in the following figures. Outputs in dry season decrease in reflecting the actual output records.

6.3 Supply and Demand Balancing by Cases

The supply and demand balancing simulation of Cases G1 to G4 will be conducted in 2015, 2018 and 2020. There is no difference in the interconnection capacities between Case TA, 115kV transmission line first installation case and Case TB, 230kV transmission line first installation case. Thus, there is no difference of the supply and demand balance between Case TA and Case TB.

(1) Supply and Demand Balancing of Case G1

There is no SLACO (900MW) and Xekong 4,5 & Nam Khon 1 (75MW) which are expected to supply SLACO in the Case G1.

(a) Supply and demand balance in 2015

The supply and demand balance results by the systems in 2015 is illustrated in the following figure. The black line represents monthly peak demand. The red line represents supply power. The green part represents imported power. The right blue part represents hydropower supply. The yellow part represents coal power supply. The numbers on the upper part of the figure are monthly reserve margin rates. The supply power of the north & central system during a dry season can be secured by importing power from neighboring countries. The power imports in November and December are utilized to supply the South 1 system.

A large share of the power supply of the South 1 system is power imports from neighboring systems. Reserve margin rates are low throughout the year. The supply and demand balancing in the South 1 system cannot be secured without interconnection lines. Surplus power supply is in the South 2 system. The interconnection transmission line is necessary to supply the surplus power to other systems.

Figure 6-7 Supply and Demand Balancing of the North & Central System (CaseG1 2015)

Figure 6-8 Supply and Demand Balancing of the South 1 System (CaseG1 2015)

Figure 6-9 Supply and Demand Balancing of the South 2 System (CaseG1 2015)

(b) Supply and demand balance in 2020

Supply and demand balance of systems in 2020 is illustrated in the following figures.

The supply and demand balance is secured in the north & central system and the South 2 system minus imported power. The surplus power is caused in the rainy season due to a lot of hydropower plants in the systems. The interconnecting transmission lines are required to utilize the surplus power among interconnected systems efficiently. Supply and demand balance can be secured with the interconnection transmission line in the South 1 system.

Figure 6-10 Supply and Demand Balancing of the North & Central System (Case G1 2020)

Figure 6-11 Supply and Demand Balancing of the South 1 System (CaseG1 2020)

Figure 6-12 Supply and Demand Balancing of the South 2 System (CaseG1 2020)

(c) Power exchange of CaseG1 in 2020

The following figure illustrates the electricity energy power exchange of CaseG1 in 2020.

Figure 6-13 Electricity Energy Power Exchange of CaseG1 in 2020

(2) Supply and demand balancing of CaseG2

This case is the zero development of a large thermal power plant of M Kaleum. This case causes deficit in power to SLACO. The supply to SLACO is assumed to be imported power directly from China through the HVDC or the 500kV transmission line.

(a) Supply and demand balancing in 2015

The supply and demand balancing of the north & central system in the dry season is secured by imported power from neighboring countries. The imported power in November and December are utilized to supply the South 1 system.

A large share of power supply of the South 1 system is imported power from neighboring systems. The reserve margin rates are low throughout the year. The supply and demand balance in the South 1 system cannot be secured without interconnection lines.

The surplus of supply power is in the South 2 system. However, there is a power shortage at peak demand during May and the dry season in the southern system 2. Power imports from EGAT cannot be conducted due to the present constraints of the EGAT system. It is necessary to secure power supply in the South 2 system, by developing 100MW of power plants in the South 2 system or by importing power supply from the EGAT system by negotiating with EGAT until 2015.

Figure 6-14 Supply and Demand Balancing of the North & Central System (CaseG2 2015)

Figure 6-15 Supply and Demand Balancing of the South 1 System (CaseG2 2015)

Figure 6-16 Supply and Demand Balancing of the South 2 System (CaseG2 2015)

(b) Supply and demand balancing in 2020

The simulation results of the supply and demand balance of systems in 2020 are illustrated in the following figures. The supply and demand balance can be secured minus imported power in the north & central system and the South 2 system. Surplus supply power is in the systems. The interconnection transmission line is necessary to supply surplus power to other systems. The supply and demand balance in the South 1 system can be secured with interconnection lines.

Figure 6-18 Supply and Demand Balancing of the North & Central System (CaseG2 2020)

Figure 6-19 Supply and Demand Balancing of the South 1 System (CaseG2 2020)

Figure 6-20 Supply and Demand Balancing of the South 2 System (CaseG2 2020)

(c) Power exchange of CaseG2 in 2020

The following figure illustrates the electricity energy power exchange of CaseG2 in 2020.

Figure 6-21 Electricity Power Exchange of Case 2 in 2020

(3) Supply and demand balancing of CaseG3

This case is the same as the draft PDP2010-2011 by EDL. Imported power from China is assumed in the north & central system.

(a) Supply and demand balance of 2015

The simulation results of the supply and demand balance of Case G3 in 2015 are illustrated in the following figures.

The supply and demand balance of the north & central system and the South 1 system can be secured by power exchange with other systems and power imports from neighboring countries. A large share of power supply of the South 1 system is power imports and power exchanges from other systems and a little supply reserve margin capacity. There is surplus power in the South 2 system because SLACO will not yet be fully operational in 2015.

Figure 6-22 Supply and Demand Balancing of the North & Central System (CaseG3 2015)

Figure 6-23 Supply and Demand Balancing of the South 1 System (CaseG3 2015)

Figure 6-24 Supply and Demand Balancing of the South 2 System (CaseG3 2015)

(b) Supply and demand balance in 2020

The simulation results of the supply and demand balance of CaseG3 in 2020 are illustrated in the following figures.

The supply and demand balance of the north & central system can be secured, without power imports and power exchanges. There is surplus power during the rainy season in the systems due to a lot of hydropower generators. The supply and demand balance in the South 1 system can be secured by power imports and power exchanges from interconnected systems. There are high demands nearing peak demand throughout the year in the South 2 system due to SLACO full operation. The power should be imported to secure the balance between supply and demand in the South 2 system through the transmission line for the SLACO direct supply from China. The load factor of SLACO is high at a planned 85%. The load factor is higher than the thermal power plant at 80%. The high load factor cases a deficit of energy. The deficit energy cases of power shortage around 200MW in considering power plants forced outage rates (assumed Coal thermal power plants; 7%, hydropower plants; 2%) and water in flow fluctuation in the dry season. It is necessary to settle the power shortage to develop additional coal thermal plants or power imports from neighboring countries.

Figure 6-25 Supply and Demand Balancing of the North & Central System (CaseG3 2020)

Figure 6-27 Supply and Demand Balancing of the South 2 System (CaseG3 2020)

Figure 6-28 Daily Operation in the South 2 System (CaseG3 May 2020)

(c) Electricity Energy Power Exchange of CaseG3 in 2020

The following figure illustrates the electricity energy power exchange of CaseG3 in 2020.

(4) Supply and Demand Balancing of CaseG4

This case is without the large thermal power plant of M Kaleum (600MW) and Don Sahong hydropower plant (240MW) which is Mekong main stream development and Xekong4,5 & Nam Khon1 (75MW) that are expected to supply to SLACO. The case causes a deficit of power supply when SLACO is supplied direct from China. The deficit power supply is assumed to supply from China through the transmission line of supplying SLACO.

(a) Supply and demand balance in 2015

The simulation results of the supply and demand balance of systems of CaseG4 in 2015 are illustrated in the following figures.

There are deficit power supplies in every system of Laos due to a lack of power development. Supply and demand can be balanced with import power from neighboring countries.

Thus, it is important for securing balance between supply and demand to negotiate EAGT and CSG, when power development projects were delayed, and mining projects and factory development projects proceeded.

Figure 6-30 Supply and Demand Balancing of the North & Central System (CaseG4 2015)

Figure 6-31 Supply and Demand Balancing of the South 1 System (CaseG4 2015)

Figure 6-32 Supply and Demand Balancing of the South 2 System (CaseG4 2015)

(b) Supply and demand balance in 2020

The simulation results of the supply and demand balance of Case G4 in 2020 are illustrated in the following figures.

The supply and demand balance in the north & central system can be secured itself. The supply and demand balance in the South 1 system can be secured with power imports and power exchanges from other systems. The supply and demand balance of the South 2 system in the dry season can be secured with power imports and power transfers from other systems.

Consequently, the interconnection transmission lines should be constructed in the southern systems. The interconnection transmission lines in the north & central system should be installed to improve system operation and power development investment efficiency in utilizing the surplus power during the rainy season into the other systems.

Figure 6-33 Supply and Demand Balancing of the North & Central System (CaseG4 2020)

Figure 6-34 Supply and Demand Balancing of the South 1 System (CaseG4 2020)

Figure 6-35 Supply and Demand Balancing of the South 2 System (CaseG4 2020)

(c) Electricity Energy Power Exchange of CaseG4 in 2020

The following figure illustrates the electricity energy power exchange of CaseG4 in 2020.

Figure 6-36 Electricity Energy Power Exchange of CaseG4 in 2020

6.4 Benefits from Interconnection Transmission Line in the Southern System

The benefits from the interconnection transmission line construction between the South 1 system and the South 2 system are calculated in comparison with the supply and demand balance between with and without the 115kV transmission line.

There will be a power shortage of 1GWh from 2015 to 2019 in the South 1 system if the 115kV transmission line is not constructed. In the power transfer between EDL and EGAT, power imports would decrease and power exports during the rainy season would increase. There is spilled water in the flow reduction mainly in the South 2 system. Coal consumption can curtail around 2GW/year equivalent to the Hongsa coal thermal plant during 2016 to 2019.

A reduction in CO2 emissions from coal consumption curtailment is calculated to be the equivalent of 2000 t-CO2/year.²

		(Unit: GWh)
Items	2015	After 2020
Power Shortage	-1	-
Power Import Reduction	-436.9	-1.2
Power Export Increment	552.8	287.9
Spilled Water in flow Reduction	-1008	-291

Table 6-4 Benefits of 115kV Transmission Line

The project can activate the power trade avoiding the spilled water of hydropower plants, which brings the reduction in power import and the increase in power export. The change in power import/export is estimated in accordance with the power exchange rate between EGAT of the power import tariff, 6.5UScent/kWh at peak and the power export tariff, 4.3UScent/kWh at off peak.³

Table 6-5 Benefits of 115kV Transmission Line (Import Export Expense Difference)

		(Unit: Million USD)
Items	2015	After 2020
Power Import Reduction	-28.4	-0.1
Power Export Increment	23.8	12.4

² Lignite of CO2 emission unit is assumed as 1kg-CO2/kWh. 2GWh is equivalent of 2000t-CO2.

³ Power trade tariff between EGAT: Power export tariff 4.3UScent/kWh at off-peak is 1.2THB/kWh, Power import tariff 6.5UScent/kWh at peak is 1.79THB/kWh. The conversion rates are 83JPY/USD, 3JPY/THB, 27.7THB/USD.

Chapter 7 Power System Issues

7.1 Regional Power Demand and Power Supply Ability

Table 7-1 shows the surplus power represented by MW in N&C, the Target Area and S2 regions in the case of full generation (the full power output of power generation during the wet seasons) and in case of firm generation (the securable power output of power generation in the dry seasons). Negative values indicate the deficit in power to be compensated by the power from other regions. N&C would have the deficit in power until 2014 even during wet seasons. After 2016, although N&C and S2 regions would have a lot of surplus power even during the dry seasons, S1 would have experience a power deficit throughout the year. Thus, it is necessary to make power transmission plans to S1 from other areas and the power evacuation of surplus power occurring in N&C and S2.

 Table 7-1
 Surplus Power of Laos in Wet and Dry Seasons up to 2020

Power Balance Including SLACO (Unit: MW)												
Gen Pattern	Area	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
	N&C	-6.3	-170.2	-154.3	-226.7	-276.4	434.8	1,251.2	1,338.0	2,089.7	2,264.7	2,480.0
Full	Target Area	-61.8	-68.6	-84.9	-140.9	-248.0	-288.8	-303.7	-310.0	-245.6	-269.2	-270.2
	S2	79.8	59.3	39.9	65.3	491.7	674.2	463.2	783.2	868.9	906.5	901.3
Gen Pattern	Area	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
	N&C	-161.3	-308.0	-297.8	-318.3	-423.5	-190.6	118.3	113.2	383.2	479.2	653.4
Firm	Target Area	-84.3	-91.1	-107.4	-163.4	-270.5	-311.3	-356.2	-362.5	-363.8	-387.4	-388.4
	S2	-11.8	-32.3	-61.7	-61.9	281.0	386.5	11.5	246.5	287.2	324.8	319.6

7.2 Situations of Power Supply and Demand in Target Area

Figure 7-1 shows the surrounding area of South 1. The area illustrated by a dotted line was set out following the conditions described below. We call this area the "Target Area" because the transmission line targeted by this study supplies power to this area.

- Power consumers supplied from the substations located in S1
- Sepon (D), Sepon(U) and Xelanong 1 hydropower stations in S2. Those power stations are planned to be connected to Xepon Mining and Pakbo substation located in S1 via 115 kV transmission lines.
- The power stations located in S1 excluding Nam Hinboun that was once connected to the transmission line in Central and sent from Central (Nam Theun 2)

Table 7-2 shows the balance between the power supply ability and peak power demand in the Target Area. Full Generation indicates a case of full power outputs of hydropower generators in the wet seasons and the Firm Generation indicates the case of secured power outputs of hydro power generators even during dry seasons. The Target Area has an energy deficit in all cases. Thus, it is needed to supply power from other areas to the Target Area.

Figure 7-1 Power System in Target Area

											(Unit: I	VIVV)
Item	Area	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
	Khammouan	49.0	51.0	53.2	55.5	78.0	113.8	192.9	192.7	213.9	219.6	219.7
Peak Demand	Savannakhet	87.8	92.6	106.7	160.4	245.0	250.0	285.8	292.3	319.7	337.6	338.5
	Sub Total	136.8	143.6	159.9	215.9	323.0	363.8	478.7	485.0	533.6	557.2	558.2
	Nam Theun 2	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0
	Xeneua	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	53.0	53.0	53.0
Full	Xe Lanong 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	60.0	60.0	60.0
Generation	Sepon 3 (Down)	0.0	0.0	0.0	0.0	0.0	0.0	30.0	30.0	30.0	30.0	30.0
	Sub Total	75.0	75.0	75.0	75.0	75.0	75.0	105.0	105.0	218.0	218.0	218.0
	Surplus	-61.8	-68.6	-84.9	-140.9	-248.0	-288.8	-373.7	-380.0	-315.6	-339.2	-340.2
	Nam Theun 2	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5
	Xeneua	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.3	20.3	20.3
Firm Generation	Xe Lanong 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27.0	27.0	27.0
	Sepon 3 (Down)	0.0	0.0	0.0	0.0	0.0	0.0	21.0	21.0	21.0	21.0	21.0
	Sub Total	52.5	52.5	52.5	52.5	52.5	52.5	73.5	73.5	120.8	120.8	120.8
	Surplus	-84.3	-91.1	-107.4	-163.4	-270.5	-311.3	-405.2	-411.5	-412.8	-436.4	-437.4

Table 7-2Balance between Power Supply Ability and Peak Power Demand in
Target Area

7.3 Methodology of Power Supply to Target Area

As mentioned before, Target Area has experienced a power deficit throughout the years. At present, this area imports power from EGAT at Thakhek and Pakbo substations and begins to take power from the Central region after the completion of the 115 kV Pakxan-Pakbo transmission line. However, the power supply to the Target Area will not be enough only by those transmission lines due to an increase in power demand around 2015. The available power via the Pakxan-Thakhek 115 kV transmission line is around 100 MW at maximum. Imported power from EGAT at the Thakhek and Pakbo substations are restricted following the limitations shown in the table below.

Table 7-3 Thermal Capacities of Interconnection Lines

Interval	Conductor	Thermal Capacity	
Nakhan Dhanam (ECAT) Thakhak 115 k)/ 2aat	ACSR 477 MCM 1cct	Around 100 MW	
Nakhon Phanom (EGAT) - makhek 115 kV 2001	ACSR 336.4 MCM 1cct	Around 70-80 MW	
Mukdahan (EGAT)-Pakbo 115 kV 1cct	ACSR 477 MCM1cct	Around 100 MW	

The limitation of power transmission from Nakhon Phanom (EGAT) to Thakhek with 2 circuits is around 70 to 80 MW when the N-1 criteria is applied due to the capacity of the small conductor. A re-conductoring a circuit of the transmission lines from Nakhon Phanom (EGAT) to Thakhek is one way to increase its capacity. The power flow from Nakhon Phanom (EGAT) to Thakhek reaches its limit faster than from Mukdahan to Pakbo when the power imported from EGAT is increased because more power is flowing from Nakhon Phanom than from Mukdahan to Pakbo. Thus, controlling the power at Thakhek and Pakbo substations by installing the phase shifters at Pakbo or Thakhek substations is considered as one of the effective measures for utilizing the capacity of conductors. Actually, the PDP 2010-2020 Draft mentioned the installation of the phase shifter at Pakbo substation. In this study, we assume that the limitation of the power received at Thakhek and Pakbo from EGAT was 160 MW in consideration of the capacities of the two circuits remaining while a circuit from EGAT to Thakhek/Pakbo was damaged.

In the Target Area, in spite of a few power stations planned, there is a lot of power consumption of substations and large mining/ industrial loads. As mentioned above in this section, the Target Area will have a power deficit throughout the years regardless of the seasons at present and for the future. The power deficit in the Target Area in 2015 will be around 300 MW during the dry season and exceed the ability of power-transmission to the Target Area via the existing transmission line. Thus, a new transmission line is needed to supply power to the Target Area in around 2015. Given that the distance from the location of power sources in the North and Central to the Target Area is over 300 km long, it is considered effective to transmit the power through the interconnections to the Target Area from the South 2 area where a certain amount of surplus power will be expected.

7.4 Role of 500kV/230kV/115kV and Power Supply to SLACO

In general, 500 kV power transmission lines take on the role of power transmission exceeding around 1,000 MW, 230 kV more than 150 MW and 115 kV more than 20-30 MW although the selection of the voltage levels of power transmission lines largely depends on their distance and the number of circuits.

Figure 7-2 shows the amount of peak loads of substations and large power consumers in Laos in 2010. Their total amount is 558 MW. The largest load is around 100 MW of the Phontong substation located in Vientiane. The load of Phontong and the second largest load of Thanaleng around 50 MW occupies a fourth of the total loads of Laos. The third one is the load of Khoksaat around 30 MW and the fourth one is Tha Ngon around 20 MW. The total amount of loads summarizing the first to fourth reaches around 200 MW. The power network system for

domestic power supply in Laos has a scale composed of 115 kV transmission lines or one or two routes of 230 kV transmission lines that can supply a group of substations in Vientiane.

Figure 7-2 Amount of Power Demand of Substations and Large Power Consumers of Laos in 2010

Figure 7-3 shows the amount of peak loads of substations and large power consumers in Laos in 2020. The total amount is 3,435 MW. The largest load is around 900 MW of SLACO, an aluminum industrial load, occupying around a third of Laos's power demand. The 230 kV is considered as the voltage used for the power transmission for this amount of loads with several ten km because stability isn't an issue. However, a 500 kV transmission line is needed to transmit the power for this amount of loads with a distance of more than 100 km.

The second largest load is the Iron Melting Factory of 390 MW that can be supplied via the 230 kV transmission lines with multiple circuits.

The total amount of those two loads occupies a third of Laos's power demand. Those two loads are extremely larger than other loads, thus, their power supply methodology is different from others. Their power system should be studied independently.

Many of the loads of other substations reach around 100 MW. It is considered efficient to supply those substations with 230 kV transmission lines with multiple routes. In this case, those 230 kV transmission systems will serve as the "back-bone" of Laos's power network system.

The 115 kV transmission lines are considered to play a role in distributing power to the substation with peak loads of around 10 to 100 MW via multiple routes from the 230 kV system or the area of small scale power sources.

Voltage of Transmission Lines and Their Lengths

The limitation of power transmission within a short distance is determined via the thermal capacity of conductors. However, in the case of long distance power transmission with a large power flow, the difference of the AC voltage phases become large between the sending end and the receiving end of a transmission line caused by its reactance. In this case the system sometimes becomes unstable due to the difficulty with synchronized operation of connected generators. Thus, when the length of the power transmission line is large, the limitation of power transmission determined via the system stability tends to become smaller than the limitation of the thermal capacity of conductors. A stability analysis requires a precise simulation of the dynamic behavior of generators and the model of generators and their control system. However, as a rough estimation of the stable power transmission abilities, sometimes the methodology of using SIL (Surge Impedance Load that means the amount of power able to be transmitted without voltage drops) is applied. For example, the following target is discussed.

(Source: Analytical Development of Loadability Characteristics for EHV and UHV Transmission Lines," R.D. Dunlop, R. Gutman and P.P. Marchenko, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-98, No. 2, March/April 1979.)

SIL of 230 kV transmission line: 132 MW

Limitation of stable power transmission (per circuit)

60 miles (around 100 km): 2.7 times of SIL, around 356 MW 100 miles (around 160 km): 2 times of SIL, around 264 MW 200 miles (around 320 km): 1.3 times of SIL, around 170 MW 300 miles (around 480 km): 1 times of SIL, around 132 MW

SIL of the 500 kV transmission line: 910 MW

Limitation of stable power transmission (per circuit)

60 miles (around 100 km): 2.7 times of SIL, around 2,547 MW 100 miles (around 160 km): 2 times of SIL, around 1,820 MW 200 miles (around 320 km): 1.3 times of SIL, around 1,183 MW 300 miles (around 480 km): 1 times of SIL, around 910 MW

The load of SLACO is 900 MW and its power supply requires many circuits of 230 kV transmission lines resulting in an uneconomical system. The power supply to SLACO requires 500 kV class transmission lines.

In general, the DC (direct current) transmission line is cheaper than the AC transmission line. In case of applying the transmission line with a large distance such as more than 1,000 km, it is said that the cost saving achieved by DC transmission lines becomes more than the cost of installation of AC-DC converter stations. The power transmission from hydropower stations with extremely large distance often uses DC transmission system.

Chapter 8 Scenarios of Power System Plan in South Region

8.1 **Power Development Scenarios**

The four scenarios of power development were set out through the discussion of DOE and EDL regarding the existence of the M Kaleum thermal power plant, hydropower plants located at Mekong Main River, Xekong 4&5, Nam Khon 1 hydropower stations and SLACO as stated in Chapter 6. According to the DOE's opinion, although there are two hydropower stations planned at the Mekong Main River, Thakho and Don Sahong, both of them will be developed and if its development is realized, Don Sahong hydropower station will be developed. Thus, all the cases do not take into consideration the development of Thakho. The power development scenarios are shown in Table 4-2.

Via discussions with the DOE and EDL, in the case of insufficient power sources in the South region, SLACO in the Attepeu province was assumed to be supplied directly from China via 500 kV transmission lines or DC lines. When surplus power becomes too large to export via the existing interconnection to EGAT, the power exports to China or Cambodia was assumed possible to be possible. Figure 8-1 shows the Target Area and the locations of the power stations and the large power consumers in the South region described in the PDP.

Figure 8-1 Location of Power Stations and Large Power Consumers

8.2 Cases of Power Network System Plans

Two cases of power network system plans corresponding with the power development scenarios were set out to examine the justification of the 115 kV Pakbo-Saravan transmission line as follows.

- ► TA: Construction of 115 kV Pakbo-Saravan in 2015
- ► TB: Construction of 230 kV Seno-Saravan in 2015 instead of 115 kV Pakbo-Saravan

The power flow limitations from the other regions to the Target Area were set out as shown in Table 8-1 from the viewpoints of the thermal capacity of transmission lines. The power flow limitations restricted via the system stability were set out as shown in Table 8-2 which is explained in the latter sections.

Table 8-1 Power Flow Limitation from Other Regions to Target Area

Transmission line	Limit
EGAT- Thakhek 2 circuits + EGAT-Pakbo 2 circuits	160 MW
115 kV Pakbo-Saravan 2 circuits	100 MW
115 kV Pakxan-Thakhek 2 circuits	100 MW

Table 8-2Power Flow Limitation from Other Regions to Target Area(Restriction by Transient Stability)

Transmission line				
115 kV Pakbo-Saravan 2 circuits + 230 kV Seno-Saravan 2circuits (operated at 115 kV)	250 MW			
230 kV Seno-Saravan 2circuits	250 MW			

In this study, through the discussion with DOE and EDL, the deficit in power was assumed to be compensated by imported power from EGAT via the existing interconnections around Vientiane and from China via the newly constructed transmission lines.

8.3 Study Cases

8.3.1 Application of Case TA to Case G1 (Construction of the 115 kV Pakbo-Saravan Transmission Line in 2015)

In Case G1, although without Xekong 4, 5 and Nam Khon 1, surplus power occurs in the South 2 area due to a lack of SLACO of 900 MW. In 2015, the deficit in power in the Target Area will be eliminated by power transmission via the 115 kV Pakbo-Saravan transmission line from the South 2 area simultaneously by transferring power from the 115 kV EGAT-Thakhek/Pakbo interconnections and the 115 kV Pakxan–Thakhek transmission line.

In 2018, the 230 kV designed Seno–Saravan transmission line will be constructed in parallel with the 115 kV Pakbo–Saravan transmission line to correspond with an increase in the power

supply from the South 2 area to the Target Area where the deficit in power will be increased. Table 8-3 shows the amount of surplus power in 2015, 2018 and 2020 in each area and Figure 8-2 illustrates the image of the correspondence by Case TA to the Case G1.

Table 8-3 Regional Surplus Power of Case G1

8.3.2 Application of Case TB to Case G1 (Construction of the 230kV Seno-Saravan Transmission Line Instead of the Construction of the 115 kV Pakbo-Saravan Transmission Line in 2015)

In 2015, the deficit in power in the Target Area will be eliminated via power transmission from the South 2 area by the 230 kV designed Seno-Saravan transmission line operated at 115 kV simultaneously by taking power from the 115 kV EGAT - Thakhek/Pakbo interconnections and the 115 kV Pakxan – Thakhek transmission line. In 2018, the 230/115 kV transformers will be installed at the Seno and Saravan to upgrade the Seno – Saravan transmission line to 230 kV and increase the capacity of the transmission line to correspond with an increase in the power

supply from the South 2 area to the Target Area where the deficit in power will be increased. Figure 8-3 illustrates the image of the correspondence by Case TB to Case G1.

8.3.3 Application of Case TA (1) to Case G2 (Construction of 115 kV Pakbo-Saravan Transmission Line in 2015) (Deficit in Power in S1 and S2 in 2015 Eliminated by Supplying via the Transmission Line to SLACO)

In Case G2, although with Xekong 4, 5 and Nam Khon 1, the deficit in power occurs in the South 2 area due to a lack of the M Kaleum thermal power station and with SLACO of 900 MW. Thus, SLACO is supplied from other areas via the exclusive 500 kV or DC transmission lines.

						(U	nit: MW)
					2015	2018	2020
				China			
			Full Gen	N&C	434.8	2,089.7	2,480.0
	M Kaleum		Tun Ocn.	Target Area	-288.8	-245.6	-270.2
Case	Xekong 4, 5 & Nam Khon 1	~		S2(Incl.SLACO)	174.2	1,168.9	1,201.3
G2	Mekong	~		China			
	SLACO	~	Firm Con	N&C	-190.6	383.2	653.4
			r inn Gen.	Target Area	-311.3	-363.8	-388.4
		l		S2(Incl.SLACO)	-213.6	-312.9	-280.5

 Table 8-4
 Regional Surplus Power of Case G2 Including SLACO

All the areas will have a deficit in power during the dry season in 2015. In this case, the transmission line for SLACO will be constructed from other areas, the deficit of power is assumed to be eliminated by supplying via the transmission line that also supplies the portion of the deficit in power in the South 1 area and the interconnection between South 1 and South 2

will transmit the power from South 2 to South 1. In 2015, the deficit in power in the Target Area will be eliminated via power transmission from the 115 kV Pakbo-Saravan transmission line from the South 2 area simultaneously by taking power via the 115 kV EGAT-Thakhek/Pakbo interconnections and the 115 kV Pakxan–Thakhek transmission line.

						(Ur	nt: MW)
					2015	2018	2020
				China			
			Full Cen	N&C	434.8	2,089.7	2,480.0
	M Kaleum		i uli Gen.	Target Area	-288.8	-245.6	-270.2
Case	Xekong 4, 5 & Nam Khon 1	~		S2(Excl.SLACO)	174.2	1,168.9	1,201.3
G2	Mekong 🖌			China			
	SLACO	~	Firm Gen	N&C	-190.6	383.2	653.4
	(Note: SLACO is assumed to be	to be	i iiii Gen.	Target Area	-311.3	-363.8	-388.4
	supplied directly from China)			S2(Excl.SLACO)	-113.6	587.2	619.6

 Table 8-5
 Regional Surplus Power in Case G2 Excluding SLACO

In 2018, the 230 kV designed Seno–Saravan transmission line will be constructed in parallel with the 115 kV Pakbo–Saravan transmission line to correspond with an increase in the power supply from the South 2 area to the Target Area where a deficit in power will be increased. Table 8-5 shows the surplus power in 2015, 2018 and 2020 in each area and Figure 8-4 illustrates the image of the correspondence by Case TA to Case G2.

Figure 8-4 Transmission Lines in Case TA (1) corresponding to Case G2

8.3.4 Application of Case TA (2) to Case G2 (Construction of 115 kV Pakbo-Saravan Transmission Line in 2015) (Deficit in Power in S1 and S2 in 2015 Eliminated by Supplying via the Interconnection from EGAT)

SLACO is supplied from other areas via the exclusive 500 kV or DC transmission lines in the same manner as in the previous case (1). This case assumed that the deficit in power in S1 and S2 in 2015 would be eliminated by supplying through the interconnection from EGAT. The newly expanded interconnections were assumed between EGAT and S1.

The interconnection between South 1 and South 2 will transmit the power from South 1 to South 2 in 2015. In 2018, the deficit in power in Target Area will be eliminated by power transmission by the 115 kV Pakbo-Saravan transmission line from South 2 area.

8.3.5 Application of Case TB (1) to Case G2 (Construction of 230kV Seno-Saravan Transmission Line Instead of Construction of 115 kV Pakbo-Saravan Transmission Line in 2015) (Deficit in Power in S1 and S2 in 2015 Eliminated by Supplying via the Transmission Line to SLACO)

In 2015, South 2 is supplied from other areas via the exclusive 500 kV or DC transmission lines to SLACO, and the deficit in power in the Target Area will be eliminated via power transmission from the South 2 area by the 230 kV designed Seno-Saravan transmission line operated at 115 kV simultaneously by taking power via the 115 kV EGAT - Thakhek/Pakbo interconnections and the 115 kV Pakxan – Thakhek transmission line. In 2018, the 230/115 kV transformers will be installed at Seno and Saravan to upgrade the Seno – Saravan transmission line to 230 kV and increase the capacity of the transmission line to correspond with an increase in the power supply from the South 2 area to the Target Area where the deficit in power will be increased. Figure 8-6 illustrates the image of the correspondence by Case TB to the Case G2.

8.3.6 Application of Case TB (2) to Case G2 (Construction of 230kV Seno-Saravan Transmission Line Instead of Construction of 115 kV Pakbo-Saravan Transmission Line in 2015) (Deficit in Power in S1 and S2 in 2015 Eliminated by Supplying via the Interconnection from EGAT)

This case assumed that the deficit in power in S1 and S2 in 2015 would be eliminated by supplying through the interconnection from EGAT. The newly expanded interconnections were assumed between EGAT and S1.

The interconnection between South 1 and South 2 will transmit the power from South 1 to South 2 in 2015. In 2018, the deficit in power in Target Area will be eliminated by power transmission by the 115 kV Pakbo-Saravan transmission line from South 2 area.

Figure 8-7 Transmission Lines in Case TB (2) corresponding to Case G2

The way of correspondence with Case G3 would be similar to Case G1 and Case G2 would be similar to Case G4. Especially in 2015, the deficit in power of S2 in Case G2 and G4 are the same because the commissioning year of Xekong 4&5, Nam Khon1 and Mekong is 2016. The methodologies of the interconnections between South 1 and South 2 up to 2020 become the following in correspondence with Case G1 to Case G4.

- ► Case TA
 - 2015: 115 k Pakbo-Saravan Transmission Line
 - 2018: 230 kV designed Seno-Saravan Transmission Line operated at 115 kV
- ► Case TB
 - 2015: 230 kV designed Seno-Saravan Transmission Line operated at 115 kV
 - 2018: Installation of 230/115 kV transformers at Seno and Saravan to upgrade Seno-Saravan transmission line to 230 kV

Chapter 9 Power System Analysis of Central-South Transmission System Development

9.1 Conditions for Analysis

EPSCO

This study carries out a power system analysis by using PSS/E which is used in EDL according to the transmission system development scenario described in Chapter 8

The transmission system development plan of EDL must satisfy the N-1 criteria which does not allow any power outages under the single failure of power equipment such as the transmission line and the transformer. This study adheres to the same criteria and creates a development plan taking into account the loss of high voltage transmission lines in the target area.

The following table shows the allowable voltage ranges under the normal and abnormal conditions in the planning criteria. This study follows the voltage criteria under both conditions. The reactive power compensation equipment (shunt capacitor for voltage rise and shunt reactor for voltage reduction) which controls the system voltage can be installed with relative ease than other major equipment and on a per-need basis. Furthermore, the voltage largely depends on the power flow in the lines. Therefore, this study allows PSS/E to place the shunt capacitors automatically.

_	Table 3-1 Voltage Kange of Fianning Offena						
	Voltage	Normal Condition	N-1 Contingency				
_	230kV	95 – 105 %	92 – 108 %				
	115kV	95 – 105 %	92 – 108 %				

Table 9-1 Voltage Range of Planning Criteria

The next table describes the fault current limits of each voltage level. The transmission system development plan must satisfy the criteria under the fault conditions. There are two types of fault currents to be calculated. One is the three-phase short circuit fault current and the other is the line to ground fault current. The PSS/E data provided by EDL doesn't include the zero-phase data which is necessary for the line to ground fault current calculation. Therefore, this study didn't analyze the line to ground fault current. In general, the line to ground fault current is smaller than the short circuit current, but if the power plants are electrically-closely located around the fault point or the transmission system around the fault pint consists of lots of power cables, the line to the ground fault current can be higher than the short circuit fault current. The target area of this study includes the area of hydro power sources, but it is assumed that the line to ground fault current is less than the criteria according to simulation results shown later.

Voltage	Max. Fault Current (kA)
230kV	40kA / 50kA
115kV	25kA / 31.5 kA

 Table 9-2
 Maximum Fault Current

As mentioned in Chapter 8, it is assumed that the incoming power flow into the target area in the dry season is higher than that of the rainy season. This increases the line power flow and makes the system severe. Therefore, the study analyzed the system during the dry season.

PSS/E data was provided by EDL and the Consultant gave necessary changes and corrections to this data. The following table shows the newly input line impedances in the target area. It is assumed that the unit impedance of the 115kV Pakbo-Nongdeun-Taothan-Saravan transmission line is the same as that of the 115kV Pakxan-Thakhek transmission line which was financed by Japan. The $2 \times ACSR 610 \text{ mm}^2$ line is assumed to be the transmission line of the 230kV Seno-Saravan in consideration of the required transmission capacity.

Voltage	From	То	Km	R(pu)	X(pu)	Y(pu)	MVA	Note
115kV	Pakbo	Nongdeun	5.0	0.0050	0.0165	0.0021	185	
115kV	Nongdeun	Taothan	147.0	0.1338	0.4410	0.0559	120	
115kV	Taothan	Saravan	66.3	0.0603	0.1989	0.0252	120	
115kV	Seno	Nongdeun	40.0	0.0364	0.1200	0.0152	185	
115kV	Seno	Saravan	215.0	0.0379	0.4434	0.1183	180	230kV designed
230kV	Seno	Saravan	215.0	0.0095	0.1108	0.4732	860	

 Table 9-3
 Impedance of Transmission Lines in Target Area

The "MVA" in Table 9-3 refers to the thermal capacity of each transmission line. When the transmission line length is short, the maximum transmission capacity is equivalent to the thermal capacity. However, especially for the long-distance transmission line, the transmission capacity constraint determined via the transient stability should be considered, since it will be much lower than that of the thermal capacity. An example is shown later in this chapter.

9.2 Power Flow Control

The import/export power flows are controlled by the phase shifter in this study in order to achieve the power flow conditions illustrated in the previous chapter. EDL also discussed the power flow control via the phase shifter in their PDP 2010-2020.

The target area will experience a power shortage. On the other hand, the southern area has lots of potentials of power sources. There is no transmission line available to transmit power from the south to the target area. Hence, it is assumed that the target area imports the power from Thailand if necessary and surplus power is exported to Cambodia.

FPSC

The power flow of the DC system can be controlled, but it is difficult to control the power flow of the AC system, since the power flow of the AC system obeys Ohm's law. This implies that the large power flow is found in the law impedance areas, whereas the small power flow is found in the high impedance areas, regardless of the thermal capacity of each line.

The system of EDL is connected to EGAT system at some points. According to the aforementioned electricity characteristics, EDL will experience a loop flow, which means the power generated in Laos is supplied to the customer in Laos via the EGAT system. Imported power prices are higher than that of exported power, and this is economically not beneficial for EDL.

The large interconnected system such as the European network and USA network face the same problem and the power flow control is one of the major issues that need to be solved. Recently, the phase shifter or the phase shifting transformer has been installed in the system to control the direction and amount of the power flow by changing the phase angle. This enables EDL to control power imports from Thailand and power exports to Cambodia.

The general phase angle range of the phase shifter is -30 to +30 degree. The angle difference between EDL and the Thailand/Cambodia system should be within a practical range for flexible power flow control (The large angle difference under normal conditions is not preferable.) The careful discussion and study is necessary to connect both systems with the phase shifter.

9.3 Power Supply to Taothan Area by 22kV Distribution Line from Saravan S/S

The power demand of the Taothan substation is assumed to be 4.3 MW according to the demand forecast by EDL. Case TB assumes that the 230kV Seno-Saravan transmission line and the power supply of the Taothan area via the 22kV distribution line in consideration of its demand scale and its inexpensive construction costs compared to the 115kV transmission line.

EDL uses the ACSR Wolf 150mm² conductor as one of the standard distribution lines and the following table shows the study conditions used in the preliminary study to obtain the required circuit number for the cost estimation of the 22kV distribution line from Saravan to Taothan.

Item		Condition
22kV Voltage Criteria	Normal	95% – 105% (0.95 – 1.05 pu)
	N-1 Contingency	90% – 105% (0.90 – 1.05 pu)
22kV Distribution Line	Conductor	ACSR Wolf (150mm ²)
	Impedance	R: 0.224Ω/km / X: 0.328Ω/km
	Capacity	12.8MVA/circuit
Target Area	Section	Saravan-Taothan
	Length	66.3(km)
	Power Factor	80% at sending end of Saravan 22kV Bus

Table 9-4 Study Conditions for Preliminary Study of 22kV Distribution Line

As shown in Table 9-4, the 22kV distribution line of the ACSR Wolf has a 12.8MVA capacity per circuit and it can transmit power to the Taothan area via double circuits even under the N-1 condition. However, the voltage at the receiving end (Taothan) can't satisfy the voltage criteria in the case of the 22kV double circuits between Saravan and Taothan since the line length is very long considering the voltage level of the 22kV distribution line.

The voltages at the receiving end are 0.953pu under normal conditions and 0.924pu under the N-1 condition when the distribution line has 4 circuits as shown in Table 9-5. It has been concluded that the 4 circuits of the 22kV distribution line are necessary to supply power to Taothan are from the Saravan substation.

No. of circuit	Capacity	Voltage (pu)		Power	. (MW)	Loss	
	(MVA)	Saravan	Taothan	Saravan	Taothan	MW	%
2	25.6	1.025	0.860	4.91	4.30	0.61	12.5
3	38.4	1.025	0.924	4.65	4.30	0.35	7.6
4	51.2	1.025	0.953	4.48	4.30	0.18	4.1

Table 9-5 Required Number of 22kV Distribution Line for Saravan-Taothan

9.4 Power Flow and Voltage Analysis in the Year 2015

The study targets the dry season as the severer assumption as mentioned in section 9.1. This study has developed some scenarios shown in the previous chapter. However, the same power supply-demand balance is assumed in each scenario. Therefore, the following two cases are examined in this study:

- Case TA: 115kV Pakbo-Nongdeun-Taothan-Saravan 2 circuits
- Case TB: 230kV designed Seno-Saravan 2 circuits operated in 115kV

The simplified power flow and detailed power flow maps are shown in Figure 9-1 to Figure 9-3. Both Cases satisfy N-1 criteria and voltage criteria.

EPSC

Table 9-6 shows the transmission system losses of the target area in the year 2015. The total system losses of Cases TA and TB are 19.6 MW and 10.4 MW, respectively. Case TA produces more losses than Case TB, because the impedance of the 115kV Pakbo-Saravan line in Case TA is much higher than that of the 230kV Seno-Saravan line in Case TB. The difference of the losses is considered in the cost calculation of the study.

Casa	Substation		Power fl	ow (MW)	Loss	Loss rate
Case	From	То	From	То	(MW)	(%)
	Saravan	Taothan	101.2	98.2	3.0	3.0%
	Taothan	Nongdeun	93.6	87.8	5.8	6.2%
	Pakbo	Nongdeun	69.9	69.9	0.0	0.0%
TA	Nongdeun	Seno	34.6	34.4	0.2	0.6%
	Thakhek	Pakbo	67.2	65.4	1.8	2.7%
	Khonsong	Thakhek	125.8	117	8.8	7.0%
		Total	492.3	472.7	19.6	4.0%
	Saravan	Taothan	4.6	4.6	0.0	0.0%
	Saravan	Seno	102.0	100.0	2.0	2.0%
	Seno	Nongdeun	65.8	65.0	0.8	1.2%
ТВ	Pakbo	Nongdeun	58.2	58.2	0.0	0.0%
	Thakhek	Pakbo	55.0	53.8	1.2	2.2%
	Khonsong	Thakhek	112.0	105.6	6.4	5.7%
		Total	397.6	387.2	10.4	2.6%

 Table 9-6
 Transmission System Losses of Target Area in the Year 2015

Figure 9-1 Simplified Power Flow Map in Dry Season in the Year 2015

TEPSCO NIPPON KOEI

Figure 9-2 Power Flow Map in Dry Season in the Year 2015 – Case TA

Figure 9-3 Power Flow Map in Dry Season in the Year 2015 – Case TB

9.5 Power Flow and Voltage Analysis in the Year 2020

The study examines the following two cases regardless of the development scenarios illustrated in the previous chapter.

► Case TA: 115kV Pakbo-Nongdeun-Taothan-Saravan 2 circuits

230kV designed Seno-Saravan 2 circuits operated in 115kV

► Case TB: 230kV Seno-Saravan 2 circuits

EPSC

The simplified power flow and detailed power flow maps are shown in Figure 9-4 to Figure 9-6. Both Cases satisfy N-1 criteria and voltage criteria.

Figure 9-6 shows the transmission system losses of the target area in the year 2020. Both cases need to transmit 250MW to the target area from Saravan. The total system losses of Case TA and TB are 32.0 MW and 25.0 MW, respectively. Case TA produces more losses than Case TB, because the Seno-Saravan line is operated as the 230kV transmission line and the line impedance is much smaller than that of the 115kV operated line.

EPSCO NIPPON KOEI

Case TA (Pakbo-Nongdeun-Taothan-Saravan 115kV 2 circuits and Seno-Saravan 230kV designed transmission line operated at 115kV 2 circuits)

Figure 9-4 Simplified Power Flow Map in Dry Season in the Year 2020

Casa	Substation		Power fl	ow (MW)	Loss	Loss rate
Case	From	То	From	То	(MW)	(%)
	Seno	Saravan	137.4	134.0	3.4	2.5%
	Saravan	Taothan	119.8	115.4	4.4	3.7%
	Taothan	Nongdeun	108.4	100.8	7.6	7.0%
	Nongdeun	Pakbo	74.1	74.1	0.0	0.0%
	Seno	Nongdeun	115.8	113.2	2.6	2.2%
	Pakbo	Thakhek	15.2	15.2	0.0	0.0%
Тл	Khonsong	Thakhek	143.2	133.2	10.0	7.0%
IA	M.Phin	Seno	18.2	18.2	0.0	0.0%
	M.Phin	Sepon M	68.8	65.8	3.0	4.4%
	Sepon M	Mahaxai	9.0	9.0	0.0	0.0%
	Thakhek	Mahaxai	42.6	42.2	0.4	0.9%
	Thakhek	Cement Fact.	47.1	46.6	0.5	1.1%
	Cement Fact.	Mahaxai	13.5	13.4	0.1	0.7%
		Total	913.1	881.1	32.0	3.5%
	Saravan	Taothan	7.0	7.0	0.0	0.0%
	Saravan	Seno	250.0	247.2	2.8	1.1%
	Seno	Nongdeun	219.1	210.9	8.2	3.7%
	Nongdeun	Pakbo	71.1	71.1	0.0	0.0%
	Pakbo	Thakhek	12.2	12.2	0.0	0.0%
	Khonsong	Thakhek	136.0	126.8	9.2	6.8%
ТВ	M.Phin	Seno	8.4	8.2	0.2	2.4%
	M.Phin	Sepon M	78.6	75.0	3.6	4.6%
	Sepon M	Mahaxai	18.2	18.0	0.2	1.1%
	Thakhek	Mahaxai	36.4	36.2	0.2	0.5%
	Thakhek	Cement Fact.	44.1	43.6	0.5	1.1%
	Cement Fact.	Mahaxai	16.5	16.4	0.1	0.6%
		Total	897.6	872.6	25.0	2.8%

Table 9-7 Transmission System Losses of Target Area in the Year 2020

Figure 9-5 Power Flow Map in Dry Season in the Year 2020 – Case TA

9.6 Fault Current Calculation

FPSC

As mentioned in section 9.1, the PSS/E data provided by EDL doesn't include the zero sequence impedance which is necessary for the line to ground fault current calculation. Therefore, only the three phase fault is calculated via the PSS/E function of the Automatic Sequence Fault Calculation.

Table 9-8 shows the results of the fault current calculation. As shown in the table, the fault current level of each bus is much less than the maximum fault current limit in both cases in each year.

					(Unit: kA)		
Yea	r	20	15	20	2020		
Substation	Voltage	Case TA	Case TB	Case TA	Case TB		
Pakbo	115kV	5.6	5.7	7.2	7.3		
Nongdeun	115kV	5.4	5.5	7.0	7.1		
Taothan	115kV	3.8	2.7	4.3	3.0		
Saravan	115kV	5.8	5.9	8.3	7.8		
Saravan	230kV	N/A	N/A	N/A	4.4		
Seno	115kV	3.3	4.4	5.6	7.1		
Seno	230kV	N/A	N/A	N/A	3.5		

Table 9-8 Results of Fault Current Calculation

9.7 Stability Analysis

The interconnection plans between Savannakhet in South 1 and Saravan in South 2 are as follows:

- 115 kV Pakbo-Saravan transmission line with double circuits of 218.5 km
- 230 kV Seno-Saravan transmission line with double circuits of 215 km

The power flow limitations of those transmission lines with a long length determined by the system stability are smaller than the limitations determined by the thermal capacity of the conductors. In this section, the power flow limitations restricted by the system stability for the aforementioned transmission lines are analyzed by using the simplified model of the system from South 1 to South 2 shown in Figure 9-7 on the PSS/E Software.

Figure 9-7 Model for Stability Analysis

Governors are installed in thermal power plants and the thyristor excitation system is assumed to be at each generator. The capacities of the 230/115 kV substations are adjusted by changing the numbers of the transformers of 200 MVA because of the change in power flow of the transformers for the cases.

System stability was evaluated for the case of a single circuit fault cleared by the circuit breakers 0.1 s after the fault for the 230 kV system or 0.14 s after the fault for 115 kV.

In case of parallel operations of the 115 kV Pakbo-Saravan and the 230 kV Seno-Saravan transmission lines, the system can be kept stable when the total power flow is 250 MW as shown in Figure 9-8. The figure at the left side of Figure 9-9 shows the swing curves of the power outputs of generators illustrating the stable status with damping oscillation going to the nominal power output of the generators, However, when the total amount of power flow becomes 450 MW, as shown in the figure at the right side, the swing curves of the power outputs of the generators doesn't become converged indicating the instability of the system.

Figure 9-8 System Model of 230 kV 2 Circuits and 115 kV 2 Circuits with 250 MW Power Transmission

Figure 9-9 Power Swing Curves in the System of 230 kV 2 Circuits and 115 kV 2 Circuits - Single Circuit Fault on 230 kV Line (250 MW)

Figure 9-10 Power Swing Curves in the System of 230 kV 2 Circuits and 115 kV 2 Circuits - Single Circuit Fault on 230 kV (400 MW at left side/450 MW at right side)

In a similar manner, the system stability for the cases was analyzed. The power flow limitations restricted by the transient stability are summarized in Table 9-9.

Table 9-9	Power Flow L	_imitations	Restricted	by '	Transient	Stability

	Cases	Power Flow Limitation Restricted by Stability (Total amount of power flow from Saravan to Seno and Pakbo)
(1) (2)	115 kV transmission line 2 circuits 230 kV transmission line 2 circuits	400 MW
(1) (2)	115 kV transmission line 2 circuits 230 kV transmission line 2 circuits operated at 115 kV	250 MW
(1)	230 kV transmission line 2 circuits	250 MW

Chapter 10 Candidates of Measures in South 1 Area and Prioritized Project

10.1 Candidates of Measures in South 1 Area

Figure 10-1 to Figure 10-4 illustrates the countermeasures against Cases G1 to G4 by Cases TA and TB.

Figure 10-1 Power System of Target Area in Case TA (2015)

Figure 10-2 Power System of Target Area in Case TA (2020)

Figure 10-3 Power System of Target Area in Case TB (2015)

Figure 10-4 Power System of Target Area in Case TB (2020)

10.2 Power System in Target Area After 2020

After 2020, the power supply required from other regions is considered increased because the power demand in Target Area becomes increased and there are few power stations developed in this area. On the other hand, the stability limitation of the power transmission in the power network system up to 2020 would be around 250 MW both in Case TA and Case TB. Thus, Case TA will require the 230/115 kV Seno and Saravan substations to upgrade the Seno-Saravan transmission line to 230 kV and Case TB will require a new route, for example, the 115 kV Pakbo-Saravan transmission line. As for the results, both Case TA and Case TB are considered to need a transmission system between South 1 and South 2 as shown in Figure 10-5.

Figure 10-5 Power System of Target Area in Case TA and TB (after 2020)

10.3 Comparison between Case TA and Case TB

Case TA (Construction of the 115 kV Pakbo-Saravan transmission line in 2015) and Case TB (Construction of the 230kV Seno-Saravan transmission line instead of the construction of the 115 kV Pakbo-Saravan transmission line in 2015) were compared. The difference between Case TA and Case TB is the schedule of its investment and their system losses although both cases will be expected to supply to the same power demand and respond to the same domestic power generation and the final system configurations (after 2020) would become the same.

In this section, a cost comparison was made between Case TA and TB by estimating the cost of facilities and system losses. The amount of the difference of the system losses was estimated from the results of the power flow analysis and the cost of system losses was evaluated via the

power import tariffs from EGAT. The year of becoming the same system configuration both of CaseTA and Case TB was assumed in 2025 according to the growth of power demand in the South 1 area. The conditions for cost comparison are shown in Table 10-1.

Case TA	2015-2017 2018-2024	19.6 MW		
Case IA	2018-2024			
		32.0 MW		
Caso TR	2015-2017	10.4 MW		
Case IB	2018-2024	25.0 MW		
Loss of 230/115 kV Transformers (Iron loss for 4 x 200 MVA)				
Deale distribution Lange for a surger surgely de Tasthan				
Peak distribution Loss for power supply to Taothan				
Annual loss factor				
Unit cost of loss (import tariff from EGAT)				
115kV Pakbo-Saravan Transmission Line Project				
	45,50	1,540 USD		
	45,50 Trans. Line	1,540 USD 105,376,793 USD		
line and in spite of iven their ded for a	45,50 Trans. Line Substations	1,540 USD 105,376,793 USD 34,247,259 USD		
line and in spite of iven their ded for a	45,50 Trans. Line Substations 6,500	1,540 USD 105,376,793 USD 34,247,259 USD 0,000 USD		
`)) C 2015-2019 2020-2024		

 Table 10-1
 Conditions for Cost Comparison

Table 10-2 shows the results of the cost comparison. After 2025, due to the same system configurations, the costs of Case TA and Case TB are the same. Case TB has a larger initial investment than Case TA because it develops the 230 kV system as the first step. The total costs at present value indicate that Case TA is more economical than Case TB.

Thus, the following schedule is recommended in Case TA.

- ► 2015: 115 kV Pakbo-Saravan Transmission Line
- ► 2018: 230 kV designed Seno-Saravan transmission line operated at 115 kV
- ► After 2020: 230/115 kV transformers installed in Seno and Saravan to upgrade the Seno-Saravan Transmission line to 230 kV

From the aforementioned results, in the same manner as in the case of the JICA Study on the Power Network System Plan (MP Study), the 115 kV Pakbo–Saravan transmission line is recommended as the highest prioritized project.

 Table 10-2
 Cost Comparison of Both Cases

(Unit: USD)

	Case A					Case B				
Year	Facilities (USD)	Incremental Cost of System Loss from Case B (USD)	Total Incremental Cost (USD)	Total Incremental Cost at present value (USD)	Scenario	Facilities (USD)	Incremental Cost of System Loss from Case B (USD)	Total Incremental Cost (USD)	Total Incremental Cost at present value (USD)	Scenario
2015	45,501,540	2,575,440	48,076,980	45,317,165	115kV Pakbo-Saravan T/L	111,876,793	1,392,840	113,269,633	106,767,493	230kV Seno-Saravan T/L 22kV Saravan-Taothan D/L
2016		2,575,440	2,575,440	2,356,892			1,392,840	1,392,840	1,274,646	
2017		2,575,440	2,575,440	2,288,245			1,392,840	1,392,840	1,237,520	
2018	105,376,793	4,204,800	109,581,593	94,526,045	230kV Seno-Saravan T/L	34,247,259	3,661,680	37,908,939	32,700,584	230/115kV Seno & SaravanS/S
2019		4,204,800	4,204,800	3,521,454			3,661,680	3,661,680	3,066,599	
2020		4,204,800	4,204,800	3,418,887		6,500,000	3,687,960	10,187,960	8,283,744	22kV Saravan-Taothan D/L
2021		4,204,800	4,204,800	3,319,308			3,687,960	3,687,960	2,911,310	
2022		4,204,800	4,204,800	3,222,629			3,687,960	3,687,960	2,826,514	
2023		4,204,800	4,204,800	3,128,766			3,687,960	3,687,960	2,744,189	
2024		4,204,800	4,204,800	3,037,637			3,687,960	3,687,960	2,664,261	
2025	34,247,259	0	34,247,259	24,020,338	230/115kV Seno & SaravanS/S	42,428,000	0	42,428,000	29,758,146	115kV Pakbo-Saravan T/L 22kV Saravan-Taothan D/L
2026		0	0	0			0	0	0	
2027		0	0	0			0	0	0	
2028		0	0	0			0	0	0	
2029		0	0	0			0	0	0	
2030		0	0	0			0	0	0	
2032		0	0	0		1	0	0	0	
2033		0	0	0			0	0	0	
2034		0	0	0			0	0	0	
2035		0	0	0			0	0	0	
2036		0	0	0			0	0	0	
2037		0	0	0			0	0	0	
2038		0	0	0			0	0	0	
	Total at Present Value		188,157,366			Total at	Present Value	194,235,005		

10.4 The Number of Circuits of the 115 kV Pakbo-Saravan Transmission Line and its Conductors

The 115 kV Pakbo-Kengkok transmission line is to be basically constructed with double circuits to secure power supply ability even in case of a fault of a single circuit. EDL is now planning the Nongdeun substation at the land neighbored to or in a proposed industrial zone near Pakbo on the way to the existing 115 kV Pakbo-Kengkok transmission line.

Thus, we confirmed the situations of deriving the transmission lines around the Pakbo substations. Via discussions with EDL and DOE, the area shown in Figure 10-6 was to be set out as the project area of the 115 kV Pakbo-Saravan transmission line with the double circuit.

Because the peak load of Nongdeun substation is forecasted to be 120 MW after 2015 and the Kengkok substation is to be around 10 to 18 MW, the power flow from Pakbo to Nongdeun would exceed 100 MW when the direction of the power flow is from Nongdeun to Taothan. Because the capacity of the transmission line between Pakbo and Kengkok is around 100 MW per circuit, three circuits will be required for the interval between Pakbo and Nongdeun if a single circuit fault is considered.

Furthermore, the power flow in the power network system in Laos is varied for the wet and dry seasons because Laos's power generation mainly consists of hydropower stations. For example, when the power generation outputs are relatively small in the South 2 area, it can be considered to transmit around 100 MW from Pakbo or Nongdeun to Taothan or Saravan. In this case, the power flow between Pakbo and Nongdeun exceeds 200 MW and in consideration with a single circuit fault, the remaining two circuits should have more than 200 MW. On the other hand, ACSR 240 mm2 has a capacity of only around 100 MW per circuit, TACSR 240 mm2 whose capacity is 30% to 40% more than the same size conductor, ACSR 240 mm2 needs to be applied.

- There is a possibility of an increase in power flow between Saravan and Taothan where hydropower stations are planned with several 10 MW.
- If the 230 kV Seno-Saravan transmission line is not available in the case of accidents, a portion of the power may be transmitted via this project line.
- There is the possibility of an increase in power flow due to the uncertainty of power development plans in the South area after 2020.

Another consideration may be possible using the upper size conductor, ACSR 410 mm², however, TACSR 240 mm² was found to be more economical from the results of the JICA Study on the Power Network System Plan, therefore, TACSR 240 mm² is recommended for the conductor used in this project.

The 115 KV Taothan substation will be installed on the route of the 115 kV Pakbo-Saravan transmission line following the results of the JICA Study (MP Study).

Chapter 11 Design Confirmation of the Facilities of the Highest Prioritized Project in Central-South Area

11.1 Transmission Line Facilities

EPSCO

11.1.1 Present Situation of Transmission Line Route of the Highest Prioritized Project

Since one and a half years have passed since "the Study on Power Network System Plan in Lao People's Democratic Republic" (hereafter "MP study") implemented from October 2008 to January 2010, we conducted a route survey of the transmission line proposed as the highest prioritized project in the MP study (hereafter "MP transmission line") to confirm the present situation of the route.

(1) 115kV Pakbo Substation

After the MP study, the 115kV Pakxan-Pakbo transmission line financed by a yen loan was completed in May 2011. The study team confirmed that there is enough space to install the incoming tower of the MP transmission line to Pakbo substation between the 115kV Pakxan-Pakbo transmission line and the existing 115kV Pakbo-Kengkok transmission line (hereafter "existing 115kV transmission line") as shown in the following picture.

Figure 11-1 Incoming Tower Location of Pakbo Substation

(2) SEZ and Nongdeun Substation

As stated by EDL, there is a plan to construct a new Nongdeun substation along the MP transmission line route, 4 km apart from the Pakbo substation in the SEZ to supply SEZ. The preliminary design and site acquisition for Nongdeun substation has already been finished, and the EPC contract between EDL and a consultant company in Thailand was made in July of 2011.

Then the construction will be completed within 2012. As a result of a discussion with EDL, the study team and EDL agreed that the MP transmission line should connect Pakbo substation and Saravan substation via Nongdeun substation and Taothan substation. Furthermore, the existing 115kV transmission line will also lead to Nongdeun substation.

The MP transmission line route needs to be rerouted in accordance with the incoming Nongdeun substation. We confirmed the present situation around the planned Nongdeun substation site and the SEZ. As shown in the following pictures, the situation of the land preparation in SEZ has not changed so much compared to the situation two years ago and the land leveling of the surrounding area of the planned Nongdeun substation site (Section No. 359-360) near the northwest edge of SEZ has not proceeded at all.

Figure 11-2 Present Situation in the SEZ

Figure 11-3 Existing 115kV Present Situation around Planned Nongdeun Substation Site (left: Pakbo side, right: Kengkok side)

At the same time, the 115kV transmission line which connects Nongdeun substation and M.Phin substation through the Ban Lao Souliya (Seno) substation is planned to be completed in 2014, and the Nongdeun substation was designed as such a configuration.

11.1.2 New Transmission Line Route

Based on the aforementioned circumstances, we studied how to connect the MP transmission line to Nongdeun substation with careful consideration of the following issues.

- Impacts on the environment and residents
- Consistency with EDL's facility planning

As a result of the study, the study team proposed the MP transmission line rerouting shown in the following figure and agreed on it with EDL. This new route runs in parallel with the existing 115kV transmission line from Pakbo substation and leads into Nongdeun substation. Then the route goes out line from Nongdeun substation and return to the originally proposed route.

The study team confirmed that no residential area nor nature reserve area exists on the new route through the site survey, so that no impact to the resettlement nor to the environment by rerouting exists. In regard to the incoming Nongdeun substation of the MP transmission line, it matches the bay configuration designed by EDL as well as EDL's facility planning. Via this rerouting, the MP transmission line will not be affected by the design and/or the progress of the 115kV transmission line between Nongdeun and M.Phin via Ban Lao Souliya (Seno) planned to be constructed by China around the same time.

The study team also confirmed that EDL has already finished the site acquision for Nongdeun substation in the SEZ and there is no existing resettlement or environmental impact.

Furthermore, EDL is negociating with SEZ developer if the above mentioned route can pass thourgh the SEZ in parallel with the existing line or not. Therfore, the final route may change to efficient one.

Image of new transmission line route around Nongdeun S/S

11.1.3 Design of the Transmission Line Facilities

As a result of reviewing the latest power development plan and the demand forecast, the study team confirmed that the design policy of the MP study can be applied as well. Therefore,
the study team applied the designs of the MP study such as the tower configuration and the foundation design to the rerouting part in this study.

11.1.4 Quantities of Transmission Line Materials

TEPSCO

The quantities of transmission line materials in regard to the rerouting such as towers, conductors, ground wires, insulators, insulator assemblies, accessories for the conductor and ground-wire and tower foundations are described in the following tables.

	Unit	М	P study	th	is study	In	crement
Туре	Weight [ton]	Tower [Nos]	Total Weight [ton]	Tower [Nos]	Total Weight [ton]	Tower [Nos]	Total Weight [ton]
A1	6.0	466	2796.0	466	2796.0	-	-
A2	7.0	18	126.0	18	126.0	-	-
B1	8.5	52	442.0	52	442.0	-	-
B3	11.1	1	11.1	1	11.1	-	-
C1	10.4	6	62.4	6	62.4	-	-
D1	11.5	5	57.5	5	57.5	-	-
D1+6.0	15.0	-	-	2	30.0	2	30.0
DE	13.8	4	55.2	6	82.8	2	27.6
To	otal	552	3550.2	556	3607.8	4	57.6

 Table 11-1
 Number and Total Weight of Towers

 Table 11-2
 Quantities of Conductor and Ground Wire

		MP study	/		this study	/	Increment							
Туре	Number [Nos]	Route Length [km]	Quantity [km]	Number [Nos]	Route Length [km]	Quantity [km]	Number [Nos]	Route Length [km]	Quantity [km]					
TACSR240mm ²	6	218.5	1376.6	6	218.9	1379.1	6	0.4	2.5					
AC70mm ²	1	218.5	229.4	1	218.9	229.8	1	0.4	0.4					
OPGW70mm ²	1	218.5	229.4	1	218.9	229.8	1	0.4	0.4					

Chapter 11

		11	M	P study	thi	s Study	Inc	rement
Tower Type	Items	Q'ty [Pcs]	Tower [Nos]	Sub-total Quantity [Pcs]	Tower [Nos]	Sub-total Quantity [Pcs]	Tower [Nos]	Total Quantity [Pcs]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	27,540		-					
	Single String Set	6	459	2,754	459	2,754	-	-
	Insulator	120	26	3,120	26	3,120		-
	Double String Set	6	20	156	20	156	-	-
	Insulator	120	60	7,200	63	7,560	S	360
	Single String Set	12	00	720	05	756	5	36
	Insulator	240	7	1,680	Q	2,160	ر د	480
	Double String Set	12	'	84	5	108	2	24
Total	lr	nsulators		39,540		40,380		840
	Insula	ator Sets		3,714		3,774		60

Table 11-3 Quantities of Insulators and Insulator Assemblies

 Table 11-4
 Quantities of Fittings of Conductor and Ground Wire

Eittinge	MP study	this study	Increment
Fittings	[Pcs]	[Pcs]	[Pcs]
Conductor Dampers	6,600	6,660	60
GW Dampers	1,100	1,110	10
OPGW Dampers	1,100	1,110	10
Conductor Sleeves	689	689	-
GW Sleeves	115	115	-
OPGW Joint Boxes	42	42	-
Suspension GW Fittings	485	485	-
Tension GW Fittings	67	71	4
Suspension OPGW Fittings	485	485	-
Tension OPGW Fittings	67	71	4

Table 11-5	Quantities of	of Tower	Foundations
Table 11-5	Quantities	or rower	roundations

		Concrete	1	MP study	t	his study	I	ncrement
Soil	Foundation	Volume /Tower [m³]	Tower [Nos]	Total Concrete Volume [m ³]	Tower [Nos]	Total Concrete Volume [m ³]	Tower [Nos]	Total Concrete Volume [m ³]
	A-I	7.0	480	3,360.0	480	3,360.0	-	-
	B-I	12.4	50	620.0	50	620.0	-	-
Ι	C-I	16.2	8	129.6	8	129.6	-	-
	D-I	21.8	5	109.0	7	152.6	2	43.6
	DE-I	31.3	4	125.2	6	187.8	2	62.6
II	A-II	9.9	4	39.6	39.6 4 39.6		-	-
III	B-III	22.8	1	22.8	1	22.8	-	-
		Total	552	4,406.2	556	4,512.4	4	106.2

11.2 Substation Facilities

11.2.1 Pakbo Substation

FPSC

The study team confirmed that there have been no changes compared with the MP study as of Junuary 2010.

11.2.2 Taothan Substation

The study team confirmed that there have been no changes compared with the MP study as of January 2010. Furthermore, the site acquisition of the Taothan substation has been completed by EDL and the Sign board for indication of construction site of Taothan substation is installed in the site.

Figure 11-5 Sign Board in the Planned Construction Site of Taothan S/S by EDL

11.2.3 Saravan Substation

The study team confirmed that there have been no changes compared with the MP study as of January 2010.

11.2.4 Nongdeun Substation

(1) General

As for Nongdeun SS, EDL has no construction plans as of the MP study, January 2010. However, since the power demand forecast of the special economic zone (SEZ) will be high, power supply from Pakbo substation to SEZ area used by the 22kV line is difficult. It is planned for the SEZ area.

The design of Nongdeun SS was completed already. It will be started in 2011 and per the present timeline will be completed and commissioned in 2012. Therefore, the design for Nongdeun SS under the Project is to be focused on the substation facilities after the EDL project.

The general profile of Nongdeun SS after completion of the EDL Project is as follows:

i)	Location	Savannakhet City in Savannakhet Province
ii)	Busbar system	Main and transfer busbar system
iii)	Main Transformer (as of beginning of operation)	115/ 22kV 30MVA Transformer: 1 unit
iv)	115 kV switchgear (as of beginning of operation)	transformer bay: 1 bay transmission line bay: 2 bays (1 x Pakbo SS, 1 x Kengkok SS)
v)	22 kV feeders (as of beginning of operation)	Outgoing Feeders:6 feeders Service TR feeder: 1 feeder Capacitor feeder:1 feeder

(2) Design and Scope of Works

VIPPON KOEI

FPSC

The installation of two transmission line bays connected to Pakbo SS and two transmission line bays connected to Taothan SS are necessary in Nongdeun SS. Therefore, the result of the discussion with EDL is that the two TL bays of Pakbo SS at #⁽²⁾ and #⁽³⁾ are to be installed and the TL bays of Taothan SS at #⁽¹⁾ and #⁽¹⁾ are to be installed, respectively.

Since, Nongdeun SS will be planned in anticipation of future expansion at a beginning time, the land expansion works are out of scope for this project.

1	2	3	4	5	6	Ø	8	9	10	1	12
TL bay Pakbo 1	TL bay Pakbo 2	TL bay Pakbo 3	TL bay Seno 2	TL bay Seno 1	TR bay # 2	TR bay # 1	TR bay #3	Bus-tie	TL bay Taothan 1	TL bay Taothan 2	TL bay Kengkok
			(Future Plan)	(Future Plan)	(Future Plan)		(Future Plan)				

Figure 11-6 Nongdeun Substation, 115kV Switchyard Layout Plan

The scope of works for Nongdeun SS under the Project is as follows:

(a) Extension of gantries and busbars

- Extension of gantries at #2, #3, #10 and #11 including overhead bus work
- Extension of busbars (main and transfer busbars)

(b) Installation of four TL bays(Pakbo SS at #2), #3 and Taothan SS at #10, #11)

Installation of new 115 kV switchgear for Pakbo SS at #2, #3, and installation of new 115 kV switchgear for Taothan SS at #10, #11.
(A TL bay consists of 1 set of circuit breakers, 2 sets of disconnecting switches, 1

set of a disconnecting switch with an earthing switch, 1 set of current transformers, 1 set of capacitor voltage transformers, and 1 set of surge arresters.)

- The installation of protection relay and control panels in the substation control building

(c) Civil and erection works

- Foundation work
- Erection work
- Wiring work

- Grounding work including extension of the existing grounding mesh
- Extension of cable trenches, etc.
- (d) Procurement of accessories including conductors, cables, insulators, etc., and special tools and measuring instruments for operations and maintenance.
- (e) Procurement of spare parts

FRSC

As a result of the design for Nongdeun SS, the following drawings are attached in Figure 11-8 - Figure 11-10.

- Drawing No. SS_NON_01: Nongdeun Substation, Single Line Diagram
- Drawing No. SS_NON_02: Nongdeun Substation, Layout
- Drawing No. SS_NON_03: Nongdeun Substation, Section

(3) Specification and Quantity of Major Equipment

(a) General Electrical Requirements

General electrical requirements for 115 kV equipment of the Project are as follows:

i)	Nominal system voltage	115 kV
ii)	Rated voltage (r.m.s. value) (Highest voltage for equipment)	123 kV
iii)	Rated frequency	50 Hz
iv)	Insulation level	
	Rated short-duration power-frequency withstand voltage (r.m.s. value)	230 kV
	Rated lightning impulse withstand voltage (peak value)	550 kV
	Minimum clearance of phase-to-earth	1,100 mm
	Standard clearance of phase-to-earth	1,400 mm
	Minimum clearance of phase-to-phase	1,400 mm
_	Standard clearance of phase-to-phase	2,300 mm
v)	Rated current	1,250 A
vi)	Rated short-duration withstand current (3 sec)	40 kA

(b) Specifications of the 115kV Switchgear

All main facilities installed under the Project should be of the outdoor type. Major equipment specifications are as follows.

		<u>115 kV equipment</u>
a)	Circuit Breakers (3 -phase)	SF6 gas type Rated voltage: 123 kV Rated normal current: 1,250 A
		Short-circuit breaking current: 40 kA
		Rated insulation level (IEC 60694)
		 Rated short-duration power-frequency withstand voltage (rms): 230 kV Rated lightning impulse withstand voltage (peak): 550 kV
b)	Disconnecting	Two-column rotary type with horizontal operation
	Switches (DS)	Rated voltage: 123 kV
	(3 phase)	Rated continuous current: 1,250 A
		Rated short-duration withstand current: 40 kA
		Rated insulation level (IEC 60694)
		- Rated short-duration power-frequency withstand voltage (rms): 230 kV
		- Rated lightning impulse withstand voltage (peak): 550 kV
C)	DS with Earthing Switch (3 phase)	same as item b)
d)	Current	Patad valtaga: 123 kV
u)	Transformer	The bay: $800-400/1/1/1/1 = 5P20 = c_1 = 0.5 = 25VA$
	Transformer	TR bay: 200-100/1/1/1/1 A, 5P20 & cl. 0.5, 25VA
e)	Voltage	
- /	Transformers	Voltage ratio: 115 /√3 kV, 110 /√3 V, 110 /√3 V
		Accuracy and burden;
		-secondary (measurement): 0.5, 100 VA
		-tertiary (protection): 3P, 100 VA
		Coupling capacitance: 8,800 pF
g)	Surge Arresters	ZnO type with surge counter
		Rated voltage: 123 kV
		Rated voltage (rms): 96 kV
		Rated discharge current: 10 kA

Since Nongdeun SS has been planning construction as of July 2011, the specifications of the 115 kV facilities of Nongdeun SS might be altered, and they should be confirmed during the detailed design stage for the Project, accordingly.

(c) Quantity of Major Equipment

With reference to the single-line diagrams and layout drawings of each substation, the quantity of the main facilities of each substation required for the Project is shown in the following table.

	2 2	
	Major equipment	Nongdeun SS
1)	115 kV switchgear	
a)	Circuit breakers (3 phase)	4 units
b)	Disconnecting switches (3 phase)	8 units
c)	DS with earthing switch (3 phase)	4 units
d)	Current transformers	4 sets
e)	Voltage transformers	4 sets
f)	Surge arresters	4 sets

Table 11-6 Quantity of Major Equipment

(d) 115 kV Transmission Line Protection Relay system

The following protection relay systems are to be applied for the Project:

- Main protection: distance relay phase & earth
- Back-up protection: directional over-current & earth fault relay
- Auto-reclosing relay

EPSCO

- Breaker failure relay
- Synchro-check relay

11.3 Implementation Schedule of the Highest Prioritized Project

The period from the appointment of the project consultants to the conclusion of the turn-key contracts for both the transmission line and substations was assumed to be 12 months and the period from the conclusion of the contracts to the taking-over of the facilities was assumed to be 24 months, therefore the total implementation period was assumed to be 36 months after the appointment of the project consultants in the MP study. Even if the incoming addition of Nongdeun substation is considered, the total implementation period is assumed to be 36 months, the same as the conclusion of the MP study.

The following figure shows the assumed implementation schedule.

FRSC

Work Items	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
Detail Design Stage		1						~~~		-		10.00		1											1		1.00		1000		1		· · · ·					
Contract signed with the Consultants	4									1							1		1. erek 1. erek	1											- 21			1				1
Preliminary route survey and soil boring																			0.20									22						- 3			1	1
Detail design																																			\square			
Preparation of Bid Document			1.00																																			
Bid and Contract with Contractors																			1																			
Bid announcement						4													1.5	1																		
Preparation of Bid document by contractors						¢		-	=															_											T			
Bid opening and evaluation																																			T			_
Contract negotiation and sighed with contract	ors		- 22										8							10				1							1			- 22	\square			8
Works for Transmission lines	Г				8. S.								2			1.1			60.00								8	20										
Check survey and soil boring			1																1120															1			1	
Cleaning of right of way																																			\square			
Construction of access road																																						
Facility design and approval			- 5		1.00			100					-		_			Ξ		- 1		100		-	1.52			0.82			- 2		100	- 5				2
Manufacturing and transportation			1																			_				Ξ	_											
UXO survey																																			T			
UXO clearance, if any																																			T			_
Foundation work			10								~~~			1					2.2																\square			1
Tower erection work											20			24		202																		- 13	П			1
Stringing work			1																1020																			
Test and commissioning																																						
Works for Substation Facilities																																				Т	1	
Detail design, survey, and soil investigation					1.00	1		202			100								0.00	- 8		100		-	1.52			0.62					200	- 5				-
Facility design and approval													1		_	_		-																1				
Manufacturing and transportation																						_	-			_											1	
Civil work	Г																										1								\neg			_
Erection work	Г		- 22											1					1.00	0		0.0															1	
Test and commissioning																																			ŧ			

Figure 11-7 Assumed Implementation Schedule

11.4 Cost of the Highest Prioritized Project

11.4.1 Compensation for Lands and Right of Way (ROW), Costs for UXO Investigation and Clearance

In accordance with the incoming Nongdeun substation, four transmission line towers need to be constructed additionally. All the additional lands are not paddy fields and the compensation costs for lands and ROW would be same as the estimation of the MP study.

And the costs for the UXO investigation and clearance would also be the same as the estimation of the MP study because there are no UXO in the rerouting area.

11.4.2 Construction Cost of Transmission Line Facilities

As for the construction cost of transmission line facilities for the highest prioritized project, the study team converted the unit prices of equipment and civil & erection works with the adjustment of the exchange rate from 100 JPY/USD as of 2009 to 83 JPY/USD as of now and reviewed the unit prices of some equipment, then estimated by multiplying revised unit prices by those quantities calculated in section 11.1.4.

Table 11-7 and Table 11-9 show the construction costs of the transmission line facilities for

the highest prioritized project and its breakdown respectively. In addition, Table 11-8 shows the construction costs of the transmission line facilities estimated in the MP study and the increased amount in this study.

				•
Sections	Items	FC	LC	Total
Pakbo S/S	Plant & Equipment	13,330.3	0.0	13,330.3
- Taothan S/S	Civil & Erection	1,017.3	4,464.6	5,481.9
	Sub-total	14,347.6	4,464.6	18,812.2
Taothan S/S	Plant & Equipment	5,722.9	0.0	5,722.9
- Saravan S/S	Civil & Erection	436.0	1,911.4	2347.4
	Sub-total	6,158.9	1,911.4	8,070.3
Total	Plant & Equipment	19,053.2	0.0	19,053.2
	Civil & Erection	1,453.3	6,376.0	7829.3
	Total	20,506.5	6,376.0	26,882.5

 Table 11-7
 Construction Cost of Transmission Line Facilities (1,000USD)

Table 11-8Construction Cost of Transmission Line Facilities in MP study andIncreased Amount in this Study (1,000USD)

Sections	Itoma	Estima	ation in MP	study	Increased Amount		
Sections	nems	FC	LC	Total	FC	LC	Total
Pakbo S/S	Plant & Equipment	11,979.4	0.0	11,979.4	1,350.9	0.0	1,350.9
-Taothan S/S	Civil & Erection	999.0	4,245.8	5,244.8	18.3	218.8	237.1
(152.6 km)	Sub-total	12,978.4	4,245.8	17,224.2	1,369.2	218.8	1,588.0
Taothan S/S	Plant & Equipment	4,839.5	0.0	4,839.5	883.4	0.0	883.4
- Saravan S/S	Civil & Erection	417.4	1,765.9	2,183.3	18.6	145.5	164.1
(66.3 km)	Sub-total	5,256.9	1,765.9	7,022.8	902.0	145.5	1,047.5
Total	Plant & Equipment	16,818.9	0.0	16,818.9	2,234.3	0.0	2,234.3
(218.9 km)	Civil & Erection	1,416.4	6,011.7	7,428.1	36.9	364.3	401.2
	Total	18,235.3	6,011.7	24,247.0	2,271.2	364.3	2,635.5

Table 11-9 Breakdown of Construction Cost for Transmission Line Facilities

Assumption:

(1) Foundation Type: 100% of Pad Type Foundations

(2) Soil	Conditions:	Normal
----------	-------------	--------

2			115kV, 2cct, 217.4km, Condutcor : I-Hawk, Single												
ō	No	Items			Pakbo S/S-	Tao Than S/S	(152.2 km)			1	Tao Than S	S/S-Saravan S/S	S (66.3 km)		Remarks
ate	110.	nems	Llnit	O'ty	Unit Rate	Amount	FC	LC	Llnit	O'tv	Unit Rate	Amount	FC	LC	Remains
0			Offic	Qiy	(US\$)	(US\$)	(US\$)	(US\$)	Unit	Qty	(US\$)	(US\$)	(US\$)	(US\$)	
	1	Tower	ton	2,531.9	1,600	4,051,040	4,051,040	0	ton	1,075.9	1,600	1,721,440	1,721,440	0	
	2	Conductor	km	961.4	6,145	5,907,803	5,907,803	0	km	417.7	6,145	2,566,767	2,566,767	0	
	3	OPGW 60mm2	km	160.2	5,900	945,180	945,180	0	km	69.6	5,900	410,640	410,640	0	
	4	OH G.W.	km	160.2	1,200	192,240	192,240	0	km	69.6	1,200	83,520	83,520	0	
	5	Single Suspension Insulator String	set	1,920	440	844,800	844,800	0	set	834	440	366,960	366,960	0	
÷	6	Single Tension Insulator String	set	540	740	399,600	399,600	0	set	216	740	159,840	159,840	0	
EIGI	7	Double Suspension Insulator String	set	108	680	73,440	73,440	0	set	48	680	32,640	32,640	0	
FRI	8	Double Tension Insulator String	set	84	980	82,320	82,320	0	set	24	980	23,520	23,520	0	
QN	9	Conductor Dumper	unit	4,668	30	140,040	140,040	0	unit	1,992	30	59,760	59,760	0	FC:100%
ч Ц	10	OPGW Dumper	unit	778	20	15,560	15,560	0	unit	332	20	6,640	6,640	0	FC.100%
ANC	11	GW Dumper	unit	778	20	15,560	15,560	0	unit	332	20	6,640	6,640	0	LC.0 /0
UR	12	Conductor Sleeve	unit	480	20	9,600	9,600	0	unit	209	20	4,180	4,180	0	
NI	13	GW Sleeve	unit	80	15	1,200	1,200	0	unit	35	15	525	525	0	
ST,	14	OPGW Joint Box	unit	29	600	17,400	17,400	0	unit	13	600	7,800	7,800	0	
00	15	GW Suspension Unit	unit	338	100	33,800	33,800	0	unit	147	100	14,700	14,700	0	
	16	GW Tenssion Unit	unit	51	200	10,200	10,200	0	unit	20	200	4,000	4,000	0	
	17	OPGW Suspension Unit	unit	338	200	67,600	67,600	0	unit	147	200	29,400	29,400	0	
	18	OPGW Tenssion Unit	unit	51	200	10,200	10,200	0	unit	20	200	4,000	4,000	0	
	19	Others	lot	1	4%	512,703	512,703	0	lot	1	4%	219,959	219,959	0	
		Subtotal				13,330,286	13,330,286	0				5,722,930	5,722,930	0	
	1	Survey & S. Investigation	km	152.6	2,000	305,200	122,080	183,120	km	66.3	2,000	132,600	53,040	79,560	FC:40%, LC:60%
70	2	Access Construction	km	305.2	1,000	305,200	91,560	213,640	km	132.6	1,000	132,600	39,780	92,820	FC:30%, LC:70%
ANI	3	Land Clearing	km	152.6	1,000	152,600	30,520	122,080	km	66.3	1,000	66,300	13,260	53,040	FC:20%, LC:80%
NON SI	4	Foundation (Volume of Concrete)	m ³	3,169.4	500	1,584,700	316,940	1,267,760	m ³	1,343.0	500	671,500	134,300	537,200	FC:20%, LC:80%
IAT NSE	5	Tower Erection	ton	2,531.9	240	607,656	182,297	425,359	ton	1,075.9	240	258,216	77,465	180,751	FC:30%, LC:70%
CPE	6	Stringing	km	152.6	3,000	457,800	137,340	320,460	km	66.3	3,000	198,900	59,670	139,230	FC:30%, LC:70%
Р ЧSР Ш	7	Inland Transportion			CIF*10%	1,333,029	0	1,333,029			CIF*10%	572,293	0	572,293	FC:0%, LC:100%
IST RAI	8	Miscellaneous	lot	1	5%	237,309	44,037	193,272	lot	1	5%	101,620	18,876	82,745	
З г	9	General Expenses	lot	1	10%	498,349	92,477	405,872	lot	1	10%	213,403	39,639	173,764	
		Subtotal				5,481,843	1,017,251	4,464,592				2,347,432	436,030	1,911,403	
		Total				18,812,130	14,347,537	4,464,592				8,070,363	6,158,960	1,911,403	26,882,492

Estimated Condition ; Aluminum base LME 1550US\$/ton, Exchange Rate ; 83Yen/US\$, 3.0Yen/THB

Total [US\$]	26,882,492
(FC)	20,506,497
(LC)	6,375,995

11.4.3 Construction Cost of Substation Facilities

Table 11-10 summarizes the construction costs of the substation facilities for the Project. Since the extension of Nongdeun SS is added, the construction cost of the substation facilities increases compared with the MP study.

			=	=
Substations	Items	FC	LC	Total
Pakbo S/S	Plant & Equipment	681.0	65.8	746.8
	Civil & Other Works	32.0	315.7	347.7
	Sub-total	713.0	381.5	1094.5
Nongdeun S/S	Plant & Equipment	1156.3	110.6	1266.9
	Civil & Other Works	14.0	233.6	247.6
	Sub-total	1170.3	344.2	1514.5
Taothan S/S	Plant & Equipment	4164.7	437.9	4602.6
	Civil & Other Works	95.0	1,491.9	1,586.9
	Sub-total	4259.7	1929.8	6189.5
Saravan S/S	Plant & Equipment	688.6	62.9	751.5
	Civil & Other Works	14.0	82.0	96.0
	Sub-total	702.6	144.9	847.5
	Total	6845.6	2800.4	9646.0

 Table 11-10
 Construction Cost of Substation Facilities (1,000USD)

Table 11-11	Construction Cost of Substation Facilities in MP Study and Increased

Amount in This Study (1,000USD)

Substations	Itoms	Estim	ation in MP	study	Inc	unt	
Substations	nems	FC	LC	Total	Total FC LC		Total
Pakbo S/S	Plant & Equipment	681.0	65.8	746.8	0.0	0.0	0.0
	Civil & Other Works	32.0	315.7	347.7	0.0	0.0	0.0
	Sub-total	713.0	381.5	1,094.5	0.0	0.0	0.0
Nongdeun S/S	Plant & Equipment	-	-	-	1,156.3	110.6	1,266.9
	Civil & Other Works	-	-	-	14.0	233.6	247.6
	Sub-total	-	-	-	1,170.3	344.2	1,514.5
Taothan S/S	Plant & Equipment	4,069.9	427.5	4,497.4	94.8	10.4	105.2
	Civil & Other Works	95.0	1,479.9	1,574.9	0.0	12.0	12.0
	Sub-total	4,164.9	1,907.4	6,072.3	94.8	22.4	117.2
Saravan S/S	Plant & Equipment	688.6	62.9	751.5	0.0	0.0	0.0
	Civil & Other Works	14.0	82.0	96.0	0.0	0.0	0.0
	Sub-total	702.6	144.9	847.5	0.0	0.0	0.0
	Plant & Equipment	5,439.5	556.2	5,995.7	1,251.1	121.0	1,372.1
Total	Civil & Other Works	141.0	1,877.6	2,018.6	14.0	245.6	259.6
	Total	5,580.5	2,433.8	8,014.3	1,265.1	366.6	1,631.7

Table 11-12 Construction Cost of Pakbo Substation

1. Plant and equipment

				FC (U	S\$)	LC (US\$)	
						Insurance, inland	
	Items	unit	Q'ty	CIF	Total FC	installation	Total LC
1.1	115 kV outdoor switchyard						
1	Circuit breakers	set	2	50,000.00	100,000.00	4,800.00	9,600.00
2	Disconnectors	set	4	6,900.00	27,600.00	800.00	3,200.00
3	Disconnectors with earthing switches	set	2	8,100.00	16,200.00	900.00	1,800.00
4	Current transformers	pcs	6	7,800.00	46,800.00	600.00	3,600.00
5	Capacitor voltage transformers	pcs	6	9,100.00	54,600.00	500.00	3,000.00
6	Surge arresters	pcs	6	2,000.00	12,000.00	200.00	1,200.00
7	Post insulators	pcs	8	1,100.00	8,800.00	100.00	800.00
8	115 kV busbar with structure	lot	1	8,000.00	8,000.00	1,500.00	1,500.00
9	Power coductors	lot	1	2,500.00	2,500.00	1,000.00	1,000.00
10	Suspension insulator disks	lot	1	3,000.00	3,000.00	1,000.00	1,000.00
11	Steel structures (Gantries), 2 towers & 2 beams	lot	1	36,000.00	36,000.00	3,600.00	3,600.00
12	Accessories, connectors, hardware, etc	lot	1	14,000.00	14,000.00	800.00	800.00
1.2	Protection & Control Panels						
1	115 kV Line feeder protection	set	2	78,000.00	156,000.00	3,400.00	6,800.00
2	115 kV TL bay control	set	2	25,000.00	50,000.00	2,800.00	5,600.00
1.3	Optical Fiber Communication System						
1	Optical fiber cable (36 cores)	lot	1	3,200.00	3,200.00	2,000.00	2,000.00
2	OPGW joint boxes	lot	1	3,400.00	3,400.00	500.00	500.00
1.4	Power and Control cables						
1	1000 V solid dielectric power cables	lot	1	26,400.00	26,400.00	3,120.00	3,120.00
2	PVC insulated control cables	lot	1	48,600.00	48,600.00	7,800.00	7,800.00
1.5	Earthing, Lightning Protection and Lighting System						
1	Earthing system (integration in the existing system)	lot	1	25,300.00	25,300.00	7,500.00	7,500.00
2	Lightning protection system	lot	1	1,300.00	1,300.00	800.00	800.00
3	Lighting system	lot	1	3,000.00	3,000.00	600.00	600.00
1.6	Spare Parts & Special Tools						
1	5% of Total above	lot	1		32,300.00		
2	Documents	lot	1		2,000.00		
					681.000.00		65.820.00

2. Civil & Other Works

			FC (U	S\$)	LC (L	JS\$)
	unit	Q'ty	FC	Total FC	LC	Total LC
2.1 Preliminary Works						
1 Site survey	lot	1	2,000.00	2,000.00	2,000.00	2,000.00
2 Sub-soil investigation	lot	1	2,000.00	2,000.00	1,000.00	1,000.00
3 Civil engineering works	lot	1	30,000.00	30,000.00	0.00	0.00
4 Temporary works, site office	lot	1		0.00	36,000.00	36,000.00
2.2 Site Cleaning & Formation Works						
1 Cutting and removing trees & shrubs	lot	1		0.00	9,100.00	9,100.00
2 Demolishing existing structure	lot	1			13,500.00	13,500.00
3 Cutting, filling and compacting earth	lot	1		0.00	42,000.00	42,000.00
4 Earth retaing structure	lot	1		0.00	23,100.00	23,100.00
2.3 Civil Works						
1 Cable trenches & ducts	lot	1		0.00	32,000.00	32,000.00
2 Foundations	lot	1		0.00	62,000.00	62,000.00
3 Water supply and drainage	lot	1		0.00	28,000.00	28,000.00
4 Servise roads	lot	1		0.00	20,000.00	20,000.00
5 Chainlink fences	lot	1		0.00	19,200.00	19,200.00
6 Gravelling	lot	1		0.00	29,800.00	29,800.00
				32,000.00		315,700.00

Total 1,094,520.00

Table 11-13 Construction Cost of Nongdeun Substation

1. Plant and equipment

				FC (US\$)		LC (U	LC (US\$)	
						Insurance, inland		
	Items	unit	Q'ty	CIF	Total FC	installation	Total LC	
1.1	115 kV outdoor switchyard							
1	Circuit breakers	set	4	50,000.00	200,000.00	4,800.00	19,200.00	
2	2 Disconnectors	set	8	6,900.00	55,200.00	800.00	6,400.00	
3	B Disconnectors with earthing switches	set	4	8,100.00	32,400.00	900.00	3,600.00	
4	Current transformers	pcs	4	7,800.00	31,200.00	600.00	2,400.00	
5	5 Capacitor voltage transformers	pcs	4	9,100.00	36,400.00	500.00	2,000.00	
6	Surge arresters	pcs	4	2,000.00	8,000.00	200.00	800.00	
7	Post insulators	pcs	32	1,100.00	35,200.00	100.00	3,200.00	
ε	B Power coductors	lot	1	5,000.00	5,000.00	2,000.00	2,000.00	
ę	Suspension insulator disks	lot	1	6,000.00	6,000.00	2,000.00	2,000.00	
10) Steel structures (Gantries)	lot	1	72,000.00	72,000.00	7,200.00	7,200.00	
11	Accessories, connectors, hardware, etc	lot	1	24,000.00	24,000.00	1,600.00	1,600.00	
1.2	Protection & Control Panels							
1	115 kV Line feeder protection	set	4	78,000.00	312,000.00	3,400.00	13,600.00	
2	2 115 kV TL bay control	set	4	25,000.00	100,000.00	2,800.00	11,200.00	
1.3	Optical Fiber Communication System							
1	Optical fiber cable (36 cores)	lot	1	6,400.00	6,400.00	4,000.00	4,000.00	
2	2 OPGW joint boxes	lot	1	6,800.00	6,800.00	1,000.00	1,000.00	
1.4	Power and Control cables							
1	1000 V solid dielectric power cables	lot	1	39,600.00	39,600.00	5,400.00	5,400.00	
2	2 PVC insulated control cables	lot	1	72,900.00	72,900.00	7,800.00	7,800.00	
1.5	Earthing, Lightning Protection and Lighting System							
1	Earthing system (integration in the existing system)	lot	1	50,600.00	50,600.00	15,000.00	15,000.00	
2	2 Lightning protection system	lot	1	2,600.00	2,600.00	1,600.00	1,600.00	
3	B Lighting system	lot	1	3,000.00	3,000.00	600.00	600.00	
1.6	Spare Parts & Special Tools							
1	5% of Total above	lot	1		55,000.00			
2	2 Documents	lot	1		2,000.00			
_					1,156,300.00		110,600.00	

2. Civil & Other Works

			FC (US\$)		LC (US\$)	
	unit	Q'ty	FC	Total FC	LC	Total LC
2.1 Preliminary Works						
1 Site survey	lot	1	2,000.00	2,000.00	2,000.00	2,000.00
2 Sub-soil investigation	lot	1	2,000.00	2,000.00	1,000.00	1,000.00
3 Civil engineering works	lot	1	10,000.00	10,000.00	0.00	0.00
4 Temporary works, site office	lot	1		0.00	36,000.00	36,000.00
2.3 Civil Works						
1 Cable trenches & ducts	lot	1		0.00	25,000.00	25,000.00
2 Foundations	lot	1		0.00	110,000.00	110,000.00
3 Gravelling	lot	1		0.00	59,600.00	59,600.00
				14,000.00		233,600.00

Total 1,514,500.00

Table 11-14 Construction Cost of Taothan Substation

1. Plant and equipment

				FC (US\$)		LC (US\$)	
						Insurance, inland transportation &	
	Items	unit	Q'ty	CIF	Total FC	installation	Total LC
1.1	Transformers						
1	3 phase 115/22 kV transformer, 20 MVA	set	1	550,000.00	550,000.00	25,000.00	25,000.00
2	2 Auxiliary transformer, 22/0.4 kV, 100 kVA	set	1	20,000.00	20,000.00	3,000.00	3,000.00
1.2	115 kV outdoor switchyard						
1	Circuit breakers for TR bays & bus-tie	set	2	43,000.00	86,000.00	4,800.00	9,600.00
2	2 Circuit breakers for TL bays	set	4	50,000.00	200,000.00	4,800.00	19,200.00
3	3 Disconnectors	set	12	6,900.00	82,800.00	800.00	9,600.00
4	Disconnectors with earthing switches	set	5	8,100.00	40,500.00	900.00	4,500.00
5	5 Current transformers for TR bay	pcs	3	8,200.00	24,600.00	600.00	1,800.00
6	6 Current transformers for TL bays	pcs	12	7,800.00	93,600.00	600.00	7,200.00
7	' Capacitor voltage transformers	pcs	15	9,100.00	136,500.00	500.00	7,500.00
8	B Surge arresters	pcs	15	2,000.00	30,000.00	200.00	3,000.00
9	Post insulators	pcs	61	1,100.00	67,100.00	100.00	6,100.00
10	115 kV busbar with structure	lot	1	28,300.00	28,300.00	6,200.00	6,200.00
11	Power coductors	lot	1	22,800.00	22,800.00	4,800.00	4,800.00
12	2 Suspension insulator disks	lot	1	16,300.00	16,300.00	5,200.00	5,200.00
13	Steel structures (Gantries), 15 towers & 8 beams	lot	1	154,000.00	154,000.00	21,300.00	21,300.00
14	Accessories, connectors, hardware, etc	lot	1	66,000.00	66,000.00	4,000.00	4,000.00
1.3	22 kV outdoor switchgear						
1	Circuit breakers	set	7	15,100.00	105,700.00	1,800.00	12,600.00
2	2 Disconnectors	set	7	7,100.00	49,700.00	1,400.00	9,800.00
3	Disconnectors with earthing switches	set	5	8,200.00	41,000.00	1,700.00	8,500.00
4	Current transformers for TR bays	pcs	3	1,800.00	5,400.00	500.00	1,500.00
5	Current transformers for feeders	pcs	12	1,800.00	21,600.00	500.00	6,000.00
6	Capacitor voltage transformers	pcs	6	1,400.00	8,400.00	500.00	3,000.00
7	Surge arresters	pcs	15	900.00	13,500.00	400.00	6,000.00
8	Static capacitor bank, 2.5 MVar	set	1	32,500.00	32,500.00	1,600.00	1,600.00
g	Static capacitor bank, 5 MVar	set	1	40,000.00	40,000.00	2,000.00	2,000.00
10	Switch-Fuse Combinations for Aux. TR	set	1	4,100.00	4,100.00	1,900.00	1,900.00
11	22 kV busbar	lot	1	9,500.00	9,500.00	3,500.00	3,500.00
12	Power coductors	lot	1	7,600.00	7,600.00	2,400.00	2,400.00
13	3 22kV Power Cable(100m) with connection kit	set	4	21,500.00	86,000.00	2,600.00	10,400.00
14	Suspension insulator disks	lot	1	5,400.00	5,400.00	1,800.00	1,800.00
15	Steel structures (Gantries)	lot	1	36,000.00	36,000.00	8,800.00	8,800.00
16	Accessories, connectors, hardware, etc	lot	1	16,000.00	16,000.00	2,800.00	2,800.00
1.4	Protection & Control Panels						
1	115/22 kV transformer protection	set	1	82,000.00	82,000.00	4,000.00	4,000.00
2	2 115 kV Line feeder protection	set	4	78,000.00	312,000.00	3,400.00	13,600.00
3	3 115 kV busbar protection	set	1	63,000.00	63,000.00	3,100.00	3,100.00
4	115/22 kV transformer control	set	1	32,000.00	32,000.00	3,000.00	3,000.00
5	115 kV TL bay control	set	4	25,000.00	100,000.00	2,800.00	11,200.00
6	115 kV bus-tie control	set	1	16,000.00	16,000.00	2,500.00	2,500.00
7	22 kV feeder protection & control	set	4	47,000.00	188,000.00	2,400.00	9,600.00
8	22 kV static capacitor protection & control	set	1	12,000.00	12,000.00	2,400.00	2,400.00
g	Distributed Control System	lot	1	365,000.00	365,000.00	3,800.00	3,800.00
1.5	Optical Fiber Communication System						
1	SDH, MPX & ODB	lot	1	93,800.00	93,800.00	50,000.00	50,000.00
2	2 Optical fiber cable (36 cores)	lot	1	3,200.00	3,200.00	5,000.00	5,000.00
3	OPGW joint boxes	lot	1	3,400.00	3,400.00	500.00	500.00
4	Digital PABX	lot	1	21,700.00	21,700.00	3,000.00	3,000.00
5	Telephone system	lot	1	15,400.00	15,400.00	2,500.00	2,500.00
6	VHF radio telecommunication system	lot	1	28,800.00	28,800.00	5,300.00	5,300.00

Table 11-14 Construction Cost of Taothan Substation (Continued)

1.6	Power and Control cables						
1	1000 V solid dielectric power cables	lot	1	52,800.00	52,800.00	14,400.00	14,400.00
2	PVC insulated control cables	lot	1	97,200.00	97,200.00	20,800.00	20,800.00
1.7	DC installations						
1	110 V battery banks	set	2	16,400.00	32,800.00	1,400.00	2,800.00
2	2 48 V battrery banks	set	2	14,400.00	28,800.00	1,300.00	2,600.00
3	3 110 V battery charging system	set	2	11,900.00	23,800.00	1,100.00	2,200.00
4	48 V battery charging system	set	2	8,800.00	17,600.00	800.00	1,600.00
5	5 110 V DC distribution board	set	1	16,200.00	16,200.00	1,400.00	1,400.00
6	3 48 V DC distribution board	set	1	16,200.00	16,200.00	1,400.00	1,400.00
1.8	0.4 kV AC installations						
1	AC distribution board	set	1	32,800.00	32,800.00	2,900.00	2,900.00
1.9	Earthing, Lightning Protection and Lighting System						
1	Earthing system	lot	1	151,500.00	151,500.00	37,500.00	37,500.00
2	2 Lightning protection system	lot	1	28,000.00	28,000.00	6,400.00	6,400.00
3	B Lighting system	lot	1	22,000.00	22,000.00	3,800.00	3,800.00
1.10	Spare Parts & Special Tools						
1	5% of Total above	lot	1		197,800.00		
2	2 Documents	lot	1		10,000.00		
					4,164,700.00		437,900.00

2. Civil & Other Works

			FC (US\$)		LC (U	IS\$)
	unit	Q'ty	FC	Total FC	LC	Total LC
2.1 Preliminary Works						
1 Site survey	lot	1	5,000.00	5,000.00	7,000.00	7,000.00
2 Sub-soil investigation	lot	1	5,000.00	5,000.00	12,000.00	12,000.00
3 Civil engineering works	lot	1	85,000.00	85,000.00	0.00	0.00
4 Temporary works, site office	lot	1		0.00	120,000.00	120,000.00
2.2 Site Cleaning & Formation Works						
1 Cutting and removing trees & shrubs	lot	1		0.00	22,600.00	22,600.00
2 Demolishing existing structure	lot	1		0.00	27,000.00	27,000.00
3 Cutting, filling and compacting earth	lot	1		0.00	116,500.00	116,500.00
4 Earth retaing structure	lot	1		0.00	92,400.00	92,400.00
2.3 Civil Works						
1 Cable trenches & ducts	lot	1		0.00	168,000.00	168,000.00
2 Foundations	lot	1		0.00	278,000.00	278,000.00
3 Water supply and drainage	lot	1		0.00	84,000.00	84,000.00
4 Servise roads	lot	1		0.00	60,000.00	60,000.00
5 Chainlink fences	lot	1		0.00	52,000.00	52,000.00
6 Gravelling	lot	1		0.00	68,000.00	68,000.00
7 Oil pit for TR	lot	1		0.00	18,400.00	18,400.00
8 Sodding	lot	1		0.00	12,000.00	12,000.00
2.4 Building Works						
1 Control building & guard house	lot	1		0.00	354,000.00	354,000.00
2 Staff house	lot	1		0.00	100,000.00	100,000.00
				95,000.00		1,491,900.00

Total 6,189,500.00

Table 11-15 Construction Cost of Saravan Substation

1. Plant and equipment

				FC (US\$)		LC (US\$)	
						Insurance, inland	
	Items	unit	Q'ty	CIF	Total FC	installation	Total LC
1.1	115 kV outdoor switchyard						
1	Circuit breakers	set	2	50,000.00	100,000.00	4,800.00	9,600.00
2	2 Disconnectors	set	4	8,000.00	32,000.00	800.00	3,200.00
3	Disconnectors with earthing switches	set	2	10,000.00	20,000.00	900.00	1,800.00
4	Current transformers	pcs	6	8,000.00	48,000.00	600.00	3,600.00
5	Capacitor voltage transformers	pcs	6	9,500.00	57,000.00	500.00	3,000.00
6	Surge arresters	pcs	6	2,200.00	13,200.00	200.00	1,200.00
7	Post insulators	pcs	28	900.00	25,200.00	100.00	2,800.00
8	3 115 kV busbar with structure	lot	1	8,000.00	8,000.00	2,000.00	2,000.00
g	Power coductors	lot	1	2,500.00	2,500.00	1,000.00	1,000.00
10	Suspension insulator disks	lot	1	3,000.00	3,000.00	1,000.00	1,000.00
11	Steel structures (Gantries), 4 towers & 4 beams	lot	1	36,000.00	36,000.00	3,600.00	3,600.00
12	2 Accessories, connectors, hardware, etc	lot	1	14,000.00	14,000.00	800.00	800.00
1.2	Protection & Control Panels						
1	115 kV Line feeder protection	set	2	78,000.00	156,000.00	3,400.00	6,800.00
2	2 115 kV TL bay control	set	2	25,000.00	50,000.00	2,800.00	5,600.00
1.3	Optical Fiber Communication System						
1	Optical fiber cable (36 cores)	lot	1	3,200.00	3,200.00	2,000.00	2,000.00
2	2 OPGW joint boxes	lot	1	3,400.00	3,400.00	500.00	500.00
1.4	Power and Control cables						
1	1000 V solid dielectric power cables	lot	1	26,400.00	26,400.00	3,120.00	3,120.00
2	PVC insulated control cables	lot	1	48,600.00	48,600.00	7,800.00	7,800.00
1.5	Earthing, Lightning Protection and Lighting System						
1	Earthing system (integration in the existing system)	lot	1	2,000.00	2,000.00	2,000.00	2,000.00
2	2 Lightning protection system	lot	1	2,500.00	2,500.00	1,500.00	1,500.00
1.6	Spare Parts & Special Tools						
1	5% of Total above	lot	1		32,600.00		
2	2 Documents	lot	1		5,000.00		
					688,600.00		62,920.00

2. Civil & Other Works

			FC (US\$)		LC (US\$)	
	unit	Q'ty	FC	Total FC	LC	Total LC
2.1 Preliminary Works						
1 Site survey	lot	1	2,000.00	2,000.00	2,000.00	2,000.00
2 Sub-soil investigation	lot	1	2,000.00	2,000.00	1,000.00	1,000.00
3 Civil engineering works	lot	1	10,000.00	10,000.00		
4 Temporary works, site office	lot	1		0.00	25,000.00	25,000.00
2.2 Civil Works						
1 Cable trenches & ducts	lot	1		0.00	14,000.00	14,000.00
2 Foundations	lot	1		0.00	40,000.00	40,000.00
				14.000.00		82.000.00

Total 847,520.00

11.4.4 Total Project Costs

The conditions for the estimation of the total project costs which are the same as the conditions of the MP study are as follows;

- a) Physical contingencies for both the FC and the LC portions are estimated at 10% of transmission lines and substation facilities of the total construction costs including Price Contingency.
- b) Compensation cost for the lands and ROW, cost for environmental monitoring and cost for UXO investigation and clearance are included in the LC portion of the total costs.
- c) Consultant service fee is included in the FC & LC portions and estimated at approximately 7% of the total transmission line and substations' construction cost including Price Contingency.
- d) Physical contingencies for both the FC and the LC portions are estimated at 10% of transmission lines and substation facilities of the total construction costs.
- e) Price contingencies for the FC are estimated at 2.6% of each portion of the total construction costs and the LC portions are estimated at 8.4% of each portion of the total construction costs.
- f) Administration Cost, Tax and Duty and Interest During Construction are estimated based on experiences of 115kV Pakxan-Pakbo transmission line project.

Table 11-16 shows the total costs for the project estimated under the aforementioned conditions. The estimation of the MP study is also written in the table for reference.

Itomo	Esti	mation in MP	study	Estimation in this study			
nems	FC	LC	Total	FC	LC	Total	
Transmission Lines	18,235.3	6,011.7	24,247.0	20,506.5	6,376.0	26,882.5	
Substation Facilities	5,580.5	2,433.8	8,014.3	6,845.6	2,800.4	9,646.0	
Sub-total	23,815.8	8,445.5	32,261.3	27,352.1	9,176.4	36,528.5	
Compensation	-	166.8	166.8	-	166.8	166.8	
Environment Monitoring	-	43.1	43.1	-	43.1	43.1	
UXO Survey & Clear	-	271.2	271.2	-	271.2	271.2	
Consultant Fee	2,258.3	192.0	2,450.3	1,914.6	642.3	2,556.9	
Physical Contingency	1,190.8	422.3	1,613.1	2,811.8	994.7	3,806.5	
Price Contingency	714.5	253.4	967.9	765.9	770.8	1,536.7	
Administration Cost	-	-	-	-	1,998.2	1,998.2	
Tax & Duty	-	-	-	-	4,230.5	4,230.5	
Interest During Construction	-	-	-	526.8	-	526.8	
Total	27,979.4	9,794.3	37,773.7	33,371.2	18,294.0	51,665.2	

 Table 11-16
 Total Project Costs (1,000USD)

11.4.5 Disbursement Schedule of the Costs

The project will be carried out in 36 months as shown in Figure 11-7 in section 11.3. The conditions in preparing the disbursement schedule for the project investment are assumed below:

- a) The construction costs for the transmission line facilities and substation facilities for the project will be disbursed in the second and third year equally, after the conclusion of the contracts with the contractors.
- b) Compensation cost for the lands and ROW will be disbursed in the first year.
- c) Environmental monitoring cost will be disbursed in the second and third year equally.
- d) UXO investigation and clearance will be carried out before the excavation work of the foundations for the transmission line towers, and their costs will be disbursed in the second year.
- e) 20% of the consultant service fee will be disbursed in the first year and the remaining amount will be disbursed in the second and third year equally.
- 30% of both the physical and price contingencies will be disbursed in the second year and 70% in the third year.
- g) 30% of Administration Cost, Tax and Duty and Interest During Construction will be disbursed in the second year and 70% in the third year

Table 11-17 shows the disbursement schedule for the project costs over three years.

Mantha	lteree		MP study		This study		
Months	nems	FC	LC	Total	FC	LC	Total
1-12	T/L facilities	-	-	-	-	-	-
months	S/S facilities	-	-	-	-	-	-
	Compensation	-	166.8	166.8	-	166.8	166.8
	Monitoring	-	-	-	-	-	-
	UXO	-	-	-	-	-	-
	Consultant	451.7	38.4	490.1	382.9	128.5	511.4
	Contingencies	-	-	-	-	-	-
	Administration	-	-	-	-	-	-
	Tax & Duty	-	-	-	-	-	-
	Interest	-	-	-	-	-	-
	subtotal	451.7	205.2	656.9	382.9	295.3	678.2
13-24	T/L facilities	9,117.7	3,005.9	12,123.6	10,253.3	3,188.0	13,441.3
months	S/S facilities	1,674.2	730.1	2,404.3	3,422.8	1,400.2	4,823.0
	Compensation	-	-	-	-	-	-
	Monitoring	-	21.5	21.5	-	21.6	21.6
	UXO	-	271.2	271.2	-	271.2	271.2
	Consultant	903.3	76.8	980.1	765.8	256.9	1,022.7
	Contingencies	571.6	202.7	774.3	1,073.3	529.7	1,603.0
	Administration	-	-	-	-	599.5	599.5
	Tax & Duty	-	-	-	-	1,269.2	1,269.2
	Interest	-	-	-	158.0	-	158.0
	subtotal	12,266.7	4,308.2	16,574.9	15,673.2	7,536.3	23,209.5
25-36	T/L facilities	9,117.7	3,005.8	12,123.5	10,253.2	3,188.0	13,441.2
months	S/S facilities	3,906.4	1,703.7	5,610.1	3,422.8	1,400.2	4,823.0
	Compensation	-	-	-	-	-	-
	Monitoring	-	21.5	21.5	-	21.5	21.5
	UXO	-	-	-	-	-	-
	Consultant	903.3	76.8	980.1	765.8	256.9	1,022.7
	Contingencies	1,333.7	473.0	1,806.7	2,504.4	1,235.9	3,740.3
	Administration	-	-	-	-	1,398.7	1,398.7
	Tax & Duty	-	-	-	-	2,961.4	2,961.4
	Interest	-	-	-	368.8	-	368.8
	subtotal	15,261.0	5,280.9	20,541.9	17,315.0	10,462.6	27,777.6
	Total	27,979.4	9,794.3	37,773.7	33,371.1	18,294.2	51,665.3

Table 11-17 Disbursement Schedule (1,000USD)

Figure 11-8 Drawing No. SS_NON_01: Nongdeun Substation – Single Line Diagram

Figure 11-9 Drawing No. SS_NON_02: Nongdeun Substation – Layout

Figure 11-10 Drawing No. SS_NON_03: Nongdeun Substation – Section

Chapter 12 Economic Evaluation of the First Priority Project of the Central-South System

12.1 Benefit of First Priority Project

FRSC

The project of 115 kV Pakbo-Saravan transmission line in the central southern areas was evaluated from the viewpoint of the below benefits as:

- (1) Avoidance of power outage in the two southern areas
- (2) Reduction of exported and imported energy
- (3) Avoidance of investment of long distance 22 kV distribution line between Saravan-Taothan
- (4) Increased power supply capacity to Nongdeun Substation

(1) and (2) is based on the estimated values from the "Benefits of 115 kV Transmission Line" in section 6.4.

The amount of energy equivalent to avoid a power outage is 1 GWh every year from 2015 to 2018. The benefits of avoiding outages is estimated to be 0.2 USD/kWh, assuming that alternative dispersion power sources such as emergency diesel generators are operated for power outages.

Avoiding the spilled water of hydropower plants was evaluated by the difference of the unit price of imported and exported energy. The difference of the unit price of imported and exported energy was set as 0.19 BHT/kWh (0.0057 USD) based on the current contract between EGAT and EDL (1 BHT=0.03 USD).

The costs and system losses of the distribution line between Saravan-Taothan in Section 10.3 were used in this chapter.

Although the transmission lines supplied to Nongdeun substation consist of three lines from Pakbo and two lines from the 230 kV Seno substation, transmission lines, this study include two lines between Pakbo- Nongdeun substations. Two alternate lines between the Seno-Nongdeun substations are necessary if this project does not include the transmission lines. Thus, we assumed that this project can avoid investment for the transmission lines.

The financial benefits of this project is calculated based on the revenue obtained from increased demand due to the energy consumption of final customers, which is expected to be supplied by this transmission project. Transported energy was estimated based on a power flow calculation, and 488 GWh of energy per year is estimated to flow through the transmission lines of this project.

12.2 Economical and Financial Analyses of Highest Prioritized Project

(1) Economical Analysis of the Project

FPSC

The study team confirmed the economical validity of this transmission-transformation project based on a comparison of the Economic Internal Rate of Return (EIRR) and the Opportunity Cost of Capital (OCC). It is noted that 12 % is used as the OCC value of Laos based on the project of the "Power Network System Plan".

- The total project costs of this study have been obtained from Table 11-16 and Table 11-17.
- Annual operation and maintenance costs of this transmission-transformation project are assumed to be 1.5 % (transmission facilities) and 2.0 % (substation facilities) of the total investment cost for the facilities.
- Depreciation, payment of interests, and other payments of tax and customs are excluded from the economical costs.
- The local currency portion was converted into an economical price using the Standard Conversion Factor (SCF, 0.9).

The total project and economical costs are listed in Table 12-1. The calculated EIRR is shown in Table 12-2. The project is evaluated to be economically appropriate since 15 % of EIRR is greater than 12 % of the Opportunity Cost of Capital (OCC).

Table 12-1 Total Cost and Economical Cost of the Project

(Unit: 1,000USD)

Mantha	ltomo	Tot	al Project C	ost	Econo	omic Projec	t Cost	0.814
wonths	nems	FC	LC	Total	FC	LC	Total	U&IM
	T/L facilities	0.0	0.0	0.0	0.0	0.0	0.0	
	S/S facilities	0.0	0.0	0.0	0.0	0.0	0.0	
	Compensation	0.0	166.8	166.8	0.0	150.1	150.1	
	Monitoring	0.0	0.0	0.0	0.0	0.0	0.0	
From	UXO	0.0	0.0	0.0	0.0	0.0	0.0	
1St to 12th	Consultant	382.9	128.5	511.4	382.9	115.7	498.6	
months	Contingencies	0.0	0.0	0.0	0.0	0.0	0.0	
	Administration	0.0	0.0	0.0	0.0	0.0	0.0	
	Tax & Duty	0.0	0.0	0.0	-	-	-	
	Interest	0.0	0.0	0.0	-	-	-	
	subtotal	382.9	295.3	678.2	382.9	265.8	648.7	
	T/L facilities	10,253.3	3,188.0	13,441.3	10,253.3	2,869.2	13,122.5	
	S/S facilities	3,422.8	1,400.2	4,823.0	3,422.8	1,260.2	4,683.0	
	Compensation	0.0	0.0	0.0	0.0	0.0	0.0	
	Monitoring	0.0	21.6	21.6	0.0	19.4	19.4	
From	UXO	0.0	271.2	271.2	0.0	244.1	244.1	
13th to 24th	Consultant	765.8	256.9	1,022.7	765.8	231.2	997.0	
months	Contingencies	1,073.3	529.7	1,603.0	1,073.3	476.7	1,550.0	
	Administration	0.0	599.5	599.5	0.0	539.6	539.6	
	Tax & Duty	0.0	1,269.2	1,269.2	-	-	-	
	Interest	158.0	0.0	158.0	-	-	-	
	subtotal	15,673.2	7,536.3	23,209.5	15,515.2	5,640.4	21,155.6	
	T/L facilities	10,253.2	3,188.0	13,441.2	10,253.2	2,869.2	13,122.4	
	S/S facilities	3,422.8	1,400.2	4,823.0	3,422.8	1,260.2	4,683.0	
	Compensation	0.0	0.0	0.0	0.0	0.0	0.0	
	Monitoring	0.0	21.5	21.5	0.0	19.4	19.4	
From	UXO	0.0	0.0	0.0	0.0	0.0	0.0	
25th to 36th	Consultant	765.8	256.9	1,022.7	765.8	231.2	997.0	
months	Contingencies	2,504.4	1,235.9	3,740.3	2,504.4	1,112.3	3,616.7	
	Administration	0.0	1,398.7	1,398.7	0.0	1,258.8	1,258.8	
	Tax & Duty	0.0	2,961.4	2,961.4	-	-	-	
	Interest	368.8	0.0	368.8	-	-	-	
	subtotal	17,315.0	10,462.6	27,777.6	16,946.2	6,751.1	23,697.3	
Total		33,371.1	18,294.2	51,665.3	32,844.3	12,657.2	45,501.5	596.2

Table 12-2 Calculated EIRR

(Unit: USD)

		Cost Benefit				Benefit				
Year	Facilities	O&M	Total Cost	Power Supply Interruption	Import/Export	Avoiding Taothan D/L	Avoiding Seno Nongdeun T/L	Total Benefit		
2015	648,670	0	648,670	200,000	5,643,000	6,526,280	0	12,369,280		
2016	21,155,590	0	21,155,590	200,000	5,643,000	26,280	0	5,869,280		
2017	23,697,280	0	23,697,280	200,000	5,643,000	26,280	0	5,869,280		
2018	0	596	596	200,000	2,143,200	26,280	4,800,000	7,169,480		
2019	0	596	596	0	2,143,200	26,280	4,800,000	6,969,480		
2020	0	596	596	0	1,647,300	6,552,560	4,800,000	12,999,860		
2021	0	596	596	0	1,647,300	52,560	4,800,000	6,499,860		
2022	0	596	596	0	1,647,300	52,560	4,800,000	6,499,860		
2023	0	596	596	0	1,647,300	52,560	4,800,000	6,499,860		
2024	0	596	596	0	1,647,300	52,560	4,800,000	6,499,860		
2025	0	596	596	0	1,647,300	6,578,840	4,800,000	13,026,140		
2026	0	596	596	0	1,647,300	78,840	4,800,000	6,526,140		
2027	0	596	596	0	1,647,300	78,840	4,800,000	6,526,140		
2028	0	596	596	0	1,647,300	78,840	4,800,000	6,526,140		
2029	0	596	596	0	1,647,300	78,840	4,800,000	6,526,140		
2030	0	596	596	0	1,647,300	6,605,120	4,800,000	13,052,420		
2031	0	596	596	0	1,647,300	105,120	4,800,000	6,552,420		
2032	0	596	596	0	1,647,300	105,120	4,800,000	6,552,420		
2033	0	596	596	0	1,647,300	105,120	4,800,000	6,552,420		
2034	0	596	596	0	1,647,300	105,120	4,800,000	6,552,420		
2035	0	596	596	0	1,647,300	105,120	4,800,000	6,552,420		
2036	0	596	596	0	1,647,300	105,120	4,800,000	6,552,420		
2037	0	596	596	0	1,647,300	105,120	4,800,000	6,552,420		
2038	0	596	596	0	1,647,300	105,120	4,800,000	6,552,420		
2039	0	596	596	0	1,647,300	105,120	4,800,000	6,552,420		
							EIRR	15%		

(2) Financial Evaluation of Project

FPSC

Financial validation is studied based on a comparison between the Economic Internal Rate of Return (EIRR) and the Weighted Average Cost of Capital (WACC). It is noted that 2.7 % is used as the WACC value based on the project of the "Power Network System Plan".

- The total project cost of this study has been obtained from Table 11-16.
- Annual operation and maintenance costs of this transmission-transformation project are also assumed to be 1.5 % (transmission facilities) and 2.0 % (transformation facilities) of the total investment cost for facilities.
- Depreciation and payment of interests are excluded from the costs.
- A 2 % increase is expected in 2016, up to 18 % by 2016.
- According to discussions with EDL, the study team assumed that the unit financial worth of benefits will increase by 6 % every year up to 2016, using current electricity tariffs (average retail rate of 663 (Kip) in 2011). After 2016, the averaged tariff was assumed constant at 887 kip/kWh.
- According to the latest tariff survey (Tariff Study 2009), investment costs for the transformation system is estimated to be 14 % of the total investment cost of the electric power system including generation plants. Thus, the revenue of the project based on the FIRR was set at 14 %. The financial worth is calculated by multiplying the aforementioned retail rate and 14 % (transmission-transformation system).

The calculated FIRR is shown in Table 12-3. The project is evaluated to be financially appropriate since 6 % of FIRR is greater than 2.7 % of the Weighted Average Cost of Capital (WACC).

				(Unit: USD)
Maar		Cost		Benefit
rear	Facilities	O&M	Total Cost	Revenue
2015	678,200	0	678,200	4,529,616
2016	23,209,500	0	23,209,500	4,802,896
2017	27,777,600	0	27,777,600	5,089,840
2018	0	596	596	5,397,280
2019	0	596	596	5,718,384
2020	0	596	596	6,059,984
2021	0	596	596	6,059,984
2022	0	596	596	6,059,984
2023	0	596	596	6,059,984
2024	0	596	596	6,059,984
2025	0	596	596	6,059,984
2026	0	596	596	6,059,984
2027	0	596	596	6,059,984
2028	0	596	596	6,059,984
2029	0	596	596	6,059,984
2030	0	596	596	6,059,984
2031	0	596	596	6,059,984
2032	0	596	596	6,059,984
2033	0	596	596	6,059,984
2034	0	596	596	6,059,984
2035	0	596	596	6,059,984
2036	0	596	596	6,059,984
2037	0	596	596	6,059,984
2038	0	596	596	6,059,984
2039	0	596	596	6,059,984
			FIRR	6%

Chapter 13 Recommendations

13.1 The Transmission Line from Other Areas to Target Area in South Area

The power demand in Khammouane and Savannakhet of the South Area of Laos is expected to increase, especially in Industry and Mining. On the other hand, this area does not have so many locations for the installation of power plants and the capacity limitation of power flow from other areas exists. Thus, more power from other areas is needed.

Based on the results of this study, the transmission line connected to the Target Area is needed in 2015 from the South 2 area where surplus power is expected. An efficient construction schedule was found by first constructing the 115 kV Pakbo-Saravan transmission line in 2015 and second the 230 kV Seno-Saravan transmission line. Thus, the 115 kV Pakbo-Saravan transmission line should be implemented as the first prioritized project as follows.

- Pakbo-Nongdeun-Thaotan-Saravan 115 kV with 2 circuits
- Bay for 2 circuits at Pakbo substation
- Bay for 4 circuits at Nongdeun substation
- Bay for 2 circuits at Saravan substation
- Installation of Taothan substation

Even if the 230 kV Seno-Saravan transmission line is constructed ahead, the 115 kV Pakbo-Saravan transmission line will be necessary.

This project will contribute to eliminating power supply interruptions in the South 1 area, reducing power imports to the South 1 area and power supply to Taothan substation in Saravan province and Nongdeun substation in Savannakhet province.

13.2 Interconnections between Target Area and the Neighboring Country

The interconnection between Thakhek in Kammouan and EGAT uses the 115 kV double circuit transmission line with different conductors from each other circuit. The power flow is restricted by the smaller size conductor. The interconnection between Pakbo in Savannakhet and EGAT uses the double circuit transmission line with a single circuit but cannot sufficiently utilize the capacity of its conductor because the power from EGAT to Thakhek tends to flow more than between EGAT and Pakbo.

The study and the planning of the re-conductoring of the 115 kV transmission lines between EGAT and Thakhek, adding a circuit to the 115 kV transmission line between EGAT and Pakbo and installing the phase shifters to control the power flow of EGAT-Thakhek/Pakbo should

proceed in cooperation with EGAT, because the increase in power imports from EGAT by modifying the interconnections such as those measures may be considered more economical than the construction of large power transmission lines such as 230 kV from far places.

13.3 Interconnections between Laos and Neighboring Countries and Plan of Thermal Power Station

The power generation of Laos mainly consists of hydropower stations. Thus, the power output capacity of the generators largely varies between the wet and dry seasons. On the other hand, power demand in Laos is not so much different between the wet and dry seasons. Thus, the difference in the ability of the power outputs of the generators should be adjusted based on the amount of imported or exported power from the neighboring countries via the interconnections or the thermal power plants installed in Laos.

Because at present, the difference in the power outputs of the generators are considered at most to be 200-300 MW even in total of all the generators in Laos, its adjustment can be done utilizing the existing capacity of the interconnections to EGAT.

However, if most of the generators planned for domestic power supply in Laos becomes composed of hydropower stations, the difference in power outputs in Laos between the wet and dry seasons becomes large. According to the present Draft PDP, surplus power during the wet seasons would be more than 2,000 MW in 2020. Thus, it is considered that the following list of facilities is required in the future to adjust such a huge amount of surplus power and the study of them is needed.

- Large power interconnections to neighboring countries
- Replacement of planned hydropower stations to thermal power plants

13.4 Recommendation of Power Demand Forecast

(1) Large-Scale Demand via the Mining Development of the Southern Area

The power demand of the aluminum refining plants located in the Attapeu area in southern Laos is planning 900 MW. This demand is 150% of all of Laos's demand in 2010 and 30% of all of Laos's demand in 2020. Moreover, the load factor is 85%, which means that it is always necessary to supply 900 MW. Thus, it is difficult to cover the construction costs for the power supply facilities of the plans based on the electricity bill from the consumer because this demand is double of the whole demand of Laos. For this reason, it is necessary to cover the construction costs for the power supply facilities such as the transmission line and substation with this project budget.

(2) Reorganization of Power Demand Forecast

The power demand forecast is the base of the power facilities investment. For this reason, it is necessary to be consistent with the national policy of industrial promotion of energy and of the electricity bill. Thus, a reorganization of the power demand forecast is needed. This organization member should be the cabinet ministers concerned and the chief should be the prime minister.

Regarding Laos's present organization, there is concern about overinvestment into electric power facilities because unknown large-scale development is included in the power development plan without understanding the status of the government agreement and licensing. A sufficient degree of feasibility should be secured before forming an investment program because in case projects such as SLACO, whose demand is double of Laos's demand, is not realized, investment in power facilities could be unrecoverable. When it falls into a financial deficit, trouble will arise in the electric power supply and have a tremendous impact to the national economy.

(3) Policy of Energy Efficiency Improvement

It should be reorganized towards energy-efficient policy-making. This organization should have the ability to guide private enterprises through regulations concerning the introduction of efficient facilities for mining or the improvement of operational methods.

(4) Peak Load Decision Method

Raising the assumption accuracy of the peak load is required. Regarding the method of Peak load assumption, it is necessary to analyze the difference in electricity usage via the characteristics of the load according to industry and labor conditions based on a track record, and being reflected in the assumption of a load factor.