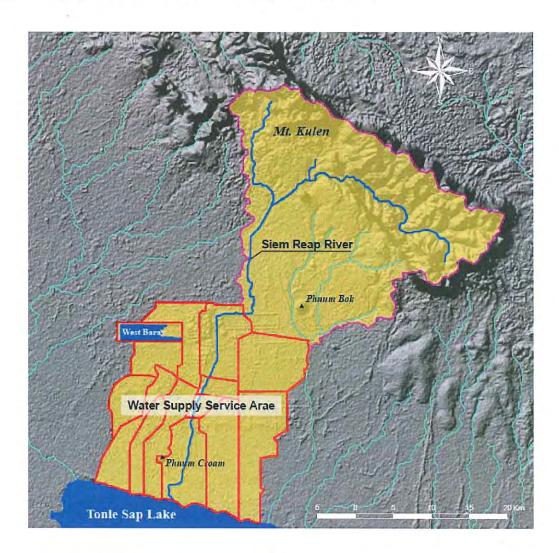

र्थु ज़र्स द

ថ្ងៃខត្តិគំពេលអ៊ុខ័ណ្ឌ៩លសាស្ត្រក្លុខខេត្តសៀមរាម

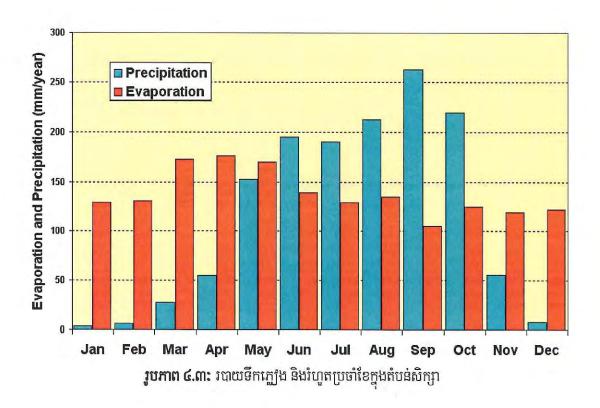

ជំពូក៤: ស្ថានភាពជលសាស្ត្រ ក្នុងក្រុងស្យេមរាប ៤.១. ការបែងចែកអាងទន្លេ ក្នុងតំបន់ផ្គត់ផ្គង់

ដើម្បីបែងចែកអោយបានច្បាស់ នូវអាងទន្លេ ទិន្នន័យ DEM (Digital Elevation Model) ទំហំ៩០ម នៃ SRTM (Shuttle Radar Topography Mission, USNASA) ត្រូវបានយកមកប្រើជាទិន្នន័យគោល ហើយឧបករណ៍ GIS ជលសាស្ត្រ ត្រូវបានប្រើប្រាស់ក្នុងការបែងចែកអាងទន្លេ ។

រូបភាព ៤.១: តំបន់សេវាកម្មផ្គត់ផ្គង់ទឹក និងអាងទន្លេដែលទាក់ទង

ដូចមានបង្ហាញក្នុងផែនទីខាងលើ តំបន់ផ្គត់ផ្គង់ទឹក គឺរួមមានអាងស្ទឹងស្យេមរាប ដែលភាគខាងលិច មាន ផ្នែកខ្លះនៃអាងស្ទឹងទូលកំបុត និងនៅភាគខាងកើត មានផ្នែកខ្លះនៃអាងស្ទឹងរំលូស ។

រូបភាព ៤.២: តំបន់បំពេញមកវិញនៃតំបន់សេវាកម្ម ផ្គត់ផ្គង់ទឹក


តំបន់សេវាកម្មផ្គត់ផ្គង់ទឹក មានបង្ហាញក្នុងផែនទីខាងលើ ។ តំបន់បំពេញមកវិញនៃតំបន់ផ្គត់ផ្គង់ទឹកសរុប គឺ ១២៧៧ កម២ ដែលក្នុងនោះ ៥៥២ គម២ ជាតំបន់សេវាកម្មផ្គត់ផ្គង់ទឹក។

៤.២. ស្ថានភាពអាកាសបាតុ

ធនធានទឹក នៅក្នុងតំបន់ផ្គត់ផ្គង់ទឹក អាចចែកចេញជា ការបំពេញមកវិញដោយទឹកភ្លៅង ការហូរចេញ ដោយទន្លេ ការប្រើប្រាស់ដោយការហូត ការជ្រាបចូលក្នុងទឹកក្រោមដី និងការហូរចេញដោយទឹកក្រោមដី ។ ដោយសារតែមិនមានការហូរចូលមកពីអាងដ៏ទៃទៀតទៅក្នុងតំបន់សិក្សា នៅពេលដែលវិភាគលើតុល្យភាពនៃទឹក ក្នុងអាងទន្លេមួយនោះ ទឹកភ្លៀង គឺជាសមាសភាគតែមួយគត់ដែលត្រូវយកមកគិត ។

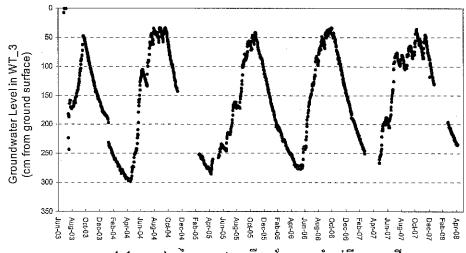
នៅក្នុងតំបន់ទំនាបដូចជាទីក្រុងស្យេមរាបនេះ បរិមាណទឹកដែលបំពេញមកវិញ រវាងស្ទឹង និងទឹកក្រោមដី ជាទូទៅ មានតិច ។ បរិមាណទឹកក្រោមដី ដែលហូរចេញទៅបឹងទន្លេសាបក៍មានតិចដែរ ។ ដូចនេះ ទឹកភ្លៀង និង រំហូត អាចចាត់ទុកជាសមាសភាគពីរដែលសំខាន់ សំរាប់វិភាគលើគុល្យភាពទឹក ក្នុងតំបន់សិក្សា ។

ដូចជាប្រទេសនៅអាស៊ីអាគ្នេយ័ឯទៀតផងដែរ ទឹកភ្លៀងក្នុងសៀមរាប គឺមានលក្ខណៈផ្លាស់ប្តូរទៅតាម រដូវ ។ ក្នុងឆ្នាំនិមួយ១ អាចចែកចេញជាពីររដូវ គឺរដូវវស្សា និងរដូវប្រាំង ដូចមានបង្ហាញក្នុងគំនូសបំព្រួញ ខាងក្រោម ។

ក្រាហ្វិកនេះ ត្រូវបានបង្កើតឡើង ដោយសង្ខេបនូវលទ្ធផលនៃការសង្កេត នៅតាមស្ថានីយ៍ឧកុនិយម ក្នុងក្រុងស្យើមរាប ចាប់តាំងពីឆ្នាំ១៩៨៨ ដល់ឆ្នាំ ២០០៨ ។

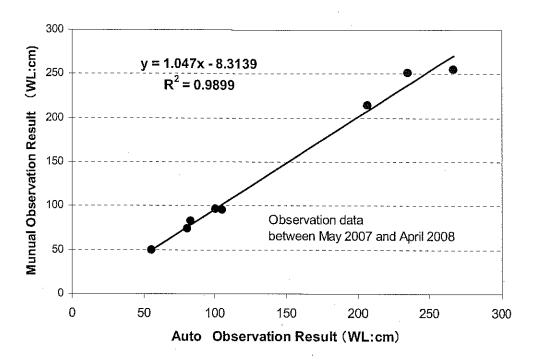
៤.៣. ទិន្នន័យឧតុនិយមដែលមាន

ដើម្បីវិភាគលើទឹកភ្លៀង លទ្ធផលនៃការសង្កេតនៅស្ថានីយ៍ឧតុនិយមចំនួន៥ ត្រូវបានប្រមូលមកពី ការិយាល័យជលសាស្ត្រ និងឧតុនិយមនៃខេត្តស្យើមរាប (ក្រសួងធានធានទឹក និងឧតុនិយម នៃប្រទេសកម្ពុជា) ។


៤.៤. ទិន្នន័យត្រូតពិនិត្យទឹកក្រោមដីដែលមាន

៤.៤.១. អណ្ដូងត្រួតពិនិត្យបច្ចុប្បន្ន

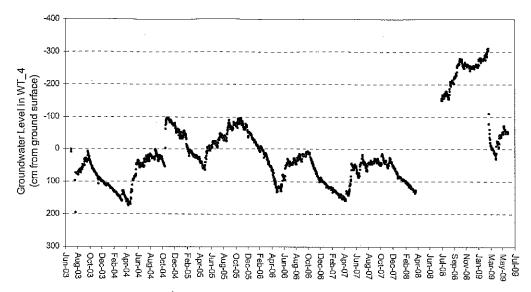
អណ្ដូងត្រួតពិនិត្យចំនួន៤ ត្រូវបានខូងក្នុងតំបន់សិក្សា ក្នុងការអង្កេតលើកមុន (ការសិក្សាស្ដីពីប្រពន្ធ័ ផ្គត់ផ្គង់ទឹកស្អាតសំរាប់ស្យេមរាប ក្នុងប្រទេសកម្ពុជា ឆ្នាំ២០០០) ។ ទោះជាយ៉ាងណាក់ដោយ បញ្ហាដែកើតមាន ឡើងដូចជា ការខូចនៃខ្មបករណ៍អង្កេត ការខ្សោយថ្មអាគុយ និងបញ្ហាផ្សេង១ ទ្យេតនោះ យើងពិនិត្យឃើញថា មានកំហុសជាច្រើនកើតមានក្នុងទិន្នន័យដែលទទួលបានពីស្ទើរគ្រប់អណ្ដូង ។ ដូចនេះ ការសង្កេតដោយដៃ ត្រូវបាន ធ្វើឡើងដោយ SRWSA ដែលត្រូវប្រើសំរាប់ត្រួតពិនិត្យ លើលទ្ធផលនៃការ សង្កេតដោយស្វ័យប្រវត្តិ ។


៤.៤.២. ការត្រួតពិនិត្យមើលលើលទ្ធផលនៃការពិនិត្យទឹកក្រោមដីទីតាំងត្រួតពិនិត្យ WT-3

រុបភាពខាងក្រោម បង្ហាញពីទន្នន័យត្រួតពិនិត្យដែលទទួលបានពីអណ្ដូងត្រួតពិនិត្យ WT-3 ។ លើកលែង តែក្នុងរយៈពេលខ្លះដែលមិនមានទិន្នន័យ និងកំហុសនៃការសង្កេតដែលឃើញមានជាក់ស្ដែងនោះ ការប្រែប្រួលនៃ កំពស់ទឹកក្រោមដី ត្រូវបានបង្ហាញដោយរូបភាពខាងក្រោម ។

រូបភាព ៤.៤: លទ្ធផលនៃកាសេង្កេតលើការប្រែប្រួលកំពស់ទឹកគ្រោមដី

ក្រាហ្វិកខាងលើបង្ហាញពីទិន្នន័យដែលទទលបានពីទីតាំងត្រួតពិនិត្យ ។ ដោយសារឃើញមានកំហុសក្នុងទិន្នន័យនោះ វ៉ាចាការចាំបាច់ក្នុងការពិនត្យទិន្នន័យមុនពេលប្រើវ៉ា ។ លទ្ធផលនៃការពិនិត្យមានបង្ហាញក្នុងតារាង ៤.៥ ។

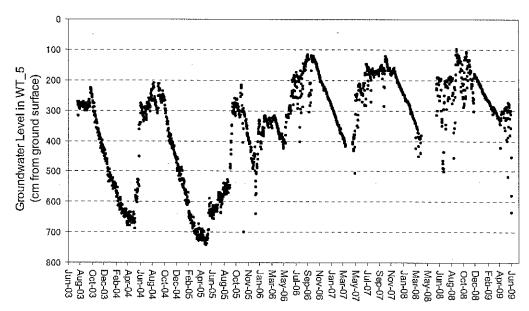


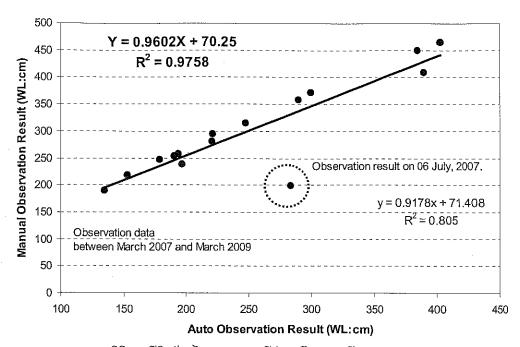
រូបភាព ៤.៥: ការត្រួតពិនិត្យលើទិន្នន័យពិនិត្យកំពស់ទឹកក្រោមដឹ

ផ្នែកតាមលទ្ធផលដែលបង្ហាញក្នុងរូបភាពខាងលើ យើងអាចសន្និដ្ឋានថា ឧបករណ៍ពិនិត្យដោយស្វ័យប្រវត្តិ នៅទីតាំង WT-3 បានកត់ត្រាដោយត្រឹមត្រូវ នូវការប្រែប្រួលកំពស់ទឹកក្រោមដី ក្នុងរយៈពេលនៃការត្រូតពិនិត្យ ទាំងមូល ពីឆ្នាំ២០០៣ ដល់ ឆ្នាំ២០០៨ ។

់ទីតាំងត្រួតពិនិត្យ WT-4

រុបភាពខាងក្រោម បង្ហាញពីទន្នន័យត្រួតពិនិត្យដែលទទួលបានពីអណ្ដូងត្រួតពិនិត្យ WT-4 ប្រៀបធ្យេប ទៅនឹងលទ្ធផលនៃការសង្កេតដែលទទួលបានពីអណ្ដូងត្រួតពិនិត្យ WT-3 លទ្ធផលនៃការសង្កេតដែលទទួលបាន ពីអណ្ដូងត្រួតពិនិត្យ WT-4 បានបង្ហាញពីភាពមិនប្រក្រតី នៃការប្រែប្រួលកំពស់ទឹកក្រោមដី ។

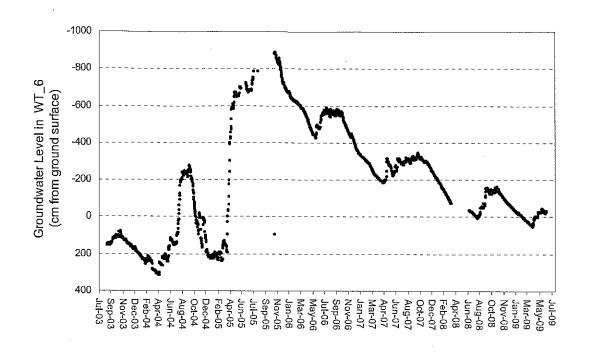

រូបភាព ៤.៦: លទ្ធផលនៃការសង្កេតលើការប្រែប្រួលកំពស់ទឹកក្រោមដី (WT-3) ក្រាហ្វិកខាងលើបង្ហាញពីទិន្នន័យដែលទទលបានពីទីតាំងត្រូតពិនិត្យ ។ ដោយសារឃើញមានកំហុសក្នុងទិន្នន័យនោះ វាចាការចាំបាច់ក្នុងការពិនត្យទិន្នន័យមុនពេលច្រើវា ។ លទ្ធផលនៃការពិនិត្យមានបង្ហាញក្នុងតារាង ៤.៥ ។


រូបភាព ៤.៧: ការពិនិត្យលើទិន្នន័យនៃការសង្កេតលើកំពស់ទឹកក្រោមដី (WT-4)
ដូចមានបង្ហាញក្នុងរូបភាពខាងលើ លទ្ធផលនៃការសង្កេតបានបង្ហាញថា រយៈពេលនៃទិន្នន័យ ដែលអាច ទុកចិត្តបាន សំរាប់តីតាំងត្រូតពិនិត្យ WT-4 មានកំណត់ពី ខែមិនា ឆ្នាំ២០០៧ ដល់ ខែមិនា ឆ្នាំ២០០៨ ។

ទីតាំងត្រួតពិនិត្យ $\mathrm{WT} ext{-}5$

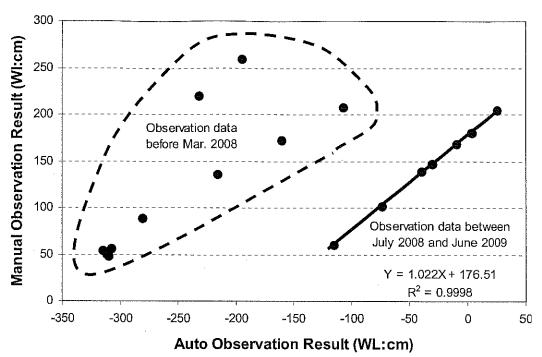
រុបភាពខាងក្រោម បង្ហាញពីទន្ទន័យត្រួតពិនិត្យ ទទួលបានពីអណ្តូងត្រួតពិនិត្យ WT-5 ដែលបង្ហាញពី ទំនាក់ទំនងគ្នាពីរ នៃទំរង់ប្រែប្រួលទឹកក្រោមដី ។ ការប្រែប្រួលនៃទឹកក្រោមដី គឹមានក្នុងក៏រិតពី២ម ទៅ ៧ម ក្រោមថ្ងៃដី មុនខែវិច្ឆិកា ឆ្នាំ២០០៥ និងក្នុងក៏រិតមួយទៀត ពី១ម ទៅ ៤ម ក្រោយខែមិនា ឆ្នាំ២០០៦ ។

រូបភាព ៤.ជ: លទ្ធផលនៃការសង្កេតលើការប្រែប្រួលកំពស់ទឹកក្រោមដី (WT-5) ក្រាហ្វិកខាងលើបង្ហាញពីទិន្នន័យដែលទទលបានពីទីតាំងត្រួតពិនិត្យ ។ ដោយសារឃើញមានកំហុសក្នុងទិន្នន័យនោះ វាចាការចាំបាច់ក្នុងការពិនត្យទិន្នន័យមុនពេលប្រើវា ។ លទ្ធផលនៃការពិនិត្យមានបង្ហាញក្នុងតារាង ៤.៥ ។



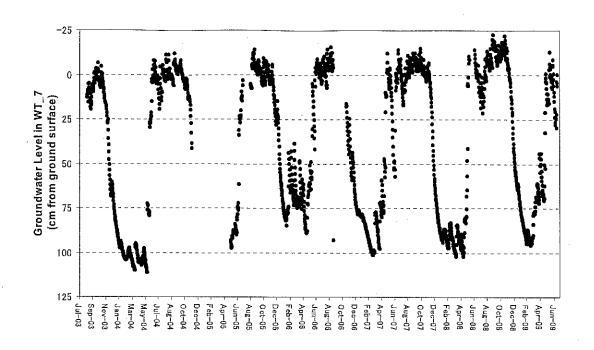
រួបភាព ៤.៩: ការពិនិត្យលើទិន្នន័យនៃការសង្កេតលើកំពស់ទឹកក្រោមដី (WT-5)

ដូចមានបង្ហាញក្នុងរូបភាពខាងលើ លទ្ធផលនៃការសង្កេតបានបង្ហាញថា រយៈពេលនៃទិន្នន័យ ដែលអាច ទុកចិត្តបាន សំរាប់ពីតាំងត្រួតពិនិត្យ WT-5 មានកំណត់ពី ខែមិនា ឆ្នាំ២០០៧ ដល់ ខែមិនា ឆ្នាំ២០០៨ ។ ទោះចាយាំងណាក៏ដោយ នៅពេលទិន្នន័យដែលទុកចិត្តបានទាំងនោះ ត្រូវបានប្រើសំរាប់វិភាគ ត្រូវមានការ យកចិត្តទុកដាក់ ព្រោះថាទិន្នន័យដែលមិនត្រូវខ្លះនៅតែមាននៅក្នុងរយៈពេលនោះ ។


ទីតាំងត្រួតពិនិត្យ WT-6

រុបភាពខាងក្រោម បង្ហាញពីទន្នន័យត្រួតពិនិត្យទទួលបានពីអណ្តូងត្រួតពិនិត្យ WT-6 ។ ទឹកក្រោមដី ប្រែប្រួលក្នុងក៏រិតពី៩ម លើផ្ទៃដី ទៅ ៣ម ក្រោមផ្ទៃដី ។ យើងពិតជាឃើញច្បាស់ថា លទ្ធផលដែលថា កំពស់ទឹកក្រោមដី ៩ម លើផ្ទៃដីវាពិតជា មិនត្រឹមត្រូវ ។

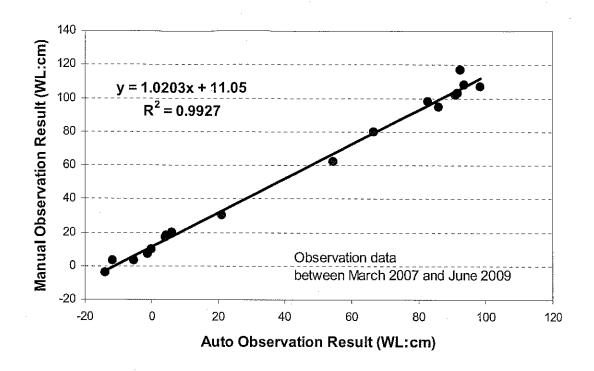
រូបភាព ៤.១០: លទ្ធផលនៃការសង្កេតលើការប្រែប្រួលកំពស់ទឹកក្រោមដី (WT-6) ក្រាហ្វិកខាងលើបង្ហាញពីទិន្នន័យដែលទទលបានពីទីតាំងត្រួតពិនិត្យ ។ ដោយសារឃើញមានកំហុសក្នុងទិន្នន័យនោះ វាចាការចាំបាច់ក្នុងការពិនត្យទិន្នន័យមុនពេលប្រើវា ។ លទ្ធផលនៃការពិនិត្យមានបង្ហាញក្នុងតារាង ៤.៥ ។


ដូចមានបង្ហាញក្នុងរូបភាពខាងក្រោម លទ្ធផលនៃការសង្កេតបានបង្ហាញថា រយៈពេលនៃចិន្នន័យ ដែល អាចទុកចិត្តបាន សំរាប់គីតាំងត្រួតពិនិត្យ WT-6 មានកំណត់ពី ខែកក្កដា ឆ្នាំ២០០៨ ដល់ ខែមិថុនា ឆ្នាំ២០០៩ ។

រូបភាព ៤.១១: ការពិនិត្យលើទិន្នន័យនៃការសង្កេតលើកំពស់ទឹកក្រោមដី (WT-6)

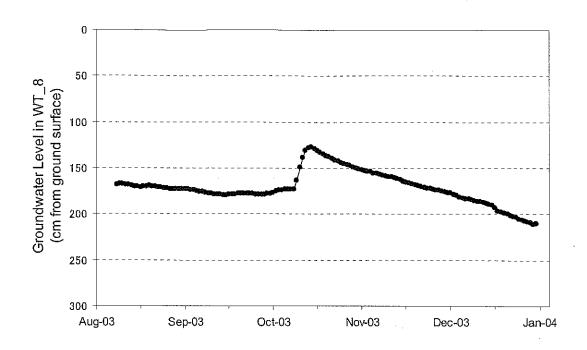
ទីតាំងត្រួតពិនិត្យ WT-7

រុបភាពខាងក្រោម បង្ហាញពីទន្ទន័យត្រួតពិនិត្យទទួលបានពីអណ្ដូងត្រួតពិនិត្យ WT-7 ។ កំពស់ទឹក ក្រោមដី នៅទីតាំងអណ្ដូងត្រួតពិនិត្យ ជូនកាលមានកំពស់ខ្ពស់ជាងផ្ទៃដី ។ ទោះជាយ៉ាងណាក់ដោយ រូបថត នៅក្នុងរូបភាព៤.១៣ បង្ហាញថា កំពស់ទឹកក្រោមដី មានប្រហែល ១០សម ខ្ពស់ជាងផ្ទៃដី នៅពេលដែលទីតាំង អណ្ដូងត្រូវបានពិនិត្យ នៅថ្ងៃទី ១១ ខែកញ្ញា ឆ្នាំ២០០៩ ។ ជាងនោះទៅទៀត ភក់ដែលមាននៅសល់ ក្នុងបំពង់អណ្ដូង បានបង្ហាញថា កំពស់ទឹកក្រោមដីមានខ្ពស់ជាងផ្ទៃដីដល់ទៅ ២០សម ។ ដូចនេះ យើងអាច សន្និដ្ឋានបានថា ទិន្នន័យកត់ត្រាការប្រែប្រួលកំពស់ទឹកក្រោមដីនោះ គឺត្រឹមត្រូវ ។ រូបភាពបានបង្ហាញពីទំរង់ ប្រែប្រួលទឹកក្រោមដីដែលមានជាប្រចាំមួយ លើកលែងតែមានកហុសក្នុងការកត់ត្រាទិន្នន័យខ្លះតែប៉ុណ្ណោះ ។



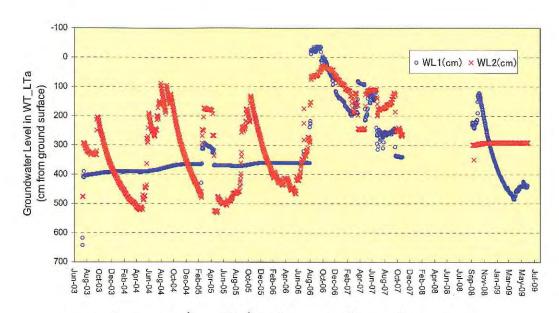
រូបភាព ៤.១២: លទ្ធផលនៃការសង្កេតលើការប្រែប្រួលកំពស់ទឹកក្រោមដី (WT-7) ក្រាហ្វិកខាងលើបង្ហាញពីទិន្នន័យដែលទទលបានពីទីតាំងត្រួតពិនិត្យ ។ ដោយសារឃើញមានកំហុសក្នុងទិន្នន័យនោះ វាចាការចាំបាច់ក្នុងការពិនត្យទិន្នន័យមុនពេលប្រើវា ។ លទ្ធផលនៃការពិនិត្យមានបង្ហាញក្នុងតារាង ៤.៥ ។

រូបភាព ៤.១៣: រូបថតបន្ទប់ត្រួតពិនិត្យ នៃទីតាំងត្រួតពិនិត្យ WT-7

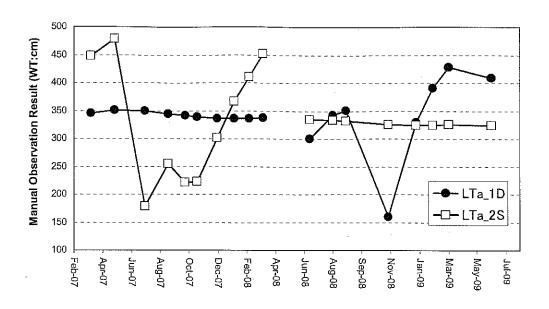

យើងឃើញមានភាពទំនាក់ទំនងគ្នាយ៉ាងខ្លាំង រវាងទិន្នន័យទាំងពីរ នៅក្នុងរយៈពេលនៃការពិនិត្យ ដែលទាក់ទងទាំងមូល ។ ព្រោះថា រូបភាព៤.១២ បានបង្ហាញពីការប្រែប្រូលកំពស់ទឹកក្រោមដី នៅក្នុងទីតាំងនេះ ដែលលទ្ធផលនៃអណ្ដូងត្រូតពិនិត្យ WT-7 មាន ។

រូបភាព ៤.១៤: ការពិនិត្យលើទិន្នន័យនៃការសង្កេតលើកំពស់ទឹកក្រោមដី (WT-7)

ទីតាំងត្រួតពិនិត្យ WT-8

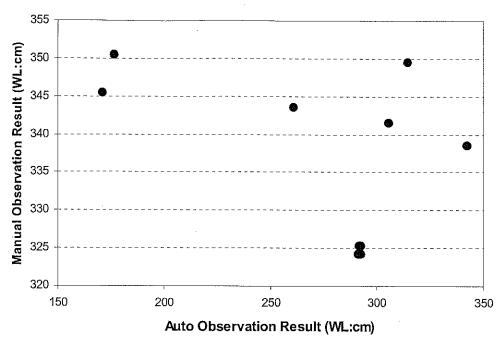

រុបភាពខាងក្រោម បង្ហាញពីទន្នន័យត្រួតពិនិត្យទទូលបានពីអណ្ដូងត្រួតពិនិត្យ WT-8 ។ ឧបករណ៍សង្កេតដោយស្វ័យប្រវត្តិ ត្រូវបានតំឡើងនៅទីតាំងនេះក្នុងឆ្នាំ ២០០៣ ។ ទោះជាយាំងណាក់ដោយ ឧបករណ៍នោះ ត្រូវបានបាត់ ក្នុងរយៈពេលក្រោយពីការតំឡើងនោះ ។ ដូចនេះ ទិន្នន័យសំរាប់អណ្ដូង មានតែពី ខែសីហា ឆ្នាំ២០០៣ ទៅដល់ខែមករា ឆ្នាំ២០០៤ ។

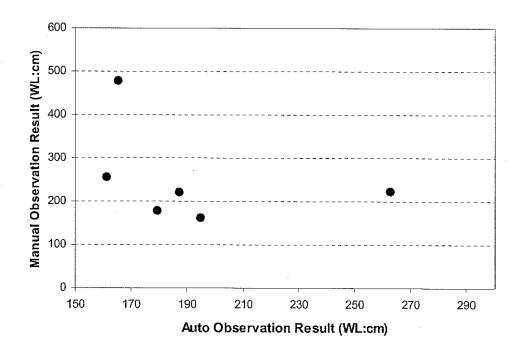
រូបភាព ៤.១៥: លទ្ធផលនៃការសង្កេតលើការប្រែប្រួលកំពស់ទឹកក្រោមដី (WT-8) ក្រាហ្វិកខាងលើ បង្ហាញពីទិន្នន័យដែលទទួលបានពីទីតាំងត្រួតពិនិត្យWT-8 ។ ដោយសារឃើញមានកំហុសក្នុង ទិន្នន័យនោះ វាជាការចាំបាច់ក្នុងការពិនត្យទិន្នន័យមុនពេលប្រើវា។ លទ្ធផលនៃការពិនិត្យមានបង្ហាញក្នុងតារាង៤.៥។


ទីតាំំងត្រួតពិនិត្យទឹកក្រោមដី និងការផ្លាស់ប្តូរដី ${f LTa}$

ទីតាំងត្រូតពិនិត្យ LTa គឺមិនមែនតែសំរាប់ការពិនិត្យលើទឹកក្រោមដី តែប៉ុណ្ណោះទេ ប៉ន្តែសំរាប់ ត្រូតពិនិត្យលើការស្រុតដីផងដែរ ។ អណ្ដូងត្រូតពិនត្យពីរត្រូវបានខូងដាក់នោក្នុងទីតាំងតែមួយ សំរាប់ត្រួតពិនិត្យ លើទឹកក្រោមដី និងលើការផ្លាស់ប្ដូរដី នៅក្នុងស្រទាប់ដែលមានទឹករាក់ និងជ្រៅ ផ្សេងៗគ្នា ។ រុបភាពខាងក្រោម បង្ហាញពីទន្ទន័យត្រូតពិនិត្យលើកំពស់ទឹកក្រោមដី សំរាប់ស្រទាប់ដែលមានទឹករាក់ និងជ្រៅ នៅក្នុងទីតាំងអណ្ដូង ត្រូតពិនិត្យ LTa ។

រូបភាព ៤.១៦: លទ្ធផល នៃការពិនិត្យ នៃការប្រែប្រួលកំពស់ទឹកក្រោមដី (LTa)
ក្រាហ្វិកខាងលើ បង្ហាញពីទិន្នន័យដែលទទួលបាន ពីទីតាំងត្រួតពិនិត្យ LTa។ ដោយសារឃើញមានកំហុសក្នុង
ទិន្នន័យ នោះ វាជាការចាំបាច់ក្នុងការពិនត្យទិន្នន័យ មុនពេលប្រើវា។ លទ្ធផលនៃការពិនិត្យ មានបង្ហាញក្នុងតារាង
៤.៥ ។

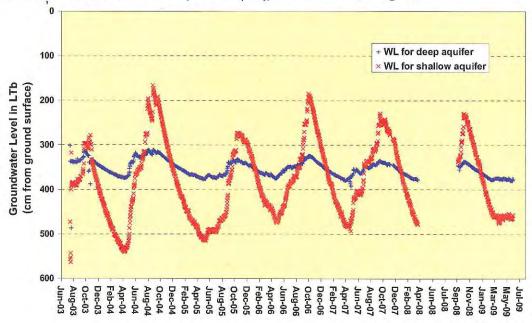

ចាប់ពីខែសីហា ឆ្នាំ២០០៣ ដល់ខែសីហា ឆ្នាំ២០០៦ លទ្ធផល អាចចាត់ទុកថា បានកត់ត្រាត្រឹមត្រូវ ដើម្បីបង្ហាញយ៉ាងច្បាស់ នូវភាពខុសគា្ននៃការប្រែប្រូលទឹកក្រោមដី រវាងស្រទាប់ដែលមានទឹករាក់ និងជ្រៅ ។ ទោះជាយ៉ាងណាក់ដោយ លទ្ធផល ហាក់ដូចជាមានភាពច្រលំបល់ ចាប់ពីខែសីហា ឆ្នាំ២០០៦ ដល់ខែកញ្ញា ឆ្នាំ២០០៨ រួមទាំងរយៈពេលដែលមិនបានកត់ត្រាទិន្នន័យ ប្រហែលមួយឆ្នាំទៀតផង ។ ក្រោយរយៈពេល ដែលមិនបានកត់ត្រាទិន្នន័យ ទំរង់នៃការប្រែប្រូលនៃស្រទាប់ដែលមានទឹករាក់ និងជ្រៅ ហាក់ដូចជាមានភាព ផ្ទុយគ្នាទាំងស្រុង ដែលបង្ហាញពីបញ្ហានៃការភ្ជាប់ផ្ទុយគ្នានៃគ្រឿងទទូល និងប្រអប់ផ្ទុកទិន្នន័យ ។


រូបភាព ៤.១៧: លទ្ធផលនៃការសង្កេតដោយដៃនៅទីតាំងពិនិត្យ LTa

ដូចមានបង្ហាញនៅក្នុងរូបភាពខាងលើ ការសង្កេតដោយដៃ បានផ្ដល់នូវចំលើយដូចគ្នាទៅនឹងការសង្កេត ដោយស្វ័យប្រវត្តិដែរ ដែលថា ទំរង់នៃការប្រែប្រូលកំពស់ទឹកក្រោមដី បានផ្លាស់ប្ដូរយ៉ាងខ្លាំង ក្នុងឆ្នាំ២០០៨ ។ មូលហេតុដែលអាចសន្មតិបាន ចំពោះលទ្ធផលនេះ គឺថា ក្រោយរយៈពេលដែលមិនបានកត់ត្រាទិន្នន័យ (ពីខែមិនា ឆ្នាំ២០០៨ ដល់ខែមិថុនា ឆ្នាំ២០០៨) លេខរៀងអណ្ដូងខុស ត្រូវបានកត់ត្រា នៅលើក្រដាសត្រួតពិនិត្យដោយដៃ ។ ទោះបីជាទិន្នន័យត្រូវបានរៀបចំឡើងវិញកំដោយ ការពិនិត្យដោយប្រៀបចៀប រវាងទិន្នន័យទាំងពីរ

នៅតែផ្តល់នូវទំនាក់ទំនងមួយ ដែលមិនអាចទទួលយកបាន ដូចមានបង្ហាញក្នុងរូបភាពទាំងពីរខាងក្រោម ។ ដូចនេះ ទិន្នន័យត្រួតពិនិត្យទឹកក្រោមដី ក្នុងទីតាំងអណ្តូង LTa ត្រូវតែចាត់ទុកជាមិនបានការ សំរាប់ការវិភាគ ។

រូបភាព ៤.១៨: ការពិនិត្យលើទីន្នន័យសង្កេតកំពស់ទឹកក្រោមដី (LTa ស្រទាប់ដែលមានទឹកជ្រៅ)



រូបភាព ៤.១៩: ការពិនិត្យលើទីន្នន័យសង្កេតកំពស់ទឹកក្រោមដី (LTa ស្រទាប់ដែលមានទឹករាក់)

ទីតាំងពិនិត្យកំពស់ទឹកក្រោមដី LTb

អណ្តូងចំនួនពីរ ក័ត្រូវបានខួងផងដែរក្នុងទីតាំង LTb សំរាប់ការសង្កេតលើកំពស់ទឹកក្រោមដី និងការ ប្រែប្រួលដី ក្នុងស្រទាប់ដែលមានទឹករាក់ និងជ្រៅផ្សេង១គ្នា ។ រូបភាពខាងក្រោម បង្ហាញពីទិន្នន័យនៃកំពស់ទឹក ក្រោមដី ក្នុងស្រទាប់ដែលមានទឹករាក់ និងជ្រៅ ក្នុងទីតាំងនោះ ។

យើងអាចឃើញមានផងដែរ នូវភាពទាក់ទងគ្នាខ្លាំង រវាងរូបភាព៤.២១ និង៤.២២ ចំពោះការបញ្ជាក់ នូវភាពអាចជឿទុកចិត្តបាន នៃលទ្ធផលនៃការសង្កេតលើទឹកក្រោមដី ក្នុងស្រទាប់ដែលមានទឹកទាំងពីរ ។ គ្រប់ ទិន្នន័យទាំងអស់ ក្នុងទីតាំង LTb នេះ អាចចាត់ទុកថា អាចទុកចិត្តបាន សំរាប់ការវិភាគទឹកក្រោមដី ។

រូបភាព ៤.២០: លទ្ធផលនៃការពិនិត្យនៃការប្រែប្រួលកំពស់ទឹកក្រោមដី (LTb)
ក្រាហ្វិកខាងលើ បង្ហាញពីទិន្នន័យដែលទទួលបាន ពីទីតាំងត្រួតពិនិត្យ LTb។ ដោយសារឃើញមានកំហុសក្នុង
ទិន្នន័យ ទោះ វាជាការចាំបាច់ក្នុងការពិនត្យទិន្នន័យ មុនពេលប្រើវា។ លទ្ធផលនៃការពិនិត្យ មានបង្ហាញក្នុងតារាង
៤.៥ ។

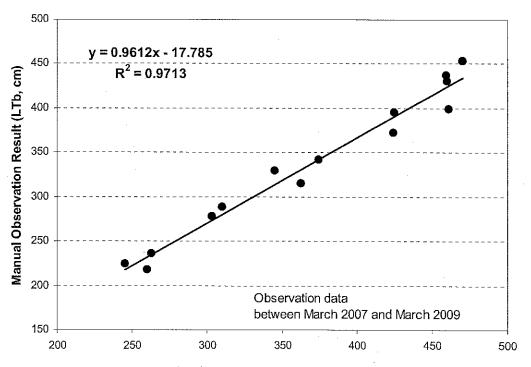
តាមការពិនិត្យលទ្ធផលនៃការត្រួតពិនិត្យលើការប្រែប្រួលទឹកក្រោមដី ដូចមានបង្ហាញក្នុងរូបភាពខាងលើ យើងអាចទាញសេចក្តីសន្និដ្ឋានបានដូចខាងក្រោម ។

១) ទំរង់នៃការប្រែប្រួលកំពស់ទឹកក្រោមដី

ទាំងស្រទាប់ដែលមានទឹករាក់ និងជ្រៅ មានទំរង់នៃការប្រែប្រូលទឹកក្រោមដីដូចគ្នា ។ កំពស់ទឹក ក្រោមដីកើនឡើង នៅក្នុងរដូវវិស្សា និងស្រកចុះ នៅក្នុងរដូវប្រាំង ។

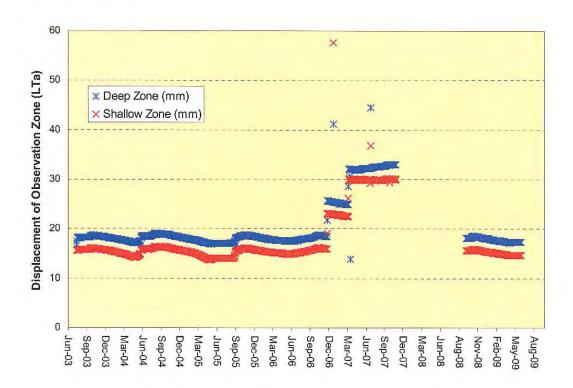

២) ភាពខុសគ្នារវាងកំពស់ទឹកនៅក្នុងស្រទាប់ដែលមានទឹកទាំងពីរ

តំលៃនៃកំពស់ទឹកក្រោមដី នៅក្នុងស្រទាប់ដែលមានទឹកទាំងពីរ គឹមានភាពខុសគ្នា ស្ទើរតែពេញ កំលុងពេលនៃការពិនិត្យទាំងមូល ។ ប្រការដែលច្បាស់នោះគឺថា បើប្រៀបធ្យើបទៅនឹងស្រទាប់ដែលមានទឹកជ្រៅ ស្រទាប់ដែលមានទឹករាក់ មានខ្ពស់ជាង នៅក្នុងរដូវវិស្សា ប៉ុន្តែមានទាបជាង នៅក្នុងរដូវប្រាំង ។


ទឹកហូរពីទីខ្ពស់ទៅទីទាប ។ ដូចនេះ ប្រសិនបើមានការហូរទឹករវាងស្រទាប់ដែលមានទឹករាក់ និង ជ្រៅនោះ ទិសដៅរបស់រំហូរទឹកក្រោមដី នឹងផ្លាស់ប្តូរដូចតទៅ: ១) - ហូរចុះក្រោម ពីស្រទាប់ដែលមានទឹករាក់ ទៅស្រទាប់ដែលមានទឹកជ្រៅ នៅក្នុងរដូវវស្សា និង ២) -ហូរឡើងលើ ពីស្រទាប់ដែលមានទឹកជ្រៅ ទៅស្រទាប់ ដែលមានទឹករាក់ នៅក្នុងរដូវប្រាំង ។

៣) ក៏វិតនៃការប្រែប្រួលកំពស់ទឹក

ដូចមានបង្ហាញក្នុងរូបភាព៤.២០ ស្ទើរតែពេញរយៈពេលនៃការសង្កេតទាំងមូល កំពស់ទឹកនៅក្នុង ស្រទាប់ដែលមានទឹកជ្រៅ គឺខុសពីនៅស្រទាប់ដែលមានទឹករាក់ ។ ហើយកំពស់ទឹកនៅក្នុងស្រទាប់ដែលមាន ទឹកជ្រៅ មិនដែលមានដល់ក៏រិតខ្ពស់បំផុត ឬធ្លាក់ចុះដល់ទាបបំផុត ដូចក្នុងស្រទាប់ដែលមានទឹករាក់ទេ ។ ករណីនេះ បានបង្ហាញថា ស្រទាប់ទឹករាក់ និងជ្រៅ គឺមានភាពទាក់ទងទៅនឹងប្រព័ន្ធស្រទាប់ទឹកផ្សេង១គ្នា ។


រូបភាព ៤.២១:ការពិនិត្យលើទិន្នន័យសង្កេតកំពស់ទឹកក្រោមដី (LTb ស្រទាប់ដែលមានទឹកជ្រៅ)

រូបភាព ៤.២២: ការពិនិត្យលើទិន្នន័យសង្កេតកំពស់ទឹកក្រោមដី (LTb ស្រទាប់ដែលមានទឹករាក់)

៤-៤-៣ លទ្ធផលនៃការពិនិត្យលើការប្រែប្រួលដី លទ្ធផលនៃការពិនិត្យលើការប្រែប្រួលដីនោទិ៍តាំង LTa

រូបភាពខាងក្រោម បង្ហាញពីលទ្ធផលនៃការត្រួតពិនិត្យ លើការប្រែប្រួលដី នៅស្រទាប់ដែលមានទឹករាក់ និងជ្រៅ នៅទីតាំងអណ្ដូង LTa ។

រូបភាព ៤.២៣: លទ្ធផលនៃការត្រួតពិនិត្យលើការប្រែប្រួលដី នៅទីតាំងអណ្ដូង LTa

លើកលែងតែចំពោះទិន្នន័យត្រួតពិនិត្យដែលមានកំហុសជាក់ស្តែង ដែលកត់ត្រាពីខែវិច្ឆិកា ដល់ ខែកក្កដា ឆ្នាំ២០០៨ នោះចេញ លទ្ធផលនៃការសង្កេតបានបង្ហាញនូវចំណុចដូចខាងក្រោម:

- -ការប្រែប្រួលដីត្រូវបានសង្កេតទាំងនៅក្នុងស្រទាប់ដែលមានទឹករាក់ និងជ្រៅ ។
- -ទំរង់នៃការប្រែប្រូលដី នៅក្នុងស្រទាប់ដែលមានទឹកទាំងពីរមានដូចគ្នា ។
- -ការប្រែប្រួលដី គឺមានភាពស្របគ្នា ជាមួយនឹងការប្រែប្រួលកំពស់ទឹកក្រោមដី ហើយប្រែប្រួល ទៅតាមរដូវ ។

ដើម្បីបញ្ជាក់ពីទំនោរនៃការប្រែប្រួលដី គឺនៅក្នុងវដ្ដនៃបម្រែបម្រួលរដូវ តម្លៃប្រែប្រួលមធ្យម ប្រចាំខែ ត្រូវបានគណនា ។ ដូចបានបង្ហាញក្នុងតារាងខាងក្រោម ការពិនិត្យលើទិន្នន័យដែលបានបង្ហាញថា កម្រិតប្រែប្រួល អតិបរមាពី ១៨.៩៦-១៧.០៦ = ១.៩មីលីម៉ែត្រ ចំពោះស្រទាប់ដែលមានទឹកជ្រៅ ។

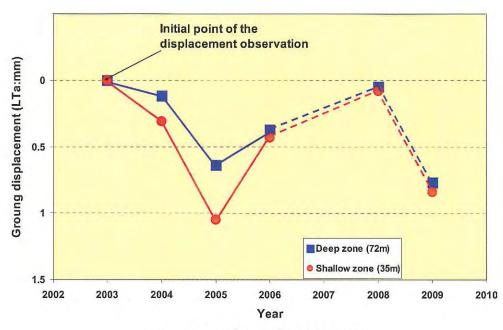
តារាង ៤.១: លទ្ធផលសង្ខេបប្រចាំខែ នៃតំលៃវាស់វែង នៅស្ថានីយ៍វាស់ការប្រែប្រួលដី ក្នុងស្រទាប់ដីដែលមានទឹកជ្រៅ LTa (mm)

Month	2003	2004	2005	2006	2007	2008	2009	Max.	Min.	Avrg,
Jan.		18.21	18.12	18.20			18.03	18.21	18.03	18.15
Feb.		17.99	17.88	17.98			17.76	17.99	17.76	17.92
Mar.		17.76	17.64	17.80			17.57	17.80	17.57	17.71
Apr.		17.50	17.30	17.72				17.72	17.30	17.56
May		17.24	17.06	17.61			17.33	17.61	17.06	17.37
Jun.		18.07	17.09	17.59			17.37	18.07	17.09	17.64
Jul.		18.55	17.06	17.77	-	-	-	18.55	17.06	17.98
Aug.	18.14	18.87	17.11	18.01	-			18.87	17.11	18.20
Sep.	18.26	18.96	17.82	18.21	-	-	-	18.96	17.82	18.44
Oct.	18.49	18.91	18.59	18.67		18.21	-	18.91	18.21	18.63
Nov.	18.60	18.64	18.71	18.60		18.52	-	18.71	18.52	18.63
Dec.	18.42	18.38	18.47	-		18.27		18.47	18.27	18.40
Max.	18.60	18.96	18.71	18.67		18.52	18.03	18.96		
Min.	18.14	17.24	17.06	17.59		18.21	17.33		17.06	
Avrg,	18.38	18.26	17.74	18.01		18.33	17.61			18.02

សំតាល់: តំលៃវាស់នេះ មិនបង្ហាញផ្ទាល់ពីតំលៃនៃការប្រែប្រួលដីទេ ប៉ុន្តែគ្រាន់តែជាក៏រិតតំលៃក្នុងលក្ខខ័ណ្ឌ ។

កម្រិតប្រែប្រួលដីអតិបរមា នៅក្នុងស្រទាប់ដែលមានទឹករាក់ គឺ ១៦.៣១-១៣.៨៦=២.៤៥មីលីម៉ែត្រ ដូចបានបង្ហាញក្នុងតារាងខាងក្រោម ។

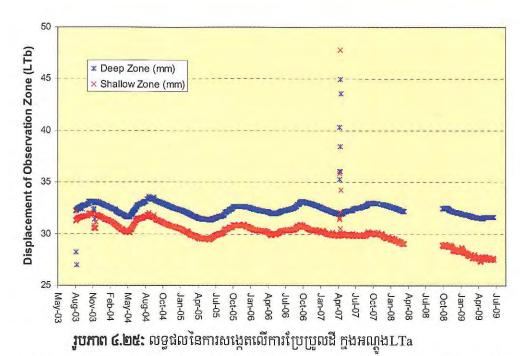
តារាង ៤.២: លទ្ធផលសង្ខេបប្រចាំខែ នៃតំលៃវាស់វែង នៅស្ថានីយ័វាស់ការប្រែប្រួលដី ក្នុងស្រទាប់ដីដែលមានទឹករាក់ LTa (mm)


Month	2003	2004	2005	2006	2007	2008	2009	Max.	Min.	Avrg,
Jan.		15.59	15.47	15.56			15.37	15.59	15.37	15.52
Feb.		15.31	15.24	15.36			15.20	15.36	15.20	15.29
Mar.		15.00	14.85	15.22			15.00	15.22	14.85	15.06
Apr.		14.63	14.24	15.11		'		15.11	14.24	14.77
May		14.30	13.86	14.96			14.69	14.96	13.86	14.55
Jun.		15.37	14.07	14.93			14.72	15.37	14.07	14.89
Jul.		15.89	14.04	15.16				15.89	14.04	15.25
Aug.	15.69	16.20	14.01	15.43				16.20	14.01	15.51
Sep.	15.76	16.31	14.96	15.65				16.31	14.96	15.80
Oct.	15.96	16.26	15.89	16.09		15.64		16.26	15.64	16.02
Nov.	15.99	16.00	16.03	16.02		15.88		16.03	15.88	15.99
Dec.	15.78	15.72	15.78			15.60		15.78	15.60	15.73
Max.	15.99	16.31	16.03	16.09		15.88	15.37	16.31		
Min.	15.69	14.30	13.86	14.93		15.60	14.69		13.86	
Avrg,	15.84	15.53	14.79	15.41		15.76	15.00			15.33

សំពាល់ៈ តំលៃវាស់នេះ មិនបង្ហាញផ្ទាល់ពីតំលៃនៃការប្រែប្រួលដីទេ ប៉ុន្តែគ្រាន់តែជាក៏វិតតំលៃក្នុងលក្ខខ័ណ្ឌ ។

នៅពេលដែលយើងប្រៅបផ្សេបតារាងទាំងពីរខាងលើនោះ គឺយើងឃើញថា លទ្ធផលវាហាក់ដូចជាមិន ប្រក្រតី ។ នៅពេលដែលការប្រែប្រួលដី ត្រូវបានពិនិត្យ នៅក្នុងស្រទាប់ដែលមានទឹកជ្រៅ និងរាក់ នៅក្នុងទីតាំង តែមួយនោះ ជាទូទៅ ការប្រែប្រួលដី នៅក្នុងស្រទាប់ដែលមានទឹកជ្រៅ គឺមានច្រើនជាង នៅក្នុងស្រទាប់ ដែលមានទឹករាក់ ឬ យ៉ាងហោចណាស់ដូចគ្នា ទៅនឹងស្រទាប់ដែលមានទឹករាក់ ។

លទ្ធភាពពីរ ដែលយើងអាចសន្និដ្ឋានថា ជាមូលហេតុនៃបញ្ហានេះ ១) ភាពសុក្រឹត្យរបស់ឧបករណ៍ មិនមានខ្ពស់គ្រប់គ្រាន់ សម្រាប់ការប្រែប្រួលដី ដែលមានកម្រិតតិច ២) ទិន្នន័យត្រូវបានកត់ត្រា ក្នុងប្រព័ន្ធទិន្នន័យ ខុស ។ គឺមានន័យថា លទ្ធផលនៃការសង្កេតលើស្រទាប់ដែលមានទឹកជ្រៅ ត្រូវបានកត់ត្រាក្នុងប្រព័ន្ធទិន្នន័យ នៃស្រទាប់ដែលមានទឹករាក់ ។


រូបភាពខាងក្រោមបង្ហាញ ពីការប្រែប្រួលដីជាមធ្យមប្រចាំឆ្នាំ នៅទីតាំងអណ្ដូងត្រួតពិនិត្យ LTa ។ ក្នុងរយៈពេល នៃការពិនិត្យ៦ឆ្នាំ វាអាចពិបាកក្នុងការសន្និដ្ឋានថា ការស្រុតដីបានកើតមានរួចទៅហើយ ឬយ៉ាងណា បើទោះជាមាន សញ្ញាខ្លះនៃការស្រុតដី ដូចដែលបានបង្ហាញក្នុងរូបភាពខាងក្រោមទាំងនេះក៏ដោយ។

រូបភាព ៤.២៤: ការប្រែប្រួលដីប្រចាំឆ្នាំ ក្នុង LTa

លទ្ធផលនៃការសង្កេតលើការប្រែប្រួលដី ក្នុងអណ្ដូង LTb

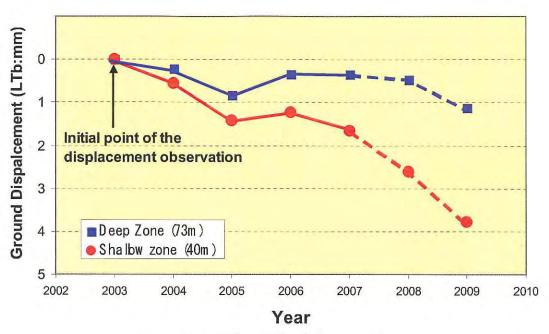
រូបភាពខាងក្រោមបង្ហាញពីលទ្ធផលនៃការពិនិត្យលើការប្រែប្រូលដីនៅអណ្ដូង LTb ។ ការពិនិត្យ នៅទីតាំងអណ្ដូង LTb បានចាប់ផ្ដើមតាំងពីខែកក្កដា ឆ្នាំ២០០៣ ។ ទិន្នន័យរយៈពេល៦ឆ្នាំ ត្រូវបានប្រមូល រហូតដល់ខែកក្កដា ឆ្នាំ២០០៩ ។ ដូចបានបង្ហាញក្នុងរូបភាព ការប្រែប្រូលដី ត្រូវបានចាត់ទុកថា បានពិនិត្យ ត្រឹមត្រូវ លើកលែងតែមានកំហុសខ្លះ និងមានការបាត់បង់ទិន្នន័យរយៈពេល៦ខែ ចាប់តាំងពីខែមិនា ដល់ខែកញ្ញា ឆ្នាំ២០០៨ ។

ការប្រែប្រូលដីមធ្យមប្រចាំខែ នៅក្នុងស្រទាប់ដែលមានទឹកជ្រៅ និងរាក់ត្រូវបានគណនា និងបង្ហាញក្នុង តារាង ៤.៣ និង៤.៤ ដោយឡែកពីគ្នា ។

តារាង ៤.៣: លទ្ធផលសង្ខេបប្រចាំខែ នៃតំលៃវាស់វែង នៅស្ថានីយ៍វាស់ការប្រែប្រួលដី ក្នុងស្រទាប់ដីដែលមានទឹកជ្រៅ LTb (mm)

Month	2003	2004	2005	2006	2007	2008	2009	Max.	Min.	Avrg,
Jan.		32.71	32.39	32.56	32.62	32.62	31.93	32.71	31.93	32.51
Feb.		32.45	32.20	32.40	32.37	32.43	31.80	32.45	31.80	32.30
Mar.		32.09	31.94	32.26	32.16	32.23	31.65	32.26	31.65	32.08
Apr.		31.79	31.66	32.16	31.97		31.55	32.16	31.55	31.88
May		31.81	31.47	32.01	32.07		31.62	32.07	31.47	31.84
Jun.		32.56	31.40	32.08	32.24		31.62	32.56	31.40	32.08
Jul.		32.99	31.47	32.27	32.45			32.99	31.47	32.43
Aug.	32.44	33.36	31.69	32.41	32.59	-		33.36	31.69	32.64
Sep.	32.70	33.31	32.01	32.71	32.84			33.31	32.01	32.81
Oct.	33.07	33.06	32.44	33.11	32.97	32.49		33.11	32.44	32.89
Nov.	32.99	32.84	32.68	33.00	32.91	32.28		33.00	32.28	32.81
Dec.	32.97	32.59	32.66	32.83	32.80	32.09		32.97	32.09	32.70
Max.	33.07	33.36	32.68	33.11	32.97	32.62	31.93	33.36		
Min.	32.44	31.79	31.40	32.01	31.97	32.09	31.55		31.40	
Avrg,	32.83	32.62	32.01	32.49	32.49	32.36	31.71			32.37

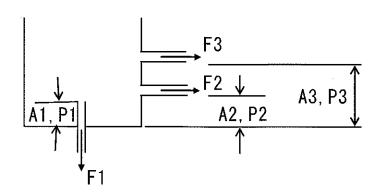
<u>សំតាល់</u>: តំលៃវាស់នេះ មិនបង្ហាញផ្ទាល់ពីតំលៃនៃការប្រែប្រូលដីទេ ប៉ុន្តែគ្រាន់តែជាកិរិតតំលៃក្នុងលក្ខខ័ណ្ឌ ។


ពារាង ៤.៤: លទ្ធផលសង្ខេបប្រចាំខែ នៃតំលៃវាស់វែង នៅស្ថានីយ៍វាស់ការប្រែប្រួលដី ក្នុងស្រទាប់ដីដែលមានទឹករាក់ LTb (mm)

Month	2003	2004	2005	2006	2007	2008	2009	Max.	Min.	Avrg,
Jan.		31.37	30.57	30.62	30.23	29.53	28.35	31.37	28.35	30.29
Feb.		31.10	30.32	30.39	30.09	29.31	28.02	31.10	28.02	30.05
Mar.		30.67	30.04	30.30	29.94	29.11	27.76	30.67	27.76	29.78
Apr.		30.30	29.77	30.20	30.01		27.59	30.30	27.59	29.70
May		30.37	29.57	29.98	29.96		27.64	30.37	27.64	29.65
Jun.		31.22	29.52	30.10	29.89		27.58	31.22	27.58	29.92
Jul.	-	31.56	29.71	30.32	29.85			31.56	29.71	30.60
Aug.	31.47	31.75	30.00	30.39	29.86			31.75	29.86	30.87
Sep.	31.67	31.52	30.33	30.59	29.99			31.67	29.99	30.96
Oct.	31.89	31.22	30.67	30.77	30.01	28.88		31.89	28.88	30.76
Nov.	31.29	30.95	30.84	30.51	29.98	28.75		31.29	28.75	30.52
Dec.	31.66	30.74	30.82	30.34	29.67	28.39		31.66	28.39	30.47
Max.	31.89	31.75	30.84	30.77	30.23	29.53	28.35	31.89		
Min.	31.29	30.30	29.52	29.98	29.67	28.39	27.58		27.58	
Avrg,	31.60	31.06	30.18	30.38	29.96	29.00	27.82			30.12

សំពាល់ៈ តំលៃវ៉ាស់នេះ មិនបង្ហាញផ្ទាល់ពីតំលៃនៃការប្រែប្រូលដីទេ ប៉ុន្តែគ្រាន់តែជាក៏វិតតំលៃក្នុងលក្ខខ័ណ្ឌ ។

រូបភាពខាងក្រោម បង្ហាញពីតំលៃមច្បមប្រចាំឆ្នាំ នៃការប្រែប្រួលដី ក្នុងទីតាំងត្រូតពិនិត្យ LTb ។ ដូច លទ្ធផលក្នុងទីតាំង LTa ដែរ លទ្ធផលដែលបង្ហាញក្នុងរូបភាព អាចចាត់ទុកថាមិនប្រក្រតី ដោយសារថា បរិមាណ នៃការប្រែប្រួលក្នុងស្រទាប់ដីដែលមានទឹកជ្រៅ គឺតិចជាងក្នុងស្រទាប់ដីដែលមានទឹករាក់ ។ លទ្ធភាពនៃ ព្រឹត្តិការណ៍មិនប្រក្រតីនេះ អាចគិតថា វាជាមូលហេតុនៃបញ្ហាះ គឺឧបករណ៍មិនមានភាពត្រឹមត្រូវខ្ពស់ ល្អ សំរាប់សង្កេតលើការប្រែប្រួលដីតិច ។


ដោយសារមូលហេតុនៃភាពត្រឹមត្រូវទាប នៃឧបករណ៍វាស់វែង និងការមិនអាចមើលឃើញ ការប្រែប្រួលដី នៅទីតាំងសំណង់នានា វាត្រូវបានសន្និដ្ឋានថា មិនមានការស្រុតដីទេ ។ ទោះជាយ៉ាងណាក៏ដោយ ចាំបាច់ត្រូវបន្តត្រួតពិនិត្យលើទិន្នន័យសង្កេតលើការស្រុតដីចាប់ពីពេលនេះតទៅ ។

វូបភាព ៤.២៦: ការប្រែប្រូលដីប្រចាំឆ្នាំ ក្នុងអណ្តូង LTb

៤.៥-ការវិភាគលើការបំពេញមកវិញនូវទឹកក្រោមដី ៤.៥.១-ការពិនិត្យលើទិន្នន័យ

ទំនាក់ទំនងរវាងបរិមាណទឹកភ្លៀង និងការបំពេញទឹកក្រោមដីមកវិញ មានទំនាក់ទំនងទៅនឹងកត្តា ឋានលេខា ចំងាយពីកន្លែងធ្លាក់ភ្លៀងទៅទន្លេ លក្ខណៈភូតព្ភសាស្ត្រ ប្រភេទដី អាកាសបាតុ (វំហូត និងសំណើម) ការប្រើប្រាស់ដី ជម្រៅទឹកក្រោមដី និងកត្តាផ្សេង១ទៀត ។ ដើម្បីទទួលបាននូវតូលេខគ្រប់គ្រាន់ ចំពោះ ប៉ារ៉ាម៉ែត្រទាំងអស់នេះ ក្នុងខ្នាតប្រចាំថ្ងៃ គឺពិតជាមិនអាចមានទេ ។ ក្នុងចំណោមវិធីសាស្ត្រនានា សម្រាប់ការ វិភាគលើការបំពេញទឹកក្រោមដីមកវិញ ម៉ូដែលធុង អាចចាត់ទុកជាម៉ូដែលមួយល្អបំផុត ។ នៅពេលដែល បរិមាណនៃទឹកភ្លៀង និងវំហូតមានការទាក់ទងគ្នាផ្ទាល់ ទៅនឹងការប្រែប្រូលកំពស់ទឹកក្រោមដី តាមរយៈ ម៉ូដែល ធុង នោះ បរិមាណនៃការបំពេញមកវិញ និងការប្រើទឹកក្រោមដី អាចនឹងត្រូវគណនាជាសរុប នៃលទ្ធផល ដែលមានការទាក់ទងទៅនឹងកត្តាទាំងអស់នេះ ។ គោលគំនិតសំខាន់របស់ម៉ូដែលធុង មានបង្ហាញក្នុងរូបភាព ខាងក្រោម។

Al:បរិមាណទឹកភ្លៀងអប្បបរមា (មម) សំរាប់ការបំពេញមកវិញនូវទឹកក្រោមដី។

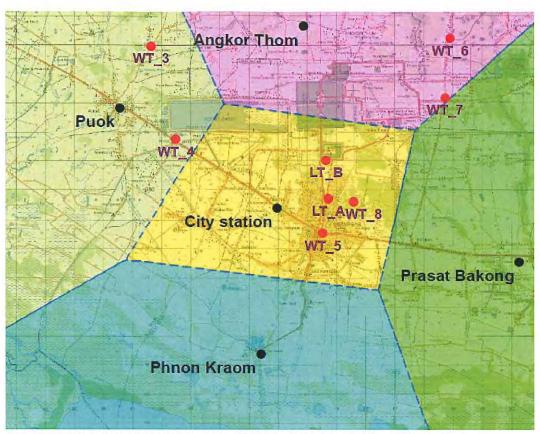
A1:បរិមាណទឹកភ្លៀងអប្បបរមា (មម) សំរាប់ការបំពេញមកវិញនូវទឹកក្រោមដី។

A1:បរិមាណទឹកភ្លេងអប្បបរមា (មម) សំរាប់ការបំពេញមកវិញនូវទឹកក្រោមដី។

F1:ច្រកហូវចេញពីអាង សំរាប់ការបំពេញមកវិញនូវទឹកក្រោមដី។

F2:ច្រកហូរចេញពីអាង សំរាប់ទីកដែលហូរលើផ្ទៃដី។

F3:ច្រកហូរចេញពីអាង សំរាប់ទីកដែលហូរលើផ្ទៃដីអតិបរមា។


P1:មេគុណ សំរាប់ការបំពេញមកវិញនូវទឹកក្រោមដី។

P2: មេគុណ សំរាប់ទឹកដែលហូរលើផ្ទៃដី។

P3: មេគុណ សំរាប់ទឹកដែលហូរលើផ្ទៃដីអតិបរមា។

រូបភាព ៤.២៧: គោលគំនិតសំខាន់របស់ម៉ូដែលធុង

ទំនាក់ទំនងរវាងស្ថានីយ័ត្រួតពិនិត្យខុតុនិយម និងទីតាំងត្រួតពិនិត្យទឹកក្រោមដី មានបង្ហាញក្នុងរូបភាព ខាងក្រោម ។

រូបភាព ៤.២៨: ទីតាំងនៃអណ្ដូងត្រួតពិនិត្យទឹកក្រោមដី និងស្ថានីយឧតុនិយមក្នុងតំបន់សិក្សា

លទ្ធផលនៃការបញ្ជាក់ពីទិន្នន័យ មានបង្ហាញក្នុងតារាងខាងក្រោម។

តារាង ៤.៥: លទ្ធផលនៃការពិនិត្យទិន្នន័យសំរាប់ការបង្កើតម៉ូដែលធុង

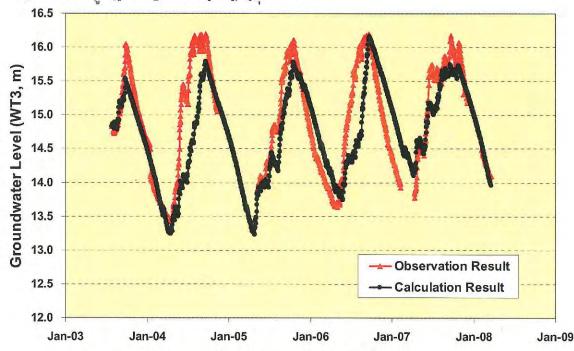
WL- ស្ថានីយ	W-រយះពេល:	ស្ថានីយ៍ទឹកភ្លៀង	រយៈពេលទឹកភ្លៀង	គណនា-រយៈពេល
WT_3	សីហា ០៣-មេសា ០៨	ពូក	មិនា ០៣-ធ្នូ ០៨	មករា ០៩-មេសា ០៨
WT_4	មិនា ០៧-មិនា ០៨	ពូក		មិនា ០៧-មិនា ០៨
WT_5	មិនា ០៧-មិនា ០៩	ក្នុងក្រុង	មករា ៨៨-ធ្នូ ០៨	ឧសភា ០៧-ធ្នូ ០៨
WT_6	កក្កដា ០៨-មិថុនា ០៩	អង្គរធំ	កក្កដា ០០-ធ្នូ ០៨	កក្កដា ០៨-ធ្នូ ០៨
WT_7	សីហា ០៣-មិថុនា ០៩	អង្គរធំ ប្រាសាទបាតង	0	កញ្ញា ០៣-ធ្នូ ០៨
WT_8	-	ក្នុងក្រុង		-
LTa	-	ក្នុងក្រុង	មករា ៨៨-ធ្នូ ០៨	-
LTb	កញ្ញា ០៣-មិថិនា ០៨	ក្នុងក្រុង		កញ្ញា ០៣-ធ្នូ ០៨

WL-**ស្ថានីយ៍**: លេខកូដអណ្ដូងត្រួតពិនិត្យកំពស់ទឹកក្រោមដី។

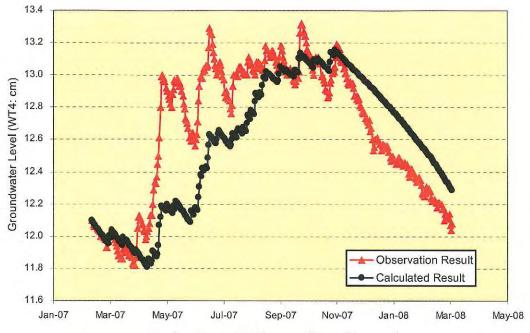
W-រយៈពេលៈ រយៈពេលនៃទិន្នន័យត្រួតពិនិត្យកំពស់ទឹកក្រោមដី ដែលអាចទុកចិត្តបាន សម្រាប់អណ្ដង

នីមួយៗ ដែល ពិនិត្យដោយលទ្ធផលនៃការពិនិត្យដោយដៃ។

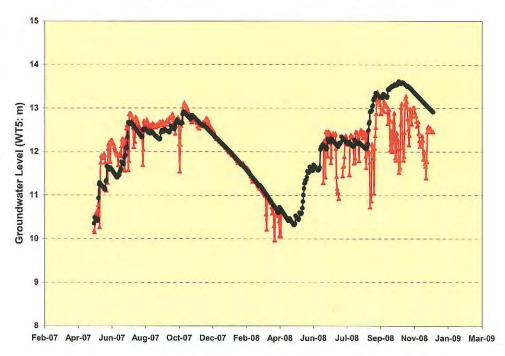
ស្ថានីយ៍ទឹកភ្លេង : ឈ្មោះស្ថានីយ៍សង្កេតទឹកភ្លេង។

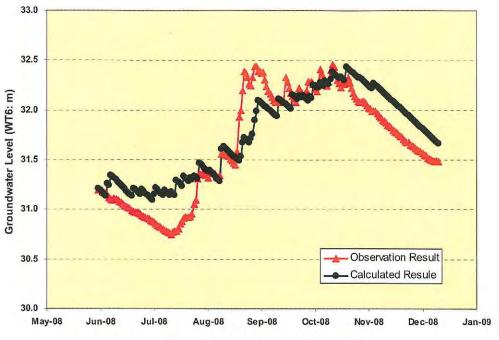

រយៈពេលទឹកភ្លៅងៈ រយៈពេលនៃការសង្កេតសម្រាប់ស្ថានីយ៍ឧតុនិយមនីមួយៗ។

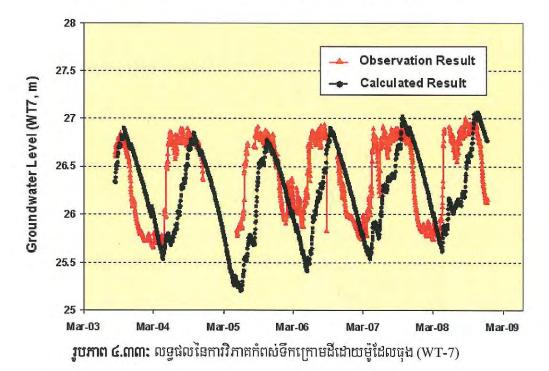
ឥណនា-រយៈពេល: រយៈពេលដែលទិន្នន័យនៃការពិនិត្យទឹកក្រោមដី និងការសង្កេតខុតុនិយម គឺមាន

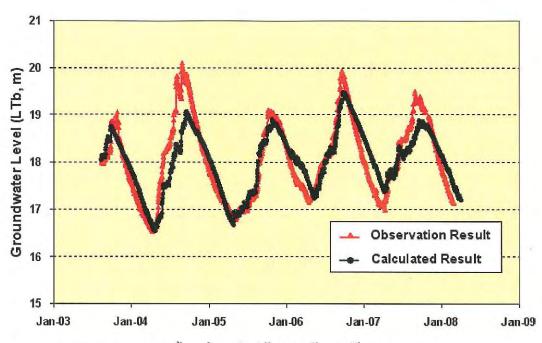

សម្រាប់ការវិភាគ ម៉ូដែលធុង។

៤.៥.២. លទ្ធផលនៃការគណនាការបំពេញទឹកក្រោមដីមកវិញចំពោះទីតាំងត្រួតពិនិត្យនីមួយៗ


រូបភាព ៤.២៩ ដល់៤.៣៤ បង្ហាញពីលទ្ធផលនៃការវិភាគកំពស់ទឹកក្រោមដីដោយម៉ូដែលធុង នៅគ្រប់ទីតាំង អណ្តងត្រូតពិនិត្យដែលមានដូចបង្ហាញក្នុងតារាង ៤.៥។


រួបភាព ៤.២៩: លទ្ធផលនៃការវិភាគកំពស់ទឹកក្រោមដីដោយម៉ូដែលធុង (WT-3)


រូបភាព ៤.៣០: លទ្ធផលនៃការវិភាគកំពស់ទឹកក្រោមដីដោយម៉ូដែលធុង (WT-4)



រូបភាព ៤.៣១: លទ្ធផលនៃការវិភាគកំពស់ទឹកក្រោមដីដោយម៉ូដែលធុង (WT-5)

រូបភាព ៤.៣២: លទ្ធផលនៃការវិភាគកំពស់ទឹកក្រោមដីដោយម៉ូដែលធុង (WT-6)

រូបភាព ៤.៣៤: លទ្ធផលនៃការវិភាគកំពស់ទឹកក្រោមដីដោយម៉ូដែលធុង (LTb)

៤.៥.៣. សង្ខេបការគណនាការបំពេញទឹកក្រោមដឹមកវិញ

លទ្ធជលនៃការគណនា ការបំពេញទឹកក្រោមដីមកវិញ មានសង្ខេបក្នុងតារាងទាំងពីរខាងក្រោម ។

តារាង ៤.៦: ការបំពេញទឹកក្រោមដីមកវិញប្រចាំខែ និងឆ្នាំ ចំពោះស្ថានីយ៍និមួយ១

Month	WT3	WT4	WT5	WT6	WT7(1)	WT7(2)	LT_b
Jan	0.0	0.0	1.0		0.0	0.0	0.3
Feb	0.0	0.0	2.1		0.0	0.0	4.3
Mar	6.4	13.9	2.5		1.0	6.5	8.5
Apr	20.0	12.1	7.1		4.0	6.4	13.6
May	74.4	82.4	17.1		28.0	31.8	56.8
Jun	70.8	54.2	18.5	38.2	38.0	39.8	60.7
Jul	71.1	57.8	13.6	55.0	24.0	51.0	56.6
Aug	59.7	56.3	13.8	120.1	55.0	35.1	40.6
Sep	93.6	36.6	31.4	115.8	55.0	60.5	86.8
Oct	59.2	33.8	25.8	91.8	47.0	37.0	61.1
Nov	12.4	20.1	6.1	33.0	6.0	9.8	10.7
Dec	5.4	0.0	0.0	0.0	10.0	2.2	2.4
Yearly	473	367	139	>454	268	280	402

ពារាង៤.៧: ការសង្ខេបទូវលទ្ធផលនៃការគណនារបស់ម៉ូដែលធុង

Month	P	recipitatio	n	Groun	dwater Re	charge	Evap	otranspira	ation
Month	Max.	Avrag	Min.	Max.	Avrag	Min.	Max.	Avrag	Min.
Jan	10.0	6.0	1.4	1.4	0.1	0.0	38.9	29.3	20.2
Feb	46.7	11.2	0.0	17.1	1.1	0.0	39.8	30.0	21.0
Mar	121.9	29.5	0.2	28.7	5.8	0.0	51.6	38.8	26.3
Apr	124.0	53.5	2.7	29.6	10.4	0.0	53.4	39.3	27.4
May	372.0	232.4	42.0	113.1	45.4	0.0	54.3	37.4	22,2
Jun	397.7	217.5	102.4	93.9	48.5	17.8	49.1	31.8	20.0
Jul	340.0	199.3	117.9	82.3	47.0	11.3	66.7	31.0	17.2
Aug	306.8	206.1	43.0	120.1	47.7	11.2	68.0	32.0	19.2
Sep	502.9	254.1	130.0	134.8	70.4	26.0	54.2	24.7	15.6
Oct	375.7	196.6	103.0	119.1	49.7	14.8	58.9	29.2	19.2
Nov	98.2	50.8	3.9	33.0	10.7	0.0	58.5	28.0	18.6
Dec	71.1	31.2	0.2	23.4	4.2	0.0	60.3	28.6	18.2

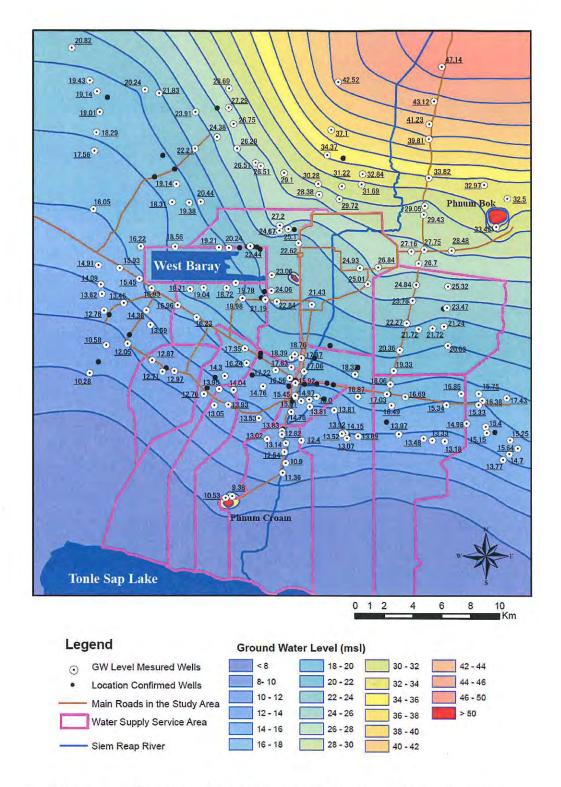
ការបំពេញមកវិញនូវទឹកក្រោមដី ជាមធ្យមប្រចាំឆ្នាំ គឺ៣៤១មីលីម៉ែត្រ ក្នុង១ឆ្នាំ ។ ការបំពេញមកវិញ នូវទឹកក្រោមដី ប្រចាំឆ្នាំ នៅក្នុងតំបន់ដែលបំពេញមកវិញទាំងមូល គឺអាងស្ទឹងទាំងបី (សូមមើលតំបន់ដែលមាន ពណ៌លឿង ក្នុងរូបភាព៤.២) គឺ ៤៣៥៥១៧០០០ម៉ែត្រគីប ដែលស្នើបរិមាណប្រចាំថ្ងៃ ១១៩៣០០០ម៉ែត្រគីប ។

ម្យ៉ាងវិញទៀត ពុំមានស្រទាប់ដែលមានទឹកជ្រៅ ដែលមានលក្ខណៈជ្រាបទឹកខ្ពស់នោះទេ នៅក្នុងក្រុង ស្យើមរាប ដូចនេះ បរិមាណបំពេញមកវិញនូវទឹកក្រោមដី ក្នុងតំបន់សេវាកម្មផ្គត់ផ្គង់ទឹក ត្រូវគណនាដោយគុណ ៣៤១ មីលីម៉ែត្រ នឹង ៥៥២ គីឡូម៉ែត្រការេ ដើម្បីទទូលបានបរិមាណមធ្យមប្រចាំឆ្នាំចំនួន ១៨៨៣២០០០០ ម៉ែត្រគីប ដែលស្មើនឹង ៥១៦០០០ ម៉ែត្រគីប ក្នុងមួយថ្ងៃ ។

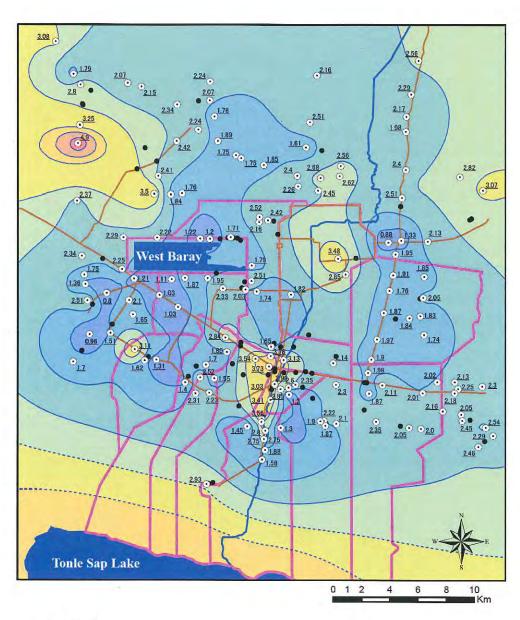
បើយើងប្រៀបផ្យេបតែបរិមាណនៃការបំពេញមកវិញពីទឹកភ្លៀង (៥១៦០០០ ម៉ែត្រគីប ក្នុងមួយថ្ងៃ) ទៅនឹងបរិមាណដែលមាន នៅក្នុងផែនការអភិវឌ្ឍន៍ការផ្គត់ផ្គង់ទឹក (៨៦.២៥០ ម៉ែត្រគីប ក្នុងមួយថ្ងៃ) យើង ឃើញថា វាធំជាង៦ដង ។ ទោះជាយាំងណាក់ដោយ នៅពេលដែលយើងគិតដល់វដ្តជលសាស្ត្រនោះ កំពស់ទឹក ក្រោមដី អាចចាត់ទុកថា មិនមានការប្រែប្រួលអ្វីទេ បើទោះជាមានបរិមាណទឹកភ្លៀងច្រើនដែលបំពេញទឹក ក្រោមដីមកវិញក៏ដោយ ។ គឺមានន័យថា ក្រោមលក្ខខ័ណ្ឌធម្មជាតិ បរិមាណនៃការបំពេញទឹកក្រោមដីមកវិញ ត្រូវបានប្រើប្រាស់ ហើយការប្រើប្រាស់ទឹកក្រោមដីសំខាន់នោះ គឺវាមកពីការហូត ។

ការហូតទឹកក្រោមដី គឺវាពាក់ព័ន្ធនឹងកត្តាជាច្រើន ដូចជាការហូតពីផ្ទៃដី ជម្រៅកំពស់ទឹកក្រោមដី ប្រភេទដី ឬស្រទាប់ដែលមានទឹក និងកត្តាផ្សេង១ទៀត ។ ទោះជាយាំងណាក៏ដោយ សម្រាប់ការវិភាគទូទៅ តម្លៃជម្រៅ៥ម៉ែត្រ អាចត្រូវយកមកគិត ជាជម្រៅមួយដែលមានការហូតទឹកក្រោមដី ។ ដូចនេះ កំពស់ទឹក ក្រោមដីនឹងមានក្នុងជម្រៅ៥ម៉ែត្រ ក្រោមផ្ទៃដី ក្នុងតំបន់ក្រុងស្យេមរាបទាំងមូល ក្នុងករណីដែលបរិមាណនៃការ បូមយកទឹកក្រោមដីស្នើ នឹងបរិមាណនៃការបំពេញមកវិញ ។

៤.៦–ការពិនិត្យទឹកក្រោមដីក្នុងពេលស្របគ្នា


៤.៦.១-របាយ និងការផ្លាស់ប្តូរកំពស់ទឹកក្រោមដី

ដើម្បីបញ្ជាក់ច្បាស់ ពីរបាយកំពស់ទឹកក្រោមដី ក្នុងក្រុងស្យេមរាប ការពិនិត្យលើទឹកក្រោមដីស្របពេល គ្នា ត្រូវបានធ្វើឡើងពីរដង ក្នុងរដូវវស្សាក្នុងខែកញ្ញា ឆ្នាំ២០០៩ និងរដូវប្រាំង ក្នុងខែមេសា ឆ្នាំ២០១០។ របាយ កំពស់ទឹកក្រោមដីនេះ ក៏បានបង្ហាញឃើញដូចគ្នាផងដែរ តាមរយៈការអង្កេតកំពស់ទឹកក្រោមដី ទាំងពីរលើក ។ រូបភាព៤.៣៥ បង្ហាញពីលទ្ធផលនៃការវិភាគទឹកក្រោមដី ក្នុងរដូវវស្សា ។ រូបភាព៤.៣៦ បង្ហាញពីភាពខុសគ្នា នៃកំពស់ទឹកក្រោមដី រវាងរដូវទាំងពីរ។


ការស្រកចុះដីខ្លាំងនៃទឹកក្រោមដីក្នុងរដូវប្រាំង អាចឃើញមានក្នុងរូបភាព ៤.៣៦ ។ អណ្ដូងឯកជន ជាច្រើនជាអ្នច្រើទឹកក្រោមដីធំ១ ដូចជា សណ្ឋាគារ និងផ្ទះសំណាក់ គឺច្រើទឹកក្រោមដីក្នុងតំបន់ទីក្រុង ។ នេះគឺជា មូលហេតុនៃការស្រកចុះកំពស់ទឹកក្រោមដីដីខ្លាំងក្នុងតំបន់ទីក្រុង ច្រើនជាងតំបន់ឯទៀតក្នុងខេត្តសៀមរាប ។

៤.៦.២–ការសង្កេតលើកំពស់ទឹកក្រោមដីក្នុងការសិក្សាលើកមុនរបស់ JICA

ក្នុងការសិក្សាស្តីពីប្រព័ន្ធផ្គត់ផ្គង់ទឹកស្អាតសំរាប់តំបន់ស្យេមរាប ក្នុងប្រទេសកម្ពុជា (ឆ្នាំ២០០០) អណ្តូងចំនួន៧៩ ត្រូវបានប្រើសំរាប់ការសង្កេតកំពស់ទឹកក្រោមដីប្រចាំខែ ពីខែកុម្ភៈ ឆ្នាំ១៩៩៨ រហូតដល់ខែវិច្ឆិកា ឆ្នាំ១៩៩៩ ។

រូបភាព ៤.៣៥: លទ្ធផលនៃការសង្កេត ទឹកក្រោមដី ស្របពេលគ្នា ក្នុងរដូវវស្សា (ខែកញ្ញា ឆ្នាំ២០០៩)

Legend

រូបភាព ៤.៣៦: ការប្រែប្រួលកំពស់ ទឹកក្រោមដី ចន្លោះរវាង រដូវវស្សា (ខែកញ្ញា ឆ្នាំ២០០៩) និង រដូវប្រាំង (ខែមេសា ឆ្នាំ២០១០)

៤.៧-ការប្រៅ្ងបធ្យេបលទ្ធផលនៃការពិនិត្យទឹកក្រោមដី

នៅក្នុងការសិក្សារបស់ JICA ទាំងពីរ ការសិក្សាលើកនេះ និងការសិក្សាស្តីពីប្រព័ន្ធផ្គត់ផ្គង់ទឹកស្អាត សំរាប់តំបន់ស្យេមរាប ក្នុងប្រទេសកម្ពុជា (ឆ្នាំ២០០០) អណ្តូងភាគច្រើន ដែលមាននៅតាមបណ្ដោយផ្លូវជាតិ លេខ៦ និងផ្លូវពីប្រាសាទអង្គរវត្តទៅបឹងទន្លេសាប ត្រូវបានជ្រើសរើស សម្រាប់ការពិនិត្យលើ កំពស់ទឹកក្រោមដី ។ គ្រប់អណ្តូងទាំងអស់ ក្នុងចម្ងាយ១គីឡូម៉ែត្រ ពីផ្លូវធំ១ពីរ ក្នុងក្រុងស្យេមរាប ត្រូវបានបូច សម្រាប់ប្រៀបធ្យេប លើការប្រែប្រួលកំពស់ទឹក។

៤.៧.១-រដូវដែលមានកំពស់ទឹកក្រោមដីខ្ពស់

កំពស់ទឹកក្នុងរដូវវិស្សា ក្នុងការសិក្សារបស់ JICAទាំងពីរ មានសង្ខេបនៅក្នុងតារាង និងរូបភាព ខាងក្រោម ។ កំពស់ទឹកក្នុងឆ្នាំ២០០៩ មានទាបជាងឆ្នាំ១៩៩៩ ប៉ុន្តែស្ទើរតែដូចគ្នានឹងឆ្នាំ១៩៩៨ ។

តារាង ៤.៨: ការប្រៀបធៀបកំពស់ទឹកក្នុងរដូវវិស្សា ដោយអណ្តូងតាមបណ្តេយផ្លូវធំៗ

			1	<i>u</i>		<u> </u>	
ពេល	កញ្ញា០៩	កញ្ញា៩៨	តុលា ៩៨	វិច្ឆិកា៩៨	កញ្ញា ៩៩	តុលា ៩៩	វិច្ឆិកា៩៩
មធ្យម (m)	1.58	1.57	1.32	1.39	1.2	0.84	0.61
អភិបរមា (m)	5.12	6.83	5.88	5.79	5.21	4.21	3.13
អបបរមា (m)	0.2	0.1	0	0.08	-0.06	-0.44	-0.49

សំគាល់ៈ តម្លៃលេខក្នុងតារាង គឺជា តម្លៃកំពស់ទឹកនៅក្រោមផ្ទៃដី។

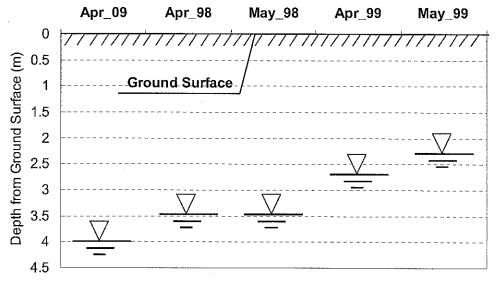
Sept_09 Sep_98 Oct_98 Nov_98 Sep_99 Oct_99 Nov_99

Oct_99 Nov_99

Ground Surface

The substitution of the

រូបភាព ៤.៣៧: ការប្រៀបធៀបរវាងកំពស់ទឹកមធ្យមក្នុងរដូវវស្សា ដោយអណ្ដូងនៅតាមបណ្ដោយផ្លូវធំ១


៤.៧.២-រដូវដែលមានកំពស់ទឹកក្រោមដីទាប

កំពស់ទឹកក្នុងរដូវប្រាំង ក្នុងការអង្កេតនេះ (ខែមេសា ឆ្នាំ២០០៩) គឺមានទាប ជាងកំពស់ទឹក នៅក្នុង គ្រប់ខែដូចគ្នា ក្នុងរដូវប្រាំង នាឆ្នាំ១៩៩៨ និង១៩៩៩ ។

ភារាង ៤.៩: ការប្រៅបធ្យើបនូវកំពស់ទឹកក្នុងរដូវប្រាំង ដោយអណ្ដូងនៅតាមបណ្ដោយផ្លូវធំ១

ពេល	មេសា ១០	មេសា ៩៨	មិថុនា ៩៨	មេសា ៩៩	មិថុនា ៩៩
មធ្យម (m)	3.97	3.48	3.48	2.7	2.28
អតិបរមា (m)	9.12	8.52	8.52	9.22	7.4
អបបរមា (m)	1.73	0.99	0.99	0.65	-0.05

សំពាល់: តម្លៃលេខក្នុងតារាង គឺជា តម្លៃកំពស់ទឹកនៅក្រោមផ្ទៃដី។

រូបភាព ៤.៣៨: ការប្រៀបធៀបរវាងកំពស់ទឹកមធ្យមក្នុងរដូវប្រាំង ដោយអណ្តូងនៅតាមបណ្តោយផ្លូវធំ១

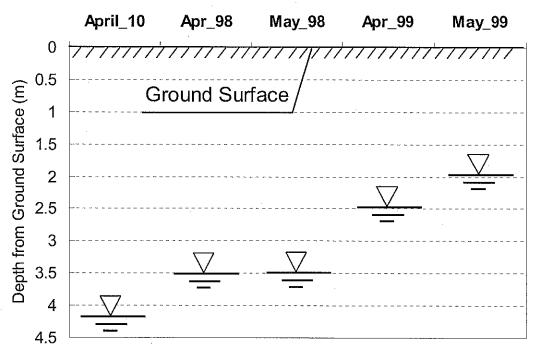
៤.៧.៣-ការប្រៅ្ជធ្យើបលទ្ធផលក្នុងតំបន់ទីក្រុង

ដើម្បីពិនិត្យលើការប្រែប្រួលកំពស់ទឹក ក្នុងតំបន់ទីក្រុង គ្រប់អណ្ដូងទាំងអស់ ក្នុងការសិក្សាផ្សេង១គ្នា នៅក្នុងតំបន់ ទីក្រុង ត្រូវបានជ្រើសរើស ។ ក្នុងចំណោមអណ្ដូងចំនួន៣៣ ដែលបានជ្រើសរើស ដែលបានពិនិត្យក្នុងការសិក្សានេះ មាន២៣អណ្ដូង ត្រូវបានប្រើសម្រាប់វ៉ាស់កំពស់ទឹកក្រោមដី ក្នុងរដូវវិស្សា និង២៥អណ្ដូង ក្នុងរដូវប្រាំង ។ ក្នុងចំណោម អណ្ដូងចំនួន២៨ ដែលបានជ្រើសរើសពីការសិក្សាលើកមុនរបស់ JICA មាន១៣អណ្ដូង ដែលមានទិន្នន័យសម្រាប់ការ ប្រៅបធ្យើបនេះ ។ រាល់ទិន្នន័យដែលមានទាំងអស់ មានសង្ខេប ក្នុងរដូវផ្សេងៗគ្នា ហើយលទ្ធផលរបស់វា មានបង្ហាញក្នុង តារាង និងរូបភាពខាងក្រោម ។

តារាង ៤.១០: ការប្រៅបធៀបកំពស់ទឹកក្នុងរដូវវិស្សា ក្នុងតំបន់ក្រុង

			, u		12 : JU 05	U)	
ពេល	កញ្ញា០៩	កញ្ញា៩៨	តុលា ៩៨	វិច្ឆិកា៩៨	កញ្ញា ៩៩	តុលា ៩៩	វិច្ឆិកា៩៩
មធ្យម (m)	1.63	1.41	1.2	1.32	1.24	0.85	0.6
អតិបរមា (m)	5.12	3.51	3.1	3	3.26	2.9	2.32
អបបរមា (m)	0.2	0.1	0	0.3	0.23	-0.28	-0.41

សំពាល់: តម្លៃលេខក្នុងតារាង គឺជា តម្លៃកំពស់ទឹកនៅក្រោមផ្ទៃដី។


រូបភាព ៤.៣៩: ការប្រៀបធៀបរវាងកំពស់ទឹកមធ្យមក្នុងរដូវវស្សា ក្នុងតំបន់ក្រុង

តារាង៤.១០ បង្ហាញពីភាពខុសគ្នាយ៉ាងជាក់ស្ដែង រវាងកំពស់ទឹកនៅក្នុងរដូវវស្សា ក្នុងការសិក្សានេះ ទៅនឹង ការសិក្សាលើកមុន ។ បើប្រៅ្រផ្យេបទៅនឹងលទ្ធផលនៃការអង្កេតក្នុងរដ្ឋាំ១៩៩៤ និង១៩៩៩ កំពស់ទឹក ក្រោមដី ក្នុងរដ្ឋាំ ២០០៩ មានការស្រកចុះក្នុងកម្រិតពី០.២២ម៉ែត្រ ទៅ១.០៣ម៉ែត្រ ។

ពារាង ៤.១១: ការប្រៅបធៀបនូវកំពស់ទឹកក្នុងរដូវប្រាំង ក្នុងតំបន់ក្រុង

ពេល	មេសា ១០	មេសា ៩៨	មិថុនា ៩៨	មេសា ៩៩	មិថុនា ៩៩
មធ្យម (m)	4.19	3.5	3.5	2.5	2
អតិបរមា (m)	7.4	5	5.1	4.6	4.81
អបបរមា (m)	2.6	2.35	2.25	1.46	0.82

សំគាល់ៈ តម្លៃលេខក្នុងតារាង គឺជា តម្លៃកំពស់ទឹកនៅក្រោមផ្ទៃដី។

រូបភាព ៤.៤០: ការប្រៀបធៀបរវាងតំពស់ទឹកមធម្យមក្នុងរដូវប្រាំង ក្នុងតំបន់ក្រុង

តារាងទាំងពីរ ៤.១០ និង ៤.១១ បានបង្ហាញពីភាពខុសគ្នាយ៉ាងជាក់ស្តែងនៃកំពស់ទឹក រវាងខែកញ្ញា ឆ្នាំ២០០៩ (ខែមេសា ឆ្នាំ២០១០) និងខែដូចគ្នា នៅក្នុងឆ្នាំ១៩៩៨ និង១៩៩៩ ។ ទោះជាយ៉ាងណាក៏ដោយ ភាពខុសគ្នានេះ មានធំជាង នេះទៅទៀត បើសិនជា យើងប្រើតែអណ្តូងក្នុងតំបន់ទីក្រុង សម្រាប់ការប្រៀបចៀប ជាជាងប្រើអណ្តូងទាំងអស់ នៅជិតផ្លូវធំ១ សម្រាប់ការប្រៀបចៀប ជាជាងប្រើអណ្តូងទាំងអស់ នៅជិតផ្លូវធំ១ សម្រាប់ការប្រៀបចៀបនោះ ។ មានន័យថា ការស្រកចុះនៃកំពស់ទឹកក្រោមដី ក្នុងតំបន់ក្រុង គឺច្រើនជាង តំបន់ផ្សេងទៀត ក្នុងខេត្ត សៀមរាប ដោយសារតែអណ្តូងឯកជនជាច្រើន គឺស្ថិតនៅតំបន់ក្រុង ដែលមានចំនួនច្រើននោះ ។