

目 次

付属資料 1 第一回セミナー資料

付属資料 2 第一回セミナーアンケート結果

付属資料 3 第二回セミナー資料

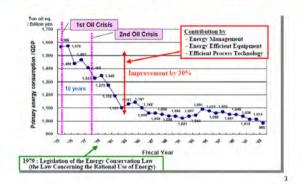
付属資料 4 第二回セミナーアンケート結果

付属資料 1

第一回セミナー資料

Policy and Measures of Energy Efficiency & Conservation (EE&C) in Japan

JICA Study Team February 2011


Japan's Energy Situation (1) **Primary Energy Consumption per GDP per Country**

Japanese primary energy consumption per GDP is the lowest in the world owing to various energy conservation measures taken for the respective sectors. The energy consumption intensity per GDP in the industrial sector is lower than those of other major countries.

2

Japan's Energy Situation (2) **Changes in Primary Energy Consumption per GDP**

Laws and Plans for Energy Conservation (1)

Basic Act on Energy Policy (June 2002)

- 1. Securing of Stable Supply
- Environmental Suitability
- Utilization of Market Mechanisms with due consideration accorded to energy supply stability and environmental compliance.
 - The Act stipulates that the Government is responsible for formulating and implementing measures on energy supply and demand.

Basic Energy Plan (Oct 2003 rev.Mar 2007)

- Improving Energy Efficiency in demand side and supply side
- Comprehensive strengthening of resource diplomacy and , energy and environment cooperation $% \left(1\right) =\left(1\right) \left(1$
- Enhancement of emergency response measures
- Institutional reform of power and gas sector

To provide means for achieving the foals of the "Basic Act on Energy Policy", the Basic Energy Plan was adopted. The plan is to be reviewed and reassessed at least <u>once every</u> three years in response to changes in the energy environment.

To meet the policy No.1 (improving energy efficiency ...) , the "Energy Conservation and Load Leveling" are described in the Plan.

3

Laws and Plans for Energy Conservation (2)

New National Energy Strategy (May 2006)

[Basic Objectives of the strategy]

- Establishment of energy security measures
- Establishment of the foundation for sustainable development through a integrated approach of energy and environment issues
- Contribution to Asian and the World for solution of energy problems

[Basic perspective of the strategy]

- Establishment of a state-of —the —art energy supply demand structure Energy Conservation Frontrunner Plan (improvements of energy efficiency) Transport Energy for the next generation plan

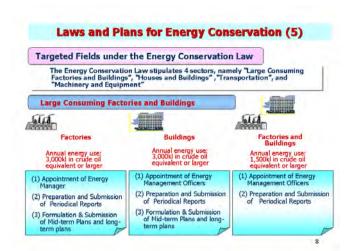
 - New Energy Innovation Plan
 - Nuclear Power National Plan
- Comprehensive strengthening of resource diplomacy and Energy and Environment Cooperation
 - Comprehensive strategy for securing recourses Asia Energy and Environment Cooperation Strategy
 - Enhancement of emergency response measures
 - Improvement of stockpiles system and preparation of the emergency response system
- 4. Other
 - Energy Technology Strategy (technological challenges to be solved by 2030)

4

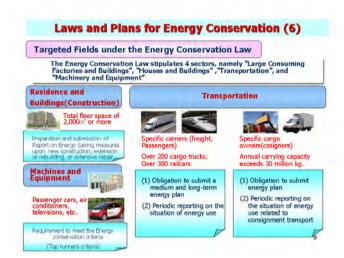
Laws and Plans for Energy Conservation (3)

Energy Conservation Frontrunner Plan


Japanese Economy has been achieving an energy consumption efficiency of over 30% since the two oil crises of the 1970s. By establishing a positive cycle of technological innovations and social system reforms in the future, our country aims to improve energy consumption efficiency by at lease another 30% by 2030.


Specific activities

- (1) Formulation of an energy conservation technology strategy
- (2) Introduction of the benchmark approach by sector and active cre of initial demand
- (3) Establishment of a mechanism in which energy-saving investments are recognized by the market
- (4) Development of energy- saving cities and areas



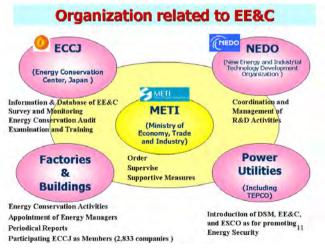
5

7

9

11

Provision of Information


The Energy Conservation Law requires provision of Information of energy conservation by Electric Power Companies, Gas Companies, and Electronic Retailers.

Electric Power Companies
Gas Consumer Electronics Retailers

Consumer Electronics Retailers

Online energy conservation navigation service by TEPCO

(1) Promotion of distribution of energy-saving devices to consumers
(2) Provision of energy-saving information to consumers
(3) Publication of achievement

METI holds jurisdiction over industry policy, trade policy, industrial technology, and Energy Policy.

METI controls and supervises energy conservation activities as a regulatory authority.

It is the responsibility of the METI to formulate and publicize a "Basic Policy for the rational use of energy" and "Evaluation Criteria" with accompanying measures to be implemented by energy consumers.

Agency for Natural Resources
& Energy

| Regional Bureaus of Economy, Trade and Industry
| Trade and Industry
| Director-General's | Regional Bureaus of Economy, Trade and Industry
| Trade and Industry | Regional Bureaus of Economy, Trade and Industry
| Trade and Industry | Regional Bureaus of Economy, Trade and Industry
| Policy & Gas | Regional Bureaus of Economy, Trade and Industry
| Region

12

NEDO

Outline of NEDO

NEDO (New Energy and Industrial Technology Development Organization) is Japan's public management organization promoting research and developing related to oil-alternative energy technology, industrial technology, and technology for the efficient use of energy.

head office, 3 branch offices, 5 overseas offices (USA, France China Thailand, India)

Budget: Approximately 232.9 billion yen (FY2008)

14

13

- 1) Energy conservation audits services for factories
- 2) Education & training on energy conservation
- 3) State examination for energy managers (assigned by the government)

ECCJ Activities I: Industry Sector

- 4) Dissemination (conference for successful cases of energy conservation activities, excellent energy conserving equipment, etc.)
- 5) Technological development and spillover

15

ECCJ Activities II: Residential, **Commercial & Transportation Sector**

Outline of ECCJ

The Energy Conservation Center, Japan (ECCJ) is established in October 1978, just

ECCJ established as a NPO under the supervision of the Ministry of Economy, Trade

ECCJ is the core organization responsible for promotion of energy conservation in

The Energy Conservation Center, Japan

Office: Tokyo Head office, 7 Branches and 1 Local Office

Supporting Membership: 2,861 companies (As of July, 2008)

Number of employees: 133 (As of July, 2008)

after the 2nd oil crisis.

and Industry (METI)

Established: October 16, 1978 Funds: 39 million USD

Japan. <Profiles>

- 1) Energy conservation audits services for buildings
- 2) Ranking catalogue for energy efficient appliances (dissemination of Top Runner Program)
- 3) Promotion of energy labeling system
- 4) International Energy Star program implementation
- 5) Energy efficiency product retailer assessment system
- 6) Dissemination of energy conservation indicator "E-Co Navigator
- 7) Energy education at primary and middle schools
- 8) ESCO research and development

16

15

16

ECCJ Activities III: Cross Sector

- 1) Energy conservation campaign & exhibition (i.e. ENEX : Energy & Environment Exhibition)
- 2) Commendation (grand energy conservation prize)
- 3) Information & data base, publicity and publishing
- 4) Survey and monitoring
- 5) International cooperation & communications

ECCJ Activities: Energy Audit Service

The Audit Includes

- On Site Discussions
- On Site Inspections
- Review of Documents required by the Energy Conservation Law
- List of areas which need remedies and give advice for energy saving potential and needed actions

17

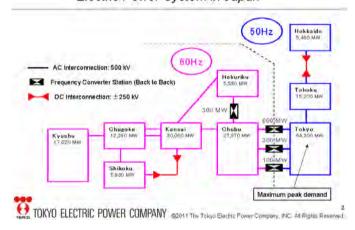
ECCJ Activities : Energy Conservation Award

ECCJ selects and recommends candidates for the Grand Prizes of Energy Conservation with household appliances and office equipment to be awarded by the government (METI) at ENEX exhibitions every year.

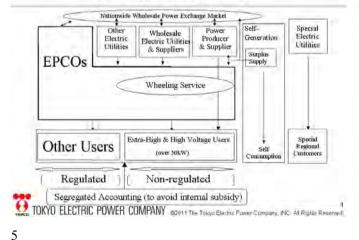
Prizes are awarded to consumer equipment and systems that provide excellent energy efficiency.

2008 Energy Conservation Award

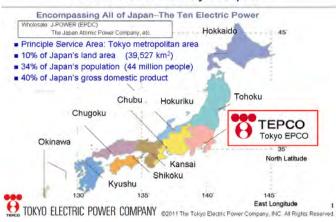
METI Minister's Award	An All-in-one washer-drier produced by Hitachi Appliances An Air conditioning system for offices and stores made by Toshiba Carrier Corporation An online eco-driving monitoring system developed by Isuz Motors Ltd
the Agency for Natural Resources and Energy Director-General's Award	5 products
the ECCJ Chairman's Award	1 product
the Small and Medium Enterprise Agency Director-General's Award	13 products
Super Flex Module Chiller Syste Toshiba& Tokyo Electric Power (Using an improvement system Minister's Award 2007 winning	Company 19


Thank you for your attention!

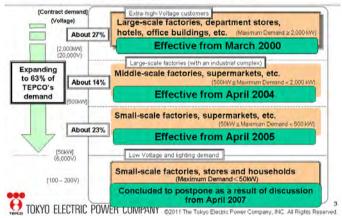
- Energy Efficiency Technologies in Japan -


February 2011

TOKYO ELECTRIC POWER COMPANY (920) 1 The Tokyo Electric Fower Company, INC. All Frigitis Reserved.


Electric Power System in Japan

Electricity Market Structure



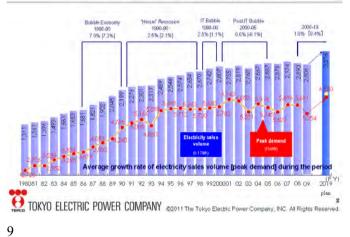
Electric Power Industry in Japan

2

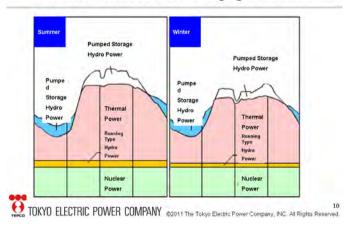
Deregulation of Retail Market

2

Corporate Outline (FY 2009)

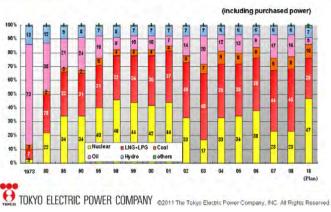

Date of Establishment:		May 1, 1951
Number of Shareholders:		794,653
Operating Revenues:		¥ 4,804 billion (US\$ 44 billion
Number of employees:		38,227
Electricity Sales:		280.2 TWH
Peak Demand		64.3GW (July 24, 2001)
Number of Customers:		28,842 thousand
Number of Power Stations	&	
Generating capacity	190	64,486MW
Thermal	26	38, 191MW
Nuclear	3	17,308MW
Hydro	160	8,986MW
Wind	1	500kW
Substation Facilities	1,591	256.7 mil. kVA
Transmission Line		
Overhead (Circuit Leng	gth)	28,541km
Underground Transmis	ssion Line (Cir	cuit Length) 11,760km
*Eurus Energy, one of TEP(X)'s sub-	saley, owns 1 SUBM	W wind forcing as W. January, 2010
OKYO ELECTRIC POWER CO	WALL ALLY	The Tokya Electric Power Company, INC. All Frotal

Generation Capacity by Energy Source

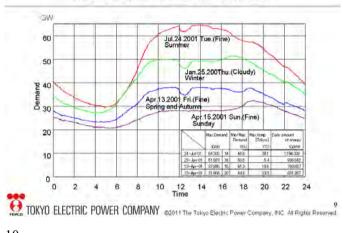

At FY end (planned)		2009 MW(%)			
		TEPCO capacity	Including purchased power		
		Output	Output		
W. Carlo	Conventional	2,178 (3)	4,105 (5)		
Hydro	Pumped storage	6,808 (11)	10,533 (14)		
	subtotal	8,986 (14)	14,638 (19)		
-	Oil	10,831 (17)	12,072 (16)		
	Coal	1,600 (3)	4,274 (6)		
Thermal	LNG/LPG	25,252 (39)	25,970 (33)		
	Geothermal	3 (0)	3 (0)		
	Other gases	- (-)	1,613 (2)		
	subtotal	37,686 (59)	43,933 (57)		
Nuclear		17,308 (27)	18,188 (24)		
New Energ	у	1 (0)	1 (0)		
Total		63,981 (100)	76,759 (100)		

TOKYO ELECTRIC POWER COMPANY (\$2011 The Tokyo Electric Power Company, INC. All R

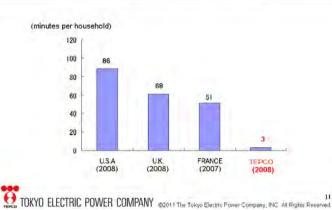
Peak Demand and Electricity Sales



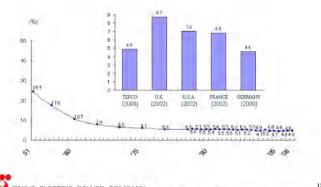
Generation Mix to Meet Changing Demand


11

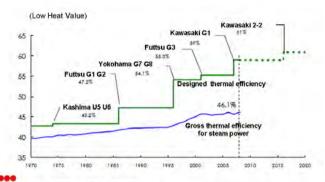
TEPCO Energy Output by Energy Source


8

Characteristics of Power Demand

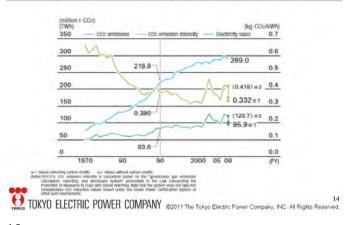

10

Quality Supply - Annual Forced Outage -

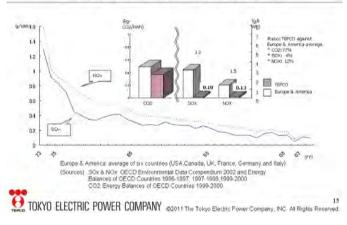

Transmission & Distribution Loss Rate

Thermal Power Generation Efficiency

TOKYO ELECTRIC POWER COMPANY 49,2011 The Tokyo Electric Power Company, INC. All Rigids Reserved.


13

TOKYO ELECTRIC POWER COMPANY @2011 The Tokyo Electric Power Company, INC. All Rights Reserved.


14

CO2 Emissions, Intensity and Electricity Sales

15

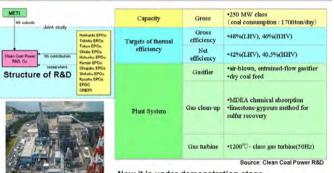
Efforts for "Clean" Thermal Power Generation

16

Energy Efficiency and System Improvement technology

Technologies for the Supply Side

17


More Advanced Combined Cycle (1,500 °C-class Combined Cycle Power Generation)

TOKYO ELECTRIC POWER COMPANY @2011 The Tokyo Electric Power Company, INC. All Rights Reserved

19

IGCC (Integrated Coal Gasification Combined Cycle) - R&D with All Power Utilities-

Now it is under demonstration stage.
It succeeded 3 months operation during summer.

TOKYO ELECTRIC POWER COMPANY ©2011 The Tokyo Electric Power Company, INC. All Rights Reserve

21

Ultra Super Critical Coal Power Generation

- Improvement of thermal efficiency (38%HHV → 43%HHV)
 Reduction of CO2 emission
- Hitachinaka Power Station

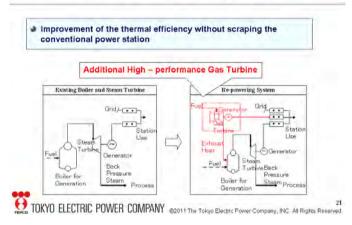
 Hazehnaka Ff
 Hirono #6

 Specification

 Hazehnaka eff
 Hirono #6

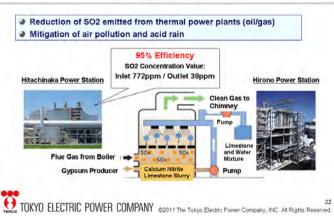
 Under construct

 Under construct

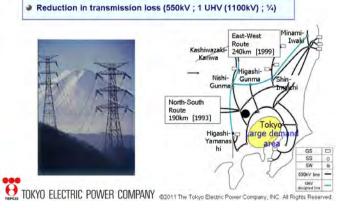

Loc ation	Boller Contractor	Turbine/ Generator Contractor	Capacity (MW x unit)	Construction	First operation
Hitachinaka #1	BHK	HTC	1000 x 1	12/1998 - 12/2003	12/2003
Hirono #5	MHI	MHIME	600 x 1	7/2000 - 7/2004	7/2004
Specification	Main steam Press (MPa)	Main steam Temp (*C)	Reaheater Temp (10)	Efficiency (%, HHV)	Fuel
Hitachinaka #1	24.5	600	800	43.1	Coal
Hirono #5	24.5	600	600	43.0	Coal
(Under construc	tion)				
	Boter	Turbine/ Generator	Capacity	Construction	Expected first

BHK: Babcock-Hitachi K.K., HTC:Hitachi,Ltd,

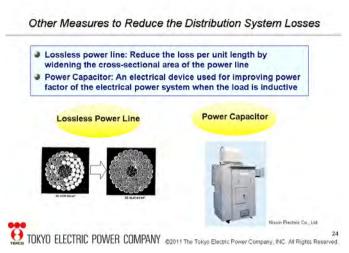
TOKYO ELECTRIC POWER COMPANY @2011 The Tokyo Electric Power Company, INC. All Rights Reserved.


20

Combined Cycle Re - powering System



22


Flue Gas Desulfurization

Ultra High Voltage (UHV) Technology
- 1,000 kV Transmission Facilities -

24

Wind Power Generation

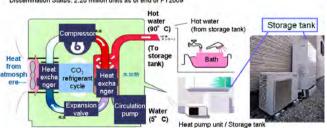
Eurus energy is Japan's largest wind power generator owning approx. 1.9 GW of equipment in Japan, Korea, U.S., and Europe (Ranking 10th in the world).

Engapement status
(as of the end of June 2010)

Eurus Energy

[Rorea] 139 MW

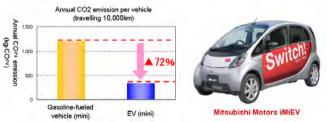
[


Mega Solar Power Plant Construction Plan

Technologies for the Demand Side

Save the primary energy by 30% and reduce CO2 by 50% compared with conventional combustion-type water heaters
 Dissemination Status: 2.25 million units as of end of FY2009
 Hot

Eco Cute (Heat-Pump Water Heater)



TOKYO ELECTRIC POWER COMPANY @2011 The Tokyo Electric Power Company, INC. All Rights Reserved.

Electric Vehicle

About 70% less CO2 compared with gasoline-fueled vehicles
 Increase the demand of low-load hours by charging the batteries.

Annual CO2 emission per vehicle

TOKYO ELECTRIC POWER COMPANY ©2011 The Tokyo Electric Power Company, INC. All Rights Reserved.

30

26

28

29

Thank you for listening!

Mitsubishi UFJ Morgan Stanley

JICA Study on the Energy Efficiency and Environment in Kazakhstan

Trends and Developments in the International Carbon Market

February 14, 2011

Mitsubishi UFJ Morgan Stanley Securities Clean Energy Finance Committee

Mitsubishi UFJ Morgan Stanley

Presentation Outline

- 1. Japanese Involvement in Global Climate Change Policy
- 2. The Kyoto Protocol Mechanisms
- 3. Kazakhstan and the Carbon Market
 - **Current Status**
 - Opportunities
- 4. Developments in the Global Carbon Market
 - New mechanisms

1

Japanese Involvement in Global Climate Change Policy

UNFCCC (1992)

Mitsubishi UFJ Morgan Stanley

- Ratified by Japan (28 May 1993)
- Kyoto Protocol (1997) introduces mandatory GHG emission reduction targets for developed countries and some economies in transition
 - Ratified by Japan (04 June 2002)
- International cooperation

 - Capacity building, feasibility study reports, climate change project financing 43 JI projects (First approved Japanese JI project is based in Kazakhstan)
- 646 CDM projects
- Domestic measures

Mitsubishi UFJ Morgan Stanley

- Voluntary domestic emission trading scheme
- Japan's position in the climate change negotiations

 - Japan's pledge: 25% reduction by 2020 from 1990 level
 Japan would to participate in the next international climate change framework
 under the condition that major emitters like the US and China take on emission
 reduction targets

 - Supports the development of new bilateral emission trading mechanisms that will stimulate the transfer of emission trading technologies
 Alms to achieve over 1.3 billion tons of emission reduction by 2020, through Japanese private sector technology

2

Mitsubishi UFJ Morgan Stanley The Kyoto Protocol Mechanisms Clean Development Mechanism (CDM) Investmen SSSSSSS Credits Joint Implementation (JI) Credits International Emission Trading (IET)

4

Green Investment Scheme

Kazakhstan and the Carbon Market

- Mitsubishi UFJ Morgan Stanley UNFCCC (1992)
 - Ratified by Kazakhstan (17 May 1995)
 - Kyoto Protocol (1997) introduces mandatory GHG emission reduction targets for developed countries and some economies in transition

 Signed by Kazakhstan in 1999

 Ratified by Kazakhstan (19 June 2009)

 Kazakhstan communicated its intention to join Annex B (18 September 2009)

 Kazakhstan is allowed to submit JI projects to JISC (COP 16)
- Climate Change Mitigation

 JI DFP is Ministry of Environmental Protection of Kazakhstan

 Road Map 2010 Possible development of a domestic emission trading scheme
 - Potential for GHG emission reductions (incl. case studies)

 - Renewable energy
 Energy efficiency improvement (supply and demand side)
 Oil and gas sector
 Coal mine methane

3

BUYER SELLER COUNTRY Annex I Annex I Ukraine Japan Latvia Spain GIS MANAGEMENT FUND Czech Republic The Netherlands Energy Efficiency Emission Reduction Projects Waste water treatment Renewable Energy Biomass

Mitsubishi UFJ Morgan Stanley

Kaliakra Wind Power Project in Bulgaria

- Description: Installation of 35 wind power generators on the Black See coast in Bulgaria
- Installed capacity: 35 MW
- Annual power generation: 79,284 MWh/yr
- Technology: 1MW wind turbines produced by Mitsubishi Heavy Industries, Japan
- Total investment costs: 47,000,000 Euro
- O&M Costs: 1,300,000 Euro/yr
- Electricity tariff: 8.95 Euro/MWh
- Funding: 37 mil. EUR loan from JBIC co-financed by Mizuho Bank. The loan is conditional on the project implementation as JI.
- JI component

 - 81,400 ERU/yr. ERUs purchased by the Japan Carbon Fund

Developments in the Global Carbon Market

8

Mitsubishi UFJ Morgan Stanley COP 16

- No clear message regarding the future of JI and CDM
- Carbon Capture and Storage (CCS) approved as a potential project
- Design of new mechanisms (NAMA and REDD+)
- · Negotiating positions
 - EU: Extension of the Kyoto Protocol
 - Japan: Requires new framework with the participation of the major emitters (China and USA)
 - Russia: Refuses extension of the Kyoto Protocol without the participation of China and USA
 - US: Requires China's participation in any new binding global framework
 - China: seems more open to taking commitments, but no clear statements
 - Most developing countries: Require extension of the Kyoto Protocol

Mitsubishi UFJ Morgan Stanley

Mitsubishi UFJ Morgan Stanley

Proposals for New Mechanism

Modernization of Tashkent CHP Plant in Uzbekistan

Description: Installation of a new 27.17 MW, gas turbine in the Tashkent CHP plant. The turbine will supply electricity to the grid and steam to an existing on-site steam turbine, thus converting the plant into a combined cycle facility.

Funding: Approximately 30 mil. Euro subsidy from NEDO under a model project development scheme.

Annual power generation: 79,284 MWh/vr Technology: Gas turbine produced by Toshiba

Total investment costs: 51.8 mil. Euro

O&M Costs: 1.6 mil. Euro/vi

CDM component - 48,303 CER/yr

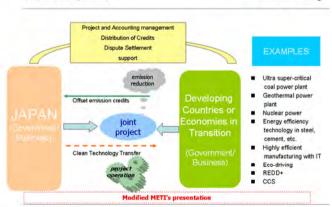
Electricity tariff: 1.21 Euro/MWh

The following mechanisms are currently considered in order to overcome some of the issues of the current emission trading framework.

NAMA:
National Appropriate Mitigation Actions by developing country parties in the context of sustainable development, supported and enabled by technology, financing and capacity-building, in a Measurable, Reportable, and Verifiable manner.

2 REDD:

Reduce Emission from Deforestation and Forest Degradation in developing countries.


3. Bilateral Trading: proposed by Japan. Structurally close to

9

7

Mitsubishi UFJ Morgan Stanley

Bilateral Trading

Mitsubishi UFJ Morgan Stanley

10

Thank you for your attention!

Vladislav Arnaoudov

CDM/JI Senior Consultant Clean Energy Finance Committee Mitsubishi UFJ Morgan Stanley Securities Co., Ltd. 2nd Floor, KR Toyosu Building 5-4-9 Toyosu, Koto-ku Tokyo 100-0005, JAPAN

Tel: +81-3-6213-6382 Fax: +81-3-6213-6175

Assistance for Energy Efficiency Project - JICA Loan Scheme -

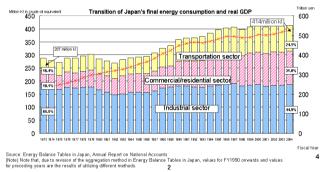
JICA Study Team 2010/02

1. Energy Efficiency in Japan

:

1

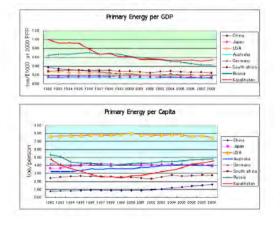
Advantage of Japanese Experience and Technology


- Energy efficiency of Japan is positioned at the top level in the world.
 Especially the Industry sector of Japan has not increased the final consumption even though the GDP has increased since 1973 (the first oil shock).
- Japan has various energy efficiency measures since the oil shock.
 Institutional schemes, Energy Management System (reporting system of energy efficiency and assignment of Energy Manager) and Top Runner System (Minimum Standards and Labeling System) have contributed to the energy efficiency. In addition, a central organization, Energy Conservation Center of Japan (ECCJ) has played an important roles in promotion of energy efficiency.
- Power sector of Japan has so many unique system for energy efficiency.
 For example, Ultra Super Critical Coal Power Station (thermal efficiency:
 45 % in LHV), More Advanced Combined Cycle (Gas: thermal efficiency:
 59 % in LHV), Ultra High Voltage Transmission Line (1,000 kV), etc.

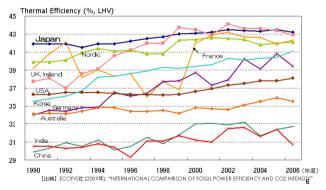
2

Trend of Energy Efficiency the Final Consumption

O Japan's final energy consumption has <u>increased almost continuously</u>, except immediately after the two oil crises and during the recent economic recession.


O The ratio of industrial: commercial/residential: transportation uses shifted from 4:1:1 (oil crisis) to 2:1:1

4


3

Comparison of Other Countries

Thermal Efficiency of Coal Power Station

[Comparison in Other Countries]

6

2. Japan's ODA Loan Scheme

Overview of Energy Efficiency

	Electric Power	Fuel (Oil, Gas, Coal, Uranium)	
Junglij Sans Junios siese	- Generation - Transmission - Distribution - Renewable energy	-Generation/Cogeneration -Distribution	
Demand Side (User side)	(Equipment Installation Approach) - High efficiency hiert pump for AC, hot water server, etc low/water storage system - Solar power - High insulation material for building/house, etc.	(Equipment Installation Approach) - High efficiency absorption driller - Heat recovery bethinology - Solar heat - High insulation material for building/house, etc.	
	(Institutional Approach) - Labals and standards for home appliances (electric power) - Energy management system (= periodical reporting system) for large consumers - Training program for engineers - Energy education for primary school - Bregy education for primary school - Bregy education for primary school - Breggy educa		

8

7

ODA Loan Scheme by Type of Facilities (1)

For Supply Side

A: ODA Loan, B: Preparatory Survey

	Supply Facilities	Transmission	Relating Facilities
Oil & Gas, Coal, Uranium	Facilities for oil, gas, toal and convern Master plan study	Pipeline facilities, Network study	Indirect facilities for energy efficiency (port, railways, road, etc.)
			A, B
Power	Fligh efficiency power station (combined cycle), Rehabilitation of existing plants, Master plan study for power development.	Ultra high voltage T/L (1,000kV), Smartigrid Mester plan study for network	Ranowable energy - Mega solar - Wind - Blomass power - Geothermal
	A, B	A.B.	A, B

•High possibility sector is the supply side projects in the power sector.
•Fuel (Oil & Gas, Coal, Uranium) sector is generally developed by a private sector.
However, relating facilities for energy efficiency might be applicable.

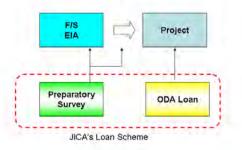
Applicable ODA Loan Scheme for Energy Efficiency

Scheme	Donor	Type of Project	Example	Remarks
ODA Loan	JICA	Large scale	Energy supply and relating projects (Power/heat supply, Transportation, Port, etc.) 2 steps loan for subprojects	Oil and gas sector is generally developed by private sector (out of ODA target).
Preparatory Survey for ODA Loan Project	JICA	Project formation survey for the ODA Loan	F/S, Environmental study, etc.	The project expects ODA loan after the survey.

9 10

ODA Loan Scheme by Type of Facilities (2)

For Demand Side


A: ODA Loan, B: Preparatory Survey

	Institutional	Industry	Commercial	Residential	
Oil & Gas, Coal, Uranium	Master plan study for the whole country, Design for specific program	Support for (retallation for energy efficiency technology (by 2 steps loan)	Support for installation for energy efficiency technology (by 2 steps loan)	Program for promotion of high efficiency equipment Program for	
Power	Design for Demand Side Management (DSM) scheme	Technology transfer of energy efficiency OSM	Technology transfer of energy efficiency OBM	Improvement of corporous rest of energy efficiency	
		A,B	А, Б	ļ	

 ODA scheme is difficult to directly support to the private sector such as the industrial and commercial sectors. However, for these sectors, 2 steps loan (through a local development bank) is possible

· Master plan or design for specific programs is also main fields for assistance.

Steps for ODA Loan Project

Case 1: ODA Loan

(High Efficiency Gas Combined Cycle)

1. Shimal Gas Combined Cycle Power Plant (II)

Loan Amount: 29.3 billion JY (400 MW)

Recipient Country: Azerbaijan

Counterpart: Azereneji Joint Stock Company

Period: 2005-

2, Talimarjan Thermal Power Station Extension Project

Loan Amount: 27.4 billion Yen Recipient Country: Uzbekistan Counterpart: Uzbekenergo

Period: 2010-

13

15

17

14

13

3. Samples of JICA's Energy Efficiency Projects

in Other Countries

Case 2: ODA Loan

(High Efficiency Coal Power Plant: USC Technology)

That is a proven technology that has 45 % thermal efficiency at LHV. TEPCO also has the USC coal power stations (Hirono #5: 600MW (2004), Hitachinaka #1: 1,000MW (2003)).

Hitachinaka #1

The following countries considers the adoption of the technology using Japanese ODA loan.

- 1. Indonesia
- 2. Vietnam

Case 3: ODA Loan (Renewable Energy)

1. Zafarana Wind Power Plant Project

Loan Amount: 13.5 billion JY (120 MW)

Recipient Country: Egypt

Counterpart: New and Renewable Energy Authority

Period: 2003-Other Information:

Approx 250,000 t of CO2/year will be reduced. Registered as CDM

2. Yguazu Hydropower Station Construction Project

Loan Amount: 21.4 billion JY (200 MW) Recipient Country: Paraguay

Counterpart: Administración Nacional de Electricidad

Period: 2006-Other Information:

JICA has assisted to formulate a CDM project

1

15 16

Case 4: ODA Loan (2 Steps Loan for Energy Efficiency)

Energy Efficiency and Renewable Energy Promoting Project

Loan Amount: 4.7 billion JY Recipient Country: Vietnam

Counterpart: Vietnam Development Bank (VDB) Beneficiary: End Users (through the VDB)

Period: 2009-

Target: Investment for energy efficiency in end users

Other Information:

JICA provides an assistance to VDB for

- capacity building of evaluating energy-related finance based on Japan's experiences
- creating and managing energy-saving and renewable energy device lists

Case 5: ODA Loan
(Program Loan for Energy Efficiency)

1. Climate Change Program Loan (I), (III), (III)

Loan Amount: (I) 30.8 billion JY, (II) 37.4 billion JY, (III) 27.2 billion JY

Recipient Country: Indonesia

Counterpart: National Development Planning Agency

Period: (i) 2008-, (ii) 2009-, (iii) 2010-

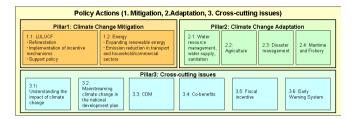
Provision of loans after evaluating the progress of "Policy Actions"

related to climate change

2. Support Program to Respond to Climate Change (I)

Loan Amount: 10 billion JY Recipient Country: Vietnam

Counterpart: Ministry of Natural Resources and Environment


Period: 2010-

18

Case 5: ODA Loan

(Program Loan for Energy Efficiency)

Sample of the Policy Actions in the Program Loan (Indonesia)

4. Formation of JICA Loan Project (Energy Efficiency)

19 20

19 20

Common Conditions

1. Borrower

Government or State

Governmental Agency/Company (with Government Guarantee)

2. Status of the Project

Completion of F/S and EIA

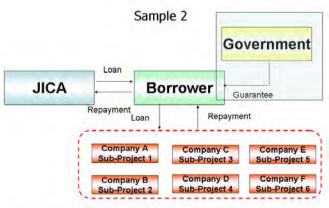
(In case that these documents have not been prepared yet, JICA can assist such project to formulate JICA Loan Project through technical assistance.)

3. Objectives of the Project

Energy efficiency, mitigation of global warming, etc.

JICA Borrower Guarantee

Project


• If Borrower is Government/State , No guarantee is necessary.

22

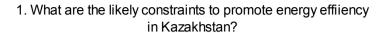
21

23

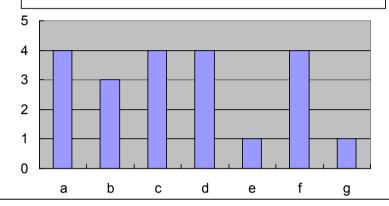
21

If Borrower is Government/State, No guarantee is necessary.

Thank you for your attention!

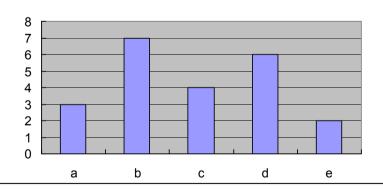

27

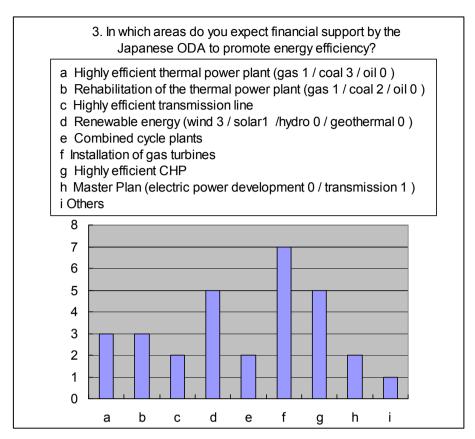
23

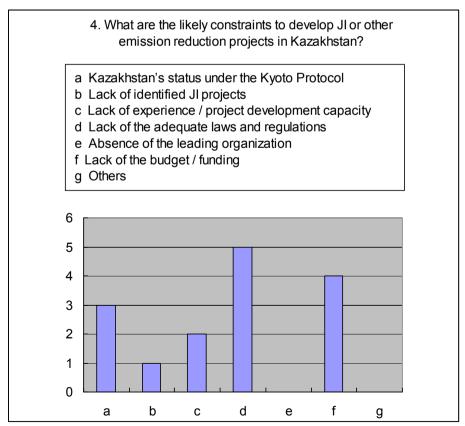

A1-16

付属資料 2

第一回セミナー アンケート結果

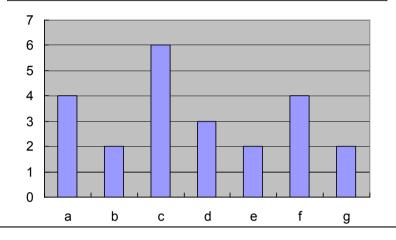



- a Lack of the adequate laws to regulate energy use
- b Lack of the budget/funding
- c Absence of the leading organization
- d Lack of institutional enhancement for the demand side
- e Lack of project development capacity/knowledge
- f Limited access to state-of-the-art technologies
- g Others



2. What are the priorities to promote energy efficiency in Kazakhstan?

- a Supply side of the power sector
- b Supply side of the fuel sector (gas 5 / coal 1 / oil 4 / uranium 1)
- c Demand side of the power sector
- d Demand side of the fuel sector (gas 4 / coal 3 / oil 2 / uranium 1)
- e Others



5. Which of the project types listed below need most or will benefit most from implementation as JI or other emission reduction projects?

- a Highly efficient thermal power plant (gas 2 / coal 2 / oil 0)
- b Highly efficient transmission line
- c Renewable energy (wind 4 / solar1 /hydro 0 / geothermal 0)
- d Combined cycle plants
- e Installation of gas turbines
- f Highly efficient CHP
- g Others

付属資料 3

第二回セミナー資料

Mitsubishi UFJ Morgan Stanley

JICA Study on the Energy Efficiency and Environment in Kazakhstan

Trends and Developments in the International Carbon Market

April 16, 2011

Almaty, Kazakhstan

Mitsubishi UFJ Morgan Stanley Securities Clean Energy Finance Committee

Mitsubishi UFJ Morgan Stanley

Presentation Outline

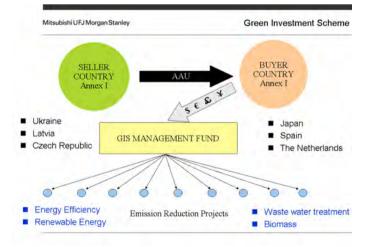
- 1. Japanese Involvement in Global Climate Change Policy
- 2. The Kyoto Protocol Mechanisms
- 3. Kazakhstan and the Carbon Market
 - · Current Status
 - · Opportunities
- 4. Developments in the Global Carbon Market
 - · New mechanisms

1

Mitsubishi UFJ Morgan Stanley

Japanese Involvement in Global Climate Change Policy

- UNFCCC (1992)
 - Ratified by Japan (28 May 1993)
- Kyoto Protocol (1997) introduces mandatory GHG emission reduction targets for developed countries and some economies in transition


 Ratified by Japan (04 June 2002)
- International cooperation
- Capacity building, feasibility study reports, climate change project financing
 - 43 Jl projects (First approved Japanese Jl project is based in Kazakhstan) 646 CDM projects
- Domestic measures
- Voluntary domestic emission trading scheme
- Japan's position in the climate change negotiations Japan's pledge: 25% reduction by 2020 from 1990 level
- Japan would to participate in the next international climate change framework under the condition that major emitters like the US and China take on emission reduction targets Supports the development of new bilateral emission trading mechanisms that will stimulate the transfer of emission trading technologies
- Aims to achieve over 1.3 billion tons of emission reduction by 2020, through Japanese private sector technology

2

Mitsubishi UFJ Morgan Stanley The Kyoto Protocol Mechanisms Annex-I country (Investor Clean Development Investmen Mechanism (CDM) Credits Technology Joint Implementation Investmen SSSSSSS (JI) International Emission Trading (IET)* GIS

3

4

Mitsubishi UFJ Morgan Stanley

Kazakhstan and the Carbon Market

- UNFCCC (1992)
 - Ratified by Kazakhstan (17 May 1995)
- Kyoto Protocol (1997) introduces mandatory GHG emission reduction targets for developed countries and some economies in transition

 Signed by Kazakhstan in 1999

 Ratified by Kazakhstan (19 June 2009)

 Kazakhstan communicated its intention to join Annex B (18 September 2009)

 Kazakhstan is allowed to submit JI projects to JISC (COP 16)
- Climate Change Mitigation

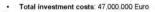
 JI DFP is Ministry of Environmental Protection of Kazakhstan

 Road Map 2010 Possible development of a domestic emission trading scheme
- Potential for GHG emission reductions (incl. case studies)

 - Renewable energy
 Energy efficiency improvement (supply and demand side)
 Oil and gas sector
 Coal mine methane

5

Mitsubishi UFJ Morgan Stanley


Kazakhstan and the Carbon Market

- · Climate change mitigation
 - DFP for JI Projects Ministry of Environmental Protection of
 - Kyoto Protocol Road Map 2010
 - Development of a domestic emission trading scheme in Kazakhstan.
- · GHG emission reduction potential (examples)
 - Renewable energy
 - Energy efficiency improvement (industry, housing, etc.)
 - Oil and Gas sector
 - CMM and CBM

Mitsubishi UFJ Morgan Stanley

Kaliakra Wind Power Project in Bulgaria

- Description: Installation of 35 wind power generators on the Black See coast in Bulgaria
- Installed capacity: 35 MW
- Annual power generation: 79,284 MWh/yr
- Technology: 1MW wind turbines produced by Mitsubishi Heavy Industries, Japan

- O&M Costs: 1,300,000 Euro/yr
- Electricity tariff: 89.5 Euro/MV/h
- Funding: 37 mil. EUR loan from JBIC co-financed by Mizuho Bank. The loan is conditional on the project implementation as JI.
- JI component

 81,400 ERU/yr.

 ERUs purchased by the Japan Carbon Fund

7

Mitsubishi UFJ Morgan Stanley

Modernization of Tashkent CHP Plant in Uzbekistan

- **Description:** Installation of a new 27.17 MW, gas turbine in the Tashkent CHP plant. The turbine will supply electricity to the grid and steam to an existing on-site steam turbine, thus converting the plant into a combined cycle facility.
- Annual power generation: 79.284 MWh/vr
- Technology: Gas turbine produced by Toshiba
- Total investment costs: 51.8 mil. Euro
- O&M Costs: 1.6 mil. Euro/yr
- Electricity tariff: 12.1 Euro/MWh
- **Funding:** Approximately 30 mil. Euro subsidy from NEDO under a model project development scheme.
- CDM component 48,303 CER/yr

8

Mitsubishi UFJ Morgan Stanley

Developments in the Global Carbon Market

- COP 16
 - No clear message regarding the future of JI and CDM
 - Carbon Capture and Storage (CCS) approved as a potential project
 - Design of new mechanisms (NAMA and REDD+)
- · Negotiating positions
 - EU: Extension of the Kyoto Protocol
 - Japan: Requires new framework with the participation of the major emitters (China and USA)
 - Russia: Refuses extension of the Kyoto Protocol without the participation of China and USA
 - US: Requires China's participation in any new binding global framework
 - China: seems more open to taking commitments, but no clear
 - Most developing countries: Require extension of the Kyoto Protocol

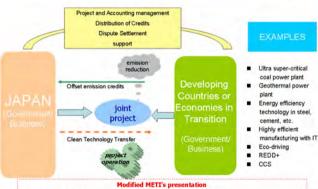
9

Mitsubishi UFJ Morgan Stanley

Proposals for New Mechanism

The following mechanisms are currently considered in order to overcome some of the issues of the current emission trading framework.

1. NAMA:


National Appropriate Mitigation Actions by developing country parties in the context of sustainable development, supported and enabled by technology, financing and capacity-building, in a Measurable, Reportable, and Verifiable manner.

Reduce Emission from Deforestation and Forest Degradation in developing countries.

3. Bilateral Trading: proposed by Japan. Structurally close to

Mitsubishi UFJ Morgan Stanley

Bilateral Trading

11

12

Thank you for your attention!

Vladislav Arnaoudov

CDM/II Senior Consultant
Clean Energy Finance Committee
Mitsubishi UFJ Morgan Stanley Securities Co., Ltd.
2nd Floor, KR Toyosu Building
5-4-9 Toyosu, Koto-ku
Tokyo 100-0005, JAPAN
Email: email of the control o

Comparison of Energy Efficiency and Challenging Agendas of Kazakhstan

JICA Study Team April 2011

The Japan International Cooperation Agency (JICA)

CONTENTS	
1. Energy Briefing of Kazakhstan	3
2. Energy consumption & efficiency in Kazakhstan	6
3. Comparison to Other Counties	9
4. Challenging agendas for energy supply sectors	15
5. Summary of challenging agendas	18

1 2

1. Energy Briefing in Kazakhstan

1.1 Energy reserves of KZH

- ◆The proven reserves increased in the past 10 years from 1999 to 2009.
- ◆KZH will be an energy export country in future.
- ♦World reserve shares of oil, coal and NG are 3.0%, 3.8% and 1.0%.
- ◆KZH is a rare country to have so many energies including Uranium.

	At end of 2009	R/P	World share
Oil	39.8 billion bbl	65 years	3.0%
Coal	31.3billion ton	308 years	3.8%
Natural gas	1.82 trillion m ³	56 years	1.0%

Note) R/P: Reserves/Production, R/P is one of indicators for measuring size of reserves Note) bbl: Barrel (bbl=0.159 kilo liter)

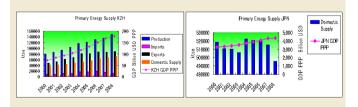
(Source: BP statistics 2010)

1.2 Energy production of KZH

3

4

6


- ◆Production shares are crude oil 48%, coal 33% and NG 19% in 2008.
- ◆Crude oil and NG production shares increased with 8% and 9% respectively, while coal share decreased with 16% in the past 10 years.
- ◆The increasing of crude oil and NG demand makes coal share decrease.

Production (ktoe)	2000	2001	2002	2003	2004	2005	2006	2007	2008
Coal	34,130	34,859	32,465	37,297	38,198	38,071	42,311	43,014	48,837
Crude oil	35,438	40,272	47,485	51,685	59,759	61,751	65,837	67,413	70,976
Gas	9,680	9,737	11,832	13,919	18,329	21,115	22,125	24,792	27,571
Hydro Power	648	695	765	742	693	676	668	703	642
Renewable	73	87	101	80	44	78	61	94	164
Primary total	79,969	85,650	92,648	103,723	117,023	121,691	131,002	136,016	148,190
Contribution(%)	2000	2001	2002	2003	2004	2005	2006	2007	2008
Coal	42.7	40.7	35.0	36.0	32.6	31.3	32.3	31.6	33.0
Crude oil	44.3	47.0	51.3	49.8	51.1	50.7	50.3	49.6	47.9
Gas	12.1	11.4	12.8	13.4	15.7	17.4	16.9	18.2	18.6
Hydro Power	0.8	0.8	0.8	0.7	0.6	0.6	0.5	0.5	0.4
Renewable	0.1	0.1	0.1	0.1	0.0	0.1	0.0	0.1	0.1
Primary total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

3

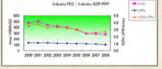
1.3 Primary energy supply (PES) of KZH

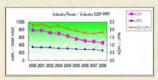
- $\bullet \text{PES}$ has been increased for the past 10 years from 1998 to 2008 in proportion with GDP growth.
- ◆Exports of crude oil, coal and NG have not increased due that the increasing productions are consumed in the country.
- ◆Calculating elasticity between GDP and PES from 2000 to 2008, it is 0.6.
- ◆KZH takes a policy to produce additional energies and utilize waste energies (associate gas) for promoting the industries.
- \blacklozenge In JPN, the elasticity between the above two is -0.16.

2. Energy consumption & efficiency in Kazakhstan

2.1 Energy efficiency in industry sector

A) Comparison between KZH and JPN in 2008

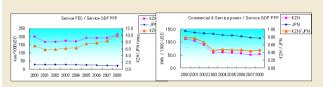

	KZH	JPN	K/J
Final energy consumption (FEC)	20Mtoe	123 Mtoe	16%
FEC per GDP-PPP in Industry	276 koe/\$1000	103koe/\$1000	2.7 times
EPC per GDP-PPP in Industry	460 kWh/\$1000	252kWh/\$1000	1.8 times


B) Comments

4

5

- ◆KZH's energy efficiency is improved by the yearly trend.
- ◆FEC per GDP is 5.3 times to JPN. EE&C effectiveness are expected, especially heavy and chemical sub-sectors in KZH.

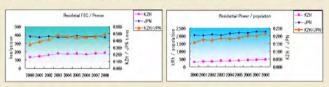

2.2 Energy efficiency in Commercial & Service sector

A) Comparison between KZH and JPN in 2008

	KZH	JPN	K/J
Final energy consumption (FEC)	21 Mtoe	66 Mtoe	32%
FEC per GDP-PPP in Com-Service	214 koe/\$1000	22koe/\$1000	9.7 times
EPC per GDP-PPP in Com-Service	53 kWh/\$1000	115kWh/\$1000	2.1 times

B) Comments

- The FEC had increased since 23 % in 2000. The FEC will be increased in company with the economic growth in future.
- ◆As EPC per GDP in the sector increases with the economic growth, KZH is required EE&C policies targeted electric power consumption in the sector.


2.3 Energy efficiency in Residential sector

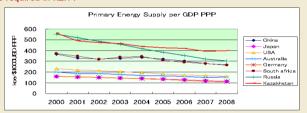
A) Comparison between KZH and JPN in 2008

	KZH	JPN	K/J
Final energy consumption (FEC)	2.8 Mtoe	47 Mtoe	6.0 %
FEC per capita in Residential	183 koe/capita	372 koe/capita	49 %
EPC per capita in Residential	479 kWh/capita	2252kWh/capita	21 %

B) Comments

- ♦ Most of the FEC is heat. EE&C to heat supply systems and utilizations are required for improving energy efficiency.
- ◆The FEC in residential sector is increased in future, introduction of EE&C for heating, air- conditioner and lighting are required

7

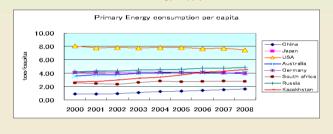

8

3. Comparison to Other Counties

3.1 Primary energy supply

A) Primary energy supply per GDP

- ◆KZH's intensity is 4 times more than Germany and JPN after 2004.
- ♦When JPN and Germany using 100 koe (0.7 bbl as crude oil) for producing 1,000 USD of GDP, KZH uses 400 koe (2.8 bbl as crude oil).
- ◆More energy efficiency policies for more high value added industry policy are required in KZH.



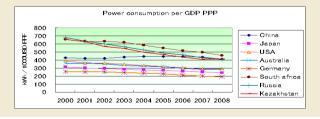
B) Primary energy supply per capita

10

8

- ♦USA is the highest in the countries, when considering economic size and land size, it cannot say about USA energy efficiency potentials. While, KZH increases PES per capita in recent years.
- ◆The increase of PES per capita is evidence of economic growth in KZH. KZH has to make more efficient energy supply and use.

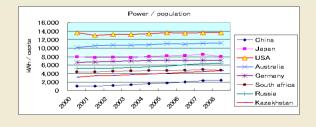
9


10

11

3.2 Electric power consumption

A) Electric power consumption per GDP


- ♦South Africa is 450kWh/1,000USD, it is the highest. Germany is 200 kWh/1,000USD, it is the lowest. German economy is the lowest power dependence.
- ◆As EE&C on power utilization are the most effective policy for national wide EE&C, it is important agendas for KZH

B) Electric power consumption per capita

12

- ◆Power consumption per capita is higher in USA and Australia, other hand it is lower in K7H and China
- ◆As power consumption per capita in KZH will be increased in company with increasing national income, EE&C becomes challenging agenda in commercial & service and residential sectors.

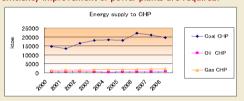


11

3.3 GDP per capita and Energy per capita

A) GDP per capita and PES per capita

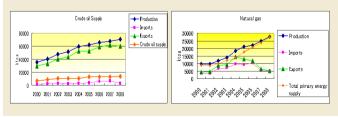
- ♦ The countries are arranged almost in one line. The order is China, South Africa, KZH, Russia, JPN, Germany, Australia and USA.
- ◆The gap of GDP/capita between USA and China is 7.6 times, the gap of PES/capita between the two is 4.6 times, the elasticity is "0.5".
- \bullet It means that when GDP/capita becomes 2 times, PES/capita becomes 1.5 times.
- ◆If KZH's GDP/capita with 11,300USD in 2008 becomes 2 times, the PES/capita is increased to 5.0 toe/capita. However, PES/capita in KZH had reached 4.5toe/capita in 2008, and it is required that KZH introduces EE&C policies in the all sectors.



13

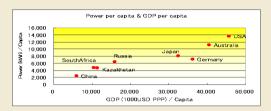
4. Challenging agendas for Energy supply sectors

4.1 Electric power sector in KZH


- ◆The Power with 80Twh was consumed by Industry(41%), self-consumption and losses(32%), Agriculture(9%), Com & Service (9%) and Residential (9%) in 2008.
- ◆KZH wants to introduce foreign funds for IPPs, it becomes challenging agendas to introduce new power supply and accounting systems.
- ◆The power supply comes from CHP, and 90% of the CHPs uses coal fired power generations. The countermeasures against smoke dust and SOx and energy efficiency improvement of power plants are required.

15

4.3 Oil & gas sector in KZH

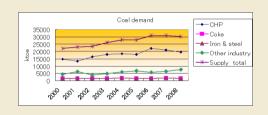

- ◆Oil refinery capacity will be increased in future, the export of oil products from KZH will be increased instead of crude oil. As heavy oil will be surplus, it is used in power plants. It becomes challenging agendas to introduce countermeasures of SOx and high performance oil fired power generation plants for EE&C and environmental protection.
- ◆In future, more NG will be used in GCC plants by the government policy. And also, NG will be used much more in residential sector.
- $\blacklozenge Introduction of the infrastructures is challenging agendas for KZH.$

13

B) GDP per capita and EPC per capita

- ◆The elasticity between GDP/capita and EPC/capita is "0.7".
- ◆When GDP/capita becoming 2 times, EPC/capita becomes 1.7 times.
- ◆If KZH's GDP/capita in 2008 becomes 2 times, EPC/capita is increased to
- 7,000 kWh/capita from 4,600 kWh/ in 2008.

14


15

4.2 Coal sector in KZH

16

14

- ◆The coal production has been increasing, however the domestic coal consumption has not increased since 2006. The coal is mainly consumed in iron and steel companies and CHP stations.
- ◆As introduction of natural gas power plants are planned by the Government, the massive coal consumption in the domestic market is not desired in future.
- ◆If estimating that crude oil prices are going over \$80/bbl in future, the high technology for coal utilization becomes challenging agendas in KZH.

16

17

5. Summary of Challenging agendas

_¬18

Fields	Challenging agenda
Primary energy supply	As PES / GDP of KZH is higher than Russia, EE&C for Industry, Transformation, Commercial & service sectors are required.
Final energy consumption	The FEC in Industry and Commercial & Service sectors per GDP are so higher than JPN. Energy Management System for the sectors are required.
Electric power supply and consumption	Power sector requires challenging agendas to introduce new power supply and accounting systems and EE&C for electric appliances.
Coal supply sector	Introduce clean coal technologies such as coal gasification and liquefaction.
Oil and gas supply sector	NG will be used much more in residential sector, the introduction of the infrastructures is challenging agendas for the government.

- Energy-Efficient Technologies in Japan -

JICA Study Team April 2011

Technologies for the Supply Side

1 2

More Advanced Combined Cycle

Ultra Super Critical Coal Power Generation

Improvement of thermal efficiency (38%HHV >> 43%HHV)

BHK: Babcock-Hitachi K.K. HTC: Hitachi, Itd. MHI:Mitsubishi Heavy Industries, Itd. ME: Mitsubishi Electric

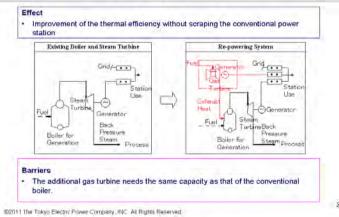
4

Effect

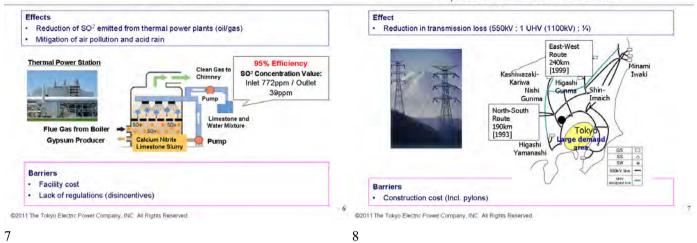
Materials resistant to corrosion under high temperature and steam oxidation need to be utilized.

92011 The Tokyo Electric Power Company, INC. All Rights Reserved

3


IGCC (Integrated Coal Gasification Combined Cycle)

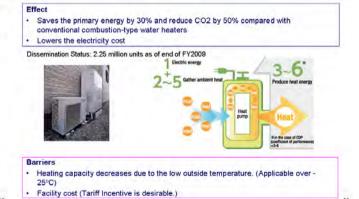
Gas turbine •1200°C - class gas turbine(50Hz)


 Quality management of construction and maintenance ©2011 The Tokyo Electric Power Company, INC. All Rights Reserved.

Combined Cycle Re - powering System

Flue Gas Desulfurization

Ultra High Voltage (UHV) Technology - 1,000 kV Transmission Facilities -


Other Measures to Reduce the Distribution System Losses

Technologies for the Demand Side

9 10

Highly Efficient Heat-Pump Air Conditioner

Eco Cute (Heat-Pump Water Heater)

Effect

The latest highly-efficient heat pumps have 6.0 or more COP.

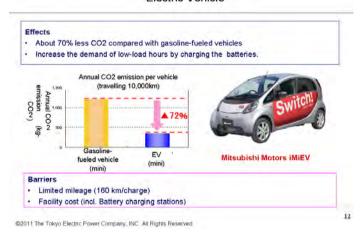
Lowers the electricity cost

CO2 Reduction
Heat-pump
System

Barriers

Heating capacity decreases due to the low outside temperature. (Applicable over - 25°C)

Facility cost (Tariff Incentive is desirable.)


11

12

©2011 The Tokyo Electric Power Company, INC. All Rights Reserved

A3-9

Electric Vehicle

Thank you for listening!

13

Renewable Energy Technology in Japan (Solar, Wind and Mini Hydro)

JICA Study Team April 2011 1. General

Law on Renewable Portfolio Standards

- 1. Enforcement: April 2003
- Objective: To promote Renewable Energy, an obligation is placed on power utilities to utilize/purchase RE in accordance with allocation portfolio.
- Definition of RE in RPS: Wind, Solar, Geothermal, Run-off River Hydro under 1,000kW, Biomass (incl. Solid waste generation)
- 4. Unit: kWh

1

3

- Method: (1) Generation by power utilities, (2) Purchase from RE owners,
 (3) Purchase of certificate from other utilities
- Target of Renewable Energy Usages of Japanese Power Utilities (Including purchase)

	2007	2008	2009	2010	2011	2012	2013	2014
Billion kWh	8.67	9.27	10.38	12.43	12.82	14.21	15.73	17.33

*RPS (Renewable Portfolio Standard)

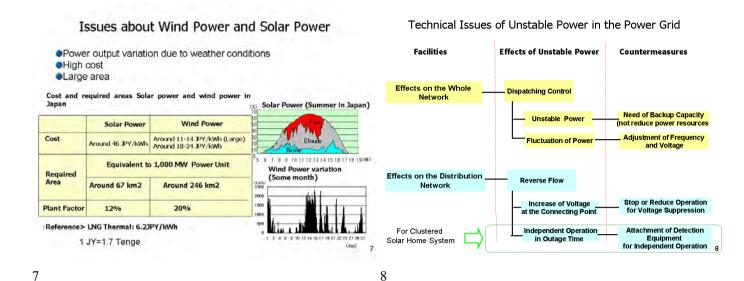
Equivalent to 1.3 % of total generation in Japan

Feed In Tariff for Renewable Energy

- Before November2010: Power Utilities purchased surplus power of solar generation at the same price of retail of the power utility. This is one of voluntary programs prepared by power utilities to meet the law an RPS.
- From November 2010: Government started "Feed in Tariff" for solar power (less than 10 kW) and surplus power. 48 JY/kWh for 10 years is paid to the application. The high price is recovered from the collection of tariff from all the customers.
- As of Today: Other RE technology (Wind, Mini Hydro, Geothermal, Biomass) is now discussed in the Japanese Parliament.

Feed in Tariff

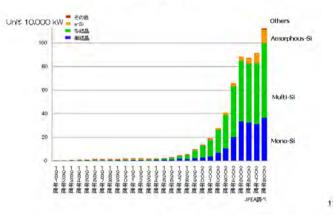
Feed in Tariff (2010/11/1-)


Purchase at 48 (JY/kWh) = 82 tenge/kWh

Support Schemes by Government

	Solar	Wind	Hydro
Study Stage		- 1/2 Subsidy for Wind Data Collection	- 1/2 Subsidy for Design - New or Rehabilitation under 50 MW
Construction Stage	- 20,000 JY for 1 kW (already closed by 2005)	- 1/3 x 0.8 Subsidy for the Project Cost - Not less than 1.5 MW	(1 MW-30MW) - 10% to 20 % Subsidy for Construction or 50% of New Technology (Under 1 MW) - 1/3 of the Project Cost

6


Needs of Technical Analysis to Confirm Grid Stability

- In order to check the stability of grid, a power utility have to conduct the following analysis.
 - Power Flow Analysis
 - Short-Circuit Current Analysis
 - Fluctuation of Voltage Analysis
 - Check of Frequency Stability against the Fluctuation of Output
 - Study for Proper Protection System (Relay System)

2. Solar Power

9

PV Production in Japanese Manufacturers (By type of PV)

PV Manufacturers in the World (By production volume: 2008)

Country	Company	Share
German	Q-Cells	8%
USA/German/Malaysia	First Solar	7%
China	Suntech	7%
Japan	Sharp	7%
Taiwan	Motech	6%
Japan	Kyocera	4%
China	Yingli	4%
China	Ja Solar	4%
Phillipine	SunPower	4%
German/USA	Deutsche Solar/SolarWorld CA	4%

11 12

12

Examples of Mega Solar Power Projects

Ukisima Solar Power Station (in Kawasaki City) Solar cell output: around 7 MW 2009 starting construction Energy output: 7.4GWh Commissioning year: 2011 Reduction in CO₂ emission (Estimation): around 3,100 ton/year Ohgishima Solar Power Station (in Kawasaki City) Solar cell output: around 13 MW · 2009 Starting construction Energy output: 13.7GWh · Commissioning year: 2011 Reduction in CO₂ emission (Estimation): around 5,800 ton/year

O Yonekurayama Solar power station

(in Yamanshi prefecture)
Solar cell output: around 10 MW 2010 Starting construction
Energy output: 12GWh Commissioning year: 2011
Reduction in CO₂ emission (Estimation): around 5,100 ton/year

Features of Solar Power

	Advantage	Disadvantage
Owners	-It is easy to select its scale and install it anywhere.	-It is still high cost (5,000 US\$/kW).
	-Maintenance free (except power conditioner change: every 10 years)	-Large space is necessary. (1kW=10m2).
Power Utility	- It might contribute to reduce peak power load in daytime.	-Voltage increase at the connecting point
		-Fluctuation of output (affects the frequency)
		-Protection of independent operation by each site

14

13

Actual prices of SHS were surveyed by questionnaire.

		Unit P	rice (1,0	00 JY/kW		
	Wall 3	By Type of PV				
	All Data	Mono-Si	Multi-Si	Amorpho us		
Total Price	684	829	644	643		
(a) Module Price	441	550	411	430		
(b) PCS and others	165	195	157	143		
(c) Installation	78	84	76	70		

Results of Price Analysis Survey (2005)

Number of Samples: 11,638 cases (mono: 2,731cases, Multi: 8,860 cases: AP: 37 cases) (Source: NEF) 1 JY=1.7 Tenge

Features of Various Type of PV

Type	Current Status
Crystalline Si (mono and multi)	Mono and multi crystal has been technically matured (module efficiency: 16%). Annual production capacity is 700MW in Japan Mono type is higher efficiency than multi, but it is costly due to large use of silicon. Multi type is the most popular technology in the world.
Thin-Film Si	This is hybrid of amorphous and thin silicon. This has been technically matured. Efficiency improvement is a current issue (module: 11%).
CIS	This technology has been developed. Instead of use of silicon, Cu, In and Se are used for material. Efficiency improvement is a current issue (module: 11%).

15

15

16

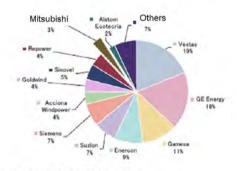
Future Target

Conversion Efficiency


Current situation and future target in Japan

			- Cure	ui g	77			
- 3	current st	tatus	201		2025	Š.	2050	
Туре	Module (%)	Cell (%)	Module (%)	Cell (%)	Module (%)	Cell (%)	Module (%)	
Crystalline Si	~16	25	20	25	25	(30)	Ultra-high 40 % efficiency solar cells (additional development)	
Thirt-film Si	~11	15	14	18	18	20		
cis	~11	20	18	25	25	30		
Compound	~25	41	35	45	40	.50		
Dye-sensitized		11	10	15	15	18		
Organic		5	-10	12	15	15		

(Source: NEDO)


3. Wind Power

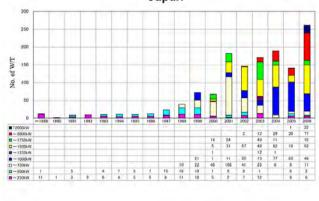
18

Source: Global Wind 2009 Report

Market Share of Manufacturers in the World (2008)

Source: Emerging Energy Research

19


21

Generation Cost of Wind Power System

Sources	Location		Unit Price *
1. World Energy Outlook 2009	Onshore		9 - 10.5 US cent/kWh
(IEA)	Offshore		10.0 - 12.0 US cent/kWh
2. Technology	Onshore		7.0 - 13.0 US cent/kWh
Roadmaps Wind Energy 2009 (IEA)	Offshore		11.0 - 13.1 US cent/kWh
3. Energy	Onshore	High Wind Area*1	6.5 - 9.4 US cent/kWh
Technology		Middle Wind Area*2	8.5 US cent/kWh
Perspectives 2008 (IEA)		Low Wind Area	8.9 – 13.5 US cent/kWh

*1: UK, Ireland, France, Denmark, Norway
*2: German, France, Spain, Portugal, Holland, Italia, Sweden, Finland, Denmark

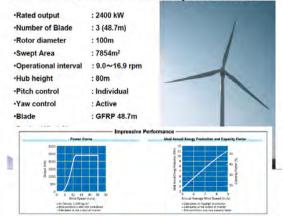
Annual Number of Wind Power Installation in Japan

20

22

Estimate Cost of Wind Power System

20


Sources	L	ocation	Unit Price *
1. World Energy Outlook 2009	Onshore		1,770-1,960 US\$/kW
(IEA)	Offshore		2,890-3,200 US\$/kW
2. Technology	s Wind	Europe	1,450-2,600 US\$/kW
Roadmaps Wind		USA	1,400-1,900 US\$/kW
Energy 2009 (IEA)		Japan	2,600-3,200 US\$/kW
		China	About 1,000 US\$/kW
		India	About 1,000 US\$/kW
	Offshore	UK	3,100 US\$/kW
		German/Holland	4,700 US\$/kW

* Unit price includes wind power system, installation and connection.

21 22

Samples of Wind Turbine (Mitsubishi Heavy Industry)

MWT100/2.4 : Model For European Market

23 24

Features of Wind Power (Grid Connection)

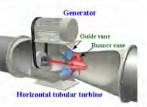
	Advantage	Disadvantage
Owners	-Wind power is more economic feasible than other technology of renewable energy.	-Environmental issues such as bird strike and loudness. -Power utility sometimes limits the purchase of generation due to limitation of system capacity. -Large space should be secured.
Power Utility		-Fluctuation of power is the most critical issues for grid connection.

4. Hydro Power

25 26

25

Features of Small/Mini Hydro Power (Grid Connection)

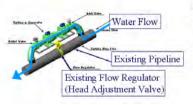

	Advantage	Disadvantage	
Owners	-Environmental impact is not so large.	-Coordination with stakeholders (water users, existing facility owners, land owners) might be necessary.	
		-Sometimes generation schedule is limited due to other purpose of water use.	
Power Utility	- It is relatively stable in terms of power output.	-In case of remote area, it is difficult to connect to the existing grid.	

Micro Tubular Turbine System

■ Application range of three standard models

	S model	M model	L model
Max. output [kW]	90	200	250
Applicable head [m]	2 - 20	2-16.5	2-15
Applicable discharge [m³/s]	0.09 - 0.6	0.3 - 2.0	0.8 - 4.0
Runner diameter [mm]	290	500	760

m3/s Discharge Head



27 28

Case of Micro Hydro 1: Attachment to Drinking Water Pipeline

Egasaki Power Station (TEPCO) No of Turbine 2 units Total 170 [kW] Max. Output Effective Head 36.1 [m] Max. Discharge 0.6 [m³/s] Annual Generation 1.0 GWh (LF=67%)

(Construction)

- -Bypass Line Installation to Water Pipeline at the Head Adjustment Point
- Install Turbine and Generator and connecting to Distribution Line Grid

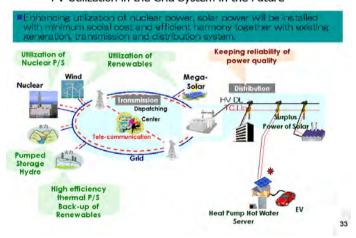
Case of Micro Hydro 2: Attachment to Existing Pond

Nurukawa Power Station (TEPCO) 1 unit 37 [kW] No of Turbine Max. Output **Effective Head** 5.0 [m] Max. Discharge 1.1 [m3/s] Type of Waterway Siphon

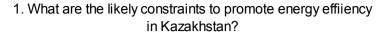
(Construction)

- -Utilization of Existing Pond and Low Head
- -Install Turbine and Generator

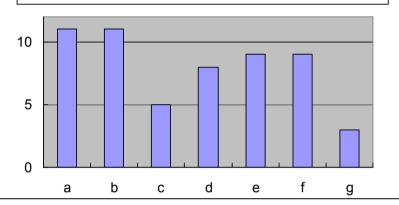
Smart Use of Solar in the Future


Reference

31 32

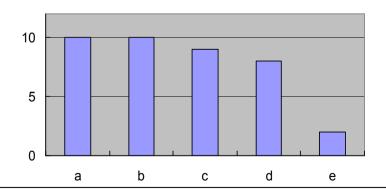

31

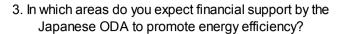
PV Utilization in the Grid System in the Future

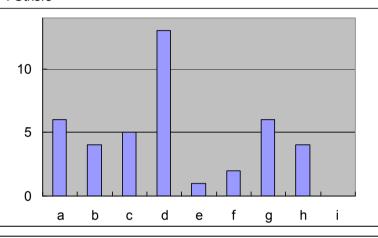


付属資料 4

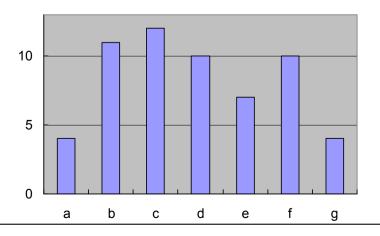
第二回セミナー アンケート結果



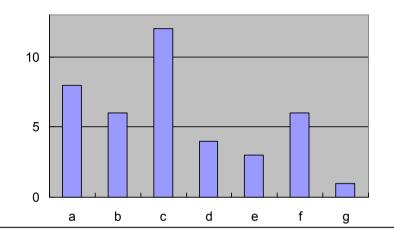

- a Lack of the adequate laws to regulate energy use
- b Lack of the budget/funding
- c Absence of the leading organization
- d Lack of institutional enhancement for the demand side
- e Lack of project development capacity/knowledge
- f Limited access to state-of-the-art technologies
- g Others


2. What are the priorities to promote energy efficiency in Kazakhstan?

- a Supply side of the power sector
- b Supply side of the fuel sector (gas 7 / coal 3 / oil 3 / uranium 0)
- c Demand side of the power sector
- d Demand side of the fuel sector (gas 4 / coal 3 / oil 1 / uranium 1)
- e Others



- a Highly efficient thermal power plant (gas 1 / coal 2 / oil 0)
- b Rehabilitation of the thermal power plant (gas 1 / coal 2 / oil 0)
- c Highly efficient transmission line
- d Renewable energy (wind 9 / solar9 /hydro 4 / geothermal 3)
- e Combined cycle plants
- f Installation of gas turbines
- g Highly efficient CHP
- h Master Plan (electric power development 3 / transmission 5)
- i Others


4. What are the likely constraints to develop JI or other emission reduction projects in Kazakhstan?

- a Kazakhstan's status under the Kyoto Protocol
- b Lack of identified JI projects
- c Lack of experience / project development capacity
- d Lack of the adequate laws and regulations
- e Absence of the leading organization
- f Lack of the budget / funding
- q Others

5. Which of the project types listed below need most or will benefit most from implementation as JI or other emission reduction projects?

- a Highly efficient thermal power plant (gas 4 / coal 1 / oil 0)
- b Highly efficient transmission line
- c Renewable energy (wind 7 / solar 6 /hydro 4 / geothermal 2)
- d Combined cycle plants
- e Installation of gas turbines
- f Highly efficient CHP
- g Others

