Republic of Serbia Ministry of Infrastructure and Energy of the Republic of Serbia

The Study for Introduction of Energy Management System in Energy Consumption Sectors in the Republic of Serbia

FINAL REPORT

Appendix

June 2011

Japan International Cooperation Agency (JICA)

Tokyo Electric Power Company (TEPCO)

Table of Contents

Appendix 1	Questionnaire of Energy Assessment by Local Consultants
Appendix 2	Training Materials in Pilot Implementation of Energy Management System
Appendix 3	Results of EE&C Study in Pilot Implementation of Energy Management System
Appendix 4	Evaluation Criteria (Draft)
Appendix 5	Formats of Periodical Report
Appendix 6	Guidebook for Energy Management System
Appendix 7	Application Formats regarding Energy Management System
Appendix 8	Audit Standards for Accredited Energy Auditors
Appendix 9	Inspection Standards
Appendix 10	Scope of Works for EMS-DB

Appendix 1

Questionnaire of Energy Assessment by Local Consultants

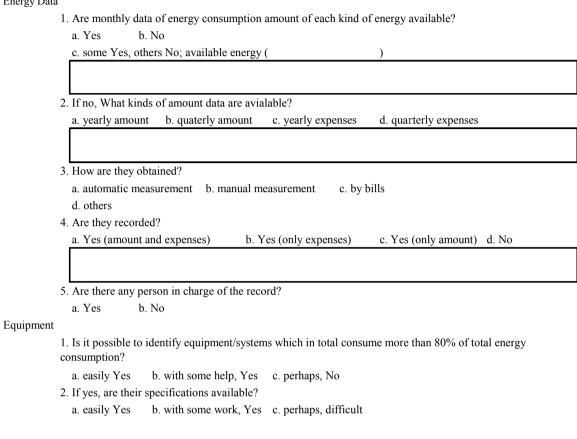
Original Questionnaire

Questionnaires

Section 1. Basic Information

Name of Company /					
Factory / Institution					
Ownership	Public	Private	Privatized (in)	
Capital					
Address					
Respondent	Department :			Name	e :
	TEL:		FAX:		E-mail address :

 Industrial or Commercial
 1. Industrial Sector
 2. Commercial Sector


Kind of Industry/ Building	1. Metal	2. Cement	3. Refinery	4. Food
	5. Others ()
	1. Office	2. Governmental	3. Hospital	4. Hotel
	5. School	6. Others ()
Main Products and Production	Products	A	Amount	
(in case of industry)				
Amount of Production per year				
Number of Employees				
Operation Days per year				
Operation Hours per day				
	Main Products and Production (in case of industry) Amount of Production per year Number of Employees Operation Days per year	5. Others (1. Office 5. School Main Products and Production (in case of industry) Amount of Production per year Number of Employees Operation Days per year	5. Others (1. Office 2. Governmental 5. School 6. Others (Main Products and Production Products A (in case of industry) Products A Amount of Production per year Number of Employees Operation Days per year	5. Others (1. Office 2. Governmental 3. Hospital 5. School 6. Others (Main Products and Production Products Amount (in case of industry) Products Amount Amount of Production per year Number of Employees Operation Days per year Image: Constraint of the second s

Note: fill in only the related colums

Energy Consumption	Kinds	Unit	Amount
per year	1. Electriciy	kWh	
	2. Natural Gas	Sm ³	
	3. LPG	kg	
	4. Heavy Fuel Oil (Mazut)	kL	
	5. Steam/Hot Water etc. which is supplied from outside	GJ	
	6. Others		

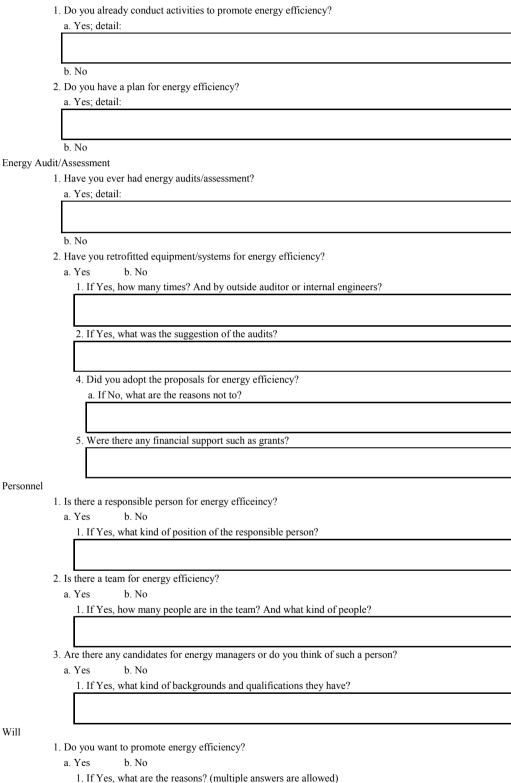
Note: fill in only the colums of fuels and heat which you consume.

Section 2. Data Availabirily if Energy Management System is introduced Energy Data

Factor which well describes your business

1. Do you think of good factors which describe your business and strongly relate to energy consumption? a. amount of production b. amount of sales c. total floor area d. others

Operational Manual


1. Are the operation manuals available, which defines appropriate conditions such as temperatures and pressures and intervals of measurement /record?

a. Yes b. only for production lines and not for facilities such as air-conditioning

c. No

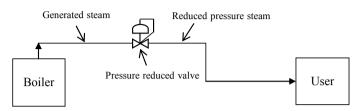
2. If you have to prepare such manuals, namely Management Standards in EMS, a sample is attached, what kind of help do you need?

Section 3. Capacity/Possibility to deal with Energy Management System (Awareness & Activities) General

)

c. energy expenses

b. energy security


a. global warming issue

d. others (

Section4. Tecnological Level of Sites and Possible Technogoly for improvement

Steam Boiler and Pipe Line

1 How much is generated steam pressure, and if the steam pressure is reduced by pressure reducing valve, how much is reduced steam pressure?

- 2 Are there measurement nozzle for O2% checking on exhaust gas duct?
- 3 Do you check O2% in exhaust gas periodically?
- If you do, is O2% adjusted when required and what is the adjusted range?
- 4 Do you check steam traps periodically on the actions?

Hot Water Boiler

- 1 How many degrees are the supply and return temperature?
- 2 Do you check O2% in exhaust gas periodically?
 - If you do, is O2% adjusted if required and what is the adjusted range?

Air Compressor

- 1 How much pressure is generated compressed air?
- 2 How many air compressors are operated in normal condition?
- 3 How is the compressed air pressure controlled?
- 4 Do you check leaking compressed air periodically?

Chiller

- 1 How many degrees do you set the supply temperature of chilled water?
- 2 Is the cooling water temperature is managed considering the efficiency of chillers?Note: In genral, it is prefarable to keep the temperature as low as possible within the practical range for the high efficient operation.

Air-Conditioning System

- 1 Is the system controlled from the center?
- 2 Does the system have VAV or VWV?
- 3 Do you use heat recovery system?

Cooling

- 1 How much temperature did you set for room temperature this summer?
- 2 Did you change the above temperature compared to the last year?
 - If you did, what are the reasons?

Heating

- 1 How much temperature did you set for room temperature this summer?
- 2 Did you change the above temperature compared to the last year?
- 3 If you did, what are the reasons?

Equipment/System

1 Do you adopt any EE&C measures for air-conditioning system?

- a. shorten operateion time
- b. regularly clean filters of air-conditioning system
- c. change to more efficienct equipment
- d. introduce efficient air-conditioning system
- e. any other measures?

Lighting

- 1 Do you adopt any EE&C measures for lighting? (muptiple answers are allowed)
 - a. Do you switch off lights when unnecessary?
 - b. Do you switch off lights of the office during lunch time?
 - c. Do you decide not to use some lighting equipment?
 - d. Have you changed lighting fixture to more efficient ones such as Bulb type FLR/ Hf lights/ HID lights/ LED lights
 - e. Do you have a thermo sensor for lighting?
 - f. Any other measures for energy efficiency?
- 2 Have you invested to improve EE&C?
- 3 If not, what are the reasons for not investing lighting for EE&C?
 - a. lack of confidence for payback
 - b. too much personnel cost
 - c. too much initial cost
 - d. lack of finance for investment

Section 5. Detailed Data:Equipment

Requested Document for EE&C Audit

1) Site layout drawing

- 2) Flow diagram of steam system
- 3) Flow diagram of hot water system
- 4) Flow diagram of compressed air system
- 5) Design data sheet of every steam boiler

Equipment

6) Design data sheet of every hot water boiler
7) Design data sheet of every air compressor

-) Design data sheet of every all com
- 8) Design data sheet of every chiller
- 9) Single line diagram of power supply system

Equipment		
Main Production	Name and Main Specifications	
Facilities		

Utility Facilities	Steam Boiler		1		2	3		4
	Evaporation (Rated)	t/h						
	Steam Press. (Rated)	MPaG						
	Kind of Fuel							
	Hot Water Boiler		1		2	3		4
	Capacity (Rated)	MJ/h						
	Kind of Fuel							
	Air Compressor		1		2	3		4
	Туре							
	Air Volume (Rated)	Nm3/h						
	Discharge Press. (Rated)	MPaG						
	Input Power (Rated)	kW						
	Chiller		1		2	3		4
	Туре							
	Capacity (Rated)	MJ/h						
	Input Power (Rated)	kW						
	Receiving Power Transformer		1		2	3		4
	1ry and 2ry Voltage		/		/	/		/
	Capacity	kVA						
	Installed Year							
	Independent Generator			1			2	
	Type / Kind of Fuel			/			/	
	Generated Power (Rated)							
	Normal use or Emergency us	se						
Air Conditioners	Heating							
	Heating Floor Area	m2						
	Heat Source							
	Cooling							
	Cooling Floor Area	m2						
	Cooking Source							
Lighting	Type of Lamps		Incandiscent	Fluorescent	Fluorescent (HF)	HID		
	Number of Lamps							
	Ave. Consumed Power per e	ach W						
Other Equipment Cor	nsuming a Large Quantity of							
Utilities(Pump, Blow	er, etc.), and the Specifications							

Note: fill in only the colums of equipment which you possess.

Section 6. Detailed Data: Energy Monthly Energy Consumption of the Latest Year

		Purchased	Elecricity	G ()			Heavy Fuel		W	ater	Prod	uction
Year/	Month	Peak in every month	Cumulative	Generated Power	Natural Gas	LPG	Oil (Mazut)	Coal	Potable Water	Well or River Water	Shipment Amount	Sales Amount
Year	Month	kW	kWh	kWh	Sm3	kg	kL	ton	m3	m3	Ton, Number, etc.	RSD
	Total											

Note: fill in only the colums of equipment which you consume.

Typical Properties of Fuels

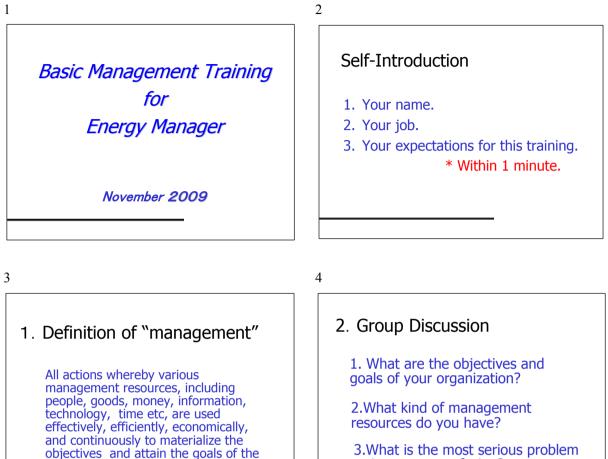
Natural Gas	Net Heating Value :	KJ/Sm3				
LPG	Net Heating Value :	KJ/kg				
Heavy Oil	Net Heating Value :	KJ/L	Density :	kg/L	Sulfur Content :	wt%
Coal	Net Heating Value :	KJ/kg	Source :			

Note: fill in only the colums of equipment which you consume.

Unit Prices of Fuels and Water

Natural Gas	RSD/Sm3
LPG	RSD/kg
Heavy Fuel Oil (Mazut)	RSD/L
Coal	RSD/kg
Water	RSD/ton

Tariff of Electricity


(Demand Charge/Energy Charge/etc.)

Note: fill in only the colums of equipment which you consume.

Appendix 2

Training Materials in Pilot Implementation of Energy Management System

TQM Training Program

6

or issue you are facing?

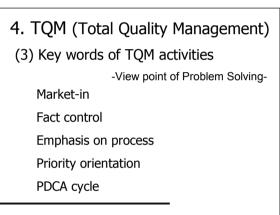
5

organization.

MANAGEMENT TRAI	NING ACTION P	LAN SHEET
1.What is the most serious iss	sue you are facing ir	your workplace ?
L.Your action plan.		
Theme		
Action plan		
L.Review		
Your action	Till when	Expected goal

3.Necessity of Energy Conservation Activities

Outside factors	Inside factors	

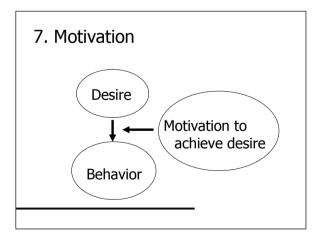

4. TQM (Total Quality Management)(1) Dimensions of "Quality"

- Q: Quality
- C: Cost
- D: Delivery
- P: Productivity
- M: Moral
- S: Safety
- E: Environment

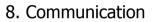
4. TQM (Total Quality Management)

- (2) Purpose of the Quality Management
 - 1. To Increase Customer Satisfaction
 - 2. To Reduce Cost
 - 3. To Stimulate Employees
 - ISO: What to do
 - TQM: How to do

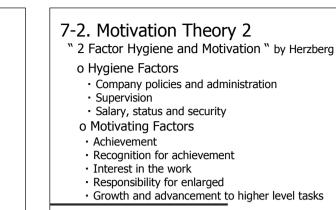
9

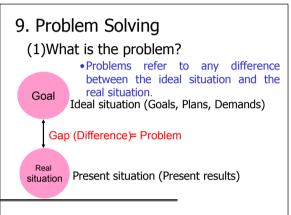

8


5. Human Resources


o Unique Points

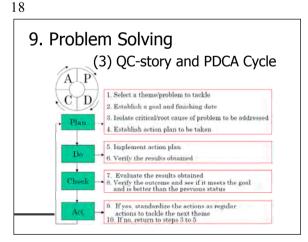
- •The more we use them , the more refined they become and higher their resource value becomes. >>>Training our members
- •Their desires and abilities are drawn out to the maximum. >>>Motivating our members


11 6. Situational Leadership Supportive / Collaborative Action S4 S1 Veal ₩e Strong R4 R3 R2 R1 High Low R: Re Member's Readiness Leve



- ① Motivating members
- ② Good human relation based on the good communication
- ③ Communication in the workplace
 - Greeting
 - Exchanging Information
 - Sympathizing

14



17

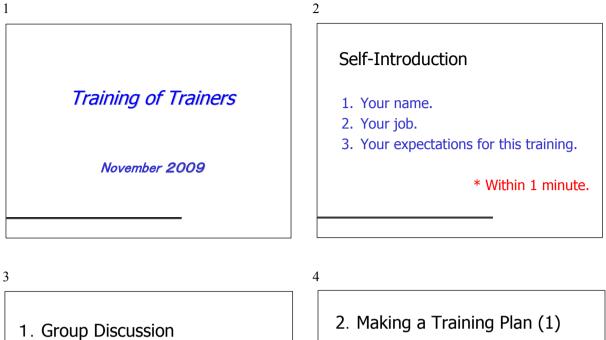
9. Problem Solving(2) Flow of the QC-story

Step1. Theme selection

- Step2. Comprehension of present situation and setting target
- Step3. Action plan scheduling
- Step4. Analysis of factors
- Step5. counter-measure study and implementation
- Step6. Evaluation of the result
- Step7. Standardization and settlement of control

20

9. Problem Solving


(4) QC 7 Tools

- 1. check Sheet
- 2. Pareto Diagram
- 3. Cause and Effect Diagram
- 4. Histogram
- 5. Graph/Chart
- 6. Scatter Diagram
- 7. Control Chart

9. Problem Solving

- (5) QC 7 Management Tools
- 1. Affinity Diagram
- 2. Relations Diagram
- 3. Matrix Diagram
- 4. Tree Diagram
- 5. PDPC
- 6. Arrow Diagram
- 7. Matrix Data Analysis

Training Material for Trainers

1. Your Experiences

2. Your Expected Abilities

2. Making a Training Plan (1)

- 1. Clarifying the Aims and Objectives
- 2. Clarifying the Targets
- 3. Clarifying the Goals

4. Grasping the Real Situations of the Target

- 2. Making a Training Plan (2) 5. Making a Scenario to achieve the Goal
 - 6. Grasping the Restrictions
 - 7. Making a Training Program
 - 8. Making an Implementation Plan
 - 9. Collecting Participants

- 6
- 2. Making a Training Plan (3)
 - 10. Preparing the Training
 - 11. Implementing the Training
 - 12. Evaluating the Training
 - * Grasping the Needs

3. Training Method (1) 1. Lecture 2. Group Discussion 3. Case Study (Case Method)

4. Role Playing

8

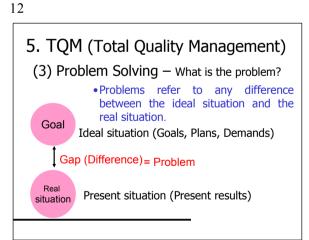
- 3. Training Method (2)
 - 5. Practice/Experiment
 - 6. Test
 - 7. Questionnaires (Evaluation)

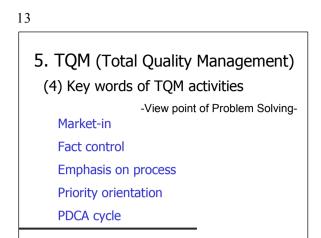
9

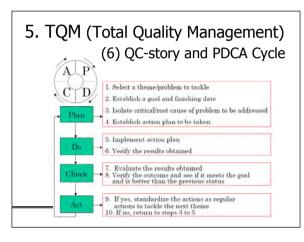
4. Instruction Skills

- 1. Speech
- 2. Asking and Answering Questions
- 3. Writing on a board
- 4. Attitude, Outfits, etc.

10


5. TQM (Total Quality Management)


- (1) Dimensions of "Quality"
 - Q: Quality
 - C: Cost
 - D: Delivery
 - P: Productivity
 - M: Moral
 - S: Safety
- E: Environment


11

5. TQM (Total Quality Management) (2) Purpose of the Quality Management 1. To Increase Customer Satisfaction 2. To Reduce Cost 3. To Stimulate employees ISO: What to do

• TQM: How to do

17

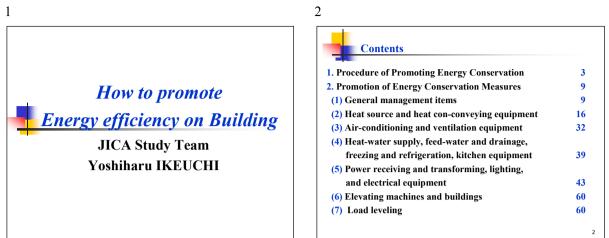
5. TQM (Total Quality Management) (8) QC 7 Management Tools

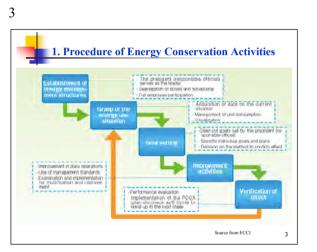
- 1. Affinity Diagram
- 2. Relations Diagram
- 3. Matrix Diagram
- 4. Tree Diagram
- 5. PDPC
- 6. Arrow Diagram
- 7. Matrix Data Analysis

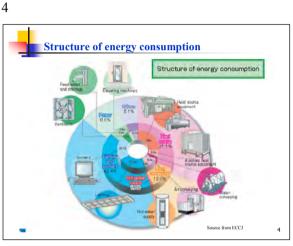
5. TQM (Total Quality Management) (5) Flow of the QC-story Step1. Theme selection Step2. Comprehension of present situation and setting target Step3. Action plan scheduling Step4. Analysis of factors Step5. counter-measure study and implementation Step6. Evaluation of the result Step7. Standardization and settlement of control

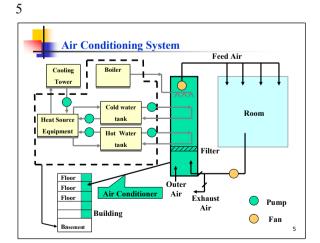
16

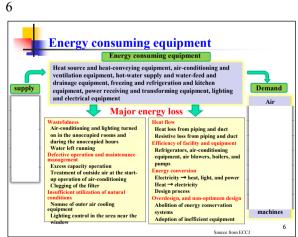
5. TQM (Total Quality Management) (7) QC 7 Tools 1. check Sheet 2. Pareto Diagram

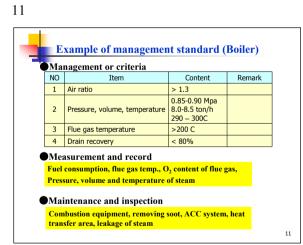

- 3. Cause and Effect Diagram
- 4. Histogram
- 5. Graph/Chart
- 6. Scatter Diagram
- 7. Control Chart

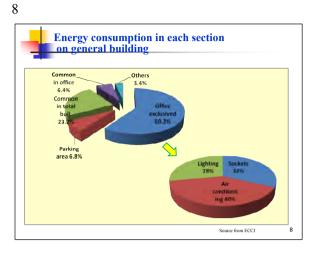

18

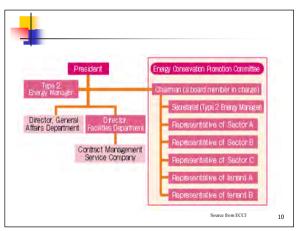

6.Action Plan

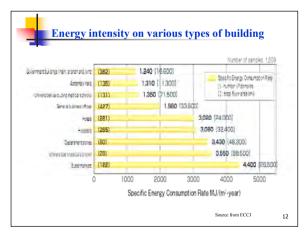

- 1. Your strong points as an Instructor
- 2. Your weak points as an Instructor
- 3. 3 points which you want to improve
- 4. An action plan to achieve the goal
- 5. Your evaluation method

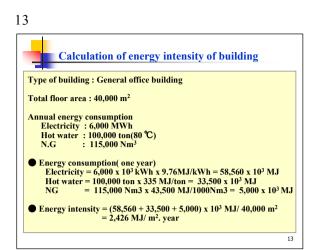

Training Materials for Factory and Building

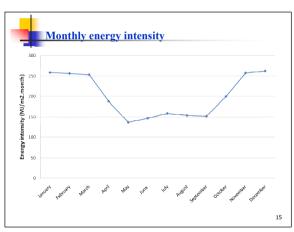


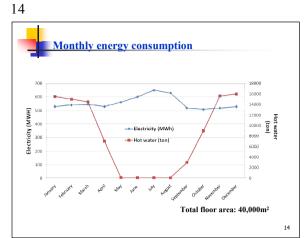


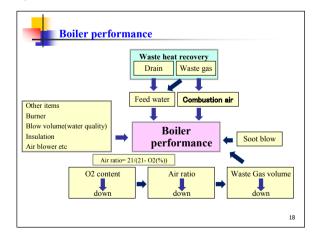


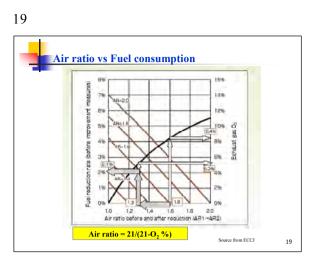

& equ	ipment	energy consumption item
Classification of energy consumption		Main energy consumption equipment
Item	Particulars	main energy consumption equipment
Heat Source	Heat Source	Refrigerating equipment, water cooler/heaters, Boiler
	Auxiliary Facility	Pump, Cooling Tower, 1st stage pump
Heat Conveyance	Water Conveyance	2 nd stage pump,
	Air Conveyance	Air conditioning equipment, Fan coil unit,
Hot water supply	Heat Source	Boiler, electric water heater, pump
Lighting &	Lighting	Lighting equipment
Sockets	Sockets	OA machines
	Ventilation	Fan for parking facilities
Power	Feed-water & Drainage	Lifting pump
	Elevating machines	Elevator, Escalator
Others	Others	Transformer s and kitchen equipment 7

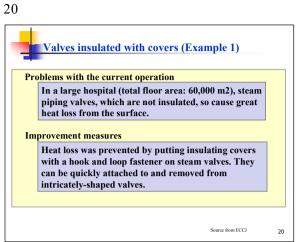

	of Energy Conservation Measures management items
1.Energy management system	Establishment of the organization and employee education Establishment of the management standards Targets of energy conservation and investment budget Status of implementation of energy conservation
2. Measurement & recording	Installation of measuring instruments and the status of operation Implementation of periodical measurements and recording Status of the maintenance and inspection of measuring instruments Status of the introduction of measuring and control systems
3. Energy consumption management	•Status of recording of the daily reports •Monthly consumption •Daily consumption and daily load curve •Graphs for comparison with the data for the previous year
4. Equipment maintenance management	Periodical inspection and daily check •Management of system performance •Management of equipment performance •Cleaning of equipment (fi lters and strainers)
5. Management of energy intensity	•Energy intensity (MJ/m2 per year) •Unit consumption by building •Specific energy cost (yen/m2 per year) •Unit consumption by destination
6. PDCA management cycle	Status of exercise of the PDCA management Status of implementation of continuous improvements ("kaizen")

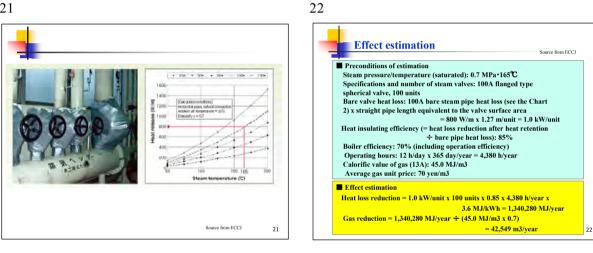


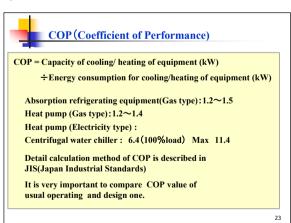


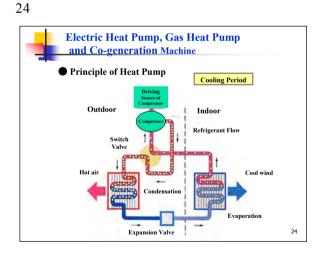


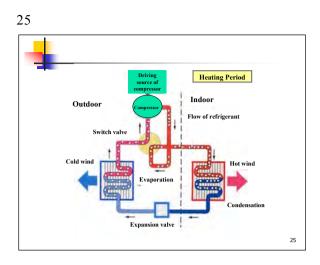


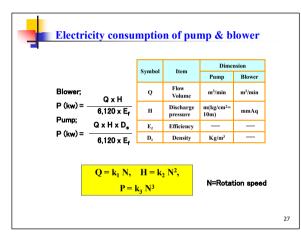

	•Quantity control of pumps and fans •Flow rate and
5. Operation management of heat-conveying equipment	Revolution control of pumps and any From the and pressure Revolution control of pumps and fans Improvement of routing (open or closed) Status of valve opening and closing (automatic valves, header bypass valves, etc.)
 Exhaust gas temperature and exhaust heat recovery 	•Management of exhaust gas temperature •Heat recovery (HP, CGS, etc.)
7. Steam leak and heat retention management	Piping system Loading equipment
8. Management of heat storage tank	Heat storage efficiency • Improvement of conveying route Heat storage and heat release time

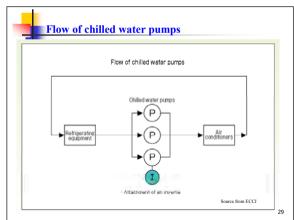


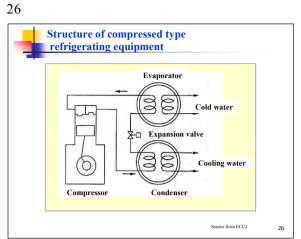

2. Heat sou	2. Heat source and heat con-conveying equipment		
1.Performance management of combustion equipment	Management of air ratio and exhaust gas •Combustion control devices Burners, fuel, and draft system •Fuel conversion (boilers, generators, etc.)		
2. Performance management of refrigerating equipment	Coefficient of performance (COP) • Descaling of heat exchangers Setting of chilled water outlet temperature • Temperature efficiency of heat exchangers Setting of cooling water temperature		
3. Operation and efficiency management	 Load factor and start-up/shutdown status •Steam pressure Quantity control •Water quality management and blow control Heat efficiency, heat balance, and heat distribution 		
 Operation management of auxiliary equipment 	Operation control of cooling towers Operation control of pumps (water volume and lift) Water quality management (electric conductivity) Improvement of routing		
	16 Source from ECCJ		

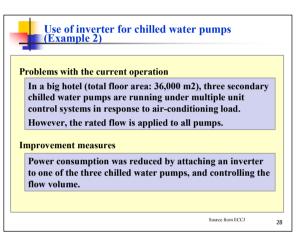


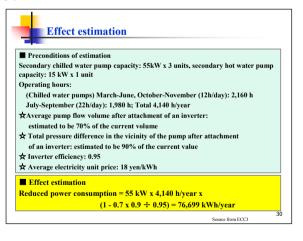


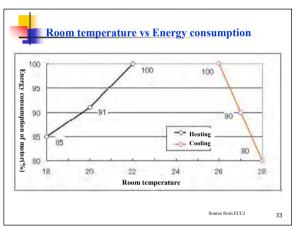


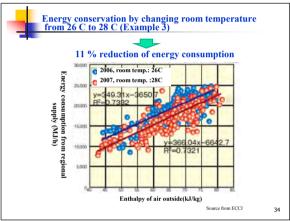




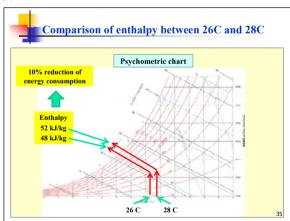




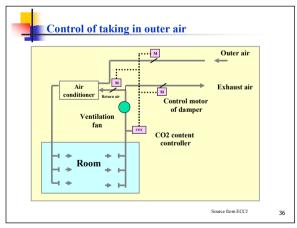


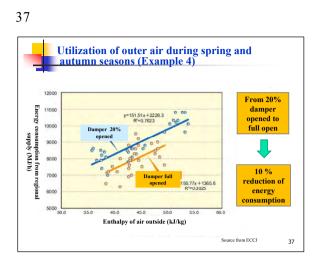


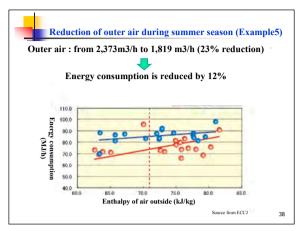
出力	л 2P		4	IP.	6P	
kW	50HZ	60HZ	50HZ	60HZ	50HZ	60H2
0.2	73.8	75.3	72.6	75.4	-	-
0.4	78	79.4	77.5	80	74.6	78
0.75	81.8	82.4	81.4	83.2	80	82
1.5	84.4	84.8	84.4	85.8	83.5	85
2.2	86.5	86.3	86.6	87.6	85.8	86.8
3.7	88	87.8	88.4	89.2	87.4	88
5.5	89.3	89	89.8	90.3	88.8	89.3
7.5	90.4	90	90.8	91.4	89.8	90.3
11	91.2	90.8	91.6	91.8	90.8	91.2
15	91.8	91.5	92.2	92.2	91.6	91.8
18.5	92.4	92	92.6	92.6	92.2	92.4
22	92.9	92.3		92.8	92.7	928
30	93.3	92.6	93.3	93	93	93
37	93.5	92.8	93.5	93.2		-

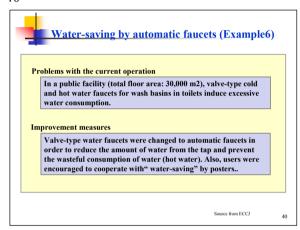


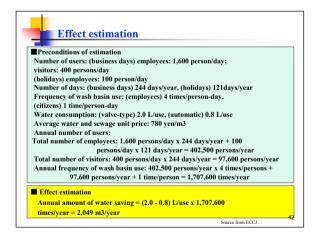
1. Operation management of air-conditioning	Optimization of preset temperature and humidity Control of external air intake volume 'Suitability of humidifying zone and method Review of operating hours 'Suitability of reheating Switching off of air-conditioning in unoccupied rooms Uneven temperature distribution 'Keeping outside air from entering Warm-up operation 'Management of indoor condition (CO2, etc
2. Management of air-conditioning efficiency	- Confinement of air-conditioning compartment - Night purge - Utilization of outside air (outdoor air cooling) - Sprinkling of water on the rooflop and outdoor condensing unit - Setting of dew-point control - Accuracy of automatic control - Prevention of mixing loss - Setting of the setting and the s
3. Introduction of energy conservation equipment	Control of heat-conveying speed (VAV and VWV) Installation of total heat exchangers +Local cooling and exhaust Planting on the rooftop, etc. Outer air inlet control system (Control by CO2 content)
4. Management of ventilation equipment	Optimization of air change rate *Local ventilation Review of operating hours Ventilation control of parking facilities (Control by CO2 concentration) Switching off of ventilation in unoccupied rooms *Speed control of air blowers and exhaust fans (YAV and VWV) *Management of operating temperature (electric room, machine room, and CVCF room)

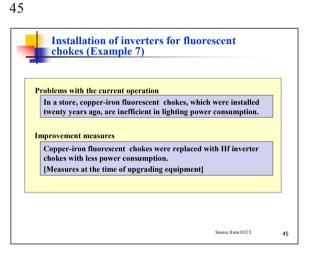


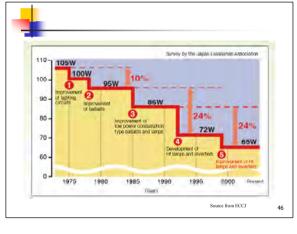


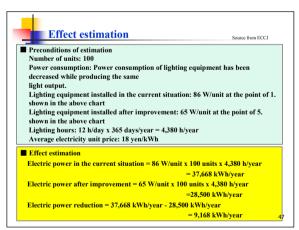




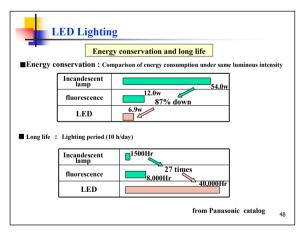

4.Heat-water supply, feed-water and drainage, freezing and refrigeration, kitchen equipment		
1.Management of hot water supply equipment	Hot-water supply temperature Scheduled control for holidays and nighttime Improvement in hot-water supply efficiency (descaling, etc.) Utilization of waste heat Shutting off of supply except in winter season Utilization	
2. Management of water- feed and drainage equipment	Hot-water supply temperature Scheduled control for holidays and nighttime Improvement in hot-water supply efficiency (descaling, etc.) Utilization of waste heat Shutting off of supply except in winter season Utilization	
 Management of freezing and refrigeration and kitchen equipment 	Management of heat retention •Management of heat insulation and defrosting Management of door opening and closing •Showcase management Management of kitchen equipment (cooking equipment, tableware dryer, dishwasher, etc.) Finhancement of efficiency	
	Source from ECC1	

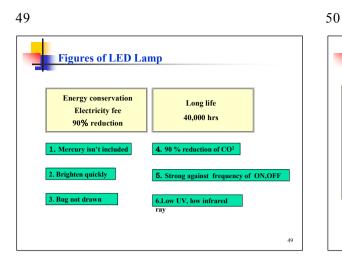


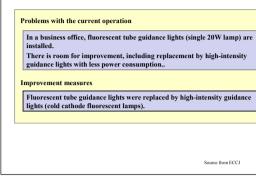


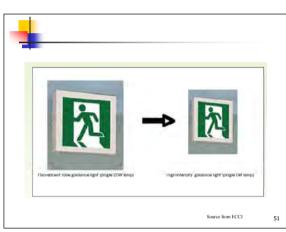


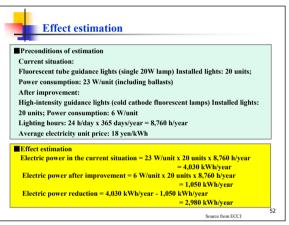
5. Power receiving and transforming, lighting, and electrical equipment		
 Management of the power receiving and transforming equipment 	Voltage adjustments · Consumption management Power factor management · Utilization of night power 'Transformer capacity · Power factor improvement control · Demand factor, and load adjustments · Demand control · Cutting-off of unnecessary transformers · Low-loss transformers · Optimization of demand · Quantity control of transformers	
2. Operation management of lighting equipment	Optimum illumination control · Management of outdoor light • Switching off of the light during the time of day when no lighting is necessary (utilization of daylight, etc.) • Switching of of nighting uside light · Cleaning and replacement of lighting fixtures · Adoption of high-efficiency lamps · Lamp fitting mounting position and circuit segmentation · Adoption of high-efficiency apparatuses · Dimming and switching-off of the light with automatic light controller · Task and ambent lighting · Adoption of energy-saving bulbs · On-off lighting control · Improvement in light output ratio (reflectivity) · Natural lighting system	
3. Management of OA equipment	Reduction in standby power requirement •Introduction of energy saving models Power-off when not in service	
 Management of vending machine 	Introduction of energy-saving equipment Time control	

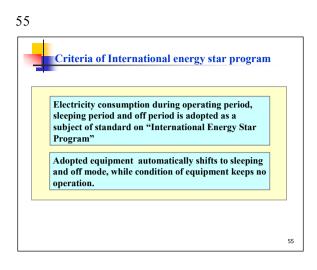

Kind of lampLife(Hr)LED40,000Hf fluorescence12,000Mercury lamp6,000Halogen lamp4,000Incandescent lamp1,000

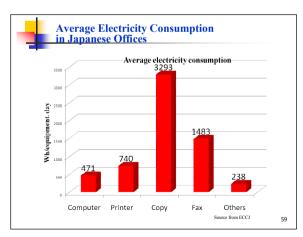


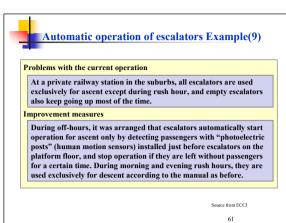




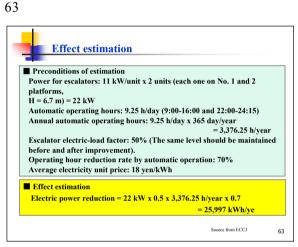


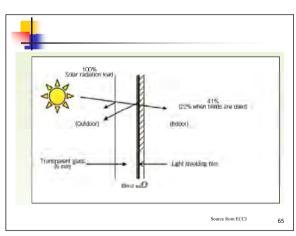

Use of high-intensity guidance light (Example 8)

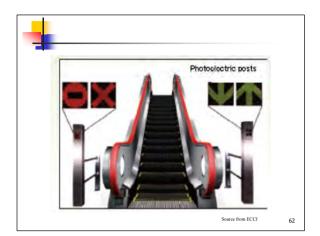


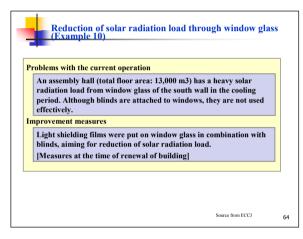

Image: Sector Sector

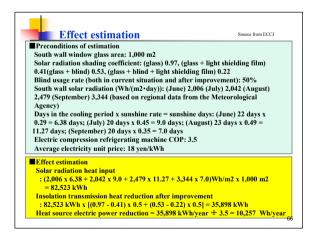
Grouping Criteria of electricity consumption Automatically shift to				
Grouping	Criteria of electricity consumption	sleeping mode		
Desk top. Note book	Conceptual standard annual electricity consumption considering idle period, sleeping period and off period (kWh)	After equipment isn't using >15 minutes (Display)		
Work station	Conceptual standard electricity consumption considering idle period, sleeping period and off period (W)	 >30 minutes (Computer) But concerned small size server type and thin client type, computer itself is not 		
Small size server. Thin client	Electricity consumption of idle period and off period. (W)	- adopted		

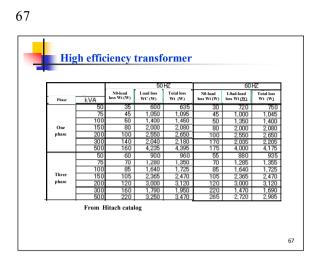


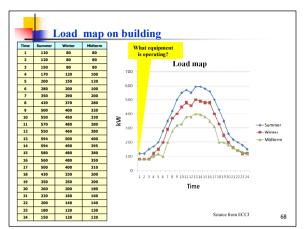

	Elect	ricity consump	otion	Shift time
	Operating(W)	Idling(W)	Sleeping(W)	(minutes)
Computer	58	34	15	< 30
Display	85	85	15	
Scanner	50	16	12	
Fax	430	120	15	< 5
Printer	430	65	20	< 30
Сору	1,100	180	120	< 15
Complex	1400	120	204	< 15

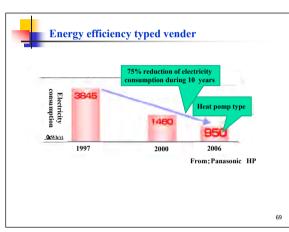

6. Eleva	ting machines and buildings Source from ECCJ						
1. Operation management of elevating machines	Control in the number of units in operation Reduction in the number of floors at which the elevator stops Management of operation schedule by time of day Adoption of inverter control Reduction of mechanical loss at power transmission parts						
2. Operation management of escalators	Management of operation schedule by time zone Adoption of human motion sensors						
 Energy conservation in buildings 	Thermal insulation properties of a structure · Blocking off solar radiation on the roof Thermal insulation and airtight windows · Air flow windows · Shielding of intrusion of external air · Rooftog parteming · Blocking off solar radiation on the window · Green government building plans						
7. Load	leveling						
1. Measures for load leveling	Review of the operation forms (operation time, operating rate, load factor, etc.) Adoption of equipment to meet the purpose (ice thermal storage system, gas- fired absorption chiller/heater, etc.)						
2. Cogeneration	Operation management (power generation efficiency, waste heat recovery, total efficiency, etc.) Seasonal load variation - Rate of utilization and heat-to-power ratio -Equipment model, capacity, and fuel						
3. Renewable energy	Fuel cell •Solar heat Geothermal power generation •Wind-power generation						

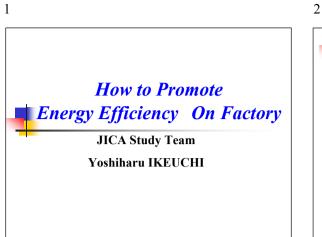

,

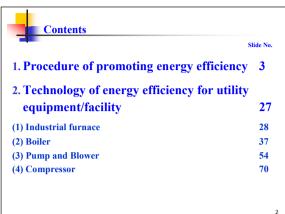


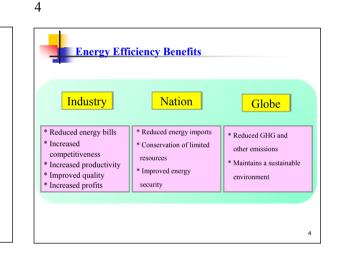


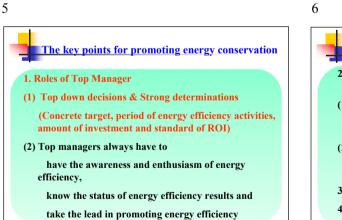




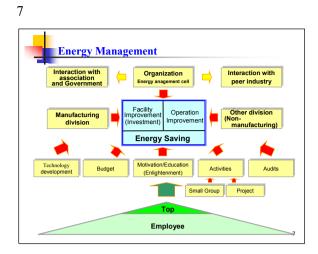








3 1. Procedure of promoting energy efficiency

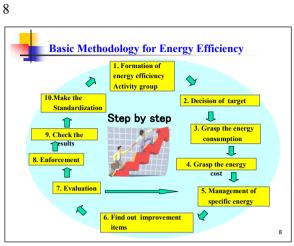


The key points for promoting energy conservation 2. Having the organization or person in charge of energy efficiency activity. (1) The organization or he has to have an awareness for promoting energy efficiency activity

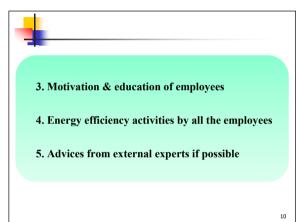
- (2) The organization or he is given the power and responsibility for promoting energy efficiency activity by top manager.
- 3. Energy efficiency activities by all employees
- 4. Study of peer company's energy efficiency activities

1

. Formation of energy efficiency activity group 1. The size of activity group is depended on the size of enterprise.

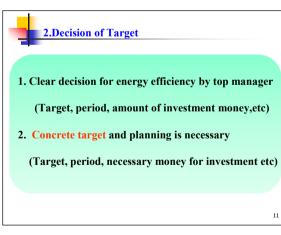

President of company

Person in charge of energy efficiency

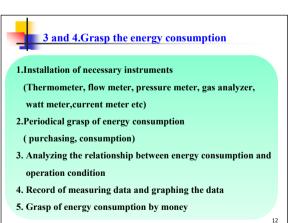

Member Member Member Member

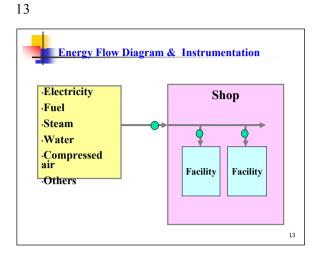
2. The example of activity group

From each workplace



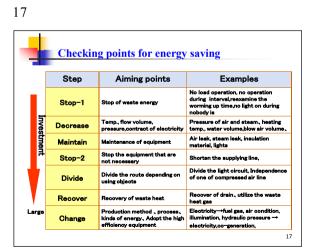
10

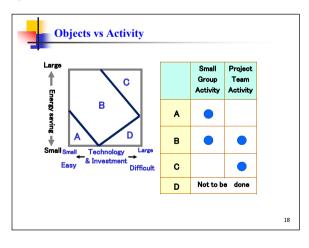


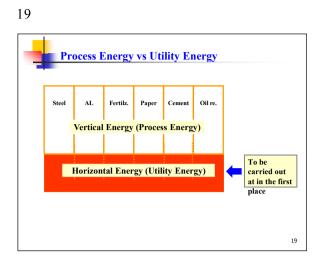

11

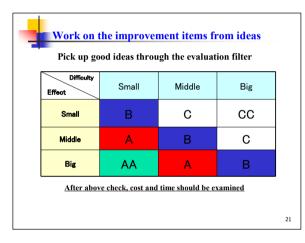
9

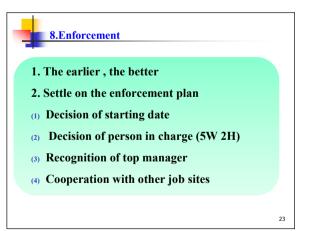


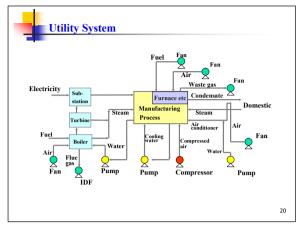


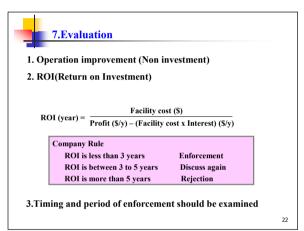

01		Producer	Model	Flow (m3/hr)	Capacity (Kw)	Head (m)	Voltage (V)	Current (A)	Installed year
A-01	Boiler	Ebara	FS2F6	60	10	50	400	15	1989

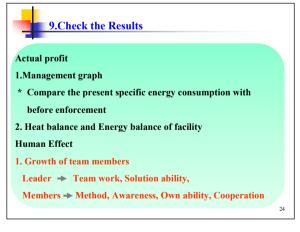


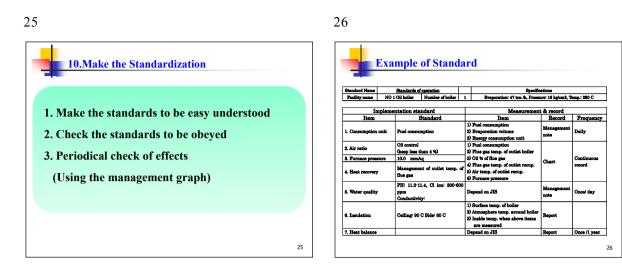


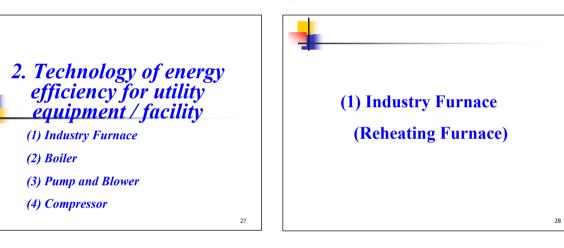


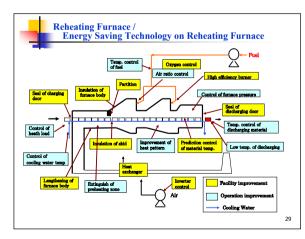


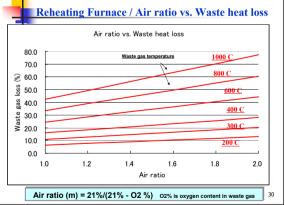


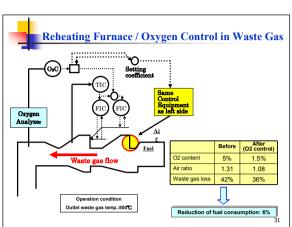


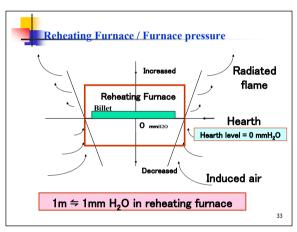


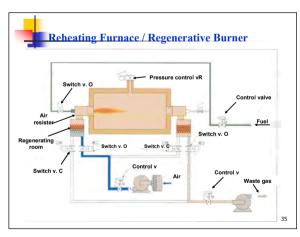


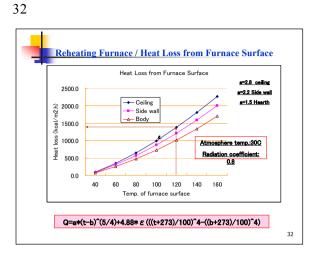


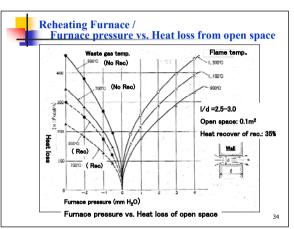


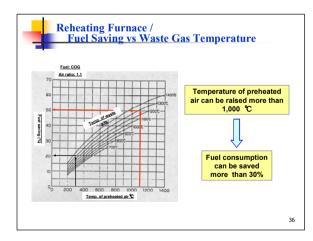


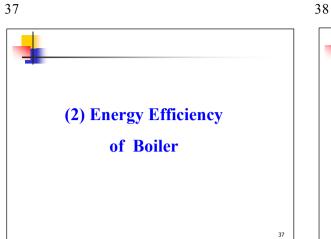


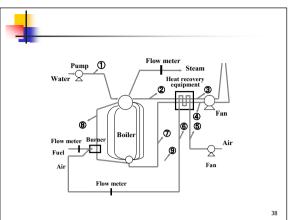


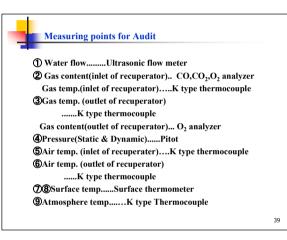


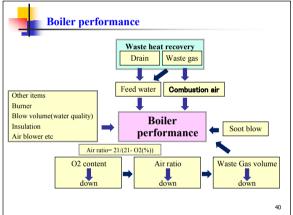


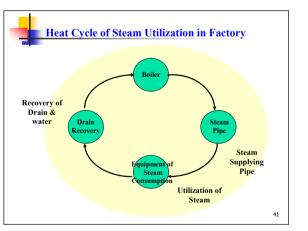


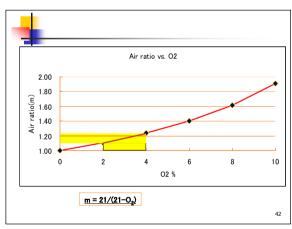


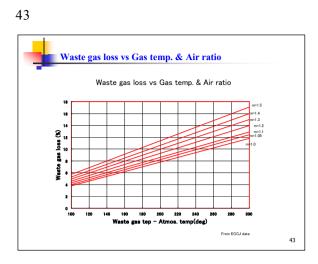


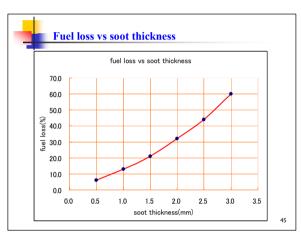


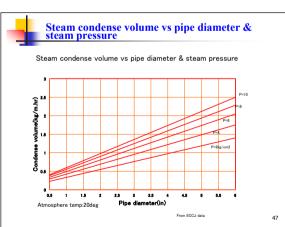


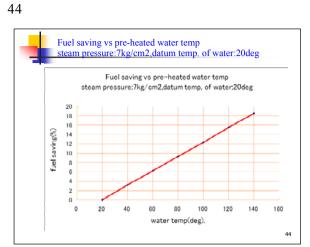


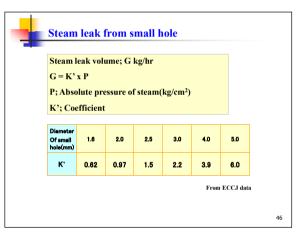


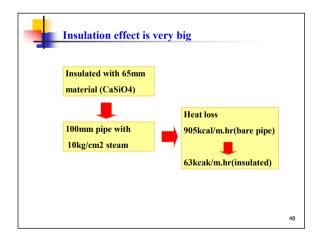


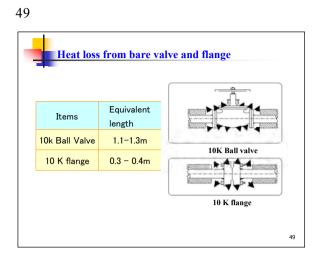


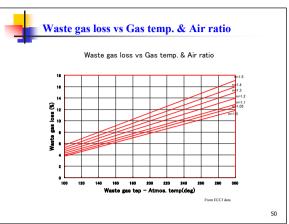


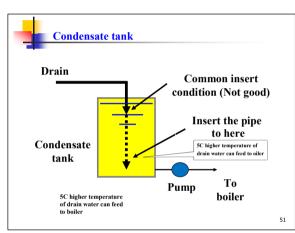


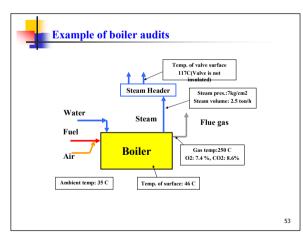


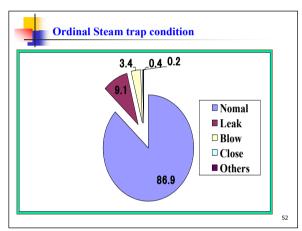


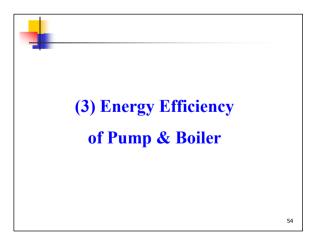


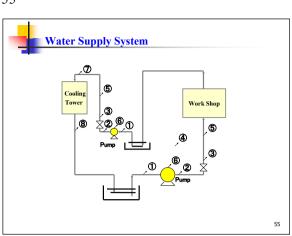


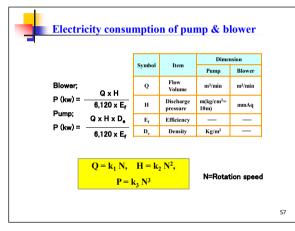


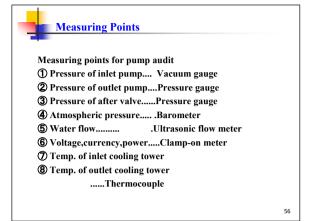


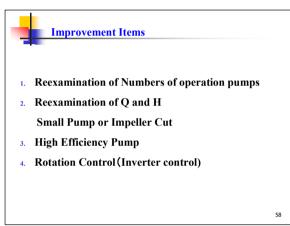


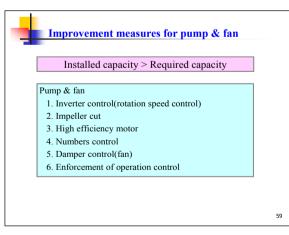


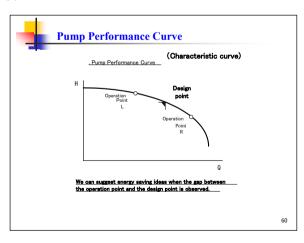


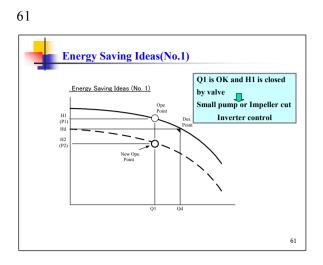


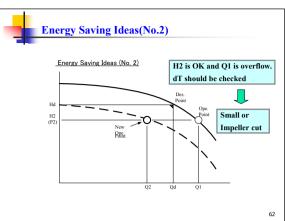


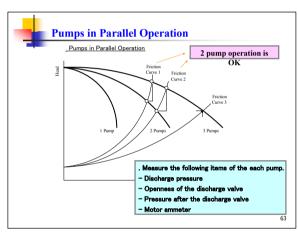


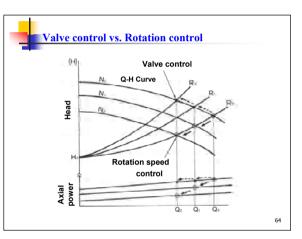


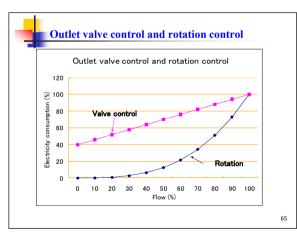


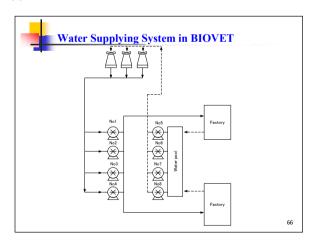


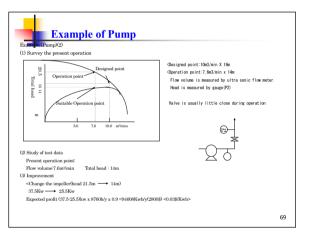


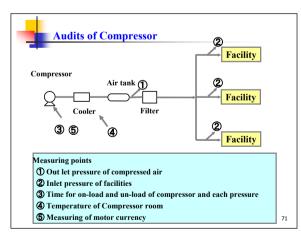


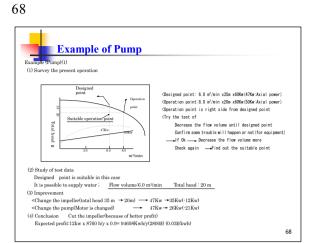


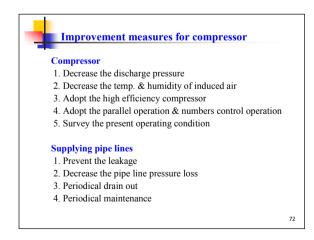


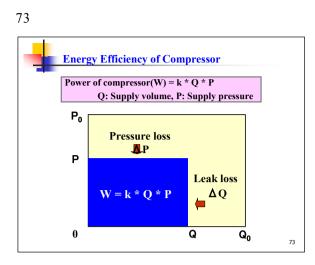


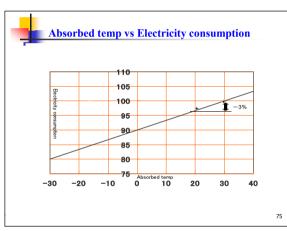




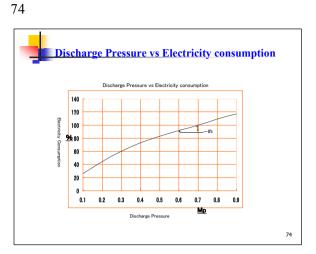


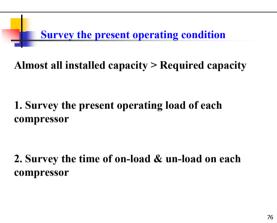

	Au	dit D	ata						
NO	Model	Deta	Flow	Head	Power (kW)	Voltage (V)	Currency (A)	Power	Rotation r.p.m
	3000	Rated	1080	48m	250	380	440	89 5	1450
1	20	AwaB		5.1kg			290	-	
2	300D 72	Reted	1080	48m	250	380	440	89.5	1450
		Audit		5.3kg	-	-	280	-	-
3	<u>3000</u> 70	Batad	1080	48.m	250	380	440	89.5	1450
		Audit						-	-
4	<u>3000</u> 70	Rated	1080	48.m	250	380	440	89.5	1450
		AwaB	-	5.0kg	-		330	-	
5	300D 70A	Reted	1008	24.m	110	380	180	89 5	.970
2	20A	Audit	-	3.0kg	-	-	140	-	-
6	300D 70A	Reted	1008	24 m	110	380	180	89 %	970
•	195	Audit	-		-			-	-
1	300D 70A	Bated	1008	24.m	110	380	180	89.5	_970
1	1005	Audit	-	2.3kg	-		130	-	
8	3000	Rated	1008	24 m	110	380	180	89 3	.970
•	70A	Awalis		2.4kg			100		

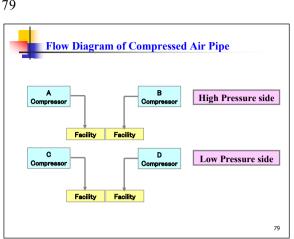


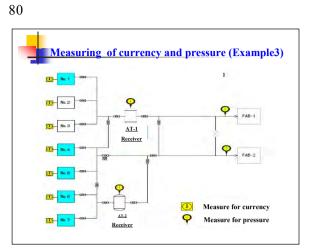


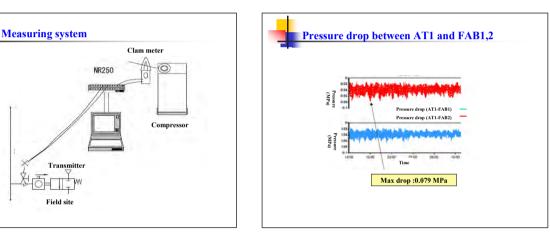
(4) Energy Efficiency of Compressor

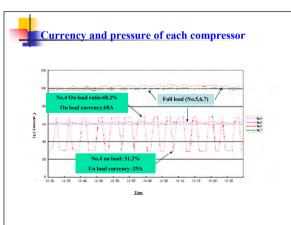


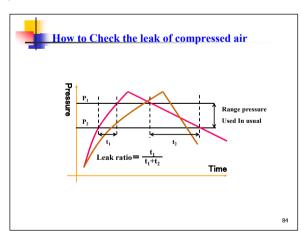


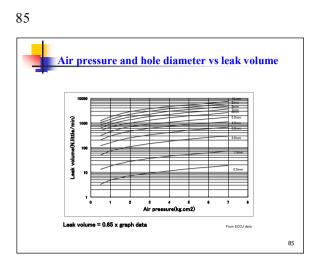

Compresso	r operation	(Example	1)	
	On-load	Un-load	Remarks	
No.1 (535 Kw, 7kg/cm2)	30 %	70 %	On:6.8k Un:7.4	
No.2 (535 Kw, 7kg/cm2)	30 %	70 %	On:6.8k Un:7.4	
No.3 (535 Kw, 7kg/cm2)	_	_	Stop	
		5	Stop one comp.:	



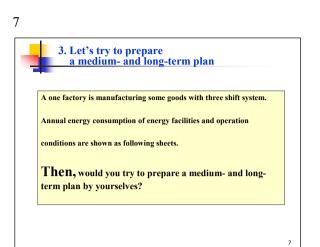


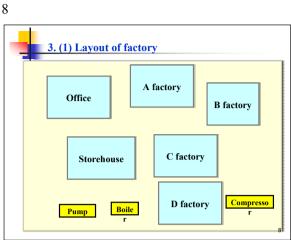

	<u>essor ope</u> 1	ration (E	xample2)		
ligh pressure Model	On load	Un load	Volume	Remarks	
35kg/cm ² G 15kw	18% 33A, 10kw	82% 16A, 4.3kw	1.2m ³ /min		
35kg/cm ² G 15kw	9% 88A, 24.4kw	91% 20A, 5kw	3.01m ³ /min		
ow pressure					
Model	On load	Un load	Volume	Remarks	
7kg/cm ² G 15kw	9% 32A, 9kw	91% 18A, 44kw	2.95m ³ /min		
7kg/cm ² G 37kw	30% 138A, 40.6kw	70% 50A,13kw	7.37m ³ /min		



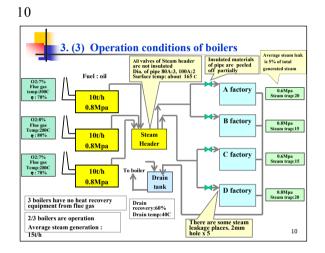


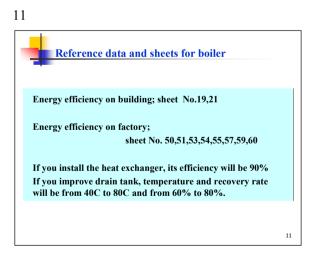
2	
Contents	
1. Format of medium-and long-term plan (1)	3
2. Format of medium- and long-term plan (2)	6
3. Let's try to prepare a medium- and long-term plan	7
(1) Lay out of factory	8
(2) Annual energy consumption	9
(3) Boiler	10
(4) Pump	12
(5) Compressor	15
(6) Lighting	17
	2

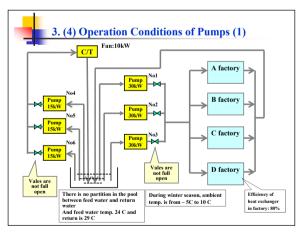

1. Mediu	m- and long term plan	(1)
I Planning Period	Medium-and long- means about 3-5 y	term
II Plan for EE&C and "Hard" measures	Expected Effects	
Process/Facility	Plan	Expected Effects of EE& (toe) in primary energy
pumps of hot/cold water	ex. Add inverters for pumps	
system	This plan should be described mainly "hard" measures related	
	to installing facility, equipment .	
"Soft" measures		-
Process/Facility	Plan	Expected Effects of EE& (toe) in primary energy
	This plan should be described mainly "soft" measure related to	
	operation improvement	


Soft n	neasures (operation improvemo	ent)
Process/facility	Plan	Expected effect of EE&C (toe) in primary energy
Boiler facility	Improving air ratio of No5-7 boilers(10t/h) by using portable O2 analyzer (from 6% to 3%) (2011)	15kL
Lighting	Turn off lights while out seated (2011-2012)	7kL (28,000 kWh
Air-conditioning system	 Change room temperature from 24C to 20C in winter season (2011-2012) Taking in outer air during Spring & Fall seasons (2011) 	8 kL (33,000kWh) 15kL (61,000 kWh)

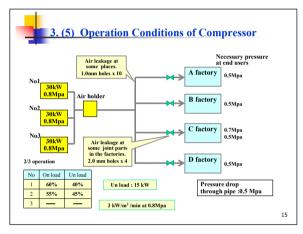
	mple of described plan EE&C and expected effect	
Process/facility	Plan	Expected effect of EE&C (toe) in primary energy
Boiler facility	Renewal of No2-No5 boilers(10t/h) (2011-2014) (1)Renewal to high efficiency boiler (15kL) (2)Improvement of air ratio by installation of O2 control system (32 kL)	47 kL
Compressor facility	Change from compressors(10 units) to blower one by one (2011-2013)	15kL (61,000kWh)
Cooling system (Pump)	Renewal of circulation pumps(3 units, 30kW) (2012- 2015) (1)Adoption of high efficiency motor(29,000kWh) (2)Adoption of inverter(121,000kWh)	38kL (150,000kWh)
	Described in concrete	



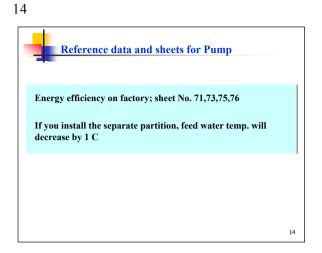


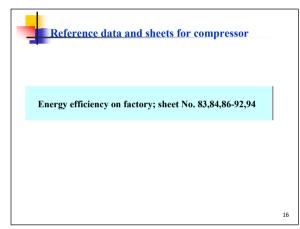

9 3. (2) Operation condition and annual energy consumption of Factory 1. Operation hours : factory :8,400 hours/ year, office: 2,000 hors/year 2. Annual energy consumption (1) Boiler : 10,000 KL (2) Compressor : 756,000 kWh (3) Pump: 420,000 kWh (4) Lighting: 600,000 kWh (5) Manufacturing machine : 1,200,000 kWh (6) Air conditioner : 400,000 kWh

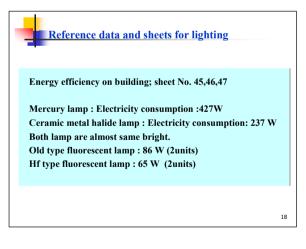
(7) Others : 300 kWh

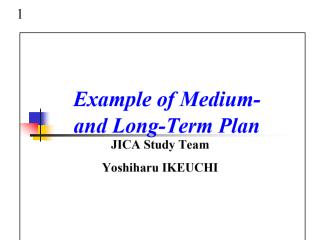


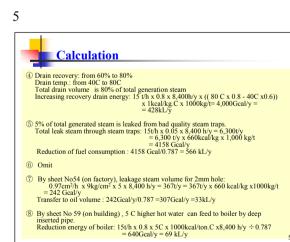
12




Operation Conditions of Pumps (2)								
NO	Data	Flow (m3/h)	Head (m)	Power (kW)	Voltage (V)	Currency (A)	Power	
	Rated	154	50	30	400	55	0.8	
1	Operation	*109	5.2 kg	*22		40		
2	Rated	154	50	30	400	55	0.8	
2	Operation	*106	5.2 kg	*21.5		39		
3	Rated	154	50	30	400	55	0.8	
3	Operation	*102	5.3 kg	*21		38		
	Rated	154	25	15	400	27	0.8	
4	Operation	*104	2.7kg	*11		20		
6	Rated	154	25	15	400	27	0.8	
5	Operation	*101	2.8 kg	*11		20		
6	Rated	154	25	15	400	27	0.8	
0	Operation	*101	2.8 kg	*11		20		



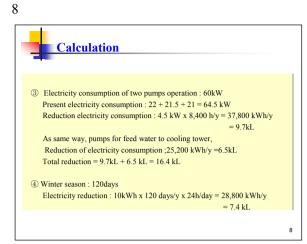

Place	Lamp	Remarks
Office	Fluorescent lamp: 40Wx2 x200	
Storehouse	Mercury lamp: 400 W x 60 Fluorescent lamp: 40Wx2 x20	
A factory	Mercury lamp: 400 W x 20 Fluorescent lamp: 40Wx2 x100	
B factory	Mercury lamp: 400 W x 15 Fluorescent lamp: 40Wx2 x100	
C factory	Mercury lamp: 400 W x 25 Fluorescent lamp: 40Wx2 x150	
D factory	Mercury lamp: 400 W x 30 Fluorescent lamp: 40Wx2 x180	

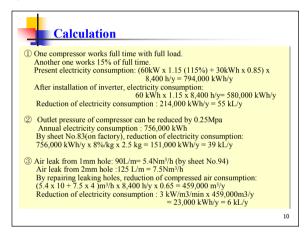


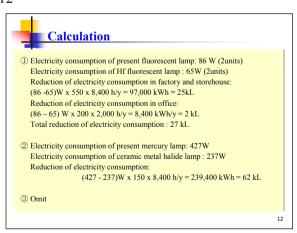
Contents	
1. Boiler	3
2. Pump	6
3. Compressor	9
4. Lighting	11
	2

lard measu	res	
Process/Facili ty	Plan	Expected effect of EE&C (toe) in primary energy
Boiler system	Renewal of 3 boilers (n : 90%) (2012-2015)	① 1,255 kL
Boiler system	Improvement air ratio by installing O ₂ control system (2012-2014)	② 280 kL
Boiler system	Insulation of valve on steam header (2011)	3 4 kL
Boiler system	Improvement of drain recovery (from 60% to 80%) (2011-2012)	④ 428 kL
Boiler system	Replace of new steam traps (2011-2014)	(5) 566 kL
Boiler system	Repair the insulation materials of pipe (2011)	6
Soft measur	es	
Boiler system	Repair the steam leakage (2011)	🗇 33 kL
Boiler system	Repair the insert pipe to condensate tank(2011)	8 69 kL

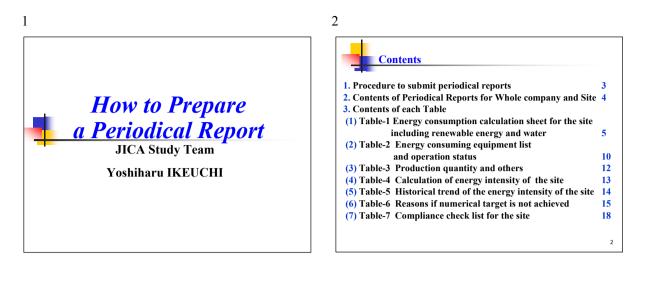
Calculation	
① Average η of existing boilers; $(78+80+78)/3 = 78.7\%$ η of new installing boiler is 90% Present annual oil consumption is 10,000 kL So reduction of oil consumption: 10,000 kL x (1-78.7/90) = 1,255 kL	
 Present average O₂ content in flue gas: (7+8+7)/3 = 7.3% Installation of O₂ control system : O₂ content will be 3% By sheet No17 of energy efficiency on building, approximately 2.8% reduction of oil consumption will be improved. So, reduction of fuel: 10,000 kL x 0.028 = 280 kL 	
③ By sheet No.21(on building), heat losses from bare valves are 700W/m for 80A and 800W/m for100A. Pipe length equivalent of ball valve :1.27m (see sheet No22) Insulation efficiency is 85% (see sheet No.22) Operation hour: 8.400 hours/v	
Reduction of heat loss : 1/1.163 x 1.27 m x (700 W/m x 3 + 800W/m x 2) x 8,400 h/y x 0.85 = 29 Gcal/y Boiler efficiency: 78.7% . Reduction oil consumption : 29/0.787 = 37Gcal/y = 4 kL	4

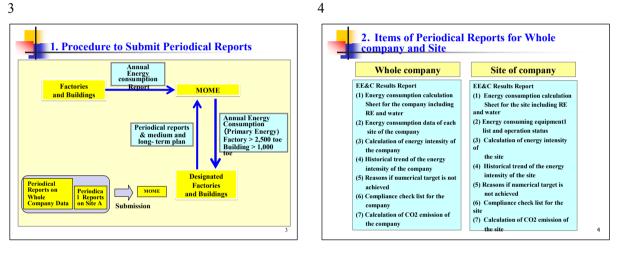


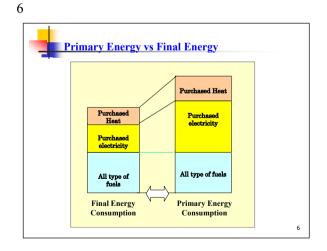

lard measur	es	1
Process/Facility	Plan	Expected effect of EE&C (toe) in primary energy
Cooling system	Install the inverter system (2013-2014)	① 57 kL (221,000 kWh)
Cooling system	Install the separate partition in water pool (2011)	2 18 kL (70,000 kWh)
oft measure	\$	
Cooling system	Stop the each one pump of feed water to factory and of feed water to cooling tower(2011)	3 16.4 kL (63,000 kWh)
Cooling system	Stop the fan of cooling tower during winter season (2011)	④ 7.4 kL 28,800 kWh)

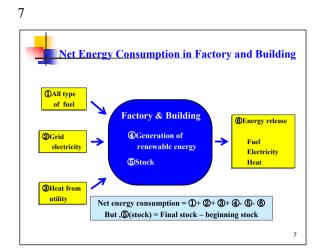

 Calculation Inverter efficiency: 0.95 Water flow is about 70% of rated one. Total efficiency included with motor, pump and inverter: 0.65 (0.7 x 0.95) Electricity reduction by inverter: 30 kW x 3 x 8400h/y x (1-(0.7)³/0.65) =357,000kWh/y Electricity reduction by present operation : (90-22-21.5-21) x 84,000h/y =214,000kWh/y Electricity reduction 143,000kWh/y As same way, pumps for feed water to cooling tower Electricity reduction : 78,000kWh/y Total reduction221,000kWh/y = 57kL Present temperature difference between feed and return water: 5 C If partition is installed, it becomes 6C Efficiency of heat exchanger in each factory: 0.8 Therefore, necessary feed water will decrease by16.7%(1/6 x100%) Electricity reduction is 16.7% 420,000 kWh x 0.167 = 70,000 kWh = 18 kL 	1	
 Water flow is about 70% of rated one. Total efficiency included with motor, pump and inverter: 0.65 (0.7 x 0.95) Electricity reduction by inverter: 30 kW x 3 x 8400h/y x (1-(0.7)³/0.65) =357,000kWh/y Electricity reduction by present operation : (90-22-21.5-21) x 84,000h/y Electricity reduction 143,000kWh/y Electricity reduction : 78,000kWh/y Total reduction221,000kWh/y Total reduction221,000kWh/y Total reduction221,000kWh/y Total reduction : 78,000kWh/y Total reduction21,000kWh/y = 57kL Present temperature difference between feed and return water: 5 C If partition is installed, it becomes 6C Efficiency of heat exchanger in each factory: 0.8 Therefore, necessary feed water will decrease by16.7%(1/6 x100%) Electricity reduction is 16.7% 		Calculation
		 Water flow is about 70% of rated one. Total efficiency included with motor, pump and inverter: 0.65 (0.7 x 0.95) Electricity reduction by inverter: 30 kW x 3 x 8400h/y x (1-(0.7)³/0.65) =357,000kWh/y Electricity reduction by present operation : (90-22-21.5-21) x 84,000h/y Electricity reduction 143,000kWh/y Electricity reduction : 78,000kWh/y Total reduction221,000kWh/y Total reduction221,000kWh/y Total reduction21,000kWh/y Total reduction : 78,000kWh/y Total reduction21,000kWh/y = 57kL Present temperature difference between feed and return water: 5 C If partition is installed, it becomes 6C Efficiency of heat exchanger in each factory: 0.8 Therefore, necessary feed water will decrease by16.7%(1/6 x100%) Electricity reduction is 16.7%

Process/Facility	Plan	Expected effect of EE&C (toe) in primary energy
Compressor system	Install the inverter system (2012)	① 55kL (214,000 kWh)
Compressor system	Install the booster valve at C factory Or install the baby compressor at C factory (2011)	② 39 kL (151,000 kWh)
Soft measures		
Compressor system	Repair the air leakage(2011)	3 6 kL (23,000 kWh)


Process/Facility	Plan	Expected effect of EE&C (toe) in primary energy
Lighting	Replace the fluorescent lamps to Hf type (2011-2013)	① 27kL (105,400 kWh)
Lighting	Replace the mercury lamps to ceramic metal halide lamps (2012-2014)	② 62kL (239,400 kWh)
Soft measure	is	
Lighting	Turn off lamps while nobody seated (2011)	3







for the site including RE and wat	able-1 Energy	v co	nsu	nnti	on c	alcu	latio	n sh
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	for the	sit	e inc	hidi	no R	Ear	nd w	ater
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		T			(Fisca	l wear)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Lised	Sold			Primary	Carbon
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Unit				Energy		Dioxide
Lignic raw 1 0 0 0 0 Lignic raw 1 0 0 0 0 Beon Cal 1 0 0 0 0 Beon Cal 1 0 0 0 0 Heary fiel all 1 0 0 0 0 Heary fiel all 1 0 0 0 0 Propase-Buistic n3 0 0 0 0 0 Nong as 3 0 0 0 0 0 0 Wood n3 0 0 0 0 0 0 Wood n3 0 0 0 0 0 0 Wood n3 0					A-B			(tCO2)
Brown Call 1 0 0 0 0 Head Call 1 0 0 0 0 0 Horing all 0.3 0 0 0 0 0 Hersense n.3 0 0 0 0 0 Norsense n.3 0 0 0 0 0 Norsense n.3 0 0 0 0 0 Wood n.3 0 0 0 0 0 0 0 Wood n.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>Lignite raw</td> <td>t</td> <td></td> <td></td> <td>0</td> <td></td> <td>(104)</td> <td>(1002)</td>	Lignite raw	t			0		(104)	(1002)
Head Coal 1 0 0 0 0 Henry field all 1 0 0 0 0 0 Henry field all 1 0 0 0 0 0 Recording all 0 0 0 0 0 0 Phone all 1 0 0 0 0 0 0 Phone all all 0 0 0 0 0 0 Boars all 0	Lignite dried	t			0	0	0	(
Heating oil n3 0 0 0 0 0 Henry field 1 1 6 6 6 6 6 Kernene n3 6 6 6 6 6 Nature gas n3 6 6 6 6 6 Nature gas n3 6 6 6 6 6 Other gas n3 6 6 6 6 6 Code 1 6 6 6 6 6 6 Wood vaste 0 1 6 6 6 6 6 Bromsa 1 6 6 6 6 6 6 Scem 130 6 6 6 6 6 6 Gerbenal statt 10 6 6 6 6 6 6 Schotat 1 6 6 6 6 6 6 6 </td <td></td> <td>t</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>(</td>		t			0	0	0	(
Henry (nd el) 1 0 0 0 Wrenze-Batas n3 0 0 0 0 Prenze-Batas n3 0 0 0 0 0 Natural gas n3 0 0 0 0 0 0 Word gas 1 0 0 0 0 0 0 Wood m3 0 0 0 0 0 0 0 Botrass 1 0 0 0 0 0 0 Stem kWh 0 0 0 0 0 0 Rotarat kWh 0 0 0 0 0 0 Rotarat kWh 0 <t< td=""><td>Hard Coal</td><td>t</td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>(</td></t<>	Hard Coal	t			0	0	0	(
Kreenen m1 0 0 0 0 Promeen Bulture m3 0 0 0 0 Attard gas m3 0 0 0 0 0 Code 1 0 0 0 0 0 0 Wood m3 0 0 0 0 0 0 Wood m3 0 0 0 0 0 0 Mood wrde 1 0	Heating oil	m3			0	0	0	(
Preproce-Butance m3 0	Heavy fuel oil	t			0	0	0	(
Natural gas m3 0 <t< td=""><td>Kerosene</td><td>m3</td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	Kerosene	m3			0	0	0	0
Biognin n3 0 0 0 0 Cicke 1 0 0 0 0 0 Wood n3 0 0 0 0 0 0 Wood n3 0 0 0 0 0 0 Works 1 0 0 0 0 0 0 Status 1 0 0 0 0 0 0 Status 1 0	Propane-Butane	m3			0	0	0	(
Cole 1 0 0 0 Wood m33 6 6 6 6 Wood wate 1 6 6 6 Bomss 1 6 6 6 Stem 10% 6 6 6 Technical stem 10% 6 6 6 Geodernet wate 10% 6 6 6 Sub-total 6 6 6 6 Schetont 6 6 6 6 Schetont 6 6 6 6 Schetont 6 6 6 6 Wind Prover 10% 6 6 6	Natural gas	m3			0	0	0	(
Wood m1 0 <td>Biogas</td> <td>m3</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td></td>	Biogas	m3			0	0	0	
Word wate 1 0	Coke	t			0	0	0	(
Biorgas 1 0 0 0 0 Stam 10% 0 0 0 0 Het vater 11% 0 0 0 0 0 Technical dram 11% 0 0 0 0 0 0 Goodbarner 11% 0		m3			0	0	0	(
Stam 105 6 6 6 Ide state and Goodbard wird 105. 6 6 6 6 Ide state and Goodbard wird 105. 6 6 6 6 6 State and wird 105. 6 6 6 6 6 State and wird 105. 6 6 6 6 6 State proj. 105. 6 6 6 6 6	Wood waste	t			0	0	0	
Hot vater LWS 0 <th< td=""><td>Biomass</td><td>t</td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>(</td></th<>	Biomass	t			0	0	0	(
Hot vater LWS 0 <th< td=""><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td></th<>					0			
Technical steam 1 \(\bar{\bar{\bar{\bar{\bar{\bar{\bar{	Steam	kWh			0	0	0	
Geothermal water LWh? 0 0 0 Sub-total 0 0 0 0 0 FPS LWh 0 0 0 0 0 Sub-total 0					0	0	0	
Sub-total Image: Constraint of the second seco					0	0	0	(
EPS kWh 0 0 0 Solar (PV) kWh 0 0 0 Wind Power kWh 0 0 0	Geothermal water	kWh?			0	0	0	(
EPS kWh 0 0 0 Solar (PV) kWh 0 0 0 Wind Power kWh 0 0 0								
EPS kWh 0 0 0 Solar (PV) kWh 0 0 0 Wind Power kWh 0 0 0								
Solar (PV) kWh 0 0 0 Wind Power kWh 0 0 0			\sim	\sim	\sim			
Wind Power kWh 0 0 0	EPS	kWh			0	0	0	(
Wind Power kWh 0 0 0								
					0	0	0	(
Others kWh 0 0 0	Wind Power	kWh			0	0	0	(
Others kWh 0 0 0								
	Others	kWh			0	0	0	(
			L					
Sub-total 0 0	Sub-total			/		0	0	0

Unit to Final Energy (kWh)

t 3,600 t 4,500 t 5,000 t 6,000 m3 11,390

t m3 m3 m3

m3 9.00 t 7,00 m3 1,68 t 4,50 t 3,50

kWh kWh kWh kWh

kWh 1.00

1.00 1.00 1.00 1.00 final to C0 to Primar Energy (kWh) 3.600

to Carbon Dioxide (kWh to kgCO2)

0.2

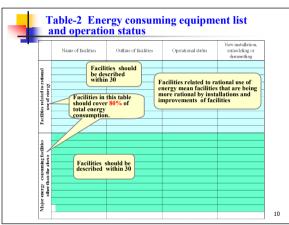
0.40

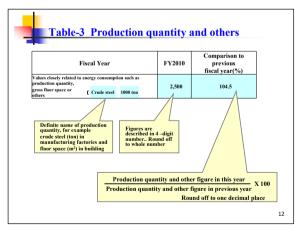
0.80

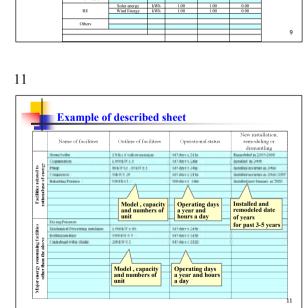
9

Converter table

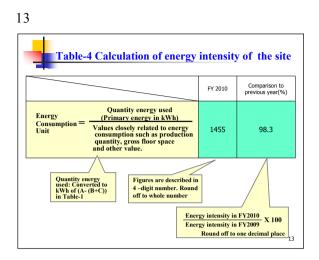
Lignite raw Lignite dried Brown Coal Hard Coal Heating oil Heavy fuel oi Kerocine Propane-Buta Natural gas Bioggs

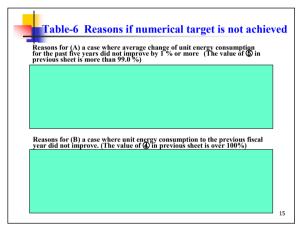

Biogas Coke Wood Vood was

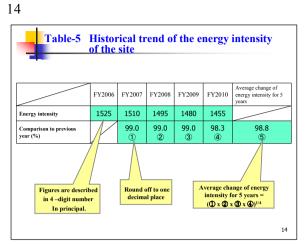

Steam Hot wate

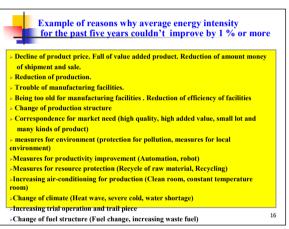

EPS

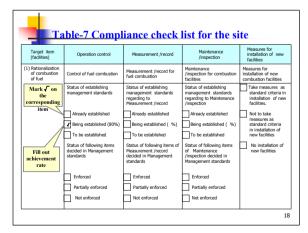
Category of designation (Factory/Buil ding)	Registered Number of Designated Factory/Buil ding/Site	Name of Factory/Building	Address of Factory/Building	Energy Consumption (toe)	3usi lego	ss No.	Name of business category


10





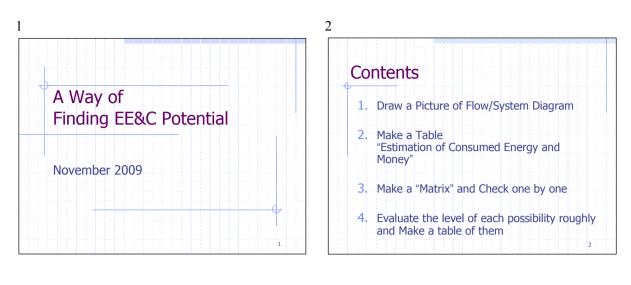


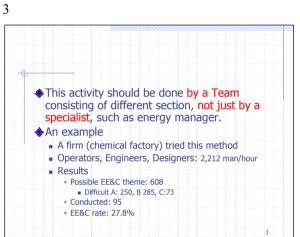


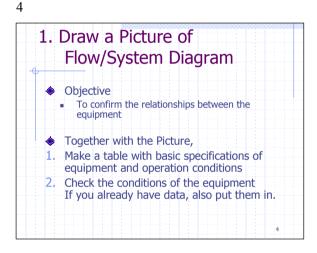
NO	
NO	Contents
1.	Rationalization of combustion of Fuels
2. 2-1	Rationalization of heating and cooling as well as heat transfer.
2-1	 Heating units, etc Air-conditioning equipment and hot water supply system, etc.
3.	Recovery and utilization of waste heat.
4.	Rationalization of conversion of heat into power, etc.
4-1	Exclusive generation system
4-2	Cogeneration system
5.	Prevention of Energy loss due to emission, conduction, resistance, etc
5-1	 Prevention of heat loss due to radiation and conduction, etc
5-2	 Prevention of electricity loss due to resistance, etc
6.	Rationalization of conversion of electricity into power, heat, etc.
6-1	 Electric motor appliances and electric heating appliances, etc
6-2	 Lighting system, elevating machines, office appliances and consume equipment

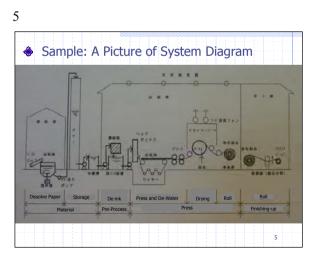
	able-7 Compl	liance check	list for the s	ite (1)
Target item (facilities)	Status of establishing management standards	Status of observing measurement/record	Status of observing maintenance /inspection	Status of measures to betaken on new installation
(1)Rationalization of combustion of fuel Mark √ on the corresponding item	Status of establishing management standards for air ratio and others Already established Being established (80 %) To be established	Status of measurement/record defined in management standards Already established Being established (%) To be established	Status of maintenance/inspection defined in management standards Already established Being established (%) To be established	Status of measures to be taken on new installation of combustion facilities Done Not done Not applicable
Fill out achievement rate				
				1

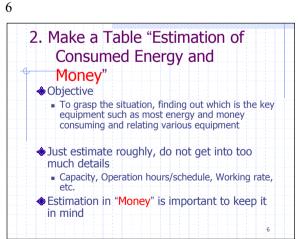
	able-7 Compl	iance check	list for the si	te (2)
Target item (facilities)	Status of establishing management standards	Status of observing measurement/record	Status of observing maintenance /inspection	Status of measures to betaken on new installation
2)Rationalization of heating, cooling and heart transfer (Heat	Status of establishing management standards for heating equipment and others	Status of measurement/record defined in management standards	Status of maintenance/inspection defined in management standards	Status of measures to be taken on new installation of heating equipment and others
consumption facility)	Already established Already established Being established (80%) To be established	Already established Being established (%) To be established	Already established Reing established (%) To be established	Done Not done Not applicable
	Status of establishing management standards for air-conditioning and hot water supply facility	Status of measurement/record defined in management standards	Status of maintenance/inspection defined in management standards	Status of measures to be taken on new installation of air- conditioning and others
	Already established	Already established	Already established Reing established (%) To be established	Done
	To be established	To be established	To be established	Not applicable
				:

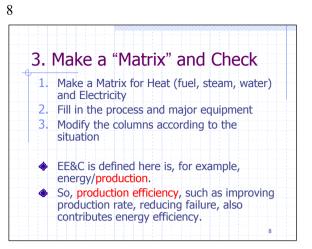


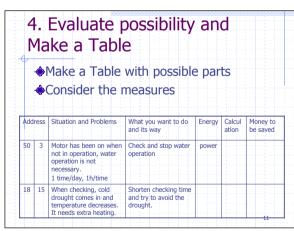

Т	able-7 Compl	iance check	list for the si	ite (3)
Target item (facilities)	Status of establishing management standards	Status of observing measurement/record	Status of observing maintenance /inspection	Status of measures to betaken on new installation
(3) Waste heat recovery (Waste heat recovery facility)	Status of establishing management standards for waste heat recovery facility Akeady established Being established (80 %) To be established	Status of measurement/record defined in management standards Already established Being established (%) To be established	Status of maintenance/inspection defined in management standards Atready established Being established (%) To be established	Status of measures to be taken on new installation of waste heat recovery facility Done Not done Not done Not applicable
				2

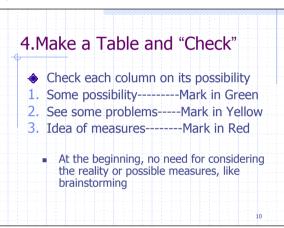

Т	able-7 Comp	liance check	list for the si	ite (4)
Target item (facilities)	Status of establishing management standards	Status of observing measurement/record	Status of observing maintenance /inspection	Status of measures betaken on new installation
(4) Rationalization of converting heat to power and others (Power generation facility and cogeneration facility)	Status of establishing management standards for gas turbine of power generation facility and others Already established Being established (80%) To be established	Status of measurement/record defined in management standards Already established Being established (%) To be established	Status of maintenance/inspection defined in management standards Already established Being established (%) To be established	Status of measures t be taken on new installation of powe generation facility a others Done Not done Not applicable
	Status of establishing management standards for cogeneration facility Already established Being established (80%) To be established	Status of measurement/record defined in magement standards Already established Being established (%) To be established	Status of maintenance/inspection defined in management standards Already established Being established (%) To be established	Status of measures t be taken on new installation of cogeneration facility Done Not done Not applicable

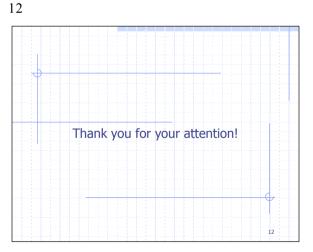

-				
Target item (facilities)	Status of establishing management standards	Status of observing measurement/record	Status of observing maintenance /inspection	Status of measures betaken on new installation
(5) Prevention of energy loss by radiation, conduction, resistance and	Status of establishing management standards for heat loss	Status of measurement/record defined in management standards	Status of maintenance/inspection defined in management standards	Status of measures to be taken on new installation of heat consumption facility
others (Heat consumption facility, power	Already established Being established (80%)	Already established Being established (%)	Already established	Done Not done
receiving & transforming	To be established	To be established	To be established	Not applicable
facility and distribution facility)	Status of establishing management standards for power receiving & transforming facility and distribution facility	Status of measurement/record defined in management standards Already established	Status of maintenance/inspection defined in management standards Already established	Status of measures to be taken on new installation of power receiving & transforming facility and distribution facil
	Already established	Being established (%)	Being established (%)	Done


Та	<u>ble-7 Compli</u>	ance check l	ist for the sit	e (6)
Target item (facilities)	Status of establishing management standards	Status of observing measurement/record	Status of observing maintenance /inspection	Status of measures to betaken on new installation
6) Rationalization of converting electricity to power and heat and others Electricity utilizing acility)	Status of establishing management standards for applied electrolysis facility and others Already established Being established (80 %) To be established	Status of measurement/record defined in management standards Atready established Being established (%) To be established	Status of maintenance/inspection defined in management standards Already established Being established (%) To be established	Status of measures to be taken on new installation of applied electric power facility and other Done Not done Not applicable
	Status of establishing management standards for lighting facility and others Atready established Being established (80%) To be established	Status of measurement/record defined in management standards Already established Being established (%) To be established	Status of maintenance/inspection defined in management standards Already established Being established (%) To be established	Status of measures to be taken on new installation of lighting facility and others Done Not done Not applicable






E-mm	de T	DE E-	Entimati	on of Co	nsumed	France	and Mar		Karocana	60.85D/L	Fuel OI	55 RSD/L	LPG	100 ASD/M		
- Agrini	. I.	Local.	Lo crima ci	011 01 04	meaniea	CLUM BY	arris anon	**	Poss	10.000.54	Industrial Mater	43 850/w3	Drinking Water	100.000/w3		
_	Process		_	_	_		0.	and a fille	when Old Pa			_		_	54	_
	Process		84	arial	Pre P	NAME OF TAXABLE		Making Pape		· ·	19.04	(Common #3	(inset			-
,	ub Proces		Dische Paper		Condensate	De-init.	Press and de-miller	8794	rolling	Vestilation	Boler	Lighting 6 Au Condition in	Compressor			
	ation of e		Capacity 500 fine LipsidT 40 deg Constant 1100 WH pump 500 WH 500 WH 500 WH 500 WH 500 WH	Towar 192 e3 Cicular 23:3941 Fump 30:392 Aphatus 55:W Fump 11:0W	sonethine	sonething	Press 200kW Dermater 76kW	Stean top, rolling drum capacity 20kW 20kW	Powered type: 22k/w1	Hood Fan 220.992 Ceiling Fan Trissand	Boller Guð 154/142	He letting accurso Fluorusent acum100 Airconditione 7 75kWP2	Screw type toi0 55k9+3 Celumo ovtlets etc.		RSD/y	x
Fuel	Carocana		18,270													_
		14	108,100										_		18,270	_
	Fuel Oil										112,029					
		Uy							<u> </u>		1,404,000		-		112.320	- 4
	LPG	RED/y		-	-								1,004			
Steam	-	U/y PSD/y		-	-	-	-						6,692		1,004	-
2968		PORTY N'Y														
Water	Maria		11,700	-	-	1.904	9,000				-		271			
-	Policitor	will/y	18,500	-	-	23.060	150.000	-		-			4.520		22.955	
	Driving		18,000		-	64,000	100,000	-	<u> </u>	<u> </u>			1,001		44,807	_
	Louis a	+0/v			-								1 150		1.001	
Power	2200V	PSD/y	2.645		-					-	-				1.0001	2
	10000	100-5	243,000												3.645	
	400V	R50/4	1.107	900	0.505		17.861	2.264	1.455	4.277			9,750		-	_
		138.5	72,800	60,000	547,000		1 190,700	151,200	97.020	295,100			650,000		46.122	- 11
	298V	R60/y	144	640	945	18,900	5.954	162	-	2,916	1,000	8,796	135		-	_
		118.5	9,600	43,290	63,000	1,262,000	296,900	10,000		194,400		253,200	9,000		24,682	15
Others		_								-		-		_		
	un 1937		23,000	1.60	9.450	25,019	76.013	2.49	1.00	1.00	112,499	2.01	12,101			260
		r					- 6413	1.50	1.000				14.101			A HELD



				Process				
		Finding D	irection	Equipme nt A	Equipme nt B			
U N I T	Kind	Change Service	Ex. Change to higher calorie fuel					
		Grade Change	Ex. Change to lower pressure					
	Logistics	Transport Change						
I P U T	Reduce Amount							
	Reduce Loss							

