6 Reference

6.1 Technical Notes of Meeting with ERA

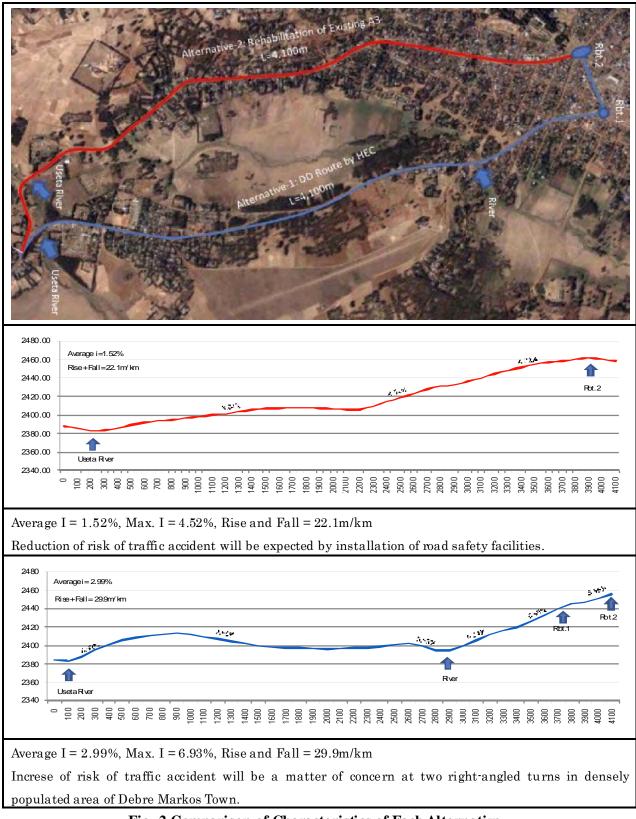
Study for Route Selection in Debre Markos under the Project for Rehabilitation of Trunk Road, Phase IV

1. Background

Detailed design for the study section (L=65km) between Dejen and Debre Markos had already been finished by HEC under ERA. According to the final detailed design report, the number of affected houses along the study section goes up to 159. This number is categorized in category A of the Environment Guideline of World Bank and JICA. In case of category A, it is necessary to consult and get approval of the JICA Advisory Committee on the Social and Environmental Issues. Consequently, this procedure may affect the implementation schedule for the Project causing delay and it is convenient to minimize the number of affected houses by selecting the best suitable route in Debre Markos to realize the planned implementation.

2. Comparison of two Routes

Outline of Alternative Routes in Debre Markos


Alt.1: DD Route by HEC (Blue) At entrance of Debre Markos, it diverts from existing A3 to unpaved town road and rejoins A3 in the city center via two new roundabouts. Length: 4,100m No. of Bridges: 2 Land Use: Residential and Commercial Road Width planned by DD = 21.5m

Alt.2: ExistingA3 (Red) Existing A3 in Debre Markos is paved. Length: 4,100m No. of Bridges: 1 Land Use: Residential and Commercial Road Width: See "4. Impact to Social Environment".

Fig.-1 Outline of Each Alternative

3. Evaluation from engineering point of view

(1) Vertical and Horizontal Alignment

Fig.-2 Comparison of Characteristics of Each Alternative

(2) Disadvantages of Horizontal and Vertical Alignment.

As mentioned earlier, the DD route by HEC passes two new roundabouts located within a congested town area before connecting to the existing A3. However, the elevation difference of A3 and DD route at connecting point at Rbt.2 is approximately 3m. This will result in a steep grade of more than 10% at Rbt.2 and more than 7% at Rbt.1. Consequently, these poor geometric features will constrain heavy trucks that commonly use this route. In addition, unexpected affected houses will likely be increased with the construction of roundabouts.

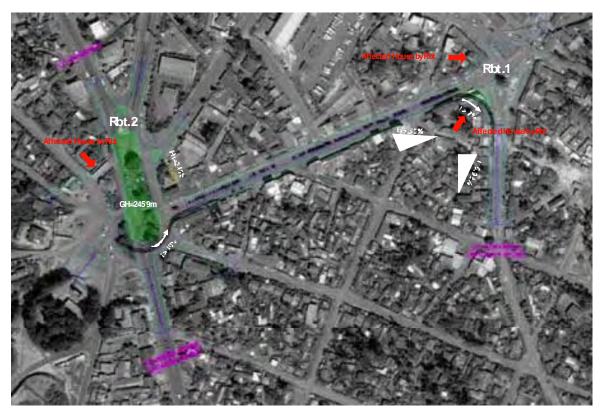


Fig.-3 Issues of Connecting Point to existing A3

(3) Summary of Comparison of the existing A3 (Alt.2) and DD Route by HEC (Alt.1) in Technical Aspect

Table-1 shows that rehabilitation of existing A3 (Alt.2) is more superior than HEC (Alt.1) in all items of technical aspect.

	Alt.2 Existing A3	Alt.1 DD Route by HEC
Alignment		
(1)Length of route	4.1km	4.1km
(2)Gradient (average)	1.52%	2.99%
(3)Gradient (max.)	4.52%	6.93% Over 7% at Rbt.1
Inclination		Over 10% at Rbt.2
(4) Flatness (Rise and Fall)	22.1m/km	29.9m/km
(5)Number roundabout	0	2
(6)Turning	0	2 intersections at a right angle
(7)Radius of curve (min)	200m	30m
Traffic condition & traffic safe	ty	
(8)Disturbance by transit	Less	Heavy
traffic & local traffic		
(9)Traffic jam	Less	Heavy and frequent due to
		(3), (5), (6), (7)& (8)
(10)Vehicle Speed	Good	Slow due to (9)
(11)Traffic safety	Good	Poor due to (8)
(12)Comfort	Good	Poor due to (4) & (9)
(13) Transportation cost	Low	High

Table-1 Comparison of two alternatives in technical aspect

4. Impact to Social Environment

- 1. On-site Investigation of the alignment of ERA/DD
- (1) Date
 - 20th September 2010
- (2) Members
 - ERA; Mr.Gashaw and one highway engineer
 - HEC; Survey engineer
 - Debre Markos Municipal; One engineer
 - JICA Study Team; Dr. Tatsumi, Mr. Takagi, Mr. Mizuno, Mr. Nemoto
- 2. Number of Affected Houses

In case the existing route A3 alignment is used in Debre Markos, the number of affected houses shall be greatly reduced as shown in Table-2 below:

			Road Width	Nur	nber of Affected Houses			
	Section		(m)	Rehabilitation of	DD Route			
			(111)	Existing A3(*1)	The Study Team (*1)	ERA·RAP		
Dejen to entrance of D/Markos (*2)	Sta	.00+185-60+857	10.0-19.0	26	26	75		
		Section-1 Sta.60+857-61+900	15.0					
	1 D/Markos	Section-2 Sta.61+900-64+300	19.0	10				
D/Markos		Section-3 Sta.64+300-65+000	21.5		86	84		
Town		Section-1	15.0		80	04		
	2	Section-2	17.0	6				
		Section-3	19.0					
	Tota	al (Dejen-D/Markos)		32 - 36 (*3)	112	159		

Table-2 Comparison of the Number of Affected Houses

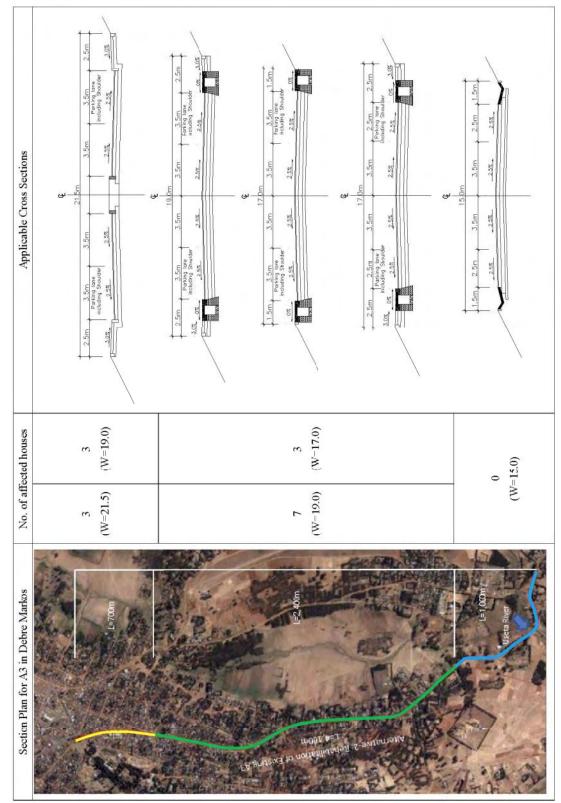
Note) *1: The number of affected houses is based on site survey by the Study Team and/or google map Rental housings should be included in affected houses because of involuntary relocation.

*2: Section between Dejen to entrance of Debre Markos

*3: The number of affected houses will vary (from 32 to 36) depending on the road section plan.

5. Recommendation

The JICA Study Team recommends that the existing A3 route in Debre Markos should be rehabilitated under the Project for Rehabilitation of Trunk Road, Phase IV taking into account the following;


- (1) Environmental aspect
 - ① The number of affected houses of DD Route by HEC (Alt.1) is obviously classified in Category A of the JICA Environmental Guideline.
 - ② The number of affected houses of rehabilitation of existing A3 is less than that of Category A.
 - ③ Effect of heavy vehicles noise and exhaust emissions to residents is reduced in case of rehabilitation of existing A3.

(2) Technical aspect

- ① The rehabilitation plan of existing A3 (Alt.2) is superior to DD Route by HEC (Alt.1) in all items of technical aspect.
- ② Transit traffic and local traffic should be separated as much as possible, so it is common practice that the international trunk road should be planned to avoid to passing through the center of populous city.

(3) Recommendation

In the context of above two aspects, the rehabilitation of existing A3 in Debre Markos should be recommended.

(3) Number of Affected Houses in case of Rehabilitation of existing route A3

Fig.-4 Section and Cross Section Plan

	-
G+2 G+3 G+4 H Mud Tkul Block G+1 G+3 G+4 C 1 1 8 12-15 1 1 1 19.0 0 1 1 1 24 12-15 1 1 1 19.0 0 1 1 2 1 1-15 1 1 1 10.0 0 1 <th></th>	
1 8 12.15 1 1 19,0 19,0 0 1 9 13.15 1 1 1 12,0 0 1 9 13.15 1 1 1 12,0 10,0 0 1 9 13.14 1 1 1 1 19,0 0 1 9 13.14 1 1 1 1 10,0 10 1 9 11.15 1 1 1 1 1 1 1 1	Mud Thul Block G+1
1 0 13-15 1 1 12.0	8
1 24 12-15 1 1 1 190 0 1 9 13-14 1 <t< td=""><td>6</td></t<>	6
1 1 9 13-14 1 1 190 190 5 1 1 1 15 1 15 1 100 100 0 1 1 15 1 15 1 10 100 100 0 1 1 15 1 1 1 15 100 14 1 1 1 1 1 1 1 10 14 1 1 1 1 1 1 1 1 1 1 1 1 1	24
1 3 11-15 1 1 10 100 100 0 1 15 1 15 1 15 1 12.0 100 1 1 15 1 15 1 1 12.0 14 1 1 1 1 1 1 1 1 14 1 1 1 1 1 1 1 1 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>6</td>	6
1 1 15 1 15 1 12,0 12,0 14 1 ND ND ND ND 1 12,0 14 1 ND ND ND 1 1 19,0 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>3</td>	3
	1
	ND
$ \begin{array}{ $	11
	6
$ \left[\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Subtotal (From Dejen to D/Markos entrance)
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	31 6 2
Tetal by JICA's proposal 112 9-15 10-15 15.0 0 9-16 10-15 19.0 7 9-10 9-10 21.5 3 9-10 19.0 3 32-36*	(DD Route) 28 2 2
9-15 10-15 19.0 7 9-15 10-15 19.0 7 9-10 9-10 21.5 3 9-10 19.0 3 3	
9.15 10-15 10-10 7 9.10 17.0 3 9.10 17.0 3 9.10 19.0 3	
9-10 17.0 3 9-10 21.5 3 73-36* 32-36*	2 5
9-10 21.5 3 19.0 3 32-36*	
3 32-36*	3
32-36* 6	
	Total in case of using existing road in D/Markos (Dejen-D/Markos)

Annex-1: Detailed Number of Affected Houses (Whole Section)

Note: *1 No data on ERA · RAP.

*2 Realignment sections in Yeda
*3 Short cut for realignment
*4 Satellite photograph besides field survey is used.
*5 4m-strips outside the road width are assumed affected during construction stage.
*6 Depend on road width in the D/Markos city, the number of a ffected houses varies from 32 to 36.

8

Ref. No.ERA/ADM/101022/PO

 $\mathcal{A}_{22} \mathcal{A}_{10} \mathcal{D}_{10} \mathcal{D}_{10}^{\text{Date: 22 October 2010}}$

Ms Hiwot Mossisa Central Region Directorate, Acting Director Ethiopian Roads Authority (ERA) Addis Ababa

Dear Madam,

RE: ROAD/STRUCTURE DESIGN CONDITION, ROAD ALIGNMENT, CROSS SECTIONS AND COUNTERMEASURE FOR BLACK COTTON SOILS ON THE PROJECT FOR REHABILITATION OF TRUNK ROAD, PHASE IV

We would like to draw your attention to the aforementioned project and previous meetings we have held, the latest one being on 19^{th} of October, 2010 in your office at Alemgena on the subject matter referenced above.

In a series of previous meetings which consisted of discussion on the matter of road realignment in Debre Markos town, we have explained to your institution the inappropriateness of the realignment proposed by the HEC in their detail design. To support our argument/proposal in favor of taking the existing route A3 alignment, we have submitted in the meeting a document titled "Study for Route Selection in Debre Markos under the Project for Rehabilitation of Trunk Road, Phase IV" dated 28th September 2010. It has since been agreed that we proceed with our study and design following the existing route A3 in Debre Markos town.

Regarding the latest meeting held with yourselves on 19th October 2010 regarding applicable design standard, typical cross sections of road, countermeasure for expansive soil (black cotton soil) and bridge planning (bridges and culverts) including cross sections, we discussed matters based on the guiding document distributed in the meeting titled "Discussion for the Design Conditions and Concepts". In the course of the meeting most matters in the above documents were agreed upon except few that were left pending for further reconsideration or after the conclusion of topographic survey. Of the pending matters, we would like to mention them one by one and state our envisaged action plan

Pending Item	Planned action
1. Min. gradient (from 0.5% to 0.3%	The team will prepare an explanation covering such matters as drainage, cross gradient, pavement design for skid resistance in wet conditions etc, and explain to ERA
2. Km 58~58.7 alignment to follow existing A3 route	The Team to complete topographic survey to assess and confirm elements such as number of PAPs and alignment geometry before settling for the proposed alignment.
3. Km 61.3~62.4 Road width	The Team to re-check the possibility of increasing the shoulder width from 2.5m to 3.5m depending on the availability of free space without increase in number of affected houses and PAPs
4. Km 64.2~65.4 Median width	Median size of 0.5m is acceptable in principle but the team will reconsider widening the median according to the results of topographic survey and if the number of affected houses and PAPs does not increase.
5. Black Cotton Soil treatment	The Team will revise the plan for countermeasure including but not limited to; benching into existing pavement for proper interlocking between exiting pavement layers and widened section and to minimize/eliminate differential settlement, increasing the replacement depth, installing sub- drains, etc.

13 page1.

The Project for Rehabilitation of Trunk Road, Phase IV (Dejen – Debre Markos Section) The Consortium of Oriental Consultants Co., Ltd. and Eight-Japan Engineering Consultants Inc.

ORICONSUL

Regarding plan for detour during bridge or road construction, the Team will consider case by case depending on season of construction and site condition, where to apply soil embankment detour, temporary culvert and embankment detour, Bailey bridge detour, graded and gravel-leveled detour road, etc, in the project construction plan. However, the final plan will be subject to modifications arising from e.g. the Contractor's proposal and so on.

This is for your kind information, update concerning pending design issues for your action and/or the Team's action where applicable.

Attached hereto please find documents with the following titles:

- Study for Route Selection in Debre Markos under the Project for Rehabilitation of Trunk Road, Phase IV
- 2) Discussion for the Design Conditions and Concepts

ONSULTAN Yours sincerely, The Project for Rehabilitation o Trunk Road,

Masaaki TATSUMI Dr. Eng Oriental Consultants Company Limited JICA Study Team, Chief Consultant

Cc: Mr. Abdo Mohammed, DDG Engineering & Regulatory Department, Ethiopian Roads Authority.

Agenda for the meeting

for the Preparatory Survey on the Project for Rehabilitation of Trunk Road, Phase IV

in the Federal Democratic Republic of Ethiopia

Venue: ERA Central Regional Directorate Office, Alemgena

Time: 2010/10/19, 14:30 – 16:00

- **Agenda**: The meeting will discuss matters related to the abovementioned project with particular attention to the following items;
- 1. Applicable Design Standard
- 2. Typical Cross Sections of Road
- 3. Countermeasure for the Expansive soil (Black Cotton soil)
- 4. Bridge Planning (Bridges and culverts) including cross sections

Meeting Material Content

- (1) Table of Geometric Design Conditions
- (2) Figure of Typical Cross Section of Road
- (3) Figure of Countermeasure for the BC soil
- (4) Table of Subgrade Condition in the Project Road
- (5) Table of Concept of Structures (Bridges and Culverts)

Discussion for the Design Conditions and Concepts

- 1. Applicable Design Standard
- (1) Design Standards

The application of proper design standards will ensure road safety, high standard service level and comfort for road users through the provision of adequate sight distance and roadway space.

The design and construction standards for new roads and bridges have been established by ERA in Ethiopia. The following is the composition of ERA's Road Design Manual:

- Geometric Design Manual
- Drainage Design Manual
- Pavement Design Manual Vol.1: Flexible Pavements and Gravel Roads
- Pavement Design Manual Vol.2: Rigid Pavements
- Pavement Rehabilitation and Asphalt Overlay Manual
- Bridge Design Manual
- Site Investigation Manual
- Standard Detail Drawings
- Standard Technical Specifications

The latest version of the manual was published in 2002.

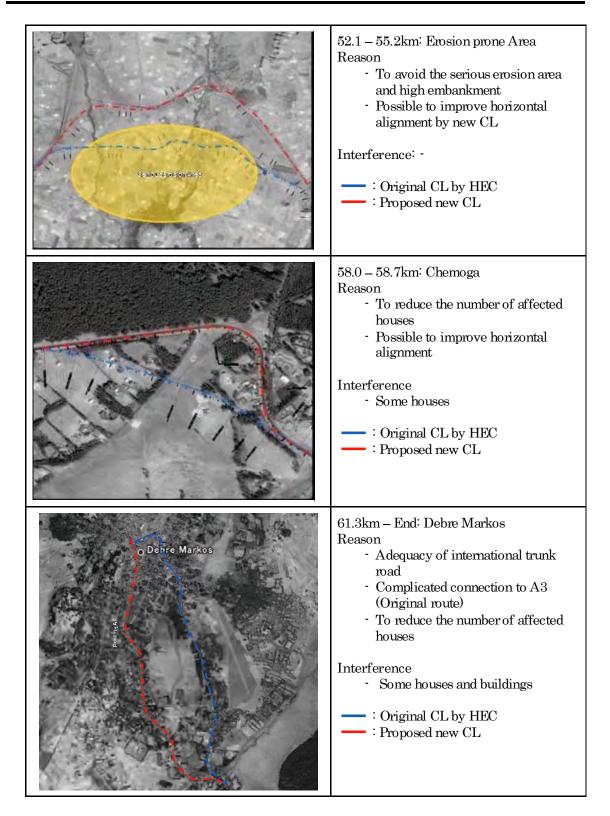
The Road Design Manual is intended for use in the design of all federal roads in Ethiopia. The purpose of the manual is to give guidance and recommendations to the engineers responsible for the design of federal roads.

(2) Geometric Design Parameters

Geometric design standard was prepared as part of the Road Design Manual in Ethiopia. This design standard will be basically followed for this study as well as HEC's design. In case essential parameters are not expressly stipulated in design standard, the Study Team will refer to other design standards and manuals (such as SATCC and Japanese Road Geometric Standard).

Observations during the field survey indicate that the Road under Study traverses various topographical conditions. Thus, the Study Team finally recommends following geometric standard based on the design standard and HEC's design.

The Preparatory Survey on the Project for Rehabilitation of Trunk Road, Phase IV in the Federal Democratic Republic of Ethiopia


Road Class (DS3: Paved)		-	- "		_		
Desigr. Element	Umt	F.at	Rolling	Mountainous	Escapment	Urbar/Peri-Urb	Remarks
Design Speed	km/h	100	85	70	۵0	50	
Min. Stopping Sight Distance	m	205	155	110	85	55	
Min. Passing Sight Distance	m	375	340	275	225	175	
% Passing Opportunity	%	50	33	25	0	20	
Min. Horizontal Curve Radius	m	395	21/0	175	125	85	
Mm. Length of Curve	m	300	300	300	300	300	Tangent Angle of 5° or less (ERA Standard)
Mill. Lengul Di Culve	m	350	260	190	150	100	Japanese Standard: Design Speed x 6sec.
Transition Curves Required	-	Yes	Yes	No	No	No	
Max Radrus for use of a Transition Curve	m	1450	1050	-	-	-	SATCC: J. 145 x V ²
Spral Length	m	R=400:L=123, R=500:L=98, R=600:L=82, R=700:L=70, R=800:L=62, R=1,000:L=45, R=1,100:L=45, R=1,200:L=41, R=1,300:L=38, R=1,400:L=35	R=300 L=100, R=400 L=75, R=500 L=60, R=600 L=50, R=700 L=43, R=800 L=38, R=900 L=24, R=1,300 L=30		-	-	SATCC: 0.0702V ³ / (RC) C. Late of increase in centripetal acceleration (m/s3); 1 <c<3 (1438="" is="" recommended.)<="" td=""></c<3>
Max. Gradient (desirable)	%	3.0	4.0	ć.C	5.0	б.О	
Max. Gradient (absolute)	%	5.0	б. U	8.L	8.U	8.0	
Min. Cradient (desirable)	%	0.5	0.5	0.5	0.5	0.5	
Min. Cradient (absolute)	%	0.3	J.3	0.3	0.3	0.3	Japanese Standard: Design Speed x 6sec.
Crest Vertical Curve (k-value)	k	105	60	31	18	12	
Sag Vertical Curve (k-value)	k	51	36	25	18	12	
Max Superelevation (e)	%	8 0	8.0	8.C	8.0	4.0	
Normal Crossfal	%	2.5	2.5	2.5	2.5	2.5	
Shoulder Crossfall	%	4.0	4.0	4.C	4.0	4.0	
Right of Way	m	CO:	COI	COI	COI	COI	Corridor of Impact (Construction Limit)

Major changes and additions are as follows:

- Min. Length of Curve: Regardless of design speed, ERA's standard stipulates length of 300m. However, it is difficult to secure the curve length of 300m in hilly, mountainous and densely populated areas. It is for this reason that the Study Team will recommend the use of Japanese Standard that considers the curve length depending on the design speed.
- Max. Radius for use of a Transition Curve: not stipulated (Use of SATTC)
- Spiral Length: not stipulated (Use of SATTC)
- Min Gradient: ERA's standard stipulates minimum gradient of 0.5%. However, securing of min. 0.5% in flat area such as Yeda would mean a substantial increase in construction cost with the commensurate increase in affected area. Thus min. gradient of 0.3% on Japanese standard will be used in absolute necessity.

(3) Major Alignment Change

- (4) Pavement Design
 - ✓ Pavement Design Condition: It is based on the HEC's design
 - ✓ Design Life: 15years
 - ✓ Sub-grade Strength Class: S2 (0km 53km), S3 (53km 65km)
 - ✓ Vehicle Equivalent Factor (VEF): see table below:

Vehicle Category	Base year Traffic	$\mathrm{T_{c}}$	EF	CESA
Large Bus	72	675853.48	2.29	1547704.47
Medium Truck	45	403331.17	2.76	1113194.03
Heavy Truck	36	322664.93	7.25	2339320.78
Truck and Trailer	46	412294.08	12.26	5054725.42
			Total	10,054,944.70
Applying lane di	stribution factor of	f 90% for s	ingle lane	9,049,450.23
i.e9*10054944.7				(Class T6)

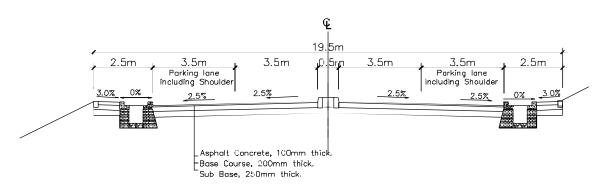
Based on ERA's manuals, for traffic classes of T6, the required pavement layers with asphalt concrete surfacing, crushed granular road base and granular sub-base for the design periods of 15 years are as shown in the table below.

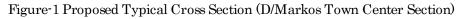
Station	Sub-grade class			ayers (mm) for raffic class T6		
	class	AC	Base course	Sub-base	G.C	
0km-53km	S2	100 200 225 200				
53km-65km	S3	100 200 250				

Detail design report by HEC had finally recommended the following pavement layers because uncertainties such as the traffic volume and analysis as well as the sub grade soil testing and evaluation should be considered.

Station	Sub-grade class	Traffic class		Pavement Laye 15 years & traff		
	Class	Class	AC	Base course	Sub-base	G.C
0km-53km	S2	T6	100	200	225	200
53km-65km	S3	T6	100	250	300	-

However, for Japanese ODA policy, minimum requirement based on technical theory is acceptable. Thus the Study Team will recommend the following pavement layers:


Station	Sub-grade class	Traffic class	Pavement Layers (mm) for 15 years & traffic class T6					
			AC Base course Sub-base G.C					
0km-53km	S2	T6	100	200	250*	200		
53km-65km	S3	T6	100	200	250	-		


*225mm of sub-base required by the manual will be changed to 250mm in consideration of easy construction and supervision.

- 2. Typical Cross Sections
 - (1) Recommendable Typical Cross Sections

The Study Team will recommend the following typical cross sections based on the field survey and design review. Main changes are as follows:

- ✓ Reduction of median strip: 2.5m to 0.5m
- ✓ Installation of unpaved protection shoulder: 0.5m

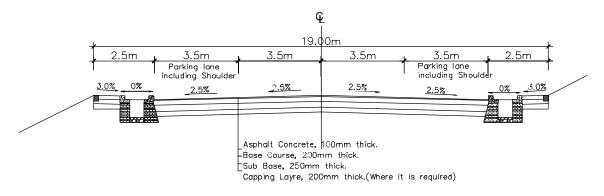
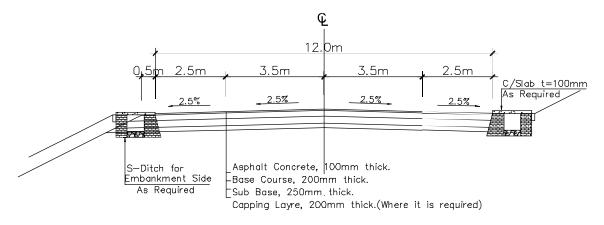
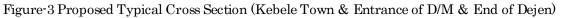
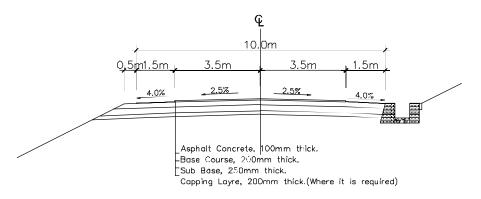
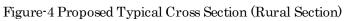
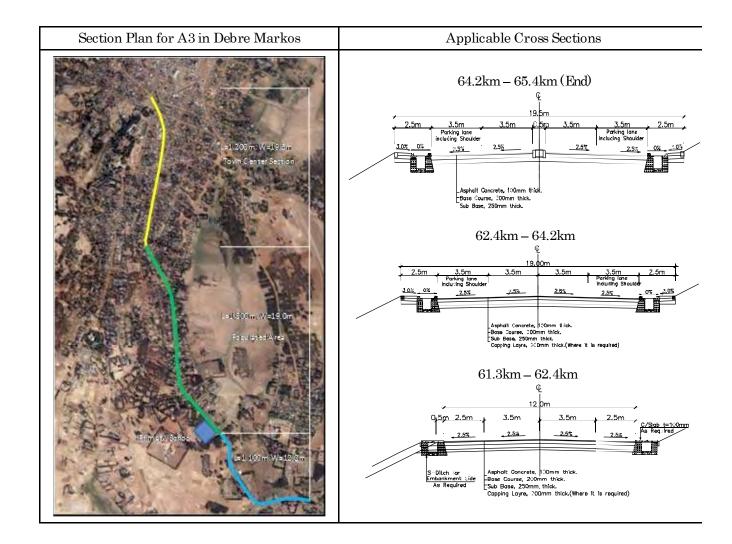
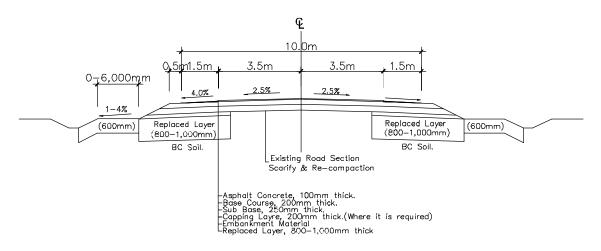
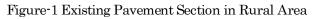






Figure 2 Proposed Typical Cross Section (Wereda Town and Populated Area in D/Markos)






(2) Typical Cross Section in Debre Markos Town

3. Countermeasures for the BC Soil (Expansive Soil):e.g. Rural Area

Black cotton soils are problematic for Civil Engineers, because of their unconventional behavior. These soils show large volumetric changes with respect to seasonal variation of moisture content. These soils when subjected to vehicular traffic, road pavement heaves and cracks due to cycles of swelling and shrinkage. The Study Team will recommend the following measures based on the field survey, soil testing and visits made to similar projects.

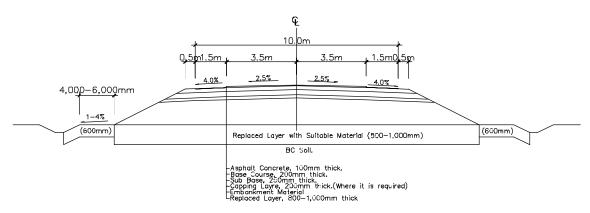


Figure-2 New Road Section (Bypass) in Rural Area

Boring or Pit	Chainage	Location	BCS	Red. / Brn	N value	CBR	Swell %	Ы	NMC	S.L.	Eex
NTP 01	1+500		0.8-2.0		< 10			38			
NTP 02	4+000		0.6-2.6		< 10	2	10.0	51			112
NBH 01	5+060		1.0 - 2.5		8-9			77	39	3.2	
NTP 03	5 + 500		0.5-1.9		< 10			48			
BH 09	8+500	Yetnora	$0.95 \cdot 2.7$		2-6			47			
NTP 05	9+500		0.8-2.8		< 10			46			
BH 10	10 + 500		0.0-2.0		3-10			36	31		
BH 11	11 + 400		0.0-4.0		4-9			25	40		
NTP 06	11 + 500		0.5 - 3.1		< 10			73			
BH 12	12 + 500	Bechet	0.5 - 2.5		1-6			52	46		
NTP 07	13 + 500		0.7 - 2.5		< 10	2	8.0	42			97
NBH 02	14 + 560		0.6-2.0		8			72	39	2.8	
NTP 08	15 + 500		0.8 - 2.5		< 10			62			
NTP 09	16 + 500		0.9-2.6		< 10			73			
NTP 10	17 + 500		0.6 - 2.4		< 10			74			
BH 13	18 + 500	Taba	0.0-3.0		1-4			78	51		
NTP 11	19 + 500	Wejel	0.5 - 2.4		< 10			47			
BH 14	20+000	Aba Adem	0.0-2.1		3-4			52			
NBH 03	20+090	Aba Adem	0.5 - 3.5		9-14			70	44	4,4	
NTP 12	21 + 500		1.1-2.4		< 10			51			
NBH 04	22+040	Abeya	1.0-13.0		2-9			51	46	7.3	
NBH 05	22+080	Abeya	1.0-11.0		4-11			53	44		
NTP 13	23+000		0.6-3.0		< 10	2	8.4	51			128
NTP 14	24+000		1.6 - 2.5		< 10			57			
NTP 15	26 + 500		0.8-3.0		< 10	2	12.4	43	53	9	90
NBH06	26 + 500		0.6 - 2.5		4-5			52	53	6.2	
NTP 16	27 + 500		0.7 - 2.7		< 10			71			
NTP 17	29+000		0.5-3.0		< 10			63			
NBH 07	29+300	Bogena	0.6-3.9		10			43	31		
NBH 08	29+390	Bogena	1.0-3.9		5-6			70	61		
NPT 18	30+000	Ŭ	1.1-3.0		< 10			59			

Subgrade condition between Dejen and Lumame

Note; BCS: Black cotton soil, Eex: Expansiveness

Boring or Pit	Chainage	Location	BCS	Red. / Brn	N value	CBR	Swell %	PI	NMC	S.L.	Eex
NTP 19	32+000		-	Red		9	1	43	35	14	81
NTP 20	34 + 500		-	Bm				46			
NBH 09	35 + 670	Getla									
NTP 21	36+000		0.0-1.3		< 10			50			
NTP 22	37+500		0.0-1.4		< 10			54			
NTP 23	38 + 500		0.5 - 2.7		< 10			32			
NTP 24	40+500		-	Red				28			
NTP 25	42+500		-	Red		9	1.2	28	31	17	33
NTP 26	43+500		-	Red				25			
NBH 10	44+060		-	Red	> 12			21	35	15	
NTP 27	45+500		-	L/Brn				24			
NTP 28	46+500		-	D/Brn				40			
NBH 11	47+420	Yeda	0.0 - 5.5		4-10			57	35	6.8	
NTP 29	48+000	Yeda	> 4.0		< 10			58			
NBH 12	48+900	Yeda	0.0-10		5-10			40	43	7.8	
NBH 13	49+200	Yeda	0.0-10		1-9			32	49	10.7	
NTP 30	49+500	Yeda	> 4.0		< 10	2	7.9	43	36	14	81
NBH 13-2	50+200	Yeda	0.0-2.4		4-10			54	37	2.5	
NTP 31	50 + 500	Yeda	0.0 - 2.7		< 10			44	46	13	85
NTP 32	51 + 500		-	Red				37			
NTP 33	53+000		-	L/Brn				22			
NBH 15	53+500	Ambesh	-	D/Brn							
NTP 34	55+000		-	Red				38			
NTP 35	56 + 500		-	D/Brn		4	3.8	31	41	14	49
NTP 36	57 + 500		-	Red				39			
NBH 16	57+890	Chemoga	-	L/Brn	2-8			31	45		
NBH 17	58+020	Chemoga	-	L/Brn	> 11			40	35		
NTP 37	59+000		-	Red				36			
NTP 38	60+500		-	Red				23			
BH 19	61+000	Wiseta	-	Red	2			27	44		

Subgrade condition between Lumame and Debre Markos

Note; Red; Reddish silty clay, L/Bm; Light brown silty clay, D/Bm; Dark brown silty clay

4. BRIDGE PLANNING

(1) Use of Existing Bridges

Existing bridges will be used if they meet the criteria for compatibility to the new road alignment, structural soundness, and functional requirements. The Bridge Design manual of ERA requires the minimum carriageway of 7.0 m for 2-lane bridges. If necessary and if feasible, repair works will be conducted to improve the function and to satisfy the requirements.

(2) Bridge Length

Based on the necessary clearance under the superstructure such as waterway function and topography, the bridge length will be decided.

(3) Carriageway

Carriageway will be decided according to the Bridge Design Manual of ERA, in consideration of the continuity with approach roads and expected number of pedestrians. The carriageway width of bridges in rural area is 8.0m, (0.5m+3.5m+3.5m+0.5m). The Aba Adem Bridge which is located in Wejel and the Useta Bridge in Debre Markos are expected to be used by many pedestrians. The carriageway of the Aba Adem Bridge and the Useta Bridge is 10m, (1.5m+3.5m+3.5m+1.5m), and 12m, (2.5m+3.5m+3.5m+2.5m), respectively taking into account the traffic conditions.

- (4) Bridge Type
 - ✓ Type by Material

The Reinforced Concrete Bridge (RC Bridge) is the most suitable bridge type for short spans. Table-1 shows the comparison of bridge types by materials.

Т	ype	Features	Evaluation
Concrete	Reinforced Concrete Bridge	Suitable for short spans No major technical difficulties No difficulty in obtaining necessary materials No difficulty in Quality Control Cost effective Suitable for Technology Transfer	0
Bridge	Prestressed Concrete Bridge	Suitable for longer spans than RC bridges Light weight than RC bridges Advance technology Need of imported materials Difficulty in Quality Control Costly than RC bridges	×
	Steel ridge	Imported materials Difficulty in construction Costly than concrete bridges Difficulty at maintenance stage Easy to repair than concrete bridges	×

✓ Structural Type

Structural Type will be decided by the following criteria.

Structural Type	Span Range
Reinforced Concrete Slab Bridge	$5\sim 10\mathrm{m}$
Reinforced Concrete Girder Bridge	10~20m

✓ RC Box Culvert

When the bridge construction is judged to be difficult or not appropriate due to difficult site conditions, the RC Box Culvert will be planned. The following table compares the bridges and RC box culverts.

Structure	Features
Bridges	Suitable for longer spans Wider clearance under the superstructure Concentration of forces at abutments and piers Need of strong ground layer Need of bearing supports and expansion joints
RC Box Culverts	Smaller clearance than that of bridges No bearing supports and expansion joints No need of abutments and piers Applicable to less strong ground condition No difficulty in adjustment of road surface

(5) Design Method

The bridge design shall meet the Bridge Design Manual of ERA. However, calculation is based on Japanese bridge design methods and check if the result meets the Bridge Design Manual of ERA.

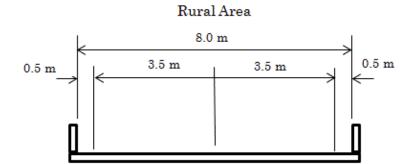
✓ Bridge Planning

a) Existing Bridges

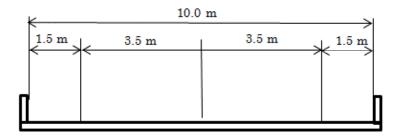
Bridge	Length	Carriageway	Туре	Major Repair
Asamatech	5.0 m	7.0 m	RC Girder	Slab, Parapet
Taba	13+13 m	7.3 m	RC Girder	None
Bogena	13.1 m	7.0 m	RC Girder	Slab, Parapet
Chemoga	67.0 m	7.0 m	Masonry Arch	Slab, Parapet

b) New Bridges

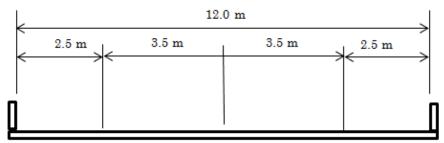
Bridge	Length	Carriageway	Туре	Substructure Type
Bechet	17+17 m	8.0 m	RC Girder	Direct Foundation
Abadem	15 m	10.0 m	RC Girder	Direct Foundation
Abeya	3@ 4.5 m	8.0 m	RC Culvert	—
A3-4-012	2@ 4.5 m	8.0 m	RC Culvert	—
Getla	15+15 m	8.0 m	RC Girder	Direct Foundation


The Preparatory Survey on the Project for Rehabilitation of Trunk Road, Phase IV in the Federal Democratic Republic of Ethiopia

A3-4-017	15 m	8.0 m	RC Girder	Direct Foundation
Zeba	15 m	8.0 m	RC Girder	Direct Foundation
Yeda-A	2@ 4.5 m	8.0 m	RC Culvert	-
Yeda-B	2@ 4.5 m	8.0 m	RC Culvert	—
Yeda-C	5@ 4.5 m	8.0 m	RC Culvert	—
Ambesh	2@ 4.5 m	8.0 m	RC Culvert	—
Useta	10+10 m	12.0 m	RC Girder	Direct Foundation


c) Existing and New Bridges (reference)

D 11		Existing Bridg	ge	New Bridge					
Bridge	Length	Carriageway	Type	Length	Carriageway	Type			
Asamatech	5.0 m	7.0 m	RC Girder						
Bechet	32.0 m	6.0 m	Masonry Arch	17+17 m	8.0 m	RC Girder			
Taba	13+13 m	7.3 m	RC Girder						
Abadem	12.0 m	6.0 m	Masonry Arch	15m	10.0 m	RC Girder			
Abeya	7+7+7 m	6.0 m	RC Girder	3@ 4.5 m	8.0 m	RC Culvert			
Bogena	13.1 m	7.0 m	RC Girder						
A3-4-012	7.8 m	5.5 m	Masonry Arch	2@ 4.5 m	8.0 m	RC Culvert			
Getla	13.1 m	7.0 m	RC Girder	15+15 m	8.0 m	RC Girder			
A3-4-017	7.0 m	6.0 m	Masonry Arch	15 m	8.0 m	RC Girder			
Zeba	11.0 m	5.5 m	RC Girder	15 m	8.0 m	RC Girder			
Yeda-1	4@ 5.0 m	7.0 m	RC Girder	2@ 4.5 m	8.0 m	RC Culvert			
Yeda-2	4@ 5.0 m	7.0 m	RC Girder	2@ 4.5 m	8.0 m	RC Culvert			
Yeda-3	6+6+6 m	7.0 m	RC Girder						
Yeda-4	3.5+4 m	7.0 m	RC Girder	5@ 4.5 m	8.0 m	RC Culvert			
Ambesh	8.0 m	6.0 m	Masonry Arch	2@ 4.5 m	8.0 m	RC Culvert			
Chemoga	67.0 m	7.0 m	Masonry Arch						
Useta	12.3 m	5.0 m	RC Girder	10+10 m	12.0 m	RC Girder			


d) Carriageway Plan (reference)

Aba Adem Br (Wejel)

Useta Br (Debre Markos)

The Project for Rehabilitation of Trunk Road, Phase IV (Dejen – Debre Markos Section) The Consortium of Oriental Consultants Co., Ltd. and Eight-Japan Engineering Consultants Inc.

Ref. No.ERA/ADM/101025/PO

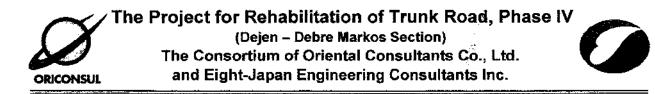
Date: 25 October 2010

Central Region Directorate, Acting Director $\mathcal{H}\mathcal{V}\mathcal{V}\mathcal{V}\mathcal{V}$ Ethiopian Roads Authority (ERA) Addis Ababa

Dear Madam,

RE: PROPOSED COUNTERMEASURE FOR EXPANSIVE (BLACK COTTON) SOILS AND PROPOSED MINIMUM VERTICAL GRADIENT <u>ON</u> THE PROJECT FOR REHABILITATION OF TRUNK ROAD, PHASE IV

We would like to draw your attention to the aforementioned project and previous meetings we have held, the latest one being on 22nd of October, 2010 in your office at Alemgena on the subject matter referenced above. It was also agreed that bridge design will be based on ERA's Bridge Design Manual 2002 except that the design procedure will follow Japanese Standard, then the results will be rechecked whether or not they satisfy ERA Standards.


Regarding countermeasure for expansive (black cotton) soils, our proposal was agreed by your side but only in principle with some comments. Your comments were that the Consultant should incorporate a filter membrane (such as geo-textile sheet) and an impermeable membrane on the outer and inner face of the buried gabion, respectively. The inclusion of such membranes and protection method for gabion bed will be decided at a later stage after confirming matters such as highest ground water table, etc, and determining whether or not buried gabions will be applied. At the moment, the concept is to have the image of the probable features of road cross section in town areas. Moreover, your side recommended that a provision for side drains be indicated on the typical cross sections on the existing road section in high embankment and new road section in rural areas.

In response to your comments, we have duly modified our proposal for typical cross sections to be adopted in cases where black cotton soils are predominant. Please see the attached document titled "Countermeasure for expansive soil on the Trunk Road A3 between Dejen and Debre Markos"

Regarding the issue of minimum vertical gradient, we wish to clarify and reiterate our proposal to adopt the 0.3% min gradient as a deviation from the ERA Standard that states 0.5% min gradient as the usual norm. Your attention is drawn to *page 9.9, section 9.7 Minimum Gradients* of ERA Geometric Design Standard that states: "The minimum gradient for the usual case is 0.5 percent. However, flat and level gradients on uncurbed paved highways are acceptable when the cross slope and carriageway elevation above the surrounding ground is adequate to drain the surface laterally."

It is in the strength and spirit of the above extract from ERA manual that we would like to request for a departure from the ERA's usual-case standard in line with Chapter 2, Section 2.3 page 2-1 of ERA Manual 2002 that stipulates the information required to be submitted to ERA for approval of the requested departure from standard.

For details please refer to the attached document titled "Acceptable Minimum Gradient (Acceptable Geometric Parameter)" Moreover, please see our departure request as summarized in the table below;

Road Name	Facet of Design	Usual Standard	Proposed departure	Reasons for Departure
Trunk Road A3, between Dejen and Debre Markos (Flat lowlands such as Yeda area)	Minimum (longitudinal) Gradient	Min 0.5%	Min 0.3%	 To reduce the volume of earthworks thereby reducing construction cost. To reduce affected area.

Some of the mitigation measures we propose with the use of min 0.3% gradient are;

- i) Use of high-type AC pavement: 10cm (double layer)
- ii) Accurately set cross slope of 2.5% to ease lateral surface draining
- iii) Use of high standard quality control to achieve improved firm sub-grade

We therefore request for your evaluation and approval of our proposals made in this letter for the expeditious progress of the design work.

ONSULTAN Yours sincerely, The Project for Rehabilitation o Trunk Road. TOP

Masaaki TATSUMI Dr. Eng Oriental Consultants Company Limited JICA Study Team, Chief Consultant

Cc: Mr. Abdo Mohammed, Sud as 10 10 DDG Engineering & Regulatory Department, Ethiopian Roads Authority. 1. Acceptable Minimum Gradient (Acceptable Geometric Parameter)

As discussed in the previous meetings held on 19th and 22nd of October, 2010, the JICA Study Team recommended using 0.3% as min. gradient as follows:

- Min. Gradient: ERA's standard stipulates minimum gradient of 0.5%. However, securing of min. 0.5% in flat area such as Yeda would mean a substantial increase in construction cost with the commensurate increment of affected area. Thus min. gradient of 0.3% according to Japanese standard will be used in absolute necessity.

Design Element	Unit	Flat	Rollr.g	Mountainous	Escapment	Urban/Peri-Urt	Remarks
Design Speed	ˈʌm/h	100	85	70	6)	50	
Min. Stopping Sight Distance	m	205	155	:10	85	55	
Min. Fassing Sight Distance	m	375	34J	275	225	175	
% Passing Opportunity	%	50	33	25	C	20	
Min. Horizontal Curve Radius	m	395	270	175	125	85	
Min Length of Curve	m	300	300	300	3C 0	300	Tangent Angle of 5° or less (ERA Standard)
Mar Bengul of Chrve	m	350	260	190	150	100	Japanese Standard, Design Speed x 6sec.
Transition Curves Required	-	Yes	Yes	No	No	Νε	
Max. Redius for use of a Transition Curve	m	145C	1050	-		-	SATCC: 0.145 x V ²
Spiral Length	m	k=4001=123, R=5001=93, R=5001=93, R=5001=93, R=5001=93, R=5001=95, R=10001=94, R=1,1001=94, R=1,2001=93, R=1,2001=93, R=1,4001=35	R=300 L=100. R=400 L=75, R=500 L=40, R=500 L=40, R=700 L=43, R=900 L=43, R=900 L=24, R=1,00° f=30	-	-	-	SATCC: 0 0702V ³ / (RC) C: Rate of increase in centrpetal acceleration (m/s3): 1 <c<3 (1.438="")<="" is="" recommended="" td=""></c<3>
Max. Gradient (desirable)	%	2.0	4.C	ó.C	б. Э	б. Э	
Max. Gradient (absolute)	%	5.0	ó.C	8.C	8. J	8. J	
Min. Gradient (desirable)	%	0.5	0.5	05	0.5	0.5	
Mín. Gradient (absolute)	%	U 3	03	03	0,3	0.3	Japanese Standard, Design Speed x ösec.
Crest Vertical Curve (k-value)	k	105	δί	31	ls	12	
Sag Vertical Curve (k-value)	k	51	36	25	18	12	
Max, Superelevation (e)	%	8 0	3,0	3,6	8.1	4.1	
Normal Crossfall	%	2.5	2.5	2.5	2.5	2.5	
Shculder Crossfall	%	4.0	4.C	4.C	4.J	4. J	
Right of Way	m	CCI	C01	CO1	CCI	COI	Corridor of Impact (Construction Limit)

•Normal Wereda towns and Kebele towns are included in Urban/Pre-Urban.

For this recommendation, the Study Team fills in the gaps as follows.

2. Other Standards Recommendation

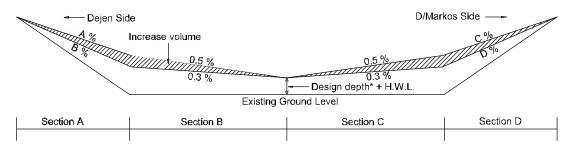
A. SATCC: not stipulated

B. AASHTO: Flat grades can typically be used without any problem on uncurbed highways where the cross slope is adequate to drain the surface water laterally. With curbed highways or streets, longitudinal grade should be provided to facilitate surface drainage. An appropriate minimum grade is typically 0.5 percent, but grades of 0.30 percent may be used where there is a high type pavement accurately sloped and supported on firm sub-grade.

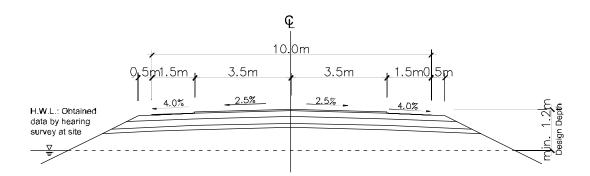
C. Japanese Standard: Flat grades are normally preferable, but long section with flat

grade will create some problem. Surface water on road should be drained by cross fall, but surface water sometimes remains on road surface due to problems such as rainfall intensity, drainage size, etc. It is therefore usual to set vertical gradient at least between 0.3 and 0.5 percent.

3. Reasons of Recommendation of 0.3 %


1) Livestock Corridor

Flat areas applied 0.3% min. gradient are currently being used as grazing land and/or livestock corridor. The study road may balkanize these areas and corridors by high embankment. For this reason, the embankments should be kept in low height as much as possible.


2) Reduction of Embankment Material

As mentioned previously, securing of min. 0.5% gradient in flat areas would mean a substantial increase in construction cost with the embankment material increase as follows:

			c	tatic				-				Gradient	& Length		Total increase	Reniark			
	Station										Sec.A	Sec.B	Sec.C	Sec.D	Volume (m3)	IC31.161 K			
			٥	+	200	-	1	+	200	1,000	2.65%	0.33%		-	7,496,10	Asametech			
				0	<u> </u>	200	-	1	Ľ.	200 1,000		300	700	•	-	7,490,10	Asameteen		
				+	٥	_	12	+	420	1,420	1.60%	0.30%		-	28,843.20	Beket			
				Ŀ	U		15	Ľ	720	1,720	220	1,200	•	-	20,043.20	Deket			
01m+000	١.	30km+510	17	+	80	_	18	+	230	1,150 ••	-	0.30%	J.36%	_	£,414.43	Taba			
	.,		00	-	10		200	1,150	-	575	575	-	c, m. 15	12.04					
						21	+	280	_	23	+	+ 220 1,940	1.940	-	-	1.30%	2.02%	40,323.18	Abeya
			51	Ŀ		-	-	1,220	72J	40,020.10	110094								
			25	+	580	-	- 26 + 920 1,34C	4.54%	0.40%	J. 30%	3.75%	2,922.05	Ycgodena						
					500		20	<u> </u>	220		310	405	390	235		regutena			
Su	ıb To	tal								6,850					85,993				
			30	+	873	_	31	+	810	9 40	5.45%	U.36%	-	-	5,449.02	Rumame			
			10	Ŀ	073	-	- 1	Ŀ	010	u 74U	222	718	•	-	2,772.02	Behind of H.S.			
30km+540	١.	65km+430	38	+	820	-	40	+	270	1,450	4.87%	0.35%	-	-	3,797.41	Godelma			
JUMI 540		0.51411.450	50		020		-0		270	1,450	1,025	425		-	_,///	OULIMIA			
			47	+	400	_	49	+	260	1,860	2.95%	0.30%	-		42,243.60	Yeda			
			77	Ľ	-100	-	47	Ľ	200	1,000	560	1,300	•	-		i cua			
Su	ıb To	tal								4,250					51,487				
	Tota														137,480				

*Design depth: The design depth is defined as the depth from finished road level to the depth that load bearing strength of the soil no longer has an effect on the pavement's performance in relation to traffic loading. Following figure shows the design depth in relation to the main structural components of pavement and earthworks and it gives the design depth.

Flood and/or Flat Areas

Table: Standard for the Design Depth (i.e. Tanzania, S.A., Japan)

Т	'anzania Standar	d	S.A. St	Imanasa			
Road Type	Design Depth (m)		Design Depth (m)		Road Class	Design	Japanese Standard
noau Type	General	Heavy Load	noau Class	depth	Standard		
Deve 1/Devel	0.8	1.2	А	1.0 - 1.2	10 6		
Paved Trunk	0.8	1.2	В	0.8 - 1.0	1.0m from		
Others	0.6	1.0	С	0.8	bottom of sub-base		
Ouleis	0.0	1.0	D	0.7	subbase		

4. Conclusion

From the results of study mentioned above, the Study Team recommend using gradient of 0.3% as minimum gradient under the following conditions based on AASHTO.

- To use asphalt concrete pavement 10cm
- To set accurate slope (Cross slope)
- To support on firm sub-grade (well-compacted improved sub-grade)

Countermeasure for expansive soil on the Trunk Road A3 between Dejen and Debre Markos

1. Principle (ERA Site Investigation Manual 2002)

Mitigation measures for expansive soils are mentioned as follows in the Manual

- (a) Realignment; this solution is possible only if the areas covered with expansive clays are of limited extent.
- (b) Excavation and replacement; this simple procedure effectively eliminates the problems and is therefore recommended as much as possible. The investigations should focus on minimizing haulage of the materials, and this method will be economically viable only if suitable backfill material is available in the vicinity of the project road.
- (c) Treatment with lime; treatment of expansive soils with hydrated lime can give good results. The addition of 4 to 6% of lime is usually required. This treatment is, however, costly, in particular because it is necessary to treat a substantial thickness of soil (minimum 30cm compacted thickness). Lime treatment would therefore be considered advantageous only where investigations failed to locate suitable backfill material.
- (d) Minimizing Moisture Changes and Consequent Movements; if the above methods cannot be utilized, because of excessive costs or the absence of suitable backfill or replacement material, expansive clays may be used for fill and sub-grade. Special Practices are then necessary to avoid ingress of moisture into the road pavement that results in detrimental volume changes in the swelling soils. (Confining expansive clays under protective blankets, etc)

As the manual states, in case suitable backfill material is available, replacement procedure is applied as countermeasure for expansive soils. Since suitable backfill material is available in the vicinity of the project road, replacement method is preferable. 2. Thickness of soil replacement

Table-1 shows required replacement thickness stipulated in some countries' manual, recommended in some studies and adopted in some projects. ERA manual, Kenyan and SATCC manual mention maximum 1m as replacement thickness. Some U.S. state department procedure recommends 1.5m replacement thickness, and also 0.5 - 1.5m thickness was applied in Addis Ababa – Jima road. In the context of these manuals and experience, maximum replacement thickness is considered to be 1.5m.

Table-1: The provisions of manuals, performances and recommendations for replacement thickness for expansive soils

No	Name of manual	Description of the provision
1	ERA manual	It is usually considered sufficient to excavate the expansive soil to a depth of about 1m (even if some expansive soil remains under the backfill material, it will be confined and protected from moisture changes.) Such backfill material should exhibit strength (CBR) characteristics similar to those of the overlying embankment materials (preferably at least CBR on the order of 5, i.e. sub-grade strength class S3)
2	Zimbabwean	Remove 700mm
	Practice	
3	Tanzanian practice	Remove 600mm
4	Kenyan manual	Recommends 1000mm
5	Indian case studies	Recommend removal of 1000mm
6	SATCC	Recommends 1000mm removal
7	Some U.S. state department procedure	Recommends removal up to 1500mm
8	CPC study in Ethiopia	Recommends 900 to 1200mm
9	Addis Ababa- Tarmaber project	Removed 800mm
10	Addis Ababa –	•Removed 500 – 1500mm
	Jima	•Vertical barrier of LDPE sheeting (depth 2000mm)

3. Fluctuation area of water contents in expansive soil

The depth of moisture fluctuation is reported to be in the order of 2m to 3m, the Figure 1 shows the model of moisture fluctuation mechanism. Cracks develop from ground surface to maximum depth of about 1.5m according to some investigation. Moisture contents vary from ground surface to depth 3m as in Figure 1. Moisture content of ground surface increases with depth until about 3m during dry season, while it decreases during rainy season on the contrary. Moisture content below about a 3m depth is reported to be stable, and therefore does not fluctuate.

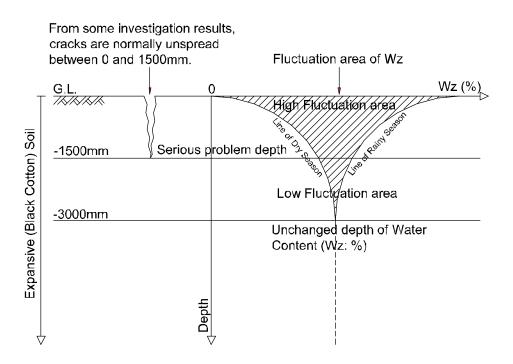


Figure 1: Extent of the Impact by BC Soil

4. Geological condition of project road

Geological conditions from Dejen to Lumame (30.5km) and from Lumame to Debre Markos (35km) are described in accordance with the results of test pits and borehole investigation in Tabel-2 and Table-3.

Expansive soil (BCS; Black cotton soil) is observed along the entire alignment between Dejen and Lumame. Most depths of BCS fall in the range 2 – 3m however, some depths reach about 10m in Abeya river area where it is flooded sometimes during rainy season.

BCS is observed in some sections between Lumame and Debre Markos, and also depths of BCS in Yeda river area reach about 10m. Reddish and brown silty clay are observed over more than half of the section of 35km

Boring or Pit	Chainage	Location	BCS	Red. / Brn	N value	CBR	Swell %	PI	NMC	S.L.	Eex
NTP 01	1+500		0.8-2.0		< 10			38			
NTP 02	4+000		0.6-2.6		< 10	2	10.0	51			112
NBH 01	5+060		1.0 - 2.5		8-9			77	39	3.2	
NTP 03	5+500		0.5 - 1.9		< 10			48			
BH 09	8+500	Yitnora	0.95 - 2.7		2-6			47			
NTP 05	9+500		0.8-2.8		< 10			46			
BH 10	10 + 500		0.0-2.0		3-10			36	31		
BH 11	11 + 400		0.0-4.0		4-9			25	40		
NTP 06	11 + 500		0.5 - 3.1		< 10			73			
BH 12	12 + 500	Bechet	0.5 - 2.5		1-6			52	46		
NTP 07	13 + 500		0.7 - 2.5		< 10	2	8.0	42			97
NBH 02	14 + 560		0.6-2.0		8			72	39	2.8	
NTP 08	15 + 500		0.8 - 2.5		< 10			62			
NTP 09	16 + 500		0.9-2.6		< 10			73			
NTP 10	17 + 500		0.6-2.4		< 10			74			
BH 13	18 + 500	Taba	0.0-3.0		1-4			78	51		
NTP 11	19 + 500	Wejel	0.5 - 2.4		< 10			47			
BH 14	20+000	Aba Adem	0.0-2.1		3-4			52			
NBH 03	20+090	Aba Adem	0.5 - 3.5		9-14			70	44	4,4	
NTP 12	21 + 500		1.1 - 2.4		< 10			51			
NBH 04	22+040	Abeya	1.0-13.0		2-9			51	46	7.3	
NBH 05	22+080	Abeya	1.0-11.0		4-11			53	44		
NTP 13	23+000	ř	0.6-3.0		< 10	2	8.4	51			128
NTP 14	24+000		1.6 - 2.5		< 10			57			
NTP 15	26 + 500		0.8-3.0		< 10	2	12.4	43	53	9	90
NBH06	26 + 500		0.6 - 2.5		4-5			52	53	6.2	
NTP 16	27 + 500		0.7-2.7		< 10			71			
NTP 17	29+000		0.5-3.0		< 10			63			
NBH 07	29+300	Bogena	0.6-3.9		10			43	31		
NBH 08	29+390	Bogena	1.0-3.9		5-6			70	61		
NPT 18	30+000	U	1.1-3.0		< 10			59			

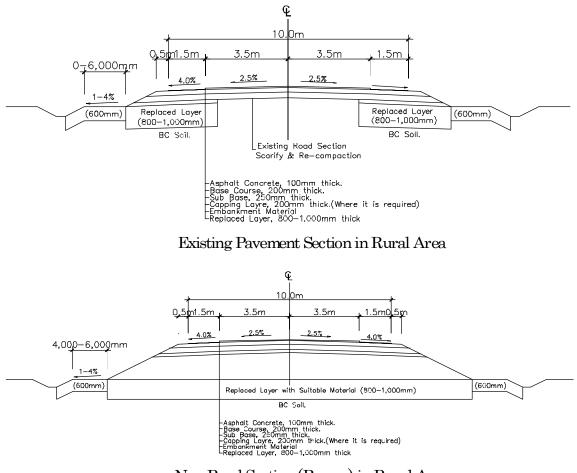
Table-2: Sub-grade condition between Dejen and Lumame

Note; BCS: Black cotton soil, Eex: Expansiveness

Boring or Pit	Chainage	Location	BCS	Red. / Brn	N value	CBR	Swell %	PI	NMC	S.L.	Eex
NTP 19	32+000		-	Red		9	1	43	35	14	81
NTP 20	34 + 500		-	Bm				46			
NBH 09	35 + 670	Getla									
NTP 21	36+000		0.0-1.3		< 10			50			
NTP 22	37+500		0.0-1.4		< 10			54			
NTP 23	38 + 500		0.5 - 2.7		< 10			32			
NTP 24	40+500		-	Red				28			
NTP 25	42 + 500		-	Red		9	1.2	28	31	17	33
NTP 26	43+500		-	Red				25			
NBH 10	44+060		-	Red	> 12			21	35	15	
NTP 27	45 + 500		-	L/Brn				24			
NTP 28	46 + 500		-	D/Brn				40			
NBH 11	47+420	Yeda	0.0 - 5.5		4-10			57	35	6.8	
NTP 29	48+000	Yeda	> 4.0		< 10			58			
NBH 12	48+900	Yeda	0.0-10		5-10			40	43	7.8	
NBH 13	49+200	Yeda	0.0-10		1-9			32	49	10.7	
NTP 30	49 + 500	Yeda	> 4.0		< 10	2	7.9	43	36	14	81
NBH 13-2	50 + 200	Yeda	0.0-2.4		4-10			54	37	2.5	
NTP 31	50 + 500	Yeda	0.0-2.7		< 10			44	46	13	85
NTP 32	51 + 500		-	Red				37			
NTP 33	53+000		-	L/Brn				22			
NBH 15	53 + 500	Ambesh	-	D/Brn							
NTP 34	55+000		-	Red				38			
NTP 35	56 + 500		-	D/Brn		4	3.8	31	41	14	49
NTP 36	57 + 500		-	Red				39			
NBH 16	57 + 890	Chemoga	-	L/Brn	2-8			31	45		
NBH 17	58+020	Chemoga	-	L/Brn	> 11			40	35		
NTP 37	59+000		-	Red				36			
NTP 38	60 + 500		-	Red				23			
BH 19	61+000	Wiseta	-	Red	2			27	44		

Table-3: Sub-grade condition between Lumame and Debre Markos

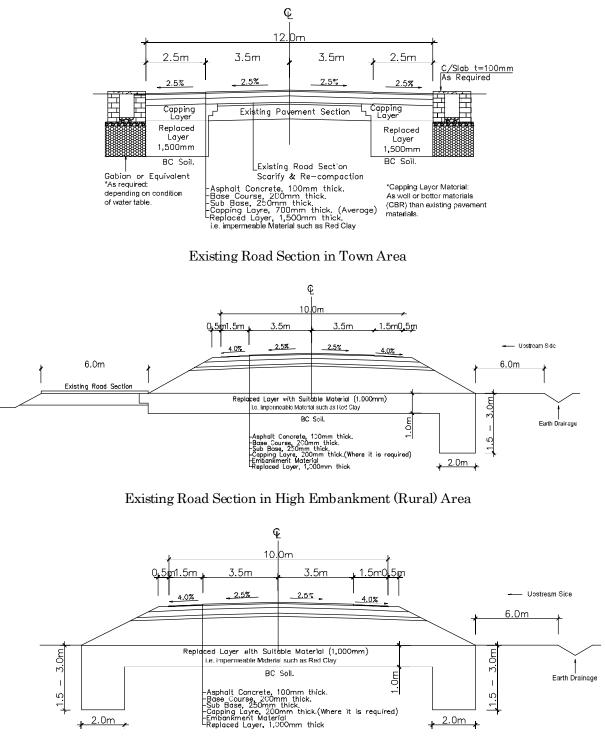
Note; Red; Reddish silty clay, L/Brn; Light brown silty clay, D/Brn; Dark brown silty clay


5. Alternative replacement procedures

Three alternative replacement procedures are presented.

Alternative-1 (Figure-2) is proposed based on standard concept of some manual in which replacement thickness of 1.0m under road embankment and thickness of 0.6m horizontal blanket with width 0.0m 6.0m outside both embankment toes are designed. The replacement backfill with thickness of 0.6m on both sides functions to prevent the change of moisture content through the ground surface.

Alternative-2 (Figure-2^{*}) is the same concept of replacement but with a thickness of 1.5m under road embankment and thickness of 0.6m on both sides of embankment toes.


Alternative-3 (Figure-3) has replacement thickness 1.0m under road embankment and vertical barriers on both sides which function to prevent the change of moisture content and confine it instead of horizontal blanket employed in Alternative-1 and -2. Vertical barrier depth of 3.0m is planned by considering fluctuation area of water content (refer to Figure-1). This vertical barrier depth of 3.0m is planned to be adopted for Abeya and Yeda river area. Depth of vertical barrier will be varied depending on BCS thickness in other locations.

New Road Section (Bypass) in Rural Area

Figure-2: Countermeasure Concepts based on ERA Design Manual *Alternative 2, the replacement thickness is changed from 1.0 to 1.5 in Figure-2.

6

New Road Section (Bypass) in Rural Area

Figure-3 Countermeasure Concepts Proposed by the Study Team

6. Recommendation

Table-4 shows advantages and disadvantages of the three Alternatives. Only Alternative-3 can be applied for countermeasure to expansive soils in Abeya and Yeda river area, therefore Alternative-3 is recommended as the most appropriate procedure on the project road.

		Replacement thickness				Measures to	Side	
No	Section	Unde embank	-	Slope	Application to Abeya & Yeda	gap between existing road and widened	protection to moisture	Recomm endation
		Carriage way	Toe	protection	Teua	part	change	
1	Realignment	1m	1	0.6m (L; ∼6m)	Not suitable		Enough	
T	Rehabilitation of existing road	_	1.0m	0.6m (L; ∼6m)	_	Not enough	Enough	
0	Realignment	1.5r	1.5m		Not suitable	_	Enough	
2	Rehabilitation of existing road		1.5m	By thickness		Enough	Enough	
3	Realignment	1.0m	~ 3.0m	By thickness	Suitable		Enough	Recomm
Э	Rehabilitation of existing road	_	1.5m	By thickness	_	Enough	Enough	endable

Table 4: Comparison of replacement methods and recommendation

Note: The maximum thickness of soil replacement is 1.5m according to many Manuals and experiences.

The Project for Rehabilitation of Trunk Road, Phase IV (Dejen – Debre Markos Section) The Consortium of Oriental Consultants Co., Ltd. and Eight-Japan Engineering Consultants Inc.

Ref. No.ERA/ADM/101126/PO

Date: 26 November 2010

Ms Hiwot Mossisa Central Region Directorate, Acting Director Ethiopian Roads Authority (ERA) Addis Ababa

Dear Madam,

RE: PROPOSED ROAD ALIGNMENT AT CHEMOGA AND CROSS SECTIONS WITHIN DEBRE MARKOS ON THE PROJECT FOR REHABILITATION OF TRUNK ROAD, PHASE IV

We would like to draw your attention to the aforementioned project and previous meetings we have

held in October, 2010 in your office at Alemgena on the subject matter referenced above. We also would like to refer to our previous letter with Ref. No. ERA/ADM/101022/PO dated 22nd October, 2010. In the letter some pending issues were listed in a table form No. 1 to No.5. Issues No. 1 and No. 5 were tackled in our letter with Ref. No. ERA/ADM/101025/PO dated 25th October, 2010.

But issues No. 2, No. 3 and No. 4 were still pending as we were waiting for the conclusion of detail topographic survey. The detail topographic survey was completed on 5th November, 2010 and now we present our study results and proposals based on the acquired topographical survey data.

Our explanation aims at resolving the issues of Road Alignment at Cheruoga (Sta. $58+000 \sim 58+700$) and Applicable cross sections in Debre Markos Town (Sta. $60+800 \sim 65+400$), including road width and median width.

For details please refer to the attached document titled "Discussion for the Design Conditions and Concepts"

We therefore request for your evaluation and approval of our proposals made in this letter for the expeditious progress of the design work.

Yours sincerely,

Masaaki TATSUMI Dr. Eng Oriental Consultants Company Limited JICA Study Team, Chief Consultant

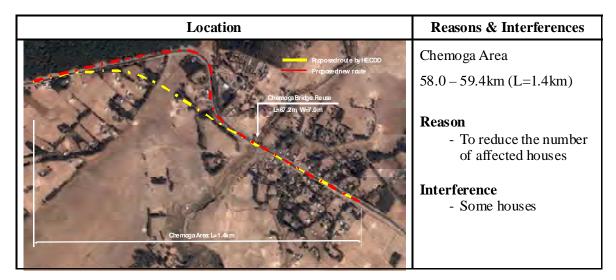
Ce: Mr. Abdo Mohammed, DDG Engineering & Regulatory Department, Ethiopian Roads Authority.

Discussion for the Design Conditions and Concepts

In a series of previous meetings, following matters were left as pending issues.

- Road alignment at Chemoga
- Applicable cross sections in Debre Markos Town

We hereby report results of the study based on the data of the detail topographic survey completed on 5^{th} of November.

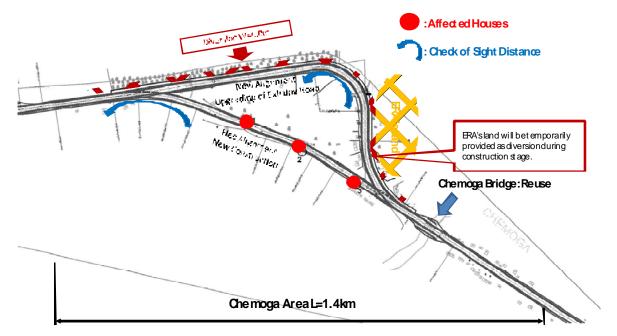

1. Alignment Change at Chemoga

(1) Outline of Alignment Change

Design Condition: Urban/Peri-urban

- ➤ Design speed: 50km/h
- ➤ Min. Radius: 85m
- Transition curve: not required
- Max. Grade: 8.0%
- Min. Stopping Sight Distance: 55m

Table-1


(2) Recommendation

New road construction would mean a commensurate increment of affected area and houses. Although horizontal alignment is improved by new construction road, it makes vertical alignment worse. On the other hand, existing route provided gentler grade in comparison to new road alignment. In addition, stopping sight distance for design speed of 50km/h is also satisfied. Thus upgrading of existing route (proposed new alignment) is recommended as much as possible.

(3) Result of the Study based on Detail Topographic Data

Table-2

		HEC Alignment	New Alignment	
	Min. Radius	270m	100m	
	Max. Grade	8.0%	5.8%	
Geometric	Applicable design speed	50km/h	50km/h	
	Regulatory Speed	30 - 5	0km	
	Calculated Sight Distance	111m > 55m	68m > 55m	
Applical	ole Cross Section	2.5rm 3.5rm 2.62 2.37 2.62 2.37 5-Dich for Enterwinett Sick As Required	2.0m 3.5m 2.5m 2.5m 2.5m As Repured As Repured	
No. of	affected houses	3	0	
Land	Road reserve	New land is required because of new road construction	Width of upgraded road will be within existing road reserve area.	
required	Diversion during construction stage	It is not required because of new construction road.	Diversion with 6m will be provided by use of a part of ERA's land.	

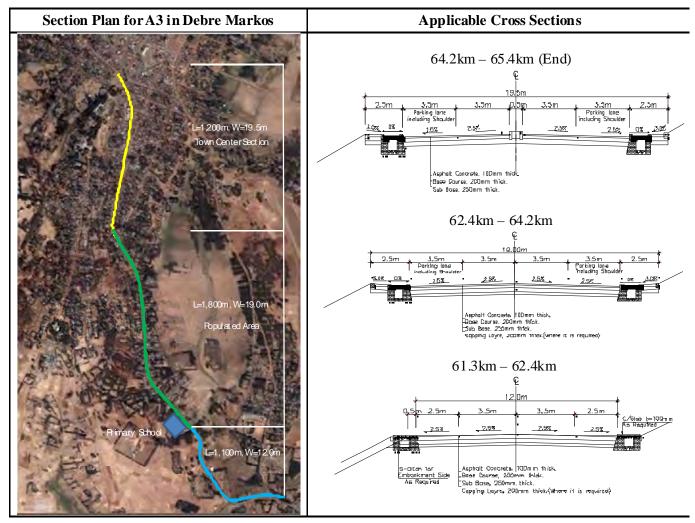


Figure-1 Comparative Illustration at Chemoga

2. Applicable Cross Sections in Debre Markos

(1) Recommended Cross Section on Previous Meeting

Table-3

(2) Result of the Study

In report of previous meeting, beginning point of D/Markos was set at diverging point of A3 and city road proposed by HEC. However beginning point of D/Markos was specified to be at the entrance of small village (see Table-4 in next page) in the meeting. Thus length of D/Markos section is extended from 4.1km (Sta.61.3-65.4) to 4.6km (Sta.60.8-65.4).

Section Plan for A3 in Debre Markos	Number of Affected Houses: W=*						
End of Project: 4.6km	12.0m	19.0m	19.5m	20.0m	21.5m		
• Debre Markos Section 1 City Center L=700m 3.9km	2	3	3	4	5		
Section 2 L=600m 3.3km	0	4	4	4	9		
Section 3 Populated area L=1,500m 1.8km	0	5	6	10	16		
P'School Section4 Low density area L=1,000m 0.8km	0	0	0	0	0		
Use ta Bridge Section 5 Small Village L=800m Beginning of D/M arkos: 0.0km	1	1	1	1	1		

Table-4 Relation of Number of Affected Houses and Road Width

***W:** Total Width of Typical Cross Sections (see Appendix-1)

(3) Recommendation of Applicable Cross Sections

Cross sections in Debre Markos should be proposed in consideration of following three mattes:

- To minimize the adverse social impacts (minimization of number of affected houses)
- To respond to expansion of the city area
- To respond to parking demand

Of issues listed above, considerable expansion area of the city in the immediate future will be up to Wiseta River. For these reasons, following cross sections are

recommended to be applied in Debre Markos (refer Table-5)

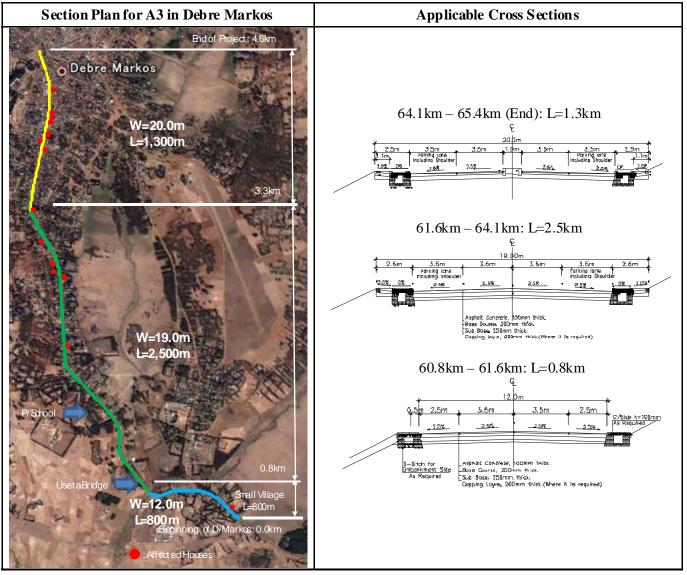
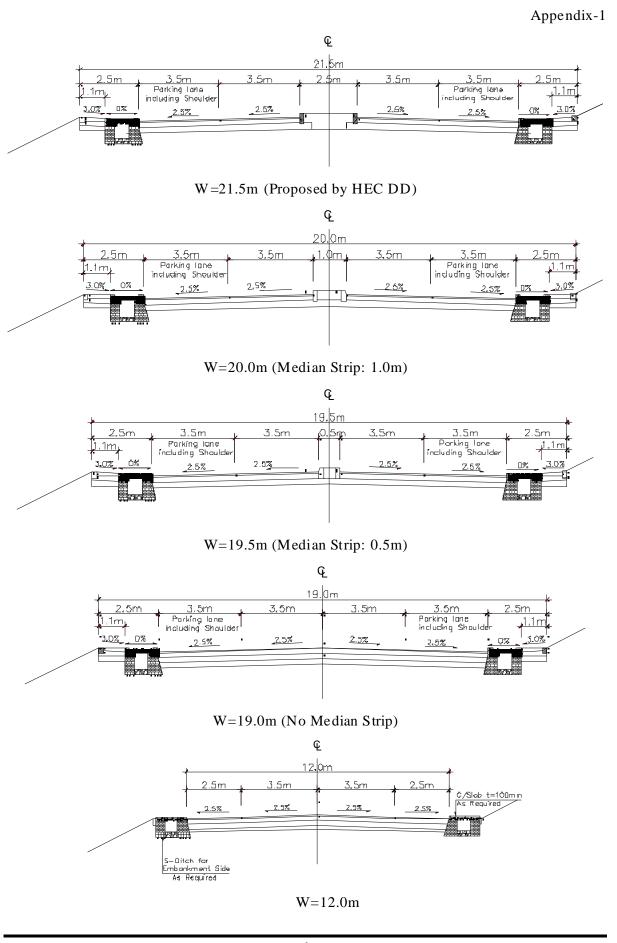



Table-5 Recommendation of cross sections and in Debre Markos

Appendix-2

Section	18	Width	DD Route by HEC	Proposed New Alignment	
			PAHs	PAHs	PAPs
Sta.00+000-00+500	Dejen	12.0m	8	0	0
Sta.06+800-09+100	Yetnora	12.0m	9	0	0
Sta.18+600-20+200	Wejel	19.0m	24	1	5
Sta.28+700-30+400	Lumame	19.0m	9	5^{*1}	0
Sta.30+400-39+300	Unpopulated Area	10.0m	3	2	8
Sta.39+300-39+900	Gudalema	12.0m	1	0	0
Sta.45+720-46+800	Amber	19.0m	ND	16	70
Sta.46+800-52+000	Unpopulated Area	10.0m	1	2	10
Sta.52+000-52+900	Filiklik	12.0m	ND	0	0
Sta.58+000-59+400	Chemoga	12.0m	11	0	0
Sta.59+400-60+900	Unpopulated Area	10.0m	9	0	0
Sta.60+900-61+700		12.0m		1	5
Sta.61+700-64+200	700-64+200 D/Markos		84	5	24
Sta.64+200-65+500		20.0m		8	37
Т	otal	159	40	159	

Table: Number of Affected Houses (Whole Sections)

*1:Kiosk

	/						
PR3P\$ 284449	APRALIT ATAAN	THE FEDERAL DEMOCRATIC REPUBLIC OF ETHIOPIA					
Ph.178.5 0	19787 AAPAM3	ETHIOPIAN ROADS AUTHORITY					
Pth.765 AR64 Am taka 211880 Pash 4ba 251-1	* 84.8 884 8.496 8 * 74597 84.8 889 *75 551.71-78/79 1-5514866	Post Office Box 1770 Addis Ababa Ethiopia Cable Address Highways Addis Ababa Telex 211880 Tel. No. 551-71-70/79 Fax 251-11-5514866 Ref. No. C. M. M.S. 1. 3 - 3					
970		Rel. No. CR MM3/1/3-3.					
14.0 ANT	<u></u>	Addis Ababe 27/12/2000.					
To:	The Consortium of Oriental Eight-Japan Engineering Con Addis Ababa, Ethiopia	Consultants Co., Ltd. and nsultants inc.					
Re:	The Project for Rehabilitation of Trunk Road, Phase IV Dejen – Debre Markos						
Subject:	: Proposed Road Alignment at Chemoga and Cross Sections within Debre - Markos Town						

Dear Sir,

This is in reference to your letter Ref. No. ERA/ADM/101126/PO dated November 26, 2010 through which you have forwarded your recommendation on the proposed road alignment at Chemoga and cross sections within Debre Markos town for our comment and subsequent endorsement.

Having reviewed your proposal, we have found that the proposed alignment at Chemoga is acceptable. However, we have noted the following comments to be incorporated in the proposal for the cross section in Debre Markos town.

- Provision of median strip is essential to minimize traffic accident by separating traffic movement in each direction and providing space at the mid of carriage way for pedestrian crossing the road. Considering the density of population for section 2 (0.8 km to 3.3 km) and the number of affected houses as per your proposal, we suggest to increase the typical section from 19.0m to 19.5m.
- In table 4, it is stated that the affected house with 19.5m width will be 3 and 4 for section 1 and section 2 respectively. Does it take into consideration the width of the side slope?
- For the beginning of Debre Markos town section, 800m, 2.5m parking lane have been recommended. However, if 0.7m clearance is provided for moving vehicles on both sides, total width which can accommodate two vehicles simultaneously will be 6.6m (taking on average 2.6m of vehicle width). Hence, providing 2.5m parking lane shall not be functional and thus we recommend the parking lane to be at least 3m from safety point of view.
- In most cases, there is a problem of proper design of junctions and vehicular crossings at town sections. Hence, please be advised to include detail junctions and vehicular crossings in the town sections.

..../2

In connection with the above, we have learnt from other ERA's projects across the country that the above listed shortfalls had created complaints from the local residents during the construction period. For that reason, we are of the view that it is better to entertain the aforementioned problems at the design stage which would help us to meet the demands of the local residents. Therefore, we would like to advise you to consider the cited comments in your subsequent submission of revised proposal for our endorsement.

Sincerely Yours, Hiwot Mosisa Central Region Directorate

Director

Ref. No.ERA/ADM/110117/PO

Date: 17 January 2011

Ms Hiwot Mossisa Central Region Directorate, Director Ethiopian Roads Authority (ERA) Addis Ababa

Dear Madam,

RE: PROPOSED ROAD ALIGNMENT AT CHEMOGA AND CROSS SECTIONS WITHIN DEBRE MARKOS ON THE PROJECT FOR DEHABLI ITATION OF THEM FOR A DEMAGE IV

THE PROJECT FOR REHABILITATION OF TRUNK ROAD, PHASE IV

This is in reference to your letter with Ref. No. CR/MM3/1/3-3 dated 27th December, 2010 through which you have noted the comments for the cross section in Debre Markos town.

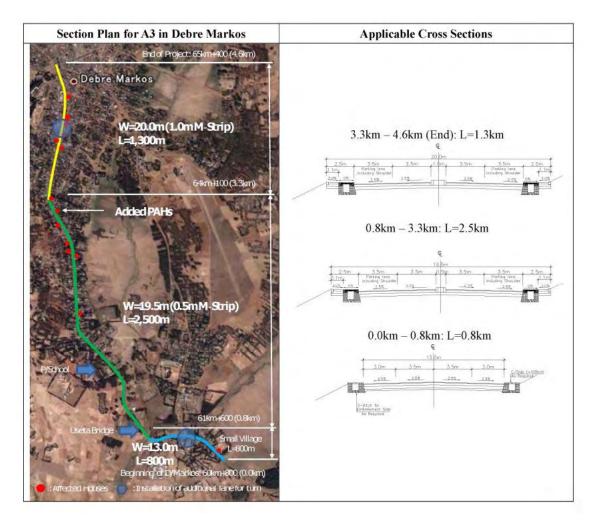
Having studied and discussed your requests and comments with JICA headquarter, we would like to reflect them to the project as follows:

1. Cross section

- Section 1 (3.3 4.6km, 64km+100 65km+400, L=1.3km); W=20m with median strip 1.0m
- Section 2 (0.8 3.3km, 61km+600 64km+100, L=2.5km); W=19.5m with median strip 0.5m
- Section 3 (0.0 0.8km, 60km+800 61km+600, L=0.8km); W=13.0m with parking lane 3.0m Please refer to the attached figure.

 The width of the side slope was taken into consideration for cross section 20.0m of Section 1 and 19.5m of Section 2.

3. A left-turn lane will be incorporated at the intersection 61km+300 & 64km+750 for vehicular crossing at town sections, and the concept plan will be drawn in the report prepared in March.


We would like to request for your approval of our proposals for the project.

Yours sincerely,

Masaaki TATSUMI Dr. Eng Oriental Consultants Company Limited JICA Study Team, Chief Consultant

Ce: Mr. Abdo Mohammed, DDG Engineering Operations Department, Ethiopian Roads Authority.

Appendix ;

Cross section of Debre Markos Town

12.1789 6864 7	RENGER STARN	THE FEDERAL DEMOCRATIC REPUBLIC OF ETHIOPIN
94.776.9 m	1784 JAPAM3 TY	ETHIOPIAN ROADS AUTHORITY
eaus area and	TTE 551-71-78/79	Post Office Box 1770 Addis Ababa Ethiopia Cable Address Highways Addis Ababa Telex 211880 Tel. No. 651-71-70/70 Fax 251-11-5514866
\$70		Ret. No. CR MMB 11 16-3.
IA.8 389		Addis Ababa 2.6 1 2061 -
To:	The Consortium of Oriental Co Eight-Japan Engineering Conso Addis Ababa, Ethiopia	nsultants Co., Ltd. and ultants inc.
Re:	The Project for Rehabilitation of Dejen – Debre Markos	of Trunk Road, Phase IV
Subject:	Approval for the Proposed R within Debre - Markos Town	oad Alignment at Chemoga and Cross Sections

Dear Sir,

We have made a reference to your letter Ref. No. ERA/ADM/110117/PO dated January 17, 2011 whereby you have sought our endorsement for the proposed road alignment at Chemoga and typical cross sections within Debre Markos town that incorporates our comments.

Accordingly, we have reviewed the revised proposal and found it acceptable. Hence, we have no objection for the proposed road alignment at Chemoga and typical cross sections within Debre Markos town.

Sincerely Yours,

L. J. My Hiwot Mosisa Central Region Directorate Director

6.2 Minutes of Meeting about RAP

Ref.No.n3-138/00-16 Date 4/11/2009

From: The Amhara National Regional State Debre Markos City Administration Mayer Office To : Highway Engineering Consultants Addis Ababa

Subject : Road Construction Works

We refer to our letter addressed to Ethiopia Road Authority of the engineering regulatory division 19/5/2009 with Ref.No.2526/n λ /00-18.In the letter we address ERA of the direction of the new road construction in Dejen town.

Currently, we understand that HEC is contracted for the consultancy service of the project by a letter sent to us with Ref.No. HEC/1991/09 and dated 02/11/2009.

Therefore, we request the route for the new road construction in the direction of Debre Markos district to Tekle-haimanot Square (old road).

Attached here with please find a minute signed by City Mayer Committee concerning the dicision of the road al/ Route in the Debre Markos town.

Signature and Seal Abebaw Yaynwaga Debre Markos City Mayor

Mayor's Committee Minutes of Meeting

Attendants:

- 1. Mr. Migbaru Kebede Mayor's committee chairperson
- 2. Mr. Alemahehu Tekeste Committee Member
- 3. Mr. Abebaw Yaynwaga »
- 4. Mr. Asmamaw Atnafu »
- 5. Mr. Tekel Yitayew »
- 6. Mr. Menberu Mengistu »
- 7. Mr. Dereje Denekew »
- 8. Mr. Melesachew Demelash »
- 9. Mr. Kefale Adinew »
- 10. Mr. Yohannes Amno »
- 11. Mr. Belaynew Tsega »
- 12. Mr. Mesfin Gesesse »

Agenda: Selection of road corridor/route in Debre Markos town

The Mayor's committee has discussed and agreed on the following points:

1. The road segment in Debre Markos town should be wide and median separated and should be in accordance with the master plan.

2. The road should pass along the corridor from the Debre Markos District of ERA and Kebele 07 office and along the Mosque to the Tekle haimanot round about.

The reason for the above decision is as follows:

1. If the existing road is to be rehabilitated, it is going to be costly as there will be big volume of slope cutting and filling works.

2. The existing road horizontal alignment has many curves; therefore, number of accident will be high.

3. There are big building structures along the existing road; therefore, the amount of compensation will be extremely high. In addition, resettlement action will create an immense pressure on the people to be resettled and the city administration.

4. The terrain along the proposed alignment is more suitable for the road construction. In addition the construction of the road will bring an economic growth to all the people living along the road.

Therefore, we recommend the alignment of the road to be as agreed above for the reasons

mentioned above. The above decision by the committee should be informed to the Design Firm

by the name Highway Engineering Consultants PLC. The committee has already informed of its decision to ERA.

Signature of the committee members

Seal of the Debre Markos Town Administration

Discussion to effectively carryout the Road construction Works from Dejen to Debre Markos Time: 9:30 am Place: Aneded Woreda Office

Attendants

HEC
Representative of Agricultural Office
» »
Representative of Aneded Woreda Administration
Land Administration Office

Agenda: Concerning families that will be affected by the Road Construction Works

Mr. Abdulahi Mohammed: He said that he will make discussion concerning the compensation of farm land and houses with the concerned bodies. If a farm land or house is affected by the road works, we have to pay compensation according to the regulations. The road will have a width of 22m in towns.

Mr. Abebaw Adane: How is the road construction work go along with the Reservoir?

Mr. Badege Lake: Compensation must be paid for those affected by the road work.

Mr. Abebaw Adane: We have to make ready of ourselves anD/Deliver what is expected of us. Eventhough the people and the administration was expecting for long time, it is disappointing that the road is no going to pass through Aneded woreda village. Since the road is not going to pass through the village, the people are not going to benefit from the road construction. Therefore, the people will be disappointed anD/Distance themselves from the government.

Mr. Abdulahi Mohammed: Concerning the above, a discussion has to be made with the Designers,

the Zone and Regional Offices of ERA.

Mr. Badege Lake: We have to disscuss with a tangible information and we have to understand that the economic development of the village will be hindered. That is because the road is not passing through the Aneded woreda village.

Signature of the attendants Seal of the Eastern Gojam Administration Zone Aneded Woreda Trade & Industry Office

Date 4/11/2009

Preparation for necessary precautions to be taken for the Dejen Debre Markos Road Construction Project Attendants:

- 1. Mr. Abdulahi Mohammed HEC (Chairperson)
- 2. Mr. Abebe Melese Awabel Woreda Administration
- 3. Mr. Kumilachew Damte Environmental Protection Agency
- 4. Mr. Edme alem Andualem Revenue Authority Office
- 5. Mr. Sima Kebede Awabel Woreda Municipality
- 6. Mr. Azeze Kasahun Women's Associaltion representative

Agenda:

- 1. Compensation Matter
- 2. How to consider affected people in urban and rural area

Minutes of meeting are as follows:

Mr. Abdulahi Mohammed: The Government will pay compensation to properties like farm land and houses that are affected by the road construction. He requested if there is any question from the people and administration so that HEC can accommodate the matter in the study.

Mr. Kumilachew Damte: According to government regulation a compensation will be paid for farmers who are affected. However property evaluation and paying the compensation money will take a very long time. So what are you thinking in this regard?

Mr. Abdulahi Mohammed: compensation will be evaluated and will be paid by Ethiopian Roads Authority so it is difficult to answer this question by HEC.

Mr. Azeze Kasahun: Is the road construction going to affect seriously specially the farmlands?

Mr. Abdulahi Mohammed: The road alignment is almost following the existing centerline around this village. Therefore farmlands are not going to be affected seriously.

Sign by the participants Seal of the Amhara Regional Government, Western Gojam Administration Awabel Woreda Administration Office

Date: 4/11/2009

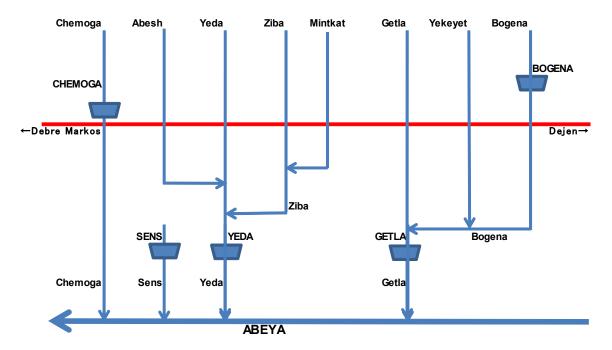
Meeting Venue: Time:	Dejen Woreda W 2:00 pm	ater Resource Office
Attendants:		
1. Mr. Abdulahi Mohammod		HEC
2. Mr. Birile	ew Mossa	Environmental Protection Agency
3. Mr. Melis	sew Tamiru	Agricultural Office
4. Mr. Abedje Asamirew		General Manager Municipality
5. Mr. Tami	r Adam	Land Administration Office

Agenda: Concerning resettlement and compensation for the Dejen Debre Markos Road Project

Minutes of Discussion

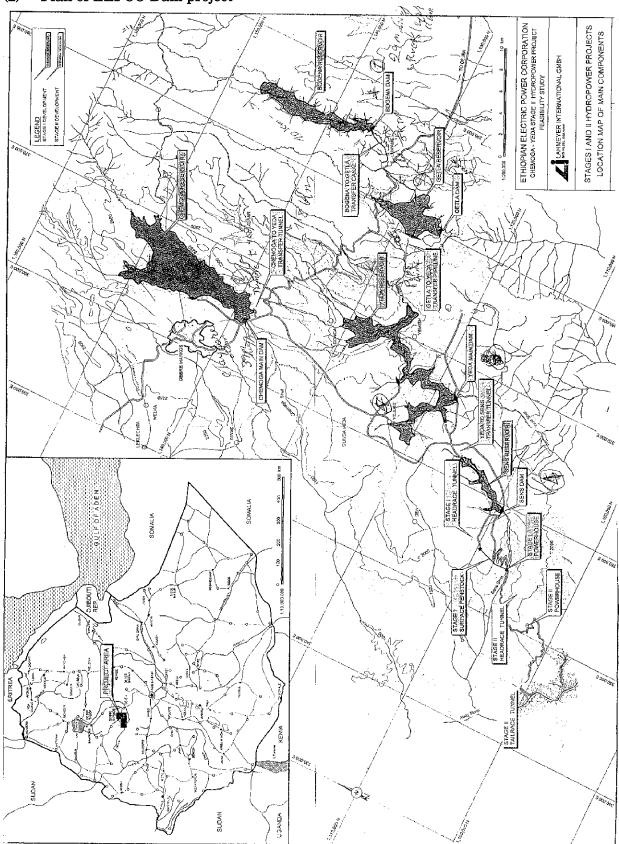
Mr. Tamiru: He suggested each and every property that will be affected should be identified with a photo of the property.

Mr. Melisew: For a farm land the type of crop, number of trees and productivity should be considereD/During the property evaluation stage and compensation.

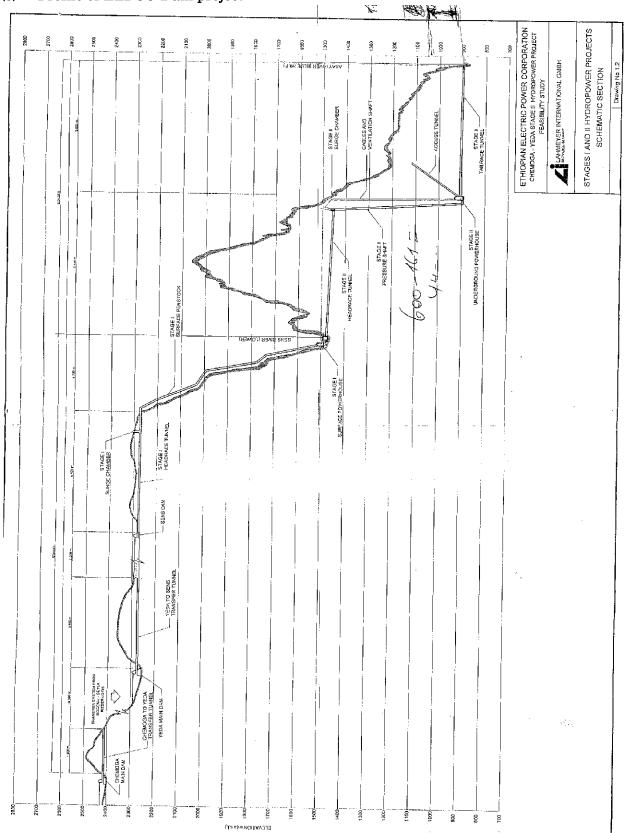

Mr. Birilew: Farmers who have settled recently should be compensated according to the new regulation of the government.

Mr. Abeje: New construction near the road should be prohibited and the people should be informed about this.

Therefore, all participants have reached on agreement on the above issues unanimously.


Signature of the participants Seal of the Amhara Regional Government, Eastern Gojam Administration Dejen Town Municipality

6.3 Dam Plan of EEPCO



(1) Dam Plan of EEPCO

Figure 6.3.1 Overview Diagram dam project

(2) Plan of EEPCO Dam project

(3) Profile of EEPCO Dam project

6.4 Traffic analysis and prediction results (From ERA • D/D Report)

Consultancy Service of the Feasibility and EIA Studies, Preparation of RAP, Detail Engineering Design and Tender Document Preparation for Dejen – Debre Markos Road Project Final Design Standard Report

Table E1.1: Traffic Forecasted for Dejen - Debre Markos Road Project (2009-2032), Mixed Forecasted for Dejen - Debre Markos

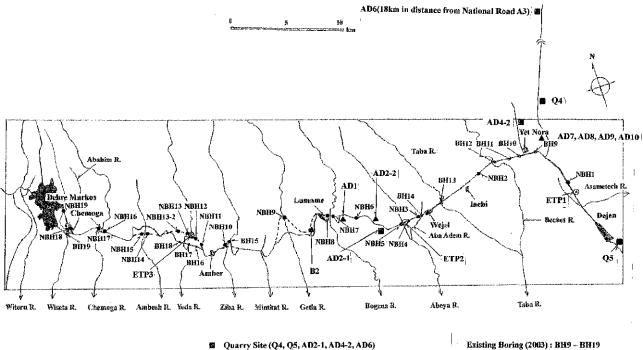
Year.	Car	4WD	SB.	LB	S.T	MT	H.T	T.T	TOTAL
2009	30	213	146	114	145	72	57	73	852
2010	33	226	159	124	157	78	62	79	918
2011	35	239	171	134	168	84	66	85	982
2012	37	253	185	144	181	90	71	91	1052
2013	39	268	200	156	194	97	77	98	1129
2014	53	363	276	215	266	133	105	134	1546
2015	55	384	298	232	286	142	113	145	1655
2016	59	407	321	251	307	153	121	155	1774
2017	62	430	346	271	330	165	131	166	1901
2018	65	455	374	293	354	177	140	179	2037
2019	69	481	404	316	380	189	150	192	2181
2020	73	510	437	340	408	203	161	206	2338
2021	77	535	468	364	435	217	172	219	2486
2022	81	561	498	387	461	230	182	232	2631
2023	85	587	530	413	488	244	194	246	2786
2024	89	615	564	440	517	258	205	262	2949
2025	93	643	601	468	548	273	217	277	3120
2026	98	673	641	499	581	290	230	294	3304
2027	102	705	682	531	616	308	244	312	3499
2028	107	738	727	565	653	326	258	330	3704
2029	112	773	773	601	692	345	273	350	3920
2030	117	809	823	641	734	366	290	371	4150
2031	122	847	877	682	778	388	308	393	4393
2032	128	886	934	727	824	411	326	416	4651

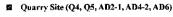
Source: Consultant's Traffic Survey and Forecast, 2009

4

6.5 Geological Survey

(1) **Geological Survey**


Purpose and Content of Survey 1)


Geological Survey was carried out for the purpose of getting geological information to design and execution of the project road. Expansive soil named Black Cotton Soil is distributed along the route. One of the main objects of t is to clarify exact distribution, thickness and property of it. The survey includes next three items. It is as follows.

- Mechanical boring on the route.
- Test pitting on the route.
- Material survey for quarry and borrow pit.

2) Location and content of Survey

The location map is shown in Figure 6.5.1. The coordinate and distance of sites are shown in Table 6.5.1 and Table 6.5.2.

- Proposed Boring (2019) : NBH1 NBH19 Borrow Pit (AD1, ad2-2, AD6, B2, AD7, AD8, AD9, AD10) ۰ New Alignment : -----
- Sampling Site of Black Cotton Soil for Mixing Test with Lime

Figure 6.5.1 Location Map of Boring

Serial	BH.№	Station (Vm)	Location	Position	Coordi	inate
N⁰	ЫП.№	Station (Km)	Location	Position	Easting	Northing
1	NBH 1	5+060	Plateau	Shoulder of Road	405126	1129603
2	NBH 2	14+560	Plateau	Shoulder of Road	397343	1131876
3	NBH 3	20+090	Aba Adem R.	Shoulder of Road	392058	1130320
4	NBH 4	22+080	Abeya R.	Shoulder of Road	390283	1130122
5	NBH 5	22+330	Abeya R.	Shoulder of Road	390084	1130116
6	NBH 6	26+500	Plateau	Shoulder of Road	386666	1131970
7	NBH 7	29+300	Bogena R.	Shoulder of Road	384199	1133004
8	NBH 8	29+390	Bogena R.	Shoulder of Road	384111	1133033
9	NBH 9	35+670	Getla R.	Canceled	380318	1134466
10	NBH 10	44+060	Ziba R.	Shoulder of Road	374738	1133686
11	NBH 11	47+420	Yeda R.	Shoulder of Road	372535	1134368
12	NBH 12	48+900	Yeda R.	Natural Ground	371847	1135567
13	NBH 13	49+200	Yeda R.	Natural Ground	371612	1135729
14	NBH 13-2	50+200	Yeda R.	Natural Ground	370759	1136180
15	NBH 14	53+480	Ambesh R.	Canceled	-	-
16	NBH 15	53+500	Ambesh R.	Shoulder of Road	36143	1137118
17	NBH 16	57+890	Chemoga R.	Shoulder of Road	364521	1138417
18	NBH 17	58+020	Chemoga R.	Shoulder of Road	364408	1138490
19	NBH 18	60+860	Abahim R.	Shoulder of Road	361845	1139222
20	NBH 19	63+640	Wiseta R.	Shoulder of Road	361404	1141871

Table 6.5.1 List of Boring Site

Table 6.5.2List of Test Pit

Serial No.	Station	Location	Formation	Depth of	Depth of	Coore	dinate
Sellai NO.	(Km)	Location	Formation	TP (m)	DCP (m)	Easting	Easting
NTP 1	1+500	Plateau	BCS	2.0	5.1	405794	1126106
NTP 2	4+000	Plateau	BCS	2.4	6.5	405312	1128558
NTP 3	5+000	Plateau	BCS	2.7	4.7	405049	1130034
NTP 4	7+500	Hill	BCS	3.0	5.2	404001	1131710
NTP 5	9+500	Hill	BCS	2.4	5.0	403248	1132382
NTP 6	11 + 500	Plateau	BCS	2.5	3.7	400262	1132651
NTP 7	13 + 500	Plateau	URC	2.0	3.3	398345	1132259
NTP 8	15+500	Plateau	BCS	2.1	4.4	396479	1131540
NTP 9	16+500	Plateau	BCS	2.4	5.3	395529	1131232
NTP 10	17 + 500	Plateau	BCS	2.4	4.5	394568	1130955
NTP 11	19+500	Hill	BCS	1.4	2.9	392647	1130399
NTP 12	21+500	Lowland	BCS	2.1	5.3	390663	1130155
NTP 13	23+500	Hill	BCS	3.0	4.5	389168	1130038
NTP 14	24+000	Hill	URC	2.5	3.5	388434	1130527
NTP 15	26+500	Plateau	BCS	3.0	5.1	386666	1131963
NTP 16	27+500	Plateau	BCS	2.7	4.7	385807	1132387
NTP 17	29+500	Hill	BCS	3.0	4.1	384468	1132868
NTP 18	30+000	Lowland	BCS	3.0	3.7	383084	1133637
NTP 19	32+000	Hill	URC	2.5	3.9	382309	1132663
NTP 20	34+500	Hill	URC	3.0	3.0	381034	1133663
NTP 41	35+670	Lowland	URC	3.2	3.5	380318	1134466
NTP21	36+000	Hill	URC	2.5	2.7	380049	1134336
NTP22	37+500	Hill	BCS	2.7	1.9	379460	1133045
NTP23	38+500	Hill	BCS	2.7	2.9	405312	1128557
NTP24	40+500	Hill	URC	2.2	2.4	377275	1131559
NTP25	42+500	Hill	URC	3.0	4.8	375867	1132737
NTP27	45+000	Hill	URC	2.5	1.5	373855	1133439
NTP28	46+500	Hill	URC	2.5	3.8	372682	1133218
NTP29	48 + 000	Lowland	BCS	3.0	4.2	372449	1134930

Serial No.	Station	Location	Formation	Depth of	Depth of	Coor	dinate
Sellar No.	(Km)	Location	Formation	TP (m)	DCP (m)	Easting	Easting
NTP30	49+500	Lowland	UBC	2.4	4.1	371094	1135753
NTP31	50+500	Hill	BCS	2.7	2.0	370494	1136336
NTP32	51+500	Hill	URC	2.4	2.0	369608	1136339
NTP33	53+000	Hill	URC	1.8	4.0	369607	1137014
NTP34	55+000	Hill	URC	1.0	2.1	366762	1136787
NTP35	56+500	Hill	URC	1.8	2.5	365900	1137161
NTP36	57+500	Hill	URC	2.0	4.9	364841	1138197
NTP37	59+000	Hill	URC	3.0	1.5	363493	1138706
NTP38	60+500	Plateau	URC	2.5	4.7	362131	1139006
NTP39	62+000	Plateau	URC	2.8	4.2	361868	1140312
NTP40	63+000	Plateau	URC	2.6	3.8	381429	1141731

BCS = Black Cotton Soil, URC = Upper Red Clay, UBC = Upper Brown Clay(Alluvial Soil)

- Field geological investigation (63 Km)
- Boring and Sampling for black cotton soil (3holes)
- Boring and Sampling in the flood area of Abeya River and Yeda River (6 holes)
- Boring for the foundation of projected bridges (9 bridges, 11 holes)
- Test Pitting and dynamic cone-penetrometer test (DCP) for Black Cotton Soil (44sites)
- Sampling for CBR test (10 sites)
- Boring and sampling for quarry (5 sites, 2 holes)
- Boring and sampling for borrow pit (8 sites, 2 1 samples)
- Laboratory test for samples

3) Quantity of Survey

Quantity of survey for boring, test pit and Laboratory test are shown in Table 6.5.3, Table 6.5.4, Table 6.5.5, Table 6.5.6 and Table 6.5.7. Among the mechanical borings, borehole No.NBH9 in Getla River was canceled because of difficult transportation of machine by bad access in rainy season. So dynamic cone penetrometer test (DCP) was carried out instead of boring. Also, boring No NBH 14 in Ambesh River was canceled because of exposing hard basalt as basement on the bank.

Bore Hole	Location Depth (m)	Depth (m)	SPT	UDS	Specific Gravity	Moisture Content	Particle Size	Atterberg Limit	Unconfined Compression	Tri-axial Test	Consoildation	Shinkage	Rock Test
NBH1	Plateau Area	10.0	8	2	2	2	2	2	1	0	1	1	0
NBH2	Plateau Area	10.0	8	2	2	2	2	2	1	1	1	1	0
NBH3	Aba Adem R.	10.0	7	2	1	1	1	1	0	1	1	2	0
NBH4	Abeya R.	27.2	23	2	13	13	13	12	0	1	1	2	1
NBH5	Abeya R.	26.6	23	1	1	1	1	1	0	0	0	0	0
NBH6	Plateau Area	8.0	5	1	1	1	1	1	1	0	1	1	0
NBH7	Bonega R.	7.0	3	1	1	1	1	1	0	0	0	0	1
NBH8	Bonega R.	7.2	2	1	1	1	1	1	0	0	0	0	0
NBH9	Getla R.(Canceled)	-	-	-	-	-	-	-	-	-	-	-	-
NBH10	Ziba R.	12.2	8	2	2	2	2	2	1	1	1	1	0
NBH11	Yeda R.	27.0	25	2	2	2	2	2	1	1	0	1	0
NBH12	Yeda R.	30.0	25	2	2	2	2	2	1	1	1	1	1
NBH13	Yeda R.	31.2	30	2	17	17	17	16	1	1	1	1	0
NBH13-2	Yeda R.	20.0	15	1	1	1	1	1	1	1	0	1	0
NBH14	Ambesh R. (Canceled)	-	-	-	-	-	-	-	-	-	-	-	-
NBH15	Ambesh R.	6.5	1	0	0	0	0	0	0	0	0	0	0
NBH16	Chemoga R.	6.9	2	1	1	1	1	1	0	0	0	0	0
NBH17	Chemoga R.	6.6	2	1	1	1	1	1	0	0	0	0	0
NBH18	Abahim R.	18.0	15	1	1	1	1	1	1	0	0	0	0
NBH19	Wiseta R.	8.0	0	0	0	0	0	0	0	0	0	0	1
	Total	272.4	202	24	49	49	49	47	9	8	8	12	4

Table 6.5.3 Quantity of Working and Laboratory Test (Dejen - Debre Markos)

Table 6.5.4 Quantity of test pit and laboratory test

Quan of sit	Specific Gravity	Moisture Content	Particle Size	Atterberg Limit	Shrinkage Test	CBR Test	Field Density	DCP
40	10	10	50	50	10	10	10	40

Table 6.5.5Boring and Laboratory Test for Quarry

Site No.	Work on Site	Density and Absorption	Soundness	Los Angeles Abration	Aggregate Crushing Value
AD 2-1	Sampling of Rock	1	1	1	1
AD 4-2	Boring (10m)	1	1	1	1
Q 4	Boring (10m)	1	1	1	1
Q 1	Sampling of Rock	1	1	1	1
AD 6	Sampling of Rock	1	1	1	1
Total		5	5	5	5

Table 6.5.6 Sampling Test Pit and Laboratory Test for Borrow Pit

Site No.	Work on Site	Particle Size (with Hydro)	Atterberg Limit	Linear Shrinkage	CBR (3 points)	Permeability
B 2	Sampling of Soil	2	2	2	2	0
AD 1	Test Pit (H:5m)	2	2	2	2	1
AD 2-2	Test Pit (H:3m)	1	1	1	1	0
AD 6	Sampling of Soil	2	2	2	2	1
AD 7	Sampling of Soil	3	3	3	3	0
AD 8	Sampling of Soil	1	1	1	1	0
AD 9	Sampling of Soil	1	1	1	1	0
AD 10	Sampling of Soil	2	2	2	2	0
Total		14	14	14	14	2

Former TP No.	New TP No.	Station (km)	Location	Easting	Northing	Lime 2%	Lime 4%	Lime 6%	Total
NTP 2	ETP 1	4+000	Dejen	405312	1128558	2	2	2	6
NTP 13	ETP 2	23+000	Abeya R.	389168	1130038	2	2	2	6
NTP 30	ETP 3	49+000	Yeda R.	371094	1135753	2	2	2	6
Total	-	-	-	-	-	6	6	6	18

Table 6.5.7 CBR Test for Mixing Sample with Lime

4) Outline of Geomorphological and Geological Condition

The geological map of Ethiopia is shown inFigure 6.5.2. Ethiopia is divided into the east part and the west part by the African Great Lift Valley where is a great fault zone from Mozambique, passing though Tanzania and Kenya to Ethiopia being from 30 kilometers to 50 kilometers in width and about 6,000 kilometers in length. Uplift movement of this zone begun mainly at Ethiopia and Kenya in Tertiary. And quantity of uplift movement is between 2,000-3,000 meters in height until today.

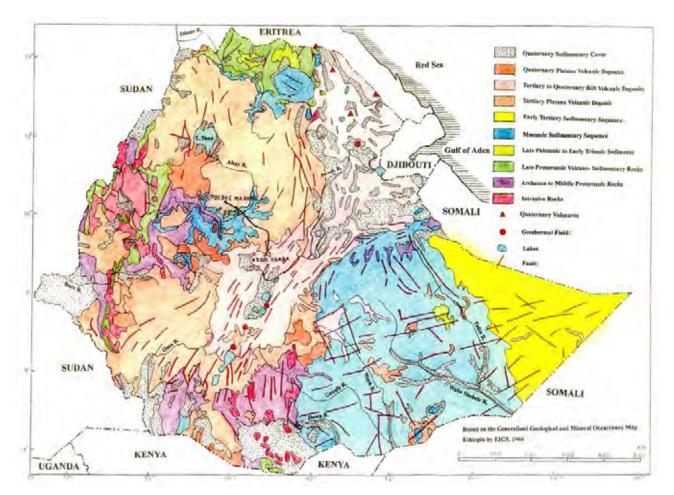


Figure 6.5.2 Geological Map of Ethiopia

As soon as lifting the central part of this lift zone subsided and after that the present fault zone was formed. At the same time, a plenty of basaltic lavas flowed by fissure eruption. And until present time, volcanic activity has continued. There are many active volcanoes in the Lift Valley

and small earthquakes sometimes happen. At the central part of the Lift Valley, there are many lakes from the south to the north as a result of subsidence. Flowing basaltic lava in Ethiopia shows the biggest scale at the Lift Valley. So, this activity formed Ethiopian Highland being about 500 kilometers in width and about more than 1.000 kilometers in length. And the height above sea level of Ethiopian Highland is the highest in the Lift valley being between 2.000 meters and 2.500 meters. On the other hand, seismic activity and volcanic activity in Ethiopia are inactive compares with Tanzania and Kenya. In the inner part of Ethiopia Highland, these activities do not happen. The north end of the Lift valley spread out like a fan near Addis Ababa. The eastern end contacts with the Gulf of Aden and the west end continue toward the Red Sea. This triangular zone is called as the Afar Depression. The Afar Depression, crossing three lift valleys, shows complicated geological structure. So, seismic activity and volcanic activity in Ethiopia topia concentrate on this area.

Basement of Ethiopian Highland consists of marine sedimentary rocks of the Mesozoic Era like a sandstone, mud stone, and limestone.. These sedimentary formations deposit horizontally and are covered with basaltic lava being from 300 meters to 400 meters in thickness in the inside of the Highland. The topography of the Highland is composed by combination of gentle hills and flat plane. These hills being from 50 meters to 150 meters in height are divided into several hill columns by small valley plains being 2 or 3 kilometers in width. On the surface of hills basaltic lavas crop out and they are covered with tropical red soil. On the valley plains, black cotton soils formed by weathering of basalt are distributed as the alluvial soil. Black cotton soil is characterized by a low organic content and by zone of calcium carbonate concretions. In the dry season it forms a black soil which crumbles into dust, or bakes hard if it has not been ploughed. In the wet season it may be plastic or sticky. It is good soil for growing cotton, barley and wheat but is not good for earthworks. The biggest lake in Ethiopia, named Lake Tana (75kilometers in length, 60 kilometers in width and 1830 meters above sea level) in the Highland being 300 kilometers from Addis Ababa toward northwest. The Abay River named Blue Nile River flows from the Lake Tana and joins with the White Nile River in Sudan. After that, this river flows into Egypt as the Nile River. The erosion of the Abay River increased with uplift movement of the Ethiopian plateau. As a result, a big gorge being 1500 meters in height was formed. The Ethiopian Highland gently inclines toward the west. For that reason, almost rivers on the highland gather to the drainage of the Nile River. The project route between Dejen and Debre Marcos being about 63 kilometers in length is located on the plateau of basalt in the west side of the Abay Gorge.

5) Geological Condition along the Route

The route is located in the central part of the Ethiopian volcanic plateau which is slightly tilting to southwest. The altitude of Dejen located on the west bank of the Abay Gorge is about 2500 meters and Debre Marcos apart from 63 kilometers from Dejen is about 2400 meters. The rivers on the plateau flow from north to south cutting valleys, crossing the project route and join the

Abay River. Number of main rivers crossing the route is 13. They are Asametech River, Bechet River, Taba River, Aba Adem River, Bogena River, Getla River, Ziba River, Yeda River, Ambesh River, Chemoga River, Abahim River and Wiseta River from east to west. On the plateau, five columns of hills being from 100 meters to 150 meters in relative height lie along north-south axis. Among the rivers, Abeya River, Getla River, Ziba River and Yeda River have valley plains being 1 ~3 kilometers in width between hills. Especially, Abeya River and Yeda River have wider plains among them. Hills consists of basalt and tuff covered with weathered red soil being 2 ~ 5 meters in thickness. The tops of plateau and surface of valley plains are covered with alluvial brown soil and black cotton soil is found below it. Black cotton soil is thick in the valley plains of Abeya River and Yeda River being about 10 meters and thin in the plateaus being about $2\sim3$ meters.

. • Upper Brown Clay ~ Silt (UBC)

This formation is mainly distributed on flood plains in valley, partially on the depressions in plateau. This is a soft alluvial deposit being $1 \sim 3$ meters in thickness.

• Upper Red Clay ~ Silt (URC)

This formation is found on the top of hills and slopes, partially as mixing fragment of basalt. Originally, this is formed from weathering of basalt and secondly deposited by action of raining and gravity. This soil is stiff compared with upper brown clay. The thickness is about $2\sim3$ meters on the top of hills and about $5\sim6$ meters on the slopes.

• Black Cotton Soil (BCS)

This formation is found on the plateau and the flood plain in valley. This is a soft silty clay or clayey silt with black or grayish black color. The thickness is about $2 \sim 3$ meters on the top of hills. But on the valley plains of Abeya River and Yeda River, it reaches more than 10 meters. This is not distributed on the top of hills but it is found on the slopes below upper red soil. This soil causes swelling in rainy season and shrinking in dry season.

• Lower Clay (LC)

This formation is mainly found below black cotton soil on the valley plains and partially on the depressions of plateau. This is a gray colored hard clay or silt. The thickness is about $12 \sim 17$ meters in Abeya River and Yeda River but only $2 \sim 3$ meters on plateaus.

• Residual Soil (RS)

This formation is found below upper red soil on hills. This is a gray or yellowish gray colored hard soil with sometimes gravel or fragment of basalt. And this soil is mainly hard sandy silt or silty sand. The thickness is about $2 \sim 8$ meters and sometimes its thickness changes irregularly according to topography.

• Tuff (TF)

This formation is found below upper red soil or residual soil on Aba Adem River and the right bank of Yeda River. This is a yellowish gray or grayish green colored silty soft rock. On the outcrop, this rock has clear bedding and high hardness. The thickness is estimated about $5 \sim 20$ meters.

• Decomposed Basalt (DBa)

This formation is highly weathered basalt. It looks like a breccia with fragment of basalt and clay. It has enough strength as bearing layer but clay rich zone is unsuitable as bearing layer. The thickness is about $5 \sim 10$ meters.

• Basalt (Ba)

This rock is a basement rock on the route. This is a black or grayish black colored very hard rock. On the outcrop, cracky basalt and porous basalt are found.. But both rocks are no problem bearing layer for foundation of bridge.

6) Result of Standard Penetration Test (SPT)

The result of SPT is shown in Table 6.5.8.

Formation	Number of Times	Max. Value (times/30cm)	Min. Value (times/30cm)	Av. Value (times/30cm)
Upper Brown Soil (UBC)	6	9	1	5
Upper Red Soil (UBC)	6	19	2	13
Black Cotton Soil (BCS)	43	11	2	7
Lower Clay (LC)	80	18	5	12
Residual Soil (RS)	30	50	9	28
Tuff (TF)	5	50	50	50
Decomposed Basalt (DBa)	12	50	25	41
Basalt(Ba)	8	Refuse	50	50

Table 6.5.8 Result of Standard Penetration Test (SPT)

By the table, the upper brown silt (UBC) shows the lowest N value. The upper red silt (URC) shows higher value than the upper brown silt. The upper red silt (URC) which shows N value 2 is an exceptional case by highly weathering. Almost N values of black cotton soil show under 10. The lower clay (LC) is hard clay. So that reason almost N values of it show more than 10 except highly weathered zone. The residual soil (RS) is sandy soil. So it shows very high value compared with other upper formations. The tuff (TF) is soft rock but the N value shows more than 50. The decomposed basalt (DBa) is mixed formation with gravel and clay. The N value of it shows more than 50 but clay rich zone of it shows sometimes under 50. The basalt (Ba) shows

rebounding for blow of hummer at the test. This rock is no problem as bearing layer.

7) Result of Measurement of Groundwater Level

Groundwater level in bore holes is shown in Table 6.5.9. At borings of NBH1, NBH2 and NBH6, located on the plateau, the groundwater levels are not confirmed. Here, depth of basement rock is shallow. So that reason groundwater levels are existing under the depth of bore holes as fissure water in rocks. Other borings were drilled on the projected bridge sites at the shoulder of existing road. There, groundwater levels keep balance with river water levels. The filling height of Abeya bridge site is about 1 meter and the groundwater level in bore hole shows same level. At Yeda River, the boring was carried out on natural ground near the bank and the groundwater level in bore hole is very close to river water level. The condition of groundwater level of Ambesh River is as same as Yeda River. On the top of hills, borings were not carried out. There, it seems that the groundwater levels are deep and existing in basalt as fissure water.

B. №	Location	Depth (m)	Date of Measurement
1	Plateau	Nothing	29-Jul-10
2	Plateau	Nothing	30-Jul-10
3	Aba Adem R.	-5.6	31-Jul-10
4	Abeya R.	-1.0	07-Aug-10
5	Abeya R.	-1.0	07-Aug-10
6	Plateau	Nothing	31-Jul-10
7	Bogena R.	-1.8	04-Aug-10
8	Bogena R.	-1.6	05-Aug-10
9	Getla R.	Canceled	—
10	Ziba R.	-6.0	05-Aug-10
11	Yeda R.	-0.9	20-Aug-10
12	Yeda R.	-1.7	14-Aug-10
13	Yeda R.	-1.2	12-Aug-10
13-2	Yeda R.	-1.4	25-Aug-10
14	Ambesh R.	Canceled	—
15	Ambesh R.	-0.1	25-Aug-10
16	Chemoga R.	-1.5	07-Aug-10
17	Chemoga R.	-2.4	08-Aug-10
18	Abahim R.	-3.4	11-Aug-10
19	Wiseta R.	-1.8	12-Aug-10

 Table 6.5.9
 Groundwater Level in Bore Hole

8) Distribution and Thickness of Black Cotton Soil

The distribution and thickness of black cotton soil is decided by result of field survey, boring, test pit and dynamic cone penetrometer (DCP). The result of test pit and DCP including converted into N value are shown in Table 6.5.10. And the thickness of geological formations is shown inTable 6.5.11. These geological formations change the thickness accompanied with topography. The horizontal continuity of them is shown in geological profiles as Appendix. By the geological profiles, the distribution of black cotton soil is as follows.

- Dejen Abeya River (plateau and gentle slope), Extension = 21km, Thickness = 2.0~3.0m
- Abeya River (valley plain), Extension = 3km, Thickness = $10.0 \sim 11.0$ m
- Abeya River Lumame (valley plain), Extension = 5km, Thickness = $2.0 \sim 3.0$ m
- Getla River (plateau and gentle slope), Extension = 1km, Thickness = $1.5 \sim 2.0$ m
- Yeda River (valley plain), Extension = 3km, Thickness = $5.0 \sim 10.0$ m

The thickest area of black cotton soil is the valley plain of Abeya River and Yeda River. The thickness is about 10m. At the surface of plateau, small valley plain, and foot of slope, black cotton soil is partially found in thickness of about $1.5 \sim 3.0$ m. Between Yeda River and Debre Marcos, there is wide hilly area without black cotton soil. And at the plateau of Debre Marcos City, black cotton soil is no found.

TP No.	Formation	Depth of BCS by TP Logs(m)	Depth of DCP(m) N<10	Depth of BCS by Boring, N<10	Estimated Depth(m)
1	BCS	2.00	3.31		2.5
2	BCS	2.40	2.12		2.5
3	BCS	1.90	1.79	2.50(NBH1)	2.5
4	BCS	2.30	2.55		2.5
5	BCS	2.40	2.84		2.5
6	BCS,LC	3.00	0.00	6.00(NBH2)	3.2
7	URC	2.50	1.13		-
8	BCS	2.50	0.85		2.5
9	BCS	2.40	2.11		2.5
10	BCS	2.40	2.81		2.5
11	BCS	2.40	0.71	3.50(NBH3)	2.5
12	BCS	2.40	2.17	10.00(NBH4.5)	10.0~11.0
13	BCS	3.00	2.65		3.0
14	BCS	2.50	0.00		2.5
15	BCS,LC	3.00	2.32	5.90(NBH6)	3.0
16	BCS	2.70	2.27		2.8
17	BCS	3.00	1.40	3.90(NBH7.8)	3.2
18	BCS	3.00	1.89		3.0
19	URC	3.00	0.53		-
20	URC	3.00	1.50		-
21	URC	2.40	0.00		-
22	BCS	1.40	1.60		1.4
23	BCS	2.70	0.80		2.8
24	URC	2.20	0.00		-
25	URC	3.00	0.00		-
26	URC	1.50	0.57		-
27	URC	2.40	0.00		-
28	URC	2.40	0.00		-
29	BCS	3.00	-	5.50(NBH11)	5.0
30	BCS	2.40	0.55	10.00(NBH12.13)	10.0
31	BCS	2.70	0.72	2.4(NBH13-2)	2.5
32	URC	2.40	0.78		-
33	URC	1.80	1.56		-
34	URC	1.00	0.00		-
35	URC	1.80	1.49		-
36	URC	2.00	0.00		-
37	URC	3.00	0.00		-
38	URC	2.50	0.00		-
39	URC	2.80	1.59		-
40	URC	2.60	0.00		-

Table 6.5.10Depth of Black Cotton Soil in Test Pit between Dejen and Debre Markos

т.,•			Thickness	of Soil(m)		Total	D (
Location	Sta. No.(km)	Fill		Black Cottor	Lower Clay	Depth(m)	Basement
Dejen	0+000	0.8	0.0	0.0	0.0	0.8	Basalt
	0+450	0.8	0.0	0.0	0.0	0.8	Basalt
	1+600	0.8	0.0	1.5	0.0	2.3	Basalt
	2+200	0.8	0.0	0.0	0.0	0.8	Basalt
	3+200	0.8	0.0	2.0	0.0	2.8	Basalt
	6+200	0.8	0.0	1.7	3.0	5.5	Residual Soil
	6+700	0.8	0.0	1.5	3.0	5.3	Basalt
	8+500	0.0	1.5	2.0	0.0	3.5	Basalt
	10+300	0.5	0.0	2.5	0.0	3.0	Basalt
	10+800	0.5	0.0	1.2	0.5	2.2	Decomposed Basalt
	11+200	0.5	1.0	0.0	0.0	1.5	Decomposed Basalt
Bechet R.	12+400	0.5	0.0	2.5	0.0	3.0	Basalt
	14+300	0.7	0.7	0.0	0.0	1.4	Decomposed Basalt
	18+000	0.8	0.0	1.5	3.0	5.3	Decomposed Basalt
Taba R.	18+300	2.0	0.0	3.0	4.8	9.8	Decomposed Basalt
	19+900	0.5	0.0	2.0	0.0	2.5	Decomposed Basalt
Aba Adem R.	20+200	0.5	0.0	3.0	3.0	6.5	Tuff
	21+300	0.5	0.0	1.5	1.5	3.5	Decomposed Basalt
Abeya R.	22+400	1.0	0.0	10.0	13.0	24.0	Decomposed Basalt
	23+200	0.5	0.0	1.5	0.0	2.0	Decomposed Basalt
	24+200	0.5	1.0	1.0	0.0	2.5	Decomposed Basalt
	25+800	0.5	0.5	0.0	0.0	1.0	Decomposed Basalt
(Marsh)	26+700	0.5	0.0	2.0	3.5	6.0	Basalt
(iviaishi)	27+300	0.5	0.5	0.0	0.0	1.0	Basalt
(Marsh)	27+650	0.7	0.0	2.0	0.0	2.7	Basalt
(iviaisii)	29+200	0.5	1.0	0.0	0.0	1.5	Decomposed Basalt
Bogena R.	29+200	1.0	0.0	3.0	0.0	4.0	Basalt
Lumame	30+700	0.5	0.0	1.5	0.0	2.0	Basalt
Lumanic	32+700	0.0	3.0	0.0	0.0	3.0	Basalt
Getla R.	35+630	0.0	3.0	0.0	0.0	3.0	Basalt
Octia K.	36+900	0.0	3.0	0.0	0.0	3.0	Basalt
	37+900	0.0	0.0	1.5	0.0	1.5	Decomposed Basalt
	37+900	0.0	2.0	0.0	0.0	2.0	Decomposed Basalt
	37+700	0.0	1.0	2.2	0.0	3.2	Decomposed Basalt
	40+260	0.0	3.0	0.0	0.0	3.2	Decomposed Basalt
							1
	41+060	0.0	2.2	0.0	0.0	2.2	Basalt
	42+640	0.5	3.0	0.0	0.0	3.5	Basalt
	42+980	0.0	4.0	0.0	0.0	4.0	Basalt
71 D	43+500	0.0	3.0	0.0	0.0	3.0	Basalt
Ziba R.	44+000	0.9	5.1	0.0	0.0	6.0	Residual Soil
	46+260	0.5	5.0	0.0	0.0	5.5	Residual Soil
V. I. D	46+880	0.0	3.0	0.0	0.0	3.0	Basalt
Yeda R.	48+420	0.0	0.0	5.5	13.5	19.0	Decomposed Basalt
Yeda R.	49+500	0.0	2.0	8.0	18.0	28.0	Basalt
Yeda R.	49+800	0.0	2.0	4.0	14.0	20.0	Basalt
	50+140	0.0	2.0	1.0	1.0	4.0	Residual Soil
	50+340	0.0	2.0	2.0	0.0	4.0	Residual Soil
	50+660	0.0	1.5	1.0	0.0	2.5	Residual Soil
	51+420	0.0	1.5	0.0	0.0	1.5	Residual Soil
	55+020	0.0	2.0	0.0	0.0	2.0	Basalt
	57+100	0.0	1.5	0.0	0.0	1.5	Basalt
	60+820	0.5	3.0	0.0	0.0	3.5	Basalt
Abahim R.	60+920	4.0	5.5	0.0	6.0	15.5	Residual Soil
Debre M.	64+880	0.0	3.0	0.0	0.0	3.0	Decomposed Basalt

Table 6.5.11 Thickness of Soil (Dejen-Debre Markos)

9) Geological Condition in the Projected Bridge Site

• Aba Adem River Site (Boring NBH3)

Aba Adem River is a small river flowing on the plateau. On the both banks of it, black cotton soil (BCS) being 3.5m in thickness lower clay (LC) is found below BCS. At the bottom of boring, tuff (TF) as basement rock is found at 6.1m in depth. N value of tuff shows more than 50 and it is no problem for foundation of bridge.

• Abeya River Site (Boring NBH4 and NBH5)

Abeya River has a valley plain being $2 \sim 3$ km in width. The left bank consists of tuff, decomposed basalt (DBa) and fresh basalt (Ba). And the right bank and the bottom of plain consist of decomposed basalt (DBa). N values of these rocks show more than 50 and they have enough strength for foundation of bridge. The valley plain is filled with Quaternary deposits being 23m in thickness. They consist of black cotton soil (BCS) being $10 \sim 11$ m in thickness and lower hard clay (LC) being $12 \sim 13$ m in thickness. The N value of black cotton soil (BCS) shows 10 under. So this soil has a possibility of consolidation settlement by filling work.

• Bogena River Site (Boring NBH7 and NBH8)

Bogena River has a valley plain being about 1 km in width. In the valley plain, black cotton soil (BCS) being 3.9m in thickness is found. And fresh hard basalt (Ba) is found below BCS. This rock is no problem for foundation of bridge.

• Getra River Site (Boring NBH9 was cancelled. Test Pit. NTP41 and DCP were carried.)

This site is located in the upper stream separated from existing road with a distant of 1.7km. Boring NBH9 was cancelled because of bad accessibility to the site. So test pit and dynamic cone penetrometer(DCP) were carried out instead of boring. By the result, the both banks consist of upper red silt (URC) being 3m in thickness. And decomposed basalt (DBa) is found below it. N value of DBa shows more than 50 but it is highly weathered rock. So it is desirable to get more fresh rock for foundation of bridge. It seems that fresh rock shall be gotten to drill at least 2 \sim 3 m more.

• Ziba River Site (Boring NBH10)

This site is located on the slope of hill. The surface of hill is covered with upper red silt (URC) being 6 m in thickness. N value of URC shows more than 10. Residual soil (RS) is found below URC. N value of RS shows 10 under. Fresh basalt (Ba) is found in depth of 9.2 m below RS in the bottom of bore hole. This rock has enough strength for foundation of bridge.

• Yeda River Site (Boring NBH11, NBH12, NBH13 and NBH 13-2)

Yeda River has a valley plain being about 3 km in width. The left bank consist of decomposed basalt (DBa) and fresh basalt (Ba). And right bank consists of residual soil (RS) and hard tuff (TF).

They are covered with upper red soil (URC) being $2 \sim 4$ m in thickness. And on the slope of hills, black cotton soil (BCS) being $2 \sim 5$ m in thickness is found below URC. The valley plain is filled with thick Quaternary deposits. They are as follows from upper to lower.

- Upper brown silt (UBC), (thickness = $2 \sim 3$ m, N value = 10 under)

- Black cotton soil (BCS), (thickness = 10 m, N value = 10 under)
- Lower clay (LC), (thickness = $16 \sim 18$ m, N value = $10 \sim 15$)

And decomposed basalt (DBa) is found as basement rock in depth of $27 \sim 28$ m. Among those formation, UBC and BCS have a possibility of consolidation settlement by filling work.

• Ambesh River Site (Boring NBH15)

Ambesh River is a small river crossing hilly area .and has no valley plain. The both banks consist of fresh basalt (Ba) covered with upper red silt (URC) being 2 m in thickness. The basalt is no problem for foundation of bridge.

• Chemoga River (Boring NBH16 and NBH17)

Chemog River is running between erosional terrace being about $200 \sim 300$ m in width. On the both banks, terrace surfaces are covered with upper red silt (URC) being $3.0 \sim 3.7$ m in thickness. And fresh basalt (Ba) is found below URC as basement rock. This rock is no problem for foundation of bridge.

• Abahim River Site (Boring NBH18)

Abahim River is located in the east side of Debre Marcos City on the plateau. The existing road is crossing this river with filling and bridge being 4 m in height. Below the filling materials, upper red silt (URC) being 5 m in thickness and gravelly residual soil (RS) being 6 m in thickness are found. And decomposed basalt (DBa) is found in depth of 15.5 m. N value of DBa shows more than 50. This basalt is no problem for foundation of bridge.

• Wiseta River Site (Boring NBH18 in Bypass Road)

Wiseta River is running on east edge of Debre Marcos City. The both banks consist of decomposed basalt (DBa) and fresh basalt (Ba). And they are covered with upper red silt (URC) being 1.7 m in thickness. Although weathered rock, DBa is very hard showing N value more than 50. This rock is no problem for foundation of bridge.

• Wiseta River Site (Boring BH19-2003 in Main Road)

This site is located on the existing national highway No.3. The boring of this site was carried out at November, 2003 during the former project. The both banks consist of decomposed basalt (DBa) and fresh basalt (Ba). And they are covered with upper red silt (URC) being 4 m in thickness. The N value of DBa shows between 33 and 50. So it is desirable to select fresh basalt being 6 m in

depth as foundation of bridge.

10) Result of Laboratory Test

Laboratory test was carried out for undisturbed and disturbed samples by borings and test pits. The result is shown in Table 6.5.12 for undisturbed samples, Table 6.5.13 for disturbed samples and Table 6.5.14, Table 6.5.15, Table 6.5.16 for test pit samples. Main symbols used in the Tables are as follows.

- LL (%)	Liquid Limit
- PL (%)	Plastic Limit
- PI	Plasticity Index
- SL (%)	Shrinkage Limit
- OMC (%)	Optimum Moisture Content
- MDD (g / cm^3)	Maximum Dry Density
- USCS	Unified Soil Classification System

				;	% pa	% pass (mm)	÷	-					Hydro	Hydrometer Analysis	lysis					3011	Triaxia	dal	Conso	Consolidation	
Sr.	Sr. Investigation	BH No.	BH No. Field Material Description	Samnled	0	ç	1				OTHSAA	USCS	Sand%			NMC,	ŝ		Unit Weigh) D	5	Para	Parameters	
ů	Site			(U)	00.2	24.0	20.0	~	%		Soil Class		0.06mm)	(0.06- (0.02mm)	(<0.002 mm)	%	vity	%	t 5	KPa	C, KPa	ر .	e, 6	er	C,
-	Black cotton		Dark, soft silty CLAY	2.00-2.50	100	100	99 1	115 3	38 77	7 A-7-5	-5 (20) CH	23.10	59.51	17.39	41.5	2.733	3.23	1.855	69	•	- 1.(1.0573 0.	82 0.	0.389
2	soil area	NBHI	Yellowish gray, stiff silty CLAY	5.40-5.75	100	66	97 1	102 4	40 62	2 A-7-5	-5 (20) CH	25.03	52.92	22.05	34.0	2.717		1.397	•	,	,			
3	Black cotton		Gray, soft silty CLAY	2.00-2.50	100	66	98 1	107 3	35 72	2 A-7-5	-5 (20) CH	13.73	67.85	18.42	40.0	2.675	2.83	1.664	231	37	12°	-	_	,
4	soil area	7116141	Gray, soft silty CLAY	2.50-300	100	66	98 1	105 4	40 65	5 A-7-5	-5 (20) CH	9.80	67.78	22.42	38.0	2.630	•	1.764	•	•	- 0.:	0.8858 0.8	0.8487 0	0.11
5	Abadem	NRH3	Dark, soft silty CLAY	2.00-2.50	98	95	94 1	102 3	32 7(70 A-7	A-7-5 (20) CH	11.49	66.18	20.23	38.0	2.270	1.87	1.727	•	•	-	1.193 1.1	1.1005 0	0.07
9	R.(Right Bank)	CTICAL	Dark, soft silty CLAY	2.50-3.00	100	100	98 1	116 4	47 69		A-7-5 (20) CH	21.95	61.39	16.66	45.0	2.736	4.40	1.613	•	42	16°			
7	Abeya R.(Left	NRH4	Dark, soft silty CLAY	2.00-250	100	100	5 66	98 4	47 51	1 A-7-5	-5 (20	HM ((I 12.08	65.34	22.57	37.8	2.625	3.84	1.785	•	•	- 0.9	9764 0.7	0.7284 0.	0.482
~	Bank)		Dark, soft silty CLAY	2.50-3.00	100	100	66	99 3	37 62	2 A-7-5	-5 (20) CH	6.44	76.78	16.77	34.7	2.715	7.26	1.635		38	12°			
6	Abeya R. (Right Bank)	NBH5	Dark, soft silty CLAY	3.00-3.50	100	100	66	90 3	37 53	3 A-7-5	-5 (20	H) CH	29.14	48.31	22.55	44.0	2.698	•	1.223	•					
10	Plateau	NBH6	Gray, soft silty CLAY	2.50-300	100	66	97 9	96 44	4 52	2 A-7-5	-5 (20	HM ()	I 12.44	64.46	23.11	40.1	2.652	6.17	1.725	13		- 1.0	1.0992 0.7	0.7495 0.	0.575
Ξ	Bogena R.(Left Bank)	NBH7	Dark, very soft Gravley Sandy Silty CLAY	3.00-3.50	100	93	87 8	80 3	37 43	3 A-7-5	-5 (20	HM (I 18.67	57.91	22.94	31.0	2.865		1.463		,				
12	Bogena R.(Right Bank)	NBH8	Dark, very soft silty CLAY	2.50-3.00	100	66	98 1	116 4	46 70	0 A-7-5	-5 (20) CH	25.52	53.79	20.69	61.0	2.747	•	1.124	•	,	,			
13	Ziba R.(Right	NBULO		2.00-2.40	100	100	66	52 3	31 21	1 A-7-5	-5 (15	HM ()	I 10.45	63.63	25.92	35.3	2.660	15.06	1.671	•		- 1.0	1.0654 0.9	958 0.	0.216
14	river	OTHEN	Reddish brown, firm silty CLAY	2.40-2.80	100	100	66	63 3	38 25	5 A-7-5	-5 (18	HM (S	I 24.45	59.42	16.13	31.0	2.760		1.612	308	45	17°			
15	Yeda R.(Left Bank)	NBH11	Dark gray,very soft silty CLAY	2.50-3.00	100	97	96	94 3	37 57	7 A-7-5	-5 (20) CH	18.10	56.16	25.74	42.3	2.627	6.79	1.782	44	28	14°			
16	Ye	NRH17	Dark gray, soft silty CLAY	2.00-2.50	100	100	100 8	80 4	40 40	0 A-7-5	-5 (20	HM (1 24.55	45.27	30.18	43.1	2.712	7.75	1.727	35	•	- 0.	0.907 0.	.63 0.	0.233
17	Bank)		Dark gray, soft silty CLAY	2.50-3.00	100	100	3 66	82 4	41 41	1 A-7-5	-5 (20	HM (I 11.10	62.75	26.15	43.5	2.609	•	1.694	•	36	15°			
18	Yeda R.(Left Bank) Near the	NBH13	Dark brown, very soft Sandy Silty CLAY	2.00-2.50	100	98	92 (61 3	34 27	7 A-7-5	-5 (19	HM (I 18.55	52.84	28.61	30.5	2.804	10.73	1.685	104	,	- 0.	0.907 0.	0.56 0.	0.258
19	river		Dark brown, very soft silty CLAY	2.50-3.00	100	100	9 66	68 3	36 32	2 A-7-5	-5 (20	HM (I 31.55	51.99	16.46	49.3	2.728		1.667	•	12	7°			
20	Yeda R.	NBH13- 2	NBH13- Brownish to dark gray silty, 2 firm CLAY/SAND	2.00-2.50	100	97	95 9	94 4	40 54	4 A-7-5	-5 (20	HM ()	I 12.49	63.33	24.18	21.3	2.698	2.45	1.694	51	38	10°			
21	Chemoga R.(Left Bank)	NBH16	NBH16 Light brown, soft silty CLAY	2.00-2.50	100	97	96	70 3	39 31	1 A-7-5	-5 (20	HM ()	I 32.45	40.53	27.02	45.0	2.793		1.143	•					
22	Chemoga R.(Right Bank)	NBH17	Gray, soft Sandy Silty CLAY	2.50-3.00	95	84	83	77 3	37 40	0 A-7-5	-5 (20	HM (I 16.01	56.95	22.08	35.0	2.836	•	1.410	•	•		,	_	
23	Abahim R.(Left Bank)		NBH18 Dark brown, soft silty CLAY	5.00-5.50	66	97	95 3	53 3.	32 21		A-7-5 (15	HM (I 14.73	60.80	23.51	45.0	2.652		1.697	32	,				

Table 6.5.12 Summary of Lab. Results for Undisturbed Samples

				%	% pass (mm)							Hydr	Hydrometer Analysis	lysis		
,			Denth			T	ΤŢ.	PI.	LI LI	OTHSAA		č	107170	<u>, </u>		
No	BH No.	Field Material Description	(cm)	2.000	0.425	0.075	%			Soil Class	USCS	2300 % (2.0- 0.06mm)	SULT % (0.06- 0.02mm)	Clay % (<0.002 mm)	NMC	Sp.Gravity
1		Dark, very soft gravely silty CLAY	4.00-4.45	66	66	98	110	50 0	60 1	A-7-5 (20)	HM (5.44	68.54	25.25	46.0	2.606
2		Dark, soft silty CLAY	6.00-6.45	100	66	66	101	39 6	62 /	A-7-5 (20	E	13.48	58.16	27.82	50.0	2.660
ю		Dark, soft silty CLAY	8.10-8.55	100	66	98	66	39 (60 /	A-7-5 (20)	E	14.76	58.45	26.79	50.0	2.715
4		Dark gray , firm silty CLAY	10.00-10.45	98	97	96	104	56 4	48 /	A-7-5 (20)	HM	6.91	65.31	26.13	48.0	2.660
5		Dark gray, soft sandy gravely silty CLAY	12.10-12.55	100	88	87	103	43	60 /	A-7-5 (20)	HM	6.71	58.83	25.58	53.0	2.701
9	NBH-4 (Abeva River)	Gray, firm silty CLAY	14.10-14.55	100	66	98	102	41	61 /	A-7-5 (20)	CH	11.12	63.66	24.96	41.0	2.728
7		Gray, firm silty CLAY	16.00-16.45	100	66	66	96	43	53 /	A-7-5 (20	HM	9.63	65.61	24.76	46.0	2.641
~		Brownish gray, firm silty CLAY	18.00-18.45	100	100	94	82	36 4	46 /	A-7-5 (20)	HM	11.71	64.74	23.54	49.0	2.665
6		Brownish gray, firm silty CLAY	20.00-20.45	100	100	98	112	51	61 /	A-7-5 (20	HM	9.94	63.57	26.49	48.0	2.624
10		Brownish gray, firm silty CLAY	22.00-22.45	100	66	98	110	41	69	A-7-5 (20)	E	20.61	53.78	25.61	52.0	2.702
Ξ		Gray to yellowish gray ,sandy silty CLAY	24.00-24.45	100	100	93	94	54 4	40 /	A-7-5 (20)	HM	17.68	52.92	29.40	57.0	2.702
12		Very soft, dark brown silty CLAY	1.00-1.45	100	100	97	51	32	19 /	A-7-5 (14	HM	26.99	50.20	22.82	30.0	2.741
13		Very soft, dark silty CLAY	4.00-4.45	100	100	66	92	48	44	A-7-5 (20)	HM	11.23	62.66	26.11	63.0	2.616
14		Very soft, dark silty CLAY	6.00-6.45	100	66	66	101	47	54 /	A-7-5 (20	HM	15.07	58.91	25.61	54.0	2.682
15		Very soft, dark silty CLAY	8.00-8.45	98	96	94	103	45	58 /	A-7-5 (20)	HM	10.18	60.08	27.94	69.0	2.740
16		Firm, dark gray silty CLAY	10.00-10.45	100	66	97	84	41	43 /	A-7-5 (20)	HM	15.55	57.71	26.74	43.0	2.628
17		Firm, dark gray silty CLAY	12.00-12.45	100	66	98	79	38 4	41 /	A-7-5 (20	HM	15.83	57.02	27.15	45.0	2.740
18		Stiff, dark gray silty CLAY	14.00-14.45	100	66	97	62	40	22 /	A-7-5 (17	HM	11.13	66.33	22.11	47.0	2.603
19	NBH13	Firm, dark gray silty CLAY	16.00-16.45	97	95	93	92	36 :	56 /	A-7-5 (20)	CH	7.56	68.40	20.63	45.0	2.719
20	(Teda KUVET)	Firm, dark gray silty CLAY	18.00-18.45	100	100	66	106	46 (60 /	A-7-5 (20	HM	14.82	57.70	27.48	51.0	2.610
21		Firm, dark gray silty CLAY	20.00-20.45	100	100	66	96	44	52 /	A-7-5 (20)	HM	12.90	57.16	29.94	51.0	2.728
22		Dark gray and yellowish brown, firm silty CLAY	22.00-22.45	100	100	66	90	36 :	54 /	A-7-5 (20)	CH	8.23	64.00	27.77	49.0	2.755
23		Dark gray and yellowish brown, firm silty CLAY	24.00-24.45	100	66	66	93	46 4	47 /	A-7-5 (20)	HM	7.35	67.85	24.79	45.0	2.618
24		Dark gray, firm silty CLAY	26.00-26.45	100	100	100	106	50 :	56 /	A-7-5 (20	HM	13.61	57.59	28.80	55.0	2.605
25		Dark gray, firm silty CLAY	28.00-28.45	98	97	96	101	44	57 1	A-7-5 (20	HM	18.56	56.65	22.66	30.0	2.601
26		Dark gray,decomposed basalt (Clayey sandy GRAVEL)	30.00-30.45	63	54	38	54	45	6	A-5 (1)	HW	26.37	18.06	18.06	34.0	2.694

 Table 6.5.13
 Summary of Lab.
 Result for Disturbed (SPT)
 Samples

 Example
 Example
 Example
 Example
 Example
 Example

					3d %	% pass (mm)						Hydrom	Hydrom eter Analysis	alysis			_	DD				3 - Point CBR %	ft CBR	%				
يد ت	Station		Test	:		_	T					Sand%	Silt%			Vol.		T-180	10 b	blows	-	30 b	30 blows	-	65 blows	NS.	m	
Ŷ	(km)	Field Material Description	Pit No.	Depth (cm)	2.000	0.075	∃ %	д %	< ⊑ %	AASHTO Soil Class			-	Clay% (<0.002 mm)	Sp.Gr avity		owc %	g/cm ³ De	Density g/cm3	CBR	Swell 9	Density (CBR	Swell _{g/c}	Density CF	CBR Swell %	NMC	<u>v</u>
-	1 + 500	Dark to dark gray silty CLAY with little Gravels	NTP 1	80-200	65	62 55	2 69	31	38 /	A-7-5 (14)	,			•	'	•		•	•		,	•			•		
5	4 + 000	Dark silty CLAY	NTP2	60-240	100	100 98	8 89	38	51 /	A-7-5 (20)	10.10	61.30	28.60	2.603	11	24.0 1	1.490	1.220	+ +	11.43	1.387	1	11.04 1.5	501	2 9.96	6 38.0	0
e	5 + 500	Dark silty CLAY	ST N	45-300	98	94 88	8 87	41	46 /	A-7-5 (20)	,	•		•	,	•			•								
4		Light gray silty CLAY		190-270	100	100 98	8 109	36	73 /	A-7-5 (20)	,		,			•					,						
ى	7 + 500	Brow nish silty CLAY	L D L D L D L D L D L D L D L D L D L D	0-70	100	99 94	4 83	43	40 /	A-7-5 (20)	,		'		,	•			•		,						
9	200	Dark to dark gray silty CLAY	r Z	70-300	96	83 80	0 87	4	44	A-7-5 (20)	,	,	,	•		•					,					'	
7	9 + 500	Dark to dark gray silty CLAY	NTP5	110-240	100	97 95	5 85	4	44	A-7-5 (20)	,		,													- '	
8	11 + 500	Dark sity CLAY	NTP6	50-250	100	100 98	8 117	4	73 /	A-7-5 (20)	,															' 	
6	13 + 500	13 + 500 Decomposed basait GRAVEL	NTP 7	135-200	67	54 46	80	88	42 /	A-7-5 (10)	,															' 	
10	13 + 500	13 + 500 Dark sitty CLAY	NTP7	70-135	92	88 86	80	88	42 /	A-7-5 (20)	13.50	59.41	19.39	2.651	œ	17.0 1	1.510	1.266	- 1	9.13 1	1.450	- 80	8.60 1.5	1.526	2 7.95	5 38.0	0
7	15 + 500	15 + 500 Dark sitty CLAY	NTP 8	55-210	98	95 92	2 105	43	62 /	A-7-5 (20)	,	•	,	•		•	,		•			•				'	
12 1	16 + 500	16 + 500 Dark sitty CLAY	ИТР9	85-240	100	98 96	6 122	49	73 /	A-7-5 (20)	,	•	,	•		•	,		,		,					'	
13	17 + 500	Dark sitty CLAY	NTP 10	60-130	100	98 95	5 98	4	54 /	A-7-5 (20)	,														·	' 	
4		Dark gray sitty CLAY	2	130-240	100	100 99	9 121	47	74 /	A-7-5 (20)	,		,						•		,						
15	10 + 500	Dark silty CLAY	150TN	50-130	100	98 90	68 0	42	47 /	A-7-5 (20)	,	•	•	•		•			•			•					
16	2	Dark gray silty CLAY		130-140	100	99 92	2 81	53	28 /	A-7-5 (19)	•	•		•	•	•	•		•		,	•			· 		
17 2	21 + 500	21 + 500 Dark sitty CLAY	NTP12	110-210	66	98 96	5 104	53	51 /	A-7-5 (20)			,	•	,	•	,		•	 ,	,						
18 2	23 + 000	23 + 000 Dark sity CLAY	NTP13	55-300	100	97 94	4 86	35	51 /	A-7-5 (20)	11.10	61.54	27.36	2.784	9	26.5 1	1.561	1.166	1 8	8.80 1	1.397	2	8.66 1.4	1.497	2 8.38	8 33.0	0

Table 6.5.14 Summary of Lab. Result for Test Pit Sample(1)

1					d %	% pass (mm)	(u	_				Hydroi	Hydrometer Analysis	nalysis				MDD				3 - Point CBR %	ht CBR	%				
	Station		Test	Denth		E	Ē	ā		ASHTO Soil	ios O			,0, m D	Sn Gr		OWO	T-180	9	10 blows	H	30 F	30 blows		65 blows	SWC	Π	
5 2	(km)	Field Material Description	Pit No.	(cm)	2.000	0.425	920.0	% %	%	Class	ss	(2.0- 0.06m m)	(0.06- 0.02m m)		avity	Shrin kage		g/cm³	g/cm ³ Density	CBR	Swell D%	De ns ity g/cm3	CBRS	Swell ^{g/}	Density Cl	CBR Sw	Swell %	NMC
19	24 + 000	Brow n to dark brow n silty CLAY	NTP14	50-160	26	92 8	83 74	4 40	34	A-7-5	(20)	-	'	,	1			-			,	,	,					
20	-	Dark sity CLAY		160-250	96	83	80 95	5 38	57	A-7-5	(20)	-	,	,	,		•		,	•								
51	26 + 500	26 + 500 Dark gray sity CLAY	NTP15	75-300	8	91 8	89 86	6 43	43	A-7-5	(20) 17.72	58.08	18.50	2.645	6	20.0	1.530	1.238	-	13.34	1.423	2	13.20 1.	1.522	2 12	12.37 53	53.0
ส	27 + 500	Dark sity CLAY	NTP 16	70-270	97	92 8	87 11	112 41	71	A-7-5	(20)	-	'	,			•											
23	20 + 000	Dark silty CLAY	ИТРИТ	50-250	67	92 8	87 75	5 38	37	A-7-5	(20)	- (,	•			•		'		•	'	•					
54		Dark gray slity CLAY		250-300	100	97	95 10	102 39	63	A-7-5	(20)	-	'	,	1			,			,		,					
25	<u> </u>	30 + 000 Dark sity CLAY	NTP 18	110-300	100	100	99 10	102 43	59	A-7-5	(20)	-	'															
26	32 + 000	Reddish brow n latteritic sity CLAY	NTP19	0-250	100	100	98 79	9 36	43	A-7-5	(20)) 23.65	48.35	28.00	2.759	14	26.3	1.450	1.106	-	4.04	1.347	т т	2.78 1.	1.429	0.0	0.99 35	35.0
27	34 + 500	Dark to dark brow n sity CLAY	NTP 20	0-300	100	66	97 88	8 42	46	A-7-5	(20)	-	'							1								
58	- 000 + 90			0-130	100	8	91 87	7 41	46	A-7-5	(20)	-	'		ı		•	,			,	,	,					
53	000 + 00	Light brow n silty CLAY w ith decoposed basaltic Gravel		130-250	92	83 7	77 89	6 6	50	A-7-5	(20)	-		•	•		•	•			•		•					
8	27 ± 600	Dark sity CLAY	ИПОЛО	0-140	86	<u>8</u>	91 93	3 41	52	A-7-5	(20)	-	'	,	1	•		,					,					
31	000 + 70	Light brow n silty CLAY mixed with decoposed basaltic Gravel	· · · ·	140-270	88	82 7	79 90	0 36	54	A-7-5	(20)	-	'	,														
32	38 + 500	Dark sity CLAY	NTP 23	50-270	67	93 6	92 78	8 46	32	A-7-5	(20)	-	'					,										
33	40 + 500	Reddish brown latteritic sitty CLAY	NTP 24	0-220	100	66	97 63	3 37	26	A-7-5	(18)	-	'	,														
8	42 + 500	Reddish brow n latteritic sity CLAY	NTP25	70-300	100	66	97 62	2 34	28	A-7-5	(20)	11.00	62.38	26.17	2.732	17	21.7	1.483	1.114	-	3.24	1.373	4	2.59 1.	1.473	9	1.15 3'	31.0
35	43 + 500	Basaltic GRAVEL mixed with light brown sifty CLAY	NTP 26	0-150	95	92 20	90 62	2 37	25	A-7-5	(18)	-	'	•	•		•	•			•		•					.
36		45 + 000 Light brow n sitty CLAY	NTP 27	50-250	100	100	97 63	3 39	24	A-7-5	(18)	-	'	'	·			1					,					
37	46 + 500	Dark brown silty CLAY with little Gravel	NTP 28	60-250	66	5 96	91 84	4 4	40	A-7-5	(20)	-		•			•			•			·					
38		48 + 000 Dark sity CLAY	NTP 29	0-300	86	95 6	94 10	106 48	58	A-7-5	(20)	-	'	'	'	,		'	'		,	'	,					,
39	49 + 500	Alluvial dark sitty CLAY with fine bunds of reddish silty CLAY	NTP30	0-240	100	66	98 10	100 57	43	A-7-5 (20	(20	9.80	61.58	28.62	2.783	4	29.0	1.385	1.126	7	9.88	1.324	5	8.39 1.	1.393	2 7.	7.85 36	36.0

Table 6.5.15 Summary of Lab. Result for Test Pit Sample(2)

.6		Sumn	har	уo	T I	_ab.	. K	lest	11t	ŤΟ	pr	les	t.
		NMC	46.0				41.0						43.0
		-	6.39			•	3.79						2.07
	65 blows	CBR Swel %	2			•	4			,	,	,	÷
L	65 t	Density g/cm3	1.474				1.527				,	,	1.383
R %		CBR Swell %	7.33			•	5.34				•		2.84
3 - Point CBR %	30 blows		2			•	e	'	'	'		,	9
3 - Po	8	Density g/cm3	1.370				1.453			ı			1.342
	8	CBR Swell %	8.85				6.55						3.86
	10 blows		-			,	7						7
		g/cm ³ Density	1.159	•	'		1.234						1.154
	No1 - 1	g/cm³	1.463				1.542						27.0 1.464
	OMC	%	24.0			'	23.5	'	,	'			27.0
2		Shrin kage	13			'	14						17
	Sp.Gr	avity	2.802			•	2.771				'		2.753
nalysis	Clav% Sp.Gr		26.23	,	'		24.01	'	'		,	,	29.44
c L		(0.06- 0.02m m)	56.55		'		53.89	1	1	1	,	1	60.16
Hydror	Sand%	(2.0- 0.06m m)	16.35		'		19.4			'	'		10.1
	O Soil	s	(20)	(20)	17)	(20)	20)	20)	20)	(17)	(20)	(20)	20)
	AASHTO Soil	Class	A-7-5 (A-7-5 (A-7-5 (A-7-5 (A-7-5 (A-7-5 (A-7-5 (A-7-5 (A-7-5	A-7-5 (A-7-5 (20)
	₫	%	4	37	8	8	31	32	98	53	31	31	8
	4		3 42	33	41	43	3 45	39	44	36	1 33	34	44
_	3	%	0 86	8 70	3 63	4 81	5 76	8 71	08 6	5 59	9 49	5 65	8 74
s (mm		920.0	94 90	100 98	97 93	96 94	87 85	86 66	68 06	100 95	93 89	97 95	100 98
% pass (mm)		0.425	6 66	100 10	100 9	97 91	97 8	100 9	92 91	100 10	-98 	.6 86	100 10
	Depth	(cm)	0-270	0-240	0-180	60-100	80-180	45-200	50-300	40-250	0-180	180-280	0-260
Tact		Pit No.	NTP31	NTP 32	NTP 33	NTP 34	NTP 35	NTP 36	NTP 37	NTP 38			NTP40
		Field Material Description	50 + 500 Dark silty CLAY	51 + 500 Light brow n latteritic silty CLAY	53 + 000 Light brow n latteritic silty CLAY	55 + 000 Reddish brown latteritic sitty CLAY	56 + 500 Light brow n sifty CLAY	57 + 500 Reddish brown latteritic silty CLAY	59 + 000 Reddish latteritic silty CLAY	Reddish latteritic silty CLAY	Reddish brown latteritic silty CLAY	Reddish brow n latteritic silty CLAY	63 + 000 Reddish brown latteritic silty CLAY
	Station	(km)	0 + 500 D.	1 + 500 Li	3 + 000 Li	5 + 000 R	ie + 500 Li	7 + 500 R	9 + 000 R	60 + 500 Re	E2 + 000		3 + 000 R
	n	Ŷ	40 5(41 5	42 5;	43 5!	44 56	45 5	46 59	47 6(48 6,	49	50 6;

Table 6.5.16 Summary of Lab. Result for Test Pit Sample(3)

• Shrinkage Test

Shrinkage limited is gotten by shrinkage test. Shrinkage limit shows moisture content when property of soil changes from plastic state to solid state. By the test result, shrinkage limit (SL) and shrinkage ratio(R) of black cotton soil and upper red soil are as follows.

		6	e	
Formation	SL (%)	R	Average SL (%)	Average R
Black Cotton Soil (BCS)	3.2~12.5	2.0~2.2	6.7	2.1
Upper Red Soil(URC)	14.1~16.8	1.9~2.0	15.7	1.9

Table 6.5.17 Shrinkage limit (SL) and Shrinkage ratio(R)

Between black cotton soil and upper red soil, average of shrinkage limit of upper red soil shows more than twice value compared with black cotton soil. This means that black cotton soil is clayey and its void ratio is large. On the other hand upper red soil is silty and its void ratio is small. Expansiveness of soil is calculated from shrinkage limit. It is very important factor for earthwork. By the Field Survey Manual of Ethiopia (ERA, 2002) and the Tanzanian Highway Design Manual(1999), the expansiveness of soil is calculated by next formula.

Eex = 2.4Wpm - 3.9Ws + 32.5

Eex = Expansiveness

Wp(%) = PI(Passing through 0.425mm sieve) / 100

Ws(%) = SL(Passing through 0.425mm sieve) / 100

These values are divided into 3 types based on the manuals mentioned above. This classification is utilized for check of quality of soil.

Expansiveness	Classification
< 20	Low
20 - 50	Medium
>50	High

Table 6.5.18Expansiveness

The expansiveness of each formation is shown in the next table.

Table 6.5.19 Result of Expansiveness Calculation

Km	Layer	Passing	LL	PL	PI	SL	Wp	Ws	Eex
		0.425mm	(%)	(%)		(%)	(%)	(%)	
4+000	BCS	99	89	38	51	11	50.5	10.9	111
13+500	BCS	92	80	38	42	8	38.6	7.4	97
23+000	BCS	96	86	35	51	6	49.0	5.8	128
26+500	BCS	85	86	43	43	9	36.6	7.7	90
32+000	URC	100	79	36	43	14	43.0	14.0	81
42+500	URC	99	62	34	28	17	27.7	16.8	33
49+500	UBC	100	100	57	43	14	43.0	14.0	81
50+500	BCS	95	86	42	44	13	41.8	12.4	85
56+500	UBC	86	76	45	31	14	26.7	12.0	50
63+000	URC	99	74	44	30	17	29.7	16.8	38

By the test result, expansiveness of all black cotton soil shows more than 85. It is classified into [high]. On the other hand, expansiveness of red silt shows between 33 and 81. It is classified into between [high] and [medium].

• Unconfined Compression Test

Unconfined compression test was carried out for 9 samples. The result is as follows.

BH No.	Layer	Compression Strength, qu (Kpa)
NBH1	BCS	69
NBH2	LC	231
NBH6	BCS	13
NBH10	URC	308
NBH11	BCS	44
NBH12	BCS	35
NBH13	UBC	104
NBH13-2	UBC	51
NBH18	UBC	32

Table 6.5.20 Compression Strength

BCS = black cotton soil, LC = Lower Clay, URC = upper red silt, UBC = upper brown silt

By the test result, qu value of lower clay (LC) and upper red silt (URC) show high values being 231(kpa) and 308 (kpa). These 2 samples are hard clay \sim silt with high N values being 10 \sim 15. On the other hand, qu values of black cotton soil (BCS) show very low values between 13 (kpa) and 69 (kpa).

• Tri-axial Compression Test (UU)

Tri-axial compression test was carried out for 8 samples. The result is as follows.

BH No.	Layer	Cohesion, C (kpa)	Angle of Internal Friction, ϕ (°)
NBH2	BCS	37	12
NBH3	BCS	42	16
NBH4	BCS	38	12
NBH10	URC	45	17
NBH11	BCS	28	14
NBH12	BCS	36	15
NBH13	UBC	12	7
NBH13-2	UBC	38	10

Table 6.5.21 Tri-axial Compression Test

BCS = black cotton soil, URC = upper red silt, UBC = upper brown silt

By the test result, upper red silt (URC) shows maximum value for cohesion and angle of internal friction among all samples. The cohesions of black cotton soil show between 36 (kpa) and 42 (kpa). And the angles of internal friction show between 12 and 16 $^{\circ}$.

Consolidation Test

Analysis of consolidation settlement was carried out for 3 sites of black cotton soil sections on the plateau near Dejen, valley plains in Abeya River and in Yeda River. The calculation is based on the Δe method. And next 4 cases of calculation were carried out corresponding to projected height of fillings. The calculation is as follows.

Height of fill, H = 1m	Fill, $\gamma t = 19.0 \text{ KN/m3}$	e 0= 0.8858
Width of top, Wt= 11m	Settlement layer, $\gamma t = 17.6 \text{ KN/m3}$	e f= 0.8487
Width of bottom, Wb=15m	Thickness of layer, $t=5.0m$	Cc = 0.07
Slope of fill = $1:2$	Ground water level = Nothing	

Table 6.5.22 Case 1, Dejen (NBH2)

Table 6.5.23 C	ase 2, Dejer	(NBH2)
----------------	--------------	--------

Height of fill, H = 3m	Fill, $\gamma t = 19.0 \text{ KN/m3}$	e 0 = 0.8858
Width of top, $Wt = 11m$	Settlement layer, $\gamma t = 17.6 \text{ KN/m3}$	e f = 0.7284
Width of bottom, $Wb = 23m$	Thickness of layer, $t = 5.0 \text{ m}$	Cc = 0.07
Slope of fill = $1:2$	Groundwater level = Nothing	

Table 6.5.24Case 3, Abeya River (NBH4)

Height of fill, $H = 5 m$	Fill, $\gamma t = 19.0 \text{ KN/m3}$	e 0 = 0.9764
Width of top, $Wt = 11 m$	Settlement layer, $\gamma t = 17.9 \text{ KN/m3}$	e f = 0.7284
Width of bottom, $Wb = 31m$	Thickness of layer, $T = 10.0m$	Cc = 0.482
Slope of fill = $1:2$	Groundwater level = -1.0 m	

Table 6.5.25 Case 4, Yeda River (NBH13)

Height of fill, H = 5m	Fill, $\gamma t = 19.0 \text{ KN/m3}$	e 0 = 0.907
Width of top, $Wt = 11m$	Settlement layer, $\gamma t = 16.9 \text{ KN/m3}$	e f = 0.560
Width of bottom, $Wb = 31m$	Thickness of layer, $t = 10.0m$	Cc = 0.258
Slope of fill = $1:2$	Groundwater level = $-1.2m$	

The result of calculation for quantity of settlement and the time for settlement are as follows.

Table 6.5.26	Result of calculation
--------------	-----------------------

Location	Dejen (NBH2)	Dejen ((NBH2)	Abeya (NBH4)	Yeda (NBH13)
Height of fill	H = 1m	H = 3m	H = 5m	H = 5m
Quantity	0.028 cm	0.067 cm	4.2 cm	25.1 cm
Time (90%)	490 months	494 months	903 months	119 months

The quantity of settlement of Yeda River shows maximum value. Because Yeda River often floods in rainy season and flooding time is longer compared with Abeya River. So that reason, the sediments of valley plain shows very low N value by weathering.

• CBR Test

CBR test was carried out for 10 samples selected among 44 test pits . The test result is as follow. Table 6.5.27 Result of CBR Test

TP No.	Layer	OMC (%)	MDD (g/cm3)	CBR (65 blows)	Swell (%)
NTP2	BCS	24.0	1.490	2	9.96
NTP7	BCS	17.0	1.510	2	7.95
NTP13	BCS	26.5	1.561	2	8.38
NTP15	BCS	20.0	1.530	2	12.37
NTP19	URC	26.3	1.450	9	0.99
NTP25	URC	21.7	1.483	9	1.15
NTP30	UBC	29.0	1.385	2	7.85
NTP31	BCS	24.0	1.463	2	6.39
NTP35	URC	23.5	1.542	4	3.79
NTP40	URC	27.0	1.464	11	2.07

BCS = black cotton soil, URC = upper red silt, UBC = upper brown silt

By the test result, CBR values of black cotton soil (BCS) show only 2. On the other hand, values of upper red silt (URC) show between 4 and 11. Swelling test is carried out to check the volume change of compacted sample after soaking. By the result of this test, swell value of black cotton soil (BCS) show between 6.39 and 12.37. On the other hand, values of upper red silt (URC) show between 0.99 and 3.79.By the standard of Japan Society of Soil Mechanics and Foundation Engineering, the swell is classified according to the values. It is as follows.

Condition of Subgrade	Swell (%)
Good Subgrade	1 under
Normal Subgrade	3 under
Bad Subgrade	3 over
Humus Soil	Between 7 and 20

Table 6.5.28 Swell

By the table, black cotton soil (BCS) is classified into bad soil. And upper red silt (URC) is classified into normal soil.

• Rock Test

Rock test was carried out for next 3 samples.

Table 6.5.29Compression strength

BH No.	Rock	Facies	Compression strength (MPa)
NBH4	Basalt	Highly weathered gravelly core	7
NBH7	Basalt	Fresh columnar core	25
NBH12	Basalt	Decomposed core	12

This result shows change of strength on the process of rock weathering. Generally, rock type is classified from A class to D class corresponding to degree of weathering. It is as follows.

Rock Grade	А	В	С	D
Compression Strength (MPa)	120 over	$25 \sim 120$	18.5 under	8 under

By this classification, sample of NBH4 is classified into D class. Sample of NBH7 is classified into B class. And sample of NBH12 is classified into C class. But N values of these rocks show more than 50. So these rocks are no problem as bearing layers.

11) The point of Black Cotton Soil for Execution

The characteristic of black cotton soil has very high expansiveness compared with normal fine materials. The expansiveness or swell is caused by change of natural moisture content during repeat of rainy season and dry season in a year. In the rainy season, Swell happens a companied with increase of water content in soil. On the other hand, shrinkage happens a companied with decrease of water content in the dry season. Deformation of ground surface is caused by this repetition. To compare the quantity of water content in soil for rainy season and dry season, it is necessary to get same sample coming from same geological and geomorphological condition site furthermore getting in same depth. So based on the same condition, the comparison of natural moisture content was carried out between samples getting at November, 2003 (dry season) and at September , 2010 (rainy season). The result is as follows.

Table 6.5.31Rainy Season (September, 2010), Black Cotton Soil

Location	BH No.	Depth (m)	Natural Moisture Content (%)
Plateau	NBH1	$2.0 \sim 2.5$	41.5
Plateau	NBH2	$2.0 \sim 2.5$	38.0

Table 6.5.32 I	Dry Season	(November,	2003), Black	c Cotton Soil
----------------	------------	------------	--------------	---------------

Location	BH No.	Depth (m)	Natural Moisture Content (%)
Plateau	BH10	2.0 ~ 3.0	31.0

By the result, moisture content in the rainy season increases about $9 \sim 10$ % compared with the dry season. The relation between change of moisture content and the result of shrinkage test is shown in Table 2.2.2.15. In the table, linear shrinkage value is converted from volume change in shrinkage test into linear change. By the result, when moisture content increases 10 %, linear shrinkage also increases between 2 % and 6 %.(average value 3.6 %). In opposite sense, when moisture content decreases 10 %, linear shrinkage decrease in same ratio to square of side 1 m. Generally, influence of change of moisture content reaches only few meters from the ground surface except cold district. The repetition of swell caused deformation of ground surface. To resolve this problem, black cotton soil should be replaced with low expansive soil or required soil improvement with mixing lime. Furthermore, slope drainage on the road is needed for protect permeation of water to the shoulder of road and the filling slope.

N	Sta. (Km)	Denth (m)	6 1 T	NMC(%)	ST (8())	n	NM	AC	N	MC+10	%	Ν	MC+20	%	NMC+30%		
No.	Sta. (Km)	Deptn(m)	Soil Type	NMC(%)	SL(%)	R	C(%)	Ls(%)	C(%)	Ls(%)	Rise(%)	C(%)	Ls(%)	Rise(%)	C(%)	Ls(%)	Rise(%)
NTP2	4+000	0.6-2.4	Black Cotton	38.0	11.2	2.1	56.3	14.0	77.3	18.0	4.0	98.3	21.0	7.0	119.3	23.0	9.0
NBH1	5+060	2.0-2.5	Black Cotton	41.5	3.2	2.1	80.7	18.0	101.9	21.0	3.0	123.0	23.0	5.0	144.0	26.0	8.0
NTP7	13+500	0.7-1.4	Upper Brown clay	38.0	8.1	2.3	68.8	16.0	91.8	20.0	4.0	114.8	22.0	6.0	137.8	25.0	9.0
NBH2	14+560	2.0-2.5	Black Cotton	40.0	2.8	2.2	81.8	18.0	103.8	22.0	4.0	125.8	24.0	6.0	147.8	26.0	8.0
NBH3	20+080	2.0-2.5	Black Cotton	38.0	1.9	2.2	61.8	15.0	101.4	21.0	6.0	123.4	23.0	8.0	145.4	26.0	11.0
		3.0-3.5	Black Cotton	45.0	4.4	2.1	85.3	19.0	106.3	22.0	3.0	127.3	24.0	5.0	148.3	26.0	7.0
NBH4	22+040	2.0-2.5	Black Cotton	37.8	3.8	2.1	71.4	17.0	92.4	20.0	3.0	113.4	22.0	5.0	134.4	25.0	8.0
		2.5-3.0	Black Cotton	34.7	7.3	2.1	57.5	14.0	78.5	18.0	4.0	99.5	21.0	7.0	120.5	23.0	9.0
NTP13	23+000	0.5-3.0	Black Cotton	33.0	5.7	2.3	62.8	15.0	85.8	19.0	4.0	108.8	22.0	7.0	131.8	25.0	10.0
NTP15	26+320	0.7-3.0	Black Cotton	53.0	9.2	2.1	92.0	20.0	113.0	22.0	2.0	134.0	25.0	5.0	155.0	27.0	7.0
NBH6	26+500	2.5-3.0	Black Cotton	40.1	6.2	2.0	67.8	16.0	87.8	19.0	3.0	107.8	22.0	6.0	127.8	24.0	8.0
NTP19	32+000	0.0-2.5	Upper Red Clay	35.0	15.1	1.9	37.8	10.0	56.8	14.0	4.0	75.8	17.0	7.0	94.8	20.0	10.0
NTP25	42+500	0.7-3.0	Upper Red Clay	31.0	16.8	1.9	27.0	8.0	46.0	12.0	4.0	65.0	15.0	7.0	84.0	19.0	11.0
NBH10	44+060	2.0-2.4	Upper Red Clay	35.3	15.1	1.9	37.4	10.0	57.4	14.0	4.0	76.4	17.0	7.0	95.4	20.0	10.0
NBH11	47+420	2.5-3.0	Black Cotton	42.3	6.8	2.1	74.6	17.0	95.6	20.0	3.0	116.6	23.0	6.0	137.6	25.0	8.0
NBH12	48+900	2.0-2.5	Black Cotton	43.1	7.8	2.0	70.6	16.0	90.6	20.0	4.0	110.6	23.0	7.0	130.6	25.0	9.0
NBH13	49+200	2.0-2.5	Black Cotton	30.5	10.7	2.0	39.6	10.0	59.6	14.0	4.0	79.6	18.0	8.0	99.6	21.0	11.0
NTP30	49+500	0.0-2.4	Upper Brown clay	36.0	14.1	1.9	41.6	11.0	60.6	15.0	4.0	79.6	18.0	7.0	98.6	21.0	10.0
NBH13-2	50+200	2.0-2.5	Upper Red Clay	21.3	2.5	2.1	41.6	11.0	60.6	15.0	4.0	79.6	18.0	7.0	98.6	21.0	10.0
NTP31	50+500	0.0-2.7	Black Cotton	46.0	12.5	2.1	30.4	16.0	91.4	20.0	4.0	112.4	22.0	6.0	133.4	25.0	9.0
NTP35	56+500	0.8-2.3	Upper Red Clay	41.0	14.4	2.0	53.2	13.0	73.2	17.0	4.0	93.2	20.0	7.0	113.2	22.0	9.0
NTP40	63+000	0.0-2.6	Upper Red Clay	43.0	18.3	1.9	46.9	12.0	65.9	16.0	4.0	84.9	19.0	7.0	103.9	21.0	9.0

Table 6.5.33 Relation between Natural Moisture Content and Linear Shrinkage

12) Material Survey

Material survey is divided into quarry for concrete aggregate and borrow pit for filling material. These existing sites and candidate sites are shown in Table 6.5.34 and Table 6.5.35. New quarry and borrow pit were selected among accessible undeveloped site by car except cultivated land and grazing land. Almost hills and slopes are utilized as settlement and cultivated land along the route. So that reason, the candidate sites are very limited.

Site No.	Location	Offset from A-3 trunk Road	Coordinate	Rock Type	Length (m)	Width (m)	Height (m)	Volume m3 (approximate)	Type of work on site
	Between Ambesh R. and Yeda R.		0369476E	Black, fine and jointed					Sampling of rock
Q-1	(Crusher plant of ERA)	0.2Km to the South	1136555N	hard basalt	200	200	15	600,000	(pending)
	Between Chemoga R. and Ambesh		0368376E	Weathered basalt with					Not good
Q-2	R.	3.5Km to the North	1141783N	red soil	400	100	-	-	(cancelled)
	Between Chemoga R. and Ambesh		0364818E	Black, fine and jointed					Boring (10m)
Q-3	R.	4.0Km to the South	1133488N	hard basalt	300	300	20	1,800,000	pending
	Between Bogena R. and Abeya R.		0387855E	Black, very hard					
AD-2-1	(Old Quarry)	0.7Km to the South	1130293N	massive basalt	200	200	20	800,000	Sampling of rock
			0392975E	Weathered basalt with					Not good
AD-3	Between Aba Adem R. and Taba R.	1.0Km to the South	1129553N	red soil	100	100	10	100,000	(cancelled)
	Between Bechet R. and Asametech		0407230E	Weathered basalt with					Not bad
AD-4-1	R. (North of Yetnora village)	3.5Km to the North	1134558N	red soil	300	300	20	1,800,000	(pending)
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Black fine and jointed					u e/
AD-4-2	Ditto	3.0Km to the North	ditto	hard basalt	200	200	20	800,000	Boring (10m)
			0404942E	Gray black porous					
Q-4	Located beside Link Road 23	4.0Km to the North	1135268N	Basalt	400	400	10	1,600,000	Boring (10m)
	South of Dejen Town (ERA's	1.0Km from center of	0407675E	Black fine and jointed					
Q-5	Quarry)	Dejen town	1122318N	hard basalt	400	100	20	800,000	Sampling of Rock

### Table 6.5.34List of Quarry Site between Dejen and Debre Markos

Table 6.5.35	List of Borrow Pit Site between Dejen and Debre Markos
1 abic 0.0.00	List of Dorrow 110 Sile between Dejen and Debre markes

Site No.	Location	Offset from A-3 trunk Road	Coordinate	Rock Type	Length (m)	Width (m)	Height (m)	Volume in m3 (approximate)	Type of work on site
B-1	Between Ambesh R. and Yeda R. (below Q-1)	0.0Km beside A-3	0369683E 1136453N	Red soil with gravel	200	300	30	1,800,000	Test Pit (H=5m) PENDING
AD-5	Between Ambesh R. and Yeda R. (Borrow pit of ERA)	0.4Km to the west	0369336E 1135665N	Red soil with gravel and highly weathered Basalt	300	100	20	600,000	Sampling of Soil at 2 sites PENDING
B-2	Between Getla R. and Bogena R. (West of Lumame town)	0.0Km beside A-3	0377378E 1131683N	Red soil with gravel and highly weathered Basalt	200	200	20	800,000	Sampling of Soil at 4 sites
AD-1	Between Bogena R. and Abeya R. (East of Lumame)	0.5Km to Old A-3	0385950E 1132292N	Red Soil with rgavel	200	100	20	400,000	Test Pit (H=5m)
AD-2-2	Between Bogena R. and Abeya R.	0.0Km Beside A-3	0387538E 1131597N 0408162E	Red soil with gravel Highly weatheaed	200	100	30	600,000	Test Pit (H=3m)
AD-6	Noth of Yetmen Village	18.0Km to the north	1148817N	Basalt with clay	200	200	20	800,000	Sampling of Soil

• Result of Laboratory Test for Concrete Aggregate

The test result is shown in Table 6.5.36. The materials for test are gotten in operating or temporary quarry except Q4 site. Q4 site is wasteland outcropping basalt. On the site Q4 and AD4-2, borings were carried out to get samples of basalt. The content of laboratory test is as follows.

Density and Absorption Test (AASHTO T-85)

Los Angeles Abration Test (AASHTO T-96)

Crushing Strength Test (BS812)

Soundness Test (AASHTO T-104)

Sr No	Location (Km)	Site№	type of Sample	Geological Formation			nd Absorptio HTO T-85)	n	Los Ang Abrati (ASHTO	ion	Crushing Strength (BS 812 : 1990)	Soundness (Na2SO4) (ASHITO T-104)	
110	(111)		Sumpre		Density (Dry)	Density (SSD)	Apparent Density	Absorption (%)	Grading Class	LAA %	ACV %	Soundness Loss %	
1	South of Dejen1.4km	Q5	Block Core	Jointed Basalt	2.892	2.936	3.026	1.5	В	14	11	0.5	
2	6+780, Rt. 4.4km	Q4	Block Core	Jointed Fresh Basalt	2.741	2.819	2.973	2.8	В	14	13	0.5	
3	9+000, Rt. 2.3Km	AD4-2	Block Core	Slightly Weathered Basalt	2.922	2.966	3.057	1.5	В	12	11	1.1	
4	24.6Km, Lt. 700m	AD2-1	Block Core	Porous Basalt Forming Cliff	2.834	2.882	2.976	1.7	В	15	15	0.7	
5	6.78Km, Rt. 18km	AD6	Block Core	Yellowish Gray Meta-Basalt	2.889	2.938	3.040	1.7	В	12	11	0.7	

# Table 6.5.36 Result of Laboratory Test for Quarry Material

# - Density and Absorption Test

Generally density of concrete aggregate is between 2.55 and 2.7 and absorption of it is between 0.5 % and 3.5 %. By the test result, the density is between 2.741 and 2.992 and absorption is between 1.5 % and 2.8 %. So this basalt is no problem as concrete aggregate.

## - Los Angeles Abration Test

This test is utilized for check of stability as aggregate for pavement. By the Japanese Industrial Standard (JIS), limit of abration for pavement is 35 %. By the test result, the abration is between 12 % and 15 %. This basalt is no problem as concrete aggregate.

# - Crushing Strength Test

This test is carried out to check the strength of aggregate. By the Japanese Industrial Standard (JIS), crushing value should be under 30 % for fine aggregate. By the test result, crushing value is between 11 % and 10 %. So this basalt is no problem as concrete aggregate.

### - Soundness Test

This test is carried out to check the durability for weathering. By the specification of concrete based on the Japan Road Association, the loss of mass should be under 10 % for fine aggregate and under 12 % for coarse aggregate. By the test result, the loss of mass is between 0.5 % and 1.1 %. So this basalt is no problem as concrete aggregate.

Result of Laboratory test for Filling Material

Filling materials are gotten on hills and hill slopes without land use. These materials contain upper red soil (URC) and highly weathered decomposed basalt (DBa). The laboratory tests were carried out for specific gravity, moisture content, Atterberg limit, CBR test and permeability test. The test result is shown inTable 6.5.37, and Table 6.5.38. Furthermore CBR test was carried out for lime mixing black cotton soil to check the change of strength. The test result of CBR is shown in

## Table 6.5.39.

Table 6.5.37Result of Laboratory Test for Borrow Pit Material (1)

	Specific LS		3.61 2.833 19	3.30 2.824 18	2.90 2.758 18	0.17 2.823 16	10.29 2.739 19	0.10 2.869 14	10.29 2.852 20		0.35 2.799 13	2.799 2.799
	ows	CB R R S W	4 3.	7 3.	7 2.	89 0.	2 10	85 0.	2 10	_	100 0.	
	65 blows	Density (	1.431	1.517	1.503	2.063	1.334	2.003	1.391	1 040 1		
۲%		Swell I %	5.44	4.20	4.11	0.21	10.29	0.42	10.29	38		
3 - Point CBR %	30 blows	e B ~	ю	9	9	78	5	51	7	62	-	_
107 - C	30	Swell Density CB % g/cm ³ R	1.347	1.434	1.432	1.987	1.271	1.916	1.347	1 957		1.677
		Swell %	6.76	4.64	5.60	0.33	10.29	0.58	10.29	0.80	20.0	2.57
	10 blows	R CB	-	2	5	35	2	36	2	17		3
	9	Density g/cm3	1.211	1.230	1.257	1.861	1.120	1.808	1.208	1.747		1.491
MDD	T-180	g/cm ³	1.525	1.468	1.548	2.050	1.350	1.970	1.430	1.980		1.770
	0 MC	•	35.0	25.0	29.0	10.8	28.0	15.5	28.5	15.3		22.0
se	Sit% Clay%	(0.06-0.02 (<0.002 mm)	31.76	25.42	25.76	2.60	29.81	1.43	14.63	1.93		8.99
Particl Size	Silt %	(0.06-0.02 mm)	61.07	62.39	63.22	11.04	62.33	12.84	54.35	10.95		26.41
Pa	Sand%	0.06 mm)	4.17	12.19	11.02	24 A-2-7 ( 0 ) 15.97	7.70	21.87	17.00	17 A-2-7 ( 0 ) 17.31		11.54
	ation	(OL	20)	20)	20)	( 0	(20)	( 0	( 19	( 0		5 )
	Soil Classification	(OTH SAS)	A-7-5 (20)	29 A-7-5 ( 20 )	A-7-5 ( 20 )	-2-7 (	A-7-5 (	A-2-7 ( 0 )	A-7-5 ( 19 )	-2-7 (		A-7-5 ( 5 )
	E E		33 A	29 A	29 A	24 A	32 A	18 A	28 A	17 A		27 A
	PL.		41	39	37		48	36	47	38		37
	۴E	۹	74	68	66	61 37	80	54	75	55		64
(uu	s	20.0	95	98	98	15	95	16	73	14		38
% pass (mm)	s	24.0	96	66	66	20	100	22	62	19		40
~	0	00.2	1 97	100	100	30	100	36	86	30		47
	Depth		0.0 - 3.0n	0.0 2.000	IIN.C - N.N	IS	8	8	苏	SI		
	Geological	LOLINATION	Reddish brown clayey 0.0 - 3.0m 97 silt	Reddish brown sand,	clayey silt	Yellowish brown silty gravel	40.60,Rt. Yellowish,grayish sandy, clayey silt	Grayish brown silty gravel	Brown gravelly silt	6.78Km, Yellowish, grayish	Kt. I 8 km   brown silty gravel	kt. 18km   brown silty gravel Blend of 40% AD6 with 60% AD1
	Location (km)		AD2-2 25.46, Rt.	28.00, Lt.	700m		40.60,Rt.			6.78Km,	Rt. 18km	Rt. 18km Blend of 40
	Site M		AD2-2		IN		B2		_	AD6		
	Sr.	2	2	5	9	1	2	ŝ	4	8		6

	vs Specific LS Gravity %	Swell %	1.97 2.687 18	0.94 2.709 20	2.98 2.725 20	4.45 2.786 20	2.12 2.786 19	4.04 2.941 19	2.02 2.732 18	1.11 2.865 18	2.38 2.890 18	3.77 2.900 16	0.94 2.793 11	3.42 2.741 20	5.96 2.915 18	
	65 blows	Density CB g/cm ³ R	1.434 15	1.494 19	1.428 6	1.482 4	1.654 11	1.468 4	1.530 11	1.507 13	1.514 10	1.667 5	1.595 55	1.553 4	1.563 6	
3 - Point CBR %	30 blows	CB Swell R %	9 2.30	10 2.30	4 4.52	3 7.04	9 2.35	4 6.28	9 2.66	12 1.28	10 2.93	4 5.49	39 0.98	4 6.50	5 4.97	
3 - Poin	301	Swell Density % g/cm ³	1.343	1.410	1.357	1.392	1.601	1.393	1.399	1.465	1.456	1.551	1.499	1.439	1.496	tini Tana
	10 blows	CB Swel R %	1 2.43	4 2.47	2 5.14	1 7.10	3 2.66	3 7.86	3 3.20	8 1.71	7 3.48	4 6.02	10 1.02	2 7.51	3 2.44	
MDD	T-180	g/cm ³ Density g/cm ³	.400 1.202	1.500 1.280	.458 1.260	1.525 1.218	1.653 1.385	.480 1.238	1.520 1.254	.519 1.390	1.549 1.349	1.640 1.446	1.780 1.359	1.542 1.266	1.601 1.294	10-1 ···
W	0 MC T-1		26.0 1.4	30.5 1.5	29.0 1.4	26.5 1.5	25.5 1.6	29.5 1.4	30.0 1.5	32.0 1.5	27.5 1.5	20.2 1.6	19.3 1.7	27.0 1.5	27.5 1.6	
Size	Sit% Clay%	(0.06-0.02 (<0.002 mm) mm)		2 37.74		•	•	0 42.09	5 25.86	•		6 2.38	6 2.60	-	7 25.88	
Particl Size	Sand% Silt%	-		11.94 50.32	•	•	•	11.01 46.90	9.50 64.65	•	•	9.08 28.86	29.45 25.96		15.28 49.47	
	<u> </u>	(OTHSAA)	A-7-5 (19)	A-7-5 ( 20 ) 1	A-7-5 ( 20 )	A-7-5 ( 20 )	A-7-5 ( 16 )	A-7-5 (20) 1	A-7-5 (20)	A-7-5 ( 15 )	A-7-5 (19)	A-2-7 ( 2 )	19 A-2-7 ( 1 ) 2	A-7-5 (20)	30 A-7-5 (20) 1	
	LL PL PI %	۹	63 35 28	70 34 36	69 35 34	70 34 36	67 37 30	72 35 37	62 33 29	67 42 25	66 37 29	60 38 22	66 47 19	70 35 35	70 40 30	
% pass (mm)	S	24°0		98	96 26	76 66	65 63	96 66	93	67 65	75 72	34 32	35 30	95 93	100 96 88 7	
%	Depth (m)	00.2	0 - 1m (SI) 100 100 98	1 - 2m (S2) 100 99	2 - 3m (S3) 99	0 - 2m (SI) 100	2 - 3m (S2) 70	3 - 4m (S3) 100	0 - 1m (Sl) 96 95	1 - 2m (S2) 71	2 - 3m (S3) 80	S1 40	S1 58	SI 97	S2 100	Limit DI _Dloct
	Geological Formattion	tyey					Brown sandy, silt clay 2 - 3m (S2) 70		-	Keddish brown sandy	clayey slit,	Grayey silty gravel	11.36, Lt. Yellowish brown sifty 570m gravel	1.68, Lt. Reddish, Yellowish	800m brown sandy silt	11 انتشاط الشنياني العار من المن معنان المنتخل المال المراجعة ال
	Location (km)						2.00, M.	III V C. 7				11.36, Lt. 370m	11.36, Lt. Yellowi 570m gravel			
	Site Me						AD7	1	1	1	1	AD8	AD9			
	Sr.			7	m	4	S	9	5	∞	6	10	11	13		

 Table 6.5.38
 Result of Laboratory Test for Borrow Pit Material (2)

			sui			i te			IIxeu	14111.	le Da	in pr
		S well %	0.39	0.25	0.12	0.94	0.13	0.15	0.15	0.13	0.11	
	65 blows	CBR	6	11	17	11	19	50	L	31	64	
	9	Density g/cm3	1.308	1.415	1.495	1.636	1.554	1.509	1.435	1.401	1.404	
mple		S well %	0.18	0.13	0.21	86.0	0.25	0.21	0.21	0.18	0.12	
lime Sa	30 blows	CBR	4	14	17	9	12	20	9	16	42	
Mixed Lime Sample	3	Density g/cm3	1.260	1.392	1.473	1.564	1.454	1.432	1.346	1.329	1.330	
3 - Point CBR %	s	S well %	0.12	0.27	0.72	1.08	0.12	0.20	0.23	0.21	0.32	
- Point	10 blows	CBR	2	2	3	4	9	11	3	7	13	
ŝ	-	Density g/cm3	1.248	1.396	1.513	1.254	1.327	1.304	1.206	1.195	1.177	
	QQW	T-180 g/cm ³	1.505	1.501	1.490	1.562	1.560	1.540	1.448	1.395	1.369	
	OMC	%	25.0	25.0	24.0	18.0	23.0	23.0	30.0	33.0	32.0	
t	BR	Id	28	17	14	20	12	5	24	11	٢	y
t Tes	After CBR	PL %	51	48	50	47	47	46	47	46	46	ensit
Limi	Afi	LL %	62	65	4	67	59	51	71	57	53	Ŋ D(
erg	BR	Η	19	10	14	25	11	7	23	13	4	ШD
Atterberg Limit Test	Before CBR	PL %	46	42	42	46	42	4	45	41	46	tximu
At	Bef	LL %	65	52	56	71	53	51	68	54	50	)=Ma
	Lime		2%	4%	6%	2%	4%	6%	2%	4%	6%	ent, MDI
	Geological Formation						Darkgray silty clay			NTP30 (ETP3) Darkgray silty clay with red silt band		OMC=Optimum Moisture Content, MDD=Maximum Dry Density
	Site点Me			NTP 2 (ETP1)			NTP 13 (ETP2)	, ,		NTP30 (ETP3)		
3	S 2		1	2	3	4	5	6	7	8	6	
						-						

 Table 6.5.39
 Resut of CBR test for Mixed Lime Sample

# - Filling Material

At the alluvial plain in Abeya River and Yeda River, enbankment with about 3m height is planed.. It is desirable that the material has enough strength, low compressibility and suitable natural moisture content. Furthermore trafficability is also important for earth work. Silty gravel in B2 site and sandy, silty red soil in AD1 and AD7 are suitable for filling material. Also gravelly soil in AD6 is suitable but the site is very far being 18 km from national road A3. Gravelly soil in AD9 is also good material but amount of reserves is very few. Upper red soil in AD7 has enough quantity and strength. So it is available for filling material.

## - Replacement Material

Along the route, black cotton soil is extensively distributed on the lowland and the plateau. As previously stated, black cotton soil has high expansiveness and low strength. So upper part of black cotton soil should be replaced with good soil. For replacement material, the property is provided by Ethiopian Field Survey Manual (ERA, 2002). as follow:

## CBR = over 5

By the test result, the materials of B2 (S3), AD6 and AD9 are silty gravels with CBR values over 5, and upper red silts in AD1, AD7 and AD10 show CBR value more than 5.

- Result of CBR Test for Mixed Sample with Lime

Special CBR test was carried out for black cotton soils of ETP1 ( Dejen on plateau), ETP2 ( Abeya River ) and ETP3 ( Yeda River ). These black cotton soils were mixed with lime at the rate of 2 %, 4 % and 6 %. By the test result, mixed samples at the rate of 4 % and 6 % changed their properties remarkably. The plasticity index shows under 20 and CBR value shows more than 5, and furthermore expansiveness declined notably. But it seems that use of this material causes big increase of construction cost.

# - Result of Permeability Test

The permeability test results of AD1,AD6,AD7,AD9, and AD10 are shown in Table 2.2.2.21. More detailed investigation will be conducted in Detailed Design Stage.

Sr.№	TP №	Sample №	Depth (m)	Dry Density (kg/m ³ )	Coefficient of Permeability K(cm/sec)	Formation
1	AD7(TP1)	S-1	0.00-1.00	1375	2.50×10 ⁻⁵	Reddish brown clayey silt
2	AD7(TP1)	S-2	1.00-2.00	1380	2.53×10 ⁻⁵	Reddish brown clayey silt
3	AD7(TP1)	S-3	2.00-3.00	1364	2.47×10 ⁻⁵	Reddish brown clayey silt
4	AD7(TP2)	S-1	0.00-2.00	1368	2.49×10 ⁻⁵	Reddish brown clayey silt
5	AD7(TP2)	S-2	2.00-3.00	1362	2.46×10 ⁻⁵	Reddish brown clayey silt
6	AD7(TP2)	S-3	3.00-4.00	1392	2.50×10 ⁻⁵	Reddish brown clayey silt
7	AD7(TP3)	S-1	0.00-1.00	1360	2.46×10 ⁻⁵	Reddish brown clayey silt
8	AD7(TP3)	S-2	1.00-2.00	1380	2.23×10 ⁻⁵	Reddish brown clayey silt
9	AD7(TP3)	S-3	2.00-3.00	1390	2.44×10 ⁻⁵	Reddish brown clayey silt
10	AD9	S-2	-	1498	1.05×10 ⁻⁵	Yellowish gray silty gravel
11	AD10	S-1	-	1370	2.49×10 ⁻⁵	Reddish brown clayey silt
12	AD10	S-2	-	1395	2.48×10 ⁻⁵	Reddish brown clayey silt
13	AD1	-	-	1370	2.49×10 ⁻⁵	Reddish brown clayey silt
14	AD1+AD6	MixedSample	(40%+60%)	1834	4.69×10 ⁻⁵	Reddish brown silty gravel
15	AD1+AD6	M ixedSamp le	(60%+40%)	1794	4.19×10 ⁻⁶	Reddish brown clayey silt with gravel

Table 6.5.40Result of Permeability Test