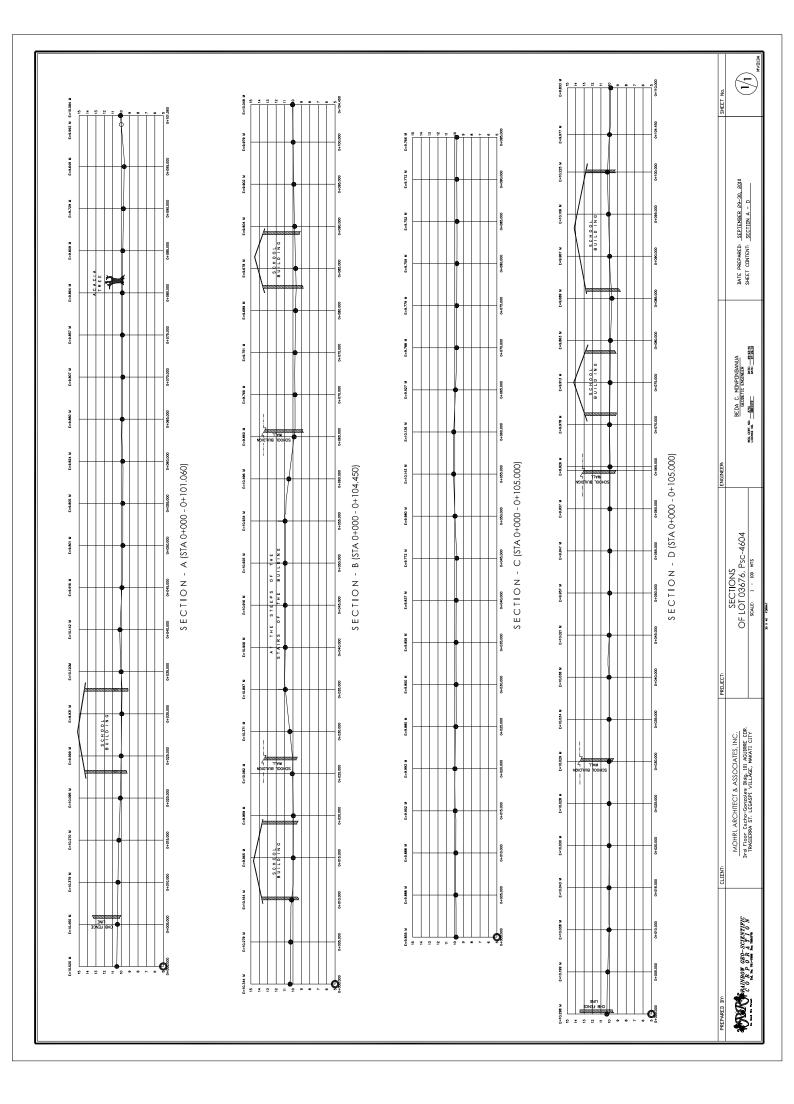
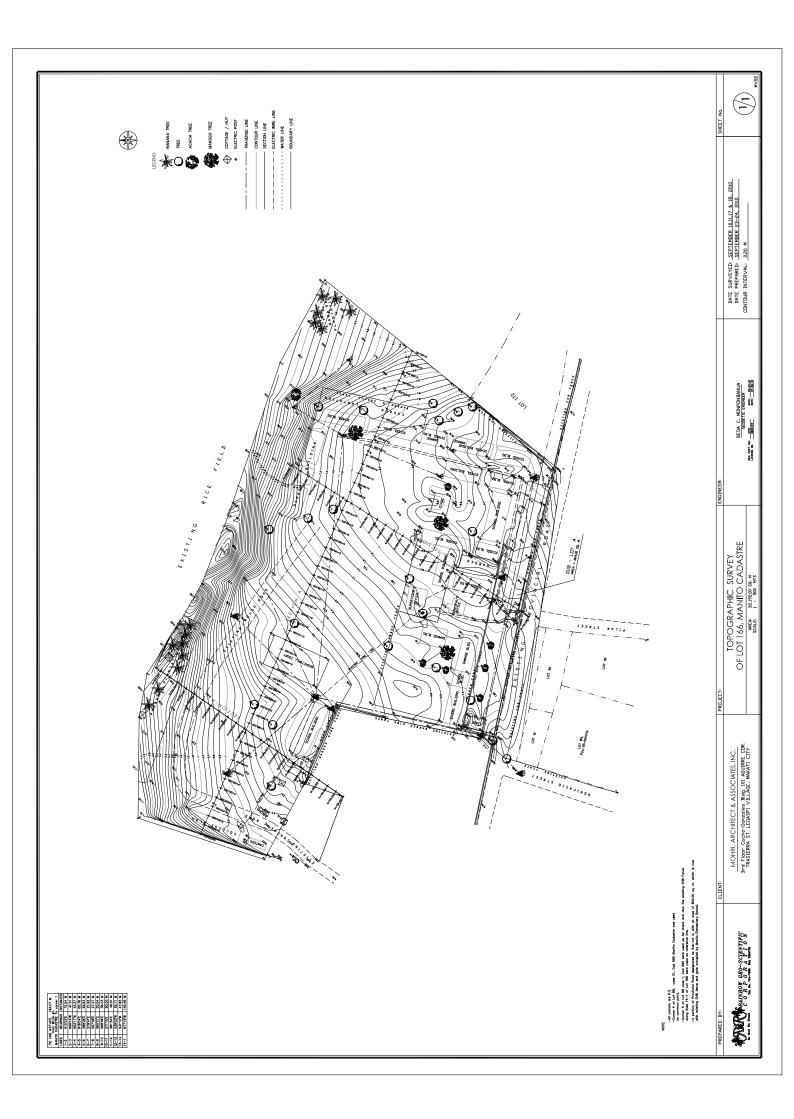
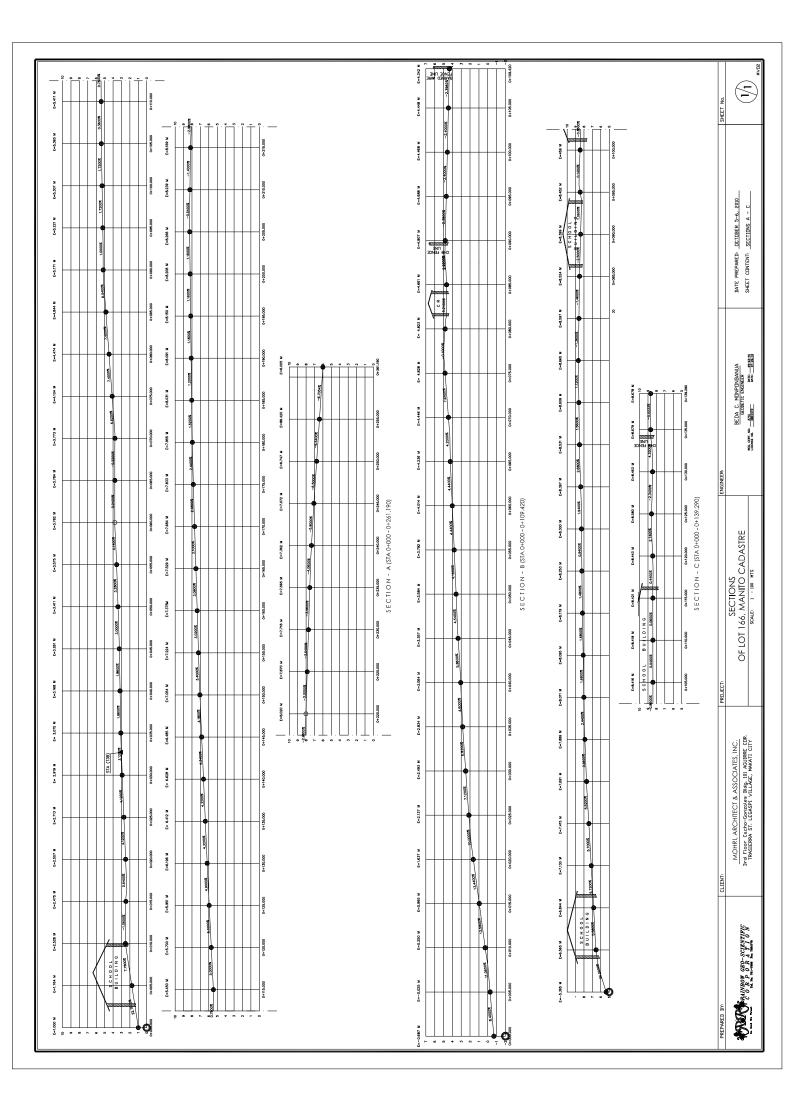
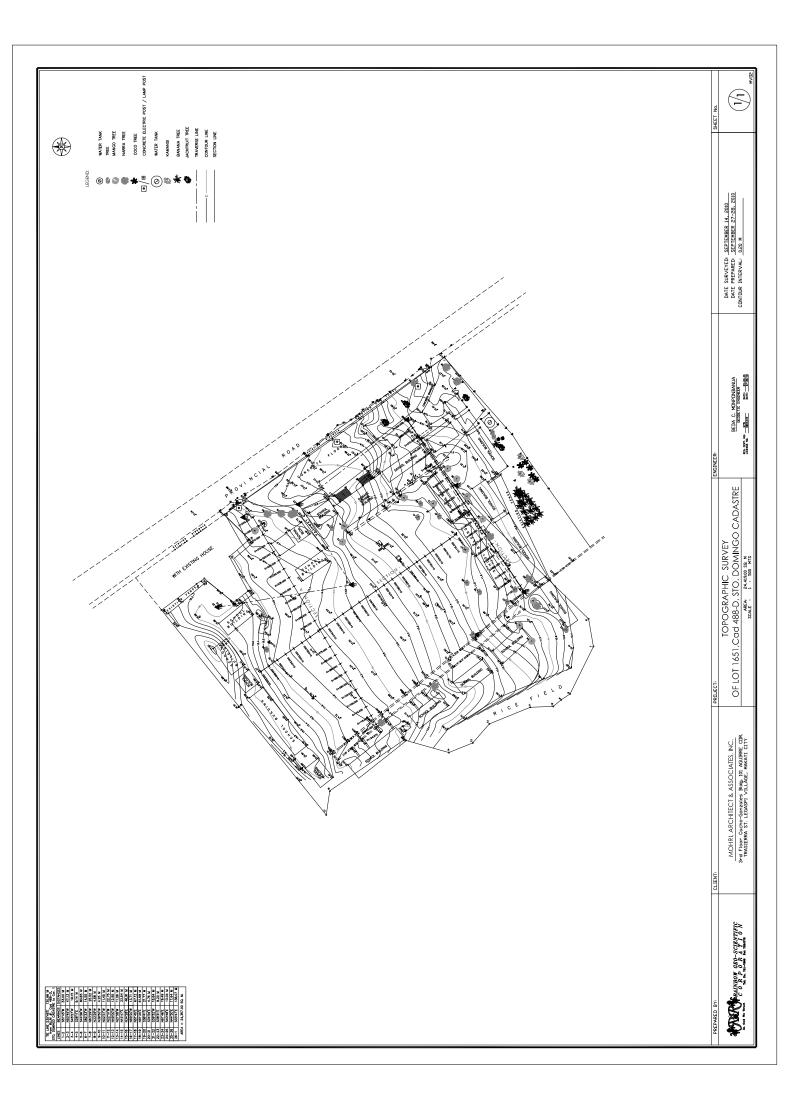
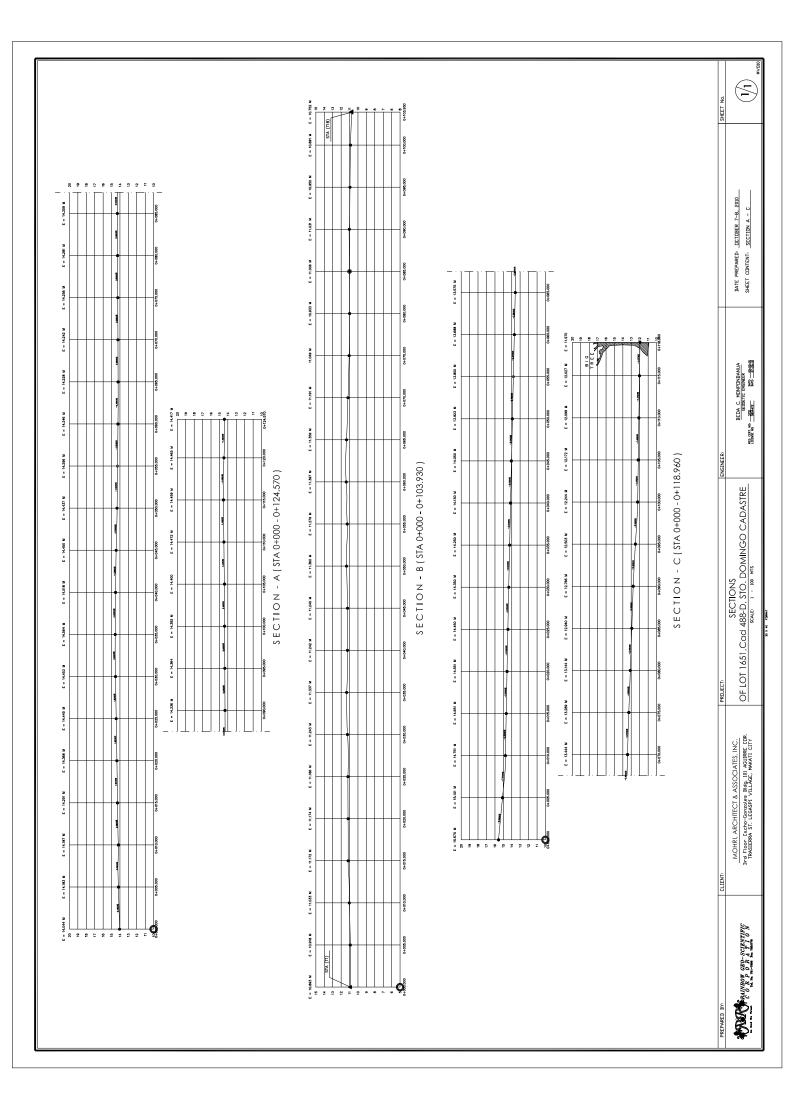

Ⅱ. 地形測量図/地質調査報告書

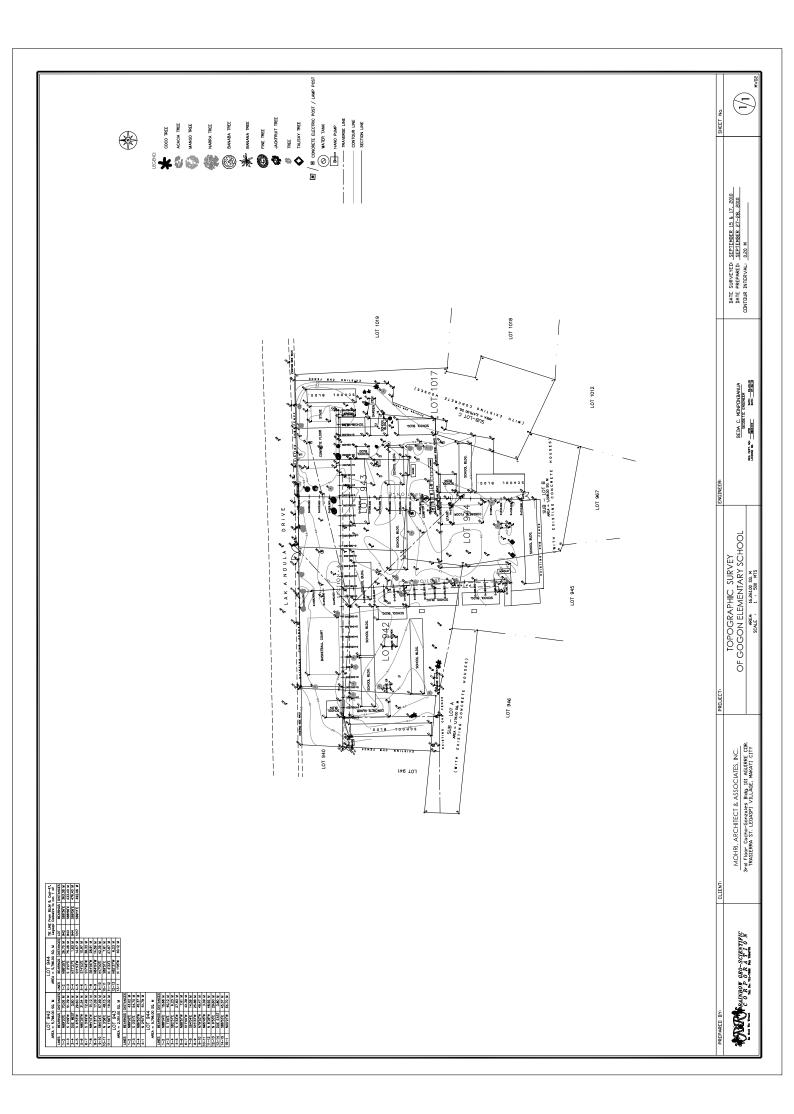


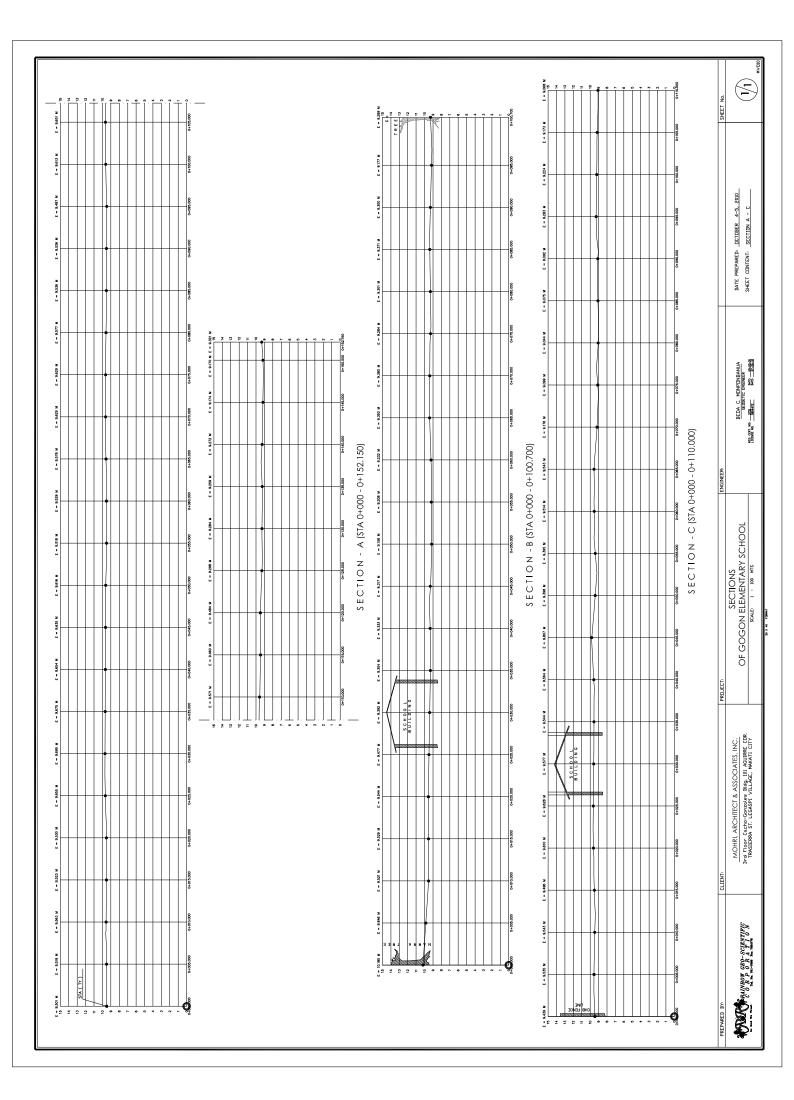












			DATE PREPARED <u>SEPTEMBER 22, 200</u> CONTOUR INTERVAL [,] <u>0.20 M</u>
			C SURVEY
- 5928 H		M [- 440 M [- 443 M [- 677 M [- 6477 M [- 6477 M [- 6447 M] - 6464 M]	CLIENT. MOHRI, ARCHITECT & ASSOCIATES, INC. and Floor Cacher-Generates Bldg, 101 AGUIREE CDR. TRANSLERG ST. LEGAST VILLAGE, MARATT CITY
			PREPARED BVI

FINAL REPORT

SUBSURFACE INVESTIGATION PROPOSED MAYON EVACUATION CENTER (3-STOREY) LIBON COMMUNITY COLLEGE BRGY. ZONE 4 LIBON, PROVINCE OF ALBAY

MOHRI, ARCHITECT & ASSOCIATES, INC.

OCTOBER 2010 JOB NO. 2209-10.R1

FINAL REPORT

TABLE OF CONTENTS

Contents

No. of Pages

1.0	INTRODUCTION	1
	FIELD AND LABORATORY TEST PROCEDURES	
	SITE SOILS AND OBSERVATIONS	
	ENGINEERING ANALYSIS AND CONSIDERATIONS	
5.0	CONSTRUCTION CONSIDERATIONS	1
6.0	CONCLUSIONS AND RECOMMENDATIONS	1
APP	ENDICES	
• Di	stribution of Active Faults and Trenches in the Philippines	1
• Ph	notos	1
• Lo	ocation Plan	1
• So	vil Profile	1
• Fi	nal Boring Logs	2
• Su	Immary of Test	1
	atural Moisture Content/Atterberg Limit	
	terberg Limit	
• G1	rain Size Analysis	8

Geotechnical Contractor

119 Sauyo Road, Novaliches Quezon City, Philippines

Customer Service Fax Homepage Email

Business development : 9306555 : 9382124/9353730 : 4561140 : www.geophil.com : jmcgpi@gmail.com

FINAL REPORT

SUB-SURFACE INVESTIGATION FOR THE **PROPOSED MAYON EVACUATION CENTER (3-STOREY)** LOCATED AT BRGY. ZONE 4 LIBON, PROVINCE OF ALBAY

1. INTRODUCTION

Geotechnics Philippines, Incorporated (GPI) completed the subsurface soil investigation for the proposed Mayon Evacuation Center. The proposed site explored is located at Brgy. Zone 4 Libon, Province of Albay.

Two (2) boreholes were drilled at the proposed site on October 16, 2010. Borings were undertaken down to 10m for both BH-1 and BH-2 below existing natural ground line. Borehole locations are as indicated on the accompanying Boring Plan and Soil Profile Sheets.

The subsurface soil exploration was undertaken upon the request of Mohri & PA Associates, Inc. in order to gain information on the subsurface conditions and bearing characteristics of the underlying soils at site.

The undersigned was tasked to evaluate the results of the completed subsurface soil exploration and to recommend a suitable foundation solution for the proposed structure.

This report embodies the undersigned's engineering analysis and recommendations based mainly on the results of the geotechnical soil borings and pertinent laboratory tests performed on extracted samples.

The results of geotechnical soil borings and laboratory tests can be referred to in the Attachments accompanying this report.

2. FIELD AND LABORATORY TEST PROCEDURES

Drilling Procedure

The boreholes were advanced by wash boring to the maximum boring depths. Standard Penetration Tests were conducted at every 1.5m interval or at change in soil formations. It consisted of driving a standard split spoon sampler of 5.08cm (2" 0.D.) diameter in three (3) successive 15cm (6") intervals using a drop hammer of 64kg (140 lbs) weight from a height of 76cm (30"). The number of blows required to penetrate 15cm are recorded successively until the third interval is penetrated. The first interval blow count is called as the seating drive and is discarded. The last two blow counts are added to give the Nvalue, a measure of the density or consistency of the soil layer. SPT procedures are conducted in accordance with ASTM D-1586. Undisturbed soil samples were taken in soft to stiff soil deposits for Natural Moisture Content (NMC) testing and particle size analysis of soil.

GEOTECHNICAL & GEOLOGICAL SURVEY / SEISMIC REFRACTION / MENARD PRESSUREMETER / CONE PENETRATION TEST / GROUND PENETRATING RADAR / PILE DYNAMIC & INTEGRITY ANALYSIS / CORE DRILLING / GROUND IMPROVEMENTS

2.2 LABORATORY TEST PROCEDURES

The following laboratory tests were performed on the soil samples taken from the site;

a. Classification of Soils (USCS) for Engineering Purposes	ASTM D 2487
b. Particle Size Analysis of Soil	ASTM D 422
c. Determination of Moisture Content of Soils	ASTM D 2216
d. Liquid Limit of Soils	ASTM D 4318
e. Plastic Limit of Soils	ASTM D 4318

3. SITE SOILS AND OBSERVATIONS

The soil profile indicating the completed two (2) boreholes is attached in this report. Standard Penetration Tests (SPT) indicate shallow layers of very loose poorly graded sand with silt (SP-SM) at depth 2.0m from the existing natural ground line. Drill intersections indicate deposition of fat clay (CH) with intervening layers and pockets of silty sand (SM) with traces of gravel down to a depth of 10m. A layer of silty clay (CH) may also be found within this depth. Trend of N-values generally shows increasing consistency and density with increasing depth. However, it is important to note the existence of relatively looser soils in deeper layers especially in BH-2.

Groundwater table (GWT) levels can be found at a depth of 0.75m for BH-1 and 1.57m for BH-2 reckoned from the existing natural ground line at the time of borings. Thus, excavation may possibly be in wet condition unless otherwise controlled as the detected GWT is fairly within the depths of excavation of proposed foundation elements.

4. ENGINEERING ANALYSIS AND CONSIDERATIONS

SPT N-values of 2 to 4 at a depth from 0 to 2.00 show very loose silty sand, thus shallow foundations to rest on the topmost loose formation (above 2-m) is not permitted. However, directly beneath is a layer of medium dense clayey and silty sand (SC-SM) with thickness ranging from 2m to 4m. Shallow foundations are possible to rest at 2.0m depth to bypass the relatively loose layers of poorly graded sand. This loosee sand have to be removed and replaced with selected granular fill preferably well graded. An engineered fill has to be compacted at 95% of the soil's maximum dry density (95% MDD) in 300mm lift.

These shallow foundations shall be in the form of a isolated footing stiffened by a structural tie beam cast in place between column. The system will essentially function as an integrated foundation. The rigidity will assist in bridging across localized settlements and assuring uniform settlement of the structure.

The spread footing shall be proportioned and designed based on a net Allowable Bearing Capacity of 96 kPa (2000 psf). The effect of overburden shall be added to obtain the allowable gross bearing capacity. Where necessary, depending on the final design on the reactions of the building, and due to the low bearing capacity, a mat foundation may also be adopted as an alternate solution to spread footing to support the building foundation. The mat foundation should be made to maintain nearly uniform pressure to avoid differential settlements. For settlement analysis, a compression index of 0.54, modulus

P a g e | 2 Proposed Mayon Evaluation Center Libon, province of Albay of elasticity of 6 Mpa, and a Poisson's ratio of 0.35 may be used. Soil unit weight of 12 kN/m³ and an angle of internal friction of 28 degrees may be used for shallow foundation calculations.

The floor slabs should not be connected to more rigid elements of the structure such as walls and columns, and should be allowed to settle independently of the building.

This solution, however, is not without possible problems. The relatively poor deposits underlying the site are within the zone of influence of shallow foundations. These poor soil deposits together with the intervening pockets of loose to very loose sands pose a potentially liquefiable and therefore a risk during a significant seismic event. The nature of the soil formations, however, requires considerable earthquake magnitude and epicentral distance to cause soil liquefaction. Hence, settlements can be expected as well as the inherent danger of liquefaction.

5. CONSTRUCTION CONSIDERATIONS

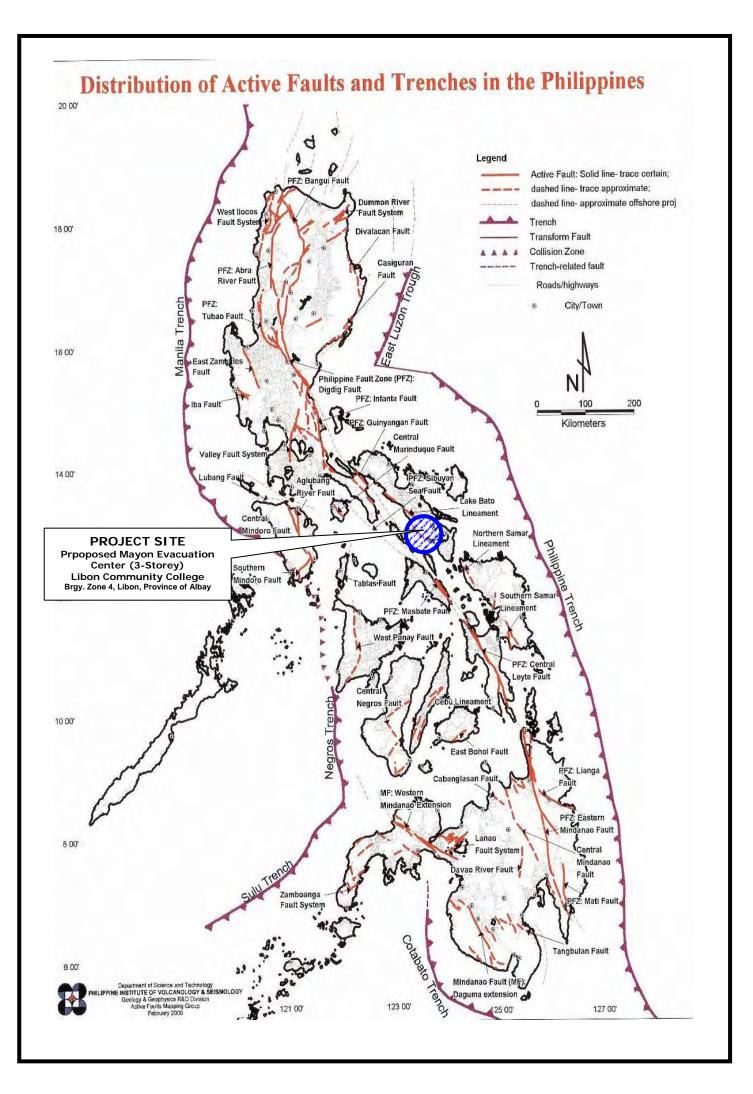
The shallow water table poses a problem during foundation construction. Adequate number of dewatering equipment should be provided in order to allow excavation in almost dry condition. Likewise, concreting shall also be done in the dry condition by dewatering the foundations continuously.

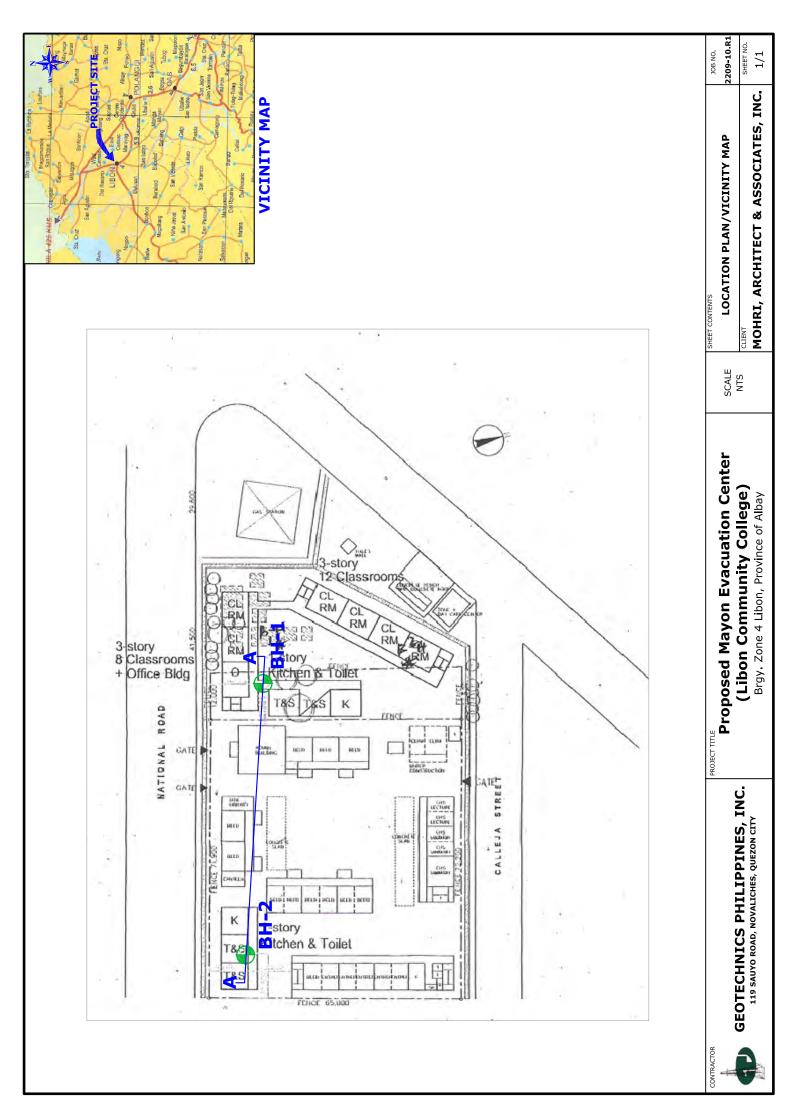
Engineered fill shall be compacted using a vibratory plate compactor of adequate size As previously noted, floor slabs should not be connected to more rigid elements of the structure such as walls and columns, and should be allowed to settle independently of the building.

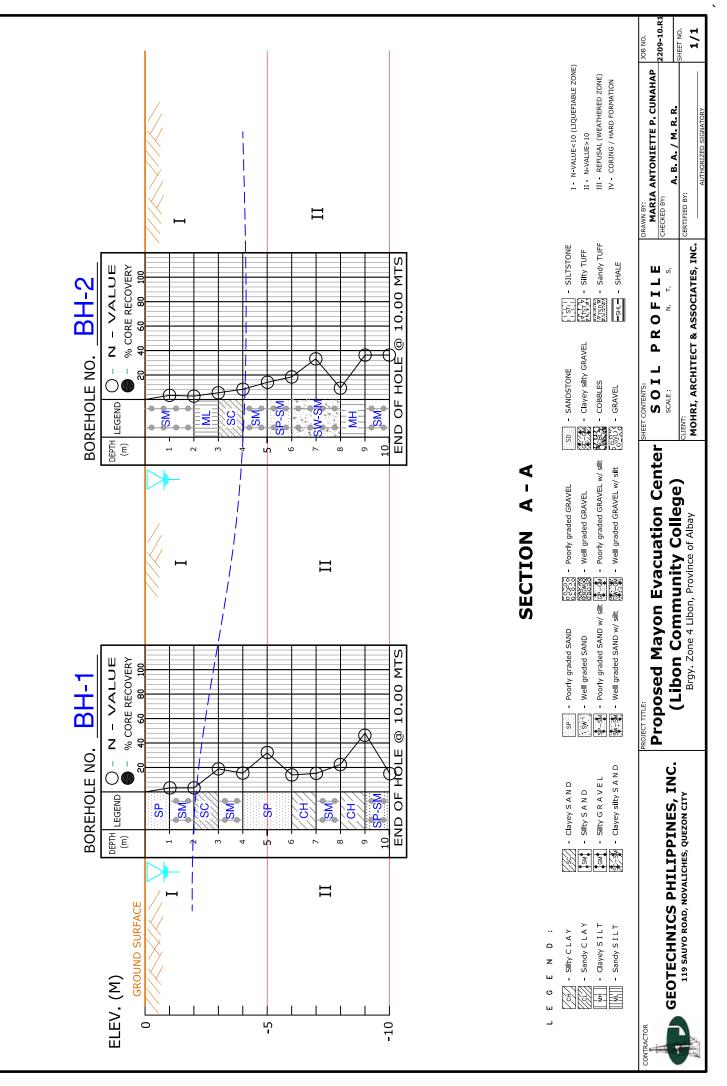
6. CONCLUSIONS AND RECOMMENDATIONS

The spread footing or mat solution may be adopted, the foundation are subject to settlements and possibility of liquefaction due to poor soil deposits underneath. Although the mat will minimize the effect if the cited recommendations are followed by the engineer on record of the structure. The economics for using shallow foundations is considered in the design of the proposed 3-storey structure.

The recommendations submitted in this report are based in part upon the data obtained from a limited number of soil samples. The nature and extent of variations between explorations may not become evident until construction or further investigation. If the variations are of considerable magnitude, it will be necessary to reevaluate the recommendations in this report.


This report has been done by the undersigned in accordance with generally accepted Engineering Principles and Practices.


If you require additional comments or clarifications pertaining to the recommendations, the undersigned will be pleased to comply.


DIOSDADO A. URENA CE Reg. No. 053884 PTR No. 3228274 Issued on January 8, 2010 Issued at Quezon City

Description of Strata is according to Unified Soil Classification System

GEOTECHNICS PHILIPPINES, INCORPORATED SOILS AND MATERIALS TESTING LABORATORY 119 SAUYO ROAD, NOVALICHES, QUEZON CITY TEL. NO. 938-2124 \ 456-1140 \ 930-6555

						P	n y	-				119 SAUYO R TEL. NO. 93											DPWH-	BRS Accredited
CLIEN	IT	MOHR	I, ARC	HITECT	& ASS	OCI/	ATE	s , 1	INC												BOREHOLE N	10.	BH- 1	
PROJE	СТ	Propos	sed Ma	yon Eva	acuatio	on Ce	ente	er (I	Libo	on C	Comm	nunity Colleg									JOB NO.	22	09-10.R1-FBL	-01
LOCAT	TION	Brgy.	Zone 4	Libon,	Provin	nce o	fΑ	lbay	/				DRILLE	D				R. F	OLIDAN		SHEET		1 of 1	
RIG		KSK S	MALL										R. POLIDAN					0.00 to 10.00 meters						
		Hamme	r We i ght	63.50 Kg									DATE STARTED Oct. 16, 2010 GROUND LEVEL - m.				- m.							
		Fall Helg	ght 76,20) cm.									DATE (COM	1PLE	ETEL	2	Oct	. 16, 201	0	WATER LEVE	EL	0.75 m.	
METH	OD	WASH	BORI	NG									NORTH	IINC	3			-			EASTING		-	
											FI	NAL BOR	ING	6 I	LO)G								
DEP		SOIL	SAMPLE	TYPE OF		RQD		L N			PI	CONSISTENCY	Y O - N - V A L U E ● - % Core Recovery					SOIL DESCRIPTIO	ON		OTHER TEST DATA			
(m		SYMBOL	NOMBER	SAMPLIN		(70)		1											gravel;	dark	ly graded SAND with traces of ark gray; dry			
¥Ę	1.00 -	••••••••••••••••••••••••••••••••••••••	S-1	SPT	45	-	ł				NP	VERY LOOSE	4	╞					NB: (2)) AND fine to m	ediu	m grained	-
-	- - 2.00 -		S-2	SPT	45	_					NP		4						dark gra NB: (3)	ay; m	noist			
- - -	3.00 -		S-3	SPT	45	_					8	MEDIUM DENS	E 18						(SC) Cla gray; ve NB: (6)(ery m	oist	ices	of gravel; dark	
-	4.00 -		S-4	SPT	42	_					NP		15							fgrav	AND fine to coarse grained with vel; dark gray; moist)			
-			S-5	SPT	39	_		Ĭ			NP	DENSE	32	4						dark	graded SAND with fine to coarse < gray; moist 5)(17)			
-			S-6	SPT	45	-					NP	MEDIUM DENS	5E 14		ľ				with 1 NB: (8)(-	ne gravel)(7)			
-	6.00 -		S-7	SPT	45	_	- 3				37	STIFF	15						(CH) Fat moist NB: (3)(nd;	dark gray; very	`
	7.00 -		S-8	SPT	37	_			9 1		NP	MEDIUM DENS								fgrav	ND fine to co vel; dark gray 4)			
-	8.00 - 9.00 -		S-9	SPT	45	_			λ.		38	HARD	46			£			(CH) Fai moist NB: (16			nd;	dark gray; very	,
			S-10	SPT	45	_]	/		NP	MEDIUM DENS	E 15		И				gray, m NB. (12)	oist)(6)(9	ly graded SAI 9) 30RING AT 1			
Туре	of Sar	npling			Type of S	So il	- te	لبو						те STI	لىر EN(сч СҮ					MOISTURE		PERCENT	AGE
STANDARD PENETRATION UNDISTUBBED SAMPLING (UDS) STANDARD PENETRATION Clayey SILT Clayey SAND Silty SAND SILTSTONE SI								COHESIVE SOIL (ALUE) CONSIST 2 – VERY S 4 – SOFT 8 – FIRM 15 – STIFF 30 – VERY S	COILS COHENSIONLESS SOILS MOISTURE CONTENT % of SAND SISTENCY N-VALUE CONSISTENCY RANGES VALUES RANGES RAN				<u>% of SAND and RANGES</u> <u>V</u> 0 - 5 – TR/	GRAVEL ALUES ACES V TLE ME										
REMA	RKS:	Rec -	Recov	ery in C	5	***		N	B -	No		Blows HW	= Ha	<u></u>	ne	r V	Vei	aht			Prepared by :	м	P. CUNAHAF	•
				pacing:				IN	5-			cm. >#3>3ci			#5			-			Checked by :		B.A. / M.R.R.	
			5		30 cm			100	m.			cm. >#4>1cr									Certified by :			
		RQD =	= Rock	Quality						= 5		Core Recove									-	۵۱	JTHORIZED SIGNAT	ORY
Descr	intion	of Stratz			-								,								Date Issued :	AL	STICKILLO SIGNA	JICI

Description of Strata is according to Unified Soil Classification System

GEOTECHNICS PHILIPPINES, INCORPORATED SOILS AND MATERIALS TESTING LABORATORY

ILS AND MATERIALS TESTING LABORATOI 119 SAUYO ROAD, NOVALICHES, QUEZON CITY TEL. NO. 938-2124 \ 456-1140 \ 930-6555

CLIENT BOREHOLE NO. MOHRI, ARCHITECT & ASSOCIATES, INC. BH- 2 PROJECT JOB NO. Proposed Mayon Evacuation Center (Libon Community College) 2209-10.R1-FBL-02 SHEET LOCATION DRILLED R. POLIDAN Brgy. Zone 4 Libon, Province of Albay 1 of 1 RIG LOGGED KSK SMALL R. POLIDAN 0.00 to 10.00 meters DATE STARTED GROUND LEVEL Hammer Weight 63.50 Kg. Oct. 16, 2010 - m. DATE COMPLETED WATER LEVEL Fall Height 76,20 cm. Oct. 16, 2010 1.57 m. NORTHING EASTING METHOD WASH BORING -FINAL BORING LOG DEPTH SOIL SAMPLE TYPE OF REC RQD PL NMC LL O-N-VALUE OTHER ΡI CONSISTENCY SOIL DESCRIPTION TEST DATA L % Core Recovery -0 - 1 NUMBER SAMPLING (%) SYMBOL (cm) (m) 9 0 0 0 (SM) Silty SAND fine to medium grained; dark gray; moist NB: (2)(2)(1) VERY LOOSE S-1 SPT 45 NP 3 1.00fine to coarse grained with traces of gravel ¥ NB: (2)(1)(1) S-2 SPT 45 NP 2.00 (ML) Sandy SILT; dark gray; very moist NB: (5)(3)(3) SPT FIRM S-3 45 16 6 3.00 (SC) Clayey SAND with traces of gravel; dark gray; very moist NB: (10)(5)(3) **S-**4 SPT 45 LOOSE 8 4.00 (SM) Silty SAND fine to coarse grained with traces of gravel; dark gray; very moist NB: (9)(8)(5) S-5 SPT 45 NP 13 5.00 MEDIUM DENSE (SP-SM) Poorly graded SAND with silt and traces of gravel; dark gray; moist NB: (10)(9)(9) SPT S-6 45 NP 18 6.00 • þ (SW-SM) Well graded SAND with few gravel; dark gray; moist NB: (13)(15)(17) DENSE SPT NP S-7 45 32 7.00with traces of gravel NB: (6)(5)(4) SPT S-8 45 NF LOOSE 9 8.00 (MH) Elastic SILT with some sand; dark gray; very moist NB: (15)(17)(19) S-9 SPT 45 26 HARD 36 9.00 . • (SM) Silty SAND fine to coarse grained with traces of gravel; dark gray; moist NB: (14)(16)(20) END OF BORING AT 10.00 METERS S-10 SPT 45 NP DENSE 36 Type of Soil Type of Sampling CONSISTENCY MOISTURE PERCENTAGE Silty CLAY Silty GRAVEL COHESIVE SOILS COHENSIONLESS SOILS MOISTURE CONTENT % of SAND and GRAVEL STANDARD PENETRATION TEST (SPT) N-VALUE CONSISTENCY N-VALUE CONSISTENCY RANGES VALUES RANGES VALUES Well graded GRAVEL with silt Clayey SILT 0 - 2 -0-5-VERY SOFT 0 - 4 - VERY LOOSE 0 - 10 DRY TRACES Clayey SAND GRAVEL 6 - 10 - FEW 2 - 4_ SOFT 4 - 10 - LOOSE 10 - 30MOIST INDISTURBE AMPLING 4 - 8 10 - 30 - MEDIUM DENSE VERY MOIST 11 - 25 - LITTLE _ FIRM 30 - 70 _ Silty SAND UDS) SILTSTONE 70 - 100 - WET 26 - 35 - SOME 8 - 15 - STIFF 30 - 50 - DENSE 15 - 30 -VERY STIFF > 50 - VERY DENSE SATURATED 36 - 45 - WITH Clayey silty SAND > 100 CORING (CRG) TUFF _ HARD > 30 Tuffeceous SILTSTONE SAND REMARKS: Prepared by : Rec = Recovery in Centimeters NB = No. of BlowsHW = Hammer Weight M. P. CUNAHAP Checked by : #5 <1cm. Reference Joint Spacing: #1 >30cm. 10 cm. >#3>3cm. A.B.A. / M.R.R. Certified by : 30 cm.>#2>10cm. 3 cm. >#4>1cm. RQD = Rock Quality Designation SCR = Solid Core Recovery AUTHORIZED SIGNATORY

Date Issued :

GEOTECHNICS PHILIPPINES, INC. SOILS AND MATERIALS TESTING LABORATORY 119 Sauyo Road, Novaliches, Quezon City

CLIENT...... MOHRI, ARCHITECT & ASSOCIATES, INC.

PROJECT..... Proposed Mayon Evacuation Center (Libon Community College)

JOB NUMBER...... 2209-10.R1-SUM-1 DATE OF RECIEPT.... October 19, 2010

LOCATION.... Brgy. Zone 4 Libon, Province of Albay

DATE OF TEST..... October 21-28, 2010

SUMMARY OF LABORATORY TESTS

SAMPLE	DEPTH	NMC	ATTER	RBERG (%)	LIMIT,	USCS	SIEVE ANALYSIS (% FINER) PASSING SIEVE NO.										Remarks
NUMBER	(m)	(%)	LL	PL	PI	Class.	1	³ / ₄	³ / ₈	4	10	20	40	60	140	200	
BH-1																	
1	0.55 - 1.00	9	-	NP	-	SP			100	95	83	63	33	12	5	3	-
2	1.55 - 2.00	29	-	NP	-	SM				100	97	90	74	56	21	14	
3	2.55 - 3.00	36	40	32	8	SC		100	98	97	94	85	75	65	47	45	-
4	3.55 - 4.00	30	-	NP	-	SM			100	96	91	81	57	34	18	16	-
5	4.55 - 5.00	17	-	NP	-	SP	100	83	70	60	52	40	25	11	3	2	-
6	5.55 - 6.00	21	-	NP	-	SP		100	75	58	46	34	21	12	5	4	-
7	6.55 - 7.00	59	69	32	37	СН					100	99	98	96	91	90	-
8	7.55 - 8.00	35	-	NP	-	SM			100	99	98	96	87	73	30	24	-
9	8.55 - 9.00	60	70	32	38	СН						100	99	97	94	92	-
10	9.55 - 10.00	23	-	NP	-	SP-SM				100	99	94	54	20	6	5	-
BH-2																	
1	0.55 - 1.00	23	-	NP	-	SM				100	98	95	85	65	30	25	-
2	1.55 - 2.00	23	-	NP	-	SM			100	98	94	84	68	47	27	23	-
3	2.55 - 3.00	40	48	32	16	ML				100	98	93	83	73	62	58	-
4	3.55 - 4.00	39	44	33	11	SC			100	99	98	93	83	70	50	47	-
5	4.55 - 5.00	30	-	NP	-	SM		100	99	98	97	93	84	61	29	24	-
6	5.55 - 6.00	19	-	NP	-	SP-SM			100	99	97	81	42	22	9	7	-
7	6.55 - 7.00	20	-	NP	-	SW-SM			100	93	82	58	31	18	8	7	-
8	7.55 - 8.00	20	-	NP	-	SW-SM		100	99	95	89	73	45	25	11	8	-
9	8.55 - 9.00	50	58	32	26	МН				100	99	97	94	89	73	67	-
10	9.55 - 10.00	28	-	NP	-	SM			100	99	99	98	90	66	28	22	-

SAMPLE SUBMITTED BY :

Walk-in Clients	GPI Field Operator	REMARKS:	* with hydrometer
R. POLIDAN			
COMPUTER PRINT-OUT		7 -	
By: <u>MARIA ANTON</u>	IETTE P. CUNAHAP		
E	ncoder		
	ABA / MRR	CERTIFIED BY:	
	Quality Assurance		AUTHORIZED SIGNATORY
Date Issued			
· · · · · · · · · · · · · · · · · · ·			

This report should not be copied, divulged or reproduced, in full or in part, without prior advice to and written approval from GPI-SMTL.

SOILS AND MATERIALS TESTING LABORATORY 119 Sauyo Road, Novaliches, Quezon City

Client...... MOHRI, ARCHITECT & ASSOCIATES, INC. Project...... Proposed Mayon Evacuation Center (Libon Community College) Location...... Brgy. Zone 4 Libon, Province of Albay

TEST REPORT FOR LABORATORY DETERMINATION OF WATER (MOISTURE) CONTENT OF SOIL & ROCK BY MASS

ASTM D 2216 - 05

BOREHOLE NO...BH-1

Test Method 🗹 A 🗌 B

Sample Number	DEPTH (m)	WET SOIL DISH (g)	DRY SOIL DISH (g)	WATER (g)	DISH MASS (g)	DRY SOIL (g)	WATER CONTENT (%)	REMARKS
				1	NATURAL M	OISTURE C	ONTENT	
1	0.55-1.00	105.98	98.22	7.76	9.74	88.48	9	
2	1.55-2.00	95.35	76.15	19.20	9.91	66.24	29	
3	2.55-3.00	100.31	76.36	23.95	9.56	66.80	36	
4	3.55-4.00	111.50	88.05	23.45	9.53	78.52	30	
5	4.55-5.00	117.08	101.57	15.51	10.29	91.28	17	
6	5.55-6.00	122.28	102.55	19.73	9.84	92.71	21	

SAMPLE	DEPTH (m)	BLOWS	WET SOIL	DRY SOIL	WATER	DISH	DRY SOIL	% Retained	ATTERBE	RG LIMIT	REMARKS
NUMBER		BLOWS	DISH (g)	DISH (g)	(g)	MASS (g)	(g)	on 0.425 mm	LL	PL	REWARKS
	1		L		LIC		-		I	1	
					PLA	STIC LIMI	Г				
Uncertainty	Poculto	Water Con	$t_{opt}(9/)$	± 0.0304	Lia	uid Limit		Dia	stic Limit =		
5	ported expanded u										idence of
approximate							5		-		D.:NMC-10-498
SAMPLE SUE	BMITTED BY :					REMARKS:					
Walk-in	Clients 🔽 G	PI Field Op	erator								
R. POLIDAN											
COMPUTER											
<i>Ву:</i> №	IARIA ANTONIETTE		AP								
	Encode				TE	ESTED BY :					
Data Check	ked by: AB							LABO	RATORY IE	CHNICIAN	
	Qua	lity Assura	nce		CERT	IFIED BY ·					
Date Issue		CERTIFIED BY :					AUTHORIZED SIGNATORY				
L]
This report she Final Report	ould not be copied, di r t Form - 1	vulged or rep	produced, in t	full or in part	, without prie	or advice to a	and written a	pproval from	GPI-SMTL.	Re	v.6 / Oct. 2010

SOILS AND MATERIALS TESTING LABORATORY 119 Sauyo Road, Novaliches, Quezon City

Client......MOHRI, ARCHITECT & ASSOCIATES, INC. Project...... Proposed Mayon Evacuation Center (Libon Community College) Location...... Brgy. Zone 4 Libon, Province of Albay

Date of Receipt..... October 19, 2010 Date of Test..... October 21-22, 2010

TEST REPORT FOR LABORATORY DETERMINATION OF WATER (MOISTURE) CONTENT OF SOIL & ROCK BY MASS

ASTM D 2216 - 05

Test Method 🗹 A 🗌 B

Sample Number	DEPTH (m)	WET SOIL DISH (g)	DRY SOIL DISH (g)	WATER (g)	DISH MASS (g)	DRY SOIL (g)	WATER CONTENT (%)	REMARKS
				1	NATURAL M	OISTURE C	ONTENT	
7	6.55-7.00	83.18	55.90	27.28	9.82	46.08	59	
8	7.55-8.00	118.20	89.93	28.27	9.53	80.40	35	
9	8.55-9.00	103.70	68.40	35.30	9.58	58.82	60	
10	9.55-10.00	116.13	95.93	20.20	9.42	86.51	23	

SAMPLE	DEPTH (m)	BLOWS	WET SOIL	DRY SOIL	WATER	DISH	DRY SOIL	% Retained	ATTERBE	RG LIMIT	REMARKS
NUMBER		DLUWS	DISH (g)	DISH (g)	(g)	MASS (g)	(g)	on 0.425 mm	LL	PL	REWIARNS
	L				LIC	DUID LIMIT					
					PLA	STIC LIMIT	[[
Uncertainty	Results:	Water Con	itent (%) =	± 0.0482	Liq	uid Limit =		Plas	stic Limit =		
Note: The re	ported expanded u	ncertainty	is based on	a combined	d uncertain	ty by a cov	erage facto	r of k=2, p	roviding a l	evel of conf	idence of
approximate	ly 9 5%.								I	LAB.FILE NO	D.:NMC-10-498
	MITTED BY :					REMARKS:					
Walk-in	Clients 🔽 G	PI Field Op	erator								
R. POLIDAN				-							
COMPUTER											
<i>By:</i> N	IARIA ANTONIETTE Encode				т	STEN DV -		٨٢			
						LJILD DI .			RATORY TE		
Data Check	ked by: AB	A/MRR Ility Assura	nce					LINDO			
		-			CERT	IFIED BY :					
Date Issue	d:			AUTHORIZED SIGNATORY							
	auld not be conied di	ulgod or re-	aroducod	full or in part	without ar	or advice to a	and written a	nnroval fram]
Final Report	ould not be copied, di r t Form - 1	valged of rep	Ji Juucea, IN	iun or in part,	, without pri		and written a		1 GF1-31/11 L.	Re	v.6 / Oct. 2010

SOILS AND MATERIALS TESTING LABORATORY 119 Sauyo Road, Novaliches, Quezon City

Client......**MOHRI, ARCHITECT & ASSOCIATES, INC.** Project...... **Proposed Mayon Evacuation Center (Libon Community College)** Location...... Brgy. Zone 4 Libon, Province of Albay Job Number......2209-10.R1-NMC-02-1 Date of Receipt...... October 19, 2010 Date of Test..... October 26-27, 2010

TEST REPORT FOR LABORATORY DETERMINATION OF WATER (MOISTURE) CONTENT OF SOIL & ROCK BY MASS

ASTM D 2216 - 05

BOREHOLE NO...BH-2

Test Method 🗹 A 🗌 B

Sample Number	DEPTH (m)	WET SOIL DISH (g)	DRY SOIL DISH (g)	WATER (g)	DISH MASS (g)	DRY SOIL (g)	WATER CONTENT (%)	REMARKS
				1	NATURAL M	IOISTURE C	ONTENT	
1	0.55-1.00	110.73	91.53	19.20	9.53	82.00	23	
2	1.55-2.00	123.74	102.59	21.15	9.54	93.05	23	
3	2.55-3.00	117.60	86.96	30.64	9.72	77.24	40	
4	3.55-4.00	105.90	79.03	26.87	9.60	69.43	39	
5	4.55-5.00	122.70	96.31	26.39	9.60	86.71	30	
6	5.55-6.00	103.77	88.73	15.04	9.57	79.16	19	

SAMPLE	DEPTH (m)	BLOWS				DRY SOIL	% Retained	ATTERBE	RG LIMIT	REMARKS	
NUMBER		DEOWS	DISH (g)	DISH (g)	(g)	MASS (g)	(g)	on 0.425 mm	LL	PL	REMARKS
					LIC		-				
					PLA	STIC LIMI	Г				
Uncertainty	Results: ported expanded ι		itent (%) =						stic Limit =		idonco of
approximate		incertainty				ty by a cov	-	-	-		D.:NMC-10-499
	MITTED BY :										
Walk-in		PI Field Op	erator			KEIVIAKKJ.					
R. POLIDAN	_										
COMPUTER	PRINT-OUT			-							
<i>By:</i> N	IARIA ANTONIETTI		IAP								
	Encode	er			TE	ESTED BY :			RTURO Q. A		
Data Check	ked by:AB	A/MRR						LABO	RATORY TE	CHNICIAN	
	Qua	ality Assura	nce		CEDT						
Date Issue	d:				CERI	IFIED DI .					
	ould not be copied, di	vulged or rep	produced, in	full or in part	, without prid	or advice to a	and written a	pproval from	GPI-SMTL.		
Final Repo	rt Form - 1									Re	v.6 / Oct. 2010

SOILS AND MATERIALS TESTING LABORATORY 119 Sauyo Road, Novaliches, Quezon City

Client...... MOHRI, ARCHITECT & ASSOCIATES, INC. Project...... Proposed Mayon Evacuation Center (Libon Community College)

Location...... Brgy. Zone 4 Libon, Province of Albay

Date of Receipt..... October 19, 2010 Date of Test..... October 26-27, 2010

TEST REPORT FOR LABORATORY DETERMINATION OF WATER (MOISTURE) CONTENT OF SOIL & ROCK BY MASS

ASTM D 2216 - 05

Test Method 🗹 A 🗌 B

BOREHOLE N	OBH-2

Sample Number	DEPTH (m)	WET SOIL DISH (g)	DRY SOIL DISH (g)	WATER (g)	DISH MASS (g)	DRY SOIL (g)	WATER CONTENT (%)	REMARKS
				1	NATURAL M	IOISTURE C	ONTENT	
7	6.55-7.00	115.10	97.26	17.84	9.70	87.56	20	
8	7.55-8.00	119.05	101.05	18.00	9.51	91.54	20	
9	8.55-9.00	111.70	77.75	33.95	9.63	68.12	50	
10	9.55-10.00	115.43	91.96	23.47	9.37	82.59	28	

SAMPLE	DEPTH (m)	BLOWS		DRY SOIL	WATER	DISH	DRY SOIL		ATTERBE	RG LIMIT	REMARKS
NUMBER		DEOWS	DISH (g)	DISH (g)	(g)	MASS (g)	(g)	on 0.425 mm	LL	PL	KEMAKK3
	r	T			LIC				1	1	
					PLA	STIC LIMIT	Γ				
Uncertainty	Results:	Water Con	tent (%) =	± 0.0313	Liq	uid Limit =		Plas	stic Limit =		
5	ported expanded u								roviding a l	evel of conf	idence of
approximate	ly 95%.								I	LAB.FILE NO	D.:NMC-10-499
	MITTED BY :					REMARKS:					
Walk-in	Clients 🗹 G	PI Field Op	erator								
R. POLIDAN				-							
COMPUTER											
<i>By:</i> N	IARIA ANTONIETTE Encode				т	STED BV ·		ΔΕ			
									RATORY TE		
Data Check	ked by: <u>AB</u> Oua	A/MRR Ility Assurai	nce								
					CERT	IFIED BY :					
Date Issue	d:							AUTH	IORIZED SI	GNATORY	
This report sh	ould not be copied, di	vulged or rer		full or in part	without prid	or advice to a	and written a	nnroval from	GPLSMT]
Final Report	•	anged of rep	, Judeeu, III I		, without pric				ST SWIL	Re	v.6 / Oct. 2010

SOILS AND MATERIALS TESTING LABORATORY 119 Sauyo Road, Novaliches, Quezon City

Client...... MOHRI, ARCHITECT & ASSOCIATES, INC. Project..... Proposed Mayon Evacuation Center (Libon Community College) Location.... Brgy. Zone 4 Libon, Province of Albay

TEST REPORT FOR LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS

ASTM D 4318 - 05

Method : A 🗹 Wet Preparation 🗌 Dry Preparation

BOREHOLE NO BH-1 DEPTH (m)								SOIL	DESCRIP	TION				
SAMPLE NO	S-3 USCS CLASS SC							Claye	ey SAND					
MOISTURE CONTENT DETERMINATION DISH NUMBER	L <u>TRIAL 1</u> A2	IQUID LIMI <u>TRIAL 2</u> A37	T TRIAL 3 A82	PLASTI <u>TRIAL 1</u> B32	C LIMIT <u>TRIAL 2</u> B5	ıt (%)	44 - 43 - 42 -		•					
WET SOIL + DISH (g) DRY SOIL + DISH (g) WATER (g) DISH MASS (g) DRY SOIL (g)	33.84 27.17 6.67 9.64 17.53	35.97 28.33 7.64 9.70 18.63	38.16 29.56 8.60 9.80 19.76	22.81 19.59 3.22 9.53 10.06	22.78 19.56 3.22 9.51 10.05	Moisture Content	41 - 40 - 39 - 38 -		·	•				
MOISTURE CONTENT NUMBER OF BLOWS	38.05 31	41.01 22	43.52 14	32.01 3	32.04 2		37 1	0		No. o	of Blows			100
% RETAINED ON 0.42	5mm				24.63		LL =	4	40	PL =	32	F	·I =	8

BOREHOLE NO	BH-1		DEPTH (m))	6.55-7.00		S	OIL DE	SCRIPTION
SAMPLE NO S-7 USCS CLASS CH							Fa	at CLAY	,
MOISTURE CONTENT	L	IQUID LIMI	Т	PLASTI	C LIMIT		74 —		
DETERMINATION	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL 1	TRIAL 2		73 -	;	
DISH NUMBER	B17	B24	B90	C73	C40	(%)	72 -		
WET SOIL + DISH (g)	32.47	35.59	38.24	22.68	22.72	tent	71 -		
DRY SOIL + DISH (g)	23.31	24.94	26.25	19.52	19.55	Con	70 -		
WATER (g)	9.16	10.65	11.99	3.16	3.17	ure	69 -		
DISH MASS (g)	9.63	9.72	9.83	9.55	9.56	Moisture	68 -		
DRY SOIL (g)	13.68	15.22	16.42	9.97	9.99	2	67 -		
MOISTURE CONTENT	66.96	69.97	73.02	31.70	31.73		66 +		
NUMBER OF BLOWS	32	21	15	3	2		10)	No. of Blows 100
% RETAINED ON 0.42	5mm				1.78		LL =	69	PL = 32 PI = 37

Liquid Limit = ± 0.1137 Uncertainty Results: Plastic Limit = ± 0.1994 Т П Liquid Limit = ± 0.1453 Plastic Limit = ± 0.2010 Note: The reported expanded uncertainty is based on a combined uncertainty by a coverage factor of k=2, providing a level of confidence of approximately 95%. LAB.FILE NO.: AL-10-646 SAMPLE SUBMITTED BY : REMARKS: Walk-in Clients GPI Field Operator R. POLIDAN COMPUTER PRINT-OUT By: MARIA ANTONIETTE P. CUNAHAP Encoder TESTED BY : ARTURO Q. AQUINO LABORATORY TECHNICIAN Data Checked by: ABA / MRR Quality Assurance CERTIFIED BY : Date Issued: AUTHORIZED SIGNATORY This report should not be copied, divulged or reproduced, in full or in part, without prior advice to and written approval from GPI-SMTL.

Final Report Form - 2

SOILS AND MATERIALS TESTING LABORATORY 119 Sauyo Road, Novaliches, Quezon City

Client...... MOHRI, ARCHITECT & ASSOCIATES, INC. Project..... Proposed Mayon Evacuation Center (Libon Community College) Location.... Brgy. Zone 4 Libon, Province of Albay

TEST REPORT FOR LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS

ASTM D 4318 - 05

Method : A 🗹 Wet Preparation 🗌 Dry Preparation

BOREHOLE NO	BH-1		DEPTH (m))	8.55-9.00			SOIL D	DESCRIP	TION				
SAMPLE NO	СН			Fat CL	AY									
MOISTURE CONTENT	L	IQUID LIMI	Т	PLASTI	C LIMIT		75 -							
DETERMINATION	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL 1	TRIAL 2	~	74 -		•					
DISH NUMBER	A29	A11	A21	B49	B55	(%)	73 -							
WET SOIL + DISH (g)	32.54	35.74	38.40	22.69	22.75	tent	72 -							
DRY SOIL + DISH (g)	23.27	24.94	26.26	19.48	19.55	Con	71 -			N				
WATER (g)	9.27	10.80	12.14	3.21	3.20	ure	70 -			$ \mathbf{x} $				
DISH MASS (g)	9.65	9.74	9.85	9.52	9.55	Moist	69 -			$ \setminus$				
DRY SOIL (g)	13.62	15.20	16.41	9.96	10.00	ž	68 -							
MOISTURE CONTENT	68.06	71.05	73.98	32.23	32.00		67 -							
NUMBER OF BLOWS	31	22	15	3	2		1	0		No. (of Blows	6		100
% RETAINED ON 0.42	5mm				1.09		LL =	70		PL =	32		PI =	38

BOREHOLE NO	· ·	m) ASS	SC	DIL DESCRIPTION	
MOISTURE CONTENT <u>DETERMINATION</u> DISH NUMBER WET SOIL + DISH (g) DRY SOIL + DISH (g) WATER (g) DISH MASS (g) DRY SOIL (g) MOISTURE CONTENT		PLASTIC LIMIT	Moisture Content (%)		
NUMBER OF BLOWS			10	No. of Blows	100
% RETAINED ON 0.42	5mm		LL =	PL =	PI =
	II L banded uncertainty is based on	iquid Limit = \pm 0.1454 iquid Limit = a combined uncertainty	by a coverage	Plastic Limit = \pm 0.2015 Plastic Limit = e factor of k=2, providing a level o	of confidence AB.FILE NO.:AL-10-646
SAMPLE SUBMITTED B			REMARKS:		
R. POLIDAN					
COMPUTER PRINT-OU By:MARIA AN	T TONIETTE P. CUNAHAP Encoder	те	ESTED BY :	ARTURO Q. AQL	
Data Checked by: _	Quality Assurance		TFIED BY :	LABORATORY TECH	INICIAN
Date Issued:		-		AUTHORIZED SIGN	ATORY

This report should not be copied, divulged or reproduced, in full or in part, without prior advice to and written approval from GPI-SMTL. Final Report Form - 2

SOILS AND MATERIALS TESTING LABORATORY 119 Sauyo Road, Novaliches, Quezon City

Client...... MOHRI, ARCHITECT & ASSOCIATES, INC. Project..... Proposed Mayon Evacuation Center (Libon Community College) Location.... Brgy. Zone 4 Libon, Province of Albay

TEST REPORT FOR LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS

ASTM D 4318 - 05	ASTM	D	4318	-	05
------------------	------	---	------	---	----

Method : A 🗹 Wet Preparation 🗌 Dry Preparation

BOREHOLE NO BH-2 DEPTH (m)							:	SOIL DES	CRIPTION			
SAMPLE NO	LE NO S-3 USCS CLASS ML						:	Sandy SIL	T			
MOISTURE CONTENT DETERMINATION	L <u>TRIAL 1</u>	IQUID LIMI <u>TRIAL 2</u>	T TRIAL 3	PLASTI TRIAL 1	C LIMIT <u>TRIAL 2</u>	(%)	53 - 52 -	è				
DISH NUMBER WET SOIL + DISH (g)	A29 32.56	A86 35.41	A6 38.24	B51 22.69	B2 22.72	ent	51 - 50 -		\backslash			
DRY SOIL + DISH (g) WATER (g)	25.29 7.27	26.97 8.44	28.53 9.71	19.46 3.23	19.49 3.23	ure Conto	49 -					
DISH MASS (g) DRY SOIL (g)	9.65 15.64	9.74 17.23	9.85 18.68	9.51 9.95	9.49 10.00	Moistu	48 - 47 -					
MOISTURE CONTENT	46.48	48.98	51.98	32.46	32.30		46					
NUMBER OF BLOWS % RETAINED ON 0.42	32 5mm	22	15		2 16.56	-	10 LL =	48	No. (PL =	of Blow 32	s PI =	100 16

BOREHOLE NO	BH-2		DEPTH (m))	3.55-4.00		SC	DIL DE	SCRIPTION
SAMPLE NO	S-4		USCS CLAS	S	SC		CI	ayey S	SAND
MOISTURE CONTENT DETERMINATION	L TRIAL 1	IQUID LIMI TRIAL 2	IT TRIAL 3	PLASTI TRIAL 1	C LIMIT TRIAL 2		48 —		▲
DISH NUMBER	B62	B21	B9	A48	A91	nt (%)	47 - 46 -		
WET SOIL + DISH (g)		35.54	38.32	22.70	22.73	Content	45 -		
DRY SOIL + DISH (g)	25.82	27.52	29.15	19.43	19.45	-	44 -		
WATER (g) DISH MASS (g)	6.80 9.62	8.02 9.70	9.17 9.85	3.27 9.48	3.28 9.50	Moisture	43 -		
DRY SOIL (g)	9.62 16.20	9.70 17.82	9.85 19.30	9.48 9.95	9.50 9.95	Mo	42 -		
MOISTURE CONTENT	41.98	45.01	47.51	32.86	32.96		41 +		
NUMBER OF BLOWS	31	22	15	3	3		10		No. of Blows 100
% RETAINED ON 0.42	5mm				16.56		LL =	44	PL = 33 PI = 11

Uncertainty Results: I	Liquid Limit = ± 0.1275	Plastic Limit = ± 0.2019
II	Liquid Limit = ± 0.1227	Plastic Limit = ± 0.2021
Note: The reported expanded uncertainty is based	on a combined uncertainty by a coverage	e factor of k=2, providing a level of confidence
of approximately 95%.		LAB.FILE NO.:AL-10-647
SAMPLE SUBMITTED BY :	REMARKS:	
Walk-in Clients GPI Field Operator		
R. POLIDAN		
COMPUTER PRINT-OUT		
By: MARIA ANTONIETTE P. CUNAHAP		
Encoder	TESTED BY :	ARTURO Q. AQUINO
Data Checked by: ABA / MRR		LABORATORY TECHNICIAN
Quality Assurance	—	
	CERTIFIED BY :	
Date Issued:		AUTHORIZED SIGNATORY

This report should not be copied, divulged or reproduced, in full or in part, without prior advice to and written approval from GPI-SMTL. Final Report Form - 2

Rev.5/ Dec.2009

SOILS AND MATERIALS TESTING LABORATORY 119 Sauyo Road, Novaliches, Quezon City

Client...... MOHRI, ARCHITECT & ASSOCIATES, INC. Project..... Proposed Mayon Evacuation Center (Libon Community College) Location.... Brgy. Zone 4 Libon, Province of Albay

TEST REPORT FOR LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS

ASTM D 4318 - 05

Method : A 🗹 Wet Preparation 🗌 Dry Preparation

BOREHOLE NO	BH-2		DEPTH (m))	8.55-9.00		:	SOIL DES	CRIPTION				
SAMPLE NO S-9			USCS CLASS MH					Elastic SIL	T				
MOISTURE CONTENT	L	IQUID LIMI	Т	PLASTI	C LIMIT		63 _T						_
DETERMINATION	<u>TRIAL 1</u>	<u>TRIAL 2</u>	<u>TRIAL 3</u>	<u>TRIAL 1</u>	<u>TRIAL 2</u>	~	62 -	\					
DISH NUMBER	A43	A8	A93	B82	B5	t (%)	61 -	```	\setminus				
WET SOIL + DISH (g)	32.47	35.28	38.22	22.68	22.74	tent	60 -		\mathbf{N}				
DRY SOIL + DISH (g)	24.23	25.79	27.34	19.49	19.54	Cont							
WATER (g)	8.24	9.49	10.88	3.19	3.20	ure	59 -						
DISH MASS (g)	9.60	9.70	9.80	9.49	9.51	Moist	58 -		X				
DRY SOIL (g)	14.63	16.09	17.54	10.00	10.03	Ś	57 -						
MOISTURE CONTENT	56.32	58.98	62.03	31.90	31.90		56 -			•			_
NUMBER OF BLOWS	31	21	15	3	2		10)	No. o	of Blow	S		100
% RETAINED ON 0.425mm							LL =	58	PL =	32	PI	=	26

BOREHOLE NO)		SOIL DESCRIPTION					
SAMPLE NO	USCS CLA	SS							
MOISTURE CONTENT	LIQUID LIMIT	PLASTIC LIMIT	2 -						
DETERMINATION	TRIAL 1 TRIAL 2 TRIAL 3	TRIAL 1 TRIAL 2	0						
DISH NUMBER			Moisture Content (%) - L						
WET SOIL + DISH (g)			Iten						
DRY SOIL + DISH (g)			Ŋ <u></u> 1-						
WATER (g)			ture						
DISH MASS (g)			loist						
DRY SOIL (g)			2						
MOISTURE CONTENT			0 -						
NUMBER OF BLOWS			1	0 No. of Blows	100				
% RETAINED ON 0.42	5mm		LL =	PL =	PI =				
Uncertainty Results:	I Liq	uid Limit = ± 0.1355		Plastic Limit = ± 0.2005					
	II Liq	uid Limit =		Plastic Limit =					
Note: The reported expanded uncertainty is based on a combined uncertainty by a coverage factor of k=2, providing a level of confidence									
of approximately 95%.					LAB.FILE NO.:AL-10-647				
SAMPLE SUBMITTED B			REMARKS:						
Walk-in Clients	GPI Field Operator								
R. POLIDAN		-							
COMPUTER PRINT-OU	T TONIETTE P. CUNAHAP								
	Encoder	TE	STED BY :	ARTURO Q. AC	DUINO				
				LABORATORY TECHNICIAN					
Data Checked by:	ABA / MRR Quality Assurance								
	equility Assurance	CERT	IFIED BY :						
Date Issued:				AUTHORIZED SIG					

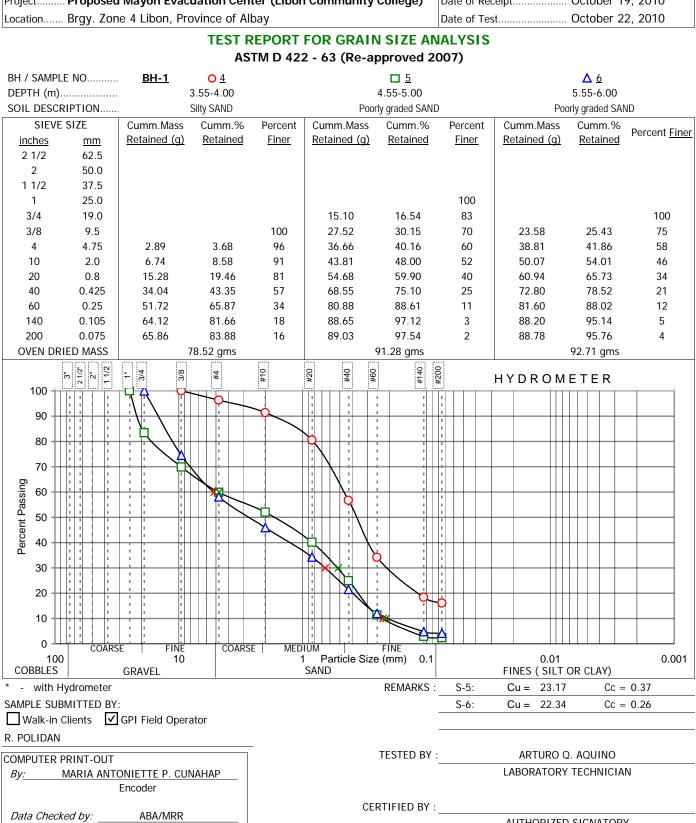
This report should not be copied, divulged or reproduced, in full or in part, without prior advice to and written approval from GPI-SMTL. Final Report Form - 2

SOILS AND MATERIALS TESTING LABORATORY 119 Sauyo Road, Novaliches, Quezon City

TEST REPORT FOR GRAIN SIZE ANALYSIS

ASTM D 422 - 63 (Re-approved 2007) BH / SAMPLE NO..... BH-1 <u>01</u> <u>Δ</u> <u>3</u> 0.55-1.00 1.55-2.00 2.55-3.00 DEPTH (m)..... SOIL DESCRIPTION Poorly graded SAND Silty SAND Clayey SAND SIEVE SIZE Cumm.Mass Cumm.% Percent Cumm.Mass Cumm.% Percent Cumm.Mass Cumm.% Percent inches Retained (q) Retained Finer Retained (g) Retained Finer Retained (g) Retained Finer mm 2 1/2 62.5 2 50.0 1 1/2 37.5 25.0 1 19.0 100 3/4 3/8 100 9.5 1.16 1.74 98 4.91 95 1.93 2.89 4.75 4.34 100 97 Δ 15.39 17.39 2.96 97 10 2.0 83 1.96 3.97 5.94 94 33.02 37.32 10.16 20 0.8 63 6.73 90 9.89 14.81 85 67.17 40 0.425 59.43 17.01 25.68 74 33 16.45 24.63 75 0.25 77.49 87.58 12 29.09 43.92 23.59 35.31 60 56 65 140 94 94 78.58 21 53.32 0.105 84.00 5 52.05 35.62 47 200 37.03 45 0.075 85.42 96.54 3 56.68 85.57 14 55.43 OVEN DRIED MASS 88.48 gms 66.24 gms 66.80 gms #140 1 1/2 #10 #200 2 1/2" #20 #40 09# 3/4 3/8 4 2 HYDROMETER 100 ŝ ŝ 90 80 1 70 ŝ Percent Passing 60 i i i 50 40 30 ŝ 20 į Ш 10 1 [0 COARSE FINE COARSE MEDIUM FINE Particle Size (mm) 100 10 0.1 0.01 0.001 SAND COBBLES FINES (SILT OR CLAY) GRAVEL - with Hydrometer **REMARKS** : S-1: Cu = 3.56 Cc = 0.90SAMPLE SUBMITTED BY: Walk-in Clients ✓ GPI Field Operator R. POLIDAN TESTED BY : ARTURO Q. AQUINO COMPUTER PRINT-OUT LABORATORY TECHNICIAN By: MARIA ANTONIETTE P. CUNAHAP Encoder CERTIFIED BY : Data Checked by: ____ ABA/MRR AUTHORIZED SIGNATORY **Quality Assurance** Uncertainty Results: % Finer = ± 0.0488 LAB.FILE NO .: GSA-10-400 Note: The reported expanded uncertainty is based on a combined uncertainty by a coverage Date Issued: factor of k=2, providing a level of confidence of approximately 95%.

This report should not be copied, divulged or reproduced, in full or in part, without prior advice to and written approval from GPI-SMTL. Final Report Form - 3&4



SOILS AND MATERIALS TESTING LABORATORY 119 Sauyo Road, Novaliches, Quezon City

Client...... MOHRI, ARCHITECT & ASSOCIATES, INC. Project...... Proposed Mayon Evacuation Center (Libon Community College) Date of Receipt..... October 19, 2010 Date of Test..... October 22, 2010

AUTHORIZED SIGNATORY **Quality Assurance** Uncertainty Results: % Finer = ± 0.0408 LAB.FILE NO .: GSA-10-400 Note: The reported expanded uncertainty is based on a combined uncertainty by a coverage Date Issued: factor of k=2, providing a level of confidence of approximately 95%.

This report should not be copied, divulged or reproduced, in full or in part, without prior advice to and written approval from GPI-SMTL. Final Report Form - 3&4

SOILS AND MATERIALS TESTING LABORATORY 119 Sauyo Road, Novaliches, Quezon City

TEST REPORT FOR GRAIN SIZE ANALYSIS

ASTM D 422 - 63 (Re-approved 2007) BH / SAMPLE NO..... BH-1 <u>0</u>7 <u>Δ</u> 9 DEPTH (m)..... 6.55-7.00 7.55-8.00 8.55-9.00 SOIL DESCRIPTION Fat CLAY Silty SAND Fat CLAY SIEVE SIZE Cumm.Mass Cumm.% Percent Cumm.Mass Cumm.% Percent Cumm.Mass Cumm.% Percent inches Retained (g) Retained Finer Retained (g) Retained Finer Retained (g) Retained Finer mm 2 1/2 62.5 2 50.0 1 1/2 37.5 25.0 1 19.0 3/4 3/8 100 95 0.50 4.75 0.62 99 Δ 2.20 98 10 2.0 100 1.77 0.30 0.10 20 0.8 0.65 99 3.32 4.13 96 0.17 100 98 0.425 0.82 1.78 10.78 13.41 87 1.09 99 40 0.64 97 1.81 3.93 96 22.05 27.43 73 1.70 2.89 60 0.25 30 4.00 91 55.94 69.58 140 0.105 8.68 3.80 6.46 94 90 60.81 4.75 8.08 92 200 0.075 4.68 10.16 75.63 24 OVEN DRIED MASS 58.82 gms 46.08 gms 80.40 gms #140 #200 1 1/2 #10 #40 2 1/2" 3/4 8/8 4 #20 ¢00 HYDROMETER 2 100 i. h 90 80 70 ŝ Percent Passing 60 50 40 30 ł ÷ ņ 20 10 0 COARSE FINE COARSE MEDIUM FINE 0.01 FINES (SILT OR CLAY) 100 Particle Size (mm) 0.1 0.001 10 COBBLES SAND GRAVEL - with Hydrometer **REMARKS** : SAMPLE SUBMITTED BY: Walk-in Clients GPI Field Operator R. POLIDAN TESTED BY : ARTURO Q. AQUINO COMPUTER PRINT-OUT LABORATORY TECHNICIAN By: MARIA ANTONIETTE P. CUNAHAP Encoder CERTIFIED BY : ABA/MRR Data Checked by: AUTHORIZED SIGNATORY **Quality Assurance** Uncertainty Results: % Finer = ± 0.0536 LAB.FILE NO .: GSA-10-400 Note: The reported expanded uncertainty is based on a combined uncertainty by a coverage Date Issued: factor of k=2, providing a level of confidence of approximately 95%.

SOILS AND MATERIALS TESTING LABORATORY 119 Sauyo Road, Novaliches, Quezon City

Client MOHRI, ARCHITECT & ASSOCIATES, INC.	Job Number	. 2209-10.R1-GSA-01-4
Project Proposed Mayon Evacuation Center (Libon Community College)	Date of Receipt	October 19, 2010
Location Brgy. Zone 4 Libon, Province of Albay	Date of Test	October 22, 2010
	•	

TEST REPORT FOR GRAIN SIZE ANALYSIS

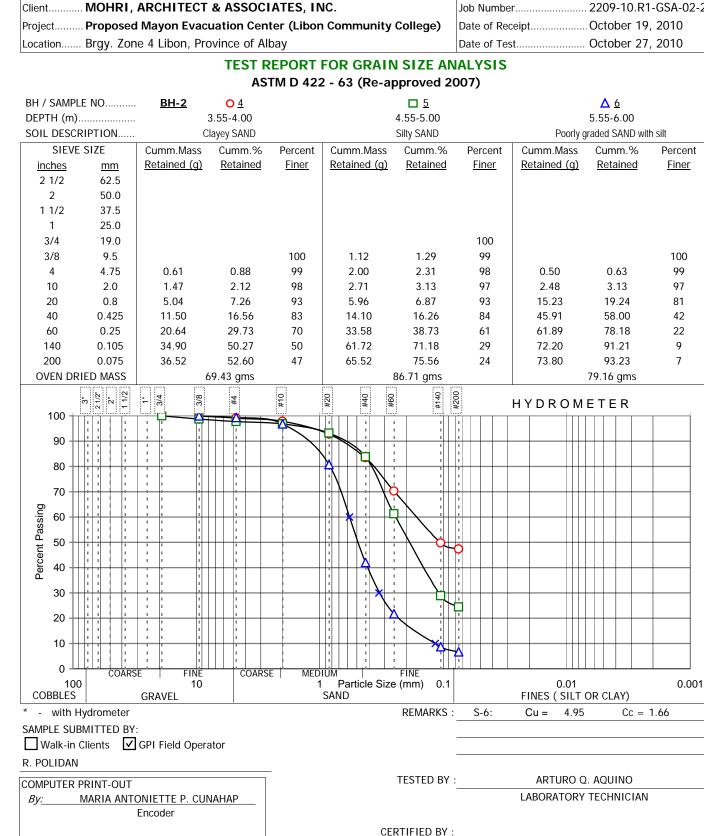
ASTM D 422 - 63 (Re-approved 2007)

DEPTH (m)	LE NO		<u>010</u> 9.55-10.00							Δ	
	RIPTION	, , ,	graded SAND wi	ith silt							
SIEVE	E SIZE	Cumm.Mass		Percent	Cumm.Mass	Cumm.%	Percent	Cumm.M		Cumm.%	Percent
inches	<u>mm</u>	<u>Retained (g)</u>	<u>Retained</u>	Finer	Retained (g)	Retained	Finer	Retained	d (g) b	Retained	Finer
2 1/2	62.5										
2	50.0										
1 1/2	37.5										
1	25.0										
3/4	19.0										
3/8	9.5										
4	4.75	0.40	0.46	100							
10	2.0	0.94	1.09	99							
20	0.8	5.11	5.91	94							
40	0.425	39.51	45.67	54							
60	0.25	69.12	79.90	20							
140	0.105	80.90	93.52	6							
200	0.075	81.94	94.72	5							
	RIED MASS		86.51 gms	Ũ							
OVEN DI	1/2 2.1/2	3/4	n ("")	#10	#40	#60 #140		HYDR	ОМ	FTFR	
100 +			· · · · ·	---							
90 -											
80 -					N						
70 -											
Percent Passing		1 1 1			<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
oas						:					
± 50 +					: : \						
90 40 -		i i i				i i i					
a -											
30 +											
						$\langle $					
20 +		1 1 1				Q ::::					
10 -											
0	COARS	E FINÉ	COAR			FINE					
100 COBBLES	0	10 GRAVEL			1 Particle Si SAND	ze (mm) 0.1			0.01 SILT (OR CLAY)	0.001
- with H	Hydrometer					REMARKS :	S-10:	Cu =	3.16	Cc =	1.35
AMPLE SU	BMITTED BY:										
Walk-in	Clients 🔽	GPI Field Oper	rator								
 POLIDAN		·									
								ידחא			
	PRINT-OUT	-				TESTED BY :				. AQUINO	1
Ву:		DNIETTE P. CU	JNAHAP					LABORA	IURY	TECHNICIAN	
		Encoder									
D / A/					C	ERTIFIED BY :					
Data Checi	ked by:	ABA/MRR						AUTHO	RIZED	SIGNATORY	
		Quality Assu	urance	Uncertain	ty Results:	% Finer =	± 0.0391			LAB.FILE NO	
Data locus	d.				-	nded uncertain		on a com			
Dale ISSUE	:u					a level of confid					
					–z, proviuing		ence or app	n oximately	7370	•	

SOILS AND MATERIALS TESTING LABORATORY 119 Sauyo Road, Novaliches, Quezon City

TEST REPORT FOR GRAIN SIZE ANALYSIS

ASTM D 422 - 63 (Re-approved 2007) BH / SAMPLE NO..... BH-2 <u>01</u> <u>2</u> <u>Δ</u> <u>3</u> 2.55-3.00 0.55-1.00 1.55-2.00 DEPTH (m)..... SOIL DESCRIPTION Silty SAND Silty SAND Sandy SILT SIEVE SIZE Cumm.Mass Cumm.% Percent Cumm.Mass Cumm.% Percent Cumm.Mass Cumm.% Percent Finer inches Retained (g) Retained Finer Retained (g) Retained Finer Retained (g) Retained mm 2 1/2 62.5 2 50.0 1 1/2 37.5 25.0 1 19.0 3/4 3/8 100 9.5 4.75 1.91 2.05 98 100 100 4 98 5.83 94 10 2.0 1.41 1.72 6.27 1.37 1.77 98 4.38 95 14.85 15.96 20 0.8 5.34 84 5.47 7.08 93 40 0.425 12.42 15.15 85 29.37 12.79 31.56 68 16.56 83 34.77 0.25 28.51 49.55 47 21.13 27.36 73 60 65 53.25 30 140 0.105 57.11 69.65 73.32 27 29.40 68.22 38.06 62 200 0.075 25 71.75 77.11 23 32.38 41.92 61.65 75.18 58 OVEN DRIED MASS 82.00 gms 93.05 gms 77.24 gms 1 1/2 #140 #200 #10 #20 2 1/2" #40 09# 3/4 3/8 #4 2 HYDROMETER 100 ÷. 90 ì 80 i i 70 į Percent Passing 60 i, 50 40 30 ÷ ł 20 ŝ 10 0 COARSE FINE COARSE MEDIUM FINE Particle Size (mm) 0.1 100 0.01 0.001 10 COBBLES SAND FINES (SILT OR CLAY) GRAVEL with Hydrometer **REMARKS** : SAMPLE SUBMITTED BY: □ Walk-in Clients GPI Field Operator R. POLIDAN TESTED BY : ARTURO Q. AQUINO COMPUTER PRINT-OUT LABORATORY TECHNICIAN MARIA ANTONIETTE P. CUNAHAP Ву:____ Encoder CERTIFIED BY : Data Checked by: ____ ABA/MRR AUTHORIZED SIGNATORY **Quality Assurance** Uncertainty Results: % Finer = ± 0.0375 LAB.FILE NO.:GSA-10-401 Note: The reported expanded uncertainty is based on a combined uncertainty by a coverage Date Issued: factor of k=2, providing a level of confidence of approximately 95%.

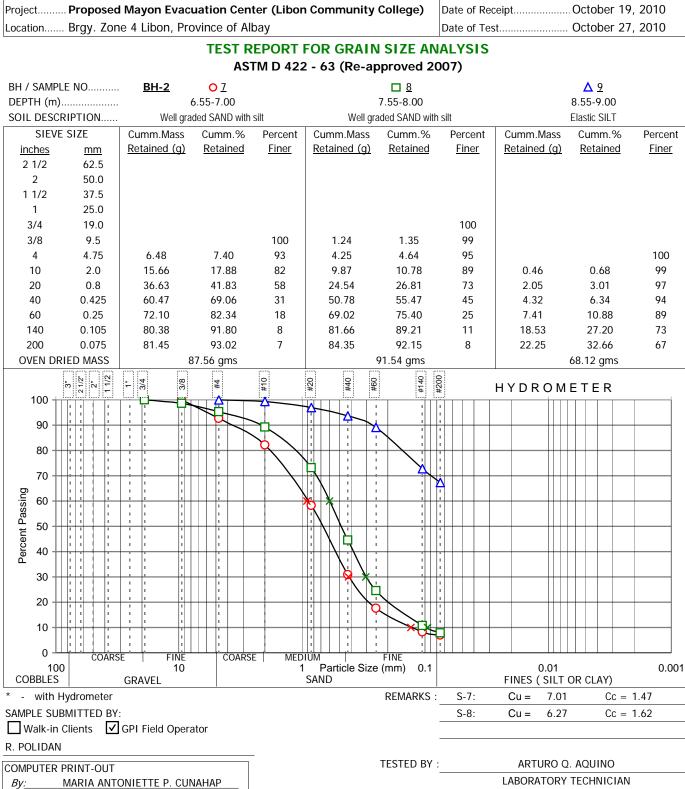


SOILS AND MATERIALS TESTING LABORATORY 119 Sauyo Road, Novaliches, Quezon City

Client...... MOHRI, ARCHITECT & ASSOCIATES, INC.

Job Number...... 2209-10.R1-GSA-02-2

Data Checked by: _	ABA/MRR Quality Assurance		AUT	HORIZED SIGNATORY
		Uncertainty Results:	% Finer = ± 0.0424	LAB.FILE NO.:GSA-10-401
Date Issued:			anded uncertainty is based on a of a level of confidence of approxim	combined uncertainty by a coverage ately 95%.



SOILS AND MATERIALS TESTING LABORATORY 119 Sauyo Road, Novaliches, Quezon City

Client...... MOHRI, ARCHITECT & ASSOCIATES, INC. Date of Receipt..... October 19, 2010 Date of Test..... October 27, 2010

Encoder CERTIFIED BY : ABA/MRR Data Checked by: AUTHORIZED SIGNATORY **Quality Assurance** Uncertainty Results: % Finer = ± 0.0383 LAB.FILE NO.:GSA-10-401 Note: The reported expanded uncertainty is based on a combined uncertainty by a coverage Date Issued: factor of k=2, providing a level of confidence of approximately 95%.

SOILS AND MATERIALS TESTING LABORATORY 119 Sauyo Road, Novaliches, Quezon City

Client...... MOHRI, ARCHITECT & ASSOCIATES, INC. Job Number...... 2209-10.R1-GSA-02-4 Project..... Proposed Mayon Evacuation Center (Libon Community College) Date of Receipt..... October 19, 2010 Date of Test..... October 27, 2010 Location...... Brgy. Zone 4 Libon, Province of Albay **TEST REPORT FOR GRAIN SIZE ANALYSIS** ASTM D 422 - 63 (Re-approved 2007) BH / SAMPLE NO..... <u>BH-2</u> <u>010</u> Δ 9.55-10.00 DEPTH (m)..... SOIL DESCRIPTION Silty SAND SIEVE SIZE Cumm.Mass Cumm.% Percent Cumm.Mass Cumm.% Percent Cumm.Mass Cumm.% Percent inches Retained (q) Retained Finer Retained (g) Retained Finer Retained (g) Retained Finer mm 2 1/2 62.5 2 50.0 1 1/2 37.5 25.0 1 19.0 3/4 3/8 9.5 100 0.50 4.75 0.61 99 4 1.03 99 10 2.0 1.25 1.98 20 0.8 2.40 98 40 0.425 8.00 90 9.69 0.25 28.14 34.07 60 66 140 72.22 0.105 59.65 28 200 0.075 64.74 78.39 22 OVEN DRIED MASS 82.59 gms #140 1 1/2 #10 #200 2 1/2" #20 #40 09# 3/4 3/8 4 HYDROMETER 100 ŝ 90 į 80 ŝ 70 ŝ Percent Passing 60 į 50 40 ŝ ŝ 30 ŝ ł 20 į 10 ŝ ÷ 0 COARSE FINE COARSE MEDIUM FINE Particle Size (mm) 0.01 FINES (SILT OR CLAY) 100 10 0.1 0.001 1 SAND COBBLES GRAVEL - with Hydrometer **REMARKS** : SAMPLE SUBMITTED BY: Walk-in Clients GPI Field Operator

R. P	OLI	DAN
------	-----	-----

R. POLIDAN				
COMPUTER PRINT-OUT			TESTED BY :	ARTURO Q. AQUINO
<i>By:</i> MARIA AN	FONIETTE P. CUNAHAP Encoder			LABORATORY TECHNICIAN
Data Chackad bu	ABA/MRR	C	CERTIFIED BY :	
Data Checked by:		-		AUTHORIZED SIGNATORY
	Quality Assurance	Uncertainty Results:	% Finer = ± 0.0378	LAB.FILE NO.:GSA-10-401
Date Issued:			anded uncertainty is based a level of confidence of a	d on a combined uncertainty by a coverage pproximately 95%.

FINAL REPORT

SUBSURFACE INVESTIGATION PROPOSED MAYON EVACUATION CENTER (2-STOREY)

POLANGUI NORTH CENTRAL SCHOOL CENTRO ORIENTAL, PROVINCE OF ALBAY

MOHRI, ARCHITECT & ASSOCIATES, INC.

OCTOBER 2010 JOB NO. 2209-10.R1

FINAL REPORT

TABLE OF CONTENTS

Contents

No. of Pages

1.0	INTRODUCTION1
2.0	OBJECTIVES 1
3.0	FIELD EXPLORATION AND INVESTIGATION
4.0	LABORATORY INVESTIGATION
5.0	BOREHOLE STRATIGRAPHY1
6.0	SOIL PROPERTIES
7.0	LIQUEFACTION POTENTIAL
8.0	BEARING CAPACITY AND FOUNDATION TYPE 1
9.0	EXCAVATION AND FILL 1
APF	PENDICES
• D	istribution of Active Faults and Trenches in the Philippines 1
• P	hotos 1
• L	ocation Plan 1
• S	bil Profile
• Fi	inal Boring Logs
• S	ummary of Test
	atural Moisture Content/Atterberg Limit 4
	tterberg Limit
	rain Size Analysis

Geotechnical Contractor

119 Sauyo Road, Novaliches Quezon City, Philippines

Business development: 9306555Customer Service: 9382124Fax: 4561140Homepage: www.geoEmail: jmcgpi@

: 9306555 : 9382124/9353730 : 4561140 : www.geophil.com : jmcgpi@gmail.com

FINAL REPORT

SUB-SURFACE INVESTIGATION FOR THE PROPOSED MAYON EVACUATION CENTER (2-STOREY) LOCATED AT POLANGUI NORTH CENTRA SCHOOL, CENTRO ORIENTAL, PROVINCE OF ALBAY

1.0 Introduction:

Geotechnics Philippines, Incorporated (GPI) completed the subsurface soil investigation for the proposed Mayon Evacuation Center. The proposed site explored is located at Centro Oriental, Province of Albay.

Two (2) boreholes were drilled at the proposed site from October 17 to October 18, 2010. Borings were undertaken down to 10m for both BH-1 and BH-2 below existing natural ground line. Borehole locations are as indicated on the accompanying Boring Plan and Soil Profile Sheets.

The subsurface soil exploration was undertaken upon the request of Mohri, Architect & Associates, Inc. in order to gain information on the subsurface conditions and bearing characteristics of the underlying soils at site.

The undersigned was tasked to evaluate the results of the completed subsurface soil exploration and to recommend a suitable foundation solution for the proposed structure.

This report embodies the undersigned's engineering analysis and recommendations based mainly on the results of the geotechnical soil borings and pertinent laboratory tests performed on extracted samples.

The results of geotechnical soil borings and laboratory tests can be referred to in the attachments accompanying this report.

2.0 Objectives:

The geotechnical investigation aims to determine the following:

- Soil Profile
- Engineering properties of the Soil Strata
- Bearing Capacities and Foundation Types
- Settlement conditions of critical areas
- Comment on ground stability and liquefaction potential of the site
- Provide Excavation and Fill Guidelines

In addition to the above mentioned items, matters on implementation and construction shall be given as required.

3.0 Field Exploration and Investigation

The field exploration implored continuous was boring and the Standard Penetration Test (SPT) were performed at the last 45cm of every change strata or 1.0 meter intervals. The blow counts (N value or NB) were recorded as disturbed samples from the split spoon sampler were retrieved for laboratory testing. The recovered samples were described semi qualitative in terms of extracted length. The extracted soil samples

were wrapped in double plastic bags for moisture and sample protection and were transported to the laboratory for further testing of engineering properties.

3.1 Standard Penetration Test

The Standard Penetration Test (SPT) is a field test used in determining the shear strength of soils from an established correlation. The SPT requires the count of the number of blows that it would take a standard split spoon sampler to penetrate its last 30.5cm (12inches) of the sampler. The standard mass is 63.5 kilograms and the height of the drop is 76.2cm specified as a free drop.

3.2 Ground Water Table

The ground water table (GWT) elevation was observed at least 4 hours from the completion of the borehole up to demobilization.

4.0 Laboratory Investigation

The retrieved samples were brought to the laboratory in Sauyo Road, Novaliches, Quezon City. Various tests were conducted on all extracted samples with test procedures conforming to the American Standards for Testing Materials (ASTM). The following are the laboratory tests conducted on the soil samples.

Type of Test	ASTM Designation	Description of Test
Soil Classification for Engineering Purposes – Unified Soil Classification System	ASTM D 2487-05	 Standard in classifying the type of soil based on composition and physical properties These were classified in accordance to grain size, composition, percentage of size in the distribution
Particle Size Distribution – Sieve Analysis	ASTM D 422-63 (Reapproved 2002)	 The test allows the dried or wet soil to pass through a series of sieves in order to determine the distribution of grain sizes. The distributions of the particles are graphed on a semi log scale This test aids the previous test in classification
Moisture Content	ASTM D 2216-05	 The test aims to determine the natural content of water in the soil This is taken as the ratio of water to the ratio of the soil particles The test uses a weighing scale measuring the initial weight of the soil and the final weight of the soil after drying it in the oven
Atterberg Limits Liquid Limit, Plastic Limit and Plasticity Index	ASTM D4318-05	 Tests determining the limits of cohesive soils in behaving as a plastic or a flowing medium by incrementally changing the water content The plastic limit is determined by rolling a clay sample to around 1/8 of an inch or 3mm The liquid limit uses the liquid limit device and determines the number of blows it would take for the slit to close Correlative values can be used for settlement relations

The results of the laboratory investigation are appended.

5.0 Borehole Stratigraphy

Two (2) boreholes were driven to investigate the subsurface. The following are the findings:

5.1 Borehole BH-1

Depth (m)	Soil Classification	Consistency	N-Value
0.00 - 1.00	Elastic SILT	Very Stiff	26
1.00 - 4.00	Silty SAND	Firm	11 ~ 18
4.00 - 5.00	Silty SAND	Loose	7
5.00 - 10.00	Poorly graded	Dense – Firm	18 ~ 31

The ground water was measured at 1.05 meters from the existing ground.

5.2 Borehole - BH-2

Depth (m)	Soil Classification	Consistency	N-Value
0.00 - 1.00	Elastic SILT	Stiff	13
1.00 - 2.00	Elastic SILT	Firm	8
2.00 - 4.00	Silty SAND	Firm	$13 \sim 25$
4.00 - 5.00	Silty SAND	Loose	8
5.00 - 6.00	Silty SAND	Firm	27
6.00 - 7.00	Elastic SILT	Very Stiff	16
7.00 - 10.00	SAND	Dense to Firm	10 ~ 32

The ground water was measured at 1.05 meters from the existing ground.

6.0 Soil Properties

The following are the adapted soil properties for the investigated strata:

Soil Parameters			Carla
Gravels, Sands, S (N	ilty Sands and Cl lon-cohesive)	ayey	Sands
Sands	С	φ	γ (kcf)
Very Loose	0	26	0.085
Loose	0	28	0.100
Medium Dense	0	30	0.110
Dense	0	32	0.120
Very Dense	0	35	0.130
Silts an	d Clays (Cohesiv	e)	
Silts and Clays	С	φ	γ (kcf)
Very Soft		0	0.100
Soft	(1)*10)/2	0	0.105
Firm	=(N*10)/2	0	0.115
Stiff	from Braja	0	0.120
Very Stiff	— Das	0	0.125
Hard		0	0.130

7.0 Liquefaction Potential

The boreholes showed thin layer of potentially liquefiable layer between $4\sim5$ meters deep. However, the impact would be minimal as dense layer are found in between loose formation.

8.0 Bearing Capacity and Foundation Type

Shallow Foundations

Shallow Foundations have good bearing capacities. The following are the allowable net bearing capacities based on Terzaghi's Bearing Capacity Equation:

BH-1:

Depth (m)	Bearing Capacity (kPa)
1.0	96
1.5	96

BH-2:

Depth	Bearing Capacity (kPa)
1.0	96
1.5	96

The associated settlement on the other hand is within the tolerable engineering settlement of 25mm. It is suggested that structural tie beam be installed to hold the foundation rigid during major earthquakes.

9.0 Excavation and Fill

The contractor of the proposed structure is advised to rail the excavation at night and during break times so as to ensure the general safety of the public specially childrens. Existing structures, whether temporary or permanent that are adjacent, the excavation should be protected from damages. Dewatering shall be necessary as the water table is shallow.

Fill for the excavation for footings and may utilize the same materials. On the other hand, grade and subgrade materials should be sandy frictional materials.

Fill should be compacted at 95% its maximum dry density. Should the amount of soil be inept, sandy fill may be utilized and should be compacted in the same degree. In both cases, the height of fill should be reviewed and adjusted accordingly to adapt minimal settlements.

Borehole Conclusions and Recommendations

The conclusions and recommendations are based on the data of two (2) boreholes. Deviations from these are expected and should be minimal as the boreholes are typical of an alluvial formation. Should there be any major deviation in the substrata be detected during the excavation phase, may the undersigned thru Geotechnics Philippines Inc (02-930-6555) be contacted immediately for proper reassessment.

DIOSDADO A. URENA CE Reg. No. 053884 PTR No. 3228274 Issued on January 8, 2010 Issued at Quezon City