PREPARATORY SURVEY REPORT
ON
THE PROJECT FOR CONSTRUCTION
OF NEAK LOEUNG BRIDGE
IN
THE KINGDOM OF CAMBODIA

March 2010

JAPAN INTERNATIONAL COOPERATION AGENCY

CHODAI CO., LTD.
ORIENTAL CONSULTANTS CO., LTD.
PREFACE

Japan International Cooperation Agency (JICA) conducted the preparatory survey on the Project for Construction of Neak Loeung Bridge in the Kingdom of Cambodia.

JICA sent to Cambodia a survey team from February 16 to April 27, 2009 (1st Site Survey, excluding Geological Survey), from May 21 to June 6, 2009 (2nd Site Survey), from July 1 to August 14, 2009 (3rd Site Survey), and from October 14 to October 24, 2009 (4th Site Survey).

The team held discussions with the officials concerned of the Government of Cambodia, and conducted a field study at the study area. After the team returned to Japan, further studies were made. Then, a mission was sent to Cambodia in order to discuss a draft outline design, and as this result, the present report was finalized.

I hope that this report will contribute to the promotion of the project and to the enhancement of friendly relations between our two countries.

I wish to express my sincere appreciation to the officials concerned of the Government of the Kingdom of Cambodia for their close cooperation extended to the teams.

January, 2009

Eiji Hashimoto
Vice President
Japan International Cooperation Agency
Letter of Transmittal

We are pleased to submit to you the preparatory survey report on the Project for Construction of Neak Loeung Bridge in the Kingdom of Cambodia.

This survey was conducted by the Consortium of CHODAI Co., Ltd. And Oriental Consultants Co., Ltd., under a contract to JICA, during the period from February, 2009 to January, 2010. In conducting the survey, we have examined the feasibility and rationale of the project with due consideration to the present situation of Cambodia and formulated the most appropriate outline design for the project under Japan’s Grant Aid scheme.

Finally, we hope that this report will contribute to further promotion of the project.

Very truly yours,

Junji Yasui
Project Manager,
Preparatory Survey team on the Project for Construction of Neak Loeung Bridge in the Kingdom of Cambodia
the Consortium of CHODAI Co., Ltd.
and Oriental Consultants Co., Ltd.
Summary

1. Overview of Cambodia

The Kingdom of Cambodia is located in the south of Indochina Peninsula. The country borders Thailand to its west, Laos to its north and Vietnam to its east. In the southwest it faces the Gulf of Thailand. The area of whole country is 181 thousand km². Its geography is dominated by the Mekong River which comes from Laos and runs north and south in the country, and the Tonle Sap (the largest lake in South East Asia) which lies at the center of the country. Cambodia has two distinct seasons, rainy season and dry season, and its climate is dominated by tropical monsoons. Its population is 13.4 million (2008 census), and has been increasing by 1.6% p.a. in the past 10 years. Its economic growth rate exceeds 10% p.a. during 2004 ~ 2007. Although the rate is anticipated to stay 6.5% p.a. in 2008 and 4.8% p.a. in 2009 due to the downturn of global credit market, it is expected to keep the growth of 6 ~ 7% p.a from a mid- and long-term perspective.

2. Background and Summary of the Requested Project

The National Strategic Development Plan (NSDP) 2006 states the importance of the renovation and maintenance of the road network as one of the measures needed to accomplish the plan, and the quantitative target during NSDP 2006-2010 is to upgrade another 2,000 km of primary and secondary roads. Also, the concept of the Asian Highway was agreed at the United Nations Economic Commission for Asia and the Far East (“ECAFE”) in 1959 which aims the improvement of the road traffic which supports the promotion of regional development, trade and tourism of Asia. As a part of the Asian Highway No.1 (AH-1), the National Road No.1 of Cambodia is designated an international highway (Southern Economic Corridor) connecting Ho Chi Minh, Phnom Penh and Bangkok. The National Road No.1 (the NR1) is thus regarded as one of the most important roads, not only as the primary highway of Cambodia, but also as a major road serving the southern area of the Indochina Peninsula. The improvement of this road is expected to lead to high benefit for the economy of surrounding area and neighboring countries.

Under the situation noted above, in order to cope with the increase of traffic demand for the NR1 and to improve the traffic capacity across Mekong River at Neak Loeung (which is a bottleneck of transport along the NR1), the Royal Government of Cambodia (GOC) requested the Japanese Government to construct a bridge at this crossing point as a substitute for the existing ferry service.

In response to the request from GOC, Japan International Cooperation Agency (JICA) conducted a series of studies: the Feasibility Study (2004~2006), the Follow-up Study (2006, 2007) and Preparatory Study (2008) on the Project for Construction of Neak Loeung Bridge (formerly “the Second Mekong Bridge”) to examine the feasibility of the Project. In the Feasibility Study in 2004, it was recommended that the Bridge should be open to traffic in the Year 2012 before the existing
ferry capacity is saturated, according to the traffic demand forecast. In the Follow-up Study in 2006, the implementation planning of the Bridge was reconfirmed from comprehensive viewpoints through monitoring the traffic impacts by CBTA (Cross Border Transport Agreement) etc. Also, the feasibility of the Project, the contents of socio-environmental consideration to be implemented, and the approval of the EIA report were confirmed. In the Preparatory Survey in 2008, it was confirmed that the existing ferry capacity is almost saturated at the time of September, 2009, and that it is required to construct the Bridge as soon as possible and to eliminate the bottleneck for traffic. Also the need for sufficient consideration was confirmed on the impact of the construction of the bridge and road to the social environment.

3. Summary of the Survey and Contents of the Project

In response to the request from GOC and the result of previous studies above, the Government of Japan decided to implement the Preparatory Survey, and JICA sent to Cambodia a survey team from February to August, 2009 (1st site survey: February ~ April, 2nd site survey: May ~ June, 3rd site survey: July ~ August, 4th site survey: October). After the further study in Japan, the study team prepared a draft outline design report, and JICA sent a mission and discussed a outline design with GOC.

In the site survey, conditions regarding traffic, topography, geography, hydrology, environment, economy were studied together with the situation of procurement and costs for construction materials and facilities. In addition, it was confirmed that the navigation by 5,000 DWT ships to and from Phnom Penh Port (upstream of the Bridge Site) is expected in the future. Based on the survey results above, major conditions for the Bridge was designated, and the major dimensions such as the main span of the Main Bridge was determined. Major data of the structures constructed in the Project is tabulated as below.

<table>
<thead>
<tr>
<th>Bridges</th>
<th>Embankment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Bridge</td>
<td>Approach Bridge</td>
</tr>
<tr>
<td>Bridge Type</td>
<td>Length</td>
</tr>
<tr>
<td>Cable-Stayed Bridge</td>
<td>640m</td>
</tr>
<tr>
<td>Composite PC Girder</td>
<td>1,575m</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Summary of the Survey and Contents of the Project

In response to the request from GOC and the result of previous studies above, the Government of Japan decided to implement the Preparatory Survey, and JICA sent to Cambodia a survey team from February to August, 2009 (1st site survey: February ~ April, 2nd site survey: May ~ June, 3rd site survey: July ~ August, 4th site survey: October). After the further study in Japan, the study team prepared a draft outline design report, and JICA sent a mission and discussed on the outline design with GOC.

5. Implementation Period and Cost Estimate of the Project

It is expected that it will take 6 months and 51 months for the detail design and for construction of the facilities of the Project respectively. The Project cost required for fulfilling the undertakings by GOC is estimated to be 188 million yen.

6. Examination of Project Validity

As the Project will benefit the economic development of south region of the Indochina Peninsula, its effect is expected to spread over the neighboring countries, not to mention the area nearby the Bridge Site. The effects anticipated from implementation of the Project are as follows:

Direct Effects

➢ Crossing time is reduced. (Waiting time for ferry: max. 20 ~ 38 minutes → 0 minutes)
➢ River crossing possible for 24-hours. No closed hour (0:00 ~ 5:00 for ferry)
➢ Safe crossing even under bad weather.

Indirect Effects

➢ The mobility of goods between Ho Chi Minh City (Vietnam) and Phnom Penh will be accelerated, and this leads to the economic development of Cambodia. Also, the local industries of the east bank region of Mekong River (such as agricultures) will be activated because the transport to the urban area will be stabilized.
➢ The standard of living will be enhanced because the access to the urban region will become easier and the opportunities will be increased to enjoy services such as health care and education for the residents on the east bank region.
➢ Employment creation for the neighboring residents is anticipated because the Project will attract the establishment of commercial facilities, support facilities for road traffic, rest facilities for road users etc.

The maintenance required for the bridge and road implemented by this Project has a great variety of
items such as routine inspection and repair of the bridge, repavement on the bridge, repainting of railings, leveling of shoulders and repair of slopes at the embankmen, replacement of various lighting lamps etc. Although GOC has been focusing on the construction of new roads and bridges in the past, recognizing the importance of maintenance in recent years, the budget for maintenance is increasing year by year. Also, the road maintenance guidelines were formulated in 2008 through the efforts of JICA experts. However, the maintenance structure for bridges has not been well developed so far. In addition, the cable-stayed bridge as the Main Bridge in this Project is a special type of bridge, it is required to establish an maintenance organization which is specialized in bridge engineering. With the growing awareness of the implementation organization for the maintenance, these recommendations is expected to be accepted, and the adequate structure will be developed.

As noted above, this Project will contribute to the activation of Cambodia and the neighboring countries, and to the boost of the livelihood of the residents living in the east bank area of the Mekong River, by constructing a new bridge at the crossing point of the Mekong River at Neak Loeung, which remains a bottleneck for the traffic along the NR1. This Project is thus expected to bring a large effect to the development of the area, and also to accelerate the realization of the concept of Asian Highway.
Preparatory Survey Report

Table of Contents

- Preface
- Letter of Transmittal
- Summary
- Table of Contents
- Project Location Map / Artist’s Impressions
- List of figures & tables
- Abbreviations

Chapter 1. Background of the Project

1. Current Situation
2. Conditions Surrounding the Project Site
 - Geological Condition
 - Topographic Survey
 - Study on Meteorology, Hydraulics and Hydrology
3. Confirmation of Timing of Bridge Opening
 - Confirmation of Socio-economic Framework
 - Confirmation of CBTA Progress
 - Traffic Survey
4. Present Situation and Future Plan of Phnom Penh Port
 - Port Facilities and Handling Cargo
 - Port Activities
 - Future Development Plan of Phnom Penh Port

Chapter 2. Impact of Project Implementation on Social and Natural Environments

1. Resettlement Issues and Social Considerations
2. Environmental Impact Assessment and the Natural Environment
 - Outline of the procedures for EIA approval
 - Environmental Management Plan (EMP)

Chapter 3. Contents of the Project

1. Outline of the Project
3.1.1 Overall Goal and Project Objective... 3-1
3.2 Outline Design of the Requested Japanese Assistance.. 3-2
 3.2.1 Design Policy ... 3-2
 3.2.2 Basic Plan ... 3-41
 3.2.3 Design Drawings .. 3-79
 3.2.4 Implementation Plan .. 3-90
3.3 Obligations of the Recipient Country... 3-98
 3.3.1 General items in Japan’s Grant Aid Scheme .. 3-98
 3.3.2 Special items of the Project .. 3-98
3.4 Project Maintenance Plan... 3-99
 3.4.1 Current Status of the Road and Bridge Maintenance Organization 3-99
 3.4.2 Operation and Maintenance Plan of This Project .. 3-101
3.5 Project Cost Estimate ... 3-102
 3.5.1 Project Cost Estimate .. 3-102
 3.5.2 Maintenance Costs ... 3-103

Chapter 4. Project Effect... 4-1
 4.1 Project Effect .. 4-1
 4.2 Recommendations ... 4-2
 4.2.1 Issues to be tackled by the Cambodian Side ... 4-2
 4.2.2 Technical Assistance and Cooperation with Other Donors 4-3

[Appendices]

1 Member List of the Study Team
2 Study Schedule
3 List of Parties Concerned in the Recipient Country
4 Minutes of Discussions
5 Drawings (Separate Volume)
PREPARATORY SURVEY ON THE PROJECT FOR CONSTRUCTION OF NEAK LOEUNG BRIDGE IN THE KINGDOM OF CAMBODIA

Project Location Map
PREPARATORY SURVEY ON THE PROJECT FOR CONSTRUCTION OF NEAK LOEUNG BRIDGE IN THE KINGDOM OF CAMBODIA

Artist's impression of "Neak Loeung Bridge" 1

Artist's impression of "Neak Loeung Bridge" 2
PREPARATORY SURVEY ON THE PROJECT FOR CONSTRUCTION OF NEAK LOEUNG BRIDGE IN THE KINGDOM OF CAMBODIA

Artist's impression of “Neak Loeung Bridge” 3

Artist's impression of “Neak Loeung Bridge” 4
List of Figures and Tables

Figures

Figure 1.1-1	Location of the Project	1-3
Figure 1.1-2	Alternative Crossing Routes (the Feasibility Study)	1-4
Figure 1.2-1	Location of Geological Survey	1-5
Figure 1.2-2	Geological Profile of Project Area	1-7
Figure 1.2-3	Distribution of N value in Project Area	1-8
Figure 1.2-4	Location of Topographic Survey	1-9
Figure 1.2-5	Location of Temporary Benchmarks	1-11
Figure 1.2-6	Result of Center Line Survey	1-12
Figure 1.2-7	Bank Erosion at the East Bank of Phnon Knong Island	1-13
Figure 1.2-8	Gradients of River Bank Upstream and Downstream of the Site	1-14
Figure 1.3-1	Weekday Classified Traffic Volume	1-18
Figure 1.3-2	Average Waiting Time on Weekdays (2009)	1-20
Figure 1.3-3	Classified Traffic Volume (in PCU)	1-22
Figure 1.3-4	Comparison between Surveyed Traffic and Estimated Traffic	1-22
Figure 2.1-1	Illustration of Distribution of PAPs by Type of Zone	2-2
Figure 2.1-2	Snapshots of Eastern and Western Terminals	2-10
Figure 2.2-1	Explanatory diagram of the Project Location	3-2
Figure 2.2-2	Typical Cross Section Adopted for Embankment Section	3-5
Figure 2.2-3	Traffic Flow on West Bank Side (Phnom Penh Side)	3-6
Figure 2.2-4	Basic Configuration of Intersections with Existing NR-1	3-7
Figure 2.2-5	Basic Configuration of Intersections with Existing National Road No.1	3-8
Figure 2.2-6	Navigation Channel Layout	3-11
Figure 2.2-7	Typical Cross Section of the Road (on Bridge)	3-12
Figure 2.2-8	Structure in consideration of future erosion of sandbar	3-14
Figure 2.2-9	Hypothetical Cases of Ship Collision	3-15
Figure 2.2-10	River width (in dry season)	3-15
Figure 2.2-11	Pier erection position	3-16
Figure 2.2-12	Length of main bridge	3-16
Figure 2.2-13	Explanation of abutment position	3-17
Figure 2.2-14	Cost-wise comparison of abutment A2 position on the terminal side	3-17
Figure 2.2-15	Flow Chart for Selection of Bridge Type for Main Bridge	3-18
Figure 2.2-16	Possible Installation Range for Bridge Piers	3-25
Figure 2.2-17	Bridge Type Options for Approach Bridge	3-36
Figure 2.2-18	Route Alignment	3-41
Figure 3.2-19 Standard Cross Section ...3-46
Figure 3.2-20 Layout of Riverbed Protection, Revetments and Steps for Box Culvert 3-49
Figure 3.2-21 Structure of Wet Masonry Revetment with Pile Foundation3-49
Figure 3.2-22 L-shaped Retaining Wall Structure with Pile Foundation3-50
Figure 3.2-23 Concept of Relationship between Passage of Time and Embankment Settlement ...3-52
Figure 3.2-24 Profile of Pre-Load Method Used at A2 Abutment3-56
Figure 3.2-25 Cross Section of Earth Ditch ..3-58
Figure 3.2-26 Variable Depth V-Shaped Ditch ...3-58
Figure 3.2-27 Kampong Phnom Intersection ...3-59
Figure 3.2-28 Neak Loueng Intersection ...3-59
Figure 3.2-29 Construction Yard Intersection ...3-59
Figure 3.2-30 Horizontal suspension type ..3-61
Figure 3.2-31 Cable layout in the bridge axis direction ..3-62
Figure 3.2-32 Profile of the main girder (main bridge) ..3-62
Figure 3.2-33 On-site construction, non-ground type ..3-63
Figure 3.2-34 Side and Front Views of the Tower ..3-63
Figure 3.2-35 Bearing conditions ...3-64
Figure 3.2-36 Shape of the pile cap ...3-65
Figure 3.2-37 Dimensions of vessel under consideration3-67
Figure 3.2-38 Case of a Vessel Collision to the Foundation3-67
Figure 3.2-39 Cross section of the Approach Bridge ...3-68
Figure 3.2-40 Construction of Connecting Section ...3-68
Figure 3.2-41 Substructure and Foundation of Approach Bridge3-69
Figure 3.2-42 Guardrail ...3-70
Figure 3.2-43 Expansion Joint between Approach Bridge and Main Bridge3-71
Figure 3.2-44 Expansion Joint for Approach Bridges ...3-71
Figure 3.2-45 Main bridge drainage plan ...3-72
Figure 3.2-46 Approach bridge drainage plan ..3-72
Figure 3.2-47 Road lighting plan ...3-73
Figure 3.2-48 Navigation light installation plan ...3-74
Figure 3.2-49 General diagram of the circuit wind tunnel of Yokohama National University ..3-76
Figure 3.2-50 Profile of the model ..3-77
Figure 3.2-51 V-A diagram of the basic profile (-3□) ..3-78
Figure 3.2-52 V-A diagram of the improved profile (-3□)3-78
Figure 3.2-53 Water level fluctuation (Measurement results for 1988 - 2008)3-91
Figure 3.2-54 Current speed measurement record (2008)3-91
Figure 3.2-55 Types of buoys set up in the Mekong River3-96
Table 1.1-1 Concept of the Feasibility Study of the Project ...1-2
Table 1.2-1 Geological and Geotechnical Condition of Project Area1-6
Table 1.2-2 Temporary Benchmarks ..1-10
Table 1.2-3 Main Data of Analysis ...1-13
Table 1.3-1 GDP Growth Projection ...1-15
Table 1.3-2 Population Projection...1-15
Table 1.3-3 Population Projection by Province ..1-15
Table 1.3-4 GDP Growth Scenario..1-16
Table 1.3-5 Classified Traffic Volume...1-18
Table 1.3-6 Growth Rate of Traffic Volume..1-19
Table 1.3-7 Revised Traffic Demand (in PCU). ...1-21
Table 1.3-8 Classified Traffic Volume (in PCU)...1-21
Table 1.4-1 Maximum Capacity and Type of Vessel at Phnom Penh Port1-25
Table 1.4-2 Vessel Size Called at Phnom Penh Port ...1-26
Table 2.1-1 Explanation of Zones ...2-2
Table 2.1-2 Number of PAPs and Affected Assets ...2-3
Table 2.1-3 Proposed Sub-categories of Structures for RCS ...2-8
Table 2.2-1 Proposed monitoring items and method ...2-16
Table 2.2-2 Proposed survey points and frequency ...2-17
Table 3.2-1 List of Related Geometric Design Standards ...3-3
Table 3.2-2 Road Category of Rural Roads and Traffic Volume3-4
Table 3.2-3 Road Category of Rural Roads and Access Control3-4
Table 3.2-4 Design Classification of Rural Roads and Design Speed3-4
Table 3.2-5 Adopted Road Design Criteria ...3-5
Table 3.2-6 Relationship between Design HWL and Design Road Elevation3-9
Table 3.2-7 Width of Main Navigation Channel ..3-11
Table 3.2-8 Width of Subsidiary Navigation Channel ..3-11
Table 3.2-9 Design Scour Depth ...3-14
Table 3.2-10 Ship collision conditions ..3-15
Table 3.2-11 Bridge length list ..3-17
Table 3.2-12 Results of boring ...3-20
Table 3.2-13 Comparison of Diameter of Cast-in-place Piles3-21
Table 3.2-14 Study of Steel Pipe Pile Foundation ...3-22
Table 3.2-15 Study of Steel Pipe Sheet Pile Foundation ...3-23
Table 3.2-16 Comparison of Foundation Types ...3-24
Table 3.2-17 Examples of Maximum Span Lengths for Bridge Types..........................3-26
Table 3.2-18 Comparison of Main Bridge Types (1)...3-29
Table 3.2-19 Comparison of Main Bridge Types (2)...3-30
Table 3.2-20 Relationship between Appropriate Span Length and Steel Bridge........3-34
Table 3.2-21 Relationship between Appropriate Span Length and Concrete Bridge Types..3-35
Table 3.2-22 Comparison Study of Approach Bridge Types (1)..3-37
Table 3.2-23 Comparison Study of Approach Bridge Types (2)..3-38
Table 3.2-24 Types of Pile Foundation Options..3-39
Table 3.2-25 Foundation Type Options..3-40
Table 3.2-26 Results of CBR Tests..3-42
Table 3.2-27 Required SNs corresponding to Design CBR...3-43
Table 3.2-28 Stabilized Subgrade Thickness corresponding to Design CBR.................3-43
Table 3.2-29 Pavement Structure corresponding to Design CBR..................................3-44
Table 3.2-30 List of Box Culverts..3-47
Table 3.2-31 Range of Riverbed Protection...3-48
Table 3.2-32 Range of Revetment Work..3-48
Table 3.2-33 Structure of Retaining Walls...3-50
Table 3.2-34 Relationship between Depth of Soft Ground Layer and Embankment Height..3-51
Table 3.2-35 Results of Untreated Embankment Stability Analysis under Conditions of Instantaneous Loading...3-51
Table 3.2-36 Time Span from Commencement of Embankment Work (Unit: Days)3-52
Table 3.2-37 Total Settlement Depth at Center of Embankment....................................3-53
Table 3.2-38 Case Study of Vertical Drain Intervals...3-54
Table 3.2-39 Summary of Consolidation settlement by Vertical Drain Method3-54
Table 3.2-40 Intervals for Cardboard Drains..3-55
Table 3.2-41 Construction Schedule for Vertical Drain and Pre-Load Methods.............3-56
Table 3.2-42 Summary of Consolidation settlement by Pre-Load and Vertical Drain Methods...3-57
Table 3.2-43 Natural conditions for the Foundation Design...3-66
Table 3.2-44 Profile of the Substructures and Foundations..3-69
Table 3.2-45 Types of guard rail..3-70
Table 3.2-46 Test case..3-77
Table 3.2-47 Test conditions...3-78
Table 3.2-48 Division of Construction Work...3-93
Table 3.2-49 Procurement of main construction materials and equipment.................3-94
Table 3.2-50 Work schedule chart..3-94
Table 3.4-1 Categories of maintenance budget...3-100
Table 3.4-2 Budget for routine maintenance...3-100
Table 3.4-3 Facility maintenance work...3-101
Table 3.5-1 Major maintenance work...3-103
Table 4.1-1 Project Effects..4-1
Abbreviations

AASHTO : American Association of State Highways and Transportation Officials
ADB : Asian Development Bank
ADF : Asian Development Fund
AH-1 : Asian Highway No.1
AUSTROADS : The association of Australian and New Zealand road transport and traffic authorities
CBTA : Cross Boarder Transport Agreement
CPI : Consumer Price Index
DBST : Double Bituminous Surface Treatment
DMS : Detailed Measurement Survey
DPWT : Department of Public Works and Transport
DWT : Dead weight tonnage
ECAFE : The United Nations Economic Commission for Asia and the Far East
EIA : Environmental Impact Assessment
EIRR : Economic Internal Rate of Return
EMP : Environmental Management Plan
FIRR : Financial Internal Rate of Return
GDP : Gross Domestic Product
GMS : Greater Mekong Sub-region
GPS : Global Positioning System
HLP : Heavy Load Platform
HV : Heavy Vehicles
HWL : High Water Level
IEIA : Initial Environmental Impact Assessment
IICBTA : Initial Implementation of CBTA
IMF : International Monetary Fund
IUCN : International Union for Conservation of Nature
IRC : Inter-ministerial Resettlement Committee
JICA : Japan International Cooperation Agency
JRA : Japan Road Association
LLT : Lateral Load Test
LOA : Length OverAll
LV : Light Vehicles
LWL : Low Water Level
MC : Motorcycles
MEF : Ministry of Economy and Finance
MOE : Ministry of Environment
Chapter 1. Background of the Project

1.1 Current Situation

National Road No.1 (NR1) is one of the most important routes in Cambodia and stretches from Phnom Penh to the southern part of Cambodia. NR1 forms part of the Asian Highway Route AH-1 and connects Ho Chi Minh City and Bangkok through Phnom Penh. NR1 was improved by the ADB (between Neak Loeung and the Vietnam border) and Japanese Grant Aid (between Neak Loeung and Phnom Penh), to accelerate the mobility of goods and passengers and generate substantial benefits to Indochina and the Greater Mekong Sub-region (GMS).

In order to cope with the increase of traffic demand for the NR1 and to improve the traffic capacity across Mekong River at Neak Loeung (which is a bottleneck of transport along the NR1), the Royal Government of Cambodia (GOC) requested the Japanese Government to conduct the Study on the Construction of Neak Loeung Bridge to examine the feasibility of this Project.

In response to the request from GOC, Japan International Cooperation Agency (JICA) conducted a series of studies: the Feasibility Study (2004~2006), the Follow-up Study (2006, 2007) and Preparatory Study (2008) on the Construction of Neak Loeung Bridge (formerly “the Second Mekong Bridge”). The previous studies then elaborated conceptual design and implementation plan of the Project as summarized in Table 1.1-1 and Figure 1.1-1.
Table 1.1-1 Concept of the Feasibility Study of the Project

<table>
<thead>
<tr>
<th>1. Location of the Project</th>
<th>Neak Loeung on National Highway No.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Target Year</td>
<td>2020</td>
</tr>
</tbody>
</table>

3. Socio-economic Framework

Three development scenarios were set: high GDP growth rate (8% p.a.), medium growth rate (6%) and low growth rate (4%). The medium growth rate of 6% was applied as the base case of the socio-economic framework.

Other than GDP growth rate, the population and employment were projected and taken into account in the socio-economic framework.

4. Traffic Demand Forecast

The traffic demand observed at Neak Loeung in May and June 2007 was 2,376 PCU (passenger car unit). The incremental traffic generated from the following development program was taken into consideration in estimating the traffic demand.

(A) Improvement of NR 1 (to be completed by early 2011).
(B) Implementation of cross border facilitation agreement at the border with Vietnam (to be executed in 2007).
(C) Modal change by the transfer from pedestrians and bicycle to mini-buses when the bridge is completed.
(D) Cross-border traffic between Cambodia and Vietnam after the implementation of cross border facilitation agreement (executed in 2005).
(E) Traffic generated by bridge construction.
(F) Traffic generated from the flood-free land development.

5. Outline of Preliminary Engineering Design

Highway Design

AASHTO and the design standards adopted in the past projects in Cambodia were studied and the Highway with two lanes of the carriageway and two motorbike lanes with design speed of 80 km/h is recommended.

Bridge Design

The horizontal clearance (180m) and the vertical clearance (37.5m) are recommended as main navigation route to allow a 5,000 DWT container ship pass under the bridge.

Navigation clearance applied for Kizuna Bridge was recommended for sub-navigation route for the safety of local ship.

Profile of the Project

The total length of the Project: 5,420 m
Bridge length: 2,220 m (600 m-long main bridge, approach bridges with length of 960 m on the west side and 660 m on the east side)
Approach road length: 3,200 m (800 m on the west side and 2,400 m on the east side)

6. Project Costs and Implementation Plan

Total project cost is estimated at US$ 74 million, including the construction cost, land acquisition and compensation costs, de-mining and UXO clearance costs, using the price level in September 2005. The total construction period, including the mobilization period is estimated at 45 months, and the overall project implementation period is to be about 6 years.

7. Economic and Financial Evaluation

The EIRR of the project is 23.0% and the sensitivity analysis results in 16.8%, when the traffic demand decreases by 20% and the project cost increases by 20%. It is, therefore, concluded that a high priority should be given to implementation of the project to promote economic and social development in Cambodia and GMS region as well.

The results of financial analysis show low FIRR of 6.6% (toll level equivalent to the current ferry tariff) or 2.9% (toll level to cover 100% of the bridge user benefit). Therefore, the project will not be attractive for the private sector to invest in without significant financial support by the government.

Figure 1.1-1 Location of the Project
In the selection of optimum crossing route, the optimum route of the bridge option was decided firstly. On this basis, an optimum method or facility to cross the River was selected from several alternatives. The optimum route and the optimum crossing method are selected by evaluating the result of interview to the stakeholders of each kind using AHP (Analytic Hierarchy Process). In the selection of optimum method, the following 4 alternatives were compared, and “4. Ferry Improvement + Bridge Option” was selected.

1: Zero Option
2: Ferry Improvement
3: Bridge Option
4: Ferry Improvement + Bridge Option

In the selection of optimum crossing route, the 3 routes shown in Figure 1.1-2 was compared, and Route A was selected.

![Alternative Crossing Routes](image)

Figure 1.1-2 Alternative Crossing Routes (the Feasibility Study)

In the selection of the crossing route, Route A is evaluated as the optimum, not only by the result of interview to the stakeholders, but also from the economic and technical studies. The alignment of the Project is selected considering the controlpoints on the route such as orphanages, antenna towers, graveyards, temples, residential areas, and is selected especially to minimize the number of houses to be resettled.
1.2 Conditions Surrounding the Project Site

1.2.1 Geological Condition

(1) Geological Condition

Neak Loeung is located on the plain in the central part of the country. The Mekong River, which originates in the Tibetan Plateau and has total length of 4,023 km, flows in the direction of north to south with a river-bed gradient of 1/16,000 in the project area.

Cenozoic formation including Holocene (Alluvium) and Pleistocene (Diluvium) deposits are widely distributed in the plain, the so-called Tonle Sap – Mekong Plain, and they are underlain by sandstone of Mesozoic era and plutonic rocks of unknown age.

The hills and terrains, which are distributed in the area between Phnom Phen and Neak Loeung, consist mainly of Mesozoic sandstone. The hilly terrain, which is mined for quarry and located nearly 10 km in the east of Neak Loeung, is composed of plutonic rocks of unknown age.

(2) Geological Investigation

Geological investigation was carried out in order to confirm the bearing layers for embankments and bridge foundations and to evaluate the engineering properties of soils. For on-site investigation, boring survey (including SPT and LLT) and resistivity survey were carried out. The location of geological survey is shown in Figure 1.2-1.

![Figure 1.2-1 Location of Geological Survey](image-url)
(3) Result of Geological Investigation

Geological and geotechnical condition, Geological Profile, and Distribution of N value in Project Area are shown in Table 1.2-1, Figure 1.2-2 and Figure 1.2-3 respectively.

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>EPOCH</th>
<th>GEOLOGY</th>
<th>ENGINEERING GEOLOGY</th>
<th>N value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Description</td>
<td>Classified</td>
<td>Description</td>
</tr>
<tr>
<td>QUATERNARY</td>
<td>PLEISTOCENE</td>
<td>Loose gravel, sand, silt, clay and their mixtures soil. Mainly present river deposits,</td>
<td>Clay rich layer (Ac)</td>
<td>Soft and loose with high water content</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sand rich layer (As)</td>
<td>Loose and high water content</td>
<td></td>
</tr>
<tr>
<td>QUATERNARY</td>
<td>PLEISTOCENE</td>
<td>Consolidated and relatively consolidated soil consisting of gravel, sand, silt and clay.</td>
<td>Clay rich layer (Dc)</td>
<td>Relatively consolidated with low water content</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sand rich layer (Ds)</td>
<td>Consolidated and relatively consolidated layer</td>
<td></td>
</tr>
<tr>
<td>UNKNOWN</td>
<td></td>
<td>Bedrock appears to be Plutonic rock of unknown age (older than Mesozoic era),</td>
<td>Bedrock (B/R)</td>
<td>Hard & compact in fresh condition. Weathered in top portion and boundary with Pleistocene deposits is not clear at places.</td>
</tr>
</tbody>
</table>
1.2.2 Topographic Survey

(1) Location of Survey

The location of the topographic survey in this study is shown in Figure 1.2-4.
(2) Survey Datum

Basically the existing control points established by the feasibility study in 2005 were used as references. Based on the survey report of the feasibility study, there are seven (7) ground control points measured by GPS (static method) referenced by national control point No.1401. These control points were used for detailed topo-survey, alignment setting, profile and cross survey.

The vertical reference point is located in Neak Leoung Hydrology office on the east side of the Mekong River. This point is the first class national benchmark (H=7.592m) above the mean sea level at HA TIEN. All control points in the site were connected for each elevation by direct leveling with high-precision auto-level.

Detailed explanation of survey datum is as follows.

Geographic coordinate

- Datum: World Geodetic system 1984 (WGS 84)
- Reference Ellipsoid: Geodetic Reference System 1980 (GRS80)
- Semi-major axis: \(a = 6378137.0000 \)
- Reciprocal Flattening: \(1/f = 298.257222101 \)

Plane rectangular coordinate (UTM, Zone48)

- False Northing: 0.000m
- False Easting: 500,000.000m
- Longitude of Origin: 105° 00' 00.0000"
- Latitude of Origin: 0° 00' 00.0000"
- Scale factor at Central Meridian: 0.9996

Vertical datum and reference

- Mean Sea Level at HA TIEN
- Reference Point at Hydrology office: H = 7.592

The temporary benchmarks (TBM) established in this survey are shown in Table 1.2-2 and Figure 1.2-5.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type of TBM</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBM #16M</td>
<td>Casted by Concrete</td>
<td>04/May/2009</td>
</tr>
<tr>
<td>TBM #16N</td>
<td>Casted by Concrete</td>
<td>04/May/2009</td>
</tr>
<tr>
<td>TBM #07M</td>
<td>Casted by Concrete</td>
<td>05/May/2009</td>
</tr>
<tr>
<td>TBM #03M</td>
<td>Casted by Concrete</td>
<td>05/May/2009</td>
</tr>
<tr>
<td>TBM #03N</td>
<td>Casted by Concrete</td>
<td>05/May/2009</td>
</tr>
<tr>
<td>TBM #01M</td>
<td>Casted by Concrete</td>
<td>05/May/2009</td>
</tr>
<tr>
<td>TBM #01N</td>
<td>Casted by Concrete</td>
<td>05/May/2009</td>
</tr>
</tbody>
</table>
Figure 1.2-5 Location of Temporary Benchmarks
(3) Center Line Survey

Figure 1.2-6 Result of Center Line Survey
1.2.3 Study on Meteorology, Hydraulics and Hydrology

(1) Data Collection and Analysis

Main data collected and analyzed are shown in

<table>
<thead>
<tr>
<th>Item</th>
<th>Data</th>
<th>Duration</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Min. – Max. (Prey Veng)</td>
<td>2001 - 2008</td>
<td>16°C - 40°C</td>
</tr>
<tr>
<td>Precipitation</td>
<td>Annual rainfall (Prey Veng)</td>
<td>2001 - 2008</td>
<td>1306 mm</td>
</tr>
<tr>
<td></td>
<td>Number of rainy days (Prey Veng)</td>
<td>2001 - 2008</td>
<td>117 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 days (Nov-Apr)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>93 days (May-Oct)</td>
</tr>
<tr>
<td>Wind</td>
<td>Max (Prey Veng, Phnom Penh)</td>
<td>2001 - 2008</td>
<td>18 m/s</td>
</tr>
<tr>
<td></td>
<td>Max (Kampong Cham)</td>
<td>1986 - 2008</td>
<td>28 m/s</td>
</tr>
<tr>
<td></td>
<td>Direction (Prey Veng)</td>
<td>2001 - 2008</td>
<td>S-W (Apr-Oct)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N-E (Nov-Mar)</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>Monthly average (Prey Veng)</td>
<td>2001 - 2008</td>
<td>77.8% – 86.5%</td>
</tr>
<tr>
<td>Flood Record</td>
<td>Interview, water level (Neak Loung)</td>
<td>1988 - 2008</td>
<td>Year 96, 00, 01, 02</td>
</tr>
<tr>
<td>Earthquake Record</td>
<td>Data of USGS</td>
<td>1973 - 2008</td>
<td>No record</td>
</tr>
<tr>
<td>Water Level</td>
<td>100 years return period (Bridge Section)</td>
<td>1988 - 2008</td>
<td>H.W.L. = 7.93 m</td>
</tr>
<tr>
<td></td>
<td>20 years return period (Bridge Section)</td>
<td></td>
<td>L.W.L. = 0.43 m</td>
</tr>
<tr>
<td>Velocity / Discharge</td>
<td>FS: Cross section averaged flow velocity Discharge</td>
<td>2002 - 2004</td>
<td>0.5 - 1.6 m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,000 - 33,000 m^3/s</td>
</tr>
<tr>
<td></td>
<td>BD: Measured velocity Discharge</td>
<td>2008</td>
<td>0.46 - 2.24 m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,000 – 24,000 m^3/s</td>
</tr>
</tbody>
</table>

(2) River Bank Erosion

Large scale of erosion at the east side of Phnon Knong Island is confirmed through the survey as shown in Figure 1.2-7.

![Figure 1.2-7 Bank Erosion at the East Bank of Phnon Knong Island](image)

The slope of the banks 1km upstream/downstream are slower than that at the bridge site. If the channel shape is assumed to be stabilized with these gradients, the width of erosion is estimated to be 115m ~ 255m as shown in Figure 1.2-8.
Figure 1.2-8 Gradients of River Bank Upstream and Downstream of the Site