Site Information & Scope of Work

Site Information

Site Name Site Code	: Elenga : 40-ELE-500/500M									
Site Address	: To be provided later.									
Coordinates	: N 24° 20′ 18.5 ″ : E 89° 55′ 34.2 ″ * Coordinates are surveyed by handy type GPS and might be inaccurate.									
Site Type Site Status	 Control Center Gas Field CGS (City Gas Station Pig Station Pig Station MS (Metering Station) VS (Valve Station) Originally covered by New System. Currently not covere The New System. Upcoming site which completion of the Province of the	in) in) in) in) in) in) ind by The Existing will be covered	Master Telemetry Station Operating Company Terminal (OCT) Power station/Fertilizer Factory TBS (Town Bordering Station) DRS (District Regulating Station) GMS (Gas Manifold Station) ang System and shall be covered by The existing System but shall be covered by rered by The New System after the							
Operating Company	: TGTDCL	5								
Remarks : Additional instruments are required at this site.										

Scope of Work

Works checked off hereinafter shall be carried out for the Project

1. SCADA System

■: RTU

RTU without display monitor

Design, supply and install a self-standing IP65 enclosure equipped with following items: - RTU

- Instrumentation and communication equipment
- Backup battery system with charger for 24 hours
- Lighting
- Anti-condensation heater
- Earthing and lightning protection
- All internal wiring
- Other equipment to satisfy the functional requirements
- RTU with display monitor
 - Design, supply and install a self-standing IP65 enclosure equipped with following items:
 - RTU
 - Display monitor
 - Instrumentation and communication equipment
 - Backup battery system with charger for 24 hours
 - Lighting
 - Anti-condensation heater
 - Earthing and lightning protection
 - All internal wiring
 - Other equipment to satisfy the functional requirements
- RTU (design & supply only)
 - Design and supply self-standing IP65 enclosure equipped with following items:
 - RTU
 - Instrumentation and communication equipment
 - Backup battery system with charger for 24 hours
 - Lighting
 - Anti-condensation heater
 - Earthing and lightning protection
 - All internal wiring
 - Other equipment to satisfy the functional requirements

☑ Interface with flow computer

Make provision for:

- Installation of the flow computer which shall be prepared by GTCL in the enclosure
- Interface between RTU and the said flow computer
- □ Interface with receiver for turbine meter

Install the existing receiver for turbine meter(s) in the RTU enclosure and interface it (them) via communication (MODBUS) cable.

- □ Interface with other system Provide the interface between RTU and other system such as PLC or PC operated by the operating company including all communication cables between RTU and other system.
- Cable between RTU and Master Telemetry Station
 Design, supply and install the cable between RTU and Master Telemetry Station in case
 RTU and Master Telemetry Station are located in the same site.
- : Instruments
 - Existing instruments
 Re-use the existing instruments and cables.
 - Note: Existing instruments and cables shall be serviced by the Employer.
 - ☑ New Instruments

Design, supply and install the following instruments. Output signals from instruments are to be cabled via field junction box to the RTU.

- : Pressure transmitters Q'ty
 - Design, supply and intall:
 Pressure transmitter on the existing spare tapping point
 Tubing between tapping point and transmitter
 - Prepare the tapping point for the pressure transmitter, [1] and design, supply and install:
 Pressure transmitter on the prepared tapping point
 Tubing between tapping point and transmitter
- Differential pressure transmitters
 - Design, supply and install:
 Differential pressure transmitter on the existing spare tapping point
 - Tubing between tapping point and transmitter
 - $\ensuremath{\boxtimes}$ $\ensuremath{\boxtimes}$ Prepare the tapping point for the differential pressure transmitter, $\ensuremath{$ [2] and design, supply and install:
 - Differential pressure transmitter on the tapping point
 - Tubing between tapping point and transmitter
- : Temprature transmitters Q'ty
 - Design, supply and install: [1]
 Thermowell in the spare boss on the pipe
 Resistance temperature detector complete with a head
 - mounted transmitter into the thermowell

- : Limit switch
 - Design, supply and install the limit switch on the existing shutdown valve for valve position monitoring.
- Pick up Signal from the Existing Turbine Meter
 Q'ty
 Supply and install a dual pulse output pickup head in place of the single
 pulse output pickup in the existing turbine flowmeter sensor head. The
 output signal from the existing turbine flowmeter to be cabled via junction
 box to RTU.
- ☑ Local Field Instrument Junction Box
 Q'ty
 Design, supply and install an Intrinsic safety junction box. The junction box
 [1]
 to be suitable for glanding appropriate cables.
- ☑ Instrument Cables Design, supply, install the instrument cables from the field instruments to RTU via junction box including each cable termination with gland.

ELE-500(M) - 3/9

Q'ty

Q'ty

2. Communication System

- : Master Telemetry Station (Former Microwave Radio Station)
 - Removal of existing communication system Remove and dispose following existing items used for microwave transmission system:
 - Microwave equipment/facilities in the radio equipment room
 - Antenna mounted on the existing tower
 - Cables between radio equipment room and existing tower
 - ☑ Radio equipment to connect Master Telemetry Station with Provider's Access Point Design, supply and install IP radio equipment at existing radio equipment room to connect Master Telemetry Station with nearest Provider's Access Point (BTCL's AP), including all necessary cables, accessories and the antenna to be mounted on the existing tower.
 - ☑ Master telemetry equipment

Design, supply and install master telemetry equipment at existing radio equipment room to connect with slave telemetry equipment, including all necessary cables, accessories and the antenna to be mounted on the existing tower.

- Radio equipment to connect Master Telemetry Station with OCT Design, supply and install IP radio equipment at radio equipment room to connect Master Telemetry Station with Operating Company Terminal (OCT) at another site, including all necessary cables, accessories and the antenna to be mounted on the existing tower.
- ☑ Radio equipment to connect Provider's Access Point with Master Telemetry Station Design, supply and install IP radio equipment at nearest BTCL's access point to connect BTCL's AP with Master Telemetry Station, including all necessary cables, accessories and the antenna with monopole.
- Network equipment

Design, supply and install all necessary Network equipment at radio equipment room of Master telemetry station as well as at nearest BTCL's access point.

Network cable to OCT

Design, supply and install network cable between Master Telemetry Station and OCT which shall be installed within the same site.

- IP PBX System
 - IP PBX main unit Design, supply and install IP PBX main unit with necessary accessories and spare parts.
 - ☑ Extension telephone set Q'ty
 Design, supply and install extension telephone set(s) with required cables. [2]

3. Electrical Works

Power Supply to RTU

- ${\ensuremath{\boxtimes}}$ ${\ensuremath{\boxtimes}}$ Electrical power shall be supplied to RTU from existing PDB, and existing power cable shall be re-used.
- □ Design, supply and install MCB box for the power supply to RTU including all cables from existing PDB to MCB box and from MCB box to RTU.
- □ Design, supply and intall power controller and power cable to RTU at remote site where electrical power is supplied from existing solar panel.
- Design, supply and install new solar panel, power controller and power cable to RTU.
- : Backup Batteries for Radio Equipment at Master Station
 - Remove and dispose existing backup batteries for radio equipment.
 Supply & install new backup batteries with charger suitable to backup new radio equipment for 48 hours.
- Replacement of Emergency Generator
 - Remove and dispose existing emergency generator.
 Supply & install new emergency generator suitable for power supply to related equipment and facilities.
- : Replacement of Air conditioner at Radio room of Master Station
 - ☑ Remove and dispose existing window type air conditioner at raido room, and Supply & install new air conditioner suitably selected to maintain the specified temperature and humidity of radio room.

4. Civil Works

■ : Foundation & Sunshade for RTU

- Re-use existing foundation & sunshade for RTU
 Examine the condition of existing foundation and sunshade for RTU and repair the defects, if any.
- Provide new foundation & sunshade for RTU
 Design and construct the foundation and sunshade for new RTU at suitable location. The foundation and sunshade should be designed to suitably accommodate new RTU.
- : Instrument Stand with Foundation & Sunshade
 - ☑ Re-use existing Instrument stand(s) with foundation & sunshade Examine the condition of existing Instrument stand(s) with foundation & sunshade and repair the defects, if any.
 - Provide new Instrument stand(s) with foundation & sunshade
 Design and construct the Instrument stand(s) with foundation & sunshade at suitable
 location. It should be designed to suitably accommodate the required number of
 instruments and explosion proof instrument field junction box.
- : Refurbishment of Existing Radio Building/Radio Equipment Room
 - Refurbishment of Radio Building
 Examin the condition of the whole existing radio building and repair the defects if any.
 Clean and touch-up the external and internal finish of the whole existing radio building.
 - Refurbishment of Radio Equipment Room
 Examine the condition of existing rooms where radio equipment and backup batteries are installed and repair the defects if any.
 Clean and touch-up the internal finish of the said rooms.
 - Cleaning of Radio Equipment Room
 Clean and tidy up the existing rooms where radio equipment and backup batteries are installed.

5. Site Photo

Existing Building where radio equipment room is located.

Existing RTU (cable link)

See attached Layout Plan.

Site Information & Scope of Work

Site Information

Operating Company : TGTDCL

Remarks

Site Name Site Code	: TITAS Mymensing Office : 40-MYM-500M	
Site Address	: To be provided later.	
Coordinates	: N 24° 43′ 17.6 ″ : * Coordinates are surveyed by han	E 90° 24′ 37.6 ″ dy type GPS and might be inaccurate.
Site Type	□ Control Center ☑ □ Gas Field □ □ CGS (City Gas Station) □ □ Compressor Station □ □ Pig Station □ □ MS (Metering Station) □ □ VS (Valve Station) □	Master Telemetry Station Operating Company Terminal (OCT) Power station/Fertilizer Factory TBS (Town Bordering Station) DRS (District Regulating Station) GMS (Gas Manifold Station)
Site Status	 Originally covered by The Exist New System. Currently not covered by The E The New System. Upcoming site which will be con completion of the Project. 	ing System and shall be covered by The Existing System but shall be covered by vered by The New System after the

Scope of Work

Works checked off hereinafter shall be carried out for the Project

1. SCADA System

■ : No SCADA System at this site.

2. Communication System

- : Master Telemetry Station (Former Microwave Radio Station)
 - Removal of existing communication system
 Remove and dispose following existing items used for microwave transmission system:
 Microwave equipment/facilities in the radio equipment room
 - Antenna mounted on the existing tower
 - Cables between radio equipment room and existing tower
 - ☑ Radio equipment to connect Master Telemetry Station with Provider's Access Point Design, supply and install IP radio equipment at existing radio equipment room to connect Master Telemetry Station with nearest Provider's Access Point (BTCL's AP), including all necessary cables, accessories and the antenna to be mounted on the existing tower.
 - Master telemetry equipment

Design, supply and install master telemetry equipment at existing radio equipment room to connect with slave telemetry equipment, including all necessary cables, accessories and the antenna to be mounted on the existing tower.

- Radio equipment to connect Master Telemetry Station with OCT Design, supply and install IP radio equipment at radio equipment room to connect Master Telemetry Station with Operating Company Terminal (OCT) at another site, including all necessary cables, accessories and the antenna to be mounted on the existing tower.
- ☑ Radio equipment to connect Provider's Access Point with Master Telemetry Station Design, supply and install IP radio equipment at nearest BTCL's access point to connect BTCL's AP with Master Telemetry Station, including all necessary cables, accessories and the antenna with monopole.
- Metwork equipment

Design, supply and install all necessary Network equipment at radio equipment room of Master telemetry station as well as at nearest BTCL's access point.

Network cable to OCT

Design, supply and install network cable between Master Telemetry Station and OCT which shall be installed within the same site.

- IP PBX System
 - IP PBX main unit Design, supply and install IP PBX main unit with necessary accessories and spare parts.
 - ☑ Extension telephone set Q'ty Design, supply and install extension telephone set(s) with required cables. [2]

3. Electrical Works

- : Backup Batteries for Radio Equipment at Master Station
 - Remove and dispose existing backup batteries for radio equipment.
 Supply & install new backup batteries with charger suitable to backup new radio equipment for 48 hours.
- : Replacement of Air conditioner at Radio room of Master Station
 - ☑ Remove and dispose existing window type air conditioner at raido room, and Supply & install new air conditioner suitably selected to maintain the specified temperature and humidity of radio room.

4. Civil Works

- ■: Refurbishment of Existing Radio Building/Radio Equipment Room
 - Refurbishment of Radio Building
 Examin the condition of the whole existing radio building and repair the defects if any.
 Clean and touch-up the external and internal finish of the whole existing radio building.
 - Refurbishment of Radio Equipment Room
 Examine the condition of existing rooms where radio equipment and backup batteries are installed and repair the defects if any.
 Clean and touch-up the internal finish of the said rooms.
 - Cleaning of Radio Equipment Room
 Clean and tidy up the existing rooms where radio equipment and backup batteries are installed.

6. Site Layout

Site layout shall be provided later.

Existing building where radio equipment room is located.

Site Information & Scope of Work

Site Information

Site Name Site Code	: RPCL PS Mymensing : 40-MYM-501								
Site Address	To be provided later.								
Coordinates	: N 24° 45′ 47.9 " : E 90° 25′ 06.4 " * Coordinates are surveyed by handy type GPS and might be inaccurate.								
Site Type	□ Control Center □ Master Telemetry Station □ Gas Field □ Operating Company Terminal (OCT) □ CGS (City Gas Station) ☑ Power station/Fertilizer Factory □ Compressor Station □ TBS (Town Bordering Station) □ Pig Station □ DRS (District Regulating Station) □ MS (Metering Station) □ GMS (Gas Manifold Station) □ VS (Valve Station) □ Figure Station)								
 Site Status Originally covered by The Existing System and shall be covered by The New System. Currently not covered by The Existing System but shall be covered by The New System. Upcoming site which will be covered by The New System after the completion of the Project. 									
Operating Company	: TGTDCL								

Remarks

Scope of Work

Works checked off hereinafter shall be carried out for the Project

1. SCADA System

∎: RTU

- ☑ RTU without display monitor
 - Design, supply and install a self-standing IP65 enclosure equipped with following items: RTU
 - Instrumentation and communication equipment
 - Backup battery system with charger for 24 hours
 - Lighting
 - Anti-condensation heater
 - Earthing and lightning protection
 - All internal wiring
 - Other equipment to satisfy the functional requirements
- RTU with display monitor
 - Design, supply and install a self-standing IP65 enclosure equipped with following items: RTU
 - Display monitor
 - Instrumentation and communication equipment
 - Backup battery system with charger for 24 hours
 - Lighting
 - Anti-condensation heater
 - Earthing and lightning protection
 - All internal wiring
 - Other equipment to satisfy the functional requirements
- RTU (design & supply only)
 - Design and supply self-standing IP65 enclosure equipped with following items:
 - RTU
 - Instrumentation and communication equipment
 - Backup battery system with charger for 24 hours
 - Lighting
 - Anti-condensation heater
 - Earthing and lightning protection
 - All internal wiring
 - Other equipment to satisfy the functional requirements
- Interface with flow computer
 - Make provision for:
 - Installation of the flow computer which shall be prepared by GTCL in the enclosure
 - Interface between RTU and the said flow computer
- □ Interface with receiver for turbine meter Install the existing receiver for turbine meter(s) in the RTU enclosure and interface it (them) via communication (MODBUS) cable.

- □ Interface with other system Provide the interface between RTU and other system such as PLC or PC operated by the operating company including all communication cables between RTU and other system.
- Cable between RTU and Master Telemetry Station
 Design, supply and install the cable between RTU and Master Telemetry Station in case
 RTU and Master Telemetry Station are located in the same site.

■ : Instruments

- Existing instruments
 Re-use the existing instruments and cables.
 - Note:

Existing instruments and cables shall be serviced by the Employer.

☑ New Instruments

Design, supply and install the following instruments. Output signals from instruments are to be cabled via field junction box to the RTU.

- : Pressure transmitters Q'ty
 - Design, supply and intall:
 Pressure transmitter on the existing spare tapping point
 - Tubing between tapping point and transmitter
 - ☑ Prepare the tapping point for the pressure transmitter, [1] and design, supply and install:
 Pressure transmitter on the prepared tapping point
 - Tubing between tapping point and transmitter
- Differential pressure transmitters
 - Design, supply and install:
 Differential pressure transmitter on the existing spare tapping point
 - Tubing between tapping point and transmitter
 - Prepare the tapping point for the differential pressure transmitter, [2] and design, supply and install:
 - Differential pressure transmitter on the tapping point
 - Tubing between tapping point and transmitter
- : Temprature transmitters
 Q'ty
 - Design, supply and install:

 Thermowell in the spare boss on the pipe
 [1]
 - Resistance temperature detector complete with a head mounted transmitter into the thermowell

- : Limit switch
 - Design, supply and install the limit switch on the existing shutdown valve for valve position monitoring.
- Pick up Signal from the Existing Turbine Meter
 Q'ty
 Supply and install a dual pulse output pickup head in place of the single
 pulse output pickup in the existing turbine flowmeter sensor head. The
 output signal from the existing turbine flowmeter to be cabled via junction
 box to RTU.
- ☑ Local Field Instrument Junction Box
 Q'ty
 Design, supply and install an Intrinsic safety junction box. The junction box
 [1]
 to be suitable for glanding appropriate cables.
- ☑ Instrument Cables Design, supply, install the instrument cables from the field instruments to RTU via junction box including each cable termination with gland.

Q'ty

Q'ty

2. Communication System

- : Slave Telemetry System
 - Removal of existing slave telemetry equipment
 Remove and dispose the existing slave telemetry system including antenna and cable.
 - Slave Telemetry Equipment Design, supply and install new slave telemetry equipment in the RTU enclosure, including cables and antenna.
 - Slave Telemetry Equipment (design & supply only)
 Design and supply new slave telemetry equipment in the RTU enclosure, including cables and antenna.
 - Existing monopole
 Re-use existing monople to mount new antenna.
 - New monopole
 Design, supply and install new monopole with foundation to mount new antenna.
 - New monopole (design & supply only)
 Design and supply new monopole to mount new antenna.

3. Electrical Works

Power Supply to RTU

- Electrical power shall be supplied to RTU from existing PDB, and existing power cable shall be re-used.
- Design, supply and install MCB box for the power supply to RTU including all cables from existing PDB to MCB box and from MCB box to RTU.
- □ Design, supply and intall power controller and power cable to RTU at remote site where electrical power is supplied from existing solar panel.
- Design, supply and install new solar panel, power controller and power cable to RTU.

4. Civil Works

- : Foundation & Sunshade for RTU
 - Re-use existing foundation & sunshade for RTU
 Examine the condition of existing foundation and sunshade for RTU and repair the defects, if any.
 - Provide new foundation & sunshade for RTU
 Design and construct the foundation and sunshade for new RTU at suitable location. The foundation and sunshade should be designed to suitably accommodate new RTU.
- : Instrument Stand with Foundation & Sunshade
 - Re-use existing Instrument stand(s) with foundation & sunshade Examine the condition of existing Instrument stand(s) with foundation & sunshade and repair the defects, if any.
 - Provide new Instrument stand(s) with foundation & sunshade Design and construct the Instrument stand(s) with foundation & sunshade at suitable location. It should be designed to suitably accommodate the required number of instruments and explosion proof instrument field junction box.

Site view 1

Site view 2

Site layout shall be provided later.

Site Information & Scope of Work

Site Information

Site Name Site Code	: T : 4	arakandi 0-TRK-500/500M								
Site Address	: To be provided later.									
Coordinates	ates : N 24° 41′ 03.5 ″ : E 89° 49′ 42.2 ″ * Coordinates are surveyed by handy type GPS and might be inaccurate.									
Site Type Site Status		Control Center Gas Field CGS (City Gas Station) Compressor Station Pig Station MS (Metering Station) VS (Valve Station) VS (Valve Station) Originally covered by The E New System. Currently not covered by T The New System. Upcoming site which will be completing of the Draioat	Existi	Master Telemetry Station Operating Company Terminal (OCT) Power station/Fertilizer Factory TBS (Town Bordering Station) DRS (District Regulating Station) GMS (Gas Manifold Station) ang System and shall be covered by The xisting System but shall be covered by rered by The New System after the						
Operating Company	': T	GTDCL								
Remarks : Additional instruments are required at this site.										

Scope of Work

Works checked off hereinafter shall be carried out for the Project

1. SCADA System

∎: RTU

RTU without display monitor

Design, supply and install a self-standing IP65 enclosure equipped with following items: - RTU

- Instrumentation and communication equipment
- Backup battery system with charger for 24 hours
- Lighting
- Anti-condensation heater
- Earthing and lightning protection
- All internal wiring
- Other equipment to satisfy the functional requirements
- RTU with display monitor
 - Design, supply and install a self-standing IP65 enclosure equipped with following items: RTU
 - Display monitor
 - Instrumentation and communication equipment
 - Backup battery system with charger for 24 hours
 - Lighting
 - Anti-condensation heater
 - Earthing and lightning protection
 - All internal wiring
 - Other equipment to satisfy the functional requirements
- RTU (design & supply only)
 - Design and supply self-standing IP65 enclosure equipped with following items:
 - RTU
 - Instrumentation and communication equipment
 - Backup battery system with charger for 24 hours
 - Lighting
 - Anti-condensation heater
 - Earthing and lightning protection
 - All internal wiring
 - Other equipment to satisfy the functional requirements
- □ Interface with flow computer

Make provision for:

- Installation of the flow computer which shall be prepared by GTCL in the enclosure
- Interface between RTU and the said flow computer

□ Interface with receiver for turbine meter Install the existing receiver for turbine meter(s) in the RTU enclosure and interface it (them) via communication (MODBUS) cable.

- □ Interface with other system Provide the interface between RTU and other system such as PLC or PC operated by the operating company including all communication cables between RTU and other system.
- Cable between RTU and Master Telemetry Station Design, supply and install the cable between RTU and Master Telemetry Station in case RTU and Master Telemetry Station are located in the same site.

■ : Instruments

- Existing instruments Re-use the existing instruments and cables.
 - Note:

Existing instruments and cables shall be serviced by the Employer.

 \square New Instruments

> Design, supply and install the following instruments. Output signals from instruments are to be cabled via field junction box to the RTU.

- : Pressure transmitters Q'ty
 - □ Design, supply and intall: - Pressure transmitter on the existing spare tapping point
 - Tubing between tapping point and transmitter
 - Prepare the tapping point for the pressure transmitter, [1] and design, supply and install: - Pressure transmitter on the prepared tapping point
 - Tubing between tapping point and transmitter
- : Differential pressure transmitters
 - Design, supply and install: - Differential pressure transmitter on the existing spare tapping point
 - Tubing between tapping point and transmitter
 - Prepare the tapping point for the differential pressure transmitter, [2] and design, supply and install:
 - Differential pressure transmitter on the tapping point
 - Tubing between tapping point and transmitter
- : Temprature transmitters Q'ty
 - ☑ Design, supply and install: [1] - Thermowell in the spare boss on the pipe
 - Resistance temperature detector complete with a head
 - mounted transmitter into the thermowell

- : Limit switch
 - Design, supply and install the limit switch on the existing shutdown valve for valve position monitoring.
- Pick up Signal from the Existing Turbine Meter Q'ty Supply and install a dual pulse output pickup head in place of the single pulse output pickup in the existing turbine flowmeter sensor head. The output signal from the existing turbine flowmeter to be cabled via junction box to RTU.
- ☑ Local Field Instrument Junction Box Q'ty Design, supply and install an Intrinsic safety junction box. The junction box [1] to be suitable for glanding appropriate cables.
- \checkmark Instrument Cables Design, supply, install the instrument cables from the field instruments to RTU via junction box including each cable termination with gland.

Q'ty

Q'ty

2. Communication System

- : Master Telemetry Station (Former Microwave Radio Station)
 - Removal of existing communication system Remove and dispose following existing items used for microwave transmission system:
 - Microwave equipment/facilities in the radio equipment room
 - Antenna mounted on the existing tower
 - Cables between radio equipment room and existing tower
 - ☑ Radio equipment to connect Master Telemetry Station with Provider's Access Point Design, supply and install IP radio equipment at existing radio equipment room to connect Master Telemetry Station with nearest Provider's Access Point (BTCL's AP), including all necessary cables, accessories and the antenna to be mounted on the existing tower.
 - ☑ Master telemetry equipment

Design, supply and install master telemetry equipment at existing radio equipment room to connect with slave telemetry equipment, including all necessary cables, accessories and the antenna to be mounted on the existing tower.

- Radio equipment to connect Master Telemetry Station with OCT Design, supply and install IP radio equipment at radio equipment room to connect Master Telemetry Station with Operating Company Terminal (OCT) at another site, including all necessary cables, accessories and the antenna to be mounted on the existing tower.
- ☑ Radio equipment to connect Provider's Access Point with Master Telemetry Station Design, supply and install IP radio equipment at nearest BTCL's access point to connect BTCL's AP with Master Telemetry Station, including all necessary cables, accessories and the antenna with monopole.
- ☑ Network equipment

Design, supply and install all necessary Network equipment at radio equipment room of Master telemetry station as well as at nearest BTCL's access point.

Network cable to OCT

Design, supply and install network cable between Master Telemetry Station and OCT which shall be installed within the same site.

- IP PBX System
 - IP PBX main unit
 Design, supply and install IP PBX main unit with necessary accessories and spare parts.
 - ☑ Extension telephone set Q'ty
 Design, supply and install extension telephone set(s) with required cables. [1]

3. Electrical Works

Power Supply to RTU

- ${\ensuremath{\boxtimes}}$ ${\ensuremath{\boxtimes}}$ Electrical power shall be supplied to RTU from existing PDB, and existing power cable shall be re-used.
- □ Design, supply and install MCB box for the power supply to RTU including all cables from existing PDB to MCB box and from MCB box to RTU.
- □ Design, supply and intall power controller and power cable to RTU at remote site where electrical power is supplied from existing solar panel.
- Design, supply and install new solar panel, power controller and power cable to RTU.
- : Backup Batteries for Radio Equipment at Master Station
 - Remove and dispose existing backup batteries for radio equipment.
 Supply & install new backup batteries with charger suitable to backup new radio equipment for 48 hours.
- : Replacement of Air conditioner at Radio room of Master Station
 - Remove and dispose existing window type air conditioner at raido room, and Supply & install new air conditioner suitably selected to maintain the specified temperature and humidity of radio room.

4. Civil Works

■ : Foundation & Sunshade for RTU

- Re-use existing foundation & sunshade for RTU
 Examine the condition of existing foundation and sunshade for RTU and repair the defects, if any.
- Provide new foundation & sunshade for RTU
 Design and construct the foundation and sunshade for new RTU at suitable location. The foundation and sunshade should be designed to suitably accommodate new RTU.
- : Instrument Stand with Foundation & Sunshade
 - ☑ Re-use existing Instrument stand(s) with foundation & sunshade Examine the condition of existing Instrument stand(s) with foundation & sunshade and repair the defects, if any.
 - Provide new Instrument stand(s) with foundation & sunshade Design and construct the Instrument stand(s) with foundation & sunshade at suitable location. It should be designed to suitably accommodate the required number of instruments and explosion proof instrument field junction box.
- : Refurbishment of Existing Radio Building/Radio Equipment Room
 - Refurbishment of Radio Building
 Examin the condition of the whole existing radio building and repair the defects if any.
 Clean and touch-up the external and internal finish of the whole existing radio building.
 - Refurbishment of Radio Equipment Room
 Examine the condition of existing rooms where radio equipment and backup batteries are installed and repair the defects if any.
 Clean and touch-up the internal finish of the said rooms.
 - Cleaning of Radio Equipment Room
 Clean and tidy up the existing rooms where radio equipment and backup batteries are installed.

5. Site Photo

Existing Building where radio equipment room is located.

Existing RTU (cable link)

See attached Layout Plan.

Appendix 3 RTU List

<u>Equip.</u> RTU: Replacement of existing RTU New RTU: New RTU to be prepared

RTU LIST R3 Elec. Power AC240V: AC 240V will be supplied SP exist: Existing Solar Panel shall be replaced with new one. SP new: New Solar Panel to be prepared

<u>Display Panel</u> Yes: Display panel to be mounted on the RTU

<u>New Instruments</u> PT: Pressure Transmitter TT: Temperature Transmitter w/ RTD PdT: Pressure Differential Transmitter

Status
exist: the site is existing
future: the site will be developed

CODE	SITE	Equip	Status	Master	Elec.	Display	lay <u>NEW</u>				IR	<u>Telemetry</u> Slave ANT	
OODE	SIL	Equip.	Status	Station	Power	Panel	PT	TT	PdT	Switc	50	Radio	Mast
10-ASH-201	Titas Gas Filed 1	RTU	exist	10-ASH-400M	AC240V		1	1	2		1	0	
10-ASH-202	Titas Gas Filed 3	RTU	exist	10-ASH-400M	AC240V		1	1	2		1	0	
10-ASH-203	TITAS Location 7	New RTU	future	10-ASH-400M	AC240V		1			1	1	Δ	Δ
10-ASH-400	Asnuganj VS P		exist	10-ASH-400M	AC240V SP ovist	Yes	1			1	1	0	
10-ASH-401	VST	RTU	exist	10-ASH-400M	AC240V							0	
10-ASH-403	VS 1 A-B	RTU	exist	10-ASH-400M	SP exist.							0	
10-ASH-404	VS Chandura R-A Line	New RTU	exist	10-ASH-400M	SP new		1			1	1	0	0
10-ASH-501	Ashganj PS	RTU	exist	10-ASH-400M	AC240V							0	
10-ASH-502	Ashganj FF	RTU	exist	10-ASH-400M	AC240V		2	2	2		1	0	
10-ASH-503	IIIAS VS3		exist	10-ASH-400M	AC240V		1			1	1	0	
10-ASH-504	MS Ghatura	New RTH	exist	10-ASH-400M			1	4	8		2	0	0
10-FCH-401	VS E	RTU	exist	10-FCH-600M	SP exist.		-	-	0		2	0	
10-FCH-402	VS D	RTU	exist	10-FCH-600M	SP exist.							0	
10-FCH-600	Fenchugonj 90MW PS	RTU	exist	10-FCH-600M	AC240V		1	1	2		1		
10-FCH-601	Fenchugonj NGF	RTU	exist	10-FCH-600M	AC240V							0	_
10-FCH-701	Fenchugonj Gas Field	New RTU	exist	10-FCH-600M	AC240V		2	2	4		1	0	0
10-HOB-200	Hobigonj Gas Field		exist	10-HOB-200M	AC240V SR ovist								
10-HOB-401	Hobigoni TITAS DRS	RTU	exist	10-HOB-200M			2	2	4		1	0	
10-HOR-300	Horipur Gas Field	RTU	exist	10-HOR-300M	AC240V		2	2				Ű	
10-JAL-601	Devpur DRS	New RTU	exist	10-JAL-600M	AC240V		2	2	4		1	0	0
10-KAI-301	Benibazar Gas Field	RTU	exist	10-KAI-400M	AC240V		1	1	2		1	0	
10-KAI-400	Kailashtilla GTCL Compound	RTU	exist	10-KAI-400M	AC240V		3	3	6		2		
10-KAI-601	Kailashtilla DRS	RTU	exist	10-KAI-400M	AC240V							0	
10-RAS-300	Kashidpur Gas Field	RTU	exist	10-RAS-300M	AC240V							_	
10-KAS-401		KIU IITD	exist	10-KAS-300M	SP oviet							0	
10-RAS-402	von VSK	RTII	exist	10-RAS-300M	SP evict							0	
10-RAS-403	VS M	RTU	exist	10-RAS-300M	SP exist							0	
10-RAS-405	Rashipdur/Muchai Compressor Station	New RTU	future	10-RAS-300M	AC240V							Δ	Δ
10-RAS-406	VS Chunarughat R-A Line	New RTU	exist	10-RAS-300M	SP new		1			1	1	0	0
20-BKB-100	Bakhrabad	RTU	exist	20-BKB-100M	AC240V		1			1	1		
20-BKB-101	Kutombopur	RTU	exist	20-BKB-100M	AC240V	Yes						0	
20-BKB-102	VS3 BKB-Demra	RTU	exist	20-BKB-100M	SP exist.							0	
20-BKB-201	Meghna Gas Field	RTU	exist	20-BKB-100M	AC240V							0	
20-BKB-401	VS2 A-B		exist	20-BKB-100M	SP exist.		2	2			1	0	0
20-BKB-501	Salda Nadi Gas Field	RTH	exist	20-BKB-100M			Z	Z			I	0	
20-BKB-701	Bangura Gas Field	New RTU	exist	20-BKB-100M	AC240V							0	0
20-BKB-703	Srikail Gas Field	New RTU	future	20-BKB-100M	AC240V							Δ	Δ
20-CHA-101	Chandpur TBS	RTU	exist	20-CHA-100M	AC240V		2	2	4		1	0	
20-FAU-100	Faujdarhat	RTU	exist	20-FAU-100M	AC240V	Yes							
20-FAU-101	CUFL	RTU	exist	20-FAU-100M	AC240V							0	
20-FAU-102	KAFCO	RTU	exist	20-FAU-100M	AC240V							0	
20-FAU-103	Sikalbaha Douion DS		exist	20-FAU-100M	AC240V							0	
20-FAU-104	Raujan PS Sanghu Onshoro Process Plant	RIU	exist	20-FAU-100M	AC240V							0	
20-FAU-701	Feni TBS	RTU	exist	20-FAU-100M	AC240V							0	
20-FEN-701	Feni Gas Field	New RTU	exist	20-FEN-100M	AC240V		1	1	2		1	0	0
20-FEN-702	Sundalpur Gas Field	New RTU	future	20-FEN-100M	AC240V		-				-	Δ	Δ
20-FEN-703	Begumgonj Gas Field	New RTU	future	20-FEN-100M	AC240V							Δ	Δ
20-LAK-101	Laksham TBS	RTU	exist	20-LAK-100M	AC240V							0	
20-MIR-101	Mitachara	RTU	exist	20-MIR-100M	AC240V		1	1			1	0	
20-MIR-401	Barakubundu IBS	New RTU	exist	20-MIR-100M	AC240V	Yes						0	0
20-MIR-701	Demra CGS		ovict	20-IVIIR-100M	AC240V							Δ	
30-DIVIR-100	Sonargaon	RTII	exist	30-DIVIK-100101	AC240V							0	
30-DMR-102	Dewanbagh	RTU	exist	30-DMR-100M	AC240V							0	
30-DMR-103	VS7 BKB-Demra	RTU	exist	30-DMR-100M	SP exist.							0	
30-DMR-104	VS5 BKB-Demra	RTU	exist	30-DMR-100M	SP exist.							0	
30-DMR-501	Siddirganj PS	New RTU	exist	30-DMR-100M	AC240V		6	6	12		3	0	0
30-DMR-502	Horipur IPP 350 MW PS	New RTU	future	30-DMR-100M	AC240V			-				\triangle	\triangle
30-DMR-503	Horipur SPU 100MW & NEDO 110MW	New RTU	exist	30-DMR-100M	AC240V		1	1	2		1	0	0
30-DIVIR-504	NS 14 Madhabdi		exist	30-DIVIR-100M	AC240V		ර 1	კ	4	1	2	0	0
30-DIVIK-505	VS 14 Maunabul VS 15 Tarabo		exist exist	30-DIVIK-1001VI			1			1	1	0	0
30-DMR-507	VS Dighibarabo	New RTII	exist	30-DMR-100M	SP new		1			1	1	0	0
30-DMR-508	VS Horipur	New RTU	exist	30-DMR-100M	AC240V		1			1	1	0	0
30-DMR-509	VS Meghnaghat	New RTU	exist	30-DMR-100M	AC240V		1			1	1	0	0
30-DMR-510	Meghnaghat IPP 450 MW PS	New RTU	exist	30-DMR-100M	AC240V		1	1	2		1	0	0
30-PBG-401	CGS Aminbazar (out)	New RTU	exist	30-PBG-700M	AC240V	Yes	3	3	6		2	0	0
30-PBG-402	CGS Ashulia (out)	New RTU	exist	30-PBG-700M	AC240V	Yes	2	2	4		1	0	0
30-PBG-501	Tongi 80 MW P.S. (out)	New RIU	exist	30-PBG-700M	AC240V	Vee	1	1	2		1	0	U
40-ELE-500	Lieliya Narsingdi Gas Field		exist	40-ELE-500M	AC240V	res	I	I	2		1	0	
40-MHD-500	Monohordi	RTH	exist	40-MHD-500M	AC240V	Yes	1	1	2		1	0	
40-MHD-501	GUFF/PUFF	RTU	exist	40-MHD-500M	AC240V	103	4	4	~		1	0	
40-MHD-502	Ghorasal PS	RTU	exist	40-MHD-500M	AC240V							0	
40-MHD-503	Joydevpur CGS	RTU	exist	40-MHD-500M	AC240V		8	8	2		2	0	
40-MHD-504	Poladi VS3	RTU	exist	40-MHD-500M	SP exist.							0	
40-MHD-505	Uzilab VS1	RTU	exist	40-MHD-500M	SP exist.		1			1	1	0]
40-MHD-506	Khirti VS2	RTU	exist	40-MHD-500M	SP exist							0	
40-MHD-507	Unanua VS4	RIU Now DTU	exist	40-MHD-500M	SP exist.		n				1	0	
40-MVM-501	RPCL PS Mymensing		exist exist		AC240V		∠ 1	1	r		1	0	0
40-TRK-500	Tarakandi (JFCL RMS)	RTU	exist	40-TRK-500M	AC240V		1	1	2		1	<u> </u>	

Total Instruments		71	58	82	11	46	o:68	o:23
Total RTU Number:	88						Δ:7	Δ:7
AC240V Site:	67					Slave	Telemet	try
Existing Solar Panel Site:	17					∆: Su	pply onl	ly
New Solar Panel Site:	4							
Display Panel:	8							

Appendix 4 I/O List

LEGEND

	PLC										
				1/0				RANGE	-	NOTE	
TAG	SERVICE	FROM	ТО	1/0	SPEC.	POWER	Qty.	Min	Мах	UNIT	
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]		[9]	[10]	[11]

[1] Tag No.

[2] SERVICE

[3] SIGNAL FROM

FIELD: Field Instruments

RTU: Remote Terminal Unit

RX: Flow Computer or Receiver for turbine meter

[4] SIGNAL SEND TO

[5] INPUT SIGNAL TO PLC

AI: Analog Input

AO: Analog Output

DI: Degital Input

DO: Degital Output

PI: Pulse Input

Pt: Pt100 Ω Analog Input

BCD: Binary-Coded Decimal Input

COM: Serial ports communication

[6] Specification of signals

[7] Power Specification

[8] Quantities of signals

[9] Range of Setting for analog signal

[10] Unit

[11] Notes

CUSTOMER	GTCL		DOC. NO.	
RTU	Titas Gas Filed 1	Code: 10-ASH-201	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

TAC					1/0		RANGE			NOTE		
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Titas Gas Filed 1	Code: 10-ASH-201	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

T10					1/0			RANGE		NOTE		
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	1
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
					1							

CUSTOMER	GTCL		DOC. NO.	
RTU	Titas Gas Filed 3	Code: 10-ASH-202	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

TAC						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Titas Gas Filed 3	Code: 10-ASH-202	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

T10						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	1
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
					1							

CUSTOMER	GTCL		DOC. NO.	
RTU	Titas Location 7	Code: 10-ASH-203	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

					1/0			RANGE		NOTE		
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Titas Location 7	Code: 10-ASH-203	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

TAG						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
			1									

CUSTOMER	GTCL		DOC. NO.	
RTU	Ashuganj	Code: 10-ASH-400	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

T 10					1/0		RANGE			NOTE		
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL

Difference pressure H

Gas corrected volume flow

Gas totalised mass flow

Orifice bore diameter

Pipe bore diameter

Base Temperature

Mol% of Nitrogen

Specific gravity

Base Pressure

Mol% of CO2

Gas totalised corected volume

Gas volume flow (instanteneous value)

Temperature

Gas mass flow

Stream# 3 Orifice

RX

RX

RX

RX

RX

RX

RX

RTU

RX

RX

RX

RX

RX

RX

RX

CUSTOMER RTU Covered by	GTCL Ashuganj Ashuganj	Code: Code:	10-ASH-4 10-ASH-4	400 400M						DOC. NC Rev. Date JOB NO.).	0 Jan-2011
TAG	SERVICE					I/0				RANGE		NOTE
			FROM	10	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice	RX	RIU	COM	MODBOS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 3 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 3 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL

COM MODBUS

COM MODBUS

COM MODBUS

COM

RX (Flow Computer) prepared by GTCL

Input from MCC/ACC and/or Display mounted on RTU

COM MODBUS

CUSTOMER	GTCL		DOC. NO.	
RTU	Ashuganj	Code: 10-ASH-400	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

T 10	AG SERVICE					1/0				RANGE		NOTE
TAG			FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	1
	Base Compressibility	Stream# 3 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 4 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 4 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 4 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 4 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 4 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 4 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 4 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 4 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL

CUSTOMER	GTCL		DOC. NO.	
RTU	Ashuganj	Code: 10-ASH-400	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

TAC	SERVICE					1/0				RANGE		NOTE
TAG			FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Orifice bore diameter	Stream# 5 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 5 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 5 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 5 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 5 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 5 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 5 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 5 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 6 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 6 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 6 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 6 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 6 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 6 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 6 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 6 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 6 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 6 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 6 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 6 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 6 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 6 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 6 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 6 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 6 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 7 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL

CUSTOMER	GTCL		DOC. NO.	
RTU	Ashuganj	Code: 10-ASH-400	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

T 10						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Difference pressure L	Stream# 7 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 7 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 7 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 7 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 7 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 7 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 7 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 7 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 7 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 7 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 7 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 7 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 7 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 7 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 7 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 7 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 8 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 8 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 8 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 8 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 8 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 8 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 8 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 8 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 8 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 8 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 8 Orifice	RTU	RX	СОМ	MODBUS						Input from MCC/ACC and/or Display mounted on RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Ashuganj	Code: 10-ASH-400	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

TAC	SERVICE					1/0			RANGE			NOTE
TAG			FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Specific gravity	Stream# 8 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 8 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 8 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 8 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 8 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 8 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 9 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 9 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 9 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 9 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 9 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 9 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 9 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 9 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 9 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 9 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 9 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 9 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 9 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 9 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 9 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 9 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 9 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 10 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 10 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 10 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 10 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL

CUSTOMER	GTCL		DOC. NO.	
RTU	Ashuganj	Code: 10-ASH-400	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

TAC	TAG SERVICE					1/0			RANGE			NOTE
TAG			FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas volume flow (instanteneous value)	Stream# 10 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 10 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 10 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 10 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 10 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 10 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 10 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 10 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 10 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 10 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 10 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 10 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 10 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Inlet Pressure	Ashuganj Scrapar Trap	FIELD	RTU	AI	4-20mA						
	Valve Status	Ashuganj Scrapar Trap	FIELD	RTU	DI							
	Valve Open Command	Ashuganj Scrapar Trap	RTU	FIELD	DO							Future
	Valve Close Command	Ashuganj Scrapar Trap	RTU	FIELD	DO							Future
	Inlet Pressure	Ashuganj - Monohordi	FIELD	RTU	AI	4-20mA						
	Valve Status	Ashuganj - Monohordi	FIELD	RTU	DI							
	Valve Open Command	Ashuganj - Monohordi	RTU	FIELD	DO							Future
	Valve Close Command	Ashuganj - Monohordi	RTU	FIELD	DO							Future
CUSTOMER	GTCL		DOC. NO.									
------------	----------	-------------------	----------	----------								
RTU	VS-R	Code: 10-ASH-401	Rev.	0								
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011								
			JOB NO.									

TAC					1/0				RANGE		NOTE
TAG	SERVICE	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status	FIELD	RTU	DI							
	Battery status	FIELD	RTU	DI							
	RTU door status (Open/Close)	FIELD	RTU	DI							
	Lightning surge arrestor status	FIELD	RTU	DI							
	Inlet Pressure	FIELD	RTU	AI	4-20mA						
	Valve Status	FIELD	RTU	DI							
	Valve Open Command	RTU	FIELD	DO							Future
	Valve Close Command	RTU	FIELD	DO							Future

CUSTOMER	GTCL		DOC. NO.	
RTU	VS-T	Code: 10-ASH-402	Rev.	1
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Feb-2011
			JOB NO.	

TAC	SERVICE				1/0				RANGE		NOTE	
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	VS-T	Code: 10-ASH-402	Rev.	1
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Feb-2011
			JOB NO.	

TAC	SERVICE				1/0				RANGE		NOTE	
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
	Corrosion Protection Voltage	Gas Line	FIELD	RTU	AI	4-20mA						
	Corrosion Protection Voltage	Condensate Line	FIELD	RTU	AI	4-20mA						
				1					1		İ	

CUSTOMER	GTCL		DOC. NO.	
RTU	VS1 A-B	Code: 10-ASH-403	Rev.	1
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Feb-2011
			JOB NO.	

T 10		-				1/0			RANGE			NOTE
TAG	SERVIC	E	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	1
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Inlet Pressure		FIELD	RTU	AI	4-20mA						
	Valve Status		FIELD	RTU	DI							
	Valve Open Command		RTU	FIELD	DO							Future
	Valve Close Command		RTU	FIELD	DO							Future
	Corossion Protection Voltage	Gas Line #1	FIELD	RTU	AI	4-20mA						
	Corossion Protection Voltage	Gas Line #2	FIELD	RTU	AI	4-20mA						
									L			
	1											

CUSTOMER	GTCL		DOC. NO.	
RTU	VS Chandura R-A Line	Code: 10-ASH-404	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

					1/0				RANGE		NOTE
TAG	SERVICE	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status	FIELD	RTU	DI							
	Battery status	FIELD	RTU	DI							
	RTU door status (Open/Close)	FIELD	RTU	DI							
	Lightning surge arrestor status	FIELD	RTU	DI							
	Inlet Pressure	FIELD	RTU	AI	4-20mA						
	Valve Status	FIELD	RTU	DI							
	Valve Open Command	RTU	FIELD	DO							Future
	Valve Close Command	RTU	FIELD	DO							Future

CUSTOMER	GTCL		DOC. NO.	
RTU	Ashuganj P.S.	Code: 10-ASH-501	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

ТАС	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Ashuganj P.S.	Code: 10-ASH-501	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

TAG	AG SERVICE					1/0				RANGE		NOTE
IAG	SERVIC	·L	FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
	Gas correctec volume flow	Stream# 3 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Gas totalised corected volume	Stream# 3 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Gas corrected volume flow	Stream# 3 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Pressure	Stream# 3 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Temperature	Stream# 3 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Gas correctec volume flow	Stream# 4 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Gas totalised corected volume	Stream# 4 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Gas corrected volume flow	Stream# 4 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Pressure	Stream# 4 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Temperature	Stream# 4 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Gas correctec volume flow	Stream# 5 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Gas totalised corected volume	Stream# 5 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Gas corrected volume flow	Stream# 5 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Pressure	Stream# 5 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Temperature	Stream# 5 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.

CUSTOMER	GTCL		DOC. NO.	
RTU	Ashuganj FF	Code: 10-ASH-502	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

					RANGE		NOTE					
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 3 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 3 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 3 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 3 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 3 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 3 Turbine										Calculated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	TITAS VS3	Code: 10-ASH-503	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

TAC					1/0			RANGE		NOTE		
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Inlet Pressure		FIELD	RTU	AI	4-20mA						
	Valve Status		FIELD	RTU	DI							
	Valve Open Command		RTU	FIELD	DO							Future
	Valve Close Command		RTU	FIELD	DO							Future

CUSTOMER	GTCL		DOC. NO.	
RTU	Daulatkandi VS0	Code: 10-ASH-504	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

	0551/10	-				1/0			RANGE		NOTE	
TAG	SERVIC	E	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Inlet Pressure		FIELD	RTU	AI	4-20mA						
	Valve Status		FIELD	RTU	DI							
	Valve Open Command		RTU	FIELD	DO							Future
	Valve Close Command		RTU	FIELD	DO							Future
	Inlet Pressure	30" Line	FIELD	RTU	AI	4-20mA						
	Valve Status	30" Line	FIELD	RTU	DI							
	Valve Open Command	30" Line	RTU	FIELD	DO							Future
	Valve Close Command	30" Line	RTU	FIELD	DO							Future

CUSTOMER	GTCL		DOC. NO.	
RTU	MS Ghatura	Code: 10-ASH-505	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

T10	SEDVICE				1/0				RANGE		NOTE	
IAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
			Γ'									
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice	1									Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
			1									
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice	1									Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice	1									Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice	1									Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice	1									Input from MCC/ACC
			1									
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice	1									Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice	1									Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	MS Ghatura	Code: 10-ASH-505	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

тас	SEDVICE	SERVICE				1/0				RANGE		NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
	Pressure	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 3 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 3 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 3 Orifice										Calclated by RTU
	Gas mass flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 3 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 3 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 3 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 3 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 3 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 3 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 3 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 3 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	MS Ghatura	Code: 10-ASH-505	Rev.	0
Covered by	Ashuganj	Code: 10-ASH-400M	Date	Jan-2011
			JOB NO.	

TAC	SEDVICE				1/0				RANGE			NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Base Compressibility	Stream# 3 Orifice										Input from MCC/ACC
	Pressure	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 4 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 4 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 4 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 4 Orifice										Calclated by RTU
	Gas mass flow	Stream# 4 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 4 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 4 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 4 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 4 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 4 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 4 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 4 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 4 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 4 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	VS-E	Code: 10-FCH-401	Rev.	1
Covered by	Fenchugonj Radio	Code: 10-FCH-600M	Date	Feb-2011
			JOB NO.	

TAC		-				1/0			RANGE		NOTE	
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Inlet Pressure		FIELD	RTU	AI	4-20mA						
	Valve Status		FIELD	RTU	DI							
	Valve Open Command		RTU	FIELD	DO							Future
	Valve Close Command		RTU	FIELD	DO							Future
	Corossion Protection Voltage	Gas Line #1	FIELD	RTU	AI	4-20mA						
	Corossion Protection Voltage	Gas Line #2	FIELD	RTU	AI	4-20mA						

CUSTOMER	GTCL		DOC. NO.	
RTU	VS-D	Code: 10-FCH-402	Rev.	0
Covered by	Fenchugonj Radio	Code: 10-FCH-600M	Date	Jan-2011
			JOB NO.	

TAO				1/0		RANGE			NOTE		
TAG	SERVICE	FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status	FIELD	RTU	DI							
	Battery status	FIELD	RTU	DI							
	RTU door status (Open/Close)	FIELD	RTU	DI							
	Lightning surge arrestor status	FIELD	RTU	DI							
	Inlet Pressure	FIELD	RTU	AI	4-20mA						
	Valve Status	FIELD	RTU	DI							
	Valve Open Command	RTU	FIELD	DO							Future
	Valve Close Command	RTU	FIELD	DO							Future

CUSTOMER	GTCL		DOC. NO.	
RTU	Fenchugonj 90MW PS	Code: 10-FCH-600	Rev.	0
Covered by	Fenchugonj Radio	Code: 10-FCH-600M	Date	Jan-2011
			JOB NO.	

TAC	CED///CE				1/0			RANGE		NOTE		
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice		1								Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Fenchugonj 90MW PS	Code: 10-FCH-600	Rev.	0
Covered by	Fenchugonj Radio	Code: 10-FCH-600M	Date	Jan-2011
			JOB NO.	

TAC	SEDVICE					1/0				RANGE		NOTE
TAG	SERVI	ÇE	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
	Pressure	Stream# 3 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 3 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 3 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 3 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 3 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 3 Turbine										Calculated by RTU
	Pressure	Stream# 4 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 4 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 4 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 4 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 4 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 4 Turbine										Calculated by RTU
	Pressure	Stream# 5 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 5 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 5 Turbine	FIELD	RTU	PI							

CUSTOMER	GTCL				DOC. NO.	
RTU	Fenchugonj 90MW PS	Code:	10-FCH-600		Rev.	0
Covered by	Fenchugonj Radio	Code:	10-FCH-600M		Date	Jan-2011
					JOB NO.	
	0551/105			1/0	RANGE	NOTE

TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas correctec volume flow	Stream# 5 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 5 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 5 Turbine										Calculated by RTU
	Pressure	Stream# 6 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 6 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 6 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 6 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 6 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 6 Turbine										Calculated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Fenchugonj NGF	Code: 10-FCH-601	Rev.	0
Covered by	Fenchugonj Radio	Code: 10-FCH-600M	Date	Jan-2011
			JOB NO.	

ТАС	SERVICE I/O			RANGE		NOTE						
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Fenchugonj Gas Field	Code: 10-FCH-701	Rev.	0
Covered by	Fenchugonj Radio	Code: 10-FCH-600M	Date	Jan-2011
			JOB NO.	

TAC	CED///OF					1/0			RANGE		NOTE	
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice			1							Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Fenchugonj Gas Field	Code: 10-FCH-701	Rev.	0
Covered by	Fenchugonj Radio	Code: 10-FCH-600M	Date	Jan-2011
			JOB NO.	

TAC	G SERVICE					1/0				RANGE		NOTE
TAG	SERVICI	E	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Hobigonj Gas Field	Code: 10-HOB-200	Rev.	0
Covered by	Hobigonj Gas Field	Code: 10-HOB-200M	Date	Jan-2011
			JOB NO.	

TAC					1/0			RANGE		NOTE		
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	1
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Hobigonj Gas Field	Code: 10-HOB-200	Rev.	0
Covered by	Hobigonj Gas Field	Code: 10-HOB-200M	Date	Jan-2011
			JOB NO.	

тас	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
	Pressure	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 3 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 3 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 3 Orifice										Calclated by RTU
	Gas mass flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 3 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 3 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 3 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 3 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 3 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 3 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 3 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 3 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Hobigonj Gas Field	Code: 10-HOB-200	Rev.	0
Covered by	Hobigonj Gas Field	Code: 10-HOB-200M	Date	Jan-2011
			JOB NO.	

TAC	SERVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Base Compressibility	Stream# 3 Orifice										Input from MCC/ACC
	Pressure	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 4 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 4 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 4 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 4 Orifice										Calclated by RTU
	Gas mass flow	Stream# 4 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 4 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 4 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 4 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 4 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 4 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 4 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 4 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 4 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 4 Orifice										Input from MCC/ACC
	Pressure	Hobigonj DRS Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Hobigonj DRS Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Hobigonj DRS Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Hobigonj DRS Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Hobigonj DRS Orifice										Calclated by RTU
	Gas corrected volume flow	Hobigonj DRS Orifice										Calclated by RTU
	Gas totalised corected volume	Hobigonj DRS Orifice										Calclated by RTU
	Gas mass flow	Hobigonj DRS Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Hobigonj Gas Field	Code: 10-HOB-200	Rev.	0
Covered by	Hobigonj Gas Field	Code: 10-HOB-200M	Date	Jan-2011
			JOB NO.	

740					1/0		[RANGE		NOTE		
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised mass flow	Hobigonj DRS Orifice										Calclated by RTU
	Orifice bore diameter	Hobigonj DRS Orifice										Input from MCC/ACC
	Pipe bore diameter	Hobigonj DRS Orifice										Input from MCC/ACC
	Specific gravity	Hobigonj DRS Orifice										Input from MCC/ACC
	Base Pressure	Hobigonj DRS Orifice										Input from MCC/ACC
	Base Temperature	Hobigonj DRS Orifice										Input from MCC/ACC
	Mol% of CO2	Hobigonj DRS Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Hobigonj DRS Orifice										Input from MCC/ACC
	Base Compressibility	Hobigonj DRS Orifice										Input from MCC/ACC

CUSTOMER	GTCL									DOC. NO).	
RTU	VS P	Code:	10-HOB-	401						Rev.		0
Covered by	Hobigonj Gas Field	Code:	10-HOB-	200M						Date		Jan-2011
										JOB NO.		
TAC	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	ТО	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Inlet Pressure		FIELD	RTU	AI	4-20mA						
	Valve Status		FIELD	RTU	DI							
	Valve Open Command		RTU	FIELD	DO							Future
	Valve Close Command		RTU	FIELD	DO							Future

CUSTOMER	GTCL		DOC. NO.	
RTU	Hobigonj TITAS DRS	Code: 10-HOB-501	Rev.	0
Covered by	Hobigonj Gas Field	Code: 10-HOB-200M	Date	Jan-2011
			JOB NO.	

TAC						1/0			RANGE		NOTE	
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Hobigonj TITAS DRS	Code: 10-HOB-501	Rev.	0
Covered by	Hobigonj Gas Field	Code: 10-HOB-200M	Date	Jan-2011
			JOB NO	

TAC	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Horipur Gas Field	Code: 10-HOR-300	Rev.	0
Covered by	Horipur Head Office	Code: 10-HOR-300M	Date	Jan-2011
			JOB NO.	

T10						1/0			RANGE		NOTE	
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
					l							
					l							
					1							

CUSTOMER	GTCL		DOC. NO.	
RTU	Devpur	Code: 10-JAL-601	Rev.	0
Covered by	Jalalabad Head Office	Code: 10-JAL-600M	Date	Jan-2011
			JOB NO.	

TAG	SEDVICE					1/0				RANGE		NOTE
140	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Devpur	Code: 10-JAL-601	Rev.	0
Covered by	Jalalabad Head Office	Code: 10-JAL-600M	Date	Jan-2011
			JOB NO.	

T10	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
				1								

CUSTOMER	GTCL		DOC. NO.	
RTU	Benibazar Gas Field	Code: 10-KAI-301	Rev.	0
Covered by	Kailashtilla 2 Radio	Code: 10-KAI-400M	Date	Jan-2011
			JOB NO.	

TAC			<u>г</u>	· · · · ·		1/0				RANGE		NOTE
IAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI			I				
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	1											
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Benibazar Gas Field	Code: 10-KAI-301	Rev.	0
Covered by	Kailashtilla 2 Radio	Code: 10-KAI-400M	Date	Jan-2011
			JOB NO.	

TAC						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	1
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
	Pressure	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 3 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 3 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 3 Orifice										Calclated by RTU
	Gas mass flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 3 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 3 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 3 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 3 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 3 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 3 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 3 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 3 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Benibazar Gas Field	Code: 10-KAI-301	Rev.	0
Covered by	Kailashtilla 2 Radio	Code: 10-KAI-400M	Date	Jan-2011
			JOB NO.	

	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Base Compressibility	Stream# 3 Orifice										Input from MCC/ACC
	Pressure	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 4 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 4 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 4 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 4 Orifice										Calclated by RTU
	Gas mass flow	Stream# 4 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 4 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 4 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 4 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 4 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 4 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 4 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 4 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 4 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 4 Orifice										Input from MCC/ACC
			1									

CUSTOMER	GTCL		DOC. NO.	
RTU	Kailashtilla GTCL Compound	Code: 10-KAI-400	Rev.	0
Covered by	Kailashtilla 2 Radio	Code: 10-KAI-400M	Date	Jan-2011
			JOB NO.	

TAC						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	KT2 # 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	KT2 # 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	KT2 # 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	KT2 # 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	KT2 # 1 Orifice										Calclated by RTU
	Gas corrected volume flow	KT2 # 1 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Kailashtilla GTCL Compound	Code: 10-KAI-400	Rev.	0
Covered by	Kailashtilla 2 Radio	Code: 10-KAI-400M	Date	Jan-2011
			JOB NO.	

T10	0551/105					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	1
	Gas totalised corected volume	KT2 # 1 Orifice										Calclated by RTU
	Gas mass flow	KT2 # 1 Orifice										Calclated by RTU
	Gas totalised mass flow	KT2 # 1 Orifice										Calclated by RTU
	Orifice bore diameter	KT2 # 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	KT2 # 1 Orifice										Input from MCC/ACC
	Specific gravity	KT2 # 1 Orifice										Input from MCC/ACC
	Base Pressure	KT2 # 1 Orifice										Input from MCC/ACC
	Base Temperature	KT2 # 1 Orifice										Input from MCC/ACC
	Mol% of CO2	KT2 # 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	KT2 # 1 Orifice										Input from MCC/ACC
	Base Compressibility	KT2 # 1 Orifice										Input from MCC/ACC
	Pressure	KT2 # 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	KT2 # 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	KT2 # 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	KT2 # 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	KT2 # 2 Orifice										Calclated by RTU
	Gas corrected volume flow	KT2 # 2 Orifice										Calclated by RTU
	Gas totalised corected volume	KT2 # 2 Orifice										Calclated by RTU
	Gas mass flow	KT2 # 2 Orifice										Calclated by RTU
	Gas totalised mass flow	KT2 # 2 Orifice										Calclated by RTU
	Orifice bore diameter	KT2 # 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	KT2 # 2 Orifice										Input from MCC/ACC
	Specific gravity	KT2 # 2 Orifice										Input from MCC/ACC
	Base Pressure	KT2 # 2 Orifice										Input from MCC/ACC
	Base Temperature	KT2 # 2 Orifice										Input from MCC/ACC
	Mol% of CO2	KT2 # 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	KT2 # 2 Orifice										Input from MCC/ACC
CUSTOMER	GTCL		DOC. NO.									
------------	----------------------------	-------------------	----------	----------								
RTU	Kailashtilla GTCL Compound	Code: 10-KAI-400	Rev.	0								
Covered by	Kailashtilla 2 Radio	Code: 10-KAI-400M	Date	Jan-2011								
			JOB NO.									

TAC	TAG					1/0				RANGE		NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Base Compressibility	KT2 # 2 Orifice										Input from MCC/ACC
	Pressure	KT2 # 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	KT2 # 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	KT2 # 3 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	KT2 # 3 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	KT2 # 3 Orifice										Calclated by RTU
	Gas corrected volume flow	KT2 # 3 Orifice										Calclated by RTU
	Gas totalised corected volume	KT2 # 3 Orifice										Calclated by RTU
	Gas mass flow	KT2 # 3 Orifice										Calclated by RTU
	Gas totalised mass flow	KT2 # 3 Orifice										Calclated by RTU
	Orifice bore diameter	KT2 # 3 Orifice										Input from MCC/ACC
	Pipe bore diameter	KT2 # 3 Orifice										Input from MCC/ACC
	Specific gravity	KT2 # 3 Orifice										Input from MCC/ACC
	Base Pressure	KT2 # 3 Orifice										Input from MCC/ACC
	Base Temperature	KT2 # 3 Orifice										Input from MCC/ACC
	Mol% of CO2	KT2 # 3 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	KT2 # 3 Orifice										Input from MCC/ACC
	Base Compressibility	KT2 # 3 Orifice										Input from MCC/ACC
	Pressure	KT2 # 4 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	KT2 # 4 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	KT2 # 4 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	KT2 # 4 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	KT2 # 4 Orifice										Calclated by RTU
	Gas corrected volume flow	KT2 # 4 Orifice										Calclated by RTU
	Gas totalised corected volume	KT2 # 4 Orifice										Calclated by RTU
	Gas mass flow	KT2 # 4 Orifice										Calclated by RTU
	Gas totalised mass flow	KT2 # 4 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Kailashtilla GTCL Compound	Code: 10-KAI-400	Rev.	0
Covered by	Kailashtilla 2 Radio	Code: 10-KAI-400M	Date	Jan-2011
			JOB NO.	

TAC	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Orifice bore diameter	KT2 # 4 Orifice										Input from MCC/ACC
	Pipe bore diameter	KT2 # 4 Orifice										Input from MCC/ACC
	Specific gravity	KT2 # 4 Orifice										Input from MCC/ACC
	Base Pressure	KT2 # 4 Orifice										Input from MCC/ACC
	Base Temperature	KT2 # 4 Orifice										Input from MCC/ACC
	Mol% of CO2	KT2 # 4 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	KT2 # 4 Orifice										Input from MCC/ACC
	Base Compressibility	KT2 # 4 Orifice										Input from MCC/ACC
	Pressure	KT2 # 5 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	KT2 # 5 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	KT2 # 5 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	KT2 # 5 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	KT2 # 5 Orifice										Calclated by RTU
	Gas corrected volume flow	KT2 # 5 Orifice										Calclated by RTU
	Gas totalised corected volume	KT2 # 5 Orifice										Calclated by RTU
	Gas mass flow	KT2 # 5 Orifice										Calclated by RTU
	Gas totalised mass flow	KT2 # 5 Orifice										Calclated by RTU
	Orifice bore diameter	KT2 # 5 Orifice										Input from MCC/ACC
	Pipe bore diameter	KT2 # 5 Orifice										Input from MCC/ACC
	Specific gravity	KT2 # 5 Orifice										Input from MCC/ACC
	Base Pressure	KT2 # 5 Orifice										Input from MCC/ACC
	Base Temperature	KT2 # 5 Orifice										Input from MCC/ACC
	Mol% of CO2	KT2 # 5 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	KT2 # 5 Orifice										Input from MCC/ACC
	Base Compressibility	KT2 # 5 Orifice										Input from MCC/ACC
	Pressure	KT2 # 6 Orifice	FIFLD	RTU	AI	4-20mA				1		

CUSTOMER	GTCL									DOC. NO).	
RTU	Kailashtilla GTCL Compound	Code:	10-KAI-4	00						Rev.		0
Covered by	Kailashtilla 2 Radio	Code:	10-KAI-4	00M						Date		Jan-2011
										JOB NO.		
ТАС	SEDVICE				1/0					RANGE		NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Difference pressure L	KT2 # 6 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	KT2 # 6 Orifice	FIELD	RTU	AI	4-20mA						

Difference pressure H	KT2 # 6 Orifice	FIELD	RTU	AI 4-20m	\	
Temperature	KT2 # 6 Orifice	FIELD	RTU	Pt 100'Ω		
Gas volume flow (instante	eneous value) KT2 # 6 Orifice					Calclated by RTU
Gas corrected volume flow	W KT2 # 6 Orifice					Calclated by RTU
Gas totalised corected vol	lume KT2 # 6 Orifice					Calclated by RTU
Gas mass flow	KT2 # 6 Orifice					Calclated by RTU
Gas totalised mass flow	KT2 # 6 Orifice					Calclated by RTU
Orifice bore diameter	KT2 # 6 Orifice					Input from MCC/ACC
Pipe bore diameter	KT2 # 6 Orifice					Input from MCC/ACC
Specific gravity	KT2 # 6 Orifice					Input from MCC/ACC
Base Pressure	KT2 # 6 Orifice					Input from MCC/ACC
Base Temperature	KT2 # 6 Orifice					Input from MCC/ACC
Mol% of CO2	KT2 # 6 Orifice					Input from MCC/ACC
Mol% of Nitrogen	KT2 # 6 Orifice					Input from MCC/ACC
Base Compressibility	KT2 # 6 Orifice					Input from MCC/ACC
Pressure	KT2 # 7 Orifice	FIELD	RTU	AI 4-20m	\	
Difference pressure L	KT2 # 7 Orifice	FIELD	RTU	AI 4-20m	\	
Difference pressure H	KT2 # 7 Orifice	FIELD	RTU	AI 4-20m	\	
Temperature	KT2 # 7 Orifice	FIELD	RTU	Pt 100'Ω		
Gas volume flow (instante	eneous value) KT2 # 7 Orifice					Calclated by RTU
Gas corrected volume flow	W KT2 # 7 Orifice					Calclated by RTU
Gas totalised corected vol	lume KT2 # 7 Orifice					Calclated by RTU
Gas mass flow	KT2 # 7 Orifice					Calclated by RTU
Gas totalised mass flow	KT2 # 7 Orifice					Calclated by RTU
Orifice bore diameter	KT2 # 7 Orifice					Input from MCC/ACC
Pipe bore diameter	KT2 # 7 Orifice					Input from MCC/ACC

CUSTOMER	GTCL							DOC. NO.	
RTU	Kailashtilla GTCL Compound	Code:	10-KAI-4	100				Rev.	0
Covered by	Kailashtilla 2 Radio	Code:	10-KAI-4	100M				Date	Jan-2011
								JOB NO.	
				1	1/0			PANGE	NOTE
TAG	SERVICE		FROM	то	I/O SPEC.	POWER Qty.	Min	Max U	NOTE NOTE
	Specific gravity	KT2 # 7 Orifice						-	Input from MCC/ACC
	Base Pressure	KT2 # 7 Orifice							Input from MCC/ACC
	Base Temperature	KT2 # 7 Orifice							Input from MCC/ACC
	Mol% of CO2	KT2 # 7 Orifice							Input from MCC/ACC
	Mol% of Nitrogen	KT2 # 7 Orifice							Input from MCC/ACC
	Base Compressibility	KT2 # 7 Orifice							Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Kailashtilla DRS	Code: 10-KAI-601	Rev.	0
Covered by	Kailashtilla 2 Radio	Code: 10-KAI-400M	Date	Jan-2011
			JOB NO.	

	0551//05					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	DRS Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	DRS Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	DRS Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	DRS Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	DRS Orifice										Calclated by RTU
	Gas corrected volume flow	DRS Orifice										Calclated by RTU
	Gas totalised corected volume	DRS Orifice										Calclated by RTU
	Gas mass flow	DRS Orifice										Calclated by RTU
	Gas totalised mass flow	DRS Orifice										Calclated by RTU
	Orifice bore diameter	DRS Orifice										Input from MCC/ACC
	Pipe bore diameter	DRS Orifice										Input from MCC/ACC
	Specific gravity	DRS Orifice										Input from MCC/ACC
	Base Pressure	DRS Orifice										Input from MCC/ACC
	Base Temperature	DRS Orifice										Input from MCC/ACC
	Mol% of CO2	DRS Orifice										Input from MCC/ACC
	Mol% of Nitrogen	DRS Orifice										Input from MCC/ACC
	Base Compressibility	DRS Orifice										Input from MCC/ACC
	Pressure	KT1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	KT1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	KT1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	KT1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	KT1 Orifice										Calclated by RTU
	Gas corrected volume flow	KT1 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Kailashtilla DRS	Code: 10-KAI-601	Rev.	0
Covered by	Kailashtilla 2 Radio	Code: 10-KAI-400M	Date	Jan-2011
			JOB NO.	

TAC	TAG					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	KT1 Orifice										Calclated by RTU
	Gas mass flow	KT1 Orifice										Calclated by RTU
	Gas totalised mass flow	KT1 Orifice										Calclated by RTU
	Orifice bore diameter	KT1 Orifice										Input from MCC/ACC
	Pipe bore diameter	KT1 Orifice										Input from MCC/ACC
	Specific gravity	KT1 Orifice										Input from MCC/ACC
	Base Pressure	KT1 Orifice										Input from MCC/ACC
	Base Temperature	KT1 Orifice										Input from MCC/ACC
	Mol% of CO2	KT1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	KT1 Orifice										Input from MCC/ACC
	Base Compressibility	KT1 Orifice										Input from MCC/ACC
			1	1								

CUSTOMER	GTCL		DOC. NO.	
RTU	Rashidpur Gas Field	Code: 10-RAS-300	Rev.	0
Covered by	Rashidpur Gas Field	Code: 10-RAS-300M	Date	Jan-2011
			JOB NO.	

TAC		SEDVICE				1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER Qt	y. M	lin	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice			1							Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Rashidpur Gas Field	Code: 10-RAS-300	Rev.	0
Covered by	Rashidpur Gas Field	Code: 10-RAS-300M	Date	Jan-2011
			JOB NO.	

-												
TAG	SERVICE		FDOM	то	1/0			Otv	Min	RANGE		NOTE
	Gas totalised corected volume	Stream# 2 Orifice	FRON	10	1/0	SPEC.	POWER	Qty.	IVIIII	IVIAX	UNIT	Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
	Pressure	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 3 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 3 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 3 Orifice										Calclated by RTU
	Gas mass flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 3 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 3 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 3 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 3 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 3 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 3 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 3 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 3 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Rashidpur Gas Field	Code: 10-RAS-300	Rev.	0
Covered by	Rashidpur Gas Field	Code: 10-RAS-300M	Date	Jan-2011
			JOB NO.	

	0571//05					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Base Compressibility	Stream# 3 Orifice										Input from MCC/ACC
	Pressure	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 4 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 4 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 4 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 4 Orifice										Calclated by RTU
	Gas mass flow	Stream# 4 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 4 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 4 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 4 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 4 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 4 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 4 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 4 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 4 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 4 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	VS-L	Code: 10-RAS-401	Rev.	0
Covered by	Rashidpur Gas Field	Code: 10-RAS-300M	Date	Jan-2011
			JOB NO.	

TAC					1/0		RANGE			NOTE		
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Inlet Pressure	Line 1	FIELD	RTU	AI	4-20mA						
	Valve Status	Line 1	FIELD	RTU	DI							
	Valve Open Command	Line 1	RTU	FIELD	DO							Future
	Valve Close Command	Line 1	RTU	FIELD	DO							Future
	Inlet Pressure	Line 2	FIELD	RTU	AI	4-20mA						
	Valve Status	Line 2	FIELD	RTU	DI							
	Valve Open Command	Line 2	RTU	FIELD	DO							Future
	Valve Close Command	Line 2	RTU	FIELD	DO							Future
	Inlet Pressure	Line 3	FIELD	RTU	AI	4-20mA						
	Valve Status	Line 3	FIELD	RTU	DI							
	Valve Open Command	Line 3	RTU	FIELD	DO							Future
	Valve Close Command	Line 3	RTU	FIELD	DO							Future

CUSTOMER	GTCL		DOC. NO.	
RTU	VS H	Code: 10-RAS-402	Rev.	0
Covered by	Hobigonj Gas Field	Code: 10-HOB-200M	Date	Jan-2011
			JOB NO.	

TAC				1/0			RANGE		NOTE		
TAG	SERVICE	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status	FIELD	RTU	DI							
	Battery status	FIELD	RTU	DI							
	RTU door status (Open/Close)	FIELD	RTU	DI							
	Lightning surge arrestor status	FIELD	RTU	DI							
	Inlet Pressure	FIELD	RTU	AI	4-20mA						
	Valve Status	FIELD	RTU	DI							
	Valve Open Command	RTU	FIELD	DO							Future
	Valve Close Command	RTU	FIELD	DO							Future
		ł								1	

CUSTOMER	GTCL		DOC. NO.	
RTU	VS K	Code: 10-RAS-403	Rev.	1
Covered by	Hobigonj Gas Field	Code: 10-HOB-200M	Date	Feb-2011
			JOB NO.	

T10		-			1/0				RANGE		NOTE	
TAG	SERVICI	E	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Inlet Pressure		FIELD	RTU	AI	4-20mA						
	Valve Status		FIELD	RTU	DI							
	Valve Open Command		RTU	FIELD	DO							Future
	Valve Close Command		RTU	FIELD	DO							Future
	Corossion Protection Voltage	Gas Line	FIELD	RTU	AI	4-20mA						
	Corossion Protection Voltage	Condensate Line	FIELD	RTU	AI	4-20mA						
-												
-												
-												
-												

CUSTOMER	GTCL		DOC. NO.	
RTU	VS M	Code: 10-RAS-404	Rev.	1
Covered by	Hobigonj Gas Field	Code: 10-HOB-200M	Date	Feb-2011
			JOB NO.	

T10						1/0				RANGE		NOTE
TAG	SERVICI	E	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Inlet Pressure		FIELD	RTU	AI	4-20mA						
	Valve Status		FIELD	RTU	DI							
	Valve Open Command		RTU	FIELD	DO							Future
	Valve Close Command		RTU	FIELD	DO							Future
	Corossion Protection Voltage	Gas Line	FIELD	RTU	AI	4-20mA						
	Corossion Protection Voltage	Condensate Line	FIELD	RTU	AI	4-20mA						
-												
-												
-												
-												

CUSTOMER	GTCL		DOC. NO.	
RTU	Rashidpur/Muchai Compressor Station	Code: 10-RAS-405	Rev.	0
Covered by	Rashidpur Gas Field	Code: 10-RAS-300M	Date	Jan-2011
			JOB NO.	

TAC						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Rashidpur/Muchai Compressor Station	Code: 10-RAS-405	Rev.	0
Covered by	Rashidpur Gas Field	Code: 10-RAS-300M	Date	Jan-2011
			JOB NO.	

						1/0			[RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
	Pressure	Line #1	FIELD	RTU	AI	4-20mA						
	Valve Status	Line #1	FIELD	RTU	DI							
	Valve Open Command	Line #1	RTU	FIELD	DO							Future
	Valve Close Command	Line #1	RTU	FIELD	DO							Future
	Pressure	Line #2	FIELD	RTU	AI	4-20mA						
	Valve Status	Line #2	FIELD	RTU	DI							
	Valve Open Command	Line #2	RTU	FIELD	DO							Future
	Valve Close Command	Line #2	RTU	FIELD	DO							Future
	Pressure	Line #3	FIELD	RTU	AI	4-20mA						
	Valve Status	Line #3	FIELD	RTU	DI							
	Valve Open Command	Line #3	RTU	FIELD	DO							Future
	Valve Close Command	Line #3	RTU	FIELD	DO							Future
	Pressure	Line #4	FIELD	RTU	AI	4-20mA						

CUSTOMER	GTCL										DOC. NO).	
RTU	Rashidpur/Muchai Compressor	Station	Code:	10-RAS-	405						Rev.		0
Covered by	Rashidpur Gas Field		Code:	10-RAS-	300M						Date		Jan-2011
											JOB NO.		
r				1	1	1/0			1	RANGE		NOTE	
TAG	SE	RVICE		FROM	то	1/0	SPEC.	POWER	Qtv.	Min	Max	UNIT	
	Valve Status	Line #4		FIELD	RTU	DI			,				
	Valve Open Command	Line #4		RTU	FIELD	DO							Future
	Valve Close Command	Line #4		RTU	FIELD	DO							Future
				1		1		1			1		

CUSTOMER	GTCL		DOC. NO.	
RTU	Chanarughat R-A Line	Code: 10-RAS-406	Rev.	0
Covered by	Rashidpur Gas Field	Code: 10-RAS-300M	Date	Jan-2011
			JOB NO.	

				1/0			RANGE		NOTE		
TAG	SERVICE	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status	FIELD	RTU	DI							
	Battery status	FIELD	RTU	DI							
	RTU door status (Open/Close)	FIELD	RTU	DI							
	Lightning surge arrestor status	FIELD	RTU	DI							
	Inlet Pressure	FIELD	RTU	AI	4-20mA						
	Valve Status	FIELD	RTU	DI							
	Valve Open Command	RTU	FIELD	DO							Future
	Valve Close Command	RTU	FIELD	DO							Future

CUSTOMER	GTCL		DOC. NO.	
RTU	Bakhrabad	Code: 20-BKB-100	Rev.	0
Covered by	Bakhrabad	Code: 20-BKB-100M	Date	Jan-2011
			JOB NO.	

TAC						1/0			RANGE			NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	-
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	BKB Gas Field Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	BKB Gas Field Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	BKB Gas Field Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	BKB Gas Field Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	BKB Gas Field Orifice										Calclated by RTU
	Gas corrected volume flow	BKB Gas Field Orifice										Calclated by RTU
	Gas totalised corected volume	BKB Gas Field Orifice										Calclated by RTU
	Gas mass flow	BKB Gas Field Orifice										Calclated by RTU
	Gas totalised mass flow	BKB Gas Field Orifice										Calclated by RTU
	Orifice bore diameter	BKB Gas Field Orifice										Input from MCC/ACC
	Pipe bore diameter	BKB Gas Field Orifice										Input from MCC/ACC
	Specific gravity	BKB Gas Field Orifice										Input from MCC/ACC
	Base Pressure	BKB Gas Field Orifice										Input from MCC/ACC
	Base Temperature	BKB Gas Field Orifice										Input from MCC/ACC
	Mol% of CO2	BKB Gas Field Orifice										Input from MCC/ACC
	Mol% of Nitrogen	BKB Gas Field Orifice										Input from MCC/ACC
	Base Compressibility	BKB Gas Field Orifice										Input from MCC/ACC
	Inlet Pressure	VS1 BKB-Demra	FIELD	RTU	AI	4-20mA						
	Valve Status	VS1 BKB-Demra	FIELD	RTU	DI							
	Valve Open Command	VS1 BKB-Demra	RTU	FIELD	DO							Future
	Valve Close Command	VS1 BKB-Demra	RTU	FIELD	DO							Future
	Inlet Pressure	VS2 BKB-Chittagon	FIELD	RTU	AI	4-20mA						

CUSTOMER	GTCL		DOC. NO.	
RTU	Bakhrabad	Code: 20-BKB-100	Rev.	0
Covered by	Bakhrabad	Code: 20-BKB-100M	Date	Jan-2011
			JOB NO.	

TAC	TAG SEDVICE				1/0					RANGE		NOTE
TAG	SERVIC		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Valve Status	VS2 BKB-Chittagon	FIELD	RTU	DI							
	Valve Open Command	VS2 BKB-Chittagon	RTU	FIELD	DO							Future
	Valve Close Command	VS2 BKB-Chittagon	RTU	FIELD	DO							Future
	Inlet Pressure	BKB A-B Pipeline	FIELD	RTU	AI	4-20mA						
	Valve Status	BKB A-B Pipeline	FIELD	RTU	DI							
	Valve Open Command	BKB A-B Pipeline	RTU	FIELD	DO							Future
	Valve Close Command	BKB A-B Pipeline	RTU	FIELD	DO							Future

CUSTOMER	GTCL		DOC. NO.	
RTU	Kutombopur	Code: 20-BKB-101	Rev.	0
Covered by	Bakhrabad	Code: 20-BKB-100M	Date	Jan-2011
			JOB NO.	

TAG						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL

CUSTOMER	GTCL		DOC. NO.	
RTU	Kutombopur	Code: 20-BKB-101	Rev.	0
Covered by	Bakhrabad	Code: 20-BKB-100M	Date	Jan-2011
			JOB NO.	

ТАС	SEDVICE				1/0				RANGE		NOTE
IAG	SERVICE		FROM	TO	I/O SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice	RX	RTU	COM MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 2 Orifice	RX	RTU	COM MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 2 Orifice	RX	RTU	COM MODBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 2 Orifice	RTU	RX	COM MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 2 Orifice	RTU	RX	COM MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 2 Orifice	RTU	RX	COM MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 2 Orifice	RTU	RX	COM MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 2 Orifice	RTU	RX	COM MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 2 Orifice	RTU	RX	COM MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 2 Orifice	RTU	RX	COM MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 2 Orifice	RTU	RX	COM MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 3 Orifice	RX	RTU	COM MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 3 Orifice	RX	RTU	COM MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 3 Orifice	RX	RTU	COM MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 3 Orifice	RX	RTU	COM MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 3 Orifice	RX	RTU	COM MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 3 Orifice	RX	RTU	COM MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 3 Orifice	RX	RTU	COM MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 3 Orifice	RX	RTU	COM MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 3 Orifice	RX	RTU	COM MODBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 3 Orifice	RTU	RX	COM MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 3 Orifice	RTU	RX	COM MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 3 Orifice	RTU	RX	COM MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 3 Orifice	RTU	RX	COM MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 3 Orifice	RTU	RX	COM MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 3 Orifice	RTU	RX	COM MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 3 Orifice	RTU	RX	COM MODBUS						Input from MCC/ACC and/or Display mounted on RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Kutombopur	Code: 20-BKB-101	Rev.	0
Covered by	Bakhrabad	Code: 20-BKB-100M	Date	Jan-2011
			JOB NO.	

	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Base Compressibility	Stream# 3 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	VS3 BKB-Demra	Code 20-BKB-102	Rev.	1
Covered by	Bakhrabad	Code 20-BKB-100M	Date	Feb-2011
			JOB NO.	

T 10			1/0		RANGE			NOTE				
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Inlet Pressure	VS1 BKB-Demra	FIELD	RTU	AI	4-20mA						
	Valve Status	VS1 BKB-Demra	FIELD	RTU	DI							
	Valve Open Command	VS1 BKB-Demra	RTU	FIELD	DO							Future
	Valve Close Command	VS1 BKB-Demra	RTU	FIELD	DO							Future
	Casodic Protection Voltage	Gas Line	FIELD	RTU	AI	4-20mA						
	Casodic Protection Voltage	Condensate Line	FIELD	RTU	AI	4-20mA						
	Corrosion Protection Voltage	Gas Line	FIELD	RTU	AI	4-20mA						
	Corrosion Protection Voltage	Condensate Line	FIELD	RTU	AI	4-20mA						

CUSTOMER	GTCL		DOC. NO.	
RTU	Meghna Gas Field	Code: 20-BKB-201	Rev.	0
Covered by	Bakhrabad	Code: 20-BKB-100M	Date	Jan-2011
			JOB NO.	

TAC	SERVICE				1/0				RANGE		NOTE	
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	VS2 A-B	Code: 20-BKB-401	Rev.	0
Covered by	Bakhrabad	Code: 20-BKB-100M	Date	Jan-2011
			JOB NO.	

				1/0			RANGE		NOTE		
TAG	SERVICE	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status	FIELD	RTU	DI							
	Battery status	FIELD	RTU	DI							
	RTU door status (Open/Close)	FIELD	RTU	DI							
	Lightning surge arrestor status	FIELD	RTU	DI							
	Inlet Pressure	FIELD	RTU	AI	4-20mA						
	Valve Status	FIELD	RTU	DI							
	Valve Open Command	RTU	FIELD	DO							Future
	Valve Close Command	RTU	FIELD	DO							Future

CUSTOMER	GTCL		DOC. NO.	
RTU	TBS Gazaria	Code: 20-BKB-501	Rev.	0
Covered by	Bakhrabad	Code: 20-BKB-100M	Date	Jan-2011
			JOB NO.	

TAC					1/0			RANGE		NOTE		
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 1 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 1 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 1 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 1 Turbine										Calculated by RTU
	Pressure	Stream# 2 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 2 Turbine	FIELD	RTU	ΡI							
	Gas correctec volume flow	Stream# 2 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 2 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 2 Turbine										Calculated by RTU
			1									
			1									

CUSTOMER	GTCL		DOC. NO.	
RTU	Salda Nadi Gas Field	Code: 20-BKB-701	Rev.	0
Covered by	Bakhrabad	Code: 20-BKB-100M	Date	Jan-2011
			JOB NO.	

тас						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Bangura Gas Field	Code: 20-BKB-702	Rev.	0
Covered by	Bakhrabad	Code: 20-BKB-100M	Date	Jan-2011
			JOB NO.	

TAC		SEDVICE				1/0			RANGE			NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Gas #1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Gas #1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Gas #1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Gas #1 Orifice	FIELD	RTU	Pt	100'Ω						
	Volume flow (instanteneous value)	Gas #1 Orifice										Calclated by RTU
	Corrected volume flow	Gas #1 Orifice										Calclated by RTU
	Totalised corected volume	Gas #1 Orifice										Calclated by RTU
	Mass flow	Gas #1 Orifice										Calclated by RTU
	Totalised mass flow	Gas #1 Orifice										Calclated by RTU
	Orifice bore diameter	Gas #1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Gas #1 Orifice										Input from MCC/ACC
	Specific gravity	Gas #1 Orifice										Input from MCC/ACC
	Base Pressure	Gas #1 Orifice										Input from MCC/ACC
	Base Temperature	Gas #1 Orifice										Input from MCC/ACC
	Mol% of CO2	Gas #1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Gas #1 Orifice										Input from MCC/ACC
	Base Compressibility	Gas #1 Orifice										Input from MCC/ACC
	Pressure	Gas #2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Gas #2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Gas #2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Gas #2 Orifice	FIELD	RTU	Pt	100'Ω						
	Volume flow (instanteneous value)	Gas #2 Orifice										Calclated by RTU
	Corrected volume flow	Gas #2 Orifice			1							Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Bangura Gas Field	Code: 20-BKB-702	Rev.	0
Covered by	Bakhrabad	Code: 20-BKB-100M	Date	Jan-2011
			JOB NO.	

	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	1
	Totalised corected volume	Gas #2 Orifice										Calclated by RTU
	Mass flow	Gas #2 Orifice										Calclated by RTU
	Totalised mass flow	Gas #2 Orifice										Calclated by RTU
	Orifice bore diameter	Gas #2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Gas #2 Orifice										Input from MCC/ACC
	Specific gravity	Gas #2 Orifice										Input from MCC/ACC
	Base Pressure	Gas #2 Orifice										Input from MCC/ACC
	Base Temperature	Gas #2 Orifice										Input from MCC/ACC
	Mol% of CO2	Gas #2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Gas #2 Orifice										Input from MCC/ACC
	Base Compressibility	Gas #2 Orifice										Input from MCC/ACC
	Pressure	Condensate #1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Condensate #1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Condensate #1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Condensate #1 Orifice	FIELD	RTU	Pt	100'Ω						
	Volume flow (instanteneous value)	Condensate #1 Orifice										Calclated by RTU
	Corrected volume flow	Condensate #1 Orifice										Calclated by RTU
	Totalised corected volume	Condensate #1 Orifice										Calclated by RTU
	Mass flow	Condensate #1 Orifice										Calclated by RTU
	Totalised mass flow	Condensate #1 Orifice										Calclated by RTU
	Orifice bore diameter	Condensate #1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Condensate #1 Orifice										Input from MCC/ACC
	Specific gravity	Condensate #1 Orifice										Input from MCC/ACC
	Base Pressure	Condensate #1 Orifice										Input from MCC/ACC
	Base Temperature	Condensate #1 Orifice										Input from MCC/ACC
	Mol% of CO2	Condensate #1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Condensate #1 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Bangura Gas Field	Code: 20-BKB-702	Rev.	0
Covered by	Bakhrabad	Code: 20-BKB-100M	Date	Jan-2011
			JOB NO.	

тас	SERVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Base Compressibility	Condensate #1 Orifice										Input from MCC/ACC
	Pressure	Condensate #2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Condensate #2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Condensate #2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Condensate #2 Orifice	FIELD	RTU	Pt	100'Ω						
	Volume flow (instanteneous value)	Condensate #2 Orifice										Calclated by RTU
	Corrected volume flow	Condensate #2 Orifice										Calclated by RTU
	Totalised corected volume	Condensate #2 Orifice										Calclated by RTU
	Mass flow	Condensate #2 Orifice										Calclated by RTU
	Totalised mass flow	Condensate #2 Orifice										Calclated by RTU
	Orifice bore diameter	Condensate #2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Condensate #2 Orifice										Input from MCC/ACC
	Specific gravity	Condensate #2 Orifice										Input from MCC/ACC
	Base Pressure	Condensate #2 Orifice										Input from MCC/ACC
	Base Temperature	Condensate #2 Orifice										Input from MCC/ACC
	Mol% of CO2	Condensate #2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Condensate #2 Orifice										Input from MCC/ACC
	Base Compressibility	Condensate #2 Orifice										Input from MCC/ACC
					1							

CUSTOMER	GTCL		DOC. NO.	
RTU	Srikail Gas Field	Code: 20-BKB-703	Rev.	0
Covered by	Bakhrabad	Code: 20-BKB-100M	Date	Jan-2011
			JOB NO.	

TAC						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Srikail Gas Field	Code: 20-BKB-703	Rev.	0
Covered by	Bakhrabad	Code: 20-BKB-100M	Date	Jan-2011
			JOB NO.	

ТАС	SEDVICE				1/0				RANGE		NOTE	
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
				1								

CUSTOMER	GTCL		DOC. NO.	
RTU	Chandpur TBS	Code: 20-CHA-101	Rev.	0
Covered by	Chandpur	Code: 20-CHA-100M	Date	Jan-2011
			JOB NO.	

TAC						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Chandpur TBS	Code: 20-CHA-101	Rev.	0
Covered by	Chandpur	Code: 20-CHA-100M	Date	Jan-2011
			JOB NO.	

TAC	SEDVICE				1/0					RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
	Pressure	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 3 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 3 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 3 Orifice										Calclated by RTU
	Gas mass flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 3 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 3 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 3 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 3 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 3 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 3 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 3 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 3 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Chandpur TBS	Code: 20-CHA-101	Rev.	0
Covered by	Chandpur	Code: 20-CHA-100M	Date	Jan-2011
			JOB NO.	

TAC						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Base Compressibility	Stream# 3 Orifice										Input from MCC/ACC
	Pressure	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 4 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 4 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 4 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 4 Orifice										Calclated by RTU
	Gas mass flow	Stream# 4 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 4 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 4 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 4 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 4 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 4 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 4 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 4 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 4 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 4 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Faujdarhat	Code: 20-FAU-100	Rev.	0
Covered by	Faujdarhat	Code: 20-FAU-100M	Date	Jan-2011
			JOB NO.	

TAC						1/0				RANGE		NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	1
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU
CUSTOMER	GTCL		DOC. NO.									
------------	------------	-------------------	----------	----------								
RTU	Faujdarhat	Code: 20-FAU-100	Rev.	0								
Covered by	Faujdarhat	Code: 20-FAU-100M	Date	Jan-2011								
			JOB NO.									

тас	G SERVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 3 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 3 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 3 Orifice										Calclated by RTU
	Gas mass flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 3 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Faujdarhat	Code: 20-FAU-100	Rev.	0
Covered by	Faujdarhat	Code: 20-FAU-100M	Date	Jan-2011
			JOB NO.	

ТАС	SEDVICE					1/0				RANGE		NOTE
TAG	St	ERVICE	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Base Compressibility	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Inlet Pressure	VS15 BKB-CTG	FIELD	RTU	AI	4-20mA						
	Valve Status	VS15 BKB-CTG	FIELD	RTU	DI							
	Valve Open Command	VS15 BKB-CTG	RTU	FIELD	DO							Future
	Valve Close Command	VS15 BKB-CTG	RTU	FIELD	DO							Future
	Pig Indicator	VS15 BKB-CTG	FIELD	RTU	DI							Future

CUSTOMER	GTCL		DOC. NO.	
RTU	CUFL	Code: 20-FAU-101	Rev.	0
Covered by	Faujdarhat	Code: 20-FAU-100M	Date	Jan-2011
			JOB NO.	

TAC					1/0			RANGE		NOTE		
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
					1							

CUSTOMER	GTCL		DOC. NO.	
RTU	KAFCO	Code: 20-FAU-102	Rev.	0
Covered by	Faujdarhat	Code: 20-FAU-100M	Date	Jan-2011
			JOB NO.	

TAC	SED///CE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	KAFCO	Code: 20-FAU-102	Rev.	0
Covered by	Faujdarhat	Code: 20-FAU-100M	Date	Jan-2011
			JOB NO.	

тас	SERVICE					1/0				RANGE		NOTE
TAG	SERVICE	E	FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Sikalbaha	Code: 20-FAU-103	Rev.	0
Covered by	Faujdarhat	Code: 20-FAU-100M	Date	Jan-2011
			JOB NO.	

TAC	SEDVICE					1/0			RANGE		NOTE	
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Sikalbaha	Code: 20-FAU-103	Rev.	0
Covered by	Faujdarhat	Code: 20-FAU-100M	Date	Jan-2011
			JOB NO.	

TAC	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Raujan P.S.	Code: 20-FAU-104	Rev.	0
Covered by	Faujdarhat	Code: 20-FAU-100M	Date	Jan-2011
			JOB NO.	

TAC	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Raujan P.S.	Code: 20-FAU-104	Rev.	0
Covered by	Faujdarhat	Code: 20-FAU-100M	Date	Jan-2011
			JOB NO.	

тас						1/0				RANGE		NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
	Pressure	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 3 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 3 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 3 Orifice										Calclated by RTU
	Gas mass flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 3 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 3 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 3 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 3 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 3 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 3 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 3 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 3 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Raujan P.S.	Code: 20-FAU-104	Rev.	0
Covered by	Faujdarhat	Code: 20-FAU-100M	Date	Jan-2011
			JOB NO.	

	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	ТО	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Base Compressibility	Stream# 3 Orifice										Input from MCC/ACC
	Pressure	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 4 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 4 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 4 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 4 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 4 Orifice										Calclated by RTU
	Gas mass flow	Stream# 4 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 4 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 4 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 4 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 4 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 4 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 4 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 4 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 4 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 4 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Sanghu Onshore Process Plant	Code: 20-FAU-701	Rev.	0
Covered by	Faujdarhat	Code: 20-FAU-100M	Date	Jan-2011
			JOB NO.	

TAC		SEDVICE				1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Standard gas volume daily total	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Measured HC dewpoint	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Measured water dewpoint	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Standard gas volume flow	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Flow O2	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Flow N2	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Flow CO2	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Flow Methane	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Flow Ethane	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Flow Propane	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Flow N-Butane	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Flow I-Butane	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Flow N-Pentane	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Flow I-Pentane	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Flow Neo-Pentane	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Flow Hexane	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Flow Energy	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Flow standard volume total	Stream# A		RTU	COM	MODBUS						Input from Sanghu Server
	Standard gas volume daily total	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server
	Measured HC dewpoint	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server
	Measured water dewpoint	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server
	Standard gas volume flow	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server
	Flow O2	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server
	Flow N2	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server

CUSTOMER	GTCL		DOC. NO.	
RTU	Sanghu Onshore Process Plant	Code: 20-FAU-701	Rev.	0
Covered by	Faujdarhat	Code: 20-FAU-100M	Date	Jan-2011
			JOB NO.	

TAC	SERVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Flow CO2	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server
	Flow Methane	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server
	Flow Ethane	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server
	Flow Propane	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server
	Flow N-Butane	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server
	Flow I-Butane	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server
	Flow N-Pentane	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server
	Flow I-Pentane	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server
	Flow Neo-Pentane	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server
	Flow Hexane	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server
	Flow Energy	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server
	Flow standard volume total	Stream# B		RTU	COM	MODBUS						Input from Sanghu Server
	BKB corrected flow		RTU		COM	MODBUS						Output to Sanghu Server
	Chittagong corrected flow		RTU		COM	MODBUS						Output to Sanghu Server
	BKB pressure		RTU		COM	MODBUS						Output to Sanghu Server
	Chittagong pressure		RTU		COM	MODBUS						Output to Sanghu Server
	BKB to Chittagong line pack		RTU		COM	MODBUS						Output to Sanghu Server
	Chittagong flow excluding Sangu		RTU		COM	MODBUS						Output to Sanghu Server
					1							

CUSTOMER	GTCL		DOC. NO.	
RTU	Feni TBS	Code: 20-FEN-100	Rev.	1
Covered by	Feni	Code: 20-FEN-100M	Date	Feb-2011
			JOB NO.	

TAC						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Feni TBS	Code: 20-FEN-100	Rev.	1
Covered by	Feni	Code: 20-FEN-100M	Date	Feb-2011
			JOB NO.	

TAC						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
	Pressure	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 3 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 3 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 3 Orifice										Calclated by RTU
	Gas mass flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 3 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 3 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 3 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 3 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 3 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 3 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 3 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 3 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Feni TBS	Code: 20-FEN-100	Rev.	1
Covered by	Feni	Code: 20-FEN-100M	Date	Feb-2011
			JOB NO.	

TAG	SERVICE					1/0	1		RANGE	T	NOTE
			FROM	TO	1/0	SPEC.	POWER Qty.	Min	Max	UNIT	
	Base Compressibility	Stream# 3 Orifice									Input from MCC/ACC
	Pressure	Stream# 4 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 4 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 4 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 4 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 4 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 4 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 4 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 4 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 4 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 4 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC
	Pipe bore diameter	Stream# 4 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC
	Specific gravity	Stream# 4 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC
	Base Pressure	Stream# 4 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC
	Base Temperature	Stream# 4 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC
	Mol% of CO2	Stream# 4 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC
	Mol% of Nitrogen	Stream# 4 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC
	Base Compressibility	Stream# 4 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC
	Pressure	Stream# 5 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 5 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 5 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 5 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 5 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 5 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 5 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 5 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 5 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL

CUSTOMER	GTCL		DOC. NO.	
RTU	Feni TBS	Code: 20-FEN-100	Rev.	1
Covered by	Feni	Code: 20-FEN-100M	Date	Feb-2011
			JOB NO.	

TAG	SERVICE					1/0			RANGE		NOTE
			FROM	TO	1/0	SPEC.	POWER Qty.	Min	Max	UNIT	
	Orifice bore diameter	Stream# 5 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC
	Pipe bore diameter	Stream# 5 Orifice	RTU	RX	COM	MODBUS		_			Input from MCC/ACC
	Specific gravity	Stream# 5 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC
	Base Pressure	Stream# 5 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC
	Base Temperature	Stream# 5 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC
	Mol% of CO2	Stream# 5 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC
	Mol% of Nitrogen	Stream# 5 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC
	Base Compressibility	Stream# 5 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC
	Corrosion Protection Voltage		FIELD	RTU	AI	4-20mA					
				İ		1					
	1										
	1										
<u> </u>	1										

CUSTOMER	GTCL		DOC. NO.	
RTU	Feni GasField	Code: 20-FEN-701	Rev.	0
Covered by	Feni	Code: 20-FEN-100M	Date	Jan-2011
			JOB NO.	

TAC	SERVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	ТО	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Sundalpur Gas Field	Code: 20-FEN-702	Rev.	0
Covered by	Feni	Code: 20-FEN-100M	Date	Jan-2011
			JOB NO.	

T 10					1/0			RANGE		NOTE		
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Sundalpur Gas Field	Code: 20-FEN-702	Rev.	0
Covered by	Feni	Code: 20-FEN-100M	Date	Jan-2011
			JOB NO.	

T10						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
					1							

CUSTOMER	GTCL		DOC. NO.	
RTU	Begumgonj Gas Field	Code: 20-FEN-703	Rev.	0
Covered by	Feni	Code: 20-FEN-100M	Date	Jan-2011
			JOB NO.	

ТАС					1/0			RANGE		NOTE		
TAG	SERVICE		FROM	ТО	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT]
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Begumgonj Gas Field	Code: 20-FEN-703	Rev.	0
Covered by	Feni	Code: 20-FEN-100M	Date	Jan-2011
			JOB NO.	

T10	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Laksham TBS	Code: 20-LAK-101	Rev.	0
Covered by	Laksham Radio	Code: 20-LAK-100M	Date	Jan-2011
			JOB NO.	

TAC						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Laksham TBS	Code: 20-LAK-101	Rev.	0
Covered by	Laksham Radio	Code: 20-LAK-100M	Date	Jan-2011
			JOB NO.	

ТАС	SERVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Mitachara	Code: 20-MIR-101	Rev.	1
Covered by	Mirasarai	Code: 20-MIR-100M	Date	Feb-2011
			JOB NO.	

T10	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 1 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 1 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 1 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 1 Turbine										Calculated by RTU
	Corossion Protection Voltage		FIELD	RTU	AI	4-20mA						

CUSTOMER	GTCL		DOC. NO.	
RTU	Barabukundu TBS	Code: 20-MIR-401	Rev.	0
Covered by	Mirasarai	Code: 20-MIR-100M	Date	Jan-2011
			JOB NO.	

TAG	SEDVICE					1/0				RANGE		NOTE
170	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 2 Orifice	RX	RTU	СОМ	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 2 Orifice	RX	RTU	СОМ	MODBUS			1			RX (Flow Computer) prepared by GTCL

CUSTOMER	GTCL		DOC. NO.	
RTU	Barabukundu TBS	Code: 20-MIR-401	Rev.	0
Covered by	Mirasarai	Code: 20-MIR-100M	Date	Jan-2011
			JOB NO.	

T40	SERVICE				1/0			RANGE		NOTE	
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER Qty	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 2 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 2 Orifice	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 2 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 2 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 2 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 2 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 2 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 2 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 2 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 2 Orifice	RTU	RX	COM	MODBUS					Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 3 Turbine	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 3 Turbine	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Flow count pulse	Stream# 3 Turbine	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Gas correctec volume flow	Stream# 3 Turbine	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 3 Turbine	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 3 Turbine	RX	RTU	COM	MODBUS					RX (Flow Computer) prepared by GTCL

CUSTOMER	GTCL		DOC. NO.	
RTU	Semtang Gas Field	Code: 20-MIR-701	Rev.	0
Covered by	Mirasarai	Code: 20-MIR-100M	Date	Jan-2011
			JOB NO.	

TAC						1/0			RANGE		NOTE	
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	1
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Semtang Gas Field	Code: 20-MIR-701	Rev.	0
Covered by	Mirasarai	Code: 20-MIR-100M	Date	Jan-2011
			JOB NO.	

T10	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	1
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC
								_				

CUSTOMER	GTCL		DOC. NO.	
RTU	Demra	Code: 30-DMR-100	Rev.	1
Covered by	Demra	Code: 30-DMR-100M	Date	Mar-2011
			JOB NO.	

TAC					RANGE		NOTE					
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Inlet Pressure		FIELD	RTU	AI	4-20mA						
	Valve Status		FIELD	RTU	DI							
	Valve Open Command		RTU	FIELD	DO							Future
	Valve Close Command		RTU	FIELD	DO							Future
	Pressure	Stream# 1	RX	RTU	COM	MODBUS						Flow Computer @ Titas Control Room
	Temperature	Stream# 1	RX	RTU	COM	MODBUS						Flow Computer @ Titas Control Room
	Gas corrected volume flow	Stream# 1	RX	RTU	COM	MODBUS						Flow Computer @ Titas Control Room
	Gas totalised corected volume	Stream# 1	RX	RTU	COM	MODBUS						Flow Computer @ Titas Control Room
	Gas mass flow	Stream# 1	RX	RTU	COM	MODBUS						Flow Computer @ Titas Control Room
	Gas totalised mass flow	Stream# 1	RX	RTU	COM	MODBUS						Flow Computer @ Titas Control Room
	Pressure	Stream# 2	RX	RTU	COM	MODBUS						Flow Computer @ Titas Control Room
	Temperature	Stream# 2	RX	RTU	COM	MODBUS						Flow Computer @ Titas Control Room
	Gas corrected volume flow	Stream# 2	RX	RTU	COM	MODBUS						Flow Computer @ Titas Control Room
	Gas totalised corected volume	Stream# 2	RX	RTU	COM	MODBUS						Flow Computer @ Titas Control Room
	Gas mass flow	Stream# 2	RX	RTU	COM	MODBUS						Flow Computer @ Titas Control Room
	Gas totalised mass flow	Stream# 2	RX	RTU	COM	MODBUS						Flow Computer @ Titas Control Room
					1							

CUSTOMER	GTCL		DOC. NO.	
RTU	Sonargaon	Code: 30-DMR-101	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

TAG	SERVICE				1/0				RANGE		NOTE	
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Gas correctec volume flow	Stream# 1 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Gas totalised corected volume	Stream# 1 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Gas corrected volume flow	Stream# 1 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Pressure	Stream# 1 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Temperature	Stream# 1 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Gas correctec volume flow	Stream# 2 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Gas totalised corected volume	Stream# 2 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Gas corrected volume flow	Stream# 2 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Pressure	Stream# 2 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.
	Temperature	Stream# 2 Turbine	RX	RTU	COM	MODBUS						Existing RX will be re-used.

CUSTOMER	GTCL		DOC. NO.	
RTU	Dewanbagh	Code: 30-DMR-102	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

тас					1/0			RANGE		NOTE		
TAG	SERVICE		FROM	то	I/O SP	PEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	RX	RTU	COM MOE	DBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 1 Orifice	RX	RTU	COM MOE	DBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 1 Orifice	RX	RTU	COM MOE	OBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 1 Orifice	RX	RTU	COM MOE	DBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 1 Orifice	RX	RTU	COM MOE	DBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 1 Orifice	RX	RTU	COM MOE	DBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 1 Orifice	RX	RTU	COM MOE	OBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 1 Orifice	RX	RTU	COM MOE	OBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 1 Orifice	RX	RTU	COM MOE	DBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 1 Orifice	RTU	RX	COM MOE	DBUS						Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice	RTU	RX	COM MOE	DBUS						Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice	RTU	RX	COM MOE	DBUS						Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice	RTU	RX	COM MOE	DBUS						Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice	RTU	RX	COM MOE	OBUS						Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice	RTU	RX	COM MOE	DBUS						Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice	RTU	RX	COM MOE	DBUS						Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice	RTU	RX	COM MOE	OBUS						Input from MCC/ACC
	Pressure	Stream# 2 Orifice	RX	RTU	COM MOE	DBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 2 Orifice	RX	RTU	COM MOE	DBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 2 Orifice	RX	RTU	COM MOE	DBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 2 Orifice	RX	RTU	COM MO	DBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 2 Orifice	RX	RTU	COM MOE	DBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 2 Orifice	RX	RTU	COM MOE	OBUS						RX (Flow Computer) prepared by GTCL

CUSTOMER RTU Covered by	GTCL Dewanbagh Demra	Code: Code:	30-DMR- 30-DMR-	102 100M						DOC. NO Rev. Date JOB NO.		0 Jan-2011
ТАС	SEDVI	CE.				1/0				RANGE		NOTE
IAG	SERVI		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Orifias hara diamatar	Stream# 2 Orifice	DTU	DV	COM	MODBUS						Input from MCC/ACC
		Stream# 2 Office	RIU	КЛ	COIVI	WODB03						
	Pipe bore diameter	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC
	Specific gravity	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC
	Base Pressure	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC
	Base Temperature	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC
	Mol% of CO2	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC
	Mol% of Nitrogen	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC
	Base Compressibility	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	VS7 BKB-Demra	Code: 30-DMR-103	Rev.	1
Covered by	Demra	Code: 30-DMR-100M	Date	Feb-2011
			JOB NO.	

					1/0				RANGE		NOTE
TAG	SERVICE	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	1
	Main power status	FIELD	RTU	DI							
	Battery status	FIELD	RTU	DI							
	RTU door status (Open/Close)	FIELD	RTU	DI							
	Lightning surge arrestor status	FIELD	RTU	DI							
	Inlet Pressure	FIELD	RTU	AI	4-20mA						
	Valve Status	FIELD	RTU	DI							
	Valve Open Command	RTU	FIELD	DO							Future
	Valve Close Command	RTU	FIELD	DO							Future
	Cororrion Protection Voltage	FIELD	RTU	AI	4-20mA						

CUSTOMER	GTCL		DOC. NO.	
RTU	VS5 BKB-Demra	Code: 30-DMR-104	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

TAC	CEDVICE				1/0			RANGE		NOTE
TAG	SERVICE	FROM	TO	1/0	SPEC.	POWER Qty.	Min	Max	UNIT	
	Main power status	FIELD	RTU	DI						
	Battery status	FIELD	RTU	DI						
	RTU door status (Open/Close)	FIELD	RTU	DI						
	Lightning surge arrestor status	FIELD	RTU	DI						
	Inlet Pressure	FIELD	RTU	AI	4-20mA					
	Valve Status	FIELD	RTU	DI						
	Valve Open Command	RTU	FIELD	DO						Future
	Valve Close Command	RTU	FIELD	DO						Future
							1			

CUSTOMER	GTCL		DOC. NO.	
RTU	Siddirganj PS	Code: 30-DMR-501	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

TAC						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	210MW #1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	210MW #1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	210MW #1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	210MW #1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	210MW #1 Orifice										Calclated by RTU
	Gas corrected volume flow	210MW #1 Orifice										Calclated by RTU
	Gas totalised corected volume	210MW #1 Orifice										Calclated by RTU
	Gas mass flow	210MW #1 Orifice										Calclated by RTU
	Gas totalised mass flow	210MW #1 Orifice										Calclated by RTU
	Orifice bore diameter	210MW #1 Orifice										Input from MCC/ACC
	Pipe bore diameter	210MW #1 Orifice										Input from MCC/ACC
	Specific gravity	210MW #1 Orifice										Input from MCC/ACC
	Base Pressure	210MW #1 Orifice										Input from MCC/ACC
	Base Temperature	210MW #1 Orifice										Input from MCC/ACC
	Mol% of CO2	210MW #1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	210MW #1 Orifice										Input from MCC/ACC
	Base Compressibility	210MW #1 Orifice										Input from MCC/ACC
	Pressure	210MW #2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	210MW #2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	210MW #2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	210MW #2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	210MW #2 Orifice										Calclated by RTU
	Gas corrected volume flow	210MW #2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Siddirganj PS	Code: 30-DMR-501	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

тас						1/0				RANGE		NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	210MW #2 Orifice										Calclated by RTU
	Gas mass flow	210MW #2 Orifice										Calclated by RTU
	Gas totalised mass flow	210MW #2 Orifice										Calclated by RTU
	Orifice bore diameter	210MW #2 Orifice										Input from MCC/ACC
	Pipe bore diameter	210MW #2 Orifice										Input from MCC/ACC
	Specific gravity	210MW #2 Orifice										Input from MCC/ACC
	Base Pressure	210MW #2 Orifice										Input from MCC/ACC
	Base Temperature	210MW #2 Orifice										Input from MCC/ACC
	Mol% of CO2	210MW #2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	210MW #2 Orifice										Input from MCC/ACC
	Base Compressibility	210MW #2 Orifice										Input from MCC/ACC
	Pressure	120MW #1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	120MW #1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	120MW #1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	120MW #1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	120MW #1 Orifice										Calclated by RTU
	Gas corrected volume flow	120MW #1 Orifice										Calclated by RTU
	Gas totalised corected volume	120MW #1 Orifice										Calclated by RTU
	Gas mass flow	120MW #1 Orifice										Calclated by RTU
	Gas totalised mass flow	120MW #1 Orifice										Calclated by RTU
	Orifice bore diameter	120MW #1 Orifice										Input from MCC/ACC
	Pipe bore diameter	120MW #1 Orifice										Input from MCC/ACC
	Specific gravity	120MW #1 Orifice										Input from MCC/ACC
	Base Pressure	120MW #1 Orifice										Input from MCC/ACC
	Base Temperature	120MW #1 Orifice										Input from MCC/ACC
	Mol% of CO2	120MW #1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	120MW #1 Orifice										Input from MCC/ACC
CUSTOMER	GTCL		DOC. NO.									
------------	---------------	-------------------	----------	----------								
RTU	Siddirganj PS	Code: 30-DMR-501	Rev.	0								
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011								
			JOB NO.									

						1/0			RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER Qty	Min	Max	UNIT	1
	Base Compressibility	120MW #1 Orifice									Input from MCC/ACC
	Pressure	120MW #2 Orifice	FIELD	RTU	AI	4-20mA					
	Difference pressure L	120MW #2 Orifice	FIELD	RTU	AI	4-20mA					
	Difference pressure H	120MW #2 Orifice	FIELD	RTU	AI	4-20mA					
	Temperature	120MW #2 Orifice	FIELD	RTU	Pt	100'Ω					
	Gas volume flow (instanteneous value)	120MW #2 Orifice									Calclated by RTU
	Gas corrected volume flow	120MW #2 Orifice									Calclated by RTU
	Gas totalised corected volume	120MW #2 Orifice									Calclated by RTU
	Gas mass flow	120MW #2 Orifice									Calclated by RTU
	Gas totalised mass flow	120MW #2 Orifice									Calclated by RTU
	Orifice bore diameter	120MW #2 Orifice									Input from MCC/ACC
	Pipe bore diameter	120MW #2 Orifice									Input from MCC/ACC
	Specific gravity	120MW #2 Orifice									Input from MCC/ACC
	Base Pressure	120MW #2 Orifice									Input from MCC/ACC
	Base Temperature	120MW #2 Orifice									Input from MCC/ACC
	Mol% of CO2	120MW #2 Orifice									Input from MCC/ACC
	Mol% of Nitrogen	120MW #2 Orifice									Input from MCC/ACC
	Base Compressibility	120MW #2 Orifice									Input from MCC/ACC
	Pressure	150MW #1 Orifice	FIELD	RTU	AI	4-20mA					
	Difference pressure L	150MW #1 Orifice	FIELD	RTU	AI	4-20mA					
	Difference pressure H	150MW #1 Orifice	FIELD	RTU	AI	4-20mA					
	Temperature	150MW #1 Orifice	FIELD	RTU	Pt	100'Ω					
	Gas volume flow (instanteneous value)	150MW #1 Orifice									Calclated by RTU
	Gas corrected volume flow	150MW #1 Orifice									Calclated by RTU
	Gas totalised corected volume	150MW #1 Orifice									Calclated by RTU
	Gas mass flow	150MW #1 Orifice									Calclated by RTU
	Gas totalised mass flow	150MW #1 Orifice									Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Siddirganj PS	Code: 30-DMR-501	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

TAG	SERVICE					1/0				RANGE		NOTE
140	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Orifice bore diameter	150MW #1 Orifice										Input from MCC/ACC
	Pipe bore diameter	150MW #1 Orifice										Input from MCC/ACC
	Specific gravity	150MW #1 Orifice										Input from MCC/ACC
	Base Pressure	150MW #1 Orifice										Input from MCC/ACC
	Base Temperature	150MW #1 Orifice										Input from MCC/ACC
	Mol% of CO2	150MW #1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	150MW #1 Orifice										Input from MCC/ACC
	Base Compressibility	150MW #1 Orifice										Input from MCC/ACC
	Pressure	150MW #2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	150MW #2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	150MW #2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	150MW #2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	150MW #2 Orifice										Calclated by RTU
	Gas corrected volume flow	150MW #2 Orifice										Calclated by RTU
	Gas totalised corected volume	150MW #2 Orifice										Calclated by RTU
	Gas mass flow	150MW #2 Orifice										Calclated by RTU
	Gas totalised mass flow	150MW #2 Orifice										Calclated by RTU
	Orifice bore diameter	150MW #2 Orifice										Input from MCC/ACC
	Pipe bore diameter	150MW #2 Orifice										Input from MCC/ACC
	Specific gravity	150MW #2 Orifice										Input from MCC/ACC
	Base Pressure	150MW #2 Orifice										Input from MCC/ACC
	Base Temperature	150MW #2 Orifice										Input from MCC/ACC
	Mol% of CO2	150MW #2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	150MW #2 Orifice										Input from MCC/ACC
	Base Compressibility	150MW #2 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Horipur IPP 350 MW PS	Code: 30-DMR-502	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

TAC			<u>г</u>	· · · · ·		1/0			RANGE		NOTE	
TAG	SERVICE		FROM	ТО	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI	<u> </u>						
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream #1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream #1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream #1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream #1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream #1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream #1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream #1 Orifice										Calclated by RTU
	Gas mass flow	Stream #1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream #1 Orifice										Calclated by RTU
	1											
	Orifice bore diameter	Stream #1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream #1 Orifice										Input from MCC/ACC
	Specific gravity	Stream #1 Orifice										Input from MCC/ACC
	Base Pressure	Stream #1 Orifice										Input from MCC/ACC
	Base Temperature	Stream #1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream #1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream #1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream #1 Orifice										Input from MCC/ACC
	Pressure	Stream #2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream #2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream #2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream #2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream #2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream #2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Horipur IPP 350 MW PS	Code: 30-DMR-502	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

T10	SERVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	1
	Gas totalised corected volume	Stream #2 Orifice										Calclated by RTU
	Gas mass flow	Stream #2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream #2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream #2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream #2 Orifice										Input from MCC/ACC
	Specific gravity	Stream #2 Orifice										Input from MCC/ACC
	Base Pressure	Stream #2 Orifice										Input from MCC/ACC
	Base Temperature	Stream #2 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream #2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream #2 Orifice										Input from MCC/ACC
	Base Compressibility	Stream #2 Orifice										Input from MCC/ACC
					1							

CUSTOMER	GTCL		DOC. NO.	
RTU	Horipur IPP 360 MW PS	Code: 30-DMR-503	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

ТАС	SERVICE I/O			RANGE		NOTE						
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
					1							

CUSTOMER	GTCL		DOC. NO.	
RTU	Horipur SBU 100MW & NEPC 110MW	Code: 30-DMR-504	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

TAC	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Horipur SBU #1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Horipur SBU #1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Horipur SBU #1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Horipur SBU #1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Horipur SBU #1 Orifice										Calclated by RTU
	Gas corrected volume flow	Horipur SBU #1 Orifice										Calclated by RTU
	Gas totalised corected volume	Horipur SBU #1 Orifice										Calclated by RTU
	Gas mass flow	Horipur SBU #1 Orifice										Calclated by RTU
	Gas totalised mass flow	Horipur SBU #1 Orifice										Calclated by RTU
	Orifice bore diameter	Horipur SBU #1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Horipur SBU #1 Orifice										Input from MCC/ACC
	Specific gravity	Horipur SBU #1 Orifice										Input from MCC/ACC
	Base Pressure	Horipur SBU #1 Orifice										Input from MCC/ACC
	Base Temperature	Horipur SBU #1 Orifice										Input from MCC/ACC
	Mol% of CO2	Horipur SBU #1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Horipur SBU #1 Orifice										Input from MCC/ACC
	Base Compressibility	Horipur SBU #1 Orifice										Input from MCC/ACC
	Pressure	Horiput SBU #2 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Horiput SBU #2 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Horiput SBU #2 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Horiput SBU #2 Turbine										Calculated by RTU
	Gas totalised corected volume	Horiput SBU #2 Turbine										Calculated by RTU
	Gas corrected volume flow	Horiput SBU #2 Turbine										Calculated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Horipur SBU 100MW & NEPC 110MW	Code: 30-DMR-504	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

TAG	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Pressure	Horiput SBU #2 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Horiput SBU #2 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Horiput SBU #2 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Horiput SBU #2 Turbine										Calculated by RTU
	Gas totalised corected volume	Horiput SBU #2 Turbine										Calculated by RTU
	Gas corrected volume flow	Horiput SBU #2 Turbine										Calculated by RTU
	Pressure	Horiput SBU #3 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Horiput SBU #3 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Horiput SBU #3 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Horiput SBU #3 Turbine										Calculated by RTU
	Gas totalised corected volume	Horiput SBU #3 Turbine										Calculated by RTU
	Gas corrected volume flow	Horiput SBU #3 Turbine										Calculated by RTU
	Pressure	Horiput SBU #3 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Horiput SBU #3 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Horiput SBU #3 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Horiput SBU #3 Turbine										Calculated by RTU
	Gas totalised corected volume	Horiput SBU #3 Turbine										Calculated by RTU
	Gas corrected volume flow	Horiput SBU #3 Turbine										Calculated by RTU
	Pressure	NEPC110MW #1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	NEPC110MW #1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	NEPC110MW #1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	NEPC110MW #1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	NEPC110MW #1 Orifice										Calclated by RTU
	Gas corrected volume flow	NEPC110MW #1 Orifice										Calclated by RTU
	Gas totalised corected volume	NEPC110MW #1 Orifice										Calclated by RTU
	Gas mass flow	NEPC110MW #1 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Horipur SBU 100MW & NEPC 110MW	Code: 30-DMR-504	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

ТАС	SERVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	ТО	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised mass flow	NEPC110MW #1 Orifice										Calclated by RTU
	Orifice bore diameter	NEPC110MW #1 Orifice										Input from MCC/ACC
	Pipe bore diameter	NEPC110MW #1 Orifice										Input from MCC/ACC
	Specific gravity	NEPC110MW #1 Orifice										Input from MCC/ACC
	Base Pressure	NEPC110MW #1 Orifice										Input from MCC/ACC
	Base Temperature	NEPC110MW #1 Orifice										Input from MCC/ACC
	Mol% of CO2	NEPC110MW #1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	NEPC110MW #1 Orifice										Input from MCC/ACC
	Base Compressibility	NEPC110MW #1 Orifice										Input from MCC/ACC
								_				

CUSTOMER	GTCL		DOC. NO.	
RTU	VS14 Madhabdi	Code: 30-DMR-505	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

740					1/0			RANGE		NOTE	
TAG	SERVICE	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status	FIELD	RTU	DI							
	Battery status	FIELD	RTU	DI							
	RTU door status (Open/Close)	FIELD	RTU	DI							
	Lightning surge arrestor status	FIELD	RTU	DI							
	Inlet Pressure	FIELD	RTU	AI	4-20mA						
	Valve Status	FIELD	RTU	DI							
	Valve Open Command	RTU	FIELD	DO							Future
	Valve Close Command	RTU	FIELD	DO							Future

CUSTOMER	GTCL		DOC. NO.	
RTU	VS15 Tarabo	Code: 30-DMR-506	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

740					1/0			RANGE		NOTE	
TAG	SERVICE	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status	FIELD	RTU	DI							
	Battery status	FIELD	RTU	DI							
	RTU door status (Open/Close)	FIELD	RTU	DI							
	Lightning surge arrestor status	FIELD	RTU	DI							
	Inlet Pressure	FIELD	RTU	AI	4-20mA						
	Valve Status	FIELD	RTU	DI							
	Valve Open Command	RTU	FIELD	DO							Future
	Valve Close Command	RTU	FIELD	DO							Future

CUSTOMER	GTCL		DOC. NO.	
RTU	VS Dighibarabo	Code: 30-DMR-507	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

TAG					1/0			RANGE		NOTE
TAG	SERVICE	FROM	то	1/0	SPEC.	POWER Qty.	Min	Max	UNIT	
	Main power status	FIELD	RTU	DI						
	Battery status	FIELD	RTU	DI						
	RTU door status (Open/Close)	FIELD	RTU	DI						
	Lightning surge arrestor status	FIELD	RTU	DI						
	Inlet Pressure	FIELD	RTU	AI	4-20mA					
	Valve Status	FIELD	RTU	DI						
	Valve Open Command	RTU	FIELD	DO						Future
	Valve Close Command	RTU	FIELD	DO						Future
				1						

CUSTOMER	GTCL		DOC. NO.	
RTU	VS Horipur	Code: 30-DMR-508	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

					1/0				RANGE		NOTE
TAG	SERVICE	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status	FIELD	RTU	DI							
	Battery status	FIELD	RTU	DI							
	RTU door status (Open/Close)	FIELD	RTU	DI							
	Lightning surge arrestor status	FIELD	RTU	DI							
	Inlet Pressure	FIELD	RTU	AI	4-20mA						
	Valve Status	FIELD	RTU	DI							
	Valve Open Command	RTU	FIELD	DO							Future
	Valve Close Command	RTU	FIELD	DO							Future

CUSTOMER	GTCL		DOC. NO.	
RTU	VS Meghnaghat	Code: 30-DMR-509	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

740					1/0				RANGE		NOTE
TAG	SERVICE	FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status	FIELD	RTU	DI							
	Battery status	FIELD	RTU	DI							
	RTU door status (Open/Close)	FIELD	RTU	DI							
	Lightning surge arrestor status	FIELD	RTU	DI							
	Inlet Pressure	FIELD	RTU	AI	4-20mA						
	Valve Status	FIELD	RTU	DI							
	Valve Open Command	RTU	FIELD	DO							Future
	Valve Close Command	RTU	FIELD	DO							Future
-											
-											
-											
-											
-											
-											
-											
-											
-											
-											
-											
-											

CUSTOMER	GTCL		DOC. NO.	
RTU	Meghnaghat IPP 450MW P.S.	Code: 30-DMR-510	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

TAG			Ι/Ο			RANGE		NOTE				
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Ph2 Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Ph2 Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Ph2 Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Ph2 Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Ph2 Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Ph2 Stream# 1 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Meghnaghat IPP 450MW P.S.	Code: 30-DMR-510	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

TAC	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	1
	Gas totalised corected volume	Ph2 Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Ph2 Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Ph2 Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Ph2 Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Ph2 Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Ph2 Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Ph2 Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Ph2 Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Ph2 Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Ph2 Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Ph2 Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Ph2 Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Ph2 Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Ph2 Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Ph2 Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Ph2 Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Ph2 Stream# 2 Orifice										Calclated by RTU
	Gas totalised corected volume	Ph2 Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Ph2 Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Ph2 Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Ph2 Stream# 2 Orifice										Input from MCC/ACC
	Pipe bore diameter	Ph2 Stream# 2 Orifice										Input from MCC/ACC
	Specific gravity	Ph2 Stream# 2 Orifice										Input from MCC/ACC
	Base Pressure	Ph2 Stream# 2 Orifice										Input from MCC/ACC
	Base Temperature	Ph2 Stream# 2 Orifice										Input from MCC/ACC
	Mol% of CO2	Ph2 Stream# 2 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Ph2 Stream# 2 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Meghnaghat IPP 450MW P.S.	Code: 30-DMR-510	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

TAC					1/0			RANGE			NOTE	
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Base Compressibility Ph2 St	tream# 2 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Moulavibazar Gas Field	Code: 30-DMR-701	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

TAC						1/0				RANGE		NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	1
	Pressure	Gas #1 Orifice			COM							Communication with Chevron Server
	Difference pressure L	Gas #1 Orifice			COM							Communication with Chevron Server
	Difference pressure H	Gas #1 Orifice			COM							Communication with Chevron Server
	Temperature	Gas #1 Orifice			COM							Communication with Chevron Server
	Volume flow (instanteneous value)	Gas #1 Orifice			COM							Communication with Chevron Server
	Corrected volume flow	Gas #1 Orifice			COM							Communication with Chevron Server
	Totalised corected volume	Gas #1 Orifice			COM							Communication with Chevron Server
	Mass flow	Gas #1 Orifice			COM							Communication with Chevron Server
	Totalised mass flow	Gas #1 Orifice			COM							Communication with Chevron Server
	Pressure	Gas #2 Orifice			COM							Communication with Chevron Server
	Difference pressure L	Gas #2 Orifice			COM							Communication with Chevron Server
	Difference pressure H	Gas #2 Orifice			COM							Communication with Chevron Server
	Temperature	Gas #2 Orifice			COM							Communication with Chevron Server
	Volume flow (instanteneous value)	Gas #2 Orifice			COM							Communication with Chevron Server
	Corrected volume flow	Gas #2 Orifice			COM							Communication with Chevron Server
	Totalised corected volume	Gas #2 Orifice			COM							Communication with Chevron Server
	Mass flow	Gas #2 Orifice			COM							Communication with Chevron Server
	Totalised mass flow	Gas #2 Orifice			COM							Communication with Chevron Server
	Pressure	Condensate #1 Orifice			COM							Communication with Chevron Server
	Difference pressure L	Condensate #1 Orifice			COM							Communication with Chevron Server
	Difference pressure H	Condensate #1 Orifice			COM							Communication with Chevron Server
	Temperature	Condensate #1 Orifice			COM							Communication with Chevron Server
	Volume flow (instanteneous value)	Condensate #1 Orifice			COM							Communication with Chevron Server
	Corrected volume flow	Condensate #1 Orifice			COM							Communication with Chevron Server
	Totalised corected volume	Condensate #1 Orifice			COM							Communication with Chevron Server
	Mass flow	Condensate #1 Orifice			COM							Communication with Chevron Server
	Totalised mass flow	Condensate #1 Orifice			COM							Communication with Chevron Server

CUSTOMER	GTCL		DOC. NO.	
RTU	Moulavibazar Gas Field	Code: 30-DMR-701	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

TAC	SEDUICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Pressure	Condensate #2 Orifice			COM							Communication with Chevron Server
	Difference pressure L	Condensate #2 Orifice			COM							Communication with Chevron Server
	Difference pressure H	Condensate #2 Orifice			COM							Communication with Chevron Server
	Temperature	Condensate #2 Orifice			COM							Communication with Chevron Server
	Volume flow (instanteneous value)	Condensate #2 Orifice			COM							Communication with Chevron Server
	Corrected volume flow	Condensate #2 Orifice			COM							Communication with Chevron Server
	Totalised corected volume	Condensate #2 Orifice			COM							Communication with Chevron Server
	Mass flow	Condensate #2 Orifice			COM							Communication with Chevron Server
	Totalised mass flow	Condensate #2 Orifice			COM							Communication with Chevron Server
							ł					
							ł					

CUSTOMER	GTCL		DOC. NO.	
RTU	Bibiyana Gas Field	Code: 30-DMR-702	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

						1/0		RANGE			NOTE	
TAG	SERVICE		FROM	ТО	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Pressure	Gas #1 Orifice			COM							Communication with Chevron Server
	Difference pressure L	Gas #1 Orifice			COM							Communication with Chevron Server
	Difference pressure H	Gas #1 Orifice			COM							Communication with Chevron Server
	Temperature	Gas #1 Orifice			COM							Communication with Chevron Server
	Volume flow (instanteneous value)	Gas #1 Orifice			COM							Communication with Chevron Server
	Corrected volume flow	Gas #1 Orifice			COM							Communication with Chevron Server
	Totalised corected volume	Gas #1 Orifice			COM							Communication with Chevron Server
	Mass flow	Gas #1 Orifice			COM							Communication with Chevron Server
	Totalised mass flow	Gas #1 Orifice			COM							Communication with Chevron Server
	Pressure	Gas #2 Orifice			COM							Communication with Chevron Server
	Difference pressure L	Gas #2 Orifice			COM							Communication with Chevron Server
	Difference pressure H	Gas #2 Orifice			COM							Communication with Chevron Server
	Temperature	Gas #2 Orifice			COM							Communication with Chevron Server
	Volume flow (instanteneous value)	Gas #2 Orifice			COM							Communication with Chevron Server
	Corrected volume flow	Gas #2 Orifice			COM							Communication with Chevron Server
	Totalised corected volume	Gas #2 Orifice			COM							Communication with Chevron Server
	Mass flow	Gas #2 Orifice			COM							Communication with Chevron Server
	Totalised mass flow	Gas #2 Orifice			COM							Communication with Chevron Server
	Pressure	Condensate #1 Orifice			COM							Communication with Chevron Server
	Difference pressure L	Condensate #1 Orifice			COM							Communication with Chevron Server
	Difference pressure H	Condensate #1 Orifice			COM							Communication with Chevron Server
	Temperature	Condensate #1 Orifice			COM							Communication with Chevron Server
	Volume flow (instanteneous value)	Condensate #1 Orifice			COM							Communication with Chevron Server
	Corrected volume flow	Condensate #1 Orifice			COM							Communication with Chevron Server
	Totalised corected volume	Condensate #1 Orifice			COM							Communication with Chevron Server
	Mass flow	Condensate #1 Orifice			COM							Communication with Chevron Server
	Totalised mass flow	Condensate #1 Orifice			СОМ							Communication with Chevron Server

CUSTOMER	GTCL		DOC. NO.	
RTU	Bibiyana Gas Field	Code: 30-DMR-702	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

TAC	SERVICE				1/0				RANGE		NOTE	
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Pressure	Condensate #2 Orifice			COM							Communication with Chevron Server
	Difference pressure L	Condensate #2 Orifice			COM							Communication with Chevron Server
	Difference pressure H	Condensate #2 Orifice			COM							Communication with Chevron Server
	Temperature	Condensate #2 Orifice			COM							Communication with Chevron Server
	Volume flow (instanteneous value)	Condensate #2 Orifice			COM							Communication with Chevron Server
	Corrected volume flow	Condensate #2 Orifice			COM							Communication with Chevron Server
	Totalised corected volume	Condensate #2 Orifice			COM							Communication with Chevron Server
	Mass flow	Condensate #2 Orifice			COM							Communication with Chevron Server
	Totalised mass flow	Condensate #2 Orifice			COM							Communication with Chevron Server
							ł					
							ł					

CUSTOMER	GTCL		DOC. NO.	
RTU	Jalalabad Gas Field	Code: 30-DMR-703	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

ТАС	SEDVICE					1/0		T		RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER Q	ty.	Min	Max	UNIT	
	Pressure	Gas #1 Orifice			COM							Communication with Chevron Server
	Difference pressure L	Gas #1 Orifice			COM							Communication with Chevron Server
	Difference pressure H	Gas #1 Orifice			COM							Communication with Chevron Server
	Temperature	Gas #1 Orifice			COM							Communication with Chevron Server
	Volume flow (instanteneous value)	Gas #1 Orifice			COM							Communication with Chevron Server
	Corrected volume flow	Gas #1 Orifice			COM							Communication with Chevron Server
	Totalised corected volume	Gas #1 Orifice			COM							Communication with Chevron Server
	Mass flow	Gas #1 Orifice			COM							Communication with Chevron Server
	Totalised mass flow	Gas #1 Orifice			COM							Communication with Chevron Server
	Pressure	Gas #2 Orifice			COM							Communication with Chevron Server
	Difference pressure L	Gas #2 Orifice			COM							Communication with Chevron Server
	Difference pressure H	Gas #2 Orifice			COM							Communication with Chevron Server
	Temperature	Gas #2 Orifice			COM							Communication with Chevron Server
	Volume flow (instanteneous value)	Gas #2 Orifice			COM							Communication with Chevron Server
	Corrected volume flow	Gas #2 Orifice			COM							Communication with Chevron Server
	Totalised corected volume	Gas #2 Orifice			COM							Communication with Chevron Server
	Mass flow	Gas #2 Orifice			COM							Communication with Chevron Server
	Totalised mass flow	Gas #2 Orifice			COM							Communication with Chevron Server
	Pressure	Condensate #1 Orifice			COM							Communication with Chevron Server
	Difference pressure L	Condensate #1 Orifice			COM							Communication with Chevron Server
	Difference pressure H	Condensate #1 Orifice			COM							Communication with Chevron Server
	Temperature	Condensate #1 Orifice			COM							Communication with Chevron Server
	Volume flow (instanteneous value)	Condensate #1 Orifice			COM							Communication with Chevron Server
	Corrected volume flow	Condensate #1 Orifice			COM							Communication with Chevron Server
	Totalised corected volume	Condensate #1 Orifice			COM							Communication with Chevron Server
	Mass flow	Condensate #1 Orifice			COM							Communication with Chevron Server
	Totalised mass flow	Condensate #1 Orifice			COM							Communication with Chevron Server

CUSTOMER	GTCL		DOC. NO.	
RTU	Jalalabad Gas Field	Code: 30-DMR-703	Rev.	0
Covered by	Demra	Code: 30-DMR-100M	Date	Jan-2011
			JOB NO.	

TAC	SERVICE					1/0				RANGE		NOTE
TAG	JERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Pressure	Condensate #2 Orifice			COM							Communication with Chevron Server
	Difference pressure L	Condensate #2 Orifice			COM							Communication with Chevron Server
	Difference pressure H	Condensate #2 Orifice			COM							Communication with Chevron Server
	Temperature	Condensate #2 Orifice			COM							Communication with Chevron Server
	Volume flow (instanteneous value)	Condensate #2 Orifice			СОМ							Communication with Chevron Server
	Corrected volume flow	Condensate #2 Orifice			COM							Communication with Chevron Server
	Totalised corected volume	Condensate #2 Orifice			COM							Communication with Chevron Server
	Mass flow	Condensate #2 Orifice			СОМ							Communication with Chevron Server
	Totalised mass flow	Condensate #2 Orifice			COM							Communication with Chevron Server
	Pressure	IOC Metering Station			COM							Communication with Chevron Server

CUSTOMER	GTCL		DOC. NO.	
RTU	CGS Aminbazar	Code: 30-PBG-401	Rev.	0
Covered by	Petrobangla Head Office	Code: 30-PBG-700M	Date	Jan-2011
			JOB NO.	

TAC				1/0				RANGE		NOTE		
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	CGS Aminbazar	Code: 30-PBG-401	Rev.	0
Covered by	Petrobangla Head Office	Code: 30-PBG-700M	Date	Jan-2011
			JOB NO.	

T10	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
-												
	Pressure	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 3 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 3 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 3 Orifice										Calclated by RTU
	Gas mass flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 3 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	CGS Aminbazar	Code: 30-PBG-401	Rev.	0
Covered by	Petrobangla Head Office	Code: 30-PBG-700M	Date	Jan-2011
			JOB NO.	

					1/0				RANGE		NOTE	
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Base Compressibility	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	CGS Ashulia	Code: 30-PBG-402	Rev.	0
Covered by	Petrobangla Head Office	Code: 30-PBG-700M	Date	Jan-2011
			JOB NO.	

TAC					1/0			RANGE		NOTE		
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	CGS Ashulia	Code: 30-PBG-402	Rev.	0
Covered by	Petrobangla Head Office	Code: 30-PBG-700M	Date	Jan-2011
			JOB NO.	

TAC	SERVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
			ł									

CUSTOMER	GTCL		DOC. NO.	
RTU	Tongi 80MW P.S.	Code: 30-PBG-501	Rev.	0
Covered by	Petrobangla Head Office	Code: 30-PBG-700M	Date	Jan-2011
			JOB NO.	

		-		1/0			RANGE		NOTE			
TAG	SERVIC	E.	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 1 Turbine	FIELD	RTU	ΡI							
	Gas correctec volume flow	Stream# 1 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 1 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 1 Turbine										Calculated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Elenga	Code: 40-ELE-500	Rev.	0
Covered by	Elenga	Code: 40-ELE-500M	Date	Jan-2011
			JOB NO.	

TAC						1/0			RANGE		NOTE	
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Elenga	Code: 40-ELE-500	Rev.	0
Covered by	Elenga	Code: 40-ELE-500M	Date	Jan-2011
			JOB NO.	

ТАС	SERVICE				1/0)			RANGE		NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Comp. Stn. #1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Comp. Stn. #1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Comp. Stn. #1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Comp. Stn. #1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Comp. Stn. #1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Comp. Stn. #1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Comp. Stn. #1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Comp. Stn. #1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Comp. Stn. #1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Comp. Stn. #1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Comp. Stn. #1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Comp. Stn. #1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Comp. Stn. #1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Comp. Stn. #1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Comp. Stn. #1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Comp. Stn. #1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Elenga	Code: 40-ELE-500	Rev.	0
Covered by	Elenga	Code: 40-ELE-500M	Date	Jan-2011
			JOB NO.	

TAG	SERVICE		FROM	то	1/0		DOWED	01	N.A.	RANGE	LINUT	NOTE
	Base Compressibility	Comp. Stn. #1 Orifice	RTU	RX	COM	MODBUS	POWER	Qly.	IVIII	wax	UNTI	Input from MCC/ACC and/or Display mounted on RTU
		p										······································
	Pressure	Comp. Stn. #2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Comp. Stn. #2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Comp. Stn. #2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Comp. Stn. #2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Comp. Stn. #2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Comp. Stn. #2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Comp. Stn. #2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Comp. Stn. #2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Comp. Stn. #2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Comp. Stn. #2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Comp. Stn. #2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Comp. Stn. #2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Comp. Stn. #2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Comp. Stn. #2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Comp. Stn. #2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Comp. Stn. #2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Comp. Stn. #2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Comp. Stn. #3 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Comp. Stn. #3 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Comp. Stn. #3 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Comp. Stn. #3 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Comp. Stn. #3 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Comp. Stn. #3 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Comp. Stn. #3 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Comp. Stn. #3 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Comp. Stn. #3 Orifice	RX	RTU	сом	MODBUS						RX (Flow Computer) prepared by GTCL

CUSTOMER	GTCL		DOC. NO.	
RTU	Elenga	Code: 40-ELE-500	Rev.	0
Covered by	Elenga	Code: 40-ELE-500M	Date	Jan-2011
			JOB NO.	

T10					1/0			RANGE		NOTE
TAG	SERVICE		FROM	то	I/O SPEC.	POWER Qty.	Min	Max	UNIT	
	Orifice bore diameter	Comp. Stn. #3 Orifice	RTU	RX	COM MODBUS					Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Comp. Stn. #3 Orifice	RTU	RX	COM MODBUS					Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Comp. Stn. #3 Orifice	RTU	RX	COM MODBUS					Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Comp. Stn. #3 Orifice	RTU	RX	COM MODBUS					Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Comp. Stn. #3 Orifice	RTU	RX	COM MODBUS					Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Comp. Stn. #3 Orifice	RTU	RX	COM MODBUS					Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Comp. Stn. #3 Orifice	RTU	RX	COM MODBUS					Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Comp. Stn. #3 Orifice	RTU	RX	COM MODBUS					Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Comp. Station Line 1	FIELD	RTU	AI 4-20mA					
	Valve Status	Comp. Station Line 1	FIELD	RTU	DI					
	Valve Open Command	Comp. Station Line 1	RTU	FIELD	DO					Future
	Valve Close Command	Comp. Station Line 1	RTU	FIELD	DO					Future
	Pressure	Comp. Station Line 2	FIELD	RTU	AI 4-20mA					
	Valve Status	Comp. Station Line 2	FIELD	RTU	DI					
	Valve Open Command	Comp. Station Line 2	RTU	FIELD	DO					Future
	Valve Close Command	Comp. Station Line 2	RTU	FIELD	DO					Future
	Pressure	Comp. Station Line 3	FIELD	RTU	AI 4-20mA					
	Valve Status	Comp. Station Line 3	FIELD	RTU	DI					
	Valve Open Command	Comp. Station Line 3	RTU	FIELD	DO					Future
	Valve Close Command	Comp. Station Line 3	RTU	FIELD	DO					Future
	Pressure	Comp. Station Line 4	FIELD	RTU	AI 4-20mA					
	Valve Status	Comp. Station Line 4	FIELD	RTU	DI					
	Valve Open Command	Comp. Station Line 4	RTU	FIELD	DO					Future
	Valve Close Command	Comp. Station Line 4	RTU	FIELD	DO					Future

CUSTOMER	GTCL		DOC. NO.	
RTU	Narsingdi Gas Field	Code: 40-MHD-201	Rev.	0
Covered by	Monohordi	Code: 40-MHD-500M	Date	Jan-2011
			JOB NO.	

ТАС	SERVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
					1							

CUSTOMER	GTCL		DOC. NO.	
RTU	Monohordi	Code: 40-MHD-500	Rev.	0
Covered by	Monohordi	Code: 40-MHD-500M	Date	Jan-2011
			JOB NO.	

TAC					1/0			RANGE		NOTE		
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	1
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 2 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 2 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 2 Orifice										Calclated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Monohordi	Code: 40-MHD-500	Rev.	0
Covered by	Monohordi	Code: 40-MHD-500M	Date	Jan-2011
			JOB NO.	

тас	SEDVICE					1/0				RANGE		NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 2 Orifice										Calclated by RTU
	Gas mass flow	Stream# 2 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 2 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 2 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 3 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 3 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 3 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 3 Orifice										Calclated by RTU
	Gas mass flow	Stream# 3 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 3 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Monohordi	Code: 40-MHD-500	Rev.	0
Covered by	Monohordi	Code: 40-MHD-500M	Date	Jan-2011
			JOB NO.	

	0551/105					1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	1
	Base Compressibility	Stream# 3 Orifice										Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 4 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 4 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 4 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 4 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 4 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 4 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 4 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 4 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 4 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 5 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
CUSTOMER	GTCL		DOC. NO.									
------------	-----------	-------------------	----------	----------								
RTU	Monohordi	Code: 40-MHD-500	Rev.	0								
Covered by	Monohordi	Code: 40-MHD-500M	Date	Jan-2011								
			JOB NO.									

TAC						1/0				RANGE		NOTE
TAG	SEI	RVICE	FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Orifice bore diameter	Stream# 5 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 5 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 5 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 5 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 5 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 5 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 5 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 5 Orifice	RTU	RX	СОМ	MODBUS						Input from MCC/ACC and/or Display mounted on RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	GUFF/PUFF	Code: 40-MHD-501	Rev.	0
Covered by	Monohordi	Code: 40-MHD-500M	Date	Jan-2011
			JOB NO.	

T 10				1/0			RANGE		NOTE			
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 1 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 1 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 1 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 1 Turbine										Calculated by RTU
	Pressure	Stream# 2 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 2 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 2 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 2 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 2 Turbine										Calculated by RTU
	Pressure	Stream# 3 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 3 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 3 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 3 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 3 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 3 Turbine										Calculated by RTU
	Pressure	Stream# 4 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 4 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 4 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 4 Turbine										Calculated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	GUFF/PUFF	Code: 40-MHD-501	Rev.	0
Covered by	Monohordi	Code: 40-MHD-500M	Date	Jan-2011
			JOB NO.	

						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Gas totalised corected volume	Stream# 4 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 4 Turbine										Calculated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Ghorasal PS	Code: 40-MHD-502	Rev.	0
Covered by	Monohordi	Code: 40-MHD-500M	Date	Jan-2011
			JOB NO.	

TAC						1/0			RANGE			NOTE
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 2 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 2 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 2 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 2 Turbine										Calculated by RTU

CUSTOMER	GTCL									DOC. NO	D.	
RTU	Ghorasal PS	Code	40-MHD-	-502	Rev.							0
Covered by	Monohordi	Code	: 40-MHD-	-500M						Date		Jan-2011
										JOB NO.		
TAG	SERVIC	`F				1/0				RANGE		NOTE
			FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Pressure	Stream# 3 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 3 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 3 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 3 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 3 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 3 Turbine										Calculated by RTU
	Pressure	Stream# 4 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 4 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 4 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 4 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 4 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 4 Turbine										Calculated by RTU
	Pressure	Stream# 5 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 5 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 5 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 5 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 5 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 5 Turbine										Calculated by RTU
	Pressure	Stream# 6 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 6 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 6 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 6 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 6 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 6 Turbine										Calculated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Joydevpur CGS	Code: 40-MHD-503	Rev.	0
Covered by	Monohordi	Code: 40-MHD-500M	Date	Jan-2011
			JOB NO.	

TAC						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
	Pressure	Stream# 2 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 2 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 2 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 2 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 2 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 2 Turbine										Calculated by RTU

Pressure

CUSTOMER	GTCL									DOC. NO	D.	
RTU	Joydevpur CGS	Code	: 40-MHD	-503						Rev.		0
Covered by	Monohordi	Code	: 40-MHD	-500M						Date		Jan-2011
										JOB NO.		
TAG	SERVI	CE				1/0	2	T		RANGE		NOTE
			FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Pressure	Stream# 3 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 3 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 3 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 3 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 3 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 3 Turbine										Calculated by RTU
	Pressure	Stream# 4 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 4 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 4 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 4 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 4 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 4 Turbine										Calculated by RTU
	Pressure	Stream# 5 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 5 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 5 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 5 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 5 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 5 Turbine										Calculated by RTU
	Pressure	Stream# 6 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 6 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 6 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 6 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 6 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 6 Turbine										Calculated by RTU

4-20mA

AI

FIELD

Stream# 7 Turbine

RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Joydevpur CGS	Code: 40-MHD-503	Rev.	0
Covered by	Monohordi	Code: 40-MHD-500M	Date	Jan-2011
			JOB NO.	

TAC	SERVICE				1/0			RANGE			NOTE	
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Temperature	Stream# 7 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 7 Turbine	FIELD	RTU	PI							
	Gas correctec volume flow	Stream# 7 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 7 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 7 Turbine										Calculated by RTU
	Pressure	Stream# 8 Turbine	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 8 Turbine	FIELD	RTU	Pt	100'Ω						
	Flow count pulse	Stream# 8 Turbine	FIELD	RTU	ΡI							
	Gas correctec volume flow	Stream# 8 Turbine										Calculated by RTU
	Gas totalised corected volume	Stream# 8 Turbine										Calculated by RTU
	Gas corrected volume flow	Stream# 8 Turbine										Calculated by RTU

CUSTOMER	GTCL		DOC. NO.	
RTU	Poradi VS3	Code: 40-MHD-504	Rev.	0
Covered by	Monohordi	Code: 40-MHD-500M	Date	Jan-2011
			JOB NO.	

TAG	CED///OF				1/0				RANGE		NOTE
TAG	SERVICE	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status	FIELD	RTU	DI							
	Battery status	FIELD	RTU	DI							
	RTU door status (Open/Close)	FIELD	RTU	DI							
	Lightning surge arrestor status	FIELD	RTU	DI							
	Inlet Pressure	FIELD	RTU	AI	4-20mA						
	Valve Status	FIELD	RTU	DI							
	Valve Open Command	RTU	FIELD	DO							Future
	Valve Close Command	RTU	FIELD	DO							Future

CUSTOMER	GTCL		DOC. NO.	
RTU	Uzilab VS1	Code: 40-MHD-505	Rev.	0
Covered by	Monohordi	Code: 40-MHD-500M	Date	Jan-2011
			JOB NO.	

TAC						1/0				RANGE		NOTE
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Inlet Pressure	24" Line	FIELD	RTU	AI	4-20mA						
	Valve Status	24" Line	FIELD	RTU	DI							
	Valve Open Command	24" Line	RTU	FIELD	DO							Future
	Valve Close Command	24" Line	RTU	FIELD	DO							Future
	Inlet Pressure	30" Line	FIELD	RTU	AI	4-20mA						
	Valve Status	30" Line	FIELD	RTU	DI							
	Valve Open Command	30" Line	RTU	FIELD	DO							Future
	Valve Close Command	30" Line	RTU	FIELD	DO							Future

CUSTOMER	GTCL		DOC. NO.	
RTU	Khirti VS2	Code: 40-MHD-506	Rev.	0
Covered by	Monohordi	Code: 40-MHD-500M	Date	Jan-2011
			JOB NO.	

TAC					1/0				RANGE		NOTE
TAG	SERVICE	FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status	FIELD	RTU	DI							
	Battery status	FIELD	RTU	DI							
	RTU door status (Open/Close)	FIELD	RTU	DI							
	Lightning surge arrestor status	FIELD	RTU	DI							
	Inlet Pressure	FIELD	RTU	AI	4-20mA						
	Valve Status	FIELD	RTU	DI							
	Valve Open Command	RTU	FIELD	DO							Future
	Valve Close Command	RTU	FIELD	DO							Future

CUSTOMER	GTCL		DOC. NO.	
RTU	Dhanua VS4	Code: 40-MHD-507	Rev.	0
Covered by	Monohordi	Code: 40-MHD-500M	Date	Jan-2011
			JOB NO.	

TAC				1/0			RANGE		NOTE			
TAG	SERVICE		FROM	TO	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Inlet Pressure		FIELD	RTU	AI	4-20mA						
	Valve Status		FIELD	RTU	DI							
	Valve Open Command		RTU	FIELD	DO							Future
	Valve Close Command		RTU	FIELD	DO							Future
	Pressure	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure L	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 1 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 1 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pressure	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL

CUSTOMER	GTCL		DOC. NO.	
RTU	Dhanua VS4	Code: 40-MHD-507	Rev.	0
Covered by	Monohordi	Code: 40-MHD-500M	Date	Jan-2011
			JOB NO.	

TAC	SERVICE				1/0				RANGE		NOTE	
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Difference pressure L	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Difference pressure H	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Temperature	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas volume flow (instanteneous value)	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas corrected volume flow	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised corected volume	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas mass flow	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Gas totalised mass flow	Stream# 2 Orifice	RX	RTU	COM	MODBUS						RX (Flow Computer) prepared by GTCL
	Orifice bore diameter	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Pipe bore diameter	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Specific gravity	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Pressure	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Temperature	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of CO2	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Mol% of Nitrogen	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
	Base Compressibility	Stream# 2 Orifice	RTU	RX	COM	MODBUS						Input from MCC/ACC and/or Display mounted on RTU
					1							
					1							
					1							
			1									

CUSTOMER	GTCL		DOC. NO.	
RTU	VS-12 Narsingdi	Code: 40-MHD-508	Rev.	0
Covered by	Monohordi	Code: 40-MHD-500M	Date	Jan-2011
			JOB NO.	

TAC	SEDVICE				1/0			RANGE		NOTE		
TAG	SERVICE		FROM	ТО	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Inlet Pressure	Main Line	FIELD	RTU	AI	4-20mA						
	Inlet Pressure	Narsingdi DRS	FIELD	RTU	AI	4-20mA						

CUSTOMER	GTCL		DOC. NO.	
RTU	RPCL PS Mymensing	Code: 40-MYM-501	Rev.	0
Covered by	Titas Mymensing Office	Code: 40-MYM-500M	Date	Jan-2011
			JOB NO.	

TAC	SEDVICE				1/0			RANGE		NOTE		
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC

CUSTOMER	GTCL		DOC. NO.	
RTU	Tarakandi	Code: 40-TRK-500	Rev.	0
Covered by	Tarakandi	Code: 40-TRK-500M	Date	Jan-2011
			JOB NO.	

TAC	SEDVICE				1/0			RANGE			NOTE	
TAG	SERVICE		FROM	то	1/0	SPEC.	POWER	Qty.	Min	Max	UNIT	
	Main power status		FIELD	RTU	DI							
	Battery status		FIELD	RTU	DI							
	RTU door status (Open/Close)		FIELD	RTU	DI							
	Lightning surge arrestor status		FIELD	RTU	DI							
	Pressure	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure L	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Difference pressure H	Stream# 1 Orifice	FIELD	RTU	AI	4-20mA						
	Temperature	Stream# 1 Orifice	FIELD	RTU	Pt	100'Ω						
	Gas volume flow (instanteneous value)	Stream# 1 Orifice										Calclated by RTU
	Gas corrected volume flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised corected volume	Stream# 1 Orifice										Calclated by RTU
	Gas mass flow	Stream# 1 Orifice										Calclated by RTU
	Gas totalised mass flow	Stream# 1 Orifice										Calclated by RTU
	Orifice bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Pipe bore diameter	Stream# 1 Orifice										Input from MCC/ACC
	Specific gravity	Stream# 1 Orifice										Input from MCC/ACC
	Base Pressure	Stream# 1 Orifice										Input from MCC/ACC
	Base Temperature	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of CO2	Stream# 1 Orifice										Input from MCC/ACC
	Mol% of Nitrogen	Stream# 1 Orifice										Input from MCC/ACC
	Base Compressibility	Stream# 1 Orifice										Input from MCC/ACC
					1							