APPENDIX

APPENDIX 1 HISTORY OF DISASTER OCCURRENCE APPENDIX 2 GEOLOGICAL SURVEY APPENDIX 3 RAINFALL ANALYSIS APPENDIX 4 MONITORING SURVEY APPENDIX 5 STABILITY ANALYSIS APPENDIX 6 PHOTOS OF PROJECT SITE APPENDIX 6 PHOTOS OF PROJECT SITE APPENDIX 7 M/D: MINUTES OF DISCUSSION APPENDIX 8 REQUEST FOR THE TRANSFER FOR SLOPE MONITORING APPENDIX 9 SUMMARY OF ESC STUDY FOR THE PROJECT FOR COUNTERMEASURE CONSTRUCTION FOR THE LANDSLIDES ON SINDHULI ROAD (SECTION II)

APPENDIX 1 HISTORY OF DISASTER OCCURRENCE

Table of Contents

Page

1.1	Collection of Disaster Occurrence Data A1-	1
1.1.1	History of Disaster Occurrence for Sta.17+400 A1-	1
1.1.2	History of Disaster Occurrence for Sta.17+600 A1-	3
1.1.3	History of Disaster Occurrence for Sta.18+200 A1-	5
1.2	Photos	7

APPENDIX I

HISTORY OF DISASTER OCCURRENCE

1.1 COLLECTION OF DISASTER OCCURRENCE DATA

The date and reports shown as Table 1.1.1 were collected.

No.	Title	Composed date	Media	Composer
1	Monthly Progress Report No.1,10 ~ 20, 23,28	Jan. 2002 ~ Apr. 2004	Paper	HAZMA / TAISEI JV
2	The slope failure site around Sta. 18+200 (Japanese)	Nov. 2003	Paper	NIPPON KOEI
3	Disaster Survey Report in Sep. 2004 (Japanese)	Oct. 2004	CD-R	NIPPON KOEI
4	Disaster in Section II on 11 Jan. 2006 (Japanese)	Aug. 2005	CD-R	NIPPON KOEI
5	Final Report n Boring Works at Dhungre-Bhanjyang	Dec. 2005	Paper	HAZMA / TAISEI JV
6	Design for Countermeasure of Disaster in Jul.2004 (Japanese)	Jul. 2004	Paper	NIPPON KOEI
7	The survey of deformed structures on Sindhuli road (Section II) Aug. 2005 (Japanese)	Aug. 2005	Paper	NIPPON KOEI
8	Record of Deformations on Section II and Countermeasures for Sta.17+600, Sta.18+200 and Sta.21+600	Dec. 2007	Paper	NIPPON KOEI

Table 1.1.1 The Collected Date and Reports

Source: study team

1.1.1 HISTORY OF DISASTER OCCURRENCE FOR STA.17+400

The history of the slope failure shows as Table 1.1.2 and Figure 1.1.1.

The slope failure occurred in June 2003 firstly has gradually expanded with rainfall. The retaining wall and shotcrete were constructed as countermeasures in May 2005, but was damaged with later heavy rainfall. Therefore, the road realignment and removal of unstable soil mass were executed. The slope failure has hardly expanded since execution of the countermeasures and no crack has occurred.

The shotcrete and a soil mass under the retaining wall fell on 14th July 2010 during this study period. However, this failure didn't damage the road.

Table 1.1.2	History of Disaster Occurrence for Sta.17+400
--------------------	---

Date	Event
June 2003	The slope failure occurred. The cliff formed on approximately 20m from center of the road, cracks also occurred on approximately 10m from center of the road.
July 2004	The failure expanded. The cliff had expanded approximately 10m since June 2003.
May 2005	The retaining wall and shotcrete were constructed by the Hazama-Taisei JV.
August to September 2005	The Slope failure occurred again. The retaining wall and shotcrete fell.
2006	The road realignment and removal of unstable soil mass were constructed by the Hazama-Taisei JV.

Figure 1.1.1 Schematic view of history of slope failure at Sta.17+400

1.1.2 HISTORY OF DISASTER OCCURRENCE FOR STA.17+600

The history of the slope failure for Sta. 17+600 shows as Table 1.1.3 and Figure 1.1.2.

The failure which occurred on lower slope in August 2007 first has gradually expanded with rainfall, reached the road in September of that year. After that, small-scale failure has occurred. Three check dams were constructed in the failed valley in May 2008 and shotcrete and rock bolt works were constructed on the scarp of the upper failure slope in May 2009. However, new failure occurred on the steep slope of the head of failure in July 2009. Cracks is expanding and occurring on the retaining wall and drainage of mountain side now, part of the road has been loosened by the slope failure.

Date	Event
August 2007	The slope failure occurred on lower slope and has gradually expanded upward.
September 2004	The failure expanded up to the road. The cracks occurred on the retaining wall and the road surface.
October 2007	Small-scale failure occurred on the scarp.
May 2008	Three check dams were executed as emergency countermeasures by DoR.
May 2009	Shotcrete and rock bolt works were executed as emergency countermeasures by DoR.
July 2009	New failure occurred on the head of slope and sediment deposited in the failed valley.

Table 1.1.3	History of Disaster Occurrence for Sta.17+600
-------------	---

Source: study team

Figure 1.1.2 Schematic view of history of slope failure at Sta.17+600

1.1.3 HISTORY OF DISASTER OCCURRENCE FOR STA.18+200

The history of the slope failure for Sta.18+200 is shown as Table 1.1.4 and Figure 1.1.3.

The slope failure had occurred lower slope from November 2003 to July 2004 first. The shotcrete with rock bolt works was constructed as countermeasures in May 2005. After that, the slope failure occurred lower shotcrete slope again with rainfall in August 2005, cracks occurred on the road surface.

In July 2008, one of the crack width on the retaining wall at Sta.18+200 expanded 48mm, however, it was 7mm in June 2010.

Date	Event
November 2003	The scarp formed on approximately 30m from center of the road, cracks also occurred on approximately 5m behind the scarp.
July 2004	The failure occurred on the shotcrete and soil slope.
May 2005	The shotcrete and rock bolt works were constructed by the Hazama-Taisei JV.
August to September 2005	The Slope failure occurred on lower shotcrete slope again. The cracks occurred on the shotcrete, the foundation of the retaining wall and the road surface.
2006	The road realignment of approximately 6m on mountain side was executed by the Hazama-Taisei JV.
December 2007	The failure on the shotcrete and the surface failure on the soil slope expanded.

Table 1.1.4History of Disaster Occurrence for Sta.18+200

Source: study team

Figure 1.1.3 Schematic view of history of slope failure at Sta.18+200

1.2 PHOTOS

13 September 2005

27 August 2010

17 August 2010

21 August 2010

APPENDIX 2 GEOLOGICAL SURVEY

Table of Contents

Page

2.1	Geological Map	A2-1
2.2	Drilling Survey	A2-4
2.3	Laboratory Test	A2-19

APPENDIX II

GEOLOGICAL SURVEY

2.1 GEOLOGICAL MAP

The geological map around the studied landslide is shown as Figure 2.1.1. The metamorphic rocks belonging in the Raduwa Formation of Pre-Cambrian distribute on the studied area. They are divided into some facies by lithology, quartzite schist, green schist, mica schist and augen gneiss in ascending order.

Table 2.1.1 shows character and engineering property of each rock facies.

Location	Lithofacies	Character	Engineering Property	Boundary
Upper	Schist	Light grey blue	Very hard and fresh.	
Sta17+700	with wide schistosity	Base rock: sandstone Thickness of strata is more than 10cm in width	Sheeting joints are developed. Wedged failures with schistosity and joint occurred	Fracture zone with foliated structure 2m in width
Sta17+560	Schist with tight	Light grey blue (dark brawn on Schist Due to thin strata, bending often occur on back slope. with tight Base rock: sandstone The progress of weathering is fast due		
Sta17+440	schistosity	Thickness of strata is 5mm~10cm in width	to the tight schistosity.	Sharp bedding plane
	Augen	Light white grey. Augen structure comprised of bigits museouite and quartz	Resistant to weathering. Consist of steep slope due to hard and	~
Sta17+420	gneiss	quartz vein	iiesii.	Gradual change
	Mice	Dark brown ~ dark grey. Due to intense re-crystalline grain site is very coarse (biotite, remeasure and querte)	The progress of weathering is fast due to the tight schistosity. Collapses fell away along the biotite	Sharp bedding
Sta17+360	schist	Foliated structure biotite along the schistosity 1mm~a few mm interval between schistosity	exfoliative biotite along schistosity,.	plane
a. 17. and	Green	Light green Base rock: sandstone Many shear plane and microscopic-fold	Spring water has occurred due to difference of water permeability with the lower schist. Resistant to weathering due to	
Sta17+320	scnist	Quartz vein Some part is massive, other have crenulation cleavage	siliceous.	Sharp and gentle shear plane (thrust) cuts
Sta17+300		Quartzite-fine grained schist sequence with black schist Dark brown ~ light white grey	Resistant to weathering and fresh on outcrop due to quartzite produced by crystalline.	lower schist.
Lower	Quartzite schist	Base rock: sandstone and mudstone		
		Kink fold of outcrop scale Thickness of strata is a few cm ~ 10cm		

Table 2.1.1	Character and	Engineering	Property of	Lithofacies
IGOIC BILLI	onur actor ana	Linginieering	rioperej or	Linnoracies

Source: study team

Figure 2.1.1 shows the contour map of schistosity measured on schist and gneiss outcrops in the studied site.

The original schistosity of fresh and intact schist and gneiss is generally distributed in a direction of north-northwest to south southeast and dipping northeast with angles of 40 - 65 degrees. And in upper quartzite schist sheeting joints which is north northeast to south southwest in direction and dipping west with angles 40 -50 degrees were developed. On the other hand, the trends of schistosity in weathered rock slope show dispersive on the stereographic projection and comparatively gentle dip due to bending by creep.

Figure 2.1.1 Contour Map of Schistosity in the Studied Site

2.2 DRILLING SURVEY

Eight points of the drilling survey were conducted as shown as Table 2.2.1. The boring loges are shown as the following pages.

Location	Borehole	Drilled Depth	Monitoring Devices
St- 17 400	A-1	40m	Borehole Inclinometer
Sta.17+400	A-2	20m	Ground Water Gauge
	B-1	30m	Borehole Inclinometer
St- 17 (00	B-2	40m	Borehole Inclinometer
Sta.17+000	B-3	20m	Ground Water Gauge
	B-4	30m	Borehole Inclinometer
Sta 18 200	A-3	30m	Borehole Inclinometer
Sta.18+200	A-4	30m	Borehole Inclinometer

Table 2.2.1Drilling Survey

Source: study team

	BOREHOLE LOG: A1													
Por	ahala M	Sil > - A 1	ndhu	h R	oad ((II)	Deillie	a Ma	ahina	· Vol	deill			
Incl	ination: V	Vertical					Drilli	ng Ma	ethod	- V0. - Ro	tarv			
Total depth: 40 m						Water Table: Not Available								
						Water Fable. Not Available								
					Core						0.85			
			60			Reco	very 9	6					orl	
			erin	80		RQ	D %						E	ults
d	, B		ath	srial	В								retu	resi
h, r	eptł	eeptr	Ň	Mat	o ô			t		F	_		ter	est
bept	Ō	Description of Rock/Soil	ion	<u>6</u>	Siz	%	8	nou		20	5		W	L/sy
	Rur		mat	fillin	E	B	8	An					lity	narl
			Ute	<u>ш</u>	ų.	×	₩Ž	-di	_	_	_	Ð	eabi	Rer
			~		Ma				5	cu) cn	ralu	E	
									Ĕ	Ξ	10	ź	Ч	
1	0_1	Brownish grey clayey sand	Mw	-	-	-	-	-	-	-	-	-		
-	V-1	Brown coarse sand (Feldsnar, Quartz)	Mu						3	4	3	10		
2	1-2	biown coarse sand (r cidspar, Quartz)			-		-		3	4	3	10	52	
3	2.05-3	Brown grey coarse sand	Mw	-	-	-	-	-			-		Los	
4	3-3.45	No Recovery	-	-	-	-	-	-	3	4	3	10		
5	4-5	No Recovery	-	-	-	-	-	-	50/10	50/10 >50				
	5.6	No Recovery	-	-	-	-	-	-	50/6			>50		-
•	J- 0	No Recovery							50/8			>50		deptł
7	6-7	ino necovery							50/0					u O
8	7-8	Brown grey fine silty sand	Mw	-	-	-	-	-	50/9			~30		dy 17
9	8-9	No Recovery	-	-	-	-	-	-	50/6			>50		ted or
10	0 10	Dark grey fine to medium sand	Hw	-	-	-	-	-	50/3			>50		inser
10	10-10.05								50/5			>50		sing
11	10.05-11	Dark grey to black clayey sand	Hw	-	-	-	-	-						ll, ca
12	11-12	Light grey silty clay	Hw	-	-	-	-	-	50/10)		>50		de Fa
13	12-13	Light grey fine sand	Hw	-	-	-	-	-	-	-	-	-	Ceturn	ousSi
		Grey sand (Fine)	Hw		-	-	-	-	-	-	-	-	Ľ2	ntine
14	13-14	(from could (fine))	U											ပိ
15	14-15		nw	-	-	-	-	-	-	-	-	-		
16	15-16	Fractured, slightly weathered schist	Sw	-	7	9	-	52	-	-	-	-		
17	16-17	Brownish grey Fractured and slightly weathered quartz and schist	Sw	-	7	9	-	50	-	-	-	-		
10	17 10	Weatherd fine sand	Hw	-	-	-	-	-	-	-	-	-		
10	1/-10	Medium grained sand (High Mica)	Mw	_	-	-	-	-	-	_	_	_		
19	18-19								-		-			
20	19-20	Fine sand (High Mica)	Hw	-	-	-	- W U:-	-	-	-	-	-	aler W-	athorsd
FZ-	ADDREVIATIONS: F-Fresh, SW-Slightly Weathered, MW-Moderately Weathered, HW-Highly Weathered, CW-Completely Weathered FZ- Fractured zone, MB-Mechnical Break, IR-Irregular, PI-Planar, Sm-Smooth, R-Rough, CL-Clay, Si-Silt, CL- Coreless													

	BOK	EHO	OLE	LO	G: A	1							
D 11	Si	ndhu	ıli R	oad	(II)	D 111		1.		1 1 11			
Borehole	No.: Al					Drillin	g Ma	chine	: V0	ldrill			
Total det	ni. vertical				We		ng M able: 1	Not /	L KO	able			
1 otal dej	501. 40 m				W 2	aler 1	abie. 1	NOLP	avan	able			
		-			C	ore						ss	
					Reco	verv ^o	6					rlo	
		-E			RO	D %	•					0 11	Its
E		the	als			<u> </u>						etur	esu
È j		Vea	ater	5								er r	str
Der	Description of Rock/Soil	1	X	IZC			un		5	1		Vat	Ę
ă ș		ati	E.	B	ŝ	ĥ	ğ			-		ty 1	ark
[∞]		terr	E	n	RE	N S	ip /					ilidi	em
		P		axi				E	m	m	lue	ne	24
				2				01	01	10	V R	Pen	
				-							~		
21 20-	Light grey fine sand sludge	Mw	-	-	-	-	-	-	-	-	-		
22 21-	Light grey fine sand sludge	Mw	-	-	-	-	-	-	-	-	-		
22 22	Light grey fine sand sludge	Mw	-	-	-	-	-	-	-	-	-		
25 224		+		<u>+</u>		 							
24 23-	24 No Recovery	-	-	-	-	-	-	-	-	-	-		
25 24-	Grey clayey sand sludge	Hw	-	-	-	-	-	-	-	-	-		
26 25	Grey clayey sand sludge	Hw	-	-	-	-	-	-	-	-	-		
20 23	26	+		 									
27 26-	27 Grey clayey sand sludge	Hw	-	-	-	-	-	-	-	-	-		ч
28 27-	Grey clayey sand sludge	Hw	-	-	-	-	-	-	-	-	-		a dept
29 28-	Grey clayey sand sludge	Hw	-	-	-	-	-	-	-	-	-		24.on
	Dark grey medium sand sludge (High	1		1		1							E
30 29-	30 Mica)	-	-	-	-	-	-	-	-	-	-	tum	-U -U
	Dark grey medium sand sludge (High	-	-	-	-	-	-	-	-	-	-	Re	de fe
31 30	Dark grey medium sand sludge (High	+											y Bi
32 31-	32 Mica)	-	-	-	-	-	-	-	-	-	-		ratel
	Dark grey medium sand sludge (High	1		1									ode
33 32-	33 Mica)	-	-	-	-	-	-	-	-	-	-		Σ
	Dark grey medium sand sludge (High	-	-	-	-	-	-	-	-	-	-		
34 35-	Dark grey medium sand sludge (High	+		 		 							
35 34-	35 Mica)	-	-	-	-	-	-	-	-	-	-		
	Dark grey medium sand sludge (High	1		1		1							
36 35-	36 Mica)		-	-	-	-	-	-	-	-	-		
	Brown grey fine sand and silty sand	-	-	-	-	-	-	-	-	_	-		
3/ 30-	3/ sludge Brown grav fina sand and silty sand	+		 		 							
38 37-	38 sludge	-	-	-	-	-	-	-	-	-	-		
	Brown grey fine sand and silty sand	†		t		t		†					
39 38-	39 sludge	-	-	-	-	-	-	-	-	-	-		
40 20	Brown grey fine sand and silty sand	-	-	-	-	-	-	-	-	-	-		
40 39-	40 Sludge ons: F.Fresh SW.Slightly: Weathered MW M	lodera	tels: V	Veath	ered II	W_Hir	hlv W-	ather	L d	N-Co	molet	alv We	athered
FZ- Fractu	red zone, MB-Mechnical Break, IR-Irregular, 1	PI-Pla	nar, S	m-Sm	ooth, F	C-Roug	h, CL-0	Clay, S	Si-Silt	, CL-	Corel	ess	amereu

		BOR	EHO	DLE	LO	G: A	2							
Dan	-11- NT	Si	ndhu	li R	oad	(II)	- 14-	-1-1	T-1	- /17 -	1			
Incl	ination.	0.: AZ Vertical				Driller	Drilli	ng M	ethod	o/⊾o ŀRo	tarv			
Tota	al depth:	20 m					Wat	er Tal	ble: 4	.0-5.	0 m			
						C	ore						lo SS	
			e			Reco	very 9	6					0	
	F		nen	als	<u> </u>	RQ	D %						un	sult
Depth, m	Run Depth, r	Description of Rock/Soil	lternation/Weat	Filling Materi	imum Size, cm	REC %	RQD %	ip Amount		SPT	1 10		ability Water ret	Remarks/Test re
			A		Max				10 cm	10 cm	10 cm	N value	Perme	-
	0.1	Filling rock fragements schist/	Mw	-	-	-	-	-	-	-	-	-		nd bud
1	U-1	Dark grey rock fragments Schist and												tly c
2	1-2	quartzite (Deposited)	Sw	-	-	-	-	-	-	-	-	-		appe
3	2-3	Brown grey medium sand sludge	w	-	-	-	-	-	-	-	-	-		fall h goes
	3.4	Brown grey medium sand sludge	w	-	-	-	-	-	5	23	29	>50		Side
-	5-4	Brown grey medium sand sludge	w	-	-	-	-	-	3	27	27	>50		
<u> </u>	4-5	Brown gray fine cand cludge	w						5	30	38	>50		nusua
6	5-6					_		_	8	22	30	>50		a as u ing
7	6 -7	Brown grey fine sand sludge		-	-	-	-	-	10	16	20	>50		r strat drill
8	7- 8	Brown grey fine sand sludge	w	-	-	-	-	-	10	10	30	~30		oulde
9	8-9	Brown grey fine sand sludge	w	-	-	-	-	-	20	24	40	>50		В
10	9-10	Brown grey fine sand sludge and highly weathered schist fragments	Hw	-	3	4	-	-	15	23	40	>50	52	ghtly ling
		Weathered rock fragments of fine	Sw	_	3	7	_	_	50/7			>50	L,	2 sli dril
11	10-11	grain quartzite												ayir.
12	11-12	Grey fine grained quartzite	Sw	-	3	9	-	-	-	-	-	-		o Fro ea
13	12-13	Grey fine grained quartzite	Sw	-	1	8	-	-	-	-	-	-		cult to
14	13-14	Grey fine grained quartzite	Sw	-	1	8	-	-	-	-	-	-		y diffi drill
15	14-15	Grey fine grained quartzit and schist	Sw	-	1	9	-	-	-	-	-	-		Sligh
16	15-16	Fresh dark grey fragmets of schist	F	-	4	6	-	68	-	-	-	-		lling
17	16.17	Fresh dark grey fragmets of schist	F	-	2	7	-	62	-	-	-	-		id dri
	10-17	Fresh dark grev fragmets of schist	F	-	1	7	-	70	-	_		_		nd rap
18	17-18	Freeh dark great fragmets of oaki-t	-		-	-		70						sous a
19	18-19	riesh dark grey magmets of schist	r	-	2	/	-	/0	-	-	-	-		ontine
20	19-20	Fresh dark grey fragmets of schist	F	-	3	26	- wu:-	67	-	-	- N C-	-	altr W.	U athend
FZ.	Eviations: Fractured	r-riesh, Sw-Signuy weathered, MW- M	PI_Pla	nar S	weath m.Sm	ooth B	-Roug	my we	clay S	sa, CN Si Silt	CI -	Corel	ery we	athered

		BOR	EH	OLE	LO	G: A	3							
_		Si	ndhu	ıli R	oad	(II)			- 1					
Bor	ehole N	0.: A3				Drillin	ig Ma	chine	: Toh	0/K.0	ken			
Incl	mation:	20 m				117.	Drilli	ng M	ethod	C KO	tary			
100	ai deptii:	30 m				W 2	iter 1	able:	NOT A	van	able			
			-			C	ore					-	56	
						Reco	verv ^o	6					r Po	
		$ \begin{array}{ $							ts.					
	B		the	lals			<u> </u>						etur	esu
E	þt,		Nec	ater	5								err	str
pth	De	Description of Rock/Soil	1	E DO	lize			n n		5	-		Wat	Ę
Ă	E E		iati.	li.	E	ĉ	â	ğ			-		E.	ark
	<u>~</u>		terr	ΈĒ	E I	E	2	.e					lidi	em
			P		axi				H	m	m	lue	ne	~
					2				2	0	10	A V	Pen	
												~		
1	0-1	Fine sand sludge	-	-	-	-	-	-	-	-	-	-	E	
		Colluvial (Fragments of schist gneiss)	Sw	_	4	13		_	50/3			>50	Ret	
2	1-2	contribut (Flugments of Senast grietss)												
	2.3	No Recovery		-	-	-	-	-	50/5			>50		
-	2-3	Fracture rocks of schist/gneiss and					 		50/4			>50	22	
4	3-4	clayey sludge	Sw	-	6	65	-	35					Ľ.	
		Weathered fractured schist and	Sw		35	20		22	50/3			>50		
5	4-5	gneiss												
	5.6	Weathered fractured schist and fine	Mw	-	3	20	-	40	30	50/5		>50	Е	
-	6-6.45	Weathered fractured schist and fine			<u>+</u>		l		13	19	48	>50	Cetu	
7	6.45-7	sand sludge	Mw	-	4	15	-	38					12	
		Weathered fractured schist and fine	w		2	5		34			_			
8	7-8	sand sludge									_			
	0.0	No Recovery	-	-	-	-	-	-	-	-	-	-		
-	0-9								+					
10	9-10	No Recovery	-	-	-	-	-	-	-	-	-	-		
	10-10.5	Clavey sand	L _	_	6	30	I _	35	17	16	17	50	OSS	
11	10.5-11		ļ		ļ		ļ						Ē.	
12	11-12	highly weathered schist, contain biotite muscobite feldspar quartz	\mathbf{Sw}	-	7	20	-	37	-	-	-	-		
	11-12	Highly weathered schist, contain	-		+				+					
13	12-13	biotite, muscobite, feldspar, quartz	Sw	-	10	15	10	32	-	-	-	-		
		Highly weathered schist, contain	Sw	_	5	40	_	30	_	_	-	_		
14	13-14	biotite, muscobite, feldspar, quartz					 							
15	14-15	and fractured schist clavey sand	Sw	-	5	68	-	37	-	-	-	-		
		Slightly weathered fractures schist			1				+				Ę	
16	15-16	rock(Mica, Feltspar, Quartz)	Sw	-	3	25	-	32	-	-	-	-	Reti	
		Slightly weathered fractures schist	Sw	_	3	25	_	33		_	_	_		
17	16-17	rock(Mica, Feltspar, Quartz)					ļ							
19	17 19	sugnity weathered fractures schist rock(Mica Feltspar Quartz)	Sw	-	6	35	-	35	-	-	-	-		
-10	17-10			·	t		<u> </u>		+				88	
19	18-19	No Recovery	-	-	-	-	-	-	-	-	-	-	Loi	
		Weathered Schist	Sw	_	4	35	- T	30	- T	_	-	_		
20	19-20		<u> </u>						<u> </u>			Ĺ		
Abb	reviations	F-Fresh, SW-Slightly Weathered, MW- M	odera	tely V	Veath	ered, H	W-Hig	hly We	eathere	d, CV	V-Co	mplet	ely We	athered
rZ-	r ractured	zone, IVIB-IVIecnnical Break, IK-Irregular, I	-1-Pla	nar, S	m-Sm	ooth, F	(-rcoug	a, CL-I	uay, S	51-511t	, UL-	orel	ess	

		BOI	KEH0	OLE	LO	G: A	3							
D	-11- N	51	indhu	шĸ	oad ((II)	- 14-	-1-1	. T1.	- /17 -	1			
DOI Turi	enole IN	0.: A3					ig Ma	crime	. I on		oken			
Inci	mation:	Vertical					Drill	ing IVI	etnoc	I: KO	tary			
Tota	al depth:	30 m				Wa	ater T	able: .	Not A	Vail	able			
			_											
						_ 0	ore						e e	
			u B C			Reco	very 9	%					5	
	_		en.			RQ	D %						E E	ult
E	1, 1		at	- E	В								Let 1	res
Ę.	sptl		M	1at	0			Ħ		-	_		ter	est
ept	ă	Description of Rock/Soil	0 U	60	SIZ	~	~	l ID		1	5		Ma	5
	L L L		ife i	1.5	В	ů.	D O	Ę.					Þ	ar
	124		ten	臣	n n	E	2	.e					pil.	em
			A		SXI .			D	В	В	В	ue	1 ee	_ ~
					Σ				0	ő	ő	va	en	
									-	-	-	z	<u>п</u>	
		Slightly weathered fractured schist,	Sw	-	5.5	20	-	30	-	-	-	-	n ter	
21	20-21	contain high Mica		 		l		 		 			<u>~</u>	
	21.22	Slightly weathered fractured schist,	Sw	-	5	35	-	32	-	-	-	-		
22	21-22	Contain night Mica		+						 				
23	22.23	contain high Mica	Sw	-	3	10	-	30	-	-	-	-		
23	22-23			ł				+		ł			·	
24	23-24	No Recovery	-	-	-	-	-	-	-	-	-	-		
				t				t		t				
25	24-25	Weathered Schist	Sw	-	3	14	-	30	-	-	-	-		
		Highly weathered to moderately		t	_	10		22		t			. 53	
26	25-26	weathered schist fragments	Hw	-	2	10	-	52	-	-	-	-	2	
		Highly weathered to moderately	U	Ι	7	40	1	22		Ι	1		1	
27	26-27	weathered schist fragments	11.00		<u> </u>	+0		32	-			-		
		Highly weathered to moderately	Hw	_	11	45	11	32	_	_	-	-		
28	27-28	weathered schist fragments		ļ						 				
		Highly weathered to moderately	Hw	-	4	60	-	32	-	-	-	-		
29	28-29	weathered schist fragments		 				 		 	 			
20	20.20	Highly weathered to moderately	Hw	-	4	42	-	32	-	-	-	-		
50	29-30	weathered senist magnetics	+								-			+
				t				t		t				-
				Ī				1		Ī				
				l						<u> </u>				
				 		.		 		ļ				
		-												
				 				ļ		 				
		-												
				+				<u>+</u>		<u> </u>				
		-												
				t				t		t			·	·
				t				t		t			·	
		1												
				t			1	t	1	t				

		Si	ndhu	li Ro	oad ((II)								
Bor	ehole No	o.: A4					Drillin	ıg Ma	chine	: Bo	yles			
Incl	ination: N	Vertical					Drilli	ing M	ethod	: Ro	otary			
Tot	al depth:	30 m				Wa	ater T	able: 1	Not A	vai	lable			
			-			C	ore						56	
						Reco	verv ^o	10					rlo	
			-ü			RQ	D %						Ê	lts
Depth, m	ın Depth, m	Description of Rock/Soil	ation/Weathe	ing Materials	ı Size, cm	%	%	mount		1410	142		y Water retui	rks/Test resu
	Rı		Alterna	FIL	Maximun	REC	RQD	Dip A	10 cm	10 cm	10 cm	N value	Permeability	Rema
1	0-1	No Recovery	-	-	-	-	-	-	-	-	-	-		
2	1-1.18 1.18-2	Fresh , fractured Schist Fragments	Sw	-	2	10	-	19	50/3			>50		
3	2-2.5 2.5-3	Fresh fractured Schist Fragments	-	-	3	20	-	14	50/3			>50		
4	3-3.5 3.5-4	Fresh fractured Schist with medium sand	Sw	-	3	20	-	30	50/4			>50		
5	4-4.5 4.5-5	Fresh Schist / sluðge	Sw	-	4	20	-	22	50/10)		>50		
6	5-5.25 5.25-5.5	Grey fresh and fractured schist	Sw	-	6.5	34	-	33	-	-	-	-		ust
7	5.5-6.3	Fresh to weathered schist	F	-	9.5	41	-	31	50/3			>50		ttic Sch
8	6.3-7.35 7.35-7.85	Fresh schist	F	-	4	37	-	33	-	-	-	-		martzi
9	7.85-8.45 8.45-9	Fresh schist	F	-	5.5	-	-	37						ered (
10	9-10	Fresh brown sand and fresh schist	F	-	3	20	-	25	50/6			>50	SS	Weath
11	10-11	Fragments of fresh schist	F	-	1.5	10	-	11	-	-	-	-	-	ointed
12	11-12	Fresh fragments of schist	F	-	2	10	-	10	50/7					(/pam
13	12 12 5	Brown grey, medium sand sludge	-	-	-	-	-	-	50/7			>50		y Fract
14	12-13.3	Fresh to weathered schist fragments	F	-	2	8	-	13	-	-	-	-		High
15	13.5-15	slightly weathered schist	Sw	-	1.5	9	-	12	-	-	-	-		
16	15-16	Fresh fragments of schist	F	-	1.5	9	-	-	-	-	-	-		
17	16-17	Fresh fragments of schist	F	-	2	7	-	8	-	-	-	-		
18	17-18	Fresh fragments of schist	F	-	4	20	-	27	-	-	-	-		
19	18-19	Fresh fragments of schist	F	-	3	10	-	15	-	-	-	-		
20	19-20	Fresh fragments of schist	F	-	1.5	19	-	10	-	-	-	-		

FZ- Fractured zone, MB-Mechnical Break, IR-Irregular, PI-Planar, Sm-Smooth, R-Rough, CL-Clay, Si-Silt, CL- Coreless

		Si	ndhu	li Re	oad (п								
Bor	ehole No	o.: A4					Drillin	ıg Ma	chine	: Bo	yles			
Incl	ination: V	Vertical					Drilli	ing M	ethod	l: Ro	tary			
Tot	al depth:	30 m				Wa	ater T	able: 1	Not A	Vai	able			
			-			C							55	
						Reco	ueru º	×-					-	
			l.e			RO	D %	0					6 E	ts
	В		the	ials									eta	esu
E	pth,		We	ate	5			-					err	estr
ept	De De	Description of Rock/Soil	b,	2	Size	~	~	uno			2		Wat	E.
Ω	Sun		nati	ll.	E	ĝ	â	Am			-		A:	ark
	_		lter	E	Ē.	R	N N	.e					abil	Sen
			A		Max				E E	뜅	5	alu	me -	_
									10	2	12	Ň	Pe	
		Brown weathered schist fragments	Sw	-	2	18	-	12	-	-	-	-		lasti dep
21	20-21						 				 		-	d p
22	21-22	Brown weathered schist fragments	Sw	-	1	10	-	15	-	-	-	-		dati
23	22-23	Brown weathered schist fragments	Sw	-	-	12	-	5	-	-	-	-		nck co mtere
24	22 22 0	Schist fragments with silty sand	Sw	-	4	4	-	25	-	-	-	-	1	ed Bla encor
24	23-23.8	Dark black plastic clay to weathered	+				<u>+</u>		50/2		+	>50	1	ther
25	24.5-25	white to milky fine grained quartzite	Sw	-	6	6	-	30					SS	wea
		White-milky fine grain quartz (More	F	_	2	2	_	10	_	_	_	_	Ľ	yld in
26	25-26	feldspar) White millar fine grain quartz (More	+								 		-	E B
27	26-27	feldspar)	F	-	-	-	-	-	-	-	-	-		l i i
	27-27.5	No recovery	-	-	_	-	-	_	-	_	-	_	1	t 24.
28	27.5-28		-								 		-	ite a
29	28-29	No Recovery	-	-	-	-	-	-	-	-	-	-		cel Js bowh
30	29-30	No recovery	-	-	-	-	-	-	-	-	-	-		Barr
											ļ		ļ	
			+				1		+		+		1	+
			<u> </u>								l			
			+						+		ł			+
			Τ				[1		1		[1
			.				 				ļ		 	
			†				1		1		1		t	1
											ļ			
			+						+		<u> </u>		 	+
hh	reviations:	F-Fresh, SW-Slightly Weathered, MW- M	lodera	telv V	Veath	ered. H	W-Hig	hly W	eathere	d, C	W-Co	mplet	elv W	eathered

								II)	ad (li Ro	ndhu	Si		
			ken	/Ko	Toho	hine:	g Mao	Drillin]			No.: B1	ehole No	Bor
			tary	Rot	ethod	ng Me	Drilli					:: Vertical	nation: V	Incl
			able	vaila	Not A	ble: 1	ter Ta	Wa				h: 30 m	al depth:	Tot
	loss						ore	Co						
	or					ó	/ery %	Recov]		8			
ults	E						D %	RQ		ls	eri		-	
t res	r ret								G	teria	eath		th, n	Ξ
E.	Tate			5		Int			ze,	Ma	No.	Description of Rock/Soil	Cep	Ę
rks	y W		i i	×.		mo	~	%	Si	ing	-ifi		ц Ц	Ğ
ma	i ji					A C	<u></u>	SEC		Fill	Ë		Rı	
Å	leal	ue	в	в	в	Di	<u> </u>	1	xir		At			
	em	val	0	0	0				ž					
	ц	z	-	-	-						\square			
ulder		-	-	-	-	-	-	-	-	-	-	No Recovery	0-1	1
y bot		>50			50/5	_						Light grev sand to rock fragments		-
Tell.						-						Eight grey said to lock haghents	1-2	2
E.		>50			50/8	-	-	-	-	-	-	Brownish grey fine sand with rock	23	2
.E		>50			50/5							Slightly weathered rock fragments of	2-3	-
1						10	-	33	2	-	Sw	quartzite	3-4	4
ea.		>50			50/5	_	_	5	1	_	F-Sw	Slightly weathered rock fragments of		
dar dar									·····			quartzite	4-5	5
i i		>50			50/5	-	-	-	-	-	F	Fresh to slightly weathered rock of	5 6	6
ě		>50			50/4							Fresh to slightly weathered rock of	6-6.6	0
.x.					50/4	32	-	70	7	-	F	8 quartzitic schist	6.6-6.8	7
īd d						25	11	00	11		E 9	4 Fresh to slightly weathered rock of	6.8-7.4	
of:		-	-	-	-	25		90		-	r-3w	quartzitic schist		8
la I		-	-	-	-	22	15	90	15	-	Sw	35 Fresh to slightly weathered rock of	7.4-8.35	0
ldem	Coss											Fresh to slightly weathered took of	8.35-9.0	9
Sud		-	-	-	-	28	11	50	11	-	Sw	quartzitic schist		10
						25	14	65	14		E C.	2 Fresh to slightly weathered rock of	9.3-10.2	
bt.		-	-	-	-	د2	14	00	14	-		1 quartzitic schist	10.2-11	11
n de		-	-	-	-	24	12	50	12	-	F-Sw	Fresh to slightly weathered rock of	11.12	12
8.01											<u>+</u>	Fresh to slightly weathered rock of	11-12	12
atl		-	-	-	-	22	10	50	10	-	F-Sw	3 quartzitic schist	12-13	13
, E						26	15	45	15		F Str	Fresh to slightly weathered rock of		
elJ		-	-	-	-	20				-		4 quartzitic schist	13-14	14
La La		-	-	-	-	22	10	25	10	-	F-Sw	55 Fresh to slightly weathered rock of	14-14.65	15
ly B											ł	Fresh to slightly weathered rock of	14.00-10	10
ligh I		-	-	-	-	32	-	18	4	-	Sw	5 quartzitic schist	15-16	16
5		_	_	_	_	18	10	35	10	_	Sw	Fresh to slightly weathered rock of		
*		-	-	-	_	10	10		10	-		7 quartzitic schist	16-17	17
y fa		-	-	-	-	17	10	59	10	-	Mw	Slightly weathered fractures of	17 10	19
inel ing	E												1/-18	10
in in	Ret	-	-	-	-	-	-	-	-	-	-	Light grey fine grain sand and sludge	18-19	19
din o	SSC	_	_	_	_	_	_	_	-	-	_	No recovery		
0	Ľ.		-			-	_	-)	19-20	20

		BOR	EHO	OLE	LO	G: B	1							
		Si	ndhu	li R	oad	(II)								
Bor	ehole No	o.: B1				Drillin	ıg Ma	chine	Toh	o/Ko	oken			
Incl	ination: \	Vertical					Drilli	ng M	ethod	l: Ro	tary			
Tota	al depth:	30 m				Wa	ater T	able: 1	Not A	Avail	able			
			_											
						_ C	ore						los	1
			00 U			Keco	very 9	0					101	29
	F		hen	als	<u> </u>	RQ	D %							sult
Е	th, 1		Teat	teri	B								r re	stre
ţţ,	Cep	Description of Rock/Soil	No.	ž	Ze,			nt		F			ate	-Te
Del	E I		tio	ng.	32	8	8	l lou		5	6		×	rks
	22		Ĕ		L III	ם	5	P					E.	ma
			Alte		XII.	1	≃	- d	g	E	E	e	eab	Re
					Ma				5	5	5	valı	E	1
									Ξ	Ξ	Ξ	Ż	d.	
		Light grey to weathered rock fragment	Mw	-	8	50	-	32	-	-	-	-		
21	20-21	Light groups to most and a sector	+		 		<u> </u>		 		ļ		50	
22	21-22	fragments of quartzitic schist	\mathbf{Sw}	-	4	45	-	52	-	-	-	-	Cos	1
	21-22	Light grev to weathered rock	-		 		-							
23	22-23	fragments of quartzitic schist	Mw	-	9	45	-	32	-	-	-	-		
		Grey fine Sand and rock fragments of	M		1	15	1		T		İ			
24	23-24	quartzitic schist	141.00		_		-	-	-	-	-	-		
		Brown to grey medium sand	Mw	-	1	20	-	-	-	-	-	-	=	1
25	24-25	fragments and sludge			 				 		.		etur	
26	25-26	Sludge form	-	-	-	-	-	-	-	-	-	-	~	
	25-20	Slightly weathered fragments of	-				+		ł		<u>+</u>			
27	26-27	quartzitic schist	Sw	-	7	60	-	22	-	-	-	-		1
	27-27.5	Slightly weathered fragments of	Sur		3	8						_	SS	
28	27.5-28	quartzitic schist			ļ				ļ		ļ		Ē	
	28.20	Slightly weathered fragments of	Sw	-	3	13	-	-	-	-	-	-	Е	1
- 2.9	20-23	Slightly weathered fragments of	+		<u> </u>		+		<u> </u>		<u> </u>		Cetu	
30	29-30	quartzitic schist	Sw	-	5	72	-	60	-	-	-	-		
		-												
			ļ		ļ				ļ		ļ			
					 									
			1		t		1		t		t			
	1													
			ļ		ļ		ļ		ļ		ļ			
		+	+		t		t		<u>+</u>	·	<u>+</u>			
			t		t									
			ļ		ļ									
			+		 		<u> </u>		 		ļ			
Abb	reviations:	F-Fresh SW-Slightly Weathered MW- M	l Iodera	telv V	l Veath	ered. H	W-Hig	hlv We	athere	ed. CV	W-Co	m p let	elv We	athered
FZ-	Fractured	zone MB Mechnical Break IR Irramilar I	PI Pla	nar S	m Sm	ooth E	P-Roug	h CL ("lav. (112 12	CL	Coral		

		BOR	EHO		LO	G: B	2							
Por	ahala Ma	511 512	nanu	пК	oad ((II) Deillie		ahina	Tab	VV.	1.00			
Boi Incl	ination: N	J. D2 Vertical						enne bog M	ethod	- Ro	toru			
Tet		40				117.		-1-1		L KO	-1-1-			
1 013	a depui.	40 m				W 2	iter 1	able.	NOL P	van	able			
						C	ore						8	
						Reco	verv 9	6						
			.g			RO	D %						° u	22
	Е		the	als									Į Į	sal
Depth, m	Run Depth,	Description of Rock/Soil	ternation/Weat	Filling Materi	mum Size, cm	REC %	RQD %	ip Amount		CITYLIN COLUMN	1.10		ability Water re	temarks/Test re
			Al		Maxi			Ω	10 cm	10 cm	10 cm	N value	Permea	R
1	0-1	No Recovery	-	-	-	-	-	-	-	-	-	-		o'l'ro (Only
2	1-2	No Recovery	-	-	-	-	-	-	50/2			>50		or slip 'essure
3	2-3	Fragmets of quartzitic schist	-	-	2	10	-	-	50/3			>50		ly oid any pr
_	3-3.85	Fresh fractured quartaitic schist	F		5	37		60	50/5			>50	·	ina i
4	3.85-4.35	Fresh quartritic solicit to slightly										+		with .
5	4.85-5	weathered grey fine grained quartzitic	F-Sw	-	10	65	10	60	-	-	-	-	Loss	time to
	5-5.45, 5.43-	Fresh quartzitic schist to slightly	E S.		14	65	14	22				Ī		ins bec
6	5.79, 5.79-6	weathered grey fine grained quartzitic	r-ow	-	14	05	14	32		-		-		S II .
	6-6.6	Fresh grey to light grey fractured	F-Sw	-	7	28	-	50	-	-	-	-		tin 1 tin 1
, 	7.0-7.45	Fresh grey to light grey fractured	F-Sw	-	9	43	-	55	-	-	-	-		4 m d d with rota
8	/.45-8	Fresh grey to light grey fractured										+		E Ē
9	8-9	quartzitic schist	F-Sw	-	8	18	-	50	-	-	-	-		a p
0	9-9.75 9.75-10	Fresh grey to light grey fractured quartzitic schist	F-Sw	-	4	19	-	50	-	-	-	-	Retu	oth Ja h casi
	10-10.6	Fresh fracture grey to dark grey	F-Su		6	35		32				1		de pt
1	10.6-11	schist												A m
12	11.45-12	schist	F-Sw	-	6	32	-	30	-	-	-	-		to 13
13	12-13	Fresh fracture grey to dark grey schist	F-Sw	-	10	33	10	30	-	-	-	-		asing 2.5m
	13-13.4	Fresh fracture grey to dark grey	F-Su		6	22		30						۲ <u>۲</u>
14	13.4-14	schist										-		
15	14-15	No Recovery	-	-	-	-	-	-	-	-	-	-	Loss	
6	15-16	Slightly weathered fragment of schist	Sw	-	2	-	-	35	-	-	-	-		
17	16-16.55 16.55-17	Slightly weathered fragment of schist	Sw	-	4	-	-	35	-	-	-	-		
1.9	17 10	Slightly weathered light grey to dark	Sw	-	8	-	-	35	-	-	-	-		
10	17-18	Slightly weathered light grey to dark	Sw	-	7	-	-	35	-	-	-	-		
19	18.8-19	Slightly weathered light grey to dark	Sw	-	6	-	-	35	-	-	_	-		
0	19-20	grey schist											1	1

		Si	ndhu	li R	oad	а. в. П	-							
Bor	ehole N	n · B2	land		Jac	Drillir	ισ Μα	chine	Toh	0/K (ken			
Incl	ination: 1	Vertical					Drill	ing M	ethod	l Ro	tarv			
Tot	al denth.	30 m				W:	ater T	able: 1	Not A	vail	able			
100	ai acpui.													
						c	ore						33	
						Reco	verv ⁽	V.					은	
			. E			RO	то %						° c	24
	В		hei	als	<u> </u>								1	Ins
Ξ	Ę.		eat	ten	B								r re	t 1
Ę.	bep	Description of Rock/Soil	N S	ž	eî.			t I		E	-		ate	Ē
6		2	10	8 u	3	8	%	1 de		5	ā		M	ks/
-	Ru		BE		5	잂	8	Ar					lif.	nar
			Ite	-	E.	~	Ř	<u>-</u>	<u> </u>			0	gp	Rer
			~		l 🔤				5	8	5	alu	Ĕ	
					-				2	2	2	2	Pel	
21	20-21	Fresh to slightly weathered rock of qu	ıF-Sw	- 1	7	15	-	58	-	-	-	-		
		Fresh to slightly weathered rock of			-	10							1	
22	21-22	quartzitic schist	F-Sw	- 1	2	18	-	22	-	-	-	-		
		Grey to light grey rock fragments of	E C		•	20		55					1	
23	22-23	fine grained quartzitic schist	r-3%	-	°	30	-		-	-	-	-		
		Grey to light grey rock fragments of	F-Sw	_	5	21	_	50	_	-	-	-		
24	23-24	fine grained quartzitic schist			-								Loss	
		Grey to light grey rock fragments of	F-Sw		5	30	-	55	_	-	-	-		
25	24-25	fine grained quartzitic schist											-	
26	25.26	Grey to light grey fock fragments of	Sw	-	2	15	-	30	-	-	-	-		
20	25-20	Grev to dark grev schist and dark											1	
27	26-27	grey clavey sand	F-Sw	- 1	8	10	-	-	-	-	-	-		
		Grey to brown grey fine grained semi											1	
28	27-28	consolidated schist (sludge form)	F-Sw	- 1	-	-	-	-	-	-	-	-		
		Slightly weathered fragments of	E 6-											
29	28-29	quartzitic schist	r-3%	-	-	-	-	-	-	-	-	-		
		Slightly weathered fragments of	F-Sw	_	-	_	_	-	_	-	-	-		
30	29-30	quartzitic schist											-	
	30-30.35	Slightly weathered fragments of	-	-	-	-	-	-	-	-	-	-		
31	30.35-31	quartzitic scriist											-	
37	31 32	quartzitic schist	-	-	-	-	-	-	-	-	-	-		
52	51-52	Slightly weathered fragments of	··							-	-		1	
33	32-33	quartzitic schist	-	-	-	-	-	-	-	-	-	-		
		Slightly weathered fragments of											1	
34	33-34	quartzitic schist	-	-	-	-	-	-	-	-	-	-	Bata	
		Slightly weathered fragments of											Ketun	
35	34-35	quartzitic schist (Sludge)		-	-	-	-	-	-	-	-	-		
		Slightly weathered fragments of	-	-	-	-	-	-	-	-	-	-		
36	35-36	quartzitic schist (Sludge)											-	
27	26.27	Slightly weathered fragments of	-	-	-	-	-	-	-	-	-	-		
31	30-37	Clightly weathered fragments of	··										-	
38	37-38	quartzitic schist (Sludge)	-	-	-	-	-	-	-	-	-	-		
50	57-50	Slightly weathered fragments of	·								<u> </u>		1	
39	38-39	quartzitic schist (Sludge)	-	-	-	-	-	-	-	-	-	-		
		Slightly weathered fragments of											1	
40	39-40	quartzitic schist (Sludge)	-	-	-	-	-	-	-	-	-	-		
Abb	reviations:	F-Fresh, SW-Slightly Weathered, MW- N	Iodera	tely V	Veath	ered, H	W-Hig	hly We	athere	d, C	W-Co	mplet	elv We	athered

FZ- Fractured zone, MB-Mechnical Break, IR-Irregular, PI-Planar, Sm-Smooth, R-Rough, CL-Clay, Si-Silt, CL- Coreless

		BOR	EH	DLE	LO	G: B	3							
Der	-11- NT	Sil	ndhu	di R	oad	(II) Duilliu	- 14-	-1-1	. T-1-	- /17 -	1			
Bor	enole IN	0.: B3				Drillin		cnine	: I on		ken	-		
Tet	nauon.	20 m				W		able: 1	Not 4	L KO	cary abla			
1 00	ai depth:	20 m				W 2	ater 1	able:	NOT A	van	able			
			-			C	ore						55	
						Page		/					은	
			E			PO	very :	0					10	22
	E		her	als			D 70		-				E L	sul
E	- -		eat	ten	B								r re	tre
Ę.	be	Description of Rock/Soil	N.	Ma	g,			Ħ		E	-		ate	Tes
			tio.	b u B	2	8	8	1 de		5	6		M	ks/
	Ru		E E		E E	잂	8	Ar					lity	mar
			Ite	-	. E	~ ~	2	<u>B</u>		_	_	0	cab	Rei
			~		Ma				5	5	5	alu	Ē	
					-				12	12	12	z	Pe	
		Either and Granning a thirt Oracte												
1	0-1	Filling fock fragements schist/ Quartzi	HW	-	-	-	-	-	-	-	-	-	SS	
		Light grey to grey fresh fine grain	F	-	1	7	-	10	50/4			>50	Ĕ	
2	1-2	quartzitic schist	ļ		ļ									
	2.2	Light grey to grey fresh fine grain	F	-	10	15	10	19	50/6			>50		
	2-3	Light grey to grey fresh fine grain	 		<u>+</u>		+		50/5			>50		
4	3-4	quartzitic schist	F	-	5	23	-	35	50/5			-30		
<u> </u>		Light grev to grev fresh fine grain			t		t		50/3			>50	1	
5	4-5	quartzitic schist	F	-	2	15	-	22						
		Medium grained highly weathered	T.T			۷	1	20	50/4			>50		
6	5-6	deposit (Fine sand sludge)	nw	-	4	•	-	20						
		Fresh fine grained grey quartzitic	F-Sw	_	3	5	-	20	50/3			>50		
7	6-7	schist												
	7-7.5	Fresh fine grained grey quartzitic	F	-	8	12	-	10	-	-	-	_		
8	/.ጋ-8	Scrist												
9	8-9	schist	F	-	4	8	-	10	-	-	-	-		
	9-9.3	Fine grained, grey to green quartzitic			t		1		50/4			>50		
10	9.3-10	schist	F	-	5	17	-	16						
		Fine grained, grey to green quartzitic	F		6	20	1	10	1				_	
11	10-11	schist	_	-	ļ		-	10		-	-		Lin I	
		Greenish grey quartzitic schist with	F	-	7	9	-	18	-	-	-	_	R S	
12	11-12	gamet traces			 									
13	12-13	in form of sand (sludge)	Mw	-	-	-	-	-	-	-	-	-		
-15	12-15	Grev to dark grev medium grain schist	<u>+</u>		<u>+</u>		+		+					
14	13-14	in form of sand (sludge)	Mw	-	-	-	-	-	-	-	-	-		
		Fine grain grey to light grey schist			t		1		1					
15	14-15	(Sandy sludge)	WIW	-	-	-	-	-	-	-	-	-		
		Dark grey fine grained schist (Sandy	Mw	-	-	-	-	_	50/6			>50		
16	15-16	sludge)			ļ		ļ							
		Dark grey fine grained schist (Sandy	Mw	-	-	-	-	-	-	-	-	_		
1/	10-1/	Siudge)												
18	17-18	grained schist (Sandy sludge)	Mw	-	-	-	-	-	-	-	-	-		
	1,-10	Dark brown grey semi consolidated	t		t		t		+					
19	18-19	fine grained schist (Sandy sludge)	Mw	-	-	-	-	-	-	-	-	-		
		Dark brown grey semi consolidated			t		1		t					
20	19-20	fine grained schist (Sandy sludge)	MW	-	-	-	-	-	-	-	-	-		
Abb	reviations	F-Fresh, SW-Slightly Weathered, MW- M	odera	tely V	Veath	ered, H	W-Hig	hly W	eathere	d, C	V-Co	mplet	ely We	athered
FZ-	Fractured	zone, MB-Mechnical Break, IR-Irregular, F	PI-Pla	nar, S	m-Sm	ooth, F	R-Roug	h, CL-	Clay, S	si-Silt	, CL-	Corel	ess	

		S1	ndhu	h K	oad ((II)								
Bor	ehole N	o.: B4				1	Drillin	g Ma	chine	: Vo	ldrill			
Incl	ination: `	Vertical					Drilli	ng M	ethod	l: Ro	tary			
Tota	al depth:	30 m				Wa	ater T	able: 1	Not A	vail	able			
						C	ore						0.85	
			60			Reco	verv 9	6					Ē	
			-Ē			RO	D %						Ē	ts.
	Ξ		the	als			<u> </u>						E.	esu
Ε	ţ,		lea	Iter	6								L L	t l
ĥ,	Ceb	Description of Rock/Soil		Й	Ze,			E I		F	-		ate	e I
Del	u u		tio.	a u u	22	%	~	l la		5	6		M.	ks
-	Ru		E E		E E	吕	8	A					E.	nai
			Ite	-	E.	~	~	-fr				0	ab	Rel
			~		- Re				5	5	5	alu	Ĕ	
					-				12	10	2	~	Pel	
		Coarse grain brown to grev sandy	-									_		
1	0-1	sludge	Mw	-	-	-	-	-	-	-	-	-		
		Fine grain light grey schist (Sandy							50/7		t	>50		
2	1-2	sludge)	Mw	-	-	-	-	-						
		Fine grain light grey schist (Sandy							50/9		1	>50		
3	2-3	sludge)	WIW	-	-	-	-	-						
		Fine grain light grey schist (Sandy	Mm						50/3		Ī	>50	Ret	
4	3-4	sludge)	IVIW	-	-	-	-	-			l			
		Fresh fragments of quartzitic schist	Sm		6	10			50/4			>50		
5	4-5	riesh nagments of quartitue senist		-	Ľ.,			-	<u> </u>		ļ			
		Shudge weathered							50/6			>50		
6	5-6				.		L		ļ		ļ			
		Weathered and fractured quatzitic	Sw	-	2	4	-	40	50/3			>50		
/	0-/	schist	-		<u> </u>						 			
	7.0	Medium grained fractured schists (Sw	-	-	-	-	-	-	-	-	-		
8	/-8	Sandy sludge)									 			
0	8.0	No Recovery	-	-	-	-	-	-	-	-	-	-		
-	0-2	Weathered grey fractured quartzitic	+				<u> </u>		50/5		t	>50		
10	9-10	schist	Sw	-	3	6	-	42	20.2					
		Light grey weathered and fractured	+		t				1		t			
11	10-11	quartzitic schist	Sw	-	6	14	-	48	-	-	-	-	_	
		Light grey weathered and fractured	- a		.				50/6		1	>50	ept	
12	11-12	quartzitic schist	r-sw	-	4	12	-	42					E E	
		Light grey weathered and fractured	F Su		7	12		45	Ι		Ι		52	
13	12-13	quartzitic schist			<u> </u>						ļ		E.	
		Light grey weathered and fractured	F-Sw	-	-	-	-	-	-	-	-	-	2 Line	
14	13-14	quartzitic schist		L	ļ		<u> </u>				 		Los L	
		Light grey weathered and fractured	F-Sw	-	2	6	-	48	-	-	-	-	iter	
15	14-15	quartzitic schist	-	<u> </u>			<u> </u>		50.02		 		N.	
16	15.14	Light grey weathered and fractured	F-Sw	-	4	10	-	35	50/3			~30		
10	10-10	Light gray weathered and fractioned	+	<u> </u>	<u> </u>		<u> </u>		+		ł			
17	16.17	quartzitic schist	F-Sw	-	8	12	-	35	-	-	-	-		
1/	10-17	Light grey weathered and fractured	-	<u> </u>			<u> </u>		50/3		t	>50		
18	17-18	quartzitic schist	F-Sw	-	4	9	-	35	50.5					
		Light grey weathered and fractured	L						1		t			
19	18-19	quartzitic schist	F-Sw	-	5	10	-	35	-	-	-	-		
-		Light grey weathered and fractured					1		1		t			
			F-Sw	-	13	10	1 13	35	- 1	-	- 1	-		

Sindhuli Road (II) Borchole No.: B4 Drilling Machine: Voldrill Inclination. Vertical Drilling Machine: Voldrill Description of Rock/Soil Sindhuli Road (II) Big Big <th></th> <th></th> <th>BOR</th> <th>EHO</th> <th>DLE</th> <th>LO</th> <th>G: B</th> <th>4</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			BOR	EHO	DLE	LO	G: B	4							
Difference No.: B4 Druming Machine Volami Inclination: Vortical Diffing Methods Rotary Total depth: 30 m Water Table: Not Available Image Machine Volami Diffing Methods Rotary Description of Rock/Soll Image Machine Volami Image Machine Volami Image Machine Volami <	D	1 1 27	Si	ndhu	li R	oad	ш	D 111	- > (-	1.		1.1.11			
Immunitation Ventual Total depth: 30 m Total depth: 30 m Total depth: 30 m	Bor	enole IN	0.: B4 Vertical					Drillin	g Ma	cnine othod	: V0	larill torai			
Image: Second Corport of an analysis of the second seco	Tota	al denth:	30 m				w	ater T	able: `	Not 4	L KO	ahle			
E H Core Recovery % 1 Description of Rock/Soil 10	100	ii depui.	50 m				*** 2	iici i	aure.		1van	aure			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							C	ore						SS	
H H				60			Recovery %							1 L	
E Figure 40 Description of Rock/Soil Figure 40 Figure 40 Solution of Rock/Soil Figure 40 Solution of Rock/Soil Figure 40 Solution of Rock/Soil Figure 40 <				-uu	20		RQD %					Ē	ults		
Image: Problem of Processes <	_	В		athe	rial	E								letr.	rest
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	р, п	pth		We	ate	5			t					ter	est
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	epti	õ	Description of Rock/Soil	on	- 20	Siz	~	~	our		100	5		Wa	L's
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		- Mar		nati	i.	E	ğ	E.	Am					.È	ark
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_		lter	E	Ē.	R	1 X	.e					abil	Cen
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				V		Aax				B	B	B	alue	me	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						~				2	2	2	ž	Per	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										50/4			>50		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	21	20-21	Dark grey fractured rock with fine grai	IF-SW	-	8	14	-	30						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Dark grey fractured rock with fine	F-Sw	-	2	14	-	30	-	-	-	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	22	21-22	grained quartzite			 									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	23	22-23	weathered and fractured quartize with	F-Sw	-	4	7	-	15	-	-	-	-	52	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Grey fine grained fresh to slightly	– –				1	25	50/3			>50	Ë	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	24	23-24	weathered and fractured quartize with	r-Sw	-	2	2	-	25						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Grey fine grained fresh to slightly	F-Sw	-	5	10	-	25	-	-	-	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	25	24-25	weathered and fractured quartize with			 									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	26	25-26	weathered and fractured quartize with	F-Sw	-	8	10	-	43	-	-	-	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Grey fine grained fresh to slightly			1		1		50/3			>50		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27	26-27	weathered and fractured quartize with	F-SW	-	2	10	-	42						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Grey fine grained fresh to slightly	F-Sw	-	8	13	-	40	-	_	-	-	Lini (
29 28-29 weathered and fractured quartize with F-Sw - 8 12 - 45 50 50 50 30 29-30 weathered and fractured quartize with F-Sw - 10 40 10 45 - - - 25 30 29-30 weathered and fractured quartize with F-Sw - 10 40 10 45 - - - 25 30 29-30 weathered and fractured quartize with F-Sw - 10 40 10 45 - - - 25 30 29-30 weathered and fractured quartize with F-Sw - 10 40 10 45 - - - 25 30 29-30 weathered and fractured quartize with F-Sw - 10 40 10 45 - - - 25 30 29-30 - - - - - - - - - - - - - - - - <td>28</td> <td>27-28</td> <td>weathered and fractured quartize with Gravifina grained frach to slightly</td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td>50/4</td> <td></td> <td></td> <td>>50</td> <td>Ř</td> <td></td>	28	27-28	weathered and fractured quartize with Gravifina grained frach to slightly			 				50/4			>50	Ř	
Grey fine grained fresh to slightly weathered and fractured quartize with F-Sw - 10 40 10 45 - <t< td=""><td>29</td><td>28-29</td><td>weathered and fractured quartize with</td><td>F-Sw</td><td>-</td><td>8</td><td>12</td><td>-</td><td>45</td><td>50/4</td><td></td><td></td><td>- 50</td><td></td><td></td></t<>	29	28-29	weathered and fractured quartize with	F-Sw	-	8	12	-	45	50/4			- 50		
30 29-30 weathered and fractured quartize with - 10 40 10 43 - <t< td=""><td></td><td></td><td>Grey fine grained fresh to slightly</td><td>E 6</td><td></td><td>10</td><td>40</td><td>10</td><td>45</td><td>1</td><td></td><td></td><td></td><td>88</td><td></td></t<>			Grey fine grained fresh to slightly	E 6		10	40	10	45	1				88	
	30	29-30	weathered and fractured quartize with	r-sw	-	10	40	10	40	-	-	-	-	Ľ	
				+		<u>+</u>		+		+					
				Ι		Ι		Ι		[
				ļ		ļ		ļ				 			
			-												
				+		<u> </u>				-					
			-												
				+		 		l							
				†		†		†		1					
				ļ		ļ									
			-												
				+		<u> </u>		<u> </u>		+					
Abbreviations: F-Fresh, SW-Slightly Weathered, MW- Moderately Weathered, HW-Highly Weathered, CW-Completely Weathere	Abb	eviations:	F-Fresh, SW-Slightly Weathered, MW- M	lodera	tely V	Veath	ered, H	W-Hig	hly W	eathere	d, CV	N-Co	mplet	ely We	athered

2.3 LABORATORY TEST

Laboratory tests shown as below were conducted. The result of laboratory tests is shown as the following pages. The samples picked in the site were shown as Table 2.3.1.

- (1) Specific gravity of soil (ASTM D854, D136)
- (2) Moisture content (ASTM, D4959)
- (3) Particle size analysis by sieve and hydrometer (ASTM D422, C136)
- (4) Test of Soil compaction using a rammer (JIS 1210)

Table 2.3.1 Samples for the Laboratory Tests

Location	Location	Condition
Sta.17+400	Around borehole of A-1	Gravel and soil
Sta.17+600	The bottom of B-3 survey line	High weathered rocks and soil
a . 1		

Source: study team

SP	ECIF	IC GRAVITY	Y TEST		
Project : Landslide Monitoring					
Location : Sindhuli Road Section II					
Client : JICA					
Sample No.		A1	A2	B1	B 2
Depth, m		0.5	0.5	0.5	0.5
Wt. Pyconometer + Water + Soil	gm	180.92	180.26	173.00	180.00
Temperature T in c	°C	29	29	29	29
Wt. Pycnometer + Water	gm	162.10	161.40	154.30	161.40
Wt. Soil	gm	30.0	30.0	30.0	30.0
Specific Gravity of Water		0.9960	0.9960	0.9960	0.9960
Specific Gravity of Soil		2.673	2.682	2.644	2.621

	NATURAL MOISTURE CONTENT													
Project : Landslide Monitoring														
Location : Sindhuli Road Section II														
Client : JICA														
Sample No.	Depth, m	Wt. of Cont. + Wet Soil	Wt. of Cont. + Dry Soil	Wt. of Water	Wt. of Empty Container	Wt. of Dry Soil	Moisture Content (%)							
Borehole No				1										
B1	0.5	86.65	80.46	6.19	12.25	68.21	9.07							
B2	0.5	84.23	80.16	4.07	13.00	67.16	6.06							
A1	0.5	98.28	94.22	4.06	12.20	82.02	4.95							
A2	0.5	95.55	88.83	6.72	11.90	76.93	8.74							

Location : A1

Weight of Hammer Number of Layers Mould Volume :

: 5 : 2207.81 cc

: 4.5 kg.

Height of Drop : 45 cm Blows per Layer : 56

	Test Number =>	1	2	3	4	5
Mass of mould + base + compacted specimen	gm	12,390	12,550	12,780	12,980	12,900
Mass of mould + base	gm	7,850	7,850	7,850	7,850	7,850
Mass of compacted specimen	gm	4,540	4,700	4,930	5,130	5,050
Bulk density	gm/cc	2.06	2.13	2.23	2.32	2.29
Moisture content	%	3.9 7	5.54	7.41	9.86	11.05
Dry density	gm/cc	1.98	2.02	2.08	2.12	2.06

Location : A2

Weight of Hammer Number of Layers Mould Volume :

: 2207.81 cc

: 4.5 kg.

: 5

Height of Drop : 45 cm Blows per Layer : 56

	Test Number =>	1	2	3	4	5
Mass of mould + base + compacted specimen	gm	9,740	9,950	10,160	10,380	10,300
Mass of mould + base	gm	5,508	5,508	5,508	5,508	5,508
Mass of compacted specimen	gm	4,232	4,442	4,652	4,872	4,792
Bulk density	gm/cc	1.92	2.01	2.11	2.21	2.17
Moisture content	%	3.97	5.54	7.41	9.86	11.05
Dry density	gm/cc	1.84	1.91	1.96	2.01	1.95

Location : B2

Weight of Hammer Number of Layers Mould Volume :

: 5 : 2207.81 cc

: 4.5 kg.

Height of Drop : 45 cm Blows per Layer : 56

Test Number => 1 2 3 4 5 10,120 10,320 10,540 10,480 10,410 Mass of mould + base + compacted specimen gm Mass of mould + base 5,508 5,508 5,508 5,508 5,508 gm 4,902 Mass of compacted specimen 4,612 4,812 5,032 4,972 gm Bulk density 2.09 2.18 2.28 2.25 2.22 gm/cc 5.84 7.10 9.24 Moisture content % 3.84 11.32 Dry density 2.01 2.06 2.13 2.06 1.99 gm/cc

Location : B1

Weight of Hammer Number of Layers Mould Volume :

: 5 : 2207.81 cc

: 4.5 kg.

Height of Drop : 45 cm Blows per Layer : 56

Test Number => 2 3 5 1 4 12,540 12,718 12,980 12,890 12,800 Mass of mould + base + compacted specimen gm Mass of mould + base 7,850 7,850 7,850 7,850 7,850 gm 4,690 4,868 5,040 4,950 Mass of compacted specimen 5,130 gm Bulk density 2.12 2.20 2.32 2.28 2.24 gm/cc 3.79 9.52 Moisture content % 5.45 7.87 11.28 Dry density 2.05 2.09 2.15 2.08 2.01 gm/cc

APPENDIX 3 RAINFALL ANALYSIS

Table of Contents

Page

3.1	Correlation between Disaster Occurrences and Rainfall Intensity	A3-1
3.1.1	The Collection and the organization of the rainfall data	A3-1
3.1.2	The Relation between the Rainfall and the Collapse	A3-2

APPENDIX III

RAINFALL ANALYSIS

3.1 Correlation between Disaster Occurrences and Rainfall Intensity

It organized former rainfall data and collapse data and it considered relation between the rainfall and the collapse.

3.1.1 The collection and the organization of the rainfall data

It collected and it organized the data of the STA17+100 rain gage station which is the nearest the site. So far, it was the organization only of the daily rainfall data but to improve precision more, this time, it organized a reading hourly rainfall data which was read in the indicator paper.

Also, because it was observed only in the rainy season, it organized as 0 mm except the observation period. Incidentally, it was included the semiautomatic rainfall gauge data which was established in this study.

Observation stations	STA17+100	Remarks
Source	Hazama Ando JV	
Data format	paper (1week)	
Observing period	25^{th} Jun2003~31 th Oct 26^{th} Apr2004~31 th Oct 01^{th} May2005~31 th Oct 25^{th} Apr2006~31 th Oct 27^{th} Apr2007~31 th Oct 27^{th} Apr 2008~31 th Oct 27^{th} Apr 2009~06 th Nov 29^{th} Jun2010~03 th Nov	8years observing period in this study

 Table 3.1.1 The specification of the organized rainfall data

3.1.2 The relation between the rainfall and the collapse.

(1) The method of study

Since the collapse occurs as a trigger by the rain, it is important to clarify the relationship between disasters and more rain down. It is said that if the accumulated rainfall in the slope is over the storage capacity, the collapse occurs.

Therefore, the occurrence of collapse is related to short-term rainfall intensity and long-term rainfall.

It is showed that the sample of the analysis between the rain and the collapse occurrence in figure 3.1.1. It is thought that a long-term rainfall and a short-term rainfall are related to the collapse on this site, so we executed this examination was executed. The simplest, continuous rainfall was adopted this time though various methods were proposed as for the calculation of a long-term rainfall. A continuous rainfall is a rainfall placed between 24 hour no rainfall as shown in figure 3.1.2. Moreover, because the collapse occurrence time was uncertain, maximum rainfall was assumed to be a short-term rainfall.

Figure 3.1.1 The Sample of the Analysis between the Rainfall and the Collapse Occurrence.

(Note) It was a continuous rain there is a period of rainfall before and after 24 hours. Also, it dealt only with the rainfall that the continuation rainfall is more than 20 mm.

Figure 3.1.2 Calculation of Continuous Rainfall

(2) The characteristic with rain

The monthly rain is as shown below.

Table 3.1.2 Monthl	lv	' Rainfal	
--------------------	----	-----------	--

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	合計
2003						197.5	457.5	291	328.5	44.5	0	0	
2004	0	0	0	36	105.5	207.5	764	216.5	264	129.5	0	0	1,723
2005	0	0	0	0	56	86.5	362.5	746	239.5	142	0	0	1,633
2006	0	0	0	0	323.5	556.5	281.5	243	534.5	26.5	0	0	1,966
2007	0	0	0	59.5	190.5	546	796	465	540	217.5	0	0	2,815
2008	0	0	0	14	205	554.5	540.5	475	339.5	138	0	0	2,267
2009	0	0	0	15	120	87	352.5	295.5					870
2010	0	0	0			15.5	439.5	478	377	74.5			1,385
Average	0	0	0	21	167	281	499	401	375	110	0	0	1,854

Also, the number of days that a rainfall was observed is as shown below.

Table 3.1.3	The list of	the number	of days	that a	rainfall	was observed
-------------	-------------	------------	---------	--------	----------	--------------

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2003						3	29	27	25	11	0	0
2004	0	0	0	2	12	23	26	22	19	14	0	0
2005	0	0	0	0	11	16	26	29	20	17	0	0
2006	0	0	0	0	17	24	25	18	26	6	0	0
2007	0	0	0	2	10	22	30	26	23	13	0	0
2008	0	0	0	2	22	28	28	27	23	7	0	0
2009	0	0	0	2	13	10	22	14	1	0	0	0
2010	0	0	0	0	1	2	27	26	27			
Average	0	0	0	1	14	18	27	23	20	11	0	0

The distribution of the hourly rainfall and the continuous rainfall is as in Table 3.1.4. The hourly rainfalls more than 50 mm were 4 times in 8 years. Also, the continuous rainfalls of more than 500 mm ware twice in 8 years.

The hourly rainfall(mm)	times	the continuous rainfall (mm)	times
0	61,244	20-100	94
0-10	2,875	100-200	30
10-20	275	200-300	8
20-30	73	300-400	4
30-40	30	400-500	0
40-50	7	500-600	1
50-60	4	600-700	1

 Table 3.1.4
 The Distribution of the Hourly Rainfall and the Continuous Rainfall

*: The continuous rainfall deals with only more than 20 mm rainfall.

(3) The estimation of the collapse occurrence time

The date which the collapse occurred to is clear but the time which the collapse occurred to is unclear. Therefore, it supposed that the collapse occurred in the end of the continuation rainfall. Also, it was organizing a collapse record in the preceding paragraph. These are the one to have organized the past material and don't always still agree more with the rainfall which was organized this time because the rain gage station, too, was different. The small collapse occurs five times during the in this study.

In this year, it is implementing investigation and the slight collapse can be correctly grasped but such an ordinary year collapse is estimated to occur intermittently.

STA	STA17+400	STA17+600	STA18+200
	1; 20 th Jul2003 at 4h	1; 1 st Aug at 1h*2	1; 20 th Jul 2003 at 4h
	2; 11 th 4Jul11th 2004 at 5h	2;7 th Sep7th at 1h	2; 11 th Jul 2004 at 5h
	3; 13 th Aug2005 at 18h	3 ; 26 th Sep 2007 at 1h*3	3 ; 13 th Aug 2005 at 18h
(7)1	4; 26 th Sep 2005 at 23h*1	4; 30th Sep 2007 at 1h*3	4; 26 th Sep 2005 at 23h*1
The	5; 30 th Jul 2007 at 1h*2	5;12 th Oct 2007 at 7h	5; 30 th Jul 2007 at 1h*2
collapse	6; 12 th Jul 2010 at 0h	6; 27 th Jul2009 at 23h	6; 23th Jul2008 at 9h
record	7; 24 th Aug 2010 at 7h*4		7; 13 th Aug 2010 at 20h
	8; 35 th Aug 2010 at 11h*4		8; 24 th Aug2010 at 17h
	9; 27 th Aug 2010 at 10h*4		

 Table 3.1.5
 The Estimated Time of Collapse Occurrence

*1 The continuous rainfall was equal to or less than 20 mm.

*2 It is the same continuous rainfall.

*3 There is a future rainfall of 250 mm from 3th sep to 1th sep.

*4 It is the same continuous rainfall.

*It made applied because there was a record of the collapse expansion in STA17+400, 18+200 in Nov 2003 and in Dec 2007 but there was not rainfall data.

(4) The relation between the rainfall and the collapse.

It made the continuous rainfall and the maximum hourly rain of the rainfall which the collapse generated and the rainfall which the collapse didn't generate figure 3.1.3 in the plot.

In case of the plot, there was a plot, dividing every area of STA17+400, 18+200 and STA17+600, too. Also, a continuous rainfall ranking was shown in Table 3.1.6.

It finds that it is in the tendency which it is easy for the collapse to generate in the hourly rain when the 30 mm continuous rainfall exceeds 150 mm. Specifically, the large collapse occurs when the continuous rainfall exceeds 500 mm. The hourly rain experienced an about 50 mm rainfall eight times but it is only when the continuous rainfall exceeded 500 mm that the collapse occurred. The relation between the hourly rain and the collapse isn't admitted.

The collapse occurs in the small rainfall. This is estimated to be the purpose that the unstable soil mass which was left on the slope reacts to for the slope to become steep with the collapse in the past to the small rainfall and that it is collapsing.

Figure 3.1.3 The relation between the rainfall and the collapse (3 areas)

① Sta.17+400

It finds that it is in the tendency which it is easy for the collapse to generate in the hourly rain exceeds the 30 mm and the continuous rainfall exceeds 150 mm. Specifically, the large collapse occurs when the continuous rainfall exceeds 500 mm. the continuous rainfall about 300mm is observed in every year , so the collapse occurred every year. The hourly rain experienced an about 50 mm rainfall eight times but it is only when the continuous rainfall exceeded 500 mm that the collapse occurred. The relation between the hourly rain and the collapse isn't admitted. After the large collapse in Jul 2004 and Jul 2007, the unstable soil mass which was left on the slope reacts to for the slope to become steep. So this unstable soil mass fail by the small rain.

Figure 3.1.4 Correlation between Disaster Occurrences and Rainfall Intensity (Sta.17+400)

2 Sta.17+600

In Jul-Aug 2007 which was observed the continuous rainfall 607mm, the first large collapse was occurred. After this collapse, small collapses occurred in the continuous rainfall about 150-300mm. The hourly rain experienced an about 50 mm rainfall eight times but the collapse wasn't occurred. The relation between the hourly rain and the collapse isn't admitted. After the large collapse in 2007, the unstable soil mass which was left on the slope reacts to for the slope to become steep. So this unstable soil mass fail by the small rain.

Figure 3.1.5 Correlation between Disaster Occurrences and Rainfall Intensity (Sta.17+600)

3 Sta.18+200

It finds that it is in the tendency which it is easy for the collapse to generate in the hourly rain exceeds the 30 mm and the continuous rainfall exceeds 150 mm. Specifically, the large collapse occurs when the continuous rainfall exceeds 500 mm. the continuous rainfall about 300mm is observed in every year , so the collapse occurred every year. The hourly rain experienced an about 50 mm rainfall eight times but it is only when the continuous rainfall exceeded 500 mm that the collapse occurred. The relation between the hourly rain and the collapse isn't admitted. After the large collapse in Jul 2004 and Jul 2007, the unstable soil mass which was left on the slope reacts to for the slope to become steep. So this unstable soil mass fail by the small rain.

Figure 3.1.6 Correlation between Disaster Occurrences and Rainfall Intensity (Sta.18+200)

Order	Year	Order in yaer	Start of rain	Finish of rain	Continuous rain	Site of slope disaster
1	2007	1	18-Jul	2-Aug	607	17+400,17+600,18+200
2	2004	1	4-Jul	12-Jul	527	17+400,18+200
3	2008	1	8-Jul	27-Jul	390	18+200
4	2003	1	6-Jul	20-Jul	331.5	17+400,18+200
5	2009	1	25-Jul	1-Aug	305.5	17+600
6	2006	1	6-Sep	13-Sep	303	
7	2010	1	20-Aug	27-Aug	292.5	17+400,18+200
8	2007	2	3-Sep	11-Sep	250	17+600
9	2005	1	18-Aug	27-Aug	246.5	
10	2007	3	12-Aug	17-Aug	244	
11	2006	2	22-Jun	2-Jul	232	
12	2008	2	22-Jun	2-Jul	226	
13	2005	2	15-Jul	25-Jul	223	
14	2008	3	1-Jun	7–Jun	202	
15	2003	2	25-Jun	28-Jun	197.5	
16	2006	3	6-Jul	20-Jul	195	
17	2003	3	18-Sep	24-Sep	194	
18	2007	4	11-Jun	15-Jun	190.5	
19	2007	5	8-Jul	17-Jul	174	
20	2005	3	5-Aug	7-Aug	171	
21	2005	4	8-Aug	12-Aug	169	
22	2008	4	25-Aug	2-Sep	166.5	
23	2010	2	8-Jul	16-Jul	162.5	17+400
24	2007	6	16-Jun	20-Jun	160	
25	2007	7	8-Oct	12-Oct	149.5	17+600
26	2010	3	20-Jul	25-Jul	146	
27	2010	4	9-Sep	20-Sep	144	
28	2006	4	26-May	29-May	143	
29	2007	8	5-Jun	10-Jun	143	
30	2006	5	20-Sep	26-Sep	142	
31	2005	5	13-Aug	17-Aug	137	17+400,18+200,
32	2008	5	3-Jul	7-Jul	135.5	
33	2008	6	3-Sep	6-Sep	133	
34	2006	6	8-Jun	10-Jun	127	
35	2009	2	3-Aug	7-Aug	123	
36	2008	7	4-Aug	9-Aug	111.5	
37	2004	2	22-Sep	25-Sep	111	
38	2009	3	8-Aug	14-Aug	109.5	
39	2010	5	13-Aug	17-Aug	109	18+200
40	2004	3	15-Jul	20-Jul	107.5	

Table 3.1.6 The Relation between the Continuous Rainfall Ranking and the CollapseOccurrence (2003-2010)

(5) The probability of rain in study area

The probabilities of rain were calculated from the observed rainfall data. The probability of rain was calculated by hourly rain, daily rain, and continuous rain.

It is showed the probability of daily rainfall stations Sindhuli Gali for reference in the Table 3.1.7.

This probability of rain was calculated by 1956 - 1994 (38 years) data.

Table 5.1.7 The Probability of Kam in Study Area							
Occurrence	continuous	tinuous hourly rain d		daily rain			
period	rain (mm)	(mm)	(mm)	(reference)			
				(mm)*1			
2	362.6	45	128.6	170			
5	481.5	52	167.7	250			
10	564.7	56.1	197.1	302			
30	697.4	61.7	246.4	369			
50	758.9	64.1	270.8	419			

 Table 3.1.7
 The Probability of Rain in Study Area

*1 : Basic design study report on the project for construction of Sindhuli Road (section II : Sindhuli Bazar - Khurkot) in

Kingdom of Nepal : final report 1999

The two large collapses have occurred in about 10-years rainfall probability. When heavy rain fell like this in the future that is likely to cause the collapse of a similar scale. The slope became steep by the collapse, which tended to increase gradually collapse.