2. Representative Wave Investigation

2. Representative Wave investigation

2.1 Wave Hindcast Points and Fetch

Waves with a return period of several times per year and of 10, 30 and 50 years were hindcast at 7 points shown in Figure 1. Also, the blue dot is the wave observation point. The fetch of each wave hindcast point is given in Table 1, while the fetch models in Figure 2.

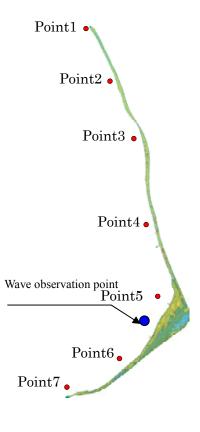


Figure 1 Wave hindcast points

Direction					Featcl	n (km)	
Direction	Point1	Point2	Point3	Point4	Point5	Point6	Point7
N	0.2	0.8	1.6	2.7	3.2	6.8	9.1
NNE	-	0.1	0.3	0.7	0.7	3.6	6.5
NE	-	-	-	-	-	1.4	3.9
ENE	-	-	-	-	-	0.5	2.0
E	-	-	-	-	-	-	-
ESE	0.6	0.1			-	-	-
SE	2.5	1.3	0.4	0.4	-	-	-
SSE	5.5	3.5	1.7	1.3	-	-	-
S	9.9	7.3	4.7	3.2	0.5	0.1	-
SSW	13.3	11.3	8.8	6.8	3.0	1.3	1.2
SW	14.0	13.5	12.3	10.5	7.1	4.5	4.0
WSW	12.5	13.6	13.7	12.9	11.0	8.5	7.6
W	8.8	11.2	12.9	13.7	13.6	12.0	10.7
WNW	5.2	8.1	10.4	12.0	13.3	13.4	12.4
NW	2.6	5.0	7.1	9.1	10.6	12.3	12.3
NNW	0.9	2.4	4.0	5.8	6.8	9.9	11.1

Table 1 Fetch

The study for assessment of ecosystem, coastal erosion and protection / rehabilitation of damaged area in Tuvalu

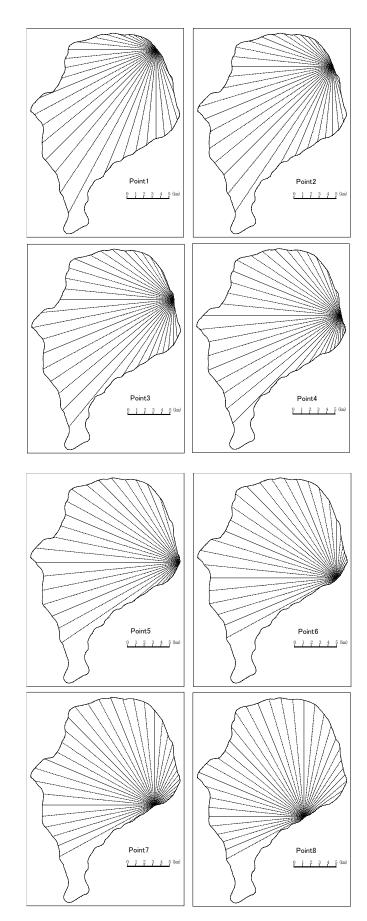


Figure 2 Fetch Models

PVI-S1-18

2.2 Correction of Wave Hindcasts

(1)Investigation using wind observation data

Point1

Wave hindcast verification was undertaken with the Sverdrup, Munk and Bretschneider (SMB) method, which uses the following Wilson's formula IV, based on wave observation data from February 2 until March 19.

$$\frac{gH_{1/3}}{U^2} = 0.30 \left\{ 1 - \frac{1}{\left[1 + 0.004 (g F/U^2)^{1/2} \right]^2} \right\}$$
(1)

$$\frac{gT_{1/3}}{2\pi U} = 1.37 \left\{ 1 - \frac{1}{\left[1 + 0.008(g F/U^2)^{1/3} \right]^5} \right\}$$
(2)

Where,

g: Gravitational acceleration (m/s^2) ,

U: Wind speed 10 m above sea level

$H_{1/3}$, $T_{1/3}$: Significant wave height (m), signification wave period (s), and

F: Fetch (m).

Hindcasting was conducted for an eleven day period, from February 2 to 12, because there was no observation data from February 13 for Funafuti port (see wave hindcast I in Table 2).

Table 2Wind observation and wave hindcast periods

Month						F	ebr	uar	у									Ν	larc	h			
Day	2	4	6	8	10	12	14	16	18	20	22	24	26	28	2	4	6	8	10	12	14	16	18
Wind observation				- 2	/12																		
Wave observation				2/2	2-2/	′19									2/2	20-3	/19)					
Wave hindcast I			2/2	2-2/	′12																		
Wave hindcast I									2/2	2 - 3	3/19	9											

† Wave hindcast : Using observation wind data

††Wave hindcast : Using NCEP reanalysis wind data

The results of the calculations are given in Figure 3, however, because, the hindcast period is short in comparison to the observation values the coefficient 1.37 of formula (2) has been adjusted by 1.5 times, Figure 4.

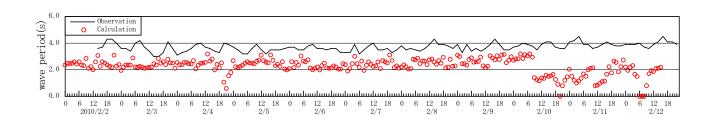


Figure 3 Difference between hindcast period and observation period before correction

The reproducibility of the wave period and height is relatively good, if data from February 10 on is omitted, as can be seen in Figure 4. From February 10 to 12 there were no waves hindcast such as those observed, however, because, for the purposes of wave hindcasting, accuracy of rough periods is more important than calm periods, verification was undertaken using NCEP (National Centers for Environmental Prediction) reanalysis wind data that includes rough conditions in March (see wave hindcast II in Table 2).

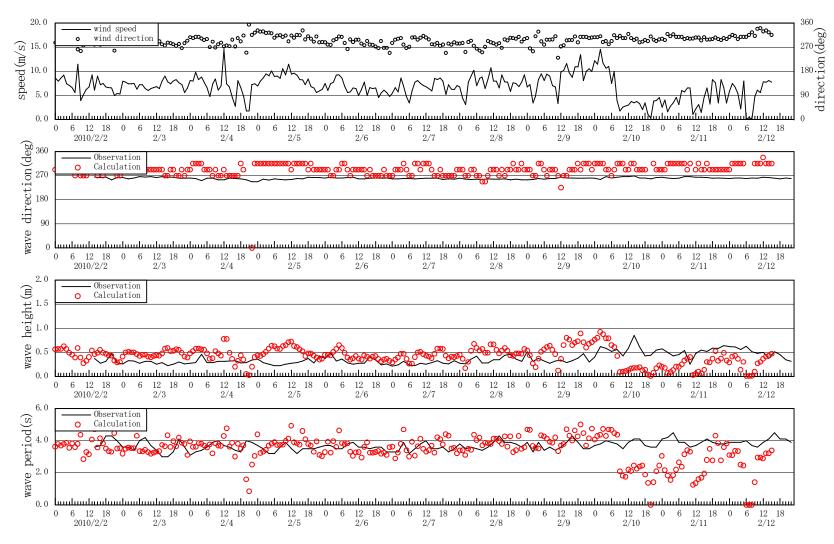
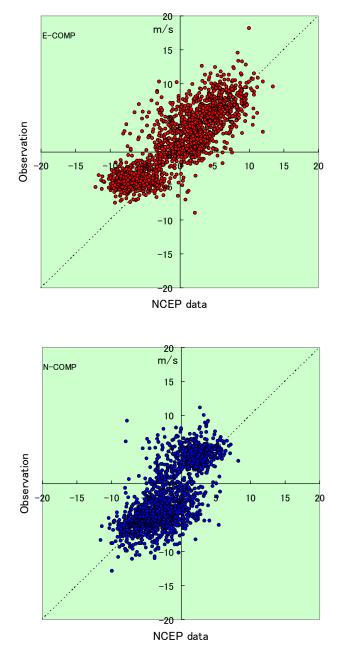



Figure 4 Comparison of observed values and results of hindcasting using wind observation data

(2) Investigation using NCEP data

The NCEP data is taken four times daily (0, 6, 12, 18h, UTC), at 2.5° grid spacing. From this, Spline interpolation was employed to conduct spatio-temporal interpolation to obtain data of one hour intervals at 8°31' northing and 179°12' 1" easting.

A correlation of NCEP data and wind observation data is given in Figure 5. The upper figure is the east-west component of wind velocity, while the lower figure is a comparative north-south wind component. It was decided to use the NCEP data without correction, because, while there is a spread in the distribution, the majority is along the diagonal.

Wind speeds 5.0m/s and over were selected. Figure 5 Correlation of NCEP data and wind data (Jan. 1999–Feb. 2009)

Figure 6 is a time series comparison of observed wind speed for February 2010. As mentioned above, because the four times daily NCEP data is interpolated the peak values do not match, however, trends in wind speed variation and order are good. Further, from February 10 to 12 when the observed wind speed was low, the NCEP data was 10 m/s or higher.

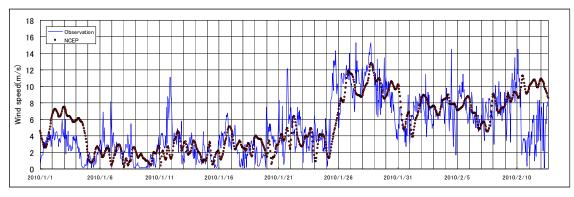


Figure 6 Correlation between NCEP and observed wind data (Feb. 2010)

Wave hindcasts using the NCEP data are shown in Figure 7 (1) to (4). Periods of high observed wave heights are February 10, March 3 to 5, and March 12 to 14. Maximum values are difficult to obtain because interpolated six-hourly wind data is used, however, the hindcast value peaks are still close to the observed values.

From this, it was determined that this model can be applied to Tuvalu by correcting the periodic coefficients.

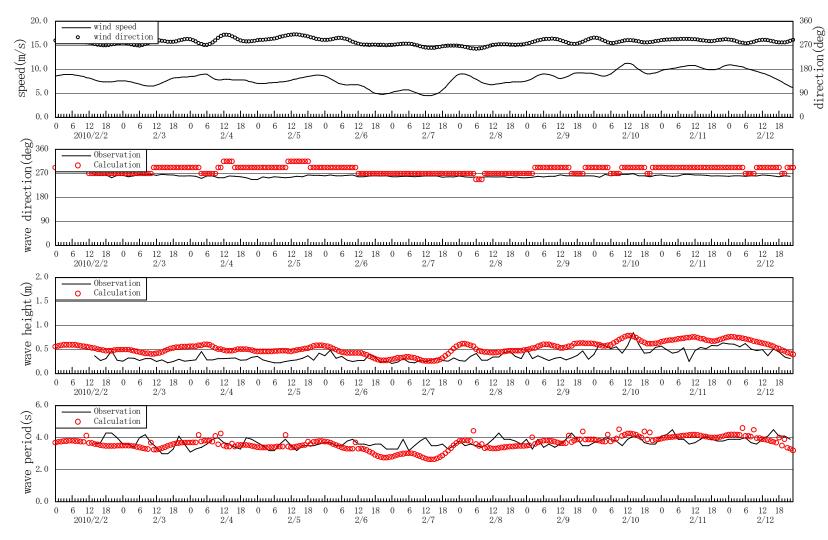


Figure 7(1) Comparison of observed values and results of hindcasting using wind observation data

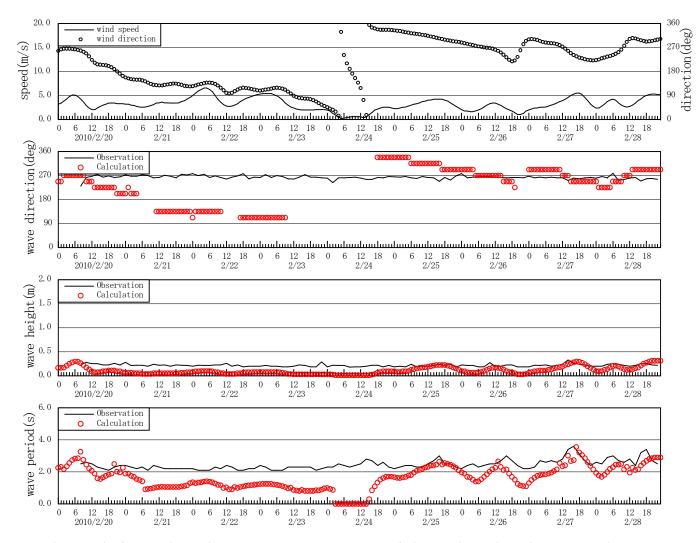


Figure 7(2) Comparison of observed values and results of hindcasting using wind observation data

PVI-S1-25

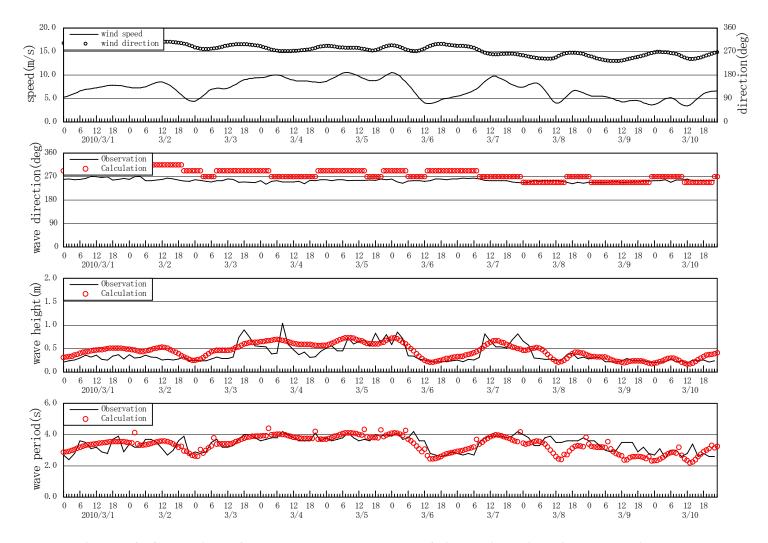


Figure 7(3) Comparison of observed values and results of hindcasting using wind observation data

PVI-S1-26

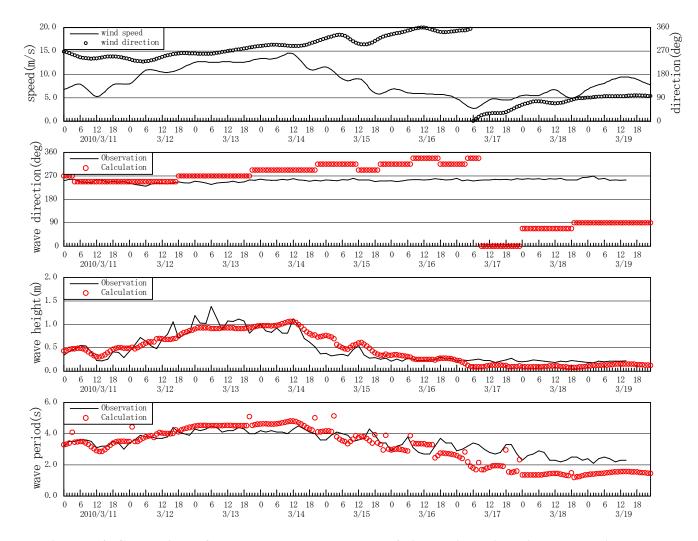


Figure 7(4) Comparison of observed values and results of hindcasting using wind observation data

2.3. Wave Return Period of Several Times per Year

Because wave data is derived from wave hindcasts and because accuracy decreases when wave height is low, the non-exceedance probability curve, Figure 8, was derived from the cumulative occurrence ratio values for wave heights 0.4 m and above, Table 3; wherein a 99% probability of non-exceedance—which is one definition of a wave return period of several times per year—wave height of 0.57 m was found. The wave period that occurs most at wave height 0.57 m from Table 3 is between 4.0 and 4.4 seconds. Therefore, the height and period of a wave of return period of several times per year derived from hindcast data is $H_{1/3}=0.57$ m and $T_{1/3}=4.2$ s. Waves observed in front of Vaiaku Lagi Hotel between February 2 and March 19, 2010, however, exceeded a wave height of 0.57 m—the green line on Figure 9 wave height time series—ten times, which is too frequent to be a wave of return period of several times per year; therefore, the wave height is too low. On the other hand, the frequency of waves exceeding a wave height of 0.85 m, the red line, is five times. It is considered that a wave height observed five times in this period, which, as the lagoon side is calm in the dry season and rough in the rainy season, corresponds to a wave of return period several times per year. Therefore, the wave height and period of return period of several times per year are $H_{1/3}=0.85m_{x}$ $T_{1/3}=4.1s$ (mean values). Moreover, as a wave height of 0.85 m corresponds to a non-exceedance probability of 99.9%, this value will be used at other points to determine waves of return period of several times per year.

												Regulatio	n	87672	
Site			Funafuti(Observat	ion	87672	(100.0)
Term			1999/ 1.	/ 1/ 0:00-	- 2008/ 1	2/31/23	3:00 (Anni	ual)				Error		0	(0.0
Wave Heigh	ıt						Wave Per	iod (sec)						Sum	Accum.
(m)		0-0.9	1-1.9	2-2.9	3-3.4	3.5-3.9	4-4.4	4.5-4.9	5-5.4	5.5-5.9	6-6.4	6.5-6.9	7以上	Juin	Sum
0.00 - 0	0.09	59932	15928	428	6									76295	7629
		(68.4)	(18.2)	(0.5)	(0.0)	(0.0)								(87.0)	(87.0
0.10 - 0	0.19		1055	2776	203		17	5	1					4088	8038
			(1.2)	(3.2)	(0.2)	(0.0)	(0.0)	(0.0)	(0.0)					(4.7)	(91.7
0.20 - 0	0.29			2073	399	178	56	17	4	1				2728	8311
				(2.4)	(0.5)	(0.2)	(0.1)	(0.0)	(0.0)	(0.0)				(3.1)	(94.8
0.30 - 0	0.39			633	731	223	103	30	9	1	2	1	2	1735	8484
				(0.7)	(0.8)	(0.3)	(0.1)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(2.0)	(96.8
0.40 - 0	0.49			9	798		132	46	13	4	2		1	1286	8613
				(0.0)	(0.9)	(0.3)	(0.2)	(0.1)	(0.0)	(0.0)	(0.0)		(0.0)	(1.5)	(98.
0.50 - 0	0.59				63		108	38	20	5	1	1	2	712	8684
					(0.1)	(0.5)	(0.1)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.8)	(99.
0.60 - 0	0.69				1	206	154	32	9	5		1	2		8725
					(0.0)	(0.2)	(0.2)	(0.0)	(0.0)	(0.0)		(0.0)	(0.0)		(99.
0.70 - 0	0.79					21	171	30	12	1	2	1		238	8749
						(0.0)	(0.2)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)		(0.3)	(99.
0.80 - 0	0.89						72	31	17	2				122	876
							(0.1)	(0.0)	(0.0)	(0.0)				(0.1)	(99.
0.90 - 0	0.99						5	17	9	4				35	8764
							(0.0)	(0.0)	(0.0)	(0.0)				(0.0)	(100.
1.00 - 1	1.19						1	16	3	3				23	8767
							(0.0)	(0.0)	(0.0)	(0.0)				(0.0)	(100.
1.20 - 1	1.39														8767
															(100.
1.40 - 1	1.59														8767
															(100.
1.60 - 1	1.79														8767
															(100.
1.80 ≦															876
															(100.
Sum		59932	16983	5919	2201	1415	819	262	97	26	7	4	7	0.012	*
		(68.4)	(19.4)	(6.8)	(2.5)	(1.6)	(0.9)	(0.3)	(0.1)	(0.0)	(0.0)	(0.0)	(0.0)	(100.0)	*

Table 3 Frequency of wave heights and periods (Point5)

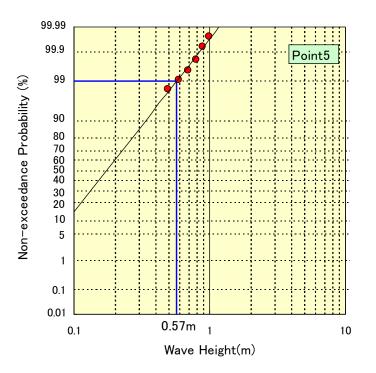
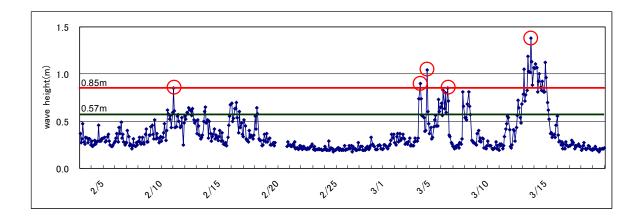



Figure 8 Non-exceedance probability curve (Point5)

Wave height		P	robability o	f non-excee	dance(%)		
(m)	Point1	Point2	Point3	Point4	Point5	Point6	Point7
0.50	99.03	98.60	98.21	98.01	98.01	97.89	97.83
0.51	99.15	98.75	98.39	98.20	98.19	98.08	98.03
0.52	99.25	98.89	98.56	98.37	98.35	98.25	98.20
0.53	99.34	99.02	98.71	98.53	98.50	98.40	98.36
0.54	99.42	99.13	98.84	98.67	98.63	98.53	98.50
0.55	99.49	99.22	98.96	98.80	98.75	98.66	98.64
0.56	99.55	99.31	99.06	98.91	98.86	98.77	98.76
0.57	99.61	99.38	99.15	99.01	98.96	98.88	98.86
0.58	99.65	99.45	99.24	99.10	99.05	98.97	98.96
0.59	99.70	99.51	99.31	99.19	99.13	99.06	99.05
0.60	99.73	99.57	99.38	99.26	99.21	99.14	99.13
0.61	99.76	99.61	99.44	99.33	99.27	99.21	99.21
0.62	99.79	99.65	99.50	99.39	99.33	99.27	99.27
0.63	99.82	99.69	99.55	99.45	99.39	99.33	99.34
0.64	99.84	99.72	99.59	99.50	99.44	99.39	99.39
0.65	99.86	99.75	99.63	99.54	99.49	99.44	99.44
0.66	99.87	99.78	99.67	99.58	99.53	99.48	99.49
0.67	99.89	99.80	99.70	99.62	99.57	99.52	99.53
0.68	99.90	99.82	99.73	99.66	99.60	99.56	99.57
0.69	99.91	99.84	99.75	99.69	99.64	99.60	99.60
0.70	99.92	99.86	99.78	99.71	99.67	99.63	99.64
0.71	99.93	99.87	99.80	99.74	99.69	99.66	99.67
0.72	99.94	99.89	99.82	99.76	99.72	99.68	99.69
0.73	99.95	99.90	99.83	99.78	99.74	99.71	99.72
0.74	99.95	99.91	99.85	99.80	99.76	99.73	99.74
0.75	99.96	99.92	99.86	99.82	99.78	99.75	99.76
0.76	99.96	99.93	99.88	99.83	99.80	99.77	99.78
0.77	99.97	99.93	99.89	99.85	99.81	99.79	99.80
0.78	99.97	99.94	99.90	99.86	99.83	99.80	99.81
0.79	99.97	99.95	99.91	99.87	99.84	99.82	99.83
0.80	99.98	99.95	99.91	99.88	99.85	99.83	99.84
0.81	99.98	99.96	99.92	99.89	99.86	99.84	99.85
0.82	99.98	99.96	99.93	99.90	99.87	99.86	99.86
0.83	99.98	99.96	99.94	99.91	99.88	99.87	99.87
0.84	99.98	99.97	99.94	99.92	99.89	99.88	99.88
0.85	99.99	99.97	99.95	99.92	99.90	99.89	99.89
0.86	99.99	99.97	99.95	99.93	99.91	99.89	99.90
0.87	99.99	99.98	99.96	99.94	99.91	99.90	99.91
0.88	99.99	99.98	99.96	99.94	99.92	99.91	99.91
0.89	99.99	99.98	99.96	99.95	99.93	99.91	99.92
0.90	99.99	99.98	99.97	99.95	99.93	99.92	99.93
0.91	99.99	99.98	99.97	99.95	99.94	99.93	99.93
0.92	99.99	99.99	99.97	99.96	99.94	99.93	99.94
0.93	99.99	99.99	99.97	99.96	99.95	99.94	99.94
0.94	99.99	99.99	99.98	99.96	99.95	99.94	99.95
0.95	100.00	99.99	99.98	99.97	99.95	99.94	99.95

Table 4 Probability of non-exceedance according to wave hindcast points

Final Report

2.4 Mean Energy Wave

The mean energy wave was calculated from wave hindcast data using the SMB method, from wind reference data for Funafuti port from 1999 to 2008.

The mean energy wave is to be used in the shoreline change prediction model, and is to be calculated with the following formulae.

Formula for wave period: $\widetilde{T} = \frac{\sum_{k} n_k T_k}{\sum_{k} n_k}$

(1)

Formula for wave height:
$$\widetilde{T} \cdot \widetilde{H}^2 = \frac{\sum_{k} \sum_{l} (n_{kl} \cdot T_k \cdot H_l^2)}{\sum_{k} \sum_{l} n_{kl}}$$

(2)

Formula for wave direction: $\widetilde{T} \cdot \widetilde{H}^2 \cos \widetilde{\alpha} \cdot \sin \widetilde{\alpha} = \frac{\sum_{m} \sum_{k} \sum_{l} n_{klm} \cdot T_k H_l^2 \cdot \cos \alpha_m \cdot \sin \alpha_m}{\sum_{k} \sum_{l} \sum_{m} n_{klm}}$

$$\widetilde{\alpha} = \frac{1}{2} \sin^{-1} \left[2 \frac{\sum_{m} \sum_{k} \sum_{l} n_{klm} \cdot T_{k} H_{l}^{2} \cdot \cos \alpha_{m} \cdot \sin \alpha_{m}}{\widetilde{T} \cdot \widetilde{H}^{2} \sum_{k} \sum_{l} \sum_{m} n_{klm}} \right]$$
(3)

Here,

 $H \ T \ \alpha$: wave height, period, and direction $\widetilde{H} \ \widetilde{T} \ \widetilde{\alpha}$: mean energy wave height, period, and direction

 $n \ge k \ge l \ge m$: frequency, subscript representing period level, subscript representing wave height level, and subscript representing wave direction level

Further, the following passage "Wave to be used in planning erosion countermeasures" is taken from page 41 of the *Coastal Protection Plan Guide* (Coastal Division, Rivers Bureau, Ministry of Construction, March 1994).

When the daily mean significant wave height is below 30 cm, the impact of these waves on erosion can be mostly ignored. Therefore it is necessary to exclude these from the reference. For example, the reference for calm period during summer on the Japan Sea coast is to be excluded. Otherwise the design wave will be under evaluated.

As such, waves of heights 0.3 m and higher were aggregated and used in formulae (1) to (3) to find the mean energy wave.

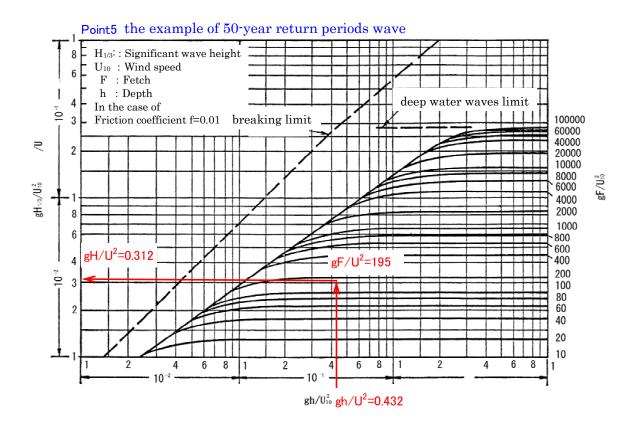
The results of the mean energy wave calculation are given in Table 5. The number of active days was calculated by dividing the number of days waves 0.3 m and higher were active in the target area by the total annual energy. When calculating the shoreline change prediction model, the mean energy wave is made active for 18 days for a year's calculation.

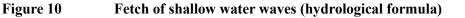
	ruble 5 Rep		wave (mean energy wave)	
Parameter	Height (m)	Period (s)	Direction (°)	Active days
Mean energy wave	0.52	3.6	288.4 (Area L-C:which is 36.7° clockwise to wave action perpendicular to the mean coastline vector of the target area, 3417°. Area L-D:which is 6° anticlockwise to wave action perpendicular to the mean coastline vector of the target area, 24.4°)	18

 Table 5
 Representative wave (mean energy wave)

2.5 Wave Return Period

Wave return periods were calculated using the Bretschneider method based on past wind speed probabilities, Table 6. The Bretschneider method of hindcasting is suited to hindcasting waves in shallow seas where waves are easily impacted by seabed friction; whereby significant wave height, $H_{1/3}$, can be obtained from Figure 10, based on: fetch, F; wind speed, U; and water depth, h. Wave period is calculated, based on past observation results, with the relevant formula:


$$T_{1/3} = 3.86 \sqrt{H_{1/3}}$$
 (units: s, m)


Table 6Wind speed probability of westerly in Funafuti lagoon, return period wave and
water level rise

		water level lise		
Return	Wind	Wave	Wave	Barometric tide
Period	speed	height	period	and wave setup
(year)	(m/s)	(m)	(sec)	combine(m)
5	11.1	0.8	3.5	
10	15.6	1.2	4.2	0.19
15	18.2	1.4	4.6	
20	20.1	1.6	4.8	0.26
30	22.8	1.9	5.2	
50	26.1	2.2	5.6	0.38
75	28.8	2.5	5.8	
100	30.7	2.7	6.0	

Carter (wind and sea analysis FUNAFUTI LAGOON, TUVALU1986)

Waves of 10-, 30- and 50-year return periods for Point1 to Point7 are as shown in Table 7.

Site	Return period(yr)	Wind speed (m/s)	Fech (km)	Depth (m)	${\rm gh/U}^2$	${\rm gF/U}^2$	gHo/U ²	Wave height H _{1/3} (m)	Wave period T _{1/3} (s)
	10	15.6			1.208	565	0.049	1.23	4.3
Point1	30	22.8	14.0	30	0.566	264	0.035	1.85	5.2
	50	26.1			0.432	202	0.031	2.15	5.7
	10	15.6			1.208	546	0.049	1.21	4.2
Point2	30	22.8	13.6	30	0.566	255	0.035	1.85	5.2
	50	26.1			0.432	195	0.031	2.15	5.7
	10	15.6			1.208	553	0.049	1.22	4.3
Point3	30	22.8	13.7	30	0.566	259	0.035	1.85	5.2
	50	26.1			0.432	198	0.031	2.15	5.7
	10	15.6			1.208	552	0.049	1.22	4.3
Point4	30	22.8	13.7	30	0.566	258	0.035	1.85	5.2
	50	26.1			0.432	197	0.031	2.15	5.7
	10	15.6			1.208	546	0.049	1.21	4.2
Point5	30	22.8	13.6	30	0.566	256	0.035	1.85	5.2
	50	26.1			0.432	195	0.031	2.15	5.7
	10	15.6			1.208	539	0.049	1.20	4.2
Point6	30	22.8	13.4	30	0.566	252	0.035	1.85	5.2
	50	26.1			0.432	192	0.031	2.15	5.7
	10	15.6			1.208	497	0.047	1.17	4.2
Point7	30	22.8	12.4	30	0.566	233	0.035	1.85	5.2
	50	26.1			0.432	178	0.031	2.15	5.7

 Table 7 Return period waves at each hindcast point

*Fetch is applied the longest distance.

Depth is given average depth in lagoon.

3. One-Line Theory Model to Evaluate the Beach Transformation

3. One-Line Theory Model to Evaluate the Beach Transformation

3.1 The outline of 1line model

1 line model (one-line theory model) for the predictive calculation of shoreline changes was utilized. The shoreline changes is captured by this model, which is composed of the following 2 sub-programs 1) The calculation of wave field 2) The calculation of shoreline changes. The calculation flow of this model is as shown in the figure 3.1. In the wave field, refraction, the diffraction and shallow-water transformation were calculated. Then wave breaker height and wave direction are figured out to estimate longshore sediment transport rate. In the calculation of shoreline changes, longshore sediment transport rate allocated in every Δx on the grid line towards to coastal direction by wave breaker height and wave breaker direction is estimated. Shoreline change Δy is figured by using this previously mentioned and the equation for sand mass conservation.

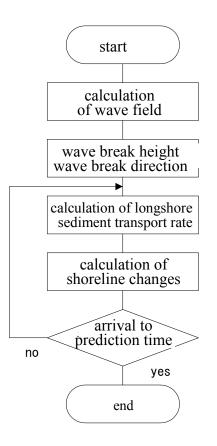


Figure 3.1 The flowchart of 1 line model (one-line theory model)

(1) The calculation on the wave field

Refraction of multidirectional random wave and shallow-water transformation can be simultaneously solved. Moreover, regarding diffraction transformation, the applicable energy balance equation is also utilized from a practical standpoint.

Basic Equation

Stationary wave filed is assumed in the following

1) No temporal alteration occurs on the wave condition 2) The period of component wave remains unchanged 3) Given with the exception that the dissipation of energy of wave breaking, external energy does not exist. Then the energy balance equation is expressed as the following.

$$\frac{\partial}{\partial x}(Sv_x) + \frac{\partial}{\partial y}(Sv_y) + \frac{\partial}{\partial \theta}(Sv_\theta) = -\varepsilon_b'S$$
(1)

x, y are horizontal coordinate and defined as shown figure **1.2**. S is directional spectrum, θ is the wave direction angle circled in a counterclockwise direction from x axis. ε_b is energy dissipation coefficient. Also, characteristic velocity (v_x, v_y, v_{θ}) is the following.

$$v = \begin{cases} v_x \\ v_y \\ v_\theta \end{cases} = \begin{cases} C_g \cos\theta \\ C_g \sin\theta \\ \frac{C_g}{C} \left(\frac{\partial C}{\partial x} \sin\theta - \frac{\partial C}{\partial y} \cos\theta \right) \end{cases}$$
(2)

C is the wave celerity, Cg is the group velocity.

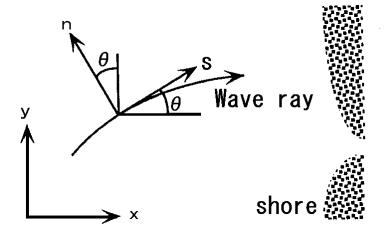


Figure 3.2 Definition method of coordinate system

Calculation of breaker height

Energy dissipation coefficient ε_{b}^{\prime} is treated as dissipation rate for losing energy within unit of time through the breaking. This wave is assumed that it inversely relates against average time taken for the input-output in the computational grid and given in the following equation

$$\varepsilon_b' = \frac{\varepsilon_b C}{\sqrt{\delta x \, \delta y}} \tag{3}$$

Hereto, δx , δy is the size of the computational grid of x, y direction. The dimensionless quantity ϵ_b is expressed the ratio of wave energy of breaking in the grid. Given that after breaking, wave height is closed to Rayleigh distribution. According to breaker height when entering the computational grid, H_{bi} and breaker height when outgoing from the computational grid H_{bo} , the following equation is applicable.

$$\varepsilon_{b} = \frac{\left[\int_{0}^{H_{bi}/H_{1/3}} P_{E}(H_{s}^{*}) dH_{s}^{*} - \int_{0}^{H_{bo}/H_{1/3}} P_{E}(H_{s}^{*}) dH_{s}^{*}\right]}{\int_{0}^{H_{bi}/H_{1/3}} P_{E}(H_{s}^{*}) dH_{s}^{*}}$$

$$=1-\frac{1-\left\{1+\frac{\pi}{4}\left(\alpha\frac{H_{bo}}{H_{1/3}}\right)^{2}\right\}\exp\left\{-\frac{\pi}{4}\left(\alpha\frac{H_{bo}}{H_{1/3}}\right)^{2}\right\}}{1-\left\{1+\frac{\pi}{4}\left(\alpha\frac{H_{bi}}{H_{1/3}}\right)^{2}\right\}\exp\left\{-\frac{\pi}{4}\left(\alpha\frac{H_{bi}}{H_{1/3}}\right)^{2}\right\}}$$
(4)

Hereto, $P_E(H)$ is the wave energy distribution.

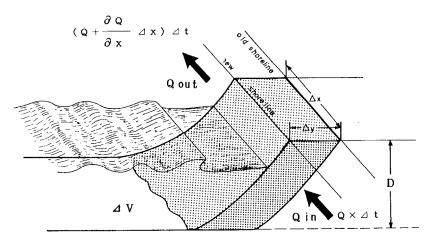
$$P_{E} = \frac{\pi^{2}}{8} \alpha^{4} H_{s}^{*3} \exp\left[-\frac{\pi}{4} (\alpha H_{s}^{*})^{2}\right]$$
(5)

$$H_{s}^{*} = \frac{H}{H_{1/3}}$$
 , $\alpha = \frac{H_{1/3}}{\overline{H}}$

Hereto \sqrt{H} is average height. Regarding the estimation of breaker height of H_{box} and $H_{bi,}$, the following indicator of breaking is utilized. Then breaking is commonly occurred with a certain range.

$$\frac{H_b}{L_0} = A \left[1 - \exp\left\{ -1.5 \frac{\pi h}{L_0} (1 + 15 \tanh^{4/3} \beta) \right\} \right]$$
(6)

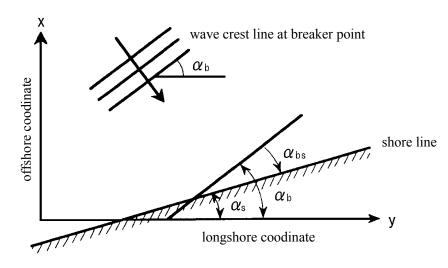
PVI-S1-38


Here, H_b is breaker height. Lo is offshore wave wavelength. h is breaker depth. tan β is sea-bottom slope. Also, A is coefficient depending on the location within breaker zone. As A is 0.18, all waves with breaker height over H_{b1} are broken. As A is 0.12, wave less than H_{b2} is not broken. It is assumed that the case of wave with the probability of the breaking waves from A=0.12 to A=0.18, they are linearly changed.

(2)Calculation of shoreline change

As shown conceptual diagram 1.3, towards coastal direction is X axis. Towards off coast direction is Y axis. The location of shoreline is y=y. According to basic theory of (x, t) model, it is assumed that moving towards to offshore without changing the cross-section of beachside, conservation law of sediment volume is the following equation.

$$\frac{\partial y}{\partial t} + \frac{1}{D} \left(\frac{\partial Q}{\partial x} - q \right) = 0 \tag{7}$$


- Here, Q: longshore sediment transport rate, which involves the volume with porosity unit width per unit hour
 - D: Height of the movement of sand drift
 - Q: The quantity of the influx of sediment towards offshore

The calculation of longshore sediment transport rate, according to Ozasa \cdot Brampton(1979), in addition to the suggestion equation, the following equation considering significant wave by Klaus (1981) is leveraged.

$$Q = (H_{1/3}^2 \cdot C_g)_b \left(\hat{K}_1 \sin 2\alpha_{bs} - \hat{K}_2 \frac{\partial (H_{1/3})_b}{\partial \lambda} \cot \beta \cos \alpha_{bs} \right)$$
(8)
$$\hat{K}_1 = \frac{K_1}{16(\rho_s/\rho - 1)(1-\lambda)1.416^{5/2}}$$
$$\hat{K}_2 = \frac{K_2}{8(\rho_s/\rho - 1)(1-\lambda)1.416^{5/2}}$$
(H_{1/3}^2 \cdot Cg)_b: Energy flux based on significant waves at the braking point
(H_{1/3})_b: Breaker height of the significant wave
K_1, K_2: The coefficient of longshore sediment transport rate
cot \beta: Inverse number of sea-bottom slope
 α_{bs} : The angel between shoreline and wave direction at the breaker point
 ρ_{s}, ρ : The density for sand and sea-water
 λ : The porosity of the sand

Formula (8) article 1 on the right side is related with energy flux for breaking towards sea coast. Article 2 is considered about the movement of sand drift due to water level slope due to cause of the unevenness of breaker height towards the sea coast. The effect of sand drift behind the masking structural object is calculated by article 2.

the source

Ozasa, H., Brampton, A., H., 1979, The calculation of shoreline change with seawall, Port and harbour research institute report, Vol.18, No.4, pp.77-103.

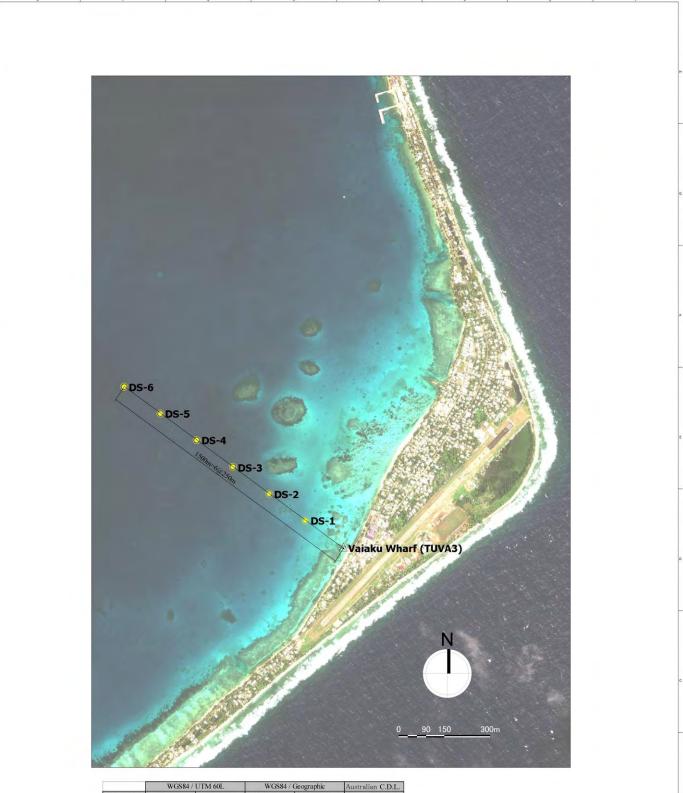
Klaus, N., C., Isigai, S., Kubota, S., 1984, Shore line change simulation in Oarai beach-wave breaking and shore line change behind breakwater, Proceedings of Coastal Engineering, Vol.28, JSCE, pp.295-299.

PART VI: EXAMINATION AND DESIGN OF COASTAL PROTECTION MEASURES

Section 2: Data Book

1. Results of Geotechnical Test for Dredging Sand in Lagoon

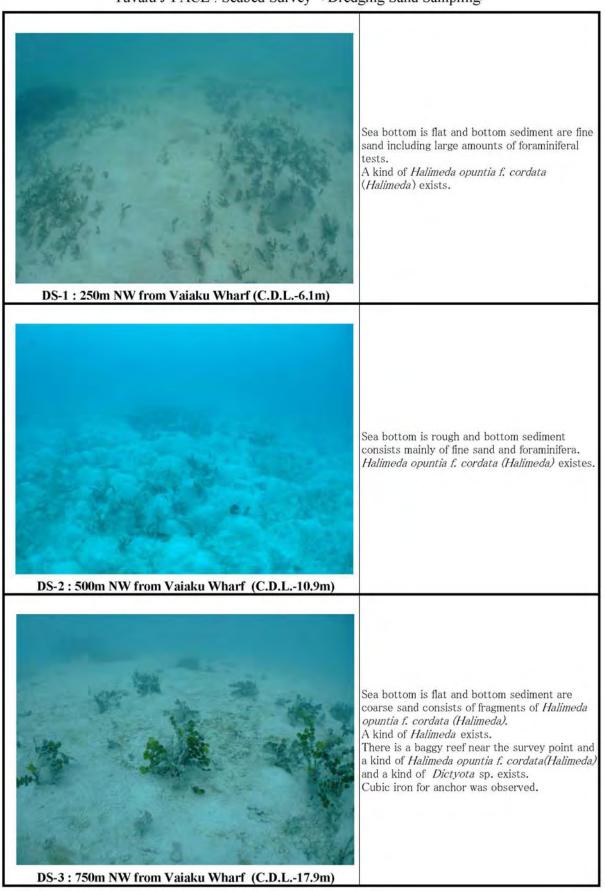
- 1. Dredging Seabed Material Sampling Record
- 2. List of Soil Test Results
- 3. Particle Distribution Test
- 4. Geotechnical Classifications
- 5. Soil compaction Test and Corn Index Test of soil by tamping
- 6. Consolidation Test by stage loading of soil
- 7. Specific Gravity Test / Water Absorption Test of Coral Gravel
- 8. Passing Through Test for Geofabric and Dredged Sand
- 9. Soil Cement Test
 - 9-1 Slaking Test of Soil Cement
 - 9-2 Underwater Segregation Test of Soil Cement
 - 9-3 Photographs

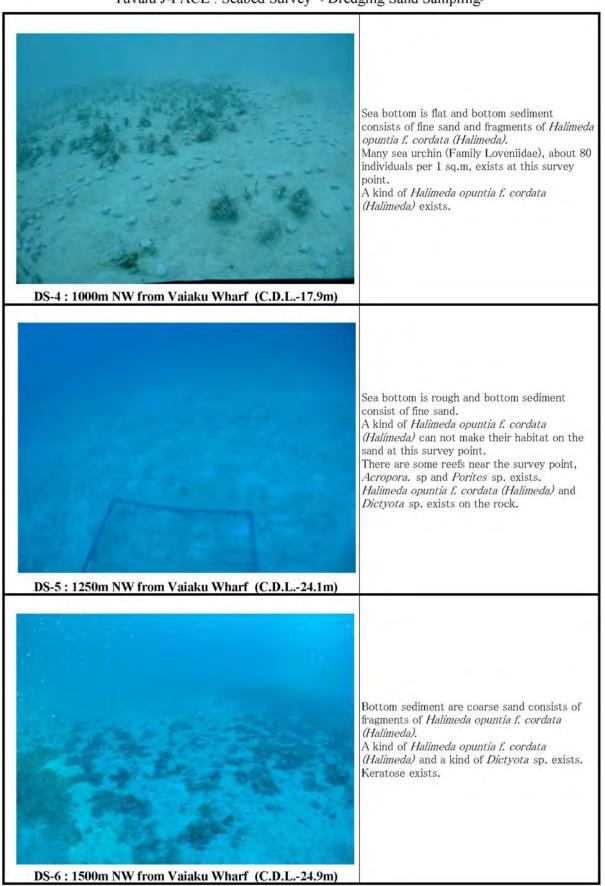

1. Dredging Seabed Material Sampling Record

ly.

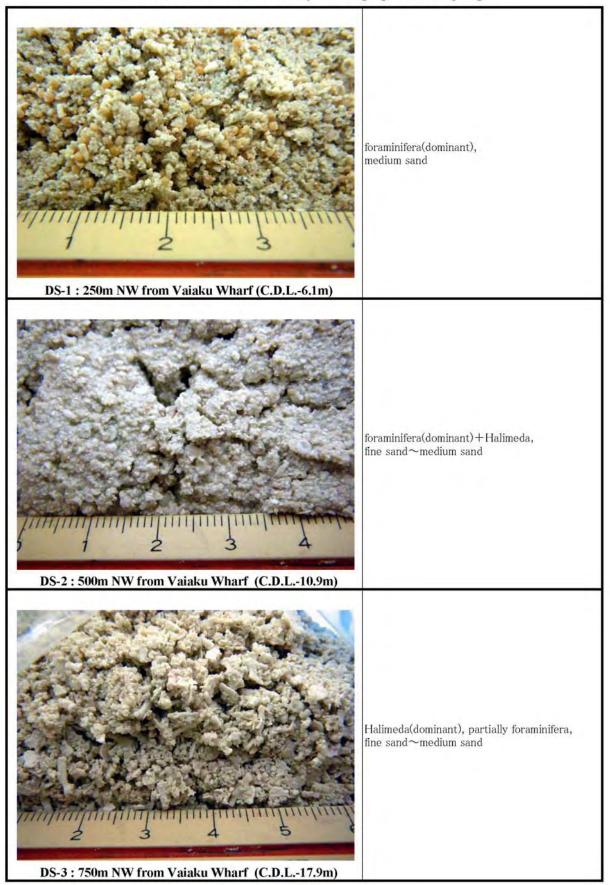
٦

	WGS84 /	WGS84 / UTM 60L	WGS84/(WGS84 / Geographic	Australian C.D.L.					
Sample No.	Easting	Northing	E (D.ddd)	S (D.ddd)	Scabed Height (m)	Water Depth (m)	Tide Level (C.D.L.)	Sampling Date/Time	Samaple Taken	Remarks
DS-01	741,206.27	9,057,111.57	741,206.27 9,057,111.57 179.1911949	-8.5237914	-6.1	-7.4	+1.30	2010/8/25 10:20	2010/8/25 10:20 Sample bottle 2.5kg	foraminifera(dominant), medium sand
DS-02	741,005.11	9,057,259.60	741,005.11 9,057,259.60 179.1893608	-8.5224637	-10.9	-12.3	+1.38	2010/8/25 10:00	Sample bottle 2.5kg	foraminifera(dominant)+ Halimeda, fine sand∼medium sand
DS-03	740,803.65	9,057,408.12	740,803.65 9,057,408.12 179.1875240	-8.5211316	-17.9	-19.3	+1.36	2010/8/24 12:10	2010/8/24 12:10 Sample bottle 2.5kg	Halimeda(dominant), partially foraminifera, fine sand~medium sand
DS-04	740,603.00	9,057,555.78	740,603.00 9,057,555.78 179.1856945	-8.5198072	-20.9	-22.1	+1.24	2010/8/24 11:30	sandbag (50kg) Sample bottle 2.5kg	Halimeda(dominant), superfine sand~fine sand
DS-05	740,401.89	9,057,704.00	740,401,89 9,057,704.00 179.1838609	-8.5184777	-24.1	-25.3	+1.21	2010/8/24 10:50	Sample bottle 2.5kg	Halimeda(dominant), coarse sand•medium sand
DS-06	740,201.00	9,057,852.03	740,201.00 9,057,852.03 179.1820293	-8.5171500	-24.9	-26.1	+1.24	2010/8/24 10:20	sandbag(40kg) Sample bottle 2.5kg	Halimeda(dominant), fragmentary Halimeda + coarse sand

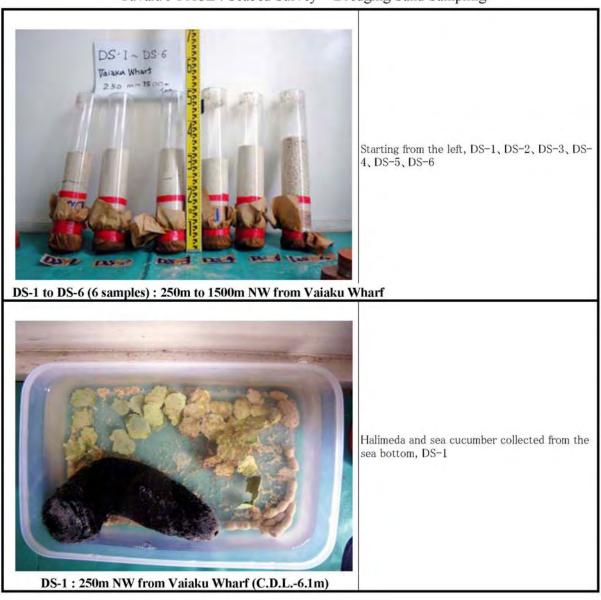

. .


	WGS84 / U	JTM 60L	WGS84 / G	eographic	Australian C.D.L.	
Sample No.	Easting	Northing	E (D.ddd)	S (D.ddd)	Seabed Height (m)	
DS-01	741,206.27	9,057,111.57	179.1911949	-8.5237914	-6.1	
DS-02	741,005.11	9,057,259.60	179.1893608	-8.5224637	-10.9	
DS-03	740,803.65	9,057,408.12	179.1875240	-8.5211316	-17.9	
DS-04	740,603.00	9,057,555.78	179.1856945	-8.5198072	-20.9	
DS-05	740,401.89	9,057,704.00	179.1838609	-8.5184777	-24.1	
DS-06	740,201.00	9,057,852.03	179.1820293	-8.5171500	-24.9	

Fongafale Central Area


Japan - Project Against Coastal Erosion

Tuvalu J-PACE : Seabed Survey < Dredging Sand Sampling>


Tuvalu J-PACE : Seabed Survey < Dredging Sand Sampling>

Tuvalu J-PACE : Seabed Survey < Dredging Sand Sampling>

Tuvalu J-PACE : Seabed Survey < Dredging Sand Sampling>

Tuvalu J-PACE : Seabed Survey < Dredging Sand Sampling>

2. List of Soil Test Results

Project	THE STUDY FOR ASSESS	MENT OF ECOSYS	STEM, COASTA		Date	October	19, 2010
					The Person in Charge of Arrangemen	Kazunar	i Yoda
	Sample Number	DS-1	DS-2	DS-3	DS-4	DS-5	DS-6
	(Depth)	3					
	Wet Density Pt g/cm						
	Dry Density Pd g/cm	-	2.010	0.044	2.022		2.0.10
The General	Density of Soil Particle ρ_s g/cm		2.810	2.844	2.823	2.828	2.849
General	Natural Water Content w n %	o					
	Void Ratio e						
	Degree of Saturation S _r %						
	Stone Fraction (more than 75mm) %		0.0	0.0	0.0	0.0	0.0
	Gravel Fraction ¹⁾ (2~75mm) %		1.7	12.5	0.5	0.1	31.2
	Sand Fraction ¹⁾ (0.075~2mm) %	6 87.7	74.8	76.6	52.4	81.3	55.5
	Silt Fraction ¹⁾ (0.005~0.075mm) %	6 7.7	18.4	8.5	36.2	12.6	9.9
Particle	Clay Fraction ¹⁾ (less than 0.005mm) %	6 3.9	5.1	2.4	10.9	6.0	3.4
	Maximum Particle Size mr	n 4.75	9.50	9.50	4.75	4.75	9.50
	Uniformity Coefficient U _C	8.74	17.12	12.53	30.81	27.58	51.20
	Liquid Limit W _L 9	6 NP	NP	NP	NP	NP	NP
	Plastic Limit Wp 9	6 NP	NP	NP	NP	NP	NP
Properties of Consistency	Plastic Index I _P		_		_		
Classification		Sand with some Fine fraction	Sand and Fine fraction	Sand with some Fine fraction and Gravel	Sand and Fine fraction	Sand and Fine fraction	Sand and Grav. with some Fin fraction
	Class Symbol	(S-F)	(SF)	(S-FG)	(SF)	(SF)	(SG-F)
	Test Method				A-c		
Compaction	Maximum Dry Unit Weight pdmax g /cm				1.301		
	Optimum Moisture Content w _{opt} %	6			31.3		
	Test Method						
	Expantion Ratio r e %	6					
CBR	Water Content W2 %	6					
CDR	Average CBR %	6					
	CBR (% Adjustment) %	6					
	Tamping Number Number of Times / Laye	rs					
Come	of Times Cone Index q _C kN/m						
Cone Index							
	Maximum Density of Sand pdmax g /cm	3			1.243		
	Minimum Density of Sand pdmax g /cm	3			0.884		
	pH Test of Sand	8.6			8.4		
	Coefficient of Permeability k15 cm/			1	6.64E-4		
	(Constant Head)						
	Coefficient of Permeability k15 cm/ (Falling Head)	s			5.37E-4		

Protect	THE STUDY FOR ASSESSMEN	T OF ECOSYSTEM,	COASTAL EROSION AND	Data	October 10, 2010
110,000	t Title PROTECTION/REHABILITATI			Date The Person in	October 19, 2010
				Charge of Arrangement	Kazunari Yoda
	Sample Number	CR-1			
	(Depth)				
	Wet Density ρ_t g/cm ³				
	Dry Density ρ_d g/cm ³				
The General	Density of Soil Particle ρ_s g/cm ³				
General	Natural Water Content w _n %				
	Void Ratio e				
	Degree of Saturation S _r %				
	Stone Fraction (more than 75mm) %				
	Gravel Fraction ¹⁾ $(2\sim75\text{mm})$ %				
	Sand Fraction ¹⁾ (0.075~2mm) %				
Destin	Silt Fraction ¹⁾ (0.005~0.075mm) %				
Particle	Clay Fraction ¹⁾ (less than 0.005mm) %				
	Maximum Particle Size mm				
	Uniformity Coefficient U _C				
	Timid Timia				
	Liquid Limit W _L %				
Properties	Plastic Limit Wp %				
of	Plastic Index I _P				
Consistency					
Classification	Class Name of Ground Materials				
	Class Symbol				
	Test Method				
Compaction	Test Method				
Compaction	Test Method Maximum Dry Unit Weight p _{dmax} g /cm3				
Compaction	Test Method				
Compaction	Test Method Maximum Dry Unit Weight P _{dmax} g /cm3 Optimum Moisture Content w _{opt} %				
	Test Method Maximum Dry Unit Weight ρ _{dmax} g /cm3 Optimum Moisture Content w _{opt} % Test Method Expantion Ratio r e % Water Content W2 %				
Compaction	Test Method Maximum Dry Unit Weight p _{dmax} g /cm3 Optimum Moisture Content w _{opt} % Test Method Expantion Ratio r e %				
	Test Method Maximum Dry Unit Weight ρ_{dmax} g /cm3 Optimum Moisture Content w_{opt} % Test Method Expantion Ratio r e % Water Content w_2 %				
	Test Method Maximum Dry Unit Weight pdmax g /cm3 Optimum Moisture Content w opt % Test Method Expantion Ratio r e % Water Content w 2 % After Penetration Test % %				
	Test Method Image: Second Se				
	Test Method Maximum Dry Unit Weight pdmax g /cm3 Optimum Moisture Content w opt Water Content w opt Water Content w opt Water Content w opt Average CBR % CBR (% Adjustment) %				
CBR	Test Method Maximum Dry Unit Weight pdmax Optimum Moisture Content W opt Ør Wethod Expantion Ratio r e Water Content W 2 After Penetration Test W 2 Average CBR % CBR (% Adjustment) % Tamping Number Number of Times / Layers				
CBR	Test Method Maximum Dry Unit Weight pdmax Optimum Moisture Content W opt Ør Wethod Expantion Ratio r e Water Content W 2 After Penetration Test W 2 Average CBR % CBR (% Adjustment) % Tamping Number Number of Times / Layers				
CBR	Test Method Maximum Dry Unit Weight pdmax Optimum Moisture Content W opt Ør Wethod Expantion Ratio r e Water Content W 2 After Penetration Test W 2 Average CBR % CBR (% Adjustment) % Tamping Number Number of Times / Layers				
CBR	Test Method Maximum Dry Unit Weight pdmax g /cm3 Optimum Moisture Content w opt Water Content w opt Kater Penetration Test W 2 Average CBR % CBR (% Adjustment) % Tamping Number Number of Times / Layers Cone Index q _C				
CBR	Test Method Maximum Dry Unit Weight pdmax g /cm3 Optimum Moisture Content W opt % Test Method Expantion Ratio r e % Mater Content W 2 % After Penetration Test W 2 % Average CBR % % CBR (% Adjustment) % Tamping Number Number of Times / Layers of Times Cone Index qc kN/m2 Maximum Density of Sand pdmax g /cm3				
CBR	Test Method Maximum Dry Unit Weight ρ_{dmax} g /cm3 Optimum Moisture Content w_{opt} % Test Method Expantion Ratio r e % Reter Penetration Test W_2 % Average CBR % % CBR (% Adjustment) % % Tamping Number Number of Times / Layers of Times % Cone Index q_C kN/m2 Maximum Density of Sand $\rho dmax$ g /cm3 Minimum Density of Sand $\rho dmax$ g /cm3 pH Test of Sand % Coefficient of Permeability k15				
CBR	Test Method Image: Second				

Project	Title THE STUDY FOR ASSESSMEN				Date	October 19, 2010	
Figeet	PROTECTION/REHABILITATI	ON OF DAMA	GED AREA IN TU	JVALU	The Person in	October 19, 2010	
					Charge of Arrangement	of Kazunari Yoda	
	Sample Number	DS-4	DS-4	DS-4	DS-4		
	(Depth)	(pdmx)	(pdmx95%)	(w=40%)	(Dr=100%)		
	Wet Density ρ_t g /cm ³						
	Dry Density ρ_d g /cm ³						
The	Density of Soil Particle ρ_s g /cm ³						
General	Natural Water Content w n %						
	Void Ratio e						
	Degree of Saturation S r %						
	Stone Fraction (more than 75mm) %						
	Gravel Fraction ¹⁾ (2~75mm) %						
	Sand Fraction ¹⁾ (0.075~2mm) %						
	Silt Fraction ¹⁾ (0.005~0.075mm) %						
Particle	Clay Fraction ¹⁾ (less than 0.005mm) %						
	Maximum Particle Size mm						
	Uniformity Coefficient U _C						
	Liquid Limit W _L %						
	Plastic Limit W _P %						
Properties of	Plastic Index I _P						
Consistency							
	Class Name of Ground						
lassification							
	Class Symbol						
	Test Method						
	Maximum Dry Unit Weight pdmax g /cm3						
	Optimum Moisture Content Wopt %						
	Test Method						
	Expantion Ratio r e %						
CBR	After Penetration Test 70						
	Average CBR %						
	CBR (% Adjustment) %						
	Tamping Number Number of Times / I avera						
	of Times						
Cone Index	Cone Index q _C kN/m2						
HIGEX							
	Maximum Density of Sand _{pdmax} g /cm3						
	Minimum Density of Sand pdmax g /cm3						
	pH Test of Sand Coefficient of Permeability 1-15 am/a						
	(Constant Head) K15 CHI/S						
	(Falling Head)	5.55E-6	5.78E-6	1.08E-5	3.09E-5		
	Product Ratio (g/cm ³)						

Project '	Inte				STEM, COASTAL GED AREA IN T	Date	October 19, 2010
						The Person in Charge of Arrangement	Kazunari Yoda
	Sample Num	ber		DS-4			
1	(Depth) Wet Density	-	, 3				
		Pt	g /cm ³				
E.	Dry Density	Pa	g /cm ³				
	Density of Soil Particle		g /cm ³				
Ļ	Natural Water Content		%				
-	Void Ratio	e	2/				
	Degree of Saturation	S _r	%			 	
		ore than 75n					
		~75mm)	%				
		075~2mm)					
		005~0.075					
		ss than 0.005					
	Maximum Particle Size		mm				
τ	Uniformity Coefficient	Uc					
	Liquid Limit	WL	%			 	
	Plastic Limit	Wp	%			 	
Properties I of	Plastic Index	Ip					
Consistency						 	
-							
	Class Name of Ground Materials						
(Class Symbol						
1	Fest Method			Stage Loading			
0	Compression Index	Cc		0.249			
Consolidation (Compressive Yield Stre	essP _C	kN/m ²	270.9			
F							
	Jnconfined Compression Strength	qυ	kN/m ²				
ĥ	Arenzui						
Unconfined Compression							
1	Test Condition						
F		с	kN/m ²				
	Fotal Stress	φ	0				
Shear		c'	kN/m ²				
I	Effective Stress	φ'	0				
F							
		-1					
F							
F							
F							

3. Particle Distribution Test

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \int_{\mathbb{R}^{2}} \int_$	olect title.		Tuvalu J-PACE										Date		22-Sep-10
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$													Trier		Hideaki Tsuge
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample No.		DS-1	DS-2	DS-3	DS-4	DS-5	DS-6	Sample No.	DS-1	DS-2	DS-3	DS-4	DS-5	DS-6
$ \int_{0}^{\infty} \int_{$	(Depth)		(-10.9m)	(-17.9m)	(-17,9m)	(-17.9m)	(-24.1m)	(-24.9m)	(Depth)	(+10.9m)	(-17.9m)	(-17.9m)	(-17.9m)	(-24.1m)	(-24.9m)
$ \left[\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}$		Size mm	Passing Sieve	Geotechnical Classification	Sand with some	_	Sand with some	Sand and Fine	Sand and Fine	Sand and					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1111 4210	wt%	wt%	wt%	wt%	wt%	wt%	(JGS 0051-2009)	Fine fraction	fraction	Fine fraction and Gravel	fraction	fraction	Gravel with some Fine
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		75.0	100.0	100.0	100.0	100.0	100.0	100.0	Coarse Gravel %	0.0	0.0	0.0	0.0	100.0	0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	s	53.0	100.0	100.0	100.0	100.0	100.0	100.0	Midium Gravel %	0.0	0.6	2.1	0.0	0.0	2.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	isáj	37.5	100.0	100.0	100.0	100.0	100.0	100.0	Fine Gravel %	0.7	11	11.9	0.5	0.1	29.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	lsn.	26.5	100.0	100.0	100.0	100.0	100.0	100.0	Coarse Sand %	18.0	7.4	26.0	3.4	11.6	29.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	y əl	0.5	100.0	100.0	100.0	100.0	100.0	100.0	Fine Sand %	0.55	31.4	16.6	080	0.24	8.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	vəi	4.75	100.0	99.4	99.4	100.0	100.0	01.0	Silt %	11	18.4	8.5	36.2	12.6	6.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	2.0	99.3	98.3	87.5	99.5	6.66	68.8	Clay %	3.9	5.1	2.4	10.9	6.0	3.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.850	81.3	90.9	61.5	96.1	88.3	39.4	2mm Sieve Passing wt %	5	98.3	87.5	5.99	6'66	68.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.425	50.7	69.9	39.4	85.8	63.5	27.4	425µm Sieve Passing wt %		6669	39.4	85.8	63.5	27.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.250	37.5	54.9	27.5	75.1	45.5	21.4	75µm Sieve Passing wt %		23.5	10.9	47.1	18.6	13.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.100	10.0	31.2	14.0	24.7	2.52	1.01	Maximum Particle Size mm		0000	00.6	6/.4	4.75	00.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.0516	0.1	18.7	80	30.6	16.0	511	50% Particle Size D50 mm		0.2008	0.6037	0.0860	0.2880	1 2166
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	sīs	0.0369	82	15.0	69	32.8	13.6	10.6	30% Particle Size D30 mm		0 1010	0.2843	0.0316	0 1436	0.5144
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	бре	0.0235	6.7	11.8	5.7	25.3	11.5	8.8	20% Particle Size D20 mm		0.0591	0.1584	0.0153	0.0850	0.2104
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	uV	0.0137	5.9	8.9	4.4	18.8	9.8	6,9	10% Particle Size D10 mm		0.0176	0.0649	0.0043	0.0140	0.0313
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	uo	0.0097		7.7	3.2	15.5	8.1	5.5	Uniformity Coefficient Uc		17.12	12.53	30.81	27.58	51.20
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	deti	0.0069		6.1	2.8	13.0	6.8	4.1	Curvature Coefficient Uc'		1.92	1.53	1.75	3.81	5.28
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	uəu	0.0035		4.5	1.6	9.0	5.1	2.8	Density ps 2/cm	2.823			2.823	2.828	2.849
Percentage Passing wt (%)	nibə	0.0014		2.8	0.8	6.5	3.4	1.4	Dispersing Agent Consentration Additive Quantity	Polymer Dispersing			Polymer Dispersing 10 ml	Polymer Dispersing 10 ml	Polymer Dispers 10 ml
Particle Distribution Curve															
-DS-1 -DS-2 -DS-3 -DS-4 -DS-3 -DS-6 -DS-1 -DS-2 -DS-3 -DS-4 -DS-3 -DS-6 -DS-1 -DS-2 -DS-3 -DS-4 -DS-3 -DS-6 -DS-1 -DS-2 -DS-4 -DS-3 -DS-6 -DS-1 -DS-2 -DS-6 -DS-2 -DS-2 -DS-2 -DS-6 -DS-2 -DS-2 -DS-2 -DS-6 -DS-2 -DS-2 -DS-2 -DS-6 -DS-2								Partic	le Distribution Curve						
Percentagee Passing Wt (%)							1		+DS-3 +DS-4		6				
Percentage Passing wt (%)			100										ļ		
Percentage Passing w((%) Percentage Passing w((1	1				
Percentage Passing wt (/0							X	1					
Percentage Passing w Percentage Passing w Percentage Passing w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) 1		-									-		
Percentage Passing		A I													
Percentagee Pass Percentagee Pass 000 001 01 01 01 01 01 01 01 01 01 01 01		Jui													
Percentage Particle Size (mm)		551						X	///						
Percentage 0 10 001 0.1 10 10 10 10 10 10 10 10 10 10 10 10 10		^p d						1	+						
Percenta 30 0 200 0.01 0.1 1 10 Particle Size (mm) 0 005 0.250 0.55 0.250 0.55 19 0 005 2 475 19 0 050 2 5 475 19 0 050 19 0		90							1						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		etu					-								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		190			+	ł		1							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1													
Particle Size (mm) 0.005 0.075 0.250 0.850 2 4.75 19 75			0.001			100		0.1				10		101	0
Particle Size (mm) 0.005 0.075 0.075 0.20 0.850 2 4.75 19 19 19 19 19 19 19 19 19 19 19 19 19															
2000 000 000 000 000 000 000 000 000 00					0.005			310.0	Particle Size (mm)	•	32.1		10	31	
					cno.n			c/0'0	0.0	4	4.10				