MINISTRY OF INDUSTRY, MINES AND ENERGY SIEM REAP WATER SUPPLY AUTHORITY THE KINGDOM OF CAMBODIA

THE PREPARATORY STUDY ON THE SIEM REAP WATER SUPPLY EXPANSION PROJECT IN THE KINGDOM OF CAMBODIA

FINAL REPORT 1

VOLUME III SUPPORTING REPORT

JANUARY 2011

JAPAN INTERNATIONAL COOPERATION AGENCY NJS CONSULTANTS CO., LTD. KOKUSAI KOGYO CO., LTD.

Report <u>No.</u>

Title of Supporting Report

Chapter 2. Project Framework

SR 2.1 Number of Hotels and Guest Houses in Siem Reap City

Chapter 3. Water Demand Projection and Proposed Long-Term Water Supply Development

Scheme

SR 3.2 Water Demand Projections – Scenarios

Chapter 4. Feasibility Study on Priority Project

SR 4.1	Selection of Water Sources and Intake Method
SR 4.2	Water Quality Survey
SR 4.3	Report of Jar Test Result
SR 4.4	Alternative Study on Raw Water Intake Facilities
SR 4.5	Comparison of Raw Water Conveyance/Transmission Pipeline
SR 4.6	Soil Investigation Report
SR 4.7	Mechanical & Electrical Equipment List for Intake Facilities
SR 4.8	Alternative of Raw Water intake Pump Unit
SR 4.9	Pump Calculation Sheet for Intake Facilities
SR 4.10	Capacity Calculations for Water Treatment Plant
SR 4.11	Hydraulic Calculations for Water Treatment Plant
SR 4.12	Mechanical & Electrical Equipment List for Water Treatment Plant
SR 4.13	Pump Calculation Sheet for Water Treatment Plant
SR 4.14	WTP Construction Cost Comparison
SR 4.15	Feasibility Study Drawings
SR 4.16	Water Demand Allocation (LTDP)
SR 4.17	Water Demand Allocation (F/S)
SR 4.18	Distribution Pipeline Length (Existing, LTDP, F/S, KTC)
Chapter 5.	Institutional and Managerial Considerations

SR 5.1 Department of Production and Water Supply

SK 5.1	Department of Floddetion and Water Suppry	
SR 5.2	Department of Planning and Technical	
SR 5.3	Department of Administration and Financial	
SR 5.4	Cost For Capacity Development	
SR 5.5	Cost Of Specialized Training	
SP 56	Humon Posouroo Inventory Survey Posults	

- SR 5.6 Human Resource Inventory Survey Results
- SR 5.7 Terms of Reference for International and Local Consultants

Chapter 6. Implementation Plan

SR 6.1	Project Implementation Schedule
--------	---------------------------------

Chapter 7. Project Cost Estimates

- SR 7.1 Engineer's Cost Estimate
- SR 7.2 Breakdown of Operation and Maintenance Cost

Chapter 8. Financial and Economic Aspect

SR 8.1	Analysis on the Water Production Cost for Existing Groundwater Users
SR 8.2	Project Cost Components
SR 8.3	Opening Positions
SR 8.4	Balance Sheet
SR 8.5	Support Schedule 1, Proposed Tariff Study 2

SR 8.6	Supporting Schedule 2, Proposed Tariff Study 2
SR 8.7	Supporting Schedule 3, Proposed Tariff Study 2

Chapter 10. Environmental and Social Considerations

SR 10.1 Environmental Impact Assessment

Chapter 2 Project Framework

SR 2.1 Number of Hotels and Guest Houses in Siem Reap City

Area			14 Comm	ine (2008)	1		l						
Discript	Hotel	Max Tourist	_		Hotel+Guest H	Max Tourist							
-	(No.)	(No.)	(No.)	(No.)	(No.)	(No.)							
Total	113	14,700	208	4,315	321	19,015	_						
Commune / Village	Hotel	Tourist	Guest House	Tourist	Hotel+Guest H	Max Tourist	Commune / Village	Hotel	Tourist	Guest House	Tourist	Hotel+Guest H]	Max Tou
1 Sla Kram	32	2,909	47	998	79	3,907	8 Krabei Riel	0	0	0	0	0	
1-1 Slor Kram	6	276	7	120	13	396	8-1 Ta Ros	0	0	0	0	0	
1-2 Boeng dunpa	5	323	0	0 340	5 22	323	8- 2 RoKa 8- 3 Prei Pou	0	0	0	0	0	
1- 3 Chong Kavsu 1- 4 Dork pou	0	618 0	0	<u> </u>	0	958 0	8- 4 To tear	0	0	0	0	0	
1- 5 Bantay chas	10	1,063	16	386	26	1,449	8-5 Krasang	0	0	0	0	0	
1- 6 Trang	1	60	1	19	2	79	8-6 Popil	0	0	0	0	0	
1-7 Mondol 3	3	569	8	133	11	702	8-7 Trapang veng	0	0	0	0	0	
2 Svay Dangkum 2- 1 Pngea Chei	58 0	8,859 0	111 1	2,327 25	169 1	11,186 25	8-8 Kouk doung 8-9 Boeng	0	0	0	0	0	
2- 2 Kantrork	0	0	0	0	0	0	8- 10 Prorma	0	0	0	0	0	
2-3 Kouk Krasang	2	238	0	0	2	238	8-11 Khnar	0	0	0	0	0	
2-4 Svay Chrei	0	0	1	12	1	12	8- 12 Prei kroch	0	0	0	0	0	
2- 5 Pou Bos 2- 6 Tmei	0	0	0	0	0	0	9 Ampil 9-1 Kouk Chan	0 0	0 0	0 0	0 0	0 0	
2- 6 Tmei 2- 7 Svay Dangkum	0	0	2	42	2	42	9- 2 Thnal Chak	0	0	0	0	0	
2- 8 Salakanseng	14	3,016	8	172	22	3,188	9-3 Tanot	0	0	0	0	0	
2-9 Krous	11	1,664	4	70	15	1,734	9-4 Trapang Run	0	0	0	0	0	
2-10 Vihear Chin	2	112	13	282	15	394	9-5 Ta pang	0	0	0	0	0	
2- 11 Steng Tmei 2- 12 Mondol 1	1 10	57 1,642	18 14	422 247	19 24	479 1,889	9- 6 Prei kuy 9- 7 Bang Koung	0	0	0	0	0	
2- 12 Mondol 1 2- 13 Mondol 2	8	1,642	2	36	10	1,889	9- 8 Kiri manon	0	0	0	0	0	
2- 14 Ta phoul	10	725	48	1,019	58	1,744	9-9 Bos tom	0	0	0	0	0	
3 Sala Kamraeuk	17	1,140	41	787	58	1,927	9- 10 Trach chrom	0	0	0	0	0	
3-1 Vat Bo	16	1,068	30	571	46	1,639	10 Norkor Thum	0	0	0	0	0	
3- 2 Vat Svay 3- 3 Vat Damnak	0	0 72	2	37 179	2	37 251	10- 1 Rohal 10- 2 Sras srang	0	0	0	0	0	
3- 4 Sala Kamreak	0	0	0	0	0	231	10- 3 Sras srang	0	0	0	0	0	
3- 5 Chun long	0	0	0	0	0	0	10- 4 Kravan	0	0	0	0	0	
3-6 Ta Vean	0	0	0	0	0	0	10- 5 Arak svay	0	0	0	0	0	
3-7 Trapang Treng	0	0	0	0	0	0	10- 6 Ang Chang	0	0	0	0	0	1.4/
4 Kouk Chak 4- 1 Trapang Ses	1	378 378	4	75 75	5 5	453 453	11 Srangae 11- 1 Kasikam	5 5	1,414 1,414	1	13 13	6	1,42
4-2 Veal	0	0	0	0	0		11-2 Tnal	0	0	0	0	0	1,42
4-3 Kasin tabong	0	0	0	0	0	0	11- 3 Roka Thom	0	0	0	0	0	
4- 4 Kouk Chan	0	0	0	0	0	0	11- 4 Prei Thom	0	0	0	0	0	
4- 5 Khatean4- 6 Kouk Beng	0	0	0	0	0	0	11- 5 Srangie 11- 6 Chanlong	0	0	0	0	0	
4- 0 Kouk Beng 4- 7 Kouk Tanot	0	0	0	0	0	0	11- 7 Ta Chouk	0	0	0	0	0	
4- 8 Nokor krav	0	0	0	0	0	0	12 Sambour	0	0	0	0	0	
5 Siem Reap	0	0	1	16	1	16	12- 1 Pnouv	0	0	0	0	0	
5-1 Pou	0	0	0	0	0	0	12-2 Sambour	0	0	0	0	0	
5-2 Phnom krom 5-3 Pror Lay	0	0	0	0	0	0	12- 3 Veal 12- 4 Chrei	0	0	0	0	0	
5- 4 Korkragn	0	0	0	0	0	0	12-5 Ta kong	0	0	0	0	0	
5-5 Kra Sangroleung	0	0	0	0	0	0	13 Kandaek	0	0	0	0	0	
5- 6 Spean Chreav	0	0	0	0	0	0	13-1 Kouk Tlouk	0	0	0	0	0	
5-7 Arragn	0	0	0	0	0	0	13- 2 Trapang Tem	0	0	0	0	0	
5- 8 Treak 6 Teuk Vil	0	0	0	16 0	0	16 0	13- 3 Khun Mouk 13- 4 Chras	0	0	0	0	0	
6-1 Kouk doung	0	0	0	0	0	0		0	0	0	0	0	
6-2 Sandan	0	0	0	0	0	0	13- 6 Spean Ka ek	0	0	0	0	0	
6-3 Chrei	0	0	0	0	0	0		0	0	0	0	0	
6-4 Prayut	0	0	0	0	0	0	13- 8 Chrei 13- 9 Kouk Tanot	0	0	0	0	0	
6- 5 Bantay Cheu 6- 6 Teuk Vil	0	0	0	0	0	0	13- 10 Lo ork	0	0	0	0	0	
6- 7 Pri Chas	0	0	0	0	0	0	14 Chong Khneas	0	0	0	0	0	
6-8 Tuek Tla	0	0	0	0	0	0	14-1 Phum Pir	0	0	0	0	0	
6-9 Pri Tmei	0	0	0	0	0	0	14-2 Phum Muoy	0	0	0	0	0	
6- 10 Chei	0	0	0	0	0	0	14-3 Phum Bei 14-4 Phum Buon	0	0	0	0	0	
7 Chreav	0 0	0	3 0	99 0	3 0	99 0	14- 4 Phum Buon 14- 5 Phum Pram	0	0	0	0	0	
		0	3	99	3	99	14- 6 Phum Prammuoy	0	0	0	0	0	
7-1 Chreav 7-2 Knar	0	0											
7-1 Chreav 7-2 Knar 7-3 Bos Kralang	0	0	0	0	0	0	14-7 Phum Prampir	0	0	0	0	0	
7-1 Chreav 7-2 Knar 7-3 Bos Kralang 7-4 Ta Chek	0	0	0	0	0	0	_	0	0	0	0	0	
7-1 Chreav 7-2 Knar 7-3 Bos Kralang	0	0	0		0	-		0	0	0	0	0	

3

MINISTRY OF TOURISM SIEM REAP TOURISM DEPARTMENT Tel: 063964925 Fax: 063963996

KINGDOM OF CAMBODIA NATION RELIGION KING

HOTELS IN SIEM REAP PROVINCE AS OF DECEMBER 2008

Commune No. - Village No.

1/19 SRINSA

											n 2000		
Nº	NAME OF HOTEL	OWNER OR MANAGER &	TYPE	TEL/FAX		MBER		OM S (US\$)	ST	AFF	ADDRESS	LICENSE	HOTEL CAPITAL
1	NOTEL	Nationality	Bus		SGL Suite	TWIN Trip	SGL Suite	TWIN Trip	M	F		EXPIRATION DATE	ENVESTMENT(USS)
1	Angkor Century	Mr. Som Senang (Cambodian)	H+R +M	063963777 063963123	20 82	168	2205 5605	235\$ 580\$	145	75	PhomSalekansengKhum Svaydang kum Srok Siem Reap	174/08Mot 03-10-09	12.800.000S
2	Allson Angkor	Mrs. Kham Plally (Cambodian)	H+R.	063964301 063964302	120 S 4	64 trip5	100S 190S	125\$ 145\$	60	45	N.Road6PhumSalakanseng Khum Svaydangkum Srok Siem Reap	042/08Mot 03-02-09	3.000.000S 合合合合-1
3	Angkor Saphir	Mrs. Ly Mouly Mr.Kao KimHoth (Cambodian)	н	063965339 092932619	7	29	155	20\$	jτ	15	N.Rosd 6 Phum Slorkram Khum Slorkram Srok Siem Reap	204/08Mot 09-10-09	250.0005
4	Angkor Villa Resort & Spa	Mr. Olivier Piot	H+R	063963361 063963363	20	20	705	805	7.	38	Phum Traing Khum Slokram Srok Siem Reap	014/08Mot 09-11-08	250.000\$
5	Angker Thom	Mr.Jonn Jang kilchoi (Korean)	H→R	063964862 012295144	3	25	105	i2S	2	5	Phum Watho Khum Solakamreok Srok Siem Reap	172/08Mot 17-09-09	150.000\$
6	Angkor Village	Mr.Olivier Piot Mrs.Tap Vuthor (Franch)	H+R	063963561 063380104		19.42		505 805	6	41	Phum Watbo Khum Salakamreok Srok Siem Reap	128/07Mot 05-10-08	1.973.500S
7	Angkoriana	MrsMoung Vouch Lim (Cambodian)	II +R	063760274 063964349	10 82	31 wip 1	50S 120S	60\$ 70\$	5	5	Nº297Group8 St.Charle de Gaulle Phum Boengdouopa Khum Slorkram Srok Siem Reap	139/08Mot 18-06-09	450.0005
8	Apsara Angkor	Mrs.Keo Leakhena Mr. Noun Tevithen (Cambodian)	HIR	063964999 063964567	15 810	91 trip2	705 1705- 2205	80-90 1105	85	25	N.Roadó Phum Salakanseng Khum Svaydangkum Srok Siem Reap	119/08Mot 24-07-09	4.100.000\$
9.	Apsara Palace	Mrs. Ry Vor (Cambodian)	H+R	063766667 063766666	5	15	10\$	155	1 -	5	N. Road 6 Phum Watbo Khum Salakamreok Srok Siem Reap	007/08srtd 09-10-08	150.000\$ 3-1
10	Apsara Holiday	Mss. Reth Chan Rattana(Cambodian)	Ĥ+R	063390006 063760342	6	38	15\$	15\$	4	6	Phum Boengdounpa khum slorkam Sork Siem Reap	151/08Mot 06-07-09	250.000\$

	1.000	Mrs. Yos Envanda	H+R	1	1	1	1	1	T	-		1	1
11	Angkor Riverside	(Cambodian) Mr.Wee Chee Keong		063390006 063760342	3	47	15\$	15\$	13	6	Phum Boengdounpa khum slorkam Sork Siem Reap	080/08Mot 15-10-08	250.000\$ 1-2
12	Angkor Star	(Malaisia)		063766999 063768999	26 S 2	32	45\$ 90\$	60\$	23	-22	N.Road 6 St.Siyatha Mondol 2 Khum Svaydangkum Srok Siem Reap	012/08Mot 01-01-09	500.000\$ 2-13
13	Angkor Palace resort & Spa	Mrs. Lao Kimnay (Cambodian)	H+R +Ma	063760511 063760512	18 S11	48 V 5	300\$ 550\$	325 \$ 1550	117	65	N° 55 Road 6 Phum Krous Khum Svaydangkum Srok Siem Reap	015/08Mot 18-01-09	☆☆☆☆☆ 2-9
14	Amansara princiere Resort	Mr. Siddharth Mehra (Indian)	H+R +Ma	063760333 063760335	24	<i>к</i> . 4.	650\$ 850\$	-	47	38	Road Angkorwat Phum Beng- donpa Khum Slorkram Srok S. F	កំពុងរត់ការ	1-2
15	Allson Angkor Paradise	Mrs. Kham Plally (Cambodian)	H+R	063760690 063760691	57 S 4	101 trip7	150\$ 200\$	170\$ 190\$	61	45	N.Road6 Phum Salakanseng Khum Svaydangkum Srok Siem Reap	043/08Mot 03-02-09	☆☆☆☆ 2-8
16	Angkor Howard	Mr. Chiang Ching Huo (Cambodian)	H+R	063965000 063965111	184 S 36	50 trip 6	50\$ 180\$ - 600\$	50\$ 70\$	73	37	N.Road 6 Phum Kaksikam Khum Sronge Srok Siem Reap	100/08Mot 08-06-09	유요요요요 (proposal)
17	Angkorland	Mr. Sao Maley (Cambodian)	H+R	063760544 063760547	16 S 5	49	35\$ 60\$	40-50	47	23	Phum Ta Phul Khum Svaydang -kum Srok Siem Reap	កំពុងរត់ការ	2-14
18	Angkor View	Mr.Chea Chanrasmey (Cambodian)	н	011672290	9	21	10-15	10-15	09	10	N° Road6 Phoin Bangtheaychhas Khum Slorkram Srok Siem Reap	133/08Mot 17-05-09	85.000\$ 1-5
19	Angle Angkor	Mr. Heng Chheang (Cambodian)	н	063761777 063761444	03	-19	20\$	25\$	08	12	St.CharledeGaulle Phum Boengdoun- pa Khum Slorkram Srok Siem Reap	146/08Mot 01-08-09	1-2
20	Auberge Mon't Royal D'Angkor	Mr.Prim Phloeun (Cambodian)	H+R	063964044 063964528	5 S 2	21	25\$ 50\$	30\$	4	11	Nº 49 7 Phum Taphul Khum Svay dangkum Srok Siem Reap	132/08Mot 14-06-09	170.591\$
21	Angkor Diamond	Mrs.Yer Chunfei (Chiness)	H+R	063380038 063964449	5	32 tripI	20\$	25\$ 30\$	10	20	St.Acharsva Phum Watbo Khum Salakamreok Srok Siem Reap	021/08 Mot 20-12-08	2-14 359.183\$ 3-1
22	Angkor AOS Condominium	Mrs.Chhun Phallin (Cambodian)	. н	012693355	16	750 \$ 1M	- 900\$ ont		7	10	Phum Salakanseng Khum Svaydang Kum Srok Siem Reap	011/08 srtd 12-12-08	3-1 1.200.000\$ 2-8
23	Angkor Way	Mrs. Neang Socur (Cambodian)	H+R	063963866 063963867	18	52	30\$	30\$	23	23	St.Charle de Gaulle Mondol 3 khum Slorkram Srok Siem Reap	060/08Mot 06-03-09	350.000\$
4	Angkor Highway	Mr. Huh Jae Ho (Korean)	.н		10	6	20- 25\$	20- 25\$	23	23	N.Road6 Phum Salakanseng Khum SvaydangkumSrok Siem Reap	013/08 srtd 25-04-09	-2-8
5	Angkor Riviera	Mr. Sok Thytha (Cambodian)	H+R +Ma	063969333 063969666	53 8 7	131	80\$ 120\$	80 - 1005	-68 .	32	Phum Mondol 1Khum Svaydang- kum Srok Siem Reap	123/08Mot 16-07-09	2-12

e. 1

۲.

÷.

-	1	I . DO ROLL OF	i m	2	-	-	-	-			A	and the second second	
26	Angkor Holiday	Mr. Voek Chuor (Cambodian)	H+R	063956777 063966800	46 \$ 12	94 trìp 6	1005 1405	12051 30\$			Phum Mondol 2Khum Svaydang- kum Srok Siem Resp	182/08Mot 04-10-09	작소소쇼 2-13
27	Angkor Twon	Mrs, Ren chanthach (Cambodian)	R	063761130 063761130	5	18	10- 125	10- 12\$.3	6	Phan-Mondol 1 Khum Svaydeng kum Srok Siem Reap	138/08Mot 21-06-09	2-12
28	Angkor Watanakpheap	Mrs. Y Sotheary (Cambodian)	H	063969222	3	39 trip 1	10- 155	10- 155	9	6	N. Road 6 Plum Banteay Chas Khum Svay dangkum Srok S. R.	ព័តុងរធំការ	1-5
29	Banteay Srey	Mr. Mik Saphanaret (Cambodian)	.H+R	012830666 016830666		54		555	24	12	N.Road 6 Pinum Taplut Khum Svaydangkum Srok Siem Reep	មិនទាន់បន្ត	270.9155
30	Bequest Angkor	Mr. Ich Try (Cambodian)	н	012898668 016833480	4	26	155	205	4	7	Nº 012 St. Phsakrom Phum Vibourchen Khum Svaydangkum Srok Siem Reap	192/08Mot 11-11-09	150.450\$
31	Bopha Angkor	Mrx. Ghhang Soam (Cambodian)	H+R	063954928 012819302	8	14	205	255	15	17	St.Anharsya Phom Watbo Khum Salakamrook Srok Siem Reap	193/08Mot 15-11-09	270.000\$ 3-1
32	Borann l'auberge des teample	Mr.BenoitDuchtelm/F ranch & (Cambodian)	H+R	012800003 063964740		20		305	u	12	Phum Slorkram Khum Slorkram SrokSiem Reap	002/08 srtd 04-02-09	350.000\$
33	Borel Angkor Resort & spa	Mrs. Kuoy Naline (Cambodian)	H+R	063964406 063963436	54 S 11	119 Trip4	1355 6005 - 16005	(855 2105	108	62	N.Road6 Phom Bangtheay chias Khum Slorkram Srok S.R.	198/08Mot 20-12-09	950,3505
34	Battamhang Angkor	Mr. Chom Runthen (Cambodian)	н	063399333 012956135	10	19	155- 255	158- 255	3	5	Phum Chong Koasou Khum Slorkram Srok Siem Keap	116/08Mot 15-06-09	1-3
55	CASA Angkor	Mrs.Lim Chhiv Ho (Cambodiun)	H+R	063963658 063963657	53 53	40	305 455	355	14	12	St.Oum Chhay Mondol 1 Khum Svaydangkum Srok Siem Reap	131/08Mot 09-07-09	213,000\$
36	City Angkor	Mr. Seang Nom Mr. Sathirana Weera (Cambodian)	H+R	063760336 063760340	23 S 8	165 irip8	855 1005	955 1205	95	33	N.Road 6 Phum Safakansong Kimm Svaydangkum Srok Siem Reap	140/08Mot 10-08-09	1.200.0005
37	City Royal	Mr. Fak Herming- sen (Danamae)	H+R	b63760636 063964278	35 S 3	67 trip8	705 1505	70S 80S	60	26	N. Road 6 Phum Salakanseng Khum Sveydangkum Srok Siem Reap	003/08Mot 04-12-08	2.790.000\$
38	City River	Mr. Lean Monin (Cambodian)	11+R	063763000 063963963	11 S I	38	305 705	305 355	10	24	PhumWatbo Khum Salakam- rook Srok Siam Reap	199/08Mot 04-12-09	1.000250 \$
39	Cozyna Angkor	Mr. Yim Sivanna (Cambodian)	H+R	063966569 063966569	23 5 2	30	205 355	30	15	26	N. Road 6 Pham Krous Khum Swaydangkum Srok Siem Reap	121/08Mot 05-06-09	2-9
10	Claremont Angkor	Mr: Craig Murray (Australia)	H ; H+R	063966898 063966998	11	. 33	305 - 40\$	30\$ - 40\$	48	12	# 0017 Phum Watbo Khum Salakamroeuk Srok Siem Reap	094/08Mot 09-04-09	3-1
11	Day Inn Angkor Resort	Mr. Ly Heap (Cambodian)	HTK	063760500 063760503	22 S 2	36	35\$ 70\$	40\$	30	15	St.Oum Chhay Phun Mondol I Khum Svaydangkum Srok Siem Reap	147/08Mot 02-09-09	2.500 000\$

		Mrs. Cha Chanthy	H+R	TR	1. *	-1	-	1	-	-	1		and the second second
42	Dragon Royal	(Cambodian)	+Ma	063966666 063965999	16 S 4	133	80S 110S	905	41	28	N. Road 6 Phum Krous Khum Svay dangkum Srok Siem Reap	053/08Mot 06-03-09	☆☆☆☆ 2-9
43	De La Paix	Mr. Lo Sokoun (Cambodian)	H+R +Ma	063966000 063966002	52 S23	32	195\$ 400\$	275\$	122	58	St.Sivatha Mondol II Khum Svaydangkum Srok Siem Reap	108/08 Mot 02-05-09	2-13
44	Damnak Angkor Spa & Resort	Mrs. Lee Kyungmi (Korean)	ŀ	063966000	8	10 trip2	40\$	40\$ 50\$	8	5	N.Road 6 Phum Krous Khum Svaydangkum Srok Siem Reap	005/08 srtd 04-05-09	2-9
45	Empress Angkor	Mr. Yin Ngech (Cambodian)	H+R +Ma	063963999 063964333	· 54 \$ 4	69	120\$ 500\$	140S- 160S	112	52	N.Road 6 Phum Kaksikam Khum Sronge Srok Siem Reap	149/08Mot 05-04-09	5.000.000\$ ☆☆☆☆ 11-1
46	Eng Ty Angkor	Mrs. Ly Um Eng (Cambodian)	н	063966700 063966701	5	25	15\$	15\$	6	9	N.Road 6 Phum Khna Khum Slorkram Srok Siem Reap	071/08 Mot 08-02-09	1-1
47	Emerald City	Mrs. Sieng Eng (Cambodian)	н	012707979		35		15\$- 15\$	8	8	N.Road 6 Phum Chong Koasou Khum Slorkram Srok Siem Reap	117/08 Mot 16-06-09	1-3
48	FCC Angkor	Mr. Anthony John Alderson (England)	H+R +Ma	063760280 063760281	21 S 2	7	90\$ ·330\$	140\$	85	55	St.Oum Khun Mondol 2 Khum Svaydangkum Srok Siem Reap	157/08Mot 22-09-09	2-13
49	Goldiana Angkor	Mr. Meas Sary (Cambodian)	H+R	063760805 063760809	11 S 2	131 trip6	100\$ 240\$	120\$ 140\$	30	20	N.Road 6 Phum Salakanseng Khum Svaydangkum Srok Siem Reap	173/08Mot 12-07-09	5.000.000\$
50	Golden Orange	Mrs.Ream Jenny (Cambodian)	н	063965389 063965389	15	15	15\$	15\$	6	5	Phum Slorkram Khum Slorkram Srok Siem Reap	200/08Mot 20-10-09	1-1
51	Heritage II "Angkor"	Mr. Ing Somath (Cambodian)	H+R	063969100 063969103	17 S 3		120 \$ 160\$		12	14	Phum Slorkram Khum Slor- kram Srok Siem Reap	004/08 srtd 02-04-09	i-1
2	Koh Ker	Mr. Eam So (Cambodian)	H+R	016633436 063963234	6	36	20\$	25\$	6	13	Nº 8 Group 4 Phum Watbo Khum Salakamreok Srok Siem Reap	កំពុងរត់ការ	350.000\$
3	Khemara Angkor	Mrs. Lim Chheng (Cambodian).	H+R +Ma	063760999 063760777	17 S 6	77 trip4	100\$ 120\$	100\$ -120\$	41	26	Reap Road 6 Phum Salakanseng Khum Svay dangkum Srok Siem Reap	114/08 Mot 24-03-09	3-1 2.400.000\$ 2-8
4	Kingdom Angkor	Ms. Chhor Sick Houy (Cambodian)	H+R	063760526 063760527	9 . S 6	75	65\$ 80\$	\$65	14	26	N.Road 6 Phum Krous Khum Svay dangkum Srok Siem Reap	052/08Mot 28-12-09	2.500.000\$ \$\$ \$\$ \$\$ \$
5	Krung Meas	Mr. Seng Try (Cambodian)	·H+R	063964888 063963372	13	62	10\$- 15\$	10\$- 15\$	20	25	Road 6 Phum Salakanseng Khum Svay dangkum Srok Siem Reap	069/08 Mot 04-04-09	2-9

		Mrs. Chhim Heav	H+R	-10-	1	i	1			-			
56	Linratanak Angkor	(Cambodian)		063969888 063969884	50 S 2	45	35\$	45\$	49	28	N.Road6 Phum Banteay Chas Khum Slorkram Srok Siem Reap	កំពុងរត់ការ	1-5
57	La Noria	Mr.Chhoun Sok Mrs.Heng Chantha (Cambodian)	H+R	063964242 063964243	8	20	29\$ 39\$	29S 39S	16	26	Phum Slorkram Khum Slorkram Srok Siem Reap	144/08Mot 13-09-09	470.970\$ 1-1
58	Lotus Angkor	Mrs. Srang Leng (Cambodian)	H+R	063965555 063965556	15 S 7	38 trip12	60\$ 110\$	70S 85S	33	32	N. Road 6 Phum Krous Khum Svay dangkum Srok Siem Reap	065/08 Mot 15-10-08	2-9
59	Le Meridien Angkor	Mr . Prakit China- mourpong (Thai)	H+R +Ma	063963900 063963901	70 S 8	144 V 1	290\$ 430\$	310\$ 540\$	153	72	St. CharledeGualle Phum Trapeangses Khum Kokchark Srok Siem Reap	127/08Mot 25-08-09	20.000.000s
60	La Maison Angkor	Mr. Jean - Claude Garen (Franch)	H+R	063965045 063964966	24	а. 	50\$		7	21	N.Road 6 Phurn Kaksekam Khum Sronger Srok Siem Reap	019/07 srtd 24-06-09	800.000S
61	La Résidence Angkor	Mr. Charles Mortimer Coleman (England)	H+R	063963390 063963391	S 1	54	440\$	280\$- -340\$	70	- 38	St.Acharsva Phum Watbo Khum Salakamreok Srok Siem Reap	020/08 Mot 17-02-09	5.500.000\$ 3-1
62	Lucky Chane	Mrs. So Chanthou (Cambodian)	H			7	-	15S - 25S	.4	3	N.Road 6 Phum Chong Koasou Khum Slorkram Srok Siem Reap	008/08 srtd 09-06-09	1-3
63	Moon Asian Angkor	Mr. Heng Srun (Cambodian)	Н	063969798 063969798	5	25	12- 25\$	12- 25\$	2	8	St.LorkTaNeoy PhumWatbo Khum Salakamreok Srok Siem Reap	169/08 Mot 20-08-09	3-1
64	Mekong Angkor	Mr. Nil Sopheap (Cambodian)	Н	063963636	10	12 trip1	25\$- 30\$	25S- 30S	5	10	St.Sivatha Mondul 2 Khum Svaydangkum Srok Siem Reap	178/08 Mot 01-09-09	2-13
65	Majestic Angkor	Mrs.Mao Chanthou (Cambodian)	H+R	063969682 063963681	5 S 7	86 trip2	120\$ 180\$	120\$ 120\$	32	22	N. Road 6 Phum Krous Khum Svaydangkum Srok Siem Reap	203/08 Mot 22-11-09	☆☆☆☆ 2-9
66	Molina	Mrs.Tan Sithan (Cambodian)	Η.	012982082 063963351	8	11	15\$	15\$	4	7	Phum Taphul Khum Svaydang- kum Srok Siem Reap	015/07 srtd 11-06-09	350.000\$ 2-14
67	Monika Angkor	Mr. Nhep Penghak (Cambodian)	H+R	063764444 063963587		30		35\$ 45\$	4	10	Nº 245 St.Charle de Gaulle Mondol 3 Khum Slorkram Srok Siem Reap	066/08 Mot 01-04-09	450.000\$
68	Medusa Socheata	Mr.Lee Hyukgeun (Korean)	H+M	012308302	8	8	10\$	155	9	.16	N° 36 Group 9 Phum Ta Phul Khum Svaydangkum Srok Siem Reap	012/08 srtd 13-06-09	270.000\$ 2-14
69	Monoreach Angkor	Mrs. Sony Mr. Soun Narin (Cambodian)	H+R	063760182 063963861	18 S 3	77	50\$ 70\$	505	16	19	N. Road 6 Phum Salakenseng Khum Svaydangkum Srok Siem Reap	045/08 Mot 04-12-08	1.500.000\$
70	Menbora	Mrs. Sar Boravy (Cambodian)	₩+R	063963796 0639 <u>6</u> 3896	-8 S1	20 trip1	10\$ 20\$	15\$ 20\$	16	8	N. Road 6 Phum Banteaychas Khum Svay dangkum Srok S. R	061/08 Mot 16-12-08	1-5

	1	Mr. Doung Tech	H+R	T-C-	-	-		-	-	_			
71	Monarch Angkor	(Cambodian)		063964778 063964877		81		205 305	20	10	St, LorkTaNcoy Pham Watbo Khum Salakamreok Stok Siem Reap	001/08Mot 28-01-09	1.500.000\$
72	Neuk Peau	Mrs. Meas Samon (Cambodian)		063965429 063964429		73	305 405	405- 605	21	27	Nº053 St.SivathaMondul 2 Khum Svaydangkum Srok Siem Reap	013/08 Mot 27-01-09	550.000S 2-13
73	Nokor Phnom	Mr. Sam Heang (Cambodian)	H+R	063963855 063963727	9 51	77 trip 8	205 80\$	305 505	40	20	N.Road 6 Phum Kaksekam Khum Svaydangkum Srok Sietn Reap	141/08Mot 02-08-09	1.500.0005
74	Orien d'Angkor	Mrs .Oung Kim Hoan (Cambodian)	H+R	053965456 063965276		28	1	305	10	20	Phum Salakanseng Khum Svay- dangkum Srok Siem Resp	184/08Mot 24-11-09	2-8
75	Paris Angkor	Mrs. Tep Sothea (Cambodian)	H	012951707	б	17	155	205	3	4	Nº 517 Phum Ta Phul Khum Svaydangkum Srok Siem Reap	012/07srtd 10-06-08	100.0005
76	Pacaggio	Mr. Peter Liez (Swiss)	H	063964732 063760163	24	17		15\$ 20\$		8	Nº 0432 Phum Watbo Khum Salakamreok Srok Siem Reap	006/08srtd 23-06-09	100.000\$
77	Princess Angkor	Mr. Olhsman Has- san - Imran Hassan (Cambodian)	H+R +Ma	063760056 063963688	20 54	92 trip 5	805 1505	1005	48	35	N.Road 6 Phum Krous Khum Svaydangkum Srok Siem Reap	113/08Mot 12-05-09	3,200,000s 合合合合 (proposal)
78	Pruhm Bayon	Mrs. Keo Charya (Cumbodian)	H+R	063963568 063963519	14	48	40-70	40-70	15	15	N.Roed 6 Phum Ta Phul Khum Svaydangkum Srok Siem Reap	148/08Mot 05-08-09	450.0005
79	Rec Hotel	Mr. Chan Vunnak (Cambodian)	H+R +Ma	063766888 063766889	26 8 8	108	\$110 \$160	\$120	98	59	N. Road & Phum Krous Khum Svaydangkum Srok Slem Reap	175/08Mot 11-02-10	2-14 6.700,000S 计计算法
ło	Phnom Bok	Mrs.Keo Sopheavy (Cambodian)	H	063964845 063963845	2	22	\$10	\$12	3	4	Roud6Group 3 Phum Chong- KaoSou Khum Slokram Srok Slem Reap	070/08 Mot 01-03-09	375.250\$
81	Prince d'Augkor	Mr.Ly Hongkim (Cambodian)	H+R +Ma	063963333 063763888 063963334	51 8 16	107 trip 16	1205 3205	1405 1905	90	68	St.Sivatha Phum Mondol 2 Khum Svaydangkum Srok Siem Reep	081/08 Mot 12-03-09	3-13
12	Pacific	Mr. Sun Hour (Cambodian)	H+R	063761818 063761020	27 83	144 trip 62	100S 350S	120 S 140S	114	52	N.Road 6 Phum Kakaikam Khum Sronge Srok Siom Reap	097/08 Mot 20-05-09	
3	Parkiane	Mr. Loem Sophy (Cambodian)	H	063967676 063967680	1	35	25\$- 35\$	305- 405	24	15	Phum Ta Phul Khum Svaydang- kum Srok Siem Reap	134/08 Mot 30-07-09	41-1
4	Preah Vihea	Mr. Ea Kim Eng (Cambodian)	.H	063966233 063966233	8	16 .trip2	15\$	15\$ 255	4	4	N.Road 6 Phum Chong Koasou Khum Slorkram Srok Siem Reap	135/08 Mot 30-07-09	2-14 150.000\$

		Mr. Pov Chhang	H+R	1-1-	1		1	1		-		1	
85	Raksmei Chanrash	(Cambodian)	IIIK	012849967 063963557	4	25 trip1	10\$ 15\$	15\$ 20\$	1	2	N 330 St. Sivatha Phum Stung Thunei Khum Svaydangkum S.R	022/08Mot 13-01-09	2-11
86	Reaksmey Crystal Hotel Aparment	Mr. Meng Sivutthy (Cambodian)	H. Apar	063761607 063761804	25			- 650\$ Iont	2	2	N.Road 6 Phum Krous Khum Svaydangkum Srok Siem Reap	032/08Mot 25-02-09	2-9
87	Raffles Grand Hotel d'Angkor	Mr. Jean Philippe Beghin (Australia)	H+R	063963888 063963168	52 S 12	67 V 2	310\$ 460\$	360\$ 1900\$	198	71	N° 1 St.Charle de Gaulle Mondol I KhumSvaydangkum Srok S.R	047/08Mot 21-04-09	40.000.000\$
88	Song Lama	Mr. Song Jong sik (Korean)	Н	063965733 092404369		27		15 \$ - 35\$	11		Nº 0088 N.Road 6 Phum Banteay Chas Khum Slorkram Siem Reap	167/08Mot 01-03-09	410.000\$
39	Royal Angkor Resort	Mrs. Kou Kimlong (Cambodian)	H+R +M	063965577 063965511	85 S 8	104	250\$ 280\$	270\$	94	36	N.Road 6 Phum Kaksikam Khum Sronge Srok Siem Reap	051/08 Mot 11-01-09	250.000\$ 11-1
0	Royal Crown	Mr. Tuy Hor Mr. Mom Pearith (Cambodian)	H	063760316 063760317	8	32	25\$	25\$	13	12:	St.7 january Phum Watdamnak Khum Salakamreok Siem Rcap	143/08Mot 02-08-09	250.000\$ 3-3
1	Shinta Mani	Mr. Lo Sokoun (Cambodian)	H+R +Ma	063761998 063761999	2	16	160\$	144\$	26	24	St.Oum Phun Mondol 1 Khum Svaydangkum Srok Siem Reap	002/08 srtd 05-02-09	170.650\$
2	Salina	Mrs. Koy Salina Mr. Khhan Someth (Cambodian)	H+R	063760487 063380035	18 S 2	44 trip6	45 \$ 100\$	55\$ 65\$	22	28	Phum Taphul Khum Svaydang- kum Srok Siem Reap	176/08Mot 15-09-09	800.000\$ 2-14
3	Somadevi Angkor	Mr. Khek Leang (Cambodian)	H+R +Ma	063967666 063967660.	21 · S 3	105 trip 14	120\$ 180\$	120S 140S	81	49	St.Sivatha Phum Mondol 2 Khum Svaydangkum Srok Siem Reap	កំពុងរត់ការ	소유 소유 2-13
4	Sokha Angkor	Mr, Sok Kong (Cambodian)	H+R +Ma	063969999 063969995	169 S 36	71	259 \$ 2000	500\$ 700\$	265	95	NRoad6 PhumSalakenseng KhumSvaydangkum Srok S.R	168/08 Mot 25-10-09	습요하다 2-8
5	Sky way	Mr, Sok Meng (Cambodian)	H	063760658	5	25	6-10\$	6-10\$	2	8	N.Road 6 Phum Banteaychas Khum Slorkram Srok Siem Reap	115/08 Mot 01-09-09	1-5
5	Sovan Angkor	Mrs.Hout Neardey (Cambodian)	н	012838042 063964039	5	17	5-10\$	7-15\$	2	6	Nº 063 N.Road 6 Phum Ta Phul Khum Svaydangkum Srok Siem Reap	101/08 Mot 02-01-09	250.000\$ 2-14
7	Sydney Angkor	Mrs. Chea Sony (Cambodian)		012835998 063965064	10	31	5-10\$	5-10\$	7	10	# 152 Phum Watbo Khum Salakamroeuk Srok Siem Reap	095/08 Mot 09-02-09	1.250.000\$
3	Sovaan Angkor II	Mrs.Hout Neardrey (Cambodian)	H ,	063964991 063964992	3	24 trip3	15\$	20\$ 35\$	4	8	N.Road 6 Phum Banteaychas Khum Slorkram Srok Siem Reap	130/08 Mot 06-06-09	1.000.000\$
,	SO HO	Mrs.Linda Chong Laylin (Malaisia)	H+R +Ma	012333933	7	8	10\$ 15\$	10S 15S	8	17	Phun Mondol 1 Khum Svaydang- kum Srok Siem Reap	014/08 srtd 13-12-09	2-12

100	Serey Pheap	Mrs.Eam Samnang (Cambodian)	H+R	063963473 063964274	37	70 trip3	15\$ 30\$	455 555	16	20	k.Road 6 Phum Banteay Chas Khum Slorkram Srok Siem Reap	កំពុងរត់ការ	600.000\$
101	Soria Morin LTD (Augkur, Lion)	Mrs. Kristin Hold Hansen (Norway)	н	063964768 063964769	12	11	10-122	10-155	8	24	Phum Watbo Khum Salakamreok Srok Siem Reap	138/07 Mot 28-12-08	3-1
102	SlemReap Town	Mrs. Chan Lay Mr. Lek Yen (Cambodian)	H+R	063963591 063963431	10	20	40\$	405	12	16	N.Road 6 Phum Banteay Chas Khum Slorkram srok Siem Reap	092/08 Mot 16-01-09	420.000\$
103	Smyling	Mr. Ea Kais (Cambodian)	H+R	-063763838 063766868	14 S 11	125	50-605 1505	50-60\$	1		N.Road 6 Phum Chong Koasou Khum Slorkram Srok Siem Reap	145/08Mot 20-08-09	1-3
104	Sofitel Angkor Phokeethra Golf & Spa resort	Mr. Supachai Virapuchong (Thai)	H+R +Ma	063964600 063964610	76 S 21	141 V 1	380\$ 400\$	350S 1500S	157	117	Mondol 1 Khum Svaydangkum Srok Siem Réap	183/08Mot 20-09-09	8.000.000S AAAAA 2-12
105	The Sothea Boutique Resort	Mrs. Ki Sothea (Cambodian)	H+R +Ma	063761181 023215962	\$ 39		1005- 1505		43	96	N. Road 6 Phum Krous Khum Svay dangkum Srok Siem Reap	កំពុងរត់ការ	2.9
106	Thunborey	Mrs. Kim Eng (Cambodian)	н	063761990 063761725	4	26	105 15\$-	105- 155	5	5	St.Phsakrom Phum Vihearchen Khum Svaydangkum Srok Siem Reap	177/08Mot 21-09-09	2-10
107	Tmor Meas	Mrs. Chon Sokhom (Cembodian)	H	063969898 063969898	4	26	15\$	13\$	5	5	Phum Watbo Khum Salakam- roeuk Srok Siem Reap	158/08Mot 11-07-09	3-1
108	Ta Prohm	Mrs. Mom Rady Mr. Yim Roatana (Cambodian)	H+R	063380117 063380116	6 52	61 trip1	28 55	32 45	30	15	St. Pokambor Mondol 1 Khum Svaydangkum Srok Siem Reap	109/08 Mot 29-04-09	450.000\$ 合合合
109	Tarn Angkor	Mr. Say Ching (Cambodian)	H+R	063966661 063964444	46 \$7	153 Trip 7	1205 1805	1305 1605	-41	54	St.Charle de Gaulle Mondol 3 khum Slorkram Srok Siem Reap	186/07 Mot 26 -11-09	合合合合 1-7
110	T. S. P Lucky Augkor	Mrs. Hor Sayon (Cambodian)	H+R	063767666 063963131	6	51	255	255	17	9	Road 6 Phum ChongKaoSou Khum Slokram Srok Siem Reap	102/08 Mot 01-03-09	1.300.000\$
m	Victoria Angkor Resort & Spa	Mr.Raphael Gulilin (Franch)	H+R +Ma	063760428 063760350	39 S10	81	240\$ 400\$	360\$	145	68	Phum Mondol I Khum Svaydang- kum Srok SiemReap	035/08Mot 23-12-08	470.000S 合合合合合 2-12
112	Whit Lotes	Mr. Sophanna Sadath (Cambodian)	н	063966299 063966298	11	19	15\$ 25\$	155- 25\$	4	ì	Phum Taksenthong Khum Svaydangkum Srok Siem Reap	185/07 Mot 28 -09-09	2-3
113	Xelusive	Mrs. Chan sophy (Cambodian)	H+R	063760088 063760099	19		15-20		15	55	St. Lorktaneoy Phum Watbo Khum Salakamreok Srok Siem Reap	003/08 srtd 01-01-09	3-1

	TOTAL IN OPERATION LICENSE UN VALIDITIES LICENSE TOTAL STAFF TOTAL : CAPITAL INVI LOCAL INVESTMENT	: Esti		112 01	·		SINGLE 2316 SINGLE 2316 SINGLE 2316 SINGLE 0 F : 2 802 PAX 848. 276	TWIN	5487 5487 5433 54	TRIPLE 204 TRIPLE 204 TRIPLE 204 TRIPLE 0		9 VILLA 9 VILLA		
·	FOREIGN INVESTMEN Note: H : Hotel, R : Re Tourism Department, M	staur Ma	: 1 ant, Ma:Ma le, F:Fen	9 HOT assage , nale ,	ELS USDS , SGL : Single ☆(one Star)	33. , TWI	822. 683 N: Twin , Trip : 1							
	Siem Reap, Date	ANE	December AGREED M DEPA	RTM - SENG	ent 🕑 –		Chief of Tourism	Industry	y Offic	e 	Siem Reap		Decembe FED BY	r 2008
			Deputy	Durect	tor		THIM S	EREYVU	ЛΉ			Ly	SARETH	

 $\left(\right)$

MINISTRY OF TOURISM

SIEM REAP	TOURISM DEPARTMENT	

TOURISM INDUSTRY OFFICE Tel : (855-63) 964 925/012 545405 Fax :(855-63) 963 996

LIST OF GUEST HOUSE IN SIEM REAP (HAVE A LICENSED) AS OF December 2008

NATION

KINGDOM OF CAMBODIA

ଓଡେଓ 🗇 ଅଧ୍ୟର

RELIGION KING

Commune No. - Village No.

1/9 SRWSA

274	C. March March	Owner Of	PET P. PAX	Total	Nun	aber	Room	Rates	St	aff	Address	Licensed	Demanl
N*	Guest House's Name	Manager	TEL & FAX	Room	SGL	DBL	SGL	DBL	Μ	F	Address	Expiration	Remark
01	A LITTLE WORLD	Mr. Cho Choo Hyun	092256082	15	а	12	5-10\$	5-105	3	3	#208 Phum Taphul Khum Svaydangkum S.R	101/08 TO 01 - 08 - 09	2-14
02	ANCIENT ANGKOR	Mr. Vin Hokseng	012772862	20	14	6	8-25\$	8-25\$	2	4	Phum StungThmei Khum Svaydangkum S.R	032/08 M T 12 - 07 - 09	2-11
03	ANGKOR SINA BRIGHT	Mrs Chau Sina	012935895	14	5	9	5\$-12\$	55-125	0	4	Phum Taphul Khum Svaydangkum S.R	132/08 TO 18 - 10 - 09	2,14
04	ANGKOR SPIRIT PALACE	Mr.Khim Chamroeun	012404622	15	5	10	15-205	15-20\$	2	3	Phum Pjiechey Khum Svaydangkum S.R	128/08 TO 01 - 11 - 09	34
05	ANGKOR SEILA PICH	Mrs. Sar Nakon	012582129	13	8	5	5-15\$	5-15\$	0	2	Phum Taphul Khum Svaydangkum S.R	127/08 TO 19 - 09 - 09	2-14
06	ANGKOR PARK	Mr. Lim Heng	012858492	15	7	8	5-15\$	5-15\$	2	2	# Phum Vichearchen Khum Svaydangkum S.R	111/08 TO 01 - 10 - 09	2-10
07	AMATAO	Mr. Basler Stephene	121878480	8	4	4	15-20\$	15-20\$	1	1	P.Svayprey Khum Svaydangkum S.R.	005/08 TO 24 - 01 - 09	2.4
08	ANGKOR BEAUTY VILLA	Mrs. Phin Radý	012599054	10	6	4	10-15\$	10-15\$	2	3	# Phum Watdomnak Khum Salakamreok S.R	034/08 TO 21 - 02 - 09	3-3
09	ANGKOR MARVEL	Mrs. Chea Sopheak	012685980	13	3	10	6-10\$	6-105	3	4	# Phum Waldomnak Khum Salakamreok S.R	035/08 TO 27 - 02 - 09	3-3
10	ANTANOU ANGKOR VILLA	Mr.Kawahara Yoshifumi	012777879	14	4	10	15-308	15-30\$	4	8	# Phum Waldomnak Khum Salakamreok S.R	033/08 TO 10 - 02 - 09	3-3
11	ANGKOR DAISY	Mr. Moch Sophon	092842806	10	2	8	S 4	\$5	1	2	#0271Phum Banleaychas Khum Slorkram S.R	064/08 TO 20 - 04 - 09	1-5
12	ANGKOR DAVY	Mr. Kong Song	012935015	15	4	11	5-155	5-155	2	2	#119 Phum Banteay Chas khumSlorkram S.R	072/08 TO 11 - 05 - 09	1.5
13	ANGKOR DISCOVER INN	Mr.Ty Sophath	012952727	10	5	5	\$15	\$30	1	3	Phum Slorkram Khum Slorkram S.R	063/08 TO 23 - 03 - 09	14
14	ANGKOR GRAND	Mr. Sor Tong	012992230	13	0	13		5\$-8\$	1	3	#335 Road Nº 6 Phum Dorkpo Khum Svaydangkum S.R	028/08 TO 01 - 02 - 09	2-14

1

15	ANGKOR GREEN	Mrs.Morn Sokvany	012630006 016630467	6	2	4	\$10	\$12	3	2	#20 Gr.7.Mondul III Khum Svaydangkum S.R	190/07 TO 24 - 10 - 08	1-7
16	ANGKOR INDRADEVI	Mrs.Ros Chenda	017272262	14	2	12	5-10\$	6-15\$	2	2	#468 Group 22 Phum Krous Khum Svaydangkum S.R	095/08 TO 19 - 06 - 09	2-9
17	ANGKOR LUCK PARADISE	Mr. Tan Bunhoung	012537758	15	5	10	5-10\$	5-10\$	1	1	Road Nº 6 Phum Dorkpo Khum Svaydangkum S.R	098/08 TO 15 - 07 - 09	2-1-
18	ANGKOR SOKSAN	Mr.Sor Heng	012944669	10	5	5	\$5	\$5	0	1	#539 Group2 Phum Taphul Khum Svaydangkum S.R	024/08 TO 13 - 01 - 09	2-1-
19	ANGKOR TANCITY	Mr. Koy Ponnaka	12898692 016222259	10	5	5	5-10\$	20-39\$	4	4	# Phum Watbo Khum Salakamreok S.R	079/08 TO 12 - 06 - 09	3-1
20	ANGKOR TIP	Mr.Plan Viruth	012866119	10	3	7	\$5	\$5	1	2	#0052 Phum Slorkram Khum Slorkram S.R	177/07 TO 31 - 12 - 08	1-1
21	ANGKOR TODAY	Mr.Huot kheang	012479999	15	2	13	10\$	10\$	3	4	# P.Salakonseng Khum vaydangkum S.R	102/08 TO 15 - 08 - 09	2-8
22	ANGKOR WAT 286	Mrs.Seur Siam	. 012890143	30	14	16	\$5	\$6-\$10	3	3	#286 Phum Taphul Khum Svaydangkum S.R	031/08 M T 18 - 05 - 09	2-1
23	APSARA ANGKOR	Mr.Jeung Ik hoon	092381908 063761910	14	3	11	\$5	\$10	2	2	#279 Phum TaphulKhum Svaydangkum S.R	077/08 TO 04 - 06 - 09	2-1-
24	APSARA STEUNG STMEY	Mr.Chea bunpheng	012351321	15	14	1	5-15\$	5-15\$	2	2	Phum StungThmei Khum Svaydangkum S.R	062/08 TO 05 - 04 - 09	2-1
25	AUSTRALIA	Mr.Keo Tola	012442285 012661414	30	11	19	5-10\$	5-10\$	2	4	P.BanteayChas Khum Slorkram S.R	028/08 M T 22 - 05 - 09	1-5
26	BACA VILLA	Mr.Kao Chamreoun	012260440	15	3	12	7-12\$	7-12\$	2	3	Phum Taphul Khum Svaydangkum S.R	076/08 TO 14 - 06 - 09	2-14
27	BABEL SIEM REAP	Mrs.Arnod prin maryane	012 626406	20	13	7	5-12\$	5-12\$	1	4	Phum Watbo Khum Salakamreok S.R	017/08 M T 22 - 04 - 09	3-1
28	BAPUON 2	Mr.Van Chhay	012629284	6	6	0	\$3		0	1	#0336 group5 Phum Watbo Khum Salakamreok S.R	078/08 TO 16 - 06 - 09	3-1
29	BAPUON I (117)	Mr.Thhong Sevey Vong	012897339	10	2	8	\$4	\$5	1	2	#017 Phum Slorkram Khum Slorkram S.R	176/07 TO	1-1
30		Mr.Som Dararith	012832297 063963047	10	3	7	5-10\$	5-10\$	4	2	#659 st.Acharsva Phum WatboKhum Salakamreok S.R	23 - 12 - 08 148/08 TO	3-1
31	BOU SAVY	Mrs.Chhour Vannak Hon Bovuth	012898627	10	4	6	4-10\$	6-12\$	1	3	#261Phum Taphul Khum Svaydangkum S.R	12 - 11 - 09 043/08 TO	2-14
32	BUN NATH	Tith Kimlin	012652121	30	20	10	\$5	\$10	1	7	#446 N.Road 6 P.Taphul	20-02-09 159/07 TO	2-14
33	BUN SEDA ANGKOR	Mrs. Bun Seda	012917294	20	10	10	5-15\$	5-15\$	2	4	Khum SvaydangkumS.R #169 P. StungThmei Khum	26 - 11 - 08 002/08 M O	2-11
34	BUN HAN CHAKRIY INN	Mr. Chhoeung Bunhan	012849951 012907096	15	0	15	5-15\$	5-15\$	1	4	Svaydangkum S.R #0271Phum Banteaychas	14-01-09 032/08 TO	1-5
35		Mr.Chhoeum chamroeun	012563594	10	5	5	5\$	6\$	1	1	Phum Taphul Khum	05 - 02 - 09 152/08 TO	2-14
86	stand and a second stand stand	Mr.Srèng Somoeun	017430043	9	4	5	4-5\$	5-6\$	2	2	-	04 - 12 - 09 1140/08 TO	2-12
37	CHEA PHALLY	Chea Phally	012206153	10	5	. 5	2-3\$	2-3\$	0	2	Svaydangkum S.R # Phum Chongcaosou Khum Slorkram S.R	01 - 11 - 09 114/08 TO	1-3

38	CHEN LA 260	Mr. Prohm Yean	012910794	15	5	10	\$15	\$15	1	6	#260 Phum TaphulKhum Svaydangkum S.R	160/08 TO 12 - 11 - 09	2-14
39	CHETH LHOOR	Mrs.Tann Prachnhary	012960879	10	4	6	5\$	\$7	1	2	#0072 Phum Watbo Khum Svaydangkum S.R	027/08 TO	3-1
40	CHHORVY VORN ANGKOR	Mrs. Ung Channara	012282333	15	4	11	5-10\$	6-12\$	3	5	#105 Phum Mundul 1,Khum	05 - 02 - 09 141/08 TO	2-12
41	CHOEUN LOEUN	Mrs.Liu Junhong	012512868	10	0	10	\$5		1	2	Slorkram S.R #0618 Phum Banteay Chas	29 - 11 - 09 007/08 TO	1-5
42	CHHOUK TEP	MrS.Kroch Lorn	012894827	10	5	5	\$5	\$15	1	ż	khum Slorkam S.R #035 Phum Vichearchen	22 - 01 - 09 060/08 TO	2-10
43	COCONUT	Mrs.Horm Siphanna	012653019	8	5	3	\$15	\$15	1	6	Khum Svaydangkum S.R #697 Phum Mundul 3,Khum	05 - 02 - 09 164/07 TO	1-7
44	(Lavilla Loti) DO DO	Mr. Bun Saram	012312829	10	6	4	5-10\$	5-10\$	0	3	Slorkram S.R # Phum Vichearchen Khum	31 - 12 - 08 117/08 TO	2-10
						-			-	3	Svaydangkum S.R #010 st. Sivatha Mondul 2	17 - 09 - 09 130/08 TO	-
45	DARA	Mr.Muy Moeun	012630448	14	3	11		\$8-\$10	1	1	Khum Svaydangkum S.R Phum Salakanseng Khum	10 - 10 - 09 047/07 M .T	2-1.
46	EARTH WALKER	Ms.thipnet Sulaiphorn	063760107	20	3	17	\$8	\$15	3	3	Svaydangkum S.R # P. StungThmei Khum	27 - 09 - 09 035/08 TO	2-8
47	ECORE ANGKOR	Mrs. UI Soma	012263567	28	13	15	8-35\$	8-35\$	3	3	# P. StungThmei Khum # P. StungThmei Khum	01 - 09 - 09 094/08 TO	2-1
48	EISHT ROOM	Mr. Lim Kim Swee	012843833	12	7	5	10-15\$	10-15\$	5	1	Svaydangkum S.R	03 - 07 - 09	2-1
49	EUROPEAN	Mrs.Sao Srey Pov	012582237	11	2	9	\$5	\$5	1	2	#0566 Phum Beaychas KhumSlorkram S.R	145/07 TO 01 - 03 - 08	1-5
50	ELIZA ONE	Mr.Niet Kimny	012397273	14	7	7	5-15\$	5-15\$	2	3	#Phum Chongcaosou Khum Slorkram S.R	068/08 TO 01 - 05 - 09	1-3
51	FAMILY	Mrs.Mom Lun	012841864	15	6	9	\$3	\$5	1	2	#019 Group 1 Phum Taphul Khum Svaydangkum S.R	142/08 TO 18 - 11 - 09	2-1-
52	FRESH	Mrs. Suk Thea Vy	092765627	10	5	5	8-12\$	8-12\$	2	5	#005 St.Sivatha Mundul 1 Khum Svaydangkum S.R	093/08 TO 11 - 07 - 09	2-13
53	GARDEN HOUSE	Mr. Ith Kimphan	063963523	15	5	10	\$8-10\$	6-15\$	2	4	#129 Phum Watbo Kum Salakamreok S.R	125/08 TO 03 - 10 - 09	3-1
54	GARDEN VILLAGE	Mr.Van Sithavuth	012858647	15	10	5	\$4		2	3	#434PhumStungThmeiKhum Svaydangkum S.R	133/08 TO 04 - 11 - 09	2-1
55	GLOBAL	Mr Song Kwon Soo	012781983	13	8	5	\$3	5-15\$	2	14	#018 Phum Salakanseng KhumSvaydangkum S.R	053/08 TO 19 - 03 - 09	2-8
56	GOLDEN BANANA	Mrs. Peung cheng	092875269	15	10	5	8-20\$		4	2	# Phum Watdomnak Khum Salakamreok S.R	149/08 TO 12 - 11 - 09	3-3
57	GOLDEN SAND	Mrs. Tan Yolin	012866149 012786688	7	0	7		\$4	0	2	#0729 PhumBateay Chas Khum Slorkram S.R	121/08 TO 28 - 08 - 09	1-5
58	GOLDEN TAKEO VILLA	Mrs.Kim Leang	012785424	8	6	2	5-8\$	5-10\$	1	2	#123Phum Watbo Kum Salakamreok S.R	050/08 TO 03 - 03 - 09	3-1
59	GOLDEN TEMPLE VILLA	Mr.Ly Kongsren	012943459 012999918	30	15	15	8-10\$	10-15\$	4	8	#Phum Stung Thmei Khum Svaydangkum S.R	029/08 M T 18 - 07 - 09	2-1
60	GOLDEN WEEK	Mr.Touch San	012726984	10 ·	5	5	\$4	\$8	0	2	#154P.Chongcaosou Khum Slorkram S.R	136/08 TO 15 - 10 - 09	1-3

*	Mr.Chiep Cheung	092630252	18	8	10	\$5-\$15	\$5-\$15	2	5	#.Chongcaosou Khum Slorkram S.R	026/08 M T 26 - 06 - 09	1-3
GOLDEN VILLAGE	Mr. Ros Chanthou	012817616	25	13	12	\$5-\$10	\$7-\$12	2	4	Phum Watbo Kum Salakamreok S.R	003/08 M T 08 - 0 1- 09	3-1
GREEN PARK	Mr. Kong Bunhay	012890358	14	2	12	6-8\$	6-8\$	2	2	#304 Phum DorkpoKhum	120/08 TO	2-1-
GREEN GARDEN HOME	Long Chanthy	063963342	14	1	13	\$8	\$7	1	5	#051 St.Sivatha Phum Taphul	070/08 TO	2-1-
GREEN TOWN	Mr. Chhun Reth	012943181	27	5	22	\$3	\$5	2	5	#182 Group 3 Phum Watbo	165/07 TO	3-1
GREEN VILLAGE	Mrs.Seung Sam Ath	012659590	14	4	10	5-10\$	8-12\$	1	3	#0147 Phum Watdamnak	016/08 TO	3-3
GREEN FLOWER APARTEL	Mr.Eun Ho Ji	092218852	20	• 4	.16	15-20\$	15-20\$	7	8	Phum.Salakanseng Khum	006/08 M T	2-8
HANUMANALAYA	Tan Sotho	012936469	10	1	9	15-25\$	15-25\$	5	5	#005 Phum trang Khum	008/08 TO	1-6
HEART OF ANGKOR	Mr. Chhiv yong	012888816	15	5	10	\$5	\$6	4	6	# st Sivatha P. StungThmei	022/08 TO	2-1
НАРРҮ	Mrs.Thao Sophy	012968879	15	6	9	5-10\$	5-10\$	1	3	#0134 Group 2 Phum Watbo	089/08 TO	3-1
HILTION ANGKOR	Mrs.Do Vanna	016388338	20	8	12	5-10\$	5-10\$	2	3	#Phum Chongcaosou Khum	005/08 M T	1-3
HENG KHIM	Mr.Chea Hak	012971979	10	3	7	5\$	6\$	2	2	#Phum Chongcaosou Khum	002/08 TO	1-3
HENG AN	Mr. Fang nung	012990556	15	9	6	5-10\$	5-10\$	5	5	Phum Watbo Khum	001/08 TO	3-1
HOK LAY NY	Mr. Tiv lay	012514344	15	7	8	5-10\$	5-10\$	2	2	Phum Mondol3 Khum	014/08 TO	1-7
HOME SWEET HOME	Mrs.Sao Sreypov	012693393	27	.7	20	5-10\$	5-10\$	2	6	Phum Watbo Khum	146/07 TO	3-1
HELLO PARADISE	Mr. Preck Sarith	012961377	9	4	5	5-10\$	5-10\$	1	2	Phum Taphul Khum	083/08 TO	2-1
HUOR SAN	Mrs. Kit Nav Sim	012307080	8	5	3			1	3	Phum Taphul Khum	040/08 TO	2-1
IVyI	Mr.Karl Balch	012800860	6	0	6			1	11	#423Mondul 1Khum	179/07 TO	2-1
INDR KOSA	Mr. Nuch Wudhika	011704554	9	9	0	5-8\$				# Phum Mundul 3,Khum	188/07 TO	1-7
IMAGINE D'ANGKOR	Ms.Leng Theary	012306078	15	6	.9		15-25\$	4	6	# Phum Trapiengsies Khum	038/08 TO	4-1
JASMINE LODGE			10	4				2	2	#307 Root N6Phum Taphul	17 - 02 - 09 012/08 T.O	34
			-	-			1		3	Phum Krous Khum	178/07 TO	2.9
	man searchead	10000	6	1	-	1	1.000		2	Svaydangkum S.R. #639 PhumSelakanseng	06 - 12 - 08 183/07 TO	2.9
	GREEN GARDEN HOME GREEN TOWN GREEN VILLAGE GREEN FLOWER APARTEL HANUMANALAYA HEART OF ANGKOR HAPPY HILTION ANGKOR HENG KHIM HENG AN HOK LAY NY HOME SWEET HOME HELLO PARADISE HUOR SAN I Vy I INDR KOSA	GREEN GARDEN HOMELong ChanthyGREEN TOWNMr. Chhun RethGREEN VILLAGEMrs. Seung Sam AthGREEN FLOWER APARTELMr. Eun Ho JiHANUMANALAYATan SothoHEART OF ANGKORMr. Chhiv yongHAPPYMrs. Thao SophyHILTION ANGKORMrs. Do VannaHENG KHIMMr. Chea HakHENG XNMr. Tiv layHOME SWEET HOMEMrs. Sao SreypovHELLO PARADISEMr. Preck SarithHUOR SANMr. Nuch WudhikaINDR KOSAMr. Nuch WudhikaIMAGINE D'ANGKORMr. Nourn sethJOURNEY WITHINMr.Ross Brandon	GREEN GARDEN HOMELong Chanthy063963342 012890363GREEN TOWNMr. Chhun Reth012943181GREEN VILLAGEMrs.Seung Sam Ath012659590GREEN FLOWER APARTELMr.Eun Ho Ji092218852HANUMANALAYATan Sotho012936469HEART OF ANGKORMr. Chhiv yong012888816HAPPYMrs.Thao Sophy012968879HILTION ANGKORMrs.Do Vanna016388338HENG KHIMMr.Chea Hak012971979HENG XANMr. Fang nung01290556HOK LAY NYMr. Tiv lay012693393 012961377HELLO PARADISEMr. Preck Sarith012307080I Vy IMr.Karl Balch012307080INDR KOSAMr. Nuch Wudhika011704554IASMINE LODGEMr.Nourn seth012934998JOURNEY WITHINMr.Ross Brandon012997442	GREEN GARDEN HOMELong Chanthy063963342 01289036314GREEN TOWNMr. Chhun Reth01294318127GREEN VILLAGEMrs.Seung Sam Ath01265959014GREEN FLOWER APARTELMr.Eun Ho Ji09221885220HANUMANALAYATan Sotho01293646910HEART OF ANGKORMr. Chhiv yong01288881615HAPPYMrs.Thao Sophy01296887915HILTION ANGKORMr. Chea Hak01297197910HENG KHIMMr. Fang nung01299055615HOK LAY NYMr. Tiv lay01251434415HOME SWEET HOMEMrs.Sao Sreypov0123070808I Vy IMr. Karl Balch0123070808I Vy IMr. Nuch Wudhika0117045549IAGINE D'ANGKORMs. Leng Theary01230607815IASMINE LODGEMr.Nourn seth01293499810JOURNEY WITHINMr.Ross Brandon0129974426	GREEN GARDEN HOME Long Chanthy 063963342 012890363 14 1 GREEN TOWN Mr. Chhun Reth 012943181 27 5 GREEN VILLAGE Mrs.Seung Sam Ath 012659590 14 4 GREEN VILLAGE Mrs.Seung Sam Ath 012659590 14 4 GREEN FLOWER APARTEL Mr.Eun Ho Ji 092218852 20 4 HANUMANALAYA Tan Sotho 012936469 10 1 HEART OF ANGKOR Mr. Chhiv yong 012888816 15 5 HAPPY Mrs.Thao Sophy 012968879 15 6 HILTION ANGKOR Mrs.Do Vanna 016388338 20 8 HENG KHIM Mr.Chea Hak 012971979 10 3 HENG KHIM Mr. Fang nung 012693393 27 7 HOK LAY NY Mr. Tiv lay 0121693393 27 7 HOME SWEET HOME Mrs.Sao Sreypov 012693393 27 7 HUOR SAN Mrs. Kit Nay Sim 012307080 8	GREEN GARDEN HOME Long Chanthy 063963342 012890363 14 1 13 GREEN TOWN Mr. Chhun Reth 012943181 27 5 22 GREEN VILLAGE Mrs. Seung Sam Ath 012659590 14 4 10 GREEN FLOWER APARTEL Mr.Eun Ho Ji 092218852 20 4 16 HANUMANALAYA Tan Sotho 012936469 10 1 9 HEART OF ANGKOR Mr. Chhiv yong 012888816 15 5 10 HAPPY Mrs. Thao Sophy 012968879 15 6 9 HILTION ANGKOR Mrs. Do Vanna 016388338 20 8 12 HENG KHIM Mr. Chea Hak 012971979 10 3 7 HENG AN Mr. Fang nung 0129693393 27 7 20 HOK LAY NY Mr. Tiv lay 0121693393 27 7 20 HELLO PARADISE Mr. Preck Sarith 012970433 9 4 5 HUOR SAN	GREEN GARDEN HOME Long Chanthy 063963342 012890363 14 1 13 \$8 GREEN TOWN Mr. Chhun Reth 012943181 27 5 22 \$3 GREEN VILLAGE Mrs.Seung Sam Ath 012659590 14 4 10 5-10\$ GREEN FLOWER APARTEL Mr.Eun Ho Ji 092218852 20 4 16 15-20\$ HANUMANALAYA Tan Sotho 012936469 10 1 9 15-25\$ HEART OF ANGKOR Mr. Chhiv yong 012888816 15 5 10 \$5 HAPPY Mrs.Thao Sophy 012968879 15 6 9 5-10\$ HENG KHIM Mr.Chea Hak 012971979 10 3 7 5\$ HENG KHIM Mr. Fang nung 012893393 27 7 20 5-10\$ HOK LAY NY Mr. Tiv lay 0121693393 27 7 20 5-10\$ HOK SAN Mr.Sao Sreypov 01280380 6 0 6 <t< td=""><td>GREEN GARDEN HOME Long Chanthy 063963342 012890363 14 1 13 \$8 \$7 GREEN TOWN Mr. Chhun Reth 012943181 27 5 22 \$3 \$5 GREEN TOWN Mr. Chhun Reth 012659590 14 4 10 5-10\$ 8-12\$ GREEN VILLAGE Mrs.Seung Sam Ath 012659590 14 4 10 5-10\$ 8-12\$ GREEN FLOWER APARTEL Mr.Eun Ho Ji 092218852 20 4 16 15-20\$ 15-20\$ HANUMANALAYA Tan Sotho 012936469 10 1 9 15-25\$ 15-25\$ HEART OF ANGKOR Mr. Chhiv yong 012888816 15 5 10 \$5 \$6 HAPPY Mrs.Thao Sophy 012968879 15 6 9 \$-10\$ \$-10\$ HILTION ANGKOR Mr.Chea Hak 012971979 10 3 7 5\$ 6\$ HENG AN Mr. Fang nung 01290556 15 9 <td< td=""><td>GREEN GARDEN HOME Long Chanthy 063963342 012890363 14 1 13 S8 \$7 1 GREEN TOWN Mr. Chhun Reth 012943181 27 5 22 \$3 \$5 2 GREEN YILLAGE Mrs.Seung Sam Ath 012659590 14 4 10 \$-10\$ \$-12\$ \$1 GREEN FLOWER APARTEL Mr.Eun Ho Ji 092218852 20 4 16 15-20\$ 15-20\$ 7 HANUMANALAYA Tan Sotho 012936469 10 1 9 15-20\$ 15 10 \$5 \$6 4 HAPPY Mrs.Thao Sophy 012988816 15 5 10 \$5 \$6 2 HEART OF ANGKOR Mrs.Do Vanna 016388338 20 8 12 5-10\$ 5-10\$ 2 HENG KHIM Mr.Chea Hak 012971979 10 3 7 55 65 2 HENG AN Mr. Fang nung 012990556 15 9 6</td><td>GREEN GARDEN HOME Long Chanthy 063963342 012890363 14 1 13 \$\$ \$7 1 5 GREEN TOWN Mr. Chhun Reth 012943181 27 5 22 \$3 \$5 2 5 GREEN YILLAGE Mrs.Seung Sam Ath 01255950 14 4 10 5-105 8-125 1 3 GREEN FLOWER APARTEL Mr.Eun Ho Ji 092218852 20 4 16 15-205 15-255 5 5 HANUMANALAYA Tan Sotho 012936469 10 1 9 15-255 15-55 5 5 HEART OF ANGKOR Mr. Chhiv yong 012988816 15 5 10 \$5 \$6 4 6 HAPPY Mrs.Thao Sophy 012968879 15 6 9 5-105 5-105 5 5 HENG KHIM Mr.Chea Hak 012971979 10 3 7 55 65 5 HOME SWEET HOME Mrs.Sao Sreypov</td><td>GREEN GARDEN HOME Long Chanthy 063963342 012890363 14 1 13 \$8 \$7 1 5 Skavdangkum S,R GREEN TOWN Mr. Chhun Reth 012943181 27 5 22 \$3 \$5 2 5 #182 Group 3 Phum Watto Khum Salakamreok S,R GREEN VILLAGE Mrs.Seung Sam Ath 012659590 14 4 10 5-10\$ 8-12\$ 1 3 #0147 Phum Watdamnak Khum Salakamreok S,R GREEN FLOWER APARTEL Mr.Eun Ho Ji 092218852 20 4 16 15-20\$ 7 8 Phum.Salakamseng Khum Savadangkum SR HANUMANALAYA Tan Sotho 012936469 10 1 9 15-25\$ 5 5 Storkam SR HART OF ANGKOR Mr. Chhiv yong 01288816 15 5 10 \$5 \$6 4 6 # \$1Sivatha P. SturgThmeI Khum Svaydangkum S.R HAPPY Mrs.Do Vanna 01638338 20 8 12 5-10\$ 1 3 #0134 Group 2 Phum Watto Khum Salakamreok S.R</td><td>GREEN GARDEN HOME Long Chanthy 063963342 012890363 14 1 13 58 57 1 5 Staydongkum S.R (70/08 TO RELEN TOWN Q7/09 TO Wards TS, Stawang Phum Waldongkum S.R (128/07028) Q7/09 TO 23 Q7/07 TO 20 Q7/09 TO 23 Q7/07 TO 27 Q7/07 TO 20 Q</td></td<></td></t<>	GREEN GARDEN HOME Long Chanthy 063963342 012890363 14 1 13 \$8 \$7 GREEN TOWN Mr. Chhun Reth 012943181 27 5 22 \$3 \$5 GREEN TOWN Mr. Chhun Reth 012659590 14 4 10 5-10\$ 8-12\$ GREEN VILLAGE Mrs.Seung Sam Ath 012659590 14 4 10 5-10\$ 8-12\$ GREEN FLOWER APARTEL Mr.Eun Ho Ji 092218852 20 4 16 15-20\$ 15-20\$ HANUMANALAYA Tan Sotho 012936469 10 1 9 15-25\$ 15-25\$ HEART OF ANGKOR Mr. Chhiv yong 012888816 15 5 10 \$5 \$6 HAPPY Mrs.Thao Sophy 012968879 15 6 9 \$-10\$ \$-10\$ HILTION ANGKOR Mr.Chea Hak 012971979 10 3 7 5\$ 6\$ HENG AN Mr. Fang nung 01290556 15 9 <td< td=""><td>GREEN GARDEN HOME Long Chanthy 063963342 012890363 14 1 13 S8 \$7 1 GREEN TOWN Mr. Chhun Reth 012943181 27 5 22 \$3 \$5 2 GREEN YILLAGE Mrs.Seung Sam Ath 012659590 14 4 10 \$-10\$ \$-12\$ \$1 GREEN FLOWER APARTEL Mr.Eun Ho Ji 092218852 20 4 16 15-20\$ 15-20\$ 7 HANUMANALAYA Tan Sotho 012936469 10 1 9 15-20\$ 15 10 \$5 \$6 4 HAPPY Mrs.Thao Sophy 012988816 15 5 10 \$5 \$6 2 HEART OF ANGKOR Mrs.Do Vanna 016388338 20 8 12 5-10\$ 5-10\$ 2 HENG KHIM Mr.Chea Hak 012971979 10 3 7 55 65 2 HENG AN Mr. Fang nung 012990556 15 9 6</td><td>GREEN GARDEN HOME Long Chanthy 063963342 012890363 14 1 13 \$\$ \$7 1 5 GREEN TOWN Mr. Chhun Reth 012943181 27 5 22 \$3 \$5 2 5 GREEN YILLAGE Mrs.Seung Sam Ath 01255950 14 4 10 5-105 8-125 1 3 GREEN FLOWER APARTEL Mr.Eun Ho Ji 092218852 20 4 16 15-205 15-255 5 5 HANUMANALAYA Tan Sotho 012936469 10 1 9 15-255 15-55 5 5 HEART OF ANGKOR Mr. Chhiv yong 012988816 15 5 10 \$5 \$6 4 6 HAPPY Mrs.Thao Sophy 012968879 15 6 9 5-105 5-105 5 5 HENG KHIM Mr.Chea Hak 012971979 10 3 7 55 65 5 HOME SWEET HOME Mrs.Sao Sreypov</td><td>GREEN GARDEN HOME Long Chanthy 063963342 012890363 14 1 13 \$8 \$7 1 5 Skavdangkum S,R GREEN TOWN Mr. Chhun Reth 012943181 27 5 22 \$3 \$5 2 5 #182 Group 3 Phum Watto Khum Salakamreok S,R GREEN VILLAGE Mrs.Seung Sam Ath 012659590 14 4 10 5-10\$ 8-12\$ 1 3 #0147 Phum Watdamnak Khum Salakamreok S,R GREEN FLOWER APARTEL Mr.Eun Ho Ji 092218852 20 4 16 15-20\$ 7 8 Phum.Salakamseng Khum Savadangkum SR HANUMANALAYA Tan Sotho 012936469 10 1 9 15-25\$ 5 5 Storkam SR HART OF ANGKOR Mr. Chhiv yong 01288816 15 5 10 \$5 \$6 4 6 # \$1Sivatha P. SturgThmeI Khum Svaydangkum S.R HAPPY Mrs.Do Vanna 01638338 20 8 12 5-10\$ 1 3 #0134 Group 2 Phum Watto Khum Salakamreok S.R</td><td>GREEN GARDEN HOME Long Chanthy 063963342 012890363 14 1 13 58 57 1 5 Staydongkum S.R (70/08 TO RELEN TOWN Q7/09 TO Wards TS, Stawang Phum Waldongkum S.R (128/07028) Q7/09 TO 23 Q7/07 TO 20 Q7/09 TO 23 Q7/07 TO 27 Q7/07 TO 20 Q</td></td<>	GREEN GARDEN HOME Long Chanthy 063963342 012890363 14 1 13 S8 \$7 1 GREEN TOWN Mr. Chhun Reth 012943181 27 5 22 \$3 \$5 2 GREEN YILLAGE Mrs.Seung Sam Ath 012659590 14 4 10 \$-10\$ \$-12\$ \$1 GREEN FLOWER APARTEL Mr.Eun Ho Ji 092218852 20 4 16 15-20\$ 15-20\$ 7 HANUMANALAYA Tan Sotho 012936469 10 1 9 15-20\$ 15 10 \$5 \$6 4 HAPPY Mrs.Thao Sophy 012988816 15 5 10 \$5 \$6 2 HEART OF ANGKOR Mrs.Do Vanna 016388338 20 8 12 5-10\$ 5-10\$ 2 HENG KHIM Mr.Chea Hak 012971979 10 3 7 55 65 2 HENG AN Mr. Fang nung 012990556 15 9 6	GREEN GARDEN HOME Long Chanthy 063963342 012890363 14 1 13 \$\$ \$7 1 5 GREEN TOWN Mr. Chhun Reth 012943181 27 5 22 \$3 \$5 2 5 GREEN YILLAGE Mrs.Seung Sam Ath 01255950 14 4 10 5-105 8-125 1 3 GREEN FLOWER APARTEL Mr.Eun Ho Ji 092218852 20 4 16 15-205 15-255 5 5 HANUMANALAYA Tan Sotho 012936469 10 1 9 15-255 15-55 5 5 HEART OF ANGKOR Mr. Chhiv yong 012988816 15 5 10 \$5 \$6 4 6 HAPPY Mrs.Thao Sophy 012968879 15 6 9 5-105 5-105 5 5 HENG KHIM Mr.Chea Hak 012971979 10 3 7 55 65 5 HOME SWEET HOME Mrs.Sao Sreypov	GREEN GARDEN HOME Long Chanthy 063963342 012890363 14 1 13 \$8 \$7 1 5 Skavdangkum S,R GREEN TOWN Mr. Chhun Reth 012943181 27 5 22 \$3 \$5 2 5 #182 Group 3 Phum Watto Khum Salakamreok S,R GREEN VILLAGE Mrs.Seung Sam Ath 012659590 14 4 10 5-10\$ 8-12\$ 1 3 #0147 Phum Watdamnak Khum Salakamreok S,R GREEN FLOWER APARTEL Mr.Eun Ho Ji 092218852 20 4 16 15-20\$ 7 8 Phum.Salakamseng Khum Savadangkum SR HANUMANALAYA Tan Sotho 012936469 10 1 9 15-25\$ 5 5 Storkam SR HART OF ANGKOR Mr. Chhiv yong 01288816 15 5 10 \$5 \$6 4 6 # \$1Sivatha P. SturgThmeI Khum Svaydangkum S.R HAPPY Mrs.Do Vanna 01638338 20 8 12 5-10\$ 1 3 #0134 Group 2 Phum Watto Khum Salakamreok S.R	GREEN GARDEN HOME Long Chanthy 063963342 012890363 14 1 13 58 57 1 5 Staydongkum S.R (70/08 TO RELEN TOWN Q7/09 TO Wards TS, Stawang Phum Waldongkum S.R (128/07028) Q7/09 TO 23 Q7/07 TO 20 Q7/09 TO 23 Q7/07 TO 27 Q7/07 TO 20 Q

84	KIM TEUNG	Mr. Tiv KimTeung	012910784 012581358	10	5	5	\$3	\$3-	0	1	#129 Phum Banteay Chas Khum Slorkram S.R	113/08 TO 03 - 09 - 09	1-5
85	KOLAB KROHOM	Mrs.Sor Kimthea	012820059	15	5	10	\$5	\$5	1	2	#522 Phum Taphul Khum Svaydangkum S.R	042/08 TO 13 - 01 - 09	2-14
86	K.SUN LIGHT VILLAGE	Mrs. Cheng Pisith	012668847	15	5	10	\$5-15	\$5-15	2	2	# Phum Taphul Khum Svaydangkum S.R	048/08 TO 25 - 02 - 09	2-14
87	KHMER INN ANGKOR	Mr.Keo Bunsang	012682576	10	2	8	\$5-15	\$5-15		2	# Phum Taphul Khum Svaydangkum S.R	057/08 TO 18 - 03 - 09	2-1-
88	KHUT DOEUN	Mr. Khut Doeun	012233766	10	5	5	\$5-15	\$5-15	1	2	# Phum Taphul Khum Svaydangkum S.R	159/08 TO 28 - 08 - 09	2-14
89	LAVILA MONA D'Angkor	Mrs.Oum Phat	012307902	10	4	6	10-15\$	10-205	1	2	# Phum tropangsiesi Khum Kauk Chark S.R	066/07 TO 10 - 04 - 09	4-1
90	LAY LAY	Mrs.Hean KimSean	011214134	9	3	6	\$4	\$5	0	1	#033 Group 4 Phum Taphul Khum Svaydangkum S.R	122/08 TO 29 - 08 - 09	2-14
91	LEANG CHHAY HONG	Mr. Som Leang	012963441	15	3	12	6 \$-12\$	6\$-12\$	1	2	#0767 Phum Chongcaosou Khum Slorkram S.R	143/08 TO 17 - 09 - 09	1-3
92	LES ORIENTALES	Mr.Jean francois	012440627	6	6	0	10-15\$		2	8	#613 Phum Watbo Khum Salakamreok S.R	158/08 TO 06 - 12 - 09	3-1
93	LE TIGER DE PAPIER	Mr.Gaune Jean Lucdenis	012674611	12	6	6	15-25\$	15-25\$	0	4	# Phum Svaydangkum Khum Svaydangkum S.R	097/08 TO 23 - 07 - 09	2-7
94	LÉURA SIANE	Mrs.Thy Chantha	012677622	6	3	3	15-25\$	15-25\$	0	1	Phum Watbo Khum Salakamreok S.R	147/08 TO 13 - 11 - 09	3-1
95	LONG LIVE ANGKOR	Mrs.Po Pheaktry	012843462	15	6	9	5\$	5\$	2	2	Phum Taphul Khum Svaydangkum S.R	009/08 TO 15 - 01 - 09	2-1
96	LUY LAY	Mrs. Chai Lay	012965206	10	10	0	5-10\$		0	2	#Phum Chongcaosou Khum Slorkram S.R	004/08 TO 01 - 01 - 09	1-3
97	LOVE INN	Mrs. Vong Sarath	000001271	13	13	0	5-15\$		1	2	Phum Kaksekam Khum Sronge S.R	019/08 TO 15 - 01 - 09	11-1
98	LY PHALLEAN ANGKOR	Mrs.Som Phallean	012941784	14	7	7	5-15\$	5-15\$	1	2	# Phum Stungthmei Khum Svaydangkum S.R	110/08 TO 01 - 10 - 09	2-11
99	MONI ROTHANA	Mr. Yin Fou	012656616	15	10	5	5-15\$	5-15\$	2	2	Borei Sieng nam Phum kna Khum Chriev S.R	112/08 TO 26 - 09 - 09	7-2
100	MAHOGANY	Mr. Phav Proeun	012630142 063963417	10	3	7	\$3	\$5	0	2	#593 Phum Watbo Khum Salakamreok S.R	164/08 TO 20 - 09 - 09	3-1
101	MANDALAY INN	Mrs.Sim Sokhun	012865356	10	5	5	5-15\$	5-15\$	1	4	#034 Phum Vichear Chen Khum Svaydangkum S.R	031/08 TO 04 - 02 - 09	2-10
102	MARINA VILLA	Mrs.Chhen Savat	012910756 012910759	10	0	10		5\$-10\$	1	1	#659 Phum Walbo Khum Salakamreok S.R	067/08 TO 15 - 03 - 09	3-1
103	MALYLY	Mr.Hok Reaksmey	012705959	10	5	5	5\$-10\$	5\$-10\$	1	1	Phum Taphul Khum Svaydangkum S.R	044/08 TO 24 - 02 - 09	2-1-
104	MEN RADY	Mrs. Suy Rady	012867617	25	0	25	5\$-10\$	58-108	1	2	#428Phum Tapul Khum Svaydangkum S.R	001/08 M T	2-1
105	MÉAS THOEUN VILLA	Mr. Meas Thoeun	092332649	6	1	5	55-105	55-105	٩į	1	Phum Vichear Chon Khum Svaydangkum S.R	084/08 TO 01 - 06 - 09	2-10
106	MINI	Mrs.Sory Lai	092134250	10,	10	0	4\$-108	45-108	1	2	#011 Phum Vichear Chen Khum Svaydangkum S.R	010/08 TO 02 - 01 - 09	2.1

107	MAX MART	Mrs. Dean Thida	012828008	6	3	3	5-15\$	5-15\$	1	2	# Mondul 1Khum Svaydangkum S.R	174/07 TO	2-1
108	MITH LAOR	Mr.Kong Chamroeun	012630393	10	6	4	3-5\$	4-65	1	1	#263 Phum Taphul Khum	10 - 12 - 08 161/08 TO	2-1
109	MITRI	Mr. Luon Sokvan	012447406	15	5	10	5-10\$	5-15\$	-		Svaydangkum S.R # Phum Stungthmei Khum	06 - 12 - 09 054/08 TO	2-1
	MCATS	Mrs.Un Leaphiny	012630170	15	5	10		\$8-\$13	1	2	Svaydangkum S.R #099 St.Achar Hemcheav P.	18 - 03 - 09 124/08 TO	3-1
			063963037	-			5-12\$			4	Watbo Khum SalakamreokS.R # Phum Trapiengsies Khum	12 - 09 - 09 163/08 TO	
	MONO MEAS	Mr.Khut Khunchakrey	012922135	15	5	10		6-15\$	2		Kauk Chark S.R # Mondul 1Khum	20 - 11 - 09 106/08 TO	4-1
112	MOLLY MALONE'S	Mr. Yombll Thierry	012784175	7	3	4	10-20\$	10-20\$	4	6	Svaydangkum S.R	01 - 09 - 09	2-13
113	MONOROM	Mrs.Sous sinath	012645324	7	3	4	\$3	\$3	0	1	#018 St.Sivatha Mondul 2 KhumSvaydangkum S.R	109/08 TO 11 - 07 - 09	2-1
114	MOLYNA 11	Mrs.Tan Sithan	012864204	20	10	10	10\$	15\$	2	4	#253Phum Taphul Khum Svaydangkum S.R	022/08 M T 23 - 04 - 09	2-1
115	MON PAPA	Mrs. Long Neary	092929449	8	3	5	5-10\$	5-10\$	1	2	#Phum Taphul Khum Svaydangkum S.R	115/08 M T 26 - 09 - 09	2-1
116	MYSTERES D'ANGKOR	Bridot Pascal	012636103	15	9	6	30\$	30\$	2	7	#235 Phum Slorkram Khum Slorkram S.R	185/07 TO 30 - 12 - 08	1-1
117	му номе	Mrs. Ou Charya	012971016	15	7	8	5-15\$	5-15\$	1	2	# Phum Vichear Chen Khum Svaydangkum S.R	105/08 TO 20 - 08 - 09	2-1
118	MAI DO	Mr.Yakov Ben Simon	092882040	6	2	4	15-40\$	15-40\$	2	4	#Phum Taphul Khum Svaydangkum S.R	165/08 TO 07 - 12 - 09	2-1
119	NAGA	Mr.John Jangkil	012912005	10	5	5	\$3	\$5	1	4	#243 Phum Stungthmei Khum Svaydangkum S.R	119/08 TO 30 - 09 - 09	2-1
120	NEW MILLENNIUM -	Mr.Chan Vannak	012823583	9	0	9		\$5	1	2	#041 Phum Vichear Chen Khum Svaydangkum S.R	085/08 TO 16 - 07 - 09	2-1
121	NIDA	Mr.Khunn Thony	015630247 012945545	6	2	4	\$15	\$20	2	0	#0263 Mondol 3 Khum Slorkram S.R	129/08 TO 03 - 10 - 09	1-7
122	OLD MARKET HOSTEL	Mrs.Oeng MuyChheng	012945545	8	2	6	10-20\$	10-20\$	3	2	# Mondul 1Khum Svavdangkum S.R	074/08 TO	2-1
123	ORCHIDAE 239	Mr.Sok Meng Huor	012939964	10	4	6	\$4	\$6-\$12	2	3	#239 Phum Stung Thmei	03 - 06 - 09 162/08 TO	2-1
124	ORAL D'ANGKOR	Mr. Choup Samat	012973811	10	5	5	5-10\$	5-10\$	1	2	Khum Svaydangkum S.R # Phum Stung Thmei Khum	02 - 12 - 09 039/08 TO	2-1
	OEUN NARIN	Mrs.Oeun Narin	012209317	10	8	2		5-10\$		2	Svaydangkum S.R Phum Watbo Khum	14 - 02 - 09 135/08 TO	
			012209317		8	-	5-10\$		1	2	Salakamreok S.R	01 - 11 - 09	3-1
126	OR MOEURN HOI	Mrs.Thim Hoy	012280050	20	0	20	5-10\$	5-10\$	1	2	#577Phum Chongcaosou Khum Slorkram S.R	020/08 M T 25 -04 -09	1-3
127	OUN PISITH ANGKOR	Mrs. Dy Moy	011820253	13	1	12	5-15\$	5-15\$	2	3	# Phum Banteaychas Khum Slorkram S.R	089/08 TO	1-5
128	OMBRELLE & KIMONO	Mrs.Bouan cheau Evelyne	012965192 016240866	6	6	0	40-90\$		1	1	Phum Watbo Khum Salakamreok S.R	154/08 TO 05 - 12 - 09	3-1
129	PAVILLON INDOCHING	Mrs:Men Thavy	012849681	8	6	2	\$10- \$20	12.4	3	5	#054 Phum Trapiengsies Khum Kauk Chark S.R	107/08 TO 08 -08 - 09	4-1

130	PAVILLION D'ORIENT RESORT	Mr. Kang Sothea	012849681	15	5	10	5-15\$	5-15\$	2	4	#Phum Chongcaosou Khum Slorkram S.R	037/08 TO 01 - 02 -09	1-3
131	POV MEAN CHEY	Mrs. Cheum Samut	012437254	6	6	0	5\$		0	2	# Phum Taphul Khum Svaydangkum S.R	056/08 TO 17 - 03 -09	2-1-
132	PALM GARDEN LODGE	Mr. Leng Dein	012793896	15	6	9	5-10\$	5-10\$	1	2	#Phum Svaydangkum Khum Svaydangkum S.R	103/08 TO	2-7
	HENCEOP IN THE	Mr. C 3	7015	:2	2	3	10-155	10-	4	4	#0133 Phum Slorkram Khum Slorkram S.R	11 - 08 - 09 090/08 TO	1-1
	. CHIIOLA ANGKOR	Mr.r ung Keng	092812860	10	3	7	\$10 \$12	\$10 \$15	4	5	#0229 Phum Banteaychas Khum Slorkram S.R	14 - 07 - 09 156/08 TO 05 - 12 - 09	1-5
135	LUEU ANGKOR	Kheano Mrs.Sok Sarorun	063380126	20	4	16	\$20	\$25	2	3	#003Phum Vichearchen Khum Svaydangkum S.R	034/08 M T 23 - 07 - 09	2-10
136	SIEM REAP POPULAR 033	Mrs. Vien Kimhun	063963419 012916165	30	10	20	\$4-\$5	\$6-\$7	2	3	#033Phum Vihearchen Khum Svaydangkum S.R	048/08 M T 24 - 09 - 09	2-1
137	PRAH RIEM	Mr.Thim Ang	015630039	6	2	4	\$6-\$10	\$8-\$10	0	1	#0027 Phum Watbo Khum Salakamreok S.R	151/08 TO	3-1
133	PRASATKEOMOON RISE	Mr.Sor BooKheng	063380025	10	3	7	\$5	\$5-\$10	2	1	#055 Phum Taphul Khum Svaydangkum S.R	18 - 10 - 09 081/08 TO 23 - 05 - 09	2-1
	PROHM MEAS	Mr. Sy Chiv	012351352	15	C	15	5-10S	5-10S	1	4	#Phum Chongcaosou Khum Slorkram S.R	023/08 TO 01 - 02 - 09	1-3
140	PHOUM KHMER	Mrs. Phou Sopha	012933219	15	5	10	5-10\$	5-105	2	3	# Phum Salakanseng Khum Svaydangkum S.R	116/08 TO 17 - 09 - 09	2-8
141	PRASAT PICH	Mrs.Kouv Yekly	011897730	27	0	27		5-15\$	2	3	Borei Sieng nam Phum kna Khum Chriev S.R	021/08 M T 23 - 04 - 09	7-2
142	PICH NEAS MEAS	Mr. Cheum Pich	092487616	10	5	5	5\$	5\$	1	1	Phum Taphul Khum Svaydangkum S.R	153/08 TO 04 - 12 - 09	2-1
143	QUEEN VILLA ANGKOR	Mr. Gutmeyr Michael	011221838	8	2	6	5-15\$	5-15\$	1	2	# Phum Watdomnak Khum Salakamreok S.R	158/08 TO 20 -11 - 09	3-3
144	RAKSMEI ANGKOR	Mrs.Ros Seang hour	012968881	7	2	5	4\$	5\$	0	2	10 Khum Svaydangkum	096/08 TO 18 - 07 - 09	2-1
145	RAKSMEY MONOROM	Mr. OUM ROM	012962368	10	1	9	\$5	\$7	0	1	#045Phum Tapul Khum Svaydangkum S.R	030/08 TO 01 - 02 - 09	2-1
146	RAKSMEY SAKSITH ANGKOR	Mr.Lim Heng	012858492	10	5	5	\$5-\$10	\$5-\$11	0	3	#447Phum Vihearchen Khum Svaydangkum S.R	011/08 TO 03 - 01 - 09	2-1
147	RAKSMEY PHNOM LEAP	Mrs. Ly Um Aeng	012563676	10	3	7	\$4	\$5	1	2	#0182Phum Chongcaosou Khum SlorkramS.R	052/08 TO 01 - 03 - 09	1-3
148	RAKSMEYCHANPENHVONG	Mr. Khuon Chanly	012824786	20	7	13	5-10\$	5-10\$	2	1	# 065Phum Dorkpo Khum Slorkram S.R	033/08 M T 01 - 08 - 09	1-7
149	RADETH ANGKOR	Mr. Em Marithara	012942720	. 12	4	8	6-10\$	6-10\$	3	4	# 065Phum Dorkpo Khum Slorkram S.R	051/08 TO 01 - 03 - 09	1-7
150	RED LODGE	Mr. Tanporn Pimtong	012963795	10	5	5	5-10\$	6-155	2	2	#0116 Phum Stung Thmei Khum Svaydangkum S.R	134/08 TO 01 - 11 - 09	2-1
151	RELAX&RESORT ANGKOR	Mr.Kawahara Yoshifumi	012901216	15	7	8	6-12\$	6-12\$	1	4	#00245 Phum Banteaychas Khum Slorkram S.R	118/08 TO 14-09-09	1.5
152	RIBO ANGKOR	Mrs. Mao Ry	012818178	7	0	7		55	0	2	#098 Phum Walbo Khum Salakamreck S.R	126/08 TO 19 - 09 - 09	3-1

153	RYDA ANGKOR	Mrs. Hieb Pich chenda	012589271	14	5	.9.	\$5-\$15	\$5-\$15	1.	2	# Phum Taphul Khum Svaydangkum S.R	087/08 TO	2-1
154	ROYAL	Mr.Nuon Mny	012894594	14	0	14		\$5-\$15	2	2	# Sivatha Mondul 1Khum Svaydangkum S.R	036/08 TO 05 - 02 - 09	2-1
155	REATH BUNTHA	Mrs. Chhoeum Seda	012289928	• 10	.5	5	5\$	5\$	1.	1.	# Phum Taphul Khum Svaydangkum S.R	049/08 TO 27 - 02 - 09	2-1-
156	RIVER STAR	Mr.Prum Socheat	011767691	10	5	5.	\$10-\$1	\$10-\$15	1	2	#560Road Sivatha Mondul 1Khum Svaydangkum S.R	025/08 TO 29 - 01 - 09	2-1
157	RITTHY RIN ANGKOR	Mr.Sin Ritthy	012396722	28	9	19	\$6	\$12	4	.6	Phum Watbo Khum Salakamreok Srok Siem Reap	009/08 M T	3-1
158	RITHY ANGKOR	Mr.Tan Rithy	012888583	15	5	10	5-15\$	5-15\$	1.	.2	Borei Sieng nam Phum kna Khum Chriev S.R		7-2
159	ROSY	Mr.Simon Henry	012315852	. 10	2'	8	\$5	\$5	2	. 1	#0074 Phum Slorkram Khum Slorkram S.R	013/08 TO 17 - 01 - 09	1-1
160	REGA	Mrs.Vann touch	012897205	6	3	3	5-15\$	5-15\$	2	2	Phum Salakanseng Khum Svaydangkum S.R	145/08 TO 21 - 11 - 09	2-8
161	RAIN VILLA	Mrs. In Saren	012831176	15	5	10	12-25\$	12-25\$	2	2	Phum Banteaychas Khum. Slorkram S.R	155/08 TO 05 - 12 - 09	1-5
162	SING HOUR	Mrs.Top Sokha	012323719	10	Ó	10	\$0	5-15\$	0	1	# Phum Watbo Khum Salakamreok S.R	138/08 TO 07 - 11 - 09	3-1
163	SAKURA	Ly Le Ny	012963404 012878100	10	3	7	8-25\$	8-25\$	1	5	#0455 Group 15 Phum Watbo Khum Salakamreok S.R	123/08 TO 10 - 09 - 09	. 3-1
164	SAMARA ANGKOR	Mrs.Ung Sovanna	012320492	6.	. 5	1.	5-15\$	5-15\$	1	.1	Phum Watsvay Khum Salakamreok Srok Siem Reap	075/08 TO 04 - 06 - 09	3-2
165	SECRET OF ELEPHEANT	Mr.Urich Kurt	63964328 012637478	7	4 ·	3	10-15\$	10-15\$	1	5.	#069 Phum Salakanseng Khum Svaydangkum S.R	082/08 TO	2-8
166	SEOUL GARDEN	Mr. Jahn Jangkil Choi	012912005	10	2	8	\$5	\$7	2	3.	#063 Phum Krous Khum Svaydangkum S.R	029/08 TO 24-02-09	2-9
167	SEVEN IN	Mr.Jonasson Svend Erik	092926966	14	7	7	5-15\$	5-15\$.1 -	2	Phum Watdamnak Khum Salakamreok Srok Siem Reap	104/08 TO	3-3
168	SO JOURN	Mrs.Kidston Fiona Michlle	092608694	·10	. 4	6	10-20\$	10-20\$	2.	2	Phum Triek Khum Siem reap Srok Siem Reap	100/08 TO 03 - 08 - 09	5-8
169	SIEM REAP RIVERSIDE	Mrs.Hor Sona	012936566	15	1	14	5\$-12\$	6-15\$	2	3	Phum Vichear Chen Khum Svaydangkum S.R	026/08 TO 25 - 01 - 09	2-10
170.	SIM PO GOLDEN STAR	Mr. Kou Po	012702223	15	5	10	5-10\$	5-10\$	1	6	#0432 Phum Banteaychas Khum Slorkram S.R.	146/08 TO 16 - 11 - 09	1-5
171	SAM NANG VATHANA	Mrs. Choeum Khut	012654069	10	5	5	5-10\$	5-10\$	1	2.	Phum Taphul Khum Svaydangkum S.R	061/08 TO 25 - 03 - 09	2-1-
172	SAWADEE ANGKOR INN	Mr. Oeung Song Thai	012313164	20	10	10	5-15\$	5-15\$	4	5	Phum Stung Thmei Khum Svaydangkum S.R	030/08 M T 25 - 03 - 09	2-1
73	SMILEY'S	Mr.Touch Nara	012852955	30	20	10	\$2-\$3	\$4-\$5	3	.5	Phum Taphul Khum Svaydangkum S.R	184/07 TO 26 - 12 - 08	2-1-
74	SOR PHOUN	Mr.Von Roatha	012893647	20	9	11 .	\$6-\$12	\$7-\$13	:1	.2	#0275 Phum Banteay	025/08 M T 29 - 06 - 09	1-5
75	SOCHEA	Ms. Un Polen	012362240	15	3	12.	\$5-\$11	\$5-\$12	i	. 4		003/08 T O 01 - 01 - 09	1-3

176	STAR D'ANGKOR	Mrs.Kream Dareap	012910176	6	4	2	\$6-\$7	\$7-\$10	0	1	#0106 Group 1Phum Watbo Khum Svaydangkum S.R	041/08 TO 08 - 01 - 09	3-1
177	STAR MOHANOKOR	Mr. Ly Kun	012828834	10	5	5	5-10\$	5-10\$	1	1	#Phum Watbo Khum Svaydangkum S.R	180/07 TO 13 - 12 - 08	. 3-1
178	SAM SO	Mr. Nauo Savy	012630590	10	5	5	5-10\$	5-10\$	1	1	#Phum Watbo Khum Svaydangkum S.R	166/08 TO 13 - 12 - 09	.3-1
179	SUN RISE 592	Mr.Kim Hong	012983483	6	2	4	\$3	\$4	0.	1	#592 Group 2 Phum Watbo Khum Salakamreok S.R	150/08 TO 10 - 09 - 09	3-1
180	SUN SENGKY	Mr.Sung Sengky	012634943	15	1	14		\$7-\$15	4	4	#015Sivatha Mondul 1Khum Svaydangkum S.R	015/08 TO 26 - 01 - 09	2-1
181	TA KEO	Mrs.Prum Navy	012922674	18	8	10	5-15\$	5-15\$	2	2	#258 N.Road 6 Phum Taphul Khum Svaydangkum S.R	027/08 M T 27 - 06 - 09	2-14
182	TA KEO II	Mrs.Prum Navy	012922674	10	4	6	5-15\$	5-15\$	0	2	#258 N.Road 6 Phum Krous Khum Svaydangkum S.R	080/08 T O 22 - 06 - 09	2-9
183	TA SOM	Lim Nang	012830170	10	4	6	\$5	\$6	1	2	#268 Road6 P.Taphul Khum Svaydangkum S.R	091/08 TO 05 - 07 - 09	2-1-
184	TANEY	Mr. Say Kim Eang	092865150	8	3	5.	7-13\$	7-13\$	2	3	Phum Stung Thmei Khum Svaydangkum, S.R	088/08 TO 15 - 07 - 09	2-1
185	TAN KANG	Mrs.Tan Kang	12852622 012287900	13	5	8	\$4	\$5	1	3	#022 Mondul 1 Khum Svaydangkum S.R	092/08 TO 23 - 06 - 09	2-12
186	THE DEAD FISH TOWER	Mr. Ma boon	012630377	10	3	7	\$5	\$5	. 1	2	Road Sivatha Mondul 1Khum Svaydangkum S.R	172/07 TO	2-13
187	THE IVY TWO	Mr.Steven Andrew Fab	012380516	10	5	5	6\$	8\$	-1	4	#312 Mondul 1Khum Svaydangkum S.R	187/07 TO 30 - 12 - 08	2-13
188	THE REVER GARDEND	Mrs. Saunder Deborch Jov	092883293	9	1	. 8	20\$-30\$	20\$-30\$	4	6	Mondol 3 Khum Slorkram S.R	071/08 TO 18 - 5 - 09	.1-7
189	THE PRINCE MEKONG VILLA	MrBader Erich	012437972	8	0	8	\$3	\$5 .	2	2	#415 Phum Taphul Khum Svaydangkum S.R	069/08 TO 30-05-09	2-1-
190	THE RED PIANO II	Mr. Geert Caboor	012854150	15	5	10	8-15\$	8-15\$	2	4	#427 StuengtmeyKhum Svaydangkum S.R	086/08 TO 18 - 07 - 09	2-1
191	THE VILLA SIEM REAP I	Mr. Jeansch Anthony Peter	092256691	14	7	7.	5-10\$	5-10\$	2	4	# 153Phum Taphul Khum Svaydangkum Srok S.R	099/08 TO 03 - 08 - 09	2-1-
192	THE SIEM REAP HOSTEL	Mr.David Andrew	012701104	15	6	9	5-10\$	5-10\$	6	5	# Phum Watdamnak Kum Salakamreok S.R	175/07 TO 10 - 12 - 08	3-3
193	THE KING VILLA ANGKOR	Mrs. Nheb Sophy	012930011	. 15	5	10	5-15\$	5-15\$	2	3	# Stuengtmey Khum Svaydangkum S.R	055/08 TO 10 - 03 - 09	2-11
194	THERINYA	Mr. Nuon Ya	012851364	10	7	3	.\$4	\$5-\$6	1	3	#0019 Phum Slorkram Khum Slorkram S.R.	186/07 TO 23 - 12 - 08	1-1
195	TOP EYE ANGKOR	Mr.Sim Soda	012759475	10	5	5	5-10\$	5-10\$	2.	2	# Phum Taphul Khum Svaydangkum S.R	020/08 TO 01 - 01 - 09	2-1-
196	TRANG YIV	Mr.Tran Yi	012910786	15	2	13	\$4	\$4	0	2	#0126 Phum Banteaychas Khum Slorkram S.R	108/08 TO 05 - 09 - 09	1-5
197	TWO DRAGONS	Mr.Gordon shearpless	012868551	13	7	6	6-12\$	7-185	0	3	#0110 Phum Watbo Khum Salakamreek S.R	131/08 TO 01 - 11 - 09	3-1
198	U.DARA INN	Mr.Lim Han	12958824 121802246	15	9	6	5-105	6-125	2	3	#642 Mondul 1 Khum Svavdanokum S.R	139/08 TO	2-1

6

		~						1			And and a second second		-
199	VICTORY VILLA ANGKOR	Mrs. Am Vannary	012452492	14	4	10	5-15\$	5-13\$	1	3	#322 Phum Taphul Khum Svaydangkum S.R	046/08 TO 09 - 01 - 09	.2-14
200	VILLA COCONUT LODGE	Mr.Peung Vutha	012856562	15	7	8	6-10\$	6-10\$	1.	3	#033 Phum Vihearchen Khum Svaydangkum S.R	006/08 TO	2-10
201	VUO SOKHOM ANGKOR	Mr.Sin Vuo	012512898	10	10	0	5-10\$		1	3	#200Phum Chongohaosou Khum Slorkram S.R	017/08 TO	1-3
202	VIROTH'S	Mr.Kol Virath	016715349	7	7	0	15-30\$		3	2	#Phum Watbo Khum Svaydangkum S.R	021/08 TO 15 - 01 - 09	3-1
203	WINTER.	Mr. Oum Sophin	012940659	14	2	12	\$3	\$4	1	4	#200Phum Chongchaosou Khum Slorkram S.R	018/08 TO 08 - 01 - 09	1-3
204	WATSUP	Mr. Moun Rontoeur	012675881	1,0	. 5	5	5-12\$	5-125	1	1	# Phum Watdomnak Khum Salakamreok S.R.	047/08 TO 01 - 03 - 09	3-3
205	WHITE ELEPHANT	Mr.Sarge Billot	121947002	15	0	15	\$0	5-155	2	2	# Phum Watsvay Khum Salakamreok S.R	065/05 TO 20 - 03 - 09	3-2
206	YAMATO	Mr.Nishimura	01251/905	10	2	8	5\$	6\$	1	4	#311 Phum Taphul Khum Svaydangkum S.R	073/08 TO 19 - 05 - 09	2-14
207	YELLOW	Mr. Bou Sarin	017568007	12	5	7	5-15\$	5-155	6	4	# Phum Taphul Khum Svaydangkum S.R	045/08 TO 24 - 02 - 09	2-1-
208	YARK LOM ANGKOR LODGE	Hang Rayana	012854149	10	0	10	15\$	15\$	2	2	#025 Phum Banteaychas Khum Slorkram S.R	137/08 TO 01 - 10 - 09	1.5
	Total			2671	1027	1644		100	337	609		1	

Total :- Guset house 208 , Rooms : 2671 , Single : 1027 , Double: 1644

KOY_SANG

In operation= Guset house 208 = 2671. Room

License : Guest houses 200 Expiry 8

Total Staff: 946 , Male: 337 , Female: 609

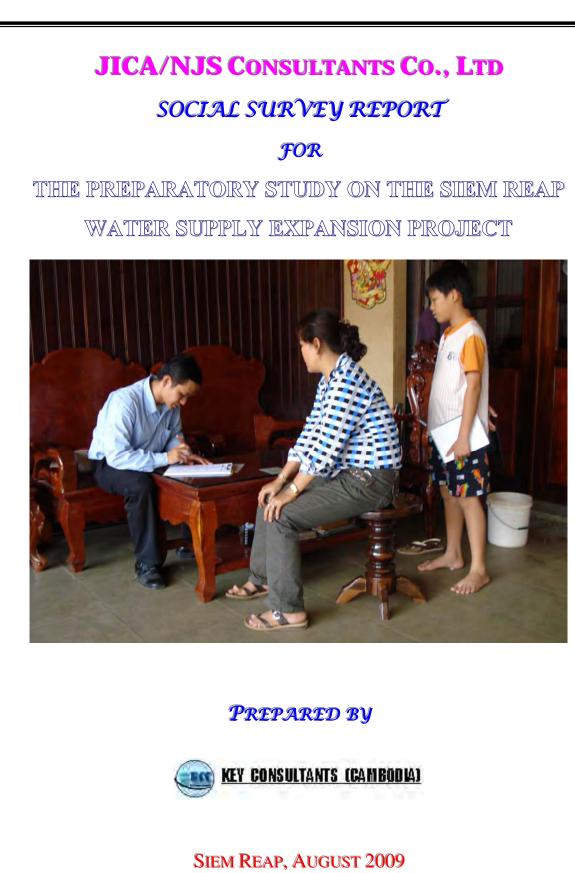
Siem Reap, the 16..... Dec...... 2008

SEEN AND AGREED

DIRECTOR OF TOTALEN DEPARTMENT

Chief of Tourism Industry Office

THIM SEREYVUDH


REPORT BY

Chou Na

Close =

Supporting Report

Chapter 3 Water Demand Projection and Proposed Long-Term Water Supply Development Scheme

ABSTRACT

The study provides preliminary information of water consumption patterns of low, medium, and high water consumers within the service area and of poor, medium, and better off households within the non service area. People's willingness to connect to the new water supply system and affordable fees for water consumption in the non service area were observed. To fulfill the study objectives, two main components were used: background information source and household interviews. In the service area, sample selection was classified into three categories: low, medium and high water consumers. In the non service area, the samples were divided into three types: poor, medium, and better off households and were selected around and very close to the service area. One third of the total selected samples for each village was applied either the service or the non service areas.

As a result, in the service area the water consumption quantities were 60.1, 100.3, and 168.2 liters per day per person for low, medium, and high water consumers, respectively. In the non service area, the quantities were different amongst the seasons. In the rainy season, the quantities of water consumption were 83, 100, and 110 liters per person per day for poor, medium, and better off households. In the dry season, the quantities were 100, 128, and 143 liters per person per day for poor, medium, and better of households, respectively. In the non service area, respondents' willingness to connect to the new water supply system were provided. 70% of the respondents will connect to the system whenever its construction is finished without considering of the connection costs. 11% of them replied No idea. Meanwhile, they seem to feel hesitate to provide the answer, some of whom mentioned that if their neighbors connect to the system, they will also do. In contrast, 19% of the respondents say No for the system. This is due to the fact that they already had open ring wells or tube wells and can not be affordable for the connection fees. These respondents are known as the poor households. Many respondents are willing to pay for water supply to a certain extent. The WTP is related to obtaining adequate service for their essential needs. Asking the respondents about the maximum amounts to pay, their payments were 32.4%, 25.7%, 25.7%, 12.9%, and 4,3% for From 2 to less than 5 US\$, From 1 to less than US\$ 2, Depend on water tariff, From 5 to 7 US\$, and More than 7 US\$, respectively. Generally it is also found that common factors for WTP is responsive to consumption, affordability and the nature of the service provided. On determining affordability, it is found that affordability of the poor households is 4.5% of their incomes.

The study concluded that in the service area water consumptions are different, depending mainly on family economic, family size, occupations, and seasons. In the non service area, the differences were also found. Poor households consume water less than the medium and better off households due to the fact that medium and better off households always use pumps, while the poor were normally found to be lack of it. The respondents are willing to connect to the system whenever its construction is finished without considering of the connection costs. On the other hand, the affordability rate of the poor households should be considered for the water supply expansion purpose. The study can be used as a source and as one of the reference tools for the city water supply planning.

Keywords: water consumption, willing to connect, willing to pay, affordability

TABLE OF CONTENTS

1. Objective	1
2. Scope of work and limitations	1
3. Methodology	2
3.1 Description	2
3.2 Data analysis	3
4. Results and Discussion	4
4.1 Introduction	
4.2 The Current service area aspects	4
4.2.1 House ownership and occupations	4
4.2.2 Household income	5
4.2.3 Water consumption	-11
4.2.4 Satisfactory with the water supply service	-16
4.2.5 Waterborne diseases	-17
4.2.6 Request to SRWSA	-17
4.2.7 Sanitary facilities	-17
4.2.8 Public works need to be improved	18
4.3 The Non service area settings	-19
4.3.1 House ownership and occupations	-19
4.3.2 Household or family income	20
4.3.3 Water sources	
4.3.4 Water consumption	25
4.3.5 Willingness to connect to and to pay for the new water supply	
4.3.6 Affordability Analysis	30
4.3.7 Expectation if the new water supply project is completed	31
4.3.8 Waterborne diseases	-31
4.3.9 Sanitary facilities	32
4.3.10 Public works need to be improved	33
5. Conclusion	33

LIST OF TABLES

Table 1 Population and samples of the current service area	2
Table 2 Population and samples of the non service area	3
Table 3 The occupation of low water consumer	
Table 4 The occupation of medium water consumer	5
Table 5 The occupation of high water consumer	
Table 6 Monthly income and expenditure of low water consumer	5
Table 7 Monthly income and expenditure of medium water consumer	6
Table 8 Monthly income and expenditure of high water consumer	7
Table 9 Contribution of water cost, electricity cost, and telephone cost to monthly expenditure	8
Table 10 Contribution of water cost, electricity cost, and telephone cost to monthly expenditure	9
Table 11 Contribution of water cost, electricity cost, and telephone cost to monthly expenditure	-10
Table 12 Water quantity consumed by low water consumer	-12
Table 13 Water quantity consumed by medium water consumer	-13
Table 14 Water quantity consumed by high water consumer	-14
Table 15 The occupation of poor household	
Table 16 The occupation of medium household	
Table 17 The occupation of better off household	
Table 18 Monthly income and expenditure of poor household	-20
Table 19 Monthly income and expenditure of medium household	
Table 20 Monthly income and expenditure of better off household	-22
Table 21 Relationship wealth group, well type, use pump, and Operation and Maintenance cost -	-23
Table 22 Water quantity consumed in the dry season	-26
Table 23 Water quantity consumed in the rainy season	-27
Table 24 Yearly well's operation and maintenance cost	
Table 25 The yearly costs of medical treatment	-32

LIST OF FIGURES

Figure 1 Household's income and expenditures in the service area	- 8
Figure 2 Water quantity consumed by different consumers	16
Figure 3 Percentage of satisfactory to the water supply service	16
Figure 4 Satisfactory with the current water pressure	16
Figure 5 Willingness to connect to the sewerage system	18
Figure 6 Public works should be improved	18
Figure 7 Household's monthly income and expenditure	23
Figure 8 a) Deep/tube wells b) Open ring well	25
Figure 9 Water consumption in dry and in rainy seasons	28
Figure 10 Opinions for the new water supply	29
Figure 11 Willingness to pay for water consumption	30
Figure 12 percentage of waterborne infection of the respondents	31
Figure 13 Willingness to connect to the system	32
Figure 14 Public works should be improved	33

1. Objective

The main aims of the social survey were to know about and to find out:

- The actual amounts of low, medium, and high water consumers for the service area and of poor, medium, and high income water consumers for the non service area;
- People's willingness to connect to the new water supply system in the non service area; and
- Affordable fees for water consumption.

Collection of information for the study including occupation, household income, satisfactory with the water supply service, water borne diseases, sanitary facilities was also conducted for the service and non-service areas.

Of the objectives, it creates an extensive and realistic picture and other associated aspects within the service and non service areas which help development actors understand and determine the city's needs and find out proper solutions to manage the demand and expand from service area to non service area in a proper and substainable manner.

2. Scope of work and limitations

Due to the fact that time was limited, the study was conducted for one month period during July 2009. It is administered only in 200 household samples: 100 samples from the service area and 100 samples from the non service area. The study covered aspects related to water consumption quantities within the service and non service areas, willingness to connect to and to find out affordable fees for the new water supply system. Of the selected samples and the covered aspects, they can be generated the needed information for the study.

3. Methodology

3.1 Description

In order to fulfill the defined objectives, household interviews by the KCC study team was conducted. Prior to the interviews started, the discussions between JICA and KCC study teams on questionnaire improvement were made. The questionnaires were administered to households within service and non-service areas. Translation the questionnaire into Khmer version was done prior to training interviewers. During the training, the interviewers practiced administering the questionnaire until they could administer the survey correctly on their own. This is the most important point to obtain confidential and realistic data. Pilot testing and final revision were then conducted respectively. Once in the field, the interviewers were again supervised by a field supervisor to assure their consistency and competence. The field supervisor accompanied the interviewers on a daily basis to ensure that interviews were handled professionally and was also responsible for quality control.

Regarding to sample selection in the service area, they were classified into three categories: low (from $0 - 10m^3$), medium (from $11 - 25m^3$) and high water consumers (Over $25m^3$) based on the actual data pointed out by SRWSA staff. In order to get balance between these different consumers, one third of the total selected samples in each village was applied for these categories (Table 1).

0		Number of Camilto in 00004	Number of Deculation in 2000	Samples		Water Consumption		Total Connection
Commune	Village	Number of Family in 2008*	Number of Population in 2008	of Residents	Low 0 - 10m ³	Medium 11 - 25m ³	High 25m ³	as of June 2009"
Svay Dangkum	Salakorn seng	767	10,977	3	1	1	1	204
SRŴSA Zone 1,	Kruse	559	3,072	3	1	1	1	39
South-West of NR No.6	Vihea Chin	935	4,874	3	1	1	1	199
West of SR River	Stung Thmey	402	2,272	3	1	1	1	251
	Mondoul-1	397	2,197	6	2	2	2	614
	Mondoul-2	200	1,250	3	1	1	1	259
	Ta poul	447	2,541	6	2	2	2	296
	Subtotal	samples and number of water o	connection as of June 2009	27	9	9	9	1,862
Sla Kram	Sla Kram	316	2,740	3	1	1	1	159
SRWSA Zone 3,	Boeng Doun Pa	825	5,951	3	1	1	1	32
North-East of NR No.6	Chong Kausu	2,311	12,683	3	1	1	1	248
	Dak Pou	585	3,514	6	2	2	2	305
	Banteay Chas	957	6,334	6	2	2	2	501
	Treang	612	3,473	3	1	1	1	56
	Mondol Bel	1,078	5,778	3	1	1	1	205
	Subtotal	samples and number of water o	connection as of June 2009	27	9	9	9	1,507
Sala Kamraeuk	Voat Bour	1,114	5,885	12	4	4	4	460
SRWSA Zone 4,	Voat Svay	841	4,659	•			•	2
South-East of NR No.6	Voat Damnak	749	3,939	6	2	2	2	187
	Sala Kamraeuk	290	1,790	•	•		•	9
	Ta Vien	638	3585	6	2	2	2	90
	Subtotal	samples and number of water o	connection as of June 2009	24	8	8	8	748
Kouk Chak	Tror pang sese	1,212	3,545	18	6	6	6	305
SRWSA Zone 2	Tiek sene Tbong	604	3,213	4	2	1	1	33
	Subtotal	samples and number of water o	connection as of June 2009	22	8	7	7	338
Srangae	Kark sel karme	334	1,698	-	-	•	-	1
-	Thnori	281	1,468	-	-	•	-	4
		Number of water connection	as of June 2009	0	-		-	5
		GRAND TOTAL		100	34	33	33	4,460

Table 1	Population	and sam	ples of the	e current service area
14010 1	1 opulation	and bann		carrent ber the area

Source: * Planning Department, Siem Reap, as of March 2009

** Siem Reap Water Supply Authority, June 2009

In the non service area, samples were selected around and very close to the service area. One third of the total selected samples in each village was also used for low, medium, and high income

households¹. In order to find out such different wealth groups, village chiefs were asked to point out people's name within their villages for the interviews. This provides preferred meaningful information for the study. The village name of the non service area is shown as in table 2 and its location is pointed out as shown in appendix 1.

•) CH	N 1 6 7 11 1 00001		Samples	Household Income		
Commune	Village	Number of Family in 2008*	Number of Population in 2008	of Residents	Low	Medium	High
Srangae	Kark sei karme	334	1,698	15	5	5	5
Siem Reap	Kor Kragne	425	2,426	9	3	3	3
	Triek	242	1,412	9	3	3	3
Chreav	Chreav	141	771	9	3	3	3
Chieav	Khnar	633	3,616	9	3	3	3
Sambuor	Veale	115	649	7	3	2	2
Sambuoi	Ta kong	134	686	9	3	3	3
Krabei Riel	Krasang	84	556	9	3	3	3
Krabel Klei	Boeng	186	961	6	2	2	2
Tuek Vil	Kouk Doung	388	1,648	18	6	6	6
		GRAND TOTAL		100	34	33	33

Table 2 Population and samples of the non service area

Source: * Planning Department, Siem Reap, as of March 2009

3.2 Data analysis

Data analysis was set to comply with the objectives. Since there is no an in depth analysis tool was used in this study, the data were analyzed descriptively using the SPSS statistical package software version 16.0. Prior to analysis, those data were rechecked, arranged, and classified into groups. Finally, the output from analysis was used as the result of the study.

¹ **Better off households** refer to those having Car, Pedestrian tractor, Rice field more than 2 hectares, Rice thresher, Motorbike more than one, Cattle, Big house, Regular daily income sources, Telephone more than one, Color television, Daily income more than 71000 Riel. **Medium households** are for those having Semi regular daily income, Two cattle, Rice field for 1 hectares, New brand motorbike, Poultry more than 3, House size more than 30m², One telephone, and Daily income 12000 to 70000 Riel. **Poor households** are defined as those having One bike-cycle, Two cattle, One second hand of motorbike, House size <25m², Black and white television, No rice field, One telephone, Have residential land, and Daily income less than 12000 Riel. Such wealth group categories were classified by GTZ, March 2004.

4. Results and Discussion

4.1 Introduction

This section provides and analyzes information of allied aspects regarding to the study objectives. Only the data obtained from the interviewed households was analyzed for the study.

4.2 The Current service area aspects

Prior to understanding allied aspects in the service area, some of the main points from respondents were asked such as position in the family and education. These introductory questions are a basic reference to their response. For instance, if the respondent is not a household head or spouse of household head or parent of household head, then he/she may not clearly know about the general conditions. As a result, the answers provided would have some trouble to make general analysis. Similarly, if the respondent is uneducated, he/she might also provide misinformation. This is why these two main questions were asked in an introductory section. In view of this, the respondents are 73%, 25%, and 2% for household heads, spouses of household heads, and parents for household heads, respectively. Their educations are mostly in the secondary level. Of these, it may provide a good start from the respondents.

4.2.1 House ownership and occupations

Prior to providing description of this subsection, it is noted that some low water consumers were not available during the studied period. This means that they were away from their houses for income-generating purposes, keeping the houses closed. Since it was hard to conduct the interviews with them, the numbers of medium and high water consumers were increased. As a result, 27, 38, and 35 were selected as low, medium, and high water consumers, respectively.

Mostly, the respondents have their own houses for either living or conducting businesses in the city. Occupations of low water consumers are different. Small scale business owner, government employee, and workers for private companies were commonly found. The other occupations are car repairer, chef, tailor, and tour guide. The detailed information regarding to the occupations of low water consumers is shown as in table 3.

Occupation	Number of respondent	Percentage
Small scale business owner	11	40.7
Government Employee	6	22.3
Worker at private company/Factory	2	7.4
Others	8	29.6

Table 3 The occupation of low water consumer

For medium water consumers, their occupations are mainly small scale business owner, government employee, transportation service provider either motor or car. The other occupations are parttime teacher, electrician, T.V and radio repairer. The detailed information regarding to the occupations of medium water consumers is shown as in table 4.

The Preparatory Study on The Siem Reap Water Supply Expansion Project

Occupation	Number of respondent	Percentage
Small scale business owner	16	42.1
Government Employee	6	15.8
Transportation service provider	4	10.5
Motor taxi driver	2	5.3
Worker at private company/Factory	1	2.6
Construction worker	1	2.6
Others	8	21.1

Table 4 The occupation of medium water consumer

High water consumers' occupations dominated by small scale business owner and government employee. The other occupations are dentist, motorbike repairer, tourist guide, and car repairer. The information regarding to the occupations of high water consumers is shown as in table 5.

Table 5 The occupation of high water consumer

Occupation	Number of respondent	Percentage
Small scale business owner	13	37.1
Government Employee	9	25.7
Worker at private company/Factory	2	5.7
Transportation service provider	2	5.7
Motor taxi driver	1	2.9
Others	8	22.9

4.2.2 Household income

This section presents information on family income and expenditures. The income and expenditure here were classified into three categories: low, medium and high water consumers. It is found that total monthly incomes are 325, 462.5, and US\$ 600, while total monthly expenditures are 275, 300, and US\$ 375 for low, medium, and high water consumers, respectively (Table 6, 7, and 8). The monthly incomes and expenditures of the categories can also be summarized as in figure 1.

Table 6 Monthly income and expenditure of low water consumer

		Low water consumer			
No	Respondent name	Monthly income	Monthly	Monthly	Monthly
		(Riel)	income (US\$)	expenditure (Riel)	income (US\$)
1	Koe Samnang	205,000.00	51.25	200,000.00	50
2	Kro Him	1,000,000.00	250	928,000.00	232
3	Heak Kim Cheang	1,600,000.00	400	1,200,000.00	300
4	Chin Ouleang	400,000.00	100	380,000.00	95
5	Lov Samoeun	600,000.00	150	450,000.00	112.5
6	Ly Kunthea	4,000,000.00	1000	3,200,000.00	800
7	Pia Pouly	1,600,000.00	400	115,000.00	28.75
8	Eang Phall	3,000,000.00	750	9,200,000.00	2300
9	Sav Virak	1,500,000.00	375	1,200,000.00	300
10	Soun Srey Vorn	1,200,000.00	300	900,000.00	225
11	Leng Bang	4,500,000.00	1125	3,130,000.00	782.5
12	Thun Sokhun	900,000.00	225	859,000.00	214.75

		Low water consumer			
No	Respondent name	Monthly income	Monthly	Monthly	Monthly
		(Riel)	income (US\$)	expenditure (Riel)	income (US\$)
13	Pan Heu	1,500,000.00	375	1,300,000.00	325
14	Chhou Sreng	1,200,000.00	300	900,000.00	225
15	Ong Tea Sia	750,000.00	187.5	600,000.00	150
16	Nia Sim	590,000.00	147.5	420,000.00	105
17	Bun Leng	3,000,000.00	750	2,000,000.00	500
18	Than Na	1,300,000.00	325	1,100,000.00	275
19	Peach Kari Raoth	3,000,000.00	750	2,000,000.00	500
20	Por Moa	3,200,000.00	800	1,600,000.00	400
21	Long Sora Ny	450,000.00	112.5	2,000,000.00	500
22	Chan Sokunthea	180,000.00	45	150,000.00	37.5
23	Sun Kong	1,500,000.00	375	1,200,000.00	300
24	Hear Lay	1,500,000.00	375	1,318,000.00	329.5
25	Ol Phalla	800,000.00	200	600,000.00	150
26	Touch Savonn	600,000.00	150	400,000.00	100
27	Yo Ying	2,500,000.00	625	1,800,000.00	450
Average		1,576,851.85	394.21	1,450,000.00	362.50
Median		1,300,000.00	325.00	1,100,000.00	275.00

Table	7 Monthly income a	and expenditure of medium water consumer

	Respondent name	Medium water consumer			
No		Monthly income	Monthly	Monthly	Monthly
		(Riel)	income (US\$)	expenditure (Riel)	income (US\$)
1	Chea Pov	1,800,000.00	450	1,200,000.00	300
2	Chea Vanna	2,000,000.00	500	1,500,000.00	375
3	Seang Kim Thav	1,500,000.00	375	1,200,000.00	300
4	Sok Rin	15,000,000.00	3750	1,230,000.00	307.5
5	Chhor Visak	9,000,000.00	2250	850,000.00	212.5
6	Prak Kunthy	2,000,000.00	500	1,000,000.00	250
7	Chhong Hout	900,000.00	225	900,000.00	225
8	Sok Kim Chhoun	750,000.00	187.5	510,000.00	127.5
9	Meas Phalkea	600,000.00	150	450,000.00	112.5
10	Kim Yeang	1,435,000.00	358.75	1,230,000.00	307.5
11	Korina	1,900,000.00	475	1,845,000.00	461.25
12	E Romdol	1,200,000.00	300	1,200,000.00	300
13	Kim Iv	1,200,000.00	300	900,000.00	225
14	Keang Vign	4,305,000.00	1076.25	3,690,000.00	922.5
15	Suth Thyda	1,500,000.00	375	1,200,000.00	300
16	Samrith Chanrathana	1,222,000.00	305.5	400,000.00	100
17	Sithi Mony	1,200,000.00	300	800,000.00	200
18	Khoeum Bunthai	3,200,000.00	800	2,000,000.00	500
19	Hun Houn	1,350,000.00	337.5	1,000,000.00	250
20	Oeun Kim Hun	2,400,000.00	600	2,000,000.00	500
21	Ly Chai Heang	2,350,000.00	587.5	2,000,000.00	500
22	Som Sophal	3,000,000.00	750	1,785,000.00	446.25
23	Peang Vannak	1,000,000.00	250	1,000,000.00	250
24	Top KimHav	8,000,000.00	2000	600,000.00	150
25	Sav Yuk Kunthor	12,000,000.00	3000	12,000,000.00	3000
26	Koe Bun Heang	600,000.00	150	400,000.00	100
27	Seng Khay	2,000,000.00	500	800,000.00	200
28	Sum Puy	2,000,000.00	500	750,000.00	187.5
29	Ton Vanna	400,000.00	100	1,200,000.00	300

		Medium water consumer					
No	Respondent name	Monthly income	Monthly	Monthly	Monthly		
		(Riel)	income (US\$)	expenditure (Riel)	income (US\$)		
30	Chan Rom	2,000,000.00	500	2,000,000.00	500		
31	Ngem Sokhum	900,000.00	225	586,000.00	146.5		
32	Lim Peach	1,480,000.00	370	1,400,000.00	350		
33	Leng Siv Tav	3,000,000.00	750	1,600,000.00	400		
34	Tan Bo Song	3,000,000.00	750	2,000,000.00	500		
35	Dab SoBory	1,000,000.00	250	600,000.00	150		
36	Chhoeun Lay	500,000.00	125	400,000.00	100		
37	Koe Sothea	3,000,000.00	750	2,500,000.00	625		
38	Van Yung Eak	3,000,000.00	750	2,000,000.00	500		
	Average	2,728,736.84	682.18	1,545,421.05	386.36		
	Median	1,850,000.00	462.50	1,200,000.00	300.00		

Table 8 Monthly income and expenditure of high water consumer

	-	high water consumer				
No	Respondent name	Monthly income	Monthly	Monthly	Monthly	
	r	(Riel)	income (US\$)	expenditure (Riel)	income (US\$)	
1	Ly Sounly	4,500,000.00	1125	3,500,000.00	875	
2	Si Na	1,000,000.00	250	1,000,000.00	250	
3	Kim Meang Ry	1,350,000.00	337.5	1,050,000.00	262.5	
4	Phally Vanndath	2,800,000.00	700	600,000.00	150	
5	Chhiv Yong	1,800,000.00	450	1,400,000.00	350	
6	Chrik Pov	1,435,000.00	358.75	1,230,000.00	307.5	
7	Chhong Chamroeun	2,000,000.00	500	2,000,000.00	500	
8	Ouk Sam Art	2,500,000.00	625	2,000,000.00	500	
9	Ouk Savoeun	2,400,000.00	600	2,000,000.00	500	
10	Kov Hai	1,500,000.00	375	1,250,000.00	312.5	
11	Soun Vuthy	1,600,000.00	400	1,200,000.00	300	
12	Hong Bunthy	4,000,000.00	1000	3,200,000.00	800	
13	Tap Bun Chhoy	1,800,000.00	450	1,500,000.00	375	
14	Siv Bunrith			1,345,000.00	336.25	
15	Pik Pak	2,500,000.00	625	1,318,000.00	329.5	
16	Ek Khin			1,600,000.00	400	
17	Thyda			2,400,000.00	600	
18	Porn Phearak	2,400,000.00	600	2,400,000.00	600	
19	Bun Chi Na	1,260,000.00	315	1,050,000.00	262.5	
20	Lim Meng Kang	2,000,000.00	500	1,500,000.00	375	
21	Lim Kang	2,500,000.00	625	2,000,000.00	500	
22	Bun Raoth	2,400,000.00	600	1,400,000.00	350	
23	Doung Sarim	2,000,000.00	500	1,800,000.00	450	
24	Lim Tang	1,600,000.00	400	900,000.00	225	
25	Ngoy Malay	3,000,000.00	750	2,870,000.00	717.5	
26	Noun Chhun	3,500,000.00	875	3,200,000.00	800	
27	Kheng Ta	1,600,000.00	400	1,360,000.00	340	
28	Loeung Visith	2,000,000.00	500	1,800,000.00	450	
29	Noun Nal	3,000,000.00	750	600,000.00	150	
30	Ming Cheng	3,500,000.00	875	2,000,000.00	500	
31	Ros Srey	800,000.00	200	400,000.00	100	
32	Ly NaRon	3,000,000.00	750	2,400,000.00	600	
33	Thong Sokha	15,000,000.00	3750	11,000,000.00	2750	
34	Top Sokha	3,600,000.00	900	1,500,000.00	375	

		high water consumer					
No	Respondent name	Monthly income	Monthly	Monthly	Monthly		
		(Riel)	income (US\$)	expenditure (Riel)	income (US\$)		
35	Keam Vannak	400,000.00	100	2,100,000.00	525		
	Average	2,641,285.71	660.32	1,967,800.00	491.95		
Median		2,400,000.00	600.00	1,500,000.00	375.00		

Note: 1 US = 4000 Riel was calculated in this study

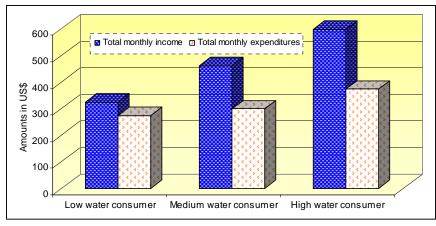


Figure 1 Household's income and expenditures in the service area

Furthermore, water consumption cost contributes to the total monthly expenditures was calculated. As a result, it is revealed that the percentages of the cost contributing to total monthly expenditures are 0.94%, 1.53%, and 3.12% for low, medium, and high water consumers. If combined the water cost with the electricity cost and the telephone cost, they contributed 13.7%, 16.5%, and 18.5% for low, medium, and high water consumers, respectively (Table 9, 10, and 11).

Table 9 Contribution of water cost, electricity cost, and telephone cost to monthly expenditure
For low water consumer

No	Respondent Name	Expenditure	Water cost	Electricity cost	Telephone cost
1	Koe Samnang	200,000 8,400		80,000.00	41,000.00
2	Kro Him	928,000	7,600	80,000.00	41,000.00
3	Heak Kim Cheang	1,200,000	33,600	150,000.00	20,000.00
4	Chin Ouleang	380,000	8,400	44,280.00	80,000.00
5	Lov Samoeun	450,000	12,000	80,000.00	20,000.00
6	Ly Kunthea	3,200,000	7,200	90,000.00	160,000.00
7	Pia Pouly	115,000	12,750	123,500.00	80,000.00
8	Eang Phall	9,200,000	7,200	240,000.00	160,000.00
9	Sav Virak	1,200,000	27,600	90,000.00	60,000.00
10	Soun Srey Vorn	900,000	10,800	100,000.00	60,000.00
11	Leng Bang	3,130,000	12,750	61,500.00	60,000.00
12	Thun Sokhun	859,000	12,000	49,200.00	60,000.00
13	Pan Heu	1,300,000	7,200	70,000.00	60,000.00
14	Chhou Sreng	900,000	10,800	100,000.00	40,000.00
15	Ong Tea Sia	600,000	5,550	50,000.00	20,000.00
16	Nia Sim	420,000	3,600	17,200.00	20,000.00
17	Bun Leng	2,000,000	10,800	61,500.00	120,000.00

No	Respondent Name	Expenditure	Water cost	Electricity cost	Telephone cost
18	Than Na	1,100,000	4,350	122,000.00	80,000.00
19	Peach Kari Raoth	2,000,000	28,000	400,000.00	80,000.00
20	Por Moa	1,600,000	3,150	200,000.00	40,000.00
21	Long Sora Ny	2,000,000	12,750	90,000.00	20,000.00
22	Chan Sokunthea	150,000	6,000	30,000.00	20,000.00
23	Sun Kong	n Kong 1,200,000 10,350 150,00		150,000.00	20,000.00
24	Hear Lay	1,318,000	9,600	32,000.00	60,000.00
25	Ol Phalla	600,000	8,400	45,000.00	20,500.00
26	Touch Savonn	400,000	10,800	80,000.00	60,000.00
27	Yo Ying	1,800,000	13,200	271,420.00	200,000.00
	Median	1,100,000.00	10,350.00	80,000	60,000
			0.94%		13.7%

Table 10 Contribution of water cost, electricity cost, and telephone cost to monthly expenditure For medium water consumer

No	Respondent Name	Expenditure	Water cost	Electricity cost	Telephone cost
1	Chea Pov	1,200,000	21,600	80,000	40,000
2	Chea Vanna	1,500,000	18,000	287,000	120,000
3	Seang Kim Thav	1,200,000	18,750	63,000	80,000
4	Sok Rin	1,230,000	28,800	82,000	82,000
5	Chhor Visak	850,000	21,600	27,880	40,000
6	Prak Kunthy	1,000,000	8,400	79,540	20,000
7	Chhong Hout	900,000	12,000	13,500	150,000
8	Sok Kim Chhoun	510,000	30,000	110,000	150,000
9	Meas Phalkea	450,000	12,000	60,000	20,000
10	Kim Yeang	1,230,000	18,000	25,000	41,000
11	Korina	1,845,000	20,400	130,000	123,000
12	E Romdol	1,200,000	23,400	290,000	40,000
13	Kim Iv	900,000	12,000	140,000	60,000
14	Keang Vign	3,690,000	42,000	250,000	12,000
15	Suth Thyda	1,200,000	16,800	120,000	120,000
16	Samrith Chanrathana	400,000	27,600	72,160	80,000
17	Sithi Mony	800,000	24,750	120,000	40,000
18	Khoeum Bunthai	2,000,000	7,200	100,000	80,000
19	Hun Houn	1,000,000	16,350	152,000	40,000
20	Oeun Kim Hun	2,000,000	12,000	200,000	60,000
21	Ly Chai Heang	2,000,000	19,950	400,000	150,000
22	Som Sophal	1,785,000	25,950	160,000	100,000
23	Peang Vannak	1,000,000	30,000	120,000	20,000
24	Top KimHav	600,000	12,000	80,000	120,000
25	Sav Yuk Kunthor	12,000,000	6,000	280,000	200,000
26	Koe Bun Heang	400,000	13,950	28,700	40,000
27	Seng Khay	800,000	20,400	119,700	80,000
28	Sum Puy	750,000	20,000	99,000	60,000
29	Ton Vanna	1,200,000	25,950	90,000	60,000
30	Chan Rom	2,000,000	19,950	90,000	20,000
31	Ngem Sokhum	586,000	14,400	80,000	41,000
32	Lim Peach	1,400,000	18,000	100,000	200,000
33	Leng Siv Tav	1,600,000	15,150	60,000	80,000

			1.53%		16.5%
Median 12000			18375	100000	80000
38	Van Yung Eak	2,000,000	27,600	85,000	80,000
37	Koe Sothea	2,500,000	18,000	125,000	120,000
36	Chhoeun Lay	400,000	14,400	65,000	80,000
35	Dab SoBory	600,000	27,600	110,000	80,000
34	Tan Bo Song	2,000,000	17,550	100,000	20,000

Table 11 Contribution of water cost, electricity cost, and telephone cost to monthly expenditure
For high water consumer

No	Respondent Name	Expenditure	Water cost	Electricity cost	Telephone cost
1	Ly Sounly	3,500,000	84,000	500,000	120,000
2	Si Na	1,000,000	40,000	50,000	20,000
3	Kim Meang Ry	1,050,000	34,800	55,760	15,000
4	Phally Vanndath	600,000	55,950	123,540	200,000
5	Chhiv Yong	1,400,000	36,750	9,000	40,000
6	Chrik Pov	1,230,000	42,000	52,800	41,000
7	Chhong Chamroeun	2,000,000	63,600	140,000	80,000
8	Ouk Sam Art	2,000,000	80,000	200,000	120,000
9	Ouk Savoeun	2,000,000	63,600	150,000	200,000
10	Kov Hai	1,250,000	46,800	200,000	40,000
11	Soun Vuthy	1,200,000	34,350	120,000	240,000
12	Hong Bunthy	3,200,000	135,150	120,000	40,000
13	Tap Bun Chhoy	1,500,000	48,000	130,000	60,000
14	Siv Bunrith	1,345,000	50,000	287,000	80,000
15	Pik Pak	1,318,000	38,400	400,000	40,000
16	Ek Khin	1,600,000	51,600	320,000	80,000
17	Thyda	2,400,000	36,000	200,000	120,000
18	Porn Phearak	2,400,000	42,000	80,000	120,000
19	Bun Chi Na	1,050,000	37,950	100,000	20,000
20	Lim Meng Kang	1,500,000	37,200	76,260	80,000
21	Lim Kang	2,000,000	45,600	54,900	120,000
22	Bun Raoth	1,400,000	48,750	150,000	80,000
23	Doung Sarim	1,800,000	75,000	300,000	40,000
24	Lim Tang	900,000	40,000	485,000	20,000
25	Ngoy Malay	2,870,000	44,400	250,000	120,000
26	Noun Chhun	3,200,000	91,950	50,000	60,000
27	Kheng Ta	1,360,000	33,150	140,000	60,000
28	Loeung Visith	1,800,000	49,200	200,000	120,000
29	Noun Nal	600,000	35,600	139,400	12,000
30	Ming Cheng	2,000,000	50,000	200,000	60,000
31	Ros Srey	400,000	27,000	300,000	100,000
32	Ly NaRon	2,400,000	50,400	287,000	120,000
33	Thong Sokha	11,000,000	40,800	164,000	60,000
34	Top Sokha	1,500,000	72,000	328,000	162,000
35 Keam Vannak		2,100,000	79,200	400,000	80,000
	Median	1,500,000	46,800	150,000	80,000
			3.12%		18.5%

Of the respondents in the service area consumed SRWSA supplied water for daily consumption. Some of them also use deep wells to meet their excessive needs due to the fact that they need more water for their business and could not afford for monthly water expenditure.

4.2.3 Water consumption

A number of questions arise for water consumption in an attempt to study consumption patterns of households. For example, where do households obtain their water? How much water do different types of household consume? how many person in family? do you share water consumption with other household? Therefore, water consumption can be answered through such essential questions. As a result, it is found that the water consumption quantities vary amongst consumers. The quantities of water consumed are 60.1, 100.3, and 168.2 liters per day per person for low, medium, and high water consumptions were found to be for general purposes such as cooking, washing, bathing, and drinking. On the other hand, the major water consumptions are 51%, 35%, and 14% for cooking, drinking, and bathing, respectively.

No	1	Low water consumer							
INO		Family member	Relatives	Monthly water consumption (m ³)	People sharing	Total People Use Water	Liters per day		
1	Koe Samnang	5		7.00		5	46.7		
2	Kro Him	2		6.00		2	100.0		
3	Heak Kim Cheang	4	2	10.00		6	55.6		
4	Chin Ouleang	3	1	7.00		4	58.3		
5	Lov Samoeun	3	3	10.00	3	9	37.0		
6	Ly Kunthea	1	1	6.00		2	100.0		
7	Pia Pouly	2		10.00		2	166.7		
8	Eang Phall	5	2	6.00		7	28.6		
9	Sav Virak	6		10.00		6	55.6		
10	Soun Srey Vorn	6		9.00		6	50.0		
	Leng Bang	6		10.00		6	55.6		
	Thun Sokhun	3		10.00		3	111.1		
13	Pan Heu	4	1	6.00	-	5	40.0		
14	Chhou Sreng	4		9.00		4	75.0		
	Ong Tea Sia	4		4.00		4	33.3		
	Nia Sim	2		3.00		2	50.0		
	Bun Leng	4		9.00		4	75.0		
18	Than Na	6		3.00		6	16.7		
	Peach Kari Raoth	5	·	2.00		6	11.1		
20	Por Moa	2	1	2.00		3	22.2		
21	Long Sora Ny	6		10.00		6	55.6		
	Chan Sokunthea	3		5.00		3	55.6		
	Sun Kong	5		8.00		5	53.3		
	Hear Lay	2		8.00		2	133.3		
	Ol Phalla	5		7.00		5	46.7		
	Touch Savonn	4	3	9.00		7	42.9		
27	Yo Ying	5	2	10.00		7	47.6		
						Average	60.1		

Table 12 Water quantity consumed by low water consumer

		Medium water consumer					
No	Respondent name	Family member	Relatives	Monthly water consumption (m ³)	People sharing	Total People Use Water	Liters per day
1	Chea Pov	5		18.00		5	120.0
2	Chea Vanna	5		15.00		5	100.0
3	Seang Kim Thav	6		15.00		6	83.3
4	Sok Rin	5		24.00	1	6	133.3
5	Chhor Visak	5		18.00		5	120.0
	Prak Kunthy	5		17.00		5	113.3
	Chhong Hout	5		11.00		5	73.3
	Sok Kim Chhoun	5	1	11.00		6	61.1
	Meas Phalkea	4		11.00		4	91.7
	Kim Yeang	4		15.00		6	83.3
	Korina	4	1	17.00		5	113.3
	E Romdol	4	1	19.00	1	6	105.6
	Kim Iv	4	2	11.00	2		45.8
	Keang Vign	5		25.00	1		119.0
	Suth Thyda	2	3	14.00	3		58.3
	Samrith Chanrathana	7		23.00		7	109.5
	Sithi Mony	5		20.00		5	133.3
	Khoeum Bunthai	2		11.00		2	183.3
	Hun Houn	4		12.00		4	100.0
	Oeun Kim Hun	5		11.00		5	73.3
	Ly Chai Heang	2	1	19.00		3	211.1
22	Som Sophal	9		21.00		9	77.8
23	÷	4		25.00	6	10	83.3
24	Top KimHav	6		11.00		6	61.1
25	Sav Yuk Kunthor	4	1	15.00		5	100.0
	Koe Bun Heang	2	1	11.00		3	122.2
27	Seng Khay	4		17.00		4	141.7
28	Sum Puy	5		17.00		5	113.3
	Ton Vanna	5		20.00		5	133.3
	Chan Rom	12		16.00		12	44.4
	Ngem Sokhum	3		12.00		3	133.3
	Lim Peach	6		15.00		6	83.3
33	Leng Siv Tav	7		12.00		7	57.1

Table 13 Water quantity consumed by medium water consumer

No	Description	Medium water consumer						
	Respondent name	Family member	Relatives	Monthly water consumption (m ³)	People sharing	Total People Use Water	Liters per day	
34	Tan Bo Song	6		14.00		6	77.8	
35	Dab SoBory	3	1	23.00	9	13	59.0	
36	Chhoeun Lay	4	1	12.00		5	80.0	
37	Koe Sothea	5	1	15.00		6	83.3	
38	Van Yung Eak	5	1	23.00		6	127.8	
						Average	100.3	

Table 14 Water quantity consumed by high water consumer

No	Desnondant name			High water	consumer		
No	Respondent name	Family member	Relatives	Monthly water consumption (m ³)	People sharing	Total People Use Water	Liters per day
1	Ly Sounly	6		70.00		6	388.9
2	Si Na	5		50.00	8	13	128.2
3	Kim Meang Ry	6	1	29.00		7	138.1
	Phally Vanndath	7		40.00		7	190.5
	Chhiv Yong	7		30.00		7	142.9
	Chrik Pov	7	3	35.00		10	116.7
	Chhong Chamroeun	11		53.00		11	160.6
	Ouk Sam Art	4		97.00	10	14	231.0
	Ouk Savoeun	6		53.00	12	18	98.1
	Kov Hai	6	4	39.00		10	130.0
	Soun Vuthy	7		28.00		7	133.3
	Hong Bunthy	12		112.00	15	27	138.3
	Tap Bun Chhoy	7	3	40.00	3	13	102.6
	Siv Bunrith	5	7	65.00	7	19	114.0
	Pik Pak	5	10	32.00		15	71.1
	Ek Khin	7		43.00		7	204.8
	Thyda	6		30.00		6	166.7
	Porn Phearak	4		35.00		4	291.7
19	Bun Chi Na	4		30.00	5	9	111.1
	Lim Meng Kang	7		31.00		7	147.6
	Lim Kang	10		38.00		10	126.7
22	Bun Raoth	5		45.00		5	300.0
23	Doung Sarim	7	1	100.00	6	14	238.1

No	Deen on dent nome	High water consumer						
	Respondent name	Family member	Relatives	Monthly water consumption (m ³)	People sharing	Total People Use Water	Liters per day	
24	Lim Tang	4	16	98.00	16	36	90.7	
25	Ngoy Malay	5	3	37.00		8	154.2	
26	Noun Chhun	8	15	76.00		23	110.1	
27	Kheng Ta	6	1	27.00		7	128.6	
28	Loeung Visith	8	1	41.00		9	151.9	
29	Noun Nal	6		43.00		6	238.9	
30	Ming Cheng	7	1	40.00		8	166.7	
31	Ros Srey	8		30.00		8	125.0	
32	Ly NaRon	8		42.00		8	175.0	
33	Thong Sokha	7		34.00		7	161.9	
34	Top Sokha	10		60.00		10	200.0	
35	Keam Vannak	7		66.00		7	314.3	
						Average	168.2	

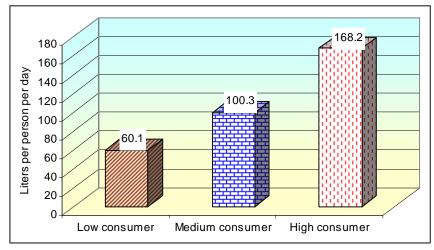


Figure 2 Water quantity consumed by different consumers

4.2.4 Satisfactory with the water supply service

All of the interviewed households enjoyed 24-hour water supply service. 95% of the households satisfied with the current service (figure 3). This is due to the fact that the service provides enough and safe water for consumption purposes and reduces time consuming.

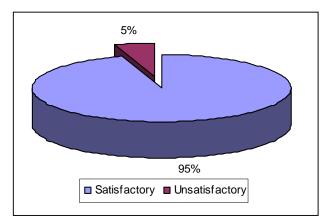


Figure 3 Percentage of satisfactory to the water supply service

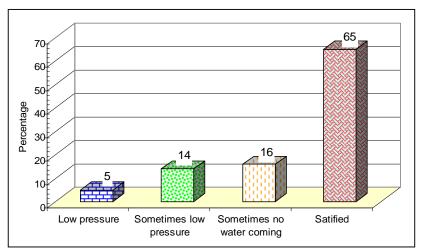


Figure 4 Satisfactory with the current water pressure

Although they have satisfied with such service, some of those think that water tariff seems to be high and should be reduced as low as possible. However, very few respondents still did not satisfy with the service due to sometimes there was no water coming and not enough water for their general consumptions. In term of water pressure, 65% of the respondents satisfied with the currently provided pressure, while 16%, 14%, and 5% reported that there were sometimes no water coming, sometimes low pressure, and completely low pressure, respectively (Figure 4).

Providing access to water services and sanitation is an integral part of the Government's efforts to improve health and living conditions in Cambodia and to meet the related Cambodia Millennium Development Goals. Regarding to drinking water, in the Siem Reap city at the present time, the SRWSA supplied water is considered to be clean. However, no any household drank water directly. This means that the city water supply is still used for drinking purpose, but prior to drinking, water is boiled to minimize diseases. In this regard, 57% of the respondents drank the supplied water by boiling, while the other 43% drank pure water instead. In terms of water quality, it seems to be not a significant problem. Yet, 17% and 3% of the consumers also complain about chlorine smell and color (high turbidity), respectively.

4.2.5 Waterborne diseases

Waterborne diseases are dirty-water diseases caused by water that has been contaminated. The lack of sanitary waste disposal and of clean water for drinking, cooking, and washing is one of the critical problems for such diseases. Of the respondents, only 3% were found to be infected by the diseases such as Typhoid, Dengue fever, and Skin infection. Those also reported that there was no a clear evidence to define if such diseases are from water. It might be from any other source. The costs of medical treatment were reported to be lesser than that of other diseases which were usually occurred in their families. Yet, the costs were mostly not reported. The costs of only two families (US\$ 25 and US\$ 100) were reported.

4.2.6 Request to SRWSA

In an attempt to improve the current service, only 10 % of the respondents used to request to SRWSA for service improvement such quantity and quality. Apart from these, to reduce water tariff and discount connection charge as much as possible are the most important needs.

4.2.7 Sanitary facilities

Sanitary facility in particular sanitary latrine is one of several factors to understand people health condition. Without it, it is likely to have serious problems to health. In the service area, of the interviewed households use sanitary latrine (73% use latrine with septic tank and 27% use latrine connected to the city drainage system). Thus, sanitation facilities are quite good. Asking about willingness to connect to the system, 85% of the respondents said that they will be glad to connect to the city sewerage system if the system is constructed, while 9% of those reported that they will disconnect to the system (figure 5). On the other hand, respondents 6% acknowledged they will connect to the system, but it depends mainly on charge. It seems to be hard for them to decide at the present time not knowing if to connect or not. If the connection cost is not so high, they will be very pleased to do as well.

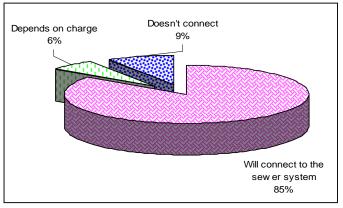


Figure 5 Willingness to connect to the sewerage system

4.2.8 Public works need to be improved

All of the respondents were asked to show their opinions regarding to the improvements of the public works. The core objective is to know if water supply and sewerage system are generally in their priorities or not? As a result, it is revealed that the major priorities of the public works, that should be improved, are illustrated in descending percentage as in figure 9. It is found that sewerage system is the first priority, followed by Road network, Water supply, Education system, Medical system, and Preservation for the heritage, respectively.

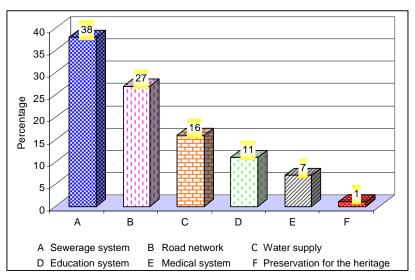


Figure 6 Public works should be improved

4.3 The Non service area settings

Similar to the service area, prior to understanding relevant aspects, respondents were asked to identify their positions in the family, education, and so on. This provided data consistency and a basic reference for their response. Of this, the respondents are 72% and 28% for household heads and spouses of household heads, respectively. Although their educations were mostly found within primary and secondary schools, they also provided good response to the interviewers.

4.3.1 House ownership and occupations

All of the respondents such as poor, medium, and better off households have their own houses for either living or conducting businesses. The occupations of the poor household are mainly farmers, small scale business owner, NGOs staff, motorbike taxi driver, government employee, and construction worker. The other occupations are small round basket/sieve producer, tailor, and laundry service provider. The information regarding to the poor household occupations is shown as in table 15.

Occupation	Number of respondent	Percentage
Farmer	16	46
Small scale business owner	6	18
NGOs/IOs staff	3	9
Motor taxi driver	2	6
Government Employee	1	3
Construction worker	1	3
Others	5	15

Table 15 The occupation of poor household

For medium households, their occupations are farmer, small scale business owner, construction worker, government employee, private company/factory worker, and transportation service provider. The other occupations are car repairer, tailor, fisherman, and tour guide. The information regarding to the medium household occupations is shown as in table 16.

Occupation	Number of respondent	Percentage
Farmer	14	43
Small scale business owner	8	24
Construction worker	3	9
Government Employee	3	9
Worker at private company/Factory	1	3
Others	4	12

Table 16 The occupation of medium household

For better off households, their occupations are farmer, small scale business owner, government employee, transportation service provider, and private company/factory worker. The other occupations are fish businessman, tailor, basket producer, and airport staff. The information regarding to the better off household occupations is shown as in table 17.

Occupation	Number of respondent	Percentage
Farmer	12	37
Small scale business owner	7	21
Government Employee	5	15
Transportation service provider	2	6
Worker at private company/Factory	1	3
Others	6	18

Table 17 The occupation of better off household

4.3.2 Household or family income

The information on monthly household income and expenditure were presented. The income and expenditure here were classified into three categories: poor, medium and better off households. It is found that total monthly expenditures are 57.5, 127.5, and US\$ 187.5, while total monthly incomes are 75, 187.5, and US\$ 250 for poor, medium, and better off, respectively (Table 18, 19, and 20). They are summarized as in figure 7.

Table 18 Monthly income and expenditure of poor household

			Poor he	ousehold	
No	Respondent name	Monthly income	Monthly	Monthly	Monthly
		(Riel)	income (US\$)	expenditure (Riel)	income (US\$)
1	Mia Heng	354000	88.5	360000	90
2	Proch Boeuy	500000	125	350000	87.5
3	Pech Youn	450000	112.5	600000	150
4	San Nan	220000	55	220000	55
5	Sam Sa Morn	360000	90	300000	75
6	Han Sun	120000	30	90000	22.5
7	Soeun So Von	300000	75	150000	37.5
8	Hoeun Leam	160000	40	120000	30
9	Lam Samai	150000	37.5	90000	22.5
10	Sorng Som	400000	100	302000	75.5
11	Vann Bich	400000	100	300000	75
12	Man Mean	600000	150	240000	60
13	Huy Phan	450000	112.5	300000	75
14	Koe Kong	300000	75	300000	75
15	Lom Moeun	100000	25	100000	25
16	Voeun Veth	300000	75	240000	60
17	Yea Kon	200000	50	200000	50
18	Thean Much	200000	50	150000	37.5
19	Moeu Ya	200000	50	200000	50
20	Hing Loeuy	200000	50	150000	37.5
21	Hib Yan	300000	75	150000	37.5
22	Chun Chhisa	300000	75	210000	52.5
23	Proeun Pream	360000	90	310000	77.5
24	Chan Sa Eam	750000	187.5	670000	167.5
25	Lot Vanny	900000	225	750000	187.5
26	Chin Chindaroath	900000	225	600000	150
27	Chrek Phanh	189000	47.25	150000	37.5
28	Makh Silang	150000	37.5	125000	31.25
29	Vai Sor	200000	50	150000	37.5
30	Krong Rithy	1000000	250	1600000	400

		Poor household					
No	Respondent name	Monthly income	Monthly	Monthly	Monthly		
		(Riel)	income (US\$)	expenditure (Riel)	income (US\$)		
31	Peach Houn	660000	165	600000	150		
32	Makh Savy	100000	25	80000	20		
33	Chhork Va	100000	25	80000	20		
34	Sun Samnag	480000	120	300000	75		
	Average	363323.5	90.8	309911.8	77.47794		
	Median	300000	75	230000	57.5		

Table 19 Monthly income and expenditure of medium household

				household	
No	Respondent name	Monthly income	Monthly	Monthly	Monthly
		(Riel)	income (US\$)	expenditure (Riel)	income (US\$)
1	Doung Kim Korng	660000	165	600000	150
2	Norng Polan	650000	162.5	600000	150
3	Ly Raksmey	900000	225	400000	100
4	Porn Pot	500000	125	400000	100
5	Som Soeun	1000000	250	600000	150
6	Som Si Nang	900000	225	750000	187.5
7	Chhoun Kim	900000	225	600000	150
8	Seng Norm	1250000	312.5	1050000	262.5
9	Soeun Lun	820000	205	660000	165
10	Sam Thyda	1170000	292.5	535000	133.75
11	Ros Prem	300000	75	270000	67.5
12	Chhem Mom	540000	135	510000	127.5
13	Soeun Rorn	210000	52.5	150000	37.5
14	Chhoung Chhoun	300000	75	300000	75
15	Thoeum Phat	700000	175	600000	150
16	Chlang Von	750000	187.5	323000	80.75
17	Chhen Voeun	375000	93.75	330000	82.5
18	Seng Houk	200000	50	200000	50
19	Kong Chong	300000	75	300000	75
20	Ngem Sothai	950000	237.5	750000	187.5
21	Hub Pheap	900000	225	400000	100
22	Thoun Sophov	400000	100	310000	77.5
23	Chea Soeum	570000	142.5	395000	98.75
24	Chan Sok	1250000	312.5	1000000	250
25	Plong Dany	1600000	400	600000	150
26	Chrik Kea	180000	45	150000	37.5
27	Chhav Thai	900000	225	450000	112.5
28	Vin Vai	450000	112.5	360000	90
29	Chhieb Ngab	1000000	250	600000	150
30	Kat Sary	900000	225	490000	122.5
31	Math Lop	4200000	1050	600000	150
32	Chhoeun Thy	600000	150	600000	150
33	Som Sophan	880000	220	600000	150
	Average	824394	206	499485	125
	Median	750000	187.5	510000	127.5

	-		Better off	household	
No	Respondent name	Monthly income	Monthly	Monthly	Monthly
		(Riel)	income (US\$)	expenditure (Riel)	income (US\$)
1	Kroy Thou Lyda	900000	225	900000	225
2	Kok Khorn	1200000	300	600000	150
3	Unn Bunthy	2400000	600	1200000	300
4	Eang Chenda	920000	230	500000	125
5	Chhoeun Moeut	750000	187.5	640000	160
6	Som Chhoeu	1500000	375	1390000	347.5
7	Dary Pesith	1800000	450	1660000	415
8	Som Noeum	1200000	300	1.20E+07	3000
9	Seng Saran	1200000	300	1050000	262.5
10	Chay Horm	1500000	375	1000000	250
11	Sorn Sum	800000	200	356000	89
12	Hoar Hour	3000000	750	2000000	500
13	Prok Prorn	750000	187.5	600000	150
14	Loa Sara	900000	225	300000	75
15	Soy Chay	1000000	250	300000	75
16	Uon Cham	480000	120	450000	112.5
17	Sor Saroeun	600000	150	450000	112.5
18	Un Hay Nam	600000	150	210000	52.5
19	Nuon Neu	600000	150	300000	75
20	Morn Bun Mey	1200000	300	400000	100
21	Ly Lay	900000	225	800000	200
22	Chan Sokha	1200000	300	900000	225
23	Liam Sambath	2400000	600	1290000	322.5
24	Chan Phorn	2000000	500	900000	225
25	Kun Votthorn	1550000	387.5	1200000	300
26	Sin Proeung	300000	75	210000	52.5
27	Seng Ngim	1200000	300	750000	187.5
28	Ly Hap	1600000	400	1200000	300
29	Mom Pok	900000	225	644000	161
30	Hong Sambo	850000	212.5	510000	127.5
31	Chhoeun Mao	850000	212.5	660000	165
32	Chhoeun Yanh	1000000	250	1000000	250
33	Lan Sothearak	2500000	625	1200000	300
	Average	1228788	307	1138485	285
	Median	1000000	250	750000	187.5

Table 20 Monthly income and expenditure of better off household

Note: 1 US = 4000 Riel was calculated in this study

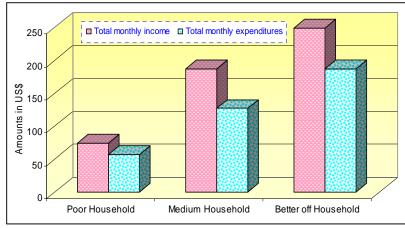


Figure 7 Household's monthly income and expenditure

	Wealth gr	oup	Well ty		Use -	umn	Operation and maintenance	e cos
Poor	Medium	Better off		Tube well	Use pump		(US\$)	
Yes			Yes		Yes		No case was found	
Yes			Yes			No	No case was found	
							5 to 25	
Yes				Yes	Yes		5 to 25	
							Average	=18
							1.25 to 12.5	
Yes				Yes		No	1.25 to 12.5	
								-
								12
							Aver	age
	Yes		Yes		Yes		No case was found	
	Yes		Yes			No	No case was found	
								6.
							5 to 25	
	Yes			Yes	Yes		51025	
							Average	=21
	Yes			Yes		No	5 to 17.5	

	Wealth gr	oup	Well ty	Llee n	ump	Operation and mainten	ance cost	
Poor	Medium	Better off	Open ring well	Tube well	Use pump		(US\$)	
								5.5
								6.25
							6 Ga	7.5
								7.5
							-	15
			•				6	17.5
							Ave	rage=7.66
								1.25
		Yes	Yes		Yes		1.25 to 3.7	3.7
							Av	verage=2.5
		Yes	Yes			No	No case was fou	
								5
							•	9.75
								10
							-	10
								11
							-	11
								12.5
							-	12.5
								20
							5 to 25	20
		Yes		Yes	Yes		5 to 25	
							-	25
								25
-								25
								25
								25
								25
								25
							-	25
							-	25
							Ave	erage=18.5
							:	6
		Yes		Yes		No	6 to 7.5	7.5
			1				Av	verage=6.8

Moreover, the total monthly pumping costs are relatively different. It is found that the costs ranged from 1.5 to US\$ 2.75, from 2.5 to US\$ 7.5 and 2.5 to US\$ 25 for poor, medium, and better off households, respectively.

Regarding to well operation and maintenance costs (O&M costs), for the poor households using only open ring wells, there is no cost. If they use tube wells with and without pump, the costs ranged from 1.25 to US\$ 12.5 and 5 to US\$ 25 per year, respectively. Similarly, for medium households, if they use only open ring wells, there is no cost. Yet, if they use tube wells with and without pump, the costs ranged from 5 to US\$ 25 and 5 to US\$ 17.5 per year, respectively. For better off households, if they use open ring wells with pump, the cost ranged from 1.25 to US\$ 3.5. No any case was found regarding to using open ring well without pump within this household category. However, if these households use tube wells with and without pump, the costs ranged

from 5 to US\$ 25 and 6 to US\$ 7.5 per year, respectively. Such explanation can be summarized as in table 21.

4.3.3 Water sources

All of the households in the Siem Reap city, which is located outside the water supply service area, still depends on self-provision through groundwater abstraction such as tube wells and open ring ones (figure 8a & b) as well as from family systems (rainwater collected in small jars).

Currently, it is found that around 82% use open ring wells, 14% use tube wells, and 4% use communal wells. Apart from this, rain water collection is still used to supplement their daily needs. On the other hand, the distance from their homes to open ring well water source is mostly less than 20 meters (about 93%), while the the distance of tube well is also less than 20 meters (about 94%). Identically, the distance from home to communal wells was also found to be less than 20 meters. Generally, the location of tap of houses were found mostly outside their houses. It is found that 76% and 86% of the tap locations are outside their houses for deep wells and open ring ones. In term of communal well, the tap location is found to be completely outside users' houses.

Figure 8 a) Deep/tube wells

b) Open ring well

4.3.4 Water consumption

Water consumption in the non service area seem to be hard to estimate consumption amounts (liters per person per day). However, in the attempt to generate realistic data many detailed questions were used in parallel with observations via consumption patterns of households. For instance, how many times do you and your family members collect water from your well per day? What are the means for the water collection? What are the means for keeping the collected water? Do all of your family members consume the collected water? if no, how many members do they consume water directly from well? The respondents were also asked to count their family members including children. Of the questions, they were calculated and applied for the dry and rainy seasons. This is helpful to get an accurate figure regarding to the actual comsumption per day per household either in the dry season or the rainy one. As a result, it is found that the water consumption quantities vary amongst three different households: Poor, Medium, and Better off households. Also, the consumption amounts were different between the seasons.

Table 22 Water quantity consumed in the dry season

				The Dry Sea	son			
	Poor househo			Medium house			Better off househ	
No.	Interviewee name	Lrs/Person/Day	No.	Interviewee name	Lrs/Person/Day	No.	Interviewee name	Lrs/Person/Day
1	Mia Heng	75	1	Doung Kim Korng	91	1	Kroy Thou Lyda	187
2	Proch Boeuy	200	2	Norng Polan	128	2	Kok Khorn	111
3	Pech Youn	125	3	Ly Raksmey	80	3	Unn Bunthy	111
4	San Nan	40	4	Porn Pot	67	4	Eang Chenda	91
5	Sam Sa Morn	120	5	Som Soeun	83	5	Chhoeun Moeut	150
6	Han Sun	120	6	Som Si Nang	166	6	Som Chhoeut	187
7	Soeun So Von	75	7	Chhoun Kim	150	7	Dary Pesith	170
8	Hoeun Leam	200	8	Seng Norm	145	8	Som Noeum	142
9	Lam Samai	120	9	Soeun Lun	180	9	Seng Saran	143
10	Sorng Som	140	10	Sam Thyda	170	10	Chay Horm	340
11	Vann Bich	85	11	Ros Prem	140	11	Sorn Sum	130
12	Man Mean	62	12	Chhem Mom	150	12	Hoar Hour	70
13	Huy Phan	104	13	Soeun Rorn	138	13	Prok Prorn	125
14	Koe Kong	100	14	Chhoung Chhoun	86	14	Loa Sara	80
15	Lom Moeun	75	15	Thoeum Phat	120	15	Soy Chay	150
16	Voeun Veth	150	16	Chlang Von	150	16	Uon Cham	140
17	Yea Kon	100	17	Chhen Voeun	150	17	Sor Saroeun	180
18	Thean Much	100	18	Seng Houk	36	18	Un Hay Nam	100
19	Moeu Ya	90	19	Kong Chong	62	19	Nuon Neu	93
20	Hing Loeuy	30	20	Ngem Sothai	160	20	Morn Bun Mey	100
21	Hib Yan	150	21	Hub Pheap	36	21	Ly Lay	150
22	Chun Chhisa	150	22	Thoun Sophov	160	22	Chan Sokha	200
23	Proeun Pream	160	23	Chea Soeum	80	23	Liam Sambath	100
24	Chan Sa Eam	120	24	Chan Sok	165	24	Chan Phorn	100
25	Lot Vanny	175	25	Plong Dany	120	25	Kun Votthorn	190
26	Chin Chindaroath	60	26	Chrik Kea	110	26	Sin Proeung	150
27	Chrek Phanh	100	27	Chhav Thai	80	27	Seng Ngim	70
28	Makh Silang	75	28	Vin Vai	180	28	Ly Hap	185
29	Vai Sor	150	29	Chhieb Ngab	170	29	Mom Pok	166
30	Krong Rithy	100	30	Kat Sary	110	30	Hong Sambo	185
31	Peach Houn	75	31	Math Lop	83	31	Chhoeun Mao	160
32	Makh Savy	40	32	Chhoeun Thy	50	32	Chhoeun Yanh	333
33	Chhork Va	100	33	Som Sophan	150	33	Lan Sothearak	43
34	Sun Samnag	120		·	L	1		L
	Average	108	†	Average	120	1	Average	146
	Median	100	1	Median	128	1	Median	143

Note: Lrs/Person/Day = Liters per person per day

Table 23 Water quantity consumed in the rainy season

				The Rainy Sea		-		
	Poor househo	ld		Medium house	old		Better off househ	old
No.	Interviewee name	Lrs/Person/Day	No.	Interviewee name	Lrs/Person/Day	No.	Interviewee name	Lrs/Person/Day
1	Mia Heng	62	1	Doung Kim Korng	91	1	Kroy Thou Lyda	150
2	Proch Boeuy	200	2	Norng Polan	85	2	Kok Khorn	83
3	Pech Youn	83	3	Ly Raksmey	80	3	Unn Bunthy	111
4	San Nan	40	4	Porn Pot	67	4	Eang Chenda	91
5	Sam Sa Morn	80	5	Som Soeun	83	5	Chhoeun Moeut	100
6	Han Sun	100	6	Som Si Nang	111	6	Som Chhoeut	160
7	Soeun So Von	50	7	Chhoun Kim	120	7	Dary Pesith	130
8	Hoeun Leam	160	8	Seng Norm	110	8	Som Noeum	71
9	Lam Samai	120	9	Soeun Lun	120	9	Seng Saran	143
10	Sorng Som	140	10	Sam Thyda	100	10	Chay Horm	340
11	Vann Bich	62	11	Ros Prem	100	11	Sorn Sum	110
12	Man Mean	50	12	Chhem Mom	110	12	Hoar Hour	70
13	Huy Phan	83	13	Soeun Rorn	123	13	Prok Prorn	100
14	Koe Kong	100	14	Chhoung Chhoun	57	14	Loa Sara	40
15	Lom Moeun	38	15	Thoeum Phat	110	15	Soy Chay	70
16	Voeun Veth	100	16	Chlang Von	120	16	Uon Cham	140
17	Yea Kon	100	17	Chhen Voeun	100	17	Sor Saroeun	125
18	Thean Much	100	18	Seng Houk	36	18	Un Hay Nam	75
19	Moeu Ya	60	19	Kong Chong	50	19	Nuon Neu	62
20	Hing Loeuy	15	20	Ngem Sothai	110	20	Morn Bun Mey	100
21	Hib Yan	100	21	Hub Pheap	36	21	Ly Lay	52
22	Chun Chhisa	150	22	Thoun Sophov	120	22	Chan Sokha	150
23	Proeun Pream	130	23	Chea Soeum	60	23	Liam Sambath	100
24	Chan Sa Eam	100	24	Chan Sok	120	24	Chan Phorn	100
25	Lot Vanny	120	25	Plong Dany	100	25	Kun Votthorn	125
26	Chin Chindaroath	60	26	Chrik Kea	75	26	Sin Proeung	140
27	Chrek Phanh	70	27	Chhav Thai	80	27	Seng Ngim	50
28	Makh Silang	50	28	Vin Vai	120	28	Ly Hap	120
29	Vai Sor	110	29	Chhieb Ngab	120	29	Mom Pok	140
30	Krong Rithy	100	30	Kat Sary	100	30	Hong Sambo	130
31	Peach Houn	50	31	Math Lop	83	31	Chhoeun Mao	120
32	Makh Savy	40	32	Chhoeun Thy	38	32	Chhoeun Yanh	333
33	Chhork Va	80	33	Som Sophan	100	33	Lan Sothearak	43
34	Sun Samnag	80	1	J				
	Average	89	1	Average	92		Average	117
	Median	83		Median	100		Median	110

Note: Lrs/Person/Day = Liters per person per day

In the rainy season, the quantities of water consumption were found to be 83, 100, and 110 liters per person per day for poor, medium, and better off households. In the dry season, the quantities were 100, 128, and 143 liters per person per day for poor, medium, and better of households, respectively (Table 22 and 23). They are also summarized as in figure 9.

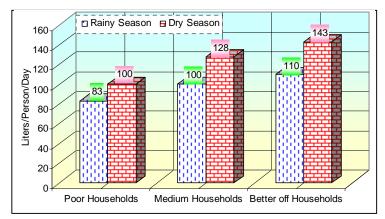


Figure 9 Water consumption in dry and in rainy seasons

Similar to the service area, such consumptions were found to be for general purposes such as cooking, washing, bathing, and drinking. Besides, well water source is used for home gardening and also for animal raisings.

yearly operation and maintenance cost by well type					
Tube well (Riel)	Frequency	Open ring well (Riel)	Frequency		
20000	17	5000	3		
22000	1	14700	1		
24000	1	15000	1		
25000	2	20000	1		
30000	4				
39000	1	- Only 6 of the 13 cases	s were		
40000	2	reported for the open ri	ng well.		
44000	2				
50000	2	-57 of the 79 cases were reported			
60000	1	for the tube well.			
70000	2		11		
72000	1	Apart from these, people in the r			
80000	2	service area use commu	inai well		
100000	19				
Min= 5 US\$, N	/lax= 25 US\$	Min = 1.25 US\$,			
Med	ian = 11 US\$	Media	n = 2.25 US\$		

Table 24 Yearly well's operation and maintenance cost

The quantities of water consumed are usually higher than that of households in the service area because of water sources is free of charge. Also, carelessness of water without saving sense is found. On the other hand, 45% of the respondents use pumps to ease their livings. Regarding to

water quality, based on the surveyed findings indicate that colour (high turbidity) is a major problem, followed by odour, and taste. 40% of the respondents were reported to these problems. To minimize such problems, only 5% treat their wells using filters. Furthermore, most of the respondents have no quantitative problems. Only 4% of them were lack of water from march to may. The uses of open ring wells and tube ones are always faced with manternaince costs.

It was found that people using open ring wells, the costs ranged from 1.25 to 5 US\$, on the median basis, the cost is 2.25 US\$ per year. On the other hand, people using tube wells, the costs ranged from 5 to 25 US\$. On the median basis, the cost was 11 US\$ (Table 24).

4.3.5 Willingness to connect to and to pay for the new water supply

Respondents' opinions in association with their willingness to connect to the new water supply system was surveyed. As a result, 70% of the respondents will connect to the system whenever its construction is finished without considering of the connection costs. 11% of the respondents replied No idea (figure 10). This means that they seem to hesitate to provide the answer at the present time, some of whom mentioned that if their neighbors connect to the system, they will also do. However, 19% of the respondents say No to the new system. They reported that they already had open ring wells or tube wells and can not be affordable for the connection fees. However, these respondents are known as the poor households.

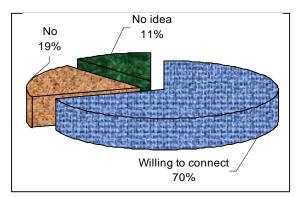


Figure 10 Opinions for the new water supply

Many residents are willing to pay (WTP) for water supply to a certain extent. The WTP is generally related to obtaining adequate service for their essential needs. Asking about the maximum amounts, the respondents would be able to pay are 32.4%, 25.7%, 25.7%, 12.9%, and 4,3% for From 2 to less than 5 US\$, From 1 to less than US\$ 2, Depend on water tariff, From 5 to 7 US\$, and More than 7 US\$, respectively (figure 11). Generally, common factors are that willingness to pay is responsive to consumption, affordability and the nature of the service provided.

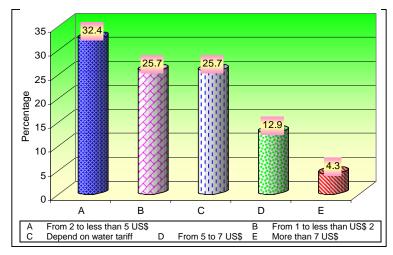


Figure 11 Willingness to pay for water consumption

4.3.6 Affordability Analysis

The objective of affordability analysis is to ensure that water tariff level should be affordable to low-income households. Also, the water tariff can be calculated based on the average monthly incomes and expenditures², average water consumption per month and household size of the low-income households that are calculated by using the processed raw data of social survey conducted by KCC study team in August 2009 for the preparatory study on the Siem Reap Water Supply Expansion Project. Likewise, the results of the affordability analysis from Exhibit 2 to Exhibit 5 are summarized in the following Exhibit 1.

The affordability analysis result quoted from Exhibit 5 is based on the basis information of the social survey. In addition, the average water consumption is 91.50 liters per person day or 15.56m³ per month for the poor households (The household size of 5.67 is applied for the calculation of the water consumption per month of the poor households). Using this water consumption level, the water tariff should be charged at rate 700KHR/m³. However, water supply expenses per month is calculated by multiplying of water tariff and water consumption level which is equaled to 14,892KHR (Sewerage user fees for 4,000KHR per month³ is included) or 4.4% comparing to the average monthly income that can be affordable by the low income households.

Moreover, if we assumed that water consumption is 88.21 liters per person day or 15 m³ per month for the poor households, the water tariff should be charged at rate 700KHR/m³. Using these both water consumption and water tariff levels the water supply expenses & sewerage user fees per month is calculated and equaled to 14,500KHR or 4.3% comparing to the average monthly income that can be affordable by the low income households.

Similarly, if we assumed that water consumption is 58.80 liters per person day or 10 m^3 per month for the poor households, the water tariff should be charged at rate 1,100KHR/m³. Using these both

² The average monthly incomes and expenditures herein referred to as "the average monthly household income", because the behaviors of respondent are not telling the true and fair view of their monthly household incomes and expenditures.

³ The sewerage user fees is approved by ministerial PRAKAS No.132, Signed by Minister of MEF and MPWT, Dated 02 March 2009, for the new Siem Reap Sewerage Wastewater Treatment Plant Unit (SSWTPU).

water consumption and water tariff levels the water supply expenses & sewerage user fees per month is calculated and equaled to 15,000KHR or 4.5% comparing to the average monthly income that can affordable by the low income households.

In addition, if we assumed that water consumption is 41.16 liters per person day or 7 m³ per month for the poor households, water tariff should be charged at rate 1,600KHR /m³. Using these both water consumption and water tariff levels the water supply expenses & sewerage user fees per month is calculated and equaled to 15,200KHR or 4.5% comparing to the average monthly income that can be affordable by the low income households.

4.3.7 Expectation if the new water supply project is completed

Respondent expectations from the new water supply project are different. For instance 82% and 18% of them expected to get *less drawing time for water* and *less diseases and less medical expenditure*, respectively. Less drawing time for water means that they would be able to have a water supply with good sanitation within or very close to their houses. Their health will also be better whenever the new water supply project comes. Based on such benefits, 75% of the respondents will cooperate the project if the construction work starts, while the other 25% said no idea. Apart from the above-provided choices, they also gave a lot of views about the project. If the project is completed, it will help the Siem Reap city and its new development zones to have safe and reliable water supply and to achieve long term sustainable economic development. On the other hand, this project will sustain water resource and strengthen integrated environmental planning and protection for water resources management and water supply service. Further, the project's institutional development component will strengthen the capacity of the executing agency and the implementing agency on project implementation and environmental monitoring regarding to water quality.

4.3.8 Waterborne diseases

Few waterborne diseases were found. The respondents 86% reported that they don't get infected such diseases while the rest 14% reported they infected with the diseases (figure 12).

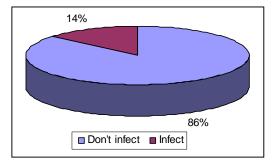


Figure 12 percentage of waterborne infection of the respondents

Of the 14% reported, 8%, 4%, and 2% were found to be infected by Diarrhea, Typhoid, and Skin infection, respectively. It is thus higher than that of what were found in the service area. However, it is also tough for them to define sources of the diseases, but water may be one of the root sources contributing to such diseases. The costs of medical treatment ranged from 5 to US\$ 100. On the

median basis, the cost was US\$ 25 (Table 25) which was generally less than that of other diseases generally occurred in their families.



Table 25 The yearly costs of medical treatment

4.3.9 Sanitary facilities

Sanitary facility here is focused only on sanitary latrine and is one of several factors to know of well beings. In the non service area, not all of the interviewed households use sanitary latrine: 68% use latrine with septic tank and 1% use pit latrine. Besides, 31% of the respondents defecate around their house compounds by digging and burying those wastes. High percentage of latrine indicates better living standards and knowledge about health care in their community. In view of this, sanitation facilities are poor and in need of development. On the other hand, currently no sewerage system was found. Asking about willingness to connect to the system, 48% of the respondents said that they will connect to the city sewerage system, while 9% of those will also do in the condition of proper charges (figure 13). The reason of willingness to connect to the system is due to the fact that they prefer getting sanitary facilities as a part of improving sanitary within their own households as well as in the city. 43% of the respondents reported that it is impossible or very difficult for them to connect to the system, because they are poor or low income households. The connection to the system is thus not a serious concern at the present time.

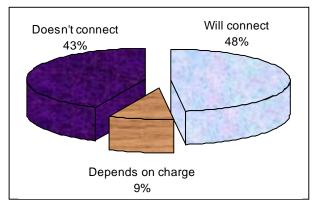


Figure 13 Willingness to connect to the system

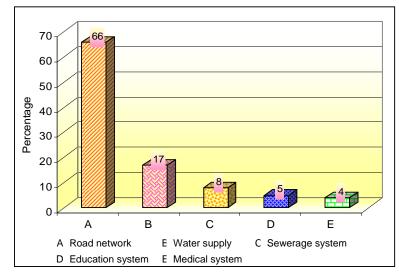
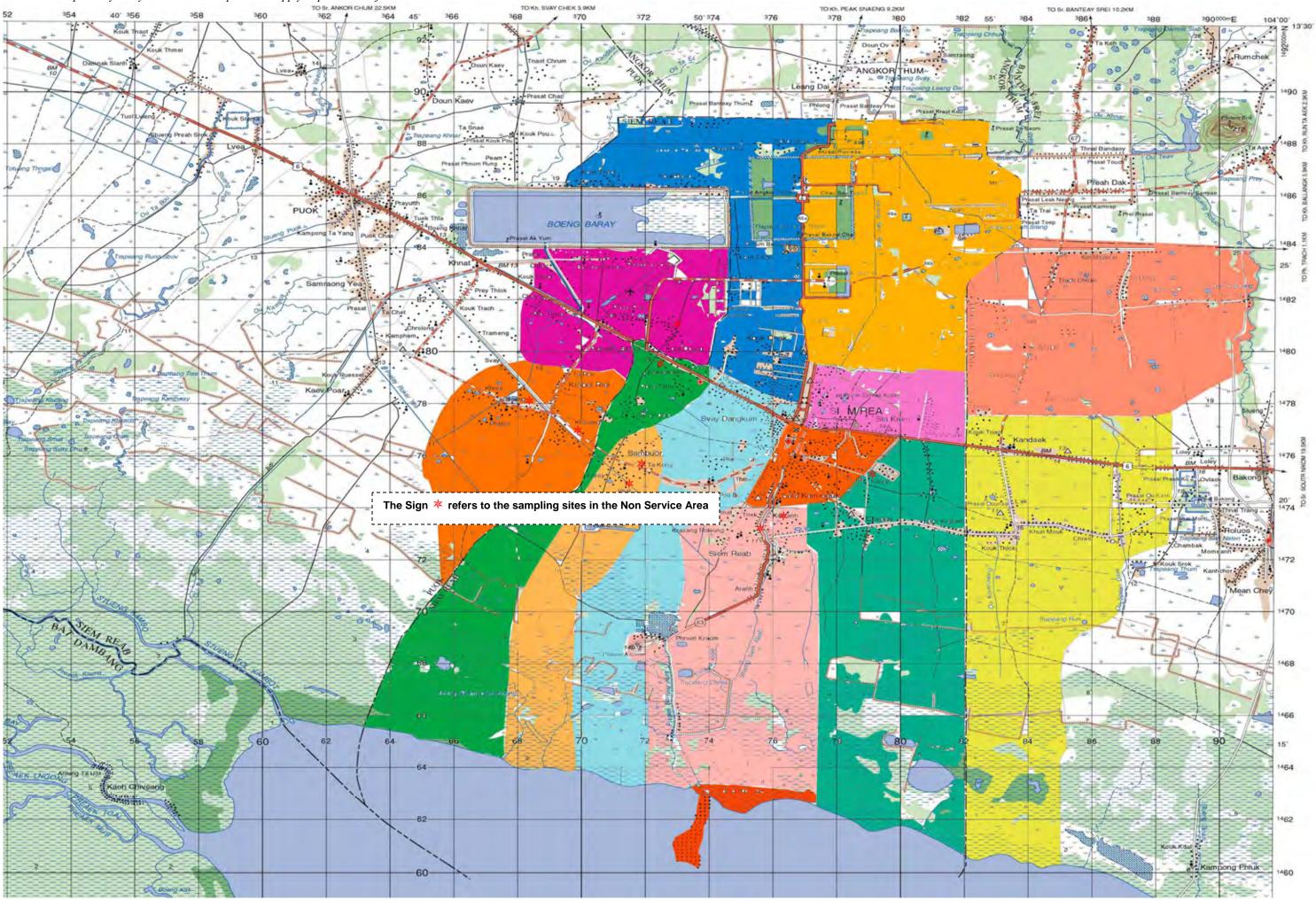


Figure 14 Public works should be improved


4.3.10 Public works need to be improved

Respondents' opinions regarding to the improvements of the public works were provided. It is revealed that the major priorities of the public works, that should be improved, are illustrated in descending percentage as in figure 14. It is found that road network is the first priority, followed by water supply, sewerage system, education system, and medical system, respectively. In the non service area, the improvement infrastructure in particular road network is regarded as one of the most important factors to indicate development progress. Since the road network is still hard for local traveling, it is one of the major priorities for development actors to take into considerations.

5. Conclusion

The study concluded that in the service area water consumptions are different from household to household, depending mainly on family economic, family size, occupations, and seasons. In the non service area, the differences of water consumptions by household categories were also found. The poor households consume water less than the medium and better off households. This is due to the fact that medium and better off households always use pumps, which is an easy facility, for their general purposes, while the poor were normally found to be lack of it. The respondents are willing to connect to the system whenever its construction is finished without considering of the connection costs. The affordability rate of the poor households should be considered for the water supply purpose. The study can be used as a source and as one of the reference tools for the city water supply planning.

APPENDIX

Appender Map of Sampling Sites in the Non Service Area

The F	Preparatory	Study on	The Siem	Reap	Water	Supply	Expansion	Project
-------	-------------	----------	----------	------	-------	--------	-----------	---------

Appendix 2

Questionnaire for Household Survey ຜໍ່ຈູ່ເຜ່າເບັ່ນເອສະເນສູລລະຫຼຸສມາ

QID:

🗖 1- Service Area តំបន់ផ្គត់ផ្គង់ទីក	បច្ចុប្បន្ន 🗖 2-	• Non-Service Area	តំបន់មិនទាន់មានការផ្គ	រុំតំផ្លង់ទឹក
Wealth Group ក៏រិតជីវិវភាពៈ 🗖 1 Poor ក្រ	🗖2 Average ម៉	ធ្យម 🗖 з в	etter Off ធ្លូវជារ	
1 Geographical Location ទីពាំងភូមិសាស្ត្រ				
Address អាស័យដ្ឋាន:	Village ភូមិ:			
Sangkat ឃុំ:	City ក្រុំង:			
2 Information of Respondent ព័ត៌មានពីអ្ន	កផ្តល់ចំលើយ			
2.1 Name ໂໜຼິງ ະ				
2.2 Position in Family ឋាំង; ក្នុងត្រូសារ	: 🗖 1- Household head i	មគ្រួសារ		
្ភាំ			ead ឪពុកម្នាយមេគ្រូត	រារ
2.3 Sex: ភ៊េមិ 🗖 1- Male ប៉្រុំសំ			1 61 00	
2.4 Age: អាយុ: ឆ្នាំ				
2.5 Education of the respondent ຄືງໃ	បិក្សាអ្នកផ្តល់ចំលើយ			
🗖 1- Non Education មិនបានរៀន				
🗖 2- Primary School បំបំមសិក្សា	(ថ្នាក់ទី១ - ថ្នាក់ទី៦ថ្មី) / (ថ្នោក់ទី១២ - ទី៧ជំនា	ន់ដើម)	
🗖 3- Secondary School អនុវិទ្យា	ល័យ (ថ្នាក់ទី៧ - ទី៩ថ្មី)/	(ថ្នាក់ទី៦ - ទី៣ជំនាន់	រដើម)	
🗖 4- High School វិទ្យាល័យ (ថ្នា	ក់ទី១០ - ទី១២ថ្មី) / (ថ្នាក់	ទី២ - ទី១ជំនាន់ដើម)		
□5- Bachelor Degree and above	· បរិញ្ញាបត្រឡើងទៅ			
2.6 Occupation មុខរិបរិរិ Main ចំបិង ¹	Secondary	បន្ទាប់បន្សំ:	-	
1- Government employee មន្ត្រីរាវ	ជំពារ 2- NGOs/IC)s staff បុគ្គលិកអង្គការ	Ĭ	
3- Worker at private companies/	Factories កម្មករក្រុមហ៊ុនឯ	កជន/កម្មកររោងចក្រ		
4- Small-scale business owner 쳝	ក្រប្រកបរបរលក់ដូរតិចតូច	5- Motor taxi d	driver អ្នករត់ម៉ូតូឌុប	
6- Transportation service provide	er អ្នកស៊ីឈ្នួលដឹកទំនិញ	7- Constructio	n worker កិម្មិកិរិសំណារ	ងំ
8- Other (Please specify) ផ្សេងៗ	(សូមបញ្ចាក់):			
2.7 If the respondent is not househol ប្រសិនបើអ្នកផ្តល់ចំលើយមិនមែនជាមេព្រ				
2.8 How many members are there in	your family? ចំំនួនមនុស្ស	ក្នុងបន្ទុកគ្រូសារ:	នាក់	
2.9 Do you have relative(s) staying w	-			🗖 2- No ទៃ
2.9.1 If yes, how many ប្រិសិនបើ	មាន តើមានប៉ុន្មាននាក់	នាក់		
2.10 Is this house yours តិផ្ទៃះនេះជារ	បស់អ្នក? 🗖1- Yes បាទ	🗖 2- No ទៃ		

¹ មុខរបរចំបង សំដៅលើមុខរបរជាគោលសំរាប់គ្រួសារ ពោលគឹមិនសំដៅលើមុខរបរណាដែលមានប្រាក់ចំណូលច្រើនជាងគេឡើយ ឧ. កសិករ មន្ត្រីរាជការ ជាដើម ។

The Preparatory Study on The Siem Red	ap Water Supply Expansion Pr	oject	
2.10.1 If no, do you rent the h	ouse ប្រសិនបើទេ តើផ្ទះនេះអ្នកជូល	រំពែ? 🗖 1- Yes បាម	🗖2- No ទៃ
2.10.1.1 If no, who does	s the house belong to ប្រសិនបើទេ	៖ តើផ្ទះនេះជារបស់អ្នកណា?_	
2.10.2 How size it is តិ៍ផ្ទៃ៖នេះ	អានទំហំប៉័ន្ទាន? m²	ម៉ែត្រការ៉េ	
3 Total Income/expenditures of your	household (family total) ຄືງໍ່ໃນ	ចំនូល/ចំណាយជាមធ្យមក្នុង	គ្រួសារ
3.1 Monthly income ចំនូលជាមធ្យម[
3.2 Monthly total expenditure ບໍ່ເທົ	- "		-
3.3 Monthly expenditure for water s	supply ចំណាយលើថ្លៃប្រើប្រាស់ទឹកប	ប្រចាំខែ:	Riel/month រ៉ៀល/ខែ
4 Accessibility to water supply រ៉ាពេងា	យស្រួលពីការផ្គត់ផ្គង់ទឹក		
4.1 Water source ប្រវាពទីពះ	1- Siem Reap Water Supply A	uthority រដ្ឋាករទឹកស្យេមរាប	ĵ
🗖2- Own well water ទីព័រអណ្តូង	ផ្ទាល់ខ្លួន 🗖 3- Others ដំ	ទៃទៀត:	
If you are supplied by the Siem Rea ប្រសិនបើប្រើប្រាស់បណ្តាញរដ្ឋាករទឹកដ	· · · ·	8	
4.2 If you use own well water sys ប្រសិនបើអ្នកប្រើប្រាស់ ទីកអណ្ដូងផ្ទាល់ខ្លួ			🗖2- Deep well អណ្តូងស្នប់
🗖 3- Communal well អណ្តូងរួម	🗖 4- Others ផ្សែងៗទៀត:		
4.3 Distance from home to your we	ll water source ចំងាយពីផ្ទះ ទៅកា	ន់ប្រភពទឹកអណ្ដូងរបស់អ្នក	
🗖 1- < 20 m តិចជាង២0ម៉ែត្រ	🗖 2- 20< < 50 m ពី២0 ទៅ	តិចជាង ៥០ម៉ែត្រ 🛛 🗗 3	- > 50 m លើសពី ៥0ម៉ែត្រ
4.4 Location of your tap តើកាំន្លែងប៊ិទ	ទបើកទឹករបស់អ្នកនៅកន្លែងណា?		
🗖1- Inside the house ព្អ៊ុងផ្ទ័៖	🗖 2- Outside the house ព្រ័ា	ផ្ទះ 🗖 3- Others ផ្សែង	ויי:
4.5 Frequency of access to your we	ell water ភាពញឹកញាប់ក្នុងការប្រើ	បាស់អណ្តូង	
នៅរដូវ ប្រាំង ជាទូទៅតើអ្នកដងទី 4.5.1.1 On the average	eriod, how many times per day th កប៉ុន្មានដងចេញពីអណ្ដូងរបស់អ្នក?_ basis, how many liters per persoi គ្លួសាវរបស់អ្នកប្រើប្រាស់ទឹកអស់ប៉ុន្ន	Times ដំង n used per day during the	dry season?
Liters/p	erson/day លីត្រ/ម្នាក់/ថ្ងៃ		
នៅរដូវវស្សា ជាទូទៅតើអ្នកដងទី 4.5.2.1 On the average ជាមធ្យម តើសមាជិកក្នុង[how many times per day that yo កប៉ុន្មានដងចេញពីអណ្ដូងរបស់អ្នក?_ basis, how many liters per persoi ភ្លួសាររបស់អ្នកប្រើប្រាស់ទឹកអស់ប៉ុន្ម	n used per day during the	rainy season?
Liters/p	erson/day លីត្រ/ម្នាក់/ថ្ងៃ		
4.6 Do you use your pump តិើអ្នកព្រែ			
4.7 Any problems on your well wa		υ	I- Yes ប៊ាទ 🛛 🗖 2- No ទៃ
	blems ប្រសិនបើមាន អ្វីជាបញ្ហារបរ -		
🗖 1- Taste រំសំជាតិ 🗌]2- odour ຖຼືສ 🔲 3- colour ຖິເ	ណ 🗖4- others ផ្សែង១	:
Supporting Report	SR 3.1-41		

The Preparatory Study on The Siem Reap Water Supply Expansion Project
4.8 Do you have any quantitative problems on your well water?
តើអណ្តូងអ្នក មានបញ្ហាខ្វះខាតទឹកប្រើប្រាស់ដែរ ឬទេ? 🛛 🗛 🖓 🖓 🗖 🖉 🗖 🖓 ការ ទេ
4.8.1 If Yes in the above question, when the problems happen? ប្រសិនបើមាន តើបញ្ហានេះកើតឡើងពីខែណា?
4.9 Do you treat your well water តើអ្នកសំអាតទឹកអណ្ដូងរបស់អ្នកទេ? 🗖 1- Yes បាទ 🛛 🗖 2- No ទេ
4.9.1 If Yes, how do you treat your well water ប្រសិនបើបាទ តើអ្នកសំអាតទឹកអណ្ដងរបស់អ្នកយ៉ាងដូចម្ដេច?
🗖 1- Disinfection by bleaching powder សំលាប់មេរោគដោយដាក់ថ្នាំធ្វើអោយទឹកថ្លា
🗖 2- Others (specify) ផ្សេង១សូបបញ្ជាក់:
4.10 How much do you spent for operation/treatment and maintenance for your well yearly? តើអ្នកចំណាយប៉ុន្មានសំរាប់ការបូម សំអាត និង ថែទាំអណ្ដូងប្រចាំឆ្នាំរបស់អ្នក?Riel/year វៀល/ឆ្នាំ
5 Willingness to connect to new water supply បំណងក្នុងការតភ្ជាប់បណ្តាញទឹកថ្មី
5.1 Will you connect to new water supply ពើអ្នកនឹងភ្ជាប់បណ្តាញផ្គត់ផ្គង់ទឹកថ្មីដែរទេ?
🗖 1- Yes ប៊ាទ 🛛 2- No ទេ 🗖 3- No idea គ្នានយោបល់
5.1.1 If no, why ប្រសិនបើទេ ហេតុអ្វី?
5.1.2 If yes, how much will you pay for new water supply at maximum per month? ប្រសិនបើបាទ តើអ្នកអាចនឹងចំណាយយ៉ាងច្រើនបំផុតប៉ុន្មានក្នុងមួយខែ សំរាប់ការប្រើប្រាស់ទឹករបស់គំរោងថ្មី?
🗖 1- From 1 to less than US\$ 2 ពី 1 ទៅតិចជាង 2 US\$ 🗖 2- From 2 to less than 5 US\$ ពី 2 ទៅតិចជាង 5 US\$
🗖 3- From 5 to 7 US\$ ពី 5 ទៅ 7 US\$ 🗖 4- More than 7 US\$ ច្រើនជាង 7 US\$
🗖 5- Depend on water tariff អាស្រ័យលើតារាងតំលៃទឹក
5.1.3. If yes, how much are you willing to pay for the new water connection fee? ប្រសិនបើបាទ តើអ្នកអាចនឹងចំណាយប៉ុន្មានសំរាប់ការភ្ជាប់បណ្តាញទឹកថ្មីនេះ? វ្យេល
6 What is your expectation if new water supply augmentation project be completed? អ្វីជាការសង្ឃឹមរបស់អ្នក ប្រសិនបើគំរោងផ្គត់ផ្គង់ទឹកថ្មីមួយ ត្រូវបានគេសាងសង់រួច?
🗖 1- Less drawing time for water ចំណាយពេលតិចក្នុងការយកទឹក
🗖2- Less diseases and less medical expenditure កាត់បន្ថយ ជំងឺដោយសារទឹក និង ចំណាយលើថ្នាំពេទ្យ
🗖 3- Increase of working chance បង្កើនឱ្យាាលការងារ
🗖4- Increase of education chance បង្កើនឱ្យកាសរេរ្យ័នសូត្រ
7 Will you cooperate/support the new Project if the construction work starts? តើអ្នកនឹងធ្វើការគាំទ្រទេ ប្រសិនបើគំរោងនេះដំណើការសាងសង់? 🗖 1- Yes បាទ 🗖 2- No ទេ 🗖 3- No idea គ្មានយោបល់
7.1 If yes, why ប្រសិនបើបាទ ហេតុអ្វី?
7.2 If no, why ប្រសិនបើទេ ហេតុអ្វី?

8 Siem Reap Waterworks water supply conditions លក្ខខណ្ឌវិនាាារផ្គត់ផ្គង់ទឹកខេត្តស្បេមរាប
The following questions are for those households who receive water supply from Siem Reap Water Supply Authority
<i>សំនួរខាងក្រោមនេះ គឺសំរាប់គ្រួសារទាំងឡាយណាដែលផ្តត់ផ្គង់ទឹកដោយរដ្ឋាករទឹកស្បេមរាប</i> ក្រសាទីលោកស្រីកាសស្រាស់ទីក្រសាទនេះ និងសំរាប់គ្នាសារសារសារសំនឹងសំរាប់អ្នកសំរាប់អ្នកសំរាប់អ្នកសំរាប់អ្នកសំរាប់អ្នក
8.1 Average monthly water consumption ការប្រើប្រាស់ទឹកជាមធ្យមប្រចាំខែះm³ ម ^{៉ា}
8.2 Average monthly water charge ចំណាយលើការប្រើប្រាស់ទឹកជាមធ្យមប្រចាំខែះ Riel/month រេវ្យល/ខែ
8.3 Do you share your water with the other households? តើអ្នកចែកចាយការប្រើប្រាស់ទឹកជាមួយគ្រួសារដ៍ទៃ១ទៀត? 🗖 1- Yes បាទ 🗖 2- No ទេ 8.3.1 If yes, how many people in the other households? ប្រសិនបើបាទ តើគ្រួសារនោះមានសមាជិកប៉ុន្មាននាក់: Persons នាក់
8.4 Availability and satisfaction of water supply ការពេញចិត្តចំពោះការផ្គត់ផ្គង់ទឹក 8.4.1 How many hours per day for water supply that satify your mind? តើការផ្គត់ផ្គង់ទឹកប៉ុន្មានម៉ោងក្នុងមួយថ្ងៃទើបអ្នកពេញចិត្ត? hours/day ម៉ោង/ថ្ងៃ
8.4.2 Do you currently satisfy with water supply? តើអ្នកពេញចិត្តចំពោះការផ្គត់ផ្គង់ទឹកដោយរដ្ឋាករទឹកបច្ចុប្បន្នទេ? 🗖1- Yes បាទ 🛛 🗖2- No ទេ
8.4.2.1 If yes, why ប្រសិនបើបាទ ហេតុអ្វី?
8.4.2.2 If no, why ប្រសិនបើទេ ហេតុអ្វី?
8.5 Do you drink the city water supply directly តើអ្នកទទួលទានទឹក ពីប្រព័ន្ធផ្គត់ផ្គង់ដោយផ្ទាល់? 🗖 1- Yes បាទ 🛛 🗖 2- No ន 8.6 What are the major consumption in your family? Show your priority in order
តើការប្រើប្រាស់ទឹកសំខាន់ៗរបស់អ្នកមានអ្វីខ្លះ? ចូរបង្ហាញតាមលំដាប់អាទិភាព
🗆 - Drinking ផ្ទីព័ 👘 - Cooking ចំអ៊ិនអាហារ 💭 - Shower ង្ហូព
💭 - Planting ដាំដំណាំ 👘 🗍 - Others ផ្ស៊េងៗទៀតៗ:
8.7 Any problems on water quality តើមានបញ្ហាណាមួយពីគុណភាពទឹកដែរឬទេ?
□1- Taste រសជាតិ □2- Odour ក្លិន □3- Colour ពិណ
🗖 4- others, if any ដំទៃទៀត ប្រសិនបើមាន 🛛 5- No problems គ្មានបញ្ហា
8.8 Any problems on water pressure មានបញ្ហាណាមួយពីសំពាធទឹកដែលប្រើព្រាស់បច្ចុប្បន្ន
🗖 1- Always low pressure ជានិច្ចកាលតែងមានកំលាំងសំពាធខ្សោយ
🗖 2- Sometimes low pressure ពេលខ្លះសំពាធទាប
🗖 3- Sometimes no water coming ពេលខ្លះដាច់ទឹក
🗖4- Satisfied សមស្របហើយអាចទទួលយកបាន
8.9 Do you have any request to the Siem Reap Wate Supply Authority? តើអ្នកធ្លាប់បានធ្វើការស្នើរណាមួយទៅរដ្ឋាករទឹកស្យេមរាបដែរទេ ក្នុងន័យកែលំអរ? 🗖1- Yes បាទ 🗖2- No ទេ
8.9.1 If yes, what is/are the request(s) ប្រសិនបើមាន អ្វីជាសំណើររបស់អ្នក
🗖 1- Water quality improvement កែលំអរគុណភាពទឹកអោយកាន់តែប្រសើរឡើង
🗖 2- Water quantity improvement បង្កើនបរិមាណទឹក
🗖 3- Discount tariff បញ្ចុះតំលៃលើការប្រើប្រាស់ទឹក
🗖 4- Discount connection charge បញ្ចុះតំលៃលើការភ្ជាប់បណ្តាញទឹក
🗖 5- Improvement of services ការកែលំអរសេវាកម្មអោយកាន់តែប្រសើរឡើង
🗖 6- Others (specify) ផ្ស៊េង១សូមបញ្ជាក់:

9 Sanitary facilities ផ្នែកអនាម័យ

9.1 What type of toilet do you have ប្រភេទបង្គន់អ្វីដែលអ្នកប្រើប្រាស់សព្វថ្ងៃ	?
🗖 1- Connected to city sewer បង្ហូរទៅប្រព័ន្ធលូទិ៍កស្អុយក្រុង 🗖	2- Toilet with septic tank បង្គន់ដែលមានអាងស្តុក
🗖 3- Pit latrine បង្គន់ចាក់ផេះ 🛛 4- Others ផ្សែងៗ	
9.2 Provided that the city sewer system is prepared for your street, are y	
ប្រសិនបើប្រព័ន្ធលូទឹកស្អុយក្នុងក្រុងត្រូវបានរៀបចំតាមផ្លូវវែា្បរ១ផ្ទះរបស់អ្នក តើរ	រ្ទុកនឹងភ្ជាប់បណ្តាញនោះទេ?
🗖 1- Yes បាទ 🛛 🗖 2- It depends on charge អាស្រ័យនិងតំលៃ	🗖 3- No ទៃ
10 Waterborne diseases suffered ជំងឺដែលកើតឡើងដោយសារទឹក 10.1 Did you get waterborne diseases during the last 12 months during tl តើអ្នកបានកើតជំងឺដែលកើតឡើងដោយសារការប្រើប្រាស់ទឹកដែរទេ កាលពីឆ្នាំ២០	
10.1.1 If yes, what kind of diseases are you suffered ប្រសិនបើបាម តើ	ប្រែភេទជំងីអ្វីដែលអ្នកជួបប្រទះ?
🗖 1- Cholera អាលន្នរោគ 🗖 2- Diarrhea រាគរូវល 🗖 3- Typhoid	គ្រុនពោះវៀន 🗖 4- Malaria គ្រុនចាញ់
🗖 5- Dengue fever គ្រុនក្តៅ 🛛 🗖 6- Skin infection រោគស៊ើស្បែក	🗖 7- Others ផ្សែងៗ:
10.1.2 How did you get such diseases តើអ្នកឆ្លងជំងឺនេះយ៉ាងដូចម្ដេច?	
🗖 1- Through water consumption ពាមរយ:ការប្រើប្រាស់ទីក	
🗖 2- Through infection from someone ពាមរយ:ឆ្លងពីអ្នកដំទៃ	
🗖 3- Others ផ្ស៊េង១:	
10.1.3 If yes, how much for the cost of medical treatment, including ចំណាយទៅលើការព្យាបាលជំងឺ រួមបញ្ចូលទាំងថ្នាំពេទ្យ: 11 What is your average monthly electric bill?	Riel/year រឿល/ឆ្នាំ
តើអ្នកចំណាយលើអគ្គិសនីជាមធ្យមប៉ុន្មាន ក្នុងមួយខែ? Riel/	month រៀល/ខេ
12 What is your average monthly telephone bill? តើអ្នកចំណាយលើទូរស័ព្ទជាមធ្យមប៉ុន្មាន ក្នុងមួយខែ? Riel/r	nonth រៀល/ខែ
13 Which fields of public works do you want to improve? Show your pri តើកិច្ចការសាធារណៈណាខ្លះ ដែលអ្នកចង់អោយមានការកែលំអរ? ចូរបង្ហាញតាមលំដាប់	អាទិភាព
🗆 - Water supply ការផ្គត់ផ្គង់ទឹកស្អាត 🔹 - Sewerage system ការកែ	1
🗆 - Road network ការកែលំអរបណ្តាញផ្លូវថ្នល់ 🔅 - Education sy	
🗌 - Irrigation system ការកែលំអរប្រព័ន្ធធារាសាស្ត្រ 🔅 – Medical syst	
💭 - Telecommunication system ប្រព័ន្ធទូរតមនាគមន៍ _ 💭 - Preservatior	n for the heritage ការអភិរក្សបេតិកភ័ណ្ឌ
Surveyed by ធ្វើអង្កេតដោយ: Date កាលបរិ	ច្ឆើទ:
Starting Time ពេលចាប់ផ្តើម: Completion T	ime ពេលបញ្ចប់:
Checked by ត្រូតពិនិត្យដោយ: Date កាលបរិ	ច្ឆែទះ

No	Name	Background	Phone Number
1	Mr. May Simorn	M.Sc., Environmental Science	012 933 354
2	Mr. Chan Vannak	Master Degree of Business Administration (MBA),	012 856 727
		and BSc. of Economic	
3	Mr. Yim Borey	Master Degree of Business Administration	012 655 265
4	Mr. Lim Piseth	Bachelor Degree of Management and Accounting	012 784 584
5	Mr. Srey Viseth	Bachelor Degree of Law	012 499 078
6	Mr. Klot Chheang Y	Bachelor Degree of Business Administration	092 836 114

Appendix 3 List of Interviewers

Exhibit 1: Results of Affordability Analysis for Low income household for year 2009

Household size	5.67	Person/per household
Average monthly expenditure per month	309,912	Khmer Riel (KHR)
Average monthly income per month	363,324	Khmer Riel (KHR)
Average monthly income & expenditures per month	336,618	Khmer Riel (KHR)

Water tariff/ m ³ (KHR)	Water consumption	Average water consumption per person day (Liter)	Total Water supply expenses & Sewerage user fees (KHR)	(%) Compare to AVR monthly expenditures	(%) Compare to AVR monthly income	(%) Compare to AVR monthly income & expenditures	Result Analysis
1,600	If 07m ³ /per month	41.16	15,200	4.9%	4.2%	4.5%	Affordable
1,100	If 10m ³ /per month	58.80	15,000	4.8%	4.1%	4.5%	Affordable
700	If 15m ³ /per month	88.21	14,500	4.7%	4.0%	4.3%	Affordable
700	15.56m ³ /per month	91.50	14,892	4.8%	4.1%	4.4%	Affordable

Exhibit 2: Affordability Analysis for Low income household year 2009 " If average water consumption 7m³/per month"

Household size Average water consumption Average monthly expenditure per month Average monthly income per month Average monthly income & expenditures per month Average water consumption per month 5.67 Person/per household 41.16 Liter/person day 309,912 Khmer Riel (KHR) 363,324 Khmer Riel (KHR) 336,618 Khmer Riel (KHR) 7.00 m3/per month

Water tariff/ m ³ (KHR)		Water supply expenses (KHR)	Sewerage user fees (KHR)	Total Water supply expenses & Sewerage user fees (KHR)	(%) Compare to AVR monthly expenditures	(%) Compare to AVR monthly income	(%) Compare to AVR monthly income & expenditures
	100	700	4,000	4,700	1.5%	1.3%	1.4%
	200	1,400	4,000	5,400	1.7%	1.5%	1.6%
	300	2,100	4,000	6,100	2.0%	1.7%	1.8%
	400	2,800	4,000	6,800	2.2%	1.9%	2.0%
	500	3,500	4,000	7,500	2.4%	2.1%	2.2%
	600	4,200	4,000	8,200	2.6%	2.3%	2.4%
	700	4,900	4,000	8,900	2.9%	2.4%	2.6%
	800	5,600	4,000	9,600	3.1%	2.6%	2.9%
	900	6,300	4,000	10,300	3.3%	2.8%	3.1%
	1,000	7,000	4,000	11,000	3.5%	3.0%	3.3%
	1,100	7,700	4,000	11,700	3.8%	3.2%	3.5%
	1,200	8,400	4,000	12,400	4.0%	3.4%	3.7%
	1,300	9,100	4,000	13,100	4.2%	3.6%	3.9%
	1,400	9,800	4,000	13,800	4.5%	3.8%	4.1%
	1,500	10,500	4,000	14,500	4.7%	4.0%	4.3%
	1,600	11,200	4,000	15,200	4.9%	4.2%	4.5%
	1,700	11,900	4,000	15,900	5.1%	4.4%	4.7%
	1,800	12,600	4,000	16,600	5.4%	4.6%	4.9%
	1,900	13,300	4,000	17,300	5.6%	4.8%	5.1%
	2,000	14,000	4,000	18,000	5.8%	5.0%	5.3%

Exhibit 3: Affordability Analysis for Low income household year 2009 " If average water consumption 10m³/per month"

Household size Average water consumption Average monthly expenditure per month Average monthly income per month Average monthly income & expenditures per month Average water consumption per month

5.67Person/per household58.80Liter/person day309,912Khmer Riel (KHR)363,324Khmer Riel (KHR)336,618Khmer Riel (KHR)10.00m3/per month

Water tariff/ m ³ (KHR)	Water s expen (KH	ses	Sewerage user fees (KHR)	Total Water supply expenses & Sewerage user fees (KHR)	(%) Compare to AVR monthly expenditures	(%) Compare to AVR monthly income	(%) Compare to AVR monthly income & expenditures
	100	1,000	4,000	5,00	0 1.6	% 1.4%	1.5%
	200	2,000	4,000	6,00	0 1.9	% 1.7%	1.8%
	300	3,000	4,000	7,00	0 2.3	% 1.9%	2.1%
	400	4,000	4,000	8,00	0 2.6	% 2.2%	2.4%
	500	5,000	4,000	9,00	0 2.9	% 2.5%	2.7%
	600	6,000	4,000	10,00	0 3.2	% 2.8%	3.0%
	700	7,000	4,000	11,00	0 3.5	% 3.0%	3.3%
	800	8,000	4,000	12,00			3.6%
	900	9,000	4,000	13,00	0 4.2	% 3.6%	3.9%
	,000	10,000	4,000	14,00			4.2%
	,100	11,000	4,000	15,00			4.5%
	,200	12,000	4,000	16,00	0 5.2		4.8%
	,300	13,000	4,000	17,00	0 5.5		5.1%
	,400	14,000	4,000	18,00	0 5.8		5.3%
	,500	15,000	4,000	19,00			5.6%
	,600	16,000	4,000	20,00			5.9%
	,700	17,000	4,000	21,00			6.2%
	,800	18,000	4,000	22,00			6.5%
	,900	19,000	4,000	23,00		% 6.3%	6.8%
2	,000	20,000	4,000	24,00	0 7.7	% 6.6%	7.1%

Exhibit 4: Affordability Analysis for Low income household year 2009 " If average water consumption 15m³/per month"

Household size Average water consumption Average monthly expenditure per month Average monthly income per month Average monthly income & expenditures per month Average water consumption per month

5.67Person/per household88.21Liter/person day309,912Khmer Riel (KHR)363,324Khmer Riel (KHR)336,618Khmer Riel (KHR)15.00m3/per month

Water tariff/ m ³ (KHR)	Water supply expenses (KHR)	Sewerage user fees (KHR)	Total Water supply expenses & Sewerage user fees (KHR)	(%) Compare to AVR monthly expenditures	(%) Compare to AVR monthly income	(%) Compare to AVR monthly income & expenditures
100	1,500	4,000	5,500	1.8%	1.5%	1.6%
200	3,000	4,000	7,000	2.3%	1.9%	2.1%
300	4,500	4,000	8,500	2.7%	2.3%	2.5%
400	6,000	4,000	10,000	3.2%	2.8%	3.0%
500	7,500	4,000	11,500	3.7%	3.2%	3.4%
600	9,000	4,000	13,000	4.2%	3.6%	3.9%
700	10,500	4,000	14,500	4.7%	4.0%	4.3%
800	12,000	4,000	16,000	5.2%	4.4%	4.8%
900	13,500	4,000	17,500	5.6%	4.8%	5.2%
1,000	15,000	4,000	19,000	6.1%	5.2%	5.6%
1,100	16,500	4,000	20,500	6.6%	5.6%	6.1%
1,200	18,000	4,000	22,000	7.1%	6.1%	6.5%
1,300	19,500	4,000	23,500	7.6%	6.5%	7.0%
1,400	21,000	4,000	25,000	8.1%	6.9%	7.4%
1,500	22,500	4,000	26,500	8.6%	7.3%	7.9%
1,600	24,000	4,000	28,000	9.0%	7.7%	8.3%
1,700	25,500	4,000	29,500	9.5%	8.1%	8.8%
1,800	27,000	4,000	31,000	10.0%	8.5%	9.2%
1,900	28,500	4,000	32,500	10.5%	8.9%	9.7%
2,000	30,000	4,000	34,000	11.0%	9.4%	10.1%

Exhibit 5: Affordability Analysis for Low income household "Based on Survey Data conducted in August 2009, 15.56m³/per month"

Household size Average water consumption Average monthly expenditure per month Average monthly income per month Average monthly income & expenditures per month Average water consumption per month 5.67Person/per household91.50Liter/person day309,912Khmer Riel (KHR)363,324Khmer Riel (KHR)336,618Khmer Riel (KHR)15.56m3/per month

Water tariff/ m ³ (KHR)	Water supply expenses (KHR)	Sewerage user fees (KHR)	Total Water supply expenses & Sewerage user fees (KHR)	(%) Compare to AVR monthly expenditures	(%) Compare to AVR monthly income	(%) Compare to AVR monthly income & expenditures
100	0 1,556	4,000	5,556	1.8%	1.5%	1.7%
200	0 3,112	4,000	7,112	2.3%	2.0%	2.1%
300	0 4,668	4,000	8,668	2.8%	2.4%	2.6%
400	0 6,224	4,000	10,224	3.3%	2.8%	3.0%
500	0 7,780	4,000	11,780	3.8%	3.2%	3.5%
600	9,336	4,000	13,336	4.3%	3.7%	4.0%
70	0 10,892	4,000	14,892	4.8%	4.1%	4.4%
800	0 12,448	4,000	16,448	5.3%	4.5%	4.9%
900	0 14,004	4,000	18,004	5.8%	5.0%	5.3%
1,000	0 15,560	4,000	19,560	6.3%	5.4%	5.8%
1,100	0 17,116	4,000	21,116	6.8%	5.8%	6.3%
1,200	0 18,672	4,000	22,672	7.3%	6.2%	6.7%
1,30	0 20,228	4,000	24,228	7.8%	6.7%	7.2%
1,400	0 21,784	4,000	25,784	8.3%	7.1%	7.7%
1,500	0 23,340	4,000	27,340	8.8%	7.5%	8.1%
1,60	0 24,896	4,000	28,896	9.3%	8.0%	8.6%
1,70	0 26,452	4,000	30,452	9.8%	8.4%	9.0%
1,800	0 28,008	4,000	32,008	10.3%	8.8%	9.5%
1,900	0 29,565	4,000	33,565	10.8%	9.2%	10.0%
2,000	0 31,121	4,000	35,121	11.3%	9.7%	10.4%

Water Supply Development Plan (Scenario 1)

Item	Year		2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
1	Population		166230	171450	177820	186080	194460	202950	211560	220250	229030	237890	246840	255840	264930	274080	283290	292560	301880	311250	320680	330170	339690	349260	358710
2	Pops growth rate	%	N/A	3.14%	3.72%	4.65%	4.50%	4.37%	4.24%	4.11%	3.99%	3.87%	3.76%	3.65%	3.55%	3.45%	3.36%	3.27%	3.19%	3.10%	3.03%	2.96%	2.88%	2.82%	2.71%
3	Coverage	%	20%	25%	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	80%	81%	82%	83%	84%	85%	86%	87%	88%	89%	90%
4	Population served		33,246	42,863	53,346	65,128	77,784	91,328	105,780	121,138	137,418	154,629	172,788	191,880	211,944	222,005	232,298	242,825	253,579	264,563	275,785	287,248	298,927	310,841	322,839
5	Unit consumption rate	lpcd	100		110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130
6	Constant growth rate	1	-	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7	Total domestic water demand	m ³ /d	16,623	0	19,560	20,655	21,780	22,933	24,118	25,329	26,567	27,833	29,127	30,445	31,792	33,164	34,561	35,985	37,433	38,906	40,406	41,932	43,480	45,055	46,632
8	Domestic water demand	m ³ /d	3,325	0	5,868	7,229	8,712	10,320	12,059	13,931	15,940	18,092	20,389	22,834	25,433	26,863	28,340	29,867	31,444	33,070	34,749	36,480	38,263	40,099	41,969
9	Tourists	per year	2,255,134	2,237,198	2,281,942	2,327,581 2	2,374,132	2,421,615	2,470,047	2,519,448	2,569,837	2,621,234	2,673,659	2,727,132	2,781,675	2,837,308	2,894,054	2,951,935	3,010,974	3,071,193	3,132,617	3,195,270	3,259,175	3,324,359	3,390,846
10	Gowth rate of tourists	%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
11	Tourists per day	per day	6,178	6,129	6,252	6,377	6,504	6,635	6,767	6,903	7,041	7,181	7,325	7,472	7,621	7,773	7,929	8,087	8,249	8,414	8,583	8,754	8,929	9,108	9,290
12	Coverage		20%	25%	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	80%	83%	86%	89%	92%	95%	100%	100%	100%	100%	100%
13	Toirist served		1,236	1,532	1,876	2,232	2,602	2,986	3,384	3,796	4,224	4,668	5,128	5,604	6,097	6,452	6,819	7,198	7,589	7,994	8,583	8,754	8,929	9,108	9,290
14	Unit consuption rate	lpcd	300	300	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
15	Constant growth rate	1	-	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
16	Water demand by tourists	per day	371	460	563	672	786	905	1,029	1,158	1,293	1,433	1,579	1,732	1,890	2,007	2,127	2,253	2,383	2,518	2,712	2,775	2,840	2,905	2,973
17	Average day of stay	days	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
18	Commercial water demand	m ³ /d	1,297	1,609	1,969	2,351	2,750	3,166	3,600	4,053	4,524	5,016	5,528	6,060	6,615	7,023	7,446	7,885	8,341	8,813	9,492	9,713	9,938	10,169	10,405
19	Total water demand	m ³ /d	4,622	1,609	7,837	9,581	11,462	13,486	15,659	17,984	20,465	23,107	25,916	28,894	32,048	33,886	35,787	37,753	39,784	41,883	44,241	46,193	48,201	50,267	52,374
20	NRW	%	18%	18%	17%	16%	15%	14%	13%	12%	11%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%
21	Average daily water demand	m ³ /d	5,637	1,962	9,443	11,405	13,485	15,682	17,999	20,436	22,994	25,675	28,796	32,105	35,609	37,651	39,763	41,947	44,205	46,537	49,157	51,326	53,557	55,853	58,193
22	Peak factor		1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
23	Maximum daily water demand		7,046	2,453	11,803	14,257	16,856	19,602	22,499	25,545	28,743	32,093	35,995	40,131	44,512	47,063	49,704	52,434	55,256	58,171	61,446	64,157	66,946	69,816	72,741
24	Exsiting water supply capacity	m ³ /d	8,000	8,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000
25	Required expansion capacity	m ³ /d	-954	-5,547	2,803	5,257	7,856	10,602	13,499	16,545	19,743	23,093	26,995	31,131	35,512	38,063	40,704	43,434	46,256	49,171	52,446	55,157	57,946	60,816	63,741

Item	Year		2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
1	Population		166,230	171,450	177,820	186,080		202,950	211,560	220,250	229,030	237,890	246,840	255,840	264,930	274,080	283,290	292,560	301,880	311,250	320,680	330,170	339,690	349,260	358,710
2	Pops growth rate	%	N/A	3.14%	3.72%	4.65%	4.50%	4.37%	4.24%	4.11%	3.99%	3.87%	3.76%	3.65%	3.55%	3.45%	3.36%	3.27%	3.19%	3.10%	3.03%	2.96%	2.88%	2.82%	2.71%
3	Coverage	%	30%	30%	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	80%	81%	82%	83%	84%	85%	86%	87%	88%	89%	90%
4	Population served		49,870	51,440	53,350	65,130	77,780	91,330	105,780	121,140	137,420	154,630	172,790	191,880	211,940	222,000	232,300	242,820	253,580	264,560	275,780	287,250	298,930	310,840	322,840
5	Unit consumption rate	lpcd	100	100	110	112	114	116	118	120	122	124	126	128	130	132	134	136	138	140	142	144	146	148	150
6	Constant growth rate	2			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
7	Total domestic water demand	m ³ /d	16,623	17,145	19,560	20,841	22,168	23,542	24,964	26,430	27,942	29,498	31,102	32,748	34,441	36,179	37,961	39,788	41,659	43,575	45,537	47,544	49,595	51,690	53,807
8	Domestic water demand	m ³ /d	4,987	5,144	5,869	7,295	8,867	10,594	12,482	14,537	16,765	19,174	21,772	24,561	27,552	29,304	31,128	33,024	34,994	37,038	39,161	41,364	43,644	46,004	48,426
9	Tourists	per year	2,255,134	2,255,134	2,322,788	2,392,472	2,464,246	2,538,173	2,614,318	2,692,748	2,773,530	2,856,736	2,942,438	3,030,712	3,121,633	3,215,282	3,311,740	3,411,093	3,513,425	3,618,828	3,727,393	3,839,215	3,954,391	4,073,023	4,195,214
10	Gowth rate of tourists	%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%
11	Tourists per day	per day	6,178	6,178	6,364	6,555	6,751	6,954	7,163	7,377	7,599	7,827	8,061	8,303	8,552	8,809	9,073	9,345	9,626	9,915	10,212	10,518	10,834	11,159	11,494
12	Coverage		30%	30%	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	80%	83%	86%	89%	92%	95%	100%	100%	100%	100%	100%
13	Toirist served		1,854	1,854	1,909	2,294	2,701	3,129	3,581	4,058	4,559	5,087	5,643	6,227	6,842	7,311	7,803	8,317	8,856	9,419	10,212	10,518	10,834	11,159	11,494
14	Unit consuption rate	lpcd	300	300	300	302	304	306	308	310	312	314	316	318	320	322	324	326	328	330	332	334	336	338	340
15	Constant growth rate	2	-	-	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
16	Water demand by tourists	per year	556	556	573	693	821	958	1,103	1,258	1,422	1,597	1,783	1,980	2,189	2,354	2,528	2,711	2,905	3,108	3,390	3,513	3,640	3,772	3,908
17	Average day of stay	days	3.5	3.5	5.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
18	Commercial water demand	m ³ /d	1,946	1,946	2,005	2,425	2,873	3,351	3,861	4,402	4,979	5,591	6,241	6,931	7,663	8,240	8,848	9,490	10,166	10,879	11,866	12,296	12,741	13,201	13,678
19	Total daily water demand	m ³ /d	6,933	7,090	7,873	9,719	11,740	13,946	16,343	18,939	21,744	24,765	28,013	31,492	35,215	37,544	39,976	42,514	45,160	47,917	51,027	53,660	56,385	59,205	62,104
20	NRW	%	18%	18%	17%	16%	15%	14%	13%	12%	11%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%
21	Average daily water demand	m ³ /d	8,460	8,650	9,490	11,570	13,810	16,220	18,780	21,520	24,430	27,520	31,130	34,990	39,130	41,720	44,420	47,240	50,180	53,240	56,700	59,620	62,650	65,780	69,000
22	Peak factor		1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
23	Maximum daily water demand		10,580	10,810	11,860	14,460	17,260	20,280	23,480	26,900	30,540	34,400	38,910	43,740	48,910	52,150	55,530	59,050	62,730	66,550	70,880	74,530	78,310	82,230	86,250
24	Exsiting water supply capacity	m ³ /d	8,000	8,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000
25	Required expansion capacity	m ³ /d	2,580	2,810	2,860	5,460	8,260	11,280	14,480	17,900	21,540	25,400	29,910	34,740	39,910	43,150	46,530	50,050	53,730	57,550	61,880	65,530	69,310	73,230	77,250
26	Total supply capacity	m ³ /d		9,000	9,000	9,000	26,000	26,000	26,000	26,000	26,000	56,000	56,000	56,000	56,000	56,000	56,000	86,000	86,000	86,000	86,000	86,000	86,000	86,000	86,000
27	Existing supply capacity	m ³ /d		9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000
28	KTC project	m ³ /d					17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,000
29	Phase 1 project	m ³ /d										30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000
30	Phase 2 project	m ³ /d																30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000

Water Supply Development Plan for the Proposed Service Areas (Scenario 2)

	(valer Supply Development Fam (Sectario 6)																				
		2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	
		166,230	171,450	177,820	186,080	194,460	202,950	211,560	220,250	229,030	237,890	246,840	255,840	264,930	274,080	283,290	292,560	301,880	311,250	320,680	
	%	N/A	3.14%	3.72%	4.65%	4.50%	4.37%	4.24%	4.11%	3.99%	3.87%	3.76%	3.65%	3.55%	3.45%	3.36%	3.27%	3.19%	3.10%	3.03%	_
	%	30%	30%	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	80%	81%	82%	83%	84%	85%	86%	
		49,869	51,435	53,346	65,128	77,784	91,328	105,780	121,138	137,418	154,629	172,788	191,880	211,944	222,005	232,298	242,825	253,579	264,563	275,785	
	lpcd	100	100	110	113	116	119	122	125	128	131	134	137	140	143	146	149	152	155	158	
	3			3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	_
r	m ³ /d	16,623	17,145	19,560	21,027	22,557	24,151	25,810	27,531	29,316	31,164	33,077	35,050	37,090	39,193	41,360	43,591	45,886	48,244	50,667	
	m ³ /d	4,987	5,144	5,868	7,359	9,023	10,868	12,905	15,142	17,590	20,256	23,154	26,288	29,672	31,747	33,915	36,181	38,544	41,007	43,574	
1			0.007.100	0.000 000	0 110 550	0 51 5 540	0 117 005	0 701 000	0.000 7.00	2 0 1 1 0 0 0		0 10 4 000	0.011 600		0 501 00 6	0 705 000	0.074.100	1 000 0 00		1.057.000	- A

Water Supply Development Plan (Scenario 3)

2029

349,260

2.82%

89%

167

58,326

3

310,841

2030

358.71

2.719

90%

170

60,981

3

322,839

2028

339,690

2.88%

88%

164

55,709

3

298,927

2027

330,170

2.96%

87% 287,248

161

53,157

3

Domestic water demand	m ³ /d	4,987	5,144	5,868	7,359	9,023	10,868	12,905	15,142	17,590	20,256	23,154	26,288	29,672	31,747	33,915	36,181	38,544	41,007	43,574	46,247	49,024	51,911	54,883
Tourists	per year	2,255,134	2,237,198	2,326,686	2,419,753	2,516,543	2,617,205	2,721,893	2,830,769	2,944,000	3,061,760	3,184,230	3,311,600	3,444,064	3,581,826	3,725,099	3,874,103	4,029,067	4,190,230	4,357,839	4,532,153	4,713,439	4,901,976	5,098,055
Gowth rate of tourists	%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%
Tourists per day	per day	6,178	6,129	6,374	6,629	6,895	7,170	7,457	7,756	8,066	8,388	8,724	9,073	9,436	9,813	10,206	10,614	11,039	11,480	11,939	12,417	12,914	13,430	13,967
Coverage		30%	30%	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	80%	83%	86%	89%	92%	95%	100%	100%	100%	100%	100%
Toirist served		1,854	1,839	1,912	2,320	2,758	3,227	3,729	4,266	4,839	5,452	6,107	6,805	7,549	8,145	8,777	9,446	10,155	10,906	11,939	12,417	12,914	13,430	13,967
Unit consuption rate	lpcd	300	300	300	303	306	309	312	315	318	321	324	327	330	333	336	339	342	345	348	351	354	357	360
Constant growth rate	3	-	-	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Water demand by tourists	per year	556	552	574	703	844	997	1,163	1,344	1,539	1,750	1,979	2,225	2,491	2,712	2,949	3,202	3,473	3,763	4,155	4,358	4,571	4,795	5,028
Average day of stay	days	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Commercial water deman	m ³ /d	1,946	1,931	2,008	2,461	2,954	3,490	4,072	4,703	5,386	6,126	6,925	7,788	8,719	9,493	10,322	11,208	12,156	13,169	14,542	15,254	16,000	16,781	17,599
Total water demand	m ³ /d	6,933	7,074	7,876	9,820	11,977	14,358	16,977	19,845	22,976	26,382	30,079	34,075	38,391	41,240	44,237	47,389	50,700	54,176	58,116	61,501	65,024	68,691	72,481
NRW	%	18%	18%	17%	16%	15%	14%	13%	12%	11%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%
Average daily water demand	m ³ /d	8,455	8,627	9,489	11,691	14,090	16,695	19,514	22,551	25,816	29,314	33,421	37,862	42,656	45,822	49,152	52,655	56,333	60,196	64,573	68,334	72,249	76,324	80,535
Peak factor		1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
Maximum daily water sup	ply	10,569	10,784	11,861	14,613	17,613	20,869	24,392	28,189	32,269	36,642	41,776	47,327	53,321	57,277	61,441	65,818	70,417	75,245	80,717	85,418	90,311	95,405	100,669
Exsiting water supply capac	m ³ /d	8,000	8,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000	9,000
Required expansion capac	m ³ /d	2,569	2,784	2,861	5,613	8,613	11,869	15,392	19,189	23,269	27,642	32,776	38,327	44,321	48,277	52,441	56,818	61,417	66,245	71,717	76,418	81,311	86,405	91,669

Item

1

3

4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Year

opulation Pops growth rate

Population served

Unit consumption rate

Constant growth rate

Total domestic water dema

Coverage

Supporting Report

Chapter 4 Feasibility Study on Priority Project

SR 4.1 Selection of Water Source and Intake Method

Chapter 1. Process of New Water Source Selection

The Study on selection of water sources is composed of two stages:

Table 1.1 Two Staged Selection of New Water Source

Stage	Descriptions
Stage 1	A wide range of candidates for new water sources around the study area will be identified. Considering all possible alternatives, preliminary screening will be done in the first stage to pick up three to five alternatives as a long list. Then the alternatives listed in the long list are evaluated by various parameters to prepare a short list. Available intake methods for each water source are to be considered in the selection of water source. Provisional location of intake is studied in the respective water sources. The stage 1 activities will be carried out in 2 steps as detailed in the following study flow.
Stage 2	This stage will involve a more detailed and accurate comparative study for the selected alternatives in the short list. The total water supply systems are to be studied together in consideration of construction methods and work schedule. In the Second stage, the study will be conducted in the following two parts in consideration of the specialty of experts involving with the study at the Second stage.
	Study Part A: Study on the fundamentals as public water supply systems, including stability and availability of water amount, raw water quality, environmental aspects such as protected area/legal restriction, ground subsidence in the heritage sites, and opinion from related organizations/groups.
	Study Part B : Study on reality of the total water supply systems including structural & work plan/design, construction method and schedule, construction cost, and operation and maintenance cost

The study flow with breakdown items is shown as follows:

(A) Stage 1 Study Flow

I Study on New Water Source

- 1. Confirmation of Basic Conditions of Requirements for Study on New Water Source
- 2. Preparation of List of Alternative New Water Source (Long list)
- 3. Preparation of Parameters* for Selection of New Water Source (Stage1-Step 1 & 2)
- 4. Preparation of Criteria** of Parameters for Evaluation of New Water Source (Stage1-Step 1)
- 5. Evaluation of Alternative New Water Source (Stage1-Step 1)
- 6. Selection of New Water Source (Stage1-Step 1)
- 7. Criteria of Parameters for Evaluation of New Water Source (Stage1-Step 2)

^{*:} Parameters (such as available water volume, water quality, protection areas, environmental impacts, etc.) to be used for the evaluation are explained in the following sections.

^{**:} Criteria for evaluation are explained in the following sections. For the Stage 1 evaluation, the general category such as sufficient/good, acceptable/fair, bad/not acceptable, etc., based on the engineering judgment are used, as the Stage 1 study is the screening of alternatives from the long list to the short list.

II Study on Intake Method (Preparation of long list to narrow down to the short list)

- 1. Preparation of List of Alternative Intake Methods (Tonle Sap Lake)
- 2. Preparation of List of Alternative Intake Methods (New Canal from Tonle Sap Lake)
- 3. Preparation of List of Alternative Intake Methods (West Baray)
- 4. Preparation of List of Alternative Intake Methods (Groundwater)
- 5. Preparation of Parameters for Selection of Intake Method (General Parameter)
- 6. Preparation of Parameters for Selection of Intake Method (Special Parameter in case of Tonle Sap)
- 7. Preparation of Criteria of Parameters for Evaluation of Intake Methods
- 8. Evaluation of Alternative Intake Methods (Tonle Sap Lake)
- 9. Evaluation of Alternative Intake Methods (New Canal from Tonle Sap Lake)
- 10. Evaluation of Alternative Intake Methods (West Baray)
- 11. Evaluation of Alternative Intake Methods (Groundwater)

III Stage 1 Selection of New Water Sources in Combination with Intake Methods

- 1. Selection of Combination of Water Source and Intake Method
- 2. Confirmation of Study Items for Stage 2 Selection

IV Study on Alternative Routes for Raw Water Conveyance System in case of Tonle Sap Lake Water

- 1. Selection of Alternative Routes
- 2. Preparation of Parameters for Selection of Alternative Routes
- 3. Preparation of Criteria of Parameters for Evaluation of Alternative Routes
- 4. Evaluation of Alternative Routes

Note: The Study on Alternative Routes (IV) can be carried out in parallel with the studies for II and III.

(B) Stage 2 Study Flow

I Part A (Narrow down to the Part B selection)

- 1. Study on water amount
- 2. Study on water quality
- 3. Study on ground subsidence in the heritage sites
- 4. Study on environmental impacts (ecology, resettlement, and the other environmental items)
- 5. Study on opinion from related organizations/groups

II Part B (Technical evaluation based on or supplement to the Part A selection)

- 1. Study and evaluation on structural & work plan/design (preliminary design)
- 2. Study and evaluation on construction method and schedule (preliminary study)
- 3. Study and evaluation on construction cost estimate (preliminary estimate)
- 4. Study and evaluation on operation and maintenance cost (preliminary estimate)
- 5. Study and evaluation on economic/financial viability (preliminary evaluation)

III Selection of the Proposed Water Source

1-1 Study Area for Water Source Selection

The study area for new water source selection is widely established at the First Stage selection in consideration of the following points:

- The water sources located at comparatively far distance may sometimes become feasible by conveyance through canal or pipeline, as far as good in quality and sufficient water volume is available as well as natural and social conditions are advantageous.;
- In the past studies, the water source studies are made only within a comparatively narrow area near the Siem Reap City.
- The water sources, which are not selected at this time of project, may be useful as a future option.

The study area at the First Stage covers the following range in general.

Tuble III Study III cu	ut the Flist Buge of few Water Bource Beleenon
Direction of Area Range	General Limit of Study Area
North side	Khun Ream Mountain
South side	Tonle Sap Lake
East side	Roluos River System
West side	Sraeng River

 Table 1.2
 Study Area at the First Stage of New Water Source Selection

The study area at the Stage 2 selection is the objective areas of the selected alternative water sources at the Stage 1 selection.

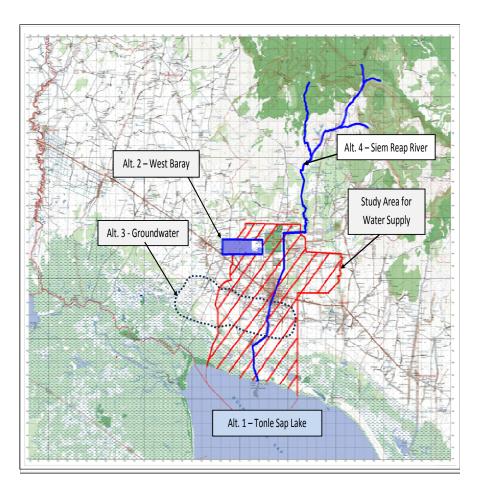
Chapter 2. Stage 1 Study on New Water Sources and Intake Methods

2-1 Stage 1 Selection of New Water Sources

2-1-1 Alternative New Water Sources, Stage 1-Step 1

The alternative new water sources are listed in the table below:

27		riel Features of Alternative New Water Sources
No.	Water Source	Brief Features as New Water Source
Alt. 1	Tonle Sap Lake	The lake is the largest natural lake in south east Asia and located on the south of the proposed service area. The natural conservation is also significant in and around the lake. There are some protection areas/lines which control the development and activities in the areas.
Alt. 2	West Baray	A large reservoir of 8km long and 2km wide originally constructed nearly a thousand years ago. There is one inlet connected/diverted from the Siem Reap River through a canal and one outlet from which a canal supplies water to an irrigation area. There are two projects in the past which proposed to use the reservoir water more efficiently, but the first project by Indian fund was suspended by interruption of UNESCO. And the implementation of the second project by Korean company is under negotiation with the government. The Baray and the surrounding area are designated as a protected area by APSARA (Authority).
Alt. 3	Groundwater	The major source of drinking water in the Study area is currently the groundwater. The water supply project (2003) by Japan's grant aid also uses the groundwater. Although no definite evidence is shown yet, most serious concern is the probable ground settlement resulting from additional/excessive withdrawal of groundwater. There are some people or groups who may criticize any development of groundwater resources.
Alt. 4	Siem Reap River	The river has the source in the mountain area located on the north of Siem Reap and runs through the areas of historic monuments and the central zone of Siem Reap City.
Alt. 5	Other Rivers	Besides the Siem Reap River, there are some other rivers running generally from the north to the south within a certain distance from the Siem Reap City.
Alt. 6	Other Existing Barays/ Ponds/ Reservoirs	There are some other barays/ ponds/ reservoirs beside the West Baray. It is considerable that the total impounding capacity is increased by using these other barays/ ponds/ reservoirs to regulate more effectively the remarkable difference of river flow between the dry season and the rainy season.
Alt. 7	Reservoir to be newly constructed	The reservoir is newly constructed. The original water source to supply the water to the newly constructed reservoir is the Tonle Sap Lake, the Siem Reap River, or the other rivers.


Table 2.1 Brief Features	of Alternative New	Water Sources
--------------------------	--------------------	---------------

The alternative new water sources with breakdown are listed hereunder and the locations are shown in the following map of the major alternative water sources (Alt. 1 to 4).

N	0.	Water Source		
Alt. 1	Alt. 1A	Tonle Sap Lake (water	Water body within the Lake	
		body and lake side)		
	Alt. 1B	body and lake side)	Canal connected to the Lake (Existing)	
	Alt. 1C		Canal connected to the Lake (Newly constructed)	
Alt. 2	Alt. 2A	West Baray Reservoir	Water intake directly from the baray	
	Alt. 2B		Water intake from the existing canal	
Alt. 3	Alt. 3A	Groundwater	Groundwater in the city (urban) zone	

Table 2.2 Alternative New Water Sources with Breakdown

	Alt. 3B		Groundwater in the outskirt zone of the City (Not including the Lake side)
	Alt. 3C		Groundwater in the lake side
Alt. 4	Alt. 4A	Siem Riap River	Upstream stretch (Upper stream of French weir)
	Alt. 4B	· · ·	Downstream stretch (Lower stream of French weir)
Alt. 5	Alt. 5A	Other Rivers (Singkea	Sraeng River
	Alt. 5B	River,	Phiang River
	Alt. 5C		Puok River
	Alt. 5D		Roluos River
Alt. 6	Alt. 6A	Other Existing	East
	Alt. 6B	Barays/ Ponds/	North
	Alt. 6C	Reservoirs	South (Loley)
	Alt. 6D		Phnum pok reservoir (Roluos)
	Alt. 6E		Trapeng Srah Srang
Alt. 7	Alt. 7A	Reservoir to be newly constructed	Land side new reservoir (water is taken from the rivers)
	Alt. 7B		Lake side new reservoir(water is taken from the Lake)
	Alt. 7C		Upper basin of the Siem Reap River (Khun Ream Mountain area)

2-1-2 Applied Parameters for Selection of New Water Sources, Stage 1-Step 1

The evaluation of Stage 1 alternatives is carried out by 2 steps. The evaluation of Step 1 reduces the alternatives for Step 2. The parameters to be used for evaluation of new water source at the stage 1 are listed in the table below:

	Parameters	Remarks			
		e used for Step 1 evaluation)			
P-1	Water volume for intake	Need to secure the required amount of intake water during both dry and rainy season. In other words, planned or designed water volume can be intake at dry season or low-water level.			
P-2	Water quality	Need to consider the acceptable limits of water quality in accordance with the standards for water supply. Need to consider the extent/difficulty of the water treatment process.			
P-3	Construction Cost (including difficulties)	An alternative has a high advantage or a less disadvantage in relation to construction cost. The each cost of purification plant, pipes (water supply or distribution pipes, etc.) or water tank are included for the total construction cost. Need to have no significant difficulties for construction of facilities. It is desirable that the construction period is not prolonged.			
P-4	Operation & Maintenance Cost (including difficulties)	An alternative has a high advantage or a less disadvantage in relation to operation cost and the stable supply of electric power or operation is possible without any trouble. The alternative has a high advantage or a less disadvantage in relation to maintenance cost and functions of facilities can be maintained for long time. No difficulties for maintenance and repairing works are essential.			
Other Para	ameters to be confirmed (to	be used for Step 2 evaluation)			
P-5	Water management laws/acts (including water right)	Need to confirm the necessity for securing new water right, when the existing water right in the water body has already established. In addition, the water right that is not legally established but considered as valid by customary practice will also be studied. Further the conditions/restrictions in relation to the laws and regulations for water/water resources management, other than the water right, shall also be considered during the study.			
P-6	Relation with the other purposes of water uses	Need to consider the existing utilization of the water source especially in cases where the water body has multi-purposes uses such as agriculture/irrigation, industry, landscaping, navigation, fishery, tourism, etc., impact to the existing uses, the distribution method, etc. In the West Baray reservoir, for example, the utilization for irrigation purposes may be a major consideration in the study.			
P-7	Impacts to archeological sites	Need to consider the probable impacts, especially in connection with the ground subsidence, on the archeological sites (historic remains) which are widely located in and around the Study area			
P-8	Impact to ecology	Need to consider/evaluate the impact on the ecology (fauna and flora), especially within the natural protection/conservation areas.			
P-9	Impact to life and land uses of inhabitants	Need to consider/evaluate the impact on the current activities and land utilization of inhabitants. It is required to have no adverse impacts on surrounding communities such as their impacts on community's life and livelihood. Consideration may also be made for sufficient mitigation measures taken for such impacts.			
P-10	Land acquisition and resettlement	Need to evaluate and consider the impact, mitigation measures and alternative plans etc. on the land acquisition and resettlement in connection with the construction and operation of facilities.			
P-11	Related organization/ group	Need to discuss probable issues/matters with the related organizations/ groups in regard to conservation/protection and uses of objective water sources and the surrounding areas. The consideration and discussion is necessary on the basis of scientific data/analyses preventing from troublesome interfere without the evidence. The countermeasures, if required, are also to be the subject of discussion. Agreement or consensus is to be obtained from the authorities concerned, if considered necessary.			

2-1-3 Applied Criteria for Selection of New Water Sources, Stage 1-Step 1

The criteria to be used for the evaluation of priority parameters for new water source selection (at the step 1 of the stage 1) are listed in the table below:

Category of Evaluation	Water quantity*	Water quality**	Construction*** (Cost and Difficulty)	Operation & maintenance*** (Cost and Difficulty)	
А	Sufficient	Good	Low	Low	
В	Acceptable	Acceptable	Medium	Medium	
С	Insufficient	Not suitable	High	High	
D****	Not sure	Not sure	Not sure	Not sure	

Table 2.4 Criteria of Selection of New Water Sources, Stage 1-Step1

Notes:

: "Sufficient" means that the volume is sufficient for the long-term requirement and "Acceptable" means that the volume may be enough to be used at least for the short term new water supply requirement.

**: "Good" means that simple treatment is enough and "Acceptable" means that the water is usable although the conventional treatment is required.

*** :There are no definite figures of criteria to be established at the First Step selection. The decision of respective category is based on the engineering considerations; however, it is assumed that the following case is classified as Category B and the selection of Category is judged by the general comparison with the assumed case.

• Water source: A river (River channel bottom: 20-30 m wide, Water depth : 1-2m on an average, River banks : gentle slope and approximately 5m in height)

- Intake facility: Diversion weir (with gates) and Intake works
- Water transmission line (pipe): Generally flat land but with some undulation, pumping facility is required. The transmission main passes through the urban zone and the groundwater level is relatively high (within a few meters from the ground)
- ****: Category D (Not sure) means that it is probably B but there is possibility to become C according to the further detailed study.

2-1-4 Evaluation of Alternative New Water Sources, Stage 1-Step 1

The evaluation of priority parameters for new water source selection (at the step 1 of the stage 1) are carried out in applying the criteria adopted in the previous section and the results are shown in the following table.

Water so	ource	Water quantity	Water quality	Construction (Cost and Difficulty)	Operation & maintenance (Cost and Difficulty)	Overall Judgment
Alt. 1	Tonle Sap Lake	А	В	D	D	Selected
Alt. 2	West Baray Reservoir	В	A or B	A or B	A	Selected
Alt. 3	Groundwater	A or B	A or B	A or B	A or B	Selected
Alt. 4	Siem Riap River	C	B or C	A or B	A or B	Not Selected
Alt. 5	Other Rivers	D	A or B	B or C	B or C	Not Selected
Alt. 6	Other Existing Barays/ Ponds/ Reservoirs	D	A or B	B or C	A or B	Not Selected
Alt. 7	Reservoir to be newly constructed	A or B	A or B	B or C	A or B	Not Selected

Table 2.5 Evaluation of Alternative New Water Sources, Stage1-Step 1

Some reference explanation on the table above is given below:

i) The Siem River is abandoned at the first step of evaluation due to shortage of water in the dry season is certain.

ii) Alternatives (5, 6, and 7) are also not selected to proceed to the next evaluation, mainly due to the rough evaluation of cost and availability of water volume.

2-1-5 Selection of New Water Sources, Stage 1-Step 1

The selection based on evaluation of priority parameters for new water source selection (at the step of the stage 1) are carried out and the results are shown in the table below:

	Tuble 2.0 Tentutive beleetion of New Water Bources, Stage 1 Step 1						
Ν	lo.		Water source Name				
Alt. 1	Alt. 1A	Tonle Sap Lake (water	Water body within the Lake				
	Alt. 1B	body and lake side)	Canal connected to the Lake (Existing)				
	Alt. 1C		Canal connected to the Lake (Newly constructed)				
Alt. 2	Alt. 2A	West Baray Reservoir	Water intake directly from the baray				
	Alt. 2B		Water intake from the existing canal				
Alt. 3	Alt. 3A	Groundwater	Groundwater in the city (urban) zone				
	Alt. 3B		Groundwater in the outskirt zone of the City (Not including the Lake side)				
	Alt. 3C		Groundwater in the lake side				

Table 2.6 Tentative Selection of New	Water Sources,	Stage 1-Step 1
--------------------------------------	----------------	----------------

2-1-6 Applied Criteria for Selection of New Water Sources, Stage 1-Step 2

The criteria to be used for the evaluation of other parameters for new water source selection (at the step 2 of the stage 1) are listed in the table below:

Category of Evaluation	Issue of Water laws and right	Impact to Other uses	Impacts to Archeo -logical sites	Impact to ecology	Impact to life of inhabitants	Issue of Land acquisitio n and resettlem ent	Interference by Related Organizatio n	
А	Almost no	impacts or is	sues are prec	licted (The al	lternative is sat	isfied with th	ne condition	
	of requirem	of requirement.)						
В		Slight impacts or issues are predicted (The alternative does not have a big disadvantage						
	thorough ta	thorough taking mitigation measures while it has several problems)						
С	Significant impacts or issues are predicted (The alternative is not satisfied with the							
	condition of requirement, or, it has significant problems and the sufficient mitigation							
	measure ma	measure may be difficult to be taken.)						
D	Not sure at	this stage of	study					

Table 2.7 Cri	iteria of Selection	of New Water	Sources, S	Stage 1-Step 2
		or recti there	Dour coby c	Mage I Drep -

Note: Since each evaluation item has different degrees of importance, the overall evaluation will be based on weighted ratings rather that by simple evaluation. The weighted ratings are based on the engineer's judgment at the first stage selection, although the engineer's judgment may accompany with some studies and data analyses.

2-1-7 Evaluation of Alternative New Water Sources, Stage 1-Step 2

The evaluation of other parameters for new water source selection (at the step 2 of the stage 1) is carried out and the results are shown in the following table.

Parameter		Tonle Sap			West Baray*		Ground	Groundwater	
No.	Description of parameters	Alt. 1A Lake	Alt. 1B Canal	Alt. 1C Canal	Alt.2A Baray	Alt.2B Canal	Alt. 3A City	Alt. 3B Out-	Alt. 3C Lake
	parameters		(exist)	(new)				skirt	side
P-5	Water management laws/acts (including water right)	A or B	B or C	A or B	A or B	A or B	С	B or C	A or B
P-6	Relation with the other purposes of water uses	A or B	С	A or B	B or C	B or C	A	А	А
P-7	Impacts to archeological sites	А	А	А	D	A or B	D	А	А
P-8	Impact to ecology	D	A or B	B or C	A or B	A or B	А	А	A or B
P-9	Impact to life and land uses of inhabitants	A or B	С	A or B	A or B	A or B	A or B	A or B	A
P-10	Land acquisition and resettlement	В	B or C	В	A or B	A or B	В	В	A or B
P-11	Related organization/ group	D	B or C	D	С	D	C	D	D
Overa	ll Judgment	Select ed	Aband oned	Selected	Aband oned	Select ed	Aband oned	Future option **	Select ed

 Table 2.8 Evaluation of Alternative New Water Sources, Stage1-Step 2

*: For the evaluation of West Baray, the breakdown alternatives (Alt. 2A and 2B) is not shown in the table, as the evaluation results are basically the same.

**: The groundwater development in the outskirt zone is decided as a future option, as the Alt 3C (lake side ground water) is considered as the representative of the outskirt zone.

The final selection of new water source at stage 1 is made in accordance with the results of evaluation shown above (for step 1 and step 2) and summarized in the table below:

No.		Water source Name	source Name				
Alt. 1	Alt. 1A	Tonle Sap Lake (water body	Water body within the Lake				
	Alt. 1C	and lake side)	Canal connected to the Lake (Newly constructed canal)*				
Alt. 2	Alt. 2B	West Baray Reservoir	Water intake from the existing canal				
Alt. 3	Alt. 3C	Groundwater	Groundwater in the lake side				

 Table 2.9 Selected New Water Sources in Stage 1

*: The appropriate distance and extension point of canal is to be studied at the Second stage study.

2-2 Stage 1 Selection of Intake Methods

2-2-1 Alternative Intake Methods, Stage 1- Step1

(1) Tonle Sap Lake (lake water body)

The alternative intake methods in case of Tonle Sap Lake (within the lake water body) as the water source are listed in the following table.

		Raw Water	ke and Kaw water Transmission Main (A)
No.	Intake	Transmission	Description
		Main	
1A-a	Floating barge	Pipe	Floating-barge can move with the water level fluctuation. The intake pipe with the pump is installed in a barge located within the water body of the lake which has sufficient water depth even during the low-water season. A transmission pipe will laid from the barge to the lakeshore. The transmission pipe may be floated or be placed on the lake bed. The generator for pump operation may be installed in the barge or the electric transmission line may be laid down between the land side and the barge. The impact of navigation on the water body and the countermeasures (if required) will be considered in the detailed plan of this type.
1А-b	Intake tower	Pipe	The intake tower is constructed in a location where the water withdrawal is possible any time during the year, especially during the low-water season. The transmission pipe is placed between the intake tower and the water tank on land near the lakeshore during high-water season. The pump is located in the tower. The generator for pump operation may be installed in the tower or the electric transmission line may be laid between the shoreline and the tower. The intake tower is often selected as the site for the reservoir. But, in case of the Tonle Sap lake, major issues to consider will include the construction method, the construction cost, and also the scenic attraction.
1A-c	Intake frame box	Pipe	The intake frame box is placed on the lakebed to maintain a certain water depth for intake. From the frame, the water is transmitted by gravity to the water tank with pumping facilities located on the landside of lakeshore.
1A-d	Collecting pipe	Pipe	Instead of the intake frame box as explained above, the collection pipe is installed on the lakebed. The collecting pipe may pose some difficulty for maintenance due to clogging by sediments.
1A-e	Trolley lane	Pipe	The submerged pump is installed in a trolley that moves with the water level fluctuation of the lake, on a lane constructed on a slope of the lake bed. The construction of trolley lane may be difficult if the lakebed slope foundation is not sufficiently stable.

Table 2.10 Alternatives of Intake and Raw Water Transmission Main (A))
Tuble 2010 Hiter half eb of Hiterie and Harr Water Handhibbion Harris	<u></u> ,	,

For understanding the image of alternative intake methods, the schematic illustration is shown in the figure below.

(2) New Canal from Tonle Sap Lake

The alternative intake methods in case of new canal connected to the Tonle Sap Lake as the water source are listed in the table below:

No.	Intake	Raw Water Transmission Main	Description		
1B-a	Intake tower	Pipe	The intake tower is constructed in a water channel/canal with sufficient depth for water intake during the low water season. It is desirable if the access bridge can be constructed from the land to the tower.		

 Table 2.11 Alternatives of Intake and Raw Water Transmission Main (B)

1B-b	Intake gate	Pipe	The intake pipe is directly placed on the slope/bank of a water channel, which may already exist or be constructed by dredging.
1B-c	Intake frame box	Pipe	The intake frame box is placed on the canal-bed to maintain a certain water depth for intake. From the frame, the water is transmitted by gravity to the water tank with pumping facilities located on the landside of lakeshore.

For understanding the image of alternative intake methods, the schematic illustration is shown in the figure below.

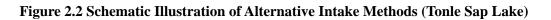
(3) Existing Canal from West Baray

The alternative intake methods in case of West baray (existing canal) as the water source are listed in the table below:

No.	Intake	Raw Water Transmission Main	Description
2B-a	Diversion weir +Intake gate	Open channel or Culvert channel	A gated diversion weir is constructed in the existing irrigation canal and the water is diverted to intake gate, which is constructed on the bank of canal. From the canal to the proposed WTP site, raw water transmission is made through a open channel or culvert channel, possibly by gravity.

For understanding the image of alternative intake methods, the schematic illustration is shown in the figure below.

(4) Groundwater


The alternative intake methods in case of Ground water as the water source are listed in the table below:

No.	Intake	Raw Water Transmission Main	Description
3C-a	Well	pipe On land near the lakeshore during the high-water season, we (Possibly 50 ~60m in depth and capacity of approximately 1,000 m ^{3/} day/well) with pumping facilities are constructed. depth and number of well will depend on the possible capacit water intake, the construction difficulties & cost, and the maintenance issues. The water seepage in the ground flows i the well through the bottom or holes of the walls of the well pumping facilities are installed in the well. The study on the locations, necessary number of well, and the distance betweet wells may need detailed analysis possibly based on the pumpitest.	
3C-b	Well + collecting pipes	pipe	This may be a kind of dug well and the depth may be 10-20 m. The structure and function is almost the same. But, the collection pipes are extended from the well to contain the water seeping into the well. The study on diameter, length, numbers, locations/directions, material, etc. of the collecting pipe will consider various conditions such as seepage coefficient and prevention of clogging.

 Table 2.13 Alternative Groundwater Intake (in the lake side)

For understanding the image of alternative intake methods, the schematic illustration is shown in the figure below.

No.	Intake	Raw Water	Schematic Illustration
		Transmission	
1A-a	Floating barge	Pipe	P
1A-b	Intake tower	Pipe	
1A-c	Intake frame box	Pipe	P
1A-d	Collecting pipe	Pipe	
1A-e	Trolley lane	Pipe	

No.	Intake	Raw	Water	
		Transm	nission	Schematic Illustration
1B-a	Intake tower	Pipe		
1B-b	Intake gate	Pipe		
1B-c	Intake frame box	Pipe		

Figure 2.3 Schematic Illustration of Alternative Intake Methods (New canal of Tonle Sap Lake)

No.	Intake	Raw Water	Schematic Illustration
		Transmission	
2B-a	Diversion weir +Intake gate	Open channel or Culvert channel	

Figure 2.4 Schematic Illustration of Alternative Intake Methods (West baray, Existing canal)

No.	Intake	Raw Water	Schematic Illustration	
3C-a	Well	Transmission Pipe		O AA' Section
3C-b	Well + collecting pipes	pipe		AA' Section

Figure 2.5 Schematic Illustration of Alternative Intake Methods (Ground water)

2-2-2 Applied Parameters for Selection of Intake Methods

(1) General parameters

The general parameters for evaluation of intake methods are decided as shown in the table below:

		The arameters for percentian of induce method
Paramet	ters	Description
GP-1	Capacity of intake volume	To secure the required volume of intake water
GP-2	Flexibility to variation of water level	To secure the function of intake water considering the variation of water level and discharge
GP-3	Construction cost and difficulties	To be not costly comparing with a typical method of intake and no significant difficulty for construction of facilities.
GP-4	O & M Cost and difficulties	To be not costly comparing with a typical method of intake and no significant difficulty for operation & maintenance of facilities
GP-5	Future expansion	To enable future expansion of facilities
GP-6	Archeological site	To have no significant impacts to archeological sites, which need acceptance by the APSARA Authority.
GP-7	Environmental impacts	To have no significant adverse impact on environmental conditions, such as ecology, public nuisance, etc.

 Table 2.14 Parameters for Selection of Intake Method

(2) Special Parameters in case of Tonle Sap Lake

The special parameters for evaluation of intake methods in case of Tonle Sap lake are decided as shown in the table below:

Parameters		Description
SP-1	Water level fluctuation (large)	The water level fluctuates to as much as 6-10 m almost every year. The study on intake system will evaluate the factors for such large fluctuation.
SP-2	Lake shoreline movement	The water intake method is required in consideration of the remarkable shifts of lakeshore line between rainy season and dry season. Although the degree of movement varies by location and year, it varies by more than 10 km at some areas.
SP-3	Shallow water level	To be flexible for secure the intake of water against the very shallow water depth (more or less 1m or shallower) during the low water season. The lake is unusually flat almost all the area including the central part, although the area is very large.
SP-4	Fishery, Tourism, Navigation	To have no significant impacts to the fishery, living, tourism, and navigation by local inhabitants in and around the lake.
SP-5	Related organization	To be possible to get consensus from various stakeholders/ affected organizations on the use of the lake and the water. The lake is very large and the natural conditions of the lake are rich. The lake is protected and conserved by the national law. Accordingly, there are various organizations and groups that involve in study and protection of the lake and the surrounding area, e.g., Mekong River Committee, IUCN, Tonle Sap Basin Authority, Ministry of Environment, Ministry of Fishery, Fisherman's groups, etc.

2-2-3 Applied Criteria for Selection of Intake Methods

The criteria for evaluation of parameters in intake methods are decided as shown in the table below:

Table 2.10 Criteria of Selection of Intake Methods			
Category	GP	SP	
Α	Sufficiently satisfy the required condition.	No significant problem/impacts are	
		predicted.	
В	More or less satisfy the required condition.	Slight problem/impacts are predicted.	
С	Not satisfy the required condition.	Significant problem/impacts are predicted.	
D	Not sure *	Not sure*	

Table 2.16 Criteria of Selection of Intake Methods

*: Need to confirm by the further study/survey based on a specific plan.

2-2-4 Evaluation of Alternative Intake Methods

(1) Tonle Sap Lake

Evaluation for selection of intake method in case of Tonle Sap Lake (Water Body) is made and summarized in the table below:

Table 2.17 Evaluation by General Taraneters of Intake Wethou of Tome Sap Lake Water					
	1A-a	1A-b	1A-c	1A-d	1A-e
Intake	Floating barge	Intake tower	Intake frame box	Collecting pipe	Trolley lane
GP-1	А	А	А	А	А
GP-2	А	В	А	А	В
GP-3	B or C	B or C	B or C	B or C	B or C
GP-4	B or C	В	В	B or C	B or C
GP-5	В	В	В	В	В
GP-6	А	А	А	А	А
GP-7	D	D	D	D	D

Table 2.17 Evaluation by General Parameters of Intake Method of Tonle Sap Lake Water

Table 2.18 Evaluation by Special Parameters of Intake Method of Tonle Sap Lake Water

	1A-a	1A-b	1A-c	1A-d	1A-e
Intake	Floating barge	Intake tower	Intake frame box	Collecting pipe	Trolley lane
SP-1	А	А	А	А	А
SP-2	В	В	В	В	В
SP-3	С	В	В	D	С
SP-4	D	D	В	В	B or C
SP-5	D	D	D	D	D
Overall	Abandoned	Selected	Selected	Selected	Abandoned

(2) New Canal from Tonle Sap Lake

Evaluation for selection of intake method in case of Tonle Sap Lake (Water Body) is made and summarized in the table below:

No.	1B-a	1B-b	1B-c	
Intake	Intake tower	Intake Gate	Intake frame box	
GP-1	А	А	A	
GP-2	A or B	A or B	А	
GP-3	В	В	B or C	
GP-4	В	В	B or C	
GP-5	В	В	B or C	
GP-6	A	А	А	
GP-7	В	В	В	

Table 2.19 Evaluation of Alternative Intake Methods by Canal

Table 2.20 Evaluation of Alternative Intake Methods by Canal

No.	1B-a	1B-b	1B-c
Intake	Intake tower	Intake Gate	Intake frame
Шакс	intake tower	Intake Gate	box
SP-1	В	В	А
SP-2	А	А	А
SP-3	А	А	А
SP-4	А	А	А
SP-5	В	В	В
Overall	Selected	Selected	Abandoned

(3) Existing Canal from West Baray

Evaluation for selection of intake method in case of West Baray (Irrigation canal) is made and summarized in the table below:

No.	2B-a
Intake	Diversion weir +Intake gate
GP-1	В
GP-2	А
GP-3	А
GP-4	А
GP-5	В
GP-6	D
GP-7	В
Overall	Selected

Table 2.21 Evaluation of Alternative Intake Methods of West Baray

(4) Groundwater

Evaluation for selection of intake method in case of Groundwater is made and summarized in the table below:

3C-a	3С-ь
Well	Well + Collecting
	pipes
A or B	В
A or B	A or B
A or B	В
A or B	С
А	A or B
D	D
A or B	A or B
Selected	Abandoned
	Well A or B A or B A or B A or B A D A or B

2-2-5 Stage 1 Selected Intake Methods

The selected intake methods at respective water source are shown in the tables below:

Table 2.23 Alt.1A: Selected Intake for	or Tonle Sap Lake Water
--	-------------------------

No.	Intake
1A-b	Intake tower
1A-c	Intake frame box
1A-d	Collecting pipe

Table 2.24 Alt. 1B: Selected Intake for Tonle Sap Lake Water by Canal

No.	Intake	
1B-a	Intake tower	
1B-b	Intake gate	

Table 2.25 Alt. 2B: Selected Intake for West Baray Water by the Existing Canal

No.	Intake
2B-a	Diversion weir +Intake gate

Table 2.26 Alt.3C: Selected Intake for Groundwater in the Lake Side

No.	Intake	
3C-a	Well	
3C-b	Well + collecting pipes	

2-3 Stage 1 Selected New Water Sources and Intake Methods

The conclusion of stage 1 selection of new water source in with combination with intake method is summarized in the table below:

Water Source			Inta	ke method	
No.	Name	Sub No.	Location	No.	Description
Alt.1	Tonle Sap Lake	Alt.1A	Water body within the	Alt.1A-b	Intake tower
			Lake	Alt.1A-c	Intake frame box
				Alt.1A-d	Collecting pipe
		Alt.1C	Canal connected to the	Alt.1C-a	Intake tower
			Lake (Newly	Alt.1C-b	Intake gate +
			constructed)		Culvert
Alt.2	West Baray	Alt.2B	Existing canal	Alt.2B-a	Diversion weir
	Reservoir				+Intake gate
Alt.3	Groundwater	Alt.3C	Groundwater in the	Alt.3C-a	Well
			lake side	Alt.3C-b	Well + collecting
					pipes

 Table 2.27 Selected Combination of Water Sources and Intake Methods, Stage 1

2-4 Study on Alternative Routes for Transmission of Tonle Sap Lake Water

2-4-1 Alternative Routes

Three alternative routes are selected for Raw Water Transmission Main or Newly Constructed Canal, which is the water way from the Tonle Sap Lake. The location map of these alternative routes is shown in the figure below.

Alternative Routes	Descriptions	
Route A	To be located on 2km east from the north-south axis line	
Route B	To be located on 6km west from the north-south axis line	
Route C	To be located on 11km west from the north-south axis line, which is extended from the center of Angkor Thom and nearly parallel to the Siem Reap River stream line.	

Note: The alternative routes are selected from some considerations including the following:

· To avoid the zoned areas by APSARA Authority.

• To avoid close to the outlet of artificial canal extended from the Phnom Kroam to the lake, where the water contamination is seen due to human activities.

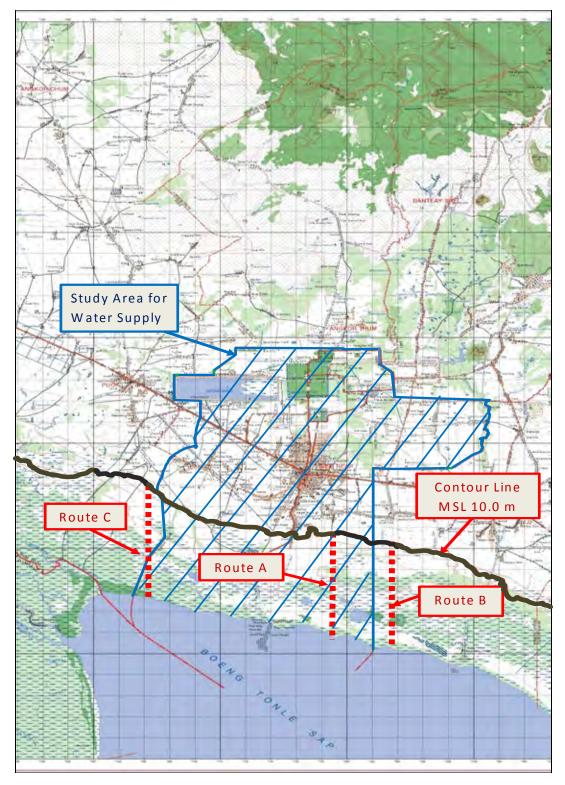


Figure 2.6 Alternative Routes for Raw Transmission Main from Tonle Sap Lake

The parameters for evaluation of alternative routes are shown in the table below:

	Parameters	Description	
P-1	Land acquisition	Need to evaluate the land acquisition cost and difficulties. It may be one of essential parameters for the selection of route.	
P-2	Resettlement	Need to avoid the resettlement or minimize the numbers.	
P-3	Water quality	Need to select carefully the location of intake (canal inlet) taking into consideration the water quality conditions and level of pollution due to human activities.	
P-4	Construction Cost and Difficulties	Need to consider the impacts to the construction cost and difficulties. It is also desirable that the construction period is not prolonged due the selection of route.	
P-5	Operation & Maintenance Cost and Difficulties	Need to consider the operation & maintenance cost and difficulties of the long term period and the stable supply of electric power or operation is possible without any trouble.	
P-6	Archeological sites	Need to consider the probable impacts on the archeological sites (historic remains)	
P-7	Fishery, Tourism, Navigation	Need to carefully study the probable impact and possible mitigation measures to fishery, tourism, and navigation.	
P-8	Ecology	Need to consider/evaluate the impact on the ecology (fauna and flora), especially within the natural protection/conservation areas in and along the proposed route.	
P-9	Related organization	Need to discuss probable issues/matters with the related organizations/ groups in regard to conservation/protection and uses of objective water sources and the surrounding areas. The consideration and discussion is necessary on the basis of scientific data/analyses preventing from troublesome interfere without the evidence. The countermeasures, if required, are also to be the subject of discussion. Agreement or consensus is to be obtained from the authorities concerned, if considered necessary.	
P-10	Impact to life and land uses of inhabitants	Need to consider/evaluate the impact on the current activities and land utilization of inhabitants. It is required to have no adverse impacts on surrounding communities such as their impacts on community's life and livelihood. Consideration may also be made for sufficient mitigation measures taken for such impacts.	
P-11	Future expansion	Need to have space to enable future expansion of facilities.	

Table 2.29 Parameters for Selection of Alternative Routes

2-4-2 Applied Criteria for Selection of Alternative Routes

The criteria of parameters for evaluation of alternative routes are prepared as shown in Table 2.30.

Category of	Parameters (P1 to P11)		
Evaluation	By the requirement	By advantage	
А	Sufficiently satisfy the requirement	Best (First)	
В	Acceptably satisfy the requirement	Second	
С	Insufficient to satisfy the requirement	Third	
Х	Not sure	N.A.	

 Table 2.30 Criteria for Selection of Alternative Routes

2-4-3 Selection of Alternative Routes

The evaluation of alternative route is made as summarized in Table 2.31.

Parameter		Route A	Route B	Route C
No.	Description of parameters	East (near)	East(far)	West
P-1	Land acquisition	В	А	С
P-2	Resettlement	Ā	A	A
P-3	Water quality	В	В	В
P-4	Construction Cost and Difficulties	NA*	NA	NA
P-5	Operation & Maintenance Cost and Difficulties	NA	NA	NA
P-6	Archeological sites	А	А	А
P-7	Fishery, Tourism, Navigation	А	А	А
P-8	Ecology	В	В	В
P-9	Related organization	B or X	B or X	B or X
P-10	Impact to life and land uses of inhabitants	А	А	А
P-11	Future expansion	А	А	А
Overall judgment		Selected**	Selected**	Selected**

 Table 2.31 Evaluation by the Requirement of Respective Parameter

*: NA means "Not applicable for evaluation".

**: Selected means that no remarkable disadvantages are found to abandon the alternative at this stage of study.

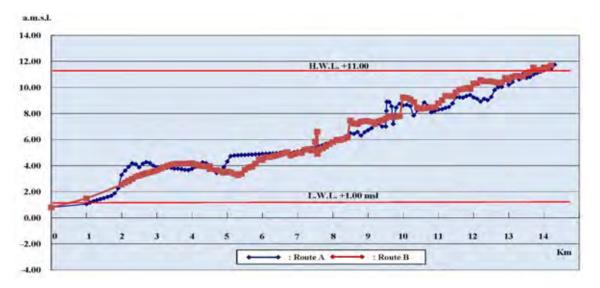
Table 1.32	Evaluation of 3 Ro	utes
	Dente A	Danita D

Parameter		Route A	Route B	Route C
No.	Description of parameters	East (near)	East(far)	West
P-1	Land acquisition	В	Α	С
P-2	Resettlement	NA	NA	NA
P-3	Water quality	NA	NA	NA
P-4	Construction Cost and Difficulties	A or B	A or B	С
P-5	Operation & Maintenance Cost and Difficulties	A or B	A or B	С
P-6	Archeological sites	NA	NA	NA
P-7	Fishery, Tourism, Navigation	NA	NA	NA
P-8	Ecology	NA	NA	NA
P-9	Related organization	NA	NA	NA
P-10	Impact to life and land uses of inhabitants	NA	NA	NA
P-11	Future expansion	NA	NA	NA
Ove	Overall Judgment		А	С

2-4-4 Stage 1 Selected Route

It is difficult to make sure the difference of advantage between Route A and Route B at this stage of study. Accordingly, both routes are selected, but the present priority is Route B. It is also necessary to say that the final route may be selected between these 2 routes or a route within some km east from Route B. In these areas, the difference of conditions such as the present land use, topography, vegetation, etc. are not remarkable, although the land price may be lower according to the distance from the town area.

Alternative Routes	Descriptions	
Route A	To be located on 2km east from the north-south axis line, which is extended	
	from the center of Angkor Thom and nearly parallel to the Siem Reap River	
	stream line.	
Route B	To be located on 6km west from the north-south axis line	


Table 2.32 Selected Routes

Note: (1) These two routes are basically the same as the survey routes, which are already completed in July 2009.(2) It is also noted that the route line may be modified partially according to the actual restriction or conditions at the site, although the straight line is assumed for the alternatives.

2-5 Topographic Survey for the Alternative Routes

Topographic survey field work has commenced on the 25th of June 2009 and finished on the 22nd of July 2009 and the data processing finished on the 30th of July 2009. This survey consist two parts, as part 1 for the route survey and second part of survey for the facility site. The part 1 was completed during the phase 1 stage, but, the part 2 will be implementing for phase II stages of this study.

Route surveys for the proposed raw water conveyance pipelines are 2 routes for the raw water conveyance pipelines from the proposed raw water intake site to the tentatively proposed water treatment plant (WTP) site (Approx. 15 km for route A and B). This route survey established 6 base points for route A and 4 points for route B. Their vertical control is transferred from ST12 (+19.334 a.m.s.l. at Ha Tien). Their horizontal control is done by using GPS based on WGS84.

Figure 2.7 Proposed Typical Profile for Intake

Results

The ground level at the proposed raw water intake site is between 0.0 m and 1.0 m msl. The tentative WTP site is above 10.0 m msl.

-Access road to the facilities

Access roads to the proposed facilities are necessary to secure easy operation and maintenance. The tentative WTP site and intake site are located in the isolated area and below the high water level during the rainy season. The topographic survey is showing that there is no proper road to access. The access road shall be included the construction work along the pipe line route.

-Embankment of WTP site

The embankment of WTP site is required. The tentative WTP sites are located on the ground level in between 10.0 and 11.0 m msl. The elevation of the proposed WTP site shall be designed above the designe high water level (11.0 m msl.). The construction work for WTP shall be included the embankment with the allowance height.

Chapter 3. Stage 2 Study on the Other Parameters for Alternative Water Sources

3-1 Water Volume Availability

3-1-1 Evaluation of Water Volume Availability

The water volume availability of alternative water sources selected at Stage 1 are studied at Stage 2 more in detail and summarized hereunder.

Water Source	Overall Evaluation	Descriptions of Evaluation
Tonle Sap Lake	Sufficient	The lake is huge with the surface area of approximately $2,500 \text{ km}^2$ at the lowest water level period and the water volume is sufficient for the water supply demand in the
		long term.
West Baray	Not sufficient for the long term requirements, possibly for short term requirements with considerable rehabilitation works for the existing faculties/works to diver the flow from the Siem Reap River	The reservoir capacity at present is approximately 48 million m ³ . The capacity is very attractive to use the water effectively. The main water source of the baray is the Siem Reap River, from which the flow is diverted into the baray during the rainy season at present. There is one outlet from the baray and the irrigation canal is connected. There are several points of issues to know the accurate conditions of present water balance and uses. There are no specific rules of gate operation and no overall water management plan has been established. Then, available basic data are limited and the accuracy of existing data is not sure. Therefore, the Team analyzed an possible diversion from the Siem Reap river to the proposed water supply scheme
Constant	A	based on the assumption detailed hereunder.
Groundwater	Assumed to be available with careful monitoring system for the impacts to the Angkor heritages	The groundwater is currently taken almost everywhere in the Siem Reap province. The area has high water table, in general the water table exists $1.0 - 4.0$ m below the ground even in the dry season. The water table rises by approximately 2 m during the rainy season. The details will be analyzed and reported in Phase 3 under the Study.

 Table 3.1 Water Volume Availability of Alternative Water Sources

3-1-2 Preliminary Analysis on Availability of West Baray Water

(1) Background

The JICA Study on Water Supply System for Siem Reap Region (Report prepared in June 2000) is the comprehensive detailed master plan study which started in December 1996. The detailed hydrological survey has been carried out as a part of the Study. The new gauging stations were established by the team for the measurement of water level and discharge in the Siem Reap River and in the West Baray, although the stations were established strangely only at the downstream side of the diversion point. The measurement results were used for the hydrological analyses of the river flow as well as the diversion flow to the West Baray.

However the period of the measurement and the analyses was short. For example, the daily inflow calculation for the West Baray was carried out only for the period from August to December 1998. A preliminary hydrological survey and analyses done by the Team is useful for

the comprehensive water management study which should be carried out in the near future.

It is beneficial for the water supply sector to increase the reservoir capacity in the following two ways. One is to dredge or excavate the sedimentation in the reservoir. Another is to change the present HWL of the reservoir. In any ways, it is tedious procedures to secure the permission from the related organizations concerned in terms of minimizing the environmental impacts.

(2) Preliminary Analysis of Available Water Volume

Availability of water volume from the West Baray was estimated using the discharge records at UNTAC Bridge in the Siem Reap River. The records were obtained from the Hydrological section of MORAM. The gauging station at UNTAC Bridge dose not exists at present, however, the records are available from October 1969 until the end of 2004, although there are some months without the records. The UNTAC Bridge is located downstream of the diversion point to the West Baray. That is, the discharge of the diversion to the West Baray is not included. The diversion to the West baray is made generally from mid or late July until the reservoir water level reach to HWL or sufficiently higher level for the use of irrigation. The gates of diversion channel are generally closed and the French weir gate is opened during the period from October to December. The records at the UNTAC Bridge at least from January to June are assumed to be the original flow of the Siem Reap River.

It is difficult to confirm the reliability and accuracy of the records. However, the Team assumed that the records are reliable to use. The verification of the records shall be necessary in the water management study in the future.

Based on the daily flow records, the monthly maximum, minimum, and mean discharge figures are summarized as shown in the following tables. Frequency analysis of droughty water was then carried out by using the records from January to July in two cases.

The results are shown in Table 3.2 and Table 3.3. From the results of frequency analyses, it is possible to say as follows:

- Even during the dry season, the Siem Reap River has sufficient flow to divert a part of flow to the West Baray, *although the specific volume of availability has to be studied carefully in consideration of river maintenance flow*. For example, the river flow of 20 years return period is estimated to be 2.27 m3/s, which is equivalent to 196,128 m3/day and if 50,000 m3/d is required for the water supply. The balance of 146,128 m3/day (1.69 m3/s) can be released to the downstream for the river maintenance flow.
- During the rainy season (August to December), it is sufficient to divert the flow to the West Baray for the water supply in addition to the irrigation water users.

9	
Return period (year)	Discharge (m ³ /s)
50	1.58
20	2.27
10	3.04
5	4.16
2	6.77

Table 3.2 Probability of Draughty Flow by Monthly Mean Discharge (at UNTAC
Bridge: Jan. to July)

Table 3.3 Probability of Draughty Flow by Monthly Minimum Discharge (at UNTAC
Bridge: Jan. to July)

Dinage	(oun to oury)
Return period (year)	Discharge (m ³ /s)
50	0.46
20	0.97
10	1.42
5	1.94
2	2.85

On the other hand, the volume availability is confirmed from the different way of calculation. The possible river maintenance flow in the Siem Reap River during the low flow season (January to June) is calculated on monthly base by assuming that the diversion discharge to the West Baray is 0.5 m^3 /s (43,200 m³/day) and 1.0 m^3 /s (86,400 m³/day) respectively. It is possible to divert the flow for the water supply more than 1.0 m^3 /s (86,400 m³/day) on the condition that a certain volume of maintenance flow is reserved. The possible maintenance flow less than 1.0 m^3 /s is happened only 2 years during over 30 years.

Therefore, it is possible to take a certain amount of water for the water supply through the West Baray, if the proper water management with gate control and rehabilitation of some existing facilities is carried out and ignore the impact to the river environment.

It is then provisionally estimated from overall viewpoints of the study that approximately 50,000 m3/day is possible to introduce to the water sector from the existing irrigation canal. But, it is noted that the additional survey/study to confirm the data accuracy and carry out more comprehensive analyses, including the suitable gates control study, is required in case that the West Baray is selected as the water source.

Table 3.4 Monthly Discharge Records of the Siem Reap River at UNTAC Bridge

Year	Item	Dry seasor	1				Rainy sea	ison					Dry	Annual
Icai	nem	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dry Dec.	Mean
1969	Max.	Juii.	100.	ivitui.	ripi.	inay	5011.	5 01.	riug.	-	7.540	9.020	8.140	-
	Mean									-	6.186	7.562	6.542	-
	Min.									-	5.060	6.570	5.420	-
1970	Max.	28.850	12.000	64.950	6.470	5.510	4.820	4.540	4.540	4.540	4.540	4.540	4.540	64.950
	Mean	10.189	8.904	16.519	5.946	5.185	4.568	4.540	4.540	4.540	4.540	4.540	4.540	6.728
	Min.	6.510	7.440	5.800	5.460	4.220	4.540	4.540	4.540	4.540	4.540	4.540	4.540	4.220
1971	Max.	8.270	26.920	27.440	205.020	5.900	5.200	4.350	4.640	4.490	4.540	4.540	10.800	205.020
	Mean	7.567	9.481	9.195	39.962	5.561	4.602	4.250	4.445	4.479	4.540	4.540	4.948	8.965
	Min.	7.000	6.400	5.500	5.500	5.200	4.050	3.930	4.280	4.380	4.540	4.540	4.540	3.930
1972	Max.	7.740	34.060	7.000	7.000	7.260	5.090	4.060	4.640	4.480	5.200	4.950	7.550	34.060
	Mean	7.363	10.334	7.000	7.000	6.428	4.632	4.039	4.424	4.480	4.945	4.950	5.453	5.963
	Min.	6.930	6.970	7.000	7.000	5.300	4.170	3.930	4.130	4.480	4.600	4.950	4.950	3.930
1974	Max.	166.890	182.500	145.700	13.800	5.990	4.840	4.260	4.490	4.830	4.830	6.200	6.850	182.500
	Mean	19.912	29.432	23.313	8.041	5.192	4.533	4.183	4.352	4.664	4.829	5.185	6.407	10.330
	Min.	7.300	10.100	9.350	6.080	4.860	4.140	4.110	4.260	4.500	4.800	4.800	5.590	4.110
1975	Max.	6.590	18.200	19.850	5.680	4.240	5.640	5.440	4.300	4.710	5.750	6.560	7.000	19.850
	Mean	5.750	8.995	9.008	4.369	4.202	4.451	4.840	3.998	4.348	4.809	5.327	6.245	5.463
	Min.	4.880	5.080	6.340	4.000	3.960	3.670	4.240	3.760	3.940	4.300	3.300	5.300	3. 300
1976	Max.	6.700	13.800	24.900	7.980	4.930	4.520	4.040	4.140	4.730	7.100	10.700	8.000	24.900
1770	Mean	6.386	8.971	11.355	6.948	4.775	4.222	3.884	3.987	4.212	5.559	6.458	7.671	6.069
	Min.	6.090	6.590	6.700	5.980	4.540	3.820	3.730	3.870	4.010	4.600	5.400	7.250	3.730
1977						4.600								23.700
17/1	Max.	23.700 8.571	18.200	14.100 7.781	8.300	4.000	4.390 4.226	4.530 4.292	4.190 4.041	4.250	7.070	6.490	11.100	5. 644
	Mean		8.671		5.243					3.942		5.688	7.614	3. 760
1978	Min.	6.950	6.500	5.500	4.000	3.800	4.040	4.090	3.850	3.760	4.460	4.750	4.750	
1970	Max.	22.300	11.900	93.600	10.200	6.600	5.640	4.450	3.610	4.150	5.190	5.880	20.950	93.600
	Mean	9.654	9.621	15.113	5.747	5.987	4.502	4.231	3.610	3.909	4.263	5.089	6.695	6. 521
1979	Min.	7.020	8.200	6.600	2.600	5.400	4.140	3.800	3.610	3.700	3.760	4.600	5.550	2.600
1979	Max.	6.200	6.200	9.000	4.260	3.930	3.970	4.430	3.600	4.790	9.110	51.900	59.850	51.900
	Mean	5.902	5.553	7.024	3.944	3.726	3.505	3.659	3.482	3.768	4.456	7.047	14.936	4.733
1000	Min.	5.700	4.950	5.950	3.270	3.480	2.240	3.380	3.260	3.400	3.650	4.100	5.800	2.240
1980	Max.	20.200	106.000	198.000	42.700	6.650	5.110	5.030	4.700	4.350	11.840	6.400	15.230	198.000
	Mean	10.459	21.156	39.284	10.306	5.635	4.697	4.717	4.389	4.242	9.148	5.460	7.953	10.863
	Min.	6.580	8.450	10.600	6.690	4.990	4.370	4.100	4.200	4.010	4.180	5.000	6.000	4.010
1981	Max.	46.040	50.400	28.100	6.900	6.000	8.250	8.250	9.600	8.250	9.150	10.500	8.700	50.400
	Mean	15.413	18.776	12.341	4.255	3.972	6.709	6.878	6.910	7.239	7.301	9.285	8.685	9.007
	Min.	6.900	10.500	5.640	2.720	3.440	3.810	5.270	5.270	5.640	6.000	6.900	8.250	2.720
1982	Max.	10.500	11.940	9.150	7.350	9.550	2.350	2.350	2.350	2.350	2.350	7.310	3.810	11.940
	Mean	9.658	9.821	7.299	4.576	2.871	2.350	2.350	2.350	2.350	2.350	3.171	3.103	4.468
	Min.	9.150	7.800	5.270	2.720	2.350	2.350	2.350	2.350	2.350	2.350	2.350	2.350	2.350
1983	Max.	6.000	84.030	203.860	14.340	8.700	9.150	10.980	8.700	10.050	8.250	10.980	10.500	203.860
	Mean	4.352	15.931	32.346	6.285	6.905	8.580	8.977	7.785	7.545	7.539	9.407	10.224	10.514
	Min.	3.440	3.810	9.600	3.080	4.910	7.350	7.350	7.350	6.900	6.900	6.900	10.050	3.080
1984	Max.	12.000	11.460	15.300	30.400	7.350	8.700	7.350	7.350	9.600	6.450	8.700	10.500	30.400
	Mean	10.548	9.074	9.268	6.921	6.639	6.531	6.523	6.697	5.534	4.748	7.451	8.366	7.267
	Min.	10.500	7.800	6.900	3.440	6.000	5.640	6.000	6.000	3.810	3.810	5.270	8.250	3.440
1985	Max.	8.250	54.250	8.700	3.810	6.000	6.900	4.540	6.000	4.910	8.600	7.800	8.200	54.250
	Mean	8.163	14.969	5.054	2.520	4.895	4.955	4.505	4.344	4.080	6.806	7.120	7.890	6.128
	Min.	7.800	4.540	3.440	2.350	2.350	4.180	4.180	3.810	3.440	5.400	6.600	7.400	2.350
1986	Max.	8.200	14.500	10.100	24.300	4.540	4.540	3.440	3.080	3.810	4.180	61.200	20.960	61.200
	Mean	7.826	6.911	6.392	4.980	3.539	3.082	2.964	2.883	3.284	3.822	11.716	8.663	5.218
	Min.	7.400	4.600	4.180	3.080	3.080	2.720	2.720	2.720	3.080	3.440	3.440	7.350	2.720
1987	Max.	41.800	18.000	56.900	14.800	6.200	5.080	5.830	6.590	6.200	6.590	7.180	10.100	56.900
	Mean	15.496	10.004	22.025	8.074	4.859	4.928	5.002	5.951	5.891	6.225	6.735	8.560	8.654
	Min.	8. 540	8. 540	8.540	5. 450	3.950	4. 330	4.610	5. 450	5. 450	6.200	6.400	6.980	3.950
1988	Max.	15.100	129.000	52.000	10.100	2.070	1. 790	1. 720	1.650	1. 720	1.860	5.830	9.860	129.000
1300	Mean	7. 277	125.000	19.044	4. 945	1.833	1.755	1.655	1.650	1. 641	1.684	3. 471	4.842	5. 559
		5. 830		7.760		1. 720			1.650					
1080	Min. Max		6.200 5.450	5. 080	2.070		1.720	1.650		1.580	1.650	1.720	2.070	1.580
1989	Max.	5.830	5.450		4.330	5.450	5.450	6.200	6.200 5.464	5.450	6.840	7.380	7.510	7.380
	Mean	5.368	4.636	3.287	3.465	3.155	4.315	4.704	5.464	5.265	6.128	6.840 5.570	7.091	4.784
1000	Min.	4.700	3.200	2.070	2.830	2.830	2.830	3.950	5.080	5.080	5.740	5.570	6.840	2.070
1990	Max.	9.200	6.430	8.360	5.930	4.630	3.780	3.950	3.350	3.350	4.140	4.470	5.520	9.200
	Mean	6.045	5.768	5.803	4.383	3.697	3.300	3.203	3.239	3.212	3.593	3.684	4.067	4.175
	Min.	5.370	5.560	4.630	2.800	2.460	3.060	2.940	2.940	3.140	3.150	3.150	3.640	2.460
1991	Max.	9.800	6.240	8.360	5.750	5.590	4.060	3.100	3.420	3.420	3.700	6.100	14.500	9.800
	Mean	5.038	5.056	3.757	3.413	3.110	2.494	2.798	3.161	2.954	2.770	4.560	5.913	3. 555
	Min.	4.470	3.810	2.130	1.650	2.340	2.080	2.340	2.850	2.850	2.530	3.100	4.900	1.650
1000	Max.	39.000	81.000	45.900	10.600	4.000	4.540	4.400	3.650	3.470	3.100	6.400	15.300	81.000
1992	Max.	001000		10.000		11 0 0 0	1.010	1. 100	01 00 0	01 11 0	01100		101000	

						or months		-9-11-		rce: MOWI		3/2)		
	Min.	1.030	0.880	0.568	0.676	0.938	0.938	0.798	0.747	0.825	0.909	1.297	1.030	0.568
total	Mean	7.918	10.728	11.200	6.109	4.129	4.318	4.704	5.492	5.723	6.099	6.262	6.657	6.669
Ground	Max.	166.890	182.500	203.860	205.020	11.543	16.101	41.979	58.906	148.992	82.532	61.200	59.850	205.020
	Min.	4.355	4.111	3.821	3.442	3.547	4.111	4.111	-	-	-	5.447	5.447	3.442
	Mean	4.384	4.208	3.925	3.814	3.852	5.131	5.292	-	-	-	17.410	8.459	6.002
2004	Max.	4.482	4.355	4.052	4.355	4.111	7.097	6.230	-	-	-	23.986	12.933	23.986
	Min.	3.821	3.547	6.230	4.111	3.045	2.206	2.206	16.101	14.450	-	4.111	4.111	2.206
	Mean	6.466	5.993	13.653	5.473	4.372	4.294	7.067	27.161	24.684	-	4.660	5.003	10.382
2002	Max.	16.101	9.111	21.947	9.111	5.673	6.230	17.896	38.478	41.979	-	6.230	6.230	41.979
	Min.	3.821	4.743	4.743	-	-	-	-	-	2.206	8.056	4.743	3. 547	2.206
	Mean	6.627	6.999	9.173	-	-	-	-	-	7.442	17.180	12.504	6.675	9.988
2001	Max.	12.933	9.111	16.101	-	-	-	-	-	16.101	38.478	26.675	16.101	38.478
	Min.	1.297	3. 442	-	-	1.070	2.206	6.230	1. 559	1.559	2.517	1.297	1.070	1.070
	Mean	3.996	9.414	-	-	3.090	8.098	16.061	13.206	3.920	7.718	2.016	4.828	7.502
2000	Max.	9.111	16.101	-	-	11.543	16.101	41.979	40.199	8.362	38.478	3.547	9.111	41.979
	Min.	1.041	0.880	0.798	0.676	0.938	1.641	2.496	1.687	1.468	-	_	1.030	0.676
	Mean	1. 547	4.515	1. 289	1. 243	2. 552	3. 315	4.003	2, 939	2. 196	_	_	1.698	2. 288
1999	Max.	1. 930	4. 319	1.687	2.116	5. 512	6. 103	6. 103	6. 103	3. 571	-	-	2.496	6.103
	Min.	1. 309	1. 42.5	0.568	0.880	0.968	0.938	0.798	0.747	0.825	0.909	1.468	_	0.568
.,,0	Mean	1.812	1. 429	1. 215	1. 231	1. 174	1. 217	1. 196	1.111	1. 786	2.090	2.092	-	1. 487
1998	Max.	2. 388	1.806	1. 982	1.510	1. 309	1.468	1.782	1.734	5.802	5.627	3.866	2.001	5.802
	Min.	2. 334	2. 727	2. 366	2. 405	2. 370	2.369	2.368	2. 581	29. 588	9.813	4.273	2. 531	2.366
1///	Mean	2.834	2.727	2.692	2.713	2.838	3. 544	4. 992	12.254	29.588	26.748	7.565	4.829	8.954
1997	MIN. Max.	3. 692	3. 340	4.130	3. 367	4.778	12.898	14.045	58.906	148.992	82.532	4.040	14.640	148.992
	Min.	4.000	4.400	4. 382	3.042	2. 993	3. 420	3. 150	3.090	3. 360	3.080	4.040	_	2.750
1774	Mean	4.046	4.406	4.582	3.642	2.993	3. 593	3.358	3.360	3. 506	3.260	4.040	_	3, 704
1994	Max.	4.640	4. 680	7.980	4.230	3.370	3.750	3. 530	3.650	3. 550	3.460	4.040	-	7.980
	Min.	7.900	8.300	5.800	2.800	2.800	2.800	3. 220	3. 130	3. 550	2.760	3. 490	3. 560	2.760
1993	Max. Mean	12. 229	13.900	8.694	3. 520	4.000	4.230	6.820 3.711	3. 347	3. 890	4.000	3. 980	4.020	28.200
1993	Min. Max.	7.600 28.200	31.800 13.900	12.100 11.500	3.400 5.800	3.100	3.310 4.230	2.820 6.820	2.880 3.530	3.090 3.890	2.800	3. 400 3. 980	5.800 4.020	2.800 28.200

Note: The records of some years or months are not available. $(Data \ source: MOWRAM.), m^3/s)$

Table 3.5 Monthly Mean Discharge of the Siem Reap River at UNTAC Bridge in case of 0.5
m ³ /s diversion, m ³ /s

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Total (m ³ /s)	Total (m ³)				
1970	9.689	8.404	16.019	5.446	4.685	4.068	8.052	125,916,393				
1971	7.067	8.981	8.695	39.462	5.061	4.102	12.228	191,223,649				
1972	6.863	9.953	6.500	6.500	5.928	4.132	6.646	104,505,807				
1974	19.412	28.932	22.813	7.541	4.692	4.033	14.570	227,859,091				
1975	5.250	8.495	8.508	3.869	3.702	3.951	5.629	88,031,883				
1976	5.886	8.420	10.855	6.448	4.275	3.722	6.601	103,795,397				
1977	8.071	8.171	7.281	4.743	3.663	3.726	5.943	92,931,917				
1978	9.154	9.121	14.613	5.247	5.487	4.002	7.937	124,127,134				
1979	5.402	5.053	6.524	3.444	3.226	3.005	4.442	69,467,026				
1980	9.959	20.476	38.784	9.806	5.135	4.197	14.726	231,564,719				
1981	14.913	18.276	11.841	3.755	3.472	6.209	9.744	152,384,651				
1982	9.158	9.321	6.799	4.076	2.371	1.850	5.596	87,510,985				
1983	3.852	15.431	31.846	5.785	6.405	8.080	11.900	186,094,117				
1984	10.048	8.620	8.768	6.421	6.139	6.031	7.671	120,626,265				
1985	7.663	14.469	4.554	2.020	4.395	4.455	6.259	97,885,632				
1986	7.326	6.411	5.892	4.480	3.039	2.582	4.955	77,486,098				
1987	14.996	9.504	21.525	7.574	4.359	4.428	10.398	162,604,416				
1988	6.777	16.011	18.544	4.445	1.333	1.255	8.061	126,753,213				
1989	4.868	4.136	2.787	2.965	2.655	3.815	3.537	55,319,373				
1990	5.545	5.268	5.303	3.883	3.197	2.800	4.333	67,755,182				
1991	4.538	4.556	3.257	2.913	2.610	1.994	3.311	51,782,852				
1992	12.723	43.157	18.061	5.730	2.871	3.263	14.301	224,877,696				
1993	11.729	10.489	8.194	3.020	2.794	3.152	6.563	102,633,294				
1994	3.506	3.906	4.082	3.142	2.493	3.093	3.370	52,705,013				
1997	2.334	2.227	2.192	2.213	2.338	3.044	2.391	37,394,918				
1998	1.312	0.929	0.715	0.731	0.674	0.717	0.846	13,235,119				
1999	1.047	1.011	0.789	0.743	2.052	2.815	1.410	22,044,166				
2000	3.496	9.124	3.313	2.516	2.590	7.598	4.773	75,049,987				
2002	5.966	5.493	13.153	4.973	3.872	3.794	6.208	97,089,392				
2004	3.884	3.711	3.425	3.314	3.352	4.631	3.719	58,485,501				
Mean	7.414	10.268	10.521	5.573	3.629	3.818	6.871	107,446,517				

	m /s diversion, m /s							
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Total (m^3/s)	Total (m ³)
1970	9.189	7.904	15.519	4.946	4.185	3.568	7.552	118,097,193
1971	6.567	8.481	8.195	38.962	4.561	3.602	11.728	183, 404, 449
1972	6.363	9.453	6.000	6.000	5.428	3.632	6.146	96, 643, 407
1974	18.912	28.432	22.313	7.041	4.192	3.533	14.070	220, 039, 891
1975	4.750	7.995	8.008	3.369	3.202	3.451	5.129	80, 212, 683
1976	5.386	7.920	10.355	5.948	3.775	3.222	6.101	95, 932, 997
1977	7.571	7.671	6.781	4.243	3.163	3.226	5.443	85, 112, 717
1978	8.654	8.621	14.113	4.747	4.987	3.502	7.437	116, 307, 934
1979	4.902	4.553	6.024	2.944	2.726	2.505	3.942	61, 647, 826
1980	9.459	19.976	38.284	9.306	4.635	3.697	14.226	223, 702, 319
1981	14.413	17.776	11.341	3.255	2.972	5.709	9.244	144, 565, 451
1982	8.658	8.821	6.299	3.576	1.871	1.350	5.096	79, 691, 785
1983	3.352	14.931	31.346	5.285	5.905	7.580	11.400	178, 274, 917
1984	9.548	8.120	8.268	5.921	5.639	5.531	7.171	112, 763, 865
1985	7.163	13.969	4.054	1.520	3.895	3.955	5.759	90, 066, 432
1986	6.826	5.911	5.392	3.980	2.539	2.082	4.455	69, 666, 898
1987	14.496	9.004	21.025	7.074	3.859	3.928	9.898	154, 785, 216
1988	6.277	15.511	18.044	3.945	0.833	0.755	7.561	118, 890, 813
1989	4.368	3.636	2.287	2.465	2.155	3.315	3.037	47, 500, 173
1990	5.045	4.768	4.803	3. 383	2.697	2.300	3.833	59, 935, 982
1991	4.038	4.056	2.757	2.413	2.110	1.494	2.811	43, 963, 652
1992	12.223	42.657	17.561	5.230	2.371	2.763	13.801	217, 015, 296
1993	11.229	9.989	7.694	2.520	2.294	2.652	6.063	94, 814, 094
1994	3.006	3.406	3.582	2.642	1.993	2.593	2.870	44, 885, 813
1997	1.834	1.727	1.692	1.713	1.838	2.544	1.891	29, 575, 718
1998	0.812	0.429	0.268	0.241	0.175	0.221	0.358	5, 593, 647
1999	0.547	0.517	0.314	0.317	1.554	2.315	0.927	14, 501, 876
2000	2.996	8.624	2.813	2.016	2.090	7.098	4.273	67, 187, 587
2002	5.466	4.993	12.653	4.473	3.372	3.294	5.708	89, 270, 192
2004	3.384	3.211	2.925	2.814	2.852	4.131	3.219	50, 623, 101
Mean	6.914	9.769	10.024	5.076	3.129	3.318	6.372	99, 642, 472

Table 3.6 Monthly Mean Discharge of the Siem Reap River at UNTAC Bridge in case of 1.0 m³/s diversion, m³/s

3-2 Water Quality

3-2-1 Tonle Sap Lake Water Quality

The Team conducted water quality survey on 29th June in early rainy season and 6th October in late rainy season 2009. The sampling points were identified using a simplified GPS to be close to the proposed intake. The Tonle Sap Lake water quality in early rainy season was still low contamination of physical, chemical and heavy maters in general. However, there are some parameters exceeding the drinking water quality standards such as iron, turbidity, total coliform, and E-coli. The water qualities in later rainy season was within the drinking water quality standards, except for total coliform.

The other applicable data was done by JICA expert (JICA Technical Assistance Cooperation Phase II) for three months from March through June during dry season in 2009. These results were executed in the different sampling point and method from the Team. The result shows that some parameters are higher values than that of survey result done by the Team in iron, manganese, turbidity and color.

The raw water quality shows that the conventional water treatment processes including,

coagulation, flocculation, sedimentation, filtration, and disinfection processes are applicable.

1)pH

The pH level of raw water is at 7.7 and 7.8 in the rainy season. Other applicable data reported the level at 6.6 as lowest recorded in dry season.

2) Turbidity

Turbidity in early rainy season recorded at 200 NTU is high compared to the drinking water quality standards. The JICA expert data in dry season shows extremely high at 1,860 NTU recorded on 22nd April 2009.

3)Alkalinity

The alkalinity shows at 190 mg/L in early rainy season. The JICA expert data shows level of 30's mg/l in average in dry season.

4)Iron

Iron value recorded at 3.3 mg/l exceeds the drinking water quality standard during rainy season. The maximum iron level was recorded at 13.2 mg/L during dry season.

5)Manganese

The manganese shows lower level than drinking water quality standards during rainy season. The JICA expert data during dry season shows at level 4.2 mg/L as maximum.

6) Other parameters

Total coliform and E-coliform are higher than drinking water quality standards in dry season. However, only total coliform is slightly beyond the standards while the E-coliform is zero in the rainy season.

3-2-2 West Baray Lake Water Quality

The applicable water quality survey was reported twice by JICA study. The first report was the

JICA feasibility study in 2000. Second report is the JICA Study on Integrated Master Plan for Sustainable Development of Siem Reap in 2006. The results show that the level of total coliform, turbidity and pH exceed the water quality standards.

This raw water quality is required to be treated by the conventional water treatment processes including, coagulation, flocculation, sedimentation, filtration, and disinfection processes.

- 1) The level of pH is in between pH 6.9 and 10.
- 2) The level of turbidity is 9 NTU as maximum. (KTC data shows 24 FTU in November 2007.)
- 3) Total coliform is 300 MPN as maximum. The general bacteria is recorded 8,000 MPN/100 in May 2000. These are in the natural range of surface water.

3-2-3 Groundwater Quality

The available data shows that those parameters as pH, Iron, manganese and total coliform are exceeding the Cambodian drinking water standards.

Applicable water treatment processes will be the same as the existing WTP of SRWSA, including pre-chlorination, pH control, oxidation, filtration and disinfection. The applied treatment processes are common to the conventional water treatment processes as for Tonle Sap and West baray waters.

1) The level of pH is in between pH 4.1 and 6.1.

- 2) The maximum iron concentration is 1.94 mg/L.
- 3) The maximum manganese concentration is 1.9 mg/L.
- 4) Total Coliform is positive; the level is 94 MPN/100ml as maximum.

The results of general evaluation of water quality for the alternative water sources are summarized in the following table.

Water Source	Summary of Evaluation
Tonle Sap lake	The water quality is acceptable as the water source in applying conventional water treatment processes to remove those items as iron,
	manganese, turbidity, color, etc.
West Baray	The water quality is more or less same as that of Tonle Sap Lake. The
(canal)	conventional water treatment processes are needed.
Groundwater (lake side)	The groundwater is contaminated by iron and manganese. The water treatment facilities, same as the existing WTP, is required for removing iron, manganese, pH, etc.

3-3 Protected Areas/Zones (Legal Restriction)

There are various agencies/organizations related to the protection of heritage sites, natural environment, or economic activities. Each agency is in charge of management and control of the respective protection site or zone. To implement the proposed project, the implementation agency needs to consult these agencies to get their permissions. The general information on the protected area and the responsible agencies are summarized in Table 3.8.

Agency in	Name of	Description/Purpose of the	Required permission or
charge	Protection area	Protection	Approval
APSARA			**
APSAKA	Protected Area	Area designated to conserve	Any development project in
		Angkor Archaeological Site in	the protected area is required
		accordance with proposal of	prior consultation with
		UNESCO.	APSARA.
		The area is categorized into 5 kinds	
		of zones.	
UNESCO	World Heritage	Area inscribed in the World	The whole area of 401km ²
	Site	Heritage List of UNESCO	with 90 temples is included in
			protected area of APSARA
	Tonle Sap	Biosphere Reserve consists of three	The same area of Multiple Use
	Biosphere	kind area, Core Area, Buffer Zone	Area designated by MOE
	Reserve Area	and Transition Zone.	
		The Core Area is defined likewise	
		national park or wildlife sanctuary	
		as a long term protected area for	
		conservation of natural resources	
		and ecosystem.	
		Buffer Zone is a buffering area to	
		protect Core Area.	
MOE	Landscape	Area designated to conserve the	Application shall be submitted
	Protected Area	landscape of Angkor	to MOE to get permission
		Archaeological Site	before construction of
			facilities in the area.
	Multiple Use	Area to be used basically for	Application shall be submitted
	Area	multidiscipline, and at the same	to MOE to get permission
	(Same area as	time environmental conservation is	before construction of
	Buffer Zone of		facilities in the area.
	Duffel Zoffe of	given importance to it.	facilities in the area.

Table 3.8 Protected/Controlled Areas Related to Selection of Water Source

	Tonle Sap Biosphere Reserve designated by UNESCO) Boeng Peareamg Conservation Area	Conservation and utilization of the area should be harmonized to improve the living level of the poor around Tonle Sap Lake. Protected area of local community level. MOE is considering upgrading it to national level.	Water supply expansion project coincide with the target of the Multiple Use Area. A lot of migratory birds have built nests in the forest of tall trees around the lake. A new pipeline or a new canal for water supply should not
MOAFF	Strictly Protected Inundated Forest Area	Strictly Protected Inundated Forest Area has been set for sustainability of fishery resources and for important aquatic habitats to feed, spawn and breed since 1962, preventing agricultural activity from invading.	for water supply should not pass the area. Application shall be submitted to MOAFF to get permission before construction of facility in the area. Since a few years ago the negotiation for widening the existing canal for a new port took almost one year, construction of a new canal require more cautious approach.
	Area for Community Fisheries	Almost inundated fishery domain allocated by MOAFF for sustainable management, conservation, development and use of fisheries resources, and for poverty reduction of local community. Community Fisheries are managed according to Agreement and Management Plan for Community Fishing Area.	Content of the project should be informed to members of the Community Fisheries in advance to get their agreement. Application shall be submitted to MOFF to get permission through Fisheries Administration.
	Fishing Lot	Fishing Lots are allocated through an auction system for exclusive exploitation over a two-year period. The artisanal and family fishermen are not permitted to enter the Lot and fish outside it during an open season of fishing from October to May.	Any facilities for water supply system cannot be constructed in Fishing Lots since they are managed by private companies during dry season.
	Fish Sanctuary Area	Conservation area for fish protected by Law.	Any facilities for water supply system cannot be constructed in Fish Sanctuary Area because it is a grand scale fish farm and fishing prohibited.
	Community Forest	Forest area designated based on the same policy of Community Fisheries	Community Forests are scattered in the area north to Siem Reap City, not in the study area.

The zoning by APSARA is summarized in the table below:

Table 3.9	Zoning	by	APSARA
-----------	--------	----	---------------

Name	Category/Zone	Regulation/Remarks
Zone1	Monumental Sites	The areas which contain the most significant archaeological site in the country and therefore deserve the highest level of protection
Zone 2	Protected Archaeological Reserves	The areas rich in archaeological remains which need to be protected from damaging land use practices and inappropriate development

Zone 3	Protected Cultural Landscapes	The areas with distinctive landscape characteristics which should be protected on a account of their traditional features, land use practices, varied habitats, historic building, or man-made features from the past or of recent origin that contribute to the cultural value or reflect traditional lifestyles and patterns of land use
Zone 4	Sites of Archaeological, Anthropological or Historic Interest	Includes all other important archaeological sites, but of less significance than Monumental Sites, that require protection for research, education or tourist interest
Zone 5	The Socio economic and Cultural Development Zone of the Siem Reap region	This comprehensive zone including the Phnom Kulen, the shores of the Tonle Sap and the Angkor plain. It conforms largely to the catchment area of greater metropolitan Angkor during the ancient period and is rich in remains of both prehistoric and historic civilization

The zoning of Tonle Sap Biosphere Reserve is summarized in the table below:

Table 3.10 Zoning of Tonle Sap Biosphere Reserve (by Royal Decree on Protected Areas
and Royal Decree on Tonle Sap Biosphere Reserve)

	and Royal Decree on Tome	
Category/Zone	Location/Area	Regulation/Remarks
Core Area	 Prek Toal (21,342ha) Boeng Tonle Chhmar (14,560ha) Stoeng Sen (6,355ha) 	Long term protected area and conservation of natural resources and ecosystem.
Buffer Zone	Covering the area of 541,482ha. Its boundary corresponds to the outer boundary of the Tonle Sap Multiple Use Area. and covered by inundated forest of a variety of species	Activities are managed to be consistent to the protection and conservation plan of the core areas. Fishery activities and other development plans will be managed based on existing law and regulations in a coordinated and cooperative manner. The buffer zone is also subject to experimental research and discovery of method for the management of inundated forest, fishery, agriculture, housing settlement, land use, water resources, navigation and tourism to ensure their sustainability, increased production, while preserving the environmental quality and fish.
Transition Zone	Between the outer boundary of Buffer zone and National roads No. 5 and 6.	Managed for the sustainable agriculture, human settlement, and land uses, without having adverse effects on the inundated forest, water quality and soils of the region around the Tonle Sap Lake.

3-4 Impact on Ground Subsidence in the Historical Heritage Sites

The provable impacts to ground subsistence in the historical heritage sites are evaluated with consideration of different opinions among specialists/experts who are interested in the matter of groundwater development.

The provable impacts to ground subsistence are estimated as summarized in Table 3.11.

		<u> </u>
Tonle Sap lake	West Baray	Groundwater
	(Canal)	(Lake side)
С	С	N/A
С	С	N/A
С	С	С
С	С	С
С	С	NA
С	С	С
С	С	С
	C C C C C C C C	C(Canal)CCCCCCCCCCCCCCCCCC

 Table 3.11 Impact on Ground Subsistence in the Historical Heritage

* : Bayon, Baphuon, Royal palace, Phimeanakas, Khleang, Prasat Sour Prat, Elephant terrace, Leperking Terrace, Phnom Bakheng, Baksei Chamkrong, Prea Pithu, Prea Palilay, Angkor Tom gates, Thommanon, Chau Say Tevoda

** : East baray, TaKev, Banteay Kdei, Ta Prohm, Sras Srang, Prasat Bat Chum, Prasat Kravan, Pre Rup, East Mebon, Banteay Samre, Ta Som, Neak Pean, North Baray, Krol Ko, Preah Khan

***: Banteay Srei, Phnom Kulen, Kbal Spean

****: Lolei, Preah Ko, Bakong

Category of evaluation: A; Serious impacts, B; Some impacts, C; No/a little impacts, N/A; Difficult to evaluate at present

3-5 Impact on Ecology

The impacts on ecology are also essential points to be taken into account for the selection of water source and intake method. Among three alternative water sources, the special attention should be paid to the Tonle Sap Lake, where the various species of fauna and flora live there under the unique natural conditions, especially due to seasonal variation of water levels.

The evaluation of impacts to ecology in alternative water sources is made as summarized in Table 3.12.

act the f n, act cted
ray
ther

 Table 3.12 Impacts on Ecology

Category of evaluation: A; Serious impacts, B; Some impacts, C; No/A little impacts, D; Difficult to evaluate at present

3-6 Impact on Land Acquisition and Resettlement

The land acquisition in relation with resettlement is one of the serious issues in the area.

However, the specific locations for the project are not confirmed yet. The impacts to land acquisition and resettlement are evaluated on the basis of general plans available as of October 2009.

Water Source	General Evaluation of Impacts	Description		
Tonle Sap Lake	B or C	No resettlement is expected, but the land for project site		
	DOL	should be acquired.		
West Baray	B or C	No resettlement is expected, but the land for project site		
	DOIC	should be acquired.		
Groundwater	B or C	No resettlement is expected, but the land for project site		
	DOL	should be acquired.		

Table 3.13 Impact on Land Acquisition and Resettlement (before mitigation measures)

Category of evaluation: A; Serious impacts, B; Some impacts, C; No/a little impacts, D; Difficult to evaluate at present

3-7 Other Environmental Impacts

The adverse environmental impacts to the following items are already evaluated above since these are considered significant to select the water source.

- Protected areas
- Ground subsidence
- Ecology
- Resettlement

There are many other environmental impacts, although the level of significance is comparatively low for the study on selection of water source. The general evaluation of environmental impacts to the other items is summarized in the table below:

Items	Tonle Sap lake	West baray	Groundwater
Local economy such as	С	С	С
employment and livelihood		C	C
Land use and utilization of local	В	В	В
resources		В	В
Social institutions such as social			
infrastructure and local	С	С	С
decision-making institutions			
Existing social infrastructures	С	С	С
and services		C	C
The poor, indigenous and ethnic	С	С	С
people	C	C	C
Misdistribution of benefit and	С	С	С
damage		C	C
Local conflict of interests	С	С	С
Water Usage or Water Rights	В	В	С
and Rights of Common		D	C
Sanitation	С	С	С
Hazards (Risk)			
Infectious diseases such as	В	В	В
HIV/AIDS			
Topography and Geographical	С	С	С
feature		C	C
Soil Erosion	С	С	С
Hydrological Situation	С	С	С
Coastal Zone (Mangroves,	С	С	С
Coral reefs, Tidal flats, etc.)	U	C	C
Meteorology	С	С	С
Landscape	В	В	В
Global Warming	С	С	С
Air Pollution	В	В	В
Water Pollution	В	В	В

 Table 3.14 Environmental Impacts to the Other Items (before mitigation measures)

Soil Contamination	С	С	С
Waste	В	В	В
Noise and Vibration	В	В	В
Offensive Odor	С	С	С
Bottom sediment	С	С	С
Accidents	В	В	В

A: Significant/Serious impacts B: Some (not serious) impacts C:Little impacts NA: Unknown (at present level of study)

The environmental impacts could be mitigated by taking appropriate mitigation measures. It is necessary to evaluate the impact level together with possible mitigation measures as summarized in Table 3.15.

Items	Tonle Sap lake	West baray	Groundwater		
Land use and utilization of	Alteration of agricultural land, inundated forest area and fishery domain				
local resources	for Community Fisheries should be minimized for the project site.				
Water usage or water rights	New pipelines or canal Water from West baray Groundwater should				
and rights of common	should be set not to	should be utilized not	not be used if		
	disturb navigation and to give significant alternative source is				
	fishing.				
	irrigation. Monitoring				
	plan should be				
	formulated for water				
		management.			
Hazards (Risk)		tractor should make a heal			
Infectious diseases such as	and conduct workers' hea	lthcare every day during c	onstruction.		
HIV/AIDS					
Landscape	New facilities appear after completion of the project and give some				
	impacts to the existing landscape. The appearance should be harmonized				
	with the surrounding area. There is usually no significant impact on the air except a critical incident.				
Air Pollution					
		rgency plan should be dev	eloped to prevent air		
	pollution due to chlorine.				
Water Pollution	There is usually no significant impact on river water except a critical incident because wastewater is discharged from the water treatment				
		standard of Cambodia. M			
	emergency plan should be developed to prevent water pollution due to				
XX 7 /	unusual discharge of wastewater. There is little impact if the sludge is regularly taken away to the final				
Waste					
Naiss and Withmatian		te and disposed of properly			
Noise and Vibration	There is usually little impact on the surrounding area due to noise and				
	vibration emitted from water treatment facility because they are small.				
	Power generator used at the time of blackout should be stored in the room with thick walls to prevent strong noise from getting out directly.				
Accidents					
Accidents		construction. The contract			
		including Safety Educatio	in Fian for ladors.		
	Medical care system should be set up also.				

Table 3.15 Mitigation Measures

3-8 Opinion/Suggestion by Major Influential Organizations

(1) Organizations Related to the Project

The organizations related to the selection of water source are listed with some reference information in the table below:

Name of Organization	Mandate	Major law(s) to be referred	Points of relation to the selection of water source
APSARA	Conservation of archaeologically important areas	Sub-Decree of Organization and Functioning of the Office of Director-General of the APSARA Authority, May 9 th , 2008	Project site should be located basically outside of five Zones designated by APSARA. Negotiation (& permission) within the zones is required.
UNESCO	Conservation of World Cultural Heritage Area, and Core Area in Tonle Sap Biosphere Reserve (TSBS)	N/A	Project site should be located outside of five Zones designated by APSARA according to UNESCO's direction. Main facility should be located outside of Buffer Zone of TSBS Negotiation(& permission) is required depending on the situation
TSA	Conservation and Development of Tonle Sap Basin Area. Coordination among relevant central governments	Royal Decree on Creation Authority Tonle Sap June 30, 2009	Water should be provided from Tonle Sap Lake. Negotiation (& permission) is required depending on the situation
MOAFF (DOF)	Management of agriculture, forestry and fishery activities	Law on Fisheries	There are protected or controlled areas in Tonle Sap Lake. Negotiation & permission is required, depending on the situation.
MOWRAM	Management of water and water resources	Water management law	Overall responsible organization for water management. It is necessary to get approval for the development and use of water
MOE	Protection and promotion of environmental quality and public health Assessment of environmental impact	Law on Environmental Protection and Natural Resource Management 24 Dec. 1996/ 1998	There are protected areas to be considered (Landscape Protected Area, Multiple Use Area and Community Protected Area.). Required to conduct IEIA & EIA to get approval

 Table 3.16 Major Organization Related to the Project

Note: The other organizations such as MIME, Provincial Government of Siem Reap, SRWSA, and MEF are not included in the above list, as their position is neutral and fair for the selection of water source. Actually, no specific restrictions or conditions are given for the study from these agencies.

(2) **Opinion/Suggestion by Major Related Organizations**

The following organizations are closely related to implementation of the Project.

- APSARA
- UNESCO
- TSA
- Fishery Dept. of MOAFF
- MOWRAM

The questionnaires were sent or handed over to the respective organization and the explanation and the discussion was made in reference to the outline summarized in Table 3.17 to get their opinion or suggestion prior to the final evaluation by the Team. These questionnaires are required to know the opinion/stance of the organization (not personal view of manager/staff).

The main subjects are opinions to the three alternative water sources from the viewpoints of management by the respective organization.

Items	Tonle Sap Lake	West Baray	Groundwater
Location	Tonle Sap Lake	Canal from West Baray	Groundwater near the Lake
Intake volume	$50,000 \sim 70,000 \text{ m}^3$ /day (1	Fentatively assumed)	
Intake method	Canal from the Lake (newly excavated) +Intake structure at the canal (with pump)	Intake (from the existing canal)	Wells (1,000m ³ /day/well, 60m deep, 500m interval)

 Table 3.17 Brief of Alternative Water Sources to the Related Organizations

The opinion at respective organization was obtained from the following way.

Organization	Methods of collecting opinions
APSARA	The questionnaires prepared by the Team were sent to APSARA. Then,
AFSAKA	meeting/discussions were made with a representative of APSARA.
	Based on the questionnaires prepared by the team and verbal supplementary
UNESCO	explanation of the proposed project, the interview was conducted to the
	representative staff of Culture unit and in charge of Angkor temple area.
	Based on the questionnaires prepared by the team and verbal supplementary
TSA	explanation of the proposed project, the interview was conducted to the Secretary
	of State.
	No written questionnaires were given, as some information and discussion on the
MOWRAM	JICA study was already verbally explained before. The interview was conducted to
	the general manager of DOWRAM in Siem Reap.
Fishery	Based on the questionnaires prepared by the team and verbal supplementary
Administration	explanation of the proposed project, the interview was conducted to the deputy
of MOAFF	director general of the Fishery Administration.

Table 3.18 Methods	of Collecting (ninions from t	he Related (Organizations
Table 5.10 Michibus	or concerning of	philons nom u	ne Kelateu v	of gamzations

The points of opinions/suggestions by major influential organizations are summarized in the table below:

Organization	Water Source	positive or negative	Opinion/Suggestion	
	Tonle Sap Lake	А	Little impact on archaeological site	
APSARA	West Baray	B or N/A	Baray is a cultural heritage	
	Groundwater	B or N/A	Impact on Cultural Heritage	
	Tonle Sap Lake	А	Little impact on archaeological site	
UNESCO			Archaeological Excavation should be conducted	
	West Baray	A or B	before rehabilitation of Baray.	
			/No new gate can be constructed.	
	Groundwater A	A or N/A	Depending on distance between wells and	
	Gioundwater	A OF N/A	archaeological site.	
	Tonle Sap Lake	А	Water volume is enough for foreseeable future.	
TSA	West Baray	N/A	Water volume is not enough to supply water.	
	Groundwater	N/A	Water volume is not enough to supply water.	

Table 3.19 Opinion/Suggestion on the Water Sources by Major Related Organizations

	Tonle Sap Lake	N/A	High cost and technical difficulty is expected.	
MOWRAM	West Baray	Vest Baray A Economically beneficial. More water of taken.		
	Groundwater	N/A	No specific negative points are shown.	
Fishery Dept.	Tonle Sap Lake	А	Fishing Lot should not be disturbed. Need of agreement of Community Fisheries	
of MOAFF	West Baray	N/A	No comment	
	Groundwater	N/A	No comment	

General level of positive or negative

A: Positive, B: Negative, NA: Not sure/No answer

Note: Some misunderstanding opinions are not counted. For example, some officers said their opinion by assuming that the water is taken from the West Baray directly or the groundwater is taken not so far from the heritage site.

There are some other related agencies/organizations such as follows:

- MIME
- MOE
- Provincial Government of Siem Reap
- MEF

However, it is considered reasonable to make discussion with these agencies after the draft results

of evaluation on the selection of water source with the intake methods are prepared. For example,

MOE needs the results of environmental assessment study (EIA or IEIA)

3-9 Stage 2 - Part A Evaluation

The results of evaluation of three water source alternatives are summarized in the table below:

Parameter	Water Source Alternatives			
	Tonle Sap Lake	West Baray (canal)	Groundwater (lake side)	
Water Volume	А	NA	NA	
Water Quality	В	В	В	
Protected Area	В	NA	NA	
Ground Subsidence	А	А	NA	
(Historical heritages)				
Impacts to Ecology	В	А	А	
Impacts to Land acquisition	В	В	В	
and Resettlement				
Other Environmental Impacts	В	В	В	
Opinion by Organizations	В	В	NA	
			•	

Table 3.20 Part A Evaluation

Note:

A: Sufficient, good, or no-impacts

B: Acceptable or, no significant adverse impacts

C: Not acceptable or significant adverse impacts

NA: Reliable evaluation is difficult without further study or confirmation

3-10 Comparative Study on Water Supply Systems of the Selected Water Sources and Intake Methods, Stage 2 – Part B

This section describes the engineering details, as Part B of Stage 2 selection of water source and intake method, to identify the most appropriate combination of water source and intake method. Main issues to discuss hereunder are smooth implementation in short term basis and expandability towards the long term development plan for the entire water supply systems. The proposed water supply systems are composed of all the facilities including raw water intake, WTP, transmission pipelines, and distribution network.

The major conditions/assumptions for comparative study are summarized as follows:

- Intake capacity of approximately 70,000 m^3/d is considered according to the proposed development plan;
- Conventional treatment process is applied for raw water of West Baray and Tonle Sap Lake based on the water quality analysis; and
- Conventional water treatment processes including, oxidation, sedimentation, filtration, and disinfection is adapted to groundwater treatment.

3-10-1 Planned WTP Locations for Each Water Source

The WTP locations by water sources are planned to come up with the cost estimates. Deep wells are allocated as same manner as the exiting deep well arrangement as plotted Figure 3.1 Location Plan for Deep Well System. The same structure of deep wells is applied as the existing deep wells of SRWSA.

The planned location of WTP, taking raw water from West Baray, is located beside the existing WTP in reference to the KTC proposal. A total of water supply systems are schematized in Figure 3.2.

For Tonle Sap water supply system, Figure 3.3 shows a total water supply system including assumed raw water conveyance root and WTP location.

3-10-2 Proposed Water Supply Facilities for Each Water Source

To evaluate the alternatives by water sources, a preliminary design for the intake, WTP, and transmission pipelines are prepared as described in Table 3.23.

3-10-3 Basis for Cost Estimates

The construction cost was estimated on the direct construction cost, not including the indirect cost and other contingencies. The details of indirect cost and other contingencies are assumed in the preliminary financial analysis. The unit construction costs were prepared using the following data/information;

- ➤ Unit costs provided by SRWSA;
- Unit costs provided by some contractor for the Siem Reap Waste Water Management Project funded by AFD; and
- \succ Unit costs provided by International Contractors in the site.

3-10-4 Comparison of Overall Construction Cost

The result of construction cost estimation is shown in the following table. The water supply system using Tonle Sap Lake water is identified as the most economical. The details of cost estimation for 75,000 m^3 /d are referred to the following chapter.

Water Source	Intake	WTP	Transmission /Distribution	Total
Ground Water	25,003,000	20,253,000	58,904,000	104,160,000
West Baray Lake	7,117,000	21,521,000	71,470,000	100,108,000
Tonle Sap Lake	18,825,000	21,521,000	58,904,000	99,250,000
Unit in US\$				

Table 3.21	Cost Com	parison foi	· Each	Water	Supply System	ms
	0000 0000					

Unit in US\$

3-11 Stage 2 - Part B Evaluation

Table 3.24 summarizes a result of Stage 2 – Part B evaluation.

3-12 Recommended Raw Water Source

The Project aims stable water supply without interruption of water supply, with suitable water quality to meet the Cambodia drinking water standards, and with reasonable cost (water tariff).

To achieve the target as public water supply systems, the Tonle Sap Lake water is proposed as most appropriate water source for the Project. The intake from the Lake may pass through the environmental restricted areas under control of the relevant authorities so that the practical measures, which should be carefully identified from now on, should be taken properly to mitigate such impacts with close coordination with the relevant authorities concerned. The Tonle Sap system will provide SRWSA with the second choice of the raw water source as sustainable water supply systems in both short term and long term basis.

Another possible raw water source for the Project is the water from the West Baray, however the availability of water amount is not in stable as public water supply systems. The Team recommends to use some limited amount of the water as urgently supplement the water to the increasing water demand in a short term basis.

Groundwater source is applied solely for the current water supply systems of SRWSA. There are no sign has been identified scientifically to prove the impact to the Angkor heritages. However, still many organization and/or groups including SRWSA are afraid of the impact to the heritages to be happened in the future if the large scaled groundwater exploitation will not stop. The Team will then recommend that only those people reside in the remote areas from the City center where the public water supply is not applicable due to the economic and technical efficiencies can use the groundwater source.

Water source	Overall Evaluation
Tonle Sap lake	Acceptable as a new water source, although some mitigation measures have to be taken for environmental impacts and the concession of development is obtained from some relevant
	agencies or groups.
West Baray (outlet	It is difficult to guarantee the available water volume for the long term requirements. It is
canal)	required to carry out the comprehensive study of water management of the Siem Reap River
	system, which included West Baray, moats of heritage sites, etc. The study is essential and
	quite significant for various aspects, including river environmental improvement, conservation
	of heritage sites, flood mitigation, etc. in addition to the effective water uses for water supply
	and irrigation. But, such comprehensive study takes a few years. Further, the relation with the
	KTC project is required to be considered carefully, as the project takes water from the canal of
	West Baray when the current contract negotiation becomes successful.
Ground water (lake	There are some uncertain issues for the development. It is too early to properly evaluate the
side)	issues on the groundwater development by this JICA Study as the groundwater study/survey is
	included as Phase 3 study and the conclusion is available in mid-late 2010. Some specialists
	who are involved in the conservation of Angkor heritage sites show their opposite position
	against the development of groundwater. Even if the scientific discussions with them are taken,
	it will consume considerable time and effort to settle the issue.

Table 3.22 Evaluation on the Other Parameters Except for Cost and Technical Issues

The Preparatory Study on The Siem Reap Water Supply Expansion Project

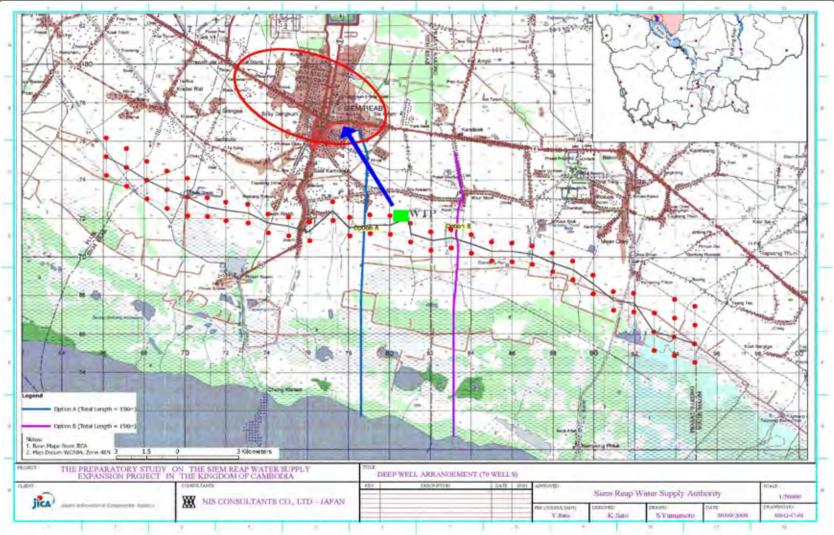


Figure 3.1 Location Plan for Deep Well System

The Preparatory Study on The Siem Reap Water Supply Expansion Project

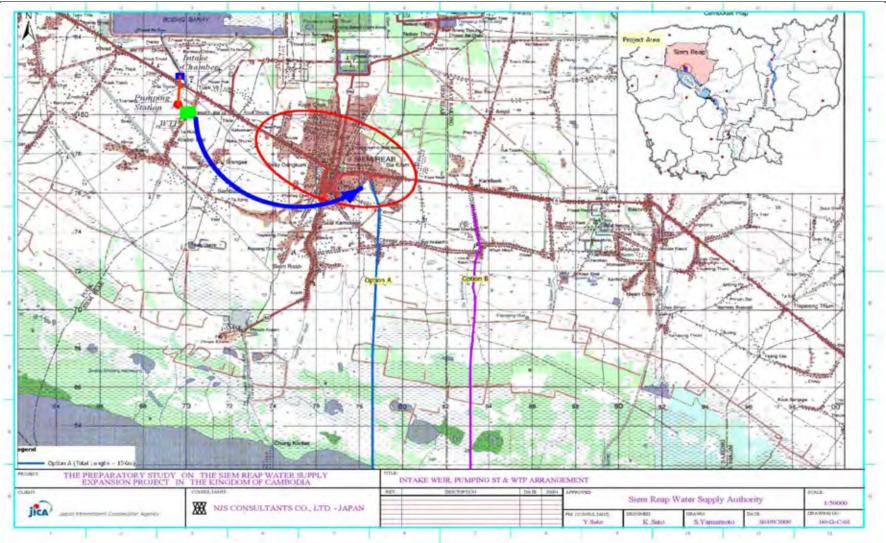


Figure 3.2 Location Plan for West Baray WTP System

The Preparatory Study on The Siem Reap Water Supply Expansion Project

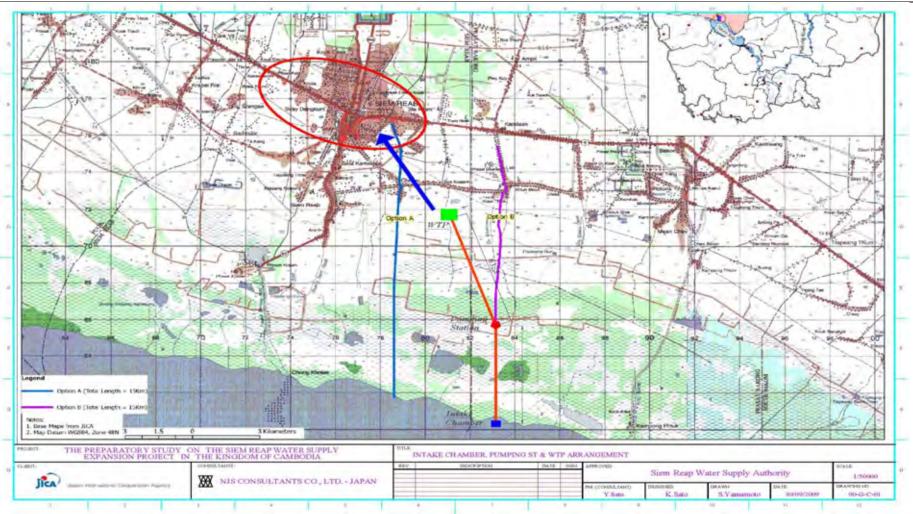


Figure 3.3 Location Plan for Tonle Sap WTP System

Water Source	Ground Water	West Baray Lake	Tonle Sap Lake
Location	The wells location is in the wide area of south part of the city. The water treatment plant is located in the southeast part of city.	The intake with pumping station is nearby the existing canal from the West Baray Lake. The water treatment plant is located within 1.5 km away from the intake.	The location of intake is 12 km south from the candidate site of water treatment plant. The intake pumping station is designed with appropriate location in between intake and water treatment plant. The water treatment plant is located in the southeast part of city.
Intake	Intake Facility: Deep Wells, 70 wells, 60m deep <u>Conveyance Pipeline:</u> Steel/D.I. Conveyance Pipe Line, Approx. 75 km	Intake Facility: Intake and intake pumping station <u>Conveyance Pipeline:</u> Steel Conveyance Pipe Line, Approx. 2.0 km	Intake Facility: Intake Chamber and intake pumping station <u>Conveyance Pipeline:</u> Concrete/Steel Conveyance Pipe Line, Approx. 12 km
Water Treatment	Water Treatment ProcesspH adjustment, pre chlorination, oxidation, filtrationand disinfection.Water Treatment Facilities:Receiving well, lime dosing, pre-chlorination,oxidation basin, rapid sand filter, and post-chlorination.	Water Treatment Process: pH adjustment, pre chlorination, coagulation, flocculation, sedimentation, filtration and disinfection. Water Treatment Facilities: Receiving well, lime dosing, pre-chlorination, sedimentation basin, rapid sand filter, and post-chlorination.	Water Treatment Process: pH adjustment, pre chlorination, coagulation, flocculation, sedimentation, filtration and disinfection. Water Treatment Facilities: Receiving well, lime dosing, pre-chlorination, sedimentation basin, rapid sand filter, and post-chlorination.
Transmission /Distribution	Transmission Facilities: Transmission pipelines and transmission pumping station. Distribution Facilities: Distribution pipelines, elevated water tank and lifting pump station.	Transmission Facilities: Transmission pipelines and transmission pumping station. Distribution Facilities: Distribution pipelines, elevated water tank and lifting pump station. Notes: Additional transmission/distribution network is included for the expected water demand in the eastern part of city.	Transmission Facilities: Transmission pipelines and transmission pumping station. <u>Distribution Facilities:</u> Distribution pipelines, elevated water tank and lifting pump station. station.

 Table 3.23 Preliminary Facility Plan for Each Water Source

The Preparatory Study on The Siem Reap Water Supply Expansion Project

Water Source	Ground Water	ge 2 – Part B Evaluation for Each Water Source West Baray	Tonle Sap Lake
			-
Structural Design and Work Plan	 ✓ Short term plan only ✓ Considerable numbers of wells and connection 	 ✓ Short term plan only ✓ Rehabilitation of the existing weirs and 	 ✓ Possible long term plan ✓ Ideal water supply scheme from existing
	pipelines	environmental issues	WEST and proposed EAST WTPs.
	✓ Unavoidable environmental issues	✓ Overlapped WTSs in west	WEST and proposed EAST WIFS.
	· Chavoluable environmental issues	• Overlapped w 15s in west	
	Concerned Issues	Concerned Issues	Concerned Issues
	- Considerable numbers of wells are needed.	- Land acquisition is troublesome.	- Intake chamber and pump station are needed.
	- Monitoring facilities for ground water and land	- Weir for water level control is necessary.	- Water level fluctuation of the lake is to be
	subsidence are needed.	- Rehabilitation for existing facilities such as weir are	considered.
	- Conventional water treatment process excluding	needed.	- Location of intake pumping station is to be
	the sedimentation basin.	- Far from the eastern part where major increase future	considered.
	- Land acquisitions for each well are difficult.	demand is expected.	- Proposed WTP site is close to those areas where
	- Site can be located in the southern part of town.	- Available water is limited so that future expansion is	major water demand increase is projected.
	- Easy access to the existing distribution network.	impossible.	- Easy access to the existing distribution network.
		- Conventional water treatment process are needed.	- Conventional water treatment process is needed.
Construction	✓ Long access roads to wells	✓ Permission for related agencies	✓ Careful construction due to water level
Method and	✓ Land acquisition for the sites	✓ Land acquisition	fluctuation
Schedule			
	Concerned Issues	Concerned Issues	Concerned Issues
	- Construction period is long due to the	- Permission for rehabilitation of the existing facilities	- Construction schedule for intake chamber shall be
	considerable numbers of wells.	are required from many agencies concerned.	considered.
	- Access roads to each wells are necessary.	- Land acquisition for the water treatment plant is troublesome.	- Seasonal water level changes shall be considered.
Construction,	✓ Well water level monitoring	✓ Careful O&M	✓ Careful O&M
Operation and	✓ Security for numerous scattered wells	✓ Annual O&M cost is estimated 1.7 Mill.\$	✓ Annual O&M cost is estimated 1.6 Mill.\$
Maintenance Costs	✓ Annual O&M cost is estimated 2.2 Mill.\$	✓ Comparative cost is estimated 100 Mill. \$	✓ Comparative cost is estimated 99 Mill. \$
	✓ Comparative cost is estimated 104 Mill.\$		
	Concerned Issues		
	- Raw water conveyance pipelines are long and	Concerned Issues	Concerned Issues
	costly.	- Operation for the water level fluctuation of West	- Careful operation for seasonal water quality
	- Tough O & M for many wells.	Baray and canal is troublesome.	fluctuation is required.
	- O & M for monitoring facilities is must.	- Long distribution/transmission pipelines to the city	- Land price is reasonable.
	- Security for many wells is required.	are necessary and costly.	
		- Land acquisition is tedious and costly.	
Evaluation	Not recommended for long term plan	Not recommended for long term plan	Generally good for short/long term plan

Table 3.24 Sage 2 – Part B Evaluation for Each Water Source

JICA/ NJS Consultants Co., Ltd

Water Quality Survey

for

Preparatory Study on the Siem Reap Water Supply Expansion Project

Prepared by KEY CONSULTANTS CAMBODIA

Phnom Penh, July 2009

Table of Contents

1. INTRODUCTION	3
1.1 Background	3
1.2 Objective	3
1.3 Scope of the work	. 3
1.4 Staffing	3
2. METHODOLOGY	3
2.1 Water sampling	3
2.2 Water quality measurement and analysis	. 4
2.3 Observation	. 5
3. ACTIVITIES	. 5
4. RESULTS	7
4.1 Observation	. 7
4.2 Water quality measurement and analysis	. 8
5. CONCLUSIONS AND RECOMMENDATIONS	10
5.1 Conclusions	10
5.2 Recommendations	10

1. Introduction

1.1 Background

Japanese Government funded to Cambodia Government through JICA to preparatory Study on the Siem Reap Water Supply Expansion Project. The project has been carried out to collect water quality data on the raw water sources for the project in the Tonle Sap lake.

Water quality survey is the most important for the Siem Reap Water Supply Expansion Project that needs to carry out in reasonable time of the seasonal changing in the project area. In Cambodia there is only two seasons: dry season start (November to April) and rainy season start (May to September). Therefore, the surface water quality source in the project area can change of physical aspect in relationship to season as well as climate change impact to surface water quality.

1.2 Objective

The main objective of the study is utilized to evaluate suitable of the water sources as the raw water for the proposed water treatment processes for the project.

1.3 Scope of the Work

The scope of work for our team is the "Water Quality Survey" of the water source from the surface water in the Siem Reap City.

Each samples, including the following 21 indices, were sampled and analyzed twice in early and latter half of rainy season (DO, SS, pH, Odour, Taste (Threshold taste), Colour, Turbidity, Transparency, NO₂, NO₃, Ammonium-N, Chloride, Total nitrogen, Total phosphate, Iron, Manganese, Hardness, TDS, Total coliform, E-coli, Alkalinity).

Each samples, including the following 11 indices, were sampled and analyzed one time in early rainy season (Cyanide, Mercury, Copper, Zinc, Lead, Hexavalent chromium, Cadmium, Arsenic, Fluoride, Phenols, Chlorophyll a).

1.4 Staffing

The staffs involved in this survey list below:

- Mr. Taing Sophannara, Water and Wastewater Engineering, Team Leader
- Mr. Sao Vibol, Environmental specialist
- Mr. Chou Kim Sorn, GIS specialist

2 Methodology

2.1 Water Sampling

- Water sampling was taken at the day time
- Sampling points and location are described in table 1

- Water samples were kept in cool box and sun protection after taking from the field and the samples were sent to laboratory in Phnom Penh at the same day for analysis.

- Surface water sample was taken from Tonle Sap lake that located in Kbal chhroy Mleang, Chong Khneas commune, Siem Reap district, Siem Reap province.

2.2 Water Quality Measurement and Analysis

Ministry of Environment (MoE) lab in Phnom Penh was selected for conducting water quality measurement and analysis. There are six parameters such as Do, pH, Odour, Taste (Threshold taste), Turbidity, and Transparency were measured at the field.

The method measurement and analysis is followed by the Japanese and Cambodia standard for the examination of surface water quality (see in the table 1).

N°	Items	Method
1	Dissolved Oxygen (DO)	DO Meter
2	Total Suspended Solid (TSS)	Dried at 105°C
3	рН	pH Meter
4	Odour	Directly inhale
5	Taste	Directly drinking
6	Colour	Nephelometric
7	Turbidity	Photometer
8	Transparency	Shechi dist
9	Nitrite (NO ₂)	IC (Anion) ICS 90 Dionec
10	Nitrate (NO ₃)	IC (Anion) ICS 90 Dionec
11	Ammonium-N	IC (Cation) ICS 90 Dionec
12	Chloride	IC (Anion) ICS 90 Dionec
13	Total nitrogen	K ₂ S ₂ O ₈ Decomposition UV
14	Total phosphate	K ₂ S ₂ O ₈ Decomposition Molybdenum blue
15	Iron	EPA – ICP MS (ELAN 9000)
16	Manganese	EPA – ICP MS (ELAN 9000)
17	Hardness	Titration
18	Total Dissolved Solid (TDS)	TDS Meter
19	Total coliform	MPN Multiple Tubes
20	E-coli	Microplate
21	Alkalinity	Titration
22	Cyanide	Pyridin – Pyrazolons Spectrophotometer
23	Mercury	EPA – ICP MS (ELAN 9000)
24	Copper	EPA – ICP MS (ELAN 9000)
25	Zinc	EPA – ICP MS (ELAN 9000)
26	Lead	EPA – ICP MS (ELAN 9000)
27	Hexavalent chromium	Diphenylcarbazide (Spectrophotometer)
28	Cadmium	EPA – ICP MS (ELAN 9000)
29	Arsenic	EPA – ICP MS (ELAN 9000)
30	Fluoride	IC (Anion) ICS 90 Dionec
31	Phenols	Distitation
32	Chlorophyll a	Aceton-Methanol Extraction Spectrophotometer

Table 1: Examination method for each parameter

2.3 Observation

The water sampling site has been observed on environmental sanitation conditions in odor to proof on the pollution at/around the sampling point. The observation remarks have been recorded in part of results.

3. Activities

This is the first time (early rainy season) that water sampling has been carried out in only one site and water sampling date is 29 June 2009. There are some parameters has been measured at the field include pH, DO, Turbidity, Transparency, Odour and Taste and other remaining parameters were measured at MoE lab in Phnom Penh. During water sampling, the engineer and sampling taker conducted environmental observation nearby sampling point.

Table 2 shows about the type of water sources in large Siem Reap area, sampling point/location, and date/time of water taken.

Date/Time	Sample #	Source	Area name	GI	PS
Date/ Infic	Sumple "	300100	Area hame	Х	Y
29/6/2009 9:30 AM	S1	Tonle Sap Lake	Kbal Chhroy Mleang Treatment Plant (intake)	378209	1462006

Table 2: Water sampling location with date and time

Tonle Sap Lake that is located in Kbal Chhroy Mleang, Chong Khneas commune, Siem Reap district, Siem Reap province was selected for measuring surface water quality in odor to preparatory study on the Siem Reap water supply expansion project. The sampling point is take about 11 Km. from Phnom Krom and around 15 Km. from the central Siem Reap province (Phsar Leu). Figure 1 show about the sampling location.

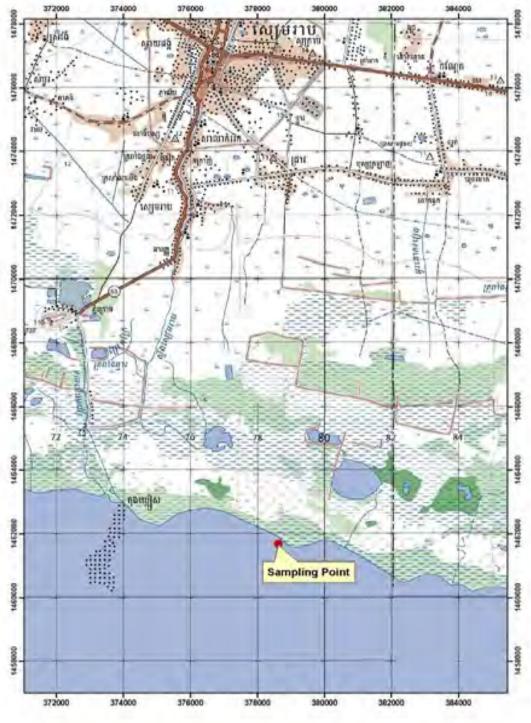


Figure 1: Water sampling location

4 Results

4.1 Observation

At the present, there is no pollution source discharge into the sampling site or around. Therefore, the pollution source is located in Chong Khneas community where floating villages and settlements on the lake with far a way around 10 Km. from sampling point. Figure 2 shows about environmental condition at/around sampling point.

Figure 2: Environmental condition at/around sampling point

The environmental condition at/around the sampling point also has been described in the table 3. Expected that more pollution load turbidity and dissolve oxygen will be happened in the Tonle Sap lake as well as sampling during early to middle rainy season and Mekong river has a moderate flow that can be recovered the water quality changing in reasonable distance.

The effect of water change with the flooded forest may have a negative effect on water quality in the lake once water level is high enough to inundate adjacent forest areas. The effect is due to organic matter in the forest that robs the water of oxygen.

Sample #	Source	Location	Environmental condition
S1	Tonle Sap Lke	Kbal Chhroy Mleang Treatment Plant (intake)	Sampling point far a way from the pollution source (settlements on the lake). It's take about 10 km., no polluted source around or nearby sampling point.

Table 3:	Environmental	condition	in the	sampling point	t
TUDIC J.	LINIOIIIICIILUI	condition	in the	Sumpling point	L.

4.2 Water Quality Measurement and Analysis

The results of surface water quality measurement are showed in Table 4. The results are compiled both on site measurement and Lab analysis (MoE). The detail measurement methodology of each parameter showed in laboratory sheet (attached in annex 2). The results are compared to Cambodia standard drinking water quality, Ministry of Industry Mines and Energy (MIME, January 2004). The analysis report from laboratory was attached in the annex 1.

No.	Description of Item	Unit	MIME- DWQS	S1
Α	Microbiological Test			
1	Total coliform	Count/100ml	0	9.3 x 10 ²
2	E.coli	MPN/100ml	0	56
В	Physical and Chemical Test			
3	рН		6.5-8.5	7.7
4	DO	mg/l	>6	5.4
5	Total Suspended Solid (TSS)	mg/l		498
6	Odour	-		Slight muddy
7	Taste (Threshold taste)	-		Acceptable
8	Color	Pt-4		100
9	Turbidity	NTU	5	200
10	Transparency	Dept (cm)		2.5
11	Nitrite (NO ₂)	mg/l	3	ND<0.1
12	Nitrate (NO ₃)	mg/l	50	2.53
13	Ammonium-N	mg/l	1.5	0.05
14	Chloride	mg/l	250	6.81
15	Total nitrogen	mg/l		3.50
16	Total phosphate	mg/l		1.04
17	Iron	mg/l	0.3	3.333
18	Manganese	mg/l	0.1	0.05604
19	Hardness	mg/l	300*	107
20	Total Dissolve solid (TDS)	mg/l	800	55.50
21	Alkalinity	mg/l		190.00
22	Cyanide	mg/l	0.07	ND<0.04
23	Mercury	mg/l	1	0.0018
24	Copper	mg/l	1	ND<0.0003
25	Zinc	mg/l	3	0.00648
26	Lead	μg/l	10	2.57

Table 4: Results of surface water quality examination

27	Hexavalent chromium	μg/l	50	10
28	Cadmium	μg/l	3	ND<0.2
29	Arsenic	μg/l	50	0.94
30	Fluoride	mg/l	1.5	0.23
31	Phenols	mg/l		ND<0.025
32	Chlorophyll a	μg/l		5.80

MIME DWQS- Ministry of Industry Mines and Energy, Drinking Water Quality Standard, January 2004

* Hardness is expressed as mg/L CaCO₃

The results of water quality test showed that the Total Coliform and E-Coli are higher than drinking water quality standard. Figure 3 shows about the microbial aspect present in the Tonle Sap Lake. This result is relation with the natural phenomena as well as from the decay of animals, fish, or its manure washed out from the forest or deposit in the water body itself. Normally, the surface water is generally higher concentration of indicator bacteria than ground. The WHO recommended that for treated water or water in a distribution pipeline network it is likely that the number of microbial aspect per 100 ml will be around zero. If count exceed 50 colonies per 100 ml then the water supply is heavily contaminated and need requires immediate remedial action.



Figure 3: Microbial aspect presented in sampling site

Turbidity of Tonle Sap lake in period of study (early rainy season) is quite high if compared to Cambodia drinking water quality standard. During rainy season or after storm event, turbidity is usually higher than normal and most of turbidity in surface water comes from erosion of material such as: clay, silt, rock fragments, and colloid. Increased turbidity levels can cause the variety of problems for people, plants and animals. Water becomes no longer suitable for drinking.

Iron value (3.333 mg/l) is higher exceed than drinking water quality standard (0.3 mg/l). However, dissolved oxygen is saturate 5.4 mg/l that can provide reasonable living condition to the fish. Therefore, Fe has no bad effects on health, there are many problems concerning on high concentration of iron. The problems are related to taste, straining of cloth during washing and clogging of system components.

The other parameters such as physical, chemical and heavy metals are lower value than Cambodia drinking water quality standard even these water are not yet treated (raw water).

5 Conclusions and Recommendations

5.1 Conclusions

From day to day the discharging from urban area as well as from the settlements on the lake will be increased pollution into the Tonle Sap Lake. In generally the water quality results at the sampling site were still low contamination of physical, chemical and heavy maters as well (see in the table 4). However, there are some parameters also higher than water quality standard such as Iron, Turbidity, Total Coliform, and E-Coli which impacts to surface water quality.

It can be concluded that Tonle Sap Lake, especially at the sampling site is still good surface water quality in odor to "Preparatory Study on the Siem Reap Water Supply Expansion Project".

5.2 Recommendations

According to water quality measurements of the thirty-two parameters in Tonle Sap Lake area and in early rainy season (29 June 2009), this sampling site can be considered as a water source of town water supply.

However, properly protect/control of discharging waste from urban, settlements, and fishing into the Lake. Especially, reduce number of floating community on the lake is required.

JICA/ NJS Consultants Co., Ltd

Water Quality Survey

for

Preparatory Study on the Siem Reap Water Supply Expansion Project

Prepared by

Phnom Penh, October 2009

Table of Content

1. Introduction	13
1.1 Background	13
1.2 Objective	13
1.3 Scope of the Work	13
1.4 Staffing	13
2 Methodology	13
2.1 Water Sampling	13
2.2 Water Quality Measurement and Analysis	
2.3 Observation	
3. Activities	15
4 Results	17
4.1 Observation	17
4.2 Water Quality Measurement and Analysis	18
5 Conclusions and Recommendations	20
5.1 Conclusions	20
5.2 Recommendations	

1. Introduction

1.1 Background

Japanese Government funded to Cambodia Government through JICA to preparatory Study on the Siem Reap Water Supply Expansion Project. The project has been carried out to collect water quality data on the raw water sources for the project in the Tonle Sap lake.

Water quality survey is the most important for the Siem Reap Water Supply Expansion Project that needs to carry out in reasonable time of the seasonal changing in the project area. In Cambodia there is only two seasons: dry season start (November to April) and rainy season start (May to September). Therefore, the surface water quality source in the project area can change of physical aspect in relationship to season as well as climate change impact to surface water quality.

1.2 Objective

The main objective of the study is utilized to evaluate suitable of the water sources as the raw water for the proposed water treatment processes for the project.

1.3 Scope of the Work

The scope of work for our team is the "Water Quality Survey" of the water source from the surface water in the Siem Reap City.

Each samples, including the following 22 indices, were sampled and analyzed in latter half of rainy season (Temperature, DO, SS, pH, Odour, Taste (Threshold taste), Color, Turbidity, Transparency, NO₂, NO₃, Ammonium-N, Chloride, Total nitrogen, Total phosphate, Iron, Manganese, Hardness, TDS, Total coliform, E-coli, Alkalinity).

1.4 Staffing

The staffs involved in this survey list below:

- Mr. Taing Sophannara, Water and Wastewater Engineering, Team Leader
- Mr. Sao Vibol, Environmental specialist
- Mr. Chou Kim Sorn, GIS specialist

2. Methodology

2.1 Water Sampling

- Water sampling was taken at the day time
- Sampling points and location are described in table 1

- Water samples were kept in cool box and sun protection after taking from the field and the samples were sent to laboratory in Phnom Penh at the same day for analysis.

- Surface water sample was taken from Tonle Sap lake that located in Kbal chhroy Mleang, Chong Khneas commune, Siem Reap district, Siem Reap province.

2.2 Water Quality Measurement and Analysis

Ministry of Environment (MoE) lab in Phnom Penh was selected for conducting water quality measurement and analysis. There are seven parameters such as Temperature, Do, pH, Odor, Taste (Threshold taste), Turbidity, and Transparency were measured at the field.

The method measurement and analysis is followed by the Japanese and Cambodia standard for the examination of surface water quality (see in the table 1).

N°	Items	Method		
1	Temperature	Thermometer		
2	рН	pH Meter		
3	Odor	Directly inhale		
4	Taste	Directly drinking		
5	Transparency	Shechi dist		
6	Dissolved Oxygen (DO)	DO Meter		
7	Turbidity	Photometer		
8	Colour	Nephelometric		
9	Total Suspended Solid (TSS)	Dried at 105°C		
10	Total Dissolved Solid (TDS)	TDS Meter		
11	Hardness	Titration		
12	Alkalinity	Titration		
13	Nitrite (NO ₂)	IC (Anion) ICS 90 Dionec		
14	Nitrate (NO ₃)	IC (Anion) ICS 90 Dionec		
15	Ammonium-N	IC (Cation) ICS 90 Dionec		
16	Chloride	IC (Anion) ICS 90 Dionec		
17	Total nitrogen	K ₂ S ₂ O ₈ Decomposition UV		
18	Total phosphate	K ₂ S ₂ O ₈ Decomposition Molybdenum blue		
19	Iron	EPA – ICP MS (ELAN 9000)		
20	Manganese	EPA – ICP MS (ELAN 9000)		
21	Total coliform	MPN Multiple Tubes		
22	E-coli	Microplate		

Table 1: Examination method for each parameter

2.3 Observation

The water sampling site has been observed on environmental sanitation conditions in order to proof on the pollution at/around the sampling point. The observation remarks have been recorded in part of results.

3. Activities

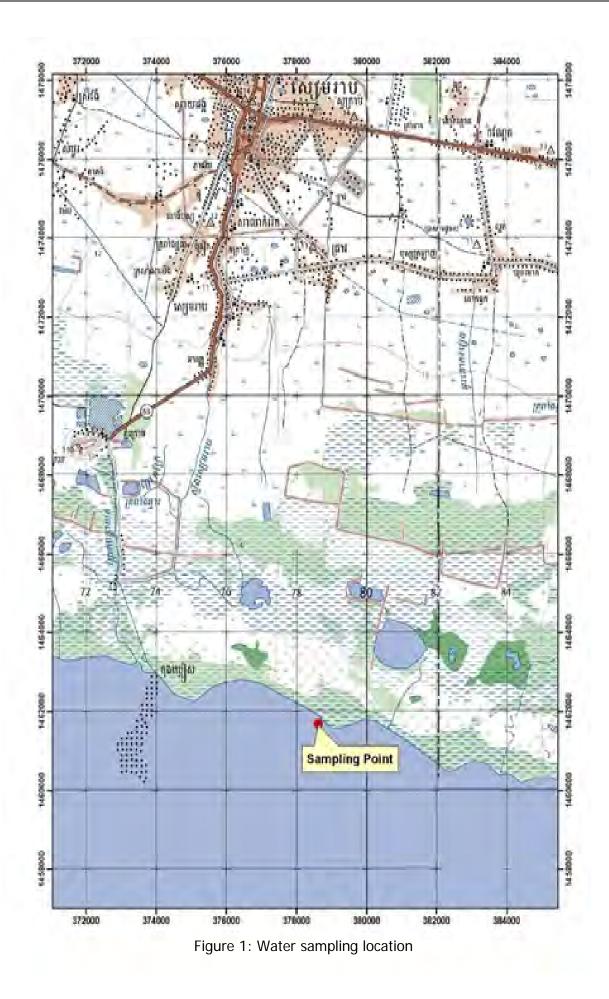

This is the second time (latter half of rainy season) for water sampling has been carried out in only one site and water sampling date is 6 October 2009. There are some parameters has been measured at the field include Temperature, pH, DO, Turbidity, Transparency, Odor and Taste and other remaining parameters were measured at MoE lab in Phnom Penh. During water sampling, the engineer and sampling taker conducted environmental observation nearby sampling point.

Table 2 shows about the type of water sources in large Siem Reap area, sampling point/location, and date/time of water taken.

Date/Time	Sample #	Source	Area name	GPS	
Dater Time				Х	Y
06/10/2009 9:00 AM	S1	Tonle Sap Lake	Kbal Chhroy Mleang Treatment Plant (intake)	378209	1462006

Table 2: Water sampling location with date and time

Tonle Sap Lake that is located in Kbal Chhroy Mleang, Chong Khneas commune, Siem Reap district, Siem Reap province was selected for measuring surface water quality in order to preparatory study on the Siem Reap water supply expansion project. The sampling point is take about 11 Km. from Phnom Krom and around 15 Km. from the central Siem Reap province (Phsar Leu). Figure 1 show about the sampling location.

4. Results

4.1 Observation

At the present, there is no pollution source discharge into the sampling site or around. Therefore, the pollution source is located in Chong Khneas community where floating villages and settlements on the lake with far a way around 10 Km. from sampling point. Figure 2 shows about environmental condition at/around sampling point.

Figure 2: Environmental condition at/around sampling point

The environmental condition at/around the sampling point also has been described in the table 3. Based on field observation found that the water quality in this time is good if compared to the previous observation due to the clear water with low turbidity and high of dissolve oxygen. For the previous observation found that more pollution load turbidity and dissolve oxygen was happened in the Tonle Sap lake as well as sampling site during early rainy season and Mekong river has a moderate flow that can be recovered the water quality changing in reasonable distance.

The effect of water change with the flooded forest may have a negative effect on water quality in the lake once water level is high enough to inundate adjacent forest areas. The effect is due to organic matter in the forest that robs the water of oxygen.

Sample #	Source	Location	Environmental condition
S1	Tonle Sap Lke	Kbal Chhroy Mleang Treatment Plant (intake)	Sampling point far a way from the pollution source (settlements on the lake). It's take about 10 km., no polluted source around or nearby sampling point.

Table 3: Environmental	condition in th	ne sampling point
------------------------	-----------------	-------------------

4.2 Water Quality Measurement and Analysis

The results of surface water quality measurement are showed in Table 4. The results are compiled both on site measurement and Lab analysis (MoE). The detail measurement methodology of each parameter and analysis report showed in laboratory sheet (attached in annex 1). The results are compared to Cambodia standard drinking water quality, Ministry of Industry Mines and Energy (MIME, January 2004).

No.	Description of Items	Unit	MIME-	S1
A Microbiological Test			DWQS	
~		1		
1	Total coliform	Count/100ml	0	<30
2	E.coli	MPN/100ml	0	0
В	Physical and Chemical Test	•		
3	Temperature	OC	-	29.40
4	рН	-	6.5-8.5	7.80
5	Odor	-	-	Normal
6	Taste	-	-	Normal
7	Transparency	Dept (cm)	-	74.50
8	Dissolved Oxygen (DO)	mg/l	>6	7.30
9	Turbidity	NTU	5	3.5
10	Color	Pt-4	-	30
11	Total Suspended Solid (TSS)	mg/l	-	44.00
12	Total Dissolved Solid (TDS)	mg/l	800	51.30
13	Hardness	mg/l	300	83.30
14	Alkalinity	mg/l	-	4.20
15	Nitrite (NO2)	mg/l	3	<0.10
16	Nitrate (NO3)	mg/l	50	<0.10

Table 4: Results of surface water quality examination

17	Ammonium (NH4)	mg/l	1.5	0.24
18	Chloride (Cl)	mg/l	250	4.02
19	Total Nitrogen (T-N)	mg/l	-	0.58
20	Total Phosphorus (T-P)	mg/l	-	0.26
21	Iron (Fe)	μg/l	0.3 (mg/l)	0.51
22	Manganese (Mn)	μg/l	0.1 (mg/l)	ND<0.3

MIME DWQS- Ministry of Industry Mines and Energy, Drinking Water Quality Standard, January 2004

* Hardness is expressed as mg/L CaCO₃

The results of water quality test showed that only Total Coliform is slightly exceed than drinking water quality standard while the E-Coli is zero. Figure 3 shows about the microbial aspect present in the Tonle Sap Lake. This result is relation with the natural phenomena as well as from the decay of animals, fish, or its manure washed out from the forest or deposit in the water body itself. Normally, the surface water is generally present concentration of indicator bacteria than groundwater. The WHO recommended that for treated water or water in a distribution pipeline network it is likely that the number of microbial aspect per 100 ml will be around zero. If count exceed 50 colonies per 100 ml then the water supply is heavily contaminated and need requires immediate remedial action.

Figure 3: Microbial aspect presented in sampling site

Turbidity at the sampling site in this time is quite good if compared to Cambodia drinking water quality standard and the previous results that showed the high concentration. These due to the Tonle Sap lake is diluted with rainwater.

The other parameters such as physical, chemical and metals are lower value than Cambodia drinking water quality standard even these water are not yet treated (raw water).

5 Conclusions and Recommendations

5.1 Conclusions

From day to day the discharging from urban area as well as from the settlements on the lake may be increased pollution into the Tonle Sap Lake. In generally the water quality results at the sampling site were lower than drinking water quality standard including physical, chemical and metals as well (see in table 4). However, there is one parameter that showed higher than drinking water quality standard namely Total Coliform which impacts to surface water quality.

These, it can be concluded that Tonle Sap Lake, especially at the sampling site is good condition for surface water quality to "Preparatory Study on the Siem Reap Water Supply Expansion Project".

5.2 Recommendations

According to water quality measurements of the twenty-two parameters in Tonle Sap Lake area and in latter half of rainy season (06 October 2009), this sampling site can be considered as a water source of town water supply.

However, properly protect/control of discharging waste from urban, settlements, and fishing into the Lake. Especially, reduce number of floating community on the lake is required.

Summary of Other Water Quality Survey

Results of Water Quality Analyses by the Team

A water quality analysis was undertaken to examine the safety and appropriateness of the water for potable use and also to give reference data for the design of water treatment facilities. The general conditions of water sampling and analyses are summarized in the following table.

Table 1 Summary of Water Sampling and Analysis Survey Method						
Items	Descriptions					
Location (See Figure 1 and Figure 2)	Tonle Sap Lake :					
	Nnear the tentatively proposed intake site					
	Area name:					
	Kbal Chhroy Mleangiem, Chong Khneas Commune, Siem					
	Reap District,					
	Approx. 11 km east from Phnom Krom, approx. 15 km south					
	from the central zone of the Province (Phsar Leu), and					
	approx. 4 km west from the outlet of the existing canal					
Coordinates of sampling site	X:378209, Y:1462006					
Sub contractor	KEY Consultants Cambodia					
	Team Leader: Mr. Taing Sophannara					
Laboratory for the test	Ministry of Environment					
Sampling Frequency and Time	2 times					
	29 th June 2009 and 6 th October 2009					
Methods of measurement and analysis	Followed by the Japanese and Cambodia standard					
	Note: Examination method of each parameter is shown in					
	following table.					
Examination items	32 items in total					

Table 1 Summary of Water Sampling and Analysis Survey Method

Figure 1 Area View at the Sampling Point

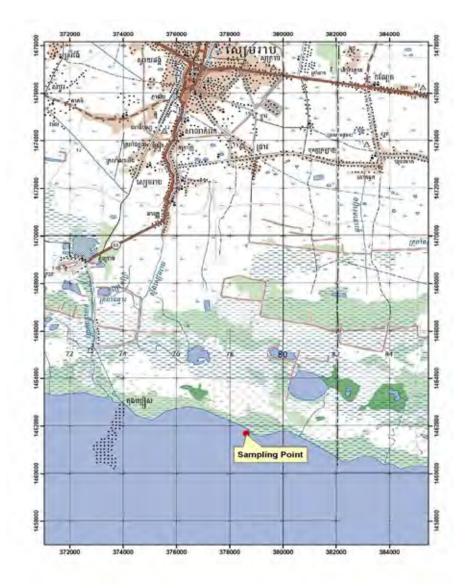


Figure 2 Location of Sampling Point

Items Nº Method 1 Dissolved Oxygen (DO) DO Meter Dried at $105^{\circ}C$ 2 Total Suspended Solid (TSS) 3 pH Meter pН 4 Odour Directly inhale 5 Directly drinking Taste Colour Nephelometric 6 7 Turbidity Photometer Shechi dist 8 Transparency 9 Nitrite (NO₂) IC (Anion) ICS 90 Dionec 10 Nitrate (NO₃) IC (Anion) ICS 90 Dionec 11 Ammonium-N IC (Cation) ICS 90 Dionec IC (Anion) ICS 90 Dionec 12 Chloride 13 Total nitrogen K₂S₂O₈ Decomposition UV 14 Total phosphate K₂S₂O₈ Decomposition Molybdenum blue 15 EPA-ICP MS (ELAN 9000) Iron Manganese EPA-ICP MS (ELAN 9000) 16 Titration 17 Hardness 18 Total Dissolved Solid (TDS) **TDS** Meter 19 Total coliform MPN Multiple Tubes 20 E-coli Microplate 21 Alkalinity Titration 22 Cyanide Pyridin - Pyrazolons Spectrophotometer 23 Mercury EPA-ICP MS (ELAN 9000) 24 EPA-ICP MS (ELAN 9000) Copper 25 Zinc EPA-ICP MS (ELAN 9000) 26 Lead EPA-ICP MS (ELAN 9000) 27 Hexavalent chromium Diphenylcarbazide (Spectrophotometer) Cadmium 28 EPA-ICP MS (ELAN 9000) 29 EPA-ICP MS (ELAN 9000) Arsenic 30 IC (Anion) ICS 90 Dionec Fluoride 31 Phenols Distitation Aceton-Methanol Extraction Spectrophotometer 32 Chlorophyll a

The list of test parameters and the test methods are shown in the following Table 2.

	Table 2	Examination	Method f	or Each I	Parameter
--	---------	-------------	----------	-----------	-----------

The results of water quality examination which has been carried out two times in 2009 are shown in the following tables.

	Tuble 5 Water Quality Data by The Team (Suite 29, 2009)									
No.	Description of Item	Unit	MIME- DWQS	S1						
Α	M	icrobiological Tes	st							
1	Total coliform	Count/100ml	0	9.3×10^2						
2	E.coli	MPN/100ml	0	56						
В	Physical and Chemical Test									
3	pH		6.5-8.5	7.7						
4	DO	mg/l	>6	5.4						
5	Total Suspended Solid (TSS)	mg/l		498						
6	Odour	-		Slight muddy						
7	Taste (Threshold taste)	-		Acceptable						
8	Color	Pt-4		100						
9	Turbidity	NTU	5	200						
10	Transparency	Dept (cm)		2.5						
11	Nitrite (NO ₂)	mg/l	3	ND<0.1						

Table 3 Water Quality Data by The Team (June 29, 2009)

12	Nitrate (NO ₃)	mg/l	50	2.53
13	Ammonium-N	mg/l	1.5	0.05
14	Chloride	mg/l	250	6.81
15	Total nitrogen	mg/l		3.50
16	Total phosphate	mg/l		1.04
17	Iron	mg/l	0.3	3.333
18	Manganese	mg/l	0.1	0.05604
19	Hardness	mg/l	300*	107
20	Total Dissolve solid (TDS)	mg/l	800	55.50
21	Alkalinity	mg/l		190.00
22	Cyanide	mg/l	0.07	ND<0.04
23	Mercury	mg/l	1	0.0018
24	Copper	mg/l	1	ND<0.0003
25	Zinc	mg/l	3	0.00648
26	Lead	μg/l	10	2.57
27	Hexavalent chromium	µg/l	50	10
28	Cadmium	µg/l	3	ND<0.2
29	Arsenic	μg/l	50	0.94
30	Fluoride	mg/l	1.5	0.23
31	Phenols	mg/l		ND<0.025
32	Chlorophyll a	µg/l		5.80

MIME DWQS: Ministry of Industry Mines and Energy, Drinking Water Quality Standard, Jan. 2004 * Hardness is expressed as mg/L CaCO₃

Table 4 Water Quarty Data by The Team (Octobel; 2003)										
No.	Description of Items	Unit	MIME- DWQS	S1						
Α	Microbiological Test									
1	Total coliform	Count/100ml	0	<30						
2	E.coli	MPN/100ml	0	0						
B	Physi	cal and Chemica	l Test							
3	Temperature	⁰ C	-	29.40						
4	pH	-	6.5-8.5	7.80						
5	Odor	-	-	Normal						
6	Taste	-	-	Normal						
7	Transparency	Dept (cm)	-	74.50						
8	Dissolved Oxygen (DO)	mg/l	>6	7.30						
9	Turbidity	NTU	5	3.5						
10	Color	Pt-4	-	30						
11	Total Suspended Solid (TSS)	mg/l	-	44.00						
12	Total Dissolved Solid (TDS)	mg/l	800	51.30						
13	Hardness	mg/l	300	83.30						
14	Alkalinity	mg/l	-	4.20						
15	Nitrite (NO2)	mg/l	3	< 0.10						
16	Nitrate (NO3)	mg/l	50	< 0.10						
17	Ammonium (NH4)	mg/l	1.5	0.24						
18	Chloride (Cl)	mg/l	250	4.02						
19	Total Nitrogen (T-N)	mg/l	-	0.58						
20	Total Phosphorus (T-P)	mg/l	-	0.26						
21	Iron (Fe)	μg/l	0.3 (mg/l)	0.51						
22	Manganese (Mn)	μg/l	0.1 (mg/l)	ND<0.3						

Table 4 Water Quality Data by The Team (October, 2009)

Existing Water Quality Data

Tonle Sap Lake

The team for Project on Capacity Building for Water Supply System in Cambodia Phase 2 carried out the water quality sampling and analysis from March to June (late of dry season to early of rainy season) in 2009 weekly at 2 points, which are both located almost in the same area of proposed intake site and the water sampling site by this JICA Study Team. The sampling was carried out 13 times (at 2 sampling points) in total and the analysis was made for 9 parameters every time. The test results are summarized in the following tables.

	Sample N. 1, Location $N = 1313574$, $E = 10352277$, Depth = 0.33m								
Testing Date	Fe mg/L	Mn mg/L	NH3 - N mg/L	SO4 mg/L	Turbidity (NTU)	Alkalinity (mg/L)	Color (TCU)	рН	Conduc. (µs/cm)
03/25/09	3.01	0.10	0.15	< 2	240.00	26.30	149.38	7.60	81.00
04/03/09	2.67	0.10	0.17	< 2	99.60	21.33	154.29	7.66	69.00
04/09/09	3.22	0.20	0.28	4.00	457.00	19.33	240.83	6.81	64.90
04/22/09	3.29	0.40	0.48	8.00	1860.00	22.67	271.15	6.66	88.80
04/29/09	2.09	0.30	0.36	8.00	356.00	69.33	131.80	6.81	172.50
05/05/09	2.94	0.00	0.21	4.00	546.00	44.67	75.36	7.24	139.30
05/18/09	3.40	1.00	0.43	6.00	1618.00	43.33	167.12	7.05	122.30
05/20/09	6.13	0.00	0.33	4.00	618.00	34.66	570.67	7.28	115.70
05/27/09	4.91	0.30	0.41	< 2	589.00	34.67	570.67	6.91	117.00
06/02/09	6.87	0.10	0.46	< 2	873.00	28.00	108.45	6.85	94.50
06/08/09	7.14	4.20	0.32	< 2	570.00	38.67	74.40	7.47	115.50
06/16/09	6.60	0.90	0.27	< 2	393.00	45.33	82.01	7.43	129.50
06/23/09	6.01	0.10	0.26	2.00	386.00	48.67	99.65	7.38	123.20
AVERAGE	4.48	0.59	0.32	2.77	661.97	36.69	207.37	7.17	110.25

 Table 5 Water Quality Data by JICA Capacity Building Project (1)

(Sampling site 1)

 Table 6 Water Quality Data by JICA Capacity Building Project (2)

	Sample	Sample N.2, Location $N = 1313370$, $E = 10352232$, Average Depth = 0.80m									
Testing Date	Fe mg/L	Mn mg/L	NH3 - N mg/L	SO4 mg/L	Turbidity (NTU)	Alkalinity (mg/L)	Color (TCU)	рН	Conduc. (µs/cm)		
03/25/09	3.78	0.30	0.28	< 2	239.00	28.00	135.41	7.50	82.00		
04/03/09	2.71	0.00	0.03	< 2	154.00	22.00	182.89	7.88	75.90		
04/09/09	3.67	0.10	0.28	3.00	309.00	21.66	267.07	7.08	65.60		
04/22/09	6.57	0.40	0.70	6.00	813.00	25.33	570.67	6.71	101.90		
04/29/09	5.47	0.10	0.25	4.00	439.00	46.66	429.48	7.59	138.00		
05/05/09	3.52	0.20	0.49	5.00	411.00	46.67	138.44	7.53	136.40		
05/18/09	1.33	0.60	0.03	5.00	485.00	42.00	61.03	7.34	124.20		
05/20/09	6.26	0.00	0.30	< 2	543.00	36.00	570.67	7.75	112.50		
05/27/09	5.58	0.20	0.29	< 2	746.00	28.67	570.67	6.99	110.00		

Supporting Report

06/02/09	13.20	0.50	0.24	< 2	548.00	33.33	85.37	6.94	107.40
06/08/09	6.99	3.60	0.20	< 2	457.00	53.33	94.94	7.65	137.70
06/16/09	6.99	0.50	0.39	< 2	571.00	44.67	63.92	7.46	120.30
06/23/09	6.01	0.50	0.36	< 2	496.00	45.33	105.62	7.81	117.10
AVERAGE	5.55	0.54	0.30	1.77	477.77	36.43	252.01	7.40	109.92

(Sampling site 2)

Table 7 Comparison with the Water Quality Standards of Drinking water

Item	Parameter	Unit	Sample 1	Sample 2	MIME, DWQS	
1	Iron, Fe	mg/L	4.48	5.55	0.3	
2	Manganese, Mn	mg/L	0.59	0.54	0.1	
3	Ammonia, NH3	mg/L	0.32	0.30	1.5	
4	Sulfate, SO4	mg/L	3.69	3.00	250	
5	Turbidity	FTU	661.97	477.77	5	
6	Alkalinity	mg/L	36.69	36.43	-	
7	Color	TCU	207.38	252.02	5	
8	pН	-	7.17	7.40	6.5-8.5	
9	9 Conductivity		110.25	109.92	1600	

Note: The comparison with the drinking water standard is only for reference. (Average results)(By the capacity building project)

The JICA Study on Integrated Master Plan for Sustainable Development of Siem Reap (2006) carried out the water quality survey in the Tonle Sap Lake and the results are summarized in the following table.

Tuble o mater Quanty	of Tome Sup Lake (December 2004), by steri bud		
Parameter	Tonel Sap	Cambodia Standards	
pH	7.2	6.5-8.5	
DO (mg/L)	6.0	2.0-7.5	
SS (mg/L)	102.	2 1-15	
COD (mg/L)	23.06	1-8	
Total-N (mg/L)	1.123	0.1-0.6	
Total-P (mg/L)	0.048	0.005-0.05	
Total Coliform (MPN/100ml)	11000	<1000	

Table 8 Water Quality of Tonle Sap Lake (December 2004), by JICA Study

(report prepared in 2006)

Drinking Water Quality Standards

The Cambodian Drinking Water Quality Standards are shown as follows:

All water supply systems should be tested for water quality parameters set out in Table 9 through Table 12 prior to commissioning to ensure compliance with DWS. Small water supply systems (those serving less than 100 people or delivering less than 10 m^3 /day) should be tested for priority parameters set out in Table 13.

Table > Dacteriological Standard				
Parameter	Maximum Value			
Thermotolerant (Fecal) Coliforms or E. coli	0 per 100 mL			
Total coliforms	0 per 100 mL			

Table 9 Bacteriological Standard

Tuble 10 morganie Constituents of Health Significance						
Parameter	Maximum Value* mg/L, (ppm)					
Arsenic	0.05					
Barium	0.7					
Cadmium	0.003					
Chromium	0.05					
Cyanide	0.07					
Fluoride	1.5 0.01					
Lead						
Mercury	0.001					
Nickel	0.02					
Nitrate as NO ₃	50					
Nitrite as NO ₂	3					
Selenium	0.01					

Table 10 Inorganic Constituents of Health Significance

* For very low concentrations, laboratory results are reported in $\mu g/L$ or ppb. Note the conversion: $1 \text{ mg/L} (\text{ppm}) = 1000 \mu g/L$ (ppb)

Parameter*	Maximum Value**		
r ai ainetei	μg/L (ppb)		
Polychlorinated biphenyls (PCBs)	0.5		
Benzene	10		
Disinfection-by-product			
Trihalomethanes	250		
Pesticides			
2,4 D	30		
Aldrin and Dieldrin	0.3		
Carbofuran	10		
Chlordane	0.2		
DDT	20		
Dichlorvos	1		
Dimethoate	6		
Endosulfan	30		
Endrin	0.6		
Glyphosate	10		
Heptachlor	0.3		
Hexaclorobenzene	1		
Methyl parathion	0.3		
Mevinphos	5		
Monocrotophos	1		
Paraquat	30		
Parathion	10		
Permethrin	20		

*Routine monitoring for organic constituents is not required unless there is a potential for contamination of water supplies. **For very low concentration, laboratory results are reported in $\mu g/L$ or ppb. Note the conversion: 1 mg/L (ppm) = 1000 $\mu g/L$ (ppb)

Table 12 Physical and Chemical Quanty (aesthetic quanty)					
Maximum Value, mg/L					
Acceptable					
Acceptable					
5 TCU					
5 NTU					
0.2-0.5					
6.5 – 8.5 (no unit)					
0.2					
1.5					
250					
1					

Table 12 Physical and Chemical Quality (aesthetic quality)

Hardness*	300		
Hydrogen Sulfide	0.05		
Iron	0.3		
Manganese	0.1		
Sodium	200		
Sulfate	250		
Total dissolved solids**	800		
Zinc	3		

* Hardness is expressed as mg/L CaCO3

**Conductivity (µS/cm) can also be measured and it is roughly equivalent to twice the TDS value.

Table 15 Thority Tarameters in Sman Water Supplies				
Parameter*	Maximum Value			
pH	6.5-8.5			
Turbidity	5 NTU			
Arsenic	0.05 mg/L			
Iron	0.3 mg/L			
Total Dissolved Solids (TDS)	800 mg/L			
Thermo-tolerant Coli-forms or E. coli	0 per 100 mL			

Table 13 Priority Parameters in Small Water Supplies

*Additional parameters such as conductivity can be monitored but these are the minimum requirements.

There are also the water quality standards for the environmental conservation controlled under MOE in Cambodia, although they are not shown in this report.

i) Type of the hazardous substances

- ii) Effluent standard for pollution sources discharging wastewater to public water areas or sewer
- iii) Type of pollution sources required having a permission from Ministry of Environment before discharging or transporting their wastewater
- iv) Water Quality Standard in public water areas for bio-diversity conservation (for River, Lakes/Reservoirs, and Coastal Water)
- v) Water Quality Standard in public water areas for public health protection

SR 4.3 REPORT of JAR TEST RESULT

1. Examination on Water Treatment Process

In Phase 2 of the Study, a series of jar test were conducted to examine appropriate water treatment process for Tonle Sap lake water. The samples for jar test were collected at the candidate intake site of Tonle Sap Lake once a month during dry season (December 2009 - March 2010). The study team examined appropriate water treatment process for the lake water in order to obtain the treated water quality to be complied with "National Drinking Water Quality Standard" (NDWQS). The details are described hereafter.

National Drinking water Quality Standard							
Parameter	pН	Turbidity	Color	Fe	Mn		
Standard	6.5 - 8.5	5 NTU	5 TCU	0.3 mg/L	0.1 mg/L		

National	Drinking	Water	Quality	Standard
1 autonui	Drinking	mater	Quanty	Standard

1-1 Jar Test-1

Jar test-1 was carried out for the sample water collected on December 25, 2009.

(1) Water quality of raw water

The water quality of sample water is shown below.

_	Table 1.1 Water Quality of Kaw Water									
	pН	Turbidity	Color		Fe (mg/L)		Mn (mg/L)			
		(FTU)	(ACU)	(TCU)	Total	Dissolved	Total	Dissolved		
	6.95	13	70	43	0.85	0.40	0.3	0.1		

(Note) Shading cells show values to comply with NDWQS.

Apparent Color and True Color

Table 1.2 and Figure 1.1 represent "Color" along with turbidity of the raw water filtrated by using different type of filter papers. The dissolved substance is defined as the substances which pass through filter media with having 1 micrometer (μ m) of pore size. Thus, True Color (TCU) is measured for the sample water filtered by No. 5C filter paper (particle size to be collected: 1 μ m, collection efficiency: 93% of 0.3 μ m Dioctyl Phthalic Acid (DOP) particle). The others are regarded as Apparent Color (ACU) which contains the suspended solids.

Sample by different filter papers	Turbidity		Color
Sample by unterent inter papers	(FTU)	Value	Remarks
1. Raw water (without any filter)	13	70	Apparent Color
2. Filtered by Coffee filter paper	10	53	
3. Filtered by Filter paper No.5A	9	52	
4. Filtered by Filter paper No.5C	8	43	True Color

 Table 1.2 Apparent Color and True Color of Raw Water

Supporting Report

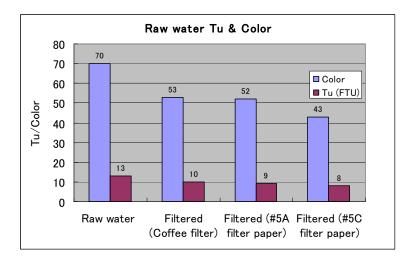


Figure 1.1 Color of Raw Water Filtrated by Different Filter Paper

Dissolved Iron (Fe) and Dissolved Manganese (Mn)

Same with the above, Dissolved Fe and Mn are regarded as the ones which pass through No.5C filter paper.

(2) Procedure of Jar Test

The jar test was carried out in the following manner.

- 1) Fill 1 L of sample water into 1 L beaker;
- For pretreatment, add different dosing rates of lime (Slaked Lime) or 0.1% HCL solution for adjusting coagulation pH;
- 3) Add 30 mg/L * of Aluminum sulfate;
- 4) Rapid mixing for 2 minutes followed by slow mixing for 10 minutes;
- 5) Settle the sample for 15 minutes;
- 6) Filtrate the settled water by No.5A^{**} filter paper and get "treated water".

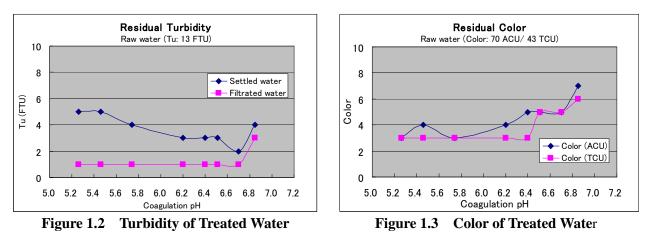
(Note) ^{*}Dosing rate of aluminum sulfate was determined by preliminary test as well as operation record of Phum Prek WTP in Phnom Pehn.

** Filterability of No. 5A filter paper is equivalent to performance of sand filter.

For water quality examination, spectrophotometer (HACH, DR/2000) was used for Turbidity, Color, Fe (Total and dissolved) and Mn (Total and dissolved). As for measuring pH, the electrode type pH meter (TOA, HM-20P) was used.

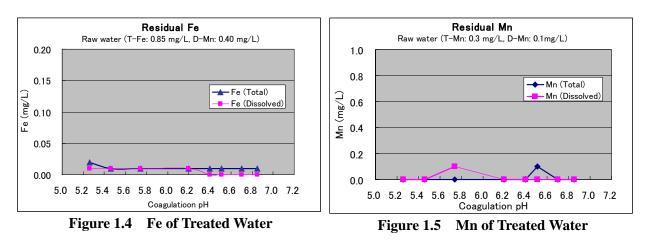
	Table 1.3 Result of Jar Test-1											
	C	hemicals use	ed		Turbidity		Turbidity (FTU) Color		Fe (mg/L)		Mn (mg/L)	
No.	Alum (mg/L)	Lime (mg/L)	1%HCL (mL)	pН	Settled water	Filt. water	(ACU)	(TCU)	Total	Dissolved	Total	Dissolved
1	30	-	1	5.26	5	1	3	3	0.02	0.01	0.0	0.0
2	30	-	0.75	5.46	5	1	4	3	0.01	0.01	0.0	0.0
3	30	-	0.5	5.74	4	1	3	3	0.01	0.01	0.0	0.1
4	30	-	0.25	6.20	3	1	4	3	0.01	0.01	0.0	0.0
5	30	-	-	6.40	3	1	5	3	0.01	0.00	0.0	0.0
6	30	2	-	6.51	3	1	5	5	0.01	0.00	0.1	0.0
7	30	4	-	6.70	2	1	5	5	0.01	0.00	0.0	0.0
8	30	6	-	6.85	4	3	7	6	0.01	0.00	0.0	0.0

Table 1.3 Result of Iar Test-1


Table 1.3 presents water quality of the treated water obtained from Jar Test-1.

(Note) Shading cells show values to comply with NDWQS.

Turbidity and Color


(3) Result of Jar Test

As for turbidity and color, it is conformed that treated water to comply with NDWQS was obtained by proper chemicals dosing. In particular, it is noted that coagulation with lower pH rang showed the favorable performance on color removal.

Fe and Mn removal

As for Fe and Mn, every sample showed the results which comply with NDWQS.

From the above results, it implies that conventional type of rapid sand filtration process be adopted for water treatment of Tonle Sap lake water. Also, it implies that pH control by post alkali will be required according to chemicals dosing rates or coagulation pH.

However, turbidity, color, dissolved Fe and Mn of the raw water examined in Jar Test-1 was rather in lower level. Thus, it is necessary to examine the samples containing high turbidity, color, Fe and Mn.

1-2 Jar Test-2

Sample water was collected on January 28, 2010. In addition, the sediment accumulated in the lake bed was also collected to prepare sample water of high turbidity.

(1) Water quality of raw water

The water quality of sample water is shown in Table 1.6.

nU	Turbidity	Co	lor	Fe (n	ng/L)	Mn (mg/L)		
pH	(FTU)	(ACU)	(TCU)	Total	Dissolved	Total	Dissolved	
7.31	21	106	66	0.70	0.29	0.5	0.3	

(Note) Shading cells show values to comply with NDWQS.

(2) Jar test

The procedure of jar test was same as in Jar Test-1. Dosing rate of Aluminum Sulfate was 30 mg/L for each sample. Coagulation pH was adjusted with 6.5 to 7.2 by adding lime or HCL.

	Cl	nemicals u	ised		Tu	Co	Color		Fe (mg/L)		Mn (mg/L)	
Sample	Alum (mg/L)	Lime (mg/L)	1%HCL (mL)	pH (FTU)	(ACU)	(TCU)	Total	Dissolved	Total	Dissolved		
1	30	6	-	7.20	3	16	11	0.03	0.02	0.1	0.1	
2	30	3	-	7.10	2	12	10	0.12	0.03	0.2	0.0	
3	30	-	-	7.05	2	7	5	0.02	0.03	0.3	0.0	
4	30	-	0.4	6.88	1	8	6	0.06	0.02	0.2	0.1	
5	30	-	0.8	6.73	1	9	4	0.01	0.01	0.1	0.2	
6	30	-	1.2	6.48	2	7	4	0.03	0.00	0.1	0.1	

Table 1.7	Result of Jar	Test-2

(Note) Shading cells show values to comply with NDWQS.

Turbidity and Color

The residual turbidity of every sample satisfied NDWQS. The treated water with coagulation pH of 7.1 or more showed higher values of residual color.

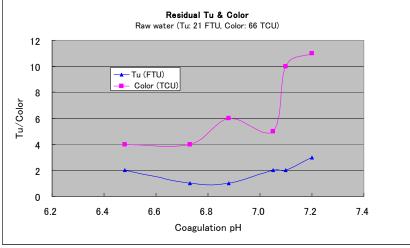
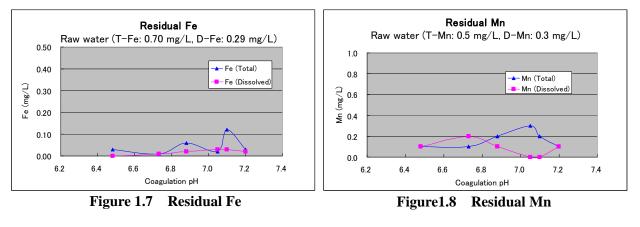



Figure 1.6 Turbidity and Color of Treated Water

Fe and Mn

As for Fe, most of the samples showed the results to meet NDWQS. While, there was instability in Mn removal, although some of the treated water complied with NDWQS.

Supporting Report

1-3 Jar Test-3

In order to examine the raw water of high turbidity (500 FTU*), the sample water was prepared by mixing Tonle Sap lake water with the sediments collected on January 28, 2010.

Note* The reason of preparing 500 FTU sample is referred to Section 2

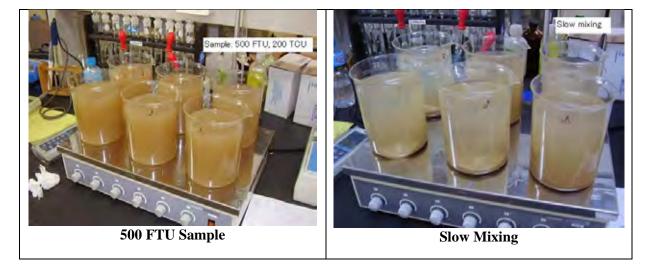
(1) Water quality of raw water

The water quality of sample water is shown in Table 1.8.

Table 1.8 Water Quality of Raw Water										
Turbidity	Co	lor	Fe (n	ng/L)	Mn (mg/L)					
(FTU)	(ACU)	(TCU)	Total	Dissolved	Total	Dissolved				
500	2,300	200	10	0.88	14	1.4				
	(FTU)	Turbidity Co (FTU) (ACU) 500 2,300	Turbidity Color (FTU) (ACU) (TCU) 500 2,300 200	Turbidity (FTU) Color Fe (n) (ACU) (TCU) Total 500 2,300 200 10	Turbidity (FTU) Color Fe (mg/L) (ACU) (TCU) Total Dissolved 500 2,300 200 10 0.88	Turbidity (FTU) Color Fe (mg/L) Mn (n (FTU) (ACU) (TCU) Total Dissolved Total 500 2,300 200 10 0.88 14				

(Note) Shading cells show values to comply with NDWQS.

(2) Jar test


The procedure of jar test was same as in Jar Test-2. Dosing rate of Aluminum sulfate was 60 mg/L * for each sample. Coagulation pH was adjusted with 5.5 to 7.1 by adding lime or 1% HCL solution.

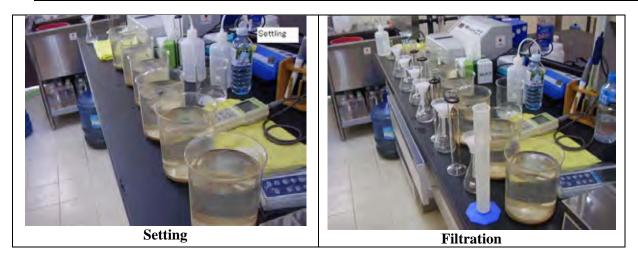

Note* 60mg/L of dosing rate is referred to Section 2

Table 1.9	Result of Jar Test-3	
-----------	-----------------------------	--

	Cl	nemicals u	sed		Tu		lor	Fe ((mg/L)	Mn (mg/L)	
No.	Alum (mg/L)	Lime (mg/L)	1%HCL (mL)	pН	(FTU)	(ACU)	(TCU)	Total	Dissolved	Total	Dissolved
1	60	12	-	7.10	2	11	7	0.04	0.02	0.4	0.3
2	60	8	-	6.98	2	10	6	0.03	0.02	0.4	0.3
3	60	4	-	6.69	1	6	3	0.01	0.01	0.4	0.2
4	60	-	-	6.29	1	5	3	0.04	0.02	0.3	0.3
5	60	-	0.5	5.95	1	4	3	0.05	0.02	0.3	0.2
6	60	-	1.0	5.53	1	8	5	0.06	0.06	0.3	0.3

(Note) Shading cells show values to comply with NDWQS.

Turbidity and Color

Residual turbidity of every treated water satisfied NDWQS. As for color, the residual color complied with the standard was obtained in the treated water with coagulation pH 5.5 to 6.7. This implies that careful operation will be required for maintaining the optimum range of coagulation pH.

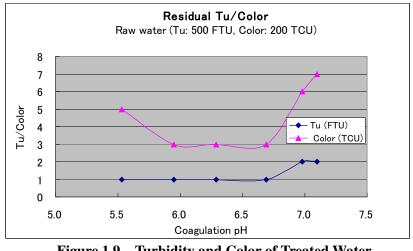


Figure 1.9 Turbidity and Color of Treated Water

Fe and Mn

As for both total and dissolved Fe, every sample of treated water showed the results to fully comply with NDWQS, although raw water contained higher concentration of Fe. On the other hand, residual Mn of treated water exceeded NDWQS of 0.1 mg/L. This implied that pre-chlorination or intermediate-chlorination be considered for raw water containing higher concentration of Mn.

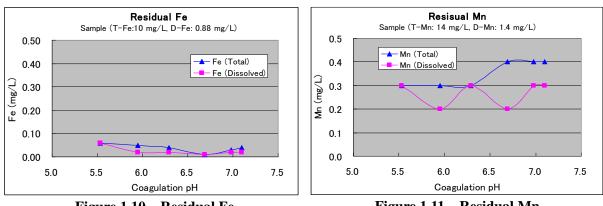
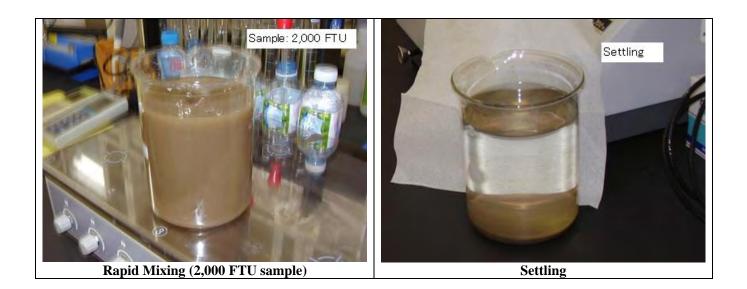



Figure 1.10 Residual Fe

Figure 1.11 Residual Mn

Additional Jar Test for 2,000 FTU Sample

Furthermore, high turbidity water of 2,000 FTU* was prepared and examined by adding 150 mg/L of Aluminum Sulfate and 8 mg/L of lime. The residual turbidity and color of the treated water was measured as 1 FTU and 3 TCU respectively.

1-4 Jar Test-4

Jar test-4 was carried out for the sample collected on February 17, 2010.

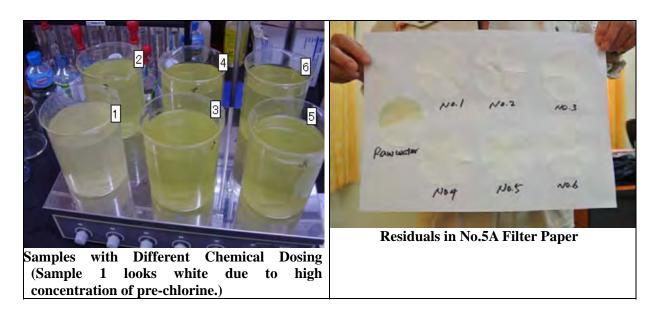
(1) Water quality of raw water

The water quality of sample water is shown in Table 1.10. The algae were observed in the sample water. It is considered high pH arises from activity of algae.

		1abic 1.1	U Water C	zuanty of Ka	aw water					
nU	Turbidity	Co	olor	Fe (n	ng/L)	Mn (mg/L)				
pН	(FTU)	(ACU)	(TCU)	Total	Dissolved	Total	Dissolved			
8.74	89	448	81	0.39	0.07	1.8	0.3			
(\mathbf{N}_{+}) (\mathbf{n}_{+}) (\mathbf{n}_{+})										

Table 1.10Water Quality of Raw Water

(Note) Shading cells show values within NDWQS.


(2) Jar test

The procedure of jar test was same as in Jar Test-3. Dosing rate of Aluminum sulfate was 30 mg/L for each sample. Coagulation pH was adjusted with 5.8 to 7.5 by adding lime or chlorine water. The reason of adding chlorine instead of HCL was to verify the effect to algae removal along with adjusting coagulation pH.

	Cl	hemicals u	sed		Tu	Co	lor	Fe ((mg/L)	Mn	(mg/L)
No	Alum (mg/L)	Lime (mg/L)	Pre-Chl. (mg/L)	pН	(FTU)	(ACU)	(TCU)	Total	Dissolved	Total	Dissolved
1	30	-	3.8	5.76	2	3	2	0.01	0.00	0.1	0.0
2	30	-	2.3	6.28	3	9	3	0.01	0.01	0.2	0.0
3	30	-	0.8	6.66	4	14	7	0.01	0.01	0.1	0.0
4	30	-	-	6.96	5	19	12	0.03	0.02	0.2	0.1
5	30	3	-	7.20	6	27	17	0.04	0.02	0.2	0.1
6	30	6	-	7.52	7	28	22	0.04	0.03	0.2	0.1

Table 1.11Result of Jar Test-4

(Note) Shading cells show values within NDWQS.

Turbidity and Color

Residual turbidity complied with NDWQS was obtained in the sample with pH of lower than 7.0. Residual color to meet NDWQS was obtained in the samples with coagulation pH of lower than 6.3. This implied that the optimum coagulation pH for both turbidity and color removal will be more or less 6.0.

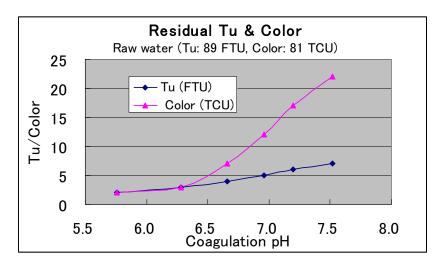
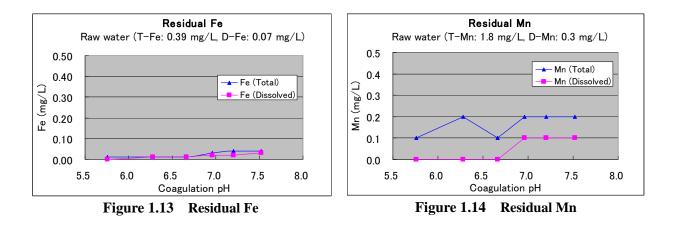



Figure 1.12 Turbidity and Color of Treated Water

Fe and Mn

As for both total and dissolved Fe, every sample of treated water showed the results to fully comply with NDWQS. As for dissolved Mn of treated water, all samples showed the results to meet NDWQS, however, the total Mn with coagulation pH of 7.0 or higher showed slightly higher compared to the standard.

1-5 Jar Test-5

Jar test-5 was carried out for the sample collected on March 17, 2010.

(1) Water quality of raw water

The water quality of sample water is shown in Table 1.12. The algae were observed in the sample water as same in the previous case.

		Iupic III		zuunty of R			
pН	Turbidity	Co	lor	Fe (r	ng/L)	Mn (i	mg/L)
рн	(FTU)	(ACU)	(TCU)	Total	Dissolved	Total	Dissolved
7.32	150	896	268	2.45	0.86	4.1	0.8
$(\mathbf{N} \mathbf{I} + \mathbf{N} \mathbf{I} + \mathbf{I})$	• 11 1	1	DWOG				

 Table 1.12
 Water Quality of Raw Water

(Note) Shading cells show values within NDWQS.

(2) Jar test

The procedure of jar test was same as in Jar Test-4. Dosing rate of Aluminum sulfate was 40 mg/L for each sample. Coagulation pH was adjusted with 5.8 to 7.5 by adding lime or chlorine water.

	Chemicals used			Tu	Color		Fe (mg/L)	Mn (mg/L)		
No.	Alum (mg/L)	Lime (mg/L)	Pre-Chl. (mg/L)	pН	(FTU)	(ACU)	(TCU)	Total	Dissolved	Total	Dissolved
1	40	-	3.8	5.72	3	12	4	0.04	0.01	0.1	0.0
2	40	-	3.0	5.86	3	10	4	0.04	0.02	0.1	0.0
3	40	-	2.3	6.02	2	11	3	0.06	0.03	0.1	0.0
4	40	-	0.8	6.29	3	13	6	0.06	0.03	0.2	0.0
5	40	3	-	6.52	2	11	8	0.06	0.02	0.2	0.0
6	40	6	-	6.70	8	38	23	0.13	0.10	0.2	0.1

Table 1.13Result of Jar Test-5

(Note) Shading cells show values within NDWQS.

Turbidity and Color Removal

Residual turbidity complied with NDWQS was obtained in the samples with pH of lower than 6.5. Residual color to meet the standard was obtained in the samples with coagulation pH of lower than 6.0. Again, this implied that the optimum coagulation pH exists in rather lower range. It is considered that the algae prevail compared to clay particles in the raw water of dry season, which relates to higher color and requires a larger dosing rate of Aluminum or pre-chlorine with lower range of coagulation pH.

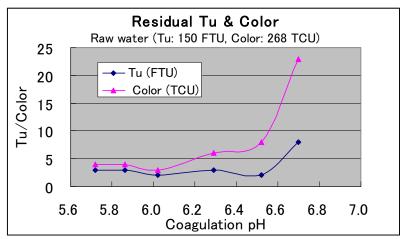


Figure 1.15 Turbidity and Color of Treated Water

Fe and Mn

As for both total and dissolved Fe, all samples except for sample No.6 showed the results to comply with NDWQS. Regarding the residual Mn, as same in residual color, higher removal was obtained in the samples with lower coagulation pH.

1-6 Jar Test-6

Jar test-6 was carried out for the same sample examined in Jar Teat-6. The purpose of this examination was to verify whether any difference in water quality of the treated water exists by using HCL in stead of chlorine for adjusting coagulation pH with lower range.

(2) Jar test

The procedure of jar test was same as in Jar Test-5. Dosing rate of Aluminum sulfate was 40 mg/L for each sample. Coagulation pH was adjusted with 5.4 to 6.3 by adding 0.1% HCL solution. Water quality analysis was carried out for turbidity, color, total Mn and dissolved Mn and compared with the results of Jar Test-5.

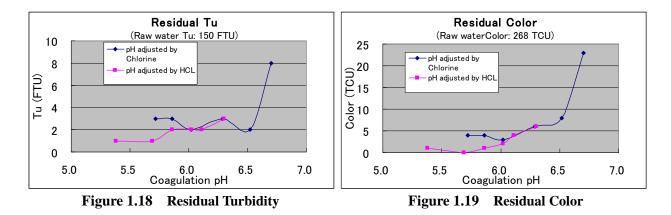
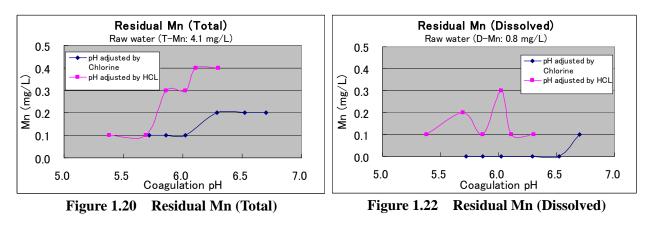

			Table 1.1	- ACSUI	UI Jai Ie	51-0	
Chemicals used				Color	Mn (mg/L)		
Sampl	Alum	0.1%HC	pН	Tu			
e	(mg/L)	L	pm	(FTU)	(TCU)	Total	Dissolved
		(mL)					
1	40	1.25	5.38	1	1	0.1	0.1
2	40	1.0	5.69	1	0	0.1	0.2
3	40	0.75	5.86	2	1	0.3	0.1
4	40	0.5	6.02	2	2	0.3	0.3
5	40	0.25	6.11	2	4	0.4	0.1
6	40	-	6.30	3	6	0.2	0.1

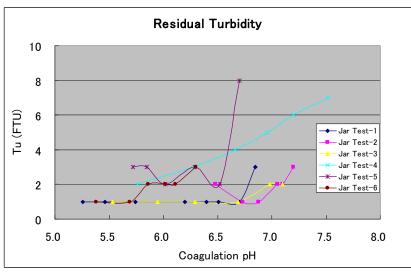
Table 1.14	Result of Jar Test-6

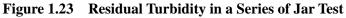
(Note) Shading cells show values within NDWQS.


Turbidity and Color

In comparison between the result of previous Jar Test-5 and this Jar test 6, the residual turbidity and color in Jar test-6 showed the tendency of better water quality in the coagulation pH of 6.0 or lower.

<u>Mn</u>


On the other hand, the residual Mn showed significant difference compared to the result of the previous Jar Test-5. It was verified that the pre-chlorine has a significant advantage for Mn removal.



1-7 Conclusion

Water quality of the treated water

From a series of jar test for Tonle Sap lake water, the results of water quality of the treated water are shown in the figures by parameter as follow.

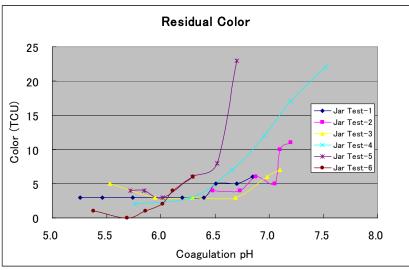


Figure 1.24 Residual Color in a Series of Jar Test

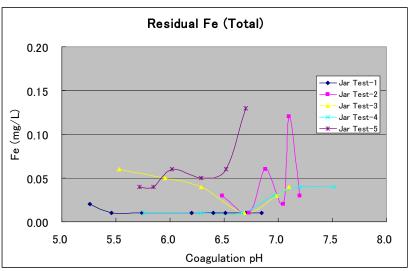
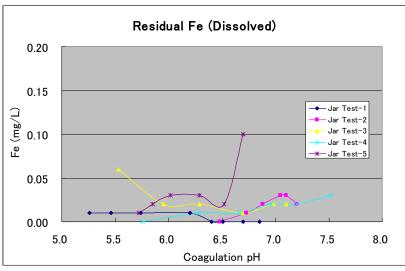




Figure 1.25 Residual Fe (Total) in a Series of Jar Test

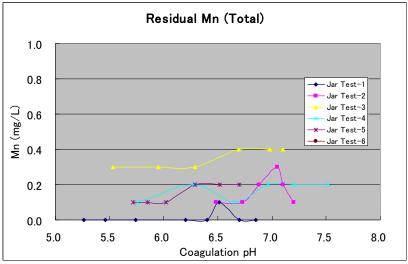
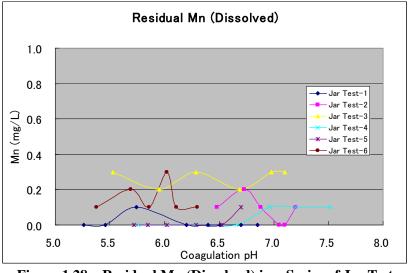
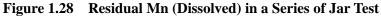




Figure 1.27 Residual Mn (Total) in a Series of Jar Test

Findings and Conclusions

The findings and conclusions of examination on water treatment process for Tonle Sap lake water through a series of the jar test are:

- 1) It was confirmed that turbidity, color, Fe (Total and Dissolved) and Mn (Total and Dissolved) of the treated water complied with NDWQS by appropriate chemicals feeding.
- 2) It is considered that the organic substances such as algae are the factor of high turbidity as well as high color of the Tonle Sap lake water in dry season.
- 3) In particular, it was observed that raw water color significantly decreased in the coagulation pH range of around 6.0. This implies the necessity of post-alkali in order to maintain pH of the tap water within NDWQS.
- 4) Likewise, algae were significantly removed in lower coagulation pH.

5) The significant difference was observed in Mn removal by the pre-treatment using chlorine. Based on above, it is considered that the conventional type of rapid sand filtration system with pre-chlorine and post-lime will be appropriate water treatment process for Tonle Sap lake water.

2. Study on Chemicals and Dosing Rates

2-1 Water Quality of Phum Prek WTP

Presently, available water quality data of Tonle Sap Lake is very limited. However, it is considered that water quality of the Phum Prek WTP in Phnom Phen City will be useful for examining water treatment process for Tonle Sap Lake water, since the WTP intakes the raw water from the Tonle Sap River, a tributary of the Mekong River. The river water flows down from the Tonle Sap Lake during dry season, while the water from the Mekong River flows into the Tonle Sap Lake through the Tonle Sap River. The seasonal change of water level of the Tonle Sap River reaches to 10 m same as that of the Tonle Sap Lake.

Thus, it is considered that raw water quality of Phum Prek WTP will be regarded as almost same as Tonle Sap lake water, although the water quality of the lake water through the year has not been available.

In examining water treatment process as well as chemicals dosing rate for lake water, the data and experiences at Phum Prek WTP will be useful reference materials.

(1) Available Data on Water Quality for Latest 4 Years

Table 2.6 - Table 2.13 represent the monthly data of the raw water and treated water quality of the WTP for latest 4 years (2006-2009). Among them, the important parameters (pH, turbidity, color, alkalinity, Fe, Mn) in examining water treatment process are excerpted as below.

			pН		Tu	bidity (NT	U)	C	olor (TCU)	Alka	alinity (mg	/L)	Fe (mg/L)	Mn (mg/L
		max	ave	min	max	ave	min	max	ave	min	max	ave	min	ave	ave
06	Jan	7.54	7.18	7.05	118	51	30	20	15	9	37	39	40	0.76	0.10
	Feb	7.69	7.27	7.07	105	54	33	22	16	10	34	38	40	0.89	0.10
	Mar	7.76	7.44	7.27	127	61	40	42	20	9	34	33	43	0.90	0.00
	Apr	7.84	7.56	7.10	110	74	48	62	39	7	36	43	53	1.63	0.30
	Mav	7.96	7.48	7.10	130	62	13	61	22	3	45	60	80	1.26	0.10
	Jun	7.85	7.57	7.17	207	172	153	34	13	5	52	64	76	0.23	0.10
	Jul	7.62	7.44	7.24	500	254	45	74	20	8	37	45	57	3.14	0.10
	Aug	7.69	7.39	7.13	680	381	230	62	20	11	30	36	45	3.85	0.10
	Sep	7.41	7.14	6.91	379	124	27	28	19	8	40	44	48	0.14	0.20
	Oct	7.93	7.20	6.96	264	80	20	54	22	21	30	38	44	0.13	0.20
	Nov	7.13	7.01	6.95	200	105	70	22	13	6	30	36	42	0.07	0.10
	Dec	7.36	7.20	7.06	115	71	48	15	11	6	32	40	45	0.12	0.10
07	Jan	7.21	7.09	6.95	158	63	40	24	17	11	30	35	40	0.10	0.20
• ·	Feb	7.20	7.10	7.02	110	64	50	35	25	16	30	36	40	0.70	0.10
	Mar	7.15	6.98	6.79	125	53	35	47	26	18	28	33	38	0.35	0.10
	Apr	7.43	6.99	6.65	75	51	33	53	29	6	26	37	60	0.22	0.20
	May	7.69	7.30	6.74	110	48	18	149	40	5	26	49	70	0.28	0.10
	Jun	8.37	7.17	6.52	155	63	13	190	97	12	22	41	70	0.20	0.10
	Jul	7.45	7.22	6.77	451	141	45	202	72	28	24	44	70	1.66	0.06
	Aug	7.75	7.36	7.05	860	394	50	112	59	23	n.a.	46	64	0.17	0.03
	Sep	7.57	7.30	6.98	390	227	80	81	33	11	38	47	54	0.06	0.06
	Oct	7.48	7.20	7.04	386	140	50	81	45	8	34	42	52	0.14	0.05
	Nov	7.20	7.03	6.52	120	81	45	32	22	12	30	36	44	0.01	0.08
	Dec	7.36	6.95	6.62	158	102	50	30	24	15	30	33	38	n.a.	0.05
08	Jan	7.14	6.93	6.75	210	91	46	37	24	14	32	34	36	0.10	0.001
	Feb	7.04	6.92	6.82	141	79	54	53	32	18	30	33	36	0.22	0.116
	Mar	7.05	6.92	6.78	109	86	69	65	41	18	30	32	36	0.52	0.000
	Apr	7.51	7.03	6.80	145	89	51	104	50	8	28	37	60	0.41	0.119
	May	7.79	7.22	6.90	134	79	26	204	60	10	28	48	65	0.03	0.046
	Jun	7.32	7.16	6.98	303	142	61	91	53	23	44	51	64	0.13	0.049
	Jul	7.53	7.29	7.15	484	182	78	111	53	26	44	51	58	0.27	0.042
	Aug	7.41	7.30	7.17	749	427	196	92	52	22	42	52	64	0.13	0.082
	Sep	7.44	7.33	7.33	309	152	33	125	57	20	38	52	62	0.18	0.008
	Oct	7.39	7.16	7.16	93	49	32	52	25	15	42	48	56	0.28	0.006
	Nov	7.22	7.08	7.08	93	63	41	35	22	14	32	38	44	0.11	0.000
	Dec	7.23	7.14	7.14	100	79	64	53	26	15	34	38	48	0.10	0.040
09	Jan	7.17	7.10	6.95	104	86	63	49	34	15	30	34	38	0.19	0.032
-	Feb	7.14	7.07	6.98	143	83	58	52	38	24	30	33	36	0.19	0.024
	Mar	7.15	7.06	6.88	152	101	59	257	75	23	30	33	38	0.52	0.000
	Apr	7.28	7.06	6.91	175	118	86	260	147	65	30	33	59	0.79	0.068
	May	7.85	7.21	6.93	213	125	38	256	125	10	28	46	70	0.92	0.024
	Jun	7.71	7.43	7.23	108	91	71	106	62	26	42	50	62	0.23	0.023
	Jul	7.45	7.33	7.19	584	252	71	103	57	21	36	47	60	0.33	0.020
	Aug	7.40	7.29	7.16	318	174	50	42	25	11	32	36	54	0.16	0.003
	Sep	7.39	7.25	7.11	226	92	32	50	28	14	32	39	48	0.08	0.009
	Oct	7.45	7.10	6.90	545	172	22	87	34	12	27	33	40	0.35	0.000
	Nov	7.19	7.04	6.84	132	96	61	26	16	6	26	29	33	0.13	0.010
	Dec	7.21	7.13	7.05	673	160	59	27	14	6	30	31	32	0.10	0.000

Table 2.1Water Quality of Raw Water (2006-2009)

			pН		Tu	rbidity (NT	U)	C	Color (TCU)	Fe (mg/L)	Mn (mg/L
	Ī	max	ave	min	max	ave	min	max	ave	min	ave	ave
06	Jan	7.42	6.96	6.70	1.50	0.77	0.26	5.00	3.30	1.70	0.03	0.10
	Feb	7.42	6.97	6.74	1.70	0.82	0.33	5.34	2.79	0.94	0.03	0.10
	Mar	7.38	7.08	6.75	1.50	0.90	0.45	5.30	2.54	0.56	0.04	0.00
	Apr	7.56	7.15	6.73	3.00	1.16	0.31	12.6	4.97	2.54	0.03	0.40
	May	7.53	7.05	6.71	1.60	0.55	0.18	3.59	1.93	0.29	0.01	0.10
	Jun	7.54	7.22	6.98	0.85	0.29	0.13	4.32	1.16	0.14	0.01	0.10
	Jul	7.28	6.92	6.67	1.10	0.38	0.12	3.30	1.06	0.10	0.02	0.20
	Aug	7.30	6.96	6.74	1.50	0.37	0.16	4.49	0.94	0.20	0.01	0.10
	Sep	7.12	6.93	6.70	0.87	0.32	0.14	2.57	1.33	0.43	0.01	0.20
	Oct	7.61	6.93	6.50	0.76	0.32	0.15	3.34	1.37	0.21	0.01	0.20
	Nov	7.06	6.84	6.67	0.85	0.32	0.12	4.70	1.86	0.39	0.02	0.10
	Dec	7.25	7.00	6.80	0.90	0.42	0.16	4.20	2.14	0.75	0.00	0.10
07	Jan	7.01	6.86	6.71	1.00	0.67	0.31	4.60	3.30	2.30	0.02	0.20
	Feb	7.00	6.90	6.70	1.50	0.66	0.35	5.00	3.00	2.00	0.00	0.10
	Mar	6.95	6.71	6.50	1.20	0.70	0.30	5.00	3.00	2.00	0.03	0.10
	Apr	7.13	6.76	6.50	1.80	0.55	0.16	5.00	3.00	1.00	0.01	0.10
	May	7.65	7.10	6.38	2.20	0.58	0.15	6.13	2.56	0.72	0.03	0.00
	Jun	7.83	6.81	6.05	4.00	0.94	0.16	9.80	3.48	0.78	0.02	0.20
	Jul	7.27	6.96	6.37	1.10	0.38	0.12	5.40	1.51	0.45	0.02	0.03
	Aug	7.56	6.90	6.65	0.72	0.35	0.16	2.42	0.87	0.12	0.01	0.03
	Sep	7.47	7.11	6.78	0.65	0.32	0.13	3.57	1.18	0.64	0.01	0.05
	Oct	7.26	7.06	6.81	2.50	0.42	0.12	5.21	1.30	0.63	0.01	0.05
	Nov	7.64	7.02	6.50	1.20	0.51	0.18	3.01	1.93	0.68	0.01	0.10
	Dec	7.31	6.92	6.50	1.00	0.49	0.17	3.01	1.71	0.78	0.00	0.03
08	Jan	8.83	6.92	6.60	2.70	0.48	0.15	4.35	2.16	0.72	0.06	0.000
	Feb	6.93	6.80	6.69	0.77	0.50	0.25	4.10	2.33	1.31	0.02	0.000
	Mar	6.83	6.68	6.58	0.98	0.48	0.25	4.27	2.60	0.96	0.01	0.000
	Apr	7.21	6.73	6.51	2.10	0.59	0.25	6.76	3.34	1.67	0.04	0.157
	May	7.50	6.90	6.50	0.83	0.44	0.24	4.06	1.88	0.69	0.01	0.044
	Jun	7.06	6.89	6.67	0.38	0.26	0.14	2.12	1.08	0.34	0.02	0.005
	Jul	7.35	7.04	6.85	0.81	0.30	0.16	1.93	0.74	0.11	0.01	0.059
	Aug	7.25	7.10	6.89	0.91	0.38	0.16	2.47	1.14	0.33	0.01	0.064
	Sep	7.33	7.12	6.93	2.10	0.94	0.40	11.89	2.82	0.53	0.03	0.043
	Oct	7.13	6.99	6.87	1.57	1.12	0.77	5.15	3.67	1.76	0.04	0.000
	Nov	7.05	6.87	6.71	1.50	1.12	0.81	5.27	3.29	1.43	0.02	0.015
	Dec	6.95	6.89	6.82	1.82	1.22	0.89	7.07	4.39	2.47	0.04	0.025
09	Jan	6.95	6.75	6.63	2.85	1.94	1.33	10.18	6.60	3.60	0.09	0.016
	Feb	6.75	6.65	6.54	2.67	1.66	1.13	8.91	5.93	3.43	0.09	0.021
	Mar	6.74	6.62	6.52	2.23	1.50	0.57	9.58	4.92	2.28	0.01	0.000
	Apr	6.78	6.57	6.40	2.44	1.19	0.60	10.64	3.89	2.52	0.05	0.009
	May	7.16	6.76	6.51	5.50	1.62	0.52	10.22	4.13	1.09	0.05	0.073
	Jun	7.21	6.93	6.73	1.27	0.71	0.56	8.65	2.10	1.18	0.01	0.001
	Jul	7.06	6.83	6.66	0.95	0.75	0.39	3.35	1.87	1.08	0.02	0.007
	Aug	7.02	6.84	6.64	0.98	0.69	0.50	2.80	1.09	0.30	0.01	0.000
	Sep	7.03	6.87	6.66	1.27	0.75	0.55	3.60	1.80	0.49	0.03	0.001
	Oct	7.01	6.82	6.51	1.44	0.91	0.58	5.05	2.77	0.75	0.01	0.001
	Nov	7.24	6.97	6.79	1.01	0.67	0.37	6.86	2.50	1.04	0.01	0.002
	Dec	7.27	7.13	6.98	1.40	0.71	0.30	4.31	2.41	1.31	0.02	0.019

Table 2.2Water Quality of Treated Water (2006-2009)

Turbidity and Color of the Raw Water

Figure 2.1 and Figure 2.2 presents monthly data of turbidity and color of raw water respectively. It is generally expected that some correlation exists between turbidity and color, however, there is no significant correlation in the case of Phum Prek WTP as shown in Figure 2.3.

The peak of turbidity has occurred usually in August in rainy season, and that of color has occurred in the end of dry season as shown in Figure 2.4. Thus, peak time of turbidity and color is different.

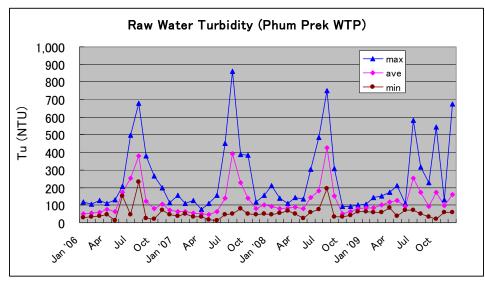


Figure 2.1 Raw Water Turbidity

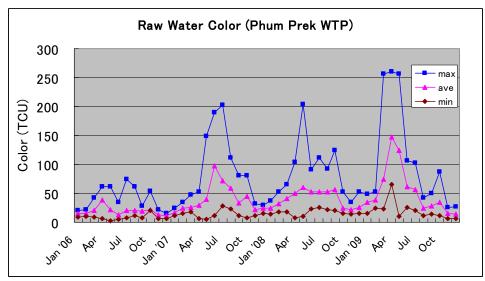
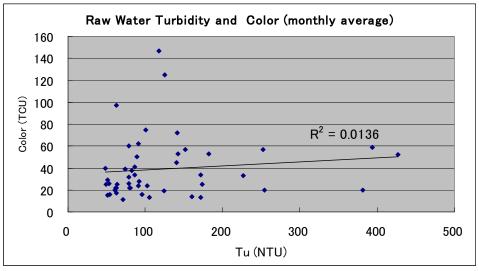
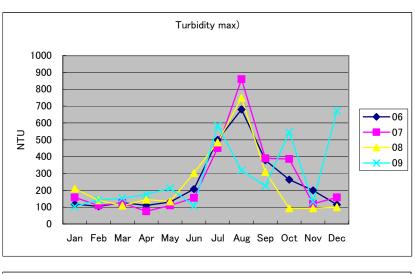




Figure 2.2 Raw Water Color

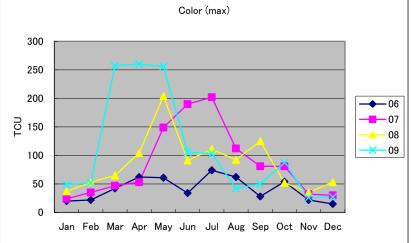
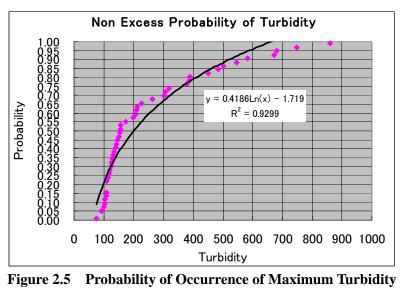
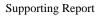




Figure 2.4 Peak Time of Turbidity and Color

Based on the data on raw water turbidity, the maximum turbidity is estimated to be 600 NTU with 95% non excess probability and 500 NTU with 90% non excess probability.

Turbidity and Color of the Treated Water

On the other hand, differently from the case of raw water, a significant correlation between turbidity and color of the treated water is observed as shown in Figure 2.6.

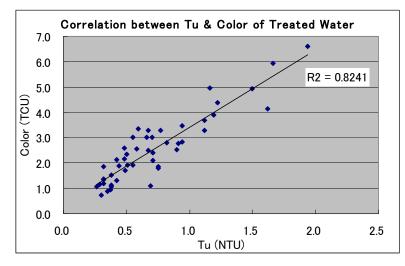


Figure 2.6 Correlation between Turbidity and Color of Treated Water

Fe and Mn

Figure 2.7 and Figure 2.8 shows monthly average of dissolved Fe and Mn, respectively. Fe of raw water has been well removed. As for dissolved Mn, water quality of the treated water shows the values complied with NDWQS. However, it is noted that dissolved Mn in raw water shows the tendency of decreasing.

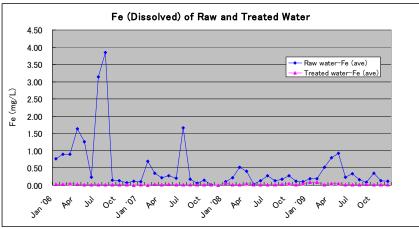


Figure 2.7 Fe (Dissolved) of Raw and Treated Water

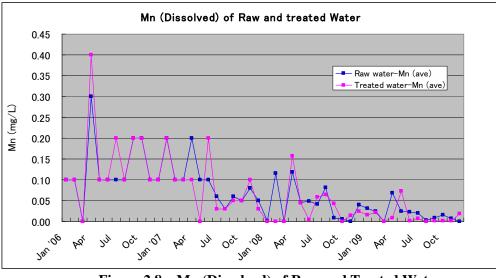


Figure 2.8 Mn (Dissolved) of Raw and Treated Water

<u>Algae</u>

Table 2.3 represents species and number of the algae (Cyanophytes, Diatomas and Chlorophytes) contained in the raw, settled, filtrated and distributed water for the 6th week (February 1 - 7) 2010. This explains that the algae were removed by the conventional water treatment process (pre-chlorine + coagulation + sedimentation + filtration) of Phum Prek WTP.

From the data, it is calculated that 99.1% of Cyanophytes, 99.2% of Diatomas, 97.1% of Chlorophytes were removed.

With regard to this, the ultimate algae removal will be expected by further improvement of operation of the WTP.

					F 11	
Classification	Species	Unit	Raw water		Filt. water	
	Anabaena macropsora	cel, colo	1000	66	14	6
	Anabaena sp.	colonies	2180	<u>90</u> 4	54 0	<u>28</u> 0
	Anabaena virquieri	colonies	10 20	4 56	4	0
	Aphanocapsa sp. Anaphanothes sp.	colonies colonies	16	10	2	0
	Croococus sp.	cells	40	21	0	0
Cuananhutaa	Croococus sp.	cells	22	168	8	0
Cyanophytes	Microcystis aeroginosa	colonies	340	0	0	0
	Microcystis wesenbergii	colonies	45	13	0	0
	Oscilatoria tenuis	colonies	20	40	0	0
	Oscilatoria sp.	colonies	40	22	0	0
	Phormidium tenue	colonies	26	12	8	0
	Total number of cells	& colonies	3759	502	90	34
	Achnathes afinis	cells	578	336	4	0
	Aulacoseira distans	cells	50	0	0	0
	Aulacoseira granulata	cells	170	0	0	0
	Coconeis placenta	cells	1	0	0	0
	Cyclotella sp.	cells	88	39	10	8
	Cymbella prostita	cells	7	2	0	0
	Cymbella ventricosa	cells	10	4	0	0
	Diatoma sp.	cells	23	8	0	0
Diatoms	Gemphonema sp.	cells	7	2	0	0
	Gyrosigma spenserii	cells	9	5	0	0
	Navicula sp.	cells	30	12	3	1
	Nitzchia actinastroides	cells	72	16	0	0
	N. Palea	cells	31	5	0	0
	Surirella ovata	cells	8	3	0	0
	Synedra acus	cells	6	2	0	0
	Synedra ulna	cells	16	8	0	0
	Total number of		1106	442	17	9
	Ankistrodesmus falcatus		51	28	5	0
	Chlamydomonas		720	85	54	10
	Closterium moniliferum		47	22	2	4
	Coccomyxa sp.		54810	22432	1796	1580
	Coelastrum cambricum		20	12	4	0
	Cosmarium sp.		20 40	<u>18</u> 16	4 6	<u>4</u> 0
	Crucigenia crucifera Crucigenia lauterbornii		10	4	0	0
	Crucigenia tetrapedia		30	15	4	0
	Dictyospharium sp.		20	10	2	2
	Eudorina elegans		10	4	0	0
	Elakatothrix gelatimosa		50	30	4	3
	Kirchneriella contrta		40	14	2	0
Chlorophytes	Kirchneriella lunaris		50	11	4	0
	Hormidium sp.		70	50	0	0
	Oocystis sp.		50	17	2	6
	Pandrina morum		40	10	0	0
	Periastrum simplex		10	2	0	0
	Periastrum duplex		20	6	0	0
	Planktpsharia sp.		96	20	0	0
	Scenedesmus opoliensis		20	5	0	0
	Scenedesmus sp.		24	7	0	0
	Selenastrum gracile		11	2	0	0
	Sphaerocystis sp.		18	3	0	0
	Spondylosium sp.		8	2	0	0
	Total number of colon	ies & cells	56285	22825	1889	1609

 Table 2.3
 Result of Algae

2-2 Study on Chemicals to be Used

(1) Chemicals to be used

Based on the results of a series of jar test as well as experiences at the Phum Prek WTP, the chemicals to be used are proposed as below.

- 1) Solid Aluminum Sulfate (as coagulant
- 2) Slaked Lime (as pre-alkali and post-alkali)
- 3) Chlorine (as pre-chlorine and post-chlorine)

		enemieus Dosing Rutes (monthly uveruge, 20						
Month	Alum (mg/L)	Lime (mg/L)	Chlorine (mg/L)					
Jan.	16.23	5.87	2.09					
Feb.	18.53	8.40	2.09					
Mar.	25.56	12.39	2.20					
Apr.	35.28	14.19	2.63					
May	37.88	7.83	2.69					
Jun.	18.79	6.84	2.48					
Jul.	19.43	8.46	2.07					
Aug.	16.23	7.30	2.21					
Sep.	16.41	7.80	1.72					
Oct.	17.38	6.43	1.56					
Nov.	18.86	6.65	2.00					
Dec.	19.51	8.35	2.03					

 Table 2.4
 Chemicals Dosing Rates (Monthly average, 2009)

(2) Dosing Rates

As reference materials in designing chemicals feeding equipment, dosing rates of respective chemicals were examines as follow.

Solid Aluminum Sulfate

Figure 2.9 represents the relation between raw water turbidity and dosing rates of Aluminum Sulfate which was obtained from the results of a series of jar test described above. In addition, it is estimated that the maximum turbidity is 600 NTU with 95% non excess probability and 500 NTU with 90% non excess probability in case of Phum Prek WTP as described in the above Sec. 2.1.

Thus, it is considered that some 60 mg/L of Aluminum Sulfate as a maximum rate will be appropriate.

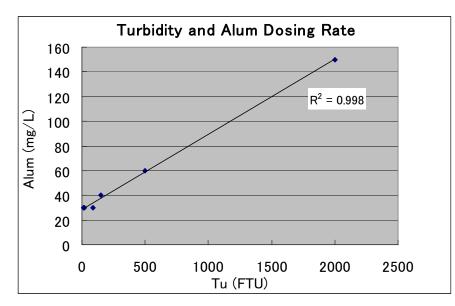


Figure 2.9 Raw Water Turbidity and Aluminum Dosing Rate

Slaked Lime

The raw water alkalinity of Phum Prek WTP for the latest 4 years has varied from 22 mg/L to 80 mg/L. Alkalinity is important parameter along with pH in water treatment with using Aluminum Sulfate. In the viewpoint of designing chemicals equipment, it is reasonable to refer to the minimum values of raw water alkalinity. The mean of the minimum values of alkalinity is calculated to be 30 mg/L, which is considered to be reasonable to determine dosing rate of pre-lime.

In addition, as observed in jar test, it is considered that pH control at outlet of the WTP be required according to raw water quality and/ or coagulation pH.

For example, Table 2.5 represents Langelier's Index of Phum Prek WTP which was calculated by applying Nodel method^{*} with the water quality data of Year 2009. This Langelier's Index indicates the characteristic of corrosive water.

Thus, at this moment, it is considered that a total of some 60 mg/L of Slaked Lime for pre and post alkali as maximum.

	Table 2.5 Langener S muck (Wontiny average, 2007)											
Month	pН	TDS	Temp.	Ca-Hardness	Alkalinity	pHs	Langelier's					
WOItti	pm	(mg/L)	(°C)	(mg/L)	(mg/L)	pris	Index					
Jan.	6.75	44	26.0	32	25	8.9	-2.15					
Feb.	6.65	44	28.2	32	25	8.8	-2.15					
Mar.	6.62	48	30.0	34	33	8.9	-2.28					
Apr.	6.57	58	30.6	43	20	8.8	-2.23					
May	6.76	74	30.3	58	30	8.4	-1.64					
Jun.	6.93	78	29.5	54	39	8.4	-1.47					

 Table 2.5
 Langelier's Index (Monthly average, 2009)

Supporting Report

The Preparatory Study on The Siem Reap Water Supply Expansion Project

Jul.	6.83	66	28.6	46	35	8.5	-1.67
Aug.	6.84	53	28.5	41	32	8.6	-1.76
Sep.	6.87	54	28.7	36	30	8.6	-1.73
Oct.	6.82	48	28.4	35	26	8.7	-1.88
Nov.	6.97	48	28.3	34	25	8.8	-1.83
Dec.	7.13	53	27.6	43	29	8.6	-1.47

[Nodel Method]*

Langelier's Index = pH - pHs

pHs = (9.3 + A value + B value) - (C value + D value)

TDS (mg/L)	A value	Ca− Hardness (mg/L)	C value	Alkalinity (mg/L)	D value
50~ 300	0.1	10~11	0.6	10 ~11	1
400~ 1,000	0.2	12 ~ 13	0.7	12 ~ 13	1.1
		14 ~17	0.8	14 ~17	1.2
Temp. (°C)	B value	18 ~22	0.9	18 ~22	1.3
0~1	2.6	23 ~27	1	23 ~27	1.4
2~6	2.5	28~34	1.1	28~35	1.5
7~9	2.4	35~43	1.2	36 ~ 44	1.6
10~ 13	2.3	44 ~ 55	1.3	45 ~ 55	1.7
14~ 17	2.2	56 ~69	1.4	56 ~ 69	1.8
18~ 21	2.1	70 ~ 87	1.5	70 ~ 88	1.9
22~ 27	2	88~110	1.6	89~110	2
28~ 31	1.9	111~138	1.7	111~139	2.1
32~ 37	1.8	139~174	1.8	140~176	2.2
38~ 43	1.7	175~220	1.9	177~220	2.3
44~ 50	1.6	230~270	2	230~270	2.4
51~ 56	1.5	280~340	2.1	280~350	2.5
57~ 63	1.4	350~430	2.2	360~440	2.6
64~ 71	1.3	440~550	2.3	450~550	2.7
72~ 81	1.2	560~690	2.4	560~690	2.8
		700~870	2.5	700~880	2.9
		800~ 1,000	2.6	890~ 1,000	3

<u>Chlorine</u>

Chlorine will be used not only for disinfection as post-chlorine, but also pre-chlorine as pretreatment against the dissolved Fe, dissolved Mn, ammonium nitrogen, algae, etc. Chlorine will be also utilized for adjusting coagulation pH. Referring to the results of jar test and the experiences at Phum Prek WTP, it is considered that maximum 5 mg/L for pre-chlorine and 2 mg/L for post-chlorine will be reference value.

	្ពាន៩លិតកម្មនិ ខ ត្តត់:	zvun														
	ຮ້ ຍນຢ ໜີສສ ູ				Phum		r Treatmen				-					
ខ្មែកពិគេ	ษาธร์				Raw W	ater Qu	ality in	2006								
	Month			1	2	3	4	5	6	7	8	9	10	11	12	Yearly
	Number of day			31	28	31	30	31	30	31	31	30	31	30	31	Min-Aver-Max
	Parameter	Unit														
			Minimum	9	10	9	7	3	5	8	11	8	21	6	6	3.0
1	Color	тси	Average	15	16	20	39	22	13	20	20	19	22	13	11	19
			Maximum	20	22	42	62	61	34	74	62	28	54	22	15	74
			Minimum	26.7	26.3	28.0	28.3	28.4	29.3	27.0	26.0	27.1	26.2	28.0	25.2	25.2
2	Temperature	•c	Average	27.9	28.9	29.6	30.1	30.5	30.7	28.3	27.6	28.6	28.3	29.0	27.7	28.9
1			Maximum	30.0	31.0	30.9	31.7	32.5	32.5	29.4	29.7	29.8	29.7	31.0	30.4	32.5
			Minimum	92	86	86	90	102	153	83	79	87	68	76	84	68
3	Conductivity	μS/cm	Average	94	90	92	103	137	172	117	89	96	87	82	90	104
			Maximum	97	95	114	141	207	207	165	101	104	97	88	93	207
			Minimum	7.05	7.07	7.27	7.10	7.10	7.17	7.24	7.13	6.91	6.96	6.95	7.06	6.91
4	рН		Average	7.18	7.27	7.44	7.56	7.48	7.57	7.44	7.39	7.14	7.20	7.01	7.20	7.32
	1		Maximum	7.54	7.69	7.76	7.84	7.96	7.85	7.62	7.69	7.41	7.93	7.13	7.36	7.96
			Minimum	30	33	40	48	13	153	45	230	27	20	70	48	13
5	Turbidity	NTU	Average	51	54	61	74	62	172	254	381	124	80	105	71	124
			Maximum	118	105	127	110	130	207	500	680	379	264	200	115	680
			Minimum	28	21	28	29	8	12	31	116	16	14	62	37	8
6	Suspended Solids	mg/l	Average	47	49	47	46	37	38	205	282	92	65	86	55	87
			Maximum	114	102	98	79	81	96	431	474	276	220	121	84	474
			Minimum	46	43	43	45	60	77	42	40	44	34	38	42	34
7 1	otal dissolved solids	mg/l	Average	47	45	46	57	69	86	59	45	48	44	41	45	53
}	1		Maximum	49	48	57	70	104	104	83	51	52	49	44	47	104
			Minimum	0.089	0.193	0.170	0.060	0.033	0.023	0.051	0.055	0.013	0.070	0.070	0.067	0.013
8	Absorbance		Average	0.117	0.105	0.201	0.227	0.130	0.075	0.095	0.094	0.119	0.120	0.130	0.098	0.126
Í			Maximum	0.147	0.154	0.246	0.346	0.330	0.197	0.249	0.240	0.980	0.250	0.940	0.123	0.980
-+			Minimum	22	16	22	23	36		36	32		22	18	22	16
9	Ca hardness	mg/l	Average	25	20	23	26	38	50	37	33	36	25	20	26	30
			Maximum	29	23	26 ·	28	40		38	34		27	21	28	40
-+-			Minimum	35	36	32	33	40	<u> </u>	48	41	<u>├──</u> ──	29	28	34	28
10	Total hardness	mg/l	Average	38	38	38	35	54	56	50	42	46	35	31	41	42
			Maximum	40	42	52	38	64	<u> </u>	51	42	t	40	35	56	64
-+-			Minimum	<u> </u>	<u> </u>		<u> </u>	<u> </u>	†					<u> </u>		<u> </u>
11	lagnesium hardness	mg/l	Average	13	18	28	12	16	6	28	9	18	12	11	16	16
		-	Maximum		1			<u> </u>			· · · · ·	t		<u> </u>		+

Table 2.6Raw Water Quality, Phum Prek WTP (2006)

			Minimum	37	. 34	34	36	45	52	37	30	40	30	30	32	30.0
12	Alkalinity	mg/î	Average	39	38	\bigcirc	43	60	64	45	36	44	38	36	40	43
			Maximum	40	40	43	53	80	76	57	45	48	44	42	45	80
			Minimum		13.0	11.8	12.4	7.20	7.04	13.5	20.1	5.9	11.9	12.5	12.4	5.9
13	Organic Substance	mg/i	Average		15.6	16.1	14.3	14.1	7.82	17.1	23.7	11.7	14.4	17.5	13.9	1 5.1
			Maximum		17.7	18.7	18.7	20.1	8.22	20.6	28.0	17.1	18.0	21.1	16.0	28.0
			Minimum	4800	7600	11200	6000	9000	2600	30000	25000	11000	8000	1000	8000	1000
14	Total Coliform	cfu/100ml	Average	272760	41333	44640	12000	22500	5475	138300	49800	27750	21950	33440	14700	37444
			Maximum	100000	100000	80000	20100	46000	13200	300000	74000 [°]	42000	44000	72000	24400	300000
			Minimum	2600	2000	110	1000	2600	3200	60000	6000	1000	1000	400	200	110
15	Faecal Coliform	cfu/100ml	Average	9440	3933	2782	2000	3650	15100	108050	15400	4500	2700	1600	1100	14188
			Maximum	33200	5800	7000	3400	6000	26400	200000	34000	8000	7000	4000	2400	200000
16	Aluminium	mg/l	Result	0.001	0.003	0.000	0.002	0.012	0.000	0.001	0.008	0.001	0.007	0.002	0.000	0.003
17	Ammonia	mg/l	Result	0.463	0.512	0.050	0.293	0.230	0.280	1.500	0.037	0.183	0.097	0.134	0.073	0.321
18	Ammonium-N	mg/l	Result	0.380	0.420	0.061	0.240	0.190	0.230	1.230	0.030	0.150	0.080	0.110	0.060	0.265
19	Carbon Dioxide	mg/l	Result	13	8	12	6	8	6	8	9	15	17	13	18	11
20	Copper	mg/i	Result	0.09	0.05	0.10	0.07	0.05	0.04	0.04	0.07	0.06	0.04	0.02	0.00	0.05
21	Chloride	mg/l	Result	20	20	15	18	23	25	15	10	1.05	1.00	1.00	15	14
22	Cyanide	mg/ł	Result	0.002	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.005	0.005	0.002	0.001	0.002
23	Total Chromium	mg/i	Result	0.00	0.00	0.02	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.008
24	Chromium Hexa	mg/l	Result	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.01	0.00	0.00	0.004
25	Fluoride	mg/l	Result	0.13	0.14	0.00	0.08	0.16	0.00	0.05	0.15	0.20	0.07	0.13	0.16	0.11
26	Iron	mg/l	Result	0.76	0.89	0.90	1.63	1.26	0.23	3.14	3.85	0.14	0.13	0.07	0.12	1.09
27	Manganese	 mg/i	Result	0.10	0.10	0.00	0.30	0.10	0.10	0.10	0.10	0.20	0.20	0.10	0.10	0.13
28	Nitrate Nitrogen	mg/I	Result	1.50	1.70	1.60	1.30	2.40	1.80	1.50	1.40	0.33	2.90	1.40	1.10	1.58
29	Nitrate	 mg/I	Result	6.63	7.51	7.07	5.75	10.61	7.95	6.63	6.19	1.50	12.82	6.19	4.86	6.98
30	Nitrite Nitrogen	 mg/l	Result	0.005	0.005	0.046	0.007	0.007	0.009	0.006	0.004	0.004	0.007	0.005	0.004	0.009
31	Nitrite	mg/l	Result	0.016	0.016	0.151	0.023	0.023	0.030	0.020	0.013	0.013	0.022	0.016	0.013	0.030
32	Phosphate	mg/l	Result	0.12	0.01	0.18	0.35	1.98	0.12	0.07	0.08	0.06	0.15	0.05	0.05	0.27
33	Sulfide	mg/l	Result	0.004	0.004	0.002	0.005	0.003	0.001	0.005	0.003	0.002	0.007	0.003	0.004	0.004
34	Sulfate	mg/l	Result	1.0	1.0	1.0 ,	6.0	13.0	16.0	8.0	5.0	4.0	2.0	0.0	3.0	5.0
35	Zinc	mg/l	Result	0.06	0.07	0.01	0.06	0.04	0.03	0.12	0.01	0.02	0.01	0.01	0.01	0.04

ສາຍ	บคฐาจสชิสกฐจิอฐล่อ	ean .			(\bigcirc					\square					
តារី	ພານໂພສນີສສສູ					Phum 1	Prek WT	ГР			\cup					
ផ្លែទ	ະຕິເພາະສຸລ໌ 				Raw W		uality 2		_							
	Month			1	2	3	4	5	6	7	8	9	10	11	12	Yearly
	Number of day	_		31	28	31	30	31	30	31	31	30	31	30	31	Min,Aver,Max
	Parameter	Unit														† – – –
			Minimum	11	16	18	6	5	12	28	23	11	8	12	15	5.0
1	Color	TCU	Average	17	25	26	29	40	97	72	59	33	45	22	24	40.8
			Maximum	24	35	47	53	149	190	202	112	81	81	32	30	202
			Minimum	25.5	25.0	27.0	28.0	28.0	27.4	26.9	25.0	26.2	26.0	25.3	25.4	25.0
2	Temperature	°c	Average	27.1	27.0	29.0	30.0	30.0	30.4	28.6	27.7	28.1	27.6	27.3	27.2	28.3
			Maximum	28.8	30.0	31.0	31.0	32.0	31.8	30.2	29.3	29.60	28.9	28.7	28.9	32.0
			Minimum	74	76	82	77	77	65	65	86	101	82	76	76	65
3	Conductivity	µS/cm	Average	82	87	87	99	137	120	116	109	115	102	83	80	101
			Maximum	91	92	98	164	204	213	175	147	131	133	97	82	213
			Minimum	6.95	7.02	6.79	6.65	6.74	6.52	6.77	7.05	6.98	7.04	6.52	6.62	6.52
4	pH		Average	7.09	7.10	6.98	6.99	7.30	7.17	7.22	7.36	7.30	7.20	7.03	6:95	7,14
			Maximum	7.21	7.20	7.15	7.43	7.69	8.37	7.45	7.75	7.57	7.48	7.20	7.36	8.37
			Minimum	40	50	35	33	18	13	45	50	80	50	45	50	13
5	Turbidity	NTU	Average	63	64	53	51	48	63	141	394	227	140	81	102	119
			Maximum	158	110	125	75	110	155	451	860	390	386	120	158	860
			Minimum	30	28	18	18	13	10	27	28	59	31	32	44	10
6	Suspended Solids	mg/l	Average	50	47	35	30	32	47	114	286	179	106	64	81	89
			Maximum	122	103	83	48	77	98	366	596	319	305	102	120	596
			Minimum	37	38	41	39	39	33	33	43	51	41	38	38	33
7	Total Dissolved Solid	mg/i	Average	41	44	44	49	69	60	58	55	58	51	42	40	51
			Maximum	46	46	49	82	102	107	88	74	61	66	49	41	107
			Minimum	0.122	0.160	0.105	0.096	0.047	0.074	0.132	0.013	0.073	0.055	0.101 ·	0.107	0.013
8	Absorbance		Average	0.152	0.193	0.197	0.245	0.230	0.490	0.335	0.220	0.151	0.200	0.130	0.143	0.224
			Maximum	0.180	0.233	0.260	1.183	0.760	0.910	0.963	0.390	0.319	0.322	0.159	0.189	1.183
			Minimum	16	20	18	16	14	12	21	16	26	30	22	20	12
9	Ca hardness	mg/l	Average	19	22	19.	19	26	27	33	26	35	33	25	21	25
			Maximum	22	24	20	22	36	44	40	36	40	40	29	22	44
			Minimum	. 29	32	28	26	23	20	30	26	42	40	31	30	20
10	Total Hardness	mg/i	Average	32	37	31	30	44	45	39	40	48	44	36	34	38
			Maximum	36	48	34	34	62	69	44	51	52	52	42	40	69
			Minimum	9	12	10	10	9	8	2	10	10	9	9	9	2
11	Magnesium hardness	mg/l	Average	13	15	12	11	18	18	6	14	13	11	11.2	13	13
			Maximum	14	24	14	12	26	25	9	15	16	13	14	18	26

Table 2.7Raw Water Quality, Phum Prek WTP (2007)

F					r	<u> </u>							·			
			Minimum	30	30 () 28	26	26	22	24		38	34	30	30	22
12	Alkalinity	mg/l	Average	35	36	33	37	49	41	44	46	47	42	36	33	40
			Maximum	40	40	38	60	70	70	70	64	54	52	44	38	70
			Minimum	14.20	13.20	20.00	18.70	10.00	4.70	7.63	14.70	8.60	10.2	8.54	11.32	4.70
13	Organic Substance	mg/l	Average	17.80	16.40	22.00	20.30	17.00	17.00	12.80	23.40	9.93	12.2	15.55	12.58	16.41
			Maximum	20.70	20.10	24.00	21.70	22.40	27.00	16.80	33.80	14.70	14.40	22.97	13.55	33.80
			Minimum		5.00	4.73	4.50	4.00	3.66	4.78	5.47	6.30	5.03	5.50	6.25	3.66
14	Dissolved Oygen		Average	7.12	5.40	5.00	4.70	5.40	6.03	5.63	6.08	6.53	6.47	6.12	6.54	5.81
			Maximum		5.80	6.11	5.80	6.50	7.17	6.41	6.86	6.81	7.44	6.70	6.68	7.44
			Minimum	3600	5000	8800	7800	2600	3900	5400	4400	9000	4800	2800	5600	2600
15	Total Coliform	cfu/100ml	Average	12040	57733	15450	44750	92750	5275	23100	14400	11600	11200	7440	7900	25303
			Maximum	28800	120000	25400	80000	210000	8800	50000	19200	17000	14000	10800	10800	210000
			Minimum	200	3200	600	800	1000	200	2000	400	4000	800	600	400	200
16	Faecal Coliform	cfu/100mt	Average	2080	26133	4150	6700	37650	2675	10600	6240	5050	2450	880	1300	8826
			Maximum	3000	60000	13200	22000	105000	4900	30000	17000	7000	5000	1000	3200	105000
17	Aluminium	mg/l	Result	0.001	0.002	0.025	0.001	0.002	0.007	0.003	0.000	0.001	0.002	0.000	0.000	0.004
18	Ammonia	mg/t	Result	0.10	0.10	0.17	0.27	0.01	0.01	0.15	0.122	0.061	0.073	0.085	0.049	0.100
19	Ammonium nitrogen	mg/i	Result	0.08	0.08	0.14	0.22	0.07	0.08	0.12	0.10	0.05	0.06	0.07	0.04	0.093
20	Carbon Dioxide	mg/l	Result	12	10	23	22	13	6	15	5	2	3	4	4	9.9
21	Copper	mg/l	Result	0.01	0.02	0.01	0.01	0.06	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.014
22	Chloride	mg/I	Result	11	10	8.5	20	13	21	14	17.3	12.5	17.5	14	16	14.57
23	Cyanide	mg/l	Result	0.010	0.003	0.004	0.001	0.002	0.002	0.001	0.001	0.001	0.003	0.001	0.002	0.003
24	Chromium total	mg/l	Result	0.02	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.009
25	Chromium Hexa	mg/l	Result	0.01	0.01	0.00	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.008
26	Fluoride	mg/l	Result	0.00	0.10	0.13	0.13	0.11	0.14	0.21	0.16	0.20	0.25	0.13	0.08	0.137
27	Iron	mg/l	Result	0.10	0.70	0.35	0.22	0.28	0.20	1.66	0.17	0.06	0.14	0.01		0.354
28	Manganese	mg/i	Result	0.20	0.10	0.10	0.20	0.10	0.10	0.06	0.03	0.06	0.05	0.08	0.05	0.094
29	Nitrate nitrogen	mg/l	Result	1.40	1.30	1.70	1.80	1.80	1.10	1.50	1,60	1.40	1.50	1.00	1.20	1.442
30	Nitrate	mg/l	Result	6.19	5.7	7.51	7.96	8.00	4.86	6.63	7.07	6.19	6.63	4.42	5.30	6.372
31	Nitrite nitrogen	mg/l	Result	0.008	0.010	0.021	0.009	0.007	0.005	0.014	0.005	0.007	0.007	0.005	0.005	0.009
32	Nitrite	mg/l	Result	0.026	0.02	0.07	0.029	0.023	0.016	0,046	0.016	0.023	0.023	0.016	0.016	0.027
33	Zinc	mg/l	Result	0.02	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.00	0.01	0.01	0.01	0.010
34	Phosphate	 mg/l	Result	0.09	0.00	0.11	0.11	0.10	0.07	0.12	0.06	0.08	0.36	0.04	0.10	0.103
35	Sulfide	mg/l	Result	0.002	0.01	0.011	0.027	0.005	0.016	0.005	0.006	0.002	0.007	0.00	0	0.008
36	Sulfate	mg/l	Result	1	0	2	1	7	26	6	8	7	9	5	2	6.17

ຂາຍ	មកដ្ឋានដល់គកម្ម និទដ្ឋវ	ล้ฮอลีส			(\frown					\cap					
	រាល័យផលិតកម	~			Raw W	ater O	ality 2	008			\cup					
	ពិសោចន៍						ek WT									
1	Month			1	2	3		5								
_	Number of day			31	2	31	4		6	7	8	9	10	11	12	Yearly
_	Parameter	Unit			20		30	31	30	31	31	30		30	31	Min,Aver,Max
-			Minimum	05.4												
1	T			25.4	26.0	27.9	29.8	29.0	28.5	28.1	26.8	27.2	28.7	26.7	26.1	25.4
'	Temperature	ъ.	Average	27.2	27.7	29.0	30.5	29.9	29.5	29.1	27.9	28.5	29.5	28.5	26.6	28.7
_	L		Maximum	28.4	28.8	30.0	31.5	30.9	30.5	29.8	29.5	29.70	30.4	29.6	27.0	31.5
_			Minimum	6.75	6.82	6.78	6.80	6.90	6.98	7.15	7.17	7.13	7.01	6.92	7.04	7.17
2	рH		Average	6.93	6.92	6.92	7.03	7.22	7.16	7.29	7.30	7.33	7.16	7.08	7.14	7.33
			Maximum	7.14	7.04	7.05	7.51	7.79	7.32	7.53	7.41	7.44	7.39	7.22	7.23	7.79
			Minimum	46	54	69	51	26	61	78	196	33	32	41	64	26
3	Turbidity	NTU	Average	91	79	86	89	79	142	182	427	152	49	63	79	127
			Maximum	210	141	109	145	134	303	484	749	309	93	93	100	749
			Minimum	80	79	76	87	89	122	115	105	98	96	82	82	76
4	Conductivity	µS/cm	Average	83	83	85	102	137	153	137	122	123	110	86	87	109
			Maximum	86	87	98	148	189	200	172	144	138	119	95	90	200
			Minimum	40	27	43	21	17	45	63	144	19	20	30	42	17
5	Suspended Solids	mg/i	Average	74	55	59	54	51	116	151	323	127	38	51	67	97
			Maximum	143	110	99	98	76	246	353	527	245	69	75	95	527 ·
			Minimum	40	40	38	44	45	23	58	53	49	48	41	41	23
6	Total Dissolved Solid	mg/l	Average	42	42	43	51	69	58	68	61	61	55	43	44	53
			Maximum	43	44	49	78	95	123	86	72	69	60	48	45	123
			Minimum	4000	14800	8600	15200	13800	9600	11000	2200	1200	2300	1800	700	700
7	Total coliform	cfu/100ml	Average	7300	43100	38120	31350	65750	31640	17850	17720	9850	5780	3775	2520	22896
			Maximum	12600	64600	96800	56000	183000	52200	25600	29400	23000	9800	5500	3200	183000
			Minimum	200	3200	600	2200	3200	2400	2400	200	400	200	200	100	100
8	Faecal coliform	cfu/100mi	Average	950	7050	3520	6050	29675	38320	7500	3350	3125	1120	400	380	8453
			Maximum	3000	11000	8400	10000	91500	152000	10600	9200	10000	2200	700	700	152000
			Minimum	17	18	16	18	18	34	34	34	36	30	20	18	16
9	Ca hardness	mg/i	Average	19	20	18	20	32	37	35	42	40	34	23	21	28
			Maximum	20	21	20	21	47	41	36	46	44	40	26	24	47
			Minimum	28	28	24	28	26	46	42	44	54	44	31	35	24
10	Total hardness	mg/l	Average	31	29	.29	33	46	51	47	55	60	52	37	38	42
			Maximum	36	30	36	46	64	58	52	62	64	64	40	40	64
			Minimum	9	. 9	6	9	8	8	8	10	12	14	11	16	6
11	Magnesium hardness	mg/l	Average	12	15	11	14	13	15	12	14	20	18	14	18	13
			Maximum	16	36	16	26	20	22	17	16	26	24	20	21	36

Table 2.8Raw Water Quality, Phum Prek WTP (2008)

			Minimum	32	30	30	28	28	44	44	42	38	42	32	34	28
12	Alkalinity	mg/l	Average	34	33	32	37	48	51	 51	\sim	52	48	38	34	43
			Maximum	36	36	36	60	65	64	58	H	62	56	44	48	65
			Minimum	12.99	14.72	13.29	10.21	5.29	6.96	6.16	10.50	6.95	9,48	8.22	12.03	5.29
13	Organic Substance	mg/l	Average	14.98	17.71	17.44	16.69	9.81	9.71	13.44	20.56	9.01	9.86	11.55	15.19	13.83
			Maximum	16.43	22.12	23.10	23.06	14.10	13.29	21.65	34.03	12.64	10.74	13.27	19.31	34.03
			Minimum	5.63	5.02	5.28	2.96	4.09	3.66	5.52	5.80	6.40	5.77	5.50	6,11	2.96
14	Dissolved Oxygen	mg/l	Average	6.30	5.83	5.69	5.31	5.79	5.35	6.49	6.22	6.61	6.12	5.95	6.51	5.99
			Maximum	7.15	6.79	6.11	6.17	7.05	6.27	7.87	6.50	6.83	6.64	6.87	6.86	7.87
			Minimum	14.80	18.87	18.99	9.92	10.12	23.02	26.35	22.83	20.01	15.08	14.38	15.99	26.35
15	Color	тси	Average	24.03	32.82	41.16	50.33	60,07	53.11	5 3. 0 5	52.09	57.02	25.86	22.52	26,74	60.07
			Maximum	37.30	53.87	65.23	104.2	204.5	91.57	111.2	92.15	125.59	52.97	35.58	53.24	204.50
Γ			Minimum	0.110	0.149	0.138	0.070	0.049	0.108	0.148	0.104	0.112	0.102	0.045	0.086	0.149
16	UV, absorption		Average	0.155	0.221	0.291	0.354	0.298	0.220	0.248	0.202	0.231	0.173	0.131	0.147	0.354
			Maximum	0.210	0.326	0.419	0.656	0.795	0.354	0.961	0.240	0.429	1.070	0.182	0.268	1.070
17	Aluminium	mg/l	Result	0.000	0.001	0.001	0.003	0.015	0.006	0.002	0.005	0.00	0.009	0.001	0.001	0.004
18	Ammonia	mg/l	Result	0.085	0.122	0.11	0.23	0.10	0.305	0.317	0:070	0.098	0.160	0.070	0.037	0.142
19	Ammonium nitrogen	mg/l	Result	0.07	0.10	0.09	0.19	0.08	0.25	0.26	0.06	0.08	0.13	0.06	0.03	0.117
20	Carbon dioxide	mg/l	Result	8	7	7	10	8	20	5	6	12	6	5	16	9.2
21	Copper	mg/l	Result	0.00	0.03	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.009
22	Chloride	mg/l	Result	15	19	17.5	16.0	19.5	22.5	20	11.5	20	15	14	16	17.17
23	Cyanide	mg/l	Result	0.001	0.001	0.001	0.001	0.001	0.001	0.003	0.004	0.001	0.002	0.002	0.001	0.002
24	Chromium total	mg/l	Result	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.010
25	Chromium hexa	mg/l	Result	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.00	0.00	0.004
26	Fluoride	mg/l	Result	0.05	0.17	0.00	0.33	0.11	0.04	0.19	0.00	0.02	0.04	0.00	0.00	0.079
27	Iron	mg/l	Result	0.10	0.22	0.52	0.41	0.03	0.13	0.27	0.13	0.18	0.28	0.11	0.10	0.207
28	Manganese	mg/l	Result	0.001	0.116	0.000	0.119	0.046	0.049	0.042	0.082	0.008	0.006	0.000	0.040	0.042
29	Nitrate nitrogen	mg/l	Result	1.40	1.30	1.30	1.50	1.50	1,30	1.20	1.20	0.90	1.00	1.40	1.30	1.275
30	Nitrate	mg/l	Result	6.19	5.75	5.75	6.63	6.63	.5.75	5.30	5.30	3.98	4.42	6.19	5.75	5.637
31	Nitrite nitrogen	mg/i	Result	0.002	0.007	0.013	0.006	0.027	0.012	0.015	0.008	0.007	0.007	0.005	0.005	0.010
32	Nitrite	mg/i	Result	0.007	0.023	0.043	0.020	0.089	0.039	0.049	0.026	0.023	0.023	0.016	0.016	0.031
33	Zinc	mg/l	Result	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.04	0.02	0.01	0.01	0.014
34	Phosphate	mg/i	Result	0.11	0.08	0.09	0.08	0.09	0.20	0.12	0.06	0.09	0.18	0.16	0.20	0.122
35	Sulfide	mg/l	Result	0.003	0.002	0.005	0.013	0.002	0.006	0.017	0.007	0.006	0.011	0.005	0.000	0.006
36	Sulfate	mg/i	Result	1	1	1	10	15	13	9	8	7	8	1	1	6.25

?

ຂາຍ	បកជ្ហានដល់តកម្ម និខដ្ឋល	នៃខ្លួននឹក				\cap					\cap					
ការិថ	បាល័យផលិតកម្ម				Raw W	ater Q	uality 2	009			\bigcirc					
ផ្នែករំ	ពិសោធន៍					Phum P	-									
-	Month			1	2	3	4	5	6	7	8	9	10	11	12	Yearly
	Number of day			31	28	31	30	31	30	31	31	30	31	30	31	Min,Aver,Ma
	Parameter	Unit														
			Minimum	24.2	27.0	29.7	30.2	29.3		27.5	27,5	27 4	26.8	26.6	26.7	24.2
1	Temperature	Ċ	Average	26.0	28.3	30.2	30.8	30.5	29.8	28.8	28.7	28.8	28.4	28.4	27.6	24.2
			Maximum	27.3	30.1	30.7	31.3	31.4	30.2	30.1	29,0	29.7	29.7	30.2	28.5	31.4
			Minimum	6.95	6.98	6.88	6.91	6.93	7.23	7.19	7.16	7.11	6.90	6.84	7.05	7.23
2	рН		Average	7.10	7.07	7.06	7.06	7.21	7.43	7.33	7.29	7.25	7,10	7,04	7.13	7.43
			Maximum	7.17	7.14	7.15	7.28	7.85	7.71	7.45	7.4	7.39	7.45	7.19	7.21	7.85
			Minimum	63	58	59	86	38	71	71	50	32	22	61	59	22
3	Turbidity	NTU	Average	86	83	101	118	125	91	252	174	92	172	96	160	129
			Maximum	104	143	152	175	213	108	584	318	226	545	132	673	673
			Minimum	75	76	76	81	98	121	86	77	86	69	69	81	69
4	Conductivity	µS/cm	Average	82	81	82	94	125	148	124	100	102	85	75	83	98
			Maximum	88	87	93	130	181	179	158	122	121	104	81	84	181
			Minimum	55	45	42	48	27	54	59	28	20	15	44	45	15
5	Suspended Solids	mg/l	Average	73	69	79	85	83	80	204	146	72	129	75	139	103
			Maximum	99	93	131	144	175	99	463	269	214	428	81	540	540 .
			Minimum	38	38	38	42	49	61	43	39	43	35	35	40	35
6	Total Dissolved Solid	mg/l	Average	41	41	41	47	63	74	62	50	51	43	38	41	49
			Maximum	51	44	47	65	91	90	79	61	61	52	42	42	91
			Minimum	500	1990	120	610	1900	2800	3100	4930	4680	1800	1020	3240	120
7	Total coliform	cfu/100ml	Average	1485	4213	2686	5610	19175	35940	23475	36386	12278	4450	2256	101220	20765
			Maximum	2640	6350	9100	15820	36500	152600	80000	127400	29620	10020	4020	376100	376100
			Minimum	100	50	20	20	200	500	300	200	1370	250	180	750	20
8	Faecal coliform	cfu/100ml	Average	285	428	964	1951	7500	19020	14400	6400	1943	1338	576	3440	4854
			Maximum	840	1010	3640	6780	14200	87200	54500	24800	2760	3360	1120	6500	87200
			Minimum	13	12	10	20	22	28	22	24	25	22	16	18	10
9	Ca hardness	mg/l	Average	15	14	16	21	31	37	32	32	27	26	18	21	24
			Maximum	18	17	18	21	44	50	44	38	30	33	19	23	50
			Minimum	28	30	27	33	36	46	40	35	35	27	27	31	27
10	Total hardness	mg/l	Average	29	31	31	36	48	54	47	44	37	33	29	34	38
			Maximum	31	31	33	40	62	70	56	50	38	37	31	36	70
			Minimum	13	14	11	13	12	10	12	11	6	4	10	8	4
11	Magnesium hardness	mg/l	Average	14	16	14	16	18	17	15	12	9	7	11	13	13
			Maximum	16	18	17	20	22	22	16	13	12	9	12	18	22

Table 2.9Raw Water Quality, Phum Prek WTP (2009)

			Minimum	30	30	30	30	28	42	36	32	32	27	26	30	26
12	Alkalinity	mg/l	Average	34	33	33	33	46	50	47		39	33	29	31	37
			Maximum	38	36	38	59	70	62	60	54	48	40	33	32	70
			Minimum	12.64	12.03	20.17	16.49	10.71	6.66	11.04	9.15	7.58	10.74	13.89	17.36	6.66
13	Organic Substance	mg/l	Average	16.51	17.01	22.87	24.00	18.05	8.35	23.52	16.16	9.95	16.52	17.90	21.23	17,67
			Maximum	21.13	22.62	25.69	35.50	24.12	10.71	31.74	19 95	12.64	20.86	21.24	29.43	35 50
			Minimum	6.20	4.93	4.96	5.30	3.84	5.65	6.08	4.39	5.57	5.22	4.90	4.92	3.84
14	Dissolved Cxygen	mg/l	Average	6.79	5.53	5.43	5.98	4.80	6.77	7.18	6 67	6.59	5.64	5.6	6.05	6.02
			Maximum	7.12	5.86	5.85	6.56	5.91	7.31	7.67	8 1 1	7.40	6.56	6.24	6,66	8.11
			Minimum	15.65	24.33	23.77	65.38	10.56	26.61	21.09	11.18	14.15	12.45	6.74	6.58	65 38
15	Color	TCU	Average	34.97	38.68	75.43	147.11	125.91	62.68	57.49	25.24	28.72	34.58	16.98	14.56	147.11
			Maximum	49.88	52.04	257.69	260.67	256.73	106.54	103.75	42.25	50.52	87.92	26.10	27.41	260.67
			Minimum	0.102	0.183	0.183	0.330	0.050	0.143	0.125	0.017	0.100	0.099	0.024	0.034	0.330
16	UV, absorption		Average	0.205	0.242	0.397	0.699	0.601	0.283	0.244	0.141	0.199	0.173	0.121	0.135	0.699
			Maximum	0.271	0.287	0.921	1.094	1.262	0.489	0.428	0.235	0.54	0.345	0.190	0.64	1.262
17	Aluminium	mg/l	Result	0.002	0.002	0.001	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.001	0.000	0.001
18	Ammonia	mg/l	Result	0.24	0.21	0.11	1.21	0.66	0.16	0.18	0.00	0.66	0.22	0.171	0.109	0.328
19	Ammonium nitrogen	mg/l	Result	0.20	0.17	0.09	0.99	0.51	0.13	0.15	0.00	0.54	0.18	0.14	0.09	0.266
20	Carbon dioxide	mg/l	Result	21	26	7	20	1.5	5	3	5	5	4	8	9	9.5
21	Copper	mg/l	Result	0.01	0.02	0.01	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.010
22	Chloride	mg/l	Result	13.5	12.0	17.5	15.0	14.5	21.5	15.0	12.5	14.0	10.0	8.5	10	13.67
23	Cyanide	mg/l	Result	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.001	0.002	0.001
24	Chromium total	mg/l	Result	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.00	0.006
25	Chromium hexa	mg/l	Result	0.00	0.00	0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.003
26	Fluoride	mg/l	Result	0.14	0.00	0.00	0.01	0.02	0.14	0.00	0.11	0.14	0.12	0.12	0.02	0.068
27	Iron	mg/l	Result	0.19	0.19	0.52	0.79	0.92	0.23	0.33	0.16	0.08	0.35	0.13	0.11	0.333
28	Manganese	mg/l	Result	0.032	0.024	0.000	0.068	0.024	0.023	0.020	0.003	0.009	0.016	0.007	0.000	0.019
29	Nitrate nitrogen	mg/l	Result	1.10	1.10	1.30	1.00	0.60	1.40	1.20	1.20	1.70	1.20	1.10	1.30	1.183
30	Nitrate	mg/l	Result	4.860	4.862	5.75	4.42	2.652	6.190	5.300	5.304	7.510	5.300	4.860	5.74	5.229
31	Nitrite nitrogen	mg/l	Result	0.01	0.004	0.013	0.021	0.008	0.06	0.014	0.003	0.003	0.004	0.004	0.005	0.012
32	Nitrite	mg/l	Result	0.033	0.013	0.043	0.069	0.026	0.197	0.046	0.009	0.009	0.013	0.013	0.016	0.041
33	Zinc	mg/l	Result	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.02	0.02	0.011
34	Phosphate	mg/l	Result	0.23	0.21	0.09	0.48	0.41	0.19	0.22	0.06	0.38	0.14	0.17	0.08	0.222
35	Sulfide	mg/l	Result	0.005	0.015	0.005	0.022	0.018	0.005	0.009	0.004	0.001	0.010	0.002	0.006	0.009
36	Sulfate	mg/l	Result	0	0	1	2	1	14	10	3	8	3	1	1	3.67

	ಆನಭಾಜಕಣಿತನತ್ತು ನಿಂಕ್ಷಕತ	อ่ลึก							C	•			~ `	,				
	ເພາະພໍພະສະອັສສະອັ					\bigcirc		Phum Pa	rek Wate	r Treatm	ent Plan	t (\bigcirc					
ខ្មែ	รถิเษาซล์		_				Treat	ed Wa	ter Qu	lality i	i n 200 0	6						
	Month					1	2	3	4	5	6	7	8	9	10	11	12	Yearty
No	No. Day					31	28	31	30	31	30	31	31	30	31	30	31	Min-Aver-Max
	parameter	unit	NDWQS	WHO								-						
					Minimum	1.70	0.94	0.56	2.54	0.29	0.14	0.10	0.20	0.43	0.21	0.39	0.75	0.10
1	Color	тси	5	15	Average	3.30	2.79	2.54	4.97	1.93	1.16	1.06	0.94	1.33	1.37	1.86	2.14	2.12
					Maximum	5.00	5.34	5.30	12.6	3.59	4.32	3.30	4.49	2.57	3.34	4.70	4.20	12.6
					Minimum	26.9	27.5	27.7	28.3	28.3	29.3	26.0	26.0	27.0	26.4	28.1	25.3	25.3
2	Temperature	•c		ļ	Average	27.9	28.9	29.6	30.2	30.4	30.5	28.3	27.4	28.7	28.4	29.3	27.7	28.9
				L	Maximum	29.6	30.8	30.5	31.5	31.8	31.4	30.0	28.5	30.0	29.7	30.7	30.2	31.8
			_		Minimum	101	95	99	103	120	159	102	96	94	80	83	91	80
3	Conductivity	µS/cm	l	400	Average	106	103	105	119	155	179	131	110	108	97	94	99	117
					Maximum	113	110	113	148	190	208	175	129	121	111	104	105	208
					Minimum	6.70	6.74	6.75	6.73	6.71	6.98	6.67	6.74	6.7	6.50	6.67	6.80	6.50
4	рН		6.50-8.50	6.50-8.50	Average	6.96	6.97	7.08	7.15	7.05	7.22	6.92	6.96	6.93	6.93	6.84	7.00	7.00
					Maximum	7.42	7.42	7.38	7.56	7.53	7.54	7.28	7.30	7.12	7.61	7.06	7.25	7.61
			1		Minimum	0.26	0.33	0.45	0.31	0.18	0.13	0.12	0.16	0.14	0.15	0.12	0.16	0.12
5	Turbidity	NTU	5	5	Average	0.77	0.82	0,90	1.16	0.55	0.29	0.38	.0.37	0.32	0.32	0.32	0.42	0.55
					Maximum	1.50	1.70	1.50	3.00	1.60	0.85	1.10	1.50	0.87	0.76	0.85	0.90	3.00
					Minimum	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	Suspended solids	mg/l		1	Average	0.49	0.55	0.53	0.80	0.19	0.06	0.24	0.00	0.15	0.16	0.10	0.08	0.28
					Maximum	2.00	2.00	1.00	2.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	2.00
					Minimum	51	48	48	50	60	60	56	48	47	40	42	46	40
7	Total dissolved solids	mg/i	800	1000	Average	53	57	53	60	78	90	66	55	54	49	47	49	59
					Maximum	57	60	57	74	95	104	88	65	61	56	52	53	104
					Minimum	0.030	0.038	0.048	0.048	0.014	0:014	0.008	0.010	0.001	0.010	0.029	0.027	0.001
8	Absorbance				Average	0.044	0.054	0.058	0.062	0.036	0.020	0.016	0,015	0.021	0.030	0.036	0.041	0.036
					Maximum	0.057	0.066	0.068	0.087	0.059	0.027	0.035	0.031	0.048	0.040	0.050	0.062	0.087
					Minimum	0.30	0.60	0.47	0.28	0.32	0.88	0.79	0.70	0.60	0.63	0.22	0.60	0.22
9	Free available chlorine	mg/i	0.20-0.50	0.10-1.00	Average	1.01	1.08	1.02	0.99	1.21	1.17	1.13	1.09	0.93	0.97	0.98	1.01	1.05
			ļ,		Maximum	1.50 ·	1.60	1.51	1.67	1.90	1.55	1.64	1.49	1.10	1.40	1.25	1.32	1.90
					Minimum	0.47	0.74	0.80	0.76	0.46	0.93	0.89	0.84	0.71	0.75	0.84	0.74	0.46
10	Total available chlorine	mg/l		2	Average	1.17	1.26	1.22	1.24	1.42	1.31	1.62	1.19	1.04	1.10	1.12	1.14	1.24
					Maximum	1.65	1.80	1.70	2.01	2.10	1.70	1.80	1.63	1.51	1.60	1.39	1.41	2.10
			l		Minimum	_27	20	22	25	38		38	32		24	24	29	20
11	Ca hardness	mg/l`		70	Average	30	24	26	28	41	54	39	34	37	28	26	30	33
					Maximum	33	29	29	30	44		40	36		32	28	32	44

Table 2.10Treated Water Quality, Phum Prek WTP (2006)

.				1	_		_				_							
		i i			Minimum	39	34	37	35	48		50	46		32	32	39	32
12	Total hardness	mg/i	300	100	Average	\bigcap	40	41	40	61	66	53)7	52	39	35	41	46
				ş.	Maximum	42	44	50	44	75		56	48		44	39	43	75
					Minimum													0.00
13	Magnesium hardness	mg/î		30	Average	11	16	15	12	10	12	14	13	15	11	9	11	12
L		<u> </u>	L		Maximum													
					Minimum	26	22	23	26	26	44	23	22	28	20	20	28	20
14	Alkalinity	mg/i		350	Average	31	27	27	30	41	56	34	29	37	31	30	34	34
					Maximum	34	34	34	40	66	66	50	36	44	36	34	40	66
					Minimum		2.73	4.17	3.31	2.73	2.34	0.86	1.04	0.45	2.58	1.67	2.95	0.45
15	Organic substance	mg/l			Average		4.48	5.50	4.97	5.20	2.43	1.78	2.21	2.00	3.33	2.89	3.98	3.52
					Maximum		6.32	6.77	6.77	8.36	2.63	3.61	3.30	3.74	4.04	3.80	5.01	8.36
					Minimum	0	0	0	0	0	0	0	0	0	0	0	0	0
16	Total Coliform	cfu/100ml		0	Average	0	0	0	0	0	0	0	0	0	0	0	0	0
					Maximum	0	0	0	Ó	0	0	0	0	0	0	0	0	0
11		1 1			Minimum	0	0	0	0	0	0	0	0	0	0	0	0	0
17	Faecal Coliform	cfu/100ml		0	Average	0	0	0	0	0	0	0	0	0	0	0	0	0
\square					Maximum	0	0	0	0	0	0	0	0	0	0	0	0	0
18	Aluminium	mg/l	0.20	0.05-0.20	Result	0.013	0.015	0.004	0.002	0.011	0.058	0.005	0.022	0.027	0.004	0.008	0.014	0.015
19	Ammonia	mg/l	1.5		Result	0.012	0.000	0.000	0.049	0.000	0.000	0.000	0.000	0.000	0.010	0.110	0.000	0.015
20	Ammonia Nitrogen	mg/l		0.05-0.50	Result	0.010	0.000	0.000	0.040	0.000	0.000	0.000	0.000	0.000	0.010	0.090	0.000	0.013
21	Carbone Dioxide	mg/l			Result	13	12	23	11	14	12	12	8	17	20	20	24	16
22	Copper	mg/t	1	0.02-1.0	Result	0.06	0.06	0.05	0.06	0.06	0.06	0.06	0.07	0.07	0.07	0.02	0.02	0.06
23	Chloride	mg/t	250	25-250	Result	18	25	23	19	24	26	16	13	2.5	2.8	1.8	16	16
24	Cyanide	mg/l	0.07	0.07-1.0	Result	0.003	0.003	0.002	0.001	0.001	0.001	0.001	0.002	0.005	0.005	0.002	0.001	0.002
25	Chromium Total	mg/l		0.05	Result	0,00	0.00	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.02	0.01	0.01	0.01
26	Chromium Hexa	mg/t	0.05	0.05	Result	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
27	Fluonde	mg/l	1.5	0.1-1.5	Result	0.14	0.16	0.00	0.00	0.18	0.09	0.09	0.06	0.19	0.05	0.11	0.1 4	0.10
28	Iron	mg/l	0.3	1.0-0.30	Result	0.03	0.03	0.04	0.03	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.00	0.02
29	Manganese	mg/t	0.1	0.05-0.5	Result	0.10	0.10	0.00	0.40	0.10	0.10	0.20	0.10	0.20	0.20	0.10	0.10	0.14
30	Nitrate Nitrogen	mg/ì			Result	2.50	2.10	1.70	3.20	2.50	1.90	1.90	1.40	0.33	1.70	1.50	1.20	1.83
31	Nitrate	mg/l	50	5.0-50	Result	11.1	9.28	7.51	14.1	11.1	8.40	8.39	6.19	1.50	7.51	6.63	5.30	8.08
32	Nitrite Nitrogen	mg/î			Result	0.004	0.004	0.005	0.004	0.005	0.005	0.005	0.004	0.005	0.006	0.004	0.004	0.005
33	Nitrite	mg/l	3	1.0-3.0	Result	0.013	0.013	0.016	0.013	0.016	0.016	0.016	0.013	0.016	0.019	0.013	0.013	0.015
34	Phosphate	mg/l			Result	0.01	0.01	0.06	0.07	0.11	0.05	0.08	0.02	0.00	0.05	0.01	0.03	0.04
35	Sulfide	mg/i	0.05	0	Result	0.004	0.003	0.001	0.000	0.002	0.002	0.003	0.002	0.001	0.000	0.003	0.008	0.002
36	Sulfate	mg/l	250	25-250	Result	12	12	15	26	-26	23	23	24	19	18	10	12	18
37	Zinc	mg/l	3	0.5-3.0	Result	0.01	0.01	0.00	0.01	0.01	0.01	0.02	0.00	0.01	0.01	0.01	0.00	0.01

	យកដ្ឋានឥលិតកម្មនិចត្តត	1202fi				ζ)					,	\bigcirc					
	ಅರಿಕೆ ಕ್ಷಾಂಗ್ ಕ್ರಾಂಗ್ ಕ ಕ್ರಾಂಗ್ ಕ್ರಾಂಗ್ ಕ								hum H									
ខ្មែរ	ຕິເຄາະສ໌						Trea	ted W	ater (Quali	ty 20	07						
	Month					1	2	3	4	5	6	7	8	9	10	11	12	Yearly
	Number of day					31	28	31	30	31	30	31	31	30	31	30	31	Min,Aver,Ma
	parameter	unit	CNDWQS	WHO														<u> </u>
					Minimum	2.30	2.00	2.00	1.00	0.72	0.78	0.45	0.12	0.64	0.63	0.68	0.78	0.12
1	Color	΄ TCU	5	15	Average	3.30	3.00	3.00	3.00	2.56	3.48	1.51	0.87	1.18	1.30	1.93	1.71	2.24
			-	_	Maximum	4.60	5.00	5.00	5.00	6.13	9.80	5.40	2.42	3.57	5.21	3.01	3.01	9.80
					Minimum	25.7	25.0	28.0	28.0	28.0	27.7	26.3	25.0	25.2	25.3	25.2	25.1	25.0
2	Temperature	°c			Average	27.3	27.0	29.0	30.0	30.0	30.2	28.5	28.8	27.7	27.5	27.1	27.0	28.3
					Maximum	29.0	30.0	30.0	31.0	31.0	31.7	30.1	29.1	31.5	28.5	28.5	28.8	31.7
					Minimum	80	86	97	92	101	87	108	109	122	111	88	96	80
3	Conductivity	μS/cm		400	Average	92	103	105	120	155	142	137	131	137	124	105	105	121
			_		Maximum	105	113	115	168	214	216	189	164	155	154.00	116	115	216
					Minimum	6.71	6.70	6.50	6.50	6.38	6.05	6.37	6.65	6.78	6.81	6.50	6.50	6.05
4	pН		6.5-8.5	6.5-8.5	Average	6.86	6.90	6.71	6.76	7.10	6.81	6.96	6.90	7.11	7.06	7.02	6.92	6.93
		_			Maximum	7.01	7.00	6.95	7.13	7.65	7.83	7.27	7.56	7.47	7.26	7.64	7.31	7.83
_					Minimum	0.31	0.35	0.30	0.16	0.15	0.16	0.12	0.16	0.13	0.12	0.18	0.17	0.12
5	Turbidity	NTU	5	5	Average	0.67	0.66	0.70	0.55	0.58	0.94	0.38	0.35	0.32	0.42	0.51	0.49	0.55
_					Maximum	1.00	1.50	1.20	1.80	2.20	4.00	1.10	0.72	0.65	2.50	1.20	1.00	4.00
					Minimum	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	Suspended Solids	mg/l		1	Average	0.40	0.40	0.30	0.10	0.43	0.38	0.18	0.08	0.02	0.19	0.55	0.76	0.32
_					Maximum	1.00	1.00	1.00	1.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00
_					Minimum	40	43	49	46	51	44	54	55	61	55	44	48	40
7	Total Dissolved Solids	mg/l	800	1000	Average	46	52	53	60	78	71	69	66	69	62	53	53	61
					Maximum	53	57	58	84	107	108	95	82	78	77	58	58	108
					Minimum	0.053	0.051	0.057	0.044	0.022	0.024	0.017	0.012	0.014	0.011	0.025	0.024	0.011
8	Absorbance				Average	0.059	0.068	0.068	0.065	0.047	0.051	0.029	0.019	0.021	0.025	0.040	0.035	0.044
					Maximum	0.072	0.185	0.190	0.283	0.107	0.100	0.037	0.027	0.035	0.049	0.141	Q.049	0.283
					Minimum	0.50	0.50	0.60	0.46	0.46	0.43	0.61	0.68	0.75	0.35	0.10	0.63	0.10

 Table 2.11
 Treated Water Quality, Phum Prek WTP (2007)

1.1		ı					\			r		·(
9	FAC	mg/i	0.2-0.5	0.1-1	Average	0.92	0.91	0.90	0.99	0.99	0.96	0.95	<u> </u>	0.93	0.92	0.82	0.89	0.93
Ц					Maximum	1.36	1.50	1.40	1.80	1.67	1.42	1.47	1.40	1.45	1.33	1.20	1.25	1.80
					Minimum	0.65	0.58	0.70	0.64	0.66	0.67	0.70	0.76	0.84	0.45	0.17	0.77	0.17
10	TAC	mg/l		2	Average	1.15	1.07	1.10	1.20	1.16	1.12	1.07	1.04	1.020	1.03	0.94	1.01	1.08
					Maximum	1.72	1.75	1.70	2.00	1.97	1.62	1.61	1.64	1.55	1.45	1.30	1.35	2.00
					Minimum	20	24	20	24	20	24	28	20	40	36	28	26	20
11	Ca hardness	mg/i		70	Average	23	28	23	26	33	37	36	32	43	41	31	29	32
					Maximum	26	30	26	30	44	50	40	42	44	50	32	32	50
					Minimum	30	34	32	35	26	28	40	30	50	44	40	38	26
12	Total hardness	mg/l	300	100	Average	39	40	37	38	50	54	50	46	54	52	41	41	45
					Maximum	46	45	42	42	66	70	58	57	60	62	44	44	70
					Minimum	10	10	12	11	16	14	12	10	8	8	8	10	8
13	Magnesium hardness			30	Average	16	12	14	12	17	17	14	14	11	11	10	12	13
			_		Maximum	20	15	16	14	22	20	18	15	16	13	12	14	22
					Minimum	24	26	17	16	16	10	14	20	28	24	26	24	10
14	Alkalinity	mg/i		350	Average	30	31	26	28	42	32	35	36	40	35	32	30	33
					Maximum	36	34	30	40	65	64	56	58	48	48	38	36	65 ·
1					Minimum	5.01	4.60	3.00	4.70	2.63	2.34	0.14	0.14	1.23	1.30	1.49	1.77	0.14
15	Organic Substance	mg/l			Average	6.25	5.90	6.00	5.40	4.30	4.29	2.32	2.42	1.87	2.40	4.28	2.53	4.00
					Maximum	7.97	7.40	9.00	6.30	6.11	5.88	5.88	4.30	3.07	2.90	6.06	3.43	9.00
					Minimum		7.10		6.20	5.56	6.93	6.83	6.08	7.24	7.20	6.70	6.85	5.56
16	Dissolved Oxygen	mg/l			Average	7.61	7.30	7.00	6.30	6.61	7.15	7.02	7.27	7.45	7.60	7.06	7.10	7.12
					Maximum		7.50		6.40	7.41	7.48	7.36	8.02	7.77	7.90	7.72	7.29	8.02
	,				Minimum	0	0	0	0	0	0	0	0	0	0	0	0	0
17	Total Coliform	cfu/100ml		0	Average	0	0	0	0	0	0	0	Ņ	0	0	0	0	0
					Maximum	0	0	0	0	0	0	0	0	0	0	0	0	0
					Minimum	0	0	0	0	0	0	0	0	0	0	0	0	0
18	Faecal Coliform	cfu/100ml		0	Average	0	0	0	0	0	0	0	0	0	0	0	0	0
					Maximum	0	0	0	0	 Q	0	0	0	0	0	0	0	0
19	Aluminium	mg/l	0.2	0.05-0.2	Result	0.007	0.020	0.008	0.006	0.009	0.082	0.063	0.026	0.072	0.067	0.033	0.026	0.035
20	Ammonia	mg/l	1.5		Result	0.000	0.070	`0.000	0.000	0.000	0.000	0.120	0.010	0.037	0.012	0.000	0.000	0.021

– –		r		<u> </u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>						\sim					
21	Ammonia nitrogen	mg/l		0.05-0.5	Result	0.00	0.06	0.00	0.00	0.00	0.00	0.10	.01	0.03	0.01	0.00	0.00	0.02
22	Carbon Dioxide	mg/l			Result	15	8	28	35	13	14	18	15	4	4	5	7	13.8
23	Copper	mg/I	1	0.02-1.0	Result	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01
24	Chloride	mg/i	250	25-250	Result	12	16	14	22	18	23	18	19	20	19	16.5	20	18.1
25	Cyanide	mg/l	0.07	0.07-1.0	Result	0.01	0.004	0.004	0.001	0.001	0.004	0.001	0.001	0.001	0.004	0.001	0.002	0.00
26	Chromium Total	mg/l		0.05	Result	0.01	0.00	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01
27	Chromium Hexa	mg/l	0.05	0.05	Result	0.00	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00
28	Fluoride	mg/l	1.5	0.1-1.5	Result	0.00	0.10	0.16	0.27	0.17	0.22	0.25	0.17	0.28	0.10	0.08	0.07	0.16
29	Iron	mg/l	0.3	1.0-0.3	Result	0.02	0.00	0.03	0.01	0.03	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.02
30	Manganese	mg/l	0.1	0.05-0.5	Result	0.20	0.1	0.10	0.10	0.00	0.20	0.03	0.03	0.05	0.05	0.10	0.03	0.08
31	Nitrate nitrogen	mg/l			Result	1.60	1.40	1.50	1.90	2.20	1.70	1.80	1.70	1.50	1.60	1.20	1.40	1.63
32	Nitrate	mg/i	50	5.0-50	Result	7.07	6.20	6.63	8.40	9.70	7.51	7.95	7.51	6.63	7.07	5.30	6.19	7.18
33	Nitrite nitrogen	mg/l			Result	0.006	0.010	0.004	0.006	0.005	0.005	0.004	0.004	0.005	0.005	0.006	0.005	0.01
34	Nitrite	mg/l	3	1.0-3.0	Result	0.02	0.02	0.01	0.019	0.016	0.016	0.013	0.013	0.016	0.017	0.020	0.016	0.02
35	Zinc	mg/l	3	0.5-3.0	Result	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00
36	Phosphate	mg/l			Result	0.11	0.10	0.05	0.06	0.01	0.04	0.08	0.06	0.22	0.16	0.04	0.04	0.08
37	Hydrogen sulfide	mg/l	0.05	. 0	Result	0.000	0.000	0.007	0.018	0.003	0.002	0.001	0.000	0.000	0.004	0.000	0.000	0.00
38	Sulfate	mg/i	250	25-250	Result	11	12	12	15	25	36	17	18	17	17	16	15	17.6

<u>ក្មោះកានីកស្ងយ័តក្រុទភ្នំពេញ</u>

ຂາຍ	កេដ្ឋានផលិតកម្ម ខិ០ផ្ដ					\subset	Treat	ted W	ater (Qualit	y 200)8 (\bigcirc					
ការិដ	បាល័យផលិតកម្ម/ផ្នែកពិសោ	ធនិ៍				-		Pł	um P	rek V	VTP		-					
	Month					1	2	3	4	5	6	7	8	9	10	11	12	Yearly
	Number of day					31	28	31	30	31	30	31	31	30	31	30	31	Min,Ave,Max
	parameter	unit	CNDWQS	WHO														
					Minimum	25.3	26.2	27.4	29.2	28.5	28.2	28.1	26.5	27.1	28.7	27.2	26.1	25.3
1	Temperature	°c			Average	26.9	27.5	28.6	29.9	29.6	29.4	28.9	27.8	28.5	29.5	28.5	26.6	28.5
					Maximum	28.2	28.5	29.7	30.9	30.6	30.3	29.6	29.4	29.8	30.4	29.6	27.0	30.9
	`				Minimum	6.60	6.69	6.58	6.51	6.50	6.67	6.85	6.89	6.93	6.87	6.71	6.82	6.93
2	рH		6.5-8.5	6.5- 8.5	Average	6.92	6.80	6.68	6.73	6.90	6.89	7.04	7.10	7.12	6.99	6.87	6.8 9	7.12
		_	_		Maximum	8.83	6.93	6.83	7.21	7.50	7.06	7.35	7.25	7.33	7.13	7.05	6.95	8.83
					Minimum	0.15	0.25	0.25	0.25	0.24	0.14	0.16	0.16	0.40	0.77	0.81	0.89	0.14
3	Turbidity	NTU	5	5	Average	0.48	0.50	0.48	0.59	0.44	0.26	0.30	0.38	0.94	1.12	1.12	1.22	0.65
					Maximum	2.70	0.77	0.98	2.10	0.83	0.38	0.81	0.91	2.10	1.57	1.50	1.82	2.70
					Minimum	105	112	109	132	134	148	147	129	104	101	86	86	86
4	Conductivity	µS/cm		400	Average	113	117	122	151	173	181	164	144	130	114	90	92	133
					Maximum	126	124	138	192	217	231	178	168	151	123	99	96	231 .
					Minimum	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	Suspended solids	mg/l		1	Average	0.20	0.03	0.00	0.05	0.02	0.05	0.00	0.03	0.37	0.45	0.55	0.50	0.19
					Maximum	1.00	0.50	0.00	1.00	0.50	0.50	0.00	0.50	2.00	1.00	1.00	1.00	2.00
					Minimum	53	56	55	66	67	74	74	65	52	51	43	43	43
6	Total Dissolved Solids	mg/l	800	1000	Average	57	59	61	76	87	91	82	72	65	57	45	46	67
					Maximum	63	62	69	96	109	116	89	84	76	62	50	48.00	116
			ĺ		Minimum	0.60	0.58	0.63	0.58	0.72	0.81	0.66	0.52	0.60	0.68	0.72	0.89	0.52
7	FAC	mg/l	0.2-0.5	0.1-1	Average	0.86	0.79	0.78	0.95	1.18	1.10	1.10	0.93	0.78	0.85	0.99	1.01	0.94
					Maximum	1.20	1,00	0.90	1.47	1.48	1.42	1.59	1.19	1.02	1.03	1.25	1.25	1.59
			l		Minimum	0.73	0.76	1	0.78	0.86	0.92	0.72	0.59	0.69	0.76	0.85	1	0.59
8	TAC	mg/l	ł	2	Average	1.01	0.96	0.98	1.19	1.38	1.22	1.21	1.02	0.89	0.96	1.11	1.15	1.09
		L		<u> </u>	Maximum	1.30	1.22	1.12	1.64	1.70	1.51	1.70	1.27	1.09	1.17	1.41	1.41	1.70
					Minimum	0	0	0	0	0	0	0	0	0	0	0	0	0
9	Total coliform	cfu/100ml	0	0	Average	0	0	0	0	0	0	0	0	0	0	0	0	0
					Maximum	0	0	0	0	0	0	0	0	0	0	0	0	0

 Table 2.12
 Treated Water Quality, Phum Prek WTP (2008)

		1 1	1	1 1	Minimum	0	ol		م ا	l o l								. 1
10		-5-(100)	•								0	0	0				0	0
12	Faecal coliform	cfu/100ml	0	0	Average	(0	0	0	0	0	(<u>)</u> 0	0	0	0	0	0
					Makimum	0	0	0	0	0	0	0	0	0	0	0	0	0
					Minimum	28	30	22	30	20	42	40	40	34	30	20	19	19
11	Ca hardness	mg/i		70	Average	30	32	30	39	37	46	48	45	40	34	23	22	. 36
					Maximum	31	35	34	56	52	51	58	50	48	40	26	24	58
					Minimum	40	40	28	42	32	54	50	50	48	42	- 33	32	28
12	Total hardness	mg/l	300	100	Average	44	44	42	50	52	58	62	60	60	50	37	38	50
-					Maximum	48	48	56	70	70	- 64	73	66	66	62	42	42	73
					Minimum	10	10	6	8	10	10	10	10	10	12	10	10	6
13	Magnesium hardness	mg/l		30	Average	14	12	13	12	15	12	17	15	20	16	14	16	15
					Maximum	17	16	26	14	20	14	25	22	26	22	18	22	26
					Minimum	28	22	18		18	32	34	32	30	32	26	26	18
14	Alkalinity	mg/l		350	Average	30	27	24	24	33	41	41	45	45	40	30	29	34
					Maximum	33	30	26	34	58	50	52	62	57	46	38	34	62
					Minimum	3.65		4.34	1.77	0.66	0.31	1.20	1.22	1.89	2.84	3.47	2.43	0.31
15	Organic substance	mg/l			Average	4.53	5.11	5.40	5.35	1.77	0.79	1.84	2.00	2.21	3.54	3.90	4.39	3.40
					Maximum	5.37	5.94	5.78	7.50	3.16	1.53	2.77	3.08	2.52	4.74	5.05	6.01	4.45
					Minimum	6.93	7.10	6.52	6.35	6.00	6.72	6.78	6.78	7.03	6.90	7.07	7.31	6.00
16	Dissolved oxygen	mg/l			Average	7.23	7.26	6.88	6.68	7.05	7.15	7.47	7.17	7.19	7.09	7.21	7.54	7.16
\vdash					Maximum	7.54	7.49	7.23	6.94	7.57	7.57	8.94	7.70	7.37	7.43	7.36	7.8	8.94
					Minimum	0.72	1.31	0.98	1.67	0.69	0.34	0.11	0.33	0.53	1.76	1.43	2.47	0.11
17	Color	TCU	5	15	Average	2.16	2.33	2.60	3.34	1.88	1.08	0.74	1.14	2.82	3.67	3.29	4.39	2.45
					Maximum	4.35	4.10	4.27	6.76	4.06	2.12	1.93	2.47	11.89	5.15	5.27	7.07	11.89
					Minimum	0.032	0.042	0.050	0.046	0.012	0.012	0.012	0.016	0.019	0.033	0.035	0.034	0.050
18	UV,absorption				Average	0.049	0.057	0.082	0.078	0.042	0.025	0.021	0.020	0.037	0. 0 46	0.043	0.048	0.082
		<u> </u>			Maximum	0.065	0.070	0.055	0.106	0.071	0.035	0.033	0.026	0.232	0.061	0. 052	0.064	0.232
19	Aluminium	mg/l	0.2	0.05-0.2	Result	0.087	0.006	0.006	0.007	0.025	0.052	0.042	0.050	0.044	0.034	0.021	0.015	0.032
20	Ammonia	mg/l	1.5	<u> </u>	Result	0.00	0.0L}	0.00	0.01	0.00	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.002
21	Ammonia nitrogen	mg/i		0.05-0.5		0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	Carbon dioxide	mg/l			Result	9	5	11	13	10	22	8	10	6	14	12	_23	11.9
23	Copper	mg/l	1	0.02-1.0	Result	0.01	0.02	0.01	0.01	0.00	0.01	0.01	0.01	0.00	0	0.01	0.01	0.01
24	Chloride	mg/l	250	25-250	Result	20	22.5	19.5	20.0	22.5	23	22.5	17.5	18.5	16.5	16	18.5	19.8

25	Cyanide	mg/l	0.07	0.07-1.0	Result	0.001	0.001	0.001	0.002	0.001	0.001	0.005	0.001	0.004	0.001	0.002	0.001	0.00
26	Chromium total	mg/l		0.05	Result	0.	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
27	Chromium hexa	mg/l	0.05	0.05	Result	0.01	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.01	0.01	0.00	0.00	0.01
28	Fluoride	mg/l	1.5	0.1-1.5	Result	0.24	0.11	0.09	0.38	0.27	0.09	0.23	0.05	0.09	0.18	0.03	0	0.15
29	Iron	mg/l	0.3	1.0-0.3	Result	0.06	0.02	0.01	0.04	0.01	0.02	0.01	0.01	0.03	0.04	0.02	0.04	0.03
30	Manganese	mg/l	0.1	0.05-0.5	Result	0.000	0.000	0.000	0.157	0.044	0.005	0.059	0.064	0.043	0.000	0.015	0.025	0.034
31	Nitrate nitrogen	mg/l			Result	1.30	1.70	1.30	1.60	2.00	1.70	1.80	1.40	1.30	1.20	1.20	1.10	1.47
32	Nitrate	mg/l	50	5.0-50	Result	5.75	7.51	5.75	7.07	8.84	7.51	7.96	4.86	5.75	5.30	5.30	4.86	6.37
33	Nitrite nitrogen	mg/l			Result	0.004	0.009	0.005	0.006	0.006	0.007	0.007	0.008	0.005	0.005	0.004	0.005	0.01
34	Nitrite	mg/l	3	1.0-3.0	Result	0.013	0.030	0.016	0.020	0.020	0.023	0.023	0.026	0.016	0.017	0.013	0.016	0.02
35	Zinc	mg/l	3	0.5-3.0	Result	0.00	0.01	0.00	0.01	0.00	0.05	0.00	0.00	0.01	0.00	0.00	0.00	0.01
36	Phosphate	mg/l			Result	0.08	0.09	0.07	0.05	0.05	0.02	0.06	0.03	0.06	0.04	0.06	0.25	0.07
37	Sulfide	mg/l	0.05	0	Result	0.004	0.001	0.002	0.001	0.001	0.000	0.000	0.001	0.002	0.000	0.003	0.000	0.00
38	Sulfate	mg/l	250	25-250	Result	15	22	22	32	27	31	29	25	14	12	9	10	20.7

ដ្ឋោះពាធិតស្ទយ័តក្រួទត្តំពេញ

-

	មមក្លីរនផលិតកម្ម សិចផ្ត					\subset	Trea		ater ()9 (\bigcirc					
ការិ	ឃាល័យផលិតកម្ម/ផ្នែកពិសេ	ាធន៍ 						Pl	hum P	Prek V	VTP		_					
	Month					1	2	3	4	5	6	7	8	9	10	11	12	Yearly
	Number of day					31	28	31	30	31	30	31	31	30	31	30	31	Min,Ave,Max
	parameter	unit	CNDWQS	WHO									_					
					Minimum	24.2	27.1	29.6	29.9	29.2	28.9	27.1	27.2	27.4	26.9	26.6	26.6	24.2
1	Temperature	°c			Average	26.0	28.2	30.0	30.6	30 .3	29.5	28.6	28.5	28.7	28.4	28.3	27.6	28.7
					Maximum	27.3	30.0	30.6	31.2	30.9	29 .9	30.0	29.6	29.7	29.4	30.0	28.5	31.2
					Minimum	6.63	6.54	6.52	6.40	6.51	6.73	6.66	6.64	6.66	6.51	6.79	6.98	6.98
2	pН		6.5-8.5	6.5-8.5	Average	6.75	6.65	6.62	6.57	6.76	6.93	6.83	6.84	6.87	6.82	6.97	7.13	7.13
					Maximum	6.95	6.75	6.74	6.78	7.16	7.21	7.06	7.02	7.03	7.01	7.24	7.27	7.27
		1			Minimum	1.33	1.13	0.57	0.60	0.52	0.56	0.39	0.50	0.55	0.58	0.37	0.30	0.30
3	Turbidity	NTU	5	5	Average	1.94	1.66	1.50	1.19	1.62	0.71	0.75	0.69	0.75	0.91	0.67	0.71	1.09
					Maximum	2.85	2.67	2.23	2.44	5.50	1.27	0.95	0.98	1.27	1.44	1.01	1.40	5.50
					Minimum	81	84	83	104	123	131	95	84	95	85	87	102	81
4	Conductivity	μS/cm		400	Average	88	88	95	116	147	155	132	106	108	96	95	105	111
			L		Maximum	94	94	108	150	176	184	165	128	124	112	106	108	184
					Minimum	0	0	0	0	0	0	0	0	0	0	0	0	0
5	Suspended solids	mg/l		1	Average	0.84	0.78	0.98	0.37	0.65	0.03	0.02	0.08	0.02	0.05	0.00	0.13	0.33
		ļ			Maximum	2.00	1.00	2.00	1.00	2.50	0.50	0.50	1.00	0.50	0.50	0. 0 0	1.00	2.50
					Minimum	41	42	42	52	62	66	48	42	48	43	44	51	41
6	Total Dissolved Solids	mg/i	800	1000	Average	44	44	48	58	74	78	66	53	54	48	48	53	56
	<u> </u>				Maximum	47	47	54	75	88	92	83	64	62	66	53 ⁻	54	92
					Minimum	0.70	0.83	0.90	0.66	0.66	0.40	0.64	0.65	0.57	0.55	0.67	0.76	0.40
7	FAC	mg/l	0.2-0.5	0.1-1	Average	0.93	0.96	1.03	0.94	0.87	0.79	0.85	0.85	0.78	0.79	0.94	0.92	0.89
					Maximum	1.09	1.16	1.24	1.39	1.14	1.02	1.15	0.99	0.97	1.03	1.23	1.12	1.39
					Minimum	0.87	1.00	1.08	0.85	0.81	0.64	0.79	0.76	0.67	0.64	0.80	0.91	0.64
8	TAC	mg/l		2	Average	1.09	1.15	1.21	1.13	1.03	0.94	0.98	0.94	0.87	0.90	1.07	1.05	1.03
			L		Maximum	1.29	1.31	1.44	1.62	1.34	1.14	1.30	1.09	0.99	1.13	1.38	1.27	1.62
					Minimum	0	0	0	0	0	0	0	0	0	0	0	0	0
9	Total coliform	cfu/100ml	0	0	Average	0	0	0	0	0	0	0	0	0	0	0	0	0
					Maximum	0	0	0	0	0	0	0	0	0	o	O	0	0

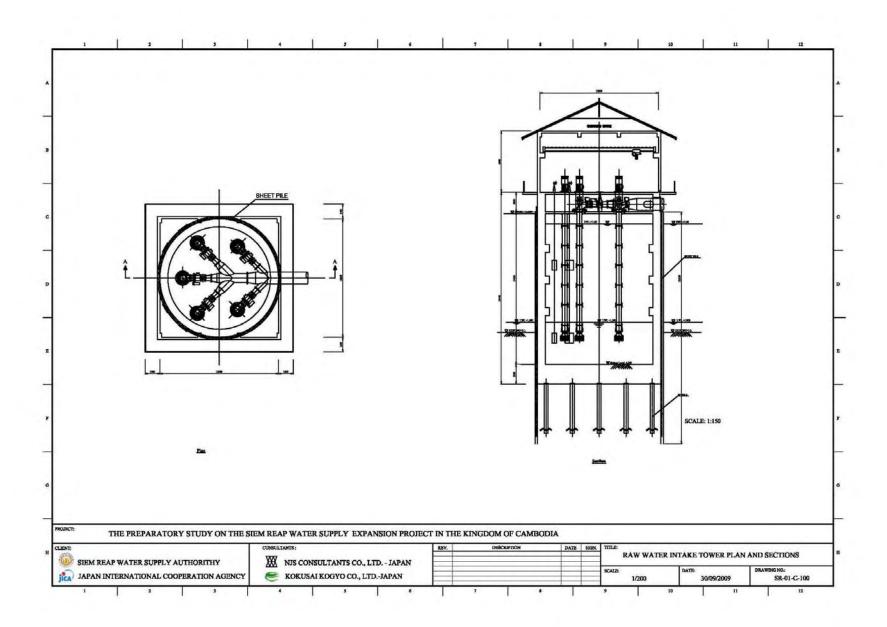
Table 2.13Treated Water Quality, Phum Prek WTP (2009)

				1 1	Minimum	0	o		o	0	o	ο	0	0	o	0	0	0
10	Faecal coliform	cfu/100ml	0	o	Average			0	0	0	0		$\overline{}$	0	0	0	0	0
				-	Makimuso	0	0	0	0	0	0	0	0	0		0		0
7		1			Minimum	28	30	22	30	20	42	40	40	34	30	20	19	19
11	Ca hardness	mg/i		70	Average		32	30	39	37	46	48	45	40	34	23	22	36
					Maximum	31	35	34	56	52	51	58	50	48	40	26	24	58
			-		Minimum	40	40	28	42	32	54	50	50	48	42	33	32	28
12	Total hardness	mg/l	300	100	Average	44	- 44	42	50	52	58	62	60	60	50	37	38	50
					Maximum	48	48	56	70	70	64	73	66	66	62	42	42	73
					Minimum	10	10	6	8	10	10	10	10	10	12	10	10	6
13	Magnesium hardness	mg/l		30	Average	14	12	13	12	15	12	17	15	20	16	14	16	15
		[Maximum	17	16	26	14	20	14	25	22	26	22	18	22	26
					Minimum	28	22	18	18	18	32	34	32	30	32	26	26	18
14	Alkalinity	mg/i		350	Average	30	27	24	24	33	41	41	45	45	40	30	29	34
			_		Maximum	33	30	26	34	58	50	52	62	57	46	38	34	62
					Minimum	3.65	3.20	4.34	1.77	0.66	0.31	1.20	1.22	1.89	2.84	3.47	2.43	0.31
15	Organic substance	mg/l			Average	4.53	5.11	5.40	5.35	1.77	0.79	1.84	2.00	2.21	3.54	3.90	4.39	3.40
					Maximum	5.37	5.94	5.78	7.50	3.16	1.53	2.77	3.08	2.52	4.74	5.05	6.01	4.45
					Minimum	6.93	7.10	6.52	6.35	6.00	6.72	6.78	6.78	7.03	6.90	7.07	7.31	6.00
16	Dissolved oxygen	mg/l			Average	7.23	7.26	6.88	6.68	7.05	7.15	7.47	7.17	7.19	7.09	7.21	7.54	7.16
			L		Maximum	7.54	7.49	7.23	6.94	7.57	7.57	8.94	7.70	7.37	7.43	7.36	7.8	8.94
					Minimum	0.72	1.31	0.98	1.67	0.69	0.34	0.11	0.33	0.53	1.76	1.43	2.47	0.11
17	Color	тси	5	15	Average	2.16	2.33	2.60	3.34	1.88	1.08	0.74	1.14	2.82	3.67	3.29	4.39	2.45
					Maximum	4.35	4.10	4.27	6.76	4.06	2.12	1.93	2.47	11.89	5.15	5.27	7.07	11.89
					Minimum	0.032	0.042	0.050	0.046	0.012	0.012	0.012	0.016	0.019	0.033	0.035	0.034	0.050
18	UV,absorption				Average	0.049	0.057	0.082	0.078	0.042	0.025	0.021	0.020	0.037	0. 0 46	0.043	0.048	0.082
					Maximum	0.065	0.070	0.055	0.106	0.071	0.035	0.033	0.026	0.232	0.061	0. 052	0.064	0.232
19	Aluminium	mg/l	0.2	0.05-0.2	Result	0.087	0.006	0.006	0.007	0.025	0.052	0.042	0.050	0.044	0.034	0.021	0.015	0.032
20	Ammonia	mg/l	1.5	<u> </u>	Result	0.00	0.0L}	0.00	0.01	0.00	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.002
21	Ammonia nitrogen	mg/i		0.05-0.5		0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	Carbon dioxide	mg/l		<u> </u>	Result	9	5	11	13	10	22	8	10	6	14	12	23	11.9
23	Copper	mg/l	1	0.02-1.0	———	0.01	0.02	0.01	0.01	0.00	0.01	0.01	0.01	0.00	0	0.01	0.01	0.01
24	Chloride	mg/t	250	25-250	Result	20	22.5	19.5	20.0	22.5	23	22.5	17.5	_ 18.5	16.5	16	18.5	19.8

25	Cyanide	mg/l	0.07	0.07-1.0	Result	0.001	0.001	0.001	0.002	0.001	0.001	0.005	0.001	0.004	0.001	0.002	0.001	0.00
26	Chromium total	mg/l		0.05	Result	0.	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
27	Chromium hexa	mg/l	0.05	0.05	Result	0.01	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.01	0.01	0.00	0.00	0.01
28	Fluoride	mg/l	1.5	0.1-1.5	Result	0.24	0.11	0.09	0.38	0.27	0.09	0.23	0.05	0.09	0.18	0.03	0	0.15
29	Iron	mg/l	0.3	1.0-0.3	Result	0.06	0.02	0.01	0.04	0.01	0.02	0.01	0.01	0.03	0.04	0.02	0.04	0.03
30	Manganese	mg/l	0.1	0.05-0.5	Result	0.000	0.000	0.000	0.157	0.044	0.005	0.059	0.064	0.043	0.000	0.015	0.025	0.034
31	Nitrate nitrogen	mg/l			Result	1.30	1.70	1.30	1.60	2.00	1.70	1.80	1.40	1.30	1.20	1.20	1.10	1.47
32	Nitrate	mg/l	50	5.0-50	Result	5.75	7.51	5.75	7.07	8.84	7.51	7.96	4.86	5.75	5.30	5.30	4.86	6.37
33	Nitrite nitrogen	mg/l			Result	0.004	0.009	0.005	0.006	0.006	0.007	0.007	0.008	0.005	0.005	0.004	0.005	0.01
34	Nitrite	mg/l	3	1.0-3.0	Result	0.013	0.030	0.016	0.020	0.020	0.023	0.023	0.026	0.016	0.017	0.013	0.016	0.02
35	Zinc	mg/l	3	0.5-3.0	Result	0.00	0.01	0.00	0.01	0.00	0.05	0.00	0.00	0.01	0.00	0.00	0.00	0.01
36	Phosphate	mg/l			Result	0.08	0.09	0.07	0.05	0.05	0.02	0.06	0.03	0.06	0.04	0.06	0.25	0.07
37	Sulfide	mg/l	0.05	0	Result	0.004	0.001	0.002	0.001	0.001	0.000	0.000	0.001	0.002	0.000	0.003	0.000	0.00
38	Sulfate	mg/l	250	25-250	Result	15	22	22	32	27	31	29	25	14	12	9	10	20.7

SR 4.4 Alternative Study on Raw Water Intake Facilities

As for raw water intake facility for F/S, the Study Team strongly recommends a combination of intake chamber and pump station with raw water conveyance/transmission pipelines.


In examining the appropriate location of pump station, the construction cost of overall intake facilities by different location of the pump station was analyzed under the following conditions.

- Raw water conveyance pipe between intake and pump station is assumed as ϕ 1,200 mm concrete pipe to avoid sediment in the pipeline as well as minimize construction cost.
- Raw water transmission pipe between pump station and WTP will be ductile iron pipe with 800 mm diameter considering the economical velocity of pipeline in pumping system.
- In case of construction of pump station at 0 km, the intake tower will be constructed instead of intake chamber. At the same time, the structure of the dry pit for pump equipment will be excluded from the intake tower/pump station.

The result of cost analysis is shown in the following table indicating that the construction cost of the intake facility with pump station to be constructed at around 6 km away from intake site will be lowest.

			Wate	er Conveyance P	ipe Line Cost A	analysis (Concre	ete Pipe; φ 1,200r	nm, Pressure Pipe	; ø 800mm)						
Location of Pumping Station	0km	1km	2km	3km	4km	5km	6km	7km	8km	9km	9.6km	10km	11km	12km	13km
Items 100 Target Year - 2017,2022/23															
<water projects="" supply=""></water>															
110 Siem Reap WTP	21,319,500	21,231,000	20,182,000	19,404,000	18,849,000	18,565,000	18,463,000	18,583,000	18,975,000	19,636,000	20,123,000	20,473,422	21,644,244	22,911,910	24,336,420
111 Cost of Intake Chamber	0	161,000	161,000	161,000	161,000	161,000	161,000	161,000	161,000	161,000	161,000	161,000	161,000	161,000	161,000
112 Cost of Water Conveyance Pipe (13.000 km)	16,458,000	15,601,000	14,702,000	14,074,000	13,669,000	13,535,000	13,583,000	13,853,000	14,395,000	15,206,000	15,783,000	16,193,422	17,454,244	18,871,910	20,446,420
a Cost in use of Concrete Pipe (Gravity Flow)	0	731,000	1,373,000	2,193,000	3,190,000	4,364,000	5,627,000	7,066,000	8,684,000	10,478,000	11,625,000	12,524,422	15,008,244	17,648,910	20,446,420
b Cost in use of DCIP (Pressure Flow)	16,458,000	14,870,000	13,329,000	11,881,000	10,479,000	9,171,000	7,956,000	6,787,000	5,711,000	4,728,000	4,158,000	3,669,000	2,446,000	1,223,000	0
(b-a) 3.4 km From WTP	4,157,000	4,157,000	4,157,000	4,157,000	4,157,000	4,157,000	4,157,000	4,157,000	4,157,000	4,157,000	4,158,000	3,669,000	2,446,000	1,223,000	0
(b-a-1) Cost of Pipe (US\$)	2,708,440	2,708,440	2,708,440	2,708,440	2,708,440	2,708,440	2,708,440	2,708,440	2,708,440	2,708,440	2,709,000	2,390,294	1,593,529	796,765	0
(b-a-2) Cost of Excavation (US\$)	1,448,777	1,448,777	1,448,777	1,448,777	1,448,777	1,448,777	1,448,777	1,448,777	1,448,777	1,448,777	1,449,000	1,278,529	852,353	426,176	0
(b-b) From 3.4 km away from WTP to 13.0 km	12,301,000	10,713,000	9,172,000	7,724,000	6,322,000	5,014,000	3,799,000	2,630,000	1,554,000	571,000	0	0	0	0	0
(b-b-1) Cost of Pipe (US\$)	7,647,360	6,850,760	6,054,160	5,257,560	4,460,960	3,664,360	2,867,760	2,071,160	1,274,560	477,960	0	0	0	0	0
(b-b-2) Cost of Excavation (US\$)	4,653,753	3,862,615	3,118,015	2,466,489	1,861,501	1,349,588	930,751	558,450	279,225	93,075	0	0	0	0	0
113 Cost of Intake Pumping Station	4,861,500	5,469,000	5,319,000	5,169,000	5,019,000	4,869,000	4,719,000	4,569,000	4,419,000	4,269,000	4,179,000	4,119,000	4,029,000	3,879,000	3,729,000
Civil/Building Works	624,500	1,328,000	1,328,000	1,328,000	1,328,000	1,328,000	1,328,000	1,328,000	1,328,000	1,328,000	1,328,000	1,328,000	1,328,000	1,328,000	1,328,000
Mechanical Electrical Works	4,237,000	4,141,000	3,991,000	3,841,000	3,691,000	3,541,000	3,391,000	3,241,000	3,091,000	2,941,000	2,851,000	2,791,000	2,701,000	2,551,000	2,401,000
Total	21,319,500	21,231,000	20,182,000	19,404,000	18,849,000	18,565,000	18,463,000	18,583,000	18,975,000	19,636,000	20,123,000	20,473,422	21,644,244	22,911,910	24,336,420
Minimum Construction Cost							Ø								

Table of Cost Analysis of Intake Facility by Different Location of Pump Station

					Comparison of Raw Water Conveyance/	[/] Transmission	Pipeline						
Raw Water Conveyance Pipe Diameter (mm)	Raw Water Conveyance Pipe Distance (m)	Raw Water Transmission Pipe Diameter (mm)	Raw Water Transmission Pipe Distance (m)	Construction Case	Construction Condition	Length of Concrete Pipe for Water Conveyance (m)	Cost of Concrete Pipe for Raw Water (US\$)	Length of Pressure Pipe for Water Transmission (m)	Cost of Transmission Pipe for Raw Water (US\$)	Cost in Phase-I (US\$)	Cost in Phase-II (US\$)	Total Cost (US\$)	Economical Evaluation
				Case-1	2 Pipelines Simultaneous Construction	19,200	11,644,000	6,800	4,158,000	-	-	15,802,000	
					Phase-I (2 Raw Water Conveyance Pipelines & 1 Raw Water Transmission Pipeline)	19,200	11,644,000	3,400	2,547,000	14,191,000	-		
				Case-2	Phase-II (1 Raw Water Transmission Pipeline)	0	0	3,400	1,611,000	-	1,611,000	15,802,000	Ø
1,200	9,600	800	3,400		Total	19,200	11,644,000	6,800	4,158,000	-	-		
					Phase-I (1 Raw Water Conveyance Pipeline & 1 Raw Water Transmission Pipeline)	9,600	7,811,000	3,400	2,547,000	10,358,000	-		
				Case-3	Phase-II (1 Raw Water Conveyance Pipeline & 1 Raw Water Transmission Pipeline)	9,600	7,811,000	3,400	1,611,000	-	9,422,000	19,780,000	
					Total	19,200	15,622,000	6,800	4,158,000	-	-		
				Case-1	2 Pipelines Simultaneous Construction	19,200	12,650,000	6,800	4,158,000	-	-	16,808,000	
					Phase-I (2 Raw Water Conveyance Pipelines & 1 Raw Water Transmission Pipeline)	19,200	12,650,000	3,400	2,547,000	15,197,000	-		
				Case-2	Phase-II (1 Raw Water Transmission Pipeline)	0	0	3,400	1,611,000	-	1,611,000	16,808,000	
1,500	9,600	800	3,400		Total	19,200	12,650,000	6,800	4,158,000	-	-		
					Phase-I (1 Raw Water Conveyance Pipeline & 1 Raw Water Transmission Pipeline)	19,200	8,467,000	3,400	2,547,000	11,014,000	-		
				Case-3	Phase-II (1 Raw Water Conveyance Pipeline & 1 Raw Water Transmission Pipeline)	0	8,467,000	3,400	1,611,000	-	10,078,000	21,092,000	
					Total	19,200	16,934,000	6,800	4,158,000	-	-		
				Case-1	2 Pipelines Simultaneous Construction	19,200	15,105,000	6,800	4,158,000	-	-	19,263,000	
					Phase-I (2 Raw Water Conveyance Pipelines & 1 Raw Water Transmission Pipeline)	19,200	15,105,000	3,400	2,547,000	17,652,000	-		
				Case-2	Phase-II (1 Raw Water Transmission Pipeline)	0	0	3,400	1,611,000	-	1,611,000	19,263,000	
1,800	9,600	800	3,400		Total	19,200	15,105,000	6,800	4,158,000	-	-		
					Phase-I (1 Raw Water Conveyance Pipeline & 1 Raw Water Transmission Pipeline)	9,600	9,927,000	3,400	2,547,000	12,474,000	-		
				Case-3	Phase-II (1 Raw Water Conveyance Pipeline & 1 Raw Water Transmission Pipeline)	9,600	9,927,000	3,400	1,611,000	-	11,538,000	24,012,000	
					Total	19,200	19,854,000	6,800	4,158,000	-	-		

SR 4.5 Comparison of Raw Water Conveyance/Transmission Pipeline

SOIL INVESTIGATION REPORT BY USING STANDARD PENETRATION TEST (SPT)

PROJECT:

THE PREPARATORY STUDY ON THE SIEM REAP WATER SUPPLY EXSPANSION PROJECT IN THE KINGDOM OF CAMBODIA

Location: Water Treatment Plant Site

Prepared by: Mr. Chea Serey Vuth

Geotechnical Manager

PHNOM PENH, 05 March, 2010

CONTENTS

1	GE	NERAL
	1.1 1.2	INTRODUCTION
2	GE	O-TECHNICAL INVESTIGATION
	2.1 2.2 2.3 2.4	OBJECTIVE AND SCOPE
3	FIN	DINGS6
	3.1 3.2	SUBSOIL CONDITION
4	CO	NCLUSION AND RECOMMENDATION11
5	BO	REHOLE LOCATION16
6	BO	RE HOLES' DATA

1 General

1.1 Introduction

Soil investigation is a requirement for feasibility and detail engineering design of structures. It is to determine subsoil conditions beneath the project site and physical and geo-technical characteristics of the underlying soil strata. The purpose of this investigation is to determine the end bearing capacity of deep foundation or shallow foundation by using Standard Penetration Test (SPT) results and provide economical cost and especially safety of construction.

1.2 Geology and Landform

Cambodia is geologically composed of three different structures; they are mostly Triassic, Jurassic-Cretaceous and Quaternary. The Triassic period covers a large area in the east, Jurassic-Cretaceous Era forming important highlands in the west and, between them, the Quaternary basin occupy the whole central plain of the country.

The area of the site is situated in the Quaternary Era of central plain of Cambodia (Inside of The Tonle sap Lack). The soil deposit encountered during site investigation is recently formed by alluvial of the river a rounding the lack, (a Q_{III} – a Q_{VI}). The soil stretching the project site is reported to comprise yellow, gray Clayey Sand and Sandy clay, lean clay strata, because the project site is formed by the sediments of alluvial and the environmental area. The alluvial sediments of the project area flow from vicinity high land to fulfill swamp, lack or flat area. Therefore the project area occurred historically from year after years; era after era by deposited layer by layers from the sediment of high land and vicinity area.

2 Geo-technical Investigation

Partner of Construction and Development Services Inc. was commissioned to undertake field geo-technical investigation on 12 to 26 February 2010 (dry season) at The Siem Reap province inside of tonle sap lack for this particular project to determination of subsoil condition, its relative density, consistency, classification and characteristics of soil properties, especially geological and geo-technical condition of the soil beneath the Project Site for the construction design proposed of Water treatment Plant and Pipeline (Siem Reap Water Supply Authority)

2.1 Objective and Scope

The objective of soil investigation is contributed to analyzing various subsoil conditions including their characteristics and composition status of strata distributed beneath the project area. The scopes and the objectives of the subsurface investigation included the following tasks:

• An actual field observation and inspection.

- Soil boring and carry out the Standard Penetration Test at the proposed location site. (see location plan of borehole)
- Samples collection, preservation and transportation to the laboratory in Phnom Penh.
- Laboratory testing of the soil samples from split-barrel sampler of Standard Penetration Test and Undisturbed by thin-walled sampler.
- Interpretation and evaluation of the field and Laboratory test results.
- Determination of the factual characteristics of soil and engineering properties of soil for the purpose of getting a conclusive data to support the recommendation for the construction design.
- Prepare factual report.

2.2 Site Methodology

Subsurface exploration was carried out to determine the arrangement of soil stratums and engineering properties of the underlying soils, particularly strength and deformation characteristics for foundation design of the project. The field operations were carried out in accordance with ASTM Standards as summarizing below:

- Standard Penetration test (SPT) ASTM D-1586
- Field Soil classification ASTM D-2487, D-2488
- Preservation and Transportation of soil samples ASTM D-4220
- Ground Water Table Observation ASTM D-4750
- Carry out soil boring. The main activities of the whole field investigations consisted of the following tasks:
- Date and Location of boring test.
- Elevation of boring site
- Geological setting and sub-surface stratigraphy
- Borehole logs
- Water table
- Soil classifications and descriptions
- Recommendations for foundation designs and excavation, trenching, embankment and filling
- Photographs showing sceneries of the work with soil samples in core box
- Map showing location of the boreholes
- Results of field tests
- Results of laboratory tests
- Carry out Standard Penetration Test (SPT) at 1.00m intervals
- Seal and label all disturbed and undisturbed soil samples in the core boxes and deliver to the laboratory (Protected from the exposure to the sun).
- Collect disturbed and undisturbed soil samples at 1.00 meters intervals and every soil strata changes.
- The borehole depth terminated when the N-value of SPT exceeds 30 blow counts or considered to be supported structure load.

Soil boring

Boring Machine used in the project area is UNIMOG-909, 40 meters depth capacity and the diameter of 180 mm, equip with SPT. A hollow stem flight auger was employed in this operation. The process is continued boring every 1.00 meters depth, than take out the center rod to operate the thin-walled sampler and SPT test. The field soil classification and observation such as soil name, consistency, color, soil strata, percent of soil grain size estimation, ground water table, seal and label, protection from sun shine, making note and putting in core boxes are undertaken. All disturbed and undisturbed samples were transported to laboratory.

Standard Penetration Test (SPT)

After the borehole has advanced to required depth, the center rod is withdrawn and replace with thin-wall sampler (59mm) into the natural soil in order to get undisturbed sample and than put split barrel sampler into soil layer to do SPT test. The correct depth after boring out the soil is also checked.

The Standard Penetration Test (SPT) uses 63.50 Kg drive weight at free fall height of 760 mm to drive standard split barrel and the number of blows for every 150 mm penetration is noted. The first 150mm are the setting blow and the total number of blows for the last 300mm is the N-value. The samples extracted by the split spoon sampler (ASTM D-1586) during the penetration test will be tested for their engineering properties. Procedure is repeated on each succeeding depth down to the bottom of the borehole. The water level in the borehole is measured 24 hours after completion of boring works.

2.3 Laboratory Test

The soil samples extracted to represent the different strata from machine auger borings and SPT test were subjected to soil testing laboratory for evaluation and analysis in accordance with ASTM Standard methods and specifications to classify them for their engineering values.

The laboratory-testing program was divided into two following parts:

- Natural water content determination ASTM D-2216,
- Atterberg limit ASTM D-4318,
- Specific Gravity of Soil ASTM D-854 and ASTM C-128,
- Sieve Analysis ASTM D-421 and ASTM D-422,
- Wet Unit weight. Dry Unit weight
- Soil Classification ASTM D-2488.
- Unconfined compressive strength

2.4 Contract Phase

The soil investigation was carried out in the following two contracts.

- Phase 1: Proposed intake pumping station (BH 6,7,11, and 12) and raw water intake pipeline routes (BH8, 13, 14 and 15) and
- Phase 2: Proposed WTP site (BH 9 and 10) and pipeline route (BH 1, 2, 3, 4, and 5).

The locations are summarized in item 5.

3 Findings

3.1 Subsoil condition

Underlying the site are mostly cohesionless soil layers (Clayey Fine Sand, Silty Sand and Gravelly) and covert by cohesive soil layers (lean Clay and Sandy lean Clay) at surface ground to the end of boring. The cohesive soil layers stretched beneath the project site are soft to firm medium plasticity clay. For relative density of Sandy Soil layers are loose to medium dense compact. In accordance to its USCS classifications are CL AND SC with locations below:

BH-1 (N: 1473273.113, E: 383187.981), Elevation: 10.045m - From 0.00m to 1.50m: Soft yellow, light-gray low plasticity Clay and with N-Value of SPT, 3 blows - From 1.50m to 5.00m: Loose light-gray, red, yellow Clayey Sand mixture and with N-Value of SPT, 2 to 4 blows BH-2 (N: 1473273.113, E: 375538.993), Elevation: 12.096m - From 0.00m to 2.50m: Loose yellow, gray Silty Sand (SM) and with N-Value of SPT, from 6 to 8 blows - From 2.50m to 5.00m: Firm brown, gray low plasticity Clay and with N-Value of SPT, 7 blows. BH-3 (N: 1475818.739, E: 378619.044), Elevation: 13.592m - From 0.00m to 1.50m: Loose gray clayey Sand (SC) and with N-Value of SPT, 5 blows - From 1.50m to 2.50m: Medium dense red, gray Clayey sand and with N-Value of SPT, 14 blows. - From 2.50m to 5.05m: Medium dense red, gray Clayey sand and with SPT, 5 blows. - From 5.05m to 5.50m: Firm yellow, gray medium plasticity Clay and with SPT, 6 blows. BH-4 (N: 1478987.86, E: 377680.013), Elevation: 16.166m - From 0.00m to 2.50m: Medium to loose reddish, gray clayey Sand (SC) and with N-Value of SPT, from 12 to 9 blows - From 2.50m to 3.50m: Firm gray medium plasticity clay and with N-Value of SPT, 7 blows. - From 3.50m to 5.00m: Loose yellow, gray Clayey sand and with SPT, 7 blows. BH-5 (N: 1478347.450, E: 374621.470), Elevation: 14.358m - From 0.00m to 2.50m: Firm light-gray low plasticity Clay (CL) and with N-Value of SPT, 5 blows - From 2.50m to 3.50m: Loose yellow, gray clayey Sand and with N-Value of SPT, 8 blows.

- From 3.50m to 5.00m: Stiff yellow, gray medium plasticity Clay and

with SPT, 9 blows.

BH-6: Intake Pump a long option A (N: 1469942.129, E: 378328.091), Elev: 7.14m

- From 0.00m to 1.50m: Loose yellowish, gray clayey Sand and with N-Value of SPT, 4 blows, (SC)
- From 1.50m to 2.50m: Soft yellowish medium plasticity clay and with N-Value of SPT, 4 blows, (CI)
- From 2.50m to 4.05m: Loose yellowish fine Sand and with N-Value of SPT, 6 blows, (SC)
- From 4.05m to 7.50m: Stiff yellow, gray medium to low plasticity Clay and with N-Value of SPT from 11 to 12 blows, (CL)

- From 7.50m to 13.50m: Medium dense yellow, gray clayey Sand with a little gravel and with N-Value of SPT from 10 to 27 blows), (SC)

- From 13.50m to 20.50m: Hard brown, grayish medium plasticity Clay and with N- Value of SPT from 37 to 50 blows), (CI)

BH-7: Intake Pump a long option A (N: 1469935.795, E: 378377.686), Elev: 7.09m

- From 0.00m to 1.50m: Stiff brown low plasticity Clay and with N-Value of SPT, 9 blows, (CL)
- From 1.50m to 3.50m: Stiff to firm yellow, brown medium plasticity clay and with N-Value of SPT, 12 to 5 blows, (CI)
- From 3.50m to 9.50m: Very stiff yellow, light-gray medium plasticity Clay and with N-Value of SPT, 17 to 23 blows, (CI)
- From 9.50m to 13.50m: Very stiff yellow, light-gray low plasticity Clay and with N-Value of SPT from 27 to 29 blows), (CL)

- From 13.50m to 20.50m: Hard yellow, light-gray medium plasticity Clay and with N-Value of SPT from 75 to 34 blows), (CI)

BH-8: Distribution Chamber a long option A (N: 1468478.700, E: 378225.444), Elevation: 6.23m

- From 0.00m to 3.05m: Firm to stiff reddish, gray clay, sand mixtures low plasticity Clay and with N-Value of SPT, 5 to 9 blows, (CL)
- From 3.05m to 7.05m: Firm to stiff yellowish, reddish, gray medium to low plasticity clay and with N-Value of SPT, 7 to 9 blows, (CI-CL)
- From 7.05m to 7.50m: Loose yellowish, gray clayey and with N-Value of SPT, 9 blows (SC)
- From 7.50m to 10.50m: Very stiff yellow, gray low plasticity Clay and with N-Value of SPT from 12 to 15 blows, (CL)
- From 10.50m to 12.50m: Medium dense yellowish, light-gray Clayey Sand and with N-Value of SPT from 15 to 21 blows, (SC)
- From 12.50m to 19.50m: Hard yellow, red, gray medium plasticity Clay and with N-Value of SPT from 24 to 91 blows, (CI)
- From 19.50m to 20.50m: Very dense reddish, gray clayey Sand and with N-Value of SPT, 89 blows, (SC)

BH-9: WTP site (N: 1470994.422, E: 382167.847) Elevation: 8.21m - From 0.00m to 3.05m: Loose red, gray clayey Sand with little

gravel and with N-Value of SPT, 6 to 3 blows

- From 3.05m to 4.50m: Stiff yellow, gray medium plasticity clay, lean clay and with N-Value of SPT, 10 blows - From 4.50m to 12.05m: Loose yellow, red, gray clayey Sand and with N-Value of SPT, 6 to 8 blows - From 12.05m to 16.50m: Medium dense light-gray clayey sand with little gravel and with N-Value of SPT from 13 to 20 blows. BH-10: WTP site (N: 1470879.937, E: 382175.621) Elevation: 8.21m - From 0.00m to 4.05m: Loose yellowish clayey Sand with little gravel and with N-Value of SPT, 2 to 9 blows. - From 4.05m to 5.30m: Firm yellow, gray medium plasticity clay and with N-Value of SPT, 6 blows. - From 5.30m to 13.05m: Loose gray clayey Sand with a little gravel and with N-Value of SPT is 7 (to 9) blows - From 13.05m to 16.00m: Medium dense light-gray clayey sand and with N-Value of SPT from 14 to 23 blows - From 16.00m to 16.50m: Dense brown clayey sand and with N-Value of SPT is 36 blows. **BH-11**: Intake Pump Station a long option B (N: 1469615,175 E: 382925.686), Elevation: 7.07m - From 0.00m to 1.50m: Firm yellow, brown medium Clay medium plasticity Clay and with N-Value of SPT, 5 blows, (CI) - From 1.50m to 2.50m: Loose gray, brown clayey Sand and with N-Value of SPT, 5 blows, (SC) - From 2.50m to 5.50m: Stiff yellow, red, gray medium plasticity Clay and with N-Value of SPT, 11 to 9 blows (CI) - From 5.50m to 8.50m: Loose gray Clayey Sand and with N-Value of SPT from 6 to 7 blows, (SC) - From 8.50m to 11.50m: Firm to stiff gray low plasticity Clay and with N-Value of SPT from 5 to 12 blows, (CL) - From 11.50m to 13.50m: Medium to loose yellowish, gray Clayey Sand and with N-Value of SPT from 11 to 8 blows, (SC) - From 13.50m to 15.50m: Very dense to medium dense reddish, clayey Sand and with N-Value of SPT, 53 to 27 blows, (SC) - From 15.50m to 16.95m: Very stiff yellow low plasticity Clay and with N-Value of SPT, 27 to 23 blows, (CL) - From 16.95m to 17.85m: Medium dense yellow, gray clayey sand and with N-Value of SPT, 26 blows, (CL) - From 17.85m to 18.50m: Very stiff yellow, gray medium plasticity Clay and with N-Value of SPT, 29 blows, (CI) - From 18.50m to 20.50m: Hard gray medium to low plasticity Clay and with N-Value of SPT, 35 to 23 blows, (CI-CL) BH-12: Intake Pump Station a long option B (N: 1469615,142 E: 382975.637),

- Elevation: 7.09m
- From 0.00m to 2.50m: Loose dark-gray, brown Clayey Sand and with N-Value of

SPT, 3 to 4 blows, (SC)
- From 2.50m to 5.50m: Firm yellow, gray medium plasticity Clay with gravel and
with N-Value of SPT, 5 blows, (CI-CL)
- From 5.50m to 13.50m: Loose yellowish, gray Clayey Sand and with N-Value of
SPT, 5 to 9 blows (SC)
- From 13.50m to 15.50m: Very dense to medium dense yellowish, gray Clayey Sand
and with N-Value of SPT from 50 to 27 blows, (SC)
- From 15.50m to 16.50m: Very stiff brown, gray low plasticity Clay and with
N-Value of SPT 23 blows, (CL)
 From 16.50m to 17.40m: Medium dense gray Clayey Sand and with N-Value of SPT from 21 blows, (SC)
- From 17.40m to 19.65m: Hard gray low to medium dense Clayey Sand and with
N-Value of SPT, 21 to 37 blows, (CL-CI)
- From 19.65m to 20.10m: Dense gray clayey Sand and with N-Value of SPT
39 blows, (CL)
57 DIOWS, (CE)
BH-13: Intake Pipeline option B (N: 1468699.450, E: 382834.053),
Elevation: 6.32m
- From 0.00m to 1.50m: Soft gray low plasticity Clay and with N-Value of SPT,
3 blows, (CL)
- From 1.50m to 2.50m: Loose brown clayey Sand and with N-Value of SPT, 9
blows, (SC)
- From 2.50m to 5.50m: Soft to firm brown, gray medium to low plasticity Clay
and with N-Value of SPT, 4 to 6 blows (CI-CL)
- From 5.50m to 10.50m: Loose gray Clayey Sand and with N-Value of SPT from 4
to 6 blows, (SC)
- From 10.50m to 12.05m: Stiff to Very stiff brown, gray low plasticity Clay and with
N-Value of SPT from 8 to 22 blows, (CL)
- From 12.05m to 14.50m: Medium dense gray, brown Clayey Sand and with N-Value
of SPT from 23 to 20 blows, (SC).
- From 14.50m to 18.75m: Hard yellow, gray medium to low plasticity Clay
and with N-Value of SPT, 41 to 33 blows, (CI-CL)
- From 18.75m to 20.10m: Very dense to dense yellow, gray brown Clayey Sand
and with N-Value of SPT, 55 to 31 blows, (CL)
BH-14: Intake Chamber Station a long option A (N: 1462006, E: 378209),
Elevation: 1.12m
- From 0.00m to 3.00m: Stiff red, gray high plasticity Clay and with N-Value of
SPT,8 to 9 blows, (CH).
- From 3.00m to 3.50m: Medium dense yellow, gray clayey sand and with N-Value
of SPT 10 blows,
- From 3.50m to 18.30m: Very stiff to hard yellow, red, gray medium to high
plasticity Clay and with N-Value of SPT,28 to15 blow
(CH-CI).
- From 18.30m to 20.50m: Medium dense yellow, light-gray Clayey Sand and with
N-Value of SPT, 20 to 23 blows (SC).

BH-15: Intake Chamber Station a long option B (N: 1460658, E: 382766),

Elevation: 1.197m	1
- From 0.00m to 1.50m:	Stiff reddish, gray medium plasticity Clay and with N-
	Value of SPT, 11 blows, (CH).
- From 1.50m to 2.50m:	Very stiff reddish, gray medium to high plasticity Clay and
	with N-Value of SPT,27 blows, (CH).
- From 2.50m to 5.50m:	Hard to stiff reddish, gray medium plasticity Clay and
	with N-Value of SPT, 32 to 13 blows (CI).
- From 5.50m to 10.50m:	Hard yellow, reddish, gray high plasticity Clay and with
	N-Value of SPT, 30 to 37 blows (CH).
- From 10.50m to 12.50m:	Hard yellow, gray medium plasticity Clay and with
	N-Value of SPT, 40 to 36 blows (CI).
- From 12.50m to 17.40m:	Hard yellow, gray high plasticity Clay and with N-Value
	of SPT, 39 to 26 blows (CH).
- From 17.40m to 19.50m	: Very stiff yellow, gray medium plasticity Clay and with
	N-Value of SPT, 26 to 17 blows (CI).

3.2 Underground water condition

The ground water met during operation of boring is one of the important factors for soil investigation because the variation of ground water level, the characteristic of soil mechanic also can be changed.

		Underground	Water level			
Borehole	Borehole	r	1	Date of	Elevation (m)	
N°	depth	during boring	during after	boring		
	m	operation	24 hours			
BH.1	5.00	2.15	2.05	18/02/10	10.045	
BH.2	5.00	2.50	1.95	17/02/10	12.096	
BH.3	5.00	2.00	2.04	17/02/10	13.592	
BH.4	5.00	No	No	18/02/10	16.166	
BH.5	5.00	3.00	2.55	17/02/10	14.358	
BH.6	20.50	0.40	0.15	21/02/10	7.14	
BH.7	20.50	0.30	0.10	23/02/10	7.09	
BH.8	19.50	0.45	0.32	14/02/10	6.23	
BH.9	16.50	2.25	0.45	13/02/10	8.21	
BH.10	16.50	2.25	0.45	12/02/10	8.12	
BH.11	20.50	1.50	0.45	17/02/10	7.07	
BH.12	20.50	1.30	0.40	18/02/10	7.09	
BH.13	20.50	-0.80	0.40	14/02/10	6.32	
BH.14	20.50	1.60	1.60	23/02/10	1.12	
BH.15	19.50	1.45	1.45	25/02/10	1.197	

The underground water level encountered shown in table below:

4 Conclusion and Recommendation

Laboratory tested results and field operation showed that the stratigraphy of subsoil layers beneath project area are:

Meyerhof's Pile Bearing-Capacity Equation

Meyerhof (1951, 1963) proposed a bearing Capacity equation similar to that of Terzaghi but included a shape factor sq with the term Nq . He also includeddepth factors di and Table 4-4 (Bearing-Capacity factors for the Meyerhof, Hensen, and Vesc' bearing-capacity equations):

• Bearing Capacity for CLAY:

Qb = Pile Area * 7.8* C, (KN)

• Friction for CLAY:

Qf = Pile Perimeter * Friction Increment * CA, (KN)

- Bearing Capacity for Sand:
- Qb = Pile Area * Nq* Vertical Stress, (KN)
- Friction increment for Sand:

Qf = Pile Perimeter * Vertical Stress* Tan Delta* Ratio of Horiz. to Vertical Stress, **(KN)**

- Ultimate Load (Qult) :
- Qult = Qb + Qf, (KN)

• Allowable load Pile Bearing Capacity:

Qall = Qult / Fs, (KN), Fs= 3, Safety Factor

- For Distribution Pipeline Borehole No.: (BH-1)

N: 143273.113, E: 383187, Elevation: 10.045m

Diameter	Pile	Friction	Bearing	Ultimate	Safety	Allowable	Elevation
(m)	Length	(Tons)	Capacity	Load	factor	Load	(m)
	(m)		(Tones)	(Tones)		(Tons)	
0.30 x 0.30	2.00	2.03	3.30	5.33	3	1.78	+ 8.045
	4.00	8.16	6.41	12.57		4.19	+ 6.045

- For Distribution Pipeline Borehole No.: (BH-2)

N: 1474337.493, E: 375538.993, Elevation: 12.096m

ĺ	Diameter	Pile	Friction	Bearing	Ultimate	Safety	Allowable	Elevation
	(m)	Length	(Tons)	Capacity	Load	factor	Load	(m)
		(m)		(Tones)	(Tones)		(Tons)	
	0.30 x 0.30	2.00	1.90	4.13	6.03	3	2.01	+ 10.096
		4.00	4.42	1.54	5.96		1.99	+ 8.096

- For Distribution Pipeline Borehole No.: (BH-3)

_	N: 14/5818./39, E: 3/8619.044, Elevation: 13.592m									
	Diameter	Pile	Friction	Bearing	Ultimate	Safety	Allowable	Elevation		
	(m)	Length	(Tons)	Capacity	Load	factor	Load	(m)		
		(m)		(Tones)	(Tones)		(Tons)			
	0.30 x 0.30	2.00	2.54	6.55	9.09	3	3.03	+ 11.592		
		4.00	7.36	8.40	15.76		5.25	+ 9.592		

1475010 720 E N I 278610 044 Elovation: 12 502m

- For Distribution Pipeline Borehole No.: (BH-4)

N: 1478987.86, E: 377680.013, Elevation: 16.166m

Diameter	Pile	Friction	Bearing	Ultimate	Safety	Allowable	Elevation			
(m)	Length	(Tons)	Capacity	Load	factor	Load	(m)			
	(m)		(Tones)	(Tones)		(Tons)				
0.30 x 0.30	2.00	4.50	2.89	7.39	3	2.46	+ 14.166			
	4.00	7.31	7.61	14.92		4.97	+ 12.166			

- For Distribution Pipeline Borehole No.: (BH-5) N: 1478347.450, E: 374621.470, Elevation: 14.358m

14. 1-	N: 1470547.450, E: 574021.470, EICVATION: 14.55011									
Diameter	Pile	Friction	Bearing	Ultimate	Safety	Allowable	Elevation			
(m)	Length	(Tons)	Capacity	Load	factor	Load	(m)			
	(m)		(Tones)	(Tones)		(Tons)				
0.30 x 0.30	2.00	2.80	4.97	7.77	3	2.59	+ 12.358			
	4.00	10.90	4.97	15.86		5.29	+ 10.358			

- For Intake Pump Station Borehole No.: (BH-6), A long line Option A N: 1469942 129 E: 378328 091 Elevation: 7 14m

IN. I	N: 1469942.129, E: 378328.091, Elevation: 7.14m									
Diameter	Pile	Friction	Bearing	Ultimate	Safety	Allowable	Elevation			
(m)	Length	(Tons)	Capacity	Load	factor	Load	(m)			
	(m)		(Tones)	(Tones)		(Tons)				
	4.00	4.75	2.41	7.16		2.39	+ 3.14			
	6.00	8.67	2.52	11.19	3	3.73	+ 1.14			
	8.00	14.97	18.16	33.13		11.04	- 0.86			
0.30 x 0.30	10.00	26.56	22.67	49.22		16.41	- 2.86			
	12.00	42.53	35.53	78.06		26.02	- 4.86			
	14.00	56.46	6.64	63.10		21.03	- 6.86			
	16.00	67.02	8.13	75.15		25.05	- 8.86			
	18.00	75.62	6.38	82.00		27.33	- 10.86			

- For Intake Pump Station Borehole No.: (BH-7), A long line Option A	
Intake Pump Station, N: 1469935.795, E: 378377.686, Elevation:	7.09m

Intake Pump Station, N. 1469935.795, E. 376377.000, Elevation. 7.0911													
Diameter	Pile	Friction	Bearing	Ultimate	Safety	Allowable	Elevation						
(m)	Length	Length (Tons) Capacity Load factor		factor	Load	(m)							
	(m)		(Tones)	(Tones)		(Tons)							
	4.00	4.78	2.34	7.12		2.37	+ 3.09						
	6.00	12.82	5.84	18.66		6.22	+ 1.09						
	8.00	17.19	3.59	20.77		6.92	- 0.91						
0.30 x 0.30	10.00	20.64	3.00	23.64	3	7.88	- 2.91						
	12.00	28.15	5.13	5.13	33.29		11.10	- 4.91					
	14.00	32.63	3.70	36.33		12.11	- 6.91						
	16.00	42.96	10.75	53.72		17.91	- 8.91						
	18.00	54.59	9.85	64.44		21.48	- 10.91						

- For Intake pipeline route, **(BH-8)** A long line Option A N: 1468478.700, E: 378225.444, Elevation: 6.23m

Diameter	Pile	Friction Bearing		Ultimate	Safety	Allowable	Elevation						
(m)	Length	(Tons)	Capacity	Load	factor	Load	(m)						
	(m)		(Tones)	(Tones)		(Tons)							
	4.00	21.48	19.90	41.38		13.79	+ 2.23						
	6.00	28.62	3.23	32.25		10.75	+ 0.23						
	8.00	35.24	4.30	39.55		13.18	- 1.77						
0.30 x 0.30	10.00	39.21	2.03	41.24	3	13.75	- 3.77						
	12.00	54.58	43.02	97.59		32.53	- 5.77						
	14.00	68.11	17.24	85.34		28.45	- 7.77						
	16.00	81.77	6.85	88.62		29.54	- 9.77						
	18.00	95.71	9.43	105.14		35.05	- 11.77						

- For Treatment Plat Borehole No.: (BH-9)

N: 1470994.422, E: 382167.847, Elevation: 8.21m

		/		1	-		
Diameter	Pile	Friction	Bearing	Ultimate	Safety	Allowable	Elevation
(m)	Length	(Tons)	Capacity	Load	factor	Load	(m)
	(m)		(Tones)	(Tones)		(Tons)	
	4.00	7.88	4.90	12.77		4.26	+ 4.21
	6.00	14.59	12.26	26.85		8.95	+ 2.21
0.30 x 0.30	8.00	23.93	16.20	40.14	3	13.38	+ 0.21
	10.00	35.82	25.58	61.40		20.47	- 1.79
	12.00	50.15	30.36	80.51		26.84	- 3.79
	14.00	67.64	35.56	103.20		34.40	- 5.79

- For Treatment Plat Borehole No.: (BH-10)

N: 1470879.937, E: 382175.621, Elevation: 8.12m

N: 1470077.737, E: 302173.021, Elevation: 0.1211												
Diameter	Pile	Friction Bearing		Ultimate	Safety	Allowable	Elevation					
(m)	Length	(Tons)	Capacity	Load	factor	Load	(m)					
	(m)		(Tones)	(Tones)		(Tons)						
	4.00	4.93	1.71	6.65		2.22	+ 4.12					
	6.00	11.50	11.12	22.62		7.54	+ 2.12					
0.30 x 0.30	8.00	20.36	16.10	36.47	3	12.16	+ 0.12					
	10.00	31.53	18.00	49.53		16.51	- 1.88					
	12.00	45.37	24.22	69.60		23.20	- 3.88					
	14.00	63.67	45.18	108.85		36.28	- 5.788					

11. 1409	N: 140901.175, E: 382923.080, Elevation: 7.0711													
Diameter	Pile	Friction Bearing		Ultimate	Safety	Allowable	Elevation							
(m)	Length	(Tons)	Capacity	Load	factor	Load	(m)							
	(m)		(Tones)	(Tones)		(Tons)								
	4.00	6.74	3.96	10.70		3.57	+ 3.07							
	6.00	12.34	10.43	22.77		7.59	+ 1.07							
	8.00	20.83	15.52	36.35		12.12	- 0.93							
0.30 x 0.30	10.00	24.98	5.04	30.02	3	10.01	- 2.93							
	12.00	35.12	26.5	61.61		20.54	- 4.93							
	14.00	56.08	251.53	307.61		102.54	- 6.93							
	16.00	69.93	5.11	75.03		25.01	- 8.93							
	18.00	96.21	85.8	182.00		60.67	- 10.93							

- For Intake Pump Station Borehole No.: (BH-11), A long line Option B N: 146961.175, F: 382925.686, Elevation: 7.07m

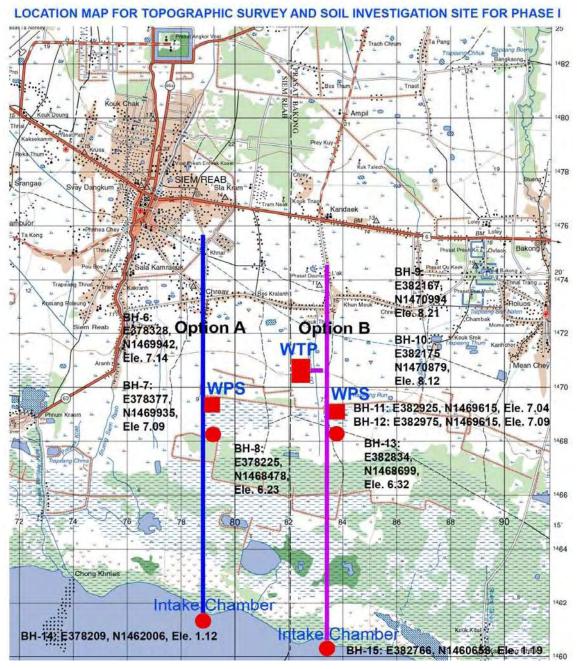
- For Intake Pump Station Borehole No.: (BH-12), A long line Option B Intake Pump Station, N: 146961.142, E: 382975.637, Elevation: 7.09m

Diameter	Pile	Friction Bearing		Ultimate	Safety	Allowable	Elevation
(m)	Length	(Tons)	Capacity	Load	factor	Load	(m)
	(m)		(Tones)	(Tones)		(Tons)	
	4.00	3.43	1.75	5.18		1.73	+ 3.09
	6.00	7.81	11.32	19.13		6.38	+ 1.09
	8.00	16.99	15.18	32.17		10.72	- 0.91
0.30 x 0.30	10.00	28.74	19.28	48.01	3	16.00	- 2.91
	12.00	43.67	29.15	72.81		24.27	- 4.91
	14.00	66.49	218.23	284.72		94.91	- 6.91
-	16.00	80.64	3.64	84.28		28.09	- 8.91
	18.00	96.44	5.26	101.70		33.90	- 10.91

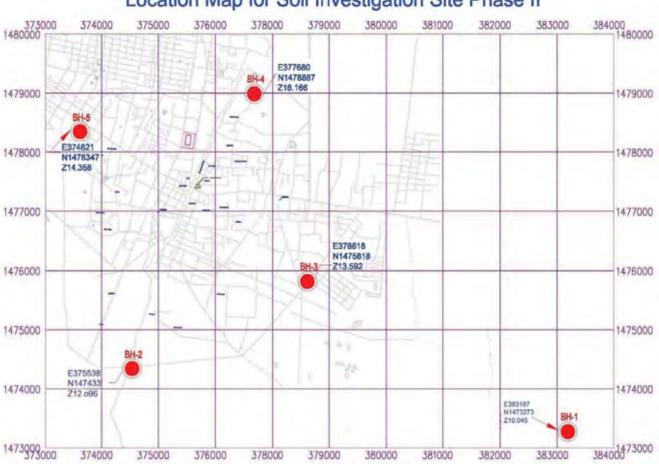
- For Intake pipeline route, (BH-13) A long line Option B N: 1468699.450, F: 382834.053, Elevation: 6.32m

Diameter Pile Friction Bearing Ultimate Safety Allowable Elevation												
Diameter	Pile	Friction	Friction Bearing U		Safety	Allowable	Elevation					
(m)	Length	(Tons)	Capacity	Load	factor	Load	(m)					
	(m)		(Tones)	(Tones)		(Tons)						
	4.00	5.04	2.44	7.48		2.49	+ 2.32					
	6.00	9.02	8.43	17.44						5.81	+ 0.32	
	8.00	16.72	12.76	29.48	3	9.83	- 1.68					
0.30 x 0.30	10.00	23.10	3.13	26.23		8.74	- 3.68					
	12.00	32.60	39.71	72.31		24.10	- 5.68					
	14.00	49.26	41.04	90.29		30.10	- 7.68					
	16.00	55.62	6.38	62.00		20.67	- 9.68					
	18.00	64.60	8.43	73.02		24.34	- 11.68					

Diameter	Pile	Friction Bearing		Ultimate	Safety	Allowable	Elevation						
(m)	Length	(Tons)	Capacity	Load	factor	Load	(m)						
	(m)		(Tones)	(Tones)		(Tons)							
	4.00	4.58	0.79	5.38		1.79	- 2.88						
	6.00	7.16	2.38	9.53		3.18	- 4.88						
	8.00	13.15	8.01	21.16	3	7.05	- 6.88						
0.30 x 0.30	10.00	20.59	5.12	25.70		8.57	- 8.88						
	12.00	26.17	4.52	30.69		10.23	- 10.88						
	14.00	35.28	7.95	43.22		14.41	- 12.88						
	16.00	38.41	1.85	40.26		13.42	- 14.88						
	18.00	44.56	5.52	50.09		16.70	- 16.88						


- For Intake Chamber (BH-14) A long line Option A N: 1462006, E: 378209, Elevation: 1.12m

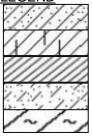
- For Intake Chamber (BH-15) A long line Option B N: 1460658, E: 382766, Elevation: 1.197m


	Pile	Friction	Bearing	Ultimate	Safety	Allowable	Elevation
Diameter	Length	(Tons)	Capacity	Load	factor	Load	(m)
(m)	(m)		(Tones) (Tones)			(Tons)	
	4.00	10.40	7.21	17.60		5.87	- 2.80
	6.00	15.12	3.02	18.14		6.05	- 4.80
	8.00	19.87	3.85	23.72	3	7.91	- 6.80
0.30 x 0.30	10.00	27.15	8.17	35.32		11.77	- 8.80
	12.00	42.18	12.65	54.82		18.27	- 10.80
	14.00	47.10	4.64	51.74		17.25	- 12.80
	16.00	56.25	7.76	64.01		21.34	- 14.80
	18.00	64.63	7.13	71.76		23.92	- 16.80

5 Borehole Location

For Phase 1 Contract : (BH 6, 7, 8, 11, 12, 13, 14, and 15) For Phase 2 Contract : (BH 9 and 10)

For Phase 2 Contract: (BH 1, 2, 3, 4, and 5)


Location Map for Soil Investigation Site Phase II

6 Bore Holes' Data

BORE HOLE LOG BH1

Owner :	NJS C	ONSULTAN	ITS CO.,I	LTD	Method :Rotary Auger	Date	started	: 18/02/	/2010					
Contractor:	Partne	r of Construc	ction and		Casing Size : 180 mm	Date	finished	: 18/02	2/2010)				
	Develo	pment Servi	ces Inc.		Elevation:10.045m	N: 1473273.113, E: 383187.981								
PROJECT	: The pr	eparatory St	udy on th	e Siem	Reap Water Supply Expansion	LOCA	TION :	Pipelir	ne					
			-		Cambodia	•		•						
Sampl	-	Type of					SPT - I	N Value		Dept	h to wate	er flow:	2.15	m
Sampi	ing	Sampling	Ē		Description of soil		Blow/300mm				h to wate	er level:	2.05	m
Depth	, m	U/SPT	sss,	end	•						SPT , I	V (Blow	//300mm)
		0,0	Thickness, (m)	Legend		N1=150mm	N2=300mm	N3=450mm	3		0			10
From	То		μĻ			=15(=300	=45(N=N2+N3		2	4	6 8	10
	 					N	N2	N3	N=N	ΒΓ	1	1		
											1			
		X		:/:/							i	i I		
			1.50	11						† ·			1 + - 	
D1 0.75	1 50	CDT	1.00	11		_	2	1	2		i 🛉	3		
D1: 0.75-	1.50	SPT X		1.1	Soft yellow, light-gray low plasticity Clay	2	2	1	3	$\left\{ \right\}$				
				2.1						2 + -	!-/		+ + - ! !	
5.0.1.75		0.07		1.7							2			
D2: 1.75 -	2.50	SPT			Loose light-gray, red ,yellow clayey	2	1	0.981	1.981	$\left\{ \right\}$				
			3.00	1.1.						3 — -				
			3.00											
D3: 2.75 -	3.50	SPT		1	Sand mixtures	2	3	6	9	4				• 9
				1.7						4				
											i			
D4: 3.75 -	4.50	SPT		1.		2	2	2	4	Ц	 	4		
										5	i			
					END OF SPT TEST 4.50m Depth					v				
					Consistency: N-Value for Cla	y Blov	vs/300	Cm						
	Verv	Soft-Less	2blow	s Sof	t-2-4hlows Firm-4-8hlows Stiff	8-15	Verv	Stiff-1	5-30	blow	s Hard	>30bl	OWS	
					Relative Density: N-Value for Sa	and Blo	ows/30	cm						
۱ ۱	/ery loo	ose- Less 4	4blows,	Loose	- 4-10 blows, Medium dense-10-3) blow	s, Den	se-8-1	5 blo	ws, V	ery den	se->50	blows	
											-			

<u>LEGEND</u>

Stiff to hard sandy clay, low plasticity Clay

Firm to stiff silty clay, medium plasticity Clay

Very stiff to hard clay , high plasticity Clay

Clayey sand, Silty Sand

V. Soft to soft clay, organic clay

Fill/topsoil

Gravelly Sand, Clean Sand

Clayey sand with gravel

Fine Sand

Weather Rock

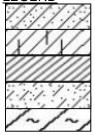
PROJECT : The preparatory Study on the Siem Reap Water Supply Expansion

Project in The Kingdom of Cambodia

LOCATION : Pipeline BORE HOLE LOG BH1

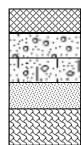
N: 1473273.113, E: 383187.981 Elevation:10.045m SUMMARY LABORATORY TEST

Date started : 18/02/2010


Date finished : 18/02/2010 Depth to water flow:

2.15 m

BOR	RE HOLE LOG BH1 SUMMARY LABORATORY TEST															Depth to water lev					
								L		y	1	/ity	At	terberg lin	nit	(Grain size		igth	Shear S	Strength
Sample	SPT	- N Valu	e Blows	s / 300mm	Dept	h(m)	Soil description	Unified Clasification	NMC W (%)	Bulk density γ _w (g/cm ³)	Dry density _{Yd} (g/cm ³)	Specific Gravity Gs (g/cm ³)	LL	PL	PI	and Silt %	Sand %	Gravel %	onf. Strength q _u (Kpa)	Cohesion Kpa	Friction Angle earee (°)
0,	N1	N2	N3	N=N2+N3	From	То		Cla _		Bu 까	Dr	Spec	(%)	(%)	(%)	Clay	S	Ū	Unconf. q _u (k	Coh	Fri A Deo
U1					0.75	1.05			16.49	1.924	1.652	2.656							30.180	15.09	
D1	2	2	1	3	1.05	1.50	Soft yellow, light-gray low plasticity Clay	CL	17.75				31.00	12.25	18.75	41.96	57.90	0.14			
U2					1.75	2.05		[23.14	2.105	1.709	2.632							18.443		
D2	2	1	0.981	1.981	2.05	2.50	Loose light-gray, red ,yellow clayey		16.71				22.10	11.28	10.82	48.61	51.39	0.00			28
U3					2.75	3.05	Sand mixtures		22.49	2.216	1.809	2.719							21.640		
D3	2	3	6	9	3.05	3.50		SC	15.23				27.80	10.62	17.18	44.98	55.02	0.00			30
U4					3.75	4.05			18.32	2.135	1.804	2.642							35.290		
D4	2	2	2	4	4.05	4.50			16.35				30.40	9.91	20.49	35.82	64.18	0.00			28
U5					4.75	5.05			15.65	2.305	1.993	2.646							50.026		
D5																					
							END OF SPT TEST 5.50m depth														


Owner :	NJS C	ONSULTAN	ITS CO.,	,LTD	Method :Rotary Auger	Date	started	: 17/0	2/2010	0
Contractor:	Partne	r of Constru	ction and	d	Casing Size : 180 mm	Date	finishe	d : 17/0	02/201	10
	Develo	pment Serv	ices Inc.		Elevation:12.096m	N: 14	74337.	493, E	: 3755	538.993
PROJECT	: The pr	reparatory S	tudy on	the Sie	- m Reap Water Supply Expansion	LOCA	TION	: Pipeli	ine	
	Proje	ct in The I	Kingdo	m of (Cambodia					
Sampl	ling	Type of	(1				SPT - I		;	Depth to water flow: 2.50 m
	-	Sampling	, (m	σ	Description of soil		Blow/3	300mm	1	Depth to water level: 1.95 m
Depth	, m	U / SPT	ssə	Legend		_	_	_		▲ SPT , N (Blow/300mm)
From	То		Thickness, (m)	Le		N1=150mm	N2=300mm	N3=450mm	N=N2+N3	
		X		2.7						
				1.1						
D1: 0.75-	1.50	SPT	0.50	22	Loose yellow, gray silty Sand	3	3	3	6	6
		X	2.50	1.1						
	ļ			1.1.						
D2: 1.75 -	2.50	SPT		2.	(SM) 2.50m	3	4	4	8	8
		X		1.1.						
				11						
D3: 2.75 -	3.50	SPT		1.	Firm brown , gray low plasticity Clay	2	3	4	7	7
		X		11						
			3.00	11						
D4: 3.75 -	4.50	SPT		1.	(CL)	2	3	3	6	6
		X		11						
				11						5 +
D5: 4.75 -	5.50	SPT		1/		2	3	4	7	
•	-								-	
										6
					END OF SPT TEST 5.50m Depth					
					Consistency: N-Value for Clay	Blow	rs/300	Cm		
	Verv	Soft-Less	2blow	s. Sof	t-2-4blows, Firm-4-8blows, Stiff-8				5-30	blows, Hard >30blows
				-, -0	Relative Density: N-Value for Sar					
\	/erv loc	ose-Less 4	tblows.	Loose	- 4-10 blows, Medium dense-10-30				5 blo	ws, Verv dense->50 blows
		2000					, _ 011		2.510	

LEGEND

Stiff to hard sandy clay, low plasticity Clay Firm to stiff silty clay, medium plasticity Clay Very stiff to hard clay , high plasticity Clay Clayey sand, Silty Sand

V. Soft to soft clay, organic clay

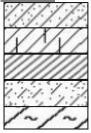
Fill/topsoil

Gravelly Sand, Clean Sand

Clayey sand with gravel

Fine Sand

Weather Rock

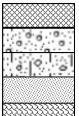

	ĺ		(₀) 99J	Dea											
		Shear Strength	ngle Ction			29		30							
Ε	ΞE	Shear	eqion ba								41.56		22.00		
3 F.O	2.JU	գյն	nf. Stren " (Kpa)		46.920						83.119		44.003		
2010 2010			8% Avel			0.00		0.83		0.00		0.00		0.00	
d : 17/02/2 ed : 17/02/ ater flow:	ater level:	Grain size	% pue			80.10		88.77		43.11		47.62		47.35	
Date started : 17/02/2010 Date finished : 17/02/2010 Death to water flow:	Depth to water level:	Ð	tli2 bne %			19.90		10.40		56.89		52.38		52.65	
		it	Ы	(%)						27.65		18.91		16.65	
		Atterberg limit	٦	(%)	-	-	-			8.15		12.09		11.15	
		HΗ	٦	(%)	-	-	-	-		35.80		31.00		27.80	
			ific Grav (g/cm³)		2.633		2.644		2.668		2.715		2.643		
		,	(g∖cm³) √ dênsity		1.781						1.870		2.034		
		ĥ	(d\cw ₃) k qeuait/		2.114						2.171		2.263		
			M (%) NWC		18.71	17.51		17.88		15.72	16.11	15.48	11.25	16.30	
		ι	bəifinl Datiot			CM	NC				5	5			
Reap Water Supply Expansion N: 111132 102 E: 375520 002 Elovoritor: 12 006m	/ LABOR∕		Soil description		Loose yellow, gray silty Sand			2.50m		Firm brown , gray low plasticity Clay					END OF SPT TEST 5.50m depth
er Supply F	0.445, E. 5		(m)r	To	1.05	1.50	2.05	2.50	3.05	3.50	4.05	4.50	5.05	5.50	
Reap Wat	N: 14/400		Depth(m)	From	0.75	1.05	1.75	2.05	2.75	3.05	3.75	4.05	4.75	5.05	
PROJECT : The preparatory Study on the Siem Reap Water Supply Expansion Project in The Kingdom of Cambodia NOCATION : Discline			300mm	N=N2+N3		9		8		7		9		7	
y Study (Jdom of (42		Blows /	N3		3		4		4		с		4	
reparator The Kinç			SPT - N Value Blows / 300mm	N2		3		4		3		3		3	
PROJECT : The prepa Project in The			- TqS	N1		3	<u> </u>	3		2	<u> </u>	2	<u> </u>	2	
EC EC	RE		əlqms	s	U1	D1	U2	D2	U3	D3	U4	D4	U5	D5	

BORE HOLE LOG BH3

Owner :	NJS C	ONSULTAN	ITS CO.,	LTD	Method :Rotary Auger	Date :	started	: 17/02	/2010	
Contractor:	Partne	r of Construc	ction and		Casing Size : 180 mm	Date f	inishec	I:17/0	2/2010)
	Develo	pment Servi	ces Inc.		Elevation:13.592m	N: 14	75818.7	739, E:	3786	19.044
PROJECT	: The pr	eparatory St	tudy on th	ne Sierr	n Reap Water Supply Expansion	LOCA		: Pipelii	ne	
	Proje	ct in The I	Kingdoi	m of (Cambodia					
Sampl	ing	Type of Sampling	(m)		Description of soil		SPT - N Blow/3		_	Depth to water flow: 2.00 m Depth to water level: 2.04 m
Depth,	, m	U/SPT	less,	Legend		_	_	_		▲ SPT , N (Blow/300mm)
From	То		Thickness, (m)	Le		N1=150mm	N2=300mm	N3=450mm	N=N2+N3	
										P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		X	1.50	11						
D1: 0.75-	1.50	SPT X			Loose gray clayey Sand (SC) 1.50m	3	3	2	5	
D2: 1.75 -	2.50	SPT	1.00	1.1.1.	Mediun dense red, gray clayey Sand	3	8	6	14	
D3: 2.75 -	3.50	SPT	2.55	11/1	Loose gray clayey Sand	3	2	3	5	3.00
D4: 3.75 -	4.50	X SPT		1.1.	5.05m	2	3	2	5	4.00 + - + - + - + - + - + - + - + - +
D5: 4.75 -	5.50	X SPT	0.45	X	Firm yellow, gray medium plasticity Clay	2	3	3	6	$5.00 \frac{1}{1} - 1$
					END OF SPT TEST 5.50m Depth					6.00 -
	Very	Soft-Less	2blows	s, Sof	Consistency: N-Value for Clay t-2-4blows, Firm-4-8blows, Stiff-8 Relative Density: N-Value for San	-15, '	Very S	Stiff-1	5-30	

Very loose- Less 4blows, Loose- 4-10 blows, Medium dense-10-30 blows, Dense-8-15 blows, Very dense->50 blows

EGEND


Stiff to hard sandy clay, low plasticity Clay

Firm to stiff silty clay, medium plasticity Clay

Very stiff to hard clay , fat Clay

Clayey sand, Silty Sand

V. Soft to soft clay, organic clay

Fill/topsoil

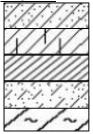
Gravelly Sand, Clean Sand

Clayey sand with gravel

Fine Sand

Weather Rock

Standard Penetration

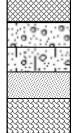

▲ SPT - N Value

Elevation:13.592m	Expansion 378619.044	o Water Supply Expansion 75818.739, E: 378619.044	iem Reap Water Supply Expansion lia N: 1475818.739, E: 378619.044	dy on the Siem Reap Water Supply Expansion of Cambodia N: 1475818.739, E: 378619.044	itory Study on the Siem Reap Water Supply Expansion ingdom of Cambodia N: 1475818.739, E: 378619.044	PROJECT : The preparatory Study on the Siem Reap Water Supply Expansion Project in The Kingdom of Cambodia LOCATION : Pipeline N: 1475818.739, E: 378619.044
	/ LABOR ^A	/ LABOR ^A	/ LABOR ^A	/ LABOR ^A	SUMMARY LABOR	G BH3 SUMMARY LABORP
	Soil description		Depth(m)	Depth(m)	Depth(m)	
		m To	From	N=N2+N3 From	From	N=N2+N3 From
		75 1.05	0.75 1.05			
щ	Loose gray clayey Sand 1.50m	1:50 Loose gray clayey Sand	Loose gray clayey Sand	1:50 Loose gray clayey Sand	1.05 1.50 Loose gray clayey Sand	5 1.05 1.50 Loose gray clayey Sand
		75 2.05	1.75 2.05			
y Sand	Mediun dense red, gray clayey Sand	2.50		2.50	2.05 2.50	14 2.05 2.50
		75 3.05	2.75 3.05			
	Loose gray clayey Sand	3.50		3.50	3.05 3.50	5 3.05 3.50
		75 4.05	3.75 4.05			
		J5 4.50	4.05 4.50		4.05	5 4.05
5.05m		5.05	2	5.05	5.05	5.05
ay	Firm yellow, gray medium plasticity Clay	5.50		5.50	5.05 5.50	6 5.05 5.50
depth	END OF SPT TEST 5.50m depth	END OF SPT TEST 5.50m depth	END OF SPT TEST 5.50m depth	END OF SPT TEST 5.50m depth	END OF SPT TEST 5.50m depth	END OF SPT TEST 5.50m depth

BORE HOLE LOG BH4

Owner :	NJS C	ONSULTAN	TS CO.,I	LTD	Method :Rotary Auger	Date	started :	18/02/	2010				
Contractor:	Partne	r of Construc	tion and		Casing Size : 180 mm	Date	finished	: 18/02	2/2010				
	Develo	pment Servio	ces Inc.		Elevation:16.166m	N: 14	78987.8	6, E: 3	77680	.013			
PROJECT	: The pr	eparatory St	udy on th	e Siem	- Reap Water Supply Expansion	LOC	ATION :	Pipelin	е				
			-		Cambodia	•							
Sampl	ing	Type of Sampling	(m)		Description of soil		SPT - N Blow/3			Depth to w Depth to w			m m
Depth	, m	U / SPT	ess,	Legend				_		▲ SPT	, N (Blo	w/300mr	m)
From	То		Thickness, (m)	Le		N1=150mm	N2=300mm	N3=450mm	N=N2+N3	0 2	4 6	8 10 12	2 14
D1: 0.75-	1.50	SPT	2.50	11	Medium to loose reddish, gray clayey	4	4	8	12	1.00			12
D2: 1.75 -	2.50	SPT		11	Sand (SC) 2.50m	3	3	6	9	2.00			
D3: 2.75 -	3.50	SPT	1.00	X	Firm gray yellow medium plasticity	3	3	4	7	3.00 + -		/	
D4: 3.75 -	4.50	X SPT	1.55	1.1	Loose yellow, gray Sandy Silt (SM)	2	3	4	7	4.00		+ + + + 7 + - +	
					END OF SPT TEST 4.50m Depth					5.00			
	Very	Soft-Less	2blows	s, Soft	Consistency: N-Value for Classic- -2-4blows, Firm-4-8blows, Stif	J			5-30	blows, Ha	ard >301	olows	
V	ery loc	ose- Less 4	blows, I	Loose	Relative Density: N-Value for S - 4-10 blows, Medium dense-10-3				5 blc	ws, Very d	lense->5	50 blows	

<u>LEGEND</u>

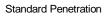

Stiff to hard sandy clay, low plasticity Clay

Firm to stiff silty clay, medium plasticity Clay

Very stiff to hard clay , fat Clay

Clayey sand, Silty Sand

V. Soft to soft clay, organic clay

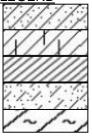

Fill/topsoil

Gravelly Sand, Clean Sand

Clayey sand with gravel

Fine Sand

Weather Rock



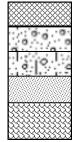
		Shear Strength	pa rgle rgle pa	in Frid M	09	31		30	58		22	30	54	
	εε	She	noisə	цос	09.76 0				0 81.68		41.22		28.54	
	N No	цb	ıf. Streni, "(Kpa)		195.200				163.360		82.430		57.074	
/2010 2/2010			ləve Avel			0.00		0.15		0.00		0.00		
ed : 18/02 ied : 18/02	<i>l</i> ater flow: <i>l</i> ater level	Grain size	% pue			67.66		64.99		28.19		47.76		
Date started : 18/02/2010 Date finished : 18/02/2010	Depth to water flow: Depth to water level	0	3li2 bne %			32.34		34.86		71.81		52.24		
		hit	Id	(%)		8.73		7.78		27.95		16.58		
		Atterberg limit	PL	(%)		13.57		12.32		11.25		10.92		
		Att		(%)		22.30		20.10		39.20		27.50		
			ific Grav (g/cm³)		2.616		2.614		2.627		2.632		2.618	
			(g∖cm³) / dênsity		2.266				2.017		1.803		1.754	
		/	(d\cw ₃) k qeuait)		2.406				2.425		2.174		2.075	
			M (%) NWC	١	6.16	3.55		10.56	20.20	18.31	20.55	16.32	18.28	
		ι	Jnified Sificatior			5	5		5	5		SM		
								2.50m		3.50m				oth
	6.166m ST		_		layey				olasticity			Silt		05m del
	7680.013 Elevation:16.166m SUMMARY LABORATORY TEST		Soil description		Medium to loose reddish, gray clayey				Firm gray yellow medium plasticity	(CI)		Loose yellow, gray Sandy Silt		END OF SPT TEST 5.05m depth
	E ABORAT		Soild		ose reddi				yellow m			ow, gray		F SPT -
ansion	0.013 MMARY I				dium to lo	pu			m gray ;	Clay		ose yell		END O
upply Exp	N: 1478987.86, E: 377680.013 SUMMAF		(To	1.05 Me	1.50 Sand	2.05	2.50	3.05 Fir	3.50	4.05	4.50 Lo	5.05	
o Water S	78987.86		Depth(m)	From	0.75 1	1.05 1	1.75 2	2.05 2	2.75 3	3.05 3	3.75 4	4.05 4	4.75 E	
ilem Reap Ilia	N: 14				0.7	1.(1.	2.(2.7	3.(3.	4.(4.7	
PROJECT : The preparatory Study on the Siem Reap Water Supply Expansion Project in The Kingdom of Cambodia			SPT - N Value Blows / 300mm	N=N2+N3		12		6		7		7		
tory Stud	BH4		Je Blows	N3		8		9		4		4		
e prepara in The K	OCATION : Pipeline BORE HOLE LOG BH4		r - N Valı	N2		4		3		3		3		
ECT : The Project	LOCATION : Pipeline BORE HOLE LO		SPI	N1		4		3		3		2		
ROJE	LOCA1 BOR		əlqms	S	U1	D1	U2	D2	U3	D3	U4	D4	U5	

BORE HOLE LOG BH5

Owner :	NJS C	ONSULTAN	TS COI	TD	Method :Rotary Auger	D	ates	started :	17/02/2	2010	
Contractor:		of Construc			Casing Size : 180 mm			inished)
		pment Servic			Elevation:14.358m			78347.4			
PROJECT				e Siem	Reap Water Supply Expansion						nent Plant
INCOLOT			-		Cambodia		00/		vvator	mean	
	-	Type of	ungele i					SPT - N	l Value		Depth to water flow: 3.00 m
Sampl	ing	Sampling	Ê		Description of soil			Blow/3			Depth to water level: 2.55 m
Depth	m		s, (р	Description of soli						▲ SPT, N (Blow/300mm)
Boptin	,	U / SPT	Thickness, (m)	Legend		_	E	E	E		
From	То		jck				N1=150mm	N2=300mm	N3=450mm	+N3	0 2 4 6 8 10
FIUIII	10		F				<u> </u>	12=3	I3=4	N=N2+N3	
							2	~	~	Z	₽ ; ; ; ;]
		~~~									
				1/							1.00 +
D1: 0.75-	1.50	SPT	2.50	1.7	Firm light-gray low plasticity Clay		2	2	3	5	<b>↑</b> 5
		X	2.30	11							2.00
				1.1.							2.00
D2: 1.75 -	2.50	SPT		1.	(CL) 2.50	)m	1	2	3	5	5
		X		1.7.							1
			1.00	11							
D3: 2.75 -	3.50	SPT		1.	Loose yellow, gray clayey sand		3	4	4	8	
DJ. 2.75 -	5.50	X		1.1	Loose yellow, gray clayey sailu		5	4	4	0	
			1.00	X							4.00 +
D 4 0 75	4.50	ODT	1.00	11			0		-		
D4: 3.75 -	4.50	SPT		11	Stiff yellow, gray medium plasticity		3	4	5	9	
											5.00
					END OF SPT TEST 4.50m Depth						
					Consistency: N-Value for Cl						
	Very	Soft-Less	2blows	s, Soft	-2-4blows, Firm-4-8blows, Stil	ff-8-	15,	Very	Stiff-1	5-30	blows, Hard >30blows
					Relative Density: N-Value for S	Sand	l Blo	ows/30	cm		
V	ery loc	se- Less 4	blows, l	_oose	- 4-10 blows, Medium dense-10-3	30 b	low	s, Den	se-8-1	5 blc	ows, Very dense->50 blows
	,										

LEGEND




Stiff to hard sandy clay, low plasticity Clay

Firm to stiff silty clay, medium plasticity Clay

Very stiff to hard clay , fat Clay

Clayey sand, Silty Sand

V. Soft to soft clay, organic clay



Fill/topsoil

Gravelly Sand, Clean Sand

Clayey sand with gravel

Fine Sand

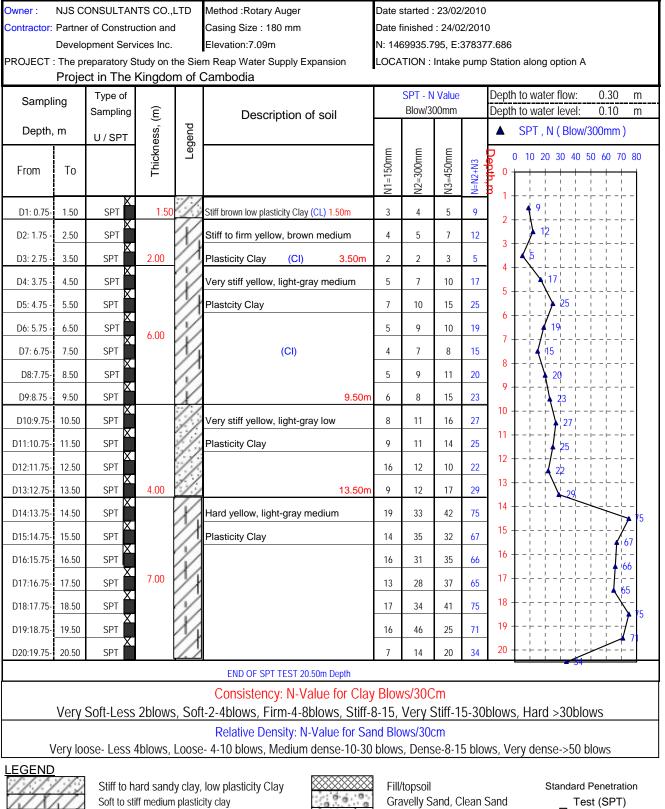
Weather Rock



Test (SPT) SPT - N Value

	ЕЕ	Shear Strength	eq ction rgle 'gle 'gle 'gle 'ge	K Frid Ar			37.86		23.86	30	34.97		85.05	
	3.00 n 2.55 n	цtр	ıf. Stren ⊿(Kpa)				75.720		47.720		69.941		170.105	
2010 2010			% Jave			0.00		0.00		0.00		0.20		
d : 17/02/2 ed : 17/02/	ater flow: ater level:	Grain size	% pue			51.10		57.04		50.68		50.32		
Date started : 17/02/2010 Date finished : 17/02/2010	Depth to water flow: Depth to water level:	0	3li2 bne %			48.90		42.96		49.32		49.48		
		nit	Ы	(%)		17.19		21.75		14.48		22.34		
		Atterberg limit	PL	(%)		12.41		12.95		12.62		14.16		
		A		(%)		29.60		34.70		27.10		36.50		
			ific Grav (g/cm³)		2.621		2.658		2.615		2.606		2.608	
			(g/cm³) γ density				1.883		1.740		1.803		1.883	
		ļ	(d\cm³) k density				2.212		2.093		2.238		2.212	
			(%) <i>N</i> NWC			15.29	17.48	13.64	20.27	14.49	24.15	14.89	17.48	
		ι	oification			5	2		ç	2 2		CI		
			pəilinl	ן		כ כ	3			·		0		
nsion	.470 Elevation:14.358m MARY LABORATORY TEST		Soil description	1				2.50m		3.50m			λ	END OF SPT TEST 5.05m depth
upply Expansion	/ LABOR/				35	Firm light-gray low plasticity Clay			Loose yellow, gray clayey sand	3.50m	75	Stiff yellow, gray medium plasticity	D5 Clay	 END OF SPT TEST 5.05m depth
o Water Supply Expansion	/ LABOR/		Soil description	To	5 1.05	1:50 Firm light-gray low plasticity Clay	2.05	2.50	3.05 Loose yellow, gray clayey sand	3.50 3.50m	5 4.05	4.50 Stiff yellow, gray medium plasticity	5.05	END OF SPT TEST 5.05m depth
siem Reap Water Supply Expansion Jia	N: 1478347.450, E: 374621.470 SUMMARY LABOR/		Depth(m) Soil description	From To	0.75 1.05	Firm light-gray low plasticity Clay			Loose yellow, gray clayey sand	3.50m	3.75 4.05	Stiff yellow, gray medium plasticity		END OF SPT TEST 5.05m depth
dy on the Siem Reap Water Supply Expansion of Cambodia	N: 1478347.450, E: 374621.470 SUMMARY LABORA		Depth(m) Soil description	To		1.50 Firm light-gray low plasticity Clay	2.05	2.50	3.05 Loose yellow, gray clayey sand	3.50 3.50m		4.50 Stiff yellow, gray medium plasticity	5.05	END OF SPT TEST 5.05m depth
ratory Study on the Siem Reap Water Supply Expansion Kingdom of Cambodia	N: 1478347.450, E: 374621.470 SUMMARY LABORA		Depth(m) Soil description	N3 N=N2+N3 From To		1.05 1.50 Firm light-gray low plasticity Clay	2.05	2.05 2.50	3.05 Loose yellow, gray clayey sand	3.05 3.50 <b>3.50</b>		4.05 4.50 Stiff yellow, gray medium plasticity	5.05	 END OF SPT TEST 5.05m depth
he preparatory Study on the Siem Reap Water Supply Expansion ct in The Kingdom of Cambodia	N: 1478347.450, E: 374621.470 SUMMARY LABORA		Depth(m) Soil description	N2 N3 N=N2+N3 From To		5 1.05 1.50 Firm light-gray low plasticity Clay	2.05	5 2.05 2.50	3.05 Loose yellow, gray clayey sand	3.05 3.50 <b>3.50</b>		4 5 9 4.05 4.50 Stiff yellow, gray medium plasticity	5.05	END OF SPT TEST 5.05m depth
PROJECT : The preparatory Study on the Siem Reap Water Supply Expansion Project in The Kingdom of Cambodia	N: 1478347.450, E: 374621.470 SUMMARY LABOR/		Soil description	N1 N2 N3 N=N2+N3 From To		3 5 1.05 1.50 Firm light-gray low plasticity Clay	2.05	3 5 2.05 2.50	3.05 Loose yellow, gray clayey sand	3.05 3.50 <b>3.50</b>		5 9 4.05 4.50 Stiff yellow, gray medium plasticity	5.05	END OF SPT TEST 5.05m depth

Owner :	NJS C	ONSULTAN	ITS CO	,LTD	Method :Rotary Auger	Date :	started :	21/02	/2010		
Contractor:	Partne	r of Constru	ction an	d	Casing Size : 180 mm	Date f	inished	: 22/02	2/2010	)	
		pment Serv			Elevation:7.14m	N: 140	59942.1	29, E:3	87832	8.091	
PROJECT					em Reap Water Supply Expansion	LOCA	TION :	Intake	pump	Statior	n along option A
	Proje		Kingde	om of	Cambodia		0.07			<b>D</b> 11	
Sampl	ing	Type of	-				SPT - N Blow/30				to water flow: 0.40 m
		Sampling	ш, Ш	σ	Description of soil		DIOM/20	JOIIIII		Depin	to water level: 0.15 m
Depth	, m	U / SPT	ssəu	Legend							SPT , N ( Blow/300mm )
From	То		Thickness, (m)	Le		N1=150mm	N2=300mm	N3=450mm	N=N2+N3	Depth 0 +	
D1: 0.75-	1.50	SPT	1.50	1.1	Loose yellowish, gray clayey Sand 1.50m	1	1	3	4	2	<b>↑</b> 4
D2: 1.75 -	2.50	SPT X	1.00	1	Soft yellowish medium plasticity Clay 2.50m	3	2	2	4		4 4 1 1 1
D3: 2.75 -	3.50	SPT X	1.55	1.1	Loose yellowish fine Sand (SC) 4.05m	2	3	3	6	3 -	
D4: 3.75 -	4.50	SPT K		11	Stiff yellow, gray low to medium	2	3	8	11	4 -	
D5: 4.75 -	5.50	SPT K	3.00	11	Plasticity Clay	2	6	7	13	5 -	
D6: 5.75 -	6.50	SPT X	3.00	11	(CL-CI)	3	5	6	11	6 -	
D7: 6.75-	7.50	SPT X		1/	7.05m	5	6	6	12	7 -	
D8:7.75-	8.50	SPT X		11	Medium dense yellow,gray clayey	3	4	6	10	8 -	
D9:8.75 -	9.50	SPT X		1	Sand with a little gravel	4	3	4	7	9 -	$-f_{1}^{1} - f_{2}^{1} - f_{1}^{1} - f_{2}^{1} - f_{2}^{1} - f_{1}^{1} - f_{1}^{1} - f_{2}^{1} - f_{1}^{1} - f_{2}^{1} - f_{$
D10:9.75-	10.50	SPT X	6.45	2		4	5	7	12	10 -	$ \frac{1}{12} - \frac{1}{$
D11:10.75-	11.50	SPT X	0.40	11	(SC)	2	8	8	16	11 -	$\frac{1}{1}$ $-\frac{1}{16}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$
D12:11.75-	12.50	SPT X		7		6	6	12	18	12 -	
D13:12.75-	13.50	SPT X		2.1	13.50m	7	12	15	27	13 -	
D14:13.75-	14.50	SPT X		X	Hard brown, grayish medium plasticity	8	17	20	37	14 -	
D15:14.75-	15.50	SPT X		1	Clay	15	26	29	55	15 -	
D16:15.75-	16.50	SPT X		X		10	23	33	56	16 -	
D17:16.75-	17.50	SPT X	7.00	X		11	17	20	37	17 -	
D18:17.75-	18.50	SPT		1		13	18	20	38	18 -	
D19:18.75-	19.50	SPT		XI		9	25	30	55	19 -	
D20:19.75-	20.50	SPT X		1		17	31	19	50	20 -	
					END OF SPT TEST 20.50m Depth						= 50
				_	Consistency: N-Value for Clay						
	Very	Soft-Less	s 2blov	<u>vs, So</u>	oft-2-4blows, Firm-4-8blows, Stiff-8				5-30k	olows,	Hard >30blows
N	/ery loo	ose- Less 4	4blows	, Loos	Relative Density: N-Value for Sar e- 4-10 blows, Medium dense-10-30				5 blov	ws, Ve	ry dense->50 blows
		Soft to st	iff mediu	im plasi	y, low plasticity Clay ticity clay high plasticity Clay	Gr	/topsoi avelly \$ ayey sa	Sand,			Standard Penetration Test (SPT)


SPT - N Value

Very stiff to hard clay , high plasticity Clay Clayey sand, Silty Sand V. Soft to soft clay, organic clay

Fine Sand

Weather Rock

SR4.6-29





Stiff to hard sandy clay, low plasticity Clay Soft to stiff medium plasticity clay Very stiff to hard clay , high plasticity Clay Clayey sand, Silty Sand V. Soft to soft clay, organic clay



Fill/topsoil Gravelly Sand, Clean San Clayey sand with gravel Fine Sand

Weather Rock

Standard Penetration Test (SPT) U & SPT SPT - N Value

		Strength	noita 1gle (°) ser	١A																																			Π	Τ	٦	
	ЕE	Shear	eqion eq	к	28.79		12.11		32.01		33.37	119.71		83.26		59.28		51.11		44.39		42.74	11/1	0.011	73.15		60.18		52.76		107.90	153.10	100.10	153 18	2.00	140.31		126.79		125.26		
	0.30		ıf. Streni " (Kpa)		57.570		24.220		64.017		66. /40	239.419		166.510		118.550		102.220	i	88.770		85.480	000 000	400.002	146.290		120.365		105.510		215.790	101 JE 1	+cc.ooc	306 354		280.612		253.570		250.520		
010 2010			l9v6 8			0.00		0.00	10.01	10.01	0.70		0.00		0.00		0.72		0.00		0.00		0.00	0.30		0.00		0.00	1	0.00		0.00	_	n.u	120	_	17.18		0.00		0.00	
l: 23/02/2 d:24/02/	ter flow: ter level:	Grain size	% pue			59.02		41.10		30.33	38.17		27.26		32.35		44.34		50.95		43.89		36.25	53.29		53.61		59.01		30.32		30.93	00.40	00.00	17 42	2	31.94		26.05		28.51	
Date started : 23/02/2010 Date finished : 24/02/2010	Depth to water flow: Depth to water level:	5	iliS bre %	, s (rei c)		40.98		58.9	0 11	70.1	61.13		72.74		67.65		54.94		49.05		56.11	10.45	c/.70	46.41		46.39		40.99	4	03.08		69.07	0013	04:00	01 0 0	2010	50.88		73.95	-	71.49	/ Vuth
ãã	ää			_		13.39		20.32	5	24.30	24.72		30.75		26.95		21.48		25.85		25.75	0	18.59	15 77		12.25		14.05	_	20.49	_	09.67	_	0 00.02	00.00	_	23.49		27.78		26.88	Chea Serey Vuth
		Atterberg limit	님	(%)		14.91		16.18		2	14.88		14.35		14.05	_	12.32	_	14.25	_	12.65	_	10.51	14 43	_	16.45		10.65	_	11.61		15.20	-	17.71	1100	_	10.81		12.92		.82	
		Atter	H	(%)		28.30		36.50		30.00	39.60		45.10		41.00		33.80		40.10	_	38.40		29.10	30.20	-	28.70		24.70		41.60		44./0	07 10	00.10	1100	_	34.30		40.70		41.70	Prepared by :
		61	ific Grav ific Grav		2.670		2.657	_	2.698	÷	2.6/5	2.676	~	2.679	7	2.662	_	2.664	-	2. /04	÷	2.6/4	+	0007	2.649		2.666	-	2.653	_	2.708	7 002 0	+	2 673	-	2.713		2.654		2.695	7	Pr
			(d\cuu3)	٩Ķ	1.863 2	0.000				-	0.000 2	1.892 2	0.000	1.876 2	0.000	_	_	_		_	0.000			2.020 Z	-	0.000	_		_	_	_	0.000	_	1 90.6 2		_	0.000	1.881 2		_	0.000	
		-	/ qeuzity (g/cm³)		2.262 1.3		+	_	-	÷		-	ö		0.0	2.159 1.	-	2.128 1.		7.085	00	_		+	2.222 1.	0.	2.226 1.		-	-	2.185 1.		-	2 185 1.	-	2.213 1.	õ	2.159 1.3		-	0	
		,	k densit) W (%)	Ing	21.41 2.2		14.14 2.253		19.98 2.071	10.00	52 2.186 32 32	15.10 2.178	<i>1</i> 9	16.62 2.188	81			_			15.65			49 49		10.75		12.14	13 2.141		_	16.51				_	88			14.50 2.152	63	
			NWC		21.	10.66				+		15.	13.79	16.	13.81						+				1		13.							14.61		+	11.88	14.77		-	12.63	
			bəilinl			Jm CL		o		5	0		D		C		ರ		o		<u>с</u>	č	5	C		CL		ט ב		5		5	2	5	č	5	5		D	-	o	
PROJECT : The preparatory Study on the Stein Reap Water Supply Expansion Project in The Kingdom of Cambodia	OCATION : Intake pump Station along option N: 146.9935. 795, E. 378377. 686 Elevation:7.09m BORE HOLE LOG BH7 SUMMARY LABORATORY TEST		Soil description		Stiff brown low plasticity Clay	1.50m		Stiff to firm yellow, brown medium	Plasticity Clay		Very stiff yellow, light-gray medium	Plastcity Clay									9.50m	the second s	Very stirr yellow, light-gray low	riasticity clay				13.50m		Hard yellow, light-gray medium	Plasticity Clay											END OF SPT TEST 20.50m depth
er Supply	6.795, E:3		(m)	To	1.05	1.50	2.05	2.50	3.05	3.30	4.05	5.05	5.50	6.05	6.50	7.05	7.50	8.05	8.50	9.05	9.50	10.05	10.50	11 50	12.05	12.50	13.05	13.50	14.05	14.50	15.05	15.50	14 50	16.00	07.01	17.85	18.30	18.75	19.20	19.65	20.10	
Reap Wat	: 1469935		Depth(m)	From	0.75	1.05	1.75	2.05	2.75	3.03	3./5	4.75	5.05	5.75	6.05	6.75	7.05	7.75	8.05	8.75	9.05	9.75	10.05	11.05	11.75	12.05	12.75	13.05	13.75	14.05	14.75	15.05 1 F 7 F	10./5	16.50	14.05	17.40	17.85	18.30	18.75	19.20	19.65	
the Siem I ambodia	ng option N	-	00mm	N=N2+N3		9		12		0	17		25		19		15		20		23		21	25		22		29	Ļ	c/		0/	77	8	AL AL	3	75		۲		34	
· Study on dom of Ca	ation alor 7		Blows / 300mm	N3 N3		5		7	c	2	10		15		10		8		11		15	;	16	14	:	10		17	9	42	00	32	35		27	5	41		25	0	20	
eparatory The King	e pump S		SPT - N Value	N2		4		5	c	7	7		10		6		7		6		8	;	=	1	:	12		12	00	33	L	35	10	10	ac	2	34		46	;	14	
T: The preparatory Study on the Sie Project in The Kingdom of Cambodia	DCATION : Intake pump Stal BORE HOLE LOG BH7		SPT -	N1	$\vdash$	3		4	c	7	Ω		7		5		4		2	╡	9	4	×	0		16		6	0	14	;	4	14	2	12	2	17		16	r	-	
PROJEC	LOCATIC BORE	Ĺ	əlqmsä	S	U1	D1	U2	D2	U3	5	D4 04	U5	D5	DI6	D6	U7	D7	8N	8	60	60	010 212	D10	110	U12	D12	U13	D13	U14	D14	U15 245	111	010	117	017	U18	D18	U19	D19	U20	D20	

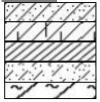
Owner :	NJS CO	ONSULTAN	TS CO.,I	LTD	Method :Rotary Auger	Date :	started :	14/02	/2010	
Contractor:	Partner	of Constru	ction and	I	Casing Size : 180 mm	Date f	finished	: 15/0	2/2010	0
		pment Serv			Elevation:6.23m	N: 140	68478.7	'00, E:	37822	25.444
PROJECT :						LOCA	TION :	Distrib	ution	Chamber along line option A
	Proje	r	kingaoi	m of (	Cambodia		CDT N	1) (alica		Depth to water flow 0.45 m
Sampli	ing	Type of Sampling	Ê				SPT - N Blow/30			Depth to water flow: 0.45 m Depth to water level: 0.32 m
Depth,	m		s, (n	g	Description of soil		Diotiro			▲ SPT , N (Blow/300mm)
Depin,		U / SPT	Thickness, (m)	Legend		_	_	_		
From	То		hick	Ľ		0mn	0mn	0mn	N3	0 10 20 30 40 50 60 70 80 90
From	То		F			N1=150mm	V2=300mm	N3=450mm	N=N2+N3	
		K		1.1						
D1: 0.75-	1.50	SPT 🗙		1/	Firm to stiff reddish,gray clay,Sand	2	2	3	5	
D2: 1.75 -	2.50	SPT	3.05	1.1.	low plasticity Clay (CL) 3.05m	2	3	6	9	3 + -111 - + - + - + - + - + - +
D3: 2.75 -	3.50	SPT		X	Firm to stiff reddish, gray medium	2	3	4	7	
D4: 3.75 -	4.50	SPT		1	Plasticity clay	2	4	6	10	10
D5: 4.75 -	5.50	SPT		1	(CI-CL)	5	8	13	21	
D6: 5.75 -	6.50	SPT X	4.00	1	7.05m	2	3	6	9	$\begin{array}{c} 6 \\ + \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
D7: 6.75-	7.50	SPT X	0.45	2.7	Loose yellowish, gray clayey Sand	2	3	6	9	7 + -     - + - + - + - + - + - + - +
D8:7.75-	8.50	SPT X		1/	Stiff yellow, gray, low to medium plasticity	3	5	7	12	
D9:8.75 -	9.50	SPT X		11	CL to CI)	2	5	7	12	9 + -1 + -1 + -1 + -1 + -1 + -1 + -1 + -
D10:9.75-	10.50	SPT X	3.00	11	10.50m	4	6	9	15	
D11:10.75-	11.50	SPT X		1.1	Medium dense yellowish,light-gray	3	6	9	15	11 +
D12:11.75-	12.50	SPT X	2.00	1.1.	clayey Sand (SC) 12.50m	2	9	12	21	
D13:12.75-	13.50	SPT X		X		6	9	15	24	
D14:13.75-	14.50	SPT X		1	Very stiff to Hard yellow, red, gray	15	28	65	93	
D15:14.75-	15.50	SPT X		1	Clay	17	38	43	81	
D16:15.75-	16.50	SPT X		Vi	(CI)	15	30	41	71	
D17:16.75-	17.50	SPT X		1		16	40	46	86	
D18:17.75-	18.50	SPT X		X	19.05m	16	44	47	91	
D19:18.75-	19.50	SPT X		9	Very dense reddish,gray clayey Sand	39	40	49	89	
					END OF SPT TEST 19.50m Depth					20 + - + - + - + - + - + - +
					Consistency: N-Value for Clay	y Blov	ws/300	Cm		
	Very S	Soft-Less	2blows	, Soft	-2-4blows, Firm-4-8blows, Stiff-				5-30	blows, Hard >30blows
	-					1.51				
V	erv Ino	56-   ASS 1	hlaws I	0050	Relative Density: N-Value for Sa - 4-10 blows, Medium dense-10-30				5 hlo	ws Verv dense->50 blows

#### LEGEND

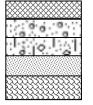


Stiff to hard sandy clay, low plasticity clay Soft to stiff medium plasticity clay Very stiff to hard clay , high plasticity Clay Clayey sand,Silty Sand V. Soft to soft clay, organic clay




Fill/topsoil Gravelly Sand, Clean Sand Clayey sand with gravel Fine Sand Weather Rock Standard Penetration

Test (SPT) U & SPT ▲ SPT - N Value


ROJECT : The preparatory Study on the Stem Reap Water Supply Expansion Project In The Kingdom of Cambodia OCATION : Distribution Chamber along line option A N: 1468478.700, E:378225.444 Elev BORE HOLE LOG BHB SUMMARY LABORATORY TEST BORE HOLE LOG BHB STT - N Value Blows / 300mm Depth(m) Soli description	8.700, E.378225.444 / LABORATORY TEST Soli description Soli description	sification	AMC B	(%) M	(ð _l cш ₃ ) k deuzit) M (%) MWC Efe	(d)cm3) (d)cm3)	ilic Gravity (g/cm³)	Atte	Atterberg limit	==== = = :	Date started : 14(02/2010 Date finished: 15(02/2010 Depth to water flow: Depth to water evel: Grain size	ted : 14/02/21 hed : 15/02/2 water flow: water level: Grain size	% 010 30/6  0010	ir Strength 0 0 145. "(Kpa) 25 5 "(Kpa) 25 5	E E noise Rear Shear Stream	S lion rolic ree (°) ree					
N2 N3 N=N2+N3 From To 0.75 1.05	N3 N=N2+N3 From 0.75	N=N2+N3 From 0.75	From 0.75	From 0.75	To 1.05						гл. 00		%)	%)	_	Clay				я 8	ıA_
1.50	3 5 1.05 1.50	5 1.05 1.50	1.05 1.50	1.50		Firm	Firm to stiff reddish, gray clay, Sand	ы	17.43	1.850			23.30	9.55	13.75	42.89	49.34	7.77			
2 2.05 mixture 7.75 2.05 mixture 7.75 2.05 mixture 7.75 2.60	6 0 2.05 2.05	1.75 2.05 0 2.05 2.60	1.75 2.05 2.05 2.50	2.05	_	mixtur	mixtures, low plasticity Clay	0	18 07		0.000	2.623	2630	12 90	13.40	47.11	52.80	0.00		0.00	Τ
2.75	2.75	2.75	2.75	-	3.05		3.05m	3	27.02	2.028	_	2.665	20.02	~ .7	21.0	-	10.40	2012	73.920	36.96	Τ
2 3 4 7 3.05 3.50	4 7 3.05	ŀ	ŀ	ŀ	3.50			CI	20.73		0.000		37.70	13.13	24.57	48.83	50.94	0.23			
4.05	4.05	4.05	4.05	4.05		Firm to s	Firm to stiff yellowish, reddish, gray		15.23	2.138		2.753							83.407	41.70	
4.50	6 10 4.05 4.50	10 4.05 4.50	4.05 4.50	4.50		medium	medium to low plasticity Clay	ō	13.93	100 0			40.00	10.02	29.98	38.18	57.65	4.17	001 000	14 21	
5 8 13 21 5.05 5.50	13 21 5.05	21 5.05	5.05	_	5.50			0	16.21	677.7	0.000	740.7	42.40	10.85	31.55	59.81	40.19	0.0	000.007	C/ .1+1	
5.75	5.75	5.75	5.75		6.05				15.75	2.207	-	2.656							128.516	64.26	
2 3 6 9 6.05 6.50	6 9 6.05	9 6.05	6.05		6.50			ъ	15.90		0.000		30.00	8.50	21.50	43.24	55.25	1.51			
7.05	7.05	7.05	7.05	7.05	ļ		7.05m		14.41	2.210	1.932	2.682							51.762	25.88	
7.50	6 9 7.05 7.50	9 7.05 7.50	7.50	7.50	-	Loose	Loose yellowish, gray clayey sand	SC	14.77		_		19.20	11.16	8.04	33.24	66.76	0.00			30
	7 12 8.05 7 12 8.05	7.75 8.05 8.05 8.65	7.75 8.05 8.05 8.65	8.05		Stiff vellov	Stiff vellow grav low to medium	5	13.62 13.68	2.278	2.005	2.687	30.00	0.06	VO UC	41 10	58 81	00	61.310	30.66	
8.75 9.05	8.75 9.05	8.75 9.05	8.75 9.05	9.05		Plasticity C	clay	5	13.98	2.227		2.639	2000	001	1.1.07		0.00	8	71.278	35.64	
2 5 7 12 9.05 9.50	7 12 9.05	9.05	9.05		9.50			С	13.55		0.000		25.30	10.89	14.41	45.05	54.95	0.00			
9.75	9.75	9.75	9.75	_	10.05			;	17.84	2.161	_	2.720		1	;				28.900	14.45	
4 6 9 15 10.05 10.50	9 15 10.05 10.50 10.75 11.05	15 10.05 10.50 10.75 11.05	10.05 10.50	11.05	_	Medium o	10.50m Medium dense vellowish. light-grav	0	14.00	2.151	0.000	2.685	42.30	12.08	30.22	47.5	52.50	0.00	20.410	10.21	
11.50	9 15 11.05 11.50	15 11.05 11.50	11.05 11.50	11.50		clayey S		S	12.50		-	8	21.20	10.62	10.58	34.83	65.17	0.00		-	32
					12.05							2.661								0.00	
2 9 12 21 12.05 12.50	12 21 12.05	21 12.05	12.05		12.50		12.50m	SC	11.75		0.000		21.40	13.83	7.57	32.86	67.05	0.09			35
0 15 01 12.75 13.05	12.75 13.05	12.75 13.05	12.75 13.05	13.05		Tord v	Hord tollow and areas modium	2	12.81	2.174		2.708	OG V C	11 41	00 00	CC 14	14.07	5	96.107	48.05	
13.75 14.05	13.75 14.05	13.75 14.05	13.75 14.05	14.05		Plasticit	ty Clay	5	15.52	2.088	_	2.725	-	Ŧ	10.07	1.00	D0:44		245.542	122.77	
14.50	65 93 14.05 14.50	93 14.05 14.50	14.05 14.50	14.50				CI	16.45				48.80	10.92	37.88	66.33	32.94	0.73			
14.75	14.75				15.05				16.33	2.251	1.935	2.646							237.500	118.75	
17 38 43 <b>81</b> 15.05 15.50	43 81 15.05	81 15.05	15.05	_	15.50			ū	16.25		0.000		47.20	13.88	33.32	76.10	23.23	0.67			
15.75	15.75				16.05				20.98	2.068	_	2.666							97.552	48.78	
	41 71 16.05	71 16.05	16.05		16.50			ū	14.89				39.90	14.63	25.27	85.67	14.33	0.00			
16.75	16.75	16.75	16.75		17.05				15.53	2.200	_	2.674							217.733	108.87	
16 44 47 86 17.05 17.50	47 86 17.05	86 17.05	17.05		17.50			D	13.50		_		48.10	16.50	31.60	80.77	15.60	3.63			
17.75	17.75	17.75	17.75	_	18.05				14.90	2.064	_	2.787							134.308	67.15	
_	49 91 18.05	91 18.05	18.05	_	18.50			o	12.61	-		101	43.00	16.95	_	63.50	23.95	12.55			
18./5 19.05 10.05 10.60	18./5 19.05 10.05 10.05 10.05	00 100E 10E0	18./5 19.05 10.05 10.60	10:02	_	//00/	Vons donce reddich area claves Sand	8	16.9/ 15.40	2.08	1.///	2.040	Ť	Ť	0.0	+	62 7E	100.001	132.04	Ť	5
06:K1 01:K1 60 6t 0t	00:61 C0:61 60 6t	NG:41 CO:41 40	06:41 60:41	00.41	-	very o	D OF SPT TEST 19.50m depth	SC	0.0		0.000	-	1		0.00	07.00	02.00	1.47			20
						۱															

Owner :	NJS CO	ONSULTAI	NTS CC	).,LTD	Method :Rotary Auger	Dates	started :	13/02/	2010	
Contractor:		of Constru			Casing Size : 180 mm		finished			
		oment Serv			Elevation:8.21m		70994.4			
PROJECT :	• •	2			n Reap Water Supply Expansion	LOCA	TION :	Water	Tream	nent Plant
	Proje	Ct IN INE Type of	ringo	ion C	of Cambodia		SPT - N			Depth to water flow: 2.25 m
Sampli	ng	Sampling	(u)		Description of soil		Blow/3			Depth to water level: 0.45 m
Depth,	m		s, (r	ри	Description of soli					▲ SPT, N (Blow/300mm)
-1 - ,		U / SPT	Thickness,	Legend		Ę	۶	۶		
From	То		hick			50mr	00mr	50mr	-N3	0 10 20 30 40 50 60
TION	10		Т			N1=150mm	N2=300mm	N3=450mm	N=N2+N3	
		X		신공품				~	~	
D1: 0.75-	1.50	SPT	3.05		Loose red, gray clayey Sand with alitle	2	2	4	6	$2 + \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{2} + \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{2} + \frac{1}$
D2: 1.75 -	2.50	SPT		101	gravel (SC) 3.05m	1	1	2	3	
D3: 2.75 -	3.50	SPT X	1.45	X	Stiff yellow, gray medium plasticity	2	4	6	10	
D4: 3.75 -	4.50	SPT X	1.45	1	Clay (Cl) 4.50m	2	4	6	10	
D5: 4.75 -		SPT X		0	Loose yellowish, red, gray clayey	2	2	4	6	
		X								6 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
D6: 5.75 -	6.50	SPT X			Sand with alitle gravel	3	3	4	7	
D7: 6.75-	7.50	SPT	7.55			3	5	6	11	
D8:7.75-	8.50	SPT			(SC)	3	4	5	9	9 1 1 1 1
D9:8.75 -	9.50	SPT		6	12.05m	2	3	5	8	
D10:9.75-	10.50	SPT X		0	Medium dense light-gray clayey Sand	4	5	8	13	
D11:10.75-	11.50	SPT X				2	3	5	8	
D12:11.75-	12.50	X SPT		0		4	5	8	13	
D13:12.75-	13.50	X SPT	4.45	8		5	6	7	13	
D14:13.75-	14.50	X SPT		6		6	6	8	14	
D15:14.75-		SPT X						9		
		X		Ľ		3	8		17	16 + + - + + - + + + + + + + + + + +
D16:15.75-	16.50	SPT		: <u>8</u> :		5	8	12	20	17
					END OF SPT TEST 16.50m Depth					
	Verv S	Soft-Less	2blow	is. Sr	Consistency: N-Value for Clay ft-2-4blows, Firm-4-8blows, Stiff-8				5-30F	blows. Hard >30blows
		511 2000	20101		Relative Density: N-Value for Sar					
Ve	ery loos	se- Less 4	4blows	, Loos	e- 4-10 blows, Medium dense-10-30				5 blov	ws, Very dense->50 blows

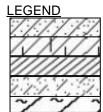
# EGEND



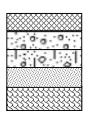
Stiff to hard sandy clay, low plasticity Clay Firm to stiff medium plasticity Clay Very stiff to hard clay , high plasticity Clay Clayey sand, Silty Sand V. Soft to soft clay, organic clay



Fill/topsoil Gravelly Sand, Clean Sand Clayey sand with gravel Fine Sand Weather Rock


Standard Penetration Test (SPT) X SPT ▲ SPT - N Value

SR4.6-35


				29	:	28						29		30		31		30		30		32		30				32		32		33		34
ЕЕ			40.20		19.14	:	37.43	r C	69.74		53.09		13.70		17.30		17.02		30.29		23.13		17.83		12.51		53.25		49.01		12.31		11.80	
2.25 I	•		80.395		38.284		74.850		139.480		106.178		27.401		34.600		34.048		60.577		46.256		35.652		25.023		106.500		98.017		24.623		23.597	
010 2010				0.00	1	3.76	_	0.00		18.94		0.00		0.00		33.21		0.41		0.00		0.00		1.59		0.00		0.00		0.14		0.00		0.00
Date started : 13/02/2010 Date finished : 13/02/2010 Depth to water flow: Depth to water level:				55.53		56.53		46.95		37.84		55.93		59.61		34.18		63.13		58.35		61.85		65.41		57.20		58.12		55.9		70.5		69.4
Date started : 13/02/ Date finished : 13/02 Depth to water flow: Depth to water level:				44.47	i o	39.71		53.05		43.22		44.07		40.39		32.61		36.46		41.65		38.15		33.00		42.80		41.88		44.0		29.51		30.57
				18.95	:	14.69		25.26		25.43		15.43		9.91		19.36		12.08		16.01		12.01		11.82		12.55		12.76		13.10		5.39		14.3
				12.85		11.11		15.24		13.07		10.97		12.79		10.44		10.92		10.09		10.59		11.98		12.15		10.04		13.30		14.41		10.7
				31.80		25.80	÷	40.50		38.50		26.40		22.70		29.80		23.00		26.10		22.60		23.80		24.70		22.80		26.40		19.80		25.00
			2.645		2.623	-	2.655	_	2.625	1	2.607		2.637		2.599		2.617		2.602		2.620		2.615		2.614		2.629		2.611		2.619		2.630	
			2.087		_		1.847			0.000		0.000	1.655	0.000	1.866	0.000	1.881	0.000	1.888			0.000		0.000	1.818	0.000	2.024	0.000	1.925	0.000	1.847	0.000		0.000
			2.306 2		2.096 1		2.105 1		2.219 1	+	2.041 1	0	1.983 1	0	2.220 1	0	2.161 1	0	2.155 1		2.310 1		2.194 1		2.096 1		2.307 2	0	2.184 1	0	2.190 1		2.10 1	0
						-	13.94 2.				17.99 2.	16.71	19.85 1.	16.52	18.95 2.	13.72	14.90 2.	14.74	14.13 2.						_		13.96 2.	9.63		12.77				14.88
			1(	1		-			-		<del>.</del>	7	1	1	18	1	-	-	1	-	1	1	-			2	1	6	1		1	2;	1	-
E																																		
Elevation:8.21m .TORY TEST																																		
:xpansion 82167.847 Elevation:8.2 SUMMARY LABORATORY TEST																																		
sion .847 JARY LAF																																		
Reap Water Supply Expansion N: 1470994.422, E: 382167.847 SUMMAR				0					0	-		0	- 2	0	2	(	10	_	2	0	5	0	5	0	5	0	5	0	5	0	5	0	2	0
/ater Supp 994.422, I		To	1.05	1.50	2.05	2.50	3.05	3.5(		4.50		5.50	6.05	6.50	7.05	7.50	8.05	8.50	9.05	9.50	10.05			_	12.05		13.05	13.50	14.05	14.50	15.05	15.50		16.50
n Reap W N: 1470		From	0.75	1.05	1.75	2.05	2.75	3.05	3.75	4.05	4.75	5.05	5.75	6.05	6.75	7.05	7.75	8.05	8.75	9.05	9.75	10.05	10.75	11.05	11.75	12.05	12.75	13.05	13.75	14.05	14.75	15.05	15.75	16.05
PROJECT : The preparatory Study on the Siem Reap Water Supply Expansion Project in The Kingdom of Cambodia LOCATION : Water Treament Plant N: 1470994.422, E: 382167.847 BORE HOLE LOG BH9 SUMMAR		N=N2+N3		9		c.		10		10		9		7		11		6		8		13		8		13		13		14		17		20
T : The preparatory Study on the Sier Project in The Kingdom of Cambodia DN : Water Treament Plant : HOLE LOG BH9		N3		4		2		9		9		4		4		6		5		5		8		5		8		7		œ		6		12
PROJECT : The preparatory Study Project in The Kingdom of LOCATION : Water Treament Plant BORE HOLE LOG BH9		N2		2		-		4		4		2		3		5		4		3		5		3		5		6		9		ω		œ
CT : The ∣ Project li ON : Wat		N1		2				2		2		2		3		3		°		2		4		2		4		5		9		3		2
PROJE( LOCATI			U1	D1	U2 	D2	U3	D3	U4	D4	U5	D5	U6	D6	U7	D7	U8	D8	00	D9	U10	D10	U11	D11	U12	D12	U13	D13	U14	D14	U15	D15	U16	D16

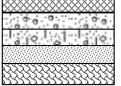
### BORE HOLE LOG BH10

Owner : Contractor:		ONSULTA			Method :Rotary Auger Casing Size : 180 mm		started : finished			)					
	Develo	pment Serv	vices Inc.		Elevation:8.12m	N: 14	70879.9	37, E:	38217	75.821					
PROJECT :	• •	, ,			n Reap Water Supply Expansion	LOCA	TION :	Water	Trear	nent Pla	ant				
	Proje	ct in The	Kingdo	om of	Cambodia	1				1					
Samplir	ng	Type of Sampling	(m)		Description of soil		SPT - N Blow/3			I	to wate		_	2.25 0.45	m m
Depth,	m	U / SPT	ess,	Legend							SPT ,	N ( Bl	ow/30	)0mm	)
From	То		Thickness, (m)	, Leć		N1=150mm	N2=300mm	N3=450mm	N=N2+N3	Depth,m	10	20 3	0 40	D 50	60
D1: 0.75-	1.50	SPT		0	Loose red, gray clayey Sand with alitle	1	1	1	2		2 ¦				
D2: 1.75 -	2.50	SPT	4.05	10	gravel (SC)	1	1	2	3		\ <mark>3</mark> ¦	     		   	
D3: 2.75 -	3.50	SPT		0	4.05m	2	4	5	9	<b>↓</b>	9	   			
D4: 3.75 -	4.50	SPT	1.25	X	Stiff yellow, gray medium plasticity	2	2	4	6		6			+     	
D5: 4.75 -	5.50	SPT		0	Loose yellowish, red, gray clayey	2	3	4	7	5 -				     	1
D6: 5.75 -	6.50	SPT		6	Sand with alitle gravel	1	2	3	5	6 -	5				
D7: 6.75-	7.50	SPT		0		2	2	4	6						
D8:7.75-	8.50	SPT	11.80	0	(SC)	3	3	4	7	8 - 1					
D9:8.75 -	9.50	SPT		0		2	4	5	9		9	     		+     	
D10:9.75-	10.50	SPT		6		2	2	3	5	10 -	5			F     	1
D11:10.75-	11.50	SPT SPT		ø		3	3	6	9		9				
D12:11.75-	12.50	SPT X			13.50m	3	3	4	7	12 -	- [			<u> </u>   	
D13:12.75-	13.50	SPT X		1.1	Medium dense light-gray clayey Sand	4	6	8	14	13 -		⊢ ·  4 		+     	
D14:13.75-	14.50	X SPT	2.95	1		5	8	12	20	14 -	<b>\</b>	20		+	
D15:14.75-	15.50	SPT X		11	16.00m	5	10	13	23	15 —	 ! !	23		·	
D16:15.75-	16.50	SPT X		1	Dense brown clayey Sand	9	16	20	36	16 -	<mark> </mark>   	<b>&gt;</b> <b>&gt;</b> 		36 ¦	
					END OF SPT TEST 16.50m Depth					17 -		1	<u> </u>		
	Very S	Soft-Less	2blow	s, So	Consistency: N-Value for Clay ft-2-4blows, Firm-4-8blows, Stiff-8				5-301	olows	, Hard	>30	blow	'S	
					Relative Density: N-Value for Sar e- 4-10 blows, Medium dense-10-30	nd Blo	ws/30c	m							



Stiff to hard sandy clay, low plasticity Clay Firm to stiff medium plasticity Clay Very stiff to hard clay , high plasticity Clay Clayey sand,Silty Sand V. Soft to soft clay, organic clay




Fill/topsoil Gravelly Sand, Clean Sand Clayey sand with gravel Fine Sand Weather Rock Standard Penetration Test (SPT) SPT SPT - N Value

			rength	ree (°) rgle ction	١A		28		28						30		29		29		30		30		29		30				32		34		35		40	
	E	ш	Shear Strength	noise Eqi fon	К	20.36		22.37		30.41		32.69		24.42		40.73		19.46		19.16		12.60		23.02		19.41		13.17		14.06		9.17		41.92		59.94		
		0.45 r	ц	nf. Stren " (Kpa)		40.717		44.746		60.821		65.370		48.830		81.453		38.920		38.325		25.208		46.042		38.820		26.340		28.120		18.336		83.834		119.871		
010 2010				% Jave			2.01		0.00		1.66		3.33		0.00		0.00		0.32		9.82		0.35		0.00		0.00		0.00		0.00		0.00		1.63		0.03	
d : 12/02/2 od · 12/02/2	ater flow:	ater level:	Grain size	% pue			59.42		74.68		48.30		41.87		52.68		60.41		59.17		47.66		60.00		64.71		60.07		68.60		59.89		54.1		61.7		60.0	
Date started : 12/02/2010	Depth to water flow:	Depth to water level:		tli2 bne %			38.57		25.32		50.04		54.8		47.32		39.59		40.51		42.52		39.65		35.29		39.93		31.40		40.11		45.9		36.67		39.97	
		]	iit	PI	(%)		15.21		6.54		19.99		27.94		21.60		18.53		16.99		15.51		18.30		8.56		13.25		11.35		9.40		17.45		10.85		16.9	
			Atterberg limit	PL	(%)		9.89		10.56		9.11		11.66		12.60		11.57		11.71		9.39		8.50		14.24		10.85		11.45		13.90		11.85		8.85	10.3	10.7	
			Att	۳۳ ۲۲	(%)		25.10		17.10		29.10		39.60		34.20		30.10		28.70		24.90		26.80		22.80		24.10		22.80		23.30		29.30		19.70		27.60	
				rific Gra≀ (⁵mɔ\p) ≀		2.599		2.596		2.665		2.632		2.684		2.652		2.636		2.644		2.651		2.666		2.666		2.646		2.655		2.614		2.626		2.644		
				(g/cm³) (g/cm³)		1.793	0.000	1.723	0.000	1.876	0.000	1.799	0.000	1.729	0.000	1.974	0.000	1.825	0.000	1.881	0.000	1.765	0.000	1.956	0.000	2.003	0.000	1.962	0.000	1.861	0.000	1.900	0.000	1.926	0.000	1.958	0.000	
				(g/cm ³ ) k densit		2.113		1.998		2.264		2.191		2.062		2.283		2.077		2.178		2.080		2.285		2.279		2.262		2.175		2.271		2.280		2.230		
				M (%) NWC	١	17.84	18.61	15.96	16.76	20.70	20.64	21.80	20.18	19.25	19.25	15.67	16.13	13.80	15.52	15.80	15.30	17.83	14.84	16.80	15.06	13.78	13.49	15.28	14.10	16.87	12.72	19.52	13.21	18.37	12.96	13.92	12.06	
			u	bəitinL Inified					SC				5									C V	ر مر										SC			ر ک	20	
	Elevation:8.21m	-ABORATORY TEST	u			ish clayey sand with a little						4.05m	5	5.30m									20							13.05m					16.00m			F SPT TEST 16.50m depth
y Expansion		SUMMARY LABORATORY TEST	u	bəiìinL		Loose yellowish clayey sand with a little	gravel					4.05m	5	5.30m									30							13.05m	Medium dense light-gray clayey Sand		SC			Dense gray brown clayey Sand		END OF SPT TEST 16.50m depth
ater Supply Expansion		SUMMARY LABORATORY TEST		Soil description		1.05 Loose yellowish clayey sand with a little		2.05		3.05	3.50		5	5.30m		6.05	6.50	7.05	7.50	8.05	8.50		9.50	10.05	10.50	11.05		12.05		13.05m	Medium dense light-gray clayey Sand	14.05		15.05	15.50 16.00m	Dense gray brown clayey Sand		END OF SPT TEST 16.50m depth
n Reap Water Supply Expansion	N: 1470879.937, E: 382175.821 Elevation:8.21m	SUMMARY LABORATORY TEST		bəiìinL	1		gravel		SC	2.75 3.05	3.05 3.50		4.50 Firm yellow, gray medium plasticity Clay	5.30m	5.50 Loose gray clayey Sand with alittle gravel							5				10.75 11.05	11.50		12.50	13.05m	13.50 Medium dense light-gray clayey Sand	13.75 14.05	SC	14.75 15.05	15.50	Dense gray brown clayey Sand		END OF SPT TEST 16.50m depth
on the Siem Reap Water Supply Expansion	N: 1470879.937, E: 382175.821	SUMMARY LABORATORY TEST		Depth(m) Soil description	10	1.05	1.50 gravel	2.05	2.50 SC			4.05	4.50 Firm yellow, gray medium plasticity Clay	5.05 5.30m	5.50 Loose gray clayey Sand with alittle gravel	6.05	6.50	7.05	7.50	8.05	8.50	9.05	9.50				11.50	11.75	12.50	13.05 13.05m	13.50 Medium dense light-gray clayey Sand		14.50 SC		15.50	15.75 16.05 Dense gray brown clayey Sand	16.50	END OF SPT TEST 16.50m depth
tory Study on the Siem Reap Water Supply Expansion	N: 1470879.937, E: 382175.821			Depth(m) Soil description	From To	1.05	1.05 1.50 gravel	2.05	2.05 2.50 SC		3.05	4.05	4.05 4.50 Firm yellow, gray medium plasticity Clay	5.05 5.30m	5.05 5.50 Loose gray clayey Sand with alittle gravel	6.05	6.05 6.50	7.05	7.05 7.50	8.05	8.05 8.50	9.05	9.05 9.50		10.05		11.05 11.50	11.75	12.05 12.50	13.05 13.05m	13.05 13.50 Medium dense light-gray clayey Sand		14.05 14.50 SC		15.05 15.50	15.75 16.05 Dense gray brown clayey Sand	16.05 16.50	END OF SPT TEST 16.50m depth
e preparatory Study on the Siem Reap Water Supply Expansion in The Kinndom of Cambodia	N: 1470879.937, E: 382175.821			Depth(m) Soil description	N=N2+N3 From To	1.05	2 1.05 1.50 gravel	2.05	3 2.05 2.50 SC		9 3.05	4.05	6 4.05 4.50 Firm yellow, gray medium plasticity Clay	5.05 5.30m	7 5.05 5.50 Loose gray clayey Sand with alittle gravel	6.05	5 6.05 6.50	7.05	6 7.05 7.50	8.05	7 8.05 8.50	9.05	9 9.05 9.50		5 10.05		9 11.05 11.50	11.75	13 12.05 12.50	13.05 13.05m	14 13.05 13.50 Medium dense light-gray clayey Sand		20 14.05 14.50 SC		23 15.05 15.50	15.75 16.05 Dense gray brown clayey Sand	36 16.05 16.50	END OF SPT TEST 16.50m depth
PROJECT : The preparatory Study on the Siem Reap Water Supply Expansion Deviant in The Kinndom of Cambrodia	lant N: 1470879.937, E: 382175.821	BORE HOLE LOG BH10 SUMMARY LABORATORY TEST		Soil description	N3 N=N2+N3 From To	1.05	1 2 1.05 1.50 gravel	2.05	2 3 2.05 2.50 SC		5 9 3.05	3.75 4.05	4 6 4.05 4.50 Firm yellow, gray medium plasticity Clay	5.05 5.30m	4 7 5.05 5.50 Loose gray clayey Sand with alittle gravel	6.05	3 5 6.05 6.50	7.05	4 6 7.05 7.50	8.05	4 7 8.05 8.50	9.05	5 9 9.05 9.50	9.75	2 2 3 5 10.05		3 3 6 9 11.05 11.50	11.75	3 3 4 13 12.05 12.50	12.75 13.05 13.05 13.05 13.05 II 13.05	4 6 8 14 13.05 13.50 Medium dense light-gray clayey Sand		12 20 14.05 14.50 SC		5 10 13 23 15.05 15.50	15.75 16.05 Dense gray brown clayey Sand	20 36 16.05 16.50	END OF SPT TEST 16.50m depth

Owner :	NJS (	CONSULTA	NTS	CO.,LT	Method :Rotary Auger	Date	e starte	d : 17	/02/20	010	
Contractor		er of Constr			Casing Size : 180 mm		e finishe				
		opment Ser			Elevation:7.07m		469615				
PROJECT					Siem Reap Water Supply Expansion of Cambodia	LOC	CATION	I : Inta	ake pu	ump S	tation a lond line option B
	-	Type of		Juom		1	SPT - N	l Valu	e	Dept	h to water flow: 1.50 m
Sampl	ing	Sampling	Ê		Description of soil		Blow/3				h to water level: 0.45 m
Depth,	, m	U / SPT	Thickness, (m)	pue							SPT, N (Blow/300mm)
	l	0/501	kne	Legend		E	E	m		D	0 10 20 30 40 50 60
From	То		Thic			N1=150mm	N2=300mm	N3=450mm	2+N3	ept 0 -	
						.=LN	N2=;	N3= [,]	N=N2+N3	P B ₁	
D1: 0.75-	1.50	SPT X	1.50	X	Firm yellow,brown medium olasticity Clay 1.50m	3	2	3	5		<b>↑</b> ⁵
D2: 1.75 -	2.50	X SPT	1.00	1.7.	Loose gray, brown clayey Sand 2.50m	1	2	3	5	2 -	
D3: 2.75 -	3.50	SPT X		X	Stiff yellow, red, gray medium plasticity Clay	4	5	6	11	3 -	
D4: 3.75 -	4.50	X SPT	3.00	X	(CI)	4	5	7	12	4 -	
D5: 4.75 -	5.50	SPT X		1	5.50m	3	4	5	9	5 -	
D6: 5.75 -	6.50	X SPT		1.1	Loose gray Clayey Sand	2	2	4	6	6 -	
D7: 6.75-	7.50	SPT X	3.00		(SC)	2	3	3	6	7 -	$\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\$
D8:7.75-	8.50	X SPT		1.7	8.50m	2	3	4	7	8 -	
D9:8.75 -	9.50	X SPT			Firm to stiff gray low plasticity Clay	2	3	2	5	9 -	$\begin{array}{c} + \\ - \\ 5 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
D10:9.75-	10.50	SPT X	3.00	11	(CL)	2	2	3	5	10 -	$\begin{array}{c} + \\ + \\ 5 \\ 5 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
D11:10.75-	11.50	SPT X		11	11.50m	2	6	6	12	11 -	
D12:11.75-	12.50	SPT X	2.00	1.1	Medium to loose yellowish, gray Clayey Sand	3	5	6	11	12 -	┝╶╶╎┠╶╶╎╴╶╎╴╴╎╴╴╎╴╴╎ ┝ 11!
D13:12.75-	13.50	SPT X	2.00	1	(SC) 13.50m	3	3	5	8	13 -	
D14:13.75-	14.50	SPT X	2.00	1.1	Very dense to medium dense yellowish	3	18	35	53	14 -	
D15:14.75-	15.50	SPT X	2.00	1	Clayey Sand (SC) 15.50m	6	16	11	27	15 -	
D16:15.75-	16.50	SPT X	1.45	[]]	Very stiff yellow low plasticity Clay (CL) 16.95m	5	8	15	23	16 -	
D17:16.75-	17.50	SPT	0.90	1.1.	Medium dense yellow, gray clayey Sand (SC) 17.85m	7	12	14	26	17 -	+ + + + + + - + - + - + - + - + + - + + - + + + - + + + + + + + + + + + + + + + + + + + +
D18:17.75-	18.50	SPT X	0.65	X	Very stiff yellow, gray medium plasticity Clay 18.50m	8	12	17	29	18 -	
D19:18.75-	19.50	SPT	2.00		Hard gray medium to low plasticity Clay	12	16	19	35	19 -	
D20:19.75-	20.50	SPT X	2.00	11		6	10	13	23	20 -	
					END OF SPT TEST 20.50m Depth						= 25
					Consistency: N-Value for Clay Blow						
	Ver	y Soft-Le	ss 2b	lows,	Soft-2-4blows, Firm-4-8blows, Stiff-8-15,			15-3	Oblo	ws, F	Hard >30blows
\ \	Very lo	oose- Less	s 4blo	ws, Lo	Relative Density: N-Value for Sand Blo pose- 4-10 blows, Medium dense-10-30 blows			-15 b	lows	, Very	/ dense->50 blows
LEGEND	)	1			*******	1					
1XX	17	1			/, low plasticity Clay asticity Clay		ill/tops Gravell		nd, C	lean \$	Standard Penetration Sand Test (SPT)



Very stiff to hard clay , high plasticity Clay Clayey sand, Silty Sand V. Soft to soft clay, organic clay



Clayey sand with gravel Fine Sand SPT - N Value Weather Rock

SPT

Date started : 17/02/2010 Date finished : 18/02/2010	Depth to water flow: 1.50 m Depth to water level: 0.45 m		الحو (م)           <	گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ           گ	0.00	40.00 14.78 25.22 59.21 40.47 0.32	0.00	-	66.637 33.32	_	49.00 14.43 34.57 59.65 38.73 1.62 64.386 32.19		38.20 16.97 21.23 48.91 51.09 0.00		26.30 12.00 14.30 41.08 58.92 0.00 29	79.300 39.65	28.20 11.09 17.11 35.74 64.26 0.00 29	82.460 41.23		66.160 33.08					34.80 10.87 23.93 35.93 63.62 0.45	20 11 2 70 15 FG 46 36 F3 64 0 0 00 31 31	68.500 34.25	28.00 12.63 15.37 34.01 65.99 0.00 30	68.651 34.33						152.930 76.47						141.882 70.94
		ity	(g/cm³) (g/cm³) (g/cm³)	Spec by	0.000 2.602	_	0.000 2.613	1.806	750 2.728	_	1.809 2.598 0.000	1.736 2.617		0.000 2.618	0.000	1.840 2.652		1.960 2.585	0.000	911 2.666		1.971 2.590	0.000	1.936 2.735	0.000	1.802 2.646 0.000	1.793 2.615		1.894 2.591		1.942 2.62		1.935 2.693		2.190 2.592		2.110 2.606		1.844 2.617	_	1.818 2.623
			y density (g/cm³) k density	٨	0	2.050 1.		2.050 1.		_	2.123 1.	2.086 1.	0	ö	0.	2.115 1.		2.254 1.	-	2.203 1.		2.246 1.	0.	2.199 1.	0.0	_	2.039 1.		2.173 1.		2.226 1.	+	2.217 1.		2.465 2.		2.311 2.		2.088 1.	_	2.101 1.
			M (%) NWC			20.85		13.52		21.26	17.34 18.94	_	15.32		16.73	14.93	14.96	15.01	14.85		15.73	13.96	15.25		12.16		_	14.85	14.74	12.24	14.60	11.92		12.85	12.58	13.27	9.55	11.93	13.22	12.53	15.58
		l	baification		5	5	SC	-			ō					ری ت						0					S			S.				ರ	-+	S	-	G		CI-CL	
Expansion	822925.686 Elevation:7.07m SUMMARY LABORATORY TEST		Soil description		Firm yellow,brown medium Clay			2.50m	Stiff yellow, red, gray medium plasticity	Clay				Loose gray Clayey Sand					8.50m		Firm to stiff gray low plasticity Clay				A de déres de la seconda de				Very dense to medium	Clayey Sand			Very stiff yellow low plasticity Clay			Medium dense yellow, gray clayey Sand		Very stiff y	gray medium to low plasticity	Clay	
sr Supply E	5.175, E:3{		h(m)	To	1.05	1.50	2.05	2.50	3.05	3.50	4.05	5.05	5.50	6.05	6.50	7.05	7.50	8.05	8.50	9.05	9.50	10.05	10.50	11.05	11.50	12.05	13.05	13.50	14.05	14.50	15.05			16.50	16.95	17.40	17.85	18.30	18.75	19.20	19.65
Reap Wate	N: 1469615		Depth(m)	From	0.75	1.05	1.75	2.05	2.75	3.05	3.75 4.05	4.75	5.05	5.75	6.05	6.75	7.05	7.75	8.05	8.75	9.05	9.75	10.05	10.75	11.05	11./5 12.05	12.75	13.05	13.75	14.05	14.75	15.05	15.75	16.05	16.50	16.95	17.40	17.85	18.30	18.75	19.20
PROJECT : The preparatory Study on the Siem Reap Water Supply Expansion Project in The Kingdom of Cambodia	LOCATION . Intake pump Station a lond line op.N: 1469615.175, E:382925.686 BORE HOLE LOG BH11 SUMMAR		/ 300mm	N=N2+N3		5		5		F	12		6		9		9		7		5		5		12	1	:	8		53		27		23		29		23		35	
tory Study ingdom of	p Station . BH11		le Blows	N3		3		3		9	7		5		4		3		4		2		3		9	4	,	5		35		11		15		17		13		19	
e preparat t in The Ki	OCATION : Intake pump Statio BORE HOLE LOG BH11		SPT - N Value Blows / 300mm	N2		2		2		ç	ц		4		2		č		3		3		2		9	Ľ	, ,	3		18		16		∞		12		10		16	
ECT : The Project	TION : Int		SPI	IJ		3		-		4	4		с		2		2		2		2		2		2	~		3		3		9		ŝ	_	∞		9		12	
PROJE	LOCA1 BOR		əlqmsð	S	5	Б	U2	D2	U3	5 13	D4 D4	U5	D5	9N	D6	U7	D7	U8	D8	N9	D9	U10	D10	U11	D11	D12	U13	D13	U14	D14	U15	D15	U16	D16	U17	D17	U18	D18	U19	D19	070

#### SR4.6-40

Owner :	NJS C	ONSULTAN	NTS CO.,	LTD	Method :Rotary Auger	Date	started	18/02	/2010	0
Contractor:	Partne	r of Constru	iction and	ł	Casing Size : 180 mm	Date	finished	: 19/02	2/2010	0
	Develo	pment Serv	vices Inc.		Elevation:7.09m	N: 14	69615.1	42, E::	38297	75.637
PROJECT					m Reap Water Supply Expansion	LOCA	TION :	Intake	pump	p Station
	Proje	ct in The	Kingdo	m of (	Cambodia	T				
Sampl	ing	Type of					SPT - N			Depth to water flow: 1.30 m
	0	Sampling	E)	_	Description of soil		Blow/3	00mm	1	Depth to water level: 0.40 m
Depth,	, m	U / SPT	ess,	Legend						▲ SPT , N ( Blow/300mm )
			Thickness, (m)	Leg		mm	шш	шш	~ ~	0 10 20 30 40 50 60
From	То		Thi			N1=150mm	V2=300mm	N3=450mm	N=N2+N3	
						∎N1	N2=	N3₌	N=N	
D1: 0.75-	1.50	SPT		1.7	Loose dark-gray brown clayey Sand	1	1	2	3	
		SPT X	2.50	11	(SC) 2.50m		2		4	
D2: 1.75 -	2.50	SPT X		27	``´´	1	2	2	4	
D3: 2.75 -	3.50	SPT		20	Firm yellow-gray medium plasticity	2	2	3	5	
D4: 3.75 -	4.50	SPT	3.00	01	Clay with gravel (CI)	2	1	3	4	
D5: 4.75 -	5.50	SPT X		2	5.50m	2	2	3	5	5
		X		2.2						
D6: 5.75 -	6.50	SPT 🗙		1.1.	Loose yellowish, gray clayey Sand	1	2	3	5	
D7: 6.75-	7.50	SPT		1.		2	2	3	5	
D8:7.75-	8.50	SPT X		1.7		2	2	4	6	
D9:8.75 -	9.50	SPT X	8.00	21		2	3	3	6	
		SPT	0.00	2.7.	(SC)					
D10:9.75-		X		1.1	(36)	2	3	3	6	
D11:10.75-	11.50	SPT		11		2	3	5	8	
D12:11.75-	12.50	SPT		1		4	4	6	10	
D13:12.75-	13.50	spt X		1.7	13.50m	2	4	5	9	
D14:13.75-	14.50	SPT X	2.00	1.7	Very dense to medium dense	2	24	26	50	
D15:14.75-	15.50	SPT X	2.00	1.1.	yellowish, gray clayey Sand 15.50m	12	12	15	27	
D16:15.75-	16.50	X SPT	1.00	1/	Very stiff brown, gray low plasticity	9	11	12	23	$\begin{array}{c} 16 + 1 1 + 1 + 1 + 1 + 1 + 1 + 1 +$
		X	1.00	1.1						- 23
D17:16.75-	17.50	SPT X	1.00	11	Medium dense gray clayey Sand	6	9	12	21	
D18:17.75-	18.50	SPT	2.15	11	Hard gray low to medium plasticity Clay	6	10	12	22	
D19:18.75-	19.50	SPT		11	(CI) 19.65m	9	16	21	37	19
D20:19.75-		SPT X	1.00	1.1	Dense gray clayey Sand	10	14	25	39	
D20.17.73*	20.30	JII				10	14	23	37	<u> </u>
					END OF SPT TEST 20.50m Depth	DI				
	11	Cathla			Consistency: N-Value for Clay					Neleure Hand OCH
	very	Soft-Less	s 2010W	s, 501	ft-2-4blows, Firm-4-8blows, Stiff-8				5-301	diows, Hard >30blows
	londe		1610	1.0	Relative Density: N-Value for Sar					Nue Versidence . 50 Hz
V	very loo	DSE-LESS	4DIOWS,	LUOSE	e- 4-10 blows, Medium dense-10-30	SWOIG	s, Dens	e-8-1	'0lQ c	ows, very dense->50 blows
LEGEND	1.1									
1.1.1.	11	Stiff to ha	ard sandy	clay, lo	w plasticity Clay	Fil	l/topsoi	il		Standard Penetration



Firm to stiff medium plasticity Clay Very stiff to hard clay , high plasticity Clay Clayey sand, Silty Sand V. Soft to soft clay, organic clay



Gravelly Sand, Clean Sand Clayey sand with gravel Fine Sand Weather Rock





		Strength gle (°) ee (°)			28		28				29		29	:	29	29		29		29		30			30		45		37	3E	3	35		41	:	40	41
	ЕE	Shear		24.24		17.36	10.00	10.08	24.87	19.50		34.40		26.37	07.70	20.02	39.69		33.63		42.47		32.95	0C 7C	07.10	17.56		24.95	E1.00	72.1 C	17.77		74.97		118.25	119.48	
	1.30	r. Strength r. Strength		48.477		34.720	1/1	C01.U2	49.742	39 000		68.800		52.741		13.240	79.380		67.254		84.930		65.907	079 VL	000.4/	35.112		49.907	102 024	+00.001	35.540		149.940		236.490	238.950	
10 010		leve %			4.48		0.00	0.26	0	0.70	0.00		0.00		0.00	0.00		0.00		0.00		0.00	000	0.00	0.15		0.00		0.56			0.00		0.00		0.00	0.00
: 18/02/20	er flow: er level:		6		59.66		60.50	51.52		40.00	58.51		62.13	1	63.92	62.56		64.99		63.31		61.78		64.50	71.71		70.96		64.78	57 07	17-10	67.33		60.03		59.07	60.29
Date started : 18/02/2010 Date finished : 19/02/2010	Depth to water flow: Depth to water level:	tliS bri	, 0		35.86		39.5	48.22	V L V V	+ /+	41.49		37.87	00.00	36.08	37.44		35.01		36.69		38.22	7E 44	30.44	28.14		29.04		34.66	-	07:14	32.67		39.97		40.93	39.71
Da Da	De De	11:3 PC			15.86		10.91	28.80		17.7	19.87		16.38		15.90	13.50		13.13		13.72		12.57	10	17.18	11.62		9.62 2		12.45	_		11.69 3		18.29		24.16	14.57
		Atterberg limit	(%)		12.14 1		10.29 1	11.10 2	, , ,		11.83 1	<b>i</b>	13.02 1		12.90 1	13.30 1		10.57 1		12.78 1		11.03	_	10.12	12.18 1	İ —	12.28	_	12.75 1	_	10.71	13.81 1	<b>i</b> – I	11.71 1		11.94 2	11.93 1
		Attert	(%)		28.00 1		21.20	39.90 1			31.70 1		29.40 1	:	28.80 1	26.80 1		23.70 1		26.50 1		23.60 1		1 08.12	23.80 1	-	21.90 1	_	25.20 1	_	2	25.50 1		30.00		36.10 1	26.50 1
		(a\cw ₃ )		2.701	_	2.650	+	2.023	2.649	2 605		2.644	-	2.654		2.000	2.636	-	2.732	2	2.710	_	2.629	7 4 75	-	2.666		2.691	2	+	2.641	2	2.666	_	2.634	3.625	÷
		fic Gravity fic Gravity	pλ	1.756 2.			_	0.000	1.839 2.							0.000			2.179 2.	0.000		_		0.000	-	2.009 2.			0.000		0.000 1.941 2.	0.000					0.000
		(g/cm ² )	_				+								_	_		0.0							_	-		_		-	+-			_			-
		(%) (%)	lluð	0 2.100		50 2.087	_	50 Z.1/3	76 2.166	7 083		1 2.438		2.382	_	+17:7 fr	80 2.255	60	1 2.493		39 2.315		2.239	0 2.221		25 2.275		1 2.316	02		2.236		5 2.215		11 2.263	8 2.275 38 2.275	
		AWC AWC		19.60			16.96	20.52	L 17.76	19.53	16.5	16.71	16.64	16.12	11.49	14.74	13.30		14.41	13.51	13.39	14.48	12.20	13.0/	14.1	13.25			12.70		15.20		14.0			12.68 14.08	12.46
		bəiiin			S		2		CI-CL	_	F						1	ۍ ا	2						E	<u> </u>	S.		5	ਰ 	1	א ב			CL-CI	F	SC
Expansion	82975.637 Elevation:7.09m SUMMARY LABORATORY TEST	Soil description		Loose dark-gray brown clayey Sand			2.50m	FIRITI PERIOW-GRAY ITIEGIUM PRASILCITY Clay with gravel			5.50m	Loose yellowish, gray clayey Sand													13.50m			yellowish, gray clayey Sand	15.50m	very suit brown, gray row prasticity Clave	Medium dense gray clayey Sand	17.40m	Hard gray low to medium plasticity Clay			19.65m	Dense gray clayey Sand
r Supply E	.142, E:38	(m)	To	1.05	1.50	2.05	2.50	3.50 3.50	4.05	4.00 5 05	5.50	6.05	6.50	7.05	7.50	8.50	9.05	9.50	10.05	10.50	11.05	11.50	12.05	12.5U	13.50	14.05	14.50	15.05	15.50 17 or	14 E0	16.95	17.40	17.85	18.30	18.75	19.20 19.65	20.10
teap Wate	: 1469615	Depth(m)	From	0.75	1.05	1.75	2.05	c/.2	3.75 4 of	4.75	5.05	5.75	6.05	6.75	7.05	6.05 8.05	8.75	9.05	9.75	10.05	10.75	11.05	11.75	10.05	13.05	13.75	14.05	14.75	15.05 15.75	15.73 14.05	16.50	16.95	17.40	17.85	18.30	18.75 19.20	19.65
PROJECT : The preparatory Study on the Siem Reap Water Supply Expansion Project in The Kingdom of Cambodia	LOCATION : Intake pump Station a lond line op N: 1469615.142, E:382975.637 BORE HOLE LOG BH12 SUMMAR	00mm	N=N2+N3		3		4	2	-	t	5		5		P	9		9		9		ω	ç	0	6		50		27	73	3	22		39	ſ	3/	39
Study on dom of Ca	ation a lo	Blows / 30	N3 N		2		2	3	ç	r	°.		3		e e	4		°.		33		2		Q	2	<u> </u> 	26	_	15	_	4	12		25	5	17	25
eparatory The King	e pump S LOG BH	SPT - N Value Blows / 300mm	N2		1		2	2		-	2		2		2	2		3		3		з		4	4	Ī	24		12	11		10		14	, ,	91	14
T : The preparatory Study on the Sier Project in The Kingdom of Cambodia	OCATION : Intake pump Static BORE HOLE LOG BH12	SPT -	N		-		-	2	ç	7	2		-		2	2		2		2		2	-	4	2	<u> </u>	2	-	12	0	,	9		10	0	6	10
PROJEC	LOCATIC BORE	əlqma	S	U1	D1	U2	D2	D3	U4	5 5	D5	N6	D6	U7	D7	ŝ	60	D9	U10	D10	U11	D11	U12	D12	D13	U14	D14	U15	D15	D16	U17	D17	U18	D18	U19	U19 U20	D20

Owner :	NJS C	ONSULTAN	ITS CO.,I	LTD	Method :Rotary Auger	Date	started :	14/02	/2010						
Contractor:	Partne	r of Constru	ction and		Casing Size : 180 mm	Date f	finished	: 16/02	2/2010	)					
	Develo	pment Serv	rices Inc.		Elevation:6.32m	N: 14	68699.4	50, E:3	38283	4.053					
PROJECT					m Reap Water Supply Expansion	LOCA	TION :	Raw V	Vater	along	line opti	on B			
	Proje		Kingdo	m of (	Cambodia		0.007					c		0.00	
Sampl	ing	Type of	Ê				SPT - N Blow/3			ter en ser	h to wat			0.80	m
		Sampling	, (п	σ	Description of soil		DIUW/3			Depi	h to wai			0.40	<u>m</u>
Depth	, m	U / SPT	less	Legend							561,	N ( BI	ow/30	umm	)
From	То		Thickness, (m)	Le		N1=150mm	N2=300mm	N3=450mm	N=N2+N3	Depth 0		20 30	40 !	50 60	) 70
D1: 0.75-	1.50	SPT X	1.50	1/	Soft gray low plasticity Clay (CL) 1.50m	2	1	2	3	2	3	; ; 		· · · · · · · · · · · · · · · · · · ·	
D2: 1.75 -	2.50	SPT	1.00	1.1.	Loose brown clayey Sand (SC) 2.50m	2	4	5	9	3	9		, , , , ,	i i i i +	
D3: 2.75 -	3.50	SPT		X	Soft to firm brown, gray medium to low	1	2	2	4	4		        -	   	     +	
D4: 3.75 -	4.50	SPT		//	Plasticity City Clay (CI-CL)	2	2	3	5	5	<b>5</b>				
D5: 4.75 -	5.50	SPT X	3.00	1.1	5.50m	2	3	3	6		6				
D6: 5.75 -	6.50	SPT K		1.1	Loose gray clayey Sand	2	2	2	4	6	<b>†4</b>			+	
D7: 6.75-	7.50	SPT X		2.7.		1	2	4	6	/	† <b>↓</b>				
D8:7.75-	8.50	SPT		1.7	(SC)	2	3	3	6	8	† † <u></u>				
D9:8.75 -	9.50	SPT		1.1.		2	3	2	5	9	<b>††</b>	-''-       			
D10:9.75-	10.50	SPT	5.00		10.50m	3	3	5	8	10		-''- 	· _ <u>-</u>	+' 	
D11:10.75-	11.50	SPT		11	Stiff to very Stiff brown, gray low plasticity	6	10	12	22	11	+ - ÷ ∖ ¦	22	·	+; 	
D12:11.75-	12.50	SPT	2.50	11	Clay (CL) 12.50m	7	10	13	23	12	† - <del>†</del> -	23	 I I	$\dot{\tau} = -\dot{1}$	
D13:12.75-	13.50	SPT		1.1.	Medium dense brown, gray clayey Sand	4	5	9	14	13	†-†-	/¦- 14	 I I	+	
D14:13.75-	14.50	SPT	2.00	2.7:	(SC) 14.50m	6	9	11	20	14	†-;-^	20	 I	÷	
D15:14.75-	15.50	SPT		X	Hard yellow, gray medium to low plasticity	13	18	23	41	15	+ - + -		4	+	
D16:15.75-	16.50	SPT		1	Clay	16	20	24	44	16	+-+-		- <u>J</u> -	+ 44	
D17:16.75-	17.50	SPT		11	(CI-CL)	17	48	12	60	17	+ - + -				60
D18:17.75-	18.50	SPT	4.00	1	18.50m	8	13	20	33	18	+-+-		33		
D19:18.75-	19.50	SPT		1.1.	Very dense to dense yellow, brown	24	40	15	55	19	+-+-			+	 5
D20:19.75-	20.50	SPT X	2.00	17:	Clayey Sand (SC)	8	13	18	31	20	+ - + -			+	
					END OF SPT TEST 20.50m Depth								51-		-
					Consistency: N-Value for Clay	Blow	/s/30C	m							
	Very	Soft-Less	s 2blows	s, Sof	t-2-4blows, Firm-4-8blows, Stiff-8				5-301	olows	s, Haro	1 >30	blows	S	
V.	erv loc	)se-   ess 4	4blows	0050	Relative Density: N-Value for Sar - 4-10 blows, Medium dense-10-30				5 blo	NS V	erv de	15e->	50 hlc	)WS	
	5	,50 2055 -	10101131	_0030		51011				, v	Si j uci	130 /			
EGEND	1.1.	CHIEF I				<b>F</b> :11/	u					0			



Stiff to hard sandy clay, low plasticity Clay Firm to stiff medium plasticity Clay Very stiff to hard clay , high plasticity Clay Clayey sand,Silty Sand V. Soft to soft clay, organic clay



Fill/topsoil Gravelly Sand, Clean Sand Clayey sand with gravel Fine Sand Weather Rock



			Strength	rion (°) eer (°) eer	۱A _		28		8							28		29		29	ę	\$3						32	5	34		42		43		49		39		47	38
		е е	Shear	noize 64i	к	0.00		29.46		0.00		18.61	34 74		25.05		20.38		20.19		0.00	01 1A		17.94		44.64	1	42.02	0.00		69.91		90.83		79.93		21.57		106.58		10.021
		0.80 n 0.40 n		u: Streng (Kpa)				58.911				37.228	69 470		50.093		40.756		40.372			ULC CV		35.878		89.270		84.034			139.817		181.662		159.863		43.143		213.165	101 04	101.042
10	010		-	ləve %	)		3.65		0.00		0.00	L L		0.00	-	0.00	7	0.00	7	0.00	200	00.00	0.00		0.00		0.00	0.00		0.23		0.00		10.58	-	10.44	7	0.00	2	17.71	0.00
14/02/20	: 16/02/20	er flow: er level:	Grain size		-		49.11		64.47	1	56.90	E 2 00	40°7C	57.55		68.97		66.25		65.60	0107	00. IU	49.29		44.94		54.03	61.16		54.92		36.35		22.58		40.31		41.38		45.13	61.61
Date started : 14/02/2010	Date finished : 16/02/2010	Depth to water flow: Depth to water level:	Gra	%	,		47.24		35.53		43.1	A1 E7	10.14	42.45		31.03		33.75		34.40	1000	57.04	50.71		55.06		45.97	38.84		44.85 E		63.65		66.84 2		49.25 4		58.62 4		37.16 4	38.39 6
Dat	Dat	Der Der		tliS bne			20.85		11.84		23.12	UC V	24.30	19.59		13.07		13.91		9.37	F0 0	14.41	20.18		22.03		19.16	17.72	1	15.60 4		30.94 6		20.08 6		22.83 4		20.00 5	_	15.03 3	15.69 3
			Atterberg limit		-		11.95 21		10.06 1		13.28 2	_	12.10	12.11 1	į.	11.83 1		11.59 1:		12.23 9	_	10.93	12.62 2		10.87 2:		9.64 1	11.48 1	-	11.10 1		11.26 3		12.72 21		10.27 2		13.20 21	-İ	10.37 1	10.91 1
			Atterb				32.80 1		21.90		36.40		1 04.00	31.70 1	-	24.90 1		25.50 1		21.60 1	_	1 06.02	32.80 1		32.90 1		28.80	29.20 1		26.70 1		42.20 1		32.80 1		33.10 1		33.20 1		25.40 1	26.60 1
				: (d\cw ₃ )	s9	2.700		2.636	ļ	2.649		2.672	2 660	+	2.662	2,	2.622	21	2.677	-	2.690	2 660 30	+	2.646	3.	2.648	_	2.6 /U			2.702	-	2.630		2.678	33	2.731		2.723	_	2/001
			ţλ	(g/cm³) (g/cm ³ )					-		_				-	00		00			_	_	4		00	_	_	-	8 8	0.000		_				00			_		_
				/ density (g/cm ² )	_	0.000	0 1.561		0.000	0.0		8 1.507			3 1.844	0.000		0.000		0.000	0.000		0000	5 1.871		4 1.858	_	0.000	0.000			_			5 1.944	0.000	8 1.828		5 1.953		0.000
			_	ردر-درع) لا density M (%)	Ing		0 1.850		4			0 1.768	8 2 200	-	8 2.133	3	4 2.070	9	5 2.124	9	c	2 D 124	<u> </u>	0 2.165		1 2.154	_	9 2.280			8 2.092		2 2.104	_	1 2.245	5	0 2.148		8 2.245		100.2 2
				AMC N			18.50	14.6	13.54	;	19.67	17.30		16.96	15.68	15.73	15.14	16.06	14.55	14.86	771	16.97	14.83	15.70	13.04	15.91	12.7	14.79		13.47	17.3	15.43	18.32	13.95	15.51	13.41	17.50	12.84	14.98	12.2	12.97
				UNIDALIIC					1			_																							ш.						
				bəiticd Jnified		5		SC				5	5	E					S			E		5	5	8		SC		8					CI-CL				٤	Ş	5
Expansion		82834.053 Elevation:6.32m SUMMARY LABORATORY TEST				Soft gray low plasticity Clay	1.50m		2.50m	-		Plasticity City Clay		5.50m	Loose gray clavey Sand				SC			10 F0m	Stiff to very Stiff brown, gray low plasticity		5	12.05m	Medium dense brown, gray clayey Sand	SC			yellow, gray medium to low plasticity	Clay			CI-CI				18.75m	o dense yellow, brown	
sr Supply Expansion		Y LABORA		Soil description		plasticity Clay	1.50m	Loose brown clayey Sand	2.50m			Clay		5	ayey Sand	6.50	7.05			8.50	9.05	10	tiff brown, gray low plasticity	Clay		12		13.50 SC 350 SC		14	Hard yellow, gray medium to low plasticity		16.05		16.95 CI-CL	17.40	17.85		18.7	Very dense to dense yellow, brown	
Reap Water Supply Expansion		Y LABORA		bəîlinl	1	Soft gray low plasticity Clay	1.50 1.50m	2.05 Loose brown clayey Sand	2.50m	3.05	3.50 Soft to TIFM DT	Plasticity City Clay	4.30 5.05	5.50	Loose gray clayev Sand			7.50	8.05			9.50 10.05	Stiff to very Stiff brown, gray low plasticity	11.05 Clay	11.50	12	12.50		14.05	14	15.05 Hard yellow, gray medium to low plasticity	15.50		16.50		16.95 17.40	17.40 17.85	18.30	18.7	19.20 Very dense to dense yellow, brown	
the Siem Reap Water Supply Expansion	9	N: 1468699.450, E:382834.053 SUMMARY LABORA		Depth(m) Soil description	From To	1.05 Soft gray low plasticity Clay	1.50 1.50m	1.75 2.05 Loose brown clayey Sand	2.50 2.50m	2.75 3.05	3.50 Soft to TIFM DT	3.75 4.05 Plasticity City Clay	4.30 5.05	5.05 5.50	5.75 6.05 Loose gray clavev Sand	6.50		7.50	8.05		8.75	9.50 10.05	10.50 Stiff to very Stiff brown, gray low plasticity	11.05 Clay	11.50	11.75 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05	12.50	13.50	13.75 14.05	14.50	14.75 15.05 Hard yellow, gray medium to low plasticity	15.50	15.75	16.50	16.95		17.40	18.30	18.30 18.75 18.75	19.20 Very dense to dense yellow, brown	20.10 Clayey Janua 20.10
Study on the Siem Reap Water Supply Expansion	9	N: 1468699.450, E:382834.053 SUMMARY LABORA		Depth(m) Soil description	To	1.05 Soft gray low plasticity Clay	1.05 1.50m	1.75 2.05 Loose brown clayey Sand	2.05 2.50m 2.60m	2.75 3.05	3.05 3.50 Soft to firm Dr	3.75 4.05 Plasticity City Clay	4.03 4.30 4.75 5.05	6 5.50 5.50	5.75 6.05 Loose gray clavey Sand	6.05 6.50		7.05 7.50	7.75 8.05	8.05	8.75 5.65	9.75 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 1	10.05 10.50 Stiff to very Stiff brown, gray low plasticity	11.05 Clay	11.05 11.50	11.75 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05 12.05	12.05 12.50	12./5 13.05 13.50	13.75 14.05	14.05 14.50 14	14.75 15.05 Hard yellow, gray medium to low plasticity	15.05 15.50	15.75	16.05 16.50	16.95	16.95	17.40	17.85 18.30	18.30 18.75 18.75	18.75 19.20 Very dense to dense yellow, brown	19.20 19.00 Lagey Janua 19.65 20.10
eparatory Study on the Siem Reap Water Supply Expansion	9	N: 1468699.450, E:382834.053 SUMMARY LABORA		Depth(m) Soil description	N=N2+N3 From To	1.05 Soft gray low plasticity Clay	3 1.05 1.50 1.50	1.75 2.05 Loose brown clayey Sand	9 2.05 2.50 2.50m	2.75 3.05	4 3.00 3.50 3.50 Solid Idea	3.75 4.05 Plasticity City Clay	3 3 3 4.00 4.30 4.75 5.05	3 6 5.05 5.50	5.75 6.05 Loose gray clavey Sand	4 6.05 6.50		6 7.05 7.50	7.75 8.05	6 8.05	2 F 2.75	00.7 50.00 50 00.6 C	8 10.05 10.50 Stiff to very Stiff brown, gray low plasticity	10.75 T1.05 Clay	22 11.05 11.50	12.05 11.75 12.05	<b>23</b> 12.05 12.50	14 13.05 13.05 14 13.05 13.50	13.75 14.05	20 14.05 14.50 14	14.75 15.05 Hard yellow, gray medium to low plasticity	41 15.05 15.50	15.75	44 16.05 16.50	16.95	60 16.95	17.40	33 17.85 18.30	18.30 18.75 18.75	55 18.75 19.20 Very dense to dense yellow, brown	31 19,65 20.10
PROJECT : The preparatory Study on the Siem Reap Water Supply Expansion	9	Y LABORA		Soil description	N3 N=N2+N3 From To	1.05 Soft gray low plasticity Clay	2 3 1.05 1.50 1.50	1.75 2.05 Loose brown clayey Sand	5 9 2.05 2.50 2.50	2.75 3.05	Z 4 3.05 3.50 Sont to mm of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	3.75 4.05 Plasticity City Clay	4.75 5.05	6 5.50 5.50	5.75 6.05 Loose dray clavey Sand	2 4 6.05 6.50		4 6 7.05 7.50	7.75 8.05	3 6 8.05	8.75 8.75	00.7 20.7 20.7 20 20 20 20 20 20 20 20 20 20 20 20 20	5 8 10.05 10.50 Stiff to very Stiff brown, gray low plasticity	10.75 T1.05 Clay	12 22 11.05 11.50	12.05 11.75 12.05	13 23 12.05 12.50	9 14 13.05 13.05	13.75 14.05	11 20 14.05 14.50 14	14.75 15.05 Hard yellow, gray medium to low plasticity	23 41 15.05 15.50	<u> </u>	24 44 16.05 16.50	16.95	12 60 16.95	17.40	20 33 17.85 18.30	18.30 18.75 18.75	15 55 18.75 19.20 Very dense to dense yellow, brown	18 31 19.65 20.10

Owner :		ONSULTAN	,		Method :Rotary Auger		started :			
Contractor:		r of Constru			Casing Size : 180 mm		inished			)
		pment Serv			Elevation:1.12m m Reap Water Supply Expansion		2006, E TION :			bor
FROJECT					Cambodia	LUUA	TION .	IIIIane	Chan	
Sampl	ina	Type of					SPT - N			Depth to water flow: + 1.60 m
-	-	Sampling	(ш	-	Description of soil		Blow/3	00mm		Depth to water level: +1.60 m
Depth	, m	U / SPT	less,	Legend						▲ SPT , N ( Blow/300mm )
From	То		Thickness, (m)	Le		N1=150mm	N2=300mm	N3=450mm	N=N2+N3	
D1: 0.75-	1.50	X SPT			Stiff red, gray high plasticity Clay,	2	3	5	8	P 1 +
D2: 1.75 -	2.50	SPT X	3.00		Fat Clay (CH) 3.00m	2	4	5	9	
D3: 2.75 -	3.50	X SPT	0.50	11	Medium dense yellow, gray Clayey Sand	2	5	5	10	
D4: 3.75 -	4.50	K SPT		11		5	11	17	28	
D5: 4.75 -	5.50	SPT			Very stiff to hard yellow, red,gray	6	12	17	29	5
D6: 5.75 -	6.50	SPT			medium to high plasticity Clay	10	18	28	46	6 46
D7: 6.75-	7.50	SPT			inculari to high plasticity oldy	8	10	18	32	7
D8:7.75-	8.50	SPT				6	14	18	32	8
D9:8.75 -	9.50	SPT				8	18	18	36	9
D10:9.75-		SPT			(CH-CI)	9	14	22	36	
D11:10.75-		X SPT	17.80			7	16	20	36	
D12:11.75-		SPT X				9	18	22	40	
D13:12.75-	13.50	SPT X				4	8	10	18	
D14:13.75-	14.50	SPT X				11	13	12	25	14 + + + - + - + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
D15:14.75-	15.50	SPT X				7	13	17	30	
D16:15.75-	16.50	SPT X				6	13	16	29	16
D17:16.75-	17.50	X SPT				6	14	20	34	
D18:17.75-	18.50	SPT X			18.30m	5	6	9	15	
D19:18.75-	19.50	SPT X		11	Medium dense yellow, gray Clayey	7	8	12	20	19 + - + - + - + - + - + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
D20:19.75-	20.50	SPT X		1.1.	Sand (SC) 20.50m	6	9	14	23	
					END OF SPT TEST 20.50m Depth					
					Consistency: N-Value for Clay					
	Very	Soft-Less	s 2blow	s, Sof	t-2-4blows, Firm-4-8blows, Stiff-8		5		5-30k	olows, Hard >30blows
١	/ery loc	ose- Less 4	4blows,	Loose	Relative Density: N-Value for Sar e- 4-10 blows, Medium dense-10-30				5 blov	ws, Very dense->50 blows
	1.1.2					]				<b>•</b> • • • •
111	11		ard sand iff mediun		low plasticity clay		/topsoil avelly S	and C	laan (	Standard Penetration
111	Y				high plasticity Clay		iveliy S			
~	1	Clayey sa	and,Silty S soft clay	Sand		Fin	e Sand ather R		5	SPT - N Value

PROJECT : The preparatory Study on the Siem Reap Water Supply Expansion Project in The Kingdom of Cambodia

Date tested: 01-March-2010

	rength	iree (°) ngle retion	A						31																															34	35	1
	Shear Strength	noizer 6q2	k	16.43		33.38		11.29		31.17		33.85		37.31		114.03		114.83		72.89		76.64		64.35		116.89	0 0 0 0 0 0	113.19	5276		26.29		76.72		78.70		32.53		18.23	000	0.00	
	цр	nf. Stren nf. Stren		32.850		66.750		22.570		62.330		67.701		74.610		228.069		229.650		145.780		153.276		128.700		233.787	010,000	220.3/U	105 510		52.580		153.440		157.390		65.051		36.460			
1.60 1.60		ravel %			2.05		0.00		0.00		0.00		0.00		0.00		0.00		0.71		0.60		0.00		0.00		0.00		0.00	0.00		0.00		0.00		0.00		0.00		1.47	0.00	4
Depth to water level: +1.60 Depth to water level: +1.60	Grain size	% pue			43.25		45.15		54.21		37.37	ļ	15.56		21.11		16.30		13.21		20.42		37.67		35.44		3.87	1010	34.91	32.85		25.60		2.94		5.21		24.47		63.25	60.83	
Depth to wa	Ō	and Silt %	Clay		54.7		54.85		45.79		62.63		84.44	4	78.89		83.7		86.08		78.98		62.33		64.56		96.13	1 00	60.00	67.15		74.40		97.06		94.79		75.53		35.28	39.17	
		١Ц	(%)		50.23		42.46		15.78		45.72	}	58.47		32.41		38.62		46.36		48.35		37.05		32.68		40.42	C	CC.CZ	24.30		28.12		32.51		33.01		29.11		5.57	10.53	2
	Atterberg limit	۲	(%)		16.27		15.84		12.52		18.98		16.63		16.19		21.28	-	15.44	_	13.75		14.05		12.92	_	15.48		17.11	12.30	-	13.28		13.39		14.09		16.39		18.43	16.57	-
	Atter	LL LL	(%)		66.50		58.30		28.30		64.70		75.10		48.60		59.90	_	61.80	_	62.10		51.10		45.60		55.90		20.00	36.60		41.40		45.90		47.10		45.50		24.00	27.10	-
		crav (smo/g) s		2.651	-	2.613		2.666		2.631	-	2.589	-	2.565	_	2.689	_	2.706	-	2.591		2.673	_	2.682		2.685	-	C00.7	2 651		2.728		2.688	_	2.634		2.648	i	2.677			
		¹ (d\cw ₃ )	PL -		0.000	1.724 2	0.000							_	_			_	_		_	1.800				_			0.000 1 822 3		-	0.000		0.000	1.757 2			0.000		0.000	1.977	-
	-	y density	_	1.866 1.	0	2.068 1.	0	2.253 1.		2.138 1.		1.988 1.	_	1.966 1.	_	1.988 1.		1.891 1.	_	2.070 1.		2.116 1.		2.081 1.	_	2.097 1.		2.U0/	2.128 1	_	2.109 1.	0	2.064 1.		2.118 1.	0	2.128 1.	_	2.240 1.	0 0	2.250 1.	
	ŀ	Ik qeuziự			26		52						_							_									_	_	_	36				47		_		90	_	
		NWC		37.66	17.26	19.98			H					26.72	22.88							17.58		18.27					10.01				17.03		20.54			18.39		15.60	13.83	
		bəitinU			CH		H		SC		S	1	£	1	D		H		B		H		B		o		S	5	5	C		C		D		C		n		S	SC	
N:1462006, E: 378209 Elevation:1.12m SUMMARY LABORATORY TEST		Soil description		Stiff red, gray high plasticity Clay, fat Clay				3.00m	Medium dense yellow, gray clayey Sand			medium to high plasticity Clay																												Clayey Sand		
N:146200		h(m)	То	1.05	1.50	2.05	2.50	3.05	3.50	4.05	4.50	5.05	5.50	6.05	6.50	7.05	7.50	8.05	8.50	9.05	9.50	10.05	10.50	11.05	11.50	12.05	12.50	13.05	14.05	14.50	15.05	15.50	16.05	16.50	16.95	17.40	17.85	18.30	18.75	19.20 10.45	20.10	
		Depth(m)	From	0.75	1.05	1.75	2.05	2.75	3.05	3.75	4.05	4.75	5.05	5.75	6.05	6.75	7.05	7.75	8.05	8.75	9.05	9.75	10.05	10.75	11.05	11.75	12.05	12.15	13.75	14.05	14.75	15.05	15.75	16.05	16.50	16.95	17.40	17.85	18.30	18.75	19.65	
allibouid		00mm	N=N2+N3		8		6		10		28		29		46		32		32		36		36		36		40	ç	8	25		30		29		34		15		20	23	1
Characteristic Angularity Controlled ON : Intake Chamber E HOLE LOG BH14		Blows / 3	N3 N		5		5		5		17	1	17		28		18		18		18		22		20		22	0	2	12		17		16		6		14		12	14	
DCATION : Intake Chamber BORE HOLE LOG BH14		SPT - N Value Blows / 300mm	N2		3		4		5		1	2	12		18		14		14		18		14		16		18		α	13		13		13		9		6		8	6	1
N : Intake		SPT - I	N1		2		2		2		5		9	+	10		8		9		8		6		7		6	+	4	;	$\frac{1}{1}$	7		6		5		9		2	9	1
LOCATION : Intake Chamber BORE HOLE LOG BH1		əlqmsZ	6	U1	D1	U2	D2	U3	D3		D4	U5	D5	N6	D6	U7	D7	U8	D8	N9	D9	U10	D10	U11	D11	U12	D12	013	D13	D14	U15	D15	U16	D16	U17	D17	U18	D18	U19	D19	D20 D20	

Owner :	NJS C	ONSULTAN	ITS CO.,	LTD	Method :Rotary Auger	Date	started :	25/02	/2010										
Contractor:	Partne	r of Constru	ction and	ł	Casing Size : 180 mm	Date	finished	: 26/0	2/2010	)									
		pment Serv			Elevation:1.197m		60658, E												
PROJECT	•				m Reap Water Supply Expansion	LOCA	TION :	Intake	Charr	ber									
	Proje		Kingdoi	m of (	Cambodia		CDT N			المعر		fl 1	45						
Sampl	ing	Type of Sampling	(				SPT - N Blow/30			Depth to water flow: +1.45m Depth to water level:+1.45m									
Donth	~	Sampling	s, (n	σ	Description of soil		DIOW/J	5011111											
Depth,	m	U / SPT	Thickness, (m)	Legend		_	_	_		-	▲ SPT , N ( Blow/300mm )								
E	т		nicki	Ľ		N1=150mm	V2=300mm	N3=450mm	N3	Der	0 10	20 30	0 40	50					
From	То		F			1=15	2=30	3=45	N=N2+N3	enth o	1	+ +							
		X		1.1			Z		Ż :	8 ₁ .	+								
D1: 0.75-	1.50	SPT X	1.50	X	Stiff reddish, gray medium plasticity Clay	3	4	7	11	2 -									
D2: 1.75 -	2.50	SPT	2.50	1	Very stiff reddish, gray high plasticity	4	10	17	27	3 -	<del> </del>	\	27 						
D3: 2.75 -	3.50	SPT		X	Hard to stiff reddish, gray medium	7	14	18	32	4 -	 	i i i A	32						
D4: 3.75 -	4.50	SPT	3.00	1	Plasticity Clay (CI)	5	10	16	26	5		2	6						
D5: 4.75 -	5.50	SPT X		1	5.50m	5	5	8	13			13							
		X		11				-		6 ·			30						
D6: 5.75 -	6.50	SPT X		$\square$	Hard yellow, reddish, gray high	6	13	17	30	7 -	+ +		!   						
D7: 6.75-	7.50	SPT			plasticity Clay	6	9	15	24	8 -	<u>+</u>	- +	_						
D8:7.75-	8.50	SPT	5.00		(CH)	6	12	15	27	9 -									
D9:8.75 -	9.50	SPT				7	18	22	40	10 -				10 					
D10:9.75-	10.50	SPT X			10.50m	7	15	22	37	11 -	+	, , , , , , ,	37						
D11:10.75-	11.50	SPT X		V	Hard yellow-gray medium plasticity	8	18	22	40	12 -	    +	      +-		0					
		SPT X	2.00	1	, , , , ,	7				13			36						
D12:11.75-		X		11	· · · ·		16	20	36			1 1	3	9					
D13:12.75-	13.50	SPT X			Hard yellow-gray high plasticity Clay	6	15	24	39	14 ·	++	· +	28						
D14:13.75-	14.50	SPT				8	12	16	28	15 -	+	- +	38						
D15:14.75-	15.50	SPT	4.90		(CH)	8	16	22	38	16	+	- +							
D16:15.75-	16.50	SPT				8	15	22	37	17 ·		- +							
D17:16.75-	17.50	SPT X			17.40m	7	16	23	39	18 -	+	, , , , ,	3	9 					
D18:17.75-		SPT		11	Very stiff yellow, gray medium plasticity	7	12		26	19 -	  +		6						
		X	2.10	N				14		20 -	ļ į	17							
D19:18.75-	19.50	SPT		1	Clay	4	7	10	17	20	T T T								
					END OF SPT TEST 19.50m Depth														
					Consistency: N-Value for Clay														
	Very S	Soft-Less	2blows	, Soft	-2-4blows, Firm-4-8blows, Stiff-				5-30	blow	s, Hard	>30blo	WS						
					Relative Density: N-Value for Sa														
V	ery loo	se- Less 4	blows, I	Loose	- 4-10 blows, Medium dense-10-30	blow	s, Dens	se-8-1	5 blo	ws, V	ery dens	e->50 k	lows						

#### LEGEND



Stiff to hard sandy clay, low plasticity Clay Firm to stiff medium plasticity clay Very stiff to hard clay , high plasticity Clay Clayey sand, Silty Sand V. Soft to soft clay, organic clay



Fill/topsoil Gravelly Sand, Clean Sand Clayey sand with gravel Fine Sand Weather Rock Standard Penetration Test (SPT) U & SPT SPT - N Value

		- to a set to	esion Shear Strength ba allo bale (°) ee (°)	nA																																		
	EE	U Choose	esion Shear esion su		18.06		94.58	1001	102.64	76.18		43.00		65.09	54 91		67.57		110.34	199.22		180.13		17.8C	66.12		120.43	110.55		113.90		110.18		101.51		72.16	7 84	
	00.0	00:0 L	ıf. Strength (Kpa)		36.123		189.160		482.CU2	152.350		86.000		130.173	109 810	0.000	135.147	007.000	232.082	398.440		360.265	101 144	10.53/	132.244		240.850	221.091		227.808		220.360		203.010		144.311	15,685	2000
010	-015 1.45m 1.45m	1104-1	% Jəve			0.00	000	0.00	0.00		0.00		0.00	0.00	0.0	0.00		0.00	0.00		0.00		0.00	0.00		0.00		0.0	0.00		0.00		0.00		0.00	0	0.0	
l : 25/02/2 d : 26/02/2	ter flow: + ter level: +	lei levei.+	% Crain size			10.80	00.7	16.20	10.22		4.96		53.01	14 03	2	14.29		17.08	15,82		53.21		44.80	30.20		27.94	27.61	10.20	22.67		1.09		5.44	1	7.15	10.00	28.94	
Date started : 25/02/2010 Date finished : 26/02/2010	Depth to water flow: +1.45m Denth to water level: +1.45m		tliS brit % چ			89.20		83.80	89.78		95.04	4	46.99	85.07	5	85.71		82.92	84 18		46.79		55.20	69.80		72.06	06 73	10.10	77.33		98.91		94.56	1	92.85	jo Fr	/1.06	
			E	(%)		23.44	1 1 00	33.16	25.03		30.42		27.30	43 7F	0.00	40.35		48.33	53.66		40.81		21.34	29.75		41.09	2E 1 2	71.00	35.37		51.49		52.35		32.30	1,04	16.31	
		lead success	Atterberg limit	(%)		18.46	10.01	18.04	14.47		13.28		13.60	21 1E	01.14	21.35		16.67	15 34		16.09		13.36	16.35		15.81	17.00	00.71	14.03		17.71		16.45		13.90	10.00	13.09	
			LL	(%)		41.90	00 1	1.20	39.50		43.70		40.90	00 V 9	2.5	61.70		65.00	00 09		56.90		34.70	46.10		56.90	E2 20	72.20	49.40		69.20		68.80		46.20	07 00	29.40	
		ľ	ific Gravity (g/cm³)		2.685		2.601		969.2	2.607		2.563		2.551	2 691		2.659	01-1 0	Q/C.7	2.584		2.704		7.001	2.667		2.638	2.684		2.632		2.617		2.658		2.638	2 636	200
		F	(ð∖cw₃) \ a¢uzirλ			0.000		0.000		1.829		_	0.000	1.686	1.518	0.000		_	0.000			1.645	0.000	0.000	1.537	0.000	1.760	1.714	0.000	1.717	0.000	1.635	0.000	1.560	0.000	1.682	0.000	1000
		F	(a\cw ₃ )	~λ	1.890	-	2.088	) ( 77 77		2.137	)	2.196	-	2.066	1 948		2.020		670.7	2.028		1.982	_	2.014	1.843		2.035	2.032	0	2.09		2.049	-+	.972		2.054	1 953	-
		╞	k qeuzity N (%)	Λ		19.79		19.82			15.76		14.46		_		34.50 2.		24.90 2.	_				_	19.88 1		15.63 2. 15.76	-	15.33				19.53	-			17.58 23.46 1	_
			AMC		35.	ř-	2		19	-	÷,	5	÷.	210	- 00	Ň	ñ	$\approx 10$	S I C	N		3	2	1	-	18			1	à	$\simeq$			$\sim$	3	2	- 6	í l
			noiteofion			Ť		1	I										•		1				İ				Ę		•	2	_		1	ರ		
			b9itited noitsoftion		5	5	B			5							स				1_		5			y		ē	5			2	0m			CI-CT		
ansion	Elevation:1.197m MMARV LARORATORY TEST			า	gray medium plasticity Clay	1.50m	city CH	moo		5			m0c.c	drav hidh							10.50m	w-gray medium plasticity		12.50m		Hard yellow-gray high plasticity Clay		5	5			2	40m	stift yellow, gray medium plasticity		CI-CL		
upply Expansion			Soil description		Stiff reddish, gray medium plasticity Clay	1.50m	Very stiff reddish, gray high plasticity CH		Plasticity Clay		5		M06.6	Hard vellow reddish grav high	plasticity Clav	frank frankers d	5				10.50m	Hard yellow-gray medium plasticity	Clay	12.50m		Hard yel	4.05						17.40m	Very stirf yellow, gray medium plasticity	Clay		9.50	
o Water Supply Expansion			bəiìinl	I	1.05 Stiff reddish, gray medium plasticity Clay	1.50 1.50m	2.05 Very stiff reddish, gray high plasticity CH	2.50 Clay 2.50m 2.50m	3.05 Hard to stirr redatsh, gray mealum 3.50 Plasticity Clay	4.05	4.50	5.05	5.50 much 2.50 m	6.05 6.05 Hard vellow reddish arav hiah	7.05 plasticity Clav	7.50	8.05 CH	8.50	9.U5 9.F0	10.05	10.50 10.50m	11.05 Hard yellow-gray medium plasticity	11.50 Clay Cl	12.05 12.50 12.50m	13.05	13.50 Hard yell	75 14.05 65 14.65	14.30	15.50	16.05	16.50	16.95	17.40 17.40m	17.85 Very stift yellow, gray medium plasticity	18.30 Clay	18.75	75 19.20 20 19.45	
iem Reap Water Supply Expansion Ia	N:1460658, E: 382766 SLIMMADY I ARODA		Depth(m) Soil description	From To	Stiff reddish, gray medium plasticity Clay	1.50m	2.05 Very stiff reddish, gray high plasticity CH		3.05 Hard to stirr redatsh, gray mealum 3.50 Plasticity Clay	4.05	4.50	5.05	M06.6	6.05 6.05 Hard vellow reddish arav hiah	7.05 plasticity Clav	7.50	8.05 CH	8.50		10.05	10.50 10.50m	11.05 Hard yellow-gray medium plasticity	11.50 Clay Cl	12.05 12.50 12.50m		13.50 Hard yell	13.75 14.05 14.05 14.50	14.30	15.50	16.05	16.50	16.95	17.40m	17.85 Very stift yellow, gray medium plasticity	18.30 Clay	18.75	18.75 19.20 19.20 19.45	
y on the Siem Reap Water Supply Expansion of Camhodia	N:1460658, E: 382766 SLIMMADY I ARODA		Depth(m) Soil description	I	1.05 Stiff reddish, gray medium plasticity Clay	1.50 1.50m	1.75 2.05 Very stiff reddish, gray high plasticity CH	2.50 Clay 2.50m 2.50m	3.05 Hard to stirr redatsh, gray mealum 3.50 Plasticity Clay	3.75 4.05	4.50	4.75 5.05	5.50 much 2.50 m	6.05 6.05 Hard vellow reddish arav hiah	6.75 7 05 blasticity Clav	7.50	8.05 CH	8.50	9.U5 9.F0	9.75 10.05	10.50 10.50m	10.75 11.05 Hard yellow-gray medium plasticity	11.50 Clay Cl	12.05 12.50 12.50m	12.75 13.05	13.50 Hard yell		14.75 15.05	15.50	16.05	16.50	16.50 16.95	17.40 17.40m	17.40 17.85 Very stirt yellow, gray medium plasticity	18.30 Clay	18.30 18.75		
story Study on the Siem Reap Water Supply Expansion trinchom of Cambrolia	N:1460658, E: 382766 N:1460658, E: 382766 SIMMADPV I ARODA		Depth(m) Soil description	From To	1.05 Stiff reddish, gray medium plasticity Clay	1.05 1.50 1.50 ³	1.75 2.05 Very stiff reddish, gray high plasticity CH	2.05 2.50 Clay 2.50 Clay 2.50m	2./5 3.05 Hard to stirr redatsn, gray meatum 3.05 3.50 Plasticity Clay	3.75 4.05	4.05 4.50	4.75 5.05	moc.c 2.50	5.75 6.05 6.05 6.50 Hard vellow reddish crav hidh	6 75 7 05 Diasticity Clav	7.05 7.50	8.05 CH	8.05 8.50	50.9 20.9 20.9 20.0 20.0 20.0 20.0 20.0 2	9.75 10.05	10.05 10.50 10.50	10.75 11.05 Hard yellow-gray medium plasticity	11.05 11.50 Clay Cl	11.75 12.05 12.05 12.50 12.50m	12.75 13.05	13.05 13.50 Hard yell	13.75 14.0E	14.75 15.05	15.05 15.50	15.75 16.05	16.05 16.50	16.50 16.95	16.95 17.40 15.40	17.40 17.85 Very stift yellow, gray medium plasticity	17.85 18.30 Clay	18.30 18.75	18.75	
te preparatory Study on the Siem Reap Water Supply Expansion + in The Kinndom of Cambodia	N:1460658, E: 382766 N:1460658, E: 382766 SIMMADPV I ARODA		Depth(m) Soil description	N=N2+N3 From To	1.05 Stiff reddish, gray medium plasticity Clay	11 1.05 1.50 1.50 ³	1.75 2.05 Very stiff reddish, gray high plasticity CH	2/ 2.05 2.50 Clay	2./5 3.05 Hard to still redatsh, gray medium 32 3.05 3.50 Plasticity Clay	3.75 4.05	26 4.05 4.50	4.75 5.05	13 5.00 5.50	5.75 6.05 30 6.05 6.50 Hard vellow reddish arav hinh	6.75 7.05 Diasticity Clav	24 7.05 7.50	8.05 CH	27 8.05 8.50	40 2 7.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4.0 2 4	9.75 10.05	37 10.55 10.50 10.50m	10.75 11.05 Hard yellow-gray medium plasticity	40 11.05 11.50 Clay Cl	36 12.05 12.50 12.50m 12.50m	12.75 13.05	39 13.05 13.50 Hard yell	13.75 28 14.05	14.75 15.05	38 15.05 15.50	15.75 16.05	37 16.05 16.50	16.50 16.95	39 16.95 17.40 17.40	17.40 17.85 Very stift yellow, gray medium plasticity	26 17.85 18.30 Clay	18.30 18.75	1/ 18.75	
PROJECT : The preparatory Study on the Siem Reap Water Supply Expansion Project in The Kinndom of Cambrodia	N:1460658, E: 382766 SLIMMADY I ARODA		Soil description	N1 N2 N3 N=N2+N3 From To	1.05 Stiff reddish, gray medium plasticity Clay	7 11 1.05 1.50 1.50	1.75 2.05 Very stiff reddish, gray high plasticity CH	1/ 2/ 2.05 2.50 Clay	7 14 18 32 3.05 Hard to Stim Feddram, gray medium	3.75 4.05	16 26 4.05 4.50	4.75 5.05	8 13 5.00 5.50	6.05 6.05 6.05 6.05 7.0 6.05 7.0 7.0 6.05 7.0 7.0 6.05 6.05	6 75 7 05 Diasticity Clav	6 9 15 24 7.05 7.50	7.75 8.05 CH	6 12 15 27 8.05 8.50	22 40 905 950	9.75 10.05	7 15 22 37 10.05 10.50 10.50 10.50m	10.75 11.05 Hard yellow-gray medium plasticity	8 18 22 40 11.05 11.50 Clay Cl	7 16 20 36 12.05 12.50 12.50 12.50	12.75 13.05	24 39 13.05 13.50 Hard yell	13.75 14 08 14 05	0 12 10 20 14.00 14.00 14.75 15.05	8 16 22 38 15.05 15.50	15.75 16.05	8 15 22 37 16.05 16.50	16.50 16.95	23 39 16.95 17.40 17.40	- 17.40 17.85 Very stift yellow, gray medium plasticity	7 12 14 26 17.85 18.30 Clay	18.75 10 18.75 18.75	1/ 18.75	

## SR 4.7 Mechanical & Electrical Equipment List for Intake Facilities

## SR 4.7.1 Mechanical Equipment List For Intake Facilities

			Power	1			Q'ty	7			
Facility/Equipment	Tag No.	Specification		Priorit	y Project	Future		Total		al	Remarks
			( <b>kW</b> )	Duty	St'db	Duty	St'db	Duty	St'db	Total	
01. Intake Facility											
Inflow Gate	01HG11/21	Hand operated Sluice Gate 1.2mW x 1.2mH	-	4	0	0	0	4	0	4	Spindle L=15m, include Gate at Intake Chamber
Suction Valve	01HV11 to 21	DN 800 Manually operated Sluice valve	-	2	0	0	0	2	0	2	
Suction Valve	01HV11 to 51	DN 300 Manually operated Sluice valve	-	2	1	2	0	4	1	5	
Raw Water Pump	01RP11 to 31	Horizontal Double Volute Centrifugal (VSD, split casing) 11.5 m3/min x 26m	68	2	1	2	0	4	1	5	
Check Valve	01CV11 to 31	DN 300 Swing check	-	2	1	2	0	4	1	5	
Discharge Valve	01MV11 to 31	Motorized Butterfly Dia.300mm	0.2	2	1	2	0	4	1	5	
Discharge Valve	01MV11 to 31	Manuaaly Butterfly Dia.300mm	-	2	1	2	0	4	1	5	
Isolate Valve	01HV13 to 63	Manuaaly Butterfly Dia.800mm	-	4	0	2	0	6	0	6	
Sump Drainage Pump	01DP11 to 41	Submersible 0.3m3/min x 15m	2.2	2	2	0	0	2	2	4	
Floor Drainage Pump	01DP11 to 21	Submersible 0.3m3/min x 20m	4	1	1	0	0	1	1	2	
Isolate Gate	01HG12	Hand operated Sluice 1.8mW x 1.8mH	-	1	0	0	0	1	0	1	
Monorail Hoist	01MC01	Motorized bridge crane 3ton	-	1	0	0	0	1	0	1	
Overhead Crane(1)	01HC01	Motorized bridge crane 3ton	3	1	0	0	0	1	0	1	

Intake Pump station; Priority Project 33,000m3/day, Future 33,000m3/day, Total 66,000m3/day

## SR 4.7.2 Electrical Equipment List for Intake Facilities

Plant E	Electrical Works -Intake Pump	Station	Priority Project	Future
	Item	Details	Nr.	Nr.
1	HV Power Receiving Panel	22kV VCB	2	
2	HV CT, VT Panel	22kV	2	
3	HV Bus-tie Panel	22kV VCB	1	
4	Bus Duct	22kV	1	
5	HV Tr Primary Panel	22kV VCB	1	1
6	Power Transformer	500kVA Mold	1	1
7	LV Panel	MCC Type	3	2
	Pump Starter Panel	68kW 400V Inverter	3	2
9	Motor Control Center	400V Form3b	3	1
10	Local Control Panel	Stand Type	6	2
11	UPS	1hr 5kVA	1	
12	DC Unit	30min	1	
13	Intake Flow	Electromagnetic Type	1	1
14	Water Level	Ultrasonic Type	4	
15	Water Quality	Turbidity, pH	2	
16	IP Panel		1	
-	IP Panel	(modification)		1
18	PLC Panel		1	
-	PLC Panel	(modification)		1
	Monitoring Panel		1	
	Monitoring Panel	(modification)		1
	Incoming Cable	Duty, Stand-by 22kV	2	
23	Optic Fiber Cable	with data communication sys.	1	

#### SR 4.8 Alternative of Raw Water Intake Pump Unit

1. Alternative of Raw Water Pump Unit

A comparison of pump unit for Priority Project is shown below. Total Cost comparison of Case1 and Case2 is almost same. Case 1 has advantage which more than 50% of raw water can be supplied to WTP if two pumps were out of order in the unexpected worst – case condition.

(Priority Project)	Case 1	Case 2
Pump units	Duty 2 unit	Duty 1 unit
-	Standby 1unit	Standby 1unit
Pump capacity per unit	11.5m3/min x 26m	23m3/min x 26m
	x 68kW	x 140kW
Total Installation Load	136kW	140kW
(not include standby)		
Operation time	24hr	24hr
Initial Equipment Cost	45,800\$/unit x 3units	63,000\$/unit x 2units
(\$)	= 137,400 \$	= 126,000 \$
A) Depreciation Cost	8,200\$/year	7,500\$/year
(\$/year)		
B) Power Cost	136kW x 0.1968\$/kwh x 24hr x	140kW x 0.1968\$/kwh x 24hr x
(Not consider VSD)	365	365
	= 234,400\$/yaer	= 241,300\$/yaer
C) Maintenance Cost		
(Assump.3%/year of	4,100\$/year	3,700\$/year
Equipment cost)		
A)+B)+C) Total Cost	246,700\$/year	252,500\$/year
Comparison	(100%)	(102%)
Capacity in case one	100% flow	100% flow
pump is out of order		
Capacity in case two	50% flow	0% flow
pumps is out of order	good	Not good
Pump room Area	A little larger area	

Thus Case 1 is recommended in Intake Pump Station.

A comparison of pump unit for Future is shown below. Total Cost comparison of Case1 and Case2 is almost same. Case 1 has advantage which more than 75% of raw water can be supplied to WTP if two pumps were out of order in the unexpected worst – case condition.

Comprehensively Case 1 is recommended in Intake Pump Station .

(Future)	Case1	Case2
Pump units	Duty 4 unit	Duty 2 unit
-	Standby 1unit	Standby 1unit
Pump capacity per unit	11.5m3/min x 26m	23m3/min x 26m
	x 68kW	x 140kW
Total Installation Load	272kW	280kW
(not include standby)		
Operation time	24hr	24hr

Initial Equipment Cost	45,800\$/unit x 5units	63,000\$/unit x 3units
(\$)	= 229,000\$	= 189,000 \$
A) Depreciation Cost	13,700\$/year	11,300\$/year
(\$/year)		
B) Power Cost	272kW x 0.1968\$/kwh x 24hr x	280kW x 0.1968\$/kwh x 24hr x
(Not consider VSD)	365	365
	= 468,800\$/yaer	= 482,700\$/yaer
C) Maintenance Cost	6,800\$/year	5.700\$/year
(Assump.3%/year of		
Equipment cost)		
A)+B)+C) Total Cost	489,300\$/year	499,700\$/year
Comparison	(100%)	(102%)
Capacity in case one	100% flow	100% flow
pump is out of order		
Capacity in case two	75% flow	50% flow
pumps is out of order	better	good
Pump room Area	A little larger area	

## SR 4.9 Pump Calculation Sheet for Intake Facilities

Raw Water Intake Pump (Priority Project; 33,000 m3/day)

1	Equip.	No	case1	case2	
· ·		Name	00001	GUUGE	
2	Pump		Double suction	Double suction	
		pacity (m3/min)	11.5		
		peration number	2		
	Pump		VSD	VSD	
	-	Number	2D + 1S	1D + 1S	
		Head H=ha+hf1+hf2+hf3+hf4		10 10	
5		:Actual head (m)	20.2	20.2	
		=DWL-SWL			
6	DWL	(m) WTP Distribution Chamber	19.500	19.500	
		(m)	-0.720	-0.720	
	hf1	: Straight pipe loss (m) =	3.051	3.051	
		(10.666 x Q^1.85) x L x Cc			
		(C^1.85xD^4.87)			
9	Q	: Flow (m3/sec)	0.383	0.383	
		=q x N/60			
10	С	: Coefficient	110	110	
		LWL: 110			
		HWL: 140			
11	D	: Pipe Dia. (m)	0.8	0.8	
12	L	: Pipe length (m)	3400	3400	
13	Cc	: Correction coefficient	1.0	1.0	
		Water: 1.0			
		Sludge: WT99.2% :			
14	hf2		0.000	0.000	
15	hf3	: Pump around loss (m)	2	2	
		Horizontal type : 2.0m			
		Submersible type : 0.7m			
16	hf4	:Other head	0	0	
17	H'	=ha+hf1+hf2+hf3+hf4 (m)	25.27	25.27	
18	Н	: Total head (m)	26.0	26.0	
		Velocity	0.76	0.76	
	Motor	Power			
	BKW		58.719	117.439	
	SG	:Specific gravity	1.0	1.0	
	Pe	:Pump efficiency	0.83	0.83	
	kW	=BKW x C	67.527	135.054	
23		:Coefficient (1.15)	1.15	1.15	
24	Motor	· Power (kW)	68	140	



Item :	: Phase I : Phase II					
3) Flocculator :			 :			
Criteria :	Retention Time	$T = 20 - 40 \min$	:	Retention Time	$T = 20 - 40 \min$	
:	Recirculation	a = 0 %	:	Recirculation	a = 0 %	
:	Required Volume	V = 458  cu.m to	:	Required Volume	V = 917 cu.m te	D
:	•	917 cu.m	:	-	1,833 cu.m	
:	Required G value	G = 10 - 70  s - 1	:			
:	Gt =	15,000 - 112,500	:			
:		55,176	:			
Unit Flow :	q = 11.5 cu m/s	min/basin	:	q = 11.5	cu m/min/basin	
Dimension :	2 units	G value	:	4	units	
Step 1 :	Wm xLm xD	m x No.of Channel	:	Wm xLm	x D m x No.of Channel	
:	1.1 8.0	3.6 2	70 :	1.1 8.0	3.6 2	
Step 2 :	Wm xLm xD	m x No.of Channel	:	Wm xLm	x D m x No.of Channel	
:	1.5 8.0	3.65 2	40 :	1.5 8.0	3.65 2	
Step 3 :	Wm xLm xD	m x No.of Channel	:	Wm xLm	x D m x No.of Channel	
:	1.9 8.0	3.7 2	10 :	1.9 8.0	3.7 2	
Volume :	Step 1	63.4 cu m/unit	:	Step 1	63.4 cu m/unit	
:	Step 2	87.6 cu m/unit	:	Step 2	87.6 cu m/unit	47.3
:	Step 3	112.5 cu m/unit	:	Step 3	112.5 cu m/unit	
:	Volume / Unit	263.4 cu m/unit	:	Volume / Unit	263.4 cu m/unit	
Total Volume :	V = 527 cu m		:	V = 1,054	cu m	
Retention Time :	23.0 minut	es	:	23.0	minutes	
Overall head loss :	$H = G2 \cdot V \cdot \mu / (- Q \cdot g)  G =$	40 s-1	:		14429	38
:	= 0.203 m		:		86573	

SR 4.10 Capacity Calculation for Water Treatment Plant

Item :	Phase I	: Phase II
4) Seddimentation Basin : Type :	Rectangular, Horizontal Flow	: Rectangular, Horizontal Flow
Unit Flow :	q = 688 cu m/hr/basin	q = 688 cu m/hr/basin
Criteria : : : : :	Retention Time $T =$ 2.5 hoursSurface Load $a =$ 15 - 30 mm/mHor. Flow Velocity $v <$ 0.40 m/minL/W Ratio $L/W =$ 3 - 8 timesDepth $D =$ 3 - 4 mDepth of 30 cm or more is provided for $a - 4$ m	Image: Hor. Flow Velocity $v <$ $0.4$ m/minImage: L/W RatioL/W = $3 - 8$ timesDepthD = $3 - 4$ mDepth of 30 cm or more is provided for
: Dimension : :	sludge settlement. No. $2$ basins W m x L m x D m x N 8.0   60   4.0   2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Per Basin :		: · · · · · · · · · · · · · · · · · · ·
Volume : Retention Time : L/W Ratio : Surface Load : Hor. Flow Velocity : Overflow Weir :	V =       1920 cu m/basin $T =$ 2.8 hours $L/W =$ 7.5       In case of 1 train stop $a =$ 23.9       mm/min       36 mm/m $v =$ 0.358       m/min         Load =       400       m3/m/day	
Trough Length : : :	L = 21 m or longer 41 No. 5 troughs per basin L m x N	: L = 41 m or longer 83 : No. 5 troughs per basin : L m x N
Per Basin :	6.0 4 per basin	: 6.0 5
Total per basin :	L = 24.0  m 344 m3/m	day : L = 30.0 m
Sludge Removal :	Manual Washing with Pressured Water	: Manual Washing with Pressured Water

Item :	Phase I		:		Phase II	
(5) Rapid Sand Filter :						
Type :	Down Flow, Single Media		:	Down Flow, Single	Media	
No. :	4 units		:		8 units	
Unit Flow :	q = 8,250 cu m/day/unit		:	q =	8,250 cu m/day/unit	
Criteria :	Filtration Rate Fr =	120 m/day	:	Filtration Rate	Fr =	120 m/day
:	=	5.0 m/hour	:		=	5.0 m/hour
:	Filter Area per Unit A <	150 sq m	:	Filter Area per Unit	t A <	150 sq m
Dimension :	Wm xLm xN units		:	Wm xLm		
:	8.0 8.5 4		:	8.0	8.5 8	
Unit Filtration Area:	A = 68.0 sq m/unit		:	A =	68.0 sq m/unit	
Filtration Rate :	Fr = 121.3 m/day		:		121.3 m/day	
Filtration Rate :	Fr'= <u>161.8</u> m/day	17.000 m3/min	:		138.7 m/day	
during washing :	1 unit out of 4 is washing		:	1 unit out of 6 is wa	ashing	
Filter Washing :			:			
Frequency :	Once a day for each filter		:	Once a day for each		
Rate :	Air scoring rate =	1.00 m3/m2/min	:	Air scoring	rate =	1.00 m3/m2/min
:	duration =	5 min	:	<b>D</b> 1 11	duration =	5 min
:	Backwashing rate =	0.25 m3/m2/min	:	Backwashing	rate =	0.25 m3/m2/min
:	duration =	10 min	:		duration =	10 min
	rate per filter =	17.00 m3/min	:		rate per filter =	17.00 m3/min 0.28 m3/sec
Water Amount :	Loss of settled water	0.28 m3/sec 0.0 m3	÷	Loss of settled wate		0.28 m3/sec 0.0 m3
for washing :	Backwashing amount Vb =	170 cu m/unit	:	Backwashing	Vb =	170.0 cu m/unit
ior washing .	8		· ·	Dackwashing	v U =	
:	Vs + Vb =	170 cu m/unit	:		Vs + Vb =	170 cu m/unit
for Total Units :	Total Amount for Washing Water	680 cu m/day	: :	Total Amount for V	Vashing Water	1,360 cu m/day
:	Percentage for Planned Flow	2.1 %	:	Percentage for Plan	ned Flow	2.1 %
Solid Amount :	So = Q*K*(T1-T2)*10^-6		:			
in Wastewater :	where So:Sludge dry weight(ton		:			
(ton-DS) :	Q :Treated water amount(m3	/	:			
:	K :Coefficient converting tur		:			
:	to SS (0.8-1.5 ->	/	:			
	T1 :Turbidity before filter (a		5) 0)			
	T2 :Turbidity after filter (ave So = $0.20$ ton-DS/day	e =	<b>U</b> )	So =	0.40 ton-DS/day	
SS Contents	s = 0.20  ton-DS/day s = 291  mg/l		•	$s_0 = s_s = s_s$	291 mg/l	
SS Contents	5 - 271  mg/r		•	5 -	271 IIIg/1	

SR 4.10 Capacity	Coloulation for	Wator	Treatment Plant
SK 4.10 Capacity	Calculation 101	water	r reatinent r lant

(6) Backwash Water Tank :	Phase I : Phase II				
Required Bacakwash : : Dimensions : : Volume : Refill time after washing : :	(will be constructed besides the filter tanks.)Backwashing amount $Vb =$ adding 20% allowance= $vb120\% =$ W mx L mx D mNo. colspan="2">No. colspan="2">No. colspan="2">No. colspan="2">No. colspan="2">No. colspan="2">Colspan="2">No. colspan="2">Colspan="2">No. colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2">No. colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"C	170 cu m/unit 204 cu m/unit of tank 1 /min	: *Backwash tank is continuously replenished by fitered water. *Computation is only for reference.		
(7) Air Scoring Blower No. of Pump : Required Capacity : Capacity per Unit : Specification :	N= $2$ units + 1 for stand-b TQ = $68.0$ cu m/min Q = $34.0$ cu m/min/unit Capacity $Q =$ Diameter $D =$ Head $H =$	y 34.0 cu m/min 490 mm 30 m	: N= 2 units + 1 for stand-by : TQ = 68.0 cu m/min : Q = 34.0 cu m/min/unit : Capacity Q = 34.0 cu m/min : Diameter D = 500 mm : Head H = 30 m		
(8) Backwash Water Recycle Pu No. of Pump : Required Amount : Tranmission period : Capacity per Unit : Specification :	N= 2 units + 1 for stand-b	10min backwash)	: N= 2 units + 0 for stand-by : TQ = 170.0 cu m (for 10min backwash) : T= 4.0 hrs : Q = 0.78 cu m/min/unit (10% allowance) : Capacity Q = 0.78 cu m/min : Diameter D = 100 mm		
:	Head (assumption) H = Motor Output P =	12 m 2.0 KW	: Head $H = 12 \text{ m}$ : Motor Output $P = 2.0 \text{ KW}$		
(9) Clear Water Reservoir : Criteria : Required Volume : Washwater :	Retention Time T > V = 11,000 cu m 170 cu m	8.0 hours	: : Retention Time T > 8.0 hours : V = 22,000 cu m :		
TTL volume : Dimension : : : Total Volume :	V =       11,170 cu m         No.       4 units         L m       x W m       x D m       m x         12.0       48.0       5.0         V =       11,520 cu m	N units	: No. 8 units : L m x W m x D m m x N units : 12.0 48.0 5.0 8 : V = 23,040 cu m		

Item :	Phase I : Phase II	
0) Elevated Water Tank :		
Criteria :	Retention TimeT >1.5hours:Retention TimeT >1.5hours	
Required Volume : Washwater :	V = 2,100  cu m : V = 4,100  cu m	
TTL volume :	V = 2,270  cu m : $V = 4,100  cu m$	
Dimension :	No. 1 units : No. 2 units	
:	DiaHm x DiaLm x High m m x N units : Lm x Wm x Dm m x N units	
Dia. for H.W.L :	25.6 7.0 1 514 : 26.0 12.5 2	
Dia. for L.W.L	9.5 71 9.5 3.5	
Space for Staircase	2.4 7.0 5 2.0 9.5 9.0	
Total Volume :	V = 2,002  cu m : $V = 4,311  cu mT = 1.50 hours : T = 1.57 hours$	
Retention Time :	$T = 1.50 \text{ hours} \qquad : T = 1.57 \text{ hours}$	
1) Alum Dissolving Tank :	Chemical Building will be sized to cater for the future chemical requirements of Phase 1, Stage2.	
Coagulant :	Solid Aluminum Sulphate (Al2(SO4)3) : Solid Aluminum Sulphate (Al2(SO4)3)	
:	containing 15 % Al2-O3 : containing 15 % Al2-O3	
:	Dosage Rate : : Dosage Rate :	
Criteria :	Max. 60 mg-solid alum/l : Max. 60 mg-solid alum/l	
:	Ave. 15 mg/l : Ave. 15 mg/l	
:	Min. 10 : Min. 10	
:	Coagulant Solution :10 % sg = $1.0525$ :Coagulant Solution :10 % sg =	1.0525
:	Retention Time24 hours(Max dosage) <th: retention="" th="" time<="">24 hours</th:>	
:	Dissolving Time 2 hours : Dissolving Time 2 hours	
Dosage Amount :	Wt = 1,980  kg-Alum/day (Max  dosage) : Wt = 3,960  kg-Alum/day (Max  dosage)	
Coagulant Solution :	V = 18.8  cu m/day (Max dosage) : $V = 37.6  cu m/day$ (Max dosage)	
Solution Tank :	Square 2 units (alternative use for Stage 1) : Square 4 units 26.128 1/min	
Dimension :	$Lm \times W m \times Dm \times units$ : $Lm \times W m \times Dm \times units$	
: Total Volume :	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Retention Time :		
Storage Volume :	T =25.5 hours (for max. dosage): $T =$ 25.5 hours (for max. dosage)Period30 days (for average dosage):Period30 days (for average dosage)	
	renou Suldays (for average dosage) : Period Suldays (for average dosage)	

Item :		Phase I	:	: Phase II		
: Storage Area : Construction scheme :		2 at 2.0 m h hile 2 sets of equipment will be in	0	g. 0.60 25 m2 at	2.0 m height	
pH Control Chemical :	Hydrated Lime (Ca(OH)2)	ed to cater for the future chemica		ed Lime (Ca(OH)2)		
1) Pre-pH Control : Dosage Criteria : : :	Containing 72 % C Max. Ave. Min. Lime Solution	30 mg-solid Lime/l 10 mg/l 5 10 % sg =	: : Max. : Ave. : Min. 1.0607 : Lime S	olution 10	mg-solid Lime/l mg/l % sg = 1.060	
: Dosage Amount :	Retention Time Dissolving Time Wtpre = 990 kg	24 hours (Ma 2 hours -lime/day (Max dosage)	0 /	ving Time 2	hours (Max dosage) hours (Max dosage)	

Item : Phase I :			:	: Phase II					
Lime Solution :	Vpre =	9.3 cu m/day	(Max dosage)	 :	Vpre =	18.7	cu m/day	(Max dosage)	
2) Post pH Conrol :									
Dosage Criteria :	Max.		mg-solid Lime/l	:	Max.			mg-solid Lime	/1
	Ave. Min.	) 5	mg/l	:	Ave. Min.		5	mg/l	
	Lime Solution	) 10	0/	: .0607 :	Lime Solution		) 10	0/	1.0607
	Retention Time		% sg = $1$ . hours (Max dos		Retention Time			% sg = hours	(Max dosage)
	Dissolving Time	24	hours (Max dos	age)	Dissolving Time		24	hours	(Wax uosage)
	Storage period	20	days (for average dosage	· ·	Storage period		20	days (for avera	aga dasaga)
Dosage Amount :	Wtpost =	990 kg-lime/day	(Max dosage)	,	Wtpost =	1 090	kg-lime/day	(Max dosage)	age uosage)
Lime Solution :	Vpost =	9.3 cu m/day	(Max dosage)		Vpost =		cu m/day	(Max dosage) (Max dosage)	
3) Pre+Post TTL :	v post =	9.5 cu m/uay	(Max uosage)	•	v post –	10.7	cu m/uay	(Max uosage)	
Dosage Amount :	Wt =	1,980 kg-lime/day	(Max dosage)		Wt =	3 960	kg-lime/day	(Max dosage)	
Dosage / infount .	V =	19 cu m/day	(Max dosage)		V =		cu m/day	(Max dosage)	
	Square	2 units	(alternative use for Stage	-	Square		units		1/min
Dimension :	Lm xW		x units	,	Lm xW		m x D m	x units	1/ 11111
2111010101	2.0	2.0 2.5			2.0	2.0			
Total Volume :	V =	20.0 cu m			V =		cu m		
Retention Time :	T =	25.7 hours			T =		hours		9.47
	Bulk s. g.	0.40			Bulk s. g.	0.40			,,
Storage Area :	A =	19 m2 at	2.0 m height		A =	37	m2 at	2.0	m height
Construction scheme :			equipment will be installe	ed in Stage		0,		210	in noight
11) Chlorination Equipment	Chlorine Building	will be sized to cater fo	r the future chemical requ	irements c	of Phase II				
Injection Point :	at the Distribution			:	at the Distribution	Chamt	ber		
:	and Inlet of Cleary	water Reservoir		:	and iInlet of Clean	water R	Reservoir		
Type :	Liquid Chlorine (9	900 kg-cylinder)		:	Liquid Chlorine (9	900 kg-0	cylinder)		
Criteria :	Prechlorine	Max.	5.0 mg/l	:	Prechlorine		Max.	5.0	mg/l
:		Ave.	2.0 mg/l	:			Ave.	2.0	mg/l
:		Min.	1.0 mg/l	:			Min.	1.0	mg/l
:	Postchlorine	Max.	2.0 mg/l	:	Postchlorine		Max.	2.0	mg/l
:		Ave.	1.0 mg/l	:			Ave.		mg/l
:		Min.	1.0 mg/l	:			Min.	1.0	mg/l
Dosage Amount :	Prechlorine		Max		Prechlorine				-
in average :	Wt =	66 kg- Cl gas/day	1980 kg- Cl gas	s/mon:	Wt =		kg- Cl gas/day		kg- Cl gas/mon
:	or	2.8 kg- Cl gas/hou	r	:	or	5.5	kg- Cl gas/hour	r	
:	Postchlorine				Postchlorine				. ~ .
:	Wt =	33 kg- Cl gas/day	990 kg- Cl gas	s/mon :	Wt =		kg- Cl gas/day kg- Cl gas/hour		kg- Cl gas/mon
	or	1.4 kg- Cl gas/hou			or				

Item :		Phase I		:		Phase II	
Chlorinator :	Vacuum Type	Prechlorine	Postchlorine		Vacuum Type	Prechlorine	Postchlorine
No. of unit :	51	1 units		units :	51	2 units	2 units
:	(+ 1 units :	stand-by)	(+ 1 unit stand	-by) :	(+ 2	units stand-by)	(+ 2 units stand-by)
Rate :		.75 kg/hour/unit	1.38	kg/hour/unit :		2.75 kg/hour/unit	t 1.38 kg/hour/unit
Operation Rate :		80 percent	80	percent :		80 percent	80 percent
Capacity :		4 kg/hour/unit	2	kg/hour/unit :		4 kg/hour/unit	t 2 kg/hour/unit
Storage :	Period	3	) days	:	Period		30 days
Storage Area :	A pre =	5 m2 as	2.0	m2/container :	$\mathbf{A} =$	10 m2 as	2.0 m2/container
:	A post =	3 m2 as	2970.0	kg- Cl gas/mon:		5 m2 as	5940.0 kg- Cl gas/month
:	•	8 m2		:		15 m2	
Max. Dosage(prechlorine) :	2 units of chlorinators	with 7kg/h will be	operated simulta	aneously to :	4 units of chlor	inators with 7kg/h will	be operated simultaneously to
:	attain the Max dosage			:		dosage of 26.25kg/h.	
Max. Dosage(postchlorine) :	2 units of chlorinators		operated simulta	aneously to :	4 units of chlor	inators with 4kg/h will	be operated simultaneously to
:	attain the Max dosage	of 5.3kg/h.		:	attain the Max of	dosage of 10.5kg/h.	
12) Backwash Water Receivin	a Tank						
Backwash Water :		170 cu.m/filter un	it		Vs + Vb =	1	70 cu.m/filter unit
Return pump :		1 unit (+1 stand			10.10	2 units $(+0$ sta	
Return time :		4 hours	(=4 hours x 4 f	ilters) :		4 hours	(= 4  hours x 8 filters)
Required pump cap :	0.	.708 m3/min		:		0.71 m3/min	
Tank No. :	$\mathbf{N} =$	2 units	(1 tank for star	ndby) :	$\mathbf{N} =$	2 units	(0 tank for standby)
Dimension :	Lm xWm	x D m	m x N	units :	Lm xV	Vm xDm	m x N units
:	7.5	5.0 2.	) 2	:	7.5	5.0	2.0 2
Total Volume :	v =	150 cu m		•	v =	150 cu m	
Frequency of Wash :	Once a day = 4 filters/	/day		:	Once a day $= 8$	filters/day	
:				:	-		
12) Sludge Discharge Tank							
Sludge Discharge :	$V_1 =$	142 cu.m/filter un	it		Vs + Vb =		0 cu.m/filter unit
Discherge allowance :	$V_2 =$	57 cu.m/filter un			Vs + Vb =		0 cu.m/filter unit
Total Discharge :	2	199 cu.m/filter un	· · ·		Vs + Vb =		0 cu.m/filter unit
Discharge pump :	• 1 • • 2 =	1 unit (+1 stand				2 units (+0 sta	
Discharge time :		4 hours	$(=4 \text{ hours } x \ 1 \text{ hours})$	naisin) .		4 hours	(= 4  hours x  8  filters)
Discharge pump cap :	0	.828 m3/min				0.00  m3/min	( Hours & o filters)
Tank No. :	N =	2  units			N =	2 units	(0 tank for standby)
Dimension :	Lm xWm		mхN	units :		Vm xDm	$m \ge N$ units
2	10.0	5.0 2.			10.0		2.1 2
	10.0	4.	- 4		10.0		
Total Volume :	v =	210 cu m		• .	v =	210 cu m	

Item :		Phase I	:		Phase II	
13) Sludge Drying Bed :			:			
Sludge Removal :	Mechanical Sludge Withdrav	val	:	Mechanical Sludge Withdraw	val	
:	Max. Withdrawal Valume :	35.5 cu m/time	:	_		
Sludge Amount :	So = Q * (K*(T1-T2)+B*15)	56/666)*10^-6	:			
:	where So:Sludge	dry weight(ton)	:			
:	Q :Treated	l water amount(m3/d)	:			
:	K :Coeffic	cient converting turbidity	:			
:	te	o SS (0.8-1.5 ->>1.2)	:			
:	T1 :Turbid	lity in raw water (ave=	20 di	uring rainy season)		
:	1	Furbidity is expected to reduce to	this level in F	Raw Water Reservoir		
:	T2 :Turbidi	ty after Sedimentation(ave=	5 di	ring rainy season)		
TTL Dry Solid Amount :	B :Alum do	sage rate (ave.=	15 m	g/l)		
per day :	So =	0.71 ton-DS/day	:	So =	1.42 ton-DS/day	
per month :	=	21.3 ton-DS/month	:	=	42.6 ton-DS/month	
per year :	=	256 ton-DS/year	:	=	511 ton-DS/year	
Solid content of sludge :	$\mathbf{w} =$	15.0 %	:	$\mathbf{w} =$	15.0 %	
Total Sludge Volume :	Total v =	142 cu.m/month	1,065 :	$\mathbf{v} =$	284 cu.m/month	
:	$\mathbf{v} =$	1,704 cu.m/year	:	$\mathbf{v} =$	3,408 cu.m/year	
Drying Period :	for 2 month		:	for 2 month		
Required Volume :	$\mathbf{v} =$	142 cu m	:	$\mathbf{v} =$	284 cu m	
Dimension :	Rectangular	5 units	:	Rectangular	10 units	
:	Lm xW m	x D m x units m	:	Lm xW m	x D m x units m	
:	25.0 23.0	0.6 5	:	25.0 23.0	0.6 10	
Volume :	v =	1,725 cu m	:	v =	3,450 cu m	
Side Slope :	s =	1:2.0	:	s =	1:2.0	
:			:			
lote : Small pumps such as uti	lity water pumps are not shown	in this calculation.				
	Alum - Specific Gravity	Lime - Specific Gra	vitv	Vitrioric Acid - Sp	ecific Gravity	
	(% as Al2(SO4)3-18H2O)	(% as Ca (OH)2)	y	(% as H2SO4)	Secure Gravity	
	5 1.0254	(% as Ca (011)2) 5	1.0308	(% as 112504) 5	1.0360	
	10 1.0525	10	1.0607	10	1.0660	
	15 1.0804	15	1.0923	15	1.0978	

#### _ _____ _ ____ For Phase I No. Item : Total Q =30,000 cu.m/day Production rate Production loss 10 % : Planned Flow Rate 33.000 : = 1.375 cu.m/hour = 22.9 cu.m/min = 0.382 cu.m/sec = _____ A. Receiving Well : WL0 = +19.500 m 64.0 feet) (+ Overflow Weir Crest : Hw1 = +19.550 m (+ 64.1 feet) Overflow Level in Phase I : Hover = +19.669 m (+ 64.5 feet) B. D-Chamber : WL1 = +19.458 m (+ 63.8 feet) Distribution Weir Crest : Hw2 = +19.286 m (+ 63.3 feet) C. Mixing Chamber : WL2 = +18.879 m (+61.9 feet) D. Inlet Chamber for Floc. Basin : WL3 = +18.629 m (+ 61.1 feet) E. Flocculation Channel • Start : WL4 = +18.474 m (+ 60.6 feet) End : WL5 = +18.394 m 60.3 feet) (+ F. Sedimentation Basin • in Basin : WL6 = +18.394 m 60.3 feet) (+ Overflow Trough Crest : Ht = +60.6 feet) 18.464 m (+Outlet Channel : WL7 = +17.954 m (+58.9 feet) Overflow Weir Crest : Hw3=+13.650 m (+ 44.8 feet) G. Sand Filter : 58.2 feet) Inflow Conduit : WL8 = +17.750 m (+Weir Crest : Hw4 = +13.250 m (+43.5 feet) Filter Basin : HWL : WL9 = +17.400 m (+57.1 feet) Filter Basin : LWL : WL10 = +15.400 m 50.5 feet) (+ordinal operation Effluent Conduit : WL11 = +15.482 m 50.8 feet) (+15.499 m during backwashing : 50.9 feet) (+ Effluent Weir Crest : Hw5 = +50.5 feet) 15.400 m (+H. Backwash Water Tank : WL12 = +Satge I 14.891 m (+ 48.9 feet) : WL12 = +14.949 m 49.0 feet) Phase II

#### The Preparatory Study on The Siem Reap Water Supply Expantion Project in The Kingdom of Cambodia

#### SR 4.11 Hydraulic Calculation for Water Treatment Plant

Supporting Report

SR 4.11-1

Effluent Weir Crest for Clear Well :		`	48.5 feet)	
Effluent Water Level :	WL13 = + 14.490	m (+	47.5 feet)	Phase I
:				Phase II
I. Clear Water Reservoir :				
Reservoir : HWL :		(	47.4 feet)	Phase I
:	14.360	<b>`</b>	47.1 feet)	Phase II
Reservoir : LWL :		(	31.0 feet)	Phase I
:	9.360	m (+	30.7 feet)	Phase II
Initial Water Level :	WL0 = + 19.500	================================	 :	
in Receiving Well :		feet AMSL)		
1. Receiving Well :	No. of Unit =	1	: Water Lev	vel in the Receiving Well Chamber
			: WL0 :	=+ 19.500 m
Perfolated Buffle :	Wall Width =	2.00 m	:	
:	Depth =	4.00 m	: (1) Head I	Loss through baffle wall
:	Area =	8.00 m2	• • •	$h = (1/c^2)^*(v^2/(2^*g))$
	Holes Diameter =		•	where, $c = 0.600$
	No. =			= 0.042  m
	Area =		·	v = 0.042  m
	Pitch =	0.30 m		III
Open Ratio :		8.73 %	· Water Lev	vel in the Distribution Channel
open Ratio .	Velocity in Hole: v =	0.55 m/sec	: White Lev	
	velocity in Hole. v –	0.55 m/sec	• • • • • • • • •	_ + <u>19.438</u> III
Overflow Discharge Weir :	Overflow depth h over =	0.119 m	: h over =(	 Q/C/B)^(2/3)
(full width) :	*	0.119 m		+(0.00295/h+0.287*h/W)*(1+e)
(			:	= 1.867 m ^{0.5} /s
	Width of wall $\mathbf{B} =$	5.000 m		h = 0.183  m (trial)
	Hight of crest $W =$	4.650 m		Weir Crest Level
	$W \le 1 \text{ m}$ $e = 0$	1.000 III	: Hw	
	W < -1  m $c = 0W > 1 \text{ m} e = 0.55^{*}(W - 1) =$	2.008	: Overflow	
	$W > 1111 \qquad C = 0.35^{-1} (W - 1) =$	2.000	: Overhow	
			. пом	

## The Preparatory Study on The Siem Reap Water Supply Expansion Project in The Kingdom of Cambodia

2. Mixing Well Outlet 2 outlet : No. = : (1) Weir Loss : Unit q =0.191 cu.m/sec  $hw = (q/(C*b))^{(2/3)}$ Overflow Weir : Overflow depth hw = where, C = 1.785 + 0.00295/h0.172 m : Discharge Q =:  $+0.237*h/W-0.428\{(B-b)*h/(W*B)\}^{0.5}$ 0.191 m3/s 2.500 m +0.034(B/W)^0.5 : Width of channel B =: Width of weir b = 1.500 m C = 1.777 m^0.5/s 3.970 m : Hight of crest W = h =0.203 m (trial) : Weir Crest Level (= WL1-hw) Effluent Water Level : Hw2 =0.579 m) 19.286 m (= Hw -(for hydraulic mixing) : Water Level at Mixing Well Outlet WL2 = +18.879 m : Outlet Pipe from Mixing Well : No. = 2 lines to Flocculation Chamber : Unit q =0.191 cu.m/sec : (3) Bend Loss  $hb = f^*(v^2/(2^*g))$ Pipe Size D =0.50 m where, f = 0.17 * 4 + 0.12 * 240.0 m Length: L = 0.92 (assumption) = Section = 0.196 m2 0.044 m = Velocity v =0.973 m/sec : (4) Valve Loss (Butterfly valve usually open)  $hv = f^*(v^2/(2^*g))$ 90 deg. Bend =4 (f = 0.17)0.1 where, f =2 (f = 0.12)45 deg. Bend =0.005 m =(1) Friction Loss (pipe)  $hf = f^{*}(L/D)^{*}(v^{2}/(2*g))$ where, f = (20+(1/(2*D)))*1.5/1000: Total Loss 0.032 : hf + ho + hb + hv =0.245 m = 0.250 m 0.124 m = say = (2) In-Out Loss ho =  $f^*(v^2/(2^*g))$ : Inflow Water Level at Flocculation Chamber 1.50 = (0.5 + 1.0) : WL3 = +where, f =18.629 m 0.072 =

The Preparatory Study on The Siem Reap Water Supply Expansion Project in The Kingdom of Cambodia

3. Connection Channel : No. = 2 lines : (1) Friction Loss (open channel) (Mixing Well to : Unit q = $hf = n^2 v^2 L/R^4(4/3)$ 0.191 cu.m/sec Flocculation Channel) : where, n =0.015 Channel(Open Box) : Channel Section W =1.500 m R = W*D/(2*(D+W))5.57 m D = = 0.59 m 0.023 m/sec : Velocity in Channel: v = 0.000 m = 0 (f = 0.17) : (2) Bend Loss 90 deg. Bend =(N/A)N/A: 45 deg. Bend =0 (f = 0.12)  $hb = f^*(v^2/(2^*g))$ where, f = 0.17 * 1 + 0.12 * 4= 0 Perfolated Buffle: Wall 1.500 m 0.000 m Width == 5.570 m (3) In-Out Loss (N/A)Depth =Depth =1.000 m hio =  $f^*(v^2/(2^*g))$ : Dead 1.500 = (0.5 + 1)Area = 6.855 m2 where, f =0.000 m : Holes 0.100 m Diameter = = No. =76.167 No. (4) Head Loss through baffle wall hbw =  $(1/c^2)^*(v^2/(2^*g))$ 0.598 m2 Area = Pitch = 0.300 m where, c =0.600 8.727 % Open Ratio = = 0.014 m : Velocity in Hole: v = 0.319 m/sec : Total Loss : hf + hb + hio + fbw0.014 m = 0.150 m say = Outlet to flocculation basin (Orifice) : No. =: (1) Head Loss 2 trains : Unit q =0.191 cu.m/sec  $h = f^*(v^2/(2^*g))$ where, f =3.00 = (1.5 * 2): Oriffice 1.500 m 0.005 m Width == Height = 0.70 m 1.05 m2 Area = : Velocity in Gate: v = 0.18 m/sec Water Level at the start of Flocculation Channel WL4 = +18.474 m •

The Preparatory Study on The Siem Reap Water Supply Expansion Project in The Kingdom of Cambodia

	: =====================================		= =====================================	
4 Flocculation Channel :			:	
	Refer to the detailed computation		: (1) $H = h1 + h2 + h3 =$	0.079 m
Inlet Baffle wall :	Wall Width =	8.00 m	: say =	0.080 m
to Sedimentation Basin :	Depth =	4.00 m(approx)	: Water Level at the End of Floce	ulation Channel
:	Area =	32.00 m2	: $WL5 = +$ <b>18.394</b> m	
:	Holes Diameter =	0.10 m	: ========	
Baffle/diffuser location :	Pitch =	0.30 m	: (2) Head Loss at the Inlet difuse	er wall before
2 to 2.5m down stream of inlet :	No. =	356 Nos.	: sedimentation basin	
:	Area =	2.79 m2	: $h = (1/c^2)^* (v^2/(2^*g))^*$	())
	Open Ratio =	8.7 %	: where, c =	0.600
	Velocity in Hole: v =	0.07 m/sec	= 0.0007 m	OK
Loss of head :	for floc protection	<10 mm	: 0.0000 m	negregible
5 Sedimentation Basin :	No. = 2	trains 0.30	: Water Level in Sedimentation B	asin
:	Unit q = 0.191	cu.m/sec/train	: $WL6 = +$ <b>18.394</b> m	
Trough :			: =========	
:	No. : n =	4 No./train	: (1) Trough Loss	
:	Length : L =	6.0 m	: $ht = v^2/(2*9.8*C^2)$	
:	Width : B =	300 mm	: = 0.045 m	
:	Depth : $h =$	350 mm	C = 0.60	
	Orifice size d=	30 mm	: Trough Top Level ( = WL6-ht)	
	Pitch of orifice	100 mm	: $Ht = 18.464 \text{ m}$	
:	Clearance from WL	0.07 m	: =========	
	Nos of orrifice	120 per trough	: Critical Depth at the Trough En	d: hc
	TTL Nos of orifice	480 per basin	: $hc = (1.1*q^2/(g*B^2))$	
	TTL area of orifice	0.339 m2	= 0.142  m	/ `
	Passing velocity of orifice	0.563 m/sec	: Depth at the Beggining of Troug	gh: ho
:	Unit Flow : per trough $q =$	0.048 cu.m/sec	: $ho = 3^{(1/2)*hc}$	-
:	Total Trough Length: L=	48 m/train	= 0.204 m	
	Overflow Load : FL =	343.8 m3/m/day	: Trough Bottom Level : Htb	
•		-	: $Htb = 18.114 \text{ m}$	
			: $Htb = 18.114 \text{ m}$	

#### The Preparatory Study on The Siem Reap Water Supply Expansion Project in The Kingdom of Cambodia SR 4.11 Hydraulic Calculation for Water Treatment Plant

The Preparatory Study on The Siem Reap Water Supply Expansion Project in The Kingdom of Cambodia

		(Trough Bottom - (baffle wall loss will be absord	0.160 m below) bed with this allowances.)	: WL7 = + <u>17.954</u> m :
6	Overflow weir at the end of Sedimentation Basin (overflow weir at sedimentation)	Discharge q= Width of weir b = Hight of crest W = where, C = $1.785+(0.00295)$ = W<=1 m e= W>1m e= $0.55*(W-1)=$ h = (2) Friction Loss by 1000 DI ( 40 m -1000 pipe + In-Out Los	1.860 1 0.550 0.337 m (trial) Over low Pipe (refer to the fo	: $(1) hw = (q/(C*b))^{(2/3)}$ : = 0.219 m : weir crest should be = : Hw3 = 13.650 m : (Top level of sed. Tank is : 14.600 m) : 0.165 m
7		No.= Size =	1 pipe 700 mm	: (3) Valve Loss(butterfly valve usually open) : $h = f^*(v^2/(2^*g)) (N/A)$
	(by pipe) assumption	Discharge q= Verocity v= Inflow pipe length L= 90 deg. Bend = 45 deg. Bend =	$\begin{array}{ccc} 0.382 & m3/s \\ 0.993 & m/sec \\ \hline 40 & m \\ \end{array}$ $\begin{array}{c} 3 \\ (f = 0.17) \\ 2 \\ (f = 0.12) \end{array}$	: where, $f = 0.1$ : = 0.000 m : (4) In-Out Loss : hio = f*(v^2/(2*g)) : where, f = 1.5 =(0.5 + 1) : = 0.075 m
		(1) Friction Loss $hf = f^*(L/D)^*(v^2/(2 + 0))^*$ = 0.089 (2) Pipe Bend Loss $hb = f^*(v^2/(2 + 0))^*$	1.5/1000 0.031	<ul> <li>TTL Loss from Sedimentation Effluent Channel to</li> <li>Filter Distribution Channel</li> <li>= 0.203 m</li> <li>Water level at the inlet channel of filter</li> </ul>
			0.17 * 5 + 0.12 *2 0.75	: $WL8 = + 17.750 \text{ m}$ : $=========$

0.038 m = During wash Ordinal Sedimentation Outlet : Water level at the distribution channel of filter : No. Filter = 3 WL8 = +17.750 m Channel to Sand Filter Filter Inflow Box : Unit q =0.127 0.095 (per filter) : (cu.m/sec)Inflow Channel : Width of inflow channel W= 1.50 m : (1) Friction Loss (open channel)  $hf = n^2 v^2 L/R^{(4/3)}$ D =1.65 m 25 m L =0.015 where, n =: Discharge q =0.191 m3/s R = W*D/(2*D+W): Velocity in Channel : v = 0.05 m/sec 0.516 m = 0.000 m negregible = Inflow Weir loss : Width of weir b =: (2) Weir Loss (overflow depth) 3.500 m : Hight of crest W =  $hw = (q/(C*b))^{(2/3)}$ 1.650 m during backwash : where, C = 1.785 + (0.00295/h + 0.237*h/W)*(1+e)hw(3) =0.073 m 3: 1.843 0.060 m = : hw(4) =filters : W<=1 m e=0: W>1m e=0.55*(W-1)=0.358 : Inflow Weir Crest Level: 13.250 m 0.112 m (trial) Hw4 = +h =: Allowance between WL8 and Weir Crest: C = 1.785 + (0.00295/h + 0.237*h/W)*(1+e)ordinal operation : 4.500 m > 4: 1.846 0.073 m = 0.093 m (trial) (=hw(3) or hw(4))fiters : h= Inflow gate : Inflow gate d= 500 mm : (3) Gate Orifice Loss Inflow gate velocity; : Inflow velocity v(3) = $ht = v^2/(2*9.8*C^2)$ 0.509 m/sec 0.382 m/sec : Inflow velocity v(4) =C =0.60 0.037 m 0.350 : <1.0 m/sec ht(3) =0.021 m ht(4) =: (3) Bend Loss Sludge Drain Pipe 

#### The Preparatory Study on The Siem Reap Water Supply Expansion Project in The Kingdom of Cambodia

SR 4.11 Hydraulic Calculation for Water Treatment Plant

The Preparatory Study on The Siem Reap Water Supply Expantion Project in The Kingdom of Cambodia

SR 4.11 Hydraulic Calculation for Water Treatment Plant

Nos of train	:	2 trai		$: Hb = f^*(V^{\wedge})$	2)/2g		
TTL Dry soild amount per day	:	0.710 ton	5	:	=	0.071 m	
Dry soid amount per train per day	-	0.355 ton	-DS/day	: Hb: Head L	Loss (m)		
Water Contents of Drawn Sludge	:	1 %		: f : Coefficie	ent(= 0.2 x 10, for	safe)	
Sludge amount per train per day	: per train	35.5 m3	/day	: (4) Friction L	Loss after combine	ed	
Withdrawal time	:	10 mii	n	: hf =	f*(L/D)*(v^2/(2*	*g))	
Sludge withdrawal amount	: per train	3.550 m3	/min	: where, f =	= (20+(1/(2*D)))*1	1.5/1000	
Nos of sludge withdraw pipes	:	4 pip	es	: =	0.033		
Indivisual withdrawl pipe	:	0.887 m3	/min	:	=	0.825 m	
	:	0.015 m3	/sec	: Combined	Dia : D=	250 mm	
	:			:	Length: L=	150 m	
Indivisual pipe spec.	: Pipe Size:	Dia : D =	150 mm	:	Area :A=	0.049 m2	
	:	Length: L =	5 m	:	Velocity :V =	0.904 m/sec	
	:	Area : a =	0.018 m2	: (5) Out Loss			
	:	Velocity : v =	0.837 m/sec	: Ho = $f^*(V^*)$	2)/2g		
	:			:	=	0.042 m	
·	: (1) Friction L			: (6) Bend Los	s (10 places)		
		f*(L/D)*(v^2/(2*g))		: $Hb2=f^*(V')$	^2)/2g		
	: where, $f =$	(20+(1/(2*D)))*1.5/		:	=	0.083 m	
	:	=	0.035	: (v) Total Los			
	: =	0.042 m		: H = Hf1 +	Hb1 + Ho1 + Hf2 +		
	: (2) In-Out, Va			:	=	1.182 m	
	$: Ho1 = f^*(V'$			:	say	1.200 m	
	: =	0.118 m		: High Water Level of Sedimentation Basins			
:	: Ho1: Head	( )		: WL6 = +			
	: f : Coefficie	ent(=0.1+1.0+0.2+2)		U	Level of Sludge D	Tank	
	:	including in, out, va	lve, contrl valve	: should be not			
	:			:	17.194 m		
	:			:			
Sand Filter	 :			: Allowance be	etween WL8 and I	HWL of Filter:	
	:			:	0.350 m		
(1) Required Backwash Head		High Wa	ter Level of Filter Tank:	: WL9 =	17.400 m		

The Preparatory Study on The Siem Reap Water Supply Expantion Project in The Kingdom of Cambodia

SR 4.11 Hydraulic Calculation for Water Treatment Plant

	= ===========			=======================================	= ======= <u>====</u>	
(preliminary) :				Filter Head:		
:				Filter Tank:		m
Trough :	Nos of trough	n =		Nos	(1) Weir (trough) Loss	
Backwash amount per filter :		Q =		m3/min	$hw = (q/(C*b))^{2/2}$	3)
including 20%+0.25m3/m2/min :	Width of wei	: b =	8.500		= 0.077	m
'+settled water :	Wash amount	per trough q =	0.170		where, $C = 1.785 + (0.002)$	95/h+0.237*h/W)*(1+e)
Backwash pipe; :		d=	<b>500</b> a	nm :	: =	1.860
:		_		:	Hight of crest W =	0.500 m
:				:	$W \ll 1 m e =$	•
1.5 to 3.0 m/s :		kwash amount =		m3/min	e=0.55*(W-1)	·
2 m/s is preferable :		=	0.283		: h=	
Backwash Drain :		actual v=	1.44		: (2) Friction Loss after comb	
:		Pipe length L=	<b>50</b> I	m :	$hf = f^*(L/D)^*(v^2/2)$	
:		(assumption)		:	where, $f = (20+(1/(2*D)))$	
:				:	: =	0.032
:				:	= 0.335	m
:	00.1		6		(3) Pipe Bend Loss	
:		g. Bend =		(f = 0.17)	hb = $f^*(v^2/(2^*g))$	
:	45 de	g. Bend =	5	(f = 0.12)	where, I =	0.17 * 3 + 0.12 *2
: : : Filter Madia		Effective Size	,	Thickness :	= 0.172	1.62
Filter Madia : :		(mm)	(D:m)		= 0.172 (4) Valve Loss(butterfly val	
· · · · · · · · · · · · · · · · · · ·		(11111)	(D.III)	(L0.III)	$h = f^*(v^2/(2^*g))$	
	Sand	1.20	0.00120	1.200	$m = 1^{\circ} (\sqrt{2}/(2^{\circ}g))$ where, f =	
· N/A ·	Gravel-1	2.75	0.000120	0.000		
	Gravel-1 Gravel-2	5.25	0.00000		: (5) Loss of head through filt	
	Gravel-2 Gravel-3	10.00	0.00000	0.000		$(1-e)^{2}/(pf^{*}g^{*}f^{2}D^{2})$
	Gravel-4	16.50	0.00000	0.000		$(10) 2(p_1 g_1 2 D 2)$
:						0.898 kg/m/s x 10
Note: :	for (5). Leva's	formula will be a			•	
:		ackwash rate) =	0.0042	•	eo (void ratio) =	U U U U U U U U U U U U U U U U U U U
:	•	pe coefficient) =	0.7	-	ps (density of media) =	
:	(	· · · · · · · · · · · · · · · · · · ·	2.2.2		= 0.432	
				:		

	:			: (6) Loss of supporting gravel (Leva's formula)
	:			: $hg=$ 0 m (N/A)
Underdrain System :	: Strainer K- typ			: (7) Loss of under drain
	:	b= op	ening ratio of strainer	: $hu = 1/(2*g)*(u/a/b)^2$
	: assumption		1.00 %	: where, $u = backwash$ rate
	:	a = dis	sharge coefficient	: $= 0.004 \text{ m}3/\text{s}$
	: assumption	=	0.62	= 0.023 m
	:			: Required Backwash Head
	:			: TTL head loss $h = (1)+(2)+(3)+(4)+(5)+(6)+(7)$
	:			= 1.3 m + actual lifting head
	:			: Details shall be referred to the mechanical design
	:			: for backwash pump.
(2) Loss of head between filter	: 4filters	q (per filter) =	0.095 m3/s	: (1) Friction loss of effluent pipe
and Effluent Pipe	:	d=	400 mm	: $hf(4) = f^{*}(L/D)^{*}(v^{2}/(2^{*}g))$
	:	actual v=	0.760 m/s	: where, $f = (20+(1/(2*D)))*1.5/1000$
	: 3filters	q (per filter) =	0.127 m3/s	: = 0.032
	:	d=	400 mm	= 0.004 m
	:	actual v=	1.014 m/s	: $hf(3) = f^{*}(L/D)^{*}(v^{2}/(2^{*}g))$
	: pipe length	L=	1.500 m	= 0.006  m
	:			: (2) In-Out Loss
	:			: $ho = f^*(v^2/(2^*g))$ use bell mouse
	:			: where, $f = 1.500 (=0.5+1)$
	:			: $ho(4) = 0.044 \text{ m}$
	:			: $ho(3) = 0.079 \text{ m}$
	:			: (3) Valve Loss(butterfly valve)
	:	0.764		: $h = f^*(v^2/(2^*g))$
	:	1.04		: where, $f = 0.1$
	:			: $h(4) = 0.003 \text{ m}$
	:			: $h(3) = 0.005 \text{ m}$
Initial Loss of Head	:			: (4) Fair Hatch Formula:
through Filter	: Media size I		1.2 mm	: $Re= pF*D*v/m$
	: Thickness of m	edia L=	1200 mm	: = 1.877 >1

### The Preparatory Study on The Siem Reap Water Supply Expantion Project in The Kingdom of Cambodia

SR 4.11 Hydraulic Calculation for Water Treatment Plant

_____

_____ ____

0.45 : Void ratio  $Cd = 24/Re + 3/Re^{0.5} + 0.34$ e= : Filtration rate v(4) =121.3 m/d 15.3 = 1.404E-03 m/sec  $h(4) = (0.178*24)/\text{Re*L*v^2/g/e^4/D*a/b}$ : Viscosity m= at 25 degree 8.950E-04 kg/m/sec 0.220 m = Density of water at 25 deg.= 997.1 kg/m3 h(3) =Coefficient of figure a/b= 5.5 v(3) =161.8 m/d : TTL head loss h = (1)+(2)+(3)1.872E-03 m/sec 0.051 m h4= h3 =0.090 m (3) Effluent Weir to Backwash 15.400 m Weir Crest Level of Each Filter Effluent : Hw5 =: During Filtration : (1) Weir Loss durinf ordinal filtration Tank 4 filters 30,000 cu.m/day : Flow rate Q = $hw(4) = (q/(C*b))^{(2/3)}$ 0.347: per basin q= 0.087 m3/sec = 0.082 m : Width of weir b = 2.000 m : Hight of crest W = 2.400 m where, C = 1.785 + (0.00295/h + 0.237*h/W)*(1+e): W<=1 m = 1.848 e=0(2) Weir loss during washing : W>1m e=0.55*(W-1)=0.770 0.130 m (trial) hw (3)=  $(q/(C*b))^{(2/3)}$ h = **During Washing** 0.099 m 3.000 filters = per basin q=0.116 m3/sec 0.158 m (trial) where, C = 1.785 + (0.00295/h + 0.237*h/W)*(1+e)h = = 1.846 15.482 m (during ordinal opertioin): WL11 =**15.499** m (during backwashing) _____ : Weir Crest Level of Wahswaer Tank Outlet to Clear Well : 14.790 m Hw6 =: For Phase I q =(4) Effluent Weir to Clear Well 0.382 m3/sec 22.917 m3/min : For Stgage I: Weir Width B= 6.500 m : Loss of head by effluent weir Weir hight W= 2.100 m  $hw = (q/(C*B))^{(2/3)}$ : 0 W<=1 m where, C = 1.785 + (0.00295/h)e =

The Preparatory Study on The Siem Reap Water Supply Expansion Project in The Kingdom of Cambodia

## SR 4.11 Hydraulic Calculation for Water Treatment Plant

e=0.55*(W-1)= 0.605 : W>1m +0.237*h/W)*(1+e) 0.155 m (trial) 1.844 h == 0.101 m = : For Phase II qq for Phase II= : For Phase II: 0.764 m3/sec : Loss of head by effluent weir 45.833 m3/min  $hw = (q/(C*B))^{(2/3)}$ h= 0.245 m (trial) where, C = 1.785 + (0.00295/h)+0.237*h/W)*(1+e) 1.849 = 0.159 m = 14.891 m Water Level of Backwash Phase I: WL 12= Water Tank Phase II: WL 12= 14.949 m Effluent Water Level to WL 13 = 14.490 m Cleae Well 0.3m below of Weir Crest Level of Backwash Effluent Tank 11 Effluent Channel : (1) Friction Loss (pipe) to Clear Water Reservoir : No. =  $hf = f^{*}(L/D)^{*}(v^{2}/(2*g))$ 1 lines 0.382 cu.m/sec : Unit Q == 0.014 m where, f = (20+(1/(2*D)))*1.5/1000Pipe 1400 : Dia : D =0.031 m 1.40 m = 200.0 m Length: L =(2) Friction Loss (1m pipe) Area : A =1.54 m2  $hf = f^{*}(L/D)^{*}(v^{2}/(2*g))$ Velocity in Pipe : V =0.25 m/sec = 0.005 m 90 deg. Bend =where, f = (20+(1/(2*D)))*1.5/10003 (f = 0.17)45 deg. Bend =0 (f = 0.12) 0.031 m = Pipe 1000 : Dia : D =: (3) Bend Loss 1.00 1.00 (in the pipe gallerly of clear Q : = 0.191  $hb = f^*(v^2/(2^*g))$ : 0.382 Length: L = water reservoir) 10 10.0 where, f = 0.17 * 3 + 0.12 * 0: 0.785 0.785 0.510 Area : A == : Velocity : V = 0.24 0.49 0.002 m =

The Preparatory Study on The Siem Reap Water Supply Expansion Project in The Kingdom of Cambodia

	: $hr = fgc*v^2/(2g)$ where, $fgc = 0.01$ : $= 0.000$ m neglectable	= 0.005  m : (5) Valves : $hv = fv(v^2/(2*g))$ : $where, fv = 0.100$ : $0.000 \text{ m}$
		: Total Loss : $hf + hb + hio + hv + hr + hdb$ : = 0.034 m : say 0.040 m : ====================================
12 Clear Water Reservoir	: HWL =WL13 : LWL = WL14 = WL 13-5.0 :	: WL 14 = $14.450 \text{ m}$ : WL 15 = $9.450 \text{ m}$ : ====================================
Overflow Pipe	: Bellmouth overflow pipe is provided for flowing 20 percent of full flow. Diameter of overflow pipe = $0.076$ cu m/sec Diameter of overflow pipe = $800$ mm Overflow Head = $1.00$ m Pipe length= $100$ m Velocity= $0.152$ m/sec (1) Friction Loss (pipe) hf = f*(L/D)*(v^2/(2*g)) hf = f*(L/D)*(1/(2*D)))*1.5/1000 = $0.031$	: (2) In-Out, Valve Loss t Ho1 = $f^*(V^2)/2g$ : = 0.002 m : Ho1: Head Loss (m) : f: Coefficient(= 0.5+1.0) : including in, out, valve, contrl valve : (3) Bend Loss : Hb = $f^*(V^2)/2g$ : = 0.002 m : Hb: Head Loss (m) : f: Coefficient(= 0.2 x 10, for safe) :
	= 0.005  m	TTL head loss:Hf = $0.009 \text{ m}$ WL16 = + $14.459 \text{ m}$ = $10.42 \text{m}$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	:		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ĩ		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	× · · · · · · · · · · · · · · · · · · ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		*	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	: Diamet	er of backwash drainage pipe = 800 mm :	(2) In-Out, Valve Loss
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	: :	Pipe length= 30 m :	$Ho1 = f^*(V^2)/2g$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	: :	Velocity= 1.127 m/sec :	= 0.097 m
: Gate size $600 \text{ nm sq.}$ including in, out, valve, contrl valve : Velocity= $1.574 \text{ m/sec}$ (3) Bend Loss : $ht = v^2/(2*9.8*C^2)$ : $Hb = f^*(V^2)/2g$ : $C = 0.60$ : $= 0.130 \text{ m}$ : $C = 0.60$ : $= 0.130 \text{ m}$ : For safety HWL of Filter Drainage Channel is assumed in the Head Loss (m) : For safety HWL of Filter Drainage Channel is assumed in the filter of the transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of transformer of	: :	:	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	: Filter drainage :	Gate Orifice Loss :	f: Coefficient (= 0.5+1.0)
: $ht = v^2/(2^{*9}.8^{*}C^2)$ : $Hb = f^{*}(V^2)/2g$ : $C = 0.60$ : $= 0.130 \text{ m}$ : $C = 0.351 \text{ m}$ : $Hb$ : Head Loss (m) : For safety HWL of Filter Drainage Channel is assumed: $f: Coefficient(= 0.2 \text{ x } 10, \text{ for safe})$ : $to be 14.000$ : $(4) \text{ Valves}$ : $to be 14.000 \text{ m}$ : $hv = fv(v^2/(2^{*}g))$ : Loss of head $(1)+(2)+(3)+(4)=0.318 \text{ m}$ : where, $fv = 0.250$ : HWL of Backwash Water 13.682 m : 0.016 m : $E$ Receiving Tank : WL17= + 13.600 m : Receiving Tank : WL17= + 11.600 m : Highest High Water Level of Laggon : (see item 9) 17.194 m : WL19=+ 15.800 m	: :	Gate size 600 mm sq. :	including in, out, valve, contrl valve
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	: :	Velocity= 1.574 m/sec :	(3) Bend Loss
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	: :	$ht = v^2/(2*9.8*C^2) $	$Hb = f^*(V^2)/2g$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	: :	C = 0.60 :	= 0.130 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		= 0.351 m :	Hb: Head Loss (m)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		For safety HWL of Filter Drainage Channel is assumed:	$f: Coefficient (= 0.2 \times 10, for safe)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		to be 14.000 :	
:       :       HWL of Backwash Water       13.682 m       :       0.016 m         :       :       :       :       :       :       0.016 m         :       :       :       :       WL17= +       13.600 m         :       :       :       :       WL18= +       11.600 m         :       :       :       :       :       .         :       :       :       :       :       .         :       :       :       :       :       .         :       :       :       :       WL18= +       11.600 m         :       :       :       :       :       WL18= +       11.600 m         :       :       :       :       :       :       .       .         :       :       :       :       :       :       .       .         :       :       :       :       :       :       .       .       .         :       :       :       :       :       .       .       .         :       :       :       :       :       :       .       .       .		= 14.000 m :	$hv = fv(v^2/(2*g))$
: Receiving Tank : WL17=+ 13.600 m : WL18=+ 11.600 m : WL18=+ 11.600 m : WL18=+ 11.600 m : WL19=+ 15.800 m	:	Loss of head $(1)+(2)+(3)+(4)=$ 0.318 m :	where, $fv = 0.250$
: WL18= + 11.600 m : WL18= + 11.600 m : 14 Sludge Lagoon : : (see item 9) 17.194 m : WL19=+ 15.800 m		HWL of Backwash Water 13.682 m :	0.016 m
: WL18= + 11.600 m : WL18= + 11.600 m : 14 Sludge Lagoon : : (see item 9) 17.194 m : WL19=+ 15.800 m	: :	:	
: WL18= + 11.600 m : 4 Sludge Lagoon : Highest High Water Level of Laggon : : (see item 9) 17.194 m : WL19=+ 15.800 m	: Receiving Tank :		WL17 = + <b>13.600</b> m
:	: :		WL18 = + 11.600 m
: (see item 9) 17.194 m : WL19=+ 15.800 m	:		
	: 14 Sludge Lagoon :	<i>c c c c c c c c c c</i>	
• Estimated High Water Level • $Tr=10$ 11 600 m • WI 20-+	: :		
	: Estimated High Water Level :	Tr=10 11.600 m :	WL20= + m
: Tr=25 12.200 m :	: :	Tr=25 12.200 m :	

#### The Preparatory Study on The Siem Reap Water Supply Expansion Project Simulation for Clear Water Reservoir Fill & Draw System

# Scenario: Clear Water Reservoir will receive water from the WTP at constant rate, and discharge by pump to ELT.

30,000	nr cu m/min 1,250 21 2,000 33	
Day Demand = 30 Demand increase ratio=	,000 cu m/day =	347 l/sec 3.60
Peak Factor =	1.6 (as shown b	elow)
Storage Volume of Sump = Detention time	= 5000 4.00	
Initial Storage = Final Storage =	30% 30%	Max. Storage = Min. Storage =

	Peak	Ave.	Total	Peak	Ave.	Total	Storage (start)		Storag	e (end)
Time	Factor for	Inflow	Inflow	Factor for	Disch.	Disch.	(m3)	(%)	(m3)	(%)
	Inflow	(cu m/hr)	(cu m/hr)	Disch.	(cu m/hr)	(cu m/hr)	(1115)	(%)	(1115)	(%)
0:00	1.00	1,250.00	1,250	0.58	1,250.00	725.00	1,500	30%	2,025	41%
1:00	1.00	1,250.00	1,250	0.50	1,250.00	625.00	2025	41%	2,650	53%
2:00	1.00	1,250.00	1,250	0.47	1,250.00	587.50	2650	53%	3,313	66%
3:00	1.00	1,250.00	1,250	0.45	1,250.00	562.50	3313	66%	4,000	80%
4:00	1.00	1,250.00	1,250	0.50	1,250.00	625.00	4000	80%	4,625	93%
5:00	1.00	1,250.00	1,250	0.81	1,250.00	1,012.50	4625	93%	4,863	97%
6:00	1.00	1,250.00	1,250	1.26	1,250.00	1,575.00	4863	97%	4,538	91%
7:00	1.00	1,250.00	1,250	1.60	1,250.00	2,000.00	4538	91%	3,788	76%
8:00	1.00	1,250.00	1,250	1.44	1,250.00	1,800.00	3788	76%	3,238	65%
9:00	1.00	1,250.00	1,250	1.33	1,250.00	1,662.50	3238	65%	2825	57%
10:00	1.00	1,250.00	1,250	1.25	1,250.00	1,562.50	2825	57%	2513	50%
11:00	1.00	1,250.00	1,250	1.17	1,250.00	1,462.50	2513	50%	2300	46%
12:00	1.00	1,250.00	1,250	1.14	1,250.00	1,425.00	2300	46%	2125	43%
13:00	1.00	1,250.00	1,250	1.13	1,250.00	1,412.50	2125	43%	1963	39%
14:00	1.00	1,250.00	1,250	1.09	1,250.00	1,362.50	1963	39%	1850	37%
15:00	1.00	1,250.00	1,250	1.06	1,250.00	1,325.00	1850	37%	1775	36%
16:00	1.00	1,250.00	1,250	1.11	1,250.00	1,387.50	1775	36%	1638	33%
17:00	1.00	1,250.00	1,250	1.16	1,250.00	1,450.00	1638	33%	1438	29%
18:00	1.00	1,250.00	1,250	1.13	1,250.00	1,412.50	1438	29%	1275	26%
19:00	1.00	1,250.00	1,250	1.10	1,250.00	1,375.00	1275	26%	1150	23%
20:00	1.00	1,250.00	1,250	1.07	1,250.00	1,337.50	1150	23%	1063	21%
21:00	1.00	1,250.00	1,250	1.01	1,250.00	1,262.50	1063	21%	1050	21%
22:00	1.00	1,250.00	1,250	0.89	1,250.00	1,112.50	1050	21%	1188	24%
23:00	1.00	1,250.00	1,250	0.76	1,250.00	950.00	1188	24%	1488	30%
0:00	1.00	347.22	1,250.00	0.58	1,250.00	950.00	1488	30%	4738	95%

97% 21%

## SR 4.12 Mechanical & Electrical Equipment List for Water Treatment Plant

#### SR 4.12.1 Mechanical Equipment List for Water Treatment Plant

Water Treatment Plant; Priority Project 30,000m3/day, Future 30,000m3/day, Total 60,000m3/day (Product water)

			Power				Q'ty				I., .	
Facility/Equipment	Tag No.	Specification	(kW)	Priority Project I Duty St'db Du			Future		Tot St'db		Remarks	
01. Distribution Chan	ıber			Duty	ot ub	Duty	or ub	Duty	50 40	Total	I	
Distribution Gate	02HG11 to 41	Hand Operated Sluice Gate Dia.500mm	-	2	0	2	0	4	0	4	Spindle L=5m	
Drain Gate	02HG01	Hand operated Sluice Gate W300mmxH300mm	-	1	0	0	0	1	0	1	Spindle L=5m	
02. Flocculation / Sedi	mentation Bas	in										
De-sludge Valve.1	03MV11 to 43	Electrically operated , Eccentric DN 150mm	0.08	6	0	6	0	12	0	12		
De-sludge Valve.2	03HV11 to 43	Manually operated gate valve, DN 150mm	-	6	0	6	0	12	0	12		
Sump Drainage Pump	03DP11 to 41	Submersible 0.2m3/min x 15m	1.5	1	1	1	1	2	2	4		
Sampling Pump	03SP11 to 21	Self-priming Centrifugal 0.06m3/min x 12 m	0.4	1	1	0	0	1	1	2		
03. Filters												
Filter Inflow Gate	04MV11 to 81	Motorized Sluice Gate with head stock 400mmW x 400Hmm	0.4	4	0	4	0	8	0	8	Spindle L=1.5m	
Backwash Water Discharge Gate	04MV12 to 82	Motorized Sluice Gate with head stock 700mmW x 700mmH	0.75	4	0	4	0	8	0	8	Spindle L=3m	
Stop log	04SL11 to 81	Manual, Stainless Steel W1000xW2000H	-	4	0	4	0	8	0	8		
Backwash Valve	04MV14 to 84	Motorized Butterfly Dia.500mm	0.4	4	0	4	0	8	0	8		
Air Scour Valve	04MV15 to 85	Motorized Butterfly Dia.400mm	0.2	4	0	4	0	8	0	8		
Effluent Valve	04MV17 to 87	Motorized Butterfly Dia.400mm	0.2	4	0	4	0	8	0	8		
Drain Valve	04HV11to 81	Manual Operated Gate valve with Headstock Dia.150mm	-	4	0	4	0	8	0	8	Spindle L=5m	
Backwash Pump	04BP11 to 31	Horizontal Centrifugal 17m3/min x 8m	37	1	1	1	0	2	1	3		
Backwash Line Valve	04HV12/22	Manually operated Butterfly Valve, DN500	-	1	0	1	0	2	0	2		
Air Blower	04AB 11 to 31	Roots Blower 68Nm3/min x 3500mmAq	75	1	1	1	0	2	1	3		
Sump Drainage Pump	04DP01/02	Submersible 0.3m3/min x 15m	2.2	1	1	0	0	1	1	2		
Sampling Pump		Self-priming Centrifugal 0.06m3/min x 12 m	0.125	1	1	0	0	1	1	2		
Air Blower check valve	04CV 11 to 31	Swing check valve, DN250	-	2	1	0	0	2	1	3		
Air Blower Isolate valve	04MV 13 to 2	Manual Operated Gate valve DN 400	-	1	1	0	0	1	1	2		
Air Blower Butterfly valve	04MV 16 to 3	Manually operated Butterfly Valve DN 250	-	2	1	0	0	2	1	3		
Back wash Pump check Valve	04HV 13 to 33	Swing check Valve DN 300	-	1	1	1	0	2	1	3		
Back wash Pump Suction Valve	04CV 13 to 33	Manually operated Gate Valve DN 300	-	1	2	0	0	1	2	3		
Back wash Pump Valve	04HV14 to 34	Manually operated Butterfly Valve DN 300	-	1	2	0	0	1	2	3		
Sand	04SD	Total 272m3/ 4units	-	1	0	1	0	2	0	2		

04. Clear Water Rese	rvoir and High	Lift Pump Station									
High Lift Pump	05HP11 to 51	Horizontal Double VoluteCentrifugal 17m3/min x 48m (split casing)	200	2	1	1	1	3	2	5	Future pump; 7.8m3/min x 27kW
Suction Header Valve	05HV11 to 81	Manuaaly Butterfly Valve 1000mmdia	-	4	0	4	0	8	0	8	Future; 400mmdia
nlet Valve	05HV12 to 82	Manually Butterfly Valve 1000mmdia	-	4	0	4	0	8	0	8	Future; 400mmdia
Suction Valve	05HV16 to 56	Manually Gate Valve Dia.400mm	-	2	1	1	1	3	2	5	Future; 250mmdia
Check Valve	05CV11 to 51	Swing check Valve DN 400	-	2	1	1	1	3	2	5	Future; 250mmdia
Discharge Valve	05MV11 to 51	Motorized Butterfly Dia.400mm	0.2	2	1	1	1	3	2	5	Future; 250mmdia
Discharge Valve	05HV13 to 53	Manually Gate Valve Dia.400mm	-	2	1	1	1	3	2	5	Future; 250mmdia
Sump Drainage Pump	05DP01/02	Submersible 0.1m3/min x 12m	2	1	1	0	0	1	1	2	25011111111
Plant Water Supply Jnit	05PU01	Horizontal Centrifugal Pumps with Pressure tank 1.5m3/min x 35m	9	1	0	0	0	1	0	1	with control panel, two pumy unit
Chlorination Booster Pump	05BP11 to 31	Horizontal Centrifugal 0.4m3/min x 52m	7.5	1	1	1	0	2	1	3	
Overhead Crane	05HC01	Motorized bridge crane 3Ton	3	1	0	1	0	2	0	2	
solation Valve	05HV14	Manually Butterfly Valve Dia.1000	-	2	0	2	0	4	0	4	For Flow Meter Future: 400mm
)5.Chemical Building	•										• • • • • • • • •
Alum Dosing System											
Alum Mixer	06ALM11 to 41	Vertical (2.8m x 2.3m x 3.5mH,	4	1	1	0	0	1	1	2	Tank (civil worl
Alum Pump	06ALP11 to 31	Diaphgram Pump (Manually stroke control type) 70-790L/h x 20m	2.2	1	1	1	0	2	1	3	
Alum Dust Collector	06ADC11 to 41	Filter Type, Approx.9.0m2, Filtreration Air 10m3/min	1.5	1	1	0	0	1	1	2	Stainless Steel / Non Corrosive Material
Portable Belt Convevor	06BC11	Portable Belt Conveyer W350 x 5m	1	1	0	0	0	1	0	1	
Sump Drainage Pump	06DP11/21	Stainless Steel Submersible 0.24m3/min x 15m	2	1	1	1	0	2	1	3	
Lime Dosing System											
Lime Mixer	06LM11 to 41	Vertical (2.8m x 2.3m x 3.5mH, W.D. 2.5m)	4	1	1	0	0	1	1	2	Tank (civil wor
Lime Pump		Diaphgram Pump (Manually stroke control type) 39-390L/h x 20m	2.2	2	2	2	0	4	2	6	
Lime Dust Collector	06LDC11 to 41	Filter Type, Approx.9.0m2, Filtreration Air 10m3/min	1.5	1	1	0	0	1	1	2	New, Mild Stee
Chemical Crane	06MC01	Motorized with Trolley 2.0 Ton	0.75 +0.4	1	0	0	0	1	0	1	For Alum and Lime
Sump Drainage Pump	06DP13/23	Stainless Steel Submersible 0.24m3/min x 15m	2	1	1	1	0	2	1	3	
Chlorination System											
Chlorine Containaer	06CC01 to 10	Steel Container 1.0t gas Cylinder	-	4	6	0	0	4	6	10	Approx. Dia. 770mm,
Veighing Scale	06WS11/21	hydraulic load cell type 2.0Ton	-	1	1	0	0	1	1	2	with one dial at the scale for two 1 tonne chloring cylinders
Chlorinator-Pre	06CL11 to 13	Auto Vacuum solution feed type (include ejector) 10kg/hr	0.025	1	1	1	0	2	1	3	Floor mounted
Chlorinator-Post	06CL21 to 23	Auto Vacuum solution feed type (include ejector) 10kg/hr	0.025	1	1	1	0	2	1	3	Floor mounted
Chlorine Crane	06MC02	Motorized with Trolley 2.0 Ton	0.75 +0.4	1	0	0	0	1	0	1	

06.Backwash Recover	ry Tank										
Backwash Inlet Gate	07HG11/21	Hand operated Sluice Gate $\phi$ 800mm	-	2	0	0	0	2	0	2	Spindle L=2m
Backwash Recovery Pump	07WP11/31	Centrifugal Pump 0.78m3/min x 15m	4	1	1	1	0	2	1	3	
Suction Valve	07 HV 11 to 51	Manually Sluice Gate Valve DN 150	-	5	0	0	0	5	0	5	
Check Valve	07 CV 11 to 31	Swing Check Valve DN 150	-	3	0	0	0	3	0	3	
Sump Drainage Pump	07DP01/02	Submersible 0.3m3/min x 15m	2.2	1	1	0	0	1	1	2	
Discharge Valve	07 HV 12 to 52	Manually Sluice Gate Valve DN 150	-	3	2	0	0	3	2	5	
Isolate Valve	07 HV 13 to 33	Manually Sluice Gate Valve DN 150	-	2	0	0	0	2	0	2	For Flow Meter
07.Sludge Discharge 1	Fank										
Sludge Inlet Gate	08HG11/21	Hand operated Sluice Gate $\phi$ 400mm	-	2	0	0	0	2	0	2	Spindle L=2m
Sludge Discharge Pump	08WP11/31	Centrifugal Pump 1m3/min x 15m	5.5	1	1	1	0	2	1	3	
Suction Valve	08 HV 11 to 51	Manually Sluice Gate Valve DN 150	-	5	0	0	0	5	0	5	
Check Valve	08 CV 11 to 31	Swing Check Valve DN 150	-	3	0	0	0	3	0	3	
Sump Drainage Pump	08DP01/02	Submersible 0.3m3/min x 15m	2.2	1	1	0	0	1	1	2	
Discharge Valve	08 HV 12 to 52	Manually Sluice Gate Valve DN 150	-	3	2	0	0	3	2	5	
08. Sludge Dring Bed											
Sludge Drying Bed Inlet Valve	09MV01 to 24	Manual Sluice gate valve Dia.150	-	5	0	5	0	10	0	10	
Stop Log	09 SL 01 do 24	650 x 200 Aluminium	-	20	0	20	0	40	0	40	
09. Elevated Water Ta				-	-	-	1			1	
Outlet Valve	10HV 11 to 31	Manually Butterfly DN 1000	-	2	1	0	0	2	1	3	For Flow Meter
drain Valve	10HV 11	Manual Gate Valve DN150	-	1	0	0	0	1	0	1	

Plant H	Electrical Works - Water Treatr	nent Plant	Priority Project	Future
	Item	Details	Nr.	Nr.
1	Incoming Pole	with LA, Cut-out, PH	1	1
2	HV Power Receiving Panel	22kV VCB	1	1
3	HV CT, VT Panel	22kV	1	1
4	HV Bus-tie Panel	22kV VCB	1	
5	Bus Duct	22kV		1
6	HV Tr Primary Panel	22kV VCB	1	1
7	Power Transformer	2000kVA Mold	1	1
8	Standby Generator Set	2000kVA	1	1
9	LV Panel	MCC Type	7	3
10	Pump Starter Panel	300kW 400V Soft-starter	3	2
11	Motor Control Center	400V Form3b	20	16
12	Local Control Panel	Stand Type	30	20
13	UPS	1hr 20kVA	1	1
14	DC Unit	30min	1	1
15	Water Flow	Electromagnetic Type	4	1
16	Water Level	Ultrasonic Type	10	6
17	Water Quality	Turbidity, pH, RCl	3	3
18	IP Panel		4	2
19	PLC Panel		4	2
20	SCADA System		1	
21	SCADA System	(modification)		1

## SR 4.12.2 Electrical Equipment List for Water Treatment Plant

## SR 4.13 Pump Calculation Sheet for Water Treatment Plant

Clear Water Pump for Service Area (Priority Project; 30,000 m3/day)

1	Equip.	No		case1	case2	
		Name		Casel	Casez	
				Double suction		
	Pump					
		pacity (m3/min)		17	34	 
		der peak factor above	factor value	1.6		
		peration number		2		
	Pump				VSD	
		Number		2D + 1S	1D + 1S	
		Head H=ha+hf1+hf2+hf3+hf4				
5	ha	:Actual head (m)		45.8	45.8	
		=DWL-SWL				
	DWL	(m)		55.250	55.250	 
	SWL	(m)		9.450	9.450	
8	hf1	: Straight pipe loss (m) =		0.063	0.063	
		<u>(10.666 x Q^1.85) x L x Cc</u>				
⊢──┨		(C ¹ .85xD ⁴ .87)				
9	Q	: Flow (m3/sec)		0.567	0.567	
┢───┨		=q x N/60				
10	С	: Coefficient		110	110	
		LWL: 110				
		HWL: 140				
11	D	: Pipe Dia. (m)		0.9	0.9	
12	L	: Pipe length (m)		60	60	
13	Cc	: Correction coefficient		1.0	1.0	
		Water: 1.0				
		Sludge: WT99.2% :				
14	hf2			0.000	0.000	
15	hf3	: Pump around loss (m)		2	2	
		Horizontal type : 2.0m				
		Submersible type : 0.7m				
16	hf4	:Other head		0	0	
17	H'	=ha+hf1+hf2+hf3+hf4 (m)		47.86	47.86	
18	Н	: Total head (m)		48.0	48.0	
	Velocity			0.89	0.89	
l						
l	Motor	· Power				
l						
19	BKW =0.163*SG*q*H/Pe (kW)			166.260	332.520	
	SG	:Specific gravity		1.0	1.0	
21		:Pump efficiency		0.8	0.8	
22		=BKW x C		191.199	382.398	
23		:Coefficient (1.15)		1.15	1.15	
	-			200	400	

## SR4.14 WTP Construction Cost Comparison

## 1. Introduction and Objectives

In this section construction cost comparison on four Options of WTP in addition to the original plan presented in the Draft Final Report is studied to justify a plan with the least construction cost. The site of the water treatment is located near the north end of Tonle Sap Lake. The existing areas are possible to be submerged when water level becomes high during rainy season. The WTP facilities shall be safe and maintained stable in operation during the rainy season. This study is made taking into consideration of buoyancy effect to the facility structures caused by the high water, which is one of the important factors in analyzing the foundations and configurations and elevations of facilities.

## 2. Applied Conditions

The following conditions are applied :

Item	Condition						
Elevation of Existing Ground Level of the Tentatively Proposed Plant Site	+8.0 A.M.S.L.						
Proposed Elevation of Embankment at the Proposed Plant Area	+12.0 A.M.S.L.						
High Water Level	+11.0 A.M.S.L.						
Other condition	The study is based on Soil Investigation Report conducted in the vicinity of the <b>Tentatively</b> <b>Proposed Plant Site</b> for the Study.(attached in SR4.6)						

 Table A.1 Applied Conditions

## 3. WTP Facilities

The following Water Treatment Facilities are considered in the study which are to be largely affected by the buoyancy effect and would result in variations in construction costs depending on their elevations to be constructed.

Table A.2 Facilities Considered						
Item	Facilities					
114-1	Distribution Chamber					
114-2	Flocculation and Sedimentation Basin					
114-3	Filter Units					
114-4	Clear Water Reservoir					
114-5	Sludge Discharge Tank					
114-6	Sludge Drying Bed					
114-8	Back Wash Recovery Tank					
121-1	Elevated Water Tank					

**Table A.2 Facilities Considered** 

# 4. Options of Case Study

In addition to the study made in the Final Draft Report, the following four (4) options are studied with different types of pile foundation and the elevations of the facilities as follows.

# **Draft Final Report Plan :**

Pile material 300x300 and/or 400x400, L=10m, allocated 0.5 piles per square meter. Structures are so shaped to resist the buoyancy effect with their dead weights. The dead weight of piles is not considered as for buoyancy resistance but taken as allowance as safety side.

# **Option A :**

Pile material 300x300, L=10m. The dead weight of piles is considered as for buoyancy resistance to reduce structural concrete volume. Elevations of the Facilities are the same as those shown in the Draft Final Report. Bearing capacity of the pile 300x300 is estimated accordingly based on the soil investigation report, The number of piles are calculated based on the estimated bearing capacity. Elevations of the Facilities are the same as those shown in the Draft Final Report.

# **Option B**:

Pile material 400x400, Length of pile for individual structure is calculated assuming the bearing strata of soil be -8.0m. The dead weight of piles is considered as for buoyancy resistance to reduce structural concrete volume. Bearing capacity of the pile 400x400 is estimated accordingly based on the soil investigation report, resulting in reduction of number of piles. Elevations of the Facilities are the same as those shown in the Draft Final Report.

# **Option C:**

Pile material 400x400. The Facilities are raised by **2.0m** from the plan of the Draft Final Report to reduce buoyancy effect at the time of high water. By raising the facilities following work volumes are reduced; structural concrete and related work, steel sheet piles for shoring, excavation volume, backfilling volume. Less number of piles is required for some facilities as the dead weight of structures became smaller.

# **Option D:**

Pile material 400x400. The Facilities are raised by **4.0m** from the plan of the Draft Final Report to minimize buoyancy effect at the time of high water. By raising the facilities following work volumes are reduced to a maximum extent; structural concrete and related work, steel sheet piles for shoring, excavation volume, backfilling volume. Less number of piles is required for some facilities as the dead weight of structures became smaller.

# 5. Results of the Study

As shown in the following table, the Option D appeared to have the least cost among the options.

	Table A.3 Summary Table	Unit : 1,000xUS\$
Option	Cost Estimate	Difference from Draft Final
<b>Draft Final</b>	8,415	-
Α	6,199	-2,216
В	5,495	-2,920
C	5,415	-3,000
D	5,043	-3,372

# 6. Conclusion and Recommendations

The study presents that the Option D is recommendable, showing the least construction cost among the options.

However, in the detailed design stage, it is recommended that further study be performed based on the finally arranged proposed site of the plant. By obtaining more information in depth on soil conditions with standard penetration tests (SPTs), foundation types and configuration of structures of Water Treatment Facilities should be optimized. As has mentioned the area for planned area is located under water level during the rainy season, elaborate analysis and study are indispensable in designing and in considering of construction procedures.

# 7. Attachments

- WTP cost comparison of options (DF/R. A, B, C, and D)
- Cost Comparison of Options, Draft Final Report, A, B, C, and D

		Draft Fina	inal	Option A	E A	Option B	on B	Option C	лС	Option D	пD	Demarks
	Facilities	FC	LC	INCINATING								
	Distribution Chamber	20,330.64	32,656.95	20,330.64	40,992.71	20,330.64	28,791.96	20,330.64	101,893.96	20,330.64	159,073.96 Unit : US\$	Unit : US\$
	Floc. Sedimentation Basil	882,059.04	1,107,204.96	301,428.00	706,305.40	301,760.64	497,312.36	298,128.64	524,456.86	272,780.64	485,413.46	
1		277,702.00	539,977.46	277,702.00	507,999.30	277,725.76	421,024.94	273,655.76	437,420.14	236,831.76	433,900.64	
Ē	Clear Water Resev.	1,733,776.24	2,133,509.38	951,898.00	1,748,343.20	998,237.92	1,290,890.08	938,276.48	1,180,453.72	746,775.44	1,016,905.16	
Ч	Backwash Recovery Tank	85,536.00	230,118.88	61,776.00	223,225.00	81,726.48	204,693.72	62,069.04	167,333.96	62,069.04	99,496.36	
Ľ۲.	Sludge Drying Bed	142,560.00	212,746.80	155,232.00	213,906.00	155,374.56	245,551.84	155,374.56	342,884.84	155,374.56	554,565.84	
1.H	Sludge Discharge Tank	105,722.40	185,749.98	83,982.00	180,514.90	99,528.96	162,208.34	80,464.00	133,163.30	57,222.00	92,547.70	
~	Elevated Water Tank	180,495.84	544,855.89	180,495.84	544,855.89	180,495.84	529,297.28	177,275.84	521,642.71	155,643.84	493,764.71	
		3,428,182.16	4,986,820.30	2,032,844.48	4,166,142.40	2,115,180.80	3,379,770.52	2,005,574.96	3,409,249.49	1,707,027.92	3,335,667.83	
			8,415,002.46		6,198,986.88		5,494,951.32		5,414,824.45		5,042,695.75	
1 2	Cost reduction			1.395.337.68	820.677.90	1.313.001.36	1.607.049.78	1.422.607.20	1.577.570.81	1.721.154.24	1.651.152.47	
12	Total of cost reduction				2,216,015.58		2,920,051.14	•	3,000,178.01		3,372,306.71	

	$\frown$	
	٦	
	ğ	
	9	
i	ご	
	_	
	m	
	Â	
	4	
ļ	2	
	(DF/R, A, B, C, and D)	
	<u> </u>	
	B	
	ē	
	Options	
,	5	
	<u> </u>	
	n of Opt	
	Compariosn (	
	8	
	Ξ.	
	ğ	
	d	
	0U	
i	Ŭ	
	÷	
	30	
i	Ú	
	<b>[P Cost Co</b>	
	ΠN	
	≥	

Embankment Pile Driving Work Pile Material Pile Head Treatment Gravel	Option A	Unit	Oty U	Unit Cost	FC Portion (US%)	US%)	LC Portion (US\$)	(¢¢∩)	Reference	Draft Final Report	Unit	Oty Unit Cost		ortion (U	LC Portion (US\$)	(¢¢) (	Reference
Embankment Pile Driving Work Pile Material Pile Head Treatment Gravel		3			Unit Price	Amount	Unit Price	Amount		1			Unit Pri	Amoun	Unit Pr	Amount	
rite Diving work Pile Material Pile Head Treatment Grave	300~300 T = 10m	Ë E	44 675	14.50	0.00	0.00	14.50 16.00	638.00						0.00 0.00		638.00	
Pile Material Pile Head Treatment Gravel	200×300, L = 10m 200×200 T = 10m	E ~	53 53	10.00	0.00	0.00	16.00	10,000.00	Increased by buoyaircy control	$300 \times 300$ , L = 10m $200 \times 200$ I = 10m	_					4,752.00	
Gravel	$300 \times 300$ , L = 1011 $300 \times 300$	III out	or 6	00.00 16.00	0.00	0.00	00.00	4,920.00	Increased by buoyancy control	$300 \times 300$ , L = 1011						480.00	
U 1	00000	er all	6	19.00	0.00	0.00	19.00	171.00	an arrest form forms for more arrest		n ²	9 19.00		0.00 0.00		171.00	
Keiniorcea Concrete		m ³	151	88.00	0.00	0.00	88.00	13,288.00								13,288.00	
Formwork		$m^2$	504	12.00	0.00	0.00	12.00	6,048.00								6,048.00	
Supporting Works for Formwork		т,	155	11.00	0.00	0.00	11.00	1,705.00			m ³			0.00 0.00			
Rebar Fabrication and Assembly Excavation		m ³ t	26 386	2.50	0.00	20,330.64 0.00	88.00 2.50	2,258.96 963.75	R-bar/Concrete = 170kg/m3		33 5	26 880.00 386 2.50	52		2.50	2,258.96 R-bar/C 963.75	R-bar/Concrete = 170kg/m
											+						
Total Cost Total Cost (FC+LC)						20,330.64 62,000		40,992.71	1000 US\$ roundup					20,330.64 53,000	3,000	32,656.95 1000 US\$	S\$ roundup
Items	Option B	Unit	Qty U	Unit Cost	FC Portion (US%)	US%) Amoint	LC Portion (US\$)	(US\$) Amount	Reference	Option C	Unit	Qty Unit Cost	[ []	FC Portion (US%)	LC Portion (US\$) IInit Price Am	1 (US\$) Amount	Reference
Embankment		m3	44		0.00	0.00	14.50	638.00		Embankment	m ³	048 14.50		0		73.196.00 Increased by	+2m liftu
Pile Driving Work	$400 \times 400$	в	133	20.00	0.00	00.0	20.00	2,660.00	Decreased by pile review	400×400	$\left  \right $					2,940.00 Longer	length by
Pile Material	400×400	, m	21	88.00	0.00	0.00	88.00	1,848.00	Decreased by pile review	400×400	_					2,112.00 Longer	
Pile Head Treatment	400×400	pcs	6	25.00	0.00	0.00	25.00	171.00	Decreased by pile review	400×400						175.00	
Reinforced Concrete		m ³	151	88.00	0.00	00.0	88.00	13,288.00			m ³	51 88.00		0.00 0.00	88.00	171.00	
Formwork		m ²	504	12.00	0.00	0.00	12.00	6,048.00								6,048.00	
Supporting Works for Formwork		• m ³	155 76	00.11	00.00	0.00	00 00	1,705.00	D hould another -			155 11.00					0 hou/Comments = 1701/2/20
Excavation		, en	07	2.50	0.00	0.00	2.50	0.00			m ³ (	0 2.50		10.00 0.00 0.00			CIII/RNO/T = 2010
											$\left  \right $						
											+						
											+						
Total Cost						20,330.64		28,791.96	1000 TICC					20,330.64		101,893.96	000 TTC©
						nn'nc			1000 OS\$ 1001101					7	000507		dmninoi ee
			ſ						Items	Option D	Unit	Qty Unit Cost	;	ortion (U	LC Portion (US\$)	i (US\$)	Reference
	Ontion A	Draft	Draft Final						Emhankment		, E	8 960 14 50	Unit Pri	ce Amount 0.00 0.00	Onit Price	Amount 129 920 00 Increas	Increased hv +4m liftun
	Pile 300×300×L 10m								Work	400×400	_						Longer pile length by +4m liftup
										400×400							Longer pile length by +4m liftup
		(	(						ad Treatment	400×400						175.00	
	Option B Dile Ann~Ann~T	Opt -2m	Option C						Gravel Painforred Concrete		E E	9 19.00 151 88.00		0.00 0.00		13 288 00	
		Pile 400	Pile 400×400×L						Formwork						0 12.00	6,048.00	
									Supporting Works for Formwork								
		Opti	Option D						Rebar Fabrication and Assembly			88	52	20,33	~	_	R-bar/Concrete = 170kg/m3
		+4m Pile 400	+4m liftup Pile 400×400×L						Excavation		ň	0 2.50		0.00 0.00	2.50	0.00	
			Ī								╞						
											+						
											╞						
											+	+			+		
											$\left  \right $						

1000 US\$ roundu

159,073.96

V

20,330.64 180,0

Total Cost Total Cost (FC+LC)

# Cost Comparison of Options, Draft Final Report , A, B, C, and D

114-2 Floccuration and Sedimentation Basin	entation Basin																	
Items	Option A	Unit	Qty	Unit Cost	FC Portion (U Unit Price	n (US%) Amount	LC Portion	(US\$) Amount	Reference	Draft Final Report	Unit	Qty Unit Cost	Unit	ortion (U	ount	Jnit Price Am	(US\$) Reference Amount	
	$300 \times 300, L = 10m$	т в	11,090	16.00	0.00	0.00	16.00	.00 Increased	control	$300 \times 300, L = 10m$	- 8			00	00	16.00	147,200.00	
Pile Material Pile Head Treatment	$300 \times 300$ , L = 10m $300 \times 300$	, m S	1 109	88.00	0.00	0.00	88.00	Increased by Increased by	control	$0 \times 300$ , L = 10m $0 \times 300$	ž su	828 88.00 920 16.00		0.00	0.00	88.00	72,864.00	
	Type III, $L = 15m$	m ²	1,493	22.00	0.00	0.00	22.00			ype III, $L = 15m$				0.00	0.00	22.00	32,846.00	
	Type III, L = 15m, Remain	t	90	206.00	206.00	18,540.00	0.00	0.00	T	5m, Re				06.00	18,540.00	0.00	0.00	
Supporting Works		. t	36	260.00	0.00	0.00	260.00	9,360.00			•			0.00	0.00	260.00	9,360.00	
Support Emhankment		۳ ₃ د	3 246	14 50	00.062	10,440.00	14.50	0.00			- "			0.00	0.00	0.00	0.00	
Excavation		m ³	2,032	2.50	0.00	0.00	2.50	5,080.00				_	50	0.00	0.00	2.50	080	
Backfilling		m ³	1,734	5.10	0.00	0.00	5.10	8,843.40			m ³ 1,	1,734 5.10	10	0.00	0.00	5.10	8,843.40	
Surplus Soil Transport		с ш	1,734	4.50	0.00	0.00	4.50	7,803.00			_		50	0.00	0.00	4.50	7,803.00	
Gravel		n e	C/7	82.50	0.00	0.00	19.00 87 50	00.0225.00 7 200.00				+	50	0.00	0.00	82 50	7 500.00	
Concrete Reinforced Concrete		m ³	2.026	88.00	0.00	0.00	00.28						00	0.00	0.00	00.20 88.00	57.568.00	
Formwork		m ²	5,739	12.00	0.00	0.00	12.00	68,868.00 Structural volume decreased by	e decreased by			6,008 12	12.00	0.00	0.00	12.00	72,096.00	
Supporting Works for Formwork		m ³	2,005	11.00	0.00	0.00	11.00								0.00	11.00		
Rebar Fabrication and Assembly		t	344	880.00	792.00	272,448.00	88.00	30,272.00 R-bar/Concrete =	170kg/m3		t 1,			792.00	853,079.04	88.00	94,786.56 R-bar/Concrete =	170kg/m3
				+														
Total Cost						301.428.00		706.305.40							882.059.04		1.107.204.96	
Total Cost (FC+LC)						1,008,000	00	1000 US\$ roundup	dı					-	1,990,000		1000 US\$ roundup	
								/1104)			-	_	Ì	(11) · · ·	~ 70	F	ATTOON .	
Items	Option B	Unit	Qty	Unit Cost	FC Portion (US%)	n (US%) Amount	I Thit Drice		Reference	<b>Option C</b>	Unit	Qty Unit Cost	Thit	ortion (U	and -	LC Portion (US\$)	(US\$) Reference	
Pile Driving Work	400×400	в	2.070	20.00	0.00	0.00	20.00	Allount 400.00 Decreased by pile review		400×400	ш 5-	346 20.00		00	000	20.00	Amount 46.920.00 Longer pile length by +2	2m liftup
	400×400	m ³	331	88.00	0.00	0.00	88.00			400×400	m3	75 88.00	00	0.00	0.00	88.00	Longer pile length by +	+2m liftup
Pile Head Treatment		bcs	138	25.00	0.00	0.00	25.00	3,450.00 Decreased by pile review					00	0.00	0.00	25.00		
	Type III, $L = 15m$	, m	1,493	22.00	0.00	0.00	22.00	32,846.00		L = 131	, m ²	4		0.00	0.00	22.00	Decreased by	
Works	type III, L = 15m, Kemain		36	260.00	0.00	0.00	260.00	9.360.00	Ť	1 уре ші, ட = 15m, кетап		32 260.00		0.00	0.00	260.00	8.320.00 Decreased by +2m liftup	
Support		t	36	290.00	290.00	10,440.00	0.00	0.00			t			290.00	9,280.00	0.00	Decreased by	
Embankment			3,246	14.50	0.00	0.00	14.50	47,067.00				9	14.50	0.00	0.00	14.50	47,067.00	
Excavation			2,032	2.50	0.00	0.00	2.50	5,080.00				_	2.50	0.00	0.00	2.50		
Backlining Surplus Soil Transport		m3	1,734	4.50	0.00	0.00	4.50	7.803.00			m ³	999 4.	4.50	0.00	0.00	4.50	4.495.50 Decreased by +2m liftup	
Gravel		m ³	275	19.00	0.00	0.00	19.00	5,225.00			~		19.00	0.00	0.00	19.00		
Concrete		°n3	92	82.50	0.00	0.00	82.50	7,590.00					82.50	0.00	0.00	82.50	7,590.00	
Reinforced Concrete Formwork		т ²	2,026 5 739	88.00	0.00	0.00	88.00	178,288.00 68 868 00			_		00	0.00	0.00	88.00	178,288.00	
Supporting Works for Formwork		m3	2,005	11.00	0.00	0.00	11.00	22,055.00			ш ³ п		11.00	0.00	0.00	11.00	22,055.00	
Rebar Fabrication and Assembly		t	344	880.00	792.00	272,780.64	88.00	30,308.96 R-bar/Concrete =	170kg/m3			~			272,780.64	88.00	30,308.96 R-bar/Concrete =	170kg/m3
									H	Embankment	m ³ 2	_	50	0.00	0.00	14.50	33,161.50 reviewed	
Total Cast						201 760 6A		407 313 36							<b>106 136 6</b> 4		20 156 26	
Total Cost (FC+LC)						800,000	0	1000 US\$ roundup	đ						823,000		1000 US\$ roundup	
														EC Doution (11S%)	( )0	I C Dortion	1360	
								Items		Option D	Unit	Qty Unit Cost	Unit		ount		Amount Reference	
	<b>Option A</b>	Draft Final	Final					Pile Driving Wor	k 4	400×400		622 20.00	00 0.00		00.	20.00	Longer pipe	4m liftup
	File 300×300×L 10m							Pile Material Pile Head Treatm		400×400 400×400		420 88. 138 25	00	0.00	0.00	25.00	Longer pipe length by +	4m Iritup
								Sheet Pile Driving Work			m ²	0 22.00		0.00	0.00	22.00	0.00 Deleted by +4m liftup	
	Option B Bits 400-400-1	Opti	Option C					Sheet Pile						206.00	0.00	00.0	0.00 Deleted by +4m liftup	
		Pile 400×400×L	×400×L					Support	~		t 1	0 290.		0.00 290.00	0.00	0.002	0.00 Deleted by +4m liftup	
_								Embankment				9		0.00	0.00	14.50	47,067.00	
		Option D	on D					Excavation Docted				-		0.00	0.00	2.50	0.00 Deleted by +4m liftup	
		Pile 400×400×L	×400×L					Surplus Soil			m3	0 0	50	0.00	0.00	4.50	0.00 Deleted by +4m liftup	
			]					Gravel						0.00	0.00	19.00	5,225.00	
								Concrete Disinferrood Consumpto	0.00			92 82.50 076 88.00	50	0.00	0.00	82.50	7,590.00	
								Formwork	lete		6		00		0.00	12.00	68,868.00	
								Supporting Work	s for Formwork		m ³ 2,				0.00	11.00		
								Rebar Fabrication and Assembly Embankment	1 and Assembly		t (2 3	344         880.00           2.287         14.50		792.00 2	272,780.64 0.00	88.00	30,308.96 R-bar/Concrete = 33.161.50	170kg/m3
															>>>>	> - -	>>+>+>>	

1000 US\$ roundup

485,413.46

272,780.64 759,000

Total Cost Total Cost (FC+LC)

Cost Comparison of Options, Draft Final Report , A, B, C, and D 114-2 Flocenration and Sedimentation Basin

114-3 Rapid Sand Filter													-					
Items	Option A	Unit	Qty	Unit Cost	FC Portion (US% Unit Price Am	n (US%) Amount	Unit Price Am	ount	Reference	Draft Final Report	Unit	Qty Un	Unit Cost U	PC Portion (US%) Unit Price Am	(US%) Amount	Unit Price Am	on (US\$) Amount	Reference
Pile Driving Work	300×300, L=10m	ш	5,306	16.00	0.00	0.00		84,896.00		$400 \times 400, L = 10m$	ш	4,577		0.00	0.00		91,540.00	
Pile Material	300×300, L=10m	m ³	478	88.00	0.00	0.00	88.00	42,064.00	Decreased by structure review	$400 \times 400, L = 10m$		732	88.00	0.00	0.00	88.00	64,444.16	
Pile Head Treatment	300×300	bcs	531	16.00	0.00	0.00	16.00	8,496.00			bcs	458	25.00	0.00	0.00	25.00	11,450.00	
Sheet Pile Driving Work		'n	2,108	22.00	0.00	0.00	22.00	46,376.00		r = 201			22.00	0.00	0.00	22.00	46,376.00	
Sumorting Works	Type III, $L = 20m$ , Remain	- +	121	260.00	200.00	20,102.00	00.0	13 208 00		Type III, L = 20m, Remain	- +		260.00	200.00	20,102.00	00.00	00.00	
Supporting works			17	200.002	00.0	0.00	00.002	0.00					00.002	00.0	00.00	00.002	0.00	
Excavation		, m	121	2.50	0.00	0.00	2.50	302.50			. cu		2.50	0.00		2.50	302.50	
Backfilling		m ³	103	5.10	0.00	0.00	5.10	525.30					5.10	0.00	0.00	5.10	525.30	
Surplus Soil Transport		m ³	17	4.50	0.00	0.00	4.50	76.50				17	4.50	0.00	0.00	4.50	76.50	
Gravel		$m^3$	138	19.00	0.00	0.00	19.00	2,622.00				138	19.00	0.00	0.00	19.00	2,622.00	
Concrete		m ³	46	82.50	0.00	0.00	82.50	3,795.00				46	82.50	0.00	0.00	82.50	3,795.00	
Reinforced Concrete		m ³	1,759	88.00	0.00	0.00	88.00	154,792.00				1,759	88.00	0.00	0.00	88.00	154,792.00	
Formwork		$m^2$	5,394	12.00	0.00	00.0	12.00	64,728.00				5,394	12.00	0.00	00.0	12.00	64,728.00	
Supporting Works for Formwork		m3	2.546	11.00	0.00	0.00	11.00	28,006.00				2,546	11.00	0.00	0.00	11.00	28,006.00	
Rebar Fabrication and Assembly		t	299	880.00	792.00	236.808.00	88.00		R-bar/Concrete = 170kg/m3				880.00	792.00	236.808.00	88.00	26,312.00	R-bar/Concrete = 170kg/m3
Filter Oberation Gallerv		m ²	318	100.00	0.00	0.00	100.00	-			m ²		100.00	0.00	0.00	100.00	31.800.00	
		1									1							
Total Cost Total Cost (FC+LC)						277,702.00 786.000	00	507,999.30	1000 US\$ roundup				+		277,702.00 818.000	00	539,977.46	1000 US\$ roundup
10m1 C021 (1 C 1 TC)			1	1		(a)									0000	8		1000 004 100000
,	; ; ;	;			FC Portion (	n (US%)	LC Portion	n (US\$)	•				1	FC Portion (	(NS%)	LC Portion (US\$)	on (US\$)	•
Items	Option B	Unit	Qty	Unit Cost	Unit Price	Amount	Unit Price		Reference	Option C	Unit	Qty Un	Unit Cost U	Unit Price	Amount	Unit Price	Amount	Reference
Pile Driving Work	400×400	ш	1,361	20.00	0.00	0.00		27,220.00	Decreased by pile review	400×400	ш	1,527		0.00	0.00		30,540.00	Longer pile length by +2m liftup
Pile Material	400×400	m3	218	88.00	0.00	0.00	88.00		by pile review	400×400	m3	244	88.00	0.00	0.00	88.00	21,472.00	Longer pile length by +2m
Pile Head Treatment	400×400	pcs	83	25.00	0.00	0.00	25.00	2,075.00		400×400	pcs	83	25.00	0.00	0.00	25.00	2,075.00	
Sheet Pile Driving Work	Type III, $L = 20m$	$m^2$	2,108	22.00	0.00		22.00	46,376.00		Type III, $L = 18m$	$m^2$	8	22.00	0.00	0.00	22.00	41,756.00	
Sheet Pile	-	t	127	206.00	206.00	26,162.00	0.00	0.00		8m, Re	t	_	206.00	206.00	23,484.00	0.00	0.00	Decreased by
Supporting Works		t	51	260.00	0.00	0.00	260.00	13,208.00			t		260.00	0.00	0.00	260.00	11,960.00	Decreased by
Support		t	51	290.00	290.00	14,732.00	0.00	0.00			t	-	290.00	290.00	13,340.00	0.00	0.00	Decreased by
Excavation		ся "	121	2.50	0.00	0.00	2.50	302.50			ся ^с	0	2.50	0.00	0.00	2.50	0.00	Decreased by +2m liftup
Backfilling		m3	103	01.0	0.00	0.00	01.6	225.30			m ³	0	01.0	0.00	0.00	01.0	0.00	Decreased by +2m IIIup
Gravel		m³	1/	19.00	0.00	0.00	19.00	00.07			m_m	138	19.00	0.00	0.00	19.00	0.00 2 622 00	Decreased by +211111110
Concrete		n "u	46	82.50	0.00	0.00	82.50	3.795.00				46	82.50	0.00	0.00	82.50	3.795.00	
Reinforced Concrete		m3	1,759	88.00	0.00	0.00	88.00	154,792.00				1,759	88.00	0.00	0.00	88.00	154,792.00	
Formwork		$m^2$	5,394	12.00	0.00	0.00	12.00	64,728.00				5,394	12.00	0.00	0.00	12.00	64,728.00	
Supporting Works for Formwork		m ³	2,546	11.00	0.00	0.00	11.00	28,006.00					11.00	0.00	0.00	11.00	28,006.00	
Rebar Fabrication and Assembly		t	299	880.00	792.00	236,831.76	88.00	26,314.64	R-bar/Concrete = 170kg/m3			_	880.00	792.00	236,831.76	88.00	26,314.64	R-bar/Concrete = 170kg/m3
Filter Operation Gallery		m ²	318	100.00	0.00	0.00	100.00	31,800.00			m ²	_	100.00	0.00	0.00	100.00	31,800.00	
										Embankment	, m	1,211	14.50	0.00	0.00	14.50	17,559.50	reviewed
			Ť	Ť							+							
			T	T		T		T					+	T				
Total Cost						277.725.76		421.024.94							273,655,76		437.420.14	
Total Cost (FC+LC)						000'669	00		1000 US\$ roundup						712,000	00		1000 US\$ roundup
~																		-
			ſ						Items	Option D	Unit	Otv Un	Unit Cost	rtion	5	LC Portion (US\$)	on (US\$)	Reference
			i											Unit Price	Amount	Unit Price	Amount	
	Option A Pile 300×300×1, 10m	Dran	Dratt Final						Pile Driving Work Pile Material	400×400 400×400	a "B	1,695 271	88.00	0.00	0.00	20.00	33,860.00 23 848 00	Longer pipe length by +4m liftup I onver nine lenoth by +4m liftun
									eatment	400×400	pcs	83	25.00	0.00	0.00	25.00	2.075.00	Louger pipe rengu of
									lork		m ²	0	22.00	0.00	0.00	22.00	0.00	Deleted by +4m liftup
	Option B	Opt	Option C						Sheet Pile		t		206.00	206.00	0.00	0.00	0.00	
	Pile 400×400×L	+2m	liftup						Supporting Works		t		260.00	0.00	0.00	260.00	0.00	
		Pile 400	<b>Pile 400×400×L</b>						Support		t		290.00	290.00	0.00	0.00	0.00	
									Excavation		m ³		2.50	0.00	0.00	2.50	0.00	
		Opt	Option D					4	Backfilling		m ³	0	5.10	0.00	0.00	5.10	0.00	
		+4m	+4m liftup						Surplus Soil		, m	0	4.50	0.00	0.00	4.50	0.00	
		Pile 400	0×400×L						Gravel		, 3	138	19.00	0.00	0.00	19.00	2,622.00	
									Concrete Dainformed Commete		a "	46 1 750	82.50	0.00	0.00	82.50	3,792.00	
									Reinorcea Concrete Formwork		m2	4C1,1 5 304	12 00	0.00	0.00	88.00 12.00	64 728 00	
									Supporting Works for Formwork		а [°] а	2,546	11.00	0.00		11.00	28,006.00	
									Rebar Fabrication and Assembly				880.00	792.00	236,831.76	88.00	26,314.64	R-bar/Concrete = 170kg/m3
									Filter Operation Gallery		$m^2$		100.00	0.00	0.00	100.00	31,800.00	-
									Embankment		_	_	14.50	0.00	0.00	14.50	62,060.00	reviewed
											$\downarrow$	+	+	+	╞			
								-			╞			+				

1000 US\$ roundup

433,900.64

236,831.76 671.000

> Total Cost Total Cost (FC+LC)

Cost Comparison of Options, Draft Final Report , A, B, C, and D 114-3 Rapid Sand Filter

114-4 Clear Water Reservoir and High Lift Pump Station	and High Lift Pum					(TIGOL)		ATO\$						IN TOT	100		/TTOC/	
	Option A	Unit	Qty	Unit Cost	Unit Price	Amount	Unit Price	2	Reference	Draft Final Report	Unit	Qty	Unit Cost	Unit Price	370) Amount	Unit Price		Reference
Pile Driving Work	$300 \times 300$ , L=10m	m e	23,593	16.00	0.00	00.0	16.00	377,488.00	Increased by buoyancy control	$400 \times 400, L = 10m$	3 m	10,543	20.00	0.00	0.00	20.00	210,860.00	
	300×300, L=10m 300×300	me ^s	2,123	88.00 16.00	0.00	0.00	88.00	37 744 00	Increased by structure review Increased by hilovancy control	$400 \times 400$ , L = 10m $400 \times 400$	m and	1,68/	25.00	0.00	0.00	25.00 25.00	148,445.44 26 357 38	
		m ²	3,540	22.00	0.00	0.00	22.00	77,880.00	to man farm for a particular	TIT型, L= 15m	m ²	3,540	22.00	0.00	0.00	22.00	77,880.00	
	Type III, $L = 15 \text{ m}$ , Removal		213	206.00	206.00	43,878.00	0.00	0.00		Type III, L = 15m, Removal	t	213	206.00	206.00	43,878.00	0.00	00.0	
Supporting Works		-	86	260.00	0.00	0.00	260.00	22,360.00			t.	86	260.00	0.00	0.00	260.00	22,360.00	
Support			20 23 707	290.00	00.002	24,940.00	0.00	0.00			t **3	72 797	290.00	290.00	24,940.00	0.00	0.00	
Backfilling		m3	12.377	5.10	0.00	0.00	5.10	63,122.70			m ³	12,377	5.10	0.00	0.00	5.10	63.122.70	
Surplus Soil Transport			11,410	4.50	0.00	0.00	4.50	51,345.00			m ³	11,410	4.50	0.00	0.00	4.50	51,345.00	
Gravel			317	19.00	0.00	0.00	19.00	6,023.00			m ³	317	19.00	0.00	0.00	19.00	6,023.00	
Concrete		m ³	106	82.50	0.00	0.00	82.50	8,745.00			m ³	106	82.50	0.00	0.00	82.50	8,745.00	
Reinforced Concrete		m ³	6,557	88.00	0.00	0.00	88.00	577,016.00			m ³	12,366	88.00	0.00	0.00	88.00	1,088,208.00	
Formwork		m²	8,848	12.00	0.00	0.00	12.00	106,176.00	Volume decreased by piles' weight	t	m ²	9,139	12.00	0.00	0.00	12.00	109,668.00	
Supporting Works for Formwork		с ш	6,912	11.00	0.00	0.00	11.00	76,032.00			с ш	6,912	11.00		0.00	11.00	76,032.00	
Rebar Fabrication and Assembly		t	1,115	880.00	792.00	883,080.00	88.00	98,120.00	ditto		t	2,102	880.00	792.00	1,664,958.24	88.00	184,995.36	R-bar/Concrete = 170kg/m2
									11									
Total Cost						951 898 00		1 748 343 20							1 733 776 74		<b>2</b> 133 500 38	
Total Cost (FC+LC)						2,701,000	00	1,10404041,41	1000 US\$ roundup					-	3,86	3,868,000	00.20202117	1000 US\$ roundup
					FC Portion (US%)	(%SI1) u	I.C. Portion (US\$)	u (JS\$)						FC Portion (US%)	S%)	LC Portion (US\$)	(SSI)	
Items	Option B	Unit	Qty	Unit Cost	Unit Price	Amount	Unit Price	Amount	Reference	Option C	Unit	Qty	Unit Cost	Unit Price	Amount	Unit Price	Amount	Reference
Pile Driving Work	400×400	ш	2,835	20.00	0.00	0.00	20.00	56,700.00	Decreased by pile review	400×400	ш	3,250	20.00	0.00	0.00	-	65,000.00	Longer pile length by +2m liftup
	$400 \times 400$	m ³	454	88.00	0.00	0.00	88.00	39,952.00	Decreased by pile review	400×400	m ³	520	88.00	0.00	0.00	88.00	45,760.00	Longer pile length by +2m liftup
	400×400	bcs	270	25.00	0.00	0.00	25.00	6,750.00	Decreased by pile review		bcs	260	25.00	0.00	0.00	25.00	6,500.00	Review of pile numbers
Sheet Pile Driving Work	Type III, $L = 15m$	, m	3,540	22.00	0.00	0.00	22.00	77,880.00		Type III, $L = 13m$	'n	2,860	22.00	0.00	0.00	22.00	62,920.00	Decreased by +2m liftup
Supporting Works	Type III, $L = 15m$ , Removal	- +	612 86	260.00	00.00	45,8/8.00	260.00	0.00		Type III, $L = 13m$ , Removal		60	260.00	200.00	0.00	00.0	0.00 17 940 00	Decreased by +2m liftum
Support		с ,	86	290.00	290.00	24.940.00	0.00	0.00			ц ,	69	290.00	290.00	20,010.00	0.00	0.00	Decreased by +2m liftup
Excavation			23,787	2.50	0.00		2.50	59,467.50			m ³	14,939	2.50	0.00	0.00	2.50	37,347.50	Decreased by +2m liftup
Backfilling		_	12,377	5.10	0.00	0.00	5.10	63,122.70			е ш	9,460	5.10	0.00	0.00	5.10	48,246.00	Decreased by +2m liftup
Surplus Soil Transport		_	11,410 217	4.50	0.00	0.00	10.00	51,345.00			a [°]	5,479 217	4.50	0.00	0.00	10.00	24,655.50 6 002 00	Decreased by +2m liftup
Concrete		n "u	)11/ 106	82.50	0.00	0.00	82.50	8,745.00			n "	106	82.50	0.00	0.00	82.50	8,745.00	
Reinforced Concrete		$\left  \right $	6,903	88.00	0.00	0.00	88.00	607,464.00	Increased by buoyancy control		m ³	6,557	88.00	0.00	0.00	88.00	577,016.00	Decreased buoyancy by +2m liftup
Formwork		³ m²	9,315	12.00	0.00	0.00	12.00	111,780.00	Increased by buoyancy control		m²	8,848	12.00	0.00	0.00	12.00	106,176.00	Decreased buoyancy by
Supporting Works for FormWork Rehar Fahrication and Assembly		e +	0,912 1,174	880.00	792.00	0.00 929.419.92	88.00	/0,032.00 103.268.88	Increased by buovancy control		e +	0,912 1.115	880.00	0.00	0.00 882.834.48	88.00	/0,032.00 98.092.72	Decreased buovancv bv +2n
		,		0000			00000		R-bar/Concrete =		,		0000					R-bar/Concrete =
Total Cost						998,237.92		1,290,890.08							938,276.48		1,180,453.72	_
Total Cost (FC+LC)				_		2,290,0	00		1000 US\$ roundup				_		2,119	,000		1000 US\$ roundup
									Termo	Onder D	Tait		This Cost	FC Portion (US%)	S%)	LC Portion (US\$)	n (US\$)	Defermence
									1021115	a nondo	OIII				Amount	Unit Price	Amount	
	Option A	Draft Final	Final						Pile Driving Work	400×400	Ш	4,108	20.00	0.00	0.00	20.00	82,160.00	Longer pipe length by +4m liftup
	TINT TXMCXMC all I								File Ivateriat Pile Head Treatment	400×400 400×400	DCS	260 260	88.00 25.00	0.00	0.00	25.00	6.500.00	LOUGET PIPE JENGUI OY +4111 1111UP
									Sheet Pile Driving Work	Type III, $L = 11m$	m ²	2,420	22.00	0.00	0.00	22.00	53,240.00	Decreased by +4m liftup
	Option B	Option C	on C						Sheet Pile	Type III, L = 11 m, Removal	t	146	206.00	206.00	30,076.00	0.00	0.00	Decreased by +4m liftup
-	Pile 400×400×L	+2m liftup Bile 400×400×1	liftup ∨400∨T						Supporting Works		+ t	59	260.00	0.00	0.00	260.00	15,340.00	Decreased by +4m liftup Decreased by +4m liftun
1									Support Excavation		n ³	9.467	2.50	0.00	0.00	2.50	23.667.50	Decreased by +4m liftup
		Optio	Option D						Backfilling		n3	7,460	5.10	0.00	0.00	5.10	38,046.00	Decreased by +4m liftup
		+4m liftup	liftup						Surplus Soil		m ³	2,007	4.50	0.00	0.00	4.50	9,031.50	Decreased by +4m liftup
		File 400	×400×L						Gravel		m ³	317	19.00	0.00	0.00	19.00	6,023.00	
									Concrete Reinforced Concrete		a "e	5 196	00.28	0.00	0.00	0C.28	8,/45.00 457 248 00	Decreased hirovancy hy +4m liftun
									Formwork		m ²	8,777	12.00	0.00	0.00	12.00	105,324.00	
									Supporting Works for Formwork		m ³	6,912	11.00	0.00	0.00	11.00	76,032.00	
									Rebar Fabrication and Assembly		t	883	880.00	792.00	699,589.44	88.00	77,732.16	oyancy by +4m li
																		R-bar/Concrete = I/Ukg/m:

1,016,905.16 1000 US\$ roundup

> 746,775.44 1,764,000

Total Cost Total Cost (FC+LC)

Cost Comparison of Options, Draft Final Report , A, B, C, and D 114-4 Clear Water Reservoir and High Lift Pump Station

					EC Dortion (11002)	(11002)										Ortion   N. I	
Items	Option A	Unit	Qty	Unit Cost	Unit Price	ount	Unit Price Am	Amount	Reference	Draft Final Report	Unit Q	Qty Unit	Unit Cost Unit Price	Price Amount	Unit Price		Reference
Embankment		m ³	1,532	14.50	0.00	0.00	14.50	22,214.00				2					00.
Pile Driving Work	300×300, L=10m	ш	1,848	16.00	0.00	0.00	16.00	29,568.00		$400 \times 400, L = 10m$			20.00 0.00		<b>00</b> 20.00		00
Pile Material	300×300, L=10m	m ³	166	88.00	0.00	0.00	88.00	14,608.00		$400 \times 400, L = 10m$	m ³ 15	158 8	38.00 0.00	00.00			.88
Pile Head Treatment	300×300	pcs	185	16.00	0.00	0.00	16.00	2,960.00		$400 \times 400$			25.00 0.00	0.00			00
Sheet Pile Driving Work	III型, L = 15m	m ²	1,449	22.00	0.00	0.00	22.00	31,878.00		<b>Ⅲ型, L= 15m</b>	m ² 1,4	6					00.
Sheet Pile	III型, L = 15m, Remain	÷	87	206.00	0.00	0.00	206.00	17,922.00		III型, L = 15m, Remain	t S					-	00.
Supporting Works		t	35	260.00	0.00	0.00	260.00	9,100.00			t ô	35 26					00
Supporting		t	35	290.00	0.00	0.00	290.00	10,150.00			t	25			56		00.
Excavation		, m	2,379	2.50	0.00	0.00	2.50	5,947.50			m ⁵ 2,3	2,379	2.50 0.00			2.50 5,947.50	.50
Backfilling		çu	1,570	5.10	0.00	0.00	5.10	8,007.00			m ⁵ 1,5		5.10 0.00	0 0.00			00
Surplus Soil Transport		m3	809	4.50	0.00	0.00	4.50	3,640.50			m ³ 8(	809	4.50 0.00			4.50 3,640.50	50
ravel		m ³	30	19.00	0.00	0.00	19.00	570.00					19.00 0.00	0 0.00			00.
Concrete		m ³	10	82.50	00.00	00.0	82.50	825.00			m ³ 1	10 8					00.
Reinforced Concrete		m ³	461	88.00	0.00	0.00	88.00	40,568.00							00 88.00		00.
Formwork		m ²	1.125	12.00	0.00	0.00	12.00	13,500.00	Volume decreased by piles' weight								00
nnorting Works for Formwork		a "e	273	11 00	000	000	11 00	3 003 00			m ³ 25	273 1	11 00 000	000	11 00		00
whar Fahrication and Assembly		+	2 8	880.00	792.00	61 776 00	88 00	6 864 00	dirto				20.00 797 00	85 53			00 R-har/Concrete –
Building Work		, ² m	16	100.00	0.00		100.00	1.900.00			, m ²					00 1.900.00	
Q									R-bar/Concrete = 170kg/m3	3							
Total Cost Total Cost (RC±1 C)						61,776.00 286.000		223,225.00	1000 LIS\$ roundum					85,536	85,536.00	230,118.88	8.88 1000 11S\$ roundum
1411 COSt (F. C+17C)						000,007			dimmor eco ocor						0000000		
Itamo	Ontion P	I looit		IInit Coat	FC Portion (US%)	1 (NS%)	LC Portion (US\$)	n (US\$)	Defenses	Ontion	11mit			FC Portion (US%)	LC P	LC Portion (US\$)	Dafamana
Itellis	o nondo		ζιγ		Unit Price	Amount	Unit Price	Amount	Relefence				Unit Cost Unit Price	Amount	Unit Price	Amount	Nelerance
Embankment		m ³	1,532	14.50	0.00	0.00	14.50	22,214.00			m ³ 1,5	,532 1	14.50 0.00	00.00		14.50 22,214.	00.
Pile Driving Work	400×400	ш	258	20.00	0.00	00.0	20.00	5,160.00	Decreased by pile review	400×400	m 23		20.00 0.00	00.00	00 20.00		00.00 Decreased by deducted pilie number
Pile Material	400×400	m ³	41	88.00	0.00	00.0	88.00	3,608.00	Decreased by pile review	400×400	m ³ 3	38	88.00 0.00	00.00	00 88.00		.00 Decreased by deducted pilie number
Pile Head Treatment	400×400	pcs	20	25.00	0.00	00.0	25.00	500.00	Decreased by pile review	400×400	pcs 1	16 2	25.00 0.00	00.00	00 25.00	.00 400.00	.00 Due to deducted buoyancy
Sheet Pile Driving Work	III型, L = 15m	$m^2$	1,449	22.00	0.00	0.00	22.00	31,878.00		Type III, $L = 13m$	$m^{2}$ 1,2	256 2	22.00 0.00	00.00			.00 Decreased by +2m liftup
Sheet Pile	III $\underline{\Psi}$ , L = 15m, Remain	t	87	206.00	0.00	0.00	206.00	17,922.00		Type III, $L = 13m$ , Remain	t	76 20	206.00 0.00	0.00			
Supporting Works		t	35	260.00	0.00	0.00	260.00	9,100.00			t						
Supporting		t 3	35	290.00	0.00	0.00	290.00	10,150.00			,				29	.00 8,990.00	
Excavation		'n	2,379	2.50	0.00	0.00	2.50	5,947.50				<u>_</u>					
Backhunng Sumhus Soil Transnort		⊒ [°] E	809	3.10 4.50	0.00	0000	450	3,640,50			m ³	415	4 50 0.00 0.00	0.00		J.10         4,100.40           4 50         1 867 50	<b>50</b> Decreased by +2m liftum
Gravel		в "П	30	19.00	0.00	0.00	19.00	570.00								570	00
Concrete		m3	10	82.50	0.00	0.00	82.50	825.00			m ³ 1	10 8	82.50 0.00		00 82.50	50 825.00	00.
Reinforced Concrete		m ³	607	88.00	0.00	0.00	88.00	53,416.00	Increased by buoyancy control								.00 Decreased buoyancy by +2m liftup
mwork		$m^2$	1,481	12.00	0.00	0.00	12.00	17,772.00	buoyancy		6	2				.00 13,500.00	Decreased buoyancy by
Supporting Works for Formwork		m ³	273	11.00	0.00	0.00	11.00	3003.00			m ³ 27	273 1	11.00 0.00	0 0.00	00 11.00		
bar Fabrication and Assembly		t	103	880.00	792.00	81,726.48	88.00	9,080.72	Increased by buoyancy control				30.00 792.00	62			.56 Decreased buoyancy by +2m liftup
Building Work		$m^2$	19	100.00	0.00	0.00	100.00	1,900.00			$m^2$ 1	19 10			0.00 100.0		
									R-bar/Concrete = 170kg/m3	3							R-bar/Concrete =
otal Cost						81,726.48		204,693.72						62,069.	62,069.04	167,333.96	
Total Cost (FC+LC)						287,000			1000 US\$ roundup						230,000		1000 US\$ roundup
								_					t t	A LEADER		Verstav	_
				F					Items	Option D	Unit Q	Qty Unit	Unit Cost LInit Drice	FC Portion (US%)	IInit Drice	LC Portion (US\$) Drice Amount	Reference
	Option A		Draft Final					-	Embankment		m ⁵	532	14.50 0.00		0.00 14.5	50	00
	Pile 300×300×L 10m							-	Pile Driving Work	400×400		270 2	00		<b>00</b> 20.00	.00 5,400.00	.00 Longer pipe length by +4m liftup
								-	Pile Material	400×400		43 8					Longer pipe length by
			i					-	Pile Head Treatment	400×400	pcs 1					4	_
	Option B	<u> </u>	Option C					-	Sheet Pile Driving Work		_						
	Pile 400×400×L	+21	+2m liftup					-	Sheet Pile								0.00 Deleted by +4m liftup
		Pile 4	400×400×L						Supporting Works								
			(					-	Supporting						29		_
		53	Option D						Excavation Boolding			59 28					
		Pile 4	+4m littup e 400×400×1.					-	Backfilling Surahis Soil		m E M	38 21	4 50 0.00 0.00	0.00		5.10         193.80           4.50         94.50	93.80 Decreased by +4m liftup 94.50 Decreased by +4m liftup
								-	Giravel							ď	6
								-	Concrete								00
								-	Reinforced Concrete				88.00 0.00				00.
								-	Formwork			5	12.00 0.00	0 0.00	00 12.00	.00 13,500.00	00.
								-	Supporting Works for Formwork		m ⁵ 27	_	11.00 0.00				00.
								-	Rebar Fabrication and Assembly			78 88	52	62,06		00 6,896.56	.56
								-	Building Work		m ²		100.00 0.00	0 0.00	00 100.00		-
								-			+	+	+	+	+	+	R-bar/Concrete =
								1				_					

99,496.36

62,069.04 162.0

Total Cost Total Cost (FC+LC)

A, B, C, and D	
ft Final Report ,	
son of Options, Draft l	sh Recovery Tank
Cost Comparis	114-5 Backwas

Cost Comparison of Options, D1 at 1 mar Nep 114-6 Sludge Drying Bed	110	, А, <b>Р</b> , С, анц <b>Р</b>	, anu D															
Items	Option A	Unit	Qty U	Unit Cost	FC Portion (US%) Unit Price Am	1 (US%) Amount	LC Portion (US\$) Unit Price Ame	on (US\$) Amount	Reference	Draft Final Report	Unit	Qty Unit Cost		FC Portion (US%) Unit Price Amo	S%) Amount	Unit Price Am	(US\$) Amount	Reference
Embankment		m3	2,994	14.50	0.00	0.00	14.50	43,413.00			m3			00	0.00	14.50	43,413.00	
	300×300, L=10m	ш	530	16.00	0.00	0.00	16.00	8,480.00	Decreased by increased weight	$400 \times 400, L = 10m$	ш		0.00	0.00	0.00	20.00	15,200.00	
Pile Material Dile Head Treatment	300×300, L=10m 300×300	, m	48 53	88.00	0.00	0.00	88.00	4,224.00		$400 \times 400, L = 10m$ $400 \times 400$	, m		8.00	0.00	0.00	25.00	10,700.80	
		m ³	286	19.00	0.00	0.00	19.00	5,434.00			m ³		00.6	0.00	0.00	19.00	5,434.00	
Concrete		m ³	96	82.50	0.00	0.00	82.50	7,920.00			m ³	_	2.50	0.00	0.00	82.50	7,920.00	
Reinforced Concrete Formwork		m2	1,154 1.863	88.00 12.00	0.00	0.00	88.00 12.00	101,552.00 22.356.00	Increased by buoyancy control Increased by buoyancy control		°u 2	1,059 88 1.393 12	88.00 12.00	0.00	0.00	88.00 12.00	93,192.00 16.716.00	
Supporting Works for Formwork		m ³	221	11.00	0.00	0.00	11.00	2,431.00			m ³		1.00		0.00	11.00		
Rebar Fabrication and Assembly		t	196	880.00	792.00	155,232.00	88.00	17,248.00	Increased by buoyancy control R-bar/Concrete = 170kg/m3		+		0.00		142,560.00	88.00		R-bar/Concrete = 170kg/m
Total Cost						155.232.00		213.906.00							142.560.00		212.746.80	
Total Cost (FC+LC)				$\left  \right $		370,000	00		1000 US\$ roundup						356,000		_	1000 US\$ roundup
Items	Ontion R	LInit	Otv	IInit Cost	FC Portion (US%)	(NS%)	LC Portion (US\$)	m (US\$)	Reference	Ontion C	IInit	Otv I Init Cost		FC Portion (US%)		LC Portion (US\$)	1 (US\$)	Reference
	C HUND				Unit Price	Amount	Unit Price	Amount	ADIATE		OIIII					Unit Price		
Embankment Dila Duiting Work	400~400		2,994	14.50 20.00	0.00	0.00	14.50 20.00	43,413.00		Embankment	°E £	9,380 14. 1 414 20	14.50	0.00	0.00	14.50	136,010.00	Reviewed I onger nile length hv ±2m liftun
Pile Driving work Pile Material	400×400 400×400	в ³ п	1,2/4 204	88.00	0.00	0.00	88.00	17,952.00	Increased by pile review	400×400 400×400	п ³ п		88.00	0.00	0.00	88.00	-	
Pile Head Treatment	400×400	pcs	70	25.00	0.00	0.00	25.00	1,750.00	_	400×400	pcs		25.00	0.00	0.00	25.00		
Gravel		°m	286	19.00	0.00	0.00	19.00	5,434.00			т С	+	19.00	0.00	0.00	19.00	5,434.00	
Concrete Reinforced Concrete		ы В	96 1,154	82.50 88.00	0.00	0.00	82.50 88.00	7,920.00 101,552.00			e ^c e	96 82 1,154 88	88.00	0.00	0.00	82.50	101,552.00	
Formwork		m ²	1,863	12.00	0.00	0.00	12.00	22,356.00			m ²		12.00	0.00	0.00	12.00	22,356.00	
Supporting Works for Formwork Rebar Fabrication and Assembly		t n	221 196	880.00	0.00 792.00	0.00 155,374.56	88.00	2,431.00 17,263.84	R-bar/Concrete = 170kg/m3		, n	~	880.00	0.00 792.00 1	0.00 155,374.56	88.00		R-bar/Concrete = 170kg/m3
			+															
			$\left  \right $															
											Ħ							
Total Cost			+			155.374.56		245.551.84							155.374.56		342.884.84	
Total Cost (FC+LC)			$\left  \right $	$\left  \right $		401,000	00		1000 US\$ roundup						499,000	0	_	1000 US\$ roundup
									,					FC Portion (US%)	(%)	LC Portion	(US\$)	
									Items	Option D	Unit	5	Unit		Amount	Unit Price	Amount	Keterence
	Option A Bile 2004/2004 10-	Draft Final	Final						Embankment	100100	° m	23,646 14	4.50	0.00		14.50	00.	Reviewed
	HINT TXMCXMC all I									400×400 400×400	B ₃ E	+	3.00	0.00	0.00	88.00		Longer pipe tength by +4m liftup
									ad Treatment	400×400	pcs		5.00	0.00	0.00	25.00		
	Option B Pile 400~400~1	Option C +3m liftum	on C iftur						Gravel Concrete		, E E		9:00	0.00	0.00	19.00 82.50	5,434.00 7 920 00	
			400×L						Reinforced Concrete		в		3.00	0.00	0.00	07.70 88.00	101,552.00	
		Ċ	Ĺ						Formwork		3 m ²	1,863 12	12.00	0.00	0.00	12.00	22,356.00	
	_	Option D +4m liftup	iftup						Supporting works for Formwork Rebar Fabrication and Assembly		+ B		00.1		0.00 155,374.56	88.00		R-bar/Concrete = 170kg/m3
	-	Pile 400>	×400×L						5									
													╞	$\left  \right $				

1000 US\$ roundu

554,565.84

000

155,374.56 710.0

> Fotal Cost Fotal Cost (FC+LC)

																-	
Items	Option A	Unit	Qty	Unit Cost Un	Unit Price Amo	ount	Unit Price Am	1 (US\$) Amount	Reference	Draft Final Report	Unit Qty	y Unit Cost	Unit Price Amo	Amount	Unit Price	Price Amount	Reference
	300×300, L=10m	ε	1,632	16.00	0.00	00.	16.00	00.00	Increased by buoyancy control	$400 \times 400, L = 10m$	m 83.	⊢	0.00	0.00	20.00		
Pile Material	$300 \times 300$ , L=10m	°,	147	88.00	0.00	0.00	88.00	12,936.00 Increased	Increased by buoyancy control	$400 \times 400$ , L = 10m		_	0.00	0.00	88.00	11,700.48	
	300×300 Type III, L = 15m	pcs ²	103 1,374	22.00	00.0	0.00	22.00	2,608.00 Increased 30,228.00	by buoyancy control	$400 \times 400$ Type III, L = 15m	$m^2$ 1,374 $m^2$	4 25.00	0.00	0.00	25.00		
	Type III, L = 15m, Remain	t	83	206.00	206.00	17,098.00	0.00		1/5 of Purchase Price	= 15n	$\vdash$	$\left  \right $	206.00	17,098.00	0.00		1/5 of Purchase Price
Supporting Works Support		+ +	34	260.00	0.00	0.00	260.00	1/5	of Purchase Price			260.00	00.00	0.00 9 860 00	260.00	8,840.00	)   1/5 of Purchase Price
Embankment		m ³	1,432	14.50	0.00	0.00	14.50	ì					0.00	0.00	14.50		i
Excavation		m ³	2,254	2.50	0.00	0.00	2.50	5,635.00 7 848.00			m ³ 2,2,		0.00	0.00	2.50		
Backfuling Surplus Soil Transport		e [°] e	715	4.50	0.00	0.00	4.50	3.217.50				5 4.50	00.0	00.0	4.50	3.2.17.50	
Gravel		в	25	19.00	0.00	0.00	19.00	475.00					0.00	0.00	19.00		
Concrete		m ³	6	82.50	0.00	0.00	82.50						0.00	0.00	82.50		
Reinforced Concrete		с, п	425	88.00	0.00	0.00	88.00	37,400.00 Decreased by	d by pile review				0.00	0.00	88.00		
Formwork		n3	1,029	11.00	0.00	0.00	12.00	2 124 00					0.00	0.00	12.00		
Supporting Works for FormWork Rehar Fahrication and Assembly		e -	70 70	880.00	00.0 792 00	0.00	88.00	5,124.00 6 336 00 ditto			m 284		0.00	0.00 78 764 40	88 00	3,124.00 8 751 60	170ko/m R-har/Concrete = 170ko/m
Building Work		, ²	19	100.00	0.00	0.00	100.00				, m ² 19	100.00	0.00		100.00		
								R-bar/Concrete	ncrete = 170kg/m3								
Total Cost Total Cost (FC+LC)						83,982.00 265 000		180,514.90 1000 US\$	roundun					105,722.40	000	185,749.98	8 1000 11S\$ roundum
																	diamon days and
Items	Option B	Unit	Otv	Unit Cost	FC Portion (US%)		LC Portion (US\$)	1 (US\$)	Reference	Option C	Unit Otv	v Unit Cost	FC Portion (US%)	1 (US%)	LC Porti	LC Portion (US\$)	Reference
em	a nondo		لاناع		Unit Price	Amount U	Unit Price		MANANA	~ mand ~			Unit Price	Amount	Unit Price	Amount	
Work	400×400	ш"	229	20.00	0.00	0.00	20.00		Decreased by pile review	400×400	(4	20.00	0.00	0.00	20.00	4,120.00	_
	400×400 400×400	, E	37	88.00 25.00	0.00	0.00	88.00	3,256.00 Decreased	Decreased by pile review	400×400 400×400			0.00	0.00	88.00	2,	Decreased by pile review
	Type III. $L = 15m$	m ² s	1.374	22.00	0.00	0.00	22.00	30.228.00	a by pure review	Type III. $L = 13m$	$m^2$ 1.191	1 22.00	0.00	00.0	22.00	26.202.00	
Sheet Pile	Type III, $L = 15m$ , Remain		83	206.00	206.00	17,098.00	0.00	1	/5 of Purchase Price	13	_	-	206.00	14,832.00	0.00		
Supporting Works		t	34	260.00	0.00	0.00	260.00				t 29	_	0.00	0.00	260.00	7,5,	Decreased by
Support		t 3	34	290.00	290.00	9,860.00	0.00	0.00 1/5 of Purchase	chase Price		-		290.00	8,410.00	0.00		
Embankment		a "	1,432	14.50 7 50	0.00	0.00	14.50	20,/64.00					0.00	0.00	14.50		u Dorreased hv ±3m liftun
Excavauon Backfilling		m3	2,234	5.10	0.00	0.00	5.10	7.848.90			m ³ 823		0.00	00.0	5.10	4.197.30	Decreased by +2m liftup
Surplus Soil Transport		m ³	715	4.50	0.00	0.00	4.50	3,217.50			m ³ 38	3 4.50	0.00	0.00	4.50		Decreased by +2m liftup
Gravel		m3	25	19.00	0.00	0.00	19.00	475.00					00.00	0.00	19.00	475.	
Concrete		° n°	6	82.50	0.00	0.00	82.50	742.50	Increased his historican control		m ⁵ 9		0.00	0.00	82.50		Dorwood hurtman hr 10m liftun
Keinforced Concrete Formwork		n ² n	939 1 305	88.00	0.00	0.00	88.00		Increased by buoyancy control Increased by buoyancy control			•	0.00	0.00	88.00	37,400.00	
Supporting Works for Formwork		в	284	11.00	0.00	0.00	11.00		to man farm fano fa		m ³ 284		0.00	0.00	11.00		to familiano namana
Rebar Fabrication and Assembly		t t	92	880.00	792.00	72,570.96	88.00	8,063.44 Increased by	by buoyancy control			~	792.00	57,222.00	88.00		Decreased buoyancy by +2m liftup
Building Work		'n	19	100.00	0.00	0.00	100.00	1,900.00	÷		m ² 19	100.00	0.00	0.00	100.00	1,900.00	
								K-Dar/Concrete	ncrete = 1 /UKg/m5								K-bar/concrete = 1 / UKg/m.
Total Cost Total Cost (FC+LC)						99,528.96 262.000		162,208.34 1000 US\$ roundum	roundun					80,464.00 214.000	000	133,163.30	0 1000 USS roundum
				-					diama di a								
-								1	Items	Option D	Unit Otv	v Unit Cost	FC Portion (US%	1 (US%)	LC Porti	LC Portion (US\$)	Reference
		Â	ļ						1 11				Unit Price	Amount	Unit Price	Ar	
	Option A Dile 300~300~1 10m		ratt Final					Pile Driving W Dile Material	ng Work rial	400×400 400×400	m ³ 25: m ³ 27:	20.00 88.00	0.00	0.00	20.00	4,660.00 3.256.00	Longer pipe length by +4m liftup I oncer nine length by ±4m liftun
								Pile Head	Pile Head Treatment	400×400			0.00	0.00	25.00		
		(	1					Sheet Pile	Sheet Pile Driving Work			22.00	00.0	00.0	22.00		Deleted by
	Option B Bile And And I	Opt C	Option C 3m liftum					Sheet Pile Summerting Works	o Works		+ t	206.00	206.00	0.00	00.00		
		Pile 40	Pile 400×400×L					Support	g wurks		t 0	290.00	290.00	00.0	00.002	0.00	Deleted by +4m liftup
_								Embankmen	hent		m ³ 1,432		0.00	0.00	14.50	20,70	
		Opt	Option D					Excavation	u				0.00	0.00	2.50		Decreased by
		01e 40 Pile 40	+4m liftup Pile 400×400×1.					Backfilling Surnlus Soi	lg Dil		m ³ 10		0.00	0.00	5.10 4.50	07.650 229.50	Decreased by +4m intup
								Gravel	110				0.00	0.00	19.00		
								Concrete					0.00	0.00	82.50		
								Reinforce	Reinforced Concrete			5 88.00	00.00	00.0	88.00		
								Formwork	X 1 6 1				0.00	0.00	12.00		
								Supportin Rebar Fal	Supporting Works for Formwork Rebar Fabrication and Assembly		m 284 t 72		792.00	0.00 57.222.00	88.00	3,124.00 6.358.00	
								Building	Work		m ² 19	100.00	0.00	0.00	100.00		
																	R-bar/Concrete = 170kg/m3
								Total Co						ET 777 00		07 547 70	
								Total Co	1 otal Cost Total Cost (FC+LC)				-	150,000	000	11140476	1000 US\$ roundup
								ļ									

, A, B, C, and D	
nal Report	
, Draft Fiı	
f Options,	
	•
arisor	
'nDî	•
Coi	ζ
st C	
Cost	,

114-8 Sludge Discharge Tank	
Items	Option A
Pile Driving Work	$300 \times 300$ , L=10m
Pile Material	$300 \times 300$ , L=10m
Pile Head Treatment	$300 \times 300$
Sheet Pile Driving Work	Type III, $L = 15n$
Sheet Pile	Type III, $L = 15m$ , R

121-1 1,000 cum Elevated Water Tank in WTP - Structure	ater Tank in WTP	- Struct	ure										-		-		For V=30,000m3	3
Items	Option A	Unit	Qty	Unit Cost	FC Portion (US%)	- +	LC Portion (US\$)	(US\$) Amount	Reference	Draft Final Report	Unit	Qty Uni	Unit Cost	FC Portion (US%)	I Ini	LC Portion (US\$)	(US\$) Reference	
Pile Driving Work	$400 \times 400, L = 10m$	В	1,135	20.00	0.00	0	20.00	22,700.00		$400 \times 400, L = 10m$	ш	1,135	20.00		0		22,700.00	
Pile Material	$400 \times 400, L = 10m$	m ³	182	88.00	0.00	0.00	88.00	15,980.80		L =	m ³	182	88.00	0.00	0.00	88.00	15,980.80	
Pile Head Treatment	400×400	bcs	113	25.00	0.00	0.00	25.00	2,835.81			bcs	113	25.00	0.00	0.00	25.00	2,835.81	
Sheet Pile Driving Work	. L =	'n.	1,272 77	22.00	0.00	0.00	22.00	27,984.00		e III, L = ] 	'n	_		-	0.00	22.00	27,984.00	
Sheet File Supporting Works	Type III, L = 15m, Remain		31	260.00	0.00	0.00	260.00	8.060.00		Type III, L = 15m, Remain	<b>-</b> +	31	260.00			260.00	8.060.00	
Support		.	31	290.00	290.00	8.990.00	0.00	0.00			, t	+			00.066.8		0.00	1
Excavation		m3	858	2.50	0.00	0.00	2.50	2,145.99			m ³						2,145.99	
Backfilling	Backhoe	m ³	493	5.10	0.00	0.00	5.10	2,514.20		Backhoe	m ³	493	5.10	0.00	0.00		2,514.20	
Embankment		с ш	2,088	14.50	0.00	0.00	14.50	30,277.45			°u,	2,088		0.00			30,277.45	-
Surplus Soil Transport		Ϊ Β	365	4.50	0.00	0.00	4.50	1,644.38			е ^с	365 25	4.50	0.00	0.00	4.50	1,644.38 225.00	
Graver		п _с е	cc 1	82.50	0.00	00.0	82.50	00.000			e "e	cc 1	82.50	0.00	0.00	82.50	00.00	
Control Concrete		m3	1 156	88 00	0.00	0.00	88.00	101 728 00			m3	1 156	88.00	0.00	0.00	2 8	101 728 00	T
Formwork		m ²	2 096	12,00	0.00	0.00	12,00	25 152 00			m ²		12.00	0.00	0.00		25 152 00	
Rehar Fahrication and Assembly		-	197	880.00	792.00	155.643.84	88.00		R-bar/Concrete = 170kg/m3				880.00	792.00 152	0.00	88.00	17.293.76 R-bar/Concrete = 17.0kg/m	5
Scaffolding/Supporting		Eu	25.853	11.00	0.00	0.00	11.00	_				25.853	11.00	0.00	0.00	_		
Building Work		m ²	5	100.00	0.00	0.00	100.00	500.00			$m^2$		100.00	0.00	0.00	100.00	500.00	1
															1			-
Total Cost						180,495.84		544,855.89						18	180,495.84		544,855.89 1000 TTOP 1	
10121 COSt (FC+LLC)						/20,000		101	1000 USA roundup						120,000		TOOD US\$ FOUNDING	٦
		;	,		FC Portion (US%)	(NS%)	LC Portion (US\$)	(DS\$)						FC Portion (US%)		LC Portion (US\$)		Г
Items	Option B	Unit	Qty	Unit Cost	Unit Price	nt	Unit Price	Amount	Reference	Option C	Unit	Qty Uni	Unit Cost Unit	Unit Price A	nt Uni	Price	Amount Reference	
Pile Driving Work	400×400	н	725	20.00	0.00	8	20.00	14,500.00 Rec	Reduced by review of pie	400×400	ш	825			0	20.00	00 Longer pile	Π
Pile Material	400×400	m ³	116	88.00	0.00	0.00	88.00	10,208.00 Rec	Reduced by review of pie	400×400	m ³	132	88.00	0.00	0.00	88.00	11,616.00 Longer pile length by +2m liftup	
Pile Head Treatment	400×400	pcs	50	25.00	0.00	0.00	25.00	1,250.00 Rec	Reduced by review of pie	400×400	pcs			0.00				
Sheet Pile Driving Work	Type III, $L = 15m$	m ²	1,272	22.00	0.00	0.00	22.00			Type III, $L = 13m$	m ²	)3		0.00			24,266.00 Decreased by +2m liftup	
Sheet Pile	Type III, $L = 15 m$ , Remain		17	206.00	206.00	15,862.00	0.00	0.00		Type III, $L = 13m$ , Remai	t	67		206.00 13			0.00 Decreased by +2m liftup	
Supporting Works		+ +	31	260.00	0.00	0.00	260.00	8,060.00			+ t		260.00	0.00	0.00	260.00	7,020.00 Decreased by +2m liftup	
Support Evention		- [°]	1C 858	02.0	00.062	00.066,0	0.00 2.50	0.00 2 145 99			n ³	7		00.062			0.00 Decreased by +2m mup	
Backfilling	Backhoe	m ³	493	5.10	0.00	0.00	5.10	2.514.20		Backhoe	m ³			0.00			0.00 Decreased by +2m liftup	
Embankment		m ³	2,088	14.50	0.00	0.00	14.50	30,277.45			m ³	88	14.50	0.00		14.50	30,277.45	
Surplus Soil Transport		m ³	365	4.50	0.00	0.00	4.50	1,644.38			m ³	0	4.50	0.00	0.00	4.50	0.00 Decreased by +2m liftup	
Gravel		m3	35	19.00	0.00	0.00	19.00	665.00			°u		19.00	0.00	0.00	19.00	665.00	_
Concrete		° E	112	82.50	0.00	0.00	82.50	990.00			°n 🤅	_	82.50	0.00	0.00	82.50	990.00 101 700 00	
Reintorced Concrete Formationk		п ² п	0 00 C	88.00 12.00	0.00	00.0	88.00 12.00	25 152 00			н ² н		88.UU 12.00	0.00	0.00		101./28.00 25.152.00	-
Rebar Fabrication and Assembly		-	197	880.00	792.00	155,643.84	88.00	17,293.76 R-b	R-bar/Concrete = 170kg/m3		+ H	197 8	880.00	_	155,643.84	88.00	17,293.76 R-bar/Concrete = 170kg/m3	13
Scaffolding/Supporting		m ³	25,853	11.00	0.00	0.00	11.00	284,384.50			m ³		11.00		0.00	(1		
Building Work		m ²	5	100.00	0.00	0.00	100.00	500.00			m ²	_	00.00		0.00		500.00	_
Total Cost						180,495.84		529,297.28						17	177,275.84		521,642.71	1
Total Cost (FC+LC)						710,000	-		1000 US\$ roundup					-	699,000		1000 US\$ roundup	
								L			-		-	UD and the OC			1150	Г
			ſ	_					Items	Option D	Unit	Qty Uni	Unit Cost	FC Portion (US%)	nt I Ini	LC Portion (US\$)	(US\$) Reference	
	Option A	Dr	Draft Final					Pile	Pile Driving Work	400×400	ш	925	20.00		0		18.500.00 Longer pipe length by +4m liftup	
	Pile 300×300×L 10m							Pile	Pile Material	400×400	m ³	148	88.00	0.00	0.00	88.00	Longer pipe length by	1
								Pile	Pile Head Treatment	400×400	pcs	50	25.00	0.00	0.00	25.00		
	: ; ;	¢	C					She	Sheet Pile Driving Work		m ²	_		0.00			Deleted by	
	Option B Dila 400~400~I	ר ב	ption C m liftum					She	Sheet Pile Summerting Works		+ +	+		206.00			0.00 Deleted by +4m liftup 0.00 Deleted by +4m liftun	
		Pile 4	Pile 400×400×L					Sup	Support		. t	0	290.00	290.00		0.00	0.00 Deleted by +4m liftup	
								Exc	Excavation		m ³			0.00			0.00	
		õ	ption D					Bac	kfilling	Backhoe	°u	_		0.00			0.00	
		4 °	+4m liftup Dilo 400~400~I					Em	Embankment		, B	_		0.00	0.00		30,277.45	
		Luc +						Gravel	nus sun		ш ³			0.00		10.00	0.00	
								Col	oncrete		в, п	12	82.50	0.00	0.00	82.50	00'066	1
								Rei	Reinforced Concrete		m ³		88.00	0.00	0.00		101,728.00	
								For	Formwork		$m^2$		12.00	0.00	0.00			
								Ret	bar Fabrication and Assembly			_	880.00	792.00 155	643.84		17,293.76 R-bar/Concrete = 170kg/m ⁽²⁾	13
								Sca	Scatfolding/Supporting Building Work		m²2	25,853	100.00	0.00	0.00	100 00	284,384.50 500.00	
											+	+	~~~~~	~~~~	~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	—
																		П
								Tot	al Cast				_	15	5 643.84		493.764.71	—
								Tot	Total Cost (FC+LC)		+	-	+	-	650,000	-	1000 US\$ roundup	Т
								]			-				<b>-</b>		Townson and the state	٦

nd D	
, C, a	ture
, A, B	Struct
Report	- TTW
t Final	ank in
, Draf	ater T
Cost Comparison of Options, Draft Final Report, A, B, C, and D	121-1 1,000 cum Elevated Water Tank in WTP - Structure
rison of	um Elev
Compa	. <b>1,000 c</b>
Cost	121-1



# SIEM REAP WATER SUPPLY AUTHORITY

# THE PREPARATORY STUDY ON THE SIEM REAP WATER SUPPLY **EXPANSION PROJECT IN THE KINGDOM OF CAMBODIA**

# **FEASIBILITY STUDY DRAWINGS**

JANUARY 2011



NJS CONSULTANTS CO., LTD



# THE PREPARATORY STUDY ON THE SIEM REAP WATER SUPPLY EXPANSION PROJECT IN THE KINGDOM OF CAMBODIA

# Manner of Drawing Number

Cord	ltem
Project Cord	
SR	THE PREPARATORY STUDY ON THE SIEM REAP WATER SUPPLY EXPANSION PROJECT IN THE KINGDOM OF CAMBODIA
Facilities Cord	
00	General
01	Raw Water Intake Chamber
02	Raw Water Intake Pump Station
03	Raw Water Conveyance/Transmission Pipeline
04	Distribution Chamber
05	Flocculation and Sedimentation Basin
06	Sludge Discharge Tank
07	Filtration Units
08	Backwash Recovery Tank
09	Clear Water Reservoir and Clear Water Pump Station
10	Elevated Water Tank
11	Sludge Drying Bed
12	Chemical Building
13	Electrical Building
14	Administration Building
15	Storage Building
16	Guard House
17	Distribution Network
DWG Group Cord	
G	General
C	Civil
MA	Mechanical and Architectural
A	Architectural
S	Standard
DWG Number	In order for DWG group

D

н

# Drawing

SR-08-MA-14

Drawing Number	Tittle
<u>GENERAL</u> SR-00-G-01 SR-00-G-02 SR-00-G-03 SR-00-G-04 SR-00-G-05 SR-00-G-06 SR-00-G-07 SR-00-G-08 SR-00-G-09 SR-00-G-10	Tittle Sheet List of Drawing — She List of Drawing — She Location and Vicinity M Air View of Raw Water Air View of Raw Water Air View of Water Treo Process Schematic an Hydraulic Profile Proposed Water Supply
	Water Treatment Plant Water Treatment Plant Water Treatment Plant Raw Water Intake Cha Raw Water Intake Pum Raw Water Intake Pum Raw Water Conveyance Raw Water Conveyance Raw Water Conveyance Raw Water Conveyance Distribution Network G Distribution Main Plan- Distribution Main Plan- Distribution Main Plan-
MECHANICAL	
SR-02-MA-01 SR-02-MA-02 SR-04-MA-03 SR-05-MA-04 SR-05-MA-05 SR-06-MA-06 SR-06-MA-07 SR-07-MA-08 SR-07-MA-09 SR-07-MA-10 SR-07-MA-11 SR-07-MA-11 SR-07-MA-12 SR-08-MA-13	Raw Water Intake Pum Raw Water Intake Pum Distribution Chamber F Floculation Basin and Sludge Discharge Tank Sludge Discharge Tank Filtration Units Plan — Filtration Units Plan — Filtration Units Section Filtration Units Section Filtration Units Section Backwash Recovery Ta

	PROJECT: THE PREPARATORY STUDY ON THE SIEM REAP WATER SUPPLY EXPANSION PROJECT IN THE KINGDOM OF CAMBODIA								
	CLIENT:	CONSULTANTS :	REV.	DESC	CRIPTION	DATE SIGN.	TITLE:		
H	SIEM REAP WATER SUPPLY AUTHORITHY	NJS CONSULTANTS CO., LTD JAPAN					LIST OF DRA		
	JAPAN INTERNATIONAL COOPERATION AGENC	Y 🤄 KOKUSAI KOGYO CO., LTDJAPAN					- NONE		
-	1 2 3	4 5 6		7	8		9		

eet 1 of 2 eet 2 of 2 Map er Intake Chamber r Intake Pump Station eatment Plant nd Flow Diagram ly Service Area (Existing, F/S, LTDP) t Site Grading Plan t Site Grading Profile t Siteworks and Landscaping Plan amber Plan and Sections mp Station Siteworks and Landscaping Plan mp Station Site Grading Profile ce/Transmission Pipeline Sheet 1 of 4 D ce/Transmission Pipeline Sheet 2 of 4 ce/Transmission Pipeline Sheet 3 of 4 ce/Transmission Pipeline Sheet 4 of 4 e/Transmission Pipeline Sections Géneral Plan (F/S) n—Q1 Area –Q2 Area -Q3 Area -Q4 Area mp Station Plan np Station Sections Plan and Sections Sedimentation Basin Plan and Section Sedimentation Basin Sections k Plan k Sections - 1 - 2 n-1 n-2 n-3 Backwash Recovery Tank Plan Backwash Recovery Tank Sections RAWINGS-SHEET 10F 2 DRAWING NO .: DATE: SR-00-G-02 30/09/2009 10 11

12

SR 4.15-1

7

10

# THE PREPARATORY STUDY ON THE SIEM REAP WATER SUPPLY EXPANSION PROJECT IN

# Drawing

Drawina	Number
Druwing	number

# Tittle

SR-09-MA-15	Clean Water Reservoir and Clear Water Pump Station Plan
SR-09-MA-16	Clean Water Reservoir and Clear Water Pump Station Sections
SR-11-MA-17	Sludge Drying Bed Plan and Sections
SR-12-MA-18	Chemical Building Plan
SR-12-MA-19	Chemical Building Section

# ARCHITECTURAL

SR-10-A-01	Elevated Water Tank General Arrangement
SR-10-A-02	Elevated Water Tank Sections
SR-13-A-03	Electrical Building Floor Plan and Elevation
SR-14-A-04	Administration Building Floor Plan — 1
SR-14-A-05	Administration Building Floor Plan — 2
SR-14-A-06	Administration Building Elevation
SR-15-A-07	Storage Building Floor Plan, Elevation and Section
SR-16-A-08	Guard House Floor Plan, Section and Elevation

# <u>STANDARD</u>

D

Н

2

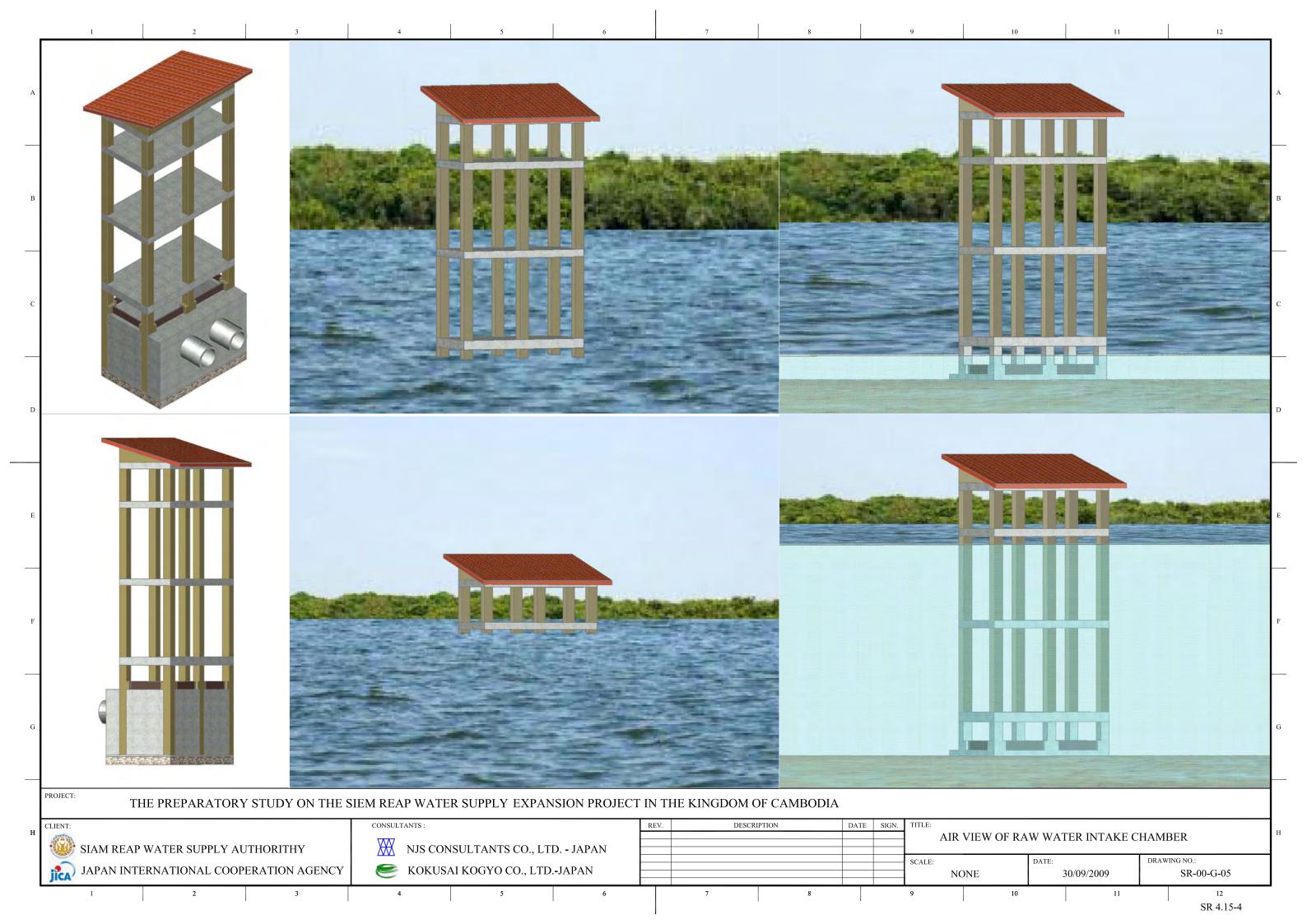
3

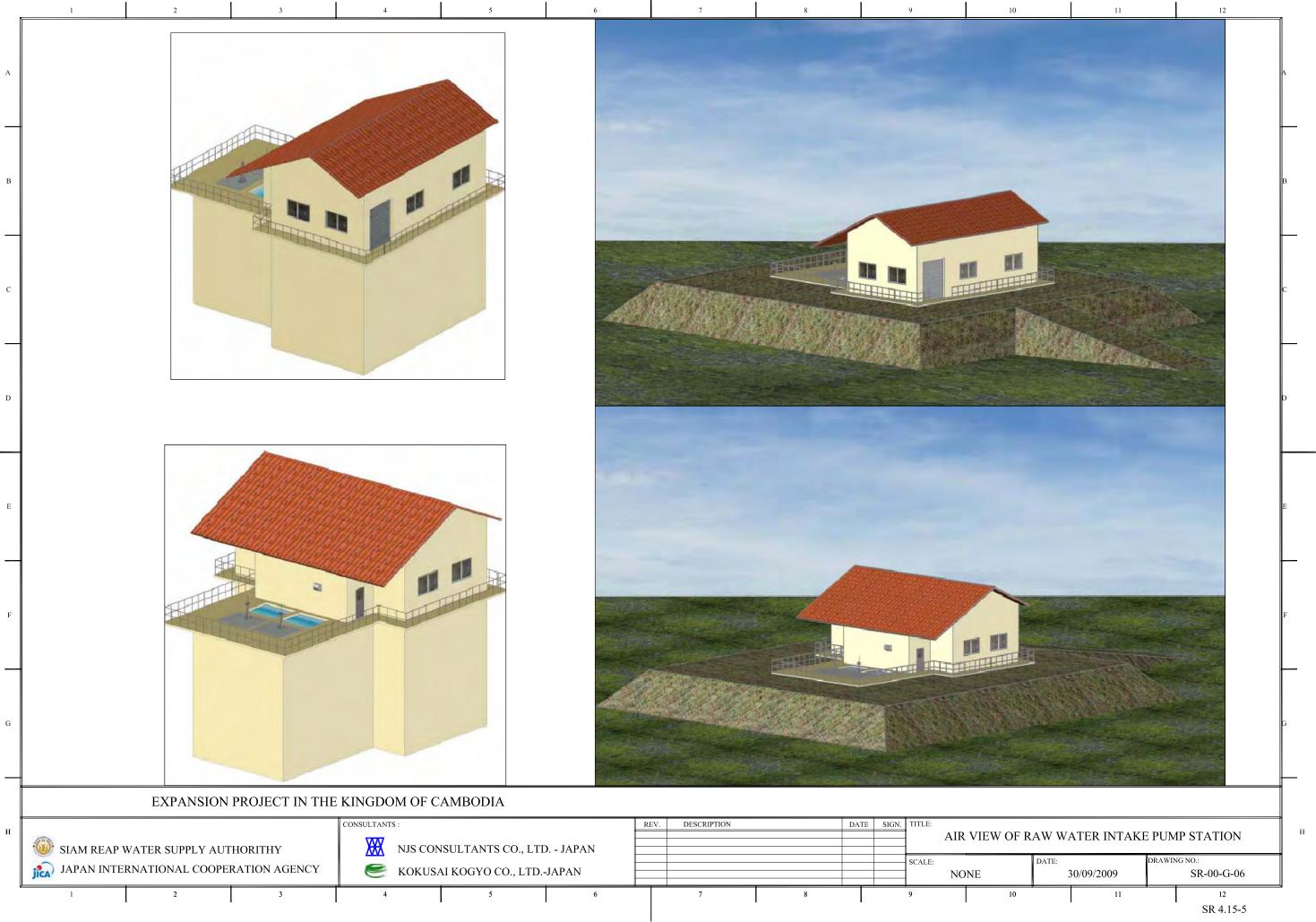
SR-00-S-01	General Earthwork for Pipe Laying
SR-00-S-02	Chamber for Distribution Block Meter
SR-00-S-03	Typical Drawing for Culvert Crossing
SR-00-S-04	Typical Drawing for Sluice/Butterfly Valve Box
SR-00-S-05	Typical Drawing for Installation of Air Valve and Washout
SR-00-S-06	Typical Drawing for Fire Hydrant

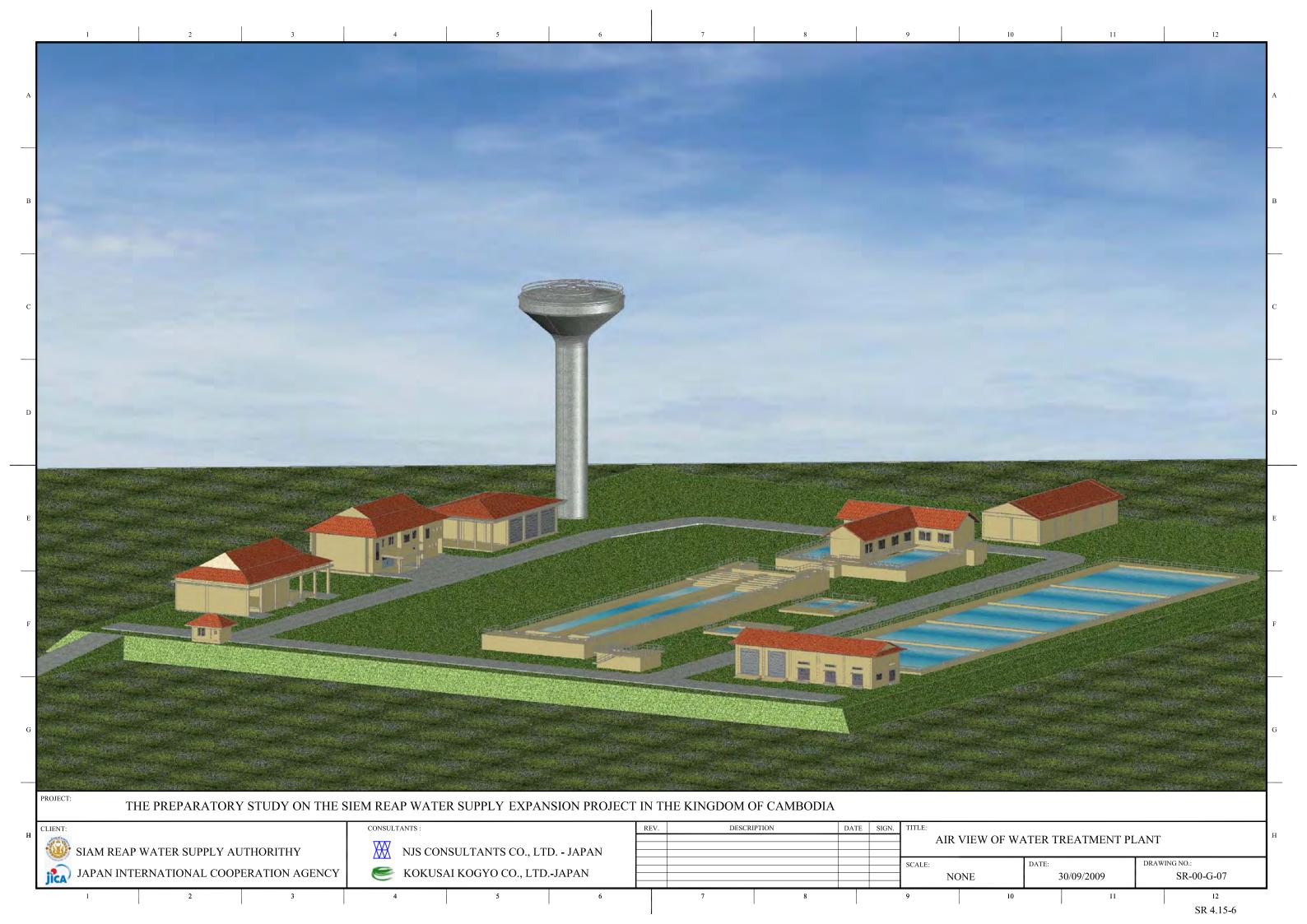
THE PREPARATORY STUDY ON THE S	SIEM REAP WATER SUPPLY EXPANSION PROJECT	T IN T	HE KINGDOM OF CAMBODIA			
CLIENT:	CONSULTANTS :	REV.	DESCRIPTION	DATE	SIGN.	TITLE:
WW SIEM REAP WATER SUPPLY AUTHORITHY	NJS CONSULTANTS CO., LTD JAPAN					LIST OF DR
JAPAN INTERNATIONAL COOPERATION AGENCY						SCALE: NONE

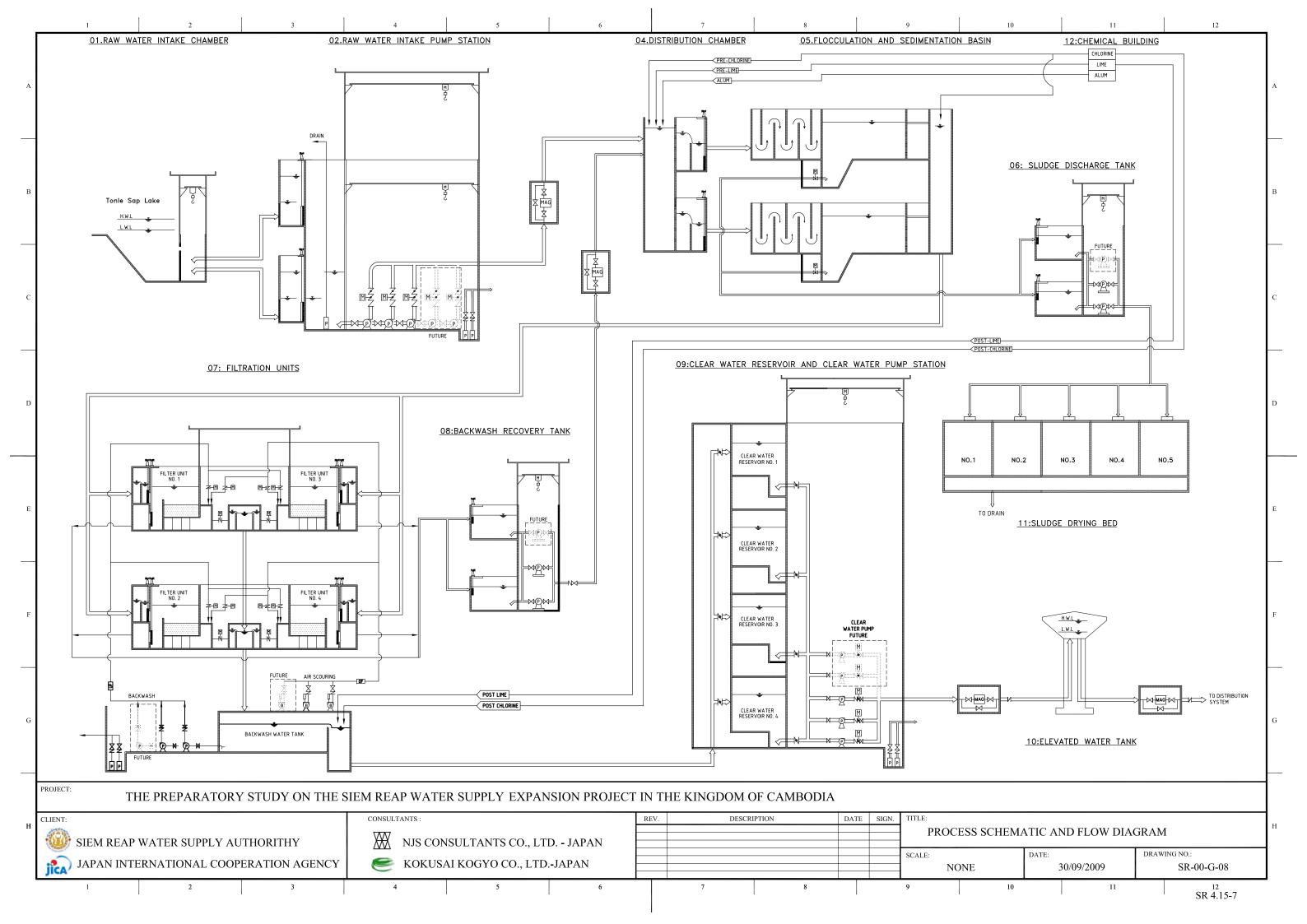
5

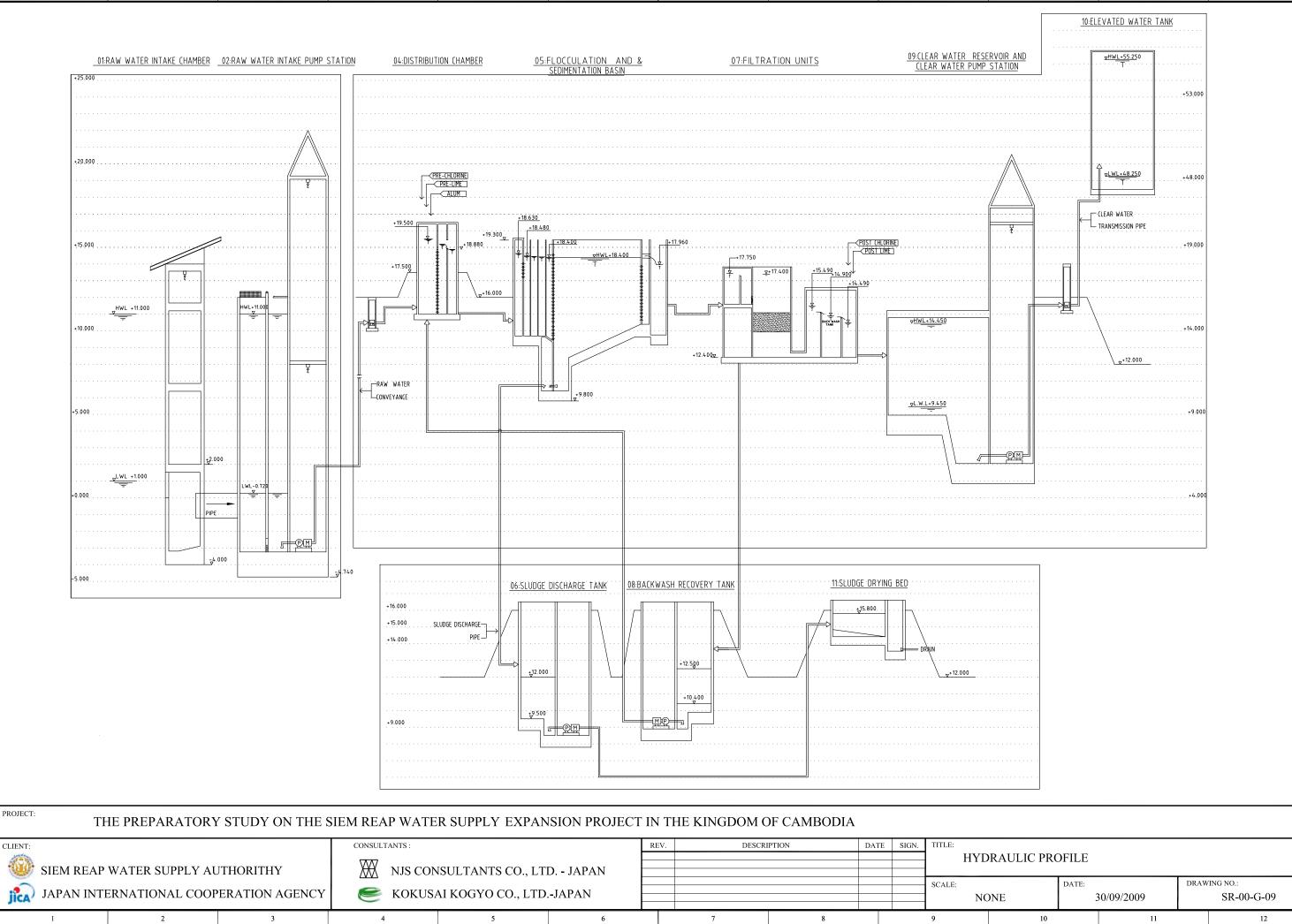
4


10		11		12	-
THE	KIN	GDOM	OF	CAMBODIA	А
					В
					С
					D
					Е
					F
					G
RAWING		ET 2 OF 2			н
	DATE: 3	30/09/2009	DRA	WING NO.: SR-00-G-03	
10		11		SR 4.15-2	


12


11





SR 4.15-3













SR 4.15-8