Minutes of Discussions

on

the Preparatory Survey for the Project for the Establishment of Rural Water Supply System in Kambia Town in the Republic of Sierra Leone (Explanation on Draft Report)

In April 2010, the Japan International Cooperation Agency (hereinafter referred to as "JICA") dispatched a Preparatory Survey Team on the Project for the Establishment of Rural Water Supply System in Kambia Town (hereinafter referred to as "the Project") to the Republic of Sierra Leone (hereinafter referred to as "Sierra Leone") and through discussion, field survey, and technical examination of the results in Japan, JICA prepared a draft report of the study.

In order to explain and to consult the Sierra Leonean authorities concerned on the components of the draft report, JICA dispatched to Sierra Leone the Draft Report Explanation Team (hereinafter referred to as " the Team "), which was headed by Mr. Junji Wakui, Director of Water Resources Management Division 2, Global Environment Department, JICA, from October 18th, 2010.

As a result of discussions, both parties confirmed the main items described on the attached sheets.

Freetown, 21st October 2010

Mr. Junji Wakui

Team Leader

Preparatory Survey Team

Japan International Cooperation Agency

Hon. Prof. Ogunlade R. Davidson

Minister

Ministry of Energy and Water Resources

Government of Sierra Leone

Mr. S. S. A. Sankoh

Chairman

Kambia District Council

ATTACHMENT

1. Components of the Draft Report

The Sierra Leonean side agreed and accepted in principle the components of the draft outline design explained by the Team.

2. Japan's Grant Aid scheme

The Sierra Leonean side understood the scheme of Japan's Grant Aid and would take the necessary measures and allocate necessary budget properly for smooth implementation of the Project, as a condition for the Japanese Grant Aid to be implemented. The Grant Aid Scheme and necessary measures were described in the Annex 4, 5 and 6 of the Minutes of Discussions signed by both sides on 29th April, 2010 (hereinafter referred to as "the previous minute").

3. Responsible and Implementing Agency

Both sides reconfirmed the responsible and implementing agencies as follows:

- The responsible agency: the Ministry of Energy and Water Resources (hereinafter referred to as "ME&WR")
- The implementing agency: Water Supply Division of ME&WR (hereinafter referred to as "WSD")

4. Schedule of the Study

JICA will complete the final report in accordance with the confirmed item and send it to the Government of Sierra Leone by the end of January, 2011.

5. Other Relevant Issues

(1) Project Cost Estimate and Budgetary Arrangement

The Team explained to the Sierra Leonean side the estimated project cost as attached in Annex 1. Both sides confirmed that this estimated cost was provisional and would be examined further by the Government of Japan for its final approval. Furthermore, both sides confirmed that this project cost estimate is confidential, and should never be duplicated in any forms or released to any other parties until the relevant contracts are awarded by ME&WR, in order to secure fairness of tender procedure.

(2) Budget arrangement for operation and maintenance of the water supply facilities

The Team explained the estimated cost for management, operation, and maintenance of water supply facilities as described in Annex 2, and the Sierra Leonean side promised to allocate necessary budget.

(3) Service Area of the Project

Both sides reconfirmed the service areas, the locations of principal facilities, and the route of distribution network as shown in Annex-3.

(4) Preparation for establishment of KWSSB

Both sides have agreed the detailed necessary procedures to follow for the establishment

RAH

1

4

of the Kambia Water Supply and Sanitation Board (KWSSB), which is responsible for water supply in Kambia Town, in the Annex-8 of the previous minutes (the Roadmap). Regarding the preparation for the establishment of KWSSB, both sides confirmed the progress as followings;

- The Working Group for the establishment of KWSSB has been officially established with the official appointment of thirteen (13) members. The member list is attached in Annex-4.
- The Working Group completed to prepare a draft bye-law for the establishment of KWSSB as shown in Annex-5, through member meetings.
- Kambia District Council will review the draft and officially approve it, by May 15th, 2011.
- The Team proposed a tentative organization chart, indicating number of staff necessary to be assigned for appropriate operation of KWSSB, in Annex-6. The Kambia District Council understood and expressed its will to recruit staffs by following the chart.
- It is the Kambia District Council that has responsibility for the establishment of KWSSB, and it will make the best effort. However, WSD will monitor the progress and provide technical and financial assistance to the District when necessary. Especially, WSD shall dispatch its technical staff who are familiar with operation of water supply facilities to KWSSB for technical transfer and consultation.
- The Team explained estimated monthly cost for the operation of KWSSB, including operation and maintenance of the facilities to be constructed by the Project, administrative cost, etc, as shown in Annex-2. The Sierra Leonean side understood it and confirmed that WSD is responsible for securing budget necessary for first three (3) months for operation at least as initial capital before KWSSB is able to collect sufficient water charge for proper operation and maintenance from its customers.

(5) Other undertakings of the Sierra Leonean side

The Team explained to the Sierra Leonean side its undertakings as listed in Annex-7, and the Sierra Leonean side understood and promised to execute them. The following items are to be emphasized:

1) Exemption of financial duties

Both sides reconfirmed ME&WR shall take necessary measures to facilitate project implementation, such as exemption of Value Added Tax, Goods and Service Tax (GST), custom duties, and any other taxes and fiscal levy charges in Sierra Leone arisen from the Project activities, collaborating with the Ministry of Finance and Ministry of Foreign Affairs.

2) Site clearance at the proposed construction site

The Team requested the Sierra Leonean side to remove existing buildings on the proposed construction sites for the water treatment plant and elevated tank by September 30th, 2011, at own cost. The Sierra Leonean side understood and promised to carry it out by the above mentioned deadline.

3) Provision of stock yard

The Team explained that the huge amount of construction materials for the Project such as

BM

piping materials might be delivered to Kambia Town and they must be properly stored during the construction, and therefore requested the Sierra Leonean side to provide land for stock yard in Kambia Town before the Project commences. The Sierra Leonean side understood and promised that Kambia District Council will propose location of the stock yard to JICA Sierra Leone Field Office by November 30th, 2010 in writing, through consultation with WSD. The Team requested that the yard should be flat for easy access of construction vehicles, and the Sierra Leonean side took note.

(6) Environmental and social consideration

The Sierra Leonean side explained that, in response to the application to environmental impact assessment submitted by WSD, the Sierra Leone Environment Protection Agency (SLEPA) would categorized the Project as "class C", which is not expected to generate negative impact on environment. Japanese side requested WSD to submit a copy of the environmental certificate to JICA Sierra Leone Field Office by November 30th, 2010, to verify the official decision of the SLEPA.

(7) Land use permission

Both sides confirmed that the Sierra Leonean side already made agreement with the Paramount Chief on the land use for the Project, but the agreement has not included the exact location of the facilities to be constructed yet. The Team showed the proposed location of the public taps and pipeline route as a result of the survey as shown in Annex-8, and requested the Sierra Leonean side to make complementary agreement with the Paramount Chief on land use on the proposed locations. The Sierra Leonean side agreed and promised to submit a copy of the agreement to JICA Sierra Leone Field Office by November 30th, 2010.

(8) Tentative Schedule

Japanese side explained the tentative schedule as shown in the following table;

The Government of Japan has cabinet meeting for final approval.	December, 2010
(In the case the Project is formally approved by the Government of	Japan)
- Both Governments sign Exchange of Note The Sierra Leonean authorities and JICA sign Grant Agreement.	January, 2011
The Government of Sierra Leone makes contract with Japanese consulting firm for the project implementation, referring to the recommendation from the Government of Japan.	February, 2011
Tender for the construction is carried out.	June, 2011
Actual construction work commences.	August, 2011
Construction work is completed.	November, 2012

End

4

Components of the Project

This Page is closed due to the confidentiality.

D

4

Table 1-B: Cost borne by the Government of Sierra Leone

Items	Cost (Million SLL)	Cost (Million JPY)
Clearing Construction Sites - Site clearance at the existing waterworks - Site clearance at the existing elevated tank	504.52 131.64	12.61 3.29
Initial O&M Cost for KWSSB	39.51	0.99
Total	675.67	16.89

Note:

- The costs in Table 1-B are estimated based on prices and exchange rate (1.0 US dollar = 92.13 Japanese Yen, 1.0 Leone = 0.0250 Japanese Yen) as of June, 2010.
- Management cost including payment of banking commission for the Authorization to Pay (A/P) and payment to a Japanese bank based upon the Banking Arrangement (B/A), as mentioned in 10) of Annex-7 in this Minute of Discussions, is also to be borne by the Sierra Leonean side. The total amount will be depend on the total project cost, and it might be approximately 0.1% of the project cost (0.8million JPY =32 million SLL).

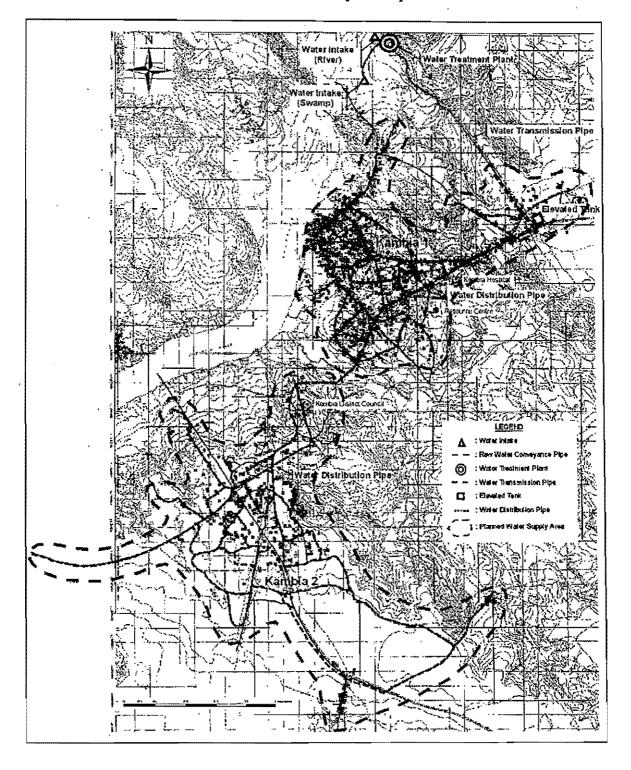
SPA

Monthly operation and maintenance cost in 2013

Items	Cost (Thousand SLL)	Cost (Thousand JPY)	Remarks
1. Fuel cost	7,910	198	
2. Maintenance Cost	396	10	5% of 1
 3. Personnel Cost - Technical Staff - Administrative Staff - Water rate collector - Part-time labouer 	4,150	104	·
4. Office cost	415	10	10% of 3
5. Sitting Fee (Board Member))	300	8	
Total	13,171	330	-

Monthly operation and maintenance cost in the Target Year (2016)

Items	Cost (Thousand SLL)	Cost (Thousand JPY)	Remarks
1. Fuel cost	20,196	505	
2. Maintenance Cost	1,010	25	5% of 1
3. Personnel Cost - Technical Staff - Administrative Staff - Water rate collector - Part-time labouer	7,800	195	
4. Office cost	. 780	19	10% of 3
5. Sitting Fee (Board Member))	300	8	
Total	30,086	752	


Note:

The costs are estimated based on prices and exchange rate (1.0 US dollar = 92.13 Japanese Yen, 1.0 Leone = 0.0250 Japanese Yen) as of June, 2010.

Service area and layout map

h

Member list of the working group for establishment of KWSSB (as of October, 2010)

1.	Kambia 1	Madam Hawa Kamura
2.	Kambia 2	Madam Umu Turay
3.	Kambia 3	Madam Ya Alimamy Sally Smith
4.	Paramount Chief	P.C. Bai Farama Tass Bubu Angbak III
5.	District Medical Officer	Dr. Chernor Jalloh (Kambia Govt. Hospital)
6, .	NGO Representative	Mr. Alimamy Kamara (ABC Development)
7.	Youth Group	Mr. Anito Kamara
8.	Women's Group	Madam Isatu Sèrengbeh
9.	Teachers' Union	Mr. Osman S. Conteh
10.	MDA's Representative	Mr. Abdul Nassar Fofanah (SLRA Engineer)
11.	Kambia District Council Representative	Mr. Francis Kamara (MEWR WSD
12.	Ward -122 Representative-	Coouncilor Aminata Conteh (Mrs.)
13.	Works Committee Representative	Councilor N'Sorie Yansaneh, Chairman
		Councils' Work Committee

The above is as approved by Kambia District Council on August 15th, 2010

Draft Bye-Laws for establishment of KWSSB

KAMBIA DISTRICT COUNCIL KAMBIA

का के का जो का होते हैं। में का महिला के कार्य का अधिक कर है।

1st October, 2010

Representative of JICA Sierra Leone

APPROVAL OF DRAFT BYE-LAWS

Having gone through the Draft Bye-laws prepared by the Working Group, for the operation of the Kambia Water Supply, I hereby approve these Bye-laws for the effective running of the water Supply, when completed.

Samuel S. A. Sankoh Chairman Kambia District Council

Copy:

The Chief Administrator - Kambia District Council

ECA

BYE LAWS FOR KAMBIA WATER SUPPLY AND SANITATION BOARD

1.0 NAME

This is hereby established for each area or community listed in the Kambia Water Supply Schedule to a body which shall be called the Kambia Water and Sanitation Development Board hereinafter referred to as "The Board" whose functions shall be applicable in the Kambia community and such others as may from times be added by amendment of these bye-laws.

2.0 COMPOSITION

The Board shall comprise not less than 5 and not more than 13 members. This number may be exceeded if the system serves several areas or communities.

2.1 BOARD MEMBERSHIP

Members of the Board shall be appointed or elected as follows:-

- (a) Representative from various sections of the Kambia Community
 - (b) In the event (a) result in gender imbalance, or does not make up the required number the following shall be considered:-
 - (1) At least two representatives, who shall be women, representing women's organization and water user groups
 - (2) Recognized community organizations that carry out activities directly related to water, sanitation and community development. The Board shall keep a list of eligible community organizations to be revised each year adding new and active groups, and removing those, which have become inactive from which members may be drawn, the list of community organization eligible to elect members onto the Board must include women's organizations as well.
- (c) Additionally, the following may be considered as Ex-officio members:
 - (1) Representatives of leaders of the community that have the authority to represent their areas in community affairs inclusive of women and or religious authorities.
 - (2) The Councillor representing Kambia Community in the Kambia District Council. In the event these are more than one, at least one member of the Kambia District Council representing the community.

2.2 DURATION OF MEMBERSHIP

Each person elected or appointed to the Board shall serve a two-year term. Members of the Board shall be eligible for re-election or re-appointment.

SIGH

10

Ú

Members of the first elected Board shall have an initial term commensurate with the duration of the project cycle till commissioning of the water supply system, and thereafter, another term of two years. During this period, the Board cannot be changed.

3.0 DELEGATION OF RESPONSIBILITIES

The Board shall delegate responsibility for its various management functions among its members by appointing 1-2 members:

- a. administrations
- b. financial management and
- c. technical management
- d. water utilisation, education, community mobilization and training

4.0 MANDATE OF THE BOARD

The Board shall be responsible for the management of the operation and maintenance of all water supply systems in the service area KAMBIA within the jurisdiction of the Kambia District Council.

This mandate shall include the following specific aspects:

- a. The preparation of plans for the establishment, rehabilitation, expansion and replacement of existing well as new water systems in any community specified in the schedule to these bye-laws.
- b. Proposing an appropriate tariff to cover the cost of operation and maintaining the community water system, including capital depreciation, such tariff to be approved by the Kambia District Council.
- c. Recruiting and supervision of qualified persons within the community to work as operators and managers of the community water system.
- d. Contracting an outside agency where appropriate to carry out operations and maintenance or maintenance alone.
- Recommending necessary byelaws (to be enacted by the Kambia District Council) that would regulate water use enforce tariff and other financial obligations and promote appropriate sanitation practices within the community.
- f. Undertaking public education and community training to promote tariff obligations and sound sanitation and hygienic behaviors within the community.
- g. Setting procedures and charges for services connection, disconnection, penalties for default and damages to the water supply system, subject to the approval of the Kambia District Council,

5.0 OBLIGATIONS OF THE BOARD

The Board has an obligation to establish a mechanism for consultation with the community in arriving at decisions on all matters including:

- a) Preparation of plans for water system rehabilitation and expansion; and
- b) Major expenditure on the water system
- c) Mobilization of the community for education on its objectives and necessary steps for implementing

E8H

- e) The WSSB will ensure that Water is kept running for the period of time each day planned for.
- f) The WSSB will ensure that the quantity of water to be provided each day allows for a minimum of 1S 1/c/d.
- g) Water losses will be kept to a maximum of 10% (New Systems) and 15% (Rehabilitated Systems). These will be determined by meters of which records of readings shall be kept and aggregated monthly to be made available for inspection by the designated representative of the district should an inspection be carried out.
- h) The WSSDB shall ensure that the quality of the Water is regularly monitored in accordance with guidelines to be issued by the Sierra Leone National Water Quality lab.
- i) While the WSSB may not itself carry out the monitoring, it will have the responsibility to ensure that the monitoring is carried out with the specified regularity.
- j) Breakdowns shall be kept to a minimum

In the case of breakdowns lasting for 1 – 3 days, the WSSB shall ensure that communities always store at least one day Water Supply for emergency use and that this Water id changed every 48 hours

in the case of major breakdown lasting more that 3 days appropriate measures shall be put in place to ensure an emergency supply of potable Water

Arrangement of the provision of such Water in emergency shall be in place by the time of commissioning of the work

The WSSB will have the obligation to inform the community of planned shut downs before these shut downs are made

In the case of planned shut downs, the obligations governing emergency supply of Water can still be applied

6.0 JURISDICTION AND AUTHORITY

- 6.1 The Board derives its legal authority in accordance with the byelaws of the Kambia District Council.

 The Council shall approve and adopt all resolutions and sanction all byelaws proposed by the Board, after the necessary deliberations on the appropriateness and legality for such resolutions and byelaws.
- 6.2 In turn, the Council shall vest the Board with all authority and jurisdiction over the development, operation and maintenance of all Water Systems specified in the schedule and such others as may from time to time be added thereto.
- 6.3 The Kambia District Water and Sanitation Team and from the National level, the MDA responsible for backstopping the Local Councils in Water Supply and Sanitation service delivery shall facilitate the work of the WSSB and shall, from time to time provide technical advice to guide the work of the WSSB and assist the Kambia District Council to exercise its jurisdiction and authority.

7.0 FINANCE AND OPERATING BUDGET

7.1 FINANCE

(1) The Board shall raise its own finance directly from Water supply tariff to the operation and maintenance of the water system, in a manner determined by the Board and approved by the Assembly. The Kambia District Council may allocate funds through its regular budgetary allocation to

887

support major rehabilitation and expansion of the community water supply system, where necessary.

7.2 Financial Management

For the purpose of managing these finances, the Board shall establish its own bank accpunts. At least two of these accounts shall be operational designated as "Operational Account" and "Resauve Account" Other accounts may be designated for particular activities including the running of the Board. The Board shall establish a book-keeping system appropriate for the management of funds relating to the nature of its business, and provide quarterly financial reports to the Kambia District Council and the Kambia Community.

8.0 MEETING AND REPORTING

8.1 Regular Meeting

The Board shall meet as many times as required but at any rate no less than once a month to effectively develop, operate and maintain the community water supply system

8.2 Quorum and Voting

At least half of the Board members shall form a quorum for Board meetings. Voting at the Board shall be based on a simple majority.

8.3 Records of Decisions

The Secretary of the Board shall keep a correct of decision made at each meeting. This record of decisions shall be posted at the community Notice Board for public view

8.4 Community Notice Board

The Board shall establish a Community Board, accessible to all Community members at all times. The notice Board shall be used to publicise all records of decision of Board meetings, monthly financial reports, information and announcement about the water system.

8.5 Sitting Allowance

The Board members shall be paid sitting allowances to be agreed with the Community. Allowances payable shall be subject to periodic review by the Community.

8.6 Presentation to the Kambia District Council

Each time the Kambia District Council is in session the Chairperson of the Board (or his/her representative) shall make a presentation to the Kambia District Council on the status of the community water system, upon request. At least, one presentation shall be made in a year.

88A

8.7 Annual Community Forum

Once every year, the entire community shall be given the opportunity to participate in the review of the Board's work though a community forum. The forum would also be used to educate the community on their obligations to support the water system, and to promote appropriate sanitation and hygienic behavior.

9.0 Financial Statement and Regular Audit

- i. The Board shall produce month, quarterly and annual financial statement/reports. These shall be posted on Community Notice Board for public review. A copy of each of the quarterly and annual financial reports shall also be given to the Kambia District Council.
- ii. The finances of the Board shall be audited once a year, via the regular District Administration audit mechanism. The Board shall arrange for quarterly internal audit on retainer basis. The audit reports shall be approved by the Kambia District Council and posted on the Kambia Water Supply System community Notice Board.

10.0 Amendment of Bye-Laws

- These byelaws may be amended at any time deemed necessary for the achievement of the objectives of the Board.
- ii. Such amendment can only be effected upon agreement by no less than two thirds of all members of the Board that have been established by this instrument, and in the presence and active participation and consent of the Assembly members designated for said communities.
- iii. The Schedule hereto may be amended by addition of such other communities or areas as is deemed appropriate for the application of these byelaws by a Resolution of the Kambia District Council.

11.0 Schedule

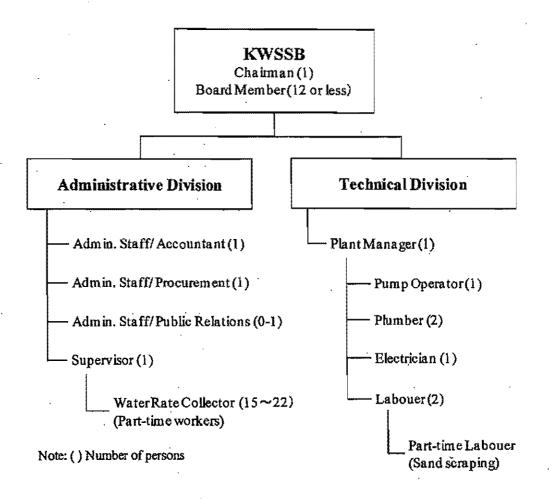
Community Name

Date

Signature of Board Chairman

Kambia One

Kambia Two


1stOCt. 2010

Kambia Three

SCA.

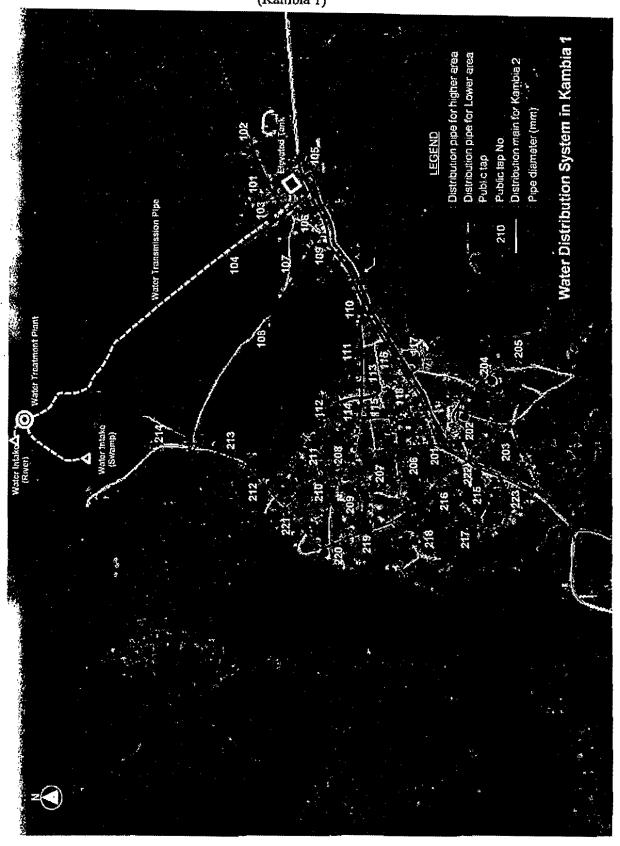
Tentative organization chart of KWSSB

Undertakings of the Sierra Leonean side

In the implementation of the Project, the Sierra Leonean side will be responsible for the following:

- Provision of stock yard (approx. 5,000m²) of the construction materials and equipment
- 2) Acquisition of land at the sites for the construction of the following facilities:
 - (a) Water Intake

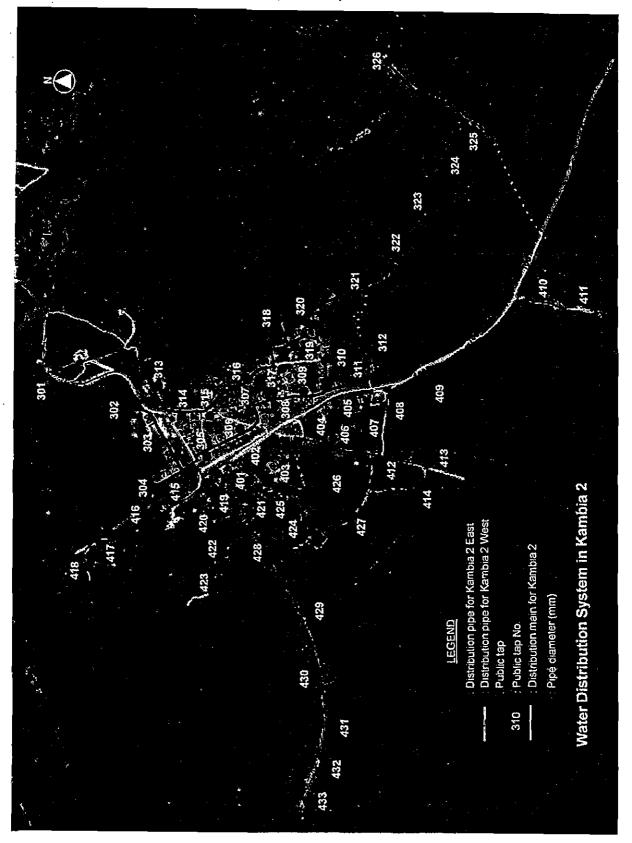
•	- Kolenten River	100m ²	Public lands
	- Swamp	$100m^2$	Public lands
(b)	Water Treatment Plant	10,000m ²	Public lands
(c)	Elevated Tank	500m^2	Public lands
(d)	Public Taps	5m ² ×100 places	Public and private lands


- Site clearance at the construction site of the water treatment plant (removal of the existing water treatment facilities and buildings).
- 4) Site clearance at the construction site of the elevated tank (removal of steel shaft and tank of the existing elevated tank).
- 5) Prompt customs clearance and tax exemption of the equipment and materials required in the implementation of the Project at the port of landing and support for smooth delivery of the equipment and materials.
- 6) Payment of all the expenses not including in Japan's Grant Aid scheme but necessary for the implementation of the project:
 - (a) Management cost of the Ministry of Energy and Water Resources related to the Project
 - (b) Management cost of the Kambia District Council related to the Project
 - (c) Initial working capital for the operation and maintenance of KWSSB
- 7) Exemption of the equipment and materials brought into Sierra Leone and services provided by the Japanese nationals in accordance with the contracts, from customs duty, internal taxes and other levies, including GST.
- 8) Granting of relevant visas and permits of stay in Sierra Leone towards the Japanese nationals involved in the Project in accordance with the contracts.
- Proper maintenance and use of the facilities and equipment provided with in the Japan's Grant Aid scheme.
- 10) Payment of banking commission for the Authorization to Pay (A/P) and payment to a Japanese bank based upon the Banking Arrangement (B/A).

884

16

Proposed location of public taps to be constructed in the Project
(Kambia 1)


P

17

47

A-42

Proposed location of public taps to be constructed in the Project (Kambia 2)

0

A

資料 5

本プロジェクトの環境許可証

SIERRA LEONE GOVERNMENT

Sierra Leone Environment Protection Agency 3rd Floor, Youyi Building, Freetown

Reft SLEPA/E1A/25

1st November, 2010

Mr. Wosum A. Koroma Chief Engineer Water Supply Division Ministry of Energy & Water Resources Tower Hill Freetown.

Dear Sir,

ISSUANCE OF ENVIRONMENTAL PERMIT FOR THE ESTABLISHMENT OF RURAL WATER SUPPLY SYSTEM IN KAMBIA TOWN

I wish to refer to the above subject matter and to inform you that the Sierra Leone Environment Protection Agency (SLEPA) has carefully reviewed the project proposal for the establishment of rural water supply system in Kambia Town and the environmental assessment report submitted by the Ministry of Energy and Water Resources. According to the review and inspection report on the project site, the proposed project would not have any adverse impact to the environment and categorized under "C". The project therefore does nor require any environmental impact assessment.

In the light of the foregoing, the Agency is issuing this letter as environmental permit for a "No Objection" to the proposed project to enable the Ministry of Energy and Water Resources to replace the existing and dilapidated facilities in order to provide treated water through distribution pipes and public taps for inhabitants in Kambia Town.

Haddijatou Jallow (Mrs.)

Executive Chairperson, SLEPA

Ce: The Secretary to the President

資料 6

自然条件調査結果

資料6 自然条件調査結果

現地調査では表-1に示す自然条件に係る調査を現地再委託業務で実施した。また、本プロジェクトの水源(コレンテン川、スワンプ)及びカンビア・タウン内の井戸から採水して水質状況を確認した。さらに、コレンテン川の流量観測を行い、乾期の流量を調査した。各調査の実施地点を図-1に示す。

表-1 自然条件調查 (現地再委託業務)

調査項目	調査内容	調査方法及び仕様
1. 地形測量	(1) 平面測量	・取水施設予定地
		コレンテン川 (30m×30m=900㎡)
		スワンプ (30m×30m=900㎡)
		浄水施設予定地
		既存施設(100m×100m=10,000㎡)
		・高架水槽予定地
		既存施設(50m×50m=2,500㎡)
		新設予定地(50m×50m=2,500㎡)
		合計16,800㎡
	(2) 路線測量	・コレンテン川〜浄水場間(0.2km)
		・スワンプ〜浄水場間(0.5km)
		・浄水場〜既存高架水槽(2.0km)
		・カンビア市街地(35km)
		合計37.7km
2. 地盤・土質調査	(1) ボーリング調査及び	・浄水場予定地(1個所×20m)
	標準貫入試験	・既存高架水槽(1個所×20m)
		・新設高架水槽(1個所×20m)
		合計3個所60m
	(2) 平板載荷試験	・浄水施設予定地(1個所)
	(3) 埋設構造物確認調査	試掘調査
		・カンビア市街地(30個所×1m×1m×1m)
		・浄水施設(10個所×1m×1m×2m)
		合計40個所

(1) 地形測量

地形測量では、計画施設の建設予定地の平面測量と配管ルートの路線測量(平面及び 縦断)を実施し、計画地点の平面・縦断形及び標高を調査した。なお、路線測量ではカ ンビア・タウン内の公共水栓の建設予定地(100ヶ所)の地点及び標高についても合わせ て調査した。

(2) 地盤・土質調査

地盤・土質調査では、浄水場及び高架水槽建設予定地点でのボーリング調査(標準貫入試験含む)、浄水場建設予定地(既存浄水場内)での平板載荷試験を実施した。ボーリング調査の結果を表-2、平板載荷試験の結果を表-3に示す。

また、地盤・土質調査では、施工計画や工事費の積算に反映させるため、カンビア・ タウン内の配管ルート及び浄水場建設予定地で試掘を実施し、土質や転石等の有無を確認した。試掘調査の結果を図-2に示す。

配管ルートの内、浄水場~高架水槽間の送水管ルートの一部(Test Pit No.2及び No.3地点)、カンビア・タウンの新市街地の西地区の一部(Test Pit No.26~No.28、No.22地点)には地表から30~60cm の深さに岩が確認され、同地点を含む約1km の区間は配管工事で岩掘削が必要となる。一方、浄水場内の試掘調査では浄水施設の建設予定地点10箇所で深さ2m まで掘削を行い、転石等による掘削工事への障害はないことを確認した。

(3) 水質調査

現地調査では、本プロジェクトの水源となるコレンテン川及びスワンプから採水して水質分析を行い、原水の水質の性状について確認を行った。また、カンビア・タウン内の伝統井戸及びハンドポンプ付井戸から採水して、住民が利用している給水源の水質についても調査を行った。これら水質分析の結果を表-4に示す。なお、水質分析は WSD の水質分析室に依頼した。

(4) 河川流量観測

本プロジェクトの水源となるコレンテン川の河川流量(特に、乾期の終わりの最も流量の少ない時期の流量)に対する取水の影響を把握する目的で同河川の流量観測を行った。河川流量は、河川の流速を流速計により測定し、河川の流積(流下断面積)との積によって算定した。この結果、コレンテン川の流量は2.40m³/秒(2010年5月15日観測)であった。

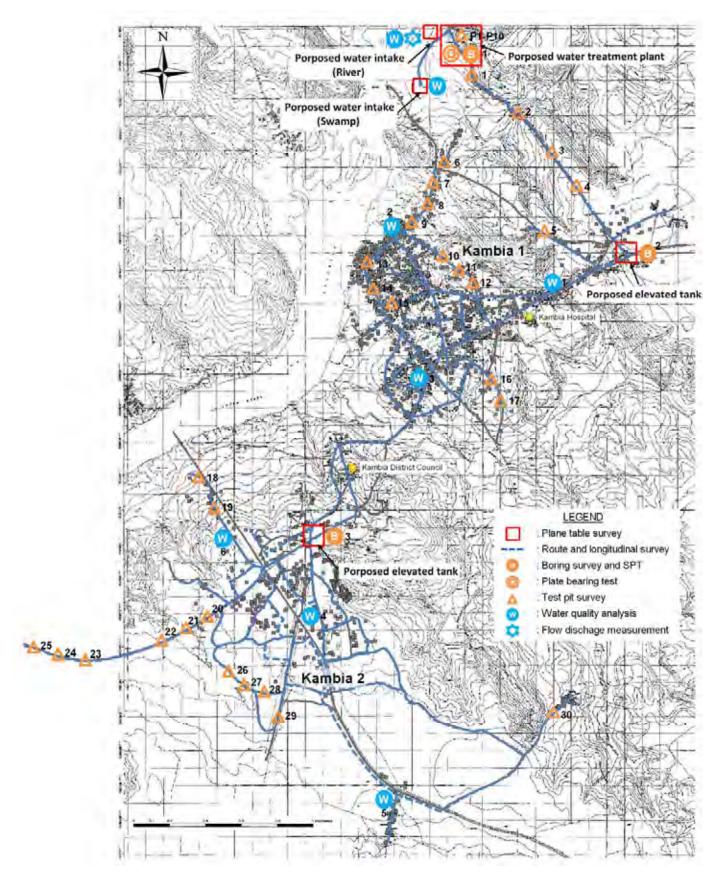


図-1 自然条件調査位置図

表-2 ボーリング調査結果

							2010	E: 02/06/	DAT
	SITE: 1	- 6	-	vated Tank	LINE : Existing Ele		Town t	Kambia	AREA
	R ELEV.: NII	WATE		EV : 59 242n	BEDROCK EL	m	V : 67.752	LAR ELE	COL
Modifier	Characteristic	Slimes (%)	Over Size	Colour	Deal Davis Halamer Mount	Recovery (%)	Drive Interval (m)	To (m)	From (m)
Leterac:	Contract Sizad	20	70	Dark Brown		75	0.46	0.46	0.00
Iron Stained	Coarse Sized	10	70	Dark Reddish Brown	147	90	0.46	1.92	1.46
fron Stained	Coarse Sized	25	70	Reddish Brown	78	100	0.46	3.38	2.92
fron Stained	Highly Weathered	30	50	Reddish Brown	12	100	0.46	4.84	4.88
Letwitis	Highly Weatherpul	70	10	Freddish Brown	13	70	0.46	6.30	5.84
indurated d	Partly Weathered	30	40	Orange Brown	42	85	0.46	7.76	7.30
ron Stained fron Stained fron Stained Lebertitic	Characteristic Characteristic Characteristic Sized Coarse Sized Coarse Sized Highly Weathered Highly Whathered Party	WATE Slimes (%) 20 10 25 30 70	Over Size (%) 70 70 70 70 10		Colour Dark Brown Dark Reddish Brown Reddish Brown Reddish Brown Grange Crange	Dark Brown 147 Peddish Brown 78 Reddish Brown 12 Reddish Brown 13 Reddish Brown 14 Feddish Brown 15 Cracgn		Defent Recovery Test Date Harmone Thins Colour Colour	To-(m) Drive Recovery Total Data's Hammer Blane Colour Colour

					SI	PT LIT	HOLO	OGIC DRI	LL LO	G	
-	DATE: 0	3/06/2010				_			-		SUPERVISOR: J. Allie
A	REA: Ka	mbla Tow	n i	LINE P	ropassid We	ter Treatme	nt Facilis	y		BITE: 1	GEOLOGIST: M. Bawah
COL	LAR ELI	EV.: 25.56	lm	BEDROCK EL	EV.: 18.341r			WAT	ER ELEV.	MIL	CRILL TYPE: 853 auger drill rig
From (m)	To (m)	Drive Interval (m)	Recovery (%)	Test Drive Haraset Bissel	Colour	Over Size	Slimes (%)	Characteristic	Modifier	Rock	Other Observations
0.00	0.46	0.48	70	13	Dark Brown	10	30	- Coarse Sized	Laterilic	Gravel	Roots and root hairs, clay matrix in inderesces of iron-stam compacted lateritic nodules
1.46	1.92	0.40	75	112	Reddish Brown	70	10	Course	Iron Stained	Laterte	icon stained, compacted indusated magnetite nuclules with intentic matrix in their intentions.
2.92	3.38	0.46	90	71	Reddish Brown	50	30	Coarse Sized	Iron Stained	Laterile	from stained, mahrir with compacted indurated magnetite noticles embeded
4.31	4.84	0.46	60	24	Reddish Brown	20	50	Highly Weathered	Laterate	Clay	Highly weathered laterists slay with few laterists pebbles
584	6.30	0.46	110	20	Orange Brown	5	80	Highly Weathered	Leferns	Clay	Highly, weathered laterist day with fewer lateritic peobles
7.30	7.75	0.40	75	-15	Dark Brown	-5	80	Highly Weathered	Latertric	Clay	Highly =eathered laterists day with leaser laterists peobles
8.7%	9.22	0.40	100	10:	Mottled	- 6	200	Partly Weathered	Indurated	Seprose	Saprolitic material mixed with tresh and parity weathered country risk.
10.22		7			after more	toes 25 blow	19. NO D41	setration for seat	ng date (fre	en country	nock encountered).

					SI	PT LIT	HOL	OGIC DR	LL LO	G	
	DATE: 0	4/04/2010									SUPERVISOR: J. Alim
A	REA: Kan	iibia Town	n B	LINE : Pro	posed Eleva	ted Tank			SITE: 1		GEOLOGIST: M. Bawsh
COL	LAR ELE	IV., 55.21	7m	BEDROCK EL	EV., 41,617e	16		WAT	ER ELEV.	Nil	DRILL TYPE: B53 auger drill rig
From (m)	To (in)	Drive Interval	Recovery (%)	Test Divine Hammur Berns	Colour	Over Size	Stimes (%)	Characteristic	Modifier	Rock	Other Observations
0.00	0.46	0.48	80	10'	Dark Brown	50	20	Coarse	Latertic	Gravel	Roots and root hairs, iron stained laterific patities and day
1.46	1.92	0.46	70	20	Reddish Brown	40	10	Partly Weathered	fron Stained	Latente	Iron stained: densety packed coarse-gravel sized particles
2.92	3.38	0.46	85	17	Reddish Brown	20	30	Highly Weathered	Iron Stained	Laterite	Fine-medium grain size quartz particles embedded in weather laterite
4.38	4.84	D.46	80	22	Readish Brown	25	30	Highly Weathered	Iron Stained	Catente	Fine-medium grain size quartz particles with very few magneti nodules embedded in preathered laterite.
5.84	6.30	0.40	70	20	Readish Brown	10	55	Highly Weathered	Latentic	Clay	Fewer magnetite nodules embedded in dominant day matro
7.30	9.76	0.40	70	7	Redaish	4	60.	Hignly Weathered	Linemic	Cley	Very very till magnette nedules embedded in dominant day energy.
8.76	9.22	0.40	65	14	Crange Brown	-	50	Partly Weathered	indurated	Sagroite	Saprolitic material containing partly weathered country rock
10.22	10.08	0.40	90.	31	Brown	475	-50	Party Weathered	Indurated	Saprolite	Saprolitic material containing parity, weathered country rock.
11.68	1214	0.40	-05	10	Orange Brown	20	40	Partly Weathered	indurátéd	Saproite	Saprolitic missional containing partly weathered country rock
13:14	13.00	0.46	100	46	Orange Brown	10	50	Party. Weathered	Indurated	Saprolite	Saprolatic material containing partly weathered country rock
14.60					After more	than 29 blov	va no per	retration for seat	ing drive cho	ish country	rock encountered)

Recovery (%). Total length of core recovered expressed as a percentage of the drive length.

Blows: The number of times a 63.5kg hammer is dropped from a height of 0.76m for the split sampler tube to pereitrate the ground for 0.30m.

Oversize: Size fraction prester than times.

Size fraction smaller that -63µm.

表-3 平板載荷試験結果

REPUB	LIC OF S		LEONE		ESTA	BLISHM	ENT OF	RURAL		C	ONTRAC	TOR
CONT	JIC	CA	ORY	WAT	ER SUP	PLY SYS	STEM IN	KAMBIA	TOWN	MINIS	STRY OF	WATER
	. KOL L	, BOILT		ETERMI	NATION	OF THE	PLATE	-BEARING	3 VALUE			
CHAINA	AGE:			LOCAT	ION:		KAMBIA	١	DATE:	23/05	5/2010	
LAYER:	:						Operate	or:	A KAMAF	RA and I K	OROMA	
DESCR	RIPTION:		CLAYE	Y SAND								
Mano				eflexion 1 mm	reading i =	in 10 ⁻³ m		Soil	ΔP/ΔS		Bearing Pl	
read Pr		Gauge	Gauge	Gauge	Gauge		Average	Pressure P=C · Pm		D =	60	[cm]
		1	2	3	4	x 10 ⁻⁵	x 10 ⁻⁵	x 10 ⁻²				
[Kg/cm ²]			0.01mm	0.01mm	0.01mm	[m]	[m]	[MN/m ²]	[MN/m ³]			
0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,000			Bearing Pis	
0,5 1,0	0,05 0,10	112,00 198,00	119,00 196,00	104,00	119,00 201,00	454,00 775,00	113,50 193,75	0,050 0,100		d =	6	[cm]
1,5	0,15	245,00	250,00	238,00	272,00	1005,00	251,25	0,150				
2,0	0,20	289,00	299,00	297,00	313,00	1198,00	299,50	0,200			$C = d^2 / C$)2
2,5	0,25	320,00	346,00	361,00	367,00	1394,00	348,50	0,250				
3,0	0,30	365,00	398,00	410,00	450,00	1623,00	405,75	0,300	0,001	∆ P=	0,150	x10 *[MN/m*]
1,5	0,15	300,00	335,00	378,00	433,00	1446,00	361,50	0,150		∆ S=	154,75	x 10 ~ [m]
0,0	0,00	255,00	278,00	295,00	359,00	1187,00	296,75	0,000		Ev	= 0.75·D·1	∆P/∆S
0,5	0,05	258,00	296,00	298,00	363,00	1215,00	303,75	0,050				
1,0	0,10	272,00	309,00	300,00	358,00	1239,00	309,75	0,100				
1,5	0,15	284,00	319,00	316,00	410,00	1329,00	332,25	0,150		E _v 1 =	0,2	[MN/m ²]
2,0	0,20	290,00	324,00	331,00	425,00	1370,00	342,50	0,200		∆ P=	0,150	x10 "[MN/m"]
2,5	0,25	298,00	334,00	349,00	437,00	1418,00	354,50	0,250	0,003	∆ S=	44,75	x 10~ [m]
0,0	0,00	158,00	272,00	270,00	357,00	1057,00	264,25	0,000				
0,5	0,05	164,00	300,00	286,00	371,00	1121,00	280,25	0,050		E _v 2 =	0,8	[MN/m ²]
2,5	0,25	201,00	338,00	350,00	442,00	1331,00	332,75	0,250		E _v 2/E _v 1 =	3,46	(>2.2)
Remarks	0.000	0,0	050	0,100		0,150	9	0,200	0,250	(0,300	0,350
50,00	0											
100,00												
200,00				1								
250,00	0					-						
300,00	0											
350,00	0											
400,00											•	
450,00	0											

Test Pit in Kambia Town



図-2 (1/2) 試掘調査写真

Test Pit in Existing Water Treatment Plant

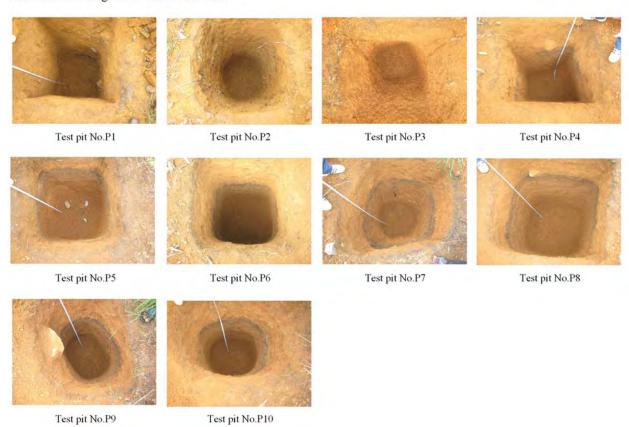


図-2 (2/2) 試掘調査写真

表-4 水質分析結果

	Daramotore				Measured Values	1 Values				WHO recommended
	raiailieleis	Kolenten	Swamp	Well No.1	Well No.2	Well No.3	Well No.4	Well No.5	Well No.6	Permissible Limits
-	Н	5.8	6.1	2.3	9	6.1	2'9	6.2	6.2	6.5 – 8.5
7	Turbidity (NTU)	1.5	2.2	2.4	1.3	0.5	4.5	0.4	11.4	<5.0
က	Conductivity (µS/cm)	39.9	40.1	129.8	237	107	37.5	93.2	51.4	<450
4	TDS (mg/l)	19.3	20	64.2	118.1	53.1	18.4	46.1	25.6	<248
2	Ammonia (mg/l)	0	0	0	0	0	0	0	0	No. Value
9	Total Hardness CaCO ₃ (mg/l)	41	11	0	0	0	80	4	11	<500
7	Copper (mg/l)	0.04	0	90.0	0	0.03	60.0	0	0.12	<2.0
8	Fluoride (mg/l)	0.44	0.04	0.2	6.0	0.7	99.0	0.4	1.46	<1.5
6	Iron (mg/l)	0	90.0	60.0	0.03	0.02	60.0	0	0.04	<0.3
10	Magnesium (mg/l)	0	0	8.5	14.5	11	9.6	4	0	<200
11	Manganese (mg/l)	0.02	0.003	0.035	0.018	0.014	0.015	0	0.002	<0.4
12	Nitrite (mg/l)	0.027	0.012	0.004	900.0	0.001	0.004	0.017	0.025	3
13	Nitrate – Nitrogen (mg/l) <i>HR</i>	1.38	0.58	9.4	27.6	24	10.8	99.0	2.2	<10
14	Sulphate (mg/l)	0	0	8	3	3	2	0	4	<400
15	Sulphide (mg/l)	0.14	0.15	0.1	60.0	0.07	0.1	0.16	0.18	<0.5
16	Chloride (mg/l)	-	ı	•	•	•	-	-	-	<250
17	Arsenic – (p)	0	0	0	0	0	0	0	0	0.01
18	Zinc (mg/l)	0.02	0	3.5	0.74	0.08	0.02	0.03	90.0	<5.0
19	E. Coli	0	0	0	0	0	0	0	0	Zero
20	Faecal Coliforms	80	160	135	175	85	120	22	145	Zero
	0,000									

Note: Date of water sampling: May 19, 2010

資料 7

社会条件調査結果

資料7 社会条件調査結果

現地調査では、カンビア・タウンの一般的な社会経済状況の把握、水利用実態、衛生 状況、本プロジェクトが実施後の給水の利用に係る意思、各戸給水栓の接続に係る希望 等に係るアンケート調査を実施した、また、給水区域内の戸数と人口を把握するための カウント(全数調査)を実施した。

上記アンケート調査のサンプル数は旧市街地185、新市街地200の合計385サンプルを対象に行った。アンケート調査の結果の概要は以下のとおりである。

【民族】

・ティムニ:	71%
・リンバ:	13%
・スス:	9%
• その他	6%

【識字率/最終学歴】

・小学校	29%
・中学校	14%
・高等学校	2%
・識字率	47%

【健康状態】

•	過去	31年間に病気を経験	62%
•	内、	下痢	10%
•	内、	腸チフス	18%

【衛生施設】

・個人トイレ	21%
・共同トイレ	70%
・水洗トイレ	1%

【給水源】

・伝統井戸	44%
・ハンドポンプ付井戸	16%
・河川・小川	37%

【水汲みに要する時間】

・10 分以内	34%
・10~20分	33%
•25 分以上	30%

【水源までの距離】

・50m 以内	44%
• 60∼100m	54%
· 100m 以上	1%

【主な収入源】

・給与所得	24%
・貿易業(Trader)	21%
・年金	2%
・送金	3%
・自営	33%
・その他	13%

【月収】

・10 万レオネ以下	43%
・10~20 万レオネ	27%
・20~35 万レオネ	13%
・35~50 万レオネ	7%
・50~75 万レオネ	2%

【貯蓄】

・貯金あり	25%
・貯金なし	65%

【本プロジェクトへの協力】

協力する	87%
・協力しない	11%
分からない	2%

【希望する給水形態】

• 公共水栓		16%
• 各戸給水栓	(Yard connection)	43%
• 各戸給水栓	(House connection)	37%
・分からない		3%

【水道料金の支払い】

・意志あり	80%
・意思なし	10%
・分からない	10%

【支払い意思額/公共水栓】

・5,000 レオネ以下	55%
・5,000 レオネ	23%
· 5.000~7.500	3%

【支払い意思額/Yard Connection】

・5,000 レオネ以下	9%
・5,000 レオネ	11%
・5,000~7,500 レオネ	16%
・7,500~10,000 レオネ	46%

【支払い意思額/House Connection】

・15,000~20,000 レオネ	35%
・20,000~30,000 レオネ	11%
・30,000 レオネ以上	1%

本プロジェクトの計画給水区域内の戸数と人口は以下のとおりである。

	戸数(戸)	人口 (人)
・旧市街地(Kambia 1)	1,231	9,892
・新市街地(Kambia 2)	1,962	10,876
合 計	3.193	20.768

資料8

配水管水理計算書

資料8 配水管水理計算書

Hydraulic Calculation on Water Pressure at Public Taps in Kambia 1

1A	130	(mm) 150	(m3/min) 1.367	(m) 20	(m/sec) 1.290	(m) 0.25	(m)	(EL-m)	Head	(m3/day) 492	Coefficio 4.0
1A	130	150	1.367	20	1.290	0.25				492	4.0
							0.25	77.90	77.65		
	130 130	150 100	0.767 0.767	400 790	0.723 1.628	1.69 24.09				276 276	
1B	400	400	0.000	4.40			26.03	77.90	51.87	400	
1C	130	100	0.300	140	0.637	0.75	26.78	77.90	51.12	108	
Kambia 1	1 - Higher A	rea 1									
Tap No.	С	D (mm)	Q (m3/min)	L (m)	V (m/sec)	Hf (m)	ΣHf (m)	Elevation (EL-m)	Pressure (m)	Discharge (m3/day)	
1A	130 130	75 75	0.133 0.067	100 160	0.503 0.252	0.49 0.22				48 24	
101	130	75	0.007	100	0.232	U.ZZ	0.71	65.99	10.95	24	
102	130	75	0.033	200	0.126	0.07	0.70	66.10	10.77	12	
102							0.78	66.10	10.77		
103	130	75	0.067	80	0.252	0.11	0.60	63.54	13.51	24	
	130	75	0.033	220	0.126	80.0				12	
104							0.68	60.92	16.05		
	1 - Higher A										
Tap No.	С	D (mm)	Q (m3/min)	L (m)	V (m/sec)	Hf (m)	ΣHf (m)	Elevation (EL-m)	Pressure (m)	Discharge (m3/day)	
1A	130 130	150 100	0.467 0.433	30 80	0.440 0.920	0.05 0.85				168 156	
106							0.90	63.38	13.37		
_	130 130	100 100	0.400 0.333	120 70	0.849 0.708	1.10 0.46				144 120	
109							2.46	56.43	18.76		
<u> </u>	130 130	100 100	0.300 0.100	250 210	0.637 0.212	1.34 0.15				108 36	
116		,,,,	0.100	2.0	0.2.2	00	3.95	45.87	27.83		
<u>-</u>	130 130	100 100	0.067 0.033	130 120	0.142 0.071	0.04 0.01				24 12	
118	130	100	0.033	120	0.071	0.01	4.00	40.77	32.88	12	
	130	100	0.033	120	0.071	0.01				12	
105		100	0.000	.20	0.07	0.01	0.06	67.51	10.08		
	130	75	0.067	180	0.252	0.24				24	
107	400	75	0.000	000	0.400	0.40	2.24	58.39	17.02	4.5	
108	130	75	0.033	280	0.126	0.10	2.34	51.08	24.23	12	
	130	100	0.200	10	0.425	0.03				72	
110							3.83	50.30	23.52		
2 111	130	100	0.167	200	0.354	0.36	4.19	47.20	26.26	60	
<u> </u>	130	100	0.133	160	0.283	0.19	1.10	17.20	20.20	48	
114	130	100	0.067	60	0.142	0.02	4.40	40.51	32.74	24	
114	130	100	0.033	140	0.071	0.01	7.40	TU.U1	52.14	12	
115							4.41	40.98	32.26		
	130	100	0.033	160	0.071	0.01	4.39	42.33	30.93	12	
112											
112	130	100	0.033	90	0.071	0.01				12	
112	130	100	0.033	90	0.071	0.01	4.39	43.83	29.43	12	

ŀ	Kambia 1 -	· Lower Ar	ea 1								
	Tap No.	С	D (mm)	Q (m3/min)	L (m)	V (m/sec)	Hf (m)	ΣHf (m)	Elevation (EL-m)	Pressure (m)	Discharge (m3/day)
	1B	130	100	0.167	10	0.354	0.02	(,	(==)	()	60
	201							0.02	37.64	14.21	
202		130 130	100 75	0.133 0.067	220 180	0.283 0.252	0.26 0.24				48 24
	204	130	75	0.007	160	0.232	0.24	0.52	34.70	16.65	24
		130	75	0.033	200	0.126	0.07				12
	205							0.59	29.24	22.04	
		130	100	0.067	20	0.142	0.01				24
	202	.00	.00	0.001	20	02	0.01	0.29	37.06	14.52	
		130	100	0.033	290	0.071	0.03				12
	203							0.32	29.44	22.11	
ŀ	Kambia 1 -	· Lower Ar	ea 2								
	Tap No.	С	D	Q	L	V	Hf	$\Sigma H f$	Elevation	Pressure	Discharge
	·		(mm)	(m3/min)	(m)	(m/sec)	(m)	(m)	(EL-m)	(m)	(m3/day)
	1B	130	100	0.300	160	0.637	0.86	0.00	04.07	40.61	108
207	206	130	100	0.267	190	0.566	0.82	0.86	34.37	16.64	96
		130	100	0.233	10	0.495	0.03				84
	208							1.71	33.00	17.16	
209		130	100 100	0.200	10	0.425	0.03				72 60
	210	130	100	0.167	220	0.354	0.40	2.14	21.12	28.61	60
211		130	100	0.133	170	0.283	0.20				48
		130	75	0.100	50	0.377	0.14				36
	212	130	75	0.067	270	0.252	0.36	2.48	18.08	31.31	24
	213	130	75	0.007	210	0.232	0.50	2.84	18.92	30.11	24
		130	75	0.033	220	0.126	0.08				12
	214							2.92	25.69	23.26	
		130	100	0.033	140	0.071	0.01				12
	207	.00	.00	0.000	0	0.07	0.01	1.69	31.31	18.87	
	209	130	100	0.033	140	0.071	0.01	1.75	28.81	21.31	12
	209							1.73	20.01	21.31	
		130	100	0.033	180	0.071	0.02				12
	211							2.36	24.55	24.96	
ı	Kambia 1 -	. Lower Ar	.03 3								
r				0		1/	1.14	Z114	Claustian.	D	Diaghanna
	Tap No.	С	D (mm)	Q (m3/min)	L (m)	V (m/sec)	Hf (m)	∑Hf (m)	Elevation (EL-m)	Pressure (m)	Discharge (m3/day)
215	1C	130	100	0.233	110	0.495	0.37	(,	(==)	()	84
		130	100	0.200	90	0.425	0.23				72
217	216	130	100	0.167	50	0.354	0.09	0.60	28.54	21.98	60
218		130	100	0.167	130	0.354	0.09				48
		130	100	0.100	110	0.212	0.08				36
	219	400	400	0.007	400	0.440	0.00	0.93	18.94	31.25	0.4
	220	130	100	0.067	180	0.142	0.06	0.99	16.41	33.72	24
		130	100	0.033	170	0.071	0.02	0.00		33.72	12
	221							1.01	16.64	33.47	
		120	100	0.022	100	0.074	0.04				40
	215	130	100	0.033	120	0.071	0.01	0.38	30.40	20.34	12
	210							0.50	50.40	20.04	
		130	100	0.033	220	0.071	0.02				12
	217							0.71	26.63	23.78	
		130	75	0.033	120	0.126	0.04				12
	218							0.89	17.34	32.89	

Kambia 1 - Lower Area 4

Tap No.	С	D	Q	L	V	Hf	Σ Hf	Elevation	Pressure	Discharge
		(mm)	(m3/min)	(m)	(m/sec)	(m)	(m)	(EL-m)	(m)	(m3/day)
1C	130	100	0.067	80	0.142	0.03				24
222							0.03	33.14	17.95	
	130	100	0.033	220	0.071	0.02				12
223							0.05	18.03	33.04	

	С	D	Q	L	V	Hf	Σ Hf	El. Tank	Water	Discharge	Hourl
		(mm)	(m3/min)	(m)	(m/sec)	(m)	(m)	(EL-m)	Head	(m3/day)	Coeffici
2A	130	250	1.967	2150	0.668	4.32	4.32	77.90	73.58	708	4.0
2,1	130	200	1.100	940	0.584	1.91	1.02	77.00	70.00	396	
2B							6.23	77.90	71.67		
Kambia 2 E	ast 1										
Tap No.	С	D	Q	L	V	Hf	ΣHf	Elevation	Pressure	Discharge	
2A	130	(mm) 100	(m3/min) 0.400	(m) 20	(m/sec) 0.849	(m) 0.18	(m)	(EL-m)	(m)	(m3/day) 144	
301	100	100	0.400	20	0.040	0.10	0.18	33.60	39.80	1-1-1	
202	130	100	0.367	480	0.778	3.74	2.00	49.22	20.44	132	
302	130	100	0.333	220	0.708	1.44	3.92	49.22	20.44	120	
303							5.36	55.47	12.75		
	130 130	100 100	0.300 0.267	120 150	0.637 0.566	0.64 0.65				108 96	
305	100	100	0.201	130	0.500	0.00	6.65	55.76	11.17	30	
	130	100	0.233	180	0.495	0.61				84	
306	130	100	0.200	120	0.425	0.30	7.26	55.57	10.75	72	
307							7.56	55.27	10.75		
308	130	100	0.167	100	0.354	0.18	7.74	55.13	10.71	60	
306	130	100	0.133	140	0.283	0.17	7.74	55.15	10.71	48	
309							7.91	54.85	10.82		
	130 130	100 100	0.100 0.067	110 80	0.212 0.142	0.08 0.03				36 24	
311	.00	100	0.007	00	0.1.12	0.00	8.02	54.93	10.63		
040	130	100	0.033	240	0.071	0.02	0.04	50.00	40.40	12	
312							8.04	53.36	12.18		
	130	75	0.033	120	0.126	0.04				12	
304							6.04	55.35	12.19		
	130	100	0.033	150	0.071	0.01				12	
310							8.00	53.26	12.32		
Kambia 2 E	ast 2										
Tan No	С	D	Q	1	V	Hf	ΣHf	Elevation	Pressure	Discharge	
Tap No.	С	D (mm)	Q (m3/min)	L (m)	V (m/sec)	Hf (m)	ΣHf (m)	Elevation (EL-m)	Pressure (m)	Discharge (m3/day)	
2A	C 130						(m)	(EL-m)	(m)	•	
<u> </u>	130	(mm) 150	(m3/min) 0.467	(m) 580	(m/sec) 0.440	(m) 0.98				(m3/day) 168	
2A		(mm)	(m3/min)	(m)	(m/sec)	(m)	(m)	(EL-m)	(m)	(m3/day)	
2A 313 314	130	(mm) 150	(m3/min) 0.467	(m) 580	(m/sec) 0.440	(m) 0.98	(m) 0.98 1.26	(EL-m) 55.04 55.43	(m) 17.56 16.89	(m3/day) 168	
2A 313	130 130 130	(mm) 150 150	(m3/min) 0.467 0.433 0.400	(m) 580 190 110	(m/sec) 0.440 0.409 0.377	(m) 0.98 0.28 0.14	(m) 0.98	(EL-m) 55.04	(m) 17.56	(m3/day) 168 156	
2A 313 314	130 130 130 130	(mm) 150 150 150	(m3/min) 0.467 0.433 0.400 0.367	(m) 580 190 110 240	(m/sec) 0.440 0.409 0.377 0.346	(m) 0.98 0.28 0.14	(m) 0.98 1.26	(EL-m) 55.04 55.43	(m) 17.56 16.89	(m3/day) 168 156 144	
2A 313 314 315 316	130 130 130	(mm) 150 150	(m3/min) 0.467 0.433 0.400	(m) 580 190 110	(m/sec) 0.440 0.409 0.377	(m) 0.98 0.28 0.14	(m) 0.98 1.26 1.40 1.66	(EL-m) 55.04 55.43 55.40 54.32	(m) 17.56 16.89 16.78 17.60	(m3/day) 168 156	
2A 313 314 315	130 130 130 130 130	(mm) 150 150 150 150 150	(m3/min) 0.467 0.433 0.400 0.367 0.333	(m) 580 190 110 240	(m/sec) 0.440 0.409 0.377 0.346 0.315	(m) 0.98 0.28 0.14 0.26	(m) 0.98 1.26 1.40	(EL-m) 55.04 55.43 55.40	(m) 17.56 16.89 16.78	(m3/day) 168 156 144 132	
2A 313 314 315 316 317	130 130 130 130	(mm) 150 150 150	(m3/min) 0.467 0.433 0.400 0.367	(m) 580 190 110 240	(m/sec) 0.440 0.409 0.377 0.346	(m) 0.98 0.28 0.14	(m) 0.98 1.26 1.40 1.66 1.76	(EL-m) 55.04 55.43 55.40 54.32 53.70	(m) 17.56 16.89 16.78 17.60	(m3/day) 168 156 144	
2A 313 314 315 316	130 130 130 130 130 130 130	(mm) 150 150 150 150 150 150 150	(m3/min) 0.467 0.433 0.400 0.367 0.333 0.300 0.267	(m) 580 190 110 240 110 150 10	(m/sec) 0.440 0.409 0.377 0.346 0.315 0.283 0.566	(m) 0.98 0.28 0.14 0.26 0.10	(m) 0.98 1.26 1.40 1.66	(EL-m) 55.04 55.43 55.40 54.32	(m) 17.56 16.89 16.78 17.60	(m3/day) 168 156 144 132 120	
2A 313 314 315 316 317	130 130 130 130 130 130	(mm) 150 150 150 150 150	(m3/min) 0.467 0.433 0.400 0.367 0.333	(m) 580 190 110 240 110 150	(m/sec) 0.440 0.409 0.377 0.346 0.315	(m) 0.98 0.28 0.14 0.26 0.10	(m) 0.98 1.26 1.40 1.66 1.76	(EL-m) 55.04 55.43 55.40 54.32 53.70	(m) 17.56 16.89 16.78 17.60	(m3/day) 168 156 144 132 120	
2A 313 314 315 316 317 319 320	130 130 130 130 130 130 130	(mm) 150 150 150 150 150 150 150	(m3/min) 0.467 0.433 0.400 0.367 0.333 0.300 0.267	(m) 580 190 110 240 110 150 10	(m/sec) 0.440 0.409 0.377 0.346 0.315 0.283 0.566	(m) 0.98 0.28 0.14 0.26 0.10	(m) 0.98 1.26 1.40 1.66 1.76 1.91 2.79	(EL-m) 55.04 55.43 55.40 54.32 53.70 53.42 50.46	(m) 17.56 16.89 16.78 17.60 18.12 18.25 20.33	(m3/day) 168 156 144 132 120	
2A 313 314 315 316 317	130 130 130 130 130 130 130 130	(mm) 150 150 150 150 150 150 100 100	(m3/min) 0.467 0.433 0.400 0.367 0.333 0.300 0.267 0.233	(m) 580 190 110 240 110 250 10 260 200	(m/sec) 0.440 0.409 0.377 0.346 0.315 0.283 0.566 0.495	(m) 0.98 0.28 0.14 0.26 0.10 0.11 0.04 0.88	(m) 0.98 1.26 1.40 1.66 1.76	(EL-m) 55.04 55.43 55.40 54.32 53.70	(m) 17.56 16.89 16.78 17.60 18.12	(m3/day) 168 156 144 132 120 108 96 84	
2A 313 314 315 316 317 319 320	130 130 130 130 130 130 130 130	(mm) 150 150 150 150 150 150 100	(m3/min) 0.467 0.433 0.400 0.367 0.333 0.300 0.267	(m) 580 190 110 240 110 150 10 260	(m/sec) 0.440 0.409 0.377 0.346 0.315 0.283 0.566	(m) 0.98 0.28 0.14 0.26 0.10 0.11 0.04	(m) 0.98 1.26 1.40 1.66 1.76 1.91 2.79	(EL-m) 55.04 55.43 55.40 54.32 53.70 53.42 50.46	(m) 17.56 16.89 16.78 17.60 18.12 18.25 20.33	(m3/day) 168 156 144 132 120 108 96	
2A 313 314 315 316 317 319 320 321 322	130 130 130 130 130 130 130 130	(mm) 150 150 150 150 150 150 100 100	(m3/min) 0.467 0.433 0.400 0.367 0.333 0.300 0.267 0.233	(m) 580 190 110 240 110 250 10 260 200	(m/sec) 0.440 0.409 0.377 0.346 0.315 0.283 0.566 0.495	(m) 0.98 0.28 0.14 0.26 0.10 0.11 0.04 0.88	(m) 0.98 1.26 1.40 1.66 1.76 1.91 2.79 3.30 3.77	(EL-m) 55.04 55.43 55.40 54.32 53.70 53.42 50.46 52.54 55.07	(m) 17.56 16.89 16.78 17.60 18.12 18.25 20.33 17.74 14.74	(m3/day) 168 156 144 132 120 108 96 84	
2A 313 314 315 316 317 319 320 321	130 130 130 130 130 130 130 130 130 130	(mm) 150 150 150 150 150 150 150 100 100 100	(m3/min) 0.467 0.433 0.400 0.367 0.333 0.300 0.267 0.233 0.200 0.167 0.133	(m) 580 190 110 240 110 250 260 220 220	(m/sec) 0.440 0.409 0.377 0.346 0.315 0.283 0.566 0.495 0.425 0.354	(m) 0.98 0.28 0.14 0.26 0.10 0.11 0.04 0.88 0.51 0.47	(m) 0.98 1.26 1.40 1.66 1.76 1.91 2.79 3.30	(EL-m) 55.04 55.43 55.40 54.32 53.70 53.42 50.46 52.54	(m) 17.56 16.89 16.78 17.60 18.12 18.25 20.33 17.74	(m3/day) 168 156 144 132 120 108 96 84 72 60 48	
2A 313 314 315 316 317 319 320 321 322	130 130 130 130 130 130 130 130 130	(mm) 150 150 150 150 150 150 150 100 100 100	(m3/min) 0.467 0.433 0.400 0.367 0.333 0.300 0.267 0.233 0.200 0.167	(m) 580 190 110 240 110 250 260 260	(m/sec) 0.440 0.409 0.377 0.346 0.315 0.283 0.566 0.495 0.425	(m) 0.98 0.28 0.14 0.26 0.10 0.11 0.04 0.88 0.51	(m) 0.98 1.26 1.40 1.66 1.76 1.91 2.79 3.30 3.77	(EL-m) 55.04 55.43 55.40 54.32 53.70 53.42 50.46 52.54 55.07	(m) 17.56 16.89 16.78 17.60 18.12 18.25 20.33 17.74 14.74	(m3/day) 168 156 144 132 120 108 96 84 72 60	

		130	75	0.033	400	0.126	0.15				12
	326							4.39	41.82	27.37	
		130	75	0.033	120	0.126	0.04				12
	318	130	73	0.033	120	0.120	0.04	1.91	50.49	21.18	12
Ka	ambia 2 \	Nest 1									
Т	Гар No.	С	D	Q	L	V	Hf	ΣHf	Elevation	Pressure	Dischar
			(mm)	(m3/min)	(m)	(m/sec)	(m)	(m)	(EL-m)	(m)	(m3/da
	2B	130	150	0.467	220	0.440	0.37		= 4.00	10.17	168
	401	130	150	0.433	120	0.409	0.18	0.37	54.83	16.47	156
	402	130	130	0.433	120	0.403	0.10	0.55	55.32	15.80	130
		130	150	0.400	100	0.377	0.13				144
	403							0.68	55.63	15.36	
14		130	100	0.367	140	0.778	1.09				132
	400	130	100	0.300	100	0.637	0.54	0.04	E4.00	44.00	108
3	406	130	100	0.267	130	0.566	0.56	2.31	54.98	14.38	96
3		130	100	0.267	130	0.354	0.24				60
	407						•	3.11	55.53	13.03	
		130	100	0.133	170	0.283	0.20				48
	408							3.31	55.55	12.81	
	400	130	100	0.100	180	0.212	0.13				36
	409	130	100	0.067	480	0.142	0.16	3.44	57.09	11.14	24
	410	130	100	0.007	400	0.142	0.10	3.60	57.28	10.79	24
		130	75	0.033	170	0.126	0.06	0.00	020	10.10	12
	411							3.66	55.40	12.61	
	40.4	130	100	0.067	60	0.142	0.02	4 =0	== 0.4	44.04	24
	404	130	100	0.033	180	0.071	0.02	1.79	55.24	14.64	12
	405	130	100	0.033	100	0.071	0.02	1.81	55.10	14.76	12
	100							1.01	00.10	11.70	
2		130	100	0.100	60	0.212	0.04				36
		130	100	0.067	220	0.142	0.07				24
	413							2.98	53.91	14.78	
	44.4	130	100	0.033	130	0.071	0.01	0.00	50.54	40.44	12
	414							2.99	52.54	16.14	
		130	100	0.033	80	0.071	0.01				12
	412							2.92	53.15	15.60	
Ka	ambia 2 \	Nest 2									
Т	Гар No.	С	D	Q	L	V	Hf	ΣHf	Elevation	Pressure	Discha
	·		(mm)	(m3/min)	(m)	(m/sec)	(m)	(m)	(EL-m)	(m)	(m3/da
	2B	130	100	0.133	140	0.283	0.17				48
	415							0.17	55.66	15.84	
	116	130	75	0.100	150	0.377	0.43	0.60	E2 E2	17.55	36
	416	130	75	0.067	180	0.252	0.24	0.60	53.52	17.55	24
	417	130	13	0.001	100	0.232	0.24	0.84	37.65	33.18	24
		130	75	0.033	240	0.126	0.09				12
	418							0.93	24.33	46.41	
Ka	ambia 2 \	Nest 3									
Т	Гар No.	С	D	Q	L	V	Hf	ΣHf	Elevation	Pressure	Discha
			(mm)	(m3/min)	(m)	(m/sec)	(m)	(m)	(EL-m)	(m)	(m3/da
	2B	130	100	0.500	110	1.062	1.52				180
	419	462	400	0.407	460	0.001	4.0	1.52	55.41	14.74	
0		130	100	0.467	120 10	0.991	1.46				168 156
	421	130	100	0.433	10	0.920	0.11	3.09	53.22	15.36	156
2	74.1	130	100	0.400	60	0.849	0.55	5.03	55.22	10.00	144
4		130	100	0.333	50	0.708	0.33				120
		130	75	0.200	30	0.755	0.31				72
	428							4.28	50.27	17.12	
	10-	130	75	0.167	380	0.629	2.79				60
	429	100	75	0.400	240	0.500	1 47	7.07	49.22	15.38	40
		130	75	0.133	240	0.503	1.17				48

	430							8.24	50.66	12.77	
		130	75	0.100	220	0.377	0.63				36
	431							8.87	49.34	13.46	
		130	75	0.067	210	0.252	0.28				24
	432							9.15	37.17	25.35	
		130	75	0.033	140	0.126	0.05				12
	433							9.20	30.74	31.73	
		130	100	0.033	100	0.071	0.01				12
	420							2.99	53.57	15.11	
		130	75	0.067	160	0.252	0.22				24
	422							3.86	48.35	19.46	
		130	75	0.033	200	0.126	0.07				12
	423							3.93	44.49	23.25	
427		130	100	0.133	220	0.283	0.26				48
	424							4.23	48.18	19.26	
		130	100	0.067	220	0.142	0.07				24
	425							4.30	52.72	14.65	
		130	100	0.033	200	0.071	0.02				12
	426							4.32	53.20	14.15	
		130	100	0.033	240	0.071	0.02				12
	427							4.25	50.03	17.39	