## 8.2 Comparison of Planned Toll Roads in Surabaya

In the expressway-intensive case, comparative assessments were further conducted on corridors with toll developments due to future traffic demands, especially the three parallel north-south toll roads (Figure 8.2.1), which will connect the envisioned Perak–Suramadu toll road. Three alternatives were assessed:

- Alternative 1: MERR toll road (corridor 8a);
- Alternative 2: Surabaya East Ring toll Road (SERR) (corridor 8b), which is located on Outer East Ring Road (OERR); and
- Alternative 3: Waru Wonokoromo Tg. Perak (WWTP) toll road (corridor 5c).

Costs and future demands were analyzed to calculate the B/C ratio as well as the financial internal rate of return (FIRR) of each toll road for each case in which only one, or combination of the above toll roads, would be constructed. The results, which was also based on the distance-proportional toll tariff of Rp.1,000/km, is presented in Table 8.2.1. Even though considerable traffic volume was expected in each case, as shown in Table 8.2.2, the WWTP toll road and the MERR toll road were not viable due to the high construction costs of their elevated structures. From a viability point of view, the Study Team recommends the SERR toll road as the most viable alternative with a B/C ratio of over 1.0 and a decent FIRR.



Figure 8.2.1 Planned Alternative Toll Roads in Surabaya

| Case | Alt.<br>No. | Toll Road      | Cost FIRF          |                 | &B/C Ra         | tio) of       | Remark                           |
|------|-------------|----------------|--------------------|-----------------|-----------------|---------------|----------------------------------|
| Α    | 3           | SERR Toll Road | 1,386              | -               | 11.0%<br>(1.51) |               | At grade                         |
| В    | 2           | MERR Toll Road | 4,551              | -               | -               | n/a<br>(0.42) | Elevated                         |
| С    | 1           | WWTP Toll Road | 5,177<br>(or more) | 2.0%<br>(0.68)  | -               | -             | Elevated                         |
| D    | 1+3         | SERR+WWTP      | 6,563              | -0.6%<br>(0.52) | 5.2%<br>(0.90)  | -             | Combination of two toll<br>roads |
| Е    | 1+2         | MERR+WWTP      | 9,728              | -0.7%<br>(0.51) | -               | n/a<br>(0.25) | Combination of two toll<br>roads |
| F    | 1+2+3       | SERR+MERR+WWTP | 11,114             | -0.8%<br>(0.51) | n/a<br>(0.33)   | n/a<br>(0.21) | Combination of three toll roads  |

 Table 8.2.1
 Project Viability of Planned Toll Roads (Year 2030)

Source: JICA Study Team

Notes: Based on toll tariff of Rp.1,000 / km WWTP: Waru – Wonokoromo – Tg. Perak MERR: Middle East Ring Road SERR: Surabaya East Ring toll Road

On the other hand, traffic demand on the major north-south roads was forecasted from the analysis of the effects of the traffic volume reduction due to the toll road(s). Demand forecasts on corridors 5c, 8b, and 8a, for the years 2015, 2020, and 2030 are presented in Table 8.2.2. In cases that has the WWTP constructed (i.e. cases C, D, E, F), considerable traffic volume reduction, or alleviation of traffic congestion, are expected to happen compared with the "do-nothing" case (i.e. case G) where none of the above three toll roads would be constructed. In quantitative figures, the WWTP would reduce around 32,000 pcu/day (from 249,000 to 217,000 pcu/day) on the major non-toll arterial roads by 2030. Among others, a reduction of around 25,000 pcu/day (from 136,000 to 111,000 pcu/day) is expected on Jl. A. Yani, which runs parallel to the WWTP. On the other hand, a relatively small traffic volume reduction (i.e. 6,000 pcu/day) is expected on MERR, which means that the MERR toll road will not benefit from a traffic volume reduction scheme. For this reason, it was dropped from the alternatives.

| Tour 2000 |                       | numo volume (r conduj) |             |           |                  |           |           |        | 10001     | rotar (roordaj) |           |
|-----------|-----------------------|------------------------|-------------|-----------|------------------|-----------|-----------|--------|-----------|-----------------|-----------|
| Case      | Toll Road Combination | Toll Sur-Gem           | A Yani (5c) | WWTP      | MERR (8b)        | Toll MERR | OERR (8a) | SERR   | Toll Road | Arterial Road   | (PCU/day) |
| A         | SERR                  | 174,377                | 130,190     | -         | 51,987           | -         | 56,009    | 48,594 | 222,971   | 238,186         | 461,157   |
| В         | MERR                  | 173,094                | 126,312     |           | 49,772           | 54,061    | 55,592    | -      | 227,155   | 231,676         | 458,831   |
| С         | WWTP                  | 161,265                | 111,338     | 58,133    | 50,444           | -         | 55,621    | -      | 219,398   | 217,403         | 436,801   |
| D         | SERR, WWTP            | 160,141                | 110,759     | 45,063    | 50,091           | -         | 54,063    | 29,153 | 234,356   | 214,913         | 449,269   |
| E         | MERR, WWTP            | 159,237                | 110,246     | 44,263    | 50,680           | 32,026    | 53,620    | -      | 235,526   | 214,546         | 450,072   |
| F         | SERR, MERR, WWTP      | 159,283                | 110,333     | 43,976    | 49,551           | 27,053    | 53,345    | 10,617 | 240,929   | 213,229         | 454,158   |
| G         | None of the above     | 200,375                | 136,170     | -         | 55,501           | -         | 57,564    | -      | 200,375   | 249,235         | 449,610   |
|           | <u>,</u>              | -                      |             |           |                  |           |           |        |           |                 |           |
| Year 2020 |                       |                        |             | Traffic V | /olume (PCU/day) | 1         |           |        | Total (   | Total (PCU/day) |           |
| Case      | Toll Road Combination | Toll Sur-Gem           | A Yani (5c) | WWTP      | MERR (8b)        | Toll MERR | OERR (8a) | SERR   | Toll Road | Arterial Road   | (PCU/day) |
| A         | SERR                  | 142,063                | 91,986      | -         | 44,729           | -         | 54,212    | 7,690  | 149,753   | 190,927         | 340,680   |
| В         | MERR                  | 142,109                | 92,095      | -         | 43,838           | 8,028     | 53,891    | -      | 150,137   | 189,824         | 339,961   |
| С         | WWTP                  | 136,360                | 90,596      | 11,928    | 44,416           | -         | 50,757    | -      | 148,288   | 185,769         | 334,057   |
| D         | SERR, WWTP            | 133,088                | 90,153      | 10,802    | 43,871           | -         | 52,046    | 6,665  | 150,555   | 186,070         | 336,625   |
| E         | MERR, WWTP            | 133,638                | 90,319      | 10,686    | 42,930           | 6,574     | 51,762    | -      | 150,898   | 185,011         | 335,909   |
| F         | SERR, MERR, WWTP      | 133,281                | 90,287      | 10,597    | 42,600           | 5,038     | 51,548    | 3,817  | 152,733   | 184,435         | 337,168   |
| G         | None of the above     | 146,863                | 92,515      |           | 44,156           | -         | 53,595    | -      | 146,863   | 190,266         | 337,129   |
|           | <u>,</u>              | -                      |             |           |                  |           |           |        |           |                 |           |
| Year 2015 |                       |                        |             | Traffic V | /olume (PCU/day) | 1         |           |        | Total (   | PCU/day)        | Total     |
| Case      | Toll Road Combination | Toll Sur-Gem           | A Yani (5c) | WWTP      | MERR (8b)        | Toll MERR | OERR (8a) | SERR   | Toll Road | Arterial Road   | (PCU/day) |
| A         | SERR                  | 100,950                | 90,766      | -         | 38,657           | -         | 50,228    | 2,746  | 103,696   | 179,651         | 283,347   |
| В         | MERR                  | 100,602                | 90,727      | -         | 44,172           | 2,808     | 49,751    | -      | 103,410   | 184,650         | 288,060   |
| С         | WWTP                  | 97,931                 | 89,057      | 5,127     | 38,528           | -         | 49,115    | -      | 103,058   | 176,700         | 279,758   |
| D         | SERR, WWTP            | 97,362                 | 88,957      | 4,854     | 38,500           | -         | 49,815    | 2,247  | 104,463   | 177,272         | 281,735   |
| E         | MERR, WWTP            | 97,308                 | 89,049      | 4,768     | 43,509           | 2,125     | 49,399    | -      | 104,202   | 181,957         | 286,159   |
| F         | SERR, MERR, WWTP      | 97,239                 | 89,050      | 4,761     | 43,439           | 1,860     | 49,633    | 1,319  | 105,178   | 182,122         | 287,300   |
| G         | None of the above     | 102,214                | 90,853      |           | 38,528           | -         | 49,418    | -      | 102,214   | 178,799         | 281,013   |

 Table 8.2.2
 Demand Forecast of Existing and Planned Toll Roads

Source: JICA Study Team

Vear 2030

Note: Shaded cells indicate non-toll roads.

| 2030 |          | A. 1 | rani (5c)     |                                  | MERR (8b) |      |               | OERR (8a)                        |          |      | WWTP          |                                  |                    | SERR                              |                 |                    |                                   |                 |
|------|----------|------|---------------|----------------------------------|-----------|------|---------------|----------------------------------|----------|------|---------------|----------------------------------|--------------------|-----------------------------------|-----------------|--------------------|-----------------------------------|-----------------|
| Case | Capacity | v/c  | Cap<br>Volume | Potential<br>Traffic for<br>WWTP | Capacity  | v/c  | Cap<br>Volume | Potential<br>Traffic for<br>WWTP | Capacity | v/c  | Cap<br>Volume | Potential<br>Traffic for<br>SERR | Original<br>Volume | Additional<br>Potential<br>Volume | Total<br>Volume | Original<br>Volume | Additional<br>Potential<br>Volume | Total<br>Volume |
| Α    |          | 0.8  | 80,800        | -                                |           | 0.8  | 44,800        | -                                |          | 0.8  | 44,800        | 11,209                           | -                  | -                                 | -               | 48,594             | 11,209                            | 59,803          |
| В    |          | 0.8  | 80,800        | -                                |           | 0.8  | -             | -                                |          | 0.8  | 44,800        | 10,792                           | -                  | -                                 | -               | -                  | -                                 | -               |
| C    |          | 0.8  | 80,800        | 30,538                           |           | 0.8  | 44,800        | 5,644                            |          | 0.8  | 44,800        | 10,821                           | 58,133             | 36,182                            | 94,315          | -                  | -                                 | -               |
| D    | 101,000  | 0.8  | 80,800        | 29,959                           | 56,000    | 0.8  | -             | -                                | 56,000   | 0.8  | 44,800        | 9,263                            | 45,063             | 29,959                            | 75,022          | 29,153             | 9,263                             | 38,416          |
| E    |          | 0.8  | 80,800        | 29,446                           |           | 0.8  | 44,800        | 5,880                            |          | 0.8  | 44,800        | 8,820                            | 44,263             | 35,326                            | 79,589          | -                  | -                                 | -               |
| F    |          | 0.8  | 80,800        | 29,533                           |           | 0.8  | -             | -                                |          | 0.8  | 44,800        | 8,545                            | 43,976             | 29,533                            | 73,509          | 10,617             | 8,545                             | 19,162          |
| G    |          | 1.62 | 136,170       | -                                |           | 0.99 | 55,501        | -                                |          | 1.03 | 57,564        | -                                | -                  | -                                 | -               | -                  | -                                 | -               |
|      |          |      |               |                                  |           |      |               |                                  |          |      |               |                                  |                    |                                   |                 |                    |                                   |                 |
| 2020 |          | A. 1 | 'ani (5c)     |                                  |           | MER  | R (8b)        |                                  |          | OEF  | RR (8a)       |                                  |                    | WWTP                              |                 | SERR               |                                   |                 |
| Case | Capacity | v/c  | Cap<br>Volume | Potential<br>Traffic for<br>WWTP | Capacity  | v/c  | Cap<br>Volume | Potential<br>Traffic for<br>WWTP | Capacity | v/c  | Cap<br>Volume | Potential<br>Traffic for<br>SERR | Original<br>Volume | Additional<br>Potential<br>Volume | Total<br>Volume | Original<br>Volume | Additional<br>Potential<br>Volume | Total<br>Volume |
| А    |          | 0.8  | 80,800        | -                                |           | 0.8  | 0             | -                                |          | 0.8  | 44,800        | 9,412                            | -                  | -                                 | -               | 7,690              | 9,412                             | 17,102          |
| В    |          | 0.8  | 80,800        | -                                |           | 0.8  | 0             | -                                |          | 0.8  | 44,800        | 9,091                            | -                  | -                                 | -               | -                  | -                                 | -               |
| С    |          | 0.8  | 80,800        | 27,681                           |           | 0.8  | 0             | 0                                |          | 0.8  | 44,800        | 5,957                            | 11,928             | 27,681                            | 39,609          |                    | -                                 | -               |
| D    | 101,000  | 0.8  | 80,800        | 27,401                           | 56,000    | 0.8  | 0             | -                                | 56,000   | 0.8  | 44,800        | 7,246                            | 10,802             | 27,401                            | 38,203          | 6,665              | 7,246                             | 13,911          |
| E    |          | 0.8  | 80,800        | 27,167                           |           | 0.8  | 0             | 0                                |          | 0.8  | 44,800        | 6,962                            | 10,686             | 27,167                            | 37,853          | -                  | -                                 | -               |
| F    |          | 0.8  | 80,800        | 26,832                           |           | 0.8  | 0             | -                                |          | 0.8  | 44,800        | 6,748                            | 10,597             | 26,832                            | 37,429          | 3,817              | 6,748                             | 10,565          |
| G    |          | 1.1  | 92,515        | -                                |           | 0.79 | 44,156        | -                                |          | 0.96 | 53,595        | -                                | -                  | -                                 | -               | -                  | -                                 | -               |
|      |          |      |               |                                  |           |      |               |                                  |          |      |               |                                  |                    |                                   |                 |                    |                                   |                 |
| 2015 |          | A. 1 | 'ani (5c)     |                                  |           | MER  | R (8b)        |                                  |          | OEF  | RR (8a)       |                                  |                    | WWTP                              |                 |                    | SERR                              |                 |
| Case | Capacity | v/c  | Cap<br>Volume | Potential<br>Traffic for<br>WWTP | Capacity  | v/c  | Cap<br>Volume | Potential<br>Traffic for<br>WWTP | Capacity | v/c  | Cap<br>Volume | Potential<br>Traffic for<br>SERR | Original<br>Volume | Additional<br>Potential<br>Volume | Total<br>Volume | Original<br>Volume | Additional<br>Potential<br>Volume | Total<br>Volume |
| А    |          | 0.8  | 80,800        | -                                |           | 0.8  | 0             | -                                |          | 0.8  | 44,800        | 5,428                            | -                  | -                                 | -               | 2,746              | 5,428                             | 8,174           |
| В    |          | 0.8  | 80,800        | -                                |           | 0.8  | 0             | -                                |          | 0.8  | 44,800        | 4,951                            | -                  | -                                 | -               | -                  | -                                 | -               |
| С    |          | 0.8  | 80,800        | 17,699                           |           | 0.8  | 0             | 0                                |          | 0.8  | 44,800        | 4,315                            | 5,127              | 17,699                            | 22,825          | -                  | -                                 | -               |
| D    | 101,000  | 0.8  | 80,800        | 18,026                           | 56,000    | 0.8  | 0             | -                                | 56,000   | 0.8  | 44,800        | 5,015                            | 4,854              | 18,026                            | 22,880          | 2,247              | 5,015                             | 7,262           |
| E    |          | 0.8  | 80,800        | 17,616                           |           | 0.8  | 0             | 0                                |          | 0.8  | 44,800        | 4,599                            | 4,768              | 17,616                            | 22,385          | -                  | -                                 | -               |
| F    |          | 0.8  | 80,800        | 17,844                           |           | 0.8  | 0             | -                                |          | 0.8  | 44,800        | 4,833                            | 4,761              | 17,844                            | 22,605          | 1,319              | 4,833                             | 6,152           |
| G    |          | 1.08 | 90,853        | -                                |           | 0.69 | 38,528        | -                                |          | 0.88 | 49,418        | -                                | -                  | -                                 | -               | -                  |                                   | -               |

 Table 8.2.3
 Revised Traffic Demands with Toll Road Diversion Schemes

Source: JICA Study Team

Notes: Assumption the V/C ratio is maximum 0.8

Capacity of Frontage Roads on JI. A. Yani = 17,000 PCU/day

Furthermore, demand forecast was revised again taking into account traffic diversions from the parallel non-toll arterial roads (i.e., Jl, A. Yani, MERR, OERR) to the remaining two alternative toll roads, i.e., the SERR and the WWTP. A 0.8 volume-capacity (V/C) ratio was applied to assume the "cap volume" on these non-toll arterial roads. In an equilibrium situation, these non-toll roads were nearly saturated, and the exceeding traffic were assumed to be diverted to the toll roads (i.e., from Jl. A. Yani and MERR to the WWTP, and from OERR to the SERR) which were considered as potential traffic to be added to the volume on the toll roads. While MERR will not be saturated up to 2020, some traffic diversion is expected and it is assumed as potential traffic to be added to the WWTP. The traffic volumes on the WWTP and the SERR were forecasted to be around 75,000 and 38,000 pcu/day, respectively, for 2030 (in Case D). Thus, construction of the WWTP could be supported from the traffic diversion point of view. In conclusion, both the SERR and the WWTP toll roads are included in the transportation action plan.

Nevertheless, it should be noted that high traffic volumes (23,000 pcu/day in Case D) is already expected on the WWTP even for 2015 (i.e., short term), as shown in Table 8.2.3, and that the development of the WWTP is classified as short term. This means that the alleviation of the current traffic congestion on Jl. A. Yani should urgently be solved. If construction of the WWTP is not implemented soon, the Study Team recommends the construction of continuous flyovers on Jl. A. Yani to help to increase traffic capacity and alleviate congestion by securing through traffic on the main road, as will be seen later.

## 8.3 Road Network Hierarchies

Taking the above road development corridors and assessments into account, the principal policy measures for road network development are described below, while the proposed future road functions are presented in Figure 8.3.1 (for GKS) and Figure 8.3.2 (for Surabaya):

- Formulation of road network through proper classes of roads so that the whole network will function efficiently and effectively. This includes completing the missing links, widening/upgrading existing roads, constructing flyovers at bottleneck intersections, physically separating through-traffic from local traffic by access control, etc;
- Increasing road capacities to fulfill traffic demands, especially in Central Surabaya, as well as minimizing the demand and capacity gap of the roads to the central area; and,
- Road development should aim not only to cope with the traffic congestion issues but also to lead to a desirable urban structure.

Road function definitions are presented in Table 8.3.1. In GKS road function implies that the primary and secondary road systems are the principal components of the road network. The primary road system was designed for inter-regional traffic and mainly serves traffic between urban centers. In effect, the primary system has relatively long distance trips. While no primary road was proposed for Corridor (3), the westward corridor, which runs from Surabaya to south of Kabupaten Gresik and south Kabupaten Lamongan, should be developed with partial access controls. As shown in Figure 8.3.1, primary arterial roads will connect with the national activity center (PKN: Pusat Kegiatan Nasional) (Table 8.3.2) and the regional activity center (PKW: Pusat Kegiatan Wilayah) (Table 8.3.3) through partial access control. On the other hand, primary collector roads will connect the PKW with the local activity centers (PKL: Pusat Kegiatan Lokal) (Table 8.3.4) with no access control.

| Road Function      | Function                                                  | Through Traffic | Access Control       |  |
|--------------------|-----------------------------------------------------------|-----------------|----------------------|--|
| Primary Arterial   | Linking PKN and PKN                                       | Major           | Partial Access       |  |
|                    | Linking PKN and PKW                                       |                 | Control              |  |
|                    | Linking PKN/PKW and International Sea<br>Port and Airport |                 |                      |  |
| Secondary Arterial | Connecting centers inside urban area                      | Partial         | No Access<br>Control |  |
| Primary Collector  | Linking PKW and PKW                                       | Partial         | No Access            |  |
|                    | Linking PKW and PKL                                       |                 | Control              |  |
| Local Road         | Linking PKL and PKL                                       | Minor           | No Access            |  |
|                    | Others                                                    |                 | Control              |  |

Table 8.3.1 Definition of Road Functions

Source: National Regulation number 38 Year 2004

Remarks:

PKN : Pusat Kegiatan Nasional - National Activity Center

PKW : Pusat Kegiatan Wilayah - Regional Activity Center

PKL : Pusat Kegiatan Lokal - Local Activity Center

Table 8.3.2List of PKN in Java

| PKN                                                                                                         | Remarks                                                              |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Gerbangkertosusila, Bandung (Bandung<br>Raya), Jakarta (Jabodetabek), Semarang<br>(Kedungsepur). Yogyakarta | I/C/3 (Development Step I,<br>Revitalization of existing<br>cities)  |
| Malang, Serang, Cilegon, Cirebon,<br>Surakarta (Solo), Cilacap                                              | I/C/1 (Development Step I,<br>Development / function<br>improvement) |
| Surabaya                                                                                                    | Regional Center                                                      |

Source: Government Regulation 26 Year 2008 and JICA Study Team

|                                                                                           | Euocouvariovinioo                                                      |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| PKW                                                                                       | Remarks                                                                |
| Pasuruan, Tuban, Kediri                                                                   | I/C/1(Development Step I,<br>Development / function<br>improvement)    |
| Probolinggo, Tulung Agung, Situbondo,<br>Madiun, Jombang, Banyuwangi,<br>Sampang, Sumenep | II/C/1 (Development Step II,<br>Development / function<br>improvement) |
| Sidoarjo, Gresik, Bangkalan                                                               | SMA Level Center                                                       |
| Mojokerto, Lamongan                                                                       | GKS Kab. Center                                                        |

| Table 8.3.3 | List of PKW in East Java Province |
|-------------|-----------------------------------|
|-------------|-----------------------------------|

Source: Government Regulation 26 Year 2008 (Outside GKS) and JICA Study Team (Inside GKS)

| Iable 8.3.4 List of Ph                                                                 | L IN GKS Zone         |
|----------------------------------------------------------------------------------------|-----------------------|
| PKL                                                                                    | Remarks               |
| Paciran, Babat, Sedayu, Gempol, Tanah<br>Merah, Klampis, Tg. Bumi                      | GKS Sub-Center        |
| Menganti, Krian, Labang                                                                | SMA Sub-Center        |
| Brondong, Manyar, Cerme, Driyorejo,<br>Tarik, Sedati, Sooko, Mojosari, Ngoro,<br>Socah | Other Kab. Sub-Center |

 Table 8.3.4
 List of PKL in GKS Zone

Source: JICA Study Team

The secondary road system will serve traffic mainly within the urban areas in SMA. Secondary arterial roads are designed usually with partial access control, while secondary collector roads have no access control. These two road systems should be smoothly integrated with each other. Some new secondary arterial roads in SMA still need to be added and developed in a north-south direction. For the east-west direction, while existing roads are mainly secondary arterial roads, some road sections should be widened and upgraded, while some missing links, or flyovers/underpasses, should be constructed. It should also be emphasized that both land acquisitions and environmental issues should be settled before actual implementation starts, because these were serious obstacles in the implementation of the Surabaya Urban Development Project (SUDP).



Figure 8.3.2 Future Road Functions in Surabaya

## 8.4 Road Development Projects

In the proposal for the road development projects, the Study Team followed not only the roads that were listed in the ARSDS-GKS master plan (1997) but also the latest road and flyover plans prioritized by each local government. The Study Team reviewed them in light of the above-mentioned corridor developments and road network hierarchies. The road development projects are shown in Figure 8.4.1 (i.e. for GKS) and Figure 8.4.2 (i.e. for SMA), and listed in Table 8.4.1. These projects were included in future road networks and tested in terms of future demand forecasts, to sort them into projects to be implemented in the short term (i.e. 2015, Figure 8.4.6), medium term (i.e. 2020, Figure 8.4.7), and long term (i.e. 2030, Figure 8.4.8). Actual road project components to be included in each road development project are presented in Figure 8.4.3 (for GKS) and Figure 8.4.4 (for SMA). Phased road project components are also presented in Figure 8.4.7 (for short term), Figure 8.4.9 (for medium term), and Figure 8.4.11 (for long term).

The JICA Study on Formulation of Spatial Planning for GERBANGKERTOSUSILA Zone



The JICA Study on Formulation of Spatial Planning for GERBANGKERTOSUSILA Zone Final Report Volume 4: Development Action Plan for Transportation Sector



Figure 8.4.2 Road Development Projects in SMA

The JICA Study on Formulation of Spatial Planning for GERBANGKERTOSUSILA Zone







Figure 8.4.4 Road Project Components in SMA

#### 1) Short Term (2015)

For the short term, four prioritized east-west road projects were proposed together with the two road development projects along the north-south corridor. The following were the short term priorities: widening and improvement project on the existing Surabaya-Gempol and Surabaya-Gresik toll road sections, new toll road connecting Kabupaten Gresik up to Kabupaten Tuban (project R1t), new toll road connecting Kota Surabaya and Kabupaten Mojokerto (project R4t: Toll SUMO), and new development of Waru–Wonokoromo–Tg. Perak toll road (project R5ct: WWTP). The purpose of constructing the Gresik–Tuban toll road is to reduce the heavy freight traffic on the national road (project R2, which is also proposed to be improved in the short term) as well as to support the industrial and port development plans on the northern coast of Kabupaten Lamongan and Gresik.

Primary collector road development (project RB1, RB2) will be applied in Kabupaten Bangkalan to improve the access road between the Suramadu Access Road and the road in Socah Industrial Estate and Bangkalan. These access roads were considered important for port development in Socah (Madura Seaport City). Primary arterial road developments will be applied to the following: the national road (Tuban–Babat–Lamongan–Gresik) including Lamongan Ring Road (project R2) to support the major oil and gas industrial development in Block Cepu and Kabupaten Bojonegoro; the road connecting Kabupaten Mojokerto to Kabupaten Pasuruan (project R10b); the road connecting Kabupaten Mojokerto to Kota Surabaya (project R4a); the road connecting Gresik and Driyorejo, or the Outer West Ring Road II, which bypasses Surabaya (project R14); and the arterial road on project R8, which connects Waru-Juanda as "frontage road" of the SERR (Surabaya East Ring Road). The importance of developing project R8, in the short term, is to secure right-of-way (ROW) for the SERR toll road (Figure 8.4.5), which will be constructed in the medium term (2020), thus avoiding future land acquisition complications.



Source: JICA Study Team Figure 8.4.5 Reserved ROW for the SERR (Laguna Indah Housing Complex)



Figure 8.4.6 Phased Road Development Projects (2015: Short Term)



Figure 8.4.7 Phased Road Project Components (2015: Short Term)

#### 2) Medium Term (2020)

Main road development projects for the medium term are: the toll road connecting Perak-Suramadu (project R8st), toll road connecting Suramadu Bridge to the planned Tg. Bulu Pandan (project R6at), new Surabaya East Ring Toll Road (Project R8at: SERR), and a new arterial road connecting Kota Surabaya and Kabupaten Pasuruan through Sidoarjo without passing through the center of Kabupaten Sidoarjo (project R5b). For freight road development in GKS, the Study Team proposed Road Project R11, which connects the industrial and port areas in northern Kabupaten Lamongan with both Kabupaten Jombang and Kabupaten Malang.

The road development project inside Kota Surabaya will be applied along the north-south and east-west corridors. Project R13 is also known as Outer West Ring Road I in Kota Surabaya. The road development along this corridor is designed to accommodate through traffic along the north-south corridor in West Surabaya and connect it to the Lamong Bay access road, which is planned to be constructed in the short term. Project RG2 is designed as a ring road of Kota Gresik, which is expected to have several industrial areas, as well as private and public ports.



Figure 8.4.8 Phased Road Development Projects (2020: Medium Term)



Figure 8.4.9 Phased Road Project Components (2020: Medium Term)

#### 3) Long Term (2020)

Road development projects for the long term include the Krian-Manyar, and the Krian-Gempol sections. The Manyar-Krian-Gempol toll road will not only accommodate traffic bypassing Kota Surabaya, but will also be an alternative detour to skirt around the Lapindo mud flow in Porong, Kabupaten Sidoarjo, which could spread further in the future. Arterial road development in Kabupaten Bangkalan (Project R6) is designed to be an access road from Kamal to Tg. Bumi via Socah and Kota Bangkalan. The purpose of developing this road is to provide a north and south access road for the Kabupaten Bangkalan coastal line, where several ports (Socah, Tg. Bulu Pandan and Tg. Bumi) and industrial areas (Socah, Klampis and Suramadu Footage Area) are planned. Primrary collector development projects are: a road connecting Kecamatan Sedayu (Kabupaten Gresik) and Kota Mojokerto via Kota Lamongan (Project R10a), a road in Kabupaten Mojokerto (Project RM1) to create the "tourism route" that connects Mojosari, Pacet, and Trowulan with several historical and religious sites, as well as several others in North Gresik (Project RG1), Kabupaten Bangkalan (Project RB1), Kabupaten Lamongan (Project RL1) and Kabupaten Sidoarjo (Project RS1 and RS2). The second airport development that is planned in Kabupaten Lamongan, in the long term, will also be supported by the road development in Kabupaten Lamongan (Project RL1), as well as the primary arterial road development (Project R2), and the commuter railway development (Project W7).



Figure 8.4.10 Phased Road Development Projects (2030: long term)



Figure 8.4.11 Phased Road Project Components (2030: long term)

| Project ID | Total Cost<br>(mil. Rp) | Annual OM<br>cost (mil. Rp) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------|-------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Short Term | (Year 2015)             | /                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1          | 847,696                 | 11,646                      | This is an existing provincial road which functions as a primary<br>arterial road passing through the northern coast of East Java where<br>the industrial and port development is planned as a national policy.<br>This road should be upgraded to a national road, to support the<br>industrial development program.                                                                                                                                                                                                                                                                                                                                                                            |
| 1b         | 123,246                 | 1,693                       | This road includes a national road connecting Surabaya (JI. Gresik)<br>and Gresik City on the northern coast of Surabaya. It needs to be<br>widened from 2 to 4 lanes, and the work is ongoing. Existing JI.<br>Rajawali and JI. Kenjeran roads serve as one of the main east-west<br>corridors connecting "East Surabaya" and "West Surabaya" in the<br>north of Surabaya. This road also goes through Margomulyo<br>industrial and warehouse area, and the access road development is<br>also planned for Lamong Bay port.                                                                                                                                                                     |
| 1t         | 2,382,145               | 49,091                      | This package includes development of Surabaya - Gresik toll road<br>(widening from 4 to 6 lanes) and its extension with a total length of<br>80.6 kilometers. This road development will contribute to the<br>northern coastal development of East Java as a national policy. It<br>will also reduce the burden of existing truck traffic on Corridor 2 and<br>will serve as an alternative freight transport route connecting Tuban<br>with Surabaya and south of GKS.                                                                                                                                                                                                                          |
| 2          | 259,644                 | 3,567                       | This is an existing national road connecting Surabaya, Gresik,<br>Lamongan and Babat and it currently serves as an important freight<br>corridor as part of northern Java trunk road. Current road widening<br>work from 2 to 4 lanes is under way. Ring roads are also planned to<br>bypass the center of Lamongan and Babat.                                                                                                                                                                                                                                                                                                                                                                   |
| 3a         | 370,023                 | 5,084                       | This road is one of the important east-west corridors to be<br>developed through JI. Adityawarman, JI. Jagir Wonokromo and JI.<br>Wonorejo (Outer East Ring Road). The Study Team proposes a<br>new flyover connecting JI. Adityawarman and JI. Jagir Wonokromo<br>in order to facilitate through traffic. Though it is a secondary arterial<br>road, it needs to be developed as a 6-lane road with sufficient<br>width. The Study Team also proposes a new corridor of MRT (Mass<br>Rail Transit) in the west of Surabaya.                                                                                                                                                                     |
| 4a         | 319,918                 | 4,395                       | This is a national and primary arterial road connecting major<br>sub-centers of Krian, Mojokerto, and Sooko and extending to<br>Jombang. While Surabaya-Mojokerto Toll Road is planned<br>parallel to this road, it is still expected to serve regional traffic as<br>well as the industrial estate on Corridor 4, and It needs to be<br>widened from 2 lanes into 4 lanes.                                                                                                                                                                                                                                                                                                                      |
| 4b         | 487,568                 | 6,698                       | This is a provincial road in Surabaya while it is a kabupaten road<br>outside Surabaya. It is an alternative road for serving traffic<br>between Surabaya and Mojokerto and thus it should be developed<br>as a secondary arterial road. In Wringinanom, many factories<br>have been plotted, generating truck traffic.                                                                                                                                                                                                                                                                                                                                                                          |
| 4t         | 1,463,410               | 30,157                      | This Surabaya – Mojokerto Toll Road is currently under<br>construction (4 lanes). The total length is 33.8 kilometers with 8<br>lanes/2 ways in urban area and 6 lanes/2 ways in rural area as<br>future widening. The toll road extension is planned toward Jombang<br>and Kediri as part of Trans-Java Toll Road.                                                                                                                                                                                                                                                                                                                                                                              |
| 5с         | 371,097                 | 5,098                       | I his is an arterial road development along the of North-South<br>corridor from Surabaya City up to Gempol sub-center detouring the<br>Sidoarjo mud flow. In Surabaya, frontage roads are currently<br>being constructed on both sides of this road, and continuous<br>flyovers are planned for through traffic. Existing railway along this<br>corridor is planned to be developed and elevated as commuter<br>railway service (first stage), and at-grade railway crossings will be<br>removed. The Sidoarjo Ring Road which bypasses the center of<br>Sidoarjo is also planned, and a relocation and reconstruction of a<br>primary arterial road detouring Sidoarjo mud flow is in progress. |

Table 8.4.1 List of Road Development Projects

| Project ID              | Total Cost<br>(mil. Rp) | Annual OM<br>cost (mil. Rp) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------|-------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Short Term              | (Year 2015)             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5ct                     | 5,177,000               | 50,700                      | This toll road is a national initiative toll road to alleviate traffic congestion in Jl. A. Yani. It is an elevated toll road from Waru-Wonokromo-Tg. Perak (WWTP) along 19.75 kilometers.                                                                                                                                                                                                                                                                                                                 |
| 5d                      | 476,170                 | 6,542                       | Inis road serves not only as an access road to the center of SIER<br>(Surabaya Industrial Estate of Rungkut) but also as an alternative<br>road connecting Surabaya and Sidoarjo as an extension of<br>MERR (Middle East Ring Road), which is currently under<br>construction. The Study Team proposes BRT (bus rapid transit)<br>connecting Juanda Airport and Sidotopo by making use of the<br>centermost lane of the MERR.                                                                              |
| 5at                     | 625,908                 | 12,899                      | Surabaya – Gempol toll road is the first toll road in East Java,<br>completed in 1986, and originally with 4 lanes/2 ways with a<br>length of 43.8 kilometers. Widening to 6 lanes/2 ways have been<br>completed in the section of Dupak – Waru, and the rest of the<br>section needs to be widened to 6 lanes. Relocation/reconstruction<br>of a toll road detouring Sidoarjo mud flow is in progress.                                                                                                    |
| 8                       | 645,074                 | 8,862                       | This is a primary arterial road development to connect Suramadu<br>bridge and Juanda Airport, serving as a ring road (Outer East<br>Ring Road). ROW for a toll road (SERR: Surabaya East Ring<br>Road) has been reserved in the center of the road. This road<br>will also serve as the boundary for development control.                                                                                                                                                                                  |
| 10b                     | 160,525                 | 2,205                       | This is an existing national and primary arterial road with 5.5 to 6.0 meters width. Since industrial estates such as the PIER(Pasuruan Industrial Estate Rembang) and Ngoro are being developed, direct connection between Mojokerto, Mojosari, and Gempol is necessary to support industrial activities.                                                                                                                                                                                                 |
| 14                      | 1,497,682               | 20,576                      | This primary arterial road is planned by the central government as<br>the main North-South Corridor. The Study Team calls this road<br>Outer West Ring Road II (OWRR II) with a total length of 22.3 km.<br>It will pass Surabaya and will also go partly through Kabupaten<br>Gresik and Kabupaten Sidoarjo, serving as a major bypass for<br>passenger/freight traffic.                                                                                                                                  |
| 15                      | 347,102                 | 4,769                       | This road functions as one of the major east – west secondary<br>arterial roads to be developed to form a grid-like road network.<br>Box culvert construction is currently ongoing to widen the road to<br>4 lanes. Flyovers have been planned on JI. Pasar Kembang and<br>JI. Pandegiling. The planned commuter railway development of<br>Surabaya-Sumari-Lamongan is along this road, and the Study<br>Team also proposes a new corridor of MRT (Kertajaya – ITS)<br>along this road (east of Surabaya). |
| 16                      | 634,769                 | 8,721                       | JI. Menganti and its extension to JI. Margorejo function as one of<br>the major east – west secondary arterial roads to be developed.<br>The missing link between JI. A. Yani and JI. Mastrip needs to be<br>developed as a 4-lane road.                                                                                                                                                                                                                                                                   |
| B2                      | 335,533                 | 4,610                       | These primary collector roads are planned to connect the<br>Suramadu Bridge footage area with new Socah industrial estate<br>and port (Kabupaten sub-center).                                                                                                                                                                                                                                                                                                                                              |
| Total for<br>Short Term | 16,524,508              | 237,313                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Medium Ter              | m (Year 2020)           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1a                      | 13,278                  | 182                         | Jl. Kapas Krampung needs to be widened to 4 lanes to cater for<br>east-west traffic and the traffic to/from Suramadu bridge. A flyover<br>may be constructed to avoid at-grade railway crossing.                                                                                                                                                                                                                                                                                                           |
| 3                       | 950,797                 | 13,062                      | This is a primary collector road which connects Mantup (south of Kabupaten Lamongan) and Cerme (south of Kabupaten Gresik) as an extension of road project R15 This road is planned to support the agricultural area in Kecamatan Ngimbang, Kabupaten Lamongan to Kabupaten Gresik and Surabaya.                                                                                                                                                                                                           |

| Project ID              | Total Cost<br>(mil. Rp) | Annual OM<br>cost (mil. Rp) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|-------------------------|-------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Medium Term (Year 2020) |                         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 5a                      | 406,862                 | 5,590                       | A secondary arterial road is planned to support the development in<br>Kabupaten Sidoarjo as a SMA Level Center, connecting it to<br>Surabaya. It will be developed as a frontage road of<br>Surabaya-Gempol Toll Road in Kabupaten Sidoarjo, and in<br>Surabaya the continuing roads of JI. Jambangan, JI. Karah Agung,<br>JI. Abdul Wahab Siamin, and JI. Simogunung will also be widened<br>to 4 lanes. A flyover is also planned on JI. Mayjend. Sungkono.                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 5b                      | 1,067,846               | 14,670                      | This primary arterial road is planned as "East Ring Road" of<br>Kabupaten Sidoarjo, with a function to limit the development on the<br>east side of the road. It will also serve as part of the future freight<br>road network preventing trucks from passing through the Sidoarjo<br>center.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 6a                      | 207,230                 | 2,847                       | This primary arterial road is planned to be developed to support the<br>Madura Island traffic connecting sub-centers of Klampis and Tanah<br>Merah in Kabupaten Bangkalan. Development of this frontage road<br>of a toll road to the planned Tg. Bulu Pandan port is conditional on<br>the development of the port, and industrial and housing<br>development in the Suramadu footage area (Labang).                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 6at                     | 931,329                 | 19,193                      | This toll road development connecting Suramadu Bridge and the<br>planned Tg. Bulu Pandan Port is necessary to accommodate<br>mostly heavy loaded traffic.<br>Development of this toll road is conditional on the development of<br>the port.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 7                       | 1,298,333               | 17,837                      | These primary arterial road and primary collector road (on the south coast) are planned to be developed to cater for the Madura Island traffic connecting Bangkalan City (SMA Level Center), sub-center of Tanah Merah, Kecamatan Blega, and toward Kabupaten Sampang, supporting the development along this corridor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 8st                     | 1,976,685               | 24,944                      | The toll road development is planned to connect Tg. Perak and<br>Suramadu Bridge and the planned SERR to form part of a toll ring<br>road. Main objective for this development is to divert heavy loaded<br>traffic which goes through the city center to this toll road.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 8at                     | 1,083,586               | 12,135                      | This is a toll road development to connect Suramadu Bridge and<br>Juanda Airport, constructed on a primary arterial ring road (Outer<br>East Ring Road). It is called SERR (Surabaya East Ring Road),<br>and ROW for SERR has been reserved in the center of Outer<br>East Ring Road. This road will serve not only as one of the major<br>truck routes to connect the ports but also as the boundary for<br>development control.                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 9                       | 308,823                 | 4,243                       | In the south of Kabupaten Gresik, many housing development projects have been planned. This road is planned to support these development. This road is currently used by many heavy loaded vehicles. The existing function of this road is a narrow kabupaten road but is planned as a secondary arterial road with 4 lanes. This road is planned to be developed as a frontage road of a toll road planned in the long term (Project R9).                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 11                      | 1,209,383               | 16,615                      | This primary collector road will connect Tuban area and<br>Pasuruan-Malang area through Mojokerto from a viewpoint of GKS<br>Plus. Road length between Babat and Mantup is approximately<br>28.0 kilometers.<br>The section of Pucuk - Brondong is a narrow kabupaten road (4.5<br>meter width) same as in the above Babat – Mantup section. It is<br>necessary to widen the road width and strengthen the pavement to<br>support the development in the northern coastal zone in East Java.<br>The current road length is 28.2 kilometers.<br>In GKS, this north-south long road is planned to be developed to<br>connect both GKS sub-centers of Paciran and Babat in<br>Kabupaten Lamongan up to Kabupaten Mojokerto. There are<br>industrial area plotted in Paciran and agricultural area in the south<br>of Kabupaten Lamongan. |  |  |  |  |  |

| Project ID                   | Total Cost<br>(mil. Rp) | Annual OM<br>cost (mil. Rp) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------|-------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Medium Ter                   | m (Year 2020)           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12                           | 452,505                 | 6,217                       | This road is called Middle West Ring Road (MWRR) and it has<br>partly been implemented and financed by Japan or executed by<br>private investor. The section that has not been realized yet should<br>be constructed to give full play of its function. Total road length is<br>15.7 kilometers with 4 lanes.<br>On this road, a BRT line connecting Tambak Oso Wilangun Bus<br>Terminal and Waru railway station is also proposed.                                                                                                                                                                                                                                                                                                            |
| 13                           | 697,899                 | 9,588                       | This road is called Outer West Ring Road I by the Study team.<br>This road is planned to be developed to connect the northwest and<br>the south of Surabaya (industrial area on JI. Mastrip), forming a grid<br>pattern road network. At the north tip of this road in Surabaya, there<br>is an access road to connect the new port in Lamong Bay with a<br>length of 1.2 km. The planned road width is 14 meters with 4 lanes.                                                                                                                                                                                                                                                                                                                |
| 17                           | 631,981                 | 8,682                       | This road functions as one of the major east – west secondary<br>arterial roads to be developed to form a grid pattern road network.<br>This road will support development in the south of Kabupaten<br>Gresik, West of Surabaya, and Driyorejo.<br>This road will connect Toll Road (Project R9t), to Surabaya at<br>Kedamean and will go through JI. Sumur Welut and JI. Gayung<br>Kebonsari. A flyover is planned on JI. A. Yani.                                                                                                                                                                                                                                                                                                           |
| G2                           | 428,493                 | 5,887                       | This secondary arterial road is planned as a ring road for Gresik<br>City (SMA Level Center).<br>This ring road is planned and partly completed by Kabupaten<br>Gresik. The function of this road is bypassing the traffic through<br>Gresik City and to support the new port development at Gresik<br>point and Kali Lamong. A Truck cargo terminal is planned at the<br>existing Bunder Bus Terminal along this ring road. Some section of<br>the existing road is very narrow and it needs to be widened to at<br>least 4-lane standard. Total road length is 26.5 kilometers.                                                                                                                                                              |
| Total for<br>Medium<br>Term: | 11,968,435              | 165,090                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Long Term                    | (Year 2030)             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                            | 678,252                 | 9,318                       | This primary arterial road is functioned to accommodate the traffic<br>along the north coastal line inside Kabupaten Bangkalan. Along this<br>road, there are some port developments in Socah (Kabupaten<br>Sub-Center), Tg. Bulu Pandan (GKS Sub-Center) and Tg. Bumi<br>(GKS Sub-Center). Main development along this package is to<br>support the industrial activities.                                                                                                                                                                                                                                                                                                                                                                    |
| 8t                           | 702,161                 | 8,886                       | This toll road will mainly serve traffic in the east of Surabaya,<br>connecting Juanda Airport, SERR, and Outer East Ring Road with<br>existing Surabaya-Gempol Toll Road and Surabaya-Mojokerto Toll<br>Road. It is planned to be widened from 4 to 6 lanes. This package is<br>also supported by a frontage road that will have been planned in<br>previous term of development.                                                                                                                                                                                                                                                                                                                                                             |
| 9t                           | 2,034,983               | 41,936                      | This is a north-south toll road development which is planned<br>between north Gresik, Krian, and Gempol connecting Surabaya -<br>Gresik Toll Road and Surabaya - Mojokerto Toll Road (which will<br>have been constructed by the long term) and Surabaya – Gempol<br>Toll Road. This toll road will also support the new port development<br>in the north of Kabupaten Gresik and Lamongan, residential<br>development in Driyorejo/Krian, industrial estate in Wringinanom,<br>industrial recycle park in the south of Kabupaten Gresik, and<br>industrial areas in Kabupaten Pasuruan and Kabupaten Malang.<br>It will also serve as one of the alternative detouring routes avoiding<br>the Lapindo mud flow in Porong, Kabupaten Sidoarjo. |

| Project ID             | Total Cost<br>(mil. Rp) | Annual OM<br>cost (mil. Rp) | Description                                                                                                                                                                                                                                                                                                                                                       |  |  |
|------------------------|-------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Long Term (Year 2030)  |                         |                             |                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 10a                    | 742,229                 | 10,197                      | This is an existing provincial road which functions as a primary collector road. The road is very narrow, sometimes less than 4.0 meters. Since this road connects GKS Sub-Center of Sedayu and GKS Kabupaten centers of Lamongan and Mojokerto, it is necessary to be widened by future traffic demand. Road length is 65 kilometers.                            |  |  |
| B1                     | 909,827                 | 12,500                      | These roads are planned to accommodate the north-south traffic between the two primary arterial roads in Kabupaten Bangkalan.                                                                                                                                                                                                                                     |  |  |
| G1                     | 462,001                 | 6,347                       | These primary collector roads are planned to connect the new<br>Sedayu-Gresik industrial estate and private port (GKS sub-center) with<br>the primary arterial road and toll road connecting Tuban and Surabaya.<br>These roads are also planned to support the development of<br>agricultural area in the north of Kabupaten Gresik.                             |  |  |
| L1                     | 569,090                 | 7,818                       | This is a narrow kabupaten road (3.5 to 4.0 meter width) to connect<br>Lamongan and Sedayu on the north coast. These roads need to be<br>widened and upgraded to primary collector road to support the<br>industrial and agricultural development planned in this area. These<br>roads may also serve as an access road to a second airport planned in<br>GKS.    |  |  |
| M1                     | 571,935                 | 7,858                       | These are currently primary collector roads supporting the tourism sites<br>in Kabupaten Mojokerto, especially in Kecamatan Trowulan and<br>Kecamatan Pacet. These roads are also used as transport route of<br>construction materials in this area. Thus, road widening and betterment<br>of the pavement is necessary to support the development in the region. |  |  |
| S1                     | 181,258                 | 2,490                       | This road is planned as a primary collector road connecting Krian and Sidoarjo. It will also improve the accessibility of agricultural development in western Kabupaten Sidoarjo.                                                                                                                                                                                 |  |  |
| S2                     | 316,862                 | 4,353                       | This road is planned to support the new town development in Kecamatan Sukodono. It will also serve as an alternative access road connecting Krian and Sidoarjo.                                                                                                                                                                                                   |  |  |
| Total for<br>Long Term | 7,168,598               | 111,704                     |                                                                                                                                                                                                                                                                                                                                                                   |  |  |

## 8.5 Flyover and Underpass Projects

The Study Team has recommended the construction of flyovers and underpasses as an effective countermeasure in solving congestion in major intersections and railway crossings, especially in urban areas. The candidate flyover and underpass projects are listed in Table 8.2.3, and their locations are shown in Figure 8.5.1 (i.e. for Surabaya) and Figure 8.5.2 (i.e. for GKS). These projects will require coordination between relevant agencies because, while some flyovers are to be constructed over the existing railway, there are also plans to elevate some of the railway tracks, as proposed in the public transport development.

If the construction of the WWTP is not implemented soon, a series of flyovers, or underpasses, are alternatively planned for the short term along Project R5c (Jl. A. Yani) to help to smooth traffic flow along the major north-south existing corridor.

| S        |
|----------|
| ect      |
| ō        |
| <u>п</u> |
| ass      |
| ğ        |
| de       |
| Ĕ        |
| Ľ        |
| ٨e       |
| Ś        |
| Ē        |
| of       |
| st       |
| Ë        |
|          |
| ς.       |
| 5<br>I   |
| 00       |
| þ        |
| Ta       |
|          |

The JICA Study on Formulation of Spatial Planning for GERBANGKERTOSUSILA Zone Final Report Volume 4: Development Action Plan for Transportation Sector

Source: JICA Study Team



Figure 8.5.1 Flyover/Underpass Projects in Surabaya



Figure 8.5.2 Flyover/Underpass Projects in GKS

# TRAFFIC CONTROL AND MANAGEMENT

# 9. TRAFFIC CONTROL AND MANAGEMENT

#### 9.1 Traffic Information System

Traffic congestion is becoming more serious in SMA due to the continuing rise in the number of automobiles and motorcycles. An essential element in traffic management is the identification of bottlenecks through such tools as the intelligent transport systems (ITS) technology, optimal traffic signal control, and the provision of traffic information. Traffic conditions in intersections can also be monitored through the ATCS project, currently under way in Surabaya, as shown in Figure 9.1.1. In addition to traffic monitoring, an efficient and inexpensive way of compiling data and disseminating traffic information is also necessary in SMA.



Source: Transportation Agency (Dinas Perhubungan), Kota Surabaya

Figure 9.1.1 Planned ATCS System in Surabaya

In the travel speed survey, average travel speed on each road section was measured by the obtained floating car data. 50 taxis were utilized in the survey, each equipped with a global positioning system (GPS) device (Figure 9.1.2), which automatically collected and measured data on vehicle location, speed, direction, and time information. The collected data were

transmitted to the data center every 20 seconds via General Packet Radio Service, or GPRS. The data were collected over a period of one month for the road sections in which the 50 taxis were driven for every hour. Real time information of traffic speed will be available if enough number of such probe cars are to be utilized

The traffic information system as proposed by the Study Team will include probe cars, a central function, and basic information functions. Figure 9.1.3 illustrates the system outline. The in-vehicle unit installed in the "probe car" will have position detection and transmission capabilities to send the GPS data to the Center via wireless network. Taxis will function as probe cars. At present more than 2,000 taxis are operated in Surabaya. The Center will have data processing capabilities in order to make use of the incoming data, and compile data from multiple vehicles to gain a real-time understanding of traffic conditions.



Source: JICA Study Team



Example of In-Vehicle Unit



Source: Study on Development of Traffic Information System Aided by Probe Car on Arterial Road Network in Jakarta in the Republic of Indonesia" (JETRO, 2007)

Figure 9.1.3 Traffic Information System Aided by Probe Cars

Average travel time will be calculated for each road segment, after which the average travel speed for the road segment will be estimated. The results will be shown not only on the

variable message signboard (VMS) but also on a color-coded map (graphical information board) (Figure 9.1.4). Information on traffic congestion will also be disseminated via the internet to the general public, while specific information, such as traffic conditions in specific areas, will be provided on-demand for a certain fee for users through SMS, or other means.

The proposed traffic information system will eventually be integrated with the signal control server which will have an interface with existing ATCS to send and receive traffic data effectively for signal control. The signal control that is best suited to the traffic situation will be implemented through this form of dynamic information system.



Source: JICA Study Team

Figure 9.1.4 Visual Display of Real-Time Traffic Information (Example)

#### 9.2 Bus and Motorcycle Lanes

Usually in many metropolitan areas, road traffic demand overwhelmingly exceeds road capacities thus causing chronic traffic congestions, especially in CBDs. In the context of urban transportation, public transport is given priority over private vehicles to secure smoother travel for those who use public transport within the limited road space. From the viewpoint of safety and order the current policy of separating motorcycles and public transport from other private automobiles should be maintained. The policy will even be more effective if it is applied in more continuous road sections (Figure 9.2.1), which means considering extending target roads. It may also be necessary to add another lane for motorcycles and buses if motorcycles and buses make frequent stops, or if traffic is unbalanced, as shown in Figure 9.2.2.



Figure 9.2.1 Current Location of Bus and Motorcycle Lanes



Source: Transportation Agency (Dinas Perhubungan), East Java ProvinceFigure 9.2.2Unbalanced Traffic Situation on Bus/Motorcycle Lanes (JI. A. Yani)

## 9.3 Electronic Road Pricing (ERP)

Road pricing refers to a measure that limit traffic volume through fees levied on vehicle users using roads located within the city center. It is one way of alleviating congestion and minimizing air pollution caused by excessive volumes of vehicles inside a CBD. Road pricing is currently being considered for implementation in Jakarta through an electronic road pricing (ERP) method. For more direct traffic demand management, the ERP should eventually be applied in Surabaya in the long term. For the long term, as well, the proposed public transport system should be implemented, to serve as a better alternative to private vehicle use. The following three charging methods shown in Figure 9.3.1 are the main road pricing schemes being used in various countries.

| Charging Method                                                        | Concept Figure                   | Description                                                                                                                                                                             |  |  |  |  |
|------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1. Cordon Pricing<br>Eg:<br>Oslo, Norway (1990),                       | Cordon Line                      | Method where entering vehicles that<br>cross over the cordon line that has<br>been installed around the restricted<br>area are charged a fee.                                           |  |  |  |  |
| ERP in Singapore (1998)                                                |                                  | In most cases payment is made every<br>time one crosses over.                                                                                                                           |  |  |  |  |
| Cł                                                                     | harging                          | When the cordoned area is large, it is<br>difficult to accommodate internal<br>traffic.                                                                                                 |  |  |  |  |
| 2. Area Pricing<br>Eg:<br>London(2003.2)<br>ALS in Singapore (1975-98) | Check<br>Point<br>(no<br>charge) | Method where in addition to entering<br>vehicles that cross the cordon line,<br>internal traffic within the cordoned<br>area is also charged a fee.<br>Most cases use a prepaid system. |  |  |  |  |
| 3. Distance-Proportional<br>Charging<br>Eq:                            | Charging<br>Section              | Method where fee is charged<br>according to the distance traveled<br>within the restricted area.                                                                                        |  |  |  |  |
| Charging heavy vehicles in Switzerland (2001)                          |                                  | In Switzerland all large vehicles have<br>an OBU installed, and the fee is<br>calculated according to a vehicle's<br>maximum load, emission<br>characteristics, and distance traveled.  |  |  |  |  |
| Note: trip that will be charged a fee                                  |                                  |                                                                                                                                                                                         |  |  |  |  |

trip that will not be charged a fee

Figure 9.3.1 Main Charging Methods

Based on the charging methods described above, the preferable pricing method for Surabaya may be considered as follows:

• Surabaya's road network is characterized by major trunk roads complemented by various small streets and private roads which could be used as bypass routes. Because it requires levying fees at cordon lines, the Cordon Pricing Method, will require the installation of

toll gates on small streets and lead to a tremendous number of gates. And since small streets often function as residential roads, imposing an area pricing on these streets may not be practical since it could restrict the flow of all cars.

• The charging method should have minimal social impacts and should be acceptable to citizens since regional differences may arise due to its effect on areas within and outside the road pricing area and also in terms of access to public transport systems proposed in this Study.

With all things considered, the most ideal charging method for Surabaya would be the "Area Pricing" method limited to major trunk roads. Vehicles traveling on the trunk roads within the CBD, as defined in the travel demand analysis in Section 6.2, will be charged a fee. Toll gates will be installed at certain intervals so that even vehicles traveling relatively short sectors will be charged. A sampling of the ERP targeted roads is presented in Figure 9.3.2. A further study will be necessary to discuss the necessity and technological contents of these approaches as well as to assess environmental, economical, and financial feasibilities.



Figure 9.3.2 Example of Target ERP Roads in Surabaya