
2-2 基本計画

2-2-1 基本計画の作業フロー

基本計画では、現況調査、橋梁架橋位置の選定、橋梁縦断計画の検討、橋梁規模の設定、橋梁 形式の検討等、本事業を実施するために必要な検討を行い、橋梁形式を決定する。下図に基本計 画の作業フローを示す。

2-2-2 架橋位置の現況

「エ」国の最重要路線である国道 1 号線上に架橋されているゴゲチャ橋とモジョ橋は、劣化・ 損傷が著しく、早急な架け替えが要請されている。また、アワシュ橋については同橋以北に向か う上で不可欠な橋梁であるが、建設後 41 年が経過し、かつ大型車の交通量が多く、耐荷力に問題 があるため早急な架け替えが要請されている。

既存2橋周辺の状況調査をした結果を図 2-2-2及び図 2-2-3に示す。

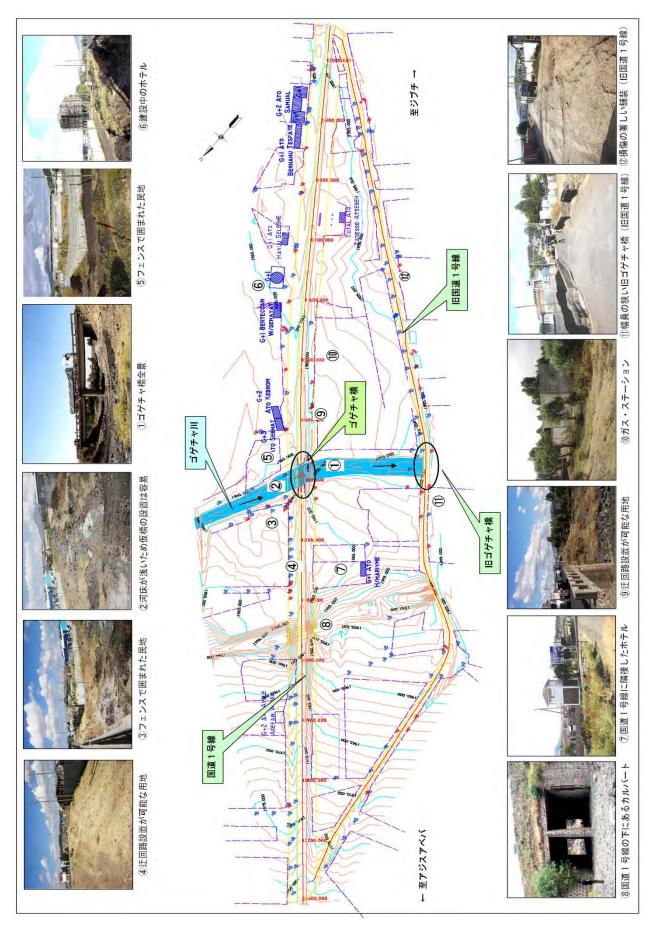


図 2-2-2 既存ゴゲチャ橋周辺状況図

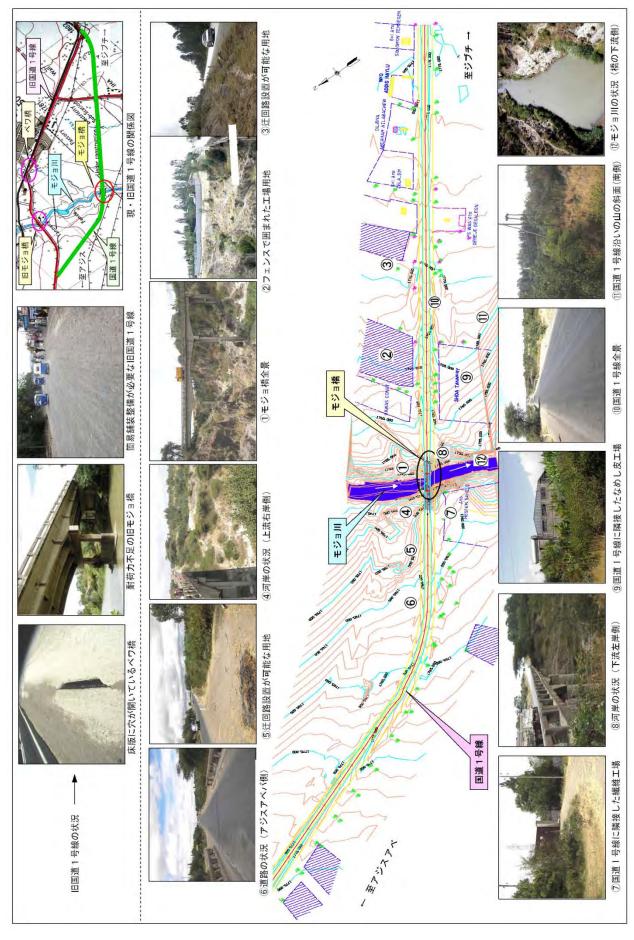


図 2-2-3 既存モジョ橋周辺状況図

2-2-3 既存 2 橋の評価・検証

(1) ゴゲチャ橋

既存ゴゲチャ橋は、1973年に建設された 2 径間単純 RC 桁橋である。供用開始から約 37 年が経過しており、腐食、損傷が激しく、耐荷力が不十分であり、落橋の危険性が非常に高い状況にある。既存ゴゲチャ橋の健全度を調査した結果を表 2-2-1 及び図 2-2-4 に示す。

表 2-2-1 既存ゴゲチャ橋健全度調査結果表

	橋 粱	k =	名			ゴケ	デチャ橋
	建	設	丰	1973年	位 置	J	東経 38°53'38",北緯 08°48'09"
	日平均	匀交通	量	16,099(台/日)	標高	1	1,961m
諸	大型耳	丰混入	、率	27 %	距離	Ì	首都アディスアベバより 35km
	幅	Ę	Į	8.1m(車道)+0.7m	n(地覆)×2=	9.5m	n(総幅員)
元	設計	活荷	重	32 t			
	上部工	橋粱	形式	2 径間単純 RC 세	行橋		
	工由的工	橋	長	19.0+19.0=38.0m	l		
	下	部	エ	橋台:石積み構造			橋脚:石積み構造
			 国道 	1号線は、アディス	アベバ~	ジブ	チ間を結ぶ最重要路線であり、国際
	交通上	\mathcal{O}	物流	路線及び域内交通路	線として、	交ì	通上の機能性(役割)は非常に高い。
	機能怕	生	• 日平	均交通量は 10,920 台	3/日と非	常に	多く、交通上の機能性(役割)は非
⇒na	(役割])	常に	高い。			
調			 歩道: 	が無く、歩行者は車	道を通行し	して	おり、危険な状態にある。
							非常に危険な状態にある。
查	健全性			のひび割れが著しく		が進ん	んでいる。
	(損傷)	度)		及び橋脚の老朽化が			
結				の衝突により高欄が			
	144.74.1	.1			いない状態	態)`	でも主桁が下に撓んでおり、構造上
果	構造性			な状態にある。	N = 150m :	14/ o	
*	(安定性	生)			に、橋梁ス	が激	しく振動しており、構造上および耐
				上、問題がある。	/mr. ±12.±15.4 15.4	*L ~	○ ナ
							の主桁の撓み及び大型車両通過時の
				振動を考慮すると、 ※ 26年の経過の割り			
	考 察						が著しく、建設当時の設計及び施工) があったと思われる。
	为 东				•		しく、耐荷力上、問題がある。
			.,,,,,			-	担傷、変状が著しいこと等を考慮す!
			, , ,				望ましいと考えられる。
<u> </u>			ا کی ک		ロバック	_ 1/2 - 3	王のひく こっかにつれいる。

図 2-2-4 既存ゴゲチャ橋健全度調査結果図

(2) モジョ橋

既存モジョ橋は、1972年に建設された3径間連続RC桁橋+単純RC桁橋である。供用開始から約38年が経過しており、腐食、損傷が激しく、耐荷力が不十分であり、落橋の危険性が非常に高い状況にある。既存モジョ橋の健全度を調査した結果を表2-2-2及び図2-2-5に示す。

表 2-2-2 既存モジョ橋健全度調査結果表

	橋 粱	全 名		Ş	モジョ橋
	建	設 年	1972 年	位 置	東経 39°06'40",北緯 08°35'50"
	日平均	匀交通量	9,813(台/日)	標高	1,755m
諸	大型耳	車混入率	36 %	距離	首都アディスアベバより 69km
	幅	員	8.0m(車道)+0.8m	n(地覆)×2=9.	6m(総幅員)
元	設計	活荷重	32 t		
76	上部工	橋梁形式	3 径間連続 RC 세	行橋+単純 RC	こ 桁橋
	一一山一	橋 長	22.5+31.1+22.5+	14.4=90.5m	
	下	部 工	橋台:石積み構造		橋脚:RC 構造
	交通上 機能性 (役割	物流 生 日平: 常に	路線及び域内交通路 均交通量は 6,178 台 高い。	線として、3 7/日と非常	ブチ間を結ぶ最重要路線であり、国際 交通上の機能性(役割)は非常に高い。 に多く、交通上の機能性(役割)は非 ており、危険な状態にある。
調査	健全性	にあ ・ 床版 ・ 舗装 ・ 施工	_	く、老朽化 激しく、老 (豆板) が	朽化が進んでいる。
結			み橋台の老朽化が著	-	
果	構造((安定)	性 生 生 生 ・ 権脚 安全 ・ 大型	。 柱が非常に細く、耐 性が懸念される。 車両が通過するたび	震設計が考	応力度をオーバーしているものと思わ 慮されていないと考えられ、地震時の 激しく振動しており、構造上および耐
	考察	主桁は非建設施工橋台ある。総合	常に危険な状態にあ 後僅か 37 年の経過の に重大な問題(設計 、橋脚及び床版のひ 。 的考察として、橋梁	る。 の割には劣化 ミス、施工 び割れ・劣 本体の劣化	通過時の橋の振動を考慮すると、本橋 と、変状が著しく、建設当時の設計及び 不良等)があったと思われる。 化・損傷が著しく、耐荷力上、問題が ・損傷、変状が著しいこと等を考慮す が望ましいと考えられる。

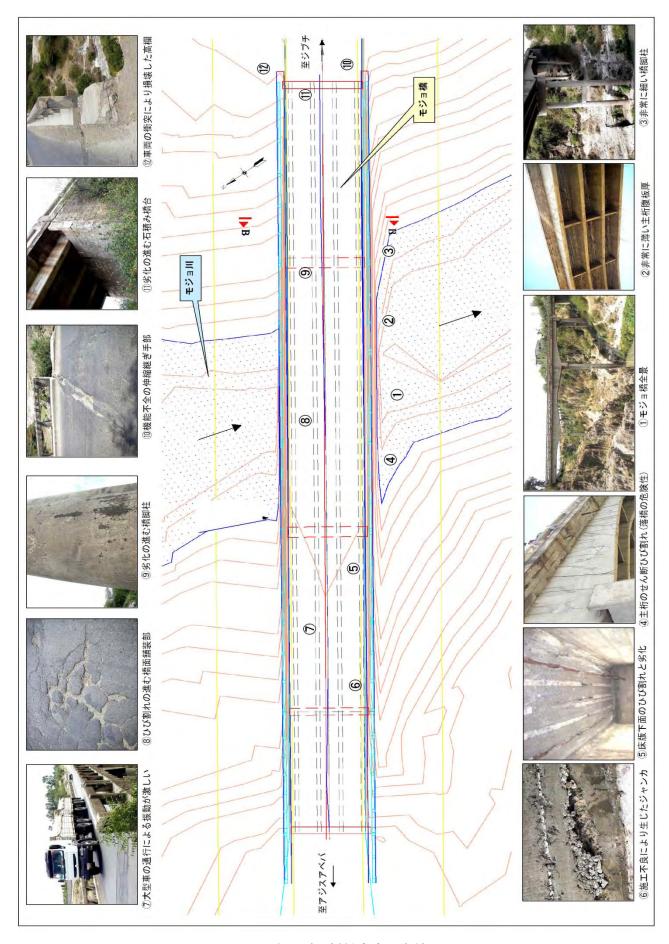


図 2-2-5 既存モジョ橋健全度調査結果図

2-2-4 架橋位置の検討

(1) ゴゲチャ橋

ゴゲチャ橋の架橋位置として、3つの案【第1案(上流側50mシフト案)、第2案(現橋位置案)、第3案(下流側50mシフト案)】について比較検討を実施した結果、下記の理由により第2案が最も望ましく、選定された(表 2-2-3参照)。

- ① 現橋前後の道路線形が直線であるため、第1案(上流側にシフト)も第3案(下流側にシフト)も架橋位置を現橋位置よりずらすことにより、道路線形にS字曲線が2箇所入ることになる。一方、第2案は現橋位置での架け替えであり、現在の直線性を維持できるため、道路線形上最も望ましいこと。
- ② 第1案も第3案も住民移転及び用地収用の問題が生ずるが、第2案は現橋位置での架け替えのため、環境社会配慮上の問題が生じないこと。
- ③ 第1案も第3案も新ゴゲチャ橋の他に、ブルカレゴ川を渡河する橋梁が新たに必要であり、 建設費が第2案に比べて1.67倍と高くなるため、第2案が最も経済的であること。

第2案の線形上にてボーリングを実施すると共に、水理・水文調査、河川測量を実施した。

(2) モジョ橋

モジョ橋の架橋位置として、3つの案【第1案(上流側 40m シフト案)、第2案(現橋位置案)、第3案(下流側 40m シフト案)】について比較検討を実施した結果、調査団側は第2案(現橋位置での架け替え案)が最良であるとの結論に達したが(表 2-1 4)、ERA側は既存橋を緊急時に利用するために第1案(上流側並設案)を希望した。調査団側は、表 2-1 5 第1案、第2案比較検討表(モジョ橋)を説明することにより、下記の理由から第2案が最適であることが確認され、選定された(表 2-2-4 及び表 2-2-5 参照)。

- ① 現道の直線性を維持できるため、線形性が非常に良いこと。
- ② 住民移転及び用地収用は全く生じないため、環境社会配慮上、最も好ましい案であること。
- ③ 仮橋及び仮設道路建設費、現橋撤去費がかかるが、取り付け道路新設費が不要であるため、 経済性に優れること。

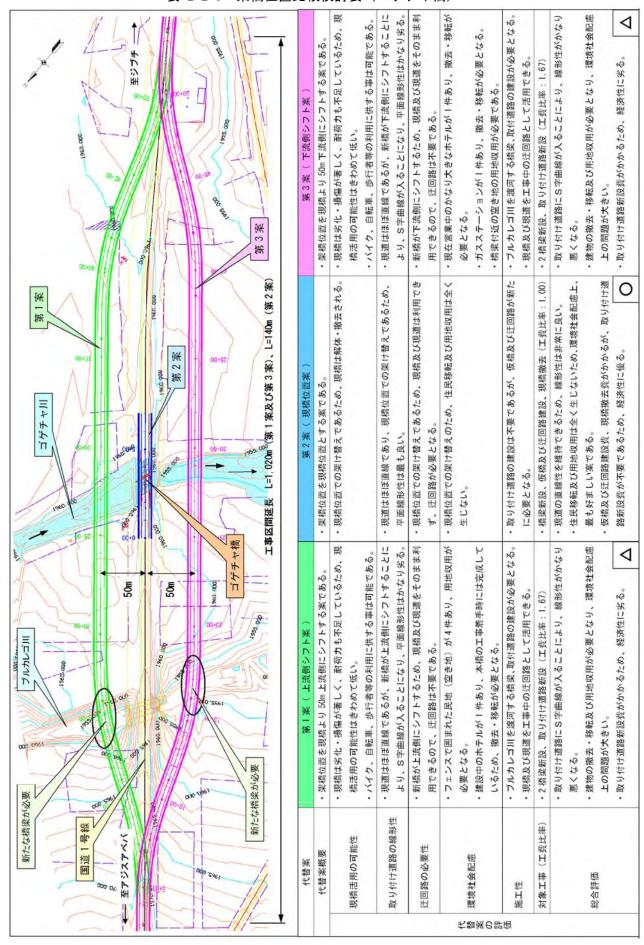


表 2-2-3 架橋位置比較検討表 (ゴゲチャ橋)

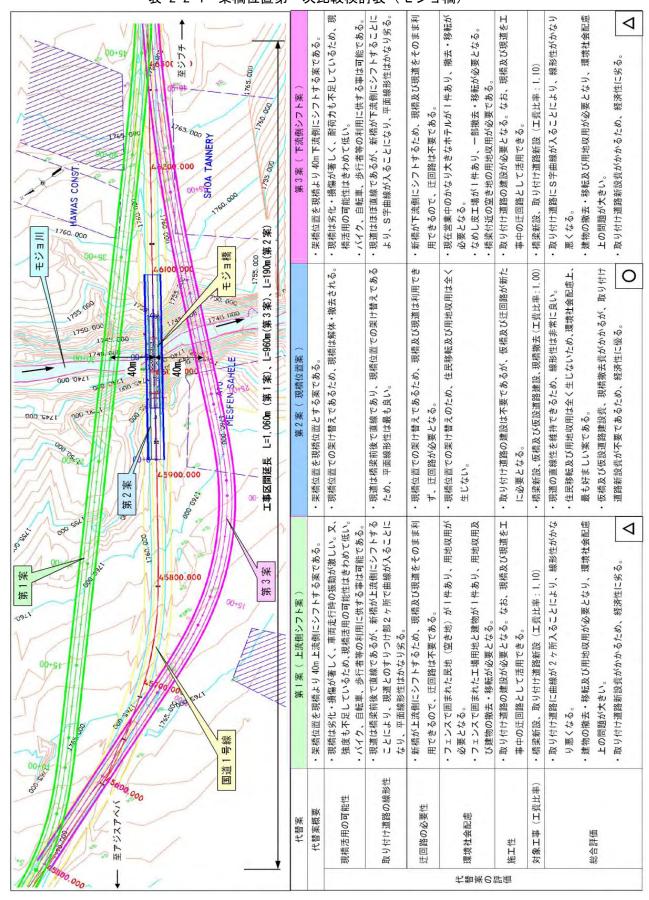


表 2-2-4 架橋位置第一次比較検討表(モジョ橋)

表 2-2-5 架橋位置第二次比較検討表 (モジョ橋)

	第1案(上流側 40m シフト案)	評価点	第2案(現橋位置架け替え案)
現道との擦り付け部2	箇所でS字曲線が入ること		・曲線は現在ある1箇所だけであり、道路線形性は維持さ
になるため、平面線形性はかな	tはかなり劣り、また、走	2	$\lambda \delta_{\circ}$
行性も劣ることになる。			
車道:7.3m(3.65m*2)			• 車道: 7.3m(3.65m*2)
路肩:0.5m*2		يا	• 路肩: 0.5m*2
步道:2.5m×2		0	• 歩道: 2. 5m*2
有効幅員:13.3m			• 有効幅員:13.3m
現在の縦断勾配は約5%であり、	リ、縦断勾配を 3.5%に	c	・ 縦断勾配は3.4%である。
減少させるためには、約5mの	約5mの盛土が必要となる。	ი	
住民移転は生じない。		c	• 住民移転は生じない。
用地収用面積:59,750m2(=995m*50m)	*50m)	o	・ 用地収用は生じない (仮橋、仮設道路用の借地は必要)。
現橋を緊急時の迂回路として利用す	用することは可		・ 旧国道 1 号線を緊急時の迂回路として利用することは可
能。ただし、かなり厳しい通行制	制限が必要。	2	能。ただし、道路舗装状態が悪く、橋梁の床版に穴が開
			いている箇所があるため、かなり厳しい通行制限が必要。
工事内容			工事内容
道路幅員(有効幅員): 13.3m			• 道路幅員 (有効幅員): 13.3m
取り付け道路延長:995m		-	• 取り付け道路延長:190m
橋長:95m		-	• 橋長: 90m
職士高∶5m			・ 仮橋及び仮設道路:380m
工事比率:1.10			・ 工事比率:1.00
第2案との1番大きな違いは工事費である。	.事費である。		・ 工事費、用地収用及び縦断勾配に関して、第 2 案は第 1
第1案は第2案と比べて、取り	取り付け道路延長がか	0	案より優れている。
なり長くなり、盛土も必要とな	. 2 °	<u>n</u>	
橋長が第2案より長くなる。			

*評価点 5:最良、4:良、3:普通、2:不良、1:悪い

2-2-5 迂回路について

1) ゴゲチャ橋

ゴゲチャ橋の架橋位置として現橋位置を選定したことにより、工事中の迂回路が必要となるが、迂回路については、下記の理由により第1案(上流側25m迂回案)が最も望ましく、選定された(参照)。

- ① 現橋及び現道の横 25m の位置であり、利便性が良いこと。
- ② 河床が浅く、且つ水位が低いため、仮橋設置及び迂回路の建設が容易であること。
- ③ 環境社会配慮上、特に大きな問題が無いこと。
- ④ 迂回路延長が最も短いため、経済性が最も良いこと。
- ⑤ 旧国道1号線を利用する案(第3案)は、旧ゴゲチャ橋の撤去、仮橋設置、舗装整備等の工事費がかかり、最も不経済であり、採用しがたいこと。

2) モジョ橋

モジョ橋の架橋位置として第2案(現橋位置での架け替え)が選定されたことにより、必要となる迂回路に関しては、下記の理由により、第1案(上流側 25m 位置迂回案)が最も望ましく、選定された(参照)。

- ① 現橋及び現道の横 25m の位置であり、利便性が良いこと。
- ② 迂回路の渡河部の縦断を下げることにより、仮橋設置が容易となること。
- ③ 環境社会配慮上、特に大きな問題が無いこと。
- ④ 迂回路延長が短いため、経済性が良いこと。
- ⑤ 旧国道1号線を利用する案(第3案)は、旧モジョ橋の撤去、仮橋設置、舗装整備等の工事 費がかかり、最も不経済であり、採用しがたいこと。

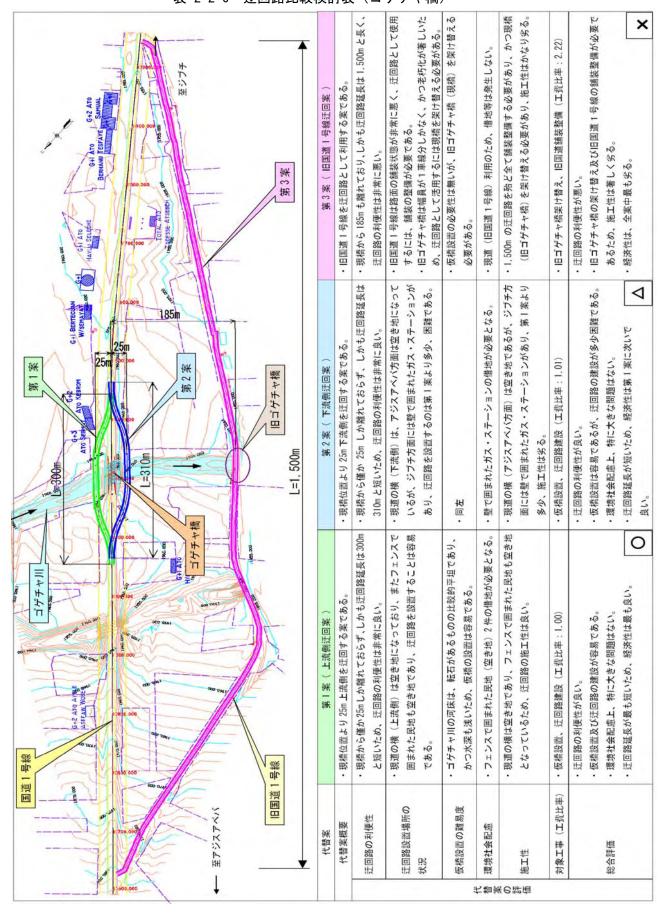


表 2-2-6 迂回路比較検討表 (ゴゲチャ橋)

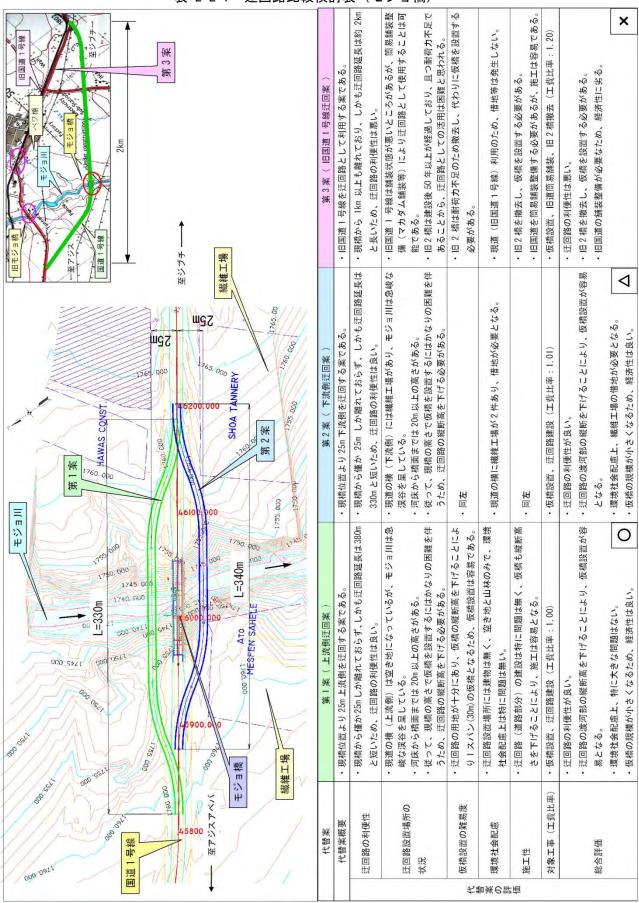


表 2-2-7 迂回路比較検討表(モジョ橋)