Attachment 1-1

Minutes of Meeting (Kick-off Meeting)

Japan International Cooperation Agency

Date: October 13, 2009 Ref.: JICA(6R) /0 - /

Mr. Abraao Andrade LOPES
Director General
Direction General of Industry and Energy
Ministry of Economy, Growth and Competitiveness

Dear Mr. LOPES

RE: JICA Preparatory Survey for Water Supply System Development Project in Cape Verde

As written in the Agreed Minutes on the Preparatory Survey for Water Supply and Power Transmission/Distribution Network System Development Project signed by JICA and the Government of the Republic of Cape Verde on February 27, 2009, JICA considered implementing two Preparatory Studies for water supply component and power transmission/distribution component respectively.

After a series of discussions with the Government of Japan, we confirmed the urgent necessity of the Preparatory Surveys to formulate these projects so as to be suitable for our financing.

In this letter, we are pleased to inform you that "JICA Preparatory Survey for Water Supply System Development Project" (the Preparatory Survey) is to be implemented on the ground from October 21, 2009. (It should be noted that implementation of the Preparatory Survey does not imply any decision or commitment by JICA to extend its loan assistance for the project at this stage.)

Please confirm your consent to the implementation of the Preparatory Survey by signing two copies of the letter, retaining one for your record and returning the other to us. The detailed scope of the Study is going to be discussed and agreed during the launch mission from October 21, 2009.

Yours faithfully,

Tsutomu IIMURA

Director, Western Africa Division II

Africa Department

Japan International Cooperation Agency

Confirmed: on the date of

Mr. Abraao Andrade LOPES
Director General
Direction General of Industry and Energy
Ministry of Economy, Growth and Competitiveness

MINUTES OF MEETING ON THE INCEPTION REPORT **FOR** THE PREPARATORY SURVEY ON WATER SUPPLY SYSTEM DEVELOPMENT PROJECT IN THE REPUBLIC OF CAPE VERDE

Praia, 23rd October, 2009

Mr. Abraao Andrade LOPES Director/General,

Direction General of Industry and Energy Ministry of Economy, Growth and

Competitiveness (MEGC)

The Government of the Republic of Cape Verde

Mr. Mitsutoshi ŞUZUKI

Lead Consultant of the Survey Team Japan International Cooperation

Agency

(As witness)

Mr. Takeharu KOJIMA

Water Resources Management

Division 2

Japan International Cooperation

Agency

Attachment

Japan International Cooperation Agency (hereinafter referred to as "JICA") dispatched a mission (hereinafter referred to as "the JICA Mission") to the Republic of Cape Verde. Since its arrival on October 20th, 2009, the JICA Mission and officials of Government of the Republic of Cape Verde (hereinafter referred to as "the GoCV"), Ministry of Economy, Growth and Competitiveness, (hereinafter referred to as "MEGC") had detailed discussions on the Inception Report of the Preparatory Survey (hereinafter referred to as "the Survey") for Water Supply System Development Project (hereinafter referred to as "the Project").

In the course of discussions, both sides confirmed the main items described below. The Team will proceed as planned up to December 2010, when the Survey comes to the end.

1. Explanation of Inception Report (IC/R)

The Team submitted ten (10) copies of the IC/R to the GoCV on 21st October 2009.

The inception report was first presented by the Team to MEGC and discussed in Praia on 21st October 2009. The Team presented the basic concept, outline and scope of the survey proposed in the IC/R

The GoCV side agreed on the contents of the IC/R in principle, understood the survey objectives, schedule, activities and methodology, and promised close cooperation with the Survey Team during the Survey.

2. Undertakings

The GoCV shall accord privileges, exemptions and other benefits to the Survey Team as below:

- (1) security-related information as well as measures to ensure the safety of the JICA Survey team;
- (2) information as well as support in obtaining medical services;
- (3) available data and information related to the Preparatory Survey;
- (4) counterpart personnel;
- (5) suitable office space with necessary equipment and secretarial service;
- (6) credentials or identification cards;
- (7) entry permits necessary for the Survey team members to conduct field survey;
- (8) support in making transportation arrangements;
- (9) assist the team in customs clearance, exempt from any duties with respect to equipment, instruments, tools and other articles to be brought into and out of the Republic of Cape Verde in connection with the implementation of the Preparatory Survey:
- (10) support in obtaining other privileges and benefits in necessary.

3. Conditions of the Survey

The JICA Mission stated that the results of discussions does not imply any decision or commitment by JICA for its prospective loan for the Project at this moment and the above results should be reported to the higher authority of JICA and the Government of Japan.

4. Other Points Discussed

4.h.

Overall

(1) The JICA Mission understood the policy of GoCV to justify the premise that most of the potable water should be supplied from desalination plants and the Survey will conduct to formulate candidate water supply project in Santiago Island with meeting the future demand in 2020 of water through desalination of sea water.

Project Scope

- (2) Based on the result of the former JICA Mission dispatched on February 2009, the JICA Mission confirmed that preparation of the master plan for water sector is not included in output of the Survey.
- (3) The JICA Mission explained that, in order to ensure smooth project implementation as well as sustainable outcome of the Project, following issues should be examined through the Survey;
 - Target area and components of the Project should be carefully examined according to the socio-economical and financial aspects.
 - Facilities and equipments for house connection from the distribution pipe to the meter of each household will not be included to the Project Scope.
- (4) The JICA Mission and MEGC had detailed discussions on the Implementation Program of the Survey for the Project and MEGC agreed on the Implementation Program as Annex-1.
- (5) The JICA mission emphasized that having frequent discussions between the Survey Team and relevant municipalities. Thus, MEGC committed to arrange necessary meetings with the relevant municipalities and Electra according to the request from the Survey team during implementation of the Survey except for unavoidable reasons.

Project Area

(6) The JICA Mission explained that the Survey will be implemented in the Santiago Island and the project sites are major urban areas and their surroundings of each municipality, including Praia city.

Counterpart

- (7) In order to ensure smooth implementation of the Survey, the JICA Mission confirmed MEGC as counterparts of the GoCV.
- (8) MEGC agreed to provide full support to JICA and the Survey team for facilitating the Survey in a smooth and efficient manner keeping in mind the time schedule and the quality of the survey including the following:
 - MEGC shall assign appropriate officials from each organization to accompany the Survey team on a full time basis.
 - MEGC shall provide to the Survey team of available data/studies and additional necessary information in a timely manner from relevant organizations including INGRH, ELECTRA, SAAS and other governmental organizations.
 - The recommendations and outcomes made by the Survey team shall be discussed and shared with relevant organizations.

Project Steering Committee

(9) The JICA Mission and MEGC agreed to set-up the Project Steering Committee to supervise the Survey and to monitor the progress of the procedure inside the GoCV.

ide the AM

m& Jul

(10) The committee will be composed of representatives from JICA, MEGC, ELECTRA, Ministry of Agriculture, Rural Development and Maritime Resources(MADRRM), Ministry of Finance, Ministry of Infrastructure and Transport(MIT), INGRH and relevant municipalities.

Procedure of EIA

- The JICA Mission explained that the Project might be classified as Category B under the JBIC Guidelines for Confirmation of Environmental and Social Considerations (hereinafter referred to as "the JBIC Guidelines") dated April 2002, and it might not be any serious impacts on the environmental and social aspects.
- (12) In such case, the JICA Mission and MEGC confirmed that preparation of a complete Environmental Impact Assessment (EIA) report based on the JBIC Guidelines is not required in terms of the approval of the Project by the government of Japan.
- (13) However, with reference to the principle of the relevant law in Cape Verde and the JBIC Guidelines, EIA report will be prepared and submitted by the borrower based on the recommendations made by the final report of the Survey.
- On the other hand, the Survey team will examine environmental impact of the Project through the Survey as level of Initial Environment Evaluation (IEE).

Land Acquisition, Resettlement and Rehabilitation

The JICA Mission and MEGC confirmed that if it will be appeared that largescale involuntarily resettlement (more than 150 habitants) is unavoidable after the Survey, in such case, EIA report should be prepared by the borrower and the borrower is required to prepare Resettlement Action Plan (RAP) as well.

Information of the Project

- (16) The JICA Mission explained and requested the necessary information concerning about the Project according to Questionnaire in the IC/R dated October 2009.
- The GoCV promised to prepare the answer and it would be provided to the Survey team by November 15th, 2009 with all relevant documents in good coordination with and by getting consent of relevant authorities.

(End)

ANNEX-1 Implementation Program

ANNEX-2 Attendants List

ms the

Annex-1

IMPLEMENTATION PROGRAM FOR THE PREPARATORY SURVEY ON WATER SUPPLY SYSTEM DEVELOPMENT PROJECT IN THE REPUBLIC OF CAPE VERDE

Background of the Project

- (1) Cape Verde is located on the group of islands of West Africa and GNI per person is ranked as 2,130 US\$ of Middle Income Country. On the other hand, since the country is located at the tropical Sub-Saharan dry region, the yearly average rainfall is very little less than 300mm, thus resulting in the chronic short supply of water such as river dried up at dry season.
- (2) The country, stipulated in government manifestation "The strategic Development and Poverty reduction in 2004-2007 (GPRS)", makes much of improvement/development of the basis of infrastructure as one of strategy on the realization of poverty reduction throughout country's economic growth. Furthermore, according to five years national strategy (year 2006~2011), the sustainable growth and improvement of average national life are placed as the main theme, and the strategy aims at the development of economic society and poverty reduction by infrastructure reinforcement. The water sector takes a significant position in the reinforcement. Through from the third state development plan (year 1991-1995) to the seventh one (year 2006-2011), Water sector is the important development target.
- (3) On the other hand, the government drew out "The master plan of development of water resource 1993-2005" targeted on "The increase up to 100% of safe and stable drinking water supply ratio by year 2005" under the support of United Nations Development Program (UNDP) in 1992. Although the water supply ratio increased up to 65% in the latter half of the year 1990, the safe drinking water supply remains still in the insufficient condition as seen in the death by the vast incidence of cholera in year 1990 and so on.
- (4) In consideration of these conditions, presently the country challenges the target for the increase of water supply ratio from 84.9% (national average year 2006) to 100% by year 2020 in accordance with "The integrated activity plan of state water resource" stipulated by National Institute for Water Resources Management (INGRH).
- (5) The water supply ratio of Santiago Island remains low in comparison with the state average, for example as of year 1994 staying under 40%. Furthermore, the supply of drinking water in the island depends upon sea water desalination considerably. The capital city, Praia depends upon the desalination about three fourths of water resource. The stable supply of drinking water is positioned to be the crucial issue as well as the reinforcement of water supply/distribution network.
- (6) Under these backgrounds, this survey is to conduct a cooperative and preparative investigation in order to develop a new drinking water supply system including sea water desalination facility and its supply/distribution water pipeline network.

ms

Kiles

2. Outline of the Project

(1) Objectives

The objective of this survey, in consideration of the present shortage of water supply and the increase of water demand for economic development in Santiago Island is to form a Japanese ODA loan project by executing a feasibility study in order to build wide area water pipe network as well as increase of drinking water production by utilizing of sea water desalination and build distribution and supply network in each target region.

(2) Project site

The Survey shall be conducted in the Santiago Island and the project sites are major urban areas and their surroundings of each municipality, including Praia city.

(3) Scope of the Project (tentative)

The project consists of five (5) major components as summarized below.

project consists or its (c) iii	ajor componento do summanzea below.
Component	Summary
1) Desalination Plant(s)	- Construction new plants
2) Transmission Pipe Line	Construction new water supply network and pipe Line from desalination plants to each municipalities
3) Distribution Pipe	
4) Reservoirs, Distribution Tanks, Pump Stations, Electrical Facilities, etc.	- Construction of new facilities
5) Consulting Services	Planning and Detail DesignBidding AssistanceConstruction SupervisionInitial Operation

(4) Implementation Structure

Counterpart: Ministry of Economy, Growth and Competitiveness (MEGC-Directorate General of Industry and Energy(DGIE)),

3. Terms of Reference (TOR) of the Survey

Phase1 (Preliminary Survey): October 2009 ~ March 2010

Preparation Stage (In the beginning of October 2009)

- (1) To identify items to be examined during the field survey and set-up the Survey plan.
- (2) To prepare Questionnaire and Inception Report and to submit them to the GoCV.

1st Mission (October 2009 ~ November 2009)

Through the 1st Mission, JICA Survey Team shall conduct the followings:

(1) Meetings with the GoCV to discuss the Project scope and the Survey plan

MS

da

Carl Sund

- To collect the answer of the Questionnaire from the GoCV, and to discuss and confirm the contents of the Inception Report with the GoCV.
- To confirm the Project scope and to discuss the criteria for site selection of the Project.
- To confirm the GoCV's national program and projects by other donors on water sector, and to confirm the relevance between the Project scope and the above program on the water sector development in Cape Verde.

(2) Preparatory Survey

- To collect and analyze the existing documents and reports regarding topographical data, geotechnical data, natural conditions and water resources in the Santiago Island.
- To collect and analyze the existing documents and reports regarding socioeconomic, demography, industries and land development in Cape Verde.
- To collect and analyze the existing documents and reports regarding national development programs, water sector development plan, etc. in Cape Verde.
- To examine completed and on-going projects on water sector.
- To examine relevant laws, bylaws, regulations, institution concerning about water sector.
- To examine current status of water supply to users, and water consumption by users.
- To analyze the existing documents and to identify water demand and required quantity by conducting hearing survey to users, such as willingness to pay and affordability.
- To examine current status of water facilities, such as desalination plants. transmission pipe lines, reservoirs, pumping stations, etc.
- To collect and analyze the current status of water loss, including leaked and stolen water, and existing measures against water loss.
- To examine possibility of mixing groundwater to desalinated water (locations, quantity and quality)
- To analyze and confirm quality of feed sea water near the candidate desalination plant sites.
- To examine socioeconomical conditions, willingness to pay of water tariff. affordability of users and possible amounts of water tariffs for users in the project target areas.
- (3) Examination through comparing following alternative options
 - Single water service network which water supplied from new desalination plant(s) or the up-graded existing desalination plant in Praia to each municipality.
 - Several/Independent water service network which water supplied from new desalination plants in each municipalities (e.g. Sao Miguel, Tarrafal, etc.), including water service network in Praia which water supplied from new desalination plant(s) or the up-graded existing desalination plant.

2nd Mission (January 2010 ~ February 2010)

Through the 2nd Mission, the Survey Team shall conduct the following;

(1) Preparatory Survey

To confirm current situation of relevant agencies such as ELECTRA (city of Praia), ADA (municipality of Praia) and SAAS (another 5 local municipalities)

7

from the view points of capability on operation and maintenance of the existing water supply facilities. In particular, to confirm the institutional structure and capability on operation and maintenance through the examination of improvement plan for financial situation with the raise in water tariff and counter measures against water loss.

(2) Forecast of water demand and setting-up of unit quantity of water production per day/hour

To forecast water demand and to set a unit quantity of water production per day/hour according to the examination of current production status of the existing facilities, forecasts of water demand in each municipalities and development plan for water supply.

- (3) Basic plan development on water supply in the Project targeted area To set the basic plan development on water supply in the Project target area. such as target municipalities and wards covered by the project, water supply systems constructed by the Project (reservoirs, distribution pipes, etc.) and assumed ratio of water loss.
- (4) Confirmation of project basic plan To discuss and confirm the following items with the GoCV to formulate the Project:
 - To identify the Project target area.
 - To determine the Project target year for planning the facilities to content the expected demand.
 - To examine the possibility of groundwater to be used as mixing water to desalinated water.
 - To examine the specification and design of desalination plant(s), equipments and related facilities of water supply.

Phase 2 (Feasibility Study; F/S) : April 2010 ~ December 2010

3rd Mission (May 2010 ~ June 2010)

Through the 3rd mission, the Survey Team shall conduct following survey;

(1) Natural Condition Survey

To collect necessary information and to conduct natural condition survey as follows to prepare basic design of adequate desalination plants and water supply facilities that identified through Phase 1 survey.

(2) Basic Design for desalination plants and water service network in the Santiago Island

To prepare basic design for desalination plants and transmission pipe line, including plan of facilities/buildings, alignment of pipe line and specifications of equipments (e.g. quantity of water production, diameter of pipe, etc.).

(3) Basic Design for required facilities on water supply system at Project target municipalities

To prepare basic design for required facilities on water supply system (e.g. reservoirs, water tanks, pumping stations, electrical facilities and distribution

and sub

pipe (including reinforcement rehabilitation), etc.) according to the above designed desalination plants and water service network in the Santiago Island.

- (4) Cost estimation and implementation schedule development of the Project To develop set implementation schedule of the Project, and to estimate the Project cost based on the above basic design.
- (5) Recommendations for institutional reform to implement the Project To identify bottle neck on institutional structure and to prepare recommendations for counter measures based on the analysis of sustainability and capability of the relevant agencies regarding project implementation, operation and maintenance (e.g. organization structure, number of the staffs, technical training, etc.).
- (6) Economic and Financial analysis
 To conduct the economic analysis of financial condition and its sustainability
 of the Project implementation agency based on examination of annual audit
 report, revenue from water tariff and required cost to operate and maintain the
 Project.
- (7) Environmental and social considerations survey

 To conduct "Initial Environment Evaluation (IEE)" based on the "Japan Bank for International Cooperation Guidelines for Confirmation of Environmental and Social Considerations Japan Bank for International Cooperation; April 2002 -" to identify and confirm the eventual negative impact from the Project and to propose the mitigation measures compared with the alternative options.
- (8) Examination of socioeconomical conditions for the basic design of water facilities and equipments To examine the socioeconomical condition, development plan, current situation of water consumption on the Project target site, regulations and guidelines for planning and design of the water facilities in Cape Verde, similar project by other donors, etc., to prepare adequate basic design for required facilities.
- (9) Examination of conditions for procurement of construction To confirm the availability of construction materials, considering local procurement and procurement from third countries, and to examine the conditions of local contractor, including labor condition, related laws, availability of construction materials, and capability of contractors for execution.
- (10) Preparation of construction plan of the Project To prepare construction plan of the Project based on past records and experiences of contractors, accessibility to the Project site, meteorological and natural condition, etc.
- (11) Examination of Cost Estimation

 To examine the Project cost considering following measures through estimation of the Project cost for Japanese ODA loan.

da

MS fresh

- (12)Identification of focal points to ensure the project formulation of Japanese ODA loan and the Project implementation To identify actions conducted by the GoCV after the Survey and focal points to ensure the Project implementation.
- (13)Examination of scale, components, financial arrangement and efficiency of the Project based on technical and economical appropriateness To examine the Project from the point of view of adequate scale and components for Japanese ODA loan to ensure the objectives of the Project and to identify demarcation of JICA and the GoCV such as financial arrangement of both side to each component of the Project.
- Examination of Operation and Maintenance organization establishment, (14)and Impact and Sustainability of the Project
 - ① To prepare recommendations for financial arrangement according to the examination of financial sustainability of the executing agency and adequate water tariff to be settled based on affordability of residents in target area.
 - 2 To prepare operation and maintenance plan considering bottle neck and its counter measures to be assumed on operation stage based on the capability of executing agency (e.g. organization structure, number of staffs, technical level and feasibility of counter measures against water loss).
- (15) Operational and Effect Indicators

To set operational and effect indicators and to calculate Internal Rate of Return (IRR)

4th Mission (September 2010)

Through the 4th Mission, JICA Survey Team shall conduct the followings;

- (1) Explanation and Discussion on the Draft Final Report prepared by JICA Survey Team
 - To explain the Draft Final Report to GoCV, and to have discussion.
 - To discuss the activities and conditions which should be followed by GoCV, regarding environmental and social considerations and institutional reform for operation and maintenance, and to ensure technical and financial sustainability of the Project.
- 4. Implementation Framework of the Survey
 - (1) Survey team

JICA has selected and dispatch the Survey team to carry out the Survey. The Survey team will include the following experts.

- Water Supply System Planning Specialist (Team Leader)
- Socio-economically condition survey/Economics analysis Specialist
- > National condition survey/Socio-environment assessment Specialist
- Hvdrological geology survey Specialist
- ✓ Угуали∠ацопаі/Institutional survey Specialist

 Water Treatment Facility/Planning Specialist A (Desalination Plant)

 10

- > Water Treatment Facility/Planning Specialist B (Transmission pipe, Storage Tank)
- > Water Treatment Facility /Planning Specialist C (Distribution network)
- > Water Treatment Facility/Planning Specialist D (Pump, Electricity, Costina)
- Hydraulic analysis/Facility planning assistant

The Survey team may engage local consultants, and / or other supporting staffs.

(2) Implementation Schedule (tentative)

October 2009 - Formal exchange of letters between JICA and MEGC

- Discussion and confirmation of Implementation

Program of the Survey

- Submission of the Inception Report - Phase 1 Survey (Preliminary Study)

October 2009 -March 2010

April 2010 - Phase 2 Survey (Feasibility Study)

-December 2010

March 2010 - Submission of the Progress Report June 2010 - Submission of the Interim Report September 2010 - Submission of the Draft Final Report

December 2010 - Submission of the Final Report

(3) Reports

The Survey team will prepare and present the following reports in English and Portugal.

Inception Report : 10 copies (English) and 10 copies (Portuguese)
Progress Report : 10 copies (English) and 10 copies (Portuguese)
Interim Report : 10 copies (English)
Draft Final Report : 12 copies (English) and 10 copies (Portuguese)
Final Report : 15 copies (English) and 15 copies (Portuguese) Final Report (CD-ROM): 15 copies (English) and 15 copies (Portuguese)

The Final Report may be disclosed to the public on request based on Japan's Law concerning Access to Information held by administrative Organization. JICA will consult with the Government of the Republic of Cape Verde, MEGC and the executing agency as to the contents and sections to be disclosed.

(4) Monitoring

The Survey team's work will be subject to periodic review by JICA. The JICA staff will attend meetings between the Survey team and MEGC and / or other relevant organizations(INGRH, MIT, MADRRM, etc.) during the implementation of the Survey when required.

5. Undertakings by MEGC and other organizations concerned

As Sun

MEGC and other relevant organizations will undertake to provide the followings as the counterpart of the Survey team in order to assist the implementation of the Survey in a timely manner:

- (1) security-related information as well as measures to ensure the safety of the JICA Survey team;
- (2) information as well as support in obtaining medical services;
- (3) available data and information related to the Preparatory Survey;
- (4) counterpart personnel:
- (5) suitable office space with necessary equipment and secretarial service;
- (6) credentials or identification cards:
- (7) entry permits necessary for the Survey team members to conduct field survey;
- (8) support in making transportation arrangements;
- (9) assist the team in customs clearance, exempt from any duties with respect to equipment, instruments, tools and other articles to be brought into and out of the Republic of Cape Verde in connection with the implementation of the Preparatory Survey:
- (10)support in obtaining other privileges and benefits in necessary.

6. Others

The nature of the services to be rendered by the Survey team shall be exclusively advisory, with all decisions as to whether to accept or implement any recommendation(s) made or instruction(s) given in the course of the implementation of the services shall be the responsibility of MEGC and other relevant organizations.

MEGC through relevant organizations shall take, with their own responsibility, all the necessary measures for the utilization of the recommendations and outcomes of the Survey in the JICA financed projects.

(End)

ms wh

Attendants List

<GoCV Side>

Ministry of Economy, Growth and Competitiveness

- (1) Mr. Abraao Andrade Lopes, Director General
- (2) Mr. Pedro Alcantara Silva, Coordinator
- (3) Ms. Meriam Dos Anjos Vera-Cruz

National Institute for Water Resources Management

(1) Mr. Antonio Pedro Barbosa Borges, President

Empresa de Electricidade e Aguas

(1) Mr. Antao Manuel Fortes, President of the Executive Commission

Ministry of Finance

- (1) Mr. Sandro de Brito, Director General
- (2) Mr. Rui Maia, Resource Mobilization Office

Ministry of Agriculture, Rural Development and Maritime Resources

- (1) Mr. Alcidio Tavares, Advisor
- (2) Mr. Carlos Monteiro, Advisor
- (3) Ms. Sandra Martins, Directorate of Services, Study, Planning and Cooperation

Ministry of Foreign Affairs, Cooperation and Communities

- (1) Mr. Carlos F. Semedo, Vice Director
- (2) Mr. Paulo Lopes, Specialist
- (3) Mr. Edemilson Alves, Specialist Aid Coordination
- (4) Ms. Isa Morais, Clerk

< Japanese Side>

JICA

(1) Mr. Takeharu KOJIMA, Global Environment Department

Study Team

- (1) Mr. Mitsutoshi SUZUKI, Lead Consultant / Water Supply Planning, Toyo Engineering Corporation
- (2) Mr. Hiroshi FURUKAWA, Social Economical Survey / Economical Financial Analysis, INGEROSEC Corporation
- (3) Mr. Akira OHARA, Natural Condition / Environment and Social Considerations, INGEROSEC Corporation
- (4) Mr. Junichi KAMIMURA, Water Supply Facilities Planning (Desalination), UNICO International Corporation
- (5) Mr. Junichi MOGI, Water Supply Facilities Planning (Distribution), Toyo Engineering Corporation
- (6) Mr. Asuka SHIBATA, Water Supply Facilities Planning (Distribution), UNICO International Corporation
- (7) Mr. Kenichi TAKESHITA, Water Supply Facilities Planning (Electrical Facilities) , Toyo Engineering Corporation

(end)

am8

(So S)

Attachment 1-2

Minutes of Meeting (1st Steering Committee)

&

Discussion materials

MINUTES OF MEETING OF PROJECT STREERING COMMITTEE ON FEASIBILITY STUDY FOR ENHANCED WATER SUPPLY SYSTEM PROJECT

DATE: Februar 08, 2010 PLACE: Praia, Cape Verde

- The Government of the Republic of Cape Verde (GoCV), in cooperation with the Government of Japan, intends to develop a structuring and strategic water sector project on the island of Santiago, aiming both at improving the water supply conditions, through the interconnection of water transmission and distribution networks, and at strengthening the production capacities;
- Given the specific and strategic significance of the project, a diligent and efficient technical follow-up will be needed for the same;
- In the scope of implementation of the above mentioned project, there will be a need to guarantee, to the GoCV, reliable technical counsel and assistance;
- It is much advisable that the project be followed up and supported by all sectors and institutions
 which are, in one or other way, related to the water sector.
- In this purpose, a Project Steering Committee has been officially established on 26th of January 2010 by the DISPATCH No. 007 / 2010 issued by MEGC.
- The Project Steering Committee has met for the first time on the 8th of February 2010, in the office of Ministry of Finance, Praia, Cape Verde. The list of participants is given in Appendix 1.
- 7. The main points discussed are based on the presentation by The JICA study team of all results and propositions related to the project at the time of the meeting. This presentation is given in Appendix-2.
- The Project Steering Committee members hereby confirmed full understanding of main points discussed as per Appendix 3.

Chairman of the Project Steering Committee

Mr. Abrado Andrade Lopes (September 1997)
MEGC / General Director of Energy (DGE)

MAIN POINTS DISCUSSED

Overall

- According to the minutes of the meeting dated 23rd, October 2009 between the GoCV and the JICA Mission, a Project Steering Committee (hereinafter referred to as "the Committee") has been established on 26th of January 2010.
- The function of Project Steering Committee is officially defined in the DISPATCH No. 007 / 2010 issued by MEGC. This function is as following:
- 3. To supervise the Survey and to monitor the progress of the procedure inside the GoCV.
- The Committee is composed of representatives from JICA, MEGC, ELECTRA, Ministry
 of Agriculture and Environment, Ministry of Finance, National Institute for Water
 Resources Management (INGRH) and relevant municipalities.

All the members of Project Steering Committee confirmed that they fully understand the function, organisation and purpose of Project Steering Committee.

Subject discussed during the meeting of Project Steering Committee

The JICA study team first presented all results and propositions related to the project at this time. These results and propositions are detailed in appendix 2.

Following the presentation, the following points have been discussed:

Target municipalities:

The JICA study team together with the Steering Committee confirmed that all the municipalities of Santiago Island shall be targeted by the project.

b. Project scope

The JICA study team stated that the project scope is depending on others donors projects and asked for clarification on this point. The Representative of General Direction of Planning at the Ministry of Finance, Mr. Maia, precised that the others donors projects (loan type) related to water development which are due to be signed in 2010 are:

- Development of water system in Santiago 5000m3/day with Spanish cooperation
- Dams construction project with Portuguese cooperation
- Water pipeline construction between Sao Miguel and Assomada with Indian cooperation

In addition, Mr. Maia stated that the World Bank 5000m3/day water developmen

project (desalination) is overviewed for 2012. He has not heard about the Luxembourg development project.

The JICA study team stated that the scope of the project is also depending on the operation and maintenance organisation. The JICA study team asked for the Steering Committee and Government of Cape Verde to propose the organisation of operation and maintenance of the project installations, including budget management.

The JICA study team proposed three main options for water system development. These options are detailed in the appendix 2. The JICA study team explained these options do not take into account the loss of water supply, the projects by other donors or organisations, the use of existing well ressources. The JICA study team asked for comments of Steering Committee for each of the three options.

The Steering Committee explained its concern about power availibility for desalination plant. The Steering committee asked whether a power development item (using renewable energy) is included in this project. The Steering Committee asked the JICA study team to evaluate the power consumption of each of the three options. The JICA study team explained that the scope of this project is not including the development of power capacity, however power development projects are undergoing at this time. The JICA study team stated that this study is considering as a basic assumption that the power is available and sufficient. The JICA study team stated that the necessary power consumption will be studied.

The Steering Committee has asked whether or not the use of groundwater for mixing with desalinated water would not go against the general idea that groundwater should be left for irrigation and agricultural purpose and desalinated water for potable water use. The JICA study team answered that desalinated water is the main solution for drinking water, and will assess whether the use of groundwater can be available for economizing capacity of desalination plant and reducing operation costs.

The Steering Committee expressed its concern about environment regarding desalination plants, pipelines, and brine discharge in the vicinity of potential touristic place in the case of option 2 and option 3. The JICA study team answered that pipelines are foreseen to follow existing roads, and that area of influence of brine discharge is quite limited when discharging in sea water, these points shall however be studied by EIA.

The Steering Committee asked whether or not there would be a possibility to involve Cape Verdian local engineers in the JICA study team in order to assist the JICA study team. The JICA study team answered that any local contribution of Cape Verdian local engineers is welcomed, however presently involvement of Cape Verdian engineers in the study team is not foreseen.

The Steering Committee asked whether the scope is including rehabilitation of existing distribution network. The JICA study team answered that rehabilitation of existing distribution network is not included in the project.

The JICA Study team stated that based on these comments about scope of the project, one of the three main options will be proposed for further steps of the project.

c. Project sites

The project sites has not yet been selected.

d. Specification of facilities

The JICA study team stated that the capacity of developped water system will be resized according to the information about others donors projects.

e. Project cost

The Steering Committee expressed its concern about price of water because of cost of desalination technology and heavy use of power. The JICA study team answered that the use of desalination is a basic assumption for this study. The price of water should not differ much from the existing desalination plant.

The project cost will be revised in the light of comments and information coming from Steering Committee.

f. Procurement structure

The MECC will be in charge of procurement (tendering, land acquisition) for the project.

g. Project implementation

The MECC is in charge of project implementation.

h. Operation and management organizations

The JICA study team asked the Steering Committee and Government of Cape Verde to propose the organisation of operation and maintenance of the project installations, including budget management, in order to assure an appropriate management for sustainable operation and maintenance.

i. Financial structure

Basically, the project is overviewed to be financed by Japanese Government.

j. Tariff system

The JICA study team asked the Steering Committee and ARE to think about a suitable tariff system in the light of the existing tariff and affordable tariff by people.

k. Concession structure

The JICA study team asked for any information regarding the possible creation of a concession structure for management of water supply system.

1. IEE and EIA schedule, and organisation

The JICA study team explained that the IEE will be conducted by the JICA study team. The EIA will be conducted by Government of Cape Verde following JICA environmental guidelines, and JICA study team can assist the Government to apply the guidelines for EIA if it is requested.

Steering Committee on Water Supply System Development Project in Cape Verde

February 8, 2010 at Praia

Japan International Cooperation Agency

Toyo Engineering Corporation Ingérosec Corporation UNICO International Corporation

_

- 1. Opening Remarks
- 2. Purpose of Steering Committee
- 3. JICA Study Explanation
- 4. JICA Study Status
- 5. Discussion
- **6.** Closing Remarks

- 1. Opening Remarks
- 2. Purpose of Steering Committee
- 3. JICA Study Explanation
- 4. JICA Study Status
- 5. Discussion
- 6. Closing Remarks

3

Background of Steering Committee

- The Government of the Republic of Cape Verde (GoCV), in cooperation with the Government of Japan (JICA), intends to develop a structuring and strategic water sector project on the island of Santiago, aiming both at improving the water supply conditions, through the interconnection of water transmission and distribution networks, and at strengthening the production capacities.
- Given the specific and strategic significance of the project, a diligent and efficient technical follow-up will be needed for the same.
- In the scope of implementation of the above mentioned project, there will be a need to guarantee, to GoCV, reliable technical counsel and assistance.
- It is much advisable that the project be followed up and supported by all sectors and institutions which are, in one or other way, related to the water sector.

The GoCV understands that it is very important PROJECT STEERING COMMITTEE be established.

Objectives of Committee and its Composition

■ According to Minutes of meeting dated 23rd, October 2009 between GoCV and JICA, a Project Steering Committee is needed to be established.

The objectives and its composition are described as follows;

- The JICA Mission and the MEGC agreed to set-up the Project Steering Committee to supervise the Survey and to monitor the progress of the procedure inside GoCV.
- The Committee will be composed of representatives from JICA, MEGC, ELECTRA,
 Ministry of Agriculture, Rural Development and Maritime Resources (MADRRM),
 Ministry of Finance, Ministry of Infrastructure and Transport, INGRH, and relevant municipalities.

5

Discussion Items with Steering Committee

To harmonize any opinions among relevant agencies, and to promote smooth decision by GoCV, following subjects shall be discussed with the Committee.

- a) To set criteria to select the target municipalities to be developed,
- b) To identify the Project scope, including project sites, specification of facilities, project cost, procurement structure, etc,
- c) To set-up and establish the project implementation, operation and management organizations,
- d) To establish financial structure, including tariff system, concession structure, staff allocations, etc.

- 1. Opening Remarks
- 2. Purpose of Steering Committee
- 3. JICA Study Explanation
- 4. JICA Study Status
- 5. Discussion
- **6.** Closing Remarks

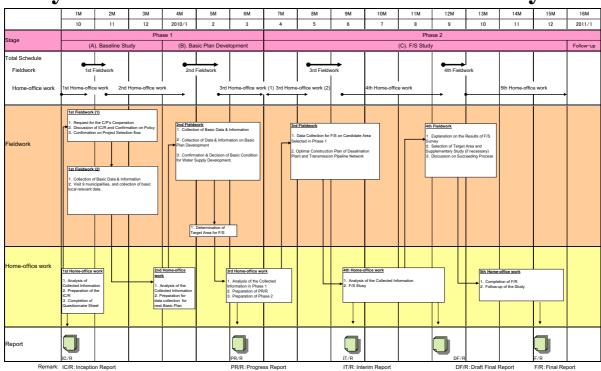
7

Background of JICA Study

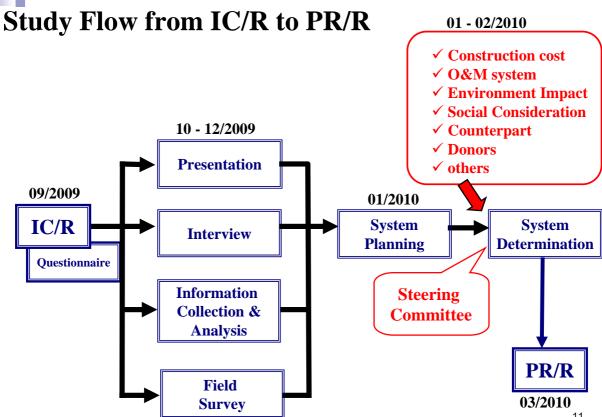
In 1992, Government of Cape Verde made the master plan on Water resources development 1993-2005, for achieving safety and sustainable drinking water supply ratio up to 100% by year 2005. As the result, water supply ratio improved up to 65%, but it is still not enough to keep safety and sustainable water.

Most of fresh water for Santiago island is produced by the seawater desalination plant, and especially Praia city depends on 34 of water to desalination plant.

Also one of important policy in Cape Verde is to <u>develop tourism</u>. For realizing this policy, it is necessary to have sustainable and safe water and its supply network.

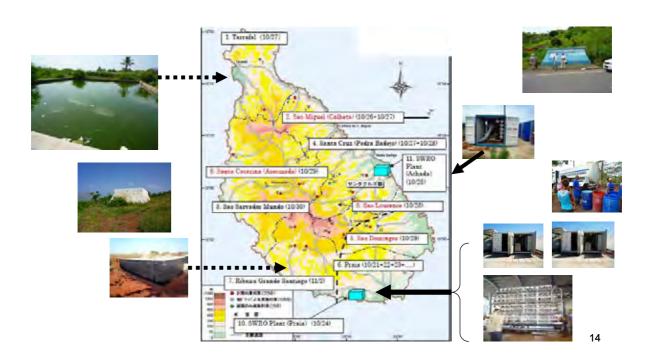

Objective of JICA Study

- 1) to verify the feasibility of the project including
- Increase of fresh water by construction of seawater desalination plant,
- Construction and/or rearrangement of wide area water distribution network to targeted cities, and
- For corresponding the current and future water shortage by economic growth in Santiago island <u>around 2020</u>.
- 2) <u>to find suitable project</u> for Japanese yen and/or other fund credit.


ç

Study Flow and Time Schedule of JICA Study

- 1. Opening Remarks
- 2. Purpose of Steering Committee
- 3. JICA Study Explanation
- 4. JICA Study Status
- 5. Discussion
- 6. Closing Remarks


Part-1: Summary of 1st field and 2nd domestic work

- 1. 1st Field Work Summary
- 2. Interview Records from Municipality
- 3. Information Analysis
- 4. Horizons of Water Demand
- 5. Water Supply System Study
- 6. other Water Projects in Santiago
- 7. Steering Committee Establishment

13

M

1. 1st Field Work Summary

2. Visit and Interview to all Municipalities

- 1. Tarrafal
- 2. Sao Miguel
- 3. San Salvador do Mundo
- 4. Santa Cruz
- 5. Sao Domingo
- 6. Praia
- 7. Ribeira Grande de Santiago
- 8. San Lourenco dos Orgaos
- 9. Santa Catarina (Assomada)

15

٠,

Interview Summary by MEGC and JICA as of Oct. 2009

MUNICIPALITY	unit	S.Miguel	Tarrafal	Santa Cru	JZ	S L D Orgaos	Santa Catarina	Picos	Ribeira (Grande	S. D	omingo	Prai	a all
population		17,000	21,000	30,000		10,000	50,000	10,000	12,000		14,300		120,000	
water supply	m3/day		1160	1200		420	900		250		880		6,802	
water supply loss	%	15-20		35			30-40		not available		12		31,5	_
water to people	%		75	80		d60-r40	100		33		47		100)
water to agriculture	%		25	20		r60-d40	0		not available		53		()
water consumption,	I/d/person		55	40		~20	18		30		30		57	4
connection to householdrate	%	60	70	82		57		15-16	600 househo	d	21		54	
water price for people	m3/CVE												325	į
	0-5m3	220	108	220	0-6m3	500	80	see below	253	0-6m3	220	0-4m3	234	0-6m3
	6-10m3	280	134		6-10m3	150				6-10m3				6-10m3
	10-15m3	10+m3 350		340	10m3+	170			442	10m3+	340	8m3+	457	>10 m3
	15+ m3		269			300	200							
water price for irrigation	CVE/m3													
	Manual	35/m3		25/m3	manual		n/a		n/a			manual	n/a	1
	Drip system	22/m3		8/m3	Drip system		n/a		n/a		15/m3	Drip system	n/a	
contract fee	CVE	3,000	3,450	varies 8000-14000		4,000			6,000		14,000		varies 9,90	J-35,000
tax	CVE/m3			15										
price	CVE/m3		1000 by habitat	1850				350 by habitat						
RO desalination	m3/d	500	n/a	540		n/a		n/a	n/a		n/a		7400)
from		well near sea	n/a	well near sea		n/a	n/a	n/a	n/a		n/a		sea water	
well water	m3/d		1137	660		varies	900				880		900	J.
well number			12	8		7	16	5	2+		14		- (ا
reservoir number		30	2	45		26		3	6+					
reservoir capacity	m3	10 - 500	150	20-1000		8-100		50/40/40	1000/50/30/	20				
fountain water	m3/d		23			745 in 10/09			250					
fountain number	I					4			3+					1

from S Catarina via PL	80
from S Domingo via truck	310
from S Cruz via truck	270
from S Catarina via PI	80

3. Information Analysis

Water Production in the Santiago Island

		2006								
Municipality	Potable Water m³/year	Industrial m³/year	Total m³/year	Total m³/day						
Tarrafal	237,011		237,011	649.35						
São Miguel	89,512		89,512	245.24						
São Salvador do Mundo	Within S.Catarina	_	_	_						
Santa Cruz	299,623	7,856	307,479	842.41						
São Domingos	128,665	1,670	130,335	357.08						
Praia	2,723,248	74,387	2,797,635	7,664.75						
Ribeira Grande de Santiago	Within S.Catarina	_	_	_						
São Lourenço dos Orgaos	Within S.Catarina	_	_	_						
Santa Catarina	563,492	_	563,492	1,543.81						
Total (Santiago Island)	4,041,551	83,913	4,125,464	11,302.64						

17

Horizons of Population in Santiago Island, 2010

		200	00		2010				Evolution
Municipality	Total	Urban	Rural	% Urban	Total	Urban	Rural	% Urban	of Population
Tarrafal	17,883	5,810	12,073	32.5	23,786	8,027	15,759	33.7	24.8%
São Miguel	16,213	5,017	11.196	30.9	17,602	6,042	11,560	34.3	7.9%
São Salvador do Mundo	9,214	1,148	8,029	12.5	10,950	1,459	8,029	13.3	15.9%
Santa Cruz	25,333	8,575	16,693	33.8	30,038	11,707	16,693	39.0	15.7%
São Domingos	13,381	1,607	11,774	12.0	14,421	2,212	12,209	15.3	7.2%
Praia	97,232	94,361	2,897	97.0	131,453	129,163	2,897	98.3	26.0%
Ribeira Grande de Santiago	9,664	1,346	8,318	13.9	9,618	1,435	8,183	14.9	-0.5%
São Lourenço dos Orgaos	7,847	1,437	6,410	18.3	9,285	1,831	7,454	19.7	15.5%
Santa Catarina	41,061	7,297	33,764	17.8	48,535	14,380	34,155	29.6	15.4%
Fotal (Santiago Island)	237,828	126,598	99,969	53.2	295,688	176,256	116,939	59.6	19.6%

Data source: Census 2000, "Resultado de Revisão das Projecções Demograficas 2000-2020". Urban area population increased.

Horizons of Population in Santiago Island, 2020 - preliminary

> Horizons will be discussed and confirmed during 2nd field survey

	2020							
Municipality	Total Urban		Rural	% Urban				
Tarrafal	31,638	11,041	20,596	34.9				
São Miguel	19,110	7,204	11,906	37.7				
São Salvador do Mundo	13,013	1,835	11,178	14.1				
Santa Cruz	35,617	15,743	19,874	44.2				
São Domingos	15,542	2,891	12,651	18.6				
Praia	177,718	177,007	711	99.6				
Ribeira Grande de Santiago	9,572	1,522	8,050	15.9				
São Lourenço dos Orgaos	10,987	2,318	8,668	21.1				
Santa Catarina	57,369	23,751	33,618	41.4				
Total (Santiago Island)	370,566	243,313	127,253	65.7				

Total: Estimated by "evolution of population" during 2000-2010

Rural: Estimated by "evolution of urban area population" during 2000-2010

19

4. Horizons of Water Demand - preliminary -

- \succ Horizons will be discussed and confirmed during 2^{nd} field survey
- > Including tourism and industry, excluding water loss

Population			Population		
(vear 2000)	(vear 2008)	(%)			Round Figure (m3/d)
17,883	22,453	33.50%	31,637	2,134	Now 422,000m3/y x 75% 2,400
16,213	17,291	33.60%	19,110	1,316	→ Italy 3,500m3/d
				1,641	1,600
9,214	10,560	13.20%	13,013	742 742	700
25,333	28,989	37.90%	35,617	2,568 2,893	Italy 1,000m3/d 2,900
13,381	14,230	14.70%	15,542	922 922	Luxenburg 2500m3/d
97,232	123,741	98.00%	177,718	17,736 19,986	Now 15,000m3/d 20,000
9,664	9,639	14.70%	9,572	555 555	600
7,847	8,961	19.40%	10,986	665 665	700
41,061	46,866	27.30%	57,369	4,056 6,056	Now 1,000m3/d 6,000
237,828	282,730		person 370,564	m3/d 30,694 35,844	35,800
	(year 2000) 17,883 16,213 9,214 25,333 13,381 97,232 9,664 7,847 41,061	(vear 2000) (vear 2008) 17,883 22,453 16,213 17,291 9,214 10,560 25,333 28,989 13,381 14,230 97,232 123,741 9,664 9,639 7,847 8,961 41,061 46,866	(vear 2000) (vear 2008) (%) 17,883 22,453 33.50% 16,213 17,291 33.60% 9,214 10,560 13.20% 25,333 28,989 37.90% 13,381 14,230 14.70% 97,232 123,741 98.00% 9,664 9,639 14.70% 7,847 8,961 19.40% 41,061 46,866 27.30%	(vear 2000) (vear 2008) (%) (vear 2020, estimated) 17,883 22,453 33.50% 31,637 16,213 17,291 33.60% 19,110 9,214 10,560 13.20% 13,013 25,333 28,989 37.90% 35,617 13,381 14,230 14.70% 15,542 97,232 123,741 98.00% 177,718 9,664 9,639 14.70% 9,572 7,847 8,961 19,40% 10,986 41,061 46,866 27.30% 57,369 person person	(vear 2000) (vear 2008) (%) (vear 2020, estimated) m3/d 17,883 22,453 33.50% 31,637 2,134 2,384 23,344 2,384 16,213 17,291 33.60% 19,110 1.316 1,641 1,641 742 742 25,333 28,989 37.90% 35,617 2,568 25,333 28,989 37.90% 15,542 922 97,232 123,741 98.00% 177,718 17,736 9,664 9,639 14.70% 9,572 555 7,847 8,961 19,40% 10,986 665 41,061 46,866 27.30% 57,369 4,056 6,056 6,056 6,056 6,056

20

4. Horizons of Water Demand - presumption -

Water consumption, l/day/person urban 100 rural 50 tourist 250

Tourist Hotel Bed, number

Sao Miguel
Santa Cruz
Fraia
5,000
Santa Catarina
6,000

21

1

Horizon of water consumption, l/person/day

		Urk			
Year	% Coverage Public Pipe	Consumption	% Coverage Fountain	Consumption I / person / day	
2010	90	100	10	25	100 in urban
2020	100	150	_	_	

	Rural					
Year	% Coverage Public Pipe	Consumption I / person / day	% Coverage Fountain	Consumption I / person / day		
2010	20	50	80	25		50 in rural
2020	25	80	75	30	/	

Data source: "National Vision on Water, Life and Environment on the horizon 2025" by INGRH (2000) WHO recommend 100 litter/person/day

22

							Urban	l/d/person	
				ratio			Rural	50	
				15%	4		Hotel	250	
Municipality	Population	Population	City area			ulation			
y	(vear 2000)	(vear 2008)	(%)	(ve		0. estima	ated)		Round Figure (m3/d)
				year 20			person	m3/d	
1. Tarrafal	17,883	22,453	33.50%				31,637	2,134	Now 422,000m3/y x 75% (for Potable)
Urban		7,522		1			11,041	1,104	= 870m3/c
Rural		14,931]			20,596	1,030	
Hotel				50	200	beds		50	
Industry				1				200	
				1				2,384	2,400
								-	•
2. Sao Miguel	16,213	17,291	33.60%				19,110	1,316	
Urban		5,810]			7,204	720	
Rural		11.481					11,906	595	
Hotel				100	400	beds		100	
Industry								200	
								1,616	1,600
3. Sao Salvador Mundo, Picos	9,214	10,560	13.20%				13,013	742	\rightarrow
Urban		1,394		1			1,835	184	
Rural		9,166]			11,178	559	
Hotel				0	0	beds		0	
Industry]				0	
								742	
4. Santa Cruz (Pedra Badejo)	25,333	28,989	37.90%]			35,617	2,568	Ttaly 1,000m3/d
Urban		10,987		1			15,743	1,574	
Rural		18,002		1			19,874	994	
Hotel				100	400	beds		100	
Industry (Cement)	China]				200	
]				2,868	2,900
5. Sao Domingos	13,381	14,230	14.70%]			15,542	922	Luxenburg 2500m3/d
Urban		2,092		1			2,891	289	at S.Francisco
Rural		12,138		1			12,651	633	
Hotel				0	0	beds		0	
Industry]				0	
,				1				922	900
			•			•			

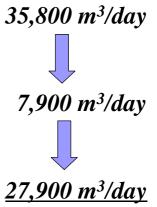
Note 1: Number of bed is estimated based on the data by Tourist data analysis (PD consultant).

Note 2 : Consumption for tourist and Industry are estimation by JICA study team.

23

Horizons of Water Demand in detail (2/2)

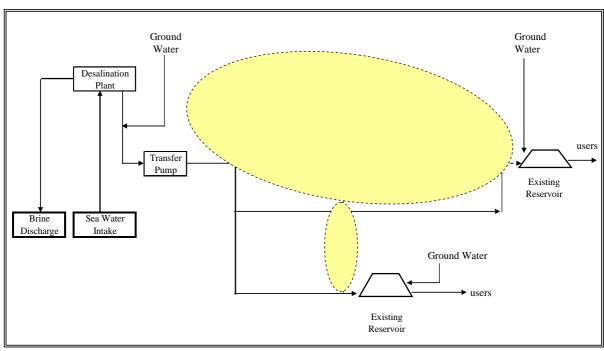
Municipality 6. Praia Urban Rural Hotel Industry	Population (vear 2000) 97,232	Population (vear 2008) 123,741 121,266 2,475	City area (%) 98.00%	year 20	Por ear 202	ulation 0. estin	Urban Rural Hotel	100 50 250 250 m3/d 17,736 17,701 36 600 1,500		Round Figu Now 15,000m3/d	
7. Ribeira Grande Santiago (*) Urban Rural Hotel	9,664	9,639 1,417 8,222		0	0	beds	9,572 1,522 8,050	555 152 403 0 0			20,000
8. Sao Lourenco Orgaos (*) Urban Rural Hotel Industry	7,847	8,961 1,738 7,223		0	0	beds	10,986 2,318 8,668	665 232 433 0 0	J		700
9. Santa Catarina (Assomada) Urban Rural Hotel Industry	41,061	46,866 12,794 34,072		300	1,200	beds	57,369 23,751 33,618	4,056 2,375 1,681 300 1,500 5,856		Now 1,000m3/d at2020, 3,775m3/d	6,000
Total Urban Rural Hotel Industry	237,828	282,730 165,020 117,710		1,150	4,600	beds	person 370,564 243,312 127,252	m3/d 30,694 24,331 6,363 1,150 3,600			<i>35,800</i>


Note 1: Number of bed is estimated based on the data by Tourist data analysis (PD consultant).

Note 2: Consumption for tourist and Industry are estimation by JICA study team.

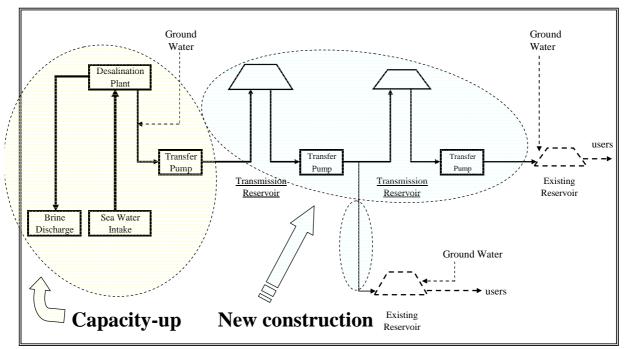
5. Water Supply System Study - presumption -

- Whole potable water demand in 2020:
- Existing Desalination Capacity in 2010 in Praia and S. Cruz
- Additional Capacity for whole demand



Note: Ground water utilization and Water loss are not countered.

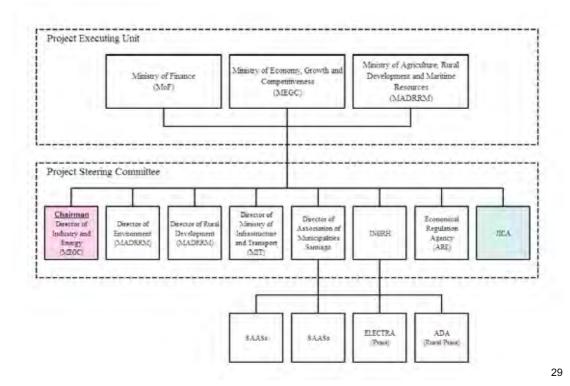
25


100

Water Supply System Study existing system

Water Supply System Study new system

27

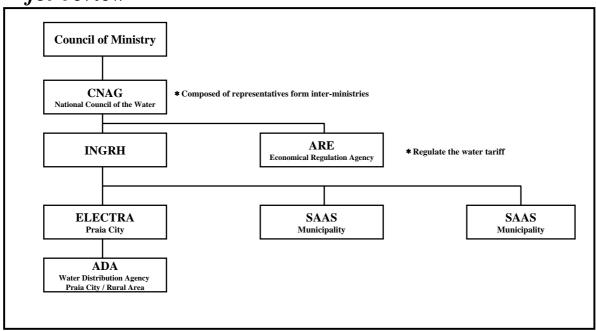


6. Other Water Projects in Santiago

ODA basis	 World Bank for 5000-7500m³/day of water production in Praia under discussion of IBRD funding, after 2012 Spain for 5000m³/day of water production in Praia under negotiation, after 2010 discussion Spain for reservoir , transfer line and distribution line in Cidade Velha Phase-1 reservoir construction finished Phase-2 line construction will be constructed and connected China for dam Phase-1 construction finished Phase-2 utilization under discussion French for F/S on ground water supply and sanitation in Assomada Luxemburg for plan on 2,500m³/day of water production with 9km line in S. Domingo Portugal for other dam? Morocco for Cidade-Praia network rehabilitation? 18km pipeline for Calheta and Santa Catarina
Private basis	 Lachesi of Italy for 3,500m3 of water production in Calheta, S. Miguel to Assomada under negotiation Lachesi of Italy for 500+500m3 of water production in Pedro Badejo, S. Cruz to Assomada under discussion CAIS (Company of water introduction Santiago), 30 year Concession Company Lachesi: GoCV=80:20(max)

M

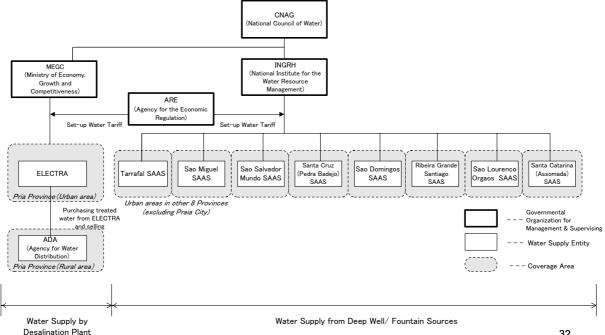
7. Steering Committee Establishment


Part-2: Summary of 2nd field work

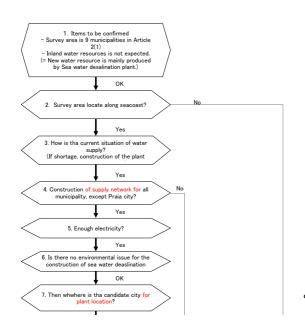
- 1. Water related Organization review
- 2. Project case selection
- 3. ROM cost estimation
- 4. Ground water utilization
- 5. System discussion
- 6. IEE and EIA

1. Organization and Institution review

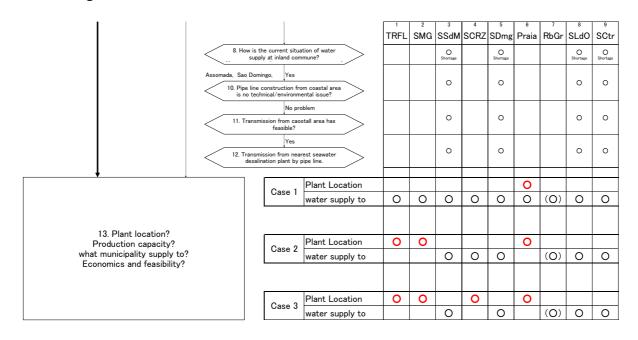
- for review -



31

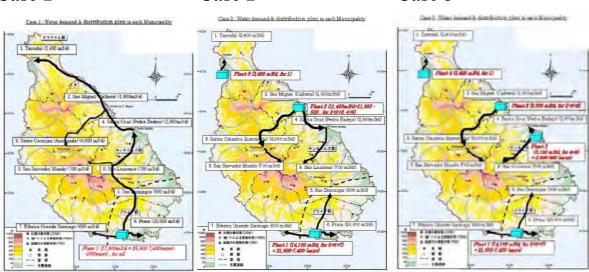

Administrative Framework for Water Supply

- under review -


2. Project Case Selection (1/3)

TRFL	SMG	3 SSdM	scrz	5 SDmg	6 Praia	7 RbGr	SLdO	9 SCtr
0	0	0	0	0	0	0	0	0
0	0		0		0	0		
(O)	0		0		0	(O) enough water		
(O)	0	0	0	0	0	0	0	0
(O) Future supplied	(O) Soon supplied		(O) Soon supplied		0	0		
0	0	0	0	0	0	0	0	0
(0)	0		0		0			

33


Project Case Selection (2/3)

Project Case Selection (3/3)

Case 1 Case 2 Case 3

35

100

Case 1: One Desalination Plant at Praia

- 1. Expected Advantage
 - 1) Lower construction cost for desalination plant
 - 2) Centralized operation and management
- 2. Disadvantage
 - 1) Higher construction cost for pipeline
 - 2) Market sharing with ELECTRA and other Municipalities
 - 3) Risk of water leak and loss
 - 4) Risk of one water supplier

Case 2: Three Plants at Praia, Sao Miguel and Tarrafal

Case 2: Water demand & distribution plan in each Municipality

1. Expected Advantage

- 1) Lower construction cost for pipeline
- 2) Job creation in local Municipalities
- 3) Lower conflict between ELECTRA and other Municipalities
- 4) Risk Decentralization from one water supplier

2. Disadvantage

- 1) Higher construction cost for desalination plants
- 2) More Training and people required for Operation and Maintenance

37

Case 3: Four Plants at Praia, Santa Cruz, Sao Miguel and

Tarrafal

1. Expected Advantage

- 1) Lower construction cost for pipeline
- 2) Job creation in local Municipalities
- 3) Lower conflict between ELECTRA and other Municipalities
- 4) Risk Decentralization from one water supplier
- 5) Adjustment against other Donor's projects

2. Disadvantage

- 1) Higher construction cost for desalination plants
- 2) More Training and people required for Operation and Maintenance

3. ROM cost estimation

Presumptions:

Preparatory Design basis

Estimation: in-house basis with relative cost

Sea water: available and not specific treatment required

Electric Power: available EPC contractor: foreign

Equipment and Material: imported

Desalination plant: Reverse Osmosis type, and

non specific requirement for installation

Transmission Reservoirs: concrete with 12 hours holdings

Transfer Line

Carbon Steel with lining for HP service

HDPE for LP service

Transfer Pump: 1+1 with Electrical motor driven

39

Water Supply System Study selection criteria

criteria	unit	Case 1	Case 2	Case 3	remarks	
Total Water Production	m ³ /day	27,900	27,900	27,900		
Praia		27,900	14,100	14,100		
Tarrafal		-	2,400	2,400		
Sao Miguel		-	11,400	8,300		
Santa Cruz		-	-	3,100		
No. of Desalination plants		one	three	four		
Relative construction cost	%	100	77	74		
	%	136	104	100		
Total Construction Cost		×	0	0		qualitative evaluation
Dasalination Plant		0	0	0		⊚: excellent
others (Lines and Reservoir)		×	0	0		O: good
O&M cost		×	0	0		\triangle : normal
Dasalination Plant		0	0	0		×: negative
others (Lines and Reservoir)		×	0	0		
EIA cost		×	Δ	Δ		
Environmental Impact		Δ	Δ	Δ		
Social Consideration		Δ	Δ	Δ		
Ground water utilization						
comments from GoCV						
comments from Municipalities						
comments from donors						
JICA project (Yen loan) comment						
Project Profitability						
Overall Profitability						
JICA Recommendation						

4. Ground Water Utilization for Mixing with Desalinated Water

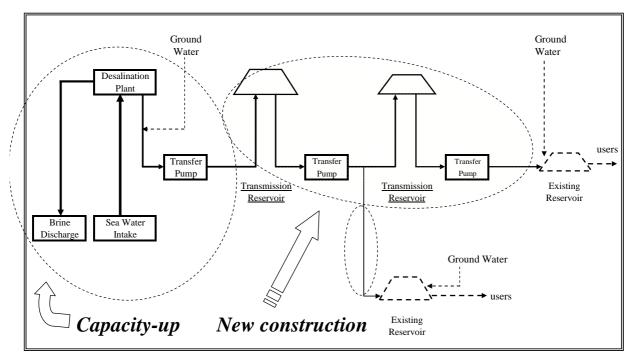
Ground Water Utilization Policy

Utilization of Ground Water for Mixing with Desalinated Water

- Availability in volume
- Availability in quality
- investment cost reduction
- potable water quality on minerals and Boron
- location, etc.

41

5. Water Supply System Discussion


3 cases were prepared.

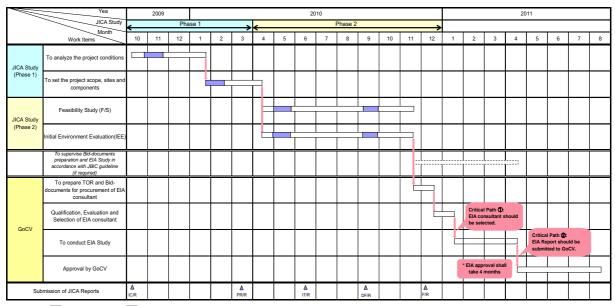
For water supply system determination,

- Preparatory design was conducted,
- ROM construction cost was estimated, and
- Selection criteria was prepared.
- 1) JICA team will make Case recommendation during staying,
- 2) JICA team will make JICA Project Scope determination after coming home, and by the beginning of March.

Water Supply System Study JICA Project

43

6. IEE and EIA

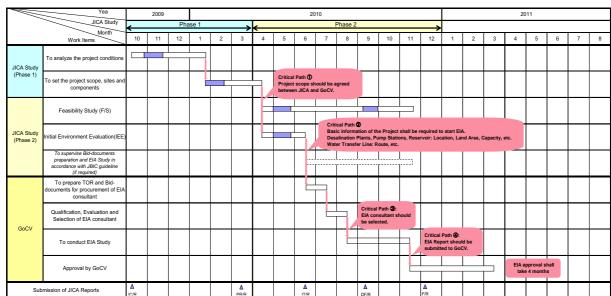

- <u>IEE will be carried</u> out in accordance with JBIC Guidelines 2002, relevant local laws and regulation <u>by JICA team</u>.
- EIA procedure and necessary items are provided in "decree No. 29/2006" in Cape Verde.
- **■** EIA will be conducted by consultants, and approved by MEGC.
- **■** EIA is necessary for MEGC to precede Project.
- Direction General of Environment is responsible to approve EIA Report.
- About 4 months takes for EIA report approval.
- Time schedule should be discussed taking Cape Verde policy and Yen-loan into account.

IEE and EIA original time schedule

DRAFT

EIA Schedule in JICA F/S, original d conditions: In the case of "Category B" under JBIC Guideline.)

Study Mission in Cape Verde Domestic Work A Subn


45

IEE and EIA early L/A schedule case

DRAFT

EIA Schedule in JICA F/S, early L/A case
(* Terms and conditions: In the case of "Category B" under JBIC Guideline and making loan agreement (L/A) within fiscal year 2010 between JICA and GoCV.)

Study Mission in Cape Verde Domestic Work A Submission of Re

- 1. Opening Remarks
- 2. Purpose of Steering Committee
- 3. JICA Study Explanation
- 4. JICA Study Status
- 5. Discussion
- **6.** Closing Remarks

- a. Criteria to select the target municipalities to be developed,
- b. Identification of the Project scope, including project sites, specification of facilities, project cost, procurement structure, etc,
- c. Setting-up and establishment of the Project implementation, operation and management organizations,
- d. Establish of the financial structure, including tariff system, concession structure, staff allocations, etc.
- e. --
- f. --
- g. --

- 1. Opening Remarks
- 2. Purpose of Steering Committee
- 3. JICA Study Explanation
- 4. JICA Study Status
- 5. Discussion
- 6. Closing Remarks

Attachment 1-3

Minutes of Meeting (2nd Steering Committee)

&

Discussion materials

SUMMARY OF MOM

OF

PROJECT STREERING COMMITTEE

ON

FEASIBILITY STUDY

FOR

ENHANCED WATER SUPPLY SYSTEM PROJECT

DATE: May 21st, 2010 PLACE: Praia, Cape Verde

- The Government of the Republic of Cape Verde (GoCV), in cooperation with the Government of Japan, intends to develop a structuring and strategic water sector project on the island of Santiago, aiming both at improving the water supply conditions, through the interconnection of water transmission and distribution networks, and at strengthening the production capacities;
- Given the specific and strategic significance of the project, a diligent and efficient technical follow-up will be needed for the same;
- In the scope of implementation of the above mentioned project, there will be a need to guarantee, to the GoCV, reliable technical counsel and assistance;
- It is much advisable that the project be followed up and supported by all sectors and institutions
 which are, in one or other way, related to the water sector:
- In this purpose, a Project Steering Committee has been officially established on 26th of January 2010 by the DISPATCH No. 007 / 2010 issued by MEGC (now MTIE).
- The Project Steering Committee has met officially for the third time on the 21st of May 2010, in the
 office of Cape Verde Investment Agency, Praia, Cape Verde. The list of participants is given in
 Annex-3.
- 7. The main points discussed are based on the presentation by The JICA study team of all results and propositions related to the project at the time of the meeting. This presentation is given in Annex-1 and 2.
- The Project Steering Committee members hereby confirmed full understanding of main points discussed as per Appendix 4.

By Chairman of the Project Steering Committee

Mr. Pedro Alcantara Silva

MTIE / General Directorate of Energy

MINUTES OF MEETING ON THE PROGRESS REPORT FOR THE PREPARATORY SURVEY ON WATER SUPPLY SYSTEM DEVELOPMENT PROJECT IN THE REPUBLIC OF CAPE VERDE

Praia. 26th May, 2010

Mr. Pedro Alcantara Silva

Directorate General for Energy,

Ministry of Tourism, Industry and Energy

The Government of the Republic of Cape Verde

Mr. Mitsutoshi SUZUKI

Lead Consultant of the Survey Team

Japan International Cooperation Agency

Attachment

Japan International Cooperation Agency (hereinafter referred to as "JICA") dispatched a mission (hereinafter referred to as "the JICA Mission") to the Republic of Cape Verde. Since its arrival on May 17th, 2010, the JICA Mission and officials of Government of the Republic of Cape Verde (hereinafter referred to as "the GoCV"), Ministry of Tourism, Industry and Energy, (hereinafter referred to as "MTIE") had detailed discussions on the Progress Report of the Preparatory Survey (hereinafter referred to as "the Survey") for Water Supply System Development Project (hereinafter referred to as "the Project").

In the course of discussions, both sides confirmed the main items described below. The JICA

Mission will proceed as planned up to December 2010, when the Survey comes to the end.

1. Explanation of Progress Report (PR/R)

The JICA Mission submitted seven (7) copies of the PR/R to the GoCV on 17th May.

The progress report was first presented by the JICA Mission to MTIE and discussed in Praia on 17th May. The JICA Mission presented the basic concept, outline and scope of the survey proposed in the PR/R.

The GoCV side agreed on the contents of the PR/R in principle, understood the survey objectives, schedule, activities and methodology, and promised close cooperation with the JICA Mission during the Survey.

2. Conditions of the Survey

The JICA Mission stated that the results of discussions do not imply any decision or commitment by JICA for its prospective loan for the Project at this moment and the above results should be reported to the higher authority of JICA and the Government of Japan.

Major Points Discussed

(change of ministry in charge) (1) The GoCV side explained that the Ministry of Economy, Growth and Competitiveness has been changed to Ministry of Tourism, Industry and Energy (MTIE) on April 2010. The MTIE will be responsible for the Survey.

(internal steering committee)

- (2) The GoCV side explained the contents of the internal steering committee held on April 28th. a. Case 1 can be postponed from the options. (Case 1 means Centralized water production in Praia.) b. Taking into account the current water supply system and activities of other donors and firms in Santiago Island, the Steering Committee decided to propose to the JICA Mission an option for operation and maintenance of water supply facilities in Santiago Island.
 - c. The system will be composed by two areas, one which will cover the southern part of Santiago Island, and the other which will cover the northern part of Santiago Island. The details of the two areas are as below.

area	Municipalities		Production	Transmission/Distribution
North		Facility Owner	CAIS o other company to be created	
		O/M	other	"Inter Municipality Water Company" or other company to be created
South	3 Municipalities [Praia, Sao Domingos, Ribeira Grande de	Facility Owner	Electra	GoCV
	Santiago]	O/M	Electra	Electra

d. Contents of the internal steering committee proposal has not been discussed yet with relevant Government authorities, including CNAG. It is an option to be considered by JICA Mission in this survey.

(activities of other donors and firms)

(3) As for the activities of other donors and firms the GoCV explained the below.

a. Financial cooperation of Spain (5,000m3/day) and World Bank (5,000m3/day) to expand the existing desalination plant in Praia, is official, and the Survey should include the two cooperation projects.

b. The concession contract between GoCV and CAIS is still under discussion. Therefore, CAIS projects to construct desalination plants in Sao Miguel and Santa Cruz are still under discussion.

Project to finance transmission line from Sao Miguel to Assomada is under discussion.

(4) For the above points, the JICA mission mentioned the below.

a. JICA Mission will consider the feasibility of the option proposed by the internal steering committee. JICA Mission will conduct the remaining survey for whole Santiago Island as planned.

b. The basic plan and feasibility study will be drafted taking into account activities and projects which are official at this point. With discussion with the GoCV, JICA Mission will propose an optimal plan.

e. In order to conduct meaningful and efficient survey, GoCV side should share any information, changes and results regarding water supply with the JICA Mission.

d. According to the preliminary calculation of the project cost, JICA envisaged the phasing the projects.

(Second Steering Committee)

- (5) On May 21st, 2nd Steering Committee was held. JICA Mission explained the current status of the Survey using Annex-1. The conclusion of the steering committee was as follows.
 - a. Although the options need to be determined by CNAG, JICA Mission will begin feasibility study based on Case 3. Next CNAG meeting should be held before June 7th.
 - b. JICA Mission explained its concern for Boron in desalinated water and also explained that the dilution with groundwater would be a feasible solution using Annex-2. The GoCV understood the explanation although utilization of groundwater for dilution shall also be determined by CNAG.
 - c. JICA Mission will provide any information to GoCV regarding preliminary calculation of project cost and water tariff.

d. JICA Mission will, in its survey, propose commercial studies for the construction and operation of water supply facilities.

(design framework of the survey)

(6) JICA Mission proposed to the GoCV side the design framework of the Survey as in Annex-1. The GoCV will look into the framework and make comments by the next steering committee on June 7th.

(EIA procedures)

(7) With reference to the principle of the relevant law in Cape Verde and the JICA Guidelines, EIA report will be prepared and submitted by the GoCV based on the recommendations made by the Survey Team. The Survey team will examine environmental impact of the project through the Survey as level of Initial Environment Evaluation (IEE).

(End)

Second Steering Committee Presentation ANNEX-1

Boron Removal ANNEX-2

Attendants List of the Second Steering Committee ANNEX-3

Main Points discussed ANNEX-4

2nd Steering Committee

on

Water Supply System Development Project in Santiago, Cape Verde (JICA-II Project)

May 21, 2010 at Praia

Japan International Cooperation Agency

Toyo Engineering Corporation Ingérosec Corporation UNICO International Corporation

- 1. Opening Remarks
- 2. Purpose of Steering Committee
- 3. Progress Report (PR/R) Briefing
- 4. JICA Follow-up Study
- 5. Discussion
- 6. Closing Remarks

Purpose of Steering Committee:

- 1) to supervise the Survey and
- 2) to monitor the progress of the procedure inside GoCV.

Discussion Items in Steering Committee:

- 1) to identify the Project scope, project sites, specification of facilities, project cost, procurement structure, etc,
- 2) to set-up and establish the project implementation, operation and management organizations,
- 3) to establish financial structure, including tariff system, concession structure, staff allocations.

Purpose of JICA Study:

- 1) to verify the feasibility of the project
- 2) to find suitable project for Japanese yen and/or other fund credit.

3

Purpose of 2nd Steering Committee

- 1. Water supply system concept determination
- 2. Production Capacity proposed and discussed
- 3. Project scope confirmation
- 4. IEE/EIA cooperation
- 5. Water analysis and Geo-technical survey permission

for Interim Report (IT/R) submitted by the end of July.

- 1. Opening Remarks
- 2. Purpose of Steering Committee
- 3. Progress Report (PR/R) Briefing
- 4. JICA Follow-up Study
- 5. Discussion
- **6.** Closing Remarks

5

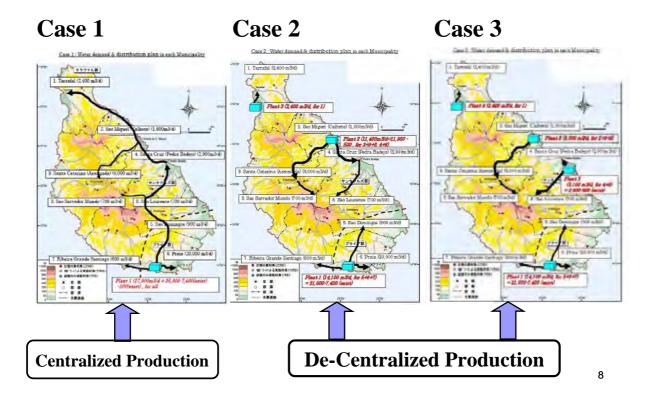
Progress Report Major Contents

- 1. General Survey for Cape Verde and Santiago Island
- 2. Water Related Survey for Santiago Island
 - Operation and Management System and Organization
 - Water Supply and Distribution System
 - Assistance by donors
 - Socio-Economical Analysis
- 3. Water Supply System Study
 - Basic Conditions
 - Basic Planning
 - Project Recommendation
- 4. Environment and Social Consideration study

Progress Report Topics

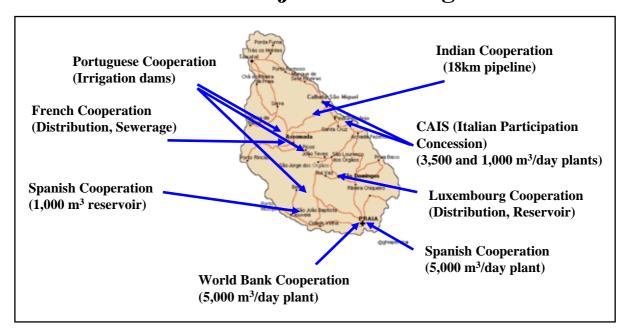
- 1. Lack of water supply are confirmed for 370,000 people in Santiago, 2020.
- 2. Complicated management and organization are suggested.
- 3. Donors and private projects are individually realized and planned.
- 4. Willingness and Affordability to payment of 200-350 CVE/m³ are expected, if ample water is supplied.
- 5. Water Supply System be studied.
- (1) System Capacity Discussion

- Horizon of Demand in 2020: 35,800 m³/day as net demand horizon


- Existing Desalination Capacity: 7,900 m³/day no change basis

- Required Desalination Capacity: 27,900 m³/day <u>as net basis</u>

- (2) Candidates System Configuration prepared
 - JICA prepared 3 candidates, 1 centralized and 2de-centralized production.
 - JICA recommends De-Centralized Production from major view points of Economics and Reliability.


7

3 Candidates be studied and discussed

Donor and Private Project on Santiago island

9

ы,

- 1. Opening Remarks
- 2. Purpose of Steering Committee
- 3. Progress Report (PR/R) Briefing
- 4. JICA Follow-up Study
- 5. Discussion
- **6.** Closing Remarks

JICA Follow-up Study after Progress Report

- 1. JICA recommends De-Centralized water production system, while GoCV desires Centralized water production system.
- 2. JICA surveys Donor and private projects, which are individually planned, but those detail status are not disclosed.
- 3. JICA further studies the followings for the best option selection on PR/R basis;
 - preliminary construction cost estimation,
 - preliminary operation and maintenance cost estimation,
 - preliminary life cycle cost estimation, and
 - preliminary F-IRR (Financial Internal Rate of Return) calculation, and
 - those evaluation

11

Basic Assumption used for F-IRR Analysis

PRELIMINARY

- Design Stage: PR/R (Preparatory Design basis)
- Cost Estimation grade: Rough order of Magnitude
- Construction period: 2 years
- Sea water: free of charge and no special pretreatment required
- Power price: 0.388 US\$/kWh (30 CVE/kWh equivalent)
- Labor Cost: 50,000 US\$/year/one person
- F-IRR Analysis period: 20 years
- Non revenue water: zero
- Major excluded items:
 - Power Plant for captive and emergency
 - Distributed control system and SCADA system
 - Land cost, purchase or lease

Outcome of F-IRR Analysis

Preliminary for best option selection

Planned Population s	erved		370,000				
Water Production Sy	stem	Centralized	De-Centralized				
	unit	Case 1	Case 2	Case 3			
Production Capacity and location	m³/day	27,900	27,900	27,900			
Praia		27,900	14,100	14,100			
Tarrafal		-	2,400	2,400			
Sao Miguel		-	11,400	8,300			
Santa Cruz		-	-	3,100			
No. of Desalination plants		one	three	four			
Construction Cost (Base cost)	million US\$	147	113	108			
Dasalination Plant		33	49	53			
others (Lines and Reservoir)		114	64	55			
Project Cost	million US\$	177	135	130			
O&M cost	million US\$/year	45	40	40			
Life Cycle Cost for 20 years	million US\$	1,045	904	901			
Construction cost/population	US\$/person	398	304	292			
F-IRR at 3.3 US\$/m ³ water	%	negative	negative	negative			
F-IRR at 4.3 US\$/m ³ water	%	negative	2.8	3.0			

- 3.3 US\$/m³-water means Santiago average tariff
- 4.3 US\$/m³ -water means Praia city tariff

13

Donor and Private Project Survey

Project	Developer	System	Capacity	Location	Status
Donor	World Bank	Desalination Plant	5,000 m ³ /day	Praia	2012
	AfDB	rain water collection		entire island	study
	EC/OFID	Distribution Network			
	Spain	Desalination Plant	5,000 m ³ /day	Praia	2010
		Reservoir	5,000 m ³	Cidade Velha	completed
	Portugal	Irrigation dams			2010
	China	Irrigation dam			completed
	Japan/JICA	Wells		entire island	on-going
	India	Pipeline	18 km	Sao Miguel	2011
				to	
				Assomada	
	France	Distribution	521 m ³ /day	Santa Catarina	2010
		Sewerage			
	Luxembourg	Distribution			
		Reservoir			
Private	CAIS	Desalination Plant	3,500 m ³ /day	Sao Miguel	on-going
		Desalination Plant	1,000 m ³ /day	Pedra Bajero	on-going

Only Desalination Plants by World Bank and Spain were fixed, and will be integrated with further JICA Study.

JICA Recommendation as follow-up study

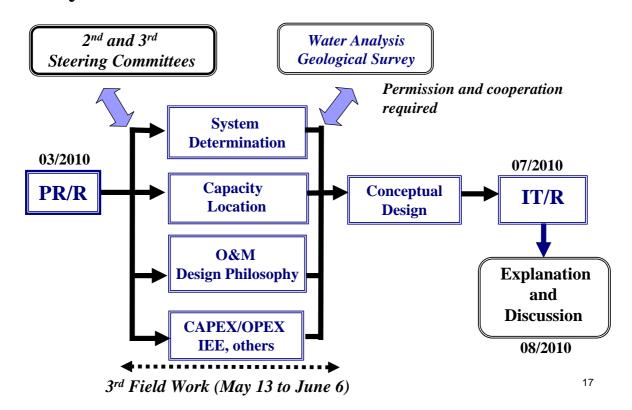
JICA recommends Case-3 with some modification due to

- Project economics
- Water supply reliability
- Project materialization and flexibility

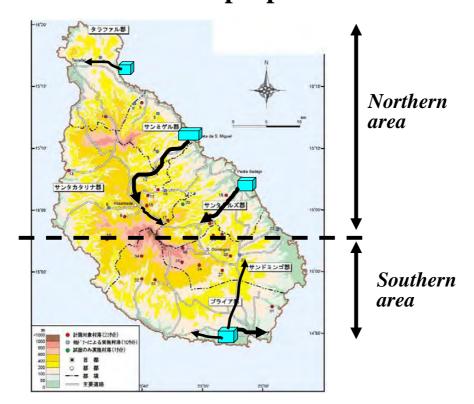
JICA takes notes of the GoCV concerns such as

- proximity of existing desalination plant in Praia,
- tourism development in Santiago island, and
- operation & maintenance concern in local municipalities.

15


Time Schedule of JICA Study

	Year		2009 2010												20	11						
		↓		Pha	ise 1			<u></u>			F	Phase 2										
	Month	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6
Field Work	k	1st			2nd				3rd			4th			5th							
Submissio	on of JICA Report	△ IC/R					A PR/R				IT/R	7		DF/R		▲ F/R						
Steering C	Committee					☆			☆	☆		☆			☆							
Local Con	sultant		Socio Ed	conomica	Analysi:	S			water ar geologic	nalysis cal survey	,											
Phase 1	To analyze the project conditions																					
	To set the project scope, sites and components																					
	To define Water Supply System as FS subject																					
	To conduct Conceptual Design with CAPEX/OPEX																					
Phase 2	To conduct IEE																					
	To develop Financing Plan and conduct Economical Analysis																					


M

Study Flow for IT/R

System Determination proposed

Capacity as basic design frame work proposed

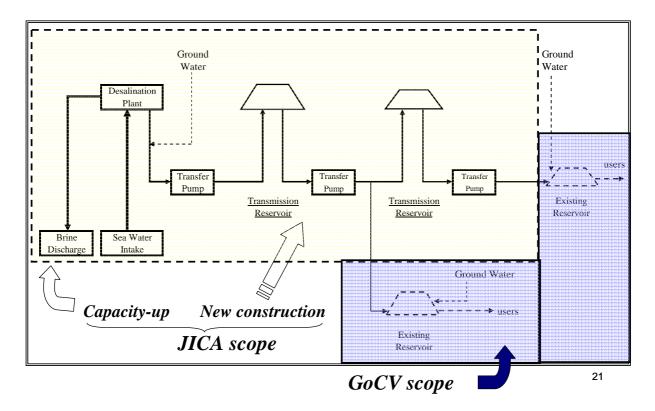
				South		Total				rth			Total	Grand
			Praia	Ribeira	Sao	South	Tarrafal	Sao	SS do	Santa	Sao	Santa	North	Total
					Domingos			Miguel		Cruz	Lourenco			
(a)		Target Year (2020) Population	177,718	-,		202,832				35,617				370,564
	a−1	Urban	177,007	1,522	2,891	181,420		7,204		15,743			61,892	243,312
	a-2	Rural	711	8,050	12,651	21,412	20,596	11,906	11,178	19,874	8,668	33,618	105,840	127,252
(b)		Service Coverage (%)	100	100		100		100	100	100	100	100	100	100
(c)		Served Population	177,718	9,572	15,542	202,832	31,637	19,110	13,013	35,617	10,986	57,369	167,732	370,564
	c-1	Urban	177,007	1,522	2,891	181,420	11,041	7,204	1,835	15,743	2,318	23,751	61,892	243,312
	c-2	Rural	711	8,050	12,651	21,412	20,596	11,906	11,178	19,874	8,668	33,618	105,840	127,252
(d)		Per-Capita Demand (LCD)												
	d-1	Urban	100	100	100	100	100	100	100	100	100	100	100	100
	d-2	Rural	50	50	50	50	50	50	50	50	50	50	50	50
(e)		Domestic Demand (m ³ /day)	17,736	555	922	19,213	2,134	1,316	742	2,568	665	4,056	11,481	30,694
	e-1	Urban	17,701	152	289	18,142	1,104	720	184	1,574	232	2,375	6,189	24,331
	e-2	Rural	36	403	633	1,071	1,030	595	559	994	433	1,681	5,292	6,363
(f)		Non-Domestic Demand (m ³ /day	2,100	0	0	2,100	250	200	0	300	0	1,800	2,550	4,650
	f-1	Tourizm Demand	600	0	0	600	50	100	0	100	0	300	550	1,150
	f-1-1	Number of Tourists (Daily)	2400	0	0	2,400	200	400	0	400	0	1200	2,200	4,600
	f-1-2	Per-Capita Demand (LCD)	250	0	0	250	250	250	0	250	0	250	1,000	1,250
	f-2	Others	1500	0	0	1,500	200	100	0	200	0	1500	2,000	3,500
(g)		Net Water Demand (m ³ /day)	19,836	555	922	21,313	2,384	1,516	742	2,868	665	5,856	14,031	35,344
(h)		Leakage Ratio (%)	24	20	10	23	24	16	20	28	10	28	25	24
(i)		Day Average Demand (m ³ /day)	26,100	693	1,020	27,813	3,137	1,804	928	3,983	736	8,133	18,722	46,535
(j)		Seasonal Peak Factor	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
(k)		Day Maximum Demand (m ³ /day)	33,930	901	1,325	36,157	4,078	2,346	1,206	5,178	957	10,573	24,338	60,495
				•		60%			•		•		40%	100%

- •Leakage ratio and Seasonal peak factor should be carefully discussed.
- •Suggested water tariff might be 5.6-6.7 US\$/m³, equivalent 430-500 CVE/m³ on expected F-IRR=5%.

JICA Study Scope confirmation-1

Project Area:

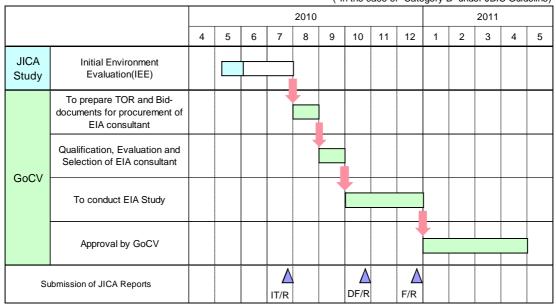
Major urban areas and their surroundings of each municipality, including Praia city in Santiago island.


Scope of Study:

Component	summary
Desalination Plants	new construction
Transmission Pipe Line	new construction from each desalination Plant to municipalities
Reservoirs, Pump Stations, Main-sub station, Monitoring, etc.	new construction
Consulting Services	Planning and Detail Design, Bidding Assistance Construction Supervision, Initial Operation EIA Supervision

Notes: Facilities and equipments for house connection from the distribution pipe to the meter of each household will be excluded to the Project Scope.

JICA Study Scope confirmation-2


.....

IEE and EIA

Schedule

(*In the case of "Category B" under JBIC Guideline)

Legend: Study Mission in Cape Verde

IC/R: Inception Report, PR/R: Progress Report, IT/R: Interim Report, DF/R: Draft Final

IEE and EIA

■ EIA conducted by GoCV

GoCV is responsible for:		Time Frame of EIA		Remarks		
1.	Mobilization of the <u>budget</u> for EIA procedure.	1.	End of July 2010: JICA Study team will provide IT/R	>	EIA shall cover all the affected areas and/or municipalities due to the	
2.	Preparation of the <u>TOR</u> s for procurement of the EIA		including the result of IEE.		Project.	
	consultants.	2.	from August 2010	>	EIA shall only be aligned environmental law in Cape	
3.	Selection of EIA consultants.		to April 2011 (9 months):		Verde, if the Project will be categorized "B" by JICA.	
4.	Quality of EIA study.		GoCV shall conduct EIA	>	EIA report should be	
5.	Authorization of EIA report.		Study and authorize EIA		submitted to JICA <u>before</u> the appraisal of the Project.	
6.	Monitoring during construction and operation according to parameters established in the EIA report.		report.	>	The timing of the appraisal shall be discussed with JICA.	

23

23

- 1. Opening Remarks
- 2. Purpose of Steering Committee
- 3. Progress Report (PR/R) Briefing
- 4. JICA Follow-up Study
- 5. Discussion
- 6. Closing Remarks