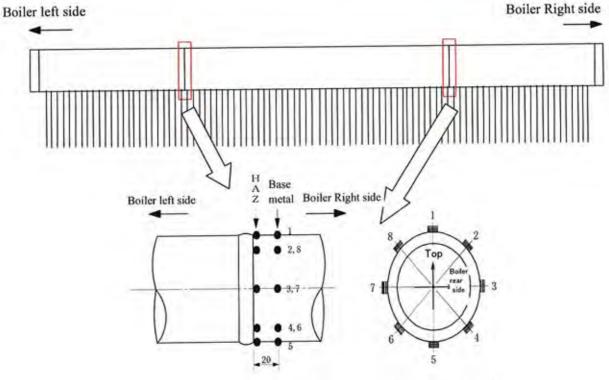
|                  |            | 1.1            | 10-1-11       |            | 1.0    | Measured | value (mm) |        | (Averaged        |                                                    |
|------------------|------------|----------------|---------------|------------|--------|----------|------------|--------|------------------|----------------------------------------------------|
| Components       | Material   | Designed<br>OD | Region        | Area       | 105    | 2⇔6      | 3⇔7        | 4⇔8    | Averaged<br>(mm) | measured value-<br>Designed OD)<br>/Designed OD(%) |
| Re-Heater Outlet | 6.7007.0   | 12.5           |               | Base metal | 558.62 | 566.60   | 562.37     | 560.43 | 562.00           | +0.57                                              |
| Header(Right)    | SA335 P-22 | 558.8mm        | (Header side) | HAZ        | 557.15 | 560.16   | 561.75     | 559.92 | 559.75           | +0.17                                              |
| Re-Heater Outlet | 1          | 1.000          |               | Base metal | 559.24 | 559.63   | 560.57     | 560.22 | 559.92           | +0.20                                              |
| Header(Left)     | SA335 P-22 | 558.8mm        | (Header side) | HAZ        | 558.96 | 559.16   | 560.19     | 559.96 | 559.57           | +0.14                                              |


Table II -22 (Unchahar) Re-Heater Outlet Header Outside Diameter Measurement Results

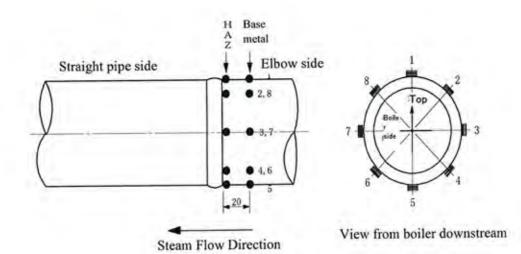




Measurement point of left side of RH outlet header

Measurement point of right side of RH outlet header




View from boiler right side

Ⅱ-186

| Components Material Designed OD Po | 1 million 1 million |                                          | 1                    | Measured   | value (mm) |        | (Averaged measured |        |        |                                       |
|------------------------------------|---------------------|------------------------------------------|----------------------|------------|------------|--------|--------------------|--------|--------|---------------------------------------|
| Components                         | Material            | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | Position             | Region     | 105        | 2⇔6    | 3⇔7                | 4⇔8    | (mm)   | value-Designed OD)<br>/Designed OD(%) |
| a sala di ar i                     |                     |                                          | Downstream side      | Base metal | 510.00     | 507.57 | 506.39             | 508.33 | 508.07 | +0.01                                 |
| Hot Reheat Pipe                    | SA335 P-22          | 508.0mm                                  | (straight pipe side) | HAZ        | 508.17     | 506.77 | 505.17             | 507.77 | 506,97 | -0.20                                 |

Table II -23 (Unchahar) Hot Reheat Pipe Outside Diameter Measurement Results





# Sample tube inspection [Unchahar #2]

Sample tube inspection and creep rupture test were carried out as one of the boiler residual life assessment items for Unchahar Super Thermal Power Station #2 unit. The results are reported as follows.

#### 1. Unit for evaluation

Unchahar Super Thermal Power Station #2 unit

#### 2. Sample tube for inspection

- · Platen-SH tube
- Final-SH tube (#1,#119)

#### 3. Operation condition

| (1) Cumulative operation hours:      | 139,098 | hours |
|--------------------------------------|---------|-------|
| (2) Cumulative start and stop times: | 96      | times |

#### 4. Summary of inspection results

- (1) As a result of tube appearance observation after acid cleaning, traces of corrosion at outside surface and slightly rough condition at inside surface were observed for each sample tube.
- (2) As a result of tube dimension measurement, OD of each tube was less than designed value, and the thickness of each tube was larger than the designed value.
- (3) As a result of steam oxide scale examination, steam oxide scale was adhering evenly by cross sectional observation for each tube.

Average thickness of steam oxide scale mainly consisting of Fe and O was larger in the order of Final-SH #1, Final-SH #119 and Platen-SH tube.

- (4) As a result of hardness measurement, the hardness values were stable in circumferential direction, though measured values were out of the normal value of virgin material by Japanese steel manufacturer.
- (5) As a result of creep rupture test, the evaluated residual life of Platen-SH tube was 7,800,000 hours for base metal, 6,800,000 hours for weld joint portion at designed temperature 503°C. As for Final-SH #119 tube, the evaluated residual life was 400,000 hours for base metal, 350,000 hours for weld joint portion at designed temperature 534°C and 41,000 hours for base metal, 35,000 hours for weld joint portion at equivalent temperature 573°C estimated by comparison with the average creep rupture data of NIMS.

It is recommended that the residual life assessment for Final-SH #119 tube be carried out again before reaching the min.evaluated residual life 35,000 hours.

(6) As a result of microstructure comparison method, the min.evaluated residual life was 120,000 hours.

# 5. Sample tube specification

5

Sample tube specification is shown in Table II -30.

| Sample         | Material               | Designed<br>OD×t(mm) | Designed<br>Temperature<br>(°C) | Designed<br>Pressure<br>(MPa) |
|----------------|------------------------|----------------------|---------------------------------|-------------------------------|
|                | SA213T22               | \$\$1.0×t9.6         | 553                             | 17.24                         |
| Platen-SH #3-8 | SA213T11 <sup>**</sup> | Ø51.0×t7.1           | 503                             | 17.24                         |
| D: 1011 //1    | SA213T22               | Ф51.0×t9.6           | 554                             | 17.24                         |
| Final-SH #1    | SA213T22*              | \$\$1.0×t8.8         | 545                             | 17.24                         |
| E: 1 CH (110   | SA213T22               | Φ51.0×t9.6           | 545                             | 17.24                         |
| Final-SH #119  | SA213T22*              | \$\$1.0×t8.8         | 534                             | 17.24                         |

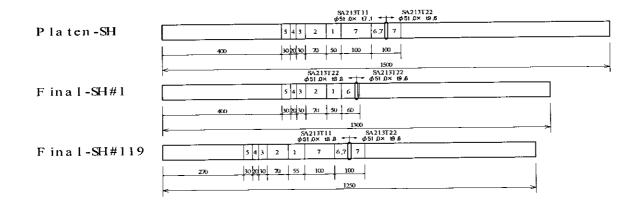
| Table II-30 | Sample tube | specification |
|-------------|-------------|---------------|
|-------------|-------------|---------------|

\* : Chemical composition analysis was conducted as shown below.

The material of sample tubes for evaluation with creep rupture test and microstructural comparison method was confirmed same as the drawing by chemical composition analysis.

Chemical composition analysis results by spark discharge optical emission analysis (wt%)

| Sample tube              | С     | Si        | Mn        | Р      | S      | Cr        | Мо        |
|--------------------------|-------|-----------|-----------|--------|--------|-----------|-----------|
| Platen-SH<br>#3-8        | 0.09  | 0.58      | 0.44      | 0.032  | 0.010  | 1.12      | 0.49      |
| Final-SH<br>#1           | 0.10  | 0.24      | 0.42      | 0.030  | 0.012  | 2.20      | 0.95      |
| Final-SH<br>#119         | 0.10  | 0.24      | 0.42      | 0.030  | 0.013  | 2.22      | 0.96      |
| SA213T11<br>(JIS-STBA23) | ≦0.15 | 0.50~1.00 | 0.30~0.60 | ≦0.030 | ≦0.030 | 1.00~1.50 | 0.45~0.65 |
| SA213T22<br>(JIS-STBA24) | ≦0.15 | ≦0.50     | 0.30~0.60 | ≦0.030 | ≦0.030 | 1.90~2.60 | 0.87~1.13 |


# 6. Inspection item and inspected portion

Inspection item and inspected portion are shown in Table II-31.

|               |                             |                     | <b>42</b> .         | Inspection item | l              |                          |                       |
|---------------|-----------------------------|---------------------|---------------------|-----------------|----------------|--------------------------|-----------------------|
| Comple        | 1                           | 2                   | 3                   | 4               | 5              | 6                        | 7                     |
| Sample        | Outer surface<br>appearance | Internal<br>surface | Tube<br>dimension • | Metallography   | Scale analysis | RLA by<br>microstructure | Creep rupture<br>test |
| Platen-SH     | 0                           | 0                   | 0                   | 0               | 0              | 0                        | 0                     |
| Fainal-SH#1   | 0                           | 0                   | 0                   | 0               | 0              | 0                        | _                     |
| Fainal-SH#119 | 0                           | 0                   | 0                   | 0               | 0              | 0                        | 0                     |

| Table II | -31 In | spection | item |
|----------|--------|----------|------|
|----------|--------|----------|------|

Sample tube appearance and sampling location are shown in Photo II -13. Sampling portion for each inspection item is shown in Fig. II -11.



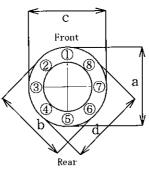
1: Outer surface appearance 2: Internal surface appearance 3: Tube dimension • Hardness 4: Metallography 5: Scale thickness, EPMA analysis, 6: RLA by microstructural comparison method 7: Creep rupture test

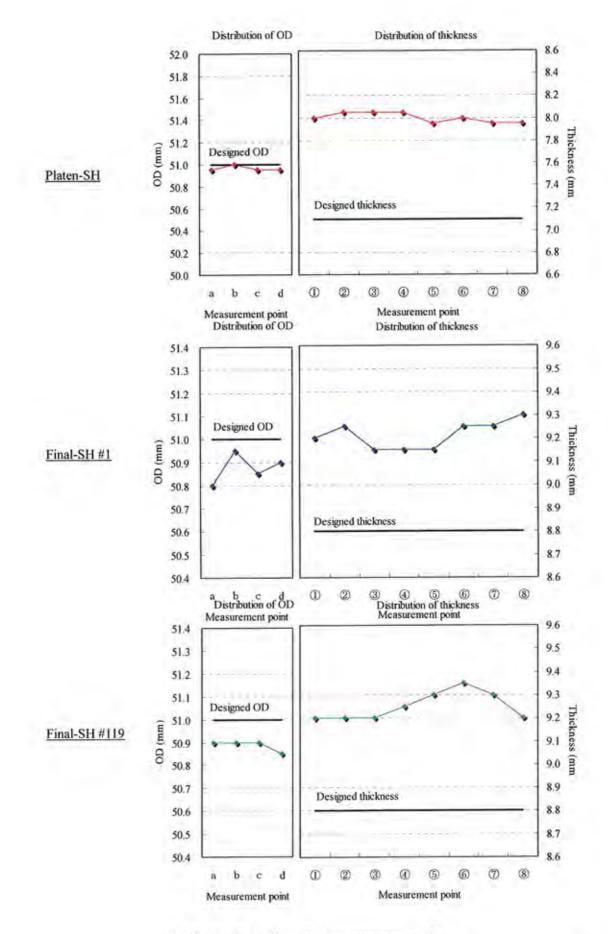
Fig. II -11 Sampling portion for each inspection item

# 7. Inspection results

- (1) Tube appearance
  - a. Tube appearance from outside (Photo II -14)
    - > Hard oxide scale with grayish white color was adhering for each sample tube outer surface.
    - > Traces of corrosion were observed in each sample tube outside surface after acid cleaning.
- b. Tube appearances of sample tubes from inside after removal of steam oxide scale (Photo  $\,\mathrm{II}$  -15 $\sim$

20)


(Platen SH tube)


- Internal surface of both front and rear side were covered with gray color steam oxide scale with spotted rust.
- > Slight rough internal surface was observed after acid cleaning.
- (Final SH #1 tube)
  - > Internal surface of both front and rear side were covered with gray color steam oxide scale.
  - > Slight rough internal surface was observed after acid cleaning.
- (Final SH #119 tube)
  - Internal surface of both front and rear side were covered with gray color steam oxide scale with spotted rust.
  - > Slight rough internal surface was observed after acid cleaning.
- (2) Tube dimension measurement (Table II -32, Fig II -12)
  - a. OD measurement
    - OD of each tube was measured to be less than designed values.
  - b. Thickness measurement

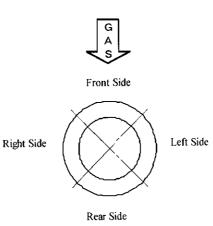
Thickness of each tube was measured to be larger than designed value.

|             |               |           | )<br>DD (mm) |       |      |      | Thickness (mm) |      |      |      |            |      |  |  |
|-------------|---------------|-----------|--------------|-------|------|------|----------------|------|------|------|------------|------|--|--|
| Sample tube | Specification | Direction | OD           | ID    | 1    | 2    | 3              | 4    | 6    | 6    | $\bigcirc$ | 8    |  |  |
|             |               | a         | 50.95        | 35.05 | 8.00 |      |                |      | 7.95 |      |            |      |  |  |
| DI . (11)   | A 51 0 17 1   | b         | 51.00        | 35.00 |      | 8.05 |                |      |      | 8.00 |            |      |  |  |
| Platen-SH   | Φ51.0×t7.1    | с         | 50.95        | 34.95 |      |      | 8.05           |      |      |      | 7.95       |      |  |  |
|             |               | d         | 50.95        | 34.95 |      |      |                | 8.05 |      |      |            | 7.95 |  |  |
|             |               | a         | 50.80        | 32.45 | 9.20 |      |                |      | 9.15 |      |            |      |  |  |
| FINAL-SH    | A 51 0.000    | b         | 50.95        | 32.45 |      | 9.25 |                |      |      | 9.25 |            |      |  |  |
| #1          | Φ51.0×t8.8    | с         | 50.85        | 32.45 |      |      | 9.15           |      |      |      | 9.25       |      |  |  |
|             |               | d         | 50.90        | 32.45 |      |      |                | 9.15 |      |      |            | 9.30 |  |  |
|             |               | a         | 50.90        | 32.40 | 9.20 |      |                |      | 9.30 |      |            |      |  |  |
| FINAL-SH    | A51.0.49.0    | b         | 50.90        | 32.40 |      | 9.20 |                |      |      | 9.35 |            |      |  |  |
| #119        | Φ51.0×t8.8    | с         | 50.90        | 32.40 |      |      | 9.20           |      |      |      | 9.30       |      |  |  |
|             |               | d         | 50.85        | 32.40 |      |      |                | 9.25 |      |      |            | 9.20 |  |  |

Table II-32 Tube dimension measurement results








533

- (3) Steam oxide scale adhesion on internal surface
  - a. Cross sectional observation of internal surface (Photo II -21)
    - Steam oxide scale was adhering evenly by cross sectional observation for each location with dual layer consisting of dense inner layer and slightly porous outer layer.
  - b. Thickness measurement of steam oxide scale on internal surface (Table II -33)
    - Average thickness of steam oxide scale mainly consisting of Fe and O was larger in the order of Final-SH #1, Final-SH #119 and Platen-SH tube.

|              |            | Scale thicknes            | ss (μm)                    |
|--------------|------------|---------------------------|----------------------------|
| Sample tube  | Position   | Average among<br>90°range | Max.<br>among 90°<br>range |
|              | Front Side | 130.3                     | 135.0                      |
|              | Right Side | 130.5                     | 137.0                      |
| Platen-SH    | Rear Side  | 125.7                     | 130.0                      |
|              | Left Side  | 130.3                     | 138.0                      |
|              | Front Side | 227.4                     | 263.0                      |
|              | Right Side | 198.0                     | 232.0                      |
| FINAL-SH#1   | Rear Side  | 202.1                     | 221.0                      |
|              | Left Side  | 225.5                     | 257.7                      |
|              | Front Side | 177.4                     | 188.0                      |
|              | Right Side | 182.3                     | 196.0                      |
| FINAL-SH#119 | Rear Side  | 179.6                     | 193.0                      |
|              | Left Side  | 169.8                     | 186.0                      |

Table II -33 Steam oxide scale thickness measurement results



c. EPMA analysis of steam oxide scale on internal surface (Fig. II -13~24, Table II -34)

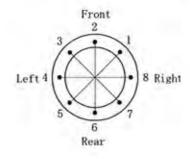
Mainly iron oxide scale was formed since Fe and O were remarkably detected.

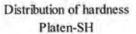
- In Platen-SH tube, Fe, Cr and Mo were detected as tube material elements, and O, P, Ca as the other detected elements.
- In Final-SH #1 tube, Fe, Cr and Mo were detected as tube material elements, and O, Ca, Si as the other detected elements.
- In Final-SH #119 tube, Fe, Cr and Mo were detected as tube material elements, and O, Mn as the other detected elements.

| C FOUND      | - 00 T            | Element |      |     |    |      |     |     |    |    |      |    |       |        |    |
|--------------|-------------------|---------|------|-----|----|------|-----|-----|----|----|------|----|-------|--------|----|
| Sample tube  | Position          | 0       | S    | Р   | N  | Na   | Si  | Ca  | Mn | Fe | Ti   | Cr | Ni    | Zn     | Mo |
|              | Front Side        | -       |      | 11  |    |      |     |     |    |    | - 21 |    | 1     | $\geq$ | M  |
| Platen-SH    | <b>Right Side</b> | 12      | -    |     | 1  |      |     |     | 1  | 0  |      |    | i = 1 |        |    |
| Platen-Sri   | Rear Side         |         |      |     |    | 10.1 |     |     |    |    |      |    | 1-1   |        |    |
|              | Left Side         | 1       | -    |     |    | 5    | 1   | 1   |    |    |      | -  |       |        |    |
|              | Front Side        | -       | -    | . 1 |    | 11.5 |     | 100 |    | 1  |      | 1  |       | i –    | 1  |
| Tinal Plan   | Right Side        |         |      |     |    |      |     |     | 3  |    |      |    |       | 1      | 2  |
| Final-SH#1   | Rear Side         | 1.      | 10.1 |     | 10 | 111  |     |     |    | 0  |      |    | 10    |        |    |
|              | Left Side         | 1       | 1    |     | 1  |      | 1 Y |     | -  |    |      | 4  | 1.1   | 1      |    |
|              | Front Side        | 1       |      |     |    |      |     |     | 1  |    | 6    | 1  | 10    | 1      |    |
| Final CUALLO | Right Side        |         |      |     |    | UC.  |     |     | 1  |    |      | )  | 1.5   |        | 1  |
| Final-SH#119 | Rear Side         | -       | -    |     |    |      |     | 11  |    |    |      | 8  | ( pri |        |    |
|              | Left Side         | 100     | 1    |     |    | in f | 1   |     |    |    |      |    |       |        |    |

Table II -34 Elements detected by EPMA analysis

:Elements detected clearly


(4) Hardness measurement (Fig. II -35, Table II -25)


- The hardness of Platen-SH tube (SA213T11) was higher than the normal value of virgin material by Japanese steal manufacturer.
- The hardness of Final-SH#1,#119 tube (SA213T22) were lower than the normal value of virgin material by Japanese steal manufacturer.

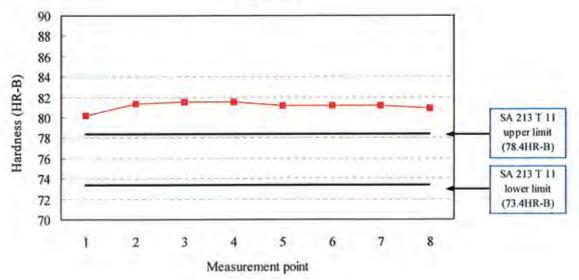

| Sample tube  | Marterial   | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|--------------|-------------|----|----|----|----|----|----|----|----|
| Platen-SH    | SA 213 T 11 | 80 | 81 | 82 | 82 | 81 | 81 | 81 | 81 |
| FINAL-SH#1   | SA 213 T 22 | 74 | 74 | 75 | 75 | 75 | 75 | 76 | 75 |
| FINAL-SH#119 | SA 213 T 22 | 74 | 74 | 74 | 74 | 74 | 75 | 74 | 75 |

Table II-35 Hardness measurement results

Hardness value of vigin material by fabricator : SA 213 T 22;76.4~81.6(HR-B) SA 213 T 11;73.4~78.4(HR-B)







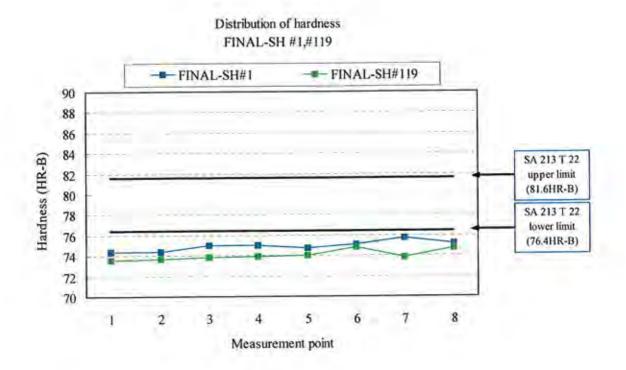



Fig II -25 Hardness measurement results

(5) Metallographic observation

Microstructure observation results at cross section in circumferential direction of sample tube were shown in Photo II -22 $\sim$ 27.

(Platen-SH tube (SA 213 T11))

Microstructural degradation with disintegration of pearlite structure and precipitation in ferrite grain was not observed, though precipitation at gain boundary were observed.

(Final-SH#1,#119 tube (SA 213 T22))

Microstructural degradation with disintegration of pearlite structure and precipitation in ferrite grain was not observed.

(6) Creep rupture test

a. Test condition

The creep test condition is shown in Table II -36. The shape of test specimens is shown in Fig. II -26

3 specimens were cut out from each of base metal portion and weld portion in Platen-SH tube and Final-SH #119 tube with a set of three test conditions for each portion.

As the shape of test specimens,  $\phi$  6mm round bar specimen was applied.

|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Test c       | ondition        | Shape          |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|-----------------|----------------|--|--|
| Sample tube | Portion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Material | Tem.<br>(°C) | Stress<br>(MPa) | of<br>specimer |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | 635          | 68.6            |                |  |  |
|             | Base Metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SA213T11 | 635          | 83.4            |                |  |  |
| Distan CII  | 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 665          | 45.9            | φ6             |  |  |
| Platen-SH   | 1.4.1.1.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 665          | 68.6            |                |  |  |
|             | Weld Metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SA213T11 | 665          | 83.4            |                |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 700          | 45.9            |                |  |  |
|             | 10 1977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 665          | 63.7            |                |  |  |
|             | Base Metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SA213T22 | 665          | 78.5            |                |  |  |
| Final-SH    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 700          | 38.3            | φ6             |  |  |
| #119        | No. of Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 665          | 63.7            | ] \$0          |  |  |
|             | Weld Metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SA213T22 | 665          | 78.5            |                |  |  |
|             | in the second se | 1.000    | 700          | 38.3            |                |  |  |

Table II-36 Creep test condition



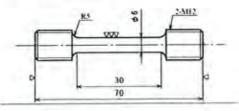
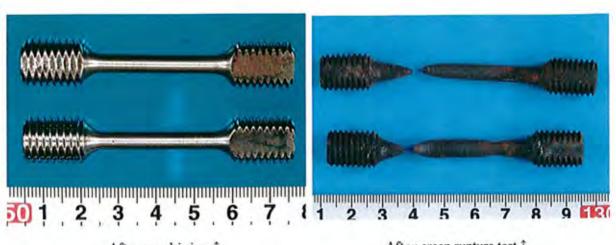




Fig II -26 Shape of test specimens

Test specimens before and after creep rupture test

Before machining  $\Rightarrow$ 





After machining ↑

After creep rupture test 1

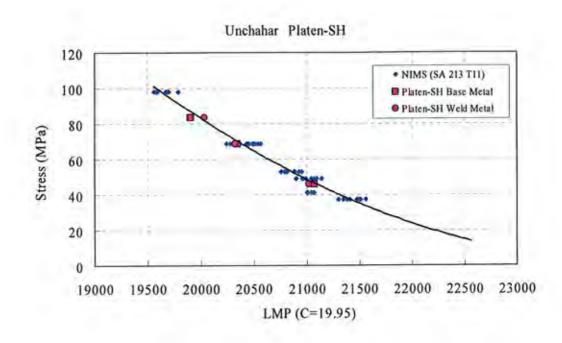


Creep rupture testing machine  $\Rightarrow$ 

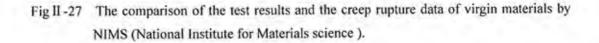
#### b. Test results

х У Test result is shown in Table II -37. All specimens had ruptured for each test condition.

|           |            |                    | Test co       | ondition        | Rupture       | LMP     | Fracture          | Reduction      |
|-----------|------------|--------------------|---------------|-----------------|---------------|---------|-------------------|----------------|
| Compo     | Component  |                    | Temp.<br>T(℃) | Stress<br>(MPa) | time<br>t (h) | C=19.95 | elongation<br>(%) | of area<br>(%) |
|           | Base Metal |                    | 635           | 68.6            | 278.7         | 20,341  | 62                | 94             |
|           |            | <b>SA 213 T</b> 11 | 635           | 83.4            | 90.8          | 19,899  | 57                | 91             |
|           |            |                    | 665           | 45.9            | 322.4         | 21,072  | 86                | 94             |
| Platen-SH |            | SA 213 T11         | 635           | 68.6            | 264.3         | 20,320  | 16                | 81             |
|           | Weld Metal |                    | 635           | 83.4            | 127.5         | 20,033  | 18                | 82             |
|           |            |                    | 665           | 45.9            | 287.5         | 21,026  | 13                | 80             |


 Table II - 37-1
 Creep rupture test results (Platen-SH)

| Table | II -37-2 | Creep rupture test results | (Final-SH #119) |
|-------|----------|----------------------------|-----------------|
|-------|----------|----------------------------|-----------------|


|              |            |              | Test co       | ondition        | Rupture       | LMP     | Fracture          | Reduction      |
|--------------|------------|--------------|---------------|-----------------|---------------|---------|-------------------|----------------|
| Compo        | Component  |              | Temp.<br>T(℃) | Stress<br>(MPa) | time<br>t (h) | C=15.77 | elongation<br>(%) | of area<br>(%) |
|              |            |              | 665           | 63.7            | 113.1         | 16,725  | 69                | 91             |
|              | Base Metal | SA 213 T22   | 665           | 78.5            | 32.1          | 16,212  | 55                | 92             |
| E' 1000//110 |            |              | 700           | 38.3            | 162.6         | 17,503  | 67                | 94             |
| Final-SH#119 |            |              | 665           | 63.7            | 86.0          | 16,614  | 30                | 84             |
|              | Weld Metal | l SA 213 T22 | 665           | 78.5            | 27.3          | 16,146  | 31                | 83             |
|              |            |              | 700           | 38.3            | 143.7         | 17,451  | 22                | 81             |

The comparison of the test results and the creep rupture data of virgin materials by NIMS (National Institute for Materials Science ) is shown in Fig. II -27 .

- > The test results for base metal and weld joint in Platen-SH tube indicate almost same creep rupture strength as NIMS data.
- > The test results for base metal and weld joint in Final-SH#119 tube indicate the lower creep rupture strength than NIMS data.



Unchahar Final-SH(#119) 100 + NIMS (SA 213 T22) 90 Final-SH#119 Base Metal 80 O Final-SH#119 Weld Metal 70 0 0 Stress (MPa) 60 50 40 30 20 10 0 17000 19000 18000 16000 15000 LMP (C=15.77)



### c. Residual life evaluation results

Residual life evaluation results by creep rupture test are shown in Table II -38.

The stress condition for the evaluation was calculated as the hoop stress with the measured OD, thickness of the test sample tube and the designed pressure. As for the temperature condition for the evaluation, two conditions were used for evaluation, those are the case of evaluation at the designed temperature and the other one at equivalent temperature estimated by comparison with the average creep rupture data of NIMS.

(Platen-SH tube)

The evaluated residual life (half of residual life evaluated by creep rupture test) of Platen-SH tube was 7,800,000 hours for base metal, 6,800,000 hours for weld joint portion at designed temperature  $503^{\circ}$ C.

Equivalent temperature could not be evaluated since the test results for base metal in Platen-SH tube indicate higher creep rupture strength than NIMS data.

(Final-SH #119 tube)

The evaluated residual life (half of residual life evaluated by creep rupture test) of Final-SH #119 tube was 400,000 hours for base metal, 350,000 hours for weld joint portion at designed temperature  $534^{\circ}$ C.

In case of evaluation at equivalent temperature  $573^{\circ}$ C estimated by comparison with the average creep rupture data of NIMS, the evaluated residual life of Final-SH #119 tube was 41,000 hours for base metal, 35,000 hours for weld joint portion.

It is recommended that the residual life assessment for Final-SH #119 tube be carried out again before reaching the min.evaluated residual life 35,000 hours.

| Table II -38 | Residual life | evaluation | results of | creep | rupture | test | by parametermethod | d |
|--------------|---------------|------------|------------|-------|---------|------|--------------------|---|
|--------------|---------------|------------|------------|-------|---------|------|--------------------|---|

|              |            | Рага       | meter metho               | d (evaluated at | designed tem              | p.)                     |                                    |                                   |
|--------------|------------|------------|---------------------------|-----------------|---------------------------|-------------------------|------------------------------------|-----------------------------------|
| Component    |            | Material   | Operation<br>hours<br>(h) | Hoop Stress     | Designed<br>temp.<br>(°C) | Residual<br>life<br>(h) | Creep life<br>consumption<br>ratio | Evaluated<br>residual life<br>(h) |
|              | Base Metal | SA 213 T11 | 139,098                   | 45.9            | 503                       | 15,726,180              | 0.01                               | 7,800,000                         |
| Platen-SH    | Weld Metal | SA 213 T11 | 139,098                   | 45.9            | 503                       | 13,692,433              | 0.01                               | 6,800,000                         |
| 5. 1011/110  | Base Metal | SA 213 T22 | 139,098                   | 38.3            | 534                       | 812,994                 | 0.15                               | 400,000                           |
| Final-SH#119 | Weld Metal | SA 213 T22 | 139,098                   | 38.3            | 534                       | 700.466                 | 0.17                               | 350,000                           |

|              |            | Parar      | neter method              | l (evaluated at o    | equivalent tem                    | .p.)                    |                                           |                                   |  |
|--------------|------------|------------|---------------------------|----------------------|-----------------------------------|-------------------------|-------------------------------------------|-----------------------------------|--|
| Component    |            | Material   | Operation<br>hours<br>(h) | Hoop Stress<br>(MPa) | Equivalent<br>temperature<br>(°C) | Residual<br>life<br>(h) | Creep life<br>consumption<br><u>ratio</u> | Evaluated<br>residual life<br>(h) |  |
|              | Base Metal | SA 213 T11 | 139,098                   | 45.9                 | Non evaluation( $\%1$ )           |                         |                                           |                                   |  |
| Platen-SH    | Weld Metal | SA 213 T11 | 139,098                   | 45.9                 |                                   |                         |                                           |                                   |  |
| E' 1011#110  | Base Metal | SA 213 T22 | 139,098                   | 38.3                 | 573                               | 82,798                  | 0.63                                      | 41,000                            |  |
| Final-SH#119 | Weld Metal | SA 213 T22 | 139,098                   | 38.3                 | 573(※2)                           | 71,826                  | 0.66                                      | 35,000                            |  |

X I; Equivalent temperature could not be evaluated since the test results for base metal in Platen-SH tube indicate higher creep rupture strength than NIMS data.

2; Equivalent temperature evaluated at base metal

# (7) Residual life assessment by microstructural comparison method

#### a. Platen-SH tube

(Microstructure observation)

The results of microstructure observation are shown in Photo II -28 $\sim$ 32.

The summary of observation results is shown in Table  $\ II$  -39.

Precipitates at gain boundary were observed in base metal, intercritical zone, coarse grain HAZ and weld metal. Granular precipitates in grain were observed in base metal, intercritical zone, fine grain HAZ, coarse grain HAZ and weld metal.

(Grain boundary precipitates observation)

The results of grain boundary precipitates by SEM observation are shown in Photo  $II-33\sim$  34.

> Precipitates at gain boundary were observed in base metal and fine grain HAZ.

(Precipitates distribution observation of extracted replica)

The results of precipitates distribution observation by TEM observation are shown in Photo II  $-35 \sim 38$ .

The summary of observation results is shown in Table II-40.

- > Precipitates free zone along grain boundary was observed in base metal.
- Rod-shaped precipitates were observed in base metal and coarse grain HAZ Fine needlelike precipitates had disappeared in base metal, fine grain HAZ, coarse grain HAZ.
- Disintegration of pearlite like structure was observed in base metal and fine grain HAZ.

b. Final-SH #1 tube

(Microstructure observation)

The results of microstructure observation are shown in Photo II -39 $\sim$ 43.

The summary of observation results is shown in Table II-39.

- > Precipitates at gain boundary were observed in base metal, fine grain HAZ and weld metal.
- Granular precipitates in grain were observed in base metal, fine grain HAZ, coarse grain HAZ and weld metal.

(Grain boundary precipitates observation)

The results of grain boundary precipitates by SEM observation are shown in Photo II -44 $\sim$  45.

> Precipitates at gain boundary were observed in base metal and fine grain HAZ.

(Precipitates distribution observation of extracted replica)

The results of precipitates distribution observation by TEM observation are shown in Photo II -46 $\sim$ 49.

The summary of observation results is shown in Table  $\Pi$ -40.

- Precipitates free zone along grain boundary and rod-shaped precipitates was observed in base metal.
- > Fine needlelike precipitates had disappeared in coarse grain HAZ.

c. Final-SH #119 tube

(Microstructure observation)

The results of microstructure observation are shown in Photo  $II - 50 \sim 54$ .

The summary of observation results is shown in Table  $\ \mbox{II}$  -39.

- Precipitates at gain boundary were observed in base metal, intercritical zone and fine grain HAZ.
- > Granular precipitates in grain were observed in each region.

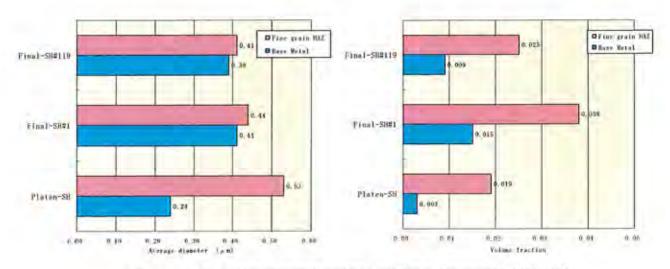
(Grain boundary precipitates observation)

The results of grain boundary precipitates by SEM observation are shown in Photo II -55 $\sim$  56.

> Precipitation at gain boundary were observed in base metal and fine grain HAZ.

(Precipitates distribution observation of extracted replica)

The results of precipitates distribution observation by TEM observation are shown in Photo II -57~60.


The summary of observation results is shown in Table II -40.

- Precipitates free zone along grain boundary and disintegration of pearlite structure were observed in base metal.
- Fine needlelike and granular precipitates had disappeared in fine grain HAZ and coarse grain HAZ.

d. Quantitative evaluation of grain boundary precipitates

The results of quantitative evaluation of grain boundary precipitates are shown in Table II -41.

- The max. value of average diameter of grain boundary precipitates was 0.41µm in base metal at Final-SH #1 tube, 0.53µm in fine grain HAZ at Platen-SH tube.
- The max. value of volume fraction of grain boundary precipitates was 0.015 in base metal at Final-SH #1 tube, 0.038 in fine grain HAZ at Final-SH #1 tube.



Quantitative evaluation of grain boundary precipitates [extracted Table II-41]

e. Quantitative evaluation of precipitates free band width along grain boundary

The results of quantitative evaluation of precipitates free band width along grain boundary are shown in Table II -42.

- The quantitative evaluation was focused on base metal of SA 213 T22 for Final-SH #1 tube and Final-SH #119 tube.
- The precipitates free band width along grain boundary was 0.55µm. for Final-SH #1 tube and 0.60µm for Final-SH #119 tube.

f. Operational condition of residual life evaluation portion

Operational condition of evaluated components are shown in Table II -43.

The evaluation stress  $\sigma$  was the hoop stress calculated with designed pressure, designed diameter D and thickness t of each component.

 $\sigma = P(D-t) / 2t$ 

where P: Designed pressure.

|              |          | Operational condition |              |                |                 |               |  |  |  |
|--------------|----------|-----------------------|--------------|----------------|-----------------|---------------|--|--|--|
| Component    | Material | OD <sup>×1</sup>      | <u>ا</u> **۱ | Desig          | Ноор            |               |  |  |  |
|              | Materia  | mm                    |              | Temperature °C | Pressure<br>MPa | Stress<br>MPa |  |  |  |
| Platen-SH    | SA213T11 | 51.0                  | 8.0          | 503            | 17.2            | 46.3          |  |  |  |
| Final-SH#1   | SA213T22 | 50.9                  | 9.2          | 545            | 17.2            | 39.1          |  |  |  |
| Final-SH#119 | SA213T22 | 50.9                  | 9.3          | 545            | 17.2            | 38.6          |  |  |  |

| Table II -43 | Operational condition of evaluated components |
|--------------|-----------------------------------------------|
|--------------|-----------------------------------------------|

※1 : Measured value

g. Residual life evaluation results by microstructure comparison method

Evaluation figures of residual life assessment for each components by microstructural comparison method are shown in Fig. II -28 $\sim$ 30 and evaluation results are shown in Table II -44.

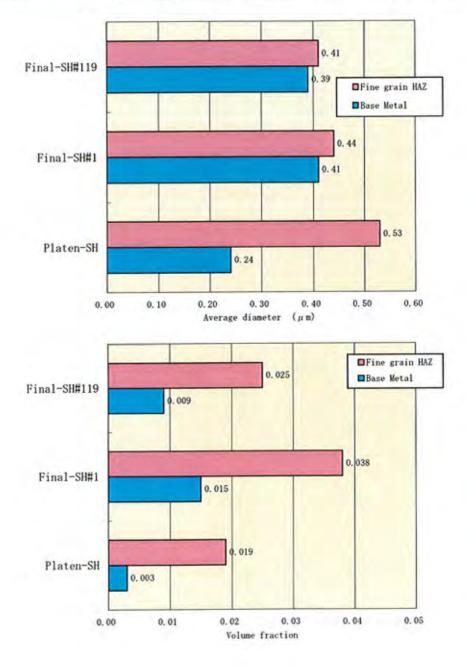
> The highest creep life consumption ratio was evaluated at Final-SH #1 tube with 36% and evaluated residual creep life (half of residual life evaluated microstructure comparison method) was 120,000 hours.

|              |                    |                  |     |                                        |    | Residual life evaluation results |                                   |
|--------------|--------------------|------------------|-----|----------------------------------------|----|----------------------------------|-----------------------------------|
| Component    | Component Material |                  | con | Creep life<br>consumption<br>ratio (%) |    | Residual life (h)                | Evaluated<br>residual life<br>(h) |
|              |                    | Base Metal       |     | 9                                      |    | 1,406,000                        |                                   |
| Platen-SH    | SA213T11           | Fine grain HAZ   | 0   | $\sim$                                 | 2  | 6,816,000 <                      | 290,000                           |
|              |                    | Coarse grain HAZ | 2   | $\sim$                                 | 19 | 593,000 ~ 6,816,000              |                                   |
|              |                    | Base Metal       | 28  | ~                                      | 36 | 247,000 ~ 358,000                |                                   |
| Final-SH#1   | SA213T22           | Fine grain HAZ   |     | 3                                      |    | 4,498,000                        | 120,000                           |
|              |                    | Coarse grain HAZ | 6   | ~                                      | 11 | 1,125,000 ~ 2,179,000            |                                   |
|              |                    | Base Metal       | 27  | ~                                      | 33 | 282,000 ~ 376,000                |                                   |
| Final-SH#119 | SA213T22           | Fine grain HAZ   |     | 23                                     |    | 466,000                          | 140,000                           |
|              |                    | Coarse grain HAZ | 5   | $\sim$                                 | 11 | 1,125,000 ~ 2,643,000            |                                   |

Table II -44 Residual life evaluation results

| ß                             |                                                                                    |                                                   |                    |                                   |                                   |                            | ОМ                         |                    |                   |                   |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |
|-------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------|--------------------|-----------------------------------|-----------------------------------|----------------------------|----------------------------|--------------------|-------------------|-------------------|------------|--------------------|------------|-------------------|-------------------|----------------|----------|--------|----------|--------------|------|------|------------------|
| Components                    |                                                                                    | LOID                                              |                    |                                   |                                   | Mic                        | rostructural feat          | ures               | •                 |                   |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |
| Dodu                          |                                                                                    | Locauon                                           | Observed region    | Precipitation at                  | Precipitates                      | Precipitation              |                            | Pearlite           | Subgrain          |                   |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |
| Ŝ                             | -                                                                                  |                                                   |                    | gain boundary                     | free zone along<br>grain boundary | Granular<br>_ precipitates | Rod-shaped<br>precipitates | structure          | boundary          | Ferrite grain     |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |
|                               | ear                                                                                | -<br>                                             | Base metal         | Appeared                          | Not appeared                      | Appeared                   | Not appeared               | Disintegrated      |                   |                   |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |
| H tube                        | rater 5r1 tuoe<br>(SA 213 T11)<br>#3-8th tube from rear<br>Circumferential<br>weld | erential<br>d                                     | Intercritical zone | Appeared                          |                                   | Appeared                   | Appeared                   | Disintegrated      | Normal            |                   |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |
| aten S<br>SA 21:              |                                                                                    | Circumfe<br>wel                                   | Fine grain HAZ     | Appeared                          |                                   | Not appeared               | Not appeared               |                    |                   |                   |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |
| E O                           |                                                                                    | O<br>O                                            | Coarse grain HAZ   | Appeared                          |                                   | Appeared                   | $\square$                  |                    |                   |                   |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |
|                               |                                                                                    |                                                   | Weld metal         | Not appeared                      |                                   | Appeared                   | $\langle$                  |                    |                   | Appeared          |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |
|                               | La la                                                                              |                                                   | Base metal         | Appeared                          | Not appeared                      | Appeared                   | Not appeared               | Normal             |                   |                   |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |
|                               | rom re                                                                             | rcumferent<br>weld                                | Intercritical zone | Not appeared                      |                                   | Not appeared               | Not appeared               |                    |                   |                   |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |
|                               | #1-3rd tube from rear                                                              |                                                   | Circumfere<br>weld | Circumfer<br>weld                 | Circumfer<br>weld                 | Circumfere<br>weld         | Circumfere                 | Circumfere<br>weld | Circumfer<br>weld | Circumfer<br>weld | Circumfere | Circumfere<br>weld | Circumfere | Circumfer<br>weld | Circumfer<br>weld | Fine grain HAZ | Appeared |        | Appeared | Not appeared |      |      |                  |
| e (1                          | #]-3rd                                                                             |                                                   |                    |                                   |                                   |                            |                            |                    |                   |                   |            |                    |            |                   |                   | Cire           | Circ     | Circle | Circe    | Cire         | Circ | Circ | Coarse grain HAZ |
| Final SH tube<br>(SA 213 T22) |                                                                                    |                                                   | Weld metal         | Appeared                          |                                   | Appeared                   |                            |                    |                   |                   |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |
| Final :<br>(SA 2              | car                                                                                |                                                   | Base metal         | Appeared                          | Not appeared                      | Appeared                   | Not appeared               | Normal             |                   |                   |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |
|                               | from r                                                                             | ential                                            | Intercritical zone | Appeared                          |                                   | Appeared                   | Not appeared               |                    |                   |                   |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |
|                               | d tube                                                                             | Circumferential<br>weld                           | Fine grain HAZ     | Appeared                          |                                   | Appeared                   | Not appeared               |                    |                   |                   |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |
|                               | #19-3r                                                                             | #19-3rd tube from rear<br>Circumferential<br>weld | Coarse grain HAZ   | Not appeared                      |                                   | Appeared                   |                            |                    |                   |                   |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |
|                               |                                                                                    |                                                   | Weld metal         | Not appeared                      |                                   | Appeared                   |                            |                    |                   |                   |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |
|                               | Viev                                                                               | v nos. :                                          | for each area      | ×500 (2 views)<br>×1000 (4 views) | )                                 |                            |                            |                    |                   |                   |            |                    |            |                   |                   |                |          |        |          |              |      |      |                  |

# Table II-39 Microstructure observation resuluts

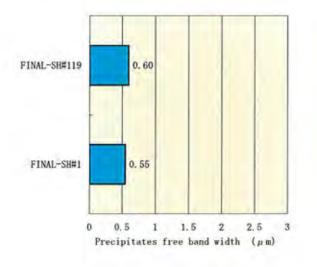

|                                |                        |                         |                  | TEM (                        | Transmission                       | Electron M              | icroscope ob                            | servation)               |                             |        |        |        |        |        |        |  |         |                  |  |             |  |              |  |  |
|--------------------------------|------------------------|-------------------------|------------------|------------------------------|------------------------------------|-------------------------|-----------------------------------------|--------------------------|-----------------------------|--------|--------|--------|--------|--------|--------|--|---------|------------------|--|-------------|--|--------------|--|--|
| ents                           | ş                      | II.                     |                  |                              | _                                  | Precipitates f          | eatures                                 | •                        |                             |        |        |        |        |        |        |  |         |                  |  |             |  |              |  |  |
| Uod                            | ter.                   | Call(                   | Observed region  | Precipitates free            | Precip                             | itation in ferite       | e grain                                 |                          | Aggromerate                 |        |        |        |        |        |        |  |         |                  |  |             |  |              |  |  |
| Components                     | Observed regio         |                         |                  | zone along grain<br>boundary | Fine<br>needlelike<br>and granular | Rod-shaped precipitates | Atenuated<br>platedlike<br>precipitates | Pearlite<br>structure    | d precipitates<br>structure |        |        |        |        |        |        |  |         |                  |  |             |  |              |  |  |
| a _                            | rear                   | -                       | Base metal       | Appeared                     | Remaining                          | Appeared                | Not appeared                            | Disintegrating           |                             |        |        |        |        |        |        |  |         |                  |  |             |  |              |  |  |
| Platen SH tube<br>(SA 213 T11) | #3-8th tube from rear  | Circumferential<br>weld | Fine grain HAZ   |                              | Remaining                          | Not appeared            | Not appeared                            | Disintegrated            |                             |        |        |        |        |        |        |  |         |                  |  |             |  |              |  |  |
| laten 3<br>SA 21               | 8th tub                | Circum                  | Coarse grain HAZ |                              | Remaining                          | Appeared                | Not appeared                            |                          | Disintegrated               |        |        |        |        |        |        |  |         |                  |  |             |  |              |  |  |
| щ                              | #3-                    |                         | Weld metal       |                              | Remaining                          |                         |                                         |                          |                             |        |        |        |        |        |        |  |         |                  |  |             |  |              |  |  |
|                                | rear                   | l                       | Base metal       | Appeared                     | Remaining                          | Appeared                | Not appeared                            | Normal                   |                             |        |        |        |        |        |        |  |         |                  |  |             |  |              |  |  |
|                                | #1-3rd tube from rear  | mferentia<br>weld       | Fine grain HAZ   |                              | Remaining                          |                         | Not appeared                            |                          |                             |        |        |        |        |        |        |  |         |                  |  |             |  |              |  |  |
|                                | 3rd tub                | Circumf                 | Circumf          | Circumf                      | Circum                             | Circum                  | Circum                                  | Circum                   | Circum                      | Circum | Circum | Circum | Circum | Circum | Circum |  | Circumf | Coarse grain HAZ |  | Disappeared |  | Not appeared |  |  |
| l SH tube<br>213 T22)          | #1-                    | Ŭ                       | Weld metal       |                              | Remaining                          |                         |                                         |                          |                             |        |        |        |        |        |        |  |         |                  |  |             |  |              |  |  |
| Final SH tube<br>(SA 213 T22)  | і геаг                 | RI I                    | Base metal       | Appeared                     | Remaining                          | Not appeared            | Not appeared                            | Remarkably disintegrated |                             |        |        |        |        |        |        |  |         |                  |  |             |  |              |  |  |
|                                | #19-3rd tube from rear | Circumferential<br>weld | Fine grain HAZ   |                              | Disappeared                        |                         | Not appeared                            |                          |                             |        |        |        |        |        |        |  |         |                  |  |             |  |              |  |  |
|                                | -3rd tul               | Circam                  | Coarse grain HAZ |                              | Disappeared                        |                         | Not appeared                            |                          |                             |        |        |        |        |        |        |  |         |                  |  |             |  |              |  |  |
|                                | 61#                    |                         | Weld metal       |                              | Remaining                          |                         |                                         |                          |                             |        |        |        |        |        |        |  |         |                  |  |             |  |              |  |  |
|                                | 1/2                    |                         |                  | ×2000 ( 2 views)             |                                    |                         |                                         |                          |                             |        |        |        |        |        |        |  |         |                  |  |             |  |              |  |  |
|                                | view                   | nos. I                  | or each area     | ×1000 (4 views)              |                                    |                         |                                         |                          |                             |        |        |        |        |        |        |  |         |                  |  |             |  |              |  |  |

Je.

# Table II -40 Precipitates distribution observation results

|              |          | Average diam | neter (µm)        | Volume fraction |                   |  |
|--------------|----------|--------------|-------------------|-----------------|-------------------|--|
| Component    | Material | Base Metal   | Fine grain<br>HAZ | Base Metal      | Fine grain<br>HAZ |  |
| Platen-SH    | SA213T11 | 0.24         | 0.53              | 0.003           | 0.019             |  |
| Final-SH#1   | SA213T22 | 0.41         | 0.44              | 0.015           | 0.038             |  |
| Final-SH#119 | SA213T22 | 0.39         | 0.41              | 0.009           | 0.025             |  |

Table II-41 Quantitative evaluation of grain boundary precipitates




Xer

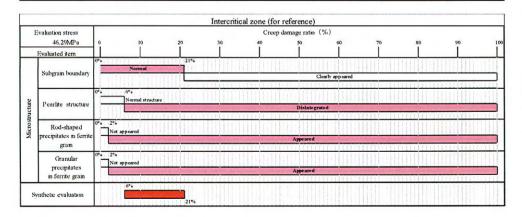

| Sample tube  | Material | Precipitates free band width (µm) * |  |  |  |  |  |  |  |
|--------------|----------|-------------------------------------|--|--|--|--|--|--|--|
| Sample tube  | Wateria  | Base Metal                          |  |  |  |  |  |  |  |
| FINAL-SH#1   | SA213T22 | 0.55                                |  |  |  |  |  |  |  |
| FINAL-SH#119 | SA213T22 | 0.60                                |  |  |  |  |  |  |  |

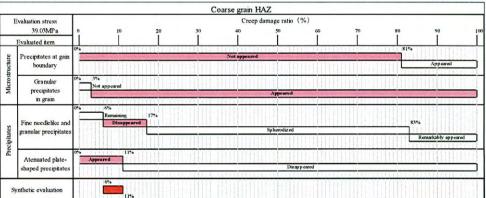
Table II -42 Precipitates free band width along grain boundary

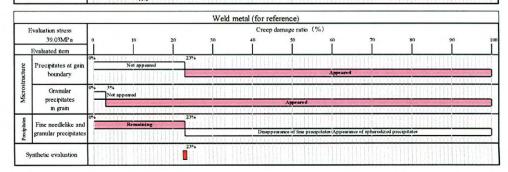
※1 : Average value of 10 measured points



| _              |                                                       |                       | _      |    | Base meta | 1            |         |    |                   |    |             |
|----------------|-------------------------------------------------------|-----------------------|--------|----|-----------|--------------|---------|----|-------------------|----|-------------|
| 1              | Evaluation stress                                     |                       |        |    | Creep     | damage ratio | (%)     |    |                   |    |             |
|                | 46.29MPa                                              | 10                    | 20     | 30 | 40        | 50           | 60<br>I | 70 | 80                | 90 | 100         |
| -              | Evaluated item                                        | • 1%                  | _      | _  |           |              |         |    |                   |    |             |
|                | Precipitates at gain<br>boundary                      | Appeared              |        |    | HI KUI    | Coarsen      |         |    | ilidid<br>Dichici |    |             |
|                | Precipitates free<br>zone along grain                 | 9% Not appeared       | 911411 |    |           | Appeare      | d       |    |                   |    |             |
| ructure        | boundary                                              | • 9%                  | *      |    |           |              |         |    |                   |    |             |
| Microstructure | Pearlite structure                                    |                       |        |    |           | Disintegr    | sting   |    |                   |    | the second  |
| -              | Rod-shaped<br>precipitates in ferrite<br>grain        | Not appeared          |        |    |           | Appeared     |         |    |                   |    |             |
|                | Granular<br>precipitates                              | Not appeared          |        |    | HILLI     | Appeared     |         |    |                   |    |             |
|                | in ferrite grain<br>Rod-shaped<br>precipitates        | • 9%<br>Not appeared  |        |    |           | Appeared     |         |    |                   |    |             |
| Precipitates   | Precipitates free<br>zone along grain<br>boundary     | • 8*5<br>Not appeared |        |    |           | Appeared     |         |    |                   |    |             |
| 8              | Pearlite structure                                    | 9%<br>Normal structur | re     |    |           | Disintegr    | ating   |    |                   |    | a filmeters |
|                | verage diameter of<br>recipitates at gain<br>boundary |                       |        |    |           | 52%          |         |    |                   |    |             |
| s              | ynthetic evaluation                                   | 9%                    |        |    |           |              |         |    |                   |    |             |



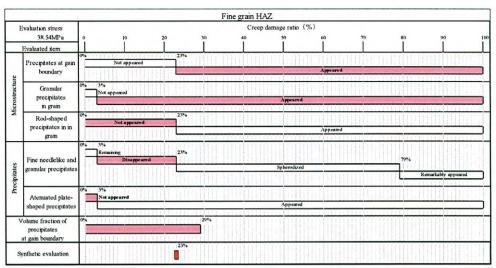

|                |                                                |     |                      |           |         |       |          | Fi    | ne grain | HAZ      |             |          |         |           |             |      |
|----------------|------------------------------------------------|-----|----------------------|-----------|---------|-------|----------|-------|----------|----------|-------------|----------|---------|-----------|-------------|------|
| I              | Evaluation stress                              |     |                      |           |         |       |          |       | Cr       | eep dama | ige ratio ( | %)       |         |           |             |      |
| _              | 46.29MPa                                       | 0   |                      | 10        |         | 20    | 30       |       | 40       |          | 50          | 60       | 70      | 80        | 90          | 1    |
|                | Evaluated item                                 |     |                      |           |         |       |          |       | _        |          |             |          |         |           |             |      |
| e              | Granular                                       | 0%  | 511D                 | 8% Not ap | speared | 111.1 | 1911     | 1111  | HHI      |          |             | 111111   | IIII.   |           |             | 11H  |
| nuctur         |                                                |     | 11111                |           |         | 10111 | 0110711  | TECTI | 11111    | 11116    | Appeared    |          | THEFT   | DETROT    |             |      |
| Microstructure | Rod-shaped<br>precipitates in ferrite<br>grain | 0%6 | 13111)<br>Mar 19,500 | -         | 13%     | arrd  |          |       | 1111     | Mah      |             | 11110    | 1111103 |           |             |      |
| 2              |                                                | 1   | 11111                | 1.11      |         | -     |          |       |          |          | Ap          | eared    |         |           |             |      |
|                |                                                |     | 124 14               |           | 11111   | 1111  | COLUMN 1 |       | 11111    | 11111    |             | 11111111 | TUTLICE | 111111111 | 11111111111 | 11.1 |
| Precipitates   | Fine needlelike and                            | 0%  | 2%<br>Remainin       | ng        |         |       |          | 1141  | 0110     |          | 11111       |          | 1011111 |           |             |      |
| ecip           | granular precipitates                          |     |                      |           |         |       |          |       |          | 1        | Disappeared |          |         |           |             |      |
| 2              |                                                |     |                      |           |         |       |          |       |          |          | 1 1 1 1 1 1 |          |         |           |             |      |

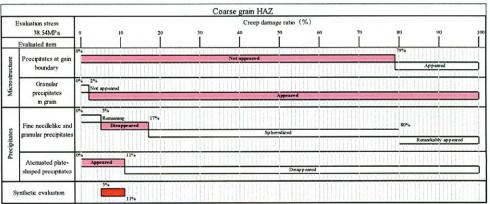

| aluation stress<br>46.29MPa                                 |                                                                                                                           |                                                                                                                             |                                                                                                                |                                                                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 46.29MPa                                                    |                                                                                                                           |                                                                                                                             |                                                                                                                |                                                                                                               | Creep d                                                                                                                                                                                     | amage ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                             | 0                                                                                                                         | 10                                                                                                                          | 20                                                                                                             | 30                                                                                                            | 40                                                                                                                                                                                          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70                          | 80                   | 90                                                                                                              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| valuated item                                               |                                                                                                                           |                                                                                                                             |                                                                                                                |                                                                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Precipitates at gain<br>boundary<br>Granular<br>mecipitates | 0%6                                                                                                                       | 2%<br>Not appeared                                                                                                          |                                                                                                                |                                                                                                               | HHHH                                                                                                                                                                                        | 1.11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11HIIII                     |                      |                                                                                                                 | nıl:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                             |                                                                                                                           | addies the state of the state of                                                                                            | ing the second second                                                                                          | See Manutan                                                                                                   | Maria Managana na                                                                                                                                                                           | Appeared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                      | 2 1 M 1 M                                                                                                       | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                             |                                                                                                                           |                                                                                                                             |                                                                                                                |                                                                                                               |                                                                                                                                                                                             | 11111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HIMILIN                     |                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Granular                                                    | 5                                                                                                                         |                                                                                                                             |                                                                                                                |                                                                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| precipitates<br>in ferrite grain                            |                                                                                                                           | William Chronic Street Arrows                                                                                               | South Street and                                                                                               | the set of the set                                                                                            | Network With Start                                                                                                                                                                          | Appeared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the state of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Carlos and the state of the | Norman States        | a second a second second second                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                             | 11                                                                                                                        |                                                                                                                             | 11111111                                                                                                       | 11111111                                                                                                      | TUTTUET                                                                                                                                                                                     | 1 1 2 1 4 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CELO PED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TUTIER                      | THE PERIOD           | THE PROPERTY OF                                                                                                 | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Atenuated plate-                                            | 0%                                                                                                                        | Not appeared                                                                                                                | 19%                                                                                                            |                                                                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MANDER                      |                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| shaped precipitates                                         |                                                                                                                           |                                                                                                                             | 11                                                                                                             |                                                                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Appeared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                             |                                                                                                                           |                                                                                                                             | dining                                                                                                         | J. Chilled                                                                                                    | CHAIL FILL                                                                                                                                                                                  | 1111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HUDLES                      | LING                 | INTERNA DE LA COMPANSIÓN D | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| thetic evaluation                                           |                                                                                                                           | 2%                                                                                                                          |                                                                                                                |                                                                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| s                                                           | Precipitates at gain<br>boundary<br>Granular<br>precipitates<br>in ferrite gran<br>Atenuated plate-<br>haped precipitates | recipitates at gain     boundary     Granular     precipitates     in ferrite grain     Atenuated plate- haped precipitates | Trecipitales at gain boundary  Granular precipitales in ferrite grain  Atenuated plate- haped precipitales  2% | Precipitales at gain boundary  Granular precipitales in ferrite grain  Atemated plate- haped precipitates  2% | receptates at gain receptates receptates receptates receptates receptates | recipitates at gain precipitates in ferrite grain Atemated plate- haped precipitates  7% Not appeared  7% Not appeared 7% Not appeared 7% Not appeared 7% Not appeared 7% Not a | receptates at gain receptates a | Precipitates at gain        | Precipitales at gain | Precipitales at gain                                                                                            | Precipitates at gain Appeared Precipitates at gain Appeared Precipitates at gain Appeared Precipitates at gain Appeared Precipitates Appeared Precipitates Appeared Precipitates Appeared Precipitates Appeared Precipitates Appeared Precipitates Precipita |

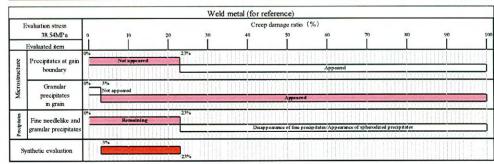
| I      | Evaluation stress                            |       |                     |                   |                              | Creep                             | damage ratio ( | (%)       |                                    |                                 |                              |                   |
|--------|----------------------------------------------|-------|---------------------|-------------------|------------------------------|-----------------------------------|----------------|-----------|------------------------------------|---------------------------------|------------------------------|-------------------|
|        | 46.29MPa                                     | 0     | 10                  | 20                | 30                           | 40                                | 50             | 60        | 70                                 | 80                              | 90                           | 10                |
|        | Evaluated item                               |       |                     |                   |                              |                                   |                |           |                                    |                                 |                              |                   |
| an     | Precipitates at gain<br>boundary<br>Granular | 0%    | 6% Not appeared     |                   |                              |                                   |                |           |                                    |                                 |                              |                   |
| 2      |                                              | 1111  |                     |                   |                              |                                   | Appeared       | 4         |                                    |                                 |                              |                   |
| ELS    |                                              | 1115  |                     |                   |                              | 1010101                           | 11-12 11-11-11 | 11111111  | 1111111111                         |                                 |                              | ULL LT            |
| Micros |                                              | 0%    | 6%<br>Not app cared |                   |                              |                                   |                |           |                                    |                                 |                              |                   |
| ~      | precipitates                                 | 1111  | College and a state | Calle Called      | and the second second second | and the state of the state of the | Appeare        | destation | and the state of the second second | Chargest Hilfson and Parket Com | and the second second second | and the should be |
|        | m gram                                       | 11111 |                     | 1.1.1.1.1.1.1.1.1 |                              |                                   |                |           |                                    |                                 |                              |                   |

|                |                                                       | Base metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E              | valuation stress                                      | Creep damage ratio (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                | 39.03MPa                                              | 0 10 20 30 40 50 60 70 80 90 100<br>1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                | Evaluated item                                        | 0% 8%<br>Not appared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | Precipitates at gain<br>boundary                      | Not appeared 36% Appeared Remarkable proceptition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e              | Precipitates free<br>zone along gram<br>boundary      | OP = 13%     Not appeared     Appeared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Microstructure | Pearlite structure                                    | 0% 12% Normal structure Dustograng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | Rod-shaped<br>precipitates in ferrite<br>grain        | 0°+ 38% 81% 81% 81% Remarkable proop if dion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | Granular<br>precipitates in ferrite<br>grain          | 0° = 2° 5 Not appeared Appeared Appeared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | Rod-shaped precipitates                               | Offe 37e<br>Not appeared Appeared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Precipitates   | Precipitates free<br>zone along grain<br>boundary     | Off. 13%. Not appeared Appeared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Precip         | Pearlite structure                                    | 0° = 3% Deintograting Remarkably desintograted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | Atenuated plate-<br>shaped precipitates               | CP. 47:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                | recapt diameter of<br>recapitates at gain<br>boundary | 0*6  3*6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2              | olume fraction of<br>precipitates<br>at gain boundary | 47% 47% 38%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | cipitates free band<br>along grain boundary           | 28%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sy             | nthetic evaluation                                    | 36%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                |                                                       | Intercritical zone (for reference)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | Evaluation stress<br>39.03MPa                         | Creep damage ratio (%)           0         10         20         30         40         50         60         70         80         90         100           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Microstructure | Evaluated item<br>Precipitates at gain<br>boundary    | Not appeared<br>Job provided Description of the second description of th |
| Micros         | Rod-shaped<br>precipitates in m<br>grain              | (P* 5%)<br>Not appeared<br>Appeared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sy             | inthetic evaluation                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |







FigII-29 Evaluation Results Final SH #1

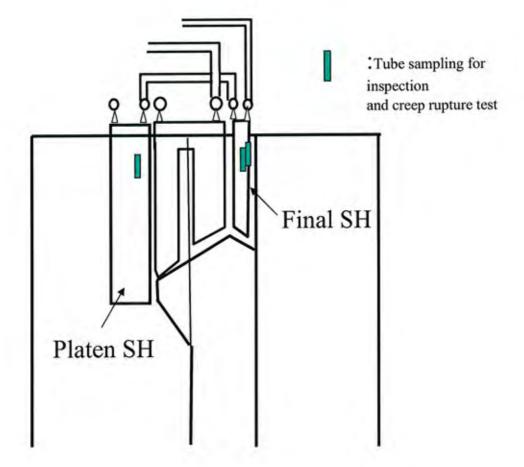
П-211

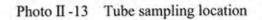
|                |                                                        |                               |                           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Base m     | etal      |                                                                                                  |        |               |        |        |                   |     |
|----------------|--------------------------------------------------------|-------------------------------|---------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|--------------------------------------------------------------------------------------------------|--------|---------------|--------|--------|-------------------|-----|
| E              | valuation stress                                       |                               |                           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | eep dama  | ge ratio (%                                                                                      |        |               |        |        |                   |     |
|                | 38.54MPa<br>Evaluated item                             | 0                             | 10<br>                    | 20       | 30<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40         |           | 50<br>1                                                                                          | 60<br> | 70            | 80     | )      | 90<br>            | 100 |
|                | Precipitates at gain<br>boundary                       | 0°• 8                         | ines<br>Not appeared<br>A | Appeared |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35%        |           |                                                                                                  | Remar  | kable precipr | ation  |        |                   |     |
| ure            | Precipitates free<br>zone along grain<br>boundary      | 0%.<br>Not appear             | 13%                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |           | Арро                                                                                             | sared  |               |        |        |                   |     |
| Microstructure | Pearlite structure                                     | 0%.<br>Normal structu         |                           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | np.       | Disinte                                                                                          | gaing  |               |        |        |                   |     |
| M              | Rod-shaped<br>precipitates in ferrite<br>gram          | 0%•                           | Not app                   | eared    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35*•       |           | Арре                                                                                             | cared  |               |        | Remark | able precipitatio | n   |
|                | Granular<br>precipitates in ferrite<br>grain           | 0% 2% Not appears             | 5d                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |           | ppeared                                                                                          |        |               |        |        |                   |     |
|                | Rod-shaped<br>precipitates                             | Not apper                     | ared                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |           | Appeared                                                                                         |        |               | 211111 | 11111  |                   |     |
| Precipitates   | Precipitates free<br>zone along grain<br>boundary      | 0°o<br>Not appears            | nd 13%                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |           | Аррея                                                                                            | red    |               |        |        |                   |     |
| Precip         | Pearlite structure                                     | 0*s<br>Disintegrati           | ng                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Remarkabl | y disinte gratee                                                                                 | 4      |               |        |        |                   |     |
|                | Atenuated plate-<br>shaped precipitates                | (Po 4%)<br>Not app            | wared                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 1110      | Appeared                                                                                         |        |               |        | 11.11  |                   |     |
|                | rerage diameter of<br>precipitates<br>at gain boundary | 3%                            |                           |          | u Qurb<br>Coriada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |           | 53%                                                                                              |        |               |        |        |                   |     |
|                | olume fraction of<br>precipitates<br>at gain boundary  | 0*•                           |                           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3%         |           |                                                                                                  |        |               |        |        |                   |     |
|                | cipitates free band<br>along grain boundary            |                               |                           |          | 27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 6%     |               |        |        |                   |     |
| Sy             | mthetic evaluation                                     |                               |                           |          | and the second se | 3%         |           |                                                                                                  |        |               |        |        |                   |     |
|                |                                                        |                               |                           |          | Intercrit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tical zone |           |                                                                                                  |        |               |        |        |                   |     |
| F              | Evaluation stress<br>38.54MPa                          | 0                             | 10                        | 20       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40         | reep dam: | ige ratio (%                                                                                     | 60<br> | 70            | 8      | 0      | 90                | 100 |
| Microstructure | Evaluated item Precipitates at gain boundary           | 0% 2%<br>Not appear<br>Appear |                           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |           | Duappeared                                                                                       |        |               |        |        |                   |     |
| Micros         | Rod-shaped<br>precipitates in m<br>grain               | 0% 5% Not a                   | ppeared                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |           | Appeared                                                                                         |        |               |        |        |                   |     |
| Sy             | withetic evaluation                                    | 2%<br>5%                      |                           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |           |                                                                                                  |        |               |        |        |                   |     |



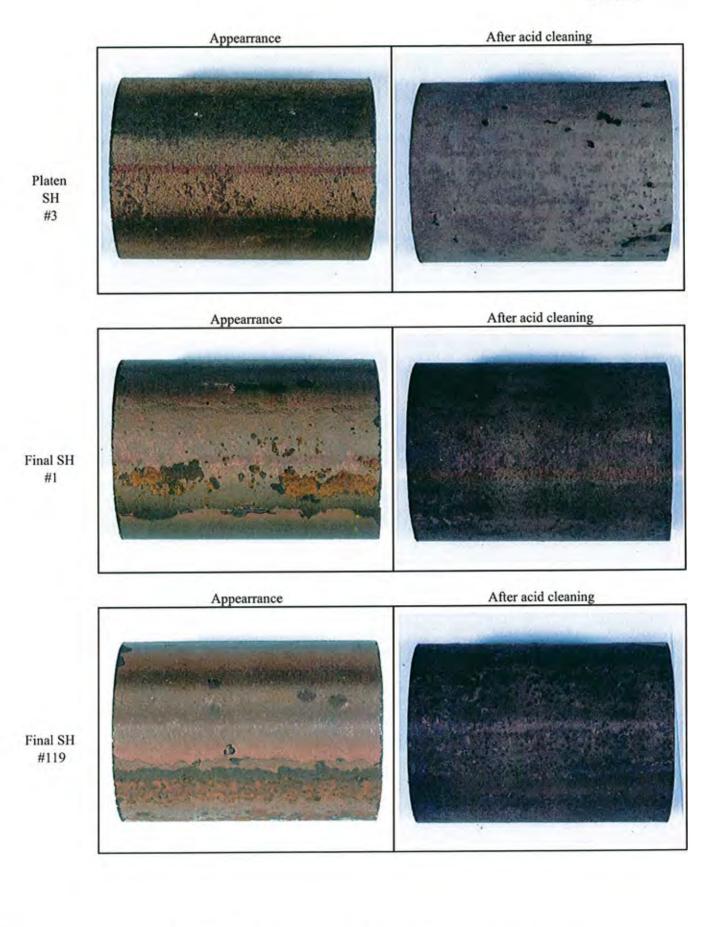


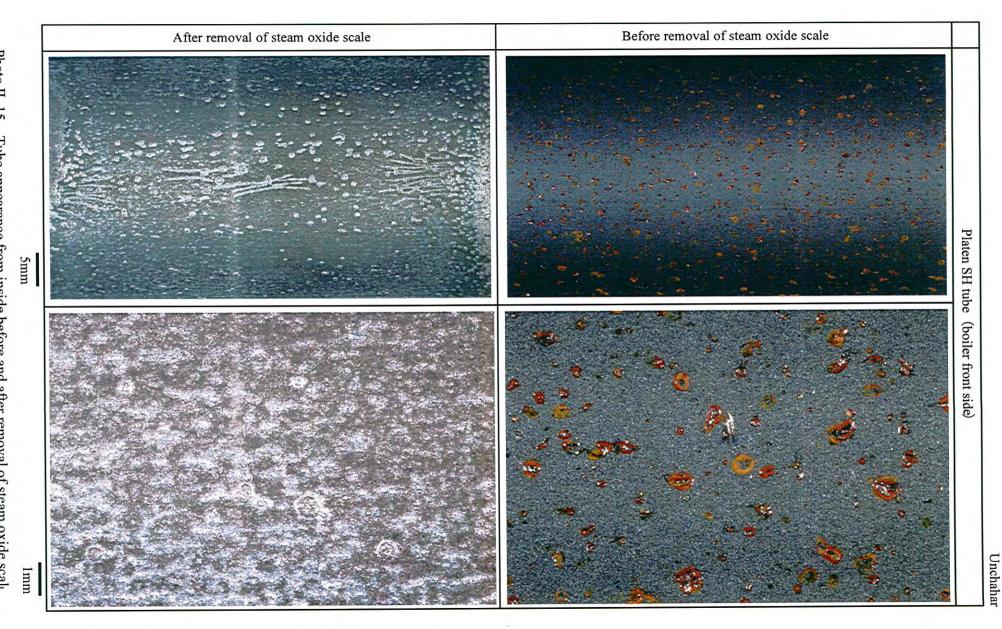




П-212

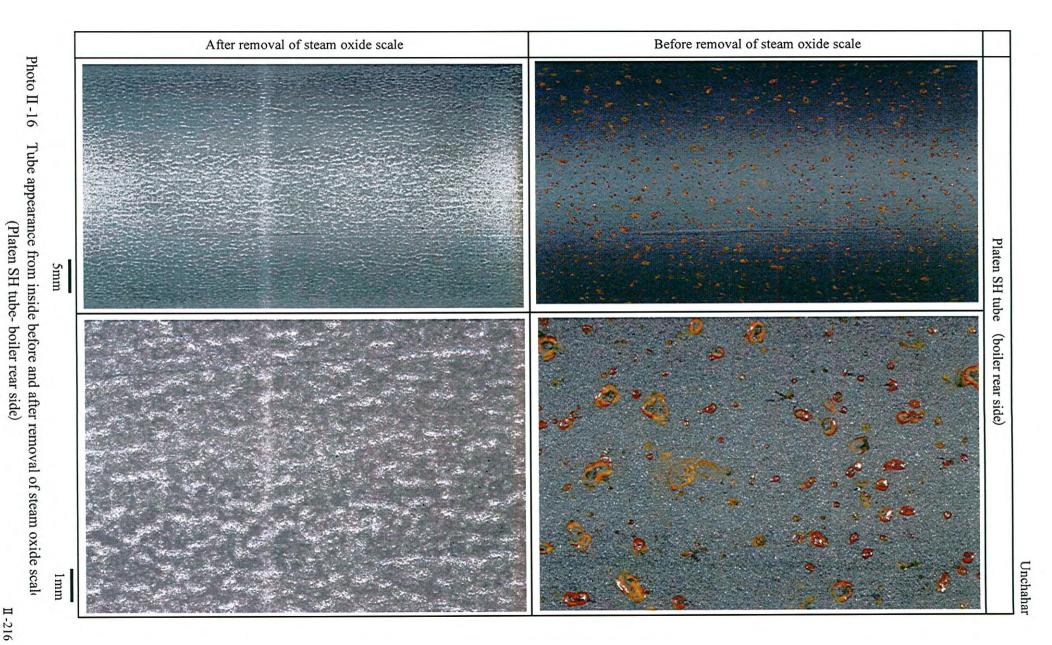

FigII-30 Evaluation Results

Final SH #119


Unchahar






Unchahar









П-216