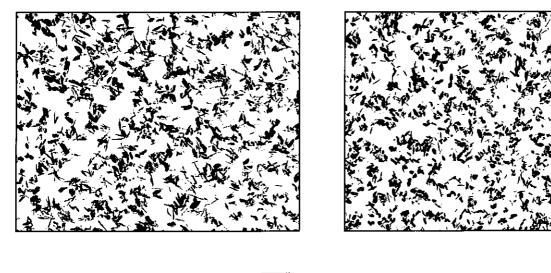
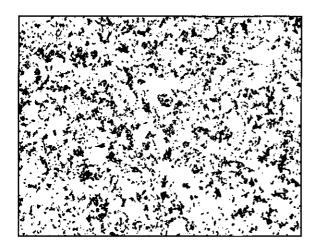
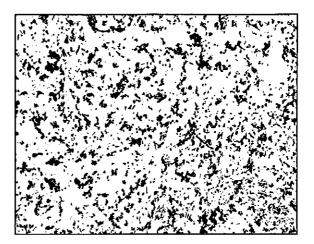

5μm


 $1 \, \mu$ m

<u>с</u>,

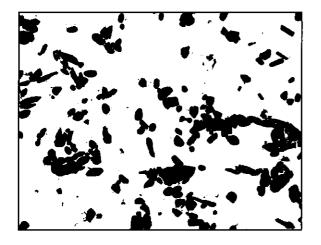

 $1 \,\mu$ m

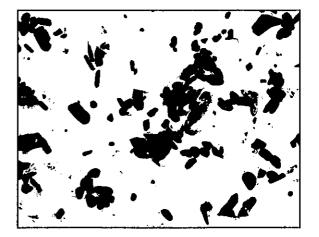


 $1 \,\mu$ m

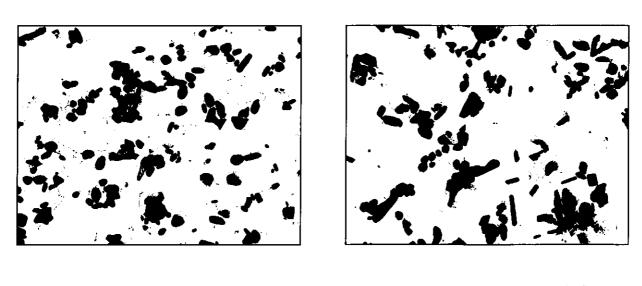
 1μ m

Photo I -8-11 Precipitates by TEM (Transmission electron microscope) observation RH Outlet Header-Right(Circumferential weld at right side: Base metal)

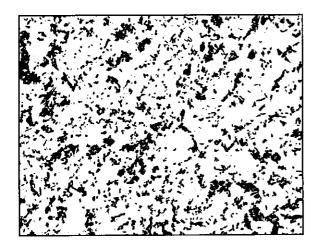


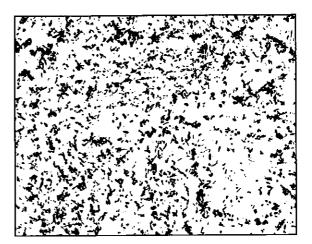

 $5\,\mu\,\mathrm{m}$

 1μ m



N

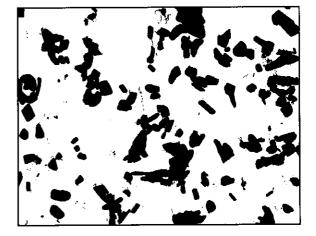

 $1 \,\mu$ m

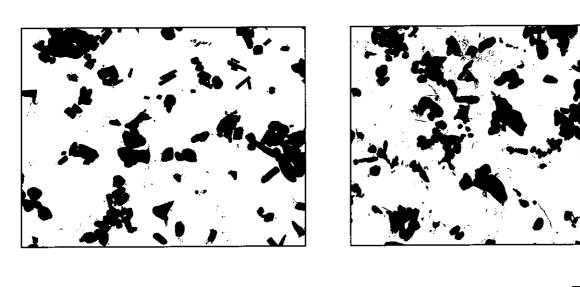


 $1 \, \mu$ m

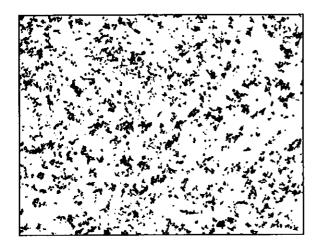
1*µ* m

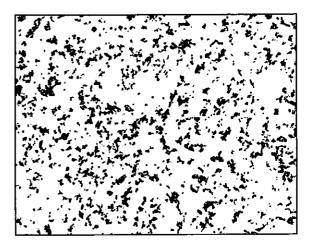
Photo I -8-12 Precipitates by TEM (Transmission electron microscope) observation RH Outlet Header-Right(Circumferential weld at right side : Fine grain HAZ)

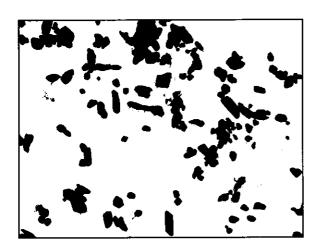




کې د ۱

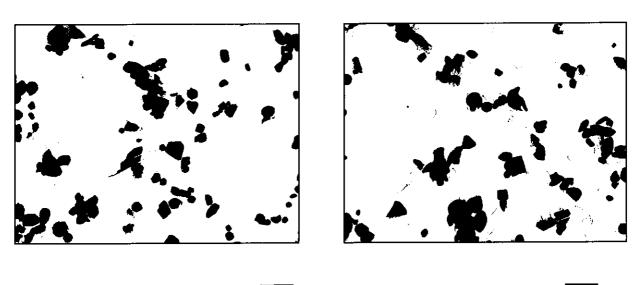



 $1 \,\mu$ m


1μm

 $1\,\mu$ m

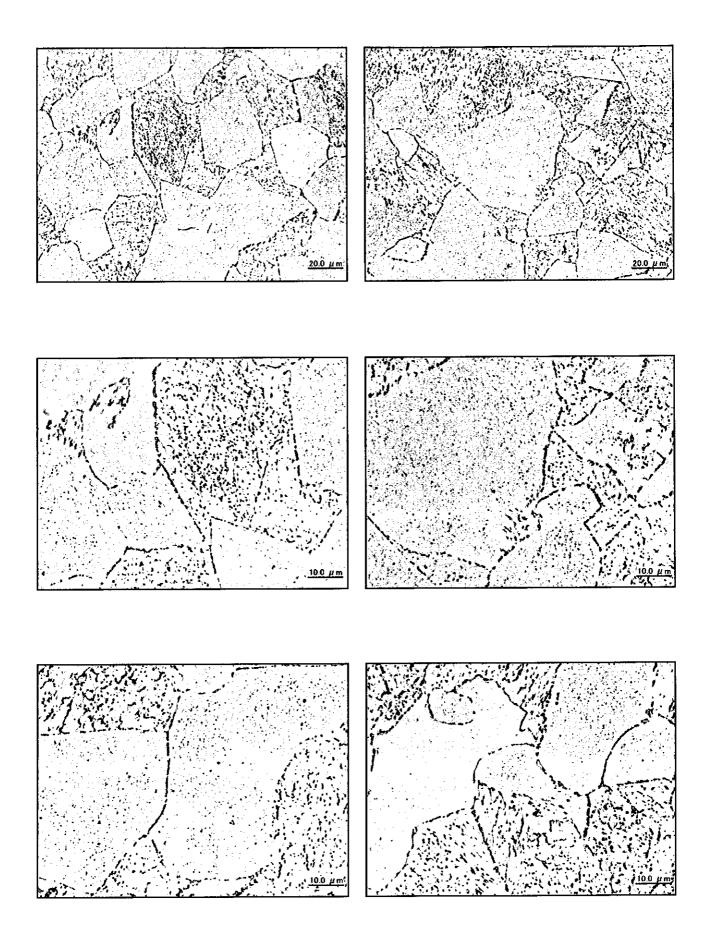

Photo I -8-13 Precipitates by TEM (Transmission electron microscope) observation RH Outlet Header-Right(Circumferential weld at right side : Coarse grain HAZ)



. بر ب

 $1 \, \mu$ m

 $5\,\mu\,\mathrm{m}$



 $1 \, \mu$ m

 $1 \, \mu$ m

 $1 \,\mu$ m

Photo I-8-14 Precipitates by TEM (Transmission electron microscope) observation RH Outlet Header-Right(Circumferential weld at right side: Weld metal)

 $\label{eq:photo-I-9-1} \begin{array}{c} \mbox{Microstructure observation} \\ \mbox{Main Steam Pipe-Left (Circumferential weld, extrados : Base metal)} \end{array}$

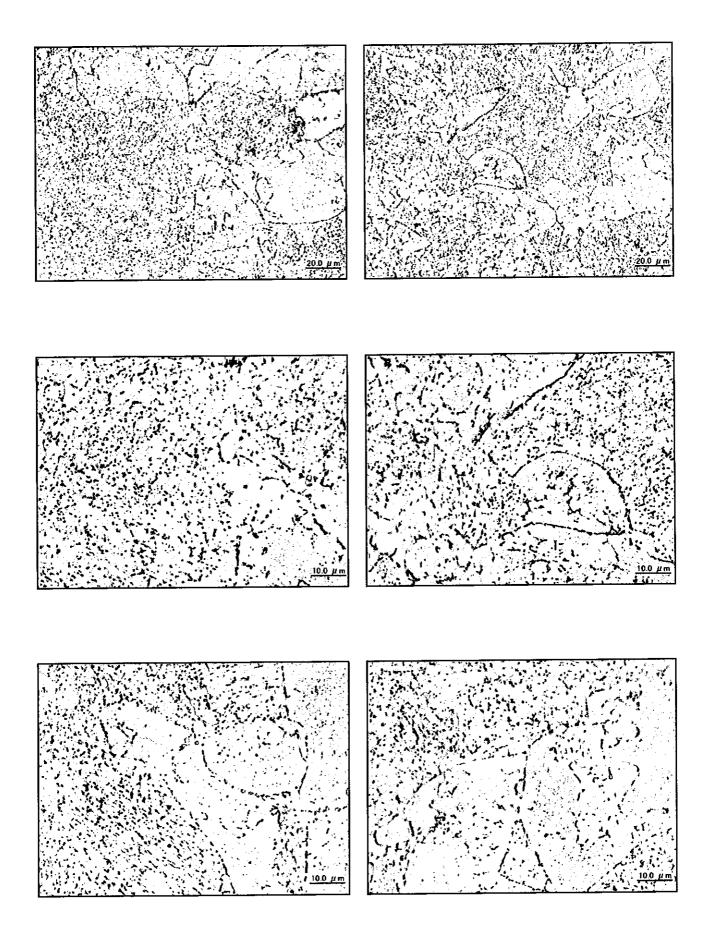
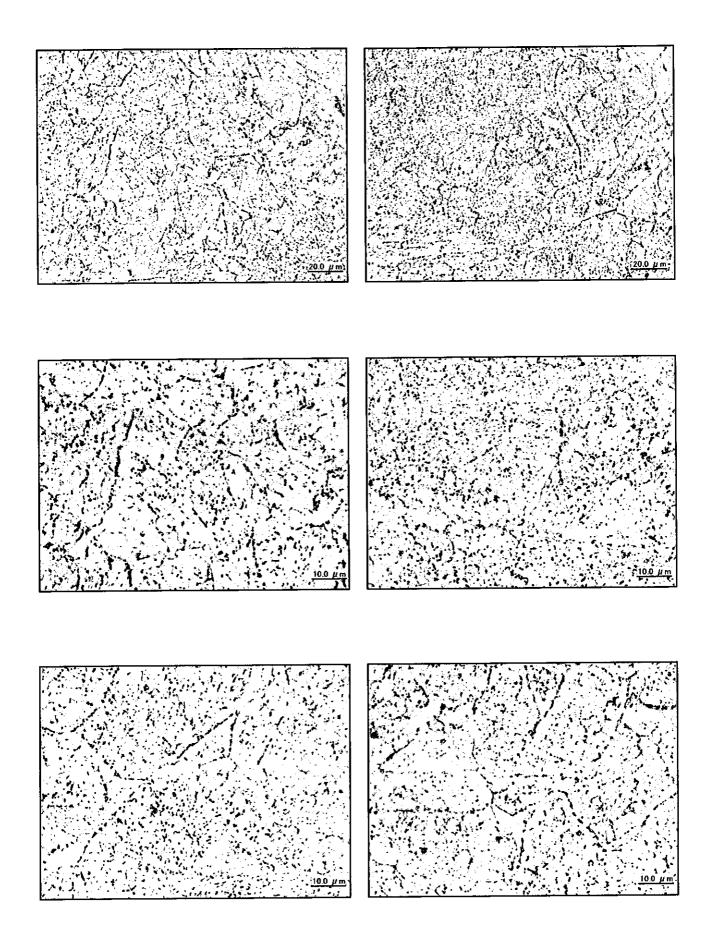



Photo I -9-2 Microstructure observation Main Steam Pipe-Left (Circumferential weld, extrados $\,:\,$ Intercritical zone)

Ż

 $\mathcal{L}_{\mathcal{F}}$

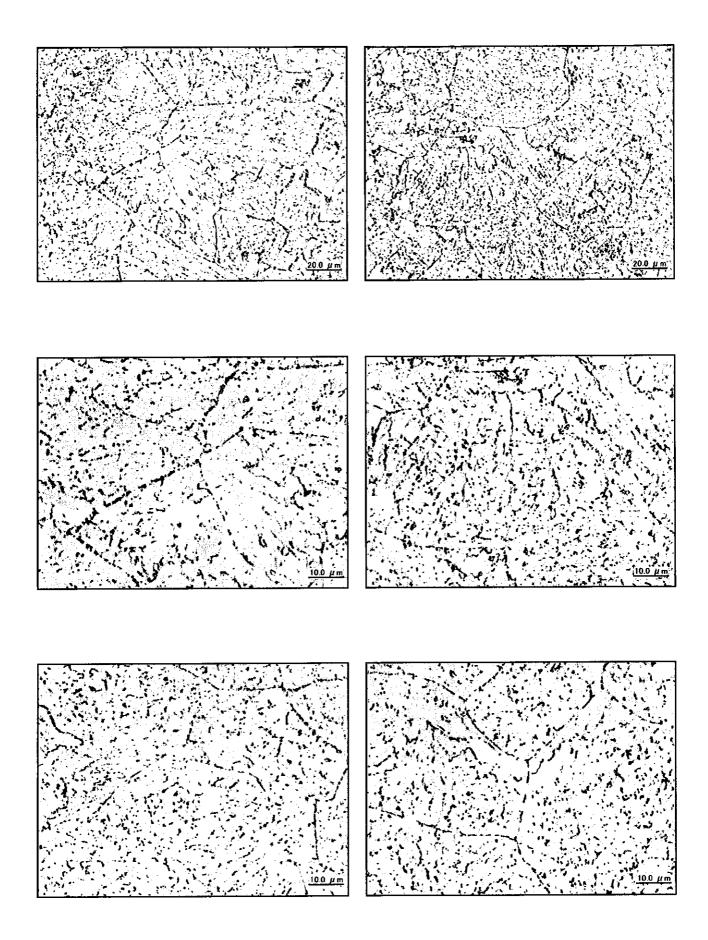
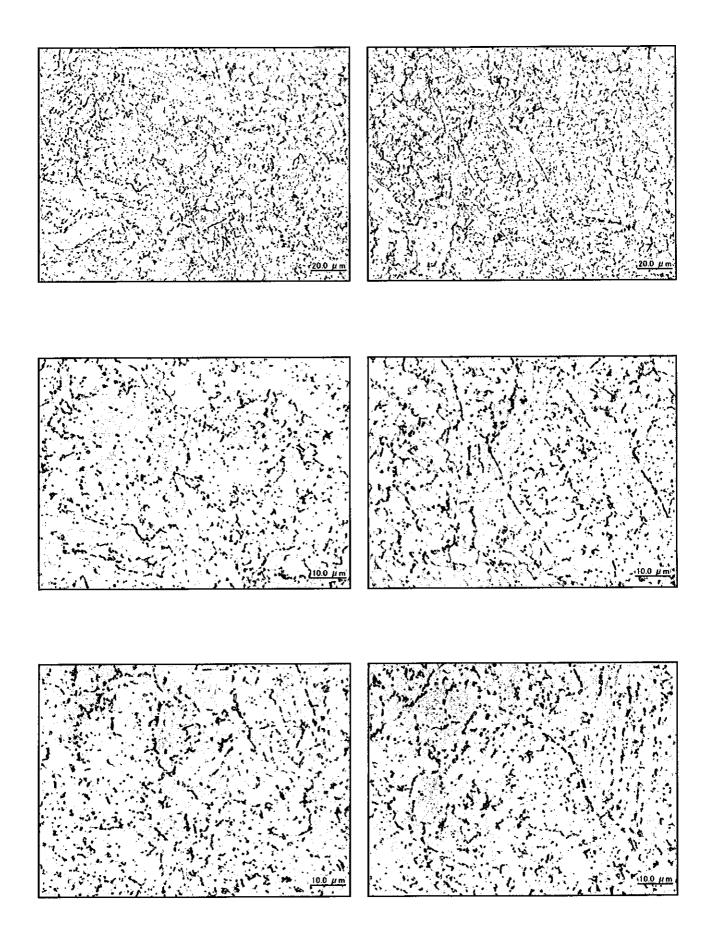



Photo I -9-4 Microstructure observation Main Steam Pipe-Left (Circumferential weld,extrados : Coarse grain HAZ)

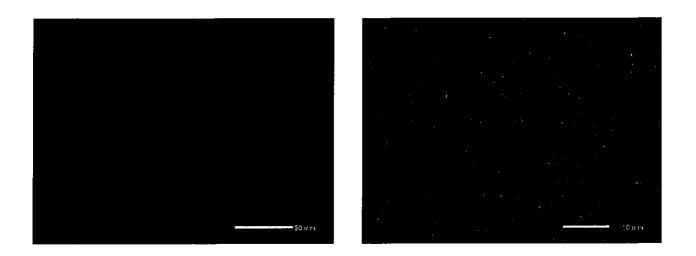
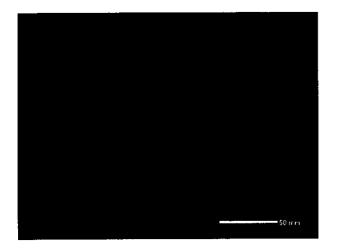
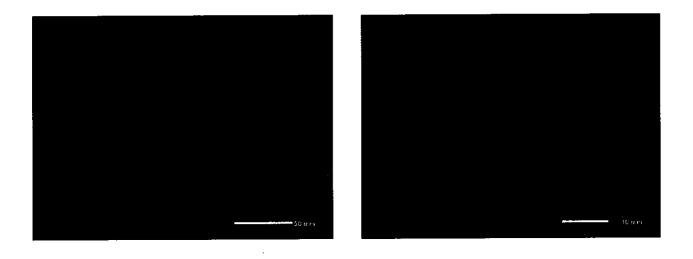




Photo I -9-6 SEM(Scanning electron microscope) observation Main Steam Pipe-Left(Circumferential weld,extrados : Fine grain HAZ)

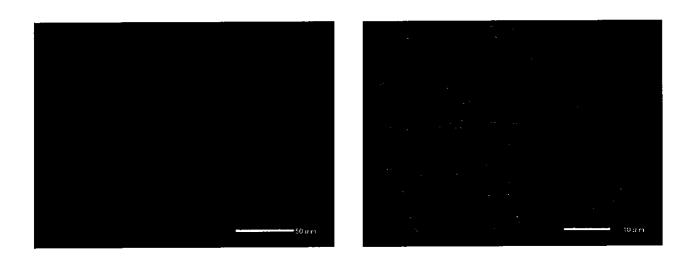
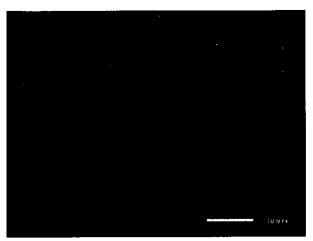
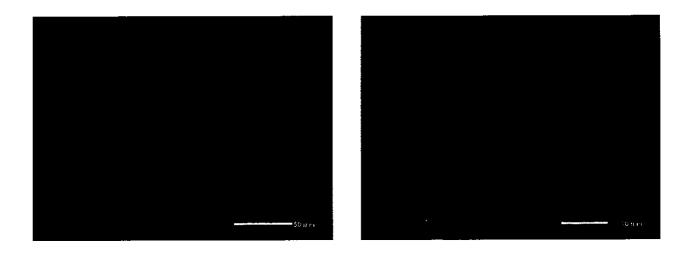




Photo I -9-7 SEM(Scanning electron microscope) observation Main Steam Pipe-Left(Circumferential weld,extrados: Coarse grain HAZ)

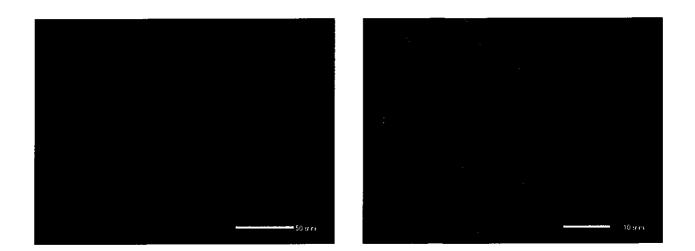
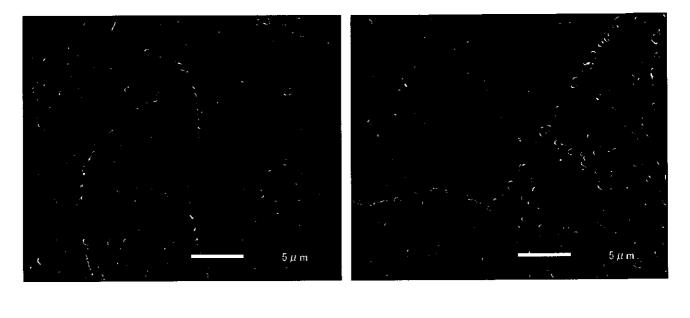
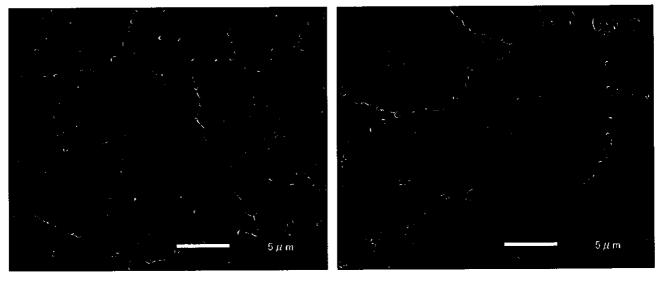




Photo I -9-8 SEM(Scanning electron microscope) observation Main Steam Pipe-Left(Circumferential weld, extrados: Weld metal)

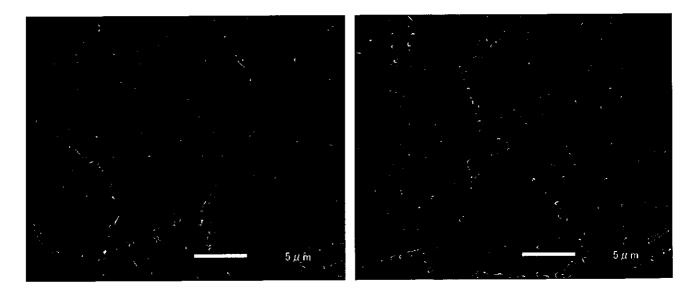
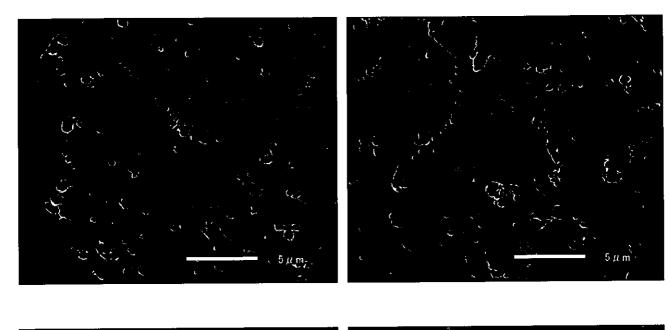
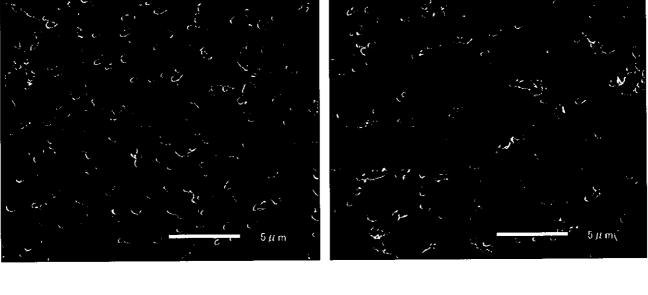
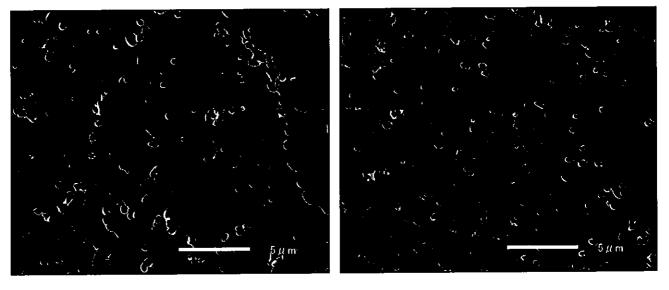
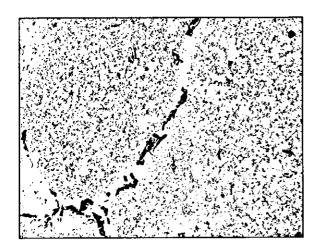
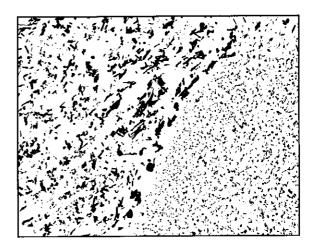




Photo I -9-9 Precipitates along grain boundary by SEM observation Main Steam Pipe-Left(Circumferential weld,extrados:Base metal)

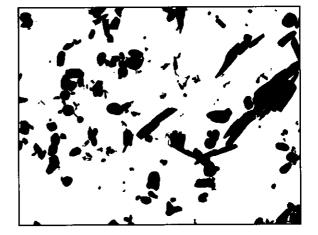
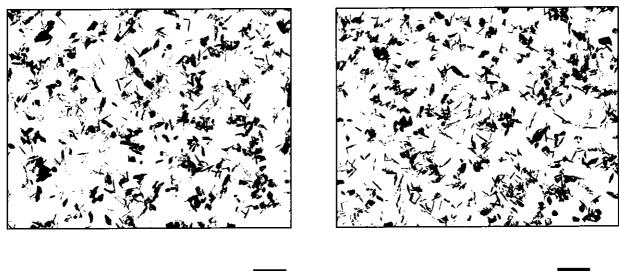


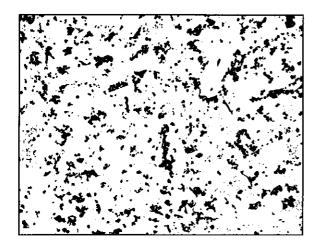
Photo I -9-10 Precipitates along grain boundary by SEM observation Main Steam Pipe-Left(Circumferential weld,extrados:Fine grain HAZ)

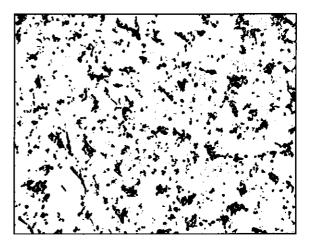


 $5 \,\mu$ m

 $1 \, \mu$ m

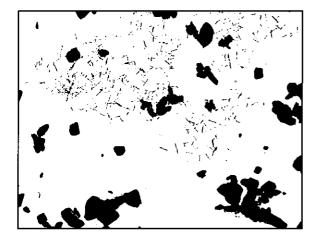
 $5 \,\mu\,{
m m}$

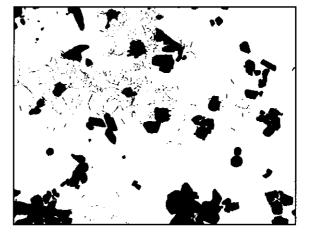


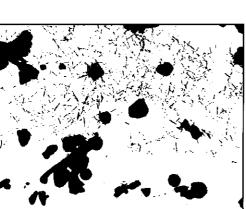

 $1 \,\mu$ m

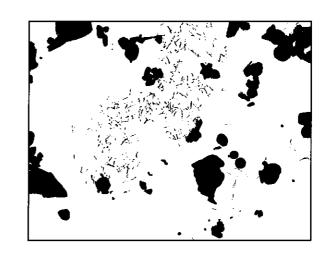
 $1 \, \mu$ m

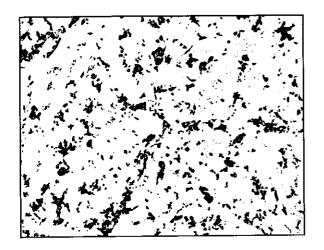
1μm

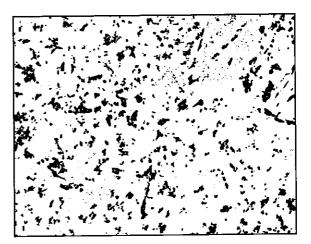

Photo I-9-11 Precipitates by TEM (Transmission electron microscope) observation Main Steam Pipe-Left(Circumferential weld, extrados : Base metal)

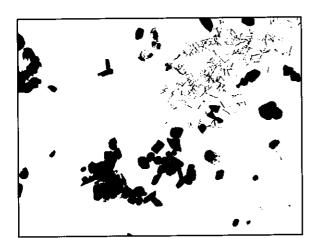



 $1 \, \mu$ m

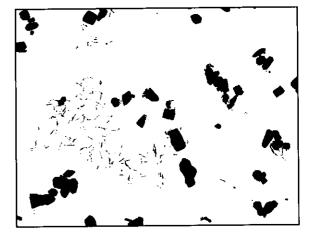


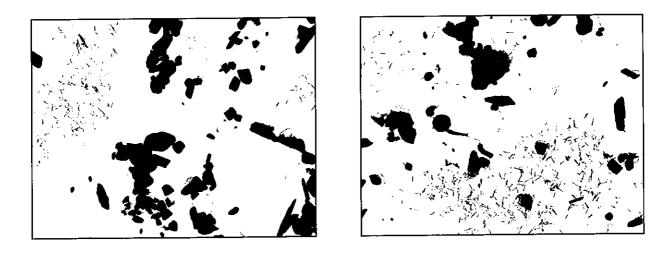

23

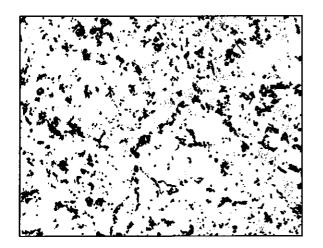



 $1 \,\mu$ m

 1μ m

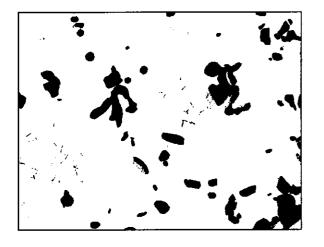

Photo I -9-12 Precipitates by TEM (Transmission electron microscope) observation Main Steam Pipe-Left(Circumferential weld, extrados : Fine grain HAZ)

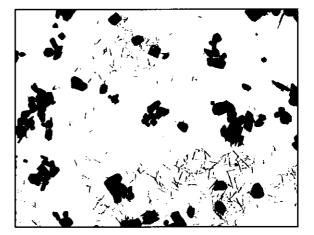

2


 $5 \,\mu$ m

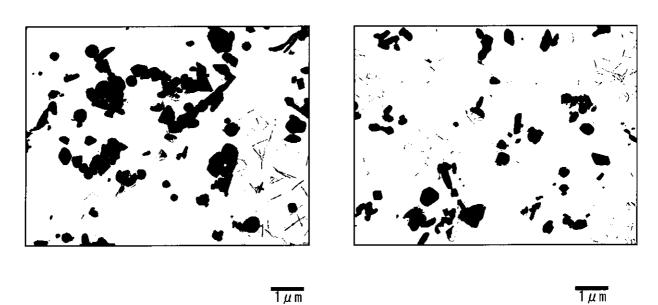
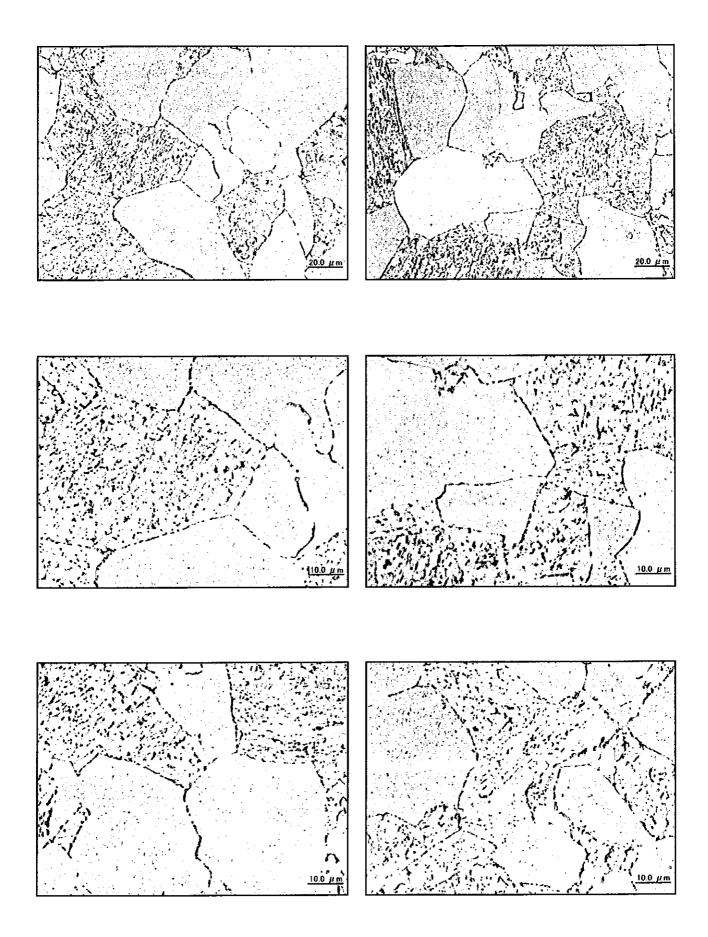
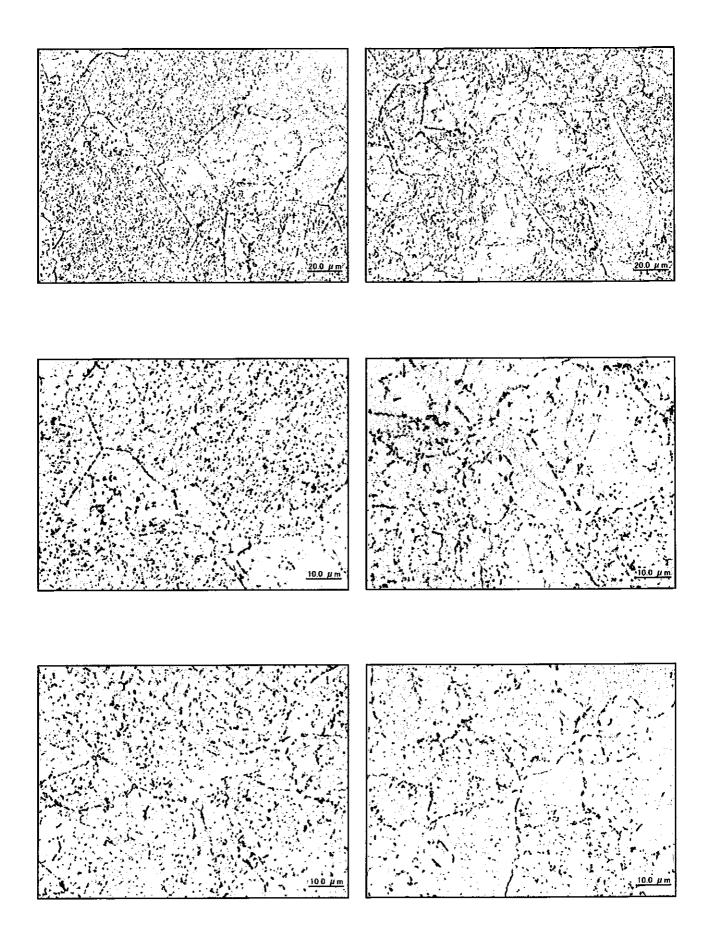
 $1 \, \mu$ m

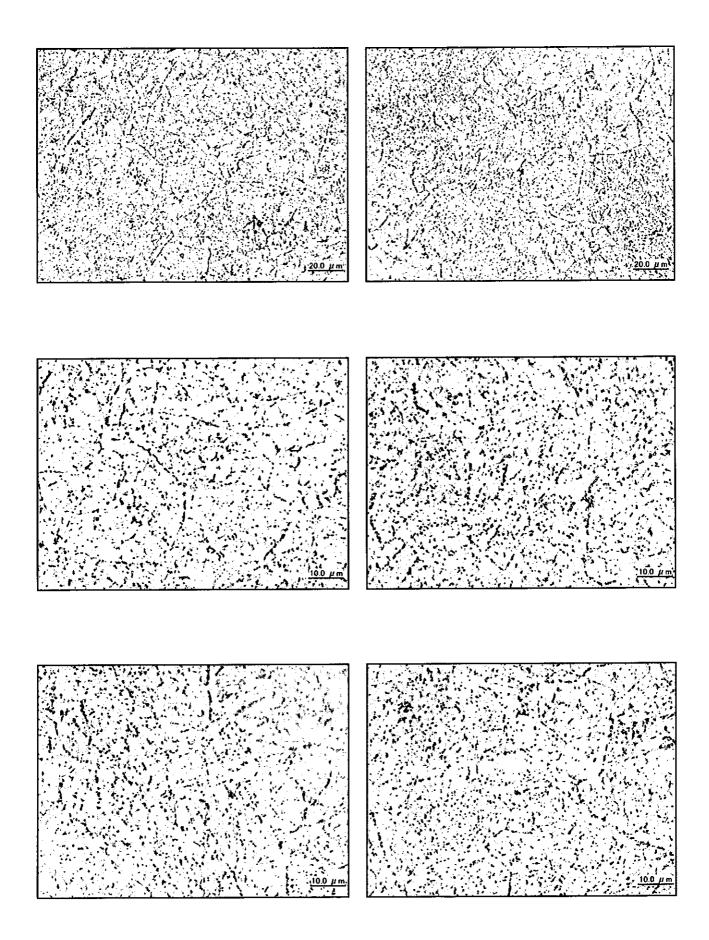
 $1\,\mu$ m


Photo I -9-13 Precipitates by TEM (Transmission electron microscope) observation Main Steam Pipe-Left(Circumferential weld,extrados: Coarse grain HAZ)



1μm


Photo I -9-14 Precipitates by TEM (Transmission electron microscope) observation Main Steam Pipe-Left(Circumferential weld,extrados:Weld metal)

 $\label{eq:Photo-I-10-1} Microstructure\ observation \\ Main\ Steam\ Pipe-Left\ (Circumferential\ weld, intrados\ :\ Base\ metal\)$

 $\label{eq:photo-I-10-2} Microstructure\ observation \\ Main\ Steam\ Pipe-Left\ (Circumferential\ weld, intrados\ :\ Intercritical\ zone\)$

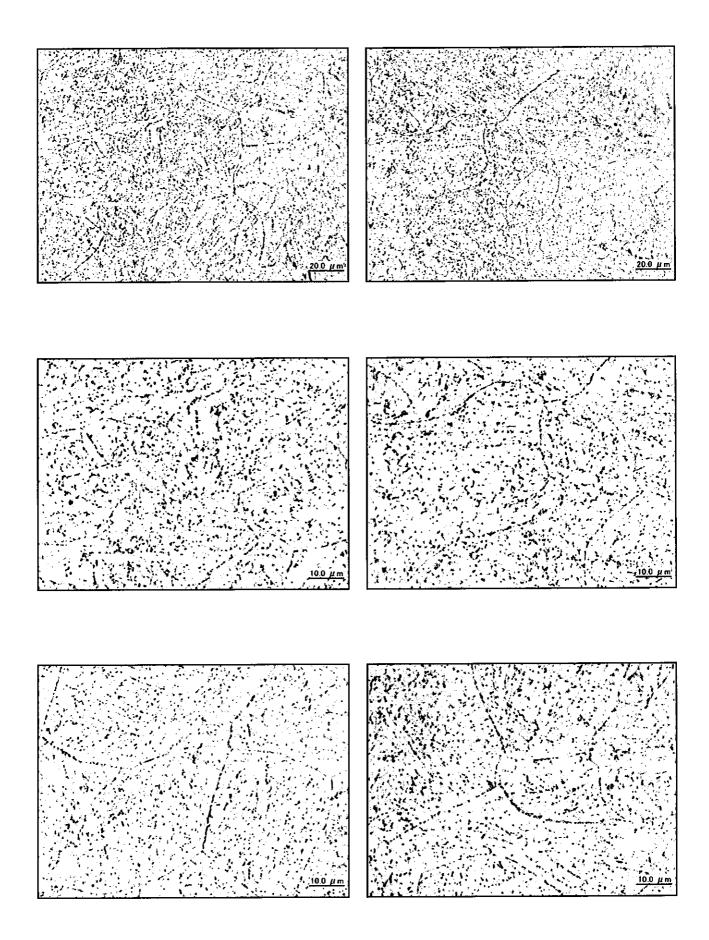


Photo I -10-4 Microstructure observation Main Steam Pipe-Left (Circumferential weld, intrados $\,:\,$ Coarse grain HAZ)

33)

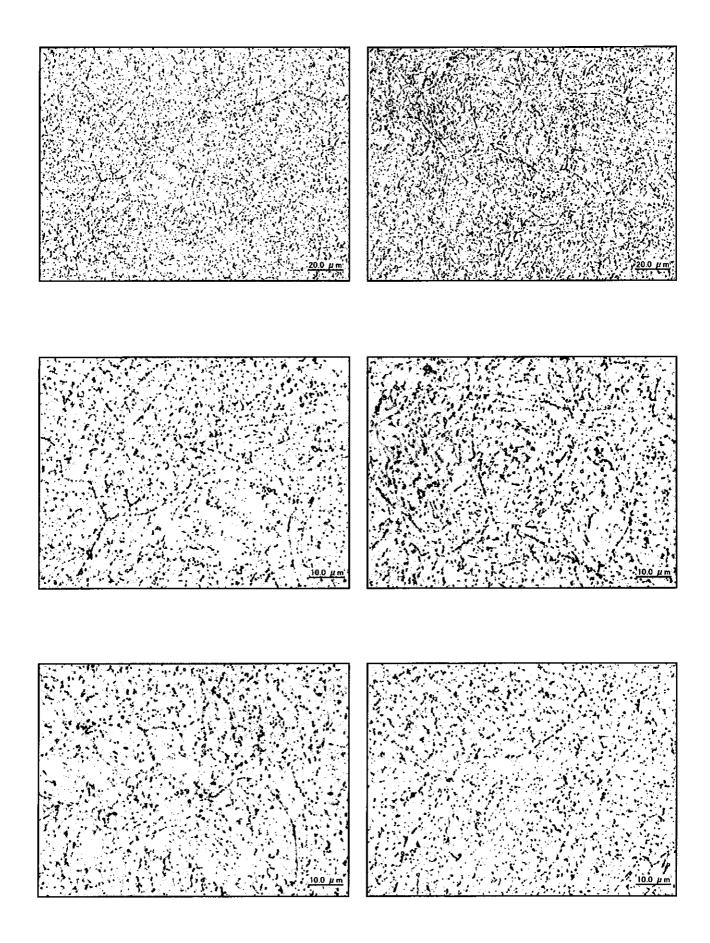
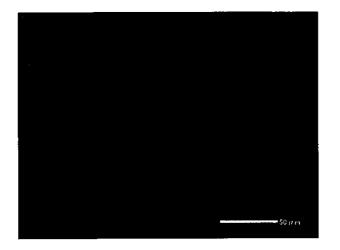
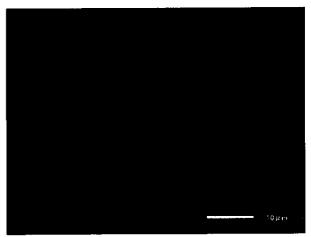
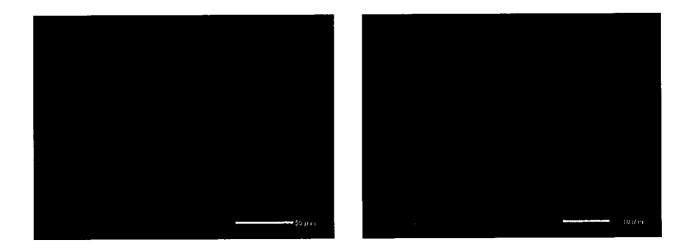
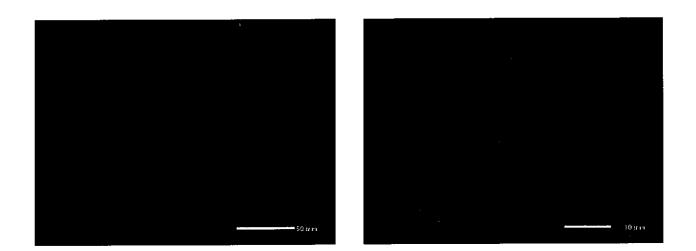
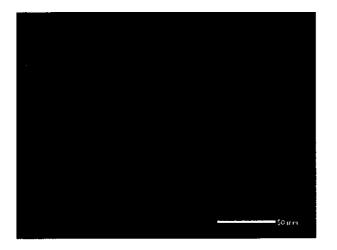





Photo I -10-5 Microstructure observation Main Steam Pipe-Left (Circumferential weld, intrados : Weld metal)

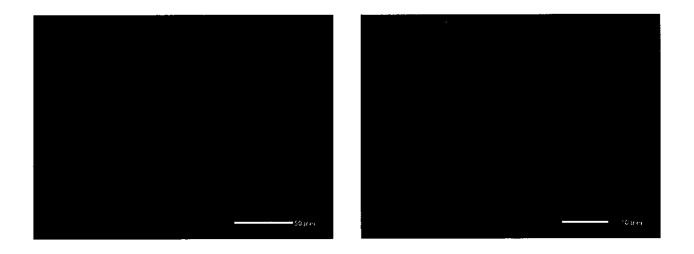


Photo I -10-6 SEM(Scanning electron microscope) observation Main Steam Pipe-Left(Circumferential weld,intrados:Fine grain HAZ)

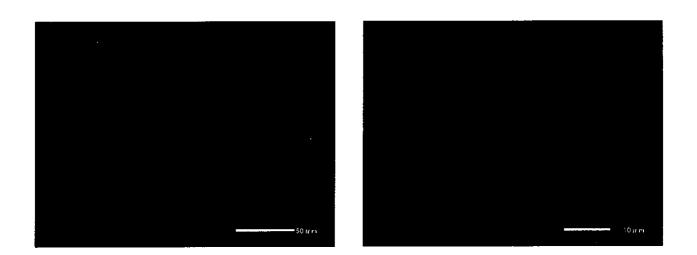
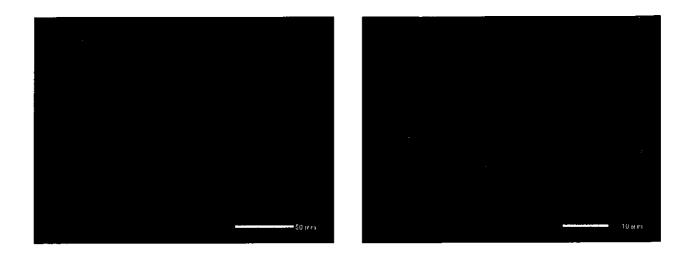
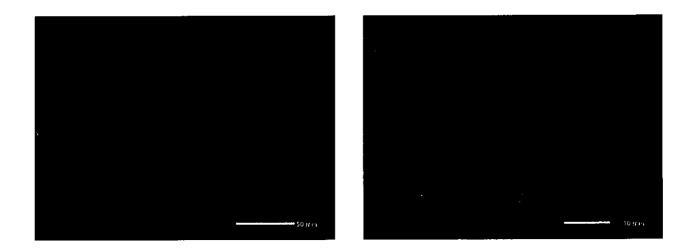




Photo I -10-7 SEM(Scanning electron microscope) observation Main Steam Pipe-Left(Circumferential weld, intrados : Coarse grain HAZ)

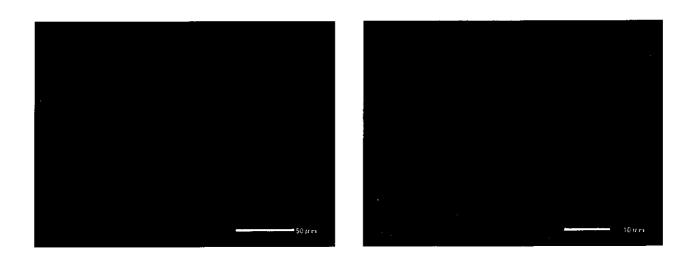
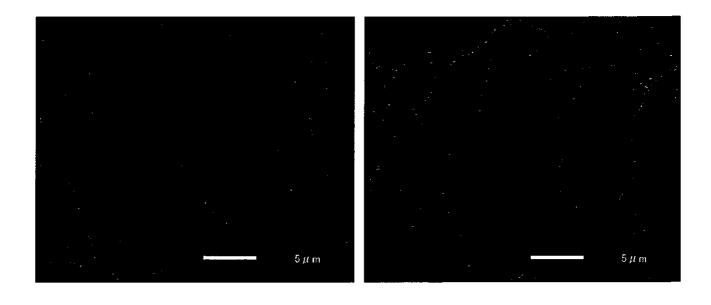
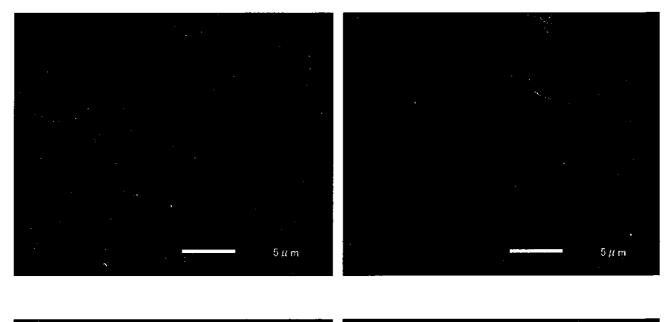




Photo I -10-8 SEM(Scanning electron microscope) observation Main Steam Pipe-Left(Circumferential weld,intrados: Weld metal)

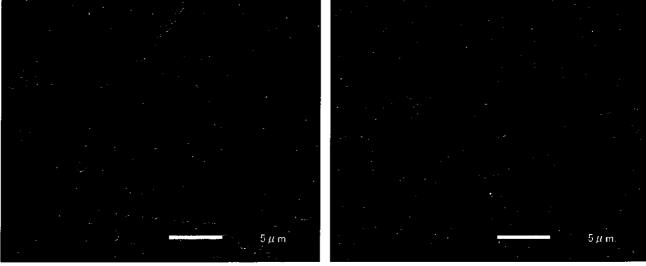
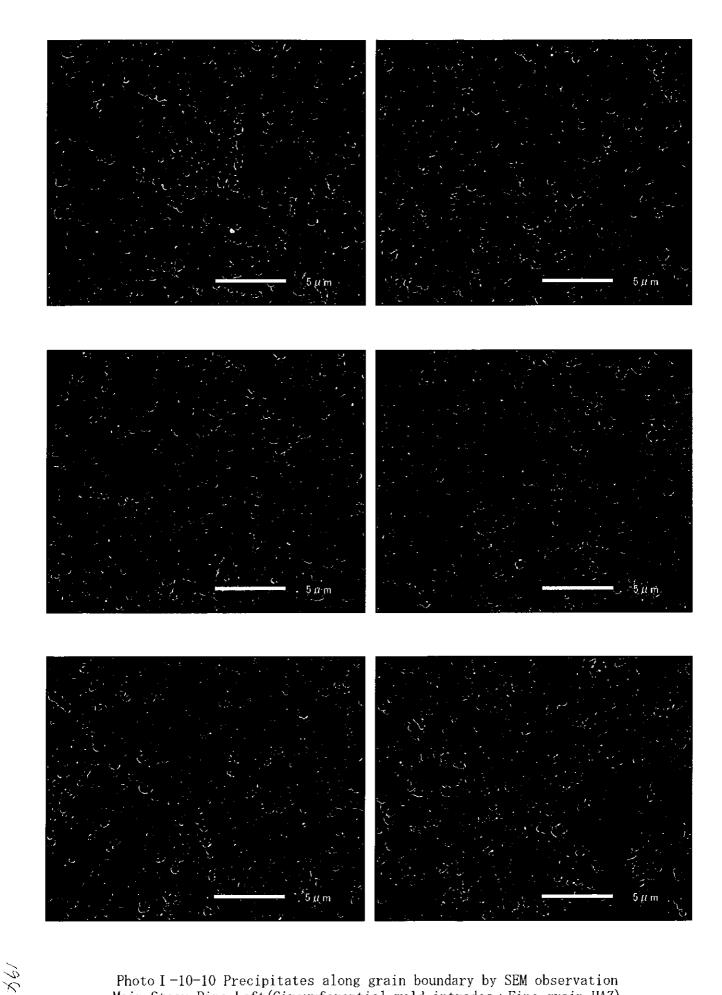
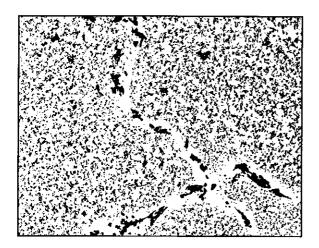
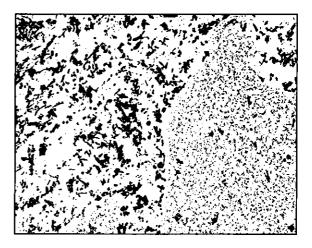
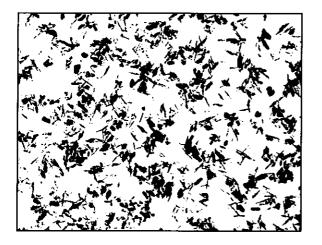
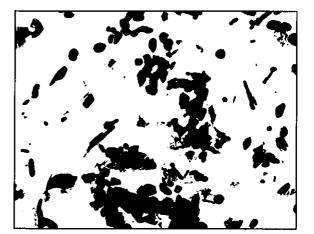


Photo I -10-9 Precipitates along grain boundary by SEM observation Main Steam Pipe-Left(Circumferential weld, intrados : Base metal)

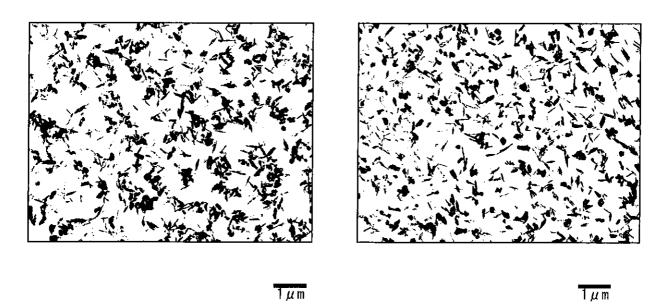
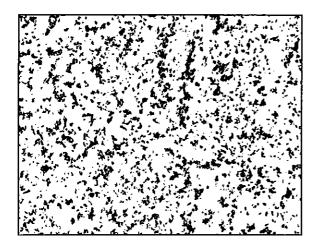
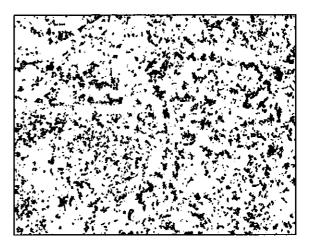

Photo I -10-10 Precipitates along grain boundary by SEM observation Main Steam Pipe-Left(Circumferential weld, intrados : Fine grain HAZ)

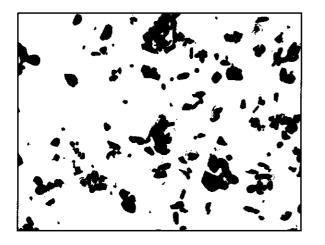


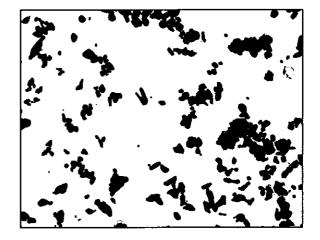
 $1\,\mu$ m

10

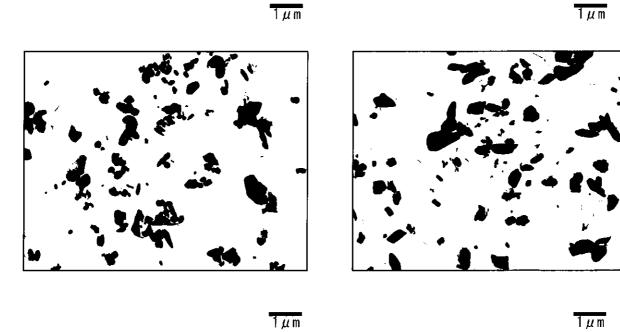
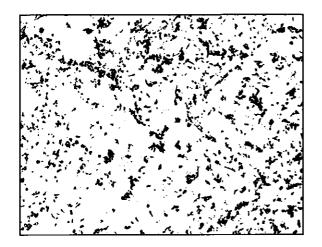
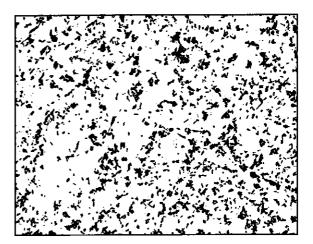
 $1 \, \mu$ m

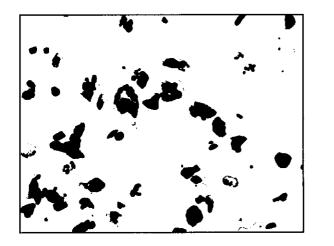





Photo I -10-11 Precipitates by TEM (Transmission electron microscope) observation Main Steam Pipe-Left(Circumferential weld, intrados : Base metal)

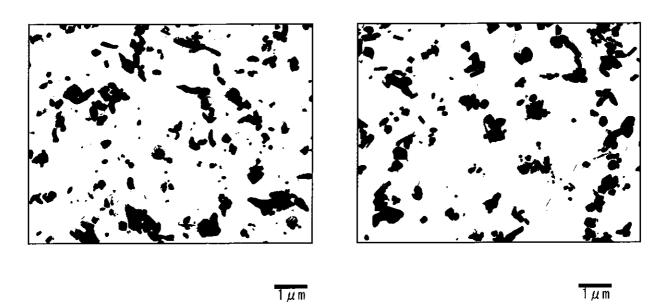
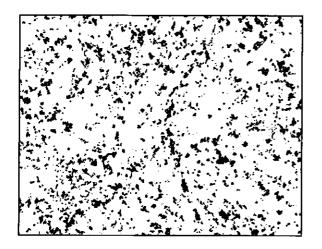
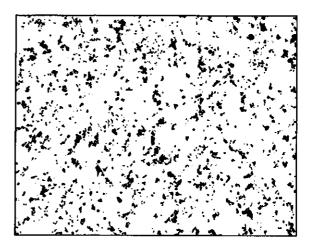


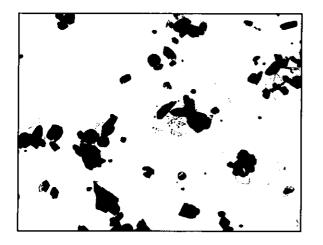
5*µ* m

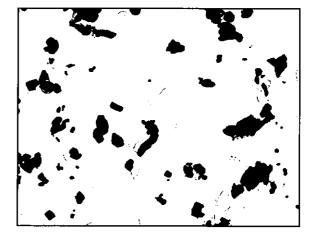





Photo I -10-12 Precipitates by TEM (Transmission electron microscope) observation Main Steam Pipe-Left(Circumferential weld, intrados : Fine grain HAZ)




Photo I -10-13 Precipitates by TEM (Transmission electron microscope) observation Main Steam Pipe-Left(Circumferential weld, intrados : Coarse grain HAZ)



 $1 \, \mu$ m

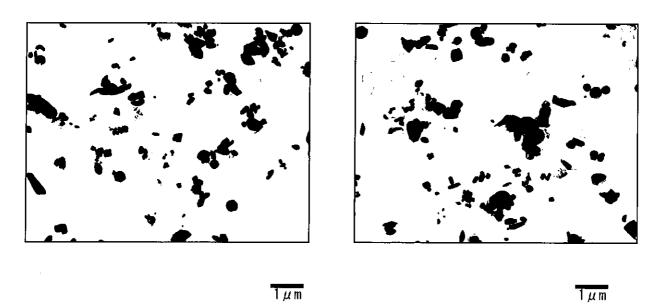


Photo I -10-14 Precipitates by TEM (Transmission electron microscope) observation Main Steam Pipe-Left(Circumferential weld, intrados : Weld metal)

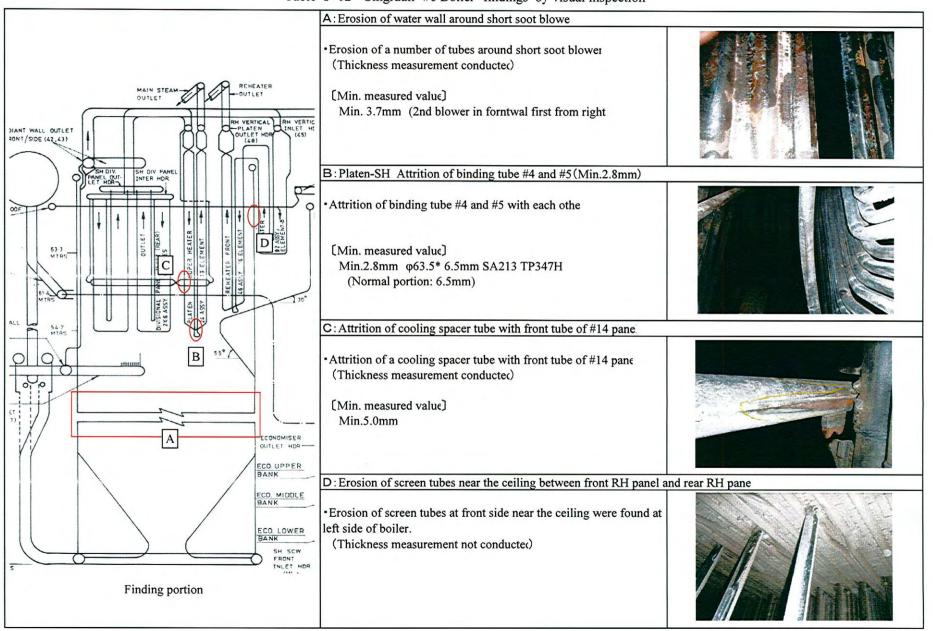
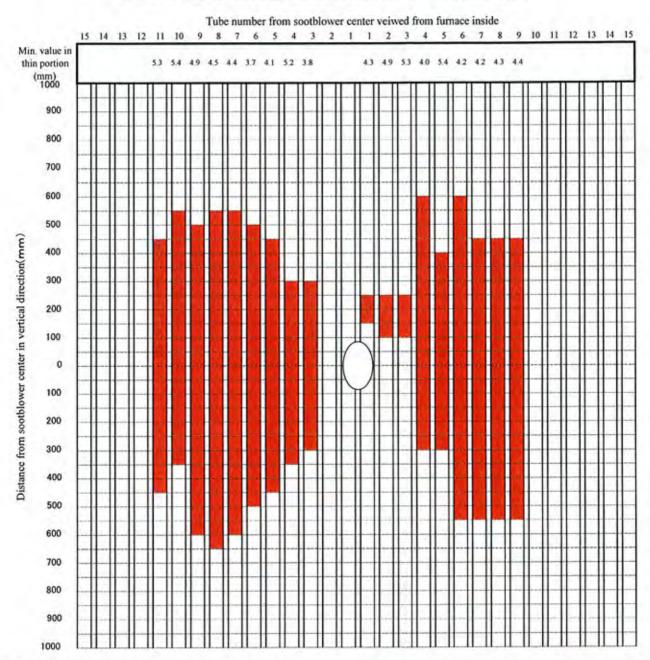
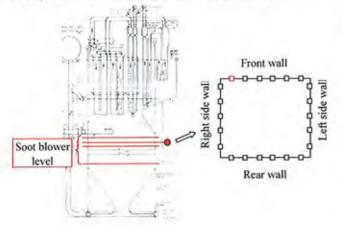




Table I -12 Singrauli #6 Boiler findings by visual inspection

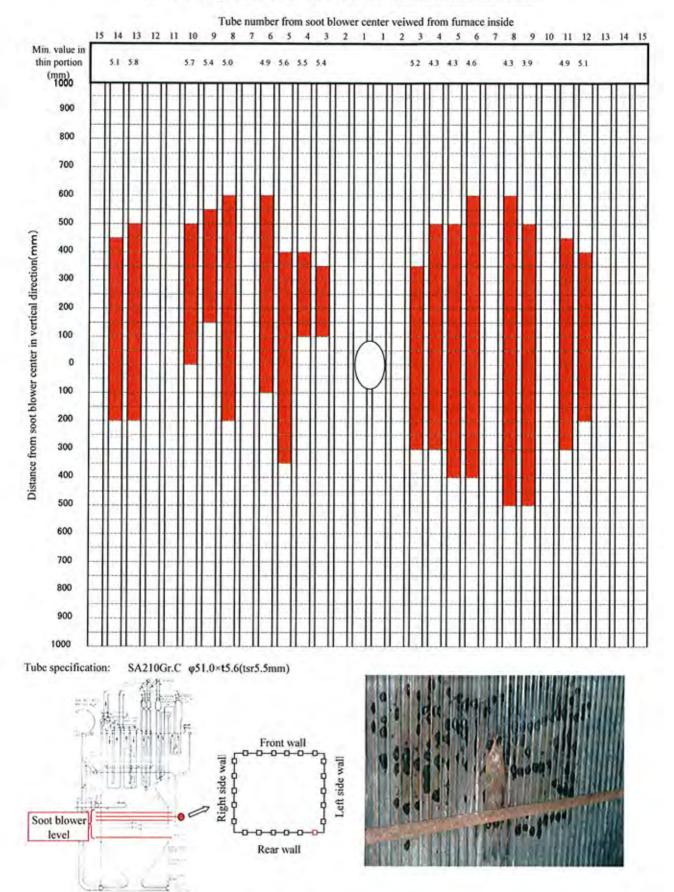
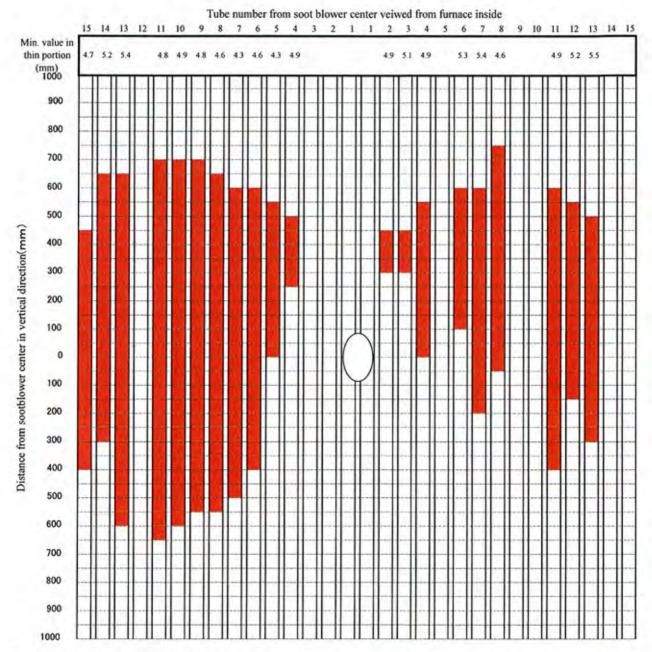


Table I -13 (Singrauli) WATER WALL Front wall Thickness Measurement Results

Tube specification: SA210Gr.C ϕ 51.0×t5.6(tsr5.5mm)



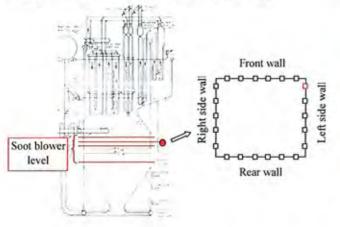

se'

Table I -14 (Singrauli) WATER WALL Rear wall Thickness Measurement Results

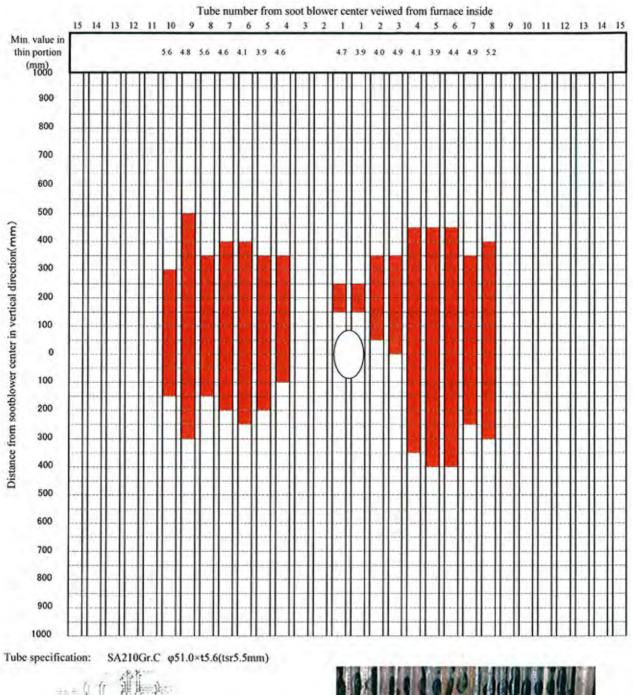


Table I -15 (Singrauli) WATER WALL Left side wall Thickness Measurement Results

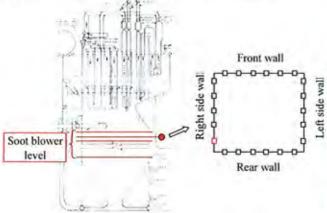

Tube specification: SA



Table I-16 (Singrauli) WATER WALL Rightt side wall Thickness Measurement Results

203

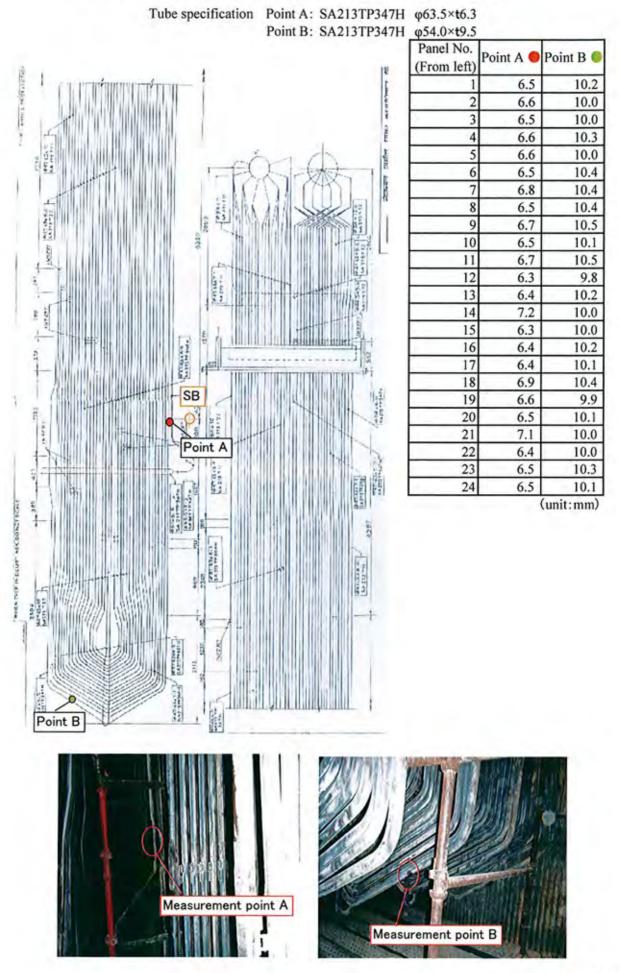
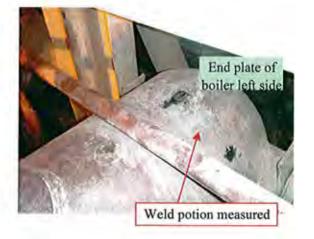
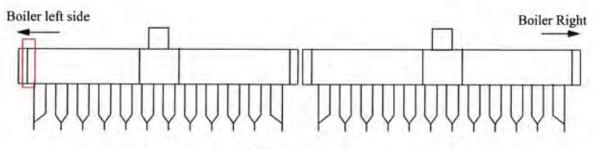


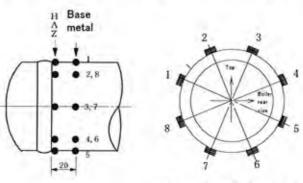
Table I -17 (Singrauli) Platen SH Thickness Measurement Results

Binding tube:

Thining portion of cooling spacer tube

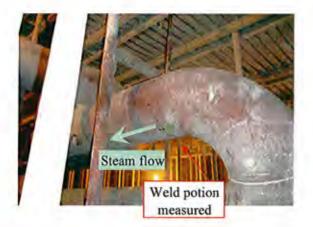


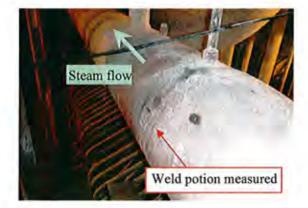

205


Table I-18 (Singrauli)Platen SH Thickness Measurement Results

Components	Material	Designed	Position	Pasion	í	Measured	value (mm)	Averaged	(Averaged measured value-Designed OD)
components	material	OD	rosition		105	2⇔6	3⇔7	4⇔8	(mm)	/Designed OD(%)
PLATEN SH	SA335 P-12	508 0mm	(Header side)	Base metal	508.03	508.36	508.75	508.95	508.52	+0.10
Outlet Header	9772271712	200 Mint	(ricadel side)	HAZ	506.82	508.35	507.85	508.42	507.86	-0.03

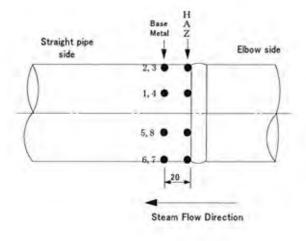
Table I -19 (Singrauli)PLATEN-SH Outlet Header Outside Diameter Measurement Results

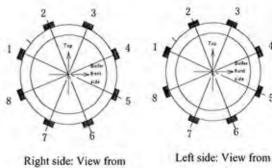




View from boiler right side

	1	Designed	A store 1		2	Measured	value (mm	Averaged	(Averaged measured	
Components	Material	OD	Position	Region	1005	2⇔6	3⇔7	4⇔8	(mm)	value-Designed OD) /Designed OD(%)
De-Superheater	SA335 P-12	600 0	Downstream side	Base metal	513.22	513.21	512.02	512.72	512.79	+0.94
Pipe(Right)	SA355 P-12	508.0mm	(Straight pipe side)	HAZ	511.85	512.35	511.80	511.60	511.90	+0.77
De-Superheater	0.100 D 10	e00 0	Downstream side	Base metal	509.87	511.60	511.41	510.32	510.80	+0.55
Pipe (Leftt)	SA335 P-12	508.0mm	(Straight pipe side)	HAZ	509.17	511.25	511.37	510.06	510.46	+0.48


Table I -20 (Singrauli) De-Superheater Pipe Outside Diameter Measurement Results



Measurement point of right De-superheater pipe

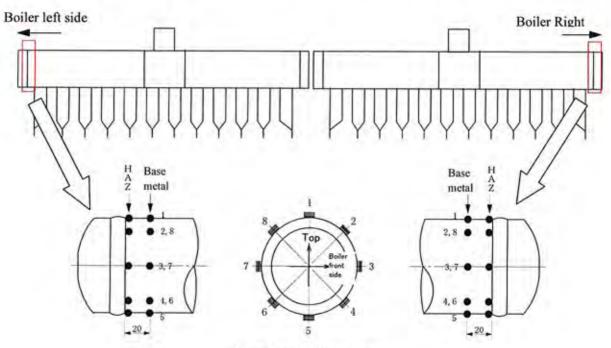
Measurement point of left De-superheater pipe

downstream

upstream

Components	Material	Designed	Position	Region	1.1	Measured	value (mm	Averaged	(Averaged measured	
components	Waterial	OD	Position	Region	105	2⇔6	3⇔7	4⇔8	(mm)	value-Designed OD) /Designed OD(%)
Re-Heater Outlet	SA335 P-22	550 gmm	(Header side)	Base metal	561.16	561.31	562.16	562.16	561.70	+0.52
Header(Right)	5A5551-22	550.0mm	(ricader side)	HAZ	560.33	561.16	562.05	561.88	561.36	+0.46
Re-Heater Outlet	SA335 P-22	440 g.mm	(Header side)	Base metal	560.40	560.68	561.21	561.10	560.85	+0.37
Header(Left)	575555 (-22	220.0mm	(Header side)	HAZ	559.47	560.64	560.55	561.00	560.42	+0.29

Table I -21 (Singrauli) Re-Heater Outlet Header Outside Diameter Measurement Results



Measurement point of left RH outlet header

200

Measurement point of right RH outlet header

View from boiler left side

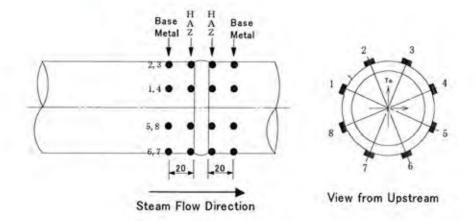

S	10.11	Designed				Measured	value (mm)	Averaged	(Averaged measured	
Components	omponents Material OD Position	Position	Region	105	2⇔6	3⇔7	4⇔8	(mm)	value-Designed OD) /Designed OD(%)		
1			Upstream side	Base metal	521.45	525.17	527.46	531.70	526.45	+1.24*	
			(Elbow side)	HAZ	520.20	520.80	522.38	521.84	521.31	+0.25*	
MSP	SA335 P-22	520.0mm	Downstream side	Base metal	520.15	520.19	520.58	520.79	520.43	+0.08	
		1	(Straight pipe	HAZ	520.15	520.52	519.92	520.61	520.30	+0.06	

Table I -22 (Singrauli) Main Steam Pipe Outside Diameter Measurement Results

*: Upstream side value is reference because of elbow side.

5

Sample tube inspection [Singrauli #6]

Sample tube inspection and creep rupture test were carried out as one of the boiler residual life assessment items for Singrauli Super Thermal Power Station #6 unit. The results are reported as follows.

1. Unit for evaluation

Singrauli Super Thermal Power Station #6 unit

2. Sample tube for inspection

- Platen-SH tube
- RH tube (Penthouse portion, Furnace portion)

3. Operation condition

(1) Cumulative operation hours:	172,000	hours
(2) Cumulative start and stop times:	309	times

4. Summary of inspection results

- (1) As a result of tube appearance observation after acid cleaning, traces of corrosion at outside surface and slightly rough condition at inside surface were observed for each sample tube.
- (2) As a result of tube dimension measurement, OD of RH tubes in penthouse and in furnace was less than designed value, the thickness of RH tubes in penthouse was less than designed value.
- (3) As a result of steam oxide scale examination, steam oxide scale was adhering evenly by cross sectional observation for RH tube in penthouse and in furnace, unevenly for Platen-SH tube. Average thickness of steam oxide scale mainly consisting of Fe and O was remarkably larger in RH tube (in penthouse) than in Platen-SH tube and RH tube (in furnace).
- (4) As a result of hardness measurement, the hardness values were stable in circumferential direction, though measured values were out of the normal value of virgin material by Japanese steel manufacturer.
- (5) As a result of creep rupture test, the evaluated residual life of Platen-SH tube was 290,000 hours for base metal, 150,000 hours for weld joint at equivalent temperature 553°C estimated by comparison with the average creep rupture data of NIMS.

The evaluated residual life of RH tube in furnace was 670,000 hours for base metal and 610,000 hours for weld joint at equivalent temperature 551°C estimated by comparison with the average creep rupture data of NIMS.

Each portion has enough evaluated residual life at present, with the min. evaluated residual life of 150,000 hours for weld joint portion of Platen-SH tube.

(6) As a result of microstructure comparison method, the evaluated residual life was 82,000 hours for RH tube (in furnace), 520,000 hours for RH tube (in penthouse) and 1,300,000 hours for Platen-SH tube.

5. Sample tube specification

Sample tube specification is shown in Table I -30.

Sample	ten-SH #12-3 RH #3-1 SA213T11 ^{**} SA213T11 SA213T22 ^{**}	Designed OD×t(mm)	Designed Temperature(°C)	Designed Pressure (MPa)
Diatan SH #12.3	SA213T11*	φ 47.63×t8.6	Not available	17.46
	aten-SH #12-3 SA213T11	φ 47.63×t10.0	Not available	17.40
RH #3-1	SA213T22*	φ 54.0×t5.6	540	5 07
(in penthouse)	SA213T22	φ 54.0×t5.6	540	5.27
RH #14-5	SA213T22	φ 54.0×t4.5	Not available	6.07
(in furnace)	SA213T11*	φ 54.0×t4.0	Not available	5.27

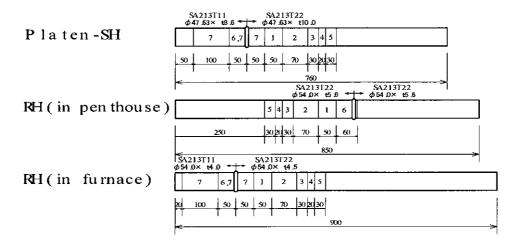
Table I -30 Sample tube specification

 Chemical composition analysis was conducted as shown below. The material of Platen-SH#12-3 appeared to be SA213T11 by chemical composition analysis, though the material specification was supposed to be SA213T22 for Platen-SH#12-3 according to the drawing.

Chemical composition analysis results by spark discharge optical emission analysis (wt%)

	-	•		÷ .		• •	
Sample tube	С	Si	Mn	Р	S	Cr	Мо
Platen-SH#12-3	0.10	0.53	0.38	0.026	0.012	1.14	0.46
RH #3-1 (in penthouse)	0.10	0.28	0.45	0.013	0.008	2.20	0.95
RH #14-5 (in furnace)	0.10	0.67	0.41	0.006	0.008	1.30	0.58
SA213T11 (JIS-STBA23)	≦0.15	0.50~1.00	0.30~0.60	≦0.030	≦0.030	1.00~1.50	0.45~0.65
SA213T22 (JIS-STBA24)	≦0.15	≦0.50	0.30~0.60	≦0.030	≦0.030	1.90~2.60	0.87~1.13

6. Inspection item and inspected portion


たい

Inspection item and inspected portion are shown in Table I -31.

				Inspection item			
	1	2	3	4	5	6	7
Sample tube	Outer surface appearance	Internal surface appearance	Tube dimension • Hardness	Metallography	Scale analysis	RLA by microstructure degradation	Creep rupture test
Platen-SH	0	0	0	0	0	0	0
RH(in penthouse)	0	0	0	0	0	0	—
RH(in furnace)	0	0	0	0	0	0	0

Table I -31	Inspection	item
-------------	------------	------

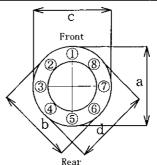
Sample tube appearance and sampling location are shown in Photo I -11. Sampling portion for each inspection item is shown in Fig I -11.

1: Outer surface appearance 2: Internal surface appearance 3: Tube dimension • Hardness 4: Metallography 5: Scale thickness, EPMA analysis, 6: RLA by microstructural comparison method 7: Creep rupture test

Fig I -11 Sampling portion for each inspection item

7. Inspection results

- (1) Tube appearance
 - a. Tube appearance from outside (Photo I -12)
 - Hard oxide scale was adhering for each sample tube outer surface, with light brown color in Platen-SH tube, red brown color in RH tube (penthouse) and dark brown color in RH tube (furnace).
 - > Traces of corrosion were observed in each sample tube outside surface after acid cleaning.
 - b. Tube appearances of sample tubes from inside after removal of steam oxide scale (Photo I $-13 \sim 18$) (Platen SH tube)
 - Internal surface of both front and rear side were covered with gray and red color steam oxide scale.
 - > Slight rough internal surface was observed after acid cleaning.
 - (RH tube (in penthouse, furnace))
 - Internal surface of both front and rear side were covered with gray color steam oxide scale with scale exfoliation partially observed on rear side.
 - > Slightly rough internal surface was observed after acid cleaning.
- (2) Tube dimension measurement (Table I -32, Fig I -12)
 - a. OD measurement

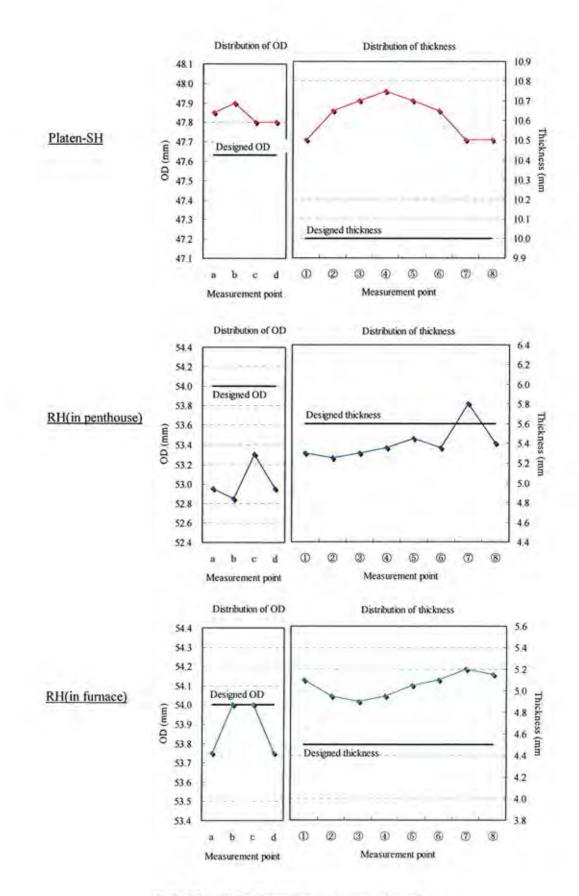

OD of RH tubes in penthouse and furnace were measured to be less than designed values.

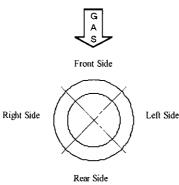
b. Thickness measurement

Thickness of RH tubes in penthouse was measured to be less than designed values.

011	6 · · · · · ·	(DD (mm)					Thickne	ess (mm)		
Sample tube	Specification	Direction	OD	ID	1	2	3	4	6	6	\bigcirc	8
		a	47.85	26.60	10.50				10.70			
Platen-SH	Φ47.63×t10.0	b	47.90	26.60		10.65		_		10.65		
гаса-эп	Ψ47.03^(10.0	с	47.80	26.60			10.70				10.50	
		d	47.80	26.60				10.75				10.50
		a	52.95	42.25	5.30				5.45			
DIKin month ou oo)	RH(in penthouse) Φ54.0×t5.6	b	52.85	42.25		5.25				5.35		
Kri(in peninouse)		С	53.30	42.15			5.30				5.80	
		d	52.95	42.15				5.35				5.40
		а	53.75	43.65	5.10				5.05			
RH(in furnace)	RH(in furnace) Φ54.0×t4.5	b	54.00	43.95		4.95				5.10		
Kin(minace)	Ψ34.0^(4.3	с	54.00	43.95			4.90				5.20	
		d	53.75	43.65				4.95				5.15

 Table I -32
 Tube dimension measurement results




Fig I -12 Tube dimension measurement results

- (3) Steam oxide scale adhesion on internal surface
 - a. Cross sectional observation of internal surface (Photo I -19)
 - (Platen SH tube)
 - Steam oxide scale was adhering unevenly by cross sectional observation.
 - Corrosion in metal surface was observed with rugged interface between steam oxide scale and metal.
 - (RH tube in penthouse)
 - Steam oxide scale was adhering evenly by cross sectional observation with dual layer consisting of dense inner layer and slightly porous outer layer.
 - (RH tube in furnace)
 - Steam oxide scale was adhering evenly by cross sectional observation with the thicker scale on left and right side surfaces than the scale on front and rear side.
 - b. Thickness measurement of steam oxide scale on internal surface (Table I -33)

Average thickness of steam oxide scale was remarkably larger in RH tube (in penthouse) than in Platen-SH tube and RH tube (in furnace).

		Scale thicknes	ss (μm)
Sample tube	Position	Average among 90°range	Max. among 90° range
	Front Side	89.2	109.8
Platen SH	aten-SH Right Side Rear Side Left Side Front Side RH Right Side	85.3	102.4
riaten-Sri	Rear Side	74.7	96.8
	Left Side	82.8	125.0
	Front Side	439.6	475.7
RH	Right Side	447.9	479.0
(in penthouse)	Rear Side	381.4	453.0
	Left Side	458.0	476.0
	Front Side	32.9	41.9
RH	Right Side	68.9	96.8
(in furnace)	Rear Side	65.4	90.3
	Left Side	34.5	41.3

Table I -33 Steam oxide scale thickness measurement results

- c. EPMA analysis of steam oxide scale on internal surface (Fig. I -13~24, Table I -34) Mainly iron oxide scale was formed since Fe and O were remarkably detected.
 - In Platen-SH tube, Fe, Cr and Mo were detected as tube material elements and O, P, Ca, Zn as the other detected elements.
 - In RH tube (in penthouse), Fe, Cr and Mo were detected as tube material elements, and O as the other detected element.
 - In RH tube (in furnace), Fe, Cr and Mo were detected as tube material elements, and O, P, Na, Mn as the other detected element.

Sample tube	Position								nent						21
Sample tube	Position	0	S	P	N	Na	Si	Ca	Mn	Fe	Ti	Cr	Ni	Zn	Mo
	Front Side			(allowed)						1-				1	1
Platen-SH	Right Side			1	1	1.00				-	1		1	- 1	-
Platen-SH	Rear Side	-		1			2	-				N.			100
	Left Side				-			1						1	-
	Front Side	first in						1							
RH (in penthouse)	Right Side		1.20												122
	Rear Side							1	11.1	11		1	1		10
	Left Side	1		1.1			1	1	1.1		1			100	
	Front Side		11.1						1.1		1.1.			0.10	
RH	Right Side									+					
(in furnace)	Rear Side			2		1.00		1.1							1
	Left Side					-	-							1.1	

Table I -34 Elements detected by EPMA analysis

(4) Hardness measurement (Fig. 1 -25~24, Table I -35)

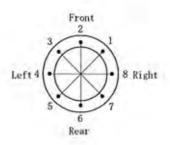

- The hardness of RH tube (in penthouse, SA213T22) was lower than the normal value of virgin material by Japanese steel manufacturer.
- The hardness of Platen-SH tube (SA213T11) and RH tube (in furnace, SA213T11) were higher than the normal value of virgin material by Japanese steel manufacturer.

Table	I -35	Hardness measurement results	
lable	1-35	Flaruness measurement results	

Sample tube	Marterial	1	2	3	4	5	6	7	8
Platen-SH	SA 213 T 11	88	88	86	86	87	87	88	87
RH (in penthouse)	SA 213 T 22	70	70	71	72	71	70	70	71
RH (in furnace)	SA 213 T 11	81	82	83	82	82	82	83	82

Hardness value of vigin material by fabricator : SA 213 T 22;76.4~81.6(HR-B)

SA 213 T 11:73.4~78.4(HR-B)

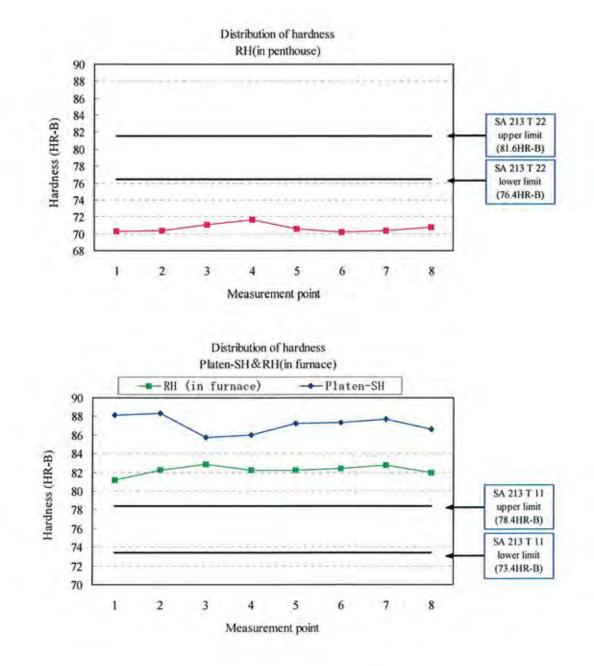


Fig 1 -25 Hardness measurement results

22

(5) Metallographic observation

Microstructure observation results at cross section of sample tube were shown in Photo I -20 \sim 25.

- (Platen-SH tube (SA 213 T11))
 - Microstructural degradation with disintegration of pearlite structure and precipitation in ferrite grain was not observed.

(RH tube in penthouse and furnace (SA 213 T11))

> Microstructural degradation with disintegration of pearlite structure was observed.

- (6) Creep rupture test
 - a. Test condition

۱., ۵ The creep test condition is shown in Table I -36. The shape of test specimens is shown in Fig. I -26

3 specimens were cut out from each of base metal portion and weld portion in Platen-SH tube and RH tube(in furnace) with a set of three test conditions for each portion.

As the shape of test specimens, ϕ 6mm round bar specimen was applied for Platen-SH tube and arc shaped specimen with the weld reinforcement left for RH thin-walled tube (in furnace).

			Test co	ondition	Shape
Sample tube	Portion	Material	Tem.	Stress	of
			(°C)	(MPa)	specimen
			665	49.0	
	Base Metal	SA213T11	665	63.7	
Platen-SH			700	38.3	<i>ф</i> 6mm
			665	49.0	round bar
	Weld Metal	SA213T11	665	63.7	
			700	38.3	
			665	44.1	
	Base Metal	SA213T11	665	58.8	
RH(in furnace)			700	27.9	Arc
			665	44.1	shaped
	Weld Metal	SA213T11	665	58.8	
			700	27.9	

Table I -36 Creep test condition

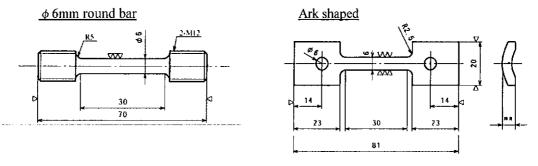
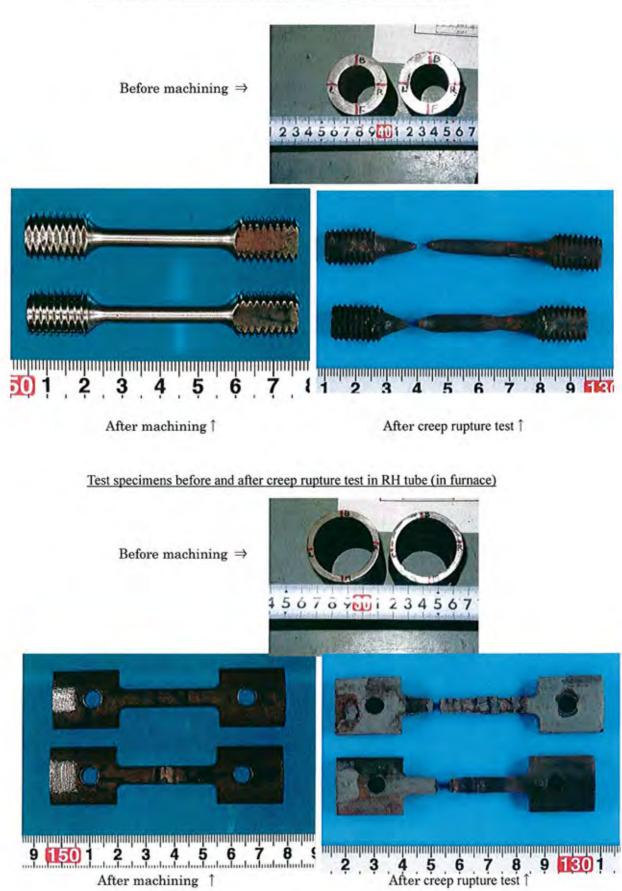



Fig I -26 Shape of creep rupture test specimens

Test specimens before and after creep rupture test in Platen-SH tube

Creep rupture testing machine \Rightarrow

b. Test results

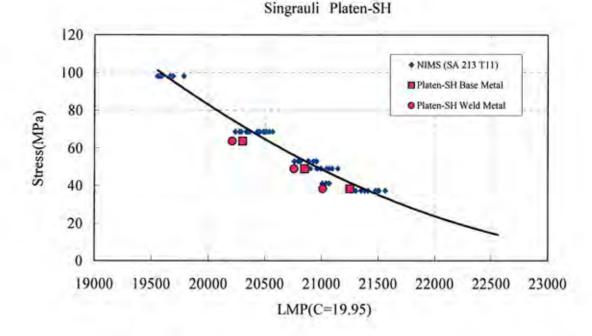
Test result is shown in Table I -37-1. All specimens had ruptured for each test condition.

			Test co	ondition	Rupture	LMP*	Fracture	Reduction
Compo	onent	Material	Temp. T(℃)	Stress (MPa)	time t (h)	C=19.95	elongation (%)	ofarea (%)
Platen-SH			665	49.0	187.7	20,852	102	97
	Base Metal	SA 213 T11	665	63.7	48.7	20,302	87	94
			700	38.3	76.1	21,248	88	94
		SA 213 T11	665	49.0	149.0	20,758	36	92
	Weld Metal		665	63.7	39.0	20,212	44	92
			700	38.3	43.5	21,012	35	95

Table I -37-1 Creep rupture test results (Platen-SH)

* LMP=(273.15+T) (C+log t)

Table 1-57-2 Creep rupture test results (Kri in furnace	Table I -37-2	Creep rupture test results	(RH in furnace
---	---------------	----------------------------	----------------


			Test co	ondition	Rupture	LMP*	Fracture	Reduction
Compo	nent	Material	Temp. T(℃)	Stress (MPa)	time t (h)	C=17.52	elongation (%)	of area ** (%)
	Base Metal		665	44.1	457.0	18,933	53	57
		SA 213 T11	665	58.8	139.2	18,448	62	63
RH(in furnace)			700	27.9	319.4	19,488	39	55
Kri(in turnace)	Weld Metal	SA 213 T11	665	44.1	310.9	18,776	20	52
			665	58.8	69.3	18,164	13	53
			700	27.9	296.8	19,457	16	56

* LMP=(273.15+T) (C+log t)

** Reduction of area for RH tube is regarded as reference, because the value was evaluated by reduction of width of arc shaped specimen.

The comparison of the test results with the creep rupture data of virgin materials by NIMS (National Institute for Materials Science) is shown in Fig. 1 -27.

The test results for base metal and weld joint in Platen-SH tube indicate the lower creep rupture strength than NIMS data, and those in RH tube (in furnace) indicate almost same creep rupture strength as NIMS data.

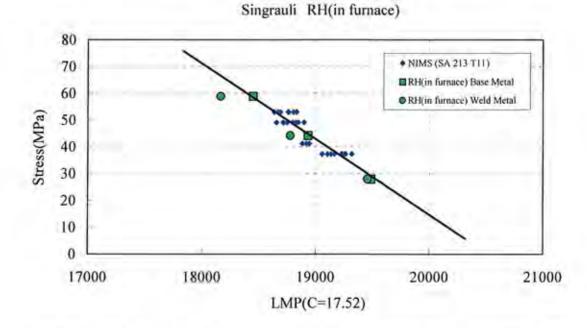


Fig I -27 The comparison of the test results with the creep rupture data of virgin materials by NIMS (National Institute for Materials science) c. Residual life evaluation results

Residual life evaluation results of creep rupture test by parameter -method are shown in Table I -38.

The stress condition for the evaluation was calculated as the hoop stress with the measured OD, thickness of the test sample tube and the designed pressure. As for the temperature condition for the evaluation, two conditions were used for evaluation, those are the case of evaluation at the designed temperature and the other one at equivalent temperature estimated by comparison with the average creep rupture data of NIMS.

(Platen-SH tube)

The evaluated residual life (half of residual life evaluated by creep rupture test) of Platen-SH tube was 750,000 hours for base metal, 380,000 hours for weld joint portion at designed temperature 540°Cof Platen-SH outlet header.

In case of evaluation at equivalent temperature 553° C, the evaluated residual life of Platen-SH tube was 290,000 hours for base metal, 150,000 hours for weld joint portion.

(RH tube in furnace)

The evaluated residual life (half of residual life evaluated by creep rupture test) of RH tube in furnace was 1,300,000 hours for base metal, 1,200,000 hours for weld joint portion at designed temperature 540° C of RH outlet header.

In case of evaluation at equivalent temperature 551° C, the evaluated residual life of RH tube in furnace was 670,000 hours for base metal, 610,000 hours for weld joint portion.

Each portion has enough evaluated residual life at present, with the min. evaluated residual life of 150,000 hours for weld joint portion of Platen-SH tube.

Table I -38 Residual life evaluation results of creep rupture test by parameter – method

		Para	meter metho	d (evaluated a	at designed to	:mp.)		
Compo	Component		Operation hours Hoop Stress		Designed temp.	Residual life	Creep life consumption	Evaluated residual life
			(h)	(MPa)	(°C)	(h)	ratio	(h)
Platen-SH	Base Metal	SA 213 T11	172,000	38.3	540(※1)	1,505,000	0.10	750,000
T laten-311	Weld Metal	SA 213 T11	172,000	38.3	540(※1)	770,000	0.18	380,000
RH(in furnace)	Base Metal	SA 213 T11	172,000	27.9	540(※2)	2,783,000	0.06	1,300,000
Kri(lii Turnace)	Weld Metal	SA 213 T11	172,000	27.9	540(※2)	2,549,000	0.06	1,200,000

	Parameter method (evaluated at equivalent temp.)											
Component		Material	Operation hours Hoop Stress		Equivalent temperature	Residual life	Creep life consumption	Evaluated residual life				
			(h)	(MPa)	(°C)	(h)	ratio	(h)				
Platen-SH	Base Metal	SA 213 T11	172,000	38.3	553	598,000	0.22	290,000				
	Weld Metal	SA 213 T11	172,000	38.3	553(※3)	309,000	0.36	150,000				
RH(in furnace)	Base Metal	SA 213 T11	172,000	27.9	551	1,347,000	0.11	670,000				
Kri(minutace)	Weld Metal	SA 213 T11	172,000	27.9	551(※3)	1,235,000	0.12	610,000				

※1; Designed temp. at Platen-SH Outlet Header

※2; Designed temp. at RH Outlet Header

3; Equivalent temperature evaluated at base metal

(7) Residual life assessment by microstructural comparison method

a. Platen-SH tube

(Microstructure observation)

The results of microstructure observation are shown in Photo I -26 \sim 30.

The summary of observation results is shown in Table I -39.

> Precipitates at gain boundary were observed in base metal, intercritical zone, fine grain HAZ and weld metal.

(Grain boundary precipitates observation)

The results of grain boundary precipitates by SEM observation are shown in Photo I $-31 \sim 32$.

> Precipitates at gain boundary were observed in base metal and fine grain HAZ.

(Precipitates distribution observation of extracted replica)

The results of precipitates distribution observation by TEM observation are shown in Photo I $-33 \sim 36$.

The summary of observation results is shown in Table I -40.

- ➢ Fine needlelike precipitates had disappeared in base metal , fine grain HAZ, coarse grain HAZ and weld metal.
- > Rod-shaped precipitates and attenuated plate-shaped precipitates were observed in fine grain HAZ.

b. RH tube (in penthouse)

(Microstructure observation)

The results of microstructure observation are shown in Photo I $-37 \sim 41$.

The summary of observation results is shown in Table I -39.

- Precipitates free zone along grain boundary was observed in base metal, intercritical zone and fine grain HAZ.
- > Granular precipitates in grain were observed in each region..

(Grain boundary precipitates observation)

The results of grain boundary precipitates by SEM observation are shown in Photo I $-42 \sim 43$.

> Precipitates at gain boundary were observed in base metal and fine grain HAZ.

(Precipitates distribution observation of extracted replica)

The results of precipitates distribution observation by TEM observation are shown in Photo I $-44 \sim 47$.

The summary of observation results is shown in Table I -40.

- Precipitates free zone along grain boundary, rod-shaped precipitates and disintegration of pearlite structure were observed in base metal.
- > Fine needlelike precipitates had disappeared in fine grain HAZ, coarse grain HAZ and weld metal.

c. RH tube (in furnace)

(Microstructure observation)

The results of microstructure observation are shown in Photo I -48~52.

The summary of observation results is shown in Table 1 -39.

- > Precipitates at gain boundary were observed in base metal and fine grain HAZ.
- > Granular precipitates in grain were observed in each region.
- Granular precipitates in grain were observed in each region.

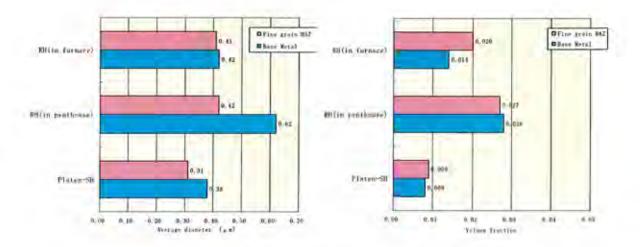
(Grain boundary precipitates observation)

The results of grain boundary precipitates by SEM observation are shown in Photo I -53~54.

Precipitates at gain boundary were observed in base metal and fine grain HAZ.

(Precipitates distribution observation of extracted replica)

The results of precipitates distribution observation by TEM observation are shown in Photo I -55~58.


The summary of observation results is shown in Table I -40.

- > Precipitates free zone along grain boundary was observed in base metal.
- Disintegration of pearlite like structure was observed in fine grain HAZ.
- > Attenuated plate-shaped precipitates were observed in coarse grain HAZ.

d. Quantitative evaluation of grain boundary precipitates

The results of quantitative evaluation of grain boundary precipitates are shown in Table 1 -41.

- The max. value of average diameter of grain boundary precipitates was 0.62 µ m in base metal at RH tube(in penthouse), 0.42 µ m in fine grain HAZ at RH tube(in penthouse).
- The max. value of volume fraction of grain boundary precipitates was 0.028 in base metal at RH tube(in penthouse), 0.027 in fine grain HAZ at RH tube(in penthouse).

Quantitative evaluation of grain boundary precipitates [extracted Table I -41]

e. Quantitative evaluation of precipitates free band width along grain boundary

The results of quantitative evaluation of precipitates free band width along grain boundary are shown in Table I -42.

- The quantitative evaluation was focused on base metal of SA 213 T22 for RH tube (in penthouse).
- > The precipitates free band width along grain boundary was $1.15 \,\mu$ m.
- f. Operational condition of residual life evaluation portion

Operational condition of evaluated components are shown in Table I -43.

The evaluation stress σ was the hoop stress calculated with designed pressure, designed diameter D and thickness t of each component.

$$\sigma = P(D-t) / 2t$$

where P: Designed pressure.

			Operational condition								
Component	Material	OD^{*1}	.*1	Designe	Ноор						
Component	Material	0D.	t	Temperature ^{%2}	Pressure	Stress					
		mm	mm	°C	MPa	MPa					
Platen-SH	SA213T11	48.5	9.0	540	17.5	38.3					
RH(in penthouse)	SA213T22	53.0	5.4	540	5.3	23.2					
RH(in furnace)	SA213T11	53.9	5.1	540	5.3	25.2					

Table I -43 Operational condition of evaluated components

%1: Measured value

※2 : Designed temperature at Outlet Header

- g. Residual life evaluation results by microstructure comparison method
- Evaluation figures of residual life assessment for each components by microstructural comparison method are shown in Fig. I -28 \sim 30 and evaluation results are shown in Table I -44.

The highest creep life consumption ratio was evaluated at RH tube (in furnace) with 51% and evaluated residual creep life (half of residual life evaluated microstructure comparison method) was 82,000 hours.

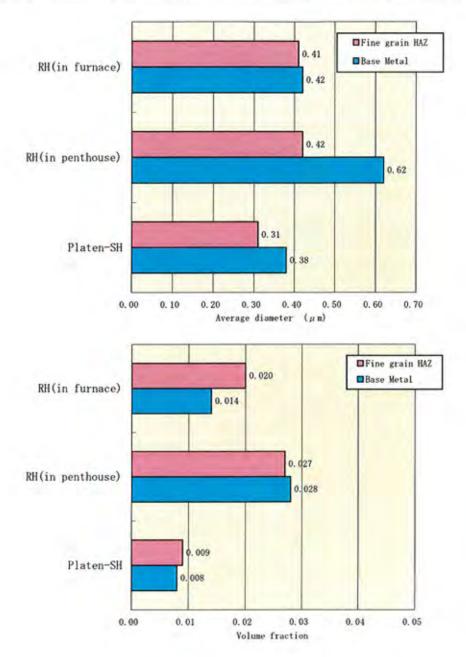
			00144		••••		
						Residual life evaluation results	
Component	Material	Region	cor	Creep life consumption ratio(%)		Residual life(Hr)	Evaluated residual life (Hr)
		Base Metal	1	~	2	8,428,000 ~ 17,028,000	
Platen-SH	SA213T11	Fine grain HAZ	3	\sim	6	2,695,000 ~ 5,561,000	1,300,000
		Coarse grain HAZ	0	\sim	1	17,028,000 <	
		Base Metal	11	~	14	1,057,000 ~ 1,392,000	
RH(in penthouse)	SA213T22	Fine grain HAZ		9		1,739,000	520,000
		Coarse grain HAZ	4	~	6	2,695,000 ~ 4,128,000	
		Base Metal	1	~	2	8,428,000 ~ 17,028,000	
RH(in furnace)	SA213T11	Fine grain HAZ	3	~	4	4,128,000 ~ 5,561,000	82,000
		Coarse grain HAZ	6	~	51	165,000 ~ 2,695,000]

Table I -44 Residual life evaluation results

5			<u></u>			OM (Optical 1	nicroscope obser	vation)		
nent	omponent					Microst	tructural features			
Components		LOCAL	Observed area	Precipitation at gain boundary	Precipitates free zone along grain boundary	Precipitation Granular precipitates	in ferite grain Rod-shaped precipitates	Pearlite structure	Subgrain boundary	Ferrite grain
			Base metal	Appeared	Not appeared	Appeared	Not appeared	Normal		
tube	Ê.	ential	Intercritical zone	Appeared		Appeared	Not appeared	Normal	Normal	
Platen SH tube	#12-3 (SA 213 T11)	Circumferential weld	Fine grain HAZ	Appeared		Appeared	Not appeared			
Plate	(SA	Círci	Coarse grain HAZ	Not appeared		Not appeared				
			Weld metal	Appeared		Appeared				Appeared
	r22)		Base metal	Appeared	Appeared	Appeared	Not appeared	Disintegrated		
	eftside v 213 ⁻	ential	Intercritical zone	Appeared		Appeared	Appeared			
	from le tse (SA	Circumferential weld	Fine grain HAZ	Appeared		Appeared	Appeared			
43	be #3-1 from leftside penthouse (SA 213 T22)	Circi	Coarse grain HAZ	Not appeared		Appeared				
Reheater tube	in p		Weld metal	Not appeared		Appeared				
Reheat	11)		Base metal	Appeared	Not appeared	Appeared	Not appeared	Normal		
1	om rearside (SA 213 T11)	sntial	Intercritical zone	Not appeared		Appeared	Not appeared	Normal	Normal	
		Circumferential weld	Fine grain HAZ	Appeared		Appeared	Not appeared			
	#14-5 from rearside furnace (SA 213 T1	Circ	Coarse grain HAZ	Not appeared		Appeared				
	/ in f		Weld metal	Not appeared		Appeared				Appeared
	Vie	w nos.	for each area	×500 (2 views) ×1000 (4 views)						

222

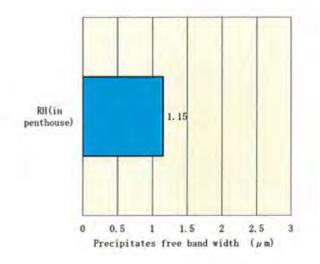
Table I -39 Microstructure observation resuluts

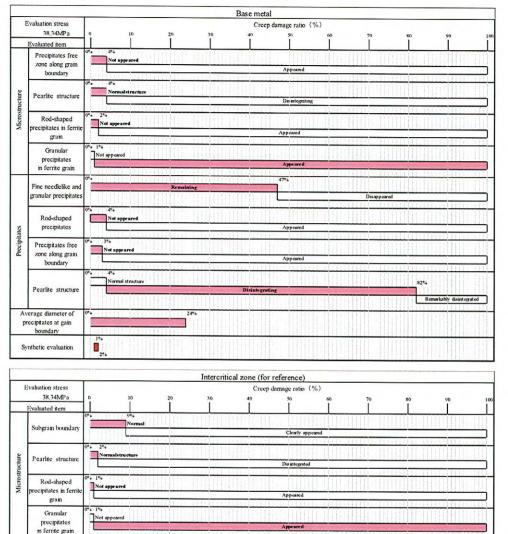

				TEM (Transmission	n Electron M	icroscope ob	servation)	
ents		5				Precipitates f	eatures .		
Components		Location	Observed area	Precipitates free zone along grain boundary	Precip Fine needlelike and granular	Rod-shaped precipitates	e grain Atenuated plate-shaped precipitates	Pearlite structure	Aggromerate d precipitates structure
			Base metal	Not appeared	Disappeared	Not appeared	Not appeared	Disintegrated	
Platen SH tube	2-3 3 T11)	Circumferential weld	Fine grain HAZ		Disappeared	Appeared	Appeared	Normal	
Platen	#12-3 (SA 213 T11)	Circum	Coarse grain HAZ		Disappeared	Not appeared	Not appeared		Normal
			Weld metal		Disappeared				
	le 5 T22)		Base metal	Appeared	Remaining	Appeared	Not appeared	Remarkably disintegrated	
3	#3-1 from leftside in penthouse (SA 213 T22)	Circumferential weld	Fine grain HAZ		Disappeared		Not appeared		
	3-1 from	Circum	Coarse grain HAZ		Disappeared		Disappeared		
Reheater tube	in per		Weld metal		Disappeared				
Reheat	ide T11)	1	Base metal	Appeared	Remaining	Not appeared	Not appeared	Normal	
	m rears SA 213	Circumferential weld	Fine grain HAZ		Remaining	Not appeared	Not appeared	Disintegrated	
	#14-5 from rearside in furnace (SA 213 T11)	Circum	Coarse grain HAZ		Remaining	Not appeared	Appeared		Disintegrated
	#in fu		Weld metal		Remaining				
	View	nos. fe	or each area	×2000 (2 views) ×1000 (4 views)					

4.) 1 - 15

Table I -40 Precipitates distribution observation results

Component	Material	Average diameter (µm)		Volume fraction	
		Base Metal	Fine grain HAZ	Base Metal	Fine grain HAZ
Platen-SH	SA213T11	0.38	0.31	0.008	0.009
RH(in penthouse)	SA213T22	0.62	0.42	0.028	0.027
RH(in furnace)	SA213T11	0.42	0.41	0.014	0.020


Table I -41 Quantitative evaluation of grain boundary precipitates



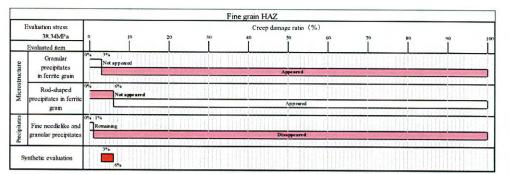

Sample tube	Material	Precipitates free band width (µm) *1		
Sample tube	Wateria	Base Metal		
RH(in penthouse)	SA213T22	1.15		

Table I -42 Precipitates free band width along grain boundary

%1 : Average value of 10 measured points

_		Coarse grain HAZ					
1	Evaluation stress	Creep damage ratio (%)					
	38.34MPa	0 10 20 30 40 50 60 70 80 90 10					
_	Evaluated item						
Microstructure	Precipitates at gain boundary	Not appeared					
		Appeared					
		0% 1%					
	Granular precipitates in ferrite grain	Not appeared					
		Appeared					
_	· · · · · · · · · · · · · · · · · · ·						
	Fine needlelike and						
tcs	granular precipitates						
Precipitates							
	Atenuated plate- shaped precipitates	0% 9% Not appeared					
		Appeared					

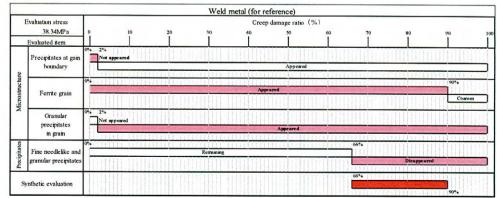


Fig I -28 Evaluation Results Platen SH

I -181

10

Synthetic evaluation