

Objective of the Assessments

Project Organization

Methodology Adopted

Overall Executive Summary of the Findings

NTPC ALSTOM © ALSTOM 2010. All rights reserved. Information contained in this docume correct or will apply to any particular project. This will depend on the technic Reproduction. use or disclosure to third parties, without express written aut tation or warranty is given or should be relied on that it is complete or

Objective of the Assessments	ALSTOM	Agenda	ALSTOM
As a part of ODA program, "Study on Enhancing Efficien Operating Thermal Power Plants in NTPC-India", Turb System Assessment was implemented for NTPC Korba	ine and	Objective of the Assessments	
Below items are main objective of the assessment.		Project Organization	
 Assessments of the present conditions of the turbine a components, including critical piping systems. 	nd related	Scope of Work	
• Assessments of the remaining life of the equipments /	components.	Methodology Adopted	
 Recommendations for run/repair/replace decision of ec components for performance improvement from risk m point. 		Overall Executive Summary of the Findings	
 Recommendations for safe & reliable operation, throug of failure prone zones / components from risk mitigatio 			
TRASystem Assessment for NTPC Workshop - HQU - 105EF22010 - P 3 24.8170M 2010. All other reserved. Internation contained in the document is included on the life on that it is		STASystem Assessment for NTPC Workshop - HOU - 105EP2010 - P 4 6.ALETION 2016. All relationserved Methodation contained in this decorrect is indicative only. No recreated table on a should be related on that it is complete	MTPC ALST

Project Organization ALSTOM ALSTOM K.K. - Japan Overall Pro Mr. Hirot PS / Customer N Mr. Shuichi Ike Project Controller Mr. Shinichiro Fukaura Purchasing Manager Mr. Yoshiaki Kusuki NASL Ltd. - India Project Director Mr. P. K. Sinha O&M Specialist Mr. Neerai Jalota Turbine Specialist Mr. N.C. Angirish Project Manager Mr. Mohar Lal NDT/DT Exper Mr. P.K. Banerje Project Field Execution Team Piping S Mr. Chand FEA Mr. Cha

Power Services Pvt. Ltd. © ALSTOM 2010. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial incumstances. It is provided without liability and is subject to change without notice. Recordurition user or discinguing the information demonstrative methods within combined.

Overall Project Coordinator/BD Manager ALSTOM K.K. (Japan)
Project Coordinator NASL Ltd.
Managing Director ProSIM R&D Pvt. Ltd.

© ALSTOM 2010. All rights reserved. Information contained in this document is indicat correct or will apply to any particular project. This will depend on the technical and con Renonduring use or disclosure to third parties, without express written arthority is st only. No representation or warranty is given or should be relied on that it is complete or rolal circumstances. It is provided without liability and is subject to change without notice.

ALSTOM

Agenda

Objective of the Assessments

Project Organization

Scope of Work

Methodology Adopted

Overall Executive Summary of the Findings

Unit Information

ALSTOM

NTPC ALSTOM

NTPC ALSTOM

- Plant: NTPC Korba Super Thermal Power Station
- Unit:
- Rating: 500 MW
- Turbine OEM: KWU

© ALSTOM 2010. All rights reserved. Information contained in this document is indicat correct or will apply to any particular project. This will depend on the technical and com Remoduction use or disclosure to third parties without express written authority is st

- Operating Hours: 198,110 hrs (as of May 2010)
- Past 10 yrs operational data is available

#4

- Drawings available, partially missing
- The unit hasn't been implemented comprehensive conditions and residual life assessment

раминицат, ман на населения на изво раница, технона нерокал такия велосату, на автор рекланиц

Power Services Pvt. Ltd.

ALSTOM

Scope of Work

DM 2010. All rights reserve r will apply to any particula

ALSTOM

- Residual Life Assessment (RLA) for 1xIP and 1xLP Turbines incl.
 - Various NDT/DT and In-situ Metallography Analysis
 - Finite Element Analysis (using ABAQUAS and FE-SAFE)
- Main Piping (MS, CRH, HRH, FW) Assessment incl.
 - Various NDT/DT and in-situ Metallography Analysis
 - Modeling and Stress Analysis (using CAESER II),
 - Finite Element Analysis (using ABAQUAS and FE-SAFE)
- Steam Path Audit (SPA) of 1xIP and 1xLP Turbines
 - Various Field Measurements
 - Modeling and Analysis (using eSTPE)

Comprehensive package for turbine and system assessment STASystem Assessment to NTPC Workshop -HOU - 10SEP2010 - P 9 PALSTOW 2010, All open served later the openance is before only to presented to a work to a served in the later of the l

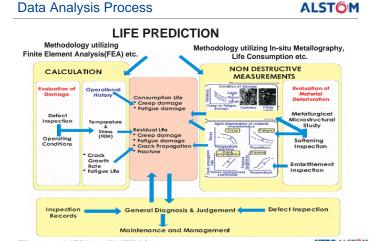
Agenda	ALSTOM
Objective of the Assessments	
Project Organization	
Scope of Work	
Methodology Adopted	
Overall Executive Summary of the Findings	

Procedures for the Assessment

ALSTOM

Inspection/Testing Process (field execution):

- Hot Walk Down to capture the operating conditions
- Cold Walk Down to capture the cold conditions
- Field Measurement/Inspection conduct various NDT/DT tests (VI, DPT, MPI, UT, NFT, ECT, Replication (IM), Hardness, other measurements, tests, audits)


Data Analysis Process:

- Condition assessment from NDT/DT processes collected data are analyzed for assessment of impending failures and damages.
- Remaining life assessment based on field data, analyzed to assess remaining life. It consists of metallographic degradation analysis and finite element analysis (FEA).

Reports & Recommendations:

 Findings from field execution and data analysis result are integrated into conclusions, recommendations for Run/Repair/ Replace to secure safe operation and performance improvement.

35/stem Assessment for NTPC Workshop - HOU - 105EP2010 - P 12 MICTOW 2010, All rights reserved, Information contrained in this doctament is indicative only. No representation or warrary is given or should be relied on that it is complete MICTOW 2010, all rights reserved. Information contrained in this doctament is indicative only. No representation or warrary is given or should be relied on that it is complete provide Services PVL Ltd. prover Services PVL Ltd.

Skystem Assessment for NTPC Workshop - HOL - 105EP2010 - P 14 LISTOM 2010, All rights reserved. Information contained in documents in indicative only, No representation or warrary is given or should be relied on that it is complete or a contained and any other should be relied on the will depend on the behavioral and commercial constraineds. It is provided without labelity and is subject to change without notice.

Methodology utilizing In-situ Metallography

© ALSTOM 2010. All rights rest correct or will apply to any partie

Evaluation based on Microstructural Assessment (Neubauer)& Classification (VGB guidelines):

The level of degradation of material is classified using the above classifications for finding the level of damage.

Creep damage classification & expended life fraction

as per Sampietri et al : The level of damage is then checked with the creep

damage classification so as to find the expended life fraction (percentage of life consumed)

Prevenue of America				
Prevenue of dissector	tal orientel micro		業投	
Protor of sizes				
Present of scourse	ndis			
	Domage	Expended	life	
	level	fraction		
	1	0.181		
	2	0.442		
	3	0.691		
	4	0.889		
	5	1.000		

NTPC ALSTOM

ALSTOM

Methodology utilizing Larson Miller Parameters

ALSTOM

Evaluation based on Larson Miller Parameters:

- LMP is a means of predicting the lifetime of material vs. time and temperature using a correlative approach based on the Arrhenius rate equation. The value of the parameter is usually expressed as
 - $LMP=T(C + \log t)$

C: material specific constant (often approximated as 20) t: exposure time (hours)

T: temperature (K)

The base formula is: LMP = A-B*log (: hoop stress)

NTPC ALSTOM

Methodology utilizing Finite Element Analysis(FEA) ALSTOM Agenda ALSTOM In FEA, the physical system is digitally represented on a computer. Objective of the Assessments A 3D CAD FEM model of component is created & physical realities of the material and the operating conditions are prescribed upon it. With the model, virtual system is available for analysis, and it gives the results of stress, strain, temperature, deflection in the entire 3D geometry. **Project Organization** The steps involved in the simulation are as follows; Create a 3D model and convert it in finite element mesh model. Scope of Work Physical boundary & operating conditions are mimicked for computer simulation Perform FEM analysis using ABACUS software and calculate the stress, Methodology Adopted strain, temperatures etc. due to creep and fatigue effect. Conduct Thermo mechanical fatigue analysis using FE-SAFE software and obtain the hot spots. Compute creep & fatigue life and calculate the combined effect of creep-Overall Executive Summary of the Findings fatique. Finalize remaining life based on total damage accumulated.

© ALSTOM 2010. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without lability and is subject to change without notice. Repreduction: user or discriment or hind native, which express written archericity explores the monitorial commercial circumstances.

Remaining Life Overview

System/Components

TURBINE IP Casing

IP Casing

LP Casing

IP SV&CV

PIPINS SYSTEM

BWP Piping

MS-CRH-HPBP Piping

HRH-LPBP Piping

LP Rotor

VALVE HP SV&CV NTPC ALSTOM

ALSTOM

Conclusion

20 yrs

16 yrs

> 20 yrs

> 20 yrs

> 20 yrs

> 20 yrs

(5.9 vrs

13.6 yr

> 20 yrs

Turbine Assessment Summary (IP-Casing)

© ALSTOM 2010. All rights reserved. Information contained in this document is indicative correct or will apply to any particular project. This will depend on the technical and comme Remoduction use or deposite to third parties, without enterpose written authority is strictly and the second se

ALSTOM

NTPC ALSTOM

only. No representation or warranty is given or should be relied on that it is complete or rolal circumstances. It is provided without liability and is subject to chance without notice

ntation or warranty is given or should be relied on that it is complete or es. It is provided without liability and is subject to change without notice

Remaining life is evaluated to > 20yrs Conclusion: Recommendation:

1) Stressed locations as marked in the figures, need to be checked and microstructure analysis should be carried out during the Overhauls 2) further RLA of the component in 5yrs

© ALSTOM 2010. All rights reserved. Information contained in this document is indicative only. No correct or will apply to any particular project. This will depend on the technical and commercial circ Renordurition use or disclosure to third parties, without express written a atheotic, is strictly penhibit

NTPC ALSTOM

LMP

N/A

N/A

N/A

N/A

N/A

N/A

5.9 vrs

N/A

> 20 yrs

© ALSTOM 2010. All rights reserved. Information contained in this document is indicatil correct or will apply to any particular project. This will depend on the technical and com Renorduring use or disclosure to thind namics without express written authority is set nation or warranty is given or should be relied on that it is complete or as it is provided without liability and is subject to change without notice

Predictied Remaining Life (yrs)

or Consumed Life (%)

FEA

22 yrs

16 yrs

113 yrs

47 yrs

N/A

N/A

21 vrs

13.6 yrs

> 20 yrs

IM

18%

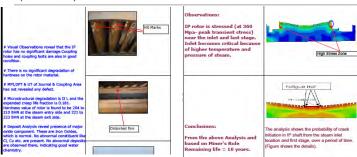
18%

N/A

1**0%**

44%

44%


44%

44%

N/A

NTPC ALSTOM

Turbine Assessment Summary (IP-Rotor)

Remaining life is evaluated to 16yrs Conclusion:

Recommendation:

1) Stressed locations as marked in the figures, need to be checked and microstructure analysis should be carried out during the Overhauls 2) further RLA of the component in 5yrs

NTPC ALSTOM nation or warranty is given or should be relied on that it is com as it is provided without liability and is subject to change without © ALSTOM 2010. All rights reserved. Information contained in this document is indicati correct or will apply to any particular project. This will depend on the technical and com

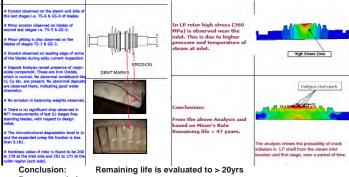
Turbine Assessment Summary (LP-Casing)

ALSTOM

ALSTOM

ALSTOM

ALSTOM

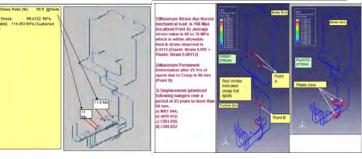


Remaining life is evaluated to > 20yrs Conclusion: Recommendation:

1) Stressed locations as marked in the figures, need to be checked and microstructure analysis should be carried out during the Overhauls 2) Based on explicit observations in various locations, no immediate action is required.

NTPC ALSTOM tation or warranty is given or should be relied on that it is or

Turbine Assessment Summary (IP-Casing)

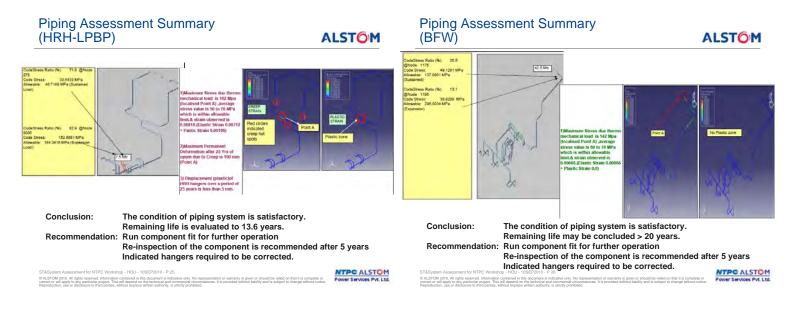

Recommendation:

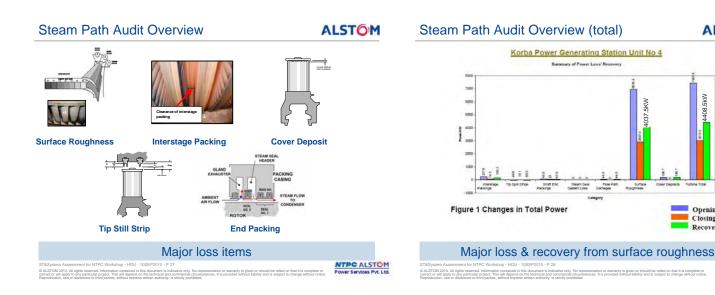
sed locations as marked in the figures, need to be checked and microstructure analysis 1) Stre

a) biological control of an international and an analysis of the second s

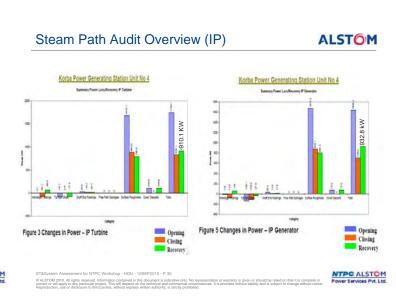
A Monstein contained in the second and contrast is and the second s

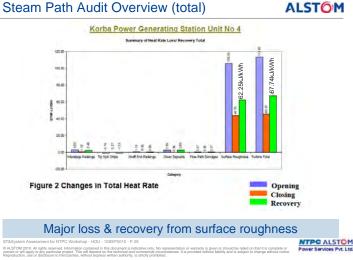
Piping Assessment Summary (MS-CRH-HPBP)

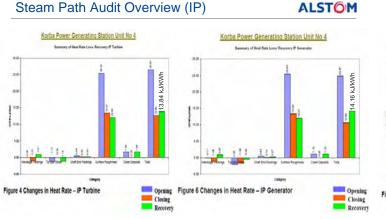

Conclusion: Remaining life is evaluated to 5.91 years considering 25% safety factor to alarm the hot spot zones observed in FEA. Recommendation: The critical locations identified be subjected to the following tests for next anual overhauling:

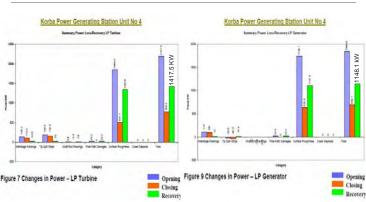


 1. Insitu Metallography
 2. Thickenss Survey.


 3. Online line monitoring systems using the installation of the High temperature strain gauges a


 4. EMAT - Elctromagnetic Acoustic transducer test / High frequency (20MHz) small diameter
 OM LLtd


sta probe UT



NTPC ALSTOM © ALSTOM 2010. All rights reserved. Information contained in this document is indicative correct or will apply to any particular project. This will depend on the technical and comm Reproduction, use or disclosure to third parties, whole removes written authority is extended of the second seco only. No representation or warranty is given or should be relied on that it is complete or rolal circumstances. It is provided without liability and is subject to change without notice.

© ALSTOM 2010. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without lability and is subject to change without notice Reproduction, use or discissore to thing parties, without exercises within all whom it is entity in white in white white or the subject to change without notice Reproduction, use or discissore to thing parties. without exercises within all whom it is entity in white white or white or the subject to change without notice reproduction, use the discissore to thing parties. without exercises within all whom the entity or white or white or white or white the origin of the discissor to the terms of the discissor to the terms within all whom the entity or white or white or the discissor to the discissor to

Steam Path Audit Overview (LP)

ALSTOM

ALSTOM

1408.5kW

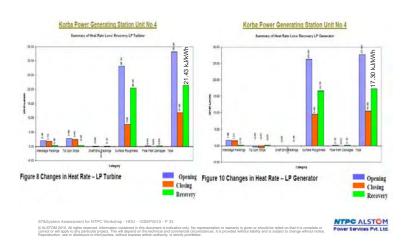
Opening Closing

Recovery

lete or

Power Services Pvt. Ltd.

Š


1037

2

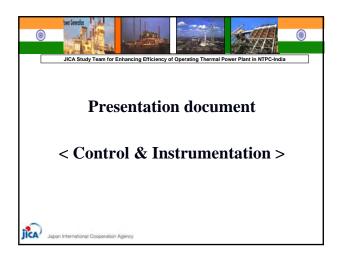
- OUTSON

Steam Path Audit Overview (LP)

ALSTOM

Overall Conclusions

The unit is generally in good conditions


- No significant defect is observed in turbine and piping.
- Metallographic analysis revealed the degradation level was
 - Level IIL for turbine (expended life fraction up to 18%)
 - Level IIL to IVL for piping (expended life fraction up to 44%)
- Remaining life of MS piping hot spot zone is evaluated as 5.9 yrs, taking into account 25% safety factor
- 90% of losses of turbine (output & heatrate) are come from surface roughness

STASystem Assessment for NTPC Workshop - HOU - 10SEP2010 - P 34 © ALSTOM 2010, All rights reserved, Information contained in the document is includent only. No representation or warranty is given or should be relied on the it is complete provide standing and an approximation of the document is includent on the analysis of the standard term of the state of the state

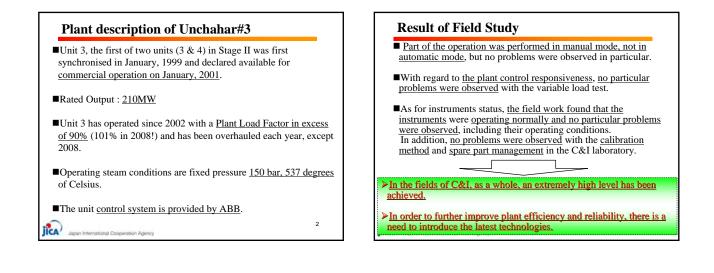
ALSTOM

Outline of Field Study

<Objectives>

To confirm the state of key facilities of <u>Unit 3 at Unchahar</u> power station and to investigate the feasibility of improving the reliability, operating performance and functionality of the unit through renovating or modifying its instrumentation and control systems.

The opportunities for combustion and soot blowing optimisation are a particular focus.

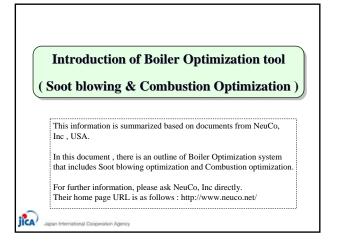

<Date>

Oct 26 to 29, 2009 (4days)

<Team>

JICA Study Team & Yokogawa Electric Corporation (total 6 people)

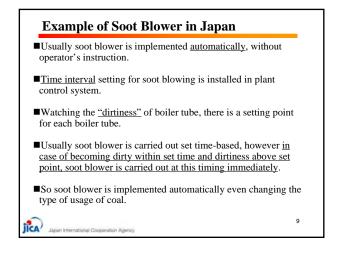
Janan International Connerston An

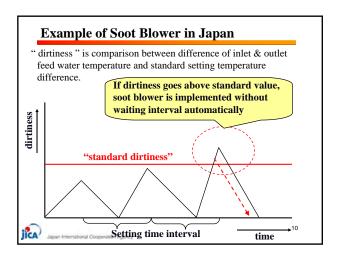


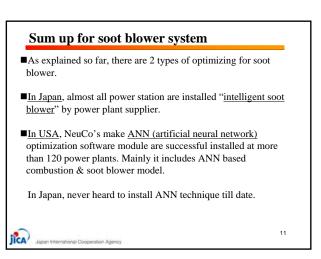
4

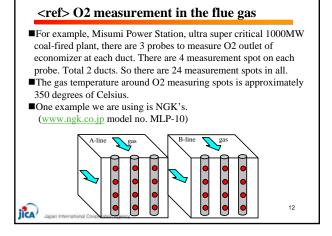
Soot Blower Operation

ICA

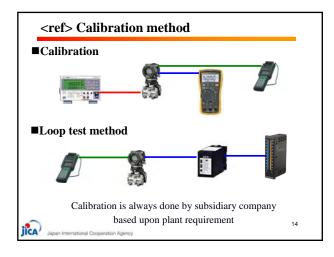

- Unchahar currently have <u>56 wall blowers and 18 LRSB</u> that cover convection section and AH section
- The soot blowing is <u>mainly time based</u>, operator initiated sequences; <u>the wall blowers are operated once every two days</u>, <u>the LSRB blowers are operated once every day</u>.
- The chosen sequence is selected <u>based on prevailing operating</u> <u>conditions (steam temperatures, metal temps, AH dP etc)</u> but the operators also look at RH/SH sprays for initiating soot blowers.



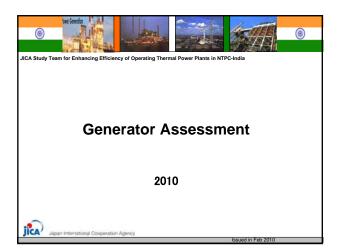

<text><list-item><list-item>

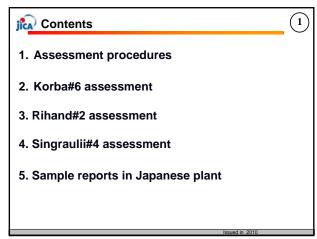

Expected Benefits of Optimization software < Soot Opt> Improved Heat Rate Improved Unit Reliability (fewer cleaning actions, better slagging and opacity control) Better RH & SH Steam Temperature Control Better Flue Gas Temperature Control NOx Reduction < Combustion Opt> Increased Boiler Efficiency and Heat Rate Reduced sorbent and/or reagent usage • Better Steam Temperature Control Improved Reliability Reduced LOI (loss of ignition) 7 ICA/

Benefit of installa	tion	(case of	Unchahar#3)
Improvement proposals	Current	After improvement	Expected effects
Introduction of a new system for the optimization of combustion and soot blowers to reduce the amount of coal used and CO ₂ emissions	-	Introduced	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
As a secondary effect, it can be expected amount of fuel needed for start-up to decr of oxygen, causing boiler loss to decrease	rease, and		, î
Secondary effect	Current	After improvement	Expected effect
The number of shutdowns will decrease, causing the amount of fuel used for start-up to decrease.	_	_	The amount of fuel for start-up will decrease by 23 kL each start-up.

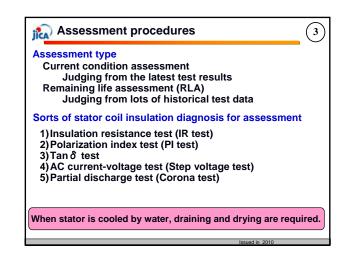


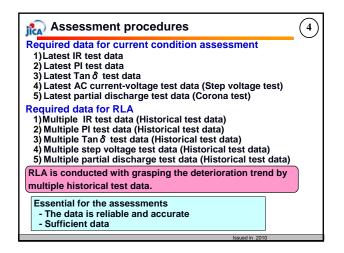
<ref> Control card failure

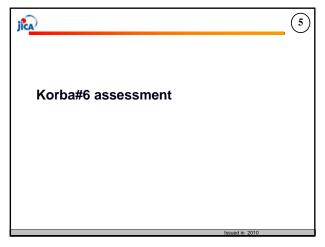

- Unit trip due to failure of control card never happen in Japan. Even if it happens, there are redundancy system, so switch automatically to stand-by card.
- When card failure trouble happens, <u>alarm in the central control room</u> tells operator to check. Then go to check the control panel room immediately to <u>recognize which card is out of order</u>.
- Then, inform and ask to prepare new card to OEM.
- It takes approx. a few months for OEM to prepare new card.
- No test of card during daily/overhauling maintenance, if card is reported faulty inform OEM to replace. OEM replace to new card.

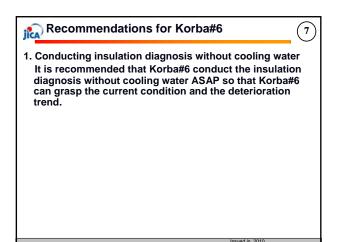

Followings are recommendations for you.

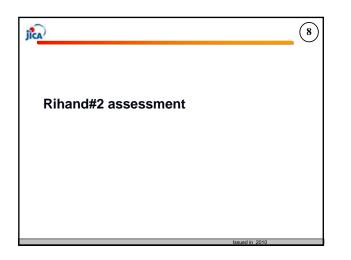
- ✓ Keep appropriate environment for cards (temp, moisture) Check the cooling fan inside of panel and filters. (Fan type are vertical & horizontal.)
- ✓ <u>Open/Close control panel door with much caution</u>.
- \checkmark <u>Use of panel door gasket to remove dust in each panel.</u>

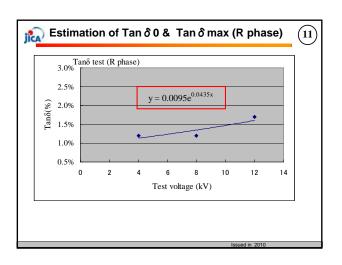


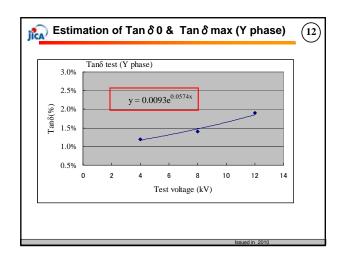


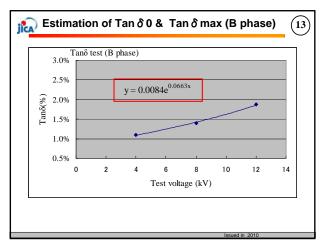


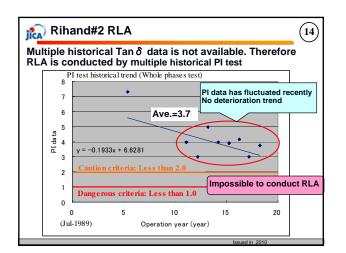

Stator coil ins	or the assessment ulation insulation is most deteriorated.	
Required spec	ification of stator ica	
Resin: Epoxy	ss: VPI (Vacuum Pressure Impregnation)	
Resin: Epoxy Resin proces	ss: VPI (Vacuum Pressure Impregnation)	
Resin: Epoxy Resin proces	ss: VPI (Vacuum Pressure Impregnation) ssessment	
Resin: Epoxy Resin proces Target for the as	ss: VPI (Vacuum Pressure Impregnation) ssessment Main specification	

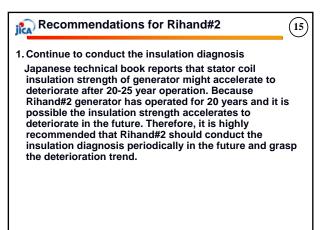


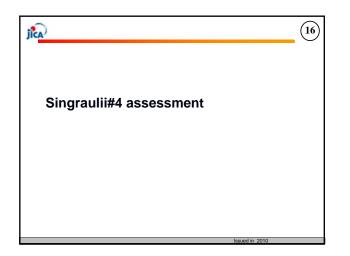

ent status of imple est and PI test has b			buro
Test voltage (DC V)	IR (ΜΩ)	Japanese criterion	
200	0.0666000		
500	0.0636243		
750	0.0064650		
1000V(15 sec)	0.0601680		
1000V(1 minute)	0.0628930	50(MΩ)	
1000V(8 minutes)	0.0625000		
PI	0.994	>2.0 (*1)	
*1:Korba#6 PI=IR(8 In Japan PI=IR(1	, ,	,	



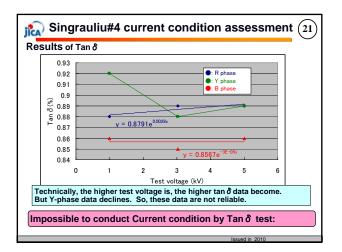


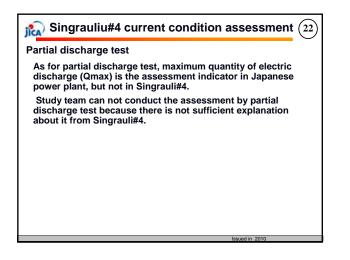

Rihands Current status IR test, PI tes Results of IR tes	t and Tan ຽ	enting ass	essment in	Rihand#2
Date	IR test	(MΩ)	PI test	
Date	1 minute	10 minutes	Pitest	
Nov-1994	1500	11000	7.33	
Nov-1999	3300	7700	2.33	
Aug-2000	1500	6000	4.00	
Sep-2001	800	2400	3.00	
Sep-2002	20000	100000	5.00	
Sep-2003	15000	60000	4.00	
Oct-2004	-	-	3.92	
Oct-2005	600	2500	4.17	
Sep-2006	2000	6000	3.00	
Oct-2007	1000	3750	3.75	*1 NTPC Criteria:
NTPC Criteria	21 (*1)	-		IR test criterion =
Japanese criteria	50	-	2.0	Gen rated voltage (kV)+1
Current con No proble	dition by IR m because t			eria.

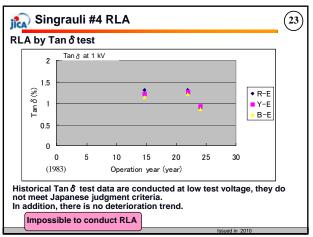

A		ent co	onditio	n assessment	(1
esults of Tan	δ				
Voltage (kV)	R phase	Y phase	B phase	Remarks	
2	1.04%	1.04%	0.96%	Estimated data (*1)	
4	1.20%	1.20%	1.10%	Actual data	
8	1.20%	1.40%	1.40%	Actual data	
12	1.70%	1.90%	1.87%	Actual data	
14.4(1.25 × E/√3)	1.78%	2.13%	2.20%	Estimated data (*1)	
∆tan ð	0.74%	1.08%	1.24%	=Tan δ (14.4) — Tan δ (2)	
Japanese criteria	Δ	tan ð <2.	5%		
Tan δ (2)(Tan 1.25 × E/√ 3	δ 0) at 2 V(E:Gen om Korba	vV and T erator rat #2 test d	an δ (14.4 ted voltag	panese one. Therefore,)(Tan δ max) at je) are approximation formula	
Current cone No proble				fulfill the criteria.	

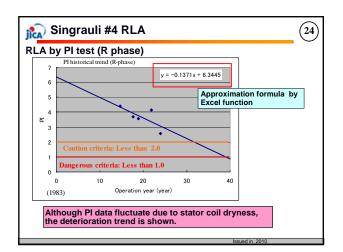


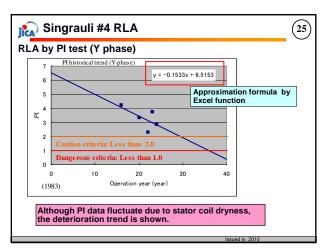
Issued in 2010

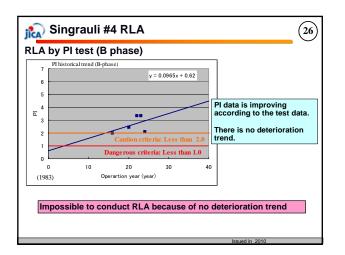


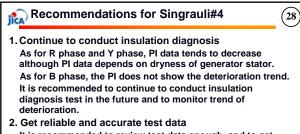

Singrauli# Current status o IR, PI, Tan ð and I	f impleme partial disc	nting asse harge test h	ssmer	nt in Singrauli#4
Results of IR tes	i, Filesi (R phase		
	Megger	test (MΩ)	Ы	
Date	1 minute	10 minutes	PI	
Aug-1997	1700	7500	4.41	
Aug-2000	1900	7000	3.68	
Sep-2001	1400	5000	3.57	
Nov-2004	3250	13500	4.15	
Dec-2006	3100	8000	2.58	
NTPC criteria	>17	—	>2	
Japanese ones	>50	—	>2	
Current conditi No problem			fill the	

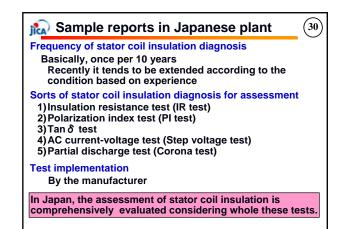

ji Sir	ngrauli#4	current	condition	asse	ssment	(18)
Results	of IR test,	PI test (Y	-phase)			-
			Y-phase			
		Megger	test (M Ω)	Ы		
	Date	1 minute	10 minutes	11		
Αι	ıg-1997	1700	7200	4.24		
Αι	1g-2000	1800	6000	3.33		
Se	p-2001	1 3 0 0	3000	2.31		
No	ov-2004	3600	13500	3.75		
De	ec-2006	3500	10000	2.86		
NTF	PC criteria	>17	-	>2		
Japa	nese ones	>50	-	>2		
			& PI test (Y results fulfill			
				Issue	d in 2010	

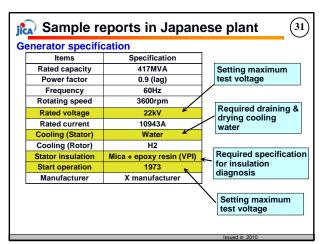

		B-phase	
	Megger	test (MQ)	PI
Date	1 minute	10 minutes	rı
Aug-1997	1100	2200	2.00
Aug-2000	1750	4300	2.46
Sep-2001	1500	5000	3.33
Nov-2004	3600	12000	3.33
Dec-2006	1900	4000	2.11
PC criteria	>17	_	>2
anese ones	>50	_	>2


ᇌ Singr	auli#	4 cu	rrei	nt cor	nditio	n as	sess	ment	t (20			
Tanδ test o	data fi	om S	ing	rauli#4	ļ.							
]	R-phase	e		Y-phas	e		B-phas	e			
Date	1 kV	3kV	5k'	V 1kV	3kV	5kV	1kV	3kV	5kV			
Aug 1997	1.31	-	-	1.22	-	-	1.13	-	-			
Aug 2000	-	-	-	-	-	-	-	-	-			
Sep 2001	-	-	-	-	-	-	-	-	-			
Nov 2004	1.31	-	-	1.26	-	-	1.21	-	-			
Dec 2006	0.88	0.89	0.8	9 0.92	0.88	0.89	0.86	0.85	1			
Tan δ test ve	oltage					Rated	l voltag	ge=15.	75kV			
	Item					Conte	nts					
Singrauli#4 m	nax test	voltage		7 kV (0.8×E/√3)								
Japanese ma	Japanese max test voltage					12.8kV(1.25×E/√3) or 15.57 (E)						
Japanese jud	Japanese judgment indicator					$\Delta \operatorname{Tan} \delta = \tan \delta (\operatorname{Vmax}) - \operatorname{Tan} \delta (1 - 2kV)$						
Tan δ test v Singrauli#4	•				panese	e judg	ment	criteri	a.			



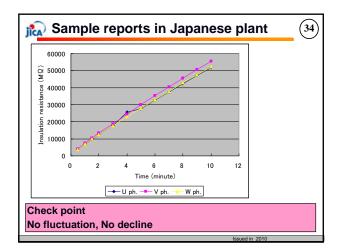


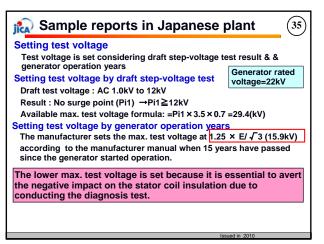

_	phase 6.3445	r	hase
			6.515
	4.3445		4.515
	5.3445		5.515
	0.1371		0.153
32	2015	29	2012
39	2022	36	2019
for	mula	by Ex	cel
3	9	2 2015 9 2022	2 2015 29

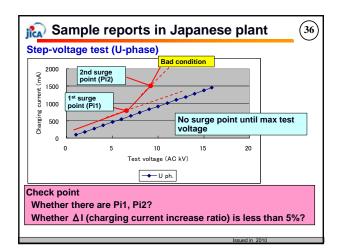


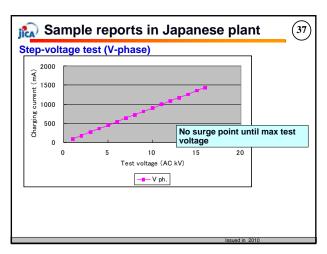
Geterioration. Get reliable and accurate test data It is recommended to review test data enough, and to get proper test data.

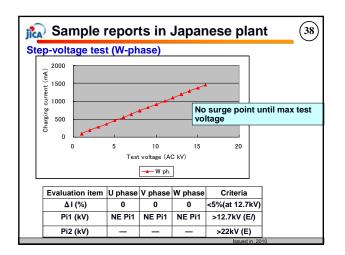
Plant	IR	PI	S-V	Tanδ	PD	Remarks			
Korba#6	Δ*1	Δ*1	_	_	_				
Singrauli#4	0	0	_	O*2	O*3				
Rihand#2 O O - O -									
Japan	0	0	(O)*4	0	0				
S-V: Step-voltage test PD:Partial discharge test *1: Test with cooling water is meaningless. *2: Max test voltage is low. *3: Measurement data is different from Japanese one *4: Some OEMs do, the others do not in Japan.									

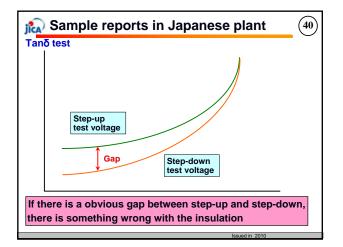

ed in 2010

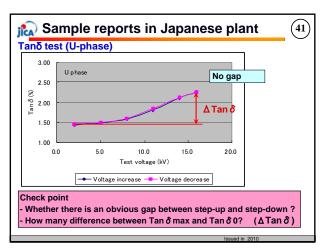


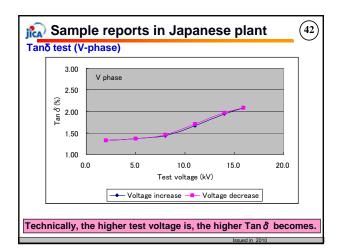


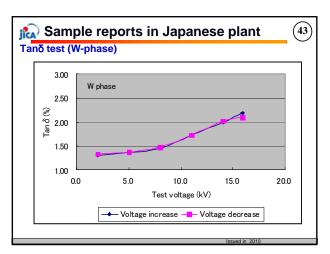

🔊 Sample reports in Japanese plant	32)	ji	🗋 Sa
Preparation work		IR	test &
- Stator coil cooling water is drained and dried			Charg (mi
- Every phase is disconnected.			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
- Conduct IR test and PI test to confirm whether stator			1
coil insulation is in good condition for conducting			1
insulation diagnosis			1
insulation diagnosis			:
Fact where diamonia			4
Each phase diagnosis			5
- Required to disconnect phases			
- Possible to confirm which phase is bad, if bad condition			7
			8
			9
Whole phases diagnosis			1
- Not required to disconnect phases			PI
- Impossible to confirm which phase is bad, if bad condition			Eval


Sample	reports	s in Jap	oanese	plant	(3
test & PI test					
Charging time	Insula	ion resistanc	e (M Q)	Reference	
(minute)	U phase	V phase	W phase		
0.5	3750	4090	3880		
1.0	6890	7420	7030		
1.5	9760	10490	9900		
2.0	12480	13390	12610		
3.0	17590	18850	17690		
4.0	25700	24400	23100		
5.0	27700	29900	27900		
6.0	32700	35300	33000		
7.0	37600	40500	37900		
8.0	42400	45600	42800		
9.0	47100	50700	47500		
10.0	51700	55500	52300	Criteria	
PI test	7.5	7.48	7.44	≥2.0	
Evaluation	Good	Good	Good		
PI result is bad, ir pre and improve I		iagnosis is	canceled of	or dry stator	coil

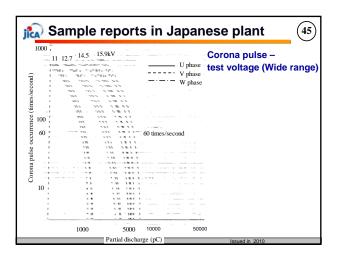


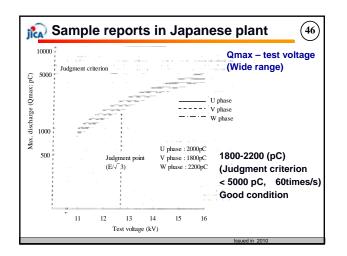


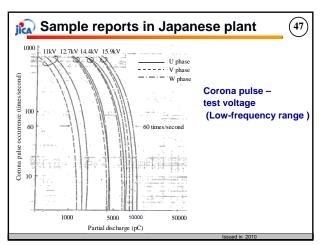


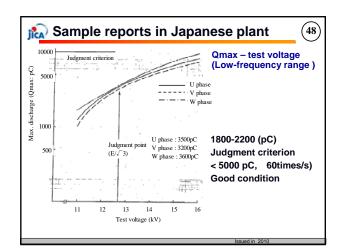


nδ test				
Voltage (kV)	U phase	V phase	W phase	Reference
2.0	1.43	1.33	1.31	
5.0	1.49	1.36	1.36	Step-up
8.0	1.58	1.43	1.44	test voltage
11.0	1.81	1.67	1.72	
14.0	2.10	1.94	2.00	
15.9	2.25	2.09	2.18	
14.0	2.12	1.97	2.02	
11.0	1.85	1.70	1.72	Step-down
8.0	1.60	1.46	1.47	test voltage
5.0	1.50	1.37	1.37	
2.0	1.46	1.33	1.33	Criteria
Tanδ0	1.43	1.33	1.31	—
∆ Tanδ	0.82	0.76	0.87	<2.5
Capacitance(µF)	0.2450	0.2420	0.2430	-
Evaluation	Good	Good	Good	

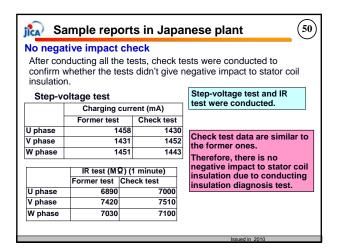


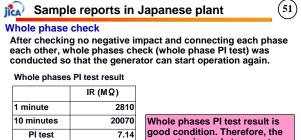


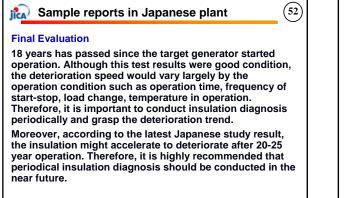


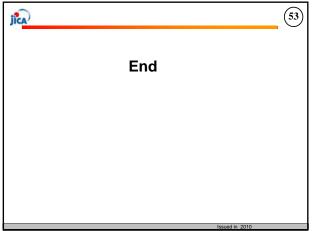


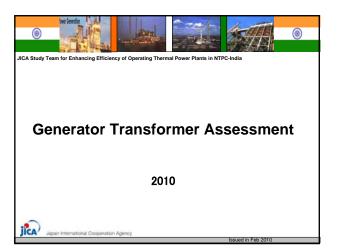
Sample reports in Japanese plant 4										
Partial discharge test - Partial discharge test was conducted by 2 different frequency ranges, a wide range (10kHz-4MHz) and a low frequency range (10kHz-200kHz).										
 The test voltage is 11.0kV, 12.7kV (Judgment voltage: E/√3), 14.5kV, 15.9kV 										
The result										
U phase V phase W phase Criteria										
	U phase	V phase	W phase	Criteria						
Wide range	U phase 2000pC	V phase 1800pC	W phase 2200pC	Criteria < 5000 pC						
Wide range Low frequency		· ·	· ·							

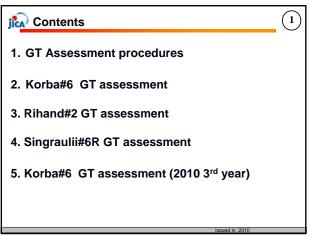


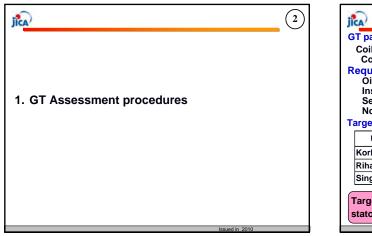


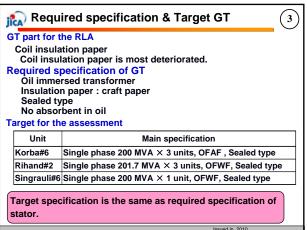


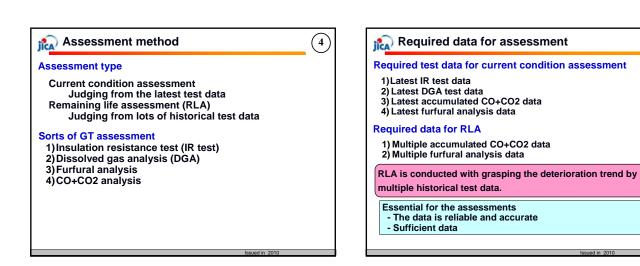

a s	Sample	reports in	Japanes	e plant			
Test Judgment items Bad criteria Evaluation point Result							
Ы	PI (at 1000V) H2 cool		≤1.5	Bad condition			
	· · · ·	Water cool	≤2.0	or Dry more			
	Pi1		≤12.7kV(E/√3)	10	0		
Step-	Pi2		≤22kV(E)				
voltage	۵۱	at E	≥12.0%	5	0		
		at 1.25E/√3	≥5.0%	5	0		
	Tan ð in	at 2kV	-				
Tan 👌	4	at E	≥6.5%	5	0		
	∆ Tan δ	at 1.25E/√3	≥2.5%	5	0		
	Qmax	-	>5000pC	5	0		
Partial	(WR range) (1 time/1Hz)	at E/√3	>10000pC	10	0		
ischarge)	Qmax		>10000pC	5	0		
	(LF range) (1 time/1Hz)	at E/√3	>20000pC	10	0		
			Good	<5	0		
	Total evalua		Attention	5≤			
The largest p	ooint is added as the e	valuation point.	Bad condition	15 <			

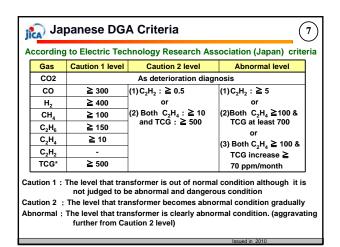


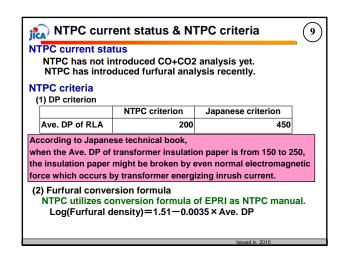


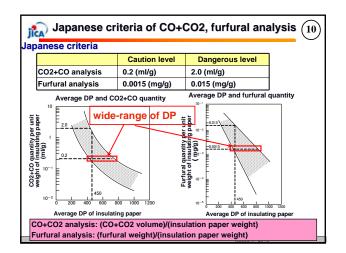

good condition. Therefore, the generator is ready to operate again without problem.

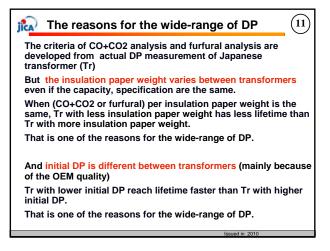


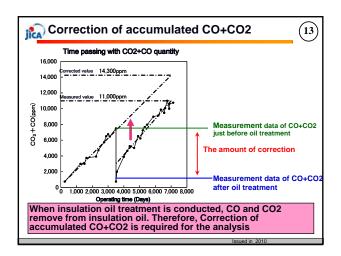


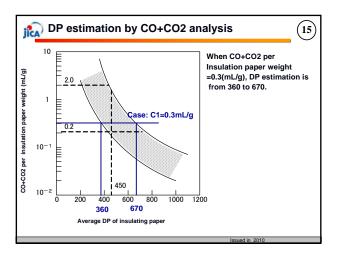


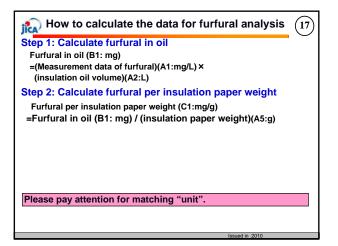

(5)

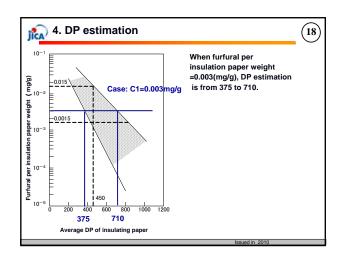


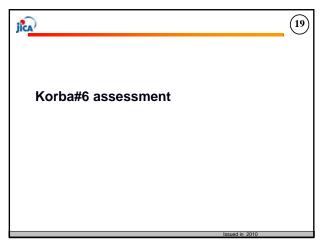

NTPC DGA Criteria											
NTPC utilizes IEEE standard C57, 104-1991 as NTPC criteria.											
Status	H2	CH4	C2H2	C2H4	C2H6	со	CO2	TCG			
Condition-1	<100	<120	<35	<50	<65	<350	<2500	<720			
Condition-2	101-700	121-400	36-50	51-100	66-100	351-570	2501-4000	721-1920			
Condition-3	701-1800	401-1000	51-80	101-200	101-150	571-1400	4001-10000	1921-4630			
Condition-4	>1800	>1000	>80	>200	>150	>1400	>10000	>4630			
Condition 1 TCG below thi gas exceeding Condition 2 TCG within thi combustible g Action should Condition 3 TCG within thi gas exceeding should be take Condition 4 TCG within thi result in failur	g specified lo is range ind jas exceedir be taken to is range ind g specified lo n to establis is range ind	evels shoul icates great og specified establish a icates a hig evels shoul sh a trend. I icates exce	d promp er than levels s trend. F h level c d promp Fault(s)	ot addition normal co should pro Fault(s) ma of decomp ot addition are probal	al investig mbustible mpt additi by be prese osition. Ar al investig bly present	ation. gas level. A onal investi ent. ny individua ation. Imme	ny individual gation. I combustible diate action	ombustible			


	JICA	CO2 analysis & Furfural analysis)							
L	 Principle Various organic substances are produced by chemical changes of the cellulose. 									
L	Cellulos is main ingredient of insulation paper and is indicator of insulation paper strength. (Insulation paper strength = DP)									
L	Inorganic	H_2O, CO, CO_2								
L	Hydrocarbon	Methane, ethane, propane, propylene								
L	Alcohol	Ethyl alcohol, furfuryl alcohol								
l	Aldehyde/ Ketone	Acetaldehyde, <u>furfural</u> , 5-methylfurfural, 5-hydroxymethyl-2- furfural, acetone, methyl ethyl ketone								
l	Acid	Formic acid, 2-furan carboxylic acid, acidum tartaricum, butyric acid								
l	Others	Furan methyl carboxylic acid, acetic ether (CH $_3$ COOC $_2$ H $_5$), furan (C $_4$ H $_4$ O), 2-acetyl furan								
L	Deep rela	ation with insulation paper strength = DP								
		Furfural are closely related with insulation paper strength e diagnosis is conducted with the relation.								
H		Issued in 2010								




Re	quirements for CO	+CO2 ar	nalysis
	Required Items	Unit	Remarks
A1	Accumulated CO+CO2 density in insulation oil	vol ppm (mL/kL)	With measurement date Multiple test results are required for RLA Accurate oil treatment historical records are required.
A2	Insulation oil volume	kL	A2 or (A3/A4) is required
A3	Insulation oil weight	kg	A2 or (A3/A4) is required
A4	Insulation oil gravity	g/mL	
A5	Insulation paper weight	kg	Not including press board weight
A6	History of insulation oil treatment		Inc. oil change, filtration, deaeration
	econdition Transformer must be	sealed	type




i How to calculate the data for CO+CO2 analysis (14)
Step 1: Calculate CO+CO2 volume in oil
CO+CO2 in oil (B1: mL)
=(Measurement data of CO+CO2)(A1:vol ppm) ×
(insulation oil volume)(A2:kL)
Step 2: Calculate CO+CO2 per insulation paper weight
CO+CO2 per insulation paper weight (C1:mL/g)
=CO+CO2 in oil (B1: mL) / (insulation paper weight)(A5: g)
Step 3: Correction of accumulated CO+CO2 per insulation paper weight
Implement the correction of accumulated CO+CO2 when insulation oil treatment has been conducted,
Please pay attention for matching "unit".

Re	equirements for furf	ural	analysis
	Required Items	Unit	Remarks
A1	Furfural density in insulation oil	mg/L	With measurement date Multiple test results are required for RLA
A2	Insulation oil volume	L	A2 or (A3/A4) is required
A3	Insulation oil weight	kg	A2 or (A3/A4) is required
A4	Insulation oil gravity	g/mL	
Α5	Insulation paper weight	kg	Not including press board weight
A6	History of insulation oil change		Even when insulation treatments excluding oil change are implemented, furfural remains in insulation oil.
	condition o absorbent in insulation	on oil	

					da							
DG/	A result											
Date	Months from	H2	CH4			C2H2	C3S	CO	CO2	TCG	TCG increase	Remarks
aution lew	last test	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm/month	
aution leve	81-1	≥400	≥ 100	≥ 10	≥150	≥0.5		≥ 300		≥500		
Caution leve	1-2			≥ 10		≥0.5				≧500		$C2H4 \ge 10+TCG \ge 500 \text{ or}$ $C2H2 \ge 0.5$
Abnormal le	evel			≥ 100						≧700	≥70	$C2H4 \ge 100 + TCG \ge 700 \text{ or}$ $\Delta TCG \ge 70 \text{ppm/month}$
Apr-1990		387	3	0	2	51	0	34	47	477		Abnormal level *1
Nov-1990	7.0	11	8	0	0	0	0	82	819	101	-53.7	
Feb-1995	52.1	80	17	0	30	0		15	1723	152	1.0	
Sep-1995	6.7	75	16	0	22	0		10	1855	146	-0.9	
un-2000	58.1	85	56	50	58	0		381	2853	658	8.8	Caution level-2
Oct-2000	4.4	84	54	52	84	0		398	3606	684	6.0	Caution level-2
ul-2005	57.8	20	60	22	66	0		450	3810	646	-0.7	Caution level-2
Oct-2005	2.6	16	70	20	70	0	30	440	3890	646	0.0	Caution level-2
an-2006	2.9	42	60	16	67	0	25	420	3710	630	-5.5	Caution level-2
Apr-2006	3.5	32	62	2	118	0	60	262	4135	536	-26.9	Caution level-1
ul-2006	3.1	23	15	1	50	0		130	1906	229	-99.0	
Oct-2006	2.6	29	24	1	26	0	8	128	1903	216	-4.9	
Apr-2007	6.6	16	30	2	38	0		91	1597	182	-5.2	
ul-2007	2.3	12	42	0	45	0		75	2062	184	0.9	
Oct-2007	3.2	102	24	0	31	0	9	34	1394	200	4.9	
Dec-2007	1.8	91	35	0	51	0		43	2111	232	17.8	
4ar-2008	3.1	70	30	0	29	0		40	1922	177	-17.6	
Aug-2008	5.3	60	20	0	25	0		25	1229	137	-7.5	
Dec-2008	4.1	41	13	1	21	0	18	45	1084	139	0.5	
Feb-2009	1.9	30	11	0	40	0	15	98	1191	194	28.4	

jica)	Korb	a#6	5 D	GA	da	ita						(21
DGA	result	s ()	(pł									
Date	Months from	H2	CH4	C2H4	C2H6	C2H2	C3S	CO	CO2	TCG	TCG increase	Remarks
	last test	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm/month	
Caution leve	21-1	≥400	≥ 100	≥ 10	≥150	≥0.5		≥ 300		≥500		
Caution leve	:1-2			≥ 10		≧0.5				≧500		$C2H4 \ge 10+TCG \ge 500 \text{ or}$ $C2H2 \ge 0.5$
Abnormal le	rvel			≧100						≧700	≧70	$C2H4 \ge 100+TCG \ge 700 \text{ or}$ $\Delta TCG \ge 70ppm/month$
Apr-1990		40	0	0	0	0	0	16		56		
Nov-1990	7.0	31	0	0	0	0	0	42		73	2.4	
Feb-1995	52.1	0	15	4	27	0	0	5	2914	51	-0.4	
Sep-1995	6.6	10	15	10	26	0	15	43	3200	119	10.3	Caution level-1
May-2000	57.0	55	95	1	61	0	16	275	4744	503	6.7	Caution level-1
Nov-2000	5.9	55	93	2	61	0	12	290	4822	513	1.7	Caution level-1
Jul-2005	57.3	23	90	3	145	0	45	320	4405	626	2.0	Caution level-1
Oct-2005	2.6	30	80	5	140	0	40	330	4390	625	-0.4	Caution level-1
Jan-2006	2.9	40	70	3	130	0	75	290	4210	608		Caution level-1
Apr-2006	3.5	30	62	2	113	0	56	262	4130	525		Caution level-1
Jul-2006	3.1	20	30	1	30	0	15	120	2310	216	-99.7	
Oct-2006	2.6	30	27	1	27	0	13	115	2196	213	-1.1	
Jan-2007	2.8	21	23	1	44	0	14	109	2233	212	-0.4	
Jul-2007	6.1	5	51	0	49	0	17	149	3331	271	9.7	
Oct-2007	3.2	12	31	1	49	0	13	73	3044	179	-28.5	
Jan-2008	3.7	80	81	0	80	0	27	205	3310	473	80.2	
May-2008	3.1	53	73	13	74	0	24	191	3160	428		Caution level-1
Jul-2008	2.9	61	14	0	16	0	15	61	1259	167	-91.0	
Jan-2009	6.0	42	16	1	66	0	32	91	2013	248	13.5	
Mar-2009	1.8	33	49	0	65	0	25	103	2291	275	15.3	
Oct-2008	-5.0	51	21	1	19	0	12	82	1311	186	17.9	

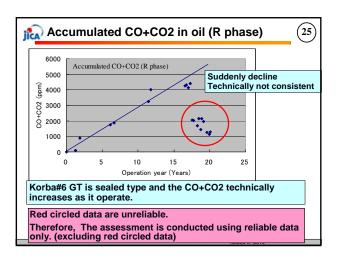
	Korba#6 DGA data											
DGA	results	s (B	ph	ase	e)							
Date	Months from	H2	CH4	C2H4	C2H6	C2H2	C3S	CO	CO2	TCG	TCG increase	Remarks
	last test	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm/month	Renarks
Caution leve	el-1	≥400	≥ 100	≥10	≥ 150	≥0.5		≥ 300		≥500		
Caution leve	:1-2			≥ 10		≧0.5				≧500		$C2H4 \ge 10+TCG \ge 500 \text{ or}$ $C2H2 \ge 0.5$
Abnormal le	rvel			≧ 100						≧700	≥ 70	$C2H4 \ge 100+TCG \ge 700 \text{ or}$ $\Delta TCG \ge 70ppm/month$
Apr-1990		44	3	0	0	0	0	123	650	170		
Nov-1990	7.0	25	10	0	0	0	0	67	904	102	-9.7	
Mar-2000	113.3	95	60	55	68	0	40	390	4460	708		Caution level-2
Jun-2000	3.5	95	65	52	68	0	42	393	4492	715		Caution level-2
Sep-2000	3.0	93	68	50	69	0	40	398	4510	718		Caution level-2
Jul-2005	59.2	25	75	22	116	0	136	440	5495	814		Caution level-2
Oct-2005	2.6	30	70	20	110	0	130	460	5425	820	2.3	Caution level-2
Jan-2006	2.9	44	60	15	102	0	20	450	5390	691		Caution level-2
Apr-2006	3.5	40	53	13	93	0	16	430	5210	645		Caution level-2
Jul-2006	3.1	20	22	3	50	0	11	190	2410	296	-112.6	
Oct-2006	2.6	33	22	1	37	0	17	180	2330	290	-2.3	
Jan-2007	2.8	26	24	0	33	0	12	170	2243	265	-8.9	
Jul-2007	6.1	12	56	0	58	0	19	139	3092	284	3.1	
Oct-2007 Dec-2007	3.2	108	30	0	41	0	12	47	2003	238	-14.2	
Dec-2007 Mar-2008	1.8	93 63	71	0	66	0	24	154	2324	418	-41.3	
Mar-2008 May-2008	3.0	63 53	51	2	66 80	0	32	104	2065	294	-41.3	
May-2008 Iul-2008	2.6	53	50		61	0	32	101		348	9.2	
Jul-2008 Oct-2008	2.2	61 55	11 8	2	61	0	30	183	2010	348	-5.4	
	2.8	39		2	54	0	21				-5.4	
Jan-2009	2.6	39	8	1	54	0	21	171	2243	294	-15.2	

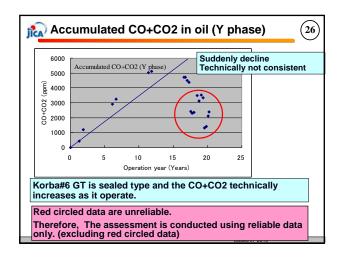
ᇌ Assessment of DGA results

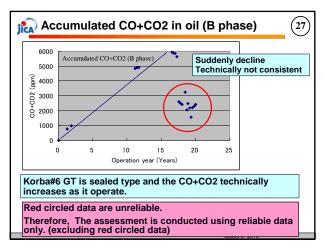
R phase

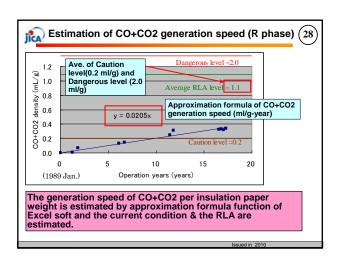
Each analyzed gas has had no big change and been less than the judgment criteria recently, although C2H4, CO, TCG had become Caution level-1 or Caution level-2 from 2000 to 2006. Therefore, the transformer is assessed as normal condition.

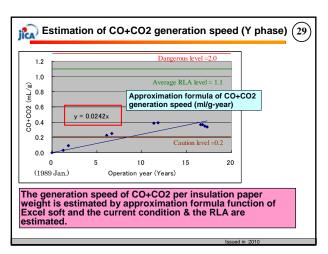
(23)

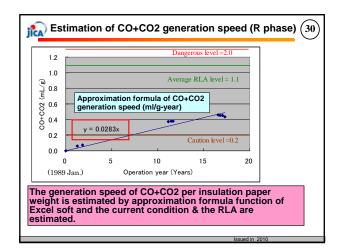

Y phase

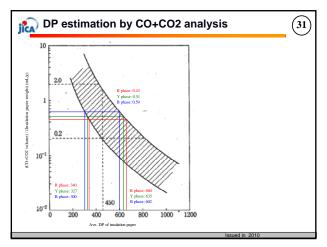

Each analyzed gas has had no big change and been less than the judgment criteria recently, although CO, C2H2, TCG had become Caution level-1 mainly from 2000 to 2006. Therefore, the transformer is assessed as normal condition.

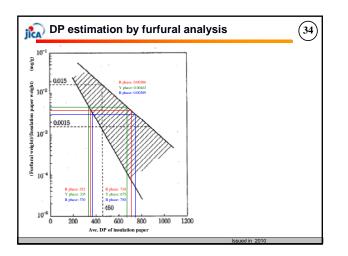

B phase

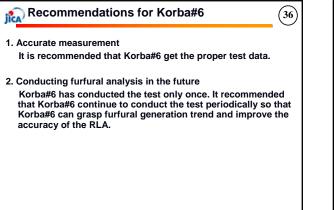

Each analyzed gas has had no big change and been less than the judgment criteria recently, although C2H4, CO, TCG had become Caution level-1 or Caution level-2 from 2000 to 2006.Therefore, the transformer is assessed as normal condition.

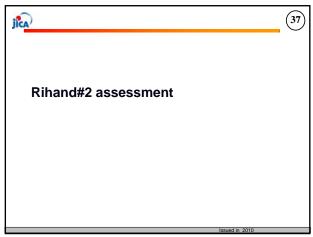

	Required Items	Unit	Data
A1	Accumulated CO+CO2 density in insulation oil	vol ppm (mL/kL)	Next page
A2	Insulation oil volume	kL	23.4
A3	Insulation oil weight	kg	-
A4	Insulation oil gravity	g/mL	_
A5	Insulation paper weight	kg	303
A6	History of insulation oil treatment		Nil
Sea oil	History of insulation oil treatment aled performance is good and Korba#6 h treatment. erefore, correction of accumulated CO+C		nducted










speed (mL/g year)	.0283
(Jali 2010)	.5943
(Jan 2010) DP 340-660 327-635 30	0-602
	aution level
RLA Operation years until 53.7 45.5	38.9
Estimating year to 2042 Sep. 2034 Jul. 202 Ave. lifetime point	27 Dec.

	Required Items	Unit	R phase	Y phase	B phase					
A1	Furfural density	mg/L	0.05	0.06	0.04					
A2	Insulation oil volume	L		23400						
A3	Insulation oil weight	kg		22000						
A4	Insulation oil gravity	g/mL		_						
A5	Insulation paper weight	kg		303						
A6	A6 History of insulation oil change Nil									
Kork	a#6 has never implemented	d the ir	sulation	oil chan	ge.					

		R phase	Y phase	B phase
Trend	Furfural generating speed (mg/g year)	0.000185	0.000222	0.000148
Current condition	Furfural (mg/g) (Jan 2010)	0.00389	0.00467	0.00312
Jan 2010)	DP	352-710	335-675	370-750
	Evaluation	Caution level	Caution level	Caution level
RLA	Operation years until Ave. lifetime point	44.5	37.1	55.7
	Estimating year to Ave. lifetime point	Jul-2033	Feb-2026	Aug-2044

jica	Riha	and#2	D	GΑ	da	ata						38
DG/	A resu	Its (R)	oha	se)							
Date	M	H2	CH4	C2H4	C2H6	C2H2	C3H8	CO	CO2	TCG	TCG increase	Remarks
	Months from last test	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm/month	Remarks
Caution lev	el-1	≥400	≥ 100	≥10	≥150	≥0.5		≥300		≥500		
Caution lev	el-2			≥ 10		≧0.5				≧500		$C2H4 \ge 10+TCG \ge 500 \text{ or}$ $C2H2 \ge 0.5$
Abnormal I	evel			≥100						≧700	≧70	C2H4≧100+TCG≧700 or ∆TCG≧70ppm/month
fan-1989		Start operation	1									
Oct-1991	34.3	15	5	2	5	0	0	32	326	59	1.7	
lul-1995	45.0	42	5	5	1	0	0	40	533	93	0.8	
lan-1996	6.1	40	5	3	5	0	7	37	563	97	0.7	
Jun-1996	5.4	Oil filtration										
Jun-1999	36.3	40	45	22	20	0	10	120	450	260	7.2	Caution level-1
Dec-1999	6.3	Oil filtration										
Feb-2000	2.5	25	3	4	3	0	4	82	292	120	48.0	
Aug-2001	17.3	20	57	1	15	0	10	238	1087	341	12.8	
Aug-2001	0.7	Oil filtration										
Jul-2002	11.1	10	42	6	18	0	8	302	1165	386	34.9	Caution level-1
Sep-2002	2.4	Oil filtration										
Sep-2005	36.3	55	12	0	8	0	2	147	810	224	6.2	
Sep-2005	0.1	Oil filtration										
Aug-2007	23.4	29	19	0	7	0	1	246	2005	285	12.2	
Oct-2007	2.0	Oil filtration										
Nov-2007	1.0	5	0	1	1	0		101	474	112	112.0	Abnormal level
Mar-2008	3.1	23	10	1	1	0	1	310	468	346	74.7	Abnormal level
Jun-2008	3.2	15	18	0	0	0	0	120	387	153	-60.3	
Sep-2008	3.2	25	10	0	2	0	1	139	767	177	7.5	
Dec-2008	3.0	45	8	5	4	0	9	121	832	192	4.9	
Mar-2009	3.0	40	5	2	1	0	1	111	805	160	-10.5	
											Issued in	2010

jica)	Korb	a#	6 C)G	A c	lat	a					(39
DGA	result	ts ('	Υp	ha	se)							
N	fonths from	H2	CH4	C2H4	C2H6	C2H2	C3H8	CO	CO2	TCG	TCG increase	Remarks
Date	last test	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm/month	Remarks
Caution leve	-1	≥400	≥100	≥10	≥150	≥0.5		≥300		≥500		
Caution level	1-2			≥ 10		≥0.5				≥500		$C2H4 \ge 10+TCG \ge 500 \text{ or}$ $C2H2 \ge 0.5$
Ab normal le	vel			≥100						≥700	≥70	$C2H4 \ge 100+TCG \ge 700 \text{ or}$ $\Delta TCG \ge 70ppm/month$
Jan-1989		Start o	operati									
Jul-1991	-	22	5	0	0	0	0	91	607	118	-	
Dec-1994	41.4	26	0	1	4	0	0	55	1355	86	-0.8	
Aug-1995		Oil filt										
Oct-1995	2.0	20	0	0	0	0	0	0	198	20	10.0	
Aug-1997	22.2	20	25	10	22	0	13	16	350	106	3.9	Caution level-1
Sep-1997		Oil filt										
Aug-1999	23.0	87	40	2	18	0	10	136	719	293	12.7	
Dec-1999		Oil filt										
Sep-2000	9.7	10	0	0	0	0	0	33	353	43	4.4	
Jul-2002	21.9	17	50	1	7	0	13	305	1220	393	16.0	Caution level-1
Sep-2002		Oil filt										
Sep-2005	36.3	15	20	2	3	0	0	230	1120	270	7.4	
May-2006	7.6	Oil filt		-					100	140		
Aug-2006 Nov-2007	3.1	62	16	1	1	0	0	80	650 474	160 215	51.1	
	3.1											
Mar-2008 Jun-2008	3.1	11	10	1	2	0	1	90	459	135	-25.5	
Jun-2008 Sep-2008	3.2	40	15	0		0		134	235 952	115	-6.3	
Sep-2008 Dec-2008	3.0	40	9	0	4	0	2	134	952	200	23.8	
Dec-2008 Mar-2009	3.0	24	7	0	2	0	1	123	834	142	-19.1	
Mui 2007		24	,		0			107	0.54	142		ed in 2010

jica	Kork	oa#	6 C)G/	A d	ata	a					(40
DGA	resul		Вр	has	se)							
	Months from	H2	CH4	C2H4	C2H6	C2H2	C3H8	CO	CO2	TCG	TCG increase	Remarks
Date	last test	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm/month	renario
Caution lev	vel-1	≥ 400	≥ 100	≥ 10	≥ 150	≥ 0.5		\geq 300		\geq 500		
Caution lev	vel-2			≥ 10		≧0.5				≧500		$C2H4 \ge 10+TCG \ge 500 \text{ or}$ $C2H2 \ge 0.5$
Abnormal	level			≧100						≧700	≧ 70	$C2H4 \ge 100+TCG \ge 700$ or $\Delta TCG \ge 70ppm/month$
Aug-1991	-	32	4	0	4	0	0	181	835	237		
Dec-1994	40.6	25	0	3	1	0	20	60	1087	109	-3.2	
Aug-1995	8.4	Oil filt	eration	n								
Jan-1996	5.3	10	0	0	6	0	5	0	253	21	3.9	
Aug-1997	18.8	35	82	35	34	0	70	133	1473	389	19.5	Caution level-1
Sep-1997	1.2	Oil filt	eratio	n								
Nov-1999	26.3	74	75	3	29	0	13	152	1164	346	13.2	
Dec-1999		Oil filt	eratio									
Aug-2001	19.8	15	22	5		0	2	198	1401	263	13.3	
Jul-2002	11.8	32	73	0	47	0	6	142	950	300	3.1	
Sep-2002		Oil filt										
Jul-2003	9.5	50	13		10	0	8	109	627	190	20.1	
Sep-2003		Oil filt										
Jun-2006	33.0	90	8	- 4	8	0	0	80	302	190	5.8	
Nov-2007	18.2	12	3	2	4	0	1	15	362	37	-8.4	
Mar-2008	3.1	11	5	0	1	0	1	26	390	44	2.2	
Jun-2008	3.2	35	5		0	0	0	31	254	71	8.4	
Sep-2008	3.2	60	7	1	6	0		42	251		14.4	
Dec-2008	3.0	41	5	0	4	0		48	424	99	-5.9	
Mar-2009	3.0	31	- 3	0	0	0	0	46	455	80	-6.3	

Assessment of DGA results (Rihand#2)

(41)

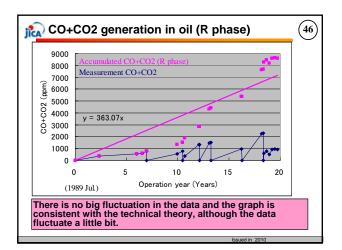
R phase

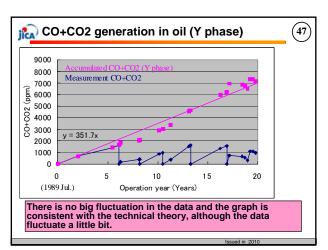
The TCG increase ratio had become Dangerous level in Nov. 2007 and Mar.-2008. Nov.-2007 is just after conducting filtration treatment of the insulation oil. Therefore, maybe the TCG remained in the oil without removing the TCG sufficiently. In addition, because each analyzed gas has had no big change and been less than the judgment criteria recently, the transformer is assessed as normal condition.

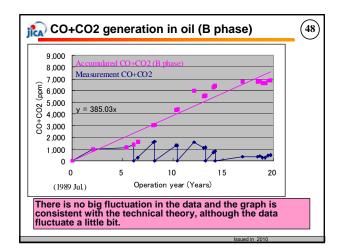
Y phase

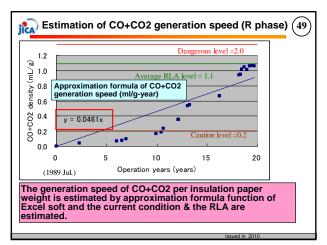
Each analyzed gas has had no big change and been less than the judgment criteria recently, although C2H4 (Aug-1997) and CO (Jul-2002) had become Caution level-1.Therefore, the transformer is assessed as normal condition.

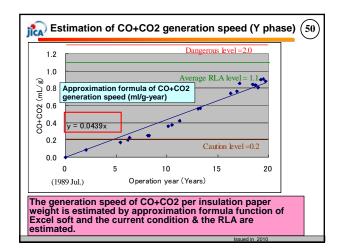
B phase

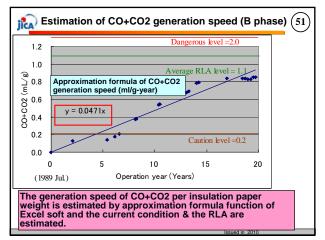

Each analyzed gases has had no big change and been less than the judgment criteria recently, although C2H4 (Aug-1997) had become Caution level-1.Therefore, the transformer is assessed as normal condition.

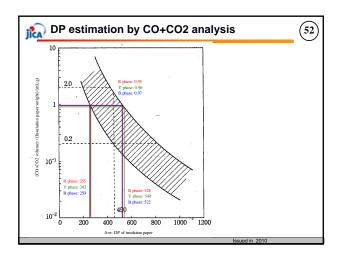

	Required Items	Unit	Data	Remarks
A1	Accumulated CO+CO2 density in insulation oil ^{*1}	vol ppm (mL/kL)	Refe	r to next Table
A2	Insulation oil volume	kL	37800	
A3	Insulation oil weight	Kg	32432	
A4	Insulation oil gravity	g/mL	-	
A5	Insulation paper weight	Kg	(305.5)	Precondition
A6	History of insulation oil treatment		Refer to	next Table blue marked
ot av ilizii Sea	tion paper weight is essential for cc railable in Rihand#2 GT. The insulati ng Korba#6 GT data aled performance is bad and l atment often.	ion paper	weight i	s estimated by

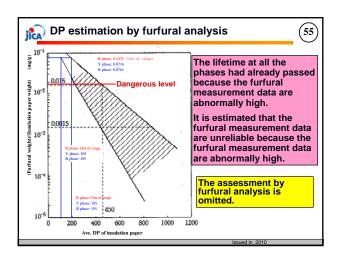

	r - 1		Accumulate	1	1	r	
Date	Operation years	CO+CO2 (ppm)	d CO+CO2	Gap with last test	CO+CO2 (mL/g)	Remarks	R phase
Jul-1989	0.0	0	0	0	0.000	Initial data	
Oct-1991	2.3	358	358	358	0.044		
Jul-1995	6.0	573	573	215	0.071		When oil filtration is
Jan-1996	6.5	600	600	27	0.074		conducted, CO, CO2 in
Jun-1996	7.0	759	759	159	-	Correction	
Jun-1996	7.0	0	759	0	0.094	Filtering	oil are moved away
Jun-1999	9.9	570	1,329	570	0.164		(Measurement =0)
Dec-1999	10.5	758	1,517	188		Correction	(
Dec-1999	10.5	0	1,517	0		Filtering	
Feb-2000	10.7	374	1,891	374	0.234		CO+CO2 generating
Aug-2001	12.1	1325	2,842	951	0.352		speed=363ppm/year
Aug-2001	12.2	1346	2,863	21		Correction	speca=oooppin/year
Aug-2001	12.2	0	2,863	0		Filtering	
Jul-2002	13.1	1467	4,330	1,467	0.536		
Sep-2002	13.3	1538	4,401	71		Correction	
Sep-2002	13.3	957	4,401	957		Filtering	-
Sep-2005 Sep-2005	1012	741	5,358		0.663		L
Sep-2005 Aug-2007	16.3	Long	span f	rom	oil fil	tration	to the previous test
Aug-2007 Oct-2007	18.2		•				•
Oct-2007	18.3	Corre	ction i	S COI	nduct	ed con	sidering the CO+CO2
Nov-2007	18.4		ase du				-
Mar-2008	18.7	morea	150 uu	my	ine a	Juin	
Jun-2008	18.9	Corre	ction=	Ave	dene	ration 9	speed × the span
Sep-2008		00110	0		90110	- anon a	pood of the span

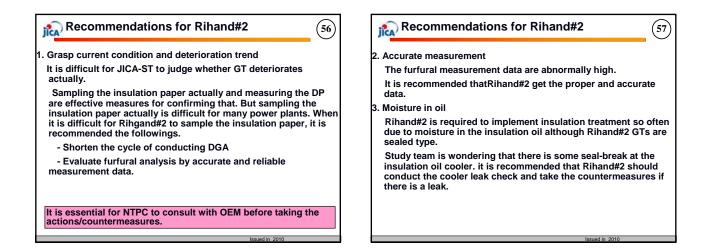

Date	Operation years	CO+CO2 (ppm)	Accumulated CO+CO2 (ppm)	Gap with last test	CO+CO2 (mL/g)	Remarks	Y phase
Jul-1989	0.0	0	0	0		Initial data	
Jul-1991	2.0	698	698	698	0.086		When oil filtration is
Dec-1994	5.4	1410	1410	712	0.174		
Aug-1995	6.1	1652	1652	242		Correction	conducted, CO, CO2 in
Aug-1995	6.1	0	1652	0		Filtering	oil are moved away
Oct-1995	6.3	198	1850	198	0.229		(Measurement =0)
Aug-1997	8.1 8.2	366	2018	168	0.250	Correction	(weasurement =0)
Sep-1997	8.2	401	2053	35	0.254	Filtering	-
Sep-1997 Aug-1999	8.2	855	2053	855	0.254	rmering	4
Dec-1999	10.1	979	2908	124	0.300	Correction	4
Dec-1999	10.5	0	3032	124	0.375	Filtering	
Sep-2000	11.3	386	3418	386	0.423		CO+CO2 generating
Jul-2002	13.1	1525	4557	1139	0.564		
Sep-2002	13.3	1593	4625	68	~	Correction	speed=352ppm/year
Sep-2002	13.3	0	4625	0	0.572	Filtering	1
Sep-2005	16.2						
May-2006	16.9	Long	span t	rom	on filt	ration a	ind the previous test
May-2006	16.9	•					1 dealer a dha 00 a 000
Aug-2006	17.1						idering the CO+CO2
Nov-2007	18.4	incre	ase du	ring t	he sp	oan.	
Mar-2008	18.7			-	-		
Jun-2008	18.9	Corre	ection=	Ave.	gene	ration s	peed × the span
Sep-2008	19.2	1000	7200	701	0.701		

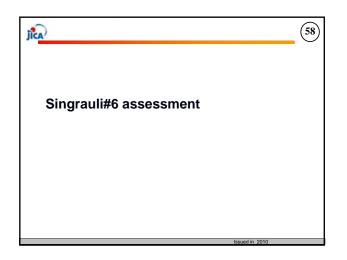

		1					
B phase	Remarks	CO+CO2 (mL/g)	Gap with last test	Accumulated CO+CO2 (ppm)	CO+CO2 (ppm)	Operation years	Date
	Initial data	0.000	0	0	0	0.0	Jul-1989
		0.126	1,016	1,016	1,016	2.1	Aug-1991
When oil filtration is		0.142	131	1,147	1,147	5.4	Dec-1994
conducted, CO, CO2 in	Correction		266	1,413	1,413	6.1	Aug-1995
oil are moved away	Filtering		0	1,413	0	6.1	Aug-1995
		0.206	253	1,666	253	6.6	Jan-1996
(Measurement =0)		0.374	1353	3,019	1,606	8.1	Aug-1997
	Correction		39	3,058	1,645	8.2	Sep-1997
	Filtering		0	3,058	0	8.2	Sep-1997
		0.541	1316	4,374	1,316	10.4	Nov-1999
	Correction		35	4,409	1,351	10.5	Dec-1999
CO+CO2 generating	Filtering	0.546	0	4,409	0	10.5	Dec-1999
		0.743	-507	6,008	1,599	12.1	Aug-2001
speed=385ppm/year	a	0.681	-50/	5,501	1,092	13.1	Jul-2002
,	Correction	0.000	/6	5,577	1,168	13.3	Sep-2002 Sep-2002
nd the previous test	ration a	oil filt	rom	snan f		13.3	Jul-2002
na the previous test	anona			Spann	Long	14.0	Sep-2003
idering the CO+CO2	ed consi	duct	s cor	ection i	Corre	14.2	Sep-2003
				ase du		16.9	Jun-2006
	an.	ne sh	inig i	ase uu	IIICIE	18.4	Nov-2007
beed × the span	ration s	aene		ection-	Corre	18.7	Mar-2008
Jeeu A the span	anon s	gene				18.9	Jun-2008
		0.826		6 679	293	19.2	Sep-2008



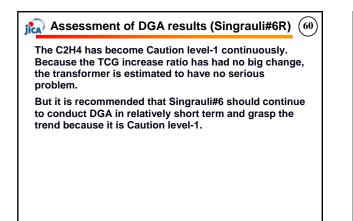


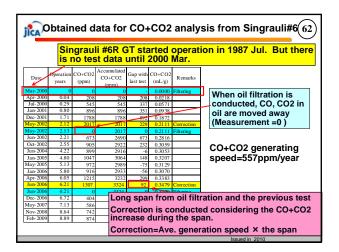


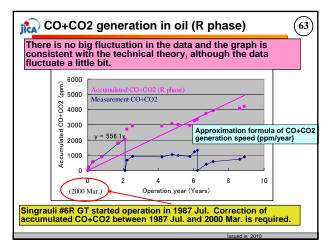


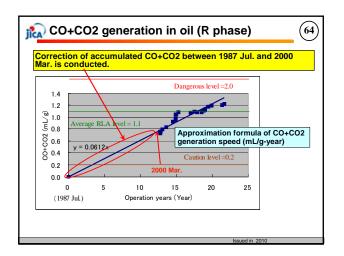


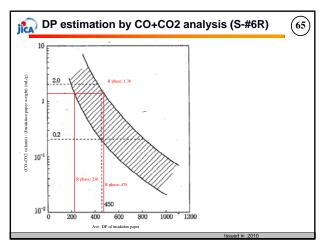
		R phase	Y phase	B phase
Trend	CO+CO2 generating speed (mL/g year)	0.0461	0.0439	0.0471
Current	CO+CO2 (mL/g)	0.95	0.90	0.97
ondition	DP	255-528	263-540	250-522
an 2010)	Evaluation	Caution level	Caution level	Caution level
RLA	Operation years until Ave. lifetime point	23.9	25.1	23.4
	Estimating year to Ave. lifetime point	May-2013	Jul-2014	Nov-2012


	Required Items	Unit	R phase	Y phase	B phase
A1	Furfural density	mg/L	1.14	0.5	0.5
A2	Insulation oil volume	L		37800	
A3	Insulation oil weight	kg		32432	
A4	Insulation oil gravity	g/mL		-	
A5	Insulation paper weight	kg		(305.5)	
	History of insulation oil			Nil	
A6	change	nducting	a furfural a		it is not
Insul availa GT d	change ation paper weight is essential for co able in Rihand#2 GT. The insulation p ata	oaper we	ight is esti	nalysis. But mated by ut	ilizing Korba
Insul availa GT d Riha he n	change ation paper weight is essential for co able in Rihand#2 GT. The insulation p	ed the	insulati	nalysis. But mated by ut on oil ch erating w	ange and

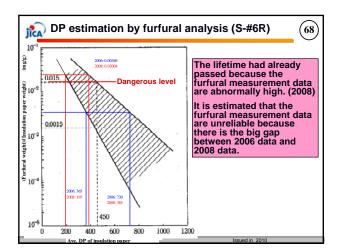


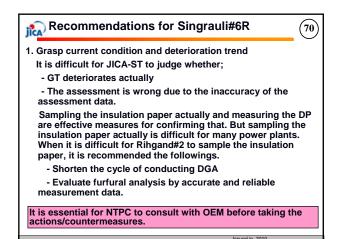



	Sing											
DGA	result	S (F	(pr	nase	e)							
	from last	H2	CH4	C2H4	C2H6	C2H2	C3S	со	CO2	TCG	TCG increase	Remarks
Date	test	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm/month	
Caution leve	el-1	≥ 400	≥100	≥ 10	≥150	≥0.5		≥ 300		≥500		
Caution lev	el-2			≥ 10		≧0.5				≧500		$C2H4 \ge 10+TCG \ge 500 \text{ or}$ $C2H2 \ge 0.5$
Abnormal l	evel			≧ 100						≧700	≧70	$C2H4 \ge 100+TCG \ge 700$ or $\Delta TCG \ge 70ppm/month$
Mar 2000	Oil filtering											
Apr 2000	-	7	3	3	2	0	2	9	199	26		
Jul 2000	3.0	29	12	15	11	0	5	33	512	105	26.0	Caution level-1
Jan 2001	6.1	25	57	44	31	0	31	89	807	277	28.0	Caution level-1
Dec 2001	11.1	32	109	72	50	0	52	202	1586	517	21.6	Caution level-1
May 2002	Oil filtering											
Jun 2002	6.1	10	5	7	4	0	3	38	635	67	11.0	
Oct 2002	4.1	30	15	40	45	0	15	95	810	240	42.5	Caution level-1
Jun 2004	20.3	30	63	44	31	0	16	109	790	293	2.6	Caution level-1
Jan 2005	7.1	20	52	50	31	0	15	139	908	307	2.0	Caution level-1
May 2005	4.0	70	60	60	42	0	20	80	892	332	6.3	Caution level-1
Jan 2006	8.2	27	15	62	53	0	5	81	835	243	-10.9	Caution level-1
Apr 2006	3.0	40	32	66	52	0	25	105	1110	320	25.7	Caution level-1
Jun 2006	Oil filtering											
Dec 2006	8.1	33	8	5	7	0	2	61	343	116	14.3	
May 2007	5.0	20	26	32	26	0	18	51	535	173	11.3	Caution level-1
Nov 2008	18.3	61	50	25	21	0	12	76	666	245	3.9	Caution level-1
Feb 2009	3.1	62	26	11	22	0	19	87	787	227	-5.9	Caution level-1



Required Items	Unit	Data	Remarks
A1 Accumulated CO+CO2 density in insulation oil	vol ppm (mL/kL)		
A2 Insulation oil volume	kL	31.719	
A3 Insulation oil weight	kg	27500	
A4 Insulation oil gravity	g/mL	0.867	
A5 Insulation paper weight	kg	(303)	Precondition
A6 History of insulation oil treatment		Refer to blue ma	Table 8.4.6-39 Irked
sulation paper weight is essential f ut it is not available in Singrauli#6 (stimated by utilizing Korba#6 GT da	GT. The i ita	nsulatio	



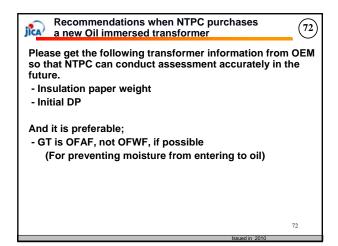


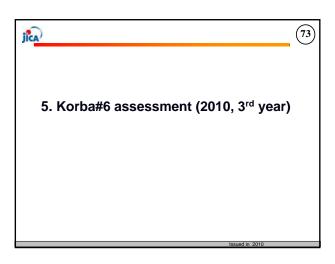
CO+CO2 (mL/g) (Jan 2010) 231 Jan 2010) DP 233 Evaluation Caution Operation years until Ave. lifetime Jun- RLA Estimating year to Ave. lifetime Jun- Operation years until Dangerous level Dun- Dun-	.0612 1.38 0-475
Date Display Control Display Control Control <thcontrol< th=""> <thcontrol< th=""> <thcont< td=""><td>0-475</td></thcont<></thcontrol<></thcontrol<>	0-475
Evaluation Caution Operation years until Ave. lifetime RLA Estimating year to Ave. lifetime Jun- Operation years until Dangerous level	
Operation years until Ave. lifetime RLA Estimating year to Ave. lifetime Jun- Operation years until Dangerous level	
RLA Estimating year to Ave. lifetime Jun Operation years until Dangerous level	level
Operation years until Dangerous level	18
	2005
	32.7
Estimating year to Dangerous level Sep-	2019
Ithough transformer lifetime is approximately 40~50 year enerally in Japanese power plant, Singrauli#6 GT lifetime stimated to be short relatively.	s s ar

1 Furfural density (Sep-2008) mg/L 0.27 2nd test 2 Insulation oil volume L 31719 Big gap abnormally 3 Insulation oil weight kg 27500 abnormally 4 Insulation oil gravity g/mL 0.867 5 Insulation paper weight kg (303) 6 History of insulation oil change Nil		Required Items	Unit	Data	Remarks
A2 Insulation oil volume L 31719 Big gap abnormally A3 Insulation oil weight kg 27500 abnormally A4 Insulation oil gravity g/mL 0.867 A5 Insulation paper weight kg (303) A6 History of insulation oil change Nil	۹1	Furfural density (Sep-2006)	mg/L	0.03	1st test
Big gap A3 Insulation oil weight kg 27500 A4 Insulation oil gravity g/mL 0.867 A5 Insulation paper weight kg (303) A6 History of insulation oil change Nil	۹1	Furfural density (Sep-2008)	mg/L	0.27	2nd test
A4 Insulation on weight kg 27000 A5 Insulation oil gravity g/mL 0.867 A5 Insulation paper weight kg (303)	\ 2	Insulation oil volume	L	31719	Big gap
kg (303) A6 History of insulation oil change Nil	٩3	Insulation oil weight	kg	27500	abnormally
A6 History of insulation oil change Nil	44	Insulation oil gravity	g/mL	0.867	
	۹2	Insulation paper weight	kg	(303)	
sulation paper weight is acceptial for conducting furfural analysis. But it is not	٩6	History of insulation oil change		Nil	
Infation paper weight is essentian for conducing turbular analysis. But it is not allable in Singrauli#6 GT. The insulation paper weight is estimated by utilizing rba#6 GT data	aila	ble in Singrauli#6 GT. The insulation p			ated by utilizing

		Sep-2006	Sep-2008
Trend	Furfural generating speed (mg/g year)	0.000164	0.001334
Current	Furfural (mg/g) (Jan 2010)	0.00369	0.03004
condition (Jan 2010)	DP	365-730	195-385
(5411 2010)	Evaluation	Caution level	Dangerous level
	Operation years until Ave. RL ^{*1}	50.4	6.2
RLA	Estimating year to Ave. RL	Nov-2037	Sep-1993
	Operation years until Dangerous level	91.6	11.2
	Estimating year to Dangerous level	Feb-2079	Oct-1998
urfural mea he results	e at all the phases had alre asurement data are high. are unreliable because th nd 2008 data.	(2008)	

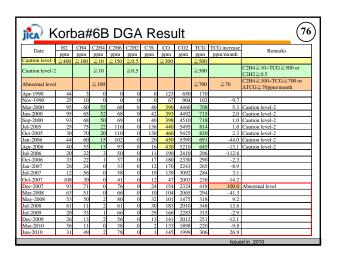
Recommendations for Singrauli#6


2. Accurate measurement


As for the assessment by furfural analysis, there is a big gap of furfural measurement data between 2006's and 2008's. It is recommended that Singrauli#6 get the proper data.

3. Moisture in oil

Singrauli#6 is required to implement insulation treatment so often due to moisture in the insulation oil although Singrauli#6R GT is sealed type.


Study team is wondering that there is some seal-break at the insulation oil cooler. it is recommended that Singrauli#6R GT should conduct the cooler leak check and take the countermeasures if there is a leak.

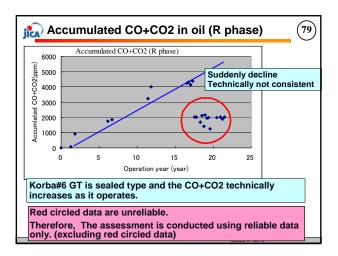
A K	orb	a#	6R	D	GΑ	١R	esı	ılt			(7
Date	H2	CH4	C2H4	C2H6	C2H2	C3S	CO	CO2	TCG	TCG increase	Remarks
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm/month	Remarks
Caution level-1	≥400	≥ 100	≥10	≥150	≥0.5		≥300		≥500		
Caution level-2			≥ 10		≥ 0.5				≧500		$C2H4 \ge 10+TCG \ge 500 \text{ or}$ $C2H2 \ge 0.5$
Abnormal level			≧100						≧700	≧70	$C2H4 \ge 100+TCG \ge 700$ or $\Delta TCG \ge 70ppm/month$
Apr-1990	387	3	0	2	51	0	34	47	477		Abnormal level *1
Nov-1990	11	8	0	0	0	0	82	819	101	-53.7	
Feb-1995	80	17	0		0		15	1723	152	1.0	
Sep-1995	75	16	0		0		10	1855	146	-0.9	
Jun-2000	85	56	50	58	0		381	2853	658	8.8	Caution level-2
Oct-2000	84	54	52	84	0		398	3606	684	6.0	Caution level-2
Jul-2005	20	60	22	66	0		450	3810	646	-0.7	Caution level-2
Oct-2005	16	70	20		0		440	3890	646	0.0	Caution level-2
Jan-2006	42	60	16		0		420	3710	630		Caution level-2
Apr-2006	32	62	2		0		262	4135	536		Caution level-1
Jul-2006	23	15	1	50	0		130	1906	229	-99.0	
Oct-2006	29	24	1		0		128	1903	216	-4.9	
Apr-2007	16	30	2		0			1597	182	-5.2	
Jul-2007	12	42	0		0			2062	184	0.9	
Oct-2007	102	24	0		0			1394	200	4.9	
Dec-2007	91	35	0		0		43	2111	232	17.8	
Mar-2008	70	30	0		0		40	1922	177	-17.6	
Jun-2008	71	2	2	8	0		127	1865	210	10.8	
Aug-2008	60	20	0		0		25	1229	137	-32.7	
Jul-2009	21	81	1	76	0		111	1869	321	16.8	
Dec-2009	18	61	2		0		109	1916	269	-9.8	
Mar-2010 Jun-2010	25	32 49	0	33	0	2	92 112	1790 1896	184 280	-26.8	

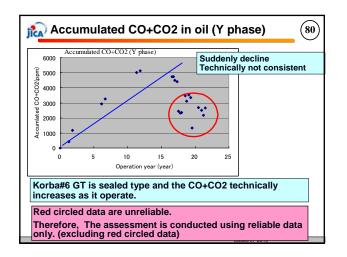
	H2	CH4	C2H4	C2H6	C2H2	C3S	CO	CO2	TCG	TCG increase	
Date										ppm/month	Remarks
Caution level-1	ppm ≥400	ppm ≥100	ppm ≥10	ppm ≥150	ppm ≥0.5	ppm	2300 ≥	ppm	ppm ≥500	ppn/monu	
Caution level-2		=100	≥10 ≥10	= 150	≧0.5		2500		≥500		C2H4≥10+TCG≥500 or C2H2≥0.5
Abnormal leve			≥100						≥700	≧70	C2H4 \geq 100+TCG \geq 700 or Δ TCG \geq 70ppm/month
Apr-1990	40	0	0	0	0	0	16	412	56		
Nov-1990	31	0	0	0	0	0	42	1148	73	2.4	
Feb-1995	0	15	4	27	0	0	5	2914	51	-0.4	
Sep-1995	10	15	10	26	0	15	43	3200	119	10.3	Caution level-1
May-2000	55	95	1	61	0	16	275	4744	503	6.7	Caution level-1
Nov-2000	55	93	2	61	0	12	290	4822	513	1.7	Caution level-1
ul-2005	23	90	3		0	45	320	4405	626	2.0	Caution level-1
)ct-2005	30 40	80	5		0	40	330	4390	625	-0.4	Caution level-1
an-2006	40	62	3	130	0	75	290 262	4210	608 525	-5.8	Caution level-1
Apr-2006 ul-2006	20	62	2	30	0	50	262	4130	216	-23.7	Caution level-1
Dct-2006	20	27	1	27	0	13	120	2310	210	-99./	
an-2005	21	27	1	44	0	13	115	2190	213	-1.1	
ul-2007	5	51	0	44	0	14	149	3331	212	-0.4	
0ct-2007	12	31	1	49	0	13	73	3044	179	-28.5	
an-2008	80	81	0		0	27	205	3310	473	80.2	Abnormal level
dav-2008	53	73	13		0	24	191	3160	428	-14.7	Caution level-2
ul-2008	61	14	13		0	15	61	1259	167	-90.0	cutton lever 2
ul-2008 ul-2009	26	72	1	70	0	25	287	2390	481	27.2	
Dec-2009	31	57	1	60	0	23	267	2223	439	-7.9	
Mar-2010	21	30	2	52	0	23	212	1966	319	-37.9	
un-2010	18	28	1	51	0	2	233	2411	333	4.4	

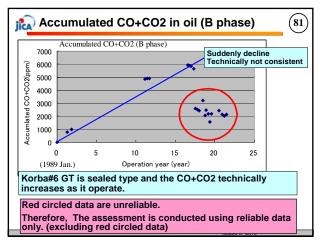
Review of Korba#6 DGA jica)

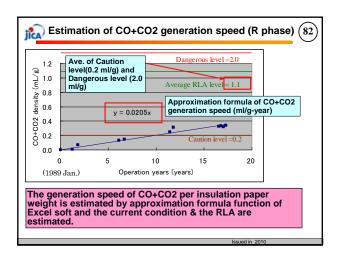
R phase Each analyzed gas has had no big change and been less than the judgment criteria. Therefore, the transformer is assessed as normal condition.

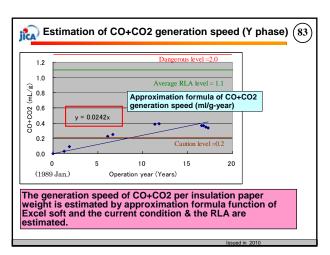
(77)

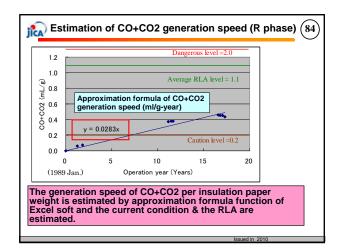

■Y phase

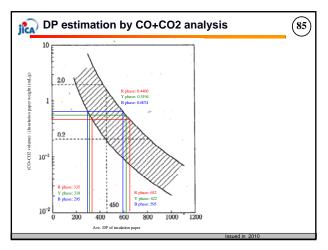

Each analyzed gas has had no big change and been less than the judgment criteria recently, although TCG increase per month (Jan. 2008) had become Abnormal level and C2H4 (May. 2008) had become Caution level-2. Therefore, the transformer is assessed as normal condition.

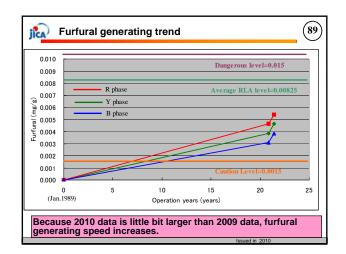

■B phase

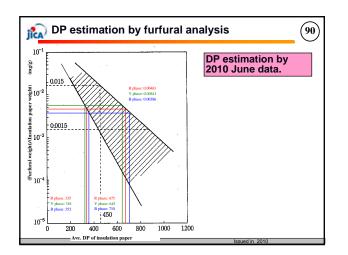

E printse Each analyzed gas has had no big change and been less than the judgment criteria recently, although TCG increase per month (Dec. 2007) had become Abnormal level. Therefore, the transformer is assessed as normal condition.


	Required Items	Unit	Data
A1	Accumulated CO+CO2 density in insulation oil	vol ppm (mL/kL)	Next page
A2	Insulation oil volume	kL	23.4
A3	Insulation oil weight	kg	_
A4	Insulation oil gravity	g/mL	_
A5	Insulation paper weight	kg	303
A6	History of insulation oil treatment		Nil
oil The	aled performance is good and Korba#6 h treatment. erefore, correction of accumulated CO+C juired.		

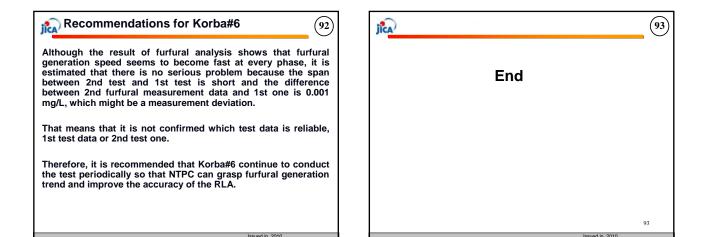




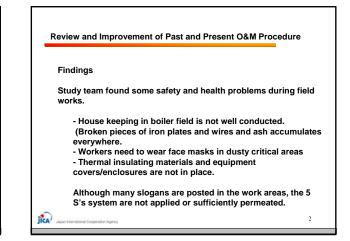


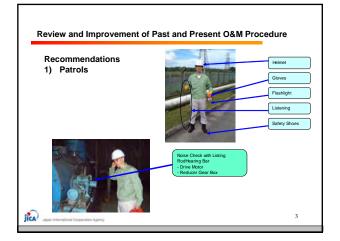


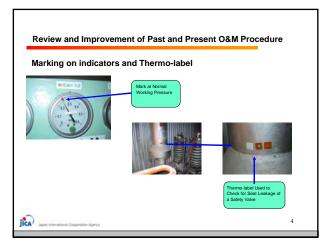
		R phase	Y phase	B phase
Trend	CO+CO2 generating speed (mL/g year)	0.0205	0.0242	0.0283
Current condition	CO+CO2 (mL/g) (Jan 2010)	0.4400	0.5194	0.6074
(Jan 2010)	DP	335-652	318-622	295-595
	Evaluation	Caution level	Caution level	Caution level
RLA	Operation years until Ave. lifetime point	53.7	45.5	38.9
	Estimating year to Ave. lifetime point	2042 Sep.	2034 Jul.	2027 Dec.

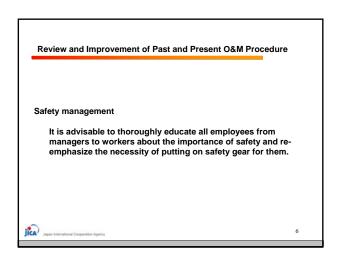

	Required Items	Unit	R phase	Y phase	B phase
A1	Furfural density (Nov. 2009)	mg/L	0.05	0.06	0.04
A1	Furfural density (June 2010)	mg/L	0.06	0.07	0.05
A2	Insulation oil volume	L		23400	
A3	Insulation oil weight	kg		22000	
A4	Insulation oil gravity	g/mL		_	
A5	Insulation paper weight	kg		303	
A6	History of insulation oil change			Nil	
he r tarti	a#6 has never implemented neasurement data becomes ing operation to furfural me data is little bit larger than	s furfur asuren	al gener nent day	ating we	

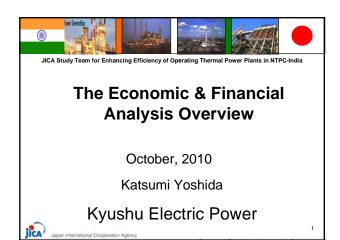
Start o	peration	Insulation paper weight			303 kg	
Jan 1989		Oil volume			23400 L	
Phase	Date	Operation years	Furfural (mg/L)	Furfural ^{*1} (mg/g)	Remarks	
Dubaaa	Nov. 2009	20.86	0.05	0.00386	Caution level	
R phase	June 2010	21.46	0.06	0.00463	Caution leve	
Valara	Nov. 2009	20.86	0.06	0.00463	Caution leve	
Y phase	June 2010	21.46	0.07	0.00541	Caution leve	
	Nov. 2009	20.86	0.04	0.00309	Caution leve	
B phase	June 2010	21.46	0.05	0.00386	Caution leve	

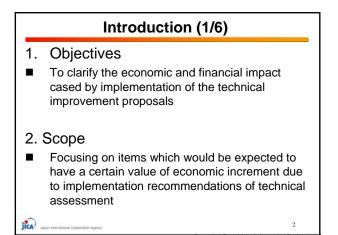

		R phase	Y phase	B phase
Trend	Furfural generating speed (mg/g year)	0.000220	0.000259	0.000184
Current condition	Furfural (mg/g) (June 2010)	0.00463	0.00541	0.00386
(Jan 2010)	DP	335-675	318-645	352-710
	Evaluation	Caution level	Caution level	Caution level
RLA	Operation years until Ave. lifetime point	38.2	32.8	45.9
	Estimating year to Ave. lifetime point	Mar-2027	Oct-2021	Nov-2034




interent in the Implementation of the Performance Test				
ŗ	Ne.c	Item-	NTPC- Study team-	NTPC-
Ī	16	Test Implementation Team-'	A) Organization: Operation Section+ B) Implementation: Subsidiary Company and Service Provider+	Organization: EEM Group+' Implementation: EEM Group+'
	2*	Preparation of Test-' (day before)-'	 A) Confirmation of measurement data values? B) Calibration of Instrument/measurement devices, as necessarys? 	A) Not applied." B) Not applied."
	3+>	Test implementation."	A) Meeting with relevant puties before data of before offset of the Constraints of Constraints offset num; C. Calibration of Ose analyzer: D Measurement timing is notified by paging every hour for ash samplingfore of indextore value. ¹ E) Field Measurement. ¹ * Data Source and Comparison of Temps' * Data Source Comparison & Temps' * Bottom Ach samplings'. ¹ Bottom Ach samplings'. ¹	A) Hot applied- B)Lead is not fixed at rated out put- () Same as Bludy team- () Not appled- () Not appled- () Same as Study team-


NTPC (India)	Study Team (Japan)
 Patrol: 3 times / 1 shift Patrol: 3 times / 1 shift 8 local operator/ 2units Each station does not have Simplified Simulator. Maintenance (in house) 	 Patrol: 1 times / 1 shift 3 to 4 local operator/ 2units Each station has Simplified Simulator. Maintenance (by subsidiary
 Periodic inspections works conducted 24h/day Boiler RLA conducted every 5 years Performance test frequencies are depend on system 	 company: (J Power case) Periodic inspections works conducted 8-12h/day Boiler RLA is conducted 100,000 hrs operation time It is conducted by the RLA result after that. Performance test/once a year





n/ /	V 1 4/	G: 1: #4	D'I 1#2	X7 1 1 42
Plant (# =Unit)	Korba #6	Singrauli #4	Rihand #2	Unchahar #3
Boiler	Air Heater Renovation (SDU/FRS)	Air Heater Renovation (SDU/FRS)		
Turbine	Turbine Seal Fin Replacement	Turbine Seal Fin Replacement	Turbine Seal Fin Replacement	
Control System	-	_	-	New System for Optimization of Combustion & Soot blowers

Introduction (3/6)

3. Method

ilea)

ilca

Economic & Financial

Firstly, with the Cost Benefit Analysis, we evaluate the actual economic volume of incremental profit. Then, by NPV approach we clarify the value of investment in terms of the Cost of Capital.

Environmental Value-CO2

 Secondly, regarding the environmental value added by the reduction of CO2 emissions that would arise from the proposed technical improvements, introduced later

Introduction (5/6)

Assumption for this Analysis

Please understand the possibility that different conclusions of financial assessment may be reached in the future based on assumptions at the time of preparation for each actual implementation to be planned by NTPC because the assumption will be directly affected by the differences of Prices, logistics and spec which the supplier can provide. So before the implementation, careful assumption and cost estimation would be essential.

Introduction (4/6) Assumption for this Analysis Due to the limitations and difficulties of collecting cost information in India for this analysis, we conduct financial analysis with data that is currently available within our study period because some material or equipment related to technical improvement items are new and not common in India, so that in order to make up for a lack of Indian some local cost information, we supplement it with implementation costs in cases of Japan and other countries. However, under this situation for colleting cost information, as much as possible, this analysis made efforts to use Indian local cost (e.g. calculation of initial installation labor cost by Indian labor rate and a work-hour estimation according

to Japanese experience.

ilca)

Introduction (6/6)

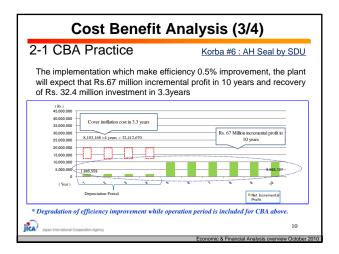
Cost of Capital

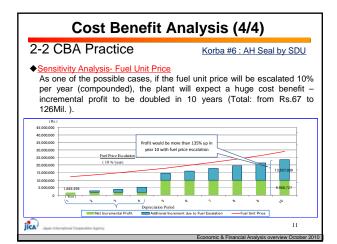
jica)

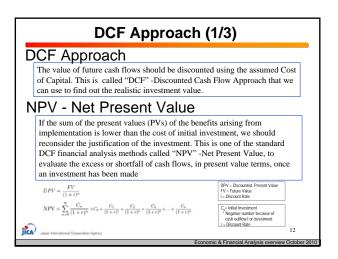
- The cost of capital is the cost of a company's finance (e.g. interest on debt and dividend on stock).
- We assumed current NTPC's cost of capital to be 7% following recent actual expenditure on Interest & Finance Cost and Divided. (Source of figures in the table below is page 20 of NTPC's 33rd Annual Report)
- As a result of discussions about the expected cost of capital in the near future with CenPEEP, <u>we have set</u> the cost of capital as 12% for the following DCF Approach analysis.

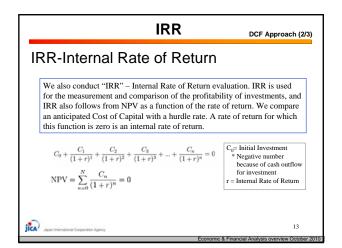
Cost Benefit Analysis (1/4)

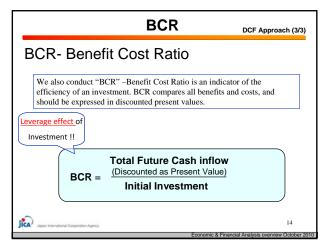
1-1 Method of CBA

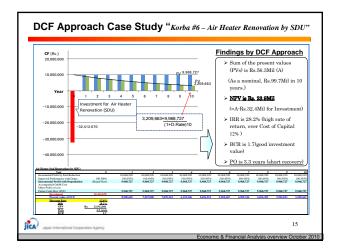

◆<u>Concept</u>

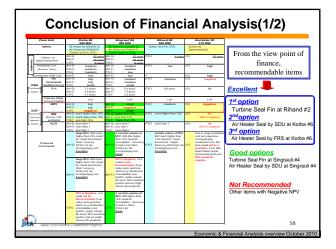

ilca

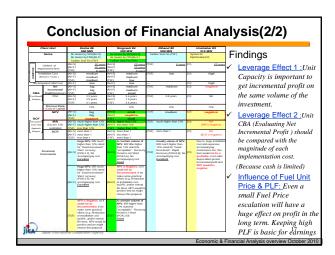

Cost Benefit Analysis (CBA) compares the incremental profit (such as the reduction of fuel costs through the plant efficiency improvement) gained by the implementation of the improvement with the initial cost of implementation.

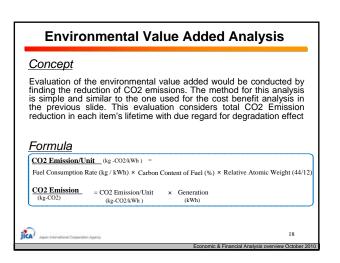

If there are any extra expenses or costs caused by the implementation (such as the materials, maintenance and/or scrapping property), CBA recognizes these things as negative factors for incremental profit. CBA also considers lifetime assessment for new equipment


Cost Benefit Analysis (2/4) 1-2 Method of CBA CBA's Criteria is Simple How to find incremental Profit > Possibility of Incremental Profit A. Current Fuel Cost (100) B. Possible Fuel Cost after improvement (90) C. Fuel Cost Reduction: Profit *(A less B: 10) This would be recognized as initial incremental profit D. Incremental Cost by installation* (5) * If there are any extra costs caused by the implementation (such as the materials, maintenance and/or scrapping property), these should be included as additional incremental cost. → Sufficiently Plus → Implement E. Net Incremental Profit *(C less D : 5) Slight, Negative → Reconside * CBA is based on a practical accounting policy, so, in accordance with the existence of the depreciation cost related to the implementation, we should carefully evaluate the incremental profit.









Cost Benefit of Emission Reduction

How to evaluate CBER !?

jica

Furthermore we evaluate Cost benefit for the CO2 emission reduction (CBER). This is calculated by dividing the volume of the emission-reduction by the cost of investment (If there are any accompanying incremental costs or expenses due to the implementation, they would be considered part of the cost of investment)

Cost Benefit for the CO2 Emission Reduction = Investment / CO2 Reduction (for lifetime)

Conclusion of Environmental Value Added Analysis Plan: Unit Kocho ## Singeruit ## Rihand #2 Orthorham ## 1 <td

relativel Good

> volume Cost is r

of Reduction, Cost relatively medium

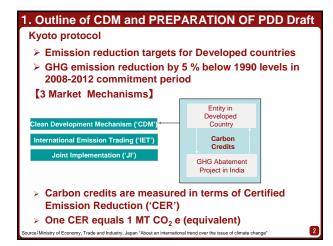
Financial Comments

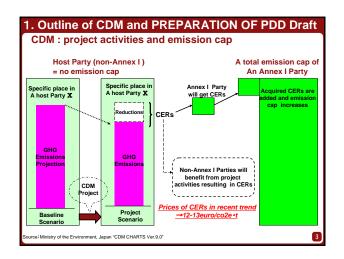
jic

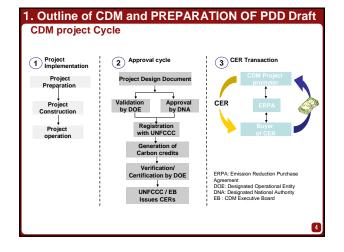
19

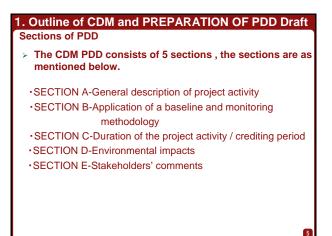
relatively low Excellent

volume of F Cost is relat exerci-

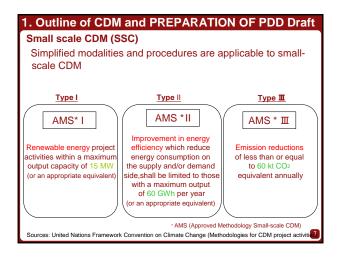

Carefull about th balance Cost is medium Good


Carefull examinal about the costbalance would be



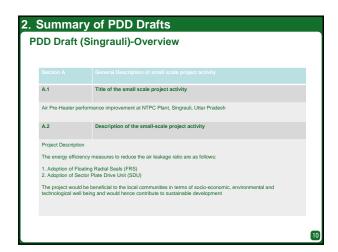


CONTENTS 1. Outline of CDM and PREPARATION OF PDD Draft 2. Summary of PDD Drafts 3. Planning of schedule of preparatory works

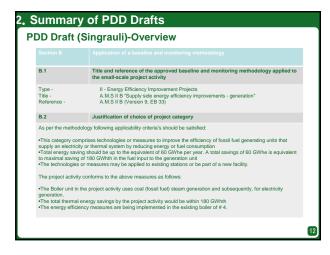


1. Outline of CDM and PREPARATION OF PDD Draft

Selection of Methodology

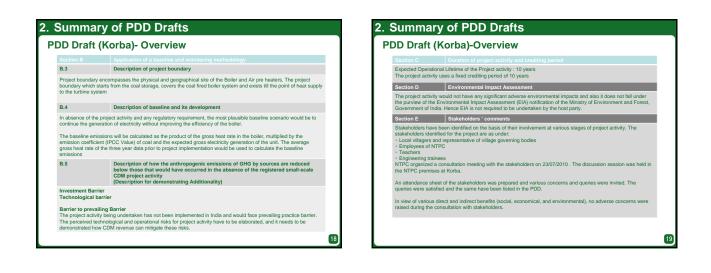

Large scale Approved Methodologies -AM0061 and AM0062

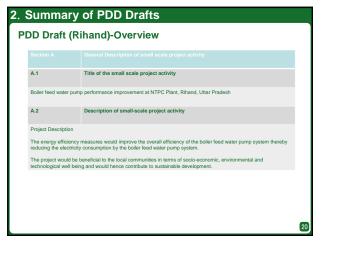
Methodologie s No.	Area	Key word	Applicability	Title of Methodologies - Version No.
AM0061	Energy Industry	Energy efficiency improvement, Energy saving	Power Plant	Methodology for rehabilitation and/or energy improvement in existing power plant – Version0.2.1
AM0062	Energy Industry	Energy saving, Energy efficiency	Improvemen t Power Plant (Turbine)	Energy efficiency improvements of a power plant through retrofitting turbines – Version01.1

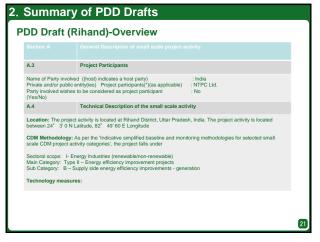


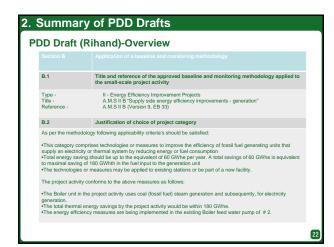
	sion of the wor of the Study	rk of CDM Consultant
PREP. ENHA	ARATION ÓF P	DD Draft" FOR THE STUDY ON ENCY OF OPERATING THERMAL NTPC-INDIA
	Contractor &Young Pvt.L	.td.
Perio	d of Execution	
Perio Fiscal year	d of Execution	and Scope of the Work
Fiscal		and Scope of the Work

mprovem	ent measures				
Finalized efficiency	d thermal power gene improvement measur	ration unit and energy es			
Thermal power generation unit	Proposed energy efficiency improvement measures				
	Initial measures proposed	Final measures selected			
Singrauli# 4	Air heater performance improvement	Air heater performance improvement			
	Turbine seal fin replacement	-			
Korba# 6	Air heater performance improvement	Air heater performance improvement			
	Turbine seal fin replacement	_			
Rihand # 2	Turbine seal fin replacement	BFP performance improvement			


Section B	Application of a baseline and monitoring methodology
B.3	Description of project boundary
	ry encompasses the physical and geographical site of the Boiler and Air pre heaters. The project starts from the coal storage, covers the coal fired boiler system and exists till the point of heat thine system
B.4	Description of baseline and its development
continue the ge	neration of electricity without improving the efficiency of the boiler.
emission coeffi	nissions will be calculated as the product of the gross heat rate in the boiler, multiplied by the cient (IPCC Value) of coal and the expected gross electricity generation of the unit. The average of the three year data prior to project implementation would be used to calculate the baseline
emission coeffi gross heat rate	cient (IPCC Value) of coal and the expected gross electricity generation of the unit. The average


	onal Lifetime of the Project activity : 10 years
	/ uses a fixed crediting period of 10 years
ection D	Environmental Impact Assessment
ne purview of the	v would not have any significant adverse environmental impacts and also it does not fall under Environmental Impact Assessment (EIA) notification of the Ministry of Environment and Forest, tia. Hence EIA is not required to be undertaken by the host party.
ection E	Stakeholders ' comments
Employees of NT Teachers Engineering train TPC organized a ne NTPC premise n attendance she ueries were satis	vees consultation meeting with the stakeholders on 27/07/2010 . The discussion session was held in


Section A	General Description of small scale project activity
A.1	Title of the small scale project activity
Air Pre-Heater pe	arformance improvement at NTPC Plant, Korba, Chattisgarh
A.2	Description of the small-scale project activity
Project Description	n
1. Adoption of Flo	ency measures to reduce the air leakage ratio are as follows: paring Radial Seals (FRS) corr Plate Drive Unit (SDU)
	d be beneficial to the local communities in terms of socio-economic, environmental and I being and would hence contribute to sustainable development


. Summary of PDD Drafts						
PDD Draf	t (Korba)- Overview					
Section A	General Description of small scale project activity					
A.3	Project Participants					
Private and/or pu	volved ((host) indicates a host party) : India blie entity(ies) Project participants(')(as applicable) : NTPC Ltd. shes to be considered as project participant : No					
A.4						
	Location: The project activity is located at Korba District, Chattisgarh, India. The project activity is located between 22 21'0" N Latitude, 82 40' 48" E Longitude & 304 m above mean sea level.					
	gy: As per the 'Indicative simplified baseline and monitoring methodologies for selected small ct activity categories', the project falls under					
Main Category:	I-Energy Industries (renewable/non-renewable) Type II – Energy efficiency improvement projects – Supply side energy efficiency improvements- generation					
	asures: ating Radial Seals(FRS) Ictor Plate Drive Unit (SDU)					

B.1	Title and reference of the approved baseline and monitoring methodology applied to the small-scale project activity
Type - Title - Reference -	II - Energy Efficiency Improvement Projects A.M.S II B "Supply side energy efficiency improvements - generation" A.M.S II B (Version 9, EB 33)
B.2	Justification of choice of project category
As per the metho	dology following applicability criteria's should be satisfied:
	mprises technologies or measures to improve the efficiency of fossil fuel generating units that
 Total energy sav 	ity or thermal system by reducing energy or fuel consumption ing should be up to the equivalent of 60 GWhe per year. A total savings of 60 GWhe is equivalent
	g of 180 GWhth in the fuel input to the generation unit s or measures may be applied to existing stations or be part of a new facility.
-	ty conforms to the above measures as follows:
	y contonna to the above measures as follows.
	the project activity uses coal (fossil fuel) steam generation and subsequently, for electricity

B.3	Description of project boundary
systems. The	ary encompasses the physical and geographical site of the Boiler including boiler feed water pump project boundary which starts from the coal storage, covers the coal fired boiler system and exists till at supply to the turbine system.
B.4	Description of baseline and its development
The baseline e	eneration of electricity without improving the efficiency of the boiler feed water pump system. missions will be calculated as the product of the total auxiliary consumption, multiplied by the icient of coal. The average auxiliary consumption of the three year data prior to project
mplementatio The project en mplementatio	Users to coal: the average advance Costs of point of the time time year care prior to project. would be used to calculate the baseline emissions: lissions were calculated as the product of the total expected auxiliary consumption after the of the proposed energy efficiency measures multiplied by the emission coefficient of coal, reductions were calculated as the difference between the baseline emissions and the project
mplementatio The project en mplementatio The emission	n would be used to calculate the baseline emissions. issions were calculated as the product of the total expected auxiliary consumption after the n of the proposed energy efficiency measures multiplied by the emission coefficient of coal.

2. Summary of PDD Drafts

PDD Draft (Rihand)-Overview

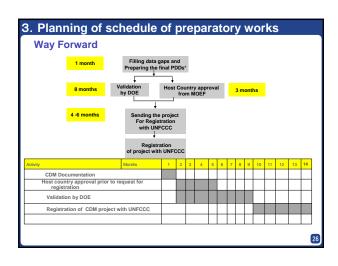
Expected Operational Lifetime of the Project activity : XX years The project activity uses a fixed crediting period of 10 years

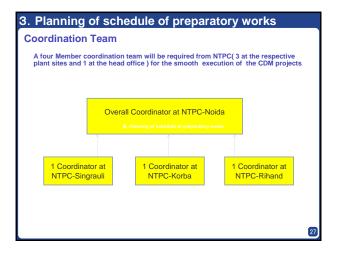
Section D Environmental Impact Assessment

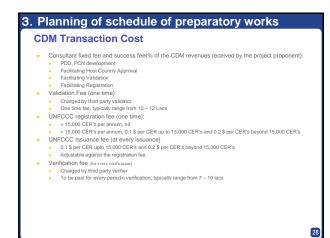
School D The project activity would not have any significant adverse environmental impacts and also it does not fail under the purive of the Environmental Impact Assessment (EIA) notification of the Ministry of Environment and Forest, Government of India. Hence FLIs is not required to be undertaken by the host party.

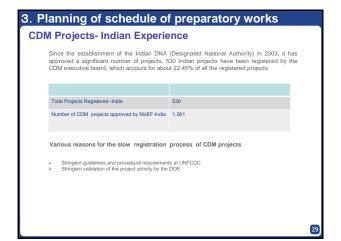
Section E Stakeholders ' comments

The local stakeholders' consultation was not implemented according to request of NTPC.


3. Planning of schedule of preparatory works Time estimate for the Way forward


- CDM Documentation: Final Project Design Document (PDD) Preparation of Project Idea Note (PIN) Approx. Time Schedule: 4 weeks from the stard of project. Indicative time frame for the work involved in the projects. However this would primarily depend upon a number of factors including availability of required information from NTPC.
- Host country approval prior to request for registration Preparation and submission of requisite documents and presentation at the Indian DNA 0
- Preparation and submitten-documents and presentation at the Indian DNA. Approx. Ime schedule: Requisite documents will be submitted within 1 week of indiatation of PDD, subject to the schalbship indiatation of PDD, subject to the schalbship by DNA to issue the Host Country Approval (HCA) is approximately 3-4 months.


24


- Validation by DOE
 Web hosting of PDD on UNFCCC website for global stakeholder consultation.
 Site visit by DOE to the plant
 Preparation of Draft Validation Report
- Preparation of Draft Validation Report including clarification, Corrective action requests (CARs), etc. Issue final Validation Report after satisfactory closure of clarifications, CARs, etc. and submission of project to UNFCCC for CDM registration
- submission of project to UNFCCC for CDM registration Approx. Time Schedule: The time taken for the closure of all the issues raised in the draft validation report and issue of final validation report is approximately 8-10 months. Receipt is subject to availability of information & required documents from NTPC.
- Registration of project with UNFCCC
 ^a Approx. Time Schedule: 4-6 months for registration (including completeness chec Information and reporting check and requ for registration) subject to no queries or revisions raised by EB.

25

3. Planning of schedule of preparatory works

CDM Projects- Indian Experience

Critical points In order to successfully complete the registration of the proposed CDM project and subsequently claim CDM benefit, following critical points need to be ensured by NTPC. Compliance with UNFCCC guidelines:

Prior consideration for CDM:
 It is required to demonstrate that at the time of project approval, carbon credit revenues were a serious consideration to migrate the financial and/or technological risks associated with the project. NTPC would be required to provide the chronology of events pertaining to the project activity with proper supporting documentation

CONSTINCT Data:
 It is required to provide proper and reproducible documentation of the data parameters and values used to
establish baseline emissions.

Demonstration of Additionality:
 The arguments mentioned in the PDD to demonstrate additionality need to be backed up with proper supporting documentation, preferably from an independent third party.

NTPC should construct theory of additionality with essential evidences and assessment of assumed risks in order to remove investment barrier and technological barrier of the project activity.

Monitoring Procedures:
 MTPC would have to ensure that the monitoring procedures as per UNFCCC guidelines and as detailed in the respective PDDs are strictly adhered to.

30

8.3 Survey Sheets for the Selection of the Candidate Units

ame of Power Plant (Unit No):					
ocation:					
ommercial Operation Date:					
viler Manufacture :					
Irbine Manufacture:	۸++ <i>،</i>	abad abaat Cool Design cool and	nrocont or	al	
el (Coal analysis) esign condition		ached sheet Coal Design coal and ent temp. °C Ambient pressur		hPa Relative humidity %	
		ent temp. C Ambient pressur	е		
ems	No	Operation Data(100%Load)		Design Data(100%Load)	
General	110				
)Equipment					
Turbine					
00%Load Output(MW)	1		MW		MW
Main Steam Pressure (MSP) / Temperature (MST)	2	MPa	°C	MPa	°C
Reheat Steam Pressure (RSP)/Temperature (RST)	3	MPa	C°	MPa	°C
Turbine Type / Length of Final stage blade	4	_			
Boiler					
100%Load Main Steam / Reheat Steam Flow	5	/	t/h	/	t/h
Superheater outlet steam pressure / temperature	6	MPa	°C	MPa	°C
Reheater outlet steam pressure / temperature	7	MPa	C°	MPa	°C
Economizer inlet feed water pressure / temperature	8	MPa	C°	MPa	°C
Boiler Type	9	_		Natural circulation / Forced circulation	on
Burner layout	10	—		Corner / Front / Opposed	
Coal Mill (unit)/reserver (unit)	11	Unit (reserve unit)		Unit (reserve unit)	
Devet Or cost		l			
)Plant Operation	10			^ · · · · · ·	
Annual operation time	12	Operation time :	hrs	Operation time :	hrs
Rated load operation time	13	<u> </u>	hrs		hrs
Partial load operation time	14	l	hrs MWb		hrs MWb
Annual generated power output(MWh)	15	l	MWh		MWh
Annual Net electric power (MWh)	16	l	MWh		MWh
Total operation time	17	<u> </u>	hrs		
Number of Hot Start	18	<u> </u>			
Number of Warm Start	19	<u> </u>			
Number of Cold start	20	<u> </u>			
Technical data		<u> </u>			
Technical data)Heat rate and Auxiliary power consumption					
Heat rate and Auxiliary power consumption Heat rate (LHV base)					
Plant heat rate	21	Gross kJ/kWh Net	kJ/kWh	Gross kJ/kWh Net	kJ/kW
Coal consumption for Goss generation (standard Coal)	21	Gross k3/ kwri Net	(g/kWh	Gross KJ/KWIT Net	g/kWh
Coal consumption for Net generation (standard Coal)	22		-		-
Boiler efficiency (LHV/HHV)	23		رg∕kWh %		رg∕kWh ∿
Furbine efficiency	24		70		70
Turbine Plant efficiency	25		%		0/
HP Turbine internal efficiency	26		<u>%</u>		/0 0/
IP/LP Turbine internal efficiency	20	IP % LP	%	IP % LP	/0 0/
	21				70
Auxiliry Power consumption	00			Name plate / data 100% Load / dat	
Coal mill	28	100% Load Power consumption	kW	kW	k\
Primary air fan (PAF)	29	100% Load Power consumption	kW	kW	k
Forced draft fan (FDF)	30	100% Load Power consumption	kW	kW	k
nduced draft fan (IDF)	31	100% Load Power consumption	kW	kW	k
3FP(Motor driven)	32	100% Load Power consumption	kW	kW	k\
Circulation Water Pump (CWP)	33	100% Load Power consumption	kW	kW	k١
)Annual Fuel consumption(ton)	0.4				
Coal	34	Standard	t	Standard	t
Dil(as Auxiliary Fuel)	35		t		t
)Boiler data					
Percentage of excess air					
Economizer outlet	36		%		%
Air preheater outlet	30		%		% %
Air preheater outlet Air preheater inlet air / gas temperature	37	/	°C	/	°C
Air preneater inlet air / gas temperature Air preheater outlet gas temperature(leak correction)	38 39	/	<u>ີ</u> ວ	/	ປ ວ°
Air preheater outlet gas temperature (leak correction) Air preheater outlet air temperature (1ry / 2ry)	39 40	/	<u>ງ</u> ວ	/	<u>ງ</u> ວ
Differencial pressure of Air preheater	40	/	kPa	1	kF
Combustible in refuse in Fly ash	41		<u>кРа</u> %		<u>۲</u>
Compustible in refuse in Fly asn Economizer inlet feed water flow	42	1			 t∕h
BFP outlet water pressure / temperature	43	MPa	<u>t∕n</u> ℃	MPa	t∕n ℃
AFP outlet water pressure / temperature Auxiliary steam flow	44 45	тига	t/h	เพศส	t/h
•	45 46		t∕h ℃		t/h ℃
	46 47	mm under	<u> </u>	page under	
0)Stack inlet gas temperature	4/	mm under	°C	mm under	°C
1)Coal fineness	10		U		<u>ງ</u> ວ
1)Coal fineness 2)Coal mill inlet air temperature (primary air)	48 49		°C		
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature	49		C°		
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal	49 50			/	
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry)	49 50 51	/	℃ kg/h	/	kg/
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow	49 50 51 52	/	kg/h	/	
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry)	49 50 51 52 53		kg∕h ℃	/	°C
 1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 	49 50 51 52		kg/h	/	°C
 1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry))Turbine data 	49 50 51 52 53 54	/ /	kg/h °C °C	// 	kg/ °C °C
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry))Turbine data HP Turbine inlet steam pressure / temperature	49 50 51 52 53 54 55	/ / /	kg/h °C °C	/ MPa MPa	ວ° ວ° ວ°
 1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 7) RH outlet flue gas temperature (1ry/2ry) 7) Turbine data 9)HP Turbine inlet steam pressure / temperature 9)HP Turbine exhaust steam pressure / temperature 	49 50 51 52 53 54 55 55 56	MPa	kg/h °C °C °C	MPa	ວ° ວ° ວ° ວ°
 1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 8) RH outlet flue gas temperature (1ry/2ry)<!--</td--><td>49 50 51 52 53 54 55</td><td></td><td>kg/h °C °C</td><td></td><td>ວ° ວ° ວ° ວ°</td>	49 50 51 52 53 54 55		kg/h °C °C		ວ° ວ° ວ° ວ°
 1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 8) RH outlet flue gas temperature (1ry/2ry) 9) RH outlet flue gas temperature (1ry/2ry)<!--</td--><td>49 50 51 52 53 54 55 55 56 57</td><td>MPa MPa</td><td>kg/h °C °C °C °C °C</td><td>MPa MPa</td><td>ວ° ວ° ວ° ວ°</td>	49 50 51 52 53 54 55 55 56 57	MPa MPa	kg/h °C °C °C °C °C	MPa MPa	ວ° ວ° ວ° ວ°
 1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 8) RH outlet flue gas temperature (1ry/2ry) 9) RH outlet flue gas temperature (1ry/2ry)<!--</td--><td>49 50 51 52 53 54 55 56 57 57 58</td><td>MPa MPa MPa</td><td>kg/h °C °C °C °C °C</td><td>MPa MPa MPa</td><td>ວິ ວິ ວິ ວິ ວິ ວິ</td>	49 50 51 52 53 54 55 56 57 57 58	MPa MPa MPa	kg/h °C °C °C °C °C	MPa MPa MPa	ວິ ວິ ວິ ວິ ວິ ວິ
 1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 8) Purbine inlet steam pressure / temperature 9) Purbine inlet steam pressure / temperature 9) Extraction pressure / temperature 1 st Extraction pressure / temperature 2 nd Extraction pressure / temperature 	49 50 51 52 53 54 55 56 57 58 58 59	MPa MPa MPa MPa	kg/h °C °C °C °C °C °C	MPa MPa MPa MPa	ວິ ວິ ວິ ວິ ວິ ວິ ວິ
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry))Turbine data)HP Turbine inlet steam pressure / temperature)HP Turbine inlet steam pressure / temperature)Extraction pressure / temperature 1st Extraction pressure / temperature 3rd Extraction pressure / temperature 3rd Extraction pressure / temperature	49 50 51 52 53 54 55 55 56 57 58 59 60	MPa MPa MPa MPa MPa MPa	kg/h °C °C °C °C °C °C	MPa MPa MPa MPa MPa	ວ <u>ິ</u> ວົງ ວົງ ວິ ວິ ວິ
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry))Turbine data)HP Turbine inlet steam pressure / temperature)HP Turbine inlet steam pressure / temperature)Extraction pressure / temperature 1st Extraction pressure / temperature 3rd Extraction pressure / temperature 4th Extraction pressure / temperature	49 50 51 52 53 54 55 56 57 58 59 60 61	MPa MPa MPa MPa MPa MPa MPa	kg/h °C °C °C °C °C °C °C °C	MPa MPa MPa MPa MPa MPa MPa	ັ ວິ ວິ ວິ ວິ ວິ ວິ ວິ
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry))Turbine data)HP Turbine inlet steam pressure / temperature)HP Turbine inlet steam pressure / temperature)Extraction pressure / temperature 1st Extraction pressure / temperature 3rd Extraction pressure / temperature 4th Extraction pressure / temperature 5th Extraction pressure / temperature 5th Extraction pressure / temperature	49 50 51 52 53 54 55 56 57 57 58 59 60 61 62	MPa MPa MPa MPa MPa MPa MPa MPa	kg/h °C °C °C °C °C °C °C °C °C °C	MPa MPa MPa MPa MPa MPa MPa MPa	ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 7) PTurbine inlet steam pressure / temperature 0HP Turbine inlet steam pressure / temperature 0HP Turbine inlet steam pressure / temperature 0Extraction pressure / temperature 1st Extraction pressure / temperature 1st Extraction pressure / temperature 3rd Extraction pressure / temperature 4th Extraction pressure / temperature 5th Extraction pressure / temperature 6th Extraction pressure / temperature 6th Extraction pressure / temperature	49 50 51 52 53 54 55 56 57 57 58 59 60 61 62 63	MPa MPa MPa MPa MPa MPa MPa MPa MPa	kg/h °C °C °C °C °C °C °C °C °C	MPa MPa MPa MPa MPa MPa MPa MPa MPa	ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 7) PTurbine data 0HP Turbine inlet steam pressure / temperature 0HP Turbine inlet steam pressure / temperature 1 st Extraction pressure / temperature 1 st Extraction pressure / temperature 2 nd Extraction pressure / temperature 3 rd Extraction pressure / temperature 3 rd Extraction pressure / temperature 5 th Extraction pressure / temperature 5 th Extraction pressure / temperature 6 th Extraction pressure / temperature 7 th Extraction pressure / temperature 7 th Extraction pressure / temperature	49 50 51 52 53 54 55 56 57 55 56 57 58 59 60 61 62 63 64	MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa	kg/h °C °C °C °C °C °C °C °C °C °C	MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa	ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວ
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 7) RH outlet flue gas temperature (1ry/2ry) 7) RH outlet flue gas temperature (1ry/2ry) 7) PT urbine inlet steam pressure / temperature 0HP Turbine inlet steam pressure / temperature 0HP Turbine inlet steam pressure / temperature 0HP Turbine inlet steam pressure / temperature 1st Extraction pressure / temperature 1st Extraction pressure / temperature 3rd Extraction pressure / temperature 4th Extraction pressure / temperature 5th Extraction pressure / temperature 6th Extraction pressure / temperature 6th Extraction pressure / temperature	49 50 51 52 53 54 55 56 57 57 58 59 60 61 62 63	MPa MPa MPa MPa MPa MPa MPa MPa MPa	kg/h °C °C °C °C °C °C °C °C °C	MPa MPa MPa MPa MPa MPa MPa MPa MPa	ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ

7)Condenser cooling water temperature inlet / outlet	68	inlet °C outlet °C	inlet °C outlet °C
8)Condenser cooling method	69	Surface type cooling	Surface type cooling
(5) Turbine efficiency enhancement modification			
1)Modification record	70		
2)Scope and its year	71		
3)Result	72	%	%
3. Steam supply (Yes /No)	73		
4. Economical data (parameter)			
(1)Fuel price(standard coal base)	74	Rs/t	
(2)Electrical tariff	75	Rs/kWl	h
5. Information of Power Plant operation			
(1)Cause of shut down trouble and its time	76	Attached sheet 1	
(2)Main list of trouble equipments	77	Attached sheet 2	
(3)Improvement record	78	Attached sheet 3	
(4)environmental criteria of power plant	79	Dust: mg/m3N SOx: mg/m3N	NOx: mg/m3N
(5)Environmental protection equipment	80	Dust: SOx:	NOx:
(6)Cooling water temperature record	81	Attached sheet	
C. L. O. S. farmenting			
6. I & C information	00		
(1)Cause of shut down trouble and its time	82	Attached sheet 1	
(2)Main list of trouble equipments	83	Attached sheet 2	
(3)Improvement record	84	Attached sheet 3	
(4)I&C equipment	85	Year: Replace:	
1)Boiler control system	86	Type: (DCS Elec-analogue Air-analogue)	Cabinet nos:
2)Burner control system	87	Type: (DCS PLC WiredLogic Electromagnet	
3)Boiler sequence control system	88	Type: (DCS PLC WiredLogic Electromagnet	
4)Boiler protection	89	Type: (DCS PLC WiredLogic Electromagnet	
5)Boiler local control system	90	Type: (DCS Elec-analogue Air-analogue)	Cabinet nos:
6)flue-gas De-NOx system	91	Type: (DCS Elec-analogue Air-analogue)	Cabinet nos:
7)flue-gas De-SOx system	92	Type: (DCS Elec-analogue Air-analogue)	Cabinet nos:
8)Turbine governor control system	93	Type: (DEH Mechanical type)	Cabinet nos:
9)Turbine start and stop control system	94	Type: (DCS PLC Electromagnetism Ry)	Cabinet nos:
10)Turbine sequence control system	95	Type: (DCS PLC Electromagnetism Ry)	Cabinet nos:
11)Turbine protection	96	Type: (DCS PLC Electromagnetism Ry)	Cabinet nos:
12)Turbine local control system	97	Type: (DCS Elec-analogue Air-analogue)	Cabinet nos:
13)Unit CPTR	98	Y/N Function;()	Cabinet nos:

7. Control method			Equip Oyes ×no ◇Other	automatiz ation Oyes × no	Condition / pending	Control mode: (Auto/Manual)
(1)Load control	①BT coordinated control system	99				
	②Conventional	100				
(2)Feed water control	system	101				
(3)Draft control	() Air flow control (FDF)	102				
	②Air flow control(02)	103				
	③Furnace pressure control(IDF)	104				
	④WB damper control	105				
(4) MST control	Spray control system	106				
(5)RST control	Spray control system	107				
(6)Fuel control	1Coal feed control system	108				
	②HO flow control	109				
	③LO flow control	110				
(7)startup system	1Boiler bypass system	111				
	②Turbine bypass system	112				
(8)Local control	①Deaerator level control	113				
	②Deaerator pressure control	114				
	③Heater level control	115				
	4GAH out let gas temperature c	116				
(9)Burner control	①Automatic burner ignition	117				
	2Coal feed control	118				
(10)DeNOX control		119				
(11)DeSOx control	(11)DeSOx control					
(12)Others ①soot blower control		121				

INVESTIGATION SHEET : Coal

NO.	Item	unit	Coal name				
			Design	Present-1	Present-2	Present-3	Present-4
			<u> </u>				
1	Inherent moisture (AD)	%					
2	Volatile (AD)	%					
3	Fixed carbon (AD)	%					
4	Ash (AD)	%					
5	Total	%					
6	HHV	kJ/kg					
7	Fuel ratio	NU/ Ng					
8	Surface water	%					
9	C	%					
10	H	%					
11	S	%				<u> </u>	<u> </u>
12	N	%				<u> </u>	<u> </u>
13	0	%					
14	U H2O	%					
15	Ash	%					
16	Total	%					
10	Total	/0					
	AD:Air dry						
	Ash fusion, reducing						
17	IT	°C					
18	ST	°C					
19	HT	°C					
20	FT	°C					
20	Ash fusion, oxidizing						
21	IT	S					
22	ST	℃					
	HT	လို လို					
	FT	℃	1			1	1
	Ash mineral analysis	-	1			1	1
25	SiO2	%					
	AI2O3	%	1			1	1
	Fe2O3	%					
28	CaO	%					
	MgO	%					
	Na2O	%					
31	K2O	%					
	TiO2	%					
33	MnO	%	1			1	1
34	SO3	%					
35	P2O5	%	1		1	1	1

INVESTIGATION SHEET : Generator

Questionnaire about Generator for selecting power station Object: Generator (stator coil)

Questionnaire	Reply		
1 Generator specification			
(1) Type			
(1) Rated output (MW or MVA)			
(2) Rated voltage (kV)			
(3) Rated current (A)			
(4) Frequency (Hz)	Design : Present operation :		
(5) Power factor	Design : Present operation :		
(6) Stator specification			
a. Insulation class			
a. Cooling system	H2 cooling, Air cooling or Water cooling		
b. Insulation material			
c. Type of resin			
d. Resin process method			
(7) Manufacturer (country)			
2 Operation record			
(1) Year of operation			
(2) Accumulated number of generator start-stop			
(3) Accumulated operation time (hour)			
(4) Operation mode	Base-load, Middle-load or Peak-load		
3 Operation monitoring data (①Just after starting commercial operation and ②Now)	①:Exist or Nil ②:Exist or Nil		
4 Insulation resistance test (megger testing) data in the past 5 years	Exist or Nil		

INVESTIGATION SHEET : Generator		TOR 4
5 History of implementing Polarization index test (PI test)		
(1) 1st test	Exist or Nil	
(2) 2nd test	Exist or Nil	
(3) 3rd test	Exist or Nil	
(4) 4th test	Exist or Nil	
(5) 5th test	Exist or Nil	
6 History of implementing Tan δ test		
(1) 1st test	Exist or Nil	
(2) 2nd test	Exist or Nil	
(3) 3rd test	Exist or Nil	
(4) 4th test	Exist or Nil	
(5) 5th test	Exist or Nil	
7 History of implementing AC voltage-current test		
(1) 1st test	Exist or Nil	
(2) 2nd test	Exist or Nil	
(3) 3rd test	Exist or Nil	
(4) 4th test	Exist or Nil	
(5) 5th test	Exist or Nil	
8 History of implementing Partial discharge test		
(1) 1st test	Exist or Nil	
(2) 2nd test	Exist or Nil	
(3) 3rd test	Exist or Nil	
(4) 4th test	Exist or Nil	
(5) 5th test	Exist or Nil	
9 Records of accident		
10 Records of refurbishment		

INVESTIGATION SHEET : Main Transformer

Questionnaire about Transformer for selecting power station Object: Main transformer

Questionnaire	Reply
1 Transformer specification	
2 Transformer specification (insulation oil storage type)	Open type or Closed type (Sealed type)
3 Coolant (Insulator)	Oil or SF6 Gas
4 Absorbent for insulation oil	Exist or Nil
3 Year of starting operation	
4 Accumulated operation time (hour)	
5 Records of implementing gas analysis of transformer insulation oil	
(1) 1st test	Exist or Nil
(2) 2nd test	Exist or Nil
(3) 3rd test	Exist or Nil
(4) 4th test	Exist or Nil
(5) 5th test	Exist or Nil
6 Records of insulation oil cleaning(deaeration)/changing	
(1) 1st insulation oil cleaning(deaeration)/changing	
(2) 2nd insulation oil cleaning(deaeration)/changing	
(3) 3rd insulation oil cleaning(deaeration)/changing	
(4) 4th insulation oil cleaning(deaeration)/changing	
7 Records of implementing furfural testing in transformer insulation oil	
(1) 1st test	Exist or Nil
(2) 2nd test	Exist or Nil
(3) 3rd test	Exist or Nil
(4) 4th test	Exist or Nil
(5) 5th test	Exist or Nil
8 Manufacturer (country)	
9 Records of accident	
10 Records of refurbishment	

INVESTIGATION SHEET-1

SHUT DOWN BY TROUBLE

No. DATE		SHUT DOWN PERIOD (HR)		EQUIPMENT	REASON/COUNTER MEASURE	
Γ	D/M/Y	UNIT SHUT	PARTIAL SHUT			
	-,, :	DOWN	DOWN			

INVESTIGATION SHEET-2

EQUIPMENT LIST WITH FREQUENT TROUBLE

No.	DATE	SHUT DOWN P	ERIOD (HR)	EQUIPMENT	REASON/COUNTER MEASURE
	D/M/Y	PLANT SHUT	PARTIAL SHUT		
	B/ 111/ 1	DOWN	DOWN		
		1			

INVESTIGATION SHEET-3

PAST RENOVATION

No.	DATE	SHUT DOWN PERIOD	SYSTEM/EQUIPMENT	REASON/RESULT
	D/M/Y	(HR)	CONTENT OF RENOVATION	· · · · · · · · · · · · · · · · · · ·
		1		