

Boiler RLA

JICA Study Team Boiler RLA

Target units

Singrauli Unit 6 (500MW Drum Boiler) Cumulative operation hours: 172,000 hours (27th October to 1st November, 2009)

Unchahar Unit 2 (200MW Drum Boiler) Cumulative operation hours: 139,098 hours (4th November to 9th November, 2009)

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

JICA Japan Int

Schedule for Boiler RLA demo

Day 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 Day of the week Sa Sa Mo Tue We Th Fr Sa Su Mo Tue We Tue We<	∼ January						r	be	em	Nov	1						r	obe	Oct				Month	
Day of the week Sa Su Mo/Turu We Th Fr Sa Su Mo/Turu We Th Fr <th co<="" th=""><th></th><th>~</th><th>ĺ</th><th>11</th><th>10</th><th>9</th><th>8</th><th>7</th><th>6</th><th>5</th><th>4</th><th>3</th><th>2</th><th>1</th><th>31</th><th>30</th><th>29</th><th>28</th><th>27</th><th>26</th><th>25</th><th>24</th><th>Day</th></th>	<th></th> <th>~</th> <th>ĺ</th> <th>11</th> <th>10</th> <th>9</th> <th>8</th> <th>7</th> <th>6</th> <th>5</th> <th>4</th> <th>3</th> <th>2</th> <th>1</th> <th>31</th> <th>30</th> <th>29</th> <th>28</th> <th>27</th> <th>26</th> <th>25</th> <th>24</th> <th>Day</th>		~	ĺ	11	10	9	8	7	6	5	4	3	2	1	31	30	29	28	27	26	25	24	Day
Image: Section Image:				We	Tue	Mo	Su	Sa	Fr	Th	We	Tue	Mo	Su	Sa	Fr	Th	We	Tue	Мо	Su	Sa	Day of the week	
Meeting Boiler Inspection													1	1/	:7-1	0/2	1						Boiler Inspection	
Boiler Inspection												_											Meeting	
								1/9	-11	1/4	1												Boiler Inspection	
Examination in Japan			-																				Examination in Japan	

Safety working

Following the instruction of power station, keeping Japanese safety management.

JICA)

ICA Study Team for Enl

- ✓ Falling In danger of falling, working at 2m or more high altitude.
- ✓ Lack of oxygen In danger of lack of oxygen, working in the boiler furnace.
- ✓ Dropping In danger of equipments dropping at hanging in and out Maximum weight 50 kg. In danger of manual tools and small parts dropping.
 - *Check the portion that **asbestos** used. If asbestos treating work begins, Interrupt working.
 - *Information sharing to avoid working during upper portion working, γ -ray inspection, etc.

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

jica)

Scope of work (1)

NO.	Parts	INSPECTION	Singrauli #6	Unchahar #2								
1	WATER WALL	VT	Mainly at burner level Errosion part									
2		THICKNESS MEASUREMENT	HICKNESS #EASUREMENT *20 points(5points each from 4corners)									
3	SUPER HEATER	VT	Mainly Platen super heater									
4		THICKNESS MEASUREMENT	+50 points around soot blower									
5		SAMPLE TUBE INSPECTION *	I tube with Im length for Platen SH including weld joint portion	2 tubes with 1m length from Final SH, 1 tubes with 1m length from Platen SH including weld joint portion that is selected by steam oxide scale measurement result.								
6		CREEP RUPTURE TEST*	 3 specimens from base metal, 3 specimens from weld joint from the tube identical to above. 	 3 specimens from base metal, 3 specimens from weld joint from the tube identical to above. 								
7		SUS SCALE DEPOSITION INSPECTION	 50 points of bottom bend portion of austenitic steel tubes 	 29 ×3 points of bottom bend portion of austenitic steel tubes 								
8		VT	 Mainly around soot blower. 									
9		SAMPLE TUBE INSPECTION *	2 tubes with 1m length for Final RH (one each from furnace inside and penthouse) including weld joint portion.									
10	REHEATER	CREEP RUPTURE TEST*	*3 specimens from base metal, 3 specimens from weld joint from the tube identical to the one of the above sample tubes.									
11		SUS SCALE DEPOSITION INSPECTION	*50 points of bottom bend portion of austenitic steel tubes									

ICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Scope of work (2)

_										
NO.	. Parts	INSPECTION	Singrauli #6	Unchahar #2						
12		VT	Visual inspection in penthouse							
13		PT(DPT)	 4 portions at stub weld of Inlet header. 	 4 portions at stub weld of Platten inlet header right side. 						
14	SUPER HEATER HEADER	UT		 Iring of circumferential weld of Final outlet header right side with UT and TOFD identical to the replica portion 						
15		REPLICA INSPECTION	 1 point on 1ring of circumferential weld of left outlet header. 1 point on base metal of left outlet header. 	 1 point of circumferential weld potion of right side of Final outlet header. 						
16	DE SUPER HEATER PIPE REPLICA INSPECTION		* 2 points (one each from Iring of circumferential weld right and left).							
17		VT	*Visual inspection in penthouse							
18	REHEATER	UT	 Iring of circumferential weld of outlet header with UT and TOFD identical to the replica portion 							
19	HEADER	REPLICA INSPECTION	 2 points (one each from circumferential weld of left and right of out let header. 	 3 points of circumferential weld potion of right and left side outlet header. 						
20	MAIN STEAM PIPE (near the stop valve weld joint)	REPLICA INSPECTION	*2 points on a circumferential weld of left main steam pipe	2 points on two circumferential welds of right main steam pipe						
21	HOT RHEAT PIPE	REPLICA INSPECTION		 1 point on a circumferential weld of right High temperature reheat pipe. 						

Japan International Cooperation Agen

Inspection points (Singrauli #6)

Inspection points (Unchahar #2)

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Findings (1) (Singrauli #6)

Components	Inspection method	Findings
Water wall tube	Visual check	Erosion of a number of tubes around short soot blower were found. •No erosion at any other portions. •No erosion and decease in thickness around burners.
	Thickness measurement of tubes	Thickness was measured at erosion regions around soot blowerrs near each 4 corner. Min. thickness was 3.7mm/2nd blower in forntwal first from right. f 51* 5.6mm, SA210 Gr.C
	Visual check	Attrition of binding tube ≇4 and ≇5 was found. (Min.2.8mm) Attrition of cooling spacer tubewith front tube of ≇14 panel (Min.5.0mm) Disorder of arrangement at lower part of panel with distortion to adjacent panel. A number of disjointed slide spac
Distion CU	Thickness measurement of tubes	1:Outer tube of rear side portion at sootblower level[24points]→Min.6.3mm φ63.5#6.3mm SA213 TP347H -2:Outer bottom tube [24points]→Min.9.8mm φ54.0#9.5mm SA213 TP347H -3:Attrition of colin
i atten Sir	SUS scale deposition inspection	Nos. exceeding 10% fullness : 7 /50 (magnetized effect of material)
	Tube sampling for sample tube inspection (inspected in Japan).	#12-3(from leftside) f 47.63*8.6-f 47.63*10, SA213 T22
	Creep rupture test (inspected in Japan)	

Findings (2) (Singrauli #6)

Components	Inspection method	Findings
	Visual check	 Disorder of arrangement at lower part of panel with distortion to adjacent panel.
	SUS scale deposition inspection	No exceeding 10% fullness
	Tube sampling for sample	#3-1(from leftside in penthouse) 1m including weld
Reheater	tube inspection	f 54*5.6, SA213 T22
	(inspected in Japan).	#14-5(from rear side in furnace) (SA213T22 f 54*4.5-SA213T11 f 54*4.0)
	Creep rupture test	
	(inspected in Japan) for 1	
	tube with 1m length.	
	Visual check	 No appearance abnormarity in stubs and other weld portion.
	DPT	#2(1,4,7,12) Indication was found in #2-12 stub at tube side. Indication disaappeared after grindng off the
Super heater header	511	tube in 1mm depth .
	Replica inspection	 No crack in Base metal, HAZ(Heat Affected Zone) and weldmetal.
	reepieu inspecuoii	More detail microstructural observation is required in labo.
De superheater nine	Replica inspection	 No crack in Base metal, HAZ(Heat Affected Zone) and weldmetal.
		More detail microstructural observation is required in labo.
	Visual check	 No appearance abnormarity in stubs and other weld portion.
	Replica inspection	 No crack in Base metal, HAZ(Heat Affected Zone) and weldmetal.
	reepieu inspecuoii	 More detail microstructural observation is required in labo.
Reheater header	UT	 No detection of flaw beyond H-detection line.
	0.	 4 detected flaw under H-detection line.
	TOFD	 A number of flaw considered as satle blow holes and slag inclusions were detected.
		No considerable crack detected.
Main steam pipe		No crack in Base metal HAZ(Heat Affected Zone) and weldmetal
(near the stop valve weld	Replica inspection	More detail microstructural observation is required in labo
joint)		nore detail inkrostidetatul observation in required in 1800.
Japan International	Cooperation Agency	1

Findings (3) (Unchahar #2)

Components	INSPECTION	Unchahar #2 Brief comment
WATER WALL	VT	Erosion of a number of tubes around short soot blower were found. Erosion of corner tubes at soot blower level.(Thickness measurement 28points (Min.4.2mm)
	THICKNESS MEASUREMENT	Eroded tubes around short soot blower were meareured .(69points measured) Min 5.3mm (2nd short blower rear wall #1 form left)
	VT	Disorder of arrangement at lower part of panel with disjointed slide spacers. Slight erosion of rear tubes at the highest level of short soot blower.
	THICKNESS MEASUREMENT	Rear tubes at the highest level of short soot blower.(29points, Min.9.8mm) 2nd tubes from rear tubes at the highest level of short soot blower.(3points, Min.100mm) Rear tubes at the second highest level of short soot blower.(29points, Min.9.8mm)
SUPER HEATER	SAMPLE TUBE INSPECTION *	1 sample tube from Platen-SH in furnace (#3panel- 8th tube from rear) 2 sample tubes from Final-SH in furnace (#1-3rd tube from rear, #119-3rd tube from rear)
	CREEP RUPTURE TEST*	1 sample tube from Platen-SH in furnace (#3panel- 8th tube from rear), 1 sample tubes from Final-SH in furnace (#119-3rd tube from rear)
	SUS SCALE DEPOSITION INSPECTION	3 tubes with 15% fullness and 2 tubes with 10% fullness at front bend portion. 1 tube with 15% fullness and the others with less than 10%.
REHEATER	VT	No abnormality with panel ar _r angement Slight erosion of tubes at the highest level of short soot blower.

Findings (4) (Unchahar #2)

INSPECTION	Unchahar #2 Brief comment
VT	No appearance abnormality in stubs and other weld portion.
PT(DPT)	3 small circular indication patterns by ark strike at 4th tube from front.
υr	No detection of flaw which echo exceeds L-line by UT. Continuous indication with fine flaws detected at 80mm depth from surface by TOFD.
REPLICA INSPECTION	No crack in Base metal, HAZ(Heat Affected Zone) and weld metal. More detail microstructural observation is required in labo.
REPLICA INSPECTION	No crack in Base metal, HAZ(Heat Affected Zone) and weld metal. More detail microstructural observation is required in labo.
VT	No appearance abnormality in stubs and other weld portion.
REPLICA INSPECTION	No crack in Base metal, HAZ (Heat Affected Zone) and weld metal. Abnormal microstructure observed in base metal region of right-hand weld of header, which is considered to be the effect of ark during welding. More detail microstructural observation.
REPLICA INSPECTION	No crack in Base metal, HAZ(Heat Affected Zone) and weld metal. More detail microstructural observation is required in labo.
REPLICA INSPECTION	No crack in Base metal, HAZ(Heat Affected Zone) and weld metal. More detail microstructural observation is required in labo. Some deposit metal by welding attached to base metal near the weld ring.
	VT PT(DPT) UT REPLICA INSPECTION REPLICA INSPECTION REPLICA INSPECTION REPLICA INSPECTION

Japan International Cooperation

Visual inspection (Singrauli #6)

Visual inspection (Unchahar #2)

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Thickness measurement

Thickness measurement (1)

[Equipment]

Ultrasonic thickness meter including a probe with a digital display and waveform indicator.

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

[Couplant]

Glycerin paste or glycerin solution with the 75%

Thickness measurement (2)

[Reference block]

17

Reference block: RB-T and RB-E (for regular interval checking and daily checking)

Thickness measurement (4)

【 Acceptance Criteria 】

Measurement result is judged by the calculated value (tsr: thickness required) based on "Technical standards for thermal power generation facilities" and JIS B 8201 : 2005.

tsr =(Pd/2 σ_a+P)+0.005d (JISB8201)
tsr : Minimum required thickness of tube (mm)
P : Maximum operating pressure(MPa)
d : Outside diameter of tube (mm)

 σ_a : Allowable tensile stress of the material (N/mm²)

Thickness measurement results of WW (Singrauli #6)

Thickness measurement results of Platen SH (Singrauli #6)

Thickness measurement results of Platen SH (Unchahar #2)

Thickness measurement results

Thickness measurement of tubes (Singrauli #6)										
			Desi	igned	Allowable		Measured			
Tube	Material	OD	t	Pressure	Temp.	Stress	tsr	(Min)	Note	
		(mm)	(mm)	P (kg/cm2)	(°C)	S (MPa)	(mm)	(mm)		
Water wall	SA210 Gr.C	51.0	5.6	197.3	416	90.1	5.2	3.7	Erosion around short soot blower	
PLATEN SH ST- II	SA213 TP347H	54.00	9.50	178	540*	92	> 4.9	9.8		
	SA213 TP347H	63.50	6.30	178	540*	92	> 5.8	2.8	Attrition with bind tubes	
	SA213 TP347H	63.50	6.30	178	540*	92	> 5.8	6.3	Soot blower level (#1 from rear side)	
	SA213 TP347H	54.00	6.00	178	540*	92	> 4.9	6.3	Soot blower level (#2 from rear side)	

*Designed value of header

Thickness measurement of tubes (Unchahar #2)										
			Desi	igned		Allowable	ter	Measured		
Tube	Material	OD	t	Pressure	Temp.	Stress	(mm)	(Min)	Note	
		(mm)	(mm)	P (kg/cm2)	(°C)	S (MPa)	(mm)	(mm)		
	CA 210 CD 41	62.5	6.2	175.8	404	02.0	61	4.2	Erosion around	
water wall	SA-210, GR.A1	03.5	0.5		404	00.0	0.1		short soot blower	
	EA 212 T 22	3 T 22 51	9.6	175.8	544	20.7	39.7 9.4	0.8	Highest soot	
PLATEN SH (ELE I)	SA 215 1 22				500	39.7		9.0	blower level	
DI ATEN SUL (ELE 1)	EA 212 T 22	£1	51 0.4	175 0	566	20.7	9.4	9.8	Second highest	
FLATEN SH (ELE I)	3A 213 1 22	51	9.0	175.8		39.7			soot blower level	
	EA 212 T 22	£1	9.6	185.0	566	20.7	9.4	10.0	Highest soot	
FLATEN SR (ELE 2)	SA 215 1 22	51		1/5.0		39.7			blower level	
		t:Thickne	ss			tsr = PD/	(2S+P)+0	.005D		

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Thickness management

Thickness management How to determine design thickness in Japan? Allowable stress of various materials SA 213 T 22 120 SA 335 P-22 (MPa) 100 SA 213 T 12 SA 335 P-12 80 Allowable stress S SA 213 T 11 SA 209 T 1 60 SA 210 Gr. A1 40 SA213 TP304H 20 0 400 450 500 550 600

Temperature (°C) by Technical standards for thermal power generation facilities

JICA Study Team for Enha

Thickness management

How to determine design thickness in Japan?

IICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

jica ...

Caluculated designed creep life (Unchahar #2)

			1	Designed		Allowable	ter	Hoop	F.C. 1117.43		
Header and Pipe	Material	O.D. D(mm)	t (mm)	Pressure P (kg/cm2)	Temperature (°C)	Stress S (MPa)	(mm)	stress (MPa)	calculated	mated Life(n) by creep rupture data	
Platen SH outlet header	SA 335 P-22	323.9	56	163.8	534	58.2	37.5	35.3		8.58E+0	
Re-Heater outlet header	SA 335 P-22	558.8	45	44.1	555	45.4	25.0	23.8		9.19E+0	
TSH outlet header	SA 335 P12	323.9	40	167.6	450	101.0	24.7	60.0		4.81E+0	
Links to DESH	SA 335 P12	406.4	45	167.6	450	101.0	31.0	67.6	2.57E		
DESH	SA 335 P12	406.4	45	167.6	450	101.0	31.0	67.6	2.57E		
Links from DESH	SA 335 P12	406.4	45	167.6	427	102.8	30.5	67.6		2.25E+0	
Platen SH inlet header	SA 335 P12	323.9	40	167.6	427	102.8	24.3	60.0		4.30E+0	
Platen SH outlet header	SA 335 P-22	323.9	56	163.8	534	58.2	37.5	35.3	8.58E4		
Links to Final SH	SA 335 P-22	406.4	70	163.4	534	58.2	47.0	35.4	8.49E+		
SH Finish inlet header	SA 335 P-22	406.4	65	163.4	534	58.2	47.0	39.0	5.54E+0		
SH Finish outlet header	SA 335 P-22	457.2	100	160.6	555	45.4	63.8	25.0		7.76E+0	
Main Steam Pipe	SA 335 P-22	355.6	50.3	160.5	540	54.4	42.8	44.6		1.98E+0	
Hot Reheat Pipe	SA 335 P-22	508	28	37.6	540	54.4	16.4	30.9		9.91E+0	
							tsr = PD	/(2S?+2kP)	+a (?=1, a=0)	
		1			Tem	Temperature(°C)					
		ĸ	≤350	480	510	535	565	590	620		
		Feritic steel	0.4	0.4	0.5	0.7	0.7	0.7	0.7		
	nal Cooperation Ag	200									

Detection technique for scale deposition of SUS (Austenite Steel) boiler tube

Detection technique for scale deposition of SUS (Austenitic Steel) boiler tube (1)

(Backgraoud) Steam oxide scale of austenitic stainless steel (SUS steel) tubes such as TP304, TP321 used for SH and RH, exfoliates and deposits at the bottom inside during long term operation and blocks tube-coolant flow leading to over heat of the tube at down stream side.

Conventionally γ -ray transmission test method is applied.						
From the view point of efficiency and safety	r					
Using the induction principle, the magnetic scale inside of nonmagnetic tub was detected.	e					
Juguer International Cooperation Agency	35					
JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA						

Detection technique for scale deposition of SUS (Austenitic Steel) boiler tube (2)

Detection technique for scale deposition of SUS (Austenite Steel) boiler tube (3)

Detection technique for scale deposition of SUS (Austenite Steel) boiler tube (4)

Detectable level

[Comparison between γ -ray projection and scale detector results]

[Effect of outside surface of tube] The effect of magnetic scale on the tube outside and local magnetization of the tube by long term heat. Suspected signals require to be confirmed by γ -ray detection.

Detectable level $\geq 10\%$.

[Scale with low permeability]

The deposit scale with lower permeability than one of reference scale is not detected, such as austenitic stainless steel tips by cutting and limescale etc.

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Detection technique for scale deposition of SUS (Austenite Steel) boiler tube (5)

[Confirmation of scale deposition]

JICA Study Team for Enhan

ilca

It is preferable to apply γ -ray detection besides scale detector, in order to recognize the effect of the outside surface of tube and the existence of the scale with low permeability.

Sampling inspection by γ -ray detection will improve the accuracy of scale deposition estimation.

SUS scale deposition inspection results (Singrauli #6)

SUS scale deposition inspection results (Unchahar #2)

ating Thermal Power Plant in NTPC-India Boiler RLA

DPT (Liquid Panetrant Testing)

DPT procedure (Platen SH inlet header 4 stub weld portion)

DPT results (Platen SH inlet header 4 stub weld portion)

DPT (Liquid Panetrant Testing) (1)

[Classification of penetrant indication]

Based on JIS Z 2343-1:2005 ^[Non-destructive testing — Penetrant testing — Part 1 : General principles — Method for liquid penetrant testing and classification of the penetrant indication]

*Classifica	tion of the penetrant indication						
Classificat	ion of the penetrant indication	Mark	Definition				
Isolated	Indication by cracking	С	Indication by cracking				
penetrant indication	Indication with linear pattern	L	Indication in length more than 3 times as width except for cracking				
	Indication with circular pattern	R	Non linear indication except for cracking				
Continuous p	enetrant indication	F	A number of indication exisisting on a line				
Dispersed p	enetrant indication	S	A number of indication exisisting in a constant area				

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Japan International Coop

DPT (Liquid Panetrant Testing) (2)

JICA

[Classification by the position and direction in weld]

Based on JIS Z 2343-1:2005 [Non-destructive testing — Penetrant testing — Part 1 : General principles — Method for liquid penetrant testing and classification of the penetrant indication] * Classification by the position and the direction in yeld

Position and direction of penetrant indication	Mark	illustration (C,L,R ,S in figures show classification of the penetrant indication
Longitudinal direction along weld line	A	$\frac{C}{(4+4+1)} \frac{L}{(1+4+1)} \frac{R}{(1+6+1)} \frac{S}{(1+6+1)}$
Horizontal direction perpendicular to weld line	В	
In weld metal	х	<u>с</u> <u>((ж(((</u>
Longitudinal direction along HAZ line	с	
Horizontal direction perpendicular to HAZ line	D	
In Base metal	Е	
	8 x 2	F : More than 2 indications with 8mm in length on a line
	(0.5) : 0.5mm depth of flaw

DPT (Liquid Panetrant Testing) (3)

[Criteria for indication by "Technical standards for thermal power generation facilities"]

Based on JIS Z 2343-1:2005 [Non-destructive testing – Penetrant testing – Part 1 : General principles – Method for liquid penetrant testing and classification of the penetrant indication] No penetrant indication by crack

- > No linear penetrant indication and indication by linear flaw with longer than 1mm in length.
- >No circular penetrant indication and indication by circular flaw with longer than 4mm in length.
- In case of 4 or more circular penetrant indications or circular indications by circular flaw located in a line, the spacing between adjacent indications needs to be longer than 1.5mm.
- ➢No more than 10 or more circular penetrant indications or circular indications by circular flaw are included within the rectangular area of 3750mm²(short side length is longer than 25mm)

Japan International Cooperation Ag

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Ultrasonic testing TOFD (Time of Flight Diffraction)

Ultrasonic testing (1)

Radiographic testing and ultrasonic testing are the typical nondestructive testing that inspects the inside of weld of tubes and pipes. In general, when setting Radiographic film is difficult, the ultrasonic testing is applied.

[Detecting equipment]

DSM35 Krautkramer Universal UltrasonicFlaw Detector

[Couplant]

Glycerin paste or glycerin solution with the 75% concentration or more.

Japan International Cooperation Age

[Principle of ultrasonic testing (UT)]

As for the butt-weld joint, "angle beam method" is usually applied because of weld reinforcement.

Ultrasonic testing (2)

Ultrasonic testing (3)

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

[Calculation of defect position]

Y can be measured with the scale and W can be read from CRT. The position of the defect can be calculated by the following formula.

Ultrasonic testing (4)

Distinction of defect and measurement of echo height

The echo that appears on CRT is judged whether a defect or not (shape echo) from the reflection source and the echo height. The reflection source is calculated from d and k in equations. If it is located in the weld, the echo is judged to come from a weld defect. The H-line is defined by linking the heights of the echo on CRT that reflects at the drilled hole with 3mm in the diameter of reference test block RB41. M -line is a half of H-line (-6db), L -line is a quarter of the height of H-line (-12db). These lines are called as "Dividing curves of echo height "That is made before flaw detection. The echo that exceeds L line in this echo height area during scanning the probe for flaw detection is judged to be a defect based on L line . DAC curve

Ultrasonic testing (5)

[Measurement of length of defect]

The range that exceeds L line during scanning the probe along the direction of the weld line is defined as "the indication length of defect".

iica)

(JIS Z3060:2002)

IICA Study Team for Enhancing Efficiency of Operating The

er Plant in NTPC-India Boiler RLA

Ultrasonic testing (6)

Classification of flaw

Echo height area and classification of flaw by indication length of flaw									
Area	Ⅲ in case Ⅱ and Ⅲ in	e of level M 1 case of level	detection L detection	IV					
thickness (t) Classification	18 ≦t	18 <t≦ 60</t≦ 	60 < t	18 ≦t	18 <t≦ 60</t≦ 	60 < t			
The first class	≦ 6	≦ t/3	≦ 20	≦ 4	≦ t/4	≦ 15			
The second class	≦ 9	≦ t/2	≦ 30	≦ 6	≦ t/3	≤ 20			
The third class	≤ 18	≦t	≦ 60	≦ 9	≦ t/2	≦ 30			
The fourth class	The one exceeding the third class								
JIS Z3060:2002	JIS Z3060:2002								
from appendix 7 of ex	amining ultra	asonic wave of	welded steel	joint					

Japan Varmational Coccention Agency JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Ultrasonic testing (7)

Acceptance Criteria

To satisfy either of the following (1) or (2).

- (1) Height of the reflected wave from the flaw in the weld on CRT must be below the height of reflected wave from the reference hole corrected by the probe to flaw distance.
- (2) The length of the flaw from which the height of the reflected wave on CRT beyond the height of reflected wave from the reference hole corrected by probe to flaw distance, must be the value or less as shown below.

Division of thickness of weld(mm)	Length(mm)
t≤18	6
$18 < t \leq 57$	1/3 of thickness of weld
57< t	19

g Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

*Technical standards for thermal power generation facilities

TOFD (Time of Flight Diffraction) method (1)

TOFD (Time of Flight Diffraction) method (2)

Time of Flight Diffraction (TOFD) method of Ultrasonic inspection is a very sensitive and accurate method for nondestructive testing of welds for defects.

[Detecting equipment]

JICA

 μ -Tomoscan(R/D Tech) ۶ Amplitude linearity: within $\pm 3\%$ based on JIS Z 2352 4.1. Time base linearity: within $\pm 1\%$ of full scale based on JIS Z 2352 4.2.

[Probes and Wedges]

Probes for transmission and receiver are the longitudinal

wave angle beam probe with the same performance.

Wave frequency: 2~10MHz

Resonator dimensions: 0.25in~0.5in

Wedges: the longitudinal wave angle 45° or 60°

[Couplant]

Glycerin paste or glycerin solution with the 75% concentration or more. ilc.A

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

TOFD (Time of Flight Diffraction) method (3)

[Test sample]

> Test sample with same dimension as inspected part is preferable .

[An example of selection of transducers and transducers spacing]

Thickness of sample (mm)	Number of pair of transducers	Center wave frequency (MHz)	Dimension of transducers (mm)	Nominal refractive angle (°)	Transducers spacing (mm)
25	1 pair	5~10	2~6	60	58
00	90 2 pairs	5~10	2~6	60	69
90		2~5	6~12	45	140

er Plant in NTPC-India Boiler RLA

TOFD (Time of Flight Diffraction) method (4)

[Sensitivity of detection]

> The sensitivity of detector is adjusted at the 80% of echo height from the horizontal cave that is the lowest echo. Also the noise level is kept at lower than 5 to 10%.

TOFD (Time of Flight Diffraction) method (5)

[Flaw detection]

> The pair of probes across the weld line is manually scanned in the direction parallel to the weld.

The range of flaw to detect is within the extent to 1 inch (25.4mm) away from weld potion.

TOFD (Time of Flight Diffraction) method (6)

[Evaluation]

>Flaw (depth, length and height) is evaluated by D-scan image.

An example of flaw image by D-scan

UT& TOFD inspection

Correspondence between UT and TOFD inspection result (Singrauli 6 unit)

		- <u>k</u> + Y							
Flaw ?	х	Y	w	d	k	Region of echo height	1	Remarks	
1	582	93	104.6	37.5	-4.7	п	10	Out of scope of TOFD inspection	d W
2	820	122	129.2	46.3	1.4	Ш	34		
3	940	51	26.8	9.6	26	П	6		- T
	1110	101	101.2	36.3	6.4	п	8		

TOFD inspection result

IICA JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

UT inspection results (Unchahar #2)

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Sample tube inspection (4)

Sample tube inspection (5)

Portable chemical analysis equipment (for information)

Portable chemical composition analysis by spark exititation

	鉄鋼				(w:%
	元章	Low Alloy	而行表的法	十-1257个第3万万世	High Alby
	C	0.010 - 40	001 ~ 18	0.01 ~ 3.10	
	8	0.01 ~ 185	001 ~ 5	0.81 ~ 5.40	0.01 - 4.50
	Ma	0.01 ~ 18.6	001 ~ 21	0.81 ~10.00	0.01 ~ 0.00
	Ċ.	6.01 - 11.6	001 ~ 32.0	0.01 ~28.00	0.01 ~ 30.20
	Me	0.01 ~ 95	001 ~ 18	0.81 ~ 6.70	0.01 ~ 22.00
	N	0.01 - 54	001 ~ 15	0.01 ~45.30	28, 11
	C)	0.01 ~ 2.8	001 ~ 15	081 ~ 40	0.01 ~ 41.0
	Ci.	0.01 ~ 93		0.01 - 110	0.01 ~ 11.0
	8	0.01 - 2.7		0.01 ~ 98	0.02 ~ 1-
	Ť.	0.01 ~ 0.82		0#1 - 28	0.01 ~ ñ.*
	NI	0.01 - 0.12		0.01 - 30	0.01 ~ 7.5
	A	0.01 ~ 14		081 ~ 31	0.01 ~ 8.6
	И.	0.04 ~ 0.		0.64 - 61	0.02 - 12.5
	7:	4.01 ~ 0.%		0.01 ~ 0.14	
Phil Phil	Pt	9.01 ~ 0.25			
	Ma	0.01 ~ 0.0			
	R.	H Fe	3 Fe	通行	0.01 ~ (3.0

jica	Japan International Dooperation Agency	7
	IICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RI A	

Sample tube inspection items

				Inspection item			
C:	1	2	3	4	5	6	7
Sample tube	Outer surface appearance	Internal surface appearance	Tube dimension • Hardness	Metallography	Scale analysis	RLA by microstructure degradation	Creep rupture test
Platen-SH #12-3	0	0	0	0	0	0	0
RH #3-1 (in penthouse)	0	0	0	0	0	0	-
RH #14-5 (in furnace)	0	0	0	0	0	0	0
				Inspection item			
	1	2	3	4	5	6	7
Unchahar #2 Sample tube	Outer surface appearance	Internal surface appearance	Tube dimension • Hardness	Metallography	Scale analysis	RLA by microstructure degradation	Creep rupture test
						-	
Platen-SH	0	0	0	0	0	0	0
Platen-SH Fainal-SH#1	0	0	0	0	00	0	0

er Plant in NTPC-India Boiler RLA

Japan International Co

Sample tube inspection (Outer surface appearance)

Sample tube inspection (Tube dimension)

m for Enl

Sample tube inspection (Hardness)

Sample tube inspection (Steam oxide scale adhering condition)

Sample tube inspection (6)

Sample tube inspection (8)

Sample tube inspection (9) [Microstructural observation] Cutting the tube 12~18mm in thickness Cold mounting with epoxy resins or acrylic resins Mounting ┚ # $80 \rightarrow$ # 1500 water proof SiC paper Grinding J Polishing is achieved with steps of successively finer abrasive Polishing particles with diamond particle or oxide particle 3 μ m \rightarrow 0.1 μ m. Scale observation The area at fire side is observed with optical microscope ×100, ×400 in magni lica ICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Sample tube inspection (Sample tube specification Singrauli #6)

Sampl	e	Materia	al	Designe OD×t(m	d m)	Desig Temperat	ned ure(°C)	Designe Pressure (N	d (IPa)
Platen-SH #12-3		SA213T11*		ϕ 47.63 $ imes$	t8.6	Not ava	ilabl		
		SA213T11		φ 47.63×t	10.0	Not available		17.46	
RH #3-1		SA213T22*		φ 54.0×t5.6		540			
(in penthouse)		SA213T	22	φ 54.0×t	5.6	540)	5.27	
RH #14-5 (in furnace)		SA213T	22	φ 54.0×t	4.5	Not available		5.27	
		SA213T1	1*	φ 54.0×t	4.0	Not available			
Chemical of	compositio	on analysis r	esults by	spark disch	arge opti	ical emissio	n analysis	(wt%)	
1	Sample tube	С	Si	Mn	Р	S	Cr	Mo	
Pk	aten-SH#12-3	3 0.10	0.53	0.38	0.026	0.012	1.14	0.46	
(i	RH #3-1 n penthouse)	0.10	0.28	0.45	0.013	0.008	2.20	0.95	
	RH #14-5 (in furnace)	0.10	0.67	0.41	0.006	0.008	1.30	0.58	
(J	SA213T11 IS-STBA23)	≤0.15	0.50~1.00	0.30~0.60	≤0.030	≤0.030	1.00~1.50	0.45~0.65	
(J	SA213T22 IS-STBA24)	≤0.15	≤0.50	0.30~0.60	≤0.030	≤0.030	1.90~2.60	0.87~1.13	
Japan International C	Soperation Agen	9							

jic

Sample tube inspection (Sample tube specification Unchahar #2)

	Sa	Ma	Material		Designed OD×t(mm)		Designed Temperature (°C)		signed essure MPa)		
	Distant	стт <i>щ</i> 2 о	SA2	13T22	φ51	.0×t9.6		553		17.04	
	Platen-	SN #3-8	SA21	3T11*	φ51	.0×t7.1		503	1	7.24	
Γ	Engl	стт #1	SA2	13T22	\$ 51.0×t9.6			554	1	7.24	
	rinai-	SA21	3T22*	φ51	.0×t8.8		545	1	7.24		
	Einel S	SA2	SA213T22		φ 51.0×t9.6		545		17.24		
	Tillal-5	n #119	SA21	SA213T22*		ϕ 51.0×t8.8		534		17.24	
(Chemical c	omposition an	alysis r	esults by	y spark	discharg	ge optica	ıl emissi	ion anal	ysis (wt%	
		Sample tube	С	Si	Mn	Р	S	Cr	Mo		
		Platen-SH #3-8	0.09	0.58	0.44	0.032	0.010	1.12	0.49		
		Final-SH #1	0.10	0.24	0.42	0.030	0.012	2.20	0.95		
		Final-SH #119	0.10	0.24	0.42	0.030	0.013	2.22	0.96		
	SA213T11 (JIS-STBA23)		≤0.15	$0.50 \sim 1.00$	$0.30 \sim 0.60$	≤0.030	≤0.030	$1.00 \sim$ 1.50	$_{0.45\sim}^{0.45\sim}$		
jica .	upan international Co	SA213T22 (JIS-STBA24)	≤0.15	≤0.50	0.30~ 0.60	≤0.030	≤0.030	$1.90 \sim 2.60$	0.87~ 1.13	7	

Sample tube inspection (Steam oxide scale composition analysis)

Sample tube inspection (Metallogrphy)

Sample tube inspection (Metallogrphy)

Creep rupture test

Creep rupture test (1)

Creep rupture test is the most reliable method to evaluate the remaining creep life. (Test machine) (Example of specimen for creep rupture test) 10 > The larger size of specimen is better because of oxidation during the test.

(Test condition)

> Test condition is determined based on the hoop stress under

operational condition.

>In order to shorten the test time, test stress or temperature are set at higher than operational condition.

jica) JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Creep rupture test (Parameter method) (2)

(Example of test condition and result by parameter method) > The lowest stress is almost same stress as operational stress .

The temperature is set so that the estimated creep rupture time is within about 3000hrs.

> With the test temperature and rupture time, LMP (Larson-Miller parameter) is obtained.

		Test cond	lition	Estimated	Rupture	Rupture LMP	
Sample	Material	Temperature T (℃)	Stress (MPa)	rupture time (h)	time t (h)	C=15.8	
		670	30	2,500	1,200	17,806	
1-1 CH 4-1-	4 21 2 77 22	670	40	1,500	600	17,522	
2nd Sri tube	A215 122	670	50	800	400	17,356	
		670	60	400	100	16,788	
				I MD - /	979 15+T) /		

LMP = (273.15+T) (C+log t)

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

JICA Jaco

Creep rupture test (Parameter method) (3)

 \succ If the reliable virgin material data is available, the equivalent temperature can be estimated and residual life is evaluated with the equivalent temperature instead of designed temperature.

Creep rupture test (Isostress method) (4)

(Example of test condition and result)

Jica Japan When

- > The stress is set same as operational stress .
- > The lowest temperature is set so that the estimated creep rupture time is within about 3000hrs.

		Test cond	lition	Estimated	Rupture
Sample	Material	Temperature	Stress	rupture	time
		т (℃)	(MPa)	time	t (h)
	A213 T22	650	30	2,500	2,400
2nd SH tube		675	30	1,000	1,200
		700	30	200	400

Creep rupture test (Isostress method) (5)

(Evaluation of test result by Isostress method)

> The rupture time is extrapolated to operation temperature.

Creep rupture test (condition and test specimens) Singrauli #6

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Creep rupture test (condition and test specimens) Unchahar #2

Creep rupture test specimens before and after testing

3456789

5 6 7 8 9 110

After creep rupture test '

After creep rupture test ↑

Creep rupture test results Singrauli #6

			Test co	ndition	Rupture	LMP*	Fracture	Reduction
Compo	ient	Material	Temp. T (℃)	Stress (MPa)	time t (h)	C=19.95	elongation (%)	of area (%)
			665	49.0	187.7	20,852	102	97
	Base Metal	SA 213 T11	665	63.7	48.7	20,302	87	94
Distan CU			700	38.3	76.1	21,248	88	94
r lateli-3ri		1 SA 213 T11	665	49.0	149.0	20,758	36	92
	Weld Metal		665	63.7	39.0	20,212	44	92
			700	38.3	43.5	21,012	35	95
			Test co	ondition	Rupture	LMP*	Fracture	Reduction
Compo	nent	Material	Test co Temp. T(°C)	Stress (MPa)	Rupture time t (h)	LMP* C=17.52	Fracture elongation (%)	Reduction of area ** (%)
Compo	nent	Material	Test co Temp. T(℃) 665	ndition Stress (MPa) 44.1	Rupture time t (h) 457.0	LMP* C=17.52 18,933	Fracture elongation (%) 53	Reduction of area ** (%) 57
Compo	nent Base Metal	Material SA 213 T11	Test co Temp. T(°C) 665 665	MPa) 58.8	Rupture time t (h) 457.0 139.2	LMP* C=17.52 18,933 18,448	Fracture elongation (%) 53 62	Reduction of area ** (%) 57 63
Compo	nent Base Metal	Material SA 213 T11	Test co Temp. T(°C) 665 665 700	Stress (MPa) 44.1 58.8 27.9 27.9	Rupture time t (h) 457.0 139.2 319.4	LMP* C=17.52 18,933 18,448 19,488	Fracture elongation (%) 53 62 39	Reduction of area ** (%) 57 63 55
Compo RH(in furnace)	nent Base Metal	Material SA 213 T11	Test co Temp. T(°C) 665 665 700 665	Stress (MPa) 44.1 58.8 27.9 44.1	Rupture time t (h) 457.0 139.2 319.4 310.9	LMP* C=17.52 18,933 18,448 19,488 18,776	Fracture elongation (%) 53 62 39 20	Reduction of area ** (%) 57 63 55 52
Compo RH(in furnace)	Base Metal Weld Metal	Material SA 213 T11 SA 213 T11	Test cc Temp. T(℃) 665 665 700 665 665	ndition Stress (MPa) 44.1 58.8 27.9 44.1 58.8	Rupture time t (h) 457.0 139.2 319.4 310.9 69.3	LMP* C=17.52 18,933 18,448 19,488 18,776 18,164	Fracture elongation (%) 53 62 39 20 13	Reduction of area ** (%) 57 63 55 52 53

•LMP=(273.15+T) (C+log t)

Facture elongation: (L-Lo)/Lo, Lo: Initial gauge length, L: Gauge length after rupture
 Reduction of area : (Ao-A)/Ao, Ao: Initial cross sectional area, A: cross sectional area after rupture

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Creep rupture test results Singrauli #6

Residual life evaluation by creep rupture test Singrauli #6 Residual life evaluation by creep rupture test Singrauli #6

JICA)

Parameter method (evaluated at designed temp.)										
Compo	onent	Material	Hoop Stress σ	LMP obtained by creep rupture test	Designed temp.T	Residual life tr	Creep life consumption ratio ϕ c	Evaluated residual life tr/2		
			(MPa)	C=19.95 (SH) C=17.52 (RH)	(°C)	(h)	to/(to+tr)	(h)		
Platan SU	Base Metal	SA 213 T11	38.3	21,248	540(※1)	1,505,000	0.10	750,000		
F laten-311	Weld Joint	SA 213 T11	38.3	21,012	540(※1)	770,000	0.18	380,000		
DII(in fummer)	Base Metal	SA 213 T11	27.9	19,488	540(※2)	2,783,000	0.06	1,300,000		
KII(III IuIIace)	Weld Joint	SA 213 T11	27.9	19,457	540(※2)	2,549,000	0.06	1,200,000		
%1; Designed %2; Designed	temp. at Plater temp. at RH C	-SH Outlet He utlet Header	ader		Operatio	on hours to:1	72000 h			
✓ Hoop stress $\sigma = P (D-t) / 2t$										
		where I	P : Desi	gned pres	ssure					
D : Measured OD of sample tube										
				1.1.1	1	c 1	. 1			

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

t : Measured thickness of sample tube

✓ $tr = 10^{(LMP/(273+T)-C)}$

Japan International Coope

Parameter method (evaluated at equivalent temp. Evaluate LMP obtaine LMPo by Equivalent Creep life Hoor Residual life by creep rupture tes NIMS virgi material esidual li mperatur tr TE ratio φ c tr/2 Componen Material C=19.95 (SH) (MPa) (°C) (h) (h) to/(to+tr) C=17.52 (RH) Base Metal SA 213 T11 38.3 21.248 553 598.000 0.22 290.00 21.33 Platen_SH Weld Joint SA 213 T11 Base Metal SA 213 T11 553(※3 38.3 21,012 21,339 309,000 0.36 150,00 RH(in furnace 27.9 19,48 19,53 551 1,347,000 0.11 670,000 Weld Joint SA 213 T11 27.9 551(※3) 19,531 1,235,000 0.12 610,000 3: Same equi

Assumption : Initial creep rupture strength = NIMS data

LMPo = $(273.15+T_{\rm E})(C+\log(t_{\rm 0}+t_{\rm F}))$

 $tr = 10 (LMP/(273.15+T_E) - C)$

Creep rupture test results Unchahar #2

			Test co	ondition	Rupture	LMP	Fracture	Reduction					
Compo	nent	Material	Temp. T(℃)	Stress (MPa)	time t (h)	C=19.95	elongation (%)	of area (%)	Remark				
			635	68.6	278.7	20,341	62	94	Ruptured				
	Base Metal	SA 213 T11	635	83.4	90.8	19,899	57	91	Ruptured				
Distan CLI			665	45.9	322.4	21,072	86	94	Ruptured				
r aten-3ri			635	68.6	264.3	20,320	16	81	Ruptured				
	Weld Metal	SA 213 T11	635	83.4	127.5	20,033	18	82	Ruptured				
			665	45.9	287.5	21,026	13	80	Ruptured				
Compo	nent	Material	Test or Temp. T(°C)	Stress (MPa)	Rupture time t (h)	LMP C=15.77	Fracture elongation (%)	Reduction of area (%)	Remark				
			665	63.7	113.1	16,725	69	91	Ruptured				
	Base Metal	SA 213 T22	665	78.5	32.1	16,212	55	92	Ruptured				
E. J. SUM110			700	38.3	162.6	17,503	67	94	Ruptured				
Pinai-SH#119							665	63.7	86.0	16,614	30	84	Ruptured
	Weld Metal	SA 213 T22	665	78.5	27.3	16,146	31	83	Ruptured				
			700	38.3	143.7	17,451	22	81	Ruptured				
LMP=(273.15+T) (C+log t)													
JICA' Japan Int	imational Coopera	ation Agency							10				

Creep rupture test results Unchahar #2

on Agency

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Creep rupture test results Unchahar #2

		Param	eter me	thod	(evaluated	l at de	sign	ned ten	1p.)				
			H	oop ress	LMP obtai creep ruptu	ned by re test	De te	signed mp.T	Re	sidual 'e tr	Cr cons	eep life sumption	Evaluated residual life
Comp	onent	Materia	(M	IPa)	C=19.95 (C=15.77 (T11) T22)	(°C)		(h)	rati	io φc (to+tr)	tr/2 (h)
D1	Base Metal	SA 213 T	11 4	5.9		21.072		503	15.	726.180		0.01	7,800,000
Platen-SH	Weld Joint	SA 213 T	11 4	5.9		21,026		503	13,	692,433	(0.01	6,800,000
F 1011#110	Base Metal	SA 213 T	22 3	8.3		17,503		534		812,994	(0.15	400,000
Final-SH#119	Weld Joint	22 3	8.3		17,451		534		700,466	(0.17	350,000	
Operation hours to: 139098 h													
		Para	meter m	ethod	l (evaluated	at equ	iivale	ent tem	p.)				
Comm	anant	Matarial	Hoop Stress	LM	P obtained by p rupture test	LMPc NIM virgi	o by IS in	Equiva tempera	lent iture	Residua tr	al life	Creep lif consumpti ratio	e Evaluated on residual life tr/2
comp	sien	Material	(MPa)	-	C=19.95 (rial	(°C)		(h)		φc to/(to+tr	(h)
Distan SU	Base Metal	SA 213 T11	45.9		21,072	21,0	72			Non	auchuc	tion(×1)	
Fiaten-SH	Weld Joint	SA 213 T11	45.9		21,026	21,0	72			Non	evalua	1001(201)	
Final-SH#119	Base Metal	SA 213 T22	38.3		17,503	17,8	65	573		8	32,798	0.63	41,000
	Weld Joint	SA 213 T22	38.3		17,451	17,8	65	573(*	(2)	7	1,826	0.66	35,000
%1; Equivalent t than NIMS data. %2; Same equiv	temperature coul	ld not be evalua re used as base	ted since t metal	he test	results for bas	e metal	in Pl	laten-SH	tube	indicate	higher	creep rupt	ire strength
JICA Japan Inter	mational Cooperation	Agency											10

Sampling of replica and extracted replica

<section-header>Sampling of replica and extracted replica (1) Microstructure of weld portion cross section Coarse grain HAZ Weld weld Base metal Base metal Coarse grain HAZ Coarse grain HAZ Base metal Coarse grain HAZ Base metal Coarse grain HAZ Base metal Coarse grain HAZ Coarse grain HAZ Base metal Coarse grain HAZ Coarse grain HAZ

Boiler remaining life assessment

Japanese Boiler RLA Guidline (1)

To extend periodical inspection interval 2 year to 4year after 100,000 hours operation.

(1) Degradation factor to be evaluated

- Creep rupture remaining life
 - (Designed temperature beyond 450°C)

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

(2) Components to be evaluated

- Furnace evaporation header
- Super heater header or Main steam pipe
- Reheater header or High temperature reheat pipe

Representative points among high heat loaded

and high stressed portion in these components

Japanese Boiler RLA Guideline (2)

- (3) Method to assess the remaining life
 - More than one method used as shown in table below

	Guid	eline	This	study
Method	Base metal	Weld (HAZ)	Base metal	Weld (HAZ)
Hardness measuring	-	0		
Electrical resisitance	-	0		
Chemical composition of carbide	0	0		
Creep cavity evaluation	1	0		
Microstructural comparison	0	0	0	0
Urtra sonic scattering noise	-	0		
Interparticle spacing	0	_		
Crystal grain deformation	0	-		
Destructive test	0	0		
Analytical method	0	0		

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

110

(4) Effective (countable) remaining life

> 1/2 of remaining life evaluated by above methods

Microstructural comparison method outline

Remaining life synthetically evaluated by three types of damage related to the creep damage ratio as shown below.

[Base metal]

- ·Evaluation of average diameter of grain boundary precipitates
- •Comparison with the reference picture of microstructure
- · Comparison with the reference picture of carbide precipitation

[Weld metal]

- ·Comparison with the reference picture of creep void and micro crack
- ·Comparison with the reference picture of microstructure
- Comparison with the reference picture of carbide precipitation

```
Jica 7 Japan Heuratoryd Cooperator Agency,
JICA Starky Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-Indu Boiler RLA
```


Microstructural comparison method (Base metal)

Microstructural comparison method (Weld portion)

Microstructural comparison method in this study (Base metal) Example of reference picture of carbide precipitati JICA'

Microstructural comparison method in this study (Base metal)

(Base metal) Example ICA . 117 JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

(Base metal) TEM: Transmission OM: Optical mice SEM: Scanning el ħ Cre 2 (n: grids ates) × $3/2/\pi$ luation of LMP (+ 118 JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Microstructural comparison method in this study (Base metal)

Microstructural comparison method in this study (Weld)

Microstructural comparison method in this study

119

Microstructural comparison method in this study (Weld)

Synthetic evaluation by microstructural comparison method in this study

Replica inspection (Singrauli #6)

				De	signed		Ноор	
Component		Material	OD	t	Temp.	Pressure	Stress	
			(mm)	(mm)	(°C)	(MPa)	(MPa)	
Platen SH Outlet Header	Left		508.0	80.0	540	17.46	46.69	
	Left	SA335P12						
De-SH	Right		508.0	70.0	406	18.51	57.89	
	Left			50.0	540	4.26	21.69	
KH Outlet Header	Right	G 4 225D22	229.9	50.0	540	4.20	21.68	
Main Steam Pipe	Left	5A335F22	520.0	85.0	540	17.46	44.67	
Japan International Cooperation Agency								

Replica inspection (Unchahar #2)

				De		Ноор		
Component	;	Material	OD	t	Temp.	Pressure	Stress	
			(mm)	(mm)	(°C)	(MPa)	(MPa)	
Final SH Outlet	Header	SA335P22	457.2	100.0	555	15.75	28.1	
D (111	Left	G + 22 PM	10.5.1	47.0				
De-SH	Right	SA335P12	400.4	45.0	430	16.44	66.0	
RH Outlet Header	r		558.8	45.0	555	4.32	24.7	
Main Steam Pipe	Right	SA335P22	355.6	50.3	540	15.74	47.8	
Hot Reheat Pipe	Right		508.0	28.0	540	3.69	31.6	
Japan International Cooperatio	n Agency							

ing Thermal Power Plant in NTPC-India Boiler RLA

Observation of replica

	0	bservation item	Microstructure	Carbide precipitation	Precipitates free band width along grain boundary	Creep void grade	Average diameter of grain boundary precipitates	Average volume fraction of grain boundary precipitates		
	Ob	servation method	Optical microscope	TEM (Transmission Electron Microscope)		(Scannir	SEM ng Electron Mic	roscope)		
	C	bserved target	Micro crack and microstructural degradation	Morphology and distribution of precipitates	Quantitative evaluation of precipitates free band width	Micro crack and creep void	Quantitative evaluation of grain boundary precipitates	Quantitative evaluation of grain boundary precipitates		
	Obse	rved magnification	×500 ×1000	×2000 ×10000	×2000	×500 ×2000	×3000 (Base r ×4000 (Fine g	netal) rain HAZ)		
Г		Base metal	0	0	0		0	0		
	a a	Intercritical zone	0							
	area	Fine grain HAZ	0	0			0	0		
	¹ O	Coarse grain HAZ	0	0		0				
		Weld metal	0	0						
JICA	Appar International Cooperation Agency									

Microstructure observation results (Singrauli #6)

	ents		uo		Optical microsc	ope observation										
	noo		ati	Observed region	Microstruct	ural features										
	Comp		Loc		Precipitation at gain boundary	Precipitates free zone along grain boundary										
	der			Base metal	Appeared	Not appeared										
	t hea P22)		rential I	rentia] 1	Intercritical zone	Appeared	Not appeared									
	outle 335	Left imfere weld		Fine grain HAZ	Appeared											
	icater (SA		Circu	Coarse grain HAZ	Not appeared											
	Reł			Weld metal												
			p de	Base metal	Appeared	Appeared										
	n pipe P22)		unferential lear the stop intrados sid	imferential near the stc intrados si	imferential near the stc intrados si	imferential lear the sto intrados si	mferential ear the sto intrados si	mferential ear the stop intrados sid	mferential ear the stop intrados sid	mferential ear the stop intrados sid	rential the stop dos sid	rential the stop dos sid	rential the stop idos sid	Intercritical zone	Appeared	Appeared
	stean 335	Left									Fine grain HAZ	Appeared				
	Main (SA		Circu eld (n lve)	Coarse grain HAZ	Not appeared											
-	I		w	Weld metal												
jica .	ipan Interné	pan International Cooperation Agency														
			IICA Study	Team for Enhancing Effici	ency of Operating Thermal Power Plan	t in NTPC-India Boiler RI A										

Microstructure observation results (Singrauli #6)

Microstructure observation results (Unchahar #2)

	nents		ion		OM (Optical mic Microstruct	roscope observation) ural features				
	Compo		Locat	Observed region	Precipitation at gain boundary	Precipitates free zone along grain boundary				
	ader	er		Base metal	Appeared	Not appeared				
	et he: P22)	head	ential	rential	ential	ential	ential	Intercritical zone	Not appeared	Not appeared
	H out	ide of	umfer weld	Fine grain HAZ	Appeared					
	ial SF (SA	ightsi	Circi	Coarse grain HAZ	Appeared					
	Η	R		Weld metal						
	9		l /alve]	Base metal	Appeared	Not appeared				
	n pip P22)	t	ential stop v	Intercritical zone	Appeared	Not appeared				
	stear 335	Righ	umfere ur the st	umferer r the sto	umferer r the sto	Fine grain HAZ	Appeared			
	Main (SA		Circi (nea	Coarse grain HAZ	Not appeared					
\sim			weld	Weld metal						
JICA)	CA Jupan International Cooperation Agency									
			JICA Stud	y Team for Enhancing Efficier	cy of Operating Thermal Power Plant	in NTPC-India Boiler RLA				

Microstructure observation results (Unchahar #2)

Observation of replica

0	bservation item	Microstructure	Carbide precipitation	Precipitates free band width along grain boundary	Creep void grade	Average diameter of grain boundary precipitates	Average volume fraction of grain boundary precipitates
Ob	servation method	Optical microscope	TE (Transmissi Micro	M on Electron scope)	(Scannin	SEM g Electron Mic	roscope)
(Dbserved target	Micro crack and microstructural degradation	Morphology and distribution of precipitates	Quantitative evaluation of precipitates free band width	Micro crack and creep void	Quantitative evaluation of grain boundary precipitates	Quantitative evaluation of grain boundary precipitates
Obse	erved magnification	×500 ×1000	×2000 ×10000	×2000	×500 ×2000	×3000 (Base n ×4000 (Fine g	netal) rain HAZ)
_	Base metal	0	0	0		0	0
vec	Intercritical zone	0					
are	Fine grain HAZ	0	0		-	0	0
ō	Coarse grain HAZ	0	0		0		
ð Maria	Coarse grain HAZ Weld metal	0	0		0		

Precipitates distribution observation results (Singrauli #6)

					TEM (Transmissi	on Electron Micros	scope observation)					
s					Carb	ide precipitates fea	itures					
Component		Location	Observed region	Precipitates free zone along grain boundary	Featherlike precipitates	Fine needlelike and granular precipitates	Needlelike precipitates	Fine needlelike and granular precipitates in bainite grain				
ader)		al	Base metal	Not appeared	Remained		No decrease in ferrite grain	Remaining				
atlet he 35 P22	ight nferential eld	uferenti: eld	nferenti œld	eld	nferenti ⁄eld	nferenti veld	Fine grain HAZ				Remaining	
ater of (SA 3)	Ri	Sircum	Coarse grain HAZ			Remaining						
Rehe		0	Weld metal			Remaining						
96		al top ide	Base metal	Appeared	Disappeared		No decrease in ferrite grain	Partially disappeared				
am pij 5 P22)	ų	ferenti r the s rados s	Fine grain HAZ				Disappeared					
ain ste SA 33	Ľ	d (nea	Coarse grain HAZ			Disappeared						
)) M	Ci weld valve		Weld metal			Disappeared						

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

131

JICA Japan

Precipitates distribution observation results Singrauli #6

Precipitates distribution observation results Unchahar #2

Quantitative evaluation of precipitates free band width

	0	bservation item	Microstructure	Carbide precipitation	Precipitates free band width along grain boundary	Creep void grade	Average diameter of grain boundary precipitates	Average volume fraction of grain boundary precipitates
	Ob	servation method	Optical microscope	TE (Transmissi Micro	M on Electron scope)	(Scannin	SEM g Electron Mic	roscope)
	C	Observed target	Micro crack and microstructural degradation	Morphology and distribution of precipitates	Quantitative evaluation of precipitates free band width	Micro crack and creep void	Quantitative evaluation of grain boundary precipitates	Quantitative evaluation of grain boundary precipitates
	Obse	rved magnification	×500 ×1000	×2000 ×10000	×2000	×500 ×2000	×3000 (Base n ×4000 (Fine g	netal) rain HAZ)
	_	Base metal	0	0	0		0	0
	a ved	Intercritical zone	0					
	ser are	Fine grain HAZ	0	0			0	0
	ð	Coarse grain HAZ	0	0		0		
		Weld metal	0	0				
jic) same	Themational Cooperation Age	Team for Enhancing	Efficiency of Ope	rating Thermal Po	wer Plant in NTPC	-India Boiler RLA	13

Quantitative evaluation of precipitates free band width

Quantitative evaluation of precipitates free band width

Observation of replica

	0	bservation item	Microstructure	Carbide precipitation	Precipitates free band width along grain boundary	Creep void grade	Average diameter of grain boundary precipitates	Average volume fraction of grain boundary precipitates
	Ob	servation method	Optical microscope	TE (Transmissi Micro	EM ion Electron scope)	(Scannin	SEM g Electron Mic	roscope)
	C	Observed target	Micro crack and microstructural degradation	Morphology and distribution of precipitates	Quantitative evaluation of precipitates free band width	Micro crack and creep void	Quantitative evaluation of grain boundary precipitates	Quantitative evaluation of grain boundary precipitates
	Obse	rved magnification	×500 ×1000	×2000 ×10000	×2000	×500 ×2000	×3000 (Base n ×4000 (Fine g	netal) rain HAZ)
		Base metal	0	0	0		0	0
	ved	Intercritical zone	0					
	ser area	Fine grain HAZ	0	0			0	0
	ő	Coarse grain HAZ	0	0		0		
		Weld metal	0	0				
jic) Japan	Tinternational Cooperation Age	noj	P.C. 10	1 000 1 10			1

Creep void observation results (Singrauli #6)

	onents		ation	Observed region	SEM (Scanning Electron Microscope observation)	
	Comp		Loca	Observed region	Creep void damage	
	ader		ıtial	Fine grain HAZ	No void	
	utlet he	Right	umferer weld	Coarse grain HAZ	No void	
	RH o		Circ	Weld metal	No void	
	pipe		ntial stop sside	Fine grain HAZ	No void	
	ı steam j	Left	umferer near the extrado	Coarse grain HAZ	No void	
	Maiı		Circ weld (valve)	Weld metal	No void	
jica	Jupan inte	mational	Cooperation Agency			139
-			JICA Study Team t	for Enhancing Efficiency of C	Operating Thermal Power Plant in NTPC-India Boiler RLA	

Creep void observation results (Unchahar #2)

	onents		ation	Observed region	SEM (Scanning Electron Microscope observation)	
	Comp		Foc		Ceep void damage	
	t header	neader	ntial	Fine grain HAZ	No void	
	SH outlet	tside of h	cumferer weld	Coarse grain HAZ	No void	
	Final 3	Righ	Ci	Weld metal	No void	
	pipe		il weld valve)	Fine grain HAZ	No void	
	in steam	Right	mferentia the stop	Coarse grain HAZ	No void	
	Ma		Circu (near	Weld metal	No void	
jica	Japan in	ternation	al Cooperate	on Agency		140
			JICA :	Study Team for Enhancing E	fficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA	

Creep void observation results (Singrauli #6)

Creep void observation results (Unchahar #2)

Average diameter and volume fraction of grain boundary precipitates

	O	bservation item	Microstructure	Carbide precipitation	Precipitates free band width along grain boundary	Creep void grade	Average diameter of grain boundary precipitates	Average volume fraction of grain boundary precipitates
	Ob	servation method	Optical microscope	TE (Transmissi Micro	EM ion Electron scope)	(Scannin	SEM g Electron Mic	roscope)
	С	Observed target	Micro crack and microstructural degradation	Morphology and distribution of precipitates	Quantitative evaluation of precipitates free band width	Micro crack and creep void	Quantitative evaluation of grain boundary precipitates	Quantitative evaluation of grain boundary precipitates
	Obse	rved magnification	×500 ×1000	×2000 ×10000	×2000	×500 ×2000	×3000 (Base n ×4000 (Fine gi	netal) rain HAZ)
		Base metal	0	0	0		0	0
	a d	Intercritical zone	0					
	ser	Fine grain HAZ	0	0			0	0
	ð	Coarse grain HAZ	0	0		0		
		Weld metal	0	0				
jîc	D angent	n International Cooperation Age	Team for Enhancing	Ffficiency of One	erating Thermal Po	wer Plant in NTPC	-India Boiler RI A	14

Average diameter and volume fraction of grain boundary precipitates (Singrauli #6)

149

Average diameter and volume fraction of grain boundary precipitates (Unchahara #2)

<section-header><text>

148

Creep strain evaluation by OD measurement (Singrauli #6)

	Components	(Averaged measured value-Designed OD) /Designed OD (%)
-91	Platen SH Outlet Header-Left	0.10
The second secon	De-Superheater-Left	0.94
Steam flow	De-Superheater-Right	0.55
	RH Outlet Header-Left	0.37
Weld potion	RH Outlet Header-Right	0.52
measured	Main Steam Pipe-Left	0.08
Base H H Metal Z Z Metal 2	3	•

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Creep strain evaluation by OD measurement (Unchahar #2)

	-	
	Components	(Averaged measured value-Designed OD) /Designed OD (%)
Steam flow	Final SH Outlet Header	0.74
	De-Superheater-Left	0.44
	De-Superheater-Right	0.46
	RH Outlet Header at left side	0.20
Weld potion measured	RH Outlet Header at right	0.57
	Main Steam Pipe-Right	-
	Hot Reheat Pipe-Right	0.01
H Base A metal Z		
Straight pipe side Elbow side	1	
• • 2,8 • • 3,7 • • • 3,7		
Steam Flow.Direction View	5 v from boiler downstream	
Japan International Cooperation Agency		150

Synthetic evaluation (Base metal of MSP) Singrauli #6

Synthetic evaluation (Base metal of RH header left) Singrauli #6

Synthetic evaluation (Fine grain HAZ of MSP) Singrauli #6

Eval		_			_					_							Fi	ne	gr	ain	H	AZ																										
	luation stress																			Cr	eep	da	naį	ge r	atio	. (%)																				
	44.67MPa	0			10)			4	20				30	D				4)				50					60					2	D				8	0				1	0			10
Ev	valuated item	Ц.,								L									_					L				_	L					_											L			 L
anom P	Precipitates at gain	0%	t appea	ared	8%	rl.																																										
crost	boundary			П	Γ.																					App	ear	ed						_					_									
W				4				44	4	4	4			4					4	4			4		4	++		4	4				4	4		4	4	4	200		Щ.	4	4	Ц.	4	4	-	 4
tates	Fine granular	1		ш.	щ	ш.								4	Rer	nir	ing	off	ine i	reed	lelk	e po	cip	iate	5									-				-		ì								
Precipi	recipitates in grain			Π	Π	Π	Π	Π	Π	Π	Π			Π	Π	Π	Ť	Π	Π	Π	Π	Ť	Í	11	Π	D	isag	pe	ara	nce	of	nee	dle	lik	e pe	reci	pit	ates		-		_		Π		-	-	 1
Volu F at g	ume fraction of precipitates gain boundary	0%										249	6																																			
		H			Щ	11	Ш		ш	Щ									Ц		Щ			ш										Ц					Ц								Ш	
G	'reep strain e													Π					e c	17	T							Ĩ	I					Ī	Π			Π	1%	1		29	6		2%	5		
Synth	hetic evaluation																												Î				Π						78%	6 80	1						Π	

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Synthetic evaluation (Fine grain HAZ of RH header left)

Synthetic evaluation (Coarse grain HAZ of MSP) Singrauli #6

_		a	
		Coarse grain HAZ	
E	valuation stress	Creep damage ratio (%)	
	44.67MPa	0 10 20 30 40 50 60 70 80 90	100
	Evaluated item		
		0%	
	n	Normal structure	
ŝ	Bainite structure	Disappearance of Bainite lash structure	
ruc			
ost		0% 45%	
lici	Precipitates at gain	Not appeared	
×	boundary	Appeared	
ŝ		0% 24%	
tat	Fine granular	Remaining of fine needlelike precipitates	
cipi	precipitates in grain	Disappeared	
â	precipitates in grain	······································	
_			
		Novid	
		Kolated wid	
0	een void damage	A number of voids on grain boundary	
		Linkace of voids (< 50um)	
		Macro crack (>50µm)	
			mm l
		24%	
S	mthetic evaluation		
,		45%	

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

155

Synthetic evaluation (Coarse grain HAZ of RH header left) Singrauli #6

Jica Japan Int

nai De

Synthetic evaluation (Base metal of MSP) Unchahar #2

Residual life	assessment	results o	f pipes	(Singrauli	#6)
					- /

								Evalu	ation	results		
	Components	Location	Material	Region	Cr cons rat	eep l sump tio (9	life otion %)	Residu	ıal lit	fe (hr)	Evaluated residual life (h)	
		Base Metal at left side		Base Metal	9	\sim	16	903,000	\sim	1,739,000		
	Platen-SH		SA 335	Base Metal	9	\sim	16	903,000	\sim	1,739,000	140.000	
	Left	left side	P12	Fine grain HAZ	34	\sim	38	281,000	\sim	334,000	140,000	
		left side		Coarse grain HAZ	0	\sim	18	784,000	<			
	De Suedentes		64 225	Base Metal	8	\sim	16	903,000	\sim	1,978,000		
	De-Suerneater-	Circumferential weld	SA 335 P12	Fine grain HAZ	0	\sim	19	733,000	<		100,000	
	Len			Coarse grain HAZ	19	\sim	45	210,000	\sim	733,000		
	De Suedentes		64 225	Base Metal	0	\sim	1	17,028,000	<			
	Right	Circumferential weld	P12	Fine grain HAZ	0	\sim	19	733,000	<		100,000	
	Tubut			Coarse grain HAZ	19	\sim	45	210,000	\sim	733,000		
	BII Oudat	Circumferential and d	CA 225	Base Metal	0	\sim	1	17,028,000	<			
	Header-Left	at left side	P22	Fine grain HAZ	0	\sim	0.4	42,828,000	<		340,000	
	ficader Lett	ut left side		Coarse grain HAZ	3	\sim	20	688,000	\sim	5,561,000		
	PU Outlat	Circumferential unld	SA 225	Base Metal	4	\sim	6	2,695,000	\sim	4,128,000		
	Header-Right	at right side	P22	Fine grain HAZ	0	\sim	0.4	42,828,000	<		1,300,000	
	freaker reight	ut right side		Coarse grain HAZ	2	\sim	3	5,561,000	\sim	8,428,000		
	Main Stans	Cimmentint	CA 225	Base Metal	65	\sim	70	74,000	\sim	93,000		
	Pipe-Left	weld extrados	P22	Fine grain HAZ	8	\sim	21	647,000	\sim	1,978,000	37,000	
	Tipe Leit	weid,extitutios		Coarse grain HAZ	0	\sim	20	688,000	<			
	Main Stan	Cimmential	CA 225	Base Metal	65	\sim	70	74,000	\sim	93,000		
	Pine-Left	weld intrados	P22	Fine grain HAZ	78	\sim	80	43,000	\sim	49,000	21,000	
				Coarse grain HAZ	24	\sim	45	210,000	\sim	545,000		
ICA /	Japan International	Cooperation Agency	hours /C	reen life consur	nntic	n r	utio '	$\times 100 - 0$	ner	ation hours		
		UCA Study Tarm for I	indui 37 C	feep me consul	npuo m Th	11 1 6	1 Day	Diant in NT	pera	ndia Dailan D	ar a	-

Residual life assessment results of pipes (Unchahar #2)

Components	Location	Material	Region	Creep consump	life ption %)	Residual li	fe (hr)	Evaluated residu life (h)
			Base Metal	4		3,338,0	00	
Final SH Outi	Circumferential weld at right side	SA 335 P22	Fine grain HAZ	$1 \sim$	4	3,338,000 ~	13,771,000	270,000
et meader	werd at right side	122	Coarse grain HAZ	9~	20	$556,000 \sim$	1,406,000	
De-Suerheater-	Circumferential	SA 335	Base Metal	$16 \sim$	31	$310,000 \sim$	730,000	06.000
Left	weld	P12	Coarse grain HAZ	$0 \sim$	42	192,000 <		90,000
De-Suerheater-	Circumferential	SA 335	Base Metal	$16 \sim$	31	$_{310,000} \sim$	730,000	05.000
Right	weld	P12	Coarse grain HAZ	$0 \sim$	42	192,000 <		96,000
	Charles and a	64.225	Base Metal	$2 \sim$	6	2,179,000 ~	6,816,000	
	weld at left side	D22	Fine grain HAZ	$7 \sim$	9	$1,406,000 \sim$	1,848,000	700,000
	weid at left side	122	Coarse grain HAZ	3~	6	$2,179,000 \sim$	4,498,000	
DIL O	Circumferential	64.225	Base Metal	$2 \sim$	6	$2,179,000 \sim$	6,816,000	
Header	weld at right	D22	Fine grain HAZ	9~	14	$854,000 \sim$	1,406,000	270,000
ricuder	side,top		Coarse grain HAZ	$6 \sim$	20	$556,000 \sim$	2,179,000	
	Circumferential	64.225	Base Metal	2		6,816,0	00	
	weld at right	D22	Fine grain HAZ	9~	14	$854,000 \sim$	1,406,000	270,000
	side,front		Coarse grain HAZ	$6 \sim$	20	556,000 <	2,179,000	
	Charles and a	64.225	(Base Metal) 💥	(34) ~	(74)	(49,000) ~	(270,000)	
	weld intrados	P22	(Fine grain HAZ)※	(13) ~	(42)	(192,000) ~	(931,000)	69,000
Main Steam			Coarse grain HAZ	$_{32} \sim$	50	$139,000 \sim$	296,000	
Pipe-Right	Circumferential	64.225	(Base Metal) 💥	(34) ~	(89)	(17,000) ~	(270,000)	
	weld,near the stop	P22	(Fine grain HAZ)*	(13) ~	(42)	(192,000) ~	(931,000)	270,000
	valve		Coarse grain HAZ	$0 \sim$	20	556,000 <		
I Data	Charles and a	64.225	Base Metal	$6 \sim$	16	$730,000 \sim$	2,179,000	
Pine-Right	weld	P22	Fine grain HAZ	$19 \sim$	22	$493,000 \sim$	593,000	240,000
			Coarse grain HAZ	$14 \sim$	20	$556,000 \sim$	854,000	

Summary of inspection results

Inspection item	Inspection results
VT	•Water wall, SH, RH panel was visually inspected from the view point of erosion, attrition and distortion of panel arrangement.
THICKNESS MEASUREMENT	Thickness of tubes was measured mainly at erosion area for water wall, SH, RH. Measured thickness was discussed in terms of thickness management criteria.
SUS SCALE DEPOSITION INSPECTION	 SUS scale deposition was inspected at bottom bend portion ub SH and RH panel. On the whole SUS scale deposition was not significant with 15% fullness at most.
SAMPLE TUBE INSPECTION	• SH, RH sample tubes were inspected for the oxide scale adhesion condition microstructure hardness and so on.
CREEP RUPTURE TEST	•As a result of creep rupture test for the base metal and the weld joint of SH and RH, min. evaluated residual life was 35,000 hours for the weld joint for Final SH tube in Unchahar #2.

RECOMMENDATION (Boiler RLA)

1. Singrauli #6 : Implement RLA of main steam pipes including outer diameter measurement and replica sampling before the estimated residual life of 21,000 hrs. Coarse grain HAZ region is the most critical region indicated no creep damage with no creep void. However, in base metal region the estimated residual life for left MS pipe is 21,000 hrs with a little microstructural degradation.

2. Unchahar #2:

JICA

For main steam Pipe, the estimated residual life of coarse grain HAZ region is 69,000 hrs. The estimated residual life in base metal varies from 8,000 to 130,000 hrs due to no OD measurements applied, while microstructure shows a little degradation. For accurate estimation of residual life, creep strain (OD) measurement along with microstructure is recommended to be carried out preferably within 8,000 hrs or practically at the earliest opportunity.

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

RECOMMENDATION (Boiler RLA)

- 3. **Criteria for tube replacement**: In Japan alternative thickness criteria for more precise judgment of safety margin, such as tsr (thickness shell required) method is used. NTPC can also consider the use of such criteria in consultation with OEM rather than the method of thickness decrease ratio from design thickness.
- 4. **Scope of RLA**: Conduct RLA focusing or emphasizing on critical parts considering creep life after identification of critical parts, instead of all high temperature pressure parts, which NTPC focuses on currently.

JICA Study Team for Enhancing Efficiency of Operating Thermal Po

161

1

er Plant in NTPC-India Boiler RLA

RECOMMENDATION (Boiler RLA)

- 5. New techniques: Apply new techniques and equipments such as
 - SUS scale detection
 - TOFD
 - · Advanced metallurgical observation technique using SEM,TEM
 - · Precise surface polishing treatment for replica.
- 6. Advanced training: Conduct advanced training of new techniques for NTPC inspection engineers in Japan.

Manual & Guideline Boiler RLA

Jacon Hermitianal Cooperation Agency JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

163

165

167

Plant in NTPC-India Boiler RLA

Manual & Guideline related to Boiler RLA

✓ 2-1-3) Boiler RLA Manual

	Thickness measurement
H	SUS scale deposition inspection
oil	PT(DPT)
er H	UT
F A	TOFD (Time of Flight Diffraction)
ź	Sample tube inspection
anu	Sampling of replica and extracted replica
al	Boiler remaining life assessment
	Creep rupture test

 $\checkmark\,$ 2-1-4) Data collection of new boiler for future RLA Guideline

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

- 2-1-2) Techniques for boiler tube cleaning after cutting (before welding) Manual
- Japan International Cocces

Example of initial data sampling in new power plants

	Componetns	Replica sampling	Haredness measurement	Outside diamete measurement
	Water separator	2	2	-
	SH outlet header	4	4	2
	RH outlet header	2	2	1
	3rd SH outlet header	2	2	1
Shell and header	4th SH inlet header	2	2	1
	Water separator inlet stub	2	2	-
	Water wall outlet header stub (side wall)	2	2	2
	SH outlet header stub	1	1	1
	RH outlet header stub	1	1	1
Main pipe	Main steam pipe	8	8	4
	Hot reheat pipe	8	8	4
	Hot reheat pipe spherical Y piece	4	4	-
	High pressure turbine bypass pipe	1	1	1
	3rd SH De-SH outlet connecting pipe	2	2	1
	3rd SH De-SH inlet connecting pipe	2	2	1
Others	3rd SH De-SH stub	1	1	-
	Side wall panel connection portion (furnace and rear heat exchange portion)	2	2	2

Boiler tube : thickness measurement at constant points, reserved boiler tube for initial creep rupture data and so

JICA Study Team for Enhancing Efficiency of Operating Th

2-1-4) Data collection of new boiler for future RLA Guideline

Example of measurement points for initial data

Example of measurement points for Main steam pipe

Measurement points for Main steam pipe

Measurement points

Measurement points for Hot reheat pipe

<section-header><section-header><image><image>

Sponge image for prevention against foreign material mixing

2-1-2) Techniques for boiler tube cleaning after cutting (before welding) Manual

5. 3) Kiken Yochi (KY) Meeting Manual

KYM (Kiken Yochi Meeting :danger prediction meeting)

[Scope]

This is applied to the meeting prior to working for workers to have the precaution against danger.

[General]

ica Jacob Marrietonal Co

ilca)

KYM is one of activities for safety work, predicting danger and setting the preventive measures. In general KYM consists of 4 steps that are grasping the current status, focusing on a few potential hazards by brainstorming, collecting the countermeasures by brainstorming, setting the objective to act focusing one or two countermeasures using KY board.

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

KYM (Kiken Yochi Meeting : danger prediction meeting)

[Procedure]

1st step :Understanding the current situation (what kind of danger is hidden?) Every KYM member talks about what kind of danger is hidden and its reason on KY board.

The person in charge of writing itemizes the each dangerous situation on the KY board.

2nd step :Pursuit of the essence (Identification of danger points) Focusing on a few danger points which are considered as especially important ones.

KYM (Kiken Yochi Meeting : danger prediction meeting)

3rd step :Establishment of countermeasures (what do you do in such a situation?)

Collecting the concrete countermeasures for the focused danger points, which are possible to be carried out.

The person in charge of writing itemizes the countermeasures to be collected on the KY board.

4th step :Setting the objective (we do this way)

Focusing on one or two important points from the countermeasures to be collected, determine the objective to act.

Chanting the objective to act with finger pointing by every member for recognition and confirmation.

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

178

KYM (Kiken Yochi Meeting : danger prediction meeting)

An example of KYM scen	e An	example of	KY boa	ard	
	Date: Oct. 28		KYN	leeting	
	Work Name: Boiler	RLA			
	Leader Name	S. Nakashima	Number of	Workers	8
	Contact information	090-7611- 0022(mobile)	Health o	check	Good
	What kind of dan	ger is hideen?	We act	the follow	vings
	Falling from high pla	ce	Wear safety	belt	
	Injured with grinding	machine	Check the p	ower switc	h on/off
	Falling over		Watch one'	step	
	Sucking dust	Hitting body	Put on dust mask	Ensure th of the sur	ne safety rounding
	Attention at work :	Pay a	ttention for c	ongested v	vork !
Japan International Coopeliation Agency	Today's action targ	ets: W	'ear safety be	elt ! Roger	179
JICA Study Team for Enhancin	ng Efficiency of Operating T	hermal Power Plant in N	TPC-India Boile	r RLA	179

5. 4) Tool Box Meeting Manual

Tool Box Meeting	1 ool Box Meeting	
[Scope] This is applied to the meeting prior to working for workers to have the precaution against danger.	【Procedure 】 ✓ Punctual TBM start by all work members	
【General】 TBM is the meeting held by workers to discuss the safety prior	✓ Discussion about the scope of work, the procedures and the points of safety working	
to working in the morning and in the afternoon. The small unite of group that is 6 members or less discusses about the scope of work, the procedures and the point of	\checkmark Grasping the background behind the problems and danger for the work.	
safety working.	\checkmark Discussion about the improvement plans for the problems and	
\checkmark Confirming the scope of work and its procedure for the day.	danger that is carried out with active and sincere participation	
✓ The leader for the work guides the wok members to make a speech to grasps the work members thought.	by every worker. Determination of the objective and the items for action including 5W,1H.	
✓ Summarizing the discussion results, determine the action objective.		

181

Summary of Boiler RLA Demonstration

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Inspection item	Japanese practice / Demo at sites	Recommendation
VT	Erosion and attrition of tubes and disorder of panel arrangement were inspected.	?
Thickness measurement	•Use of the original calibration block •Acceptance criteria •Grasping thickness decrease region	Study of alternative standard criteria for tube replacement such as tsr (Thickness Shell Required) was recommended.
SUS scale deposition inspection	The detection technique making use of the principle of induction is applied from the view point of efficiency and safety, besides conventional ?-ray method.	For implementation of new RLA technology, training in Japan was carried out.
Sample tube inspection	•Tube: Appearance, dimension, Hardness, Microstructure •Scale: Appearance, Volume, Thickness, Composition	?
Creep rupture test	Residual life was evaluated by parameter method with a thousand hours creep rupture tests.	For implementation of precise RLA by creep rupture test, training in Japan was carried out. 18.

Thickness measurement results of WW (Singrauli #6)

JICA Study Team for Enhancing Efficiency of Op

182

er Plant in NTPC-India Boiler RLA

Summary of Boiler RLA Demonstration

Inspection item	Japanese practice / Demo at sites	Recommendation
VT	Erosion and attrition of tubes and disorder of panel arrangement were inspected.	?
Thickness measurement	•Use of the original calibration block •Acceptance criteria •Grasping thickness decrease region	Study of alternative standard criteria for tube replacement such as tsr (Thickness Shell Required) was recommended.
SUS scale deposition inspection	The detection technique making use of the principle of induction is applied from the view point of efficiency and safety, besides conventional ?-ray method.	For implementation of new RLA technology, training in Japan was carried out.
Sample tube inspection	•Tube: Appearance, dimension, Hardness, Microstructure •Scale: Appearance, Volume, Thickness, Composition	?
Creep rupture test	Residual life was evaluated by parameter method with a thousand hours creep rupture tests.	For implementation of precise RLA by creep rupture test, training in Japan was carried out.

SUS scale deposition inspection results (Unchahar #2)

Summary of Boiler RLA Demonstration

Inspection item Japanese practice / Demo at sites Recommendation DPT • Same procedure as NTPC • More careful surface treatment and wiping out the pentrant Image: Commendation of the pentrant • More careful surface treatment and wiping out the pentrant Image: Commendation of the pentrant • Same procedure as NTPC • More careful surface treatment and wiping out the pentrant Image: Commendation of the pentrant • More careful surface treatment and wiping out the pentrant • More careful surface treatment and wiping out the pentrant

Summary of Boiler RLA Demonstration

Inspection item	Japanese practice / Demo at sites	Recommendation
DPT	•Same procedure as NTPC	More careful surface treatment and wiping out the penetrant
UT & TOFD (Time of flight diffraction)	Applied to the crack detection for high temperature header and pipe weld.	For implementation of new RLA technology, training in Japan was carried out.

Summary of Boiler RLA Demonstration

Inspection item	Japanese practice / Demo at sites	Recommendation	
DPT	•Same procedure as NTPC	More careful surface treatment and wiping out the penetrant	
UT & TOFD (Time of flight diffraction)	Applied to the crack detection for high temperature header and pipe weld.	For implementation of new RLA technology, training in Japan was carried out.	
Boiler remaining life assessment by replica inspection	Using high magnification electron microscope, residual life was evaluated quantitatively.	Implement RLA including OD measurement and replica before reaching evaluated life. For implementation of new RLA technology, training in Japan was carried out.	

Summary of Boiler RLA Demonstration

Japanese Boiler Inspection (Water wall, Furnace tube)

Inspection measure	Portion	Deterioration factors	Inspection interval
	General appearance	Burn out, distortion,	Periodic inspection (every 2years)
VT	General appearance building scaffolding by the burner level	swelling, ash cut, steam cut etc.	Periodic inspection (every 4years)
	General appearance building scaffolding by the top of furnace at the necessary interval set.		Setting necessary interval.
VT(Endoscopy)	Water tube inside	Corrosion	Setting necessary interval.
Chemical analysis of deposit	Outside deposit	Corrosion	Periodic inspection (every 2years)
27	Representative weld portion of fin edge	Creep-fatigue	In case of elongation of periodic inspect interval (max. 2years).
FI	Representative attached metal weld portion	Creep-fatigue	After 80,000 hours operation, dependir necessity
Thickness measurement	Fixed points of tube. Representative portion of ash cut and steam cut with no countermeasure	Thinning with aging. Ash cut and steam cut.	Continuous measurement depending on boiler structure and type. Erosion countermeasure necessary, in c of elongation of periodic inspection inter (max. 2years).
Sampling tube examination	Water wall tube in high heat load portion	Scale deposit	Setting necessary interval.
Residual life assessment	Water wall tube in high heat load portion	Creep	Judge from operation and design condit depending on necessity.

Japanese Boiler Inspection (SH, RH, Eco tube)

Inspection measure	Portion	Deterioration factors	Inspection interval
VT	General appearance	Leak, crack, corrosion,	Periodic inspection (every 2years)
V I		erosion	
Chemical analysis of	Outside deposit	High temperature	Depending on necessity
deposit		corrosion	
	Representative points of SH, RH, Eco tubes	erosion	Periodic inspection (every 2years)
	with no countermeasures for erosion.		
Thickness measurement	High temperature corrosion portion and	High temperature	Continuous measurement at constant point
	portion that tends to decrease in thickness	corrosion	
	Around soot blower	Ash cut and steam cut	Periodic inspection (every 2years)
	Attrition at cross over of tubes		Setting necessary interval.
	Representative weld portion of fin edge	Creep fatigue	In case of elongation of periodic inspection
			interval (max. 2years).
DT	Representative dissimilar weld portion with	Creep fatigue and creep	Setting necessary interval.
PI	no use of Inconel weld metal.		
	Representative attached metal weld portion	Creep fatigue	After 80,000 hours operation, depending
			necessity
	Austenitic steel tube (Austenitic steal used in	SUS scale deposition	In case of elongation of periodic inspection
Sampling tube	steam temperature 540°C or more and		interval (max. 2years).
examination	metal temperature 620°C or more).		
	Bottom bend potion of austenitic steel tube	SUS scale deposition	Depending on necessity
?-ray inspection etc.	-		
Residual life assessment	Low alloy steel used in steam temperature	Creep	Judge from operation and design conditio
	540°C or more.		depending on necessity.

Japanese Boiler Inspection (Steam drum, water drum)

Steam drum, Water drum				
Inspection measure	Portion	Deterioration factors	Inspection interval	
VT	 Drum inside with water steam separator 	Deposit	Periodic inspection	
	equipments detached.	Corrosion	(every 2years)*	
		Erosion		
Chemical analysis		Deposit		
	Inner weld line	Low cycle fatigue		
DPT	 Inner corner of stub 			
	 Support and hanging lug 			
MT	· External seam and girth weld line	Low cycle fatigue	After 80,000 hours operation	
	Inner weld line of stub			
*If the weld of stub inside is smooth finished, periodic inspection every 4years				

Desuper					
Inspection measure	Portion	Deterioration factors	Inspection interval		
Overhaul VT	Nozzle, Mixing chamber	Thermal fatigue, abrasion	Setting necessary interval.		

Japan International Cooperation Agency		193
JICA Study Tear	n for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA	

Japanese Boiler Inspection (Header (1))

Inspection measure	Portion	Deterioration factors	Inspection interval
	General appearance	Erosion	Periodic inspection
L/T		Corrosion	
V1		Cracking	
		Leak from weld part	
	Ligament of Furnace header,	Low cycle fatigue	
	Economizer header,		
	SH header and		
	RH header inside (including drain and bent		
	tube portion).		
	Inside of Furnace header,	Corrosion by deteriorated	
	SH header and	water condition and dead	Include in the periodic inspection plan
	RH header inside	drain during outage	systematically
VT (Endoscope)		· ·	
	Bottom inside of Furnace headers,	Deposition of sludge and	
	Economizer headers	initiation of corrosion	
		fatigue crack	
	Final SH header and Final RH header	Exfoliation of steam oxide	
		scale of header inside	
	Representative 2 or more headers inside	Low cycle fatigue	Periodic inspection
		Erosion	(every 4years)
	I	Deposition	
Chemical analysis of	Bottom inside of Furnace headers,	Deposition of sludge and	
deposit	Economizer headers	initiation of corrosion	
		fatigue crack	
VT, Dimension	Stub outside of Economizer header	Low temperature	Include in the periodic inspection plan
measurement of corrosion		corrosion	systematically
m.:	Stub tubes of Final SH header and Final RH	Thinning by high	
i nickness measurement	header	temperature corrosion	

Japanese Boiler Inspection (Header (2))

Inspection measure	Portion	Deterioration factors	Inspection interval
	Representative stubs with no flexible structure and no rounding of weld end toe	Low cycle fatigue	Periodic inspection (every 2years)
DPT (MPI)	Stub weld of furnace headers, SH headers and RH headers.	Low cycle fatigue	Include in the periodic inspection plan
	Support metal weld of furnace headers, SH headers and RH headers.	Low cycle fatigue	systematically
	Representative header stub weld	Low cycle fatigue	After 80,000 hours operation (Precise
MPI	Representative header girth weld and seam weld	Creep	
Remaining life assessment	Most damaged header or pipe beyond 450°C among furnace headers among SH headers or main steam pipe among RH headers or hot reheat pipe.	Creep	To extend periodical inspection interval 2 year to 4year after 100,000 hours operation
	High temperature Header and pipe	Creep	Include in the periodic inspection plan systematically, taking into consideration of operation hours, start and stop times and designed life.

Japan International Cooperation Agency

195 JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

Thank You !

ating Element		
Element replace	cement record of po	ower utilities in Japan as of 2004
Capacity	Туре	Replacement Purpose
600MW	NF => DUN	Improvement of Temp. efficiency (Low temp layer : all)
700MW	DU => DUN	Maintained same efficiency
		(High temp layer : all)
700MW	DU => DUN	Ditto (High temp layer : all)
700MW	DU => DUN	Ditto (High temp layer : partial)
500MW	DU => DUN	Ditto (High temp layer : all)
700MW	DU => DUN	Ditto (High temp layer : partial)

or Drive Syst	em track record	in Japan	
Major track re	cord for Coal fired	Power Plants	
Capacity	Commercial Operation	Capacity	Commercial Operation
600MW	1985	500MW	1995
700MW	1989	700MW	2000
700MW	1991	700MW	2001
700MW	1992	500MW	2002
700MW	1993	600MW	2008
156MW	1994		

Sensor I	Drive System	
1. One	e major accident occurred power utilities in Japan Last 10 yea	irs
•	Occurrence of an event	
	AH trip (over load of AH drive motor)	
•	Cause	
	Sector Plate lower limit switch did not work	
	Rotor tire and sector plate contacted and this caused over load of AH drive motor	
•	Countermeasure	
	Ammeter of AH drive motor is add at Central Control Room for	
	monitoring purpose.	

Condenser Assessment Methodology

Investigation method of cause for deviation of condenser pressure from the desired value

1. Increase in leak in quantity of air

The lowering of the vacuum degree occurs when leak in exceeds the extraction capacity of the vacuum pump.

lica .

Condenser Assessment Methodology

2. Decrease of cleanliness of tubes

With no increase in the leak in air amount and with the vacuum pump found to be normal, the cause of lowering of the vacuum degree is often caused by the lowering of cleanliness of the tubes.

3. Decrease of the cooling water volume

When the cooling water volume drops, an increase of temperature rise of cooling water side (Δ T), increase of CWP discharge pressure, decrease of condenser pressure loss and lowering of the condenser water chamber level occur, in case of no pump deterioration.

The 3rd Work shop Feb. 2010

2

ilca

Condenser Assessment Methodology

4. Abnormality of the vacuum pump When an abnormality of the vacuum pump is seen, conduct changeover testing with a spare unit and compare the respective air extraction amount and vacuum.

5. Increase of condenser heat load

The condenser pressure is estimated from condenser performance curve. the design heat load, on the condition that cooling water flow, tube cleanliness and heating surface, etc. are nearly design value. If the heat load increases more than the design value at a certain operation point, the condenser pressure increases.

Japan International Cooperator Agency
The 3rd. Work shop Feb. 2010

1

The 3rd Work shop Feb 2010

TURBINE BLADE COATING (Boronize)

Characteristics of Boronize Treatment

•Ensures boron alloy layer of hardness Hv 1200-1800

•High hardness at high temperature and excellent hardwearing properties at high temperature

•High break away resistance because of penetration into the base metal

•Thin layer (approximately 80 u m) of boron alloy

12.				
JICA.	Japan	International	Cooperat	tion Ag

TURBINE BLADE COATING (Boronize)

TURBINE BLADE COATING (Boronize)

The 3rd Workshop Feb. 2010

3

1 The 3rd Workshop Feb. 2010

HP HTR PRESSURE LOSS (Example)


```
Japan International Cooperation Agency
```

1 The 3rd Workshop Feb. 2010

HP HTR TUBE CLEANING (Example)

Turbine HTRH flow vs pressure

1. Object Plant

Singrauli #6 unit of NTPC in India.

2. Object of Test

The unit was operated using 2 vacuum pumps (from 4~5 Years), deterioration of the vacuum (by about 10 mmHg) had been observed by operation using 2 vacuum pump. The air leak-in rate at about 10 mining has occur overvey or operation using a various pump. The an reason mean that time under 2 pumps operation was 120 kg/ hour. From this reason, the leak buster tests were executed for the purpose of identifying the position,

which corresponded to the air leaking abnormally into the unit.

3. Test Result

The 130 positions in vacuum line were investigated for this time and resulted in identifying the positions corresponding to about 109 kg/hour of leaks into the unit. Among them, the major position for leak into the unit was the packing gland of BFP-T A & B. (Refer to the attached check list for details.)

No.	Helium test position	Air leak rate [Kg/h]	Detection No.
1	A BFP-T gland sealing portion (Rear)	49.3	Photo No.11
2	B BFP-T gland sealing portion (Rear)	23.5	Photo No.12
3	LP turbine gland sealing portion (Packingland and Bellow flange)	13.3	Photo No.1~5
4	HP Flush tank , Flush box-1 and Drain flush Tank B	12.3	Photo No.6~10
5	Others	14.6	
	Total	113.0	

4. Test Period

		Aug. 6	Aug. 7	Aug. 8	Aug. 9	Aug. 10
1.	Preparation for test Equipment	-	-			
2.	Verification of VP air extraction rate				-	
3.	Injection test		-	-	-	-
4.	Investigation of air-leak points		-	-	_	-
5.	Report and Meeting				-	and the second se

2

Measured by : Kawashima, Sato, Iriki and Hirose

Air leak detection photos at leak buster test

-7

Maximum value: 4.40 x 10⁻⁷ Approx. air leak-in rate : 1.0 kg/h

Photo-2: LP turbine packingland Turbine side (Upper/Left)

Photo-3: LP turbine packingland Turbine side (Lower/Left)

Maximum value: 7.46 x 10⁻⁷ Approx. air leak-in rate : 2.2 kg/h

8

Photo-10: Drain flash tank-B (Connection pipe)

Photo-11: BFPT-A packingland

Approx. air leak-in rate : 23.5 kg/h

Pump assessment Singrauli CWP I-09

RESULT

1. Pump efficiency is decreased by approx. 11% from the design value.

RECOMMENDATION

- 1. Refurbish inner parts of the pump after economic evaluation.
- 2. Conduct pump test for the same pump every two years, and to carry out the test for other pumps.

jica)	Japan Inter	atora	Cooperati	ion Agenta
	Pun	np		

2 The 3rd Work shop Feb. 2010

Pump assessment Rihand CWP-2B

RESULT

1. Pump is considered to be in acceptable condition while the efficiency is 1.6% lower than the design.

RECOMMENDATION

1. Conduct pump test for the same pump every two years, and to carry out the test for other pumps.

4

The 3rd Work shop Feb. 2010

Pump assessment Rihand BFP-2B (M-BFP)

RESULT

1. Pump efficiency is decreased by approx. 13% from the design value.

RECOMMENDATION

- 1. Refurbish inner parts of the pump after economic evaluation.
- 2. Conduct pump test for the same pump every two years, and to carry out the test for other pumps.

