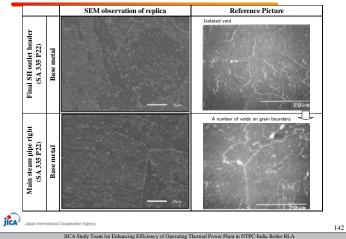
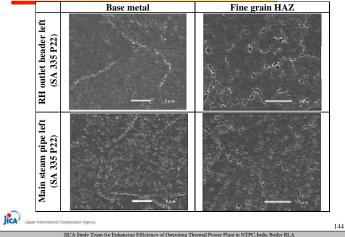

Creep void observation results (Singrauli #6)

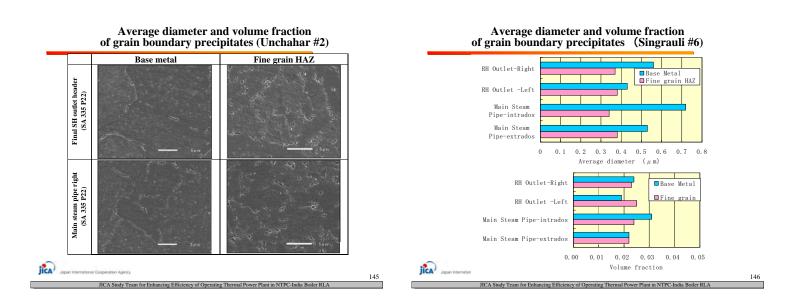
	onents	Location		Observed region	SEM (Scanning Electron Microscope observation)	
	Components		Loca	Observed region	Creep void damage	
	RH outlet header Right Circumferential		ıtial	Fine grain HAZ	No void	
			Kight umferen weld	Coarse grain HAZ	No void	
	RH (Circ	Weld metal	No void	
	oipe		ntial s stop os side	Fine grain HAZ	No void	
	Main steam pipe	Left	Left	Circumferential weld (near the stop alve) extrados side	Coarse grain HAZ	No void
	Mai		Cirv weld (valve)	Weld metal	No void	
jica	Japan inte	mational	Cooperation Agency			
			JICA Study Team	for Enhancing Efficiency of G	Operating Thermal Power Plant in NTPC-India Boiler RLA	


Creep void observation results (Unchahar #2)

	onents	Components Location		Observed reasing	SEM (Scanning Electron Microscope observation)	
	Comp		Loci	Observed region	Ceep void damage	
	Final SH outlet header	neader	ntial	Fine grain HAZ	No void	
		Rightside of header	Circumferential weld	Coarse grain HAZ	No void	
			Ü	Weld metal	No void	
	pipe		al weld valve)	Fine grain HAZ	No void	
	Main steam pipe	Right	Circumferential weld (near the stop valve)	Coarse grain HAZ	No void	
	Ma		Circu (near	Weld metal	No void	
jica	Japan'ir	ternation	JICA :		fficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA	140

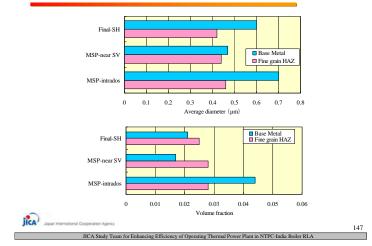
Creep void observation results (Singrauli #6)


Creep void observation results (Unchahar #2)



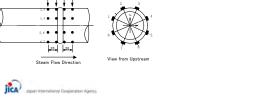
Average diameter and volume fraction of grain boundary precipitates

	Observation item		Microstructure	Carbide precipitation	Precipitates free band width along grain boundary	Creep void grade	Average diameter of grain boundary precipitates	Average volume fraction of grain boundary precipitates
	Ob	servation method	Optical microscope	(EM ion Electron scope)	(Scannin	SEM g Electron Mic	roscope)
	Observed target		Micro crack and microstructural degradation	Morphology and distribution of precipitates	Quantitative evaluation of precipitates free band width	Micro crack and creep void	Quantitative evaluation of grain boundary precipitates	Quantitative evaluation of grain boundary precipitates
	Observed magnification		×500 ×1000	×2000 ×10000	×2000	×500 ×2000	×3000 (Base n ×4000 (Fine gi	
Ì		Base metal	0	0	0		0	0
	Dbserved area	Intercritical zone	0					
	serv	Fine grain HAZ	0	0			0	0
	d,	Coarse grain HAZ	0	0		0		
ļ		Weld metal	0	0				
jica	Japan	International Cooperation Age	0.0					14
		JICA Study	Team for Enhancing	g Efficiency of Ope	erating Thermal Po	wer Plant in NTPC	-India Boiler RLA	


Average diameter and volume fraction of grain boundary precipitates (Singrauli #6)

149

Average diameter and volume fraction of grain boundary precipitates (Unchahara #2)

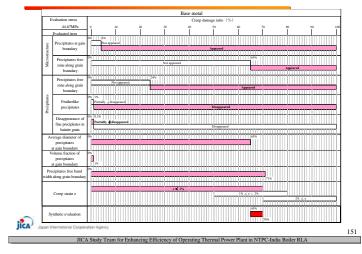


<section-header><text>

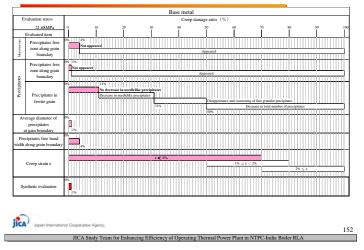
148

Creep strain evaluation by OD measurement (Singrauli #6)

	Components	(Averaged measured value-Designed OD) /Designed OD (%)
	Platen SH Outlet Header-Left	0.10
The second secon	De-Superheater-Left	0.94
Steam flow	De-Superheater-Right	0.55
	RH Outlet Header-Left	0.37
Weld potion	RH Outlet Header-Right	0.52
measured	Main Steam Pipe-Left	0.08
Base H H A A Base Metal Z Z Metal 2 4	3	



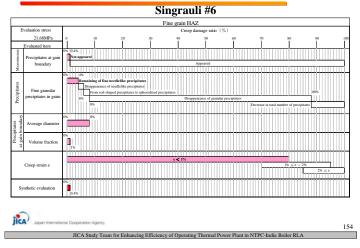
JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA


Creep strain evaluation by OD measurement (Unchahar #2)

a filler	Components	(Averaged measured value-Designed OD) /Designed OD (%)
Steam f	Final SH Outlet Header	0.74
	De-Superheater-Left	0.44
	De-Superheater-Right	0.46
	RH Outlet Header at left side	0.20
Weld potion measure	d RH Outlet Header at right	0.57
	Main Steam Pipe-Right	-
	Hot Reheat Pipe-Right	0.01
Straight pipe side	7 7 0 0 0 0 0 0 0 0 0 0	
Steam Elow.Direction		150

Synthetic evaluation (Base metal of MSP) Singrauli #6

Synthetic evaluation (Base metal of RH header left) Singrauli #6

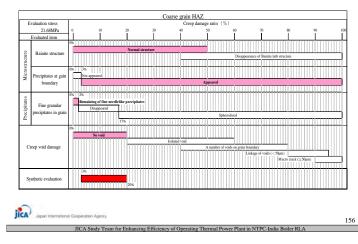


Synthetic evaluation (Fine grain HAZ of MSP) Singrauli #6

Fine grain HAZ Evaluation stress Creep damage ratio (%) 44.67MP 0 10 20 30 60 50 Evaluation term Non-sequence Non-sequence Non-sequence Non-sequence 1 0 0 20 30 40 30 40 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 <th></th>	
465MPs 0 10 20 30 40 59 Evaluated item m <td>,</td>	,
main main <t< td=""><td>60 70 80 90 100</td></t<>	60 70 80 90 100
Beceptiates at pain Non-symmetry Non-s	
Semining of fire reading receiptings Braining of fire reading receiptings Volume fraction of precipitals Braining of fire reading receiptings at gain boundary 24%	
gain precipitates in grain Photometric precipitates in grain Photometric Photometric precipitates in grain Photometric Phot	sd
Volume fraction of 0%	78%
Volume fraction of precipitates at gain boundary 20% 20% 20% 20% 20% 20% 20% 20% 20% 20%	
crep strain e	pearance of needlelike precipitates
Creep strain e	
Creep strain e	
	1% ≤ c < 2%
Synthetic evaluation	$\frac{15 \le c < 25}{2\% \le c}$
	78%
Jugan Hermational Cooperation Agency	

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

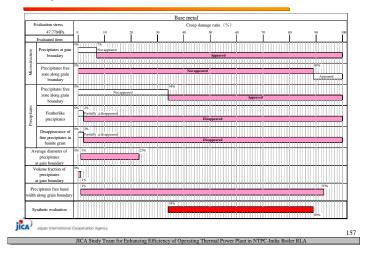
Synthetic evaluation (Fine grain HAZ of RH header left)


Synthetic evaluation (Coarse grain HAZ of MSP) Singrauli #6

E	valuation stress	Coarse grain HAZ Creep damage ratio (%)	
E			
	44.67MPa		0 10
	Evaluated item		
		Normal structure	
5	Bainite structure	Disappearance of Bainite lath structure	
Microstructure		Disappearance of Bannie an structure	
str		0% 45%	
cic			
Mi	Precipitates at gain boundary		
		Appeared	
		0% 24%	
Precipitates		Remaining of fine needlelike precipitates	
pit	Fine granular		
S.	precipitates in grain	Disappeared	
<u>م</u>			
		No void	
		Isolated void	
0	eep void damage	A number of voids on grain boundary	
C.	eep void damage	Linkage of voids (<50µm)	
		Macro crack (>50m)	
		24%	
Sy	nthetic evaluation	45%	

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

155


Synthetic evaluation (Coarse grain HAZ of RH header left) Singrauli #6

Jica Japan Int

nai De

Synthetic evaluation (Base metal of MSP) Unchahar #2

Residual life assessment results of pipes (Singrauli #6)

Components	Location	Material	Region	Creep life consumption ratio (%)	Evaluation Residual lit		Evaluated residual life (h)
	Base Metal at left side		Base Metal	9 ~ 16	903,000 ~	1,739,000	
Platen-SH OutletHeader-		SA 335	Base Metal	$9 \sim 16$	903,000 ~	1,739,000	140.000
Left	circumferential weld at left side	P12	Fine grain HAZ	$34 \sim 38$	281,000 ~	334,000	140,000
Leit	ien side		Coarse grain HAZ	$0 \sim 18$	784,000 <		
De-Suerheater-		SA 335	Base Metal	$8 \sim 16$	903,000 ~	1,978,000	
De-Suerheater-	Circumferential weld	SA 335 P12	Fine grain HAZ	$0 \sim 19$	733,000 <		100,000
Len		112	Coarse grain HAZ	$19 \sim 45$	$210,000 \sim$	733,000	
De-Suerheater-	Circumferential weld	SA 335	Base Metal	$0 \sim 1$	17,028,000 <		
De-Suerneater- Right		P12	Fine grain HAZ	$0 \sim 19$	733,000 <		100,000
nigin			Coarse grain HAZ	$19~\sim~45$	$_{210,000} \sim$	733,000	
RH Outlet	Circumferential weld at left side	SA 335 P22	Base Metal	$0 \sim 1$	17,028,000 <		340,000
RH Outlet Header-Left			Fine grain HAZ	$0 \sim 0.4$	42,828,000 <		
fielder Een			Coarse grain HAZ	$3 \sim 20$	688,000 ~	5,561,000	
RH Outlet	Circumferential weld	SA 335	Base Metal	$4 \sim 6$	2,695,000 ~	4,128,000	
Header-Right	at right side	P22	Fine grain HAZ	$0 \sim 0.4$	42,828,000 <		1,300,000
g			Coarse grain HAZ	$2 \sim 3$	5,561,000 ~	8,428,000	
Main Steam	Circumferential	SA 335	Base Metal	$65 \sim 70$	74,000 ~	93,000	
Pipe-Left	weld.extrados	P22	Fine grain HAZ	$8 \sim 21$	647,000 ~	1,978,000	37,000
Tipe Len			Coarse grain HAZ	$0 \sim 20$	688,000 <		
Main Steam	Circumferential	SA 335	Base Metal	$65~\sim~70$	74,000 ~	93,000	
Pipe-Left	weld.intrados	P22	Fine grain HAZ	$78 \sim 80$	43,000 ~	49,000	21,000
1			Coarse grain HAZ	$24 \sim 45$	$210,000 \sim$	545,000	
Japan International	(Operation	hours/C	reep life consur	nption ratio) × 100 – opera	ation hours	
	JICA Study Team for H	Enhancing E	fficiency of Operating	ng Thermal Poy	ver Plant in NTPC-I	India Boiler F	RLA

ī

ti

Residual life assessment results of pipes (Unchahar #2)

Components	Location	Material	Region	Creep life consumption	Evaluation results Residual life (hr)	Evaluated residual life (h)	
			Base Metal	ratio (%) 4	3,338,000	nie (n)	
Final SH Outl	Circumferential	SA 335	Fine grain HAZ	$1 \sim 4$	3.338.000 ~ 13.771.000	270.000	
et Header	weld at right side	P22	Coarse grain HAZ	$9 \sim 20$	556,000 ~ 1,406,000		
De-Suerheater-	Circumferential	SA 335	Base Metal	$16 \sim 31$	310.000 ~ 730.000		
Left	weld	P12	Coarse grain HAZ	$0 \sim 42$	192,000 <	96,000	
De-Suerheater-	Circumferential	SA 335	Base Metal	$16 \sim 31$	310,000 ~ 730,000		
Right	weld	P12	Coarse grain HAZ	$0 \sim 42$	192,000 <	96,000	
		0.000	Base Metal	$2 \sim 6$	2,179,000 ~ 6,816,000		
	Circumferential weld at left side	SA 335 P22	Fine grain HAZ	$7 \sim 9$	$1,406,000 \sim 1,848,000$	700,000	
	weld at left side	P22	Coarse grain HAZ	$3 \sim 6$	2,179,000 ~ 4,498,000	1	
	Circumferential weld at right side,top Circumferential weld at right side,front	SA 335 P22	Base Metal	$2 \sim 6$	2,179,000 ~ 6,816,000	270,000	
RH Outlet Header			Fine grain HAZ	$9 \sim 14$	$854,000 \sim 1,406,000$		
ricauci			Coarse grain HAZ	$6 \sim 20$	556,000 ~ 2,179,000		
		SA 335 P22	Base Metal	2	6,816,000	270,000	
			Fine grain HAZ	$9 \sim 14$	$854,000 \sim 1,406,000$		
			Coarse grain HAZ	$6 \sim 20$	556,000 < 2,179,000		
	Circumferential weld.intrados	SA 335 P22	(Base Metal)※	(34) ~ (74)	(49,000) ~ (270,000)	69,000	
			(Fine grain HAZ)※	(13) ~ (42)	(192,000) ~ (931,000)		
Main Steam	weid,intrados	122	Coarse grain HAZ	$32 \sim 50$	139,000 ~ 296,000		
Pipe-Right	Circumferential	SA 335	(Base Metal) ※	(34) ~ (89)	(17,000) ~ (270,000)		
	weld,near the stop	SA 335 P22	(Fine grain HAZ)※	(13) ~ (42)	(192,000) ~ (931,000)	270,000	
	valve	122	Coarse grain HAZ	$0 \sim 20$	556,000 <		
			Base Metal	$6 \sim 16$	$730,000 \sim 2,179,000$		
Hot Reheat Pipe-Right	Circumferential weld	SA 335 P22	Fine grain HAZ	$19 \sim 22$	493,000 ~ 593,000	240,000	
· .pe+Kight	weid	• 22	Coarse grain HAZ	$14 \sim 20$	$556,000 \sim 854,000$		
*: : Regard	ed as reference for allon Agency	OD measu	rement was not ca	rried out.			

Summary of inspection results

Inspection item	Inspection results
VT	• Water wall, SH, RH panel was visually inspected from the view point of erosion, attrition and distortion of panel arrangement.
THICKNESS MEASUREMENT	Thickness of tubes was measured mainly at erosion area for water wall, SH, RH. Measured thickness was discussed in terms of thickness management criteria.
SUS SCALE DEPOSITION INSPECTION	SUS scale deposition was inspected at bottom bend portion ub SH and RH panel. On the whole SUS scale deposition was not significant with 15% fullness at most.
SAMPLE TUBE INSPECTION	•SH, RH sample tubes were inspected for the oxide scale adhesion condition microstructure hardness and so on.
CREEP RUPTURE TEST	•As a result of creep rupture test for the base metal and the weld joint of SH and RH, min. evaluated residual life was 35,000 hours for the weld joint for Final SH tube in Unchahar #2.
Japan Weemational Cooperation Agency	r Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

RECOMMENDATION (Boiler RLA)

1. Singrauli #6 : Implement RLA of main steam pipes including outer diameter measurement and replica sampling before the estimated residual life of 21,000 hrs. Coarse grain HAZ region is the most critical region indicated no creep damage with no creep void. However, in base metal region the estimated residual life for left MS pipe is 21,000 hrs with a little microstructural degradation.

2. Unchahar #2:

JICA

For main steam Pipe, the estimated residual life of coarse grain HAZ region is 69,000 hrs. The estimated residual life in base metal varies from 8,000 to 130,000 hrs due to no OD measurements applied, while microstructure shows a little degradation. For accurate estimation of residual life, creep strain (OD) measurement along with microstructure is recommended to be carried out preferably within 8,000 hrs or practically at the earliest opportunity.

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

RECOMMENDATION (Boiler RLA)

- 3. **Criteria for tube replacement**: In Japan alternative thickness criteria for more precise judgment of safety margin, such as tsr (thickness shell required) method is used. NTPC can also consider the use of such criteria in consultation with OEM rather than the method of thickness decrease ratio from design thickness.
- 4. **Scope of RLA**: Conduct RLA focusing or emphasizing on critical parts considering creep life after identification of critical parts, instead of all high temperature pressure parts, which NTPC focuses on currently.

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

161

62

RECOMMENDATION (Boiler RLA)

- 5. New techniques: Apply new techniques and equipments such as
 - SUS scale detection
 - TOFD
 - · Advanced metallurgical observation technique using SEM,TEM
 - · Precise surface polishing treatment for replica.
- 6. Advanced training: Conduct advanced training of new techniques for NTPC inspection engineers in Japan.

Manual & Guideline Boiler RLA

Jacon Hermitianal Cooperation Agency JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

163

165

167

Plant in NTPC-India Boiler RLA

Manual & Guideline related to Boiler RLA

✓ 2-1-3) Boiler RLA Manual

	Thickness measurement
в	SUS scale deposition inspection
Boiler	PT(DPT)
er F	UT
RLA	TOFD (Time of Flight Diffraction)
	Sample tube inspection
Manua	Sampling of replica and extracted replica
al	Boiler remaining life assessment
	Creep rupture test

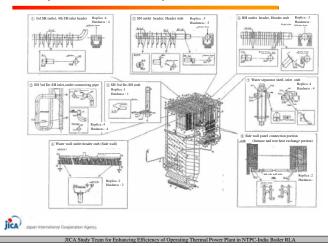
 $\checkmark\,$ 2-1-4) Data collection of new boiler for future RLA Guideline

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

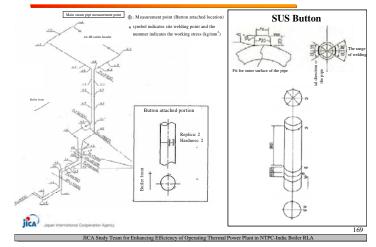
- 2-1-2) Techniques for boiler tube cleaning after cutting (before welding) Manual
- Japan International Cocces

Example of initial data sampling in new power plants

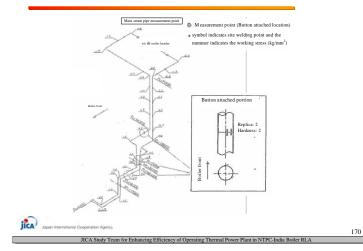
	Componetns	Replica sampling	Haredness measurement	Outside diameter measurement
	Water separator	2	2	-
	SH outlet header	4	4	2
	RH outlet header	2	2	1
	3rd SH outlet header	2	2	1
Shell and header	4th SH inlet header	2	2	1
	Water separator inlet stub	2	2	-
	Water wall outlet header stub (side wall)	2	2	2
	SH outlet header stub	1	1	1
	RH outlet header stub	1	1	1
	Main steam pipe	8	8	4
Main pipe	Hot reheat pipe	8	8	4
main pipe	Hot reheat pipe spherical Y piece	4	4	-
	High pressure turbine bypass pipe	1	1	1
	3rd SH De-SH outlet connecting pipe	2	2	1
	3rd SH De-SH inlet connecting pipe	2	2	1
Others	3rd SH De-SH stub	1	1	-
	Side wall panel connection portion (furnace and rear heat exchange portion)	2	2	2


Boiler tube : thickness measurement at constant points, reserved boiler tube for initial creep rupture data and so

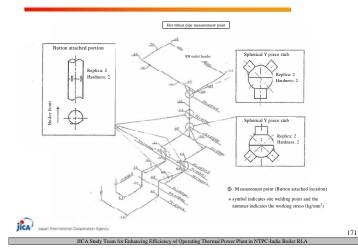
JICA Study Team for Enhancing Efficiency of Operating Th


2-1-4) Data collection of new boiler for future RLA Guideline

Example of measurement points for initial data


168

Example of measurement points for Main steam pipe



Measurement points for Main steam pipe

Measurement points

Measurement points for Hot reheat pipe

<section-header><section-header><image><image>

Sponge image for prevention against foreign material mixing

2-1-2) Techniques for boiler tube cleaning after cutting (before welding) Manual

5. 3) Kiken Yochi (KY) Meeting Manual

KYM (Kiken Yochi Meeting :danger prediction meeting)

[Scope]

This is applied to the meeting prior to working for workers to have the precaution against danger.

[General]

ica Jacon Marrietonal Co

ilca)

KYM is one of activities for safety work, predicting danger and setting the preventive measures. In general KYM consists of 4 steps that are grasping the current status, focusing on a few potential hazards by brainstorming, collecting the countermeasures by brainstorming, setting the objective to act focusing one or two countermeasures using KY board.

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

KYM (Kiken Yochi Meeting : danger prediction meeting)

[Procedure]

1st step :Understanding the current situation (what kind of danger is hidden?) Every KYM member talks about what kind of danger is hidden and its reason on KY board.

The person in charge of writing itemizes the each dangerous situation on the KY board.

2nd step :Pursuit of the essence (Identification of danger points) Focusing on a few danger points which are considered as especially important ones.

KYM (Kiken Yochi Meeting : danger prediction meeting)

3rd step :Establishment of countermeasures (what do you do in such a situation?)

Collecting the concrete countermeasures for the focused danger points, which are possible to be carried out.

The person in charge of writing itemizes the countermeasures to be collected on the KY board.

4th step :Setting the objective (we do this way)

Focusing on one or two important points from the countermeasures to be collected, determine the objective to act.

Chanting the objective to act with finger pointing by every member for recognition and confirmation.

JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA

178

KYM (Kiken Yochi Meeting : danger prediction meeting)

An example of KYM scen	e An	example of	KY boa	ırd	
	Date: Oct. 28		KYM	leeting	
	Work Name: Boile	r RLA			
	Leader Name	S. Nakashima	Number of	Workers	8
	Contact information	090-7611- 0022(mobile)	Health c	heck	Good
	What kind of da	nger is hideen?	We act	the follow	vings
	Falling from high pla	ace	Wear safety		
	Injured with grinding	machine	Check the power switch on/off		
	Falling over		Watch one's	step	
	Sucking dust	Hitting body	Put on dust mask	Ensure th of the sur	
	Attention at work	Pay a	ttention for co	ongested v	vork !
Japan International Cooperation Agency	Today's action tar	gets: W	'ear safety be	lt ! Roger	
JICA Study Team for Enhanci					17

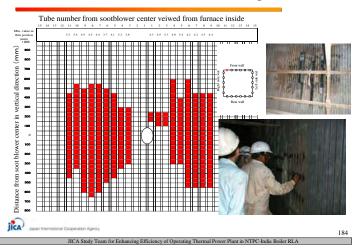
5. 4) Tool Box Meeting Manual

Tool Box Meeting	Tool Box Meeting
[Scope] This is applied to the meeting prior to working for workers to have the precaution against danger.	【Procedure 】 ✓ Punctual TBM start by all work members
【General】 TBM is the meeting held by workers to discuss the safety prior	✓ Discussion about the scope of work, the procedures and the points of safety working
to working in the morning and in the afternoon. The small unite of group that is 6 members or less discusses about the scope of work, the procedures and the point of	✓ Grasping the background behind the problems and danger for the work.
safety working.	\checkmark Discussion about the improvement plans for the problems ar
✓ Confirming the scope of work and its procedure for the day.	danger that is carried out with active and sincere participation
✓ The leader for the work guides the wok members to make a speech to grasps the work members thought.	by every worker. Determination of the objective and the item for action including 5W,1H.
✓ Summarizing the discussion results, determine the action objective.	Jugan International Cooperation Agency

181

Summary of Boiler RLA Demonstration

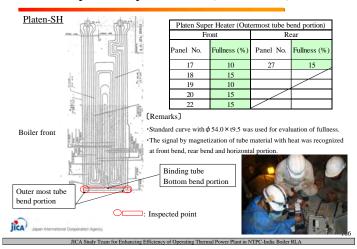
JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA


Inspection item	Japanese practice / Demo at sites	Recommendation	
νт	Erosion and attrition of tubes and disorder of panel arrangement were inspected.	?	
Thickness measurement	•Use of the original calibration block •Acceptance criteria •Grasping thickness decrease region	Study of alternative standard criteria for tube replacement such as tsr (Thickness Shell Required) was recommended.	
SUS scale deposition inspection	The detection technique making use of the principle of induction is applied from the view point of efficiency and safety, besides conventional ?-ray method.	For implementation of new RLA technology, training in Japan was carried out.	_
Sample tube inspection	 Tube: Appearance, dimension, Hardness, Microstructure Scale: Appearance, Volume, Thickness, Composition 	?	
Creep rupture test	Residual life was evaluated by parameter method with a thousand hours creep rupture tests. A Study Team for Enhancing Efficiency of Operating Thermal Pow	For implementation of precise RLA by creep rupture test, training in Japan was carried out.	183

Thickness measurement results of WW (Singrauli #6)

JICA Study Team for Enhancing Efficiency of Op

182


er Plant in NTPC-India Boiler RLA

Summary of Boiler RLA Demonstration

Inspection item	Japanese practice / Demo at sites	Recommendation
νт	Erosion and attrition of tubes and disorder of panel arrangement were inspected.	?
Thickness measurement	•Use of the original calibration block •Acceptance criteria •Grasping thickness decrease region	Study of alternative standard criteria for tube replacement such as tsr (Thickness Shell Required) was recommended.
SUS scale deposition inspection	The detection technique making use of the principle of induction is applied from the view point of efficiency and safety, besides conventional ?-ray method.	For implementation of new RLA technology, training in Japan was carried out.
Sample tube inspection	 Tube: Appearance, dimension, Hardness, Microstructure Scale: Appearance, Volume, Thickness, Composition 	?
Creep rupture test	Residual life was evaluated by parameter method with a thousand hours creep rupture tests. A Study Team for Enhancing Efficiency of Operating Thermal Pow	For implementation of precise RLA by creep rupture test, training in Japan was carried out.

SUS scale deposition inspection results (Unchahar #2)

Summary of Boiler RLA Demonstration

Inspection item Japanese practice / Demo at sites Recommendation DP • Same procedure as NTPC • More careful surface treatment and wiping out the pentrant Image: Commendation of the pentrant • More careful surface treatment and wiping out the pentrant Image: Commendation of the pentrant • More careful surface treatment and wiping out the pentrant Image: Commendation of the pentrant • More careful surface treatment and wiping out the pentrant Image: Commendation of the pentrant • More careful surface treatment and wiping out the pentrant Image: Commendation of the pentrant • More careful surface treatment and wiping out the pentrant Image: Commendation of the pentrant • More careful surface treatment and wiping out the pentrant Image: Commendation of the pentrant • More careful surface treatment and wiping out the pentrant Image: Commendation of the pentrant • More careful surface treatment and wiping out the pentrant Image: Commendation of the pentrant • More careful surface treatment and wiping out the pentrant Image: Commendation of the pentrant • More careful surface treatment and wiping out the pentrant Image: Commendation of the pentrant • More careful surface treatment and wiping out the pentrant Image: Commendation of the pentrant • More careful surface treatment Image: Co

Summary of Boiler RLA Demonstration

Inspection item	Japanese practice / Demo at sites	Recommendation
DPT	•Same procedure as NTPC	More careful surface treatment and wiping out the penetrant
UT & TOFD (Time of flight diffraction)	Applied to the crack detection for high temperature header and pipe weld.	For implementation of new RLA technology, training in Japan was carried out.

Summary of Boiler RLA Demonstration

Inspection item	Japanese practice / Demo at sites	Recommendation
DPT	•Same procedure as NTPC	More careful surface treatment and wiping out the penetrant
UT & TOFD (Time of flight diffraction)	Applied to the crack detection for high temperature header and pipe weld.	For implementation of new RLA technology, training in Japan was carried out.
Boiler remaining life assessment by replica inspection	Using high magnification electron microscope, residual life was evaluated quantitatively.	Implement RLA including OD measurement and replica before reaching evaluated life. For implementation of new RLA technology, training in Japan was carried out.

Summary of Boiler RLA Demonstration

Japanese Boiler Inspection (Water wall, Furnace tube)

Inspection measure	Portion	Deterioration factors	Inspection interval
	General appearance	Burn out, distortion,	Periodic inspection (every 2years)
VT	General appearance building scaffolding by the burner level	swelling, ash cut, steam cut etc.	Periodic inspection (every 4years)
	General appearance building scaffolding by the top of furnace at the necessary interval set.		Setting necessary interval.
VT(Endoscopy)	Water tube inside	Corrosion	Setting necessary interval.
Chemical analysis of deposit	Outside deposit	Corrosion	Periodic inspection (every 2years)
РТ	Representative weld portion of fin edge	Creep-fatigue	In case of elongation of periodic inspect interval (max. 2years).
PI	Representative attached metal weld portion	Creep-fatigue	After 80,000 hours operation, dependin necessity
	Fixed points of tube.	Thinning with aging.	Continuous measurement depending on
Thickness measurement	Representative portion of ash cut and steam cut with no countermeasure	Ash cut and steam cut.	boiler structure and type. Erosion countermeasure necessary, in ca of elongation of periodic inspection inter (max. 2years).
Sampling tube examination	Water wall tube in high heat load portion	Scale deposit	Setting necessary interval.
Residual life assessment	Water wall tube in high heat load portion	Creep	Judge from operation and design conditi depending on necessity.

Japanese Boiler Inspection (SH, RH, Eco tube)

	SH, RH,		
Inspection measure	Portion	Deterioration factors	Inspection interval
VT	General appearance	Leak, crack, corrosion,	Periodic inspection (every 2years)
•1		erosion	
Chemical analysis of	Outside deposit	High temperature	Depending on necessity
deposit		corrosion	
	Representative points of SH, RH, Eco tubes	erosion	Periodic inspection (every 2years)
	with no countermeasures for erosion.		
Thickness measurement	High temperature corrosion portion and	High temperature	Continuous measurement at constant poin
	portion that tends to decrease in thickness	corrosion	
	Around soot blower	Ash cut and steam cut	Periodic inspection (every 2years)
	Attrition at cross over of tubes		Setting necessary interval.
	Representative weld portion of fin edge	Creep fatigue	In case of elongation of periodic inspectio
			interval (max. 2years).
РТ	Representative dissimilar weld portion with	Creep fatigue and creep	Setting necessary interval.
PI	no use of Inconel weld metal.		
	Representative attached metal weld portion	Creep fatigue	After 80,000 hours operation, depending
	-		necessity
	Austenitic steel tube (Austenitic steal used in	SUS scale deposition	In case of elongation of periodic inspection
Sampling tube	steam temperature 540°C or more and	-	interval (max. 2years).
examination	metal temperature 620°C or more).		
?-ray inspection etc.	Bottom bend potion of austenitic steel tube	SUS scale deposition	Depending on necessity
Residual life assessment	Low alloy steel used in steam temperature	Creep	Judge from operation and design condition
	540°C or more.		depending on necessity.
ЛС	A Study Team for Enhancing Efficiency of Ope	rating Thermal Power Plant	1 0 /

Japanese Boiler Inspection (Steam drum, water drum)

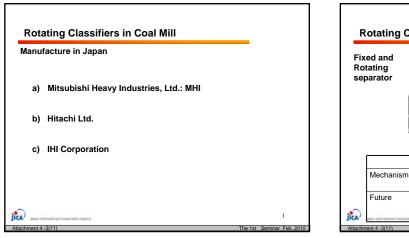
Steam drum, Water drum			
Inspection measure	Portion	Deterioration factors	Inspection interval
VT	 Drum inside with water steam separator 	Deposit	Periodic inspection
	equipments detached.	Corrosion	(every 2years)*
		Erosion	
Chemical analysis		Deposit	
	Inner weld line	Low cycle fatigue	
DPT	 Inner corner of stub 		
	 Support and hanging lug 		
MT	· External seam and girth weld line	Low cycle fatigue	After 80,000 hours operation
	· Inner weld line of stub		
-	*If the weld of stub inside is smooth finished	d, periodic inspection every	4years

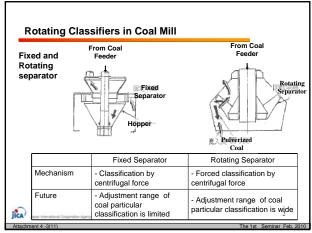
Desuper			
Inspection measure	Portion	Deterioration factors	Inspection interval
Overhaul VT	Nozzle, Mixing chamber	Thermal fatigue, abrasion	Setting necessary interval.

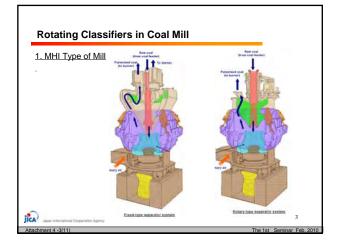
jica	Japan International Cooperation Agency	
	JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA	193
	Service of the servic	

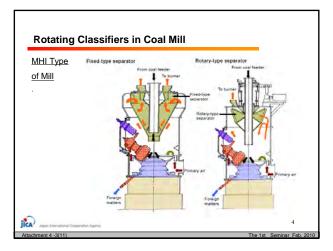
Japanese Boiler Inspection (Header (1))

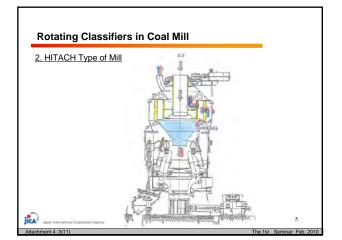
Inspection measure	Portion	Deterioration factors	Inspection interval
	General appearance	Erosion	Periodic inspection
VT		Corrosion	
V1		Cracking	
		Leak from weld part	
	Ligament of Furnace header,	Low cycle fatigue	
	Economizer header,		
	SH header and		
	RH header inside (including drain and bent		
	tube portion).		
	Inside of Furnace header,	Corrosion by deteriorated	
	SH header and	water condition and dead	Include in the periodic inspection plan
	RH header inside	drain during outage	systematically
VT (Endoscope)			-,,
	Bottom inside of Furnace headers,	Deposition of sludge and	
	Economizer headers	initiation of corrosion	
		fatigue crack	
	Final SH header and Final RH header	Exfoliation of steam oxide	
		scale of header inside	
	Representative 2 or more headers inside	Low cycle fatigue	Periodic inspection
		Erosion	(every 4years)
		Deposition	
Chemical analysis of	Bottom inside of Furnace headers,	Deposition of sludge and	
deposit	Economizer headers	initiation of corrosion	
		fatigue crack	
VT, Dimension	Stub outside of Economizer header	Low temperature	Include in the periodic inspection plan
measurement of corrosion		corrosion	systematically
70-1-1	Stub tubes of Final SH header and Final RH	Thinning by high	
Thickness measurement	header	temperature corrosion	

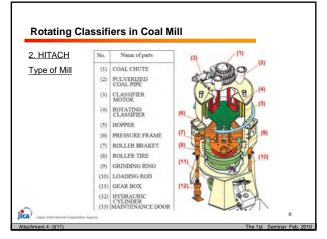

Japanese Boiler Inspection (Header (2))

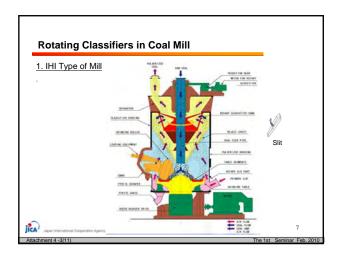

Inspection measure	Portion	Deterioration factors	Inspection interval	
	Representative stubs with no flexible structure and no rounding of weld end toe	Low cycle fatigue	Periodic inspection (every 2years)	
DPT (MPI)	Stub weld of furnace headers, SH headers and RH headers.	Low cycle fatigue	Include in the periodic inspection plan	
	Support metal weld of furnace headers, SH headers and RH headers.	Low cycle fatigue	systematically	
	Representative header stub weld	Low cycle fatigue	After 80,000 hours operation (Precise	
MPI	Representative header girth weld and seam weld	Creep		
Remaining life assessment	Most damaged header or pipe beyond 450°C among furnace headers among SH headers or main steam pipe among RH headers or hot reheat pipe.	Сгеер	To extend periodical inspection interval 2 year to 4year after 100,000 hours operation	
	High temperature Header and pipe	Creep	Include in the periodic inspection plan systematically, taking into consideration of operation hours, start and stop times and designed life.	

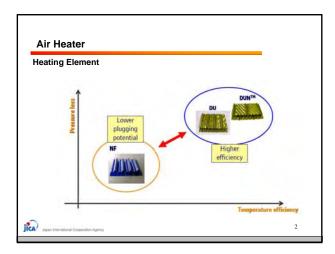

Japan International Cooperation Agency

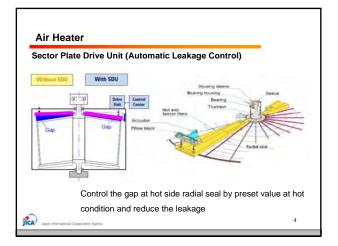

195 JICA Study Team for Enhancing Efficiency of Operating Thermal Power Plant in NTPC-India Boiler RLA


Thank You !









ating Element		
Element replace	cement record of po	ower utilities in Japan as of 2004
Capacity	Туре	Replacement Purpose
600MW	NF => DUN	Improvement of Temp. efficiency (Low temp layer : all)
700MW	DU => DUN	Maintained same efficiency
		(High temp layer : all)
700MW	DU => DUN	Ditto (High temp layer : all)
700MW	DU => DUN	Ditto (High temp layer : partial)
500MW	DU => DUN	Ditto (High temp layer : all)
700MW	DU => DUN	Ditto (High temp layer : partial)

or Drive Syst	em track record	in Japan	
/lajor track re	cord for Coal fired	Power Plants	
Capacity	Commercial Operation	Capacity	Commercia Operation
600MW	1985	500MW	1995
700MW	1989	700MW	2000
700MW	1991	700MW	2001
700MW	1992	500MW	2002
700MW	1993	600MW	2008
156MW	1994		

Air Heater
Sensor Drive System
1. One major accident occurred power utilities in Japan Last 10 years
Occurrence of an event
AH trip (over load of AH drive motor)
Cause
Sector Plate lower limit switch did not work
Rotor tire and sector plate contacted and this caused over load of AH drive motor
Countermeasure
Ammeter of AH drive motor is add at Central Control Room for
monitoring purpose.
Jack Angene International Congenitation Agency 6

Condenser Assessment Methodology

Investigation method of cause for deviation of condenser pressure from the desired value

1. Increase in leak in quantity of air

The lowering of the vacuum degree occurs when leak in exceeds the extraction capacity of the vacuum pump.

lica .

Condenser Assessment Methodology

2. Decrease of cleanliness of tubes

With no increase in the leak in air amount and with the vacuum pump found to be normal, the cause of lowering of the vacuum degree is often caused by the lowering of cleanliness of the tubes.

3. Decrease of the cooling water volume

When the cooling water volume drops, an increase of temperature rise of cooling water side (Δ T), increase of CWP discharge pressure, decrease of condenser pressure loss and lowering of the condenser water chamber level occur, in case of no pump deterioration.

The 3rd Work shop Feb. 2010

2

ilca

Condenser Assessment Methodology

4. Abnormality of the vacuum pump When an abnormality of the vacuum pump is seen, conduct changeover testing with a spare unit and compare the respective air extraction amount and vacuum.

5. Increase of condenser heat load

The condenser pressure is estimated from condenser performance curve. the design heat load, on the condition that cooling water flow, tube cleanliness and heating surface, etc. are nearly design value. If the heat load increases more than the design value at a certain operation point, the condenser pressure increases.

Japan International Cooperator Agency
The 3rd. Work shop Feb. 2010

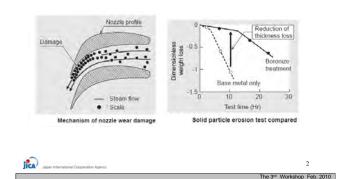
1

The 3rd Work shop Feb 2010

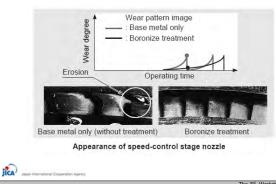
TURBINE BLADE COATING (Boronize)

Characteristics of Boronize Treatment

•Ensures boron alloy layer of hardness Hv 1200-1800


•High hardness at high temperature and excellent hardwearing properties at high temperature

•High break away resistance because of penetration into the base metal


•Thin layer (approximately 80 u m) of boron alloy

12.		International		
JICA.	Japan	International	Coopera	tion Ag

TURBINE BLADE COATING (Boronize)

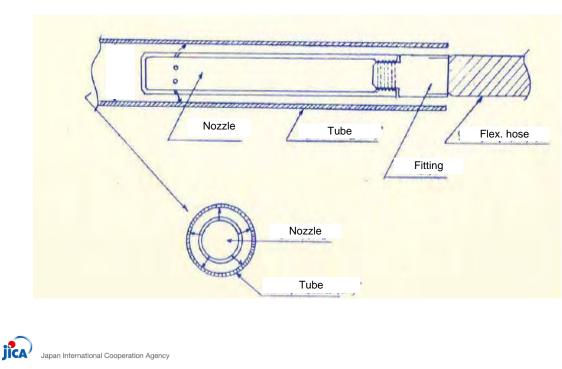
TURBINE BLADE COATING (Boronize)

The 3rd Workshop Feb. 2010

3

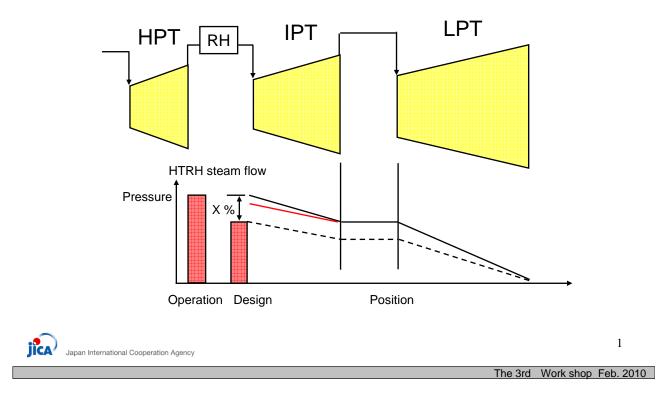
1 The 3rd Workshop Feb. 2010

HP HTR PRESSURE LOSS (Example)


```
1
```

Japan International Cooperation Agency

jica


The 3rd Workshop Feb. 2010

HP HTR TUBE CLEANING (Example)

2

Turbine HTRH flow vs pressure

1. Object Plant

Singrauli #6 unit of NTPC in India.

2. Object of Test

The unit was operated using 2 vacuum pumps (from 4~5 Years), deterioration of the vacuum (by about 10 mmHg) had been observed by operation using 2 vacuum pump. The air leak-in rate at about 10 mining has occur overvey or operation using a various pump. The an reason mean that time under 2 pumps operation was 120 kg/ hour. From this reason, the leak buster tests were executed for the purpose of identifying the position,

which corresponded to the air leaking abnormally into the unit.

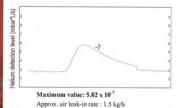
3. Test Result

The 130 positions in vacuum line were investigated for this time and resulted in identifying the positions corresponding to about 109 kg/hour of leaks into the unit. Among them, the major position for leak into the unit was the packing gland of BFP-T A & B. (Refer to the attached check list for details.)

No.	Helium test position	Air leak rate [Kg/h]	Detection No.
1	A BFP-T gland sealing portion (Rear)	49.3	Photo No.11
2	B BFP-T gland sealing portion (Rear)	23.5	Photo No.12
3	LP turbine gland sealing portion (Packingland and Bellow flange)	13.3	Photo No.1~5
4	HP Flush tank , Flush box-1 and Drain flush Tank B	12.3	Photo No.6~10
5	Others	14.6	_
	Total	113.0	

4. Test Period

		Aug. 6	Aug. 7	Aug. 8	Aug. 9	Aug. 10
1.	Preparation for test Equipment		-			-
2.	Verification of VP air extraction rate				-	
3.	Injection test		-	_		-
4.	Investigation of air-leak points			-	_	-
5.	Report and Meeting				_	-


2

Measured by : Kawashima, Sato, Iriki and Hirose

Air leak detection photos at leak buster test

-7

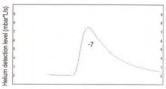

Maximum value: 4.40 x 10⁻⁷ Approx. air leak-in rate : 1.0 kg/h

Photo-2: LP turbine packingland Turbine side (Upper/Left)

Photo-3: LP turbine packingland Turbine side (Lower/Left)

Maximum value: 7.46 x 10⁻⁷ Approx. air leak-in rate : 2.2 kg/h

8

Photo-10: Drain flash tank-B (Connection pipe)

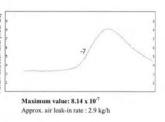
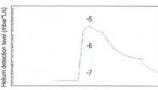
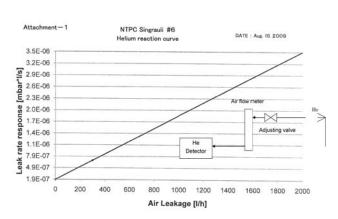
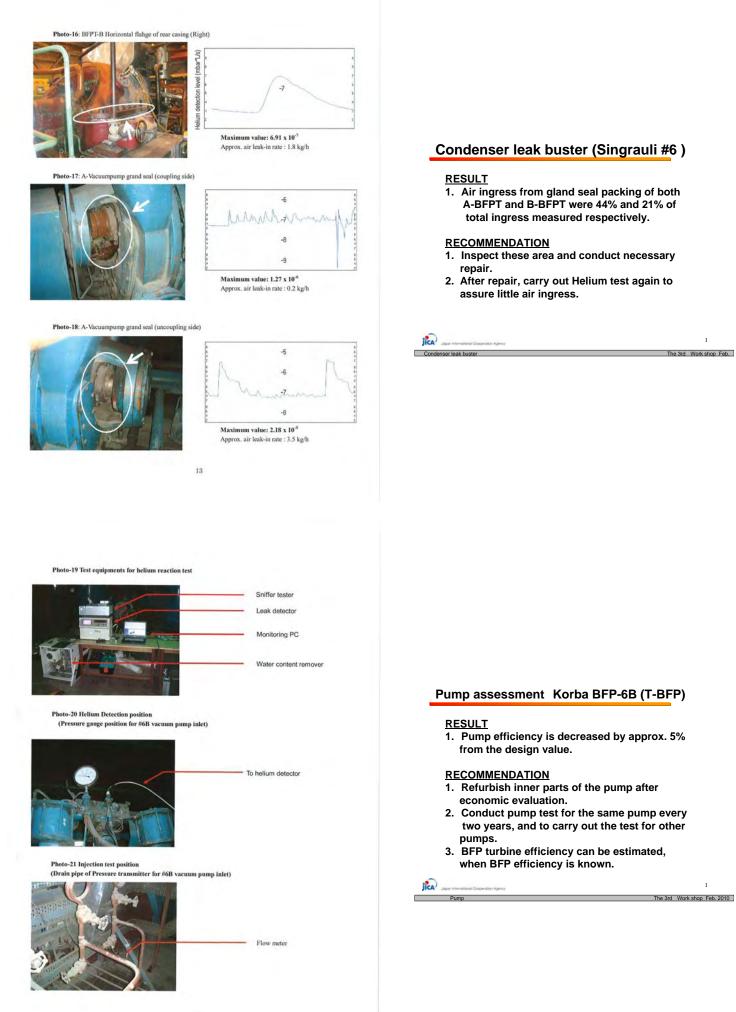



Photo-11: BFPT-A packingland

Photo-12: BFPT-B packingland




Maximum value: 3.17 x 10⁻⁵ Approx. air leak-in rate : 49.3 kg/h

Maximum value: 1.52 x 10⁻⁵ Approx. air leak-in rate : 23.5 kg/h

11

Pump assessment Singrauli CWP I-09

RESULT

1. Pump efficiency is decreased by approx. 11% from the design value.

RECOMMENDATION

- 1. Refurbish inner parts of the pump after economic evaluation.
- 2. Conduct pump test for the same pump every two years, and to carry out the test for other pumps.

JICA)	Japan Inte	mational	Cooper	ation	Agenca
Pump					

2 The 3rd Work shop Feb. 2010

Pump assessment Rihand CWP-2B

RESULT

1. Pump is considered to be in acceptable condition while the efficiency is 1.6% lower than the design.

RECOMMENDATION

 Conduct pump test for the same pump every two years, and to carry out the test for other pumps.

4

The 3rd Work shop Feb. 2010

Pump assessment Rihand BFP-2B (M-BFP)

RESULT

1. Pump efficiency is decreased by approx. 13% from the design value.

RECOMMENDATION

- 1. Refurbish inner parts of the pump after economic evaluation.
- 2. Conduct pump test for the same pump every two years, and to carry out the test for other pumps.

Objective of the Assessments

Project Organization

Methodology Adopted

Overall Executive Summary of the Findings

NTPC ALSTOM © ALSTOM 2010. All rights reserved. Information contained in this docume correct or will apply to any particular project. This will depend on the technic Reproduction. use or disclosure to third parties, without express written aut tation or warranty is given or should be relied on that it is complete or

Objective of the Assessments	ALSTOM	Agenda	ALSTOM
As a part of ODA program, "Study on Enhancing Efficien Operating Thermal Power Plants in NTPC-India", Turb System Assessment was implemented for NTPC Korba	ine and	Objective of the Assessments	
Below items are main objective of the assessment.		Project Organization	
 Assessments of the present conditions of the turbine a components, including critical piping systems. 	nd related	Scope of Work	
• Assessments of the remaining life of the equipments /	components.	Methodology Adopted	
Recommendations for run/repair/replace decision of equipments / components for performance improvement from risk mitigation view point.		Overall Executive Summary of the Findings	
 Recommendations for safe & reliable operation, throug of failure prone zones / components from risk mitigatio 			
TRASystem Assessment for NTPC Workshop - HQU - 105EF22010 - P 3 24.8170M 2010. All other reserved. Internation contained in the document is included on the life on that it is		STASystem Assessment for NTPC Workshop - HOU - 105EP2010 - P 4 6.ALETION 2016. All relationserved Methodation contained in this decorrect is indicative only. No recreasestation or warranty is down or should be related on that it is complete	MTPC ALST

Project Organization ALSTOM ALSTOM K.K. - Japan Overall Pro Mr. Hirot PS / Customer N Mr. Shuichi Ike Project Controller Mr. Shinichiro Fukaura Purchasing Manager Mr. Yoshiaki Kusuki NASL Ltd. - India Project Director Mr. P. K. Sinha O&M Specialist Mr. Neerai Jalota Turbine Specialist Mr. N.C. Angirish Project Manager Mr. Mohar Lal NDT/DT Exper Mr. P.K. Banerje Project Field Execution Team Piping S Mr. Chand FEA Mr. Cha

Power Services Pvt. Ltd. © ALSTOM 2010. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial incumstances. It is provided without liability and is subject to change without notice. Recordurition user or discinguing the information demonstrative motion without motion.

Overall Project Coordinator/BD Manager ALSTOM K.K. (Japan)
Project Coordinator NASL Ltd.
Managing Director ProSIM R&D Pvt. Ltd.

© ALSTOM 2010. All rights reserved. Information contained in this document is indicat correct or will apply to any particular project. This will depend on the technical and con Renonduring use or disclosure to third parties, without express written arthority is st only. No representation or warranty is given or should be relied on that it is complete or rolal circumstances. It is provided without liability and is subject to change without notice.

ALSTOM

Agenda

Objective of the Assessments

Project Organization

Scope of Work

Methodology Adopted

Overall Executive Summary of the Findings

Unit Information

ALSTOM

NTPC ALSTOM

NTPC ALSTOM

- Plant: NTPC Korba Super Thermal Power Station
- Unit:
- Rating: 500 MW
- Turbine OEM: KWU

© ALSTOM 2010. All rights reserved. Information contained in this document is indicat correct or will apply to any particular project. This will depend on the technical and com Remoduction use or disclosure to third parties without express written authority is st

- Operating Hours: 198,110 hrs (as of May 2010)
- Past 10 yrs operational data is available

#4

- Drawings available, partially missing
- The unit hasn't been implemented comprehensive conditions and residual life assessment

раминицат, ман на населения на изво раница, технона нерокал такия велосату, на автор рекланиц

Power Services Pvt. Ltd.

ALSTOM

Scope of Work

DM 2010. All rights reserve r will apply to any particula

ALSTOM

- Residual Life Assessment (RLA) for 1xIP and 1xLP Turbines incl.
 - Various NDT/DT and In-situ Metallography Analysis
 - Finite Element Analysis (using ABAQUAS and FE-SAFE)
- Main Piping (MS, CRH, HRH, FW) Assessment incl.
 - Various NDT/DT and in-situ Metallography Analysis
 - Modeling and Stress Analysis (using CAESER II),
 - Finite Element Analysis (using ABAQUAS and FE-SAFE)
- Steam Path Audit (SPA) of 1xIP and 1xLP Turbines
 - Various Field Measurements
 - Modeling and Analysis (using eSTPE)

Comprehensive package for turbine and system assessment STASystem Assessment to NTPC Workshop -HOU - 10SEP2010 - P 9 PALSTOW 2010, All open served later the openance is before only to presented to a work to a served in the later of the l

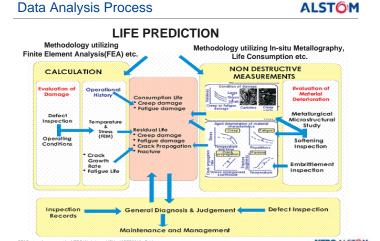
Agenda	ALSTOM
Objective of the Assessments	
Project Organization	
Scope of Work	
Methodology Adopted	
Overall Executive Summary of the Findings	

Procedures for the Assessment

ALSTOM

Inspection/Testing Process (field execution):

- Hot Walk Down to capture the operating conditions
- Cold Walk Down to capture the cold conditions
- Field Measurement/Inspection conduct various NDT/DT tests (VI, DPT, MPI, UT, NFT, ECT, Replication (IM), Hardness, other measurements, tests, audits)


Data Analysis Process:

- Condition assessment from NDT/DT processes collected data are analyzed for assessment of impending failures and damages.
- Remaining life assessment based on field data, analyzed to assess remaining life. It consists of metallographic degradation analysis and finite element analysis (FEA).

Reports & Recommendations:

 Findings from field execution and data analysis result are integrated into conclusions, recommendations for Run/Repair/ Replace to secure safe operation and performance improvement.

35/stem Assessment for NTPC Workshop - HOU - 105EP2010 - P 12 MICTOW 2010, All rights reserved, Information contrained in this doctament is indicative only. No representation or warrary is given or should be relied on that it is complete MICTOW 2010, all rights reserved. Information contrained in this doctament is indicative only. No representation or warrary is given or should be relied on that it is complete provide Services PVL Ltd. prover Services PVL Ltd.

Skystem Assessment for NTPC Workshop - HOL - 105EP2010 - P 14 LISTOM 2010, All rights reserved. Information contained in documents in indicative only, No representation or warrary is given or should be relied on that it is complete or a contained and any other should be relied on the will depend on the behavioral and commercial constraineds. It is provided without labelity and is subject to change without notice.

Methodology utilizing In-situ Metallography

© ALSTOM 2010. All rights rest correct or will apply to any partie

Evaluation based on Microstructural Assessment (Neubauer)& Classification (VGB guidelines):

The level of degradation of material is classified using the above classifications for finding the level of damage.

Creep damage classification & expended life fraction

as per Sampietri et al : The level of damage is then checked with the creep

damage classification so as to find the expended life fraction (percentage of life consumed)

Prevenue of America				
Prevenue of dissector	tal orientel micro		業投	
Protor of sizes				
Present of scourse	ndis			
	Domage	Expended	life	
	level	fraction		
	1	0.181		
	2	0.442		
	3	0.691		
	4	0.889		
	5	1.000		

NTPC ALSTOM

ALSTOM

Methodology utilizing Larson Miller Parameters

ALSTOM

Evaluation based on Larson Miller Parameters:

- LMP is a means of predicting the lifetime of material vs. time and temperature using a correlative approach based on the Arrhenius rate equation. The value of the parameter is usually expressed as
 - $LMP=T(C + \log t)$

C: material specific constant (often approximated as 20) t: exposure time (hours)

T: temperature (K)

The base formula is: LMP = A-B*log (: hoop stress)

NTPC ALSTOM

Methodology utilizing Finite Element Analysis(FEA) ALSTOM Agenda ALSTOM In FEA, the physical system is digitally represented on a computer. Objective of the Assessments A 3D CAD FEM model of component is created & physical realities of the material and the operating conditions are prescribed upon it. With the model, virtual system is available for analysis, and it gives the results of stress, strain, temperature, deflection in the entire 3D geometry. **Project Organization** The steps involved in the simulation are as follows; Create a 3D model and convert it in finite element mesh model. Scope of Work Physical boundary & operating conditions are mimicked for computer simulation Perform FEM analysis using ABACUS software and calculate the stress, Methodology Adopted strain, temperatures etc. due to creep and fatigue effect. Conduct Thermo mechanical fatigue analysis using FE-SAFE software and obtain the hot spots. Compute creep & fatigue life and calculate the combined effect of creep-Overall Executive Summary of the Findings fatique. Finalize remaining life based on total damage accumulated.

© ALSTOM 2010. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without lability and is subject to change without notice. Repreduction: user or discriment or hind native, which express written archericity explores the monitorial commercial circumstances.

Remaining Life Overview

System/Components

TURBINE IP Casing

IP Casing

LP Casing

IP SV&CV

PIPINS SYSTEM

BWP Piping

MS-CRH-HPBP Piping

HRH-LPBP Piping

LP Rotor

VALVE HP SV&CV NTPC ALSTOM

ALSTOM

Conclusion

20 yrs

16 yrs

> 20 yrs

> 20 yrs

> 20 yrs

> 20 yrs

(5.9 vrs

13.6 yr

> 20 yrs

Turbine Assessment Summary (IP-Casing)

© ALSTOM 2010. All rights reserved. Information contained in this document is indicative correct or will apply to any particular project. This will depend on the technical and comme Remoduction use or deposite to third parties, without enterpose written authority is strictly and the second se

ALSTOM

NTPC ALSTOM

only. No representation or warranty is given or should be relied on that it is complete or rolal circumstances. It is provided without liability and is subject to chance without notice

ntation or warranty is given or should be relied on that it is complete or es. It is provided without liability and is subject to change without notice

Remaining life is evaluated to > 20yrs Conclusion: Recommendation:

1) Stressed locations as marked in the figures, need to be checked and microstructure analysis should be carried out during the Overhauls 2) further RLA of the component in 5yrs

© ALSTOM 2010. All rights reserved. Information contained in this document is indicative only. No correct or will apply to any particular project. This will depend on the technical and commercial circ Renordurition use or disclosure to third parties, without express written a atheotic, is strictly penhibit

NTPC ALSTOM

LMP

N/A

N/A

N/A

N/A

N/A

N/A

5.9 vrs

N/A

> 20 yrs

© ALSTOM 2010. All rights reserved. Information contained in this document is indicatil correct or will apply to any particular project. This will depend on the technical and com Renorduring use or disclosure to thind namics without express written authority is set nation or warranty is given or should be relied on that it is complete or as it is provided without liability and is subject to change without notice

Predictied Remaining Life (yrs)

or Consumed Life (%)

FEA

22 yrs

16 yrs

113 yrs

47 yrs

N/A

N/A

21 vrs

13.6 yrs

> 20 yrs

IM

18%

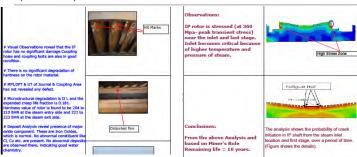
18%

N/A

1**0%**

44%

44%


44%

44%

N/A

NTPC ALSTOM

Turbine Assessment Summary (IP-Rotor)

Remaining life is evaluated to 16yrs Conclusion:

Recommendation:

1) Stressed locations as marked in the figures, need to be checked and microstructure analysis should be carried out during the Overhauls 2) further RLA of the component in 5yrs

NTPC ALSTOM nation or warranty is given or should be relied on that it is com as it is provided without liability and is subject to change without © ALSTOM 2010. All rights reserved. Information contained in this document is indicati correct or will apply to any particular project. This will depend on the technical and com

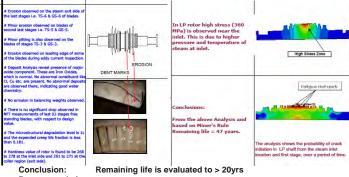
Turbine Assessment Summary (LP-Casing)

ALSTOM

ALSTOM

ALSTOM

ALSTOM

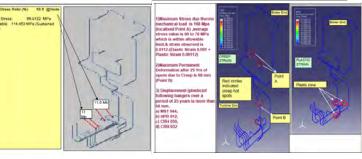


Remaining life is evaluated to > 20yrs Conclusion: Recommendation:

1) Stressed locations as marked in the figures, need to be checked and microstructure analysis should be carried out during the Overhauls 2) Based on explicit observations in various locations, no immediate action is required.

NTPC ALSTOM tation or warranty is given or should be relied on that it is or

Turbine Assessment Summary (IP-Casing)

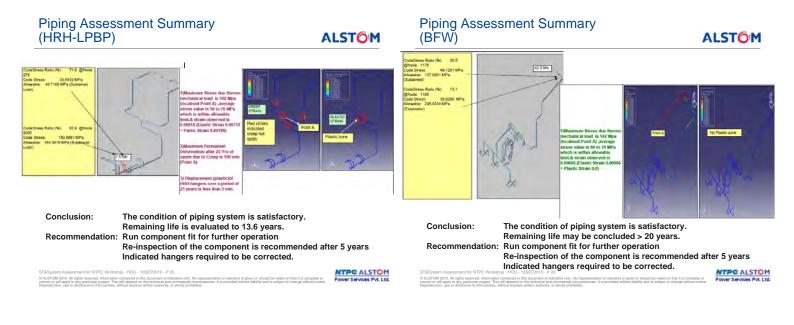

Recommendation:

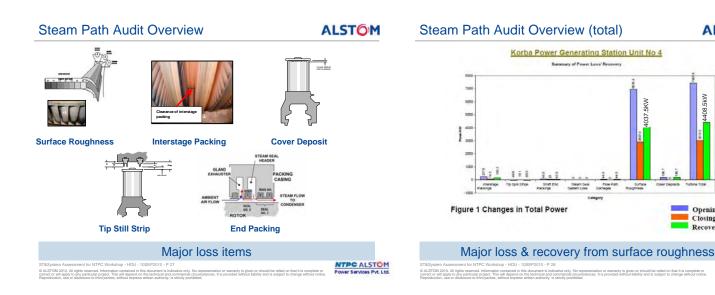
sed locations as marked in the figures, need to be checked and microstructure analysis 1) Stre

a) biological control of an international and an analysis of the second s

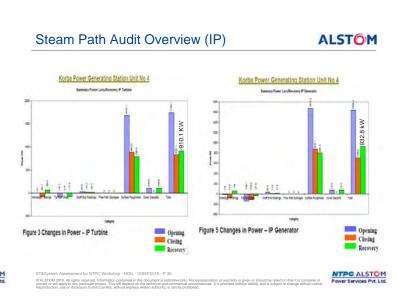
A Monstein contained in the second and contrast is and the second s

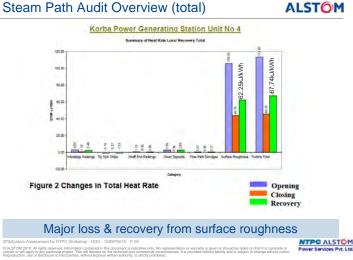
Piping Assessment Summary (MS-CRH-HPBP)

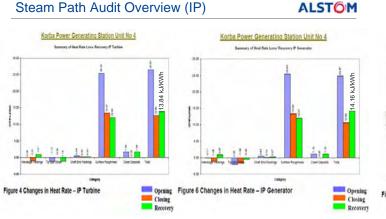

Conclusion: Remaining life is evaluated to 5.91 years considering 25% safety factor to alarm the hot spot zones observed in FEA. Recommendation: The critical locations identified be subjected to the following tests for next anual overhauling:

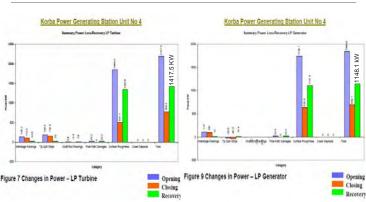


 1. Insitu Metallography
 2. Thickenss Survey.


 3. Online line monitoring systems using the installation of the High temperature strain gauges a


 4. EMAT - Elctromagnetic Acoustic transducer test / High frequency (20MHz) small diameter
 OM LLtd


sta probe UT



NTPC ALSTOM © ALSTOM 2010. All rights reserved. Information contained in this document is indicative correct or will apply to any particular project. This will depend on the technical and comm Reproduction, use or disclosure to third parties, which events written authority is extended of the second secon only. No representation or warranty is given or should be relied on that it is complete or rolal circumstances. It is provided without liability and is subject to change without notice.

© ALSTOM 2010. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without lability and is subject to change without notice Reproduction, use or discissore to thing parties, without exercises within all whom it is entity in which without a subject to change without notice Reproduction, use or discissore to thing parties. without exercises within all whom it is entity in which without a subject to change without notice Reproduction, use the discissore to thing parties. Without exercises within all whom the interview the all whom the interview that is all whom the interview to the all which all the subject to change without notice reproduction, use to the parties. Whom there are subject to the all which all the subject to the all which all the subject to change without notice reproduction. Use the parties without all whom the interview the all whom the interview that is all whom the subject to the all which all the subject to change without notice reproduction, use the all the subject to change without notice reproduction. Use the all whom the subject to change without notice reproduction. Use the subject is all the subject to change without notice reproduction. Use the subject is all the subject to change without notice reproduction. Use the subject is all the subject to change without notice reproduction. Use the subject is all the subject to change without notice reproduction. Use the subject is all the subject to change without notice reproduction. Use the subject is all the subject to change without notice reproduction. Use the subject is all the subject to change without notice reproduction. Use the subject is all the subject to change without notice reproduction. Use the subject is all the subject to change without notice reproduction. The subject is a

Steam Path Audit Overview (LP)

ALSTOM

ALSTOM

1408.5kW

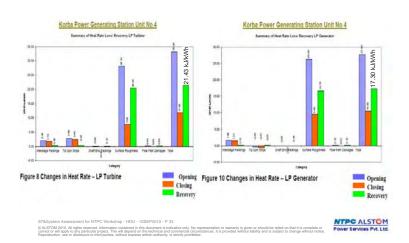
Opening Closing

Recovery

lete or

Power Services Pvt. Ltd.

Š


1037

2

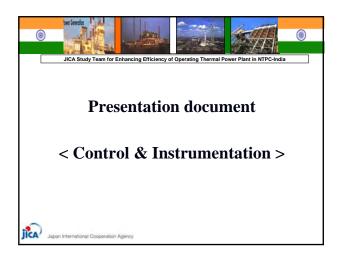
- OUTSON

Steam Path Audit Overview (LP)

ALSTOM

Overall Conclusions

The unit is generally in good conditions


- No significant defect is observed in turbine and piping.
- Metallographic analysis revealed the degradation level was
 - Level IIL for turbine (expended life fraction up to 18%)
 - Level IIL to IVL for piping (expended life fraction up to 44%)
- Remaining life of MS piping hot spot zone is evaluated as 5.9 yrs, taking into account 25% safety factor
- 90% of losses of turbine (output & heatrate) are come from surface roughness

STASystem Assessment for NTPC Workshop - HOU - 10SEP2010 - P 34 © ALSTOM 2010, All rights reserved, Information contained in the document is includent only. No representation or warranty is given or should be relied on the it is complete provide standing and an approximation of the document is includent on the analysis of the standard term of the state of the state

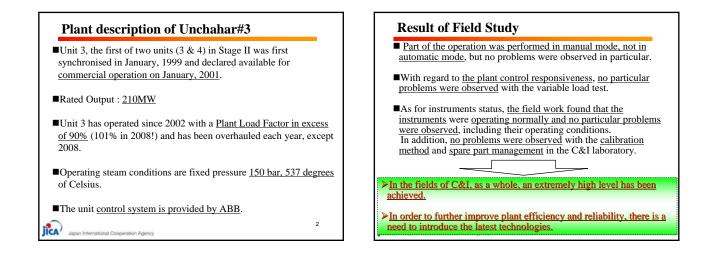
ALSTOM

Outline of Field Study

<Objectives>

To confirm the state of key facilities of <u>Unit 3 at Unchahar</u> power station and to investigate the feasibility of improving the reliability, operating performance and functionality of the unit through renovating or modifying its instrumentation and control systems.

The opportunities for combustion and soot blowing optimisation are a particular focus.

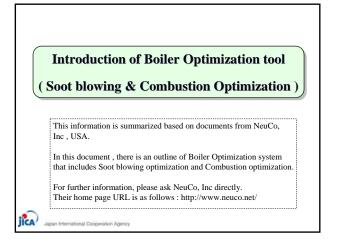

<Date>

Oct 26 to 29, 2009 (4days)

<Team>

JICA Study Team & Yokogawa Electric Corporation (total 6 people)

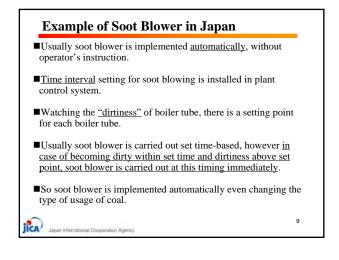
Janan International Connerston An

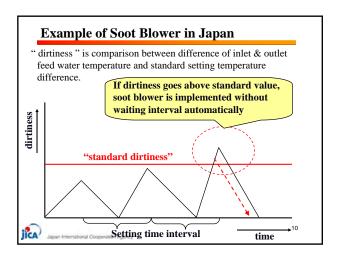


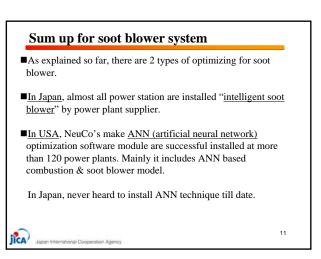
4

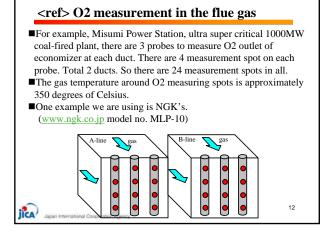
Soot Blower Operation

ICA

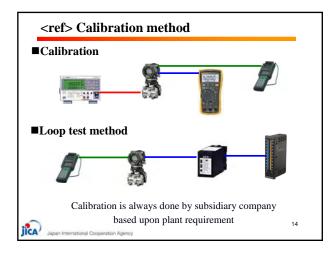

- Unchahar currently have <u>56 wall blowers and 18 LRSB</u> that cover convection section and AH section
- The soot blowing is <u>mainly time based</u>, operator initiated sequences; <u>the wall blowers are operated once every two days</u>, <u>the LSRB blowers are operated once every day</u>.
- The chosen sequence is selected <u>based on prevailing operating</u> <u>conditions (steam temperatures, metal temps, AH dP etc)</u> but the operators also look at RH/SH sprays for initiating soot blowers.



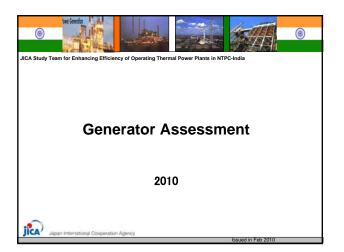

<text><list-item><list-item>

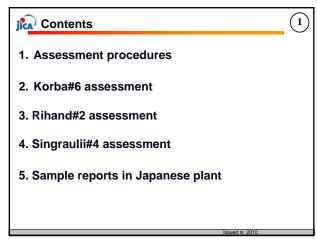

Expected Benefits of Optimization software < Soot Opt> Improved Heat Rate Improved Unit Reliability (fewer cleaning actions, better slagging and opacity control) Better RH & SH Steam Temperature Control Better Flue Gas Temperature Control NOx Reduction < Combustion Opt> Increased Boiler Efficiency and Heat Rate Reduced sorbent and/or reagent usage • Better Steam Temperature Control Improved Reliability Reduced LOI (loss of ignition) 7 ICA/

Benefit of installa	tion	(case of	Unchahar#3)
Improvement proposals	Current	After improvement	Expected effects
Introduction of a new system for the optimization of combustion and soot blowers to reduce the amount of coal used and CO ₂ emissions	-	Introduced	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
As a secondary effect, it can be expected amount of fuel needed for start-up to decr of oxygen, causing boiler loss to decrease	rease, and		, î
Secondary effect	Current	After improvement	Expected effect
The number of shutdowns will decrease, causing the amount of fuel used for start-up to decrease.	_	_	The amount of fuel for start-up will decrease by 23 kL each start-up.

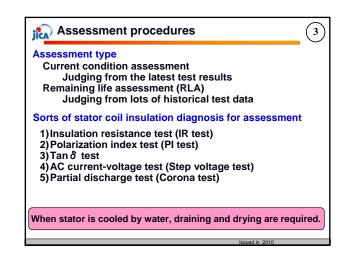


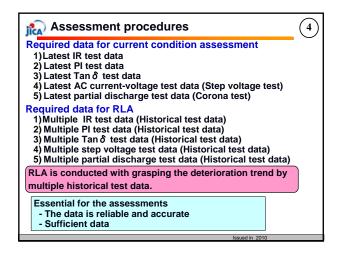
<ref> Control card failure

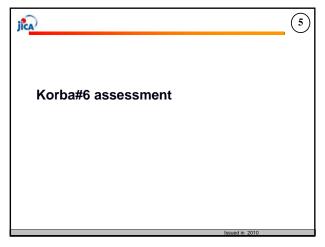

- Unit trip due to failure of control card never happen in Japan. Even if it happens, there are redundancy system, so switch automatically to stand-by card.
- When card failure trouble happens, <u>alarm in the central control room</u> tells operator to check. Then go to check the control panel room immediately to <u>recognize which card is out of order</u>.
- Then, inform and ask to prepare new card to OEM.
- It takes approx. a few months for OEM to prepare new card.
- No test of card during daily/overhauling maintenance, if card is reported faulty inform OEM to replace. OEM replace to new card.

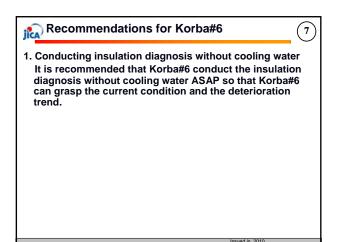

Followings are recommendations for you.

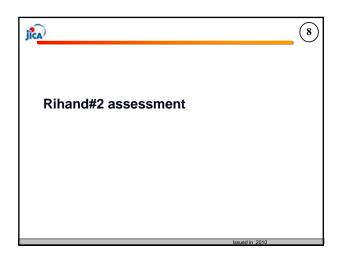
- ✓ Keep appropriate environment for cards (temp, moisture) Check the cooling fan inside of panel and filters. (Fan type are vertical & horizontal.)
- ✓ <u>Open/Close control panel door with much caution</u>.
- \checkmark <u>Use of panel door gasket to remove dust in each panel.</u>

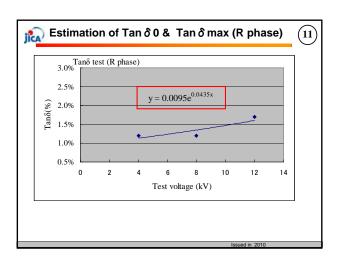


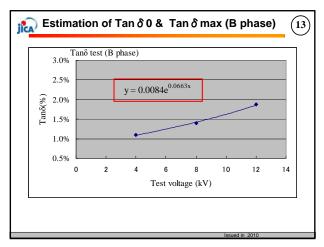


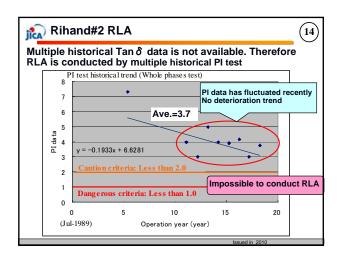


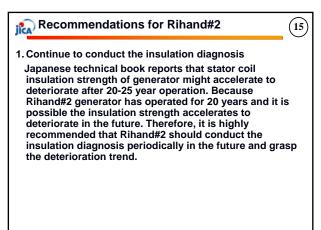

Stator coil ins	or the assessment ulation insulation is most deteriorated.	
Required spec	ification of stator ica	
Resin: Epoxy	ss: VPI (Vacuum Pressure Impregnation)	
Resin: Epoxy Resin proces	ss: VPI (Vacuum Pressure Impregnation)	
Resin: Epoxy Resin proces	ss: VPI (Vacuum Pressure Impregnation) ssessment	
Resin: Epoxy Resin proces Target for the as	ss: VPI (Vacuum Pressure Impregnation) ssessment Main specification	

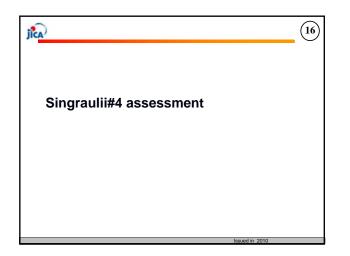



ent status of imple est and PI test has b			buro
Test voltage (DC V)	IR (ΜΩ)	Japanese criterion	
200	0.0666000		
500	0.0636243		
750	0.0064650		
1000V(15 sec)	0.0601680		
1000V(1 minute)	0.0628930	50(MΩ)	
1000V(8 minutes)	0.0625000		
PI	0.994	>2.0 (*1)	
*1:Korba#6 PI=IR(8 In Japan PI=IR(1	, ,	,	

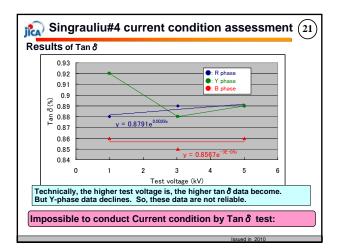


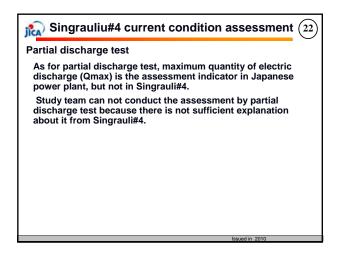

Rihand#2 current condition assessment 9 Current status of implementing assessment in Rihand#2 IR test, PI test and Tan δ test have been conducted. Results of IR test, PI test									
Date	IR test	(MΩ)	PI test						
Date	1 minute	10 minutes	Pitest						
Nov-1994	1500	11000	7.33						
Nov-1999	3300	7700	2.33						
Aug-2000	1500	6000	4.00						
Sep-2001	800	2400	3.00						
Sep-2002	20000	100000	5.00						
Sep-2003	15000	60000	4.00						
Oct-2004	-	-	3.92						
Oct-2005	600	2500	4.17						
Sep-2006	2000	6000	3.00						
Oct-2007	1000	3750	3.75	*1 NTPC Criteria:					
NTPC Criteria	21 (*1)	-		IR test criterion =					
Japanese criteria	50	-	2.0	Gen rated voltage (kV)+1					
	Current condition by IR test & PI test: No problem because the results fulfill the criteria.								

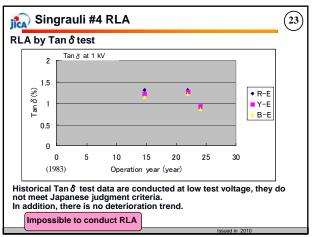

A		ent co	onditio	n assessment	(1		
esults of Tan	δ						
Voltage (kV)	R phase	Y phase	B phase	Remarks			
2	1.04%	1.04%	0.96%	Estimated data (*1)			
4	1.20%	1.20%	1.10%	Actual data			
8	1.20%	1.40%	1.40%	Actual data			
12 1.70% 1.90% 1.87% Ac				Actual data			
14.4(1.25 × E/√3)	1.78%	2.13%	2.20%	Estimated data (*1)			
∆tan ð	0.74%	1.08%	1.24%	=Tan δ (14.4) — Tan δ (2)			
Japanese criteria	Δ	tan ð <2.	5%				
*1: Test voltage is little bit different from Japanese one. Therefore, Tan δ (2)[Tan δ 0) at 2kV and Tan δ (14.4)[Tan δ max) at 1.25 × El/ 3kV(E:Generator rated voltage) are estimated from Korba#2 test data using approximation formula function of Excel soft.							
Current cone No proble				fulfill the criteria.			

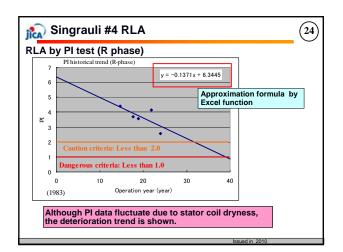


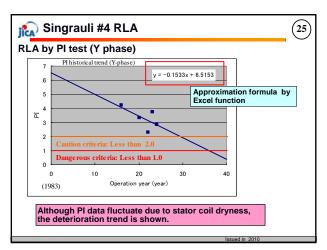
Issued in 2010

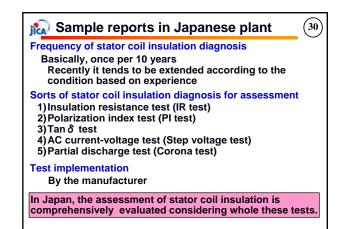


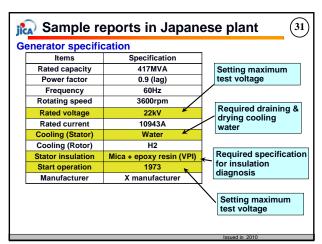

Singrauli#4 current condition assessment (17 Current status of implementing assessment in Singrauli#4 IR, PI, Tan ∂ and partial discharge test have been conducted. Results of IR test, PI test (R-phase)									
Results of IR les	i, Filesi (R phase							
	Megger	test (MΩ)	Ы						
Date	1 minute	10 minutes	PI						
Aug-1997	1700	7500	4.41						
Aug-2000	1900	7000	3.68						
Sep-2001	1400	5000	3.57						
Nov-2004	3250	13500	4.15						
Dec-2006	3100	8000	2.58						
NTPC criteria	>17	—	>2						
Japanese ones	>50	—	>2						
	Current condition by IR test & PI test (R phase): No problem because the results fulfill the criteria.								


ji Sir	ngrauli#4	current	condition	asse	ssment	(18)					
Results	Results of IR test, PI test (Y-phase)										
			Y-phase								
		Megger	test (M Ω)	Ы							
	Date	1 minute 10 minutes		11							
Αι	ıg-1997	1700	7200	4.24							
Αι	1g-2000	1800	6000	3.33							
Se	p-2001	1300	3000	2.31							
No	ov-2004	3600	13500	3.75							
De	ec-2006	3500	10000	2.86							
NTF	PC criteria	>17	-	>2							
Japa	nese ones	>50	-	>2							
			& PI test (Y results fulfill								
				Issue	d in 2010						


		B-phase	
	Megger	test (MQ)	PI
Date	1 minute	10 minutes	rı
Aug-1997	1100	2200	2.00
Aug-2000	1750	4300	2.46
Sep-2001	1500	5000	3.33
Nov-2004	3600	12000	3.33
Dec-2006	1900	4000	2.11
PC criteria	>17	_	>2
anese ones	>50	_	>2

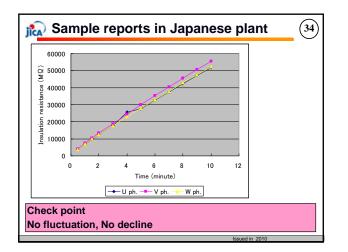

ᇌ Singr	auli#	4 cu	rrei	nt cor	nditio	n as	sess	ment	t (20			
Tan δ test data from Singrauli#4												
]	R-phase	e		Y-phas	e		B-phase				
Date	1 kV	3kV	5k'	V 1kV	3kV	5kV	1kV	3kV	5kV			
Aug 1997	1.31	-	-	1.22	-	-	1.13	-	-			
Aug 2000	-	-	-	-	-	-	-	-	-			
Sep 2001	-	-	-	-	-	-	-	-	-			
Nov 2004	1.31	-	-	1.26	-	-	1.21	-	-			
Dec 2006	Dec 2006 0.88 0.89 0.8		9 0.92	0.88	0.89	0.86	0.85	1				
Tan δ test ve	oltage					Rated	l voltag	ge=15.	75kV			
	Item			Contents								
Singrauli#4 m	nax test	voltage		7 kV (0.8×E/√3)								
Japanese ma	Japanese max test voltage					12.8kV(1.25×E/√3) or 15.57 (E)						
Japanese jud	Japanese judgment indicator					$\Delta \operatorname{Tan} \delta = \tan \delta (\operatorname{Vmax}) - \operatorname{Tan} \delta (1 - 2 kV)$						
Tan δ test v Singrauli#4	•				panese	e judg	ment	criteri	a.			

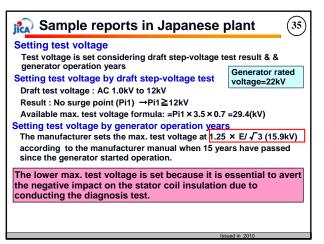

_	phase 6.3445	r	hase
			6.515
	4.3445		4.515
	5.3445		5.515
	0.1371		0.153
32	2015	29	2012
39	2022	36	2019
for	mula	by Ex	cel
3	9	2 2015 9 2022	2 2015 29

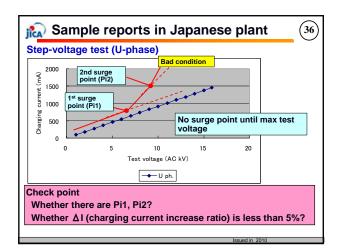


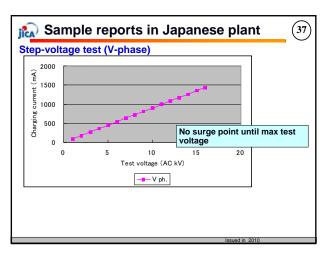
Geterioration. Get reliable and accurate test data It is recommended to review test data enough, and to get proper test data.

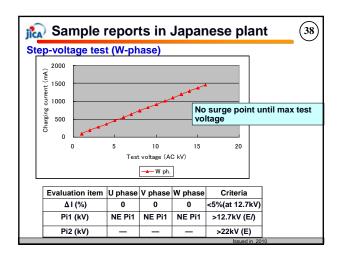
Plant	IR	PI	S-V	Tanδ	PD	Remarks				
Korba#6	Δ*1	Δ*1	_	_	_					
Singrauli#4	0	0	_	O*2	O*3					
Rihand#2	0	0	-	0	_					
Japan	0	0	(O)*4	0	0					
S-V: Step-voltage test PD:Partial discharge test *1: Test with cooling water is meaningless. *2: Max test voltage is low. *3: Measurement data is different from Japanese one *4: Some OEMs do, the others do not in Japan.										

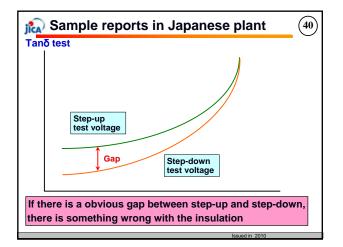

ed in 2010

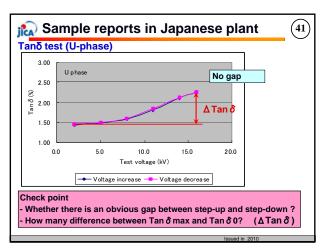


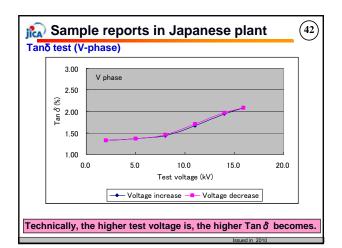


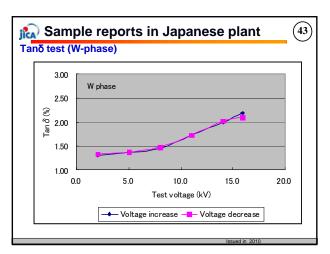

🔊 Sample reports in Japanese plant	32)	ji	🗋 Sa
Preparation work		IR	test &
- Stator coil cooling water is drained and dried			Charg (mi
- Every phase is disconnected.			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
- Conduct IR test and PI test to confirm whether stator			1
coil insulation is in good condition for conducting			1
insulation diagnosis			1
insulation diagnosis			:
Fact where diamonia			4
Each phase diagnosis			5
- Required to disconnect phases			
- Possible to confirm which phase is bad, if bad condition			7
			8
			9
Whole phases diagnosis			1
- Not required to disconnect phases			PI
- Impossible to confirm which phase is bad, if bad condition			Eval


Sample	reports	s in Jap	oanese	plant	(3
test & PI test					
Charging time	Insulat	ion resistanc	e (M Q)	Reference	
(minute)	U phase	V phase	W phase		
0.5	3750	4090	3880		
1.0	6890	7420	7030		
1.5	9760	10490	9900		
2.0	12480	13390	12610		
3.0	17590	18850	17690		
4.0	25700	24400	23100		
5.0	27700	29900	27900		
6.0	32700	35300	33000		
7.0	37600	40500	37900		
8.0	42400	45600	42800		
9.0	47100	50700	47500		
10.0	51700	55500	52300	Criteria	
PI test	7.5	7.48	7.44	≥2.0	
Evaluation	Good	Good	Good		
PI result is bad, ir pre and improve I		iagnosis is	canceled o	or dry stator	coil

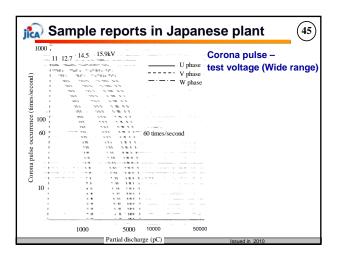


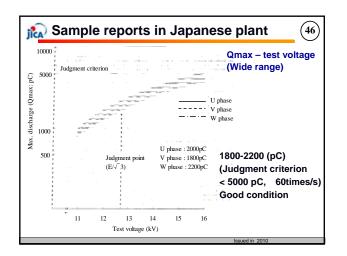




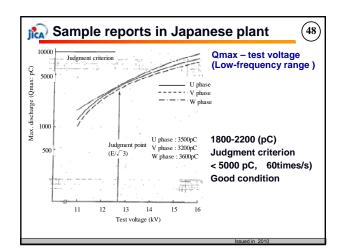


nδ test					
Voltage (kV)	U phase	V phase	W phase	Reference	
2.0	1.43	1.33	1.31		
5.0	1.49	1.36	1.36	Step-up	
8.0	1.58	1.43	1.44	test voltage	
11.0	1.81	1.67	1.72		
14.0	2.10	1.94	2.00		
15.9	2.25	2.09	2.18		
14.0	2.12	1.97	2.02		
11.0	1.85	1.70	1.72	Step-down	
8.0	1.60	1.46	1.47	test voltage	
5.0	1.50	1.37	1.37		
2.0	1.46	1.33	1.33	Criteria	
Tanδ0	1.43	1.33	1.31	-	
∆ Tanδ	0.82	0.76	0.87	<2.5	
Capacitance(µF)	0.2450	0.2420	0.2430	-	
Evaluation	Good	Good	Good		

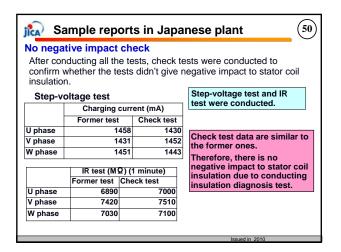


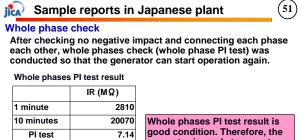


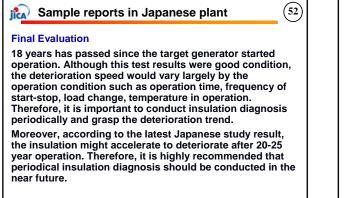


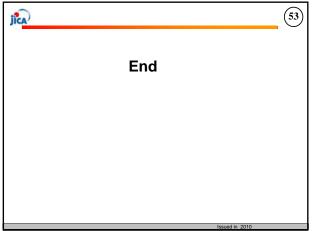


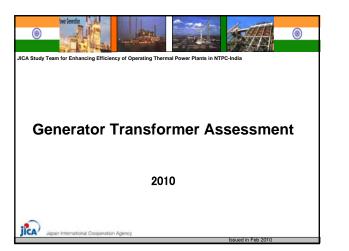
🔝 Samp	le reports	s in Japa	nese pla	nt (44
	arge test was de range (10k			
- The test volt 14.5kV, 15.9	age is 11.0kV, 9kV	, 12.7kV (Jud	Igment voltag	e: E/√3),
The result				
	U phase	V phase	W phase	Criteria
Wide range	U phase 2000pC	V phase 1800pC	W phase 2200pC	Criteria < 5000 pC
Wide range Low frequency		· ·	· ·	

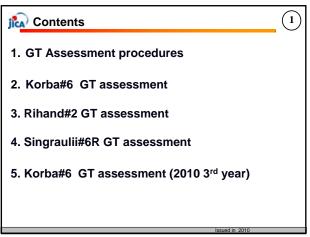


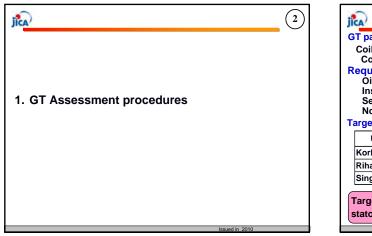


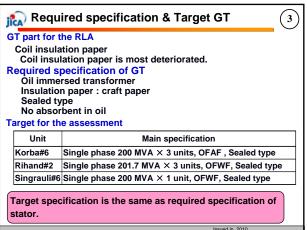


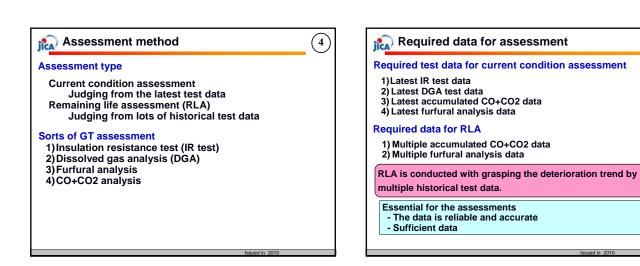

a s	Sample	reports in	Japanes	e plant	
Test	Judgn	nent items	Bad criteria	Evaluation point	Result
Ы	PI (at 1000V)	H2 cool	≤1.5	Bad condition	
	· · · ·	Water cool	≤2.0	or Dry more	
	Pi1		≤12.7kV(E/√3)	10	0
Step-	Pi2		≤22kV(E)		
voltage	Δι	at E	≥12.0%	5	0
	Δι	at 1.25E/√3	≥5.0%	5	0
	Tan ð in	at 2kV	-		
Tan 👌	4	at E	≥6.5%	5	0
	∆ Tan δ	at 1.25E/√3	≥2.5%	5	0
	Qmax	-	>5000pC	5	0
Partial	(WR range) (1 time/1Hz)	at E/√3	>10000pC	10	0
ischarge)	Qmax		>10000pC	5	0
	(LF range) (1 time/1Hz)	at E/√3	>20000pC	10	0
			Good	<5	0
	Total evalua		Attention	5≤	
The largest p	ooint is added as the e	valuation point.	Bad condition	15 <	

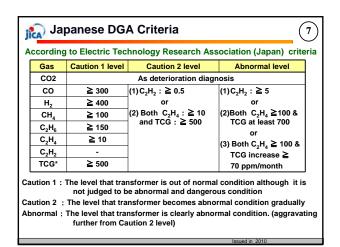


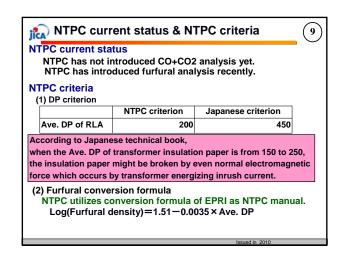


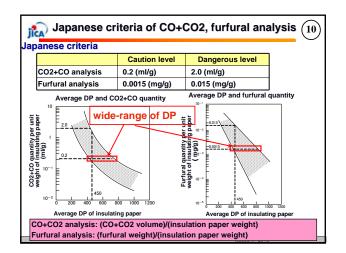

good condition. Therefore, the generator is ready to operate again without problem.

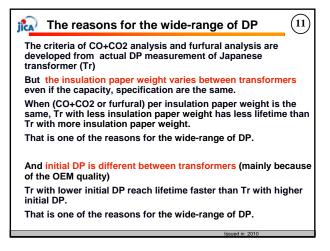


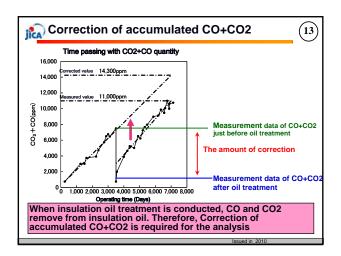


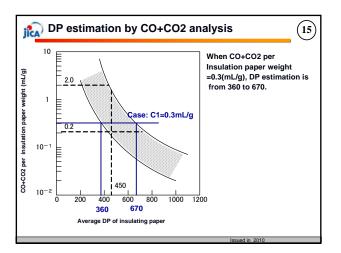


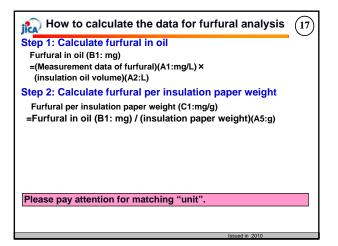

(5)

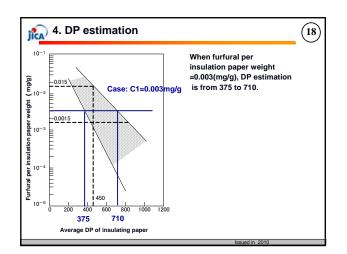


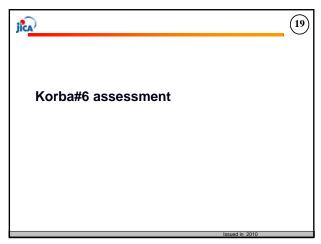

ji🞧 NTI	PC DG	A Crit	eria	l				6
NTPC utili	zes IEE	E stand	lard (C57, 10	4-1991	as NT	PC criteri	a.
Status	H2	CH4	C2H2	C2H4	C2H6	со	CO2	TCG
Condition-1	<100	<120	<35	<50	<65	<350	<2500	<720
Condition-2	101-700	121-400	36-50	51-100	66-100	351-570	2501-4000	721-1920
Condition-3	701-1800	401-1000	51-80	101-200	101-150	571-1400	4001-10000	1921-4630
Condition-4	>1800	>1000	>80	>200	>150	>1400	>10000	>4630
Condition 1 TCG below thi gas exceeding Condition 2 TCG within thi combustible g Action should Condition 3 TCG within thi gas exceeding should be take Condition 4 TCG within thi result in failur	g specified lo is range ind jas exceedir be taken to is range ind g specified lo n to establis is range ind	evels shoul icates great og specified establish a icates a hig evels shoul sh a trend. I icates exce	d promp er than levels s trend. F h level c d promp Fault(s)	ot addition normal co should pro Fault(s) ma of decomp ot addition are probal	al investig mbustible mpt additi by be prese osition. Ar al investig bly present	ation. gas level. A onal investi ent. ny individua ation. Imme	ny individual gation. I combustible diate action	ombustible


	JICA	CO2 analysis & Furfural analysis)
L	1. Principle		
L	•	: substances are produced by chemical changes of the cellulose in ingredient of insulation paper and is indicator of insulation (Insulation paper strength = DP)	•
L	Inorganic	H_2O, CO, CO_2	
L	Hydrocarbon	Methane, ethane, propane, propylene	
L	Alcohol	Ethyl alcohol, furfuryl alcohol	
l	Aldehyde/ Ketone	Acetaldehyde, <u>furfural</u> , 5-methylfurfural, 5-hydroxymethyl-2- furfural, acetone, methyl ethyl ketone	
l	Acid	Formic acid, 2-furan carboxylic acid, acidum tartaricum, butyric acid	
l	Others	Furan methyl carboxylic acid, acetic ether (CH $_3$ COOC $_2$ H $_5$), furan (C $_4$ H $_4$ O), 2-acetyl furan	
L	Deep rela	ation with insulation paper strength = DP	
		Furfural are closely related with insulation paper strength e diagnosis is conducted with the relation.	
H		Issued in 2010	




Re	quirements for CO	+CO2 ar	nalysis
	Required Items	Unit	Remarks
A1	Accumulated CO+CO2 density in insulation oil	vol ppm (mL/kL)	With measurement date Multiple test results are required for RLA Accurate oil treatment historical records are required.
A2	Insulation oil volume	kL	A2 or (A3/A4) is required
A3	Insulation oil weight	kg	A2 or (A3/A4) is required
A4	Insulation oil gravity	g/mL	
A5	Insulation paper weight	kg	Not including press board weight
A6	History of insulation oil treatment		Inc. oil change, filtration, deaeration
	econdition Transformer must be	sealed	type




i How to calculate the data for CO+CO2 analysis (14)
Step 1: Calculate CO+CO2 volume in oil
CO+CO2 in oil (B1: mL)
=(Measurement data of CO+CO2)(A1:vol ppm) ×
(insulation oil volume)(A2:kL)
Step 2: Calculate CO+CO2 per insulation paper weight
CO+CO2 per insulation paper weight (C1:mL/g)
=CO+CO2 in oil (B1: mL) / (insulation paper weight)(A5: g)
Step 3: Correction of accumulated CO+CO2 per insulation paper weight
Implement the correction of accumulated CO+CO2 when insulation oil treatment has been conducted,
Please pay attention for matching "unit".

Re	equirements for furf	ural	analysis
	Required Items	Unit	Remarks
A1	Furfural density in insulation oil	mg/L	With measurement date Multiple test results are required for RLA
A2	Insulation oil volume	L	A2 or (A3/A4) is required
A3	Insulation oil weight	kg	A2 or (A3/A4) is required
A4	Insulation oil gravity	g/mL	
Α5	Insulation paper weight	kg	Not including press board weight
A6	History of insulation oil change		Even when insulation treatments excluding oil change are implemented, furfural remains in insulation oil.
	condition o absorbent in insulation	on oil	

					da							
DG/	A result											
Date	Months from	H2	CH4			C2H2	C3S	CO	CO2	TCG	TCG increase	Remarks
aution lew	last test	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm/month	
aution leve	81-1	≥400	≥ 100	≥ 10	≥150	≥0.5	_	≥ 300		≥500		
Caution leve	1-2			≥ 10		≥0.5				≧500		$C2H4 \ge 10+TCG \ge 500 \text{ or}$ $C2H2 \ge 0.5$
Abnormal le	evel			≥ 100						≧700	≥70	$C2H4 \ge 100 + TCG \ge 700 \text{ or}$ $\Delta TCG \ge 70 \text{ppm/month}$
Apr-1990		387	3	0	2	51	0	34	47	477		Abnormal level *1
Nov-1990	7.0	11	8	0	0	0	0	82	819	101	-53.7	
Feb-1995	52.1	80	17	0	30	0		15	1723	152	1.0	
Sep-1995	6.7	75	16	0	22	0		10	1855	146	-0.9	
un-2000	58.1	85	56	50	58	0		381	2853	658	8.8	Caution level-2
Oct-2000	4.4	84	54	52	84	0		398	3606	684	6.0	Caution level-2
ul-2005	57.8	20	60	22	66	0		450	3810	646	-0.7	Caution level-2
Oct-2005	2.6	16	70	20	70	0	30	440	3890	646	0.0	Caution level-2
an-2006	2.9	42	60	16	67	0	25	420	3710	630	-5.5	Caution level-2
Apr-2006	3.5	32	62	2	118	0	60	262	4135	536	-26.9	Caution level-1
ul-2006	3.1	23	15	1	50	0		130	1906	229	-99.0	
Oct-2006	2.6	29	24	1	26	0	8	128	1903	216	-4.9	
Apr-2007	6.6	16	30	2	38	0		91	1597	182	-5.2	
ul-2007	2.3	12	42	0	45	0		75	2062	184	0.9	
Oct-2007	3.2	102	24	0	31	0	9	34	1394	200	4.9	
Dec-2007	1.8	91	35	0	51	0		43	2111	232	17.8	
4ar-2008	3.1	70	30	0	29	0		40	1922	177	-17.6	
Aug-2008	5.3	60	20	0	25	0		25	1229	137	-7.5	
Dec-2008	4.1	41	13	1	21	0	18	45	1084	139	0.5	
Feb-2009	1.9	30	11	0	40	0	15	98	1191	194	28.4	

jica)	Korb	a#6	5 D	GA	da	ita						(21
DGA	result	s ()	(pł									
Date	Months from	H2	CH4	C2H4	C2H6	C2H2	C3S	CO	CO2	TCG	TCG increase	Remarks
	last test	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm/month	
Caution leve	21-1	≥400	≥ 100	≥ 10	≥150	≥0.5		≥ 300		≥500		
Caution leve	:1-2			≥ 10		≧0.5				≧500		$C2H4 \ge 10+TCG \ge 500 \text{ or}$ $C2H2 \ge 0.5$
Abnormal le	rvel			≧100						≧700	≧70	$C2H4 \ge 100+TCG \ge 700 \text{ or}$ $\Delta TCG \ge 70ppm/month$
Apr-1990		40	0	0	0	0	0	16		56		
Nov-1990	7.0	31	0	0	0	0	0	42		73	2.4	
Feb-1995	52.1	0	15	4	27	0	0	5	2914	51	-0.4	
Sep-1995	6.6	10	15	10	26	0	15	43	3200	119	10.3	Caution level-1
May-2000	57.0	55	95	1	61	0	16	275	4744	503	6.7	Caution level-1
Nov-2000	5.9	55	93	2	61	0	12	290	4822	513	1.7	Caution level-1
Jul-2005	57.3	23	90	3	145	0	45	320	4405	626	2.0	Caution level-1
Oct-2005	2.6	30	80	5	140	0	40	330	4390	625	-0.4	Caution level-1
Jan-2006	2.9	40	70	3	130	0	75	290	4210	608		Caution level-1
Apr-2006	3.5	30	62	2	113	0	56	262	4130	525		Caution level-1
Jul-2006	3.1	20	30	1	30	0	15	120	2310	216	-99.7	
Oct-2006	2.6	30	27	1	27	0	13	115	2196	213	-1.1	
Jan-2007	2.8	21	23	1	44	0	14	109	2233	212	-0.4	
Jul-2007	6.1	5	51	0	49	0	17	149	3331	271	9.7	
Oct-2007	3.2	12	31	1	49	0	13	73	3044	179	-28.5	
Jan-2008	3.7	80	81	0	80	0	27	205	3310	473	80.2	
May-2008	3.1	53	73	13	74	0	24	191	3160	428		Caution level-1
Jul-2008	2.9	61	14	0	16	0	15	61	1259	167	-91.0	
Jan-2009	6.0	42	16	1	66	0	32	91	2013	248	13.5	
Mar-2009	1.8	33	49	0	65	0	25	103	2291	275	15.3	
Oct-2008	-5.0	51	21	1	19	0	12	82	1311	186	17.9	

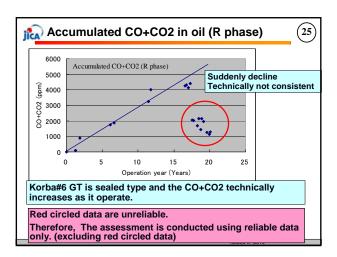
	Korba											<u> </u>
DGA	results	s (B	ph	ase	e)							
Date	Months from	H2	CH4	C2H4	C2H6	C2H2	C3S	CO	CO2	TCG	TCG increase	Remarks
	last test	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm/month	Renarks
Caution leve	el-1	≥400	≥ 100	≥10	≥ 150	≥0.5		≥ 300		≥500		
Caution leve	:1-2			≥ 10		≧0.5				≧500		$C2H4 \ge 10+TCG \ge 500 \text{ or}$ $C2H2 \ge 0.5$
Abnormal le	rvel			≧ 100						≧700	≥ 70	$C2H4 \ge 100+TCG \ge 700 \text{ or}$ $\Delta TCG \ge 70ppm/month$
Apr-1990		44	3	0	0	0	0	123	650	170		
Nov-1990	7.0	25	10	0	0	0	0	67	904	102	-9.7	
Mar-2000	113.3	95	60	55	68	0	40	390	4460	708		Caution level-2
Jun-2000	3.5	95	65	52	68	0	42	393	4492	715		Caution level-2
Sep-2000	3.0	93	68	50	69	0	40	398	4510	718		Caution level-2
Jul-2005	59.2	25	75	22	116	0	136	440	5495	814		Caution level-2
Oct-2005	2.6	30	70	20	110	0	130	460	5425	820	2.3	Caution level-2
Jan-2006	2.9	44	60	15	102	0	20	450	5390	691		Caution level-2
Apr-2006	3.5	40	53	13	93	0	16	430	5210	645		Caution level-2
Jul-2006	3.1	20	22	3	50	0	11	190	2410	296	-112.6	
Oct-2006	2.6	33	22	1	37	0	17	180	2330	290	-2.3	
Jan-2007	2.8	26	24	0	33	0	12	170	2243	265	-8.9	
Jul-2007	6.1	12	56	0	58	0	19	139	3092	284	3.1	
Oct-2007 Dec-2007	3.2	108	30	0	41	0	12	47	2003	238	-14.2	
Dec-2007 Mar-2008	1.8	93 63	71	0	/6 66	0	24	154	2324	418	-41.3	
Mar-2008 May-2008	3.0	63 53	51	2	66 80	0	32	104	2065	294	-41.3	
May-2008 Iul-2008	2.6	53	50		61	0	32	183		348	9.2	
Jul-2008 Oct-2008	2.2	61 55	11 8	2	61	0	30	183	2010	348	-5.4	
	2.8	39		2	54	0	21				-5.4	
Jan-2009	2.6	39	8	1	54	0	21	171	2243	294	-15.2	

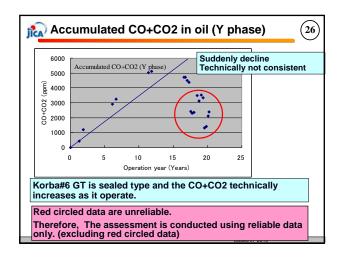
ᇌ Assessment of DGA results

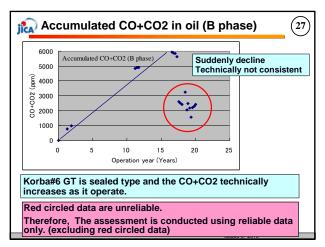
R phase

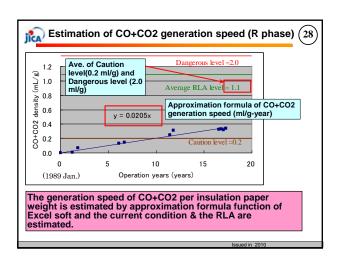
Each analyzed gas has had no big change and been less than the judgment criteria recently, although C2H4, CO, TCG had become Caution level-1 or Caution level-2 from 2000 to 2006. Therefore, the transformer is assessed as normal condition.

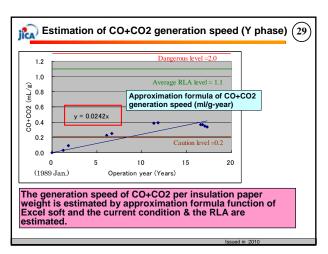
(23)

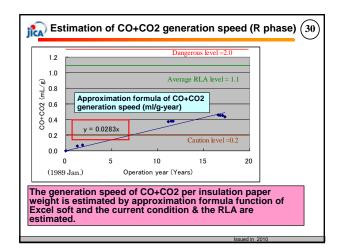

Y phase

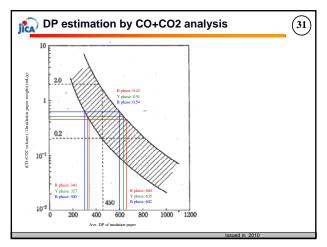

Each analyzed gas has had no big change and been less than the judgment criteria recently, although CO, C2H2, TCG had become Caution level-1 mainly from 2000 to 2006. Therefore, the transformer is assessed as normal condition.

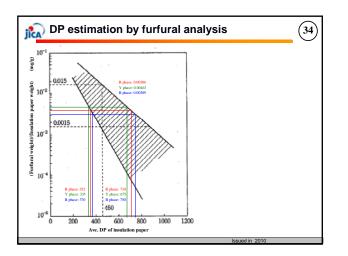

B phase

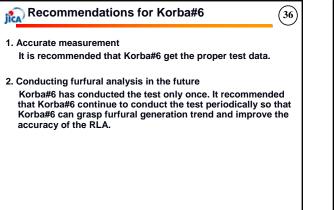

Each analyzed gas has had no big change and been less than the judgment criteria recently, although C2H4, CO, TCG had become Caution level-1 or Caution level-2 from 2000 to 2006.Therefore, the transformer is assessed as normal condition.

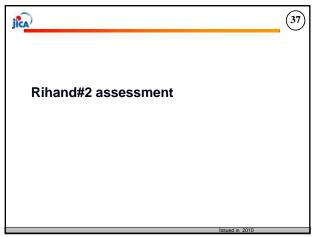

	Required Items	Unit	Data
A1	Accumulated CO+CO2 density in insulation oil	vol ppm (mL/kL)	Next page
A2	Insulation oil volume	kL	23.4
A3	Insulation oil weight	kg	-
A4	Insulation oil gravity	g/mL	_
A5	Insulation paper weight	kg	303
A6	History of insulation oil treatment		Nil
Sea oil	History of insulation oil treatment aled performance is good and Korba#6 h treatment. erefore, correction of accumulated CO+C		nducted










speed (mL/g year)	.0283
(Jali 2010)	.5943
(Jan 2010) DP 340-660 327-635 30	0-602
	aution level
RLA Operation years until 53.7 45.5	38.9
Estimating year to 2042 Sep. 2034 Jul. 202 Ave. lifetime point	27 Dec.

	Required Items	Unit	R phase	Y phase	B phase
A1	Furfural density	mg/L	0.05	0.06	0.04
A2	Insulation oil volume	L		23400	
A3	Insulation oil weight	kg		22000	
A4	Insulation oil gravity	g/mL		_	
A5	Insulation paper weight	kg		303	
A6	History of insulation oil change			Nil	
Kork	a#6 has never implemented	d the ir	sulation	oil chan	ge.

		R phase	Y phase	B phase
Trend	Furfural generating speed (mg/g year)	0.000185	0.000222	0.000148
Current condition Jan 2010)	Furfural (mg/g) (Jan 2010)	0.00389	0.00467	0.00312
(Jan 2010)	DP	352-710	335-675	370-750
	Evaluation	Caution level	Caution level	Caution level
RLA	Operation years until Ave. lifetime point	44.5	37.1	55.7
	Estimating year to Ave. lifetime point	Jul-2033	Feb-2026	Aug-2044

jica	Riha	and#2	D	GΑ	da	ata						38
DG/	A resu	Its (R)	oha	se)							
Date	M	H2	CH4	C2H4	C2H6	C2H2	C3H8	CO	CO2	TCG	TCG increase	Remarks
	Months from last test	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm/month	Remarks
Caution lev	el-1	≥400	≥ 100	≥10	≥150	≥0.5		≥300		≥500		
Caution lev	el-2			≥ 10		≧0.5				≧500		$C2H4 \ge 10+TCG \ge 500 \text{ or}$ $C2H2 \ge 0.5$
Abnormal I	evel			≥100						≧700	≧70	C2H4≧100+TCG≧700 or ∆TCG≧70ppm/month
fan-1989		Start operation	1									
Oct-1991	34.3	15	5	2	5	0	0	32	326	59	1.7	
lul-1995	45.0	42	5	5	1	0	0	40	533	93	0.8	
lan-1996	6.1	40	5	3	5	0	7	37	563	97	0.7	
Jun-1996	5.4	Oil filtration										
Jun-1999	36.3	40	45	22	20	0	10	120	450	260	7.2	Caution level-1
Dec-1999	6.3	Oil filtration										
Feb-2000	2.5	25	3	4	3	0	4	82	292	120	48.0	
Aug-2001	17.3	20	57	1	15	0	10	238	1087	341	12.8	
Aug-2001	0.7	Oil filtration										
Jul-2002	11.1	10	42	6	18	0	8	302	1165	386	34.9	Caution level-1
Sep-2002	2.4	Oil filtration										
Sep-2005	36.3	55	12	0	8	0	2	147	810	224	6.2	
Sep-2005	0.1	Oil filtration										
Aug-2007	23.4	29	19	0	7	0	1	246	2005	285	12.2	
Oct-2007	2.0	Oil filtration										
Nov-2007	1.0	5	0	1	1	0		101	474	112	112.0	Abnormal level
Mar-2008	3.1	23	10	1	1	0	1	310	468	346	74.7	Abnormal level
Jun-2008	3.2	15	18	0	0	0	0	120	387	153	-60.3	
Sep-2008	3.2	25	10	0	2	0	1	139	767	177	7.5	
Dec-2008	3.0	45	8	5	4	0	9	121	832	192	4.9	
Mar-2009	3.0	40	5	2	1	0	1	111	805	160	-10.5	
											Issued in	2010

jica)	Korb	a#	6 C)G	A c	lat	a					(39
DGA	result	ts ('	Υp	ha	se)							
N	fonths from	H2	CH4	C2H4	C2H6	C2H2	C3H8	CO	CO2	TCG	TCG increase	Remarks
Date	last test	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm/month	Remarks
Caution leve	-1	≥400	≥100	≥10	≥150	≥0.5		≥300		≥500		
Caution level	1-2			≥ 10		≥0.5				≥500		$C2H4 \ge 10+TCG \ge 500 \text{ or}$ $C2H2 \ge 0.5$
Ab normal le	vel			≥100						≥700	≥70	$C2H4 \ge 100+TCG \ge 700 \text{ or}$ $\Delta TCG \ge 70ppm/month$
Jan-1989		Start o	operati									
Jul-1991	-	22	5	0	0	0	0	91	607	118	-	
Dec-1994	41.4	26	0	1	4	0	0	55	1355	86	-0.8	
Aug-1995		Oil filt										
Oct-1995	2.0	20	0	0	0	0	0	0	198	20	10.0	
Aug-1997	22.2	20	25	10	22	0	13	16	350	106	3.9	Caution level-1
Sep-1997		Oil filt										
Aug-1999	23.0	87	40	2	18	0	10	136	719	293	12.7	
Dec-1999		Oil filt										
Sep-2000	9.7	10	0	0	0	0	0	33	353	43	4.4	
Jul-2002	21.9	17	50	1	7	0	13	305	1220	393	16.0	Caution level-1
Sep-2002		Oil filt										
Sep-2005	36.3	15	20	2	3	0	0	230	1120	270	7.4	
May-2006	7.6	Oil filt		-					100	140		
Aug-2006 Nov-2007	3.1	62	16	1	1	0	0	80	650 474	160 215	51.1	
	3.1											
Mar-2008 Jun-2008	3.1	11	10	1	2	0	1	90	459	135	-25.5	
Jun-2008 Sep-2008	3.2	40	15	0		0		134	235 952	115	-6.3	
Sep-2008 Dec-2008	3.0	40	9	0	4	0	2	134	952	200	23.8	
Dec-2008 Mar-2009	3.0	24	7	0	2	0	1	123	834	142	-19.1	
Mui 2007		24	,		0			107	0.54	142		ed in 2010

jica	Kork	oa#	6 C)G/	A d	ata	a					(40
DGA	resul		Вр	has	se)							
	Months from	H2	CH4	C2H4	C2H6	C2H2	C3H8	CO	CO2	TCG	TCG increase	Remarks
Date	last test	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm/month	renario
Caution lev	vel-1	≥ 400	≥ 100	≥ 10	≥ 150	≥ 0.5		\geq 300		\geq 500		
Caution lev	vel-2			≥ 10		≧0.5				≧500		$C2H4 \ge 10+TCG \ge 500 \text{ or}$ $C2H2 \ge 0.5$
Abnormal	level			≧100						≧700	≧ 70	$C2H4 \ge 100+TCG \ge 700$ or $\Delta TCG \ge 70ppm/month$
Aug-1991	-	32	4	0	4	0	0	181	835	237		
Dec-1994	40.6	25	0	3	1	0	20	60	1087	109	-3.2	
Aug-1995	8.4	Oil filt	eration	n								
Jan-1996	5.3	10	0	0	6	0	5	0	253	21	3.9	
Aug-1997	18.8	35	82	35	34	0	70	133	1473	389	19.5	Caution level-1
Sep-1997	1.2	Oil filt	eratio	n								
Nov-1999	26.3	74	75	3	29	0	13	152	1164	346	13.2	
Dec-1999		Oil filt	eratio									
Aug-2001	19.8	15	22	5		0	2	198	1401	263	13.3	
Jul-2002	11.8	32	73	0	47	0	6	142	950	300	3.1	
Sep-2002		Oil filt										
Jul-2003	9.5	50	13		10	0	8	109	627	190	20.1	
Sep-2003		Oil filt										
Jun-2006	33.0	90	8	- 4	8	0	0	80	302	190	5.8	
Nov-2007	18.2	12	3	2	4	0	1	15	362	37	-8.4	
Mar-2008	3.1	11	5	0	1	0	1	26	390	44	2.2	
Jun-2008	3.2	35	5		0	0	0	31	254	71	8.4	
Sep-2008	3.2	60	7	1	6	0		42	251		14.4	
Dec-2008	3.0	41	5	0	4	0		48	424	99	-5.9	
Mar-2009	3.0	31	- 3	0	0	0	0	46	455	80	-6.3	

Assessment of DGA results (Rihand#2)

(41)

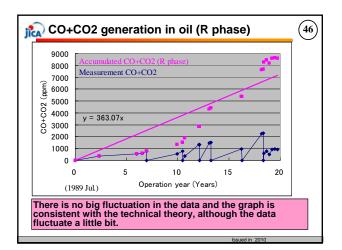
R phase

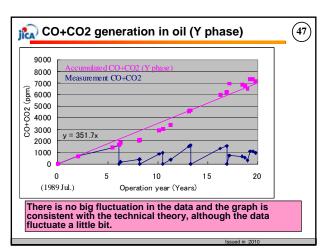
The TCG increase ratio had become Dangerous level in Nov. 2007 and Mar.-2008. Nov.-2007 is just after conducting filtration treatment of the insulation oil. Therefore, maybe the TCG remained in the oil without removing the TCG sufficiently. In addition, because each analyzed gas has had no big change and been less than the judgment criteria recently, the transformer is assessed as normal condition.

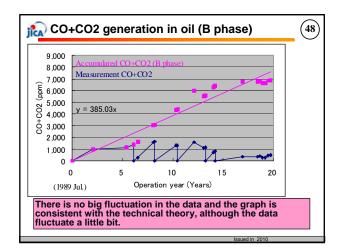
Y phase

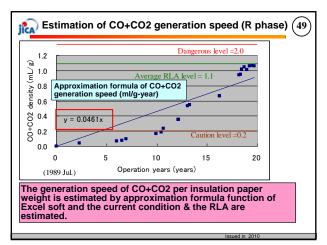
Each analyzed gas has had no big change and been less than the judgment criteria recently, although C2H4 (Aug-1997) and CO (Jul-2002) had become Caution level-1.Therefore, the transformer is assessed as normal condition.

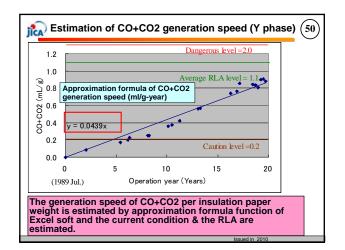
B phase

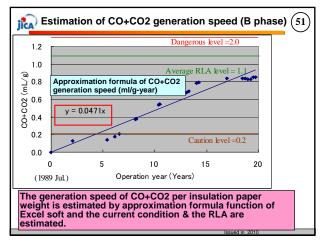

Each analyzed gases has had no big change and been less than the judgment criteria recently, although C2H4 (Aug-1997) had become Caution level-1.Therefore, the transformer is assessed as normal condition.

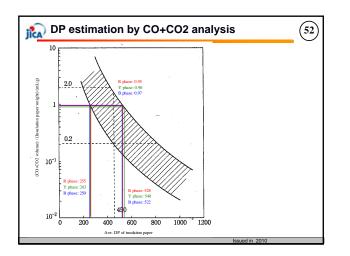

	Required Items	Unit	Data	Remarks
A1	Accumulated CO+CO2 density in insulation oil ^{*1}	vol ppm (mL/kL)	Refe	r to next Table
A2	Insulation oil volume	kL	37800	
A3	Insulation oil weight	Kg	32432	
A4	Insulation oil gravity	g/mL	-	
A5	Insulation paper weight	Kg	(305.5)	Precondition
A6	History of insulation oil treatment		Refer to	next Table blue marked
ot av ilizii Sea	tion paper weight is essential for cc railable in Rihand#2 GT. The insulati ng Korba#6 GT data aled performance is bad and l atment often.	ion paper	weight i	s estimated by

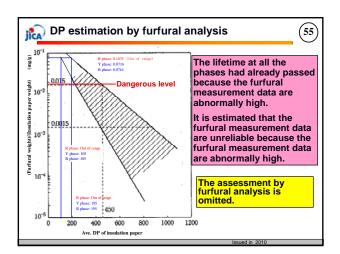

	r - 1		Accumulate	1	1	r	
Date	Operation years	CO+CO2 (ppm)	d CO+CO2	Gap with last test	CO+CO2 (mL/g)	Remarks	R phase
Jul-1989	0.0	0	0	0	0.000	Initial data	
Oct-1991	2.3	358	358	358	0.044		
Jul-1995	6.0	573	573	215	0.071		When oil filtration is
Jan-1996	6.5	600	600	27	0.074		conducted, CO, CO2 in
Jun-1996	7.0	759	759	159	-	Correction	
Jun-1996	7.0	0	759	0	0.094	Filtering	oil are moved away
Jun-1999	9.9	570	1,329	570	0.164		(Measurement =0)
Dec-1999	10.5	758	1,517	188		Correction	(
Dec-1999	10.5	0	1,517	0		Filtering	
Feb-2000	10.7	374	1,891	374	0.234		CO+CO2 generating
Aug-2001	12.1	1325	2,842	951	0.352		speed=363ppm/year
Aug-2001	12.2	1346	2,863	21		Correction	speca=oooppin/year
Aug-2001	12.2	0	2,863	0		Filtering	
Jul-2002	13.1	1467	4,330	1,467	0.536		
Sep-2002	13.3	1538	4,401	71		Correction	
Sep-2002	13.3	957	4,401	957		Filtering	-
Sep-2005 Sep-2005	1012	741	5,358		0.663		L
Sep-2005 Aug-2007	16.3	Long	span f	rom	oil fil	tration	to the previous test
Aug-2007 Oct-2007	18.2		•				•
Oct-2007	18.3	Corre	ction i	S COI	nduct	ed con	sidering the CO+CO2
Nov-2007	18.4		ase du				-
Mar-2008	18.7	morea	150 uu	my	ine a	Juin	
Jun-2008	18.9	Corre	ction=	Ave	dene	ration 9	speed × the span
Sep-2008		00110	0		90110	- anon a	pood of the span

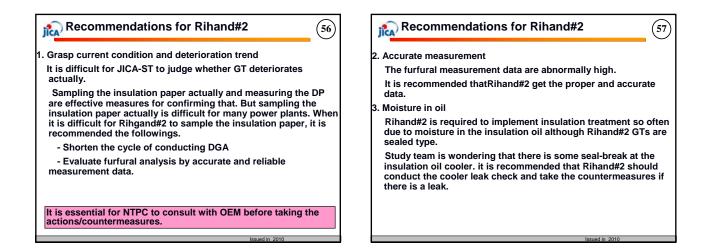

Date	Operation years	CO+CO2 (ppm)	Accumulated CO+CO2 (ppm)	Gap with last test	CO+CO2 (mL/g)	Remarks	Y phase
Jul-1989	0.0	0	0	0		Initial data	
Jul-1991	2.0	698	698	698	0.086		When oil filtration is
Dec-1994	5.4	1410	1410	712	0.174		
Aug-1995	6.1	1652	1652	242		Correction	conducted, CO, CO2 in
Aug-1995	6.1	0	1652	0		Filtering	oil are moved away
Oct-1995	6.3	198	1850	198	0.229		(Measurement =0)
Aug-1997	8.1 8.2	366	2018	168	0.250	Correction	(weasurement =0)
Sep-1997	8.2	401	2053	35	0.254	Filtering	-
Sep-1997 Aug-1999	8.2	855	2053	855	0.254	rmering	4
Dec-1999	10.1	979	2908	124	0.300	Correction	4
Dec-1999	10.5	0	3032	124	0.375	Filtering	
Sep-2000	11.3	386	3418	386	0.423		CO+CO2 generating
Jul-2002	13.1	1525	4557	1139	0.564		
Sep-2002	13.3	1593	4625	68	~	Correction	speed=352ppm/year
Sep-2002	13.3	0	4625	0	0.572	Filtering	1
Sep-2005	16.2						
May-2006	16.9	Long	span t	rom	on filt	ration a	ind the previous test
May-2006	16.9	•					1 dealer a dha 00 a 000
Aug-2006	17.1						idering the CO+CO2
Nov-2007	18.4	incre	ase du	ring t	he sp	oan.	
Mar-2008	18.7			-	-		
Jun-2008	18.9	Corre	ection=	Ave.	gene	ration s	peed × the span
Sep-2008	19.2	1000	7200	701	0.701		

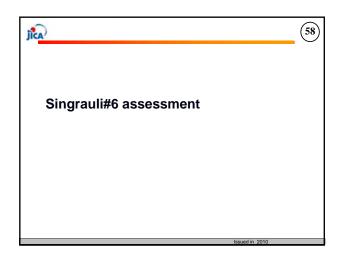

		1					
B phase	Remarks	CO+CO2 (mL/g)	Gap with last test	Accumulated CO+CO2 (ppm)	CO+CO2 (ppm)	Operation years	Date
	Initial data	0.000	0	0	0	0.0	Jul-1989
		0.126	1,016	1,016	1,016	2.1	Aug-1991
When oil filtration is		0.142	131	1,147	1,147	5.4	Dec-1994
conducted, CO, CO2 in	Correction		266	1,413	1,413	6.1	Aug-1995
oil are moved away	Filtering		0	1,413	0	6.1	Aug-1995
		0.206	253	1,666	253	6.6	Jan-1996
(Measurement =0)		0.374	1353	3,019	1,606	8.1	Aug-1997
	Correction		39	3,058	1,645	8.2	Sep-1997
	Filtering		0	3,058	0	8.2	Sep-1997
		0.541	1316	4,374	1,316	10.4	Nov-1999
	Correction		35	4,409	1,351	10.5	Dec-1999
CO+CO2 generating	Filtering	0.546	0	4,409	0	10.5	Dec-1999
		0.743	-507	6,008	1,599	12.1	Aug-2001
speed=385ppm/year	a	0.681	-50/	5,501	1,092	13.1	Jul-2002
,	Correction	0.000	/6	5,577	1,168	13.3	Sep-2002 Sep-2002
nd the previous test	ration a	oil filt	rom	snan f		13.3	Jul-2002
na the previous test	anona	on mu		Spann	Long	14.0	Sep-2003
idering the CO+CO2	ed consi	duct	s cor	ection i	Corre	14.2	Sep-2003
				ase du		16.9	Jun-2006
	an.	ne sh	inig i	ase uu	IIICIE	18.4	Nov-2007
beed × the span	ration s	aene		ection-	Corre	18.7	Mar-2008
Jeeu A the span	anon s	gene				18.9	Jun-2008
		0.826		6 679	293	19.2	Sep-2008



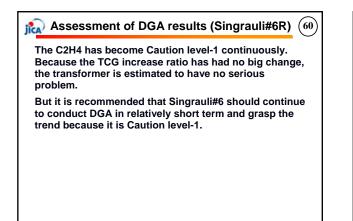


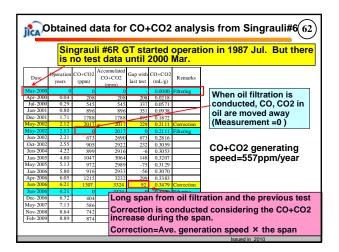


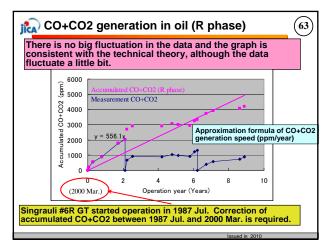


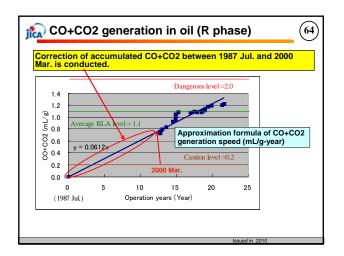


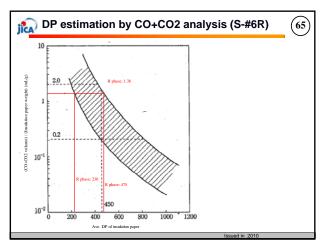
		R phase	Y phase	B phase
Trend	CO+CO2 generating speed (mL/g year)	0.0461	0.0439	0.0471
Current condition Jan 2010)	CO+CO2 (mL/g)	0.95	0.90	0.97
	DP	255-528	263-540	250-522
	Evaluation	Caution level	Caution level	Caution level
RLA	Operation years until Ave. lifetime point	23.9	25.1	23.4
	Estimating year to Ave. lifetime point	May-2013	Jul-2014	Nov-2012


	Required Items	Unit	R phase	Y phase	B phase				
A1	Furfural density	mg/L	1.14	0.5	0.5				
A2	Insulation oil volume	L		37800					
A3	Insulation oil weight	kg		32432					
A4	Insulation oil gravity	g/mL		-					
A5	Insulation paper weight	kg	(305.5)						
	A6 History of insulation oil Nil								
	change	nducting	a furfural a		it is not				
Insul availa GT d	change ation paper weight is essential for co able in Rihand#2 GT. The insulation p ata	oaper we	ight is esti	nalysis. But mated by ut	ilizing Korba				
Insul availa GT d Riha he n	change ation paper weight is essential for co able in Rihand#2 GT. The insulation p	ed the	insulati	nalysis. But mated by ut on oil ch erating w	ange and				

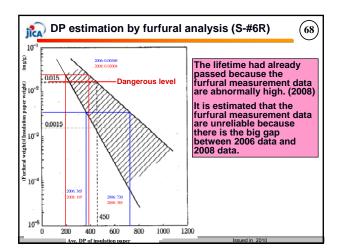


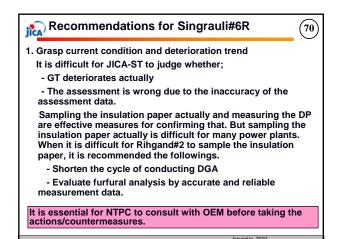



	Sing											
DGA	result	S (F	(pr	nase	e)							
	from last	H2	CH4	C2H4	C2H6	C2H2	C3S	со	CO2	TCG	TCG increase	Remarks
Date	test	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm/month	
Caution leve	el-1	≥ 400	≥100	≥ 10	≥150	≥0.5		≥ 300		≥500		
Caution lev	el-2			≥ 10		≧0.5				≧500		$C2H4 \ge 10+TCG \ge 500 \text{ or}$ $C2H2 \ge 0.5$
Abnormal l	evel			≧ 100						≧700	≧70	$C2H4 \ge 100+TCG \ge 700$ or $\Delta TCG \ge 70ppm/month$
Mar 2000	Oil filtering											
Apr 2000	-	7	3	3	2	0	2	9	199	26		
Jul 2000	3.0	29	12	15	11	0	5	33	512	105	26.0	Caution level-1
Jan 2001	6.1	25	57	44	31	0	31	89	807	277	28.0	Caution level-1
Dec 2001	11.1	32	109	72	50	0	52	202	1586	517	21.6	Caution level-1
May 2002	Oil filtering											
Jun 2002	6.1	10	5	7	4	0	3	38	635	67	11.0	
Oct 2002	4.1	30	15	40	45	0	15	95	810	240	42.5	Caution level-1
Jun 2004	20.3	30	63	44	31	0	16	109	790	293	2.6	Caution level-1
Jan 2005	7.1	20	52	50	31	0	15	139	908	307	2.0	Caution level-1
May 2005	4.0	70	60	60	42	0	20	80	892	332	6.3	Caution level-1
Jan 2006	8.2	27	15	62	53	0	5	81	835	243	-10.9	Caution level-1
Apr 2006	3.0	40	32	66	52	0	25	105	1110	320	25.7	Caution level-1
Jun 2006	Oil filtering											
Dec 2006	8.1	33	8	5	7	0	2	61	343	116	14.3	
May 2007	5.0	20	26	32	26	0	18	51	535	173	11.3	Caution level-1
Nov 2008	18.3	61	50	25	21	0	12	76	666	245	3.9	Caution level-1
Feb 2009	3.1	62	26	11	22	0	19	87	787	227	-5.9	Caution level-1



Required Items	Unit	Data	Remarks
A1 Accumulated CO+CO2 density in insulation oil	vol ppm (mL/kL)		
A2 Insulation oil volume	kL	31.719	
A3 Insulation oil weight	kg	27500	
A4 Insulation oil gravity	g/mL	0.867	
A5 Insulation paper weight	kg	(303)	Precondition
A6 History of insulation oil treatment		Refer to blue ma	Table 8.4.6-39 Irked
sulation paper weight is essential f ut it is not available in Singrauli#6 (stimated by utilizing Korba#6 GT da	GT. The i ita	nsulatio	



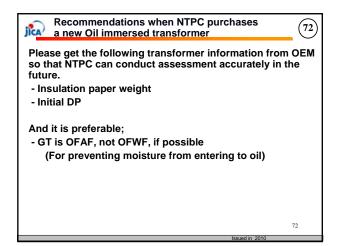


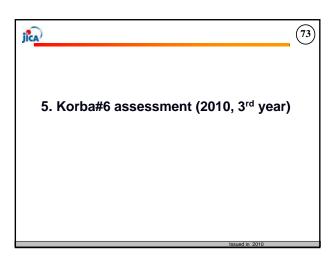
CO+CO2 (mL/g) (Jan 2010) 231 Jan 2010) DP 233 Evaluation Caution Operation years until Ave. lifetime Jun- RLA Estimating year to Ave. lifetime Jun- Operation years until Dangerous level Dun- Dun-	.0612 1.38 0-475
Date Display Control Display Control Control <thcontrol< th=""> <thcontrol< th=""> <thcont< td=""><td>0-475</td></thcont<></thcontrol<></thcontrol<>	0-475
Evaluation Caution Operation years until Ave. lifetime RLA Estimating year to Ave. lifetime Jun- Operation years until Dangerous level	
Operation years until Ave. lifetime RLA Estimating year to Ave. lifetime Jun- Operation years until Dangerous level	
RLA Estimating year to Ave. lifetime Jun Operation years until Dangerous level	level
Operation years until Dangerous level	18
	2005
	32.7
Estimating year to Dangerous level Sep-	2019
Ithough transformer lifetime is approximately 40~50 year enerally in Japanese power plant, Singrauli#6 GT lifetime stimated to be short relatively.	s s ar

1 Furfural density (Sep-2008) mg/L 0.27 2nd test 2 Insulation oil volume L 31719 Big gap abnormally 3 Insulation oil weight kg 27500 abnormally 4 Insulation oil gravity g/mL 0.867 5 Insulation paper weight kg (303) 6 History of insulation oil change Nil		Required Items	Unit	Data	Remarks
A2 Insulation oil volume L 31719 Big gap abnormally A3 Insulation oil weight kg 27500 abnormally A4 Insulation oil gravity g/mL 0.867 A5 Insulation paper weight kg (303) A6 History of insulation oil change Nil	۹1	Furfural density (Sep-2006)	mg/L	0.03	1st test
Big gap A3 Insulation oil weight kg 27500 A4 Insulation oil gravity g/mL 0.867 A5 Insulation paper weight kg (303) A6 History of insulation oil change Nil	41	Furfural density (Sep-2008)	mg/L	0.27	2nd test
A4 Insulation on weight kg 27000 A5 Insulation paper weight kg (303)	\ 2	Insulation oil volume	L	31719	Big gap
kg (303) A6 History of insulation oil change Nil	٩3	Insulation oil weight	kg	27500	abnormally
A6 History of insulation oil change Nil	44	Insulation oil gravity	g/mL	0.867	
	۹2	Insulation paper weight	kg	(303)	
sulation paper weight is acceptial for conducting furfural analysis. But it is not	٩6	History of insulation oil change		Nil	
Infation paper weight is essentian for conducing turbular analysis. But it is not allable in Singrauli#6 GT. The insulation paper weight is estimated by utilizing rba#6 GT data	aila	ble in Singrauli#6 GT. The insulation p			ated by utilizing

		Sep-2006	Sep-2008
Trend	Furfural generating speed (mg/g year)	0.000164	0.001334
Current	Furfural (mg/g) (Jan 2010)	0.00369	0.03004
condition (Jan 2010)	DP	365-730	195-385
(5411 2010)	Evaluation	Caution level	Dangerous level
	Operation years until Ave. RL ^{*1}	50.4	6.2
RLA	Estimating year to Ave. RL	Nov-2037	Sep-1993
	Operation years until Dangerous level	91.6	11.2
	Estimating year to Dangerous level	Feb-2079	Oct-1998
urfural mea he results	e at all the phases had alre asurement data are high. are unreliable because th nd 2008 data.	(2008)	

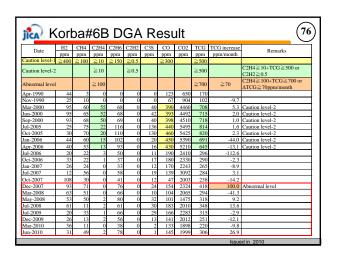
Recommendations for Singrauli#6


2. Accurate measurement


As for the assessment by furfural analysis, there is a big gap of furfural measurement data between 2006's and 2008's. It is recommended that Singrauli#6 get the proper data.

3. Moisture in oil

Singrauli#6 is required to implement insulation treatment so often due to moisture in the insulation oil although Singrauli#6R GT is sealed type.


Study team is wondering that there is some seal-break at the insulation oil cooler. it is recommended that Singrauli#6R GT should conduct the cooler leak check and take the countermeasures if there is a leak.

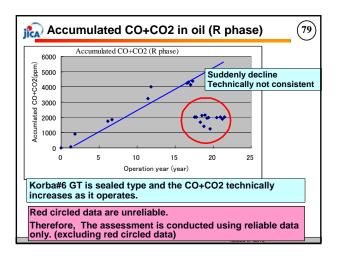
A K	orb	a#	6R	D	GΑ	١R	esı	ılt			(7
Date	H2	CH4	C2H4	C2H6	C2H2	C3S	CO	CO2	TCG	TCG increase	Remarks
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm/month	Remarks
Caution level-1	≥400	≥ 100	≥10	≥150	≥0.5		≥300		≥500		
Caution level-2			≥ 10		≥ 0.5				≧500		$C2H4 \ge 10+TCG \ge 500 \text{ or}$ $C2H2 \ge 0.5$
Abnormal level			≧100						≧700	≧70	$C2H4 \ge 100+TCG \ge 700$ or $\Delta TCG \ge 70ppm/month$
Apr-1990	387	3	0	2	51	0	34	47	477		Abnormal level *1
Nov-1990	11	8	0	0	0	0	82	819	101	-53.7	
Feb-1995	80	17	0		0		15	1723	152	1.0	
Sep-1995	75	16	0		0		10	1855	146	-0.9	
Jun-2000	85	56	50	58	0		381	2853	658	8.8	Caution level-2
Oct-2000	84	54	52	84	0		398	3606	684	6.0	Caution level-2
Jul-2005	20	60	22	66	0		450	3810	646	-0.7	Caution level-2
Oct-2005	16	70	20		0		440	3890	646	0.0	Caution level-2
Jan-2006	42	60	16		0		420	3710	630		Caution level-2
Apr-2006	32	62	2		0		262	4135	536		Caution level-1
Jul-2006	23	15	1	50	0		130	1906	229	-99.0	
Oct-2006	29	24	1		0		128	1903	216	-4.9	
Apr-2007	16	30	2		0			1597	182	-5.2	
Jul-2007	12	42	0		0			2062	184	0.9	
Oct-2007	102	24	0		0			1394	200	4.9	
Dec-2007	91	35	0		0		43	2111	232	17.8	
Mar-2008	70	30	0		0		40	1922	177	-17.6	
Jun-2008	71	2	2	8	0		127	1865	210	10.8	
Aug-2008	60	20	0		0		25	1229	137	-32.7	
Jul-2009	21	81	1	76	0		111	1869	321	16.8	
Dec-2009	18	61	2		0		109	1916	269	-9.8	
Mar-2010 Jun-2010	25	32 49	0	33	0	2	92 112	1790 1896	184 280	-26.8	

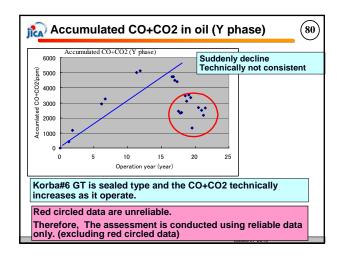
	H2	CH4	C2H4	C2H6	C2H2	C3S	CO	CO2	TCG	TCG increase	
Date										ppm/month	Remarks
Caution level-1	ppm ≥400	ppm ≥100	ppm ≥10	ppm ≥150	ppm ≥0.5	ppm	2300 ≥	ppm	ppm ≥500	ppn/monu	
Caution level-2		=100	≥10 ≥10	= 150	≧0.5		2500		≥500		C2H4≥10+TCG≥500 or C2H2≥0.5
Abnormal leve			≥100						≥700	≧70	C2H4 \geq 100+TCG \geq 700 or Δ TCG \geq 70ppm/month
Apr-1990	40	0	0	0	0	0	16	412	56		
Nov-1990	31	0	0	0	0	0	42	1148	73	2.4	
Feb-1995	0	15	4	27	0	0	5	2914	51	-0.4	
Sep-1995	10	15	10	26	0	15	43	3200	119	10.3	Caution level-1
May-2000	55	95	1	61	0	16	275	4744	503	6.7	Caution level-1
Nov-2000	55	93	2	61	0	12	290	4822	513	1.7	Caution level-1
ul-2005	23	90	3		0	45	320	4405	626	2.0	Caution level-1
)ct-2005	30 40	80	5		0	40	330	4390	625	-0.4	Caution level-1
an-2006	40	62	3	130	0	75	290 262	4210	608 525	-5.8	Caution level-1
Apr-2006 ul-2006	20	62	2	30	0	50	262	4130	216	-23.7	Caution level-1
Dct-2006	20	27	1	27	0	13	120	2310	210	-99./	
an-2005	21	27	1	44	0	13	115	2190	213	-1.1	
ul-2007	5	51	0	44	0	14	149	3331	212	-0.4	
0ct-2007	12	31	1	49	0	13	73	3044	179	-28.5	
an-2008	80	81	0		0	27	205	3310	473	80.2	Abnormal level
dav-2008	53	73	13		0	24	191	3160	428	-14.7	Caution level-2
ul-2008	61	14	13		0	15	61	1259	167	-90.0	cutton lever 2
ul-2008 ul-2009	26	72	1	70	0	25	287	2390	481	27.2	
Dec-2009	31	57	1	60	0	23	267	2223	439	-7.9	
Mar-2010	21	30	2	52	0	23	212	1966	319	-37.9	
un-2010	18	28	1	51	0	2	233	2411	333	4.4	

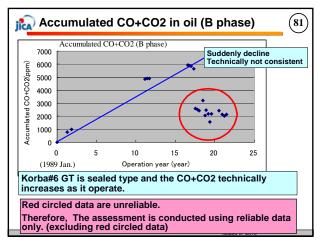
Review of Korba#6 DGA jica)

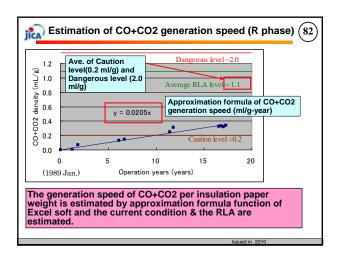
R phase Each analyzed gas has had no big change and been less than the judgment criteria. Therefore, the transformer is assessed as normal condition.

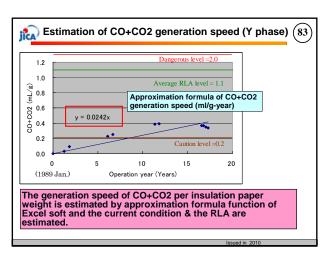
(77)

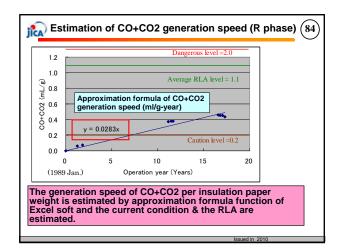

■Y phase

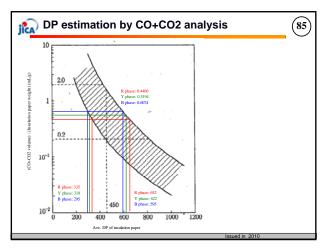

Each analyzed gas has had no big change and been less than the judgment criteria recently, although TCG increase per month (Jan. 2008) had become Abnormal level and C2H4 (May. 2008) had become Caution level-2. Therefore, the transformer is assessed as normal condition.

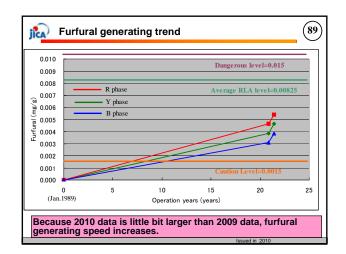

■B phase

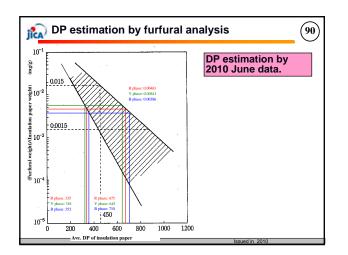

E printse Each analyzed gas has had no big change and been less than the judgment criteria recently, although TCG increase per month (Dec. 2007) had become Abnormal level. Therefore, the transformer is assessed as normal condition.


	Required Items	Unit	Data
A1	Accumulated CO+CO2 density in insulation oil	vol ppm (mL/kL)	Next page
A2	Insulation oil volume	kL	23.4
A3	Insulation oil weight	kg	_
A4	Insulation oil gravity	g/mL	_
A5	Insulation paper weight	kg	303
A6	History of insulation oil treatment		Nil
oil The	aled performance is good and Korba#6 h treatment. erefore, correction of accumulated CO+C juired.		

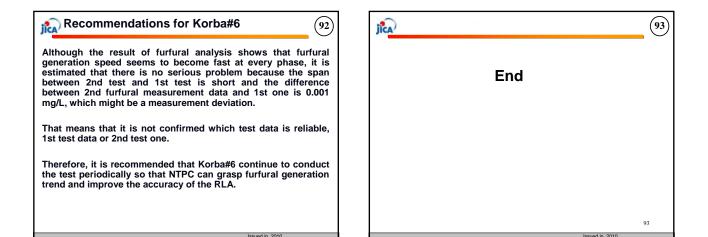




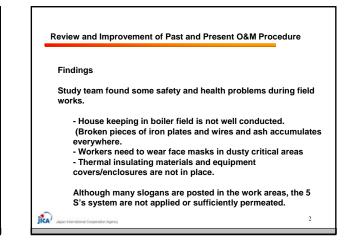


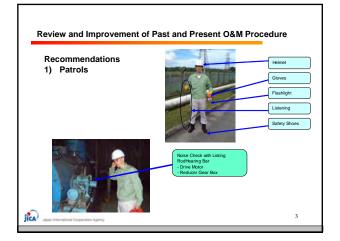


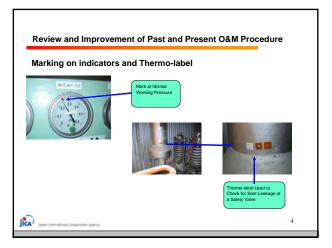
		R phase	Y phase	B phase	
Trend	CO+CO2 generating speed (mL/g year)	0.0205	0.0242	0.0283	
Current condition	CO+CO2 (mL/g) (Jan 2010)	0.4400	0.5194	0.6074	
(Jan 2010)	DP	335-652	318-622	295-595	
	Evaluation	Caution level	Caution level	Caution level	
RLA	Operation years until Ave. lifetime point	53.7	45.5	38.9	
	Estimating year to Ave. lifetime point	2042 Sep.	2034 Jul.	2027 Dec.	

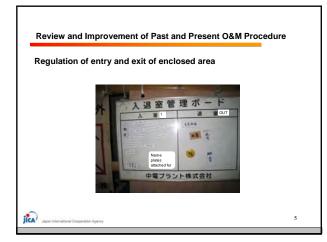

	Required Items	Unit	R phase	Y phase	B phase
A1	Furfural density (Nov. 2009)	mg/L	0.05	0.06	0.04
A1	Furfural density (June 2010)	mg/L	0.06	0.07	0.05
A2	Insulation oil volume	L		23400	
A3	Insulation oil weight	kg		22000	
A4	Insulation oil gravity	g/mL		_	
A5	Insulation paper weight	kg		303	
A6	History of insulation oil change			Nil	
he r tarti	a#6 has never implemented neasurement data becomes ing operation to furfural me data is little bit larger than	s furfur asuren	al gener nent day	ating we	

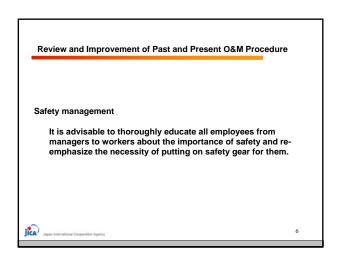
Start o	peration	Insula	303 kg		
Jan	1989		Oil volume		23400 L
Phase	Date	Operation years	Furfural (mg/L)	Furfural ^{*1} (mg/g)	Remarks
Dubaaa	Nov. 2009	20.86	0.05	0.00386	Caution level
R phase	June 2010	21.46	0.06	0.00463	Caution level
Vahaaa	Nov. 2009	20.86	0.06	0.00463	Caution level
Y phase	June 2010	21.46	0.07	0.00541	Caution level
Dubaaa	Nov. 2009	20.86	0.04	0.00309	Caution level
B phase	June 2010	21.46	0.05	0.00386	Caution level

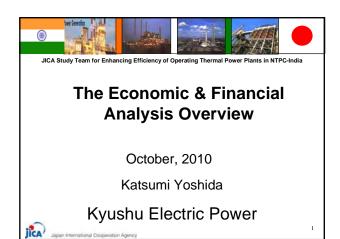

		R phase	Y phase	B phase
Trend	Furfural generating speed (mg/g year)	0.000220	0.000259	0.000184
Current condition	Furfural (mg/g) (June 2010)	0.00463	0.00541	0.00386
(Jan 2010)	DP	335-675	318-645	352-710
	Evaluation	Caution level	Caution level	Caution level
RLA	Operation years until Ave. lifetime point	38.2	32.8	45.9
	Estimating year to Ave. lifetime point	Mar-2027	Oct-2021	Nov-2034

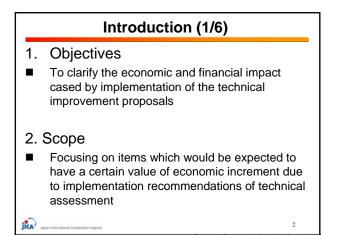



	er		Implementation of the	
ŗ	Ne.c	Item-	NTPC- Study team-	NTPC-
Ī	16	Test Implementation Team-'	A) Organization: Operation Section+ B) Implementation: Subsidiary Company and Service Provider+	Organization: EEM Group+' Implementation: EEM Group+'
	2*	Preparation of Test-' (day before)-'	 A) Confirmation of measurement data values? B) Calibration of Instrument/measurement devices, as necessarys? 	A) Not applied." B) Not applied."
	3+>	Test implementation."	A) Meeting with relevant puties before data of before offset of the "Operating conditions offset num". Childration of Ose analyzer- D Measurement timing is notified by paging every hour for ash samplingfood indicators vulnet. E) Field Measurement. * Data Social Composition & Tempst * Data Social Composition & Tempst * Data Social Social Social * Bottom Ach samplings*	A) Hot applied- B)Lead is not fixed at rated out put- () Same as Bludy team- () Not appled- () Not appled- () Same as Study team-




NTPC (India)	Study Team (Japan)
 Patrol: 3 times / 1 shift Patrol: 3 times / 1 shift 8 local operator/ 2units Each station does not have Simplified Simulator. Maintenance (in house) 	 Patrol: 1 times / 1 shift 3 to 4 local operator/ 2units Each station has Simplified Simulator. Maintenance (by subsidiary
 Periodic inspections works conducted 24h/day Boiler RLA conducted every 5 years Performance test frequencies are depend on system 	 company: (J Power case) Periodic inspections works conducted 8-12h/day Boiler RLA is conducted 100,000 hrs operation time It is conducted by the RLA result after that. Performance test/once a year





n/ /	V 1 4/	G: 1: #4	D'I 1#2	X7 1 1 #2
Plant (# =Unit)	Korba #6	Singrauli #4	Rihand #2	Unchahar #3
Boiler	Air Heater Renovation (SDU/FRS)	Air Heater Renovation (SDU/FRS)		
Turbine	Turbine Seal Fin Replacement	Turbine Seal Fin Replacement	Turbine Seal Fin Replacement	
Control System	-	_	-	New System for Optimization of Combustion & Soot blowers

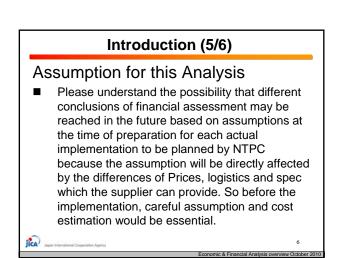
Introduction (3/6)

3. Method

ilea)

Economic & Financial

Firstly, with the Cost Benefit Analysis, we evaluate the actual economic volume of incremental profit. Then, by NPV approach we clarify the value of investment in terms of the Cost of Capital.


Environmental Value-CO2

 Secondly, regarding the environmental value added by the reduction of CO2 emissions that would arise from the proposed technical improvements, introduced later

Introduction (4/6)

Assumption for this Analysis

Due to the limitations and difficulties of collecting cost information in India for this analysis, we conduct financial analysis with data that is currently available within our study period because some material or equipment related to technical improvement items are new and not common in India, so that in order to make up for a lack of Indian some local cost information, we supplement it with implementation costs in cases of Japan and other countries. However, under this situation for colleting cost information, as much as possible, this analysis made efforts to use Indian local cost (e.g. calculation of initial installation labor cost by Indian labor rate and a work-hour estimation according to Japanese experience.

Introduction (6/6)

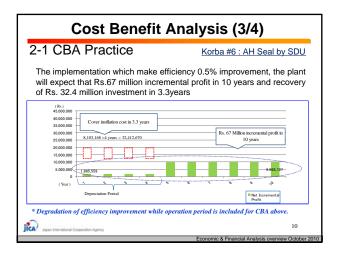
Cost of Capital

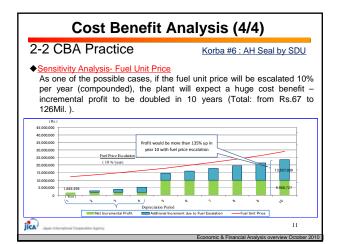
jica)

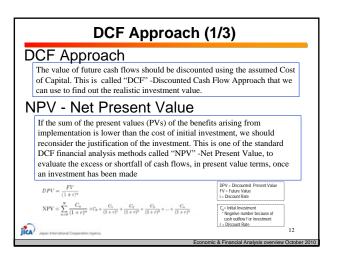
- The cost of capital is the cost of a company's finance (e.g. interest on debt and dividend on stock).
- We assumed current NTPC's cost of capital to be 7% following recent actual expenditure on Interest & Finance Cost and Divided. (Source of figures in the table below is page 20 of NTPC's 33rd Annual Report)
- As a result of discussions about the expected cost of capital in the near future with CenPEEP, <u>we have set</u> the cost of capital as 12% for the following DCF Approach analysis.

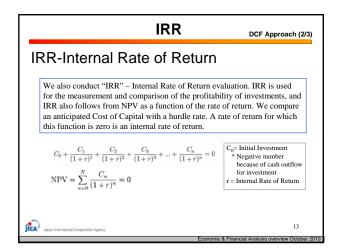
Cost Benefit Analysis (1/4)

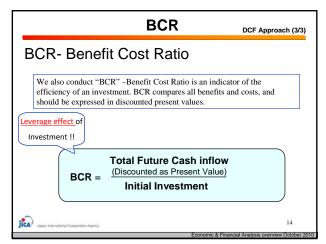
1-1 Method of CBA

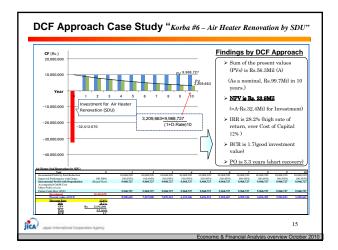

◆<u>Concept</u>

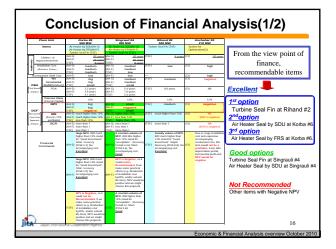

ilca

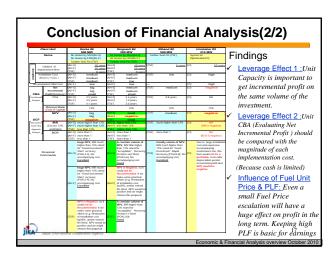

Cost Benefit Analysis (CBA) compares the incremental profit (such as the reduction of fuel costs through the plant efficiency improvement) gained by the implementation of the improvement with the initial cost of implementation.

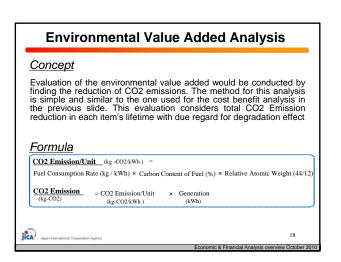

If there are any extra expenses or costs caused by the implementation (such as the materials, maintenance and/or scrapping property), CBA recognizes these things as negative factors for incremental profit. CBA also considers lifetime assessment for new equipment


Cost Benefit Analysis (2/4) 1-2 Method of CBA CBA's Criteria is Simple How to find incremental Profit > Possibility of Incremental Profit A. Current Fuel Cost (100) B. Possible Fuel Cost after improvement (90) C. Fuel Cost Reduction: Profit *(A less B: 10) This would be recognized as initial incremental profit D. Incremental Cost by installation* (5) * If there are any extra costs caused by the implementation (such as the materials, maintenance and/or scrapping property), these should be included as additional incremental cost. → Sufficiently Plus → Implement E. Net Incremental Profit *(C less D : 5) Slight, Negative → Reconside * CBA is based on a practical accounting policy, so, in accordance with the existence of the depreciation cost related to the implementation, we should carefully evaluate the incremental profit.









Cost Benefit of Emission Reduction

How to evaluate CBER !?

jica

Furthermore we evaluate Cost benefit for the CO2 emission reduction (CBER). This is calculated by dividing the volume of the emission-reduction by the cost of investment (If there are any accompanying incremental costs or expenses due to the implementation, they would be considered part of the cost of investment)

Cost Benefit for the CO2 Emission Reduction = Investment / CO2 Reduction (for lifetime)

 Conclusion of Environmental Value Added Analysis

 Plan: Unit
 Kocho ##
 Singeruit ##
 Rihand #2
 Orthorham ##

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <td

relativel Good

> volume Cost is r

of Reduction, Cost relatively medium

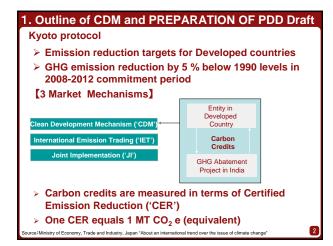
Financial Comments

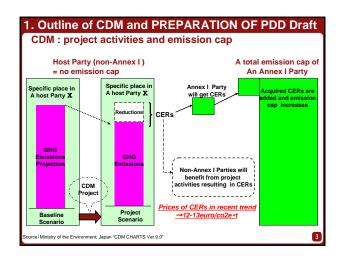
jic

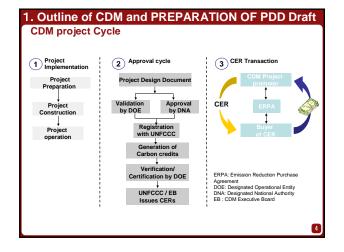
19

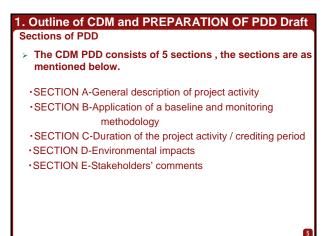
relatively low Excellent

volume of F Cost is relat exerci-


Carefull about th balance Cost is medium Good


Carefull examinal about the costbalance would be

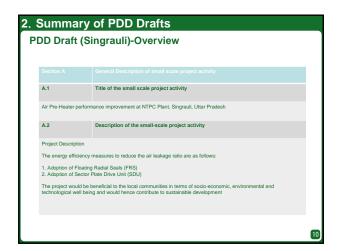




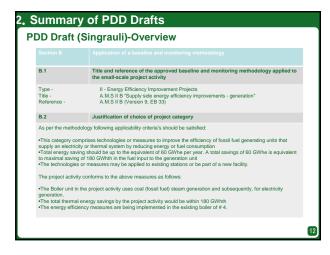
CONTENTS 1. Outline of CDM and PREPARATION OF PDD Draft 2. Summary of PDD Drafts 3. Planning of schedule of preparatory works

1. Outline of CDM and PREPARATION OF PDD Draft

Selection of Methodology

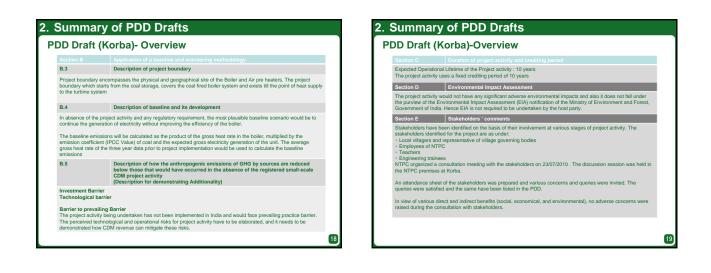

Large scale Approved Methodologies -AM0061 and AM0062

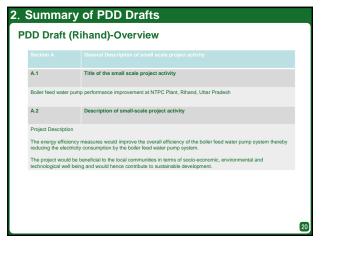
Methodologie s No.	Area	Key word	Applicability	Title of Methodologies - Version No.
AM0061	Energy Industry	Energy efficiency improvement, Energy saving	Power Plant	Methodology for rehabilitation and/or energy improvement in existing power plant – Version0.2.1
AM0062	Energy Industry	Energy saving, Energy efficiency	Improvemen t Power Plant (Turbine)	Energy efficiency improvements of a power plant through retrofitting turbines – Version01.1

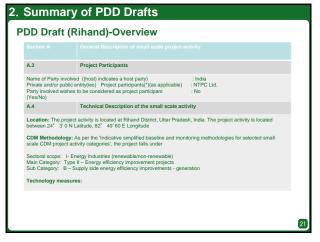


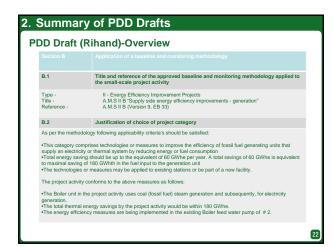
Title o	of the Study	rk of CDM Consultant
ENHA		DD Draft" FOR THE STUDY ON ENCY OF OPERATING THERMAL NTPC-INDIA
	Contractor &Young Pvt.L	td
	0	and Scope of the Work
	0	and Scope of the Work
Perio Fiscal	d of Execution	and Scope of the Work

mprovem	ent measures				
Finalized efficiency	d thermal power gene improvement measure	ration unit and energy es			
Thermal power generation unit	Proposed energy efficiency improvement measures				
	Initial measures proposed	Final measures selected			
Singrauli# 4	Air heater performance improvement	Air heater performance improvement			
	Turbine seal fin replacement	-			
Korba# 6	Air heater performance improvement	Air heater performance improvement			
	Turbine seal fin replacement	_			
Rihand # 2	Turbine seal fin replacement	BFP performance improvement			


Section B	Application of a baseline and monitoring methodology
B.3	Description of project boundary
boundary whi	ary encompasses the physical and geographical site of the Boiler and Air pre heaters. The project ch starts from the coal storage, covers the coal fired boiler system and exists till the point of heat turbine system
B.4	Description of baseline and its development
continue the g The baseline emission coel	the project activity and any regulatory requirement, the most plausible baseline scenario would be to eneration of electricity without improving the efficiency of the boiler. metissions will be calculated as the product of the gross heat rate in the boiler, multiplied by the ficient (IPCC Value) of coal and the expected gross electricity generation of the unit. The average e of the fintee year data prior to project implementation would be used to calculate the baseline
	Description of how the anthropogenic emissions of GHG by sources are reduced
B.5	below those that would have occurred in the absence of the registered small-scale CDM project activity (Description for demonstrating Additionality)


Section C	Duration of the project activity and crediting period
	nal Lifetime of the Project activity : 10 years / uses a fixed crediting period of 10 years
Section D	Environmental Impact Assessment
he purview of the	/ would not have any significant adverse environmental impacts and also it does not fall under Environmental Impact Assessment (EIA) notification of the Ministry of Environment and Forest, tia. Hence EIA is not required to be undertaken by the host party.
Section E	Stakeholders ' comments
stakeholders iden Local villagers a Employees of N Teachers Engineering traii NTPC organized a he NTPC premise An attendance sho	vers consultation meeting with the stakeholders on 27/07/2010 . The discussion session was held in


	(Korba)-Overview
A.1	Title of the small scale project activity
Air Pre-Heater pe	rformance improvement at NTPC Plant, Korba, Chattisgarh
A.2	Description of the small-scale project activity
Project Descriptic	n
The energy effici	ency measures to reduce the air leakage ratio are as follows:
	vating Radial Seals (FRS) ctor Plate Drive Unit (SDU)
	I be beneficial to the local communities in terms of socio-economic, environmental and being and would hence contribute to sustainable development


Summa	ary of PDD Drafts
PDD Draf	t (Korba)- Overview
Section A	General Description of small scale project activity
A.3	Project Participants
Private and/or pu	volved ((host) indicates a host party) : India blie entity(ies) Project participants(')(as applicable) : NTPC Ltd. shes to be considered as project participant : No
A.4	Technical Description of the small scale project activity
	roject activity is located at Korba District, Chattisgarh, India. The project activity is located between de, 82 40' 48" E Longitude & 304 m above mean sea level.
	gy: As per the 'Indicative simplified baseline and monitoring methodologies for selected small ct activity categories', the project falls under
Main Category:	I-Energy Industries (renewable/non-renewable) Type II – Energy efficiency improvement projects – Supply side energy efficiency improvements- generation
	asures: ating Radial Seals(FRS) Ictor Plate Drive Unit (SDU)

B.1	Title and reference of the approved baseline and monitoring methodology applied to the small-scale project activity
Type - Title - Reference -	II - Energy Efficiency Improvement Projects A.M.S II B "Supply side energy efficiency improvements - generation" A.M.S II B (Version 9, EB 33)
B.2	Justification of choice of project category
As per the metho	dology following applicability criteria's should be satisfied:
 Supply an electric Total energy say to maximal savin 	mprises technologies or measures to improve the efficiency of fossil fuel generating units that ity or thermal system by reducing energy or fuel consumption ing should be up to the equivalent of GOWho per year. A total savings of 60 GWhe is equivalent of 180 GWhth in the fuel input to the generation unit sor measures may be applied to existing stations or be part of a new facility.
	ty conforms to the above measures as follows:

B.3	Description of project boundary		
systems. The	ary encompasses the physical and geographical site of the Boiler including boiler feed water pump project boundary which starts from the coal storage, covers the coal fired boiler system and exists till at supply to the turbine system.		
B.4	Description of baseline and its development		
The baseline e	eneration of electricity without improving the efficiency of the boiler feed water pump system. missions will be calculated as the product of the total auxiliary consumption, multiplied by the icient of coal. The average auxiliary consumption of the three vear data prior to project		
mplementatio The project en mplementatio	Users to coal: the average advance Costs of point of the time time year care prior to project. would be used to calculate the baseline emissions: lissions were calculated as the product of the total expected auxiliary consumption after the of the proposed energy efficiency measures multiplied by the emission coefficient of coal, reductions were calculated as the difference between the baseline emissions and the project		
mplementatio The project en mplementatio The emission	n would be used to calculate the baseline emissions. issions were calculated as the product of the total expected auxiliary consumption after the n of the proposed energy efficiency measures multiplied by the emission coefficient of coal.		

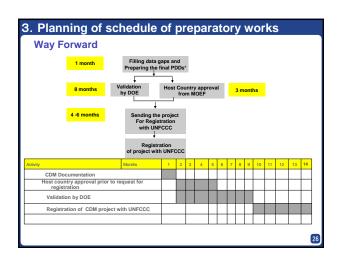
2. Summary of PDD Drafts

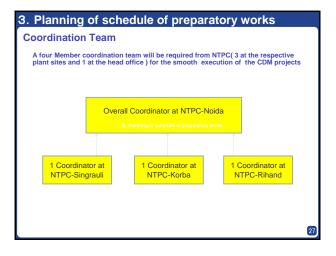
PDD Draft (Rihand)-Overview

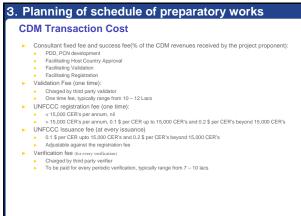
Expected Operational Lifetime of the Project activity : XX years The project activity uses a fixed crediting period of 10 years

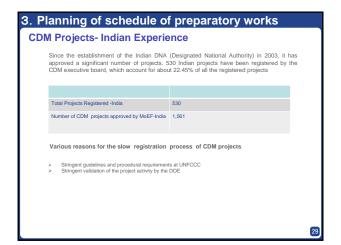
Section D Environmental Impact Assessment

School D The project activity would not have any significant adverse environmental impacts and also it does not fail under the purive of the Environmental Impact Assessment (EIA) notification of the Ministry of Environment and Forest, Government of India. Hence FLIs is not required to be undertaken by the host party.


Section E Stakeholders ' comments


The local stakeholders' consultation was not implemented according to request of NTPC.


3. Planning of schedule of preparatory works Time estimate for the Way forward


- CDM Documentation: Final Project Design Document (PDD) Preparation of Project Idea Note (PIN) Approx. Time Schedule: 4 weeks from the stard of project. Indicative time frame for the work involved in the projects. However this would primarily depend upon a number of factors including availability of required information from NTPC.
- Host country approval prior to request for registration Preparation and submission of requisite documents and presentation at the Indian DNA 0
- Preparation and submitten-documents and presentation at the Indian DNA. Approx. Ime schedule: Requisite documents will be submitted within 1 week of indiatation of PDD, subject to the schalbship indiatation of PDD, subject to the schalbship by DNA to issue the Host Country Approval (HCA) is approximately 3-4 months.
- Validation by DOE
 Web hosting of PDD on UNFCCC website for global stakeholder consultation.
 Site visit by DOE to the plant
 Preparation of Draft Validation Report
- Preparation of Draft Validation Report including clarification, Corrective action requests (CARs), etc. Issue final Validation Report after satisfactory closure of clarifications, CARs, etc. and submission of project to UNFCCC for CDM registration
- submission of project to UNFCCC for CDM registration Approx. Time Schedule: The time taken for the closure of all the issues raised in the draft validation report and issue of final validation report is approximately 8-10 months. Receipt is subject to availability of information & required documents from NTPC.
- Registration of project with UNFCCC
 ^a Approx. Time Schedule: 4-6 months for registration (including completeness chec Information and reporting check and requ for registration) subject to no queries or revisions raised by EB.

25

28

24

3. Planning of schedule of preparatory works

CDM Projects- Indian Experience

Critical points In order to successfully complete the registration of the proposed CDM project and subsequently claim CDM benefit, following critical points need to be ensured by NTPC. Compliance with UNFCCC guidelines:

Prior consideration for CDM:
 It is required to demonstrate that at the time of project approval, carbon credit revenues were a serious consideration to migrate the financial and/or technological risks associated with the project. NTPC would be required to provide the chronology of events pertaining to the project activity with proper supporting documentation

CONSTINCT Data:
 It is required to provide proper and reproducible documentation of the data parameters and values used to
establish baseline emissions.

Demonstration of Additionality:
 The arguments mentioned in the PDD to demonstrate additionality need to be backed up with proper supporting documentation, preferably from an independent third party.

NTPC should construct theory of additionality with essential evidences and assessment of assumed risks in order to remove investment barrier and technological barrier of the project activity.

Monitoring Procedures:
 MTPC would have to ensure that the monitoring procedures as per UNFCCC guidelines and as detailed in the respective PDDs are strictly adhered to.

30

8.3 モデルユニット選定調査票

ame of Power Plant (Unit No):					
ocation:					
ommercial Operation Date:					
viler Manufacture :					
Irbine Manufacture:	۸++ <i>،</i>	abad abaat Cool Design cool and	nrocont or	al	
el (Coal analysis) esign condition		ached sheet Coal Design coal and ent temp. °C Ambient pressur		hPa Relative humidity %	
		ent temp. C Ambient pressur	e		
ems	No	Operation Data(100%Load)		Design Data(100%Load)	
General	110				
)Equipment					
Turbine					
00%Load Output(MW)	1		MW		MW
Main Steam Pressure (MSP) / Temperature (MST)	2	MPa	°C	MPa	°C
Reheat Steam Pressure (RSP)/Temperature (RST)	3	MPa	C°	MPa	°C
Turbine Type / Length of Final stage blade	4	_			
Boiler					
100%Load Main Steam / Reheat Steam Flow	5	/	t/h	/	t/h
Superheater outlet steam pressure / temperature	6	MPa	°C	MPa	°C
Reheater outlet steam pressure / temperature	7	MPa	C°	MPa	°C
Economizer inlet feed water pressure / temperature	8	MPa	C°	MPa	°C
Boiler Type	9	_		Natural circulation / Forced circulation	on
Burner layout	10	—		Corner / Front / Opposed	
Coal Mill (unit)/reserver (unit)	11	Unit (reserve unit)		Unit (reserve unit)	
Devet Or cost		l			
)Plant Operation	10			^ · · · · · ·	
Annual operation time	12	Operation time :	hrs	Operation time :	hrs
Rated load operation time	13	<u> </u>	hrs		hrs
Partial load operation time	14	l	hrs MWb		hrs MWb
Annual generated power output(MWh)	15		MWh		MWh
Annual Net electric power (MWh)	16	l	MWh		MWh
Total operation time	17	<u> </u>	hrs		
Number of Hot Start	18	<u> </u>			
Number of Warm Start	19	<u> </u>			
Number of Cold start	20	<u> </u>			
Technical data		<u> </u>			
Technical data)Heat rate and Auxiliary power consumption					
Heat rate and Auxiliary power consumption Heat rate (LHV base)					
Plant heat rate	21	Gross kJ/kWh Net	kJ/kWh	Gross kJ/kWh Net	kJ/kW
Coal consumption for Goss generation (standard Coal)	21	Gross k3/ kwri Net	(g/kWh	Gross KJ/KWIT Net	g/kWh
Coal consumption for Net generation (standard Coal)	22		-		-
Boiler efficiency (LHV/HHV)	23		رg∕kWh %		رg∕kWh ∿
Furbine efficiency	24		70		70
Turbine Plant efficiency	25		%		0/
HP Turbine internal efficiency	26		<u>%</u>		/0 0/
IP/LP Turbine internal efficiency	20	IP % LP	%	IP % LP	/0 0/
	21				70
Auxiliry Power consumption	00			Name plate / data 100% Load / dat	
Coal mill	28	100% Load Power consumption	kW	kW	k\
Primary air fan (PAF)	29	100% Load Power consumption	kW	kW	k
Forced draft fan (FDF)	30	100% Load Power consumption	kW	kW	k
nduced draft fan (IDF)	31	100% Load Power consumption	kW	kW	k
3FP(Motor driven)	32	100% Load Power consumption	kW	kW	k\
Circulation Water Pump (CWP)	33	100% Load Power consumption	kW	kW	k١
)Annual Fuel consumption(ton)	0.4				
Coal	34	Standard	t	Standard	t
Dil(as Auxiliary Fuel)	35		t		t
)Boiler data					
Percentage of excess air					
Economizer outlet	36		%		%
Air preheater outlet	30		%		% %
Air preheater outlet Air preheater inlet air / gas temperature	37	/	°C	/	°C
Air preneater inlet air / gas temperature Air preheater outlet gas temperature(leak correction)	38 39	/	<u>ີ</u> ວ	/	ປ ວ°
Air preheater outlet gas temperature (leak correction) Air preheater outlet air temperature (1ry / 2ry)	39 40	/	<u>ງ</u> ວ	/	<u>ງ</u> ວ
Differencial pressure of Air preheater	40	/	kPa	1	kF
Combustible in refuse in Fly ash	41		<u>кРа</u> %		<u>۲</u>
Compustible in refuse in Fly asn Economizer inlet feed water flow	42	1			 t∕h
BFP outlet water pressure / temperature	43	MPa	t∕n ℃	MPa	t∕n ℃
AFP outlet water pressure / temperature Auxiliary steam flow	44 45	тига	t/h	เพศส	t/h
•	45 46		t∕h ℃		t/h ℃
	46 47	mm under	<u> </u>	page under	
0)Stack inlet gas temperature	4/	mm under	°C	mm under	°C
1)Coal fineness	10		U U		<u>ງ</u> ວ
1)Coal fineness 2)Coal mill inlet air temperature (primary air)	48 49		Ŷ		
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature	49		C°		
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal	49 50			/	
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry)	49 50 51	/	℃ kg/h	/	kg/
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow	49 50 51 52	/	kg/h	/	
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry)	49 50 51 52 53		kg∕h ℃	/	°C
 1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 	49 50 51 52		kg/h	/	°C
 1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry))Turbine data 	49 50 51 52 53 54	/ /	kg/h °C °C	// 	kg/ °C °C
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry))Turbine data HP Turbine inlet steam pressure / temperature	49 50 51 52 53 54 55	/ / /	kg/h °C °C	/ MPa MPa	ວ° ວ° ວ°
 1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 7) RH outlet flue gas temperature (1ry/2ry) 7) Turbine data 9)HP Turbine inlet steam pressure / temperature 9)HP Turbine exhaust steam pressure / temperature 	49 50 51 52 53 54 55 55 56	MPa	kg/h °C °C °C	MPa	ວ° ວ° ວ° ວ°
 1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 8) RH outlet flue gas temperature (1ry/2ry)<!--</td--><td>49 50 51 52 53 54 55</td><td></td><td>kg/h °C °C</td><td></td><td>ວ° ວ° ວ° ວ°</td>	49 50 51 52 53 54 55		kg/h °C °C		ວ° ວ° ວ° ວ°
 1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 8) RH outlet flue gas temperature (1ry/2ry) 9) RH outlet flue gas temperature (1ry/2ry)<!--</td--><td>49 50 51 52 53 54 55 55 56 57</td><td>MPa MPa</td><td>kg/h °C °C °C °C °C</td><td>MPa MPa</td><td>ວ° ວ° ວ° ວ°</td>	49 50 51 52 53 54 55 55 56 57	MPa MPa	kg/h °C °C °C °C °C	MPa MPa	ວ° ວ° ວ° ວ°
 1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 8) RH outlet flue gas temperature (1ry/2ry) 9) RH outlet flue gas temperature (1ry/2ry)<!--</td--><td>49 50 51 52 53 54 55 56 57 58</td><td>MPa MPa MPa</td><td>kg/h °C °C °C °C °C</td><td>MPa MPa MPa</td><td>ວິ ວິ ວິ ວິ ວິ ວິ</td>	49 50 51 52 53 54 55 56 57 58	MPa MPa MPa	kg/h °C °C °C °C °C	MPa MPa MPa	ວິ ວິ ວິ ວິ ວິ ວິ
 1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 8) Particulation pressure / temperature 9) Particulation pressure / temperature 9) Particulation pressure / temperature 9) Particulation pressure / temperature 	49 50 51 52 53 54 55 56 57 58 58 59	MPa MPa MPa MPa	kg/h °C °C °C °C °C °C	MPa MPa MPa MPa	ວິ ວິ ວິ ວິ ວິ ວິ ວິ
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry))Turbine data)HP Turbine inlet steam pressure / temperature)HP Turbine inlet steam pressure / temperature)Extraction pressure / temperature 1st Extraction pressure / temperature 3rd Extraction pressure / temperature 3rd Extraction pressure / temperature	49 50 51 52 53 54 55 55 56 57 58 59 60	MPa MPa MPa MPa MPa MPa	kg/h °C °C °C °C °C °C	MPa MPa MPa MPa MPa	ວ <u>ິ</u> ວົງ ວົງ ວິ ວິ ວິ
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry))Turbine data)HP Turbine inlet steam pressure / temperature)HP Turbine inlet steam pressure / temperature)Extraction pressure / temperature 1st Extraction pressure / temperature 3rd Extraction pressure / temperature 4th Extraction pressure / temperature	49 50 51 52 53 54 55 56 57 58 59 60 61	MPa MPa MPa MPa MPa MPa MPa	kg/h °C °C °C °C °C °C °C °C	MPa MPa MPa MPa MPa MPa MPa	ັ ວິ ວິ ວິ ວິ ວິ ວິ ວິ
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry))Turbine data)HP Turbine inlet steam pressure / temperature)HP Turbine exhaust steam pressure / temperature)IP Turbine inlet steam pressure / temperature)IP Turbine inlet steam pressure / temperature OHP Turbine inlet steam pressure / temperature OH Turbine inlet steam pressure / temperature 1 st Extraction pressure / temperature 3rd Extraction pressure / temperature 3rd Extraction pressure / temperature 4th Extraction pressure / temperature 5th Extraction pressure / temperature	49 50 51 52 53 54 55 56 57 57 58 59 60 61 62	MPa MPa MPa MPa MPa MPa MPa MPa	kg/h °C °C °C °C °C °C °C °C °C °C	MPa MPa MPa MPa MPa MPa MPa MPa	ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 7) PTurbine data 0HP Turbine inlet steam pressure / temperature 0HP Turbine inlet steam pressure / temperature 0Extraction pressure / temperature 1st Extraction pressure / temperature 2nd Extraction pressure / temperature 3rd Extraction pressure / temperature 4th Extraction pressure / temperature 5th Extraction pressure / temperature 6th Extraction pressure / temperature 6th Extraction pressure / temperature	49 50 51 52 53 54 55 56 57 57 58 59 60 61 62 63	MPa MPa MPa MPa MPa MPa MPa MPa MPa	kg/h °C °C °C °C °C °C °C °C °C	MPa MPa MPa MPa MPa MPa MPa MPa MPa	ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 7) PTurbine data 0HP Turbine inlet steam pressure / temperature 0HP Turbine inlet steam pressure / temperature 1 st Extraction pressure / temperature 1 st Extraction pressure / temperature 2 nd Extraction pressure / temperature 3 rd Extraction pressure / temperature 3 rd Extraction pressure / temperature 5 th Extraction pressure / temperature 5 th Extraction pressure / temperature 6 th Extraction pressure / temperature 7 th Extraction pressure / temperature 7 th Extraction pressure / temperature	49 50 51 52 53 54 55 56 57 55 56 57 58 59 60 61 62 63 64	MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa	kg/h °C °C °C °C °C °C °C °C °C °C	MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa	ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວ
1)Coal fineness 2)Coal mill inlet air temperature (primary air) 3)Coal mill outlet air temperature 4)Air/Coal 5)Air preheater outlet air flow (1ry / 2ry) 6)Air preheater inlet air flow 7) SH outlet flue gas temperature (1ry/2ry/3ry) 7) RH outlet flue gas temperature (1ry/2ry) 7) PTurbine data 0HP Turbine inlet steam pressure / temperature 0HP Turbine inlet steam pressure / temperature 0Extraction pressure / temperature 1st Extraction pressure / temperature 2nd Extraction pressure / temperature 3rd Extraction pressure / temperature 4th Extraction pressure / temperature 5th Extraction pressure / temperature 6th Extraction pressure / temperature 6th Extraction pressure / temperature	49 50 51 52 53 54 55 56 57 57 58 59 60 61 62 63	MPa MPa MPa MPa MPa MPa MPa MPa MPa	kg/h °C °C °C °C °C °C °C °C °C	MPa MPa MPa MPa MPa MPa MPa MPa MPa	ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ ວິ

7)Condenser cooling water temperature inlet / outlet	68	inlet °C outlet °C	inlet °C outlet °C
8)Condenser cooling method	69	Surface type cooling	Surface type cooling
(5) Turbine efficiency enhancement modification			
1)Modification record	70		
2)Scope and its year	71		
3)Result	72	%	%
3. Steam supply (Yes /No)	73		
4. Economical data (parameter)			
(1)Fuel price(standard coal base)	74	Rs/t	
(2)Electrical tariff	75	Rs/kWl	h
5. Information of Power Plant operation			
(1)Cause of shut down trouble and its time	76	Attached sheet 1	
(2)Main list of trouble equipments	77	Attached sheet 2	
(3)Improvement record	78	Attached sheet 3	
(4)environmental criteria of power plant	79	Dust: mg/m3N SOx: mg/m3N	NOx: mg/m3N
(5)Environmental protection equipment	80	Dust: SOx:	NOx:
(6)Cooling water temperature record	81	Attached sheet	
6. I & C information	0.0		
(1)Cause of shut down trouble and its time	82	Attached sheet 1	
(2)Main list of trouble equipments	83	Attached sheet 2	
(3)Improvement record	84	Attached sheet 3	
(4)I&C equipment	85	Year: Replace:	
1)Boiler control system	86	Type: (DCS Elec-analogue Air-analogue)	Cabinet nos:
2)Burner control system	87	Type: (DCS PLC WiredLogic Electromagnet	
3)Boiler sequence control system	88	Type: (DCS PLC WiredLogic Electromagnet	
4)Boiler protection	89	Type: (DCS PLC WiredLogic Electromagnet	
5)Boiler local control system	90	Type: (DCS Elec-analogue Air-analogue)	Cabinet nos:
6)flue-gas De-NOx system	91	Type: (DCS Elec-analogue Air-analogue)	Cabinet nos:
7)flue-gas De-SOx system	92	Type: (DCS Elec-analogue Air-analogue)	Cabinet nos:
8)Turbine governor control system	93	Type: (DEH Mechanical type)	Cabinet nos:
9)Turbine start and stop control system	94	Type: (DCS PLC Electromagnetism Ry)	Cabinet nos:
10)Turbine sequence control system	95	Type: (DCS PLC Electromagnetism Ry)	Cabinet nos:
11)Turbine protection	96	Type: (DCS PLC Electromagnetism Ry)	Cabinet nos:
12)Turbine local control system	97	Type: (DCS Elec-analogue Air-analogue)	Cabinet nos:
13)Unit CPTR	98	Y/N Function;()	Cabinet nos:

7. Control method			Equip Oyes ×no ◇Other	automatiz ation Oyes ×no	Condition / pending Control mode: (Auto/Manual)
(1)Load control	①BT coordinated control system	99			
	②Conventional	100			
(2)Feed water control s	system	101			
(3)Draft control	①Air flow control(FDF)	102			
	②Air flow control(02)	103			
	③Furnace pressure control(IDF)	104			
	④WB damper control	105			
(4) MST control	Spray control system	106			
(5)RST control	Spray control system	107			
(6)Fuel control	①Coal feed control system	108			
	2HO flow control	109			
	③LO flow control	110			
(7)startup system	①Boiler bypass system	111			
	②Turbine bypass system	112			
(8)Local control	①Deaerator level control	113			
	②Deaerator pressure control	114			
	③Heater level control	115			
	GGAH out let gas temperature c	116			
(9)Burner control	①Automatic burner ignition	117			
	②Coal feed control	118			
(10)DeNOX control	(10)DeNOX control				
(11)DeSOx control	(11)DeSOx control				
(12)Others	$(\widehat{1})$ soot blower control	121			

INVESTIGATION SHEET : Coal

NO.	Item	unit	Coal name				
			Design	Present-1	Present-2	Present-3	Present-4
			<u> </u>				
1	Inherent moisture (AD)	%					
2	Volatile (AD)	%		_			
3	Fixed carbon (AD)	%					
4	Ash (AD)	%					
5	Total	%					
6	HHV	kJ/kg					
7	Fuel ratio						
8	Surface water	%					
9	C	%					
10	H	%					
11	S	%					
12	N	%					
13	0	%		_			
14	H2O	%					
15	Ash	%					
16	Total	%					
		/0					
	AD:Air dry						
	, ,						
	Ash fusion, reducing						
17	IT	°C					
18	ST	°C					
19	HT	°C					
20	FT	°C					
	Ash fusion, oxidizing						
21	IT	S					
22	ST	လိုလိ					
23	HT	S					
24	FT	S					
	Ash mineral analysis						
25	SiO2	%					
	Al2O3	%					
	Fe2O3	%					
28	CaO	%					
29	MgO	%					
30	Na2O	%					
31	K2O	%					
	TiO2	%					
33	MnO	%					
34	SO3	%					
35	P2O5	%					

INVESTIGATION SHEET : Generator

Questionnaire about Generator for selecting power station Object: Generator (stator coil)

Questionnaire	Reply		
1 Generator specification			
(1) Type			
(1) Rated output (MW or MVA)			
(2) Rated voltage (kV)			
(3) Rated current (A)			
(4) Frequency (Hz)	Design : Present operation :		
(5) Power factor	Design : Present operation :		
(6) Stator specification			
a. Insulation class			
a. Cooling system	H2 cooling, Air cooling or Water cooling		
b. Insulation material			
c. Type of resin			
d. Resin process method			
(7) Manufacturer (country)			
2 Operation record			
(1) Year of operation			
(2) Accumulated number of generator start-stop			
(3) Accumulated operation time (hour)			
(4) Operation mode	Base-load, Middle-load or Peak-load		
3 Operation monitoring data (①Just after starting commercial operation and ②Now)	①:Exist or Nil ②:Exist or Nil		
4 Insulation resistance test (megger testing) data in the past 5 years	Exist or Nil		

INVESTIGATION SHEET : Generator		TOR 4
5 History of implementing Polarization index test (PI test)		
(1) 1st test	Exist or Nil	
(2) 2nd test	Exist or Nil	
(3) 3rd test	Exist or Nil	
(4) 4th test	Exist or Nil	
(5) 5th test	Exist or Nil	
6 History of implementing Tan δ test		
(1) 1st test	Exist or Nil	
(2) 2nd test	Exist or Nil	
(3) 3rd test	Exist or Nil	
(4) 4th test	Exist or Nil	
(5) 5th test	Exist or Nil	
7 History of implementing AC voltage-current test		
(1) 1st test	Exist or Nil	
(2) 2nd test	Exist or Nil	
(3) 3rd test	Exist or Nil	
(4) 4th test	Exist or Nil	
(5) 5th test	Exist or Nil	
8 History of implementing Partial discharge test		
(1) 1st test	Exist or Nil	
(2) 2nd test	Exist or Nil	
(3) 3rd test	Exist or Nil	
(4) 4th test	Exist or Nil	
(5) 5th test	Exist or Nil	
9 Records of accident		
10 Records of refurbishment		

INVESTIGATION SHEET : Main Transformer

Questionnaire about Transformer for selecting power station Object: Main transformer

Questionnaire	Reply
1 Transformer specification	
2 Transformer specification (insulation oil storage type)	Open type or Closed type (Sealed type)
3 Coolant (Insulator)	Oil or SF6 Gas
4 Absorbent for insulation oil	Exist or Nil
3 Year of starting operation	
4 Accumulated operation time (hour)	
5 Records of implementing gas analysis of transformer insulation oil	
(1) 1st test	Exist or Nil
(2) 2nd test	Exist or Nil
(3) 3rd test	Exist or Nil
(4) 4th test	Exist or Nil
(5) 5th test	Exist or Nil
6 Records of insulation oil cleaning(deaeration)/changing	
(1) 1st insulation oil cleaning(deaeration)/changing	
(2) 2nd insulation oil cleaning(deaeration)/changing	
(3) 3rd insulation oil cleaning(deaeration)/changing	
(4) 4th insulation oil cleaning(deaeration)/changing	
7 Records of implementing furfural testing in transformer insulation oil	
(1) 1st test	Exist or Nil
(2) 2nd test	Exist or Nil
(3) 3rd test	Exist or Nil
(4) 4th test	Exist or Nil
(5) 5th test	Exist or Nil
8 Manufacturer (country)	
9 Records of accident	
10 Records of refurbishment	

INVESTIGATION SHEET-1

SHUT DOWN BY TROUBLE

No.	DATE SHUT DOWN PERIOD (HR)		EQUIPMENT REASON/COUNTER MEAS		
Γ	D/M/Y	UNIT SHUT	PARTIAL SHUT		
	-,, :	DOWN	DOWN		

INVESTIGATION SHEET-2

EQUIPMENT LIST WITH FREQUENT TROUBLE

No.	DATE	DATE SHUT DOWN PERIOD (HR)		EQUIPMENT	REASON/COUNTER MEASURE
	D/M/Y	PLANT SHUT	PARTIAL SHUT		
	B/ 111/ 1	DOWN	DOWN		
		1			

INVESTIGATION SHEET-3

PAST RENOVATION

No.	DATE	SHUT DOWN PERIOD	SYSTEM/EQUIPMENT	REASON/RESULT
	D/M/Y	(HR)	CONTENT OF RENOVATION	· · · · · · · · · · · · · · · · · · ·
		1		