# CHAPTER 3 REVISION OF MASTER PLAN

#### 3.1 Conceptual Methodology

#### 3.1.1 Review of the Previous Master Plan

Southern Lao is expected to become a focal point which integrates the regional economy and thus stimulates economic growth in the GMS countries. The deteriorated condition of the road network in the southern region hinders economic growth and the poverty reduction efforts. Accordingly, the previous study proposed the road improvement master plan in the southern region to provide (i) international/ regional corridor, developing a trunk road network and (ii) basic access, ensuring reliable all-weather access to social infrastructures to reduce poverty.

A multi-criteria analysis was applied to the previous study, which incorporated economic evaluation of road investments, together with socio-economic impacts and environmental impacts. Based on the result of project evaluation, the grade and corresponding score of the impact of each candidate road and bridge projects were determined (see Table 3.1.1).

| Route          | Cost-benefit<br>Impacts | Socio-<br>economic<br>Impacts | Environment<br>Impacts | Total Score |
|----------------|-------------------------|-------------------------------|------------------------|-------------|
| Weight         | 35%                     | 45%                           | 20%                    |             |
| NR-1G          | D 65                    | A- 92                         | D+ 68                  | 77.8        |
| NR-1H          | B 85                    | C+ 78                         | A+ 98                  | 84.5        |
| NR-1J          | E 55                    | B+ 88                         | C+ 78                  | 74.5        |
| NR-14A (i)     | A 95                    | B 85                          | B+ 88                  | 89.1        |
| NR-14A (ii)    | D 55                    | B 85                          | B+ 88                  | 75.1        |
| NR-14A (iii)   | E 55                    | B 85                          | B+ 88                  | 75.1        |
| NR-14A1        | C 75                    | C+ 78                         | A+ 98                  | 81.0        |
| NR-14B         | E 55                    | C- 72                         | A+ 98                  | 71.3        |
| NR-14C         | E 55                    | C- 72                         | A 95                   | 70.7        |
| NR-14C1        | E 55                    | D+ 68                         | A 95                   | 68.9        |
| NR-14C2        | E 55                    | D+ 68                         | A+ 98                  | 69.5        |
| NR-15          | B 85                    | C 75                          | A+ 98                  | 83.1        |
| NR-16A         | A 95                    | B 85                          | C 75                   | 86.5        |
| NR-18A (i)     | D 65                    | A+ 98                         | C 75                   | 81.9        |
| NR-18A (ii)    | E 55                    | A+ 98                         | C 75                   | 78.4        |
| NR-18A (iii)   | C 75                    | A+ 98                         | C 75                   | 85.4        |
| Bridge (NR-1I) | D 65                    |                               |                        | 65.0        |
| Bridge (NR-16) | D 65                    |                               |                        | 65.0        |
| Bridge (NR-16) | E 55                    |                               |                        | 55.0        |
| Bridge (NR-20) | D 65                    |                               |                        | 65.0        |

| Table 3.1.1 Overall Evaluation Result in Previous Stu |
|-------------------------------------------------------|
|-------------------------------------------------------|

Source: Improvement of Roads in the Southern Region in Lao PDR (JICA, 2003)

Summing scores multiplied by weight of each impact (i.e., 35% for cost-benefit Impacts, 45% for socio-economic Impacts and 20% for environmental impacts), the previous study established NR-14A as the road with highest benefit with NR-16A, the second. The study thus suggested road improvement projects on both roads as the most urgent projects toward the target year of 2007. As illustrated in the Figure 3.1.1, the study also proposed the road improvement master plan towards the year 2020, suggesting 1,539 km of road improvement projects in total.



Final Report



Source: Improvement of Roads in the Southern Region in Lao PDR (JICA, 2003)

Table 3.1.2 Road Improvement Master Plan toward 2020

### 3.1.2 Approach and Methodology Applied to this Study

Socio-economic conditions have drastically changed since the previous road improvement master plan was formulated. The current trend of the road transport in the southern region, which influences the road improvement master plan, is summarized below.

- Increasing traffic demand was observed along the main trunk roads, such as NR-13 and NR-9, due to an increase in the international and domestic trade in the region.
- Development potential of the mining industry and agricultural industry were realized and development plans of these industries in the southern region were formulated.
- Some road improvement projects were under implementation in the southern region, including those along NR-14A, NR-1H, and NR-15B and NR-16B.

In this regards, the Study revised the previous master plan and formulated the road improvement master plan in the southern region by the following steps.

- At the initial stage of the Study, a long list of both road and bridge improvement projects was prepared. This long list of road projects was limited to unpaved national roads, including on-going road improvement projects. The long list of bridge projects included new long-span bridge projects, such as Sekong Bridge and Sedone Bridge, and deteriorated and narrow bridges, observed along NR-9 and NR-20. (Step 1)
- Future socio-economic framework was prepared with the target year of 2025 by reviewing and updating information such as population and GDP. Industrial and agricultural development projects were listed for a further study to estimate the traffic generated from these projects. (Step 2)
- Future traffic demand in the study area was estimated based on existing and future road network and origin-destination matrices, built in the ongoing JICA Study on the Comprehensive Logistics System in Lao PDR. (Step 3)
- Initial environmental examination was carried out to identify major adverse environmental impacts caused by the project. (Step 4)
- Road and bridge improvement projects were evaluated by a multi criteria analysis, scoring evaluation indicators such as cost-benefit, future traffic volume, development potential, and environmental impacts. (Step 5)
- Economic feasibility of the project was tested, analyzing project benefits generated through reduction of vehicle operating costs and travel time versus the construction and maintenance cost of the project. (Step 6)
- Priority projects were selected based on the revised master plan and the scope of the projects by the Japanese grant aid was narrowed down through the evaluation of the appropriateness, necessity and urgency of the projects. (Step 7)





# 3.2 Socio-economic Framework

### 3.2.1 Review of the Previous Master Plan

#### (1) Population

Table 3.2.1 indicates the alternative population forecasts to 2020 prepared by the study team during the previous master plan. The alternatives were based on the Socio-economic Strategy<sup>1</sup> prepared in February 2001.

Amongst the three alternatives, the study team selected "Consultants' Central" as the most appropriate scenario. According to this scenario, national population would increase from 5.2 million in 2000 to 8.3 million in 2020, with an annual average population growth rate of more than 2%.

|                                          |       | Forecasted Population |       |       |       |         | Annual Average Growth Rate (%) |         |         |  |  |  |
|------------------------------------------|-------|-----------------------|-------|-------|-------|---------|--------------------------------|---------|---------|--|--|--|
|                                          | 2000  | 2005                  | 2010  | 2015  | 2020  | 2000-05 | 2005-10                        | 2010-15 | 2015-20 |  |  |  |
| Socio-economic Strategy<br>February 2001 | 5,218 | 5,900                 | 6,700 | NA    | 8,300 | 2.49    | 2.58                           | NA      | 2.16*   |  |  |  |
| Consultants' High                        | 5,218 | 5,930                 | 6,730 | 7,600 | 8,500 | 2.59    | 2.56                           | 2.46    | 2.26    |  |  |  |
| Consultants' Central                     | 5,218 | 5,900                 | 6,660 | 7,450 | 8,300 | 2.49    | 2.45                           | 2.27    | 2.18    |  |  |  |
| Consultants' Low                         | 5,218 | 5,860                 | 6,520 | 7,200 | 7,900 | 2.35    | 2.16                           | 2.00    | 1.87    |  |  |  |

| Table 3.2.1 Population Forecast to 2020 |
|-----------------------------------------|
|-----------------------------------------|

Note: NA means not available. \* Annual average growth rate from 2010 to 2020

Source: Improvement of Roads in the Southern Region in Lao PDR Final Report

<sup>1</sup> The strategy is not published now but the contents of the strategy were compiled into National Growth and Poverty Eradication Strategy (NGPES) in March 2003.

Table 3.2.2 indicates the population forecasts in 4 provinces (Saravan, Sekong, Champasak and Attapeu). Total population was projected to increase from 1.0 million in 2000 to 1.6 million in 2020 with annual population growth rate of 2.3%. Share of the population in each province was almost fixed. The percentage is 55% for Champasak Province, 28% for Saravan Province, 10% for Attapeu Province and 7% for Sekong Province.

|           |         |         |         | (ona )  |         |
|-----------|---------|---------|---------|---------|---------|
| Province  | 2000    | 2005    | 2010    | 2015    | 2020    |
| Saravan   | 292.3   | 330.5   | 373.1   | 417.4   | 464.9   |
| Sekong    | 73.2    | 82.8    | 93.4    | 104.5   | 116.4   |
| Champasak | 571.9   | 648.8   | 730.0   | 816.7   | 909.7   |
| Attapeu   | 99.4    | 112.4   | 126.9   | 141.9   | 158.1   |
| Total     | 1,036.8 | 1,174.5 | 1,323.4 | 1,480.5 | 1,649.1 |

| Table 3.2.2 | Population | Forecast | in 4 | provinces |
|-------------|------------|----------|------|-----------|
|-------------|------------|----------|------|-----------|

(Unit: 000 persons)

Source: Improvement of Roads in the southern region in Lao PDR Final Report

### (2) Development Scenario

In order to forecast socio-economic development of the southern region, the following sectors were examined in the previous master plan: (a) development of growing cores, (b) poverty reduction, (c) market-oriented agriculture, fishery and livestock, (d) infrastructure network and (e) sustainable forestry. Development scenarios of the sectors were compiled as follows:

- Development of growing cores: Pakse will be a super core for the study area while Saravan, Sekong and Attapeu are positioned as satellite cores. These cores will lead to industrial and commercial development. Agricultural production will continue to be a foundation for prospective economic development. Pakse and its surrounding areas are expected to function as a center of agriculture production and tourism. Infrastructure development such as roads and power plants should be concentrated upon to enable effective development of the cores. Development of NR-15B, 16B and 18B will vitalize economic condition of Pakse and other cities.
- Poverty reduction: Poverty reduction is one of the most important national issues together with economic development. Food security, primary education, primary health care accessibility should be improved to the level of national minimum.
- Market-oriented agriculture, fishery and livestock: land for agriculture and agricultural production are increasing, and agriculture needs to change from self-sufficient agriculture to commercial agriculture. Agricultural development at Boloven Plateu is a progressive effort toward the change.
- Infrastructure network: Connecting every district capital with all weather roads should be a goal of a middle and long term development plan. MPWT and DPWT should carefully examine the anticipated economic performance of their investment.
- Sustainable forestry: Forestry occupied 78% of the total merchandise export. Cutting trees or selling forest concession to the private sector is one of the easiest ways to increase government revenue. However, forestry should be managed in the most conservative manner.

### (3) Economy

Table 3.2.3 shows alternative national GDP forecasts to 2020. These alternatives were also prepared from the Socio-economic Strategy in February 2001. In the Socio-economic Strategy, target annual GDP growth rate to 2020 was set as 7%. From the standpoint of conservative economic development, the study team used the target in the Consultants' High alternatives. The study team selected the Consultants' Central alternatives as the most appropriate scenario, and used the scenario to forecast the number of vehicles in the future.

| Alternatives | 1999-2010 | 2010-2020 |
|--------------|-----------|-----------|
| High         | 7.0       | 7.5       |
| Central      | 6.0       | 6.0       |
| Low          | 5.0       | 5.0       |

Table 3.2.3 GDP Forecasts to 2020

Source: Improvement of Roads in the southern region in Lao PDR Final Report

#### (4) Vehicle Ownership

Table 3.2.4 and Table 3.2.5 show forecasts of GDP and number of vehicles up to 2020. The study team set elasticity of vehicle ownership to GDP in the forecast. It was the same methodology used in "Third Highway Improvement Project," conducted in 1998. It was expected that economic development in Vientiane Capital would progress more rapidly than other places in Lao PDR, and that ownership of motorcycles and tuk-tuks would be saturated. It was also expected that elasticity of motor vehicles was low. In other provinces, the substantial improvement would be observed with improvement of road network system and the expected increase of vehicles. Changes of GDP and elasticity are indicated in Table 3.2.4

| Item       |                    | Crowth  | 1000  | 2005  | 2010 2015 | 2020  | Annual Growth Rate (%) |       |       |       |       |
|------------|--------------------|---------|-------|-------|-----------|-------|------------------------|-------|-------|-------|-------|
|            |                    | GIOWIII | 1999  | 2005  | 2010      | 2015  | 2020                   | 99-05 | 05-10 | 10-15 | 15-20 |
|            |                    | High    | 100.0 | 150.1 | 210.5     | 302.2 | 433.8                  | 7.0   | 7.0   | 7.5   | 7.5   |
| GDP Index  | 1999=100.0         | Central | 100.0 | 141.9 | 189.8     | 254.0 | 340.0                  | 6.0   | 6.0   | 6.0   | 6.0   |
|            |                    | Low     | 100.0 | 134.0 | 171.0     | 218.3 | 278.6                  | 5.0   | 5.0   | 5.0   | 5.0   |
|            | Elasticity to CDP  | High    | NA    | 1.1   | 1.1       | 1.2   | 1.2                    | 7.6   | 7.6   | 8.8   | 8.8   |
|            | Motor Vehicles     | Central | NA    | 1.1   | 1.1       | 1.1   | 1.1                    | 6.3   | 6.3   | 6.5   | 6.5   |
| Vientiane  |                    | Low     | NA    | 1.0   | 1.0       | 1.1   | 1.1                    | 5.0   | 5.0   | 5.2   | 5.2   |
| Vientialie | Elasticity to GDP: | High    | NA    | 1.0   | 0.9       | 0.7   | 0.5                    | 7.0   | 6.4   | 5.5   | 4.0   |
|            | Motorcycles Tuk -  | Central | NA    | 1.0   | 0.9       | 0.8   | 0.7                    | 6.0   | 5.5   | 4.6   | 4.1   |
|            | tuks               | Low     | NA    | 1.0   | 0.9       | 0.8   | 0.8                    | 4.8   | 4.5   | 4.1   | 3.8   |
|            | Elasticity to GDP  | High    | NA    | 1.4   | 1.4       | 1.5   | 1.5                    | 9.3   | 9.4   | 10.6  | 10.6  |
|            | Motor Vehicles     | Central | NA    | 1.3   | 1.3       | 1.4   | 1.4                    | 7.5   | 7.6   | 8.1   | 8.1   |
| Outside of |                    | Low     | NA    | 1.2   | 1.2       | 1.3   | 1.3                    | 5.9   | 5.9   | 6.3   | 6.3   |
| Vientiane  | Elasticity to GDP: | High    | NA    | 2.1   | 2.1       | 2.0   | 1.9                    | 12.7  | 13.0  | 13.4  | 12.8  |
|            | Motorcycles        | Central | NA    | 2.1   | 2.1       | 2.1   | 2.0                    | 11.1  | 11.3  | 11.3  | 10.9  |
|            | Tuk-tuks           | Low     | NA    | 2.1   | 2.1       | 2.1   | 2.1                    | 9.4   | 9.6   | 9.6   | 9.6   |
|            | Elasticity to GDP  | High    |       |       |           |       |                        | 8.2   | 8.3   | 9.5   | 9.6   |
|            | Motor Vehicles     | Central |       |       |           |       |                        | 6.7   | 6.8   | 7.2   | 7.2   |
| Total      | Low                |         |       |       |           |       | 5.3                    | 5.3   | 5.7   | 5.7   |       |
| Total      | Elasticity to GDP: | High    |       |       |           |       |                        | 9.8   | 10.2  | 10.6  | 10.4  |
|            | Motorcycles and    | Central |       |       |           |       |                        | 8.5   | 8.7   | 8.8   | 8.8   |
|            | Tuk-tuks           | Low     |       |       |           |       |                        | 7.0   | 7.3   | 7.4   | 7.7   |

Table 3.2.4Forecast of GDP and Number of Vehicles to 2020 (1)

Source: Improvement of Roads in the southern region in Lao PDR Final Report

Table 3.2.5 indicates the forecasted changes in number of motor vehicles and motorcycles/tuk-tuk. In Vientiane, ownership of vehicles will increase from 42.1 vehicles per 1,000 persons in 1999 to 95.1 vehicles per 1,000 persons in 2020, while ownership of motorcycles and tuk-tuks will increase from 136.5 vehicles per 1,000 persons in 1999 to 237.4 vehicles per 1,000 persons in 2020 (with Central alternative). These figures are from 3.2 to 9.4 and from 15.1 to 85.6 outside of Vientiane, respectively.

| Itom Growth |             | Growth  |       | Number of Vehicles (000) |       |       |         |       | Vehides/000 (persons*) |       |       |       |  |
|-------------|-------------|---------|-------|--------------------------|-------|-------|---------|-------|------------------------|-------|-------|-------|--|
|             | em          | Glowin  | 1999  | 2005                     | 2010  | 2015  | 2020    | 1999  | 2005                   | 2010  | 2015  | 2020  |  |
|             | Motor       | High    | 24.6  | 38.2                     | 55.1  | 83.9  | 127.7   | 42.1  | 56.5                   | 72.2  | 98.3  | 134.4 |  |
|             | Vehicles    | Central | 24.6  | 35.4                     | 48.0  | 65.9  | 90.4    | 42.1  | 52.4                   | 62.9  | 77.2  | 95.1  |  |
| Vientiane   | Venieles    | Low     | 24.6  | 33.0                     | 42.1  | 54.3  | 70.1    | 42.1  | 48.8                   | 55.2  | 63.7  | 73.8  |  |
| vientiarie  | Motorcycles | High    | 79.7  | 119.6                    | 163.0 | 212.7 | 259.0   | 136.5 | 177.0                  | 213.6 | 249.3 | 272.6 |  |
|             | and Tuk –   | Central | 79.7  | 113.1                    | 147.5 | 184.9 | 225.6   | 136.5 | 167.3                  | 193.3 | 216.8 | 237.4 |  |
|             | tuks        | Low     | 79.7  | 105.5                    | 131.7 | 160.8 | 194.1   | 136.5 | 156.0                  | 172.6 | 188.5 | 204.3 |  |
|             | Motor       | High    | 14.4  | 24.4                     | 38.2  | 63.1  | 104.3   | 3.2   | 4.7                    | 6.5   | 9.6   | 14.2  |  |
|             | Vehicles    | Central | 14.4  | 22.2                     | 31.9  | 47.0  | 69.3    | 3.2   | 4.2                    | 5.4   | 7.1   | 9.4   |  |
| Outside of  | Venicies    | Low     | 14.4  | 20.2                     | 26.9  | 36.6  | 49.7    | 3.2   | 3.9                    | 4.6   | 5.5   | 6.8   |  |
| Vientiane   | Motorcycles | High    | 68.3  | 140.2                    | 258.6 | 484.0 | 884.6   | 15.1  | 26.8                   | 43.9  | 73.4  | 120.4 |  |
|             | and         | Central | 68.3  | 128.4                    | 219.5 | 375.5 | 629.5   | 15.1  | 24.6                   | 37.2  | 56.9  | 85.6  |  |
|             | Tuk-tuks    | Low     | 68.3  | 117.1                    | 185.1 | 292.4 | 462.1   | 15.1  | 22.4                   | 31.4  | 44.3  | 62.9  |  |
|             | Motor       | High    | 39.0  | 39.0                     | 93.2  | 147.0 | 232.0   | 7.6   | 10.6                   | 14.0  | 19.7  | 28.0  |  |
|             | Vohielos    | Central | 39.0  | 39.0                     | 79.9  | 112.9 | 159.6   | 7.6   | 9.8                    | 12.0  | 15.2  | 19.2  |  |
| Tetel       | Low         | 39.0    | 39.0  | 69.0                     | 90.9  | 119.8 | 7.6     | 9.0   | 10.4                   | 12.2  | 14.4  |       |  |
| TOLAI       | Motorcycles | High    | 148.0 | 148.0                    | 421.6 | 696.7 | 1,143.6 | 29.0  | 44.0                   | 63.3  | 93.5  | 137.8 |  |
|             | and         | Central | 148.0 | 148.0                    | 367.0 | 560.4 | 855.0   | 29.0  | 40.9                   | 55.1  | 75.2  | 103.0 |  |
|             | Tuk-tuks    | Low     | 148.0 | 148.0                    | 316.8 | 453.2 | 656.2   | 29.0  | 37.7                   | 47.6  | 60.8  | 79.1  |  |

 Table 3.2.5
 Forecast of GDP and Number of Vehicles (2)

Note: \* with central population forecast

Source: Improvement of Roads in the southern region in Lao PDR Final Report

Table 3.2.6 indicates the forecasted number of vehicles if the study area experienced the same growth with other areas outside of the Vientiane Capital. Vehicles per 1,000 persons will increase from 16.6 in 1999 to 93.8 in 2020.

|                                                                   |         |      |      |      | (Unit: 00 | 00 vehicles) |
|-------------------------------------------------------------------|---------|------|------|------|-----------|--------------|
|                                                                   |         | 1999 | 2005 | 2010 | 2015      | 2020         |
|                                                                   | High    | 2.78 | 4.71 | 7.37 | 12.2      | 20.1         |
| Motor vehicles                                                    | Central | 2.78 | 4.29 | 6.16 | 9.1       | 13.4         |
|                                                                   | Low     | 2.78 | 3.90 | 5.19 | 7.1       | 9.6          |
| Vehicles per 1,000 population<br>with central population forecast |         | 2.7  | 3.7  | 4.7  | 6.1       | 8.1          |
|                                                                   | High    | 16.8 | 34.4 | 63.5 | 118.9     | 217.6        |
| Motor-cycles/ tuk-tuks                                            | Central | 16.8 | 31.5 | 53.9 | 92.3      | 154.7        |
|                                                                   | Low     | 16.8 | 28.8 | 45.5 | 71.9      | 113.5        |
| Vehicles per 1,000 population with central population forecast    |         | 16.6 | 26.9 | 40.7 | 62.3      | 93.8         |

| Table 3.2.6 | Forecast of Vehicle Numbers in the Study Area |
|-------------|-----------------------------------------------|
|-------------|-----------------------------------------------|

Source: Improvement of Roads in the southern region in Lao PDR Final Report

### 3.2.2 Review of Upper Plans

#### (1) National Development Strategies and Plans since 1990s

The most important development target for Lao PDR is "to graduate from Least Developed Country (LDC)" by 2020. It was adopted at the 6th Party Congress in 1996, and, the following guidelines were adopted in the 7th Party Congress in 2001.

- Keep balance among economic growth, social and cultural development, and environmental management;
- Coordinate economic growth among sectors, and between urban and rural areas;
- Promote national solidarity and democracy under sound economic development strategy and economic development framework;
- Promote national development along with development opportunity of the region and the world, and participate in regional economic integration;
- Achieve socio-economic development connected with national stability and national security.

Based on the long-term national development vision, NGPES with a target year of 2010 was prepared in 2004. It is the basis of the first Poverty Reduction Strategic Paper (PRSP), and it has the following development targets:

- Most areas in the country will get out from poverty and quit slash-and-burn farming by 2010;
- GDP growth rate will increase to 7% by 2010;
- The share of the primary sector will drop from 51% in 2001 to 37% in 2010, whereas that of the secondary sector will increase from 25% to 32%. The tertiary sector's share will also increase from 24% to 32%. The ratio of investment to GDP will increase to 25% by 2010.

National Socio-Economic Development Plan (2006-2010), the 6th 5-year plan, was adopted in the 8th Party Congress in 2006. It has been the basis of 2nd PRSP under the NGPES.

The long-term vision which is to ensure the graduation of the country into a post-LDC by 2020 has been kept as one of the major goals of development. In addition, the other major goals, which are to achieve the targets in the Millennium Development Goals (MDGs) and the Brussels Program of Action for the Least Developed Countries (2001-2010), have been also included in this plan.

In such major goals, the following targets have been set in the 6th 5-year Plan:

- Accelerate economic growth and improve the people's quality of life, by restructuring the economy and employment to build a market economy based on the country's rich resources and international integration;
- Build the market economy further with a socialist orientation;
- Continue to enlarge and develop effective external economic relations;
- Continue strengthening the socio-economic infrastructure as fundamentals for development in the 6th 5-year Plan and for the next (7th) 5-year Plan.
- Maintain GDP growth rate at an average of 7.5 to 8 % per annum in order to achieve goals mentioned above.

Attain target growth rates of 3 to 3.4% for the primary sector, 13 to 14% for the secondary sector, and 7.5 to 8% for the tertiary sector. Industrial compositions are 36% for the primary, 36% for the secondary sector, and 28% for the tertiary sector. GDP per capita will reach 827 USD in 2010.

### (2) Direction of Next Socio-economic Development Plan from 2011 to 2015

Lao PDR Government has started preparing the next 5-year plan from 2011 to 2015. Although contents of the plan have not been approved yet, tentative direction of the plan can be summarized as follows:

- Provide necessary pre-requisites for improving the well-being of people, reducing poverty, achieving MDGs by 2015 and graduating from LDC group by 2020.
- Achieve macro-economic stability and rapid growth. Also mobilize workforces in line with modern industrial growth.
- Ensure socio-economic development of the country, by balancing economic growth, socio-cultural development and environment preservation.
- Improve governance, capacities, efficiency and transparency in managing the development process
- Strengthen international cooperation and integrate the economy into the regional and global organizations (WTO, ASEAN, AFTA, GMS)

Based on these development directions, the government will attempt to attain 8% of annual GDP growth and aim at 1,700 USD of GDP per capita in 2015.

### (3) Provincial Development Plans

Table 3.2.7 and Table 3.2.8 indicate the major targets of provincial socio-economic development plans from 2006 to 2010 and from 2011 to 2015, respectively. Regarding economic development, Savannakhet and Champasak expect industrial development at SEZ and industrial zone. On the other hand, other provinces expect service sector development by use of rich natural resources.

Development/improvement of infrastructure is also major target in each province. In particular development/improvement of road network and bridge in rural areas is a high priority in these provinces.

| Province      | Priority in the Plan                                                         |
|---------------|------------------------------------------------------------------------------|
| Covernal/hat  | - Industrial and tourism development at Savan-Seno SEZ                       |
| Savaillakilet | <ul> <li>Improvement of roads &amp; bridges in the rural area</li> </ul>     |
| Sarayana      | <ul> <li>Export of local products; tourism development</li> </ul>            |
| Saravane      | <ul> <li>Construction of roads and bridges; electricity network</li> </ul>   |
| Oshana        | <ul> <li>Export of local products; reduction of slash &amp; burns</li> </ul> |
| Sekong        | - Electricity network; roads and bridges; education                          |
| Champagak     | - Industrial development at industrial zone; agriculture development at      |
| Champasak     | Boloven Plateau; tourism development; commercial development                 |
| Attapeu       | <ul> <li>Agriculture; forestry; handicraft</li> </ul>                        |
|               | - Transportation and communication                                           |

 Table 3.2.7
 Targets in the Provincial Socio-economic Plan 2006 to 2010

Source: Socio-economic Plans 2006-2010 of each province

| Duraularen  |                                                                                                                                                                                                          |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Province    | Priority in the Plan                                                                                                                                                                                     |
| Savannakhet | <ul> <li>Elimination of poverty households (3.8% of the total households in 2009); economic development (agriculture-forestry, industry and service)</li> <li>Enhancement of Savannakhet town</li> </ul> |
| Saravane    | <ul> <li>Development of tourism and service industries by use of rich national<br/>resources</li> <li>Strengthening cooperation with neighboring provinces and Vietnam</li> </ul>                        |
| Sekong      | <ul> <li>Reduction of 50% of existing poverty; Stopping logging</li> <li>Improvement of infrastructure (road network, telecommunication, electricity and water supply in rural area)</li> </ul>          |
| Champasak   | NA                                                                                                                                                                                                       |
| Attapeu     | Agriculture-forestry; development of electricity and mining<br>- Addressing damage by flooding; development of CLV                                                                                       |

|  | Table 3.2.8 | Targets in the | Provincial Socio-e | economic Plan | 2011-2015 |
|--|-------------|----------------|--------------------|---------------|-----------|
|--|-------------|----------------|--------------------|---------------|-----------|

Source: Socio-economic Plans 2006-2010 of each province

#### 3.2.3 Development Scenario

#### (1) Urban Development

In the study area, high level of urban development is expected at Savannakhet and Pakse. These towns will work as the regional centers. These cities are positioned as "Secondary Towns" after Vientiane Capital, and expected to work as regional centers in Lao PDR.

Pakse will be the center of the southern regions, base for international and domestic trade, and base for international level tourism sites such as Wat Phou. Manufacturing companies will be located at industrial zone near Pakse<sup>2</sup>, and administration function of plantations and mines will also be located at Pakse.

Development of Savannakhet heavily relies on development of Savan-seno Special Economic Zone. As of May 2010, 13 companies invested in SEZ site C which is 10km from Savannakhet, and construction work of factories have started. If the developments advance, Savannakhet will serve the functions of providing supporting industries to Savan-Seno SEZ and providing housing to workers at Savan-Seno SEZ. Savannakhet will also provide administration service to Savannakhet Province which is the most populous province in Lao PDR.

The other three provincial towns will work as the centers of administration and commercial services in each province. Substantial development is expected in these towns. Urban development in the study area was observed in these towns.

### (2) Agricultural Development

Lao PDR had achieved self-sufficiency in rice production in 1999. In accordance with economic development, expected role of agriculture is changing from securing basic food to cultivating commercial cash crops. In this regard, agricultural development around Boloven Plateau is a progressive effort. Currently, plantations are being established along NR-20, NR-16 and NR-18B. Most of the plantations cultivate coffee beans while others cultivate natural rubber and vegetables. It is expected that production in the plantations will be diversified so as to supply variety of

<sup>&</sup>lt;sup>2</sup> Private companies are preparing plans to develop industrial estates at Pakse.

vegetables and fruits to the cities in the GMS.

#### (3) Industrial Development

The industrial development zone in Pakse and Savan-Seno SEZ will continue to be centers for the manufacturing industry in the future. There exists the prospect of these industrial zones inviting investors in electrical parts and machine parts production from Bangkok and the eastern seaboard of Thailand. The other potential industry is the processing of nonferrous metals by use of rich mineral resources and cheap electricity. The supporting industry will also be located around Pakse and Savannakhet. The residential area for the workers will also be developed around these towns.

Regarding the mining industry, Xepone Mine will continue to play an important role in the production and export of copper and gold for the coming 30 years, considering its deposits and production capacity. Saravane, Champasak and Sekong have many existing and prospective mines. Figure 3.2.1 shows the mining sites in the study area. Bauxite which is exploited at Champasak and Sekong is a potential mining resource in the future. China is the biggest producer of Aluminium: it produced 13 million tons in 2008<sup>3</sup>. However, Vietnam and Cambodia also have potential sites for Bauxite mines, and some of the mining sites have already been opened up for exploitation. For these reasons, mining of bauxite will face severe price competition in the future. The situation is the similar for other mineral resources.

The other issue pertaining to mining development is coordination with other sectors. In particular, Boloven Plateau, which is a potential site for bauxite exploitation, is also a potential site for agricultural development. Therefore it is necessary to coordinate future land use for these projects.

Having considered these points, it is expected that exploitation of these mineral resources will be conducted and will contribute to the regional development in the future.

<sup>&</sup>lt;sup>3</sup> World aluminum production volume was 39 million ton in 2008. The one third of the world production was in China.



Source: 1/1,000,000 Concession Map from Department of Geology, Ministry of energy and Mines

Figure 3.2.1 Mining Sites in the Study Area

Currently, 11 hydropower plants are operated in Lao PDR. 4 of these are located in the study area. Table 3.2.9 indicates operated, constructed and planned hydropower plants in the study area. There are 2 constructed and 9 planned (Project Development Agreement signed) hydropower plant projects in the study area. These hydropower plant projects will not contribute significantly to employment generation and regional development in the operational stage. However, they will require labour force and connection roads during their construction. Construction of these hydropower plants will have significant impact on the regional development.

| Name                     | Location (Province)      | Installed<br>Capacity | Status                | Year of<br>Starting<br>Operation | Investors                 | Market                            |
|--------------------------|--------------------------|-----------------------|-----------------------|----------------------------------|---------------------------|-----------------------------------|
| Houay Ho                 | Champasak/Attapeu        | 150MW                 | In Operation          | 1999                             | Belgium/EDL/Thailand      | Thailand                          |
| Selabam<br>Hydropower    | Champasak                | 5MW                   | In Operation          | 1970                             | EDL                       | Laos                              |
| Se Xet 1                 | Saravane                 | 45MW                  | In Operation          | 1990                             | EDL                       | Laos/Thailand                     |
| Se Xet 2                 | Saravane                 | 76MW                  | In Operation          | 2009                             | EDL                       | Laos/Thailand                     |
| Tad Salen<br>Hydropower  | Savannakhet              | 3.2MW                 | Under<br>Construction | TBD                              | Thailand                  | Laos                              |
| Xekhaman 3<br>Hydropower | Sekong                   | 250MW                 | Under<br>Construction | 2010                             | EDL/Vietnam               | Laos/Vietnam                      |
| Don Sahong<br>(Mekong)   | Champasak                | 360MW                 | PDA signed            | 2015                             | Malaysia/Laos Gov         | Laos/Thailand                     |
| Nam Kong 1               | Attapeu                  | 75MW                  | PDA signed            | 2012                             | Russia/LHSE               | Thailand or<br>Vietnam or<br>Laos |
| Nam Phak                 | Champasak                | 75MW                  | PDA signed            | TBD                              | Japan/EDL                 | Laos                              |
| Sekong 4                 | Sekong                   | 300MW                 | PDA signed            | 2013                             | Russia/LHSE               | NA                                |
| Sekong 5                 | Sekong                   | 400MW                 | PDA signed            | TBD                              | Russia/LHSE               | Thailand or<br>Vietnam or<br>Laos |
| Xepian-Xenamnoy          | Attapeu and<br>Champasak | 390MW                 | PDA signed            | 2015                             | Korea/Thailand/LHSE       | Thailand                          |
| Xe Katam                 | Champasak                | 61MW                  | PDA signed            | 2012                             | Japan/Thailand/Lao<br>Gov | Laos                              |
| Xekaman 1                | Attapeu                  | 322MW                 | PDA signed            | 2013                             | Vietnam/Laos Gov          | Vietnam/Laos                      |
| Xelanong 2               | Saravane                 | 60MW                  | PDA signed            | TBD                              | Japan/Laos Gov            | Laos                              |

| Table 3.2.9 | Hydropower Plants in the Study Area |
|-------------|-------------------------------------|
|-------------|-------------------------------------|

Note: TBD To be decided; PDA Project Development Agreement

Source: Poweringprogress web page (http://www.poweringprogress.org/)

### (4) Tourism Development

Wat Phou and Si Phan Don are international-level tourist sites. Expansion of the Pakse Airport will enable the connection of Pakse and the surrounding tourism resources with other World Heritage sites such as Luang Prabang and Siem Riap. Pakse will be a gateway for the tourism sites in the southern region. In accordance with the tourism development around Pakse, a new tourism circuit connecting Wat Phou, Si Phan Don with Boloven Plateau will be developed.

The other potential of tourism development will be one-stop sites for international tourists from Thailand to Vietnam and from Vietnam to Thailand. Savannakhet is the largest one-stop site, and small towns along National Road No 9 will also work as one-stop sites.

### 3.2.4 Socio-economic Framework

### (1) Population

The national socio-economic framework has already been proposed in the preceding JICA Studies, namely: Industry Development Study, Logistics Study, and Study on Regional Core Cities. Table 3.2.10 and Figure 3.2.2 show population projection until 2030 at national level.

|                                           | 2005  | 2010  | 2015  | 2020  | 2025  | 2030  |
|-------------------------------------------|-------|-------|-------|-------|-------|-------|
| Population (000 persons)                  | 5,622 | 6,133 | 6,696 | 7,286 | 7,874 | 8,417 |
| Annual average population growth rate (%) |       | 1.8   | 1.8   | 1.7   | 1.6   | 1.3   |

| Table 3.2.10 | Population Pro | jection until 2030 |
|--------------|----------------|--------------------|
|--------------|----------------|--------------------|

Source: JICA Study Team (Industrial Development Study, Logistics Network Study and Study on Regional Core Cities)

The population projection is calculated from the cohort method with a total fertility rate (TFR) and death rate prepared by UN population Division. Population of Lao PDR will increase by 2.8 million in 25 years, from 5.6 million in 2005 to 8.4 million in 2030.

Table 3.2.1 and Figure 3.2.2 indicate changes in urban population and rural population until 2030. The figures are calculated based on an assumption that the urban proportion will increase by 40% of the total by 2025, and by 43.5% by 2030. This estimation is similar to the projection of "World Urbanization Prospects", which describes that the percentage of urban population will increase from 27.4% in 2005 to 49.0% in 2025, and 53.1% in 2030. In addition to that, arable land per rural inhabitant is 0.19 ha in Lao PDR, which is lower than Thailand, Cambodia and Myanmar, according to "The Status of Food and Agriculture" published by Food and Agriculture Organization of the UN (FAO). Due to the demographic pressure, shift of population from rural areas to urban areas would continue.

| Table 3.2.11 | Urban Population | and Rural Population |
|--------------|------------------|----------------------|
|--------------|------------------|----------------------|

|      |                  |                  | (Unit: 000 persons) |
|------|------------------|------------------|---------------------|
| Year | Total Population | Urban Population | Rural Population    |
| 1995 | 4,575            | 782              | 3,793               |
| 2005 | 5,622            | 1,523            | 4,092               |
| 2015 | 6,696            | 2,204            | 4,491               |
| 2025 | 7,874            | 3,149            | 4,724               |

Source: Census 1995 and 2005; JICA Study Team (Industrial Development Study, Logistics Network Study and Study on Regional Core Cities)

|          | Arable land per rural inhabitant<br>(ha) |
|----------|------------------------------------------|
| Lao PDR  | 0.19                                     |
| Thailand | 0.37                                     |
| Vietnam  | 0.10                                     |
| Cambodia | 0.32                                     |
| Myanmar  | 0.28                                     |

Source: State of Food and Agriculture, Food and Agriculture Organization of the United Nations



Source: JICA Study Team (Industrial Development Study, Logistics Network Study and Study on Regional Core Cities)

#### Figure 3.2.2 Change of Total Population, Urban Population and Rural Population

Table 3.2.13 indicates population by provinces up to 2025. The projection is calculated by breaking down urban population and rural population into the associated figures at provincial level.

In Vientiane Capital, population will amount to 1.2 million in 2025, an increase by 1.8 times in 20 years. Savannakhet with 1.1 million inhabitants, Champasak with 0.9 million and Vientiane with 0.6 million will follow Vientiane Capital. Future population will concentrate in the plain region in Vientiane Capital and along the Mekong River and NR 13. On the other hand, population increase will be limited in mountainous provinces. Table 3.2.14 is the breakdown of the population into figures at district level.

| Province          | 1995  | 2005  | 2015  | 2025  |
|-------------------|-------|-------|-------|-------|
| Vientiane Capital | 524   | 692   | 927   | 1,244 |
| Phongsaly         | 153   | 166   | 202   | 220   |
| Luangnamtha       | 115   | 145   | 201   | 268   |
| Oudomxay          | 210   | 265   | 291   | 331   |
| Bokeo             | 114   | 145   | 157   | 205   |
| Luangprabang      | 365   | 407   | 470   | 504   |
| Huaphanh          | 245   | 281   | 314   | 315   |
| Xayaboury         | 292   | 339   | 380   | 441   |
| Xiengkhuang       | 210   | 241   | 291   | 331   |
| Vientiane         | 331   | 417   | 492   | 567   |
| Borikhamxay       | 164   | 225   | 268   | 315   |
| Khammuane         | 272   | 337   | 380   | 441   |
| Savannakhet       | 672   | 826   | 983   | 1,134 |
| Saravane          | 256   | 324   | 358   | 394   |
| Sekong            | 64    | 85    | 112   | 126   |
| Champasak         | 501   | 607   | 760   | 913   |
| Attapeu           | 87    | 112   | 112   | 126   |
| Total             | 4,575 | 5,615 | 6,696 | 7,874 |

Table 3.2.13 Population by Provinces up to 2025 (Unit: 000 persons)

Source: JICA Study Team

|                      |                     | Por     | oulation (perso | ons)      |      | Share (%) |          |                                     |
|----------------------|---------------------|---------|-----------------|-----------|------|-----------|----------|-------------------------------------|
| Province             | District            | 2005    | 2015            | 2025      | 2005 | 2015      | 2025     | Annual Average<br>Population growth |
| Savannakhot          | Khanthabouly        | 112 015 | 130,000         | 100.000   | 14   | 14        | 17       | 2 G                                 |
| Savannakhet          | Outhoomphone        | 80.516  | 99,600          | 116 100   | 14   | 14        | 10       | 2.0                                 |
| Savannakhot          | Atconhonathona      | 30,010  | 46 300          | 54 600    | 5    | 5         | 5        | 1.0                                 |
| Savannakhet          | Dhino               | 50,702  | 40,300          | 67 200    | 5    | 5         | 5        | 1.7                                 |
| Savannakhet          | Fillite             | 30,764  | 51,000          | 67,200    | 0    | 0         | 0        | 1.4                                 |
| Savannakhet          | Sepone              | 43,040  | 51,000          | 37,000    | 2    | 2         | 2        | 1.4                                 |
| Savannaknet          | Nong                | 21,100  | 21,600          | 22,300    | 3    |           | <u> </u> | 0.3                                 |
| Savannakhet          | Canalihana          | 31,497  | 37,300          | 41,700    | 4    | 4         | 4        | 1.4                                 |
| Savannaknet          | Songknone           | 82,401  | 97,600          | 107,300   | 10   | 10        | 9        | 1.3                                 |
| Savannaknet          | Champhone           | 101,559 | 120,200         | 132,600   | 12   | 12        | 12       | 1.3                                 |
| Savannakhet          | Xonbuly             | 51,472  | 61,000          | 65,300    | 6    | 6         | 6        | 1.2                                 |
| Savannakhet          | Xaybuly             | 54,441  | 64,500          | /2,100    | 1    | 1         | 6        | 1.4                                 |
| Savannakhet          | Vilabuly            | 30,264  | 32,500          | 32,500    | 4    | 3         | 3        | 0.4                                 |
| Savannakhet          | Atsaphone           | 50,448  | 59,700          | 66,800    | 6    | 6         | 6        | 1.4                                 |
| Savannakhet          | Xayphoothong        | 44,557  | 55,300          | 66,500    | 5    | 6         | 6        | 2.0                                 |
| Savannakhet          | Thaphalanxay        | 31,734  | 37,600          | 42,000    | 4    | 4         | 4        | 1.4                                 |
| Total of Savannakhet | 1                   | 825,902 | 983,300         | 1,134,000 | 100  | 100       | 100      | 1.6                                 |
| Saravane             | Saravane            | 85,875  | 96,600          | 108,300   | 26   | 27        | 27       | 1.2                                 |
| Saravane             | Ta oi               | 22,198  | 23,400          | 24,600    | 7    | 7         | 6        | 0.5                                 |
| Saravane             | Toomlarn            | 21,812  | 23,000          | 24,100    | 7    | 6         | 6        | 0.5                                 |
| Saravane             | Lakhonepheng        | 37,966  | 43,700          | 50,100    | 12   | 12        | 13       | 1.4                                 |
| Saravane             | Vapy                | 31,979  | 34,200          | 36,500    | 10   | 10        | 9        | 0.7                                 |
| Saravane             | Khongxedone         | 54,062  | 61,500          | 69,600    | 17   | 17        | 18       | 1.3                                 |
| Saravane             | Lao ngarm           | 58,685  | 63,700          | 68,900    | 18   | 18        | 17       | 0.8                                 |
| Saravane             | Samuoi              | 11,750  | 11,900          | 11,900    | 4    | 3         | 3        | 0.1                                 |
| Total of Saravane    |                     | 324,327 | 358,000         | 394,000   | 100  | 100       | 100      | 1.0                                 |
| Sekong               | Lamarm              | 26,584  | 35,800          | 41,600    | 31   | 32        | 33       | 2.3                                 |
| Sekong               | Kaleum              | 12,869  | 16,300          | 17,400    | 15   | 15        | 14       | 1.5                                 |
| Sekong               | Dakcheung           | 18,461  | 23,700          | 25,600    | 22   | 21        | 20       | 1.6                                 |
| Sekong               | Thateng             | 27,081  | 36,200          | 41,400    | 32   | 32        | 33       | 2.1                                 |
| Total of Sekong      |                     | 84,995  | 112,000         | 126,000   | 100  | 100       | 100      | 2.0                                 |
| Champasak            | Pakse               | 78,669  | 108,000         | 158,000   | 13   | 14        | 17       | 3.5                                 |
| Champasak            | Sanasomboon         | 62,238  | 78,300          | 90,600    | 10   | 10        | 10       | 1.9                                 |
| Champasak            | Bachiangchaleunsook | 48,743  | 62,000          | 75,500    | 8    | 8         | 8        | 2.2                                 |
| Champasak            | Paksxong            | 64,145  | 84,800          | 105,700   | 11   | 11        | 12       | 2.5                                 |
| Champasak            | Pathoomphone        | 51,370  | 58,700          | 64,200    | 8    | 8         | 7        | 1.1                                 |
| Champasak            | Phonthong           | 85,188  | 104,400         | 120,700   | 14   | 14        | 13       | 1.8                                 |
| Champasak            | Champasack          | 55,403  | 68,500          | 79,300    | 9    | 9         | 9        | 1.8                                 |
| Champasak            | Sukhuma             | 49.670  | 58,700          | 64,200    | 8    | 8         | 7        | 1.3                                 |
| Champasak            | Moonlapamok         | 38,525  | 45,700          | 49,100    | 6    | 6         | 5        | 1.2                                 |
| Champasak            | Khong               | 73,419  | 91,200          | 105,700   | 12   | 12        | 12       | 1.8                                 |
| Total of Champasak   |                     | 607.370 | 760.300         | 913.000   | 100  | 100       | 100      | 2.1                                 |
| Attapeu              | Xavsetha            | 28.359  | 28,430          | 33.000    | 25   | 25        | 26       | 0.8                                 |
| Attapeu              | Samakkhixav         | 30.182  | 30.250          | 35.000    | 27   | 27        | 28       | 0.7                                 |
| Attapeu              | Sanamxay            | 26.344  | 26.410          | 29.000    | 23   | 23        | 23       | 0.5                                 |
| Attapeu              | Sanxay              | 16.515  | 16.560          | 18.000    | 15   | 15        | 14       | 0.4                                 |
| Attapeu              | Phouvong            | 10.720  | 10.750          | 11.000    | 10   | 10        | 9        | 0.1                                 |
| Total of Attapeu     | · · · · ·           | 112,120 | 112,400         | 126,000   | 100  | 100       | 100      | 0.6                                 |

#### Table 3.2.14 Population of Districts in the Study Area to 2020

Source: JICA Study Team

### (2) Economy

In regard to the national economic development, an average growth scenario, as indicated inTable 3.2.15, and Figure 3.2.3, was prepared through analysis of different development alternatives. After the recession in 2010, GDP growth rate will recover to the level before the Global Financial Crisis, and a 7.5% average growth rate is assumed until 2020. After that the average growth rate will decrease gradually in accordance with maturity of economy and decrease of population growth rate.

Table 3.2.15GDP Growth Scenarios until 2030

|                         |      |         |         | (Unit: percer |
|-------------------------|------|---------|---------|---------------|
|                         | 2010 | 2011-20 | 2021-25 | 2025-30       |
| Average GDP Growth Rate | 6.0  | 7.5     | 7.0     | 6.5           |

Source: JICA Study Team (Industrial Development Study, Logistics Network Study and Study on Regional Core Cities)

Real GDP will increase by 4.4 times in 22 years from LAK 44 trillion in 2008 to LAK 205 trillion in 2030. Real GDP per Capita will also increase by 3 times from USD 891 in 2008 to USD 2,779 in 2030 as indicated in Figure 3.2.3.



Source: JICA Study Team (Industrial Development Study, Logistics Network Study and Study on Regional Core Cities)

Figure 3.2.3 GDP Growth Scenarios until 2030

Official data of regional or provincial Gross Regional Domestic Products (GRDP) has not been prepared in Lao PDR. Therefore, JICA Study Team estimated the provincial GRDP, using "The Household Lao PDR Social and Economic Indicators Lao Expenditure and Consumption Survey 20002/03" (hereinafter referred as "LECS 3") and "Report of Economic Census, 2006".

indicates GRDP by provinces in 2008, 2015 and 2025. Figures in 2008 were calculated from the methodology mentioned above. Vientiane Capital contributes about 23% of the GDP followed by Savannakhet with a 12% contribution and Champasak with 10%. The figures in 2015 and 2025 were set from future development potential and population growth.

The fifth to seventh column of Table 3.2.16 indicates GRDP per capita measured in USD in 2008. The GDP per capita in Vientiane Capital will exceed USD 2,000 by 2015 and USD 3,500 by 2025. GDP per capita in Vientiane Province, Xayabury, Luangnamtha Champasak will exceed GDP per capita at the national level (USD 2,168) by 2025. On the other hand, GDP per capita in Saravane, Xiengkhung and Huaphanh will remain at a lower level than the national average.

| Province          | GRD    | P (bill kip in 2 | 2008)   | GRDP per capita (USD in 2008) |       |       |  |
|-------------------|--------|------------------|---------|-------------------------------|-------|-------|--|
| FIOVINCE          | 2008   | 2015             | 2025    | 2008                          | 2015  | 2025  |  |
| Lao PDR           | 46,215 | 74,196           | 149,397 | 891                           | 1,266 | 2,168 |  |
| Phongsaly         | 896    | 1,484            | 2,988   | 579                           | 841   | 1,549 |  |
| Luangnamtha       | 1,118  | 2,226            | 5,976   | 789                           | 1,266 | 1,913 |  |
| Oudomxay          | 1,533  | 2,226            | 4,482   | 642                           | 875   | 1,549 |  |
| Bokeo             | 972    | 1,484            | 2,988   | 747                           | 1,081 | 1,668 |  |
| Luangprabang      | 3,448  | 5,194            | 8,964   | 925                           | 1,264 | 2,032 |  |
| Huaphanh          | 1,703  | 2,226            | 2,988   | 669                           | 811   | 1,084 |  |
| Xayabury          | 3,054  | 5,194            | 10,458  | 994                           | 1,563 | 2,710 |  |
| Vientiane Capital | 10,574 | 17,807           | 37,349  | 1,585                         | 2,194 | 3,568 |  |
| Xiengkhuang       | 1,653  | 2,226            | 2,988   | 739                           | 875   | 1,032 |  |
| Vientiane         | 3,961  | 6,678            | 14,940  | 1,030                         | 1,552 | 3,011 |  |
| Borikhamxay       | 1,851  | 2,968            | 5,976   | 888                           | 1,266 | 2,168 |  |
| Khammuane         | 2,407  | 3,710            | 7,470   | 786                           | 1,116 | 1,936 |  |
| Savanakhet        | 5,499  | 8,904            | 16,434  | 720                           | 1,035 | 1,656 |  |
| Saravane          | 1,607  | 1,484            | 2,988   | 549                           | 709   | 1,301 |  |
| Sekong            | 450    | 742              | 1,494   | 552                           | 758   | 1,355 |  |
| Champasak         | 4,736  | 8,904            | 19,422  | 828                           | 1,227 | 2,243 |  |
| Attapeu           | 736    | 742              | 1,494   | 751                           | 758   | 1,355 |  |

Table 3.2.16 Change of GRDP and GRDP per Capita

Source: JICA Study Team

#### 3.3 Traffic Demand Forecast

#### 3.3.1 Review of the Previous Master Plan

#### (1) Review of the Previous Master Plan

In the previous master plan prepared in 2003, existing (2001) and future (2007 and 2020) traffic demands were forecasted. The outline of traffic demand in the previous study is summarized as follows.

- Traffic analysis zone is defined by district boundary, and the study area is divided into 30 traffic analysis zones, excluding 12 of the 15 districts in Savannakhet.
- Road network for the traffic assignment consists of national roads only. Road network conditions such as capacity and free flow speed were defined by the road geometry, terrain, and land use based on the road design standard of Lao and the results of travel time survey at 36 road sections.
- Existing vehicular OD matrices in 2001 were built based on the results of 12 hours traffic count survey and roadside OD interview survey at 15 locations. The OD matrices consist of 5 modes, including light vehicle, bus, motorcycle, heavy and medium truck.
- A control total of future vehicular trip in the study area was estimated by the current total of vehicular trip and GDP growth rate. GDP growth rate was estimated at approximately 7.3% p.a. between 2001and 2020.
- Based on the estimated 2001 OD matrices, vehicular trip generation model including vehicle registration or GRDP as explanatory variables was estimated.

- Vehicular trip distribution model was estimated by gravity model including trip generation and distance between origin and destination zones.
- Modal split model was not constructed because of low public transport services and low capability to shift to private vehicle.
- Incremental traffic assignment model was used for traffic assignment model for the estimation of traffic volume by each road link.

As a result of traffic demand forecast, traffic volumes in 2007 (Base Case) and 2020 (Scenario 1: All roads in the Study Area are improved) were forecasted in the previous master plan (see Figure 3.3.1) The most congested road sections are observed along NR-13, NR-18 and NR-16 in Pakse.



Source: Improvement of Roads in the Southern Region in Lao PDR (JICA, 2003). Note: The traffic volumes are PCU/day.

#### Figure 3.3.1 Forecasted Traffic Volume in 2007 (Left) and 2020 (Right) by Previous Master Plan

### (2) Approach and Methodology Applied to this Study

In the Comprehensive Study on Logistics System in Lao PDR (JICA, ongoing), transport network and OD Matrices were built by updating those prepared by the GMS Transport Sector Study (ADB, 2006). The total length of network prepared in logistics study is 93,800 km. The GSM countries were divided into 254 traffic analysis zones. The OD matrices consist of 9 vehicular modes (motorcycle, passenger car, bus, loading and empty light truck, medium truck and trailer) in the year of 2009 and 2015, 2025.

For the traffic demand forecast in this Study, road networks and OD matrices prepared in the logistics system study were utilized in the manner described below.

- Modification of road network: On-going and planned road improvement projects in the study area were included in the current and future road network. The road network was modified in order to maintain zonal connectivity.
- Confirmation of road network condition: Road network condition such as free flow speed and road capacity was defined as shown in Table 3.3.1. This was applied to the logistics study. In Lao PDR, basically, national roads corresponding to ASIAN Highway were defined as road class III, and other national roads as road class IV.
- Division of traffic analysis zone: The zone system in the existing network and OD matrices in the logistics study was prepared based on the provincial boundary. For the detailed demand forecast in the study area, provincial zone in the study area was divided into district zones. As a result, the total number of traffic analysis zones was 291 zones in the GMS while the study area consisted of 42 zones.
- Update of OD matrices: Based on the results of traffic count survey, existing OD matrices as of 2009 were updated and calibrated. Based on the calibrated existing OD matrices, future OD matrices were also forecasted by the Frater growth factor method.

|                       | Good Quality |         |                 |       | Fair Quality |                 | Poor Quality |         |                 |  |
|-----------------------|--------------|---------|-----------------|-------|--------------|-----------------|--------------|---------|-----------------|--|
| Type of Link          | Level        | Rolling | Mountaino<br>us | Level | Rolling      | Mountaino<br>us | Level        | Rolling | Mountaino<br>us |  |
| Priority<br>Road      | 112          | 96      | 80              | 96    | 80           | 64              | 80           | 64      | 48              |  |
| Priority Plus<br>Road | 112          | 96      | 80              | 96    | 80           | 64              | 80           | 64      | 48              |  |
| Class I               | 90           | 72      | 66              | 72    | 60           | 54              | 54           | 48      | 42              |  |
| Class I/II            | 87           | 72      | 63              | 72    | 60           | 51              | 57           | 48      | 39              |  |
| Class II              | 84           | 72      | 60              | 72    | 60           | 48              | 60           | 48      | 36              |  |
| Class II/III          | 74           | 66      | 58              | 63    | 55           | 47              | 52           | 44      | 36              |  |
| Class III             | 65           | 60      | 55              | 55    | 50           | 45              | 45           | 40      | 35              |  |
| Class III/IV          | 59           | 54      | 50              | 50    | 45           | 41              | 41           | 36      | 32              |  |
| Class IV              | 52           | 48      | 44              | 44    | 40           | 36              | 36           | 32      | 28              |  |

Table 3.3.1 Defined Free Flow Speed (km/hour)

Source: JICA Study Team

|                       |         | Good Quality |                 |         | Fair Quality |                 | Poor Quality |         |                 |  |
|-----------------------|---------|--------------|-----------------|---------|--------------|-----------------|--------------|---------|-----------------|--|
| Type of Link          | Level   | Rolling      | Mountaino<br>us | Level   | Rolling      | Mountaino<br>us | Level        | Rolling | Mountaino<br>us |  |
| Priority<br>Road      | 102,900 | 82,320       | 61,740          | 72,030  | 57,624       | 43,218          | 41,160       | 32,928  | 24,696          |  |
| Priority Plus<br>Road | 171,400 | 137,120      | 102,840         | 119,980 | 95,984       | 71,988          | 68,560       | 54,848  | 41,136          |  |
| Class I               | 80,000  | 64,000       | 48,000          | 56,000  | 44,800       | 33,600          | 32,000       | 25,600  | 19,200          |  |
| Class I/II            | 60,000  | 48,000       | 36,000          | 42,000  | 33,600       | 25,200          | 24,000       | 19,200  | 14,400          |  |
| Class II              | 23,500  | 18,800       | 14,100          | 16,450  | 13,160       | 9,870           | 9,400        | 7,520   | 5,640           |  |
| Class II/III          | 20,000  | 16,000       | 12,000          | 14,000  | 11,200       | 8,400           | 8,000        | 6,400   | 4,800           |  |
| Class III             | 16,000  | 12,800       | 9,600           | 11,200  | 8,960        | 6,720           | 6,400        | 5,120   | 3,840           |  |
| Class III/IV          | 9,300   | 7,440        | 5,580           | 6,510   | 5,208        | 3,906           | 3,720        | 2,976   | 2,232           |  |
| Class IV              | 7,000   | 5,600        | 4,200           | 4,900   | 3,920        | 2,940           | 2,800        | 2,240   | 1,680           |  |

Table 3.3.2 Defined Road Capacity (PCU / day)

Source: JICA Study Team



Source: JICA Study Team

Figure 3.3.2 Road Network and Zoning System for the Traffic Demand Forecast

# 3.3.2 Traffic Demand Forecast

Future traffic demand in the study area was forecasted by the procedure shown in Figure 3.3.3.



Figure 3.3.3 Traffic Demand Forecast Flow

Figure 3.3.4 shows the traffic assignment volume of 2010 calibrated OD matrices and actual traffic count survey results. An extraordinary figure for the bus traffic volume was observed at the location near Seno.



Source: JICA Study Team



Figure 3.3.5 shows the estimated trip generation in 2010 and 2025. In 2025, trip generation will increase remarkably at Savannakhet, Champasak and Saravane.



Source: JICA Study Team

Figure 3.3.5 Trip Generation

Figure 3.3.6 shows desire lines of forecasted OD matrices in 2010 and 2025. The structure of the study area exhibits two core centers, namely: Savannakhet and Champasak. In the future, this structure will persist.



Source: JICA Study Team



Figure 3.3.7 shows the results of traffic assignment in 2010 and 2025. Large traffic volumes are observed along NR-9, NR-13S and NR-16. In 2025, the largest traffic volume, exceeding 18000 pcu/day in both directions, will be observed at NR-13S (Pakse - Houaysae).





Source: JICA Study Team

Figure 3.3.7 Forecasted Traffic Volume

Table 3.3.3 shows forecasted traffic volumes and volume capacity ratios at major roads and bridges in the study area.

|        |                | 20              | 10       | 20              | 15       | 2025            |          |  |
|--------|----------------|-----------------|----------|-----------------|----------|-----------------|----------|--|
|        | Road           | Ave.<br>PCU/day | Ave. VCR | Ave.<br>PCU/day | Ave. VCR | Ave.<br>PCU/day | Ave. VCR |  |
| NR-9   |                | 1,768           | (0.13)   | 4,725           | (0.31)   | 7,511           | (0.56)   |  |
| NR-1G  |                | 99              | (0.05)   | 463             | (0.10)   | 892             | (0.19)   |  |
|        | Bridge         | 0               | (0.00)   | 375             | (0.09)   | 673             | (0.16)   |  |
| NR-15A |                | 619             | (0.25)   | 1,772           | (0.29)   | 4,187           | (0.68)   |  |
|        | Sedone Bridge  | 519             | (0.19)   | 1,705           | (0.24)   | 4,010           | (0.57)   |  |
| NR-15B | ·              | 251             | (0.13)   | 621             | (0.13)   | 1,382           | (0.25)   |  |
| NR-16A |                | 39              | (0.02)   | 23              | (0.00)   | 141             | (0.03)   |  |
| NR-16B |                | 112             | (0.07)   | 184             | (0.04)   | 383             | (0.09)   |  |
|        | Sekong Bridge  | 147             | (0.09)   | 240             | (0.06)   | 500             | (0.12)   |  |
| NR-18A |                | 43              | (0.02)   | 959             | (0.17)   | 2,007           | (0.36)   |  |
| NR-1J  |                | 9               | (0.00)   | 60              | (0.02)   | 132             | (0.04)   |  |
|        | Sekaman Bridge | 42              | (0.01)   | 291             | (0.04)   | 646             | (0.09)   |  |
| NR-14A |                | 604             | (0.22)   | 1,527           | (0.22)   | 2,853           | (0.41)   |  |
| NR-14B |                | 45              | (0.02)   | 0               | (0.00)   | 397             | (0.06)   |  |
| NR-14C |                | 47              | (0.02)   | 0               | (0.00)   | 256             | (0.03)   |  |
| NR-20  |                | 1,374           | (0.25)   | 2,383           | (0.43)   | 4,773           | (0.80)   |  |
| NR-1F  |                | 59              | (0.03)   | 633             | (0.11)   | 1,066           | (0.19)   |  |

Table 3.3.3 Assigned Traffic Volume at Major National Roads

Source: JICA Study Team

### 3.4 Road Development and Improvement Master Plan

#### 3.4.1 Review of the Road and Bridge Development Plan

The MPWT is now in the process of preparing the Strategic Plan for Transport Sector Development for the period 2008-2010 and Direction for 2011-2015. It elaborates and translates the main objectives defined by the 6<sup>th</sup> 5-year Plan into detailed action plans to be implemented as well as giving direction for the period running from 2011 to 2015. The strategy includes prioritization and estimation of costs for sector development based on needs proposed by provinces, forecasted resources available during the planned period, government's multiple criteria and economic efficiency of each project investment.

### 1) Development Goal

The development goals in the transport strategic plan are set out as follows:

- Maximized use of the potential of the country, which is located in the hub of the sub-region, to facilitate transport and economic corridors.
- Development of multimodal transport serving international and domestic transport.
- Giving high priority to preservation of existing roads while paying attention to the expansion and improvement of roads including north-south linked roads along Mekong and the border to the east.

• Development and modernization of transport services and improved efficiency of cross-border transport services, thus improving the country's competitiveness.

#### 2) Targets for Infrastructure Development

- · Properly preserve the existing road network.
- Improve the core road network to the standard of the neighboring countries and upgrade the sections of national roads which serve high volumes of traffic.
- Improve the condition of provincial, district, and rural roads connecting poor districts and rural villages to the level where they are accessible throughout the year.

#### 3.4.2 Study Road and Bridge

#### (1) Summary of Road Network in Southern Region

National roads in the study area stretch into a network over the southern region that reaches a total length of 2,289 km. As of May 2010, six road and bridge projects in the study area, namely, NR-14A, Sekaman Bridge, NR-15B, NR-16A, NR-16B and NR-18A were all under implementation. However, in spite of the above on-going investment in improving the road network, most parts of the national roads remain unpaved. All national roads in the study area, excluding NR-9, were studied in the previous master plan. As was the case with the previous master plan study, the current study was also limited to national roads as listed in Table 3.4.1.

| Route   | Origin                    | Province    | Destination           | Province    | Road<br>Length<br>(km) | Road<br>Condition |
|---------|---------------------------|-------------|-----------------------|-------------|------------------------|-------------------|
| NR-9    | Savannakhet               | Savannakhet | Border of Vietnam     | Savannakhet | 244.0                  | Paved             |
| NR-1F   | Junction of Route 9       | Savannakhet | Junction of Route 12  | Khammuane   | 157.0                  | Unpaved           |
| NR-1G   | Junction of Route 9       | Savannakhet | Junction of Route 15  | Saravane    | 130.0                  | Unpaved           |
| NR-1H   | Junction of Route 15      | Saravane    | Junction of Route 16  | Saravane    | 44.5                   | Paved             |
| NR-1I   | Junction of Route 18      | Sekong      | Junction of Route 18A | Attapeu     | 76.6                   | Paved             |
| NR-1J   | Junction of Route 16B     | Attapeu     | Border of Cambodia    | Attapeu     | 81.0                   | Unpaved           |
| NR-13S  | Junction of Route 9       | Savannakhet | Border of Cambodia    | Champasak   | 395.0                  | Paved             |
| NR-14A  | Phone Thong Dist.         | Champasak   | Border of Cambodia    | Champasak   | 137.5                  | Partially paved   |
| NR-14A1 | Ban Ang Kham              | Champasak   | Ban Don Talath        | Champasak   | 32.0                   | Unpaved           |
| NR-14B  | Junction of Route 16      | Champasak   | Border of Cambodia    | Champasak   | 149.0                  | Unpaved           |
| NR-14C  | Ban Nong Nga              | Champasak   | M. Moonlapa -mok      | Champasak   | 42.0                   | Unpaved           |
| NR-14C1 | Ban Hieng                 | Champasak   | Ban Sam Kha           | Champasak   | 23.0                   | Unpaved           |
| NR-14C2 | Ban Phong Photh           | Champasak   | Ban Nong Te           | Champasak   | 6.0                    | Unpaved           |
| NR-15A  | Junction of Route 13S     | Saravane    | Junction of Route 1H  | Saravane    | 73.0                   | Unpaved           |
| NR-15B  | Junction at Ban Phone Dou | Saravane    | Border of Vietnam     | Saravane    | 165.0                  | Partially paved   |
| NR-16   | Border of Thailand        | Champasak   | Lamarm                | Sekong      | 172.0                  | Paved             |
| NR-16B  | Lamarm                    | Sekong      | Border of Vietnam     | Sekong      | 123.0                  | Unpaved           |
| NR-16A  | Junction of Route 16      | Champasak   | Junction of Route 11  | Champasak   | 71.0                   | Unpaved           |
| NR-18A  | Junction of Route 13S     | Champasak   | Junction of Route 18B | Attapeu     | 112.5                  | Unpaved           |
| NR-18B  | Junction of Route 18A     | Attapeu     | Border of Vietnam     | Attapeu     | 123.0                  | Paved             |

#### Table 3.4.1 Road Network in the Southern Region

Final Report

| Route | Origin               | Province  | Destination          | Province | Road<br>Length<br>(km) | Road<br>Condition |
|-------|----------------------|-----------|----------------------|----------|------------------------|-------------------|
| NR-20 | Junction of Route 16 | Champasak | Junction of Route 1H | Saravane | 69.0                   | Paved             |
|       |                      |           |                      | TOTAL    | 2,289.1                |                   |

### (2) On-going and Upcoming Road Improvement

Seven national roads are currently being improved, mainly by private financing (Build & Transfer operation scheme; B/T). NR-14A and 15B are currently under construction on B/T basis. Improvement of NR-1H was recently completed by the Japanese ASEAN Integration Funds. Improvement of other roads such as NR-16A and 18A was already contracted out to the private sector on B/T basis. The on-going and forthcoming projects (as of May 2010) are summarized in Table 3.4.2.

| Road   | Description                                                                        | Project Cost<br>(USD mill) | Fund Source                      | Status/Progress of Implementation                                                                                                                                                                              |
|--------|------------------------------------------------------------------------------------|----------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NR-1H  | DBST<br>L=20km<br>Tat Teng distrct to Sekong<br>district                           | 4.0                        | JAPAN-ASEAN<br>Integration Funds | The Works had been completed by 10th May 2010                                                                                                                                                                  |
| NR-14A | <b>AC</b><br>L=19km<br>B. Houay Phek R16JCT. to<br>Phaphin                         | 19.0                       | Private (B/T)                    | Works in progress at the site. The earth works<br>to form roadbed were nearly finished.<br>The target completion date is within 2011                                                                           |
| NR-15B | DBST<br>L=147km<br>Saravan to Vietnam border<br>via Ta-oy, Toumlane and<br>Samuoy, | 58.6                       | Private (B/T)                    | The contract signed in 2005. However the works were often interrupted due to shortage of funds. The road works in progress at time of study: extending approx. 30km from Saravan out of 147km via local funds. |
| NR-16A | AC or DBST<br>L=53km<br>R1I JCT in Pakson to R16B<br>JCT in Sekong                 | 56.7                       | Private (B/T)                    | Contract signed in Jan 2010. At time of study,<br>the survey and design was in progress.<br>Currently in discussion at MPWT: downgrading<br>from AC to DBST                                                    |
| NR-16B | DBST<br>L=95km<br>Sekong to Dukchung                                               | 44.5                       | Private (B/T)                    | Contract signed in Mar 2009. Works progress<br>was 8.14% as of Feb 2010 which was 9.5%<br>behind schedule: target progress by Feb 2010<br>was 17.63%.                                                          |
|        | Gravel<br>L=21km<br>Dukchung to Vietnam<br>Border                                  | 5.3                        | Local funds                      | Contract signed in Mar 2006. Works progress<br>was 48.93% as of Feb 2010. Lack of revolving<br>capital of Vietnam contractor affected work<br>progress.                                                        |
| NR-18A | DBST<br>L=116km<br>R13S JCT to R1I JCT                                             | 100.0                      | Concession                       | MOU signed in Apr 2009. The survey and design; and mobilization of works on site were in progress at time of study. Commencement of works was scheduled for Aug 2010.                                          |
| NR-1J  | DBST                                                                               | n/a                        | JAPAN-ASEAN                      | Design review was on-going at time of study.                                                                                                                                                                   |

#### Table 3.4.2 Ongoing Road Improvement Projects in Southern Area



Figure 3.4.1 Ongoing Road Improvement Projects in Southern Area

# (3) Project Long List

In consideration of the existing conditions of roads and bridges as well as projects vying for Japanese grant aid<sup>4</sup>, a long list of both road and bridge improvement projects was prepared. This long list of road projects was limited to unpaved national roads, including on-going road improvement projects. The long list of bridge projects included new long-span bridge projects, such as Sekong Bridge and Sedone Bridge, as well as deteriorated and narrow bridges, observed along NR-9 and NR-20. Table 3.4.3 provides details of road and bridge improvement projects studied in this master plan.

| Project<br>Road | Road<br>Length<br>(km) | Type of Project     | Summary of Project                                                                                                                                                                                  |
|-----------------|------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NR-9            | 244.0                  | Road Upgrade        | Adopting the maximum axle load of 11 tons per axle, the whole stretch of the road will be upgraded to ASIAN Highway class III standard.                                                             |
| NR-1F           | 157.0                  | Road Improvement    | The whole road section, currently with earth/gravel surface at some sections, will be improved to paved surface.                                                                                    |
| NR-1G           | 130.0                  | Road Development    | Including 32 km missing link, the whole section of road will be developed/ improved to paved surface. Construction of 300 m long Sebang Hieng and 200 m long Sedone Bridge is part of this project. |
| NR-1J           | 81.0                   | Road Development    | Including 65 km missing link, the whole section of road will be developed/ improved to paved surface.                                                                                               |
| NR-14A          | 137.5                  | Road Improvement    | 25 km road section from the junction of NR-16 is now under implementation. The rest of road section will be improved and paved.                                                                     |
| NR-14B          | 149.0                  | Road Improvement    | The whole road section, currently with gravel surface at some sections, will be improved to paved surface.                                                                                          |
| NR-14C          | 42.0                   | Road Improvement    | The whole road section, currently with gravel surface at some sections, will be improved.                                                                                                           |
| NR-15A          | 73.0                   | Road Improvement    | The whole road section, currently with gravel surface at most sections, will be improved.                                                                                                           |
| NR-15B          | 165.0                  | Road Improvement    | Around 30 km length of road section is paved while road section of 76 km total length is under construction. The rest of the road section will also be paved.                                       |
| NR-16A          | 71.0                   | Road Improvement    | The whole road section will be paved and the survey and design work are currently ongoing.                                                                                                          |
| NR-16B          | 123.0                  | Road Improvement    | 94 km road section is now under construction. The rest of the road section will be improved to paved surface.                                                                                       |
| NR-18A          | 112.5                  | Road Improvement    | The whole section, including two over 150 m length bridges, is now under construction and will be paved.                                                                                            |
| NR-9            |                        | Bridge Replacement  | All the bridges, constructed in mid 1980's, to be replaced. The total length of the bridge along NR-9 is 2,397m.                                                                                    |
| NR-1J           | Sekaman                | Bridge Construction | Around 200 m long Sekaman Bridge is currently at stage of preparation of construction work.                                                                                                         |
| NR-15A          | Sedone                 | Bridge Construction | Around 230 m long Sedone Bridge will be newly constructed.                                                                                                                                          |
| NR-16B          | Sekong                 | Bridge Construction | Around 280 m long Sekong Bridge will be newly constructed.                                                                                                                                          |
| NR-20           |                        | Bridge Replacement  | All the bridges, currently with bridge width of 4 m, to be replaced and widened. The total length of the bridge along NR-20 is 474m.                                                                |
| Total           | 1,485.0                |                     |                                                                                                                                                                                                     |

| Table 3.4.3 | Project Long List |
|-------------|-------------------|
|-------------|-------------------|

Source: JICA Study Team

<sup>&</sup>lt;sup>4</sup> Projects requested for Japanese grant aid include Improvement of NR-16A, Improvement of NR 1J, Upgrade of NR 9, Bridge construction along NR-1G, Construction of Sedone Bridge (NR-15A), Construction of Sekong Bridge (NR-16B).



Figure 3.4.2 Location of Long Listed Projects

### 3.4.3 Evaluation Method and Criteria Applied

Like the previous master plan study, the multi-criteria analysis was employed to determine the priority projects from amongst the project long list. This multi-criteria analysis had to involve all the stakeholders who assisted in identification of the criteria, allocation of weights and quantitative assessment of the projects. To accomplish this, the long listed projects were first evaluated via a quantitative appreciation by which the projects were appreciated and evaluated against a set of decision criteria: (i) Economic and technical criteria, (ii) Environmental criteria and (iii) Basic need criteria.

- *Economic and technical criteria* evaluated how the project would contribute to future economic development of the region both positively and negatively. These criteria included project size, construction method, maintenance cost, reliable traffic service, traffic demand, cost effectiveness, regional development and logistics network.
- Environmental criteria assessed the environmental impact caused by the project. The initial
  environmental examination (IEE) concluded that road/ bridge improvement projects in the
  southern region would adversely impact on the following natural and social environment in
  the region: noise and vibration, air quality, water quality, environmental reserve, fauna and
  flora, erosion and sedimentation, involuntary resettlement, and traffic accidents.
- Basic need criteria evaluated how the project would contribute to poverty reduction in the southern region. These criteria included impact on the regional economy, impact on the people under poverty line, and accessibility to social infrastructure like schools and hospitals.

| 1st level criteria     | 2nd level criteria | 3rd level criteria                     | Evaluation items                     |
|------------------------|--------------------|----------------------------------------|--------------------------------------|
|                        | Workability        | Project size                           | Project cost                         |
|                        | vvorkability       | Construction method                    | Locally available technique          |
|                        | Sustainability     | Maintenance                            | Maintenance cost                     |
| Economic and           | Sustainability     | Reliable traffic service               | Year round traffic                   |
| technical criteria     |                    | Traffic demand                         | Daily traffic volume                 |
| teennear enteria       |                    |                                        | Volume capacity ratio                |
|                        | Economy            | Cost effectiveness                     | Cost/ traffic volume                 |
|                        |                    | Regional development and logistics     | External trip rate                   |
|                        |                    | network                                | International trunk road             |
|                        |                    | Noise and vibration                    | Heavy vehicular traffic volume       |
|                        | Pollution          | Air quality                            | Traffic volume and travel speed      |
|                        |                    | Water quality                          | Impact on river                      |
| Environmental criteria | Notural            | Environmental reserve                  | Impact on national reservation area  |
|                        | Environment        | Fauna and flora                        | Impact on flood plain and mountain   |
|                        | LINIOIIIIEII       | Erosion and sedimentation              | Land cut and fill volume             |
|                        | Social             | Involuntary resettlement               | Resettlement and land acquisition    |
|                        | Environment        | Traffic accidents                      | Vehicle kilometer                    |
|                        |                    | Impact on the regional economy         | Size of population in project site   |
|                        |                    | Impact on impoverished people          | Size of population below poverty     |
| Basic need criteria    |                    |                                        | line in project site                 |
|                        | Poverty Reduction  | Accessibility to social infrastructure | Size of population without schools   |
|                        |                    |                                        | in village                           |
|                        |                    |                                        | Size of population without hospitals |
|                        |                    |                                        | /clinics in village                  |

#### Table 3.4.4 Evaluation Criteria for Selection of Priority Project

#### 3.4.4 Evaluation of Road and Bridge Projects

As discussed above, a long list of the projects was prepared while evaluation criteria to establish priority projects were determined. This section explores the evaluation process of these projects. It also provides input as regards the selection of priority projects as well as preparation of the long-term road/bridge improvement master plan for the southern region. In the course of the evaluation works, evaluation criteria for these projects were prepared in a numerical manner. These evaluation criteria were rated as follows: A (Positive), B (Neutral) and C (Negative). Once all projects had been rated for each evaluation criterion, the multi criteria analysis was then conducted to establish the most attractive projects by testing the weighted ranking of the projects.

#### (1) Economic and Technical Criteria

#### 1) Project Cost

Project costs of road and bridge projects were estimated based on the unit cost. This unit cost was prepared based on those of the recent Japanese grant aid projects. Different unit costs were prepared in consideration of the topography of the road (flat, rolling and hilly, and mountainous), assuming the cut and fill volume of land preparation works. The project cost of each project is summarized in the following table. Considering the scale of the projects and capacity of the Japanese grant aid, the cost of each project was rated as follows: A (less than 15 million USD), B (between 15 and 45 million USD) and C (more than 45 million USD).

| Drainat Daad | Type of Project             | Road        | Construc | Construction Cost (Million USD) |       |        |  |
|--------------|-----------------------------|-------------|----------|---------------------------------|-------|--------|--|
| Project Road | Type of Project             | Length (km) | Road     | Bridge                          | Total | Rating |  |
| NR-9         | Road Upgrade                | 244         | 99.3     |                                 | 99.3  | С      |  |
| NR-1F        | Road Improvement            | 157         | 94.0     | 7.0                             | 101.0 | С      |  |
| NR-1G        | Road Development            | 130         | 65.0     | 41.1                            | 106.1 | С      |  |
| NR-1J        | Road Development            | 81          | 51.0     | 3.3                             | 54.4  | С      |  |
| NR-14A       | Road Improvement            | 138         | 49.0     | 22.2                            | 71.2  | С      |  |
| NR-14B       | Road Improvement            | 149         | 53.0     | 19.1                            | 72.1  | С      |  |
| NR-14C       | Road Improvement            | 42          | 15.0     | 3.2                             | 18.2  | В      |  |
| NR-15A       | Road Improvement            | 73          | 28.0     | 11.4                            | 39.4  | В      |  |
| NR-15B       | Road Improvement            | 165         | 107.0    | 47.2                            | 154.2 | С      |  |
| NR-16A       | Road Improvement            | 71          | 38.0     | 4.5                             | 42.5  | В      |  |
| NR-16B       | Road Improvement            | 123         | 91.0     | 12.9                            | 103.9 | С      |  |
| NR-18A       | Road Improvement            | 113         | 45.0     | 32.7                            | 77.7  | С      |  |
| NR-9         | Bridge Replacement          |             |          | 60.2                            | 60.2  | С      |  |
| NR-1J        | Sekaman Bridge Construction |             |          | 7.7                             | 7.7   | А      |  |
| NR-15A       | Sedone Bridge Construction  |             |          | 8.8                             | 8.8   | А      |  |
| NR-16B       | Sekong Bridge Construction  |             |          | 8.6                             | 8.6   | А      |  |
| NR-20        | Bridge Replacement          |             |          | 9.8                             | 9.8   | А      |  |

### 2) Construction Method

There is one condition that was recently introduced as a requirement for a Japanese grant aid project: that Japanese technology is preferably required for the project implementation. Accordingly, construction method of each project is reviewed and evaluated to establish whether the project requires advanced technology. A long span bridge project, exceeding bridge length of 100m would automatically require sophisticated engineering technical capacity, which is not currently available with local consultants. Besides, concrete and asphalt concrete pavements require complicated construction methods that are rarely practiced in Laos. Accordingly, NR-9, NR-1G and bridge projects over Sekaman, Sedone and Sekong River were assigned an A rating while other projects were assigned a rating of C.

| Project Road | Type of Project             | Road<br>Length (km) | Rating |
|--------------|-----------------------------|---------------------|--------|
| NR-9         | Road Upgrade                | 244                 | А      |
| NR-1F        | Road Improvement            | 157                 | С      |
| NR-1G        | Road Development            | 130                 | А      |
| NR-1J        | Road Development            | 81                  | С      |
| NR-14A       | Road Improvement            | 138                 | С      |
| NR-14B       | Road Improvement            | 149                 | С      |
| NR-14C       | Road Improvement            | 42                  | С      |
| NR-15A       | Road Improvement            | 73                  | С      |
| NR-15B       | Road Improvement            | 165                 | С      |
| NR-16A       | Road Improvement            | 71                  | С      |
| NR-16B       | Road Improvement            | 123                 | С      |
| NR-18A       | Road Improvement            | 113                 | С      |
| NR-9         | Bridge Replacement          |                     | А      |
| NR-1J        | Sekaman Bridge Construction |                     | А      |
| NR-15A       | Sedone Bridge Construction  |                     | А      |
| NR-16B       | Sekong Bridge Construction  |                     | А      |
| NR-20        | Bridge Replacement          |                     | С      |

#### Table 3.4.6 Evaluation Result (Construction Method)

### 3) Maintenance Cost

The maintenance cost of each road and bridge project was evaluated based on the size of the project. However, it should be noted that some of the projects, once completed, would contribute to a significant reduction in the maintenance and operation costs. For instance, the Lao Government incurs severe costs in maintaining the NR-9. Furthermore, the operation costs of the ferry boats at Sekamann, Sedone and Sekong rivers would reduce once the bridge was opened to traffic. As a result, NR-9, and bridge projects over Sekamann, Sedone and Sekong rivers were given a rating of A.

| Project Road | Type of Project Roa         |     | Rating |
|--------------|-----------------------------|-----|--------|
| NR-9         | Road Upgrade                | 244 | А      |
| NR-1F        | Road Improvement            | 157 | С      |
| NR-1G        | Road Development            | 130 | С      |
| NR-1J        | Road Development            | 81  | С      |
| NR-14A       | Road Improvement            | 138 | С      |
| NR-14B       | Road Improvement            | 149 | С      |
| NR-14C       | Road Improvement            | 42  | В      |
| NR-15A       | Road Improvement            | 73  | В      |
| NR-15B       | Road Improvement            | 165 | С      |
| NR-16A       | Road Improvement            | 71  | В      |
| NR-16B       | Road Improvement            | 123 | С      |
| NR-18A       | Road Improvement            | 113 | С      |
| NR-9         | Bridge Replacement          |     | В      |
| NR-1J        | Sekaman Bridge Construction |     | А      |
| NR-15A       | Sedone Bridge Construction  |     | А      |
| NR-16B       | Sekong Bridge Construction  |     | A      |
| NR-20        | Bridge Replacement          |     | В      |

 Table 3.4.7
 Evaluation Result (Maintenance Cost)

### 4) Reliable Traffic Service

It was observed at the time of the study that some of the road sections, especially where the road crossed major rives, were impassable throughout the year or during the rainy season. Accordingly, a project on a road that contained impassable road sections was assigned a rating of A.

| Project Road | Type of Project             | Road<br>Length (km) | Rating |
|--------------|-----------------------------|---------------------|--------|
| NR-9         | Road Upgrade                | 244                 | С      |
| NR-1F        | Road Improvement            | 157                 | С      |
| NR-1G        | Road Development            | 130                 | А      |
| NR-1J        | Road Development            | 81                  | А      |
| NR-14A       | Road Improvement            | 138                 | С      |
| NR-14B       | Road Improvement            | 149                 | С      |
| NR-14C       | Road Improvement            | 42                  | С      |
| NR-15A       | Road Improvement            | 73                  | А      |
| NR-15B       | Road Improvement            | 165                 | С      |
| NR-16A       | Road Improvement            | 71                  | С      |
| NR-16B       | Road Improvement            | 123                 | С      |
| NR-18A       | Road Improvement            | 113                 | С      |
| NR-9         | Bridge Replacement          |                     | С      |
| NR-1J        | Sekaman Bridge Construction |                     | А      |
| NR-15A       | Sedone Bridge Construction  |                     | А      |
| NR-16B       | Sekong Bridge Construction  |                     | A      |
| NR-20        | Bridge Replacement          |                     | С      |

Table 3.4.8 Evaluation Result (Reliable Traffic Service)

### 5) Daily Traffic Volume

The daily traffic volume of road and bridge project was estimated based on the traffic demand forecast that was explored earlier in this chapter. Table 3.4.9 summarizes future traffic volume of

each project road in 2025: these traffic volumes vary considerably by project road. For instance, the busiest road amongst the project roads is NR-9 where 7,500 vehicles/day are projected to pass in 2025. The least traffic is projected along NR-1J, NR-14B, NR-14C, NR-16A and 16B, where less than 500 vehicles/day are forecasted. The daily traffic volume of each project was assigned ratings as follows: A (more than 5,000 vehicles/day in 2025), B (between 1,000 and 5,000 vehicles/day) and C (less than 1,000 vehicles/day).

| Project Road | Type of Project             | Road<br>Length (km) | 2025 Traffic<br>Volume<br>(PCU/day) | Rating |
|--------------|-----------------------------|---------------------|-------------------------------------|--------|
| NR-9         | Road Upgrade                | 244                 | 7,511                               | А      |
| NR-1F        | Road Improvement            | 157                 | 1,066                               | В      |
| NR-1G        | Road Development            | 130                 | 892                                 | С      |
| NR-1J        | Road Development            | 81                  | 132                                 | С      |
| NR-14A       | Road Improvement            | 138                 | 2,853                               | В      |
| NR-14B       | Road Improvement            | 149                 | 397                                 | С      |
| NR-14C       | Road Improvement            | 42                  | 256                                 | С      |
| NR-15A       | Road Improvement            | 73                  | 4,187                               | В      |
| NR-15B       | Road Improvement            | 165                 | 1,382                               | В      |
| NR-16A       | Road Improvement            | 71                  | 141                                 | С      |
| NR-16B       | Road Improvement            | 123                 | 383                                 | С      |
| NR-18A       | Road Improvement            | 113                 | 2,007                               | В      |
| NR-9         | Bridge Replacement          |                     | 7,511                               | А      |
| NR-1J        | Sekaman Bridge Construction |                     | 646                                 | С      |
| NR-15A       | Sedone Bridge Construction  |                     | 4,010                               | В      |
| NR-16B       | Sekong Bridge Construction  |                     | 500                                 | C      |
| NR-20        | Bridge Replacement          |                     | 4,773                               | В      |

 Table 3.4.9
 Evaluation Result (Daily Traffic Volume)



Source: JICA Study Team

Figure 3.4.3 Forecasted Traffic Volume

### 6) Volume Capacity Ratio

The volume capacity ratio of road and bridge projects was estimated based on the traffic demand

forecast. Table 3.4.10 summarizes future volume capacity ratio of each project road in 2025 and these ratios vary considerably by project road. For instance, the most congested road amongst the project roads is NR-15A and NR-20 where volume capacity ratio exceeds 0.60 in 2025. The least volume capacity ratio is projected along NR-1J, NR-14B, NR-14C, NR-16A and 16B, of which volume capacity ratio is projected to be less than 0.1. The volume capacity ratio for each project is assigned a rating as follows: A (more than 0.6 in 2025), B (between 0.2 and 0.6) and C (less than 0.2) for road projects. The ratios for bridge projects were rated separately, considering existence of the bridges.

| Project Road | Type of Project             | Road<br>Length (km) | Volume<br>Capacity<br>Ratio | Rating |
|--------------|-----------------------------|---------------------|-----------------------------|--------|
| NR-9         | Road Upgrade                | 244                 | 0.56                        | В      |
| NR-1F        | Road Improvement            | 157                 | 0.19                        | С      |
| NR-1G        | Road Development            | 130                 | 0.19                        | С      |
| NR-1J        | Road Development            | 81                  | 0.04                        | С      |
| NR-14A       | Road Improvement            | 138                 | 0.41                        | В      |
| NR-14B       | Road Improvement            | 149                 | 0.06                        | С      |
| NR-14C       | Road Improvement            | 42                  | 0.03                        | С      |
| NR-15A       | Road Improvement            | 73                  | 0.68                        | А      |
| NR-15B       | Road Improvement            | 165                 | 0.25                        | В      |
| NR-16A       | Road Improvement            | 71                  | 0.03                        | С      |
| NR-16B       | Road Improvement            | 123                 | 0.09                        | С      |
| NR-18A       | Road Improvement            | 113                 | 0.36                        | В      |
| NR-9         | Bridge Replacement          |                     | 0.56                        | В      |
| NR-1J        | Sekaman Bridge Construction |                     | 0.09                        | В      |
| NR-15A       | Sedone Bridge Construction  |                     | 0.57                        | А      |
| NR-16B       | Sekong Bridge Construction  |                     | 0.12                        | В      |
| NR-20        | Bridge Replacement          |                     | 0.80                        | В      |

 Table 3.4.10
 Evaluation Result (Volume Capacity Ratio)



Source: JICA Study Team

Figure 3.4.4 Forecasted Volume Capacity Ratio

# 7) Cost Effectiveness

The cost effectiveness indices of the road and bridge projects were estimated, dividing unit construction cost by future traffic volume. Table 3.4.11 provides a summary of the cost effectiveness index for each project road. The most cost effective project amongst the project roads is NR-9, showing the lowest index of 0.044 (thousand USD / vehicle-km). The least cost effective projects were determined to be NR-1J, NR-14B, NR-14C, NR-16A and 16B. The cost effectiveness index of each project was rated as follows: A (less than 0.01), B (between 0.01 and 1.0) and C (more than 1.0) for road projects. The cost effectiveness indices for bridge projects were rated separately as follows: A (less than 0.01) and B (more than 0.01).

| Project Road | Type of Project             | Road Length<br>(km) | Cost<br>Effectiveness<br>Index | Rating |
|--------------|-----------------------------|---------------------|--------------------------------|--------|
| NR-9         | Road Upgrade                | 244                 | 0.044                          | А      |
| NR-1F        | Road Improvement            | 157                 | 0.602                          | В      |
| NR-1G        | Road Development            | 130                 | 0.915                          | В      |
| NR-1J        | Road Development            | 81                  | 5.084                          | С      |
| NR-14A       | Road Improvement            | 138                 | 0.181                          | В      |
| NR-14B       | Road Improvement            | 149                 | 1.218                          | С      |
| NR-14C       | Road Improvement            | 42                  | 1.693                          | С      |
| NR-15A       | Road Improvement            | 73                  | 0.129                          | В      |
| NR-15B       | Road Improvement            | 165                 | 0.667                          | В      |
| NR-16A       | Road Improvement            | 71                  | 4.248                          | С      |
| NR-16B       | Road Improvement            | 123                 | 2.205                          | С      |
| NR-18A       | Road Improvement            | 113                 | 0.344                          | В      |
| NR-9         | Bridge Replacement          |                     | 0.003                          | А      |
| NR-1J        | Sekaman Bridge Construction |                     | 0.059                          | В      |
| NR-15A       | Sedone Bridge Construction  |                     | 0.010                          | А      |
| NR-16B       | Sekong Bridge Construction  |                     | 0.061                          | В      |
| NR-20        | Bridge Replacement          |                     | 0.004                          | А      |

Table 3.4.11 Evaluation Result (Cost Effectiveness)

### 8) Internal Trip Rate

An internal trip rate of road and bridge project, indicating whether the project road is used for regional traffic or inter-regional/international traffic, was estimated based on the traffic demand forecast. Table 3.4.12 summarizes the internal trip rate for all project roads. More inter-regional and international traffic would be observed along NR-9, NR-16A and NR-18A while other roads would be used for regional traffic in the southern region. The internal trip rate of each project was assigned ratings as follows: A (less than 50% in 2025), B (between 50% and 75%) and C (more than 75%).

| Project Road | Type of Project             | Road<br>Length (km) | Internal Trip<br>Rate | Rating |
|--------------|-----------------------------|---------------------|-----------------------|--------|
| NR-9         | Road Upgrade                | 244                 | 42%                   | А      |
| NR-1F        | Road Improvement            | 157                 | 82%                   | С      |
| NR-1G        | Road Development            | 130                 | 96%                   | С      |
| NR-1J        | Road Development            | 81                  | n/a                   | С      |
| NR-14A       | Road Improvement            | 138                 | 89%                   | С      |
| NR-14B       | Road Improvement            | 149                 | 86%                   | С      |
| NR-14C       | Road Improvement            | 42                  | 86%                   | С      |
| NR-15A       | Road Improvement            | 73                  | 92%                   | С      |
| NR-15B       | Road Improvement            | 165                 | 76%                   | С      |
| NR-16A       | Road Improvement            | 71                  | 66%                   | В      |
| NR-16B       | Road Improvement            | 123                 | n/a                   | С      |
| NR-18A       | Road Improvement            | 113                 | 64%                   | В      |
| NR-9         | Bridge Replacement          |                     | 42%                   | А      |
| NR-1J        | Sekaman Bridge Construction |                     | 85%                   | С      |
| NR-15A       | Sedone Bridge Construction  |                     | 92%                   | С      |
| NR-16B       | Sekong Bridge Construction  |                     | 98%                   | C      |
| NR-20        | Bridge Replacement          |                     | 90%                   | C      |

 Table 3.4.12
 Evaluation Result (Internal Trip Rate)

#### 9) International Trunk Roads

There are two international trunk roads in the southern region. One is NR-9 which is part of ASEAN Highway No.16 and the other is NR-18A which is part of ASEAN Highway No.132. Accordingly, these roads were given ratings of A for two digit international trunk roads and B for three digit international trunk roads.

| Project Road | Type of Project             | Road<br>Length (km) | Rating |
|--------------|-----------------------------|---------------------|--------|
| NR-9         | Road Upgrade                | 244                 | А      |
| NR-1F        | Road Improvement            | 157                 | С      |
| NR-1G        | Road Development            | 130                 | С      |
| NR-1J        | Road Development            | 81                  | С      |
| NR-14A       | Road Improvement            | 138                 | С      |
| NR-14B       | Road Improvement            | 149                 | С      |
| NR-14C       | Road Improvement            | 42                  | С      |
| NR-15A       | Road Improvement            | 73                  | С      |
| NR-15B       | Road Improvement            | 165                 | С      |
| NR-16A       | Road Improvement            | 71                  | С      |
| NR-16B       | Road Improvement            | 123                 | С      |
| NR-18A       | Road Improvement            | 113                 | В      |
| NR-9         | Bridge Replacement          |                     | А      |
| NR-1J        | Sekaman Bridge Construction |                     | С      |
| NR-15A       | Sedone Bridge Construction  |                     | С      |
| NR-16B       | Sekong Bridge Construction  |                     | C      |
| NR-20        | Bridge Replacement          |                     | C      |

 Table 3.4.13
 Evaluation Result (International Trunk Road)

### (2) Environmental Criteria

# 1) Noise

The level of noise generated by a project can be gauged by the volume of heavy vehicular traffic. Besides, adverse environmental impact in terms of noise could be exacerbated in cases where more people live in the vicinity of the project road. The level of noise and its environmental impact was assigned the following ratings: A (less than 100 heavy vehicles/day), B (more than 100 vehicles/day). Since there would be no chronic environmental impact, none of the projects were given a rating of C.

| Project Road | Type of Project             | Road<br>Length (km) | 2025 No. of<br>Heavy<br>Vehicles<br>(vehicles/<br>day) | Rating |
|--------------|-----------------------------|---------------------|--------------------------------------------------------|--------|
| NR-9         | Road Upgrade                | 244                 | 340                                                    | В      |
| NR-1F        | Road Improvement            | 157                 | 4                                                      | А      |
| NR-1G        | Road Development            | 130                 | 1                                                      | А      |
| NR-1J        | Road Development            | 81                  | 1                                                      | А      |
| NR-14A       | Road Improvement            | 138                 | 140                                                    | В      |
| NR-14B       | Road Improvement            | 149                 | 21                                                     | А      |
| NR-14C       | Road Improvement            | 42                  | 14                                                     | А      |
| NR-15A       | Road Improvement            | 73                  | 247                                                    | В      |
| NR-15B       | Road Improvement            | 165                 | 5                                                      | А      |
| NR-16A       | Road Improvement            | 71                  | 9                                                      | А      |
| NR-16B       | Road Improvement            | 123                 | 29                                                     | А      |
| NR-18A       | Road Improvement            | 113                 | 134                                                    | В      |
| NR-9         | Bridge Replacement          |                     | 340                                                    | В      |
| NR-1J        | Sekaman Bridge Construction |                     | 1                                                      | А      |
| NR-15A       | Sedone Bridge Construction  |                     | 247                                                    | В      |
| NR-16B       | Sekong Bridge Construction  |                     | 29                                                     | A      |
| NR-20        | Bridge Replacement          |                     | 209                                                    | В      |

| Table 3 4 14 | Evaluation Result ( | (Noise) |
|--------------|---------------------|---------|
|              |                     | 110136  |

# 2) Air Quality

The level of impact on air quality by a project can be gauged by combination of the traffic volume and vehicle capacity ratio (travel speed). The level of impact on air quality and its environmental impact were rated as follows: A (less traffic at moderate travel speed), B (more traffic at low travel speed). Since there would be no chronic environmental impact, none of the projects were assigned a rating of C.

| Project Road | Type of Project             | Road<br>Length (km) | 2025 Traffic<br>Volume<br>(PCU/day) | Volume<br>Capacity<br>Ratio | Rating |
|--------------|-----------------------------|---------------------|-------------------------------------|-----------------------------|--------|
| NR-9         | Road Upgrade                | 244                 | 7,511                               | 0.56                        | В      |
| NR-1F        | Road Improvement            | 157                 | 1,066                               | 0.19                        | А      |
| NR-1G        | Road Development            | 130                 | 892                                 | 0.19                        | А      |
| NR-1J        | Road Development            | 81                  | 132                                 | 0.04                        | А      |
| NR-14A       | Road Improvement            | 138                 | 2,853                               | 0.41                        | В      |
| NR-14B       | Road Improvement            | 149                 | 397                                 | 0.06                        | А      |
| NR-14C       | Road Improvement            | 42                  | 256                                 | 0.03                        | А      |
| NR-15A       | Road Improvement            | 73                  | 4,187                               | 0.68                        | В      |
| NR-15B       | Road Improvement            | 165                 | 1,382                               | 0.25                        | В      |
| NR-16A       | Road Improvement            | 71                  | 141                                 | 0.03                        | А      |
| NR-16B       | Road Improvement            | 123                 | 383                                 | 0.09                        | А      |
| NR-18A       | Road Improvement            | 113                 | 2,007                               | 0.36                        | В      |
| NR-9         | Bridge Replacement          |                     | 7,511                               | 0.56                        | В      |
| NR-1J        | Sekaman Bridge Construction |                     | 646                                 | 0.09                        | А      |
| NR-15A       | Sedone Bridge Construction  |                     | 4,010                               | 0.57                        | В      |
| NR-16B       | Sekong Bridge Construction  |                     | 500                                 | 0.12                        | A      |
| NR-20        | Bridge Replacement          |                     | 4,773                               | 0.80                        | В      |

 Table 3.4.15
 Evaluation Result (Air Quality)

### 3) Water Quality

Bridge projects may cause considerable adverse environmental impact on water quality since construction itself is to be carried out mainly within river space. Furthermore, road projects may cause adverse impact where several tributaries cross the project road.

| Project Road | Type of Project             | Road<br>Length (km) | Rating |
|--------------|-----------------------------|---------------------|--------|
| NR-9         | Road Upgrade                | 244                 | В      |
| NR-1F        | Road Improvement            | 157                 | В      |
| NR-1G        | Road Development            | 130                 | В      |
| NR-1J        | Road Development            | 81                  | В      |
| NR-14A       | Road Improvement            | 138                 | В      |
| NR-14B       | Road Improvement            | 149                 | В      |
| NR-14C       | Road Improvement            | 42                  | В      |
| NR-15A       | Road Improvement            | 73                  | В      |
| NR-15B       | Road Improvement            | 165                 | В      |
| NR-16A       | Road Improvement            | 71                  | В      |
| NR-16B       | Road Improvement            | 123                 | В      |
| NR-18A       | Road Improvement            | 113                 | В      |
| NR-9         | Bridge Replacement          |                     | С      |
| NR-1J        | Sekaman Bridge Construction |                     | С      |
| NR-15A       | Sedone Bridge Construction  |                     | С      |
| NR-16B       | Sekong Bridge Construction  |                     | С      |
| NR-20        | Bridge Replacement          |                     | C      |

 Table 3.4.16
 Evaluation Result (Water Quality)

#### 4) Environmental Reserve

There are eight National Protected Areas (NPAs) across the region. These NPAs are found in the

vicinity of NR-9, NR-1G, NR-13S, NR-15B, NR-18A and NR-18B. The projects would probably involve large-scale deforestation in case of construction of mountainous roads.

| Project Road | Type of Project             | Road<br>Length (km) | Rating |
|--------------|-----------------------------|---------------------|--------|
| NR-9         | Road Upgrade                | 244                 | С      |
| NR-1F        | Road Improvement            | 157                 | С      |
| NR-1G        | Road Development            | 130                 | С      |
| NR-1J        | Road Development            | 81                  | А      |
| NR-14A       | Road Improvement            | 138                 | А      |
| NR-14B       | Road Improvement            | 149                 | А      |
| NR-14C       | Road Improvement            | 42                  | А      |
| NR-15A       | Road Improvement            | 73                  | А      |
| NR-15B       | Road Improvement            | 165                 | С      |
| NR-16A       | Road Improvement            | 71                  | А      |
| NR-16B       | Road Improvement            | 123                 | С      |
| NR-18A       | Road Improvement            | 113                 | С      |
| NR-9         | Bridge Replacement          |                     | А      |
| NR-1J        | Sekaman Bridge Construction |                     | А      |
| NR-15A       | Sedone Bridge Construction  |                     | А      |
| NR-16B       | Sekong Bridge Construction  |                     | A      |
| NR-20        | Bridge Replacement          |                     | A      |

 Table 3.4.17
 Evaluation Result (Environmental Reserve)



Source: JICA Study Team

Figure 3.4.5 National Reserved Areas in Southern Region

#### 5) Flora/Fauna

Beside the NPAs, there are several important IBAs (Important Bird Area) across the southern region and some of these IBAs geographically overlap with NPAs. Considering location and scale of the projects, the road and bridge projects were ranked as either B or C.

| Project Road | Type of Project             | Road<br>Length (km) | Rating |
|--------------|-----------------------------|---------------------|--------|
| NR-9         | Road Upgrade                | 244                 | С      |
| NR-1F        | Road Improvement            | 157                 | С      |
| NR-1G        | Road Development            | 130                 | С      |
| NR-1J        | Road Development            | 81                  | В      |
| NR-14A       | Road Improvement            | 138                 | В      |
| NR-14B       | Road Improvement            | 149                 | В      |
| NR-14C       | Road Improvement            | 42                  | В      |
| NR-15A       | Road Improvement            | 73                  | В      |
| NR-15B       | Road Improvement            | 165                 | С      |
| NR-16A       | Road Improvement            | 71                  | В      |
| NR-16B       | Road Improvement            | 123                 | С      |
| NR-18A       | Road Improvement            | 113                 | С      |
| NR-9         | Bridge Replacement          |                     | В      |
| NR-1J        | Sekaman Bridge Construction |                     | В      |
| NR-15A       | Sedone Bridge Construction  |                     | В      |
| NR-16B       | Sekong Bridge Construction  |                     | В      |
| NR-20        | Bridge Replacement          |                     | В      |

Table 3.4.18 Evaluation Result (Flora/Fauna)





Figure 3.4.6 National Reserved Areas in Southern Region

# 6) Erosion/Sedimentation

There is a significant risk of erosion or landslide in construction of mountainous roads. Accordingly, the level of risk of erosion on a project can be estimated by the total length of mountainous roads section on the project. The road development projects such as NR-1G, NR-1J, NR-15B, NR-16A and NR-16B, run through mountainous areas and may require considerable amount of land cut and fill.

| Project Road | Type of Project             | Road<br>Length (km) | Road<br>Section in<br>Mountain<br>(km) | Rating |
|--------------|-----------------------------|---------------------|----------------------------------------|--------|
| NR-9         | Road Upgrade                | 244                 | 0                                      | В      |
| NR-1F        | Road Improvement            | 157                 | 85                                     | С      |
| NR-1G        | Road Development            | 130                 | 35                                     | С      |
| NR-1J        | Road Development            | 81                  | 57                                     | С      |
| NR-14A       | Road Improvement            | 138                 | 0                                      | В      |
| NR-14B       | Road Improvement            | 149                 | 0                                      | В      |
| NR-14C       | Road Improvement            | 42                  | 0                                      | В      |
| NR-15A       | Road Improvement            | 73                  | 0                                      | В      |
| NR-15B       | Road Improvement            | 165                 | 102                                    | С      |
| NR-16A       | Road Improvement            | 71                  | 22                                     | С      |
| NR-16B       | Road Improvement            | 123                 | 107                                    | С      |
| NR-18A       | Road Improvement            | 113                 | 0                                      | В      |
| NR-9         | Bridge Replacement          |                     |                                        | В      |
| NR-1J        | Sekaman Bridge Construction |                     |                                        | В      |
| NR-15A       | Sedone Bridge Construction  |                     |                                        | В      |
| NR-16B       | Sekong Bridge Construction  |                     |                                        | В      |
| NR-20        | Bridge Replacement          |                     |                                        | В      |

Table 3.4.19 Evaluation Result (Erosion/Sedimentation)



Source: JICA Study Team

Figure 3.4.7 Topography in Southern Region

# 7) Land Acquisition

According to the ADB's environmental guideline, a project requires EIA-level detailed study when the project affects households exceeding 200 in number. However, it is difficult to estimate the number of affected households without any detailed study. In this study, the scale of land acquisition and resettlement was gauged by the number of households in the vicinity of the project roads, as summarized in Table 3.4.20. As a result, all the road projects more or less require land acquisition and resettlement, with the exception of NR-9, for which the right of way was already secured. The bridge projects would also probably require land acquisition and resettlement, but to a lesser extent compared to the road projects.

| Project Road | Type of Project             | Road<br>Length (km) | No. of<br>Household<br>in 300 m<br>Buffer | Rating |
|--------------|-----------------------------|---------------------|-------------------------------------------|--------|
| NR-9         | Road Upgrade                | 244                 | 9,293                                     | А      |
| NR-1F        | Road Improvement            | 157                 | 1,853                                     | С      |
| NR-1G        | Road Development            | 130                 | 1,495                                     | С      |
| NR-1J        | Road Development            | 81                  | 737                                       | С      |
| NR-14A       | Road Improvement            | 138                 | 3,163                                     | С      |
| NR-14B       | Road Improvement            | 149                 | 1,833                                     | С      |
| NR-14C       | Road Improvement            | 42                  | 882                                       | С      |
| NR-15A       | Road Improvement            | 73                  | 2,949                                     | С      |
| NR-15B       | Road Improvement            | 165                 | 2,195                                     | С      |
| NR-16A       | Road Improvement            | 71                  | 1,243                                     | С      |
| NR-16B       | Road Improvement            | 123                 | 640                                       | С      |
| NR-18A       | Road Improvement            | 113                 | 1,879                                     | С      |
| NR-9         | Bridge Replacement          |                     |                                           | А      |
| NR-1J        | Sekaman Bridge Construction |                     |                                           | В      |
| NR-15A       | Sedone Bridge Construction  |                     |                                           | В      |
| NR-16B       | Sekong Bridge Construction  |                     |                                           | В      |
| NR-20        | Bridge Replacement          |                     |                                           | В      |

Table 3.4.20 Evaluation Result (Land Acquisition)

# 8) Traffic Accidents

There is also a significant risk of traffic accidents where a considerable number of vehicular traffic is observed. The vehicle kilometer was estimated based on the traffic demand forecast and as a result, more traffic volume along NR-9 was projected. As such the NR-9 projects were assigned a rating of C for this particular criterion.

| Project Road | Type of Project             | Road<br>Length (km) | 2025<br>Vehicle<br>Kilometer<br>(PCU*km/<br>day) | Rating |
|--------------|-----------------------------|---------------------|--------------------------------------------------|--------|
| NR-9         | Road Upgrade                | 244                 | 1,833,000                                        | С      |
| NR-1F        | Road Improvement            | 157                 | 167,000                                          | В      |
| NR-1G        | Road Development            | 130                 | 116,000                                          | В      |
| NR-1J        | Road Development            | 81                  | 11,000                                           | В      |
| NR-14A       | Road Improvement            | 138                 | 394,000                                          | В      |
| NR-14B       | Road Improvement            | 149                 | 59,000                                           | В      |
| NR-14C       | Road Improvement            | 42                  | 11,000                                           | В      |
| NR-15A       | Road Improvement            | 73                  | 306,000                                          | В      |
| NR-15B       | Road Improvement            | 165                 | 228,000                                          | В      |
| NR-16A       | Road Improvement            | 71                  | 10,000                                           | В      |
| NR-16B       | Road Improvement            | 123                 | 47,000                                           | В      |
| NR-18A       | Road Improvement            | 113                 | 227,000                                          | В      |
| NR-9         | Bridge Replacement          |                     |                                                  | С      |
| NR-1J        | Sekaman Bridge Construction |                     |                                                  | В      |
| NR-15A       | Sedone Bridge Construction  |                     |                                                  | В      |
| NR-16B       | Sekong Bridge Construction  |                     |                                                  | В      |
| NR-20        | Bridge Replacement          |                     |                                                  | В      |

| Table 3.4.21 | Evaluation Result | (Traffic Accident) |
|--------------|-------------------|--------------------|
|--------------|-------------------|--------------------|

### (3) Basic Needs Criteria

#### 1) Impact on Local Economy

The extent to which a project will contribute to the local economy can be gauged by the size of the population in the affected area. Using GIS data prepared in this study, the population within a 5 km buffer zone of the project road was estimated for each project. Projects such as NR-9, NR14A and NR-15A, which were located within more populous areas, were expected to contribute more positively to the local economy. The bridge replacement projects (NR-9 and NR-20) were rated separately since such projects generate less impact on local economy compared to road projects.

| Project Road | Type of Project             | Road<br>Length (km) | Population<br>near Project<br>('000) | Rating |
|--------------|-----------------------------|---------------------|--------------------------------------|--------|
| NR-9         | Road Upgrade                | 244                 | 239                                  | А      |
| NR-1F        | Road Improvement            | 157                 | 33                                   | В      |
| NR-1G        | Road Development            | 130                 | 49                                   | В      |
| NR-1J        | Road Development            | 81                  | 24                                   | В      |
| NR-14A       | Road Improvement            | 138                 | 180                                  | А      |
| NR-14B       | Road Improvement            | 149                 | 45                                   | В      |
| NR-14C       | Road Improvement            | 42                  | 13                                   | В      |
| NR-15A       | Road Improvement            | 73                  | 71                                   | А      |
| NR-15B       | Road Improvement            | 165                 | 48                                   | В      |
| NR-16A       | Road Improvement            | 71                  | 28                                   | В      |
| NR-16B       | Road Improvement            | 123                 | 26                                   | В      |
| NR-18A       | Road Improvement            | 113                 | 60                                   | В      |
| NR-9         | Bridge Replacement          |                     | 239                                  | В      |
| NR-1J        | Sekaman Bridge Construction |                     | 24                                   | В      |
| NR-15A       | Sedone Bridge Construction  |                     | 71                                   | А      |
| NR-16B       | Sekong Bridge Construction  |                     | 26                                   | В      |
| NR-20        | Bridge Replacement          |                     | 104                                  | В      |

 Table 3.4.22
 Evaluation Result (Impact on Local Economy)



Source: JICA Study Team

Figure 3.4.8 2010 Population by Village

#### 2) Population in Poverty

Implementation of road and bridge projects is one of the key measures to alleviate poverty; helping people under the poverty line access basic infrastructure and providing them low cost public transport. Assuming the projected degree of poverty reduction achieved by a project is gauged by analysing the size of impoverished populations living in the vicinity of the project road, it can be deduced that the road projects NR-9, NR-1G and NR-14 will contribute significantly towards poverty alleviation in the region. The bridge replacement projects (NR-9 and NR-20) are rated separately since such projects tend to generate less impact on poverty reduction, in comparison to road projects. This study will conduct further analysis to establish how the road projects help poor people and the results of this analysis will be presented in the Draft Final Report.

| Project Road | Type of Project             | Road<br>Length (km) | Population<br>under<br>Poverty<br>('000) | Rating |
|--------------|-----------------------------|---------------------|------------------------------------------|--------|
| NR-9         | Road Upgrade                | 244                 | 82                                       | А      |
| NR-1F        | Road Improvement            | 157                 | 32                                       | А      |
| NR-1G        | Road Development            | 130                 | 31                                       | А      |
| NR-1J        | Road Development            | 81                  | 7                                        | С      |
| NR-14A       | Road Improvement            | 138                 | 59                                       | А      |
| NR-14B       | Road Improvement            | 149                 | 10                                       | В      |
| NR-14C       | Road Improvement            | 42                  | 11                                       | В      |
| NR-15A       | Road Improvement            | 73                  | 0                                        | С      |
| NR-15B       | Road Improvement            | 165                 | 23                                       | В      |
| NR-16A       | Road Improvement            | 71                  | 0.4                                      | С      |
| NR-16B       | Road Improvement            | 123                 | 8                                        | С      |
| NR-18A       | Road Improvement            | 113                 | 16                                       | В      |
| NR-9         | Bridge Replacement          |                     | 82                                       | В      |
| NR-1J        | Sekaman Bridge Construction |                     | 7                                        | С      |
| NR-15A       | Sedone Bridge Construction  |                     | 0                                        | C      |
| NR-16B       | Sekong Bridge Construction  |                     | 8                                        | C      |
| NR-20        | Bridge Replacement          |                     | 31                                       | В      |

Table 3.4.23 Evaluation Result (Impact on Poverty Reduction)



Figure 3.4.9 Population in 5 km Buffer Zone of Project Roads (Poor/Non-poor)



Figure 3.4.10 Population in 5 km Buffer Zone of Project Roads (Urban/Suburb)

### 3) Accessibility to Schools

Accessibility to schools may be improved with the implementation of road improvement projects; providing all weather passable roads and low cost public transport. Using GIS data prepared in this study, populations without primary schools in their villages and/or those that had to endure long distances of travel to schools, were estimated. The results of the estimation revealed that many people without primary schools were observable along NR-9 and NR-14A. The bridge replacement projects (NR-9 and NR-20) were rated separately since such projects tend to generate less impact on access improvement, in comparison to road projects.

| Project Road | Type of Project             | Road<br>Length (km) | Population<br>without<br>School<br>('000) | Rating |
|--------------|-----------------------------|---------------------|-------------------------------------------|--------|
| NR-9         | Road Upgrade                | 244                 | 77                                        | А      |
| NR-1F        | Road Improvement            | 157                 | 10                                        | В      |
| NR-1G        | Road Development            | 130                 | 43                                        | В      |
| NR-1J        | Road Development            | 81                  | 0.1                                       | С      |
| NR-14A       | Road Improvement            | 138                 | 43                                        | А      |
| NR-14B       | Road Improvement            | 149                 | 13                                        | В      |
| NR-14C       | Road Improvement            | 42                  | 0.5                                       | С      |
| NR-15A       | Road Improvement            | 73                  | 7                                         | В      |
| NR-15B       | Road Improvement            | 165                 | 8                                         | В      |
| NR-16A       | Road Improvement            | 71                  | 4                                         | В      |
| NR-16B       | Road Improvement            | 123                 | 0.77                                      | С      |
| NR-18A       | Road Improvement            | 113                 | 0                                         | С      |
| NR-9         | Bridge Replacement          |                     | 77                                        | В      |
| NR-1J        | Sekaman Bridge Construction |                     | 0.1                                       | С      |
| NR-15A       | Sedone Bridge Construction  |                     | 7                                         | В      |
| NR-16B       | Sekong Bridge Construction  |                     | 0.77                                      | C      |
| NR-20        | Bridge Replacement          |                     | 20                                        | В      |

Table 3.4.24 Evaluation Result (Improved Accessibility to Schools)



Source: JICA Study Team

Figure 3.4.11 Schools by Village



Figure 3.4.12 Population in 5 km Buffer Zone of Project Roads (School)

### 4) Accessibility to Hospitals

As is the case with schools, accessibility to hospitals may be improved by the implementation of road improvement projects; providing all weather passable roads and low cost public transport. Using GIS data prepared in this study, populations without hospitals and clinics in their villages and/or those who had to travel long distances to reach health centres were estimated. The results revealed that many people with limited access to health centres were observable along NR-9, NR-14A and NR-15A. The bridge replacement projects (NR-9 and NR-20) were rated separately since these projects tend to generate less impact on access improvement, compared to road projects.

| Project Road | Type of Project             | Road<br>Length (km) | Population<br>without<br>Hospital/<br>Clinic<br>('000) | Rating |
|--------------|-----------------------------|---------------------|--------------------------------------------------------|--------|
| NR-9         | Road Upgrade                | 244                 | 217                                                    | А      |
| NR-1F        | Road Improvement            | 157                 | 31                                                     | В      |
| NR-1G        | Road Development            | 130                 | 43                                                     | В      |
| NR-1J        | Road Development            | 81                  | 20                                                     | В      |
| NR-14A       | Road Improvement            | 138                 | 162                                                    | А      |
| NR-14B       | Road Improvement            | 149                 | 38                                                     | В      |
| NR-14C       | Road Improvement            | 42                  | 10                                                     | В      |
| NR-15A       | Road Improvement            | 73                  | 61                                                     | А      |
| NR-15B       | Road Improvement            | 165                 | 42                                                     | В      |
| NR-16A       | Road Improvement            | 71                  | 25                                                     | В      |
| NR-16B       | Road Improvement            | 123                 | 23                                                     | В      |
| NR-18A       | Road Improvement            | 113                 | 50                                                     | В      |
| NR-9         | Bridge Replacement          |                     | 217                                                    | В      |
| NR-1J        | Sekaman Bridge Construction |                     | 20                                                     | В      |
| NR-15A       | Sedone Bridge Construction  |                     | 61                                                     | А      |
| NR-16B       | Sekong Bridge Construction  |                     | 23                                                     | В      |
| NR-20        | Bridge Replacement          |                     | 94                                                     | В      |

Table 3.4.25 Evaluation Result (Improved Accessibility to Hospitals)



Source: JICA Study Team

Figure 3.4.13 Hospitals and Clinics by Village



Figure 3.4.14 Population in 5 km Buffer Zone of Project Roads (Hospital and Clinic)

#### (4) Evaluation Result

As discussed above, the evaluation criteria were assigned ratings of A, B and C for the various projects. The final evaluation results were obtained by weighting the ratings of the evaluation criteria. Three sets of weights to be allocated to the different evaluation criteria were prepared to aid the decision making process: economy oriented weights (43% for economic and technical criteria, 34% for environmental criteria, and 23% for basic need criteria), Balanced (33%, 33% and 33%) and Basic needs oriented (23%, 34% and 43%).

| Evaluation Criteria             | Economy<br>Oriented | Balanced | Basic Needs<br>Oriented |
|---------------------------------|---------------------|----------|-------------------------|
| Economic and technical criteria | 43%                 | 33%      | 23%                     |
| Environmental criteria          | 34%                 | 33%      | 34%                     |
| Basic needs criteria            | 23%                 | 33%      | 43%                     |

 Table 3.4.26
 Weights for Evaluation Criteria

Using the above mentioned weighting system, the total scores for each project were derived from the sum of the products of the weight of each decision parameter and its rating: A (+1), B (0) and C (-1). The total scores of each project are tabulated in the Table 3.4.27 to Table 3.4.29.

Considering the budgetary constraints (assuming the total investment of 150 million USD up to 2015 can be utilized for transport infrastructure projects), the following priority projects up to 2015 are suggested. Some of the ongoing projects score low marks in the multi criteria analysis but are selected as priority projects. The reasons for selecting the priority projects are summarized below.

(i) Upgrade of NR-9 (Project No.1): this project scores the highest marks for balanced and basic needs oriented weighting of decision parameters and the second highest mark for economy oriented weighting; suggesting it will contribute to expansion of regional economy and poverty alleviation and it would have less adverse impact on environment in spite of its scale.

(ii) Construction of Sedone Bridge (Project No.14): this project scores the highest marks for economy oriented weighting of decision parameters and the second and third highest marks for balanced weighting and basic needs oriented weighting respectively; suggesting it will contribute to the expansion of the regional economy and would have less adverse impact on the environment.

(iii) Replacement of Bridge along NR-9 (Project No.12): this project scores the third highest marks for all weighting systems of decision parameters. Together with the Upgrade of NR-9 (Project No.1), it may generate multiple impacts on economic growth and social development in the region.

| No. | Project Road | Type of Project             | Total Score |
|-----|--------------|-----------------------------|-------------|
| 1   | NR-9         | Road Upgrade                | 0.304       |
| 2   | NR-1F        | Road Improvement            | -0.429      |
| 3   | NR-1G        | Road Development            | -0.268      |
| 4   | NR-1J        | Road Development            | -0.482      |
| 5   | NR-14A       | Road Improvement            | -0.018      |
| 6   | NR-14B       | Road Improvement            | -0.429      |
| 7   | NR-14C       | Road Improvement            | -0.393      |
| 8   | NR-15A       | Road Improvement            | 0.071       |
| 9   | NR-15B       | Road Improvement            | -0.429      |
| 10  | NR-16A       | Road Improvement            | -0.429      |
| 11  | NR-16B       | Road Improvement            | -0.750      |
| 12  | NR-18A       | Road Improvement            | -0.429      |
| 13  | NR-9         | Bridge Replacement          | 0.161       |
| 14  | NR-1J        | Sekaman Bridge Construction | 0.036       |
| 15  | NR-15A       | Sedone Bridge Construction  | 0.375       |
| 16  | NR-16B       | Sekong Bridge Construction  | 0.036       |
| 17  | NR-20        | Bridge Replacement          | 0.000       |

Table 3.4.27 Summary of Evaluation Result (Economy Oriented Weighting)

| No. | Project Road | Type of Project             | Total Score |
|-----|--------------|-----------------------------|-------------|
| 1   | NR-9         | Road Upgrade                | 0.378       |
| 2   | NR-1F        | Road Improvement            | -0.327      |
| 3   | NR-1G        | Road Development            | -0.202      |
| 4   | NR-1J        | Road Development            | -0.465      |
| 5   | NR-14A       | Road Improvement            | 0.132       |
| 6   | NR-14B       | Road Improvement            | -0.333      |
| 7   | NR-14C       | Road Improvement            | -0.341      |
| 8   | NR-15A       | Road Improvement            | 0.072       |
| 9   | NR-15B       | Road Improvement            | -0.377      |
| 10  | NR-16A       | Road Improvement            | -0.388      |
| 11  | NR-16B       | Road Improvement            | -0.706      |
| 12  | NR-18A       | Road Improvement            | -0.405      |
| 13  | NR-9         | Bridge Replacement          | 0.140       |
| 14  | NR-1J        | Sekaman Bridge Construction | -0.047      |
| 15  | NR-15A       | Sedone Bridge Construction  | 0.315       |
| 16  | NR-16B       | Sekong Bridge Construction  | -0.047      |
| 17  | NR-20        | Bridge Replacement          | 0.000       |

Table 3.4.28 Summary of Evaluation Result (Balanced Weighting)

#### Table 3.4.29 Summary of Evaluation Result (Basic Needs Oriented Weighting)

| No. | Project Road | Type of Project             | Total Score |
|-----|--------------|-----------------------------|-------------|
| 1   | NR-9         | Road Upgrade                | 0.443       |
| 2   | NR-1F        | Road Improvement            | -0.229      |
| 3   | NR-1G        | Road Development            | -0.142      |
| 4   | NR-1J        | Road Development            | -0.441      |
| 5   | NR-14A       | Road Improvement            | 0.277       |
| 6   | NR-14B       | Road Improvement            | -0.232      |
| 7   | NR-14C       | Road Improvement            | -0.283      |
| 8   | NR-15A       | Road Improvement            | 0.069       |
| 9   | NR-15B       | Road Improvement            | -0.330      |
| 10  | NR-16A       | Road Improvement            | -0.342      |
| 11  | NR-16B       | Road Improvement            | -0.659      |
| 12  | NR-18A       | Road Improvement            | -0.384      |
| 13  | NR-9         | Bridge Replacement          | 0.120       |
| 14  | NR-1J        | Sekaman Bridge Construction | -0.127      |
| 15  | NR-15A       | Sedone Bridge Construction  | 0.250       |
| 16  | NR-16B       | Sekong Bridge Construction  | -0.127      |
| 17  | NR-20        | Bridge Replacement          | 0.000       |

#### 3.4.5 Draft Road Development and Improvement Plan towards 2025

#### (1) Road Development Plan 2011 - 2020

The Road Development Plan 2011–2020 lists the prioritized projects for improvement and new construction towards the year 2020. These projects are prioritized based on the criteria developed by the Ministry of Planning and Investment and categorized into the following groups. The government is currently in the process of finalising the selection of the projects to be implemented by the year 2020.

#### Roads for Economic Development at National Level

Twenty one projects, totaling 1,514 km in length of national road, have been identified as contributors to economic development at national level. These projects require the estimated funding of LAK 15,035 billion. In the southern region, construction of NR-1J (Project No. 14 in the following table) and improvement of NR-16B (No. 16) are listed amongst these projects.

| No  | Draiget Name                                                           | Distance | Estimat    | Estimated Cost |  |
|-----|------------------------------------------------------------------------|----------|------------|----------------|--|
| INU | Fioject Name                                                           |          | (mill kip) | (milli USD)    |  |
| 1   | Maintain National Road                                                 |          | 1,394,000  | 164.5          |  |
| 2   | Improvement of NR4 (NR13N - Nakha)                                     | 368      | 753,100    | 88.9           |  |
| 3   | Improvement of NR2E (Khoua - Taijang)                                  | 69       | 365,590    | 43.1           |  |
| 4   | Improvement of NR13N (Nateu - Oudomxai)                                | 78       | 360,080    | 42.5           |  |
| 5   | Mekong Bridge Construction (Thakek-Nkhonphanom) Thai Grant             | 0.78     | 431,438    | 50.9           |  |
| 6   | Mekong Bridge Construction (Houaysay-Xiengkhong) Thai 50%, Chinese 50% | 0.48     | 465,459    | 54.9           |  |
| 7   | Mekong Bridge Construction (Thadeua-Pakkhone) NDCF Korea Loan          | 0.4      | 136,100    | 16.1           |  |
| 8   | Mekong Bridge Construction (Pakbeng) Chinese Loan                      | 0.45     | 595,080    | 70.2           |  |
| 9   | Improvement of NR1A (Bounneua-Lantui) Chinese Loan                     | 145      | 688,500    | 81.2           |  |
| 10  | Improvement of NR1B (Paknamnoy-Ban Yor) WB                             | 109      | 101,225    | 11.9           |  |
| 11  | Improvement of NR6A (Sopbao - Ban Dan) WB                              | 60       | 53,915     | 6.4            |  |
| 12  | Improvement of NR6A and 6B (Hanglong - Pahang) ADB                     | 86       | 104,932    | 12.4           |  |
| 13  | Construction of NR11(Sikhay - Namsang Bridge) NEDA Thai Grant          | 92       | 170,060    | 20.1           |  |
| 14  | Construction of NR1J (Attapeu - Cambodia border)                       | 81       | 297,550    | 35.1           |  |
| 15  | Improvement of NR13N, (Pakmong - Oudomxai)                             | 82       | 348,580    | 41.1           |  |
| 16  | Improvement of NR16B (Sekong - Vietnam Border)                         | 94       | 424,031    | 50.0           |  |
| 17  | Expressway Construction (Vientiane - Phonhong)                         | 70       | 6,375,000  | 752.3          |  |
| 18  | Expressway Construction, (Km 21-Ban Hay)                               | 40       | 1,700,000  | 200.6          |  |
| 19  | Improvement of NR17B, (M. Sing-Xiengkok)                               | 97       | 45,000     | 5.3            |  |
| 20  | Mekong Bridge Construction (Lao-Myanmar)                               | n/a      | 225,000    | 26.6           |  |
| 21  | Improvement of NR19 (Bounneua-Pakha (China boder))                     | 41       | 14,400     | 1.7            |  |

#### Table 3.4.30Road Development Plan 2010-20 (1/2)

Note: The projects show in bold text are in the study area.

Source: MPWT (2009) Road Development Plan 2010 - 20

### Roads for Economic Development at Local Level

Sixteen projects, totalling 420 km in length of national road, have been identified as contributors to economic development at local level. These projects require the estimated funding of LAK 7,556 billion. In the southern region, construction of NR-14A (Project No. 1 in the following table), improvement of NR-15B (No. 3), NR-16A (No. 10), 14C (No. 11) and 1G (No. 13) are listed amongst these projects.

|    |                                                                          | Distance | Estimate/ Cost           (million<br>kip)         (millio<br>USD)           297,000         3           252,000         2           171,000         2           288,000         3           1,079,500         12           295,800         3           405,000         4           108,000         4           504,000         5           330,750         3           36,000         4 | d Cost   |
|----|--------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| No | Project Name                                                             | /km)     |                                                                                                                                                                                                                                                                                                                                                                                         | (million |
|    |                                                                          | (KIII)   | kip)                                                                                                                                                                                                                                                                                                                                                                                    | USD)     |
| 1  | Construction of NR14A (Mekong Bridge – Cambodia border)                  | 131      | 297,000                                                                                                                                                                                                                                                                                                                                                                                 | 35.0     |
| 2  | Improvement of Road (Jinaimo-Hatdokkeo-Thadeua)                          | 37       | 252,000                                                                                                                                                                                                                                                                                                                                                                                 | 29.7     |
| 3  | Improvement of NR15B (Napong - Saravane)                                 | 76       | 171,000                                                                                                                                                                                                                                                                                                                                                                                 | 20.2     |
| 4  | Improvement of NR4B (Xiengman-Hongsa)                                    | 128      | 288,000                                                                                                                                                                                                                                                                                                                                                                                 | 34.0     |
| 5  | Upgrade of NR1C (Pakmong-Phoulao)                                        | 254      | 1,079,500                                                                                                                                                                                                                                                                                                                                                                               | 127.4    |
| 6  | Mekong Bridge Construction (Ban Houay-Khong District) Chinese Loan       | 0.56     | 295,800                                                                                                                                                                                                                                                                                                                                                                                 | 34.9     |
| 7  | Mekong Bridge Construction (Louang prabang - Chomphet District)          | n/a      | 405,000                                                                                                                                                                                                                                                                                                                                                                                 | 47.8     |
| 8  | Mekong Bridge Construction (Kokkhaodor - Paklay District(NR11))          | 0.4      | 108,000                                                                                                                                                                                                                                                                                                                                                                                 | 12.7     |
| 9  | Upgrade of Road NR1E (Yommalath - Khamkheut)                             | 93       | 369,000                                                                                                                                                                                                                                                                                                                                                                                 | 43.5     |
| 10 | Improvement of NR16A (Pakxong - Attapeu)                                 | 71       | 504,000                                                                                                                                                                                                                                                                                                                                                                                 | 59.5     |
| 11 | Improvement of NR14C (Ban Nongnga - Cambodia border)                     | 63       | 0                                                                                                                                                                                                                                                                                                                                                                                       | 0.0      |
| 12 | Improvement of NR1F (NR12 Mahaxai-Xethammouk NR9)                        | 133      | 477,000                                                                                                                                                                                                                                                                                                                                                                                 | 56.3     |
| 13 | Improvement of NR1G (Phin District - NR15A Saravane)                     | 129      | 330,750                                                                                                                                                                                                                                                                                                                                                                                 | 39.0     |
| 14 | Improvement of NR1H (Ban Beng - Thateang)                                | 20       | 36,000                                                                                                                                                                                                                                                                                                                                                                                  | 4.2      |
| 15 | Provincial, District and Rural Road Maintenance                          |          | 2,804,000                                                                                                                                                                                                                                                                                                                                                                               | 330.9    |
| 16 | Fund Management, Road Safety, Urban Development Administration Authority |          | 139,400                                                                                                                                                                                                                                                                                                                                                                                 | 16.4     |

 Table 3.4.31
 Road Development Plan 2010-20 (2/2)

Note: The projects show in bold text are in the study area.

Source: MPWT (2009) Road Development Plan 2010 - 20

### Provincial and District Roads (Local Roads)

Four hundred and three projects have been identified, of which 188 projects, totaling up to 4,717 km length, are provincial roads; while 215 projects, totaling up to 3,812 km length, are district roads: all requiring the estimated funding of LAK 6,569 billion.

### Special Roads

One hundred twenty projects have been identified requiring the estimated funding of LAK 8,324 billion. The special roads come under the responsibility of many different agencies including the Ministry of Defense, the Ministry of Agriculture and Forestry, the Ministry of Energy and Mines and the National Tourism Authority.

The total required funds for the road network improvement and construction was estimated at LAK 40,153 billion, excluding the funds allocated to the on-going projects and funds already earmarked for the planned projects. Considering the southern region, five projects (NR-16B, 14A, 15B, 16A, and 14C) have been earmarked for local funding while two projects (NR-1J and 1G) will be implemented with the help of external funding that is currently being sought (see table 3.4.32).

| No | Project Name                                                | Distance | Possible        | Estima  | ted Cost (milli | ion kip) | Possible         |
|----|-------------------------------------------------------------|----------|-----------------|---------|-----------------|----------|------------------|
| NU | Floject Name                                                | (km)     | Period Internal |         | External        | Total    | Fund             |
| 1  | Construction of NR-1J (Attapeu - Cambodia<br>border)        | 81       | 2011-13         | 50      | 297,500         | 297,550  | External         |
| 2  | Improvement of NR-16B (Sekong - Vietnam<br>Border)          | 94       | Ongoing         | 424,031 |                 | 424,031  | Gov<br>(Private) |
| 3  | Construction of NR-14A (Mekong Bridge –<br>Cambodia border) | 131      | Ongoing         | 297,000 |                 | 297,000  | Gov<br>(Private) |
| 4  | Improvement of NR-15B (Napong - Saravane)                   | 76       | Ongoing         | 171,000 |                 | 171,000  | Gov<br>(Private) |
| 5  | Improvement of NR-16A (Pakxong - Attapeu)                   | 71       | 2010-12         | 504,000 |                 | 504,000  | Gov<br>(Private) |
| 6  | Improvement of NR-14C (Ban Nongnga<br>-Cambodia border)     | 63       | Ongoing         | 137,700 |                 | 137,700  | Gov<br>(Private) |
| 7  | Improvement of NR-1G (Phin District -NR15A Saravane)        | 129      | n/a             |         | 330,750         | 330,750  | External         |

Table 3.4.32 Road Development Plan 2010-15 in Southern Province

Source: MPWT (2009) Road Development Plan 2010 - 20

#### (2) Draft Road Development and Improvement Plan towards 2025

As discussed above, three projects; Upgrade of NR-9, Construction of Sedone Bridge and Replacement of Bridge along NR-9, scored the highest marks after the multi criteria analysis and were promptly recommended as the priority projects up to the year 2015. The entire analysis, including the project long list, the evaluation criteria and weighing parameters, the traffic demand forecast, and socio-economic analysis as well as engineering study, should all be carefully reviewed by concerned agencies so as to establish consensus as regards priority projects up to the year 2015. Afterwards, the study team will draft long-term road development and improvement plan towards 2025 in the southern region, considering the budgetary constraints and on-going projects, as well as maintaining consistency with the above mentioned Road Development Plan 2010 - 2020.

### 3.5 Road Operation and Maintenance Policy

#### 3.5.1 Review of Road Maintenance Program

For sustainable preservation of road assets, the Road Maintenance Program (RMP) led by the World Bank and ADB has been under implementation. The program comprises two phases that span 8 years starting from 2001. The program assists the Lao PDR in strengthening the financing and management capacity for road maintenance at central and local levels in the public and private sectors, and strengthens the capability of the RMF with the following objectives in the respective phases.

- Phase-1 (2001-2005): Initiation and establishment of a financing framework for road maintenance, introduction of a road management system and heavy truck control, establishment of a scheme for periodic maintenance and rehabilitation of all roads, and strengthening the capability of MPWT.
- Phase-2 (2005-2009): Expansion and scaling up of the phase-1 for sustainable capacity of road maintenance

Approximately 65% of the funding is undertaken by international donors as shown in Table 3.5.1. The major program components and the summary of the expenditures on the components of Phase-2 are shown in Table 3.5.2.

| (Unit: Million USD)     |                 |           |            |  |
|-------------------------|-----------------|-----------|------------|--|
| Source of Fur           | Budget A        | llocation |            |  |
| Donors                  | Category        | Amount    | Proportion |  |
| IDA                     | Credit          | 24.39     | 36%        |  |
| PHRD                    | Grant           | 4.80      | 7%         |  |
| SIDA                    | Grant           | 11.06     | 16%        |  |
| ADB                     | Loan            | 1.00      | 1.5%       |  |
| JSDF                    | Grant           | 1.00      | 1.5%       |  |
| Government of Lao       | General Account | 9.55      | 14%        |  |
| Government of Lao (RMF) | Special Account | 15.11     | 22%        |  |
| AusAID                  | -               | 1.71      | 2%         |  |
| Total                   | 68.62           | 100%      |            |  |

#### Table 3.5.1 Summary of Source of Funds for RMP Phase-2

Source: DOR, MPWT (2009), Road Maintenance Program-Phase2, 1st Semi-Annual Project Progress Report FY2008/09, Edited and Summarized by JICA Study Team

#### Table 3.5.2 Summary of Expenditure by Project Component of RMP-2

(Unit: Million USD)

| No  | Component                                           | Budget Allocation | Remarks                                  |
|-----|-----------------------------------------------------|-------------------|------------------------------------------|
| 1   | Road Preservation                                   | 54.86             |                                          |
| 1-1 | <ul> <li>National Roads</li> </ul>                  | 25.38             | Including routine, periodic maintenance  |
| 1-2 | - Local Roads                                       | 29.5              | and Rehabilitation                       |
| 1-3 | - Implementation Support                            | 3.16              |                                          |
| 2   | Capacity Building                                   | 9.94              | Including RMF support, road and traffic  |
| 2-1 | <ul> <li>Road Management and Financing</li> </ul>   | 3.06              | surveys, IT equipment installation, road |
| 2-2 | <ul> <li>Road Transport and Safety</li> </ul>       | 0.65              | safety equipment, environmental and      |
| 2-3 | <ul> <li>Institutional Capacity Building</li> </ul> | 6.22              | social capacity development              |
| 3   | Project Administration                              | 0.80              |                                          |
| 3-1 | <ul> <li>Project Monitoring</li> </ul>              | 0.22              |                                          |
| 3-2 | <ul> <li>Incremental Operation Costs</li> </ul>     | 0.42              |                                          |
| 3-3 | - Technical and Financial Audit                     | 0.16              |                                          |
|     | Total                                               | 68.75             |                                          |

Source: DOT, MPWT (2009), Road Maintenance Program-Phase2, 1st Semi-Annual Project Progress Report FY2008/09, Edited and Summarized by JICA Study Team

#### 3.5.2 Mid-term Road Operation and Maintenance Plan

Funding for roads falls into the following two broad categories:

- · Maintenance and preservation of the existing road network, and
- Upgrade and expansion of the road network.

The total requirement for road funding for the period up to 2015 is estimated at 27,103 billion kip, of which 16,555 billion kip is for upgrade and expansion of the road network while 10,548 billion kip is for road maintenance. On the other hand, the total available funds for the period up to 2015 are estimated at 7,614 billion kip, which is far less than the required amount as shown in Table 3.5.3.

#### Table 3.5.3 Required Cost and Estimated Available Fund by 2015

(Unit: Billion Kip)

| Required Cost in Total                  | 27,103 |
|-----------------------------------------|--------|
| Required Cost for Upgrade and Expansion | 16,555 |
| Required Cost for Maintenance           | 10,548 |
| Estimated Available Fund                | 7,614  |

Source: DPC (2009), Strategy for Transport Sector Development for the Period 2008-2010 and Direction for 2011-2015, Edited and Summarized by JICA Study Team

The required funds for upgrade and expansion of the road network by 2015, of which the requirements are identified by the Master Plan, Strategy for Transport Sector Development for the Period 2008-2010 and Direction for 2011-2015, are summarized by type of road in Table 3.5.4.

| Road Classification                               | No of Projects | Total Length in Km | Estimated Cost (Unit:<br>Billion Kip) |
|---------------------------------------------------|----------------|--------------------|---------------------------------------|
| National Roads linking with neighboring countries | 17             | 638                | 2,965.5                               |
| National Roads connecting within country          | 15             | 706                | 3,947.4                               |
| Provincial Roads                                  | 118            | 3,813              | 4,789.2                               |
| District Roads                                    | 215            | 4,716              | 1,815.5                               |
| Special Roads                                     | 27             | 765                | 3,037.5                               |
| Total                                             | 392            | 10,638             | 16,555.2                              |

| Table 3.5.4 Required Funds for Upgrade and Expansion of Road Network by 2 |
|---------------------------------------------------------------------------|
|---------------------------------------------------------------------------|

Source: DPC (2009) Strategy for Transport Sector Development for the Period 2008-2010 and Direction for 2011-2015

| Drovincoo         | Fiscal Year |         |           |           |         |         |         |  |  |
|-------------------|-------------|---------|-----------|-----------|---------|---------|---------|--|--|
| Frovinces         | 2008-09     | 2009-10 | 2010-11   | 2011-12   | 2012-13 | 2013-14 | 2014-15 |  |  |
| Vientiane Capital | 70,423      | 17,482  | 51,049    | 49,557    | 55,813  | 12,136  | 66,112  |  |  |
| Phongsaly         | 75,098      | 34,968  | 31,676    | 31,453    | 4,308   | 9,120   | 7,771   |  |  |
| Louangnamtha      | 36,700      | 48,977  | 33,597    | 39,051    | 9,186   | 9,128   | 27,651  |  |  |
| Oudomxay          | 168,872     | 35,248  | 29,424    | 176,551   | 52,685  | 68,152  | 34,076  |  |  |
| Bokeo             | 63,857      | 6,144   | 2,818     | 20,796    | 9,482   | 10,456  | 22,360  |  |  |
| Louangphabang     | 310,822     | 16,271  | 42,667    | 136,196   | 46,395  | 73,054  | 88,763  |  |  |
| Xayaboury         | 130,130     | 3,355   | 62,330    | 114,126   | 39,063  | 22,065  | 50,605  |  |  |
| Houaphan          | 69,538      | 13,322  | 91,366    | 74,331    | 26,146  | 52,865  | 38,160  |  |  |
| Xiengkhouang      | 336,563     | 26,034  | 183,903   | 76,451    | 7,912   | 45,137  | 28,358  |  |  |
| Vientiane         | 260,321     | 44,415  | 39,909    | 59,519    | 46,089  | 71,757  | 43,879  |  |  |
| Borikhamxay       | 127,470     | 33,558  | 74,706    | 62,369    | 7,255   | 45,967  | 18,821  |  |  |
| Khammouan         | 239,708     | 33,799  | 95,283    | 115,702   | 86,683  | 96,194  | 64,271  |  |  |
| Savannakhet       | 987,078     | 393,372 | 131,419   | 200,994   | 208,606 | 121,155 | 85,729  |  |  |
| Saravan           | 905,684     | 65,295  | 28,303    | 110,691   | 30,021  | 40,396  | 27,773  |  |  |
| Champasack        | 940,092     | 43,002  | 118,283   | 93,158    | 62,926  | 62,561  | 56,945  |  |  |
| Xekong            | 87,799      | 6,812   | 42,037    | 16,879    | 7,884   | 21,201  | 27,197  |  |  |
| Attapeu           | 96,764      | 27,872  | 37,222    | 32,757    | 48,552  | 44,509  | 43,716  |  |  |
| Total             | 4,906,919   | 849,923 | 1,095,992 | 1,410,582 | 749,005 | 805,852 | 732,186 |  |  |

 Table 3.5.5
 Required Funds for Road Maintenance by Province by 2015

Source: DPC (2009) Strategy for Transport Sector Development for the Period 2008-2010 and Direction for 2011-2015

The required funds for road maintenance for the period running from 2008 to 2015 by province are summarized in the Table 3.5.5. The costs are estimated based on the data collected by the Public Works and Transport Institute (PTI) in 2008. The data includes the total road length of 30,585km, of which the national roads are 6,917km, provincial roads are 6,098km, district roads are 4,262km and rural roads are 13,308km.

The estimated available funds by 2015 are summarized in Table 3.5.6. At present, the fund for roads relies on different sources including government revenues such as fuel levy, toll collection and over-weight fines managed by Road Maintenance Fund, development partners and communities. It is also planned that a portion of revenue from the NT-2 Hydropower Project will be provided as a source of the road fund from the fiscal year of 2010/11.

|                                |        |        |        |        |        |        | (Uni   | t: Billion Kip) |
|--------------------------------|--------|--------|--------|--------|--------|--------|--------|-----------------|
| Revenue Source                 | 08/ 09 | 09/ 10 | 10/ 11 | 11/ 12 | 12/ 13 | 13/ 14 | 14/ 15 | Total           |
| 1. Direct Fund                 | 166    | 182    | 200    | 220    | 250    | 275    | 300    | 1.593           |
| 2. Road Maintenance            | 180    | 225    | 270    | 324    | 378    | 441    | 513    | 2.331           |
| 3. NT2                         | -      | 90     | 90     | 90     | 90     | 90     | 90     | 540             |
| Sub-total (Government<br>Fund) | 346    | 497    | 560    | 634    | 718    | 806    | 903    | 4.464           |
| Donor fund                     | 450    | 450    | 450    | 450    | 450    | 450    | 450    | 3.150           |
| Total                          | 796    | 947    | 1.010  | 1.084  | 1.168  | 1.256  | 1.353  | 7.614           |

| Table 3.5.6 | Funding Sources and Estimated Available Fund by 201 |
|-------------|-----------------------------------------------------|
|-------------|-----------------------------------------------------|

Source: DPC (2009) Strategy for Transport Sector Development for the Period 2008-2010 and Direction for 2011-2015

As observed hitherto, the overall budgetary features of Lao PDR can be summarized as follows:

#### National Budget

- The budgetary performance in recent years is approaching the target to be achieved by the year 2010 set out by the 6th NSEDP (2006-2010),
- However, the fact is that the target in the 6th NSEDP was adjusted to a more achievable level for Lao PDR in consideration of major failures in achievement of the target set out by the 5th NSEDP, and the fact that national/ministerial budget is characterized by;
- Expenditure constantly exceeding the revenues over the previous years with chronological budgetary deficit and external indebtedness,
- The majority of foreign direct investment being directed towards the hydropower sector, followed by agriculture and services, and then being spread evenly across the remaining different sectors,
- Low rate of increase of foreign direct investment due to inadequacy of attractive environment for investment despite the improving performance observed in recent years.
- The fact that trade in Lao PDR consistently features a chronic trade deficit due to a number of constraints such as reliance on unprocessed and low value added agricultural products as major export products, concentration on smaller markets, general lack of market information, etc.,

Ministerial Budget:

- Capital investment in the Lao PDR is the largest sector of expenditure and nearly half the national budget has been expended on infrastructure development.
- The road sector seizes the majority of expenditure at 85% of the total amount on average in the MPWT,
- More than 80% of the entire expenditure of MPWT and the road sector comes from foreign aid,
- The total requirement for road funding, estimated at 27,103 billion kip up to 2015, is expected to be far in excess of the available funds, estimated at 7,614 over the same the period,

• The Road Maintenance Fund was established for the purpose of mobilizing a steady and adequate domestic funding source. However, the current revenue of the RMF covers only approximately one-third of the total costs incurred.

### 3.6 Economic Analysis

#### **3.6.1 Basic Assumption**

The economic effect of the master plan is evaluated in this section. At first, the following basic assumptions were employed:

- Methodology of economic analysis: In this analysis, economic cost and economic benefit of 16 projects in the master plan were added and assumed as a single project.
- With project case and without project case: with project case in this analysis was that all 16 projects in the master plan are implemented.
- Project implementation schedule: Project implementation schedule consists of 2 years of engineering service, 3 years of construction and 30 years of operation.
- Lifetime: Lifetime of civil works for the projects was assumed to be 50 years. Residual value which is 80% of project cost was evaluated and calculated in the final year of operation.
- Physical contingency, tax, consultant services and administration cost: Physical contingency and tax were not included in the economic analysis. Cost for consultant services which is 6% of the cost of the projects and administration cost which is 2% of the cost of the projects were added.

### 3.6.2 Economic Benefit

Economic benefit of the master plan consists of reduction in Vehicle Operating Costs (VOC) and savings in travel time. Reduction in VOC was calculated from the product of unit VOC and reduction in vehicle travel distance, while savings in travel time were calculated from the opportunity cost of a person which is equal to the product of GDP-derived time value of labor and reduction in travel time.

|                           |           | (Unit: Vehicle-km) |
|---------------------------|-----------|--------------------|
| Vehicle Type              | 2015      | 2025               |
| Motorcycle                | 804,048   | 1,876,582          |
| Passenger Car             | 3,491,680 | 5,477,847          |
| Bus                       | 75,514    | 129,542            |
| 2 Axles Truck (Loading)   | 64,329    | 140,685            |
| 3Axles and more (Loading) | 151,367   | 211,936            |
| Trailer (Loading)         | 132,869   | 89,638             |
| 2 Axles Truck (Empty)     | 89,851    | 287,593            |
| 3Axles and more (Empty)   | 108,315   | -63,203            |
| Trailer (Empty)           | -756,916  | -913,843           |
| Total                     | 4,161,056 | 7,236,775          |

#### Table 3.6.1 Reduction in Vehicle Travel Distances

Source: JICA Study Team calculated from demand forecast model

Table 3.6.1 shows reduction in vehicle travel distances calculated for 'with project case' and 'without project case' considering traffic demand forecasts in 2015 and 2025. Since operation of roads was projected to start in the  $6^{th}$  year from the beginning of 2010, it was translated that reduction in vehicle travel distances will start in 2016. The reduction in vehicle travel distances from the  $6^{th}$  year to the  $25^{th}$  year; i.e. from 2016 to 2035 was estimated from the annual average growth rate.

Table 3.6.2 shows unit VOCs by vehicle type which were calculated by JICA Study Team based on data from "Preparatory Survey on Construction of the Neak Loeung Bridge in Kingdom of Cambodia." The reduction in VOCs was calculated from the product of reduction in vehicle travel distance and associated unit VOC.

| Vehicle Type              | Unit VOC |
|---------------------------|----------|
| Motorcycle                | 26.3     |
| Passenger Car             | 207.8    |
| Bus                       | 344.2    |
| 2 Axles Truck (Loading)   | 191.6    |
| 3Axles and more (Loading) | 313.7    |
| Trailer (Loading)         | 334.6    |
| 2 Axles Truck (Empty)     | 191.6    |
| 3Axles and more (Empty)   | 313.7    |
| Trailer (Empty)           | 334.6    |

Table 3.6.2 Unit VOC by Vehicle Type

Source: Calculated by JICA Study Team based on "Basic Design on 2<sup>nd</sup> Mekong Bridge Development Project in Kingdom of Cambodia"

| Vehicle Type              | 2015  | 2025  |
|---------------------------|-------|-------|
| Motorcycle                | 51201 | 24124 |
| Passenger Car             | 33868 | 15428 |
| Bus                       | 1115  | 484   |
| 2 Axles Truck (Loading)   | 1058  | 463   |
| 3Axles and more (Loading) | 437   | 194   |
| Trailer (Loading)         | 453   | 195   |
| 2 Axles Truck (Empty)     | 1112  | 481   |
| 3Axles and more (Empty)   | 357   | 166   |
| Trailer (Empty)           | 307   | 118   |

Table 3.6.3 Reduction of Vehicle Travel Time

Source: JICA Study Team

Table 3.6.4 shows the calculation of the time value of labor from 2010 to 2025, which was calculated from forecasts of GDP and labor force. Calculated time value of labor is USD 0.79/hour, which is 3 times higher than the value in the previous master plan (USD 0.24/hour) due to 7% GDP growth rates and appreciation of LAK against USD after 2004.

|                                | 2010   | 2015   | 2020   | 2025    |
|--------------------------------|--------|--------|--------|---------|
| GDP (LAK billion)              | 47,855 | 68,312 | 99,397 | 139,409 |
| Labor population (000 persons) | 3,222  | 3,644  | 3,985  | 4,350   |
| GDP per employee (USD)         | 1,732  | 2,186  | 2,909  | 3,737   |
| Time value of Labor (USD/hour) | 0.79   | 1.00   | 1.33   | 1.71    |

 Table 3.6.4
 Calculation of Time Value per Labor

Note: USD1=LAK8575

Source: Calculation by JICA Study Team using Statistical Yearbook 2008

Table 3.6.5 shows the number of passengers, and time value of vehicle and cargo by vehicle type. Time value of a vehicle is calculated from the product of time value of labor (in Table 3.6.4) and the number of passengers by vehicle type. Regarding time value of cargo, the amounts which were calculated in "The Comprehensive Study on Logistics Strategy in Lao PDR" were employed.

| Vehicle Type              | Number of<br>Passengers<br>(Persons) | Vehicle<br>(USD/hour) | Cargo<br>(USD/hour) | Vehicle +<br>Cargo<br>(USD/hour) |
|---------------------------|--------------------------------------|-----------------------|---------------------|----------------------------------|
| Motorcycle                | 1.5                                  | 1.2                   | -                   | 1.2                              |
| Passenger Car             | 2.5                                  | 2.0                   | -                   | 2.0                              |
| Bus                       | 30                                   | 23.8                  | -                   | 23.8                             |
| 2 Axles Truck (Loading)   | 1.5                                  | 1.2                   | 0.4                 | 1.6                              |
| 3Axles and more (Loading) | 1.5                                  | 1.2                   | 1.1                 | 2.3                              |
| Trailer (Loading)         | 1.5                                  | 1.2                   | 2.7                 | 3.9                              |
| 2 Axles Truck (Empty)     | 1.5                                  | 1.2                   | -                   | 1.2                              |
| 3Axles and more (Empty)   | 1.5                                  | 1.2                   | -                   | 1.2                              |
| Trailer (Empty)           | 1.5                                  | 1.2                   | -                   | 1.2                              |

Table 3.6.5Time Value of Vehicle and Cargo by Vehicle Type in 2010

Source: JICA Study Team

The time value of a vehicle will increase in accordance with the increase in time value of labor every year. However, the time value of cargo will remain constant during the project implementation period. The total time value of vehicles and cargo was calculated from the product of reduction in vehicle travel time and the total time value of vehicles and cargo.

### 3.6.3 Economic Cost

Table 3.6.6 shows the construction cost of roads and bridges. Total construction costs were estimated at USD641.3 million for roads and USD292.6 million for bridges. The above costs are financial costs including physical contingency; therefore, the economic costs were established by the following calculations.

- Exemption of physical contingency (10% of total project cost), and
- Conversion of domestic portion of the construction cost by use of "Standard Conversion Factor"

| Route  | Road Length (km) | Construction Cost<br>(million USD) | Total Proposed<br>Length (m) | Bridge Construction<br>Cost (million USD) |
|--------|------------------|------------------------------------|------------------------------|-------------------------------------------|
| NR-9   | 244.0            | 99.3                               | 2,397                        | 60.2                                      |
| NR-1G  | 130.0            | 65.0                               | 1,571                        | 41.1                                      |
| NR-1J  | 81.0             | 51.0                               | 170                          | 11.0                                      |
| NR-14A | 137.5            | 49.0                               | 1,061                        | 22.1                                      |
| NR-14B | 149.0            | 53.0                               | 926                          | 19.1                                      |
| NR-14C | 42.0             | 15.0                               | 158                          | 3.2                                       |
| NR-15A | 73.0             | 28.0                               | 786                          | 20.2                                      |
| NR-15B | 165.0            | 107.0                              | 2,117                        | 47.2                                      |
| NR-16A | 71.0             | 38.0                               | 215                          | 4.5                                       |
| NR-16B | 123.0            | 91.0                               | 920                          | 21.5                                      |
| NR-18A | 112.5            | 45.0                               | 1,283                        | 32.7                                      |
| NR-20  | -                | -                                  | 474                          | 9.8                                       |
| Total  | 1,348.0          | 641.3                              | 12,078                       | 292.6                                     |

Source: JICA Study Team

Proportion of domestic portion and foreign portion of the project was estimated at 70:30 for road projects and 50:50 for bridge projects. Regarding the Standard Conversion Factor, 96.4% of the SCF was employed. The figure comes from "Study on Integrated Distribution Center in Savannakhet and Vientiane in Lao PDR," conducted by JETRO in 2005. After these calculations, economic costs of road projects and bridge projects were established as USD568.3 million for road projects and USD261.2 million for bridge projects.

| 4 | 0 | 0 | 4 | - | <b>T</b> ( ) ( ) ( ) ( ) |
|---|---|---|---|---|--------------------------|
|   |   |   |   |   |                          |
|   |   |   |   |   |                          |
|   |   |   |   |   |                          |
|   |   |   |   |   |                          |
|   |   |   |   |   |                          |
|   |   |   |   |   |                          |

Annual Investment Amount

Table 3.6.7

|                               |      |      |       |       |       |            | (Unit USD million                     |
|-------------------------------|------|------|-------|-------|-------|------------|---------------------------------------|
| Year                          | 1    | 2    | 3     | 4     | 5     | Total cost | Remarks                               |
| Construction Cost:<br>Roads   | -    | -    | 189.4 | 189.4 | 189.4 | 568.3      | 89% of financial<br>construction cost |
| Construction Cost:<br>Bridges | -    | -    | 87.1  | 97.1  | 87.1  | 261.2      | 89% of financial<br>construction cost |
| Consulting Service            | 19.6 | 19.6 | 5.6   | 5.6   | 5.6   | 56.0       | 6% of financial<br>construction cost  |
| Administration                | 8.1  | 8.1  | 8.1   | 8.1   | 8.1   | 40.6       | 2% of financial<br>construction cost  |
| Total Investment<br>Cost      | 27.7 | 27.7 | 290.2 | 290.2 | 290.2 | 926.1      | -                                     |

Source: JICA Study Team

Table 3.6.7 shows annual investment cost. Total investment cost including cost for consulting services and administration will amount to USD926 million.

Table 3.6.8 shows operation and maintenance costs for roads. The costs consist of routine maintenance costs disbursed every year and periodic maintenance costs which are disbursed every 5 years for DBST and 10 years for asphalt concrete. The operation and maintenance costs also vary for DBST and asphalt concrete. Asphalt concrete will be used only for NR9 while DBST will be used for other roads. Total of the routine maintenance costs was estimated to be USD 1.0 million while total of the periodic maintenance costs was estimated at USD 30.7 million every 5 years and USD 56.0 million every 10 years.

(Unit: USD million)

| Kind   | of Pavement      | DB                                           | ST                                              | Asphalt                                      | Concrete                                         |  |  |
|--------|------------------|----------------------------------------------|-------------------------------------------------|----------------------------------------------|--------------------------------------------------|--|--|
| Route  | Road Length (km) | Routine<br>Maintenance Costs<br>(Every year) | Periodic<br>Maintenance Costs<br>(Every 5 year) | Routine<br>Maintenance Costs<br>(Every year) | Periodic<br>Maintenance Costs<br>(Every 10 year) |  |  |
| Unit C | Cost (USD/km)    | 657                                          | 27,908                                          | 1,149                                        | 97,513                                           |  |  |
| NR-9   | 244.0            | -                                            |                                                 | 0.3                                          | 25.7                                             |  |  |
| NR-1G  | 130.0            | 0.1                                          | 3.6                                             | -                                            | -                                                |  |  |
| NR-1J  | 81.0             | 0.1                                          | 2.3                                             | -                                            | -                                                |  |  |
| NR-14A | 137.5            | 0.1                                          | 3.8                                             | -                                            | -                                                |  |  |
| NR-14B | 149.0            | 0.1                                          | 4.2                                             | -                                            | -                                                |  |  |
| NR-14C | 42.0             | 0.0                                          | 1.2                                             | -                                            | -                                                |  |  |
| NR-15A | 73.0             | 0.0                                          | 2.0                                             | -                                            | -                                                |  |  |
| NR-15B | 165.0            | 0.1                                          | 4.6                                             | -                                            | -                                                |  |  |
| NR-16A | 71.0             | 0.0                                          | 2.0                                             | -                                            | -                                                |  |  |
| NR-16B | 123.0            | 0.1                                          | 3.4                                             | -                                            | -                                                |  |  |
| NR-18A | 112.5            | 0.1                                          | 3.1                                             | -                                            | -                                                |  |  |
| NR-20  | -                | -                                            | -                                               | -                                            | -                                                |  |  |
| Total  | 1,348.0          | 0.7                                          | 30.3                                            | 0.3                                          | 25.7                                             |  |  |

 Table 3.6.8
 Operation and Maintenance Costs of Roads

Source: JICA Study Team

#### 3.6.4 Calculation of EIRR

Table 3.6.9 shows the annual economic cost, annual economic benefit and net cash flow. Economic Internal Rate of Return (EIRR) calculated from the Net Cash Flow is 7.8%. The amount is lower than substitution cost, which is set at 12%.

The various road and bridge projects included in the master plan have various high economic effects. Therefore, if the economic effects of each route were evaluated singly, it is expected that some projects would have enough feasibility as regards the national economy.

The other reason for the low EIRR in the economic analysis is the limited population in the study area. The populations of Sekong and Attapeu Provinces were only 85,000 and 112,000 respectively in 2005. Besides that, the populations of Savannakhet and Champasak Provinces are concentrated in the provincial towns and western sides of the provinces. It is thus necessary to consider not only the contribution to the national economy but also to the provision of national minimum service to the Lao nation.

|               |                  |         | (Unit USD million) |
|---------------|------------------|---------|--------------------|
|               | Economic Benefit |         |                    |
| Economic Cost | Reduction        | Time    | Net Cash Flow      |
|               | in VOCs          | savings |                    |
| 27.7          |                  |         | -27.7              |
| 27.7          |                  |         | -27.7              |
| 290.2         |                  |         | -290.2             |
| 290.2         |                  |         | -290.2             |
| 290.2         |                  |         | -290.2             |
| 1.0           | 4.2              | 15.4    | 18.6               |
| 1.0           | 4.4              | 17.9    | 21.2               |
| 1.0           | 4.6              | 20.7    | 24.3               |
| 1.0           | 4.9              | 23.9    | 27.8               |
| 31.3          | 5.1              | 27.7    | 1.6                |
| 1.0           | 5.4              | 32.1    | 36.5               |
| 1.0           | 5.7              | 37.1    | 41.8               |
| 1.0           | 6.1              | 43.0    | 48.0               |
| 1.0           | 6.4              | 49.8    | 55.2               |
| 57.0          | 6.8              | 57.6    | 7.4                |
| 1.0           | 7.2              | 66.7    | 72.9               |
| 1.0           | 7.2              | 77.3    | 83.5               |
| 1.0           | 7.2              | 89.5    | 95.7               |
| 1.0           | 7.2              | 103.7   | 109.9              |
| 31.3          | 7.2              | 120.1   | 96.0               |
| 1.0           | 7.2              | 139.1   | 145.3              |
| 1.0           | 7.2              | 161.1   | 167.3              |
| 1.0           | 7.2              | 186.7   | 192.9              |
| 1.0           | 7.2              | 216.3   | 222.5              |
| 57.0          | 7.2              | 250.6   | 200.8              |
| 1.0           | 7.2              | 250.6   | 256.8              |
| 1.0           | 7.2              | 250.6   | 256.8              |
| 1.0           | 7.2              | 250.6   | 256.8              |
| 1.0           | 7.2              | 250.6   | 256.8              |
| 31.3          | 7.2              | 250.6   | 226.5              |
| 1.0           | 7.2              | 250.6   | 256.8              |
| 1.0           | 7.2              | 250.6   | 256.8              |
| 1.0           | 7.2              | 250.6   | 256.8              |
| 1.0           | 7.2              | 250.6   | 256.8              |
| -308.1        | 7.2              | 250.6   | 565.9              |
| EIRR          |                  |         | 7.8%               |

#### Table 3.6.9Cash Flow of the Master Plan

Source: JICA Study Team