REPUBLIC OF UGANDA MINISTRY OF WORKS AND TRANSPORT (MOWT)

THE STUDY ON
GREATER KAMPALA ROAD NETWORK AND TRANSPORT IMPROVEMENT IN THE REPUBLIC OF UGANDA

TRAFFIC SIGNAL OPERATION AND MAINTENANCE MANUAL

NOVEMBER 2010

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)
NIPPON KOEI CO., LTD.
EIGHT-JAPAN ENGINEERING CONSULTANTS INC.

TRAFFIC SIGNAL OPERATION AND MAINTENANCE MANUAL

TABLE OF CONTENTS

PART 1 PLANNING MANUUAL
1.1 Introduction 1-2
1.2 The Role of Traffic Signals 1-3
1.3 Phase of Traffic Signals 1-5
1.4 Type of Traffic Signal Control 1-10
1.5 Case Study 1-12
PART 2 PERIODIC MAINTENANCE MANUAL
2.1 Maintenance for Traffic Signals 2-2
2.2 Maintenance for Power Supply 2-5
2.3 Check Sheets 2-7
PART 3 OPERATION MANUAL
3.1 Power Supply 3-2
3.1.1 Automatic Voltage Regulator (AVR) 3-3
3.1.2 Automatic Engine Generator (AEG) 3-20
3.1.3 Uninterruptible Power Supply(UPS) 3-83
3.2 Traffic Signals 3-123
3.2.1 A04-Type Multi-Plan System for 240V (Kyosan) 3-124
3.2.2 A04-Type Multi-Plan System for 100V (Kyosan) 3-152
3.2.3 Type-CF4200 (TSEC) 3-186
3.2.4 "RENDO" (Interlocked) Operation. 3-224

1-1. INTRODUCTION

At intersection, many vehicles flow into and intersect with each other, and also many pedestrians walk on a pedestrian crossing. Consequently, traffic flow including non-motorizes traffic becomes so complicated. Without a traffic signal control, a continuous flow of traffic on one roadway would cause excessive delay to vehicles and pedestrians waiting on the other. A traffic signal plays an important role to improve this situation.

A vehicle going straight should carefully pay attention to intersecting vehicles from left, right and opposite to find safe intervals. In case of low traffic volume, drivers can pass through intersection in a short time. But, at intersection with heavy traffic volume, drivers may be forced a long wait. In some case, quixotic behaviors course an accident and put lock on intersection.

And so, orderly traffic control by use of a traffic signal makes an effect on above situation. A traffic signal unlocks vehicles locked on intersection. Moreover, a vehicle going straight pays attention only to the opposite vehicles when signal light is green.

Sequence of green (go), yellow (prepare to stop) and red (stop) of a Traffic signal plays an important role for orderly control of vehicle flow.

1-2. THE ROLE OF TRAFFIC SIGNALS

(1) The Role Of Traffic Signals

> To prevent an accident
A traffic signal orderly controls various traffic flows by the sequence of signal lights to avoid traffic conflicts among vehicles and pedestrians.
> To make traffic flow smoothly
A traffic signal secures a smoother traffic flows by proper distribution of time responding to traffic volumes.
> To improve traffic environment
A Traffic signal accelerates smoother traffic flows and decelerates traffic pollutions such as CO2.

Advantage of Signals

A traffic signal that is properly located and operated is likely to:

- Provide for orderly movement of traffic;
- Increase traffic capacity of intersection;
- Reduce the frequency of certain types of crashes;
- Provide for continuous or nearly continuous movement of traffic along a given route; and
- Interrupt heavy traffic to permit other traffic, vehicular or pedestrian, to cross.

(2) Where And When Should A Signal Be Installed?

For aid the engineer in designing the appropriate control for intersection, the following 6 warrants are requirements of a traffic signal installation in Installation Standard for Traffic Signals (Japan).

- For vehicle traffic control
- Both main roads and connected roads have a width of 10 m or more, and
- Traffic volume in 12 -hours is more than 7,000 vehicles, or
- Traffic volume in peak-hour (1 hour) is more than 700 vehicles.
- For pedestrian control without intersection
- Traffic volume in 12 -hours is more than 6,000 vehicles, or
- Traffic volume in peak-hour (1 hour) is more than 650 vehicles, and
- Number of pedestrians who cross the road is more than 200 persons per hour.
- For prevention of an accident
- In case that it is possible to prevent an accident by a traffic signal.
- For the school crossing and person with the visually impaired
- For the public facilities such as hospitals
- For bicycle control
- Bicycle traffic volume in peak-hour (1 hour) is more than 700 vehicles, and
- Traffic control by a traffic signal is required.

The engineers and/or responsible persons for traffic control should determine whether the traffic situation at intersection justifies considering a traffic signal.

(3) How Do You Grasp The Traffic Situation?

It is necessary for a traffic signal to orderly control traffic flow by grasping on-going traffic movement. It is important to know, "How many vehicles are running? Where are vehicles going? How fast are vehicles running? Where do traffic jams occur?" Also, quantity data is rather important than abstract data to correctly operate a traffic signal controller. The types of quantity data are explained as below.

Digitalization of Traffic Flow

The judgment of vacant situation and crowded situation on the road by the image is fuzzy. It is therefore traffic flow should be grasped as numerical data for proper operation of a traffic signal. Generally, following 3 traffic data are useful:

1) Traffic volume

Traffic volume means a number of vehicles passing through a certain point per unit time. The number of traffic volume normally increase with traffic volume increase on the road, but when traffic volume exceed road capacity, traffic volume is decreasing with traffic jam.

When a cycle time and phase for a traffic signal are decided and adjusted based on the actual demand, traffic volume and flow at intersection is the most important data. Hence, annual traffic survey is required for proper signal operation.
2) Travel speed

Travel speed means an average speed of vehicles passing through a certain point per unit time. Travel speed is getting down with traffic volume increase. In the traffic jam, travel speed becomes close to $0 \mathrm{~km} / \mathrm{h}$.
3) Traffic density

Traffic density means a number of vehicles existing in a certain section of road. Traffic density is getting higher with traffic volume increase. When vehicles stop by heavy traffic jam, traffic density reaches to maximum density.

The situation of traffic flow can be defined by these 3 parameters. (Volume, Speed, Density)

1-3. PHASE OF TRAFFIC SIGNALS

(1) What Is Phase?

A traffic signal gives a passage right to vehicles which head for each direction by rotation. That is to say, only vehicles and pedestrians which get permission from a traffic signal can pass through the intersection. "Phase" is the time band given to vehicles and pedestrians for passing intersection.

At mid-level intersections, operation by 2-phase is the most commonly as following figure.

Where traffic volume of right-turning vehicles is dominated, a phase for right-turn is added. That case is called " 3 -phase operation".

(2) Three Key Parameters For Traffic Signals

A signal flow consisting of Cycle, Sprit and Offset is the most important for proper signal operation.

- Cycle
"Cycle" means sequence of green (go), yellow (prepare to stop) and red (stop), and operates on the second time scale. In case of a short cycle, a traffic jam occurs because many vehicles cannot pass through intersection. The other way, in case of a long cycle, unnecessary time is created. A cycle should be decided in accordance with traffic volume, configuration of intersection and the number of the pedestrians. Generally, a cycle is proportionate to traffic volume.

However, a long cycle is not preferable from viewpoint of service level. Following cycle time is recommended by the Japanese Standard.

Definition of Service Level for Signalized Junctions

Service Level	Cycle Time (second)
A	70 s and below
B	70 s to 100 s
C	100 s and above

In case that a cycle time is operated with service level "C", a maximum cycle time should not be over 120s. Even if 120s and above is required by necessary, 180s is practical limit value. Frequently, a long cycle time generates to block straight traffic by queue for right-turn. Hence, to reduce a long queue for right-turning vehicles with a short cycle has a possibility of alleviation of a traffic jam at intersection.

- Split

"Split" means allocation time to each phase and operates in the percent (\%). If split time is evenly allocated to all directions regardless of traffic volume, unnecessary time is created. Split should be allocated responding to traffic volume of each phase.

- Offset

"Offset" means the time lag between neighboring intersections for ensuring of smooth traffic on same road, and operates on the second time scale or percent per 1-cycle.
"Cycle", "Split" and "Offset" are key parameters to realize the smooth traffic control.

(3) What Is "Clearance Time"?

Clearance time is set for avoidance of a vehicle crash at the turning point of phases at intersection. When a traffic signal change from Phase-1 to Phase-2, vehicles that pass through intersection under Phase-1 should exactly stop at the stop line or certainly go out of intersection before stating of Phase-2. For this reason, Clearance time is set to clean out all vehicles on intersection, and is defined in total of time for yellow light and red light.

The length of clearance time finely set up responding to the size and configuration of intersection.

- Yellow signal

When a s change from green light to yellow right, some vehicles can stop at stop line. However some vehicles remain in intersection. Yellow light is provided to clean out all vehicles remained in intersection.

- All red signal

Time of all red is set up to clean out right-turning vehicles in intersection by starting of a next phase.

In case that the time length of yellow and all red signals is too long, some drivers may hardly wait until next phase or disregard yellow light. On the other hand, if the time length is too short, some vehicles are left out on intersection in a next phase starts. Hence, the length of clearance
time should be set appropriately.

In Japan, clearance time is normally provided as following table.
Clearance Time (Yellow + All Red): Second

Distance between Stop-line	20 m			30 m				40 m			50 m				60 m		
Design Speed	Y	AR	T														
$30 \mathrm{~km} / \mathrm{h}$	3	2	5	3	4	7	3	4	7	3	4	7	3	4	7		
$40 \mathrm{~km} / \mathrm{h}$	3	2	5	3	3	6	3	4	7	3	4	7	3	4	7		
$50 \mathrm{~km} / \mathrm{h}$	4	1	5	4	2	6	4	3	7	4	3	7	4	3	7		
$60 \mathrm{~km} / \mathrm{h}$	4	1	5	4	2	6	4	2	6	4	3	7	4	3	7		
$70 \mathrm{~km} / \mathrm{h}$	4	1	5	4	2	6	4	2	6	4	3	7	4	3	7		
$80 \mathrm{~km} / \mathrm{h}$	4	1	5	4	2	6	4	2	6	4	3	7	4	3	7		

Y: Yellow, AR: All Red, T: Total

(4) Time For Pedestrian Crossing

The time of "Green-light" and "Green-light blinking (winking)" of pedestrian signals are provided for safely pedestrian crossing.

- Pedestrian green time

The time of pedestrian green-light is finely derived based on the length of pedestrian crosswalk. Generally, walking speed is calculated as 1 m to $1.5 \mathrm{~m} / \mathrm{sec}$.

- Green blinking (winking) time

Green blinking (winking) is time for pedestrian judgment whether to go or back. Generally, it is set in 4 to 10 seconds.

If the pedestrian green time is too short, pedestrians cannot walk over to opposite side. On the other hand, the pedestrian green time is too long, vehicles turning to left and/or right may queue at intersection. Consequently, traffic jam is generated by pedestrian crossing. It is therefore the time of pedestrian crossing should be carefully set.

(5) Phase Of Traffic Signals

- Standard phase: Two-phase operation

When number of vehicles turning left or right is not so heavy, a phase for main road and branch road are alternately indicated. Usual signal layout at intersection is shown in right figure. " 1 V " and " 2 V " mean a traffic signal lights for vehicles, and "1P" and " 2 P " means a traffic signal lights for pedestrians. " 1 V and 1 P " and " 2 V and 2 P " are provided for the main road and branch road, respectively.

The time of signal indication change is called "Step". The most major traffic control is " 2 Phases / 10 Steps". The following phase chart shows the step flow.

Step	1	2	3	4	5	6	7	7	8	9	10		
1P													
1 V													
2P													
2V													
Time (s)	45	5	5	3	2	25	5	5	5	3	2	$\xrightarrow{\text { Pedestrian Flow }}$$\longrightarrow \rightarrow$ Vehicle Flow Vehicle and/or Pedestrian Green-light Vehicle Yellow-light Vehicle and/or Pedestrian Red-light Pedestrian Green-light blinking	
Phase	1					2							
Flow													

- Phase for right-turning vehicles

When right-turning vehicles are blocked by many through-vehicles, right-turning vehicles queue for right-turn in intersection. Consequently these right-turning vehicles may become congestible reason.

In this case, separation of through-vehicles and right-turning vehicles by a traffic signal is the most effective measure. In addition, a vehicle crash between right-turning vehicle and through-vehicle may be avoided.

For this reason, in case that many vehicles require turning right, separate phase for right-turn is added as following figures.

As just described, several phase types are proposed responding to traffic conditions and configurations as follows.

- Phase with time-lag

A phase with time-lag is that of two traffic flows under phase-1 (see figure below), green light for one flow is cut off earlier than another green light.
Phase with time-lag

Phase	1	2	3
Flow			

- Separate phase

Instead of usual green lights, separate phase is controlled by green arrow signals composed of straight, right-turn and left-turn. Separate phase completely segregates turning-vehicles (right and/or left) and through-vehicles as following figure.

1-4. TYPE OF TRAFFIC SIGNAL CONTROL

(1) Independent Control (Multi-Pattern Control)

Traffic volume varies depending on time (morning, daytime, evening and night) and a day of week (see figure below). If a cycle time is never change, it may cause a traffic problem. Hence a cycle time is set in accordance with hourly and daily variation based on traffic volume and flow pattern obtained by traffic survey. This operation is called "multi-pattern control". This operation is automatically controlled by electronic programmable timer in the signal controller.

(2) Coordinated (Lined) Control

What does it happened if traffic signals on the same road are independently operated regardless of the neighboring traffic signals? The vehicles might be forced to stop at every intersection. In the result, discontinuous operation may bring traffic jams and/or a lot of wasted time. Coordinated (lined) control which links continuing signals is alleviates this situation.

Traffic signals under coordinated control should be operated in the same cycle time, and linked by offset time.

(3) Area Control (Wide Area Control)

At the major cities, many roads composed of trunk roads, branch roads and/or streets lie in the city and a lot of traffic signals are installed due to the control of traffic flow and prevention of an accident. What does it happened if traffic signals in the same area are independently operated? The traffic would be thrown into a terrible confusion. Even if this situation is controlled by use of the coordinated control for trunk roads, traffic conditions on branch roads and streets would not improved. Hence, area control is required in such situation. Area control is unified management by "Traffic Control Center".

- Image of Area Control

1-5. CASE STUDY (COMPENDIUM METHOD)

(1) Setting Of Cycle Time Base On The Traffic Volume

This method easily derives suitable time for each phase based on the traffic volume data.

1) Setting of Clearance Time and etc

1: Time of All Red: 2 s (G, L)
2: Time of Yellow: 3 s (D, F, K)
3: Time of Blinking for Pedestrian:
Half of Cross Walk Length is divided by 1.5 m (Walker's speed)

In case of right figure
$11.0 \mathrm{~m} / 2 / 1.5 \mathrm{~m}=3.7 \mathrm{~s}(\mathrm{~B})$
$23.0 \mathrm{~m} / 2 / 1.5 \mathrm{~m}=7.7 \mathrm{~s}$ (I)
4: Time of Green for Vehicles and Red for Pedestrians: 3s (C, J)

2) Calculation of Traffic Volume for each Lane

Considerable lane number for design should apply the lane number of inflow side of intersection.
Case of Light No.1:
1st (left) lane: for left-turn + through
2nd (middle) lane: for through
3rd (right) lane: for right-turn
Traffic Volume (vehicle/peak hour)
1st lane: $(\mathrm{c} 1+\mathrm{c} 2) / 2$
2nd lane: c2-((c1+c2)/2-c1)
3rd lane: c3
Ditto calculation is repeated about d1, d2

Light No.	Step	1	2	3	4	5		6	7	8	9	10	11	12
1	1P													
	1V													
	1A													
2	2P													
	2V													
	Time (s)	x	3.7	3	3	x		3	2	x	7.7	3	3	2
		A	B	C	D	E		F	G	H	I	J	K	L
	Cycle	Select from (80,100,120,140,160,180)s												
	Phase	1						2			3			
	Flow	$\underbrace{4}$					4							
		Vehicle and/or Pedestrian Green-light Vehicle Yellow-light Vehicle and/or Pedestrian Red-light Pedestrian Green-light blinking												

Case of Light No. 2
One lane: for all directions
Traffic Volume (vehicle/peak hour)

One lane: $a 1+a 2+a 3$

Ditto calculation is repeated about b1, b2 and b3.
3) Calculation of Sprit Time

Sprit time (allocation time to each phase) is distributed responding to traffic volume calculated above step. Specifically, maximum traffic volume for phase-1 is picked from among 1st lane and 2nd lane of both sides. Then maximum traffic volumes for phase-2 and phase-3 are also picked from among calculated traffic volume, respectively.

Next, a cycle time is selected from among (80s, 100s, 120s, 140s, 160s, and 180s) in consideration of traffic volume. As described in sub-chapter I-3. (2), a cycle time that 120s is not preferable unless absolutely necessary. In addition, in case of low traffic volume (e.g. midnight), a short cycle time is efficient.

4) Calculation of Green Time

Green time is derived from sprit time 3) and other required time 1).
3): sprit time - 1): clearance time, etc = Green time.

(2) Case Study (Jinja Jct. and Kibuli Jct.)

Before stating of case studies, evaluation method has to decide. A signalized junction is normally evaluated as follows by use of saturation degree.

Evaluation of Signalized Junction by Saturation Degree

Saturation Degree	Situation
$0.8>\mathrm{S}$	Desirable Situation
$0.8 \leq \mathrm{S} \leq 1.0$	Acceptable Situation
$1.0<\mathrm{S}$	Capacity Shortage (Bottleneck)

However, calculation of saturation degree is required a lot of information, additionally, calculation steps is so complicated. Hence, in this case study, congestion degree is applied. Here are necessary factors for evaluation by congestion degree:

1) Basic Capacity of Each Type of Lane

Trough Lane: 2,000 p.c.u./lane/hour (p.c.u.: passenger car unit)
Left-Turn and Right-Turn Lane: 1,800 p.c.u./lane/hour
Left-Turn + Through Lane: 2,000 p.c.u./lane/hour
Trough + Right-Turn Lane: 2,000 p.c.u./lane/hour
2) Adjustment Factor for Lane Width
2.5m to $3.0 \mathrm{~m}: 0.95$
3.0m and above: 1.00
3) Adjustment Factor for Approach Gradient

Gradient $(\%)$	Adjustment Factor	Gradient $(\%)$	Adjustment Factor
-6	0.95	1	1.00
-5	0.96	2	0.95
-4	0.97	3	0.90
-3	0.98	4	0.85
-2	0.99	5	0.80
-1	1.00	6	0.75
0	1.00		

4) Adjustment Factor for Heavy Vehicles (Ratio of Heavy Vehicles: \%)

Ratio (\%)	Adjustment Factor	Ratio (\%)	Adjustment Factor
0	1.00	55	0.72
5	0.97	60	0.70
10	0.93	65	0.69
15	0.90	70	0.67
20	0.88	75	0.66
25	0.85	80	0.64
30	0.83	85	0.63
35	0.80	90	0.61
40	0.78	95	0.60
45	0.76	100	0.59
50	0.74		

5) Adjustment Factor for Left-Turning and Right-Turning Vehicles and Pedestrians

Calculation for these factors is so complicated. Hence, in this compendium method, these factors are not applied.
6) Result of Case Study for Jinja Junction

Note: Traffic volume surveyed by the Study Team is applied. (January, 2010) Red letters show proposed allocation time by the Study Team Yellow cells show that there is an improvement effect.

Note: Traffic volume surveyed by the Study Team is applied. (Jun, 2010)
Red letters show proposed allocation time by the Study Team
Yellow cells show that there is an improvement effect.
Note that traffic volume of both junctions is already converted to volume of passenger car unit. Hence, adjustment factor for large vehicle is not considered. Conversion factor from large vehicle to passenger car is normally decided between 2.0 to 3.0.

7) How to Derive Congestion Degree (e.g. TR lane of Section A at Kibuli Jct.: PM peak data)

Capacity/lane/hour $=2,000$ p.c.u./lane/hour
Every adjustment factors (lane width, grade and share of large vehicle) are 1.0
Adjustment factors for right-turning vehicles, left-turning vehicles and pedestrians are not applied in this compendium method.

Hence:

Calculated Capacity/lane/hour = 2,000 x $1.0 \times 1.0 \times 1.0=2,000$ p.c.u/lane/hour
Next, allocated time for TR lane of section A should be considered. Its time is 41 s , and a cycle time is 120 s . It is therefore:

Actual capacity/lane/hour $=2,000$ p.c.u. $x 41 \mathrm{~s} / 120$ s $=683$ p.c.u./lane/hour
Finally, ratio of traffic volume (p.c.u./lane/hour) and actual capacity (p.c.u./lane/hour) is the congestion degree.

Congestion degree $=536 / 683=0.78$
Congestion degree of whole junction is derived from ratio of total traffic volume and total actual capacity.

Congestion degree at whole junction $=$
$(536+535+226+686+878+186) /(683+795+615+867+795+165)=0.78$

Periodic maintenance should be carried out with necessary interval specified in the "Check Sheets". When failures are found by inspections, those facilities should be repaired or changed as soon as possible. That work progress should be recorded in "Working Sheets".

2-1. MAINTENANCE FOR TRAFFIC SIGNALS

(1) Inspection for Distribution Board

- Check of main unit of distribution board. When some damages such as blemishes and/or rusts are found, those damages should be repaired:

Blemishes: repainting
Rusts: rub off the rust and repainting

- Cleaning of outside and/or inside of distribution board

Be careful not to touch the switch and/or terminal

- Check of slacks of attaching screws and/or bolts. When slacks are found, those should be retightened.

Be careful not to tighten with excessive power

- Check of slacks and/or coming off of wirings. When slacks and/or coming off are found, those should be reconnected.

Be careful not to make wiring short out

- Check of coatings of wirings. When some damages are found, those should be recoated with insulating tapes.
- Measure of input voltage of commercial power supply

Be careful not to make wiring short out
(2) Inspection for Controller

- Check of controller. When some damages such as blemishes and/or rusts are found, those damages should be repaired:

Blemishes: repainting
Rusts: rub off the rust and repainting

- Cleaning of outside and/or inside of controller

Be careful not to touch the switch and/or terminal

- Check of slacks of attaching screws and/or bolts. When slacks are found, those should be retightened.

Be careful not to tighten with excessive power

- Check of slacks and/or coming off of wirings. When slacks and/or coming off are found,
those should be reconnected.

Be careful not to make wiring short out

- Check of coatings of wirings. When some damages are found, those should be recoated with insulating tapes.
- Check of date and clock time. When date and clock time are not matched, those should be re-coordinated.
- Measure of voltage of power input unit
- Measure of voltage of power output unit to traffic signal
- Measure of voltage of controller power section

(3) Inspection for Traffic Signals

- Check of traffic signal. When some damages such as blemishes, rusts and/or gaps are found, those damages should be repaired:

Blemishes: repainting
Rusts: rub off the rust and repainting
Gaps: fill a gap by use of tapes and/or putties

- Cleaning of outside and/or inside of traffic signal and lenses

Be careful not to touch the switch and/or terminal

- Check of slacks of attaching screws and/or bolts. When slacks are found, those should be retightened.

Be careful not to tighten with excessive power

- Check of slacks and/or coming off of wirings. When slacks and/or coming off are found, those should be reconnected.

Be careful not to make wiring short out

- Check of coatings of wirings. When some damages are found, those should be recoated with insulating tapes.
- Check of visibility of signals at predefined position. When visibilities are not appropriate, traffic signals should be turned around.

Signal for vehicles: to be viewable form stop line and 30m before stop line
Signal for pedestrians: to viewable from center of zebra crossing and stopping position

- Check of lighting

Bulb type: When light bulbs are burned out, those should be changed promptly.

LED type: When some LEDs are burned out and visibility is not appropriate, LED unit should be changed.

(4) Inspection for Signal Poles

- Check of signal poles. When some damages such as blemishes, rusts, gaps, tilts and/or bentnesses are found, those damages should be repaired:

Blemishes: repainting
Rusts: rub off the rust and repainting
Gaps: record of the degree and reinforcement or re-built where necessary
Tilts and bentnesses: record of the degree and reinforcement or re-built where necessary

- Check of base of poles. When some damages such as cracks and/or bumps are found, those damages should be reinforced.
- Cleaning and removal of posters and/or advertising displays.

(5) Inspection for Hand-hole

- Check of cover of hand-holes. When some damages such as cracks and/or breakings are found, those damages should be repaired or changed.
- Check of inside of catch pits. When some damages such as cracks and/or breakings are found, those damages should be reinforced with cements or mortar. In addition, when water and/or solid refuses are found inside catch pit, those should be removed.
- Check of signal cables inside catch pits. When damages are found, those should be recoated with insulating tapes.
- After cleaning of frame for covers, close the cover steady.

2-2. MAINTENANCE FOR POWER SUPPLY UNITS

(1) Refuel to AEG (Automatic Engine Generator)

- Refuel to AEG should be done before getting empty. Work day and refuel volume should be recorded.
- Accumulation running time should be recorded.
- Check of error display on operation panel. When error display is indicated on operation panel, it should be reset in accordance with the operation manual.
- Check of fuel leakage. When fuel leakage is found, it should be repaired and cleaned.
- After making AEG run, noises, unusual odors and/or unusual vibrations should be checked.

(2) Inspection of AEG (Automatic Engine Generator)

- Check of AEG body. When some damages such as blemishes and/or rusts are found, those damages should be repaired:

Blemishes: repainting
Rusts: rub off the rust and repainting

- Check of oil leakage. When oil leakage is found, it should be repaired and cleaned.
- Change of engine oil. Used amount of oil should be recorded.
- Cleaning of oil filter. When pollution of oil filter does not clean off, oil filter should be changed.

Be careful not to pollute oil filter.

- Cleaning of fuel filter. When pollution of fuel filter does not clean off, fuel filter should be changed.

Be careful not to pollute fuel filter.

- Drain from fuel tank.
- Cleaning of air cleaner. When pollution of air cleaner does not clean off, air cleaner should be changed.

Be careful not to pollute air cleaner.

- Cleaning of inside and outside of AEG, and intake air filter

Be careful not to touch the switch and/or terminal

- Check of slacks of attaching screws and/or bolts. When slacks are found, those should be retightened.

Be careful not to tighten with excessive power

- Check of slacks and/or coming off of wirings. When slacks and/or coming off are found, those should be reconnected.

Be careful not to make wiring short out

- Check of coatings of wirings. When some damages are found, those should be recoated with insulating tapes.
- Check of date and clock time of AEG. When date and clock time are not matched, those should be re-coordinated.
- Measure of output voltage
- Measure of output current

(3) Inspection of AVR (Automatic Voltage Regulator)

- Cleaning of AVG

Be careful not to touch the switch and/or terminal

- Check of slacks and/or coming off of wirings. When slacks and/or coming off are found, those should be reconnected.

Be careful not to make wiring short out

- Check of coatings of wirings. When some damages are found, those should be recoated with insulating tapes.
- Measure of input voltage
- Measure of input current
- Measure of output voltage
- Measure of output current
(4) Inspection of UPS (Uninterruptible Power System)
- Cleaning of intake duct after opening of main body and/or front panel.

Be careful not to touch the switch and/or terminal

- Check of slacks and/or coming off of wirings. When slacks and/or coming off are found, those should be reconnected.

Be careful not to make wiring short out

- Check of coatings of wirings. When some damages are found, those should be recoated with insulating tapes.
- Check of exchange time of battery. After pressing the self- test button, if low battery service mark is illustrated, the battery may need replacing.

2-3. CHECK SHEETS FOR EACH INSPECTION

The check sheets for each inspection are attached in this sub-chapter for efficient and effective maintenance works. The inspector should take these check sheets to the site and record at site.

After finishing of inspection works, responsible person should check and file these records.
Component of check sheets is as follows:

- TRAFFIC SIGNAL SYSTEM: Distribution Panel / Traffic Signal Controller
- TRAFFIC SIGNAL SYSTEM: Traffic Signal Light for Vehicle GYR
- TRAFFIC SIGNAL SYSTEM: Traffic Signal Light for Vehicle 3 Arrows
- TRAFFIC SIGNAL SYSTEM: Traffic Signal Light for Vehicle 1 Arrow
- TRAFFIC SIGNAL SYSTEM: Traffic Signal Light for Pedestrian
- TRAFFIC SIGNAL SYSTEM: Signal Pole
- TRAFFIC SIGNAL SYSTEM: Hand-hole
- POWER BACK UP SYSTEM: Automatic Engine Generator / Automatic Voltage Regulator / Uninterruptible Power System
- AUTOMATIC ENGINE GENERATOR: REFUEL SHEET
- WORK RECORD SHEET
- MAINTENANCE TOOLS / INSTRUMENTS
- SPARE PARTS LIST
TRAFFIC SIGNAL SYSTEM MAINTENANCE CHECK SHEET
(Distribution Panel / Traffic Signal Controller)
Need to maintenance: Every 6 Months
ジ

Equipment	Item	Result		Remarks
Distribution Panel	Damages of body (flaw, rust, etc.)	\square ок	$\square \mathrm{NG}$	
	Cleaning outside / inside	\square DONE		
	Tightening of bolts / screws	\square ок	$\square \mathrm{NG}$	
	Comnection of wires / terminals	\square ок	$\square \mathrm{NG}$	
	Damages of cables/wires coating	\square ок	$\square \mathrm{NG}$	
	Measurement of commercial power input		V	
Traffic Signal Controller	Damages of body (flaw, rust, etc.)	\square ок	$\square \mathrm{NG}$	
	Cleaning outside / inside	\square DONE		
	Tightening of bolts / screws	\square Oк	$\square \mathrm{NG}$	
	Connection of wires / terminals	\square ок	$\square \mathrm{NG}$	
	Damages of cables/ wires coating	\square ок	$\square \mathrm{NG}$	
	Value of time / date	\square ок	\square RESET	
	Measurement of power input		V	
	Measurement of traffic light output		v	
	Measurement of control power output		V	

TRAFFIC SIGNAL SYSTEM MAINTENANCE CHECK SHEET

	$\begin{aligned} & \text { 琞 } \\ & \text { = } \\ & \text { y } \end{aligned}$								
		$\begin{aligned} & \frac{4}{0} \\ & \square \\ & \square \end{aligned}$	$\begin{array}{ll} \frac{4}{0} & 6 \\ \square & \vdots \\ \square & \square \end{array}$	$\begin{array}{ll} \frac{4}{0} & \vdots \\ \square & \square \\ \square \end{array}$		$\begin{array}{lc} \frac{4}{0} & 0 \\ \square \\ \square \end{array}$		$\begin{array}{ll} \frac{1}{0} & 6 \\ \square & \square \end{array}$	$\begin{aligned} & \frac{4}{0} \\ & \square \\ & \square \end{aligned}$
$\begin{aligned} & \hat{\bar{B}} \\ & \text { ص. } \end{aligned}$		$\begin{aligned} & \frac{1}{0} \\ & \square \\ & \square \end{aligned}$							苍

	$\begin{array}{ll} \frac{4}{0} & \vdots \\ \square & \square \end{array}$	$\begin{array}{cc} \frac{4}{0} & \vdots \\ \square & \square \end{array}$	$\begin{array}{ll} \stackrel{4}{\circ} & \vdots \\ \square \\ \square & \square \end{array}$	$\begin{array}{ll} \frac{4}{0} & 0 \\ \square & \square \\ \square & \square \end{array}$	$\begin{array}{ll} \frac{4}{0} & 0 \\ \square & \square \\ \square & \square \end{array}$	$\begin{array}{ll} \frac{4}{0} & 0 \\ \square & \square \\ \square & \square \end{array}$	$\begin{array}{ll} \frac{1}{0} & 0 \\ \square & \square \end{array}$	$\begin{array}{ll} \frac{4}{0} & \boxed{2} \\ \square & \square \end{array}$
	$\begin{aligned} & \frac{4}{\circ} \quad \begin{array}{c} \text { 亿 } \\ \square \end{array} \\ & \square \square \end{aligned}$	$\begin{array}{ll} \frac{14}{0} & \vdots \\ \square & \square \end{array}$	$\begin{aligned} & \stackrel{y}{\circ} \quad \stackrel{y}{乙} \\ & \square \square \end{aligned}$	$\begin{array}{ll} \frac{4}{0} & \vdots \\ \square & \square \end{array}$	$\begin{array}{ll} \frac{4}{0} & \vdots \\ \square & \square \end{array}$	$\left\lvert\, \begin{array}{ll} \frac{4}{0} & \vdots \\ \square & \square \end{array}\right.$	$\begin{array}{ll} \frac{4}{0} & 0 \\ \square & \square \end{array}$	$\frac{b}{0} \quad \text { ל }$

		$\begin{array}{ll} \frac{1}{0} & \vdots \\ \square \\ \square & \square \end{array}$	$\begin{array}{ll} \stackrel{y}{0} & \vdots \\ \text { 亿 } \\ \square \\ \square \end{array}$	$\begin{array}{ll} : \frac{3}{0} & y \\ Z \\ \square & \square \end{array}$	$\begin{array}{ll} \frac{4}{0} & \vdots \\ \square & \square \\ \square & \square \end{array}$	$\begin{array}{ll} \frac{4}{0} & \vdots \\ Z & \square \\ \square & \square \end{array}$	$\begin{array}{ll} \frac{i y}{0} & \boxed{Z} \\ \square & \square \end{array}$	$\begin{aligned} & \frac{3}{\circ} \quad \stackrel{y}{4} \\ & \square \square \end{aligned}$	ל \square \square
		$\left\lvert\, \begin{array}{ll} \frac{14}{0} & \vdots \\ \square & \square \end{array}\right.$	$\begin{array}{cc} \frac{4}{0} & \vdots \\ \square \\ \square \end{array}$	$\begin{array}{ll} \frac{4}{0} & \boxed{2} \\ \square & \square \end{array}$	$\begin{array}{ll} \frac{4}{0} & \vdots \\ \square & \square \end{array}$	$\begin{aligned} & \frac{1}{0} \quad \stackrel{y}{2} \\ & \square \square \end{aligned}$	$\begin{aligned} & \frac{1}{0} \quad \stackrel{y}{2} \\ & \square \square \end{aligned}$		$\begin{array}{ll} \frac{14}{0} & \vdots \\ \square & \square \end{array}$
						$\square \sum_{0}^{\infty}$			
		$\begin{array}{ll} \frac{3}{3} & \vdots \\ \square & \vdots \\ \square & \square \end{array}$	$\begin{array}{ll} \frac{4}{3} & \vdots \\ \square \\ \square & \square \end{array}$	$\begin{array}{ll} \frac{4}{3} & 0 \\ 0 & y \\ \square & \square \end{array}$	$\begin{array}{ll} \frac{4}{3} & 0 \\ \square & \square \\ \square & \square \end{array}$	$\begin{array}{ll} \ddot{4} & \vdots \\ \vdots & Z \\ \square & \square \end{array}$	$\begin{array}{ll} \frac{4}{3} & \vdots \\ \square \\ \square \\ \square \end{array}$	$\begin{array}{cc} \stackrel{4}{3} & \vdots \\ \square \\ \square \\ \square \end{array}$	$\begin{array}{ll} \frac{4}{3} & \vdots \\ \square & \square \\ \square & \square \end{array}$
总	号它	－	N	m	＋	n	\bigcirc	N	∞

TRAFFIC SIGNAL SYSTEM MAINTENANCE CHECK SHEET
(Traffic Signal Light for Vehicle 3 Arrows)
Need to maintenance: Every 6 Months

TRAFFIC SIGNAL SYSTEM MAINTENANCE CHECK SHEET

								Need to maintenance : Every 6 Months	
$\begin{array}{\|c\|} \hline \begin{array}{c} \text { No. } \\ \text { of } \\ \text { Lights } \end{array} \end{array}$	Damages of body (flaw, rust, etc.)	Cleaning outside lens	Tightening of bolts screws	Connection of wires terminals	Damages of cables / wires coating	Direction of traffic light	$\begin{gathered} \text { Light } \\ \text { condition } \end{gathered}$		Remarks
1	$\begin{aligned} & \square_{\mathrm{OK}} \\ & \square_{\mathrm{NG}} \end{aligned}$	$\underset{\text { DONE }}{\square}$	$\begin{aligned} & \square_{\mathrm{OK}} \\ & \square \mathrm{NG}^{2} \end{aligned}$	$\begin{aligned} & \square \text { ОК } \\ & \square \quad \text { NG } \end{aligned}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square \mathrm{NG} \end{aligned}$	$\begin{aligned} & \square_{\mathrm{OK}} \\ & \square_{\mathrm{NG}} \end{aligned}$	$\begin{aligned} & \square_{\mathrm{OK}}^{\mathrm{O}} \\ & \square_{\mathrm{NG}} \end{aligned}$		
2	$\begin{aligned} & \square_{\mathrm{OK}} \\ & \square_{\mathrm{NG}} \end{aligned}$	$\underset{\text { DONE }}{\square}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square \mathrm{NG}^{2} \end{aligned}$	$\begin{aligned} & \square \text { OK } \\ & \square \quad \mathrm{NG} \end{aligned}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square \mathrm{NG} \end{aligned}$	$\begin{aligned} & \square_{\mathrm{OK}} \\ & \square_{\mathrm{NG}} \end{aligned}$	$\begin{aligned} & \square^{\mathrm{OK}} \\ & \square_{\mathrm{NG}} \end{aligned}$		
3	$\begin{aligned} & \square \mathrm{OK} \\ & \square_{\mathrm{NG}} \end{aligned}$	$\underset{\text { DONE }}{\square}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square_{\mathrm{NG}} \end{aligned}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square \mathrm{NG} \end{aligned}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square \mathrm{NG} \end{aligned}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square_{\mathrm{NG}} \end{aligned}$	$\begin{aligned} & \square^{\mathrm{OK}} \\ & \square_{\mathrm{NG}} \end{aligned}$		
4	$\begin{aligned} & \square \mathrm{OK} \\ & \square_{\mathrm{NG}} \end{aligned}$	DONE	$\begin{aligned} & \square \mathrm{OK} \\ & \square \mathrm{NG} \end{aligned}$	$\begin{aligned} & \square \text { OK } \\ & \square{ }^{\mathrm{NG}} \end{aligned}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square \mathrm{NG} \end{aligned}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square_{\mathrm{NG}} \end{aligned}$	$\begin{aligned} & \square_{\mathrm{OK}}^{\mathrm{OK}} \\ & \square_{\mathrm{NG}} \end{aligned}$		
5	$\begin{aligned} & \square_{\mathrm{OK}} \\ & \square_{\mathrm{NG}} \end{aligned}$	DONE	$\begin{aligned} & \square \mathrm{OK} \\ & \square \mathrm{NG}^{2} \end{aligned}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square \mathrm{NG} \end{aligned}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square \mathrm{NG} \end{aligned}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square_{\mathrm{NG}} \end{aligned}$	$\begin{aligned} & \square_{\mathrm{KK}}^{\mathrm{OK}} \\ & \square_{\mathrm{NG}} \end{aligned}$		
6	$\begin{aligned} & \square_{\mathrm{OK}}^{\mathrm{O}} \\ & \square_{\mathrm{NG}} \end{aligned}$	$\underset{\text { DONE }}{\square}$	$\begin{aligned} & \square_{\mathrm{OK}}^{\mathrm{oK}} \\ & \square_{\mathrm{NG}} \end{aligned}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square \mathrm{NG} \end{aligned}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square \mathrm{NG} \end{aligned}$	$\begin{aligned} & \square_{\mathrm{OK}} \\ & \square_{\mathrm{NG}} \end{aligned}$	$\begin{aligned} & \square^{\mathrm{OK}} \\ & \square_{\mathrm{NG}} \end{aligned}$		
7	$\begin{aligned} & \square_{\mathrm{OK}}^{\mathrm{OK}} \\ & \square_{\mathrm{NG}} \end{aligned}$	$\underset{\text { DONE }}{\square}$	$\begin{aligned} & \square_{\mathrm{OK}}^{\mathrm{oK}} \\ & \square_{\mathrm{NG}} \end{aligned}$	$\begin{aligned} & \square \text { ОК } \\ & \square \quad{ }_{\mathrm{NG}} \end{aligned}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square \mathrm{NG}^{2} \end{aligned}$	$\begin{aligned} & \square^{\mathrm{OK}} \\ & \square_{\mathrm{NG}} \end{aligned}$	$\begin{aligned} & \square^{\mathrm{oK}} \\ & \square_{\mathrm{NG}} \end{aligned}$		
8	$\begin{aligned} & \square_{\mathrm{OK}} \\ & \square_{\mathrm{NG}} \end{aligned}$	DONE	$\begin{aligned} & \square^{\mathrm{OK}} \\ & \square_{\mathrm{NG}} \end{aligned}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square \mathrm{NG} \end{aligned}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square \mathrm{NG} \end{aligned}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square_{\mathrm{NG}} \end{aligned}$	$\begin{aligned} & \square^{\mathrm{OK}} \\ & \square_{\mathrm{NG}} \end{aligned}$		

TRAFFIC SIGNAL SYSTEM MAINTENANCE CHECK SHEET

TRAFFIC SIGNAL SYSTEM MAINTENANCE CHECK SHEET

$\begin{gathered} \begin{array}{c} \text { No. } \\ \text { of } \\ \text { Polese } \end{array} \end{gathered}$	Check of growing hole		Check ofinclination / bend		Damages of body (flaw, body (flaw,	$\begin{gathered} \hline \text { Damages of } \\ \text { root } / \\ \text { fonting } \\ \hline \end{gathered}$	Cleaning	Remarks
1	\square № \square YES (Size:)	$\square \mathrm{No}$ $\square \mathrm{YES}$ (Degree)	$\begin{aligned} & \square \mathrm{OK} \\ & \square \mathrm{NG} \end{aligned}$		\square	
2	\square № $\square^{\text {YES (Size: }}$)	\square No YES (Degree:)	$\begin{aligned} & \square \mathrm{oK} \\ & \square \mathrm{NG} \end{aligned}$	$\begin{aligned} & \square \mathrm{oK} \\ & \square \mathrm{NG} \end{aligned}$	\square	
3	\square № $\square^{\text {YES (Size: }}$)	\square No VES (Degree:)	$\begin{gathered} \square \mathrm{OK} \\ \square \quad \mathrm{NG} \end{gathered}$	$\begin{aligned} & \square \mathrm{ok} \\ & \square \mathrm{NG} \end{aligned}$	\square	
4	\square № \square IES (Size:)	\square No \square YES (Degree:)	$\begin{aligned} & \square \text { ok } \\ & \square \mathrm{NG} \end{aligned}$	OK NG	\square	
5	\square № $\square^{\text {YES (Size: }}$)	\square No $\square^{\text {YES }}$ (Degree)	$\begin{aligned} & \square \mathrm{oK} \\ & \square \mathrm{NG} \end{aligned}$	$\begin{aligned} & \square \mathrm{OK} \\ & \square \mathrm{NG} \end{aligned}$	\square	
6	\square No $\square^{\text {YES (Size: }}$)	$\square \mathrm{No}$ YES (Degree:)	$\begin{aligned} & \square \mathrm{oK} \\ & \square \mathrm{NG} \end{aligned}$	$\begin{aligned} & \square \mathrm{ok} \\ & \square \mathrm{NG} \end{aligned}$	\square	
7	\square № $\square^{\text {YES (Size: }}$)	\square No $]^{\text {YES }}$ (Degree)	$\begin{aligned} & \square \mathrm{oK} \\ & \square \mathrm{NG} \end{aligned}$	OK NG	\square	
8	\square № \square^{YES} (Size:)	$\square \mathrm{No}$ YES (Degree:)	$\begin{aligned} & \square \mathrm{oK} \\ & \square \quad \mathrm{NG} \\ & \hline \end{aligned}$	$\begin{aligned} & \square \mathrm{oK} \\ & \square \quad \mathrm{NG} \\ & \hline \end{aligned}$	\square	
9	\square № $\square \mathrm{YES}$ (Size:)	$\square \mathrm{No}$ \square YES (Degree)	$\begin{aligned} & \square \mathrm{ok} \\ & \square \mathrm{NG} \end{aligned}$	OK NG	\square	
10	\square № $\square^{\text {YES (Size: }}$)	\square № $\square^{\text {YES (Degree }}$,	$\begin{array}{r} \square \mathrm{oK} \\ \square \quad \mathrm{NG} \\ \hline \end{array}$	$\begin{array}{r} \square \\ \square \mathrm{ok} \\ \square \mathrm{NG} \\ \hline \end{array}$	$\square_{\mathrm{DONE}}^{\square}$	

TRAFFIC SIGNAL SYSTEM MAINTENANCE CHECK SHEET
Need to maintenance: Every 12 Months Date

POWER BACK UP SYSTEM MAINTENANCE CHECK SHEET
(Automatic Engine Generator / Automatic Voltage Regulator / Uninterruptible Power System)

AUTOMATIC ENGINE GENERATOR REFUEL SHEET

Date	Amount of refuel	Accumulation running time	Check oferror indicartion		Check of fuel leakage		Check of unusual condition while running		Remarks
/	L	H	\square OK	$\square \mathrm{NG}$	\square OK	$\square \mathrm{NG}$	\square ОК	$\square \mathrm{NG}$	
1	L	H	$\square \mathrm{OK}$	$\square \mathrm{NG}$	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square ок	$\square \mathrm{NG}$	
1	L	H	$\square \mathrm{OK}$	$\square \mathrm{NG}$	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square OK	$\square \mathrm{NG}$	
1	L	H	$\square \mathrm{OK}$	$\square \mathrm{NG}$	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square OK	$\square \mathrm{NG}$	
1	L	H	\square OK	$\square \mathrm{NG}$	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square ок	$\square \mathrm{NG}$	
/	L	H	$\square \mathrm{OK}$	$\square \mathrm{NG}$	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square Ок	$\square \mathrm{NG}$	
/	L	H	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square OK	$\square \mathrm{NG}$	\square ок	$\square \mathrm{NG}$	
11	L	H	$\square \mathrm{OK}$	$\square \mathrm{NG}$	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square OK	$\square \mathrm{NG}$	
11	L	H	$\square \mathrm{OK}$	$\square \mathrm{NG}$	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square OK	$\square \mathrm{NG}$	
1	L	H	$\square \mathrm{OK}$	$\square \mathrm{NG}$	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square OK	$\square \mathrm{NG}$	
1	L	H	$\square \mathrm{OK}$	$\square \mathrm{NG}$	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square ОК	$\square \mathrm{NG}$	
1	L	H	\square OK	$\square \mathrm{NG}$	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square ок	$\square \mathrm{NG}$	
1	L	H	$\square \mathrm{OK}$	$\square \mathrm{NG}$	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square ок	$\square \mathrm{NG}$	
1	L	H	$\square \mathrm{OK}$	$\square \mathrm{NG}$	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square OK	$\square \mathrm{NG}$	
1	L	H	\square OK	$\square \mathrm{NG}$	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square OK	$\square \mathrm{NG}$	
1	L	H	\square OK	$\square \mathrm{NG}$	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square Ок	$\square \mathrm{NG}$	
1	L	H	\square OK	$\square \mathrm{NG}$	\square OK	$\square \mathrm{NG}$	\square ок	$\square \mathrm{NG}$	
1	L	H	$\square \mathrm{OK}$	$\square \mathrm{NG}$	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square ок	$\square \mathrm{NG}$	
1	L	H	$\square \mathrm{OK}$	$\square \mathrm{NG}$	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square Ок	$\square \mathrm{NG}$	
1	L	H	\square OK	$\square \mathrm{NG}$	$\square \mathrm{OK}$	$\square \mathrm{NG}$	\square OK	$\square \mathrm{NG}$	

TRAFFIC SIGNAL SYSTEM / POWER BACK UP SYSTEM WORK RECORD SHEET

TRAFFIC SIGNAL SYSTEM / POWER BACK UP SYSTEM MAINTENANCE TOOLS / INSTRUMENT

Item	Type	Purpose for use	Remarks
Screwdriver	Plus	Tighten each screws	Prepare various size for necessity
Serewdriver	Minus	Tighten each screws / Connect wires to no-screw terminal block	Prepare various size for necessity
Spanner		Tighten each bolts / nuts	Prepare various size for necessity
Nippers		cut the wires / cables	
Terminal crimping plier		Crimp terminal to the end of wires	Prepare various size for necessity
Key for Traffic signal controller	TSEC	Open the door of traffic signal controller	
Key for Automatic Engine Generator		Open the door of automatic engine generator	
Key for Control house		Open the door of control house	
Pulling hooks for handohole		Open the cover of handhole	
Voltmeter	Measure ouotput / input power		
Cloth	Clean / Wipe		
Sandpaper	Remove rust		
Vinyl tape	Protect damaged coating of wires / non-terminaled wires		
Level	Measure inclination / bend degrees		
Scissors / Cutter / Knife	Remove alien substance		
Brush / Broom / Air spouter		Clean	
Soap	Clean equipment bodies / air cleaner / intake filter		
Watch / Calendar	Reset time / date		
Oil pan	Store drained oil / water		
Oil pourer / Fuel pourer	Pour oil / fuel		
Truck mount aerial work platform		Work aerial place (traffic signal light etc.)	

TRAFFIC SIGNAL SYSTEM / POWER BACK UP SYSTEM SPARE PARTS LIST

Equipment	Item	Type	Amount	Remarks
Traffic signal controller	Power unit		2	for TSEC controller
	Noise filter	MAS-1210-33	2	for TSEC controller
	Main power breaker	KM-2S 30A	2	for TSEC controller
	Traffic light breaker	BS1113	2	for TSEC controller
	Surge absorber	ERZV14D221	40	for TSEC controller
	Surge absorber	ERZV14D391	10	
	Surge absorber	ERZV14V330CS	20	
	Surge absorber	ERZV14V221CS	15	
	Surge absorber	ERZV14V391CS	10	
Traffic signal light	Bulb	240 V	10	
	Traffic signal light (LED)	Vehicle GYR	1	
	Traffic signal light (LED)	Pedestrian	1	
	Traffic signal light (LED)	Vehicle 1 arrow	1	
AVR	Thyristor board		1	
AEG	Fan motor		1	
	Fuse	10A	4	
	Fuse	1A	2	
	Fuse	5A	16	
	Light oil		50	for refuel / clean filters
	Engine oil	SAE 10W-30	3	
	Oil filter		1	
	Fuel filter		1	
	Air filter		1	
	Surge absorber	ERZV20D271	20	

3-1: POWER SUUPLY

Matsunaga

OPERATING INSTRUCTIONS

AUTOMATIC VOLTAGE REGULATOR

TSA－1030－CJ

（4）䊮松示製作所 Matsunaga Manufacturing Co．，Ltd．

CAUTIONS FOR SAFETY

Head "CatTIONS FOR SAFETY" well before the operation of the unit and treat the unit properly.

AThe below mentioned warnings are for your safe and secure use of the unit in order to avold troubles and harms. Trong treatments may canse sone dan" gerous situations. which we here deqide to three categories as "DANGER" "界ABIMG" \& "Cante". Follow surely to this important notice.

AThe marks and their meanings are as the below.

There have potential danger of death or serious injury. And the emergency neasure shall be taken, if this situation happens. (highest urgency and danger)

There have potential danger of death or serious injury.

There have potential danger of slight injury and naterial damage.

UREMTGS OF MARAS

NECESSARY PRACTICE

$-$
Teep several limitations prescribed here and do not excessive treatments and uses. And moke properly routine checks and maintenances for previnting all troubles.
This "CaUTIOAS For SAPETY" wust be kept beside of persons in charge of operation and/or waintenance.

CONHECTNG TORXS TO THE POTEX SOERCE

(ELECTRLE TORK)

Several regulations are prepared depend on classes of facilities. The work pust be followed to the regulations of each country.

(INSTALLATION, CHECA, REPARE OPRRATION OF CHARGING ROUTE)

Only eqgineers tho have studied specially about electricity must attend.

(GROUNDTNG TORX)

Grounding work must follow to regulations of each countries.

Do not connect absolutely grounding vire with gus tube. * Danger of death ane serieus injury.

EOCATION OF INSTALLATION

Do not install the unit at where explosives and/or combustibles are sept or will be used.

* The unit is made of metal.

So corrosion, rust and electw rical spark say cause explo sion andfor fire.
(EXPLOSIVES)

(COMEUSTIBLES)
(INGITIBLES)
(CAMEUSTIBLE GUS)

(OXIDES)

Fin the unit to the floor, pillar and wall in order not to fall down or nove by earthquack.

* Falling dow nay cause injury.

Do not put anything and step on the unit.

* Radiation ill be affected and the inside temperature will rise.
* Objects on the unit nay be scorcherd by heat.
* Top cover of the unit may be curved by heat.

Do not disassedble, repair and/or reconstruct the unit recklessly. * It may cause malfunction, trouble and/or burnt.

Do not touch were this mark is sealed on at checking inside of the unit, even if the input power is turned off.

* It may cause death or serious injury by electric shock.

Do not touch the termitals and studs during operation. which this maris is sealed on. * It may cause death or serious injury by electric shock.

TRANSORTATION \& MOVE

Avoid rain and water-drops.

* It way cause electric shock and nalfunction.

Do not put down sideways. Fix the unit carefully in order not to fall down by vibration, * It way cause damages of inside components and nalfunction.

flang up the unit. using all banger belts.

* It may cause serious injury by drop of the unit.

Do not change carelessly adjusting resistors on P.C. Board. Because the values are already set properiy at our factory.

* It nay canse damages of your equipuents, unstable functions and/or troubles of the unit.

Do not do a insulatiog resistance test between input (${ }^{(3)}$ out ${ }^{\prime \prime}$ put) and E-termmal(Frame).
The tes: for inculated products must be doae only berween Input and output.

* It may cause danage and/or malfunction of the unit.

In case of meggar test. use irstrument of DC500\%.

* It may cause damage and/or walfunction of P.C. Board.

Do not keep the unit under the below mentioned locations for temporary storage or unused Sor a certain period.

- There water-drops come into.
- Where relative humidity rises more than 85t.
- There ambient temp. drops under $-10{ }^{\circ} \mathrm{C}$ (or makes dews) and rise over $+50^{\circ} \mathrm{C}$.
- there there have gus and oxide objects. which takes corrosion of wetal.
© There there have dust, metal powder and electric conductive porder.
© Where receives vibrations and shocks.
- there sun-shine cowes into directly.
* These may cause electric shock. injury, fire, walfunction of the unt
(MAMTENANCE a ROUTIN CIECX)
Turn off the nain suitch(iaput) in case of maintenance and rout in check.
Do not touch your hand and body to electric conductive part of the unit.
* It may cause electric shock and injury.
- Inside components will be anaciated in extreanely rapid, if maintenance and routin check are not effected. Our warranty excludes some troubles caused by lack of mantenance or routin check.

(ACCIDENT AT OPRRATION)
Turn off the wain switch and salve causes. Restart the operation.
* It nay cause electric shock. damage and/or fire.

取 报 誩总 明 書

OPERATING INSTRUCTIONS
○添扵の標準品取扱説明晝を，御参照下さい。
Please refer to the attached operating instructions for standard articles．
○下記の項目以外の説明は，摽準品取报説明書と同じです。
Descrintions of items other than the following，are the same as those listed in the operating instructions for standard articles．

3．仕梌
Specifications

$$
4 \mathrm{GH}-18363 \mathrm{~A} \text { による。 }
$$

4－4．保㒒回路

Protection
1）T1，T4，L1，L2，L3．L4にサーモスタットを取付け，温度が 120 C以上になった時，入力ブレーカの引き外しコイルを勤作させ湾断します。 This unit is mounted thermostats on T1，T4，L1，L2，L3 and L4 as to trip the input circuit breaker，when tempereture is over 120 c ．
 また，入力電圧が180V以上を私与耖間継続すると，自動的に復曼します。
If the input voltage of the regulator deviates by below 180 y the low voltage protecton circuit intervenes and open the magnetic switch．
And when inpul voltage resumes within below 180 y at continue approx． 5 seconds of the magnetic switch is automatically closed．

5．外敏見•膏十娄品
Panel Features
3GM-7076A 以よる。

Power Supply
本淁蒖への入力電源容量は，最大値で定格出力容量の1．97倍となります。したがって，
入力電源および入力期配線材は，この最大容量を満足する物を使用して下さい。
The power input ray reach 1.97 times the rated power output of the regulator． When selecting the power source and connecting cables between the power source and the regulator，keep this in mind．

1 4．吉回路
Circuit Diagrati

$$
4 \mathrm{GH}-18364 \text { による。 }
$$

1 5．配線本上筸壬降下 Recomended Comecting Cables

汿．
ac aitomatic voltage begilator specifications (isolated thybistor typel

$\begin{aligned} & 6 z \\ & 465 \\ & 68 \\ & 56 \end{aligned}$	$\frac{4}{9}$	4 $\frac{6}{6}$ 3 3 $\frac{3}{5}$ $\frac{3}{2}$	5 $\frac{5}{4}$ $\frac{9}{8}$ $\frac{5}{8}$		통 5 3 9 7 3 8 8 3					
政	$\begin{gathered} \frac{c}{3} \\ \frac{1}{3} \\ 6 \\ 4 \\ 4 \\ 4 \end{gathered}$	$\begin{array}{r} \frac{\pi}{4} \\ x+\frac{3}{2} \\ x \end{array}$								
$\frac{1}{2}$	7	N	m	9	¢	${ }_{\square}$	\cdots	0	\bigcirc	8

Matsunaca

(4) AVR awromatc varifee eielutrois TA•TSA THYRISTOR TYPE

OPERATING INSTRUCTIONS

[^0]
1 IESCRIPTIOI .. 1
2 FEATURES 1
3 STAMDARO SPECLFLCATIONS 1
4 CIRCUIT DESCRIPTION 2
 2
$4-2$ thymistor circuit 3
43 WAVEFORM COMPENSATING CIRCUIT 3
5 Painel features 3
6 DELIVERY ISSPECTION 4
7 Storage on traisit 4
7.) Stopage 4
7.2 IASULATIOM RESISTANCE TEST 4
7.3 TRAMSIT 4
8 INSTALLATIDM 4
8. 1 ENVIRONMEWTAL REQUREMEETS 4
8-2 LOCATION 4
9 POWER SUPPLY 5
10 LOAL CONEECTIOH 5
11 GROURD COMEECTION 5
12 OPERATIDA 5
12.1 OPERATIOI AT HD LOMD 5
12.2 OPERATION WITH LDAD 5
13 ROUTINE IHSPECTION 5
14 MAN CIRCUIT DIAGBAM 6
I5 wiring material and vottafe grop table 8
16 TRRLBLESHODTHG 9

1 DESCRIPTION
 Me

The series TA and TSA are non-mechanical, thyrisfor type automatic voltage regulators. When the ouput volage of the regulator deviates from the rated value due to variations of the input voltage or the load, the deviation voltage is detected by a highsensitivity RMS coverter IC. The devation voltage is amplified, convented into control signal and fed to the thyristor circuit. The thyistor circuit restores the output voltage to the rated value.

The RMS converter IC incorporated in the detector circuit improves both reliability and durability. The Proportional and lntegral (Pl) control system elminates both the steady-state deviation and the overshooting of the oufput voltage. The drift of the output voltage at the initial transient is also minimized and the temperature coefficient is very small.

The Series TSA is isolated and electrostatically shielded (between the primary and secondary sides).

2 features

- RMS detection.
- High accuracy and high response speed
- Low distortion. The pulse-shaped switching distortion introduced in the thyristor circuit is fltered.
- High efficiency and a compact and lightweight construction.
- Even if the output terminals are shorted, the thyrisfor is not damaged.
- Special crat is provided to prevent the matifunction of the thyristor.
- Maintenance free.
- Series TSA is isolated and electrostatically shelded (belween the primary and secondary sides). The noise contamed in the line voltage is reduced.

? STANDARD SPECIFICATIONS 88+8:

foplat wete variatios	$\cdots 15 \%$ ¢
Frequere\%	:models tor 1 , 1Hiva and sownwares att:
Ontex): veltate acromery	Wition draty iof teries $T A$ Whthin : Tu tor Seres TS
adjustrment	
lexa priaton	9 to lat\%
Whatcurs thenetien	lest than 76 istroduce
Requmaterne	fagenst scis ingul volage valiation
ETcmery	
Prome lacter	
Ambtitere lemperemere	$0 \mathrm{~m}, 24 \mathrm{4}$

With respect to the models with less than $2 k \mathrm{VA}$, Efficiency should be over 85 on and power factor should be 0.75 as standards.

- In referrence to the single phase models with less than 10 kVA frequency 50 Hz or 60 Hz is compatible. The other models are manuactured as the special type for only 50 Hz or 60 Hz .

ॠ氏
Fig. 1 is the block diagram of the Series TA and TSA. In the case of the models for three-phase, Fig. 1 shows the block diagram for each phase.

- Deviation voltage detector and phase control circuit

The deviation voltage is defected and fed to the phase control circuit through the amplifier. The phase control crout controls the thyristor circuil to restere the output voltage.

- Thyristor crecuit

Controlled by the signal from the phase control circuit, mainain the output voltage of the regulator constant by varying the plase angle of the thyristor.

- Waveform compensating crcuit

The harmonic distortion introduced in the thyristor circut is eliminated.

Fig. 1 Block diagram

1-Gonirol tansifomer
2: Series reactor

4. Comirt reacor

5: Devation woltage amplifer
and phase contro circut
6. Paralles reactor

7 isolated and ancostandedy sheden mastomer Geries TsA only)
8: Detector
THy:Thuristo:

41 devilion volite detector and phase control ciccuit

The block diagram of hese circuits are shown th Fig. 2.

Fig. 2 Block diagram of the deviation voltage detector and the phase control circuit

Wam saments of each setion are given in the parenthesis.

1: Detecting tanstmer
2: Ontart whate adurtor
3: RhS converter cmont
4 : Subracte:
5 Prematinal(P) conted circut
6 - Anegati conter cicalt
7 Adder
8. 5ol , Mart thed
9. Reference voltage geneator 16. Control tansformer

12:Sablized DC pwes suply 13:Synolmonizisg sigal generater 14: Phase control cinct 15 Photorompler

The output voltage of the regulator is dropped to about 20 V by the detecting transformer and fed to the RM5 converter circuit. The RMS converter generates the DC voltage proportional to the root mean square (effective value) of the AC input voltage. Then, the subtracter subtraci the reference voltage generated in the reference voltage ganerator from the output of the RMS converter. Using the output of the subtracter, the proportional and the integral control circuits generate control signals (It should be noted that IC_{2} serves both as the subtracter and the proportional control circuit). Both the outputs of the two control circuits are amplified and added in the adder. The phase control circuit generates the trigger signal for the thyristor, using the outputs of the adder and the synchronizing signal generator. Finally, the trigger signal is fed to the gate of the thyristor through the isolating photo coupler.
The PI (Proportional and Integral) control system improves the accuracy of the output voltage of the regulator considerably. The soft start circuit restricts the output voltage for a short time after the regulator is switched on.

AUTOMATIC VOLTAGE REGULATORS/TA-TSA

4-2 THYRISTOR CIRCUIT

When the output voltage becomes lower than the rated value, the phase angle of the thyristor (THY) becomes smaller. Therefore, the impedance of the series reactor circuit (L. and THY) decreases and curent flows manly through L_{1}, In this case, power input is mainly supplied between a and b of the control reactor (Ti) and T_{1} serves as a step-up transformer(fig. 3).

When the output voltage exceeds the rated value, the phase angle of THY becomes larger and the impedance of the series reactor circuit (is and THY)

Fig. 3
increases. Therefore, current flows mainly through the parallel reactor (L_{2}) and power input is mainly supplied between b and c of T_{1}. Ti serves as a step-down transformer (Fig. 4).

4.3 WAVEFORM COMPENSATING CIRCUIT

The output of the thyristor circuit contains odd hammonics. These hamonics are eliminated with the aid of the resonance circuit comprised of reactors (L3, L_{4}) and a capacitor $\left(\mathrm{C}_{1}\right)$ and with the aid of a capacitor (C) connected in parallel to $\mathrm{L}_{2}(\mathrm{Fig}, 5)$.

Fig. 5 Waveform compensating circuit

5panel features

0 Pilot lamp: Lights up when the power switch (nofuse breaker) is turned on.
(8) voltmeter : Indicates the output voltage. In the case
of the models for single-phase, input voltage can also be montored by turning the voltmeter function switch.

Fig. 7 Single-phase, stand-alone type

B Ammeter: Indicates the ouphit current.
(4)Volmeter function switch: For the models for single phase only. Ether the output or inpul voltage can be monitored by turning this switch.
6 Output voltage adustor: The output voltage can be rased or lowered by $\pm 3 \%$ by turning this dial clockwise or counterclockwise.
© Power switch (no-fuse breaker)
B Input and output terminals: Input terminals are marked, "U", and "V" (single-phase), "R", " 5 " and "T" three-phase). Output terminals are marked. " u " and " v " (singlephase), "U", " V " and "W" (three-phase). The grounding termina is marked "E".
© Line voltage fine adustors: For the models for three-phase only. The line voltages can be adjusted when the regulator is at no load or comected to a balanced load. When adiusting the line volages, disconnect the balanced load.

Oneliveny inspection

When recelved, the regulator should be checked for the followings:
Correct model number.

- Damages in fransit.
- Loosen screws or teminals.

If any irouble is discovered, please inform us or our dealer.

7 storage or transit

When the regulator is temporarily stored or unused for long periods, care should be taken as follows.

7.1 STORAGE

Environmental requirenents for storing the regulator are as follows.

- Do not expose he regtiator to rain, water or mostire.
- Keep the regulator free from conosive gases on liquids, dust or iron flimgs.
- Ambient lemperature should be beween -10c and $+50^{\prime} \mathrm{C}$.
- Store the regulator on a vibration-free floor

7-2 INSULATION RESISTANCE TEST

If the regulator has been stored for a long time it should be tested for insulation restance before using.

After furning the power switch ON, measure the insulation ressisances between the input/output terminals and the grounding terminal using an insulation resistance tester (Megger). In the wase of the Series TSA, the insulation resistance between the Input and outpu teminals should also be measured.

7.3 TRANSIT

Avoid excessive vibration or shock when transporting the regulator.

- Binstallation

8-1 EIVIROMMENTAL REQUIREMEITS

See *7-1. Storage". For the ambient temperature, see "3. Standard Specifications".

8-2 LOCATIOH

Make sute the regulator has enough cooling space above and amond it (see Figs. 9 and 10).

Fig. 9 Built in type

Bent sides by 5 ch minn apat from walls
Fig. 10 Stand-alone type

9 ewnaspry

The power mput may reach 1.65 times the rated power output of the regulator at full load, at the lowest input volage i.e. -15%, efficiency 90% and power factor 0.8). When selecting the power source and connecting cables between the power source and the regulator, keep this in mind.

- $10_{\text {load connection wama }}$

When the load is distant from the regtator, take care of the voltage drop which occurs in the cables.

Use of themoplastic-covered wires for 600 VAC or cabtye (lough-rubber sheathed) cables is recommended. When selecting the cable, crmp-style terminals and stud bott, please refer to Table, Section 15.

The grounding cable should be made as short as possible. Select the grounding cable referming to Table, Section 15.

Never connect the grounding cable to the grounding rod to which heavy current equipments are already connected.

12 орватाоn

After the comection, check for the followings:

- Check the connections between the power source and the regulator, between the segulator and the load and between the regulator and the grounding rod. In the case of the modes for three-phase, care should also be taken to the polarity of the power source and the load.
- Check for loosen bolts at the teminals.
- Check whether the frequency selector is turmed to the appropriate position.
- Check the imput voltage for three-phase, check the line voltages of the imput.
- Nake sure al the environmental requrements are satisfed.

12.1 OPERATION AT NO LOAD

* Atter the abovementomed checks have been comploted, turn the power switch of the load off. When a power switet 1 mot proviced o the load, discoment it.
- Turn the power swith (no-fuse breaker) of the regulator ON. Tie pilot lamp lights up and the instruments indicate the imput or output voltage and the output current.
- When the ouput voltage deviates from the rated value, proceed as follows:
a. Wat at least 20 to 30 seconds atter the regilator has been swilched on.
b. Adjust the outpul voltage by turning the output voltage adjustor. For models for thee-phase, adiust the line voltages of the output by turning the line voltage fine adjustors.

12.2 OPERATION WITH LOAD

After the output voltage is adiusted, turn the regulator OFF and comect the load again. Then, swith the regulator ON again.

Check the followings:

- Make sure the output voltage of the regulator is stabilized.
- Make sure the output current is less than the rated maximum cutrent.
- Make sure no unusul noise is heard.

13 mine wertrum

The following inspection is recommended.
(1) At least cvery month

- Check whether the ouput volage is stable.

Check whether the output current is less than the rated maximum value.

- Cherk for unusual noise.
- Check for unusual smell.
(2) Every three months to cvery year
- Check the cables for temperature rise.
- Check the temmals for loosen bolts

Check the inside of the regulator for dust oily stains.

- Check the transformers and reactors for change of color.

MODELS FOR SINGLE-PHASE (TA AND TSA)

Ti: Control reactor
T2: Control transtomer
Ts: Detecting transformer
T4: Main transformer
(isolated and electrostatically shielded)
L: Series reactor
L2: Farallel reactor
L, L, : Waveform compensating reactors
THY: Thyristor
$\mathrm{Cn}_{1}, \mathrm{Cl}_{2}, \mathrm{C}_{21}, \mathrm{C}_{22}, \mathrm{C}_{3}$:
Wavetorm compensating capacitors

$\mathrm{CR}_{1} \mathrm{CR} 2$:
Protection circuits
CRs: Waveform compensating circuit
PWB: Devation voltage tetector and phase conm trol circuit (Control oircult board)
VR: Output voltage adjustor
NFB: Power switch (No-fuse breaker)
PL: Pilot lamp
y: Votmeter
A: Ammeter
SW: Voltmeter function switch
SWz: Frequency selector

MAIN CIRCUIT DIAGRAM

MODELS FOR THREE-PHASE (TA AND TSA)

T: Control reactor
Te: Control transformer
Ta: Detecting transformez
TA: Input transtormer
T_{5} : Main transformer
(Isolated and electrostatcatly shielded)
L.: Series reactor

Lz: Parallel reactor
$\mathrm{L}_{3}, \mathrm{~L} 4$: Wavefom compensating reactors
THY: Thyristor
$\mathrm{C}_{4}, \mathrm{C}_{2}, \mathrm{C}_{3}$:
Wavetom compensating capacitors
$\mathrm{CR}_{1}, \mathrm{CR}_{2}$:
Protection circuits
CR3: Wavefom compensating circuit
PWB: Deviation voltage detector and phase control cicut (Control circuit board)
VR1: Oufput voltage adiustor
VRz: Line voltage fine adjustor

NFB: Power swith (No-fuse breaker)
PL: Pilot lamp
V: Volmeter
A: Ammeter

Matsunaca

\perp WIring materials and voltage orop table

D：diameter $d V: V o l t a g e ~ d r o p(V / m)$
De：diameter of the grounding cable

Mode	Cable for input side				Cable for output side				De	Terminal \＆bolts		
	D	dV	D	dV	D	dV	D	dV		input	Output	Granding
TA－105	16\％	${ }^{1+163}$	\％53\％	0.95	1．6\％	ines	20.6	6， 015	$2 \mathrm{~mm}^{2}$	M 4	M 4	M 4
TA－1010	219	028	a	Uis：	169	1118	2．5as	0.06	23	M 4	M 4	M 4
TA－1015	55 mm	0.79	14	1031	204	117\％	8	3ime	20	M 4	M	M 4
TA $\mathrm{A}=2 \mathrm{ZO}$	\star	0 Bt	32	0 060		3130	14	4.06	35	M 3	M 5	M 5
TA－1030	14	1125	36	0358	8	412	2	（0）49	35	M 5	M 5	M 3
TA． 1050	\varkappa	0．22	59	0.56	14	U123	3	400	55	M19	M a	M 6
TA．1075	31	0146	86	30．55	2	4，124	5	40，	4	M12	M10	M 3
TA－10100	38	0.35	4090	1038	2	3116	（3）	Gilet	14	M12	M19	Ms
TA－10150	36	－153	（15）	085	31	4176	108）	3.0 .154	22	M15	M12	M13
TA－10200	66	119	200	089	38	4148	123	Q067	32	戒×6	M16	M10
TA10300	0	वस	20	0.00	ai	0.178	19	0.072	3	78×68	30×51	M12
TA－10400	13	010	2	ant	8 （	31%	（20）	3 Bra	51）	1069 $\times 6$ 8	5非660	M12
TA－10500	200	0.146	4（9）	\％173	9	3182	2	3072	6）	186×5	75×6	M12
TA 410750	2 2］	${ }^{\text {in }}$	51	${ }^{6} 18188$	Sisk	4178	4 댱	8.1167	＊ 4	1076124	100×6	M15
TA 101000	2F	0.170	0	4.069	20］	8178	（10）	3072	100	109x	＋10x	M1s
TSA－01002	3	\＃1\％3	30	日ies	建	4178	158	6．7．	${ }^{2}$	53×58	棑 $\times 60$	M10
TSARO4002	0	1迷：	s00	ans	4	31.178	210	0.122	22	50×68		W13
TSA－10500－2	＊）	4×2	39	i1．29	160	4.178	2：ifif	80.72	38	3 x 55	5 $\times 68$	M12
TSAlthore	123		25	$0 \mathrm{0t5}$	10	417＊	404	0.067	5	75×6：	1109×6	M12
TSA 1010002	96	4ite	46	9m3	00	318	Sile	4072	69	Wuxas	150×68	M12
7A．205	1\％	1163	3 \％far	0.606	16.5	9，	20.1	1903	2 max	M 4	M 4	M 4
TA－207．5	290	9157	8	0.06	169	0.153	$35^{2}{ }^{2}$	4049	23	M4	M 4	M 4
TA－2010	enop	ix9	$\underset{*}{ }$		159	6\％	55	（1）	20	M 3	M 5	M 5
TA－2015	55 mm	0.8	14	6.103	240	B178	8	0．0．6）	2,1	M3	M 5	M 3
TA 2025	＊	318	12		55ax	0162	14	010864	$3 \times$	38	Ma	4 4
TA－2037．5	1.4	4156	38	90．0．8	8	0.96	2	nuel	55	Ms	Ma	M6
TA． 2050	z	3138	3	0098	14	4128	3	Qutar	55	M19	M 3	M6
TA－2075	3	81.16	4	0165	22	42	3	0.0154	1.4	412	M10	M 3
7a－20100	3	0153	${ }^{136}$	4159	23	0.92	65	6 9669	14	M M 2	M0	48
4A－20150	51	0173	158	（1989	\cdots	0.78	1010	$013 / 4$	2	Mis	M2	Mif
TA 20200	（ii）	419	\％${ }^{6}$	0.1629	3		18	0.857	$\underset{\sim}{2}$	73x \times 埌	M1E	MID
TA－20250	（3）	$0118{ }^{6}$	\pm		3	－1／7	181	0×106	3		M19	MIZ
TA 20375	25	9.182	353	0867	${ }^{818}$	0.15	20	ancr	53	$7 \times \times 6$	50×69	$\mathrm{MH2}$
TA－20800	201	${ }^{4} .146$	4010	${ }^{10173}$	310	0.778	20	0.272	6， 6	100×60	75×81	Wh
TA3－3	20\％	4139	Same	${ }^{132585}$	1.6	613	3 Smaz	0.149	2 cma	M6	M 6	M6
TA3－5	$\overline{\text { Bxama }}$	0.132	14	0058	20\％	6142	3	0 0，se	2.15	M 6	M6	M 5
7 7 －3－7．5	8	0.1386	2	0.358	5 S 8 m	6.122	14	0048	35	48	M ${ }^{\text {a }}$	M
TA3－10	1	41104	6	1248	4	6.12	2	0041	3	M 8	M6	M 5
TA3－15	14	0.106	38	${ }^{\text {fiag7 }}$	14	1896	3	15.445	55	M1	M 8	M ${ }^{\text {b }}$
Taz－20	9	0.112	611	－1049	14	Bred	\pm	314．4\％	55	M10	M 8	M 5
TA3－30	3	4.148	81	1083	22	6.12	30	6n\％	4	M12	310	H 8
TA．${ }^{\text {－40 }}$	33		25	0.447	31	0.119	80	8184	14	M12	412	M 8
143－50	53	9.145	30	4.949	38	6.117	Of	0.043	2	M15	M12	M14
743－75	63	4.182		nes	m	6119	0	8067	32	53065	M16	M19
7A3－100	100	3148	259	0088	60		150	9nal	s	73×6 ！	316	M12
743－150	150	0.145	32		100	0.134	2 0^{1}	6.08	50	101×56		M12
743－200	209	81.148	（ 8 ＋19	0，028	123	8142	35	B153	61	109×126	180×66	M12

＊TSA models except the models from TSA－10300－2 type to TSA－101000－2 type apply to all the TA model．

SYMPTOM	CALSE (S)	REMEDY
No cutput veltage (Volmeter indicates zero)	Power source disconnected	Comect power source
	Fower switch turned OFF	Tum power swith ON
	Loosen terminal bolts	Tighten teminal bolts
	Defective volmeter or pilot lamp	Replace defective volmeter of piloi limp
Incorrect outpat volage	Improper output voltage adjusiment	Tum output voltage adustor
	Inpul voltage too low or too high	Use regulator at rated input voltage
	Bad contact between control circult board and its socket	Remove and refit control circuit board
	Defective control circuit board	Repair or replace defecive parts
	Defective detecting transformer	Repair or replace defective parts
	Detective output volage adustor	Repar or replace defeative parts
	Defective line voltage fine adjuctor (three-phase)	Repar or replace defective parts
	Defective theristor	Repair or replace tefective parts
	Line voltage of the output unbalanced	Adjust ine voltages by turning line voltage fine adiustors
Hunting occurs	Frequency selector in wrong position	Tum frequency seleclor to correct position ...
	Periodic variation of inpet voltage at a Certain frequency (Resonance octus)	Check vaiation of input voltage
	Periodic varition of loed at a cermin frequency Resonance occurs)	Discomect load and check whether humting stops of not
	Defective control circuit board	Repair or replace defective control circuil boart
Power switch (no-fuse breaker) camot be tumed ON	Defective no-fuse breaker	Replace defective no-fuse breaker
	Shot circuit between output terminals of overload	Operate regulator at rated load
	Durning transformer or reactor	Replace burning trancformer or reactor
Unusual hum	Lowsen screws securmy transformer of reactor	Tighten loosen screws
Unusual smell	Burring transformer or reactor	Replace burning transformer or reartor

For any assistance please contact our engineering division the address is given below, and inform us af the following. - Model and serial numbers ©ault conditions in the case of problems) Operating conditions

INSPECTION CERTIFICATE

We hereby ceriify that this product has been duly passed our qualify stardard.

APPROVED BY	TESTED BY

(4) Matsunaga Manufacturing Co., Ltd.

4-44, Tsunashima-nishi 5 chome, Kohoku-ku, Yokohama 223, Japan. Phone: Yokohama 045-542-2121 Facsimile: Yokohama 045-642-2141
Telex: J36210 MATEX

[^0]: Wake sure to read this operating instructions before using this equipment. And keep this manual with much care in order to facilitate the routine check-up and avoid the unexpected malfunction of the equipment.

