DIRECTORATE GENERAL OF HIGHWAYS MINISTRY OF PUBLIC WORKS REPUBLIC OF INDONESIA

SPECIAL ASSISTANCE FOR PROJECT IMPLEMENTATION FOR THE TANJUNG PRIOK ACCESS ROAD PROJECT IN THE REPUBLIC OF INDONESIA

FINAL REPORT SUMMARY

NOVEMBER 2010

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

NIPPON KOEI CO., LTD. YACHIYO ENGINEERING CO., LTD.

EID
CR(3)
10-189

No.

DIRECTORATE GENERAL OF HIGHWAYS MINISTRY OF PUBLIC WORKS REPUBLIC OF INDONESIA

SPECIAL ASSISTANCE FOR PROJECT IMPLEMENTATION FOR THE TANJUNG PRIOK ACCESS ROAD PROJECT IN THE REPUBLIC OF INDONESIA

FINAL REPORT SUMMARY

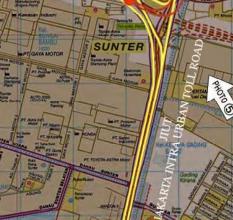
NOVEMBER 2010

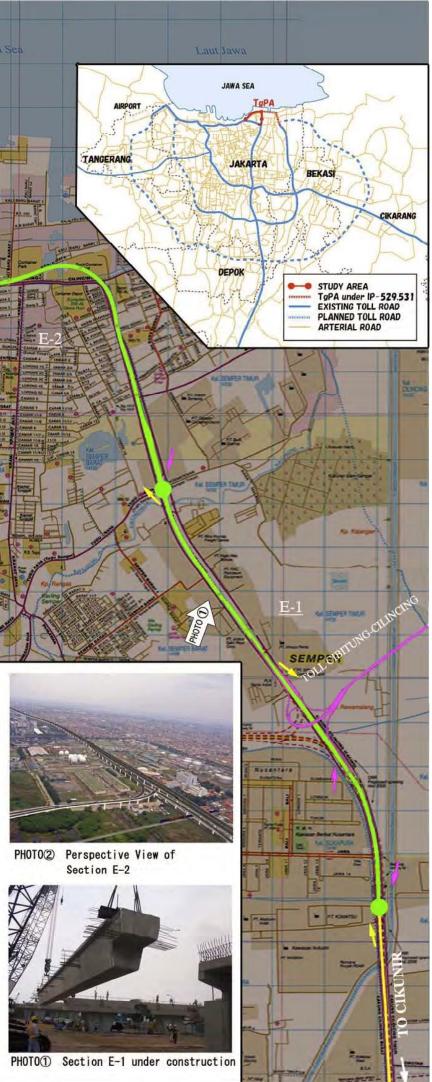
JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

NIPPON KOEI CO., LTD. YACHIYO ENGINEERING CO., LTD.

CURRENCY EXCHANGE RATE

Following currency exchange rates were adopted in this report unless otherwise stipulated.
(1) Indonesia Rupiah vs. US Dollar
USD 1= IDR 9,017
(2) Indonesia Rupiah vs. Japanese Yen
JPY 1 = IDR 99.01





SYNOPSIS

1. Country	Republic of Indonesia			
2. Name of Study	Special Assistance for Project Implementation for the Tanjung Priok Access Road Project			
3. Counterpart Agency	Directorate General of Highways (Bina Marga), Ministry of Public Works			
4. Objectives of Study	(1) To review and examine the traffic demand forecast for the future years, reflecting the results of the traffic survey conducted,			
	(2) To review and examine the cost estimate for W-1, W-2 and Direct Ramp , (3) To develop and compare alternative project scopes for the completion of the TgPA network.			
	(4) To study the applicability of the Public Private Partnership (PPP) to the operation and maintenance (O&M) of TgPA,			
	(5) To examine the necessity for additional procedures, if any, for social and environmental considerations and their extent, and			
	(6) To recommend an optimal project implementation scheme, based on the traffic demand, project cost and project effects.			
5. Study Area	Jakarta Metropolitan Area			

6. Scope of Study

(1) Re-confirm the present traffic volumes and develop alternatives to the project scope,

- (2) Develop project implementation plans,
- (3) Review and prepare for the social and environmental considerations,
- (4) Calculate the project effects, and
- (5) Propose an optimal alternative.

7. Major Findings

It was decided, for the first time, that Direct Ramp is considered as a component of TgPA Phase 2 of the Japanese ODA loan, subject to the approval of JICA..

Based on some revisions made for the model components and actual traffic survey, the future traffic demand on the network was reviewed and updated. The results verified that a network enabling more route options is naturally more desirable in terms of the traffic volumes assigned over the network. Thus, construction of W-1 and W-2 as well as addition of Direct Ramp is justified from the aspect of network flow.

As a result of the review of the road design, it was found out that several alternative designs will reduce the construction cost by Rp.142 billion in total.

The review provided the construction costs for W-1, W-2, and Direct Ramp sections as Rp 1,475 billion, Rp 1,087 billion, and Rp 200 billion, respectively.

The area of land to be acquired for the new TgPA Project is 32,898 m² in total, comprising of 4,334 m², 24,606 m², and 3,958 m² for W-1, W-2, and Direct Ramp, respectively.

In accordance with the EIA approval procedure, Bina Marga must inform MOE of the change of the scope of the project after the EIA of 2004, namely the addition of the Direct Ramp, by submitting the revised EIA documents.

The alternative project scopes to be considered are Case 1 (W-1 and W-2 only), Case 2 (Direct Ramp only), and Case 3 (W-1, W-2, and Direct Ramp). The construction costs are JPY 25.9 billion, JPY 2.0 billion, and JPY 27.9 billion for Cases 1, 2, and 3, respectively.

As a result of overall evaluation, Case 3 was selected as the best alternative. As the amount of the Japanese ODA loan requested by GOI is limited to JPY 10 Billion (US\$ 120 Million), the total project is divided into three phases such as Phase 3 for the partial section on W-2 in length of 2.1 km to be funded by TgPA Phase 3 of the Japanese ODA loan, Phase 4 for the partial section on W-1 and W-2 in length of 3.5 km by unidentified sources, and Direct Ramp by TgPA Phase 2 of the Japanese ODA loan.

Applicability of the PPP scheme to O&M was examined, setting up options such as the long-term O&M contract, full monetization, and hybrid.

The supposed implementation schedule is such that, after the loan agreement is signed in March 2011, the construction will start in June 2013 and be completed in August 2015. Direct Ramp will be opened to traffic in February 2014, while Phase 3 in September 2015.

8. Conclusions and Recommendations

The overall evaluation of the cost, traffic volumes, economic impacts, etc., resulted in Phase 3 to be implemented as a Japanese ODA loan project. The project cost and the loan amount turned out to be JPY 13,277 million and JPY 10,468 million, respectively.

Location Map

Synopsis

Special Assistance for Project Implementation for The Tanjung Priok Access Road Project

Summary of Final Report

Table of Contents

Table of	Contents	
List of A	Abbreviations	
СНАРТ		
1.1	Backgrounds of the Survey	1-1
1.2	Objectives of the Survey	1-1
СНАРТ	ER 2 OVERVIEW OF THE TGPA PROJECT	2-1
2.1	Backgrounds of TgPA Project	2-1
2.2	Outlines of TgPA Project Area	2-1
2.3	Objectives of the TgPA Project	2-2
2.4	Current Footsteps of the TgPA Project Implementation	2-3
СНАРТ	ER 3 REVIEW OF TRAFFIC DEMAND FORECAST	3-1
3.1	Review of Existing Traffic Demand Forecast	3-1
3.2 Sı	upp lementary Traffic Survey	3-1
3.3	Examination of Newly Emerged Development Plans Affecting Traffic Demand	3-9
3.4	Development of Alternative Traffic Demand Forecast Cases	3-12
3.5	Update of Traffic Demand Forecast	3-12
CHAP'	TER 4 REVIEW OF ROAD DESIGN AND COST ESTIMATE	4-1
4.1	Review of Existing Road Designs and Recommendations of Alternatives	4-1
4.2	Examination of Cost Reduction through Alternative Designs	4-4
4.3	Update of Construction Cost	4-5
4.4	Estimate of O&M Cost	4-7

CHAP	TER 5	ESTIMATION OF PROJECT EFFECTS	5-1
5.1	Econ	omic and Financial Valuation	5-1
5.2	Estin	ation of Performance Indicators	5-5
CHAP	TER 6	STUDY ON SOCIAL AND ENVIRONMENTAL CONSIDERATIONS	6-1

6.1	Confirmation of Policy and S chedule for Land A equisition and Res ettlement	fo r
	Precedent TgPA Sections	6-1
6.2	Confirmation of Social and Environmental Requirements	6-2

CHAPT	ER 7 ALTERNATIVE PROJECT IMPLEMENTATION PLANS	. 7-1
7.1	Development of Alternative Project Scopes	. 7-1
7.2	Recommended Optimal Implementation Plan	. 7-3
7.3	Examination of Applicability of PPP Scheme to O&M	. 7-4
7.4	Applicability of PPP Scheme to Phases Onward	. 7-9
7.5	Estimate of Project Cost	7-10
7.6	Implementation Structure	7-12
7.7	Implementation Program	7-12
CHAPT	ER 8 CONCLUSI ONS AND RECOMMENDATIONS	. 8-1

List of Table

Table 2.1	Summary of Japanese ODA Loan Agreements for TgPA	
Table 2.2	Summary of Repackaging	
Table 3.1	24 hour sectional Traffic Volume by each direction, each mode	3-3
Table 3.2	Utilization rate of TgPA for through traffic in Jakarta Urban Area	
Table 3.3	Traffic Generation and Attractive by Zones	
Table 3.4	Cas es for Demand Forecast	3-12
Table 3.5	Comparison of total tariff income	3-16
Table 3.6	Assignment result by alternative case and by toll road section	3-17
Table 4.1	Summary of Original Structures	4-1
Table 4.2	Structures to be modified	4-2
Table 4.3	Estimated Cost Reduction for applying PC-U Girders	4-3
Table 4.4	Sum mary of Cost Reduction	4-5
Table 4.5	U pdated Construction Cost	4-6
Table 4.6	Land Acquisition Cost Estimation	4-7
Table 4.7	O &M Estimation Method	4-7
Table 4.8	Summary of O&M Cost	4-8
Table 5.1	Com parison of the economic benefit	5-1
Table 5.2	V aluation results of the economic benefit	5-2
Table 5.3	Cons truction cost (The economic price)	5-2
Table 5.4	Repa iring cost (Economic price)	5-2
Table 5.5	M aintenance and operating cost (Economic price)	5-3
Table 5.6	Economic evaluation results of TgPA	5-3
Table 5.7	The result of the financial valuation	5-4
Table 5.8	Estimation of Performance Indicators (Traffic Volume)	5-5
Table 5.9	Estimation of Performance Indicators (Travel Time from Tanjung Pri	ok Port)
		5-5
Table 6.1	Status of Project Development and Land Acquisition	6-1
Table 6.2	Land to be Acquired for TgPA Project (Unit: m ²)	6-2
Table 6.3	Data of Land Acquisition in Direct Ramp Area	6-3

Summary of	Final Report	
Special Assis	stance for Project Implementation for	
<u>The Tanjung</u>	Priok Access Road Project	November 2010
Table 6.4	Sections Covered by 2004 EIA	
Table 7.1	A ttributes of Alternative Project Scopes	
Table 7.2	Se tting up PPP Options	
Table 7.3	Overall Evaluation of Three Options	
Table 7.4	Possibility of Private Sector Investment for Construction	
Table 7.5	Estimated Construction and Engineering Service Costs for	ГgPA Phase 3 7-10
Table 7.6	Estimated Project Cost for TgPA Project Phase 3	7-11

List of Figure

Figure 2.1	Toll Road Network Planned in Jakarta Metropolitan Area	
Figure 3.1	Traffic Volume Comparison of 2007, 2009, and 2010 (A	All w/o motorcycle) 3-4
Figure 3.2	Ratio of toll road route to the Tanjung Priok Port and su	urrounding area 3-5
Figure 3.3	Future toll road user preference to eastern facility of	Tanjung Priok Port an d
	surrounding facility	
Figure 3.4	Travel speed of Morning Peak (Inbound)	
Figure 3.5	D evelopment Plan of Ancol Timur	
Figure 3.6	Location of Ancol Development	
Figure 3.7	KBN Marunda SEZ Development Plan	
Figure 3.8	A ssignment Traffic Volume (Base Case – Year 2016)	
Figure 3.9	A ssignment Traffic Volume (Case 1 – Year 2016)	
Figure 3.10	Assignment Traffic Volume (Case 2 – Year 2016)	
Figure 3.11	Assignment Traffic Volume (Case 3 – Year 2016)	
Figure 3.12	Assignment Traffic Volume (Case 4 – Year 2016)	
Figure 4.1	Location of Viaduct-5,7 and Cable Stayed Bridge	
Figure 4.2	Cross Section of PC-box and PC-U	
Figure 4.3	Mo dification of Pier-10 of W-1 Section.	
Figure 5.1	S ensibility analysis of the financial valuation (FIRR)	
Figure 7.1	Proposed Implementation Schedule	

List of Abbreviations

AMDAL	EIS, Environmental Impact Statement	
ANDAL En	vironmental Impact Assessment Report	
BOT B	uild Operate Transfer	
BPJP		
-	National Long-term Development Plan	
BPJT Hi DDVD	ghway Controller Agency	
BPKP	Finances Monetary Agency and Development	
CMNP	Citra Marga Nusaphala Persada Company	
D/D De	tailed Design	
DGH	Directorate General of Highways	
DKI	Special Capital City District	
DSCR	Debt Service Cover Ratio	
EIA E	nvironmental Impact Assessment	
EIRR	Economic Internal Ratio of Return	
ETC El	ectronic Toll Collection	
F/C For	eign Currency	
FIRR F	inancial Internal Ratio of Return	
F/S Fe	asibility Study	
GDP	Gross Domestic Product (of the nation)	
GOI G	overnment of Indonesia	
GRDP	Gross Regional Domestic Product (of the region)	
IC I	nterchange	
ICB I	nternational Competitive Bidding	
IDR I	ndonesian Rupiah	
IMF In	ternational Monetary Fund	
IRR	Internal Rate of Return	
ITS I	ntelligent Transportation System	
JCT J	unction	
JETRO	Japan External Trade Organization	
JIUT J	akarta Intra Urban Toll Road	
JLB	West 1 Jakarta Outer Company	
JLJ	Jakarta Outer Ring Road Company	
JOORR	Jakarta Outer Outer Ring Road	
JORR	Jakarta Outer Ring Road	
KAI I	ndonesia Railway Company	
	5 1 5	

<u>1110 1010,0118 1</u>	
KBN N	usantara Bonded Zone
L/A Loan	Agreement
L/C	Letter of Credit
LLCR Loa	n Life Coverage Ratio
MOE Mi	nistry of Environment
MOPW Mi	nistry of Public Works
MOT M	inistry of Transport
NPV N	et Present Value
NS-Link N	orth to South Link
O&M O	peration and Maintenance
OD O	rigin-Destination
ODA Of	ficial Development Assistance
PC P	re-stressed Concrete
PCU Pa	ssenger Car Unit
PPJM	National Mid-term Development Plans composing BPJP
PPP Publ	ic Private Partnership
PSUD	Center for Urban Design Studies
PQ P	requalification
RKL Env	ironmental management Plan
RPL	Environmental Monitoring Plan
RTRW	Regional Spatial Plans at Provincial and Municipal Level
RTRWN	Regional Spatial Plan at National Level
SAPI Speci	al Assistance for Project Implementation
SEZ	Special Economic Zone
SISTRANAS Na	a tional Transport System Plan
SITRAMP	Study on Integrated Transportation Master Plan for Jabodetabek
SPC	Special Purpose Company
SPPL	Statement Letter of Readiness of Environmental Management and Monitoring
SP2LP	Determing Letter of Project Location Development
STEP	Special Terms for Economic Partnership
TEU	Twenty-Foot Equivalent unit
TgPA	Tanjung Priok Access Road
TNI-AL I	ndonesian Navy
TOR	Term of Reference
TSS	Traffic Surveillance System
UKL E	nvironmental Management Efforts
UPL	Environmental Monitoring Efforts

CHAPTER 1 INTRODUCTION

1.1 Backgrounds of the Survey

In Indonesia, efforts are being made to expand t he road infrastructure as well as to raise the efficiency of whole transportation system, in order to cope with serious traffic congestion on the road n etwork. In J akarta Metropolitan Ar ea, particularly in Tanjung P riok Port A rea, two Japanese O DA loans were provided in 2005 and 2006 t o i mprove t he road net work by construction of the Tanjung Priok Port Access Road (hereinafter TgPA), which has a total length of 12.1 km.

However, based on the detailed engineering design under the loans, it was found out that said two loans would not be a ble to cover the requ ired am ount of funds for com pletion of t he planned network due to the recent price hike of construction materials. Thus, in response to the request of GOI, JICA decided to conduct a supplementary survey entitled the Special Assistance for Project Implementation for the Tanjung Priok Access Road Project (the Survey) to examine the optimal size and formation of the network if assisted by an additional Japanese ODA loan.

1.2 Objectives of the Survey

According to the Terms of Reference (TOR), JICA specified the scope of work for the Survey as follows;

- (1) Re-confirm the present traffic volumes and develop alternatives to the project scope,
- (2) Develop project implementation plans,
- (3) Review and prepare for the social and environmental considerations,
- (4) Calculate the project effects, and
- (5) Propose an optimal alternative.

CHAPTER 2 OVERVIEW OF THE TGPA PROJECT

2.1 Backgrounds of TgPA Project

GOI shows the basic national policy and strategy for in frastructure, in cluding the transport sector, in the National Long-term Development Plan (BPJP). Correspondingly, regional spatial plans at the national (R TRWN), prov incial and municipal (RTRW) l evels are r egularly formulated. P resently, BPJP 20 05-2025 and R TRWN N 0.26, 200 8 are in effect. A lso, t he National Mid-Term Development Plan (PPJM) is set up for every five years in such a way as PPJM-II (2010-2014).

As a supreme plan for the transport sector, the National Transport System Plan (SISTRANAS) 2005 by MOT aims for a regionally and modally harmonious nationwide transport system.

MOPW has a five-year program (REN STRA 2010-2014) involving the vision, mission, and overall and sectoral targets for road development, along with the above PPJM-II (2010-2014). In 2006, i t a lso formulated the N ational Toll Road Development P lan, which aims for the nationwide road development i nvolving bot h toll and non- toll h ighways, as w ell a s rehabilitation and O&M of arterial roads which support economic activities. The development of TgPA is positioned as an important p art of the planned toll road ne twork in the Jakarta Metropolitan Area (Jabodetabek) with a total length of 257.5 km.

2.2 Outlines of TgPA Project Area

Jabodetabek covers DKI Jakarta (Dearah Khusus Ibukota Jakarta), and its neighboring satellite cities with a population of 22 million, which increased 1.9 times more than that in 1980, and further out ward expan sion i s ant icipated. H owever, t he r apid progress o f motorization accelerated by rapid urbanization in the area causes constant traffic congestion over the arterial road network.

One of the major traffic origins/destinations in the area is the Tanjung Priok Port, which is the largest port in terms of both facility size and handling quantity of cargo in Indonesia. It is also the only port handling container cargo in West Java.

Urban expressways in Jabodetabek were initially planned in the 1970's as a toll road network, and have been constructed progressively utilizing ODA funds and BOT schemes. So f ar, the Jakarta I ntra U rban Toll Road (JIUT), H arbor R oad, m ost o f the Jakarta O uter R ing R oad (JORR), and North to South Link (NS-Link) have been completed. In the Study on Integrated

Transportation Master Plan for the Jakarta Metropolitan Area (SITRAMP) targeted for 2020, implemented by JICA during 2000 to 2004, a development plan for toll roads with a total length of 257.5 km has been proposed, including early completion of the remaining portion of JORR, early implementation of TgPA, and add ition of the Jakarta Outer Ring Road II (JOORR), as shown in Figure 2.1.

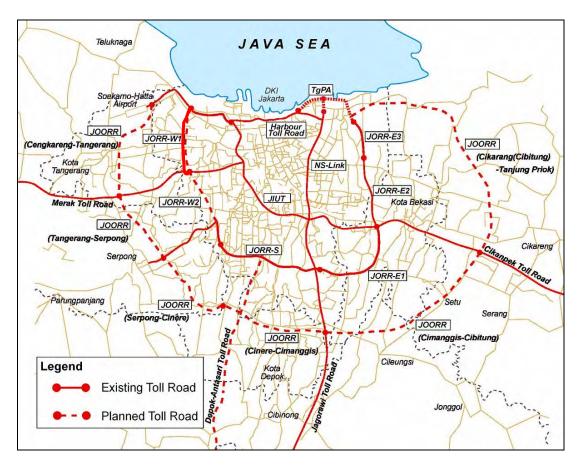


Figure 2.1 Toll Road Network Planned in Jakarta Metropolitan Area

2.3 Objectives of the TgPA Project

The objectives of t he construction of the TgPA, which is a 12.1 km l ong, 6 -lane t oll road connecting the northeastern end point of JORR and Harbor Road, are as follows:

- To alleviate serious traffic congestion in the area near the Tanjung Priok Port and contribute to the sustainable social and economic urban activities;
- To supplement the radial toll roads including the airport access road;
- To raise the efficiency of freight movement to/from the port; and
- To promote upgrading of land use in the Jabodetabek.

2.4 Current Footsteps of the TgPA Project Implementation

(1) Feasibility Study

In January 2004, JETRO completed the F/S requested by GOI for the construction of TgPA, providing preliminary designs for the route selection, geometric alignment and road facilities, indicative cost estimates, implementation schedule plan and examination of project effects.

(2) Provision of Japanese ODA Loans

Based on t he above F/S r esults, G OJ d ecided t o of fer O DA l oans. In 2005 and 2006, t wo agreements were signed between JBIC (n ow JICA) and GOI to co ver the fees for consulting services such as the detailed design (D/D) and construction supervision, facility construction and f ormation of ITS/TSS through the S TEP scheme, am ounting to JPY 52,926 m illion, a s shown in Table 2.1.

Phase		Phase 1	Phase 2
Loan I/P		IP-529	IP-531
Conclusion Date		31 March , 2005	29 March, 2006
Lo	an Period	28 July, 2012	26 June, 2013
	Construction	22,055	22,420
Loan Amount	Design, Supervision	2,410	1,958
(Mill. Yen)	Contingency	1,841	2,242
	Total	26,306	26,620

 Table 2.1
 Summary of Japanese ODA Loan Agreements for TgPA

(3) Implementation of Detailed Design

The D/D for all sections namely, E-1, E-2, NS-Link, W-1, and W-2 was completed in December 2007 by the consultant procured for Phase 1.

As a result of the D/D, however, the total cost had increased 1.8 times of the original total loan amount for phases 1 and 2. There are several reasons pointed out for the cost increase, including

,

1) Significant price hike of construction materials around 2007 and 2008, 2) Application of the newest Indonesian design standards which amended the design live loads upward by 10 to 15 percent, 3) Inevitable adoption of larger scale bridge types with longer span lengths suitable to the actual land u se, 4) A ddition and extension of ramps reasonably nee ded for strengthened linkage with the port facilities, and 5) Inclusion of the cost for improvement of arterial road facilities necessary for the construction of TgPA.

(4) Repackaging of Construction

Bina Marga re arranged the implementation p lan for the whole network and repackaged the construction sections from the original five sections in two phases to seven sections in three phases, as shown Table 2.2. In the repackaged plan, a new Phase 3 was created for W-1 and W-2, which was excluded from the scope under the current loans.

Phase	Origina	I	Re-packagi	ing
(Loan Amount)	Section Amount (Mil. YEN)		Section	Amount (Mil. YEN)
	E-1 (L=5.40km)	8,867	E-1(L=3.40km)	6,989
	E-2(L=2.65km)	8,948	E-2(L=2.74km)	9,811
	Construction Cost	17,815	Construction Cost	16,800
Phase 1 (JPY26,306Mil)	Escalation	4,240	Escalation	5,255
	Consaltant Services	2,410	Consaltant Services	2,410
	Contingency	1,841	Contingency	1,841
	Total	26,306	Total	26,306
	W-1(L=1.95km)	6,008	E-2A(L=1.92km)	11,100
	W-2(L=1.70km)	5,790	NS-Link (L=2.24km)	4,709
	NS-Link(L=0.38km)	2,699	Direct Ramp (L=1.10km)	1,971
Phase2	TSS	6,006		
(JPY26,620Mil.)	Construction Cost	20,503	Construction Cost	17,780
	Escalation	1,917	Escalation	4,640
	Consaltant Services	1,958	Consaltant Services	1,958
	Contingency	2,242	Contingency	2,242
	Total	26,620	Total	26,620
			W-1(L=2.36km)	16,175
Destroyed Course			W-2(L=2.91km)	9,291
Postponed Scope			TSS	8,929
			Total	34,395

Table 2.2	Summary	of Repackaging
1abic 2.2	Summary	of Repackaging

In January 2010, in response to the request of Bina Marga for JICA's consent on the repackaged plan, JICA agreed on the commencement of tender for originally packaged E-2 and NS-Link.

However, the program for W-1 and W-2 has not been decided yet.

In the meantime, the Direct Ramp, which is intended to connect the planned NS-Link directly to the ex isting H arbor R oad, w as plann ed by B ina Ma rga, fores eeing the post ponement of th e completion of W-1 and W-2. In the above r epackaged p lan, it is supposed to be tentatively included in Phase 2.

(5) Const ruction Underway

Construction started in January 2009 only for E-1, and was completed in July 2010. The tender for construction of the newly packaged E-2, E-2A, and NS-Link is in progress.

CHAPTER 3 REVIEW OF TRAFFIC DEMAND FORECAST

3.1 Review of Existing Traffic Demand Forecast

3.1.1 Traffic Demand Forecast in the TgPA Project (Phase 1), 2007

Future traffic demand was forecasted based on the origin-destination (OD) table and network in the SITRAMP with some OD revision such as the 1) Tanjung Priok Port traffic volume and 2) KBN Marunda expansion plan.

3.1.2 Traffic Demand Forecast in the Direct Ramp Study, 2009

On the direct ramp study in 2 009, the traffic dem and forecast was implemented with road network updating as add itional ramps for section NS-Link and the traffic data based on the additional count survey result.

In this study, three network case alternative was analyzed such as i) toll road network without direct ramps and TgPA West section, ii) with direct ramps but without west section, and iii) with direct ramps and west section.

3.1.3 Necessary R evision of O D T able and R oad Traffic N etwork from the Past Traffic Demand Forecast

In this SAPI Survey, the basic situation of toll road traffic is not drastically changed. Then OD Table and network used in the past project is applied for this survey. However, the following revision was necessary to reflect the following situations:

- ✓ Updating of traffic database based on the result of traffic count survey near Tanjung Priok Port
- ✓ Updating of the traffic O D table and net work modification b ased on dev elopment pl an which is not reflected in 2007 and 2009 traffic demand forecast
- \checkmark Updating the toll road network and tariff system in the Jabodetabek area

3.2 Supplementary Traffic Survey

The following were carried out as a part of this Survey to characterize the present and future traffic situations after the operation of TgPA:

✓ Traffic Count Survey near Tanjung Priok Port

✓ Car Users' Stated Preference Survey for Tanjung Priok Access Road

✓ Travel Time Survey

3.2.1 Traffic Count Survey near Tanjung Priok Port

To achieve the purpose, the survey was implemented at seven locations near the Tanjung Priok Port.

(1) Survey Result

Twenty fou r-hour t raffic v olume of ea ch s ection i s from approx imately 75,40 0 v ehicles to 142,000 v ehicles for b oth directions. At the Tanjung Priok 2 Ram p (CO -7), the t otal traffic volume of on- and off-ramp is approximately 27,200 vehicles. In Jl. Cilincing (CO-3, CO-4), Jl. Cakung Cilincing (CO-5) and Jl. Sulawesi (CO-6), the traffic volume is comparatively larger than 90,000 v ehicles. From the viewpoint of freight vehicle volume, CO-3, CO-4, CO-5 and CO-6 have a larger total traffic volume by 17,700 freight vehicles to 20,400.

Modal composition of passenger c ar ratio is approximately 43% at CO-1, CO-2 and CO -5, while 33% at CO-3 and CO-4, in spite of composition of CO-6 is h igher than other points by approximately 60% and that of Tanjung Priok Ramp (CO-7) is 58.6%. From the viewpoint of trucks, the section of Sulawesi, Jampea, Cilincing has a large occupation of 45.2% to 46.9%. At Tanjung Priok Ramp, freight vehicle composition is 34.2%.

Large vehicle ratios of C O-3, CO-4 and CO-5 are comparatively higher by 36.6% to 37.2%, while those of CO-1 and CO-2 are lower by 19.4% to 24.1%.

				TOTAL		Modal Composition					
			Without Motorcycl e(a)	With Motorcycl e(b)	All Freight	Sedan(2 +6)	Bus(3-5)	Trucks(7 -11)	Large Vehicle Ratio (5, 9-11)/a		
CO-1	W2	W-E	9,741	37,289	3,405	40.3%	21.4%	35.0%	23.2%		
		E-W	12,163	38,147	3,961	43.9%	19.4%	32.6%	24.8%		
		TOTAL	21,904	75,436	7,366	42.3%	20.3%	33.6%	24.1%		
CO-2	W1	W-E	12,917	40,689	2,238	43.1%	42.7%	17.3%	18.3%		
		E-W	13,293	46,810	2,438	45.1%	38.2%	18.3%	20.6%		
		TOTAL	26,210	87,499	4,676	44.1%	40.4%	17.8%	19.4%		
CO-3	E2-A	W-E	21,511	50,632	9,266	38.5%	13.6%	43.1%	36.0%		
		E-W	17,804	48,946	8,496	28.4%	18.5%	47.7%	37.3%		
		TOTAL	39,315	99,578	17,762	33.9%	15.8%	45.2%	36.6%		
CO-4	E2	W-E	22,582	57,456	10,024	36.4%	16.8%	44.4%	34.7%		
		E-W	21,016	55,070	10,422	29.8%	18.4%	49.6%	39.4%		
		TOTAL	43,598	112,526	20,446	33.2%	17.6%	46.9%	37.0%		
CO-5	E1	S-N	19,084	54,672	9,310	40.9%	5.2%	48.8%	39.9%		
		N-S	20,570	54,819	8,766	46.8%	4.9%	42.6%	34.6%		
		TOTAL	39,654	109,491	18,076	44.0%	5.1%	45.6%	37.2%		
CO-6	NS	S-N	41,418	77,820	10,142	59.8%	11.8%	24.5%	19.4%		
		N-S	36,320	64,225	9,043	59.7%	13.2%	24.9%	18.6%		
		TOTAL	77,738	142,045	19,185		12.5%	24.7%	19.0%		
CO-7	Direct	Off ramp	10,710	10,712	4,678	48.9%	1.7%	43.7%	30.3%		
		On ramp	16,475	16,475	4,612	64.9%	1.1%	28.0%	14.9%		
		TOTAL	27,185	27,187	9,290	58.6%	1.3%	34.2%	<mark>21.0%</mark>		

 Table 3.1
 24 hour sectional Traffic Volume by each direction, each mode

(2) Comparison with the past traffic surveys

A traffic volume survey was implemented in 2007 and 2009. The main characteristics of the results of these past surveys and that of the current data in 2010 are as follows:

- ✓ Traffic volumes of Jl. Jamper(CO-3), Jl. Cilincing (CO-4) and Jl. Sulawesi (CO-5) section and Tanjung Priok Ramp (CO-7) are increasing, while the traffic volume of Jl. Martadinata (CO-1, CO-2) and Cakung Cilincing (CO-6) are slightly decreasing, as compared with the past traffic volumes.
- ✓ The following situations are supposed t o influence t he traffic f low on Jl. Martadinata (CO-1, CO-2), Freight volume of gates 1 and 3 of Tanjung Priok Port, which are located in the western area, is falling down.
- ✓ The following background is supposed to influence the decrease of traffic flow trend of CO-5. The construction of TgPA E-1 section is proceeding. Many large freight vehicles which usually use Cak ung Cilincing to enter Tanjung Priok area tend to divert to Kebong Cawang Barrier via JIUT.

November 2010

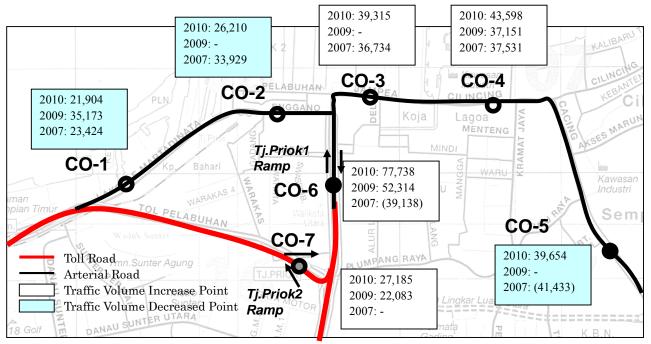
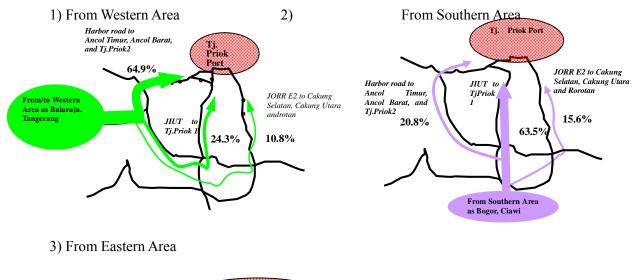


Figure 3.1 Traffic Volume Comparison of 2007, 2009, and 2010 (All w/o motorcycle)


3.2.2 Car Users' Stated Preference Survey for Tanjung Priok Access Road Usage

This survey was carried out by hearing method. Interview locations shown in Table 3.3 were decided from the v iewpoint of freight transport quantity and t rip characteristics. The surveyor interviewed on as pects su ch as i) t rip information, ii) t oll roa d u sage and i ii) T gPA st ated preferences to the vehicle users. Total number of samples for eight survey points is 899.

(1) Present Toll Road Using Condition

Figure 3.9 s hows the p resent to ll ro ad using the condition b y o rigin's d irection. The m ain characteristics of preferred route from each area are as follows:

- ✓ From the western area, vehicles which use Tanjung Priok 2 Ramp and Harbor Road occupy 64.9%;
- ✓ From the southern area, vehicles which use Tanjung Priok 1 Ramp via JIUT occupy 63.5%, while those which use JORR via Rorotan Ramp, Cakung Selatan and Cakung Utara occupy 15.6%.
- ✓ From the eastern area, JORR route users to Tanjung Priok Port occupy a majority of 75.3% in spite of the congestion at Jl. Cilincing.

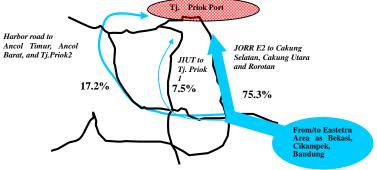


Figure 3.2 Ratio of toll road route to the Tanjung Priok Port and surrounding area

(2) Future Toll Road Usage Preference

The users' stated preference related to the TgPA W section is characterized as follows;

- ✓ It is forecasted that the traffic utilizing TgPA W section is mainly composed of those which uses the eastern area of Tanjung Priok Port from the western area of Jabodetabek.
- ✓ Majority of this traffic use Kampung Bahari ramp for access to their destination. The ratio of users selecting the nearer ramp for access to the facility, through payment of TgPA fare, is 25.9% of all western facility users and 47.5% of all eastern facility users.

November 2010

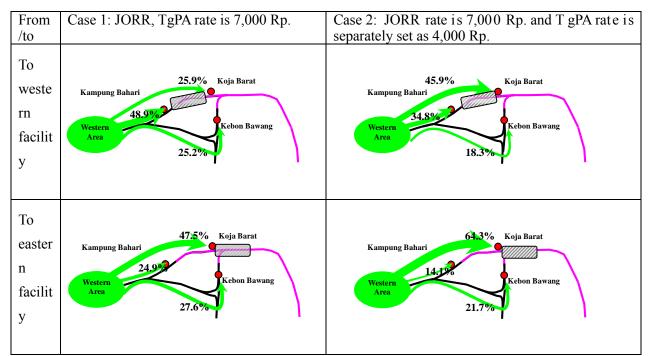


Figure 3.3 Future toll road user preference to eastern facility of Tanjung Priok Port and surrounding facility

2) Tendency of the traffic which pass through the city center area

One of the important roles of TgPA is to serve as bypass of JIUT in order to avoid the most congested section from Tomang JCT and Cawang JCT.

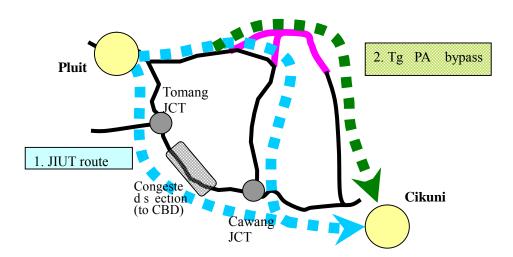


Table 3.2 Utilization rate of TgPA for through traffic in Jakarta Urban Area

Vehicle type	Utilized	Case 0	Case 1	Case 2
	route	(without TgPA)	(TgPA r ate	(TgPA rat e = 4, 000)
			=7,000 Rp)	Rp/Separated f rom
				JORR as 7,000 Rp)
Fare from P luit to	8	, 000	13,500	17,500
Cikunir JCT(Rp)		(6,500+1,500)	(6,500+7,000)	(6,500+7,000+4,000)
All type	JIUT	00%	51.8%	54.5%
	TgPA -		48.2%	45.5%
Passenger car	JIUT	00%	52.8%	52.8%
	TgPA -		47.2%	47.2%
Trucks	JIUT	00%	51.5%	55.1%
	TgPA -		48.5%	44.9%

The main characteristics of the route selection for pass-through traffic are as follows:

- ✓ The ratio of car users which select JIUT is almost equal to those selecting TgPA which is 51.8% and 48.2%, respectively. In case 2, t he r atio of users which select t o use TgPA decreases by only 2.7% though the fare rate via TgPA rises from Rp. 13,500 to Rp. 17,500. In spite of the traffic volume from Pluit to Cikunir, and those far from eastern section being comparatively small among the whole toll road traffic in Jakarta, it is observed that there seems to be a need for the bypass to access TgPA.
- ✓ From the viewpoint of traffic mode, freight vehicles are tending to change the route by fare system.

3.2.3 Travel Time Survey

The surveyors measured the travel time from Tanjung Priok Port to the suburban city via toll road by the morning peak and midday non-peak time, per direction.

1) Average travel time by route

The average travel time of morning peak inbound is the longest among both directions and both time modes. Travel speed is comparatively slow especially in the sections between JORR to JIUT (route 3, 4) and arterial road near Tanjung Pri ok Port (from Rol otan toll road barrier, JORR E1 section to JICT)

2) Travel time and speed comparison according to time zone

Comparing morning peak and non-peak inbound direction, travel time of the former is 62 min, which is 1.72 times longer than the latter on route 1 from Cakung to Tanjung Priok Port. On routes 2, 3, and 4, the travel times during the morning peak are only 1.19 times and 1.27 times larger.

3) Travel time and speed comparison of inbound and outbound traffic

Comparing travel time of inbound and outbound traffic, travel time of route 1 and 3 of morning inbound is respectively larger by 1.7 to 1.87 times than that of morning outbound, while that of route 2 and 4 is 1.2 to 1.21 times, respectively.

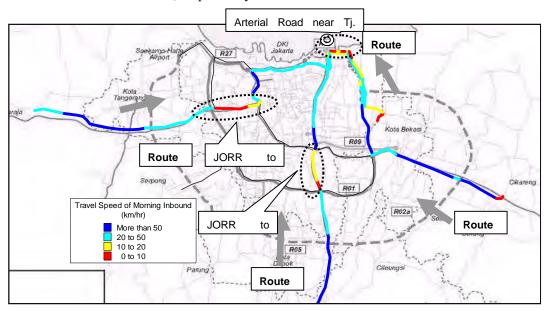


Figure 3.4 Travel speed of Morning Peak (Inbound)

3.3 Examination of Newly Emerged Development Plans Affecting Traffic Demand

The detailed design carried out in 2007 was based on a traffic demand forecast which set the target year to 2020. In this study, the future vehicle OD table which set target year to 2030 is created, by initiating the following development projects:

(1) Trend Growth After 2020

- Although the economic activities in Jakarta City are now quite activated, use of toll roads does not increase significantly. It seems that the traffic demand has reached the capacity of toll roads. Even if the potential traffic demand exists, the use of toll roads is limited or remains to be in a low level.
- In the Jabodetabek, aggressive road improvement has been carried out in order to meet the increasing traffic demand. However, such improvement project could still not cope with the increasing traffic dem and. Besi des, rap id improvement cannot be expected in the future, either. Therefore, about 2% of the annual growth rate of traffic volume was assumed after 2020, and consequently, the traffic volume in 2030 was calculated to be 1.22 times of the traffic volume in 2020 by each OD pair.

(2) Development Projects to be Considered

The three development projects which should be considered are as follows:

- Container Terminal Expansion Plan in Tanjung Priok Port
- Ancol Area Development Plan
- Marunda Area Development Plan
- 1) Container Terminal Expansion Plan in Tanjung Priok Port

PT.Pelindo II st imulates a pl an; filling in the east Ancol area, n eighboring to the west breakwater in Tanjung Priok Port. They will complete the construction in the next three or four years, and will then start operation (See Figure 3.5). This expansion project aims to solve the lack of facilities' capacity in Tanjung Priok Port, and to partially meet the demand in the p ort. The increase in tr affic v olume related to Tanjung Priok P ort a ctivities is estimated until 2025 in the detailed design phase. The growth rate after 2025 is set based on the rate until 2025. It is as follows:

	Passenger cars	Trucks
2020-2025	2. 4%	2.0%
2025-2030	2. 0%	1.5%

Moreover, this facility or expanded area is assumed to start operating after 2014. Said facility is supposed to absorb the 50% of the increasing traffic volume related to Tanjung Priok Port activities.

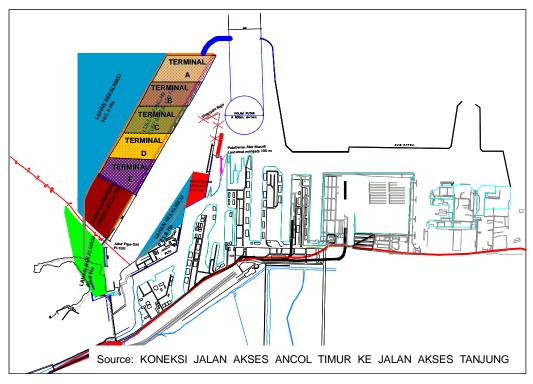


Figure 3.5 Development Plan of Ancol Timur

2) Ancol Area Development Plan

A seaboard in the northern part of Jakarta City is reclaimed, and planned to be converted to residential h ouses, of fice buildings, ho tels, com mercial en tertainment f acilities, public facilities, and parks (See Figure 3.6 and Table 3.3).

Figure 3.6 Location of Ancol Development

Zone		2015		2025				
	Attraction	Generation	Total	Attraction	Generation	Total		
1				1,664	3,092	4,756		
2				543	1,010	1,553		
3				12	12	24		
4	98	182	280					
5	742	1,381	2,123					
6	337	626	963					
7				433	799	1,232		
8	688	1,278	1,966					
9				1,793	3,316	5,109		
10				2,796	5,114	7,910		
11	1,787	3,307	5,094					
12				1,301	2,370	3,671		
13				1,155	2,102	3,257		
14	798	1,484	2,282					
15	798	1,478	2,276					
16	398	679	1,077					
17	1,201	1,547	2,748					
18	1,089	2,483	3,572					
TOTAL	7,936	14,442	22,378	9,698	17,815	27,513		
Source: DS								

 Table 3.3 Traffic Generation and Attractive by Zones

Source: PSUD, PT.LAPIITB

3) Marunda Area Development Plan

In Marunda area, KBN, which central government and D KI Jakarta has invested on and established, has been proceeding with a development program. At the detailed design phase, 400 ha of Special Economic Zone or SEZ (40% of the entire section was occupied) was developed first. Since the development area is planned to be expanded, the future traffic demand is calculated as an annually increasing rate of 3% after 2020.

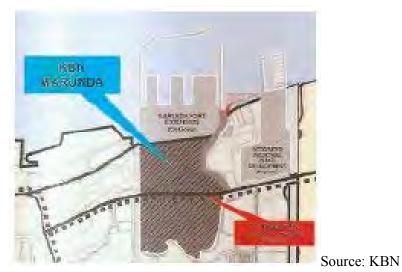


Figure 3.7 KBN Marunda SEZ Development Plan

3.4 Development of Alternative Traffic Demand Forecast Cases

Table 3.4 shows the cases of the demand forecast carried out in this study.

	Examine Cases of Traffic Demand Forecast													
	- · · - ·	Ph	ase1 a	nd Phas	se2		Survey Section			Target Year (OD)			Tariff System(*)	
	Exist Toll Network	E-1	E-2	E-2A	NS	W−1	W-2	Direct Ramp	Ancol IC	2013	2016	2030	Integra ted	Indepe ndent
Base	0	0	0	0	0	—		—	—	1	2	3	0	
Case1	0	0	0	0	0	0	0	—	-	_	4	(5)	0	
Case2	0	0	0	0	0	-	I	0	-	6	\bigcirc	8	0	
Case3	0	0	0	0	0	0	0	0	-		9	10	0	
Case4	0	0	0	0	0	0	0	0	-	_	1	(12)		0
Case5	0	0	0	0	0	0	0	0	0	_	(13)	14	0	

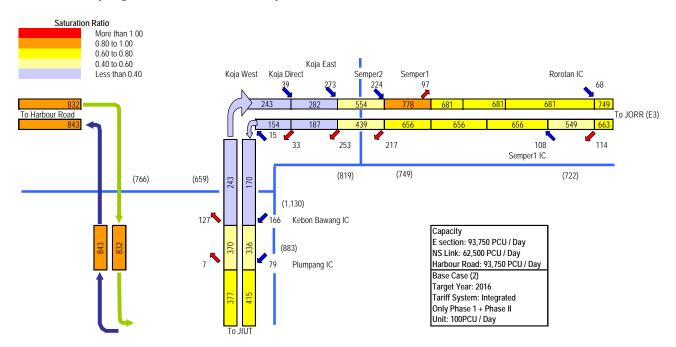
 Table 3.4
 Cases for Demand Forecast

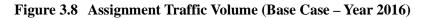
(*) Tariff System : Integrated Case means 7,000 Rupiahs is applied to all JORR and TgPA.

Independent case means 4,000 Rupiahs is applied to TgPA independently apart from JORR.

3.5 Update of Traffic Demand Forecast

3.5.1 Base Case and W Section (Base Case and Case 1 of Demand Forecast)


The forecast result of the Base Case, where only Phase 1 and Phase 2 are constructed, is shown in Figure 3.8. Meanwhile, the result of the case where the W Section is constructed as well is shown in Figure 3.9.


When the W-1 and W-2 sections are constructed, the traffic of N-S Link is smaller compared

with the Base Case, but on the contrary, the traf fic in other sec tions of T gPA appears larger while efficiency of TgPA is improving. Moreover, it is judged that the t raffic of the N -S L ink decre ases because traffic that took such route to the Tanjung P riok Port ar ea fr om t he s outh when t here i s no W S ection, di verts to the route from the Harbor Road to the W section of TgPA (See adjacent Figure).

November 2010

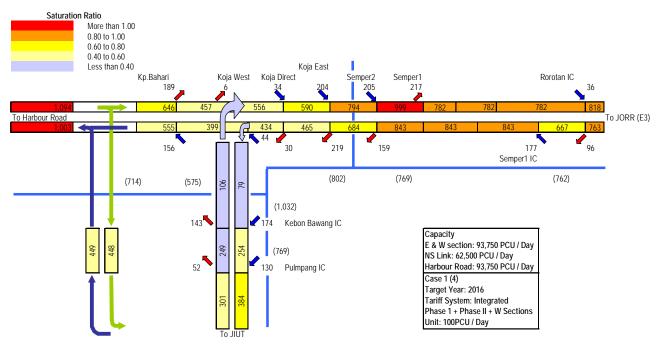
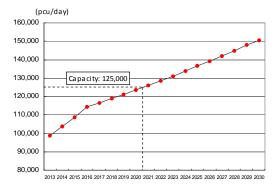



Figure 3.9 Assignment Traffic Volume (Case 1 – Year 2016)

3.5.2 Base Case + Direct Ramp (Case 2 of the Demand Forecast)

The forecast result in case only the Direct Ramp is constructed as w ell a s P hase 1 and Ph ase 2 is shown in Figure 3.10.

It is found t hat the traffic of the TgPA increases even if on ly the N-S D irect R amp is constructed, and cont ributes t o the efficient i mprovement of TgPA. H owever, the traffic v olume of the ram p will exc eed its cap acity by aroun d 2021

considering the traffic growth rate after the operation of TgPA. Furthermore, the efficiency of TgPA is supposed to decrease in the future considering that only the Direct Ramp is constructed (See above Figure).

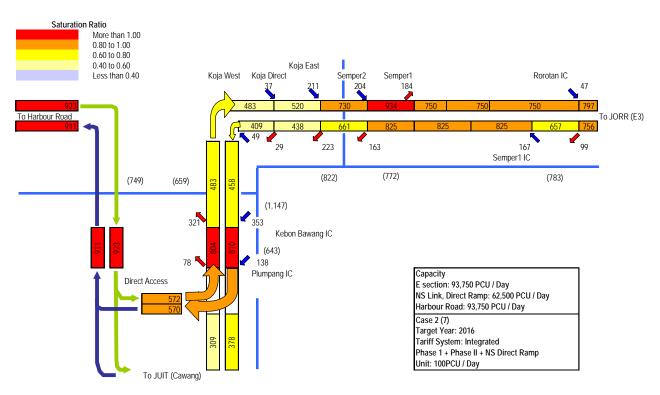
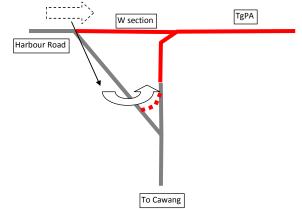



Figure 3.10 Assignment Traffic Volume (Case 2 – Year 2016)

3.5.3 Base Case, W Section and Direct Ramp (Case 3 of Demand Forecast)

The forecast result in case the W Section and Direct Ramp are constructed as well as Phase1 and Phase 2 is shown in Figure 3.11.

When the Direct Ramp is constructed as well as the W Section, the traffic in the eastern sections, from Sem per to Koja, does not ch anged significantly. On the other hand, the traffic along the W S ection d ecreases while th at along th e N-S L ink increases. Moreover, the traffic along the arterial roads parallel to the W S ection and N-S L ink decrea ses, Thus, t he D irect Ramp alleviates the traffic jam in the arterial roads (See right Figure).

Therefore, from the viewpoint of traffic control, construction of the Direct Ramp as well as the W Section is preferable since apart from improving the efficiency of TgPA, it also alleviates the traffic congestion along the arterial roads around Tanjung Priok Port. However, construction of only the D irect R amp is n ot desirable because the traffic will soon exceed the route capacity, although a short-lived positive effect can be expected.

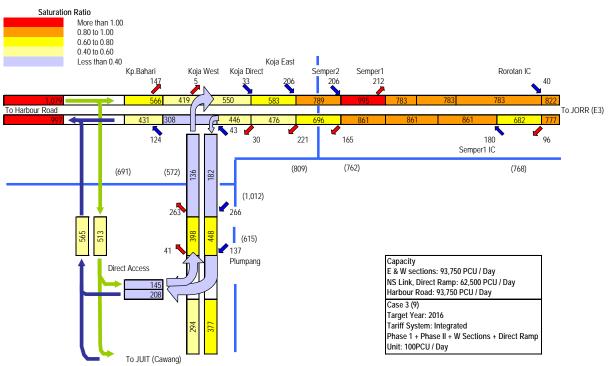


Figure 3.11 Assignment Traffic Volume (Case 3 – Year 2016)

3.5.4 Impact Analysis of Tariff System (Case 4 of Demand Forecast)

The fare system of TgPA is basically a flat rate with JORR (Rp. 7,000). However, Figure 3.12 shows the assignment volume result of the case when TgPA fare is Rp. 4,000, independent from

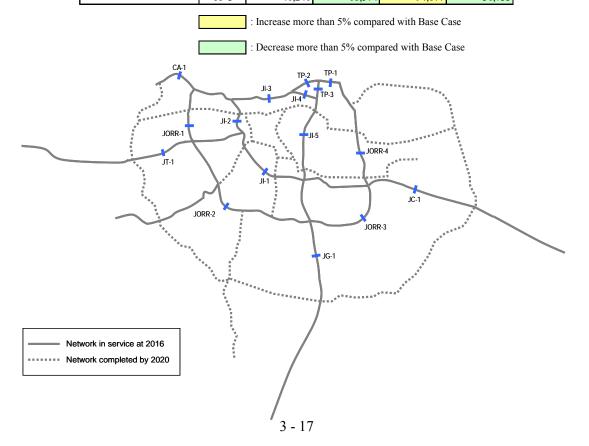
Figure 3.12 Assignment Traffic Volume (Case 4 – Year 2016)

The traffic volume of TgPA is generally decreasing because of the fare resistance when the toll system of TgPA is independent from JORR. However, the traffic volume which has to pay tariff according to the TgPA system will increase as compared with the flat rate along JORR, since such fare is imposed against in-flow traffic from JORR.

Table 3.5 indicates the comparison of the total fare income between adoption of flat rate system and independent rate system. When the latter is adopted, total fare income is below that of the flat rate system, although the motorists are obliged to pay. Furthermore, O&M cost is expected increase due to the construction of toll barrier at the connecting point with JORR. Furthermore, congestion at the toll barrier is forecasted.

Therefore, f lat tariff with JORR is desirable from t he viewpoint of toll road operation, and financial aspect of TgPA.

tariff system	Traffic volume with payment	Total tariff income
	(PCU/day)	(1,000Rp./day)
Flat tariff (Rp.7,000)	122,300	122,300 x 7,000 = 856,100
Independent tariff (Rp.4,000)	164,400	164,400 x 4,000 = 657,600


 Table 3.5
 Comparison of total tariff income

3.5.5 Analysis of Impact to the Road Network

Table 3.6 indicates the assignment result of the main section of toll road by base case and each alternative case. When the TgPA W section and/or N-S D irect R amp are con structed, traffic volume of JIUT (Cawang-Tj. Priok, JI-5) is expected to decreased while one of JORR eastern section (JORR-4) will increase. It is forecasted that the traffic to Tanjung Priok from Jakarta – Cikampek Toll Road will divert through JIUT from JORR. If the W section is developed, traffic volume of a H arbor Road section (JI-4) is evidently decreased. This indicates that the traffic flow from Harbor Road to Tanjung Priok diverts to the TgPA W section.

 Table 3.6 Assignment result by alternative case and by toll road section

Toll Road	Section	Base Case	Base Case + W section	Base Case + Direct Ramp	Base Case + W section + Direct Ramp	
			Case 1	Case 2	Case 3	
Jagorawi	JG-1	167,049	167,480	165,085	166,691	
Jakarta-Cikampek	JC-1	210,393	211,306	210,442	210,459	
Jakarta-Tangerang	JT-1	166,466	166,125	168,488	166,802	
Cengkareng Access	CA-1	141,491	141,996	142,228	142,205	
JIUT	JI-1	181,171	177,740	181,287	179,443	
	JI-2	126,427	129,835	126,816	128,046	
	JI-3	207,337	207,097	205,476	201,491	
	JI-4	167,525	89,623	183,335	107,800	
	JI-5	205,736	194,082	190,306	189,750	
JORR W1	JORR-1	170,447	163,315	168,258	165,035	
JORR S	JORR-2	207,737	205,811	204,364	205,389	
JORR E	JORR-3	171,050	171,380	170,497	173,733	
	JORR-4	163,019	174,012	171,565	175,425	
TGPA	TP-1	46,838	105,462	95,811	105,854	
	TP-2	0	84,968	0	72,186	
	TP-3	41,241	18,574	94,077	31,733	

CHAPTER 4 REVIEW OF ROAD DESIGN AND COST ESTIMATE

4.1 Review of Existing Road Designs and Recommendations on Alternatives

4.1.1 Review of Existing Designs

The summary of the original structures of the W-1, W-2 and Direct Ramp sections are shown in the following Table 4.1.

		Sta	tion	Structure		Length	Width	Area
Section	Viaduct	from	to	Superstructure	Substructure	m	m	m2
	Viaduct-2	8+62.5	8+127.5	Steel Box (simple)	Y-pier, Portal	65	29	1,885
	Viaduct-3	8+127.5	8+341	PC-U	Y-pier, Portal	214	29	6,163
	Viaduct-4	8+341	8+806	Steel Box(continouus)	Y-pier, Portal	465	27	12,776
W-1	Viaduct-5	8+806	9+508.5	PC Box	Y-pier	703	27	19,237
	Viaduct-6	9+508.5	9+573.5	Steel Box (simple)	Y-pier, Portal	65	28	1,841
W-1	Viaduct-7	9+573.5	10+423.5	PC Box	Y-pier, Portal	850	27	22,954
	Koja West Off Ramp Viaduct-1	0+129.9	0+194.9	Steel Box (simple)	I-pier	65	7	455
	Koja West Off Ramp Viaduct-2	0+194.9	0+438.4	PC-U	I-pier	289	7	2,019
	Arterial Road							
	Sub Total					2,716		
	Viaduct-1	10+423.5	10+828.5	PC-U	Portal	405	29	11,635
	Viaduct-2	10+828.5	11+250	PC-U	T-pier, Portal	422	25	10,550
	On Ramp Viaduct-1	0+0	0+389	PC-U	T-pier, Portal	389	23	8,862
	On Ramp Viaduct-2	0+389	0+745.7	PC-U	T-pier, Portal	357	11	3,991
	On Ramp Viaduct-3	0+745.7	0+935.7	Cable Stay	Pylon	190	9	1,645
	On Ramp Viaduct-4	0+935.7	1+327.6	PC-U	T-pier	392	9	3,677
	On Ramp Viaduct-5	1+327.6	1+712.6	PC-U	T-pier	350	8	2,908
	On Ramp Viaduct-6	1+712.6	1+937.6	PC-U	T-pier	260	7	1,898
	On Ramp Viaduct-7	1+937.6	2+64.9	PC-I	T-pier	125	5	635
W-2	Off Ramp Viaduct-2	0+386.3	0+630.5	PC-U	I-pier	244	16	3,803
vv -2	Off Ramp Viaduct-3	0+630.5	0+778.9	PC-U	T-pier	148	12	1,767
	Off Ramp Viaduct-4	0+778.9	1+180	PC-U	T-pier	401	8	3,164
	Off Ramp Viaduct-5	1+180	1+705	PC-U	T-pier	525	8	4,408
	Off Ramp Viaduct-6	1+705	1+827.8	PC-I	T-pier	123	7	823
	Kp. Bhr On Ramp Viaduct-1	0+329.2	0+572.7	PC-U	T-pier	405	4	1,459
	Kp. Bhr On Ramp Piled Slab	0+229.2	0+329.2	Piled Slab	T-pier	100	7	700
	Kp. Bhr Off Ramp Viaduct-2	0+339.9	0+509.5	PC-U	T-pier	244	5	1,188
	Kp. Bhr Off Ramp Piled Slab	0+509.5	0+609.5	Piled Slab		100	7	700
	Arterial Road							
	Sub Total					5,180		
	Ramp - A, Pile Slab	0+181.48	0+311.48	Piled Slab		130	8	1,066
	Ramp - A, from AA to PA. 9	0+311.48	0+625.00	PC - U Girder	T-pier	314	9	2,822
	Ramp - A, from PA.9 to PA. 16	0+625.00	0+814.00	PC - U Girder	T-pier	189	11	2,126
	Ramp - A, from PA. 16 to PA.	0+814.00	0+931.76	PC - U Girder	T-pier	118	9	1,060
	Ramp - A, from PA. 20 to the	0+931.76	0+941.261	RC Girder	T-pier	10	9	86
	Ramp - B, Pile Slab	0+153.25	0+273.25	Pile Slab		120	7	876
Ramp	Ramp - B, from AB to PB. 12	0+273.25	0+653.00	PC - U Girder	T-pier	380	10	3,608
	Ramp - B, from PB.12 to PB.	0+653.00	0+795.00	Steel Box Girder	T-pier	142	11	1,598
	Ramp - B, from PB. 15 to PB.	0+795.00	1+007.55	PC - U Girder	T-pier	213	10	2,019
	Ramp - B, from PB. 22 to the	1+007.55	1+017.05	RC Girder	T-pier	10	9	90
	Arterial Road							
	Sub Total					1,624		15,350

Table 4.1 Summary of Original Structures

These structures were reviewed for recommendation in the cost reduction plan.

As a result of the review, most of the structures were found to be designed economically except for some st ructures s tipulated in the following Table 4.2. Su ch s tructures were se lected for consideration in the D/D stage for reasons such as aesthetic design and so on. Therefore, in order t o re duce t he construction co st, their s tructure t ypes should be m odified t o ach ieve economic design.

Section	Viaduct	Structure Type	Bridge Length	
W-1	Viaduct-5 P	C-Box	703m	
vv - 1	Viaduct-7 P	C-Box	850m	

Table 4.2 Structures to be modified

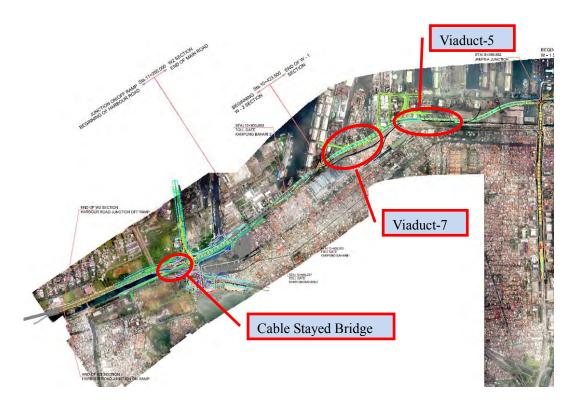
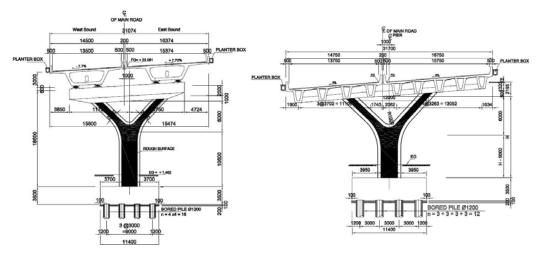



Figure 4.1 Location of Viaduct-5,7 and Cable Stayed Bridge

4.1.2 Modification of PC-Box Girders

PC-box girders with about 40m span length are located on Viaduct-5 and Viaduct-7 of the W-1 section. In consideration of the conditions of arterial roads and piers location, these PC-box girders of Viaduct-5 and Viaduct-7 can be modified to PC-U girders, which have already been applied in the E-1, E-2A, E-2, NS-Link and W-1 sections.

PC-Box Girder

PC-U Girder

Figure 4.2 Cross Section of PC-box and PC-U

However, the economic span length of the PC-U girder is 35 m as applied in the other sections. Therefore, the span arrangement and pier location were studied in this survey. Corresponding study results are presented as drawings in the attached Appendix-4.

It is noted that said structures presented in the attached drawings resulted from rough designs. Therefore, d etailed d esign for PC -U g irders and the ir sub structures are r equired before construction. The period of detailed design for these structures is estimated to be approximately three months. The construction cost reduction is estimated in the following Table 4.3.

Viaduct and Station No.	Length	Original Structure	Alternative Plan	Cost Reduction
Viaduct-5, 8+806 to 9+508	702m	PC-Box Girder	PC-U Girder	Rp.59,443 million.
Viaduct-7, 9+573 to 10+423	860m	PC-Box Girder	PC-U Girder	Rp.82,863million

 Table 4.3 Estimated Cost Reduction for applying PC-U Girders

4.1.3 Road Improvement Project in the Port Area

The existing roads in the Port A rea were improved by PT.Pelindo II after the D/D of T gPA. The modifications recommended by PT.Pelindo II were examined in order to decide whether to adopt them to TgPA D/D.

As a result of the confirmation, the pier location of Pier-10 of V iaduct-4 on W-1 section is required to be modified as shown in Figure 4.3. This modification only involves installation of additional one column and foundation. A ccording to rough estimation, increased cost is R p

2,500 million only.

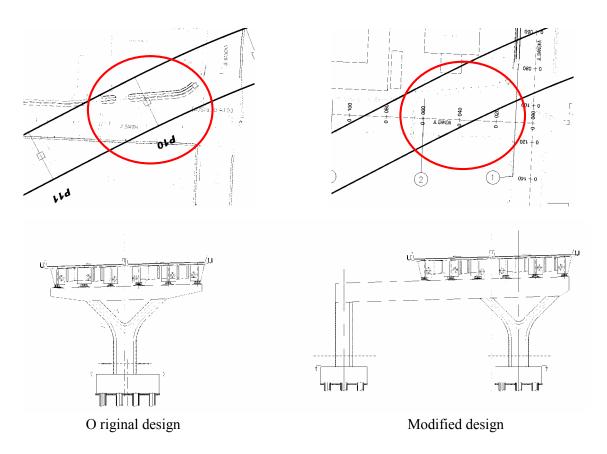


Figure 4.3 Modification of Pier-10 of W-1 Section.

Thus, Pier-10 of Viaduct-4 on W-1 section is required to be subject to D/D prior to construction. The period of detailed design is estimated to be approximately two months

Other piers and alignment of TgPA need not be modified according to the Survey Team's review results.

4.2 Examination of Cost Reduction through Alternative Designs

The superstructure t ype c onsisting of P C-box girders was changed in order to reduce the construction cost as studied in Section 4.1.

The summary of construction cost reduction is shown in Table 4.4.

~ .	Station		Length	Width	Original Structure		Alternative Structure		Cost Reduction	
Section	Viaduct	from	to	m	m	Туре	Cost (Mill. Rp.)	Туре	Cost (Mill. Rp.)	(Mill. Rp)
	Viaduct-5	8+806	9+508.5	703	27	PC-Box	341,653	PC-U	282,210	59,443
W-1	Viaduct-7	9+573.5	10+423.5	850	27	PC-Box	419,593	PC-U	336,730	82,863
	Sub Total						761,246		618,940	142,306

Table 4.4Summary of Cost Reduction

4.3 Update of Construction Cost

4.3.1 Update of Construction Cost

The construction cost is updated using the cost breakdown of TgPA. The alternative structures which have been recommended in Section 4.1 are reflected into the updated cost. Moreover, the construction cost is recalculated using the latest unit prices in 2010.

The construction cost of W-1, W-2 and Direct Ramp are c alculated based on the following conditions:

- Phase 3: from Ramp Viaduct-1 of W-2 to the end of W-2 (2.1 km)
- Phase 4: the whole of the W-1 and Viaduct-1,2 of the W-2 section
- Phase 2: the whole of the Direct Ramp

The updated construction cost is summarized in Table 4.5.

	a		Sta	tion	Struct	ure	Length	Width	Area	Unit cost (m	nil. Rp/m2)	Const' cost	F/C	L/C
Phase	Section		from	to	Superstructure	Substructure	m	m	m2	main road	ramp	Mil. Rp	1000 JPY	Mil. Rp
		Viaduct-2	8+62.5	8+127.5	Steel Box (simple)	Y-pier, Portal	65	29	1,885	25.85		48,731		
		Viaduct-3	8+127.5	8+341	PC-U	Y-pier, Portal	214	29	6,163	14.67		90,407		
		Viaduct-4	8+341	8+806	Steel Box (continouus)	Y-pier, Portal	465	27	12,776	38.44		491,095		
		Viaduct-5	8+806	9+508.5	PC-U	Y-pier	703	27	19,237	14.67		282,210		
		Viaduct-6	9+508.5	9+573.5	Steel Box (simple)	Y-pier, Portal	65	28	1,841	31.62		58,215		
	W-1	Viaduct-7	9+573.5	10+423.5	PC-U	Y-pier, Portal	850	27	22,954	14.67		336,730		
Phase 4		Koja West Off Ramp Viaduct-1	0+129.9	0+194.9	Steel Box (simple)	I-pier	65	7	455		26.21	11,927		
		Koja West Off Ramp Viaduct-2	0+194.9	0+438.4	PC-U	I-pier	289	7	2,019		10.71	21,627		
		Arterial Road										134,094		
		Sub Total					2,716		67,330			1,475,036	4,469,361	1,032,52
		Viaduct-1	10+423.5	10+828.5	PC-U	Portal	405	29	11,635	18.80		218,735		
	W-2	Viaduct-2	10+828.5	11+250	PC-U	T-pier, Portal	422	25	10,550	12.52		132,074		
		Total Phase 4					827		67,330			1,825,845		
		On Ramp Viaduct-1	0+0	0+389	PC-U	T-pier, Portal	389	23	8,862		12.18	107,934		
		On Ramp Viaduct-2	0+389	0+745.7	PC-U	T-pier, Portal	357	11	3,991		17.06	68,093		
		On Ramp Viaduct-3	0+745.7	0+935.7	Cable Stay	Pylon	190	9	1,645		78.57	129,266		
		On Ramp Viaduct-4	0+935.7	1+327.6	PC-U	T-pier	392	9	3,677		14.86	54,644		
		On Ramp Viaduct-5	1+327.6	1+712.6	PC-U	T-pier	350	8	2,908		11.72	34,087		
		On Ramp Viaduct-6	1+712.6	1+937.6	PC-U	T-pier	260	7	1,898		12.64	23,986		
		On Ramp Viaduct-7	1+937.6	2+64.9	PC-I	T-pier	125	5	635		13.47	8,556		
		Off Ramp Viaduct-2	0+386.3	0+630.5	PC-U	I-pier	244	16	3,803		13.03	49,551		
		Off Ramp Viaduct-3	0+630.5	0+778.9	PC-U	T-pier	148	12	1,767		14.29	25,247		
Phase 3	W-2	Off Ramp Viaduct-4	0+778.9	1+180	PC-U	T-pier	401	8	3,164		12.21	38,636		
		Off Ramp Viaduct-5	1+180	1+705	PC-U	T-pier	525	8	4,408		11.79	51,974		
		Off Ramp Viaduct-6	1+705	1+827.8	PC-I	T-pier	123	7	823		11.40	9,380		
		Kp. Bhr On Ramp Viaduct-1	0+329.2	0+572.7	PC-U	T-pier	405	4	1,459		12.59	18,368		
		Kp. Bhr On Ramp Piled Slab	0+229.2	0+329.2	Piled Slab	T-pier	100	7	700		4.33	3,033		
		Kp. Bhr Off Ramp Viaduct-2	0+339.9	0+509.5	PC-U	T-pier	244	5	1,188		9.93	11,792		
		Kp. Bhr Off Ramp Piled Slab	0+509.5	0+609.5	Piled Slab		100	7	700		4.33	3,033		
		Arterial Road										98,839		
		Total Phase 3					4,353		41,629			736,419	2,231,349	515,49
		Ramp - A, Pile Slab	0+181.48	0+311.48	Piled Slab		130	8	1,066		4.33	4,611		, .
		Ramp - A, from AA to PA. 9		0+625.00	PC - U Girder	T-pier	314	9	2,822		11.01	31,058		
		Ramp - A, from PA.9 to PA. 16	0+625.00	0+814.00	PC - U Girder	T-pier	189	11	2,126		10.79	22,946		
		Ramp - A, from PA. 16 to PA.		0+931.76	PC - U Girder	T-pier	118	9	1,060		11.54	12,229		
		20 Ramp - A, from PA. 20 to the	0+931.76	0+941.26	RC Girder	T-pier	10	9	86		14.40	1,232		
		end Ramp - B, Pile Slab		1 0+273.25	Pile Slab		120	7	876		4.53	3,972		
Phase 2	Direct Ramp	Ramp - B, from AB to PB. 12	0+273.25	0+653.00	PC - U Girder	T-pier	380	10	3,608		11.05	39,865		
		Ramp - B, from PB.12 to PB.	0+653.00	0+795.00	Steel Box Girder	T-pier	142	10	1,598		27.81	44,420		
		15 Ramp - B, from PB. 15 to PB.	0+033.00	1+007.55	PC - U Girder	T-pier	213	10	2,019		11.18	22,570		
		22 Ramp - B, from PB. 22 to the	1+007.55	1+017.05	RC Girder	T-pier	10	9	2,019		13.87	1,249		
		end Arterial Road	1.001.00	1.017.05	ice oliuci	1-pici	10	,	90		13.07	1,249		
	-						1 624		15 250				606 112	140.02
	T-4	Total Direct Ramp					1,624		15,350			200,037	606,112	140,026
	Tota	l (W-1 + W-2 + Direct Ramp)										2,762,301	7,306,821	1,688,045

Table 4.5 Updated Construction Cost

4.3.2 Land Acquisition Cost

Estimated cost of land acquisition is shown in Table 4.6.

			Land Requirement (m2) and Acquisition cost estimate (Million Rp)															
					STATE	STATE OWNED ENTERPRISES/ REGIONAL OWNED ENTERPRISES (BUMN/BUMD) Government								Total Area	Total Cost Estimate			
No	Section		Private			PT Pelindo I	Π		PT KAI		PT Pe	emb. Jaya A	ncol	I	Pemprov DK	Ι		
		Area(m2)	Unit(Rp.)	Cost (Mill. Rp)	Area(m2)	Unit(Rp.)	Cost (Mill. Rp)	Area(m2)	Unit(Rp.)	Cost (Mill. Rp)	Area(m2)	Unit(Rp.)	Cost (Mill. Rp)	Area(m2)	Unit(Rp.)	Cost (Mill. Rp)	(m2)	(Mill. Rp)
1	Direct Ramn	3,857	6,785,000	26,170										101	6,785,000	685	3,958	26,855
2	W1	1,868	5,025,000	9,387	2,402	5,025,000	12,070	64	5,025,000	322							4,334	21,778
3	W2				20,444	5,025,000	102,731	588	5,025,000	2,955	3,574	5,025,000	17,959				24,606	123,645
	Total	5,725		35,556	22,846		114,801	652		3,276	3,574		17,959	101		685	32,898	172,279

Table 4.6 Land Acquisition Cost Estimation

4.4 Estimate of O&M Cost

4.4.1 O&M Cost Estimate Procedure

O&M cost consists of maintenance cost, operation cost and construction of operation facilities such as toll g ate, t oll col lection sy stem and oper ation cent er. These co sts ar e estim ated in accordance with Table 4.7.

Table 4.7 O&M Estimation Method

Estimated Item	Estimation Method
Maintenance Cost	Referring to Pt.Jasa Marga's Maintenance cost.
Operation Cost	Referring to Pt.Jasa Marga's operation cost.
Operation Facilities	Based on contract price of E-1 section

4.4.2 Estimate of O&M Cost

The O &M c ost is e stimated b ased on t he abov e maintenance cost, ope ration cost a nd construction cost of facilities. Moreover, the operation period is assumed to be 30 years. The O&M cost is summarized in Table 4.8.

	Year		0	5	10	15	20	25	30
	Maintenance	Routine	2,600	3,803	5,090	6,496	8,291	10,581	13,504
	Maintenance	Periodical		203	272	347	443	565	721
E-1	Opera	ation	18,110	26,487	35,446	45,239	57,737	73,689	94,048
	Operation Cent	er & Facilities	13,198	0	0	660	0	0	660
	Tot	tal	34,048	30,493	40,807	52,741	66,470	84,835	108,933
	Maintenance	Routine	2,096	3,065	4,102	5,235	6,681	8,527	10,883
	Maintenance	Periodical		164	219	279	357	455	581
E-2	Opera		14,595	21,345	28,565	36,457	46,530	59,385	75,792
	Operation Cent		14,218	0	0	711	0	0	711
	Tot	tal	31,021	24,574	32,886	42,682	53,567	68,367	87,966
	Maintenance	Routine	1,469	2,148	2,874	3,668	4,682	5,975	7,626
	Maintenance	Periodical		115	153	196	250	319	407
E-2A	Opera	ation	10,227	14,957	20,016	25,547	32,605	41,613	53,109
	Operation Cent	er & Facilities	8,759	0	0	438	0	0	438
	Tot	tal	20,533	17,220	23,044	29,849	37,536	47,907	61,581
	Maintenance	Routine	1,713	2,506	3,353	4,280	5,462	6,971	8,897
	Maintenance	Periodical		134	179	228	292	372	475
NS-Link	Operation		11,932	17,450	23,352	29,804	38,039	48,548	61,961
	Operation Center & Facilities		9,719	0	0	486	0	0	486
	Total		23,455	20,090	26,885	34,798	43,792	55,891	71,819
	Maintenance	Routine	1,805	2,640	3,533	4,509	5,755	7,345	9,374
	Maintenance	Periodical		141	189	241	307	392	500
W-1	Opera		12,571	18,385	24,604	31,401	40,077	51,149	65,280
	Operation Cent	er & Facilities	13,079	0	0	654	0	0	654
	Tot	tal	27,551	21,166	28,325	36,804	46,138	58,885	75,808
	Maintenance	Routine	2,226	3,255	4,356	5,560	7,096	9,056	11,558
	Maintenance	Periodical		174	233	297	379	483	617
W-2	Opera	ation	15,500	22,670	30,337	38,719	49,416	63,069	80,494
	Operation Cent	er & Facilities	11,728	0	0	586	0	0	586
	To	tal	29,573	26,099	34,926	45,162	56,891	72,609	93,256
	Maintenance	Routine	841	1,230	1,647	2,102	2,682	3,423	4,369
Direct	Maintenance	Periodical		66	88	112	143	183	233
	Opera	ation	5,859	8,569	11,468	14,636	18,680	23,841	30,427
Ramp	Operation Cent	er & Facilities	3,299	0	0	165	0	0	165
	To	tal	10,045	9,866	13,202	17,015	21,505	27,447	35,195
	Maintanaraa	Routine	12,750	18,647	24,954	31,849	40,648	51,878	66,211
	Maintenance	Periodical		995	1,332	1,700	2,170	2,769	3,534
Total	Opera	ation	88,794	129,865	173,788	221,803	283,083	361,293	461,112
	Operation Cent	er & Facilities	74,000	0	0	3,700	0	0	3,700
	To		176,225	149,507	200,075	259,052	325,900	415,941	534,558

Table 4.8 Summary of O&M Cost

CHAPTER 5 ESTIMATION OF PROJECT EFFECT

5.1 Economic and Financial Valuation

(1) Effect to be Estimated in the Economic Valuation

Savings in vehicle operating cost (VOC) and travel time cost (TTC) should be estimated as the economic ben efit. The economic benefit is evaluated by comparing the "with project" and "without project" cases. And in this case, the definitions of "with project" and "without project" are as follows:

Witho	out Project	The base road network consisting solely of the section E-1, which is under construction;
		and the section E-2, E-2A and NS-Link, which are in the coarse of bidding.
	Alternative	Alternative in which only the section W-1 and W-2, the initially planned sections, are
	1	added to the above base road network.
With	Alternative	Alternative in which only the section Direct Ramp are added to the above base road
Project	2	network.
	Alternative	Alternative in which the section W-1, W-2 and Direct Ram are added to the above base
	3	road network.

Table 5.1 Con	nparison of th	e economic benefit
---------------	----------------	--------------------

Firstly, we calculate the total VOC and total TTC based on the result of transport demand forecasting of the base road network and each alternative, unit price of VOC (Rp./car/km) and unit price of TTC (Rp./car/km). Then we evaluate the difference between the without case and with case as the economic benefit.

1) Economic Benefit

Table 5.2 shows the results of the economic benefit valuation. C ompared to the savings in operating cost, the savings in traveling time is much bigger. It also indicates that Direct Ramp is predicted to generate big benefit during inception, but as we mentioned in Chapter 3, t raffic volume would exceed the maximum capacity in 2021 and consequently, benefit would decrease from then on.

				(Million JPY/ year)
Alternatives	Year	Vehicle	Vehicle Time	Total
		Operating Cost	Cost Savings	
		Savings		
1. W -1+W-2	2016	755.8	6,664.3	7,420.1
	2030	209.2	7,533.8	7,743.0
2. D irect Ramp	2013	383.2	1,718.9	2,102.1
	2016	459.3	352.0	811.2
	2030	-22.0	210.0	188.1
3. W -1+W-2+Direct	2013	383.2	1,718.9	2,102.1
Ramp	2016	1,303.4	8,164.9	9,468.2
	2030	273.0	8,695.0	8,968.0

Table 5.2 Valuation results of the economic benefit

2) Construction and Maintenance Costs

Construction and m aintenance and re pairing cost s estimated in the p revious chapter w ere multiplied by 85% to convert them into economic prices. The costs in each year are as follows:

Table 5.3 Construction cost (The economic price)

			(Million JPY/ year)
Year	Phase I + Phase II	W-1, W-2 Sections	Direct Ramp
2006 19	1.5	0.0	0.0
2007 76	6.0	0.0	0.0
2008 2,0)52.5	0.0	0.0
2009 5,9	935.3	0.0	0.0
2010 7,1	105.3	0.0	0.0
2011 15	,974. 4	528.0	127.2
2012 1	1,270.2	1,432.6	968.5
2013 2,9	963.4	12,911.6	1,747.4
2014 0.0)	14,797.6	309.6
2015 0.0)	6,932.4	0.0
Total 46	,258. 5	36,602.2	3,152.7

Table 5.4 Repairing cost (Economic price)

(Million JPY/ year)

Phase I + Phase II	W-1, W-2 Sections	Direct Ramp
71.2 36.5		7.6

Table 5.5 Maintenance and	operating cost (Economic price)
---------------------------	------------------	-----------------

((Million	IPY/	vear)	
1	WIIIIOII	JI 1/	ycar)	

Year	Base Case	Base Case + W Sections	Base Case + Direct Ramp	Base Case + W Sections + Direct Ramp
2016	614.7 802.4		766.0	804.9
2020	691.9 903.1		862.1	906.0
2025	802.1 1,046	.9	999.4	1,050.3
2030	929.8 1,213	.7	1,158.6	1,217.5

3) Economic Valuation

With the use of the cash flow calculated from costs and benefits in each year, we conducted cost benefit analysis and the results are indicated in Table 5.9. If E IRR is over 15%, pro jects are considered economically feasible. Thus, the alternatives are all regarded as feasible. A mong them, Alternative 2 presents the highest EIRR, and Alternative 3 demonstrates the highest NPV and B /C v alues. In A lternative 2, how ever, the traffic v olume is for recasted to exceed the capacity starting from 2021 and transport management problems are noted. Hence, Alternative 3, which is the plan of the existing project of Direct Ramp plus the added W section, is the most desirable overall plan.

Table 5.6 Economic evaluation results of TgPA

Alternative	EIRR	NPV (Mil. JPY) (R=15%)	B/C (R=15%)
1 Base Case + W Section	15.8	739.4	1.06
2 Base Case + Direct Ramp	22.5	314.4	1.19
3 Base Case + W Section + Direct Ramp	18.5	3,418.8	1.24

5.1.3 Financial Valuation

(1) Calculation of Revenue

Annual toll revenue was calculated for each alternative using future traffic volume estimated from the predicted demand and unit price. This research uses the flat rate (Rp 7,000) system for the fare structure in JORR. The way to calculate the fare income just for TgPA remains to be solved. However, in this research, we assumed that all fare incomes collected from on-ramps that are located in TgPA sections are presumed as revenues of TgPA. In addition, we assumed other income such as advertisement rate to be equal to 5% of the fare income.

(2) Financial Valuation

We evaluated the financial internal rate of return (FIRR) from the cash flow of fare income and financial cost (represented as market price). This rate of revenue is not related to the financial sources (thus, financial sources would not be specified) and g ained from requisite investment fund, maintenance and operating cost, and income of the project. This rate corresponds to the return on investment (ROI).

Table 5.7 indicates the result of calculation. FIRR remains less than 3% in each alternative and it is financially tough to recover all the construction cost from the fare income.

Additionally, Figure 5.1 illustrates the variation of FIRR in Alternative 3 in terms of decreasing the construction cost. It is considered that an FIRR of 17% to 20% is necessary to implement the tollway under private resource utilization or private public partnership (PPP) schemes such as build operate transfer (BOT). This figure shows that if roughly 90% of the construction cost can b e a bsorbed by t he government (i.e., private sector bea rs only a round 10% of t he construction cost), the private sector will be able to operate the TgPA from fare income of the tollway even though it bears part of the construction cost and maintenance c ost. (The details about PPP will be discussed in Chapter 7.)

Alternative	FIRR	NPV (Mil. JPY) (R=15%)	B/C (R=15%)
1 Base Case + W Section	0.52	-40,133.5	-2.95
2 Base Case + Direct Ramp	2.93	-29,522.8	-1.86
3 Base Case + W Section + Direct Ramp	0.38	-41,324.7	-2.97

 Table 5.7 The result of the financial valuation

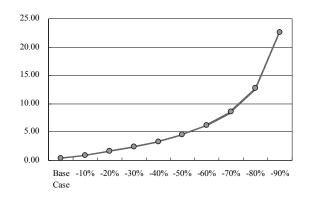


Figure 5.1 Sensibility analysis of the financial valuation (FIRR)

5.2 Estimation of Performance Indicators

Tables 5.8 and 5.9 show the performance indicators, which include the traffic volume of TgPA and travel time from the Tanjung Priok Port in the case of Alternative 3 where both W section and the Direct Ramp are constructed. The target values are estimated after two, five and seven years from the completion data in 2015. The traffic in the future increases remarkably compared with the base year. As for the roads around the Tanjung Priok Port, raffic jam occurs at present, and TgPA is supposed to absorb traffic from these congested roads. Moreover, the effect in terms of time savings from the Tanjung Priok Port to the east side (Cakung and Cikarang) and south side (Citeureup) of Jakarta is expected. However, the condition is estimated to become the same or w orse than the current condition in 2020, i.e., five y ears a fter TgPA com pletion, because travel time cannot be avoided to increase due to the increase in the traffic volume even if the TgPA Project is executed. Therefore, the effect of tr avel time savings is la rge when comparing the "with project" and "without project" cases as shown in the figure below.

 Table 5.8 Estimation of Performance Indicators (Traffic Volume)

В	ase year (Vehicles/day)	Target value (PCU/day)		
2010		2017	2020	2022
Arterial Road	99,578	84,100	93,800	100,200
TgPA -		109,600	120,700	128,100

 Table 5.9 Estimation of Performance Indicators (Travel Time from Tanjung Priok Port)

	Base year (minutes)	Target value (minutes)		utes)
201	0	2017	2020	2022
Cakung (13km)	35	36	43	47
Cikarang (43km)	78	70	80	87
Citeureup (43km)	54	50	64	74
Balaraja (72km)	109	115	133	144

CHAPTER 6 STUDY ON SOCIALAND ENVIRONMENTAL CONSIDERATION

6.1 Confirmation of Policy and Schedule for Land Acquisition and Resettlement for Precedent TgPA Sections

6.1.1 Background and Current Status of Development

At present, more than 80% of the total land (excluding the E-1 section) required for the TgPA Project belongs to PT Pelindo (the state harbor company of Indonesia). Status of development of each section and land acquisition is as follows:

Section	Status of Project Development/L	and Acquisition
E-1	Construction has been completed.	
E-2	The pr ogress no w i s u nder t ender f or c onstruction, whereas the process of land acquisition is not completed yet. T here a re f our l and ow ners, P T Pelindo, Navy, province government of DKI Jakarta and private sectors. Pelindo a nd D KI J akarta ha ve already given BINA MARGA th e p ermit to u se th eir la nds, however th e administrative procedures have not accomplished yet. In case of Navy area, the negotiation for land acquisition is still in p rogress, th e p reference of c ompensation is a barter w hich m ust be c ompleted be fore 30 Se ptember 2010, and the c onstruction w ill start in No vember 1 st , 2010.	Tender pr ocess. Progress of 1 and acquisition: S P2LP a cquired, Announcement s tage in t he Fi gure next page (Land area to be acquired: 63,854 m ²)
E-2A	The progress of development is in pre-qualification. The status of l and a cquisition is not completed yet, but P T Pelindo a nd Pertamina accepted the request f or l and acquisition. L and a cquisition must b e f inished b y February 2011.	Approval Documents of PQ Progress o f la nd a cquisition: S P2LP acquired, A nnouncement s tage i n t he Figure next page (Land area to be acquired: 53,809 m ²)
NS Link	The progress is in pre-qualification. The areas covered by the P roject belong t o private sect or an d st ate company. The process of land acquisition is on stage of waiting f or a nnouncement f or the owner. F or la nd acquisition of priv ate se ctor, t here is a ssistance a s counterpart for this matter that comes from BPKP (State Finance a nd D evelopment A uditor). The process m ust be finished by 10 December 2010.	Process of PQ Progress of la nd a cquisition: S P2LP acquired, A nnouncement s tage i n t he Figure next page (Land area to be acquired: 11,325 m ²)
Direct Ramp and W-1, W-2	Direct Ra mp a nd W-1, W-2 a re still in the sta ge of investigation and inventory and waiting for funding.	Loan Request Process Progress o f la nd a cquisition: S P2LP acquired, Identification/Inventory stage in the Figure next page (Land area to be acquired: 32,898 m ²)

Table 6.1 Status of Project Development and Land Acquisition

6.1.2 Legal Basis of Land Acquisition for Public Facility Development

Procedures and process of land acquisition for public facility development are regulated by Presidential Decree No. 36/2005, Presidential Decree No. 65/2006, and Head of National Land

Affairs A gency Decree N o. 03/2007. Land acquisition of the TgPA Project is also subject to these procedures and process. Although B ina Marga is the implementing agency of the TgPA Project, the task of land a cquisition is en trusted to PT J akarta Propertindo, a real estate development agent, under DKI Jakarta.

6.2 Confirmation of Social and Environmental Requirements

As m entioned, PT Jakarta Propertindo, together with the land provision committee, is now undertaking land acquisition for the TgPA Project. Details of the land areas to be acquired are shown below:

		State owned enterprises/Regional owned enterprises				Government			
Section	Private	PT Pelindo II	PT Pertamina	PT KAI	Bank Mandiri & Kantor PBB	PT Pemb. Jaya Ancol	Pemprov DKI	TNI-AL	Total
E-2 (2.74 km)	735	40,093			-	-	3,321	14,705	63,854
E-2A (1.92 km)	- 52,	586	1,223	-	-	-	-	-	53,809
NS Link (2.24 km)	10,721			-	352	-	252	-	11,325
Direct Ramp (1.1 km)	3,857						101	-	3,958
W-1 (2.36 km)	1,868	2,402 -		64	-	-	-	-	4,334
W-2 (2.91 km)	- 20,	444	-	588	-	3,574	-	-	24,606
Total	17,181	120,525 1,	2 23	652	352	3,574	3,674	14,705	161,886

Table 6.2 Land to be Acquired for TgPA Project (Unit: m²)

6.2.1 Resettlement and Relocation for the Direct Ramp

According to the EI A rev iew report p repared by B ina Ma rga, 14 pr ivate l andowners w ere identified to be affected by the implementation of the construction of the Direct Ramp. Details of the landowners affected in this area are shown below:

No.	Name of the Owner	Sta.	Location	Acquired Land (m2)
1	No information	0+250-0+350	Right	41.75
2	PT. Premigas	0+250-0+350	Right	215.55
3	PT. Primajaya	0+350-0+485	Right	294.18
4	Melineum Motor	0+490-0+550	Right	177.34
5	PT. Gasindo Bahtera Jaya	0+550 - 0+610	Right	220.51
6	Sata Blora (Restaurant)		Right	53.54
7	Kiosk dan PT. Genita Surya	0+610 - 0+690	Right	311.64
8	PT. Biro Klarifikasi Indonesia Persero	0+732 R	ight	225.58
9	Yard	0+680-0+420	Left	101.28
10	CV. Cepat	0+680-0+775	Left	194.38
11	SPBU Pertamina (Gas Station)	0+775 - 0+850	Left	90.48
12	Dunkin Donat Warehouse	0+850-0+929	Left	253.23
13	Showroom Toyota	0+928	Left	65.48
14	PT. Wahana Kontena Makmur	0+929	Left	5.45

 Table 6.3 Data of Land Acquisition in Direct Ramp Area

On the other hand, illegal occupants live underneath the viaduct located in the west side of the new Direct Ramp. These viaducts have been constructed but have not been operated yet. This area where illegal occupants live is different from the construction area of the Direct Ramp proposed under the Japanese ODA. Thus, illegal occupants are not affected by the construction of the Direct Ramp in the Japanese ODA proposal. However, some countermeasures for illegal occupants will be r equired dur ing con struction in the uppe r p art of the v iaduct pr ior to operation.

Resettlement and relocation of i llegal o ccupants prior t o c onstruction are t he b est countermeasures because the land underneath the viaduct belongs to the Indonesian government and is not permitted to be occupied. However, the superstructure of the viaduct has already been completed. Thus, the remaining works in this viaduct involve only miscellaneous works such as repair of pavement, lane marking and so on. Considering that the remaining works don't have serious impact to the illegal occupants underneath the viaduct and there is no clear legal basis for re settlement and relocation of illegal o ccupants, i mplementation of the remaining works without r esettlement and relocation of illegal o ccupants can b e con sidered t o be t he m ost realistic solution. In this regard, the countermeasures stipulated below are required:

- Construction work items and schedule must be informed to the illegal occupants for their understanding prior to construction.
- The Contractor must install a protection net under the viaduct to prevent falling objects, and must carry out the construction safely.

6.2.2 Background of the Environmental Requirements of the Project

Prior to the implementation of the EIA, the feasibility study (F/S) of the TgPA Project, which defined the general route alignment and basic design of TgPA, was carried out by the Japan Export Trade Organization (JETRO) in 2004. After the F/S, an EIA for the construction of the TgPA Project was conducted in 2004, and the EIA approval had been issued in December 2004 based on the scope and magnitude under the F/S. Sections covered by the 2004 EIA are shown below:

Table 6.4 Sections Covered by 2004 EIA

No.	Name of Section
1	W-1 (Penjaringan - Kebon Jeruk)
2	E-2 (Cikunir – Cakung)
3	E-3 (Cakung – Cilincing)
4	TgPA Access (E-1, E-2, E-2A, NS, W-1, W-2)

6.2.3 Necessity of Implementation of New EIA

As a result of survey, there are no serious changes in the design, location and magnitude of the Project as well as in the conditions of the social and natural environment between the F/S and D/D stages that have potential adverse impacts on the environment of the Project area. The 0.5 km segment of the NS Link has already been included in the F/S and covered by the area under the EIA conducted in 2004. The only remarkable difference between the F/S and D/D is the addition of the construction of the 1.1 km long Direct Ramp. The area where the Direct Ramp will be located has been covered and studied in the 2004 EIA. Furthermore, Decree No. 11/2006 of the Ministry of Environment prescribes that the construction of toll roads that exceed 5 km shall r equire the implementation of F IA in acc ordance w ith the relevant environmental regulations. This means that a new EIA may not be required for the construction of the Direct Ramp.

Considering t he abov e, the following can be concluded with reg ard t o the nece ssity of new/additional EIA:

- TgPA Project location in the D/D is the same as that in the F/S except for the addition of the D irect R amp, i.e., the Project is located in n orth Jakarta covering three sub-districts (Cilincing, Koja and Tanjung Priok) and 13 villages. The additional five villages where the Direct R amp is located a re Raw a Badak Se latan, Raw a Bad ak U tara, Kebon Bawang, Papanggo, and Sungai Bambu. These areas have already been covered by the 2004 EIA.
- The remarkable change between the F/S and D/D is the add itional construction of the

Direct R amp. The environmental cond itions su ch as physical, p hysiographical, hydrological, biological, socioeconomic, cultural and public health conditions, spatial and land use plan, and land acquisition are reviewed by Bina Marga mainly by comparing the F/S and D/D. Ba sed on the results, it can be c oncluded that there are no significant or drastic changes in the basic environmental conditions in and around the Project area.

- As mentioned above, changes in the environmental impacts in the Project area caused by the changes of the scope of the Project including the Direct Ramp have been reviewed and evaluated. As a r esult, it is concluded t hat the EI A docum ents a re available and the environmental worthiness of the Project is still valid. Moreover, a new/additional EIA may not be nec essary since no significant changes have been observed in terms of the design and location of the Project as well as the environmental conditions. However, it should be noted that EIA matters are under the administration of the Ministry of Environment, and the review and study of the 2004 EIA were carried out just by the Bina Marga. According to an op inion of the Ministry of En vironment, a re- approval of the new ly-added D irect Ramp should be required in the E IA procedu re based on G overnment R egulation N o. 27/1999 (Article 25, 26 and 27), Decree No. 11/2006 of the Ministry of Environment, and related regulations instead of a full scale EIA implementation. In order to move forward to the n ext stage of the TgPA Project, a regular E IA proce dure and/or p rocess, which is prescribed by G overnment Reg ulation N o. 2 7/1999 and other r elated legislations mentioned above, should be completed.
- According t o G overnment Reg ulation N o. 27/1999 and ot her related legislations, t hree documents, n amely: 1) En vironmental Im pact An alysis Re port (ANDAL), 2) Environmental Management Pl an (R KL) a nd 3) Environmental M onitoring Pl an (RPL), should be prep ared un der t he i mplementation of EI A. Law s and reg ulations m entioned above pre scribe t o rev ise the A NDAL, R KL and R PL if th e scope of the project and environmental conditions of the project area are changed after the approval of the EIA. The RKL and RPL are to be revised throughout the review of the EIA considering the changes of project scope, and the results of the review are to be reflected in the revised RKL and RPL. Th e r evised R KL and R PL must b e submitted to the A MDAL c ommittee for re-approval.
- Apart from t he rev ision of t he R KL and RPL , Ministry of Env ironment D ecree N o. 86/2002 and N o. 13/2010 reg ulate t he p rocedures of t he E nvironmental Management Efforts (*Upaya Pengelolaan Lingkungan*: U KL), Env ironmental Mon itoring Effor ts (*Upaya Pemantauan Lingkungan*: UPL) and the S tatement L etter o f Readiness o f Environmental Management an d Mon itoring (*Surat Pernyataan Kesannggapan*)

Pengelolaan dan Pemantavan Lingkungan: SPPL). UK L/UPL and SPPL are required for the project for w hich implementation of a full sc ale E IA is n ot r equired, su ch as construction of a short toll road less than 5 km.

- Bina Marga has already completed the review and revision of the RKL and RPL, but has not submitted them to the Ministry of Environment. In accordance with the EIA approval procedures, Bina Marga must inform the Ministry of Environment of the change of s cope of the Project after the 2004 EIA as soon as possible to ask about the next action. A fter informing the Ministry of Environment, one of the options shown below could be taken by the Ministry of Environment for the environmental approval.
- After the completion of the construction of the TgPA P roject, the roads will become operational. At this stage, noise and automobile exhaust emissions, which will arise from the increase of traffic, will have a significant impact on the environment. In order to k eep the environment along the roads in good condition, environmental monitoring is needed. The environmental monitoring during the operation stage should be conducted according to the approved RKL and RPL. The result of the environmental monitoring should be utilized to evaluate the environmental protection measures taken and to adjust the implemented environmental plan.

CHAPTER 7 ALTERNATIVE PROJECT IMPLEMENTATION PLANS

7.1 Development of Alternative Project Scopes

Given that the Project has actually started in the E-1 section, construction of which is already completed, and E-2, E-2A and NS Link sections, in which tender for construction is in progress, there are two network portions to be additionally considered for completion of the whole TgPA network, namely, W-1 and W-2 sections, and the Direct Ramp. The former have been parts of the network originally while the latter was once studied in the F/S as a temporary alternative to W-1 and W-2.

Consequently, the sections included in the alternative project scopes are as follows:

- Case 1 Construct W-1 and W-2 only,
- Case 2 Construct Direct Ramp only, and
- Case 3 Construct W-1, W-2, and Direct Ramp.

As for funding for the construction, the PPP scheme, even if p artially, has been suggested by JICA as an effective option. However, the executing agency, Bina Marga, stated at first that they would consider PPP only for O&M of a single TgPA or a larger network of toll roads in Jakarta Metropolitan Area rather than for the construction of TgPA. On the contrary, GOI decided that the amount of the Japanese ODA loan that they will request for TgPA for 2011 will be no more than JPY 10 b illion (US\$120 m illion), which is far less than the amount req uired for the construction of W-1 and W-2 only, which is JPY 24 billion as described below. Therefore, the Survey Team has assumed that public funds, mainly from Japanese ODA loans, together with some ot her f unds, s ources of w hich hav e not y et been i dentified, w ould b e used for t he construction of the remaining part of the TgPA.

Derived from the results in previous chapters, the construction cost, traffic volumes, economic and financial indicators, etc. are summarized in Table 7.1 below.

Summary of Final Report Special Assistance for Project Implementation for The Tanjung Priok Access Road Project

November 2010

	Case 1	Case 2	Case 3
Composing Sections	W-1 and W-2	Direct Ramp	W-1, W-2, and Direct Ramp
Construction Cost (JPY Million) (2010 Price)	14,898 (W-1), 10,981 (W-2) 25,879 (Total)	2,020	27,899
Forecast Traffic Demand on Major Links (pcu/day in 2016) & & Character of Network Flow Saturation Ratio	E-2: 105,500 W: 85,600 NS Link: 18,500 E-1: 184,200 Almost balanced flows over network, except for NS Link with too much capacity allowance	E-2: 95,800 NS Link: E-1: 94,100 175,900 Ramp: 114,200 Much load to Direct Ramp and NS Link. Traffic over capacity after 2021 on Direct Ramp.	W: 72,700 E-2: 105,900 W: 72,700 INS Link: E-1: Direct Ramp: 35,300 Reasonably balanced flows on most links
EIRR	15.8 % (Feasible)	22.5 % (Feasible)	18.5 % (Feasible)
FIRR	0.52 % (Not feasible)	2.93 % (Not feasible)	0.38 % (Not feasible)
Completeness of Network	Almost satisfactory	Irregular	Satisfactory
Overall Evaluation	Better	Recommendable for short-term only, but undesirable as an ultimate network	Best

Table 7.1 Attributes of Alternative Project Scopes

7.2 Recommended Optimal Implementation Plan

Among the alternative cases of the scope of the Project, the Survey Team suggests that Case 3 would be the optimal implementation program for the completion of the TgPA network. Main reasons are as follows:

- (1) According to the traffic demand forecast, even if only the Direct Ramp is constructed, the traffic flow in this link in one direction will exceed the upper average daily traffic (ADT) limit of 62,500 pc u/day b y aro und 202 2. Also, t he c onnecting Harbor R oad will b e seriously af fected by t he u nexpected i ncrease of t raffic f low due t o t he connection. Consequently, W-1 and W-2 must be completed before that.
- (2) Unless W-1 and W-2 are constructed, the network will have a nirre gular shape and unnatural and inefficient traffic flow, causing the area some serious accessibility problems.
- (3) The traffic dem and is forecast ed t o m aintain a reaso nably justifiable level from t he beginning of t he operation of W-1 and W-2 in 2015 and steadily increases afterwards, if they are constructed.
- (4) The contribution of the Direct Ramp, if it is constructed together with W-1 and W-2, to the traffic f low i n t he net work m ay not be si gnificant. I n spite of t he relatively l ow construction cost, the real ized traffic flow is a nticipated to be steady and harm oniously sufficient. The econom ic and fi nancial ev aluation al so prov ided reasona bly accept able outcome. Thus, the cost-effectiveness of the construction of the Direct Ramp in addition to W-1 and W-2 will be justified.
- (5) From the aspect of social and environmental consideration, some additional procedures for validation of the already approved EIA for the entire TgPA Project will be required if the Direct Ramp is a dded to the Project. It is anticipated, however, that partial revision of the EIA documents will suffice and necessity of re-approval of the EIA is unlikely. Also, some additional la nd a equisition and resettlement must be u ndertaken for the D irect Ramp. However, since the additional area to be acquired is as small as one t enth of the area for W-1 and W-2, the additionally required efforts will not be significantly large.

However, as stated above, the Japanese ODA loan with an amount not more than JPY 10 billion will not be able to cover the cost for the construction of W-1, W-2 and the Direct Ramp planned in Case 3. Therefore, the Survey Team decided that the construction of TgPA Case 3 will be completed by implementing three separate packages in parallel, namely;

• **Phase 3** assumes that project cost will be within JPY 10 billion and viaducts will be available for the toll road; the Phase 3 section will be from the Kp Bahari Ramp to the end of W-2 with a length of 2.1 km and will be funded from the TgPA Project Phase 3

component of the Japanese ODA loan (The W-1 and W-2 sections were divided into two at the location of the only ramp in the area; the western subsection was assigned under the Japanese ODA loan considering the project quantities.)

- **Phase 4** section will be from the start of W-1 to the Kp Bahari Ramp with a length of 3.5 km and implemented from unidentified funds, and
- **Direct Ramp** will be funded by the TgPA Project Phase 2 component of the Japanese ODA loan.

7.3 Examination of Applicability of PPP Scheme for O&M

7.3.1 Scope of Examination

The basic scope of examination is as follows:

- (i) Examination will be conducted for the option which has been selected based on the economic and financial evaluation;
- (ii) Construction of the road infrastructure of W-1, W-2 and the Direct Ramp will be funded by GOI mainly utilizing ODA loan. Thus, the O&M concession, in which the private concessionaire is not obliged to make any investment for the road infrastructure, will be the basic scheme for PPP application.
- (iii) Examination will cover the overall O &M for all sections including those already funded such as E-1, E-2, E2A, and NS Link, and those to be funded, namely: W-1, W-2 and Direct Ramp.

7.3.2 Issues to be Examined

ITS/TSS are excluded for the examination and the Integrated Toll System for JORR is the premise for examination. At the same time TgPA is assumed to put on tender as a independent and separate section.

The following criteria are selected for setting up PPP options as major risks to be transferred to private sector:

1) Monetization (Upfront License Fee)

Since the investment for constructing the road infrastructure will be funded by GOI, the amount of investment which the private concessionaire would assume will be very small and minimal. Therefore, dep ending on t he s tructure of t he PPP scheme, t here m ay be cases i n w hich monetization of the fu ture cash f low of the P roject is n ecessary so that t he monetized

(calculated) value could be paid by the private sector concessionaire to GOI, e.g., via BPJT as a form of upfront license fee payment.

2) I nvestment Risk

If the investment for constructing the road infrastructure is excluded, the remaining investment responsibility of the private sector concessionaire will be for the construction of toll booths and equipment, i nstallation of tel ecommunication f acilities and equipment, and p rocurement of necessary maintenance vehicles and equipment. This investment risk could vary from taking the initial investment risk of these facilities only with no renewal responsibility to a sch eme in which the private sector concessionaire would assume the investment risk of b oth capital and renewal or rehabilitation costs of these facilities including future overlay and repainting costs during the concession period.

3) Rev enue Risk

Revenue ri sk could be treated i n v arious w ays f rom a si mple O &M conc ession b ased on performance with no revenue risk assumed by the private sector concessionaire to a scheme in which the private sector concessionaire w ould take b oth upside profit and downside risks of revenue.

7.3.3 Option Setting for Evaluation

Based on the above discussion of major issues and major risks which could be transferred to the private sector, three PPP options are considered for examination. The options are set on the basis of the extent of risk transfer for monetization, investment risk and revenue risk as show n in Table 7.2.

Option 1 is a long term O&M contract on the performance basis with no upfront license fee payment and no obligation of investment for renewal. Therefore, the risk transfer to the private sector would be minimal.

Option 2 is a hybrid option with upfront monetization of future cash flow and revenue risk sharing between the public and private sectors. Renewal risk will be assumed by the private sector.

Option 3 is a full monetization option in which the private sector would pay full upfront license fee based on the value of future cash flow of the Project and take all the risks pertaining to the O&M of the TgPA section.

		Monetization (Up-Front License Fee)	Investment Risk	Revenue Risk
Small	Option 1 Performance O&M Contract Option	No Monetization, but all revenue goes to public sector	• Investment of Toll Equipment with No renewal obligation (Renewal by public sector)	• Performance O&M contract by Cost + Fee, but all surplus revenue goes to public sector
Transfer to Private Sector	Option 2 Hybrid Option	• Medium Up Front License Fee	 Investment of Toll Equipment + Renewal Investment 	 Up side revenue share Down side deficit cover
Large	Option 3 Full Monetization Option	• Full Up Front License Fee Only	• Investment of Toll Equipment + Renewal Investment	• All Revenue Risk is covered by private sector

Table 7.2 Setting up PPP Options

Source: SAPI Study Team

- 7.3.4 Evaluation of Options
- (1) Evaluation Criteria

Three options are evaluated based on the following criteria:

- (i) Financial viability for private sector (assumption for profitability);
- (ii) Risk t ransfer and p rivate sec tor participation (b oth f rom pri vate an d government view points);
- (iii) Suitability to current regulatory framework;
- (iv) Public fund availability; and
- (v) Value for money and benefit to public sector.
- (2) Assumption of Private Sector Financial Viability

The p rivate sector financial v iability of each op tion is ev aluated based on the following assumptions:

 Special purpose company (SPC) for investment, operation and maintenance is established;

- (ii) Cash flow model is prepared for each option;
- (iii) Concession period is set at 30 years (excluding construction period);
- (iv) Assessment indicators are as follows:
 - Internal rate of return on equity (equity IRR): the hurdle rate is set at 18.0%
 - Internal rate of return on total project cost (project IRR)
 - Annual debt service coverage ratio (DSCR)
 - Loan life coverage ratio (LLCR)
 - Net present value of cash flow (NPV)
 - Cumulative net cash flow

Based on the abovementioned assumptions, a financial model is prepared. Using the model, the financial viability for pr ivate sector of the t hree options is evaluated. In Option 1 (Long- term O&M Cont ract), the PPP concessionaire en ters i nto a l ong-term O &M contract based on performance standards. It operates and maintains the TgPA section for a period of 30 years. The concessionaire makes investment on the initial construction of toll booths and other necessary facilities. R enewal of these facilities and all other necessary initial investments including the construction of W-1, W-2, and t he D irect R amp are conducted by t he g overnment. The concessionaire collects toll revenue and deducts necessary expenses and profit under the O&M contract amounting to 2% of the annual revenue, and deposits the balance to the bank account specified by the government.

In O ption 2 (Hybrid O ption: Par tial Monetization of Fut ure Cash F low and Ri sk Shari ng between Public and Private), initial investment for the construction of W-1, W-2 and the Direct Ramp is conducted by the government. On the other hand, the private sector concessionaire pays the government an upfront license fee and in return gets a government guarantee of 50% compensation on net cash deficiency (downside risk cover) in the beginning years and p rofit sharing (upside potential sharing) of net cash flow during whole concession period. Assuming the abovementioned upfront license fee payment of the concessionaire consists of 30% e quity and 70% loan, financial viability of the Project is evaluated.

In Option 3 (Full Monetization Option: License Fee of Whole Future Cash Flow and Full Risk Taking by Priv ate Sector), initial investment for the construction of W-1, W-2 and the Direct Ramp is conducted by the government. On the other hand, the concessionaire pays an upfront license fee and at the same time, the concessionaire takes all major project risks such as cash

flow deficiency risk and traffic forecast risk (uncertainty of traffic forecast level becoming far lower than expected).

(3) O verall Evaluation

The summary of the above-described evaluation is shown in the following Table 7.3. A means excellent, B means good and C means fair.

As a result of the overall evaluation, Option 1 is rated very low Option 2 and Option 3 are comparable and it is d ifficult to d ifferentiate b etween the two options. Thus, for financial viability of Options 2 and 3, a sensitivity analysis is conducted for the most influential project risk, which is the tr affic forecast risk, assuming that the actual realized traffic continues to be considerably lower than the forecasted level.

	Private Sector	Private Sector Public Sector					
	Financial Assumption	Risk Transfer	Risk Transfer	Fitting for Framework	Public Fund Availability	VFM	uati on
Option 1 Long Term O&M Contract	• D/E: 70%:30% (same for all cases) • License Fee is Zero • Project IRR: 16.9% • Equity IRR: 18.0% • Ave DSCR: 1.47 • LLCR: 1.90	• Smallest Risk Transfer A	• Smallest Risk Transfer C	• Possible as conducted for Sura-Madu Bridge B	• Need to prepare additional public funding C	• NPV of Govt CF: -1,820 B Rp (-18.3 B JPY) • PI of Above: 0.59 C	С
Option 2 Hybrid Option	 License Fee of 2,372 B Rp (23.9 B JPY) CF Deficit Compensation and Profit Sharing Project IRR: 15.6% Equity IRR: 18.0% Ave DSCR: 1.63 LLCR: 2.04 	Medium Risk Transfer Risk Hedging Mechanism and Private Sector Participation Possible B	• Medium Risk Transfer B	 PPP Framework is already Prepared Special Account Mechanism Needed for Bina Marga B 	• Large up front license fee is available B	• NPV of Govt CF:-1,562 B Rp (-15.8 B JPY) • PI of Above: 0.55	Α
Option 3 Full Monetizat ion Option	 License Fee of 2,881 B Rp (29.1 B JPY) Project IRR: 15.8% Equity IRR: 18.0% Ave DSCR: 1.63 LLCR: 2.12 	Largest Risk Transfer Detailed Assessment of Project Risks is Necessary for Private Sector Participation	• Largest Risk Transfer	PPP Framework is already Prepared Special Account Mechanism Needed for Bina Marga	• Large up front license fee is available	• NPV of Govt CE: -1,929 B Rp (-19.5 B JPY) • Pl of Above: 0.45	
		С	Α	В	Α	С	В

Table 7.3 Overall Evaluation of Three Options

Legend; A: Excellent, B: Good, C: Fair

Source: SAPI Study Team

Financial viability of the two options is assessed assuming that only 70% of the forecast level traffic is realized during the whole concession period. The equity IRR goes down from 18% to

November 2010

13% level, but there is no significant difference between the two options. On the other hand, the cumulative net cash flow deficiency of Option 2, with the risk hedging mechanism for cash flow deficiency, amounts to a maximum of Rp 345 billion (roughly equal to JPY 3.5 billion) while that of O ption 3, w ithout such m echanism, accumulates to a maximum of Rp 857 billion (roughly equal to JPY 8.6 billion). Moreover, 13 years is required for clearing the deficit under Option 3.

7.3.5 Recom mendation

As i llustrated by O ption 3, t here is a tendency for t he I ndonesian g overnment t o m ake unconditional transfer of project risks to the private sector in PPP toll road projects in the past. Therefore, there has been a very limited number of PPP toll road projects that materialized.

A mechanism to address such problem is proposed in O ption 2. Preliminary assessment of financial viability implied effectiveness of this idea. As a result, it is recommended to consider adopting Option 2 for the O&M concession arrangement.

When i mplementing t his op tion, t horough m arket s ounding of m ajor project risks m ust b e conducted by the government to the related players including financial institutions. Also, it is recommended for the government to implement a PPP tender based on the result of such market sounding.

7.4 Applicability of PPP Scheme to Future Phases

Taking W-1, W-2 and the Direct Ramp as the subjects for investment, analysis is conducted to assess how much initial investment could the private sector concessionaire could shoulder. Assumptions are same as in the previous section, i.e., the private sector concessionaire would conduct O&M for the entire TgPA section consisting of E-1, E-2, NS Link, W-1, W-2 and Direct Ramp. Other conditions are similar as in Option 2 (Hybrid Option).

As shown in Table 7.4, financial viability of the private sector investment is assumed by changing the private sector investment contribution for W-1, W-2 and Direct Ramp from 100% to 0% (the initial investment for the toll stations and so on is still the obligation of the private sector).

As a result, a private sector contribution of 44% (i.e., 56% by the government) of the total investment is determined as the threshold value, which is the level that will make the equity IRR equal to 18.0% for the private sector investment. In other words, when the required rate of return for the private sector is 18%, the private sector, considering

Option 2, could shoulder as much as 44% of the initial investment for W-1, W-2 and the Direct Ramp.

	Investment of W1, W2, DR Private Public		PIRR	Equity	Ave	Max Deficit (B Rp)	
				IRR	DSCR		
1	100%	0%	10.5%	9.6%	0.97	-1,214	
2	90%	10%	11.1%	10.5%	1.03	-922	
3	80%	20%	11.8%	11.6%	1.11	-674	
4	70%	30%	12.6%	12.9%	1.21	-459	
5	60%	40%	13.6%	14.6%	1.33	-277	
6	50%	50%	14.8%	16.6%	1.50	-130	
7	44%	<mark>56</mark> %	15.6%	18.0%	1.63	-59	
8	40%	60%	16.3%	19.3%	1.74	-24	
9	30%	70%	18.5%	23.2%	2.14	0	
10	20%	80%	22.0%	29.9%	2.91	0	
11	10%	90%	29 .5%	45.4%	5.03	0	
12	0%	100%	169.7%	514.9%	35.23	0	

Table 7.4 Possibility of Private Sector Investment for Construction

Source: SAPI Study Team

7.5 Estimate of Project Cost

The construction and consulting services costs for the above-selected implementation plan for TgPA Project Phase 3 are as shown in Table 7.5 below.

	Amount(JPY Million)	Remarks
Construction Cost		
Base Cost	7,438	JPY 7,438 Mil for Phase 3 of W-2
Price Escalation	1,772	F/C:1.8% p.a. of Base Cost
		L/C:7.9% p.a. of Base Cost
Physical Contingency	372	5% of Base Cost
Consulting Services		
Base Cost	743	Phase3(2.1km)
Physical Contingency	74	10% of Base Cost
Total	10,399	

 Table 7.5
 Estimated Construction and Engineering Service Costs for TgPA Phase 3

The Project cost, inclusive of the whole Project components, to be applied for a Japanese ODA loan is summarized as shown in Table 7.6.

Summary of Final Report Special Assistance for Project Implementation for The Tanjung Priok Access Road Project

November 2010

Table 7.6Estimated Project Cost for TgPA Project Phase 3

		F/C L		/C		Total		
			Loan Eligible Portion	Total	Loan Eligible Portion	(1000 JPY)	(Mill Rp.)	Loan Eligible Portion
		(1000 JPY)	(1000 JPY)	(Mill Rp.)	(1000 JPY)	(1000 JP 1)		(1000 JPY)
Items								
1	Construction 2,	231,349	2,231,349	515,493	5,206,482	7,437,831	736,419	7,437,831
2	Procurement							
3	Price Escalation for Construction	146,299	146,299	160,937	1,625,463	1,771,762	175,422	1,771,762
4	Physical Contingency for Construction	111,567	111,567	25,775	260,324	371,892	36,821	371,892
5	Consulting Services	511,600	511,600	22,952	231,815	743,415	73,605	743,415
6	Physical Contingency for Consultant	51,160	51,160	2,295	23,182	74,342	7,361	74,342
7	Interest During Construction	9,767	9,767	2,688	27,149	36,915	3,655	36,915
8	Commitment Charge	9,175	9,175	2,240	22,623	31,799	3,148	31,799
9	Land Acquisition		123	,645	1,2	48,816	123,645	
10	Administration Cost	152,599	36,	373	519	,962	51,481	
11	Tax (VAT)	305,198	72,	745	1,0	39,924	102,963	
Total 3,5		28,715	3,070,918	965,143	7,397,037	3, 276,657	1,314,521	10,467,955

7.6 Implementation Structure

For P hase 3 of the TgPA P roject, B ina Marga, as the employer, will procure a consultant to implement the D/D revision, tender assistance, and construction supervision. The contractors to be procured through the ICB process will undertake the construction. The completed road will be opened to traffic under a PPP (or O&M) concession contract between BPJT and an operator to be in charge of either a single independent TgPA or an integrated TgPA and JORR.

7.7 Implementation Program

Phase 3 of the TgPA Project will be adopted as a Japanese ODA loan for Fiscal Year 2011. After the appraisal of JICA in November 2010, the loan agreement will be signed between JICA and GOI in March 2011. The proposed implementation schedule is as shown in Figure 7.1.

Summary of Final Report Special Assistance for Project Implementation for <u>The Tanjung Priok Access Road Project</u>

November 2010

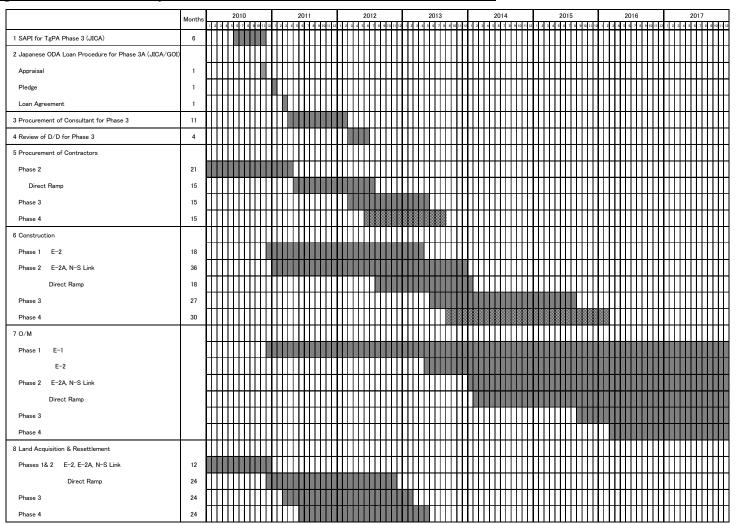


Figure 7.1 Proposed Implementation Schedule

CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS

Major conclusions and recommendations derived from the Survey are as follows:

- The program for the Direct Ramp, which was planned by Bina Marga in anticipation of the delay of t he completion of W-1 and W-2, has been u ndecided so far. In this Survey, how ever, it was decided that the Direct Ramp should be considered as a component of Phase 2 of the Project.
- For traffic d emand fore cast, som e rev isions w ere made on p ast fo recasts. Supplementary traffic surveys were actually carried out to clarify the actual traffic flows in the Tanjung Priok Port area, car users' stated preference for TgPA, and travel times from/to Tanjung Priok Port. Basically, the future traffic demand was forecasted for the following cases: (a) with W-1 and W-2 only, (b) with Direct Ramp only, and (c) with all of these sections to be constructed.
- Since the total traffic demand in the network is relatively stronger than the network capacity, som e links hav e an imbalanced network flow, i.e., t here a re som e v ery heavily traveled links while there are also some lightly traveled links. Consequently, construction o f W-1 and W-2 sections as w ell a s a ddition of t he D irect Ra mp is justified from the viewpoint of network traffic flow.
- Through the review of the road design, alternative designs were investigated for the adjustment of the pier locations with the completed improvement of the roads in the port area, and change of superstructure from the PC box girders to PCU girders. As a result of this review, the construction cost will be reduced by Rp 142 b illion in total. However, the ca ble-stayed bridg e se ems to be s elected during the D /D stage for r aesthetic and landmark reasons. Thus, considering limited Indonesian national finance, the Survey Team suggests that the cable-stayed bridge type should be re-examined in Phase 3 taking in to account the construction cost i ncluding ap proach b ridges and safety during construction.
- The review provided the construction costs for W-1, W-2, and Direct Ramp sections as Rp 1,475 billion, Rp 1,087 billion, and Rp 200 billion, respectively.
- The area of land to be a cquired for the new TgPA Project is 32,898 m² in total, comprising of 4,3 34 m², 24,606 m², and 3,958 m² for W-1, W-2, and Direct Ramp, respectively. The remaining area to be acquired for Phases 1 and 2 is 128,988 m².

- The EIA for the TgPA Project was originally conducted based on the F/S by JETRO in 2004 and approved in December 2004. As a result of the comparison between F/S and D/D implemented in 2007 and 2008, respectively, it was confirmed that there are no major differences in the design, location and magnitude of the Project, except for the addition of the construction of the Direct Ramp. However, the area for the location of the Direct R amp had al ready be en covered and st udied in the original EI A. Furthermore, since the 1.15 km long Direct Ramp does not exceed 5 km, as prescribed in a Ministry of Environment (MOE) decree, a new EIA may not be required.
- However, if the scope of a project is changed after the approval of the EIA, the EIA documents including ANDAL, RKL, and RPL should be revised through the review of the EIA and re-submitted for re-approval. After that, MOE will take the next action.
- In this Survey, as a result of the overall evaluation of costs, traffic volumes, economic impacts, v iability as a toll road, et c., C ase 3 is se lected as the best alternative for Project implementation. However, the amount of the Japanese ODA loan requested by GOI is limited to JPY 10 billion (US\$120 million), which can cover a part of the total cost for W-1, W-2, and D irect Ramp. Thus, the Project is divided into three phases, namely: (a) Phase 3 for the partial W-2 section with length of 2.1 km to be funded under the TgPA Phase 3 c omponent of the Japanese ODA loan, (b) Phase 4 f or the partial W-1 and W-2 sections with length of 3.5 km to be funded from unidentified sources, and (c) Direct Ramp to be funded under the TgPA Phase 2 component of the Japanese ODA loan.
- The total project cost for Phase 3 is estimated at JPY 13,277 million, in which the eligible portion for the Japanese ODA loan is JPY 10,468 million.
- Applicability of the PPP scheme for t he operation and m aintenance (O &M) w as examined by setting up options such as long-term O&M contract, full monetization, or hybrid, an d ev aluating t he f inancial v iability, ris k trans fer and private sector participation, s uitability to cu rrent r egulatory fr amework, and v alue f or m oney and revenue to the pu blic sector. As a result of the overall evaluation, the hybrid PP P scheme is judged to be the most realistic and practical.
- According t o the proposed i mplementation schedule, after the loan ag reement is signed in March 2011, the construction, which is funded under Japanese assistance, will start in D ecember 2012 and will be completed in May 2015. The Direct R amp will be opened to traffic in June 2014, while Phase 3 will start in June 2015.

