KINGDOM OF BHUTAN DEPARTMENT OF ENERGY MINISTRY OF ECONOMIC AFFAIRS

THE PREPARATORY SURVEY

ON

RURAL ELECTRIFICATION PROJECT (PHASE-2)

IN

KINGDOM OF BHUTAN

IMPLEMENTATION PROGRAM

November 2010

JAPAN INTERNATIONAL COOPERATION AGENCY

NIPPON KOEI CO., LTD. EXEIDEA LTD.

Exchange ra	ate used in	n the report	

(Nov. 2010)

USD 1 = JPY 87.7

USD 1 = BTN 46.6

BNT 1 = JPY 1.88

THE PREPARATORY SURVEY ON RURAL ELECTRIFICATION PROJECT (PHASE-2) IN KINGDOM OF BHUTAN

IMPLEMENTATION PROGRAM

TABLE OF CONTENTS

LIST OF TERMS

СН	APTER	1 INTRODUCTION	1
	1.1	Background	1
СН	APTER	2 THE PROJECT	2
	2.1	Project Scope	2
	2.2	Design for the Project	4
	2.2.1	Design Considerations	5
	2.2.2	2 Difference in Design	5
	2.2.3	Comparison of Steel Pole and Telescopic Poles	5
	2.2.4	Span Length and Conductor Sag	8
	2.2.5	5 Lightning Prone Area	15
	2.3	Expansion of Scope: Quality Improvement	22
	2.3.1	Improvement of Reliability in Power Supply	22
	2.3.2	2 Shield Wire and Counterpoise	22
	2.3.3	Automatic Reclosing Circuit Breaker (ARCB)	22
	2.3.4	Step Voltage Regulator (SVR)	23
	2.4	Grid Extension Cost	23
	2.5	Lightning Damage Prevention Program Cost	27
CHA	APTER 3	3 IMPLEMENTATION	28
	3.1	Implementation Schedule and Project Sub-Packages	28
	3.1.1	Loan Agreement	28
	3.1.2	Lightning Damage Prevention Program Cost	29
	3.1.3	Pre-Construction Stage	29
	3.1.4	Construction Stage	29
	3.1.5	Summary of Project Sub-packages	30
	3.2	Implementation Method	30
	3.3	Implementation Setup	31
	3.3.1	Organization	31

3.3.2	Manpower	32
3.3.3	Strategy to Meet 2013 Deadline: Just-In-Time to be Revisited	32
3.3.4	Contractor Education and Information Sharing: Reforming Tender	
	Documents and Consultation	33
3.3.5	Data Management	33
3.3.6	Reinforcement of Operation and Maintenance Capacity	33
3.4	Consulting Services	35
3.4.1	Necessity of Consulting Services	35
3.4.2	Scope of Work	35
3.4.3	Requirement for Consultant	37
3.4.4	Consulting Cost Estimate	38
3.4.5	Personnel Assignment and Schedule	38
3.5 Env	ironmental and Social Considerations	38
CHAPTER 4	MONITORING AND EVALUATION	40
4.1	Operation/Effect Indicators	40
4.1.1	Distribution OEI	40
4.1.2	Living Standard OEI	40
4.2	Economic Evaluation	41
4.3	Economic Evaluation Results for the Distribution Line Project	42
4.4	Financial Evaluation	43

LIST OF FIGURES

Figure-2.1.1	Target Dzongkhags of JICA RE-2 Project	. 3
Figure-2.2.1	Standard Span for Tubular Poles	. 6
Figure-2.2.2	Standard Span for Telescopic Poles	. 6
Figure-2.2.3	Single Pole Assembly Structure for 33 kV Prepared by ADB PPTA	. 13
Figure-2.2.4	Double Pole Assembly Structure for 33 kV Prepared by ADB PPTA	. 14
Figure-2.2.5	Existing MV Lines in Bhutan	. 20
Figure-3.1.1	Implementation Schedule	. 28
Figure-3.3.1	Recommended RE Organization	. 31
Figure-3.3.2	Database Integration Concept	. 34

LIST OF TABLES

Table-2.1.1	Summary of the Target Feeders	. 4
Table-2.2.1	Specifications of Tubular and Telescopic Pole	. 6
Table-2.2.2	Bill of Materials for 33 kV line with Tubular Pole per 1 km	. 7
Table-2.2.3	Bill of Materials for 33 kV line with Telescopic Pole per 1 km	. 8
Table-2.2.4	Specifications of ACSR Dog and Rabbit Conductors	. 9
Table-2.2.5	Case Study for Rabbit Conductor	. 10
Table-2.2.6	Case Study for Dog Conductor	. 10
Table-2.2.7	Specifications of Hydrogen and Fluorine	. 11
Table-2.2.8	Case Study for AAAC (Fluorine)	. 11
Table-2.2.9	Case Study for AAAC (Fluorine)	. 11
Table-2.2.10	Case Study for AAAC (Hydrogen)	. 12
Table-2.2.11	Case Study for AAAC (Hydrogen)	. 12
Table-2.2.12	Frequency of Power Interruption due to Lightning	. 16
Table-2.2.13	Dzongkhag-wise and Monthly-wise Power Interruption due to	
Ligł	ntning (2007)	. 17
Table-2.2.14	Dzongkhag-wise and Monthly-wise Power Interruption due to	
Lioł	ntning (2008)	. 18
2151	B (
Table-2.2.15	Dzonkhag-wise and Monthly-wise Power Interruption due to	
Table-2.2.15	-	
Table-2.2.15	Dzonkhag-wise and Monthly-wise Power Interruption due to	. 19
Table-2.2.15 Ligh	Dzonkhag-wise and Monthly-wise Power Interruption due to ntning (2009)	. 19 . 24
Table-2.2.15 Ligh Table-2.4.1	Dzonkhag-wise and Monthly-wise Power Interruption due to attning (2009) Project Quantity Summary by dzonkhags	. 19 . 24 . 25
Table-2.2.15 Ligh Table-2.4.1 Table-2.4.2	Dzonkhag-wise and Monthly-wise Power Interruption due to htning (2009) Project Quantity Summary by dzonkhags Project Cost Summary by dzonkhags	. 19 . 24 . 25 . 27
Table-2.2.15 Ligh Table-2.4.1 Table-2.4.2 Table-2.5.1	Dzonkhag-wise and Monthly-wise Power Interruption due to htning (2009) Project Quantity Summary by dzonkhags Project Cost Summary by dzonkhags Cost Estimate for Shield Wire and Counterpoise Installation	. 19 . 24 . 25 . 27 . 27
Table-2.2.15 Ligh Table-2.4.1 Table-2.4.2 Table-2.5.1 Table-2.5.2	Dzonkhag-wise and Monthly-wise Power Interruption due to htning (2009) Project Quantity Summary by dzonkhags Project Cost Summary by dzonkhags Cost Estimate for Shield Wire and Counterpoise Installation Cost Estimate for ARCB Installation	. 19 . 24 . 25 . 27 . 27 . 30
Table-2.2.15 Ligh Table-2.4.1 Table-2.4.2 Table-2.5.1 Table-2.5.2 Table-3.1.1	Dzonkhag-wise and Monthly-wise Power Interruption due to htning (2009) Project Quantity Summary by dzonkhags Project Cost Summary by dzonkhags Cost Estimate for Shield Wire and Counterpoise Installation Cost Estimate for ARCB Installation Bid Packages for Procurement of Materials	. 19 . 24 . 25 . 27 . 27 . 30 . 31
Table-2.2.15 Ligh Table-2.4.1 Table-2.4.2 Table-2.5.1 Table-2.5.2 Table-3.1.1 Table-3.3.1	Dzonkhag-wise and Monthly-wise Power Interruption due to htning (2009) Project Quantity Summary by dzonkhags Project Cost Summary by dzonkhags Cost Estimate for Shield Wire and Counterpoise Installation Cost Estimate for ARCB Installation Bid Packages for Procurement of Materials Rural Electrification Work and Responsible Organizations	. 19 . 24 . 25 . 27 . 27 . 30 . 31 . 40
Table-2.2.15 Ligh Table-2.4.1 Table-2.4.2 Table-2.5.1 Table-2.5.2 Table-3.1.1 Table-3.3.1 Table-4.1.1	Dzonkhag-wise and Monthly-wise Power Interruption due to htning (2009) Project Quantity Summary by dzonkhags Project Cost Summary by dzonkhags Cost Estimate for Shield Wire and Counterpoise Installation Cost Estimate for ARCB Installation Bid Packages for Procurement of Materials Rural Electrification Work and Responsible Organizations Summary of Distribution Operation/Effect Index	. 19 . 24 . 25 . 27 . 30 . 31 . 40 . 41
Table-2.2.15 Ligh Table-2.4.1 Table-2.4.2 Table-2.5.1 Table-2.5.2 Table-3.1.1 Table-3.3.1 Table-4.1.1 Table-4.1.2	Dzonkhag-wise and Monthly-wise Power Interruption due to htning (2009) Project Quantity Summary by dzonkhags Project Cost Summary by dzonkhags Cost Estimate for Shield Wire and Counterpoise Installation Cost Estimate for ARCB Installation Bid Packages for Procurement of Materials Rural Electrification Work and Responsible Organizations Summary of Distribution Operation/Effect Index Summary of Living Standard Index	. 19 . 24 . 25 . 27 . 30 . 31 . 40 . 41 . 41
Table-2.2.15 Ligh Table-2.4.1 Table-2.4.2 Table-2.5.1 Table-2.5.2 Table-3.1.1 Table-3.3.1 Table-4.1.1 Table-4.1.2 Table-4.2.1	Dzonkhag-wise and Monthly-wise Power Interruption due to htning (2009) Project Quantity Summary by dzonkhags Project Cost Summary by dzonkhags Cost Estimate for Shield Wire and Counterpoise Installation Cost Estimate for ARCB Installation Bid Packages for Procurement of Materials Rural Electrification Work and Responsible Organizations Summary of Distribution Operation/Effect Index Summary of Living Standard Index Summary of Grid Electrification Benefits	. 19 . 24 . 25 . 27 . 30 . 31 . 40 . 41 . 41
Table-2.2.15 Ligh Table-2.4.1 Table-2.4.2 Table-2.5.1 Table-2.5.2 Table-3.1.1 Table-3.3.1 Table-4.1.1 Table-4.1.2 Table-4.2.1 Table-4.2.2	Dzonkhag-wise and Monthly-wise Power Interruption due to htning (2009) Project Quantity Summary by dzonkhags Project Cost Summary by dzonkhags Cost Estimate for Shield Wire and Counterpoise Installation Cost Estimate for ARCB Installation Bid Packages for Procurement of Materials Rural Electrification Work and Responsible Organizations Summary of Distribution Operation/Effect Index Summary of Living Standard Index Summary of Grid Electrification Benefits Summary of Lightning Damages	. 19 . 24 . 25 . 27 . 30 . 31 . 40 . 41 . 41 . 42 . 42
Table-2.2.15 Ligh Table-2.4.1 Table-2.4.2 Table-2.5.1 Table-2.5.2 Table-3.1.1 Table-3.3.1 Table-4.1.1 Table-4.1.2 Table-4.2.1 Table-4.2.2 Table-4.3.1	Dzonkhag-wise and Monthly-wise Power Interruption due to atning (2009) Project Quantity Summary by dzonkhags Project Cost Summary by dzonkhags Cost Estimate for Shield Wire and Counterpoise Installation Cost Estimate for ARCB Installation Bid Packages for Procurement of Materials Rural Electrification Work and Responsible Organizations Summary of Distribution Operation/Effect Index Summary of Living Standard Index Summary of Grid Electrification Benefits Summary of Lightning Damages Economic Evaluation Parameters	. 19 . 24 . 25 . 27 . 30 . 31 . 40 . 41 . 41 . 42 . 42 . 43
Table-2.2.15 Ligh Table-2.4.1 Table-2.4.2 Table-2.5.1 Table-2.5.2 Table-3.1.1 Table-3.3.1 Table-4.1.2 Table-4.1.2 Table-4.2.1 Table-4.3.1 Table-4.3.1	Dzonkhag-wise and Monthly-wise Power Interruption due to atning (2009) Project Quantity Summary by dzonkhags Project Cost Summary by dzonkhags Cost Estimate for Shield Wire and Counterpoise Installation Cost Estimate for ARCB Installation Bid Packages for Procurement of Materials Rural Electrification Work and Responsible Organizations Summary of Distribution Operation/Effect Index Summary of Living Standard Index Summary of Grid Electrification Benefits Summary of Lightning Damages Economic Evaluation Parameters Project Economic Cash Flow Table (Unit: Million USD)	. 19 . 24 . 25 . 27 . 30 . 31 . 40 . 41 . 41 . 42 . 42 . 43 . 44

List of Terms					
Abbreviations	English				
	Bhutan Agencies				
BBSC	Bhutan Broadcasting Service Corporation				
BEA	Bhutan Electricity Authority				
BHU	Basic Health Unit				
BPC	Bhutan Power Corporation				
BTL	Bhutan Telecom Ltd.				
CA	Competent Authority				
CHPCL	Chukha Hydro Power Corporation Ltd.				
	(former: Chukha Hydro Power Corporation: CHPC)				
DCS	Distribution Construction Section				
DFO	District Forestry Office				
	Department of Human Resources, under Ministry of Labor and				
DHR	Human Resources				
DOA	Department of Agriculture				
	Department of Energy				
DOE	(former: Department of Power)				
202	Department of Forest				
DOF	(former: Department of Forestry Services)				
	former: Department of Power				
DOP	(now: Department of Energy)				
DoSLR	Department of Survey and Land Records				
DOR	Department of Roads				
	Dzongkhag Yargay Tshogdu				
DYT	/ Dzongkhag Development Committee				
	Gewog Yargay Tshogdu				
GYT	/ Gewog Development Committee				
HSD	Hydromet Services Division				
MTI	Ministry of Trade and Industry				
	former: Ministry of Home Affairs				
MHA	(now: Ministry of Home and Cultural Affairs)				
MoWHS, MWHS	Ministry of Works and Human Settlement				
MOA	Ministry of Agriculture				
MOF	Ministry of Finance				
NEC	National Environment Commission				
NECS	National Environment Commission Secretariat				
RCSC	Royal Civil Service Commission				
RED (DOE), DOE/RED	Renewable Energy Division				
RED (BPC), BPC/RED	Rural Electrification Department				
RGoB	Royal Government of Bhutan				
RNR-RC	Renewable Natural Resources Research Centre				
ki ki ke					
	Foreign organizations				
ACP	Austrian Coordinate Bureau				
ACB					
ADB	Asian Development Bank				
ADF	Asian Development Fund				
ANSI	American National Standards Institute				
DANIDA	Danish Development Assistance (under the Royal Danish				
	Ministry of Foreign Affairs)				
e7	An international NGO consisted of major 9 electric power				
companies from the seven G7 member countries					
EOJ	Embassy of Japan				
GEF	Global Environment Facility				
Helvetas	NGO based in Switzerland				

List of Terms

	List of Terms						
Abbreviations	English						
IDA	International Development Association						
IEC	International Electrotechnical Commission						
IMF	International Monetary Fund						
IUCN	International Union for Conservation of Nature and Natural						
IUCIN	Resources						
JBIC	Japan Bank for International Cooperation						
JICA	Japan International Cooperation Agency (Japan)						
NORAD	Norwegian Agency for Development Cooperation						
PTC	Power Trading Corporation of India Ltd.						
SDA	Sustainable Development Agreement, Netherlands						
SDS	Sustainable Development Secretariat, Netherlands						
CNW	Stichting Nederlandse Vrijwilligers; NPO established in						
SNV	Netherlands						
UNDP	United Nations Development Programme						
UNEP	United Nations Environment Programme						
UNIDO	United Nations Industrial Development Organization						
WB	World Bank						
WWF	World Wildlife Fund						
	Unit/Technical Terms						
AAAC	All-Aluminum Alloy Conductor						
AAC	All-Aluminum Conductor						
ABC	Aerial Bundle Cable						
ACSR	Aluminum Conductor Steel Reinforced						
ASTER	Advanced Spaceborne Thermal Emission and Reflection						
AVD	radiometer						
AVR	Automatic Voltage Regulator						
BS D C D/C	British Standards						
B-C, B/C	B: Benefit, C: Cost						
CFL	Compact Fluorescent Lamp						
Ch	Chetrum						
EIRR, FIRR	Economic/Financial Internal Rate of Return						
EL.() m	Meters above Sea level						
FY	Fiscal Year						
GIS	Geographic Information System						
GDP	Gross Domestic Product						
GHG	Green House Gas						
GWh	Giga Watt Hour (one billion watt hour)						
HV	High Voltage						
IRR	Internal Rates of Return						
kW	kilo Watt						
LED	Light Emitting Diode						
LV	Low Voltage						
MIS	Management Information System						
MV	Middle Voltage						
MW	Mega Watt (one million watt)						
Nu.	Ngultrum; Bhutanese currency; 1 Nu. \approx ¥2.6						
ind.	US\$1=45 Nu., if not specified						
OPGW	Optical-Fiber Composite Overhead Ground Wire						
Paise	Paisa (singular); Indian currency; Rs 1 = 100 paisa						
PLC	Power Line Carrier						
PV	Photovoltaic						
SHS	Solar Home System						

List of Terms

Abbreviations	English	
SHLS	Solar Home Lighting System	
SHWS	Solar Hot Water System	
SWER	Single Wire Earth Return	
TOE	tonne of oil equivalent	
USc	US Cent; \$1 = 100 c	
US\$	US Dollar	
	Others	
ARE	Accelerated Rural Electrification	
BC	Biological Corridor	
BLSS	Bhutan Living. Standard Survey	
CDM	Clean Development Mechanism	
Chimi	Member of Congress	
DFO	Dzongkhag Forest Office	
C/P	Counterpart	
Dungkhag	Sub-district	
Dungkhag Administration	Sub-district administration	
Dungpa	Sub-district administrator	
Dzongkhag	District	
Dzongda	Governor of the district	
Dzongkhag Administration	District administration	
Dzongrab	Vice Governor of the district	
EC	Environmental Clearance	
EIA	Environment Impact Assessment	
EMP	Environmental Management Plan	
FYP	Five Year Plan	
F/S	Feasibility Study	
Gewog	Block	
GNH	Gross National Happiness	
Gup or Mandal	Executive Officer of Gewog	
HEPP	Hydroelectric Power Project	
ICB	International Competitive Bidding	
IEE	Initial Environmental Examination	
JBIC SAPROF Study	JBIC Special Assistance for Project Formation Study	
	j 1	
JPST	JICA Preparatory Survey Team	
IEMMP	Integrated Energy Management Master Plan	
Kamzhing	Dry land	
LCB	Local Competitive Bidding	
L/A	Loan Agreement	
Mangmi	Elected Representative of Gewog	
MOU	Memorandum of Understanding	
M/M	Minutes of Meeting	
M/P	Master Plan	
NGOs	Non Governmental Organizations	
NOC	No Objection Certificate	
ODA	Official Development Assistance	
O&M	Operation and Maintenance	
PA	Protected Area	
PSMP	Power System Master Plan	
RE	Rural Electrification	
REC	Rural Electrification Center	
REMP	Rural Electrification Master Plan	
RESCO	Rural Electrification Service company	

List of Terms

Abbreviations English					
ADB PPTA	Project Preparatory Technical Assistance by ADB				
ADB/RE-1	Rural Electrification Programme Phase I funded by ADB				
ADB/RE-2	Rural Electrification Programme Phase II funded by ADB				
ADB/RE-3	Rural Electrification Programme Phase III funded by ADB				
ADB/RE-4	Rural Electrification Programme Phase IV funded by ADB				
ADB/RE-5	Rural Electrification Programme Phase V funded by ADB				
SEA	Strategic Environmental Assessment				
S/W	Scope of Works				
TOR	Terms of Reference				
T/A	Technical Assistance				
Tshogpa	Member of the village council				
VEC	Village Electrification Committee				

List of Terms

CHAPTER 1 INTRODUCTION

1.1 Background

Bhutan has a net surplus of electricity as the installed generation capacity is more than the total domestic demand. Presently, only about 65% of Bhutan's population has access to electricity. About 70% of the total population lives in rural areas and only about 50% of the total rural households have access to electrical lighting. Accordingly, the Royal Government of Bhutan (RGoB) is highly committed to develop and promote rural electrification (RE) projects, which are expected to bring immense socio-economic benefits and improve the living conditions of the rural people.

During the 10th Five Year Plan (10FYP) starting from 2008 until 2013, poverty alleviation has been included as a core theme in the development process. Moreover, making electricity accessible to the rural population through RE programs has been identified as one of the conduits for reducing poverty. Accordingly, the RGoB has targeted providing 'Electricity for all' by 2013. Coverage is expected to reach 84% of the population by 2012 with the completion of two ongoing projects supported by JICA and ADB simultaneously. Furthermore, RGoB requested the Japan International Cooperation Agency (JICA) and Asian Development Bank (ADB) to cover the balance of fund requirements to achieve the targeted 'Electricity for all' by 2013.

CHAPTER 2 THE PROJECT

2.1 Project Scope

In consultation with JICA, ADB and the Austrian Government, the Bhutanese Government has divided the remaining rural electrification tasks into three packages by dzongkhag (district). The region that JICA is responsible for covers 11 dzongkhags which are mostly located in the west while ADB's are located in the east as shown in Figure-2.1.1. These 11 dzongkhags are Chukha, Dagana, Haa, Paro, Pemagatshel, Punakha, Samtse, Sarpang, Trongsa, Tsirang, and Wangdue Phodrang.

The original request for electrification was submitted by Department of Energy (DOE) after surveying and determining the alignments for middle voltage (MV) and low voltage (LV) lines as well as the location of pole-mounted transformers to extend the power grid to the target villages, based on the villages designated as "on-grid" by the JICA REMP. The target feeders are summarized in Table-2.1.1.

After consultation with BPC and DOE, the JICA Preparatory Survey Team (JPST) has proposed the addition of two project components to increase the reliability of power supply in the Project areas. First of the components is overhead shield wire and counterpoise installation to reduce lightning damages, and the other is automatic reclosing circuit breakers.

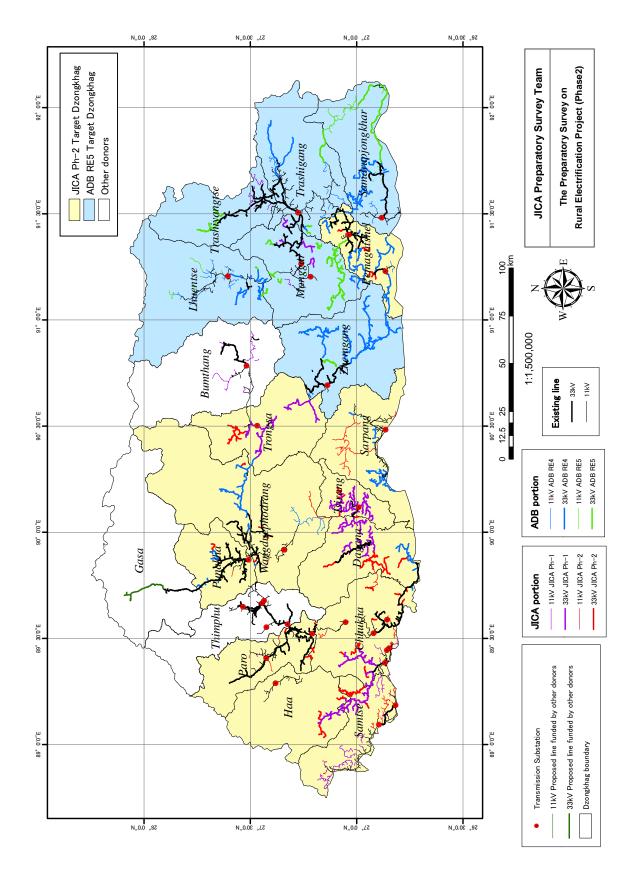


Figure-2.1.1 Target Dzongkhags of JICA RE-2 Project

	No	Feeder	Total line I	Length	Total Trans No.	Material cost (USD)	Erection cost (USD)	Headloading cost (USD)	Transportation cost (USD)	Total (USD)
Dzongkhag			MV(km)	LV (m)						
Chhukha	1	ARE3B1	11.4	10,293	8	281,985	41,076	104,181	4,166	431,407
	2	ARE3B2	1.3	4,042	1	59,662	7,922	20,901	905	89,390
	3 4	ARE3B3	0.1	3,246 3,299	1	35,050	5,051	13,058	511 2,007	53,669
	5	ARE3B4 ARE3B5	6.0 2.0	3,299	3	121,627 28,092	4,085	43,989 10,503	452	184,817 43,132
	6	ARE3B6	19.9	10,606	9	375,730	55,192	145,018	5,499	581,439
	7	ARE3B7	4.4	1,245	1	62,298	8,928	24,099	933	96,258
	8	ARE3B8	7.4	3,039	3	138,380	18,720	48,865	2,306	208,271
	9	ARE3B9	5.3	1,954	4	92,550	13,694	34,205	1,486	141,936
	10	ARE3B10	1.9	2,226	1	43,109	6,058	16,121	664	65,951
	12	ARE3B11 ARE3B12	4.0	3,108	1	88,778	11,372	30,727 12,782	1,443	132,320
	13	ARE3B12 ARE3B13	5.3	2,647	5	113,467	16,304	39,719	1,900	171,390
	14	ARE3B14	1.2	482	1	21,165	3,108	7,721	347	32,342
	15	ARE3B15	16.5	5,394	5	261,571	36,716	97,390	4,173	399,849
	16	ARE1B16	11.1	3,059	5	169,516	25,565	66,248	3,098	264,427
	17	ARE1B17	1.7	2,311	1	50,061	6,588	17,187	844	74,680
	18 19	ARE3B18	4.1	951	1	55,499	7,948	21,369	848	85,664
	20	ARE3B19 ARE3B20	5.4	1,271 4,063	2	34,561	15,887	41,927	532	53,157
	21	ARE3B21	2.3	4,005	1	42,055	5,840	14,972	706	63,573
	22	ARE3B22	3.6	1,200	1	52,834	7,568	20,288	806	81,496
	23	ARE3B23	2.0	543	1	29,201	4,384	11,409	568	45,561
	24	LV Extention	0.0	2,007	1	21,934	3,234	7,944	338	33,450
Dagana	25 26	ARE3C1 ARE3C2	52.5 0.8	41,065 4,289	23	1,210,805 69,571	156,276 8,088	231,261 11,985	23,877	1,622,218 90,969
	20	ARE3C2 ARE3C3	1.5	2,205	2	48,653	5,915	8,756	983	64,308
	28	ARE3C4	9.0	4,024	3	142,348	19,394	28,691	2,793	193,226
	29	ARE3C5	5.7	1,633	3	93,335	12,520	18,541	1,903	126,299
	30	ARE3C6	2.5	1,676	1	44,595	5,996	8,870	888	60,349
	31	ARE3C7	3.0	2,773	1	58,975	7,990	11,818	1,143	79,926
	32	ARE3C8	2.3	2,763	1	51,482	6,949	10,279	999	69,709
Haa	33 34	LV Extention ARE3E1	0.0 7.1	1,360 953	0	15,359 96,984	1,655	2,445 82,659	280 4,141	19,738 200,201
144	35	ARE3E2	7.1	1,833	3	113,256	18,955	95,891	4,141	232,754
	36	ARE3E3	14.0	5,580	5	242,483	38,528	199,812	10,219	491,042
Paro	37	ARE1H2	5.5	412	1	73,883	10,137	9,149	2,762	95,931
	38	ARE3H3	1.6	269	1	25,266	3,268	3,107	970	32,611
	39	LV Extention	0.0	782	0	11,358	857	739	186	13,140
Pemagatshel	40 41	ARE3I1 ARE3I2	2.3	696 7,088	1	60,262	5,413 25,883	13,246 62,573	691 3,551	79,613 273,030
	41 42	ARE312 ARE313	7.6	5,060	3	130,489	20,759	50,723	2,638	275,050
	43	ARE3I4	3.4	4,326	1	75,497	10,768	27,457	1,431	115,153
Punakha	44	ARE1J1	3.9	576	1	50,812	6,874	3,678	2,738	64,103
	45	ARE3J2	6.6	5,572	4	137,130	17,535	9,998	5,979	170,641
Samtse	46	ARE1L1	5.0	7,404	4	146,229	19,345	33,914	1,432	200,921
	47	ARE1L2	7.5	5,064	3	139,707	19,227	33,965	1,439	194,338
	48 49	ARE1L5 ARE1L6	1.9 25.8	793 31,346	25	30,328	4,301 92,888	7,556	340	42,525
	50	ARE1L7	1.9	892	1	31,521	4,503	7,899	344	44,267
	51	ARE1L9	6.6	2,769	5	113,289	15,989	27,829	1,284	158,391
	52	ARE1L10	3.1	758	1	41,996	6,026	10,636	462	59,120
	53	ARE1L11	3.3	6,506	3	122,590	15,813	27,658	1,192	167,254
	54	ARE1L12	1.9	2,274	1	47,769	6,500	11,427	485	66,180
	55 56	ARE3L1 ARE3L2	38.9 4.0	62,080 1,890	37	1,351,776	172,450 9,491	300,538 16,788	12,086	1,836,849
Sarpang	50	ARE1M1	4.0	96,042	62	2,697,507	414,432	1,934,533	74,033	5,120,505
շաթաղ	58	ARE1M1 ARE1M2	2.4	3,258	3	85,820	15,587	59,980	2,092	163,480
Trongsa	59	ARE3Q1	35.7	28,619	22	826,229	104,338	99,320	27,892	
Tsirang	60	ARE3R2	2.6	2,784	1	54,386	7,322	10,040	916	72,665
	61	ARE3R3	5.5	5,816	3	119,628	16,019	22,021	2,049	159,718
		ARE3R4	2.1	2,496	1	55,541	7,039	9,679	995	73,254
	63 64	ARE3R5 ARE1R6	2.3 5.9	3,848 5,606	1	71,085	8,796 17,301	12,069 23,732	1,246 2,571	93,196 175,180
	65	ARE3R7	2.2	2,311	1	54,515	6,859	9,434	981	71,789
Wangdue	66	ARE3S3	2.5	146	1	31,053	4,098	5,725	1,584	42,459
	67	ARE3S4	3.5	1,215	3	69,907	8,975	12,725	3,157	94,764
	68	ARE3S5	0.1	391	1	13,012	1,561	2,259	552	17,384
	69	ARE3S6	0.1	319	2	20,606	2,509	3,663	882	27,659
	70	ARE3S7	1.8	28	1	24,309	3,233	4,570	1,141	33,254
	71	ARE1S8	17.3	9,346	8	404,274	49,814	70,146	19,830	544,064
						12,723,137.0	1,766,929.8			

Table-2.1.1	Summary of the Target Feeders

2.2 Design for the Project

2.2.1 Design Considerations

The "Electricity for All" by June, 2013 is publicly announced by RGoB, to realize the national target of electrification. ADB RE-5 and JICA RE-2 are planned to be implemented at the same time.

Actually, RE-5 Project by ADB and RE-2 Project by JICA are considered to be two projects from donor side. However, both projects aimed at the realization of "electrification for all". Therefore, these two projects are considered as one project from Bhutan side.

Accordingly, the basic consideration including design concept, specifications and packaging of the project components for both projects should be coordinated.

Regarding the specifications, JICA RE-2 will basically also apply the PPTA's specifications.

2.2.2 Difference in Design

At first JPST adopted the design concept of PPTA for the pole allocation, which means the standard span length is to be 100 m, however, sag and tension calculation revealed that this span length is too long to the AAAC conductor from the viewpoint of mechanical strength. Hence, the standard span length of 80 m has been adopted to AAAC covered conductors.

2.2.3 Comparison of Steel Pole and Telescopic Poles

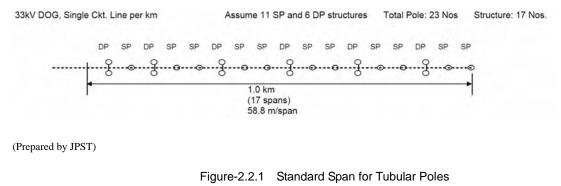
(1) Workability and Technical Issues

The steel tubular poles have been used as supports for medium voltage (MV) lines and low voltage (LV) distribution lines. However, it becomes more difficult to transport poles to remote areas by human transportation due to the lengths and unit weights of the poles. It was studied and discussed to reduce the burden to the workers and reduce the construction period by shortening the carrying time through human transportation. Finally, it was decided to use telescopic poles as supports instead of steel tubular poles.

The requirement of newly introduced telescopic poles should have equivalent or higher specifications compared with steel tubular poles, which have been used up to the present. Table-2.2.1 shows that newly introduced telescopic poles meet the requirements in place of steel tubular poles. Telescopic poles have an advantage that the surface of the pole is galvanized, hence application of anticorrosive paint at site is not required.

	Steel Tubula	r pole	Telescopic pole		
Voltage	Length	Strength	Length	Strength	Remarks
LV	7.0 (m)	1.81 (kN)	9.0 (m)	3.29 (kN)	
11kV	9.0 (m)	1.93 (kN)	11.2 (m)	3.29 (kN)	Without shielding wire
			12.0 (m)	3.29 (kN)	With shielding wire
33kV	10.0 (m)	2.02 (kN)	11 (m)	3.29 (kN)	Without shielding wire
			12.0 (m)	3.29 (kN)	With shielding wire

 Table-2.2.1
 Specifications of Tubular and Telescopic Pole


Source: BPC

(2) Cost Comparison

The comparison on the material cost per 1 km between tubular and telescopic poles with 33 kV, 3-phase dog conductor, fittings and civil materials is shown in Table-2.2.2 and 2.2.3. The assumption of the standard span for each pole is as shown in Figure-2.2.1 and 2.2.2.

According to the basic design of ADB RE-5, the allocation schedule for telescopic poles per one kilometer consists of six sets of double pole arrangement, and four sets of single pole arrangement. Accordingly, the average span length is to be 100 m, and 16 poles are required for one kilometer line length.

The material cost of telescopic poles is Nu.660,331 per km, which is 8.3% more expensive than that of tubular poles because of the high unit cost of telescopic pole itself, though the shorter standard span of telescopic poles allows less number of necessary poles, fittings and civil material. In the case of other types of conductor, the difference in cost shows almost the same trend.

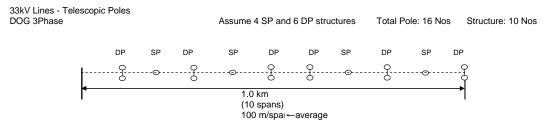


Figure-2.2.2 Standard Span for Telescopic Poles

Table-2.2.2	Bill of Materials for 33 kV line with Tubular Pole per 1 km

Bill of Materials for 33 kV singl	e circuit li	ine (3 Φ)	with DOG conductor
Length	of line :	1.000	Km

Sl. #	Description of items	Unit	Total quantity	Unit cost (Nu.)	Total cost (Nu.)
Ι	Foreign Materials				
1	Steel tubular poles 10 mtr. long with base plate, fixing bolts, etc.	No.	23	9,512.80	218,794.40
2	Single pole cross arm assembly complete with M&U clamps, nuts, bolts and other accessories.	Set	11	967.50	10,642.45
3	Top hamper assembly complete with M&U clamps, nuts, bolts and other accessories.	Set	11	515.10	5,666.06
4	Cross arm assembly for H-frame (O) complete with M clamps, nuts, bolts and other accessories.	Set	6	3,965.11	23,790.65
5	Cross brace arm assembly for H-frame with full clamps, nuts, bolts and other accessories.	Set	6	2,837.63	17,025.75
6	G.I. stay set assembly (1 no. turn buckle, 1 no. stay rod with base plate)	Set	12	1,154.60	13,855.20
7	33 kV stay insulator	No.	12	89.72	1,076.68
8	G.I. stay wire 7/8 SWG	Kg	120	79.99	9,599.28
9	Stay clamp assembly	Set	12	283.22	3,398.66
10	Polymer Strain Insulator 33kV	Set	36	1,323.68	47,652.64
11	33 kV pin insulator assembly with pin	Set	33	787.51	25,987.78
12	Preform dead end terminations - DOG	No.	36	161.00	5,796.00
13	Tension joints - DOG	No.	9	250.79	2,257.13
14	ACSR conductor - DOG	Km	3.100	59,455.00	184,310.50
15	P.G. clamp for DOG	No.	18	55.13	992.36
16	Spike earthing set 2500x20 mm complete with connecting plates, nuts & bolts with 4 metre G.I. wire 8 SWG.	Set	23	450.24	10,355.44
17	Barbed wire	Kg	84	79.99	6,719.50
	Danger plate (enamelled) 33 kV	No.	17	141.61	2,407.39
	Bituminous aluminium paint	Ltr.	0	136.85	0.00
	Bituminous black paint	Ltr.	8	73.95	591.56
21	Miscellaneous items (1% on above)			0.00	5,909.19
	Foreign material cost (Nu	.)			596,828.61
Π	Local Materials				
21	Cement	MT	1.3	3,440.00	4,472.00
22	Sand	Cft	42	23.00	966.00
23	Stone chips 20 mm	Cft	94	23.00	2,162.00
24	Boulder for double pole bonding	Cft	94	57.50	5,405.00
	Local material cost (Nu.)				13,005.00
	Total material cost (Nu.)				609,833.61

Table-2.2.3	Bill of Materials for 33 kV line with Telescopic Pole per 1 km	
-------------	--	--

Bill of Materials for 33 kV single circuit line (3Φ) with DOG conductor

Length of line	:	1.000
----------------	---	-------

km

Sl. #	Description of items	Unit	Total quantity	Unit cost (Nu.)	Total cost (Nu.)
Ι	Foreign Materials				
1	Steel telescopic poles 11 mtr. long with base plate, fixing bolts, etc.	No.	16	18,254.70	292,075.20
2	33 kV single pole cross arm assembly complete with M&U clamps, nuts, bolts and other accessories.	Set	4	967.50	3,869.98
3	33 kV top hamper assembly complete with M&U clamps, nuts, bolts and other accessories.	Set	4	515.10	2,060.39
4	33 kV cross arm assembly for H-frame (O) complete with M clamps, nuts, bolts and other accessories.	Set	6	3,965.11	23,790.65
5	33 kV cross brace arm assembly for H-frame with full clamps, nuts, bolts and other accessories.	Set	6	2,837.63	17,025.75
6	G.I. stay set assembly (1 no. turn buckle, 1 no. stay rod with base plate)	Set	10	1,154.60	11,546.00
7	33 kV stay insulator	No.	10	89.72	897.23
8	G.I. stay wire 7/8 GSW	kg	120	79.99	9,599.28
9	Stay clamp assembly, 33 kV	Set	10	283.22	2,832.22
10	Polymer Strain Insulator 33kV	Set	36	1,323.68	47,652.64
11	33 kV pin insulator assembly with pin	Set	12	787.51	9,450.10
12	Preform dead end terminations - DOG	No.	36	161.00	5,796.00
13	Tension joints - DOG	No.	9	250.79	2,257.13
14	ACSR conductor - DOG	km	3.100	59,455.00	184,310.50
15	P.G. clamp for DOG	No.	18	55.13	992.36
16	Spike earthing set 2500x20 mm complete with connecting plates, nuts & bolts with 4 metre G.I. wire 8 GSW .	Set	16	450.24	7,203.78
17	Barbed wire	kg	200	79.99	15,998.80
18	Danger plate (enamelled) 33 kV	No.	10	141.61	1,416.11
19	Bituminous aluminium paint	Ltr.	0	136.85	0.00
20	Bituminous black paint	Ltr.	20	73.95	1,478.90
21	Miscellaneous items (1% on above)			0.00	6,402.53
	Foreign material cost (Nu.)				646,655.55
II	Local Materials				
21	Cement	MT	1.3	3,956.00	5,142.80
22	Sand	Cft	42	23.00	966.00
23	Stone chips 20 mm aggregate	Cft	94	23.00	2,162.00
24	Boulder for double pole bonding	Cft	94	57.50	5,405.00
	Local material cost (Nu.)				13,675.80
	Total material cost (Nu.)				660,331.35

(Prepared by JPST)

2.2.4 Conductor Sag

(1) Conductor sag

The drawings which were prepared by PPTA in Figure-2.2.3 and 2.2.4 show that the clearance above ground to the cross arm is 7.22 m for single pole and 8.27 m for double pole, respectively. The clearance to be kept for 33 kV and 11 kV lines are specified as 6.1 m for road crossings and 5.8 m elsewhere.

As also shown in Fig. 2.2.2, single poles and double poles are allocated alternately, i.e., the sag and tension of the conductors are decided to keep the aforementioned ground clearance.

The conductor sag is considered as follows to keep the ground clearance of 5.8 m (Ground clearance of 6.1 m for "road crossings" is not considered, because poles usually be constructed near the road when the MV line crosses the road.):

Conductor sag = ((7.22 - 5.8) + (8.27 - 5.8)) / 2 = 1.94 m

Therefore, the conductor tension is decided with 1.94 m sag as a maximum value.

Conditions of sag calculation are as follows:

- a. Safety factor of conductor: more than 2.5
- b. Wind pressure on conductor: 44.86 kgf/sqm
- c. Load condition (high): 15 $^{\circ}$ C
- d. Load condition (low): -10 $^{\circ}$ C
- a. ACSR

The conductors for 11 kV and 33 kV MV lines consist of aluminum conductor steel reinforced (ACSR) dog and rabbit conductors with their specifications shown in Table-2.2.4.

Kind of conductor	Dog	Rabbit
Sectional area (sqmm)	118.5	61.7
Outer diameter (mm)	14.15	10.05
Weight (kg/m)	0.394	0.214
Elastic modulus (kg/sqmm)	7,990	8,400
Ultimate Tensile Strength (kg)	3,340	1,870
Coefficient of linear expansion (°C)	0.0000195	0.0000189

Table-2.2.4 Specifications of ACSR Dog and Rabbit Conductors

Source: BS 215 Part2

To decide the sag and tension, the maximum working tension of rabbit conductor for a span length of 100 m is assumed and calculated as shown in Table-2.2.5. It is decided that the maximum tension of rabbit should be 600 kgf with 1.93 m sag at 75 degree Celsius.

Same study has been made for dog conductors, and it was decided that its maximum working tension should be 1,100 kgf with 1.89 m sag at 75 degree Celsius as shown in Table-2.2.6.

Conductor	ctor Max. working tension 400 (kg) Max. working tension 500 (kg)		Max. working tension 600 (kg)			
Temperature	Horizontal	Sag	Horizontal	Sag	Horizontal	Sag
(deg-C)	Tension (kgf)	(m)	Tension (kgf)	(m)	Tension (kgf)	(m)
-10	242.5	1.10	365.5	0.73	495.5	0.54
0	207.0	1.29	302.0	0.89	414.8	0.64
10	180.8	1.48	251.8	1.06	343.4	0.78
15	170.3	1.57	231.4	1.16	312.1	0.86
20	161.2	1.66	213.9	1.25	284.1	0.94
30	146.1	1.83	186.0	1.44	238.1	1.12
40	134.2	1.99	165.1	1.62	203.9	1.31
50	124.5	2.15	149.1	1.79	178.5	1.50
60	116.6	2.30	136.6	1.96	159.4	1.68
70	109.9	2.44	126.5	2.12	144.7	1.85
75	106.9	2.50	122.2	2.19	138.6	1.93
90	99.3	2.70	111.3	2.41	123.6	2.16
120	87.7	3.05	95.9	2.79	103.7	2.58

Table-2.2.5	Case Study	/ for Rabbit	Conductor
	0000 0100		

(Prepared by JPST)

Conductor	Max. working te	nsion 800 (kg)	Max. working ter	nsion 900 (kg)	Max. working ten	sion 1,000 (kg)	Max. working tens	sion 1,100 (kg)
Temperature	Horizontal	Sag	Horizontal	Sag	Horizontal	Sag	Horizontal	Sag
(deg-C)	Tension (kgf)	(m)	Tension (kgf)	(m)	Tension (kgf)	(m)	Tension (kgf)	(m)
-10	623.1	0.79	745.7	0.66	867.2	0.57	986.0	0.50
0	513.3	0.96	613.7	0.80	719.6	0.68	827.9	0.59
10	429.0	1.15	505.9	0.97	591.8	0.83	684.7	0.72
15	395.5	1.25	461.7	1.07	537.0	0.92	620.8	0.79
20	366.8	1.34	423.5	1.16	488.8	1.01	562.9	0.87
30	321.1	1.53	362.8	1.36	410.8	1.20	466.6	1.06
40	286.9	1.72	318.2	1.55	353.5	1.39	394.4	1.25
50	260.5	1.89	284.6	1.73	311.3	1.58	341.5	1.44
60	239.7	2.06	258.8	1.90	279.4	1.76	302.3	1.63
70	222.8	2.21	238.3	2.07	254.7	1.93	272.5	1.81
75	215.5	2.29	229.6	2.15	244.3	2.02	260.2	1.89
90	197.1	2.50	207.9	2.37	219.0	2.25	230.6	2.14
120	170.7	2.89	177.7	2.77	184.7	2.67	191.7	2.57

Table-2.2.6 Case Study for Dog Conductor

(Prepared by JPST)

b. AAAC covered conductor

Two kinds of AAAC (all aluminum alloy conductor) covered conductor, namely, hydrogen and fluorine, will be used in the protected area. Their specifications are shown in Table-2.2.7. The sag and tension of these conductors are studied in the same manner as the ACSR's.

Table-2.2.8 and 2.2.9 show the sag and tension of two AAACs for the span lengths of 60 m, 80 m and 100 m.

Table-2.2.9 shows that the maximum applicable span length should be 80 m with maximum working tension of 460 kgf. This maximum working tension indicates that the safety factor of the conductor for ultimate tensile strength is 2.6. Accordingly, the standard span length for AAAC conductors should be 80 m instead of 100 m in the case of ACSR.

From this view point, the maximum working tension of hydrogen is also decided to be 850 kgf with 1.86 m sag at 75 degrees Celsius as shown in Table-2.2.9..

Kind of conductor	Hydrogen	Fluorine
Sectional area (sqmm)	111.3	49.48
Outer diameter (mm)	20.3	15.3
Weight (kg/m)	0.485	0.26
Elastic modulus (kgf/sqmm)	6,500	6,500
Ultimate Tensile Strength (kg)	2,470	1,200
Coefficient of linear expansion (°C)	0.000023	0.000023

Table-2.2.7 Specifications of Hydrogen and Fluorine

Source: BPC

			Max. working ter	nsion 400 (kg)		
Conductor	or Span length : 60 (m)			i : 80 (m)	Span length	: 100 (m)
Temperature	Horizontal	Sag	Horizontal	Sag	Horizontal	Sag
(deg-C)	Tension (kgf)	(m)	Tension (kgf)	(m)	Tension (kgf)	(m)
-10	279.3	0.42	225.3	0.92	192. 7	1.69
0	227.0	0.52	193.0	1.08	174.0	1.87
10	185.0	0.63	168.2	1.24	159.0	2. 04
15	168.1	0.70	158.2	1.32	152. 6	2. 13
20	153.8	0.76	149.3	1.39	146. 9	2. 21
30	131.2	0.89	134.8	1.54	136.8	2. 38
40	114.9	1.02	123.2	1.69	128. 4	2. 53
50	102.8	1.14	114.0	1.83	121. 3	2. 68
60	93.5	1.25	106.4	1.96	115. 1	2. 83
70	86.1	1.36	100.0	2.08	109. 7	2. 97
75	83.0	1.41	97.2	2.14	107. 3	3. 03
90	75.2	1.56	89.9	2.32	100. 8	3. 23
120	64.4	1.82	79.0	2.64	90. 6	3. 59

Table-2.2.8 Case Study for AAAC (Fluorine)

(Prepared by JPST)

Table-2.2.9	Case Study for AAAC (Fluorine)
-------------	--------------------------------

			Max. working ter	nsion 460 (kg)		
Conductor	Span length	: 60 (m)	Span length	: 80 (m)	Span length	: 100 (m)
Temperature	Horizontal	Sag	Horizontal	Sag	Horizontal	Sag
(deg-C)	Tension (kgf)	(m)	Tension (kgf)	(m)	Tension (kgf)	(m)
-10	362.1	0.32	304.3	0.68	256. 5	1. 27
0	299.6	0.39	256.1	0.81	224. 5	1. 45
10	244.1	0.48	217.0	0.96	199. 2	1.63
15	219.9	0.53	200.7	1.04	188.6	1. 72
20	198.4	0.59	186.5	1.12	179. 2	1. 81
30	163.5	0.72	163.3	1.27	163. 2	1.99
40	138.3	0.85	145.6	1.43	150. 3	2.16
50	120.1	0.97	131.8	1.58	139. 7	2. 33
60	106.7	1.10	120.9	1.72	130.8	2. 49
70	96.5	1.21	112.1	1.86	123. 3	2. 64
75	92.3	1.27	108.3	1.92	120. 0	2. 71
90	82.1	1.43	98.6	2.11	111.3	2. 92
120	68.7	1.71	84.9	2.45	98.2	3. 32

			Max. working ter	nsion 800 (kg)		
Conductor	Span length	: 60 (m)	Span length	i : 80 (m)	Span length	: 100 (m)
Temperature	Horizontal	Sag	Horizontal	Sag	Horizontal	Sag
(deg-C)	Tension (kgf)	(m)	Tension (kgf)	(m)	Tension (kgf)	(m)
-10	675.4	0.32	603.6	0.64	540.9	1.12
0	540.6	0.40	496.7	0.78	463.0	1.31
10	427.0	0.51	412.8	0.94	402. 9	1.51
15	380.3	0.57	379.1	1.02	378.3	1.60
20	340.7	0.64	350.2	1.11	356.8	1. 70
30	280.0	0.78	304.3	1.28	321.1	1.89
40	238.2	0.92	270.1	1.44	293. 0	2.07
50	208.6	1.05	244.0	1.59	270. 4	2. 24
60	186.9	1.17	223.5	1.74	251.9	2. 41
70	170.3	1.28	207.1	1.87	236. 5	2. 57
75	163.4	1.34	200.1	1.94	229. 7	2.64
90	146.5	1.49	182.3	2.13	212. 1	2.86
120	123.8	1.76	157.1	2.47	186. 1	3. 26

Table-2.2.10Case Study for AAAC (Hydrogen)

(Prepared by JPST)

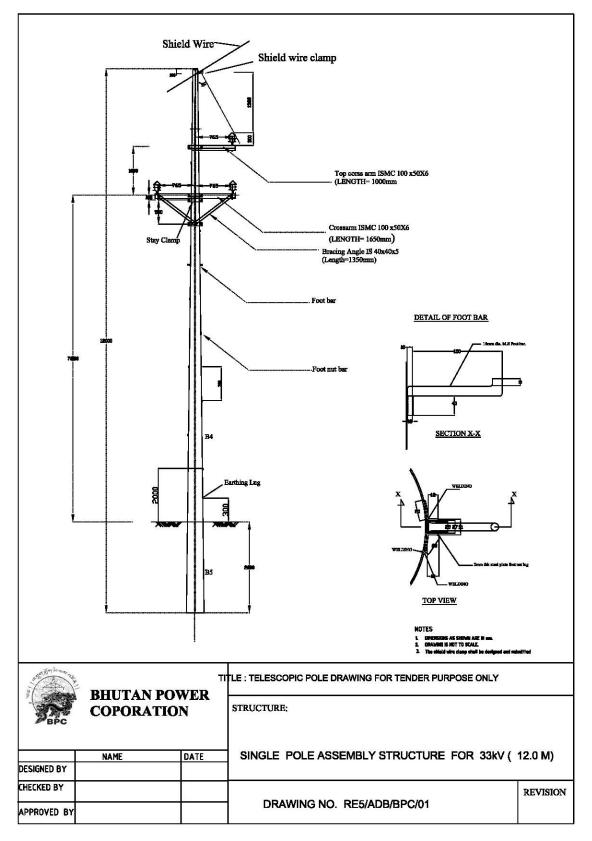

			Max. working ter	nsion 850 (kg)		
Conductor	Span length	: 60 (m)	Span length	: 80 (m)	Span length	: 100 (m)
Temperature	Horizontal	Sag	Horizontal	Sag	Horizontal	Sag
(deg-C)	Tension (kgf)	(m)	Tension (kgf)	(m)	Tension (kgf)	(m)
-10	741.3	0.29	674.0	0.58	609.7	0.99
0	599.6	0.36	555.1	0.70	517.5	1.17
10	475.3	0.46	458.0	0.85	444. 8	1.36
15	422.4	0.52	418.1	0.93	415.0	1.46
20	376.4	0.58	383.7	1.01	388. 9	1.56
30	304.8	0.72	328.8	1.18	346.0	1.75
40	255.3	0.86	288.4	1.35	312. 7	1.94
50	220.9	0.99	258.1	1.50	286. 3	2.12
60	196.0	1.11	234.7	1.65	265. 0	2. 29
70	177.3	1.23	216.1	1.80	247. 4	2. 45
75	169.6	1.29	208.2	1.86	239. 7	2. 53
90	151.1	1.45	188.6	2.06	220. 1	2.76
120	126.6	1.73	161.2	2.41	191. 5	3.17

Table-2.2.11 Case Study for AAAC (Hydrogen)

(Prepared by JPST)

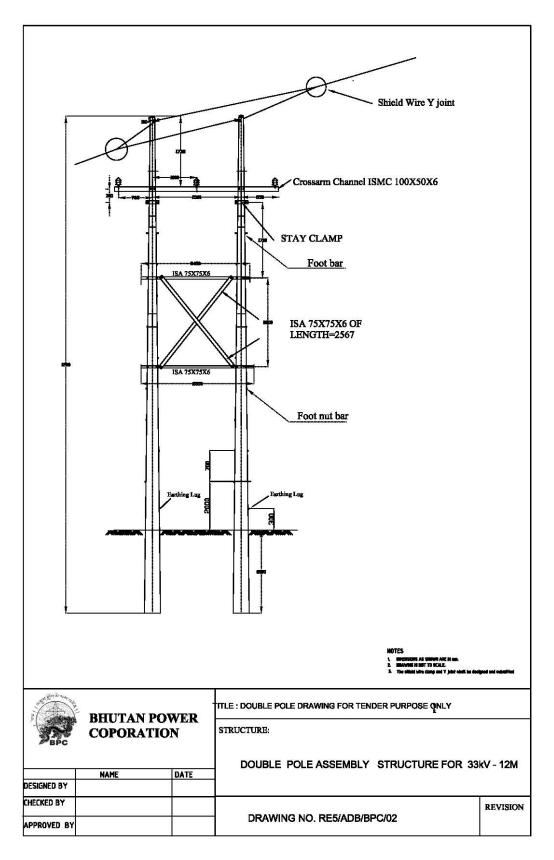

(2) Sag Calculation of Conductors

Table-2.2.5, 2.2.6, 2.2.8, 2.2.9, 2.2.10 and 2.2.11 show the summarized sag and tension of conductors. These summarized data are obtained from Appendix-I in the main report.

Source: BPC

Figure-2.2.3 Single Pole Assembly Structure for 33 kV Prepared by ADB PPTA

Source: BPC

Figure-2.2.4 Double Pole Assembly Structure for 33 kV Prepared by ADB PPTA

2.2.5 Lightning Prone Area

(1) Analysis of Power Interruption Records and Lightning Prone Area

As mentioned in the Minutes of the Meeting between ADB and BPC (see Annexture-1 attached), the power interruption and damages on the distribution facilities especially pole mounted transformers are seriously recognized by BPC. Hence, BPC intends to take countermeasures to reduce such power interruptions and damages on distribution facilities, by installing overhead ground wire to their MV lines.

Firstly, lightning prone area in Bhutan has to be identified, as it occupies an area covering 300 km from east to west and 150 km from south to north. Also, regarding climate conditions, its southern border with India is within a subtropical zone with high precipitation while the northern area is within high mountains with low temperature and less precipitation.

Accordingly, it was considered that lightning prone area is to be identified by analyzing the power interruption records of BPC distribution facilities.

The power interruption record was gathered and managed at the Distribution & Customer Service Department (DCSD). The JPST received the power interruption records from January, 2007 through April, 2010.

The monthly data are arranged in one excel file for each dzongkhag. For analysis purposes, these data (total of 40 excel files) are converted into one excel file as a data base information with 25, 810 records.

The lightning-related data have been searched using the keywords "lightning" and "thunder". Total of 700 records are identified as power interruption incidents due to lightning. These power interruption records are tabulated in Table-2.2.12. Said table shows that these incidents are concentrated mainly in Chukha, Pemagatsel, Samtse Sarpang and Lhuentse. These dzongkhags are located in the southern Indian border, except Lhuentse. Please refer to Appendix-M in the main report for detailed information such as fault location, influenced feeders, etc.

To identify the lightning prone area by analyzing the power interruption records due to lightning, it is assumed that power interruption will be proportional to the length of MV lines of each dzongkhag. However, it should be noted that no power interruption record is registered in Samdrup Jongkhar. (Refer to Figure-2.2.5 for the existing MV lines in Bhutan.)

According to interviews with BPC Phuentsholing (ESD), lightning frequently occurred in the Indian border including Samdrup Jongkhar. Accordingly, there is a possibility that the keyword "lightning" or "thunder" have not been used at the time of recording the power interruption due to lightning.

Therefore, it is recommended that in inputting the keyword in the power interruption record,

the pull-down menu of the excel file should be used instead of manually typing the words by the person in charge. Hence, only one keyword will be used for each cause such as lightning, relay operation, maintenance and so on.

Dzongkhag		Ye	ar		Sub-total
Dzongkhag	2007	2008	2009	2010	Sub-total
Bumthang	3	1	0	0	4
Chukha	42	62	27	13	144
Dagana	none	none	none	none	0
Mongar	none	none	none	none	0
Haa	0	0	0	1	1
Lhuentse	5	0	25	1	31
Mongar	none	none	none	none	0
Paro	none	none	none	none	0
Pemagatsel	134	57	70	6	267
Punakha	none	none	none	none	0
Samdrupjongkhar	none	none	none	none	0
Samtse	61	55	44	11	171
Sarpang	2	17	23	3	45
Thimphu	0	1	0	0	1
Trashigang	6	1	0	0	7
Trashiyangtse	7	0	0	0	7
Trongsa	5	0	0	0	5
Tsirang	none	none	none	none	0
Wandue	2	0	4	0	6
Zhemgang	0	1	9	1	11
Sub-total	267	195	202	36	700

Table-2.2.12 Frequency of Power Interruption due to Lightning

(Prepared by JPST based on the data provided by BPC)

(2) Lightning Prone Area

As mentioned in section (1), lightning prone area for the design of MV lines of BPC is identified to be within the Indian border, i.e., from west to east, Samtse, Chukha, Dagana, Tsirang, Sarpang and Pemagatsel dzongkhags. These are the coverage areas of JICA RE-2 Project.

These dzongkhags in the Brahmaptra valley along with other areas of North-East India have lightning activity close to the highest in the world and have been reported 120 days per year of lightning density.

(3) Month-wise Lightning

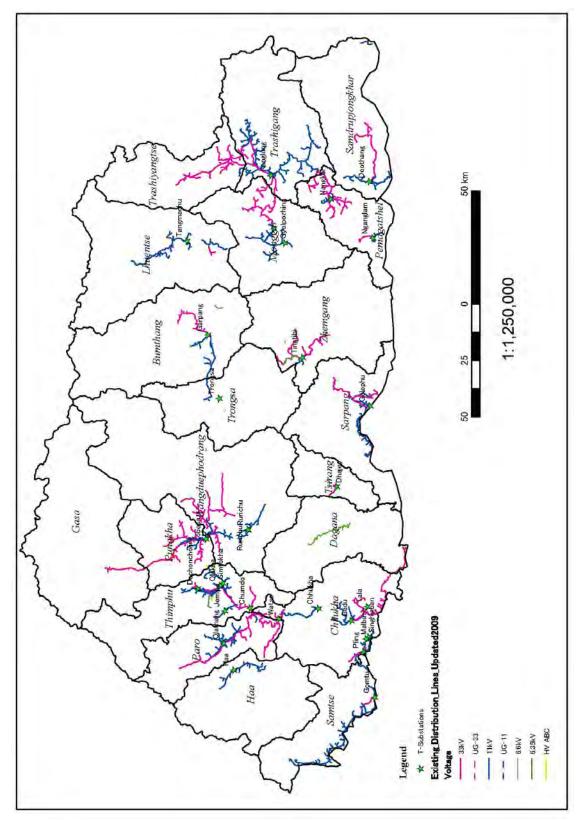
The yearly frequency of power interruption in Table-2.2.12 is classified on a monthly basis as shown in Table-2.2.13, 2.2.14 and 2.2.15. These tables show that no lightning occurs from November to January.

Total	10	1.6	37	125.3	7	15.7	50	55.7	58	64.4	26	15.5	61	18.2	9	5.4	10	8	2	0.1					267	
Zhemgang																									0	4
Wandue							2	17.8																	2	
Trongsa					1	1.0	2	0.4	2	7.0															5	
Trashiyangtse									7	2.2															7	
Trashigang 1							2	1.4			2	0.3	2	0.0											9	
Thimphu																									0	
Sarpang			1	21.2	<u> </u>				<u> </u>		<u> </u>				<u> </u>		1	5.1			<u> </u>		<u> </u>		2	
Samtse	4	0.1	2	10.7	1	2.1	15	18.4	6	1.0	9	2.5	6	0.4	9	5.4	7	1.9	2	0.1					61	
Pemagatsel			21	14.0			28	17.6	27	2.1	12	9.8	46	14.3											134	
Lhuentse											1	1.0	4	3.5											5	
Haa																									0	
Chukha	6	1.5	13	79.4	4	11.6			12	48.6	5	1.9					2	1.0							42	
Bumthang					1	1.0	1	0.2	1	3.5															3	
Nos./hrs	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	
	uo		401	Len 1	Mor			1 Ide		L APTAT		unr	1.1		4	Aug	Con	dae	0.4			NOV	Ç.	Dec	Ē	

Table-2.2.13 Dzongkhag-wise and Monthly-wise Power Interruption due to Lightning (2007)

(Prepared by JPST based on the data provided by BPC)

Total	0	0	2	5.2	49	37.5	28	74.1	35	17.5	10	3.6	6	21.1	45	26.8	16	24.1	1	0.2					195	210.1
Zhemgang					1	0.1																			1	0.1
Wandue																									0	0
Trongsa																									0	0
Trashiyangtse																									0	0
Trashigang 7					1	2.4																			1	2.4
Thimphu																			1	0.2					1	0.2
Sarpang							9	6.1	2	6.2			7	18.9	2	21.9									17	53.1
Samtse					20	13.3	5	0.3	17	3.6	5	1.2	2	2.2			9	0.2							55	20.8
Pemagatsel					3	12.4	2	23.2	12	1.7	2	2.2			38	3.2									57	7.74
Lhuentse																									0	C
Haa																									0	C
Chukha			1	4.7	24	9.3	15	44.5	4	6.0	3	0.2			5	1.7	10	23.9							62	90.3
Bumthang			1	0.5																					1	0.5
Nos./hrs	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation
-	Tom	libl	$\Pi_{\alpha}h_{\alpha}$	Len	Mou	INIAL		чh	Mou	May	1	unr	11	Inf	A.1.2	Sur	C 200	oeb	+°∪	100	M.c	AUVI	Dee	Dec	$T_{c,t,c}$	10141


Table-2.2.14 Dzongkhag-wise and Monthly-wise Power Interruption due to Lightning (2008)

(Prepared by JPST based on the data provided by BPC)

2	, 		, Tak		_	Tol		Tol Tol		Tol Tol		Tol	, 1-1			Tol Tol		Tol Tol	, 10,10,10,10,10,10,10,10,10,10,10,10,10,1			Tol			Totol	
Nos./hrs	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol duation	Times	Tol dustion
Bumthang																									0	<
Chukha					1	0.1			11	11.7	8	8.1			1	0.1	2	0.3	4	0.9					27	010
Haa											~								1							
Lhuentse						0				0.2					2	1.									0 2	
Pemagatsel			21	1.9	2 11	0.9 6.4			1 18	.2 4.1	18	0.5	2	0.5	22	1.2									25 70	
Samtse					1	1.1	2	22.2			17	17.7	9	13.4	15	2.4	8	1.6							74	
Sarpang							2	1.3	11	53.6	6	6.9	1	2.6											23	
Thimphu																									0	0
Trashigang																									0	¢
Trashiyangtse																									0	0
Trongsa																									0	•
Wandue			2	12.6	2	1.5																			4	
Zhemgang					6	4.7																			6	
Total			23	14.5	26	14.7	,	23.5	41	69.6	52	33.2		16.5	38	3.7	4.	1.9	7	0.9					202	

Table-2.2.15 Dzonkhag-wise and Monthly-wise Power Interruption due to Lightning (2009)

(Prepared by JPST based on the data provided by BPC)

Source: BPC

Figure-2.2.5 Existing MV Lines in Bhutan

(4) Countermeasure for Lightning

To reduce the damages or influences due to lightning (induced lightning not directly striking the MV lines), lightning arrester together with overhead ground wires are commonly used. Lightning arresters are specified to protect pole-mounted transformer in accordance with the Distribution Design and Construction Standards of BPC. Together with the installation of lightning arrester, installation of overhead ground wire is recommended to reduce the grounding resistance of the MV lines.

The grounding resistance of substations (pole-mounted transformers) should be kept within or lower than the specified value (5 ohms¹ and 10 ohms² as per the Distribution Design and Construction Standards of BPC) to ensure the protective performance of the lightning arresters.

However, it is not easy to keep the ground resistance within the specified value due to the high soil resistivity in Bhutan, which is as high as 1,200 ohm-meter. Salt is commonly used to lower the grounding resistance together with charcoal to reduce the grounding resistance of substations. However, use of salt does not seem to maintain the performance over a long period because it is easily washed away by rain water.

The use of overhead ground wire is recommended to reduce the grounding resistance over a long period by connecting the poles which are grounded in parallel.

(5) Countermeasure for Existing facilities

No overhead ground wire is installed in the existing 33 kV and 11 kV MV lines. Furthermore, additional installation of overhead ground wire to the existing MV lines is not easy for the pole assembly.

However, it is necessary to take countermeasures to reduce the damage or influence by lightning. The only protective device for pole-mounted transformer is a lightning arrester. To secure the performance of lightning arresters, the grounding resistance is the key factor, i.e., it should be within or under the specified value, or as low as possible.

As countermeasure for reducing the grounding resistance of existing transformer poles, installation of counterpoise is recommended. The number and length of counterpoise is estimated to be 2 and 30 m, respectively.

¹ The resistance of pipe earthing systems at distribution substations

² The resistance of stake earths

2.3 Expansion of Scope: Quality Improvement

2.3.1 Improvement of Reliability in Power Supply

After the completion of the proposed grid extension, Bhutan will complete the RE work except for some minor additional work. The distribution network will extend to 3,000 km of MV lines at its completion covering over 95% of the rural population. After completion of the Project, the longest MV line will extend over 100 km. The larger the network becomes, the higher the chance for supply disruption. Thus, reducing blackout time is critical in order to maintain consumer benefits that are gained from grid extension. The measures to improve reliability of electricity service are twofold; first is the reduction of lightning damages, and second is the automatic re-closure system to reduce blackout duration from temporary short circuits and grounding fault.

2.3.2 Shield Wire and Counterpoise

After the examination of comprehensive failure records (2007-2010) that was compiled by each ESD of BPC, the JPST found out some noticeable occurrences of damages caused by lightning.

According to a "Tour Report" dated April 27, 2010, it is reported that coils of a 63kVA transformer at Upper Gangkha were burned due to heavy lightning on April 03, 2010 and same kind of failure was occurred at Shema Gangkha on April 04, 2010 due to the same cause.

And "Failure Reporting for Transformer" reported that transformer failures were occurred at Lower Gangkha, Gangkha School and Upper Shemakha due to heavy lightning on March 26, 2010.

The Study Team recommends the introduction of shield wires for the lightning-prone dzongkhags of Samtse, Sarpang, Chukha and Dagaga. The total shield wire length requirement is estimated to be 290km of the new MV lines.

Another effective measure to lower the grounding resistance of transformer poles is to install counterpoises with 30 m of bare conductors that are buried horizontally in two opposite directions. It is estimated that a total of 700 transformers are to be protected with this measure with 298 to be newly installed and 402 of the existing ones.

2.3.3 Automatic Reclosing Circuit Breaker (ARCB)

Another improvement envisaged by the Project is to install ARCB, which is an equipment to reconnect the distribution line at the time of electrical faults. At present, BPC has installed 26 nos. of ARCB at different locations in the country. Given the rapid expansion of the rural distribution network, human intervention based responses are limited in shortening and area-wise limitation of blackouts.

The purpose of ARCB installation is to improve the power supply reliability, and BPC installs ARCB under the following conditions.

- ✓ Based on the terrain through which line passes. If the line passes through thickly forested area, BPC installs such equipment to clear the transient faults.
- ✓ If the line is very long, ARCBs are installed to clear the downstream faults.
- ✓ Based on the type of feeder. If the feeder is getting T-off from urban line, then ARCBs are installed to segregate rural and urban faults for better reliability.
- ✓ In some places, ARCBs are also installed to avoid 33kV and 11kV substations/switching stations which helps to reduce the cost.

The Project requires 20 sets of 33 kV ARCB and 13 sets of 11 kV ARCB, these quantities are the request basis by ESD (Electricity Services Division).

The locations where ARCB will be installed may be indicated on the single line diagram by the respective ESD. The single line diagram is attached in Annex-N.

2.3.4 Step Voltage Regulator (SVR)

In the radial MV distribution system, it is often necessary to regulate the feeder voltage by means of step voltage regulator.

Step-voltage regulators can be either (1) station-type, which can be single- or three-phase, and which can be used in substations for bus voltage regulation or individual feeder voltage regulation, or (2) distribution-type, which can be only single-phase and used pole-mounted out on overhead MV feeders.

The step-voltage regulator basically is an autotransformer which has numerous taps in the series winding. Taps are charged automatically under load by switching mechanism which responds to a voltage-sensing control in order to maintain voltage as close as practicable to a predetermined level. The voltage-sensing control receives its inputs from potential and current transformers and provides control of system voltage level and band width. In addition, it provides features such as operation counter, time-delay selection, test terminal, and control switch.

In case of MV lines of BPC, the feeder length sometimes reaches to eighty (80) km, it is difficult to maintain the feeder voltage to an allowable level, installation of distribution-type may be the option to improve the consumer end voltage.

2.4 Grid Extension Cost

There are two aspects to cost estimation. Since the Project is comprised of a number of geographically discrete feeders and subfeeders, the cost of each subfeeder needs to be

calculated. The costs of feeders can be combined in order to derive cost summaries per dzongkhag. Another combination is by contract packages. Since the BPC procures the materials directly, the contract packages need to be grouped according to vendor types such as electric poles, transformers, conductors, metal fittings manufacturers, civil work contractors and transporters

The quantity and cost of material procured in the project is summarized by dzonkhags in Table-2.4.1 and Table-2.4.2. Within these dzongkhags, there were 71 feeder lines which extend 566 km of MV lines and 447 km of LV lines as shown in Table-5.1.1. The feeders are expected to supply electricity to 3,701 customers in total. The total Project cost is estimated to be JPY 2,713 million (USD 30.9 million) out of which JPY 1,867 million (USD 21.3 million) is required for the procurement of materials and construction as the base-cost for JICA financing shown in Table-2.4.3). The detail of the project cost is shown in Appendix-R in the main report. The remainder is required for transportation by vehicles and human workers, as well as erection. The average cost per customer is estimated at JPY 460,688 (USD 5,253). The high cost requirement arises from two major factors. Since the remaining electrification targets are located in less densely-populated and far areas, the line length are much longer and each substation (transformer) supplies less number of customers. In the case of the JICA RE-2 Project, the average MV line length is 152 m per customer while that for the JICA RE-1 Project is 60 m per customer. The adoption of new poles has also led to an increase in unit material cost per length.

	Nos. of Total consumer	MV length	LV length	Nos. of	Nos. of	-	ng damage vention	Average headloading
Dzongkhag	(household and institute)	(km)	(km)	substation	ARCB	Shield wire (km)	Nos. of Couter-poise	distance to village (km)
Chukha	629	121.1	68.4	59				13.2
Dagana	416	77.2	61.8	35				6.8
Haa	99	28.6	8.4	11				30.3
Paro	43	7.1	1.5	2				4.0
Pemagatshel	168	21.0	17.2	11				12.2
Punakha	49	10.5	6.1	5	33	290	700	2.2
Samtse	988	100.0	121.8	82				8.3
Sarpang	730	119.0	99.3	65				26.6
Trongsa	321	35.7	28.6	22				4.1
Tsirang	93	20.6	22.9	9				6.3
Wangdue	165	25.3	11.4	16				6.5
Total	3,701	566.0	447.4	317	33	290	700	

Table-2.4.1 Project Quantity Summary by dzonkhags

		Material cost (Million JPY)	Erection cost (Million JPY)	Headloading cost (Million JPY)	Transportation cost (Million JPY)	Total cost (Million JPY)	Total cost (Million USD)
	Chukha	204.7	29.1	75.7	3.2	312.9	3.6
	Dagana	152.2	19.7	29.2	3.0	204.1	2.3
	Наа	39.7	6.5	33.2	1.7	81.0	0.9
	Paro	9.7	1.3	1.1	0.3	12.4	0.1
	Pemagatshel	39.2	5.5	13.5	0.7	59.0	0.7
Distribution lines	Punakha	16.5	2.1	1.2	0.8	20.6	0.2
	Samtse	245.2	32.1	56.1	2.4	335.8	3.8
	Sarpang	244.1	37.7	174.9	6.7	463.4	5.3
	Trongsa	72.5	9.2	8.7	2.4	92.8	1.1
	Tsirang	42.7	5.6	7.6	0.8	56.6	0.6
	Wangdue	49.4	6.2	8.7	2.4	66.6	0.8
	ARCB	89.2		29.4	3.6	122.2	1.4
Other items	Shield wire	23.7		7.8	0.9	32.5	0.4
	Counter-poise	5.2		1.7	0.2	7.1	0.1
	Total	1,233.9	193.9	410.0	29.1	1,867.0	21.3

Table-2.4.2	Project Cost Summary by dzonkhags
-------------	-----------------------------------

Table-2.4.3Grid Extension Project Cost

Annual Fund Requirement					
Base Year for Cost Estimation:	Nov,	2010			
Exchange Rates		= Yen	1.88		
Price Escalation:	FC:	1.8%	LC: 2.4%		
Physical Contingency	10%				
Physical Contingency for Consultant	10%				
Item		Total			
	FC	LC	Total	Total	Percentage
	(Million	(Million	(Million	(Million	to grand
	JPY)	BTN)	JPY)	USD)	total
A. ELIGIBLE PORTION		2	••••	002/	10101
I) Procurement / Construction	1,348	395	2,091	23.8	76.2%
1. Substation and Line Materials	1.212	12	1,234	14.1	45.0%
1. Substation and Line Materials 2. Transportation Cost 3. Erection Cost	0	15	29	0.3	1.1%
3. Erection Cost	0	321	604	6.9	22.0%
Base cost for JICA financing	1,212	348	1,867	21.3	68.0%
Price escalation	.,	11	.,001	0.4	1.2%
Physical contingency	123	36	190	2.2	6.9%
II) Consulting services	38	3	43	0.5	1.6%
Base cost	34	2	38	0.4	1.4%
Price escalation	1	0	1	0.01	0.0%
Physical contingency	3	0	4	0.05	0.1%
Total (I + II)	1,386	398	2,134	24.3	77.8%
B. NON ELIGIBLE PORTION					
a Procurement / Construction	0	51	97	1.1	3.5%
5. Compensation including the removal of	0	40	76	0.9	2.8%
orchard trees	0	40	76	0.9	2.0%
6. Envirenmental Monitoring	0	5	10	0.1	0.4%
Base cost for RGoB financing	0	46	86	1.0	3.1%
Price escalation	0	1	2	0.02	0.1%
Physical contingency	0	5	9	0.1	0.3%
b Land Acquisition	0	0	0	0.0	0.0%
Base cost	0	0	0	0.0	0.0%
Price escalation	0	0	0	0.0	0.0%
Physical contingency	0	0	0	0.0	0.0%
c Administration cost	0	119	223	2.5	8.1%
d BIT (local)	0	8	15	0.2	0.5%
e BIT (foreign)	0	1	1	0.01	0.0%
f Duties and Sales Tax	0	129	242	2.8	8.8%
Total (a+b+c+d+e+f)	0	308	578	6.6	21.1%
TOTAL (A+B)	1,386	706	2,713	30.9	98.9%
C. Interest during Construction			05	0.0	0.00/
C. Interest during Construction Interest during Construction(Const.)	25 25	0	25 25	0.3	0.9% 0.9%
Interest during Construction(Const.)	25	0	25	0.3	0.9%
D. Commitment Charge	6	0	6	0.0	0.0%
GRAND TOTAL (A+B+C+D)	ہ 1,417	706	ہ 2,744	31.3	0.2%
	1,417	706	2,144	31.3	100.0%
E. JICA finance portion incl. IDC (A + C + D)	1.417	398	2.166	24.7	78.9%
	1,417	290	2,100	24.1	10.370

2.5 Lightning Damage Prevention Program Cost

The costs for shield wire and counterpoise installation is estimated at USD 491,476 as shown in Table -2.5.1. The cost for ARCB installation is estimated at USD 1,186,692 as shown in Table -2.5.2.

		Unit: USD						
	Quantity	Unit	Unit Price	Cost				
Shield Wire Installation	290	km	933	270,570				
Counter-poise	700	nos	84	58,800				
Civil			30%	143,035				
Transportation Cost			4%	19,071				
	Total			491,476				

Table-2.5.1 Cost Estimate for Shield Wire and Counterpoise Installation

(Prepared by JPST)

	Unit: USD						
	Quantity	Unit	Unit Price	Cost			
33kV ARCB	20	nos	35,200	704,000			
11kV ARCB	13	nos	24,100	313,300			
Civil 33kV ARCB	20	nos	3,900	78,000			
Civil 11kV ARCB	13	nos	3,900	50,700			
Transportation Cost			4%	40,692			
			4%	1,186,692			

(Prepared by JPST)

CHAPTER 3 IMPLEMENTATION

3.1 Implementation Schedule and Project Sub-Packages

The target completion of the Project is end of June 2013. Accordingly, the entire implementation period would only be 29 months since the Project is supposed to commence in February 2011. In order to achieve this target completion, an implementation schedule is recommended based on the past experience and the consensus between BPC and JPST as shown in Figure-3.1.1.

		2011 2012 2013				Month																			
	2	3 4	5	6	78	9 1	0 11	12	1	2	3 4	5	6	78	3 9	10	11	12	1 2	3	4	5	6		_
					<u>_</u>			<u> </u>			÷	<u></u>	 			ļļ.	<u> </u>		.				-	0	
Pledge		/								_	<u> </u>	<u> </u>			<u> </u>		<u> </u>	_	<u>+</u>					0	
Signing of Loan Agreement		•	Sig	n								ļļ	 	·		ļļ.			<u>+</u>	Ŀ				0	
	ļ																							0	
Pre Construction Stage		+			- -			_			-	-	-		-		_	-			-	-			
Implementing Consultant	ļļ.	ļ			<u> </u>		1	1			1 1	1			ļ	1	1	_	1	1		1	1	11	
Prepareation of Bid Document	1																							1	
Concurrence by JICA	ļ ļ	1			++						<u> </u>	<u> </u>			ļ				. 					1	
Tender Floating		1	1																.					2	
Bid Evaluation	<u> </u>	. <u> </u>		1	<u></u>						Ļ	ļļ			. <u> </u>	<u> </u>			.	ļļ		<u> </u>		1	
Approval by CTC and Board Committee					1														ļ					1	
Concurrence by JICA	ļļ.	Ļ			1	▼Si	gn				1	Гļ			ļ	 	ļ.		 					1	
Contract procedure with Consultant						1													.					1	
Procurement of Materials (ICB)	1	1 1	1	1	1 1	1	1 1	1	1	1	1 1	1	1	1	ļ				1			ļ		18	
Preparation of BOQ	1	1			1		1				1	[]		1	1		1		1			1		2	
Preperation of Bid Document	1											ļļ				-			_					1	
Concurrence by JICA		1		ļ							1	[]			<u> </u>		Ì		1			Ţ		1	
Tender Floating	····	1	#								ļ	ļļ							.			-		1.5	
Bid Evaluation	ļļ	1	#	1							1	 		1			_		1					1.5	
Approval by CTC and Board Committee	·····				1							<u></u>							.					1	
Concurrence by JICA	ļļ.	ļ			1 ▼ S	lign					ļ	<u> </u>			ļ				_			1		1	
Contract with Suppliers		-			1				_							+- +-			1			-		1	
Civil and Installation Work (LCB)	ļļ.	Ì			11						İ			1			Ì		1			1			
Preperation of Bid Document	÷÷ ÷÷)† 	····	1	1	 	, 		·	 	†† 		1	·†	ii- -	÷-		1					2	
Concurrence by JICA	ļ		 				1					İİ		1		ļļ.			1	ļ		Ţ,		1	
Tender Floating		+					1	#			<u> </u>	<u></u> ††		1	÷	- -			1			#		1.5	
Bid Evaluation		1						#	1		1	<u> </u>												1.5	
Approval by CTC and Board Committee	ļ				ļ					1	7 Sig	'n	1	1	1		Ì		1					1	
Contract with Suppliers											1			1		 -			1					1	
Construction Stage		İ			İ						İ.											İ			
Design and Type Tests on Telescopic Poles						1 1			First	t Del	ivery	- 1	Seco	ond i	Deli	very		1						2	
Manufacturing of Telescop Poles and Delivery to P'lin		1	}+		-++		j	1	1	1	1 1	1	1	••• † ••••			+- 	1	1			-		8	
Manufacturing of Other Materials and Delivery to P'lin		+	 			1	1 1	1	1	1	1 1	1		··+	·+	 	-+	1			+			9	
Inland Transportation from P'lin to MicroStories		1				1	1				1		1	1	1			1	<u>†</u>	Ċ		t		3	
Civil and Installation Work		1			++		1				1	1	1	1	1 1	1	1	1	1 1	1	1	1		14	
Commissioning	<u> </u>	1					1				1	<u>†</u> †		1	1	1	1	1	1 1	1	1	1	1	10	

(Prepared by JPST)

Figure-3.1.1 Implementation Schedule

3.1.1 Loan Agreement

The signing of the Exchange of Notes (E/N) for the loan agreement is scheduled to be in

March 2011.

3.1.2 Lightning Damage Prevention Program Cost

BPC may commence the preparation works, such as preparation of bidding documents for selection of implementing consultant and procurement of materials, in February 2011 after prior notification (pledge), while waiting for the signing of the loan agreement.

3.1.3 Pre-Construction Stage

(1) Implementing Consultant

The procedure for the selection of implementing consultants will commence immediately when the project starts in February 2011. The consultancy services are scheduled to start after JICA concurs with the contract in the beginning of September 2011, and intermittently implemented until June 2013.

(2) Procurement of Materials

The distribution line materials like transformers, conductors, insulators, poles, etc., will be procured under one-phase bidding. The bidding procedures are undertaken through ICB in accordance with JICA Procurement Guideline.

The period for the whole bidding process (from the preparation of bidding documents to signing of contracts) is expected to be approximately seven months, including the bid floating period of 45 days.

(3) Civil and Installation Work

Selection of local contractors for the civil and installation works will be carried out under one-phase bidding, through LCB. It will consist of approximately 52 packages, based on the number of MV feeders planned to be developed under the Project. A recommendation of erection packages proposed by JPST is shown in Appendix-Q in the main report.

3.1.4 Construction Stage

The design and manufacturing of materials will start immediately after the signing of the contract for procurement of materials. The delivery of materials to BPC's warehouse in P'ling is scheduled during the period from February 2012 to December 2012, depending on the materials.

The work is managed by packages on feeder-wise basis. The period for the entire construction work is scheduled to be within 15 months, depending on the volume of works for each package, which is generally longer than the previous project. This also takes into account the difficulty in transporting materials to the project sites in remote mountainous regions.

3.1.5 Summary of Project Sub-packages

(1) Procurement of Materials

The bidding procedures for the procurement of materials will be undertaken through international competitive bidding (ICB). The following 14 sub-packages for these procurements are recommended as summarized in Table 3.1.1 below.

Lot No.	Description of package	Cost Estimate (USD)
1-A	MV STEEL TELESCOPIC POLES, FITTINGS & ACCESSORIES FOR THE WESTERN DZONGKHAGS (CHUKHA, HAA, PARO, PHUNAKA AND SAMTSE)	3,087,325
1-B	MV STEEL TELESCOPIC POLES, FITTINGS & ACCESSORIES FOR THE EASTERN DZONGKHAGS (DAGANA, PEMAGATSHEL, SARPANG, TRONGSA, TSIRANG AND WANGDUEPHODRANG)	1,943,038
2-A	MV OVERHEAD BARED CONDUCTORS	1,057,728
2-B	MV OVERHEAD FITTINGS AND ACCESSORIES	230,917
3	INSULATORS AND FITTINGS	548,843
4-A	MV COVERED CONDUCTOR, LV ABC CONDUCTORS & SERVICE CABLES	1,576,623
4-B	LV TELESCOPIC POLES, ABC ACCESSORIES & DISTRIBUTION BOARDS	2,659,066
5	EARTHING EQUIPMENT	144,289
6	DISTRIBUTION TRANSFORMERS	934,609
7	SWITCHING EQUIPMENT, AUTO RECLOSER, AND ACCESSORIES	1,244,419
8	CUSTOMER EQUIPMENT - ENERGY METERS	66,314
9	MISCELLANEOUS CONSTRUCTION ITEMS	247,267
10	LIGHTNING DAMAGE PREVENTION	329,370
11	TOOLS AND VEHICLES	265,957

Table-3.1.1	Bid Packages for Procurement of Materials
-------------	---

(Prepared by JPST)

The above packaging is considered to be based on BPC's procurement experience in previous projects.

It is also recommended that the procurement of 11 m telescopic poles be separated into two packages since the total quantity will be more than 9,500 and the manufacturing period is limited to 11 months.

(2) Erection Works

The selection of contractors for erection works will be managed under the procedures for local competitive bidding (LCB). The bid packages will be split by BPC based on medium voltage (MV) main feeders during the preparation of bidding documents in the pre-construction stage.

Considering the contract volume and the geographical proximity of erection site, a recommendation of feeder-basis sub-packages of erection works is shown in Appendix-Q in the main report.

3.2 Implementation Method

The implementation for RE by BPC is vertically divided into three components, namely: procurement, transport, and civil works, instead of commissioning the entire work to a single or multiple contractors as a package. The method has been proved to work effectively especially in terms of controlling the material procurement costs, meeting timely delivery of the materials, and directly awarding the civil works to local contractors. In order to execute the work properly, BPC has set up a fairly large project implementation organization, involving the RED as well as the PSD. There is no merit in altering the work process that has worked relatively well in the past at this juncture.

3.3 Implementation Setup

3.3.1 Organization

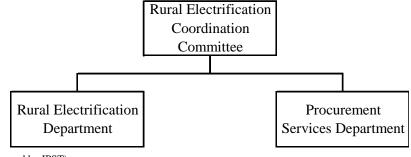

The project will constitute the last portion of RE in Bhutan. Prior to the last stage, the RGoB already received four loans from ADB and one loan from JBIC (now merged with JICA) to execute RE projects. During the implementation of the RE packages, BPC has established the RED as a permanent organization for the planning and execution of RE projects. Chapter 5 describes its function and setup in detail. Table-3.3.1 shows the summary of RE work and the responsible departments.

Table-3.3.1 Rural Electrification work and Responsible Organizations							
Process	Organization in Charge						
Material Procurement	Procurement Department						
Inventory Control and Transport	Procurement Department						
Construction Supervision	Rural Electrification Department						
Operation and Maintenance	Electricity Service Division						

 Table-3.3.1
 Rural Electrification Work and Responsible Organizations

Source: BPC

As indicated in Section 6.3.3, there is a concern on meeting the deadline of completion in 2013. One of the critical measures is to minimize the procurement lot and synchronize the procurement-transport-installation work flow. Therefore, it is necessary to establish a closer coordination between PSD and RED. It is recommended to create an ad hoc coordination body above the two departments to realize the much needed coordination.

(Prepared by JPST)

Figure-3.3.1 Recommended RE Organization

3.3.2 Manpower

RED has some 160 staff in its headquarters and regional offices. Prior to the implementation of the first Japanese ODA loan, the SAPROF study recommended the expansion of RED staff from 44 to 170 to cope with increased workload for the JBIC package as well as ADB's RE-4. BPC has pursued the recommended staff increases earnestly. Although the work volume of the next phase of electrification may be somewhat less, it may be even larger than what is required at present due to the very tight implementation schedule. However, taking into account the demobilization of RED after the Project, it would be more advantageous not to alter the current size of the department.

3.3.3 Strategy to Meet 2013 Deadline: Just-In-Time to be Revisited

For the on-going Japanese ODA loan project, the SAPROF study recommended the introduction of just-in-time system to the procurement and inventory control in order to reduce delivery period as well as time wasted arising from inflated inventories. However, the recommendation was not taken up, hence, the conventional large lot based procurement was undertaken. As a result, there was no improvement in delivery period and large stagnant inventories. Sending the large order means that the manufacturers need to store the outputs and only after having met the required quantity that they ship the materials. In other words, the products produced in the beginning have to wait until the last product is produced before shipment. Reduced lot means reduced waiting period. If the first products were shipped immediately, construction using said products would have been shortened by the entire production period. Minimization of the lot size and synchronization of installation process should be an integral part to meeting the national deadline.

Naturally, each product cannot be shipped on a single basis, thus, a minimum lot size that does not inflate transport and handling costs need to be sought out. Discussion with PSD has revealed that there are both visible administrative and hidden costs in cross-border shipment such as waiting time. This transaction costs need to be factored into the determination of lot sizes. One suggestion that has emerged from the discussion is to adopt one month cycle of production and shipment. For most of the products, one month production would generate more than one truckload. This transportation cost would not be increased by lot size reduction. In addition, monthly delivery will have a standardization effect on administration including documentation, and also logistics. The manufacturer would need less space for inventory and the freight transporter needs fewer vehicles or less capacity for each trip, but which should be more frequent. Therefore, it could lead to reduction of costs as well. Lot size optimization needs to be studied for each procurement package before tendering, in consultation with the vendors in order to create a win-win situation.

3.3.4 Contractor Education and Information Sharing: Reforming Tender Documents and Consultation

The last package of rural electrification is supposed to have a larger proportion of civil costs within the total project budget due to more remote locations of the project feeders. The largest contributor in the cost escalation is the human transport of materials to construction sites, so called head-loading work. At present, the tender documents require the bidder to provide costs per unit length of conductor line or unit costs per transformer which include local transport (from the regional store to the road end nearest to the construction site), head-loading, and installation. JPST conducted unit cost analyses for civil works; however, the tender results did not provide any information with regard to costs associated with each type of work such as transport or erection. Moreover, the results of analysis show some inconsistencies such as no statistically meaningful deviation in costs between single phase and three-phase conductor line work, despite the fact that the total weight of conductors is 50% more for three-phase compared to single phase. Or, a larger transformer had fetched lesser prices. These statistical anomaly leads to a hypothesis that the contractor is bidding without detailed examination of transport loads and required manpower. There are numerous reports of contractors' complaints on excessive difficulties arising from head-loading work. JPST's conjecture is that these complaints are emanating from those uninformed and underprepared contractors without knowing how many people and how long it takes to carry heavy and long equipment on mountainous terrain.

Given the priority, which is to meet the deadline in 2013, and to ensure proper installation of equipment and facilities, it is reasonable to employ well-informed contractors with well-prepared logistical plans for transport and erection. The contractor should be informed about the length, volume and weight of the materials to be transported and installed for better planning on their part. Detailed information sharing will do some justice by avoiding unnecessary losses on the part of the contractor or delays in construction. Therefore, it is recommended that the bid documents should contain all the relevant planning data for the contractors including the weights of the materials to be used in construction as well as the transportation distance. Some workshops related to past experience and best practices may be given by BPC to contractors to enhance their planning capacity.

3.3.5 Data Management

There are currently three data management systems working within BPC. One is much centrally controlled and so-called data management for financial transactions and customer database management; the second is the GIS database introduced since the beginning of JICA RE-1 project; and the third consists of numerous reports compiled in excel formats such as progress monitoring sheets and fault records. BPC has decided to introduce SAP as the main application to handle most of the critical and centrally controlled database. GIS is now fully utilized in the planning of both MV and LV lines in conjunction with GPS.

Given the ease of use, familiarity and wide availability of excel within the BPC, it would be

most efficient and cost-effective to use excel as the basic platform for data entry interface. There will be less need for human resource development and less costs associated with the introduction of the software. It is envisaged that the next generation web computation will have similar format and style of commands, and thus, investment for human resource training will not lose continuity. The problems also come with ease and flexibility. The inconsistency in data entry formats and tabulation leaves the file formats to the whim of the data operators and in return, the aggregation process becomes extremely difficult and time consuming to rectify the individual variations as well as errors. The existence of decentralized files makes statistical or planning analysis very difficult. Often, the data are transferred from one file to another manually, requiring large wasteful manpower in data processing. The data file such as those containing fault records with tens of thousands of records are left without being utilized for strategic analyses. In most cases, the data in excel formats are used for the purpose of printing hard copies in standard formats and not for analyses or planning. Another problem for the decentralized data compilation is security. The maintenance of chronic file records and keeping the most updated data for common access is not easy while protecting the data from accidental or intentional losses.

BPC has developed an array of reporting data files which could potentially be a wealth of data for strategic planning. In order to achieve that purpose, there needs to be a mechanism or protocol to be developed for the transfer, aggregation and analyses. It is therefore recommended that as part of capacity building, data entry, management, security and analyses protocol, and software should be developed together with the human resources to manage the overall database system from management and strategic points of view. The database integration process with a purpose of integrated strategic monitoring and planning is a requisite for the subsequent capacity building.

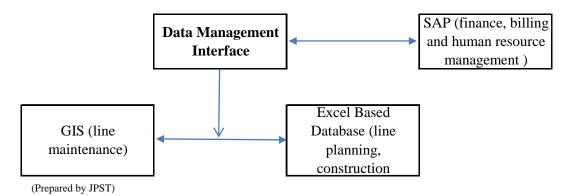


Figure-3.3.2 Database Integration Concept

3.3.6 Reinforcement of Operation and Maintenance Capacity

Given the geographical expanse of the next rural electrification and the difficulty in accessibility, there should be more reinforcement of operation and maintenance capacities. On the other hand the operation and maintenance for rural electrification in the next phase is purely a financial burden on the part of BPC. Thus there is a strong need for keeping the cost as low as possible at the same time. As discussed in the section on manpower above, the

personnel size of ESD, RECD and RECSD should be maintained at the same level as of now. Strengthening should be focused on the management efficiency. One areas that is critical is to provide the field staff with adequate tools and means of communication.

As mentioned in 10.3.4, NLDC will be inaugurated in next year the data transmission and communication situation among generating and substation facilities and relevant offices which are covered by NLDC will be tremendously improved. Hence, it is required effective data transmission from ESD, RECD and RECSD to RED for the effective management and construction supervision/monitoring. The following issues are recommended for the reinforcement of O & M capacity..

- ✓ Vehicles: many field officers lack in means to travel efficiently. Appropriate motorcycles and automotive vehicles should be provided.
- ✓ Equipment and tools : necessary equipment and tools especially required for the emergency recovery work from power interruption should be provided to improve the system reliability.
- ✓ Measuring instrument and tools : measuring instrument such as earth resistance tester, digital multi-meter and tools such as torque wrench, etc. which are required for the commissioning test and regular maintenance work should be provide to execute these works on time.
- ✓ Items for safety : safety items such as safety helmet and safety belts, etc. should be provided for all field officers.
- ✓ Telecommunication: more mobile phone should be deployed to field officers as the coverage of the mobile network is covering the major part of the country soon.

And, BPC needs to give serious planning efforts to the coordination of the alignment of the MV routes to the future road alignments. This should provide large cost reduction in maintenance and operation costs.

Village Technician Program, initiated by ADB, should be reinforced as well to supplement the work to be done in remote areas.

3.4 Consulting Services

3.4.1 Necessity of Consulting Services

(1) Time Constraints and Facility Management

The RGoB had decided to supply electricity to all people in Bhutan by June 2013. For this purpose, ADB RE-5 and JICA RE-2 are planned to be implemented. The implementation schedule is plotted using critical path method which accordingly shows that no idle time is allowed to realize the completion date of the project as mentioned before. Time constraints

is one of the main reason why foreign consultant is required to BPC, and as mentioned in (5) of this sub-clause, technical transfer on data arrangement for facility management is the most important issue to BPC.

(2) Coordination of Contract Packages

Procurement of the materials will be conducted through a number of contracts. Basically, one contract allotted is for one kind of material. The construction of distribution lines will also be carried out by a number of local contractors. During the peak period of the project, the total number of contracts will be around 50. Timely and well organized coordination among contract packages is significantly important to achieve efficient project implementation

(3) Material Delivery to the Project Site

Materials such as telescopic poles, insulators and conductors shall be delivered at the project site according to delivery schedule to complete the project on time. The timely material delivery to the site is also one of the most important issues for the idle-time free implementation of the project.

(4) Assistance for Bidding

Preparation of bid documents, bidding and bid evaluation process are subject to time constraints despite being the most significant works in the project implementation.

(5) Arrangement of feeder-wise Diagram

The line information such as support, kind of conductor, line length, etc., is arranged and controlled in the GIS. Also, the same information is used in the MI Power (Application Program for Load Flow Study).

The feeder-wise diagram, which may include number and capacity of transformers, kind of conductors, line length, etc., may be produced by extracting the necessary data from the database of MI Power.

Actually, handwritten diagrams have been prepared at some RECD or RECSD. Thus, only the person who prepared the diagram knows the distribution system.

JPST faced difficulty in reviewing the load flow study, and it was time-consuming work to know the feeder-wise information from the "Load Flow Study Diagram".

(6) Ledger of Distribution Facilities

Together with the feeder-wise diagram, all feeder information should be arranged on the ledger so that all information on the distribution line can be commonly utilized by the personnel concerned.

3.4.2 Scope of Work

The scope of work of international consultant includes monitoring and construction schedule control, technical assistance and technical transfer for:

- (1) Procurement of Materials
 - a. To review and endorse drawings and documents submitted by Suppliers for approval;
 - b. To carry out factory inspections on manufacturing equipment and materials, when necessary;
 - c. To assist BPC in monitoring the manufacturing and delivery by the Suppliers on schedule.

(2) Civil and Installation Work

- a. Construction Supervision
 - Review and endorse all proposed plans, schedules and documents regarding Project implementation and construction work submitted by the Contractor for approval;
 - Check to ensure the Contractor's adherence to approved plans and schedules;
 - Check and inspect work quality and quantity;
 - Conduct additional field visits in order to assist BPC monitor the field works whenever necessary;
 - Advise on the methods of measurement and computation of work volume and provide assistance on the verification of the contract progress and payment;
 - Prepare reports of inspection, tests and supervision activities;
 - Supervise and approve as-built drawings prepared and submitted by the Contractors;
 - Conduct final inspection and witnessing tests to issue the Certificate of Completion to the contractor;
- b. Design Modification

The Consultant shall make revisions and adjustments of design from time to time when they become necessary due to findings in the field or to incorporate relevant comments from concerned agencies.

c. Coordination with other rural electrification programs

The Consultant will assist BPC in coordination with other rural electrification programs on-going simultaneously with the Project.

 d. Preparation of feeder-wise single line diagram and ledger of distribution facilities
 The Consultant will assist BPC in preparation of feeder-wise single line diagram and ledger of distribution facilities.

3.4.3 Requirement for Consultant

One of the major contribution to expected on the consultant is to streamline and optimize the procurement processes to meet the deadline of 2013. Therefore the consultant needs to fulfill the following qualification;

- ✓ At least five (5) projects of experience in consultancy services for supervision of implementation of power electricity projects in overseas countries (experience in Bhutan desirable), and
- ✓ At least one (1) project of experience as team leader or project manager for consultancy services under the project financed by JICA or JBIC.

3.4.4 Consulting Cost Estimate

Given the extension of the present consulting work to cover the tender documentation and its evaluation work, the main work for the consulting services is construction supervision. The workload for consulting work is one person team for consulting on construction supervision with 11 person-months in total. The estimated cost for consulting is 45 million yen inclusive of overhead and per diem.

3.4.3 Personnel Assignment and Schedule

The required personnel include a project manager. His assignment is shown in the Implementation Schedule in Figure-3.1.1.

3.5 Environmental and Social Considerations

In Sarpang and Wangduephodrang dzongkhag, the proposed distribution lines are located in Jigme Singye Wangchuck National Park or biological corridors. 34.2 km for Sarpang is located inside the protected area or biological corridor. 17.3km for Wangduephodrang is located inside the protected area. For these areas, the covered conductors with narrower arm span will be used with routes taken mostly on existing roads so as to minimize tree cutting needs and disturbance to animal habitats.

Electrification will bring many positive socio-economic impacts and households will have the opportunity to increase their incomes. Moreover, there will be tangible benefits to women by free them from chores with the use of electric appliance for more productive work. Electricity will reduce the consumption of firewood, thereby positively contributing to the protection of environment as well as public health. The provision of electricity will reduce indoor smoke pollution and will improve health condition of village people through reducing respiratory and eye ailments, which are more common to women, children and the elderly.

There will be no involuntary resettlement needs or land acquisition for the Project. There

may be some compensation needs for the removal of orange and other orchard trees to clear the right-of-way for the conductor lines. The compensation cost is estimated to be BTN 40 million and the environmental monitoring cost at BTN 5 million.

CHAPTER 4 MONITORING AND EVALUATION

4.1 Operation/Effect Indicators

4.1.1 Distribution OEI

Distribution OEI is indicated by Peak Load (kW), Sales Volume (MWh), Distribution Loss(%), System Average Interruption Duration Index (SAIDI), outage times, Bill Collection Rate (%), and Household Electrification ratio (%).

Table-4.1.1 below summarizes the distribution OEI.

Indicator	Unit	Data Source	Current Value (Before Project)	Target Value(After Project)*1
Peak Load	MW	Power Data, DOE	211.0 MW ^{*2}	381.5 MW ^{*4}
Electricity Consumption (Sales Volume)	GWh/year	Power Data Book, BPC	1,368.17 GWh ^{*2}	2,293.5 GWh ^{*5}
Distribution Loss	%	PowerDataBook2009,BPC	9.81% (2009)	9.8 % (Current level)
SAIDI (System Average Interruption Duration Index) for distribution line	min/customer /year	Power Data Book 2009, BPC	365.8 (2009)	365.8 (Current level)
Outage Times	Number of times/year	CSD Reliability Data, BPC	5,354 (2009)	4,283 (20% reduction from current level)
Bill Collection Rate	%	BPC ESD	95.7% (2009)	100%
Energy Consumption per Household	kWh/HH /month	Power Data, DOE	118.5 kWh	234 kWh ^{*6}
Household Electrification Ratio	%	BPC/PPTA report	84.7% (2011) ^{*3}	100% (2013)

Table-4.1.1 Summary of Distribution Operation/Effect Index³

*1: For the year 2013. *2: Actual value in 2008/09 *3 After JICA RE-1 and ADB RE-4 projects *4 Assume 12.5% of annual growth rate derived from the average growth rate from 2003 to 2009 *5 Assume 13.8% of annual growth rate derived from the average growth rate from 2003 to 2009 *6 Assume 14.6% of annual growth rate derived from the average growth rate from 2003 to 2009

(Prepared by JPST)

4.1.2 Living Standard OEI

Table-4.1.2. below summarizes living standard indices for current (pre-electrification) and target post-electrification values.

³ The values of Electrification ratio, Bill Collection Rate and Electricity Consumption (Sales Volume) will be released as the JICA's Ex-ante Evaluation.

	Unit	Source	Current	Target
Social status and economic activity				
Nos. of households	hh	JICA Study	3,187	3,267
Household income	Nu./hh/month	JICA Study	1,967	2,557
Consumption of firewood	ton/hh/year	JICA Study	9.3	7.0
Nos. of restaurants/shops	nos.		-	20% increase
Nos. of industry	nos.		-	20% increase
Education				
Rural literacy rate	%	BLSS ^{*2}	49.0%	-
Rural school enrollment rate in	%	BLSS ^{*2}	middle: 44.6%	-
middle/higher secondary school			higher: 17.3%	

 Table-4.1.2
 Summary of Living Standard Index

(Prepared by JPST)

4.2 Economic Evaluation

(1) Economic Benefit from Grid Access

According to the technical specifications delineated in Appendix D.2 Economic Benefit Estimation Methodology in the main report, the JPST has estimated consumer benefits arising from five different activities, namely: 1) lighting, 2) radio listening, 3) TV viewing, 4) heating and power, and 5) mobile phone use, as well as cost savings permitted by grid electrification. Table-4.2.1 shows the summary of the estimated consumer benefits from grid electrification per household basis. The total benefit is estimated to be 1,168 Nu per household per month. The consumer benefit for each activity component is detailed in Appendix D.1 Economic Benefit Estimation in the main report.

Summary of		Consu	mption	Price (Nu	Benefit	
Summary of Benefit	Unit	Non- electrified	Electrified	Non- electrified	Electrified	(Nu./Month)
Lighting	k-lumens	3.7	480.0	18.3	0.1	335
Radio-listening	hours	18	72	7.5	0.036	46
TV-viewing	hours	7.2	103.5	9.5	0.2	102
Heat and power	kWh-equivalent	125	78	6.8	4.2	128
Mobile phone	minutes	57.6	114	2.6	2.0	159
Cost Saving from				879	481	398
Electrification						
Total						1.168

Table-4.2.1 Summary of Grid Electrification Benefits

(Prepared by JPST)

There are other intangible benefits to electrification. One particular importance is the increase in productivity of cottage industries. Also, it has brought educational impacts to children. A range of cottage industries are not thoroughly surveyed in Bhutan but kira and gho (national dress) production is an essential source of income for rural households. Studies on educational impacts have not yet substantiated. However, access to TV and radio will enhance the availability of information as well as provide entertainment for rural population at large. Another benefit is the promotion of public health. The use of firewood and its indoor air pollution contributes to respiratory diseases in non-electrified areas. A reduction in firewood is expected to reduce the prevalence of respiratory diseases in the rural areas

(2) Economic Benefit from Reliability Improvement

Based on the fault records compiled by BPC during 2007-2009, the following summary of lightning damages is obtained.

	Customer	Loss Duration	Lost Energy Consumption	Economic Loss
	(nos)	(hours)	(kWh)	(USD thousand)
2007	267	309.93	62,587	29
2008	195	210.1	44,193	20
2009	202	178.5	55,617	26
Average	221	233	54,132	25

Table-4.2.2 Summary of Lightning Damages

Note: unit economic value for lost kWh is assumed at USD 0.46/kWh The average kW load per customer is assumed at 0.4kW.

(Prepared by JPST)

It is presumed that the planned Reliability Improvement Program will have an effect to reduce the number of incidences in half, which, on the average, reduces the economic loss to approximately USD 12,500. The reduction will lead to the decrease in operation and maintenance costs but there is no unit cost calculation per such incidence. Thus, cost savings on maintenance is excluded from the economic benefit estimation.

4.3 Economic Evaluation Results for the Distribution Line Project

Economic cash flow analysis has been conducted for the Project period of 30 years with an investment program to be accomplished during 2011-2013. Procurement of materials for the Project will only be finished in 2011. The total number of customers to be added will be 3,701. It is assumed that one third of service connections are completed in 2012 and the remaining balance in 2013.

	Unit	Parameters
Total Customers Under Plan	Nos	3,701
Investment Planned	USD million	28
Material Cost	USD million	14
Civil Cost	USD million	7
Transport Cost	USD million	0.2
Household Demand	kWh/month	112
Other	%	30
Total Demand Per HH	kWh	145.6
Willingness-To-Pay	USD	0.23
Reliability Improvement Benefit	USD million	0.125
Transmission Loss	%	20%
Power Generation Cost	USD	0.027
Net Value of WTP	USD	0.20
Annual Growth to 2015	% per annum	5%
Annual Growth 2010-20	% per annum	5%
Annual Growth 2020-40	% per annum	3%
Grid Annual OM Cost	USD per Customer	64
Project Life for Grid	years	30

Table-4.3.1 Economic Evaluation Parameters

(Prepared by JPST)

Based on the cash flow streams tabulated in Table-4.3.3, the EIRR has been calculated. The estimated EIRR is 7.3%, with an NPV discounted at 12% of USD -9.3million.

Aillion
)

(Prepared by JPST)

Table-4.3.3 Project Economic Cash Flow Table (Unit: Million USD)

Year	Number of Customer	Economic Benefit from Grid Access	Economic Benefit from Reliability Improvement	Investment	Power Generation Cost and Transmission Loss	Operation and Maintenance	Net Cash Flow
2010							
2011				11.5			-11.5
2012	1234	0.55		11.7	0.07	0.08	-11.3
2013	2468	1.15	0.06	4.4	0.1	0.16	-3.5
2014	3,701	1.81	0.13		0.21	0.24	1.5
2015	3,701	1.90	0.13		0.21	0.24	1.6
2016	3,701	1.99	0.13		0.21	0.24	1.7
2017	3,701	2.09	0.13		0.21	0.24	1.8
2018	3,701	2.20	0.13		0.21	0.24	1.9
2019	3,701	2.31	0.13		0.21	0.24	2.0
2020	3,701	2.42	0.13		0.21	0.24	2.1
2021	3,701	2.50	0.13		0.21	0.24	2.2
2022	3,701	2.57	0.13		0.21	0.24	2.3
2023	3,701	2.65	0.13		0.21	0.24	2.3
2024	3,701	2.73	0.13		0.21	0.24	2.4
2025	3,701	2.81	0.13		0.21	0.24	2.5
2026	3,701	2.89	0.13		0.21	0.24	2.6
2027	3,701	2.98	0.13		0.21	0.24	2.7
2028	3,701	3.07	0.13		0.21	0.24	2.7
2029	3,701	3.16	0.13		0.21	0.24	2.8
2030	3,701	3.26	0.13		0.21	0.24	2.9
2031	3,701	3.35	0.13		0.21	0.24	3.0
2032	3,701	3.45	0.13		0.21	0.24	3.1
2033	3,701	3.56	0.13		0.21	0.24	3.2
2034	3,701	3.66	0.13		0.21	0.24	3.3
2035	3,701	3.77	0.13		0.21	0.24	3.5
2036	3,701	3.89	0.13		0.21	0.24	3.6
2037	3,701	4.00	0.13		0.21	0.24	3.7
2038	3,701	4.12	0.13		0.21	0.24	3.8
2039	3,701	4.25	0.13		0.21	0.24	3.9
2040	3,701	4.38	0.13		0.21	0.24	4.1
2041	3,701	4.38	0.13		0.21	0.24	4.1
2042	3,701	4.38	0.13		0.21	0.24	4.1
2043	3,701	4.38	0.13		0.21	0.24	4.1

(Prepared by JPST)

4.4 Financial Evaluation

Financial evaluation was undertaken to explore financial sustainability of further rural

electrification. The cash flow as shown in **Table-4.3.3** was created in order to simulate financial impacts of rural electrification on BPC. The parameters for the simulation are summarized in **Table-4.4.1**.

	Unit	Parameters
Total Customers Under Plan	Nos	3,701
Investment Planned	USD million	31
Material Cost	USD million	14
Civil Cost	USD million	7
Transport Cost	USD million	0.2
Household Demand	kWh/month	112
Other	%	30
Total Demand Per HH	kWh	145.6
Tariff	USD	0.024
Reliability Improvement Benefit	USD million	0.075
Transmission Loss	%	20%
Power Purchase Cost	USD	0.003
Annual Growth 2010-20	% per annum	2%
Annual Growth 2020-40	% per annum	2%
Grid Annual OM Cost	USD per Customer	64
Project Life for Grid	years	30

Table-4.4.1 Parameters for Financial Cash Flow Simulation

(Prepared by JPST)

The assumed parameters are synonymous to those used for economic evaluation. Instead of WTP increases, the increases in the demand for power are assumed to continue at the rate of 2% per year until 2040. Operation and maintenance costs are estimated at USD 64 per customer basis as shown in Appendix-D in the main report for OM Cost Analysis. It is assumed that BPC is able to purchase the generated energy at the cost of Nu 0.13 per kWh from the Royal Energy at a subsidized price.

The simulated cash flows are shown in Table-4.4.3. The net cash flow marginally turns surplus after 2014. In the end, NPV calculation shows a negative value for the Project and a financial rate of return on investment with also a negative value at -11.7%. Rural electrification power demand comprises less than 4% of total power demand in Bhutan. Thus negative return on the investment in rural electrification does not affect the overall financial situation of BPC. Thus BPC regards rural electrification as part of their corporate social contribution. In addition, BEA evaluates every activity of BPC including rural electrification to make sure it does not incur direct financial losses.

Table-4.4.2 Financial Evaluation Summary

	Unit: USD Million		
NPV @12% (USD million)	-25.6		
FIRR	-11.7%		

(Prepared by JPST)

Unit: Million USD

Year	Number of Customer	Economic Benefit from Grid Access	Economic Benefit from Reliability Improvement	Investment	Power Generation Cost and Transmission Loss	Operation and Maintenance	Net Cash Flow	
2010								
2011				12.7			-12.7	
2012	1234	0.05		13.0	0.01	0.08	-13.0	
2013	2468	0.11	0.04	5.6	0.0	0.16	-5.6	
2014	3,701	0.17	0.08		0.02	0.24	0.0	
2015	3,701	0.17	0.08		0.02	0.24	0.0	
2016	3,701	0.18	0.08		0.02	0.24	0.0	
2017	3,701	0.18	0.08		0.02	0.24	0.0	
2018	3,701	0.18	0.08		0.02	0.24	0.0	
2019	3,701	0.19	0.08		0.02	0.24	0.0	
2020	3,701	0.19	0.08		0.02	0.24	0.0	
2021	3,701	0.19	0.08		0.02	0.24	0.0	
2022	3,701	0.20	0.08		0.02	0.24	0.0	
2023	3,701	0.20	0.08		0.02	0.24	0.0	
2024	3,701	0.21	0.08		0.02	0.24	0.0	
2025	3,701	0.21	0.08		0.02	0.24	0.0	
2026	3,701	0.22	0.08		0.02	0.24	0.0	
2027	3,701	0.22	0.08		0.02	0.24	0.0	
2028	3,701	0.22	0.08		0.02	0.24	0.0	
2029	3,701	0.23	0.08		0.02	0.24	0.0	
2030	3,701	0.23	0.08		0.02	0.24	0.0	
2031	3,701	0.24	0.08		0.02	0.24	0.1	
2032	3,701	0.24	0.08		0.02	0.24	0.1	
2033	3,701	0.25	0.08		0.02	0.24	0.1	
2034	3,701	0.25	0.08		0.02	0.24	0.1	
2035	3,701	0.26	0.08		0.02	0.24	0.1	
2036	3,701	0.26	0.08		0.02	0.24	0.1	
2037	3,701	0.27	0.08		0.02	0.24	0.1	
2038	3,701	0.27	0.08		0.02	0.24	0.1	
2039	3,701	0.28	0.08		0.02	0.24	0.1	
2040	3,701	0.28	0.08		0.02	0.24	0.1	
2041	3,701	0.28	0.08		0.02	0.24	0.1	
2042	3,701	0.28	0.08		0.02	0.24	0.1	
2043	3,701	0.28	0.08		0.02	0.24	0.1	

Table-4.4.3	Financial Cash Flow Analysis of Rural Electrification Work
-------------	--

(Prepared by JPST)