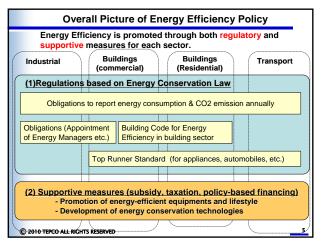
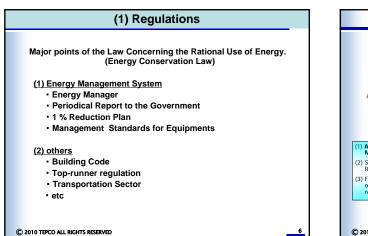
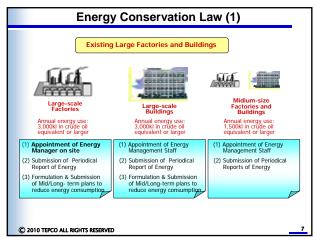
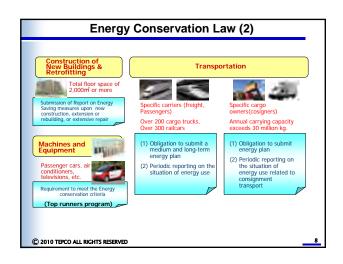
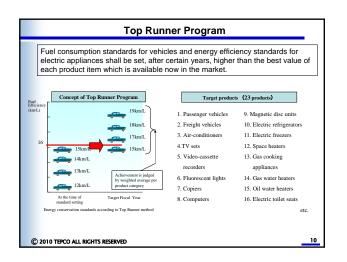

[Materiales de la Presentación]

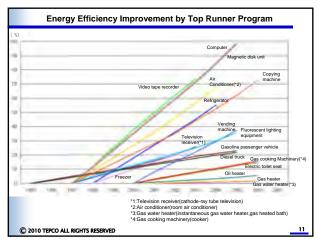


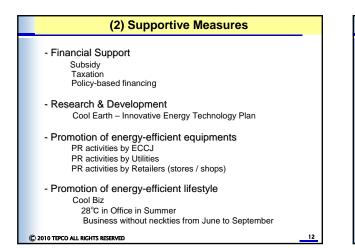


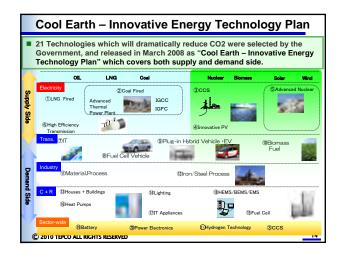


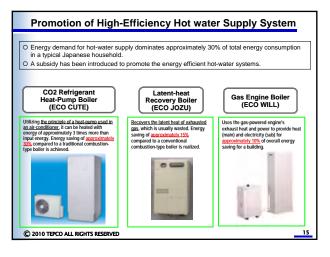


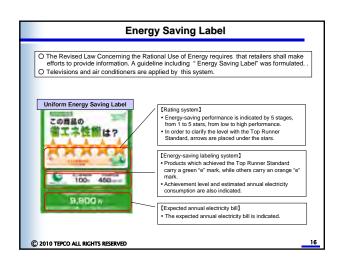


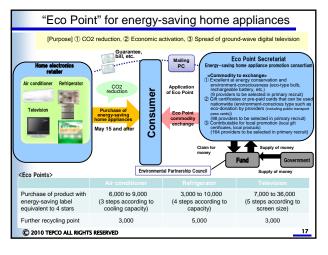


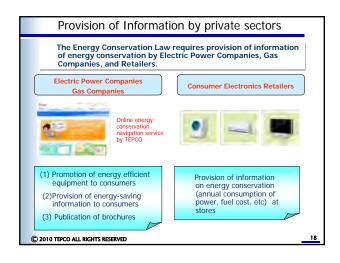



Building Envelop	Equipments
Perimeter Annual Load (PAL)	Coefficient of Energy Consumption(CEC)
Performances of Insulations, Windows are defined depending on	Performances of HVAC, Lighting, Hot water supply unit, Elevator
types of buildings.	are defined.
85% of the newly constructed build	tings cleared these Codes in 2005



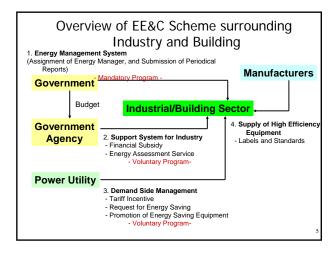




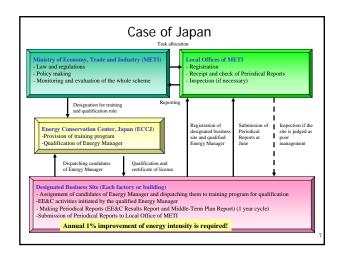

Subsidy For promotion + pilot projects + demonstration +international cooperation + R&D - 1/3 to 1/2 of the EE investments are subsidized by the Government etc. Taxation For 88 Energy Efficient equipments - 7% of price of EE equipments are deducted from the income tax of the company etc. Policy-based Financing For Equipments of 25% Energy Efficient or more - Loan from the Development Bank of Japan (DBJ) for big companies - Loan from Japan Finance Corporation (JFC)		Financial Support
- 7% of price of EE equipments are deducted from the income tax of the company etc. Policy-based For Equipments of 25% Energy Efficient or more Financing - Loan from the Development Bank of Japan (DBJ) for big companies	Subsidy	+international cooperation + R&D - 1/3 to 1/2 of the EE investments are subsidized by
Financing - Loan from the Development Bank of Japan (DBJ) for big companies	Taxation	- 7% of price of EE equipments are deducted from
for smaller companies	-	 Loan from the Development Bank of Japan (DBJ) for big companies Loan from Japan Finance Corporation (JFC)

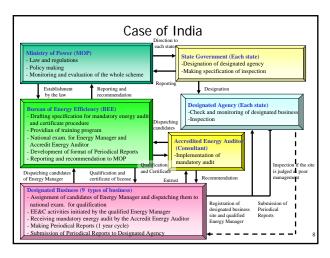
Introduction of Nation-wide Energy Management System (EMS)

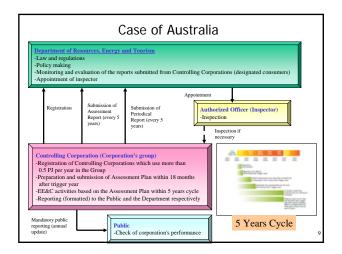
TEPCO Yasushi Kawano

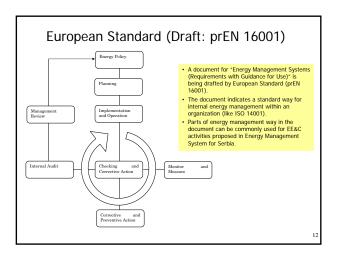

Topics

- 1. Basic Concept of Energy Management System (EMS)
- 2. Other Countries Experience (Japan, India, Australia and European Standard)
- 3. Details of Japanese Energy Management System
- 4. Key Factors for Designing EMS
- 5. How to Discuss Design Options


1. Basic Concept of Energy Management System (EMS)

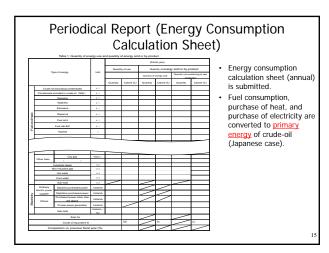

Background and Objective of the Scheme Background: • Numerical target in energy efficiency has been adopted by some countries.

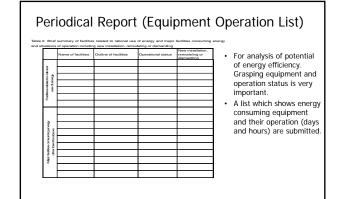

- Energy efficiency in industrial and building sector is one of the important factors to achieve nation-wide numerical target.
 Objective:
- Periodical monitoring by the mandatory reporting system can contribute to gradual improvement of energy efficiency.
- Such monitoring system can help to link national energy database. Methods:
- To promote <u>EE&C activities</u> within a designated unit by <u>mandatory</u> reporting and assignment of energy manager
- Energy manager is assigned by the top of the designated unit, as a responsible person of EE&C activities. <u>Qualified energy manager</u> should have a high level status to strongly promote EE&C.

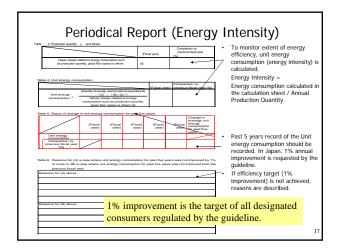


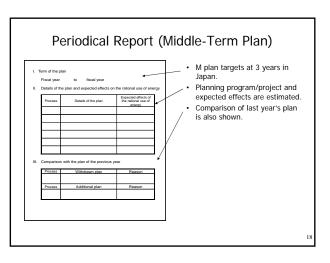
Com	iparison amo	ong Other Co	ountries	
	Japan	India	Australia	
Target Energy	Fuel, Electricity and Heat	Fuel, Electricity and Heat	Fuel, Electricity and Heat	
Unit to be Designated	Each Factory or Building	9 Type of Business (by site)	Group Corporations incl. subsidiaries, JV, etc.	
Threshold	3,000 kl- crude oil equivalent/year	30,000 toe/year	0.5 PJ/year (12,900 kl-coe/year)	
Responsible Person	Qualified Energy Manager	Qualified Energy Manager	Top Management	
Training Provider	ECCJ	BEE	Not specified	
Periodical Reports	Every 1 year	Every 1 year	Gov:Every 5 years Public: Annual update	
Monitor and Evaluation of Reports	METI Local Offices	Designated agency appointed by each State Government	Department of Resources, Energy and Tourism	
Inspection	METI Local Offices	Designated agency	Appointed Officer by the Department	10

Lessons Learned from Other Countries

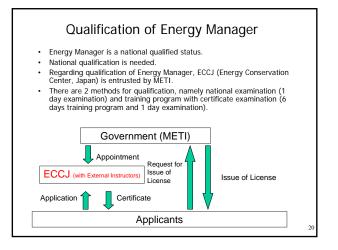

- 1. Target energy in the sampled 3 countries was all type of fuel, electricity and heat.
- Boundary to be monitored is by site (Japan and India), or by group corporation (Australia).
- Consumers are designated by criteria, volume of primary energy consumption (Japan) and final energy consumption (Australia and India).
- Responsible person in EE&C is "Energy Manager" (Japan and India) or top management (Australia).
- 5. Japan and India appointed an authority of training provider for Energy Manager. Australia does not specify an official training provider.
- Periodical reports are submitted once a year in Japan and India. Australia has 5 years cycle and submit the report at the end of the cycle.
- 7. All 3 countries adopted an inspection system.

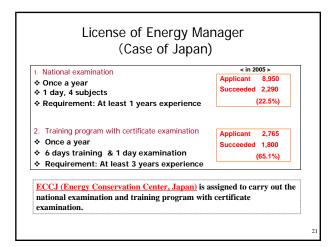


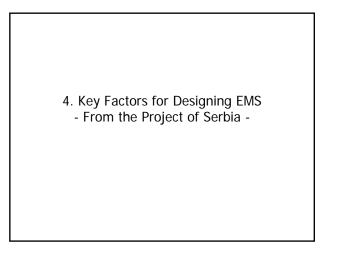

3. Details of Japanese Energy Management System

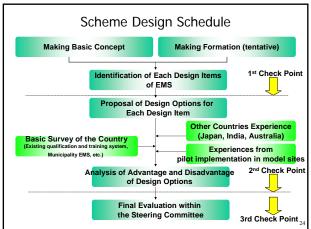

Key Items in Japanese EMS

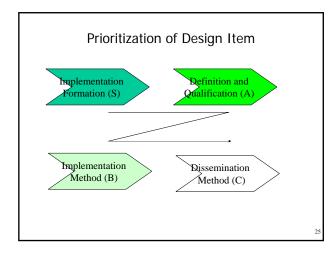
- 1. Making Periodical Reports (formatted): Mandatory
- 2. Assignment of Energy Manager: Mandatory
- 3. Annual Schedule: General Schedule

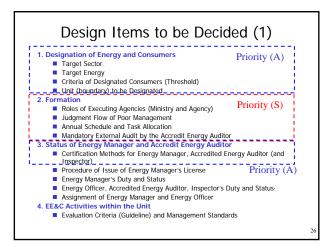


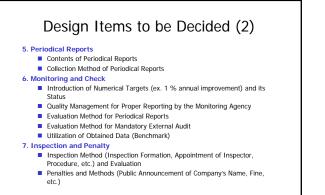


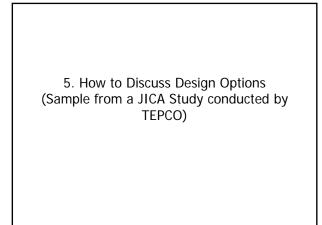

Definition of Energy Manager in Japanese Law
--

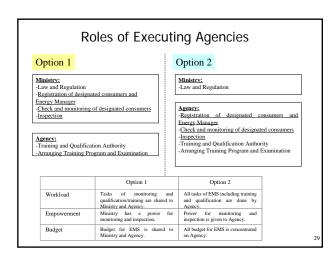

Article	Explanation
Article Energy Manager	Designated Business Operator shall appoint <u>Energy Manager</u> for each of its Designated Energy Management Factories from among persons who have a qualified Energy manager's license, and notify to the Minister of Economy, Trade and Industry.
Article Qualified Energy Manager's License	A qualified Energy manager's license shall be granted by the Minister of Economy, Trade and Industry to persons who fall under any of the following items. - Person who has passed an examination for qualification. - Person who has been recognized by the Minister of Economy, Trade and Industry as having equal or greater knowledge and experience than the person
Article Duty of Energy Manager	Energy Managers shall, with regard to the rational use of Energy in Designated Energy Management Factories, manage the maintenance of Energy-consuming facilities, the improvement and supervision of methods for using Energy, and other affairs specified by an Ordinance of the Ministry of Economy. Trade and Industry.

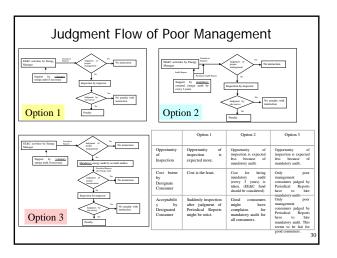


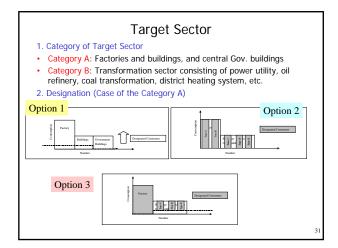


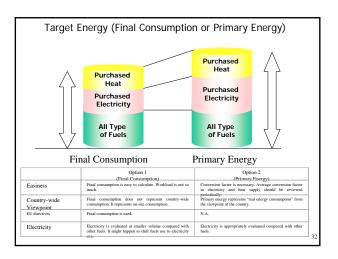

	Apr	May	Jun	Jul	Aug	Sep
Control Agency		Registratio	ิวท	Clarification submittee	on of	Check of PR
Designated Consumers	Regis	tration	Submissi on of PR	Response Clarification		
	Oct	Nov	Dec	Jan	Feb	Mar
Control Agency	Check of PR	Random C Site	heck on	Inspection site is jud poor man		Instructio n
Designated Consumers		Response Random C Site		Response Inspection		ł

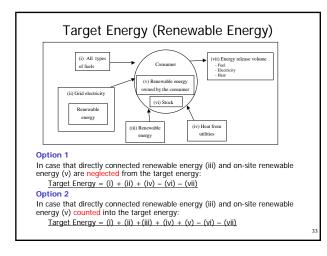


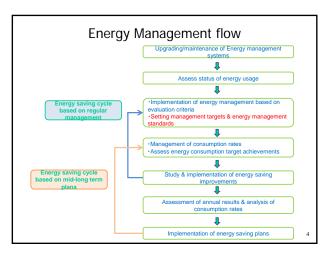








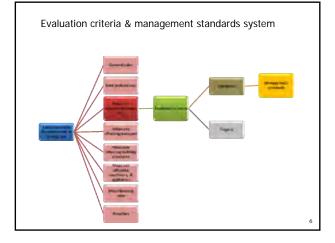


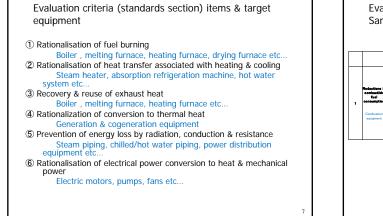


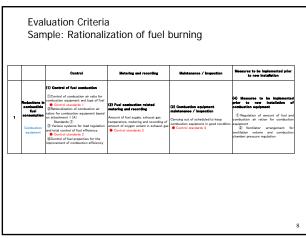
Evaluation Criteria & Utilization of Evaluation Criteria in Random Check of Designated Consumers

Contents

- 1. Evaluation Criteria and Management Standards
- 2. Status of Random Check
- 3. Implementation and Evaluation
- 4. Treatment after Random Check


1. Evaluation Criteria and Management Standards




Evaluation Criteria

- Determined by the Minister of Economy, Trade & Industry
- These are the standards required to enable factories & offices to appropriately & efficiently implement increases in energy efficiency
- Comprises 2 parts "Standards" & "Targets"

*Factory or premises with similar energy consumption

Management Standards

 In order to appropriately & efficiently implement the rationalisation of energy usage in factories, it is necessary to determine the "management standards"

- "Management standards" include:
- ① Management (Operation manual)
- ② Measurement & records
- ③ Maintenance & inspection

to be carried out only after you have prepared and circulated your own manual to relevant personnel.

Sample: Management standards (Case of Boiler)

 It shall cover the main points of operational management that minimise use of as far as possible and important points to remember depending on the characteristics, functions etc. of each energy related system. Furthermore, the proper conditions for that equipment shall be clearly indicated.

No.	Equipment	Control standards		
NO.	(fuel)	Control items	Standard value	
		Air ratio	< 1.3	
1	No. 8 Boiler (Black liquor)	Exhaust gas temperature	< 200°C	
	Evaporation factor	4.6~5.0 [t/pt]		

10 10

Background

1. History

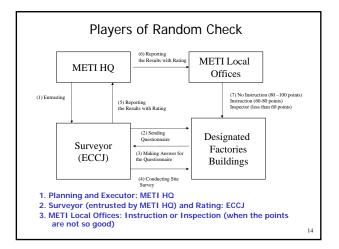
- Random check is undertaken by METI. This program has been introduced in 2001 in order to further strictly monitor Designated Factories and Buildings.
- The objective is to confirm compliance of Evaluation Criteria (Guideline) in Designated Factory and Building by site survey.

2. Objective

- The site survey reinforces information on compliance with Evaluation Criteria and grasp a real situation of activities of the Designated Consumers (not only Periodical Reports).
- The selection of site survey is made by "at random". If the results of the site survey is evaluated as "Poor: less than 60 points", Inspector can be dispatched to the site. The "at random" system can be an incentive to urge compliance with the Evaluation Criteria.

3. Methods

- 1 or 2 surveyors are dispatched to the selected site. They are entrusted by METI as an legal basis surveyor.
- Before the site survey, a questionnaire sheet is sent to the site and the site must return the sheet filled by themselves.

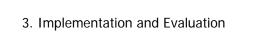

12

2. Status of Random Check

Basis of Law (Article 6)

Article 6 (Guidance and Advice)

The competent minister may, when he/she finds it necessary in
order to ensure the proper implementation of the rational use of
Energy in Factories, provide business operators using Energy in
Factories with necessary guidance and advice with regard to the
implementation of the matters listed in the items of paragraph 1
of the preceding Article, by taking into consideration the
standards of judgment prescribed in the same paragraph.

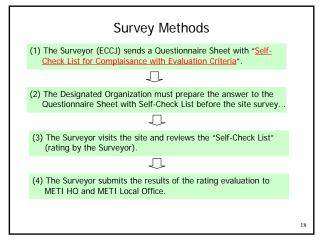

Treatment after Evaluation

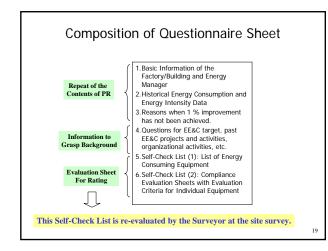
13

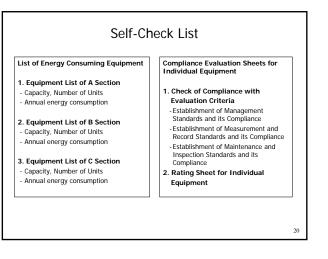
15

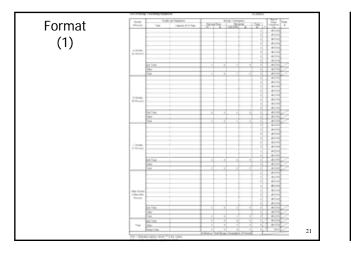
17

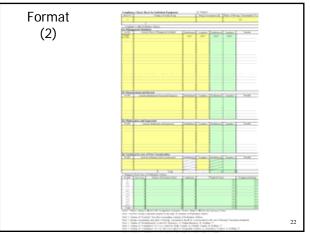
- 1. The Surveyor team evaluates the compliance according to the check list.
- 2. The evaluation is made by check list which can calculate evaluation points (Full: 100 points).
- 3. In case that the evaluation is less than 60 points, Inspector can be dispatched to the site later on. Inspection by Inspector has an enforcement power to the site.
- In case that the evaluation is 60 points to less than 80 points, some instruction will be made by METI Local Offices. The organization must submit a "Rationalization Plan".
- In case that the evaluation is more than 80 points, no instruction is basically made. However, if energy intensity does not achieve 1 % improvement, some comments might be made.

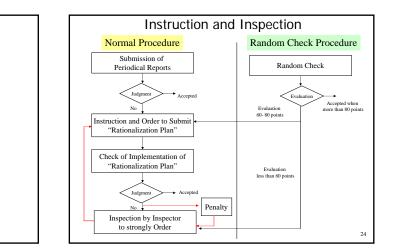

Selection


1. Selection


METI HQ makes a plan and select random check site.


2. Case of FY 2010

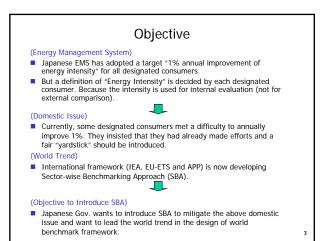

- (1)Designation of Business Type
 - 1/3 of Food Industry
- 30 % of Manufacturer of Transportation Equipment
- (2) At Random Selection for Site - 200 Factories or Buildings
- (3) At Random Selection for HQ
 - 10 HO
 - 10 HQ



4. Treatment after Random Check

Instruction and Submission of Rationalization Plan

- Based on the results of evaluation (60-80 points), METI Local Office gives instruction to the Designated Consumer with evidence that they do not comply with Evaluation Criteria.
- When the Designated Consumer received the instruction to be improved, <u>they must prepare and submit a "Plan on Rational</u> <u>Use of Energy"</u> to METI LO.
- METI LO monitors the implementation of the Plan. If METI LO judges that the Designated Consumer has not improved their performance, <u>METI LO can dispatch Inspector to strong order</u> implementation.


Article 16(Instructions and Orders on Rationalization Plans) The competent minister may, when he/she finds that the status of the rational use of Energy in a Type 1 Designated Energy Management Factory is significantly insufficient in light of the standards of judgment prescribed in Article 5, paragraph 1, instruct the Type 1 Specified Business Operator pertaining to the Type 1 Designated Energy Management Factory to prepare and submit a plan on the rational use of Energy/Interimatter referred to as a "Rationalization Plan"), while presenting the grounds for his/her judgment.

25

Sector-wise Benchmark Approach (SBA) August 2010

JICA Study Team Susumu TAKAHASHI Sector-wise Benchmark Plan of Japan

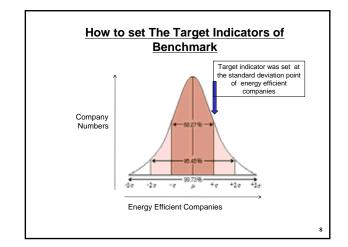
2

FY	Consultation in the ISCM	Execution
2008	3 sub-sectors (power, iron&stell (3 types furnace) and cement) were selected and authorized as a first stage.	
2009	Next sub-sectors (chemical, paper&pulp, oil refinery) are under consultation.	
2010		From 2010 FY, the first 3 sub- sectors will be executed.
2011		From 2011 FY, the next 3 sub- sectors are planned to be executed.

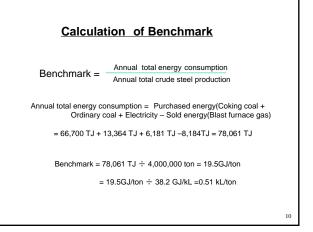
Sub-sector	Benchmark	Boundary
Iron business using blast furnace	0.531 kl/ton	BY company (summation of all factories)
Normal Steel business using electric furnace	0.143 kl/ton	BY company (summation of all factories)
Special steel business using electric furnace	0.36 kl/t	BY company (summation of all factories)
Power generation business	100.3 %	BY company (summation of all factories)
Cement business	3,891 MJ/ton	BY company (summation of all factories)

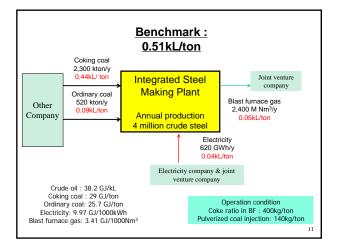
Benchmark of the Sub-Sectors

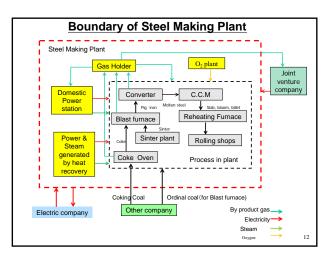
Sub-sector	Benchmark	Boundary
Paper	8,532 MJ/ton	BY company (summation of all factories)
Board Paper	4,944 MI/ton	BY company (summation of all factories)
Oil Refinery	0.876	BY company (summation of all factories)
Oil Chemistry Product	11.9 GJ/t	BY company (summation of all factories)
Soda	3.45 GJ/ton	BY company (summation of all factories)

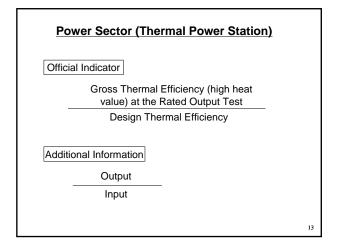

Evaluation Criteria Committee

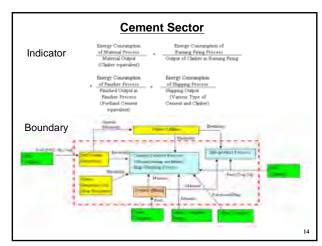
1) Members


26 members from various sector associations, universities and institutes


2) Discussion Points on Benchmark Position of benchmark on EE&C law Target sectors Target indicators of benchmark

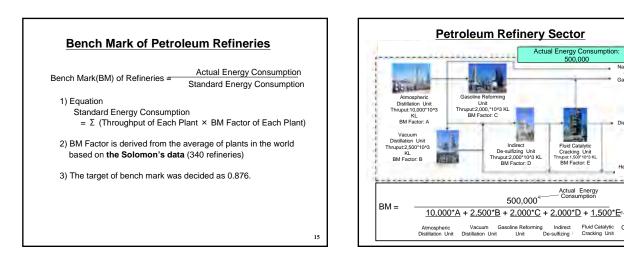

 Coverage Approximately 60% from energy consumption of industrial sectors would be covered after execution

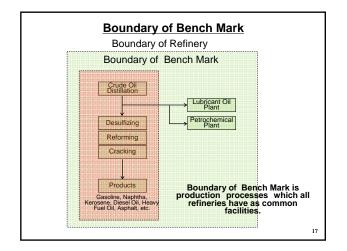


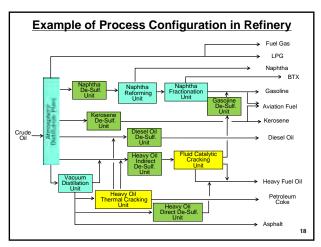

Indicators of Iron & Steel Sector Iron business using blast furnace Total Energy Consumption Crude Steel Output Normal Steel business using electric furnace Energy Consumption Energy Consumption after the of Steel Product Process of Rolling Crude Steel Output Rolling Steel Output Special steel business using electric furnace Energy Consumption Energy Consumption after the of Steel Product Process of Rolling . Crude Steel Output Product Output

Naphtha, etc. Gasoline

Diesel Oil


Heavy Oil etc


Con 16


Standaro Energy ~umption

ing Unit

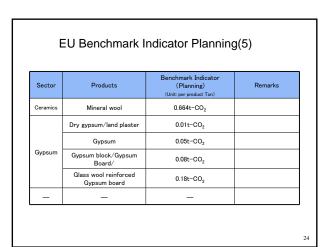
Fluid Catalytic Cracking Unit

Sector-wise Benchmark Plan of EU

19

(still under discussion)

	EU Benchmark I	ndicator Planning	(1)
or	Products	Benchmark Indicator (Planning)	Remarks

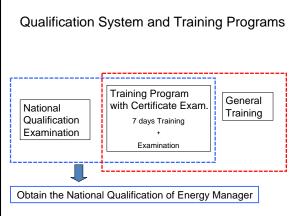

Sector	Products	Benchmark Indicator (Planning) (Unit: per product Ton)	Remarks
	Cokes production/Cokes	0.090t-CO ₂	
Iron &	Sinter production/Sintered ore	0.119t-CO ₂	
Steel	Blast furnace/Liquid pig iron	1.286t-CO ₂	
Electric furnace/Crude steel	0.058t-CO ₂		
	Nitric acid	0.00121t-CO2	
	Steam cracking	0.5~0.7t-CO ₂	
Ammonia	Ammonia	1.46t-CO2	
Chemical	Adipic acid	5.6t-CO ₂	
	Hydrogen	8.9t-CO ₂	
	Sodium carbonate	0.73t-CO2	

	_			
Siene .		Product)	Benchman Indicator IPlanning	Remains
		Aromatic solvent extraction	5.25CWT	
	Aromatic compound	Toluene	2.45CWT	
		Thiamine diphosphate/ Toluene diisocyanate	1.85CWT	
Chemical		Cyclohexane	3.00CWT	
		Xylene isomer	1.85CWT	
		Para xylene	6.40CWT	
		Ethylbenzene	1.55CWT	
		Cumene	5.00CWT	
		Carbon black	2.62t-CO,	

EU Benchmark Indicator Planning(3)

Sector	Products	Benchmark Indicator (Planning) (Unit: per product Ton)	Remarks
Cement Clinker		0.78t-CO ₂	
Petroleum refinery	Petroleum refinery	0.03t-CO ₂ /CWT	
-	Kraft pulp	0.048t-CO ₂ /Air Dry MetricTon	
	Sulfite pulp/Mechanical pulp	0t-CO ₂ /Air Dry MetricTon	
	Recycled paper	0.0187t-CO ₂ /Air Dry MetricTon	
Dener	News paper	0.318t-CO ₂ /Air Dry MetricTon	
Paper Pulp	Fine paper	0.405t-CO ₂ /Air Dry MetricTon	
	Coated paper	0.463t-CO ₂ /Air Dry MetricTon	
-	Facial tissue	0.343t-CO ₂ /Air Dry MetricTon	
	Containerboard	0.368t-CO ₂ /Air Dry MetricTon	
	Boardpaper	0.418t-CO ₂ /Air Dry MetricTon	

E	EU Benchmark I	ndicator Planning	g(4)
Sector	Products	Benchmark Indicator (Planning) (Unit: per product Ton)	Remarks
	Sheet glass	0.606t-CO ₂	
Glass	Insulating glass	0.250t-CO ₂	
	Glass wool	1.003t-CO ₂	
	Almina	0.39t-CO ₂	
	pre-baked anode	0.33t-CO ₂	
Aluminum	Primary aluminum	1.57t-CO ₂	
	Aluminum product	0.22t-CO ₂	
-	_	_	

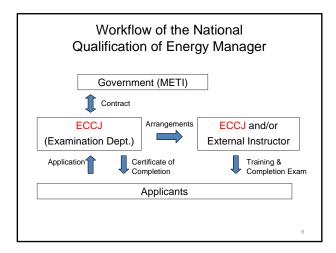

Training Programs for Energy Manager in Japan

JICA Study Team

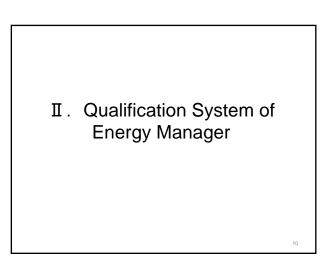
Contents

- I. Introduction
- II . Qualification System of Energy Manager
- III. General Training Programs
- ${\rm I\!V}.$ Operation of Training Programs
- V. Outline of ECCJ

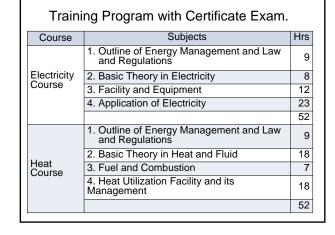
I . Introduction



Classification of Training Programs


Classification	Contents Contents Lecture of law and regulations of the EMS Basic knowledge of heat and electricity Theory and practice of EE&C activities within a business unit Measurement and data collection, and analysis How to make Periodical Reports (Certification examination)	
Training program with certification examination for candidates of Energy Manager		
General training programs for proper implementation of the EMS	 Lecture of law and regulations of the EMS How to make Management Standards Theory and practice of EE&C activities within a business unit Measurement and data collection, and analysis Theory of heat and electricity in EE&C Lecture for individual technology (pump, AC, boiler, etc.) 	

Activity		Task of Energy Manager		
1 Energy-saving fundamental policies		Gives assistance when drafting the energy-saving fundamental policy.		
	policies	Calculates investments/costs based on the fundamental policy.		
2	Energy-saving	Develops an energy-saving promotion organization plan.		
	promotion framework	Decides on the energy-saving promotion organization framework.		
	Indiffework	Convenes meetings of the energy-saving promotion committee.		
3	Management standards	Develops the mandatory management standards as evaluation criteria.		
		Designates the department responsible for the management standards.		
		Provides related departments with necessary information.		
4	Identifying actual energy consumption	Investigates actual energy consumption, and makes out the basic units management chart.		
5	Energy-saving plan and target setting	Designates the energy-saving tasks for the entire company and for each department once a year, and quantitatively sets out applicable targets.		


	Activity	Task of Energy Manager		
6	Education and prize- giving for employees	Educates employees. Works with the employer to establish a prize-giving scheme.		
7	Periodic internal reporting on energy-saving efforts	Reports energy-saving efforts to the employer and each department on a monthly and yearly basis by using the energy basic units management chart.		
8	Improvements in energy- saving efforts	Develops an improvement plan after hearing opinions from related departments. Drafts a workplace-level improvement plan after hearing opinions from related departments.		
9	Procedures/reporting scheme in accordance with Energy Conservation Law	Drafts the periodic report, and prepares a preliminary draft of the medium-to-long term plan.		
1 0	Self-development by energy managers	Remains informed of state-of-the-art technologies and other firm's best practices.		

	Profile of ECCJ
Legal status:	* NPO Incorporated foundation under the supervision of METI
Establishment:	* October, 1978 (just after the 2nd oil crisis)
Purpose of establishment:	* Core organization responsible for promotion of energy conservation
Supporting memb	* Tokyo Head office & 8 branches her:* 2,719 companies (as of July 3, 2009)
Staff:	* 131 persons (as of May 1, 2009)
Budget:	* 4,735million yen in 2008FY (35.04million euro) Subsidy Project (38%),
	Assigned Project (27%), State Examination (11%), Trainings (6.1%), Supporting Membership Fee (4.4%), Others (13.5%)
Fields of activity:	* Industrial, Residential/Commercial, Transportation and Cross sectors

Natior	nal Qualification Examination
Course	Subjects
	1. Outline of energy management and Law and Regulations
Electricity Course	2. Basic theory in Electricity
Course	3. Facility and Equipment
	4. Application of Electricity
	1. Outline of energy management and Law and Regulations
Heat	2. Basic Theory in Heat and Fluid
Course	3. Fuel and Combustion
	4. Heat Utilization Facility and its Management
	11

Achie	evement c	of 2008	
	Applicant	Succeeded	%
National Qualification Examination	9,980	2,954	20.6
Training Program with Certificate Exam	1,872	1,191	63.6

I	Π.	General Training Programs	

EC	Technolo	ogy Training	Courses	
Classification	Objectives	Subjects	Methodology	Dura tion
EC Training Program	Coverage of wide EC subjects	EC Law EC Technologies Management Electricity Heat Project finding Building etc.	Lecture Exercise Operation Measurement at site	1-2 days
Training Delivery Scheme	Customized Training	EC in factories EC in buildings etc.	Dispatch of trainer to customers	Usua Ily 0.5 days

	Duration	Theme	Contents
First Term	2 days	EE&C Technology of Heat and Combustion Management	EE&C Technology of Heat Fuel Combustion Calculation Hands on Practice of Combustion
Second Term	2 days	Steam Management and Steam Trap	EE&C of Steam Hands on Practice of Steam
Third Term	2 days	Energy Assessment of Heat Facility	Heat Balance Calculation and Assessment Practice of Finding Potential of EE&C
Fourth Term	2 days	Good Practice of EE&C of Heat	Introduction of Good Practice of EE&C in Heat Site Visit of EE&C Technology Application

Training Programs of Electricity Course			
	Duration	Theme	Contents
First Term	2 days	EE&C of Building	EE&C of Building Measurement of Electricity Hands on Practice of Electricity Measurement
Second Term	2 days	EE&C of Compressor	EE&C of Compressor Hands on Practice of Compressor
Third Term	2 days	EE&C of Pump and Fan	EE&C of Pump and Fan Hands on Practice of Pump and Fan
Fourth Term	2 days	Good Practice of EE&C of Electricity	Introduction of Good Practice of EE&C in Electricity Site Visit of EE&C Technology Application
			(Source: ECCJ Website)

Other Training Programs			
Course	Durat ion	Theme	Contents
How to Find EE&C Potential	2 days	Practice to Find EE&C Potential in Electricity and Fuel Consuming Factory	I. Issues and countermeasure in promotion of EE&C Methods to find EE&C potential and its application S. Practice
Energy Assessment of Building	2 days	EE&C in Building Facility and Operation	1. Law and regulations 2. EE&C of lighting 3. EE&C of AC 4. EE&C of pump and fan 5. Good practice of building EE&C 6. Practice of energy assessment of building
How to Make Management Standards	2 days	Practice of Making Management Standards	1. Law and regulations 2. Practice of making Management Standards
Site Visits of Good Practice Factory and Building	2 days	Site Visits and Practice of Energy Assessment	1.Lecture · Law and regulations · Points of EE&C in factory and building 2.Practice
		•	(Source: ECCJ Website)

Training Delivery Package

- > Training program dedicated to a particular user and customized to its requirements
- Typical pattern: ⊳
- In-house training;
- Seminar organized by the government and/or public • offices targeting an indefinite number of audience
- ECCJ's scope:
 - Program planning;
 - Instructor dispatch; ٠ Arrangements making;
 - Training implementation.

Achievement of 2008

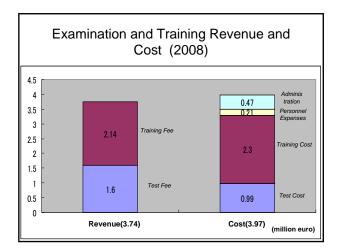
Classification	Course	Trainees
EC Training Program	279	6,387
Training Delivery	216	-
Total	495	6,387+

IV. Operation of Training Programs

Tasks of Training Program

Training Program for Energy Manager	General Training Program
Announcement of the Program	Announcement of the Program
Acceptance of Application (including pre-qualification)	Acceptance of Application
Collection of training fee	Collection of training fee
Arrangement of Teachers and Textbooks	Arrangement of Teachers and Textbooks
Making Certification Examination Paper	Implementation of Training Program
Implementation of Training Program and Examination with Marking	
Notice of Qualified Applicants	1

Instructor

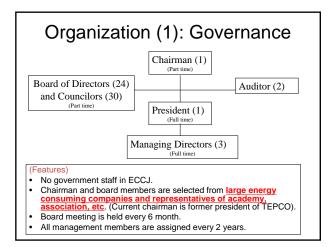

1. Sourcing:

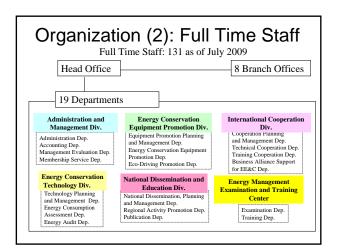
- (1) People of academic standing
- (2) People of practical experience in EC
- (3) Expert of EC audit
- (4) Representatives of factories and/or buildings who are to make presentations on best EC practices
- (5) ECCJ officer in charge of EC related laws & regulations
- 2. Officials charging the completion exam: Independent of training instructors

Training Fee 1. Principle: Trainee fee basis 2. Cost Breakdown: (1) Training materials

- (2) Training guidebook
- (3) Compensation of instructors
 (4) Training venue
- (5) Maintenance of facilities
- (6) Other direct expenses

Applicant (In 2008)	Fee (euro)	Classification
1911	518	Energy Manager Qualification Training
6387	148-740	General Training
6	148-740	General Training




V. Introduction of Energy Conservation Center of Japan (ECCJ)

Outline of ECCJ

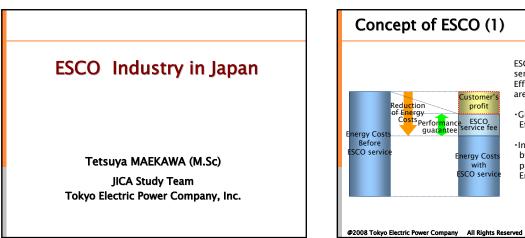
- 1. Legal status: An incorporated foundation under the supervision of Ministry of Economy, Trade and Industry (METI)
- Establishment: 1978 (when the 2nd oil crisis hit Japan)
 Mission: Core organization responsible for promotion of energy conservation
- 4. Office location: Head office in Tokyo and 8 branches in Japan
- 5. Supporting member: 2,719 members (as of May 2009)
- 6. Number of employees: Full time 131 persons (as of July 2009)
- 7. Annual Budget: 4375, million yen in FY2009 (48 million US\$: @90¥/US\$)
- 8. Target Sector: Industrial, Residential / Commercial and Transportation

Main Activities of ECCJ		
Industrial	1) Energy conservation audits services for factories 2) Education & training on energy conservation 3) State examination for energy managers (assigned by the government) 4) Good Practice Dissemination (conference for successful cases of energy conservation activities, excellent energy conserving equipment, etc.) 5) Technological development and spillover	
Commercial, Residential and Transportation	1) Energy conservation audits services for buildings 2) Ranking catalogue for energy efficient appliances (dissemination of Top Runner Program) 3) Promotion of energy labeling system 4) International Energy Star program implementation 5) Energy efficiency product retailer assessment system 6) Dissemination of energy conservation indicator "E-Co Navigator" 7) Energy education at primary and middle schools 8) ESCO research and development	
Cross Sector	1) Energy conservation campaign & exhibition (ENEX) 2) Commendation (grand energy conservation prize) 3) Information & data base, publicity and publishing 4) Survey and monitoring 5) International cooperation & communications	

Membership

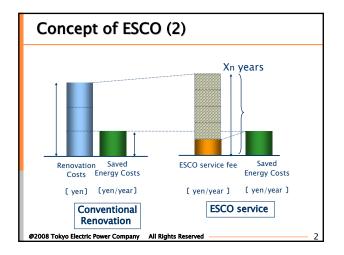
- 1. ECCJ is supported by 2,719 members (as of May 2009).
- 2. Members can receive the following services:
 - Distribution of a magazine "Monthly Energy Conservation"
 - Utilization for consultation regarding legal matter, technology, etc.
 Discount of seminars, training programs, publication, etc.
 - Other energy related information
- 3. Membership Fee: 40,000 Yen to 100,000 Yen (400US\$ to 1,000 US\$) /year
- 4. Share of Membership Fee in Budget: 4.4 %

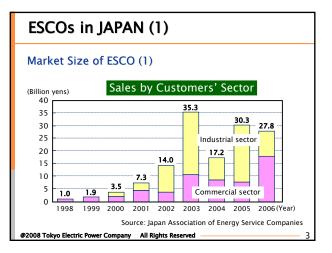
Membership fee is a small share in the Annual Budget. However, the important point is participation into ECCJ membership by many companies.

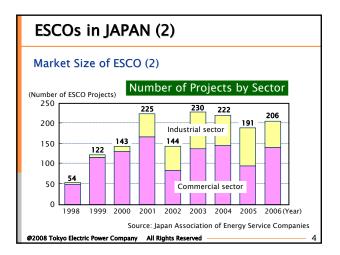

Annual Budget and Expenditure

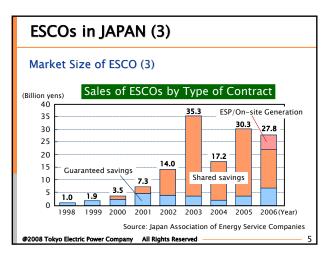
Success Key

- 1. Many industries/companies cooperate with the activities of ECCJ.
- → Top companies (TEPCO, Toyota, Mitsubishi, Matsushita, etc.) are assigned as Chairman and Directors.
- 2. Many industries/companies support ECCJ activities by membership fee.
- → Fee is small. But participation consciousness is very important to maintain the activities of ECCJ.
- 3. Independent body from any ministries. Neutral stance is better for management of private sector.
- → Substantially Ministry of Economy, Trade and Industry (METI) can affect ECCJ operation because most of budget comes from METI. However, officially ECCJ is an independent body from government.
- 4. Government budget support
- → Most of activities are supported by Government budget.

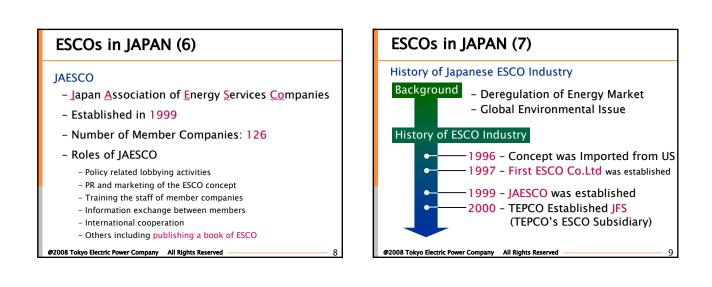

Thank You Very Much

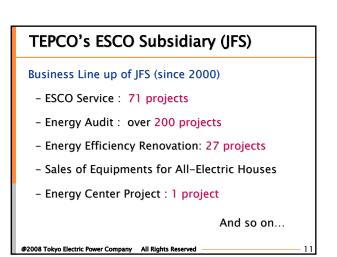


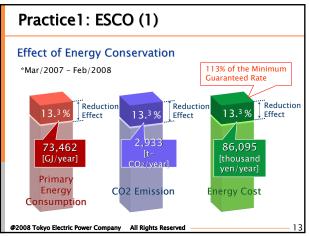

ESCO is a comprehensive service regarding Energy Efficiency, whose advantages are;

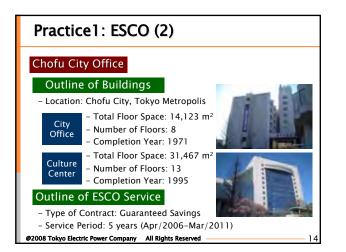

•Guaranteeing Energy Efficiency Performance

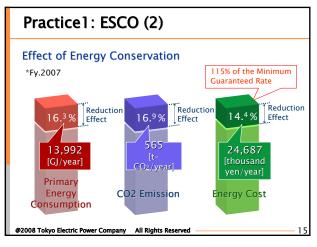
 Investment cost is provided by ESCOs and service fee is payed from the savings of Energy Cost

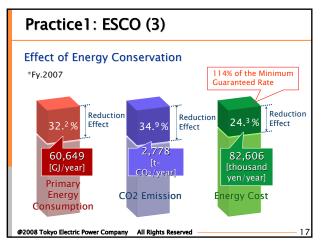


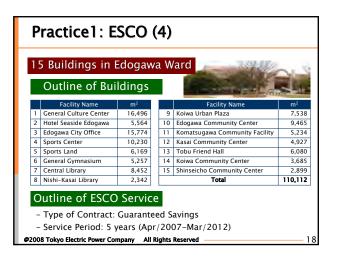


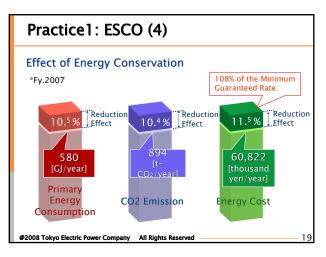


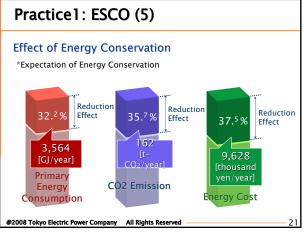


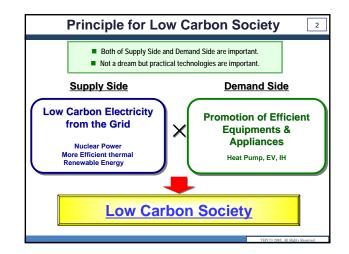

TEPCO's ESCO Subsidiary (JFS)
Japan Facility Solutions, Inc. (JFS)
- Established : 14 Dec. 2000
- Share Holders: 4 Companies
TEPCO (45%)
Mitsubishi Corp. (35%)
Yamatake Corp. (10%)
Kandenko Co.,Ltd (10%)
- Capital Fund : 490 million yen
– Employees : 45 persons
– Turnover : 11,540 million yen (2006 FY)
– Profit : 380 million yen (2006 FY)
@2008 Tokyo Electric Power Company All Rights Reserved

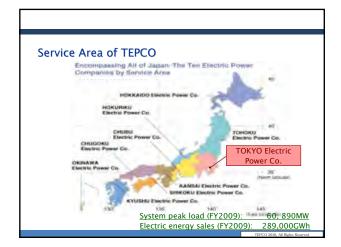


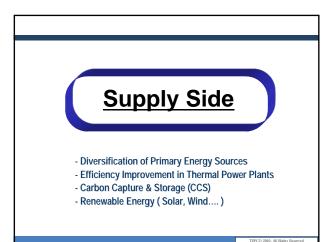


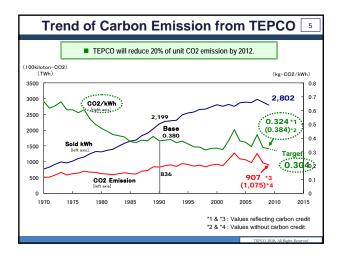


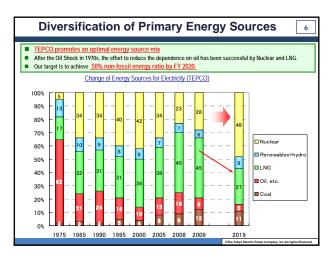


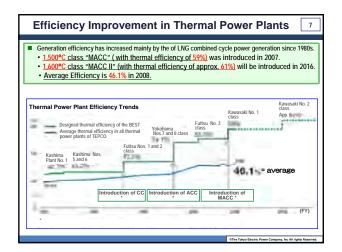


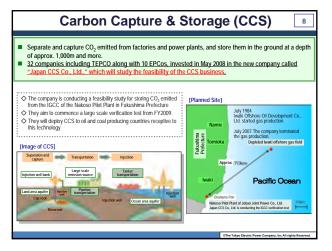


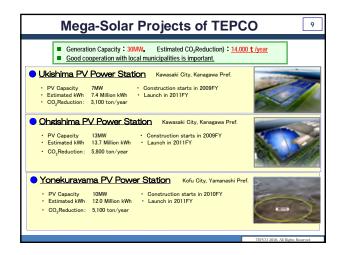


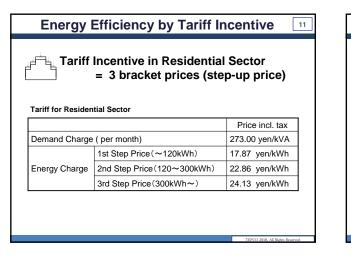


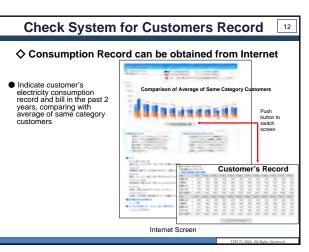

JICA Study Team Tokyo Electric Power Company (TEPCO)

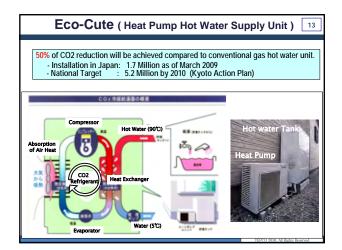


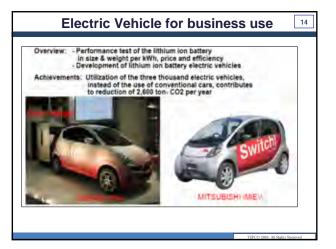


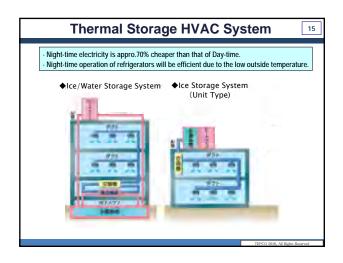


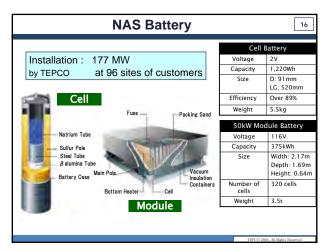


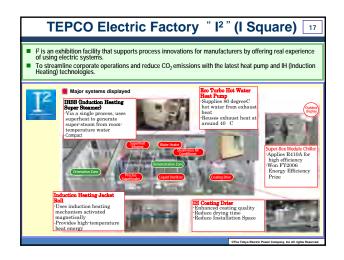


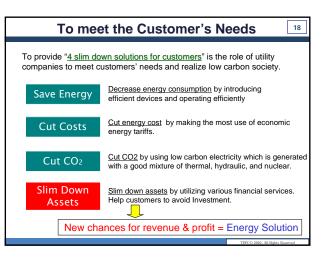


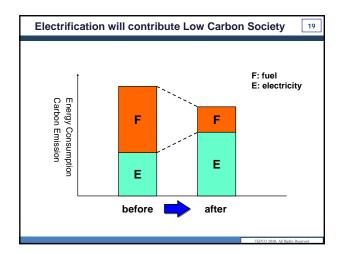


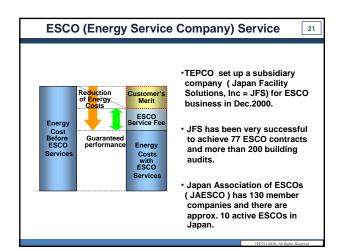


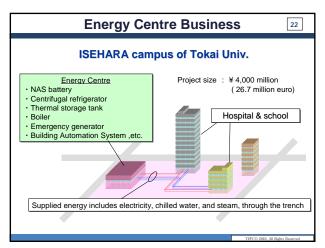


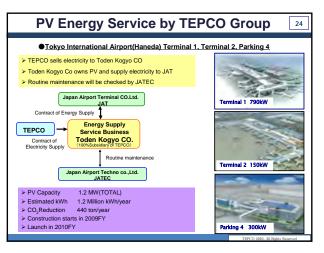




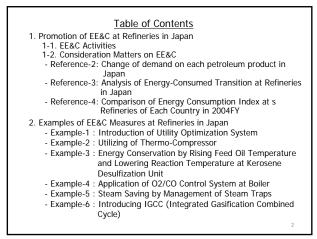








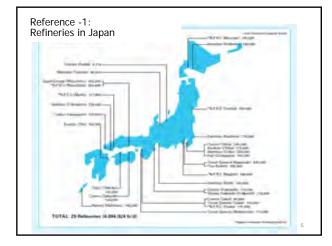
TEPCO Group's Energy Solutions			
Service	TEPCO & Group Companies	Case	
ESCO Service	TEPCO Japan Facility Solutions Inc.	(1)Tokyo Metropolitan Hiroo Hospital (2)National Institute for Environmental Studies	
Thermal Energy Storage Support	TEPCO Tokyo City Service Co.	Sakakibara Heart Institute (hospital)	
Fuel and Steam Supply	TEPCO TEPCO Gas Department Toden Kogyo Co.	Nippon Paper Crecia, Kaisei Mill	
NAS Battery Service	TEPCO Tokyo Densetsu Service Co.	Tokyo Dome City 'LaQua'	
Energy Centre Business	ISEHARA Energy service Co.	Tokai University Hospital	
PV Energy Service	Toden Kogyo Co.	Haneda International Airport New Cargo Terminal	
		TEPCO 2010, All Rights Reserved	



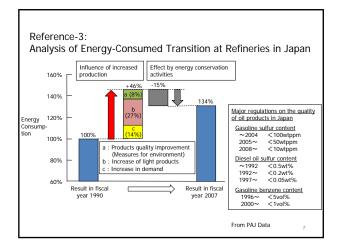
maekawa.tetsuya@tepco.co.jp

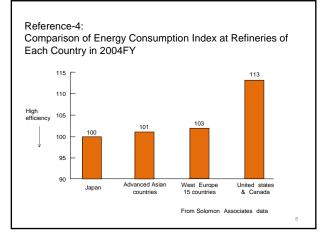
EE&C Activities at Refineries in Japan

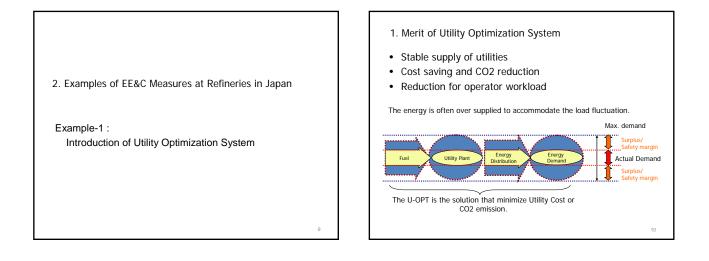
July, 2010 Sadao Higaki (JICA Study Team)

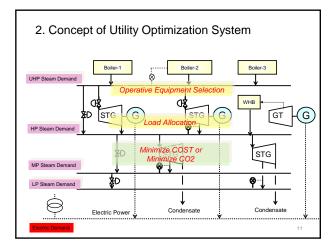


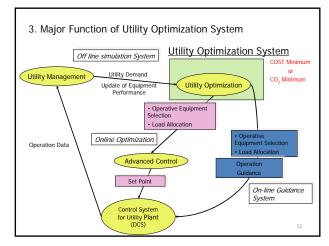
1. Promotion of EE&C at Refineries in Japan

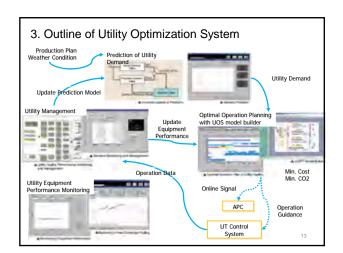

- 1-1. EE&C Activities
 - 1) Organizations for promotion of EE&C
 - Activities in whole refinery (such as EE&C Committee in refinery) 2) EE&C activities by small groups
 - Cooperation of managers, staffs and related departments
 Improvement proposal system / Quality control system /
 - Awarding system 3) Supports from the related government offices and organizations
 - Free audits by Energy Conservation Center of Japan (ECCJ)
 Subsidies on research and development, and investment
 - Publishing results of EE&C activities to inside and outside of the refinery

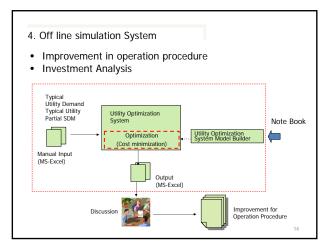

1-2. Consideration Matters on EE&C

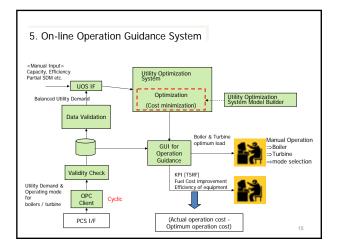

- 1) Soaring of oil prices and energy costs
- 2) Change in demand pattern of petroleum products
- 3) Upgrade of oil refining facilities
- 4) Introducing the latest equipments and technologies for energy conservation
- 5) Correspondence to environmental issues

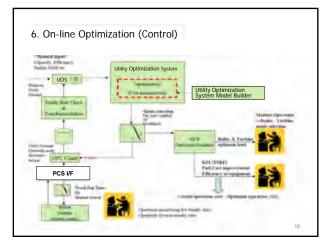


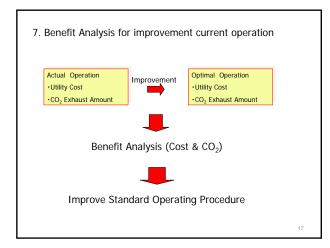


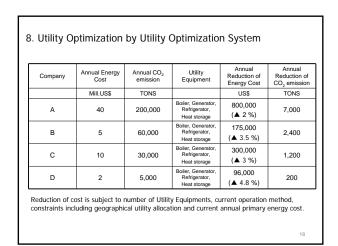


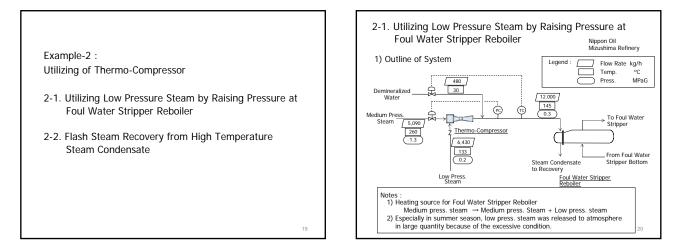


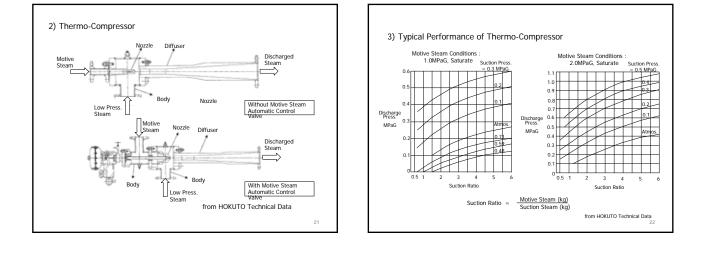


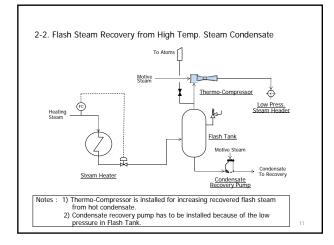


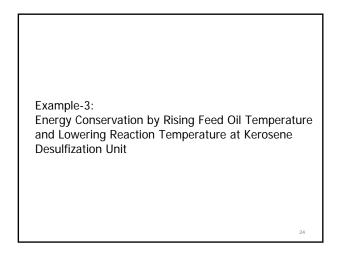


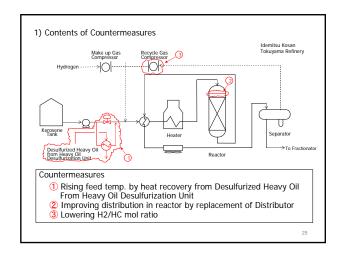


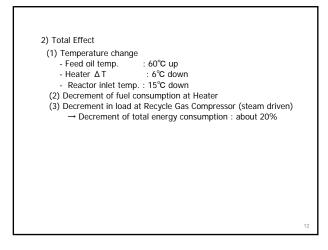


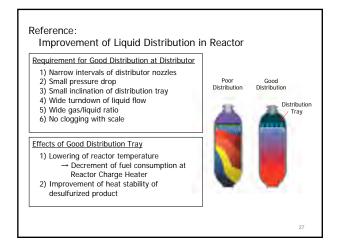


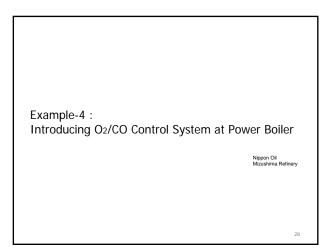


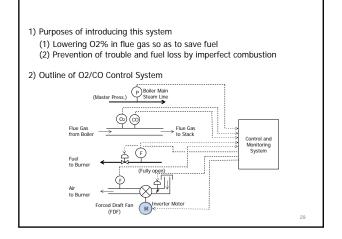


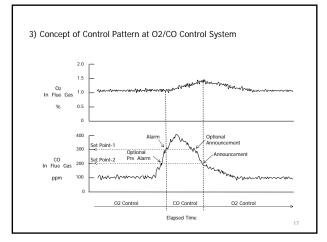


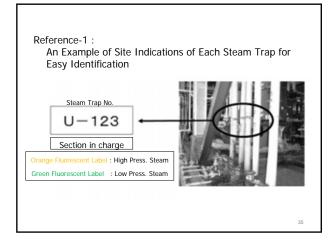


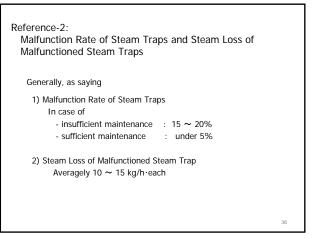








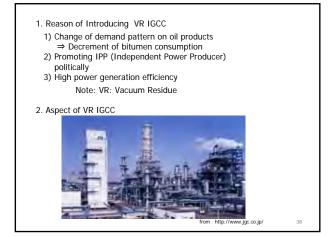


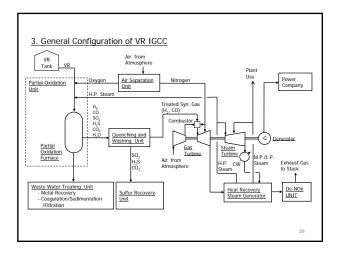

Example-5 : Steam Saving by Management of Steam Traps

Fuji Oil Sodegaura Refinery

Reason of Choosing The Activity Theme Increase in malfunction of steam trap of specific types Increase of steam loss Purposes Review of selecting steam traps Review of managing steam traps Pocrease of steam loss Confirmation of Current Status Confirming the performance of steam traps on each type and manufacturer by actual measurements Analysis of present conditions Leaking steam quantity and the loss amount of money Malfunction rate and the breakdown

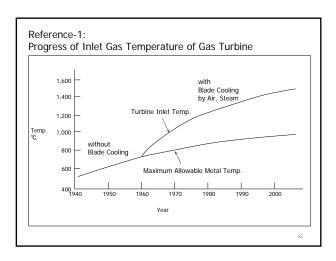
4) Contents of Activities (1) System for Activities Cooperation of production section in whole refinery 6) Effects of The Activities (1) Replaced numbers of steam traps in 2005 (2) Target - Total number in the refinery : 12,000 - Replaced steam trap : 1,305 (10.9 %) - Checking all steam traps and replacing malfunctioned and inadequate steam traps (2) Steam saving quantity in 2005 Reviewing previous management method of steam traps (checking intervals, criteria of replacement or repair, etc.) - Zero emission of loss steam 28,000 ton/year (Decrease of CO2 emission : 6,000 ton/year) 5) Contents of Countermeasures (3) Improvement effect and investment (1) Instruction and training about steam traps to all operators - Improvement effect (A) : about 400,000 us\$ / year Mechanics of steam traps of each type Training of steam traps checking by using "steam trap checker" - Investment (B) : about 190,000 us\$ - Pay back period (B/A) : about 0.5 year (2) Preparing "Standard" for checking and maintenance of steam (4) Another effect traps" - Enhancement of the consciousness for energy conservation in Checking method Maintenance method of malfunctioned steam traps Checking interval (fundamentally every half year) the whole refinery (3) Adopting high performance steam traps (steam loss and life) (4) Site indications of each steam trap for easy identification 34 33

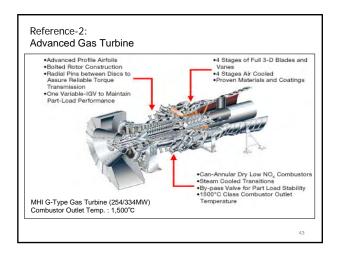




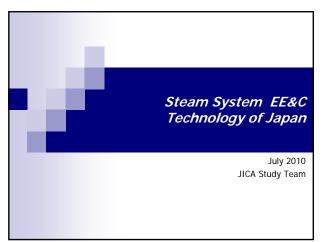
Nippon Oil Negishi Refinery

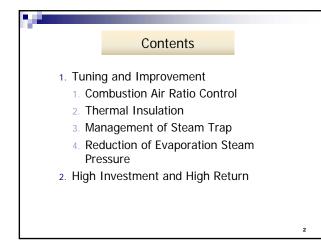
37

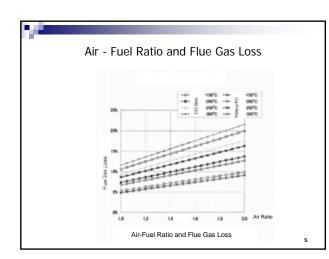




4. Main Specificatio	ons of VR IGCC			
Overall Power Plant	Generated Power 43.1 MW (Efficiency 46%)			
Overall Power Plant	Transmitted Power	34.2 MW (Efficiency 36%)		
	Gasification Method	Partial Oxidation		
Gasification Section Section	Fuel	Vacuum Residue (Asphalt)		
Section	Fuel Consumption	50,000 ton/month		
Combined Cycle	Туре	One Shaft Combined Cycle		
	Main Fuel	Synthesis Gas (Main Component : CO, H2)		
0	Combustion Temp.	1,350 °C Class		
Gas Turbine	Exhaust Gas Temp.	570 °C		
	Material for Hot Parts	Nickel Base Alloy		
	Cooling Method for Hot Parts	Air Cooling		
		High Press. 9.8 MPaG		
Steam Turbine	Steam Press.	Medium Press. 2.9 MPaG		
		Low Press. 0.7 MPaG		


Items	VR IGCC	Boiler-Turbine Generator (Conventional)
Terminal Efficiency(LHV) %	46	39
CO ₂ Emission g-CO ₂ /kWh	598	706

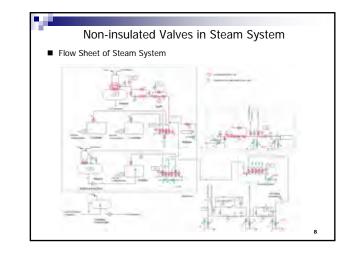

Г

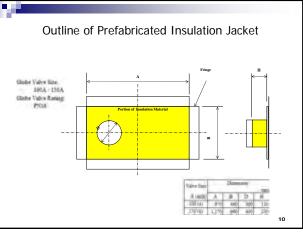

Combustion Air Ratio Control

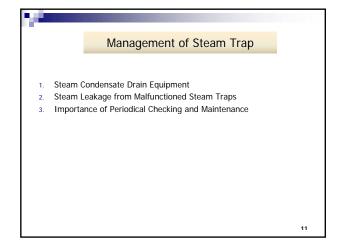
- Excess Combustion Air Causes Energy Loss 1.
- Excess O₂ Reduction Saves Certain Amount of Fuel 2.
- 3. Oxygen Content is the Indicator of Proper Air Ratio Periodical Measurement of O₂ Concentration 4.
- 5. EE&C Law of Japan regulates Adequate Air Ratio

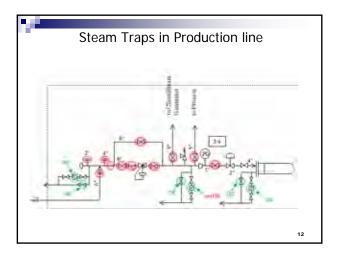
Standard of Air Ratio at Boilers Regulated by the Law in Japan

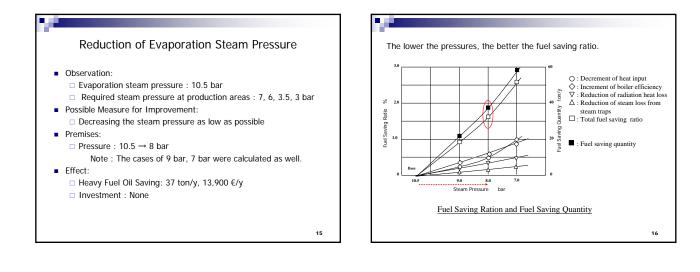
CLASSIFICATION		Boiler		Standard of	Air Ratio (O2	concentration)	
		Load Solid Fuel		Fuel			Blast Furnace Gas and
		%	Fixed Bed Fluid Bed		Fluid Fuel	Gas Fuel	By-product Gas
	Power Boiler	75-100	-	-	1.05-1.2 (1.0-3.8)	1.05-1.1 (1.0-2.0)	1.2 (4.0)
	SG > 30 t/h	50-100	1.3-1.45 (5.0-6.5)	1.2-1.45 (3.5-6.3)	1.1-1.25 (2.0-4.4)	1.1-1.2 (2.0-3.8)	1.2-1.3 (4.0-5.2)
Others	30t/h≧SG > 10t/h	50-100	1.3-1.45 (5.0-6.5)	1.2-1.45 (3.5-6.3)	1.15-1.3 (3.0-5.0)	1.15-1.3 (3.0-5.2)	-
₹	10t/h≥SG>5t/h	50-100	-	-	1.2-1.3 (3.8-5.0)	1.2-1.3 (4.0-5.2)	-
	5t/h≧SG	50-100	-	-	1.2-1.3 (3.8-5.0)	1.2-1.3 (4.0-5.2)	-

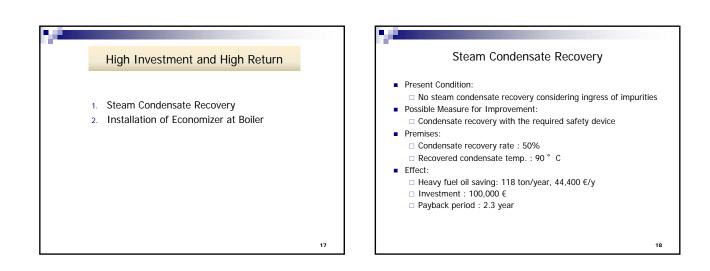

Notes: 1) SG : Steam Generation 2) (O2 concentration) is rough values and for reference.


Gas Analyzer				
Measurement	Result of	of Exhau	ist Gas a	at 8t/h New Boiler
Date and Time	Temp.	02 (Dry)	CO2 (Dry)	Boiler Operation Condition
	°C	%	%	- Evaporation : 3.8 t/h
Nov.3, '09 10:31	264.5	5.2	12.4	- Steam Press. : 10.5 bar
10:32	271.1	4.6	12.6	- Steam Temp. : 185.2 ° C (Satura
10:33	288.9	3.4	13.4	
10:34	297.3	3.0	13.7	
10:35	289.0	3.6	13.2	
10:36	257.3	5.3	11.9	
10:37	248.2	5.7	11.6	
10:38	251.3	5.0	12.2	
Ave.	271.0	4.48	12.6	


Thermal Insulation for Non-insulated Valves


- 1. Valves on Steam Line tends to be Non-insulated
- 2. Heat Loss from Non-insulated Valves is Huge
- 3. Application of Prefabricated Insulation Jacket




Management of Steam Traps

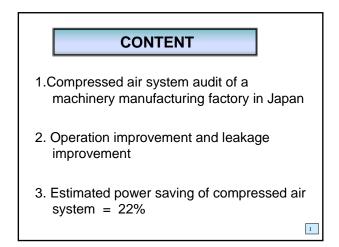
- Present Condition:
 - Total steam trap number : about 40
 - No periodical checking and maintenance
 High malfunction rate (about 30%)
- Possible Measure for Improvement:
 - Periodical checking and maintenance
 - Replacing malfunctioned ones with adequate type and capacity
- Assumption:
 - □ Boiler efficiency : 85%
 - □ Boiler operation hours : 8,760 hours/year
 - Steam loss per malfunctioned steam trap : 10 kg/h
- Effect:
 - □ Heavy fuel oil saving : 67 ton/year, 25,200 €/year
 □ Investment : 10,000 € (1st year)

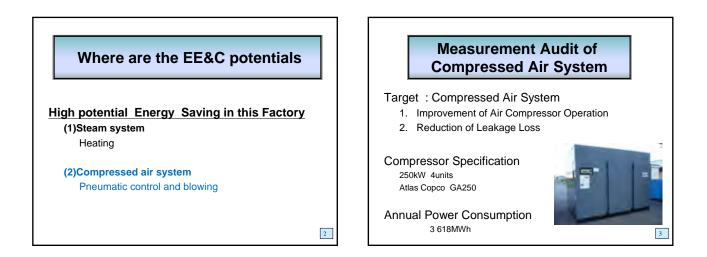
 - □ Payback period : 0.4 year

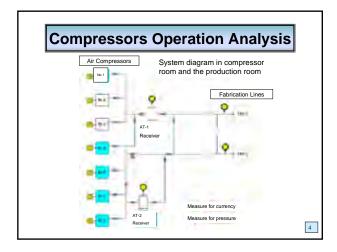
Reduction of Evaporation Steam Pressure Energy Loss from Excessively High Steam Pressure 1. 2. Review of Adequate Steam Pressure at Production Lines 14

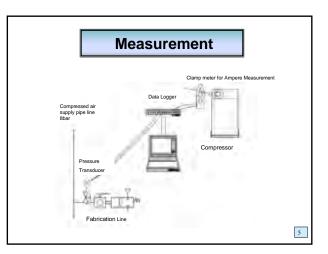
Installation of Economizer at 8t/h Boiler

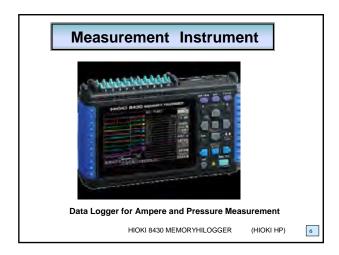
- Present Condition: No economizer
 - $\hfill\square$ Exhaust gas temperature : 250 300 $^\circ~$ C
- Possible Measure for Improvement:
- □ Installing economizer on the exhaust gas duct Premises:
 - $\hfill\square$ Preheated boiler feed water temp. : 20 $^\circ\,$ C >> Fuel saving ratio : 2.9%
- Effect:

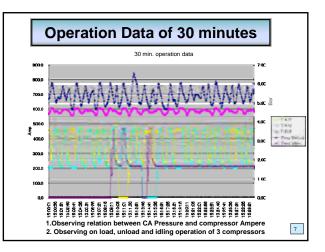

- □ Heavy fuel oil saving: 55 ton/year, 20,700 €/y
- □ Investment : 70,000 €
 □ Payback period : 3.4 year

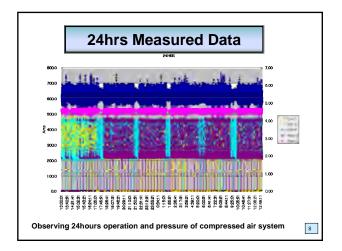

Thank you for your attention!

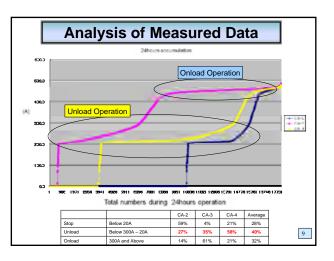

20

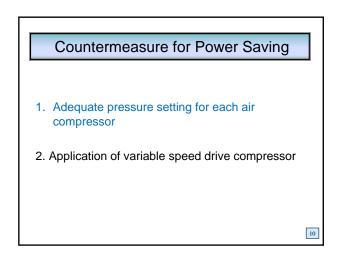

Compressed Air EE&C Technology of Japan

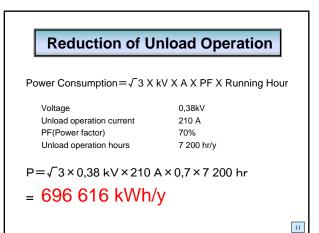

JICA Study Team TAKAHASHI 14, July, 2010

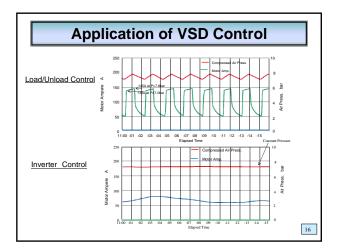


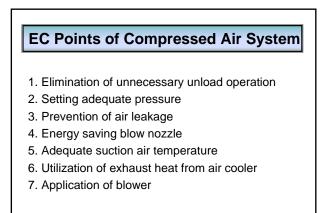


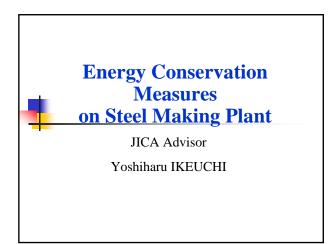




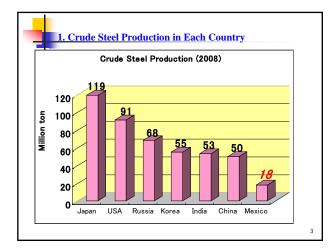


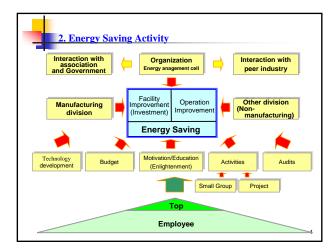

Detection of Compressed Air Leakage

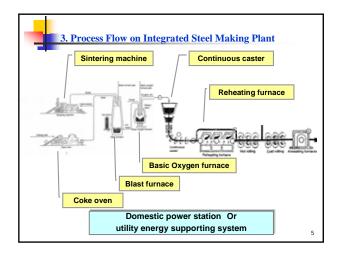

- 1. Compressed air leaks from the CA pipe lines of the factory
- 2. Noise from products operation disturbs leakage detection by operator's ears
- 3. Ultrasonic air leakage detector helps easy detection

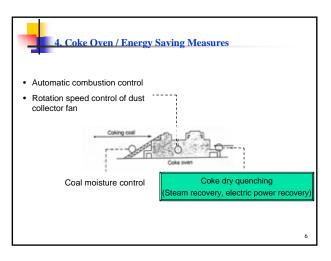


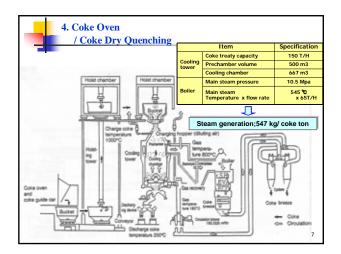
Power Saving from Com	pressed Air				
Original power consumption	3 618MWh				
Saving from unload reduction Saving from leakage reduction	696MWh <u>115MWh</u>				
Saving amount	811MWh				
	(22%)				
Actual countermeasure					
Adequate pressure setting of Feed in and out	t for compressors				
Periodical leakage detection by ultrasonic lea	akage detector 15				

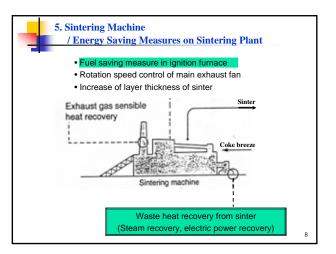


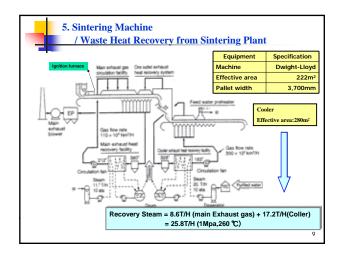


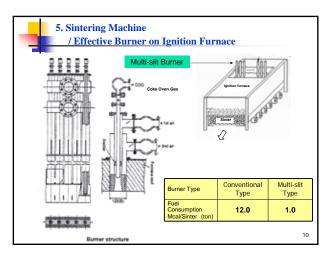

Thank you for your attention

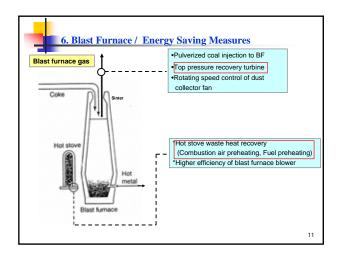


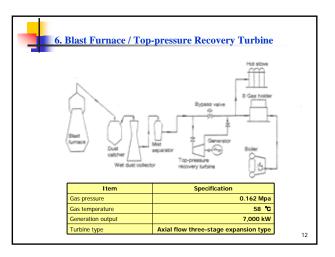

	Slide No.
1. Crude Steel Production in Each Country	3
2. Energy Saving Activity	4
3. Process Flow on Integrated Steel Making Plant	5
4. Coke Oven	6
5. Sintering Machine	8
6. Blast Furnace	11
7. Basic Oxygen Furnace & Continuous Casting Machine	14
8. Reheating Furnace	16
9. Domestic Power Station & Utility Energy Supplying System	32
10. Excellent Specific Energy Unit on Steel Making Plant in Jap	an 34

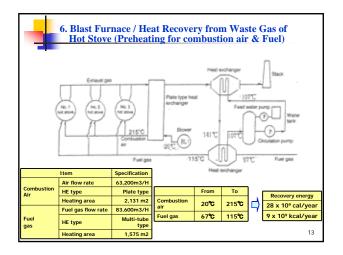


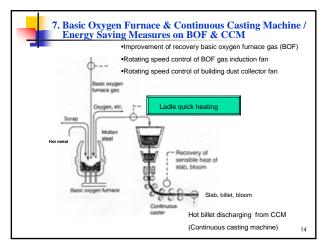


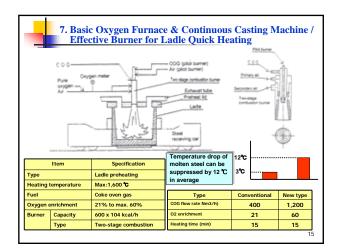


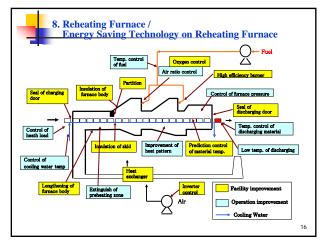


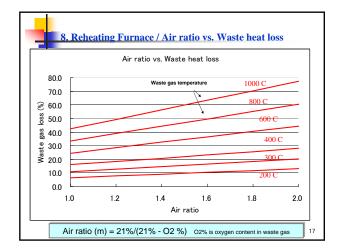


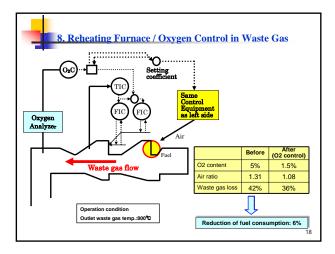


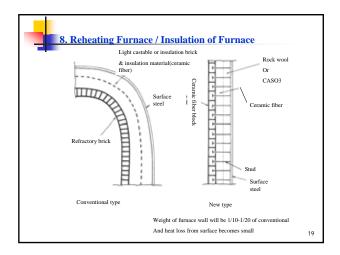


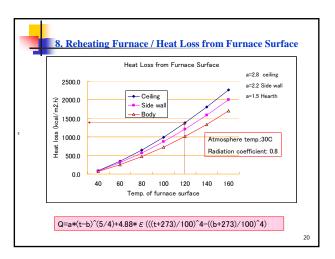


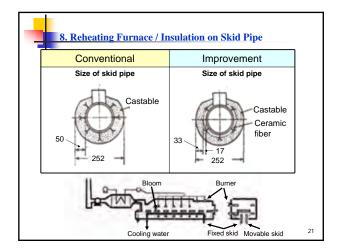


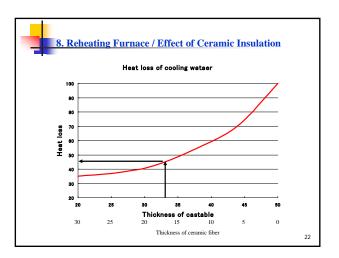


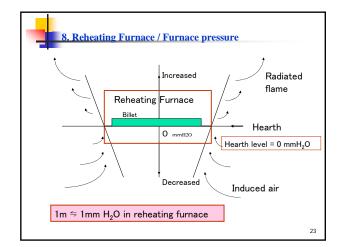


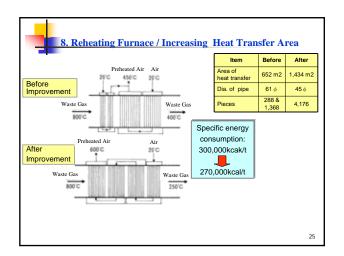


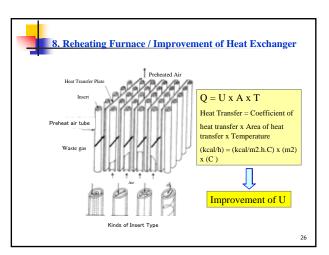


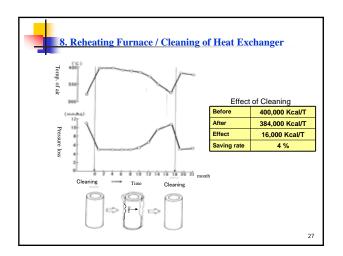


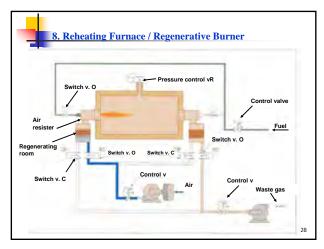


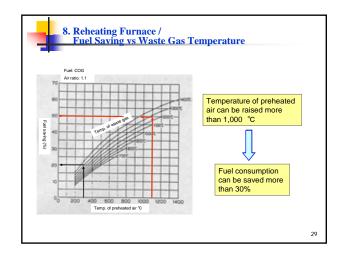


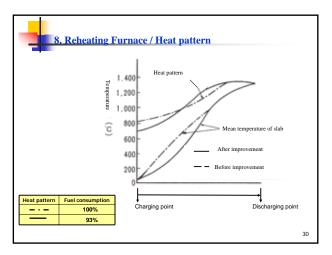


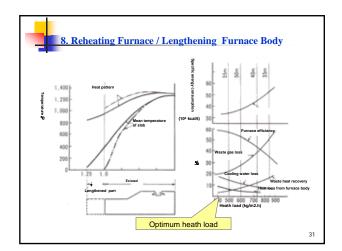


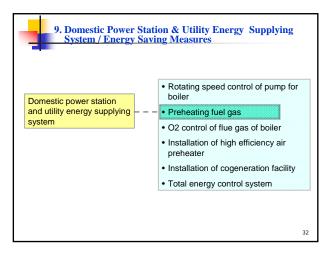


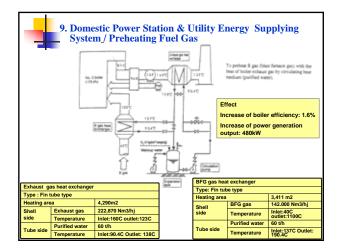


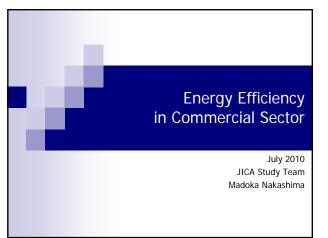


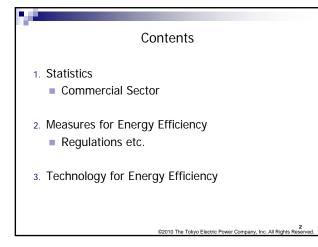


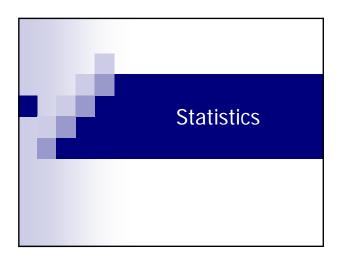


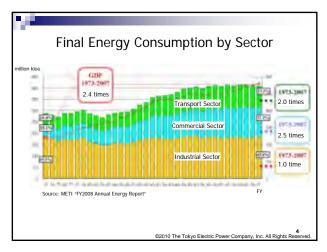


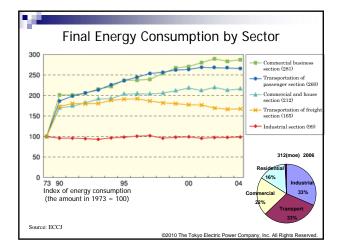


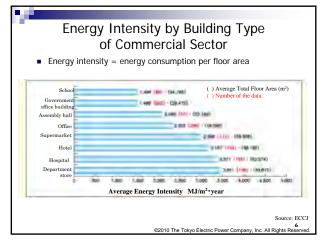


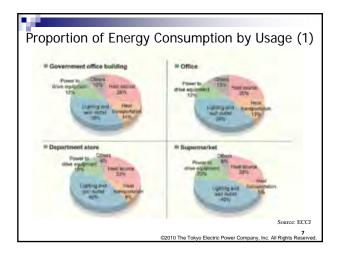


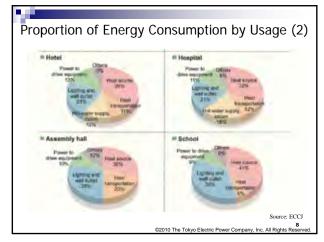


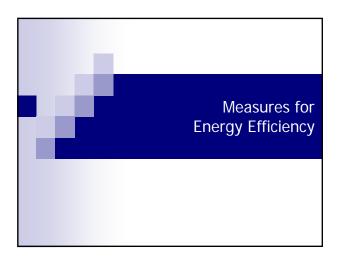

	xcellent Specific Energy Unit on <u>n Japan (Similar Bench mark)</u>	Steel Makin	g Plants
-	Item	Dimension	Value
	Steam generation	Kg/ton	600
Coke Oven	Energy consumption	MJ/ton	2,100
	COG generation	Nm3/ton	340
Sintering Plant	Steam generation	Kg/ton	126
Sintering Plant	Energy consumption of ignition furnace	MJ/ton	5
	BFG generation	Nm3/ton	2,000
Blast furnace	Electricity generation by TRT	kWh/ton	47
	Energy consumption of HS	MJ/ton	1,600
Basic Oxygen Furnace	BOF gas generation	Nm3/ton	270
Energy	Hot strip mill	MJ/ton	700
	Plate mill	MJ/ton	1,100
consumption of	Structure mill	MJ/ton	1,300
Reheating	Bar mill	MJ/ton	1,200
furnace	Wire mill	MJ/ton	1,200
	Seamless pipe	MJ/ton	2,900

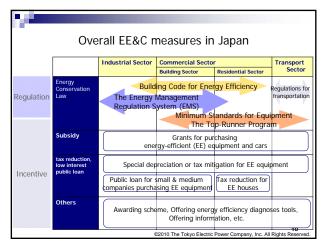


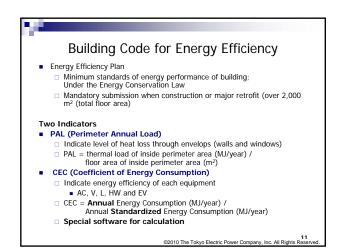


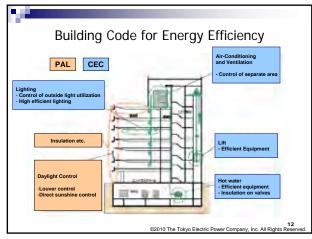


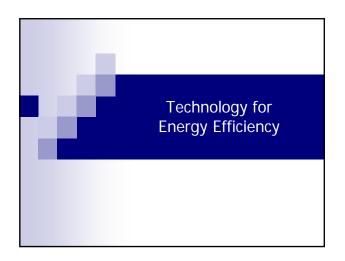


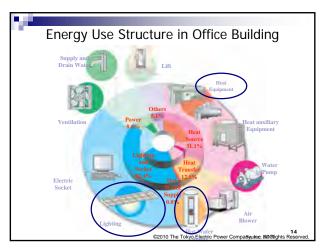


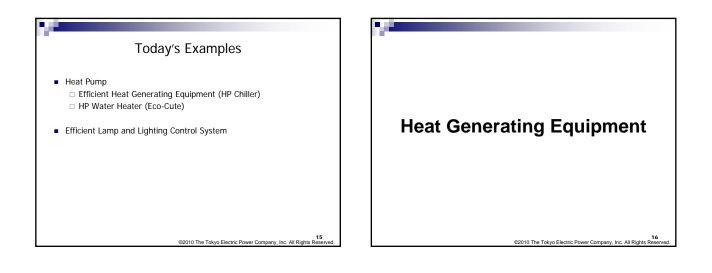


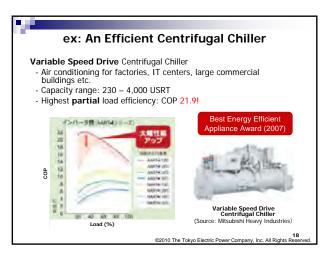


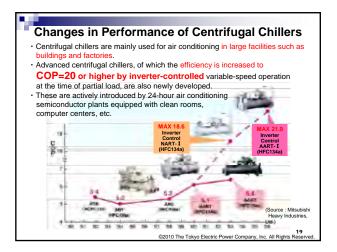


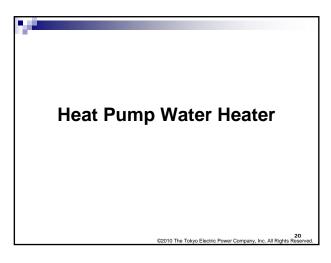


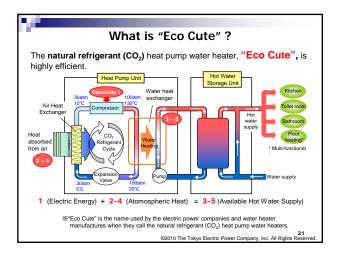


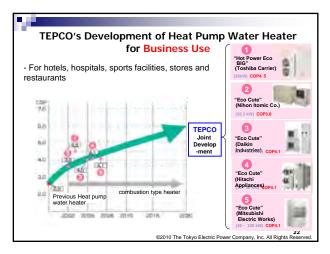


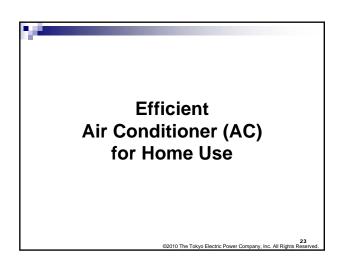


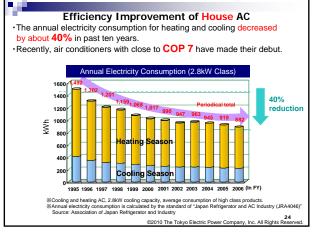


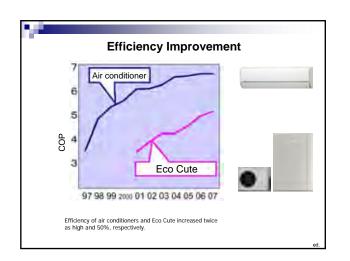


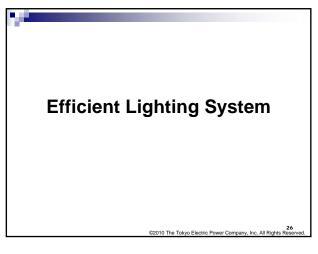


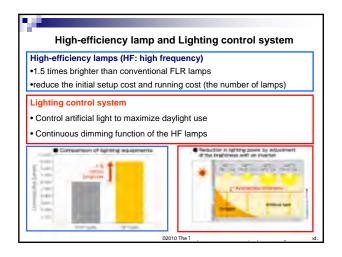


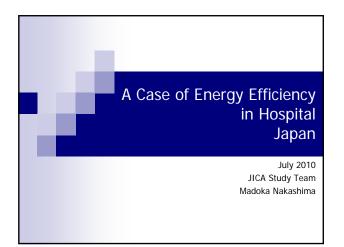


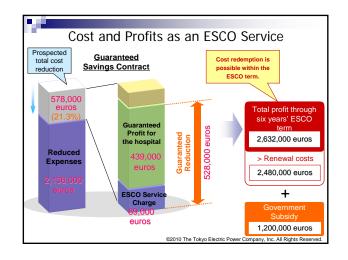


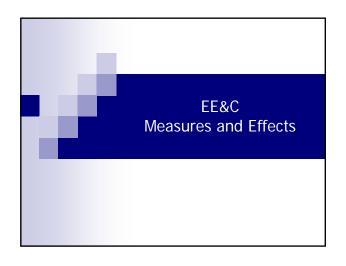


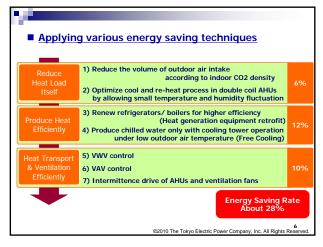


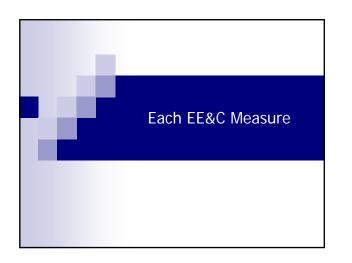


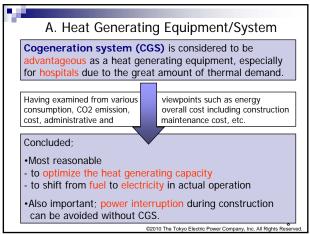


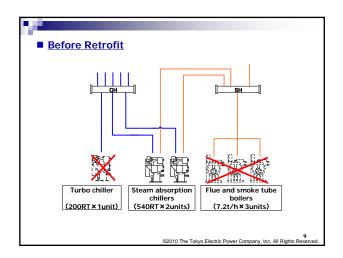


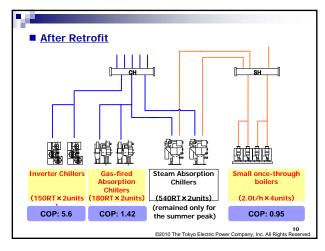


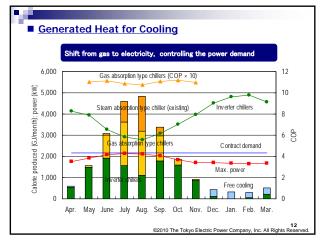


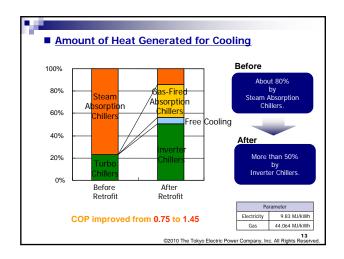


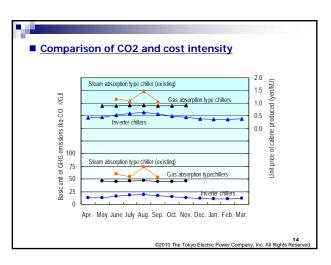

		Overview of	of the	Re	sults	
Energy Consu	mptio	n and CO2 Emiss	ion Reduc	tion		
		Primary Ene	ergy		CO2	Emission
Reduction 2 (61,16			-		29% 5 t-CO2/yr)	
Cost and Profi		ost for Retrofit	Cost Savir	ngs	Payback Period	Remarks
Without Subsidy		€ 2,480,000	€ 439,000	/yr	5.65 yrs	ESCO fee, € 89,000,
With Subsidy	(Sul	€ 1,280,000 osidy: 1,200,000)	€ 439,000	/yr	2.9 yrs	is excluded from Cost Savings
		table are the guarant completed yet. (cont				489,000 euros/yr.

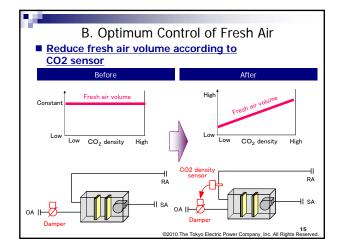


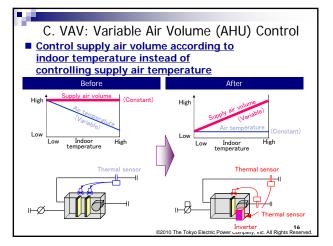


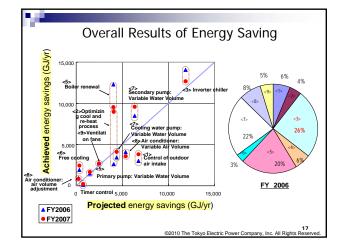


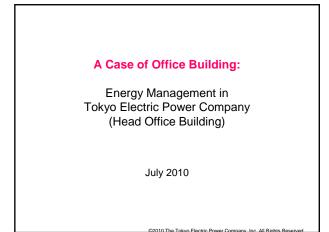


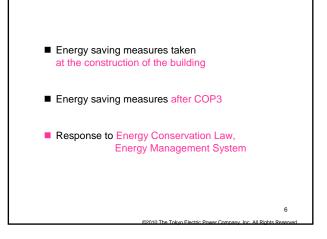


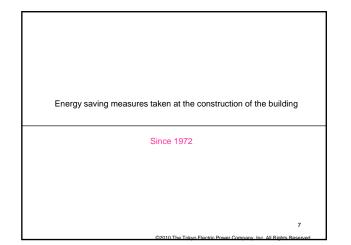


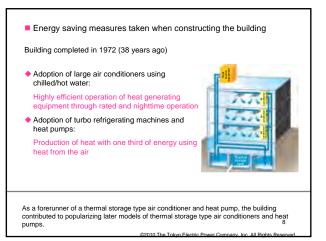


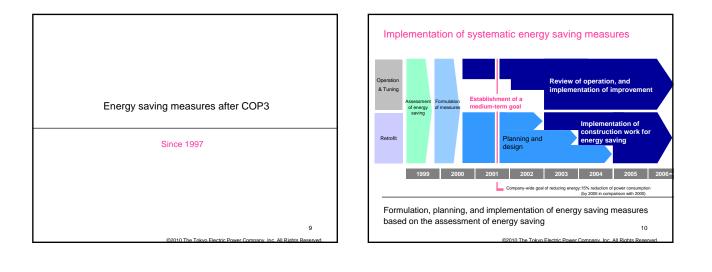


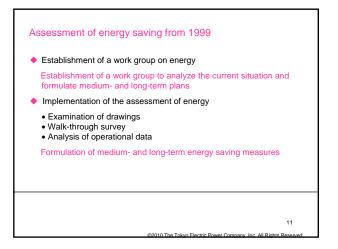


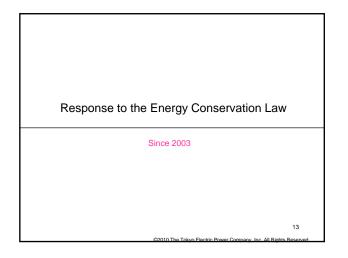

Contents

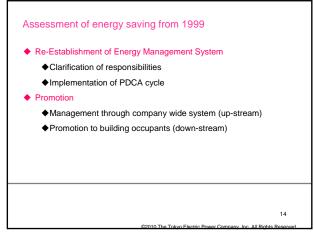

- Results as a Company
- Results of TEPCO Head Office Building
- Measures Implemented
- Energy Efficient Equipment

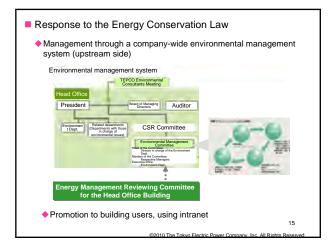




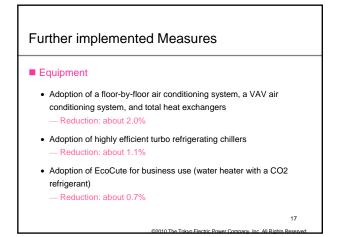


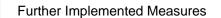






Improved operation of heat generating equipment for AC since 2000


- Improved operation of a heat generating system for air conditioning Improved operation for more efficient operation
- Examination of freezers in the Kitchen Improvement of energy-consuming facilities based on data analysis



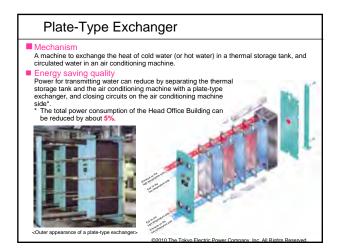
Activities

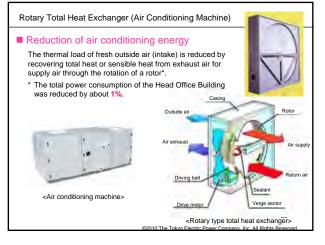
Improvement of the Energy Management Standards
 — Creation of usable standards

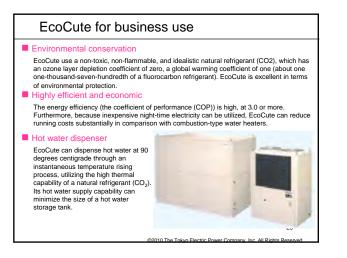
in line with the actual conditions of the Head Office Building

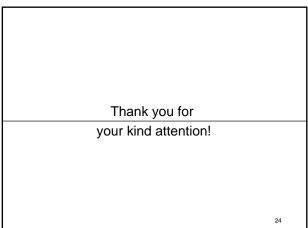
Stabilization of the PDCA cycle

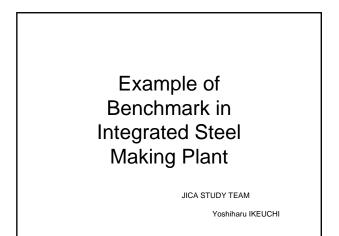
- Creation of a system for autonomous energy saving

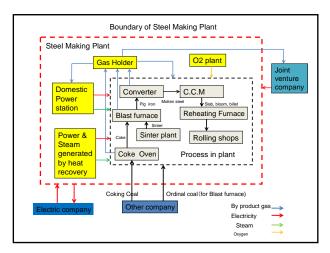

Turbo Refrigerating Chiller

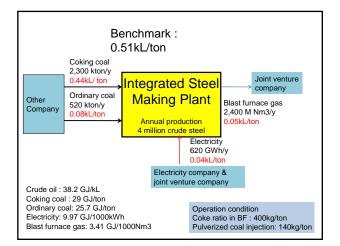

 Substantial reduction of CO₂ emissions through high efficiency Energy efficiency (a coefficient of performance (COP)* = 6.4 (*catalogue value))
 Efficiency was improved by 28% in comparison with conventional machines (10-year models of the same manufacture) through consolidated high performance technology, and improved compressors and heat exchangers.


Highly efficient and economic


A reduction of approximately 40% in electric power expenses in comparison with conventional machines (10-year models from the same manufacturer)







Calculation of Benchmark	
--------------------------	--

Benchmark = Annual total energy consumption
Annual total crude steel production

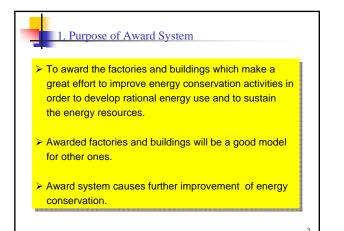
Annual total energy consumption = Purchased energy(Coking coal + Ordinary coal + Electricity – Sold energy(Blast furnace gas) = 66,700 TJ + 13,364 TJ + 6,181 TJ –8,184TJ = 78,061 TJ

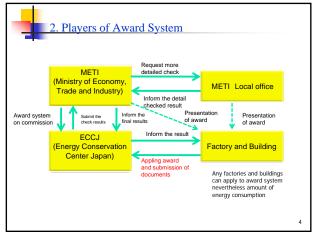
Benchmark = 78,061 TJ ÷ 4,000,000 ton = 19.5GJ/ton = 19.5GJ/ton ÷ 38.2 GJ/kL =0.51 kL/ton

Proposal of Audit Standards

- 1. Identification of Contents of the this Work
- a. "Assessment Standards" for find potential and propose EE&C measures → For Consultant
 b. "Audit Standards" for evaluate performance of target consumers → For Accredited Energy Auditor
 2. Utilization of the Above Standards

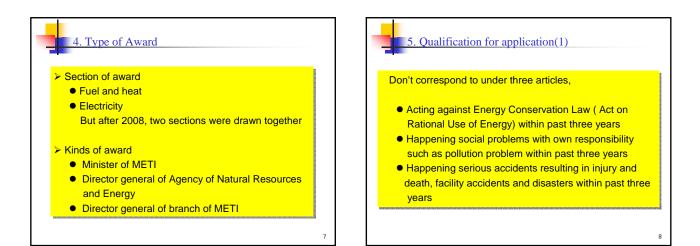
1

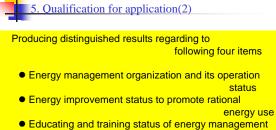

- a. "Assessment Standards" is for site
- b. "Audit Standards" is for both HQ and site
- 3. Expected Contents of the Assessment Standards
 - a. Pre-questionnaire sheet
 - b. Methodology

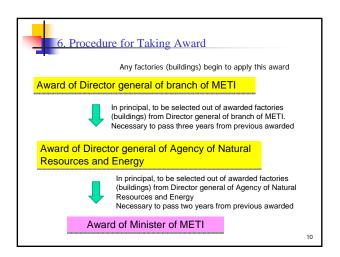

- c. Reporting format
- 4. Expected Contents of the Audit Standards
 - a. Pre-questionnaire sheet
 - b. Evaluation methodology
 - c. Rating and final evaluation

Award System for Excellent Energy Management Factories and Buildings

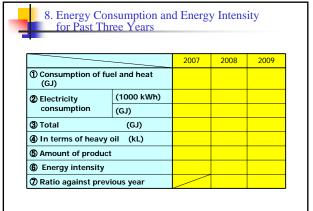
JICA Study Team Yoshiharu Ikeuchi


Contents	_
1. Purpose of Award System	3
2. Players of Award System	4
3. Other Award systems	5
4. Type of Award	7
5. Qualification for application	8
6. Procedure for Taking Award	10
7. Contents of Submission Documents	11
8. Energy Consumption and Energy Intensity for Past Three Years	12
9. Enforcement of Measures for rational Energy Use	13
	2

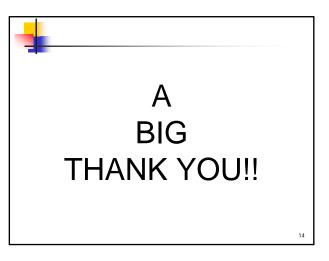




-	Type of Aw				
Туре	Main Objective	Methodology	Implementing Body	Duration	Target Layer
Excellent Activity by Organization Employees	1. Encouraging Continuous EC Activity 2. Dissemination	1. Application 2. Screening 3. Field Visit 4. Interview 5. Selection	1. METI 2. ECCJ 3. Local Government	Once /Year	Factory/Organiza ion/Employees
Excellent EC Implementation					
Technologies (Product / System)					Energy Consuming Product/System
ESCO Business	of EC Activity				ESCO Company
Contest (Poster / Article / Implementation)	of EC Activity				School/Pupil
Excellent Electronics Stores					Shop



- Educating and training status of energy management engineers
- Energy conservation results concerned with rational energy use

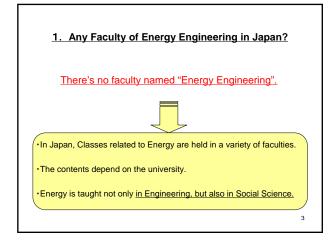


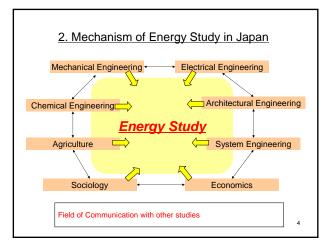
7. Contents of Submission Documents

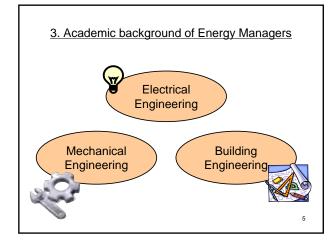
- Energy management organization and its operation status
 - Diagram of energy management organization
 Operation status of holding frequency of steering
 - committee and discussing contents, etc
 - Conditions of energy consumption for past three years
- Educating and training status of energy management engineers
 Numbers of taking an examination of energy manager
 - Numbers of attending the training program with certification examination for candidates of Energy Manager and general training programs for proper implementation of EMS
- Extinguished results for promoting rational energy use for past three years
- Enforcement of measures for rational energy use
 Others
 - •Yes or no of happening accidents and pollution problems for past three years

Target items (facilities)	Status of establishing management standards	Status of observing measurement/record	Status of observing maintenance/inspection	Status of measures to betake on new installation
Rationalization of fuel combustion (Combustion facility)	Status of establishing management standards for air atio and others Already established Being established (Status of measurement/record defined in management standards Regularly done Done as needed	Ratus of maintenance/inspection defined in management standards Regularly done Done as needed Not done	Status of measures to be tablen on twee installation of combustion facilities Done Not done Not applica ble
Rationalization of heating, cooling and heart transfer (Heat consumption facility)	Satus of establishing management standards for heating equipment and others Already established Being established () To be establish hed	Status of measurement/record defined in management standards Regularly done Done as needed Not done	Status of maintenance/inspection defined in management standards Regularly done Done as needed Not done	Status of measures to be taken on new installation of heating supument and others Done Not done Not applica ble

Curriculum of Energy Efficiency in Japanese Universities

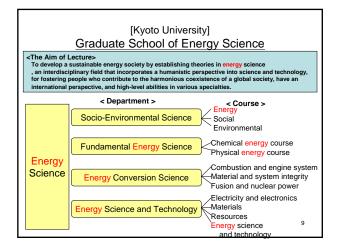

August, 2010

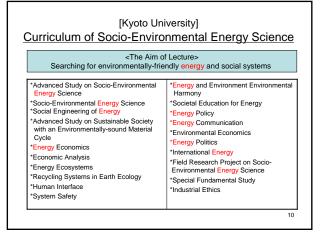

Mayo Yoneyama JICA Study Team


Contents

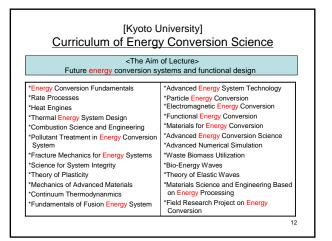
- 1. Any Faculty of Energy Engineering in Japan?
- 2. Mechanism of Energy Study in Japan
- 3. Academic Background of Energy Managers
- Study Fields and Subjects of National Qualification Examination for Energy Managers

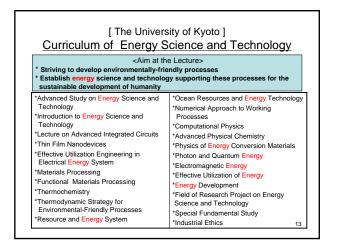
- 5. Curriculum of Energy Study in Graduate Schools
- 6. Examples: Energy Programs of 5 Japanese universities
- 7. Conclusion

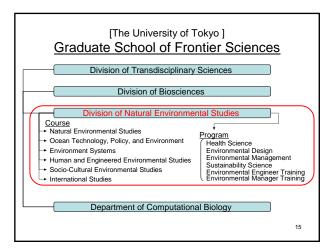



5. Curriculum of Energy Study in Graduate Schools of Universities

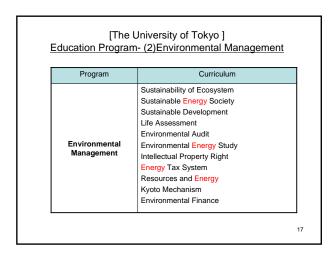
5.1 Kyoto University5.2 The University of Tokyo5.3 Osaka University5.4 Nagoya University5.5 Waseda University

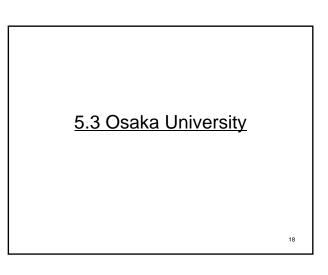


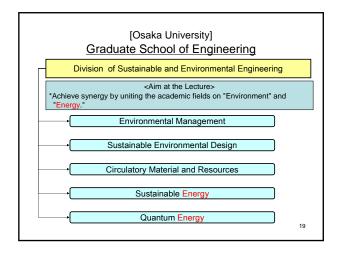

5.1 Kyoto University

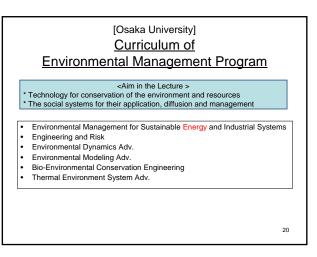


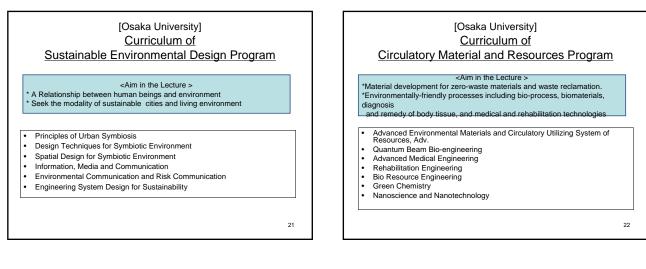
.,	niversity] nental Energy Science
	of Lecture>
New fundamental science	ce for researching energy
*Advanced Study on Fundamental Energy	*Catalytic Functional Chemistry
Science	*Biological Energy
*Fundamental Energy Science	*Fundamentals of Fusion Plasma
*Physical Chemistry for Energy Science	*High-Temperature Plasma Physics
*Energy Electrochemistry	*Plasma Heating
*X-ray Crystallography	*Energy Transport
*Introduction to Functional and Solid-State	*Neutron Mediated Systems
Chemistry	*Introduction to Experiments Nuclear
*Solid-State Electrochemistry	Reactor
*Magnetohydrodynamics	*Advanced Energy Creation
*Fundamental Plasma Simulation	*Physics of Superconductivity
*Applied Numerical Physics	*Technology for Advanced Energy
*Plasma Physical Kinetics	*Field Research Project on Fundamental
*Physics of Non-neutral Plasmas	Energy Science
*Photo-Related Chemistry	*Special Fundamental Study 1,2
*Sustainable Energy System	*Industrial Ethics
*Molecular Science of Fluids	· · · ·

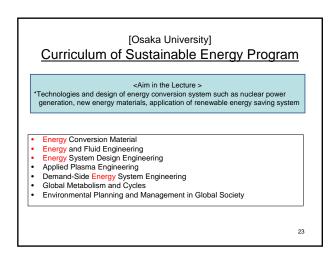


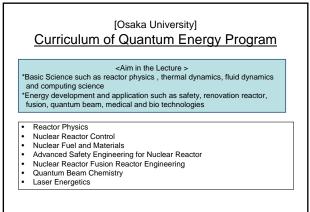


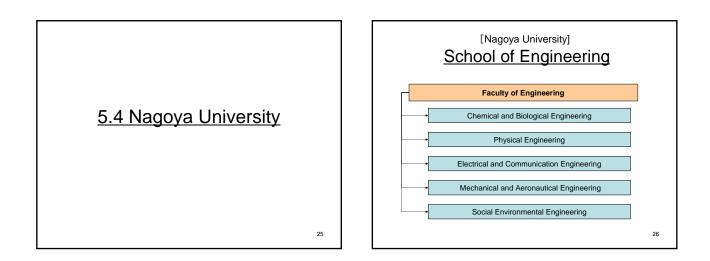


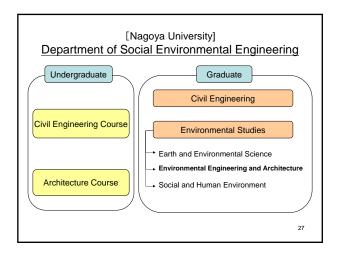

[The University of Tokyo]
Education Program-(1) Sustainability Science
* ** *

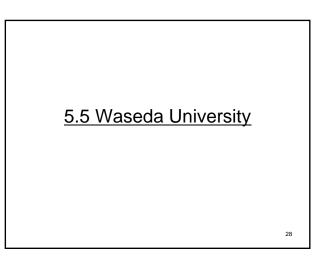

Program	Curriculum
Sustainability Science	*Sustainability perspectives in environmental issues *Environmental Economics *Fundamentals of Natural Environmental Studies *Environmental Information Science *Environmental Sustainability *Environmental Challenges and Leadership in Asia *Biosphere Function *Marine Resource and Environment *Sustainable Health and Environment *Structural Safety of Built Environment *Agricultural Development, Introduction to Formal Analysis of Conflict and Cooperation

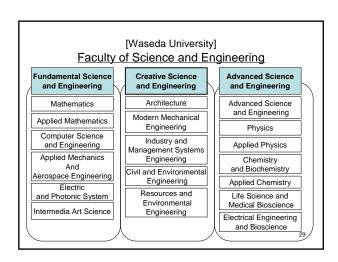


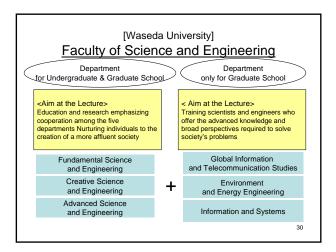


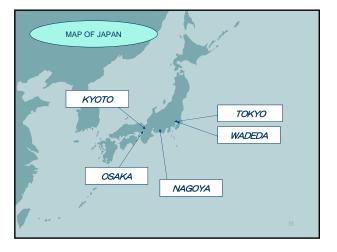




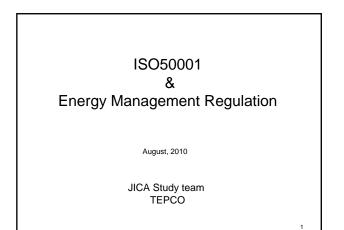


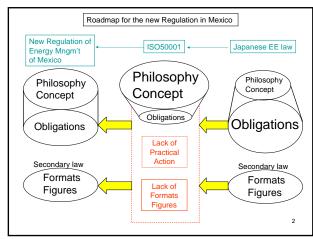





[M/coode Iniversity]							
	[Waseda University]						
	Curriculum of Architecture						
Year 1 Year 2 Year 3 Year 4 Year 5 Year 6							
General, Drawings, Exercises in Architectural Design	Environmental Aspects of Buildings and Cities Architecture and Society Architecture and Building Engineering Architecture and Building Engineering Architecture and Building Engineering Marchitecture and Building Engineering Marchitecture and Building Engineering Marchitecture and Building Angineering Marchitecture and Building Angineering Marchitecture and Engineering Mechanics A Creative Science and Technological Literacy						
Design	Practical Training in Architectural Design Exercise of Architectural History Exercise in City Planning Exercise of Architectural Environment Structural Design Exercises Practice of Construction Process						
Architectural Art	<architectural planning=""> <architectural history=""> <city planning=""></city></architectural></architectural>						
Building Engineering	<building production=""> <structural design=""> <⊨ngineering for building Environment></structural></building>						
	 * Data Source from Waseda Uni. Official HP 						

[Waseda Univerisity] Curriculum of Resources and Environmental Engineering				
Graduate	Environment and Safety Engineering Environment Study of Ecological System Advanced Aquatic Chemistry Resources Recycling Resources Separation Technology Materials Processing Engineering Formation Fluid and Environmental Engineering Advanced Numerical Production Engineering Applied Geophysics	Geosphere Environmental Engineering Geochemistry of Mneral Resources Advanced Raw-Materials Science Physics and Chemistry of Minerals Thermodynamics in Petrology Isotope Isotope Geochemistry Structural Petrology Advanced Paleontology		
Undergraduate	Resource and Environmental Engineering Laboratory Applied Physical Chemistry and Exercise Applied Physical Chemistry and Exercise B Creat Information Engineering and Exercise B Creat Information Engineering Working Chemistry and Exercise B Creat Information Engineering Working Chemistry and Exercise B Transfer Control Engineering Working Chemistry and Exercise B Tervironmental Risk Analysis Particle Control Terrotology Water Environmental Risk Analysis Resource Recyclingerering Overview of Resource and Environmental Engineering Denvironmental Instantential Analysis on Cetting-Egge Terrotology of Mena Resources Fundamentals of Geoseptication Engineering Environmental Instantential Analysis on Cetting-Egge Terrotology of Mena Resources Fundamentals of Geoseptication Engineering Environmental Instantential Analysis on Cetting-Egge Terrotology of Mena Resources Fundamentals of Geoseptication Engineering Environmental Instantential Analysis	Rock Mechanics Fundamentalis of Reservoir Engineering Fundamentalis of Reservoir Engineering Environmental Goology Computational Methods for Underground Flow Economics of Resources and Environment Mathematics Strength of Materials Interduction to Environment and Satery Engineering Introduction to Environment and Resource Processing and Resources Processing And Resour		


Characteristic Kyoto Tokyo Osaka Nagoya Wased							
Energy faculty	×	×	×	×	×		
Course of Energy Science	ο	×	0	×	ο		
Special Course of Energy Management	×	o	o	×	o		
Lately Reorganized	O April, 2010	×	O April, 2006	×	O April, 2010		


7. Conclusion

- In Japan, Energy Engineering programs are provided at many universities, even in under-graduate school.
- But, there is no faculty named "Energy Engineering".
- There is no lecture titled "Energy Efficiency".
- In graduate schools, there are programs named "Energy + something".
- Today we introduced 5 major universities as examples. In those universities, Energy Engineering Study is taught on three department :Electrical Engineering, Mechanical Engineering and Building Engineering.

	ISO50001 vs	ISO14001	
2. So, for	vironmental management is achiev many companies which was quali ISO50001. addition, "Table of Contents" is alm		1.
	ISO50001	ISO14001	
	1.Scope	1.Scope	
	2.Normative references	2.Normative references	
	3.Terms and definitions	3.Terms and definitions	
	4.Energy management system requirements	4.Environmental management system requirement	
	4.1 General requirement	4.1 General requirements	
	4.2 Management responsibility	4.2 Energy policy	
	4.3 Energy policy	4.3 Planning	
	4.4 Energy planning	4.4 Implementation and	
	4.5 Implementation and	operation	
	operation	4.5 Checking	
	4.6 Checking Performance	4.6 Management Review	3
	4.7 Management review		

1.	Purpose
	 To input Japanese experience for the process
	- To avoid the overlap in both procedures
2.0	contribution of Japanese opinion
	- the objective of ISO50001 is Energy Efficiency,
	not cost reduction nor water saving
3.	result
	- Japanese companies must obey the Japanese law
	for energy efficiency, then it is easy for them to get
	the certificate of ISO50001 with little additional procedures.
	 This means that proposed ISO50001 fit to Japanese law for energy efficiency.

Com	parison of ISO with Japa	nese EE Law
	ISO50001	Japanese EE Law
Basic Concept	Support for Independent Activity	Mandatory rules with numeric standards in secondary law
Sites	All applicants	Over threshold
Report	Record internally	Report to the Government
Target	Reduction target individually	1% reduction
Action plan	Necessary to make a plan internally	Long and medium term plan to be submit to the Government.
Operation	Standard to keep an effective	Evaluation criteria for operation,
management	operation and maintenance	measurement, maintenance
Internal inspection	Necessary	Not necessary
Inspection	Non-governmental org.	METI
Necessity of qualified person	No	Energy Manager
Evaluation criteria	Not specified	Specified in detail by secondary low
Evaluation of performance	Observation of significant energy consumption and availability of action plan	

Same	e points of ISO50001 & Japanese EE law
item	contents
goal	To make the best effort of energy management and operation
Target figure	necessary
Improvement by PDCA	necessary
Baseline	To be set
Involvement of the Top management	Board member should be involved in the scheme

Main Discussion Points about EMS In order to make the ISO50001 be a National Regulation

- 1. Designation of Energy and Consumers
- 2. Implementing Organization
- 3. Qualifications/Licenses of Energy Managers
- 4. EE&C Activities within the Site
- 5. Periodical Reports to the Regulators
- 6. Monitoring and Checking
- 7. Inspection and Penalty
- 8. others

1.Designation of Consumers (ISO50001)

All Organization (Open-ended)

1.Designation of Consumers (Japanese Law)

Designated Organization and Category of Business Entities

	Energy Consumption /year of crude oil equivalent)	3,000 kl/year and above	1,500 kl/year	Less than 1,500 kill /year	
Designated Organizations		Type 1 Energy Management Factory	Type 2 Energy Management Factory	-	
Resp onsib ilities	Person to be appointed	Energy Manager Energy Management Officer	Energy Management Officer	-	
of Busin	Report to be	EE&C Results Report	EE&C Results Report	-	
ess	submitted	Middle and Long Term Plan Report	-	-	
es Responsibility		Responsibility of Evaluation Criter (Establishment of Management Standards, Implement of]	
Target 1	number	1 %/year improvement of unit energ			
Check by government authorities		Guidance and Advice/ collection of the reports of energy consumption			
		Investigation of factories and building Investigation of the situation and Observation of Ev			

2. Implementing Organization (ISO50001)

International Organization for Standardization (ISO)

Certifying Organization>: The Japan Accreditation for Conformity Assessment (JAB)

<Certified Company>

- (1) Moody International Certification LTD.
- (2) Bureau Veritas (Japan Branch)
- (3) ISOQAR Japan Co.,Ltd.
- (4) Management System Assessment Center.
- (5) Japan Quality Assurance Organization etc.

2. Implementing Organization (Japanese Law) Players of Energy Management Regulation METI Local Offices Legal Basis METI HQ Registration of Designated Large Consumers •Registration of Energy Managers (Policy making) •Requesting Periodical Reports ECCJ (Energy Conservation Center, Japan) Training for candidates of Energy Managers Examination and Certification of Energy Manager Check of Reports Submitted Inspection and Instruction (for poor management) 6.Inspection (EE&C Results F Term Plan Repor 3.Registration of Energy Manager 2.Certificate Energy Manager Dispatching Candidat Energy Manager 5.Submis **Designated Large Consumers** Energy Manager's Task Reporting Periodical Reports with 1%/year improvement of productivity Management of Energy Consumption, Promotion of EC activity,

3. Qualifications/Licenses of Energy Managers (ISO50001)

The License is Unnecessary.

The Business Affairs must put into work by a Management Representative appointed The Administration.

3	3. Qualifications/Licenses of Energy Managers (Japanese Law)									
	Function of energy manager									
item	Executive Energy Supervisor	Energy Planning Promoter	Energy Manager	Energy Officer						
function	(HQ) • Impulsion management standpoint • Make of Mid-and- Long Term Plan • Practical control	(HQ) •Assist a Energy supervisor	(One of factory) • Stationed at Type 1 Energy Management Factory (One of Building) • can be outsourced	(Type 1 Building) •To be stationed (Type 2 Factory +Building) •To be stationed						
qualification	(Board member)	Person who finish One day training course	Energy Manager with national license	Person who finish One day training course						
quantity of qualified person			54,154 persons	42,325 person						
				12						

11

4. EE&C Activities within the Site (ISO50001)

(1) Establish the management framework

(2) Provide effective operation and maintenance(3) Provide the management standard of equipments

4. EE&C Activities within the Site (Japanese Law)

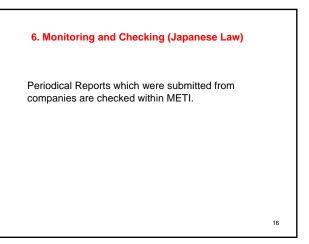
13

(1) Establish the management framework

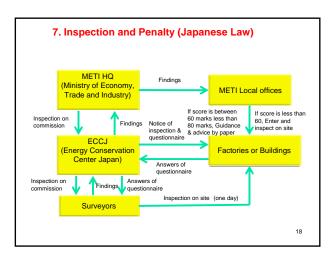
(2) Provide the management standard for equipments

5. Periodical Reports to the Regulators (ISO50001)

ISO is the private standard ,so no report is required to the Government.


Consumption record should be kept internally.

5. Periodical Reports to the Regulators (Japanese Law)


Periodical Reports to METI must include mid-and-long term plan, energy consumption data and benchmarking figures.

14

6. Monitoring and Checking (ISO50001)

7. Inspection and Penalty (ISO50001)									
According to Traditional ISO System in Japan , there are two types of review; regular surveillance (Twice a year) and renewal surveillance (Once every three years).									
Regular Surveillance (Twice a year) Renewal Surveillance (Once every three years)									
Method	Random check	All ISO system check							
Check Point	Performance of ISO system	Will of the management level of the company							
Purpose	Correction of wrong performance	Go out of mannerism							

7. Inspection and Penalty (ISO50001)

These is no penalty , because ISO is the private standard.

But, when the wrong performance is found in regular survey (twice a year) or renewal review (once every three years), the company have to submit paper of all thing to improve.

And then, the company should implement according to the submitted paper. They have to check the result by internal audit.

After internal audit, they have to be checked by certification organization as a whole.

19

21

7. Inspection and Penalty (Japanese Law)

1. When wrong and no report of energy consumption, mid-and-long term $\ensuremath{\mathsf{plan}}$ were submitted,

→ Carry a fine up to five hundred thousand-yen.(62,500MXD)

2. When energy manager were not appointed,

- → Carry a fine up to a million-yen.(125,000MXD)
- 3. When the renewal of energy manager were not reported,
- → Carry a fine up to two hundred thousand-yen.(25,000MXD)

4. All inadequate performance,

→ announcement of company name, and carry a fine up to a million-yen.

8. Others (ISO50001)

1.Energy definition

Electricity , Fuel , Steam , Heat , Compressed air , Renewable

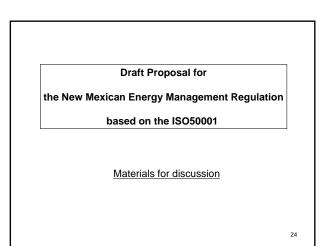
- 2. Target item of management
 - To be decided by the organization.
- 3. Specific energy consumption
 - Not determined
- 4. Energy base line

can be decided by the organization.

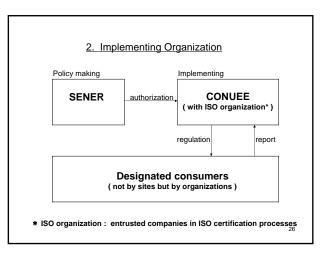
8. Others (Japanese law) No.1

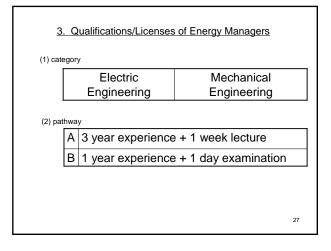
1.Energy definition

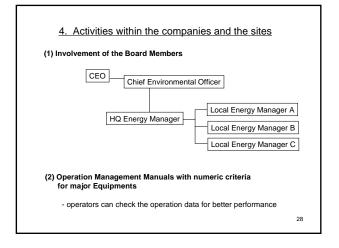
- Electricity , Fuel , Heat
- 2. Target item of management
- Building and factory 3. Specific energy consumption

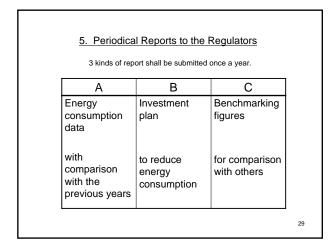

Divide annual use of energy by anything to get specific energy consumption.

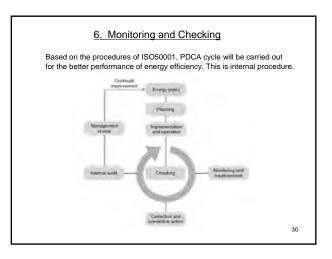
- 4. Energy base line
 - (1) previous year and this year.
 - (2) average of 1% reduction of specific energy consumption per year is required.


22


(3) Benchmark standard regulation was started this April. Schedule of Introduction of SBA Consultation in the ISCM FY Execution 3 sub-sectors (power, iron & still (3 types furnace) and cement) were selected and authorized as a first stage 2008 2009 Next sub-sectors (chemical, paper&pulp nery) are under 2010 From 2010 FY, the first 3 sub-sectors will be executed. From 2011 FY, the next 3 sub-sectors 2011 are planned to be executed. 23


8. Others (Japanese law) No.2

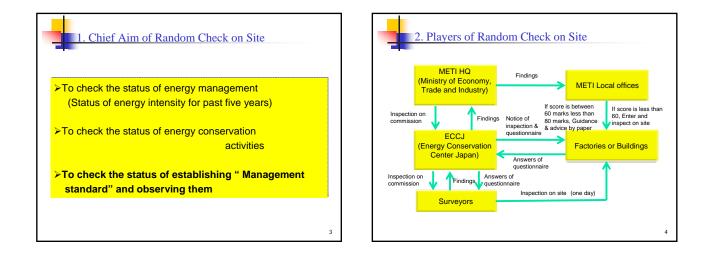



	nergy		
	Electricity	Fuel	Heat
		1 st Class	2 nd Class
С	ategory & Thresholds*		
		1 01000	
	Manufacturers	toe/y or more	toe/y or more
	Manufacturers Non-manufacturers	• toe/y or more • toe/y or more	toe/y or more toe/y or more
		,	

7. Inspection and Penalty

- ISO scheme & organizations can be utilized for regulation scheme with the authorization by the regulators. This will help to minimize the operation cost of the scheme.
- 2. Penalties and/or fines are not the major purpose. To achieve the improvements of designated consumers is most important.

frequency	Twice a year	Once in 3 years
Contents	 Random check Check the failure of management mechanism 	 Interview with board members Check the figures Formal fine with penny

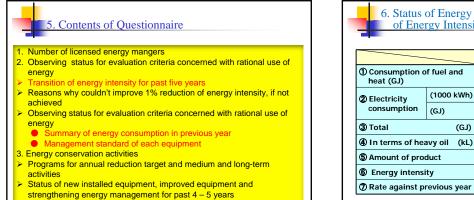

Thank you for your attention.

Let's discuss in details.

Contents Chief Aim of Random Check on Site 1. 3 2. **Players of Random Check on Site** 4 Number of Factories and Buildings Carried Out Random 3. **Checks On Site a Year** 4. Factories or Buildings Excepted from Random Selection 5 **Contents of Questionnaire** 5. Status of Energy Consumption and Transition of Energy 6. Intensity 8 7. **Annual Energy Consumption Table** 9 8. Evaluation of Criteria, Management Standard and Self-**Check List** 11 Necessary numbers of Self-Check List 9 17 10. How to Score Marks 18 11. Penalty depending on evaluation marks 20

2

3. Number of Factories or Buildings Carried Out Random Checks On Site a Year 1. Selection METI HQ makes a plan and select random check site. 2. Case of FY 2010 (1) Designation of Business Type (300-400) - 1/3 of Food Industry - 30 % of Manufacturer of Transportation Equipment (2) At Random Selection for Site - 200 Factories or Buildings (Type-1:100, Type-2:100) (3) At Random Selection for HQ - 10 HQ Number of Surveyors Surveyors : Approximately 80 persons through 8 blocks in Japan and they are selected among experts of rational energy use in ECCJ


4.Following factories or buildings are excepted from election in this year

(1) Designation of business type

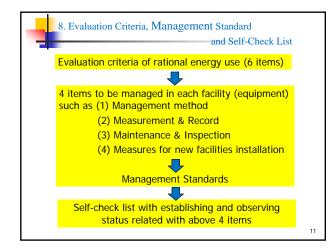
Factories or buildings which received the document of conforming to the standards of judgment issued from "Registered Investigation Bodies" in previous year

(2) At random selection for site

- > Factories or buildings which received the document of conforming to the standards of judgment issued from "Registered Investigation Bodies" in previous vear
- Factories or buildings selected as the designation business type in previous year
- Factories or building selected as the random selection for site in previous year
- Factories or buildings got the award of excellent energy management factories or buildings in previous year

Energy management activities

6. Status of Energy Consumption and Transition of Energy Intensity 2005 2006 2007 2008 2009


(1000 kWh)

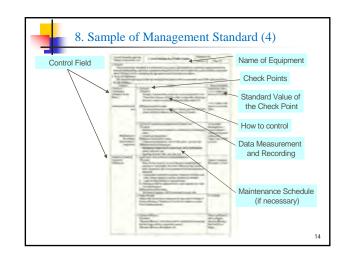
(GJ)

(GJ)

-	7. Annua	l Ene	ergy (Cons	ump	otion	Tab	le	(1)	
Process	Facility and equipr	nent		En	erav consu	motion			Comsu	
		Capacity	Fuel and		Elect		Total			MS: Number of
	Kind	& unit	GJ	kL	MWh	kL	kL		rate	management
	Air-conditioner	18	34,279	884	1,476	372	1,256	٠	10.3	4 standard
	Absorption chiller	4	47,558	1,227	111	28	1,255		10.3	a
	Lighting				3,528	889	889	٠	7.3	1
A division							0		0.0	
	Subtotal		81,837	2,111	5,115	1,289	3,400		27.9	
	Others		0	0	469	118	118		1.0	
	Total Air-conditioner	16	81,837 29,994	2,111	5,584	1,407	3,518		28.8	
	Lighting	16	29,994	//4	437	325	1,099	•	9.0	<u> </u>
	cignung				431	110	110	-	0.0	
B division	Subtotal		29,994	774	4.314	1.087	1.861		15.3	_
	Others		0	0	437	110	110		0.9	
	Total		29,994	774	4,751	1,197	1.971		16.2	
	Arc furnace	10 ton x2			4,800	1,210	1,210		9.9	
	Compressor	10kWx4			254	64	64	٠	0.5	8
	Air-conditioner	11	21,425	553	925	233	786	٠	6.4	4
Manufacturing	Lighting				3,024	762	762		6.2	1
division									0.0	
	Subtotal		21,425	553	9,003	2,269	2,822		23.1	
	Others		21,425	553	131 9,134	2 302	2.855		0.3	_
	Total Steam boiler		21,425	2,528	9,134	2,302	2,855		23.4	
	Co-generation	480kW x2	26,124	2,528	187	4/	2,575		5.6	<u> </u> 1
	incinerator.	50t/day x1	26,124	244	65	15	260	-	2.1	
	Lighting	boundy x1	9,457	244	885	223	260	-	1.8	 ;
Power service								-		<u> </u>
division	Transformer&power supply	(369	93	93	٠	0.8	8
									0.0	
	Subtotal		133,565	3,446	1,564	394	3,840		31.5	
	Others		0	0	75	19	19		0.2	
	Total		133,565	3,446	1,639	413	3,859		31.6	
T	Subtotal		266,821	6,884	19,996	5,039	119		97.2	
Total	Others Full total		266.821	6,884	1,112 21,108	280	280		2.3	- 9
										9

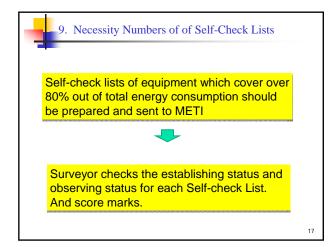
Process	Facility and	equipment		Ene	rgy consur	nption		_		
	capacity&		Fuel an	d heat	Elect	ricity	Total		Energy Consumption	MS
	Name	unit	GJ	kL	MWh	kL	kL	rate		
	Steam boiler	3	97,984	2,528	187	47	2,575		21.1	2
	Co-generation	480kW x2	26,124	674	58	15	689	•	5.6	
	incinerator.	50t/day x1	9,457	244	65	16	260		2.1	1
Power	Lighting				885	223	223	*	1.8	
service division	Transformer& power supply				369	93	93	•	0.8	
									0.0	
	Subtotal		133,565	3,446	1,564	394	3,840		31.5	
	Others		0	0	75	19	19		0.2	
	Total		133,565	3,446	1,639	413	3,859		31.6	

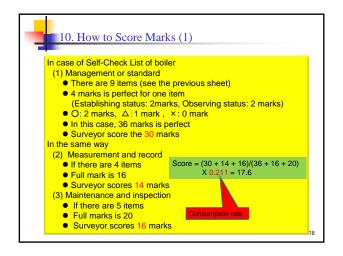
NO	Contents
1.	Bationalization of combustion of Fuels
2. 2-1 2-2	Rationalization of heating and cooling as well as heat transfer. Heating units, etc Air-conditioning equipment and hot water supply system, etc.
3.	Recovery and utilization of waste heat.
4. 4-1 4-2	Rationalization of conversion of heat into power, etc. • Exclusive generation system • Cogeneration system
5. 5-1 5-2	Prevention of Energy loss due to emission, conduction, resistance, etc • Prevention of heat loss due to radiation and conduction, etc • Prevention of electricity loss due to resistance, etc
6. 6-1 6-2	Rationalization of conversion of electricity into power, heat, etc. •Electric motor appliances and electric heating appliances, etc •Lighting system, elevating machines, office appliances and consumer equipment

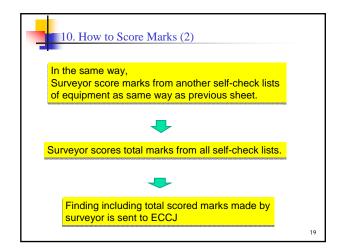


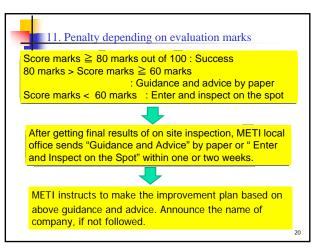
1.Rationalization of combustion of Fuel

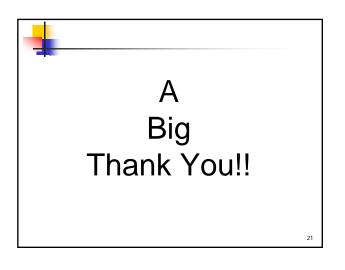
- (1) Control of Fuel Combustion () Air ratio shall be controlled according to the type of the combustion equipment and fuel used therei "Management Standard"
- For combustion equipment, the air ratio shall be lowered based on the value of the Attachment No.1(A).
- In a case of multiple equipment use, overall thermal efficiency shall be controlled by the load adjustment
- For the purpose of enhancing combustion efficiency, fuel properties shall be controlled.
- (2) Measurement and record pertaining to Fuel Combustion
- . The fuel amount supplied, temperature of an exhaust gas amount of oxygen in an exhaust gas, etc. shall be measured and recorded. "Management Standard"
- (3) Maintenance and Inspection of Combustion System For the combustion system, periodic maintenance and inspection shall be performed to keep the good condition. "Management Standard"
- good constein. "Management Standard" (4) Measures to be Taken for the New Installation of Combustion Equipment (1) Combustion equipment shall be introduced which is capable of adjusting the fuel supply and the air ratio to a proper level according to load fluctuations.

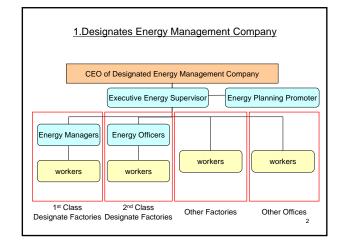

13


② A ventilation system shall be introduced after regulating the_air flow rate and the combustion chamber




2 Steam bolier 2,575 kL 21.10% (1) Control or criteria Establishing Coserving status Evaluation of inspector No. Contents (Management standard items of control or criteria) Establishing Coserving status Evaluation of inspector 0: Items of walking on the fair ar entected to management standark,	No of MS	Name of equipment Energy consumption Energy co		consumption rate				
No. Contents (Management standard liems of status Evaluation of status Devaluation inspector C: Items of evaluation of third we effected to management standards. 27.0 A Imagedon C: Items of evaluation of third we effected to management standards. 27.0 A Imagedon C: Items of evaluation of third we effected to management standards. 27.0 A Imagedon C: Items of evaluation of third we effected to management standards. 27.0 A Imagedon C: Items of evaluation of third we effected to management standards. 27.0 A Imagedon C: Items of evaluation of third we effected to management standards. 27.0 A Imagedon C: Items of evaluation of third we effected to management management standard, items of status Establishing Observing Evaluation of status Evaluation of imspector O: More than 80% of elastiched frequency. Status Status Imagedon Evaluation of imspector C: More than 80% of elastiched frequency. Status Status Imagedon Imagedon O: More than 80% of elastiched frequency. Status Imagedon Imagedon Imagedon O: More th		2 Steam boiler	2,575	kL		21.10%		
NO. portroi or criteria) status status inspector O: Item of evaluation orbital are reflected to management standards. 2: partially reflected. X: not reflected Z A	(1) Cont	rol or criteria						
Standards, Δ.: partially reflected, X: not reflected Oracity management is an educe based on Control or Oracity management is an educe based on Control or Oracity management is an educe based on Control or Oracity management is an educe based on Control or Oracity management is an educe. X: not educe based Oracity or educe based on Control or Oracity or educe based on Control or educe or Oracity or educe based on Control or educe or Oracity or educe based on Control or educe or Oracity or educe based on Control or educe or Oracity or educe based on Control or educe or Oracity or educe based on Control or educe or Oracity or educe based on Control or educe or Oracity or educe based on Control or educe or Oracity or educe based on Control or educe or Oracity or educe based on Control or educe or Oracity or educe based on Control or educe or Oracity or educe based on Control or educe or Oracity or educe based on Control or educe or Oracity or educe based on Control or educe or Oracity or educe based on Control or educe or Oracity or educe based on Control or Oracity or educe	NO.							
Standard, 2::: participa dose, X:: not date Contentis(Management standard, terms of Establishing Observing Evaluation on				<u>,70</u>	 ∕			
NO. measurement and record, frequency) status status inspector ONMORE than 80% of established thequery:	-	Standard,	∴: partially done,	×: not done		Evaluat	ion of	
20% of extabilities frequency, when ham 50% of established frequency (3) Maintenance and inspection No. Content(Management standard, items of status	NO.							
No. Contents(Management standard, items of maintenance & Oreck, frequency) Establishing status Observing status Evaluation of impector C:Nore than 63% of statisticity derevancy,						0	2	
NO. maintenance & check, frequency) status status inspector 20/46 reptin Void established frequency,mere then VOI est two hard 20/46 reptin Void established frequency 20/46 reptin Void est two hard 20/46 r	(3) Main	tenance and inspection						
20% of established frequency, ×:less than 50% of established frequency (4) Measures for new installation of equipment No Content(New installation of equipment in Establishing Observing Evaluation of	NO.							
Content(New installation of equipment in Establishing Observing Evaluation of	⊖:More 80%of e	than 80% of established frequency , \bigtriangleup : stablished frequency, \times :less than 50%	more than 50% an of established freq	d less than uency				
	(4) Meas	ures for new installation of	equipment					
	NO.		upment in					

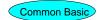

No of MS	Name of equipment	Energy co	nsumption	Energ	y consumpti	on rate	
2	Steam boiler (3t/h x2, 6t/hx1)		′5 kL	21.10%			
(1) Contr	ol or criteria						
NO.	Contents(Control or crite	Establishing status	Observing status	Evaluation of inspector			
1.(1)①	Air ratio <1.3	0	Δ	0	Δ		
1.(1)③	Control of load	0	×	0	×		
2-2(1)②	Control of steam pressure volume	0	0	0	Δ		
2-2.(1)③	Setting the operation unit	s	0	0	0	0	
3.(1)①	Flue gas temp. <250 C		0	0	0	0	
3.(1)③	Volume of recovery drain	>80%	0	0	0	0	
6-1.(1)①	Stop unit when no neces	sary	0	0	0	0	
6-1.(1)②	Control of operation units		0	0	0	Δ	
6.1. <u>(</u> 1)③	Rated currency and voltage		0	0	0	Δ	
					18	12	



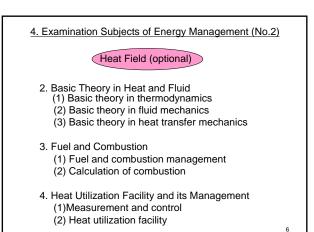
Details of Training Programs for Energy Managers in Japan

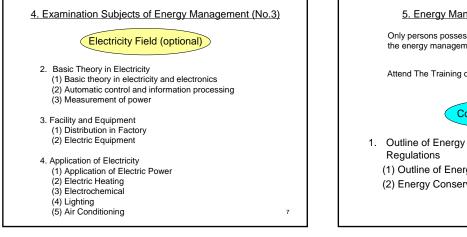
August, 2010

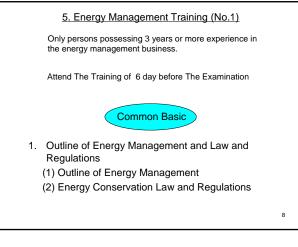
Hirotaka Matsuoka JICA Study Team



	<u>2.Fun</u>	nction of energy	<u>/ manager</u>	
item	Executive Energy Supervisor	Energy Planning Promoter	Energy Manager	Energy Officer
function	iunction iuncti		(One of Building)	(Type 1 Building) •To be stationed (Type 2 Factory +Building) •To be stationed
qualification			Energy Manager with national license	Person who finish One day training course
quantity of qualified person			54,154 persons	42,325 person


3.Examination and Training of Energy Management									
	Energy N	Manager	Energy	Officer	Not eligibility requirements				
	Energy Energy Energy Management				EE&C				
	Manager Examination	Management Training	The Course for new applicants	The Course Improving quality of them	Practice Course				
timing of implemen- tation	Annually (August)	Annually (December)	Twice a year	Once a year or more	Many times a year				
method	Examination	Training of 6 day and Examination on the last day	Attending a course	Attending a course	Attending a course				
applicants per a year ('09)	12,034	1,907	13,925	3,557	4,060				
examination pass rate	20~30%	60~70%	All who finished	All who finished					
Started	1979	1979	1998	1998	1978				
see	P5~P7	P8~P11	P12~P13	P14	P15~P25				


 <u>4. Examination Subjects of Energy Management (No.1)</u>
 Possessing more than 1-year experience in the energy management business.


Common Basic and Pick out Optional Area of Specialty

- 1. Outline of Energy Management and Law and Regulations
 - (1) Energy Conservation Law and Regulations
 - (2) Energy Situation, Policy and General Statement
 - (3) Basic of Energy Management Technology

5. Energy Management Training (No.2)

(Heat Field (optional))

- 2. Basic Theory in Heat and Fluid Basic theory in thermodynamics
 Basic theory in fluid mechanics (3) Basic theory in heat transfer mechanics
- 3. Fuel and Combustion (1) Fuel and combustion management (2) Calculation of combustion
- 4. Heat Utilization Facility and its Management
- (1) Measurement and control
- (2) Boiler, steam transmission and accumulator, steam mover, internal combustion engine, gas turbine
- (3) Heat exchanger, heat recovery, chiller, air conditioner
 (4) Incinerator, material of heat facility
- (5) Distillation/boiling/condenser facility, drying facility, carbonization and gasification facility

5. Energy Management Training (No.3)

Electricity Field (optional)

- 2. Basic Theory in Electricity (1) Basic theory in electricity and electronics (2) Automatic control and information processing (3) Measurement of power
- 3. Facility and Equipment (1) Distribution in Factory (Planning / Operation / EE&C)
 - (2) Electric Equipment (Outline of electric equipment / Rotating and stationary machine / EE&C in electric equipment)

5. Energy Management Training (No.4) Electricity Field (optional) 4. Utilization of Electricity (1) Utilization of Electricity (Outline of utilization of electric power / Facility of utilization of electric power / EE&C in utilization of electric power) (2) Electric Heating (Theory of electric heating and its facility / EE&C in electric heating) (3) Electrochemical (Theory of electrochemical and its facility / EE&C in electrochemical) (4) Lighting (Theory of lighting and its facility / EE&C in lighting) (5) Air Conditioning and Heating (Theory of air conditioning and its facility / EE&C in air conditioning and

heating)

11

9

6.Energy Management Course (The course for new applicants)

Energy Management Course is the course to be Energy Officers, Certificate will be given after attending the course.

They can be Energy Planning Promoters or Energy Officers with this certificate.

I. Lecture

1.Basic Knowledge for Outline of Energy Management and Law

(1)The importance of EE&C (2)Energy Policy and Law (3)EE&C Plan

6.Energy Management Course (The course for new applicants)

- 2. Energy Management Method
 - (1) Basic of Energy Management
 - (2) Basic of Heat
 - (3) Basic of Electrical Energy
 - (4) Air Conditioning and Lighting
- 3. Practical Business of Energy Management
 - (1) Evaluation Criteria and Management Standard
 - (2) Notification and Report to regulators
 - (3) Evaluation Criteria in factories and buildings
- II. Examination

13

<u>6.Energy Management Course</u> (The Course Improving quality of them)

Energy Planning Assistant or Energy Officer for some company must attend the course every three years.

I. Lecture

Same as the course for new applicants

I. Examination

Same as the course for new applicants

7.EE&C Practice Course Training Program of Electricity Course (3)

Consideration points on installation and maintenance

Third Term (EE&C of Pump and Fan)

Characteristics of pump

Type of fans and blowers

Hands on Practice of Pump and Fan

Performance of fan

Data arrangement

Operation and control of pump

Parallel operation and series operation

Measurement of performance of pump Measurement of performance of fan

EE&C of Pump and Fan

Type of pumps

EE&C of pump

EE&C of fan Diagnosis of faults 14

18

7.EE&C Practice Course 7.EE&C Practice Course Training Program of Electricity Course (1) First Term (EE&C of Building) • This course has nothing to do with qualification and EE&C of Building
 Outline of law and regulation, and energy management
 Outline of EE&C of building license. These are training programs conducted by the ECCJ for improving the capacity of the operators. EE&C of lighting
 EE&C of AC EE&C of transformer Cogeneration ·These programs can be applied depending on each Heasurement of Electricity
 Measurement of voltage and current
 Measurement of electric power
 Measurement of pressure, flow volume and temperature request. Measurement method of each facility Hands on Practice of Electricity Measurement – Practice of measurement of pump – Practice of measurement of fan Practice of measurement of lighting Practice of measurement of high efficiency transformer Practice of measurement of AC Data arrangement and observation 15 16

7.EE&C Practice Course

Training Program of Electricity Course(2)

Second Term (EE&C of Compressor) <u>EE&C of Compressor</u> Type of compressors and their characteristics Axis power of compressor Protection of leakage and its effect Pressure loss of pipe Measurement tool and how to use EE&C of compressor equipment EE&C by control method EE&C of compressor

Hands on Practice of Compressor Hands on practice of compressor Data arrangement

7.EE&C Practice Course

Training Program of Electricity Course (4)

Fourth Term (Good Practice of EE&C of Electricity)

Introduction of Good Practice of EE&C in Electricity

Good practice of AC Good practice of lighting Good practice of compressor Good practice of pump and fan Good practice of transformer

Site Visit of EE&C Technology Application Site visit Introduction of EE&C sample in building Q&A

19

<u>rreactor consector consec</u>

7.EE&C Practice Course

Training Program of Heat Course (2)

Second Term (Steam Management and Steam Trap)

EE&C of Steam

Necessity of EE&C Improvement of stream system in Energy Conservation Law EE&C by utilization of steam EE&C measures in steam utilization field

Hands on Practice of Steam Measure of drain recovery

Practice of engineering software

21

7.EE&C Practice Course

Training Program of Heat Course (3)

Third Term (Energy Assessment of Heat Facility)

Heat Balance Calculation and Assessment

Introduction of heat balance calculation Practical assessment method Cast study of heat balance calculation Answer of heat balance calculation

Practice of Finding Potential of EE&C

Introduction of good practice factory Finding potential of EE&C (group discussion)

22

7.EE&C Practice Course

Training Program of Heat Course (4)

Fourth Term (Good Practice of EE&C of Heat)

Introduction of Good Practice of EE&C in Heat

Improvement of combustion Improvement of heat transmission Improvement of heat radiation Improvement of heat recovery

Site Visit of EE&C Technology Application Site visit

Introduction of EE&C sample in building Q&A

23

7.EE&C Practice Course

Other Training Programs

How to Find EE&C Potential in factories (Practice to Find EE&C Potential in Electricity and Fuel Consumption)
 1.Issues and countermeasures for promoting EE&C
 2.Methods to find EE&C potential and its application
 3.Practice
 (2) Energy Audit of Buildings (EE&C in Building Facility and Operation)
 1.Law and regulations

- 2.EE&C of lighting
- 3.EE&C of AC 4.EE&C of pump and fan
- 5.Good practice of building EE&C
- 6.Practice of energy audit of buildings

7.EE&C Practice Course

Other Training Programs

(3) How to Make Management Standards

- 1.Law and regulations 2.Practice of making Management Standards

 - (1)Resource mapping and grasping current situation (2)Selection of targeted equipments (3)How to make the standards (4)Drafting a sample standard
- (4) Site Visits of Good Practice Factory and Building 1.Lecture (1)Law and regulations (2)Points of EE&C in factory and building 2.Practice

 - Practice (1)Introduction of overview of facilities (2)Introduction of safety code (3)Site visit and practice of energy assessment (4)Presentation of the energy assessment by trainees

25

Thank you for your attention!