

Appendix

Appendix 1.A	Explanatory Materials for Technical Assistance on System
	Planning (UHV Transmission Line)
Appendix 1.B	Explanatory Materials for Technical Assistance on System
	Planning (Ho Chi Minh City Power Supply System)
Appendix 1.C	Explanatory Materials for Technical Assistance on System
	Planning (Underground Transmission System)
Appendix 1.D	Explanatory Materials for Technical Assistance on System
	Planning (Voltage Stability)
Appendix 1.E	Stakeholders Meeting Materials (The TA Team)
Appendix 1.F	Stakeholders Meeting Materials (IE)
Appendix 2.A	Explanatory Materials for Technical Assistance on Economic
	Analysis and Demand Forecasting (World and VN Economy)
Appendix 2.B	Explanatory Materials for Technical Assistance on Economic
	Analysis and Demand Forecasting (Crude oil Market)
Appendix 2.C	Explanatory Materials for Technical Assistance on Economic
	Analysis and Demand Forecasting (Point of PDP7)
Appendix 2.D	Explanatory Materials for Technical Assistance on Economic
	Analysis and Demand Forecasting (Results of Large Scale
	Projects)
Appendix 2.E	Explanatory Materials for Technical Assistance on Economic
	Analysis and Demand Forecasting (Simulation of Power
	demand)
Appendix 2.F	Stakeholders Meeting Materials (The TA Team)
Appendix 2.G	Stakeholders Meeting Materials (IE)
Appendix 3.A	Good Practice of SEA
Appendix 3.B	Draft SEA Report
Appendix 3.C	Impact Matrix
Appendix 3.D	List of Impact Matrix
Appendix 3.E	1st Workshop on "Strategic Environmental Assessment in
	Power Development VII" (Quy Nhon, 12-13 July 2010)
Appendix 3.F	Stakeholders Meeting Materials (The TA Team)
Appendix 3.G	Stakeholders Meeting Materials (IE)

Appendix 1.A

Explanatory Materials for Technical Assistance on System Planning (UHV Transmission Line)

1100kV AC Transmission Project in Japan

April 21, 2010 TEPCO

Contents

- 1. Research and Development of UHV in Japan
- 2. TEPCO's UHV Project
- 3. Conclusion

1. Research and Development of UHV in Japan

Why Did Japan Start UHV R&D?

- Steady expected growth of power demand.
- Distance between large scale power stations and load centers expected to become greater.

AC Voltage History & Peak Demand

R&D Conducted by Organizations Nationwide

First Step

- "The central electric power council", 1973 1978
- 9 Utilities and CRIEPI
- Basic research and conceptual design

Second Step

- "The nation-wide study committee for UHV transmission", 1978 1982
- 9 Utilities, CRIEPI, Academia and Manufacturers
 - 1100kV was designated Highest AC voltage.
 - Prospect of realizing reliable UHV system was attained.

okyo electric power company

Study of the Highest AC Voltage of UHV in Japan

- Studies were conducted on the <u>10GW</u>, <u>600km transmission model</u> to meet future needs.
- Candidates for the highest voltage were 800, 1100, 1200, and 1500kV.
 - 800kV transmission has not enough capability.
 - 1500kV transmission was not estimated to be technically feasible.
- \rightarrow 1100kV and 1200kV remained

Why 1100kV was selected as the Highest Voltage of UHV in Japan

- <u>Double circuit towres</u> must be used even for UHV transmission.
 - ←The acquisition of ROW is difficult in a country where land space is narrow.
- UHV transmission lines go through mountainous areas.

- A more compact tower is more advantageous. →1100kV was preferred.
- 1100kV was also estimated to have an economic advantage.

©2010 The Tokyo Electric Power Company, Inc.

Next page

Adoption of 1100kV as The Highest AC Voltage

800	1100	1200	1500			
2 × 4	2 × 2	2 × 2	1 × 2			
Easy	Feasible	Feasible	Difficult			
1.06	1.00	1.19	1.09			
91	110	123	125			
	800 2 × 4 Easy 1.06 91	800 1100 2 × 4 2 × 2 Easy Feasible 1.06 1.00 91 110	800 1100 1200 2×4 2×2 2×2 EasyFeasibleFeasible1.061.001.1991110123			

©2010 The Tokyo Electric Power Company, Inc.

Comparison with DC Transmission (1)

- If the part of the meshed main grid is composed of DC link
 - System reliability can not be guaranteed easily
 - Forced Outage Rate of DC link 1.64 %/yr (average of CIGRE survey)
 - Since multi-terminal DC link is necessary, the flexibility becomes lower for system expansion
 - Economic efficiency gets worse due to the multiterminal DC link
 - Reverse of power flow in some terminals requires mechanical switching of the main circuit.

Comparison with DC Transmission (2)

- Application to long distance power transmission
 - The transmission distance in Japan is about 600km, not so long as that in other countries, as a result, the economic efficiency of DC is comparatively low.
 - The shutoff recovery sequence of HVDC due to AC system faults (including the frequent faults such as single phase grounding fault) impacts on system stability.
 - If HVDC is applied to nuclear power transmission instead of hydro power, the following subjects should be carefully studied regarding interaction of nuclear power generator and DC system:
 - Coordinated control in normal operation and DC system fault
 - Possibility of SSTI (Sub-synchronous Torsional Interaction)

UHV Testing Facilities in Japan (1)

- Full scale tower for switching impulse testing.
 - Shiobara, CRIEPI
 - 2 phases
 - Maximum voltage : (1st phase)2.6MV, (2nd)2.3MV

UHV Testing Facilities in Japan (2)

- Full scale conductor bundle for testing corona noise.
 - Shiobara, CRIEPI
 - Size of Cage;
 8m × 8m × 24m
 - Maximum voltage;
 up to 1,200kV

UHV Testing Facilities in Japan (3)

- Full scale tower & lines for corona noise test.
 – Akagi, CRIEPI
 - Length : 600m
 - Number of Towers : 3

Prototype Development

- Prototype UHV transformer
 - Half unit of a singlephase transformer

3. TEPCO's UHV Project

Introduction of UHV System for Future Development by TEPCO

- Steady growth of peak demand
- Increase of power flow from remote power plants
- Land acquisition problems anticipated with future 550kV system expansion:

- Necessity of many transmission routes.

Current State of TEPCO's UHV

1100kV Transmission Lines

 430km UHV designed transmission lines had been constructed, and they are operated at 550kV.

1100kV Substation Equipment

• All necessary substation equipment has been energized in a field test yard since 1996.

Upgrading to 1100kV

• Planned for mid-2010s.

Construction of UHV Designed Transmission Lines

TOKYO ELECTRIC POWER COMPANY

UHV Transmission Tower and Line

©2010 The Tokyo Electric Power Company, Inc.

TEPCO

Downsizing of Transmission Tower

- It is essential to make transmission towers smaller for cost reduction and environmental consideration.
- The overvoltage level is suppressed for downsizing.

←Tower size depends on its insulation level, or overvoltage level.

1100kV Double-Circuit Tower Design

110.0m

 Typical tower height is reduced to 110m by suppressing switching overvoltage level to 1.6-1.7PU.

(143m for 2.0PU overvoltage level)

 Electromagnetic field strength is the same level as that of the 550kV tower.

©2010 The Tokyo Electric Power Company, Inc.

Ground wires

Conductors

UHV Substation Equipment Test Site

TOKYO ELECTRIC POWER COMPANY

TEPCC

Substation Equipment Field Test

• One set of substation equipment has been energized since 1996.

©2010 The Tokyo Electric Power Company, Inc.

TEPCO

4. Conclusion

- The highest adopted UHV voltage in Japan is 1100kV.
- TEPCO constructed more than 400km of 1100kV designed transmission lines, which are currently operated at 550kV.
- For substation technology, the equipment has been energized in the test yard since 1996.
- \rightarrow UHV technology has been established.
- TEPCO will upgrade the lines to 1100kV in 10 years time.

JICA Technical Assistance for Power Development Plan 7 in Vietnam

> Methods of Bulk Power Transmission from Nuclear PPs & Coal TPPs in South Eastern Vietnam

March 3rd, 2010 JICA Technical Assistance Team

Power Generation

 Nuclear Power Plants Dien Hat Nhan 1: 4,000MW Dien Hat Nhan 2: 4,000MW Coal Thermal Power Plants • ND Than Vinh Tan: 4,400MW 2,400MW • ND Van Phong: Pumpted Strage Power Plant • TD Tich Nang: 1,200MW Total 16,000MW

Present Plan

Power Flow Analysis

Assumption

- Integrate the whole system of Ho Chi Minh area
 - Background power system: behind My Phuoc, Tan Dinh, and Song May
- Capacity of the background system: 35,000MVA
 - Maximum power demand in 2020: 51,000MW
 - Power flow from NPP, CTPP, and PSPP: 16,000MW

Power Flow Analysis

- 500kV Transmission Line
 - Line Constants (ACSR330x4,100MVA Base)
 - o R: 0.00001pu/km
 - o X: 0.000112pu/km
 - o B: 0.010025pu/km
 - Thermal Rating
 - o 2,400MVA/cct
- Step-up Transformer
 - Impedance b/w Primary and Secondary Sides
 - 14% (Machine Base)
 - Rated Capacity
 - O Generator capacity/power factor (0.85) → nearest 50s

Power Flow Analysis

Generators

- Pmax (MW/unit)
 - Nuclear Power Plant: 1,000
 - Coal Thermal Power Plant:
 - Pumped Storage Power Plant:
- 1,000 500 and 600 600

- Mbase
 - o Pmax/0.85
- Power Factor
 - Leading 0.85 Lagging 0.90

Stability Analysis

- Assumptions
 - Generator Model
 - Nuclear Power Plants and Coal Thermal Power Plants
 - GENROU

T'do	T''do	T'qo	T''qo	Н	D	Xd
5.2	0.015	1	0.015	4.76	0	1.74
Xq	X'd	X'q	X''d = X''q	XI	S(1.0)	S(1.2)
1.72	0.29	0.29	0.2	0.168	0.1	0.4

- Pumped Storage Power Plant
 - GENSAL

T'do	T"do	T"qo	Н	D	Xd
6.27	0.041	0.047	4.01	0	0.93
Xq	X'd	X''d = X''q	XI	S(1.0)	S(1.2)
0.61	0.31	0.2	0.13	0.1	0.37

- o Slack (Ho Chi Minh System)
 - GEN CLS

Н	D
5.00	0

Stability Analysis

- Assumptions
 - Exciter Model

o SEXS

T _A /T _B	Τ _Β	К	Τ _Ε	E _{MIN}	E _{MAX}
0.1	10	100	0.1	0	5.0

- Governor
 - o N/A
- Fault Clearing Time
 - o 80msec

Stability Analysis

- Analysis Case
 - Fault Section (1cct)
 - Dien Hat Nhan 1 P/S Ho Chi Minh 500kV Slack
 - Fault Sequence
 - Omsec: Single Circuit Three-phase Short Circuit Fault
 - 80msec: Fault Clearance (1cct open)
 - 10sec: End of Calculation
 - Phase Angle Difference
 - Ho Chi Minh ND Than Vinh Tan: Green
 - Ho Chi Minh Dien Hat Nhan 1 :
 - Ho Chi Minh Dien Hat Nhan 2 :
 - Ho Chi Minh ND Van Phong :
 - Ho Chi Minh TD Tich Nang :

Blue Light Blue Pink Yellow

Analysis Result

• Unstable

Analysis Result

• Stable

Modified System Plan consisted only of 500kV Lines

Number of Circuits Required

Results

Transmission Line		Number of Circuits			
From	То	Original Plan	Modified Plan	Difference	
ND Van Phong	Nha Trang	2	2	0	
Nha Trang	TD Tich Nang	1	1	0	
Nha Trang	Dien Hat Nhan 2	1	1	0	
TD Tich Nang	Dien Hat Nhan 2	1	2	+1	
Dien Hat Nhan 1	Dien Hat Nhan 2	2	4	+2	
Dien Hat Nhan 1	ND Than Vinh Tan	2	3	+1	
Dien Hat Nhan 1	Ho Chi Minh (My Phuoc)	2	2	0	
Dien Hat Nhan 1	Ho Chi Minh (Tan Dinh)	2	2	0	
ND Than Vinh Tan	Ho Chi Minh (Song May)	4	8	+4	

Application of UHV System

 Large-scale power development in remote location and grid expansion

- System stability problem
- Short-circuit fault current problem
 - o 500kV System
 - Need a number of routes to secure required transmission capacity and to improve stability

- Huge investment
- Route selection
- Land acquisition and compensation
- o 1000kV (UHV) System
 - Smaller number of routes
 - Improvement in stability

Power Flow Analysis

1000kV Transmission Line

- Line Constants (ACSR810x8,100MVA Base)
 - o R: 0.00000082pu/km
 - o X: 0.00002599pu/km
 - o B: 0.02988817pu/km
- Thermal Rating
 - o 17,800MVA/cct
- Transformer
 - Impedance b/w Primary and Secondary Sides
 - 12% (Machine Base)
 - Rated Capacity
 - o 6,000MVA/unit

Stability Analysis

- Assumptions
 - Same as those of 500kV System Case
- Analysis Case
 - Fault Section (1cct)
 - ND Than Vinh Tan P/S Ho Chi Minh 1000kV Bus
 - Fault Sequence
 - Omsec: Single Circuit Three-phase Short Circuit Fault
 - 80msec: Fault Clearance (1cct open)
 - 10sec: End of Calculation
 - Phase Angle Difference
 - Ho Chi Minh ND Than Vinh Tan:
 - Ho Chi Minh Dien Hat Nhan 1 :
 - Ho Chi Minh Dien Hat Nhan 2 :
 - Ho Chi Minh ND Van Phong :
 - Ho Chi Minh TD Tich Nang :

Green Blue Light Blue Pink Yellow

3,379

Results

Unit: MW

Ф

Φ

Ho Chi Minh

1000kV System

N-1 considered

Analysis Result

• Unstable

Results

働

Ho Chi Minh

1000kV System

Ф

- Unit: MW
- N-1 considered

Analysis Result

• Stable

Modified System Plan consisted 1000kV and 500kV Lines

Number of Circuits Required

o Results

Transmis	sion Line	Number of Circuits		ts
From	То	Original Plan	Modified Plan	Difference
ND Van Phong	Nha Trang	2	2	0
Nha Trang	TD Tich Nang	1	1	0
Nha Trang	Dien Hat Nhan 2	1	1	0
TD Tich Nang	Dien Hat Nhan 2	1	2	+1
Dien Hat Nhan 1	Dien Hat Nhan 2	2	4	+2
Dien Hat Nhan 1	ND Than Vinh Tan	2	6	+4
Dien Hat Nhan 1	Ho Chi Minh (My Phuoc)	2	2 (UHV)	0
Dien Hat Nhan 1	Ho Chi Minh (Tan Dinh)	2	2 (UHV)	0
ND Than Vinh Tan	Ho Chi Minh (Song May)	4	2 (UHV)	-2

Transmission Line Loss

Voltage	500	500kV		UHV		
Num. of cct	11	12	3	5	6	
P loss (MW)	684.57	641.11	376.52	308.85	290.5	
Q loss (MVAR)	8,685.78	8,193.19	11,345.81	9,098.09	8,500.52	
Stability	Δ	ОК	NG	NG	ОК	

• Calculation Condition

- P loss difference:
- Annual load factor:
- Loss factor:
- Long-term marginal cost:
- Project life time:
- Discount rate:
- Annual Energy Loss
 - 1,900,394 MWh/year
 - US\$77.3million/year
- Transmission Line Loss over the Project Life Time (Difference)
 - US\$1,027million

350.61MW (=641.11-290.50) 0.75 0.61875 0.0407US\$/kWh 30years 7%

Other Issues to be considered (1)

• Application of large size conductors

- ACSR330x4 \rightarrow ACSR610x4, ACSR810x4
- Increase in the number of conductors per bundle
 - 6-bundle, 8-bundle, ...
- Application of series capacitor
 - Sub-synchronous resonance (SSR) problem
- Application of HVDC
- Application of PSS for stability improvement

Other Issues to be considered (2)

- Cost estimation
 - Construction cost
 - Transmission line
 - Substation
 - Transformer
 - GIS
 - Land acquisition cost
 - Compensation for land beneath the T/L

Fault Currents at Generation Sites

3rd June 2010 Hanoi

Bulk Power Transmission System

- Nuclear2, Nuclrea1 and Vinh Than should be in separate operation due to large fault currents.
- The number of required circuits will be studied.
 - 500kV
 - UHV
 - To keep stability and fault current levels
 - Cost Comparison including losses

Comparison of 500 kV and UHV system from South East Area in Vietnam

- in consideration with power stations delayed, UHV cost or loss value increasing

June 14 2010 TEPCO/JICA TA Team

Power Generation to be Transmitted to Ho Chi Min City

Unit: MW

	2017	2019	2010	2020	2021	2022	2022	2024	2025	2026	2027	2028	2020	2020
	2017	2010	2013	2020	2021	2022	2023	2024	2025	2020	2021	2020	2029	2030
Van Phong #1	660	660	660	660	660	660	660	660	660	660	660	660	660	660
Van Phong #2		660	660	660	660	660	660	660	660	660	660	660	660	660
Van Phong #3		660	660	660	660	660	660	660	660	660	660	660	660	660
Van Phong #4			660	660	660	660	660	660	660	660	660	660	660	660
Pump Storage PP		300	900	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500
From Central Area*							75	75	75	225	300	540	705	870
Nha Trang Load	-320	-360	-400	-480	-480	-520	-560	-600	-680	-720	-760	-840	-920	-960
Nuclear PP #1				1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Nuclear PP #2					1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Nuclear PP #3								1,000	1,000	1,000	1,000	1,000	1,000	1,000
Nuclear PP #4									1,000	1,000	1,000	1,000	1,000	1,000
Nuclear PP #5											1,350	1,350	1,350	1,350
Nuclear PP #6												1,350	1,350	1,350
Nuclear PP #7													1,350	1,350
Nuclear PP #8														1,350
Total	340	1,920	3,140	4,660	5,660	5,620	5,655	6,615	7,535	7,645	9,030	10,540	11,975	13,450

•Vinh Tan Coal Thermal Power Station is excluded because the transmission line already decided.

•All the gen. with full outputs except for ¼ of Coal Central Generation from Central Area

•Ninh Thuan Load assumed 0. Nha Trang Load assumed 80% peak

500 kV Option in 2030

• Generation Side have to be divided into 2 or 3 Units in consideration of both 3 phase short circuit current and 1 phase ground fault.

• Generation Side have to be divided into 2 or 3 Units in

• Generation Side have to be divided into 2 or 3 Units in consideration of both 3 phase short circuit current and 1 phase ground fault.

Cost of Facilities

500 kV T/L in Vietnam UHV T/L in Vietnam UHV S/S in Vietnam

Loss Values

Loss Factor Unit Cost of Loss

Others

O&M RoW for 500 kV in Vietnam RoW for UHV in Vietnam Discount Rate

0.5 million USD/km/cct 1.25 million USD/km/cct 0.0406 million USD/MVA

> 0.8 0.08 USD/kWh

2% 0.105 million USD/cct/km 0.189 million USD/cct/km 9%

Transmission Capacity per circuit	
500 kV	1,200 MW
1,100 kV	4,500 MW

Systems in 2017 to 2051 were evaluated on the condition that from 2031 the same values kept as in 2030 up to 2051.

Result of Base Case

	500 kV	UHV
Loss	1,305	390
RoW	264	226
Investment + OM	1,531	2,415
Total Cost	3,100	3,031
Ratio of Total Cost	100%	98%
NPV Investment + OM for 5 years (mUSD)	962	1,596

Nuclear I 2023 & NII 2027

	500 kV	UHV
Loss	1,212	357
RoW	243	211
Investment + OM	1,406	2,263
Total Cost	2,861	2,832
Ratio of Total Cost	100%	99%
NPV Investment + OM for 5 years (mUSD)	654	1,195

Nuclear I 2025 & NII 2027

	500 kV	UHV
Loss	1,162	339
RoW	232	202
Investment + OM	1,340	2,181
Total Cost	2,733	2,722
Ratio of Total Cost	100%	100%
NPV Investment + OM		
for 5 years (mUSD)	654	1,195

Nuclear I 2023 & NII 2030

	500 kV	UHV
Loss	1,099	322
RoW	233	207
Investment + OM	1,350	2,181
Total Cost	2,682	2,710
Ratio of Total Cost	100%	101%
NPV Investment + OM for 5 years (mUSD)	654	1,195
Nuclear I 2025 & NII 2032

500 kV	UHV
988	285
217	197
1,253	2,055
2,458	2,538
100%	103%
654	1.195
	500 kV 988 217 1,253 2,458 100%

Raising up Investment of UHV to 10%

	500 kV	UHV
Loss	1,305	390
RoW	264	226
Investment + OM	1,531	2,657
Total Cost	3,100	3,273
Ratio of Total Cost	100%	106%
NPV Investment + OM for 5 years (mUSD)	962	1,755

Loss value increased 2 % a year up to 2030

	500 kV	UHV
Loss	1,612	483
RoW	264	226
Investment + OM	1,531	2,415
Total Cost	3,407	3,125
Ratio of Total Cost	100%	92%
NPV Investment + OM for 5 years (mUSD)	962	1,596

Summary of Sensitivity to Nuclear P/S Delay, UHV Cost or Loss Value Increasing

Commissioning year of Nuclear I	Commissioning year of Nuclear II	Annual Growth Ratio of Unit Cost of Loss	Increase in cost of UHV	500 kV	UHV
2020	2027	2%	0%	100%	92%
2020	2027	0%	0%	100%	98%
2023	2027	0%	0%	100%	99%
2025	2027	0%	0%	100%	5 100%
2023	2030	0%	0%	100%	5 101%
2025	2032	0%	0%	100%	103%
2020	2027	0%	10%	100%	106%

•If loss value becomes higher, UHV take much advantages.

•When NI and NII delayed 3 years, the difference of cost between 500 kV and UHV would not be so large.

•If the cost of UHV is increased by 10%, the difference of the cost between 500 kV and UHV would be increase by 6%.

Summary of Compariosn of 500 kV and UHV

The values shown in the table were evaluated in the base case.

	500 kV	UHV
Number of circuit	Large	Small
(Number in 2030)	14	4
Total Cost	Almost same as UHV	Almost same as 500 kV
Investment	Small	Large
	1,531 million USD	2,415 million USD
(Initial 5 years)	(962 million USD)	(1,596 million USD)
System Loss	Large	Small
	1,305 million USD	390 million USD

Ref. EXCEL DATA

Data

T/L UHV/500 in Japan 2.5	
500 kV substation in Vietnam	n (2x600MVA+1x250MVA (220/110 kV
32.2	million USD
500 kV S/S in Vietnam 0.024	million USD/MVA
500kV S/S in Japan Share	Ratio in kVA Unit Price 500kV/UHV
Civil 0.13	1.16
Equipment 0.87	1.97
Total 1	1.86
500 kV S/S in Vietnan Share	Ratio in kVA Unit Price 500kV/UHV
Civil 0.342	0.395
Equipment 0.474	0.932
Others 0.093	0.173
Reserve 0.091	0.169
Total 1	1.669
SS UHV/500 in Japan 1.669	
RoW D cct tower 3,000	million VND/km
RoW S cct tower 2,000	million VND/km
Exchange Rate 19,050	VND/USD
500kV RoW in Japan 21.7	m
UHV RoW in Japan 39	m
RoW UHV/500kV per circuit r	n Japan 1.797

Line resistance

degree Celsius	20	90							
	ohm/km		No.	ohm/km/cct	MVA	pu/km/cct	kV	km	pu/cct
ACSR 810	0.0356	0.045767	8	0.0057209	100	2.2884E-06	500	270	0.000617859
ACSR 810	0.0356	0.045767	8	0.0057209	100	4.728E-07	1,100	270	0.000127657
ACSR 410 (Drake)	0.07167	0.092139	4	0.0230347	100	9.2139E-06	500	270	0.002487752

1,100/500 kV Transformer winding loss ratio

Base Case (Nuclear I 2020 & NII 2027)

500 kV		2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
No. cct Gen. Side-HCM Uniit1		2	3	4	5	5	5	5	5	5	5	6	7	7	7
No. cct Gen. Side-HCM Uniit2	2	0	0	0	2	3	3	3	4	5	5	5	5	6	7
Loss (MW)		2	38	76	98	123	121	123	149	175	180	228	286	339	397
Loss (mUSD/Y)		1	21	42	55	69	68	69	84	98	101	128	160	190	222
NPV Loss (mUSD)	1,305	1	19	36	42	49	44	41	46	49	46	54	62	68	73
ROW (mUSD/Y)		57	28	28	85	28	0	0	28	28	0	28	28	28	28
NPV ROW (mUSD)	264	57	26	24	66	20	0	0	16	14	0	12	11	10	9
Investment Gen. Side-HCM U	niit1 (mUSI	270	135	135	135	0	0	0	0	0	0	135	135	0	0
Investment Gen. Side-HCM U	niit2 (mUSI	0	0	0	270	135	0	0	135	135	0	0	0	135	135
OM (mUSD)		5	8	11	14	19	22	22	22	24	27	30	32	32	35
NPV Investment + OM (mUSE	1,531	275	131	123	323	109	14	13	86	80	12	70	65	60	55
NPV Total (mUSD)	3,100	333	177	182	431	178	58	54	147	143	59	135	138	137	137
	100%														
UHV		2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
UHV S/S (MVA)			8,000	12,000	16,000	16,000	16,000	16,000	20,000	20,000	20,000	26,000	28,000	32,000	36,000
No. cct U-design Gen. Side -H	ICM	2	2	2	3	3	3	3	3	3	3	4	4	4	4
Loss (MW)		0	7	16	25	37	36	37	45	58	60	63	84	101	122
Loss (mUSD/Y)		0	4	9	14	21	20	20	25	32	33	35	47	57	68
NPV Loss (mUSD)	390	0	4	7	11	15	13	12	14	16	15	15	18	20	22
ROW (mUSD/Y)		142	0	0	71	0	0	0	0	0	0	71	0	0	0
NPV ROW (mUSD)	226	142	0	0	55	0	0	0	0	0	0	30	0	0	0
Investment UHV S/S (mUSD)		0	324	162	162	0	0	0	162	0	0	243	81	162	162
Invesetment UHV TL Gen. Sid	de-HCM (ml	675	0	0	338	0	0	0	0	0	0	338	0	0	0
OM (mUSD)		14	20	23	33	33	33	33	36	36	36	48	50	53	56
NPV Investment + OM (mUSE	2,415	689	316	156	412	24	22	20	109	18	17	266	51	77	71
NPV Total (mUSD)	3,031	830	320	164	477	38	35	32	122	35	32	311	69	97	93
NPV Investment + OM for init	98% ial 5Y (mUSI 500 kV UHV	D) 962 1,596													

NI 2023 & NII 2027

500 kV		2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
No. cct Gen. Side-HCM Uniit1		2	3	4	5	5	5	5	5	5	5	6	7	7	7
No. cct Gen. Side-HCM Uniit2		0	0	0	0	0	0	2	3	3	3	4	5	6	7
Loss (MW)		2	38	76	82	82	80	97	121	118	123	199	286	339	397
Loss (mUSD/Y)		1	21	42	46	46	45	55	68	66	69	111	160	190	222
NPV Loss (mUSD)	1,212	1	19	36	36	33	29	33	37	33	32	47	62	68	73
ROW (mUSD/Y)		57	28	28	28	0	0	57	28	0	0	57	57	28	28
NPV ROW (mUSD)	243	57	26	24	22	0	0	34	16	0	0	24	22	10	9
Investment Gen. Side-HCM Uniit1	(mUSI	270	135	135	135	0	0	0	0	0	0	135	135	0	0
Investment Gen. Side-HCM Uniit2	(mUSI	0	0	0	0	0	0	270	135	0	0	135	135	135	135
OM (mUSD)		5	8	11	14	14	14	14	19	22	22	24	30	32	35
NPV Investment + OM (mUSE	1,406	275	131	123	115	10	9	169	84	11	10	124	116	60	55
NPV Total (mUSD)	2,861	333	177	182	172	42	38	235	137	44	42	195	200	137	137
	100%														
UHV		2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
UHV S/S (MVA)			8,000	12,000	12,000	12,000	12,000	16,000	16,000	16,000	16,000	24,000	28,000	32,000	36,000
No. cct U-design Gen. Side -HCM		2	2	2	2	2	2	3	3	3	3	3	4	4	4
Loss (MW)		0	7	16	22	22	21	25	36	35	36	61	84	101	122
Loss (mUSD/Y)		0	4	9	12	12	12	14	20	20	20	34	47	57	68
NPV Loss (mUSD)	357	0	4	7	9	9	8	8	11	10	9	15	18	20	22
ROW (mUSD/Y)		142	0	0	0	0	0	71	0	0	0	0	71	0	0
NPV ROW (mUSD)	211	142	0	0	0	0	0	42	0	0	0	0	27	0	0
Investment UHV S/S (mUSD)		0	324	162	0	0	0	162	0	0	0	324	162	162	162
Invesetment UHV TL Gen. Side-H0	CM (ml	675	0	0	0	0	0	338	0	0	0	0	338	0	0
OM (mUSD)		14	20	23	23	23	23	33	33	33	33	40	50	53	56
NPV Investment + OM (mUSE	2,263	689	316	156	18	16	15	318	18	17	15	154	213	77	71
NPV Total (mUSD)	2,832	830	320	164	27	25	23	368	29	27	25	168	259	97	93
	99%														
NPV Investment + OM for initial 5	Y (mUSI	D)													
500	1.17	CE A													

500 kV 654 UHV 1,195

NI 2023 & NII 2030

500 kV		2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
No. cct Gen. Side-HCM Uniit1		2	3	4	5	5	5	5	5	5	5	5	5	5	6
No. cct Gen. Side-HCM Uniit2		0	0	0	0	0	0	2	3	3	3	4	5	5	5
Loss (MW)		2	38	76	82	82	80	97	121	118	123	152	189	193	248
Loss (mUSD/Y)		1	21	42	46	46	45	55	68	66	69	85	106	108	139
NPV Loss (mUSD)	1,099	1	19	36	36	33	29	33	37	33	32	36	41	38	45
ROW (mUSD/Y)		57	28	28	28	0	0	57	28	0	0	28	28	0	28
NPV ROW (mUSD)	233	57	26	24	22	0	0	34	16	0	0	12	11	0	9
Investment Gen. Side-HCM Unit	t1 (mUSI	270	135	135	135	0	0	0	0	0	0	0	0	0	135
Investment Gen. Side-HCM Unit	t2 (mUSI	0	0	0	0	0	0	270	135	0	0	135	135	0	0
OM (mUSD)		5	8	11	14	14	14	14	19	22	22	22	24	27	30
NPV Investment + OM (mUSE	1,350	275	131	123	115	10	9	169	84	11	10	66	62	10	54
NPV Total (mUSD)	2,682	333	177	182	172	42	38	235	137	44	42	114	114	48	108
	100%														
UHV		2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
UHV S/S (MVA)			8,000	12,000	12,000	12,000	12,000	16,000	16,000	16,000	16,000	22,000	22,000	22,000	26,000
No. cct U-design Gen. Side -HCI	М	2	2	2	2	2	2	3	3	3	3	3	3	3	4
Loss (MW)		0	7	16	22	22	21	25	36	35	36	44	60	61	69
Loss (mUSD/Y)		0	4	9	12	12	12	14	20	20	20	25	34	34	38
NPV Loss (mUSD)	322	0	4	7	9	9	8	8	11	10	9	10	13	12	13
ROW (mUSD/Y)		142	0	0	0	0	0	71	0	0	0	0	0	0	71
NPV ROW (mUSD)	207	142	0	0	0	0	0	42	0	0	0	0	0	0	23
Investment UHV S/S (mUSD)		0	324	162	0	0	0	162	0	0	0	243	0	0	162
Invesetment UHV TL Gen. Side-	HCM (ml	675	0	0	0	0	0	338	0	0	0	0	0	0	338
OM (mUSD)		14	20	23	23	23	23	33	33	33	33	38	38	38	48
NPV Investment + OM (mUSE	2,181	689	316	156	18	16	15	318	18	17	15	119	15	14	179
NPV Total (mUSD)	2,710	830	320	164	27	25	23	368	29	27	25	129	28	26	214
	101%														
NPV Investment + OM for initial	5Y (mUSI	D)													
50	0 kV	654													

UHV 1,195

NI 2025 & NII 2027

500 kV		2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
No. cct Gen. Side-HCM Uniit1	l i i i i i i i i i i i i i i i i i i i	2	3	4	5	5	5	5	5	5	5	6	7	7	7
No. cct Gen. Side-HCM Uniit2	2	0	0	0	0	0	0	0	0	2	3	3	3	5	7
Loss (MW)		2	38	76	82	82	80	82	80	92	123	170	229	309	397
Loss (mUSD/Y)		1	21	42	46	46	45	46	45	52	69	96	128	173	222
NPV Loss (mUSD)	1,162	1	19	36	36	33	29	27	25	26	32	40	50	62	73
ROW (mUSD/Y)		57	28	28	28	0	0	0	0	57	28	28	28	57	57
NPV ROW (mUSD)	232	57	26	24	22	0	0	0	0	28	13	12	11	20	18
Investment Gen. Side-HCM U	niit1 (mUSI	270	135	135	135	0	0	0	0	0	0	135	135	0	0
Investment Gen. Side-HCM U	niit2 (mUSI	0	0	0	0	0	0	0	0	270	135	0	0	270	270
OM (mUSD)		5	8	11	14	14	14	14	14	14	19	24	27	27	32
NPV Investment + OM (mUSE	1,340	275	131	123	115	10	9	8	7	142	71	67	63	106	99
NPV Total (mUSD)	2,733	333	177	182	172	42	38	35	32	197	116	120	123	187	190
	100%														
UHV		2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
UHV S/S (MVA)			8,000	12,000	12,000	12,000	12,000	12,000	12,000	16,000	16,000	22,000	24,000	32,000	36,000
No. cct U-design Gen. Side -I	НСМ	2	2	2	2	2	2	2	2	3	3	3	3	4	4
Loss (MW)		0	7	16	22	22	21	22	21	23	36	48	69	85	122
Loss (mUSD/Y)		0	4	9	12	12	12	12	12	13	20	27	39	48	68
NPV Loss (mUSD)	339	0	4	7	9	9	8	7	6	7	9	11	15	17	22
ROW (mUSD/Y)		142	0	0	0	0	0	0	0	71	0	0	0	71	0
NPV ROW (mUSD)	202	142	0	0	0	0	0	0	0	36	0	0	0	25	0
Investment UHV S/S (mUSD)		0	324	162	0	0	0	0	0	162	0	243	81	324	162
Invesetment UHV TL Gen. Sid	de-HCM (ml	675	0	0	0	0	0	0	0	338	0	0	0	338	0
OM (mUSD)		14	20	23	23	23	23	23	23	33	33	38	40	53	56
NPV Investment + OM (mUSE	2,181	689	316	156	18	16	15	14	13	267	15	119	47	254	71
NPV Total (mUSD)	2,722	830	320	164	27	25	23	21	19	310	25	130	62	296	93
NDV have a transmit a OM for init	100%														
NPV Investment + OW for Init		J)													
	500 KV	054													
	UHV	1,195													

NI 2025 & NII 2032

500 kV		2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
No. cct Gen. Side-HCM Uniit1		2	3	4	5	5	5	5	5	5	5	5	5	5	5
No. cct Gen. Side-HCM Uniit2		0	0	0	0	0	0	0	0	2	3	3	3	4	5
Loss (MW)		2	38	76	82	82	80	82	80	92	123	124	132	164	199
Loss (mUSD/Y)		1	21	42	46	46	45	46	45	52	69	70	74	92	112
NPV Loss (mUSD)	988	1	19	36	36	33	29	27	25	26	32	29	29	33	36
ROW (mUSD/Y)		57	28	28	28	0	0	0	0	57	28	0	0	28	28
NPV ROW (mUSD)	217	57	26	24	22	0	0	0	0	28	13	0	0	10	9
Investment Gen. Side-HCM Un	iit1 (mUSI	270	135	135	135	0	0	0	0	0	0	0	0	0	0
Investment Gen. Side-HCM Un	iit2 (mUSI	0	0	0	0	0	0	0	0	270	135	0	0	135	135
OM (mUSD)		5	8	11	14	14	14	14	14	14	19	22	22	22	24
NPV Investment + OM (mUSE	1,253	275	131	123	115	10	9	8	7	142	71	9	8	56	52
NPV Total (mUSD)	2,458	333	177	182	172	42	38	35	32	197	116	39	37	98	98
	100%														
UHV		2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
UHV S/S (MVA)			8,000	12,000	12,000	12,000	12,000	12,000	12,000	16,000	16,000	18,000	18,000	22,000	22,000
No. cct U-design Gen. Side -H	СМ	2	2	2	2	2	2	2	2	3	3	3	3	3	3
Loss (MW)		0	7	16	22	22	21	22	21	23	36	35	37	47	63
Loss (mUSD/Y)		0	4	9	12	12	12	12	12	13	20	20	21	26	36
NPV Loss (mUSD)	285	0	4	7	9	9	8	7	6	7	9	8	8	9	12
ROW (mUSD/Y)		142	0	0	0	0	0	0	0	71	0	0	0	0	0
NPV ROW (mUSD)	197	142	0	0	0	0	0	0	0	36	0	0	0	0	0
Investment UHV S/S (mUSD)		0	324	162	0	0	0	0	0	162	0	81	0	162	0
Invesetment UHV TL Gen. Side	e-HCM (ml	675	0	0	0	0	0	0	0	338	0	0	0	0	0
OM (mUSD)		14	20	23	23	23	23	23	23	33	33	35	35	38	38
NPV Investment + OM (mUSE	2,055	689	316	156	18	16	15	14	13	267	15	49	14	71	12
NPV Total (mUSD)	2,538	830	320	164	27	25	23	21	19	310	25	57	22	81	24
	103%														
NPV Investment + OM for initia	al 5Y (mUS	D)													
Ę	500 kV	654													
l	JHV	1.195													

UHV Cost +10%

500 kV		2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
No. cct Gen. Side-HCM Uniit1	Í	2	3	4	5	5	5	5	5	5	5	6	7	7	7
No. cct Gen. Side-HCM Uniit2	2	0	0	0	2	3	3	3	4	5	5	5	5	6	7
Loss (MW)		2	38	76	98	123	121	123	149	175	180	228	286	339	397
Loss (mUSD/Y)		1	21	42	55	69	68	69	84	98	101	128	160	190	222
NPV Loss (mUSD)	1,305	1	19	36	42	49	44	41	46	49	46	54	62	68	73
ROW (mUSD/Y)		57	28	28	85	28	0	0	28	28	0	28	28	28	28
NPV ROW (mUSD)	264	57	26	24	66	20	0	0	16	14	0	12	11	10	9
Investment Gen. Side-HCM U	niit1 (mUSI	270	135	135	135	0	0	0	0	0	0	135	135	0	0
Investment Gen. Side-HCM U	niit2 (mUSI	0	0	0	270	135	0	0	135	135	0	0	0	135	135
OM (mUSD)		5	8	11	14	19	22	22	22	24	27	30	32	32	35
NPV Investment + OM (mUSE	1,531	275	131	123	323	109	14	13	86	80	12	70	65	60	55
NPV Total (mUSD)	3,100	333	177	182	431	178	58	54	147	143	59	135	138	137	137
	100%														
UHV		2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
UHV S/S (MVA)			8,000	12,000	16,000	16,000	16,000	16,000	20,000	20,000	20,000	26,000	28,000	32,000	36,000
No. cct U-design Gen. Side -HCM		2	2	2	3	3	3	3	3	3	3	4	4	4	4
Loss (MW)		0	7	16	25	37	36	37	45	58	60	63	84	101	122
Loss (mUSD/Y)		0	4	9	14	21	20	20	25	32	33	35	47	57	68
NPV Loss (mUSD)	390	0	4	7	11	15	13	12	14	16	15	15	18	20	22
ROW (mUSD/Y)		142	0	0	71	0	0	0	0	0	0	71	0	0	0
NPV ROW (mUSD)	226	142	0	0	55	0	0	0	0	0	0	30	0	0	0
Investment UHV S/S (mUSD)	10%	0	357	178	178	0	0	0	178	0	0	268	89	178	178
Invesetment UHV TL Gen. Sid	10%	743	0	0	371	0	0	0	0	0	0	371	0	0	0
OM (mUSD)		15	22	26	37	37	37	37	40	40	40	53	55	58	62
NPV Investment + OM (mUSE	2,657	757	348	172	453	26	24	22	120	20	18	292	56	84	78
NPV Total (mUSD)	3,273	899	351	179	518	40	37	34	133	36	34	337	74	104	101
	106%														
NPV Investment + OM for init	ial 5Y (mUS	וח													
		-,													
	500 kV	962													

UHV 1,755

Loss Cost +2% per year (up to 2003)

500 kV		2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
No. cct Gen. Side-HCM Uniit1		2	3	4	5	5	5	5	5	5	5	6	7	7	7
No. cct Gen. Side-HCM Uniit2		0	0	0	2	3	3	3	4	5	5	5	5	6	7
Loss (MW)		2	38	76	98	123	121	123	149	175	180	228	286	339	397
Loss (mUSD/Y)		1	22	44	58	75	75	78	96	115	121	156	199	241	288
NPV Loss (mUSD)	1,612	1	20	37	45	53	49	46	53	58	55	66	77	86	94
ROW (mUSD/Y)		57	28	28	85	28	0	0	28	28	0	28	28	28	28
NPV ROW (mUSD)	264	57	26	24	66	20	0	0	16	14	0	12	11	10	9
Investment Gen. Side-HCM Uniit	l (mUSI	270	135	135	135	0	0	0	0	0	0	135	135	0	0
Investment Gen. Side-HCM Uniit	2 (mUSI	0	0	0	270	135	0	0	135	135	0	0	0	135	135
OM (mUSD)		5	8	11	14	19	22	22	22	24	27	30	32	32	35
NPV Investment + OM (mUSE	1,531	275	131	123	323	109	14	13	86	80	12	70	65	60	55
NPV Total (mUSD)	3,407	333	177	184	434	182	63	59	154	152	68	147	153	155	159
	100%														
UHV		2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
UHV S/S (MVA)			8,000	12,000	16,000	16,000	16,000	16,000	20,000	20,000	20,000	26,000	28,000	32,000	36,000
No. cct U-design Gen. Side -HCM		2	2	2	3	3	3	3	3	3	3	4	4	4	4
Loss (MW)		0	7	16	25	37	36	37	45	58	60	63	84	101	122
Loss (mUSD/Y)		0	4	9	15	22	22	23	29	38	40	43	58	72	88
NPV Loss (mUSD)	483	0	4	8	11	16	15	14	16	19	18	18	23	26	29
ROW (mUSD/Y)		142	0	0	71	0	0	0	0	0	0	71	0	0	0
NPV ROW (mUSD)	226	142	0	0	55	0	0	0	0	0	0	30	0	0	0
Investment UHV S/S (mUSD)		0	324	162	162	0	0	0	162	0	0	243	81	162	162
Invesetment UHV TL Gen. Side-HCM (ml		675	0	0	338	0	0	0	0	0	0	338	0	0	0
OM (mUSD)		14	20	23	33	33	33	33	36	36	36	48	50	53	56
NPV Investment + OM (mUSE	2,415	689	316	156	412	24	22	20	109	18	17	266	51	77	71
NPV Total (mUSD)	3,125	830	320	164	478	39	36	34	124	37	35	314	73	102	100
	92%														
NPV Investment + OM for initial 5	iy (mUSI	D)													
500	kV	962													

UHV 1,596

Thank you.

Appendix 1.B

Explanatory Materials for Technical Assistance on System Planning (Ho Chi Minh City Power Supply System) JICA Technical Assistance for Power Development Plan 7 in Vietnam

System Planning in Ho Chi Minh City taking into account Fault Current Reduction (Preliminary Study Results)

> June 11th, 2010 JICA Technical Assistance Team

Power Flow Analysis

Fault Current (3LS) Analysis

Allowable fault current level

- 50kA (500kV)
- 40kA (220kV)

Reduction in Fault Current

- Separate sections to form sub-system groups
- o Reference
 - TEPCO's 275kV system
- Other countermeasures
 - Split bus at the secondary side
 - Separate 500kV system in certain section
 - Application of fault current limiting equipment

End of Presentation Cåm on!

Appendix 1.C

Explanatory Materials for Technical Assistance on System Planning (Underground Transmission System)

Examples of Study Items of Tokyo Underground Cables

April 2010

Tokyo Electric Power Company

Typical Study Items for Underground Cables

- 1. Series resonance overvoltage
- 2. Parallel resonance overvoltage
- 3. Oscillatory overvoltage by islanding
- 4. Voltage Variation
- 5. Reactive Power Compensation
- 6. Switching overvoltage
- 7. Lightning overvoltage
- 8. Auto-reclose system

1. Series Resonance Overvoltage

Tokyo electric power company

1. Series Resonance Overvoltage

2. Parallel Resonance Overvoltage

2. Parallel Resonance Overvoltage

At parallel resonance frequency, $n\omega C = \frac{1}{n\omega L} + \frac{1}{n\omega L_0}$ (*n* = 2 for transformer inrush)

Tokyo electric power company

3. Oscillatory Overvoltage by Islanding

Example of the system islanding

3. Oscillatory Overvoltage by Islanding

Example of the overvoltage caused by the system islanding

Tokyo electric power company

3. Oscillatory Overvoltage by Islanding

$$V_m = \frac{E_m L}{L_0 (1 - \omega^2 CL) + L}, \quad \omega_0 = \sqrt{\frac{1}{CL_0} + \frac{1}{CL}}$$

4. Voltage Variation

5. Reactive Power Compensation

- Appropriate amount of shunt reactors will be found from the voltage profile in off-peak demand
- Necessity of shunt reactor stations (or switching stations) along the length of the cables will be found from the following aspects:
 - ✓ Voltage around the center of the cable
 ✓ Active power loss in the cables
 ✓ Impact on the transmission capacity
5. Reactive Power Compensation Installed Location of Shunt Reactors

	Advantage	Disadvantage		
Directly connected to the cable	- Can limit the overvoltage when one side of the cable is opened	 Cannot be used for voltage control when the cable is not-in-service (Some exceptions exist.) May cause DC offset current when the cable is energized 		
Connected to substation buses	 Can be shared by multiple cable routes Cheaper (tertiary side) 	- May cause reactive power imbalance during switching operations		

For long cables, shunt reactors are often directly connected to the cables due to the concern for the overvoltage and voltage variation.

5. Reactive Power Compensation Effects of Compensation Rate

	Close to 100%	Away from 100%		
Reactive power compensation	Preferable	Generally not preferable (depends on typical operating conditions)		
DC offset current	Not preferable (but can be avoided by a special relay)	Preferable		
Oscillatory overvoltage	Preferable	Not preferable		

5. Reactive Power Compensation 500kV Shin-Toyosu Cable Line

Tokyo electric power company

©2008 The Tokyo Electric Power Company, INC. All Rights Reserved.

5. Reactive Power Compensation: Compensation Rates of EHV Cables in TEPCO

Compensation Rate [%]

Most shunt reactors are automatically switched at scheduled times to control system voltages.

©2008 The Tokyo Electric Power Company, INC. All Rights Reserved.

5. Reactive Power Compensation DC Offset Current

6. Switching overvoltage Line energisation overvoltage

Example of Simulated randomness in line energisation

(1) Timing when CBs (three phases) receive the instruction to close themselves

 \rightarrow uniform distribution over one cycle

(2) Close timing difference between phases

normal distribution with standard deviation 1ms

6. Switching overvoltage Ground fault and Fault-clearing overvoltage

Example of different fault timings

- (1) Fault point \longrightarrow Five points in each cable route
- (3) Fault timing $\longrightarrow 0^{\circ}-180^{\circ}(10^{\circ} \text{ step})$

The slow-front overvoltage (2% value) will be evaluated against SIWV of equipment

7. Lightning Overvoltage

Sheath overvoltage can be severe due to high grounding resistance of the gantry.

Evaluation of sheath overvoltage with SVL (sheath voltage limiter) is necessary.

8. Auto-reclose system

Fault section detection for a mixed OHL / cable line

Unless the block signal is received, auto-reclose will be executed.

Utilization of Underground System - Example of Tokyo

April 2010

Contents

- Underground Cables
- Underground Substations

1. Underground Cables

Outline of Underground Cables

Route Selection and Coordination with Other Load Utilizations

Route Selection

- Environment
- Shortest Length
- Future Planning
- Coordination with Other Utilities

Decision of New Underground S/S Place

Tokyo electric power company

Coordination with Road Administrators to Construct Underground Cable

Roa		d administrator		Utility
Information acquisition		_		
• Planning of the construction				¢
 Coordination of the construction plan Ex-ante coordination Coordination of the construction plan Planning and cordination about the road 				
• Coordination for an implementation of the construction plan		_		
 Order from the administrator Report from utilities 				
• Request from utilities and discussion		O		
 Management of road usage Applications for an occupancy of the underground of the road Report of start and completion of the work Record of the progress of the work 				\bigcirc
•Response to an accident or a disaster		_		-0

Common-use tunnel

- Why common-use tunnels are recommended in Tokyo metropolitan area?
- To prevent users of underground of roads from digging them repetitively
- To utilize underground of roads effectively

Common-use tunnel

Example of a common-use tunnel

http://www.mlit.go.jp/road/road_e/contents01/1-4-4.html

Coordination with Road Administrators for Usage of Common-use Tunnels

Road administrator		Utilities
Designation of a road to prepare for constructing a common-use tunnel: The road administrator designates a certain road section which can be used as a common- use tunnel in the future. After the designation, occupancy of the underground of the road will be limited.	Request for a construction of a	
Public notice that a common-use tunnel should be constructed: When utilities propose the road administrator to construct a common-use tunnel under a certain road, and if the propose is accepted as feasible enough, the administrator shall officially announce that the common-use tunnel should be constructed.	Comments and requests about	
Making a plan to construct the common-use tunnel: After considering requirement from prospective occupants of the tunnel, a plan to construct the common-use tunnel is made.	Contributions for the	
Construct of the common-use tunnel: The road administrator collects contributions for the construction and for occupancy of the road. A common-use tunnel itself is constructed by the input.	construction	
Installation into the common-use tunnel: After the completion of the construction, prospective occupants install their objects into the tunnel.	Installation of objects	
Finalization of installation : The road administrator collects contributions for the maintenances • to maintain, repair or rebuild the common-use tunnel when necessary, • and to deal with a post-disaster restoration, etc	Contributions for maintenances	

Construction Methods

Types of Cable Accommodation (1)

3. Tunnel

Pipe Jacking, Shield Tunnel

Types of Cable Accommodation (2)

4. Under Road Bridge

5. Bridge for cables only

Open-Cut Construction Method

Suburb or Tokyo 30 years ago

Light TrafficFew Underground Objects

Open-Cut Ducts, Tunnels

No-Open-Cut Construction Method

Cable Alignment Design

Cable Alignment Design

Cable Alignment Design

* pulling tension & thermal expansion, together with civil design

Water Cooling Design

Tunnel Cooling

Water Cooling System

• Consists of Tunnel part and Cooling station

Transmission Capacity Design

Summary of Design Items of Underground Cables

cooling station, information system, fire prevention design, etc.)

2. Underground Substation

Underground Substations in Tokyo Metropolitan Area

Land space limitationConstruction restriction

Design;

- Reliability
- Economic efficiency; space and volume cost
- •Safety
- Environmental harmony / Public acceptance

500kV U.ground S/S: 1 site (Output:1,500MVA)

Tokyo electric power company

275kV U.ground S/S: 23 site (Output:12,320MVA)

550kV Underground Substation (1)

ELECTRIC POWER COMPANY

 A Circular form building was adopted to save construction costs.
 (Building volume: 1/3 of Tokyo Dome)

 The building is divided into 3 sector parts and equipment is installed in each part.

550kV Shin-Toyosu Substation
550kV Underground Substation (2)

tokyo electric power company

275kV Underground Substation

275kV Takanawa Substation

275kV Gas Insulated Transformer

275kV-300MVA GIT

- Non flammable
- Space reduction

Examples of Study Items of Tokyo Underground Cables

April 2010

Tokyo Electric Power Company

Typical Study Items for Underground Cables

- 1. Series resonance overvoltage
- 2. Parallel resonance overvoltage
- 3. Oscillatory overvoltage by islanding
- 4. Voltage Variation
- 5. Reactive Power Compensation
- 6. Switching overvoltage
- 7. Lightning overvoltage
- 8. Auto-reclose system

4. Voltage Variation

5. Reactive Power Compensation

- Appropriate amount of shunt reactors will be found from the voltage profile in off-peak demand
- If the length of the cable is very long, necessity of shunt reactor stations (or switching stations) along the length of the cables will be found from the following aspects:
 - ✓ Voltage around the center of the cable
 ✓ Active power loss in the cables
 ✓ Impact on the transmission capacity

5. Reactive Power Compensation: Compensation Rates of EHV Cables in TEPCO

Compensation Rate [%]

Most shunt reactors are automatically switched at scheduled times to control system voltages.

5. Reactive Power Compensation DC Offset Current

7. Lightning Overvoltage

Sheath overvoltage can be severe due to high grounding resistance of the gantry.

Evaluation of sheath overvoltage with SVL (sheath voltage limiter) is necessary.