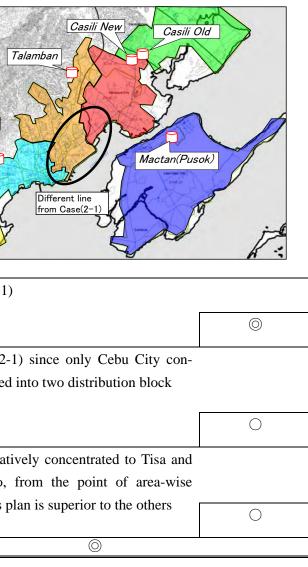
	Table C.II-06 Comparison of Alternative Block Plan						
Item	Case (1)	Case (2-1)					
Outline	Lagtang reservoir covers Talisay City in Lagtang D.B. Casili old reservoir covers Consolacion, Lilo-an and Compostela in C.L.C D.B. Mactan D.B is composed of Lapu-lapu City and Cordova covering with its own water and also imported water from Cebu Island. Boundary line among Tisa D.B, Talamban D.B and Casili D.B is prin- cipally based on the zone boundary so that consumed volume summed up by each zone is easily compared with the distributed volume from the reservoir. To detect the NRW ration of each distribution block. Demand balance among three major distribution block, Tisa, Talamban and Casili is 39: 28: 33	 Lagtang D.B, C.L.L D.B and Mactan D.B are under same conditions as Case (1). Boundary line among Tisa D.B, Talamban D.B and Casili D.B is principally based on the location of existing valves so that fabrication of the block is easily made by shutting the existing valves. Rough demarcation line is similar to the Case (1). Demand balance of Tisa, Talamban and Casili is almost same as Case (1) 38: 29: 32 	Lagtang D.B, C.L.L I conditions as Case (2- Boundary line betwee lessen the supply-dem Demand of Talamban Tisa: Talamban: Casili Cebu City is almost e City/Municipality belo its coverage into some				
Figure	Tisa Lagtang	Casili New Casili Old Talamban Different line from Case(1) Tisa Mactan(Pusok)	Tisa				
Additional block shutting valve	Without any valve insert construction work, block is easily fabricated \times	Without any valve insert construction work, block is easily fabricated	Easier than Case(2-1)				
NRW detection	Comparing with the consumption data compiled by zone, NRW ratio by distribution block is easily accessible.	To grasp NRW of each distribution block, additional re-compiling work of billing data based on the boundary demarcation is necessary \begin{bmatrix} \begin{bmatrix} \lefter \begin{bmatrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Better than Case (2-1 cessionaire is divided				
Demand-Supply balance	Promising ground water source is located mainly near Tisa and Talamban Block, so demand distribution is not so suitable in view of demand-supply balance.	Almost same as Case(1)	Demand is comparati Talamban D.B. So, supply balance, this pl				
Evaluation		0					
		Ŭ	1				

The Study for Improvement of Water Supply and Sanitation in Metro Cebu Water District Supporting Report: Chapter-I, Part-C, Water Supply Improvement

Case (2-2)


L D.B, Mactan D.B and Tisa D.B are under same (2-2).

veen Talamban D.B and Casili D.B is revised to emand gap of each distribution block.

an goes up, while that of Casili is down.

sili = **38: 37: 25**

t equally divided into 2 distribution area and other elong to certain distribution block without dividing me blocks.

Table C.II-07 Cover Area by each Distribution Block								
Distribution	Main Res-	Supply Zone Number						
Block	ervoir	Case(1)	Proposed case-Case (2-1)	Proposed case-Case (2-2)				
Lagtang	Lagtang	Part of 20(20-1 Talisay)	Same as Case (1)	Same as Case (1)				
Tisa	Tisa	1 to 8 and 10, plus 21 (Government)	1,2,4,5,6,7, 10, part of (8,9,12 and 13)	Same as Case (2-2)				
Talamban	Talamban	9, 11, 12 and 14 to 16	3,11,15,16, Part of (8,9,12,13, 14 and 17)	3,11,14,15,16, Part of (8,9,12,13 and 17)				
Casili	Casili New	13, 17, 18	18,part of (13, 14 and 17)	18, part of 17				
C.L.C	Casili Old	Part of 19(19-1 Consolacion) Part of 19(19-2 Lilo-an) and Part of 20(20-2 Compostela)	Same as Case (1)	Same as Case (1)				
Mactan	Casili New	Part of 19(19-3 Lapu-lapu Cebu Strait side) Part of 20(20-3 Lapu-lapu Bohol Strait side) Part of 20(20-4 Cordova)	Same as Case (1)	Same as Case (1)				

Zone vs. Block Matrix of Case (2-1)

zone		Distribution Block							
	Lagtang	Tisa	Talamban	Casili	CLC	Lapu-lapu/ Cordova			
1		100							
2		100							
3			100						
4		100							
5		100							
6		100							
7		100							
8		80	20						
9		50	50						
10		100							
11			100						
12		15	85						
13		10	5	85					
14			90	10					
15			100						
16			100						
17				100					
18				100					
19-1					100				
19-2					100				
19-3						10			
20-1	100								
20-2					100				
20-3						10			
20-4						10			
21		100							

Zone vs. Block Matrix of Case (2-2)

	Distribution Block							
zone	Lagtang	Tisa	Talamban	Casili	CLC	Lapu-lapu/ Cordova		
1		100						
2		100						
3			100					
4		100						
5		100						
6		100						
7		100						
8		80	20					
9		50	50					
10		100						
11			100					
12		15	85					
13		10	90					
14			100					
15			100					
16			100					
17			5	95				
18				100				
19-1					100			
19-2					100			
19-3						100		
20-1	100							
20-2					100			
20-3						100		
20-4						100		
21		100						

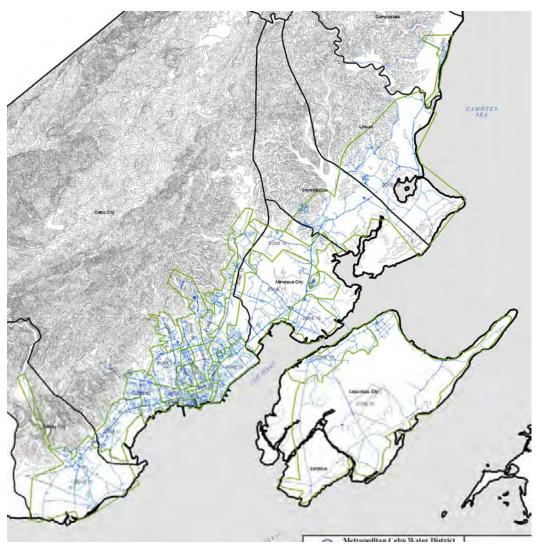
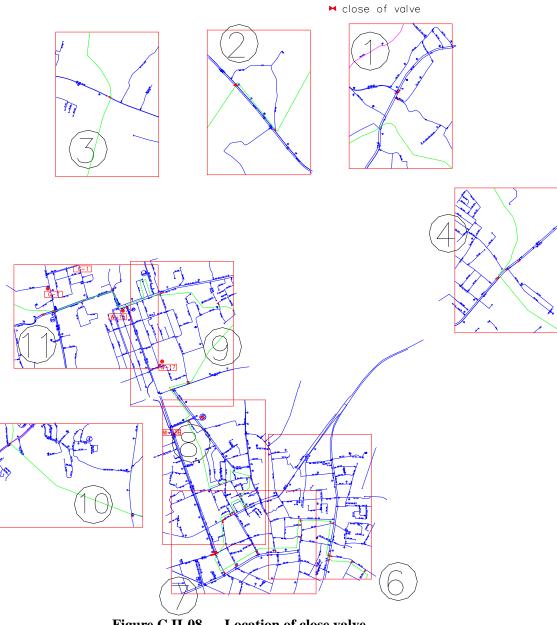
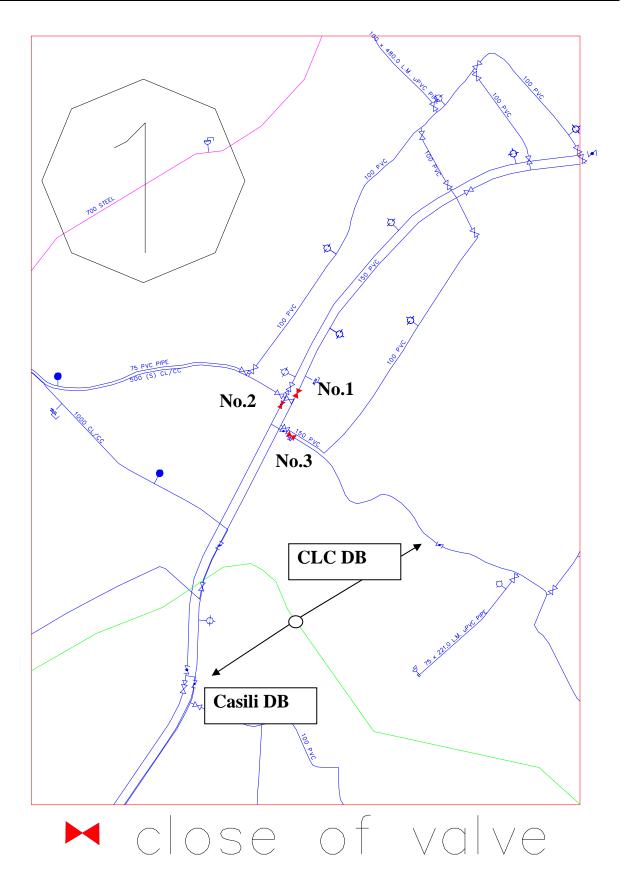
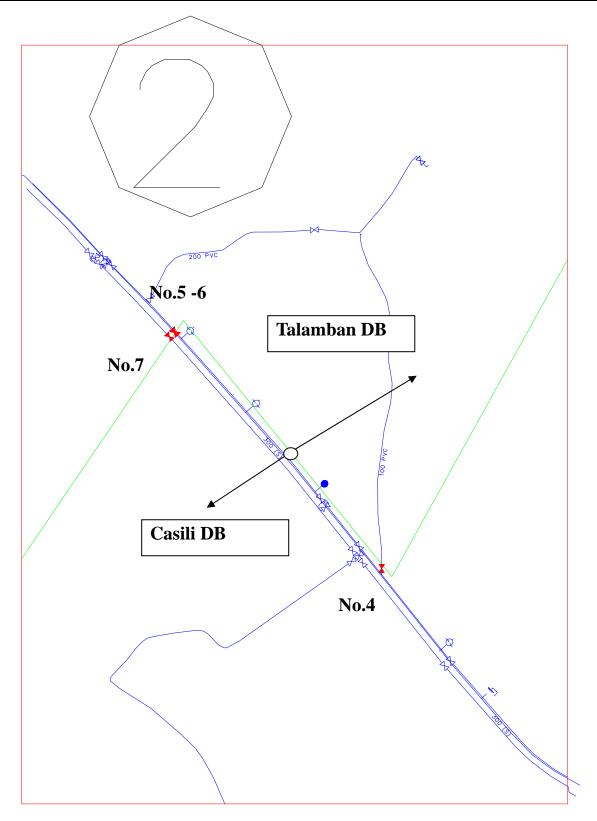


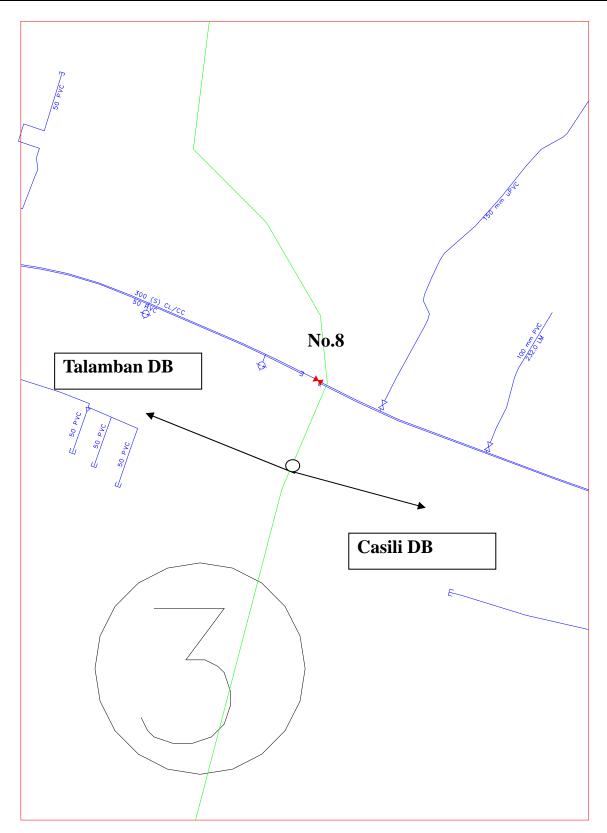
Figure C.II-07 MCDW billing zone map

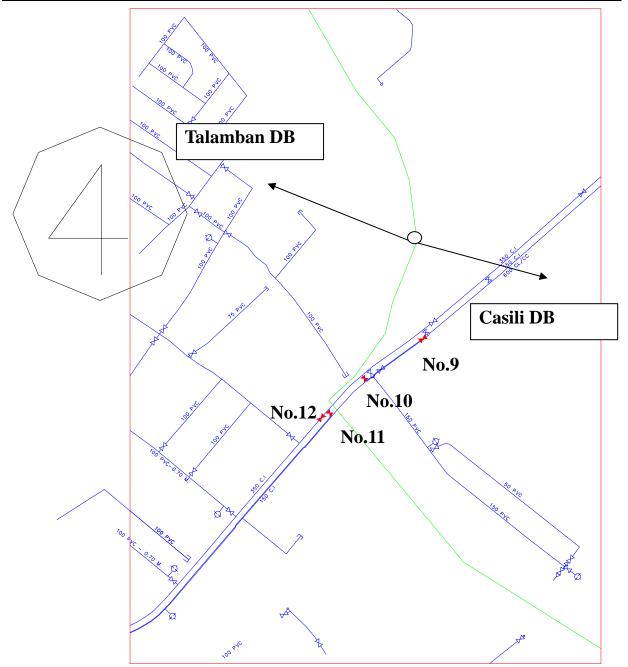

> Location and Number of Valves closed to form separate block

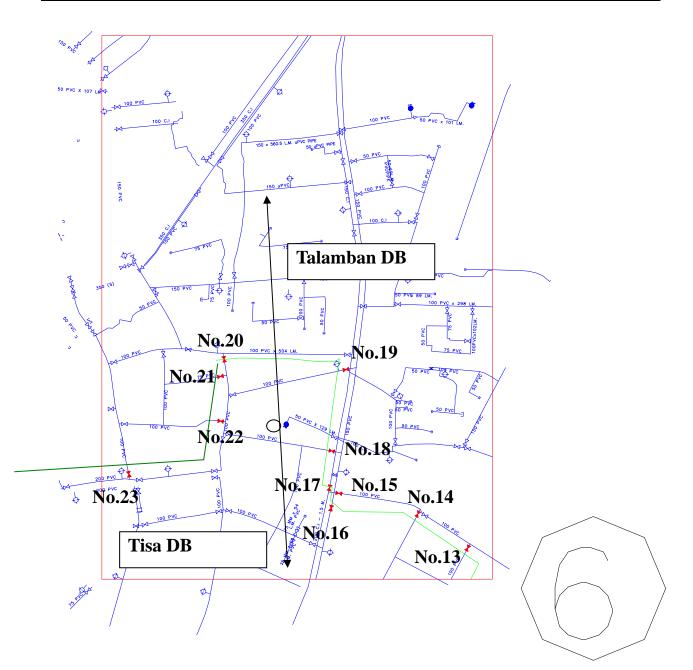
Location of the closing valves are shown in the following figures

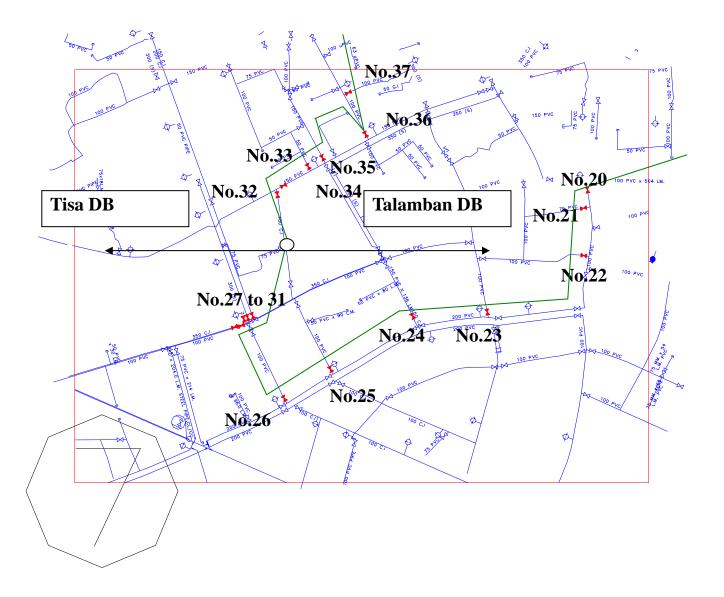

Number is summarized in the following table.

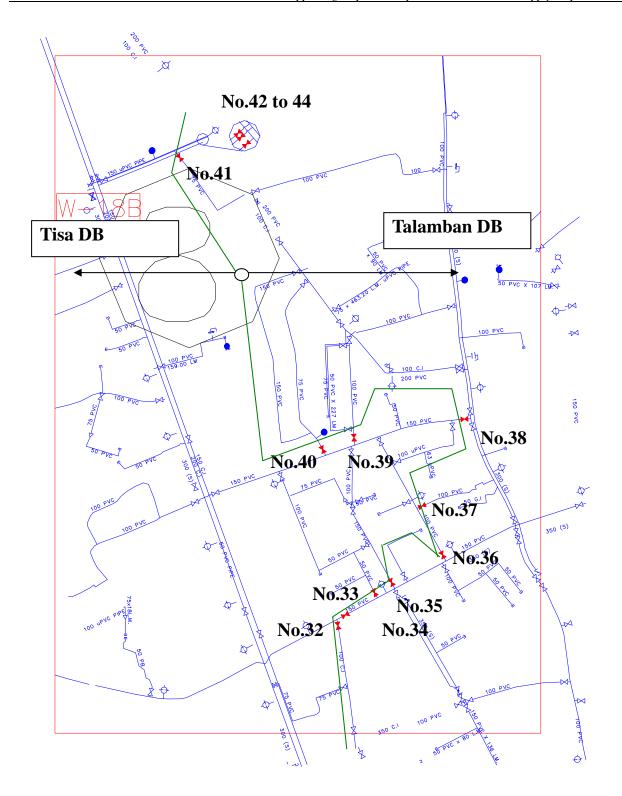

	Table C.II-08 Nos. of Closing	Valves
Boundary	Nos.	No. of Valve in Figure
CLC vs. Casili	3	No.1 to No.3
Casili vs. Talamban	9	No.4 to No.12
Talamban vs. Tisa	43	No.13 to No. 55
Tisa vs. Lagtang	2	No.56 and No.57
Casili vs. Mactan	2 booster pump station (one is exist	ing, one is planned)

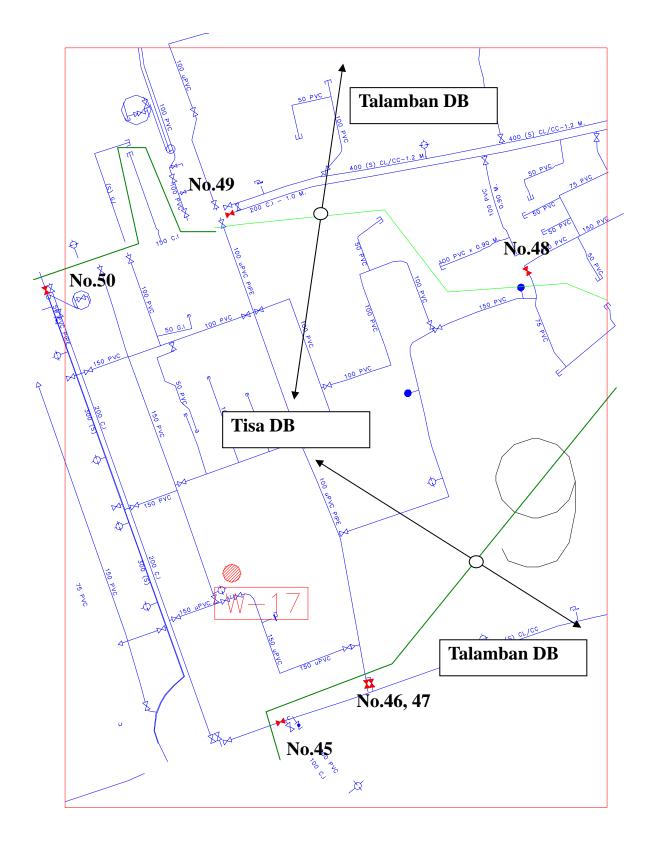

0 TT 08 ^Alocing Valves

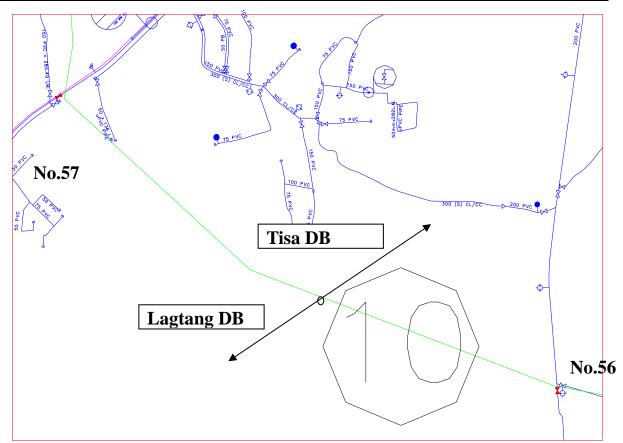


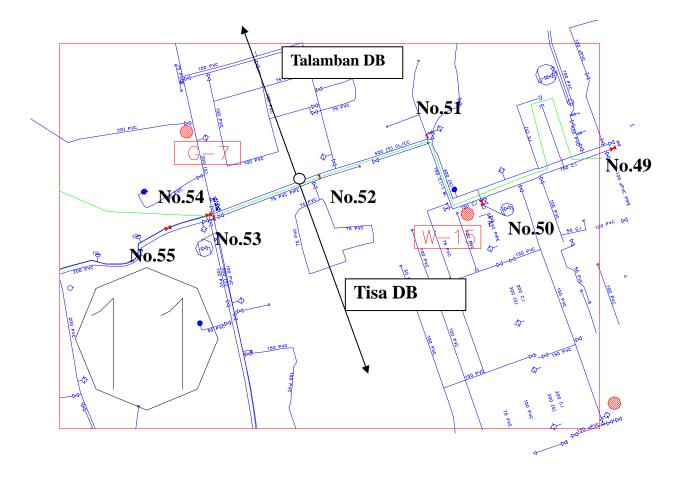







The Study for Improvement of Water Supply and Sanitation in Metro Cebu Water District Supporting Report: Chapter-I, Part-C, Water Supply Improvement





The Study for Improvement of Water Supply and Sanitation in Metro Cebu Water District Supporting Report: Chapter-I, Part-C, Water Supply Improvement

2) Water Demand of each Distribution Block in 2015

Distribution Block Demand Estimation

In III-2 Water Supply Demand Projection, domestic niche demand of each LGU in 2007 is not described but only total MCWD demand is figured as 98,705 m³/day. In this report, then, projected future demand is divided into each city/municipality based on the actual local consumption as of Dec. 2008 and projected increase volume up to target year. Due to the shortage of data, Lapu-lapu City and Cordova is summed up to one group. Adjusted result is shown in Table C.II-09. Projected increase volume, in Table C.II-10 comes from Table C.II-11

r		- J - J -				-				
LGU		Demand (m ³ /d)								
	(A). DEC. 2008	(B). Projected Increase from 2007 to 2015	(A)+(B)	Adjusted 2015 volume	(C). Projected Increase from 2007 to 2030	(A)+C	Adjusted 2030 volume			
Cebu	72,198	23,362	95,560	95,303	51,994	124,192	123,962			
Mandaue	16,444	15,901	32,345	32,258	36,656	53,100	53,002			
Talisay	6,453	8,227	14,680	14,641	19,829	26,282	26,234			
Laplap & Cordova	13,186	18,606	31,792	30,509	44,622	57,808	56,526			
C.L.C area	9,590	5,860	15,450	15,409	16,971	26,561	26,513			
Consolacion	4,543	2,810	7,353	7,333	6,118	10,661	10,641			
Liloan	4,357	2,343	6,700	6,682	8,534	12,891	12,868			
Compostela	690	707	1,397	1,394	2,319	3,009	3,004			
Total	117,871		189,827	188,120		287,943	286,237			

Table C.II-09Pi	rojection of Future Demand of Each LGU
-----------------	--

Table C.II-10 Increasing Volume from 2007 to Target Year

LGU	Increase Volume 2007-2015	Increase Volume 2007-2030	
Cebu City	23,362	51,994	
Lapu-lapu	16,788	40,652	
Cordova	1,818	3,970	
Lapu-lapu +Cordova	18,606	44,622	
Mandaue	15,901	36,656	
Compostela	707	2,319	
Consolacion	2,810	6,118	
Lilo-an	2,343	8,534	
Talisay City	8,227	19,829	

For example Increase volume 2007-2015 of Cebu City is $31,837-8,475=23,362 \text{ m}^3/\text{day}$ as shown in table above

	Niche Demand	2007	2010	2015	2020	2025	2030
	Residential, Commercial	0	6,418	18,286	24,835	32,603	41,722
Cebu City	Communal	8,475	10,189	13,551	15,034	16,710	18,747
	Total	8,475	16,607	31,837	39,869	49,313	60,469
	Residential, Commercial	0	3,940	11,784	16,847	23,349	31,615
Lapu-lapu	Communal	3,416	5,183	8,420	9,638	10,915	12,453
	Total	3,416	9,123	20,204	26,485	34,264	44,068
	Residential, Commercial	0	3,343	10,027	14,361	19,815	26,632
Mandaue	Communal	1,831	3,946	7,705	9,007	10,305	11,855
	Total	1,831	7,289	17,732	23,368	30,120	38,487
	Residential, Commercial	0	143	491	795	1,227	1,839
Compostela	Communal	118	189	334	404	491	598
	Total	118	332	825	1,199	1,718	2,437
	Residential, Commercial	0	949	2,646	3,525	4,560	5,763
Consolacion	Communal	31	85	195	246	309	386
	Total	31	1,034	2,841	3,771	4,869	6,149
	Residential, Commercial	0	559	1,553	2,072	2,681	3,400
Cordova	Communal	150	238	415	497	597	720
	Total	150	797	1,968	2,569	3,278	4,120
	Residential, Commercial	0	438	1,728	3,057	5,776	7,250
Lilo-an	Communal	120	326	735	919	1,138	1,404
	Total	120	764	2,463	3,976	6,914	8,654
	Residential, Commercial	0	2,214	6,506	9,138	12,432	16,517
Talisay City	Communal	1,019	1,611	2,740	3,208	3,716	4,331
	Total	1,019	3,825	9,246	12,346	16,148	20,848
	Residential, Commercial	0	18,002	53,020	74,630	102,444	134,738
Total	Communal	15,160	21,767	34,095	38,953	44,181	50,494
	Total	15,160	39,769	87,115	113,583	146,625	185,232
Demand	Residential, Communal	98,705	98,705	98,705	98,705	98,705	98,705
Adjustment	Government	2,300	2,300	2,300	2,300	2,300	2,300
	Niche Demand	116,165	140,774	188,120	214,588	247,630	286,237

As to the breakdown, domestic demand is calculated by reducing projected commercial volume in Table C.II-11 and fixed government demand from total volume of each LGU. Table C.II-12 and 13 show breakdown of demand in each LGU and DB.

		Water Demar			Distribution		Water Dema		
LGU		Dec. 2008	2015	2030	Block		Dec. 2008	2015	2030
	Domestic	61,439	79,452	102,915		Domestic	6,286	11,901	21,903
Cebu	Commerce	8,601	13,551	18,747		Commerce	167	2,740	4,331
Jebu	Government	2,158	2,300	2,300	Lagtang	Government		2,7 10	1,001
	Total	72,198	95,303	123,962			0.450	4.4.0.44	
	Domestic	14,584	24,553	41,147		Total	6,453	14,641	26,234
Mandaue	Commerce	1,860	7,705	11,855		Domestic	31,664	41,315	53,516
vianuaue	Government	0	-	-	Tisa	Commerce	3,268	5,149	7,124
	Total	16,444	32,258	53,002	1130	Government	2,158	2,300	2,300
	Domestic	6,286	11,901	21,903		Total	37,090	48,764	62,940
Talisay	Commerce	167	2,740	4,331		Domestic	29,775	38,137	49,399
-	Government	0	-	-	Talamban	Commerce	5,333	8,402	11,623
	Total	6,453	14,641	26,234		Government	0	-	-
	Domestic	10,455	21,674	43,353		Total	35,108	46,539	61,022
Laplap & Cordova	Commerce Government	2,731	8,835	13,173		Domestic	14.584	24,553	41,147
Coluova	Total	13,186	30,509	56,526		Commerce	1,860	7,705	11,855
	Domestic	4,511	7,138	10,255	Casili	Government	1,000	7,705	11,000
.	Commerce	32	195	386			, v	-	-
Consolacion	Government	-	-	-		Total	16,444	32,258	53,002
	Total	4,543	7,333	10,641		Domestic	9,509	14,145	24,125
	Domestic	4,322	5,947	11,464	CLC	Commerce	82	1,264	2,388
Lilo-an	Commerce	35	735	1,404	010	Government	-	-	-
Liio-an	Government	-	-	-		Total	9,590	15,409	26,513
	Total	4,357	6,682	12,868		Domestic	10,455	21,674	43,353
	Domestic	675	1,060	2,406		Commerce	2,731	8,835	13,173
Compostela	Commerce	15	334	598	Mactan	Government	,	-	-
composiela	Government	-	-	-		Total	13,186	30.509	56,526
	Total	690	1,394	3,004		Domestic	102,271	151,725	233,443
	Domestic	102,271	151,725	233,443		Commerce	13,442	34.095	233,443
Fotal	Commerce	13,442	34,095	50,494	Total		,	- 1	,
Uldi	Government	2,158	2,300	2,300		Government	2,158	2,300	2,300
	Total	117,871	188,120	286,237		Total	117,871	188,120	286,237

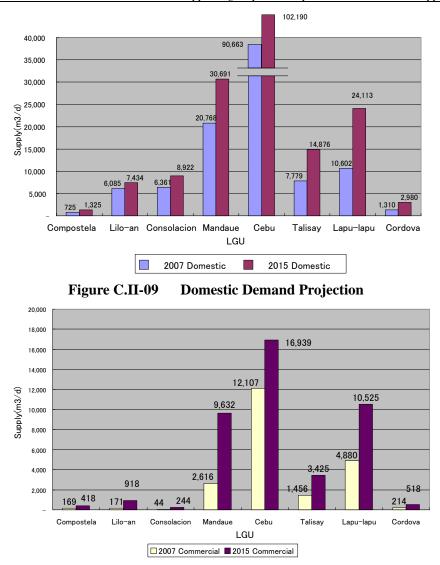
Assuming regionally flat NRW rate of 30% in 2007, 20% in 2015 and 17% in 2030, total demand including NRW is calculated.

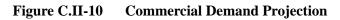
2008 December consumption volume comes from summation of consumption volume of each billing zone within the LGU. Since Cordova consumption and Lapu-lapu City consumption is not clearly demarcated in the data, consumed volume is summed up into one "Lapu-lapu & Cordova" category.

Table C.11-14 Distribution Block Demand										
	Area	Dec-	2008	20	15	2030				
Group	Distribution	w/o NRW	with NRW (30%)	w/o NRW (20%)		w/o NRW	with NRW (17%)			
	Lagtang	6,453	9,219	14,641	18,301	26,234	31,607			
South	Tisa	37,099	52,986	48,764	60,956	62,940	75,831			
	Talamban	35,108	50,154	46,539	58,173	61,022	73,521			
	Casili	16,444	23,491	32,258	40,323	53,002	63,858			
North	CLC	9,590	13,701	15,409	19,261	26,513	31,943			
	Mactan	13,186	18,836	30,509	38,136	56,526	68,104			
Total		117,871	168,387	188,120	235,150	286,237	344,864			

Table C II-14 **Distribution Block Demand**

Zone	City/Municipality		
Zone	City/Municipality	Daily Consumption	
1		4,811	
2	_	6,965	
3	-	2,969	
4	-	5,594	
5	-	3,494	
6	-	2,796	
7	-	3,134	
8	Cebu City	2,764	
9		3,153	
10		3,273	
11		4,807	
12		2,571	
13		6,925	
14		3,470	
15	-	7,886	
16	-	4,995	
		, , , , , , , , , , , , , , , , , , ,	5% of this zone volume is
17	Mandaue City	8,672	
18	-	8,206	
19		12,659	
19-1	Consolacion	4,543	
19-2	Lilo-an	4,357	
19-3	Lapu-lapu City (Except MEPZ)	3,759	Only Opon Channel side
20		16,570	
20-1	Talisay	6,453	
20-2	Compostela	690	
			Include MEPZ, Cordova and
			Lapu-lapu City except Opon
20-3	Cordova	9,426	Channel side
20-4	MEPZ	-	T I 1
			This volume is consumed in
21	Government	2,158	Cebu city
Total		117,871	


Table C.II-15Daily Consumption by Billing Zone in 2008 Dec.


> Demand Projection by City/Municipality including NRW

To estimate increasing volume from 2007 to 2015, demand including NRW is calculated by each LGU. Domestic volume between Lapu-lapu City and Cordova is estimated assuming 0.89 to 0.11 consumption rate considering the 2007 Dec. connection number. Domestic connection number in Lapu-lapu City is 7,780 and that in Cordova is 980.

Table C.II-16	Increasing Volume from 2007 to 2015 by LGU
---------------	--

	2007 Supp	2007 Supply (in m ³ /d with 30% of NRW)			2015 Supply (in m3/d with 20% of NRW)		
	Domestic	Commercial	Total	Domestic	Commercial	Total	
Compostela	725	169	894	1,325	418	1,743	
Lilo-an	6,085	171	6,256	7,434	918	8,352	
Consolacion	6,361	44	6,405	8,922	244	9,166	
Mandaue	20,768	2,616	23,384	30,691	9,632	40,323	
Cebu	90,663	12,107	102,770	102,190	16,939	119,129	
Talisay	7,779	1,456	9,235	14,876	3,425	18,301	
Lapu-lapu	10,602	4,880	15,482	24,113	10,525	34,638	
Cordova	1,310	214	1,524	2,980	518	3,498	
Total	144,293	21,657	165,950	192,531	42,619	235,150	

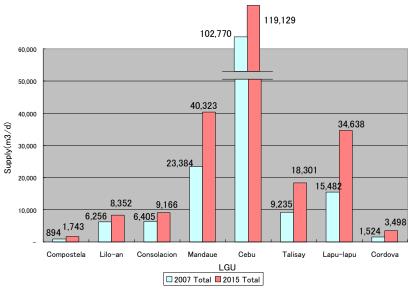


Figure C.II-11Total Demand Projection

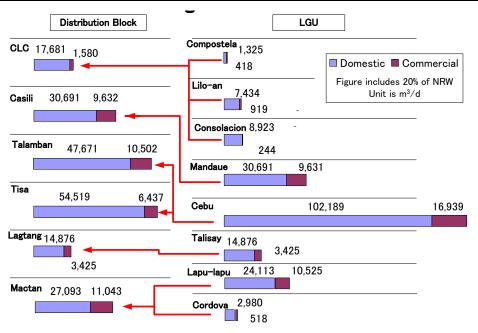


Figure C.II-12 Demand Re-alignment

3) Allocation for Water Source and Water Supply

Demand-Supply balance of each distribution balance is shown in Figure C.II-13. Breakdown of the supply is also shown in Figure C.II-14 and Figure C.II-15.

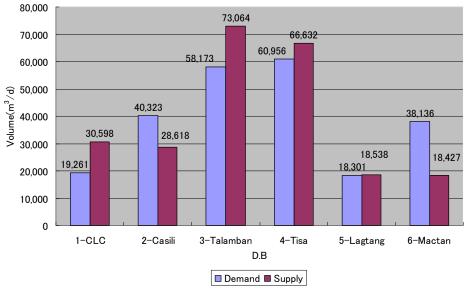
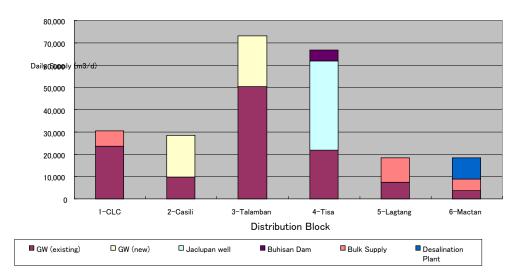
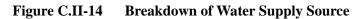




Figure C.II-13 Demand-Supply Balance

	Tab	le C.II-17	Demai	nd-Supply	Balance b	y DB and V	Water Sou	rce	
DR	Demand	Supply (m ³ /d)						Supply-Demand	
	. 3	GW (existing)	GW (new)	Jaclupan well	Buhisan Dam	Bulk Supply	Desalination Plant	Total	(m ³ /d)
1-CLC	19,261	23,598				7,000		30,598	11,337
2-Casili	40,323	9,918	18,700					28,618	-11,705
3-Talamban	58,173	50,264	22,800					73,064	14,891
4-Tisa	60,956	21,932		40,000	4,700			66,632	5,676
5-Lagtang	18,301	7,538				11,000		18,538	237
6-Mactan	38,136	3,827				5,000	9,600	18,427	-19,709
Total	235,150	117,077	41,500	40,000	4,700	23,000	9,600	235,877	727

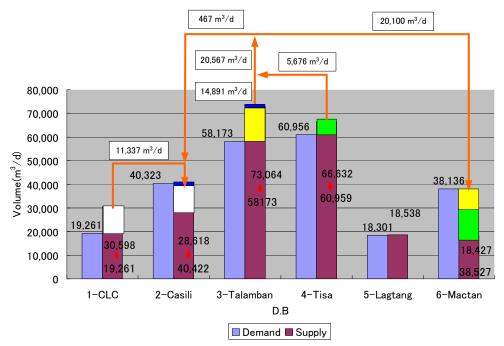
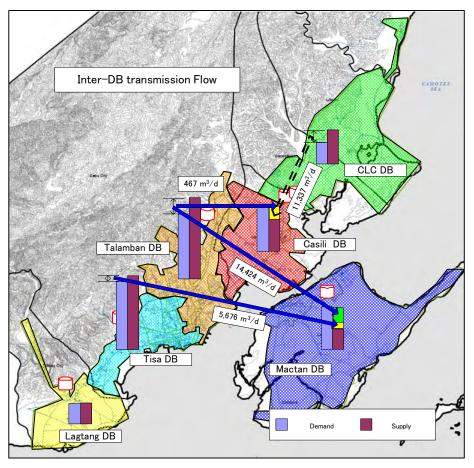
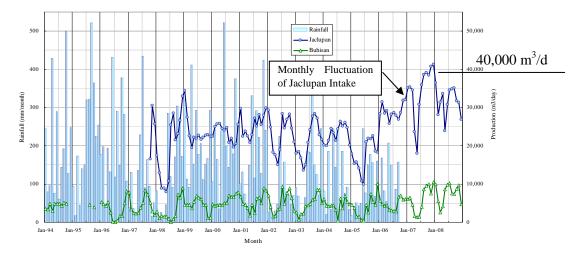
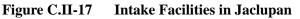


Figure C.II-15 **Demand-Supply Balance**


Figure C.II-16 Demand-Supply Balance

(4) Improvement of Water Supply Facility

1) Jaclupan Facility Improvement

Intake volume from Jaclupan Well field varies every month due to the fluctuation of underground water level mainly in accordance with rainfall as shown in the Figure below.

To reduce the river bed water seepage and also to keep its water level as constant as possible, additional underground wall is recommended to construct at the lower side of existing weir structure as is shown in the figure.

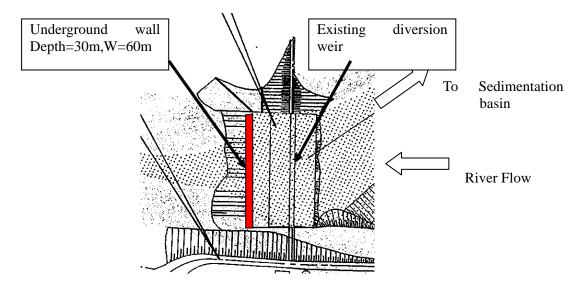


Figure C.II-18 Jaclupan Conversion Weir and new underground wall location

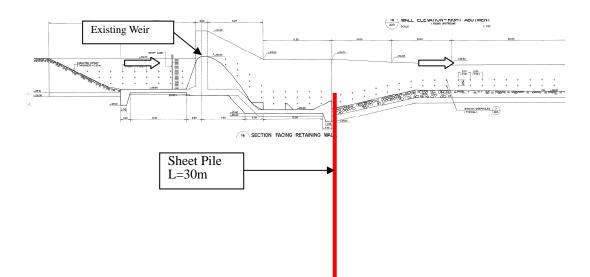


Figure C.II-19 Jaclupan Conversion Weir and new underground wall Section

Existing Jaclupan pump abstraction level is nearly 30m from ground level, so above illustrated sheet pipe can help raise groundwater level within Jaclupan well field.

Underground wall type is sheet pipe wall-type since it is less expensive than soil mixing wall-type

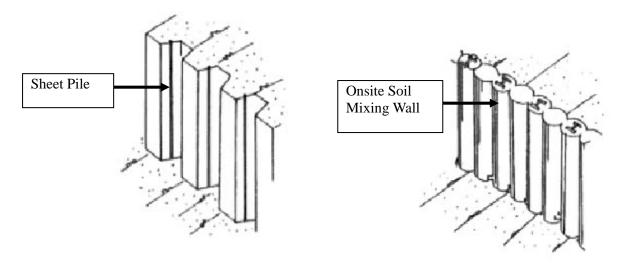
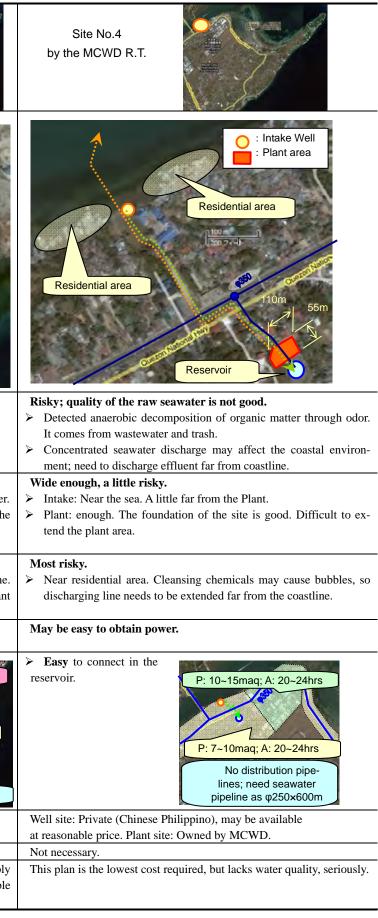
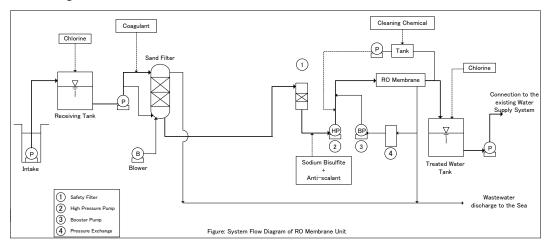


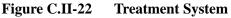
Figure C.II-20 Wall Type

2) Desalination Plant Development

Capacity of the desalination plant as of 2015 is 9,600 m³/d and it can be expanded in future in case water source supply from outside of MCWD jurisdiction is insufficient. Location, in-take/discharge system, treatment system of the plant and treated water usage is determined based on the two technical report, one is "Feasibility Study of Seawater Desalination Facility for Water Supply in Metro Cebu – Final Report – September 2005" (JBIC Study 2005) and "Preparatory Survey on the Programme Grant Aid for Environment and Climate Change (Water Technology) in the Republic of the Philippines" (JICA Study 2009). Project outline of the both report is described in the support report.


Since 5,670 m² of plant area is required, plant is located in the Site No.2 of JICA Study candidate location shown in Figure xxx considering land availability. Comparison table of location is shown in Table C.II-18 The site recommended in the JBIC study is too far from supply area and is neglected


Figure C.II-21 Location of Desalination Plant


		Table C.II-18 Comparison of Candidate sites	for Desalination Plant
Number and location	Site No.1 at the south of peninsula	Site No.2 at the base of the pen- insula	Site No.3 by the bay of Hadsan cove resort
Map and site abstract Map: from Google earth	E Intake Well Plant area (110m) (55m) (55m)	Vocational Training school 100 55m Pintake Well Plant area Secondary Stake well, if	Som Som Intake Well Plant area
Raw seawater quality	 Adequate. Possibility of good quality seawater. Some smell and some floating wastes were detected. Should estimate the quality of seawater. 	 Adequate. Possibility of good seawater quality. It is possible to intake seawater from either coast; in the case of seawater quality problems. 	Good.Maybe, best site to intake seawater based on quality.
Area for plant / intake and desalina- tion	 Wide enough, but a little risky. Intake: very near the sea. Plant: wide enough; but difficult to extend. The foundation of the site is good. 	 Very wide. Intake: very near the sea. Plant: wide enough; easy to extend. The foundation of the site is good. 	 Very wide. Intake: Near the sea, and the coral areas contain clean water. Plant: wide enough; easy to extend; the foundation of the site is good.
Wastewater discharging point	 Adequate. A little far from resort coast. Face to open sea 	Adequate.Far from resort coast or residential areas	 Adequate, a little risky. Far from residential areas, but near the resort coastline. Cleansing chemicals may cause bubbles; resorts may not want to accept such problems.
Power supply	May be able to obtain power.	May be able to obtain power. Need expense to wire for electricity for the Plant	May be able to obtain power. Need expense to wire for electricity for the Plant
Connection to the existing water supply	 Easy to connect in the constructing pipeline. Supply to the water shortage area possible, leading to service availability. 	 Find the constructing pipeline. Supply to the water shortage area possible, leading to service availability, and increased pressure. P: 7~10maq; A: 20~24hrs P: 3~7maq; A: 8~12hrs P: 3~7maq; A: 8~12hrs P: 3~7maq; A: 8~20~24hrs P: 3~7maq; A: 8~20~24hrs P: 3~7maq; A: 20~24hrs P: 3~7maq; A: 10~20hrs MCWD will build 	 Need to lay a new pipeline. Supply to the water shortage area possible, leading to service availability, and increased pressure. P: 7~10maq; A: 20~24hrs Close to the main Pipeline
Land owner and land cost	Private (Chinese Philippino), may be available at reasonable price.	Private (An American company), may be available at reason- able price.	Private (Chinese Philippino), may be expensive.
Resettlement	Not necessary.	Not necessary.	Not necessary.
Evaluation	Best alternative site plan. This site plan is superior in water qual- ity, meeting supply demand. New main pipeline under construction makes it connected.	Best site plan. This site plan meets supply service demand, but may be difficult to buy the site in the affordable cost.	This site plan is superior for water quality and in meeting supply demand, but may be difficult to buy the site in the affordable cost.

The Study for Improvement of Water Supply and Sanitation in Metro Cebu Water District Supporting Report: Chapter-I, Part-C, Water Supply Improvement

Proposed treatment system is drawn in Figure C.II-.22 and rough layout plan of the plant is shown in Figure C.II-23

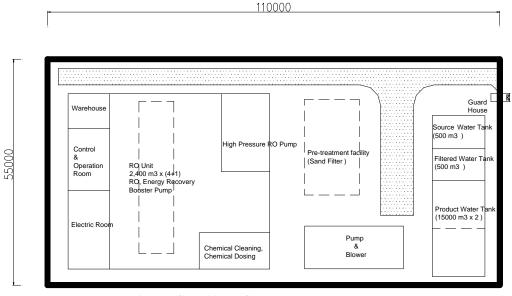


Figure C.II-23 General Layout Plan

Required area for proposed 9,600 m³/day capacity RO plant is calculated to be 5,670 m² (=0.45 x 9,600 + 1,350) from two studies and proposed $6,050m^2$ (=110m x 55m) area is enough for construction.

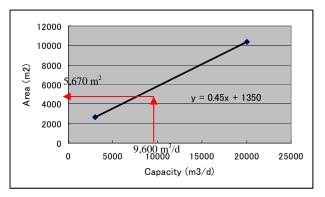
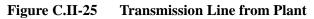



Figure C.II-24Required area for Desalination plant

Treated water is transmitted to the new reservoir next to the existing Pusok reservoir. Diameter of transmission pipe is 400mm and length is 8.1 km as shown in Figure C.II-25.

Construction and O&M cost is estimated based on the following data.

Sea Water Desalination Plant with the capacity of 9,600 m³/d;

- Construction Cost = 9,600 x 26,000 / 1,000,000 = 250 million PHP
- > O&M Cost = 9,600 x 7,500 / 1,000,000= 72 million PHP/year
- Land Acquisition Cost is estimated to be 90.75 Million PHP (=6,050 m² x 15,000 PHP/m²)
- > Transmission Pipe Diameter is 300mm of DCIP, length is 8.1 km

(Capacity Calculation of Proposed Desalination plant)

a) Design Conditions

···/		
\triangleright	Product water	9,600m ³ /day
\triangleright	Raw seawater/Product water	quality
	Raw water TDS	$35,000 \sim 38000 \text{ mg/L}$, Ave. $35,900 \text{ mg/L}^1$
	Product water TDS	less than 500 mg/L
۶	Recovery rate	40 %, 25 °C
\triangleright	RO inlet FI (Fouling Index) v	value less than 4
\triangleright	RO inlet turbidity	less than 0.5 NTU
۶	Max. operation temperature	$45^{\circ}\mathrm{C}$
\triangleright	Free chlorine	less than 0.1 mg/L

➢ pH range 2 to 11

b) Seawater intake facility

Seawater is collected through shallow wells described below.

¹ Source : JBIC (Japan Bank for International Cooperation), 4.2.11 Seawater Design Value, Final Report of Feasibility Study of Seawater Desalination Facility for Water Supply in Metro Cebu, September 2005

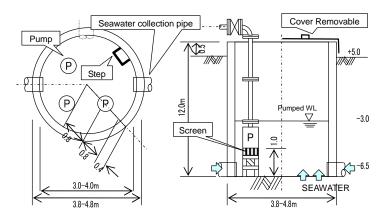


Figure C.II-26 Well for Collecting Seawater

To collect 24,000 m^3/d (=9,600/0.4) of seawater, each of three wells equips following pumps.

200 mm x 2.80 m3/min x 15 m x 15 kw x 3 (one stand-by)

c) Raw water (Seawater) storage tank

15 minutes of intake volume is designed to be storage volume.

V = (24,000 / 24 / 60 x 15) = 250 m³B=5.0 x W=5.0 x H=4.0 x 3 units V=300 m³

d) Pre-treatment

5 module (including 1 stand-by) is designed.

Feeding pump (Filt	er Pump)
Centrifugal pump	32 m^3 /hour (768 m ³ /day) x 40 mH x 8 unit x 4 module
Sodium Bisulfite de	osing system
Chemical NaH	(SO ₃ Solution (35%)
Tank 500	L x 3 unit
Dosing Pump	3.5 L/min x 700 KPa x 0.1 Kw x 230 V x 3 Phase x 60 Hz x 3 unit
 Multi media filter 	: :
Fouling Index, Slud	ge Density Index values both less than 4 or 3.
Туре	Vertical Multi Filtration
Filter Media	Anthracite + Sand
Dimension	1,830 x 2,400 mmHg / unit (2.7 m ² /unit) x 10 unit
Operation Velocity	13 m/hour
Backwash	30 m/hour, once every one or two weeks
 Anti-scalant dosi 	ng system
Tank	500 liter x 3 units
Dosing Pump	3 ml/ min x 1.57 MPa x 0.02 kW x 230 V x 3 phase x 60 Hz x 10 unit
Safety filter	
Unit	10 units
Material	Polypropylene
3 ml/min x	1.57 MPa x 0.02 kW x 230 V x 3 phase x 60 Hz x 10 unit
e) RO membrane unit	
RO membrane	
Material	Polyamide thin composite
Structure	Spiral
Nominal Capacity	$2,400 \text{ m}^3/\text{day}/\text{ unit x 5 unit (including 1 stand-by)}$
Production water To	tal Dissolved Solid
	TDS less than 500 mg/L, within
	WHO standard for drinking water
	÷

Salt rejection Feed flow rate (approx.) Recover Product flow rate (approx.) Nos. of elements Max. Feed flow per elemen Dimension of element Maximum pressure Maximum pressure drop	$206 (=2,400 \text{ m}^3/\text{day}/11.7 \text{ m}^3/\text{day}/\text{element})$	
 Vessel Vessel dimension Maximum operating pressu Unit vessel weight Inlet pressure Outlet pressure Brine pressure 	φ284 x 7,700 : (8 inch) ire 7.0 MPa 152 kg 6.17 to 6.28 MPa 0.05 to 0.15 MPa 5.78 to 5.9 MPa	
 High pressure pump Nos of unit 3 Type Specification Pipe and valve material 	Multistage High-pressure Centrifugal Pump 45m ³ /hr x 6.17Mpa x 110KW x 440V x 3ph PVC, SUS 316L, Dupley Stainless Steel	
 Booster pump Nos of unit Type Specification Material 	Multistage Centrifugal Pump 63 m ³ /hour x 25 mH x 7.5 KW x 440 V x 3p 904L, for parts that get wet	hase x 60Hz
 Energy recovery device Nos of unit 		
Type Material	Positive displacement, ERI, USA or equivale alloy, ceramic and grass fibered rein	
 Phosphate compound ➢ Chemical Tank Nos. of unit 3 c/√ Type Cylindric Capacity 4 m Material Poly Pump Nos. of unit 3 Type Centrifug Specification DNo 	aning System 20,000 mg/L, need to adjust pH up to 4 by Na 20,000 mg/L, need to adjust pH up to 10 by w dome top cal 3 vethylene	10H H_2SO_4
5 μm	Statilless steel	Opening

➤ Conditions

Frequency of Chemical cleaningevery three monthsDischargingwastewaterDilution or after neutralization
OperationSemi-automatic

g) Post treatment facility

To inject soda ash for pH adjustment and chlorine for disinfection to serve product water as drinking water.

Table C.11-19 Outline of Post Treatment Facilities				
	Item	Soda ash dosing for pH adjustment	NaOCl for disinfection	
Location		After RO skid	Before distribution	
Flow (m ³ /	day)	2,400 m ³ /day		
Dosing Ra	ate (mg/L)	3	1.5	
	Unit	3	3	
T 1	Туре	Cylindrical	Cylindrical	
Tank	Capacity (L)	300	300	
	Material	Polyethylene	Polyethylene	
	Unit	3	3	
Feeder	Chemical (kg/day)	3	1.5	

Table C.II-19	Outline of Post Treatment Facilities
	outline of 1 ost freatment 1 actities

> Outline of Former Desalination Plant Study

(Outline of the Plant proposed in JICA Study 2009)

Table C.II-20Outline of the Plant proposed in JICA Study 2009

Item	Facility	Specification	Remarks
1. Design Capacity		3,000 m ³ /day	
2. Service Population		20,000 person	
3. Main Facility	(1)Intake Well	Diameter 4.0 m	
	(2)Intake Pump	200mmx2.60m ³ /minx15kwx3units	
(3)Storage Tank		4.0m(W)x5.0m(L)x4.0m(H)	
(4)Pre-treatment		Sand Filterx3units	
(5)RO Membrane		1,000m ³ /day x 3units	Spiral Type
(6)Desalinized Water Tank 10.5m(W)x12.0m(L)		10.5m(W)x12.0m(L)x4.0m(H)	
	(7)Wastewater Tank 4.0m(W)x5.0m(L)x4.0m(H)		
	(8)Generator 750 kvA		
	(9)Others	Administration Building, Road,	Excluding the
		Drainage	fence and gate

(Treatment System)

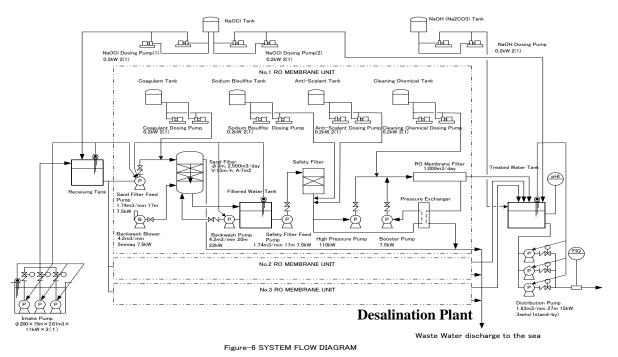
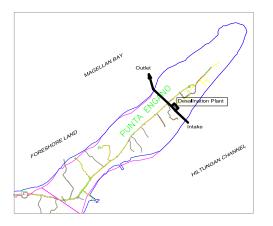


Figure C.II-27 Flow Diagram


(Layout Plan)

(Outline of the Plant proposed in JBIC Study 2005)

Outline of the plant is described in Table C.II-21.

System flow is as follows

Candidate site was a little north of JICA study site. Layout plan is shown in following figure

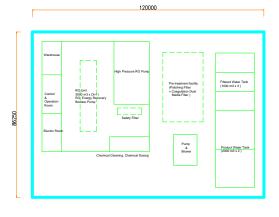
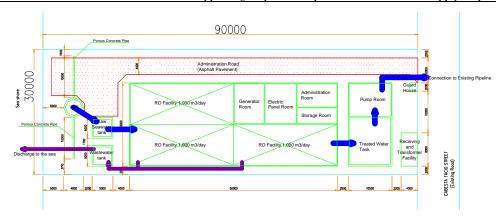
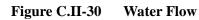




Figure C.II-28 Location

The Study for Improvement of Water Supply and Sanitation in Metro Cebu Water District Supporting Report: Chapter-I, Part-C, Water Supply Improvement

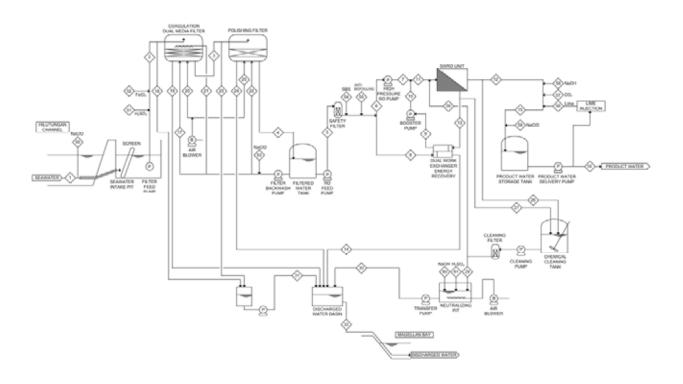


Figure C.II-31 System Flow

Item	Content
Project Name	Punta Engaño SWRO Desalination Project (SWRO=Sea Water Reverse Osmosis)
Location	Punta Engaño, Lapu-lapu City
Primary Water Use	Industry (MEPZ)
Total Production Capacity	15,000 m ³ /day (with additional 5,000 m ³ /day capacity for O&M or Stand-by)
Desalination Facility Description	
Intake	Shore intake (under seawater) from Hilutungan Channel, Intake volume is 20,000 m ³ /day
Pretreatment	Design Flow 30,000 m ³ /day =1,250 m ³ /hour, Coagulation dual media filter + Polishing Filter (6+1stand-by) SDI (Silt Density Index) <3.5
Main Treatment	Single Stage Reverse Osmosis System, 3+1stand-by unit, 5,000 m ³ /day per unit Membrane Type;Spiral Wound Type, Material; Polyamide(PA)
Post Treatment	Product Water 625 m ³ /day Sodium Hypochlorite (NaClO) ; Disinfection. Sodium Hydroxide (NaOH) ; pH Adjustment Lime (Cao, Ca(OH) ²) ; Langelier Saturation Index and taste control
Brine Disposition	Return to sea of Magellan Bay
Recovery Ratio	50%
Feed-water Description	Total Dissolved Solution 35,000 mg/l, Water Temperature 30°
Product-water Description	TDS <500 mg/l, Boron <2.0 mg/l, pH:7.5-8.5, LSI: slightly positive
Operation Pressure Range	5.5 – 6.0 MPa
Energy Recovery	Dual Work Exchanger Energy Recovery (DWEER)
Energy Source	New 13.8 kV distribution line of 10Km from new 138 kV substation of TRANSCO (The National Transmission Corporation)
Specified Electricity Consumption	3.4kWh/m ³
Start-up Date	2010 (planned)
Project Delivery Method	Undecided

Table C.II-21Outline of the JBIC Project

3) Tisa WTP Improvement

Although existing facility also equips rapid sand filter as stand-by facility or for emergency use, facility are already deteriorated and new construction is desirable. Treatment flow has varied every month as monthly precipitation varies. Although average flow is $4,700 \text{ m}^3/\text{day}$ in 2015, maximum capacity should be 10,000 m³/day based on the past performance below/

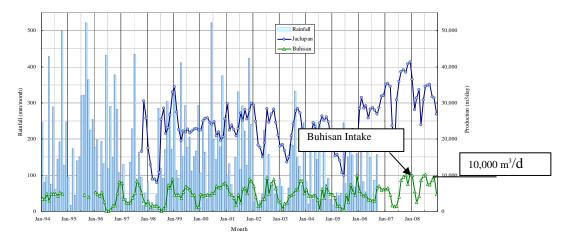
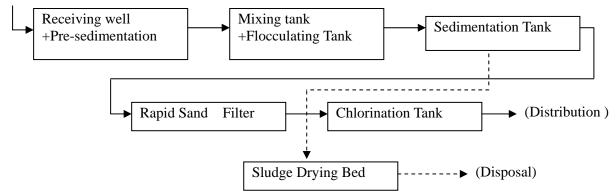
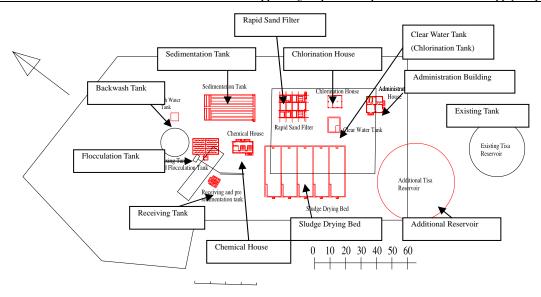
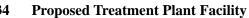


Figure C.II-32 Buhisan Intake

Treatment flow is as follows.

(Buhisan Dam)


Figure C.II-33 Flow Sheet of Proposed Treatment Plant

Rough alignment of the facility is described in Figure C.II-25 based on the capacity calculation of the plant and hydraulic profile is in the Figure C.II-26. Capacity calculation is shown in Table C.II-22.

Water quality of existing Tisa WTP is described in Table C.II-22, which shows only Calcium Hardness does not clear the National Drinking Standard.

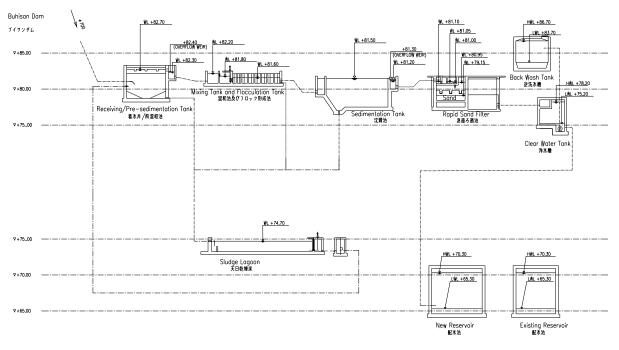


Figure C.II-35 Hydraulic Profile

Table C.II-22 Capacity Calculation of the WTP and Main Facility Dimension							
Item	Unit	Quantity			Receiving Tank / Pre Sedimentation	Retention Time 10min.	
Design Flow	m³/d	10,000		Design Conditions	Mixing Tank	Retention T	ime 1.0min.
	m ³ /h	417			Flocculation Tank	Retention T	ime 15min
	m³/m	6.94			Sedimentation Tank	Surface Load 15mm/min	
	m³/s	0.116			Rapid Sand Filter	Velocity 150m/d	
					Backwash Tank	One Backwash Volume	
					Sludge Tank	Daily Generated Sludge	
					Drying Bed	Drying time 150 days、 Surface Load 30kg/m ²	
Facility	Dimension	Unit	Quantity	Facility	Dimension	Unit	Quantity
	No.		2		No.		8(1stand-by)
	W	m	2.5	Rapid Sand Filter	W	m	4
	L	m	4.8		L	m	2.5
Receiving Tank / Pre Sedimentation	Н	m	3		Area	m ²	80
Pre Sedimentation	Area	m²	12		V (w.o stand-by)	m/d	143
	Volume	m ³	72		V (w. stand-by)	m/d	125
	Retention Time	min	10.4		No.		1
	No.		1		W	m	4.5
Mixing Tank	W	m	2.5	Backwash Tank	L	m	4.5
	L	m	1.5		Н	m	3
	H	m	1.4		Area	m ²	20.3
	Area	m²	3.8		Volume	m ³	60.8
	Volume	m³	5.32		No.		
	Retention Time	min	0.8		W	m	10
Flocculation Tank	No.			Drying Bed	L	m	32
	W	m	1.1		Н	m	1
	L	m	64		Area	m ²	1,600
	Н	m	0.8				
	Area	m ²	141				
	Volume	m ³	113				
	Retention Time	min	16.2				
Sedimentation Tank	No.	1	2				
	W	m	7.6				
	L H	m	30				
		2 m	3				
	Area	m ²	456				
	Volume	m ³	1,368				
	Surface load	mm/min	15.2				

Table C.II-22	Capacity Calculation of the WTP and	l Main Facility Dimension
---------------	-------------------------------------	---------------------------

(Cost Estimation of WTP)

As to the cost of WTP, it is, of course, desirable to sum up the each component cost, sedimentation tank, Rapid Sand filter, etc. The cost, however, is based on the comprehensive unit cost per m^3/d of capacity based on the past construction cost data since it is difficult to determine detailed specification of the plant.

From the data in Table xxx and Table xxx, unit construction cost of 20,000 PHP/m³/day seems appropriate, while unit O&M cost is estimated as 136 PHP/m³/day/year

Construction cost and O&M cost is shown below.

> O&M cost $4,700 \text{ m}^3/\text{day} \times 136 \text{ PHP/m}^3/\text{day/year} = 0.64 \text{ million PHP}$

WTP					
	Capacity	Construction Cost (Million Japanese	Unit Price	Unit Price	
	(m^3/d)	Yen)	(Yen/m³/d)	$(PhP/m^3/d)$	
Cal, Sri Lanka	60,000	1,127	19,000	9,500	NJS estimation
Candy, Sri Lanka	36,670	2,064	57,000	28,500	ditto
Trabali, Nepal	4200	112	27,000	13,500	ditto
Carmen WTP, Cebu	42,000	1,259	30,000		NJS estimation in 2005
Kapsabet, Kenya	3,800	262	70,000		NJS estimation in 2008
Embu, Kenya	11,000	518	48,000		NJS estimation in 2009
Southern Bali, Indonesia	25,920	655	26,000	13,000	NK estimation in 2009
Average				19,786	→ 20,000

Table C.II-23Construction Cost of WTP

Table C.II-24O&M cost from temporary designed plant

WTP capacity (m^3/d)	46,000
O&M cost (Chemical cost , PHP per year)	Alm 706.2 kg/d*30d*12month*10P/kg=2,542,320P Chlorine 141.3 kg/d*30d*12month*73P/kg=3,713,364P 6,255,684P
Unit cost (PHP per m ³ /d/year)	136

(Calcium Hardness Removal Facility)

From the water quality test of raw water and finished water, Total Hardness of treated water does not clear PNSDW. To remove (Calcium) hardness of raw water, there are many treatment methods like, Alkali coagulation, ion-exchange, complex salt and pellet reactor method. Of the above said methods, pellet reactor method can be employed due to its compactness. Treatment process of this facility is; a) pH value of raw water is controlled at 9.0 using caustic soda, b) calcium ion is deposited on the surface of pellet and c) pellet with calcium scale is replaced by new pellet. This facility is designed to install before receiving well which has act as pH control tank using sulfuric acid. Since the calcium detached to the pellet is chemically stable, its recycle, e.g. for white sand beach, etc is to be considered. Using $100m/hr (= 2,400m^3/day/m^2)$ of passing velocity, 2 set of contact tower with diameter of 1.5m is adopted in case of hardness removal.

Anyway, selection of hardness removal method and its design criteria should be determined based on the Jar-test of the raw water

Construction cost is estimated nearly 33 million PHP based on the NJS data. The cost, however, is not included in the Project cost.

Table C.II-25 Har uness Kemoval Facilities Cost						51	
Hardness Removal	Facilities (Design Flow is	s 46,000m ³ /d)					
Mechanical Facility			set	90,000,000	1	90,000,000	Include Chemical Dosing Facilities
Electrical Facility			set	60,000,000	1	60,000,000	
Total						150,000,000	

 Table C.II-25
 Hardness Removal Facilities Cost

(Construction cost of 10,000 m3/day hardness removal facility is 10,000 x 150 Million PHP / 46,000=32.6 Million PHP)

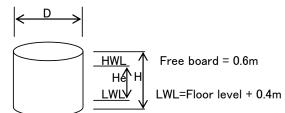

					May 19, 20)09 da	ta
Parameter	Unit	Raw Water	Treated Water	Removal Rate	PNSDW	'07 I	
Chloride (CL)	mg/l	9.8	10.8	-10			250
Total Dissolved Solids (TDS)	mg/l	596	478	20			500
Total Suspended Solids (TSS	mg/l	6	0	100			
Total Solids (TS)	mg/l	602	478				
Total Iron	mg/l	0.15	< 0.15				1.0
Sulfate	mg/l	178	185				250
Nitrate	mg/l	1.2	< 0.89				50
Nitrite	mg/l	0.006	0.002				30
Fluoride	mg/l	0.08	0.14				1
pН	-	7.28					6.5-8.5
Conductivity	μ S/cm	826	678				
Turbidity	NTU	0.95	0.66	31			5
Calcium Hardness	ppm	339	236	30	300	(as	CaCO ₃₎
Total Hardness	ppm	477	369	23	300	(as	CaCO ₃₎
Calcium	ppm	136	94.5	31			100
Magnesium	ppm	33.7	32.5	4			-
Chromium	ppm	< 0.010	<0.010	-			0.05
Alminum	ppm	0.076	< 0.02	>25			0.2
Copper	ppm	< 0.02	< 0.02	-			1
Cyanide	ppm	< 0.010	< 0.010				0.07
Manganese	ppm	1.44	<0.01	>99			0.4
Color (Apparent)	Pt/Co	7.2	3.9	46			10

Table C.II-26Water Quality Analysis of Tisa WTP

4) Reservoir Development

Dimension of the reservoir is as follows

	Table C.II-27	Dimen	ision of eac	ch Reservoi	r
Location	Effective Capacity	Effectiv	ve Depth	Inner H	Inner Diameter
	$(m^3)^{-1}$	He	(m)	(m)	(m)
Casili	5,000		5.0	6.0	36
Talamban	10,000		5.0	6.0	50
Tisa	10,000		5.0	6.0	50

Typical drawing of the circular tank is shown in Figure C.II-27.

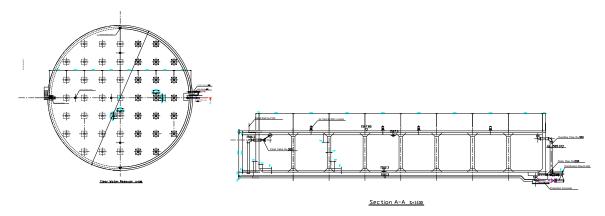
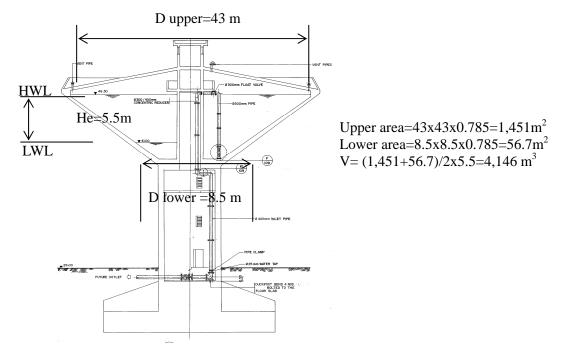



Figure C.II-36 Typical Circular Reservoir

Meanwhile, MCWD is planning to construct same capacity $(2,000m^3)$ of additional Mactan Pusok Tower next to existing one, one more same structure tower is proposed in near-by area. In case 4,000 m³ capacity new tank is constructed, its dimension is as follows.

Location of the each proposed reservoir is shown in Table C.II-29.

Required land area is calculated assuming twice of the inner diameter projected area is necessary.

Location	Area (= Projected area x 2) m^2
Casili	=36x36x0.785x2.0
	$=2,035m^2$
Talamban	=50x50x0.785x2.0
	$=3,930m^2$
Tisa	=50x50x0.785x2.0
	$=3,930m^2$
Mactan	=43x43x0.785x2.0
	$=2,903m^2$

Table C.II-28Land Acquisition Area

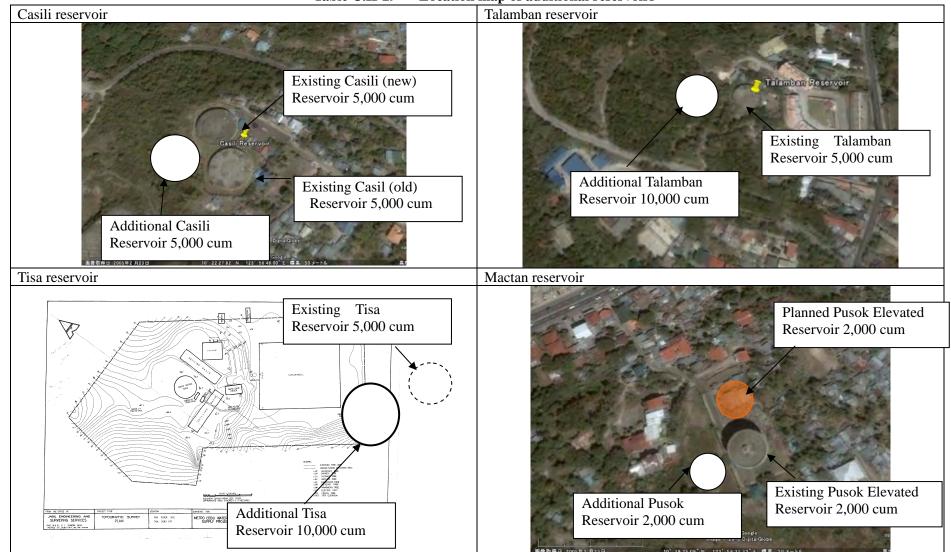


 Table C.II-29
 Location map of additional reservoirs

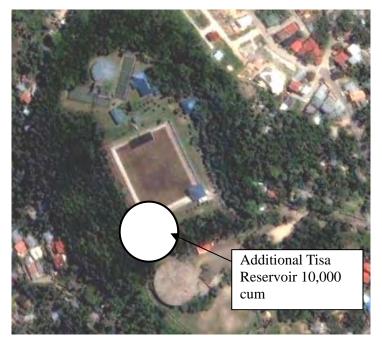
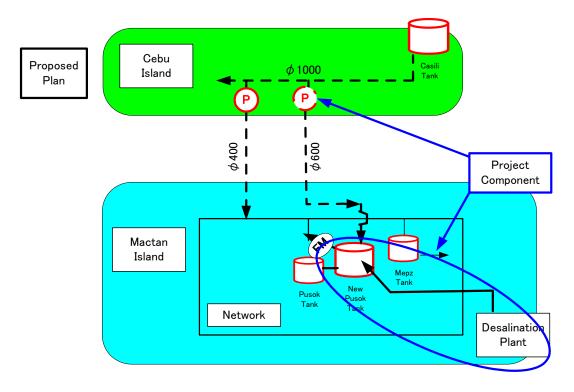



Figure C.II-38 Additional Tisa Reservoir on Newly Revised Google Map

As to the Mactan Reservoir, it is recommendable to transmit the imported water from Cebu Island directly to the new reservoir without injecting into network on the way. Inlet pipe and outlet pipe is to be clearly separated. And also new reservoir should receive treated water from the desalination plant to mix with the different type of source water to prevent bad effect of Boron (B) since it is likely to occur concentration of Boron in treated water from Desalination Plant fail to clear the Philippine drinking standard.

5) Transmission pipe

Alternative Plan on Water Transmission Pipe Line

Due to the local distribution of water source and demand, kinds of study on transmission route of produced water to consumption site are to be investigated.

Location of newly developing groundwater wells, whose volume is also described in Table C.II-30, is shown in the map below. From the supply demand balance of each distribution block, new Casili groundwater source is developed to fill the demand gap of its own block, while new Talamban groundwater source is provided as Mactan block source.

 Table C.II-30
 Water Supply and Water Demand Balance

			-	<u> </u>						
	Demand					Supply (m ³ /d)				Supply-Demand
DB	. 3	GW (existing)	GW	(new)	Jaclupan well	Buhisan Dam	Bulk Supply	Desalination Plant	Total	(m ³ /d)
1-CLC	19,261	23,598					7,000		30,598	11,337
2-Casili	40,323	9,918		18,700					28,618	-11,705
3-Talamban	58,173	50,264		22,800					73,064	14,891
4-Tisa	60,956	21,932			40,000	4,700			66,632	5,676
5-Lagtang	18,301	7,538					11,000		18,538	237
6-Mactan	38,136	3,827					5,000	9,600	18,427	-19,709
Total	235,150	117,077		41,500	40,000	4,700	23,000	9,600	235,877	727

Based on the original concept, transporting excess water from Tisa/Talamban to Mactan area through Talamban reservoir, Casili reservoir and existing 1,000 mm pipe line, following three route is compared.

- 1) Route from Talamban reservoir to Mactan island
- 2) Overall plan from Tisa reservoir to Mactan island and
- 3) Route from Tisa reservoir to Talamban reservoir considering future circumferential road.

> Talamban to Mactan Island

Since 98% of the water from Talamban reservoir to Casili reservoir is exported to Mactan Island, this route looks "de-route" comparing with the direct transmission line from Talamban to new bridge-side booster pump station. Table xxx is the comparison result. From the table, alternative route is difficult to adopt.

~	Table C.II-31 Transmission Route Alternative							
Case	Proposed route	Alternative route						
Outline	Talamban Casili Reservoir reservoir Existing Booster Booster Booster P.S Mactan Island	Talamban Reservoir Existing Booster Planned Booster P.S Mactan Island						
Transmission Route Map	01-00.547 m ² /d = 0.238 m ² /d 01-00.547 m ² /d = 0.238 m ² /d 1-7.1 lm Current Cur	Compute an Compute						
Advantage	Existing network is utilized Export to Mactan from Casili reservoir through 1,000 mm pipe is just coincident with predetermined policy of MCWD	Water source is stably acquired from Ta- lamban well field without distributing to Mandaue area. From the topographic conditions, the water is conveyed by grav- ity (siphon) without pump station.						
Disadvantage	New Pumps have to be installed in Talam- bam reservoir site.	Some hundreds cmpd of water supply falls short for Mandaue area.						
Evaluation	Inter-reservoir pipe is also useful for emergency use. Considering that the fu- ture supply from North area is promising, utilization of Casili reservoir and existing pipeline is recommendable.,	If Mactan Island supply is the first priority, this route is desirable. If not so, alternative plan is not recommended. \triangle						

Table C.II-31 Transmission Route Alternative

> Alternative Transmission Route for Mactan Supply

From the demand-supply balance, Mactan area, which lacks enough supply source, has to be covered by the water newly produced in Tisa and Talamban DB area. Two alternative plan is compared with originally proposed transmission plan as is shown in Table C.II-25. Due to the availability of existing large 1,000 mm pipe and booster pump station, original plan is recommendable.

> Tisa to Talamban

Cebu City has its urban land use plan and it contains proposed circumferential road as shown in Figure C.II-41. This route, however, passes more hilly route than future ground well-field and it is not so economical to use this route instead of using existing heavy traffic road.

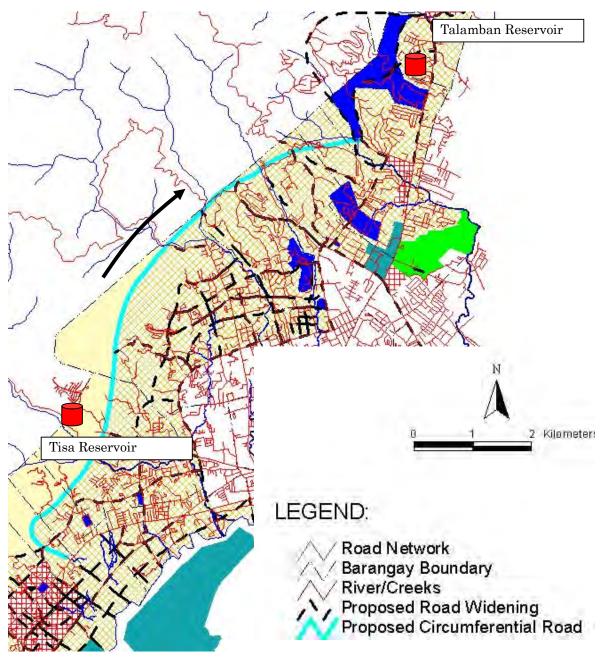
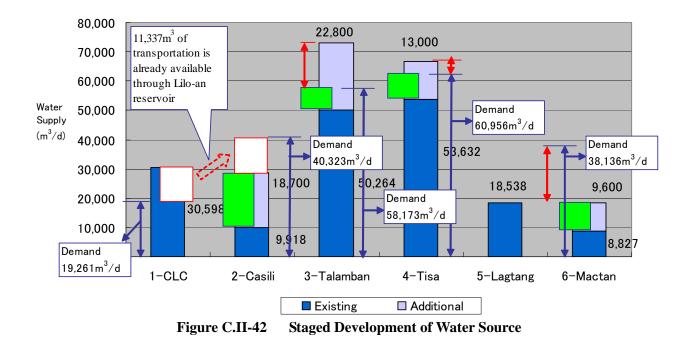



Figure C.II-41 Alternative Route from Tisa to Talamban

Based on the Transmission Plan (2), green volume is developed to balance the DB except for Mactan DB, and after the completion of the above-said development, Mactan DB shortage () is filled by additional development of Talamban/Tisa water source

	Table C.II-32 Comparison Table of Additional Supply Plan to Mactan Area						
Case	Original case	Alternative (1)	Alternative (2)				
Outline	Water source shortage in Mactan is covered by transporting water from Tisa/Talamban through Talamban reservoir, Casili reservoir, existing 1000mm pipe and booster pump station near ridge	Water source of booster pump station comes directly from Tisa/Talamban area through independent line.	Water source is covered by expansion of capacity of proposed Mactan desalination plant from 9,600 to $30,000 \text{ m}^3/\text{d}$				
Plan	Original Plan	Alternative (1) (1) (1) (1) (1) (1) (1) (1)	Alternative (2) Posalination Plant Capacity Up Plan				
Initial Cost (Direct cost base)	Transmission Line Diameter Length Unit Cost Direct Cost (mm) (m) (PhP/m) (MPhP) 800 3,550 48,500 172 700 2,700 40,500 109 600 6,250 31,300 196 500 2,700 25,000 68 400 2,700 15,900 43 Total 17,900 588 588	Transmission Line Diameter Length Unit Cost Direct Cost (mm) (m) (PhP/m) (MPhP) 600 9,650 31,300 302 500 8,600 25,000 215 400 4,400 15,900 70 150 3,550 4,500 16 Total 26,200 603 Break down 388 (Talamban-Casili Route) 215	Transmission LineDiameterLengthUnit CostDirect Cost(mm)(m)(PhP/m)(MPhP)6003,55031,3001115003,50025,000881503,5504,50016Sub-total10,600215Desalination Plant & Pipe(Capacity increase 9,600m³/d to 30,000m³/d)(8,100m Transmission diameter 400 mm to 700 mm)Plant Construction increase Cost530Pipe line increase cost199Total cost944				
Merit	In case future supply from northern Cebu area, like Carmen or Danao, transmission line can transfer water from Casili to Talam- ban, Tisa area.	Separate consideration of Mactan supply and Talamban/Casili DB balancing is possible	For the time being, export of water source from Cebu island to Mactan island is not necessary.				
Demerit	Initial cost is pretty expensive	Existing 1,000 mm pipe line and proposed booster pump station can not effectively utilized	 Existing and proposed booster pump station is not effectively utilized Initial cost is most expensive 				
Total Evaluation	0	0	\bigtriangleup				

Additional Study on Mactan Island Supply

To decide the optimum capacity of New Mactan Desalination Plant from the economical point of view, cost comparison is reviewed corresponding to the following three cases.

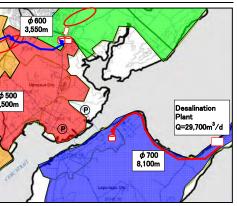
(Case 1) Proposed 9,600 m^3 /day of Plant with 20,100 m^3 /day import from Cebu Island

- (Case 2) All of 29,700 m³/day is imported from Cebu Island without Desalination Plant
- (Case 3) Desalination Plant with capacity of 29,000 m³/day will be constructed. No import from Cebu Island

Summary of cost comparison shows there is negligible difference among three plans. Optimum capacity is difficult to find.

	Initial Cost	Item considered
		Water Source Development Cost of 20,100 m ³ /day
		Transmission pipeline cost of 20,100 plus local water source collection
Case 1	1,267 Million PHP	2 inter-reservoir pump stations
		Desalination Plant (including transmission pump) with capacity of 9,600 $m^3\!/d$
		Desalinated water transmission pipe to convey 9,600 m ³ /day
		Water Source Development Cost of 29,700 m ³ /day
Case 2	1,344 Million PHP	Transmission pipeline cost of 29,700 plus local water source collection
		2 inter-reservoir pump stations
		Transmission pipeline cost for only local water source collec- tion
Case 3	1,315 Million PHP	Desalination Plant (including transmission pump) with capacity of 29,700 m^3/day
		Desalinated water transmission pipe to convey 29,700 m ³ /day

Table C.II-33 Cost Comparison


Although considering expensive running cost of desalination plant, Case 2 seems most economical, high initial cost of transmission line is the bottle neck of the implementation.

Initial cost of Case 3 is average of Case 1 and Case 2. Maintenance cost of $29,700 \text{ m}^3/\text{day}$ capacity of desalination is outstandingly high among three cases.

To respond with rapidly increasing Mactan demand, desalination plant with capacity of 9,600 m^3 /day is to be constructed in priority project and second stage supply can be contemplated considering bulk supply contract within and outside of MCWD jurisdiction., like import of water from Carmen or Danao.

Case	Original case	Alternative (1)	Alternative (2)		
Outline	Water source shortage in Mactan is covered by transporting wa- ter from Tisa/Talamban through Talamban reservoir, Casili res- ervoir, existing 1000mm pipe and booster pump station near ridge	9,600 m ³ /d of desalination volume is covered by additional groundwater development in Tisa/Talamban area	Shortage volume of 29,700 m3/d in Mactan is covered by De- salination Plant. Pipe line in Mactan Island is installed to sat- isfy its own demand only.		
Plan	Original Plan	Atternative (1) Ø 800 Ø 100 3,550m Ø 100 9,000 Ø 900 Ø 900 Ø 900 <	Alternative (2) - Desalination Plant Capacity Up Plan 0,550m 0,550		
Initial Cost (Direct cost base)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Transmission Line Diameter Length Unit Cost Direct Cost (mm) (m) (PhP/m) $(MPhP)$ 1000 3,550 68,500 243 900 2,700 58,500 158 800 6,250 48,500 303 700 2,700 40,500 109 600 2,700 31,300 85 500 0 25,000 0 P1 83 92 96 Total 17,900 1,077 Additional Water source develop cost volume Unit Cost 29,700 9,000 267 Total 1,344 From cost estimation Groundwater additionally produced = 41,500 m3/d Well construction + Raw water transmission cost= 254,239,000+114,879,000 = 369,170,000 PhP Unit development cost = 369,170,000 / 41,500 = 9,000(PhP/m3/d)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Desalination water rate	9,600 (New plant) + 5,000 (Supplied desalination water) /38,136 = 38 %	5,000 / 38,136 = 13 %	(29,700 + 5,000) / 38,136 =90 %		
Merit	In case future supply from northern Cebu area, like Carmen or Danao, transmission line can transfer water from Casili to Ta- lamban, Tisa area. Desalination water is distilled by ground- water source, so Br quality is acceptable	Desalination plant, whose running cost is high, can be avoided. No need to worry about Br quality	No need of water import from Cebu Island.		
Demerit	Initial cost is pretty expensive	Initial cost is a little higher than original plan	 Initial cost is most expensive in three plans and running cost of desalination plant is also expensive Desalination water occupies 90 % of water demand, Br quality can be surpass drinking standard. 		
Total Evaluation	O	0	\triangle		

Table C.II-34 Comparison Table of Additional Supply Plan to Mactan Area

