4) Natural and cultural protected areas

1. UNESCO World Heritage sites

There are many cultural assets in and around the model areas. Moreover, as shown below, three of the six UNESCO World Heritage sites in Egypt are located near the model areas.

Name	UNESCO Criteria	Property	Year	Description
Abu Mena	(iv)	182.72 ha	1979	The church, baptistry, basilicas, public buildings, streets, monasteries, houses and workshops in this early Christian holy city were built over the tomb of the martyr Menas of Alexandria, who died in A.D. 296.
Historic Cairo (1979)	(i)(v)(vi)	523.66 ha	1979	Tucked away amid the modern urban area of Cairo lies one of the world's oldest Islamic cities, with its famous mosques, madrasas, hammams and fountains. Founded in the 10th century, it became the new centre of the Islamic world, reaching its golden age in the 14th century.
Memphis and its Necropolis – the Pyramid Fields from Giza to Dahshur (1979)	(i)(iii)(vi)	16358.52 ha	1979	The capital of the Old Kingdom of Egypt has some extraordinary funerary monuments, including rock tombs, ornate mastabas, temples and pyramids. In ancient times, the site was considered one of the Seven Wonders of the World.

2. Natural protectorates

27 natural protectorates are designated based on Law 102 of 1983 in Egypt. One of the protectorates, El Bourollus, covers a part of the North Delta DC area. Some protectorates are located near the model areas.

Name	Designation	Year	Size	IUCN Category ¹	Notes
Ashtum El Gamel	Habitat/Species Management Area	1998	17,116 hectares	VI (Managed Resource Protected Area)	Part of lake Manzala, the largest and most productive of the Nile Delta wetlands. Previously recorded as "Ashtum El Gamil."
El Bourollus	Habitat/Species Management Area	1998	91,083 hectares	VI (Managed Resource Protected Area)	Site also called "Lake Burullus (Wetlands of International Importance (Ramsar))."
El Omayed	Managed Resource Protected Area	1986	69,010 hectares	IV (Habitat/Species Management Area)	(UNESCO-MAB Biosphere Reserve)
Petrified Forest	Natural Monument	1989	604 hectares	V(Protected Landscape/Seascape)	Contains well preserved petrified remains of a 35-million-year-old forest. It is the only remaining site within the bounds of greater Cairo where desert wilderness can be seen. Previously recorded as "Maadi Petrified Forest."

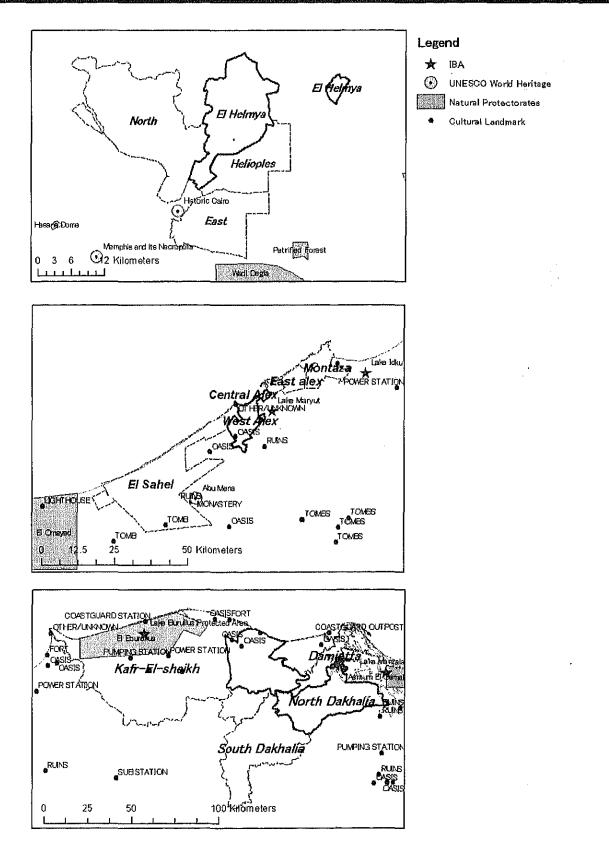
Table 2 Natural Protectorates Near Model Areas

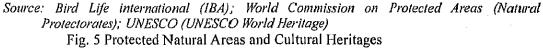
¹ Definitions of the categories are shown in Appendix 4.1-2

3. Important Bird Areas

Important Bird Areas (IBAs) are designated by Bird Life International. There are four IBAs near the model area.

Name	Area	Category ²	Issue
Lake Maryut	6000 ha	A4i	Lake Maryut has been reduced by more than 75% from its original area, and is still shrinking.
Lake Idku	7000 ha	A4iii	Lake Idku suffers from drainage, land claim, pollution, disturbance, and waterbird catching.
Lake Burullus Protected Area	46000 ha	A1, A4i, A4iii	It is anticipated that Burullus will be further reduced in area as a result of landward migration of coastal sandbars.
Lake Manzala	77000 ha	A1, A4i, A4iii	The pollution problem here, caused by many factors, is very severe. Municipal wastewater is perhaps the most serious source of pollution, as much of the raw and treated sewage from Cairo, Port Said and Damietta ends up in Manzala.


Table	3	IBAs	Near	Model	Areas


5) Sediment contamination

The contamination of sediments in the Alexandria Harbor by PCBs, DDTs and chlordanes appeared to be high on a worldwide basis (Assem O. Barakat, 2002)³. PCB concentrations in surface sediments of Alexandria Harbor were one to two orders of magnitude higher than most of the riverine and estuaries systems. The usage of PCBs in Egypt is not well established, but the use of PCBs in transformers, electrical equipment, and other industries is common.

² Definitions of the categories are shown in Appendix 4.1-3.

³ Assem O. Barakat, Moonkoo Kim, Yoarong Qian, Terry L. Wade., 2002. Organochlorine pesticides and PCB residues in sediments of Alexandria Harbour, Egypt. Marine Pollution Bulletin, Volume 44, Issue 12, December 2002, pages 1426-1434.

Appendix 4: Appendix 4.1-2 UNESCO World Heritage Cultural Criteria

.

.

Appendix 4.1-2 UNESCO World Heritage Cultural Criteria

Selection criteria:

- i. to represent a masterpiece of human creative genius;
- ii. to exhibit an important interchange of human values, over a span of time or within a cultural area of the world, on developments in architecture or technology, monumental arts, town-planning or landscape design;
- iii. to bear a unique or at least exceptional testimony to a cultural tradition or to a civilization which is living or which has disappeared;
- iv. to be an outstanding example of a type of building, architectural or technological ensemble or landscape which illustrates (a) significant stage(s) in human history;
- v. to be an outstanding example of a traditional human settlement, land-use, or sea-use which is representative of a culture (or cultures), or human interaction with the environment especially when it has become vulnerable under the impact of irreversible change;
- vi. to be directly or tangibly associated with events or living traditions, with ideas, or with beliefs, with artistic and literary works of outstanding universal significance.
 (The Committee considers that this criterion should preferably be used in conjunction with other criteria);

Appendix 4: Appendix 4.1-3 IUCN Protected Area Management Categories

Appendix 4.1-3 IUCN Protected Area Management Categories

CATEGORY Ia: Strict Nature Reserve: protected area managed mainly for science

Area of land and/or sea possessing some outstanding or representative ecosystems, geological or physiological features and/or species, available primarily for scientific research and/or environmental monitoring.

CATEGORY Ib: Wilderness Area: protected area managed mainly for wilderness protection

Large area of unmodified or slightly modified land, and/or sea, retaining its natural character and influence, without permanent or significant habitation, which is protected and managed so as to preserve its natural condition.

CATEGORY II: National Park: protected area managed mainly for ecosystem protection and recreation

Natural area of land and/or sea, designated to (a) protect the ecological integrity of one or more ecosystems for present and future generations, (b) exclude exploitation or occupation inimical to the purposes of designation of the area and (c) provide a foundation for spiritual, scientific, educational, recreational and visitor opportunities, all of which must be environmentally and culturally compatible.

CATEGORY III: Natural Monument: protected area managed mainly for conservation of specific natural features

Area containing one, or more, specific natural or natural/cultural feature which is of outstanding or unique value because of its inherent rarity, representative or aesthetic qualities or cultural significance.

CATEGORY IV: Habitat/Species Management Area: protected area managed mainly for conservation through management intervention

Area of land and/or sea subject to active intervention for management purposes so as to ensure the maintenance of habitats and/or to meet the requirements of specific species.

CATEGORY V: Protected Landscape/Seascape: protected area managed mainly for landscape/seascape conservation and recreation

Area of land, with coast and sea as appropriate, where the interaction of people and nature over time has produced an area of distinct character with significant aesthetic, ecological and/or cultural value, and often with high biological diversity. Safeguarding the integrity of this traditional interaction is vital to the protection, maintenance and evolution of such an area.

CATEGORY VI: Managed Resource Protected Area: protected area managed mainly for the sustainable use of natural ecosystems

Area containing predominantly unmodified natural systems, managed to ensure long term protection and maintenance of biological diversity, while providing at the same time a sustainable flow of natural products and services to meet community needs.

.

Appendix 4: Appendix 4.1-4 Global IBA Criteria

. .

.

Appendix 4.1-4 Global IBA Criteria

A1. Globally threatened species

The site qualifies if it is known, estimated or thought to hold a population of a species categorized by the IUCN Red List as Critically Endangered, Endangered or Vulnerable. In general, the regular presence of a Critical or Endangered species, irrespective of population size, at a site may be sufficient for a site to qualify as an IBA. For Vulnerable species, the presence of more than threshold numbers at a site is necessary to trigger selection. Thresholds are set regionally, often on a species by species basis. The site may also qualify under this category if holds more than threshold numbers of other species of global conservation concern in the Near Threatened, Data Deficient and, formerly, in the no-longer recognised Conservation Dependent categories. Again, thresholds are set regionally.

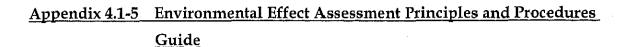
A2. Restricted-range species

The site forms one of a set selected to ensure that, as far as possible, all restricted-range species of an EBA or SA are present in significant numbers in at least one site and, preferably, more. The term 'significant component' is intended to avoid selecting sites solely on the presence of one or more restricted range species that are common and adaptable within the EBA and, therefore, occur at other chosen sites. Sites may, however, be chosen for one or a few species that would, e.g. because of particular habitat requirements, be otherwise under-represented.

A3. Biome-restricted species

The site forms one of a set selected to ensure, as far as possible, adequate representation of all species restricted to a given biome, both across the biome as a whole and, as necessary, for all of its species in each range state. The 'significant component' term in the category definition is intended to avoid selecting sites solely on the presence of one or a few biome-restricted species that are common, widespread and adaptable within the biome and, therefore, occur at other chosen sites. Additional sites may, however, be chosen for the presence of one or a few species which would, e.g. for reasons of particular habitat requirements, be otherwise under-represented.

A4. Congregations

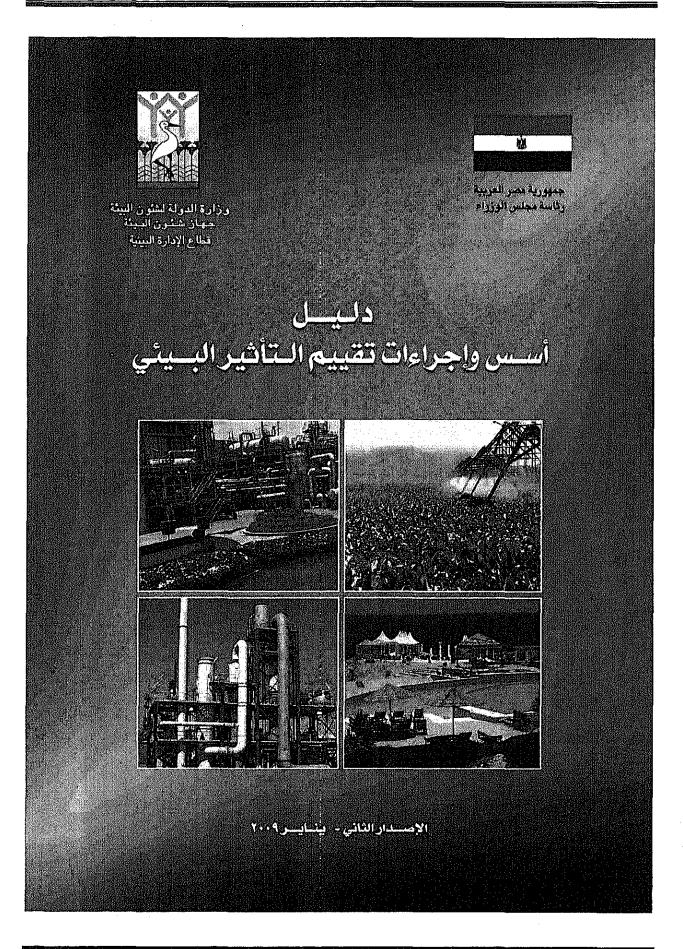

- i. This applies to 'waterbird' species as defined by Delaney and Scott (2002) 'Waterbird Population Estimates' Third Edition, Wetlands International, Wagenigen, The Netherlands, and is modelled on criterion 6 of the Ramsar Convention for identifying wetlands of international importance. Depending upon how species are distributed, the 1% thresholds for the biogeographic populations may be taken directly from Delaney & Scott, they may be generated by combining flyway populations within a biogeographic region or, for those for which no quantitative thresholds are given, they are determined regionally or inter-regionally, as appropriate, using the best available information.
- ii. This includes those seabird species not covered by Delaney and Scott (2002). Quantitative data are taken from a variety of published and unpublished sources.
- iii. This is modelled on criterion 5 of the Ramsar Convention for identifying wetlands of international importance. Where quantitative data are good enough to permit the application of A4i and A4ii, the use of this criterion is discouraged.
- iv. The site is known or thought to exceed thresholds set for migratory species at bottleneck sites. Thresholds are set regionally or inter-regionally, as appropriate.

.

Appendix 4: Appendix 4.1-5 Environmental Effect Assessment Principles and Procedures Guide

·

·


Ministry of State for Environmental Affairs Egyptian Environmental Affairs Agency

Ministry of State for Environmental Affairs Egyptian Environmental Affairs Agency Environmental Sector Arab Republic of Egypt Egyptian Cabinet

Environmental Effect Assessment Principles and Procedures Guide

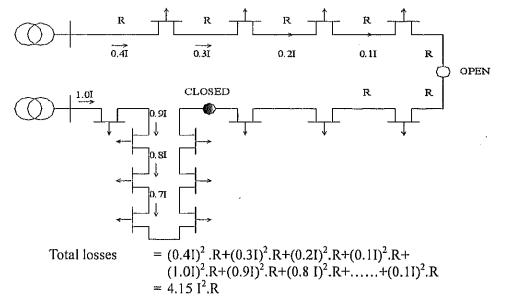
Issue 2 – January 2009

FR on Improvement in Energy Efficiency of Power Supply in Egypt

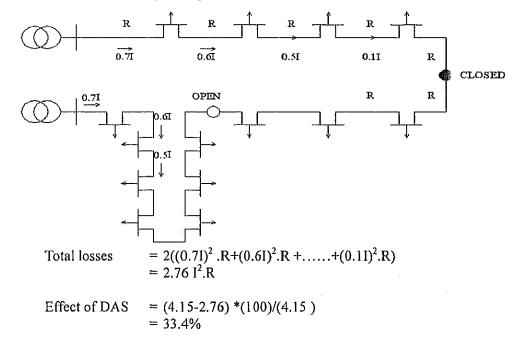
Appendix 4:

Appendix 4.1-6 Feeder Load balance by Upgrading DMS (DAS)

Appendix 4.1-6 Feeder Load balance by Upgrading DMS (DAS)


Example Calculation>

The effect of Upgrading DMS (DAS) on loss reduction could be substatial .Its value depends on the value and distribution of loads, network parameters and network configuration before applying Upgrading DMS (DAS) .An example based on some assumptions is given in order to describe the effect of Upgrading DMS (DAS).


Assumptions:

- v. Rtaed current of each feeder =I
- vi. Value of load at each node=0.11
- vii. Resistance between sections are equal having value equals R

(1) Before application of DAS

(2) After installation of Upgrading DMS (DAS)

2.

.

Appendix 4:

Appendix 4.1-7 Improvement of Power Factor by capacitor control

Appendix 4.1-7 Improvement of Power Factor by capacitor control

Capacitors installed in 66/11kV substation and/or distribution feeder can be controlled by DAS which can monitor the power factor in real time and control the automatic LBS for the capacitor.

The principal of loss reduction by capacitor control is explained as follows.

The relationship among Reactive power Q, Active power P and Apparent power S is shown in Fig 5-1. In this example case, it is defined that one feeder is loaded at 40 percent rate, and the other is loaded by 100 percent, which means there exists an unbalanced load rate.

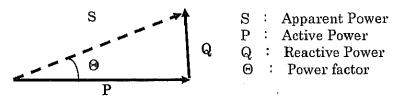


Fig 5-1 Relationship among S, P and Q

When a reactive power Q becomes larger by using motor load, the active power P will reduce and the load current will increase in case of requirement of the same power P such as motor loads, so that the loss by increasing the load current will increase.

Q is normally a lagging reactive power Q1/Q2 whose load consists of motor, light and so on. Therefore, if a leading reactive power Qc such as capacitors is added to the load side, the Q1 can be reduced to Q2, so that the loss can be reduced as shown in Fig 5-2.

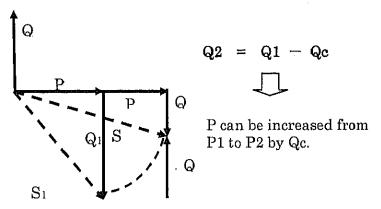
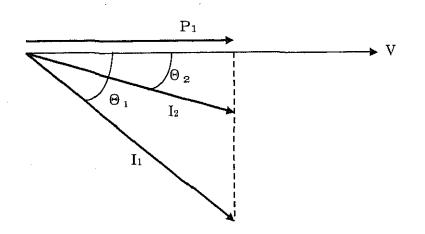



Fig 5-2 Improvement of Power factor by leading reactive power

Loss reduction = $I_1^2 \cdot R - I_2^2 \cdot R = (P_1 / V \cdot \cos \theta_1)^2 \cdot R - (P_1 / V \cdot \cos \theta_2)^2 \cdot R$ = $(P_1^2 / V^2) \cdot R (1/\cos^2 \theta_1 - 1/\cos^2 \theta_2)$ R: Resistance of distribution line V: Voltage between phases

In case that power factor can be improved from 0.8 to 0.95 by DAS, 30% ($\leftarrow 29.1\%$) of loss can be reduced

DAS can control the capacitors installed in substations and overhead distribution networks in accordance with the real time monitoring of the power factor, so that the loss can be reduced up to around 30%.

Appendix 4:

Appendix 4.2-1 Fault Detecting, Isolating and Restoration (FDIR)

Appendix 4

Appendix 4.2-1 Fault Detecting, Isolating and Restoration (FDIR)

<Methods of FDIR>

For fault sensing system, there are two methods, namely voltage sensing method and current sensing method. The features of the two methods are explained as follows.

a) Voltage Sensing Method

Upgrading DMS (DAS) system configuration of voltage sensing method is shown below. Voltage sensing method can perform FDIR by only feeder equipment because Fault Detecting Relay (FDR) function of RTU can identify the faulty section by the voltage existence of the feeder. The features of the necessary equipment for voltage sensing system are as follows.

- ✓ FDR is assembled in RTU
- ✓ Regarding operating mechanism of automatic LBS, LBS will be automatically opened when the feeder voltage is lost, and automatically closed when the feeder voltage is supplied
- ✓ Switch Power Supply (SPS) transformer is required for supplying power to FDR built-in RTU and for sensing feeder voltage of both side of automatic LBS

The voltage sensing method has one more unique feature, that is, "Simplified Upgrading DMS (DAS)" which doesn't require Upgrading DMS (DAS) computer system, substation equipment and communication system as shown in Fig 4-3-4, and can perform the automatic FDIR function just by feeder equipment. The "Simplified Upgrading DMS (DAS)" might be applicable for the outskirt area.

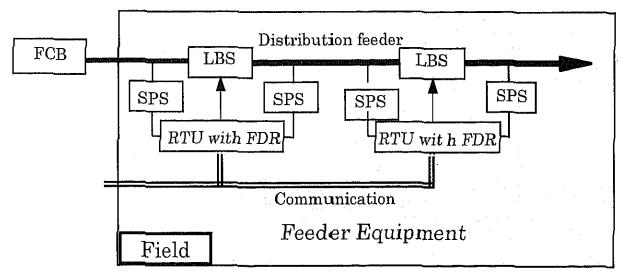
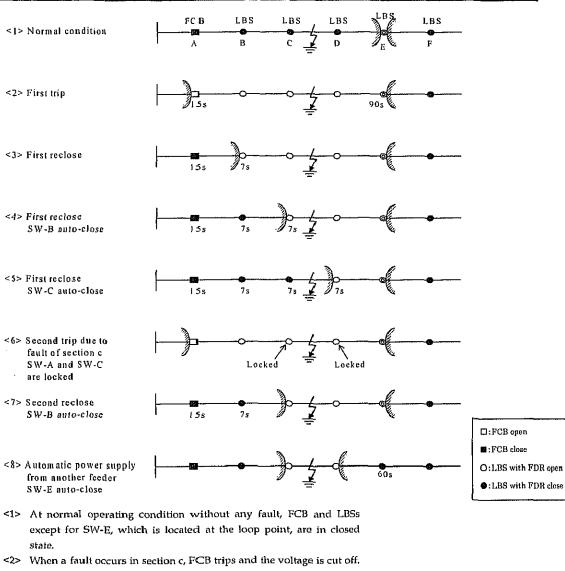



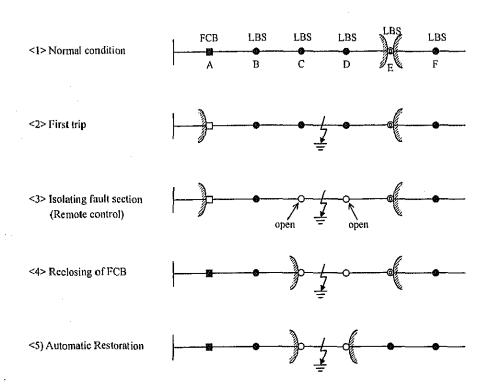
Fig. 4-3-5 Configuration of Voltage Sensing Method

Schematic diagram for voltage sensing method is shown in Fig 4-3-6. The diagram is given in the assumption of a loop system.

FR on Improvement in Energy Efficiency of Power Supply in Egypt

- At the same time, all LBSs are opened automatically by the function of FDRs.
- <3> FCB recloses, and the power supply to section a is restored.
- <4> After X-time of LBS-B, which is 7 second in this case, LBS-B is closed, and the power supply to section b is restored.
- <5> After X-time of LBS-C, which is 7 second in this case, LBS-C is closed, and the power supply to section c is restored.
- <6> In case that a fault remains in section c, FCB trips again and LBSs are opened. And LBS-C is locked in the state of opening, based on the judgement of the FDR for the LBS-C that a voltage drop occurred within a preset lapse of time (Y-time), which is 5 second in this case, after the restoration of the power supply. LBS-D is also locked in the state of opening as FDR for LBS-D detects faulty voltage (30% of the rated voltage or more during 150 msec. or more).
- <7> FCB recloses again, and the power supply to section a and section b is restored in the same way as step <3> and <4>. Since LBS-C is locked by FDR in the state of opening, LBS-C is not closed.
- <8> LBS-E is closed XL-time after the first tripping of FCB, and the power supply form another feeder is achieved. XL-time, which is a preset lapse time, is 90 second in this case.Because LBS-D is locked out, power is not supplied to faulty section c.
- Fig. 4-3-6 Schematic Diagram for Voltage Sensing Method (Loop System)

b) Current Sensing Method


Upgrading DMS (DAS) system configuration of current sensing method is shown in Fig 4-3-7. This current sensing method can be performed by FDIR function of Upgrading DMS (DAS) computer system. So Upgrading DMS (DAS) computer system, substation equipment and communication system are required for this method. In addition, the following devices are required for feeder equipment.

- ✓ Over Current (OC) / Over Current Grounding (OCG) relay for detecting the faulty current
- FCB LBS A LBS TTU with OC/OCG RTU with OC/OCG Communication Line Field Feeder Equipment
- ✓ Battery and Battery-charger for operation of automatic LBS under outage

Fig. 4-3-7 Configuration of Current Sensing Method

Schematic diagram for current sensing method is shown in Fig 4-3-8. The diagram is given with the assumption of a loop system.

FR on Improvement in Energy Efficiency of Power Supply in Egypt

- <1> At normal condition of the network, power is supplied from the substation Feeder Circuit Breaker (FCB) and automatic Load Break Switch (LBS) attached to the distribution feeder line, which all FCB and LBSs are on a closed state. At the loop point, LBS-E is open state.
- <2> When a fault occurs in section c, FCB in the substation trips and the voltage is cut off.
- <3> The DAS computer system identifies section c as the faulty section, based on the fault current information from the remote terminal units (RTUs). The system then commands the RTUs to open LBS-B and LBS-C, so that the faulty section is isolated.
- <4> The FCB is closed, and the power is supplied to section a and b.
- <5> The computer system commands the RTU in the LBS-E to close the LBS-E, and power supply to section d from another feeder is restored.

Fig. 4-3-8 Schematic Diagram for Current Sensing Method

FR on Improvement in Energy Efficiency of Power Supply in Egypt

c) Comparison of the Sensing Methods

Major features of voltage sensing and current sensing method are as follows.

- Automatic detection of faulty section is performed only by local (feeder) equipment.
- Number of reclosing of FCB in substation will be 2 times.
- Automatic LBS is automatically opened in case where the power supply is lost.
- (ii) Current Sensing Method
- Automatic detection of faulty section is performed by DAS computer system.
- Number of reclosing of FCB in substation will be 1 time.
- Automatic LBS is latch type, which is kept closed in case where the power supply is lost. Stage is suitable for applied distribution network.

Comparison of these methods is summarized as shown in Table 4-3-9.

[· · · · · · · · · · · · · · · · · · ·	Current Sensing Method	Voltage Sensing Method	
FCB Operation		1 time action	2 times action	
Fault Detection		Have difficulties of detecting high impedance faults just only by OC relays.	Detectable in all cases	
Maintenance		Replacement of battery is required every 2 years. Easy fieldwork of battery replacement is required, especially in case of overhead network because pole work is troublesome.	Maintenance-free	
Redundancy		If DAS Computer System and Communication system have some troubles, the faulty section can not be detected automatically.	Feeder equipment can detect the faulty section even if DAS Computer System or Communication System is unavailable.	
Operator work		Operator should judge the fault section and supply the power up to the source side of the faulty section by remote control.	The fault section is isolated and the power is supplied up to the source side of the faulty section automatically.	
Cost	Computer / Communication System	Computer System and Communication system should be needed	Computer System and Communication system are not required only for simplified Upgrading DMS (DAS).	
	Feeder Equipment	Battery and battery charger will be required. Relay/CT for fault detection is needed. SPS is not required.	Battery, battery charger and relay are not required. SPS is required.	

 Table 4-3-9 Comparison between Current Sensing and Voltage Sensing Method

⁽i) Voltage Sensing Method

<Recommendation on Sensing Method>

Fault detecting procedure/method would be recommended in order to avoid the following difficulties.

- ✓ Maintenance work is not easy in the field. Because the working place is always high on pole.
- ✓ Most of faults in OH network are temporary one.

Accordingly, there are many benefits for voltage and current sensing method as shown in Table 4-3-9. Also the reclosing function/relay would be effective.

Advantage of voltage sensing method:

Voltage sensing method has a few advantages in comparison with current sensing method for OH network.

- \checkmark It is not necessary to change the battery on pole.
- ✓ Automatic reclosing function is acceptable for OH network, so that the voltage sensing method could be applied.

In addition to the above benefits, the followings are effective:

- \checkmark Quantity of work for operator can be reduced by the automatic fault detection.
- \checkmark Power can be supplied to the end of the section where is the adjacent to the fault section.
- ✓ Investment cost for simplified Upgrading DMS (DAS), which can be applied for rural area, would be low.

On the other hand, UG network has the following features.

- ✓ Maintenance works is easy in field because working place is not high. UG facilities are installed on the pedestrian road.
- ✓ Most of faults in UG network are permanent one. Therefore, the reclosing function is not effective.

Advantage of current sensing method:

Current sensing method has a few advantages in comparison with voltage sensing method for UG network.

- \checkmark The periodical change of battery is required but the work can be easily carried out.
- ✓ Automatic reclosing function is not acceptable for UG network. Therefore, voltage sensing method using reclosing function would not be recommendable.

In addition to the above benefits, existing RMU can be modified so that the automatic operation of current sensing method could be applied. Consequently, the investment cost can be reduced.

<Remarks>

The distribution network applied with Upgrading DMS (DAS) will be based on 3 sections and 3 looped points (normal open point). In case that the looped points will be lacked, the new construction will be required.

Appendix 4: Appendix 4.2-2 Communication network

Appendix 4.2-2 Communication network

(1) Backbone communication network

The backbone communication system for Upgrading DMS (DAS) data is roughly classified into a wired system and a wireless system. The wired system is further classified into a fiber optic system and Power Line Communication (PLC) system. These four systems have respectively advantages and disadvantages, and should be selected in consideration of the circumstances involved.

For selecting the communication system to be applied, the following three points have to be fully taken into account, (i) communication technology specifications required by Upgrading DMS (DAS), (ii) high priority items and (iii) peculiarities of the Egyptian Distribution Company.

<Comparison of Communication Systems>

Comparison of each communication system is shown in Table 1.

	Fiber Optic System	PLC	Radio wave	Mobile Phone
1.Transmission System	Direct intensity modulation	PLC/groun d return	VHF/UHF (Digital)	GPRS
2.Transmission Capacity	Several Gbps	200~60 O bps	~ Several kbps	~ Several kbps
3. Reliability	Very High	Transmission loss for 11kV line is large due to DT/connection, so the reliabili ty is not so good.	Low	Low
4. Congestion	No problem	No problem	No problem	Congestion should be considered in case of outage and disaster
5. Security	No problem because of special line	No problem because of special line	Security had better be considered.	Security should be considered because of public network
6. Cost	High	Low	Not low	Low
7.Expansion (New business)	Transmission capacity is enough for communication business	No marg in for transmission capac ity	Transmission capacity is not enough	Transmission capacity is not enough

Table 1 Comparison of Communication Systems

The above table shows that any of these communication systems satisfies all the requirements for communication technology specifications, but it can be found that they are not necessarily appropriate in some points.

PLC system is used in TEPCO. However, PLC system for HV (11kV) is not appropriate for Egypt due to the following reasons.

- \checkmark Loss of transmission signals becomes large due to transformers (DT) and capacitors.
- ✓ In terms of transmission distance, as the total length of feeders is longer because the medium distribution voltage in Egypt is 11 kV compared with 6 kV in Japan, the transmission loss becomes further larger at the time of arrival at RTU.
- ✓ Reliability of PLC is not so good due to cable connection problems, standing wave etc.
- ✓ It is necessary to carry out verification for every distribution system. Because of a long period of time required for such verification and consequent cost, its advantage of low cost is offset.

In case of General Packet Radio Service (GPRS), the investment is low because the public network constructed by Tele-communication company can be used for Upgrading DMS (DAS) and AMR/DSM. However, for use of the public network, it generally has two major problems which are security and congestion. It is necessary for the communication system using GPRS to design the countermeasure for security and the high priority against congestion. In addition, we should consider to pay the connection fee to the Tele-communication company every use/day/month/year.

As for fiber optic system, the transmission capacity, contingency and reliability of power security are excellent. However, the cost of fiber optic system is slightly higher than other systems, but the future potential and upgrade ability of the former is much higher.

As for Digital UHF/VHF, the reliability and transmission capacity is lower than Fiber Optic system, but the investment is lower and the installation work is more easy.

<Recommendation for backbone Communication System>

As for the back-bone communication network among MCC, substation and RTU, Digital UHF/VHF is recommendable due to low cost and easy installation.

However, the characteristics of Fiber Optic is the best as backbone network, so it is recommended that Fiber optic will be installed in cables when new distribution feeder will be constructed in order to apply in future.

(2) Branch (Last one mile) communication network

There are 4 candidates as branch communication network for AMR which are of PLC for LV line, GPRS, WiMAX and ZigBee.

The rough comparison is shown in the following table.

[PLC	GPRS	WiMAX	ZigBee
		(Public)	(Private)	
Bandwidth	- 450 kHz 4 – 28MHz	850 – 1900 MHz	2 – 11 GHz	868 870 MHz 902 - 928 MHz 2.4 GHz
Distance	Δ	© by Public network	⊚ (2-10km, 50km max)	O (30m x N)
Baudrate	△ 2.4kbps (for LV)	O 28kbps	© 74Mbps (at 20MHz band)	O 20kbps (868M) 40kbps (915M) 250kbps (2.4G)
Reliability	X	0	0	0
Security	0	X By Public use	O (3DES)	0
Collision / Congestion	0	X By Public use	0	O (CSMA/CA)
Power consumption	Δ	0	Δ	Ø,
Initial Cost	0	0	Δ	Ø
Maintenance Cost	0	Х	0	0
Standard	\triangle (CEPCA etc)	0	O (IEEE 802.16) (WiMAX Forum)	O (IEEE 802.15.4) (Zigbee Alliance)

PLC for LV (400V) line is suitable for the communication for AMR/DSM on consumer side because the high reliability is not required and the investment is low.

However, there are a lot of reliability problems as follows.

- ✓ Loss of transmission signals happens due to a lot of connection points, noise by electric household devices and so on.
- ✓ Leakage electric magnetic wave is occurred by the LV line as the function of antenna
- ✓ Reliability of PLC is not so good due to cable connection problems, standing wave etc.

Therefore, PLC is not recommendable.

As for GPRS under Public network, GPRS is fascinated due to the low investment. However, the maintenance cost is large because a lot of communication is required for AMR which means to pay huge money to Telecommunication Company.

In addition, the security and the congestion should be considered in the design of communication system using GPRS.

As for the branch communication network between RTU and AWHM on consumer side, GPRS is not recommendable.

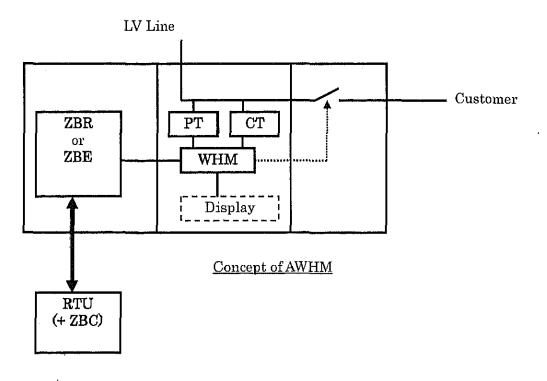
As for WiMAX, the characteristics are excellent but the initial cost and power consumption are large as compared with ZigBee.

As for ZigBee, the characteristics are not so good as compared with WiMAX but are enough in application to AMR.

The cost is inexpensive and the power consumption is very small, so that AWHM assembled the device can attain small size and low cost.

Therefore, ZigBee is recommendable as the branch communication.

· ·


·

• • •

Appendix 4: Appendix 4.2-3 System configuration idea for AMR

Appendix 4.2-3 System configuration idea for AMR

< Major feature of AMR >

- (1) WHM can store the consumption data for more than 0ne month. When the control center requests to send the data, the accumulated data in WHM can be sent through ZigBee communication network
- (2) Display in AWHM is simple in order to achieve low price.
- (3) SW can be assembled in AWHM in order to implement DSM in future.

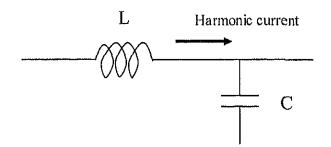
Appendix 4:

Appendix 4.2-4 Problems and Consideration in case of installation of capacitor to LV line

.

.

Appendix 4.2-4 Problems and Consideration in case of installation of capacitor to LV line


It is necessary to check the following problems in case of installing LV capacitor.

(1) Harmonic current problem

When capacitor is installed to LV line, it has to examine series resonance which is caused by combination of impedance of LV line and capacitor.

Because almost all of impedance of LV line is occupied by reactance, total impedance of LV line, to which capacitor is connected, is calculated as follows,

 $Z=j\omega L+1/j\omega C$

Regarding the above mentioned Z, put Z=0 and get $\omega = 1/\sqrt{LC}$, which is series resonance of this LV line.

Generally, harmonic current, which is caused by electrical equipment such as inverter, flows on LV line. When the frequency of the harmonic current of LV line is equal to the series resonance of this LV line, over-current flow into the capacitor, which is connected to this LV line, and cause the damage to this capacitor.

Therefore, in case of the design about connection of capacitor to LV line, it will be needed to examine impedance of LV line and capacity of capacitor.

(2) Other problem

In case of LV capacitor, cheaper cost is required due to a lot of quantity, so that the following problems should be checked.

- Lack of capacity (Enough margin is required.)
- Lack of withstanding voltage against LV voltage including switching surge and lightning surge.
- Lack of withstanding voltage under long term-use
- Deterioration by using long term under high temperature condition

·

, ,

Appendix 4: Appendix 4.2-5 Contents of project cost

Appendix 4.2-5 Contents of project cost

< W	est Alex in AE	DC >			
Location of Loss	Project	Quantity	Foreign MUS\$	Local MUS\$ (MLE)	Reason of Cost 1USS=5.5LE
(1) 11kV feeder	GiConstruction of 11kV freder	180 feeder		36.2 (309)	9157Km / 1875 feater = 4.9km/frediat 350kl.# / km 4.9km x 0.35MLFs x 140 = 309MLE:
	②Installation of new Capacitor	100 units (New) 175 units (existing)	5.6	0.4 (2.2)	 288 UG feeder + 3 OH feeder = 291 1) Existing capacitor; 49(Distributor) + 126(Kiosk) = 175 units (Old) 175 x 9kUS\$ → 1.6MUS\$ 2) New capacitor; 291- 175 = 116 units → 100 units 100 x 40kUS\$ = 4000 → 4MUS\$ [40kUS\$; 300KVAR Capacitor + RTU + Auto LBS(VS)] 3) Adaptation work in site; 8kLE x 275 = 2200kLE
	③Improvement of Load unbałance	600 units	18.0	1.8	Load unbalance can be improved by DAS including control center, RTU and SW. The control center and RTU are included in item 3, so SW is calculated as project cost in order to avoid the overwrapping of cost. Necessary SW: 720 units (288 feeder x 2.5 = 720) Existing Kiosk: 126 units (→modified to automatic type) 126 x 15kLE = 1890 → 1.9 MLE 720 -126 = 594→ 600 units (2 way: Automatic + 2way: Manual) 600 x 30kUS\$ = 18000→ 18MUS\$
(2) DT	Replacement of low loss DT Large capacity DT to improve overload	970 units	30.0	3.0	Existing old DT: 970 units The DT will be replaced to low loss and 1000KVA DT. 970 x 0.17MLE = 1649MEGP
(3) LV line	Improvement of phase unbalance by Upgrading DMS (DAS)	l system 8 SS 2000units	13.5	1.3	Load current of LV phases at DT are monitored by Upgrading DMS (DAS) with RTU and control center. The necessary facilities are of 1 system of control center, M-RTU for Substation (8 SS), RTU for Kiosk (720-126 units) and RTU for DT (1059). → 2000 units (RTU) for considering expansion Existing M-RTU will be applied. I system x 3.5 MUS\$ + 2000 x 0.005 MUS\$ = 13.5 → 13.5 MUS\$ These RTU and communication network can be used for AMR to reduce non-technical loss and Upgrading DMS (DAS) to improve the reliability. These facilities can also be used for future plan of DSM (peak cut) and communication business.
(4) Meter	Replacement to electrical meter	200,000 units	24.0	1.2	For all of consumers (200,000 consumers) 120US\$ x $200,000 = 24000000 \rightarrow 24MUS$$
<sub-total></sub-total>			91.1	7.7	
(5) Non - technical loss	By AMR system	1 system	2.0	0.2	Meter cost is included in (4). Communication (RTU) and parts of control center are included in (3).
< Total >	······································		93.1	7.9	

< West Alex in AEDC >

Remarks> The distribution network applied with Upgrading DMS (DAS) will be based on 3 sections and 3 looped points (normal open point). In case that the looped points will be lacked, the new construction will be required.

.

< North Dahkalia >

Location of Loss	Project	Quantity	Foreign MUSS	Local MUS\$ (MLE)	Reason of Cost 1US\$=5.5LE
(1) 11kV feeder	OConstruction of ILCV feeder	140 Rester			UG: 812km/160fecter=5.1km OH: 2162km/123fecter=17.7km 5.1x0.3x60fecter(U6f)+17.7x6.13x80 feeder(OH) = 276MLB 276/3.5= 50.2MU85
	②Installation of new Capacitor	70	4.0	0.4	OH: 122 feeders \rightarrow 70 feeders (Bad Pf) 300kVA capacitor for OH with RTU and Auto LBS(Vacuum type). 70 x 57kUS\$ = 3990 \rightarrow 4.0 MUS\$
	③SVR	150	4.0	0.4	OH: 122 feeders \rightarrow Assumption of Voltage drop: 50 feeders, 3units/feeder 500 KVA SVR: 24kUS\$ 50 x 3 x 26kUS\$ = 3900 \rightarrow 4.0MUS\$
(2) DT	Displacement of	LBS \$70 mds RTU: 965 mbs		16.0	Load unbalance can be improved by Upprading DIMS (DAS) including control center, RTU and SW. The control center and KU3 are included in from 3, so SW is indiculated as project cost in order to avoid the observangping of cost. Necessary SW, 550 unlts for OH (J22 freeder $\approx 4.5 = 549 = -350$) OH 550 unlts:0.008 = 4.4 MU38 US: using existing Klook: 1953 The necessary automatic Klook: 445 (166 S 1.5 = 415), 415 s 40kLE = 16600 == 16.0 MLB for modification of Klook RTU, Arr and Tr for OH; 0.006 MU38 RTU, Arr and Tr for OH; 0.006 MU38 STO, battery or for UG; 0.008 MU38 S50 x 0.004 + 415 s 0.008 = 5.52 MU88 $4.4 \pm 5.52 = 9.92 = 4.10$ MU88 Control center, 2.5 MU88
(2) DT	Replacement of low loss DT	600 (UG)	10.2	1.1	Old DT: 2289 units UG: 600 units for 500kVA will be replaced as assumption to keep the budget. $600x0.093MLE=55.8MLE \rightarrow 10.2MUS$ \$
(3) LV line	Shortening LV line by DT of small capacitor	200 units	3.2	0.3	LV line of OH can be reduced by replacing to small capacity (100KVA) DT as mentioned item (2). 200 units x 0.088MLE = 17.6 MLE (3.2MUS\$)
(4) Meter	Replacement to electrical meter Upgrading	600,000 Units	72.0	7.2 0.1	For all of consumers (600,000 consumers). 120US\$ x 600,000 = 72,000,000 US\$
<sub-total></sub-total>	Communication	1	94.4	9.5	
(5) Non - technical loss	By AMR system	1 system	2.0	0.2	Meter cost is included in (4). Communication (RTU) and parts of control center are included in item (1)④.
< Total >			96.4	9.7	

Remarks>The distribution network applied with Upgrading DMS (DAS) will be based on 3 sections and 3 looped points (normal open point). In case that the looped points will be lacked, the new construction will be required.

.

.

<Helmya sector in NCEDC >

Location of Loss	Project	Quantity	Foreign MUS\$	Local MUS\$ (MLE)	Reason of Cost 1US\$=5.5LE
(1) 11kV feeder	 Defonstruction of LikV feeder Installation of new Capacitor Installation of new Capacitor Installation of new Capacitor Installation of new Capacitor 	200 focder 424(new) +42(old) 442(old)	17.4 770 -	47,5 (261) 0.7	(1)AS) including control contex, RTU and SW Tec control center and RTU are included in item 3, so BW is calculated as project cost in actor to provid the
(2) DT	Replacement of high loss DT Large capacity DT to improve	1500 units	32.0	3.2	overwapping effects. Necessary SW: 1413 pairs → 1400 (565 lender $\times 2.5 = 1413$) Instaing Klosk: 2785 enles S65x2.5 \sim 1285 (Blosk) \rightarrow No need for new SW Modiffraction to automatic type: 1400 x 27.5k1 = 38500 \rightarrow 7 MUSS Existing old DT; 2285 units The DT will be replaced to low loss and 1000KVA DT (from 500KVA). 2285 \rightarrow 1500 units 1500 x 0.12 = 180MLE \rightarrow 32 MUSS
(3) LV line	overload Improvement of phase unbalance by Upgrading DMS (DAS)	l system 14 SS 2285units	16.2	1.6	Load current of LV phases at DT are monitored by Upgrading DMS (DAS) with RTU and control center, The necessary facilities are of 1 system of control center, M-RTU for Substation (14 SS), RTU for Kiosk (2795 units) and RTU for DT (2285), RTU for existing distributor (42) 1 system x 2.5 MUS\$ + 14 SS x 0.15 MUS\$ + 42 x 0.005 + 2285 x 0.005 MUS\$ = 16.2 MUS\$ These RTU and communication network can be used for AMR to reduce non-technical loss and DAS/SCADA to improve the reliability. These facilities can also be used for future plan of DSM (peak cut) and communication business.
(4) Meter	Replacement to electrical meter	600,000 units	72.0	3.6	For all of consumers (600,000 consumers) for El Helmya zone as 1st step.
(5) Others	Communication upgrading	1	7.0	0.7	
<sub-total></sub-total>			144.6	9.8	
(5) Non - technical loss	By AMR system	1 system	2.0	0.1	Meter cost is included in (4). Communication (RTU) and parts of control center are included in (3).
< Total >			146,6	9.9	

<Remarks>The distribution network applied with Upgrading DMS (DAS) will be based on 3 sections and 3 looped points (normal open point). In case that the looped points will be lacked, the new construction will be required.

Appendix 4:

.

Appendix 4.3-1 Calculation Sheets for West Alex, AEDC

. .

.

.

Appendix 4.3-1 Calculation Sheets for West Alex, AEDC

West Alex

No.	Year	Electricity Consumpti on (GWh)	Loss Rate	Sales Energy (GWh)	Growth Rate	Note
1	2008/2009	999	13.76%	862		
2	2009/2010	-	-	930	8.0%	
3	2010/2011	-	-	1,005	8.0%	
4	2011/2012	-		1,085	8.0%	
5	2012/2013	-	-	1,172	8.0%	
1	2013/2014	-	-	1,266	8.0%	

Note: Further energy growth was assumed until 2028 by 8% of annual growth rate for calculation of benefit.

Benefit by the Project

	gu by me.							
		Reduction of			tion of	Reduction of		
		Outage Duration		Technic	cal loss	Non-Technical loss		
No.	Year	Reduced Duration (hour)	Benefit (GWh)	Reduced Value (%)	Benefit (GWh)	Reduced Value (%)	Benefit (GWh)	
1	2013	1.93	0.3	3.73	55	4.09	60	
2	2014	1,93	0.3	3.73	59	4.09	65	
3	2015	1.93	0.3	3.73	64	4.09	70	
4	2016	1.93	0.4	3.73	69	4.09	76	
5	2017	1.93	0.4	3.73	74	4.09	82	
6	2018	1.93	0,4	3.73	80	4.09	88	
7	2019	1.93	0.4	3.73	87	4.09	95	
8	2020	1.93	0.5	3.73	94	4.09	103	
9	2021	1.93	0.5	3.73	101	4,09	111	
10	2022	1.93	0.6	3.73	109	4.09	120	
11	2023	1.93	0.6	3.73	118	4.09	130	
12	2024	1.93	0.7	3.73	128	4.09	140	
13	2025	1.93	0.7	3.73	138	4.09	151	
14	2026	1.93	0.8	3.73	149	4.09	163	
15	2027	1.93	0.8	3.73	161	4.09	176	
16	2028	1.93	0.9	3.73	174	4.09	190	
17	2029	1.93	0.9	3.73	174	4.09	190	
18	2030	1.93	0.9	3.73	174	4.09	190	
19	2031	1.93	0.9	3.73	174	4.09	190	
20	2032	1.93	0.9	3.73	174	4.09	190	
21	2033	1.93	0.9	3.73	174	4.09	190	
22	2034	1.93	0.9	3.73	174	4.09	190	
23	2035	1.93	0.9	3.73	174	4.09	190	
24	2036	1.93	0.9	3.73	174	4.09	190	
25	2037	1.93	0.9	3.73	174	4.09	190	
26	2038	1.93	0.9	3.73	174	4.09	190	
27	2039	1.93	0.9	3.73	174	4.09	190	
28	2040	1.93	0.9	3.73	174	4.09	190	
29	2041	1.93	0.9	3.73	174	4.09	190	
30	2042	1.93	0.9	3.73	174	4.09	190	

Tariff & Purchase Price

Turijj & Furchuse Frice								
Year	Tariff (cent/kWh)	Purcahce Price (cent/kWh)						
2009	3.41	2.16						
2012	2.02	2.10						
2013	3.93	2.49						
2014	4.10	2.60						
2015	4.27	2.70						
2016	4.44	2.81						
2017	4.61	2.92						
2018	4.61	2.92						
2019	4.61	2.92						
2020	4.61	2.92						
2021	4,61	2.92						
2022	4.61	2.92						
2023	4.61	2.92						
2024	4.61	2.92						
2025	4.61	2.92						
2026	4,61	2.92						
2027	4.61	2.92						
2028	4.61	2.92						
2029	4.61	2.92						
2030	4.61	2.92						
2031	4.61	2.92						
2032	4.61	2.92						
2032	4.61	2.92						
2033	4.61	2.92						
2034	4.61	2.92						
2035	4.61	2.92						
2030	4.61	2.92						
2037	4.61	2.92						
2038	4.61	2.92						
2040	4.61	2.92						
2041	4.61	2.92						
2042	4.61	2.92						

Financial Analysis

Financial Analysis for the Project in AEDC

Proj	ect
------	-----

Target Area	West Alex, AEDC					
Project Life	2 years construction + 30 years operation					
Averaged Tariff	0.188 LE/ kWh	= 3.415 US cent/kWh				
Averaged Purchase Price	0.119 LE/kWh	= 2.164 US cent/kWh				
Exchange Rate	0.182 US\$/LE	= 5.5 LE/US\$				

Financial Cost

Financial Cost	121.6	million US\$	
Spare Parts (every 5 years)	3.6	million US\$	(3 % of the above)
Replacement of RTU in 20th year	15.0	million US\$	

FIRR

5.9%

							Benefit (B)	Unit:	Million US\$
			ļ	Cost (C)		E	B-C		
No.	Year .	Activities	Construction	O&M	Total Cost (1)	Reduction of Ontage Duration	Reduction of Losses	Total Benefit (2)	Net (2)-(1)
1	2011	Construction period	60.8		60.8			-	(60.8)
2	2012		60.8		60.8			-	(60.8)
1	2013	Operation period		1.5	1.5	0.004	4.5	4.5	3.0
2	2014			1.5	1.5	0.005	5.1	5.1	3.6
3	2015			1.5	1.5	0.005	5.7	5.7	4.2
4	2016			1.5	1.5	0.006	6.4	6.4	4.9
5	2017	1	1	5.1	5.1	0.006	7.2	7.2	2.1
6	2018			1.5	1.5	0.007	7.8	7.8	6.3
7	2019			1.5	1.5	0.007	8,4	8.4	6.9
8	2020			1.5	1.5	0.008	9.1	9.1	7.6
9	2021			1.5	1.5	0.009	9.8	9.8	8.3
10	2022			5.1	5.1	0.009	10.6	10.6	5.5
ļп	2023	1]]	1.5	1.5	0.010	11.4	11.4	10.0
12	2024	[[[1.5	1.5	0.011	12.3	12.3	10.9
13	2025		1	1.5	1.5	0.012	13.3	13.3	11.9
14	2026	ļ		1.5	1.5	0.013	14.4	14.4	12.9
15	2027			5.1	5.1	0.014	15.5	15.5	10.4
16	2028			1.5	1.5	0.015	16.8	16.8	15.3
17	2029			-	-	0.015	16.8	16.8	16.8
18	2030	}		-	-	0.015	16.8	16.8	16.8
19	2031	1		-	-	0.015	16.8	16,8	16.8
20	2032			18.6	18.6	0.015	16.8	16.8	(1.9)
21	2033	· ·		-	-	0.015	16.8	16.8	16.8
22	2034			-	-	0.015	16.8	16.8	16.8
23	2035			-	-	0.015	16.8	16.8	16.8
24	2036			-	-	0.015	16.8	16.8	16.8
25	2037		1	3.6	3.6	0.015	16.8	16.8	13.1
26	2038	, í	!	-	-	0.015	16.8	16.8	16.8
27	2039			-	-	0.015	16.8	16.8	16.8
28	2040			-	-	0.015	16.8	16.8	16.8
29	2041		1	-	-	0.015	16.8	16.8	16.8
30	2042			-	-	0.015	16.8	16.8	16.8
	1	fotal	121.6	56.8	178.4	0.351	393.1	393.4	215.0

.

Economic Analysis

Economic Analysis for the Project in AEDC

.

Project

.

Target Area	West Alex, AEDC	· · · · · · · · · · · · · · · · · · ·
Project Life	2 years construction + 3	0 years operation
Averaged Tariff	0.188 LE/kWh	= 3.415 US cent/kWh
Averaged Purchase Price	0.119 LE/kWh	= 2.164 US cent/kWh
Exchange Rate	0.182 US\$/LE	= 5.5 LE/US\$
Cost of alternative thermal plant (Gas)		6.95 US cent/kWh
Un-Served Energy value		2000 \$/MWh

Economic Cost

Economic Cost	111.5	million US\$	
Spare Parts (every 5 years)	3.3	million US\$	(3 % of the above)
Replacement of RTU in 20th year	15.0	million US\$	

EIRR	9.3% %	
NPV	-8.1 million US\$ (at 10% Discount Rate	e)
B/C	0.9 (at 10% Discount Rate	e)

Million U	Unit:	enefit (B)	F		Cost (C)	I	T		
Net (2)-(1)	Total Benefit (2)	Reduction of Losses	Reduction of Outage Duration	Total Cost (1)	0&M	Construction	Activities	Year	No.
(55.	-			55.8		55.8	Construction Period	2011	1
(55.	-			55,8		55.8		2012	2
5.	6.7	6.2	0.6	1.5	1.5		Operation	2013	1
5.	7.4	6.8	0.6	1.5	1.5			2014	2
б.	8,1	7.4	0.7	1.5	1.5			2015	3
7.	8.8	8,1	0.7	1.5	1.5			2016	4
4.	9.7	8,9	0.8	4.8	4.8			2017	5
9.	10.5	9.7	0.8	1.5	1.5			2018	6
9.	11.3	10.4	0.9	1.5	1.5			2019	7
10.	12.2	11.3	1.0	1.5	1.5			2020	8
11.	13.2	12.2	1.0	1.5	1.5			2021	9
9.	14.2	13.1	1.1	4.8	4.8			2022	10
13.	15.4	14.2	1.2	1.5	1.5			2023	11
15.	16.6	15.3	1.3	1.5	1.5			2024	12
16.	17.9	16.5	1.4	1.5	1.5			2025	13
17.	19.4	17.9	1.5	1.5	1.5			2026	14
16.	20.9	19.3	1.6	4.8	4.8			2027	15
21.	22.6	20.8	1.8	1.5	1.5			2028	16
22.	22.6	20.8	1.8	-	-			2029	17
22.	22.6	20,8	1.8	-	-			2030	18
22,	22.6	20,8	1.8	-	-			2031	19
4.	22.6	20.8	1.8	18,3	18.3			2032	20
22.	22.6	20.8	1.8	-	-			2033	21
22.	22,6	20.8	1.8		-			2034	22
22.	22.6	20.8	1.8	-	-			2035	23
22.	22.6	20.8	1.8	•	-		1	2036	24
19	22.6	20.8	1.8	3.3	3.3		1	2037	25
22.	22.6	20.8	1.8	-	-			2038	26
22.	22.6	20.8	1.8	-	-			2039	27
22.	22.6	20.8	1.8	-	-			2040	28
22.	22.6	20,8	1.8	-	-			2041	29
22.	22.6	20.8	1.8	-				2042	30
364.	531.6	489.8	41.8	166.8	55.3	111.5	otal	Ί	
(8,	104.1				NPV				

(at 10% Discount Rate)

.

(1) Cost Data of Alternative Thermals

	Items unit	Description	Remark
1	Fuel cost	7.00 \$/MMBTU	
2	Thermal efficiency	40%	
3	Calorific value	8.530E+03 (BTU/kWh)	

(2) Computation of Adjustment Coefficients for Losses:

Items	Description	Remark
1 Total System Losses	14.1%	Assumed
2 Overall operation efficier	85.9%	

(3) Computation of reduced fuel cost

	Items	Description	Remark
1	Fuel cost per kWh	0.060 \$/kWh	
2	Adjustment factor	1.16	
3	Cost per kWh (after adju	6.95 C/kWh	

.

Appendix 4: Appendix 4.3-2 Calculation Sheets for North Dakhalia, NDEDC

Appendix 4.3-2 Calculation Sheets for North Dakhalia, NDEDC

North Dakhalia

No.	Year	Electricity Consumpti on (GWh)	Loss Rate	Sales Energy (GWh)	Growth Rate	Note
- 1	2008/2009	1,986	12.00%	1,748	-	
2	2009/2010	-	-	1,847	5.7%	
3	2010/2011	-	-	1,953	5.7%	
4	2011/2012	-	-	2,064	5.7%	
5	2012/2013	-	-	2,182	5.7%	
1	2013/2014	-	-	2,306	5.7%	

Sales Energy forecast in the project area up to the commissioning year
--

Benefit by the Project

Bene	efit by the .	Project					
		Reduct	tion of	Reduc	tion of	Reduci	· · ·
		Outage L	Duration	Technic	cal loss	Non-Tech	nical loss
No.	Year	Reduced Duration (hour)	Benefit (GWh)	Reduced Value (%)	Benefit (GWh)	Reduced Value (%)	Benefit (GWh)
1	2013	-	-	1.95	51	4.03	106
2	2014	-	-	1.95	51	4.03	106
3	2015	-	-	1.95	51	4.03	106
4	2016	-	-	1.95	51	4.03	106
5	2017	-	-	1.95	51	4.03	106
6	2018	-	•	1.95	51	4.03	106
7	2019	*	-	1.95	51	4.03	106
8	2020	+	-	1.95	51	4.03	106
9	2021	-	-	1.95	51	4.03	106
10	2022	-	-	1.95	51	4.03	106
11	2023		-	1.95	51	4.03	106
12	2024		-	1.95	51	4.03	106
13	2025	-	•	1.95	51	4.03	106
14	2026	-	-	1.95	51	4.03	106
15	2027	-	-	1.95	51	4.03	106
16	2028	-	•	1.95	51	4.03	106
17	2029	-	•	1.95	51	4.03	106
18	2030	-	-	1.95	51	4.03	106
19	2031	-	-	1.95	51	4.03	106
20	2032	-	-	1.95	51	4.03	106
21	2033	-	-	1.95	51	4.03	106
22	2034	-	-	1.95	51	4.03	106
23	2035	-	-	1.95	51	4.03	106
24	2036	-	-	1.95	51	4.03	106
25	2037	-	-	1.95	51	4.03	106
26	2038	-	-	1.95	51	4.03	106
27	2039	-	•	1.95	51	4.03	106
28	2040	-	-	1.95	51	4.03	106
29	2041	-	-	1.95	51	4.03	106
30	2042	-	-	1.95	51	4.03	106

Tariff & Purchase Price

Year	Tariff (cent/kWh)	Purcahce Price (cent/kWh)
2009	3.71	2.65
2013	4.27	3.05
2013	4.45	3.19
2015	4.64	3.32
2016	4.82	3.45
2017	5.01	3.58
2018	5.01	3.58
2010	5.01	3.58
2020	5.01	3.58
2021	5.01	3.58
2022	5.01	3.58
2023	5.01	3.58
2024	5.01	3.58
2025	5.01	3.58
2026	5.01	3.58
2027	5.01	3.58
2028	5.01	3.58
2029	5.01	3.58
2030	5.01	3.58
2031	5.01	3.58
2032	5.01	3.58
2033	5.01	3.58
2034	5.01	3.58
2035	5.01	3.58
2036	5.01	3.58
2037	5.01	3.58
2038	5.01	3.58
2039	5.01	3.58
2040	5.01	3.58
2041	5.01	3.58
2042	5.01	3.58

Financial Analysis

Financial Analysis for the Project in the NDEDC

Target Area	North D	akhalia, NDEDC			
Project Life	2 years of	construction + 30 ye	ears operati	ion	
Averaged Tariff	0.204	LE/ kWh	7	3.709	US cent/kWh
Averaged Purchase Price	0.146	LE/kWh		2.655	US cent/kWh
Exchange Rate	0.182	US\$/LE	=	5.5	LE/US\$
cial Cost					
Financial Cost	127.5	million US\$			
		million US\$			above)

FIRR

3.5%

Unit: Mil									
				Cost (C)	·····	Benefit (B)			B-C
No.	Year	Activities	Construction	O&M	Total Cost (1)	Reduction of Outage Duration	Reduction of Losses	Total Benefit (2)	Net (2)-(1)
i	2011	Construction period	63.7		63.7				(63.7)
2	2012		63.7		63,7			•	(63.7)
1	2013	Operation period		-	-	-	6.7	6.7	6.7
2	2014		!	-	-	-	7.0	7.0	7.0
3	2015	1	1 1	-	-	- 1	7.3	7.3	7.3
4	2016			-	-	-	7.6	7.6	7.6
5	2017			3.8	3.8	- 1	7.8	7.8	4.0
6	2018			-	-	-	7.8	7.8	7.8
7	2019			-	-	-	7.8	7.8	7.8
8	2020	i i	1 1	-	-	-	7.8	7.8	7.8
9	2021		1	-	-	-	7.8	7.8	7.8
10	2022			3.8	3.8		7.8	7.8	4.0
11	2023			-	-	_	7.8	7.8	7.8
12	2024		1	-	-	-	7.8	7.8	7.8
13	2025		1 1	-	-	-	7.8	7.8	• 7.8
14	2026			-	-	-	7.8	7.8	7.8
15	2027			3.8	3,8	-	7.8	7.8	4.0
16	2028			-	-	-	7.8	7.8	7.8
17	2029			-	-	-	7.8	7.8	7.8
18	2030	l	1 1	-	-	-	7.8	7.8	7.8
19	2031		1	-	-	-	7.8	7.8	7.8
20	2032	1		3.8	3.8		7.8	7.8	4.0
21	2033			-	-	-	7.8	7.8	7.8
22	2034			-	-	-	7.8	7.8	7.8
23	2035	{	1 1	-	-	-	7.8	7.8	7.8
24	2036			-	-	-	7.8	7.8	7.8
25	2037	1		3.8	3.8	-	7.8	7.8	4.0
26	2038			-	-	-	7.8	7.8	7.8
27	2039			-	-	-	7.8	7.8	7.8
28	2040	í –	(-	-	-	7.8	7.8	7.8
29	2041			-	-	-	7.8	7.8	7.8
30	2042	<u> </u>	<u> </u>	-	-		7.8	7.8	7.8
		Fotal	127.5	19.1	146.6	-	232.4	232.4	85.8

Economic Analysis

Economic Analysis for the Project in the NDEDC

Project

Target Area	North Dakhalia, NDEDC					
Project Life	2 years construction + 30 years operation					
Averaged Tariff	0.204 LE/ kWh	= 3.709 US cent/kWh				
Averaged Purchase Price	0.146 LE/kWh	= 2.655 US cent/kWh				
Exchange Rate	0.182 US\$/LE	= 5.5 LE/US\$				
Cost of alternative thermal plant (Gas)		6.95 US cent/kWh				
Un-Served Energy value	2000 \$/MWh					

Economic Cost

116.9	million US\$	
3.5	million US\$	(3 % of the above)
	million USS	
	3.5	116.9 million US\$ 3.5 million US\$ million US\$

EIRR	5,4% %
NPV	-38.3 million US\$ (at 10% Discount Rate)
B/C	0.6 (at 10% Discount Rate)

B/C		0.5		(at 10% Di	scount Rate)	1			
		·						Unit	Million US\$
				Cost (C)	······································	1	Benefit (B)		
No.	Year	Activities	Construction	O&M	Total Cost (1)	Reduction of Outage Duration	Reduction of Losses	Total Benefit (2)	Net (2)-(1)
1	2011	Construction Period	58.5		58,5			-	(58,5)
2	2012		58,5		58,5			-	(58.5)
1	2013	Operation		-	-	-	8,1	8.1	8.1
2	2014			•	-	-	8.2	8.2	8.2
3	2015			-	-	-	8.4	8.4	8.4
4	2016			-	-	-	8.6	8.6	8.6
5	2017			3.5	3.5	-	8,8	8.8	5.3
6	2018				-	-	8,8	8,8	8.8
7	2019			-	-	-	8,8	8.8	8.8
8	2020			-	- 1	-	8.8	8.8	8.8
9	2021			-	- 1	-	8,8	8.8	8.8
10	2022	. •		3.5	3.5	-	8,8	8.8	5.3
11	2023			-	· ·	-	8,8	8,8	8.8
12	2024			-	-	-	8.8	8.8	8.8
13	2025			-	-	-	8,8	8.8	8.8
14	2026			-		-	8.8	8.8	8,8
15	2027			3.5	3.5	-	8.8	8.8	5,3
16	2028			-	-	-	8,8	8.8	8.8
17	2029			-	-	-	8.8	8.8	8.8
18	2030			-	-	-	8.8	8.8	8.8
19	2031			-	-	-	8.8	8.8	8.8
20	2032			3.5	3.5	-	8.8	8.8	5.3
21	2033			-	-	-	8.8	8.8	8.8
22	2034			-		-	8.8	8.8	8.8
23	2035			-	-	-	8,8	8.8	8.8
24	2036			•	-	-	8.8	8.8	8.8
25	2037			3.5	3.5	-	8,8	8.8	5,3
26	2038			-	-	-	8,8	8.8	8.8
27	2039			-	-	-	8,8	8.8	8.8
28	2040			-	+	-	8.8	8.8	8.8
29	2041			-	-	-	8.8	8.8	8.8
30	2042			-	-	-	8,8	8.8	8.8
	1	Fotal	116.9	17.5	134.5	-	263.1	263.1	128.7
				NPV	105.8			67.5	(38.3)
				(at 100/ Di	count Date)				

(at 10% Discount Rate)

Appendix 4: Appendix 4.3-3 Calculation Sheets for El Helmya, NCEDC

. .

Appendix 4.3-3 Calculation Sheets for Helmya, NCEDC

Helmya

No.	Year	Electricity Consumpti on (GWh)		Sales Energy (GWh)	Growth Rate	Note
1	2008/2009	4,538	17.80%	3,730	-	
2	2009/2010			3,851	3.25%	· · · ·
3	2010/2011	-	-	3,977	3.25%	
4	2011/2012	-		4,106	3.25%	
5	2012/2013	-	-	4,239	3.25%	
1	2013/2014	-	-	4,377	3.25%	

Sales Energy forecast in the project area up to the commissioning year

Benefit by the Project

.

		Reduction of		Reduc	tion of	Reduction of		
		Outage Duration		Technic	cal loss	Non-Technical loss		
No.	Year	Reduced Duration (hour)	Benefit (GWh)	Reduced Value (%)	Benefit (GWh)	Reduced Value (%)	Benefit (GWh)	
1	2013	6.12	3.1	5.30	282	2.13	113	
2	2014	6.12	3.1	5.30	282	2.13	113	
3	2015	6.12	3.1	5.30	282	2,13	113	
4	2016	6.12	3.1	5.30	282	2,13	113	
5	2017	6.12	3.1	5.30	282	2.13	113	
6	2018	6.12	3.1	5.30	282	2,13	113	
7	2019	6.12	3.1	5.30	282	2.13	113	
8	2020	6.12	3.1	5.30	282	2.13	113	
9	2021	6.12	3.1	5.30	282	2.13	113	
10	2022	6.12	3.1	5.30	282	2.13	113	
11	2023	6.12	3.1	5.30	282	2.13	113	
12	2024	6.12	3.1	5.30	282	2.13	113	
13	2025	6.12	3.1	5.30	282	2.13	113	
14	2026	6.12	3.1	5.30	282	2.13	- 113	
15	2027	6.12	3.1	5.30	282	2.13	113	
16	2028	6.12	3.1	5.30	282	2.13	113	
17	2029	6.12	3.1	5.30	282	2.13	113	
18	2030	6.12	3.1	5.30	282	2.13	113	
19	2031	6.12	3.1	5.30	282	2.13	113	
20	2032	6.12	3.1	5.30	282	2,13	113	
21	2033	6.12	3.1	5.30	282	2.13	113	
22	2034	6,12	3.1	5.30	282	2.13	113	
23	2035	6.12	3.1	5.30	282	2.13	113	
24	2036	6.12	3.1	5,30	282	2.13	113	
25	2037	6.12	3.1	5.30	282	2.13	113	
26	2038	6.12	3.1	5.30	282	2.13	113	
27	2039	6.12	3.1	5,30	282	2.13	113	
28	2040	6.12	3.1	5,30	282	2.13	113	
29	2041	6.12	3.1	5.30	282	2.13	113	
30	2042	6.12	3.1	5.30	282	2.13	113	

Tariff & Purchase Price

Year	Tariff (cent/kWh)	Purcahce Price (cent/kWh)
2009	3.64	2.71
2013	4.18	3.12
2014	4.36	3.25
2015	4.55	3.39
2016	4.73	3.52
2017	4.91	3.66
2018	4.91	3.66
2019	4.91	3.66
2020	4.91	3.66
2021	4.91	3.66
2022	4.91	3.66
2023	4.91	3.66
2024	4.91	3.66
2025	4.91	3.66
2026	4.91	3.66
2027	4.91	3.66
2028	4.91	3.66
2029	4.91	3.66
2030	4.91	3.66
2031	4.91	3.66
2032	4.91	3.66
2033	4.91	3.66
2034	4.91	3.66
2035	4.91	3.66
2036	4.91	3.66
2037	4.91	3.66
2038	4.91	3.66
2039	4.91	3.66
2040	4.91	3.66
2041	4.91	3.66
2042	4.91	3.66

Ļ

Financial Analysis

Financial Analysis for the Project in NCEDC

Target Area	Helmya					
	2 years construction + 30 years operation					
Averaged Tariff	0.200 LE/ kWh	= 3.636 US cent/kV				
Averaged Purchase Price	0.149_LE/kWh	= 2,709 US cent/kV				
Exchange Rate	0.182 US\$/LE	= 5.5 LE/US\$				

Financial Cost

Financial Cost	185.7	million US\$	
Spare Parts (every 5 years)	5.6	million US\$	(3 % of the above)
Replacement of RTU in 20th year	30.0	million US\$	

FIRR 8.2%

		·						Unit:	Million US\$
	1.1			Cost (C)	·	l	Benefit (B)		B-C
No.	Year	Activities	Construction	O&M	Total Cost (1)	Reduction of Outage Duration	Reduction of Losses	Total Benefit (2)	Net (2)-(1)
i	2011	Construction period	92.8		92.8			-	(92.8)
2	2012		92.8		92,8			-	(92.8)
1	2013	Operation period		-	-	0.03	16.5	16.6	16.6
2	2014			-	-	0.03	17.3	17.3	17.3
3	2015	1		-	-	0.04	18.0	[8.0	18.0
4	2016			+	-	0.04	18.7	18.7	18.7
5	2017	ļ	1	5.6	5.6	0.04	19.4	19.5	13.9
6	2018			-	-	0.04	19.4	19.5	19.5
7	2019			-	-	0.04	19.4	19.5	19.5
8	2020	1		-	-	0.04	19.4	19.5	19.5
9	2021			-	-	0.04	19.4	19.5	19.5
10	2022])	5.6	5.6	0.04	19.4	19.5	13.9
11	2023		!	-	-	. 0.04	19.4	19.5	19.5
12	2024			-	-	0.04	19.4	19.5	19.5
13	2025	ſ	1 1	-	- 1	0.04	19.4	19.5	19.5
14	2026			- '	-	0.04	19.4	19,5	19.5
15	2027]		5.6	5.6	0.04	19.4	19.5	13.9
16	2028			-	-	0.04	19.4	19.5	19.5
17	2029			-	-	0.04	19.4	19.5	19.5
18	2030	1	1 1	-	-	0.04	19.4	19.5	19.5
19	2031			-	-	0.04	19.4	19.5	19.5
20	2032]		35.6	35.6	0.04	19.4	19.5	(16,1)
21	2033			-	-	0.04	19.4	19.5	19.5
22	2034		1	-	-	0.04	19.4	19.5	19.5
23 24	2035	[(í	- [- [0.04	[9.4	19.5	19.5
24 25	2036			-	-	0.04	19.4	19.5	19.5
25	2037 2038		1	5.6	5.6	0.04	19,4	19.5	13.9
20 27	2038			-	-	0.04	19.4	19.5	19.5
27	2039	J]	-	-	0.04	19.4	19.5	19.5
26 29	2040		1 [- [- [0.04	19.4	19.5	19.5
30	2041			-	-	0.04	19.4	19.5	19.5
		otal	185.7			0.04	19.4	19.5	19.5
	<u>1</u>	0181	185.7	57,9	243.5	1.134	575.171	576.3	332.8

÷

and the second second

•

Economic Analysis

Economic Analysis for the Project in NCEDC

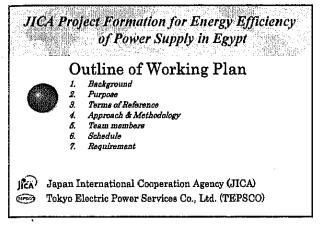
Target Area	Helmya				
Project Life	2 years	construction + 30	years oper	ation	
Averaged Tariff in 2009	0.200	LE/ kWh	—	3.636	US cent/kWh
Averaged Purchase Price in 2009	0.149	LE/kWh	~	2.709	US cent/kWh
Exchange Rate	0.182	US\$/LE	\$ 7	5.5	5 LE/US\$
Cost of alternative thermal plant (Gas)			6.95	US cent/k	Wh
Un-Served Energy value			2000	\$/MWh	

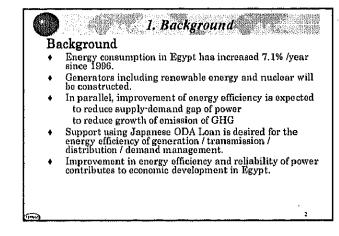
Economic Cost

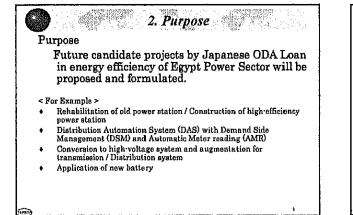
Economic Cost	170.3	miltion US\$	
Spare Parts (every 5 years)	5.1	million US\$	(3 % of the above)
Replacement of RTU in 20th year	 30.0	million US\$	

EIRR	16.1% %	
NPV	84.6 million US\$	(at 10% Discount Rate)
B/C	1.5	(at 10% Discount Rate)

D/C		1.5		(at 10% D)	scount Kate	1			· · · · · · · · · · · · · · · · · · ·
		1	T	Cost (C)		1	Benefit (B)	Unit:	Million US\$
No.	Year	Activities	Construction	0&M	Total Cost (1)	Reduction of Outage Duration	Reduction of Losses	Total Benefit (2)	Net (2)-(1)
1	2011	Construction Period	85.2		85,2				(85.2)
2	2012		85.2		85.2			-	(85.2)
1	2013	Operation		-	-	6.1	24.3	30.5	30.5
2	2014	r -		-	-	6.1	24.6	30.7	30.7
3	2015			-	-	6.1	24.8	30.9	30.9
4	2016			-	-	6.1	25.0	31.1	31.1
5	2017			5.1	5.1	6,1	25.2	31.3	26.2
6	2018			-	-	, 6.1	25.2	31.3	31.3
7	2019			-	-	6.1	25.2	31.3	31.3
8	2020			-	-	6.1	25.2	31.3	31.3
9	2021			-	-	6.1	25.2	31.3	31.3
10	2022			5.1	5.1	6.1	25.2	31.3	26.2
11	2023			-	-	6.1	25.2	31.3	31.3
12	2024			-	-	6.1	25.2	31.3	31.3
13	2025			-	-	6.1	25.2	31.3	31.3
14	2026			-	-	6.1	25,2	31.3	31.3
15	2027			5.1	5.1	6.1	25.2	31.3	26.2
16	2028			-	-	6.1	25.2	31.3	31.3
17	2029			-	-	6.1	25.2	31.3	31.3
18	2030			-	-	6.1	25.2	31,3	31.3
19	2031			-	-	6.1	25,2	31.3	31.3
20	2032			35.1	35.1	6.1	25.2	31.3	(3.8
21	2033			-	-	6.1	25.2	31.3	31.3
22	2034			-	-	6.1	25.2	31.3	31.3
23	2035			-	-	6.1	25.2	31.3	31.3
24	2036			-	-	6,1	25.2	31.3	31.3
25	2037			5.1	5.1	6.1	25.2	31.3	26.2
26	2038			-	-	6.1	25.2	31.3	31.3
27	2039			-	-	6.1	25.2	31.3	31.3
28	2040			-	-	6.1	25.2	31.3	31.3
29	2041		i :	-		6.1	25.2	31.3	31.3
30	2042			-		6.1	25.2	31.3	31.3
	<u>'</u>	fotal	170.3	55.5	225.8	183.4	753.1	936.5	710.7
				NPV	157.7			242.3	84.6
				(-+ 100/ TN)					

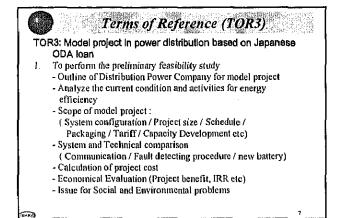

(at 10% Discount Rate)


· ·


·

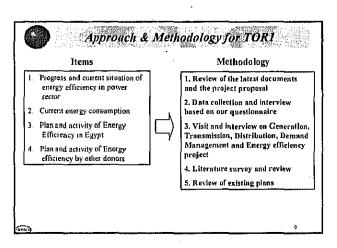
Appendix 5:

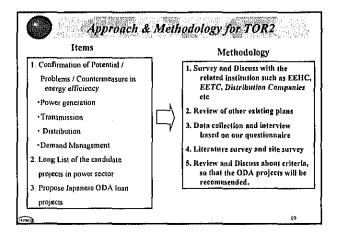
Appendix 5.1 Inception Presentation PP

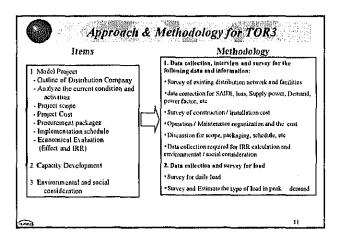


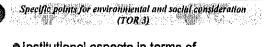
- OF	Terms of Reference (TOR2)
TC	R2: To confirm potential of improvement in energy
	efficiency of power sector in Egypt and propose the
	candidates of Japanese ODA loan project
1.	Confirmation of Potential / Problem / Countermeasure
	regarding improvement of energy efficiency in Power
	Generation / Transmission / Distribution / Demand
	Management
2,	Long List of candidate projects regarding improvement in energy efficiency
	- Power Generation/Fransmission/Distribution/Demand Management
3.	Propose the candidates of Japanese ODA loan project.

Sector	Sub-sector	Expected Project
Power Generation	Energy Efficiency of Generation	•Rehabilitation of old power generation •High-Efficiency Power Station
Fransmission	Transmission Loss	-High Voltage -Augmentation
Distribution	Distribution Loss	-New construction of Substation and MV feeder -Distribution Automation System (DAS) -Low loss transformer -New Battery
ľ	Reliability	-DAS -Upgrade Feeder Structure(Loop, Section SW)
Demand Side	Peak Cut / Shift	-DAS + DSM •New Battery
	Energy Efficiency	-AMR -DSM

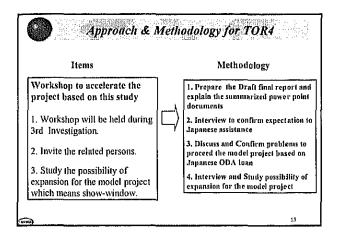

(Lorda)

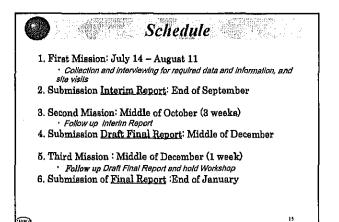


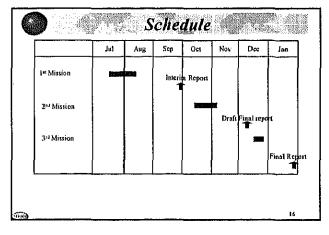



TOR4: Workshop to accelerate the project based on this project formulation

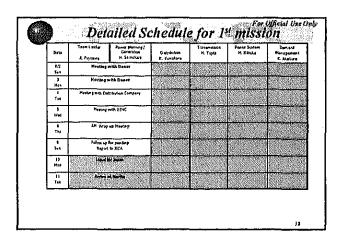
- 1. Workshop will be held during 3rd Investigation after the preparation of Draft Final Report.
- 2. Invite the related persons.



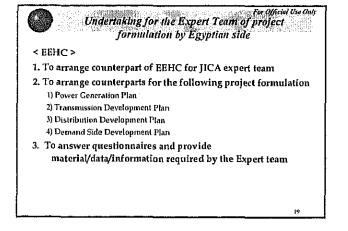




- Institutional aspects in terms of environmental and social consideration (e.g. relevant laws and agencies)
- Environmental and social considerations in the project site (e.g. socio-economic statistics
- Environmental review using JICA environmental checklist (e.g. permits to fell trees, relocation, etc.)



The second	a to the
Team Leader/ Distribution Specialist:	A. Fujisawa
Power plauning and generation Specialist:	II. Shinohara
Power Distribution Specialist:	K. Kuwahara
Energy Efficiency Specialist for Demand Side;	K. Akakura
Transmission and Substation Specialist:	ll. Tujita
Power system planning and analysis Specialist:	M. Kittaka
Environmental and social Specialist:	A. Urago
Economy and Management Specialist:	K. Takasawa

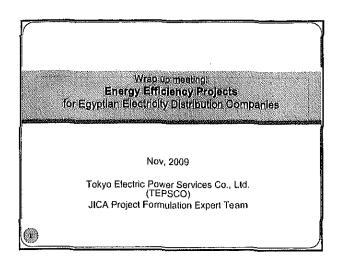


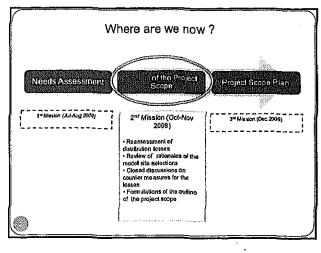
Date	Tears Leader	Power plath rg / Generation H. Shirabara	Dairbebai	Transvisaça Hi Tajsa	Power System H. Filleka	Demand Haragement K. Asakura			
7/20 Mas	A. figures		Have to Ale: Heating with J			. ALGLES			
21 Tu		Standary of energy a Neurola							
22 ***4	Wiap up in being in Alexandria								
21 Titu		Preisonary day va Alacandra							
25	Sea survey and meeting in Nath Data								
17 Haii	Sile survey and meeting in Carlo North								
2) Tvi		I	lalaw vy far pertir j	n kom Deta					
17	<u> </u>	Follow up for pending	wy sp far pending in Cara North			Polove up for gending in Caro North			
30 Tha	Hasting w	RA MREA				Musting with NR SA			

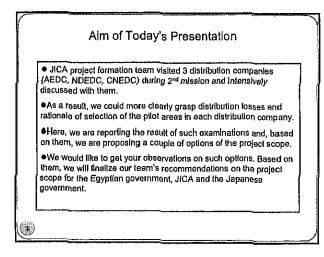
20

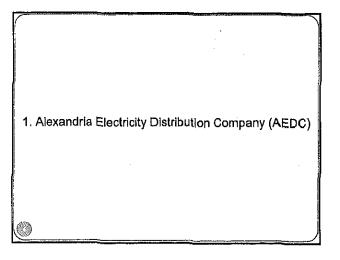
For Official Use Only Undertaking for the Expert Team by Egyptian side

< Distribution Company >

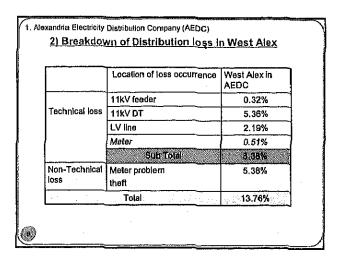

- 1. To arrange counterparts of each distribution Company
- 2. To support the site survey schedule in Distribution Company
- 3. To answer questionnaires and provide material/data/ information required by the Expert team
- 4. To accompany the Expert team to the site visit in model area if possible,



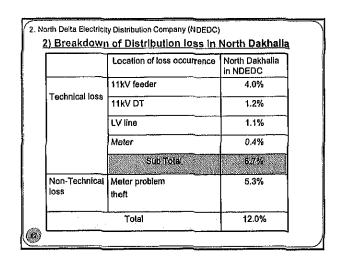

Appendix 5: Appendix 5.2 Interim report and Wrap up PP


·

. .



	Montaza	East Alex	Central Alex	West Alex	El Sahel	Total
echnical loss	B.14	7.97	8.05	8.38	7.97	8.15
loss	5.27	5,32	5.49	5.38	5.23	5.39
Total	13.20	13.16	13.54	13.76	13.20	13.54
<why west<br="">The highes Potentiats overloaded D Importance</why>	t (echnical of loss red Ts)	uction(long		ution lines a		

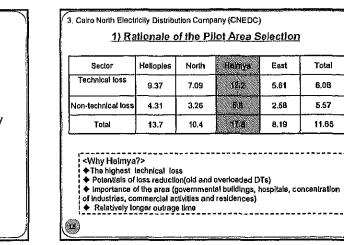

	Location	Loss Rate (ø)	Item	inyastment (b)(MUS\$)	Loss Reduction (c)	fnvestmer Efficiency (a)x(c)/(b
			New construction of 11kV feeder	56	∆34%	0,19
	11kV feeder	0.32	Capacitor	8	Q16%	0.66
Technical Loss			Improvement of Load unbalance	18	Δ4%	0.07
	11 KV OT	5.36	Low fose and farge capacity DT	21	△50%	12.8
	L.V line	2.19	Improvement of phase unbalance	21	A30%	6.9
	Meler (WHM)	0.51	Low loss WHM for AMR	24	Å60%	1,28
	Sub Tolal	-8,38	•	146	~ ∆45% {3.81}	
Non-Tec	Non-Technical Loss		AMR	(24)+2	∆70% (3,77)	14.5
τo	ITAL	13.76	-	1 6 6 7 7 1		Mangaria

	Location	Loss Rale (a)	ltem	(b)(MUS\$)	Loss Reduction (C)	Invostme Efficienc (a)x(c)/(l
. Technical	FIRV feature	0.52	New constructions of 13XV Notice Construction Interconstruction Construction		2095 2095 205	8.9 6.9 6.0
	11kV 07	5.38	Low loss and large capacity DT	21	Δ50%	12.8
	LV fine	2.19	Improvement of phase unbalance	21	∆30%	6.9
	Meter (WHM)	0.51	Low loss WHM for AMR	24	∆60%	1.28
	Sub Total	B.38	-	66	~ ∆43% (3.64)	
Non-Teo	hnical Loas	5,38	AMR	(24)+2	∆70% (3.77)	14.5
TC	DTAL	13.76				

	Location	Loss Rale (a)	Item	Investment (b)(MUS\$)	Loss Reduction (c)	Investme Efficienc (a)x(c)/(t
		4 16 1		68	-034%	0.19
	116V Reader	12			A.168	and the second
Technical Loss			he a pinter and a second	18	448	6.97
2030	11kV DT	5.36	Low loss and large capacity DT	21	A50%	12.8
	LV line	2.19	Improvement of phase unbelence	21	A30%	6.9
	Motor (WHM)	D.51	Low Kass WHM for AMR	0.12	Δ0.3%	1.28
	Sub Total	8.38	-	42.12	~ \$40% (3.34)	
Non- Tec	hnical Loss	5.38	AMR	(0.12)+2	△0.35% (0.02)	0.94
7(TAL	13.76	•		MAGENE	

	2. North Delta Electricity Distribution Company (NDEDC)
Î	

	Domitta	Kafr El- Shlekh	South Dakhalia	North Dakhalla	Total
Technical loss	4.1	4.g	3.5	6.7	4.8
Non-technical loss	1.9	3.1	2.7	5.3	3.25
Total	6.0	8,0	6.2	(2.0	8.05
Why North Dat The highest ter Potentials of lo growing demands Importance of activities and grow the state of the state	chnical loss ss reduction) the area (th	n(high ratio e concentra			



2.	North Delt 3)	e Electricity Counter	Distribut Meas	lon Company (N ures: Option	DEDC) 1 [Full (<u>[] [] [] [] [] [] [] [] [] [] [] [] [] [</u>	
		Location	Loss Rate (a)	Item	Investment (b)(MUS\$)	Loss Reduction (c)	Investment Efficiency (a)x(c)/(b)
				New construction of 11kV feeder	84	∆30%	1.43
		11kV feeder	4.0	Capacitor	6	Δ16%	10.67
	Technical			SVR for OH	7	Δ6%	3.42
	Loss			Improvement of Load unbalance	12	Δ4%	1,33
1		11kV DT	1.2	Low loss DT		∆30%	
		LV fine	1,1	Shortening LV line by small DT	30	Δ30%	2.30
		Motor (WHM)	0.4	Low loss WHM for AMR	60	∆60%	0.40
		Sub Total	6.7	•	199	~ Δ47% (3.17)	
	Non-Teo	itnical Loss	5.3	AMR	(6D)+2	∆70% (3.71)	6.98
	тс	DTAL.	12.0	-			

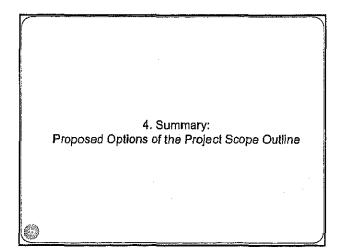
	Location	Loss Rate (a)	ILem	Investment (b)(MUS\$)	Loss Reduction (c)	investme Elficienc (a)x(c)/(i
			Hore construction of 111V Sector	ч	ADDA.	523
	11kV feeder	4.0	Capacitor	6	Δ16%	19.67
Technical			SVR for OH	7	48%	3.42
Loss		1	Construction of	12	44%	1.69
	11KV 07	1.2	Low loss DT		∆30%	
	LV line	1.1	Shortening LV line by small OT	30 (4)	∆30%	2,30
	Meter (WHM)	0.4	Low loss WHM for AMR	60	∆60%	0.40
	Sub Total	6.7		103	~ \(\Delta 27%) (1.81)	
Non+ Teo	hnical Loss	5.3	AMR	(60]+2	∆70% (3.71)	5.98
τc	TAL	12.0	•	192768 (M	832 I.S. 8	

		Location	Loss Rate (a)	ltern	investmeni (b)(MUS\$)	Loss Reduction {C)	in vostment Efficiency (a)x(c)/(b)
				New combined and a co	M	430%	44
		11kV feeder	4.0	Capacitor	8	A16%	10.67
	Technical Loss			SVR for OH	7	∆6%	3.42
	1933			intereveneered Leger ontwiktige	12	245	1.35
		11kV DT	1.2	Law loss DT		∆30%	
		LV line	1.1	Shortoning LV line by small DT	30	∆30%	2.30
		Meter (WHM)	0.4	Low loss WHM for AMR	0,12	∆0.12%	0.40
		Sub Total	6.7	•	43,12	~ \(\Delta\)24% (1.57)	
Ī	Non- Tec	Inical Loss	5.3	AMR	(0.12)+2	∆0.14% (0.007)	0,37
ľ۵	т	DTAL	12.0	· ·			in a second

	Localion	Losa Rate (a)	Item	investment (b)(MUS\$)	Loss Reduction (c)	Investment Efficiency (a)x(c)/(b)
Technical Loss	11kV feeder	4.0	2 Unit Land Committee Strategy off		6150050300000000000000000000000000000000	1.45
	11kV OT	1.2	Concension View operations Concension			0.08
	LV line	1.1	Parimer Professor			
]	Moter (WHM)	0.4			. Alton	240
	Sub Total	8.7		145		
Non- Te	chnical Loss	5.3	AMR	(60)+2	∆70% (3.71)	6.96
Т	OTAL	12,0	•			

3. Cairo North Electricity Distribution Company (CNEDC)

Appendix 5

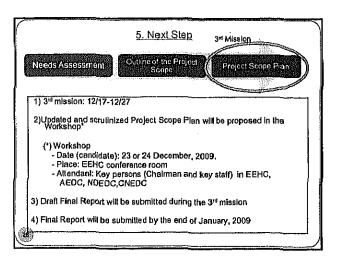

	Location of loss occurrence	Helmya in CNEDC
	11kV feeder	1.8%
Technical loss	11kV DT	7.2%
	LV line	2.3%
	Meter	0.9%
	Sub Total	12/2%
Non-Technical loss	Meter problem theft	5.6%
	Total	17,8%

.

	Location	Loss Rate (a)	ltem	Investment (b)(MUS\$)	.Loss Reduction (C)	Investm Efficien (a)x(c)/
			New construction of 11kV feeder	48	∆30%	1.13
	11kV feeder	1.8	Capacitor	18	Δ16%	1.60
Loss			Improvement of Load unbalance	4	∆4%	1,80
1	11kV 0T	7.2	Low loss and large capacity DT	31	∆50%	\$1.5
	LV line	2.3	Improvement of phase unbalance	30	∆30%	2.3
	Moter (WHM)	0.9	Low loss WHM for AMR	72	∆60%	0.75
	Sub Total	12.2		203	~ ∆47% {6.7}	
Non- Tec	hnical Loss	5,6	АМЯ	(72)+2	∆70% (3.92)	5.4
to	DTAL	17.8	•			Hassiya

	Location	Loss Rato (a)	ltem	Invosiment (b)(MUS\$)	Loss Reduction (c)	Investmen Efficiency (a)x(c)/(b)
					S. S. S.	E E E
	till/koder	- 1.8		(8	A16%	
Technical Losa	1.1.1.1		n and the second of the second se	1.1	64%	T.M
	11kV DT	7.2	Low loss and large capacity OT	31	∆50%	11.5
	LV line	2.3	Improvement of phase unbalance	30	<u>\</u> 30%	2.3
	Meter (WHM)	0.9	Low loss WHM for AMR	72	∆60%	0.75
	Sub Tolai	12.2		133	~ ∆40% (4.83)	
Non-Tec	hnical Loss	5,6	AMR	(72)+2	∆70% (3.92)	5.4
т	DTAL	17.8		1.06		

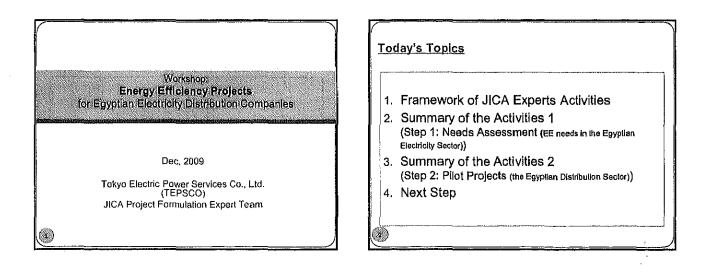
	Location	Loss Rate (a)	ltern	Investment (b)(MUS\$)	Loss Reduction (c)	investme Efficienc (a)x(c)/(i
			Concentrational I	40	659.	4.0
Í	tikv looder	- 6a		18	465	100
Technical Loss			purpositively of		844	0,500
	11ky DT	7.2	Low loss and large capacity OT	31	∆50%	11.6
	LV lína	2.3	Improvement of phase unbalance	30	∆30%	2.3
	Malar (WHM)	0.9	Low loss WHM (or AMR	0.12	∆0,1%	0.75
	Sub Total	12.2	•	61.12	~ ∆38% (4.29)	
Non- Tec	hnical Losa	5.6	AMR	(0.12)+2	∆0.12% (0.007)	0.34
т	DTAL	17.8	•	et ie -		

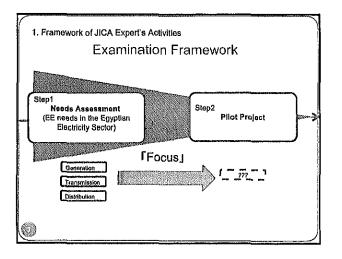

Distribution Company	Estimated Investment* (MUS\$)	Distribution Loss (Before the Project)	Loss Reduction	Distribution Loss (After the Project)
Alexandria (AEDC)	148	13.76 (TL: 8.38+NTL: 5.38)	7,58 (TL:3.81+NTL:3.77)	6.18 (TL:4.57+NTL:1.61)
North Della (NDEDC)	201	12.0 (TL:6.7+NTL:5.3)	6.88 (TL:3.17+NTL:3.71)	5.12 (TL:3.53+NTL1.59)
Cairo North (CNEDC)	205	17.8 (TL:)2.2+NTL:5.6)	9.82 (TiL:5.7+NTL:3.92)	8.18 (TL:6.5+NTL:1.68)
Tolaf	554			
*) Contingency, Pri included	ce Escalation, /	Administration cost an	d Engineering Service	a Bre NOT

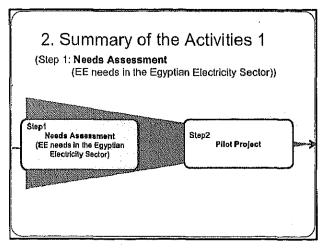
•

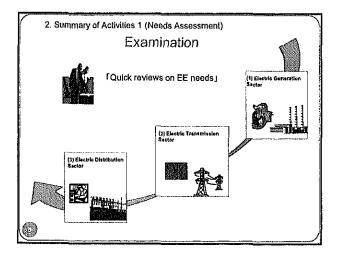
Distribution Company	Estimated Investment* (MUS\$)	Distribution t.oss (Before the Project)	Loss Reduction	Distribution Loss (After the Project)
Alexandria (AEDC)	68	13.76 (TL: 8.36+NTL: 5.36)	7,41 (TL:3.64+NTL:3.77)	8.35 (TL:4.74+NTL:1.61)
North Delta (NDEDC)	105	12.0 (TL'8.7+NTL:5 3)	5.52 (TL:1.180-NTL:3.71)	6.48 (7L:4.89+NTL1.59)
Calro North (CNEDC)	135	17.8 (TL 12.2 NTL 5.6)	8.75 (TL:4.83+NTL:3.92)	9.05 (TL:7.37+NTL:1.88)
Total	308			·
*) Contingency, Pri	ce Escalation, A	dministration cost an	d Engineering Service	are NOT

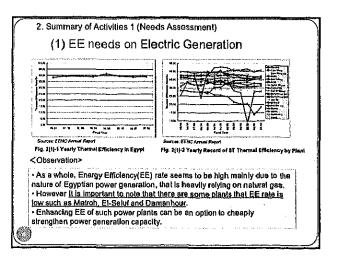
Distribution Company	Estimated Investment* (MUS\$)	(Distribution Loss (Before the Project)	Loss Reduction	Disinbution Loss (After the Project)
Alexandria (AEDC)	44.12	13.76 (TL: 8.38+NTL: 5.38)	3.38 (TL:3.34+NTL:0.07)	10,4 (TL:\$.04+NTL:5.38)
North Delta (NDEDC)	45,12	12.0 (TL-6.7+NTL-5.3)	1.58 (TL:1.57+NTL:0.007)	10.42 (TL-5.13+NTL-5.29)
Cairo North (CNEDC)	63,12	17.8 (TL:12:2+NTL:5.6)	4.30 {TL:4.29+NTL:0.007}	13.5 {TL:7.91+NTL:5.59}
Tolal	152.36		L	······································

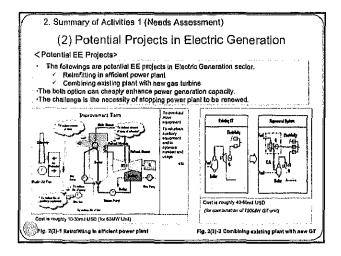

Image: North Deka (NDEDC) 62 12.0 3.71 4.23 Calro North (CNEDC) 63 17.8 (TL-8.38) (TL-8.74) (TL-8.74) Calro North (CNEDC) 135 17.8 6.74 7.45 9.85 Calro North (CNEDC) 135 17.8 (TL-8.24) (TL-8.24) 7.74	Distribution Company	Estimated Investment (MUS\$)	Distribution Loss (Before the Project) *	Loss Reduction	Distribution Loss (After the Project)
(TL-8 7+NTL-5 3) (TL-0+NTL-3.71) (TL-8 7+NTL-1.5 Cairo North (CNEDC) 135 17.8 6.75 9.65 (TL-17.2.7+NTL-5.6) (TL-4.83+HTL-3.92) (TL-7.37+NTL-1.1)	Aloxandria (AEDC)	68			0.35 (TL:4-74+NTL:1-61)
(TL:12.2+NTL:5.6) (TL:4.63+NTL:3.02) (3L:7.37+NTL:1	North Delta (NDEDC)	62			8,29 {TL:07+NTL1.59}
	Cairo North (CNEDC)	135			9,05 (7L-7.37+NTL:1.68)
Total 265	Tolai	265			

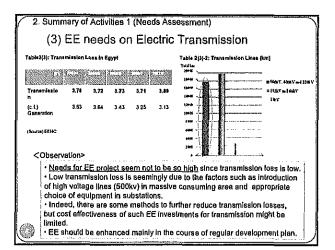


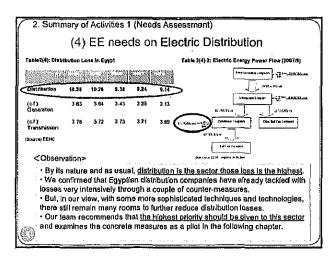

,

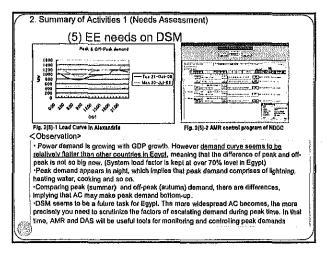

.

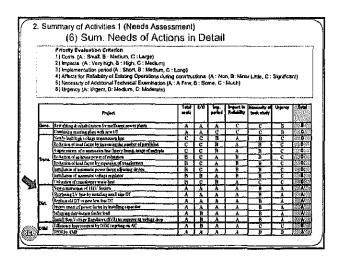

Appendix 5: Appendix 5.3 Final work shop PP

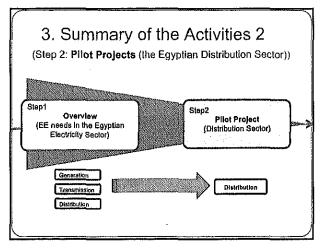


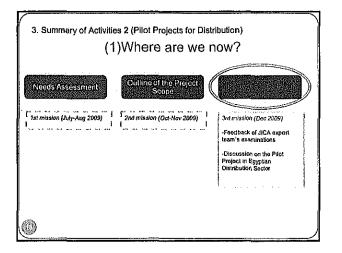


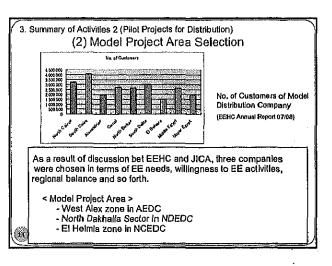


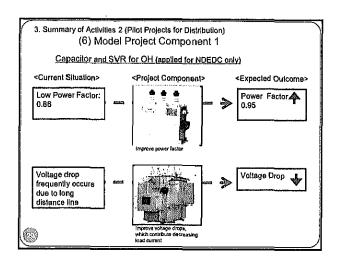


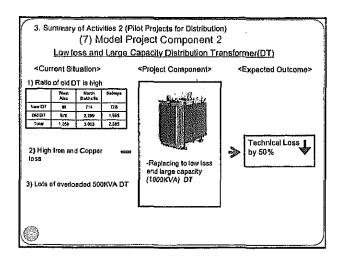


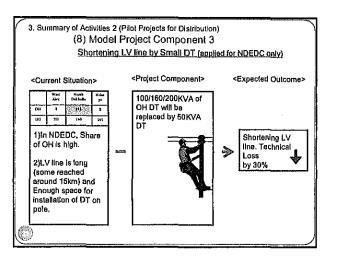


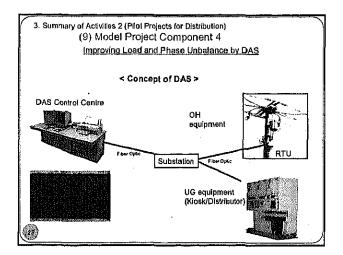


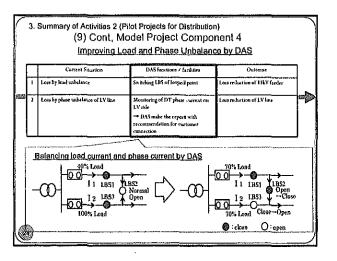


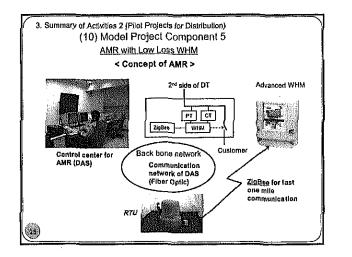

	Montaza	East Alex	Central Atex	West Alex	El Sahel	Tolal
Technical loss	8.14	7.97	8.05	8,38	7.97	8,48
Non-technical loss	5.27	5.32	5.49	5.38	5.23	5,39
Total	13.41	13.29	13.54	13.76	13.20	13:54:
<why west<br="">The highes Potentials overloaded D Importance</why>	t technical of loss red Ts)	uction(long			nd several ew residenc:	es)

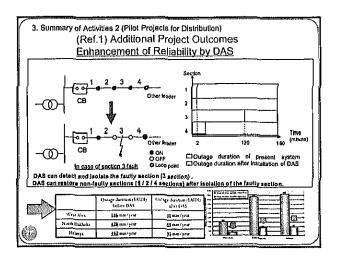

	Domitta	Kafr El- Shiekh	South Dakhatla	North Dakhalla	Total
Technical loss	4.1	4.9	3.5	6,7	4.8
Non-technical loss	1.9	3,1	2.7	5,3	8.25
Total	6.0	8.0	6.2	12.0	8,68
Why North Date The highest let Potentials of lo growing demands Importance of activities and grow	chalcal los: ss reduction) he erea (th	n(high ratio e concentra			1

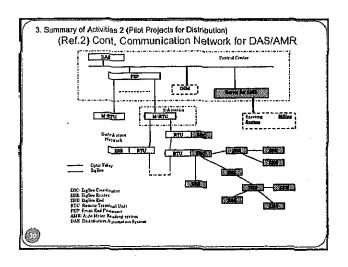

Sector	Hellopies	North	Helmya	East	Total
Technical loss	9,37	7.09	12.2	5.61	8,08
Non-technical loss	4.31	3.26	5:6	2.58	6.87
Total	13.7	10,4	17:8	8.19	11.65
of industries, co	echnical los loss reductio if lhe area (g	n(old and d overnment livities and	al buildings, h		incentration

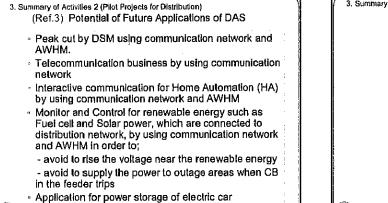

	Location of loss occurrence	West Alex In AEDC	North Dakhalia In NDEDC	Hekmye In CNEDC
	11kV feeder	0.32%	4.0%	1.6%
Technical loss	11KV DT	5.38%	1.2%	7.2%
	LV tine	2.19%	1.1%	2.3%
	Meter	0.51%	0.4%	0.9%
	Sub Total	8.38%	6.7%	12.2%
Non- Technicat	Meler problem	5.38%	5.3%	5.6%
loss			21. <u></u>	in dinasi
	Total	13.76%	12.0%	17.8%

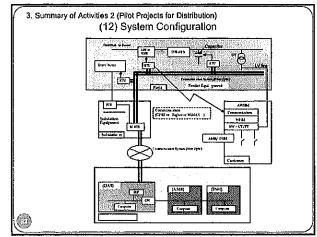

	Location of loss occurrence	West Alex in AEDC	North Dakhalia in NOEDC	Heimya In CNEDC
Technical	11kV feeder	•Improving Load Unbalance by DAS	-Capacitor -SVR for OH	 Improving Load Unitelance by DAS
1055	11KV DT	-Low Loss and Large Capacity OT		
	LV line	 Improving Phase Unbalance by DAS 	-Shortening LV line by Small DT	-Improving Phase Unbalance by DAS
	Meter		l	
Non- Technical Ioss	Meter problem lheft		AMR with Low Loss WHM DAS	A








J,	Ju	(10) Cont.	(Pilot Projects for Distribution , Model Project Compo with Low Loss WHM	
	IШВ	rovement of non techni	cal loss by Auto Meter Reading (AMB)
		Current Situation	AMR functions	Expected Outcomes
	١	Non parlorming / under performing WHM	Checking the performance in real time by AMR	Non performing WIIM can be quickly replaced.
	2	Belects of circuit in CT / PT	CT / IT are assembled inside AWIM, Alarm occur when the cover will open.	Circuit of CT / PT can not be changed so that non technical loss can be reduced.
1	3	Mistake of mater mader	Digital data of mater send to control center through communication network,	There are no misiake due to digital Implementation.
	4	Pillerage by manipulation of meter	Alarm occurs when the cover is opened, so that the alarm is sent to control center in real time.	The cover has to be opened in order to manipulate the WIHA, so that the theft can be found out by the alarm.
	5	Energy then by direct tapping	ditto	The criver has to be oponed in order to change the tapping, so that the the can be found out by the slarm.
\$	6	Direct connection without meter	Alarm occurs when the voltage drop happen. Control centor can get the DT data and the accurrulated WIMI data.	In case the voltage drop happens by the direct connection, the Urah can be found put by the alarm. The difference bothmen DT and he accumulated Withind as can be checked, so that the first cuttomer can be found out.



		Additional Project (t of Reliability by D/	
	Current Situation	DAS functions / facilities	Outcomes
1	Long oulage duration	Automatic fault detection, isolation and rostoration	Reduction of outage duration +> Customer satisfaction
2	Bindruess for distribution network	Monitoring in real time for substation, distribution network and the equipment	Quick response Customer sabsfaction
3	Maintenance work for long outage duration, many workers and mistake	Making report for mainlenance work and Implementing the switching procedure	Reduction maintenance craws Customer satisfaction
4	Dvorioad of engineer Bad records of diverse data	Making report for distribution is construction plan, outage, etc.	Improvement of office work Systematic recording
5	No chance for future function and business	DAS communication network using Fiber optic, RTU etc.	Expansion for AMR / DSM (Poak cut) / Iolecom business

Daakh					
<u>pavneone n</u>	<u>atwork</u>	Fiber o	<u>ptic (recom</u>	mendation	
	nc	10117-1017	GPR (Mabile)	Jian Calif	< Solution >
Speed /Capacity	×	x	0	•	Installation of Faber Dotic shall
Britsbilling	×	Δ	0		be limited to main feeder for
Survey	0	o	4	30.0/2	RTU (Not blanch line).
Expension (AMR, new facinety)	x	x	0	9	instaliation of fiber Optic for existing UG network is difficul
Inicial (4) PILMARK	0	0	0	A	UG cable is old, so replace th and cable to new cable with
Opriation fast	0	0	x	•	Fiber Optic before completion
					projecta.
Last one mil		ork: Zial	300 (recom	mendation)	Lizzani
Last one ml	P				
	P	ιc	GHRS D	W/MAX	
Speed (Caparity	P P	LC X	GIRS	W(MAX O	o o
Speed (Capacity Distance	P	κ x	6hrs 0 0	WiMAX O	
Speed cCapacity Distance Relationy	P	με x Δ x	6hrs 0 0	W.MAX 0 0 0	o o
Speed (Laparity Distance Rehability Security	P	με x Δ x 0	6hes 0 0 0	W/MAX 0 0 0 0	9 9 9 9

3. Sun	nmary of Activities 2 (Pilot Projects for Distribution) (13) Role of Each Distribution Company
, ,	It is important to note that, while many distribution losses will be systemically reduced due to these new system introductions, some losses will remain to be unsolved merely with such system introductions. In this regard, sophisticated usage of the system by each distribution company is indispensable and prompt reactions to the warnings made by the new system are also quite essential. JICA will consider the possibility of technical assistance to support such distribution companies' activities. This topic will be discussed in the course of JICA's appraisal.
٢	

	Location	Loss Rate (a)	(tem	(b) MUS\$ (c):Local Cost	Loss Reduction (C)	Investme Efficienc (a)x(c)/(t
	11kV feeder	0.32	Improvement of load unbalance	18	∆10%	0.18
Technicat	11kV DT	5.36	Low loss and large capacity DT	21 (21)	∆50%	12.8
Loss	LV lina	2.19	Improvement of phase unbalance	15	∆30%	6.9
	Meter (WHM)	0,51	Low loss WHM for AMR	24	∆60%	1,28
	Sub Tolat	8.38	-	78 (21)	~ \(\Delta 44%) (3.68)	
Non- Tec	hnicat Loss	5.38	AMR	2	∆70% {3.77}	14.5
	Con	sultancy		4 (1)	-	<u> </u>
	Price Escalatio	n & Conling	auciea	8 (3)	-	· ·
		Tax		9 (3)	•	-
T	DTAL	13.78		101(207		

	Location	Losa Rate (a)	ilem	Investment (b) MUS\$ (): Local Cost	Loss Reduction (C)	investmen Efficiency (a)x(c)/(b)
Technicał Loss	11kV feeder	4.0	Capacitor	6	∆16%	10.67
			SYR for OH	7	∆6%	3.42
			Improvement of Load unbalance	15 (3)	∆10%	2.67
	LV line	1.1	Shortening LV line by small DT	15 (15)	∆30%	2.28
	Meter (WHM)	0.4	Low loss WHM for AMR	60	∆60%	0.40
	Sub Tolal	8.7	•	103 (18)	~ ∆28% (1.85)	
Non- Technical Loss 5.3		AMR	2	∆70% (3.71)	5.98	
	Cor	sultancy	4 (1)	•		
Price Escalation & Contingencies				10 (3)		-
Tax				11 (2)	•	-
TOTAL		12.0	•			

	Location	Loss Raie (8)	llom	(b) MUS\$ (c) Local Cost	Loss Reduction (c)	Investmen Efficiency (a)x(c)/(b)
Technical Loss	11kV feeder	1.8	Improvement of Load unbalance	4 (4)	∆10%	4.5
	11kV OT	7.2	Low loss and large capacity DT	32 (32)	∆50%	11.0
	LV line	2.3	Improvement of phase unbalance	30	∆30%	2.3
	Meter (WHM)	0,9	Low loss WHM for AMR	72	∆60%	0.75
	Sub Total	12.2	-	138 (36)	~ ∆41% (5.01)	
Non-Technical Loss 5.6		5.6	AMR	2	∆35% (1.96)	2.6
	Co	suitancy	4 (1)	•	-	
Price Escalation & Contingencies				14 (6)	-	·
Tax				14 (4)	•	•
		nganciés	14 (4)	•		