PART IV ECONOMIC FEASIBILITY STUDY

Part IV Economic Feasibility Study

Chapter1 Existing Traffic Flow Patterns

1.1 Introduction

This chapter aims to analyze traffic flow patterns on the Study Road based on various information in order to conduct the appropriate traffic demand forecast.

This information is sourced by a) historical traffic data of ANE, b) statistical data for traffic in Niassa Province, c) traffic survey results conducted in this Study (e.g. traffic volume and origin-destination (OD) survey) and d) interview survey results to traffic related stakeholders and users.

From results of above information, current and potential traffic volume of passengers and freight traffic on Cuamba ~ Mandimba ~ Lichinga, and possible future traffic demands (generated traffic) are discussed in this chapter.

1.2 Previous Traffic Data Counted by ANE

1.2.1 Existing Traffic Data

For the purpose of the planning of road development, traffic management and road maintenance, the traffic counting survey has been conducted throughout Mozambique according to the "DNEP Traffic Counting System" established in 1996. The contracted consultant under the management of ANE provincial office operates the counting survey according to the schedule and locations prepared by ANE headquarters.

There are 74 road links including the national and provincial road and 25 counting posts in Niassa Province. 10 roads and four counting posts are located on the Project Road, R13, from Lichinga to Cuamba. The counting survey has been carried out every month based on the schedule, but the counting on seven consecutive days for 16 hours from 5a.m. to 10p.m. is conducted only at one point selected. On the other points, it is counted on one day per every three months on average. The method of counting is that the surveyor on the road edge counts the traffic number for two directions together per each categorized vehicle type manually, except motorbikes. After the survey, the original counting sheets are sent to ANE headquarters to input into the database.

During the site survey by the Study Team, the monthly traffic count data in Niassa for 2004 and average annual daily traffic (AADT) on Nacala Corridor, Montepuezu Corridor, Beira Corridor and Quilimane Corridor for 2002 to 2007 were provided from ANE.

The road link map in Niassa Province and the list of road links on the Project Road are shown as follows.

Figure 1.2.1 Road Link Map in Niassa Province

Table 1.2.1 List of Road Link from Lichinga to Cuamba

Section	Start	End	Distance (km)	Count Post	Location
T1068	Lichinga	Lumbe	12.6		
T1067	Lumbe	Fr.Ngauma	37.5	1015	19km from Chinengue
T1066	Fr.Ngauma	Massangulo	34.2		
T1065	Massangulo	Fr.Mandimba	19.4		
T1064	Fr.Mandimba	Mandimba	35.6	1024	17km from Mandimba
T1008	Fr.Malawi	Mandimba	4.2		
T1001	Mandimba	Muita	15.9	1023	8km from Muita
T1002	Muita	Congerene	18.7		
T1003	Congerene	Mississe	53.6	•	
T1004	Mississe	Cuamba	56.5	1004	9km from Cuamba

1.2.2 Average Annual Daily Traffic (AADT)

Average annual daily traffic (AADT) is estimated by Access Database, which was established in 1996, based on the traffic volume counted on site. According to AADT data, the range of traffic volume from 2002 to 2006 is from 80 to 120 vehicles per day on the Project Road, while the traffic volume around Lichinga is over 100 up to 170. In 2007, it increased on the entire section. The AADT and the large vehicle rate at Lichinga south from 2002 to 2007 on the Project Road is as follows.

Start End 02 03 04 05 Section 06 07 T1068 Lichinga 178 152 156 163 93 261 Lumbe T1067 Fr.Ngauma 125 119 120 117 86 190 Lumbe T1066 Fr.Ngauma Massangulo 130 104 107 86 89 134 Fr.Mandimba T1065 Massangulo 139 86 87 86 134 T1064 Fr.Mandimba Mandimba 125 71 74 96 128 T1008 Fr.Malawi Mandimba 67 74 78 96 116 136 T1001 Mandimba Muita 48 78 90 102 123 143 T1002 Muita Congerene 80 86 91 85 236 T1003 47 79 25 28 83 Congerene Mississe 82 T1004 Mississe Cuamba 80 80 86 96 275

Table 1.2.2 AADT for between Cuamba and Lichinga from 2002-2007

Figure 1.2.2 Large Vehicle Rate at Lichinga South (T1068)

Next, the figure below shows the traffic volume from Malawi borders to the port in Mozambique on relevant corridors. The traffic volume on Nacala Corridor is less than other corridors such as Beira Corridor and Quilimane Corridor.

Figure 1.2.3 Traffic Volume on each Corridor

1.2.3 Analysis of Traffic Data

In 2004, the monthly traffic count survey was carried out at count post No. 1015. This data is analyzed on various aspects such as weekly and monthly variation and large vehicle rate. However, the data for March are missing.

There is not much difference on the weekly variation but the volume on Sunday tends to be lower than other days. For the monthly variation, the traffic seems to be concentrated in the dry season, July to September. The rate of large traffic is higher

around the end of year.

Figure 1.2.4 Weekly Variation for Traffic Volume

Figure 1.2.5 Monthly Variation for Traffic Volume (T1067, 2004)

Figure 1.2.6 Monthly Rate for Large Vehicles

1.3 Traffic Related Statistics in Niassa Province

1.3.1 Introduction

Following section shows the results of literature review for provincial level statistics for traffic related data in order to identify the characteristics of Niassa Province compared by other province.

1.3.2 Characteristics of Niassa Province

(1) Road Network

Mozambique has a road network of about 34,000km as all classes, with about 5,870km road classified as primary road. According to the length of all class roads, Zambezia has longest network, Nampula has the next longest network. Both Zambezia and Nampula have road networks of more than 5,000km. Niassa has a road network of about 3,150km, the sixth longest province in Mozambique. Niassa has a primary road network of about 414km.

	Main Road	Secondar y Road	Tertiary Road	Vicinal	Uncalssified Road	Total
Zambezia	1,001	698	1,552	995	718	4,964
Nampula	996	165	1,965	934	832	4,892
Cabo Delgado	675	337	1,609	824	502	3,947
Tete	530	1,186	833	392	803	3,744
Inhamhane	558	265	1,140	930	642	3,535
Niassa	414	392	1,620	371	355	3,152
Gaza	276	690	988	573	491	3,018
Manica	513	336	960	635	294	2,738
Sofala	584	554	847	389	206	2,580
Maputo	323	169	557	547	162	1,758
Total	5,870	4,792	12,071	6,590	5,005	34,328

Source: Ministry of Transport and Communication, Dir. of Planning, 2007

Figure 1.3.1 Road Network Status for each Classification in Province

February 2010

The ratio of primary road length is about 10 to 20% in all provinces, and the average ratio in all Mozambique is about 17%. The ratio of Niassa is about 13%, the lowest province next to Gaza in Mozambique.

L		Main Road	Other	Total	Main/Total	
	Sofala	584	1,996	2,580	22.6%	
	Nampula	996	3,896	4,892	20.4%	
	Zambezia	1,001	3,963	4,964	20.2%	
	Manica	513	2,225	2,738	18.7%	
	Maputo	323	1,435	1,758	18.4%	
	Cabo Delgado	675	3,272	3,947	17.1%	
	Inhambane	558	2,977	3,535	15.8%	
	Tete	530	3.214	3.744	14.2%	
	Niassa	414	2,738	3,152	13.1%	
П	Gaza	276	2,742	3,018	9.1%	
	Total	5,870	28,458	34,328	17.1%	

Source: Ministry of Transport and Communication, Dir. of Planning, 2007

Figure 1.3.2 Ratio of Primary Road Length in each Province

Although, Niassa has the largest area in Mozambique, the length of road network is short comparing other provinces. According to average road length per 1km square, the length of all Mozambique is about 430m, but the length of Niassa is 240m. It is almost half of all Mozambique's length, and the length of Niassa is shortest compared to other provinces.

	Road	Area	Road in
	(km)	(k m ²)	square KM
Maputo	1,758	26,358	0.067
Nampula	4,892	81,606	0.060
Inhambane	3,535	68,615	0.052
Cabo Delgado	3,947	82,625	0.048
Zambezia	4,964	105,008	0.047
Manica	2,738	61,656	0.044
Gaza	3,018	75,709	0.040
Sofala	2,580	68,018	0.038
Tete	3,744	100,724	0.037
Niassa	3,152	129,061	0.024
Total	34,328	799,380	0.043

Source: Statistical Hand Book 2007, Ministry of Transport and Communication, Dir. of Planning, 2007

Figure 1.3.3 Road Density for each Province

(2) Pavement Condition

Mozambique has a road network of about 29,300km as classified road, and 5,250km paved road. The ratio of paved road length is about 18%. According to the ratio of paved road length, Maputo is the highest province having 30% paved road.

On the other hand, Niassa has less than 6% paved road, and is the lowest province in Mozambique. Comparing to the national average 18%, Niassa has 1/3 of the national average. It is clear that the process of paving is slower than other provinces in Niassa.

	Paved	Gravel	Dirt	Total	Rate of Paved Road
Maputo	478	378	740	1,596	29.9%
Tete	837	215	1,889	2,941	28.5%
Sofala	567	912	896	2,375	23.9%
Manica	581	924	939	2,444	23.8%
Inhambane	622	450	1,822	2,894	21.5%
Cabo Delgado	668	883	1,893	3,444	19.4%
Gaza	464	1,039	1,024	2,527	18.4%
Nampula	516	1,411	2,133	4,060	12.7%
Zambezia	351	858	3,037	4,246	8.3%
Niassa	161	379	2,257	2,797	5.8%
Total	5,245	7,449	16,630	29,324	17.9%

Source: Ministry of Transport and Communication, Dir. of Planning, 2007

Figure 1.3.4 Pavement Condition in each Province

(3) Vehicle-Kilometers

Traffic volume is about 2,513 million vehicle-km per year in 2005 in Mozambique, and traffic of about 1,910 million vehicle-km (76%) goes along primary roads. According to traffic volume, Maputo has the heaviest traffic volume in Mozambique, and Inhambane has the next heaviest traffic. Niassa has the least traffic volume in Mozambique, about 52million vehicle-km (2%).

In the provinces having large cities like Maputo or Sofala or Nampula, the ratio of primary roads is higher than the other class roads, on the other hand, in less developed provinces like Tete or Cabo Delgado or Niassa, the ratio of primary roads is less than in the other provinces.

	Annua	h-km)	Rate of			
	Primary	Secondary	Tertiary	Vicinal	Total	Total
Maputo	406.1	22.7	48.2	18.5	495.5	19.7%
Inhambane	273.5	15.2	23.5	9.3	321.5	12.8%
Sofala	266.9	11.2	8.8	2.5	289.4	11.5%
Tete	161.4	107.3	14.9	2.2	285.8	11.4%
Gaza	185.4	26.5	33	9	253.9	10.1%
Zambezia	161.3	35.2	36.1	12.2	244.8	9.7%
Nampula	202	2.3	26.7	5	236	9.4%
Manica	171.8	13.3	25.9	5.6	216.6	8.6%
Cabo Delgado	57.9	15.5	42.8	1.5	117.7	4.7%
Niassa	23.2	11.9	13.7	3.6	52.4	2.1%
Total	1909.5	261.1	273.6	69.4	2513.6	100.0%

Source: Statistical Hand Book 2007, ANE

Figure 1.3.5 Vehicle-km for each Province

When paying attention to the primary roads, the average traffic volume is about 900 vehicles/day calculated by total traffic (vehicle-km) and total road length. (Calculated by as total traffic (vehicle-km) / road length (km) / 365(days))

Maputo has the heaviest traffic volume in Mozambique, over 3,000 vehicles per day. Niassa has the lightest volume in Mozambique, about 150 vehicles per day, less than 1/5 of the average.

Average vehicle per day is represent as "Veh-km / Road length / 365"

Figure 1.3.6 Vehicle Movement in each Province

(4) Passenger / Freight Traffic Volume in Niassa Province

Based on the provincial statistics collected by provincial government of transport and communications in Niassa, passenger and freight traffic volume is estimated by each traffic mode in the table below.

Table 1.3.1 Amount of Transportation of Cargo and Passengers in 2006

		Tot	tal	Nia	Share of	
		Volume	Share	Volume	Share	Niassa
	Rail Way	736	29.5%	0.478	55.7%	0.06%
Cargo	Road	1,535	61.5%	0.249	28.9%	0.02%
(10 ⁶ TKM)	Sea	218	8.7%	0.071	8.2%	0.03%
	Airplane	8	0.3%	0.062	7.2%	0.76%
subto	otal	2,497	100.0%	0.859	100.0%	0.03%
	Rail Way	320	1.1%	-	_	
Passenger	Road	28,770	96.1%	47.047	84.0%	0.16%
(10 ⁶ PKM)	Sea	9	0.0%	5.216	9.3%	55.49%
	Airplane	846	2.8%	3.719	6.6%	0.44%
subto	otal	29,944	100.0%	55.983	100.0%	0.19%

Source: Anuario Estatistico Statistical Yearbook 2007

Relatorio da Direccao Provincial dos Transportes e Communicacoes de Niassa (Latest Version)

Regarding freight transport, the mode share of road and railway transport in terms of national average is 62% and 30%, respectively. However, in Niassa Province, railway transportation accounts for 56% (road transport is 29%). This is caused by the operation of railways between Lichinga and Cuamba up to February 2009, and by including the statistics between Cuamba and IntreLagos which forms the international railway operation of Nacala – Nampula to Malawi.

On the other hand, for the passenger transportation, roads account for more than railways. Note that the transportation shares of airplane and sea in Niassa are more than the national average.

The share of traffic volume in Niassa Province against the whole country doesn't come up to as much as 0.2%. It means that the movement of persons and cargo in Niassa is still small.

e) Mini-bus Registration and Operation

All the mini-buses operated in Niassa Province must be registered based on Lichinga or Cuamba origin. The largest number of registrations is 174 vehicles for operation between Lichinga - Cuamba which accounts for more than 80% of the whole. The next largest number of registrations is 10 for between Lichinga - Lago, and the third largest is eight for between Cuamba - Marrupa.

As a result of site investigation in the dry season in May, the operation between Lichinga - was found to be about 20 round trips per day. Therefore, it is assumed that only a part of the number of registered vehicles can be operated. Moreover, there might be some operators registered as Lichinga - Cuamba who run only a part of the section.

Numer of Bus Rate of Total Cuamba 174 81.7% 10 4.7% Lago 2 0.9% Mavago Lichinga 5 2.3% Marrupa 3 1.4% Sanga 5 Majune 2 Matchedje 0.9% 4 Mecanhelas 1.9% Cuamba 8 Marrupa 3.8% Total 100.0% 213

Table 1.3.2 Minibus Registration in Niassa Province

Source: Ministry of Transport and Communication in Lichinga

(5) Vehicle Registration

Regarding the number of vehicle registrations in 2007, 153,000 vehicles are registered as light vehicles, and 56,000 as heavy vehicles in Mozambique, and the number has been increased 20 to 30% since 2005.

According to the distribution of the number of vehicle registrations in each province, almost all of them belong to Maputo Province. Niassa Province has the fewest number of vehicle registrations, but the rate of increase between 2005 and 2007 ranks highest next to Maputo and Gaza, such as 27% for light vehicles, and 20% for heavy vehicles.

	20	05	20	06	20	07	2007/2005	
	Light	Heavy	Light	Heavy	Light	Heavy	Light	Heavy
	Vehicle	Vehicle						
Niassa	925	728	999	787	1,178	872	1.27	1.20
Cabo Delgado	2,689	500	2,755	549	2,822	585	1.05	1.17
Nampula	8,333	3,598	8,553	3,773	8,946	3,958	1.07	1.10
Zambezia	1,305	757	1,367	798	1,398	833	1.07	1.10
Tete	3,009	1,245	3,068	1,324	3,203	1,358	1.06	1.09
Manica	4,428	2,862	4,499	2,908	4,733	3,009	1.07	1.05
Sofala	9,687	5,471	9,964	5,589	10,394	5,741	1.07	1.05
Inhambane	3,338	920	3,504	955	3,583	968	1.07	1.05
Gaza	4,148	1,418	5,520	1,874	5,689	1,991	1.37	1.40
Maputo Prov	46,716	17,818	50,351	19,075	56,668	21,447	1.21	1.20
Maputo Cid	41,450	8,256	50,593	13,917	53,922	15,248	1.30	1.85
Total	126,028	43,573	141,173	51,549	152,536	56,010	1.21	1.29

Source: Anuario Estatistico Statistical Yearbook 2005-2007

Figure 1.3.7 Vehicle Registration in each Province

Car ownership calculated by number of vehicle registrations and population in 2007 is shown in the table below. It is clear that Niassa Province has not reached national average but is still only 0.17%.

Table 1.3.3 Car Ownership in each Province

	Registration n	umber in 2007	Total	Population in	Vehicle per
	Light Vehicle	Heavy Vehicle	Total	2007	Population
Maputo Cid	53,922	15,248	69,170	1,099,102	6.29%
Maputo Prov	56,668	21,447	78,115	1,259,713	6.20%
Sofala	10,394	5,741	16,135	1,654,163	0.98%
Gaza	5,689	1,991	7,680	1,219,013	0.63%
Manica	4,733	3,009	7,742	1,418,927	0.55%
Inhambane	3,583	968	4,551	1,267,035	0.36%
Nampula	8,946	3,958	12,904	4,076,642	0.32%
Tete	3,203	1,358	4,561	1,832,339	0.25%
Caho Delgado	2 822	585	3 407	1 632 809	0.21%
Niassa	1,178	872	2,050	1,178,117	0.17%
Zambezia	1,398	833	2,231	3,892,854	0.06%
Total	152,536	56,010	208,546	20,530,714	1.02%

According to the latest number of vehicle registrations in Niassa collected by Study Team interview since 2005, increment of new registrations has increased steadily as shown in the table below. It can be said that it is time the motorization began to progress rapidly.

	Smal	l Car	Big	Car	То	tal
	New Registration	Accumulation	New Registration	Accumulation	New Registration	Accumulation
2000	204	586	85	364	289	950
2001	16	602	7	371	23	973
2002	20	622	17	388	37	1010
2003	43	665	40	428	83	1093
2004	26	691	48	476	74	1167
2005	73	764	64	540	137	1304
2006	105	869	69	609	174	1478
2007	181	1050	89	698	270	1748
2008	144	1194	76	774	220	1968
2009	53	1247	28	802	81	2049

Source: INAV, Data in 2009 is since January to April

Figure 1.3.8 Trend of Car Ownership Increase in Niassa Province

(6) Traffic Accidents

Although the number accidents in Niassa decreased between 2006 and 2007, and was almost same level between 2007 and 2008, the number of deaths and injuries has increased. It means that traffic accidents have become more serious over the past three years. Especially, the number of serious injuries has increased almost three times between 2006 and 2008.

Source: MTC, Anuario Estatistico Statistical Yearbook 2007

Figure 1.3.9 Record of Traffic Accidents in Niassa Province

If we look at the situation of the accidents on national road 13 (N13), about 20% of total provincial accidents, 31% of total provincial deaths and 28% of total provincial serious injuries occurred on N13. This is evidence that N13 has high probability of death and serious injury than other roads. N13 also has a higher number of victims per accident as 1.76, compared with 1.10 on other roads.

Table 1.3.4 Record of Traffic Accidents on National Route No.13 (2008)

		2008					
	Accidents	Death	Serious	Accident			
Niassa	123	45	107	1.24			
N13	25	14	30	1.76			
Other	98	31	77	1.10			
Share of N13	20.3%	31.1%	28.0%	_			

Source: MTC

1.4 Traffic Survey

1.4.1 Purpose of Survey

The traffic survey including the traffic count survey and the origin-destination (OD) survey was carried out on the Project Road to recognize the current traffic condition and to forecast the future traffic demand after the Project implementation. The survey was conducted twice in May and August

1.4.2 Survey Location

The location of both surveys was as follows.

Table 1.4.1 Survey Location

-	
Traffic count	Total 5 points (10 directions) at 3 locations
survey	- Lichinga : 1 km to Mandimba
	- Mandimba : 0.5km to Lichinga
	0.5km to Cuamba
	0.3km to Border
	- Cuamba : 0.5km to Mandimba
	The survey was conducted at Mandimba border instead of above locations in Mandimba on 2 nd survey
OD survey	Total 4 points (8 directions) at 3 locations
	- Lichinga : 1 km to Mandimba
	- Mandimba : 0.5km to Lichinga
	0.3km to Border
	- Cuamba : 0.5km to Mandimba
	The survey was conducted at Mandimba border instead of at the above locations in Mandimba town on 2 nd survey

Figure 1.4.1 Traffic Survey Points

1.4.3 Methodology of Survey

(1) Traffic Count Survey

The contents of the traffic count survey were as follows.

Table 1.4.2 Contents of Traffic Count Survey

Survey Date	 (1st) Consecutive seven days from 10th May, Sunday, to 16th May 2009, Saturday (2nd) Consecutive four days from 9th August, Sunday, to 12th August 2009, Wednesday
Survey Hour	- 12 hours from 6:00 a.m. to 6:00 p.m.
	- 12 hours from 6:00 p.m. to 6:00 a.m. in the next morning only on 13 th May, Wednesday
Count Interval	Every one hour
Vehicle Type	12 categories
	(Vehicle classification is followed by the ANE's classification and AfDB recommendations in table below.)
Survey Method	Manual count by surveyors at the roadside

Table 1.4.3 Vehicle Types

Category	No.	Vehicle Type Illustration			
Passenger	1	Medium Passenger Car			
Car	2	4-Wheel Vehicle			
Bus	3	Minibus/Light Bus (< 20seats)			
	4	Medum/Large Bus (>20seats)	00-0		
Truck	5	Light Goods Vehicle	कि विक		
	6	Medium Goods Vehicle (2-axles)	-00-B		
	7	Heavy Goods Vehicle (3-axles Rigid)	00-1005		
	8 Very Heavy Goods Vehicle (Articulated)		Boorco		
Others	9	Agricultural Tractors			
	10	Motorcycle	₹		
	11 Bicycle		429		
	12	Animal Cart	유슈		

(2) Origin-Destination (OD) Survey

The contents of the OD survey were as follows.

Table 1.4.4 Contents of Origin Destination Survey

	-
Survey Date	(1 st) Consecutive four days from 10 th May, Sunday, to 13 th May 2009, Wednesday
	(2 nd) Consecutive four days from 9 th August, Sunday, to 12 th August 2009, Wednesday
Survey Hour	12 hours from 6:00 a.m. to 6:00 p.m.
Vehicle Type	Same as the traffic count survey excluding the bicycle
Survey Method	Interview to drivers by surveyors at the roadside
Survey Content	- Number of plates
(see the appendix)	- Number of passengers
	- Model
	- Type of vehicle
	- Origin and Destination of trip
	- Travel time
	- Purpose of trip
	- Trip frequency
·	- Contents and volume of freight

Figure 1.4.2 Photo of Traffic Survey

The Project area and neighboring region are divided into 36 zones to define the location of origin and destination. The zone number and location are as follows.

Figure 1.4.3 OD Zone and Zone Code Number

1.4.4 Results of Traffic Counts

The traffic count results were analyzed from various views such as the vehicle type, daily variation and large vehicle rate to figure out the traffic trend on the Project Road.

In 1st survey in May, the traffic volume for vehicle at Mandimba and Cuamba ranged from 50 to 90 for 12 hours. It is expected that many vehicles drive in short trip around Lichinga area because the traffic volume at Lichinga is much bigger than at other points. During the night from 6p.m. to 6 a.m. only less than 20 vehicles passed and traffic concentrated from 6p.m. to 9p.m. In the 2nd survey in August, the traffic volume was much lower than that in the 1st survey. It would appear that this was caused by the period of harvest season.

The number of bicycles shows that the bicycle is main traffic means around this area rather than the vehicles. Over one thousand bicycles per day passed in Mandimba.

Table 1.4.5 Result of Traffic Volume including Passenger Cars, Buses and Trucks

			Daytime (6:00 – 18:00)		Night time (18-06)	241 /121	
Location	Point	Direction	1st Survey in May (veh/12h)	2nd Survey in August (veh/12h)	1st Survey in May (veh/12h)	24h/12h (1st)	
Lichinga	Mandimba	To Mandimba	152	65	68	1.32	
Liciniga	Side	To Lichinga	128	54	08	1.32	
	Lichinga	To Mandimba	65	ı	11	1.17	
	Side	To Lichinga	79	-	16	1.1/	
Mandimba	Cuamba	To Mandimba	56	1	-		
Manuimba	Side	To Cuamba	76	1	-	-	
	Border	To Mandimba	54	1	6	1.16	
	Side	To Border	52	-	11	1.10	
Cuamba	Mandimba	To Mandimba	72	49	18	1.25	
Cuaiilba	Side	To Cuamba	76	40	18	1.23	

Source: Study Team

Table 1.4.6 Result of Traffic Volume for Bicycles and Motorcycles (in May)

			Bicycle		Motorbike	
Location	Point	Direction	Weekday Average	Weekend Average	Weekday Average	Weekend Average
Lichingo	Mandimba	To Mandimba	438	522	55	51
Lichinga	Side	To Lichinga	562	428	57	42
	Lichinga	To Mandimba	1,498	1,490	90	82
Mandimba Side Cuam Side	Side	To Lichinga	1,496	1,377	96	84
	Cuamba	To Mandimba	1,188	916	65	72
	Side	To Cuamba	1,135	798	70	79
	Border	To Mandimba	1,159	1,359	57	56
Side		To Border	1,094	1,636	62	62
Cuamba	Mandimba	To Mandimba	825	947	148	130
	Side	To Cuamba	873	1,081	142	136

Source: Study Team

In the view of the vehicle type, the proportion of trucks was relatively high. This is

because the road is used mainly for the haulage of goods. The specific feature did not appear on the date variation. The traffic volume on Sundays was a little lower than other days as well as the result on traffic count survey done by ANE. The large vehicle rate on Mandimba was higher especially at the weekend. The definition of large vehicles consisted of the large bus and the heavy goods vehicle in this analysis.

Also, motorcycles and bicycles were counted at each point. There were a lot of bicycles used on Study Road more than 1,000 per day, and motorcycles were used in almost the same volume as vehicles.

Following figures show the situation described above.

Figure 1.4.4 Traffic Volume per Vehicle Type

Figure 1.4.5 Daily Variation for the Passenger Cars, Buses and Trucks

Figure 1.4.6 Large Vehicle Rate

Figure 1.4.7 Motorcycles and Bicycles on Study Road

1.4.5 Results of Origin-Destination (OD) Survey

(1) Sample Rate

The sample rate of OD data for 1st survey remained relatively low with 37% and the result seems to contain some doubtful data. As the 2nd survey achieved a sample rate of 100% as a result of the experience in 1st survey, the data in 2nd survey was mainly analyzed in this Study.

(2) OD Table

OD tables were produced based on the survey result. OD tables are attached in the Appendix.

(3) Summary of OD survey

853 vehicles were counted in the OD survey at three locations, Lichinga, Cuamba and Mandimba border, for four consecutive days. It included the internal traffic which is 130 vehicles in Lichinga town and 75 vehicles in Cuamba town. The characteristics of traffic in this area are summarized as follows.

Origin and Destination

The location of origin and destination of almost 80% of vehicles is either Lichinga or Mandimba or Cuamba. In particular, Lichinga is the main point as origin and destination, with half of the above traffic. It shows that the road is mainly used for the short trip traffic in the province at present, but some of traffic has places outside of Niassa Province such as Tete, Malawi, Nampula, Nacala and Maputo as the origin or destination. The vehicles which come and go to Tete, Maputo and South Africa appear to pass through Malawi because it is faster, safer and more accessible than through the rough roads in Northern Mozambique.

Figure 1.4.8 Rate of Traffic at Main Origin and Destination

Figure 1.4.9 Number of Vehicles between Main Origin and Destination

Number of Passengers

Buses have the largest average number of passengers with about 14 people for minibus and 24 people for large bus. Average number of passengers in passenger cars, four-wheel vehicles and heavy goods vehicles is less than four people.

Table 1.4.7 Average Number of Passengers

Vehicle Category		Average Number of Passenger
Passenger car	60	3.7
Mini-bus	6	14.3
Large Bus	0 0	65.0

Source: Study Team

Travel Time

Travel time from origin to destination was surveyed based on estimation and experience of drivers. Average travel time between Lichinga and Cuamba which is the most common trip in this area, is 10 hours. Travel time from Lichinga is 23 hours to Nampula, 43 hours to Nacala, 86 hours to Maputo and 150 hours to South Africa. It takes time between Malawi south and Nampula/Nacala, which seems to be caused by the trucks transporting a lot of goods.

Source: Study Team

Figure 1.4.10 Travel Time between Main Origin and Destination (unit: hour)

Purpose of Trip

Social is main purpose only for drivers of small vehicles. For other vehicles, over half of them are driven for business purposes. The purpose for tourism is included in the small vehicles and large buses.

Figure 1.4.11 Trip Purpose

> Trip Frequency

The trend of trip frequency is mainly divided into two groups, less than a few days per week or a few days per month. More or less 40% of vehicles drive around this area 2, 3 days per week. In contrast, over 80% of mini buses are operated everyday. 20% of large trucks are driven a few days per month.

Figure 1.4.12 Trip Frequency

► Goods transportation

Almost half of the cargo trucks driving this area convey some kind of goods. But the proportion of loaded trucks against all trucks differs largely in each direction. In the direction from Cuamba to Lichinga, most vehicles carry the goods, especially 100% of large goods vehicles. In contrast, over half of vehicles are empty in the opposite way, from Lichinga to Cuamba, which shows that Lichinga relies on the goods from outside and has a few goods and products to distribute out of town.

The principal commodity transported is tobacco leaf, with one quarter of all transported goods. Tobacco leaf is mostly conveyed by the 30 tons trucks to the tobacco factories in Tete through Mandimba border. The next largest volume goods carried are maize with over 10%, followed by beans, cement, diesel and beer.

Figure 1.4.13 Rate of Goods Loaded

Table 1.4.8 Average Tonnage of Goods Transported

Vahiala Catagomy		Average Tonnage pe	r Vehicle (ton/vehicle)
Vehicle Category	/	Included All Vehicles	Only Loaded Vehicle
Light Truck	क्रिक	0.545	1.13
Medium Truck		2.6	5.5
Heavy Truck	00-5	5.5	11.0
Very Heavy Truck (Trailer)	00 000	11.0	22.4

Source: Study Team

Source: Study Team

Figure 1.4.14 Rate of loaded truck at each section

February 2010

Source: Study Team

Figure 1.4.15 Main Transported Goods

As described before, OD trip table is attached in the appendix of this report. Following figures show the trip desire line diagram for each vehicle category. In this figure, there are characteristics of strong relationship between Cuamba and Lichinga for passenger trip, while Lichinga is the major concentrated trip attraction/generation point for freight transport.

Figure 1.4.16 Diagram for Trip Desire Line

1.5 Interview Surveys

1.5.1 List of interviewees

During the Study period, the Study Team interviewed the following organizations and companies concerned with traffic activities in the Study area.

Table 1.5.1 List of Interviewees

Field		Interviewee		
Traffic	Public Transport	Ministry of Transport & Communication in Niassa		
	Freight Transport	Road Transport Association in Niassa		
	Private /	INAV (Instituto Nacional de Viacao)		
	Motorcycle	Minibus Manager		
		Truck Driver		
		Police Provincial in Cuamba		
	Railways	Lichinga Railway Station, Chief, CDN		
		Cuamba Railway Station		
		Entre Lagos Railway Station, Chief Operator, CDN		
		CFM-Norte Office		
		CDN-Nampula Office		
		CDN-Maputo H.Q.		
	Aviation	ADM (Lichinga Airport)		
Commercial	Daily Goods	Ministry of Industry & Trade in Niassa		
		Ministry of Industry & Trade in Cuamba		
		Whole Sale Shop (Lichinga)		
		Stores on NH13		
	Drinking	Mozambique Beer Company in Lichinga		
		Handling LDA in Lichinga		
		Handling LDA in Cuamba		
		Whole Sale Shop (Mandimba)		
	Fuel	Not yet interviewed		
Industry,	Cement/ Construction	Whole Sale Shop (Mandimba)		
Manufacture	Materials	Construction Company (ONIOBRAS, ALVARO)		
		MOPWH Provincial Office in Cuamba		
		ECMEP		
A . 1,	34.	Stange Consultant		
Agriculture	Maize	Malonda Foundation		
	Cassava	AMADER (Mozambique Association Rural Development)		
	Beans	GED (Cabinet of Study for Strategy & Development)		
	Rice	Rural Consult, Lda.		
	Wheat			
	Nuts			
	Sunflower			
	Tobacco (Fertilizer)	Mozambique Leaf Tobacco (MLT) in Lichinga		
		Mozambique Leaf Tobacco (MLT) in Cuamba		
		Buying Centre in Melange for MLT		
**	Cotton	SAN Lda.		
Livestock		Rural Consult, Lda.		
Fisheries		Rural Consult, Lda.		
Forestry	Timber	Malonda Foundation		
	Jatolopha			
Tourism	Niassa Lake	Rural Consult, Lda.		
	Game Reserve			

1.5.2 Interview results: General Description of Traffic Patterns on Study Road/ Area

From the interview conducted during the last period, Study Team had grasped the characteristics of traffic patterns on the Study Road and area. The findings are

summarized in each traffic category.

(1) Traffic Movement in General

The Study Road, where it connects Cuamba to Lichinga through Mandimba, is the essential road for transporting daily goods, communicating for social and private purposes with other provinces/ districts and supplying the agro-products to the markets.

The Study Road is earth road so it is only possible to drive appropriately in limited periods, while in the rainy season it sometimes becomes impassible. It is observed that potential traffic demands for various purposes are hidden in this area.

As one of the examples for describing the characteristics of this area, the Study Team conducted the price survey for daily goods along the Study Road. The figure below shows the results of this survey, which is affected by large transportation costs.

Note: Price index: Nampula = 1.0

Source: Study Team

Figure 1.5.1 Price Changes of Daily Goods on NH13

The railway connected between Cuamba to Lichinga is now operated only twice per month because of damaged condition of the railway. Therefore, the railway does not have enough capacity for transportation at this time.

In Nacala Corridor, railway has been spread from Nacala Port to Cuamba up to Entre Lagos. Normally, long distance transportation both of passengers and goods uses the railway from/ to Nampula to Cuamba and uses the Study Road to Lichinga and other northern districts of Niassa. Note that railway operation is almost at full capacity for traffic throughput.

For another road network in this region, there are already improved roads between Lichinga to Marrupa, where it will be connected with Pemba Port and Montepuez, provincial capital of Cabo Delgado, however, they still prefer to connect Nampula and Nacala Port through Cuamba.

Niassa Province has high potential for agro-products, not only food crops (e.g. maize, rice and beans) but also cash crops (tobacco and cotton) and forestry products. It means that these potentials are now restricted because of low passing

ability on the road and railway networks.

In the followings section, the characteristics of movement for each category are summarized.

(2) Passenger Movement

Passengers pass though the Study Road mostly by mini-bus and covered truck between Cuamba and Lichinga. Normally, it takes about six hours between Lichinga and Cuamba for a fee of 350MTN per person by minibus (Lichinga to Mandimba is 160MTN). This fee is regulated by ministry as 1.10MTN per person per km. It is not fixed scheduled operation, normally three buses are dispatched in the morning, two at noon and three in the afternoon from one side. Number of passengers in minibus (one box-type vehicle or covered truck, photo below) is regulated to provide seats and roofs, so that only 18 persons are allowed to sit in one bus. At this moment, it is impossible to operate a return trip within one day.

Figure 1.5.2 Photo of Minibus and Truck

The route of Cuamba to Lichinga is a trunk network for minibus transportation in Niassa, while the other routes connected to another district in Niassa should be started from Lichinga or Cuamba towns because of road conditions. For example, if passengers from near Lichinga want to travel to Maua located just near Marrupa, they have to travel to Cuamba first, then change to another minibus for Maua.

The long-distance bus for Maputo is operated twice per month with 56 to 60 seats for $2,300 \sim 2,500$ MTN. It takes about 3 or 5 days.

There is a small number of private vehicles. At the nearer towns such as Cuamba, Lichinga and Mandimba, motorcycles are used for traveling to neighboring districts. Note that bicycles are used for local transportation delivering firewood small businesses.

(3) Goods Movement

Freight transportation can be divided into following items which have different characteristics of movement:

- Food Crops (Maize, Beans other Farm Products)
- Cash Crops (Tobacco and Cotton)
- Daily Goods (Drinks, Plastics and Equipments,)
- Fuel
- Construction Materials (Cement, Timber)

(a) Food Crops (Maize, Beans, Rice and other Products)

Niassa Province has an advantage of food production because of its suitable climate and lands so that it provides not only in Niassa but also distributes to the whole of country, especially the large consumption area in Nampula. The following are described for typical movement of food crops.

Table 1.5.2 Goods Movement for Food Crops

Maize	Most of the farm surplus of maize (about 80%) is transported to Nampula through railways from Cuamba. Other 20% is for Malawi and Beira. These towns have milling factories and distribute their products.	一人一直都是什
Beans	Beans harvested in Niassa are distributed to Maputo and Beira with 70% and to Nampula with 30%. Niassa's beans are preferred to Swaziland's because of their good taste.	1
Other Harvests	At this moment, most of other harvest is consumed within their district because of transportation difficulties. Recently, rice production is starting to be boomed in Mecanhelas, it has a potential to distribute in whole of country in future.	

(b) Cash Crops (Tobacco and Cotton)

Cash crops are now booming as new business in Niassa, especially the tobacco industry has grown up over the past few years. These movements needs long distance to the processing plants as described below.

Table 1.5.3 Goods Movement for Cash Crops

Tobacco	Tobacco leaves and fertilizer are transported between "Buying Centers" which are dotted in Niassa and "Processing Factories" in Tete through Malawi by 30t truck. Tobacco leaves (from Niassa to Tete) are delivered from February to June. Fertilizers are distributed from Tete to Niassa in September.	
Cotton	Cotton is processed in factories in Cuamba, Cotton fiber is transported to Nacala Port by railway and cotton seeds are transported to Malawi by road and railways for exporting. Railways: bound for Blantyre and Lilongwe via Entre Lagos from Cuamba Road: bound for Blantyre and Lilongwe via Mandimba from Cuamba	

(c) Daily Goods, Fuel and Construction Materials

As explained before, Niassa Province is far from other major towns and ports, so that there are limited transport routes and measures. The following are summarized for each movement to Niassa. Normally, they are transported to Lichinga or

Cuamba first, then distributed to various places in Niassa Province.

Table 1.5.4 Goods Movement for Daily Consumed Goods

Daily Goods	Processed foods, oil, snacks and miscellaneous goods: each retailer hires the truck from various towns by various transport measure as below; From Nacala: Normally, it is transported from Nacala to Cuamba by railway, then rest of route is by truck From Beira and Maputo: Directly from there by truck via Gurue and Cuamba (only in rainy season, Malawi route is selected) Bicycles (2,000~2,500MTN) and motorcycles (16,000MTN) are popular sale items.
	CERTAL CONTROL OF THE PARTY OF
	Beer : At this moment, beer breweries are located in Beira and Maputo. Maputo's beer is shipped to Beira Port, and transported together with Beira's beer by 30t trucks through Malawi to Lichinga. After arriving in Lichinga, they are distributed in Niassa Province. One of two major distributers in Lichinga said that five trucks per week is normal transportation. Note that coming October in 2009 a new beer brewery will be opened in Nampula. It is considered to be transported by truck.
	Soft Drinks : At this moment, a factory is located in Nampula. It distributes by railway from Nampula at 05:00 to Cuamba at 19:00. Normally, two wagons are transported per day (one wagon = 30t = 2,015crates). Soft drink company said that it would prefer to shift to truck transportation if road condition will be improved because railway transportation has a lot of time loss.
Fuel/ Petrol	Petrol is transported from Beira by tank truck which has 40,000 liter capacity, to Lichinga. Normally, it is transported three or four times per month. After arriving at Lichinga, it is distributed to any other district in Niassa.
Construction Materials	There is a cement factory near Nacala Port. Transportation is used by 10 ~ 20t truck from Nacala directly. If a large amount of cement is distributed by client, railway can be used for containers. For example, price of cement is normally 350MTN/50kg in Cuamba, instead of 100MTN/50kg in Nacala. During rainy season, it will be increased up to 450~500MTN/50kg.

From the results of interview to retailers at Mandimba, transportation costs when 40 feet container is transported by railway or road truck are summarized below.

February 2010

Source: Interview Survey, Study Team

Figure 1.5.3 Transportation Cost from Nacala to Lichinga

At this moment, road condition is bad that transporters charge a lot of fees to clients. It is expected when the road will be rehabilitated many retailers will purchase own trucks and start distributing more than now.

1.6 Summary for Existing Traffic Flow Patterns

Through above information researched by data collection, interview and traffic volume and OD survey, the Study Team recognized the trip characteristics for each section, which tend to show different types of trip patterns. It is summarized in the table below. These characteristics will be considered for the traffic demand estimation in Chapter 3.

Table 1.6.1 Characteristics of rip Pattern for Each Section

Category	Lichinga - Mandimba	Mandimba - Cuamba		
Characteristics in General	 This section is the only route for delivering consumer goods to Lichinga which is the provincial capital of Niassa, where is the base for distributing to northern part. This section can be said the lifeline for northern area. Majority of social and official movement is the OD-pair between Lichinga and Cuamba. Some agro-products are generated from Northern side to south side of Mozambique and Malawi through Mandimba. 	 This section is used for passenger movement from Lichinga and other district in Niassa to connect railway or Nampula province. Some consumer goods are dispatched from Cuamba to Lichinga. On the other hand, most consumer goods for Cuamba city are come from Nampula side mainly by railway. Some trailers with empty container are found which delivers to Nacala port from Malawi. Some agro-products generated around Cuamba to transport to Malawi or Tete province. 		
Vehicle Type	 More than half of vehicles are trucks including medium and trailer. Minibus is major for passenger movement. 	 More than half of vehicles are trucks with mainly trailer and large truck. Minibus is major for passenger movement. 		
Average Trip Length (time) without internal zone trip	 16.8 hours (All Vehicles) 11.5 hours (Passenger Car + Bus) 25.2 hours (Trucks) 2.86 days (Trailer) 	 19.3 hours (All Vehicles) 11.4 hours (Passenger Car + Bus) 28.5 hours (Trucks) 1.99 days (Trailer) 		

Chapter 2 Traffic Demand Forecast

2.1 Macro-Economic Background

2.1.1 Current Population and Growth Scenario

(1) Population in Census Data (Comparison between 1999 and 2007)

The population in Mozambique increased from 16 million in 1997 to 21 million in 2007, resulting in a 28% increase over the last decade.

On the provincial level, each Nampula and Zambezia province accounts for about 20% of national population. Niassa Province accounted for only 5.0% of total in 1997 and 5.7% in 2007.

Looking at population growth in the last decade, Niassa Province has one of the highest population growth rates with 46% (1997: 8.1 million, 2007: 11.8 million).

	19	97	20	07	2007/1997
	Population	Rate	Population	Rate	2007/1997
Niassa	808,572	5.0%	1,178,117	5.7%	145.7%
Cabo Delgado	1,380,202	8.6%	1,632,809	8.0%	118.3%
Nampula	3,063,456	19.1%	4,076,642	19.9%	133.1%
Zambezia	3,096,400	19.3%	3,892,854	19.0%	125.7%
Tete	1,226,008	7.6%	1,832,339	8.9%	149.5%
Manica	1,039,463	6.5%	1,418,927	6.9%	136.5%
Sofala	1,368,671	8.5%	1,654,163	8.1%	120.9%
Inhambane	1,157,182	7.2%	1,267,035	6.2%	109.5%
Gaza	1,116,903	6.9%	1,219,013	5.9%	109.1%
Maputo Prov	830,908	5.2%	1,259,713	6.1%	151.6%
Maputo Cid	987,943	6.1%	1,099,102	5.4%	111.3%
Total	16,075,708	100.0%	20,530,714	100.0%	127.7%

Source: INE

Figure 2.1.1 Population in Each Province

February 2010

The figure below shows the current population in each district and transport networks in Niassa Province and other neighboring towns. The size of population is indicated as the magnitude of circle in this diagram. It shows that Lichinga - Cuamba road connects the two largest towns in Niassa, and there are not so many larger towns in neighboring areas.

Figure 2.1.2 Population of Each Town at Study Area

(2) Population Growth Scenario in Niassa Province

There are two sources for population growth framework in Niassa Province. One is estimated by the "Plano Estrategico Provincial (PEP), Niassa 2017" which is conducted as a provincial study, and the other is estimated by national statistic organization (INE).

The PEP published the future estimated population from 2007 to 2017, which was estimated based on the census survey in 1997 and consisted of three scenarios (conservative, moderate and optimistic). The population growth rate in the conservative scenario, moderate scenario and optimistic scenario is assumed as 3.0%, 2.7% and 2.5%, respectively.

The figure on the next page shows the future estimated population in Niassa up to 2050. This estimation was applied by the logistic curve (growth curve) based on the estimation period and the future population in each scenario.

According to this estimation, even in the lowest case which is the optimistic scenario, the population is about 2,300,000 and increases about 200% within 40 years. Most serious case is the conservative scenario which is 2,600,000 people in 2050 and about 220% within 40 years.

It should be noted that the preliminary results of 2007 census population in Niassa

have already exceeded the above estimations.

Source: INE, PEP (Plano Estrategico Provincial, Niassa 2017), estimated by Study Team

Figure 2.1.3 Population Estimation

For reference, conditions for estimation of PEP are as below;

- Target year: 2007 2017
- Anchor Project of Transportation
 - a. Road Project
 - ➤ Complete paving of the highways in the development triangle Lichinga-Cuamba-Marrupa (N13 and N14).
 - ➤ Paving and good conservation of the two roads, N360 (Cuamba to Marrupa) and N361(Lichinga to Metangula)

b. Railway Access

➤ Complete rehabilitation of the Lichinga – Cuamba railway within five to 10 years, and provide daily circulation of passenger and cargo trains.

c. Air Transportation

- Rehabilitation and expansion of Lichinga airport and its transformation into an international airport to accommodate, among other things, the foreseeable increase in tourism
- ➤ Opening of international roads in Metangula and Cobue, both with pertinent services for migration.

Table 2.1.1 Growth Scenarios in PEP

	Conservative	Moderate	Optimistic
GDP Growth	+8%	+10%	+12%
Population	+3%	+2.7%	+2.5%
GDP per Capita	+4.8%	+7.1%	+9.3%
Agricultural Production	+2.1%	+4.5%	+5.0%

Source: PEP

2.1.2 GDP & Poverty Index (Current, Growth Scenario)

PEP analyzed three different scenarios. Growth rate of GDP is estimated as 12% in optimistic scenario, 10% in moderate scenario and 8% in conservative scenario. The analysis period is till 2017.

Future GDP by 2050 is estimated by applying a logistic curve (growth curve) based on the PEP's estimation till 2017. As a result, upon comparing GDP between 2050 and 2007, it is about 3 times in the conservative scenario, about 4.3 times in the moderate scenario, and about 7 times in the optimistic scenario.

Source: INE, PEP, estimated by Study Team

Figure 2.1.4 GDP Estimation

2.1.3 Economical Development Potentials in Niassa Province

(1) Introduction

In case of traffic demand forecasting, it should be taken into consideration that each economical development potential discussed in Chapter 1 should affect the future traffic demand. Therefore, this section discusses the three possible potentials, such as a) Agro-products, b) Forestry and c) Tourism.

(2) Agro-products (Source: Strategy Plan in Niassa Province)

PEP treated 12 kinds of agro-products and estimated future volume of its production. In moderate scenario, annual increase rate is estimated as 4.5%.

The volume of each agro-product from 2008 to 2017 is shown in the next pages.

Each agro-production has different level in different local/district areas.

For example, millet, potato, cotton, sesame, and sunflower, etc. are produced only in limited areas/districts, while maize, beans, rice, sorghum, peanuts, and cassava, etc. are produced almost all over Niassa.

Source: PEP (Moderate Scenario)

10,418

10,887

11,377

52,090

54,434

56,884

1,563

1,633

1,707

5,256

5,492

5,739

2014

2015

2016

332,765

347,739

363,388

Figure 2.1.5 Estimated Agro-products in PEP

46,677

48,777

50,972

276,079

288,503

301,485

10,418

10,88

11,377

15,627

16,330

17,065

2,779

2,904

3,035

195

204

213

2,000

2,090

In the moderate scenario, the PEP estimated annual increased rate for agroproduction volume is 4.5% by 2017 as shown in table above. Based on above data, the Study Team estimated by the method of applying logistic curve (growth curve) which has upper limitation of provincial capacity of production which should be same as capacity of production per capita. And the Study Team assumed the limited products such as sunflower, sesame, and soybean which are only farmed in limited districts to be applied the same as 4.5% annual increase rate after 2017.

In the results described in figure below, agro-production in 2050 is estimated as 1,450,000 tons compared to 500,000 tons in 2008. This represents an increase of about 2.6 times.

Source: PEP (Moderate Scenario)

Figure 2.1.6 Estimated Agro-products

(3) Forestry (Source: Strategy Plan in Niassa Province)

In the moderate scenario, PEP assumed that annual tree planting will be planned as 6,000 - 17,000 ha, and forestry products (e.g. log, pulp and charcoal) will be distributed on the market gradually after planting and growing. In 2017, it is planned that 130,000ha of area will be covered by forest.

Assuming that the same level of annual afforestation (17,000ha) will be continued after 2017, afforestation area will cover about 741,000ha (about 6% of province area) in 2050.

Based on the conditions described below, the quantity of production will increase gradually and level from 2035. Annual production will be 1.7 million cubic meters for pulp, 0.6 million cubic meters for log and 0.4 million cubic meters for charcoal.

Source: PEP (Moderate Scenario)

Figure 2.1.7 Forest Estimation

Reference: Condition for estimation in PEP

The forestry products produced by afforestation of 1ha are divided into three products, namely log, pulp and charcoal. Forest of 1ha area is supposed to produce 80 cubic meters. Table below shows share of each production in accordance with the elapsed years after afforestation.

Table 2.1.2 Assumed Share of Forest Production

	8years later	16 years later	25 years later
Log	0%	30%	60%
Pulp	80%	56%	32%
Firewood	20%	14%	8%
Total	100%	100%	100%

Source: PEP after 8 years, 16 and 25 years are estimated by description of PEP

(3) Tourism (Source: Strategy Plan in Niassa Province)

PEP analyzed that tourists will increase to 70,000 tourists including one day trips and stays in 2017 which is more than twice the number in 2007 (about 30,000 tourists). However, PEP also estimated that the increase rate will be reduced after 2017.

Therefore, the Study Team applied the logistic curve (growth curve) based on PEP's estimation and estimated future tourists by 2050. It shows that increase of visitors will level out around 2030 at about 100,000 tourists comprising 40,000 visitors for one-day tours and 60,000 visitors for stay tours as shown in the figure below.

Source: PEP (Moderate Scenario), Study Team estimated Long term

Figure 2.1.8 Tourism Estimation

2.1.4 Summary

The Section from 2.1.1 to 2.1.3 discussed the basic macro-economic assumption for traffic demand forecasting. These assumptions are summarized in the table below.

Table 2.1.3 Summary for Macro-Economics Assumptions

Item	Assumptions	Annual increase rate (2050/2007)
Population	Future population up to 2050 has been estimated in each district based on PEP's estimation, and applied logistic curve by the Study Team	About 2.5 – 2.8% (2.2times)
GDP	Future provincial GDP up to 2050 has been estimated based on PEP's estimation, applied logistic curve	Conservative: 8% (3.0times) Moderate: 10% (4.3times) Optimistic: 12% (7.0times)
Agro- products	Future agro-products up to 2050 have been estimated based on PEP's estimation, applied logistic curve and some conditions/ assumptions	About 4.5% (2.6times)
Forest	Future forest products up to 2050 have been estimated based on PEP's estimation, applied logistic curve and some conditions/ assumptions	Annual production after 2035 Pulp: 1.7 mil. m ³ Log: 0.6 mil. m ³ Chacol: 0.4 mil. m ³
Tourism	Future tourists up to 2050 have been estimated based on PEP's estimation, applied logistic curve and some conditions/ assumptions	Annual visitors after 2030, One-day: 40,000 visitors Stay: 60,000 visitors

2.2 Forecasting Methods

2.2.1 Review of Forecasting Methods in Previous Feasibility Study

In order to apply suitable forecasting method, the forecasting method in the previous study should be reviewed. In this context, the Study Team examined the following previous studies which are a) Lichinga – Montepuez (2001), b) Milange – Mucuba (2008) and c) Nampula – Cuamba (2007).

The outline of these studies is summarized in the table below.

Table 2.2.1 Outline of Previous Feasibility Studies

		define of 1 revious 1 easibility	,	
Item	Lichinga ~ Montepuez: N14	Milange ~ Mucuba: N11	Nampula ~ Cuamba: N13	
item	BCEOM, 2001	BCEOM, 2008	JICA, 2007	
Forecasting Period	2005~2015	2011~2030	2012~2028	
Traffic Survey	2002 Traffic volume survey: 3 locations 7days (18hrs.) + 1day (24hrs.) OD survey: 2 locations (3days)	2007 Traffic volume survey: 4 locations 4days (12hrs.): incl. Sat. Sun. 2nights at 1 location OD survey: 3 locations 4days (12hrs.): incl. Sat. Sun. 2nights at 1 location	2006 Traffic volume survey: 9 locations 4: 3days(24hrs.): Oct&Dec 5: 2days(12hrs.): Oct&Dec OD survey 4 locations 3days(12hrs.): Oct	
	Interview survey to traffic related firms at Lichinga	Interview survey to transporter at Lilongwe	Railway/ Bus passenger survey Interview survey for railway company Interview survey to transporters	
Road Network	TAZ: 5 combined with districts Link nos.: 6 (straight line) Network assignment: No	TAZ: not treated Link nos.: not treated Network assignment: No	TAZ: 17→25 Link nos.: many with Malawi's link Network assignment: done	
	Study link nos. : 5	Study link nos.: 1	Study link nos.: 4	
Forecasting Method	Carefully discussed with Traffic Generation (daily consumption, agro-products) Passenger traffic was estimated by fix unit generation ratio.	The concept of trip generation and attraction was not treated. Traffic volume was estimated based on the fuel consumption estimated by another agency ¹	 Traffic volume was estimated based on the fuel consumption estimated by another agency, and included future provincial population². Diverted traffic from railway was considered. 	
Generated Traffic	About 30~50% of each consumption item	Estimated by the saving of time value using elasticity of value	N/A	
Diverted Traffic	N/A	- Route diverted from Nacala and Beira Port related traffic	 International route choice from Beira to Nacala Port Modal shift from railway both passenger/ freight traffic Route diverted estimated by traffic assignment 	
Bicycle	N/A	Change to vehicle for long trip bicycle riders	N/A	

According to the above results, it is found that there are many differences of forecasting methods among studies. It is true that each study road has different characteristics of traffic pattern, so that it may be possible to apply more suitable method for the objective.

More details of estimation method in each study are attached in the appendix.

² Same as above

An assessment of road traffic growth, 2006, prepared by ANE in-house consultant (not officially opened)

However, African Development Bank (AfDB) pointed out the several issues for traffic demand estimation in the preliminary appraisal mission for Nampula – Cuamba road improvement project. The issues pointed out are summarized as follows:

- Generated traffic must be included in Traffic Demand Forecasting (Economist of AfDB suggested that 30% of estimated traffic will be added as generated traffic)
- For sensitivity analysis, GDP should also consider both the optimistic and pessimistic scenarios.
- For economic analysis, both motorcycles and bicycles should be taken into consideration.

2.2.2 Concepts for Traffic Demand Forecasting Method

(1) General Concepts

Considering the above section, the Study Team has set the general concepts for traffic demand forecasting method described below.

- Forecasting model shall be able to explain the potential/ hidden demands caused by rainy season and bad surface conditions.
 - Passenger traffic: model includes difficulties of moving in rainy and dry seasons.
 - Freight transport: model includes the demands of consumption and supplement in market by each item.
- Route choice shall be considered by each item's origin/ destination
- International freight transport from Malawi shall be considered as diverted traffic.
- Railway transportation shall be treated as below;
 - Nacala Nampula Entre Lagos Malawi Line: Capacity of railway transportation has already leveled out because of poor rail condition and limited number of locomotives as described in 1.6. In this estimation, railway improvement will not be considered, and capacity of traffic will be stable as it is.
 - Cuamba Lichinga line: As described in 1.6, Northern line is not operated properly, and wagons can make only one round tripper month. And CDN, which is the operation firm under concession, has difficulties of rehabilitation of railway condition under its concession agreement. Therefore, this line will stay in its current condition.
- Port facility shall be considered to be the same condition as present.
- Border facility at Mandimba will be assumed in both its current status and improved status such as one-stop-border post.

Note that in the middle of October 2009 there was an announcement for new railway construction plan between Motivaze and Blantyre for transporting coal to Nacala Port. It is said that feasibility study will be started soon. At this moment, there is no concrete information for this project. However, there must be much rehabilitation through the SEAR and CDN for allowing coal transportation. Therefore, in this Study, this will not be considered for application to this

estimation.

(2) Estimation Periods

For estimation of future traffic demand, the following analysis period is defined:

Horizon year: 2009
Construction period: 2011-2013
Base year: 2014

- Analysis period: 2014 – 2034 (20 years)

(3) Scenarios for Traffic Demand Forecasting

According to general concepts described before and study sections between Cuamba and Lichinga, forecasting scenarios are formulated as below.

Table 2.2.2 Scenarios for Traffic Demand Forecasting

		Road Network		Border	Border Railway Network			Port
Scenario Case	Case Lichinga Mandimba Nampula Mandimba Cuamba Cuamba		OSBP	Nacala~ Entre Lagos	Cuamba ~ Lichinga	Malawi Doest.	Nacala	
Without Case	As it is	As it is	As it is	As it is	As it is	As it is	As it is	As it is
With Case (Scenario -1)	As it is	Improved	Improved	As it is	As it is	As it is	As it is	As it is
With Case (Scenario -2A)	Improved	Improved	Improved	As it is	As it is	As it is	As it is	As it is
With Case (Scenario –2B)	Improved	Improved	Improved	Improved	As it is	As it is	As it is	As it is

Nampula – Cuamba (N13) section is already undergoing implementation of construction, therefore, all of the "with" cases take this section to be improved.

2.3 Traffic Demand Forecast

2.3.1 Methodology of Traffic Demand Forecasting Method

Based on the discussion in 2.2, future traffic volume was estimated by three different types of traffic, such as i) passenger, ii) regional goods and iii) international goods, used by following data and process.

Figure 2.3.1 Process of Traffic Demand Forecast

Each component of traffic estimation is described below;

Passenger traffic volume is estimated by "Gravity Model" with the variable index of potential population and road section impedance, developed by the actual number of passengers for each O-D trip.

Regional traffic volume is considered by divided traffic as attraction and generation for each zone. Trip attraction is estimated by the consumption of daily goods, and trip generation is based on agro-products from Niassa province.

International traffic volume is thought to be generated after the road network is improved. It is estimated by the Malawi trade and railway capacity, and applies the corridor choice model, named lodgit model.

Following sections describe the estimation method and the results for each estimation component.

2.3.2 Passenger Traffic Estimation

(1) Introduction

For describing the "hidden demands" of social and business passenger movement, "gravity model" had been chosen as a suitable method. The basic model equation for gravity model is shown below.

$$T_{ij} = k \frac{G_i^{\alpha} G_j^{\beta}}{L_{ij}^{\gamma}}$$
 T_{ij} Nos. of Passengers between "i" to "j"
$$C_i \text{ Potential for moving (e.g. Population)}$$

$$C_i \text{ Potential for moving (e.g. Population)}$$

$$L_{ij} \text{ Impedance between "i" to "j"}$$
(e.g. Road Length under condition)

Figure 2.3.2 Gravity Model Equation

(2) Model Development

In order to apply this model into this Study, the Study Team selected following definitions for each data set after acquiring data available in Niassa Province.

T_{ij}: Number of minibus passengers between "i" to "j", calculated by the static data (e.g. provincial data for passenger-km and number of registered buses for each route) and OD survey data.

The figure right shows the estimated number of daily passengers for each ODLichinga trip.

 L_{ij} : Number of population within 10km from district center calculated by GIS, whose income level is above the poverty line (52% in 2007). Future value based on the INE projection and target poverty index in 2017 (37%).

Figure 2.3.3 Estimated Number of Minibus Passengers

 G_i : Impedance between "i" to "j", which is calculated by the vehicle operation cost (VOC) and travel time cost (TTC) at each road section with same road condition such as IRI. Note that the Study Road will have decreased impedance when the rehabilitation is completed.

After collecting the above data, coefficients for each explanatory variable were estimated and validated for relevance. The results of model estimation are described in the table below. It is clear that t-value of parameter was estimated as more than two, and coefficient determination is nearly 1.00.

Table 2.3.1 Results of Model Estimation

[Model Equation]

$$T_{ij} = k \frac{G_i^{\alpha} G_j^{\beta}}{L_{ij}^{\gamma}}$$

Explanatory Variables	Estimated Coefficient (t-value)	R ² (Coefficient
α: Population-1	2.78 (3.25)	Determination) = 0.94.
β: Population-2 / 3	1.02 (4.80) / 0.22 (1.35)	
γ : Impedance	-0.85 (3.19)	DW (Durbin- Watson) Ratio
K: Constant	1.58*10^-15 (-3.63)	= 1.41

Using this developed gravity model, the future traffic volume will be estimated using the future population and road condition when the Study Road will be improved.

(3) Future Number of Passengers and Vehicles

There are two types of scenario for the "with case" discussed in 2.2.2, so three types of estimation including "without case" have been conducted as shown below.

- Without case: only "normal traffic" affected by population increase
- **With case (Senario-1)**: "normal traffic" and "generated traffic" are affected by the improvement of only "Cuamba Mandimba" section. [Generate-1 in figure 2.3.4]
- With case (Senario-2): "normal traffic" and "generated traffic" are affected by the improvement of all Study Road section. [Generate-2 in figure 2.3.4]

The conversion factor from number of minibus passengers to vehicles is taken as 14.3 passengers/vehicle, which is analyzed by the result of OD survey.

The results of estimation are shown in figure below. The normal traffic will be increased more than 20% per year due to hidden traffic demand, and 30% of normal traffic will be generated when the road will be improved.

Figure 2.3.4 Minibus Traffic Estimation < Results>

In the case of passenger cars, the trip pattern is analyzed by the OD survey, which is shown as the percentage of OD pair in figure below. More than half of trips communicate between Cuamba and Lichinga. Only a few trips reach Tete or Beira.

Due to the estimation for future trips, the annual increase rate of population and GRP per capita will be applied to the number of passengers of trip generated zone.

The results of passenger vehicles for each section are shown in figure below.

Figure 2.3.5 OD-pair Trip Pattern for Passenger Cars

Figure 2.3.6 Passenger Traffic Estimation < Results>

Based on the results, both minibus and passenger car vehicles are cumulated to future traffic volume. Note that some minibus passengers may shift traffic mode to passenger cars as they enter higher income groups. However, it is difficult to account because of the limitation of this type of estimation method.

2.3.3 Regional Goods Traffic Estimation

(1) Introduction

As already discussed in the previous section in 1.5.2, the regional goods movement is characterized when the OD survey is carefully analyzed on separated trip "attraction" and "generation" described on the right.

 $m{T}_{ij}$: Volume of goods which are transported from "i" to "j"

 G_{j} : Trip Attraction to "i" from other zone

 A_{i} : Trip Generation from "j" to other zone

It is assumed that the "**trip attraction**" is mainly caused by the traffic of consumer goods for Lichinga, because of the limited road network surrounding this provincial capital. Therefore, once consumer goods reach to Lichinga, these are distributed to northern part of Niassa Province. The result of trip attraction to Lichinga is calculated as 165.0ton per day. Future attracted traffic will be estimated by the future consumed goods volume.

$$\Sigma A_{Lichinga} = 165.0 \text{ ton/ day}$$

Distributed to;

Lichinga Municipal, Lichinga District, Ngauma District, Mandimba District, Lago District, Sanga District, Muembe District, Mavago District, Majune District, Mecula District, Marrupa District

Figure 2.3.7 Concept of Trip Attraction

On the other hand, for the "trip generation", the Study Team recognized that Niassa Province has essential potential for agro and forestry products, therefore,

future generated traffic will be estimated by the planned agro products in Niassa Province on PEP (Niassa Provincial Strategy). The figure below shows the current potential for trip generation conducted by Niassa Province.

Figure 2.3.8 Current Potential for Trip Generation

(2) Estimation Process and Results for Trip Attraction

The figure below shows the trip pattern analyzed by OD survey attracted to Lichinga, Mandimba and Cuamba. The percentage of share is calculated based on the tonnage of goods transported.

[To Lichinga]

165.0ton/day

- About half of goods are transported from Cuamba, Nampula and Nacala side.
- 23% of goods are from Maputo.
- 20% of goods are from Malawi, Tete and Beira..

[To Mandimba]

18.0ton/day

- Mamdinba relays on the goods from Malawi for more than half of them.
- 27% of goods are distributed from Lichinga.
- Only a few goods are transported from Cuamba side.

[To Cuamba]

9.7ton/day

- Because OD survey was only conducted on the Study Road section, there are no transportation data from east side to Cuamba. Also, there may be existing railway transportation.
- The road transportation on the Study Road accounts for 74% from Tete and Beira.
- 24% of goods come from Lichinga.

64% Malawi

Figure 2.3.9 Current Trip Pattern for Attraction

It is assumed that this trip pattern will be kept to the future traffic pattern.

Regarding the future volume of required goods, the unit method for major consumption goods will be applied, such as "unit consumption rate", future population and increased growth of disposable income level (+10% in annual). The table below shows the applied rate for major consumed goods.

Table 2.3.2 Applied Unit Consumption Rate

Item	Consumption Rate
Consumer Dry Goods	14.4kg/ pp/ year
Oil	3.6kg/ pp/ year
Salt	1.2kg/ pp/ year
Sugar	3.6kg/ pp/ year
Powdered Milk	3.6kg/ pp/ year
Construction Materials	5kg for Cement, 10kg for roof material
Beer/ Soft drink	20bottles/ pp/ year
Fuel	2truck for 30,000L per day
Fertilizer	17 % of cotton, 42% of tobacco product

Source: Feasibility Study on Lichinga - Montepuez (N14) BECEOM, 2001 and Study Team (adjusted to OD results)

Based on the above procedure, the future goods traffic is estimated in the figure below. Regional goods traffic will be increased by 10 - 15% per year.

Figure 2.3.10 Regional Goods Traffic Attraction Estimation <Results>

(2) Estimation Process and Results for Trip Generation

As described in 2.1.3 (2) and (3), future agro-products and forestry products are applied to regional generation traffic.

The figure below shows the trip pattern analyzed by OD survey generated from Lichinga, Mandimba and Cuamba for type of goods. Note that this movement is supposed to have many seasonal or monthly variations. Therefore, the ideal modeling of trip generation described below will be applied.

Future generation volume (ton) for agro-products is estimated in figure below. Total volumes of agro-products are estimated by "Agro-products in PEP – Internal Consumption (maize, rice, sorghum, millet, peanuts, beans, cassava, cotton, tobacco, sunflower, sesame, soybeans)".

Note that forest products are assumed to be generated from the northern side of Niassa as described in Figure 2.3.8. Therefore, all products will be generated from Lichinga.

Figure 2.3.11 Trip Pattern for Regional Goods Traffic for Generation

Based on the above procedure, the future goods traffic is estimated in figure below. Regional goods traffic will be increased by 5 - 10% per year.

Figure 2.3.12 Regional Goods Traffic Generation Estimation <Results>

2.3.4 International Goods Traffic Estimation

(1) Introduction

For the international goods transportation on Nacala Corridor in future, both Nacala and Beira Corridor networks should be considered with Malawi and Zambia trade. However, the OD survey found that only Malawi trade existed and is possibly applied to future corridor transportation, so this Study took the possible route for Malawi trade in the figure below.

Figure 2.3.13 International Network and Possible Route for Malawi Trade

In order to find more suitable estimation for international transportation in this area, the Study Team took the point of view for Malawi trading data, then assigned to each route.

(2) Estimation Process

The future Malawi trade will be estimated based on the historical trade data. Then, applying the border share at different borders in/out of Malawi and neighboring counties, possible volume of international transportation is estimated for railway on Nacala Corridor (CDN) and road transportation on Nacala and Beira Corridors. The route preference between Beira Corridor and Nacala Corridor is estimated by the "Logit Model" which is developed based on the existing stated preference such as the result of cross-border OD survey. The whole process is shown in the figure below.

Future International Goods Traffic on Study Road

Figure 2.3.14 Estimation Process for International Goods Transportation

(3) Results for each Estimation Step

Future Malawi trade is estimated by the logistic model developed using the last 20 years trade data in monetary value for Malawi (1987-2006). The figure right shows the curve of future estimated trade data. Then, this estimated future monetary value is converted into tonnage value by the actual ratio between monetary value and total tonnage of the top 20 commodities in 2006. It should be noted that there are still large gaps import from between export and Malawi.

Figure 2.3.15 Estimated Future Malawi Trade

After estimating this trade data, previous research was conducted to find the percentage share of throughput at various borders in Malawi to neighboring countries. For example, taking the case of importing, 63.8% of imports use road transportation through Mozambique and 21.2% are by Nacala railway as indicated in "Entre Lagos". The details are shown in below.

Figure 2.3.16 Percentage Share for Border Throughput

In addition, OD survey conducted at four Malawi borders in August 2009 were analyzed to find the percentage share for road transportation to select the route in tonnage based on different origin and destination. The table below is the result of this analysis.

Table 2.3.3 Percentage Share of Route Choice for Road Transportation (tonnage base)

	Import (from)		Export (to)			
Mozambique		9.8%	Mozambique	5.0%		
Nacala Port	Mandimba	-	Nacala Port Mandimba	-		
	Milange	-	Milange	18.2%		
Beira Port		40.5%	Beira Port	33.3%		
South Africa		24.0%	South Africa	18.2%		
Zimbabwe		25.7%	Zimbabwe	25.3%		

Source: Study Team (Border OD Survey)

Based on the performance of route choice for Nacala Port and Beira Port, the Study Team developed the route choice model such as "logit model" described in the following equation.

$$Pr_{i} = \frac{e^{V_{i}}}{\sum_{j} e^{V_{j}}} Probability for route choice "i"$$

$$V_{Beira} = \beta_{1} L_{Beira} + \beta_{2} ASV_{Beira}$$
 where,
$$V_{Milange-Nacala (M-N)}$$

$$= \beta_{1} L_{M-N} + \beta_{3} ASV_{M-L}$$

$$V_{Mandimba-Nacala (Ma-N)} = \beta_{1} L_{Ma-N}$$

$$V_{i: Utility of route choice "i"}$$

$$L: General distance (Explanatory Variable)$$

$$ASV: Alternative Specific Variables$$

It should be noted that general distance was applied to the length of each route and its surface condition. When the Nacala Corridor will be improved, the general distance will be changed to less distance compared with Beira Corridor.

The results of route choice probability after road improvement on Nacala Corridor are summarized in the table below. It is estimated that about 40% of imports and 77% of exports will use Nacala Corridor, which means that more time-conscious transportation will choose Nacala Corridor, which can be described as the "Diverted Traffic" for route.

Table 2.3.4 Route Choice Probability after Road Improvement on Nacala Corridor

Import (from)					
Nacala Port	Mandimba	39.5%			
	Milange	0.1%			
Beira Port		60.4%			

 Export (to)

 Nacala Port
 Mandimba
 76.7%

 Milange
 8.3%

 Beira Port
 15.0%

Source: Study Team, estimated by Logit Model

Moreover, regarding diverted traffic from railways, after estimating the transportation volume on Nacala railway, overflow of railway capacity will be diverted to Nacala Corridor. Based on the discussion in 2.2.2, there are not enough investment and rehabilitation plans, so the capacity of railway is assumed as "Export: 182,000 tons/year" and "Import: 325,000 tons/year".

The diverted traffic will be generated for international goods transportation when the Study Road will be improved. About 70 or more trailers will start running diverted from the other corridor (Beira Corridor) or Nacala railway (CDN). Note that this will happen only on Cuamba – Mandimba section, not on Mandimba – Lichinga section. The photo right is the typical trailer running at cross-border in Mozambique/Malawi.

Figure 2.3.17 Diverted Traffic for International Goods Transport < Results>

These estimations are based on the assumptions described in 2.2.2. One of most sensitive factors which will influence traffic demand, especially heavy vehicles, is railway and port investment and rehabilitation. It should be carefully checked whether these plans will be announced. At the end of this Study, an investment plan has been announced for creating new railway line connecting from Moatize in Tete province to Blantyre in Malawi for coal delivering from Tete to Nacala Port. The plan announces that it will be constructed by 2015, However, the Study Team has disregarded this because many improvements and rehabilitations are required in both the Malawi (CEAR) and Mozambique (CDN-R) sections in order to bear the heavy wagons for coal delivering, and there are not enough financial resources.

2.4 Results of Traffic Forecast

Accumulating the results of 2.3.1 to 2.3.4, future traffic volume for both sections will be summarized. Future traffic volume in AADT is estimated about 450AADT in 2014, 1,700AADT in 2023 and 6,000AADT in 2033. If comparing only the AADT, the section of Lichinga – Mandimba is more than Mandimba – Cuamba. It is because social communication will be more active by minibus and passenger car than the connection of provincial capital in Lichinga. The section of Mandimba – Cuamba is characterized by numbers of trailers e diverted from Beira Corridor and railway. It is evidenced that this section will compose part of the international corridor.

Figure 2.4.1 Estimated Traffic Volume for Each Section

Compared with the previous feasibility study between Nampula and Cuamba, this estimated traffic volume is almost same level of volume for previous section. The table below shows both results on the same time series.

Nampula-Ribaue Ribaue-Malema Malema-Cuamba Cuamba-Mandimba Mandimba-Lichinga 221 24 252 124 150 178 163 187 214 833 670 247 467 566 631 870 907 944 696 729 761 1.083 839 139 613 1.115 901 1,478 1,129 2021 2022 2023 1,301 1,495 1,731 1,070 1,294 1,481 1,260 2024 1.320 1.076 1.164 1,686 1.914 1.99 2,283 2,612 1 125 2028 1,509 1,230 1,318 2,984 953 995 1,040 1.578 1.375 3.40 93 2,494 1,406 1,471 2,21 2,52 2,831 3,199 2032 2033 2034 1.881 1,01 1.539 1,627 2.84 4.483 5,67 6,416 7,253 8,189

Table 2.4.1 Comparison of this Study and Previous Study

In the case of appraisal for AfDB, estimation of future non-motorized traffic (NMT) should be also estimated for economic evaluation. Therefore, based on the traffic count data at four locations and OD results for motorcycles, averaged bicycle traffic volume for each section will be estimated by applying the trip demand curve method.

As a result of the OD survey for motorcycles, the trip demand curve based on the travel time is developed.

[Trip Demand (%)] =
$$98,439 * [Travel Time (min.)]^{-2.8277} (R^2 = 0.991)$$

The figure below shows the bicycle demand curve applied to the number of bicycles counted at each section. The total area for each curve means the same traffic volume at survey point. The averaged vehicle-km for each section will be calculated based on this curve in each direction. The results of averaged bicycle volume are 694 bicycles/day in the section of Lichinga – Mandimba and 473 bicycles/day in the section of Mandimba – Cuamba. The annual increase is applied as just 1% because of consideration to mode shift to minibus or other modes due to the income increased.

Figure 2.4.2 Estimated Bicycle Traffic Volume for Each Section

Chapter 3 Economic and Financial Analysis (Lichinga-Mandimba Section)

3.1 Introduction

The Study objective is "to determine the most technically feasible and economically viable, environmentally acceptable and socially optimal option of upgrading the existing earth/ gravel roads in the rural areas to paved roads." For the purpose of the economic evaluation, it is important to first define the existing state of the Project road for the base case, and then to define the alternatives to be analyzed, and finally the structure of the analysis.

Economic analysis for the Project consists of comparing the case "without the project" to those "with the different project alternatives." The case "without the project" entails maintaining the existing road and applying routine/periodic maintenance where necessary. The case "with the project" is the implementation of the road improvement interventions discussed in the previous chapters. The analysis determines their impact, and whether or not they are economically feasible, i.e. yielding a positive Net Present Value (NPV) and other indicators. Sensitivity tests are then applied on costs and traffic volume.

3.2 Methodology

In the road improvement under the Road and Bridge Management and Maintenance Project (RBMMP or Roads-3) implemented by the World Bank and other major road construction projects, calculation of economic indicators is mainly applied by the Highway Design and Maintenance Standards Model (HDM-4 model). HDM-4 was developed by the World Bank's Transportation Department to meet the needs of highway authorities, particularly in developing countries, for evaluating policies, standards, and programs of road construction and maintenance. Thus, ANE commented on the Inception Report for the Project on April 2, 2009, that the economic analysis for the Project will be conducted based on the HDM-4 model.

However, it should be noted that some advantages and disadvantages are found comparatively among the typical tools for economic analysis for the road project. In this Study therefore, HDM-4 analysis will be applied, and supplemented by other tools for reference or comparison, where necessary.

The quantitative measure used to determine the feasibility of the Study Road to evaluate the Project from an economic perspective is the economic internal rate of return (EIRR) and other indicators. EIRR is the discount rate at which the net present value of an investment is zero.

3.3 Basic Assumptions for Analysis

The economic analysis was made based on the information and data derived from the natural condition in the Project area, existing road condition, improvement plan of the Project road, vehicle characteristics and traffic demand forecast, that are studied in the previous chapters. However, regarding the motorcycle surveyed individually, its forecasted volume is incorporated in the automobile or bus category in HDM-4 computation.

Careful attention should be paid when selecting the discount rate for cost-benefit analysis and investment decision making. The estimated economic benefits that are expected to accrue from improving the roads should be assessed against the expected benefits from making alternative investments. From an economic perspective, the opportunity cost of capital is the most appropriate discount rate to rationalize road investment decisions and inform investment choices. For purposes of the economic analysis conducted in this feasibility study, the discount rate applied to the cash flows is 12 percent, as is suggested by ANE. Other major premises of the Project evaluation are summarized below.

➤ Project life: 20 years after the opening of the project road (2014)

Pricing date: As of October 2009

Social discount rate: 12%

Exchange rate: US\$1.00 = 28.00 Meticais (MT)

The economic evaluation period for the Project is assumed as 24 years from 2010 at which the detailed design work will be commenced prior to the construction works for 3 years. Analysis period for the Project is defined considering the durability of the road to be improved, reliability of accuracy of the traffic volume forecasted and other standard analysis conducted by the international institutions.

3.3.1 Conversion Factors (CF) to Economic Price

For the purpose of the economic analysis, all Project construction, maintenance and vehicle operating costs are expressed as economic costs. Economic costs represent the opportunity cost of a production in the Project, or of a benefit resulting from the Project, such as savings in vehicle operating expenses. This entails removing transfer payments such as taxes, import and export duties and subsidies from the financial, or accounting costs, thus changing them to their values "on the border", such as CIF or FOB. The economic cost of transporting to the Project site is also included.

In practice, the direct unit costs of every construction and maintenance activity of borrow, fill, sub-base, etc., to be used as input to the HDM-4 model must be broken down by percentages into their basic components, such as labor, materials and equipment. Each percentage is weighted by its economic pricing factor, then added together and multiplied by the quantities to obtain the direct economic cost of the activity. Total economic cost is obtained by adding indirect costs such as contractor's overhead.

It is important to calculate economic prices for the construction and maintenance activities, because the vehicle operating costs which are Project benefits will be expressed in economic terms. As economic costs are usually lower than financial ones, failure to do so will negatively impact the economic feasibility of the Project. The economic pricing factors are determined as follows for labor, materials and others.

Table 3.3.1 Assumptions for Conversion Factor to Economic Cost

Major Items	CF	Remarks
Fuel/ Oil	0.95	5% of the price is assumed as fuel tax for gasoline and diesel.
Unskilled labor	0.41	Extracted from the VOC model of ANE and calculated from the production capacity of agricultural goods against the opportunity wage of unskilled labor.
Imported materials	0.84	According to the rate of weighed average import duty on the imported products
Machine and skilled labor	1.00	Due to the scarcity of these items in Mozambique.
Tax and license	0.00	They are just financially transferred to the government.
House compensation (or land acquisition cost)	1.00	It is assumed that land within the right-of -way has potential to be productive so that resettlement accrues the cost of losing such potentials and the price of house compensation reflects such loss.

Source: JICA Study Team

a. Construction Materials

The economic pricing for materials was based on the removal of taxes and import duties from the financial prices. The principal material items in civil works on roads are asphalt, gravel, structural steel, culverts and cement. Asphalt is imported, likely from the Republic of South Africa, and cement and gravel are produced locally. Financial cost for cement, structural steel and culverts includes the relevant taxes. As materials are fairly common in the Project area, haulage is considered as included in the costs of the equipment portion.

The factor for material is a weighted average of the material types used in each intervention. Factors to convert to the economic prices for material are tabulated in Table 3.3.2.

b. Construction Costs

The financial total costs are also broken down into labor, materials and plant weighted by the economic pricing factors to create the corresponding economic costs.

To the total of direct financial costs are added contingencies, supervision service fee, IVA, and a reserve for compensation. However, IVA does not enter into the economic costs, since IVA, being a tax, is a transfer payment. Compensation cost is a wish in economic terms, as it compensates people for the economic value of the returns to the land or other properties that are appropriated for use in the Project. In this Study, the compensation is included in the economic cost for the Project.

The economic prices for surfacing which include asphalt seal and cement stabilized base were estimated by a weighted average of the economic factors for the pavement with bitumen and gravel.

0.12

0.00

0.05

0.75

c. Maintenance Costs

To calculate the maintenance costs used in the HDM-4 analysis, economic costs are used for the comparison of alternatives. As explained above, the direct unit costs of every maintenance activity such as pothole filling, seals etc. to be input to the HDM-4 model must be broken down by percentages into their basic components, such as labor, materials and equipment.

Each percentage is weighted by its economic pricing factor, then added together to obtain the conversion factor of the activity. The results are shown in Table 3.3.2 below.

Construction Materials Construction Works Maintenance Works Component CF (B) A x B $A \times B$ % (A) A x B % (A) % (A) **Construction Materials** 0.86 20% 0.17 15% 0.13 Land 20% 1.00 0.20 Machine (Rent) 35% 1.00 0.35 30% 0.30 20% 0.20 Fuel/Oil 0.95 0.10 0.05 5% 0.05 10% 5% Skilled Labor 5% 1.00 0.05 10% 0.10 0.20 20%

0.06

0.00

0.15

0.86

0.41

0.00

0.84

1.00

Table 3.3.2 Conversion Factors for the Works

0.04

0.00

0.08

0.05

0.84

30%

5%

5%

100%

10%

5%

10%

100%

5%

Source: JICA Study Team

Unskilled Labor

Imported Materials

License/Tax

Others

Total

3.4 Main Economic Analysis Components

3.4.1 Road Scenarios "Without" and "With" Project

15%

5%

15%

100%

For the calculation of economic value of the Study Road, two cases had to be prepared; one "with" and the other "without the road improvements."

The reference situation, "without project" scenario, considers the continuation of the existing situation, whereby the normal traffic continues to use the existing earth road, maintained as such, including routine and periodic maintenance. Accordingly, it is assumed that maintenance would provide average roughness conditions of the International Roughness Index (IRI) during the dry season and the wet season.

For the "without" Project case, traffic volumes would be the result of the current phase of the project, which would provide an outlet for the normal traffic flow of goods and passengers in the Project road section.

Mainly due to software input constraints, the "with" project situation, assumes that the existing road is surfaced during the construction period and that the routine and periodic maintenance would provide an improved average roughness of IRI during

[&]quot;Without project" scenario

[&]quot;With project" scenario

the analysis period of the road facility. Benefits related to generated and diverted traffic apply in this case, in addition to those of the normal traffic.

Following table shows possible cases of "with" and "without" to be compared for the Project evaluation.

Table 3.4.1 Alternative Cases for "With" and "Without"

		Road Section		Border	Railway Section			Port
Cases	Lichinga- Mandimba	Mandimba- Cuamba	Nampula- Cuamba	OSBP	Nacala- Cuamba- Entrelagos	Cuamba- Lichinga	Malawi	Nacala
Without Case	As it is	As it is	As it is	As it is	As it is	As it is	As it is	As it is
With Case	Intervention	Intervention	Intervention	Intervention	As it is	As it is	As it is	As it is

Source: Study Team

For the analysis, careful attention will be paid to the period when the passability is disrupted by a highly deteriorated road condition (wet season). In this case, vehicles will find alternatives routes or use alternative paths along the existing road that facilitate the passage, resulting in higher transport costs due to change of travel distance, road roughness, and/or driving speeds.

According to the World Bank on 15 separate occasions over the past 25 years Mozambique has been highly vulnerable to changes in rainfall patterns which have caused severe droughts and severe flooding, both of which have resulted in significant reductions in agricultural production. Additionally, distance to the road or access or the lack thereof has further been a disincentive to smallholder agricultural producers by contributing to the high cost of production and placing downward pressure on margins. Similarly, passability or the inability to pass through a section of the road due to a bridge being out, a washed out road during the rainy season, or vegetation encroachment during the dry season limits passage by up to approximately 160 days per year.

3.4.2 Comparison of Pavement Option

Another major concern regarding the economic analysis in this report is to identify the optimum paving method for the Project road, through a comparison of the DBST option, Gravel option and Asphalt option. Technical advantages or disadvantages are studied in the previous chapter and in this chapter, comparative analysis from the viewpoint of national economy is conducted.

3.4.3 Economic Benefit

The economic road user costs to be considered in this Study are vehicle operating costs and passenger travel time costs which are the most significant economic costs in the economic appraisal of road improvements. In developing countries with low income levels, passenger travel time costs are a less important component of road user costs than vehicle operating costs.

All existing and future road users will benefit from the road improvements as journey times and vehicle operating costs will reduce. As between 60 to 80% of the

traffic on the national roads consists of goods vehicles, transport operators will directly benefit the most. It is expected that these savings, accruing to the several hundred trucks using the road every day, will result in reductions in prices of the goods being transported as savings in fuel and other costs are passed on.

It is also expected that bus operations will become more efficient and that public transport provision will improve for persons living along the Nacala Corridor. This may increase opportunities for the population living in the road corridors to access health and educational facilities more easily. Road traffic accidents may decrease on improved road sections, although this may well be counter-balanced by increased accidents due to the opportunity to travel faster than before.

(1) VOC Saving Benefit

Vehicle operating costs are made up of the following cost components:

- Vehicle acquisition costs (for depreciation costs)
- Tire costs
- Gasoline and diesel costs
- Lubricant costs
- Crew costs
- Maintenance labor costs
- Spare parts (their consumption is analyzed within the model)
- Interest
- Overhead costs (these are sometimes omitted from economic costs on the grounds that their marginal cost is zero)

The price and cost information is supplemented by information on vehicle utilization and life. The consumption of spare parts is calculated internally by a submodel within the HDM-4 vehicle operating cost module, and it is related directly to the vehicle acquisition cost, utilization and road character and condition. Also, non-motorized traffic is included in the traffic volume forecasted.

Oil cost has changed drastically according to the current world economic downturn. As the pricing date was assumed as October 2009, the Study Team adopted US\$0.72, and US\$0.62 per litter for the economic prices of gasoline and diesel oil respectively, based on the current taxation system in Mozambique. Table 3.4.2 shows the major inputs to the HDM-4 model related to the VOC estimation.

Table 3.4.2 Major Inputs to the HDM-4 Model

(Unit: US\$)

Vehicle Type \ Cost Item	New Car Cost	Fuel Cost per litter	Lubricant Cost / litter	New Tire Cost	Mechanic Cost/hour	Crew Cost per hour	Passenger Time Value	Interest Rate
1. Medium Passenger Car	23,682	0.72	2.710	46	5.88	0.94	1.24	12%
2. Light Goods Vehicle	20,087	0.72	2.710	63	5.88	2.21	0.00	12%
3. Minibus and Light Bus	14,700	0.72	2.710	63	5.88	3.44	1.24	12%
4. Medium/Large Bus	66,382	0.62	2.710	120	5.88	3.94	1.24	12%
5. Medium Goods Vehicle	61,208	0.62	2.710	123	5.88	3.97	0.00	12%
6. Heavy Goods Vehicle	105,995	0.62	2.710	233	5.88	4.81	0.00	12%
7. Very Heavy Goods Vehicle	126,449	0.62	2.710	233	5.88	4.81	0.00	12%
8. Non-motorized (Bicycle)	85	0.00	0	10	0.00	0.30	0.00	12%

Source: Road User Cost (ANE, 2006), Detailed Design for Nampula-Cuamba Road Development (partly updated)

(2) Time Saving Benefit

The key elements are the difference in the treatment of work and non-work time and the distinction has to be based on information on passenger trip purpose. Information on passenger trip purpose has to be collected in roadside surveys where vehicles are stopped and drivers and passengers are interviewed.

In the past in Mozambique, such surveys have only been undertaken as part of the Study Teams' origin-destination surveys, and where such surveys have not been considered to be necessary, no passenger trip purpose information has been collected. Whereas origin-destination information is only required where there are potential traffic diversion aspects to be considered, passenger trip purpose and vehicle occupancy information is always required. This has not been widely recognized and as a result there is a considerable shortage of passenger trip purpose information in Mozambique and many other developing countries.

The time saving benefit was calculated based on the time value of passengers, drivers and mechanics, which are input to the HDM-4 model. The time value per hour was estimated based on an average wage level statistics by the Ministry of Labor (DNPET 2008). Such time saving benefit accrued from the normal traffic, generated traffic, diverted traffic and non-motorized traffic was calculated by the HDM-4 model.

(3) Benefit from Diverted Traffic

Two types of traffic diversion will be estimated. One is the diverted traffic from railway, since there is a railway line along the Nacala Corridor; the other is from other roads, which is caused by the transport route change from the existing to the newly paved road mainly because of decreased travel time.

The diverted traffic from the railway with regard to passengers is estimated in the following steps.

- The Study Team conducted interview surveys with passengers regarding the railway service.

- Travel time and cost of the railway and bus services along the Project road are studied. Based on the travel cost per hour examination, the Study Team estimates the number of passengers, diverting from railway to road.
- This number is converted to number of vehicles per day.

Based on a supplemental survey of trucking companies conducted by the Study Team, freight tariff and transport time are examined together with traffic volume of road and railway. Such diverted traffic from railway is incorporated as the normal traffic in HDM-4 computation.

Another diversion to be examined and estimated by the Study Team is the increase in traffic volume caused by "travel or transport route change". The travel route change happens when new road opens and existing route takes long time to travel compared to the newly paved road because of its longer road length.

According to the Study, Beira Port is a major port for transporting cargoes to/from the sea for the northern area of Lilongwe of Malawi at the moment. After the Nacala Corridor is improved and transport time reduced, the Study Team considered that Nacala Port would become the major port for the area, and transport route would change to the Nacala Corridor, because transport time becomes shorter compared to the exiting route from Beira.

Actual diverted traffic volume in this section is not forecasted eventually.

- (4) Benefit from Generated Traffic
- a. Agriculture and Agricultural Industries

The traffic projections of agricultural commodities assumed that production will increase at the same level as the population growth. This is because the capital/labor ratio would remain the same (one man/one hoe). New techniques could be made available such as the use of bicycles to increase productivity. However, if there is not better access to markets, there will be no incentive to implement these techniques for increasing production. In the "with" project case, on the contrary, it is extremely likely that the Project will provide incentives for additional agricultural output by increasing access to markets.

As Mozambique is largely an agriculture-based economy, the major indirect beneficiary of the road improvements will be farmers who will benefit with lower prices of inputs and better access to markets in northern and southern Mozambique and neighboring countries. Niassa, which suffers from very poor access to external markets, will benefit particularly from improvement to the N13 corridor.

b. Mineral Extraction Industry

There is potential for mineral extraction (including oil) in northern Mozambique. An improved national road network will contribute to the development of this industry through facilitating the delivery of inputs and outputs.

c. Tourism Industry

There is an existing tourism industry in Niassa based on its excellent natural reserves and exotic lake. Accessibility is so poor to this area that most tourists fly

by airplane; but the improved national road access should provide the opportunity for cheaper road travel for tourists to access this area and enlarge the potential market. Cheaper inputs will also benefit these industries. In particular, the improvement of N13 to Niassa may provide the opportunity to stimulate tourism opportunities on Lake Malawi.

d. Forest Industry

The province of Niassa has forest reserves in Cuamba, Mandimba, Metarica, Nipepe and Marrupa Districts with a predominance of valuable species. These forests are presently not exploited for lack of transport. Forestry represents only 2% of provincial GDP. Forestry has the potential to grow rapidly once the existing road is upgraded. The exploitation of these lots should start as soon as the road becomes passable by railway or heavy trucks up to the port of Nacala. Traditionally, timber is hauled by trucks from the areas of exploitation to the sawmills. There are currently no sawmills in the area of influence, so the wood should be taken to Nacala for export as logs or raw timber.

e. Other Industries

Other products included in the basic consumption category are processed foods such as cooking oil, salt, sugar, powdered milk, beer, soft drinks, dry goods and construction materials that are brought in from outside the area of influence. The industrial sector barely exists in Niassa except for a small industrial park in Lichinga with small units for milling cereals, producing wooden furniture, pottery, and soap etc. that are supplied to the urban population and areas close to Lichinga. It is not expected that the construction of the proposed road will substantially develop the sector, as the goods can be brought in more cheaply with the road, thus negatively impacting local production.

3.4.4 Economic Costs

The cost to improve, maintain and operate the road was developed on a U.S. dollar per kilometer basis. Investment and maintenance cost data were obtained for alternative road improvements for both paved and unpaved sections. The road improvements are multiyear investments that were allocated over a time period of three years, and the road maintenance costs include routine and periodic maintenance costs over the year life of the Project for each type of road works performed. Source data for determining road improvement, maintenance and operating costs were obtained from the cost estimation conducted by the Team.

1) Investment Cost

Detailed Project cost is calculated from the cost estimation in the previous chapter. The conversion of financial cost to economic cost is carried out by applying the different conversion factors to respective cost items. It is briefly explained that financial or market price contains several price disturbances such as tax or subsidies which distort the function of the price qualifying the real value of items. In order to measure the real loss of the value, i.e. economic cost, such distortion should be subtracted from the financial price of costs. Conversion factors calculated as above are applied in the HDM-4 computation.

The calculation of economic and financial costs for the different project alternatives is presented in Table 3.4.3. These include upgrading of the road from earth to seal and construction of bridges. The inclusion of these costs in the Project alternatives in detail is presented in the previous chapter.

Table 3.4.3 Investment Cost for Pavement Comparison (Financial Cost)

Alternatives	Length	Constructi	Disb	ursement	t (Thous.	Reinvestment Cost	Residual Value		
	(km)	US\$	US\$/km	2010	2010 2011 2012 2013		US\$	%	
DBTS Option	148	160,479,281	1,084,319	9,629	42,595	42,595	26,031	14,128,742	73%
Asphalt Option	148	224,400,943	1,516,223	13,464	80,784	80,784	49,368	69,132,980	73%
Gravel Option	148	81,775,635	552,538	4,907	29,439	29,439	17,991	1	-

Note: Tax (IVA) is excluded in the cost.

Source: Study Team

Re-investment Cost

Re-investment cost was appropriated in 2029, when useful life (considered as 15 yeas) of the asphalt pavement and seals would expire in the case of the DBST and asphalt pavement option. The re-investment cost is summarized in Table 3.4.3.

Residual value

The invested resources to the Project have economic value to the economy until the useful life expires. In this Project, useful life of the asphalt pavement and seals is assumed as 15 years. Analysis period of the project is assumed as 20 years after its operation has started until 2033. Then the value of the re-investment remains for 11 years, or 73 % of the re-investment cost in 2029, when the analysis period ends. As a result, the residual value equivalent percentage of the economic investment cost will be estimated at the last year of the analysis as a negative cost.

(2) Operation & Maintenance Cost

The operation and maintenance cost was converted into economic cost the same as the investment cost. Table 3.4.4 shows the annual cost for the DBST, Asphalt, Gravel and Earth (without project case) roads, respectively in terms of economic cost. Regarding the gravel option, the maintenance and operation cost was assumed as an average of the DBST and earth costs.

In HDM-4 calculation, the operation and maintenance cost is indicated in the "Special cost" of Road Agency Cost, both the routine and periodic maintenance cost combined on the annual basis.

Table 3.4.4 Annual and Periodic Operation and Maintenance Cost

(DBST/ Asphalt/ Gravel/ Earth Option: Financial/Economic Cost)

Financial/Economic	Financial Cost			Economic Cost				
Type of Maintenance	DBST	Asphalt	Gravel	Earth	DBST	Asphalt	Gravel	Earth
Distance in km	148.0	148.0	148.0	148.0	148.0	148.0	148.0	148.0
Annual Routine Maintenance/km	\$1,344	\$1,344	\$1,765	\$2,186	\$1,007	\$1,007	\$1,323	\$1,638
Annual Routine Maintenance	\$198,962	\$198,962	\$261,273	\$323,584	\$149,092	\$149,092	\$195,785	\$242,478
Periodic Maintenance/km	\$6,844	\$6,844	\$7,088	\$7,333	\$5,128	\$5,128	\$5,312	\$5,495
Periodic Maintenance	\$1,012,897	\$1,012,897	\$1,049,072	\$1,085,247	\$759,014	\$759,014	\$786,122	\$813,230
Interval of Periodic (Years)	5	10	4	4	5	10	4	4

Source: "RSS" and Study Team

3.5 Result of Analysis

3.5.1 Economic Ratio for Alternatives

Output data worked out as a result of HDM-4 analysis for the Project are tabulated in Table 3.5.1.

Table 3.5.1 Result of Economic Analysis for Pavement Option

Design Option for comparison	Economic Ratio			
Pavement Type	NPV (US\$ Mil.)	B/C	EIRR	
DBST	69.7	1.6	17.7%	
Asphalt	-7.2	1.0	11.6%	
Gravel	-104.1	-0.8	1	
DBST (with revised cost)	73.1	1.7	18.1%	

Note: In case the traffic volume of non-motorized traffic (bicycles) is not counted in DBST option (with revised cost), EIRR is reduced to 16.9%.

Source: Study Team

From the results shown in Table 3.5.1 above, the gravel option exhibited lower values in the B/C, Net Present Value and EIRR (no value). Rather, the gravel option is not suitable for such higher volume of AADT forecasted. DBST option with Lichinga-Mandimba intervention showed satisfactory values among all.

The EIRR hurdle rate used to determine if a road project is economically feasible is 12 percent in general, over the estimated twenty-year period after intervention. The decision rule applied in conducting the economic analysis was to recommend to ANE the road project alternative that equaled or exceeded the 12 percent hurdle rate. The Study Team considered no other factors that influence their investment decision, based on local conditions and information developed during this Study, as an alternative to strict adherence to the EIRR, NPV and B/C.

Project cost for DBST is revised after more detailed calculation for the sub-base of the pavement. Then, DBST option (with revised cost) scores best with a normal level as the upgrade-to-paved intervention and its economic viability is acceptable, with an EIRR of over 12% in the selected alternative. Based on this result, the Project is evaluated as one of the prioritized projects to be implemented in the

nation. Of particular importance is this primary road and bringing it to an all-weather passable condition.

3.5.2 Other Benefits for the Regional Road Network of the Comprehensive Approach

In the developed countries including Japan, the comprehensive method for economic analysis is applied focusing on the network benefit/loss including the targeted project section. Economic figures are derived from the difference of overall travel distance shortened by approximately 106km in the international corridor, travel time and VOC, in case the whole network in the Study area including Beira Corridor can be considered. The result of calculation for the network improves the B/C value of the Project intervention eventually.

Table 3.5.2 Comprehensive Economic Effects on the Road Network

Target for Economic Benefit/Loss		NPV @12% (Mil. US\$)			
		Cost	B/C		
Project Road (DBST with Lichinga-Mandimba intervention)	179.2	106.0	1.7		
Additional benefits in the network	65.2	-	-		
Comprehensive benefit/loss	244.4	106.0	2.3		

Source: Study Team

3.5.3 Sensitivity Analysis of Economic Analysis Result

In order to confirm the above favorite result against future uncertainties, sensitivity analysis is conducted for the best alternative case DBST option with Lichinga-Mandimba intervention that scores the highest EIRR. This is firstly done by changing the value of benefit and cost by -20% and +20% respectively and both combined as the worst case. When the EIRR is less than the discount rate of 12%, the project is thought to hold a risky aspect.

These are critical factors to watch, though there is more or less same sensitivity to drop in traffic levels and/or increase in investment costs. These situations are most unlikely as traffic growth rate on the network has been an average of 7.9% per annum in Niassa Province between 1995 and 2004. In the analysis, investment costs are based on the detailed engineering design for Nampula-Cuamba Road Improvement, the current unit rates of recently let contracts and the estimated cost of the evaluated lowest bids. And above those, a physical contingency provision of 10.0% has been taken into account, assuming such increase in capital costs unlikely.

As shown in Table 3.5.3, the feasibility of the project is secured even in the worst case.

Table 3.5.3 Result of Sensitivity Analysis (EIRR)

Case	Assumptions	EIRR
Base	Upgrade to paved road with DBST	18.1%
1	Decrease in traffic volume of -20%	15.4%
2	Increase in investment costs of +20%	15.6%
3	Both combined of above as the worst case	13.6%

Source: Study Team

Further, effects of oil price changes against the construction cost, which is one of the matters of most concern, were also examined. As a result, the oil price raise by 50% affects 5% increase in the total construction cost. The magnitude was the same in case of the oil price drop. The changes are covered sufficiently within the sensitivity analysis range above.

Table 3.5.4 Elasticity of Oil Price Change to Construction Cost

Price	Increase	Decrease
Oil Price	50%	50%
Construction Cost	105%	95%

3.5.4 Switch Values for Investment Cost and Traffic

In addition to the sensitivity tests above, "switch values" for the cost and benefit which would result in an EIRR of 12 percent threshold opportunity cost of capital for Mozambique have been identified as part of the economic viability analysis.

Switch values on the cost and benefit were calculated for the DBST option as the base case. It also shows satisfactory values as shown below.

Table 3.5.5 Switch Values for DBST Option

	Base Case	Case that yields NPV=0			
NPV @12% (Mil. S\$)	Value	Value	Factor	Change	
Cost	106.0	179.2	1.69	69.1%	
Benefit	179.2	106.0	0.41	-40.8%	

In the table above, near to 70% increase in construction costs indicated that the Project economic viability would be threatened, while on the other hand, if the user cost savings drop by 40%, the Project viability will be affected. These situations are most unlikely as discussed in the sensitivity analysis.

3.5.5 Comparison with Other Historical Economic Analysis used by RED for the Project

In the Road Sector Strategy (RSS) prepared in December 2005, N13 Cuamba - Lichinga was categorized as a national roads project under funding. Subsequently, the Millennium Challenge Corporation (MCC) conducted the field survey in the northern area to prepare the Mozambique Road Sector Program Development (Interim Report) on 23 October 2006. The Study is a part of larger program proposed by the Government of Mozambique (GoM), in coordination with the Millennium Challenge Account – Mozambique (MCA-MZ), to MCC. The program's objectives are to promote economic growth and reduce the poverty level in Mozambique's four northern provinces: Cabo Delgado, Niassa, Nampula, and Zambezia.

Calculated rates of return were well below the MCC economic feasibility threshold rate of 8.76% and the two road sections were accordingly not recommended for inclusion in MCC's list of roads for detailed feasibility study and potential implementation.

Above calculation was executed using another alternative model "Roads Economic Decision Model (RED)," that is a simplified model developed by the World Bank for use in the economic appraisal of lower traffic volume road projects. Under the same assumptions calculated by RED for the limited period of 20 years including construction period and operation period (17 years instead of 20 years in this Study), the revised IRR for DBST option with Lichinga-Mandimba intervention is sufficiently higher than the economic feasibility threshold rate.

Assumption Period **JICA** MCC **Evaluation tool** HDM-4 RED US\$0.88mil/km US\$0.34mil/km Unit construction cost (Economic) _ Traffic forecast Normal, Diverted, Generated Normal International Roughness Index (IRI) 12 14 Conversion Factor (CF) 0.84 1.0 Discount Rate 12.0% 8.76% 24 years 18.1% **EIRR** 20 years 15.6% 5.6%

Table 3.5.6 Comparison with Historical RED Analysis

3.6 Financial Analysis for the Project

In the "Programa Integrado do Sector de Estradas (PRISE 2009-2011)," a sector-wide approach is established for the road sector that incorporates a coherent Mozambican owned and led roads program in a comprehensive and coordinated manner. Under PRISE 2009-2011, sector planning, finance, implementation, monitoring and evaluation are fully integrated.

The program was developed to be in line with the priorities and objectives of the Government of Mozambique Road Sector Policy, PARPA, Medium Term Expenditure Framework (MTEF), and Road Sector Strategy (RSS). PRISE will enable the GoM to guide the road sector and monitor its performance to ensure that it supports the government's main objectives of poverty reduction and balanced economic development. It will also facilitate managing sector expenditures and intersect oral balance by bringing all activities on-budget.

Under PRISE, all funding for the road sector supports a single sector policy and expenditure programme under government leadership while adopting common approaches across the sector, eventually progressing towards full reliance on GoM procedures to disburse and account for all funds.

The sector-wide approach under PRISE will foster stronger country ownership and leadership of the road sector. It will also facilitate coordinated and open policy dialogue for the entire sector, involving the key GoM agents (MOPH, ANE, Road Fund, and various stakeholders) and the sector's financial partners, observing the government policy of decentralization.

Because PRISE entails a comprehensive planning framework that brings all sector activities under one umbrella, it will lead to a more rational resource allocation, both inter-sectional (the national budget and expenditure frameworks) and within the road sector, based on applications of GoM articulated priorities ranked by Multi

Criteria Analysis (MCA.) The results of the integrated planning approach are elaborated in the Road Sector Strategy, the five-year plan, and the rolling three-year PRISE Implementation Plan. Annual contract programs are then established between the Government and the implementing agencies (ANE and the Road Fund).

Among international donors, it appears now that the implementation of project for Cuamba-Mandimba in particular will be included under Enhanced Private Sector Assistance (EPSA) funding, probably beginning in 2011 and extending over three years.

EPSA for Africa was launched by the government of Japan in 2005 as a comprehensive initiative to support African private sector development. It sets forth that Japan International Cooperation Agency (JICA) will provide ODA loans, in cooperation with the African Development Bank (AfDB) which is a regional development bank, totaling up to USD\$1 billion over the period of five years. On the ground of "the Guidelines for Implementation" to promote co-financing with the AfDB, providing financial assistance for African member countries with medium and long-term loans, equity participation, guarantee, and technical assistance, JICA has cooperative ties which include co-financing social and economic infrastructure development projects in Africa.

The Nacala Road Corridor project to be implemented under EPSA program, comprises 1,033km of road works and two one-stop border posts between Mozambique and Malawi and the other between Malawi and Zambia. Phase one comprises 361 km or 35% of the road works in Mozambique and Malawi. Phase II comprises 360 km or 34.9% of the road works in Zambia while Phase III comprises 312 km or 30.1% of the road works for the section Cuamba-Mandimba in Mozambique and Malawi and two one-stop border posts between Mozambique and Malawi and Malawi and Zambia. All the phases include design review, pre-contract services and supervision of the civil works, road safety, HIV/AIDS prevention and awareness, compensation and resettlement and audit.

The following figure and tables are the relevant budget allocation by the government and ANE for the road sector and particular projects to be implemented.

Figure 3.6.1 Government Budget Allocation (2005-2010)

Source: Ministry of Transport and Communications (MTC)

Table 3.6.1 Budget Allocation for Road and Bridge Management Plan (PRISE 2009 - 2011)

(mil. USD)

Designation	2009	2010	2011
Administrative and Support Expense	21.1	21.8	22.4
Technical Capacity and Sector Study	6.2	5.2	6.6
Technical Assistance	2.3	3	2.7
Consulting Service and Study	2.9	1.2	2.9
Logistics	0.6	0.6	0.6
Private Sector Support	0.4	0.4	0.4
Road and Bridge Maintenance	112.4	142.7	155.7
Urban Road Maintenance	7.5	8.1	8.7
District Road Maintenance	5	5.7	6.3
Maintenance Plan	8.3	8.5	8.8
Emergency Works	8.6	9.2	9.9
Maintenance of Unpaved Roads	39.4	43.4	47.7
Maintenance of Paved Roads	43.6	67.9	74.3
Routine Maintenance of Paved Roads	16.3	16.8	17.3
Periodic Maintenance of Paved Roads	26.1	50	56
Engineering Service: Preparation of New Projects	1.2	1.1	1
Construction and Rehabilitation of Bridges	72.3	46.3	46
Construction of Bridges	53.5	26	24.7
Rehabilitation of Bridges	18.8	19.7	20.7
Preparation of Bridge Projects		0.6	0.6
Rehabilitation and Upgrading of Roads	147.9	185	205.4
Rehabilitation and Upgrading of Regional Roads	24.6	38	54
Rehabilitation and Upgrading of National Roads	121.7	144	148.3
Preparation of Road Projects	1.6	3	3.1
Road Safety	4.1	7	7.4
Road Infrastructure Safety	1.6	2.5	2.6
Cargo Control	2.5	4.5	4.8
Grand Total	364	408.1	443.5

Source: ANE

Table 3.6.2 PRISE 2009 - 2011: Projects for Upgrading and Rehabilitation

Code	Name of Section	Km	Province	Intervention	Est. Value (m USD)	Period	poi	压	Finance Resource	ce
	Projects Financed					From	To	FS	DD	Const.
52104	N7 Vanduzi - Changara	154	Tete	Rehab.	\$46.00	2007	2009	GoM/ADB	GoM/ADB	GoM/ADB
52117	N1 Namacurra - Nampevo (Lote 1)	152	Zambezia	Upgrade	\$21.20	2005	2009	EU	EU	EU
52117	N1 Nampevo - Alto Molocue (Lote 2)	117	Zambezia	Upgrade	\$7.10	2005	2009	EU	EU	EU
522012	N14 Lote B Marrupa - Ruaca	87	Niassa	Upgrade	\$40.70	2009	2011	Asdi	Asdi	Asdi
522013	N14 Lote C Lichinga - Litunde	29	Niassa	Upgrade	\$31.40	2009	2011	ADB/JICA	ADB/JICA	ADB/JICA
522011	N14 Lote A Montepuez - Ruaca	136	C Delgado	Upgrade	\$63.60	2010	2011	ADB/JICA	ADB/JICA	ADB/JICA
52101	N1 Maputo (Jardim - Benfica)	7	Maputo	Rehab.	\$22.90	2009	2011	IDA	IDA	IDA
52102	\dashv	96	Gaza	Rehab.	\$52.00	2009	2011	IDA	IDA	IDA
52103		59	Inhambane	Rehab.	\$39.70	2009	2011	IDA	IDA	GOP
52205	N11 Mocuba - Milange	171	Zambezia	Upgrade	\$91.10	2009	2012	EU	EU	EU
51106		130	Tete	Upgrade	\$40.00	2008	2011		GoM	GoM
52204	N103 Gurue - Magige	35	Zambezia	Upgrade	\$12.00	2009	2010	IDB	IDB	IDB
51105		106	Gaza	Rehab.	\$20.00	2009	2011	OPEC	OPEC	OPEC
52105	N1 Rio Ligonha - Nampula	102	Nampula	Rehab.	\$38.00	2010	2012	MCC	MCC	MCC
52106	N1 Namalo - Namapa (Rio Lurio	148	Nampula	Rehab.	\$50.00	2010	2012	MCC	MCC	MCC
52108	_	74	C Delgado	Rehab.	\$24.00	2010	2012	MCC	MCC	MCC
52109	\vdash	167	Zambezia	Rehab.	\$60.00	2010	2012	MCC	MCC	MCC
52203	N13 Nampula - Cuamba	341	Niassa/Nampula	Upgrade	\$2,311.80	2010	2012	JICA	ЛСА	ADB/JICA
	Sub-total	2.149			\$891.50					
	Projects Committed									
52202	\vdash	160	Niassa	Uperade	00'96\$	2011	2014	JICA		
52202		149	Niassa	Upgrade	\$89.00	2012	2015	JICA		
	Sub-total	309			\$185.00					
	Prioritized Projects to be Financed									
TBA	N103 R657 Magige - Cuamba	85	Zambezia	Upgrade	\$51.00	2012	2014			
52208	R1251. N381 Negomane - Mueda	187	C Delgado	Upgrade	\$112.00	2011	2013	GoM	GoM	
TBA	N104. R683. R680. Nampula - Nameti - Moma	181	Nampula	Upgrade	\$72.00	2011	2013	KCI	EXIM	EXIM
TBA	\dashv	182	Maputo	Upgrade	\$200.00	2010	2012	PPP	PPP	PPP
52110	\dashv	128	Manica	Rehab.	\$21.70	2011	2014	EU	EU	
52110	N6 Inchope - Machipanda	153	Manica	Rehab.	\$26.00	2013	2016	EU	EU	
	Sub-total	916			\$482.70					
	Additional Projects to be Financed									
TBA	N1: Pambara - Rio Save	122	Inhambane	Rehab.	\$61.00	2011	2012	IDA	IDA	
TBA	N322: Cambulatsitsi - Mutara - Chire	252	Tete	Upgrade	\$150.90	2014	2017	ADB	ADB	
52107	N380: Macomia - Oasse	102	C Delgado	Rehab.	\$40.80	2010	2012	GoM	GoM	
TBA	N260: Espungabera - Sussundenga - Chimoio	235	Manica	Rehab.	\$23.50	2011	2013			
TBA	N324: R Ligonha - Boila	128	Nampula	Rehab.	\$12.80	2013	2014			
TBA	N360: Cuamba - Marrupa	236	Niassa	Rehab.	\$23.60	2013	2015			
TBA	N221: Macarretane - Chicualacuala	321	Gaza	Rehab.	\$32.10	2012	2015			
TBA	N222: Pafuri - Mapinhanhe	476	Gaza/I'bane	Rehab.	\$47.60	2012	2016			
TBA	R689: Monapo - Liupo - Angoche	150	Nampula	Rehab.	\$15.00	2013	2015			
TBA	R650. R658. Milange- Molubo - Magige	164	Zambezia	Rehab.	\$16.40	2012	2013			
TBA	N282. Dondo - Inhaminga	188	Sofala	Upgrade	\$75.20	2013	2016			
TBA	N320. Quelimane - Chinde	93	Zambezia	Rehab.	\$18.60	2013	2015			
	Sub-total	2,467			\$517.50					
	TOTAL	6.841			\$2,968.20					

Source: ANE

In the program above cited, total unpaved road maintenance is budgeted at \$130.5 million over three years, an average of about \$4 million per province. Unpaved road maintenance is fully funded, all of it through the Road Fund collected from fuel levy exclusively. The unpaved roads maintenance budget is divided into the routine, periodic and passability maintenance; however, provincial engineers are to follow the unpaved roads maintenance strategy which prioritizes passability over riding quality. Following is the latest unpaved road maintenance work contracted for outsourcing in Niassa Province.

Table 3.6.3 Maintenance of Unpaved roads in Niassa Province

Route No.	Section	Distance (Km)	Fund	Period	Amount (Thous.Mt)
R1207	Lumbu-Chala	43	Road Fund	Jan 09-Dec 10	1,924/2,039
R1212	Mandinba-Amaramiza	45	Road Fund	Jan 09-Dec 10	4,272
N13	Cuamba-Missisi	75	Road Fund	Jan 09-Dec 10	9,319
N13	Missisi-Ngauma	75	Road Fund	Jan 09-Dec 10	4,089
R730	Congerende-Mitange	10	Road Fund	Jan 09-Dec 10	2,743

Source: ANE signboards

3.7 Conclusions and Recommendations

a. Economic Viability of the Project

According to HDM-4 calculation conducted as above, the DBST option is the most feasible among several alternatives.

The Project scores an average level as an upgrade-to-paved intervention and its economic viability is acceptable, with an EIRR of over 12% for the optimum intervention among alternatives. Based on this result, the Project is evaluated as one of the prioritized projects to be implemented in the nation. The particular importance of this primary road and of bringing it to all-weather passable condition is well established.

The Study Team concludes that the road upgrading Project is economically feasible in terms of national economy of Mozambique.

Figure 3.7.1 Summary of EIRR

Source: Study Team

b. Financial source for the implementation of the Project

In PRISE 2009-2011, the Project cost for implementation is estimated as US\$96 million for Cuamba-Mandimba and US\$89million for Mandimba-Lichinga. However, this Study proposes that additional project cost will be required.

Therefore, further discussions with the donors who may commit the funding for implementation, will be expected for the subsequent detailed design works and construction works based on the cost estimation in this Study.

c. Post-Construction Management and Maintenance

ANE, through provincial delegation, ensures the management and maintenance of all classified roads including the road sections proposed under this report. The Road Fund (FE) is responsible for financing these activities. The improvement of the maintenance performance is critical for post construction sustainability.

Since maintenance will largely be implemented by the provincial delegation of ANE, the establishment of functional offices will be crucial for the sustainability of the investments. Therefore, it is important to support ANE's re-organization and capacity strengthening especially at provincial level. The funding and implementation of technical assistance, on-the-job training, infrastructure and logistical support activities will be effective measures to ensure sustainability.

Attachments to this Chapter

- 1.HDM Input for the Existing Road Condition (Lichinga -Mandimba)
- 2.HDM Input for Vehicle Characteristics
- 3.HDM Output for Economic Indicators of Alternatives

Road Sections - Section per Page

Study Name: LICHINGA-MANDIMBA

Run Date: 30-10-2009

Definition					
Section name:	Lichinga-Mandimba	Climate zone:	Lichinga	Shoulder width:	0.00 m
Section ID:	LM	Road class:	Primary or Trunk	Number of lanes:	2
Link name:	LT1	Surface class:	Unsealed	Motorised AADT:	142
Link ID:	LT1	Pavement type:	Gravel	NM AADT:	694
Speed flow type:	Two Lane Standard	Length:	148.00 m	AADT year:	2009
Traffic flow pattern:	Inter-urban	Cway width:	6.00 m	Flow direction:	Two-way
Geometry					
Rise + fall:	56 m/km	Speed limit:	40 km/h		
Avg horiz curvature:	164 deg/km		1,200 m		
Pavement					
Surface material:	Latentic gravel			Compaction method:	Mechanical
Subgrade material:	Clays (inorganic) of me	dium plasticity (CI)		Last gravel year:	2008
Condition					
Condition year:	2008	Gravel thickness:	300 mm	IRÍ:	12.00 m/km
Speed related					
Num rises + falls:	3 no./km	XNMT:	1.00	XMT:	1.00
Superelevation:	3.00 %	XFRI:	1.00	Speed limit enforcement:	1.10
Sigma adral:	0.10 m/s2				
Surface Material Grad	dation				
Max particle size:	21.90 mm	% passing 2.00mm sieve:	51.10 %	% passing 0.075mm sieve:	25.50 %
Plasticity index:	10.10 %	% passing 0.425mm sieve:	77.00 %	W. 10090 (2000)	
Subgrade Material G	radation				
Max particle size:	8.00 mm	% passing 2.00mm sieve:	83.50 %	% passing 0.075mm sieve:	59.00 %
Plasticity index:		% passing 0.425mm sieve:		1,100,000	
Shoulders and NMT L	anes				
Num shoulders:	2	Num NMT lanes:	0	NMT lane surface type :	Bituminous
Separate NMT lanes:	7	W. C.		363	- 11-2-13-13-13-13-13-13-13-13-13-13-13-13-13-
Roughness Model Co	alibration				
Derivation:	Computed/derived	Surface minimum:	2.77 m/km	Subgrade minimum:	2.17 m/km
Surface maximum:	The state of the s	Subgrade maximum:	18.46 m/km	A. Branch Market	
Material Loss Calibra	ition				
Surface loss factor:	1.00	Subgrade loss factor:	1.00	Subgrade traffic induced:	1.00
Surface traffic induced:	1.00	and an interest transfer		and the same of th	

Vehicle Fleet - Economic

Study Name: LICHINGA-MANDIMBA Run Date: 30-10-2009 Currency: To be completed

Motorised Vehicle Types:	Base Type	New	Replace	Fuel Lui (per litre) (per	Lubr. Oil (per litre)	Maint Labour (per br)	Crew Wages (per hr)	Aimual	Annual Interest (%)	Wark Time (per fir)	Passenger Hon-Work (per hr)	Cargo Holding (per hr)
Medium Bus	Medium Bus	66,382	120	0,62		5.88	3.94	0	12.00	1.24	00'0	
Wednum Truck	Medium Truck	61 208	(23	0.62	271	5.88	3.97	0	12 00	000	00.0	
Car	Medium Car	23,682	46	0.72	2.71	5.88	0.94	0	12.00	1.24	00'0	
Small Bus	Mini Bus	14.700	63	0.72	277	5.88	3.44	9	1200	1.24	00.0	
Articulated Truck	Articulated Truck	126,449	233	0.62	2.71	5.88	4.81	0	12.00	00:0	00.0	
Heavy truth	Heavy Truck	105,995	23	0.62	271	5.88	18.4	O.	12.00	000	00.00	
Small Truck	Light Truck	20,087	8	0.62	2.71	5.88	2.21	o	12.00	0.00	00'0	
Non-Motorisad Vehicle Types:	:: 88	Purchase	Crew	Passenger Time Ho	Cargo	Energy Used	Annua					
Name	Basa Iype	COSI	per nr)	(per nr)	(per nr)	٥	-	¢.				
Ultensha	Bicycle	19	030	B.OE	0.00	00.0	12.00	0				

Atemative	Discount Rate: 12.00%. Present Value Agency Costs (RAC)	US Dollar (millions) 12.00%. Value Present Value of Agency Capital Costs (CAP)	increase in Agency Costs (C)	Decrease in User Costs	Benefits (E)	Net Present Value (NPV = B+E-C)	NPV/Cost Ratio (NPV/RAC)	NPVICOSI Ratio (NPVICAP)	Internal Rate of Return (IRR)
Without Project	3,836	0000	0000	0.000	0,000	0000	0,000	0.000	0.000
With Project DBST	113,355	111.346	109,468	175,153	0.000	89 689	0,615	0.622	17.7 (1)
With Project: Asphalt	150.088		156.201	149.974	0.000	-7.228	-0.045	-0.045	11.6(1)
Wilh Project: Gravel	58, (57	56,321	54.271	149.877	0.000	-104.148	-1.791	-1.849	Na Solution
With Project DBST/revised)	109.935		106.049	179 153	0000	73 104	0 665	0.674	181 (1)

Appendix-A Drainage Inventory

	1	ı	1	I		Pov	Size	Slab	Earth	inory o	Inner	Headwall	1	Mandimba∼Lichinga Photos
No.	Sta.	Bridge Name	Structure Type	Material	Pipe Φ (m)	W (m)	H (m)	Thickness (m)	Covering (m)	Length (m)	width (m)	Thickness (m)	Flow Direction	Left Right
1	0+701		Box Culvert	Concrete		1.00	0.90	0.50	0.00	6.85	6.85		L⇒R	
2	1+194	Ngame- I											L⇒R	
3	1+982		Corrugated steel pipe	Concrete	0.80			0.30	0.15	8.20	7.60	0.30	R⇒L	A
4	3+977		Box Culvert	Concrete		1.00	1.00	0.45	0.15	7.70	7.10	0.30	L⇒R	
5	4+493		Box Culvert	Concrete		1.00	1.00	0.40	1.10	13.20	13.20		L⇒R	_
6	4+702		Corrugated steel pipe	Concrete	0.80			0.20	0.20	8.20	7.60	0.30	L⇒R	
7	5+442		Corrugated steel pipe	Concrete	0.80			0.40	0.60	8.50	8.50		L⇒R	
8	5+830		Box Culvert	Concrete		1.00	1.00	0.30	0.20	7.30	7.30		L⇒R	
9	6+382		Box Culvert	Concrete		1.00	1.00	2.10	0.10	7.50	6.90	0.30	L⇒R	
10	6+955		Box Culvert	Concrete		1.00	1.00	0.30	0.30	7.50	6.90	0.30	L⇒R	
11	7+479	Nacalongo											L⇒R	
12	8+61	Namiungu											L⇒R	
13	11+536		Box Culvert	Concrete		1.00	1.00	0.30	0.00	7.00	6.60	0.20	R⇒L	_
14	12+510		Box Culvert	Concrete		1.00	1.00	0.35	0.40	11.20	10.60	0.30	L⇒R	

								Diali	age Inve	entory S	neet (2)				Mandimba~Lichinga
No.	Sta.	Bridge Name	Structure Type	Material	Ріре Ф	W	Size H	Slab Thickness	Earth Covering	Length	Inner width	Headwall Thickness	Flow Direction	Photo Left	Right
15	12+803		Corrugated steel pipe	Concrete	(m) 0.80	(m)	(m)	(m) 0.20	(m) 0.50	(m) 8.10	(m) 7.60	(m) 0.25	L⇒R	Let	Ngii
16	13+377		Corrugated steel pipe	Concrete	0.80			0.40	0.20	8.20	7.70	0.25	R⇒L		
17	14+899		Box Culvert	Concrete		1.45 × 2	1.4 × 2	0.40	0.90	14.50	14.10	0.20	L⇒R		in.
18	15+764		Corrugated steel pipe	Concrete	0.80			0.20	0.40	8.20	8.20		L⇒R	(
19	16+27		Corrugated steel pipe	Concrete	0.80			0.30	0.30	8.30	7.80	0.25	L⇒R		
20	18+507	Luchimua											L⇒R		
21	19+168		Corrugated steel pipe	Concrete	2.20			1.10	-0.20	8.20	7.60	0.30	L⇒R		
22	20+843		Corrugated steel pipe	Concrete	0.80			0.30	0.60	8.20	8.20		L⇒R		
23	21+228		Corrugated steel pipe	Concrete	0.80			0.20	0.25	8.30	8.30		L⇒R		
24	21+461		Corrugated steel pipe	Concrete	0.80			0.30	0.50	8.20	7.80	0.20	L⇒R		
25	22+623		Corrugated steel pipe	Concrete	2.00			1.20	0.20	8.10	7.50	0.30	L⇒R	_	A.
26	23+397		Corrugated steel pipe	Concrete	2.00			1.00	-0.50	8.10	7.50	0.30	L⇒R		
27	24+539		Corrugated steel pipe	Concrete	0.80			0.30	0.30	8.20	7.70	0.25	L⇒R		Y
28	26+400	Lilasi											L⇒R	1	وبا

								Draii	nage Inve	intory or	1661 (3)				Mandimba~Lichinga
No.	Sta.	Bridge Name	Structure Type	Material	Pipe Φ (m)	W (m)	Size H (m)	Slab Thickness (m)	Earth Covering (m)	Length (m)	Inner width (m)	Headwall Thickness (m)	Flow Direction	Photos Left	Right
29	26+793		Corrugated steel pipe	Concrete	0.80	()	(/	0.65	0.15	8.20	8.20	()	L⇒R		
30	27+57		Corrugated steel pipe	Concrete	0.80			0.60	0.10	8.20	7.70	0.25	L⇒R		10
31	27+374		Corrugated steel pipe	Concrete	0.80			0.60	0.10	8.30	7.70	0.30	L⇒R		Je
32	27+655		Corrugated steel pipe	Concrete	0.80			0.80	0.20	8.20	7.60	0.30	L⇒R	, ki	
33	27+960		Corrugated steel pipe	Concrete	2.00			1.10	0.30	8.20	8.20		L⇒R		_
34	28+502	Ninde											L⇒R		THE STATE OF THE S
35	30+609		Corrugated steel pipe	Concrete	0.80			0.55	0.15	8.20	7.60	0.30	L⇒R		•
36	32+368		Corrugated steel pipe	Concrete	0.80			0.50	0.10	8.20	7.60	0.30	R⇒L		SA
37	33+759		Corrugated steel pipe	Concrete	1.20			0.30	0.30	8.20	8.20		R⇒L	. 145	
38	34+201		Corrugated steel pipe	Concrete	1.20			0.30	0.40	8.20	7.60	0.30	R⇒L		
39	35+738	Luelele											L⇒R		
40	38+903		Corrugated steel pipe	Concrete	0.80			0.60	0.10	8.20	8.20		L⇒R		6.7
41	40+537		Corrugated steel pipe	Concrete	0.80			0.60	0.10	8.20	7.60	0.30	L⇒R		
42	43+392		Corrugated steel pipe	Concrete	0.80			0.20	0.60	8.40	7.90	0.25	L⇒R	1	()

								Draii	nage Inve	intory or	1661 (4)			Man d'art	
No.	Sta.	Bridge Name	Structure Type	Material	Ріре Ф	W	Size H	Slab Thickness	Earth Covering	Length	Inner width	Headwall Thickness	Flow Direction	Mandimba Photos Left Right	a~Lichinga
43	44+244		Corrugated steel pipe	Concrete	(m)	(m)	(m)	(m) 0.30	-0.20	(m) 8.20	(m) 7.60	(m) 0.30	R⇒L		
44	46+809		Corrugated steel pipe	Concrete	0.80			0.30	0.50	8.30	8.30		R⇒L	3	A
45	47+400		Corrugated steel pipe	Concrete	0.80			0.30	0.50	8.30	8.30		R⇒L		V
46	47+727		Corrugated steel pipe	Concrete	0.70			0.60	0.20	8.30	8.30		L⇒R		
47	49+809		Corrugated steel pipe	Concrete	0.80			0.50	0.30	8.30	7.70	0.30	R⇒L		-
48	50+477		Corrugated steel pipe	Concrete	0.80			0.50	0.15	8.30	7.70	0.30	R⇒L		5
49	52+367	Mmaculumesi											L⇒R		
50	60+787		Corrugated steel pipe	Concrete	0.80			0.20	0.70	8.30	8.30		R⇒L		26.45
51	61+100		Corrugated steel pipe	Concrete	0.80			0.50	0.30	8.30	7.80	0.25	R⇒L		1
52	61+826		Corrugated steel pipe	Concrete	0.80			1.30	-0.25	7.70	6.90	0.40	R⇒L		
53	62+409		Corrugated steel pipe	Concrete	1.50			0.50	0.70	6.40	6.40		R⇒L		
54	63+19		Corrugated steel pipe	Concrete	0.80			0.40	0.25	8.20	7.60	0.30	R⇒L		
55	63+293		Corrugated steel pipe	Concrete	0.80			0.40	0.30	8.20	8.20		R⇒L		
56	63+752		Corrugated steel pipe	Concrete	0.80			0.30	0.20	8.30	8.30		R⇒L		

								Draii	nage Inve	ntory on	ieet (J)			Mandimhardinhard
No.	Sta.	Bridge Name	Structure Type	Material	Pipe Φ	W	Size H	Slab Thickness	Earth Covering	Length	Inner width	Headwall Thickness	Flow Direction	Mandimba∼Lichinga Photos Left Right
57	65+34		Corrugated steel pipe	Concrete	(m) 0.80	(m)	(m)	(m) 0.30	(m) 0.10	(m) 8.30	(m) 8.30	(m)	L⇒R	Y
58	65+683		Corrugated steel pipe	Concrete	0.80			0.70	0.10	8.20	8.20		L⇒R	
59	67+89		Corrugated steel pipe	Concrete	0.80			0.40	0.30	8.30	8.30		R⇒L	
60	69+41		Corrugated steel pipe	Concrete	0.80			0.30	0.30	8.30	8.30		L⇒R	
61	69+460		Corrugated steel pipe	Concrete	0.80			0.60	0.10	8.20	8.20		L⇒R	
62	74+26	Lutembue											L⇒R	
63	76+41		Corrugated steel pipe	Concrete	0.80			0.40	0.00	8.20	7.20	0.50	L⇒R	
64	77+469		Corrugated steel pipe	Concrete	0.80			0.50	0.10	8.30	8.30		R⇒L	
65	78+535	Lusanga											L⇒R	
66	80+869		Corrugated steel pipe	Concrete	1.00			0.70	-0.10	10.50	9.90	0.30	L⇒R	
67	81+119		Corrugated steel pipe	Concrete	1.00			0.50	0.00	10.30	9.70	0.30	L⇒R	
68	81+418		Corrugated steel pipe	Concrete	1.00			0.70	0.00	10.20	9.60	0.30	L⇒R	
69	81+46		Corrugated steel pipe	Concrete	1.00 × 3	6.80		1.00	0.00	11.50	10.70	0.40	L⇒R	
70	81+648		Corrugated steel pipe	Concrete	0.80			0.70	0.10	8.30	7.70	0.30	L⇒R	

								Dian	nage Inve	intory or	ieet (0)				Mandimba∼Lichinga
No.	Sta.	Bridge Name	Structure Type	Material	Pipe Φ (m)	W (m)	Size H (m)	Slab Thickness (m)	Earth Covering (m)	Length (m)	Inner width (m)	Headwall Thickness (m)	Flow Direction	Left Pho	ntos Right
71	81+813		Corrugated steel pipe	Concrete	0.80	(11)	(11)	0.70	-0.30	11.30	10.70	0.30	L⇒R	TON	
72	82+4		Corrugated steel pipe	Concrete	0.80			0.70	-0.30	8.20	7.60	0.30	L⇒R		
73	82+120		Corrugated steel pipe	Concrete	1.20 × 3	6.20		1.00	-0.40	12.40	11.50	0.45	L⇒R		
74	82+196		Corrugated steel pipe	Concrete	0.80			0.60	-0.30	8.20	7.60	0.30	L⇒R		
75	82+477		Corrugated steel pipe	Concrete	1.00			0.50	-0.30	8.30	7.70	0.30	L⇒R		
76	83+649		Corrugated steel pipe	Concrete	0.80			0.70	-0.30	10.30	9.70	0.30	R⇒L	0	M
77	83+954		Corrugated steel pipe	Concrete	1.20			0.70	-0.10	8.40	7.80	0.30	R⇒L		
78	85+262		Corrugated steel pipe	Concrete	0.80			0.50	-0.30	8.20	7.60	0.30	L⇒R	100	1
79	85+508		Corrugated steel pipe	Concrete	0.80			0.50	0.20	8.20	7.70	0.25	L⇒R		
80	85+928	Luambala											L⇒R		
81	89+357		Corrugated steel pipe	Concrete	0.80			0.50	0.20	8.30	7.70	0.30	L⇒R	101	
82	92+126		Corrugated steel pipe	Concrete	2.80			1.10	0.00	5.70	5.70		L⇒R		
83	93+69		Corrugated steel pipe	Concrete	1.20			1.10	-0.10	12.00	11.30	0.35	L⇒R		,
84	96+687		Corrugated steel pipe	Concrete	0.80			0.40	0.10	8.30	7.80	0.25	R⇒L	T	

								Drair	nage Inve	ntory Sr	ieet (7)				Mandimba~Lichinga
No.	Sta.	Bridge Name	Structure Type	Material	Pipe Φ (m)	W	Size H	Slab Thickness (m)	Earth Covering	Length	Inner width	Headwall Thickness (m)	Flow Direction	Phote Left	Right
85	103+82		Corrugated steel pipe	Concrete	0.80	(m)	(m)	0.45	(m) 0.20	(m) 10.30	9.60	0.35	L⇒R		
86	101+567		Corrugated steel pipe	Concrete	1.00			1.20	-0.30	6.30	5.70	0.30	L⇒R		
87	101+90		Corrugated steel pipe	Concrete	0.80			0.40	0.20	8.30	7.80	0.25	L⇒R	A	* (5)
88	102+147		Corrugated steel pipe	Concrete	2.40			1.10	-0.15	5.50	4.80	0.35	L⇒R	_	
89	102+357		Corrugated steel pipe	Concrete	0.80			0.70	0.00	8.30	7.70	0.30	R⇒L		9
90	102+718		Corrugated steel pipe	Concrete	0.80			0.40	0.10	8.20	8.20		R⇒L		
91	103+156		Corrugated steel pipe	Concrete	0.80			0.25	0.30	8.30	8.30		R⇒L		
92	104+59		Corrugated steel pipe	Concrete	0.80			0.20	0.50	8.20	7.70	0.25	L⇒R	100 m	
93	106+259		Corrugated steel pipe	Concrete	0.80			0.20	0.70	8.20	7.70	0.25	R⇒L		
94	106+597		Corrugated steel pipe	Concrete	0.80			0.30	0.70	8.30	8.30		R⇒L		13
95	107+506		Corrugated steel pipe	Concrete	0.80			0.80	-0.10	8.80	8.20	0.30	R⇒L		
96	110+54		Corrugated steel pipe	Concrete	0.80			0.50	0.30	8.30	8.30		L⇒R		
97	114+148		Corrugated steel pipe	Concrete	0.80			0.40	0.20	8.20	8.20		L⇒R		
98	114+874		Corrugated steel pipe	Concrete	1.20			0.40	0.20	8.20	8.20		L⇒R	16	0

								Drair	nage Inve	ntory Sr	ieet (o)				Mandimba∼Lichinga
No.	Sta.	Bridge Name	Structure Type	Material	Pipe Φ (m)	W (m)	Size H (m)	Slab Thickness (m)	Earth Covering (m)	Length (m)	Inner width (m)	Headwall Thickness (m)	Flow Direction	Pho Left	etos Right
99	115+547		Corrugated steel pipe	Concrete	0.80	(iii)	()	0.40	0.00	8.20	7.50	0.35	L⇒R	D.	
100	115+902		Corrugated steel pipe	Concrete	1.20			0.80	0.80	8.20	8.20		L⇒R		
101	116+361		Corrugated steel pipe	Concrete	1.20			0.30	0.30	8.20	7.50	0.35	L⇒R	6	
102	118+132		Corrugated steel pipe	Concrete	0.80			0.40	0.30	8.20	8.20		L⇒R		/
103	120+352		Corrugated steel pipe	Concrete	0.80			0.30	0.40	8.20	7.70	0.25	L⇒R		
104	120+899		Corrugated steel pipe	Concrete	0.80			0.20	0.40	8.10	8.10		L⇒R		
105	122+459		Corrugated steel pipe	Concrete	0.80			0.40	0.30	8.20	8.20		L⇒R	C	
106	122+955		Corrugated steel pipe	Concrete	0.80			0.30	0.10	8.20	7.60	0.30	L⇒R		19
107	123+940		Corrugated steel pipe	Concrete	0.80			0.20	0.50	8.10	8.10		R⇒L		
108	124+610		Corrugated steel pipe	Concrete	0.80			0.30	0.00	8.20	7.70	0.25	L⇒R	6	
109	124+892		Corrugated steel pipe	Concrete	0.80			0.40	0.35	8.20	7.70	0.25	L⇒R		
110	125+159		Corrugated steel pipe	Concrete	0.80			0.25	0.40	8.30	8.30		L⇒R	0	100
111	125+675		Corrugated steel pipe	Concrete	0.80			0.25	0.50	8.20	8.20		L⇒R	Ve S	
112	125+956		Corrugated steel pipe	Concrete	0.80			0.30	0.45	8.20	8.20		L⇒R		

								Drair	nage Inve	ntory Sr	ieet (7)				Mandimba∼Lichinga
No.	Sta.	Bridge Name	Structure Type	Material	Pipe Φ (m)	W (m)	Size H (m)	Slab Thickness (m)	Earth Covering (m)	Length (m)	Inner width (m)	Headwall Thickness (m)	Flow Direction	Pho Left	otos Right
113	126+250		Box Culvert	Concrete	(III)	1.10	0.80	0.20	0.30	11.00	10.40	0.30	L⇒R		2
114	127+203		Corrugated steel pipe	Concrete	0.80			0.20	0.50	8.20	8.20		L⇒R	5	
115	132+803		Corrugated steel pipe	Concrete	0.80			0.20	0.50	8.10	8.10		L⇒R		
116	133+748		Corrugated steel pipe	Concrete	0.80			0.30	0.20	8.20	7.70	0.25	L⇒R		
117	134+626		Corrugated steel pipe	Concrete	0.80			0.20	0.15	8.20	8.20		L⇒R		
118	136+605		Corrugated steel pipe	Concrete	0.80			0.20	0.00	8.30	7.50	0.40	L⇒R		
119	137+202		Corrugated steel pipe	Concrete	0.80			0.40	0.30	8.20	7.60	0.30	R⇒L	0	
120	139+12		Corrugated steel pipe	Concrete	0.80			0.25	0.15	8.30	8.30		L⇒R		
121	139+195		Corrugated steel pipe	Concrete	0.80			0.20	0.40	8.20	8.20		R⇒L		
122	140+53		Corrugated steel pipe	Concrete	0.80			0.20	0.60	8.20	8.20		L⇒R		
123	141+480		Corrugated steel pipe	Concrete	0.80			0.30	0.40	8.20	8.20		L⇒R		
124	143+612		Corrugated steel pipe	Concrete	0.80			0.25	0.40	8.10	8.10		R⇒L	_	/• F
125	145+585		Corrugated steel pipe	Concrete	0.80			0.30	0.10	8.20	8.20		L⇒R		
126	145+724		Corrugated steel pipe	Concrete	0.80			0.20	0.40	8.20	8.20		L⇒R	1	Tox \

Drainage Inventory Sheet (8)

						Box	Size	Slab	Earth		Inner	Headwall	Flow	Pho	Mandimba∼Liching otos
No.	Sta.	Bridge Name	Structure Type	Material	Pipe Φ (m)	W (m)	H (m)	Thickness (m)	Covering (m)	Length (m)	width (m)	Thickness (m)	Direction	Left	Right
127	146+634		Corrugated steel pipe	Concrete	0.80			0.30	0.30	8.10	8.10		L⇒R		
128	147+339		Box Culvert	Concrete		0.80	0.80	0.20	0.20	8.50	7.90	0.30	R⇒L		
129	148+70		Corrugated steel pipe	Concrete	0.80			0.25	0.00	8.20	7.60	0.30	L⇒R		MON

									age inver						Mandimba~Lichinga
No.	Sta.	Bridge Name	Structure Type	Material	Pipe Φ (m)	W (m)	Size H (m)	Slab Thicknes s	Earth Covering (m)	Length (m)	Inner width (m)	Headwall Thicknes s	Flow Direction	Left	otos Right
1	48+249		Box Culvert	Concrete	(III)	0.90	0.80	0.20	0.15	9.90	9.40	0.25	R⇒L	》	TIN
2	70+671		Box Culvert	Concrete		0.80	1.10	0.40	0.15	10.00	9.40	0.30	R⇒L		E
3	77+841		I	I	ı	ı	ı	ı	ı	ı	I	ı	L⇒R	7	
4	84+896		Box Culvert	Concrete		0.80	1.10	0.20	0.30	8.50	7.90	0.30	L⇒R	D	
5	87+818		Box Culvert	Concrete		0.80	1.00	0.20	0.10	9.30	8.70	0.30	R⇒L	Ĺ	A
6	90+794		Box Culvert	Concrete		0.80	1.00	0.20	0.20	9.50	9.00	0.25	L⇒R		
7	106+976		Box Culvert	Concrete		0.80	1.00	0.20	0.15	9.20	8.60	0.30	L⇒R	6.0	
8	109+671		Box Culvert	Concrete		0.80	1.20	0.20	0.10	11.70	11.20	0.25	L⇒R	L	
9	119+787		Box Culvert	Concrete		0.80	1.10	0.20	0.20	10.00	9.40	0.30	L⇒R	· ·	
10	121+255		Box Culvert	Concrete		0.80	0.90	0.20	0.20	9.70	9.10	0.30	L⇒R	×	

Appendix-B Weather

Precipitation Data in Niasa (Daily)

Instituto Nacional de Meteorología Caixa Postal 256 - MAPUTO

N°80-09/NF-DAD Maputo,31 de Março de 2009

Ao JICA STUDY TEAM Oriental Consultants,Ltd

	Estação	Cuamba	polymerical total diária (das 9 as 9 horas em mm) 10 30 40 50 60 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 10.0 10.0 10.0 10.0 10.0 10.0 10																								Perio	do:1960	-2008		
	Element	to: Precip	itação tot	al diária	(das 9 a	s 9 horas	em mm)																								
Ano/Mes	1.0	2.0																18.0	19.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0	27.0	28.0	29.0	30.0	31.0
1960-01 1960-02 1960-03 1960-04 1960-05 1960-06 1960-07 1960-08 1960-09 1960-10 1960-11 1960-12	0.0 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5.1 0.0 8.8 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0	8.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	63.8 5.6 0.0 0.0 0.0 0.0 0.0 7.1 0.0	36.8 1.4 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0	2.7 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3.9 3.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.5 0.0 29.6 0.0 0.0 0.0 0.0	25.4 15.7 0.0 14.2 0.0 0.0 0.0 0.0 0.0	0.0 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0	0.0 33.4 0.0 0.0 0.1 0.0 0.0 0.0 0.0	0.0 15.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 5.3 19.2 0.0 0.0 21.5 0.0 0.0 0.0 0.0 0.0	4.2 24.3 0.0 0.0 0.0 1.1 0.0 0.0 10.0 0.0 0.0	0.0 0.0 21.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.3 2.7 0.0 0.0 0.0 0.4 0.7 0.0 0.0 0.0 9.0	0.0 9.5 0.0 0.0 0.0 0.5 0.0 0.0 0.7.8 1.5	0.0 9.5 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0	0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.8 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.6 3.0	1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.3	5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.0 20.2	0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.4 23.5	0.0 0.0 0.0 0.0 0.0 0.0
1961-01 1961-02 1961-03 1961-04 1961-05 1961-06 1961-07 1961-08 1961-09 1961-10 1961-11 1961-12	0.0 3.6 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 1.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6	6.0 17.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0	21.0 0.7 3.8 0.0 0.0 0.0 0.0 0.0 0.0	1.6 45.8 22.9 1.8 0.0 0.0 0.0 0.0 0.0	0.5 29.5 1.6 0.6 0.0 0.0 0.0 0.0 0.0 5.1	2.7 0.1 0.0 0.0 0.0 2.0 0.0 0.0 0.0	4.6 116.8 0.0 0.0 0.3 0.0 0.0 0.0 0.0	6.0 2.9 0.0 0.0 0.0 0.0 0.3 0.0 0.0	4.1 1.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0	0.0 7.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.7	9.8 13.8 0.0 0.0 0.0 0.0 0.2 0.0 0.0 1.4	0.0 16.2 34.2 0.0 0.0 0.2 0.0 0.0 0.0	3.6 22.4 9.8 0.0 0.0 0.0 0.0 0.0 0.4 0.0	0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.1 0.0 0.0 0.0 0.0 0.0 6.9 0.0 0.0	11.6 4.3 0.0 0.0 0.0 0.1 0.0 0.0 0.0	3.3 0.0 0.0 0.0 0.0 0.4 0.7 0.0 0.0 0.0	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5.0 0.3 2.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 9.5	0.0 2.5 27.9 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0	2.5 0.0 0.0 16.3 0.0 0.0 0.0 0.4 0.0 0.0 0.0	0.0 4.7 23.4 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.8	2.5 6.3 12.6 0.1 0.0 0.0 1.7 0.0 0.0 0.0 0.0	0.0 2.4 11.8 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0	0.5 0.0 1.9 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 24.1	0.0 0.0 2.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0	28.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 2.4 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.9 0.0	0.3 0.0 0.0 0.0 0.0 0.0
1962-01 1962-02 1962-03 1962-04 1962-05 1962-07 1962-07 1962-08 1962-09 1962-10 1962-11	14.7 14.4 5.9 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0	0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.2 0.0 0.4 0.0 11.7 0.0 0.0 0.0 0.0 2.5	2.3 0.0 4.7 0.0 0.0 0.0 0.0 0.0 0.0	17.8 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 3.1	0.1 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.6 0.0 0.0 0.4 0.0 0.0 0.0	0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0	18.4 12.4 0.0 0.0 0.0 0.2 0.0 0.0 0.0	0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0	20.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	18.2 15.7 0.7 0.0 0.0 0.0 0.0 0.8 0.0	0.1 0.0 9.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.2 2.6 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 29.2 8.0 2.0 0.0 0.0 0.0 0.0 1.3 0.3	5.4 0.0 0.3 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 28.1	14.0 0.0 15.7 0.2 2.5 0.0 0.0 0.0 0.0 0.2 0.2 53.5	0.0 0.0 0.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 8.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 14.8 0.0 0.0 0.0 0.0 0.0 0.0 4.2 0.4 0.0	0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 24.3 1.2 0.0	36.7 0.0 82.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11.7 0.0 16.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	137.4 	17.2 4.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 18.5 70.8	0.8 0.0 0.0 0.0 0.0 0.0
1963-01 1963-02 1963-03 1963-04 1963-05 1963-07 1963-08 1963-09 1963-10 1963-11	0.2 0.8 0.0 0.9 0.0 0.0 0.0 0.0 0.0 6.5 11.0	23.4 4.5 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 40.4 0.0	29.3 32.0 0.0	6.8 0.7 0.0	13.0 0.1 0.0	1.4 5.1 0.0	56.8 0.0 0.0	35.6 0.0 7.2	44.3 0.0 0.0	25.4 0.0 0.2	3.2 3.8 0.0	0.3 1.8 0.0	9.5 0.0 0.0	10.8 30.0 0.0	32.9 0.0 0.0	9.5 0.0 0.0	39.6 19.0 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 1.6	2.8 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 67.3 0.0 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4	46.7 11.3 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 36.2 38.6	1.2 48.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.9	1.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.9 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.2 0.4 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.3	6.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11.3 7.0 0.0 0.0 0.0 3.8 29.2
1964-01 1964-02 1964-03 1964-04 1964-05 1964-06 1964-07 1964-08 1964-09 1964-11 1964-11	0.0 5.4 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.9 1.8 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	12.7 24.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	16.8 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.2	2.7 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.4 0.2 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0	1.8 4.9 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 3.5	3.2 34.1 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0	19.5 40.3 8.5 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0	7.1 1.8 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.8 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.4 15.5 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 10.1 0.0 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.0	0.0 15.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	7.9 0.7 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5 19.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.4 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.4 0.0 1.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 52.1	2.4 0.0 25.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5	1.6 0.0 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	99.3 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0	9.6 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 7.6	16.4 0.0 0.0 19.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.6	0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 47.4	8.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.3 0.0 0.0 0.0 0.0 0.0 39.1
1965-01 1965-02 1965-03 1965-04 1965-05 1965-06 1965-07 1965-08 1965-09 1965-10 1965-11 1965-12	0.0 7.3 6.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	39.1 1.0 1.3 18.8 0.0 4.0 0.2 0.0 0.0 0.0 0.0 7.2	4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 12.2 17.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 5.1 0.0 0.0 0.0 0.0 0.2 0.0 3.1 0.0	38.2 0.1 25.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 1.3 4.4 0.0 0.5 0.0 0.0 0.0 0.0 0.0 48.2 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 27.8 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 23.3 1.9	14.2 10.7 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 5.2 28.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5.9 12.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	23.2 0.0 0.0 8.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.9 12.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	42.5 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	12.4 25.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1.2 1.4 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0	38.4 6.6 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 29.4 0.0 13.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.4	0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 32.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 37.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	36.4 7.5 1.3 0.0 0.0 0.0 0.0 0.0 10.9 0.0 0.0 13.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.5 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3.6 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	11.4 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.0 22.5 0.0 0.0 0.0 3.8
1966-01 1966-02 1966-03 1966-04 1966-05 1966-07 1966-08 1966-09 1966-10 1966-11 1966-12	0.3 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 22.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	12.7 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	36.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	18.4 31.2 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3.8 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.3 0.0 0.8 0.3 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0	2.6 6.2 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0	39.0 0.0 11.5 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0	2.5 5.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 27.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 37.2 1.1 29.8 0.0 0.0 0.0 0.0 0.0 0.0 5.7	0.0 0.3 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.2 5.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 11.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 26.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 81.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	14.1 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	9.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 7.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.6 0.0 6.6	0.0 6.1 0.0 0.0 9.7 2.4 0.0 0.0 0.0 5.1 5.1	0.2 32.1 0.0 0.0 1.7 1.2 0.0 0.0 0.0 0.0 1.1 26.3	3.0 79.7 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 0.0	0.0 29.7 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0	0.2 0.0 0.0 0.0 0.0 11.2
1967-01 1967-02 1967-03 1967-04 1967-05 1967-06 1967-07 1967-08 1967-10 1967-11	5.3 0.0 7.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15.5 2.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 31.5	19.8 11.4 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 14.8 0.2	0.0 1.6 23.1 0.0 1.4 0.0 0.0 0.0 0.0 0.0 10.0	0.0 0.0 5.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.6	14.0 2.2 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	22.0 2.9 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 27.6	2.1 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	12.1 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 1.2	0.0 1.4 28.4 0.8 0.0 0.0 1.7 0.0 0.0 10.6 0.0	0.0 0.0 1.5 0.0 0.3 0.0 0.0 0.0 0.0	0.0 1.3 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	18.4 0.6 52.3 0.0 0.6 0.0 0.0 0.0 0.0 0.0 2.8 0.0	46.4 4.5 22.9 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0	32.4 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.0 3.4 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 4.5 0.3 10.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.3 7.0 33.1 0.6 0.0 0.0 0.0 0.6 0.0 0.0 0.0	7.5 1.6 10.1 20.5 0.0 0.0 0.7 0.0 0.0 24.1 0.0	0.0 0.5 2.2 33.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	17.1 0.5 0.0 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.5	0.8 8.7 23.7 0.0 0.0 0.0 0.0 0.0 6.7 0.0 0.0 5.0	15.3 5.1 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.8 0.0 78.9 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0	0.0 0.0 17.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	32.3 12.8 39.4 0.0 1.8 0.0 0.0 0.0 0.0 0.0 45.0	2.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.7 0.0	0.0 0.0 0.0 0.0 0.0 0.0
1968-01 1968-02 1968-03 1968-04 1968-05 1968-06 1968-07 1968-09 1968-10 1968-11	0.0 0.0 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 3.6 0.0 0.0 3.4 0.0 0.0 0.0 0.0	0.0 4.0 0.0 0.0 0.0 11.4 0.0 0.0 0.0 0.0	0.0 2.8 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 9.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3.4 0.0 1.3 0.0 7.2 0.0 0.0 0.0 0.0 0.0 0.0	8.1 0.2 10.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 23.1 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 9.0 0.0 13.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3	12.3 21.4 10.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.8 2.1	14.8 32.3 12.8 0.0 0.0 0.0 0.0 0.0 12.0 1.7 0.0	1.4 21.5 0.0 17.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	10.3 26.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 41.1 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5	0.7 32.8 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 2.6 39.8	30.4 18.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.6 3.0	0.0 22.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.6 31.7	0.4 0.0 0.0 84.2 0.0 0.0 0.0 0.0 0.0 0.0 3.2 3.3	69.4 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5	0.2 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0	13.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4.9 7.4 4.1 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	46.5 4.2 1.0 0.0 3.9 0.0 0.0 0.0 0.0 1.2 0.6	0.0 1.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 3.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 16.3

1.3 1969-01 1969-02 1969-03 1969-04 1969-05 1969-06 1969-07 1969-08 1969-09 1969-10 1969-11 51.0 26.6 17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39.0 0.0 28.8 0.0 13.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 59.5 3.2 0.0 5.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.9 1970-01 1970-02 1970-03 1970-04 1970-05 1970-06 1970-07 1970-08 1970-09 1970-10 1970-11 0.0 12.8 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.5 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.8 5.8 12.0 7.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.3 8.8 20.2 0.0 0.0 0.0 0.0 0.0 0.0 1.6 6.8 28.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.8 0.0 0.3 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 24.5 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.8 0.9 27.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.8 1.6 0.0 6.6 0.0 0.0 0.0 0.0 0.0 0.0 4.4 18.0 0.0 0.3 0.0 0.2 0.0 0.0 0.0 0.0 0.0 2.0 14.5 0.0 0.0 18.5 4.0 0.0 0.0 0.0 0.0 0.0 58.3 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 17.2 0.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 46.4 6.5 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 42.5 0.0 3.9 0.0 0.0 0.0 0.0 0.0 0.0 5.8 14.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 25.8 13.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.8 0.0 0.0 0.0 9.7 0.0 0.0 0.0 1.3 1.1 63.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 18.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.5 2.5 43.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.2 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.1 0.0 2.2 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.8 1.0 4.2 --0.0 --0.0 0.0 --10.7 --7.5 25.1 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.8 3.3 --6.6 --0.0 --0.0 --1.5 1971-01 1971-02 1971-03 1971-04 1971-05 1971-06 1971-07 1971-08 1971-09 1971-10 1971-11 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.7 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.6 0.0 18.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.2 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.4 96.0 1.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.5 9.0 30.1 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 7.7 4.3 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.7 0.0 9.8 0.0 0.0 0.0 0.0 0.0 9.7 0.0 0.0 0.0 5.2 0.0 0.0 0.0 0.0 0.0 3.0 8.2 3.2 0.7 8.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.2 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.5 3.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 5.3 56.4 9.7 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 24.9 136.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.1 6.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 47.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 34.2 0.0 0.9 0.0 0.0 1.3 0.0 0.0 0.0 0.0 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.1 0.0 21.7 42.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.1 0.0 11.5 0.0 0.0 0.0 0.0 0.0 0.0 13.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.6 22.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.8 0.0 8.8 3.3 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.5 1972-01 1972-02 1972-03 1972-04 1972-05 1972-06 1972-07 1972-08 1972-09 1972-10 1972-11 1972-12 40.1 32.5 0.0 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 12.0 11.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.1 2.7 18.9 0.0 0.2 0.0 0.0 0.0 0.0 0.0 11.6 0.8 8.8 --0.0 --0.0 0.0 --3.7 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 38.1 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4 8.4 6.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 71.8 9.8 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 12.1 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 25.8 10.3 20.3 0.0 3.5 0.0 0.0 0.0 0.0 2.7 0.0 2.6 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.7 0.0 12.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 6.9 1.0 7.4 3.8 0.0 0.0 0.0 0.0 0.0 0.0 7.8 0.0 --0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 13.2 5.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 1.8 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.6 26.7 0.0 0.2 0.0 0.0 0.0 0.0 0.0 1.0 0.0 8.4 0.0 1.6 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.6 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.9 0.0 2.4 1.4 0.0 0.0 0.0 0.0 0.0 8.8 2.4 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.4 0.0 2.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 6.8 0.0 3.7 0.0 5.5 0.2 0.0 0.0 0.0 0.4 0.0 0.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 13.9 1973-01 1973-02 1973-03 1973-04 1973-05 1973-06 1973-07 0.0 14.8 21.2 0.0 0.0 0.0 0.0 0.0 --0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 --11.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 --2.8 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 --0.0 0.0 0.0 0.0 0.0 --0.0 --9.2 --0.0 --0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 --0.3 0.0 0.0 12.7 0.0 0.0 0.0 0.0 3.5 0.0 0.0 0.1 0.0 0.0 0.0 0.0 --22.0 25.8 0.0 1.0 0.0 0.1 0.0 0.0 -0.0 0.0 1.8 9.1 0.0 0.0 0.0 0.0 40.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.7 0.0 0.4 0.0 0.0 0.0 4.6 2.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 5.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.6 0.0 0.0 0.0 0.0 0.0 0.0 2.0 5.4 0.0 0.0 0.0 0.0 0.0 30.8 0.0 0.8 0.0 0.0 0.0 0.0 0.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 22.8 0.6 0.0 0.0 0.0 0.0 --0.0 9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 0.0 0.5 0.0 0.0 0.0 0.0 --2.6 0.4 0.0 14.5 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 12.0 0.0 0.0 --0.0 79.1 0.0 0.0 0.5 0.0 0.0 0.0 0.1 0.0 39.5 0.0 0.0 0.0 0.0 0.0 1973-08 1973-09 --1973-12 1974-01 1974-02 1974-03 1974-04 1974-05 1974-06 1974-07 1974-08 1974-09 --18.2 0.0 0.0 21.0 0.0 0.0 --17.0 --0.0 --0.0 0.0 0.8 0.0 0.0 25.2 0.0 0.0 10.8 0.2 19.2 3.0 0.0 0.0 0.0 22.4 0.0 8.6 0.0 0.0 1.2 0.0 0.0 10.0 12.0 0.4 0.0 0.0 0.0 0.0 0.0 3.0 5.0 0.0 18.4 0.0 3.0 0.0 2.7 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 16.0 0.0 0.0 0.0 0.0 0.0 0.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 24.5 0.0 0.0 0.0 0.0 0.0 0.0 25.3 0.0 0.0 1.3 0.0 0.0 0.0 3.1 0.2 0.0 5.0 0.0 0.8 0.0 0.0 32.1 0.0 0.0 0.0 1.7 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.0 0.0 0.0 0.0 0.0 0.0 7.3 0.1 0.0 19.5 0.0 0.0 0.0 22.2 0.0 0.0 0.2 0.0 0.6 0.0 0.0 10.0 8.2 3.0 7.5 0.0 0.0 0.0 18.5 13.4 1.7 0.0 0.0 0.2 0.0 0.0 10.9 18.4 2.0 0.0 0.0 0.0 0.0 0.0 10.8 17.9 0.0 23.2 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.7 0.0 0.0 18.8 3.5 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 14.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 7.0 0.0 0.0 0.0 0.0 18.8 15.9 0.0 0.0 0.0 0.0 0.0 --15.4 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 3.0 33.1 3.0 0.6 0.0 0.0 --1974-12 1977-01 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.5 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.7 --0.0 --0.0 0.0 --0.0 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 10.7 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.2 --0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 1.8 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 34.7 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 29.2 1977-04 1977-05 1977-06 1977-07 1977-08 1977-09 1977-10 1977-11 0.5 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 4.5 0.0 0.0 0.0 0.0 0.0 8.8 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 6.6 6.2 0.0 0.0 0.0 0.0 0.0 1.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 22.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 7.9 0.0 0.0 0.0 0.0 0.0 2.3 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 1978-01 1978-03 1978-04 1978-05 1978-06 1978-07 1978-08 1978-09 1978-10 1978-11 1978-11 67.7 5.1 60.9 0.0 0.0 0.0 0.0 0.0 0.0 9.9 41.3 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.9 0.2 33.3 0.0 0.0 8.6 0.0 0.0 0.0 0.0 4.7 1.0 49.7 9.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.7 2.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 15.6 87.9 0.1 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.6 23.4 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 18.2 9.1 0.7 0.0 2.0 0.0 0.0 0.0 11.5 23.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 44.3 0.0 14.6 0.4 0.0 0.0 2.6 0.0 0.0 0.0 2.5 17.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 22.4 0.0 0.0 0.0 0.0 0.0 0.0 1.0 19.5 0.8 4.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.7 0.0 6.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.9 10.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 19.2 0.1 9.5 --0.0 --0.0 --0.4 --1.5 20.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.6 0.0 0.3 0.0 0.0 0.0 0.0 0.0 26.4 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 5.5 3.0 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 2.9 0.1 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 45.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 2.2 5.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.8 0.0 0.9 0.0 0.0 0.0 0.0 1.4 1.8 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.9 50.6 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.3 51.6 10.3 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.3 10.9 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.7 9.9 1.6 0.0 0.0 0.0 0.0 0.0 4.3 0.0 1979-01 1979-02 1979-03 1979-04 1979-05 1979-06 1979-07 1979-08 1979-09 1979-10 1979-11 16.2 3.6 10.2 0.0 0.0 1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 15.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.9 0.0 0.0 61.2 11.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 1.4 0.0 0.0 0.0 1.0 0.0 21.4 0.0 2.5 32.3 0.0 0.5 0.0 1.2 0.0 0.0 3.8 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.3 4.3 0.0 0.2 4.2 0.0 0.0 0.0 0.0 0.0 1.9 0.0 2.8 2.8 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 --0.0 6.6 0.0 0.0 0.0 0.0 12.9 9.4 0.0 9.5 12.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.0 0.0 0.0 0.0 0.0 0.0 0.0 11.3 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 9.2 0.0 0.0 20.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 8.1 0.0 0.0 0.0 0.0 3.6 0.0 1.7 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.4 0.0 19.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 4.8 7.1 0.0 0.8 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.6 2.2 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.5 0.0 6.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.1 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.1 0.0 60.9 0.0 0.0 0.0 0.0 0.0 4.8 14.9 0.0 0.0 38.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 0.0 0.0 1.2 5.8 0.0 0.0 0.0 0.0 0.0 0.0 2.2 5.0 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.1 0.0 9.9 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.4 0.5 0.0 0.0 0.0 0.0 0.0 0.0 49.6 0.0 15.9 0.0 0.0 0.0 0.0 0.0 3.6 19.0 0.6 0.0 57.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.8 --0.0 --0.0 0.0 --0.0 1980-01 1980-02 1980-03 1980-04 1980-05 1980-06 1980-07 1980-08 1980-09 1980-10 1980-11 1980-12 0.8 0.0 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 28.7 4.5 22.6 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 83.7 3.0 15.0 0.8 19.7 0.0 0.0 0.0 0.8 0.0 0.0 0.0 25.8 21.2 0.4 0.0 25.0 0.0 0.2 0.0 0.0 0.0 0.0 24.6 19.4 7.1 13.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 10.2 0.3 32.9 25.8 0.0 0.0 0.0 0.0 0.0 0.0 2.3 2.8 2.9 39.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 1.2 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.5 0.0 0.2 0.2 4.1 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 1.8 1.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.7 0.0 0.0 0.0 0.0 0.0 15.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.6 0.0 0.0 69.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.9 0.0 0.0 0.0 0.0 0.0 0.0 52.2 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.7 0.0 29.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.6 0.0 2.8 0.0 2.4 0.4 0.0 0.0 0.0 0.0 0.0 23.5 0.0 15.0 1.2 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 54.5 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49.0 0.0 25.3 2.2 75.6 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 4.2 0.0 0.0 0.0 0.0 0.0 0.0 16.0 0.0 20.7 0.0 --2.2 --0.0 --0.0 0.0 --0.0 5.2 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.6 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.5 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 12.5 8.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 4.2 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 31.5 7.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 2.6 5.8 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.8 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.3 0.0 0.2 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.4 10.4 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 4.6 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.4 2.6 17.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.8 0.4 13.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 44.7 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.2 0.0 0.0 0.0 0.0 3.6 2.9 0.0 0.4 0.5 5.1 0.1 0.0 0.0 0.7 0.0 0.0 15.7 14.0 24.6 0.0 2.2 0.0 0.0 0.0 0.0 0.0 1.5 0.0 8.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.4 0.0 1.5 --0.0

1982-01 1982-02 1982-03 1982-04 1982-05 1982-06 1982-07 1982-08 1982-09 1982-10 1982-11 1982-12 0.0 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.0 25.3 0.0 6.8 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 37.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 1.1 2.4 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2 1983-01 1983-02 1983-03 1983-04 1983-05 1983-06 1983-07 1983-09 1983-10 1983-11 1983-12 64.7 0.0 0.0 13.0 0.0 0.0 0.0 0.0 0.0 0.0 18.3 0.0 0.3 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 22.5 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 7.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49.3 3.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 9.4 51.8 30.8 0.0 0.0 0.0 0.0 0.0 0.0 0.7 57.9 1.7 10.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 70.0 3.4 1.1 0.0 0.0 0.0 0.0 0.0 0.0 17.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 5.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5 32.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 34.4 0.0 5.3 0.0 0.0 0.0 0.0 0.0 0.0 17.9 5.1 0.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 18.4 0.2 4.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.7 0.0 0.0 4.2 0.0 0.0 0.0 0.0 23.6 2.8 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 19.3 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 77.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.6 2.1 13.4 0.0 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.3 --0.0 --0.4 0.0 --0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 1984-01 1984-02 1984-03 1984-04 1984-05 1984-06 1984-07 1984-09 1984-10 1984-11 1984-12 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.0 22.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.1 1.6 10.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 8.8 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.9 42.0 0.2 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.8 0.0 1.9 0.0 0.0 0.0 0.0 5.4 0.0 0.0 5.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 24.5 0.9 5.8 38.5 14.5 0.0 0.0 0.0 0.0 0.0 43.6 21.6 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 11.8 0.5 2.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.4 0.0 2.1 2.6 0.0 0.0 0.0 8.5 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.6 1.1 18.9 0.0 1.5 0.0 0.3 0.0 0.0 0.0 0.0 1.1 2.8 20.3 0.0 20.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.7 37.0 1.2 0.7 0.0 0.0 2.0 0.0 0.0 0.0 0.0 1.6 1.4 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 14.3 0.0 0.5 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 14.4 0.0 0.5 15.2 0.0 0.1 0.0 0.0 0.0 0.0 12.3 1.0 0.3 0.0 5.1 0.0 2.6 0.0 2.9 0.0 0.0 0.0 0.2 20.9 18.5 28.1 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 9.2 0.0 10.8 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 7.1 0.0 0.4 0.0 0.9 0.0 0.0 0.0 0.0 5.0 0.0 36.4 0.3 0.2 0.0 0.0 0.0 0.0 0.0 1.6 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.3 0.0 1.8 1.6 5.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.9 0.3 0.0 25.6 0.0 0.0 0.0 0.0 0.0 0.0 3.4 20.0 --0.0 7.1 0.0 0.0 0.0 0.0 0.3 0.0 17.9 20.2 --7.7 --0.2 --0.0 0.0 --10.2 1985-01 1985-02 1985-03 1985-04 1985-05 1985-06 1985-07 1985-09 1985-10 1985-11 1985-12 18.4 1.1 0.8 21.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 5.3 4.3 0.0 0.0 0.3 0.0 0.0 0.0 0.0 11.0 0.8 28.7 2.2 43.2 0.0 0.0 0.0 3.1 0.0 1.3 9.6 0.0 22.0 25.3 0.0 0.0 0.0 0.0 0.0 0.0 2.5 3.9 4.0 0.0 17.1 0.0 0.0 9.8 0.0 0.0 0.0 2.1 0.8 0.0 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.5 12.4 --0.0 --0.0 0.0 --0.0 --0.0 0.0 5.0 5.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 19.3 0.0 49.3 13.1 11.4 0.0 0.0 0.0 0.0 0.0 0.0 2.8 4.0 0.0 11.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.5 6.6 9.2 0.0 1.1 0.0 0.0 0.0 0.0 0.0 9.6 3.4 0.0 1.2 0.5 0.0 0.0 0.5 0.0 23.4 14.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 2.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 4.7 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8 38.5 0.0 6.3 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.7 0.2 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.6 2.1 3.7 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.7 6.2 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.3 54.5 26.7 7.4 0.5 0.0 0.0 0.0 0.0 0.0 0.0 11.0 0.0 0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.6 0.3 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 20.3 0.0 0.0 0.0 0.0 0.0 0.0 14.7 1.0 0.0 0.1 3.4 0.0 0.0 0.0 0.0 0.0 8.8 0.5 0.0 5.6 0.0 0.0 2.0 0.0 0.0 8.9 11.3 30.1 0.0 1.7 0.0 0.0 0.0 0.0 0.0 3.1 0.6 1.2 1.1 2.1 53.6 0.0 0.0 0.0 0.0 0.0 0.2 4.8 18.5 68.6 0.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 6.8 2.7 1.7 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60.3 8.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 2.8 26.2 1986-01 1986-02 1986-03 1986-04 1986-05 1986-06 1986-07 1986-08 1986-09 1986-10 1986-11 4.7 11.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 14.2 0.2 12.9 4.0 16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.8 3.4 3.2 1.2 0.7 0.0 1.0 0.0 0.0 0.0 0.0 4.4 30.0 48.5 0.0 0.0 0.0 0.0 0.0 0.0 5.6 0.0 2.9 0.0 4.4 1.3 0.0 0.0 0.0 0.0 0.0 1.5 0.0 18.8 17.5 19.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 25.1 0.4 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 5.6 --0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 3.1 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 1.5 --1.0 --0.0 --0.0 --0.6 --19.4 20.2 1.2 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 4.0 0.0 16.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 3.6 0.2 2.2 0.0 0.0 0.0 0.0 0.0 0.0 52.7 11.5 78.5 1.9 0.0 0.0 0.0 0.0 0.0 0.0 12.0 49.3 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.2 11.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 21.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.4 0.0 3.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 2.2 13.5 7.9 33.5 0.0 0.0 0.0 0.0 1.8 13.0 0.0 0.3 24.7 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.0 19.0 56.2 0.7 0.0 0.0 0.0 0.0 0.0 0.8 17.7 1.3 7.5 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 12.4 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.3 0.0 0.0 6.8 0.0 0.0 0.0 0.0 0.0 4.0 1.0 0.0 37.7 0.0 0.0 0.0 0.0 0.0 0.0 69.2 0.0 3.8 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 9.8 --7.2 --0.0 --0.0 --0.0 --21.3 1987-01 1987-02 1987-03 1987-04 1987-05 1987-06 1987-07 1987-08 1987-09 1987-10 1987-11 1987-11 16.4 0.0 2.8 9.8 0.0 0.0 0.0 0.0 3.3 0.0 27.3 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 7.4 0.0 0.0 2.6 2.3 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.8 2.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5 27.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 1.6 0.0 21.6 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.1 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.4 82.0 1.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 47.2 3.2 87.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.8 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.7 8.4 --0.0 0.0 1.2 0.0 0.0 0.0 9.1 1.2 30.1 0.9 0.2 27.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.0 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.9 0.6 0.0 6.6 5.7 0.0 0.0 0.0 1.0 0.0 0.0 0.0 12.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.6 28.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.5 13.8 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 2.3 2.6 0.0 7.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.8 1988-01 1988-02 1988-03 1988-04 1988-05 1988-06 1988-07 1988-09 1988-09 1988-10 1988-11 4.8 0.0 0.0 9.2 0.0 0.0 0.0 0.0 0.0 22.8 33.9 0.0 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 18.6 0.0 0.0 0.0 0.0 0.0 2.3 0.0 26.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 3.3 0.0 9.2 26.7 0.0 0.0 0.0 0.0 0.0 0.0 45.2 33.1 1.6 38.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.8 6.2 19.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.4 0.4 10.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.4 66.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.9 15.6 66.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.5 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 63.7 7.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 43.2 75.2 21.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 8.8 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 23.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.4 0.0 4.3 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.5 28.6 23.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.6 0.0 0.0 --0.0 0.0 1.4 0.0 0.0 0.0 1.5 0.0 12.4 0.7 --0.0 --0.0 0.0 --1.0 --17.7 0.0 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 45.6 4.1 9.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.4 4.6 2.6 0.0 1.7 0.0 0.0 0.0 0.0 0.0 4.7 1.7 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 1989-01 1989-02 1989-03 1989-04 1989-05 1989-06 1989-07 1989-08 1989-09 1989-10 1989-11 1989-12 17.9 --0.0 4.7 0.0 0.0 0.0 0.0 14.0 0.0 67.1 6.8 --0.0 --0.0 0.0 --0.0 0.8 17.5 9.3 7.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 15.5 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3 41.5 2.8 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.7 0.0 47.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 47.5 21.0 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 7.0 15.0 --0.0 0.0 0.0 0.0 0.0 0.0 1.0 11.2 0.0 0.6 17.8 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0 43.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 14.5 15.7 14.1 0.0 0.0 0.0 0.4 0.0 0.0 0.0 3.0 0.4 0.0 14.6 0.5 0.0 0.0 0.0 6.2 0.0 0.0 3.1 25.7 2.5 3.1 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 5.0 0.0 0.0 9.2 0.0 0.0 0.0 0.0 0.0 1.6 4.6 0.4 0.0 0.2 0.0 0.0 0.0 0.0 0.0 4.3 8.1 11.8 23.1 0.0 0.0 0.0 0.0 0.0 0.0 13.9 12.6 0.4 78.2 0.0 37.9 0.0 0.0 0.0 5.0 0.0 0.0 1.9 6.6 0.7 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 3.8 23.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 12.2 0.0 0.0 0.0 0.0 0.0 1.0 17.3 0.8 20.3 13.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3 0.0 0.2 0.6 0.0 0.0 0.0 0.0 0.0 6.2 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.3 28.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3 6.9 12.6 12.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.7 0.0 29.7 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3 0.0 16.5 10.9 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0 6.2 0.0 0.0 0.0 0.7 0.0 0.0 0.0 14.4 1990-01 1990-02 1990-04 1990-06 1990-07 1990-08 1990-09 1990-10 1990-11 1990-12 15.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.8 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 29.0 0.3 ----0.0 0.0 --0.0 --15.4 4.9 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.7 24.3 9.8 0.4 0.0 0.0 0.5 0.0 0.0 0.0 20.4 7.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 8.3 0.0 0.0 0.0 0.0 0.0 10.3 1.3 9.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 63.2 0.0 11.3 0.0 7.4 0.0 0.0 0.0 0.0 0.0 0.0 9.1 0.0 2.6 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.1 0.1 0.0 0.0 0.0 0.0 0.0 12.3 0.0 5.0 0.2 0.0 0.0 0.0 0.0 14.3 0.0 12.0 5.7 0.7 0.0 0.0 0.0 0.0 1.4 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.3 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.1 0.0 0.0 0.0 0.0 0.0 12.6 0.0 2.6 2.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0 0.1 0.0 13.2 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 1991-01 1991-02 1991-03 1991-04 1991-05 1991-06 1991-07 1991-08 1991-09 1991-10 1991-11 7.3 24.2 0.4 0.9 0.0 0.2 0.0 0.0 0.0 0.0 0.0 10.9 10.8 32.1 0.0 0.0 0.0 0.0 0.0 0.0 35.0 37.9 19.2 6.2 0.0 3.3 0.0 0.3 0.6 0.1 0.0 0.0 32.2 10.0 0.3 41.8 0.0 0.0 0.6 0.0 4.0 0.0 0.0 0.3 1.8 7.7 0.4 10.8 0.0 0.0 0.0 0.0 0.0 0.0 18.8 4.1 4.4 --0.0 0.0 0.0 0.0 0.0 23.1 0.0 0.0 0.0 --0.0 --0.0 0.0 --0.0 1.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 7.7 0.0 12.5 0.4 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.3 9.4 20.6 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 3.4 14.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.3 2.2 31.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.9 2.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 44.3 11.3 0.0 0.0 0.0 0.0 0.0 2.1 0.6 4.4 0.8 59.7 0.9 0.0 0.0 0.0 0.0 0.0 26.0 0.0 2.6 5.2 8.5 0.0 0.0 0.0 0.0 0.0 2.1 20.1 1.5 1.0 7.2 0.0 0.0 1.6 0.0 0.0 4.2 17.1 5.8 0.0 16.9 8.6 1.2 0.0 0.0 0.0 0.0 0.0 5.3 0.0 0.0 0.1 8.1 0.0 0.0 0.0 0.0 0.0 3.5 0.0 6.6 6.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 14.6 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 57.4 19.1 0.7 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.1 0.0 13.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.7 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.5 0.0 0.0 0.2 0.0 0.0 0.0 0.0 5.4 43.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 8.6 1.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1992-01 1992-02 1992-03 1992-04 0.0 8.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8 1.5 0.0 0.0 0.2 0.0 0.0 0.0 0.0 43.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 14.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.6 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 4.3 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.7 15.7 24.0 0.0 4.7 0.0 1.3 0.0 0.0 0.0 0.0 0.0 4.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 18.7 18.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5 0.7 0.0 0.8 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 0.7 17.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.8 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.6 0.0 3.7 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 ----0.0 --0.0 0.0 1.8 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.0 7.0 7.0 1.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1992-09 1992-10 1992-11 1992-12

1993-01 1993-02 1993-03 1993-04 1993-05 1993-06 0.0 9.5 4.4 0.0 0.0 0.0 0.0 0.0 0.0 13.8 2.6 4.8 3.6 50.1 0.0 0.0 0.0 0.0 0.0 0.0 24.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 17.5 42.7 3.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 2.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 8.3 3.7 0.0 0.0 0.0 0.7 0.0 0.0 2.3 0.0 1993-00 1993-08 1993-09 1993-10 1993-11 1993-12 1994-01 1994-02 1994-03 1994-04 1994-05 1994-06 1994-07 1994-09 1994-10 1994-11 1994-11 0.0 0.0 8.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.4 9.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.1 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.9 0.0 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 13.6 0.0 0.0 16.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.2 0.0 0.0 0.0 0.0 26.6 0.0 10.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.6 0.5 0.0 5.5 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 15.2 0.0 1.5 0.0 0.0 0.0 0.0 0.2 0.0 0.4 0.0 4.6 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 11.6 2.6 0.0 0.0 0.0 0.0 0.0 11.4 0.0 0.4 0.0 5.1 0.0 0.0 0.0 0.0 0.0 0.0 8.2 0.0 19.8 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.8 --17.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.4 0.0 12.6 --2.6 --0.0 --0.0 0.0 --6.6 20.6 0.0 0.3 35.5 0.0 0.0 0.0 0.0 0.0 0.0 1.9 17.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 --0.0 --0.0 0.0 --0.0 --11.3 1995-01 1995-02 1995-03 1995-04 1995-05 1995-06 1995-07 1995-08 1995-10 1995-11 1995-12 8.6 4.0 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 53.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.2 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 14.3 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.9 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.5 0.0 0.0 5.6 1.0 0.0 0.0 0.0 0.0 0.0 0.0 67.4 0.0 0.0 32.7 0.0 0.0 0.0 0.0 0.0 0.0 17.2 46.4 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 66.1 0.6 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 34.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 9.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 55.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.1 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.7 0.0 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.6 0.0 12.2 5.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.7 7.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 59.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.0 2.1 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.6 2.5 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 56.4 0.7 0.0 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0 1996-01 1996-02 1996-03 1996-05 1996-06 1996-07 1996-08 1996-09 1996-10 1996-11 1996-12 3.4 0.0 19.3 0.0 0.0 0.0 0.0 0.0 0.0 34.7 11.7 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.2 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.4 4.7 18.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.5 8.4 --0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.0 4.1 --0.0 0.0 --0.0 --0.0 --0.6 0.0 3.2 11.3 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 18.4 43.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.6 29.6 56.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.8 5.7 0.2 0.0 0.0 0.0 0.0 0.0 14.1 0.0 0.0 23.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.2 0.0 39.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 2.7 25.7 8.4 0.0 0.0 0.0 0.0 0.0 1.0 16.2 2.1 0.6 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 33.9 22.8 0.0 1.3 0.0 0.0 0.0 0.0 0.0 27.6 0.0 6.7 0.0 0.0 0.0 0.0 0.0 0.0 5.1 43.9 22.4 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.2 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 59.7 0.0 7.5 23.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.2 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 3.6 60.1 0.0 0.0 0.0 0.0 0.0 0.0 2.2 3.8 4.6 8.5 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 5.8 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 4.6 2.6 18.0 37.9 0.0 0.0 0.0 0.0 0.0 0.8 0.0 4.3 5.6 0.0 0.1 0.0 0.0 0.0 0.0 0.0 2.0 0.0 8.2 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 5.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 1997-01 1997-02 1997-03 1997-04 1997-05 1997-06 1997-07 1997-08 1997-09 1997-10 1997-11 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.1 0.8 4.7 10.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.6 33.8 1.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.2 11.5 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 18.0 6.4 18.6 --0.0 0.0 0.0 0.0 0.0 0.0 11.9 0.0 0.0 0.0 19.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.9 0.0 6.9 0.0 0.0 0.0 0.0 0.0 85.8 1.7 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 54.3 0.2 4.8 0.0 0.0 4.3 0.0 0.0 0.0 5.6 0.0 4.3 6.0 0.2 0.0 0.0 0.0 0.0 0.0 75.4 16.7 11.4 0.7 0.0 0.7 0.0 0.0 0.0 0.0 0.0 1.9 17.9 4.0 9.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.3 7.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.4 0.0 6.3 26.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2 0.0 38.6 1.0 12.9 0.4 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 25.1 0.0 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 27.6 2.3 0.6 2.9 0.0 0.0 0.0 0.0 0.0 4.9 0.0 13.8 --0.0 --0.0 0.0 --0.0 --0.0 0.0 9.3 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.2 6.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 16.6 0.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 7.7 0.0 13.8 0.0 70.5 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.9 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.8 48.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 0.1 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 17.6 0.0 0.0 0.0 0.5 0.0 0.1 0.0 0.0 0.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 5.3 10.2 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 --0.0 --0.0 0.0 --0.0 --36.9 1998-01 1998-02 1998-03 1998-04 1998-05 1998-06 1998-07 1998-09 1998-10 1998-11 1998-12 0.0 21.8 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 8.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.8 20.1 0.0 16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.8 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 62.3 6.5 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 62.2 1.3 27.4 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.1 41.2 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.8 1.9 0.0 0.0 0.0 1.6 0.0 0.0 0.6 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 4.1 0.0 0.0 6.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.7 20.6 0.0 7.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 8.6 0.1 10.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 24.7 22.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.3 74.5 0.0 10.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 23.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 6.7 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 2.3 0.0 1.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.5 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.3 6.9 6.3 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 37.1 3.9 7.8 0.0 0.0 0.0 0.0 0.0 0.0 10.3 0.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1999-01 1999-02 1999-03 1999-04 1999-05 1999-06 1999-07 1999-08 1999-09 1999-10 1999-11 9.1 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 29.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.1 37.3 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 22.8 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.0 10.2 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.2 34.0 10.5 12.8 0.0 0.0 0.0 0.0 0.0 1.5 0.0 28.4 6.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.0 0.0 6.8 0.0 0.0 0.0 0.0 0.0 0.0 1.6 1.7 0.0 4.4 0.0 0.0 0.0 0.0 0.0 33.8 0.0 2.6 24.4 6.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 7.1 0.4 0.0 1.5 0.0 0.0 0.0 0.0 4.6 2.2 11.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.4 19.7 1.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 2.5 0.7 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 37.0 0.0 0.3 6.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 47.7 21.6 0.0 0.0 0.0 0.0 0.0 0.0 1.3 12.8 25.8 0.0 5.5 0.6 0.0 0.0 0.0 0.0 0.0 12.7 0.0 13.4 0.0 6.6 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.4 19.0 3.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 10.3 0.6 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 31.1 17.8 0.0 0.0 1.1 0.0 0.0 0.0 0.0 26.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.5 24.5 1.2 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 21.8 36.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.6 17.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.3 11.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.5 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 61.7 0.0 --6.8 --0.0 --0.0 0.0 0.0 2000-01 2000-02 2000-03 2000-04 2000-05 2000-06 2000-07 2000-08 2000-09 2000-10 2000-11 2000-12 20.9 0.0 0.5 0.0 0.0 0.0 0.0 0.0 40.4 1.3 45.8 0.0 43.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.4 0.0 3.1 10.8 0.0 0.0 0.0 0.0 0.0 0.0 6.3 28.0 24.1 0.0 65.3 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 35.9 62.3 1.7 19.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.8 22.4 14.8 0.0 0.0 0.0 0.0 0.0 0.0 1.0 5.1 5.7 31.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.8 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 37.5 10.7 10.7 20.4 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 --1.2 --0.0 --0.0 0.0 --85.5 --0.6 0.0 6.4 0.0 0.0 0.0 0.0 2.9 0.0 6.4 0.0 1.0 0.0 5.4 0.0 0.0 0.0 0.0 0.0 0.0 1.4 2.8 0.0 0.4 41.6 0.0 0.0 7.7 0.0 0.0 0.0 0.0 6.5 0.0 6.2 3.7 0.0 0.0 0.0 0.0 0.0 89.0 0.0 0.5 2.0 33.1 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.5 4.3 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 1.6 35.1 0.0 1.6 0.0 0.0 0.0 2.4 0.0 15.8 0.2 4.9 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.4 9.7 0.0 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.4 7.4 0.0 1.8 6.5 0.0 0.0 0.0 0.0 0.0 9.2 10.6 0.0 3.9 0.0 0.0 0.0 0.0 0.0 0.0 35.0 0.0 3.4 21.9 0.0 0.0 0.0 0.0 1.5 30.6 2.1 0.0 1.4 1.3 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 2.8 22.9 1.5 4.0 4.6 0.0 0.0 0.0 0.0 0.0 0.0 25.9 65.4 9.8 0.0 0.0 0.0 0.0 0.0 0.0 54.6 0.7 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8 --9.0 0.0 0.0 0.0 0.0 0.0 16.8 28.4 20.7 --0.0 --0.0 --0.0 0.0 --1.0 2001-01 2001-02 2001-03 2001-04 2001-06 2001-06 2001-07 2001-08 2001-10 2001-11 2001-11 0.0 16.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.8 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.8 11.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 40.5 5.2 0.8 5.4 0.0 0.0 0.0 0.6 0.0 0.0 22.0 15.1 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.6 22.4 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 7.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 14.1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.6 6.5 0.0 21.6 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 17.5 17.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 47.4 8.5 1.6 6.5 0.0 0.0 0.0 0.0 0.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 34.1 0.0 0.5 5.4 0.0 0.0 0.0 0.0 0.0 0.0 10.0 6.0 7.8 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 1.4 0.0 0.0 0.0 0.0 0.0 0.0 10.6 8.8 7.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.5 11.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.8 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.6 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.0 0.0 1.5 11.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.1 --3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2002-01 2002-02 2002-04 2002-05 2002-06 2002-07 2002-08 2002-09 2002-10 2002-11 2002-12 26.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 16.9 36.0 --0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 14.3 --10.6 --0.0 --0.0 --0.0 24.0 28.6 0.0 0.0 0.0 0.0 3.2 0.0 0.8 0.0 0.0 20.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 5.6 32.3 1.7 14.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 10.3 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 63.5 14.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.3 48.7 61.2 17.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.8 3.9 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.2 0.0 0.2 14.1 0.0 0.0 0.0 3.8 0.0 0.0 8.7 41.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 55.9 24.8 36.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 14.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.7 0.0 0.0 0.0 0.0 26.3 0.0 0.0 0.0 14.9 0.0 0.0 0.0 0.0 0.0 0.0 7.7 0.4 0.0 16.9 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 3.2 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.6 0.0 58.6 0.0 0.0 0.0 0.0 0.0 0.1 0.0 8.2 17.6 28.2 7.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.3 43.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.0 13.0 0.0 0.0 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.7 0.0 0.0 0.0 0.0 0.0 0.1 29.6 10.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2003-01 2003-02 2003-03 16.6 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.2 1.5 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0 26.5 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 11.6 11.8 0.0 0.0 0.0 0.0 0.0 0.0 6.5 0.0 2.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.7 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.9 0.0 0.0 0.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 27.0 10.9 33.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.9 7.5 1.1 31.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 34.2 0.0 0.0 0.0 0.0 0.0 0.0 12.7 13.9 24.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 19.3 1.9 0.0 0.5 0.0 0.0 0.0 0.0 0.0 15.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.2 27.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2 11.0 0.0 5.6 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 14.4 2.5 24.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.2 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 31.3 28.2 5.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2003-04 2003-05 2003-06 2003-07 2003-08 2003-09 2003-10 2003-11 2003-12 0.0

22.5 0.0 1.4 7.9 0.0 0.0 0.0 0.0 0.0 0.0 21.4 8.4 0.8 1.6 19.4 8.8 0.0 0.0 0.0 0.0 1.1 4.2 0.0 1.6 4.8 9.7 0.0 0.0 0.0 0.0 0.0 0.0 16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 10.4 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 1.6 14.7 0.2 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 22.8 15.0 0.0 3.5 0.0 0.0 0.0 0.0 0.0 7.4 59.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 40.7 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.3 7.8 0.0 9.3 0.0 0.0 0.0 0.0 0.0 4.7 29.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 38.4 10.8 24.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.3 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 54.3 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 1.8 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.6 0.0 14.4 0.0 0.0 1.2 0.0 2.2 0.0 6.5 0.0 0.0 20.6 0.0 0.0 0.0 0.0 0.0 0.0 2.8 2.8 7.3 7.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 4.5 3.3 0.0 1.3 0.0 1.8 0.0 0.0 0.0 0.8 0.0 10.0 2004-02 2004-03 2004-04 2004-05 2004-06 2004-07 2004-08 2004-09 2004-10 2004-11 2004-12 0.0 0.0 0.0 0.0 4.2 --9.1 6.8 --0.0 --0.0 0.0 0.0 0.0 2005-01 2005-02 2005-03 2005-04 2005-05 2005-06 2005-07 2005-08 2005-10 2005-11 2005-12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.2 0.0 0.0 0.0 0.0 0.0 17.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 8.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.7 15.6 0.0 0.0 0.0 0.0 0.0 4.0 21.3 0.2 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 30.0 0.0 6.8 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 25.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.2 54.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 7.5 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 26.7 0.0 0.0 0.0 0.0 0.0 16.7 0.2 0.0 1.5 0.5 0.0 0.0 5.6 0.0 15.7 4.2 0.0 28.8 0.0 0.0 0.0 0.0 1.0 0.9 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.0 8.5 0.0 20.8 0.0 0.0 0.0 0.0 0.0 18.9 2.5 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 19.0 8.8 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 57.1 2006-01 2006-02 2006-03 2006-04 2006-05 2006-06 2006-07 2006-08 2006-09 2006-10 2006-11 0.0 0.0 26.7 24.3 0.0 0.0 0.0 0.0 0.0 0.0 8.0 56.8 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 13.5 0.0 0.0 0.4 0.0 0.0 0.0 79.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 2.3 1.2 0.0 0.0 0.0 0.0 0.0 0.0 6.6 --10.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 0.0 --4.4 0.0 0.0 0.0 4.5 0.0 0.0 0.0 0.0 --13.1 --0.0 --4.8 0.0 --0.0 131.5 12.5 13.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.8 34.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 28.9 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.0 0.6 44.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.2 4.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 89.0 0.0 18.7 0.7 0.0 0.0 17.9 0.0 2.8 0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60.1 68.0 34.5 2.4 0.0 0.0 0.0 0.0 0.0 0.0 22.8 0.0 19.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 11.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.6 25.6 0.3 4.8 3.3 0.0 0.0 0.0 0.0 0.0 2.1 40.0 0.2 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2007-01 2007-02 2007-03 2007-04 2007-05 2007-06 2007-07 2007-08 2007-09 2007-10 2007-11 2007-12 7.1 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1 23.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 5.0 49.6 45.7 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 13.5 19.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 17.0 6.3 11.7 0.0 0.0 0.0 4.8 0.0 0.0 0.0 5.5 0.0 78.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 46.6 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.9 --2.3 --0.0 --0.0 --0.0 --8.5 9.0 2.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 46.1 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 71.3 3.5 1.3 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 8.1 0.3 2.7 14.6 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 9.7 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 7.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.8 3.1 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 43.1 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.2 0.0 0.0 13.2 0.0 5.3 21.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.4 0.0 15.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.8 0.0 2.2 12.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.7 0.0 0.5 0.0 0.0 0.0 0.0 0.0 6.9 0.0 0.8 --0.0 11.1 0.0 0.0 0.0 0.0 0.0 0.0 0.3 2.6 9.5 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 9.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 77.8 0.0 0.9 0.0 0.0 0.0 0.0 0.5 0.5 0.5 26.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.8 0.3 0.0 7.1 0.0 0.5 0.0 0.0 0.0 0.0 0.0 3.8 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.6 2008-01 2008-02 2008-03 2008-04 2008-05 2008-06 2008-07 --2008-11 2008-12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 47.8 0.0 14.8 0.0 0.0 0.0 0.0 --0.0 18.8 0.0 2.1 0.0 0.0 0.0 0.0 --2.9 0.0 8.4 0.0 0.0 0.0 0.0 --55.1 5.5 0.0 0.0 0.0 0.0 0.0 0.0 24.3 0.0 0.0 0.0 0.0 0.0 --23.1 9.3 0.0 0.0 0.0 0.0 0.0 --3.8 9.2 0.0 0.0 1.3 0.0 --0.0 16.2 0.0 0.0 0.0 0.0 0.0 0.0 12.2 0.0 2.4 0.0 0.0 0.0 0.0 --11.6 0.0 0.0 0.0 0.9 0.0 0.0 --12.2 0.0 9.3 0.0 0.0 0.0 0.0 4.8 0.0 0.0 0.0 0.0 0.0 0.0 --4.6 0.0 0.0 0.0 0.0 0.0 0.0 16.9 0.0 0.0 0.0 0.0 0.0 0.0 57.6 0.0 0.0 0.0 0.0 0.0 0.0 --69.8 0.0 0.0 0.0 0.0 0.0 0.0 14.7 0.0 0.0 0.0 0.0 0.0 0.0 --4.7 12.1 13.4 0.0 0.0 0.0 0.0 0.0 --69.3 24.2 0.0 0.0 0.0 0.0 0.0 0.0 --83.8 33.0 0.0 0.0 0.0 0.0 0.0 0.0 --2.8 4.9 0.0 0.0 0.0 0.0 0.0 --0.0 --0.0 --0.0 2.1 0.0 1.3 0.0 0.0 0.0 --0.0 16.6 0.0 9.7 0.3 0.0 0.0 0.0 --0.0 0.0 2.7 0.0 0.0 0.0 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 57.4 0.0 0.0 0.0 0.0 --28.0 4.1 0.0 0.0 0.0 0.0 0.0 --5.4 0.0 0.0 0.0 0.0 0.0 0.0 --

Estação: Lichinga

nto: Precipitação total diária (das 9 as 9 horas em mm)

9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 1960-01 0.0 0.3 0.5 1.9 0.0 1.0 0.0 0.0 0.0 0.0 8.5 32.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.4 0.8 4.1 0.0 0.0 0.2 0.6 0.0 0.0 0.0 0.0 2.2 2.5 17.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.1 4.5 0.0 0.0 0.0 0.0 2.0 0.0 19.1 2.9 6.3 86.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 2.0 0.1 15.5 0.0 0.0 1.1 0.0 0.0 15.1 0.0 5.2 7.3 0.6 0.0 0.0 0.0 0.0 0.0 0.0 9.5 0.0 2.4 32.6 0.2 0.0 0.5 0.0 0.0 0.0 0.0 29.2 2.6 5.6 0.0 0.5 0.0 6.5 0.0 0.0 0.0 0.0 20.2 0.7 4.4 30.0 0.1 0.1 0.0 0.0 0.0 0.0 2.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 12.8 31.4 0.0 12.2 0.0 0.1 0.3 0.0 0.0 4.0 0.0 0.0 1.2 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 29.3 37.2 0.0 2.0 0.0 0.0 0.0 0.0 0.0 12.7 21.3 1960-01 1960-02 1960-03 1960-04 1960-05 1960-06 1960-07 1960-08 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 15.5 9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 3.1 --7.2 --0.0 --0.0 --1.5 1961-01 1961-02 1961-03 1961-04 1961-05 1961-06 1961-07 1961-08 1961-09 1961-10 1961-11 9.0 0.3 8.5 14.3 6.6 0.0 0.0 0.0 0.0 4.5 1.3 0.0 6.6 0.0 9.4 2.8 0.0 0.0 0.0 0.0 7.1 0.0 8.0 7.8 3.6 0.0 0.0 0.0 0.0 0.0 0.0 2.3 20.7 0.9 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 1.5 18.4 18.3 0.0 0.0 0.0 0.7 0.0 0.0 14.4 9.6 7.4 0.2 1.0 12.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.7 0.4 11.8 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.0 0.3 0.0 1.0 2.0 0.0 0.2 0.0 0.0 0.0 0.0 1.3 7.0 8.1 27.8 18.1 0.0 0.0 0.0 0.0 0.0 1.7 16.4 3.7 9.0 0.0 6.5 2.4 5.6 0.4 1.8 0.0 1.3 0.0 5.2 1.6 3.5 1.5 0.0 0.5 0.0 0.0 0.0 0.0 22.3 0.6 0.3 3.1 2.2 0.0 0.0 3.6 0.0 0.0 0.1 0.0 5.4 0.0 31.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 20.5 0.0 0.3 8.7 3.0 0.0 0.0 0.0 0.0 0.0 4.3 0.0 12.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 3.1 0.0 --5.3 1.6 0.0 0.0 0.0 0.0 0.0 4.3 3.2 24.2 0.0 7.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 17.7 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 3.0 3.0 0.0 5.7 0.8 0.0 0.0 0.0 0.0 0.0 48.6 0.6 23.9 3.4 0.0 2.6 0.0 0.0 0.1 0.0 4.0 0.8 3.1 0.9 7.4 0.0 10.6 0.0 0.2 0.0 42.8 3.2 10.8 1.9 0.0 0.0 0.6 0.0 0.0 0.0 0.1 9.6 0.0 1.9 53.9 2.8 0.2 0.0 0.0 0.0 0.0 40.0 0.6 2.3 2.6 3.9 0.0 0.0 0.1 0.2 0.0 0.6 3.9 0.0 9.1 15.0 0.0 3.5 0.0 0.0 0.0 1.7 10.3 10.9 2.0 0.6 0.0 6.2 0.0 1.5 0.0 0.0 0.0 0.0 2.3 14.0 8.6 0.0 0.0 0.0 0.0 0.0 16.5 0.0 1.1 4.6 0.1 12.6 0.0 0.0 0.0 0.0 0.2 7.2 0.0 6.3 0.6 3.0 2.0 0.0 1.5 0.0 0.0 5.0 6.0 4.2 1.7 4.4 0.0 0.0 0.0 0.0 0.0 16.8 1.8 1962-01 1962-02 1962-03 1962-04 1962-05 1962-06 1962-07 1962-08 1962-09 1962-10 1962-11 1962-12 0.8 0.0 17.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 10.8 12.8 0.0 0.0 0.0 0.0 0.0 0.0 26.0 0.0 10.4 3.5 --17.1 --0.0 --0.0 --0.0 --9.2 1.8 11.3 0.3 43.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.8 44.6 0.3 0.0 0.0 1.3 0.0 0.0 0.0 0.0 6.3 0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0 16.8 3.7 4.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4 24.4 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.9 3.7 1.2 0.0 0.2 1.8 0.0 0.0 0.0 0.0 0.0 4.1 19.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.6 1.7 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.5 20.4 24.0 0.7 31.6 1.3 4.0 0.0 0.7 0.0 0.0 5.2 35.8 13.8 33.9 0.0 8.6 0.0 0.0 0.0 0.0 4.4 0.0 12.2 0.4 21.2 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.1 3.7 11.4 35.1 0.0 1.1 0.0 0.2 0.0 0.0 0.0 4.0 3.3 17.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.8 0.3 5.0 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0 46.2 0.4 1.3 1.6 0.0 0.1 0.0 0.0 0.0 0.0 7.0 0.0 1.7 0.0 1.5 3.2 1.1 0.0 0.0 0.0 0.0 0.0 0.0 6.3 1.3 38.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.1 2.8 0.0 0.0 0.0 0.0 0.0 0.0 7.4 5.2 1.7 2.7 4.0 14.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.1 4.3 0.0 10.5 15.3 0.0 0.0 0.0 0.0 0.0 25.5 16.9 5.1 0.0 3.0 0.1 0.0 0.0 0.0 0.0 14.5 0.0 0.0 9.0 1.3 1.1 0.0 0.0 0.0 0.0 5.3 0.0 0.0 1.0 7.8 0.0 0.0 0.0 0.0 0.0 1.0 18.0 14.9 0.0 0.0 26.2 0.3 0.0 0.0 0.0 0.0 1.3 7.8 54.5 0.7 --1.3 22.3 0.0 0.0 0.0 0.0 0.0 0.0 16.8 0.6 0.1 0.3 6.5 5.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.5 10.0 1.6 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.2 20.6 7.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 1.1 3.3 1963-01 1963-02 1963-03 1963-04 1963-05 1963-06 1963-07 1963-08 1963-09 1963-10 1963-11 17.4 6.8 3.8 2.3 0.0 0.0 1.0 0.0 0.0 0.0 0.0 17.4 9.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 3.2 19.3 9.8 3.5 0.2 1.1 0.0 0.0 0.0 0.0 0.0 5.5 11.0 1.1 --29.9 0.0 0.0 0.0 0.0 0.0 0.0 14.8 8.5 12.3 0.0 4.8 1.9 0.0 0.0 0.0 0.0 0.0 33.7 4.1 4.8 2.6 1.7 4.6 0.0 0.0 0.0 1.4 0.0 2.3 0.5 17.7 0.3 1.5 0.0 0.0 0.0 0.0 0.0 0.0 15.7 0.0 14.0 10.3 4.4 0.0 2.1 0.0 0.0 0.0 0.0 14.6 15.0 1.0 2.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.1 0.0 5.1 0.0 0.0 0.0 0.0 0.0 0.0 18.4 7.5 36.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 3.4 2.2 9.0 3.3 0.0 0.0 0.0 0.0 2.6 2.1 0.0 9.2 2.3 2.0 0.0 0.0 0.0 0.0 0.0 11.0 8.4 2.4 8.2 1.5 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2 26.9 0.3 0.0 0.0 0.0 0.0 0.0 0.0 1.3 16.6 3.8 8.3 6.0 0.0 0.0 0.0 0.0 0.0 0.0 4.7 13.6 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 9.0 0.0 0.0 0.0 0.0 0.0 0.0 19.0 0.9 59.9 15.7 33.0 0.0 2.7 0.0 0.0 0.0 15.6 0.3 0.9 32.3 7.6 0.0 0.0 4.0 0.0 0.0 18.9 44.2 12.3 2.6 7.7 0.2 1.5 0.0 0.0 0.0 0.0 6.0 4.1 45.0 8.5 27.5 0.2 0.0 0.0 0.0 0.0 0.0 8.0 0.5 4.3 0.0 0.3 2.2 2.5 0.0 0.0 0.0 0.0 0.0 2.0 7.5 0.0 0.3 0.1 0.0 0.0 0.0 0.0 0.0 12.3 4.3 0.0 7.9 0.0 16.8 0.0 0.0 0.0 0.0 0.0 3.7 1.0 7.5 0.0 8.2 0.0 0.0 0.0 0.0 0.0 1.2 7.5 0.0 0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 38.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 3.8 45.5 0.0 --40.1 0.0 0.0 0.0 0.0 0.0 0.0 4.8 5.2 43.1 --2.4 --0.0 --0.0 0.0 --5.2 --4.0 1964-01 1964-02 1964-03 1964-04 1964-05 1964-06 1964-07 1964-08 1964-09 1964-10 1964-11 1964-12 3.7 9.0 0.7 0.0 0.0 1.8 0.0 0.0 0.0 0.0 3.9 9.2 14.7 0.0 0.0 0.0 0.0 0.0 1.3 0.0 1.2 32.8 4.5 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 5.7 1.8 0.2 14.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 35.3 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 31.5 0.0 7.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.3 25.9 6.0 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 21.7 0.0 --0.0 --0.0 0.0 --0.0 7.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.4 59.0 7.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 5.5 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1 12.4 2.3 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.4 15.2 13.9 7.8 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 5.3 0.0 0.9 0.0 0.0 0.5 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 1.9 4.0 13.9 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.9 18.5 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.1 0.0 15.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 39.1 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.6 2.3 0.0 0.0 0.0 3.6 0.0 0.0 0.1 15.2 15.9 3.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.9 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.6 7.0 18.7 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 6.2 0.0 0.0 0.0 0.0 7.3 0.6 4.4 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 23.0 46.7 30.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 9.8 1965-01 1965-02 1965-03 1965-04 1965-05 1965-06 1965-07 1965-09 1965-10 1965-11 1965-12 5.4 21.9 10.4 9.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 3.6 38.0 4.4 28.9 9.7 0.0 0.7 0.0 0.0 0.0 2.1 11.3 34.9 2.9 9.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.8 11.2 31.5 13.8 0.0 0.0 0.0 0.0 0.2 0.0 0.0 30.8 18.3 23.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 1.2 2.7 13.6 0.0 0.3 0.0 0.0 0.0 0.0 0.0 16.8 0.1 4.7 23.7 0.0 0.0 0.4 0.0 0.0 0.0 0.0 10.0 8.0 21.7 9.5 56.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.3 0.0 0.1 0.9 0.0 0.3 0.0 0.1 0.0 0.0 12.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.7 2.6 14.1 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.7 2.3 11.9 15.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 25.9 3.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.4 6.6 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 4.3 4.3 0.0 0.0 0.0 0.0 0.0 0.0 17.6 2.3 1.8 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 40.4 0.7 31.5 20.4 1.1 0.0 0.0 0.0 0.0 0.0 0.0 12.1 60.9 6.9 --40.8 0.5 0.0 0.0 0.0 0.0 0.0 0.0 47.4 7.5 --2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 --0.2 --0.0 --0.0 --0.0 0.6 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 8.7 1.1 33.2 3.7 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.1 1.5 14.1 6.9 0.0 0.1 1.1 0.5 0.0 0.0 19.8 0.0 0.2 3.0 0.2 0.0 0.0 0.0 2.0 0.0 0.0 5.1 14.5 9.4 0.0 0.2 0.0 0.0 0.0 0.0 0.0 2.7 0.0 49.5 0.3 0.0 0.0 0.0 0.0 0.0 0.1 2.4 3.4 0.0 0.2 2.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 4.2 0.0 5.7 4.2 0.0 1.9 0.0 0.0 0.0 0.0 0.0 12.4 4.9 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 11.7 2.3 0.0 4.3 0.0 0.3 0.0 0.0 0.0 0.9 0.0 0.0 23.5 1.3 --0.0 --0.0 0.0 --0.0 1966-01 1966-02 1966-03 1966-04 1966-05 1966-06 1966-07 1966-08 1966-09 1966-10 1966-11 45.5 33.2 49.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.8 10.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 3.2 17.4 34.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.2 2.0 0.6 2.2 0.0 0.0 0.0 0.0 3.2 5.4 0.6 0.3 6.1 10.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.6 3.7 0.1 3.4 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 34.3 15.4 1.4 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.6 9.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.8 4.0 55.0 1.4 2.8 0.0 5.5 0.0 0.0 0.0 0.0 0.0 22.1 15.6 0.0 5.6 39.8 1.4 17.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 10.8 0.3 0.1 7.8 0.0 0.0 0.0 0.0 0.0 8.4 10.1 44.5 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 13.5 0.3 4.3 0.0 0.0 7.4 2.7 0.0 0.0 0.0 10.1 8.8 30.6 50.3 0.2 0.0 0.0 5.8 0.0 0.0 0.0 0.0 2.9 0.0 --0.0 0.0 0.6 0.0 0.0 0.0 0.0 25.6 25.7 8.4 --12.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.5 8.1 9.5 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.8 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.4 13.6 0.2 1.9 0.0 0.0 0.0 0.0 0.0 0.0 8.5 0.0 0.0 19.0 0.0 0.1 0.0 0.0 0.0 0.0 3.3 48.8 4.8 0.0 32.7 0.0 0.0 0.0 0.0 0.0 0.0 2.7 8.9 0.0 18.5 15.1 0.0 0.0 0.0 0.0 0.0 0.0 0.8 1.5 2.7 0.0 17.8 0.0 0.0 0.0 0.0 0.0 0.0 4.7 13.3 2.5 18.4 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 2.4 0.0 0.0 0.0 0.0 0.0 0.0 4.9 0.8 2.9 13.6 41.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.1 1967-01 1967-02 1967-03 1967-04 1967-05 1967-06 1967-07 1967-08 1967-09 1967-10 1967-11 0.0 4.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 13.9 11.4 1.2 0.5 9.4 0.0 0.0 0.0 0.0 0.0 10.1 0.0 27.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 23.3 14.6 0.2 0.0 0.7 0.0 0.0 0.1 0.0 0.0 0.0 0.3 17.4 0.4 13.0 2.6 0.0 0.0 0.1 0.0 0.0 0.0 0.0 23.2 0.5 6.0 28.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 5.1 2.4 28.6 8.1 27.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 8.4 0.0 10.3 3.1 28.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 32.5 0.0 0.2 1.3 1.0 0.3 0.0 0.0 0.0 0.0 24.1 6.4 0.1 0.0 1.0 0.0 0.0 0.0 6.7 18.5 0.0 5.2 16.6 0.0 2.1 0.0 0.0 0.4 0.0 0.0 0.4 0.0 5.4 0.0 35.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.9 22.8 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.7 0.2 20.5 1.9 7.9 0.0 0.0 0.5 0.0 0.0 0.0 0.0 20.9 0.0 --3.6 67.3 4.7 0.0 0.0 0.0 0.0 7.6 4.9 0.5 --5.7 0.1 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.4 --0.0 --0.0 0.0 --0.8 --0.0 0.5 11.6 0.0 4.6 0.0 0.0 0.0 0.0 0.0 0.0 25.9 0.0 2.3 3.7 33.0 0.0 0.0 0.0 0.0 0.0 4.4 0.0 16.3 0.0 5.7 3.7 0.0 0.0 0.0 0.0 0.0 0.0 5.1 27.5 0.5 4.5 1.3 0.0 0.0 0.0 0.0 0.0 1.4 0.2 0.0 2.5 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.0 1.7 0.0 11.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 3.7 0.2 0.0 0.9 0.9 18.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.2 0.2 0.0 2.0 5.0 0.0 0.0 0.0 0.0 4.2 4.4 5.6 33.2 5.9 3.7 0.0 0.0 0.1 0.0 0.0 35.9 0.0 0.0 0.6 0.0 0.1 0.0 0.0 0.0 0.0 0.0 3.8 0.0 27.9 5.2 9.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 10.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.9 0.6 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 3.9 1968-01 1968-02 1968-03 1968-04 1968-05 1968-06 1968-07 1968-08 1968-09 1968-10 1968-11 21.5 9.7 0.0 1.6 0.0 0.2 0.0 0.0 0.0 0.0 25.1 2.4 16.4 0.3 0.0 0.0 0.0 0.0 0.0 4.9 0.6 52.1 0.0 5.5 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 16.3 0.8 41.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.9 0.0 0.0 8.4 0.2 0.0 4.9 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2 4.6 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 10.0 11.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 38.4 0.0 0.0 2.7 0.0 0.0 0.0 0.0 8.7 0.2 14.6 37.0 0.0 0.0 0.0 0.0 0.0 11.1 0.0 3.0 1.0 9.3 0.3 0.1 0.0 0.0 0.0 0.0 4.1 9.2 0.4 2.6 41.8 1.5 0.0 0.0 0.0 0.0 0.0 0.0 7.2 20.3 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.6 0.9 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 2.4 14.5 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 13.9 21.0 0.0 5.4 0.0 0.0 0.0 0.0 0.0 6.6 1.2 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4 0.0 1.1 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.9 2.6 0.0 19.2 0.0 0.0 0.0 0.0 1.1 1.9 25.7 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.5 0.1 0.5 0.0 0.0 0.3 0.0 0.0 0.0 0.0 22.5 8.2 0.0 3.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 --0.3 --0.0 --0.0 --0.0 --56.6 0.0 1.4 1.4 0.0 0.0 6.0 0.2 0.0 0.0 0.0 0.0 2.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.3 2.3 0.1 0.0 5.8 0.0 0.0 0.0 0.0 0.0 7.3 15.0 13.2 10.3 8.3 0.0 0.0 0.0 0.0 0.0 0.3 34.8 0.1 4.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 3.6 2.5 0.0 0.0 0.0 0.0 0.0 0.1 7.4 40.3 8.0 0.0 0.6 0.0 0.0 0.0 0.0 1.7 0.7 0.0 10.9 8.7 2.1 26.0 0.0 0.0 0.0 0.0 0.0 0.0 22.0 9.2 21.0 0.9 5.3 0.0 0.0 0.0 0.0 0.0 113.6 2.1 0.5 7.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.4 10.7 --6.7 --0.0 --0.0 --0.0 --0.3 18.9 0.0 5.5 0.1 0.0 0.1 0.0 0.2 0.0 0.1 9.0 7.7 8.8 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.5 7.9 1.1 13.9 45.0 0.0 0.0 0.0 0.0 0.0 0.0 42.9 1.5 12.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 4.4 11.6 4.9 5.0 0.5 1.1 0.0 0.0 0.0 0.0 0.0 1.2 2.9 2.3 0.0 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 7.6 0.1 0.0 0.0 0.0 1.6 0.0 0.0 1.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4 5.9 0.0 0.8 0.0 0.0 0.0 0.0 0.0 19.2 16.8 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.4 17.9 33.1 6.4 1.0 50.4 0.0 0.0 0.0 0.0 0.0 3.6 23.4 0.0 0.7 0.0 0.0 0.0 0.0 0.0 25.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 88.5 7.3 0.9 5.9 0.0 0.0 0.0 0.0 0.0 0.0 33.7 0.0 1.4 0.0 0.4 0.0 2.8 0.0 0.0 0.0 20.8 4.9 9.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.8 23.7 1.2 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.3

7.8 1970-01 1970-02 1970-03 1970-04 1970-05 1970-06 1970-07 1970-08 1970-09 1970-10 1970-11 16.0 28.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 16.6 13.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.1 11.9 6.0 0.0 1.7 0.0 0.0 0.0 0.0 27.8 45.0 0.3 11.6 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.4 16.3 6.1 0.0 0.0 0.0 0.0 0.0 0.0 19.1 52.2 16.7 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.6 9.6 13.2 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 33.0 1.6 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.0 0.0 1.4 2.8 12.6 0.0 0.0 0.0 0.0 0.0 0.8 5.7 0.0 6.4 17.6 13.7 0.0 0.0 0.0 0.0 0.0 0.0 0.6 6.9 0.0 0.0 15.8 0.0 0.0 0.0 0.0 0.0 0.0 14.7 0.0 39.6 8.8 0.0 0.0 0.0 0.0 0.0 11.1 9.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 7.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.7 6.8 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 43.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.5 0.0 10.5 6.5 0.0 0.0 0.0 0.0 0.0 1.5 57.2 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8 0.0 0.7 0.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.4 5.7 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 7.5 0.0 --0.0 --0.0 0.0 --2.8 --1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.7 40.0 6.1 --15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 61.2 4.8 1971-01 1971-02 1971-03 1971-04 1971-05 1971-06 1971-07 1971-08 1971-09 1971-10 1971-11 42.6 0.0 15.3 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.5 0.0 0.0 0.0 0.0 0.0 0.0 11.1 18.7 0.5 39.3 0.0 4.6 0.1 0.9 0.0 0.0 32.6 0.5 17.1 4.8 2.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.7 3.8 43.6 3.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 7.8 16.2 18.4 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.5 0.0 3.1 17.7 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 1.1 7.8 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 13.0 2.9 0.0 0.0 0.0 0.0 0.0 17.4 34.5 6.0 --15.7 --0.0 --0.0 0.0 --0.0 7.6 1.8 0.3 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.8 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 2.3 26.3 0.0 0.2 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.2 4.4 3.7 0.0 0.2 0.0 0.0 0.4 0.0 0.0 0.0 0.0 13.5 45.3 2.5 0.0 8.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.6 2.0 3.5 0.0 1.8 0.0 0.0 0.0 0.0 0.0 13.6 16.6 12.1 20.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 1.0 3.0 11.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 4.0 6.3 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 4.7 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 8.0 4.5 4.4 9.1 0.0 0.0 0.0 0.0 0.0 7.0 0.0 7.0 3.2 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.6 0.2 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.3 15.9 0.3 0.0 0.2 1.7 0.0 0.0 0.0 0.0 9.7 0.0 8.6 0.0 0.3 0.0 0.0 0.0 0.0 0.0 2.0 9.9 2.5 3.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0 4.7 0.3 48.9 0.0 2.5 0.0 0.0 0.0 0.0 0.2 0.0 8.7 16.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 8.0 0.0 16.2 0.0 --7.2 0.0 0.0 0.0 0.0 0.0 0.0 7.2 0.0 12.9 29.5 0.0 7.9 0.0 0.0 0.0 0.0 0.0 0.0 33.7 13.1 0.0 0.1 0.0 2.8 0.0 0.0 1.7 0.0 0.0 1972-01 1972-02 1972-03 1972-04 1972-05 1972-06 1972-07 1972-08 1972-09 1972-10 1972-11 1972-12 0.3 0.2 5.2 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 6.6 0.0 19.9 0.0 4.4 0.0 0.0 0.0 0.0 0.0 0.2 17.4 0.4 0.0 0.0 22.4 0.5 0.0 0.0 0.0 0.0 0.3 2.0 1.1 0.0 12.7 0.0 2.1 0.0 0.0 0.0 0.0 0.2 43.2 6.5 0.0 2.2 0.4 0.0 0.4 0.0 0.0 0.0 0.0 1.0 15.8 0.0 8.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 13.2 3.6 0.0 4.7 0.0 0.0 0.0 0.0 0.0 33.4 0.0 6.8 1.9 7.4 0.0 0.2 0.0 0.0 0.5 0.0 0.0 0.0 5.5 0.9 0.3 4.8 7.8 0.4 0.0 0.5 0.0 8.0 2.3 3.4 3.9 1.6 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 2.0 3.2 0.0 0.9 6.6 0.0 0.0 0.0 0.0 0.0 0.3 0.2 0.0 3.7 0.0 0.0 0.0 0.0 0.0 0.0 5.6 44.1 0.0 0.3 0.5 0.0 0.0 0.0 1.3 0.0 13.9 6.9 0.0 16.7 0.0 0.0 0.0 0.0 0.0 0.0 18.5 6.4 12.4 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 1.9 19.3 1.9 0.0 1.7 0.0 0.0 1.1 0.0 0.0 0.0 13.3 10.8 4.3 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 18.3 0.0 0.0 11.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 17.5 0.0 0.2 0.1 0.0 0.0 0.0 0.0 17.2 4.0 36.8 34.0 0.0 4.3 0.0 0.0 0.0 0.0 0.0 60.2 26.1 1.6 20.6 1.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 10.7 0.0 11.8 11.7 2.1 0.3 0.0 0.0 0.0 0.0 0.0 0.1 3.5 12.3 13.4 30.3 29.3 6.9 0.0 0.0 0.0 0.0 0.0 0.0 1.8 13.7 1.3 0.4 2.8 2.6 0.0 0.0 0.0 1.6 15.0 0.8 45.6 0.0 0.0 2.3 0.0 0.0 0.0 0.0 3.0 6.6 0.0 12.4 0.0 0.0 17.3 0.0 0.0 0.4 0.0 2.0 1.8 20.5 34.9 --0.0 0.3 11.0 0.0 0.0 0.0 0.0 0.6 1.9 11.7 --0.2 --0.0 --0.0 --0.0 --0.0 1973-01 1973-02 1973-03 1973-04 1973-05 1973-06 1973-07 1973-08 1973-09 1973-10 1973-11 1973-12 10.2 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.0 22.3 4.1 21.4 6.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.3 1.8 11.8 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.8 0.5 21.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0 16.0 2.6 0.0 0.0 10.3 0.0 0.0 0.0 0.0 0.0 0.0 11.7 0.4 11.3 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.4 12.3 14.2 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 5.3 7.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.9 4.8 13.6 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 --0.0 --0.0 0.0 --0.6 --10.3 0.5 15.4 1.7 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.0 7.9 26.0 0.0 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 13.4 0.0 18.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 21.7 2.5 16.7 0.1 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 1.0 5.2 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.0 0.0 2.3 0.0 0.0 0.0 0.0 0.0 40.0 0.0 3.7 36.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 34.5 10.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 17.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 0.0 0.6 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 1.0 0.7 0.0 1.2 0.0 0.0 0.0 0.0 0.0 1.9 0.0 6.6 0.0 0.9 0.0 0.0 0.0 0.0 2.3 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 34.1 0.0 0.0 0.1 0.0 0.0 0.0 4.7 1.6 0.0 4.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 1.1 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.3 3.7 0.0 1.3 0.0 2.0 0.0 0.0 0.0 0.0 4.5 0.0 3.9 1.0 0.1 2.0 0.0 0.0 0.0 0.0 0.0 0.0 25.2 1974-01 1974-02 1974-03 1974-04 1974-05 1974-06 1974-07 1974-08 1974-09 1974-10 1974-11 2.4 23.6 0.0 0.0 36.9 0.0 0.0 0.0 0.0 41.7 12.6 2.4 7.2 0.0 14.2 0.0 0.0 0.0 0.0 0.0 14.0 18.5 9.8 24.3 0.0 0.0 0.0 0.0 0.0 2.9 0.0 3.9 25.7 16.5 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 12.5 5.7 22.8 0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.1 8.2 1.1 0.4 8.2 9.1 0.0 0.6 0.0 0.0 0.0 0.0 0.0 8.8 2.1 23.5 24.4 0.5 0.0 3.9 0.0 0.0 0.0 1.2 30.8 0.4 --57.3 0.0 0.0 4.3 0.0 0.0 0.0 0.0 3.0 0.2 5.7 7.6 0.0 0.0 0.0 0.0 13.2 0.0 9.6 25.2 6.2 --6.4 --0.0 --0.0 --1.6 0.4 17.4 0.5 17.0 6.2 0.0 0.0 0.0 2.5 0.0 0.3 22.2 12.9 6.0 31.3 1.5 0.0 1.0 0.0 0.0 0.0 0.0 1.3 0.0 15.9 13.4 4.2 0.0 13.1 0.0 0.0 0.0 0.0 23.2 14.7 29.9 6.1 0.7 0.0 5.4 0.0 0.1 0.0 2.8 3.2 0.7 17.9 3.8 3.1 3.2 0.0 0.0 0.0 0.0 0.0 0.0 20.3 18.6 3.1 0.8 0.0 25.9 0.0 0.0 0.0 1.1 0.0 7.7 38.0 9.7 10.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.2 2.1 0.0 26.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.5 3.1 12.4 16.2 0.2 0.0 0.0 0.0 0.0 19.5 0.0 5.4 29.8 7.4 0.7 13.5 0.0 0.0 0.0 0.0 0.0 17.4 0.0 16.7 0.0 1.7 3.7 0.0 0.7 0.0 0.0 0.0 0.0 10.3 3.0 2.2 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 17.6 3.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 7.4 5.5 1.5 0.0 0.0 0.2 0.6 0.0 0.0 0.0 0.0 11.4 0.1 0.0 2.5 42.1 8.6 0.0 0.0 0.0 0.0 0.0 0.0 6.0 1.6 9.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.1 2.5 19.8 0.0 0.5 0.0 0.0 0.0 0.0 0.0 9.9 0.8 0.9 5.9 9.5 29.1 0.0 1.0 0.0 0.0 0.0 0.0 27.1 3.1 7.4 0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.4 0.6 1975-01 1975-02 1975-03 1975-04 1975-06 1975-06 1975-07 1975-08 1975-09 1975-10 17.6 0.3 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 19.9 0.0 0.0 13.5 2.8 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.2 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 1.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.8 0.0 3.6 1.6 0.0 0.0 0.0 0.0 0.0 5.4 18.4 6.2 14.7 2.1 0.0 0.0 0.0 0.0 0.0 0.0 1.8 1.1 5.8 3.7 0.0 17.2 0.0 0.0 0.0 0.0 0.0 0.1 11.8 4.5 25.2 0.0 0.3 0.0 0.6 0.0 0.0 0.0 0.0 4.2 76.7 7.4 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.2 0.0 --0.0 0.8 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 --0.0 --0.0 0.0 --0.0 0.0 0.0 16.4 0.0 26.5 0.0 0.0 0.0 0.0 0.0 4.2 0.6 2.6 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 23.6 60.3 6.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.1 8.5 14.5 0.0 1.7 0.0 0.0 3.0 0.0 0.0 0.2 0.7 15.1 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.9 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.4 1.6 0.0 0.0 0.0 0.5 0.0 8.8 8.6 0.0 2.5 5.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 5.8 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 15.1 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.2 0.0 4.2 1.5 0.0 0.0 0.0 0.0 0.0 1.2 4.2 2.6 13.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.8 3.5 0.4 65.7 0.0 0.0 0.0 0.0 0.0 5.5 24.3 0.0 31.7 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.2 0.0 63.1 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.8

16.8 4.0 1.0 0.0 1.1 0.0 0.0 0.0 0.0 59.9 4.3 33.7 30.4 10.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 16.2 1.3 0.0 0.0 0.5 0.0 0.0 0.0 0.0 2.2 0.4 2.8 0.1 0.0 0.0 0.1 0.0 2.3 0.0 0.0 1976-06 1976-07 1976-08 1976-09 1976-10 1976-11 1976-12 0.0 --12.5 1977-01 1977-02 1977-03 1977-04 1977-05 1977-06 1977-07 1977-08 1977-09 1977-10 1977-11 0.5 21.2 3.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 2.6 1.6 11.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 5.2 0.0 2.8 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 73.6 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.9 0.4 25.5 6.8 17.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.4 0.0 1.8 0.2 0.6 3.4 0.0 0.3 0.0 0.0 0.0 0.0 4.4 4.0 0.0 1.5 2.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.7 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 1.1 0.0 0.6 16.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.1 0.0 5.3 0.0 42.8 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 18.9 1.2 0.0 0.0 0.0 3.4 0.0 4.7 13.0 10.5 0.0 1.5 0.0 0.0 0.0 0.0 5.1 0.0 10.3 8.4 3.0 0.7 6.4 0.0 0.0 0.0 0.0 1.3 0.0 10.8 7.4 4.3 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 12.2 13.3 9.1 6.0 0.4 0.7 0.0 0.0 0.0 0.0 0.0 1.4 0.1 39.2 3.4 0.0 0.0 0.0 0.0 0.0 0.0 9.5 16.2 0.0 1.5 0.7 0.0 0.0 0.0 0.0 0.0 0.0 9.9 11.4 1.8 48.9 0.3 1.5 0.0 0.0 0.2 0.0 0.0 0.5 5.1 17.9 13.6 14.1 0.0 0.0 0.0 0.0 0.0 0.0 4.5 1.6 2.7 1.5 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.6 --0.8 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.1 0.0 0.0 0.0 0.0 0.0 31.4 14.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.2 28.5 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 --0.0 0.0 --0.0 --33.2 5.0 4.0 17.8 0.7 0.0 0.7 0.0 0.0 0.0 0.0 0.0 5.2 --3.6 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 1978-01 1978-02 1978-03 1978-04 1978-05 1978-06 1978-07 1978-08 1978-09 1978-10 1978-11 1978-11 3.1 10.2 0.0 3.5 0.0 0.0 0.0 0.1 0.0 0.0 2.1 0.0 0.0 39.6 4.8 0.0 0.0 0.0 0.0 0.0 0.0 1.4 3.5 11.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.7 0.0 3.9 0.0 0.1 0.0 0.1 0.0 0.1 0.0 6.1 0.8 13.0 1.5 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 3.2 0.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 3.4 11.0 8.1 20.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.7 13.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.7 0.5 9.0 18.6 16.1 0.0 0.0 0.0 0.0 0.0 0.0 0.3 17.7 30.0 0.0 0.5 1.2 0.0 0.0 0.0 0.0 0.0 0.0 4.2 22.9 0.0 14.7 0.0 0.0 0.0 0.0 0.0 0.3 19.9 5.4 8.5 2.7 0.8 0.0 0.2 0.0 0.0 0.0 0.0 0.0 8.0 95.2 8.3 1.0 0.0 11.5 0.0 2.0 0.0 2.0 0.0 37.1 12.9 10.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 24.6 0.0 8.4 0.0 15.5 0.0 0.0 0.0 0.0 0.0 0.0 6.7 4.9 2.0 0.0 22.2 9.5 0.0 0.0 0.0 0.0 0.0 0.2 3.4 2.5 22.3 4.4 0.9 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.5 13.4 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 0.3 0.0 0.5 0.9 0.0 0.0 0.0 0.0 2.8 47.9 0.9 11.7 11.4 0.0 0.0 0.0 0.0 0.0 4.4 11.2 15.1 6.4 0.0 30.8 0.0 0.0 0.0 0.0 0.0 0.3 0.0 6.2 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.3 10.4 2.6 0.0 5.7 2.0 0.0 0.0 0.0 0.0 0.0 4.9 6.0 12.5 0.7 0.7 0.0 0.0 0.0 0.0 0.0 0.0 10.2 2.0 0.9 7.5 2.3 0.0 0.0 0.0 0.0 2.9 0.0 13.7 0.0 0.3 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.5 0.0 3.6 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.7 0.0 --3.8 0.4 0.0 0.0 0.0 0.0 0.0 2.3 22.0 5.2 --2.8 --0.0 --0.0 0.0 --40.4 --1979-01 1979-02 1979-03 1979-04 1979-05 1979-06 1979-07 1979-08 1979-10 1979-11 1979-12 2.3 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 10.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 1.4 14.6 0.7 0.0 5.1 0.7 0.0 0.0 0.0 0.0 0.0 2.9 0.2 3.6 2.9 1.5 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 46.8 11.9 2.8 0.7 0.0 0.0 0.0 0.0 0.0 4.2 0.0 0.0 --27.6 0.2 0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 --44.5 0.0 0.0 0.0 0.0 0.0 0.0 18.2 0.6 0.0 --38.7 --0.0 --0.0 --0.0 --9.9 2.8 17.2 2.1 0.7 21.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 10.1 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 0.4 14.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.0 1.2 16.3 82.4 0.0 0.0 0.0 0.0 0.0 0.0 6.5 17.2 0.0 0.0 31.5 0.0 0.0 0.2 0.0 1.6 0.0 0.0 11.6 4.8 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 9.0 3.3 1.2 0.0 12.1 10.5 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 17.7 0.0 1.1 0.0 1.3 0.0 0.0 0.0 0.0 0.0 5.2 12.3 15.5 9.3 0.0 0.3 0.0 0.0 0.0 0.0 57.3 0.0 8.7 6.7 14.9 2.2 0.0 0.0 0.0 0.0 7.0 20.8 2.6 0.3 56.7 0.3 1.8 10.2 0.0 0.0 0.0 0.0 0.0 11.9 0.0 2.3 0.0 0.0 0.0 0.0 0.0 0.0 1.8 4.6 0.0 0.3 18.2 7.4 0.0 0.0 2.0 0.0 0.0 0.0 0.0 6.6 3.5 2.1 10.6 4.6 0.0 0.0 0.0 0.0 0.0 0.3 0.4 3.4 0.6 10.5 0.0 0.0 0.0 0.0 0.0 0.0 1.6 7.9 0.0 1.5 0.0 0.0 0.0 0.0 0.0 16.0 0.0 0.5 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.2 0.3 8.7 0.7 2.3 0.0 0.0 0.0 0.0 0.0 0.0 16.6 3.7 5.9 3.7 0.0 0.0 0.0 0.0 0.0 0.0 3.5 48.4 7.9 7.0 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.4 0.0 3.1 0.0 0.0 0.0 0.0 0.0 2.6 0.0 1980-01 1980-02 1980-03 1980-04 1980-05 1980-06 1980-07 7.1 0.0 53.0 6.7 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 10.6 0.5 0.0 0.0 0.0 0.0 7.0 0.0 0.0 27.4 4.1 0.0 0.0 0.0 0.0 0.0 0.0 9.1 8.5 12.7 50.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.6 9.8 14.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.2 1.4 --2.9 0.0 0.0 0.0 0.0 24.3 0.0 0.0 29.2 4.1 --2.3 --0.0 --0.0 0.0 --1.3 --13.6 1.2 10.8 5.0 4.5 0.0 0.0 0.0 0.0 0.0 0.0 14.5 37.1 24.2 1.4 6.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.7 14.3 14.7 65.9 2.3 0.0 0.0 0.2 0.0 0.0 0.0 1.0 2.6 0.8 3.9 3.5 0.0 0.0 0.5 0.0 6.6 3.5 3.9 0.2 10.7 0.0 0.5 0.0 0.9 0.0 1.4 36.6 0.0 0.0 25.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 56.3 25.3 23.4 44.4 0.0 0.0 0.0 0.2 0.0 0.0 0.0 37.9 9.0 0.3 5.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.1 5.7 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 31.0 2.3 0.0 35.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.9 0.0 0.0 0.0 0.0 0.0 3.1 3.3 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.2 15.6 0.6 0.5 0.0 0.0 0.0 0.0 5.0 0.0 1.8 3.5 0.0 0.2 0.0 0.0 0.0 0.0 0.0 14.4 8.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 34.0 5.0 7.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.8 0.0 4.0 8.5 0.0 0.0 0.0 0.0 0.0 4.6 0.0 10.8 24.2 8.4 1.1 0.0 0.0 0.0 0.0 0.0 1.7 0.0 17.5 2.2 4.1 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 0.5 10.3 1.5 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.6 0.0 0.0 4.2 0.0 0.4 0.0 0.0 0.0 0.0 46.9 16.7 0.0 0.0 0.0 0.0 0.0 0.6 8.0 0.0 2.9 0.3 26.2 0.0 0.1 0.0 0.0 0.0 4.0 0.9 1980-07 1980-08 1980-09 1980-10 1980-11 1980-12 1981-01 1981-02 1981-03 1981-04 1981-05 1981-06 1981-07 1981-08 1981-09 1981-10 1981-11 35.9 10.5 17.9 0.2 6.4 0.0 0.0 0.0 0.0 2.1 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 18.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 2.1 7.8 28.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.7 0.0 5.5 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.2 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 23.1 0.5 0.0 6.8 0.0 0.0 0.0 0.0 0.0 0.0 9.7 3.7 52.7 2.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 56.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.1 0.0 18.4 0.4 0.0 0.0 0.0 0.0 0.0 11.8 33.8 0.1 1.6 31.2 6.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 31.6 47.7 13.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39.1 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 10.5 16.9 14.8 3.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 5.4 16.5 21.2 18.1 --1.1 --0.0 --0.0 0.0 --8.0 5.4 0.0 0.0 2.6 0.0 0.0 0.0 0.0 3.9 1.8 0.0 1.4 0.0 9.6 0.0 0.0 0.0 0.2 0.0 7.9 0.8 0.0 0.5 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.6 0.5 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.5 12.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.6 0.0 2.8 12.0 0.0 0.0 0.0 0.0 0.0 17.7 0.2 0.0 1.9 9.2 10.9 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 3.6 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.4 9.0 0.5 2.7 0.0 0.0 0.0 0.0 1.7 0.0 1.4 0.0 0.6 0.9 0.0 0.0 0.0 0.0 8.2 5.4 8.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 18.5 8.0 37.2 0.0 3.1 0.0 0.0 0.0 0.0 0.0 15.9 10.4 1982-01 1982-02 1982-03 1982-04 1982-05 1982-06 1982-07 1982-08 1982-09 1982-10 1982-11 1982-12 20.4 0.0 60.6 5.3 2.6 0.0 1.6 0.0 0.0 0.0 0.0 0.7 0.0 2.0 12.8 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 34.6 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.1 0.8 0.0 0.0 0.0 4.9 0.0 8.9 20.5 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 55.0 5.5 0.0 5.4 6.3 3.0 0.0 0.0 0.0 0.0 0.3 13.3 0.0 0.0 4.0 1.9 0.0 0.0 0.0 0.0 0.0 10.4 10.0 3.2 15.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.4 0.7 0.0 4.9 13.7 36.8 0.0 0.0 0.0 0.0 0.0 1.0 23.5 0.0 14.0 3.0 8.2 0.0 0.0 0.0 0.0 0.0 1.2 0.0 10.8 0.1 2.2 14.5 0.0 0.0 0.3 0.0 0.0 0.0 12.5 15.3 0.2 5.8 53.1 5.6 0.0 0.2 0.0 0.0 0.0 33.1 35.5 0.0 18.2 0.5 8.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3 2.2 0.8 1.0 72.7 0.0 2.2 0.0 0.0 0.0 7.7 20.3 6.1 15.7 0.0 1.5 0.0 0.4 0.0 0.0 0.0 19.1 27.1 17.6 0.0 0.0 41.4 0.0 0.0 0.0 0.0 0.0 12.5 45.0 9.6 29.2 0.0 0.0 0.3 0.3 0.0 4.3 11.1 8.6 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 9.0 7.8 0.0 34.3 0.5 0.0 0.0 0.0 0.0 0.0 0.0 21.5 0.0 12.9 2.4 0.0 1.5 0.0 0.9 0.0 3.9 14.7 0.4 0.0 17.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 --16.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 4.0 70.3 --1.2 0.0 0.0 0.0 0.0 0.0 0.0 12.2 4.1 0.1 8.9 --0.0 --0.0 0.0 --1.0 9.9 0.0 3.4 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.3 1.2 0.0 0.0 0.0 0.0 0.0 0.0 4.5 0.7 0.0 30.8 5.9 0.1 0.0 0.0 0.0 0.0 0.1 2.1 3.0 0.0 15.5 0.0 0.3 0.0 0.0 0.5 0.0 0.1 0.9 0.0 0.6 0.0 0.0 0.0 0.0 0.0 4.1 5.7 0.0 3.3 0.0 0.0 0.0 0.0 0.0 2.4 0.0 2.6 1983-01 1983-02 1983-03 1983-04 1983-05 1983-06 1983-07 1983-08 1983-09 1983-10 1983-11 1983-12 5.4 10.9 3.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0 10.0 17.1 --0.0 0.0 0.3 0.3 0.0 0.0 0.0 16.8 0.3 4.2 --0.0 --0.0 0.0 --0.0 --28.4 29.0 28.7 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 17.9 28.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.7 0.9 12.2 0.4 0.0 4.6 14.8 0.0 0.0 0.0 0.0 0.0 36.6 21.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 28.4 14.2 2.5 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 5.2 36.8 0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 53.7 6.5 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.5 23.8 0.0 0.0 0.1 0.0 0.0 0.3 0.0 0.0 3.4 0.6 --0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 3.8 4.2 0.0 3.4 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 3.3 10.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 21.6 16.9 14.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 4.2 0.1 10.6 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 22.1 14.3 0.0 3.4 0.0 0.0 0.0 0.0 0.0 16.3 2.5 0.0 1.8 0.0 0.5 0.0 0.0 0.0 0.0 0.0 15.2 5.7 9.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.2 1.4 15.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.6 3.6 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.2 0.0 2.8 0.0 0.0 0.0 0.5 0.0 0.0 1.2 0.3 0.8 0.0 15.1 0.0 0.0 0.3 0.0 0.0 1.2 0.0 5.9 9.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 16.6 3.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 15.8 0.0 4.9 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 0.0 4.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 9.0 5.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.5 5.2 0.0 0.8 0.0 0.0 0.2 0.0 0.0 0.0 0.0 3.0 6.1 1984-01 1984-02 1984-03 1984-04 1984-05 1984-06 1984-07 1984-09 1984-10 1984-11 1984-12 58.4 4.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 1.3 13.8 2.3 9.6 8.4 0.0 0.5 0.0 0.0 0.0 0.0 0.0 15.0 8.4 24.9 0.0 0.8 1.3 0.0 0.0 0.0 0.0 21.5 0.0 14.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0 33.2 25.4 0.0 30.9 0.2 0.0 0.0 0.0 0.0 0.0 0.0 17.0 13.8 0.0 --17.8 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.8 12.7 0.5 18.2 2.7 1.8 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 1.5 2.4 2.1 7.0 0.0 0.0 2.0 0.0 0.0 10.0 14.2 9.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.1 1.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 61.8 1.1 0.0 1.0 0.0 1.2 0.0 0.0 0.0 0.0 9.2 30.5 27.5 0.0 16.6 0.0 0.3 0.2 0.0 0.0 0.0 0.4 0.0 1.2 0.0 0.0 0.0 0.0 23.7 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 16.8 11.0 2.1 0.0 0.0 0.0 0.0 0.0 0.0 2.9 14.6 11.9 0.3 0.4 0.1 0.0 0.0 2.0 0.0 0.0 0.7 0.0 0.0 0.0 2.8 0.0 17.8 0.0 0.0 0.7 0.0 0.0 0.0 0.0 9.2 3.9 0.7 2.5 0.0 0.0 0.6 0.0 0.0 0.0 2.0 0.1 0.5 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4 6.1 17.6 0.0 0.1 0.0 0.0 0.0 0.0 2.2 1.8 5.6 2.1 3.4 0.0 0.0 0.0 0.0 0.0 1.1 7.8 0.0 11.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 14.3 11.4 0.0 20.4 3.4 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 2.7 8.2 0.0 12.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.4 0.0 2.3 1.7 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7 15.4 0.0 6.5 6.7 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 3.2 0.4 0.0 0.3 0.0 0.0 0.0 0.0 0.1 0.3 0.7 11.5 0.4 0.8 0.0 0.0 0.0 1.1 11.6 --44.4 --0.5 --0.0 0.0 --2.5 1985-01 1985-02 1985-03 1985-04 1985-05 1985-06 1985-07 1985-08 1985-09 1985-10 1985-11 0.6 1.0 0.0 0.0 11.5 0.0 0.0 0.0 0.0 0.0 0.0 13.3 0.0 48.6 0.0 0.2 0.0 0.0 0.0 0.0 0.1 5.0 5.8 0.0 7.3 0.0 0.0 0.0 1.0 0.0 0.0 10.6 60.9 11.1 0.0 16.4 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.3 0.4 0.0 --0.3 0.0 0.0 0.0 0.0 0.0 0.0 20.3 62.1 0.0 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 5.7 0.0 --0.0 --0.0 0.0 0.0 0.4 17.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.4 1.5 0.5 2.6 0.0 0.0 0.0 0.0 0.0 0.0 3.0 11.2 14.6 1.2 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.9 0.0 44.2 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.6 0.0 7.4 12.1 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 11.2 5.5 0.0 0.0 0.0 0.0 0.0 5.4 0.1 0.0 13.4 0.0 0.7 0.0 1.2 2.8 0.0 0.0 0.0 2.0 1.4 0.0 3.4 1.3 0.0 7.2 0.0 0.0 0.0 0.0 89.7 0.2 6.6 7.7 0.0 0.0 0.0 0.0 0.0 0.0 12.7 1.1 1.0 3.2 0.9 1.8 0.0 0.0 0.0 1.8 0.0 3.3 0.0 3.0 4.5 5.9 0.0 0.0 0.0 0.0 0.0 4.6 10.0 0.9 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.6 0.8 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.9 0.0 1.5 0.0 0.0 0.0 0.0 0.1 0.0 4.9 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 6.4 17.7 1.9 0.1 4.7 0.8 0.0 1.1 0.0 0.0 0.0 0.0 19.8 0.0 0.0 0.0 0.0 0.0 8.7 0.0 0.0 12.0 0.0 1.3 0.7 0.2 0.0 0.0 0.1 4.0 0.0 17.4 27.6 38.9 0.0 2.0 0.0 0.0 0.0 0.0 0.0 2.8 0.1 4.3 0.0 3.3 0.0 0.0 0.0 0.0 0.0 3.5 1.3 4.6 24.6 0.0 8.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.1 31.5 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 1.8 0.7 65.4 2.1 0.0 0.0 0.0 0.0 0.0 0.0 3.5 0.6 3.5 6.1 5.4 0.0 0.0 0.0 0.2 0.0 0.0 35.6 17.7 0.0 2.6 0.6 12.5 0.1 0.0 0.3 0.0 0.0 0.0 0.0 11.5 0.3 0.0 6.8 0.0 0.0 0.0 0.0 0.0 7.5 0.0 2.4 0.0 3.4 3.8 0.0 0.0 0.0 0.0 0.0 6.6 9.7 16.9 2.8 1.0 0.9 0.0 0.0 0.0 0.0 19.7 8.6 2.8 0.2 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.6 18.2 4.1 2.7 1.0 0.0 0.0 0.0 0.0 0.0 1.4 18.3 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 9.5 8.3 0.0 0.0 18.0 0.4 0.0 2.9 0.0 0.0 0.0 0.0 0.4 3.2 14.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.6 0.0 21.5 0.0 0.0 0.0 0.0 1.3 0.0 3.3 14.1 0.0 0.0 10.0 0.0 0.0 0.0 0.0 5.6 0.0 0.0 23.3 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.1 2.6 11.1 8.6 0.1 31.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.7 21.0 0.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0 9.9 28.8 1.7 14.6 4.7 0.0 0.0 0.0 0.0 4.3 0.0 0.0 1.0 1.3 2.1 0.0 0.0 0.0 0.0 0.0 18.8 0.0 15.2 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 18.2 35.0 8.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.0 0.0 2.5 1.2 0.0 0.0 0.0 0.0 1.2 0.8 6.8 11.0 26.9 0.3 0.0 0.0 0.0 0.0 0.0 9.3 8.7 2.2 0.6 0.0 5.0 2.3 0.0 0.0 0.0 0.0 0.0 36.7 23.3 7.5 23.7 0.0 0.0 0.0 0.0 0.0 0.0 22.7 16.8 26.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 1.0 10.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 10.5 0.0 2.2 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1987-01 1987-02 1987-03 1987-04 1987-05 1987-06 1987-07 1987-08 1987-09 1987-10 1987-11 1987-12 15.2 0.0 1.1 8.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.5 1.0 10.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.1 0.3 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 54.0 0.0 0.0 0.0 0.0 0.0 10.3 0.0 0.0 34.6 1.5 0.0 0.0 0.0 0.0 0.0 7.5 0.3 0.2 19.8 21.6 0.0 0.0 0.0 0.0 0.0 0.0 11.5 0.0 1988-01 1988-02 1988-03 1988-04 1988-05 1988-06 1988-07 1988-09 1988-09 1988-10 1988-11 0.0 2.1 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 1.4 0.0 3.6 0.0 0.6 0.0 0.0 0.0 0.0 5.0 7.7 0.0 45.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.2 0.0 0.6 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 31.6 7.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5 4.0 15.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.8 6.2 0.0 0.0 0.0 0.0 0.0 1.5 0.0 3.5 0.5 2.6 0.0 0.0 0.0 0.0 12.7 0.0 8.7 30.1 7.6 1.5 0.0 0.0 0.0 0.0 0.0 0.3 0.0 3.1 9.9 2.1 0.2 4.2 0.0 0.0 0.0 0.0 0.3 26.1 0.0 0.0 38.9 0.0 4.9 6.0 0.0 0.0 0.0 0.0 0.0 15.9 0.2 0.0 0.0 6.4 0.0 0.0 0.0 0.0 0.0 0.0 6.7 0.2 10.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.8 47.9 83.7 25.0 0.0 6.2 0.0 0.0 0.0 0.0 0.0 13.3 0.5 0.6 8.0 0.0 0.0 0.0 0.0 4.0 4.0 40.1 1.1 16.9 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.6 4.2 2.3 0.0 1.8 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.1 0.8 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.6 1.9 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 24.4 14.4 29.6 0.0 5.4 0.0 0.0 0.0 0.0 0.0 0.0 36.3 0.1 --0.0 --0.0 0.0 --0.3 --0.3 6.8 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 34.8 98.5 2.7 9.4 0.0 3.3 0.0 0.0 0.0 0.0 0.0 6.4 39.4 2.6 0.0 0.0 0.0 0.0 0.0 0.0 1.3 16.9 1.0 16.5 4.3 0.0 0.0 0.0 0.0 0.0 0.3 0.0 17.1 0.2 0.0 25.8 0.0 0.0 0.0 0.0 0.0 0.0 25.2 1.5 1989-01 1989-02 1989-03 1989-04 1989-05 1989-06 1989-07 1989-08 1989-09 1989-10 1989-11 1989-12 0.0 18.9 22.2 33.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.4 36.1 11.7 0.0 41.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 7.0 30.4 11.5 0.4 0.0 0.0 0.0 0.0 0.0 15.1 0.0 1.9 6.8 0.6 0.3 0.0 0.0 0.0 0.0 0.0 0.0 16.8 0.0 0.0 21.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 30.9 23.6 75.2 5.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 21.1 13.4 1.4 66.3 0.7 0.0 0.0 1.9 0.0 0.0 0.0 1.8 1.0 6.9 25.3 3.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 13.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 2.4 37.2 5.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.6 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 33.1 13.2 0.3 0.0 3.2 0.0 0.1 0.0 0.0 0.0 1.7 1.5 12.0 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.8 12.9 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 35.1 5.8 5.7 0.4 0.0 0.0 0.0 0.0 0.8 4.0 0.3 21.4 0.8 2.7 91.5 0.0 0.4 0.0 0.0 0.0 0.0 4.2 2.7 0.0 12.2 19.9 0.0 0.0 0.0 0.0 0.0 1.1 0.4 41.1 0.0 0.8 2.2 0.0 0.0 2.0 0.0 0.0 0.0 0.5 9.0 19.3 1.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.2 3.8 42.3 0.1 0.0 0.0 0.0 0.0 0.0 1.0 0.0 8.2 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 12.4 0.0 27.6 0.0 0.0 0.0 0.0 0.0 0.0 1.7 12.0 40.8 22.0 9.7 0.0 0.0 0.0 0.0 0.0 0.0 3.1 32.0 27.7 19.3 3.7 4.2 1.1 0.0 0.0 0.0 4.6 24.7 0.0 22.5 --0.4 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 1.8 11.1 --1.9 12.0 0.0 0.0 0.0 0.0 2.2 7.9 20.2 21.1 --23.7 --0.0 --0.0 --0.0 --37.7 1990-01 1990-02 1990-03 1990-04 16.5 2.2 0.0 1.9 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 57.0 0.0 34.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.2 5.9 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.1 16.3 0.0 0.0 0.0 0.0 0.0 14.1 0.0 0.8 11.5 14.2 0.0 23.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 7.9 12.2 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.6 --1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 --0.4 --0.0 --0.0 --0.0 --13.7 12.4 0.4 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 2.5 1.5 0.0 1.3 0.8 0.0 0.0 0.0 0.0 0.0 21.5 7.6 4.6 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.7 8.1 0.0 15.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.6 6.2 0.0 0.0 0.0 0.0 0.0 2.6 0.0 32.6 0.0 0.5 42.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.2 0.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 0.1 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 25.0 20.5 0.0 19.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.3 2.4 5.8 0.0 0.0 0.0 0.0 0.0 0.0 5.1 0.0 78.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.4 9.9 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 2.8 2.3 0.1 0.0 0.3 11.6 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 9.4 0.0 0.0 0.0 0.0 45.1 1.9 19.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.6 0.0 0.6 19.2 6.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 8.3 0.1 10.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1990-05 1990-06 1990-07 1990-08 1990-09 1990-10 1990-11 1990-12 1991-01 1991-02 1991-03 1991-04 1991-05 1991-06 1991-07 1991-08 1991-09 1991-10 1991-11 16.4 4.8 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 26.8 0.0 35.6 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 4.2 5.2 0.0 0.0 3.3 0.0 0.0 0.0 9.2 0.0 0.0 58.6 2.8 2.1 0.0 0.0 0.0 0.0 0.0 0.0 1.5 30.8 0.1 0.0 6.1 0.0 0.0 0.0 0.0 0.0 12.7 0.7 1.0 0.0 0.8 0.0 0.0 4.7 0.0 0.0 0.0 28.6 6.1 0.0 3.0 0.0 7.7 0.0 0.0 0.0 0.0 0.0 0.0 19.4 0.9 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 20.8 3.7 9.2 0.0 2.2 0.0 1.1 0.0 0.0 3.6 0.0 0.1 0.0 18.6 0.0 2.9 0.0 0.0 0.0 0.0 6.0 24.1 0.0 0.7 2.5 5.2 0.0 0.0 0.0 0.0 0.0 14.9 0.0 7.7 0.4 2.1 3.6 0.0 0.0 0.0 0.0 1.2 0.0 4.5 0.0 1.8 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.0 3.4 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 13.3 0.6 4.9 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.6 11.1 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.6 --0.7 0.0 0.0 0.0 0.0 0.0 0.0 25.8 28.0 6.5 --18.6 --0.0 --0.0 --0.0 --6.1 6.2 0.0 1.8 3.1 0.0 0.0 0.0 0.0 0.0 1.2 0.2 0.0 27.7 1.6 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 7.4 3.0 6.1 0.7 0.4 0.0 0.0 3.0 1.2 12.5 0.8 0.0 2.3 0.0 0.0 0.0 0.0 0.0 5.7 0.0 10.2 2.1 0.0 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 1.6 4.0 56.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.8 10.4 15.7 0.0 0.0 0.0 0.0 0.0 0.0 19.2 2.0 5.4 68.3 0.0 13.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.3 1.5 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.3 5.3 0.0 6.3 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.3 0.9 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.6 5.9 0.0 9.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 1.2 0.0 2.9 0.0 0.0 0.0 0.0 0.0 1992-01 1992-02 1992-03 1992-04 1992-05 1992-06 1992-07 1992-08 1992-09 1992-10 1992-11 0.0 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 38.8 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.7 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.5 17.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.8 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 10.9 0.0 13.7 2.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 1.2 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 14.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 1.8 10.6 0.5 0.0 0.8 0.0 0.0 0.0 0.0 29.3 3.4 1.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.6 0.0 3.8 0.0 0.0 0.7 0.0 0.0 0.0 0.5 1.8 3.9 25.8 0.0 1.4 0.0 1.0 0.0 0.0 0.0 0.0 4.3 4.5 0.6 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 4.7 0.2 5.5 29.2 8.9 0.0 0.0 0.0 0.0 0.0 0.0 11.8 4.0 4.5 0.0 0.4 0.0 13.5 0.0 0.0 0.0 0.0 0.2 0.0 0.0 8.3 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 39.8 1.1 4.4 1.2 58.4 0.0 0.0 0.0 0.0 0.0 0.0 6.8 86.5 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 17.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.1 38.8 0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.6 4.8 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.2 --9.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.9 --0.0 --0.4 0.0 --0.0 --30.1 4.9 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.6 1.4 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 18.3 1.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.5 0.0 2.0 3.1 0.0 0.0 0.0 0.0 0.0 7.8 0.5 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 7.8 0.3 0.0 28.3 0.0 0.0 0.0 0.0 0.0 11.0 0.0 0.6 1.2 15.6 0.2 1.2 0.0 0.0 0.0 0.0 0.0 17.9 23.1 --0.4 --0.0 --0.0 --5.5 --0.0 1993-01 1993-02 1993-03 1993-04 1993-05 1993-06 1993-07 1993-08 1993-09 1993-10 1993-11 2.3 0.4 11.8 21.1 2.8 0.0 0.0 0.0 0.0 0.0 18.8 0.0 5.5 41.4 0.8 9.9 4.2 0.0 0.0 0.0 0.0 0.7 0.0 1.2 14.3 2.8 2.9 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.8 2.5 21.0 2.1 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.5 4.7 13.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.1 1.3 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.1 17.5 0.0 0.7 0.0 0.0 0.0 0.0 0.0 1.0 0.0 18.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.9 1.9 10.7 1.4 5.9 0.0 0.0 0.0 5.2 0.0 0.0 4.2 27.0 23.7 54.4 52.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 6.0 7.1 14.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.3 0.0 0.0 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 5.6 1.9 9.1 0.0 0.0 0.0 0.0 0.0 19.3 1.8 0.0 5.3 2.7 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 81.5 0.0 6.2 1.3 11.4 0.0 0.0 0.0 0.0 0.0 0.0 4.8 3.7 8.7 23.3 1.3 2.3 0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.0 27.0 24.3 0.9 0.0 0.4 0.4 0.0 0.0 0.0 31.7 1.4 12.3 14.4 0.4 0.0 2.1 0.0 0.0 0.0 0.0 0.0 19.8 25.6 15.4 2.1 0.5 0.0 2.1 0.0 0.0 0.0 0.0 0.0 3.4 9.5 2.6 0.2 0.0 0.3 0.0 2.0 0.0 0.0 0.0 0.9 10.3 0.1 0.0 0.9 0.0 0.0 0.0 0.0 1.0 5.5 13.5 --23.1 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 --0.0 4.1 0.0 0.0 0.0 0.0 5.7 0.0 2.0 3.6 4.1 17.7 0.3 0.2 0.0 0.0 0.0 0.0 2.2 0.0 0.1 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.1 6.5 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.8 6.8 0.6 0.0 0.0 0.0 0.0 0.0 3.2 2.8 1994-01 1994-02 1994-03 1994-04 1994-05 1994-06 1994-07 1994-09 1994-10 1994-11 1994-12 34.4 9.2 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 24.6 1.4 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 47.6 16.7 0.0 1.2 0.0 0.0 0.0 0.0 0.0 12.8 0.0 0.0 --5.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 1.7 34.1 --6.6 0.0 0.0 0.0 0.0 0.0 0.0 16.2 0.0 2.3 --0.0 --0.0 0.0 --7.8 --7.8 0.0 0.9 33.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 7.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 4.9 1.4 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 12.9 4.0 0.0 40.0 0.0 0.0 0.0 0.0 0.0 0.0 14.8 0.0 0.0 0.0 0.0 0.0 --0.0 0.0 0.0 4.2 17.3 12.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.3 0.0 0.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 2.9 0.8 3.1 0.8 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.1 38.5 0.0 3.2 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.6 6.8 3.6 0.0 0.0 0.0 0.0 0.0 0.0 2.1 1.0 3.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 7.0 15.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2 0.0 1.0 0.0 0.0 0.0 0.0 0.0 6.0 14.4 8.2 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.0 1.2 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.8 0.0 17.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.5 2.9 6.3 0.0 0.0 0.0 0.0 0.0 0.2 29.0 3.2 6.9 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.3 2.7 0.0 1995-01 1995-02 1995-04 1995-05 1995-06 1995-07 1995-08 1995-09 1995-10 1995-11 1995-12 29.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.4 5.5 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.3 1.7 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 8.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 64.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.8 6.0 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.0 0.5 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.6 --0.0 --0.0 0.0 --0.0 --2.2 57.8 0.4 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.7 14.1 0.0 22.5 0.0 0.0 0.0 0.0 0.0 0.0 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 1.4 14.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.6 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.4 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 5.2 19.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.4 0.0 15.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.9 5.5 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4 2.5 3.2 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 2.6 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 19.5 5.3 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 5.9 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.3 8.9 14.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.5 3.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 0.0 12.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 4.0 9.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 2.4 11.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 40.0 1996-01 1996-02 1996-03 1996-04 1996-05 1996-06 1996-07 1996-08 1996-09 1996-10 1996-11 2.2 0.0 56.3 6.8 0.0 0.8 0.0 0.0 3.8 0.0 0.0 14.4 2.0 7.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 1.8 22.8 0.0 1.6 0.0 0.0 0.0 0.0 0.0 5.2 7.4 0.7 8.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.4 0.2 --0.0 --0.0 0.0 --0.0 --5.1 2.9 21.3 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.7 23.8 0.6 44.3 0.0 0.0 0.0 11.4 0.0 0.7 0.0 4.0 1.4 0.2 6.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 1.2 6.6 29.5 7.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 7.6 2.5 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.3 16.7 11.4 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.9 2.2 6.8 47.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 0.0 1.3 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 2.6 0.0 32.3 0.0 10.5 0.9 0.0 0.0 0.0 0.0 0.0 43.0 6.4 0.0 0.0 8.3 0.0 0.0 0.0 0.0 0.0 21.2 10.2 0.8 0.0 0.7 0.0 0.0 0.0 0.0 0.0 27.8 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.6 40.2 50.8 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 21.6 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.9 0.0 4.3 0.0 0.0 0.0 7.4 0.0 0.0 4.6 0.1 19.4 0.2 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.2 2.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 9.7 23.0 0.0 0.2 0.0 0.0 0.0 1.3 0.0 0.0 0.0 22.3 1.3 2.2 0.0 0.0 0.0 0.0 0.0 0.0 2.6 30.6 0.0 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.9 0.0 0.1 0.2 0.0 0.0 0.0 8.7 13.5 12.6 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 1.4 0.0 2.3 0.0 0.4 0.0 0.0 0.0 0.0 0.0 4.2 1.8 39.2 0.0 4.8 0.0 0.0 0.0 0.0 0.0 0.7 7.2 0.1 11.3 2.3 8.7 0.0 0.0 0.0 0.0 0.0 0.3 1.6 23.3 3.6 2.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 19.1 5.7 8.1 3.8 0.0 0.0 0.0 0.0 0.0 0.0 1.8 16.3 0.0 16.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.8 0.5 0.0 0.0 21.9 0.0 0.0 0.0 0.0 0.0 2.9 8.2 5.5 0.0 26.3 0.0 0.0 0.0 0.0 0.0 0.0 12.3 16.8 1.2 0.0 12.9 0.0 0.0 0.0 0.0 0.0 0.2 21.8 4.1 13.6 0.9 24.0 0.0 1.9 0.0 41.0 0.5 0.0 7.5 0.0 48.0 0.0 0.0 0.0 0.0 0.1 0.0 22.0 5.0 1.4 0.2 8.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.9 5.3 4.6 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.6 11.5 1.3 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 12.3 5.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 10.4 9.5 28.4 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 64.7 61.5 1.2 0.5 0.0 0.0 0.0 0.0 0.0 0.0 2.5 12.4 7.0 6.5 2.9 0.0 0.4 0.0 0.0 0.0 0.0 23.2 2.9 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 4.4 0.2 1.0 0.0 0.0 0.0 0.0 0.0 0.1 3.7

1998-01 1998-02 1998-03 1998-04 1998-05 1998-06 11.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 27.0 12.4 0.6 1.0 0.0 0.0 0.0 0.0 5.8 0.0 0.0 25.5 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.5 3.4 19.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.4 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 2.3 8.8 5.7 0.0 0.0 0.0 0.0 0.0 12.0 1998-06 1998-07 1998-08 1998-09 1998-10 1998-11 1998-12 1999-01 1999-02 1999-03 1999-04 1999-05 1999-06 1999-07 1999-08 1999-09 1999-10 1999-12 27.0 0.0 36.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 31.8 3.6 1.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 7.4 46.5 11.0 16.3 0.1 0.0 0.0 0.0 0.0 0.0 14.2 0.0 0.5 10.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.1 35.1 5.2 0.6 0.0 0.0 0.0 0.0 0.0 34.1 0.1 2.0 5.8 0.0 0.0 0.0 0.0 6.2 0.0 0.8 1.1 6.8 1.4 0.0 0.0 1.0 0.0 0.0 2.3 0.0 7.3 10.2 3.9 0.0 0.0 0.0 0.0 0.0 6.0 0.0 18.7 14.5 0.4 0.0 0.0 0.0 0.0 0.0 0.0 5.8 0.2 0.4 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 32.6 14.5 19.1 1.7 0.7 0.0 0.0 1.5 0.0 0.0 2.0 12.2 29.7 23.0 0.0 26.0 0.0 0.0 3.6 0.0 0.0 1.0 3.7 1.8 45.1 0.9 0.0 14.3 0.0 0.0 0.0 0.0 13.7 13.4 49.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.1 16.9 24.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.9 7.4 2.6 10.9 0.4 0.0 0.0 0.0 0.0 0.0 0.0 3.3 21.2 92.4 0.8 0.0 0.0 0.0 0.0 0.0 0.0 43.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 3.7 4.9 12.5 0.0 0.0 0.0 0.5 0.0 0.0 6.5 6.6 24.1 12.5 0.0 0.0 0.0 0.0 0.0 0.0 17.8 1.2 0.0 8.5 0.0 0.0 0.0 0.0 0.0 0.0 1.7 4.2 13.8 1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.1 3.4 4.6 0.0 0.4 0.0 0.0 0.0 0.0 2.5 63.5 --39.7 0.0 0.0 0.6 0.0 0.0 0.0 7.5 0.5 --0.7 --0.0 --0.0 0.0 --0.0 30.4 3.5 0.7 1.1 0.0 0.0 0.5 0.0 0.0 0.0 2000-01 2000-02 2000-03 2000-04 2000-05 2000-06 2000-07 2000-08 2000-09 2000-10 2000-11 2000-12 2.1 0.0 20.7 6.7 0.0 0.0 0.0 0.0 0.0 3.9 29.6 31.8 --2.9 0.7 0.0 0.0 0.0 0.0 0.0 16.0 0.0 3.9 --5.7 --0.0 --0.0 --4.4 --27.8 44.2 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.1 1.6 0.0 13.5 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2 5.9 26.6 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 4.5 0.0 0.0 2.3 0.0 0.0 0.0 1.3 28.6 3.0 20.7 19.6 0.0 0.0 0.0 0.0 0.0 0.0 11.0 3.3 10.8 4.3 19.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.8 22.3 8.6 7.8 2.7 0.0 0.0 0.0 0.0 0.0 1.8 0.7 26.3 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 13.0 0.0 6.5 6.6 0.0 0.0 0.0 0.0 0.0 49.1 16.7 0.4 13.6 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.1 49.3 0.5 2.9 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 57.1 0.0 0.0 0.0 0.0 0.0 9.0 0.0 48.2 1.7 6.4 18.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.3 1.7 0.4 7.5 3.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 47.8 7.0 6.7 9.3 0.0 0.0 0.0 0.0 0.0 1.4 0.0 19.5 5.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.6 5.2 15.7 6.5 0.0 0.0 1.4 0.0 0.0 4.3 7.1 8.1 14.1 8.7 0.8 0.0 1.7 0.0 0.0 0.0 5.2 0.0 5.1 20.9 0.0 0.0 0.0 0.0 0.0 0.0 29.5 7.8 8.5 0.0 2.6 0.0 0.0 0.0 0.0 0.0 6.8 0.7 0.0 0.0 3.5 0.3 0.0 0.0 0.0 0.0 0.0 4.9 0.0 0.0 1.4 0.6 0.0 0.0 0.0 0.0 0.0 4.8 6.6 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.9 0.6 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.9 20.3 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 6.0 5.7 --2.1 --0.0 --0.0 0.0 --4.6 4.2 2001-01 2001-02 2001-03 2001-04 2001-05 2001-06 2001-07 2001-08 2001-09 2001-10 2001-12 14.7 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.2 20.9 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 10.5 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.7 3.3 2.0 0.0 0.0 0.0 0.0 0.0 5.9 0.0 14.3 5.8 18.3 2.2 0.0 0.0 0.0 0.0 0.0 0.0 46.4 0.0 0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 21.0 1.0 10.3 4.3 0.0 1.1 0.0 0.0 0.0 0.0 0.0 15.7 0.8 --57.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 --2.8 0.0 0.0 0.0 0.0 0.0 0.0 13.3 6.7 25.9 12.5 25.9 0.0 0.0 0.0 0.0 0.0 1.2 4.7 3.2 12.5 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 10.0 2.2 0.0 0.0 0.0 0.0 0.0 2.1 7.2 28.9 3.7 0.5 0.0 0.0 0.0 0.0 5.0 0.0 1.8 0.3 24.4 0.0 0.0 0.0 0.0 0.0 0.0 0.7 12.7 18.7 4.8 19.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 54.0 5.4 4.4 2.2 4.6 0.0 0.0 0.0 0.0 0.0 0.0 5.0 3.3 0.0 0.6 0.0 0.0 0.0 0.0 3.5 0.0 1.4 9.3 32.6 0.0 11.3 0.0 0.0 0.0 0.0 0.0 0.0 14.5 39.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 38.7 0.0 29.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.9 1.5 6.5 3.6 0.0 0.1 0.0 0.0 0.0 0.0 0.0 25.2 1.8 25.1 0.0 0.8 0.0 0.0 1.4 0.0 0.0 0.0 1.8 3.4 0.0 0.0 0.0 0.0 0.0 5.0 7.2 0.0 3.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 3.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.3 1.6 21.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.1 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 2.1 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 3.3 58.1 0.0 0.0 0.0 0.0 0.0 0.0 2.5 46.0 0.0 8.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.5 15.8 --0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 21.4 --20.9 0.0 1.7 0.0 0.0 0.0 0.0 32.6 7.3 11.6 --3.3 --0.0 --0.0 --0.0 --9.6 2002-01 2002-02 2002-03 2002-04 2002-05 2002-06 2002-07 2002-08 2002-09 2002-10 2002-11 2002-12 28.8 82.2 0.6 1.4 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.4 0.0 0.0 19.5 0.0 0.1 0.0 0.0 0.0 0.0 5.3 0.0 3.7 3.0 11.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 4.7 14.0 1.3 0.0 0.0 0.0 0.0 0.0 20.4 3.4 0.0 0.0 32.2 14.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7 26.8 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.2 0.0 4.7 55.2 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 19.3 51.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.9 37.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.0 34.4 0.4 21.0 0.6 0.0 0.0 0.0 0.0 0.2 0.1 0.4 10.7 44.8 15.7 10.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.7 45.6 88.8 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 8.6 93.9 1.5 9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.6 0.0 9.6 0.9 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.9 0.0 0.6 0.0 1.1 0.0 0.0 0.0 0.0 0.0 20.5 0.8 0.0 3.5 0.0 0.0 0.0 0.3 0.0 0.2 0.0 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.2 5.0 9.8 7.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.3 0.0 0.1 0.0 2.5 0.0 0.0 0.1 0.0 0.7 0.0 5.4 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.8 0.8 7.2 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.2 0.0 4.3 3.7 0.0 0.0 0.0 0.5 0.0 0.0 6.1 2.8 0.1 3.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 43.5 29.3 9.6 0.0 0.1 0.0 0.0 0.0 0.0 0.0 1.3 28.2 0.1 16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 --19.3 4.5 --22.4 0.0 0.0 0.0 0.0 0.0 0.0 30.7 19.2 0.0 --20.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.3 26.7 0.5 12.0 2.1 0.0 0.0 0.1 0.0 0.0 0.0 10.1 11.7 0.0 0.0 0.0 0.0 0.0 3.8 0.0 0.0 0.0 13.4 8.7 0.0 0.0 0.0 0.0 1.1 0.0 0.0 14.2 0.0 0.0 46.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2003-01 2003-02 2003-03 2003-04 2003-05 2003-06 2003-07 2003-08 2003-09 2003-11 2003-12 61.5 55.3 0.8 0.3 0.0 0.0 0.0 0.0 0.0 0.0 11.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 33.3 1.8 28.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.4 10.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.4 33.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 16.2 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8 32.9 0.1 0.0 0.0 0.0 0.2 0.0 0.0 7.1 0.0 0.0 15.2 0.0 0.0 0.0 0.6 0.0 0.0 0.0 37.7 7.8 0.6 13.4 0.0 0.0 0.0 0.0 0.0 0.0 32.4 14.1 17.0 39.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 2.8 19.9 7.8 8.2 0.0 0.0 0.0 0.0 0.0 1.2 4.6 0.5 5.0 52.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.8 12.5 38.8 0.0 0.0 0.0 0.0 0.0 0.0 10.2 42.7 0.0 11.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 4.9 29.6 0.0 22.9 0.0 0.0 0.0 0.0 0.0 0.0 42.3 47.0 7.2 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.6 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.6 0.0 0.0 0.0 0.0 0.0 0.0 1.0 6.6 0.9 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 10.8 0.6 0.0 0.0 0.0 0.0 0.0 0.0 17.1 30.3 5.6 33.7 0.0 0.0 0.0 0.0 0.0 44.6 1.7 6.5 0.0 0.0 2.3 0.0 0.0 0.0 0.0 0.0 5.4 0.0 8.3 0.0 0.0 0.0 0.0 0.0 3.0 0.2 7.2 0.0 7.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 --0.0 0.0 ----0.0 4.6 --21.6 --0.0 --0.0 0.0 --12.4 --7.5 2004-01 2004-02 2004-03 2004-04 2004-05 2004-06 2004-07 2004-08 2004-09 2004-10 2004-11 2004-12 1.0 0.0 0.0 13.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 24.6 10.7 1.9 12.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.8 10.3 0.1 0.7 0.0 0.0 0.0 0.1 0.0 18.4 0.0 18.8 0.0 0.0 2.5 17.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.1 0.0 3.5 0.0 0.0 0.0 0.0 1.4 0.0 0.8 0.5 0.0 0.0 62.5 0.0 0.0 0.0 0.0 0.0 2.4 0.0 5.8 26.7 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 27.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.4 0.0 1.1 1.0 0.1 4.3 0.0 0.0 0.0 0.0 0.0 19.8 0.4 8.7 0.0 3.9 0.0 0.0 0.0 0.0 41.3 8.3 28.2 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 15.8 9.2 15.8 1.7 0.0 0.0 0.0 0.0 0.0 --0.0 3.5 5.6 27.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.6 0.0 1.7 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.8 0.0 1.4 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.8 6.6 13.4 0.0 2.2 0.0 3.2 0.0 0.0 0.0 14.1 50.2 5.6 --0.0 0.3 0.0 0.0 0.0 0.0 0.0 6.4 0.5 1.8 7.7 6.3 8.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 3.4 1.7 0.8 33.4 5.9 0.0 0.6 0.0 0.2 0.0 0.0 0.0 3.5 2.1 0.0 6.5 0.0 0.0 0.7 0.0 0.0 0.0 2.2 9.1 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 2.1 0.0 0.0 0.0 7.1 13.2 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 3.1 1.3 28.6 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 8.6 0.0 0.8 0.0 0.0 0.0 0.0 0.0 6.8 1.2 83.5 2.2 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 19.0 15.8 3.5 1.6 0.1 0.0 0.0 0.0 0.0 3.7 1.5 30.9 1.3 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 40.4 2005-01 2005-02 2005-03 2005-04 2005-05 2005-07 2005-08 2005-09 2005-11 2005-11 7.5 16.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.2 12.7 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 1.8 1.2 --0.0 0.0 0.0 0.0 11.9 0.0 0.0 7.1 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.8 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 7.6 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 2.2 3.5 0.0 0.0 3.4 0.0 0.0 0.0 0.0 33.1 5.3 16.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 5.5 18.9 60.5 11.6 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.1 17.8 9.7 1.4 0.0 43.4 0.0 0.0 0.0 0.0 0.0 0.7 3.5 3.9 0.0 0.0 0.0 0.0 1.0 1.1 51.9 0.0 --42.7 0.0 0.0 0.1 0.0 0.0 0.0 2.6 40.4 1.6 --0.0 --0.0 0.0 --0.0 --0.6 0.0 0.0 11.2 0.0 0.0 0.0 0.0 0.0 12.6 129.4 6.7 8.6 0.0 0.0 4.4 0.0 0.0 0.0 0.0 8.7 2.2 0.0 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.2 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 17.0 0.2 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.6 0.6 4.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 12.7 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.9 0.0 0.0 0.0 0.0 0.0 35.2 0.4 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.1 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 14.0 0.0 0.0 0.0 0.0 0.0 43.9 19.9 0.0 25.4 0.0 0.0 0.0 6.6 1.5 0.0 37.1 0.0 26.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.1 7.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 3.8 10.5 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.3 0.3 --0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.7 0.0 --11.5 --0.0 --0.0 --0.0 --0.0 2006-01 2006-02 2006-03 2006-04 2006-05 2006-06 2006-07 2006-08 2006-09 2006-10 2006-11 2006-12 2.0 1.0 31.9 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 45.3 1.3 0.0 0.0 0.0 0.0 0.0 0.0 1.1 33.6 0.0 28.0 0.8 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 8.1 4.7 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.1 0.0 69.8 5.8 0.0 0.0 0.2 0.0 1.5 0.0 13.7 26.8 15.1 0.0 0.5 2.5 0.0 0.0 0.0 0.0 11.3 20.4 14.6 10.2 14.8 0.0 0.6 0.0 0.0 0.0 0.0 19.9 1.3 27.3 22.3 0.0 10.6 0.3 0.0 0.1 0.0 0.0 0.0 6.8 17.6 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.5 0.0 4.7 18.2 7.3 0.9 0.3 0.0 0.0 0.0 7.1 25.7 17.7 24.7 4.3 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.3 0.0 2.8 9.6 --3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.1 29.0 9.4 0.6 0.0 0.1 0.0 0.0 0.0 0.0 0.0 1.2 10.7 28.8 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 29.7 20.7 0.0 0.0 3.6 0.0 0.0 0.0 0.0 21.2 0.0 0.1 0.0 29.3 0.1 0.0 0.0 0.0 0.0 3.1 0.6 33.3 33.0 17.9 0.0 0.6 0.0 0.0 0.1 0.0 0.0 0.0 5.7 0.0 0.3 6.4 4.6 0.0 0.0 0.0 0.0 0.0 0.0 6.8 1.1 0.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 22.5 9.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.8 2.5 10.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.8 3.6 33.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.9 0.0 14.6 1.3 0.0 11.8 0.0 0.0 0.0 0.0 0.0 0.0 6.8 16.7 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 7.5 0.5 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 8.1 4.3 3.5 8.7 0.0 0.1 0.0 0.0 0.0 0.1 0.6 17.8 6.8 1.0 4.7 13.7 0.0 0.0 0.0 0.0 0.0 0.0 7.8 1.8 13.4 0.6 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.2 25.9 2007-01 2007-02 2007-03 2007-04 2007-05 2007-06 2007-07 2007-08 2007-09 2007-10 2007-11 2007-12 31.9 7.9 15.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.4 8.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.9 0.0 0.2 0.0 0.0 0.0 0.0 0.0 1.3 0.0 13.7 0.0 0.0 0.0 0.0 0.0 0.0 46.8 0.3 0.0 5.6 0.0 0.0 0.0 0.0 0.0 0.0 4.7 14.5 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 3.9 14.7 3.2 7.7 0.0 1.6 0.7 0.0 0.0 0.0 0.0 0.0 1.6 87.6 5.0 4.9 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.8 45.7 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 1.3 0.0 10.5 0.0 0.6 0.0 1.1 0.0 0.0 0.0 0.0 6.9 1.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 30.3 3.4 1.6 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.2 32.6 42.3 0.0 0.6 0.0 0.0 0.0 0.0 0.0 24.6 0.0 51.6 6.6 7.3 4.4 0.0 0.0 0.0 0.0 0.0 6.9 2.2 2.0 2.2 0.8 0.2 7.1 0.0 0.0 0.0 0.0 0.0 18.5 0.0 0.0 1.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0 20.8 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.2 0.0 9.0 0.4 0.0 0.0 0.0 0.0 0.0 8.4 0.0 23.2 14.8 19.1 7.9 0.2 0.0 0.0 0.6 2.2 0.0 0.0 0.0 0.0 0.0 0.1 13.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0 3.7 2.4 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 26.1 0.2 21.3 18.4 1.1 0.2 0.0 0.0 0.0 0.0 3.2 0.0 2.4 14.4 0.0 0.0 0.3 0.0 0.0 0.0 0.0 5.6 0.0 34.1 2.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 --0.2 --0.0 0.0 --2.6 2008-01 2008-02 19.5 7.6 1.8 0.8 0.0 0.0 2.3 2.7 0.0 5.9 0.0 0.0 7.2 3.8 1.8 10.7 0.0 57.0 17.6 0.0 0.0 0.0 0.0 8.7 0.0 17.4 0.0 21.9 6.5 0.0 0.0 14.6 0.0 10.0 1.1 41.6 0.0 0.0 0.0 28.8 0.4 0.4 0.0 0.1 0.0 32.8 5.2 0.0 0.0 0.0 0.8 11.5 3.7 0.0 0.0 0.0 55.7 29.1 0.0 0.0 0.0 0.0 0.5 1.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0 0.0 6.2 0.0 0.0 0.2 0.0 0.0 18.9 2.0 0.0 0.0 0.0 0.0 5.5 3.4 0.0 0.0 0.0 23.3 2.5 0.0 0.0 0.0 29.8 1.7 0.0 0.0 0.0 0.0 39.3 3.5 0.0 0.0 0.0 0.0 2008-03 2008-04 2008-05 2008-06 2008-06 2008-07 2008-08 2008-09 2008-10

Estação: Mandimba
Periodo: 1960-2008

nto: Precipitação total diária (das 9 as 9 horas em mm)

nto: Precipitação to	tal diária	(das 9 a	s 9 horas	em mm)																											
Ano/Mes 1960-01	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0	27.0	28.0	29.0	30.0	31.0
1973-01		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-			-	
1973-02 1973-03		-	-		-	-	-	-	-			-			-		-	-	-	-	-		-		-	-	-		-	-	
1973-04 1973-05 1973-06	1.2 0.0 0.0	16.4 0.0 0.0	0.0 0.0 0.0	7.0 0.0 0.0	0.2 0.0 0.0	2.8 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	22.1 0.0 0.0	0.0 0.0 0.0	0.3 0.0 0.0	21.1 0.0 0.0	0.3 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	2.5 0.0 2.6	0.0 0.0 0.0	0.0 0.0 0.0	0.0
1973-07 1973-08	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1973-09 1973-10 1973-11	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 7.1	0.0 0.0 0.0	0.0 0.0 1.2	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.8	0.0 0.0 0.0	0.0 0.0 3.4	0.0 0.0 0.0	0.0 0.0 35.6	0.0 0.0 1.1	0.0 0.0 0.0	0.0 3.7 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
1973-12	0.0	0.0	0.0	0.0	0.0	3.2	1.7	7.5	0.0	0.0	0.0	50.0	0.0	3.4	0.0	0.1	21.4	0.0	9.8	6.4	0.0	0.0	21.1	29.8	0.2	33.8	0.0	12.6	0.0	18.1	0.0
1974-01 1974-02 1974-03	0.0 58.6 0.0	1.3 7.2 9.3	9.5 11.4 9.5	54.9 1.0 36.4	10.9 29.2 18.3	0.0 10.9 3.3	1.4 3.0 0.0	7.9 0.9	15.7 5.8 2.3	12.8 0.0 1.2	2.5 0.9 0.0	27.6 6.7 0.0	25.4 0.0 13.7	0.0 0.0 76.9	1.2 0.0 18.9	0.0 12.2 13.8	0.0 23.1 5.3	4.1 0.7 0.0	1.3 1.0 0.0	14.5 18.2 2.0	7.2 12.6 26.5	8.0 5.2 10.0	3.3 3.6 1.4	1.7 3.6 0.0	7.3 0.0	23.6 13.8 8.9	7.9 70.0 0.7	2.1 13.5 36.0	0.7 37.2	15.8 16.2	17.2 57.0
1974-04 1974-05	20.8 23.5	3.9 0.8	7.9 0.0	26.1 0.0	6.2 0.0	4.1 0.0	1.9 0.0	0.0	0.0 3.5	0.0 2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.2 0.0	0.0 11.0	0.0 3.0	0.0	6.2 0.0	0.0	0.0	0.0	0.0	0.8 1.0	15.4 0.0	0.0	0.0	0.0
1974-06 1974-07 1974-08	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 1.5 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	7.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 1.1 0.0	7.1 0.0 0.0	8.4 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
1974-09 1974-10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1974-11 1974-12	0.0	0.0	0.0	0.0	0.0	0.0 45.8	0.0 6.6	0.0 47.6	0.0 9.7	0.0	0.0 10.9	0.0 3.5	3.0	0.0 9.7	0.0	0.0 4.8	9.7 1.6	0.0	0.0	0.0	0.0 2.8	0.0	4.0 0.0	6.7 0.0	0.0 44.5	0.0	0.0	0.9 1.6	28.5 1.9	8.1 0.0	0.6
1975-01 1975-02 1975-03	0.0 0.0 0.0	0.6 0.0 0.0	17.0 0.0 0.0	38.9 0.0 0.0	4.1 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 9.8	0.0 0.0 11.9	0.0 0.0 1.4	0.0 0.0 0.0	0.0 3.9 25.5	29,,2 0.6 0.0	18.9 0.0 0.0	0.0 8.2 0.0	0.0 0.0 0.0	11.7 20.2 0.0	22.2 19.8 0.0	5.1 74.2 0.0	23.0 0.0 0.0	21.7 34.9 0.0	29.5 2.9 0.0	22.7 4.1 0.0	0.0 12.8 0.0	0.6 3.8 0.0	0.0 10.8 0.0	0.0 50.0 0.0	1.3 0.5 0.0	0.0	7.4 0.0	0.0 0.0
1975-04 1975-05	0.0	0.0	5.8	30.0 0.0	14.2	0.0	12.0	0.0	0.4	0.0	0.0	0.0	0.0	0.9	0.0	11.0	0.0	0.0	5.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1975-06 1975-07 1975-08		-		-	-	-			-			-			-			-		-	-					-	-			-	
1975-09 1975-10	0.0	0.0	0.0	7.6	7.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1975-11 1975-12	0.0	0.0	0.0	0.0 2.3	0.0	0.0 5.3	0.9 7.5	0.0	0.0 15.8	0.0	0.0 5.1	0.0 23.2	0.0	0.0	0.0	2.7 0.0	0.7 46.6	0.0 6.6	0.0 4.2	0.0 3.2	0.0 81.3	0.0	0.0	7.1 0.0	1.0 27.5	0.0	0.0 7.1	0.0 6.4	0.0 2.1	0.0 3.5	2.0
1976-01 1976-02	76.7 28.1	0.0	2.3 3.5	0.0	4.1 20.9	23.7 0.3	0.0 11.2	13.0 13.3	109.3 16.1	10.0 1.0	24.7 1.2	48.4	7.2	12.5 2.2	0.0 11.6	26.7 2.0	13.5 3.1	1.4 0.0	26.6 31.0	0.1	6.4 23.8	4.2 0.0	6.0 44.6	0.0 2.2	0.0	0.0	0.0	25.2 2.1	49.9 2.1	0.7	0.0
1976-03 1976-04 1976-05	0.0	0.0	62.2 25.5	43.1 118.9	39.3 40.1	33.2 0.0	4.0 12.1	5.2 0.0	2.3 30.2	5.3 0.0	12.4 7.9	18.7 0.0	20.6 0.0	0.0	10.5 0.0	7.7 0.0	18.0 0.0	38.4 0.0	0.0	0.1 18.2 	12.6 7.9	3.3 17.7	0.0 13.9	7.2 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1976-06 1976-07	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1976-08 1976-09 1976-10	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0 12.2	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0
1976-11 1976-12	0.0	0.0	0.0	0.0	8.4 0.0	0.0	10.5	6.1 28.2	0.0 3.9	2.2 0.0	6.2 24.1	0.0	3.6 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 19.7	0.0 19.4	0.0	0.0 4.7	0.0	0.0	0.0 28.9	0.0 7.9	0.0
1977-01 1977-02	0.0	0.0 48.5	35.4 0.0	8.1 0.0	78.5 0.0	9.8	8.8 0.0	1.8	14.7	1.6 0.0	0.0	0.0	0.0	0.0	0.0	41.3 0.0	55.0 0.0	23.4 0.0	0.0	0.0	0.0	12.9 5.1	0.0	6.4 21.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1977-03 1977-04 1977-05	0.0 1.8 0.0	15.3 0.0 0.0	3.4 0.0 0.0	13.0 0.0 0.0	4.8 0.0 0.0	0.0 0.0 0.0	17.3 0.0 0.0	0.0	0.0	0.0	16.3 0.0 0.0	0.0 5.0 0.0	0.0	10.1 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	18.9 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	3.1 0.0 0.0	39.2 0.0 0.0	4.0 0.0 0.0	8.0 0.0 0.0	0.0 0.0
1977-06 1977-07				-	 0.0				 0.0		-	-	 0.0		-	-	 0.0	-		-	 0.0		-		 0.0		 0.0		 0.0	-	
1977-08 1977-09 1977-10	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0
1977-11 1977-12	0.0	0.0	0.0	0.0	0.0	12.8	4.0 28.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 9.4	0.0	0.0	3.3 9.0	0.0	0.0 4.0	0.0	3.9 0.0	0.0	0.0 41.9	10.7 0.0	0.0	50.4 0.0	0.0 42.2	44.1 0.0	6.8 41.6	0.0
1978-01 1978-02	0.0 3.0	0.0	11.1	14.3 18.7	4.3 21.5	0.0 40.0	0.0 40.0	0.0	78.7 47.5	2.3 14.5	39.0	0.0	0.0 34.5	58.6 29.6	59.3	17.3	0.0	15.2 42.1	0.0 4.2	14.6	26.0	0.0 5.8	92.5	0.0	0.0 0.0 29.3	0.0	27.3 0.0	0.0	0.0	0.0	10.6
1978-03 1978-04 1978-05		52.1 		9.7	53.2	49.0	20.0 3.9	2.9	30.0		-	-	20.5	2.3	4.1	11.9	6.9	20.6	18.7	20.0	1.1	34.0	6.7	1.2 41.5	9.3	-	2.4	5.7	10.0	13.3	9.8
1978-06 1978-07 1978-08		-		-	-	-			-			-			-			-		-			-			-	-		-	-	
1978-09 1978-10	-	-		-	-	-	-	-	-		-	-	-		-		-	-		-	-		-		-	-	-	-	-	-	-
1978-11 1978-12		-		-	-	-		-	-	19.8	-	-			-	32.6		-		-	2.3		7.9	4.5	-	-	-		-	-	
1979-01 1979-02		-		-	-	-		-	-		-	-	-		-		-	-		-	-		-		-	-	-		-	-	
1979-03 1979-04 1979-05		-		-	-	-	-		-		-	-			-			-		-						-	-			-	
1979-06 1979-07		-		-	-	-			-			-			-			-		-			-			-	-			-	
1979-08 1979-09 1979-10		-		-	 0.0		 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0			3.5	0.0	0.0	 0.0	 0.0	 0.0	 0.0	4.5	0.0	0.0		0.0	 0.0	 0.0	 0.0
1979-11 1979-12	0.0 1.0	0.0 7.6	0.0 10.5	0.0 30.7	0.0 33.0	0.0 6.2	0.0	0.0 6.5	0.0	4.0 0.0	0.0 25.6	6.0 30.0	5.8 20.0	7.8 0.9	6.0 0.7	30.9 0.0	6.0 0.0	5.8 0.0	7,,2 1.7	6.3 1.5	8.2 2.6	5.4 3.2	6.2 0.0	7.4 0.0	9.5 0.0	7.6 0.0	0.0	6.8	5.9	4.8	
1980-01 1980-02 1980-03	0.0 1.6	0.0 0.0	1.0 0.0	0.9	5.4	0.0	1.3	0.0	0.0	0.0	10.4	0.0 0.0	0.0 0.0	0.0 0.0	11.6 0.0	0.0 0.0	0.0 3.8	0.0	0.0 0.4	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	 0.0	0.0 0.0	7.7 0.0	10.7 0.0	10.3 0.0	 114.7 0.0	 0.0	 34.8
1980-04 1980-05	0.0	39.3 0.0	6.8	0.0	0.0	0.0	1.4 0.0	32.6 0.0	2.1 0.0	3.6 0.0	0.0	0.0	23.4 0.0	28.1 0.0	1.3	49.3 0.0	1.5 0.0	4.7 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1980-06 1980-07 1980-08	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1980-09 1980-10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		-	-		-	-	
1980-11 1980-12			-		-	-		-	-		-	-	-		-		-		-	-	-			-	-	-	-		=	-	-
1981-01 1981-02 1981-03				-	-	-			-			-			-			-		-						-	-				
1981-04 1981-05		-			-	-			-			-			-			-		-			-			-	-		-	-	
1981-06 1981-07 1981-08		-		-	-	-		-	-		-	-			-			-		-	-		-		-	-	-		-	-	
1981-09 1981-10		-		-	-	-		-	-		-	-			-			-		-	-		-			-	-		-	-	
1981-11 1981-12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.6	-	-	6.5	0.0	0.0	0.0	0.0	0.0	0.0	16.1	0.0	6.1	0.4	6.1	18.1	0.0	0.4	16.5	22.1
1982-01 1982-02 1982-03	2.4 0.0 50.8	0.0 0.2 0.0	14.2 0.0 0.0	0.0 0.0 20.0	1.6 0.0 0.0	0.4 0.0 3.4	2.4 0.0 0.0	8.5 0.0 0.0	17.2 2.0 0.0	24.0 0.0 0.0	0.0 0.0 0.0	17.4 18.4 0.0	0.0 17.0 0.0	18.4 15.0 0.0	0.0 0.0 0.0	17.0 0.0 0.0	0.0 2.1 0.0	15.0 5.3 0.0	0.0 0.0 0.0	0.0 4.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	6.1 0.0 0.0	0.0 19.4 0.0	8.3 0.0 0.0	1.6 0.0 0.0	6.0 0.0 0.0	0.0 20.6 0.0	0.0	0.0 0.0	1.8 0.0
1982-04 1982-05	50.8 25.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	7.2 0.0	0.0 24.0 	0.0	0.0 0.0	0.0	0.0 0.0 0.0	3.9 0.0	0.0	0.0 0.0 0.0	0.0 25.4 0.0	0.0 8.4 0.0	0.0 0.4 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.2 0.0	0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0
1982-06 1982-07 1982-08		-	-	-	-	-	-	-	-		-	-	-		-		-	-	-	-	-		-		-	-	-			-	
1982-09 1982-10	0.0	0.0	0.0	0.0	0.0	-		-			-	=			-					-						-			-		
1982-11 1982-12	0.0	0.0 17.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 20.7	4.3 24.8	2.7 10.4	0.0	60.7 19.5	74.6 0.0	0.0 6.9	0.0	0.0	0.0	0.0	0.0	25.6 0.0	0.0	0.0 41.1	0.0	36.7 0.0	0.0	10.8	20.6	0.0	0.0

Precipitation Data in Niasa (Monthly)

Instituto Nacional de Meteorologia

Caixa Postal 256 - MAPUTO

Teleg.: OBSERTOR - Telefs.: 490064-490148-492530 - Fax: 491150 - Telex: SMMMP 6-259

Nº69-09/INF-DAD Maputo,25 de Março de 2009

Ao JICA STUDY TEAM Oriental Consultants,Ltd

MAPUTO

Estação: Cuamba Periodo:1960 - 2008

Elemento: Precipitação total mensal (das 9 as 9 horas em mm)

				,		,						
ANO	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ
1960	92.9	205.0	122.3	19.5	44.2	23.1	2.6	0.0	7.2	10.0	67.2	64.9
1961	192.4	97.7	368.4	96.3	2.4	1.0	6.4	9.4	0.0	1.3	98.5	157.7
1962	329.2	146.5	200.3	18.9	3.8	11.7	0.8	1.1	0.8	30.3	82.2	358.9
1963	221.2	431.6	139.6	11.2	0.9	0.6	0.0	0.0	0.0	4.0	147.8	209.4
1964	238.3	195.6	46.3	21.7	3.2	0.6	1.4	0.0	0.3	0.0	107.1	146.5
1965	283.9	144.0	261.6	42.7	0.9	4.7	0.2	0.2	11.2	3.1	124.5	184.4
1966	162.3	396.9	44.0	31.7	12.5	5.7	2.8	0.0	0.0	12.6	56.7	129.7
1967	273.5	84.5	359.8	71.4	4.3	0.2	3.1	1.3	6.7	9.7	79.9	179.5
1968	234.7	291.6	50.4	116.6	11.4	14.8	0.0	0.0	0.0	12.0	78.5	70.4
1969	309.5	193.0	107.7	75.1	0.4	0.0	1.0	0.6	1.0	0.0	41.9	340.1
1970	369.4	96.7	18.5	19.6	0.2	9.8	0.0	0.0	0.0	10.7	13.4	225.5
1971	50.6	228.1	66.9	27.4	2.1	0.5	1.3	0.0	0.0	9.6	42.6	132.9
1972	202.1	165.5	32.1	32.6	5.5	0.2	0.0	0.0	0.0	6.4	35.2	205.4
1973	143.4	56.7	220.9	40.9	0.0	0.9	12.1	0.0	0.0			
1977					0.0	0.1	0.4	0.1	10.4	37.0	91.7	140.4
1978	459.9		275.4	77.8	0.3	10.4	2.9	0.0	0.0	0.4	16.0	294.3
1979	68.3	237.7	174.1	64.3	0.0	2.9	0.7	1.2	0.1	19.0	112.4	143.7
1980	120.0	133.5	96.6	211.8	0.0	0.7	1.4	1.3	16.0	97.5	34.3	503.4
1981	81.6	264.0	98.9	27.3	11.9	1.2	0.7	0.0	3.2	54.4	25.4	147.8
1982	352.6	260.4	69.6	58.8	3.3	0.0	1.3	0.4	2.2	43.9	70.0	241.2
1983	139.0	395.8	112.9	63.5	0.2	4.2	20.0	0.0	0.0	27.4	45.7	283.5
1984	211.9	231.2	105.5	15.8	4.9	8.2	11.8	0.0	0.6	0.0	105.7	167.5
1985	221.9	187.0	192.4	92.6	0.0	9.8	2.3	0.9	3.1	28.8	54.0	308.6
1986	272.2	281.6	130.1	14.6	1.6	1.0	0.3	0.0	0.0	36.9	127.0	52.7
1987	294.7	189.8	160.9	44.8	0.3	3.2	0.0	8.0	0.0	4.5	33.9	155.5
1988	298.7	275.4	125.7	31.2	2.8	1.7	0.0	0.0	0.0	33.5	83.8	208.5
1989	302.8	256.2	223.9	67.2	2.6	0.0	1.2	0.4	13.2	16.0	65.4	180.7
1990	246.4	116.9		28.6		0.0	0.0	1.4	75.8	0.1	18.4	97.6
1991	183.6	148.0	323.0	17.7	0.6	2.1	5.0	0.1	23.1	21.8	153.6	191.5
1992	288.5	19.5	71.6	5.1	2.7	2.7	0.2	0.0	0.0	0.1	48.5	184.3
1993	221.3	193.0	178.3	91.9	281.4	184.4	218.4	242.3	258.3	30.4	38.1	76.2
1994	254.2	27.4	88.8	8.9	0.0	1.5	0.3	8.0		2.8	79.3	108.9
1995	389.6	157.6	53.7	70.1	0.0	0.1	0.7	0.4	0.0	0.0	58.6	321.7
1996	192.3	175.8	362.1		11.4	0.3	0.0	0.0	0.1	0.9	7.4	266.2
1997	184.5	265.5	46.1	121.4	1.3	1.8	4.8	0.0	0.1	23.0	120.5	286.0
1998	357.0	137.9	88.6	10.7	1.7	0.0	0.0	1.9	0.0	9.4	10.9	216.5
1999	291.8	375.7	159.8	40.1	0.0	0.0	5.1	3.6	12.2	0.0	51.8	161.3
2000	229.8	290.5	199.0	112.2	5.7	0.0	7.7	3.5	2.4	97.4	294.5	106.0
2001	269.6	234.2	101.9	16.6	21.6	0.0	0.0	4.6	1.8	21.1	186.9	
2002	395.1	279.4	155.8	17.4	3.6	2.1	0.0	7.0	28.7	1.0	48.3	308.4
2003	374.7	151.3	211.0	4.5	0.0	0.0	3.6	0.2	0.0	0.0	39.0	132.7
2004	296.0	189.5	44.4	114.0	8.8	1.8	1.2	0.7	2.2	7.5	84.5	327.0
2005	199.0	142.0	31.6	39.4	27.2	0.0	0.0	0.0	3.6	6.8	14.9	319.5
2006	690.6	242.4	248.9	54.0	0.0	0.0	24.2	17.9	0.0	194.7		
2007	598.3	117.7	69.7	18.3	5.3	0.2	0.1	0.0	0.5	49.7	26.0	280.4
2008	504.3	123.2	54.9	0.3	0.0	1.3	0.0				166.0	

Estação: Lichinga Periodo:1960 - 2008

Elemento: Precipitação total mensal (das 9 as 9 horas em mm)

ANO	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ
1960	219.9	203.7	304.2	26.6	15.6	7.6	2.1	0.0	8.1	0.0	34.2	215.2
1961	120.1	160.9	249.2	126.7	22.6	9.6	17.5	4.6	0.1	2.3	123.6	242.1
1962	177.3	215.2	249.4	125.9	7.0	1.8	2.2	0.0	0.0	70.0	130.9	244.0
1963	322.0	235.0	193.1	87.1	3.6	0.0	7.7	0.0	1.4	13.2	216.6	222.7
1964	281.6	201.3	73.7	9.0	0.2	0.6	3.5	3.6	0.0	1.3	73.6	194.3
1965	237.9	303.4	285.4	27.0	3.0	2.4	0.8	0.0	3.2	0.1	57.9	344.4
1966	225.0	205.4	249.0	33.1	29.8	2.7	5.8	0.0	0.0	14.7	139.8	275.8
1967	194.2	233.6	206.6	170.8	59.4	1.3	1.1	0.7	0.2	8.3	138.6	174.3
1968	190.7	172.0	151.1	58.2	25.7	11.4	2.9	0.2	0.0	4.9	53.6	228.7
1969	243.5	240.6	139.8	116.2	122.7	3.3	0.0	5.1	13.1	2.2	141.6	291.6
1970	222.8	161.5	76.1	64.7	0.0	0.0	0.0	0.0	0.0	5.6	158.7	397.8
1971	300.6	213.2	131.1	51.3	4.4	1.3	0.4	0.0	0.0	42.0	118.1	252.8
1972	257.3	297.0	111.3	99.0	62.6	3.7	4.5	1.4	0.0	38.4	93.9	264.3
1973	138.7	156.2	151.0	63.0	0.0	2.2	0.9	0.0	0.0	0.9	38.1	212.2
1974	284.9	264.1	307.6	156.9	135.0	9.0	21.8	0.0	13.3	26.0	26.4	248.6
1975	98.6	273.4	187.2	130.7	27.7	2.3	0.0	0.2	0.5	3.0	42.4	156.7
1976	223.1	287.2	133.1	283.5	5.5	2.0	0.6	0.0	0.0	10.3	39.8	164.3
1977	249.1	210.9	227.2	72.2	53.8	0.0	0.3	0.4	16.5	6.2	86.5	148.9
1978	130.4	255.5	264.2	72.3	0.0	12.4	0.1	0.0	2.0	48.1	77.7	260.3
1979	167.8	229.0	351.8	39.9	32.1	1.3	2.2	0.0	1.6	7.0	167.0	145.3
1980	254.7	166.5	322.3	121.0	0.6	0.5	0.6	1.6	24.9	58.6	42.6	327.3
1981	175.4	330.2	173.7	43.4	18.6	0.3	0.0	0.0	0.2	60.0	79.1	139.3
1982	199.3	163.0	253.0	254.3	31.2	3.0	3.8	0.0	0.0	20.1	133.1	322.0
1983	180.3	231.3	132.7	59.4	4.4	6.1	17.1	0.0	0.3	5.5	48.4	206.9
1984	148.4	188.6	152.2	80.0	2.9	2.2	6.0	0.0	0.4	10.5	209.2	245.5
1985	188.6	195.4	153.8	22.7	18.9	1.2	4.9	9.0	5.8	6.2	245.7	300.6
1986	294.6	128.2	114.9	89.6	10.0	3.2	0.0	0.0	0.0	37.3	102.0	239.2
1987	228.1	185.7	264.4	28.7	0.2	0.5	0.0	0.0	0.0	42.6	23.9	95.6
1988	321.6	323.0	123.1	24.4	27.7	0.0	0.0	0.0	0.0	24.9	131.4	238.8
1989	400.4	247.4	486.7	137.3	2.3	0.2	2.4	1.9	1.1	12.8	106.5	312.4
1990	216.9	248.7	120.9	109.0	25.9	0.0	0.0	0.0	16.8	0.0	42.8	140.0
1991	214.0	176.9	280.7	47.5	24.4	0.4	9.1	0.0	0.0	14.3	120.3	201.2
1992	318.8	109.1	121.9	9.0	87.8	0.0	0.4	0.6	0.0	4.1	65.1	152.9
1993	242.5	284.1	188.2	147.9	13.9	3.1	0.0	7.7	0.0	11.2	117.4	168.0
1994	271.8	153.5	85.9	56.7	0.0	1.2	0.5	2.9	0.0	13.3	64.8	47.3
1995	246.4	223.9		28.9	23.0	0.0	0.7	0.0	0.0	0.0	12.4	
1996	221.8	220.0	257.6	86.6	67.6	1.1	0.2	0.0	188.4	5.2	0.7	146.6
1997	224.2	129.3	65.1	166.2	106.2	0.0	1.9	0.0	0.0	67.8	112.4	399.8
1998	286.5	61.5	156.5	71.9	4.8	0.0	0.0	0.0	0.0	81.4	9.5	70.1
1999	370.6	291.4	558.0	94.5	30.9	15.3	0.5	6.6	0.2	6.2	110.1	94.4
2000	375.2	201.3	245.7	32.8	0.0	1.7	3.7	0.0	0.0	13.4	219.7	219.6
2001	183.0	247.2	359.8	39.9	12.5	0.0	0.0	1.4	0.0	24.7		217.5
2002	550.1	371.2	153.3	73.4	2.0	3.8	0.0	0.5	2.8	1.4	64.4	215.3
2002	402.2	266.8	351.3	30.6	0.0	0.0	4.5	1.3	0.0	0.0	113.4	249.3
2003	254.6	175.8	124.2	126.1	7.0	3.8	2.1	1.9	1.4	36.1	74.8	328.5
2004	269.9	123.6	160.5	93.4	7.0 70.1	3.6 11.7	7.9	1.5	11.9	7.6	74.0	327.7
2005	269.9 257.4	221.7	318.2	93.4 49.1	70.1 15.8	0.2	7.9 0.4	0.2	0.0	33.3	279.7	327.7 101.1
2006	129.3	155.5	111.3	49.1 17.8	6.0	0.2		0.2	0.0	53.5 53.0	9.5	355.9
2007	425.2	195.5	97.2	31.4	28.1	0.8	3.3	U.U 	0.0 	53.0	9.5	355.9
2000	420.2	190.0	91.2	31.4	20.1	0.0						

Estação: Mandimba Periodo:1960 - 2008

Elemento: Precipitação total mensal (das 9 as 9 horas em mm)

ANO	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ
1960												
1973				73.9	0.0	0.6		0.0	0.0	3.7	49.3	219.1
1974	280.7	327.4	405.7	99.5	46.5	22.5	2.6	0.0	0.0	0.0	59.9	194.6
1975	258.6	274.7	48.6	79.6	0.5					15.1	12.8	249.4
1976	437.7	226.2	343.8	292.6		0.0	0.0	0.0	0.0	23.1	26.5	30.9
1977	347.7	75.5	157.3	6.8	0.0			0.0	0.0	0.0	136.0	167.3
1978	471.1	301.4	390.9	117.6			0.0			0.0	67.1	
1979										8.0	147.1	
1980		173.0		194.0	0.0	0.0	0.0		0.0			
1981												
1982	159.3	144.0	74.2	94.6				1.7			236.0	
1983	173.1	143.2	202.6	24.1	0.0							
2008												

Appendix-C CBR results

PROJECT: FEASIBILITY STUDY FOR UPGRADING THE CUAMBA LICHINGA RO MATERIALS INVESTIGATION GENERAL DATA FROM BORROW PITS

SECTION OF THE ROAD : LICHINGA - MADIMBA

	Location			GRAD	ING AN	GRADING ANALYSIS			A	ATTERBERG LIMITS	5	Mod. Aashto	\ashto		C.B.R.	
Ref.	(سرا) میرمزندمی	< 19.0	(19.0 < 13.2 < 4.75	< 4.75	\vee	2.00 < 0.425 < 0.075	< 0.075	M	-	DI	0	M.D.D.	0	Proctor	NRD	MOD
	Orialiage (NIII)	mm	mm	mm	mm	mm	mm]	L	2	(T/m^3)	(%)	(%06)	(82%)	(100%)
741	55+200	100	98'6	78,4	64,9	58,1	40,0		44	28	8'9	1,773	8,6	1	9	11
751	000+99	69,4	61,5	9'09	44,2	22,5	8,0	2,3	56	10	p/u	2,099	8,3	15	31	69
737	100+000	92,1		82'8	82,5	78,9	66,4	0,7	98	18	6,4	1,876	9,0	12	20	10
742	122+000		100	6,76	96,0	85,3	56,3	9,0	28	19	9,9	1,698	10,1	1	1	3
743	150+000	6'96		95,7	93,5	74.2	43,8	6'0	87	11	3,8	2,007	8,6	12	24	41

Appendix-D Bench Mark Coordinate

Bench Mark coodination between Mandimba to Lichinga

	WGS.84 UTM ZONE	37	
POINT ID	EASTING	NORTHING	ELEVATION(m)
ML1	-135881.823	-8414368.383	784.924
ML2	-131941.165	-8417241.448	843.661
ML3	-127798.922	-8420112.503	924.076
ML4	-124416.621	-8423390.845	913.389
ML5	-122575.512	-8428019.484	923.189
ML6	-120236.183	-8432259.205	959.286
ML7	-119594.277	-8437239.909	898.640
ML8	-118062.335	-8441900.914	983.777
ML9	-116778.788	-8446404.671	1043.076
ML10	-115663.658	-8450808.927	1061.736
ML11	-114165.616	-8455332.026	1085.030
ML12	-113062.048	-8459839.914	1133.247
ML13	-110552.604	-8463116.266	1142.397
ML14	-109726.887	-8467762.377	1113.226
ML15	-108026.213	-8471456.485	1083.698
ML16	-104511.991	-8473287.564	1088.110
ML17	-100941.630	-8475500.187	1146.360
ML18	-96730.195	-8475988.227	1199.576
ML19	-94679.575	-8480251.625	1178.054
ML20	-95655.552	-8484604.938	1099.047
ML21	-94590.740	-8489148.455	1204.989
ML22	-94389.167	-8493145.685	1189.584
ML23	-95135.006	-8497214.443	1175.150
ML24	-95609.992	-8501267.120	1194.224
ML25	-94943.353	-8505565.213	1207.845
ML26	-93883.441	-8508227.361	1197.182
ML27	-92968.737	-8512742.862	1255.076
ML28	-92684.249	-8515815.797	1302.750
ML29	-92454.934	-8518659.081	1331.119
ML30	-93645.797	-8522455.619	1382.862

Appendix-E Mechanistic Analysis

MECHANISTIC ANALYSIS DETAILS FOR THE NAMPULA CUAMBA ROAD PAVEMENT- THEYSE

PAVEMENT STRUCTURE

Road Categor : B

Design Class of traffic: T6

Pavement T pe: Granular Base

Input Values

		IIIPut	v aluc-	<u> </u>	
La er Nr	Thickness (mm)	Poisson Coef.	E-l	Modulus (M Phase-II	pa) Phase-III
2	200	0.35	400	400	300
3	250	0.25	1,500	600	300
4	250	0.35	150	150	150
5	1/2 INF.	0.35	30	30	30

Critical Parameters

Stresses (δ1 / δ3 KPa) & Strains (ε)								
Phase-I	Phase-II	Phase-III						
(400.4/89.8)	(388.2/89.3)	(381.4/80.7)						
1.05E-04	1.4E-04	(118.1/-22.92)						
1.97E-04	2.63E-04	3.16E-04						
3.2E-04	3.9E-04	4.7E-04						

Anal ysis

1000	Layer Life (E80's)			Structural Life (E90's)		
La er Nr	Phase-I	Phase-II	Phase-III	Structural Life (E80's)		.00 5)
2	1.06E+10	1.41E+10	5.75E+09	Wet:	1.01E+07	
3	4.08E+06	1.20E+06	3.85E+07	(sum of minimum of each phase)		
4	2.67E+10	1.50E+09	2.45E+08	<u>Deflection (mm)</u>		
5	2.13E+08	2.92E+07	4.79E+06	Inicial		Final
	4.08E+06	1.20E+06	4.79E+06	0.6753		0.8631

S2 Sub-grade

N13-Cuamba-Lichinga Road

PHASE 1

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM LOAD(S)

 ELASTIC SYSTEM 1 - 2s-cm-1

 ELASTIC POISSONS MODULUS RATIO THICKNESS

 1
 400.
 0.350
 200.000 MM

 2
 1500.
 0.250
 249.999 MM

 3
 150.
 0.350
 249.999 MM

 4
 30.
 0.350
 SEMI-INFINITE

TWO LOAD(S), EACH LOAD AS FOLLOWS

TOTAL LOAD..... 20.00 KN LOAD STRESS.... 559.87KPA LOAD RADIUS.... 106.63 MM

LOAD X Y
1 0.000 0.000
2 349.999 0.000

RESULTS REQUESTED FOR SYSTEM LOCATION(S)

DEPTH(S)

Z= 0.00 100.00 201.00 325.00 449.00 451.00 575.00 701.00

X-Y POINT(S)

X= 0.00 175.00 Y= 0.00 0.00

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-1
           Z= 0.00 LAYER NO 1
           X =
                  0.00
                          175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.4809E+03 0.4630E+02
          SYY -0.4865E+03-0.6062E+02
          SZZ -0.5624E+03 0.1143E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ -0.6515E-05-0.1010E-11
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.4809E+03 0.4630E+02
          PS 2-0.4865E+03 0.1143E+02
          PS 3-0.5624E+03-0.6062E+02
        THETA 0.1530E+04 0.2889E+01
  DEV. STRESS 0.8148E+02 0.1069E+03
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.4074E+02 0.5346E+02
          PSS2 0.2795E+01 0.1743E+02
          PSS3 0.3795E+02 0.3603E+02
         DISPLACEMENTS
          UX 0.1773E-01-0.3655E-09
          UY 0.0000E+00 0.0000E+00
          UZ 0.6753E+00 0.5228E+00
         NORMAL STRAINS
          EXX -0.2846E-03 0.1589E-03
          EYY -0.3035E-03-0.2022E-03
          EZZ -0.5597E-03 0.4113E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ -0.4399E-10-0.6821E-17
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1-0.2846E-03 0.1589E-03
          PE 2-0.3035E-03 0.4113E-04
          PE 3-0.5597E-03-0.2022E-03
         PRINCIPAL SHEAR STRAINS
```

PSE1 0.2751E-03 0.3610E-03 PSE2 0.1887E-04 0.1177E-03 PSE3 0.2563E-03 0.2433E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-1
           Z= 100.00 LAYER NO 1
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.9752E+02-0.1725E+03
          SYY -0.8979E+02-0.5580E+02
          SZZ -0.4002E+03-0.9953E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.7626E+01 0.1973E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.8979E+02-0.5580E+02
          PS 2-0.9733E+02-0.9953E+02
          PS 3-0.4004E+03-0.1725E+03
        THETA 0.5876E+03 0.3278E+03
  DEV. STRESS 0.3106E+03 0.1167E+03
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1553E+03 0.5835E+02
          PSS2 0.3768E+01 0.2186E+02
          PSS3 0.1516E+03 0.3649E+02
         DISPLACEMENTS
          UX 0.8763E-02-0.3474E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.5894E+00 0.5298E+00
         NORMAL STRAINS
          EXX 0.1851E-03-0.2955E-03
          EYY 0.2112E-03 0.9857E-04
          EZZ -0.8371E-03-0.4907E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.5150E-04 0.1332E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.2112E-03 0.9857E-04
          PE 2 0.1857E-03-0.4907E-04
          PE 3-0.8377E-03-0.2955E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.1049E-02 0.3941E-03
          PSE2 0.2545E-04 0.1476E-03
```

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM

PSE3 0.1023E-02 0.2464E-03

```
LOAD(S)
   ELASTIC SYSTEM 1 - 2s-cm-1
           Z= 201.00 LAYER NO 2
           X =
                   0.00
                           175.00
                    0.00
                              0.00
         NORMAL STRESSES
          SXX -0.8732E+02-0.1405E+03
          SYY -0.8601E+02-0.9062E+02
          SZZ -0.2094E+03-0.1204E+03
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1995E+02 0.4663E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.8415E+02-0.9062E+02
          PS 2-0.8601E+02-0.1204E+03
          PS 3-0.2125E+03-0.1405E+03
        THETA 0.3827E+03 0.3515E+03
   DEV. STRESS 0.1284E+03 0.4993E+02
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.6420E+02 0.2496E+02
          PSS2 0.9334E+00 0.1488E+02
          PSS3 0.6326E+02 0.1008E+02
         DISPLACEMENTS
          UX 0.6340E-02 0.1197E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.5305E+00 0.5174E+00
         NORMAL STRAINS
          EXX -0.8991E-05-0.5856E-04
          EYY -0.7898E-05-0.1693E-04
          EZZ -0.1107E-03-0.4175E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.3327E-04 0.7775E-09
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1-0.6341E-05-0.1693E-04
          PE 2-0.7898E-05-0.4175E-04
          PE 3-0.1134E-03-0.5856E-04
         PRINCIPAL SHEAR STRAINS
          PSE1 0.1070E-03 0.4163E-04
          PSE2 0.1556E-05 0.2481E-04
```

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM

PSE3 0.1055E-03 0.1681E-04

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-1
          Z= 325.00 LAYER NO 2
           X=
                  0.00
                          175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.2139E+02 0.1541E+02
          SYY 0.3544E+02 0.3917E+02
          SZZ -0.7565E+02-0.6709E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.2724E+02 0.4701E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.3544E+02 0.3917E+02
          PS 2 0.2852E+02 0.1541E+02
          PS 3-0.8277E+02-0.6709E+02
        THETA 0.1881E+02 0.1251E+02
  DEV. STRESS 0.1182E+03 0.1063E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.5911E+02 0.5313E+02
          PSS2 0.3463E+01 0.1188E+02
          PSS3 0.5564E+02 0.4125E+02
         DISPLACEMENTS
          UX -0.3218E-02-0.3672E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.5206E+00 0.5111E+00
         NORMAL STRAINS
          EXX 0.2097E-04 0.1493E-04
          EYY 0.3269E-04 0.3474E-04
          EZZ -0.5993E-04-0.5385E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.4542E-04 0.7838E-09
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.3269E-04 0.3474E-04
          PE 2 0.2691E-04 0.1493E-04
          PE 3-0.6587E-04-0.5385E-04
         PRINCIPAL SHEAR STRAINS
          PSE1 0.9856E-04 0.8859E-04
          PSE2 0.5775E-05 0.1981E-04
```

PSE3 0.9278E-04 0.6878E-04

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-1
          Z= 449.00 LAYER NO 2
           X =
                  0.00
                          175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.1437E+03 0.1579E+03
          SYY 0.1763E+03 0.1910E+03
          SZZ -0.2258E+02-0.2390E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.6546E+01 0.9776E-04
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.1763E+03 0.1910E+03
          PS 2 0.1439E+03 0.1579E+03
          PS 3-0.2284E+02-0.2390E+02
        THETA -0.2974E+03-0.3250E+03
  DEV. STRESS 0.1992E+03 0.2149E+03
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.9959E+02 0.1074E+03
          PSS2 0.1622E+02 0.1656E+02
          PSS3 0.8338E+02 0.9089E+02
         DISPLACEMENTS
          UX -0.1346E-01-0.1483E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.5134E+00 0.5037E+00
         NORMAL STRAINS
          EXX 0.7017E-04 0.7744E-04
          EYY 0.9743E-04 0.1050E-03
          EZZ -0.6842E-04-0.7411E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1091E-04 0.1630E-09
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.9743E-04 0.1050E-03
          PE 2 0.7039E-04 0.7744E-04
          PE 3-0.6863E-04-0.7411E-04
         PRINCIPAL SHEAR STRAINS
          PSE1 0.1661E-03 0.1792E-03
          PSE2 0.2704E-04 0.2761E-04
```

PSE3 0.1390E-03 0.1515E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-1
           Z= 451.00 LAYER NO 3
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.5885E+01 0.6884E+01
          SYY 0.8923E+01 0.9959E+01
          SZZ -0.2239E+02-0.2370E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.6234E+01 0.1127E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.8923E+01 0.9959E+01
          PS 2 0.7198E+01 0.6884E+01
          PS 3-0.2370E+02-0.2370E+02
        THETA 0.7579E+01 0.6861E+01
  DEV. STRESS 0.3262E+02 0.3366E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1631E+02 0.1683E+02
          PSS2 0.8625E+00 0.1538E+01
          PSS3 0.1545E+02 0.1529E+02
         DISPLACEMENTS
          UX -0.1356E-01-0.1855E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.5131E+00 0.5034E+00
         NORMAL STRAINS
          EXX 0.7068E-04 0.7800E-04
          EYY 0.9804E-04 0.1057E-03
          EZZ -0.1839E-03-0.1974E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1123E-03 0.2030E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.9804E-04 0.1057E-03
          PE 2 0.8251E-04 0.7800E-04
          PE 3-0.1957E-03-0.1974E-03
         PRINCIPAL SHEAR STRAINS
```

PSE1 0.2938E-03 0.3031E-03 PSE2 0.1553E-04 0.2769E-04 PSE3 0.2782E-03 0.2754E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-1
           Z= 575.00 LAYER NO 3
           X =
                   0.00
                          175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.1100E+02 0.1261E+02
          SYY 0.1288E+02 0.1405E+02
          SZZ -0.1355E+02-0.1414E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.3916E+01 0.7275E-04
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.1288E+02 0.1405E+02
          PS 2 0.1161E+02 0.1261E+02
          PS 3-0.1416E+02-0.1414E+02
        THETA -0.1033E+02-0.1252E+02
  DEV. STRESS 0.2704E+02 0.2819E+02
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1352E+02 0.1410E+02
          PSS2 0.6321E+00 0.7235E+00
          PSS3 0.1289E+02 0.1337E+02
         DISPLACEMENTS
          UX -0.1467E-01-0.2050E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.4931E+00 0.4819E+00
         NORMAL STRAINS
          EXX 0.7496E-04 0.8428E-04
          EYY 0.9183E-04 0.9731E-04
          EZZ -0.1461E-03-0.1565E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.7053E-04 0.1310E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.9183E-04 0.9731E-04
          PE 2 0.8045E-04 0.8428E-04
          PE 3-0.1516E-03-0.1565E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.2434E-03 0.2539E-03
          PSE2 0.1138E-04 0.1303E-04
```

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM

PSE3 0.2321E-03 0.2408E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-1
           Z= 701.00 LAYER NO 4
           X =
                  0.00
                          175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.2634E+00 0.1885E+00
          SYY 0.1487E+00 0.4741E+00
          SZZ -0.9314E+01-0.9365E+01
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1204E+01 0.2194E-04
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.1487E+00 0.4741E+00
          PS 2-0.1059E+00 0.1885E+00
          PS 3-0.9471E+01-0.9365E+01
        THETA 0.9428E+01 0.8703E+01
  DEV. STRESS 0.9620E+01 0.9839E+01
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.4810E+01 0.4920E+01
          PSS2 0.1273E+00 0.1428E+00
          PSS3 0.4683E+01 0.4777E+01
         DISPLACEMENTS
          UX -0.1921E-01-0.3017E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.4746E+00 0.4621E+00
         NORMAL STRAINS
          EXX 0.9819E-04 0.1101E-03
          EYY 0.1167E-03 0.1229E-03
          EZZ -0.3093E-03-0.3200E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1084E-03 0.1976E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1167E-03 0.1229E-03
          PE 2 0.1053E-03 0.1101E-03
          PE 3-0.3163E-03-0.3200E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.4331E-03 0.4430E-03
          PSE2 0.1146E-04 0.1286E-04
```

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM

PSE3 0.4216E-03 0.4301E-03

PHASE 2

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM LOAD(S)

 ELASTIC SYSTEM 1 - 2s-cm-2

 ELASTIC POISSONS LAYER

 MODULUS
 RATIO THICKNESS

 1
 400. 0.350 200.000 MM

 2
 600. 0.250 249.999 MM

 3
 150. 0.350 249.999 MM

 4
 30. 0.350 SEMI-INFINITE

 TWO
 LOAD(S),EACH LOAD AS FOLLOWS

TOTAL LOAD..... 20.00 KN LOAD STRESS.... 559.87KPA LOAD RADIUS.... 106.63 MM

LOCATED AT
LOAD X Y
1 0.000 0.000
2 349.999 0.000

RESULTS REQUESTED FOR SYSTEM LOCATION(S)

DEPTH(S)

Z= 0.00 100.00 201.00 325.00 449.00 451.00 575.00 701.00

X-Y POINT(S)

X= 0.00 175.00 Y= 0.00 0.00

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-2
          Z= 0.00 LAYER NO 1
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.5078E+03 0.2568E+02
          SYY -0.5214E+03-0.9521E+02
          SZZ -0.5624E+03 0.1143E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.5290E-05 0.2008E-13
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.5078E+03 0.2568E+02
          PS 2-0.5214E+03 0.1143E+02
          PS 3-0.5624E+03-0.9521E+02
        THETA 0.1592E+04 0.5809E+02
  DEV. STRESS 0.5457E+02 0.1209E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.2728E+02 0.6045E+02
          PSS2 0.6788E+01 0.7124E+01
          PSS3 0.2050E+02 0.5332E+02
         DISPLACEMENTS
          UX 0.2275E-01-0.6765E-09
          UY 0.0000E+00 0.0000E+00
          UZ 0.7322E+00 0.5854E+00
         NORMAL STRAINS
          EXX -0.3214E-03 0.1376E-03
          EYY -0.3672E-03-0.2706E-03
          EZZ -0.5056E-03 0.8946E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.3572E-10 0.1356E-18
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1-0.3214E-03 0.1376E-03
          PE 2-0.3672E-03 0.8946E-04
          PE 3-0.5056E-03-0.2706E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.1842E-03 0.4082E-03
          PSE2 0.4584E-04 0.4811E-04
```

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM

PSE3 0.1384E-03 0.3601E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-2
           Z= 100.00 LAYER NO 1
               0.00 175.00
                   0.00
                            0.00
         NORMAL STRESSES
          SXX -0.9630E+02-0.1702E+03
          SYY -0.8927E+02-0.5743E+02
          SZZ -0.3879E+03-0.9626E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.9719E+01 0.2301E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.8927E+02-0.5743E+02
          PS 2-0.9597E+02-0.9626E+02
          PS 3-0.3882E+03-0.1702E+03
        THETA 0.5735E+03 0.3239E+03
  DEV. STRESS 0.2989E+03 0.1128E+03
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1495E+03 0.5639E+02
          PSS2 0.3351E+01 0.1942E+02
          PSS3 0.1461E+03 0.3697E+02
         DISPLACEMENTS
          UX 0.9004E-02-0.3105E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.6498E+00 0.5951E+00
         NORMAL STRAINS
          EXX 0.1768E-03-0.2911E-03
          EYY 0.2006E-03 0.8963E-04
          EZZ -0.8077E-03-0.4151E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.6563E-04 0.1554E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.2006E-03 0.8963E-04
          PE 2 0.1779E-03-0.4151E-04
          PE 3-0.8088E-03-0.2911E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.1009E-02 0.3808E-03
          PSE2 0.2263E-04 0.1311E-03
```

PSE3 0.9867E-03 0.2496E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-2
           Z= 201.00 LAYER NO 2
               0.00 175.00
                    0.00
                             0.00
         NORMAL STRESSES
          SXX -0.2394E+02-0.6887E+02
          SYY -0.1210E+02-0.1392E+02
          SZZ -0.1852E+03-0.1142E+03
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.2094E+02 0.4436E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.1210E+02-0.1392E+02
          PS 2-0.2126E+02-0.6887E+02
          PS 3-0.1879E+03-0.1142E+03
        THETA 0.2213E+03 0.1970E+03
  DEV. STRESS 0.1758E+03 0.1003E+03
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.8791E+02 0.5015E+02
          PSS2 0.4584E+01 0.2747E+02
          PSS3 0.8332E+02 0.2268E+02
         DISPLACEMENTS
          UX 0.2139E-02-0.3751E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.5923E+00 0.5815E+00
         NORMAL STRAINS
          EXX 0.4234E-04-0.6141E-04
          EYY 0.6703E-04 0.5311E-04
          EZZ -0.2938E-03-0.1560E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.8730E-04 0.1849E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.6703E-04 0.5311E-04
          PE 2 0.4792E-04-0.6141E-04
          PE 3-0.2994E-03-0.1560E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.3664E-03 0.2091E-03
          PSE2 0.1911E-04 0.1145E-03
```

PSE3 0.3473E-03 0.9455E-04

```
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-2
          Z= 325.00 LAYER NO 2
           X= 0.00 175.00
          Y=
                   0.00
                            0.00
         NORMAL STRESSES
          SXX 0.1672E+02 0.1192E+02
          SYY 0.2962E+02 0.3264E+02
          SZZ -0.7251E+02-0.6761E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.2163E+02 0.3706E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.2962E+02 0.3264E+02
          PS 2 0.2168E+02 0.1192E+02
          PS 3-0.7748E+02-0.6761E+02
        THETA 0.2618E+02 0.2305E+02
  DEV. STRESS 0.1071E+03 0.1002E+03
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.5355E+02 0.5012E+02
          PSS2 0.3967E+01 0.1036E+02
          PSS3 0.4958E+02 0.3976E+02
         DISPLACEMENTS
          UX -0.7182E-02-0.8224E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.5672E+00 0.5633E+00
         NORMAL STRAINS
          EXX 0.4575E-04 0.3444E-04
          EYY 0.7264E-04 0.7764E-04
          EZZ -0.1402E-03-0.1313E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.9015E-04 0.1545E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.7264E-04 0.7764E-04
          PE 2 0.5610E-04 0.3444E-04
          PE 3-0.1506E-03-0.1313E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.2232E-03 0.2089E-03
          PSE2 0.1654E-04 0.4320E-04
```

PSE3 0.2067E-03 0.1657E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-2
          Z= 449.00 LAYER NO 2
           X= 0.00 175.00
                  0.00
                            0.00
         NORMAL STRESSES
          SXX 0.7071E+02 0.7823E+02
          SYY 0.8999E+02 0.9809E+02
          SZZ -0.2944E+02-0.3152E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.8840E+01 0.1348E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.8999E+02 0.9809E+02
          PS 2 0.7149E+02 0.7823E+02
          PS 3-0.3022E+02-0.3152E+02
        THETA -0.1313E+03-0.1448E+03
  DEV. STRESS 0.1202E+03 0.1296E+03
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.6011E+02 0.6480E+02
          PSS2 0.9253E+01 0.9931E+01
          PSS3 0.5085E+02 0.5487E+02
         DISPLACEMENTS
          UX -0.1777E-01-0.2023E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.5525E+00 0.5480E+00
         NORMAL STRAINS
          EXX 0.9267E-04 0.1027E-03
          EYY 0.1329E-03 0.1441E-03
          EZZ -0.1161E-03-0.1261E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.3685E-04 0.5620E-09
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1329E-03 0.1441E-03
          PE 2 0.9428E-04 0.1027E-03
          PE 3-0.1177E-03-0.1261E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.2506E-03 0.2701E-03
          PSE2 0.3857E-04 0.4140E-04
```

PSE3 0.2120E-03 0.2287E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-2
          Z= 451.00 LAYER NO 3
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.8188E+01 0.9476E+01
          SYY 0.1266E+02 0.1407E+02
          SZZ -0.2917E+02-0.3124E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.8650E+01 0.1625E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.1266E+02 0.1407E+02
          PS 2 0.1009E+02 0.9476E+01
          PS 3-0.3108E+02-0.3124E+02
        THETA 0.8325E+01 0.7687E+01
  DEV. STRESS 0.4373E+02 0.4531E+02
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.2187E+02 0.2266E+02
          PSS2 0.1282E+01 0.2299E+01
          PSS3 0.2058E+02 0.2036E+02
         DISPLACEMENTS
          UX -0.1787E-01-0.2534E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.5521E+00 0.5477E+00
         NORMAL STRAINS
          EXX 0.9316E-04 0.1033E-03
          EYY 0.1334E-03 0.1447E-03
          EZZ -0.2432E-03-0.2633E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1558E-03 0.2927E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1334E-03 0.1447E-03
          PE 2 0.1103E-03 0.1033E-03
          PE 3-0.2604E-03-0.2633E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.3938E-03 0.4080E-03
          PSE2 0.2309E-04 0.4140E-04
```

PSE3 0.3707E-03 0.3666E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-2
          Z= 575.00 LAYER NO 3
           X= 0.00 175.00
                   0.00
                            0.00
         NORMAL STRESSES
          SXX 0.1406E+02 0.1626E+02
          SYY 0.1675E+02 0.1837E+02
          SZZ -0.1670E+02-0.1777E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.5360E+01 0.1028E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.1675E+02 0.1837E+02
          PS 2 0.1497E+02 0.1626E+02
          PS 3-0.1761E+02-0.1777E+02
        THETA -0.1411E+02-0.1686E+02
  DEV. STRESS 0.3436E+02 0.3614E+02
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1718E+02 0.1807E+02
          PSS2 0.8894E+00 0.1058E+01
          PSS3 0.1629E+02 0.1701E+02
         DISPLACEMENTS
          UX -0.1841E-01-0.2657E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.5264E+00 0.5196E+00
         NORMAL STRAINS
          EXX 0.9369E-04 0.1070E-03
          EYY 0.1179E-03 0.1261E-03
          EZZ -0.1833E-03-0.1993E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.9653E-04 0.1851E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1179E-03 0.1261E-03
          PE 2 0.1019E-03 0.1070E-03
          PE 3-0.1915E-03-0.1993E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.3094E-03 0.3254E-03
          PSE2 0.1602E-04 0.1906E-04
```

PSE3 0.2934E-03 0.3063E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-2
           Z= 701.00 LAYER NO 4
                   0.00
                          175.00
           Y=
                    0.00
                             0.00
         NORMAL STRESSES
          SXX 0.4406E-01 0.5705E+00
          SYY 0.6275E+00 0.9823E+00
          SZZ -0.1085E+02-0.1116E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1576E+01 0.2966E-04
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.6275E+00 0.9823E+00
          PS 2 0.2673E+00 0.5705E+00
          PS 3-0.1108E+02-0.1116E+02
        THETA 0.1018E+02 0.9608E+01
  DEV. STRESS 0.1170E+02 0.1214E+02
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.5852E+01 0.6071E+01
          PSS2 0.1801E+00 0.2059E+00
          PSS3 0.5671E+01 0.5865E+01
         DISPLACEMENTS
          UX -0.2375E-01-0.3835E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.5034E+00 0.4948E+00
         NORMAL STRAINS
          EXX 0.1208E-03 0.1378E-03
          EYY 0.1471E-03 0.1564E-03
          EZZ -0.3697E-03-0.3903E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1419E-03 0.2670E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1471E-03 0.1564E-03
          PE 2 0.1309E-03 0.1378E-03
          PE 3-0.3798E-03-0.3903E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.5269E-03 0.5467E-03
          PSE2 0.1622E-04 0.1854E-04
```

PSE3 0.5107E-03 0.5281E-03

PHASE 3

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM LOAD(S)

ELASTIC SYSTEM 1 - 2s-cm-3

	ELASTIC PC	DISSONS	LAYER		
	MODULUS	RATIO	THICKNESS		
1	300.	0.350	200.000 MM		
2	300.	0.250	249.999 MM		
3	150.	0.350	249.999 MM		
4	30.	0.350	SEMI-INFINITE		

TWO LOAD(S), EACH LOAD AS FOLLOWS

TOTAL LOAD..... 20.00 KN LOAD STRESS.... 559.87KPA LOAD RADIUS.... 106.63 MM

LOCATED AT

LOAD X Y 1 0.000 0.000 2 349.999 0.000

RESULTS REQUESTED FOR SYSTEM LOCATION(S)

DEPTH(S)

Z= 0.00 100.00 201.00 325.00 449.00 451.00 575.00 701.00

X-Y POINT(S)

X= 0.00 175.00 Y= 0.00 0.00

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-3
           Z= 0.00 LAYER NO 1
               0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.5122E+03 0.2643E+02
          SYY -0.5298E+03-0.1026E+03
          SZZ -0.5624E+03 0.1143E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.3988E-04-0.7534E-12
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.5122E+03 0.2643E+02
          PS 2-0.5298E+03 0.1143E+02
          PS 3-0.5624E+03-0.1026E+03
        THETA 0.1604E+04 0.6472E+02
  DEV. STRESS 0.5020E+02 0.1290E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.2510E+02 0.6451E+02
          PSS2 0.8814E+01 0.7500E+01
          PSS3 0.1629E+02 0.5701E+02
         DISPLACEMENTS
          UX 0.2952E-01-0.4905E-09
          UY 0.0000E+00 0.0000E+00
          UZ 0.8631E+00 0.6762E+00
         NORMAL STRAINS
          EXX -0.4332E-03 0.1945E-03
          EYY -0.5126E-03-0.3863E-03
          EZZ -0.6592E-03 0.1270E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.3591E-09-0.6783E-17
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1-0.4332E-03 0.1945E-03
          PE 2-0.5126E-03 0.1270E-03
          PE 3-0.6592E-03-0.3863E-03
```

PRINCIPAL SHEAR STRAINS PSE1 0.2260E-03 0.5808E-03 PSE2 0.7936E-04 0.6753E-04 PSE3 0.1466E-03 0.5133E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-3
           Z= 100.00 LAYER NO 1
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.8815E+02-0.1607E+03
          SYY -0.8067E+02-0.4958E+02
          SZZ -0.3811E+03-0.9511E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.9797E+01 0.2433E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.8067E+02-0.4958E+02
          PS 2-0.8783E+02-0.9511E+02
          PS 3-0.3814E+03-0.1607E+03
        THETA 0.5499E+03 0.3054E+03
  DEV. STRESS 0.3007E+03 0.1111E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1504E+03 0.5555E+02
          PSS2 0.3577E+01 0.2276E+02
          PSS3 0.1468E+03 0.3278E+02
         DISPLACEMENTS
          UX 0.9142E-02-0.4657E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.7538E+00 0.6886E+00
         NORMAL STRAINS
          EXX 0.2450E-03-0.3669E-03
          EYY 0.2787E-03 0.1332E-03
          EZZ -0.1074E-02-0.7177E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.8821E-04 0.2191E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.2787E-03 0.1332E-03
          PE 2 0.2464E-03-0.7177E-04
          PE 3-0.1075E-02-0.3669E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.1354E-02 0.5002E-03
```

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM

PSE2 0.3221E-04 0.2050E-03 PSE3 0.1322E-02 0.2952E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-3
           Z= 201.00 LAYER NO 2
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.9218E+01-0.4980E+02
          SYY 0.5189E+01 0.3767E+01
          SZZ -0.1742E+03-0.1140E+03
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1933E+02 0.4082E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.5189E+01 0.3767E+01
          PS 2-0.6984E+01-0.4980E+02
          PS 3-0.1764E+03-0.1140E+03
        THETA 0.1782E+03 0.1600E+03
  DEV. STRESS 0.1816E+03 0.1178E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.9081E+02 0.5888E+02
          PSS2 0.6087E+01 0.2678E+02
          PSS3 0.8472E+02 0.3210E+02
         DISPLACEMENTS
          UX -0.2533E-02-0.1048E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.6759E+00 0.6673E+00
         NORMAL STRAINS
          EXX 0.1102E-03-0.7417E-04
          EYY 0.1702E-03 0.1491E-03
          EZZ -0.5776E-03-0.3418E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1611E-03 0.3403E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1702E-03 0.1491E-03
          PE 2 0.1195E-03-0.7417E-04
          PE 3-0.5869E-03-0.3418E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.7571E-03 0.4909E-03
```

PSE2 0.5075E-04 0.2233E-03 PSE3 0.7063E-03 0.2676E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-3
          Z= 325.00 LAYER NO 2
          X= 0.00 175.00
          Y=
                  0.00
                            0.00
         NORMAL STRESSES
          SXX 0.7738E+01 0.2712E+01
          SYY 0.1938E+02 0.2138E+02
          SZZ -0.7505E+02-0.7263E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1877E+02 0.3167E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.1938E+02 0.2138E+02
          PS 2 0.1180E+02 0.2712E+01
          PS 3-0.7911E+02-0.7263E+02
        THETA 0.4794E+02 0.4853E+02
  DEV. STRESS 0.9849E+02 0.9400E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.4925E+02 0.4700E+02
          PSS2 0.3792E+01 0.9333E+01
          PSS3 0.4545E+02 0.3767E+02
         DISPLACEMENTS
          UX -0.1106E-01-0.1369E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.6268E+00 0.6291E+00
         NORMAL STRAINS
          EXX 0.7222E-04 0.5177E-04
          EYY 0.1207E-03 0.1296E-03
          EZZ -0.2729E-03-0.2623E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1565E-03 0.2640E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1207E-03 0.1296E-03
          PE 2 0.8914E-04 0.5177E-04
          PE 3-0.2898E-03-0.2623E-03
         PRINCIPAL SHEAR STRAINS
```

PSE1 0.4106E-03 0.3919E-03 PSE2 0.3161E-04 0.7781E-04 PSE3 0.3790E-03 0.3140E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-3
           Z= 449.00 LAYER NO 2
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.3373E+02 0.3763E+02
          SYY 0.4572E+02 0.5014E+02
          SZZ -0.3636E+02-0.3926E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1085E+02 0.1677E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.4572E+02 0.5014E+02
          PS 2 0.3537E+02 0.3763E+02
          PS 3-0.3800E+02-0.3926E+02
        THETA -0.4310E+02-0.4850E+02
  DEV. STRESS 0.8372E+02 0.8940E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.4186E+02 0.4470E+02
          PSS2 0.5176E+01 0.6254E+01
          PSS3 0.3668E+02 0.3844E+02
         DISPLACEMENTS
          UX -0.2009E-01-0.2375E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.5998E+00 0.6011E+00
         NORMAL STRAINS
          EXX 0.1047E-03 0.1164E-03
          EYY 0.1547E-03 0.1686E-03
          EZZ -0.1875E-03-0.2041E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.9045E-04 0.1398E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1547E-03 0.1686E-03
          PE 2 0.1115E-03 0.1164E-03
          PE 3-0.1943E-03-0.2041E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.3490E-03 0.3727E-03
```

PSE2 0.4315E-04 0.5214E-04 PSE3 0.3058E-03 0.3205E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-3
           Z= 451.00 LAYER NO 3
           X= 0.00 175.00
           Y=
                 0.00
                             0.00
         NORMAL STRESSES
          SXX 0.7829E+01 0.9133E+01
          SYY 0.1338E+02 0.1490E+02
          SZZ -0.3602E+02-0.3891E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1073E+02 0.2049E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.1338E+02 0.1490E+02
          PS 2 0.1031E+02 0.9133E+01
          PS 3-0.3850E+02-0.3891E+02
        THETA 0.1481E+02 0.1487E+02
  DEV. STRESS 0.5187E+02 0.5381E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.2594E+02 0.2691E+02
          PSS2 0.1531E+01 0.2885E+01
          PSS3 0.2441E+02 0.2402E+02
         DISPLACEMENTS
          UX -0.2017E-01-0.2955E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.5993E+00 0.6006E+00
         NORMAL STRAINS
          EXX 0.1051E-03 0.1170E-03
          EYY 0.1550E-03 0.1689E-03
          EZZ -0.2897E-03-0.3156E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1932E-03 0.3690E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1550E-03 0.1689E-03
          PE 2 0.1274E-03 0.1170E-03
          PE 3-0.3121E-03-0.3156E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.4671E-03 0.4845E-03
```

PSE2 0.2757E-04 0.5195E-04 PSE3 0.4395E-03 0.4326E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-3
           Z= 575.00 LAYER NO 3
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.1571E+02 0.1836E+02
          SYY 0.1913E+02 0.2108E+02
          SZZ -0.2025E+02-0.2184E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.6783E+01 0.1323E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.1913E+02 0.2108E+02
          PS 2 0.1695E+02 0.1836E+02
          PS 3-0.2149E+02-0.2184E+02
        THETA -0.1459E+02-0.1760E+02
  DEV. STRESS 0.4062E+02 0.4292E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.2031E+02 0.2146E+02
          PSS2 0.1091E+01 0.1360E+01
          PSS3 0.1922E+02 0.2010E+02
         DISPLACEMENTS
          UX -0.2118E-01-0.3136E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.5688E+00 0.5671E+00
         NORMAL STRAINS
          EXX 0.1074E-03 0.1242E-03
          EYY 0.1382E-03 0.1487E-03
          EZZ -0.2164E-03-0.2378E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1221E-03 0.2383E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1382E-03 0.1487E-03
          PE 2 0.1185E-03 0.1242E-03
          PE 3-0.2275E-03-0.2378E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.3657E-03 0.3865E-03
```

PSE2 0.1965E-04 0.2449E-04 PSE3 0.3461E-03 0.3620E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 2s-cm-3
          Z= 701.00 LAYER NO 4
          X= 0.00 175.00
          Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.8730E-01 0.6711E+00
          SYY 0.8517E+00 0.1215E+01
          SZZ -0.1276E+02-0.1336E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1976E+01 0.3794E-04
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.8517E+00 0.1215E+01
          PS 2 0.3844E+00 0.6711E+00
          PS 3-0.1306E+02-0.1336E+02
        THETA 0.1182E+02 0.1148E+02
  DEV. STRESS 0.1391E+02 0.1458E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.6955E+01 0.7290E+01
          PSS2 0.2336E+00 0.2720E+00
          PSS3 0.6722E+01 0.7018E+01
         DISPLACEMENTS
          UX -0.2799E-01-0.4634E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.5417E+00 0.5374E+00
         NORMAL STRAINS
          EXX 0.1419E-03 0.1642E-03
          EYY 0.1763E-03 0.1887E-03
          EZZ -0.4365E-03-0.4677E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1779E-03 0.3416E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1763E-03 0.1887E-03
          PE 2 0.1553E-03 0.1642E-03
          PE 3-0.4499E-03-0.4677E-03
         PRINCIPAL SHEAR STRAINS
```

PSE1 0.6263E-03 0.6564E-03 PSE2 0.2104E-04 0.2449E-04 PSE3 0.6052E-03 0.6319E-03

MECHANISTIC ANALYSIS DETAILS FOR THE NAMPULA CUAMBA ROAD PAVEMENT - RR91/242

PAVEMENT STRUCTURE

Road Categor : B

Design Class of traffic: T6

Pavement T pe: Granular Base

Input Values

mpat values							
La er Nr	Thickness (mm)	Poisson Coef.	E-l	Modulus (M	pa) Phase-III		
2	200	0.35	400	400	300		
3	200	0.25	1,500	600	300		
4	250	0.35	150	150	150		
5	1/2 INF.	0.35	50	50	50		

Critical Parameters

Stresses (δ1 / δ3 KPa) & Strains (ε)					
Phase-I	Phase-II	Phase-III			
(399.1/88.9)	(387.2/85.6)	(380.9/76.2)			
1.19E-04	1.6E-04	(89.6/-22.8)			
2.47E-04	3.16E-04	3.73E-04			
3.1E-04	3.6E-04	4.2E-04			

Anal ysis

Loor	Layer Life (E80's)			Structural Life (E90'a)		
La er Nr	Phase-I	Phase-II	Phase-III	Structural Life (E80's)		.00 5)
2	1.00E+09	1.00E+09	1.00E+09	Wet:	4.12E+07	
3	1.04E+07	1.36E+06	5.00E+07	(sum of minimum of each phase)		ohase)
4	5.83E+09	5.00E+08	9.61E+07	<u>Deflection (mm)</u>		
5	6.42E+08	1.36E+08	2.94E+07	Inicial		Final
	1.04E+07	1.36E+06	2.94E+07	0.5543		0.7146

MECHANISTIC ANALYSIS DETAILS FOR THE NAMPULA CUAMBA ROAD PAVEMENT- THEYSE

PAVEMENT STRUCTURE

Road Categor : B

Design Class of traffic: T6

Pavement T pe: Granular Base

Input Values

mpat valuee							
La er Nr	Thickness (mm)	Poisson Coef.	E-Modulus (Mpa) Phase-II Phase-III				
2	200	0.35	400	400	300		
3	200	0.25	1,500	600	300		
4	250	0.35	150	150	150		
5	1/2 INF.	0.35	50	50	50		
					_		

Critical Parameters

Stresses (δ1 / δ3 KPa) & Strains (ε)					
Phase-I	Phase-II	Phase-III			
(399.1/88.9)	(387.2/85.6)	(380.9/76.2)			
1.19E-04	1.6E-04	(89.6/-22.8)			
2.47E-04	3.16E-04	3.73E-04			
3.1E-04	3.6E-04	4.2E-04			

Anal ysis

	Layer Life (E80's)			Structural Life (ESO's)		
La er Nr	Phase-I	Phase-II	Phase-III	Structural Life (E80's)		.00 8)
2	9.85E+09	9.08E+09	3.35E+09	Wet:	1.78E+07	
3	2.42E+06	1.30E+06	4.20E+07	(sum of minimum of each phase)		
4	2.79E+09	2.39E+08	4.60E+07	<u>Deflection (mm)</u>		
5	3.07E+08	6.49E+07	1.41E+07	Inicial		Final
	2.42E+06	1.30E+06	1.41E+07	0.5543		0.7146

S3 Sub-grade

N13-Cuamba-Lichinga Road

PHASE 1

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM LOAD(S)

 ELASTIC SYSTEM 1 - 3s-cm-1

 ELASTIC POISSONS MODULUS RATIO
 THICKNESS

 1
 400.
 0.350
 200.000 MM

 2
 1500.
 0.250
 200.000 MM

 3
 150.
 0.350
 249.999 MM

 4
 50.
 0.350
 SEMI-INFINITE

TWO LOAD(S), EACH LOAD AS FOLLOWS

TOTAL LOAD..... 20.00 KN LOAD STRESS.... 559.87KPA LOAD RADIUS.... 106.63 MM

LOCATED AT

LOAD X Y 1 0.000 0.000 2 349.999 0.000

RESULTS REQUESTED FOR SYSTEM LOCATION(S)

DEPTH(S)

Z= 0.00 100.00 201.00 300.00 399.00 401.00 525.00 651.00

X-Y POINT(S)

X= 0.00 175.00 Y= 0.00 0.00

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-1
           Z= 0.00 LAYER NO 1
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.4828E+03 0.4190E+02
          SYY -0.4903E+03-0.6660E+02
          SZZ -0.5624E+03 0.1143E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.5721E-05 0.4630E-12
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.4828E+03 0.4190E+02
          PS 2-0.4903E+03 0.1143E+02
          PS 3-0.5624E+03-0.6660E+02
        THETA 0.1535E+04 0.1326E+02
  DEV. STRESS 0.7961E+02 0.1085E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.3980E+02 0.5425E+02
          PSS2 0.3744E+01 0.1524E+02
          PSS3 0.3606E+02 0.3902E+02
         DISPLACEMENTS
          UX 0.1813E-01 0.6242E-09
          UY 0.0000E+00 0.0000E+00
          UZ 0.5543E+00 0.4152E+00
         NORMAL STRAINS
          EXX -0.2860E-03 0.1531E-03
          EYY -0.3113E-03-0.2133E-03
          EZZ -0.5548E-03 0.5021E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.3864E-10 0.3127E-17
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1-0.2860E-03 0.1531E-03
          PE 2-0.3113E-03 0.5021E-04
          PE 3-0.5548E-03-0.2133E-03
```

PRINCIPAL SHEAR STRAINS
PSE1 0.2688E-03 0.3664E-03
PSE2 0.2528E-04 0.1029E-03
PSE3 0.2435E-03 0.2635E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-1
           Z= 100.00 LAYER NO 1
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.9566E+02-0.1718E+03
          SYY -0.8889E+02-0.5600E+02
          SZZ -0.3988E+03-0.9796E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.9117E+01 0.2038E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.8889E+02-0.5600E+02
          PS 2-0.9539E+02-0.9796E+02
          PS 3-0.3991E+03-0.1718E+03
        THETA 0.5834E+03 0.3258E+03
  DEV. STRESS 0.3102E+03 0.1158E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1551E+03 0.5791E+02
          PSS2 0.3250E+01 0.2098E+02
          PSS3 0.1519E+03 0.3693E+02
         DISPLACEMENTS
          UX 0.8312E-02-0.3327E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.4686E+00 0.4228E+00
         NORMAL STRAINS
          EXX 0.1877E-03-0.2950E-03
          EYY 0.2105E-03 0.9609E-04
          EZZ -0.8359E-03-0.4557E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.6157E-04 0.1377E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.2105E-03 0.9609E-04
          PE 2 0.1886E-03-0.4557E-04
          PE 3-0.8369E-03-0.2950E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.1047E-02 0.3911E-03
          PSE2 0.2195E-04 0.1417E-03
```

PSE3 0.1025E-02 0.2494E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-1
           Z= 201.00 LAYER NO 2
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.7843E+02-0.1316E+03
          SYY -0.8041E+02-0.8635E+02
          SZZ -0.2047E+03-0.1154E+03
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.2189E+02 0.4912E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.7475E+02-0.8635E+02
          PS 2-0.8041E+02-0.1154E+03
          PS 3-0.2084E+03-0.1316E+03
        THETA 0.3635E+03 0.3334E+03
  DEV. STRESS 0.1336E+03 0.4527E+02
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.6682E+02 0.2263E+02
          PSS2 0.2831E+01 0.1453E+02
          PSS3 0.6399E+02 0.8103E+01
         DISPLACEMENTS
          UX 0.5471E-02 0.1159E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.4099E+00 0.4108E+00
         NORMAL STRAINS
          EXX -0.4773E-05-0.5414E-04
          EYY -0.6419E-05-0.1640E-04
          EZZ -0.1100E-03-0.4063E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.3650E-04 0.8190E-09
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1-0.1699E-05-0.1640E-04
          PE 2-0.6419E-05-0.4063E-04
          PE 3-0.1131E-03-0.5414E-04
         PRINCIPAL SHEAR STRAINS
          PSE1 0.1114E-03 0.3774E-04
          PSE2 0.4720E-05 0.2423E-04
```

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM

PSE3 0.1067E-03 0.1351E-04

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-1
           Z= 300.00 LAYER NO 2
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.2810E+02 0.1966E+02
          SYY 0.4513E+02 0.4975E+02
          SZZ -0.8492E+02-0.7099E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.2780E+02 0.5493E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.4513E+02 0.4975E+02
          PS 2 0.3457E+02 0.1966E+02
          PS 3-0.9139E+02-0.7099E+02
        THETA 0.1168E+02 0.1587E+01
  DEV. STRESS 0.1365E+03 0.1207E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.6826E+02 0.6037E+02
          PSS2 0.5279E+01 0.1504E+02
          PSS3 0.6298E+02 0.4532E+02
         DISPLACEMENTS
          UX -0.3735E-02-0.4437E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.4014E+00 0.4056E+00
         NORMAL STRAINS
          EXX 0.2538E-04 0.1665E-04
          EYY 0.3957E-04 0.4174E-04
          EZZ -0.6885E-04-0.5892E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.4636E-04 0.9158E-09
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.3957E-04 0.4174E-04
          PE 2 0.3077E-04 0.1665E-04
          PE 3-0.7424E-04-0.5892E-04
         PRINCIPAL SHEAR STRAINS
          PSE1 0.1138E-03 0.1007E-03
```

PSE2 0.8802E-05 0.2509E-04 PSE3 0.1050E-03 0.7558E-04

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-1
           Z= 399.00 LAYER NO 2
           X= 0.00 175.00
           Y=
                 0.00
                             0.00
         NORMAL STRESSES
          SXX 0.1503E+03 0.1607E+03
          SYY 0.1930E+03 0.2095E+03
          SZZ -0.3207E+02-0.3412E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.7772E+01 0.1295E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.1930E+03 0.2095E+03
          PS 2 0.1506E+03 0.1607E+03
          PS 3-0.3240E+02-0.3412E+02
        THETA -0.3112E+03-0.3361E+03
  DEV. STRESS 0.2254E+03 0.2436E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1127E+03 0.1218E+03
          PSS2 0.2118E+02 0.2437E+02
          PSS3 0.9151E+02 0.9743E+02
         DISPLACEMENTS
          UX -0.1364E-01-0.1673E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.3947E+00 0.3988E+00
         NORMAL STRAINS
          EXX 0.7341E-04 0.7797E-04
          EYY 0.1090E-03 0.1186E-03
          EZZ -0.7863E-04-0.8449E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1296E-04 0.2160E-09
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1090E-03 0.1186E-03
          PE 2 0.7368E-04 0.7797E-04
          PE 3-0.7890E-04-0.8449E-04
         PRINCIPAL SHEAR STRAINS
```

PSE1 0.1879E-03 0.2031E-03 PSE2 0.3532E-04 0.4064E-04 PSE3 0.1526E-03 0.1625E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-1
           Z= 401.00 LAYER NO 3
           X= 0.00 175.00
           Y=
                  0.00
                            0.00
         NORMAL STRESSES
          SXX 0.2075E+01 0.2341E+01
          SYY 0.6048E+01 0.6871E+01
          SZZ -0.3181E+02-0.3387E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.7412E+01 0.1488E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.6048E+01 0.6871E+01
          PS 2 0.3625E+01 0.2341E+01
          PS 3-0.3336E+02-0.3387E+02
        THETA 0.2369E+02 0.2466E+02
  DEV. STRESS 0.3941E+02 0.4074E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1971E+02 0.2037E+02
          PSS2 0.1211E+01 0.2265E+01
          PSS3 0.1849E+02 0.1811E+02
         DISPLACEMENTS
          UX -0.1375E-01-0.2091E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.3944E+00 0.3985E+00
         NORMAL STRAINS
          EXX 0.7399E-04 0.7864E-04
          EYY 0.1098E-03 0.1194E-03
          EZZ -0.2311E-03-0.2474E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1335E-03 0.2680E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1098E-03 0.1194E-03
          PE 2 0.8795E-04 0.7864E-04
          PE 3-0.2451E-03-0.2474E-03
         PRINCIPAL SHEAR STRAINS
```

PSE1 0.3549E-03 0.3668E-03 PSE2 0.2181E-04 0.4079E-04 PSE3 0.3331E-03 0.3260E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-1
           Z= 525.00 LAYER NO 3
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.7133E+01 0.8748E+01
          SYY 0.9556E+01 0.1077E+02
          SZZ -0.2015E+02-0.2175E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.4985E+01 0.9781E-04
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.9556E+01 0.1077E+02
          PS 2 0.8015E+01 0.8748E+01
          PS 3-0.2103E+02-0.2175E+02
        THETA 0.3457E+01 0.2237E+01
  DEV. STRESS 0.3058E+02 0.3252E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1529E+02 0.1626E+02
          PSS2 0.7703E+00 0.1011E+01
          PSS3 0.1452E+02 0.1525E+02
         DISPLACEMENTS
          UX -0.1420E-01-0.2152E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.3699E+00 0.3718E+00
         NORMAL STRAINS
          EXX 0.7230E-04 0.8399E-04
          EYY 0.9411E-04 0.1022E-03
          EZZ -0.1733E-03-0.1907E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.8977E-04 0.1761E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.9411E-04 0.1022E-03
          PE 2 0.8024E-04 0.8399E-04
          PE 3-0.1813E-03-0.1907E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.2754E-03 0.2929E-03
```

PSE2 0.1387E-04 0.1821E-04 PSE3 0.2615E-03 0.2746E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-1
           Z= 651.00 LAYER NO 4
           X= 0.00 175.00
           Y=
                 0.00
                             0.00
         NORMAL STRESSES
          SXX -0.2968E+00 0.2531E+00
          SYY 0.5043E+00 0.8317E+00
          SZZ -0.1413E+02-0.1504E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.2115E+01 0.4069E-04
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.5043E+00 0.8317E+00
          PS 2 0.1943E-01 0.2531E+00
          PS 3-0.1444E+02-0.1504E+02
        THETA 0.1392E+02 0.1395E+02
  DEV. STRESS 0.1495E+02 0.1587E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.7473E+01 0.7934E+01
          PSS2 0.2424E+00 0.2893E+00
          PSS3 0.7231E+01 0.7645E+01
         DISPLACEMENTS
          UX -0.1765E-01-0.2951E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.3489E+00 0.3487E+00
         NORMAL STRAINS
          EXX 0.8946E-04 0.1045E-03
          EYY 0.1111E-03 0.1202E-03
          EZZ -0.2841E-03-0.3085E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1143E-03 0.2198E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1111E-03 0.1202E-03
          PE 2 0.9800E-04 0.1045E-03
          PE 3-0.2926E-03-0.3085E-03
         PRINCIPAL SHEAR STRAINS
```

PSE1 0.4037E-03 0.4286E-03 PSE2 0.1310E-04 0.1563E-04 PSE3 0.3906E-03 0.4130E-03

PHASE 2

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM LOAD(S)

 ELASTIC SYSTEM 1 - 3s-cm-2

 ELASTIC POISSONS
 LAYER

 MODULUS
 RATIO
 THICKNESS

 1
 400.
 0.350
 200.000 MM

 2
 600.
 0.250
 200.000 MM

 3
 150.
 0.350
 249.999 MM

 4
 50.
 0.350
 SEMI-INFINITE

TWO LOAD(S), EACH LOAD AS FOLLOWS

TOTAL LOAD..... 20.00 KN LOAD STRESS.... 559.87KPA LOAD RADIUS.... 106.63 MM

LOCATED AT

LOAD X Y 1 0.000 0.000 2 349.999 0.000

RESULTS REQUESTED FOR SYSTEM LOCATION(S)

DEPTH(S)

Z= 0.00 100.00 201.00 300.00 399.00 401.00 525.00 651.00

X-Y POINT(S)

X= 0.00 175.00 Y= 0.00 0.00

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-2
           Z= 0.00 LAYER NO 1
               0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.5061E+03 0.2583E+02
          SYY -0.5213E+03-0.9641E+02
          SZZ -0.5624E+03 0.1143E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1074E-04 0.9510E-12
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.5061E+03 0.2583E+02
          PS 2-0.5213E+03 0.1143E+02
          PS 3-0.5624E+03-0.9641E+02
        THETA 0.1590E+04 0.5915E+02
  DEV. STRESS 0.5622E+02 0.1222E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.2811E+02 0.6112E+02
          PSS2 0.7554E+01 0.7196E+01
          PSS3 0.2056E+02 0.5392E+02
         DISPLACEMENTS
          UX 0.2204E-01 0.2477E-09
          UY 0.0000E+00 0.0000E+00
          UZ 0.5986E+00 0.4643E+00
         NORMAL STRAINS
          EXX -0.3173E-03 0.1390E-03
          EYY -0.3683E-03-0.2737E-03
          EZZ -0.5072E-03 0.9038E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.7249E-10 0.6422E-17
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1-0.3173E-03 0.1390E-03
          PE 2-0.3683E-03 0.9038E-04
          PE 3-0.5072E-03-0.2737E-03
```

PRINCIPAL SHEAR STRAINS
PSE1 0.1898E-03 0.4127E-03
PSE2 0.5101E-04 0.4860E-04
PSE3 0.1388E-03 0.3641E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-2
           Z= 100.00 LAYER NO 1
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.9205E+02-0.1664E+03
          SYY -0.8561E+02-0.5427E+02
          SZZ -0.3868E+03-0.9506E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1071E+02 0.2367E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.8561E+02-0.5427E+02
          PS 2-0.9167E+02-0.9506E+02
          PS 3-0.3872E+03-0.1664E+03
        THETA 0.5645E+03 0.3158E+03
  DEV. STRESS 0.3016E+03 0.1122E+03
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1508E+03 0.5608E+02
          PSS2 0.3028E+01 0.2040E+02
          PSS3 0.1478E+03 0.3568E+02
         DISPLACEMENTS
          UX 0.7772E-02-0.3253E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.5159E+00 0.4738E+00
         NORMAL STRAINS
          EXX 0.1833E-03-0.2855E-03
          EYY 0.2051E-03 0.9317E-04
          EZZ -0.8119E-03-0.4456E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.7235E-04 0.1599E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.2051E-03 0.9317E-04
          PE 2 0.1846E-03-0.4456E-04
          PE 3-0.8132E-03-0.2855E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.1018E-02 0.3787E-03
          PSE2 0.2044E-04 0.1377E-03
```

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM

PSE3 0.9978E-03 0.2410E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-2
           Z= 201.00 LAYER NO 2
           X= 0.00 175.00
                   0.00
                             0.00
         NORMAL STRESSES
          SXX -0.1670E+02-0.6087E+02
          SYY -0.5096E+01-0.6809E+01
          SZZ -0.1820E+03-0.1108E+03
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.2183E+02 0.4566E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.5096E+01-0.6809E+01
          PS 2-0.1387E+02-0.6087E+02
          PS 3-0.1848E+03-0.1108E+03
        THETA 0.2038E+03 0.1785E+03
  DEV. STRESS 0.1797E+03 0.1040E+03
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.8986E+02 0.5200E+02
          PSS2 0.4385E+01 0.2703E+02
          PSS3 0.8547E+02 0.2497E+02
         DISPLACEMENTS
          UX 0.5608E-03-0.4246E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.4579E+00 0.4599E+00
         NORMAL STRAINS
          EXX 0.5013E-04-0.5247E-04
          EYY 0.7432E-04 0.6021E-04
          EZZ -0.2943E-03-0.1565E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.9101E-04 0.1903E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.7432E-04 0.6021E-04
          PE 2 0.5604E-04-0.5247E-04
          PE 3-0.3003E-03-0.1565E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.3746E-03 0.2168E-03
          PSE2 0.1828E-04 0.1127E-03
```

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM

PSE3 0.3563E-03 0.1041E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-2
           Z= 300.00 LAYER NO 2
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.2066E+02 0.1321E+02
          SYY 0.3599E+02 0.3942E+02
          SZZ -0.8236E+02-0.7310E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.2178E+02 0.4252E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.3599E+02 0.3942E+02
          PS 2 0.2507E+02 0.1321E+02
          PS 3-0.8678E+02-0.7310E+02
        THETA 0.2572E+02 0.2046E+02
  DEV. STRESS 0.1228E+03 0.1125E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.6138E+02 0.5626E+02
          PSS2 0.5456E+01 0.1310E+02
          PSS3 0.5593E+02 0.4315E+02
         DISPLACEMENTS
          UX -0.7981E-02-0.9574E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.4365E+00 0.4447E+00
         NORMAL STRAINS
          EXX 0.5378E-04 0.3607E-04
          EYY 0.8572E-04 0.9069E-04
          EZZ -0.1609E-03-0.1438E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.9080E-04 0.1772E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.8572E-04 0.9069E-04
          PE 2 0.6298E-04 0.3607E-04
          PE 3-0.1701E-03-0.1438E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.2559E-03 0.2345E-03
```

PSE2 0.2274E-04 0.5462E-04 PSE3 0.2331E-03 0.1799E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-2
           Z= 399.00 LAYER NO 2
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.7176E+02 0.7583E+02
          SYY 0.9619E+02 0.1044E+03
          SZZ -0.4001E+02-0.4248E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.9996E+01 0.1719E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.9619E+02 0.1044E+03
          PS 2 0.7264E+02 0.7583E+02
          PS 3-0.4089E+02-0.4248E+02
        THETA -0.1279E+03-0.1378E+03
  DEV. STRESS 0.1371E+03 0.1469E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.6854E+02 0.7346E+02
          PSS2 0.1177E+02 0.1430E+02
          PSS3 0.5677E+02 0.5915E+02
         DISPLACEMENTS
          UX -0.1772E-01-0.2257E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.4226E+00 0.4308E+00
         NORMAL STRAINS
          EXX 0.9623E-04 0.1006E-03
          EYY 0.1472E-03 0.1602E-03
          EZZ -0.1367E-03-0.1460E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.4167E-04 0.7164E-09
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1472E-03 0.1602E-03
          PE 2 0.9808E-04 0.1006E-03
          PE 3-0.1386E-03-0.1460E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.2857E-03 0.3062E-03
```

PSE2 0.4908E-04 0.5963E-04 PSE3 0.2366E-03 0.2466E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-2
           Z= 401.00 LAYER NO 3
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.4013E+01 0.4229E+01
          SYY 0.9682E+01 0.1086E+02
          SZZ -0.3965E+02-0.4214E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.9788E+01 0.2064E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.9682E+01 0.1086E+02
          PS 2 0.6107E+01 0.4229E+01
          PS 3-0.4175E+02-0.4214E+02
        THETA 0.2596E+02 0.2706E+02
  DEV. STRESS 0.5143E+02 0.5300E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.2571E+02 0.2650E+02
          PSS2 0.1787E+01 0.3313E+01
          PSS3 0.2393E+02 0.2319E+02
         DISPLACEMENTS
          UX -0.1782E-01-0.2825E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.4222E+00 0.4304E+00
         NORMAL STRAINS
          EXX 0.9673E-04 0.1012E-03
          EYY 0.1478E-03 0.1609E-03
          EZZ -0.2964E-03-0.3163E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1763E-03 0.3716E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1478E-03 0.1609E-03
          PE 2 0.1156E-03 0.1012E-03
          PE 3-0.3153E-03-0.3163E-03
         PRINCIPAL SHEAR STRAINS
```

PSE1 0.4631E-03 0.4772E-03 PSE2 0.3219E-04 0.5966E-04 PSE3 0.4309E-03 0.4175E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-2
           Z= 525.00 LAYER NO 3
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.9294E+01 0.1126E+02
          SYY 0.1261E+02 0.1410E+02
          SZZ -0.2389E+02-0.2595E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.6422E+01 0.1310E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.1261E+02 0.1410E+02
          PS 2 0.1049E+02 0.1126E+02
          PS 3-0.2509E+02-0.2595E+02
        THETA 0.1981E+01 0.5822E+00
  DEV. STRESS 0.3770E+02 0.4005E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1885E+02 0.2003E+02
          PSS2 0.1059E+01 0.1422E+01
          PSS3 0.1779E+02 0.1860E+02
         DISPLACEMENTS
          UX -0.1732E-01-0.2707E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.3916E+00 0.3970E+00
         NORMAL STRAINS
          EXX 0.8831E-04 0.1027E-03
          EYY 0.1182E-03 0.1284E-03
          EZZ -0.2105E-03-0.2323E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1157E-03 0.2359E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1182E-03 0.1284E-03
          PE 2 0.9911E-04 0.1027E-03
          PE 3-0.2213E-03-0.2323E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.3395E-03 0.3606E-03
```

PSE2 0.1908E-04 0.2562E-04 PSE3 0.3204E-03 0.3350E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-2
           Z= 651.00 LAYER NO 4
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.9819E-01 0.7379E+00
          SYY 0.1164E+01 0.1525E+01
          SZZ -0.1605E+02-0.1722E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.2618E+01 0.5188E-04
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.1164E+01 0.1525E+01
          PS 2 0.5120E+00 0.7379E+00
          PS 3-0.1646E+02-0.1722E+02
        THETA 0.1479E+02 0.1496E+02
  DEV. STRESS 0.1763E+02 0.1874E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.8814E+01 0.9372E+01
          PSS2 0.3258E+00 0.3935E+00
          PSS3 0.8488E+01 0.8979E+01
         DISPLACEMENTS
          UX -0.2096E-01-0.3578E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.3666E+00 0.3694E+00
         NORMAL STRAINS
          EXX 0.1062E-03 0.1247E-03
          EYY 0.1350E-03 0.1459E-03
          EZZ -0.3300E-03-0.3604E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1414E-03 0.2803E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1350E-03 0.1459E-03
          PE 2 0.1174E-03 0.1247E-03
          PE 3-0.3412E-03-0.3604E-03
         PRINCIPAL SHEAR STRAINS
```

PSE1 0.4762E-03 0.5063E-03 PSE2 0.1760E-04 0.2126E-04 PSE3 0.4586E-03 0.4851E-03

PHASE 3

 $\verb|ELSYM5| 3/72-3|, \quad \verb|ELASTIC| LAYERED| SYSTEM| WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM LOAD(S) \\$

 ELASTIC SYSTEM 1 - 3s-cm-3

 ELASTIC POISSONS
 LAYER

 MODULUS
 RATIO
 THICKNESS

 1
 300.
 0.350
 200.000 MM

 2
 300.
 0.250
 200.000 MM

 3
 150.
 0.350
 249.999 MM

 4
 50.
 0.350
 SEMI-INFINITE

TWO LOAD(S), EACH LOAD AS FOLLOWS

TOTAL LOAD..... 20.00 KN LOAD STRESS.... 559.87KPA LOAD RADIUS.... 106.63 MM

LOCATED AT

LOAD X Y 1 0.000 0.000 2 349.999 0.000

RESULTS REQUESTED FOR SYSTEM LOCATION(S)

DEPTH(S)

Z= 0.00 100.00 201.00 300.00 399.00 401.00 525.00 651.00

X-Y POINT(S)

X= 0.00 175.00 Y= 0.00 0.00

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-3
           Z= 0.00 LAYER NO 1
           X= 0.00 175.00
           Y=
                 0.00
                             0.00
         NORMAL STRESSES
          SXX -0.5079E+03 0.3022E+02
          SYY -0.5263E+03-0.9951E+02
          SZZ -0.5624E+03 0.1143E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.4863E-04 0.1561E-12
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.5079E+03 0.3022E+02
          PS 2-0.5263E+03 0.1143E+02
          PS 3-0.5624E+03-0.9951E+02
        THETA 0.1597E+04 0.5786E+02
  DEV. STRESS 0.5446E+02 0.1297E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.2723E+02 0.6487E+02
          PSS2 0.9203E+01 0.9395E+01
          PSS3 0.1803E+02 0.5547E+02
         DISPLACEMENTS
          UX 0.2758E-01 0.5404E-09
          UY 0.0000E+00 0.0000E+00
          UZ 0.7146E+00 0.5388E+00
         NORMAL STRAINS
          EXX -0.4231E-03 0.2036E-03
          EYY -0.5060E-03-0.3805E-03
          EZZ -0.6683E-03 0.1190E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.4378E-09 0.1405E-17
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1-0.4231E-03 0.2036E-03
          PE 2-0.5060E-03 0.1190E-03
          PE 3-0.6683E-03-0.3805E-03
```

PRINCIPAL SHEAR STRAINS
PSE1 0.2452E-03 0.5841E-03
PSE2 0.8286E-04 0.8459E-04
PSE3 0.1623E-03 0.4995E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-3
           Z= 100.00 LAYER NO 1
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.8343E+02-0.1560E+03
          SYY -0.7617E+02-0.4516E+02
          SZZ -0.3806E+03-0.9453E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1019E+02 0.2499E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.7617E+02-0.4516E+02
          PS 2-0.8308E+02-0.9453E+02
          PS 3-0.3809E+03-0.1560E+03
        THETA 0.5402E+03 0.2957E+03
  DEV. STRESS 0.3047E+03 0.1108E+03
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1524E+03 0.5541E+02
          PSS2 0.3457E+01 0.2469E+02
          PSS3 0.1489E+03 0.3072E+02
         DISPLACEMENTS
          UX 0.7224E-02-0.5027E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.6044E+00 0.5503E+00
         NORMAL STRAINS
          EXX 0.2548E-03-0.3571E-03
          EYY 0.2876E-03 0.1418E-03
          EZZ -0.1083E-02-0.8050E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.9178E-04 0.2250E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.2876E-03 0.1418E-03
          PE 2 0.2564E-03-0.8050E-04
          PE 3-0.1084E-02-0.3571E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.1372E-02 0.4989E-03
          PSE2 0.3113E-04 0.2223E-03
```

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM

PSE3 0.1341E-02 0.2766E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-3
           Z= 201.00 LAYER NO 2
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.4921E+01-0.4507E+02
          SYY 0.9606E+01 0.8336E+01
          SZZ -0.1728E+03-0.1125E+03
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1947E+02 0.4127E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.9606E+01 0.8336E+01
          PS 2-0.2691E+01-0.4507E+02
          PS 3-0.1750E+03-0.1125E+03
        THETA 0.1681E+03 0.1493E+03
  DEV. STRESS 0.1846E+03 0.1209E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.9230E+02 0.6043E+02
          PSS2 0.6149E+01 0.2670E+02
          PSS3 0.8615E+02 0.3372E+02
         DISPLACEMENTS
          UX -0.4420E-02-0.1125E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.5257E+00 0.5281E+00
         NORMAL STRAINS
          EXX 0.1196E-03-0.6346E-04
          EYY 0.1802E-03 0.1592E-03
          EZZ -0.5801E-03-0.3446E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1624E-03 0.3441E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1802E-03 0.1592E-03
          PE 2 0.1289E-03-0.6346E-04
          PE 3-0.5894E-03-0.3446E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.7695E-03 0.5038E-03
```

PSE2 0.5126E-04 0.2226E-03 PSE3 0.7183E-03 0.2811E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-3
           Z= 300.00 LAYER NO 2
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.9349E+01 0.1427E+01
          SYY 0.2277E+02 0.2481E+02
          SZZ -0.8602E+02-0.7974E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1884E+02 0.3611E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.2277E+02 0.2481E+02
          PS 2 0.1294E+02 0.1427E+01
          PS 3-0.8961E+02-0.7974E+02
        THETA 0.5391E+02 0.5351E+02
  DEV. STRESS 0.1124E+03 0.1045E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.5619E+02 0.5227E+02
          PSS2 0.4915E+01 0.1169E+02
          PSS3 0.5127E+02 0.4058E+02
         DISPLACEMENTS
          UX -0.1190E-01-0.1560E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.4836E+00 0.4964E+00
         NORMAL STRAINS
          EXX 0.8392E-04 0.5056E-04
          EYY 0.1398E-03 0.1480E-03
          EZZ -0.3137E-03-0.2878E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1571E-03 0.3011E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1398E-03 0.1480E-03
          PE 2 0.9887E-04 0.5056E-04
          PE 3-0.3286E-03-0.2878E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.4685E-03 0.4358E-03
```

PSE2 0.4097E-04 0.9746E-04 PSE3 0.4275E-03 0.3384E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-3
           Z= 399.00 LAYER NO 2
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.3238E+02 0.3374E+02
          SYY 0.4745E+02 0.5168E+02
          SZZ -0.4819E+02-0.5129E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1194E+02 0.2099E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.4745E+02 0.5168E+02
          PS 2 0.3411E+02 0.3374E+02
          PS 3-0.4992E+02-0.5129E+02
        THETA -0.3164E+02-0.3413E+02
  DEV. STRESS 0.9737E+02 0.1030E+03
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.4869E+02 0.5149E+02
          PSS2 0.6668E+01 0.8969E+01
          PSS3 0.4202E+02 0.4252E+02
         DISPLACEMENTS
          UX -0.1987E-01-0.2636E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.4579E+00 0.4707E+00
         NORMAL STRAINS
          EXX 0.1086E-03 0.1122E-03
          EYY 0.1714E-03 0.1870E-03
          EZZ -0.2273E-03-0.2423E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.9956E-04 0.1750E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1714E-03 0.1870E-03
          PE 2 0.1158E-03 0.1122E-03
          PE 3-0.2345E-03-0.2423E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.4059E-03 0.4292E-03
          PSE2 0.5559E-04 0.7478E-04
```

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM

PSE3 0.3503E-03 0.3545E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-3
           Z= 401.00 LAYER NO 3
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.3164E+01 0.3071E+01
          SYY 0.1013E+02 0.1134E+02
          SZZ -0.4776E+02-0.5089E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1181E+02 0.2557E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.1013E+02 0.1134E+02
          PS 2 0.5770E+01 0.3071E+01
          PS 3-0.5036E+02-0.5089E+02
        THETA 0.3446E+02 0.3647E+02
  DEV. STRESS 0.6050E+02 0.6223E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.3025E+02 0.3111E+02
          PSS2 0.2182E+01 0.4137E+01
          PSS3 0.2807E+02 0.2698E+02
         DISPLACEMENTS
          UX -0.1996E-01-0.3275E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.4574E+00 0.4700E+00
         NORMAL STRAINS
          EXX 0.1089E-03 0.1128E-03
          EYY 0.1717E-03 0.1873E-03
          EZZ -0.3496E-03-0.3730E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.2127E-03 0.4605E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1717E-03 0.1873E-03
          PE 2 0.1324E-03 0.1128E-03
          PE 3-0.3730E-03-0.3730E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.5447E-03 0.5603E-03
```

PSE2 0.3929E-04 0.7449E-04 PSE3 0.5054E-03 0.4858E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-3
           Z= 525.00 LAYER NO 3
           X= 0.00 175.00
           Y=
                 0.00
                             0.00
         NORMAL STRESSES
          SXX 0.1005E+02 0.1221E+02
          SYY 0.1419E+02 0.1581E+02
          SZZ -0.2828E+02-0.3090E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.7855E+01 0.1645E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.1419E+02 0.1581E+02
          PS 2 0.1159E+02 0.1221E+02
          PS 3-0.2983E+02-0.3090E+02
        THETA 0.4050E+01 0.2884E+01
  DEV. STRESS 0.4402E+02 0.4671E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.2201E+02 0.2335E+02
          PSS2 0.1298E+01 0.1801E+01
          PSS3 0.2071E+02 0.2155E+02
         DISPLACEMENTS
          UX -0.1961E-01-0.3139E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.4215E+00 0.4309E+00
         NORMAL STRAINS
          EXX 0.9991E-04 0.1166E-03
          EYY 0.1372E-03 0.1491E-03
          EZZ -0.2452E-03-0.2715E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1414E-03 0.2962E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1372E-03 0.1491E-03
          PE 2 0.1138E-03 0.1166E-03
          PE 3-0.2591E-03-0.2715E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.3964E-03 0.4206E-03
```

PSE2 0.2337E-04 0.3243E-04 PSE3 0.3730E-03 0.3881E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 3s-cm-3
          Z= 651.00 LAYER NO 4
          X= 0.00 175.00
          Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.1055E+00 0.8020E+00
          SYY 0.1456E+01 0.1812E+01
          SZZ -0.1857E+02-0.2007E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.3176E+01 0.6440E-04
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.1456E+01 0.1812E+01
          PS 2 0.6307E+00 0.8020E+00
          PS 3-0.1910E+02-0.2007E+02
        THETA 0.1701E+02 0.1746E+02
  DEV. STRESS 0.2055E+02 0.2188E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1028E+02 0.1094E+02
          PSS2 0.4127E+00 0.5048E+00
          PSS3 0.9864E+01 0.1044E+02
         DISPLACEMENTS
          UX -0.2409E-01-0.4199E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.3924E+00 0.3987E+00
         NORMAL STRAINS
          EXX 0.1220E-03 0.1439E-03
          EYY 0.1585E-03 0.1712E-03
          EZZ -0.3826E-03-0.4199E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1716E-03 0.3479E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1585E-03 0.1712E-03
          PE 2 0.1362E-03 0.1439E-03
          PE 3-0.3968E-03-0.4199E-03
```

PRINCIPAL SHEAR STRAINS PSE1 0.5552E-03 0.5911E-03 PSE2 0.2229E-04 0.2727E-04 PSE3 0.5329E-03 0.5639E-03

MECHANISTIC ANALYSIS DETAILS FOR THE NAMPULA CUAMBA ROAD PAVEMENT - RR91/242

PAVEMENT STRUCTURE

Road Categor : B

Design Class of traffic: T6

Pavement T pe: Granular Base

Input Values

	pat value									
La er Nr	Thickness (mm)	nickness Poisson		Modulus (M Phase-II	pa) Phase-III					
2	150	0.35	400	400	300					
3	200	0.25	1,500	600	300					
4	200	0.35	150	150	150					
5	1/2 INF.	0.35	80	80	80					

Critical Parameters

Stresses (δ1 / δ3 KPa) & Strains (ε)									
Phase-I	Phase-II	Phase-III							
(480.6/142)	(463.2/138.8)	(453.3/126.7)							
1.33E-04	1.8E-04	(118.9/-22.7)							
2.90E-04	3.72E-04	4.38E-04							
3.0E-04	3.6E-04	4.2E-04							

Anal ysis

	La	yer Life (E80's)	Structural Life (E80's)		
La er Nr	Phase-I	Phase-II	Phase-III	Structure	ai Lile (E005)
2	1.00E+09	1.00E+09	1.00E+09	Wet: 2	64E+07
3	7.00E+06	1.47E+05	5.00E+07	(sum of min	imum of each phase)
4	1.21E+09	9.98E+07	1.92E+07	<u>Defl</u>	ection (mm)
5	8.66E+08	1.48E+08	3.26E+07	Inicial	Final
	7.00E+06	1.47E+05	1.92E+07	0.4585	0.6253

MECHANISTIC ANALYSIS DETAILS FOR THE NAMPULA CUAMBA ROAD PAVEMENT- THEYSE

PAVEMENT STRUCTURE

Road Categor : B

Design Class of traffic: T6

Pavement T pe: Granular Base

Input Values

mpat valaco									
La er	Thickness	Poisson	E-Modulus (Mpa)						
Nr	(mm)	Coef.	Phase-I	Phase-II	Phase-III				
2	150	0.35	400	400	300				
3	200	0.25	1,500	600	300				
4	200	0.35	150	150	150				
5	1/2 INF.	0.35	80	80	80				

Critical Parameters

Stresses (δ1 / δ3 KPa) & Strains (ε)									
Phase-I	Phase-II	Phase-III							
(480.6/142)	(463.2/138.8)	(453.3/126.7)							
1.33E-04	1.8E-04	(118.9/-22.7)							
2.90E-04	3.72E-04	4.38E-04							
3.0E-04	3.6E-04	4.2E-04							

Anal ysis

	La	yer Life (E80's)	Structural Life (E90'a)					
La er Nr	Phase-I	Phase-II	Phase-III	Siluc	Structural Life (E80's)			
2	5.00E+11	6.43E+11	1.97E+11	Wet:				
3	1.98E+06	1.41E+05	2.23E+07	(sum o	ohase)			
4	5.78E+08	4.78E+07	9.21E+06		Deflection (mm)			
5	4.14E+08	7.07E+07	1.56E+07	Inicial		Final		
	1.98E+06	1.41E+05	9.21E+06	0.4585		0.6253		

S4 Sub-grade

N13-Cuamba-Lichinga Road

PHASE 1

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM LOAD(S)

 ELASTIC SYSTEM 1 - 4s-cm-1

 ELASTIC POISSONS MODULUS RATIO
 LAYER THICKNESS

 1 400. 0.350 150.000 MM
 150.000 MM

 2 1500. 0.250 200.000 MM
 200.000 MM

 3 150. 0.350 5EMI-INFINITE
 5EMI-INFINITE

TWO LOAD(S), EACH LOAD AS FOLLOWS

TOTAL LOAD..... 20.00 KN LOAD STRESS.... 559.87KPA LOAD RADIUS.... 106.63 MM

LOCATED AT

LOAD X Y 1 0.000 0.000 2 349.999 0.000

RESULTS REQUESTED FOR SYSTEM LOCATION(S)

DEPTH(S)

Z= 0.00 75.00 151.00 250.00 349.00 351.00 450.00 551.00

X-Y POINT(S)

X= 0.00 175.00 Y= 0.00 0.00

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-1
           Z= 0.00 LAYER NO 1
               0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.4587E+03 0.2764E+02
          SYY -0.4661E+03-0.6089E+02
          SZZ -0.5624E+03 0.1143E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ -0.1165E-05 0.1043E-11
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.4587E+03 0.2764E+02
          PS 2-0.4661E+03 0.1143E+02
          PS 3-0.5624E+03-0.6089E+02
        THETA 0.1487E+04 0.2181E+02
  DEV. STRESS 0.1037E+03 0.8853E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.5183E+02 0.4427E+02
          PSS2 0.3707E+01 0.8106E+01
          PSS3 0.4812E+02 0.3616E+02
         DISPLACEMENTS
          UX 0.1845E-01-0.5441E-09
          UY 0.0000E+00 0.0000E+00
          UZ 0.4585E+00 0.3336E+00
         NORMAL STRAINS
          EXX -0.2470E-03 0.1124E-03
          EYY -0.2720E-03-0.1865E-03
          EZZ -0.5970E-03 0.5770E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ -0.7868E-11 0.7042E-17
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1-0.2470E-03 0.1124E-03
          PE 2-0.2720E-03 0.5770E-04
```

PE 3-0.5970E-03-0.1865E-03 PRINCIPAL SHEAR STRAINS PSE1 0.3500E-03 0.2989E-03 PSE2 0.2504E-04 0.5474E-04 PSE3 0.3250E-03 0.2442E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-1
           Z= 75.00 LAYER NO 1
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.1423E+03-0.1866E+03
          SYY -0.1421E+03-0.6675E+02
          SZZ -0.4803E+03-0.6265E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.8900E+01 0.1677E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.1420E+03-0.6265E+02
          PS 2-0.1421E+03-0.6675E+02
          PS 3-0.4806E+03-0.1866E+03
        THETA 0.7647E+03 0.3160E+03
  DEV. STRESS 0.3385E+03 0.1240E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1693E+03 0.6199E+02
          PSS2 0.1769E-01 0.2049E+01
          PSS3 0.1692E+03 0.5994E+02
         DISPLACEMENTS
          UX 0.1093E-01-0.1774E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.3932E+00 0.3424E+00
         NORMAL STRAINS
          EXX 0.1890E-03-0.3535E-03
          EYY 0.1897E-03 0.5127E-04
          EZZ -0.9524E-03 0.6511E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.6010E-04 0.1132E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1898E-03 0.6511E-04
          PE 2 0.1897E-03 0.5127E-04
          PE 3-0.9532E-03-0.3535E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.1143E-02 0.4186E-03
          PSE2 0.1194E-06 0.1384E-04
```

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM

PSE3 0.1143E-02 0.4048E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-1
           Z= 151.00 LAYER NO 2
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.1023E+03-0.1761E+03
          SYY -0.1133E+03-0.1144E+03
          SZZ -0.2993E+03-0.1061E+03
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1830E+02 0.5707E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.1006E+03-0.1061E+03
          PS 2-0.1133E+03-0.1144E+03
          PS 3-0.3009E+03-0.1761E+03
        THETA 0.5148E+03 0.3965E+03
  DEV. STRESS 0.2003E+03 0.6999E+02
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1002E+03 0.3500E+02
          PSS2 0.6350E+01 0.4135E+01
          PSS3 0.9382E+02 0.3086E+02
         DISPLACEMENTS
          UX 0.7212E-02 0.2052E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.3367E+00 0.3403E+00
         NORMAL STRAINS
          EXX 0.5692E-06-0.8068E-04
          EYY -0.8612E-05-0.2922E-04
          EZZ -0.1636E-03-0.2233E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.3052E-04 0.9516E-09
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1975E-05-0.2233E-04
          PE 2-0.8612E-05-0.2922E-04
          PE 3-0.1651E-03-0.8068E-04
         PRINCIPAL SHEAR STRAINS
          PSE1 0.1670E-03 0.5835E-04
```

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM

PSE2 0.1059E-04 0.6895E-05 PSE3 0.1564E-03 0.5146E-04

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-1
           Z= 250.00 LAYER NO 2
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.2400E+02 0.2509E+01
          SYY 0.4190E+02 0.4508E+02
          SZZ -0.1166E+03-0.8062E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.2869E+02 0.7019E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.4190E+02 0.4508E+02
          PS 2 0.2963E+02 0.2509E+01
          PS 3-0.1222E+03-0.8062E+02
        THETA 0.5072E+02 0.3304E+02
  DEV. STRESS 0.1641E+03 0.1257E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.8207E+02 0.6285E+02
          PSS2 0.6132E+01 0.2128E+02
          PSS3 0.7594E+02 0.4157E+02
         DISPLACEMENTS
          UX -0.3152E-02-0.4559E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.3247E+00 0.3356E+00
         NORMAL STRAINS
          EXX 0.2847E-04 0.7600E-05
          EYY 0.4339E-04 0.4309E-04
          EZZ -0.8877E-04-0.6171E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.4784E-04 0.1170E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.4339E-04 0.4309E-04
          PE 2 0.3316E-04 0.7600E-05
          PE 3-0.9346E-04-0.6171E-04
         PRINCIPAL SHEAR STRAINS
          PSE1 0.1368E-03 0.1048E-03
```

PSE2 0.1022E-04 0.3549E-04 PSE3 0.1266E-03 0.6931E-04

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-1
           Z= 349.00 LAYER NO 2
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.1643E+03 0.1605E+03
          SYY 0.2158E+03 0.2283E+03
          SZZ -0.4105E+02-0.4269E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.8300E+01 0.1584E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.2158E+03 0.2283E+03
          PS 2 0.1647E+03 0.1605E+03
          PS 3-0.4139E+02-0.4269E+02
        THETA -0.3391E+03-0.3462E+03
  DEV. STRESS 0.2572E+03 0.2710E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1286E+03 0.1355E+03
          PSS2 0.2556E+02 0.3389E+02
          PSS3 0.1030E+03 0.1016E+03
         DISPLACEMENTS
          UX -0.1398E-01-0.1866E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.3166E+00 0.3283E+00
         NORMAL STRAINS
          EXX 0.8047E-04 0.7613E-04
          EYY 0.1234E-03 0.1326E-03
          EZZ -0.9076E-04-0.9332E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1384E-04 0.2642E-09
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1234E-03 0.1326E-03
          PE 2 0.8075E-04 0.7613E-04
          PE 3-0.9104E-04-0.9332E-04
         PRINCIPAL SHEAR STRAINS
          PSE1 0.2144E-03 0.2259E-03
```

PSE2 0.4263E-04 0.5650E-04 PSE3 0.1718E-03 0.1694E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-1
           Z= 351.00 LAYER NO 3
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.6350E+00-0.1721E+01
          SYY 0.4157E+01 0.4582E+01
          SZZ -0.4072E+02-0.4242E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.7918E+01 0.1802E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.4157E+01 0.4582E+01
          PS 2 0.8724E+00-0.1721E+01
          PS 3-0.4223E+02-0.4242E+02
        THETA 0.3720E+02 0.3956E+02
  DEV. STRESS 0.4639E+02 0.4700E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.2319E+02 0.2350E+02
          PSS2 0.1642E+01 0.3151E+01
          PSS3 0.2155E+02 0.2035E+02
         DISPLACEMENTS
          UX -0.1411E-01-0.2338E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.3163E+00 0.3279E+00
         NORMAL STRAINS
          EXX 0.8113E-04 0.7686E-04
          EYY 0.1243E-03 0.1336E-03
          EZZ -0.2798E-03-0.2896E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1426E-03 0.3245E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1243E-03 0.1336E-03
          PE 2 0.9470E-04 0.7686E-04
          PE 3-0.2934E-03-0.2896E-03
         PRINCIPAL SHEAR STRAINS
```

PSE1 0.4177E-03 0.4232E-03 PSE2 0.2958E-04 0.5675E-04 PSE3 0.3881E-03 0.3665E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-1
           Z= 450.00 LAYER NO 3
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.3415E+01 0.4301E+01
          SYY 0.6675E+01 0.7410E+01
          SZZ -0.2879E+02-0.3119E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.5935E+01 0.1294E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.6675E+01 0.7410E+01
          PS 2 0.4474E+01 0.4301E+01
          PS 3-0.2985E+02-0.3119E+02
        THETA 0.1870E+02 0.1948E+02
  DEV. STRESS 0.3652E+02 0.3860E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1826E+02 0.1930E+02
          PSS2 0.1101E+01 0.1554E+01
          PSS3 0.1716E+02 0.1774E+02
         DISPLACEMENTS
          UX -0.1425E-01-0.2365E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.2922E+00 0.3021E+00
         NORMAL STRAINS
          EXX 0.7440E-04 0.8419E-04
          EYY 0.1038E-03 0.1122E-03
          EZZ -0.2156E-03-0.2353E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1069E-03 0.2331E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1038E-03 0.1122E-03
          PE 2 0.8394E-04 0.8419E-04
          PE 3-0.2251E-03-0.2353E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.3289E-03 0.3475E-03
```

PSE2 0.1982E-04 0.2799E-04 PSE3 0.3090E-03 0.3195E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-1
           Z= 551.00 LAYER NO 4
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.9005E+00-0.4257E+00
          SYY 0.6525E+00 0.8228E+00
          SZZ -0.2187E+02-0.2380E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.3557E+01 0.7520E-04
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.6525E+00 0.8228E+00
          PS 2-0.3134E+00-0.4257E+00
          PS 3-0.2246E+02-0.2380E+02
        THETA 0.2212E+02 0.2341E+02
  DEV. STRESS 0.2311E+02 0.2463E+02
             (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1155E+02 0.1231E+02
          PSS2 0.4829E+00 0.6242E+00
          PSS3 0.1107E+02 0.1169E+02
         DISPLACEMENTS
          UX -0.1592E-01-0.2859E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.2718E+00 0.2797E+00
         NORMAL STRAINS
          EXX 0.8160E-04 0.9526E-04
          EYY 0.1078E-03 0.1163E-03
          EZZ -0.2724E-03-0.2994E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1201E-03 0.2539E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1078E-03 0.1163E-03
          PE 2 0.9151E-04 0.9526E-04
          PE 3-0.2823E-03-0.2994E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.3901E-03 0.4157E-03
          PSE2 0.1631E-04 0.2108E-04
          PSE3 0.3738E-03 0.3947E-03
```

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM

appendix-98

PHASE 2

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM LOAD(S)

 ELASTIC SYSTEM 1 - 4s-cm-2

 ELASTIC POISSONS
 LAYER

 MODULUS
 RATIO
 THICKNESS

 1
 400.
 0.350
 150.000 MM

 2
 600.
 0.250
 200.000 MM

 3
 150.
 0.350
 200.000 MM

 4
 80.
 0.350
 SEMI-INFINITE

TWO LOAD(S), EACH LOAD AS FOLLOWS

TOTAL LOAD..... 20.00 KN LOAD STRESS.... 559.87KPA LOAD RADIUS.... 106.63 MM

LOCATED AT

LOAD X Y 1 0.000 0.000 2 349.999 0.000

RESULTS REQUESTED FOR SYSTEM LOCATION(S)

DEPTH(S)

Z= 0.00 75.00 151.00 250.00 349.00 351.00 450.00 551.00

X-Y POINT(S)

X= 0.00 175.00 Y= 0.00 0.00

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-2
           Z= 0.00 LAYER NO 1
               0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.4967E+03 0.1855E+02
          SYY -0.5132E+03-0.9637E+02
          SZZ -0.5624E+03 0.1143E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.8377E-05-0.1905E-12
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.4967E+03 0.1855E+02
          PS 2-0.5132E+03 0.1143E+02
          PS 3-0.5624E+03-0.9637E+02
        THETA 0.1572E+04 0.6639E+02
  DEV. STRESS 0.6563E+02 0.1149E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.3282E+02 0.5746E+02
          PSS2 0.8214E+01 0.3558E+01
          PSS3 0.2460E+02 0.5390E+02
         DISPLACEMENTS
          UX 0.2223E-01-0.8628E-10
          UY 0.0000E+00 0.0000E+00
          UZ 0.5103E+00 0.3854E+00
         NORMAL STRAINS
          EXX -0.3009E-03 0.1208E-03
          EYY -0.3564E-03-0.2673E-03
          EZZ -0.5225E-03 0.9672E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.5657E-10-0.1287E-17
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1-0.3009E-03 0.1208E-03
          PE 2-0.3564E-03 0.9672E-04
          PE 3-0.5225E-03-0.2673E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.2216E-03 0.3880E-03
```

PSE2 0.5547E-04 0.2403E-04 PSE3 0.1661E-03 0.3640E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-2
           Z= 75.00 LAYER NO 1
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.1391E+03-0.1832E+03
          SYY -0.1393E+03-0.6847E+02
          SZZ -0.4629E+03-0.6436E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.9479E+01 0.2071E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.1388E+03-0.6436E+02
          PS 2-0.1393E+03-0.6847E+02
          PS 3-0.4632E+03-0.1832E+03
        THETA 0.7414E+03 0.3160E+03
  DEV. STRESS 0.3244E+03 0.1188E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1622E+03 0.5941E+02
          PSS2 0.2405E+00 0.2056E+01
          PSS3 0.1619E+03 0.5735E+02
         DISPLACEMENTS
          UX 0.1076E-01-0.1589E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.4486E+00 0.3955E+00
         NORMAL STRAINS
          EXX 0.1793E-03-0.3419E-03
          EYY 0.1786E-03 0.4543E-04
          EZZ -0.9141E-03 0.5932E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.6401E-04 0.1399E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1802E-03 0.5932E-04
          PE 2 0.1786E-03 0.4543E-04
          PE 3-0.9151E-03-0.3419E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.1095E-02 0.4012E-03
```

PSE2 0.1624E-05 0.1389E-04 PSE3 0.1094E-02 0.3873E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-2
           Z= 151.00 LAYER NO 2
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.2713E+02-0.9859E+02
          SYY -0.1999E+02-0.2113E+02
          SZZ -0.2669E+03-0.1086E+03
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1901E+02 0.5538E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.1999E+02-0.2113E+02
          PS 2-0.2563E+02-0.9859E+02
          PS 3-0.2684E+03-0.1086E+03
        THETA 0.3140E+03 0.2283E+03
  DEV. STRESS 0.2484E+03 0.8745E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1242E+03 0.4373E+02
          PSS2 0.2820E+01 0.3873E+02
          PSS3 0.1214E+03 0.4997E+01
         DISPLACEMENTS
          UX 0.3370E-02-0.3605E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.3931E+00 0.3914E+00
         NORMAL STRAINS
          EXX 0.7433E-04-0.1103E-03
          EYY 0.8921E-04 0.5113E-04
          EZZ -0.4253E-03-0.1311E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.7923E-04 0.2308E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.8921E-04 0.5113E-04
          PE 2 0.7746E-04-0.1103E-03
          PE 3-0.4284E-03-0.1311E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.5176E-03 0.1823E-03
```

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM

PSE2 0.1176E-04 0.1614E-03 PSE3 0.5059E-03 0.2083E-04

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-2
           Z= 250.00 LAYER NO 2
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.1786E+02-0.9026E+00
          SYY 0.3473E+02 0.3705E+02
          SZZ -0.1125E+03-0.8567E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.2242E+02 0.5530E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.3473E+02 0.3705E+02
          PS 2 0.2161E+02-0.9026E+00
          PS 3-0.1163E+03-0.8567E+02
        THETA 0.5996E+02 0.4952E+02
  DEV. STRESS 0.1510E+03 0.1227E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.7551E+02 0.6136E+02
          PSS2 0.6562E+01 0.1898E+02
          PSS3 0.6895E+02 0.4238E+02
         DISPLACEMENTS
          UX -0.7080E-02-0.1035E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.3634E+00 0.3763E+00
         NORMAL STRAINS
          EXX 0.6221E-04 0.1876E-04
          EYY 0.9738E-04 0.9786E-04
          EZZ -0.2096E-03-0.1579E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.9346E-04 0.2305E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.9738E-04 0.9786E-04
          PE 2 0.7002E-04 0.1876E-04
          PE 3-0.2174E-03-0.1579E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.3148E-03 0.2558E-03
```

PSE2 0.2735E-04 0.7910E-04 PSE3 0.2874E-03 0.1767E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-2
           Z= 349.00 LAYER NO 2
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.7789E+02 0.7335E+02
          SYY 0.1080E+03 0.1143E+03
          SZZ -0.5187E+02-0.5342E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1077E+02 0.2154E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.1080E+03 0.1143E+03
          PS 2 0.7877E+02 0.7335E+02
          PS 3-0.5276E+02-0.5342E+02
        THETA -0.1340E+03-0.1342E+03
  DEV. STRESS 0.1608E+03 0.1677E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.8038E+02 0.8385E+02
          PSS2 0.1462E+02 0.2046E+02
          PSS3 0.6577E+02 0.6338E+02
         DISPLACEMENTS
          UX -0.1816E-01-0.2566E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.3462E+00 0.3606E+00
         NORMAL STRAINS
          EXX 0.1065E-03 0.9694E-04
          EYY 0.1692E-03 0.1822E-03
          EZZ -0.1640E-03-0.1673E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.4489E-04 0.8978E-09
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1692E-03 0.1822E-03
          PE 2 0.1083E-03 0.9694E-04
          PE 3-0.1658E-03-0.1673E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.3351E-03 0.3495E-03
```

PSE2 0.6093E-04 0.8529E-04 PSE3 0.2741E-03 0.2642E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-2
           Z= 351.00 LAYER NO 3
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.7731E+00-0.9221E+00
          SYY 0.7767E+01 0.8560E+01
          SZZ -0.5141E+02-0.5305E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1055E+02 0.2572E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.7767E+01 0.8560E+01
          PS 2 0.2826E+01-0.9221E+00
          PS 3-0.5347E+02-0.5305E+02
        THETA 0.4287E+02 0.4541E+02
  DEV. STRESS 0.6123E+02 0.6161E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.3062E+02 0.3080E+02
          PSS2 0.2471E+01 0.4741E+01
          PSS3 0.2815E+02 0.2606E+02
         DISPLACEMENTS
          UX -0.1828E-01-0.3201E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.3457E+00 0.3601E+00
         NORMAL STRAINS
          EXX 0.1070E-03 0.9770E-04
          EYY 0.1700E-03 0.1831E-03
          EZZ -0.3628E-03-0.3716E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1900E-03 0.4631E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1700E-03 0.1831E-03
          PE 2 0.1255E-03 0.9770E-04
          PE 3-0.3813E-03-0.3716E-03
         PRINCIPAL SHEAR STRAINS
```

PSE1 0.5514E-03 0.5547E-03 PSE2 0.4449E-04 0.8537E-04 PSE3 0.5069E-03 0.4693E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-2
           Z= 450.00 LAYER NO 3
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.5072E+01 0.6153E+01
          SYY 0.9686E+01 0.1071E+02
          SZZ -0.3479E+02-0.3768E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.7754E+01 0.1799E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.9686E+01 0.1071E+02
          PS 2 0.6527E+01 0.6153E+01
          PS 3-0.3625E+02-0.3768E+02
        THETA 0.2003E+02 0.2082E+02
  DEV. STRESS 0.4593E+02 0.4839E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.2297E+02 0.2420E+02
          PSS2 0.1579E+01 0.2280E+01
          PSS3 0.2139E+02 0.2192E+02
         DISPLACEMENTS
          UX -0.1766E-01-0.3060E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.3151E+00 0.3276E+00
         NORMAL STRAINS
          EXX 0.9244E-04 0.1040E-03
          EYY 0.1340E-03 0.1450E-03
          EZZ -0.2665E-03-0.2907E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1396E-03 0.3240E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1340E-03 0.1450E-03
          PE 2 0.1055E-03 0.1040E-03
          PE 3-0.2796E-03-0.2907E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.4136E-03 0.4357E-03
```

PSE2 0.2844E-04 0.4105E-04 PSE3 0.3851E-03 0.3947E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-2
           Z= 551.00 LAYER NO 4
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.4722E+00 0.1410E+00
          SYY 0.1673E+01 0.1925E+01
          SZZ -0.2552E+02-0.2785E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.4505E+01 0.9996E-04
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.1673E+01 0.1925E+01
          PS 2 0.3134E+00 0.1410E+00
          PS 3-0.2631E+02-0.2785E+02
        THETA 0.2432E+02 0.2579E+02
  DEV. STRESS 0.2798E+02 0.2978E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1399E+02 0.1489E+02
          PSS2 0.6798E+00 0.8918E+00
          PSS3 0.1331E+02 0.1400E+02
         DISPLACEMENTS
          UX -0.1924E-01-0.3572E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.2904E+00 0.3003E+00
         NORMAL STRAINS
          EXX 0.9847E-04 0.1152E-03
          EYY 0.1347E-03 0.1454E-03
          EZZ -0.3244E-03-0.3573E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1521E-03 0.3375E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1347E-03 0.1454E-03
          PE 2 0.1117E-03 0.1152E-03
          PE 3-0.3377E-03-0.3573E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.4723E-03 0.5027E-03
```

PSE2 0.2295E-04 0.3011E-04 PSE3 0.4494E-03 0.4726E-03

PHASE 3

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM LOAD(S)

 ELASTIC SYSTEM 1 - 4s-cm-3

 ELASTIC POISSONS
 LAYER

 MODULUS
 RATIO
 THICKNESS

 1
 300.
 0.350
 150.000 MM

 2
 300.
 0.250
 200.000 MM

 3
 150.
 0.350
 200.000 MM

 4
 80.
 0.350
 SEMI-INFINITE

TWO LOAD(S), EACH LOAD AS FOLLOWS

TOTAL LOAD..... 20.00 KN LOAD STRESS.... 559.87KPA LOAD RADIUS.... 106.63 MM

LOCATED AT

LOAD X Y 1 0.000 0.000 2 349.999 0.000

RESULTS REQUESTED FOR SYSTEM LOCATION(S)

DEPTH(S)

Z= 0.00 75.00 151.00 250.00 349.00 351.00 450.00 551.00

X-Y POINT(S)

X= 0.00 175.00 Y= 0.00 0.00

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-3
           Z= 0.00 LAYER NO 1
               0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.5059E+03 0.2967E+02
          SYY -0.5259E+03-0.1004E+03
          SZZ -0.5624E+03 0.1143E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ -0.1249E-04-0.6963E-13
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.5059E+03 0.2967E+02
          PS 2-0.5259E+03 0.1143E+02
          PS 3-0.5624E+03-0.1004E+03
        THETA 0.1594E+04 0.5934E+02
  DEV. STRESS 0.5644E+02 0.1301E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.2822E+02 0.6506E+02
          PSS2 0.1001E+02 0.9120E+01
          PSS3 0.1821E+02 0.5594E+02
         DISPLACEMENTS
          UX 0.2703E-01 0.1020E-09
          UY 0.0000E+00 0.0000E+00
          UZ 0.6253E+00 0.4552E+00
         NORMAL STRAINS
          EXX -0.4169E-03 0.2029E-03
          EYY -0.5070E-03-0.3830E-03
          EZZ -0.6710E-03 0.1207E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ -0.1125E-09-0.6269E-18
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1-0.4169E-03 0.2029E-03
          PE 2-0.5070E-03 0.1207E-03
          PE 3-0.6710E-03-0.3830E-03
```

PRINCIPAL SHEAR STRAINS
PSE1 0.2541E-03 0.5858E-03
PSE2 0.9013E-04 0.8212E-04
PSE3 0.1640E-03 0.5037E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-3
           Z= 75.00 LAYER NO 1
           X= 0.00 175.00
           Y=
                 0.00
                             0.00
         NORMAL STRESSES
          SXX -0.1280E+03-0.1711E+03
          SYY -0.1267E+03-0.5787E+02
          SZZ -0.4531E+03-0.6650E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.8084E+01 0.2236E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1-0.1267E+03-0.5787E+02
          PS 2-0.1278E+03-0.6650E+02
          PS 3-0.4533E+03-0.1711E+03
        THETA 0.7078E+03 0.2955E+03
  DEV. STRESS 0.3266E+03 0.1132E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1633E+03 0.5661E+02
          PSS2 0.5319E+00 0.4316E+01
          PSS3 0.1628E+03 0.5230E+02
         DISPLACEMENTS
          UX 0.1063E-01-0.2957E-07
          UY 0.0000E+00 0.0000E+00
          UZ 0.5437E+00 0.4673E+00
         NORMAL STRAINS
          EXX 0.2500E-03-0.4254E-03
          EYY 0.2557E-03 0.8434E-04
          EZZ -0.1214E-02 0.4548E-04
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.7279E-04 0.2013E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.2557E-03 0.8434E-04
          PE 2 0.2509E-03 0.4548E-04
          PE 3-0.1215E-02-0.4254E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.1471E-02 0.5097E-03
```

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM

PSE2 0.4789E-05 0.3886E-04 PSE3 0.1466E-02 0.4709E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-3
           Z= 151.00 LAYER NO 2
           X= 0.00 175.00
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.9212E+01-0.7754E+02
          SYY 0.2918E+01 0.1009E+01
          SZZ -0.2517E+03-0.1141E+03
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1677E+02 0.5102E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.2918E+01 0.1009E+01
          PS 2-0.8058E+01-0.7754E+02
          PS 3-0.2528E+03-0.1141E+03
        THETA 0.2580E+03 0.1906E+03
  DEV. STRESS 0.2557E+03 0.1151E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1279E+03 0.5754E+02
          PSS2 0.5488E+01 0.3928E+02
          PSS3 0.1224E+03 0.1826E+02
         DISPLACEMENTS
          UX -0.7583E-03-0.1147E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.4684E+00 0.4582E+00
         NORMAL STRAINS
          EXX 0.1767E-03-0.1643E-03
          EYY 0.2272E-03 0.1631E-03
          EZZ -0.8340E-03-0.3166E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1398E-03 0.4254E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.2272E-03 0.1631E-03
          PE 2 0.1815E-03-0.1643E-03
          PE 3-0.8388E-03-0.3166E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.1066E-02 0.4797E-03
```

PSE2 0.4575E-04 0.3275E-03 PSE3 0.1020E-02 0.1522E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-3
           Z= 250.00 LAYER NO 2
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.7479E+01-0.1069E+02
          SYY 0.2266E+02 0.2388E+02
          SZZ -0.1160E+03-0.9421E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1915E+02 0.4702E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.2266E+02 0.2388E+02
          PS 2 0.1038E+02-0.1069E+02
          PS 3-0.1189E+03-0.9421E+02
        THETA 0.8582E+02 0.8102E+02
  DEV. STRESS 0.1415E+03 0.1181E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.7076E+02 0.5904E+02
          PSS2 0.6140E+01 0.1729E+02
          PSS3 0.6462E+02 0.4176E+02
         DISPLACEMENTS
          UX -0.1093E-01-0.1775E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.4101E+00 0.4249E+00
         NORMAL STRAINS
          EXX 0.1027E-03 0.2297E-04
          EYY 0.1660E-03 0.1671E-03
          EZZ -0.4118E-03-0.3252E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1596E-03 0.3920E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1660E-03 0.1671E-03
          PE 2 0.1148E-03 0.2297E-04
          PE 3-0.4239E-03-0.3252E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.5899E-03 0.4922E-03
          PSE2 0.5119E-04 0.1441E-03
```

PSE3 0.5387E-03 0.3481E-03

```
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-3
           Z= 349.00 LAYER NO 2
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.3396E+02 0.3002E+02
          SYY 0.5269E+02 0.5602E+02
          SZZ -0.6228E+02-0.6402E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1278E+02 0.2643E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.5269E+02 0.5602E+02
          PS 2 0.3563E+02 0.3002E+02
          PS 3-0.6395E+02-0.6402E+02
        THETA -0.2438E+02-0.2202E+02
  DEV. STRESS 0.1166E+03 0.1200E+03
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.5832E+02 0.6002E+02
          PSS2 0.8532E+01 0.1300E+02
          PSS3 0.4979E+02 0.4702E+02
         DISPLACEMENTS
          UX -0.2036E-01-0.3037E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.3777E+00 0.3951E+00
         NORMAL STRAINS
          EXX 0.1212E-03 0.1068E-03
          EYY 0.1993E-03 0.2152E-03
          EZZ -0.2799E-03-0.2852E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1065E-03 0.2204E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1993E-03 0.2152E-03
          PE 2 0.1282E-03 0.1068E-03
          PE 3-0.2869E-03-0.2852E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.4862E-03 0.5004E-03
          PSE2 0.7113E-04 0.1084E-03
```

ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM

PSE3 0.4151E-03 0.3920E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-3
           Z= 351.00 LAYER NO 3
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.5208E+00-0.2957E+01
          SYY 0.8152E+01 0.9034E+01
          SZZ -0.6172E+02-0.6356E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.1264E+02 0.3224E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.8152E+01 0.9034E+01
          PS 2 0.1989E+01-0.2957E+01
          PS 3-0.6423E+02-0.6356E+02
        THETA 0.5409E+02 0.5749E+02
  DEV. STRESS 0.7238E+02 0.7260E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.3619E+02 0.3630E+02
          PSS2 0.3081E+01 0.5996E+01
          PSS3 0.3311E+02 0.3030E+02
         DISPLACEMENTS
          UX -0.2046E-01-0.3783E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.3769E+00 0.3944E+00
         NORMAL STRAINS
          EXX 0.1216E-03 0.1076E-03
          EYY 0.1997E-03 0.2155E-03
          EZZ -0.4294E-03-0.4381E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.2277E-03 0.5807E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1997E-03 0.2155E-03
          PE 2 0.1442E-03 0.1076E-03
          PE 3-0.4520E-03-0.4381E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.6517E-03 0.6537E-03
```

PSE2 0.5549E-04 0.1080E-03 PSE3 0.5962E-03 0.5457E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-3
           Z= 450.00 LAYER NO 3
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX 0.5144E+01 0.6266E+01
          SYY 0.1095E+02 0.1212E+02
          SZZ -0.4107E+02-0.4457E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.9396E+01 0.2264E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.1095E+02 0.1212E+02
          PS 2 0.6981E+01 0.6266E+01
          PS 3-0.4290E+02-0.4457E+02
        THETA 0.2498E+02 0.2619E+02
  DEV. STRESS 0.5385E+02 0.5670E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.2693E+02 0.2835E+02
          PSS2 0.1983E+01 0.2927E+01
          PSS3 0.2494E+02 0.2542E+02
         DISPLACEMENTS
          UX -0.1999E-01-0.3591E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.3410E+00 0.3563E+00
         NORMAL STRAINS
          EXX 0.1046E-03 0.1176E-03
          EYY 0.1569E-03 0.1703E-03
          EZZ -0.3115E-03-0.3402E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1692E-03 0.4078E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1569E-03 0.1703E-03
          PE 2 0.1212E-03 0.1176E-03
          PE 3-0.3280E-03-0.3402E-03
         PRINCIPAL SHEAR STRAINS
          PSE1 0.4849E-03 0.5105E-03
          PSE2 0.3571E-04 0.5272E-04
```

PSE3 0.4492E-03 0.4578E-03

```
ELSYM5 3/72 - 3, ELASTIC LAYERED SYSTEM WITH ONE TO TEN NORMAL IDENTICAL CIRCULAR UNIFORM
LOAD(S)
  ELASTIC SYSTEM 1 - 4s-cm-3
           Z= 551.00 LAYER NO 4
           X= 0.00 175.00
           Y=
                  0.00
                             0.00
         NORMAL STRESSES
          SXX -0.6604E+00 0.3538E-01
          SYY 0.2067E+01 0.2349E+01
          SZZ -0.2958E+02-0.3240E+02
         SHEAR STRESSES
          SXY 0.0000E+00 0.0000E+00
          SXZ 0.5432E+01 0.1245E-03
          SYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRESSES
          PS 1 0.2067E+01 0.2349E+01
          PS 2 0.3263E+00 0.3538E-01
          PS 3-0.3057E+02-0.3240E+02
        THETA 0.2817E+02 0.3001E+02
  DEV. STRESS 0.3263E+02 0.3475E+02
            (FOR THETA AND DEV. STRESS COMPRESSIVE IS POSITIVE (+))
         PRINCIPAL SHEAR STRESSES
          PSS1 0.1632E+02 0.1737E+02
          PSS2 0.8705E+00 0.1157E+01
          PSS3 0.1545E+02 0.1622E+02
         DISPLACEMENTS
          UX -0.2200E-01-0.4197E-06
          UY 0.0000E+00 0.0000E+00
          UZ 0.3122E+00 0.3245E+00
         NORMAL STRAINS
          EXX 0.1122E-03 0.1320E-03
          EYY 0.1582E-03 0.1710E-03
          EZZ -0.3761E-03-0.4156E-03
         SHEAR STRAINS
          EXY 0.0000E+00 0.0000E+00
          EXZ 0.1834E-03 0.4205E-08
          EYZ 0.0000E+00 0.0000E+00
         PRINCIPAL STRAINS
          PE 1 0.1582E-03 0.1710E-03
          PE 2 0.1288E-03 0.1320E-03
          PE 3-0.3927E-03-0.4156E-03
         PRINCIPAL SHEAR STRAINS
```

PSE1 0.5509E-03 0.5866E-03 PSE2 0.2939E-04 0.3905E-04 PSE3 0.5216E-03 0.5475E-03

Appendix-F Discharge Volume

Appendix-F Discharge Volume

Design Discharge Volume (Mandimba-Lichinga)

No.	Bridge	Catchment Area	River	Slope	(A) Flood	Return	(B) Rainfall	(C) Point	(D) Area	(E) Average	(F) Combined	(G)
NO.	Name	(A)	Length		Concentration Time (Tc)	Perido	(R24)	Rainfall	Reduction Factor	Intensity (I _T)	Run-off Coefficient	Peak Flow
		(km²) 0.83	(km)	(m/m)	(h) 0.17	(1/Year) 2	(mm) 75.7	(mm) 22.423	(ARFT) 105.76	(mm/h) 142.28	(%) 10.0	(m³/s) 3.3
1		0.83 0.83			0.17 0.17	5 10	97.9 111.4	37.827 49.480	105.76 105.76	240.03 313.97	11.0 12.0	6.1 8.7
		0.83 0.83			0.17 0.17	20 50	123.5 138.2	61.133 76.537	105.76 105.76	387.91 485.66	13.4 19.0	12.0 21.3
		0.83 0.35			0.17 0.17	100 2	148.7 75.7	88.190 22.423	105.76 109.71	559.60 147.60	20.0 10.0	25.8 1.4
		0.35 0.35			0.17 0.17	5 10	97.9 111.4	37.827 49.480	109.71 109.71	249.00 325.71	11.0 12.0	2.7 3.8
2		0.35 0.35			0.17 0.17	20 50	123.5 138.2	61.133 76.537	109.71 109.71	402.42 503.82	13.4	5.2 9.3
		0.35 0.36			0.17 0.17	100	148.7 66.8	88.190 20.560	109.71 109.58	580.52 135.18	20.0 26.3	11.3 3.5
		0.36 0.36			0.17 0.17 0.17	5 10	83.2 93.9	34.685 45.370	109.58 109.58	228.05 298.31	28.0 29.8	6.4
3		0.36 0.36			0.17 0.17 0.17	20 50	104.1 117.4	56.054 70.179	109.58 109.58	368.56 461.43	31.5	11.6 15.3
		0.36 37.00	12.55	0.011	0.17	100	127.6	80.864 45.047	109.58 109.58 97.24	531.69 17.17	33.3 35.0	18.6
		37.00	13.55 13.55	0.014	2.55 2.55	5	66.8 83.2	75.993	97.24 97.24 97.24	28.97	26.3 28.0	46.3 83.4
4	Ngame I	37.00 37.00	13.55 13.55	0.014 0.014	2.55 2.55	10 20	93.9 104.1	99.404 122.814	97.24	37.89 46.81	29.8 31.5	115.9 151.6
		37.00 37.00	13.55 13.55	0.014 0.014	2.55 2.55	50 100	117.4 127.6	153.761 177.171	97.24 97.24	58.61 67.53	33.3 35.0	200.3 242.9
		0.27 0.27			0.17 0.17	2 5	66.8 83.2	20.560 34.685	110.86 110.86	136.75 230.70	26.3 28.0	2.7 4.8
5		0.27 0.27			0.17 0.17	10 20	93.9 104.1	45.370 56.054	110.86 110.86	301.77 372.84	29.8 31.5	6.7 8.8
		0.27 0.27			0.17 0.17	50 100	117.4 127.6	70.179 80.864	110.86 110.86	466.79 537.86	33.3 35.0	11.6 14.1
		0.63 0.63			0.17 0.17	<u>2</u> 5	66.8 83.2	20.560 34.685	107.04 107.04	132.05 222.77	26.3 28.0	6.1 10.9
6		0.63 0.63			0.17 0.17	10 20	93.9 104.1	45.370 56.054	107.04 107.04	291.39 360.01	29.8 31.5	15.2 19.8
		0.63 0.63			0.17 0.17	50 100	117.4 127.6	70.179 80.864	107.04 107.04	450.73 519.35	33.3 35.0	26.2 31.8
		0.39			0.17 0.17	2	66.8 83.2	20.560 34.685	109.23 109.23	134.74 227.31	26.3 28.0	3.8 6.9
7		0.39			0.17 0.17	10 20	93.9 104.1	45.370 56.054	109.23 109.23	297.33 367.36	29.8 31.5	9.6 12.5
		0.39			0.17 0.17 0.17	50 100	117.4 127.6	70.179 80.864	109.23 109.23	459.93 529.95	33.3 35.0	16.6 20.1
		1.17			0.17 0.17	2	66.8 83.2	20.560 34.685	104.12 104.12	128.44 216.69	26.3 28.0	11.0 19.7
8		1.17 1.17			0.17 0.17 0.17	10 20	93.9 104.1	45.370 56.054	104.12 104.12	283.44 350.19	29.8 31.5	27.4 35.9
		1.17			0.17	50	117.4	70.179	104.12	438.43	33.3	47.4
		1.17 2.74	1.5	0.021	0.17 0.40	100	127.6 66.8	80.864 28.395	104.12 103.25	505.18 73.48	35.0 26.3	57.5 14.7
9	Nacalongo	2.74	1.5	0.021 0.021	0.40	5 10	93.2 93.9	47.902 62.659	103.25 103.25	123.95 162.14	28.0 29.8	26.4 36.7
		2.74 2.74	1.5 1.5	0.021 0.021	0.40 0.40	20 50	104.1 117.4	77.416 96.923	103.25 103.25	200.32 250.80	31.5 33.3	48.0 63.5
		2.74	1.5	0.021	0.40	100	127.6	111.680	103.25	288.98	35.0	77.0
10	Namlungu											
	Marinanga											
		0.04			0.17	2	66.8	20.560	118.80	146.55	26.3	0.4
11		0.04 0.04			0.17 0.17	5 10	83.2 93.9	34.685 45.370	118.80 118.80	247.24 323.40	28.0 29.8	0.8 1.1
''		0.04 0.04			0.17 0.17	20 50	104.1 117.4	56.054 70.179	118.80 118.80	399.56 500.24	31.5 33.3	1.4 1.8
		0.04 0.83			0.17 0.17	100	127.6 66.8	80.864 20.560	118.80 105.76	576.41 130.46	35.0 26.3	2.2 7.9
		0.83 0.83			0.17 0.17	5 10	83.2 93.9	34.685 45.370	105.76 105.76	220.09 287.89	28.0 29.8	14.2 19.7
12		0.83 0.83			0.17 0.17	20 50	104.1 117.4	56.054 70.179	105.76 105.76	355.69 445.31	31.5 33.3	25.8 34.1
		0.83 0.15			0.17 0.17 0.17	100	127.6 66.8	80.864 20.560	105.76 113.39	513.11 139.88	35.0 26.3	41.4
		0.15 0.15 0.15			0.17 0.17 0.17	5 10	83.2 93.9	34.685 45.370	113.39 113.39	235.98 308.67	28.0 29.8	2.8
13		0.15			0.17	20	104.1 117.4	56.054	113.39	381.37	31.5	5.0
		0.15 0.15	1.0	0.000	0.17 0.17	100	127.6	70.179 80.864	113.39 113.39	477.47 550.16	33.3 35.0	6.6 8.0
		3.04	1.3	0.020	0.37 0.37	5	66.8 83.2	27.620 46.595	102.41 102.41	77.28 130.38	26.3 28.0	17.1 30.8
14		3.04	1.3	0.020	0.37 0.37	10 20	93.9 104.1	60.949 75.303	102.41 102.41	170.54 210.71	29.8 31.5	42.8 56.0
		3.04 3.04	1.3 1.3	0.020 0.020	0.37	50 100	117.4 127.6	94.278 108.632	102.41 102.41	263.80 303.96	33.3 35.0	74.1 89.8
		0.61 0.61			0.17 0.17	5	66.8 83.2	20.560 34.685	107.19 107.19	132.23 223.08	26.3 28.0	5.9 10.6
15		0.61 0.61			0.17 0.17	10 20	93.9 104.1	45.370 56.054	107.19 107.19	291.80 360.52	29.8 31.5	14.7 19.2
		0.61 0.61			0.17 0.17	50 100	117.4 127.6	70.179 80.864	107.19 107.19	451.36 520.08	33.3 35.0	25.4 30.8
16	Luchimua											
		3.73 3.73	2.0	0.015 0.015	0.57 0.57	<u>2</u> 5	66.8 83.2	31.596 53.303	103.08 103.08	57.14 96.39	26.3 28.0	15.5 28.0
17		3.73 3.73	2.0	0.015 0.015	0.57 0.57	10 20	93.9 104.1	69.723 86.143	103.08 103.08	126.09 155.78	29.8 31.5	38.9 50.8
	<u></u>	3.73 3.73	2.0	0.015 0.015	0.57 0.57	50 100	117.4 127.6	107.850 124.270	103.08 103.08	195.03 224.73	33.3 35.0	67.2 81.5
		0.66 0.66	-		0.17 0.17	2 5	66.8 83.2	20.560 34.685	106.83 106.83	131.78 222.32	26.3 28.0	6.3
18		0.66 0.66			0.17 0.17	10 20	93.9 104.1	45.370 56.054	106.83 106.83	290.80 359.29	29.8 31.5	15.9 20.7
		0.66 0.66			0.17 0.17 0.17	50 100	117.4 127.6	70.179 80.864	106.83 106.83	449.82 518.31	33.3 35.0	27.4 33.3
		9.12	1.7	0.024	0.42	2	66.8	28.919	97.35	66.55	26.3	44.3
19		9.12 9.12	1.7	0.024	0.42 0.42	5 10	93.2 93.9	48.787 63.816	97.35 97.35	112.27 146.86	28.0 29.8	79.6 110.7
		9.12 9.12	1.7	0.024	0.42 0.42	20 50	104.1 117.4	78.845 98.712	97.35 97.35	181.45 227.17	31.5 33.3	144.8 191.4
		9.12 1.26	1.7	0.024	0.42 0.17	100 2	127.6 66.8	113.741 20.560	97.35 103.76	261.76 128.00	35.0 26.3	232.1 11.8
20		1.26 1.26			0.17 0.17	5 10	83.2 93.9	34.685 45.370	103.76 103.76	215.94 282.46	28.0 29.8	21.2 29.4
	i	1.26			0.17	20	104.1	56.054	103.76	348.98	31.5	38.5
20		1.26			0.17	50	117.4	70.179	103.76	436.92	33.3	50.8

		Catchment Area	River		(A) Flood	Return	(B) Rainfall	(C)	(D) Area	(E) Average	(F) Combined	(G)
No.	Bridge Name	(A)	Length	Slope	Concentration	Perido	Intensity	Point Rainfall	Reduction	Intensity	Run-off	Peak Flow
		(km²)	(km)	(m/m)	Time (Tc) (h)	(1/Year)	(R24) (mm)	(mm)	Factor (ARFT)	(I _⊤) (mm/h)	Coefficient (%)	(m ³ /s)
		0.05 0.05			0.17 0.17	2 5	66.8 83.2	20.560 34.685	117.91 117.91	145.46 245.39	26.3	0.5 1.0
21		0.05			0.17	10	93.9	45.370	117.91	320.98	28.0 29.8	1.3
		0.05 0.05			0.17 0.17	20 50	104.1 117.4	56.054 70.179	117.91 117.91	396.58 496.51	31.5 33.3	1.7 2.3
		0.05 46.30	11.0	0.014	0.17 2.20	100	127.6 66.8	80.864 43.702	117.91 95.40	572.10 18.98	35.0	2.8 64.1
		46.30	11.0	0.014 0.014	2.20	5	83.2	73.724	95.40	32.03	26.3 28.0	115.3
22	Lilasi	46.30 46.30	11.0 11.0	0.014	2.20 2.20	10 20	93.9 104.1	96.436 119.147	95.40 95.40	41.89 51.76	29.8 31.5	160.3 209.7
		46.30	11.0	0.014	2.20	50	117.4	149.170	95.40	64.80	33.3	277.1
		46.30 2.31	11.0 1.5	0.014 0.017	2.20 0.43	100 2	127.6 66.8	171.881 29.108	95.40 104.37	74.67 70.32	35.0 26.3	336.1 11.8
		2.31	1.5 1.5	0.017 0.017	0.43 0.43	5 10	83.2 93.9	49.106 64.233	104.37 104.37	118.64 155.18	28.0 29.8	21.3 29.6
23		2.31	1.5	0.017	0.43	20	104.1	79.360	104.37	191.73	31.5	38.8
		2.31 2.31	1.5 1.5	0.017 0.017	0.43 0.43	50 100	117.4 127.6	99.357 114.485	104.37 104.37	240.04 276.59	33.3 35.0	51.2 62.1
		39.70 39.70	9.8 9.8	0.013 0.013	2.03	5	66.8 83.2	43.001 72.542	95.91 95.91	20.31 34.26	26.3 28.0	58.8 105.8
24	Ninde	39.70	9.8	0.013	2.03	10	93.9	94.889	95.91	44.81	29.8	147.0
		39.70 39.70	9.8 9.8	0.013 0.013	2.03 2.03	20 50	104.1 117.4	117.236 146.777	95.91 95.91	55.36 69.31	31.5 33.3	192.3 254.2
		39.70	9.8	0.013	2.03	100	127.6	169.124	95.91	79.87	35.0	308.3
		0.55 0.55			0.17 0.17	<u>2</u> 5	66.8 83.2	20.560 34.685	107.67 107.67	132.82 224.07	26.3 28.0	5.3 9.6
25		0.55 0.55			0.17 0.17	10 20	93.9 104.1	45.370 56.054	107.67 107.67	293.09 362.12	29.8 31.5	13.3 17.4
		0.55			0.17	50	117.4	70.179	107.67	453.36	33.3	23.0
		0.55 1.02			0.17 0.17	100 2	127.6 66.8	80.864 20.560	107.67 104.78	522.39 129.26	35.0 26.3	27.9 9.6
		1.02			0.17	5	83.2	34.685	104.78	218.06	28.0	17.3
26		1.02 1.02			0.17 0.17	10 20	93.9 104.1	45.370 56.054	104.78 104.78	285.23 352.40	29.8 31.5	24.0 31.5
		1.02 1.02			0.17 0.17	50 100	117.4 127.6	70.179 80.864	104.78 104.78	441.20 508.37	33.3 35.0	41.6 50.4
		1.02			5.17	100	127.0	00.004	104.70	300.37	55.0	50.4
27	Luelele											
21	Luciele							-				
								06 -:	44.1.5	445.		
		0.08			0.17 0.17	<u>2</u> 5	66.8 83.2	20.560 34.685	116.01 116.01	143.11 241.43	26.3 28.0	0.8 1.5
28		0.08			0.17	10	93.9	45.370	116.01	315.81	29.8	2.1
		0.08			0.17 0.17	20 50	104.1 117.4	56.054 70.179	116.01 116.01	390.18 488.50	31.5 33.3	2.7 3.6
		0.08 0.01			0.17 0.17	100 2	127.6 66.8	80.864 20.560	116.01 124.10	562.87 153.10	35.0 26.3	4.4 0.1
		0.01			0.17	5	83.2	34.685	124.10	258.27	28.0	0.2
29		0.01 0.01			0.17 0.17	10 20	93.9 104.1	45.370 56.054	124.10 124.10	337.83 417.40	29.8 31.5	0.3
		0.01			0.17 0.17	50 100	117.4 127.6	70.179 80.864	124.10 124.10	522.57 602.13	33.3	0.5
		0.05			0.17	2	66.8	20.560	117.91	145.46	35.0 26.3	0.5
		0.05 0.05			0.17 0.17	5 10	83.2 93.9	34.685 45.370	117.91 117.91	245.39 320.98	28.0 29.8	1.0
30		0.05			0.17	20	104.1	56.054	117.91	396.58	31.5	1.7
		0.05 0.05			0.17 0.17	50 100	117.4 127.6	70.179 80.864	117.91 117.91	496.51 572.10	33.3 35.0	2.3
		1.91 1.91	1.5 1.5	0.020	0.41 0.41	2 5	66.8 83.2	28.617 48.277	105.08 105.08	73.52 124.03	26.3	10.2 18.4
31		1.91	1.5	0.020	0.41	10	93.9	63.149	105.08	162.24	28.0 29.8	25.6
٠.		1.91 1.91	1.5 1.5	0.020	0.41 0.41	20 50	104.1 117.4	78.021 97.681	105.08 105.08	200.44 250.95	31.5 33.3	33.5 44.3
		1.91	1.5	0.020	0.41	100	127.6	112.553	105.08	289.16	35.0	53.7
		0.19 0.19			0.17 0.17	2 5	66.8 83.2	20.560 34.685	112.38 112.38	138.64 233.88	26.3 28.0	1.9 3.5
32		0.19 0.19			0.17 0.17	10 20	93.9 104.1	45.370 56.054	112.38 112.38	305.93 377.97	29.8 31.5	4.8 6.3
		0.19			0.17	50	117.4	70.179	112.38	473.22	33.3	8.3
		0.19 0.08			0.17 0.17	100	127.6 66.8	80.864 20.560	112.38 116.01	545.26 143.11	35.0 26.3	10.1 0.8
		0.08			0.17	5	83.2	34.685	116.01	241.43	28.0	1.5
33		0.08			0.17 0.17	10 20	93.9 104.1	45.370 56.054	116.01 116.01	315.81 390.18	29.8 31.5	2.1
		0.08			0.17 0.17	50 100	117.4 127.6	70.179 80.864	116.01 116.01	488.50 562.87	33.3 35.0	3.6 4.4
		0.02			0.17	2	66.8	20.560	121.50	149.88	26.3	0.2
34		0.02 0.02			0.17 0.17	5 10	93.9	34.685 45.370	121.50 121.50	252.84 330.73	28.0 29.8	0.4
34		0.02 0.02		_	0.17 0.17	20 50	104.1 117.4	56.054 70.179	121.50 121.50	408.62 511.59	31.5 33.3	0.7
		0.02			0.17	100	127.6	80.864	121.50	589.48	35.0	1.1
		0.23			0.17 0.17	<u>2</u> 5	66.8 83.2	20.560 34.685	111.56 111.56	137.62 232.16	26.3 28.0	2.3 4.2
35		0.23			0.17	10	93.9	45.370	111.56	303.68	29.8	5.8
		0.23 0.23			0.17 0.17	20 50	104.1 117.4	56.054 70.179	111.56 111.56	375.20 469.74	31.5 33.3	7.6 10.0
		0.23 239.50	24.6	0.014	0.17 4.06	100	127.6 66.8	80.864 49.220	111.56 88.60	541.26 10.74	35.0 26.3	12.1 187.5
		239.50	24.6	0.014	4.06	5	83.2	83.033	88.60	18.12	28.0	337.5
36	Mmaculumesi	239.50 239.50	24.6 24.6	0.014	4.06 4.06	10 20	93.9 104.1	108.612 134.191	88.60 88.60	23.70 29.28	29.8 31.5	469.0 613.6
		239.50	24.6	0.014	4.06	50	117.4	168.004 193.583	88.60	36.66	33.3	810.8
		239.50 0.57	24.6	0.014	4.06 0.17	100 2	127.6 66.8	20.560	88.60 107.50	42.24 132.62	35.0 26.3	983.5 5.5
27		0.57 0.57			0.17 0.17	5 10	83.2 93.9	34.685 45.370	107.50 107.50	223.73 292.65	28.0 29.8	9.9 13.8
37		0.57			0.17	20	104.1	56.054	107.50	361.57	31.5	18.0
		0.57 0.57			0.17 0.17	50 100	117.4 127.6	70.179 80.864	107.50 107.50	452.67 521.59	33.3 35.0	23.8 28.9
		1.19			0.17 0.17	2 5	66.8 83.2	20.560 34.685	104.04 104.04	128.34 216.52	26.3	11.1 20.0
3.8		1.19			0.17	10	93.9	45.370	104.04	283.21	28.0 29.8	27.9
38		1.19 1.19			0.17 0.17	20 50	104.1 117.4	56.054 70.179	104.04 104.04	349.91 438.09	31.5	36.4 48.1
30		1.19			0.17	100	127.6	80.864	104.04	504.78	33.3 35.0	58.4
30												
		1.14			0.17	2 5	66.8 83.2	20.560 34.685	104.25	128.60 216.95	26.3 28.0	10.7 19.2
39					0.17 0.17 0.17 0.17		66.8 83.2 93.9 104.1	20.560 34.685 45.370 56.054	104.25 104.25 104.25 104.25	128.60 216.95 283.78 350.61	26.3 28.0 29.8 31.5	

Design	Discharge Vo	lume (Mandimb	a-Liching	ga)								
		Catchment Area	River		(A) Flood	Return	(B) Rainfall	(C)	(D) Area	(E) Average	(F) Combined	(G)
No.	Bridge Name	(A)	Length	Slope	Concentration	Perido	Intensity	Point Rainfall	Reduction	Intensity	Run-off	Peak Flow
		(km²)	(km)	(m/m)	Time (Tc) (h)	(1/Year)	(R24) (mm)	(mm)	Factor (ARFT)	(I _T) (mm/h)	Coefficient (%)	(m³/s)
		0.89 0.89			0.17 0.17	<u>2</u> 5	66.8 83.2	20.560 34.685	105.43 105.43	130.06 219.40	26.3 28.0	8.4 15.2
40		0.89 0.89			0.17 0.17	10 20	93.9 104.1	45.370 56.054	105.43 105.43	286.99 354.58	29.8 31.5	21.1 27.6
		0.89			0.17 0.17	50 100	117.4 127.6	70.179 80.864	105.43 105.43	443.93 511.52	33.3 35.0	36.5 44.3
		0.13 0.13			0.17 0.17 0.17	2	66.8 83.2	20.560 34.685	114.00 114.00	140.63 237.24	26.3 28.0	1.3
41		0.13			0.17	10	93.9	45.370	114.00	310.32	29.8	3.3
		0.13 0.13			0.17 0.17	20 50	104.1 117.4	56.054 70.179	114.00 114.00	383.40 480.01	31.5 33.3	4.4 5.8
		0.13 0.19			0.17 0.17	100	127.6 66.8	80.864 20.560	114.00 112.38	553.09 138.64	35.0 26.3	7.0 1.9
42		0.19 0.19			0.17 0.17	5 10	93.9 93.9	34.685 45.370	112.38 112.38	233.88 305.93	28.0 29.8	3.5 4.8
42		0.19 0.19			0.17 0.17	20 50	104.1 117.4	56.054 70.179	112.38 112.38	377.97 473.22	31.5 33.3	6.3 8.3
		0.19			0.17 0.17	100	127.6 66.8	80.864 20.560	112.38 121.50	545.26 149.88	35.0 26.3	10.1
		0.02			0.17 0.17 0.17	5 10	83.2 93.9	34.685	121.50 121.50	252.84 330.73	28.0 29.8	0.4
43		0.02			0.17	20	104.1	45.370 56.054	121.50	408.62	31.5	0.5
		0.02			0.17 0.17	50 100	117.4 127.6	70.179 80.864	121.50 121.50	511.59 589.48	33.3 35.0	0.9 1.1
		56.60 56.60	13.6 13.6	0.018 0.018	2.34	5	66.8 83.2	44.279 74.699	94.56 94.56	17.88 30.16	26.3 28.0	73.8 132.8
44	Lutembue	56.60 56.60	13.6 13.6	0.018 0.018	2.34	10 20	93.9 104.1	97.711 120.722	94.56 94.56	39.45 48.74	29.8 31.5	184.5 241.4
		56.60 56.60	13.6 13.6	0.018 0.018	2.34	50 100	117.4 127.6	151.142 174.153	94.56 94.56	61.03 70.32	33.3 35.0	319.0 386.9
		0.11	10.0	0.010	0.17	2	66.8	20.560	114.70	141.49	26.3	1.1
45		0.11 0.11			0.17 0.17	5 10	93.9 104.1	34.685 45.370	114.70 114.70	238.69 312.22	28.0 29.8	2.0
		0.11			0.17 0.17	20 50	104.1 117.4	56.054 70.179	114.70 114.70	385.75 482.96	31.5 33.3	3.7 4.9
		0.11 0.04			0.17 0.17	100 2	127.6 66.8	80.864 20.560	114.70 118.80	556.49 146.55	35.0 26.3	6.0 0.4
46		0.04 0.04	·		0.17 0.17	5 10	83.2 93.9	34.685 45.370	118.80 118.80	247.24 323.40	28.0 29.8	0.8 1.1
40		0.04			0.17 0.17	20 50	104.1 117.4	56.054 70.179	118.80 118.80	399.56 500.24	31.5 33.3	1.4
		0.04			0.17 0.17	100	127.6 66.8	80.864 20.560	118.80 119.93	576.41 147.95	35.0 26.3	2.2
		0.03 0.03			0.17 0.17 0.17	5 10	83.2 93.9	34.685 45.370	119.93 119.93	249.59 326.47	28.0	0.6 0.8
47		0.03			0.17	20	104.1	56.054	119.93	403.36	31.5	1.1
		0.03 0.03			0.17 0.17	50 100	117.4 127.6	70.179 80.864	119.93 119.93	505.00 581.89	33.3 35.0	1.4 1.7
		0.01 0.01			0.17 0.17	5	66.8 83.2	20.560 34.685	124.10 124.10	153.10 258.27	26.3 28.0	0.1
48		0.01 0.01			0.17 0.17	10 20	93.9 104.1	45.370 56.054	124.10 124.10	337.83 417.40	29.8 31.5	0.3
		0.01 0.01			0.17 0.17	50 100	117.4 127.6	70.179 80.864	124.10 124.10	522.57 602.13	33.3 35.0	0.5 0.6
		2.74	6.1	0.032	1.01 1.01	2	66.8	36.686	106.63	38.92	26.3	7.8 14.0
49	Lusanga	2.74	6.1	0.032 0.032	1.01	10	93.2 93.9	61.889 80.955	106.63 106.63	65.66 85.89	28.0 29.8	19.4
		2.74 2.74	6.1	0.032	1.01 1.01	20 50	104.1 117.4	100.020 125.224	106.63 106.63	106.12 132.86	31.5 33.3	25.4 33.6
		2.74 0.68	6.1	0.032	1.01 0.17	100 2	127.6 66.8	144.289 20.560	106.63 106.69	153.08 131.61	35.0 26.3	40.8 6.5
50		0.68 0.68			0.17 0.17	5 10	83.2 93.9	34.685 45.370	106.69 106.69	222.03 290.43	28.0 29.8	11.7 16.3
50		0.68			0.17 0.17	20 50	104.1 117.4	56.054 70.179	106.69 106.69	358.82 449.24	31.5	21.4 28.2
		0.68			0.17 0.17	100	127.6	80.864	106.69 106.97	517.64 131.96	35.0	34.2
		0.64			0.17	5	66.8 83.2	20.560 34.685	106.97	222.61	26.3 28.0	6.2 11.1
51		0.64 0.64			0.17 0.17	10 20	93.9 104.1	45.370 56.054	106.97 106.97	291.19 359.77	29.8 31.5	15.4 20.1
		0.64 0.64			0.17 0.17	50 100	117.4 127.6	70.179 80.864	106.97 106.97	450.42 519.00	33.3 35.0	26.6 32.3
		0.15 0.15			0.17 0.17	<u>2</u> 5	66.8 83.2	20.560 34.685	113.39 113.39	139.88 235.98	26.3 28.0	1.5 2.8
52		0.15 0.15			0.17 0.17	10 20	93.9 104.1	45.370 56.054	113.39 113.39	308.67 381.37	29.8 31.5	3.8 5.0
		0.15 0.15			0.17 0.17	50 100	117.4 127.6	70.179 80.864	113.39 113.39	477.47 550.16	33.3 35.0	6.6
		0.02			0.17	2	66.8	20.560	121.50	149.88	26.3	0.2
53		0.02 0.02			0.17 0.17	5 10	93.2 93.9	34.685 45.370	121.50 121.50	252.84 330.73	28.0 29.8	0.4
		0.02			0.17 0.17	20 50	104.1 117.4	56.054 70.179	121.50 121.50	408.62 511.59	31.5 33.3	0.7
		0.02 131.10	20.1	0.011	0.17 3.80	100 2	127.6 66.8	80.864 48.631	121.50 91.90	589.48 11.75	35.0 26.3	1.1 112.3
54	Luambala	131.10 131.10	20.1 20.1	0.011 0.011	3.80 3.80	5 10	83.2 93.9	82.039 107.312	91.90 91.90	19.83 25.93	28.0 29.8	202.2 281.0
34	Luailibaia	131.10 131.10	20.1	0.011	3.80 3.80	20 50	104.1 117.4	132.585 165.994	91.90 91.90	32.04 40.11	31.5 33.3	367.5 485.7
		131.10 0.45	20.1	0.011	3.80 0.17	100 2	127.6 66.8	191.266 20.560	91.90 108.58	46.22 133.95	35.0 26.3	589.1 4.4
		0.45 0.45			0.17 0.17 0.17	5 10	83.2 93.9	34.685 45.370	108.58 108.58	225.97 295.58	28.0 29.8	7.9 11.0
55		0.45			0.17	20	104.1	56.054	108.58 108.58 108.58	365.19	31.5	14.4
		0.45 0.45			0.17 0.17	50 100	117.4 127.6	70.179 80.864	108.58	457.21 526.82	33.3 35.0	19.0 23.0
		5.37 5.37	4.0	0.008	1.27 1.27	5	66.8 83.2	38.780 65.421	104.29 104.29	31.87 53.77	26.3 28.0	12.5 22.5
56		5.37 5.37	4.0 4.0	0.008	1.27 1.27	10 20	93.9 104.1	85.574 105.728	104.29 104.29	70.33 86.89	29.8 31.5	31.2 40.8
		5.37 5.37	4.0 4.0	0.008	1.27 1.27	50 100	117.4 127.6	132.369 152.522	104.29 104.29	108.79 125.35	33.3 35.0	54.0 65.4
		0.63 0.63		2.300	0.17 0.17	2	66.8 83.2	20.560 34.685	107.04 107.04	132.05 222.77	26.3 28.0	6.1
57		0.63			0.17	10	93.9	45.370	107.04	291.39	29.8	15.2
		0.63			0.17 0.17	20 50	104.1 117.4	56.054 70.179	107.04 107.04	360.01 450.73	31.5 33.3	19.8 26.2
		0.63 0.17			0.17 0.17	100 2	127.6 66.8	80.864 20.560	107.04 112.86	519.35 139.22	35.0 26.3	31.8 1.7
EO		0.17 0.17	-		0.17 0.17	5 10	83.2 93.9	34.685 45.370	112.86 112.86	234.87 307.22	28.0 29.8	3.1 4.3
58		0.17 0.17			0.17 0.17	20 50	104.1 117.4	56.054 70.179	112.86 112.86	379.58 475.22	31.5 33.3	5.6 7.5
		0.17 0.17 0.19			0.17 0.17 0.17	100	127.6	80.864	112.86 112.38	547.58 138.64	35.0 26.3	9.1 1.9
		0.19			0.17	5	66.8 83.2	20.560 34.685	112.38	233.88	28.0	3.5
59		0.19 0.19			0.17 0.17	10 20	93.9 104.1	45.370 56.054	112.38 112.38	305.93 377.97	29.8 31.5	4.8 6.3
	<u></u>	0.19 0.19		<u> </u>	0.17 0.17	50 100	117.4 127.6	70.179 80.864	112.38 112.38	473.22 545.26	33.3 35.0	8.3 10.1

		Catchment Area	River		(A) Flood	Return	(B) Rainfall	(C)	(D) Area	(E) Average	(F) Combined	(G)
No.	Bridge Name	(A)	Length	Slope	Concentration Time (Tc)	Perido	Intensity (R24)	Point Rainfall	Reduction Factor	Intensity (I _T)	Run-off Coefficient	Peak Flow
		(km²) 0.10	(km)	(m/m)	(h) 0.17	(1/Year)	(mm) 66.8	(mm) 20.560	(ARFT) 115.09	(mm/h) 141.98	(%) 26.3	(m ³ /s) 1.0
		0.10 0.10			0.17 0.17	5 10	83.2 93.9	34.685 45.370	115.09 115.09	239.52 313.30	28.0	1.9
60		0.10 0.10			0.17 0.17 0.17	20 50	104.1 117.4	56.054 70.179	115.09 115.09	387.09 484.62	31.5	3.4 4.5
		0.10			0.17	100	127.6	80.864	115.09	558.41	33.3 35.0	5.4
		0.09			0.17 0.17	5	66.8 83.2	20.560 34.685	115.53 115.53	142.52 240.42	26.3 28.0	0.9
61		0.09			0.17 0.17	10 20	93.9 104.1	45.370 56.054	115.53 115.53	314.49 388.55	29.8 31.5	2.3 3.1
		0.09 0.09			0.17 0.17	50 100	117.4 127.6	70.179 80.864	115.53 115.53	486.46 560.52	33.3 35.0	4.0 4.9
		0.75 0.75			0.17 0.17	5	66.8 83.2	20.560 34.685	106.23 106.23	131.05 221.08	26.3 28.0	7.2 12.9
62		0.75 0.75			0.17 0.17	10 20	93.9 104.1	45.370 56.054	106.23 106.23	289.18 357.29	29.8 31.5	17.9 23.4
		0.75 0.75			0.17 0.17	50 100	117.4 127.6	70.179 80.864	106.23 106.23	447.32 515.42	33.3 35.0	31.0 37.6
		1.22 1.22			0.17 0.17	2 5	66.8 83.2	20.560 34.685	103.92 103.92	128.20 216.27	26.3 28.0	11.4 20.5
63		1.22			0.17 0.17	10 20	93.9 104.1	45.370 56.054	103.92 103.92	282.89 349.51	29.8 31.5	28.5 37.3
		1.22			0.17	50	117.4	70.179	103.92	437.58	33.3	49.3
		1.22 0.21			0.17 0.17	100	127.6 66.8	80.864 20.560	103.92 111.95	504.20 138.10	35.0 26.3	59.8 2.1
64		0.21 0.21			0.17 0.17	5 10	83.2 93.9	34.685 45.370	111.95 111.95	232.98 304.75	28.0 29.8	3.8 5.3
0.		0.21 0.21			0.17 0.17	20 50	104.1 117.4	56.054 70.179	111.95 111.95	376.52 471.40	31.5 33.3	6.9 9.1
		0.21 0.06			0.17 0.17	100	127.6 66.8	80.864 20.560	111.95 117.18	543.17 144.56	35.0 26.3	11.1 0.6
,_		0.06 0.06			0.17 0.17 0.17	5 10	83.2 93.9	34.685 45.370	117.18 117.18 117.18	243.87 318.99	28.0 29.8	1.1
65		0.06			0.17	20	104.1	56.054 70.179	117.18	394.11	31.5	2.1
		0.06 0.06			0.17 0.17	50 100	117.4 127.6	80.864	117.18 117.18	493.42 568.55	33.3 35.0	2.7 3.3
		0.10 0.10			0.17 0.17	5	66.8 83.2	20.560 34.685	115.09 115.09	141.98 239.52	26.3 28.0	1.0 1.9
66		0.10 0.10			0.17 0.17	10 20	93.9 104.1	45.370 56.054	115.09 115.09	313.30 387.09	29.8 31.5	2.6 3.4
		0.10 0.10			0.17 0.17	50 100	117.4 127.6	70.179 80.864	115.09 115.09	484.62 558.41	33.3 35.0	4.5 5.4
		0.13 0.13			0.17 0.17 0.17	2	66.8 83.2	20.560 34.685	114.00 114.00	140.63 237.24	26.3 28.0	1.3
67		0.13			0.17	10	93.9	45.370	114.00	310.32	29.8	3.3
		0.13 0.13			0.17 0.17	20 50	104.1 117.4	56.054 70.179	114.00 114.00	383.40 480.01	31.5 33.3	4.4 5.8
		0.13 0.02			0.17 0.17	100 2	127.6 66.8	80.864 20.560	114.00 121.50	553.09 149.88	35.0 26.3	7.0 0.2
40		0.02 0.02			0.17 0.17	5 10	83.2 93.9	34.685 45.370	121.50 121.50	252.84 330.73	28.0 29.8	0.4
68		0.02 0.02			0.17 0.17	20 50	104.1 117.4	56.054 70.179	121.50 121.50	408.62 511.59	31.5 33.3	0.7
		0.02 0.05			0.17 0.17 0.17	100	127.6	80.864 20.560	121.50 121.50 117.91	589.48	35.0	1.1
		0.05			0.17	5	66.8 83.2	34.685	117.91	145.46 245.39	26.3 28.0	1.0
69		0.05 0.05			0.17 0.17	10 20	93.9 104.1	45.370 56.054	117.91 117.91	320.98 396.58	29.8 31.5	1.3
		0.05 0.05			0.17 0.17	50 100	117.4 127.6	70.179 80.864	117.91 117.91	496.51 572.10	33.3 35.0	2.3
		0.06 0.06			0.17 0.17	2 5	66.8 83.2	20.560 34.685	117.18 117.18	144.56 243.87	26.3 28.0	0.6 1.1
70		0.06			0.17 0.17	10 20	93.9 104.1	45.370 56.054	117.18 117.18	318.99 394.11	29.8 31.5	1.6
		0.06			0.17	50	117.4	70.179 80.864	117.18	493.42	33.3	2.7
		0.06			0.17 0.17	100	127.6 66.8	20.560	117.18 106.76	568.55 131.70	35.0 26.3	3.3 6.4
71		0.67 0.67			0.17 0.17	5 10	83.2 93.9	34.685 45.370	106.76 106.76	222.17 290.61	28.0 29.8	11.6 16.1
, .		0.67 0.67			0.17 0.17	20 50	104.1 117.4	56.054 70.179	106.76 106.76	359.05 449.53	31.5 33.3	21.0 27.8
		0.67			0.17 0.17	100	127.6 66.8	80.864 20.560	106.76 115.53	517.97 142.52	35.0 26.3	33.7
		0.09			0.17 0.17	5 10	83.2 93.9	34.685 45.370	115.53 115.53	240.42 314.49	28.0 29.8	1.7
72		0.09			0.17 0.17	20 50	104.1 117.4	56.054 70.179	115.53 115.53	388.55 486.46	31.5 33.3	3.1 4.0
		0.09			0.17	100	127.6	80.864	115.53	560.52	35.0	4.9
		0.02 0.02			0.17 0.17	2 5	66.8 83.2	20.560 34.685	121.50 121.50	149.88 252.84	26.3 28.0	0.2
73		0.02 0.02			0.17 0.17	10 20	93.9 104.1	45.370 56.054	121.50 121.50	330.73 408.62	29.8 31.5	0.5 0.7
		0.02 0.02			0.17 0.17	50 100	117.4 127.6	70.179 80.864	121.50 121.50	511.59 589.48	33.3 35.0	0.9 1.1
		0.12 0.12			0.17 0.17	2 5	66.8 83.2	20.560 34.685	114.33 114.33	141.04 237.94	26.3 28.0	1.2 2.2
74		0.12 0.12			0.17 0.17	10 20	93.9 104.1	45.370 56.054	114.33 114.33	311.23 384.53	29.8 31.5	3.1
		0.12 0.12 0.12			0.17 0.17 0.17	50 100	117.4 127.6	70.179 80.864	114.33 114.33	481.43 554.72	33.3	5.3
		0.04			0.17	2	66.8	20.560	118.80	146.55	35.0 26.3	0.4
75		0.04			0.17 0.17	5 10	93.9 93.9	34.685 45.370	118.80 118.80	247.24 323.40	28.0 29.8	0.8
		0.04 0.04			0.17 0.17	20 50	104.1 117.4	56.054 70.179	118.80 118.80	399.56 500.24	31.5 33.3	1.4 1.8
		0.04 0.03		·	0.17 0.17	100 2	127.6 66.8	80.864 20.560	118.80 119.93	576.41 147.95	35.0 26.3	2.2 0.3
7.		0.03			0.17 0.17	5 10	83.2 93.9	34.685 45.370	119.93 119.93	249.59 326.47	28.0 29.8	0.6
76		0.03 0.03			0.17 0.17 0.17	20 50	104.1 117.4	56.054 70.179	119.93 119.93	403.36 505.00	31.5	1.1
		0.03			0.17	100	127.6	80.864	119.93	581.89	33.3 35.0	1.7
		0.14 0.14			0.17 0.17	5	66.8 83.2	20.560 34.685	113.68 113.68	140.24 236.59	26.3 28.0	1.4 2.6
77		0.14 0.14			0.17 0.17	10 20	93.9 104.1	45.370 56.054	113.68 113.68	309.47 382.35	29.8 31.5	3.6 4.7
		0.14 0.14			0.17 0.17	50 100	117.4 127.6	70.179 80.864	113.68 113.68	478.70 551.58	33.3 35.0	6.2 7.5
		0.07			0.17	2	66.8	20.560	116.56	143.79	26.3	0.7
78		0.07			0.17 0.17	5 10	83.2 93.9	34.685 45.370	116.56 116.56	242.57 317.29	28.0 29.8	1.3
		0.07 0.07			0.17 0.17	20 50	104.1 117.4	56.054 70.179	116.56 116.56	392.01 490.79	31.5 33.3	2.4 3.2
		0.07 0.17			0.17 0.17	100 2	127.6 66.8	80.864 20.560	116.56 112.86	565.52 139.22	35.0 26.3	3.8 1.7
		0.17 0.17 0.17			0.17 0.17 0.17	5 10	83.2 93.9	34.685 45.370	112.86 112.86	234.87 307.22	28.0 29.8	3.1
79		0.17			0.17	20	104.1	56.054	112.86	379.58	31.5	5.6
		0.17 0.17			0.17 0.17	50 100	117.4 127.6	70.179 80.864	112.86 112.86	475.22 547.58	33.3 35.0	7.5 9.1

	1		D:		(A)		(B)	(C)	(D)	(E)	(F)	(G)
	Bridge	Catchment Area	River	Slope	Flood	Return	Rainfall	Point	Area	Average	Combined	l ⁻
No.	Name	(A)	Length		Concentration Time (Tc)	Perido	Intensity	Rainfall	Reduction Factor	Intensity (I _T)	Run-off	Peak Flov
		(km²)	(km)	(m/m)	(h)	(1/Year)	(R24) (mm)	(mm)	(ARFT)	(I _T) (mm/h)	Coefficient (%)	(m ³ /s)
		0.01	(KIII)	(111/111)	0.17	2	66.8	20.560	124.10	153.10	26.3	0.1
		0.01			0.17	5	83.2	34.685	124.10	258.27	28.0	0.2
80		0.01			0.17	10	93.9	45.370	124.10	337.83	29.8	0.3
00		0.01			0.17	20	104.1	56.054	124.10	417.40	31.5	0.4
		0.01			0.17	50	117.4	70.179	124.10	522.57	33.3	0.5
		0.01			0.17 0.17	100	127.6	80.864	124.10	602.13	35.0	0.6
		0.01			0.17	5	66.8 83.2	20.560 34.685	124.10 124.10	153.10 258.27	26.3 28.0	0.1
		0.01			0.17	10	93.9	45.370	124.10	337.83	29.8	0.3
81		0.01			0.17	20	104.1	56.054	124.10	417.40	31.5	0.4
		0.01			0.17	50	117.4	70.179	124.10	522.57	33.3	0.5
		0.01			0.17	100	127.6	80.864	124.10	602.13	35.0	0.6
		0.05			0.17	2	66.8	20.560	117.91	145.46	26.3	0.5
		0.05 0.05			0.17 0.17	5 10	93.9 93.9	34.685 45.370	117.91 117.91	245.39 320.98	28.0 29.8	1.0
82		0.05			0.17	20	104.1	56.054	117.91	396.58	31.5	1.7
		0.05			0.17	50	117.4	70.179	117.91	496.51	33.3	2.3
		0.05			0.17	100	127.6	80.864	117.91	572.10	35.0	2.8
		0.02			0.17	2	66.8	20.560	121.50	149.88	26.3	0.2
		0.02			0.17	5	83.2	34.685	121.50	252.84	28.0	0.4
83		0.02			0.17	10	93.9	45.370	121.50	330.73	29.8	0.5
		0.02		1	0.17 0.17	20 50	104.1 117.4	56.054 70.179	121.50 121.50	408.62 511.59	31.5 33.3	0.7
	1	0.02			0.17	100	127.6	80.864	121.50	589.48	35.0	1.1
	İ	0.02			0.17	2	66.8	20.560	117.91	145.46	26.3	0.5
		0.05			0.17	5	83.2	34.685	117.91	245.39	28.0	1.0
84	1	0.05			0.17	10	93.9	45.370	117.91	320.98	29.8	1.3
٥.		0.05			0.17	20	104.1	56.054	117.91	396.58	31.5	1.7
	1	0.05		1	0.17	50	117.4	70.179	117.91	496.51	33.3	2.3
	-	0.05 0.10		 	0.17 0.17	100	127.6 66.8	80.864 20.560	117.91 115.09	572.10 141.98	35.0 26.3	2.8 1.0
		0.10			0.17	5	83.2	34.685	115.09	239.52	28.0	1.0
85		0.10			0.17	10	93.9	45.370	115.09	313.30	29.8	2.6
85		0.10			0.17	20	104.1	56.054	115.09	387.09	31.5	3.4
		0.10			0.17	50	117.4	70.179	115.09	484.62	33.3	4.5
		0.10			0.17	100	127.6	80.864	115.09	558.41	35.0	5.4
		0.01			0.17	2	66.8	20.560	124.10	153.10	26.3	0.1
		0.01			0.17	5 10	83.2 93.9	34.685	124.10 124.10	258.27	28.0	0.2
86		0.01 0.01			0.17 0.17	20	104.1	45.370 56.054	124.10	337.83 417.40	29.8 31.5	0.3
		0.01			0.17	50	117.4	70.179	124.10	522.57	33.3	0.5
		0.01			0.17	100	127.6	80.864	124.10	602.13	35.0	0.6
		0.01			0.17	2	66.8	20.560	124.10	153.10	26.3	0.1
		0.01			0.17	5	83.2	34.685	124.10	258.27	28.0	0.2
87		0.01			0.17	10	93.9	45.370	124.10	337.83	29.8	0.3
		0.01 0.01			0.17 0.17	20 50	104.1 117.4	56.054 70.179	124.10 124.10	417.40 522.57	31.5	0.4
		0.01			0.17	100	127.6	80.864	124.10	602.13	33.3 35.0	0.6
		0.03			0.17	2	66.8	20.560	119.93	147.95	26.3	0.3
		0.03			0.17	5	83.2	34.685	119.93	249.59	28.0	0.6
88		0.03			0.17	10	93.9	45.370	119.93	326.47	29.8	0.8
00		0.03			0.17	20	104.1	56.054	119.93	403.36	31.5	1.1
		0.03			0.17	50	117.4	70.179	119.93	505.00	33.3	1.4
		0.03 0.01		1	0.17 0.17	100 2	127.6 66.8	80.864 20.560	119.93 124.10	581.89 153.10	35.0	1.7 0.1
		0.01			0.17	5	83.2	34.685	124.10	258.27	26.3 28.0	0.1
00		0.01			0.17	10	93.9	45.370	124.10	337.83	29.8	0.3
89	1	0.01			0.17	20	104.1	56.054	124.10	417.40	31.5	0.4
	1	0.01			0.17	50	117.4	70.179	124.10	522.57	33.3	0.5
		0.01			0.17	100	127.6	80.864	124.10	602.13	35.0	0.6
	1	0.02			0.17	2 5	66.8	20.560	121.50	149.88	26.3	0.2
		0.02		1	0.17 0.17	10	93.9 93.9	34.685 45.370	121.50 121.50	252.84 330.73	28.0 29.8	0.4
90	1	0.02			0.17	20	104.1	56.054	121.50	408.62	31.5	0.5
		0.02			0.17	50	117.4	70.179	121.50	511.59	33.3	0.9
		0.02			0.17	100	127.6	80.864	121.50	589.48	35.0	1.1
		0.02			0.17	2	66.8	20.560	121.50	149.88	26.3	0.2
	1	0.02			0.17	5	83.2	34.685	121.50	252.84	28.0	0.4
91	1	0.02		1	0.17	10	93.9	45.370	121.50	330.73	29.8	0.5
	1	0.02 0.02		l	0.17 0.17	20 50	104.1 117.4	56.054 70.179	121.50 121.50	408.62 511.59	31.5 33.3	0.7
	1	0.02			0.17	100	117.4	80.864	121.50	589.48	35.0	1.1
		0.04			0.17	2	66.8	20.560	118.80	146.55	26.3	0.4
	1	0.04			0.17	5	83.2	34.685	118.80	247.24	28.0	0.8
92	1	0.04	-		0.17	10	93.9	45.370	118.80	323.40	29.8	1.1
	1	0.04			0.17	20	104.1	56.054	118.80	399.56	31.5	1.4
		0.04			0.17	50	117.4	70.179	118.80	500.24	33.3	1.8
		0.04		-	0.17	100	127.6	80.864	118.80	576.41	35.0	2.2
	1	0.05 0.05		 	0.17 0.17	2 5	66.8 83.2	20.560 34.685	117.91 117.91	145.46 245.39	26.3	0.5 1.0
		0.05			0.17	10	93.9	45.370	117.91	320.98	28.0 29.8	1.0
93		0.05		l	0.17	20	104.1	56.054	117.91	396.58	31.5	1.7
	1	0.05			0.17	50	117.4	70.179	117.91	496.51	33.3	2.3
		0.05			0.17	100	127.6	80.864	117.91	572.10	35.0	2.8
		0.08			0.17	2	66.8	20.560	116.01	143.11	26.3	0.8
	1	0.08			0.17	5	83.2	34.685	116.01	241.43	28.0	1.5
94	1	0.08			0.17	10	93.9	45.370	116.01	315.81	29.8	2.1
	1	0.08			0.17	20	104.1	56.054	116.01	390.18	31.5	2.7
	1	0.08		 	0.17 0.17	50 100	117.4 127.6	70.179 80.864	116.01 116.01	488.50 562.87	33.3	3.6 4.4
	1	0.00		I	0.17	100	12/.0	00.004	110.01	JUZ.0/	35.0	4.4

Appendix-G Drainage Schedule

INGM D	rainage Sch	leadle for ivi							Drair	nage (Plan)				
No.	Sta.	Bridge Name	Discharge	Existing Capacity	Concrete	В	ox	Cell						Plan	0
NO.	Sta.	Blidge Name	Volume (m3/s)	Capacity (m3/s)	Pipe (Φ:m)	H (m)	W (m)	Number	rad	Α	R	n	i	(m3/	
1	0+701		8.9	2.82		1.5	1.5	1		2.25	0.50	0.02	0.01	9.45	9.45
3	1+194 1+982	Ngame- I	6.7	0.70	1.2			2	2.21	0.97	0.37	0.013	0.01	7.62	7.62
4	3+977			3.20		1.5	1.5	1		2.25	0.50	0.02	0.01	9.45	
5 6	4+493 4+702		15.2	3.20 0.70	0.8	1.5	1.5	1	2.21	2.25 0.43	0.50 0.24	0.02	0.01	9.45 1.29	20.19
7	5+442		9.6	0.70	1.0	4.5	4.5	1	2.21	0.67	0.30	0.013	0.01	2.34	11.79
8 9	5+830 6+382		27.4	3.20 3.20		1.5 2.0	1.5 2.0	1		2.25 4.00	0.50 0.67	0.02	0.01	9.45 20.35	29.80
10 11	6+955 7+479	Nacalongo	48.0	3.20		1.5 5.0	1.5 5.0	1		2.25 25.00	0.50 1.67	0.02	0.01	9.45 234.29	23.00
12	8+61	Namiungu				5.0	5.0								
13 14	11+536 12+510		1.1	3.20 3.20	1.2	1.5	1.5	1 1	2.21	0.97 2.25	0.37	0.013	0.01	3.81 9.45	3.81
15	12+803		19.7	0.70		1.5	1.5	1		2.25	0.50	0.02	0.01	9.45	18.90
16 17	13+377 14+899		3.8 56.0	0.70 16.54	1.2	2.0	2.0	3	2.21	0.97 4.00	0.37 0.67	0.013	0.01	3.81 61.05	3.81 61.05
18 19	15+764 16+27		14.7	0.70 0.70	1.2			2 2	2.21	0.97 0.97	0.37	0.013 0.013	0.01	7.62 7.62	15.24
20	18+507	Luchimua			1.2				2.21						
21 22	19+168 20+843		50.8	10.39 0.70	1.2	2.0	2.0	3 2	2.21	4.00 0.97	0.67	0.02	0.01	61.05 7.62	61.05
23	21+228		15.9	0.70	1.2			1	2.21	0.97	0.37	0.013	0.01	3.81	19.05
24 25	21+461 22+623		144.8	0.70 8.06	1.2	3.0	3.0	3	2.21	0.97 9.00	0.37 1.00	0.013	0.01	7.62 180.00	223.04
26 27	23+397 24+539		38.5 1.30	8.06 0.70	1.0	2.0	2.0	2	2.21	4.00 0.67	0.67 0.30	0.02	0.01	40.70 2.34	43.04 2.34
28	26+400	Lilasi	1.30												2.34
29 30	26+793 27+57			0.70 0.70	1.2 1.2			1 2	2.21	0.97 0.97	0.37	0.013	0.01	3.81 7.62	1
31	27+374		29.6	0.70	1.2			2	2.21	0.97	0.37	0.013	0.01	7.62	30.49
32 33	27+655 27+960			0.70 8.06	1.2			1	2.21	0.97 0.97	0.37 0.37	0.013 0.013	0.01	7.62 3.81	L
34 35	28+502 30+609	Ninde	13.3	0.70		1.5	1.5	1		2.25	0.50	0.02	0.01	9.45	26.52
36	32+368			0.70	1.2			2	2.21	0.97	0.37	0.013	0.01	7.62	
37 38	33+759 34+201		24.0	2.06 2.06		1.5 1.5	1.5 1.5	1		2.25	0.50	0.02	0.01	9.45 9.45	26.52
39	35+738	Luelele													
40 41	38+903 40+537		2.1 0.3	0.70 0.70	1.0 0.8			1	2.21	0.67 0.43	0.30 0.24	0.013	0.01	2.34 1.29	2.34 1.29
42 43	43+392 44+244		1.3 33.5	0.70 1.64	1.0	2.0	2.0	1 2	2.21	0.67 4.00	0.30 0.67	0.013 0.02	0.01	2.34 40.70	2.34 40.70
44	46+809		4.8	0.70	1.2	2.0	2.0	1	2.21	0.97	0.37	0.013	0.01	3.81	7.62
45 46	47+400 47+727		2.1	0.70 0.49	1.2			1	2.21	0.97 0.67	0.37	0.013	0.01	3.81 2.34	2.34
47	48+249		0.5	2.09	1.0			1	2.21	0.67	0.30	0.013	0.01	2.34	2.34
48 49	49+809 50+477		5.8	0.70 0.70	1.2			1	2.21	0.97 0.97	0.37	0.013	0.01	3.81 3.81	7.62
50 51	52+367 60+787	Mmaculumesi		0.70	1.2			2	2.21	0.97	0.37	0.013	0.01	7.62	
52	61+100		13.8	0.70	1.2			1	2.21	0.97	0.37	0.013	0.01	3.81	15.24
53 54	61+826 62+409		36.4	0.70 3.74	1.2	2.0	2.0	1 2	2.21	0.97 4.00	0.37 0.67	0.013	0.01	3.81 40.70	48.32
55	63+19			0.70	1.2			2	2.21	0.97	0.37 0.37	0.013	0.01	7.62	
56 57	63+293 63+752		26.7	0.70	1.2			3	2.21	0.97 0.97	0.37	0.013			20.40
58 59	65+34			0.70	1.2			3	2.21		0.37	0.013	0.01	11.43 11.43	30.49
60			21.1	0.70	1.2			3	2.21	0.97	0.37 0.37	0.013 0.013	0.01 0.01	11.43 11.43	30.49
61	65+683 67+89		21.1 3.3	0.70 0.70 0.70	1.2 1.2 1.2			3 3 1	2.21 2.21 2.21	0.97 0.97 0.97	0.37 0.37 0.37 0.37	0.013 0.013 0.013 0.013	0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81	
62	65+683			0.70 0.70	1.2 1.2			3	2.21 2.21	0.97 0.97	0.37 0.37 0.37	0.013 0.013 0.013	0.01 0.01 0.01	11.43 11.43 11.43	22.87
62 63	65+683 67+89 69+41 69+460 70+671	Lutembue	3.3	0.70 0.70 0.70 0.70	1.2 1.2 1.2 1.2			3 3 1	2.21 2.21 2.21	0.97 0.97 0.97 0.97	0.37 0.37 0.37 0.37 0.37	0.013 0.013 0.013 0.013 0.013	0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 3.81	22.87
62 63 64 65	65+683 67+89 69+41 69+460 70+671 74+26 76+41	Lutembue	3.3 4.8 0.5	0.70 0.70 0.70 0.70 0.70 0.70 2.59	1.2 1.2 1.2 1.2 1.0 1.2			3 3 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.67 0.97	0.37 0.37 0.37 0.37 0.37 0.30 0.37	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 3.81 2.34 3.81	22.87 3.81 6.15
62 63 64 65 65	65+683 67+89 69+41 69+460 70+671 74+26 76+41	Lutembue	3.3 4.8 0.5 2.8 1.1	0.70 0.70 0.70 0.70 0.70 0.70 2.59	1.2 1.2 1.2 1.2 1.0 1.2 1.2 0.8			3 3 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.67 0.97	0.37 0.37 0.37 0.37 0.37 0.30 0.37	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 3.81 2.34 3.81 3.81 1.29	22.87 3.81 6.15 3.81 1.29
62 63 64 65 65 66 67	65+683 67+89 69+41 69+460 70+671 74+26 76+41 - 77+469 77+841		3.3 4.8 0.5 2.8 1.1 0.8 0.3	0.70 0.70 0.70 0.70 0.70 0.70 2.59	1.2 1.2 1.2 1.2 1.0 1.2			3 3 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.67 0.97 0.97 0.43 0.43	0.37 0.37 0.37 0.37 0.37 0.30 0.37 0.37	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 3.81 2.34 3.81 1.29 1.29 2.34	22.87 3.81 6.15 3.81 1.29 1.29 2.34
62 63 64 65 65 66 67 68 69	65+683 67+89 69+41 69+460 70+671 74+26 76+41 - 77+469 77+841 78+535 80+869	Lutembue	3.3 4.8 0.5 2.8 1.1 0.8	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.00 0.70 0.00 0.70 2.31	1.2 1.2 1.2 1.2 1.0 1.2 1.2 0.8 0.8 1.0	4.0	4.0	3 3 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.67 0.97 0.97 0.43 0.43 0.67 16.00	0.37 0.37 0.37 0.37 0.37 0.30 0.37 0.24 0.24 0.24 0.30 1.33 0.30	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 3.81 2.34 3.81 1.29 1.29 2.34 258.43 2.34	22.87 3.81 6.15 3.81 1.29 1.29
62 63 64 65 65 66 67 68 69 70	65+683 67+89 69+41 69+460 70+671 74+26 76+41 - 77+469 77+841 78+535 80+869 81+119		3.3 4.8 0.5 2.8 1.1 0.8 0.3	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.00 0.70 0.70 1.27 1.27	1.2 1.2 1.2 1.0 1.2 1.2 0.8 0.8 1.0	4.0	4.0	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.67 0.97 0.43 0.43 0.43 0.67 16.00 0.67	0.37 0.37 0.37 0.37 0.37 0.30 0.37 0.37 0.24 0.24 0.24 0.30 0.30 0.30	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 2.34 3.81 1.29 1.29 2.34 258.43 2.34 2.34	22.87 3.81 6.15 3.81 1.29 1.29 2.34
62 63 64 65 65 66 67 68 69 70 71	65+683 67+89 69+41 69+460 70+671 74+26 76+41 77+841 78+535 80+869 81+119 81+418		3.3 4.8 0.5 2.8 1.1 0.8 0.3	0.70 0.70 0.70 0.70 0.70 0.70 2.59 0.70 0.00 0.70 2.31 1.27 1.27 1.27 3.81	1.2 1.2 1.2 1.2 1.0 1.2 1.2 0.8 0.8 1.0 1.0 1.0	4.0	4.0	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.67 0.97 0.43 0.43 0.67 16.00 0.67 0.67 0.67	0.37 0.37 0.37 0.37 0.37 0.30 0.37 0.37 0.24 0.24 0.30 1.33 0.30 0.30 0.30 0.30	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 3.81 2.34 3.81 1.29 1.29 2.34 258.43 2.34 2.34 2.34 2.34 2.34	22.87 3.81 6.15 3.81 1.29 1.29 2.34
62 63 64 65 65 66 67 68 69 70	65+683 67+89 69+41 69+460 70+671 74+26 76+41 - - 77+469 77+841 78+535 80+869 81+119 81+418		3.3 4.8 0.5 2.8 1.1 0.8 0.3	0.70 0.70 0.70 0.70 0.70 0.70 2.59 0.70 0.00 0.70 2.31 1.27 1.27	1.2 1.2 1.2 1.2 1.0 1.2 1.2 0.8 0.8 1.0	4.0	4.0	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.67 0.97 0.43 0.43 0.67 16.00 0.67 0.67	0.37 0.37 0.37 0.37 0.30 0.37 0.30 0.37 0.24 0.24 0.30 1.33 0.30 0.30 0.30	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 2.34 3.81 1.29 1.29 1.29 2.34 258.43 2.34 2.34 2.34	22.87 3.81 6.15 3.81 1.29 1.29 2.34
62 63 64 65 65 66 67 68 69 70 71 72 73 74	65+683 67+89 69+41 69+460 70+671 74+26 76+41 		3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.00 0.70 0.00 0.70 2.31 1.27 1.27 1.27 1.27 1.27 0.70 0.70	1.2 1.2 1.2 1.2 1.0 1.2 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	4.0	4.0	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.67 0.97 0.43 0.43 0.67 16.00 0.67 0.67 0.97 0.43 0.43	0.37 0.37 0.37 0.37 0.37 0.30 0.37 0.24 0.24 0.30 1.33 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.37	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 3.81 2.34 3.81 1.29 1.29 2.34 258.43 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2	22.87 3.81 6.15 3.81 1.29 1.29 2.34 258.43
62 63 64 65 65 66 67 68 69 70 71 72 73 74 75 76	65+683 67+89 69+441 69+460 70+671 74+26 76+41 - - 77+469 77+841 78+535 80+869 81+119 81+46 81+648 81+813 82+4 82+120 82+120		3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	1.2 1.2 1.2 1.2 1.0 1.2 1.0 1.2 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	4.0	4.0	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.67 0.97 0.43 0.43 0.67 16.00 0.67 0.67 0.67 0.43 0.43 0.43 0.43	0.37 0.37 0.37 0.37 0.39 0.30 0.37 0.24 0.24 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.37 0.24 0.24 0.24 0.24 0.24 0.24 0.30	0.013 0.013	0.01 0.01	11.43 11.43 11.43 3.81 2.34 3.81 1.29 1.29 2.34 2.54 2.54 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.3	22.87 3.81 6.15 3.81 1.29 1.29 2.34 258.43
62 63 64 65 65 66 67 70 71 72 73 74 75 76	65+683 67+89 69+41 69+460 70+671 74+26 76+41 77+469 77+841 78+535 80+869 81+119 81+418 81+648 81+648 81+648 81+648 82+120 82+196		3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.00 0.70 0.00 0.70 2.31 1.27 1.27 1.27 1.27 0.70	1.2 1.2 1.2 1.2 1.0 1.0 1.2 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	4.0	4.0	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	0.37 0.37 0.37 0.37 0.37 0.30 0.30 0.37 0.24 0.24 0.30	0.013 0.014 0.015 0.	0.01 0.01	11.43 11.43 11.43 3.81 3.81 2.34 3.81 1.29 2.34 258.43 2.34 2.34 2.34 1.29 1.29 1.29 1.29 1.29	22.87 3.81 6.15 3.81 1.29 1.29 2.34 258.43
62 63 64 65 65 66 67 68 69 70 71 72 73 74 75 76 77 78	65+683 67+89 69+41 69+460 70+671 74+26 76+41 77+841 78+535 80+869 81+119 81+46 81+648 81+813 82+4 82+120 82+196 82+477 83+649 834954		3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.00 0.70 0.31 1.27	1.2 1.2 1.2 1.2 1.0 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	4.0	4.0	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.43 0.43 0.67 16.00 0.67 0.67 0.97 0.43 0.43 0.43 0.67 0.67 0.97	0.37 0.37 0.37 0.37 0.37 0.30 0.37 0.24 0.24 0.24 0.30	0.013 0.014 0.015 0.	0.01 0.01	11.43 11.43 11.43 3.81 2.34 3.81 1.29 1.29 2.34 258.43 2.34 2.34 2.34 11.43 1.29 1.29 1.29 1.29 1.29 1.29	22.87 3.81 6.15 3.81 1.29 1.29 2.34 258.43
62 63 64 65 65 66 67 68 69 70 71 72 73 74 75 76 77 77 78 80 81 82	65+683 67+89 69+41 69+460 70+671 74+26 76+41 - 77+469 77+841 78+535 80+869 81+119 81+418 81+648 81+813 82+4 82+120 82+196 82+477 83+649		3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	1.2 1.2 1.2 1.2 1.0 1.2 1.0 1.2 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.2 0.8 0.8 0.8 1.0 1.2 1.2 1.2 1.0 1.2 1.2 1.0 1.2 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	4.0	4.0	3 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.43 0.43 0.67 0.67 0.67 0.67 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.67 0.97	0.37 0.37 0.37 0.37 0.30 0.37 0.30 0.37 0.24 0.30	0.013 0.014 0.015 0.	0.01 0.01	11.43 11.43 11.43 3.81 2.34 3.81 1.29 1.29 2.34 2.34 2.34 2.34 11.43 1.29 1.29 1.29 1.29 1.29	22.87 3.81 6.15 3.81 1.29 1.29 2.34 258.43
62 63 64 65 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83	65+683 67+89 69+41 69+460 70+671 74+26 76+41 77+841 78+535 80+869 81+119 81+48 81+648 81+648 81+813 82+4 82+120 82+120 82+196 83+954 83+954 84+896 85+262 85+508	Lusanga	3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4 16.3	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.00 0.70 0.00 0.70 2.31 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 0.70	1.2 1.2 1.2 1.2 1.0 1.2 1.0 1.2 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0	4.0	4.0	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.97 0.67 0.97 0.43 0.43 0.67 16.00 0.67 0.67 0.43 0.43 0.43 0.43 0.43 0.67 0.67	0.37 0.37 0.37 0.37 0.37 0.30 0.37 0.24 0.24 0.30	0.013 0.014 0.015 0.	0.01 0.01	11.43 11.43 11.43 3.81 3.81 2.34 3.81 1.29 1.29 2.34 258.43 2.34 2.34 11.43 1.29 1.29 1.29 1.29 1.29	22.87 3.81 6.15 3.81 1.29 2.34 258.43 37.41
62 63 64 65 65 66 67 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85	65+683 67+89 69+41 69+460 70+671 74+26 77+469 77+841 78+535 80+869 81+119 81+46 81+648 81+648 81+813 82+4 82+120 82+196 82+477 83+649 83+954 84+896 85+202 85+508 85+928 87+818		3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4 16.3	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	1.2 1.2 1.2 1.2 1.2 1.0 1.2 0.8 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	4.0	4.0	3 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.43 0.43 0.67 16.00 0.67 0.67 0.67 0.97 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.67 0.97	0.37 0.37 0.37 0.37 0.37 0.30 0.37 0.30 0.37 0.24 0.24 0.30	0.013 0.	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 2.34 3.81 1.29 1.29 2.34 2.58,43 2.34 2.34 2.34 11.43 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29	22.87 3.81 6.15 3.81 1.29 2.34 258.43 37.41 4.93
62 63 64 65 65 66 67 70 71 72 73 74 75 76 77 78 80 81 82 83 84	65+683 67+89 69+41 69+460 70+671 74+26 76+41 	Lusanga	3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4 16.3 15.4 3.8	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	1.2 1.2 1.2 1.2 1.0 1.2 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2 0.8 0.8 0.8 0.8 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0	4.0	4.0	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.97 0.97 0.67 0.67 0.67 16.00 0.67 0.67 0.67 0.43 0.43 0.43 0.43 0.43 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.43 0.43 0.43 0.43 0.67	0.37 0.37 0.37 0.37 0.37 0.30 0.37 0.24 0.30 1.33 0.30	0.013 0.	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 3.81 2.34 3.81 1.29 2.34 258.43 2.34 2.34 2.34 11.43 1.29 1.29 1.29 11.43 1.29 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34	22.87 3.81 6.15 3.81 1.29 2.34 258.43 37.41 16.12 4.93
62 63 64 65 65 66 67 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88	65+683 67+89 69+41 69+460 70-671 74+26 77+469 77+841 78+535 80+869 81+119 81+46 81+68 81+813 82+4 82+120 82+196 82+477 83+649 83+954 84+896 85+508 85+508 85+928 87+818 89+357 90+794 92+126	Lusanga	3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4 16.3 15.4 3.8 0.5 11.0 40.8	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	1.2 1.2 1.2 1.2 1.0 1.2 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.0	3.0	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.97 0.97 0.43 0.43 0.67 16.00 0.67 0.67 0.67 0.43 0.67 0.67 0.67 0.67 0.67 0.43 0.67	0.37 0.37 0.37 0.37 0.37 0.30 0.37 0.24 0.24 0.30	0.013 0.013	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 2.34 3.81 1.29 1.29 2.34 2.58 2.34 2.34 2.34 2.34 11.43 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29	22.87 3.81 6.15 3.81 1.29 2.34 258.43 37.41 16.12 4.93 2.34 11.43 62.34
62 63 64 65 65 66 67 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89	65+683 67+89 69+41 69+460 70+671 74+26 76+41 - 77+469 77+841 78+535 80+869 81+119 81+418 81+46 81+648 81+813 82+4 82+120 82+196 82+477 83+649 83+954 84+896 85+262 85+508 85+928 87+818 89+357 90+794	Lusanga	3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4 16.3 15.4 3.8 0.5 11.0 40.8 15.2 4.3	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	1.2 1.2 1.2 1.2 1.0 1.2 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.97 0.97 0.67 0.97 0.43 0.43 0.67 0.67 0.67 0.67 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.67 0.97 0.43 0.43 0.43 0.67 0.97	0.37 0.37 0.37 0.37 0.30 0.37 0.30 0.37 0.24 0.24 0.30 0.24 0.30 0.24 0.30 0.24 0.30 0.24 0.30	0.013 0.	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 2.34 3.81 1.29 1.29 2.34 2.34 2.34 2.34 11.43 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29	22.87 3.81 6.15 3.81 1.29 2.34 258.43 37.41 16.12 4.93
62 63 64 65 65 66 67 70 71 72 73 74 75 76 77 78 80 81 81 82 83 84 85 86 87 89 90 90 91	65+683 67+89 69+41 69+460 70+671 74+26 77+469 77+841 78+535 80+869 81+119 81+46 81+648 81+813 82+4 82+120 82+196 82+477 83+649 83+954 84+896 85+928 87+818 89+357 99+794 92+126 93+69	Lusanga	3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4 16.3 15.4 3.8 0.5 11.0 40.8 40.8 40.8	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	1.2 1.2 1.2 1.2 1.2 1.0 1.2 1.0 1.2 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.0	3.0	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.97 0.97 0.67 0.97 0.43 0.43 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.97 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.67	0.37 0.37 0.37 0.37 0.37 0.30 0.37 0.24 0.24 0.30 0.24 0.30	0.013 0.013	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 2.34 3.81 1.29 1.29 2.34 2.34 2.34 2.34 2.34 11.43 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29	22.87 3.81 6.15 3.81 1.29 2.34 258.43 37.41 4.93 2.34 11.43 62.34 18.90 4.69 7.62
62 63 64 65 65 66 67 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92 93	65+683 67+89 69+41 69+460 70+671 74+26 76+41 	Lusanga	3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4 16.3 15.4 3.8 0.5 11.0 40.8 15.2 4.3	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	1.2 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.0	3.0	3 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.97 0.67 0.97 0.43 0.67 16.00 0.67 0.67 0.67 0.67 0.97 0.43 0.43 0.67 0.67 0.97 0.43 0.43 0.67 0.97 0.43 0.43 0.67 0.97 0.43 0.67 0.97 0.43 0.67 0.97 0.43 0.97 0.43 0.97 0.97 0.43 0.97 0.97 0.43 0.97	0.37 0.37 0.37 0.37 0.30 0.37 0.30 0.37 0.24 0.24 0.30 0.24 0.30 0.30 0.24 0.30	0.013 0.013	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 2.34 3.81 1.29 1.29 2.34 2.34 2.34 2.34 11.43 1.29 1.29 1.29 1.29 1.29 1.29 2.34 11.43 1.29 2.34 11.43 1.29 2.34 1.29 2.34 1.29 2.34 1.29 2.34 1.29 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34	22.87 3.81 6.15 3.81 1.29 2.34 258.43 37.41 4.93 2.34 11.43 62.34 18.90 4.69
62 63 64 65 65 66 67 70 71 72 73 74 75 80 81 82 83 84 85 86 87 88 89 90 91	65+683 67+89 69+41 69+460 70+671 74+26 76+41 	Lusanga	3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4 16.3 15.4 3.8 0.5 11.0 40.8 15.2 4.3 4.8 2.6	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.2 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.0	3.0	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.97 0.97 0.67 0.67 16.00 0.67 0.67 0.67 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.67 0.97 0.67 0.97 0.67 0.97 0.67 0.67 0.97 0.97 0.67 0.97 0.67 0.97	0.37 0.37 0.37 0.39 0.37 0.30 0.37 0.30 0.37 0.24 0.24 0.30	0.013 0.013	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 2.34 3.81 2.34 2.34 2.34 2.34 2.34 2.34 11.43 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29	22.87 3.81 6.15 3.81 1.29 1.29 2.34 258.43 37.41 4.93 4.93 4.62 4.69 7.62 3.81
62 63 64 65 65 66 67 70 72 73 74 75 76 77 78 80 81 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	65+683 67+89 69+41 69+460 70+671 74+26 76+41 	Lusanga	3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4 16.3 15.4 3.8 0.5 11.0 40.8 15.2 4.3 4.8 2.6 2.3	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	1.2 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.0 1.5	3.0 1.5	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.97 0.97 0.43 0.43 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.67 0.97 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.97 0.67 0.97 0.67 0.97 0.67 0.97 0.67 0.97 0.67 0.97 0.67 0.97 0.67 0.97	0.37 0.37 0.37 0.37 0.37 0.30 0.37 0.24 0.24 0.30 0.24 0.24 0.30	0.013 0.013	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 2.34 3.81 1.29 2.34 2.58 2.34 2.34 2.34 2.34 2.34 2.34 11.43 1.29 1.29 1.49 1.29 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.4	22.87 3.81 6.15 3.81 1.29 2.34 258.43 37.41 16.12 4.93 2.34 11.43 62.34 11.890 4.69 7.62 3.81 2.34
62 63 64 65 65 66 67 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	65+683 67+89 69+41 69+460 70+671 74+26 76+41 	Lusanga	3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4 16.3 15.4 3.8 0.5 11.0 40.8 15.2 4.3 4.8 2.6 2.3 17.9 28.5	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	1.2 1.2 1.2 1.2 1.2 1.0 1.2 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.0	3.0	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.97 0.97 0.67 0.67 16.00 0.67 0.97 0.67	0.37 0.37 0.37 0.37 0.30 0.37 0.30 0.37 0.24 0.30	0.013 0.013	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 2.34 3.81 2.34 3.81 1.29 1.29 2.34 2.34 2.34 2.34 11.43 1.29 1.29 1.29 1.29 1.29 1.29 2.34 11.43 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29	22.87 3.81 6.15 3.81 1.29 2.34 258.43 37.41 16.12 4.93 2.34 11.43 62.34 18.90 7.62 3.81 4.99
62 63 64 65 65 66 67 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 89 90 91 92 93 94 95 99	65+683 67+89 69+41 69+460 70+671 74+26 76+41 - 77+469 77+841 78+535 80+869 81+119 81+46 81+68 81+813 82+4 82+120 82+196 82+477 83+649 83+954 84+896 85+508 85+928 87+818 89+357 90-794 92+126 93+69 - 93+69 - 93-687 - 103+82 101+90 102+147 102+357 102+718	Lusanga	3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4 16.3 15.4 3.8 0.5 11.0 40.8 15.2 4.3 4.8 2.6 2.3 17.9	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	1.2 1.2 1.2 1.2 1.2 1.0 1.2 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.0 1.5	3.0 1.5	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.97 0.97 0.43 0.43 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.97 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.67 0.97 0.67 0.97 0.67 0.97 0.67 0.97 0.67 0.97 0.97 0.67 0.97	0.37 0.37 0.37 0.37 0.39 0.30 0.37 0.24 0.24 0.30 0.24 0.24 0.30	0.013 0.013	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 11.43 3.81 2.34 3.81 1.29 1.29 2.34 2.34 2.34 2.34 2.34 11.43 1.29 1.29 1.29 1.29 1.43 1.29 1.29 1.29 1.43 1.29 1.29 1.43 2.34 1.43 2.34 1.43 2.34 3.81 1.89 0.00 18.90 7.62 3.81 1.89 1.29 40.70 2.34 3.81 18.90 1.29 40.70	22.87 3.81 6.15 3.81 1.29 2.34 258.43 37.41 16.12 4.93 2.34 11.43 62.34 18.90 4.69 7.62 3.81 2.34 22.71
62 63 64 65 65 66 67 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 97 98 99 99 100	65+683 67+89 69+41 69+460 70+671 74+26 76+41 - 77+469 77+841 78+535 80+869 81+119 81+418 81+46 81+813 82+4 82+120 82+196 82+477 83+649 83+954 84+896 85+262 85+508 85+928 87+818 89+357 90+794 92+126 93+69 - - - 103+82 101+90 102+147 102+357 102+718 103+156 104+59	Lusanga	3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4 16.3 15.4 3.8 0.5 11.0 40.8 15.2 4.3 4.8 2.6 2.3 17.9 28.5 5.3	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	1.2 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.0 1.5	3.0 1.5	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.97 0.43 0.43 0.67 16.00 0.67 0.67 0.67 0.67 0.67 0.67 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.97 0.43 0.43 0.67 0.67 0.97 0.43 0.67 0.67 0.97 0.67 0.67 0.97	0.37 0.37 0.37 0.37 0.30 0.37 0.30 0.37 0.24 0.24 0.30	0.013 0.013	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 3.81 2.34 3.81 1.29 1.29 2.34 2.34 2.34 2.34 11.43 1.29 1.29 1.29 1.29 2.34 11.43 1.29 1.29 2.34 11.43 1.29 2.34 11.43 1.29 2.34 11.43 2.34 1.29 1.29 1.29 1.29 1.29 1.39 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.2	22.87 3.81 6.15 3.81 1.29 2.34 258.43 37.41 16.12 4.93 2.34 11.43 62.34 18.90 7.62 3.81 22.71 41.99 7.03
62 63 64 65 65 66 67 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 89 90 91 92 93 94 95 96 97	65+683 67+89 69+41 69+460 70+671 74+26 76+41 	Lusanga	3.3 4.8 0.5 2.8 1.1 0.8 0.3 25.4 16.3 15.4 3.8 0.5 11.0 40.8 15.2 4.3 4.3 4.8 2.6 2.3 17.9 28.5	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.2 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.0 1.5	3.0 1.5	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21	0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.43 0.43 0.67 0.67 0.67 0.67 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.67 0.97 0.43 0.43 0.67 0.97	0.37 0.37 0.37 0.39 0.37 0.39 0.39 0.39 0.30	0.013 0.013	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	11.43 11.43 11.43 3.81 3.81 2.34 3.81 1.29 1.29 2.34 2.34 2.34 2.34 11.43 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29	22.87 3.81 6.15 3.81 1.29 2.34 258.43 37.41 16.12 4.93 2.34 11.43 62.34 11.43 62.34 18.90 4.69 7.62 3.81 2.37 41.99 7.03

New Drainage Schedule for Mandimba-Lichinga Road

				Existing					Drair	nage (Plan)				
No.	Sta.	Bridge Name	Discharge	Capacity	Concrete	В	iox	Cell						Plan	0
140.	Old.	Bridge Hame	Volume (m3/s)	Capacity (m3/s)	Pipe (Φ:m)	H (m)	W (m)	Number	rad	A	R	n	i	(m3/	
105	106+976	1	0.5	2.31	1.0			1	2.21	0.67	0.30	0.013	0.01	2.34	2.34
106	107+506		1.3	0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	5.1
107	109+671		1.3	2.87	1.2			1	2.21	0.97	0.37	0.013	0.01	3.81	5.1
108	110+54		1.6	0.70	1.2			1	2.21	0.97	0.37	0.013	0.01	3.81	3.8
109	114+148			0.70	1.0			2	2.21	0.67	0.30	0.013	0.01	4.69	
110	114+874			2.06	1.2			1	2.21	0.97	0.37	0.013	0.01	3.81	1
111	115+547		16.1	0.70	1.0			1	2.21	0.67	0.30	0.013	0.01	2.34	18.4
112	115+902			2.06	1.2			1	2.21	0.97	0.37	0.013	0.01	3.81	
113	116+361			2.06	1.2			1	2.21	0.97	0.37	0.013	0.01	3.81	
114	118+132		2.3	0.70	1.0			1	2.21	0.67	0.30	0.013	0.01	2.34	2.3
115	119+787		0.5	2.31	1.0			1	2.21	0.67	0.30	0.013	0.01	2.34	2.3
116	120+352			0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	
117	120+899		3.1	0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	4.9
118	121+255			2.04	1.0			1	2.21	0.67	0.30	0.013	0.01	2.34	
119	122+459		1.1	0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	1.2
120	122+955		0.8	0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	1.2
121	123+940		3.6	0.70	1.2			1	2.21	0.97	0.37	0.013	0.01	3.81	3.8
122	124+610			0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	-
123	124+892		1.8	0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	3.8
124	125+159			0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	1
125	125+675			0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	
126	125+956		4.3	0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	12.
127	126+250			2.78	0.0	1.5	1.5	1		2.25	0.50	0.02	0.01	9.45	1
128	127+203		0.3	0.70	0.8	1.0	1.0	1	2.21	0.43	0.24	0.013	0.01	1.29	1.2
129	132+803		0.3	0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	1.2
130	133+748		1.3	0.70	1.0			1	2.21	0.67	0.30	0.013	0.01	2.34	2.3
131	134+626		0.5	0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	1.2
132	136+605	1	1.3	0.70	1.0			1	2.21	0.67	0.30	0.013	0.01	2.34	2.3
133	137+202	1	2.6	0.70	1.2			1	2.21	0.97	0.37	0.013	0.01	3.81	3.8
134	139+12		0.3	0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	1.2
135	139+195	1	0.3	0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	1.2
136	140+53	1	0.8	0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	1.2
137	141+480		0.3	0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	1.2
138	143+612	† †	0.5	0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	1.2
139	145+585	1		0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	
140	145+724	 	0.5	0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	2.5
141	146+634	 	1.1	0.70	0.8			1	2.21	0.43	0.24	0.013	0.01	1.29	1.2
141	147+339	 	1.1	1.77	1.0		 	1	2.21	0.43	0.24	0.013	0.01	2.34	
143	147+339	1	2.1	0.70	1.0			1	2.21	0.67	0.30	0.013	0.01	2.34	2.3

Appendix-H
Cost Estimate

Breakdown of Cost and Quantity for Bridge (Maidimba - Lichinga)

Bill A: Road works

 No.
 River name
 Description
 Area (sq.m)
 Amount
 Cost per sq.m
 Remarks

 5 Ngame I
 L=2@15.00m=30.00m, W=10.15m, Spread foundation
 304.50
 667,843.14
 2,193.25

 6 Lilasse
 L=17.00m, W=10.15m, Pile foundation
 172.55
 640,318.15
 3,710.91

5 Ngame I	L=2@15.00m=30.00m, W=10.15m, Spread foundation	304.50	667,843.14	2,193.25	
6 Lilasse	L=17.00m, W=10.15m, Pile foundation	172.55	640,318.15	3,710.91	
7 Ninde	L=2@17.00m=34.00m, W=10.15m, Spread foundation	345.10	598,282.08	1,733.65	
8 Luculumesi	L=2@17.00m=34.00m, W=10.15m, Spread foundation	345.10	777,762.15	2,253.73	
9 Lutembue	L=2@17.00m=34.00m, W=10.15m, Pile foundation	345.10	875,533.48	2,537.04	
10 Luambala	L=2@15.00m=30.00m, W=10.15m, Spread foundation	304.50	700,557.02	2,300.68	
	Total	1,816.85	4,260,296.01	2,344.88	

Breakdown of Cost and Quantity for Bridge (Maidimba - Lichinga)

Bill A: Road works L = 30.00 (m) Area = 304.50 (sq.m) **Bridge No.5: Ngame I Bridge** W = 10.15 (m)

						` '			· 1 /		
Bridge	No.5: Ngam	e I l	Bridge	W =	10.15	(m)					Currency: US
Item			Des	scrip	tion		Unit	Rate	Quantity	Amount	Remarks
6000	(2) Bridge	1)	Foundation	(i)	Excavation	Soil	cu.m	2.39	114.70	273.90	
				(ii)	Excavation	Rock	cu.m	17.58	573.48	10,081.78	
				(iii)	Backfill		cu.m	5.62	688.18	3,864.82	
				(iv)	Pile	Steel tube (D=400mm)	m	840.00	0.00	0.00	
		2)	Substructure	(i)	Concrete	σck=240kgf/cm2	cu.m	249.78	396.13	98,945.35	
				(ii)	Formwork		sq.m	33.24	548.86	18,244.11	
				(iii)	Reinforcement bar	SD295	t	2,950.25	53.48	157,779.26	
		3)	Superstructur	(i)	Precast RC girder	σck=300kgf/cm2, L=15m	No.	6,858.19	12.00	82,298.27	
				(ii)	Concrete	σck=270kgf/cm2 (deck, cross beam, precast panel)	cu.m	225.60	127.29	28,716.62	
				(iii)	Formwork		sq.m	30.72	138.48	4,254.11	
				(iv)	Reinforcement bar	SD295	t	2,820.00	42.74	120,526.80	
				(v)	Girder erection		No.	974.54	12.00	11,694.53	
		4)	Ancillaries	(i)	Expansion joint		m	1,059.73	30.45	32,268.84	
				(ii)	Bearing		No.	336.56	24.00	8,077.54	
				(iii)	Drainage pipe	PVC (D=75mm)	m	115.15	8.00	921.22	
				(iv)	Parapet	New Jersey type	m	838.10	60.00	50,286.24	
				(v)	Slope & river protection	Gabion (t=30cm)	sq.m	69.49	570.00	39,609.76	
	·					•	Tot	tal of Bridge No	0.5	667,843.14	·

(USD 2,193.25 per sq.m)

 Bill A: Road works
 L =
 17.00
 (m)
 Area =
 172.55
 (sq.m)

 Bridge No.6: Lilasse Bridge
 W =
 10.15
 (m)

Currency: USD

Item			Des	scription		Unit	Rate	Quantity	Amount	Remarks
6000	(2) Bridge	1)	Foundation	(i) Excavation	Soil	cu.m	2.39	36.54	87.26	
				(ii) Excavation	Rock	cu.m	17.58	182.70	3,211.87	
				(iii) Backfill		cu.m	5.62	219.24	1,231.25	
				(iv) Pile	Steel tube (D=400mm)	m	840.00	325.50	273,420.00	
		2)	Substructure	(i) Concrete	σck=240kgf/cm2	cu.m	249.78	246.52	61,575.77	
				(ii) Formwork		sq.m	33.24	340.74	11,326.20	
				(iii) Reinforcement ba	r SD295	t	2,950.25	33.28	98,184.25	
		3)	Superstructur	(i) Precast RC girder	σck=300kgf/cm2, L=17m	No.	7,745.02	6.00	46,470.14	
				(ii) Concrete	σck=270kgf/cm2 (deck,	cu.m	225.60	69.18	15,607.01	
				(iii) Formwork	cross beam, precast panel)	sq.m	30.72	72.04	2,213.07	
				(iv) Reinforcement ba	r SD295	sq.iii	2,820.00	23.63	66,636.60	
				(v) Girder erection	1 502/3	No.	974.54	6.00	5,847.26	
		4)	Ancillaries	(i) Expansion joint		m	1.059.73	20.30	21,512.56	
		.,		(ii) Bearing		No.	336.56	12.00	4,038,77	
				(iii) Drainage pipe	PVC (D=75mm)	m	115.15	4.00	460.61	
				(iv) Parapet	New Jersey type	m	838.10	34.00	28,495.54	
				(v) Slope & river protection	Gabion (t=30cm)	sq.m	69.49	0.00	0.00	
	•			p		To	tal of Bridge No	0.6	640,318.15	

(USD 3,710.91 per sq.m)

 $\textbf{Bill A: Road works} \hspace{1cm} L = \hspace{1cm} 34.00 \hspace{1cm} (m) \hspace{1cm} \text{Area} = \hspace{1cm} 345.10 \hspace{1cm} (sq.m)$

Item			Des	scripti	on		Unit	Rate	Quantity	Amount	Remarks
6000	(2) Bridge	1)	Foundation	(i) E	Excavation	Soil	cu.m	2.39	80.19	191.49	
				(ii) E	Excavation	Rock	cu.m	17.58	400.93	7,048.35	
				(iii) I	Backfill		cu.m	5.62	481.12	2,701.97	
				(iv) F	Pile	Steel tube (D=400mm)	m	840.00	0.00	0.00	
		2)	Substructure	(i) (Concrete	σck=240kgf/cm2	cu.m	249.78	311.95	77,918.87	
				(ii) F	Formwork		sq.m	33.24	432.60	14,379.62	
				(iii) F	Reinforcement bar	SD295	t	2,950.25	42.11	124,234.94	
		3)	Superstructur	(i) F	Precast RC girder	σck=300kgf/cm2, L=17m	No.	7,745.02	12.00	92,940.29	
				(ii) (Concrete	σck=270kgf/cm2 (deck, cross beam, precast panel)	cu.m	225.60	138.36	31,214.02	
				(iii) F	Formwork		sq.m	30.72	144.08	4,426.14	
				(iv) F	Reinforcement bar	SD295	t	2,820.00	47.26	133,273.20	
				(v) (Girder erection		No.	974.54	12.00	11,694.53	
		4)	Ancillaries	(i) E	Expansion joint		m	1,059.73	30.45	32,268.84	
				(ii) I	Bearing		No.	336.56	24.00	8,077.54	
				(iii) I	Drainage pipe	PVC (D=75mm)	m	115.15	8.00	921.22	
					Parapet	New Jersey type	m	838.10	68.00	56,991.07	
				(V)	Slope & river protection	Gabion (t=30cm)	sq.m	69.49	0.00	0.00	
	•					•	Tot	tal of Bridge No	0.7	598.282.08	

(USD 1,733.65 per sq.m)

Breakdown of Cost and Quantity for Bridge (Maidimba - Lichinga)

Bill A: Road worksL = 34.00 (m)
Area = 345.10 (sq.m) **Bridge No.8: Luculumesi Bridge**W = 10.15 (m)

	1111 110444 11011					` '			· 1 /		
Bridge	No.8: Lucul	ume	esi Bridge	W =	10.15	(m)					Currency: US
Item			Des	scrip	tion		Unit	Rate	Quantity	Amount	Remarks
6000	(2) Bridge	1)	Foundation	(i)	Excavation	Soil	cu.m	2.39	74.10	176.95	
				(ii)	Excavation	Rock	cu.m	17.58	370.48	6,513.04	
				(iii)	Backfill		cu.m	5.62	444.58	2,496.76	
				(iv)	Pile	Steel tube (D=400mm)	m	840.00	0.00	0.00	
		2)	Substructure	(i)	Concrete	σck=240kgf/cm2	cu.m	249.78	510.02	127,392.80	
				(ii)	Formwork		sq.m	33.24	738.77	24,556.71	
	=			(iii)	Reinforcement bar	SD295	t	2,950.25	68.85	203,124.57	
		3)	Superstructur	(i)	Precast RC girder	σck=300kgf/cm2, L=17m	No.	7,745.02	12.00	92,940.29	
				(ii)	Concrete	σck=270kgf/cm2 (deck, cross beam, precast panel)	cu.m	225.60	138.36	31,214.02	
				(iii)	Formwork		sq.m	30.72	144.08	4,426.14	
				(iv)	Reinforcement bar	SD295	t	2,820.00	47.26	133,273.20	
				(v)	Girder erection		No.	974.54	12.00	11,694.53	
		4)	Ancillaries	(i)	Expansion joint		m	1,059.73	30.45	32,268.84	
				(ii)	Bearing		No.	336.56	24.00	8,077.54	
				(iii)	Drainage pipe	PVC (D=75mm)	m	115.15	8.00	921.22	
				(iv)	Parapet	New Jersey type	m	838.10	68.00	56,991.07	
				(v)	Slope & river protection	Gabion (t=30cm)	sq.m	69.49	600.00	ŕ	
	·						Tot	tal of Bridge No	0.8	777,762.15	

(USD 2,253.73 per sq.m)

Bill A: Road works L = 34.00 (m) Area = 345.10 (sq.m) **Bridge No.9: Lutembue Bridge** W = 10.15 (m)

Currency: USD

- 0	No.9: Luten	ınu.	8	vv =		(III)					Currency: USD
Item			Des	scrip	tion		Unit	Rate	Quantity	Amount	Remarks
6000	(2) Bridge	1)	Foundation	(i)	Excavation	Soil	cu.m	2.39	90.84	216.93	
				(ii)	Excavation	Rock	cu.m	17.58	454.21	7,985.01	
				(iii)	Backfill		cu.m	5.62	545.05	3,061.00	
				(iv)	Pile	Steel tube (D=400mm)	m	840.00	221.48	186,043.20	
		2)	Substructure	(i)	Concrete	σck=240kgf/cm2	cu.m	249.78	441.91	110,380.28	
				(ii)	Formwork		sq.m	33.24	602.54	20,028.43	
				(iii)	Reinforcement bar	SD295	t	2,950.25	59.66	176,011.80	
		3)	Superstructur	(i)	Precast RC girder	σck=300kgf/cm2, L=17m	No.	7,745.02	12.00	92,940.29	
				(ii)	Concrete	σck=270kgf/cm2 (deck, cross beam, precast panel)	cu.m	225.60	138.36	31,214.02	
				(iii)	Formwork		sq.m	30.72	144.08	4,426.14	
				(iv)	Reinforcement bar	SD295	t	2,820.00	47.26	133,273.20	
				(v)	Girder erection		No.	974.54	12.00	11,694.53	
		4)	Ancillaries	(i)	Expansion joint		m	1,059.73	30.45	32,268.84	
				(ii)	Bearing		No.	336.56	24.00	8,077.54	
				(iii)	Drainage pipe	PVC (D=75mm)	m	115.15	8.00	921.22	
				(iv)	Parapet	New Jersey type	m	838.10	68.00	56,991.07	
				(v)	Slope & river protection	Gabion (t=30cm)	sq.m	69.49	0.00	0.00	
Total of Bridge No.9 875,533.48										·	

(USD 2,537.04 per sq.m)

 $\textbf{Bill A: Road works} \hspace{1cm} L = \hspace{1cm} 30.00 \hspace{1cm} (m) \hspace{1cm} \text{Area} = \hspace{1cm} 304.50 \hspace{1cm} (sq.m)$

Bridge No.10: Luambala Bridge W = 10.15 (m) Currency: USD

Item			Des	crip	tion		Unit	Rate	Quantity	Amount	Remarks			
6000	(2) Bridge	1)	Foundation	(i)	Excavation	Soil	cu.m	2.39	58.87	140.58				
				(ii)	Excavation	Rock	cu.m	17.58	294.36	5,174.85				
				(iii)	Backfill		cu.m	5.62	353.23	1,983.74				
				(iv)	Pile	Steel tube (D=400mm)	m	840.00	0.00	0.00				
		2)	Substructure	(i)	Concrete	σck=240kgf/cm2	cu.m	249.78	447.49	111,774.05				
				(ii)	Formwork		sq.m	33.24	614.80	20,435.95				
				(iii)	Reinforcement bar	SD295	t	2,950.25	60.41	178,224.48				
		3)	Superstructur	(i)	Precast RC girder	σck=300kgf/cm2, L=15m	No.	6,858.19	12.00	82,298.27				
				(ii)	Concrete	σck=270kgf/cm2 (deck,	cu.m	225.60	127.29	28,716.62				
				(11)	Concrete	cross beam, precast panel)	Cu.III	223.00	127.29	26,710.02				
				(iii)	Formwork		sq.m	30.72	138.48	4,254.11				
				(iv)	Reinforcement bar	SD295	t	2,820.00	42.74	120,526.80				
				(v)	Girder erection		No.	974.54	12.00	11,694.53				
		4)	Ancillaries	(i)	Expansion joint		m	1,059.73	30.45	32,268.84				
			-	The state of the s			(ii)	Bearing		No.	336.56	24.00	8,077.54	
				(iii)	Drainage pipe	PVC (D=75mm)	m	115.15	8.00	921.22				
				(iv)	Parapet	New Jersey type	m	838.10	60.00	50,286.24				
				(v)	Slope & river	Gabion (t=30cm)	sq.m	69.49	630.00	43,779.20				
				(1)	protection	Gabion (t=30cm)	oq.III	09.49	030.00	,				
Total of Bridge No.10 700,557.02											•			

(USD 2,300.68 per sq.m)

Summary of Project Cost of Mandimba - Lichinga

(L =	148.4	km)	Currency: USD
------	-------	-----	---------------

		KIII)		unchey. Cob
	Final	ALT 1	ALT 2	ALT 3
Description	DBST	AC	DBST	Gravel
1000 General	28,083,346	36,915,300	28,987,965	16,422,307
2000 Drainage	11,519,383	11,519,383	11,519,383	11,519,383
3000 EW & granular layers	66,843,578	61,771,161	70,324,482	30,065,573
4000 AC & seals	14,259,205	69,132,980	14,128,742	0
5000 Ancillary	3,578,272	3,578,272	3,578,272	3,578,272
6000 Structures	5,797,170	5,797,170	5,797,170	5,797,170
7000 Test & QC	17,250	17,250	17,250	17,250
8000 Others	1,997,534	1,997,534	1,997,534	1,997,534
Total (Bill A: Road)	132,095,738	190,729,051	136,350,798	69,397,489
Bill B: Day works	1,136,023	1,640,270	1,172,617	596,818
Bill C: Social issues	1,241,700	1,792,853	1,281,698	652,336
Bill D: Environmental	330,239	476,823	340,877	173,494
Total (Bill A to D)	134,803,700	194,638,997	139,145,989	70,820,138
Contingencies (10%)	13,480,370	19,463,900	13,914,599	7,082,014
IVA (6.8%)	10,083,317	14,558,997	10,408,120	5,297,346
Total construction cost	158,367,387	228,661,893	163,468,708	83,199,498
Engineering cost (5%)	7,414,204	10,705,145	7,653,029	3,895,108
IVA (6.8%)	504,166	727,950	520,406	264,867
Total project cost	166,285,757	240,094,988	171,642,144	87,359,473
Compensation cost	199,391	199,391	199,391	199,391
Project cost per km	1,121,868	1,619,234	1,157,962	590,019

Final: DBST

Project Cost of Mandimba - Lichinga Section (L = 148.40 km) Currency: USD

Project C	Project Cost of Mandimba - Lichinga Section				148.40	km)		Currency: USD
Item		escript	ion	Unit	Rate	Quantity	Amount	Remarks
Bill A: Roa								
	General			Ls.	28,083,345.82	1.00		27.00% of 2000 to 8000
2000	Drainage		Prefabricated pipe culvert (RC)	m	1,236.63	2,276.00	2,814,568.74	
			Concrete lined ditch (type 1)	m	158.62	32,812.00	5,204,623.03	
			Concrete lined ditch (type 2)	m	78.04	1,370.00	106,915.89	
			Concrete lined ditch (type 3)	m	396.55	3,465.00	1,374,041.42	
			Concrete kerb	m	33.35	2,740.00	91,379.00	
		(4)	Stone pitching	sq.m	65.55	2,325.00	152,403.75	
		(5)	Gabion	cu.m	142.00	12,503.00	1,775,451.01	
			T	Total (2000)		11,519,382.84	
3000	Earthworks & pavement layers of gravel or crushed stone	(1)	Cut & fill	cu.m	6.11	744,280.00	4,544,945.82	
		(2)	Haulage of embankment material from borrow pit (1.0km)	cu.m	0.92	14,916,670.00	13,723,336.40	Distance btw. site & pit = 10km
		(3)	Disposal of surplus material (1.0km)	cu.m	5.75	186,070.00	1,069,902.50	
		(4.1)	Upper subgrade	cu.m	5.92	321,710.00	1,905,327.48	
		(4.2)	Lower subgrade	cu.m	4.74			
		(5.1)	Cement stabilized gravel sub base course (C2)	cu.m	72.62			
		(5.2)	Cement stabilized gravel sub base course (C3)	cu.m	60.52			
		(5.3)	Cement stabilized gravel sub base course (C4)	cu.m	48.42	293,333.00	14,201,717.20	
		(5.4)	Gravel wearing course	cu.m	36.80			Equivalent with gravel sub base course (CBR>30%)
		(6)	Crushed stone base course	cu.m	128.80	243,776.00		Transport distance of aggregate = 110km
				Total (3000			66,843,578.19	
4000	Asphalt pavements & seals		Prime coat	sq.m	1.53	1,348,550.00	2,062,607.23	
		(2)	Single seal	sq.m	5.98	225,651.00	1,349,392.98	
		(3)	Double seal	sq.m	9.66	1,122,899.00		
		(4)	Asphalt concrete (t=10cm)	sq.m	51.75		0.00	
		(5)	Interlocking block pavement	sq.m Total (4000	25.30	2,740.00	69,322.00 14,259,204.55	
5000	Ancillary roadworks	(1)	Km post	No.	110.76	300.00	33,226.95	
3000	Alicinary foadworks	(2)	Guardrail	m	64.62	1,235.00	79,803.85	
		(3)	Road sign	sq.m	473.01	166.78	78,888.02	
			Road marking (W=10cm)	km	1,523.88	447.36	681,721.39	
		(5)	Grassing (embankment slope)	sq.m	2.94	918,693.00	2,704,632.19	
		(3)	Grassing (embankment stope)	Total (5000		710,075.00	3,578,272.40	
6000	Structures	(1)	Box culvert	cu.m	646.29	2,378.00	1,536,874.05	
			Bridge	Ls.	4,260,296.01	1.00	4,260,296.01	
				Total (6000			5,797,170.06	
7000	Testing & quality control			Ls.	17,250.00	1.00	17,250.00	
8000	Other works	(1)	Railway level crossing	No.	115,000.00		0.00	
		(2)	Demolishing existing concrete	cu.m	42.99	2,421.60	104,097.32	
		(3)	Removal of corrugated pipe	m	6.79	880.10	5,971.48	
		(4)	Finishing of road & road reserve (single	km	1,725.00	148.40	255,990.00	
			carriageway)					
		(5)	Treatment of old road & temp. diversion	km	1,380.00	148.10	204,378.00	225km from Cuamba by trailer truck (50t)
		(6)	Transportation of construction material	Ls.	1,427,097.10	1.00		
			PP - 10	Total (8000			1,997,533.90	
D:11 D. D	vio also		Total (Bill A: Road	1,136,023.34	1.00	132,095,737.76	0.86% of Bill A
	Bill B: Day works Bill C: Social issues				1,136,023.34	1.00		0.94% of Bill A
	ironmental mitigation		Ls.	330,239.34	1.00		0.25% of Bill A	
DIII D. EllV	nomiicitai mitigation		Tata	Ls. l (Bill A+B+		1.00	134,803,700.39	
Contingenc	ioc		10ta		13,480,370.04	1.00		10% of A to D
IVA	103		Ls. Ls.	10,083,316.79	1.00	10.083.316.70	6.8% of (A to D) & Contingencies	
111			Total	constructio		1.00	158,367,387.21	
Engineering	cost		1000	Ls.	7,414,203.52	1.00		5% of (A to D) & Contingencies
IVA	, 0000			Ls.	504,165.84			6.8% of Engineering cost
			To	tal project o		1.00	166,285,756.57	
			Compensation for			nent	199,391.00	
							/,-/1.00	

(USD 1,121,868 per km)

ALT-1: Asphalt Concrete

148.40 Project Cost of Mandimba - Lichinga Section km) Currency: USD Quantity Amount Remarks Bill A: Road works 1000 General 36,915,300.22 1.00 36,915,300.2 24.00% of 2000 to 8000 Ls (1) Prefabricated pipe culvert (RC) 2000 Drainage m 1,236.6 2,276.00 32,812.00 2,814,568.7 5,204,623.0 (2.1) Concrete lined ditch (type 1) 158.62 m Concrete lined ditch (type 2) 78.0 1,370.0 106,915.8 (2.3) Concrete lined ditch (type 3) m 396.55 3,465.0 1,374,041.42 (3) Concrete kerb m 65.5 2,325.0 152,403.7 (4) Stone pitching sq.m 142.00 12,503.0 (5) Gabion cu.m Total (2000) 11,519,382.84 Earthworks & pavement 3000 layers of gravel or crushed (1) Cut & fill 6.11 727,056.00 4,439,767.46 stone Haulage of embankment material from (2)0.92 16.124.820.00 14.834.834.40 Distance btw. site & pit = 10km cu.m borrow pit (1.0km) 181,764.00 1.045,143.00 (3) Disposal of surplus material (1.0km) cu.m 5.75 172,554.00 1,021,951.0 Upper subgrade cu.m Lower subgrade Cement stabilized gravel sub base course (4.2)4.7 cu.m (5.1) 72.62 0.0 cu.m (C2) Cement stabilized gravel sub base course (5.2 241.576.00 60.52 14.619.877.55 cu.m Cement stabilized gravel sub base course (5.3)cu.m 48.42 0.00 (C4) Equivalent with gravel sub base (5.4)36.80 0.00 Gravel wearing course cu.m ourse (CBR>30%) 128.80 200,385.00 25,809,588.00 Fransport distance of aggregate = 110km (6) Crushed stone base course cu.m Total (3000) 61,771,161.48 Asphalt pavements & seals 1.53 Prime coat sq.m 0.00 (2) Single seal sq.m (3) Double seal sq.m 9.66 0.00 (4) Asphalt concrete (t=10cm) 51.75 1,335,903.00 69,132,980.2 sq.m (5) Interlocking block pavement sq.m Total (4000) 0.0 69,132,980.25 5000 Ancillary roadworks (1) Km post No. 110.76 300.0 (2) Guardrail m 64.62 1,235.0 79,803.8 (3) Road sign 473.01 78,888.0 sq.m (4) Road marking (W=10cm) 681,721.3 1,523.88 km 447.3 (5) Grassing (embankment slope) 918,693.0 sq.m Total (5000) 3,578,272,40 Structures (1) Box culvert 646.29 2,378.0 1,536,874.0 cu.m (2) Bridge 4,260,296.01 1.0 4.260,296.0 Total (6000) 5,797,170.06 Testing & quality control 17,250,00 1.00 (1) Railway level crossing 8000 Other works No. 115,000.00 0.00 Demolishing existing concrete 2,421.6 104,097 42.9 cu.m (3) Removal of corrugated pipe
Finishing of road & road reserve (single m 6.7 880.10 5,971.4 1,725.00 255,990.00 (4) 148.40 km carriageway) 1,380.00 148.10 204,378.00 (5) Treatment of old road & temp. diversion km (6) Transportation of construction material 1,427,097.10 1,997,533.90 1,427,097.10 1.00 225km from Cuamba by trailer truck (50t) Ls. Total (8000) Total (Bill A: Road works) Bill B: Day works 1,640,269,84 1.00 1.640,269,84 0.86% of Bill A Ls. 1,792,853.08 1.00 1,792,853.08 0.94% of Bill A Bill C: Social issues Bill D: Environmental mitigation 1.0 0.25% of Bill A Total (Bill A+B+C+D) 194,638,996,71 Contingencies 19,463,899.67 1.00 19,463,899.67 10% of A to D 14.558.996.95 1.00 14.558.996.95 Total construction cost 228,661,893.33 5% of (A to D) & Contingencie Engineering cost 10.705.144.82 1.00 727,949.85 6.8% of Engineering cost Total project cost 240,094,988.00 Compensation for land acquisition & resettlement

(USD 1,619,234 per km)

ALT-2: DBST

	Cost of Mandimba - Li	<u>ch</u> ing	a Section	(L =	148.40	km)		Currency: USD
Item		escript	ion	Unit	Rate	Quantity	Amount	Remarks
	d works							
	General	(4)	In all the state of the state o	Ls.	28,987,964.94	1.00		27.00% of 2000 to 8000
2000	Drainage		Prefabricated pipe culvert (RC)	m	1,236.63	2,276.00	2,814,568.74	
			Concrete lined ditch (type 1)	m	158.62	32,812.00	5,204,623.03	
			Concrete lined ditch (type 2)	m	78.04	1,370.00	106,915.89	
			Concrete lined ditch (type 3)	m	396.55	3,465.00	1,374,041.42	
			Concrete kerb	m	33.35	2,740.00	91,379.00	
		(4)	Stone pitching	sq.m	65.55	2,325.00	152,403.75	
		(5)	Gabion	cu.m Total (2000)	142.00	12,503.00	1,775,451.01	
	Earthworks & pavement	-	Г	1 otal (2000))		11,519,382.84	
3000	layers of gravel or crushed stone	(1)	Cut & fill	cu.m	6.11	727,620.00	4,443,211.53	
		(2)	Haulage of embankment material from borrow pit (1.0km)	cu.m		16,114,490.00		Distance btw. site & pit = 10km
			Disposal of surplus material (1.0km)	cu.m	5.75	181,905.00	1,045,953.75	
			Upper subgrade	cu.m	5.92	207,065.00	1,226,342.46	
		(4.2)	Lower subgrade	cu.m	4.74			
		(5.1)	(C2)	cu.m	72.62	172,554.00	12,531,302.87	
		(5.2)	Cement stabilized gravel sub base course (C3)	cu.m	60.52	172,554.00	10,442,752.39	
		(5.3)	Cement stabilized gravel sub base course (C4)	cu.m	48.42		0.00	
		(5.4)	· ·	cu.m	36.80		0.00	Equivalent with gravel sub base course (CBR>30%)
		(6)	Crushed stone base course	cu.m	128.80	200,385.00		Transport distance of aggregate = 110
			I	Total (3000)			70,324,481.80	
4000	Asphalt pavements & seals		Prime coat	sq.m	1.53	1,335,904.00	2,043,265.17	
		(2)	Single seal	sq.m	5.98	222,651.00	1,331,452.98	
			Double seal	sq.m	9.66	1,113,253.00	10,754,023.98	
			Asphalt concrete (t=10cm)	sq.m	51.75		0.00	
		(5)	Interlocking block pavement	sq.m	25.30		0.00	
5000		(4)	Tee .	Total (4000)		200.00	14,128,742.13	
5000	Ancillary roadworks		Km post	No.	110.76	300.00	33,226.95	
			Guardrail	m	64.62	1,235.00	79,803.85	
			Road sign	sq.m	473.01	166.78	78,888.02	
		(4)	Road marking (W=10cm)	km	1,523.88	447.36	681,721.39	
		(5)			201			
		(5)	Grassing (embankment slope)	sq.m	2.94	918,693.00	2,704,632.19	
6000	g;			Total (5000))	•	3,578,272.40	
6000	Structures	(1)	Box culvert	Total (5000) cu.m	646.29	2,378.00	3,578,272.40 1,536,874.05	
6000	Structures	(1)		cu.m Ls.	646.29 4,260,296.01	•	3,578,272.40 1,536,874.05 4,260,296.01	
		(1)	Box culvert	Total (5000) cu.m Ls. Total (6000)	646.29 4,260,296.01	2,378.00 1.00	3,578,272.40 1,536,874.05 4,260,296.01 5,797,170.06	
7000	Testing & quality control	(1)	Box culvert Bridge	Total (5000) cu.m Ls. Total (6000) Ls.	646.29 4,260,296.01 17,250.00	2,378.00	3,578,272.40 1,536,874.05 4,260,296.01 5,797,170.06 17,250.00	
7000		(1)	Box culvert Bridge Railway level crossing	Total (5000)	646.29 4,260,296.01 17,250.00 115,000.00	2,378.00 1.00	3,578,272.40 1,536,874.05 4,260,296.01 5,797,170.06 17,250.00	
7000	Testing & quality control	(1) (2) (1) (2)	Box culvert Bridge Railway level crossing Demolishing existing concrete	Total (5000)	646.29 4,260,296.01 17,250.00 115,000.00 42.99	2,378.00 1.00 1.00 2,421.60	3,578,272.40 1,536,874.05 4,260,296.01 5,797,170.06 17,250.00 0.00 104,097.32	
7000	Testing & quality control	(1) (2) (1) (2)	Box culvert Bridge Railway level crossing Demolishing existing concrete Removal of corrugated pipe	Total (5000)	646.29 4,260,296.01 17,250.00 115,000.00	2,378.00 1.00	3,578,272.40 1,536,874.05 4,260,296.01 5,797,170.06 17,250.00	
7000	Testing & quality control	(1) (2) (1) (2)	Box culvert Bridge Railway level crossing Demolishing existing concrete Removal of corrugated pipe Finishing of road & road reserve (single	Total (5000)	646.29 4,260,296.01 17,250.00 115,000.00 42.99	2,378.00 1.00 1.00 2,421.60	3,578,272.40 1,536,874.05 4,260,296.01 5,797,170.06 17,250.00 0.00 104,097.32	
7000	Testing & quality control	(1) (2) (1) (2) (3) (4)	Box culvert Bridge Railway level crossing Demolishing existing concrete Removal of corrugated pipe Finishing of road & road reserve (single carriageway)	Total (5000)	646.29 4,260,296.01 17,250.00 115,000.00 42.99 6.79 1,725.00	2,378.00 1.00 1.00 2,421.60 880.10 148.40	3,578,272.40 1,536,874.05 4,260,296.01 5,797,170.06 17,250.00 0.00 104,097.32 5,971.48	
7000	Testing & quality control	(1) (2) (1) (2) (3) (4) (5)	Box culvert Bridge Railway level crossing Demolishing existing concrete Removal of corrugated pipe Finishing of road & road reserve (single carriageway) Treatment of old road & temp. diversion	Total (5000)	646.29 4,260,296.01 17,250.00 115,000.00 42.99 6.79 1,725.00 1,380.00	2,378.00 1.00 1.00 2,421.60 880.10 148.40	3,578,272.40 1,536,874.05 4,260,296.01 5,797,170.06 17,250.00 0.00 104,097.32 5,971.48 255,990.00	
7000	Testing & quality control	(1) (2) (1) (2) (3) (4) (5)	Box culvert Bridge Railway level crossing Demolishing existing concrete Removal of corrugated pipe Finishing of road & road reserve (single carriageway)	Total (5000)	646.29 4,260,296.01 17,250.00 115,000.00 42.99 6.79 1,725.00 1,380.00 1,427,097.10	2,378.00 1.00 1.00 2,421.60 880.10 148.40	3,578,272.40 1,536,874.05 4,260,296.01 5,797,170.06 17,250.00 0.00 104,097.32 5,971.48 255,990.00 204,378.00 1,427,097.10	225km from Cuamba by trailer truck (5
7000	Testing & quality control	(1) (2) (1) (2) (3) (4) (5)	Box culvert Bridge Railway level crossing Demolishing existing concrete Removal of corrugated pipe Finishing of road & road reserve (single carriageway) Treatment of old road & temp. diversion Transportation of construction material	Total (5000)	646.29 4,260,296.01 17,250.00 115,000.00 42.99 6.79 1,725.00 1,380.00 1,427,097.10	2,378.00 1.00 1.00 2,421.60 880.10 148.40	3,578,272.40 1,536,874.05 4,260,296.01 17,250.00 0,00 104,097.32 5,971.48 255,990.00 204,378.00 1,427,097.10 1,997,533,90	225km from Cuamba by trailer truck (5
7000 8000	Testing & quality control Other works	(1) (2) (1) (2) (3) (4) (5)	Box culvert Bridge Railway level crossing Demolishing existing concrete Removal of corrugated pipe Finishing of road & road reserve (single carriageway) Treatment of old road & temp. diversion Transportation of construction material	Total (5000)	646.29 4,260,296.01 17,250.00 115,000.00 42.99 6.79 1,725.00 1,380.00 1,427,097.10	2,378.00 1.00 1.00 2,421.60 880.10 148.40 148.10	3,578,272.40 1,536,874.05 4,260,296 5,797,170.06 17,250.00 104,097.32 5,971.48 255,990.00 204,378.00 1,427,097.10 1,997,533.90	225km from Cuamba by trailer truck (5
7000 8000 B: Day	Testing & quality control Other works	(1) (2) (1) (2) (3) (4) (5)	Box culvert Bridge Railway level crossing Demolishing existing concrete Removal of corrugated pipe Finishing of road & road reserve (single carriageway) Treatment of old road & temp. diversion Transportation of construction material	Total (5000)	646.29 4.260,296.01 17,250.00 115,000.00 42.99 6.79 1,725.00 1,380.00 1,427,097.10 works)	2,378.00 1.00 1.00 2,421.60 880.10 148.40 1.00	3,578,272.40 1,536,874.05 4,260,296.01 5,797,170.06 17,250.00 104,097.32 5,971.48 255,990.00 204,378.00 1,427,097.10 1,997,533.30 1,172,616.86	225km from Cuamba by trailer truck (5
7000 8000 B: Day C: Socia	Testing & quality control Other works works at issues	(1) (2) (1) (2) (3) (4) (5)	Box culvert Bridge Railway level crossing Demolishing existing concrete Removal of corrugated pipe Finishing of road & road reserve (single carriageway) Treatment of old road & temp. diversion Transportation of construction material	Total (5000)	4,260,296.01 17,250.00 115,000.00 42.99 6.79 1,725.00 1,380.00 1,427,097.10 works) 1,172,616.86 1,281,697.50	2,378.00 1.00 1.00 2,421.60 880.10 148.40 1.00	3,578,272.40 1,536,874.05 4,260,296.01 5,797,170.06 17,250.00 0.00 104,097.32 5,971.48 255,990.00 204,378.00 1,427,097.10 1,997,533.90 136,350,798.07 1,172,616.86 1,281,697.50	225km from Cuamba by trailer truck (5 0.86% of Bill A 0.94% of Bill A
7000 8000 B: Day C: Socia	Testing & quality control Other works	(1) (2) (1) (2) (3) (4) (5)	Box culvert Bridge Railway level crossing Demolishing existing concrete Removal of corrugated pipe Finishing of road & road reserve (single carriageway) Treatment of old road & temp. diversion Transportation of construction material Total (I	Total (5000)	646.29 4,260,296.01 17,250.00 15,000.00 42.99 6.79 1,725.00 1,380.00 1,427,097.10 works) 1,172,616.86 1,281,697.50 340,877.00	2,378.00 1.00 1.00 2,421.60 880.10 148.40 1.00	3,578,272.40 1,536,874.05 4,260,294.05 17,250.00 104,097.32 5,971.48 255,990.00 204,378.00 1,427,097.10 1,997,533.90 136,350,798.07 1,172,616.86 1,281,697.50 340,877.00	225km from Cuamba by trailer truck (5 0.86% of Bill A 0.94% of Bill A 0.25% of Bill A
7000 8000 B: Day C: Socia D: Envi	Testing & quality control Other works works al issues ironmental mitigation	(1) (2) (1) (2) (3) (4) (5)	Box culvert Bridge Railway level crossing Demolishing existing concrete Removal of corrugated pipe Finishing of road & road reserve (single carriageway) Treatment of old road & temp. diversion Transportation of construction material Total (I	Total (5000)	646.29 4,260,296.01 17,250.00 15,000.00 6.79 1,725.00 1,380.00 1,427,097.10 works) 1,172,616.86 1,281,697.50 340,877.00 C+D)	2,378.00 1.00 1.00 2,421.60 880.10 148.40 1.00 1.00 1.00	3,578,272.40 1,536,874.05 4,260,296 5,797,170.06 17,250.00 104,097.32 5,971.48 255,990.00 204,378.00 1,427,097.10 1,997,533.90 1,172,616.86 1,281,697.50 340,877.00 139,145,989.43	225km from Cuamba by trailer truck (5 0.86% of Bill A 0.94% of Bill A 0.25% of Bill A
7000 8000 B: Day C: Socie D: Envi	Testing & quality control Other works works al issues ironmental mitigation	(1) (2) (1) (2) (3) (4) (5)	Box culvert Bridge Railway level crossing Demolishing existing concrete Removal of corrugated pipe Finishing of road & road reserve (single carriageway) Treatment of old road & temp. diversion Transportation of construction material Total (I	Total (5000)	4.260,296.01 17,250.00 115,000.00 115,000.00 42.99 6.79 1,725.00 1,380.00 1,427,097.10 works) 1,172,616.86 1,281,697.50 340,877.00 C+D) 13,914,598.94	2,378.00 1.00 1.00 2,421.60 880.10 148.40 1.00 1.00 1.00	3,578,272.40 1,536,874.05 4,260,296.01 5,797,170.06 17,250.00 0.00 0.00 104,097.32 5,971.48 255,990.00 204,378.00 1,427,097.10 1,997,533.30 1,427,097.10 1,172,616.86 1,281,697.50 340,877.00 340,877.00 139,145,989.43	225km from Cuamba by trailer truck (5 0.86% of Bill A 0.94% of Bill A 0.25% of Bill A
7000 8000 B: Day C: Socia D: Envi	Testing & quality control Other works works al issues ironmental mitigation	(1) (2) (1) (2) (3) (4) (5)	Box culvert Bridge Railway level crossing Demolishing existing concrete Removal of corrugated pipe Finishing of road & road reserve (single carriageway) Treatment of old road & temp. diversion Transportation of construction material Total (I	Total (5000)	4,260,296.01 17,250.00 115,000.00 42.99 6.79 1,725.00 1,380.00 1,427,097.10 works) 1,172,616.86 1,281,697.50 340,877.00 C+D) 13,914,598.94 10,408,120.01	2,378.00 1.00 1.00 2,421.60 880.10 148.40 1.00 1.00 1.00	3,578,272.40 1,536,874.05 1,536,874.05 4,260,294.05 17,250.00 104,097.32 5,971.48 255,990.00 1,427,097.10 1,172,616.86 1,281,697.50 340,877.00 139,145,989.43 13,914,598.94 10,408,120,01	225km from Cuamba by trailer truck (5 0.86% of Bill A 0.94% of Bill A 0.25% of Bill A 10% of A to D 6.8% of (A to D) & Contingen
B: Day C: Socia D: Envi	Testing & quality control Other works works al issues ironmental mitigation ies	(1) (2) (1) (2) (3) (4) (5)	Box culvert Bridge Railway level crossing Demolishing existing concrete Removal of corrugated pipe Finishing of road & road reserve (single carriageway) Treatment of old road & temp. diversion Transportation of construction material Total (I	Total (5000)	646.29 4.260,296.01 17,250.00 115,000.00 6.79 1,725.00 1.380.00 1.427,097.10 10 works 1,172,616.86 1,281,697.50 340,877.00 C+D) 13,914,598.94 10,408,120.01 n cost	2,378.00 1.00 1.00 2,421.60 880.10 148.40 1.00 1.00 1.00 1.00	3,578,272.40 1,536,874.05 1,536,874.05 4,260,296.00 5,797,170.06 17,250.00 104,097.32 5,971.48 255,990.00 204,378.00 1,427,097.10 1,997,533.90 136,359,798.07 1,172,616.86 1,281,697.50 340,877.00 139,145,989.43 13,914,598.94 13,914,598.94 11,0408,120.01 163,468,708.38	225km from Cuamba by trailer truck (5 0.86% of Bill A 0.94% of Bill A 0.25% of Bill A 10% of A to D 6.8% of (A to D) & Contingen
B: Day C: Socia D: Envi	Testing & quality control Other works works al issues ironmental mitigation ies	(1) (2) (1) (2) (3) (4) (5)	Box culvert Bridge Railway level crossing Demolishing existing concrete Removal of corrugated pipe Finishing of road & road reserve (single carriageway) Treatment of old road & temp. diversion Transportation of construction material Total (I	Total (5000)	4,260,296.01 17,250.00 115,000.00 42.99 6.79 1,725.00 1,380.00 1,427,097.10 works) 1,172,616.86 1,281,697.50 340,877.00 C+D) 13,914,598.94 10,408,120.01 n cost 7,653,029.42	2,378.00 1.00 1.00 2,421.60 880.10 148.40 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	3,578,272.40 1,536,874.05 1,536,874.05 4,260,296 17,250.00 104,097.32 5,971.48 255,990.00 204,378.00 1,427,097.10 1,172,616.86 1,281,697.50 340,877.00 139,145,989.43 13,914,598.94 16,408,120.01 163,468,708.87 163,468,708.87	225km from Cuamba by trailer truck (5 0.86% of Bill A 0.94% of Bill A 0.25% of Bill A 10% of A to D 6.8% of (A to D) & Contingencia
B: Day C: Socia D: Envi	Testing & quality control Other works works al issues ironmental mitigation ies	(1) (2) (1) (2) (3) (4) (5)	Box culvert Bridge Railway level crossing Demolishing existing concrete Removal of corrugated pipe Finishing of road & road reserve (single carriageway) Treatment of old road & temp. diversion Transportation of construction material Total (I	Total (5000)	4,260,296.01 17,250.00 115,000.00 115,000.00 42.99 6.79 1,725.00 1,380.00 1,427,097.10 works) 1,172,616.86 1,281,697.50 340,877.00 C+D) 13,914,598.94 10,408,120.01 n cost 7,653,029.42 520,406.00	2,378.00 1.00 1.00 2,421.60 880.10 148.40 1.00 1.00 1.00 1.00	3,578,272.40 1,536,874.05 1,536,874.05 4,260,296 17,250.00 104,097.32 5,971.48 255,990.00 204,378.00 1,427,097.10 1,172,616.86 1,281,697.50 340,877.00 139,145,989.43 13,914,598.94 16,408,120.01 163,468,708.87 163,468,708.87	225km from Cuamba by trailer truck (5) 0.86% of Bill A 0.94% of Bill A 0.25% of Bill A 10% of A to D 6.8% of (A to D) & Contingence 5% of (A to D) & Contingence 6.8% of Engineering cost

(USD 1,157,962 per km)

ALT-3: Gravel

Project C	Cost of Mandimba - Li	ching	a Section	(L =	148.40	km)		Currency: USD
Item	De	script	ion	Unit	Rate	Quantity	Amount	Remarks
Bill A: Roa								
	General			Ls.	16,422,306.61	1.00		31.00% of 2000 to 8000
2000	Drainage		Prefabricated pipe culvert (RC)	m	1,236.63	2,276.00	2,814,568.74	
			Concrete lined ditch (type 1)	m	158.62	32,812.00	5,204,623.03	
			Concrete lined ditch (type 2)	m	78.04	1,370.00	106,915.89	
			Concrete lined ditch (type 3) Concrete kerb	m	396.55 33.35	3,465.00 2,740.00	1,374,041.42 91,379.00	
			Stone pitching	m sq.m	65.55	2,325.00	152,403.75	
			Gabion	cu.m	142.00	12,503.00	1,775,451.01	
		(5)	Gabion	Total (2000)		12,505.00	11,519,382.84	
3000	Earthworks & pavement layers of gravel or crushed stone	(1)	Cut & fill	cu.m	6.11	752,662.00	4,596,130.50	
		(2)	Haulage of embankment material from borrow pit (1.0km)	cu.m	0.92	14,582,660.00	13,416,047.20	Distance btw. site & pit = 10km
		(3)	Disposal of surplus material (1.0km)	cu.m	5.75	188,166.00	1,081,954.50	
			Upper subgrade	cu.m	5.92	276,087.00	1,635,125.26	
		(4.2)	Lower subgrade	cu.m	4.74	414,130.00	1,962,147.94	
		(5.1)	Cement stabilized gravel sub base course (C2)	cu.m	72.62		0.00	
		(5.2)	Cement stabilized gravel sub base course (C3)	cu.m	60.52		0.00	
		(5.3)	Cement stabilized gravel sub base course (C4)	cu.m	48.42		0.00	
		(5.4)	Gravel wearing course	cu.m	36.80	200,385.00	7,374,168.00	Equivalent with gravel sub base course (CBR>30%)
		(6)	Crushed stone base course	cu.m Total (3000)	128.80		0.00 30.065.573.40	
4000	Asphalt pavements & seals	(1)	Prime coat		1.53		0.00	
4000	Aspirant pavements & sears	(2)	Single seal	sq.m sq.m	5.98		0.00	
		(3)	Double seal	sq.m	9.66		0.00	
			Asphalt concrete (t=10cm)	sq.m	51.75		0.00	
		(5)	Interlocking block pavement	sq.m	25.30		0.00	
		(5)	interioceting order pavement	Total (4000)			0.00	
5000	Ancillary roadworks	(1)	Km post	No.	110.76	300.00	33,226.95	
		(2)	Guardrail	m	64.62	1,235.00	79,803.85	
		(3)	Road sign	sq.m	473.01	166.78	78,888.02	
			Road marking (W=10cm)	km	1,523.88	447.36	681,721.39	
		(5)	Grassing (embankment slope)	sq.m	2.94	918,693.00	2,704,632.19	
	_		I=	Total (5000)			3,578,272.40	
6000	Structures	(1)	Box culvert	cu.m	646.29	2,378.00	1,536,874.05	
		(2)	Bridge	Ls.	4,260,296.01	1.00	4,260,296.01	
7000	Testing & quality control			Total (6000)	17,250.00	1.00	5,797,170.06 17,250.00	
8000	Other works	(1)	Railway level crossing	No.	115,000.00	1.00	0.00	
5500	Calci Works	(2)	Demolishing existing concrete	cu.m	42.99	2,421.60	104,097.32	
		(3)	Removal of corrugated pipe	m	6.79	880.10	5,971.48	
		(4)	Finishing of road & road reserve (single carriageway)	km	1,725.00	148.40	255,990.00	
		(5)	Treatment of old road & temp. diversion	km	1,380.00	148.10	204,378.00	
		(6)	Transportation of construction material	Ls.	1,427,097.10	1.00		225km from Cuamba by trailer truck (50t)
				Total (8000)			1,997,533.90	
			Total (Bill A: Road			69,397,489.21	
Bill B: Day				Ls.	596,818.41	1.00		0.86% of Bill A
Bill C: Soci				Ls.	652,336.40	1.00		0.94% of Bill A
3111 D: Envi	ronmental mitigation		m .	Ls.	173,493.72	1.00		0.25% of Bill A
Continuo: -	iaa		Tota	l (Bill A+B+		1.00	70,820,137.74	
Contingenci	ies			Ls.	7,082,013.77	1.00		10% of A to D
v A			Total	Ls.	5,297,346.30	1.00	5,297,346.30 83,199,497.82	6.8% of (A to D) & Contingencie
Engineering	coet		1 otai	Ls.	3,895,107.58	1.00		5% of (A to D) & Contingencies
Engineering IVA	COSE			LS.	3,895,107.58 264,867.32	1.00	3,895,107.58 264,867.32	
1 1 1/1			To	tal project c		1.00	87,359,472.71	
			Compensation for			ent	199,391.00	
			Compensation for				,	

(USD 590,019 per km)

Appendix-I Traffic Survey

1. Survey Points

2. Survey Forms

2.1 Traffic Volume Survey

Traffic Count Survey

Date:	 /	/ 2009	_			
Location:				_		
Direction:					Surveyor:	

Vehicle	Passen	ger Car	Ві	us	Truck				Others			
Type	1	2	3	4	5	6	7	8	9	10	11	12
	Medium Passenger Car	4-Wheel Vehicle	Minibus and Light Bus (<20 seats)	Medium / Large Bus (>20 seats)		Medium Goods Vehicle (2 Axles)	Heavy Goods Vehicle (3 Axles)	Very Heavy Goods Vehicle (>3 Alxes)	Agricultural Tractors / Trailers	Motorcycle	Bicycle	Animal Cart
Time	of to	(H)		8	of to	5 TO	-55-F	∞ ∞ •		Sold of	ॐ	## T
6:00 - 7:00												
7:00 - 8:00												
8:00 - 9:00												
9:00 - 10:00												
10:00 - 11:00												
11:00 - 12:00												
12:00 - 13:00												
13:00 - 14:00												
14:00 - 15:00												
15:00 - 16:00												
16:00 - 17:00												
17:00 - 18:00												
Sum												
18:00 - 19:00												
19:00 - 20:00												
20:00 - 21:00												
21:00 - 22:00												
22:00 - 23:00												
23:00 - 24:00												
0:00 - 1:00												
1:00 - 2:00												
2:00 - 3:00												
3:00 - 4:00												
4:00 - 5:00												
5:00 - 6:00												
Sum												

2.2 Roadside Origin-Destination (OD) Survey

Roadside OD interview Survey

	Date: / / 2009	Time:	:			No
	Location:					
	Direction: From	То		Surveyor:		
1	Vehicle Information					
	Number of plate		Number of Passe	ngers	Model	
2	Type of Vehicle					
	1 Medium Passenger (2 4-Wheel Vehicle	8 \	Very Heavy Good	s Vehicle		
	3 Minibus and Light Bu 4 Medium / Large Bus	10 [Agricultural Tracto Motorcycle	ors / Trailers		
	5 Light Goods Vehicle 6 Medium Goods Vehic	11 E cle 12 <i>i</i>	Bicycle Animal Cart			
3	Origin of Trip					
	Country Provin	nce	District _		Village	
	If Port Beira / Quelimane	/ Nacala	If City_	Nampula / Li	chinga	*Zone Code
4	Destination of Trip					20110 0000
	Country Provin	nce	District _		Village	
	If Port Beira / Quelimane	/ Nacala	If City_	Nampula / Li	chinga	*Zone Code
5	Expected Travel Time	(From Orig	in to Destination	n)		Zone Code
					hours	minutes
6	Purpose of Trip				Hours	minutes
	1 Commute 2 School	5 Tourism 6 Business				
	3 Shopping 4 Hospital	7 Social 8 Others				
7	Trip Frequency	_				
,	1 Everyday 2 A few days per Week	5 (Once per Month			
	3 Once per Week	7 F	First time	al		
-	4 A few days per Montl		Others		-	
8	Contents and Volume	of Freigh	t (only for freigh	nt car)		unit : kg
	Name and Tel of Company	Contents_			Volume	
	Name	Contents_			Volume	
	Telephone	Contents _			Volume	
9	Time spent for border	crossing				
					he	
	1				hours	minutes

3. Survey Results

3.1 OD Survey on Study Road Sections

(Surveyed between 9th (Sun) and 12th (Wed) August, 2009)

(1) Number of vehicles (vehicles/4days)

[All vehicle types: Total]

Total	Des	tinat	ion																																			
Origin	- 1			4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
1												3														21												24
2											—																											
3																																						
4	1			75			†	1	_		1	11			13				-	4						104	2	1	-									215
5	_			/5			\vdash	_	\vdash		-	'''			10				-	_		\vdash				2		_	-									2 2
6							\vdash	_	\vdash		\vdash								-			\vdash				4			-									4
7		\vdash	\vdash				\vdash	1	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash							\vdash	\vdash				_						\vdash						
8		—						_	\vdash	 									-										-									
9		\vdash	_				\vdash	1	\vdash	\vdash	\vdash								=																			
10				1											6																							7
11		\vdash		5			 	-	t	t	1				9				\vdash			\vdash				1										H		16
12	1	T	1	15		1	t	t	T		1	2			2			1	Н	13						53												90
13	Ė		Ė	Ť		Ė				†	Ė	一			Ē			Ė		Ť						5												5
14		1						П		1																1												1
15				11						3	4	4							1							3			5									31
16																			Ė							1												1
17																										1												1
18				1																						3												4
19																										18					1							19
20	3			8		14					1	24	1													13					1							65
21													Ė																									
22																										4												4
23																										-1												1
24																																						
25																																						
26	23	- 1	1	108	2	2					3	40	6	- 1	3	3		3	8	5						130		- 1	2		2						12	356
27													1																									1
28																										1												1
29																										1												1
30																						1																1
31																										- 1												1
32																																						
33																																						
34																																						
35																																						
36		Г							1	Г																	П											
40		Г							1	Г																2	П											2
Total	28	1	2	224	2	17			1	3	14	84	8	-1	33	3		4	9	22		1				370		2	7		4						12	853

Zone: Code

Nampula	1
Ribaue	2
Malema	3
Cuamba	4
Angoche	5
Nacala	6
Erati	7
Mecuburi	8
Lalaua	9

Marrupa	10
Mecanhelas	11
Mandimba	12
Ngauma	13
Zambezia N	14
Tete	15
Zambezia S	16
Milange	17
Beira	18
Maputo	19
Malawi S	20
Malawi N	21

SA	22
Zimbabwe N	23
Zimbabwe S	24
Zambia	25
Lichinga	26
Lago	27
Metarica	28
Maua	29
Majune	30

Cabo Delgado	31
Nampula City	32
Lichinga City	33
Beira Port	34
Quelimane Port	35
Nacala Port	36
Others (N/A)	40

[Passenger car]

- 1	Des	tinat	ion																																			
Origin	1		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
1																																						
2																																						
3																																						
4				6																																		6
5																																						
6																																						
7																																						
8																																						
9																																						
10																																						
11																																						
12																				2						1												3
13																																						
14																																						
15												1														- 1												2
16																																						
17																																						
18																																						
19																										2												2
20												3														3					- 1							7
21																																						
22																																						
23																																						
24																																						
25																																						
26	1		1	1								- 1			- 1																						1	6
27																																						
28																																						
29																																						
30																																						
31																																						
32																																						
33																																						
34																																						
35																																						
36																																						
40																																						
Total	- 1		1	7								5			1					2						7					1						1	26

[4-Wheel vehicle]

2	Des	tinat	ion																																			
Origin	1	2	3	4	5	6	7	7 8	3 9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
1												1														13												14
2																																						
3																																						
4				27				_			2	6			1					3						38		1										78
5								_																		1												1
6								_																		1												1
7								_																														
8								_																														
9								_																														
10		_	_		_		<u> </u>	4	1	1	_	_	_	_					ш		ш												_					
11		_	_	1	_		<u> </u>	4	1	1	1	_	_	_					ш	Щ	ш					_1							_					3
12		_	_	2		1	<u> </u>	<u> </u>	_	1_	_	2	_							5						14							_					24
13			_					Ь.		1	_	<u> </u>	_													3							_					3
14			_					Ь.		1	_	<u> </u>	_																				_					
15				2								1														- 1												4
16																																						
17																										- 1												1
18																										1												1
19																										5					- 1							6
20				6								3	- 1													4												14
21																																						
22																																						
23																										1												1
24																																						
25																																						
26	10			25		- 1					3	20				3		1	3	3						36			2								5	117
27													_1																									1
28																																						
29																										1												1
30																						1																1
31																																						
32																																						
33		L	L					L	L																								L					
34																																						
35																																						
36																																						
40																										1												1
Total	10			63		2					6	33	7		- 1	3		- 1	3	11		- 1				122		- 1	2		- 1						5	272

[Minibus and Light Bus]

3	Des	tinat	ion																																			
Origin	1		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
1																																						
2																																						
3																																						
4				2																						35												37
5																																						
6																																						
7																																						
8																																						
9																																						
10																																						
11																																						
12				2																						7												9
13																																						
14																																						
15																																						
16																																						
17																																						
18																																						
19																																						
20												1														1												2
21																																						
22																										1												1
23																																						
24																																						
25																																						
26				45								8														4												57
27																																						
28																																						
29																						Ш											Ш					
30																																						
31																																						
32																																	ш					
33																																						
34																																						
35																																						
36																																						
40																																						
Total				49								9														48												106

[Medium/ Large Bus]

4	Des	tinat	tion																																			
Origin	1			4	5	6	7	8	3 9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
1																										2								П		\Box		2
2																																		П		\Box		
3																																		П		\Box		
4																										1								П		\Box		1
5																										1								П		\Box		1
6																																		П		\Box		
7																																		П		\Box		
8																																						
9																																						
10								L	L																													
11																																						
12				_1																																		1
13																																				Ш		
14																																				لک		
15																																		Ш		Ш		
16																																		Ш		Ш		
17																																		Ш		Ш		
18																																		Ш		Ш		
19																										2										ш		2
20																										2										ш		2
21																																				ш		
22								_	_	_																								ш		ш		
23								_	_	_		ш																						لسا		ш		
24								_	_	_		ш																						لسا		ш		
25								_	_	_		ш																						لسا		ш		
26		1	\blacksquare	2	_		<u> </u>	<u> </u>	_	_	_	$ldsymbol{ldsymbol{\sqcup}}$							ш	_1											_	_	_	ш		ш		4
27		_					<u> </u>	_	_	_	_																				<u> </u>	_	_	ш		ш		
28		_	\vdash		<u> </u>		<u> </u>	_	_	Ь	Ь.	\vdash	\vdash				<u> </u>		\vdash	\vdash				<u> </u>	_	<u> </u>	\vdash		Щ.		Ь—	Ь—	<u> </u>	ш		$\vdash \vdash$		
29	-	_	\vdash		<u> </u>	-	<u> </u>	₩	_	▙	_	Н	ш	-	Ш	_	\vdash		ш	ш		Ш		\vdash	_	<u> </u>			Ш		⊢	⊢	<u> </u>	ш		$\vdash \vdash$	_	
30	-	_	\vdash		<u> </u>	-	<u> </u>	₩	_	▙	_	Н	ш	-	Ш	_	\vdash		ш	ш		Ш		\vdash	_	<u> </u>			Ш		⊢	⊢	<u> </u>	ш		$\vdash \vdash$	_	
31	-	_	\vdash		<u> </u>	-	<u> </u>	₩	_	▙	_	Н	ш	-	Ш	_	\vdash		ш	ш		Ш		\vdash	_	<u> </u>			Ш		⊢	⊢	<u> </u>	ш		$\vdash \vdash$	_	
32	-	_	\vdash		<u> </u>	-	<u> </u>	₩	_	▙	_	Н	ш	-	Ш	_	\vdash		ш	ш		Ш		\vdash	_	<u> </u>			Ш		⊢	⊢	<u> </u>	ш		$\vdash \vdash$	_	
33	-	_	\vdash		<u> </u>	-	<u> </u>	₩	_	▙	_	Н	ш	-	Ш	_	\vdash		ш	ш		Ш		\vdash	_	<u> </u>			Ш		⊢	⊢	<u> </u>	ш		$\vdash \vdash$	_	
34		_	Ш		<u> </u>		<u> </u>	┞	_	₩	_	Н							ш	ш		Ш									<u> </u>	<u> </u>	_	ш		\vdash	-	
35	_	_	ш		<u> </u>	_	!	₩	_	⊢	⊢	Н	ш	_	\vdash	_			ш	ш		ш									⊢	⊢	<u> </u>	\vdash		\vdash	-	
36		_			<u> </u>		<u> </u>	┞	_	₩	_	Н				_			ш	ш		Ш									<u> </u>	<u> </u>	_	ш		\vdash	-	
40	-	١.	\vdash	_	<u> </u>	-	<u> </u>	₩	_	▙	_	Н	ш	-	Ш	_	\vdash		ш	L,		Ш		\vdash	_	L.			Ш		⊢	⊢	<u> </u>	ш		$\vdash \vdash$	_	
Total		1		3																1						8					ı	ı	ı	1 '				13

[Light Goods Vehicle]

၁၂	Dest	tinati	ion																																			
Origin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
- 1																										- 1												1
2																																						
3																																						
4	- 1			20								2														16												39
5																																						
6																																						
7																																						
8																																						
9																																						
10																																						
11								П	П	П		П							П								П						П					
12			- 1	5			i –	1	1		1								П	4						14	П											25
13																																						
14							i –	1	1																													
15							1	T				1																										1
16							1																															
17							1																															
18							1																															
19							1	T																		4												4
20							1	T	†			11														1												12
21							1	T	†	1																												
22							1	T		1																2												2
23							1	-	-																													
24							1	T																														
25								1																														
26	3			14	1			1				8	1						1	1						32											1	62
27	Ť				Ė			1	1			Ť	Ė						Ė	Ť		Н				- 02							Н					
28							t	-	-	1	<u> </u>	—	-													1												1
29							t	-	-	1	<u> </u>		-	-																								
30							t	-	-	1	_		-	Т																								
31							i –	t																														
32							i –	t																														
33							i –																															
34							i –																															
35							1	T	-	-			-						П	-						_	т		-									
36							t	t	t	\vdash									Н	\vdash						_	т		\vdash	_								
40							t	\vdash	-	-	Н	Н	Н						Н	\vdash		Н				1							Н					1
Total	4		1	39	- 1		t	t	\mathbf{t}	1	-1	22	1						1	5		\vdash				72							\vdash				1	148

[Medium Goods Vehicle]

6	Des	tinat	ion																																			
Origin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
1												- 1														3												4
2																																						
3																																						
4				19							2	3														12	2											38
5																																						
6																																						
7																																						
8																																						
9																																						
10				1																																		1
11				4																		ш																4
12	1			5																		ш				17												23
13																										2												2
14																										1												1
15																																						
16																										1												1
17																																						
18																																						
19																																						
20												3																										3
21																																						
22																										1												1
23																																						
24																																						
25																																						
26	4			19	- 1							3		- 1												55		- 1			2						5	91
27		L						L				Ь.	<u> </u>						$ldsymbol{\sqcup}$			ldot									Ь.	Ь.	<u> </u>					
28								<u> </u>			_	<u> </u>		_					ш			$ldsymbol{ldsymbol{ldsymbol{eta}}}$									<u> </u>	<u> </u>						
29								L				Ь.	<u> </u>						Ш												Ь.	Ь.	<u> </u>					
30																																						
31																										1												1
32																																						
33												\Box																			\Box	\Box]	
34																																						
35								L		L	L	L		L																	L	L						
36																																						
40																																						
Total	5			48	1						2	10		1												93	2	1			2						5	170

[Heavy Goods Vehicle]

7	Des	tinat	ion																																			
Origin	- 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
1																																						
2																																						
3																																						
4				1																						1												• 4
5																																						
6																																						
7																																						
8																																						
9																																						
10																																						
11																																						
12																																						
13																																						
14																																						
15																																						
16																																						
17																																						
18																																						
19																																						
20												1																										
21																																						
22																																						
23																																						
24																																						
25																																						
26	2					1																				2												
27																																						
28																																						
29																																						
30																																						
31																																						
32																																						
33																																						
34																																						
35																																						
36																																						
40																																						
otal	2			1		1						1														3												- 1

[Very Heavy Goods Vehicle]

8	Des	tinat	ion																																			
Origin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25			28	29	30	31	32	33	34	35	36	40	Total
1												1														2												3
2																																		<u></u>				
3																																		<u></u>				
4															12					_ 1						_1								<u></u>				14
5																																		<u></u>				
6																										3								∟'				3
7																																		∟'				
8																																		∟'				
9																																		└				
10		_			_		<u> </u>	_	_	_	_	ш	_	_	6				ш		_	\perp									_	_	_	∟'				6
11		_	\vdash				<u> </u>	_	_	_	_	$ldsymbol{\sqcup}$	_	Ь	9				ш	Ц.	_	\vdash					ш				_	_	_	╙				9
12		_	ш		<u> </u>		<u> </u>	_	₩	_	<u> </u>	Щ	_	_	2			1	ш	2	_	ш		Щ		<u> </u>	ш				└	<u> </u>	<u> </u>	└	Щ		_	5
13		_	ш		<u> </u>		<u> </u>	_	₩	_	<u> </u>	Щ	_	_	Щ				ш		_	ш		Щ		<u> </u>	ш				Ь—	<u> </u>	<u> </u>	└	Щ		_	
14		_		_	<u> </u>			_	_	L.	Ь.	Ь.	_	_																	<u> </u>	_	_	⊢-'				
15				9	<u> </u>		<u> </u>	_	₩	3	4	1				_			1							1			5		<u> </u>	<u> </u>	_	<u> </u>		_	_	24
16					_		<u> </u>	_	₩	_	_																				<u> </u>	<u> </u>	_	⊢			_	
17		_		- 1	<u> </u>		<u> </u>	_	₩	<u> </u>	<u> </u>		_	_							_					_					<u> </u>	<u> </u>	<u> </u>	⊢-'			_	
18		<u> </u>	\vdash	_	<u> </u>		<u> </u>	-	₩	-	<u> </u>	Н	<u> </u>	_					-		_	\vdash				2					┢	┢	<u> </u>	⊢			_	3 5
19	_	_	Н	2	 	1.4	 	-	₩	-	1	2	_			_	\vdash	_	\vdash	_	_	Н				5		_	\vdash		┢	┢	┢	H	\vdash	_	-	24
20 21	3	_			-	14	!	-	₩	-	-		_						-		_	Н									⊢	<u> </u>	—	⊢		_	\rightarrow	24
		_			-		!	-	₩	-	_	Н	_						-		_	Н									⊢	<u> </u>	—	H		_	\rightarrow	
22 23		_			-		!	-	₩	-	_	Н	_						-		_	Н					_				⊢	!	—	H		_	\rightarrow	
24	_		\vdash		-		1	_	+	-	-	Н				_	\vdash	_	\vdash			\vdash				_	-	_	\vdash		 	-	-	т	_	-	\rightarrow	
25		_	Н		!		 	-	╁	\vdash	\vdash	Н	_			_			-		_	Н					-				┢	┢	\vdash	Н			-	
26	3	_	Н	2	!		 	-	╁	\vdash	\vdash	Н	_		2	_		2	4		_	Н				1	-				┢	┢	\vdash	Н			-	14
27	<u>ა</u>	\vdash			l –		l –	1	1	┢		H	\vdash	\vdash					4		\vdash	\vdash				_					H	H	—	Н				14
28		\vdash	\vdash		 		 	\vdash	╁	\vdash		\vdash	\vdash		\vdash		\vdash		\vdash		\vdash	\vdash		\vdash			\vdash	-	\vdash		┢	┢	\vdash	一	\vdash		-	
29			\vdash		H		t		1	\vdash		Н			\vdash		\vdash		Н			\vdash		\vdash			\vdash		\vdash		H	H		т	\vdash		-+	
30			Н		l –		l –	1	-	H		Н	\vdash		H						\vdash	Н		H							H	—		Т			-	
31			Н		l –		l –	1	-	H		Н	\vdash		H						\vdash	Н		H							H	—		Т			-	
32		<u> </u>			H			1	1	 			<u> </u>	\vdash							<u> </u>																-	
33		 			H		t	1	\vdash	t			 	Н					\vdash		 				1						H	\vdash	 	Г		\vdash	-	
34		 			H		t	1	\vdash	t		H	 	Н							 				1						H	\vdash	 	Г			-	
35		 			H		t	1	\vdash	t			 	Н					\vdash		 				1						H	\vdash	 	Г			-	
36			\vdash		1		1	-	t	t		Н			H				\vdash			\vdash		H			Н				H			М			\dashv	
40							t		T			П							Н												ı	ı		Т			\dashv	
Total	6		\vdash	14	1	14	1	-	t	3	5	4			31			3	5	3		\vdash		H		17	Н		5		H			М			\dashv	110

(2) Number of Passenger (Passenger/ 4days)

[All vehicle types: Total]

Total	[Des	tinat																																				
Origin		1	2	3	4	. 5	6	7	8	9	10	-11			14	15	16	17	18	19	20	21	22	23	24	25			28	29	30	31	32	33	34	35	36	40	Total
	1												8														100												10
	2																																						Ь
	3																																						
	4	3			278							15	62			25					7						881	14	2										128
	5																										34												3
	6																										9							Г					
	7									П																								П					
	8																																	Т					
	9																																						
	10				18											12																							3
	11				17					т		5			т	16											8							т					4
		10		2			2		T		T	3			1	4			2		48			t		t	367					T		Т		T			56
	13					1	<u> </u>		t	1	t	Ť	T.	Т	Т	Ė						г		t	1	t	28					T	1	т	1	T			2
	14									Т																	2												•
	15				21	l –		1		-	6	10	10		1					2					1		3			8		t	1	Н	1				(
	16			=		1	\vdash	 	 	-	Ť			H	\vdash	_		-					_	1	 	1	6			Ť		\vdash	\mathbf{I}	-		 			
	17					 		_	H	_	H			-	_			-					-		 		2			-		_	-	_	-	H			
	18			-	1	1	\vdash	 	1	-	1			H	1	_		-					_	1	 	1	9			_		\vdash	\mathbf{I}	_		1			
	19					1	\vdash	1	1	_	1			H	-										H		182					2	1	-		1			18
	20	4		-	17	_	24	_	H	_	H	- 1	131	4	_			-					-		 		62			-		2		_	-	H			24
	21	7			- 17	1	24	-	H	_	H	_	131	_	-										—		02					-	+	_	1	H			
	22					1	\vdash	_	-	_	-	_		Н	-	\vdash	_	-				-	_		\vdash		12	_	_	_		\vdash	1	-	_	-			
	23			-		+	\vdash	+	1	\vdash	1	-		\vdash	-	-		-					_		\vdash		3			_		—	 	-	1	1			
	24	_		-		1	_	1	H	-	H	-		H	\vdash	-	-	-			-	Н	_	1	H	1	J	_	-	_	-	—	1	_	1	H			
	25					1	\vdash	_	-	-	-	_		H	\vdash	\vdash	-	-				-	_		\vdash			_	-	_		\vdash	1	-	_	-			
		74	- 1	-	1030	9	4	+	1	\vdash	1	10	283	26	5	10	17	-	0	21	18		-		\vdash		731	_	5	7		10	1	-	1	-		48	232
	27	/4		_	1030	۳	-	₩	<u> </u>	┿	<u> </u>	12	200		1	10	17	\vdash	ð	21	10	Н	-	-	⊢	-	/31	_	J		-	10	+	-	-	<u> </u>	-	40	234
	28	_				+	┢	₩	┢	₩	┢	-		H	┢	\vdash		-			_	Н	-	-	┢	-	19	_		-	-	┢	+-	⊢	-	┢			
		_		-		+	-	+	 	+	 	-		┢	┢	_		\vdash		_	_		_	-	⊢	-	3			_		-	+-	-	+-	 	-	_	-
	29 30	_		\vdash		1	⊢	+-	┢	⊢	┢	-	\vdash	⊢	⊢	\vdash	_	Н				\vdash	2	\vdash	⊢	┢	3	\vdash	-	<u> </u>	\vdash	\vdash	1	-	1	┢	\vdash		—
	31	_		\vdash		-	\vdash	₩	₩	-	₩	-		\vdash	-	-		Н			_	\vdash	_2	1	-	₩	3			<u> </u>	-	-	₩	-	₩	₩	₩		\vdash
		_		ш		₩		₩	₩	⊢	₩	-	_	⊢	₩	\vdash		ш	\vdash	\vdash	_	\vdash	₩	₩		₩	3	-		₩	-		₩	⊢	₩	₩	₩		\vdash
	32	_		\vdash		₩	⊢	⊢	₩	⊢	₩	—	-	⊢	-	⊢	-	Н				\vdash	_	⊢	⊢	⊢		_	-	_	\vdash	⊢	!	-	!	₩	⊢		_
	33	_				<u> </u>	-	1	├	-	├		_	!	-	_	_	ш				\vdash	_	<u> </u>	⊢	<u> </u>		_	_	_	_	⊢	1	_	1	├	1		_
	34	_				<u> </u>	-	!	├	-	├		_	!	-	_	_	ш				\vdash	_	<u> </u>	⊢	<u> </u>		_	_	_	_	⊢	1	_	1	├	1		_
	35					<u> </u>	┡	<u> </u>	<u> </u>	-	<u> </u>		_	\vdash	⊢	<u> </u>						\vdash	_	<u> </u>	\vdash	<u> </u>		_		_	_	⊢	1	₩	<u> </u>	<u> </u>	<u> </u>		
	36					<u> </u>	Ь—	<u> </u>	<u> </u>	<u> </u>	<u> </u>		_	_	ــــ	<u> </u>	<u> </u>	Ш				\vdash	<u> </u>	<u> </u>	Ь.	<u> </u>		_	<u> </u>	<u> </u>	_	Ь_	<u> </u>	ــــ	<u> </u>	<u> </u>	<u> </u>		
	40					_	_	_	_	_	_			_	_	_						ш	_	<u> </u>	_	<u> </u>	12	_		_	_	_	_	_	_	_			·
Total		91	1	3	1506	9	30	1	Щ.	<u> </u>	6	46	498	31	5	67	17	Щ	11	23	73	L_	2	Щ.	ட	Щ.	2476	14	7	15	Ш.	14	_	L	Щ.	Щ.	Щ.	48	499

Zone: Code

Nampula	1
Ribaue	2
Malema	3
Cuamba	4
Angoche	5
Nacala	6
Erati	7
Mecuburi	8
Lalaua	9
Erati Mecuburi	7

10
11
12
13
14
15
16
17
18
19
20
21

SA	22
Zimbabwe N	23
Zimbabwe S	24
Zambia	25
Lichinga	26
Lago	27
Metarica	28
Maua	29
Majune	30

Cabo Delgado	31
Nampula City	32
Lichinga City	33
Beira Port	34
Quelimane Port	35
Nacala Port	36
Others (N/A)	40

[Passenger car]

	1	Des	tinat	tion																																			
Origin		- 1		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
	1																																						
	2																																						
	3																																						
	4				29																																		29
	5																																						
	6																																						
	7																																						
	8																																	Г					
	9																																						
	10																																						
	11																																						
	12																				3						2												
	13																																						
	14																																						
	15												2														- 1												,
	16																																						
	17			П						П																								П					
	18																																						
	19																										8												
	20												5														12					2							19
	21																																						
	22																																						
	23																																						
	24																																						
	25																																						
	26			1	4								3			6																						2	2
	27																																						
	28																																						
	29																																						
	30																																						
	31																																						
	32																																						
	33																																						
	34																																						
	35																																						
	36																																						
	40			П						П												П												Г					
Total		5		- 1	33			П					10			6					3						23					2		П				2	8

[4-Wheel vehicle]

	2 Des																																					
Origin	1	2	2 3	4	1 5	6	7	8	9	10	11			14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
	1											2														49												5
	2																																					
	3																																					
	4			96	ò						9	31			2					5						138		2										28
	5		_																							2												
	6													_												2												
	7		_																																			
	8		_																																			
	9		_			_			_																													
	10	_	_		_	_	_			<u> </u>	\vdash			_									\perp				_						_			\perp		
	11	_	_			L.	_	1	<u> </u>	<u> </u>	5		_	∟	Ь					L.,				_		8	_			<u> </u>	L		Ь.					1
	12	_	\vdash		9	2	-	1	\vdash	<u> </u>	_	4	_	_	\vdash					14				_	ш	51	_			\vdash	_		Ь			\vdash		8
	13	┞	_	<u> </u>	1	⊢	+-	<u> </u>	⊢	!	<u> </u>	_	_	\vdash	⊢	<u> </u>						<u> </u>	ш	_	Ш	16	_	<u> </u>	<u> </u>	_	-		_					1
	14	⊢	-	Ь.	\perp	-	+-	<u> </u>	⊢	₩	<u> </u>	L.	_	⊢	—	<u> </u>						<u> </u>	Н	_	Н	.	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	⊢	_	_			
	15	⊢	-	- 6	Ó	₩	₩	₩.	⊢	₩	_	2	_	⊢	⊢	<u> </u>					ш	<u> </u>	ш	_		1	_	<u> </u>	<u> </u>	<u> </u>	_		\vdash			Ш		
	16	-	┿	<u> </u>	+-	├-	₩	<u> </u>	⊢	₩	-	├	<u> </u>	⊢	⊢	<u> </u>					Н	<u> </u>	Н	├	Н	_	<u> </u>	<u> </u>	<u> </u>	├	-	_	⊢	_	_	Н		
	17	\vdash	-	—	1	-	-		\vdash	₩	<u> </u>	<u> </u>	_	\vdash	⊢	—					ш	—	Н	_	ш	2		—	—	<u> </u>	<u> </u>	_	_	_	_	ш		
	18	-	+	-	+	-	-	-	┢	₩	-	-		-	┢	-					_	-				5		-	-	-	_							_
	19 20	-	_			-	-	-	_		_	_	4	⊢	_	_	_					_		_		17 13		_	_	_	2		_					3
	21	-	-	13	5	-	-	-	-	<u> </u>	_	6	4	-	┢	_			_	_	\vdash	_				13		_	_	-	_		_					3
	22	-	+	-	+-	├	+	-	┢	-	-	-	_	┢	⊢	-					-	-		_			_	-	-	-	_		_					
	23	-	╆		1	-	-	-	-	-			-	-										-		3					-		-					
	24	-	+-	1	+	<u> </u>	+-	1-	┢	-	-	-	-	┢	-	-					\vdash	-	_	_	_		_	-	-	-	-		_			_		
	25	-	+	-	+	-	+-	-	┢	-	_	_	_	⊢	┢	_	_		_		_	_		_			_	_	_	_			_					
	26 36	-	+	108	,	2		-	H	1	12	69	10	\vdash	H	17			11	12						160			7				_				16	47
	27 27		-	100	,	-	╁	-	\vdash	┢	12	09	19	\vdash	┢	- 17		J	-	10	-	_				100		_		-	_		-				10	47
	28	 	+	1	+-	┢	+	1	┢	\vdash	-	<u> </u>	_	┢	┢	-					-	-		-				-	-	<u> </u>	_		_					
	29		-	1	+	-	+	1	H	\vdash	_	-		⊢	H	-					-	-				3		-	-	-	_		_					
	30	\vdash	+	1	+	\vdash	+	+-	┢	┢	 	\vdash	-	┢	┢	<u> </u>					\vdash	2		\vdash	Н	_ ,	\vdash	1	1	\vdash	H		\vdash			\vdash		
	31		+		1	\vdash	+	 	H	t		\vdash		H	H								\vdash		Н					\vdash						Н		
	32	-	+		1	t	1		H	1				1																								
	33		_		1	1	1	1	Н	t		\vdash		Н	Н			\vdash	Н	Н	Н		Н		Н					\vdash	Н					Н		
	34		+		+	\vdash	+	H	\vdash	t		\vdash		Н	Н								\vdash		Н					\vdash						Н		
	35		_		1	1	1	1	Н	t		\vdash		Н	Н				Н	Н	Н		Н		Н					\vdash	Н		Н			Н		
	36	\vdash	+		1	\vdash	t	1	\vdash	t	\vdash	\vdash		┢	\vdash															\vdash	\vdash		\vdash			\vdash		
	40		+		1	\vdash	+	 	H	t		\vdash		H	H								Н		Н	10				\vdash						Н		1
Total	36	-	-	237	,	4	1	+	\vdash	 	26	114	24	\vdash	-	17		- 6	11	32	Н	2	-	\vdash	\vdash	480		2	7	—	2	_	\vdash	_	_	\vdash	16	

[Minibus and Light Bus]

	3 De	stina	tion																																			
Origin		1 2	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
	1																																					
	2																																					
	3		1						П								\neg																					
	4	1		30)																					524												554
	5																																					
	6																																					
	7																																					
	8	1																																				
	9																																					
	10																																					
	11																																					
	12	Т	Т	30)																					82												112
	13																																					
	14																																					
	15																																					
	16																																					
	17																																					
	18																																					
	19																																					
	20											15														6												21
	21																																					
	22																									3												3
	23																																					
	24																																					
	25																																					
	26			683	3							120														13												816
	27																																					
	28		L						L						Ш																							
	29																																					
	30																																					
	31																																					
	32																																					
	33																																					
	34																																					
	35																																					
	36																																					
	40																																					
Total				743	3							135														628												1506

[Medium/Large Bus]

	4 De																																					
Origin		<u> </u>	2 3	4	1 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
	1	-	+		_		_	_	_	<u> </u>					_											34								_				34
	2	_	+		+	-	₩	-	<u> </u>	┢	_		_	<u> </u>	_			_	\vdash		Н	_		_			_				_		_	-				
	3	+	+	-	+	-	₩		-	-	_		_	-			-		-	-	Н	_				29	_				-		_	-		\vdash		- 00
	5	+	+		+	-	-	-	-	-	_		_	-			-		-	┢	Н	_				32	-				_		┢	-		\vdash		29 32
	6	+	+		+	1	\vdash	1	H	\vdash	_										Н	_				32							-	1				32
	7	+	+		+	\vdash	 		\vdash	\vdash				H	-				_	\vdash	Н			_									\vdash	\vdash				
	8		1			t								T							П													1				
	9		1			t								t							П													1				
	10																																					
	11																																					
	12			29	9																																	29
	13	ĮΞ	┖																																			
	14	_	_		1		<u> </u>																															
	15	_	_		1									_	_																							
	16	_	_		1		_		_	<u> </u>				_	_																_		_	<u> </u>				
	17 18	_	+		+	-	<u> </u>		⊢	┢				<u> </u>	_		_	_	-		Н			_			_				_		_	₩		-		
	19	┿	+		+	1	₩	-	-	-	-		-	-			\vdash		-	┝	Н	-				130	-				-		⊢	-		\vdash		120
	20	+	-		+	-	-		-	1	_		_	-			-		-	┢	Н	_				24					-		⊢	1		-		130 24
	21	+	+		1	1	-							H			-				Н					24												
	22		_	1	1		_														Н																	
	23	T	1				ı		t	t											H													t				
	24																																					
	25		1																		П																	
	26		1	26	6															2																		29
	27																																					
	28	_	_			_	_		_	<u> </u>				_	_						\perp												Ш					
	29	_	_	<u> </u>	1	<u> </u>	1	_	┞	<u> </u>	_		_	<u> </u>	Ь.			_		L	\vdash	_		_							_		_	<u> </u>				
	30	+	+	<u> </u>	1	<u> </u>	1	1	⊢	<u> </u>	_		_	<u> </u>	_		ш	_	ш	_	—	_		_			ш				_		_	<u> </u>		ш		
	31 32	1	+-	-	1	-	├-	-	├	├		\vdash		!	<u> </u>		Н	-	Н		-		\vdash	-			-				_	-	<u> </u>					
	33	+	+	-	1	1	1	-	⊢	 	—	-	—	⊢	\vdash	-	Н	_	Н	⊢	⊢	—	\vdash	_			Н				-	_	-	Ͱ	-		_	
	34	+	+		+	┢	1		\vdash	┢				\vdash	\vdash		\vdash	_	\vdash		\vdash			\vdash	Н						\vdash		\vdash	┢		\vdash		
l	35	╁	+	1	1	\vdash	1	1	\vdash	╁		-	-	\vdash	-		Н	-	Н	H	Н		\vdash	-	Н		\vdash				\vdash	_	\vdash	╁		Н		
	36	+	+	-	1	\vdash	1	1	\vdash	t				\vdash	\vdash		\vdash		\vdash		Н			\vdash	Н								\vdash	t				
	40	+	+	<u> </u>	1	\vdash	1	1	\vdash	t				\vdash	\vdash						H			\vdash	Н						\vdash		\vdash	t				
Total	70	_	1	55	5	t	1	1	H	t	\vdash		\vdash	t	\vdash					2	Н	\vdash			\vdash	249							H	t				307

(3) Transported Goods Volume (kg/4days)

[All vehicle types: Total]

	Desti				_	,							,	,			,				_	_	_						_	_	_	_	,	_	_			
Origin	1	2	3	- 4	5		6	7	8	9 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	
1					_		┸	┸				1500	_	_								_				154000			_								_	155500
2																																						
3																																						
4				17460							10000	5000			197020					60000						97405	85000											471885
5																																						
6							Т	Т																П		64750												64750
7							Т	Т																														
8							Т	Т																														
9							┰	T					Г											П					Т									
10							┰	\top	\neg						106411	Г																	Г					106411
11				12000	ı		1	1		1			Г	1	187568	i –					1		T		_				T	1	1	t	i –	H		\neg		199568
12				500			1	+	_	1	1	1	t	1	36000	ı	1			160	†	t	T			49240		i	T	t	1	T	ı					85900
13		\vdash	\neg	500	-		$^{-}$	+	+	-	1		H	-	- 50000	Н	-			100	\vdash	\vdash	-	\vdash		8350			-	\vdash	-	H	\vdash	Н		\neg	_	8350
14		\vdash	\neg		-		$^{-}$	+	+	-	1		H	-		Н	-				\vdash	\vdash	-	\vdash		2500			-	\vdash	-	H	\vdash	Н		\neg	_	2500
15					_		+	+	+	_				_									_						-	1		1	H	-		_		
16		\vdash	\rightarrow		_		+	+	_	+	1		_	+		\vdash	-					_	-	\vdash	_	7000			_	+		1	\vdash			_	\rightarrow	7000
17		\vdash	\rightarrow		+		+	+	+	+	1	+	-	+	_	 	_					_	+	-	_	7000		—	-	+	-	+-	 	-	_	_	_	/000
18		\vdash	\dashv	29000			+	+	+	+	 		-	+		Н	H					-	-	\vdash		60000		_	+	+		1	\vdash			_	\rightarrow	89000
19		\vdash	\rightarrow	29000	+		+	+	+	+	 		-	+		\vdash	H					-	-	\vdash		148140		-	+	1		-	\vdash			_	\rightarrow	148140
20	-	H	-		+		+	+	+	+	+	43445	-	┿	_	┢	┢	_	_		-	⊢	+	Н	-	63800		-	+	+-	-	-	⊢	\vdash	-	-	\rightarrow	107245
21		\vdash	-		-		+	+	+	+	 	43443	⊢	+	_	-	-					⊢	-	-	_	03000		_	-	-	_	-	⊢			_	_	107243
21		\vdash	-		-		+	+	+	+	 	-	⊢	┿		-	-					⊢	-	\vdash	_	2200	_	_	-	+-	_		-			_	_	
			_		-		+	_	_	_			⊢	-		_	-					⊢	-	-	_	2200		_	-			_	_			_		2200
23					_		_		_	_			_											\Box					_	_						_		
24			_		_		┸			_			_									_		\Box					_	_						_		
25			_		_		_			_			_									_		\perp					_	_						_		
	####			62110	250	1800	0			_		20075	400)	32780			20000	63350			_		ш		86890		2660)								1800	348215
27							┸			_			_									_		ш					_									
28																										140												140
29																																						
30																																						
31					L								L	ΙĪ			L						L	\Box		2500			L	L			L					2500
32		ΙП	Т		Г		Т	Г		1			ι –	Τ		Г	Г				Ι	Γ	Γ	ΙТ					Г	Г	Ι –	Г	Γ	ΙП			T	
33							1	T																														
34							Т	\top																														
35							1	1	_																					Т								
36			\neg		_		_	十	\neg	_	1		_	-		т	-					-	-	\vdash	_				_	-			т			_	_	
40			\neg		1		_	+	\neg	1	1	t	H	1		Н	Н				-	-	т	\vdash					1	t	-	t	Н	t		-	\neg	
	####		\dashv	121070	250	1800	n	+	_	+	10000	70020	40r	1	559779	1	1	20000	63350	60160	 	 	-	\vdash	-	7/6015	85000	2660	1	1	 	t	1	\mathbf{I}			1800	1799304

Zone: Code

Nampula	1_
Ribaue	2
Malema	3
Cuamba	4
Angoche	5
Nacala	6
Erati	7
Mecuburi	8
Lalaua	9

Marrupa	10
Mecanhelas	11
Mandimba	12
Ngauma	13
Zambezia N	14
Tete	15
Zambezia S	16
Milange	17
Beira	18
Maputo	19
Malawi S	20
Malawi N	21

SA	22
Zimbabwe N	23
Zimbabwe S	24
Zambia	25
Lichinga	26
Lago	27
Metarica	28
Maua	29
Majune	30

Cabo Delgado	31
Nampula City	32
Lichinga City	33
Beira Port	34
Quelimane Port	35
Nacala Port	36
Others (N/A)	40

[Light Goods Vehicle]

5	Destir	natio	n																																		
Origin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23 2	4 2	5 26	27	28	29	30	31	32	33	34	35	36	40	Total
1													П									П		Т	4000										П		4000
2					П				П				-	1							$\overline{}$	т		\top				-	T				П	\neg	\neg	\neg	
3																						-	-	\top				-							\neg	\neg	
4				11500	Н								_	+							\vdash	_	-	+	4605			_	1	1	1		-		\neg	-	16105
. 5				11000	-		-	_	-	-			+	+							1	-		+	1000			-	1	\vdash	1		Н		-	-	10100
- 6							-	_	-				1	1								 		+	1			-	1	\vdash	1		Н		-	-	
7					-			\vdash					_	+			-				\vdash	_	+	+				_					-		-	-	
8					-		-	_	-	-			+	+	_	_	_				+	+	+	+	_	+		+	+-	 	+-	_	Н	_	-	\rightarrow	
9		Н			Н		-	H					-	+			\vdash				\vdash	-	++	+				-		\vdash	-		Н	-	\rightarrow	-+	
					-		-	-	-	-	_		+	+		_	-				-	-	+	+	+	-		+	+-	+-	+-	_	Н	_	-	\rightarrow	
10		-			Н		-	!	-		_		-	+	_	_	-				┝	+	-	+	_	 		+	1	-	1	_		_	-	-+	
		-			-		-	-	-				₩	+-	_	_	⊢				-	⊢	++	+		1	_	+-	₩	-	-	_	Н	_	-	\rightarrow	
12		_		500	\vdash	<u> </u>	-	⊢	-	\vdash			-	+-		\vdash	—	_	<u> </u>	160	-	-	\vdash	_	4680		_	-	-	-	-	\vdash	-		\dashv	\rightarrow	5340
13		ш			ш		-	—	\vdash	ш			-	₩		_	⊢				1	\vdash	\perp	_	1		_	_	1	┞	╄	_	ш	ш	_	\rightarrow	
14		ш			ш		-	—	\vdash	ш			-	₩		_	⊢				1	\vdash	\perp	_	1		_	_	1	┞	╄	_	ш	ш	_	\rightarrow	
15													_									_						_					ш		\dashv	\rightarrow	
16																												_							_		
17																																					
18																																					
19																									1140										П		1140
20												26445	5																						-		26445
21					П								П									П													П		
22																						П		1											\neg	\neg	
23																																			\neg	\neg	
24																																			\neg	\neg	
25					-									1							1	1	+	+						1					\neg	-	
26	350			9410	250							4675	400	1					350		\vdash	 		+	11400			_	1	1	1				\neg	700	27535
27	000			0110	200							1070	1.00	1					- 000		-	 		+	11100			_	1	1	1				\neg	700	
28					Н		Н	H	Н				 	1		Н	1				1	-	+	+	140			+	1	t	t	\vdash	Н		-	-	140
29					Н		Н	1	Н				 	1		Н	1				1	-	+	+	140	1		+	1	t	t	\vdash	Н		\rightarrow	-	140
30		Н			Н		-	\vdash	-	\vdash			+	+		Н	-				\vdash	_		+	1	!		+	t	t	1	-	\vdash	\vdash	-	\rightarrow	
31					Н		Н		H	H		!	+	+		 	1				1	+	++	+	1	 	-	+	1	 	 	 	Н	H	-	-+	
31	\vdash	\vdash	-		Н	-	\vdash	\vdash	\vdash	Н	—	—	-	+	_	\vdash	\vdash		-	 	\vdash	-	++	+	+	!	_	-	-	\vdash	\vdash	\vdash	Н	\vdash	+	\rightarrow	
32		Н	\vdash		Н	-	Н	⊢	\vdash	Н		-	+	₩		⊢	\vdash		-	-	⊢	+	++	+	1	!	-	+	1	⊢	⊢	\vdash	Н	\vdash	-	\rightarrow	
		Н			Н	_	-	Η-	-	\vdash		_	+	+-	_	\vdash	⊢		_	_	₩	+	+	+	-	1	_	-	1		1-	⊢	Н	\vdash	-	\rightarrow	
34		\vdash			Н		-	⊢	\vdash	\vdash			-	-		_	⊢				₩	\vdash		+			_	-	-	-	-	⊢	\vdash	ш	\dashv	\rightarrow	
35							-			\vdash			_	_		_						_		_				-				\vdash	-		_	\rightarrow	
36					ш		\mathbf{L}	\vdash	\perp	\vdash			_	_		_	_				—	\vdash	\perp	_				₩		_	_	\vdash	ш		\dashv	\rightarrow	
40					ldot		\mathbf{L}	_	\vdash	\vdash			1	_		_	_					_	44	_				_		_	_	_	ш		\dashv		
Total	350			21410	250							31120	400						350	160					25965										ш.	700	80705

[Medium Goods Vehicle]

rigin	Desti 1			4	- 5	- (3 7	7 8	3 9	10	- 11	12	13	14	15	16	17	18	19	20	21	22	23	24 2	5 26	27	28	29	30	31	32	33	34	35 3	36 40	Total
1							Т	T																	95000									\neg		950
2	2																																			
3	3						П																											т		
4	1			5960			П				10000	5000													35800	85000								Т		1417
5	5																																			
6	6																																	\equiv		
7	7																																			
8	3																																			
9	9																																			
10																																				
11				12000																																12
12																									44560											44
13																									8350											8
14																									2500									\Box		- 2
15																																				
16																									7000											·
17																																				
18																																				
19																																				
20)											17000																								17
21																																				
22																									2200											
23																																				
24																																				
25																																				
26		_		22700								15400													69490		2660								1100	11
27																																				
28	3																																			
29	9																																			
30)						П																											П		T
31							П																		2500									T		
32							Т	П																										Т		
33							1	1																										\neg		
34	1						П																													
35		I	\neg		П		т	1	\mathbf{T}	Т											\vdash	Т	П					П			П			\neg		$\overline{}$
36			\neg				т	1	1												1		П											\neg		-
40																																		T		T
tal	250		-	40660		_	1	_	_	_	10000	37400	-	-		-	-			_	-	_	-	-		85000		_	_		-		_	-	1100	444

[Heavy Goods Vehicle]

	Desti	inatio	n																																			
Origin	1	2	3	4	- 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
1		₩			_		₩	-	₩	ш				_			_					_	\vdash	_	_				Ь.	ш		_		_	_	ш		
2		+-	_		-		┿	-	₩	Н			⊢	-			┝				-	-	\vdash	-	-				┝			_	_	⊢	┝	\vdash	_	
3		-			-	_	-	-	-	Н			\vdash	-						_		-	\vdash	_	_	17000			-			_		\vdash	_	\vdash		17000
- 5		+	-	_	⊢		+	┝	+	H		-	\vdash	-		-	┢			-	+	+	+	+	+	17000	_		⊢	Н		-	-	⊢	⊢	\vdash	_	17000
6		+			1	_	+	╌	╁	H		-	\vdash	-		_	┢			 	-	+	\vdash	\dashv	_				H	\vdash		\vdash	_	H	┢	\vdash	-	
7		t			1		-	1	-	-			\vdash	1			-					${}^{+}$	\vdash	\dashv	_				\vdash	Н	_			Н	-	\vdash	_	
		T			1		_		1													т	\vdash	_	_									-		\vdash		
9		1					1		-														\vdash	_	_											\vdash		
10)						1															Т																
11							П																П															
12																																						
13																																						
14													ᆫ									╚											╚	╚				
15	i						_		_																									ш		ш		
16							_																\perp	_												ш		
17		_					_		_													_	\vdash	_										_		\perp		
18		₩.			_		-	_	₩.					_			_			_	_	_	\vdash	_	_				<u> </u>			_		_	_	\vdash		
19		₩	_		┡		╄	┡	₩	\vdash			⊢	-			┝			-	-	-	\vdash	-	-		_		┝	Н		-	-	┢	┡	\vdash	_	
20 21	-	-			-		-	-	-	\vdash			_	-			-				-	⊢	\vdash	-	-				⊢				_	_	-	\vdash	_	
22		-			-		-	-	-				\vdash	-			┢			-	-	-	+	+	+				┝	Н		-	_	⊢	⊢	\vdash		
23		+			-	_	+	-	+	Н				-			H			-	-	-	+ +	-	-				\vdash					\vdash		\vdash	_	
24		-			\vdash		-	-	_	Н		-	\vdash	-			H			—	-	-	+	-	_				H	Н		_		Н	\vdash	\vdash	_	
25	-	+			1	_	+	+-	╁	H		-		-		_	┢	\vdash		-	_	+	\vdash	\dashv	_				┢	\vdash		-		H	┢	\vdash	_	
26	3000				1	18000	1	1	-	-			\vdash	_			-					${}^{+}$	\vdash	\dashv	_	6000			\vdash	Н				Н	-	\vdash	_	27000
27	1	T							1														\Box	_	_											\vdash		
28							Т															Т																
29	1																																					
30)																																					
31							L																	\perp														
32																						Ш																
33													ᆫ									╚											╚	╚				
34							_		_	\Box			_									\perp											ᆫ	Щ		\Box		
35													ᆫ									匚											L					
36		_	_		_		_	_	_	\vdash			_	_			_				_	╙	\vdash	_					L				ш	_	_	ш		
40		Ь.	<u> </u>		Ь.		┺	1	₩	ш			_	Ь			Ь—				_	_	\vdash	_	_				╙	ш		<u> </u>	_	⊢	<u> </u>	ш		
Total	3000)			<u> </u>	18000)	1						1			<u> </u>				<u> </u>	<u> </u>				23000						<u> </u>		<u> </u>	<u> </u>			44000

[Very Heavy Goods Vehicle]

	Destin	natio																															_					
Origin	- 1	2	3	- 4	1 5	6	7	8 !	9 10	11	1	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	2	B 29	30	3.	32	33	34	35	36	40	Total
1					1	\neg	Т				150	00		\neg												55000			1	Т		T	г	П		П		56500
2					_	_	_	_	1			_	_									-	П	\neg					1	1		1	$\overline{}$	П		\neg	\neg	
3					1	_	_	_	1			_	_										П	\neg					1	1		1	-	П		\neg		
4					т	_	Т	_				1			197020					60000				\neg		40000				1		1	т	П		\neg		297020
5						T	Т		Т			T	T										П											П			\neg	
6						Т	Т					Т	Т	П												64750			Т				П	П				64750
7						Т	Т					Т	Т	П															Т				П	П				
8						\top	Т	Т				Т	\neg	\neg															Т				Г	П		П		
9							Т					Т																										
10							Т					Т			106411																		П					106411
11						Т	Т		П			T	1		187568																		Г					187568
12															36000																							36000
13							Τ					Т																										
14																																						
15						\top	Т	\top				_																						П			\neg	
16							Т					T																					П					
17						Т	Т					Т																					П	П				
18				29000)	Т	Т					Т														60000							П					8900
19						Т	Т					Т	Т	П												147000							П	П				14700
20						Т	Т					Т	Т	П												63800			Т				П	П				6380
21						\top	Т	T				T	\neg	\neg															Т	П			Г	П				
22						_	Т	1				T	7																Т				T	П				
23							Т					Т																					П					
24						Т	Т					Т																										
25						Т	Т					Т																										
	####			30000)		Τ					Т			32780			20000	63000																			182080
27																																						
28																																						
29						Т	П					Ι	I	Π																	Г							
30									I			Т											\Box							ľ			\Box					
31							┰		1			Ι	$_{\rm I}$	Π			L						\Box						\Box	1	ľ	1	ഥ	LI		LΤ		
32							Т					Τ																		Г								
33							Т					1																										
34							Τ					Т	Т																	Г								
35							Т																															
36						Т	Т					T																	T									
40							Ι																															
otal	####			59000)						150	00			559779			20000	63000	60000						430550											-	1230129

- 3.2 OD Survey on International Cross-Borders
- 3.2.1 Zobwe/ Mwanza Border (Surveyed on 27th (Mon) July, 2009)
- (1) Number of vehicles (Vehicles/ 4days)

[All vehicle types: Total]

Total	Des	tinat	ion																																			
Origin	1	2		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
1							\vdash	П				<u> </u>			_																							
2							1																															
3							T	T																														
4							t	T																														
5							T	T																														
6							T	T																														
7							T	T																														
8							-	-																														
9							T	-																														
10							1																															
11							1																															
12							1								1																							1
13																																						
14																																						
15											2	1					2			9						3												17
16																																						
17															1																							1
18																				1																		1
19																				1																		1
20															28			2	2	15		14		16										26				103
21																																						
22																				36	1																	37
23																																						
24																				23																		23
25																																						
26															1									- 1														2
27																																						
28																																						
29																																						
30																																						
31																																						
32																																						
33																																						
34																				29																		29
35																																						
36																																						
40																				- 1																		1
Total											2	1			31		2	2	2	115	1	14		17		3								26				216

Zone: Code

Nampula	1
Ribaue	2
Malema	3
Cuamba	4
Angoche	5
Nacala	6
Erati	7
Mecuburi	8
Lalaua	9

Marrupa	10
Mecanhelas	11
Mandimba	12
Ngauma	13
Zambezia N	14
Tete	15
Zambezia S	16
Milange	17
Beira	18
Maputo	19
Malawi S	20
Malawi N	21

SA	22
Zimbabwe N	23
Zimbabwe S	24
Zambia	25
Lichinga	26
Lago	27
Metarica	28
Maua	29
Majune	30

Cabo Delgado	31
Nampula City	32
Lichinga City	33
Beira Port	34
Quelimane Port	35
Nacala Port	36
Others (N/A)	40

[Passenger car / 4-Wheel vehicle]

1+2	Des	tinat	ion																																			
Origin	1	2		4	5	6	7	8	9	10	-11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
1																																						
2																																						
3																																						
4																																						
5																																						
6																																						
7																																						
8																																						
9																																						
10																																						
11																																						
12																																						
13																																						
14																																						
15																	1			8						1												10
16																																						
17																																						
18																				1																		1
19																				1																		1
20															24			- 1	2	12		3		5														47
21																																						
22																				11	1																	12
23																																						
24																				5																		
25																																						
26															- 1									1														- 2
27																																						
28																																						
29																																						
30																																						
31																																						
32																																						
33																																						
34																																						
35																																						
36																																						
40					П			Г		П		П							П																			
Total															25		1	1	2	38	1	3		6		1												78

[Minibus and Light Bus / Medium/Large Bus]

3+4	Des	tinat	ion																																			
Origin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
1																																						
2																																						
3																																						
4																																						
5																																						
6																																						
7																																						
8																																						
9																																						
10																																						
11																																						
12																																						
13																																						
14																																						
15																																						
16																																						
17																																						
18																																						
19																																						
20																								1														
21																																						
22																				6																		(
23																																						
24																				1																		
25																																						
26																																						
27						1																																
28						1																																
29								П																П	П													
30						1																																
31																																						
32								П																														
33						1		Г											П						П											\Box		
34							Г			1															П													
35										1																												
36		-			t	ı	Н	т	1	t					\Box		г		П	\Box				П	П										\vdash	\vdash		
40						t	H			 									H			H																
Total						t	H			 									М	7				1												\vdash		8

(2) Transported Goods Volume (kg/4days)

Total	De	stina	ition																																			
Origin		1 :	2 3	4	- 5	6	7	8	3 9	10	11	12	13	14	1 15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
	1					П								П																		Г	Г	П			-	
	2					П																												П			-	
	3																																П					
	4					П																										П	П	П			-	
	5																																					
	6																																					
	7																																					
	8																																					
	9																																					
	10																																					
	11																																					
	12														20000																							2000
	13																																					
	14																																					
	15																1000																					100
	16																															L	L					
	17														12000																							1200
	18																																					
	19																															<u> </u>	Ш	ш			ш	
	20														22000			180		4050		149100		208000									<u> </u>				ш	38333
	21																															Ш.	Ш.	ш			ш	
	22													_						402140												_	ш	ш			ш	40214
	23																															Ш	Ш.	ш			ш	
	24																			432140													Ш.				ш	43214
	25													_																		_	Ь.	ш			ш	
	26	_				_		_						_																		_	┺	╨			—	
	27	_		_	ـــــ	_		ـــــ	_	_	_	_		┺	1			_	_		_					_	_	_	_	<u> </u>	_	ـــ	┺	╨	_	_	—	L
	28	1	_	_	_	_	_	ـــ	_	_	_	_	_	_		_	<u> </u>	_	_		_		_		L	_	—	_	_	L	_	₩	₩	┰	—	_	-	
	29	_	1	<u> </u>	ــــ	_	1	ــــ	╀	_	Ь	L	4	ـــ		<u> </u>	<u> </u>	_	_		_		_		_	_	L	L	_	└	_	₩	┺	╙	╙	Ь	\vdash	—
	30	_	╀	_	Ь.	┺	1_	₩	╄	_	Ь—	<u> </u>	1_	┺	1	<u> </u>		_	<u> </u>		⊢		<u> </u>		<u> </u>	<u> </u>	_	Ь—	_	Ь—	_	┺	┺	₩	_	Ь	\vdash	
	31	┺	₩	ـــــ	Ь.	╙	4	₩	₩	Ь	Ь	<u> </u>	4	₩	1	<u> </u>		<u> </u>	<u> </u>		⊢		<u> </u>		<u> </u>	<u> </u>	_	Ь—	ـــــ	╙	ــــ	┺	┺	₩	_	Ь	\vdash	<u> </u>
	32	_	₩	_	Ь.	┺	1_	ـــــ	╄	_	Ь—	<u> </u>	1_	┺	1	<u> </u>		_	<u> </u>		⊢		<u> </u>		<u> </u>	<u> </u>	_	Ь—	_	Ь—	_	┺	┺	₩	_	Ь	\vdash	
	33	+	₩	<u> </u>	┞	⊢	1	ــــــ	1	ــــ	┡	<u> </u>	1	ـــ	_	<u> </u>		L-	<u> </u>		┞		<u> </u>		<u> </u>	_	<u> </u>	<u> </u>	_	<u> </u>	_	₩	₩	₩	┡		\vdash	H
	34	_	_	_	_	_		ـــــ	_	_	_	_		_				_	_	678390	4		_		_	_		_	_	_	_	ـــ	┺	╨	_	_	—	6783
	35	1	1	1	<u> </u>	_	1	1	1	_	<u> </u>	<u> </u>	1	ـــــ	1	1		1	_		_		_			_	╙	<u> </u>	1	<u> </u>	_	₩	₩	₩	_	<u> </u>	\vdash	—
	36	1	1	1	<u> </u>	_	1	1	1	_	<u> </u>	<u> </u>	1	ــــ	1	1		1	_		_		<u> </u>		L	_	╙	<u> </u>	1	<u> </u>	_	₩.	₩.	₩	_	<u> </u>	╙	—
	40	1	1	<u> </u>	<u> </u>	ــــــــــــــــــــــــــــــــــــــ	1	ــــــ	1	_	┞	<u> </u>	1	ــــ	I	1		ļ.,	_	28000	4		<u> </u>			_	╙	<u> </u>	_	<u> </u>	_	ـــــ	ـــــ	₩	_	<u> </u>	╙	2800
Total				_											54000	II .	1000	180		1544720	1	149100		208000								1	1				1	195700

(1) Number of vehicles (Vehicles/4days)

[All vehicle types: Total]

Total	Des	tina	ion																																			
Origin	1	2		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Toal
1																																						
2																																						
3																																						
4																																						
5	1																																					
6																																						
7																																						
8																																						
9																																						
10																																						
11												П																										
12												П																										
13												П																										
14																																						
15														1																								
16																				1																	1	
17															1					23																		2
18																																						
19																																					1	
20														1		1	31															1				7		4:
21																																						
22																1																						
23																																						
24																																						
25																																						
26																																						
27																																						
28																																						
29																																						
30																																						
31																																						
32																																						
33																																						
34												Ш																										
35																																						
36																																						
40																																						
Γoal	2													2	- 1	2	31			24												1				7	2	7:

[Passenger car / 4-Wheel vehicle]

	Des																																				
Origin	1		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Toal
1																																					
2																																					
3																																					
4																																					
5	- 1																																				1
6																																					
7																																					
8																																					
9																																					
10																																					
11																																					
12																																					
13																																					
14																																					
15																																					
16																			1																	1	2
17																			12																		12
18																																					
19																																					
20	- 1												1			9															- 1						12
21																																					
22																																					
23																																					
24																																					
25																																					
26																																					
27																																					
28																																					
29																																					
30																																					
31																L																					
32																																					
33																																					
34																																					
35																																					
36																																					
40																																					
Toal	2												- 1			9			13												1					1	27

5+6+7+8	Des	tinat	ion																																			
Origin	1		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Toal
1																																						
2																																						
3																																						
4																																						
5																																						
6																																						
7												П																										
8												П																										
9												П																										
10																																						
11			П					П				П							П							П												
12		Г							Г			П																										
13												П																										
14												П																										
15												П		1																								
16												П		Ė																								
17												П			1					11																		12
18												П			_																							- '
19												П																									1	
20												П				1	22																			7	_	30
21												П				_																				Ė		- 0,
22												П				1																						-
23												П				_																						
24												П																										
25												П																										
26												П																										
27												П																										
28												П																										
29												П																										
30												П																										
31												П																										
32												П																										
33		Н					1	-	Н			П							П							т					\vdash	-	Н		-			
34		Н	П				1	-	Н			П							П							т					\vdash	-	Н		-			
35			Н				1	-				Н					\vdash		H					\vdash		Н					\vdash							
36	Н	Н	Н				1	1	Н			Н					Н		Н					Н		Н					\vdash	Н	\vdash					
40		Н	Н				H	Η-	Н			Н	\vdash		\vdash		\vdash		Н	\vdash	\vdash	\vdash			\vdash	Н	\vdash				\vdash	Н	\vdash		Н		\vdash	
Toal	\vdash	\vdash	Н		\vdash		 	\vdash	\vdash			Н		- 1	1	2	22		Н	11		\vdash		\vdash		Н			-	\vdash	\vdash	\vdash	\vdash		\vdash	7	1	45
Udi												-			- 1		22																			/		

(2) Transported Goods Volume (kg/ 4days)

3.2.3 Mchinji Border (Surveyed on 12th (Mon) July, 2009)

(1) Number of vehicles (Vehicles/ 4days)

[All vehicle types: Total]

Total	Des	tinat	ion																																		
Origin	1			4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	Total
1																																					
2																																					
3																																					
4																																					
5																																					
6																																					
7																																					
8																																					
9																																					
10																																					
11																																					
12																																					
13				$oxed{oxed}$																																	
14																		ш																			
15																		ш																			
16																																					
17																		ш																			
18																		ш																			
19																																					
20																		ш				1			26												27
21																		ш				1			14												15
22																									5												5
23																									1												1
24																																					
25																		ш		31	3				13												47
26	<u> </u>	<u> </u>	Ь—	<u> </u>		Ь.	Ь—	\vdash	Ь.	_			<u> </u>		\vdash	Ь.	<u> </u>	\vdash	Ь—	_		Ь.	_	\vdash	Ь—	<u> </u>	\vdash	<u> </u>		<u> </u>	Ь—	<u> </u>					
27		<u> </u>	_	<u> </u>		_	_		_						ш			\vdash	_					ш	_		ш				_				H	_	
28			_	—		_	_		_		\Box				ш			Н	_					ш	_		ш				_	_			H	_	
29	<u> </u>	!	_	<u> </u>		_	_		_									\vdash	_						_						_						
30		1	⊢	<u> </u>		⊢	⊢	\vdash	⊢	⊢			\vdash		ш	ш	_	⊢	⊢	_		ш	_	ш	⊢	_	ш	\blacksquare		_	⊢	<u> </u>			Ш		
31	 	1	—	\vdash		—	—		—	_					\vdash			\vdash	—				_	\vdash	—		\vdash				—	<u> </u>				_	
32	<u> </u>		<u> </u>	—		<u> </u>	<u> </u>	\vdash	<u> </u>	_	-							\vdash	<u> </u>				<u> </u>		<u> </u>						<u> </u>	<u> </u>				_	
33		 	\vdash	┢		-	\vdash	\vdash	_	\vdash	-		H		\vdash	\vdash	-	\vdash	\vdash	-		\vdash	-	\vdash	<u> </u>	-	\vdash			-	\vdash	-			H	_	
34	₩	 	-	⊢	\vdash	-	-	Н	-	\vdash	-	\vdash	Н		Н	\vdash	-	Н	\vdash	_	\vdash	\vdash	_	Н	\vdash	-	Н	Н		-	\vdash	_	\vdash		Н	_	
35	 	 	\vdash	┢		-	\vdash	\vdash	_	\vdash	-	-	<u> </u>		\vdash	\vdash	-	\vdash	\vdash	-		\vdash	-	\vdash	<u> </u>	-	\vdash	\vdash		-	\vdash	<u> </u>			H	_	
36		 	\vdash	┢		-	\vdash	\vdash	_	\vdash			\vdash		\vdash	\vdash	-	\vdash	\vdash	-		\vdash	-	\vdash	<u> </u>	-	\vdash	\vdash		-	\vdash	-			Н		
40	 	1	\vdash	├	\vdash	-	\vdash	Н	-	\vdash	-	\vdash	Н		\vdash	\vdash		\vdash	\vdash	0.1	_	_	_	Н	2		Н	Н			\vdash	_	\vdash		Н	_	2
Total	<u> </u>																			31	3	2			61												97

Zone: Code

Nampula	1
Ribaue	2
Malema	3
Cuamba	4
Angoche	5
Nacala	6
Erati	7
Mecuburi	8
Lalaua	9

Marrupa	10
Mecanhelas	11
Mandimba	12
Ngauma	13
Zambezia N	14
Tete	15
Zambezia S	16
Milange	17
Beira	18
Maputo	19
Malawi S	20
Malawi N	21

	<u>_</u> :
SA	22
Zimbabwe N	23
Zimbabwe S	24
Zambia	25
Lichinga	26
Lago	27
Metarica	28
Maua	29
Majune	30

Cabo Delgado	31
Nampula City	32
Lichinga City	33
Beira Port	34
Quelimane Port	35
Nacala Port	36
Others (N/A)	40

[Passenger car / 4-Wheel vehicle]

1+2	Des	tinat	ion																																		
Origin	1		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	Total
1																																					
2	2																																				
3	3																																				
4	ļ.																																				
5																																					
6	6																																				
7	7																																				
8																																					Ĺ
9																																					$\overline{}$
10																																					
11																																					
12																																					
13																																					
14	1																																				
15																																					
16																																					
17																																					
18																																					
19)																																				
20																									18												18
21																									8												8 5
22																									5												
23																									1												1
24																																					
25						_	_		_											20	2				11						_	_		\perp			33
26	<u> </u>	ш	ш	Щ		_	_	Щ	_		ш	ш						Ш					Щ	ш	_		ш				_	<u> </u>		Ь.	Щ		
27		ш	ш			_	_		_		Ш	ш												ш			ш				_	_		\vdash			
28		ш	ш	Щ		_	_	Щ	_		ш	ш						Ш					Щ	ш	_		ш				_	<u> </u>		Ь.	Щ		
29		\vdash	\vdash	<u> </u>		Ь.	Ь—	\vdash	Ь.	_	\vdash	\vdash	<u> </u>			_	<u> </u>	ш					<u> </u>	\vdash	Ь—	_	\vdash	_		<u> </u>	Ь—	<u> </u>		Ь.	\vdash		
30	1	\vdash	ш	\vdash		⊢	⊢	\vdash	Ь.		\vdash	\vdash						ш					\vdash	\vdash	⊢	_	ш				⊢	Ь—			\vdash		—
31		\vdash	\vdash	\vdash		Ь.	Ь—	\vdash	Ь.	Ь.	\vdash	\vdash				Ь.		ш					\vdash	\vdash	Ь—	_	\vdash	Ь.			Ь—	Ь—		Ь.	\vdash		—
32		ш	ш			_	_		_		ш	ш						ш						ш	_		ш				_	<u> </u>		_			—
33		ш	ш			_	_	Щ	_	ш	ш	ш				ш		Ш					Щ	ш	_		ш	ш			_	Ь—		ш	Щ		
34		\vdash	\vdash	<u> </u>		Ь.	Ь—	\vdash	Ь.	_	\vdash	\vdash	<u> </u>			_	<u> </u>	ш					<u> </u>	\vdash	Ь—	_	\vdash	_		<u> </u>	Ь—	<u> </u>		Ь.	\vdash		
35		ш	ш	\vdash		_	_	\vdash	_	\vdash	ш	ш	_		-	\vdash	_	Ш					\vdash	ш	<u> </u>	_	ш	\vdash		_	_	Ь—			\vdash		
36		ш	ш	Щ		_	_	Щ	_	ш	ш	ш				ш		Ш					Щ	ш	٠.		ш	ш			_	Ь—		ш	ш		
40)	ш	ш			_	_		_	_	ш	\vdash				_								ш	1		ш	_			_	<u> </u>		_			
Total																				20	2				44												66

[Minibus and Light Bus / Medium/Large Bus]

(2) Transported Goods Volume (kg/4days)

3.2.4 Mandimba/ Chiponde Border

(Surveyed between 9th (Sun) and 12th (Wed) August, 2009)

(1) Number of vehicles (Vehicles/ 4days)

[All vehicle types: Total]

Total	Des	stinat	ion																																			
Origin	1			4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
1																																						
2																																						
3																																						
4															8			1		4																		13
5																																						
6																																						
7																																						
8																																						
9																																						
10	Ш														7																							7
11															4																							4
12												2			2					14																		18
13																																						
14																																						
15				7						4	3	2								1						3			4									24
16																																						
17																																						
18				1																						3												4
19																										4					- 1							5
20	3			6		12					- 1	24	- 1													11					- 1							59
21																																						
22																										3												3
23																										1												1
24																																						
25																																						
26															4			- 1	2	12																		19
27																																						
28												ш		Ь.					ш		ш	ш		ш							ш		ш					
29									_			ш		_					ш		ш	ш		ш							ш		ш					
30	_	_			ш		_	_	_	_	_	\perp	_	_			_					1		Ш							\perp							1
31												ш		_					ш		ш	ш		Ш							ш		ш					
32	_				ш			_	_	_		ш		_					ш		ш	ш		ш							ш		ш					
33		_	ш		ш		_	_	_	_	_	\perp	_	_	ш		_		\Box			\perp	_	ш	ш	ш	ш	ш		ш	\perp		\perp	ш				
34					$ldsymbol{ldsymbol{eta}}$			_	_			ш							ш		ш	ш		ш							ш		ш					
35					$oldsymbol{ol}}}}}}}}}}}}}}}}}$							Ш							Ш		Ш	$oxed{oxed}$		Ш							Ш		$oxed{oxed}$					
36					$oldsymbol{ol}}}}}}}}}}}}}}}}}$		$oxed{oxed}$					Ш							Ш		Ш	$oxed{oxed}$		Ш							Ш		Ш					
40							<u> </u>					ш							$ldsymbol{ldsymbol{\sqcup}}$		$ldsymbol{ldsymbol{\sqcup}}$	ш		$ldsymbol{ldsymbol{\sqcup}}$							ш		ш					
Total	3			14		12				4	4	28	1		25			2	2	31		1				25			4		2							158

Zone: Code

Nampula	1_
Ribaue	2
Malema	3
Cuamba	4
Angoche	5
Nacala	6
Erati	7
Mecuburi	8
Lalaua	9

Marrupa	10
Mecanhelas	11
Mandimba	12
Ngauma	13
Zambezia N	14
Tete	15
Zambezia S	16
Milange	17
Beira	18
Maputo	19
Malawi S	20
Malawi N	21

SA	22
Zimbabwe N	23
Zimbabwe S	24
Zambia	25
Lichinga	26
Lago	27
Metarica	28
Maua	29
Majune	30

Cabo Delgado	31
Nampula City	32
Lichinga City	33
Beira Port	34
Quelimane Port	35
Nacala Port	36
Others (N/A)	40

[Passenger car / 4-Wheel vehicle]

1+2	Des	stinat	ion																																			
Origin	1		3	4	5	6	7	' 8	3 9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
1																																						
2																																						
3																																						
4															- 1					3																		4
5																																						
6																																						
7		_	ш								_																											
8																																						
9		_							_		_																											
10		_	ш		lacksquare	_		╙	_	↓_	_	\vdash	_	ш			ш		ш																	Ш		
11		╄	ш		_		_	_	╄	╄	_	۰.	Ь—	ш	ш		ш		ш	Ļ	Ш			Ш		Ш					ш					\square		
12		╄	ш		_		_	_	╄	╄	_	2	Ь—	ш	ш		ш		ш	7				Ш		Ш					ш					\square		9
13		₩	\vdash		Ь—	_	_	₩	₩	₩	_	_	Ь—	\vdash	\vdash		\vdash		\vdash	\vdash	ш			ш		ш			ш		\vdash		Ш					
14		₩		_	_	_	┡	<u> </u>	₩	4	╄	┡	<u> </u>	Н						_						щ										_		
15		<u> </u>		_1	_		_	-	+-	+	1	_	<u> </u>							_1						2										_		4
16		-					_	_	-	+-	_	_	_																									
17		-	ш		_		_	₩	+-	+-	-	_	_													_	_							_		-		
18		-	ш		_	_	_	-	+	+	₩	_	_				ш		ш					-		1	_				_			_		_	_	1
19		+-	Н	<u> </u>	_		-	₩	₩	₩	₩	<u> </u>	Η.	Н	\vdash		Н				ш			ш		1	_				1			_		_	_	2
20		₩	Н	5			-	╌	╁	┿	-	6	_1	\vdash	\vdash	_		_		\vdash	\vdash		_	\vdash		7	_		\vdash		_1	_	\vdash	_	_	-	_	20
21		+	Н	_	_		-	₩	╄	┿	₩	⊢	┢	Н	\vdash	_	Н	_	Н	-	\vdash			-		-					-	_		_		-		
22	_	+-	Н	_	_		-	-	┿	┿	-	⊢	⊢	\vdash	-	_		_		-	Н			Н		1	_		\vdash		-	_	\vdash	_		-	_	- 1
23 24	_	-	Н	_	_	_	-	-	+	┿	+	\vdash	⊢	Н	-	_	Н	_		-	-			-	_	_	_		-		-	_		_		-	_	
25		₩	Н		\vdash	_	-	\vdash	+	+	₩	\vdash	┢	Н	_		Н		Н	_					_		_				_			_		-		
26		+-	Н	-	_		-	+	╁	╁	+	\vdash	┢	Н	2	-	Н	-	1	7	-			-	-	-	-		-		-	-	-	-		-		10
27		+			_		-	+	+	+	+-	—	┢	Н					-		\vdash			\vdash		\vdash			\vdash		\vdash		-			-	_	10
28		+-	\vdash		\vdash	\vdash	Η-	+	+	+	+	\vdash	\vdash	Н	\vdash		\vdash		\vdash	\vdash	Н			Н		Н			Н		\vdash		H					
29	Н	1	Н				1	+	+	+	1	1	Н	Н	\vdash		Н		Н	\vdash	Н			Н		Н			\vdash		\vdash		\vdash			\vdash		
30	\vdash	+					\vdash	+	+	+	+	-	H		\vdash					\vdash	Н	1		Н		Н			Н		\vdash					\vdash		1
31	Н	+	Н		-	-	_	+	-	+	_	_	Н	Н	Н		Н		Н	Н	Н	_		Н		Н			Н		Н		\vdash			\vdash		
32	\vdash	-	Н		-	\vdash	-	-	${}^{+}$	+	-	-	\vdash	Н	\vdash		Н		Н	\vdash	Н			Н		Н			\vdash		\vdash						_	
33		1	Н		\vdash	\vdash	-	T	T	+	-	-	\vdash	Н			\vdash		\vdash					Н		Н										\vdash		
34		t	Н					1	t	t	-	-		Н	\vdash		Н		Н	\vdash	Н			Н		Н			Н		\vdash					\vdash		
35	Н	1	т		Т		т	T	1	1	т	т	т	т	т		т		т	т											т							
36	Н	1	т		Т		т	T	1	1	т	т	т	т	т		т		т	т											т							
40		t	т				т	т	1	1	t	-	Н	т	\vdash		т		т	Н	Н			Н		Н			Н		Н					\vdash		
Total		1		6			t	T	1	1	T	8	1	П	3				1	18		1			-	12					2					\dashv		52

[Minibus and Light Bus / Medium/Large Bus]

3+4	Des	stinat	ion																																		_	
Origin	1			4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	40	Total
1																																					\neg	
2																																					\neg	
3																																						
4																																					\neg	
5																																						
6																										П											\neg	
7																																					\neg	
8																																					\neg	
9																																						
10																																						
11																																					\neg	
12																				- 1																		1
13																																					\Box	
14																																						
15		Π																																			\neg	
16																																						
17																																						
18																																						
19																																						
20												1														2												3
21																																						
22																										- 1												1
23																																						
24																																						
25																																						
26			\Box									\Box								2						Ш							\Box					2
27																																						
28			\Box								\Box	\Box												\Box		Ш							Ш					
29			Ш								Ш	Ш			Ш				Ш					Ш		Ш						Ш	Ш					
30																																						
31			Ш								Ш	Ш			Ш				Ш					Ш		Ш						Ш	Ш					
32			ш		<u> </u>	Ь				<u> </u>	$ldsymbol{ldsymbol{\sqcup}}$	ш			ш				$ldsymbol{ldsymbol{\sqcup}}$					$ldsymbol{ldsymbol{\sqcup}}$		ш						$ldsymbol{ldsymbol{\sqcup}}$	$ldsymbol{\sqcup}$					
33			ш			<u> </u>			<u> </u>	<u> </u>	Ш	ш			Ш				ш					Ш		Ш						ш	Ш					
34			Ш		$oxed{oxed}$				$oxed{oxed}$		Ш	Ш			Ш				Ш					Ш		Ш						Ш	Ш					
35			oxdot								Ш	$oxed{oxed}$			Ш				Ш					Ш		Ш						Ш	Ш					
36			Ш								Ш	$oxed{oxed}$			Ш				Ш					Ш		Ш						Ш	Ш					
40																																						
Total	ı	ı	ı		l		1	1	ı	l	1	1			1					3				1		3					l							. 7

(2) Transported Goods Volume (kg/4days)

Appendix-J Traffic Demand Forecast

Appendix-J Traffic Demand Forecast

1. Future Traffic Volume

(1) Normal Traffic

				Lichinga~	Mandimba							Mandimba	~Cuamba			
	Passenger Car	Mini-bus	Large Bus	Light Goods Vehicle	Medium Goods Vehicle	Heavy Goods Vehicle	Very Heavy Goods Vehicles	Total	Passenger Car	Mini-bus	Large Bus	Light Goods Vehicle	Medium Goods Vehicle	Heavy Goods Vehicle	Very Heavy Goods Vehicles	Total
2009	46	28	1	7	15	20	26	142	35	26	0		11	3	23	101
2010	51	36	1	8	17	22	29	163	39	34	0		12	3	32	124
2011	57	46	1	9	19	23	31	186	43	43	1	4	14	3	41	150
2012	63	58	1	11	22	25	34	214	48	56	1	5	16	4	50 57	178
2013 2014	70 113	74 136	1	13 20	25 37	27 31	37 53	247 393	53 77	71 117	1	6 9	18 26	4 6	118	209 355
2014	113	182	1	25	42	34	64	475	87	157	1	11	30	7	133	426
2016	139	203	2		47	36	73	530	95	175	1	13	34	8	145	471
2017	154	249	2		54	39	85	617	105	215	1	15	38	8	159	542
2018	170	303	2	42	61	41	91	710	116	262	1	18	43	10	167	617
2019	189	366	2		70	44	99	819	129	317	2		49	11	175	703
2020	209	440	2	60	79	47	104	941	143	381	2	26	55	12	181	799
2021	231	525	3	73	90	50	112	1,084	158	456	2	31	62	14	189	911
2022	256	624	3		102	53	119	1,244	174	542	2		70	15	195	1,036
2023	283	738	3		116	56	138	1,439	193	641	2		80	17	213	1,190
2024 2025	313	867	3		133	60	151	1,653	213	754	3		90	19	225	1,357
	346	1,013	4	153	151	64	161	1,893	236	882	3		102	21	235	1,541
2026	382	1,178	4	185	172	68	173	2,163	261	1,026	3		116	24	245	1,749
2027	422	1,363	5		197	73	185	2,469	288	1,188	4		131	27	256	1,982
2028	466	1,569	5		225	78	196	2,811	318	1,369	4		149	30	265	2,241
2029	514	1,798	6	329	258	83	209	3,196	351	1,569	4	129	168	34	275	2,530
2030	567	2,050	6		295	89	222	3,629	387	1,790	5 5		191 217	38	286	2,853
2031 2032	626 690	2,327 2,629	7	484 587	338 389	96 104	245 267	4,122 4,673	427 470	2,033 2,298	<u>5</u>		217	42 47	306 326	3,218 3,620
	760	2,629	8	712	389 446	112	288	5,284	519	2,298	6		280	53	343	4,061
2033 2034	838	3,313	9		514	121	310	5,284	571	2,387	7	329	318	59	362	4,061
2034	922	3,696	10		592	131	335	6,736	629	3,236	8		362	66	383	5.083

(2) Generated Traffic (Senario-1: Only section between Cuamba ~ Mandimba will be improved)

				Lichinga~	Mandimba							Mandimba	~Cuamba			
	Passenger Car	Mini-bus	Large Bus	Light Goods Vehicle	Medium Goods Vehicle	Heavy Goods Vehide	Very Heavy Goods Vehicles	Total	Passenger Car	Mini-bus	Large Bus	Light Goods Vehicle	Medium Goods Vehicle	Heavy Goods Vehide	Very Heavy Goods Vehicles	Total
2009	0	0	0		0		0		0	0	0		0	0	0	0
2010	0	0	0	0	0		0		0	0	0		0	0	0	0
2011 2012	0	0	0		0		0		0	0	0		0		0	0
2012	0	0	0		0		0		0	0	0		0	0	0	0
2014	11	13	0		9		5		7	11	0		6	1	4	32
2015	12	18	0		10		6	54	8	15	0		7	2	5	32 39 43 51
2016	14	20	0		11	2	7	60	9	17	0		8		5	43
2017	15	24	0		12	3	7	70	10	20	0		9	2	6	51
2018	17	29	0		14	3	8		11	25	0		10		7	59 68 79 92
2019	18	35	0		16		9		12	30	0		11	2	7	68
2020 2021	20 22	43 51	0		18	4	10 11		13	36 43	0		13 14	3	8	79
2021	25	60	0	20	21 24	5	13	126 146	15 17	43 51	0		16		10	106
2022	27	71	0		27	5	13		18	61	0		18		11	123
2024	30	83	0		31	6	16		20	71	0		21	4	13	142
2025	33	97	0		35		17	225	22	84	0		24	5	14	163
2025 2026	37	113	0	43	40	8	19		25	97	0	17	27	6	16	188
2027	40	131	0		45	9	22	299	27	113	0	21	30	6	18	215
2028	45	150	0		52	10	24	344	30	130	0		34	7	20	246
2029	49	172	1	76	59	11	27	395	33	149	0		39	8	22	281
2030	54	196	1	92	68	12	30		37	170	0		44	9	24	320
2031	60	222	1	112	78	13	33	519	41	193	0		50	10	27	364
2032	66	251		136	90	15 17	37	594	45	219	- 1	52	57	11	30	414
2033 2034 2035	72 80	282 316	1	164 199	103 119	17	41 46	680 779	49 54	246 276	1	63 76	65 73	12 14	33 37	469 531
2034	88	352	1	242	137	21	51	891	60	308	1	92	84		41	601

(3) Generated Traffic (Senario-2: Both sections are improved)

				Lichinga~	Mandimba							Mandimba	~Cuamba			
	Passenger Car	Mini-bus	Large Bus	Light Goods Vehicle	Medium Goods Vehicle	Heavy Goods Vehicle	Very Heavy Goods Vehicles	Total	Passenger Car	Mini-bus	Large Bus	Light Goods Vehicle	Medium Goods Vehicle	Heavy Goods Vehicle	Very Heavy Goods Vehicles	Total
2009	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2010	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2011	0	0	0		0		0		0	0	0	0	0	0	0	0
2012	0	0			0		0		0	0			0	0	0	0
2013	0	0	0		0		0		0	0	0		0	0	0	0
2014	24	29	0		9		5		19	28	0		6		4	61
2015	27	39	0		10		6		21	38	0		7	2	5	75 83
2016	30	44	0		11	2	7	101	23	42	0		8		5	83
2017	33	54	0		12	3	7	118	25	51	0		9	2	6	97
2018	37	65	0		14	3	8		28	63	0		10		7	114
2019	41	79	0		16		9		31	76	0		11	2	7	133
2020	45 50	95 114	0	14 17	18 21	4	10 11	187 217	34 38	91 109	0		13 14		8 9	155 181
2021	55	135	- !	20		5	13		42	130	U	8	16		10	211
2022 2023	61	135	1	20	24 27	5	13		42	130	1	10	16		10	211
	68	188	- 1	29	31	6	16		51	181	1	10	21	4	13	282
2024	75	219	1	35	35		17	390	56	211	1	14	24		14	325
2025 2026	83	255	1	43	40	8	19		62	246	1	17	27	6	16	374
2027	91	295	1	52	45	9	22	515	69	285	1	21	30		18	429
2028	101	340	1	63	52	10	24	590	76	328	1	25	34		20	490
2029	111	389	1	76	59		27	675	84	376	1	30	39		22	559
2030	123	444	1	92	68		30		93	429	1	36	44		24	636
2031	136	504	1	112	78	13	33	877	102	487	1	43	50	10	27	720
2032	149	570	2	136	90	15	37	998	113	551	1	52	57	11	30	815
2033	165	641	2	164	103	17	41	1,133	124	620	2		65	12	33	919
2034	182	718	2		119	19	46	1,284	137	694	2		73		37	1,033
2035	200	801	2	242	137	21	51	1,454	151	775	2	92	84	15	41	1,160

(4) Diverted Traffic (for international corridor transportation)

				Lichinga~	Mandimba] [Mandimba	~Cuamba			
	Passenger Car	Mini-bus	Large Bus	Light Goods Vehicle	Medium Goods Vehicle	Heavy Goods Vehicle	Very Heavy Goods Vehicles	Total		Passenger Car	Mini-bus	Large Bus	Light Goods Vehicle	Medium Goods Vehicle	Heavy Goods Vehicle	Very Heavy Goods Vehicles	Total
2009	0	0	0		0	0				0		0					0
2010	0	0	0		0	0				0		0					0
2011 2012	0	0	0		0	0				0		0					0
2012	0	0	0		0	0				0		0					0
2013	0	0	0		0	0				0		0					42
2015	0	0	0		0	0				0		0					43
2016	0	0	0	0	0	0	0	0	11	0		0			0	44	44
2017	0	0	0		0	0				0		0			0		45
2018	0	0	0		0	0				0		0					46
2019	0	0	0		0	0				0		0					46
2020 2021	0	0	0		0	0				0		0					47
2021	0	0	0		0	0				0		0					47
2022	0	0	0		0	0				0		0					47 48
2023 2024	0	0	0		0	0				0		0					48
2024	0	0	0		0	0				0		0					48
2025	0	0	0		0	0				0		0					48
2027	0	0	0		0	0				0		0					48
2028	0	0	0		0	0				0		0					48
2029	0	0	0	0	0	0	0	0	1 1	0	0	0	0	0	0		48
2030	0	0	0	0	0	0	0	0	1 6	0	0	0	0	0	0		48
2031	0	0	0		0	0				0		0					48
2032	0	0	0		0	0				0		0					48
2033	0	0	0	- v	0	0	- v			0		0					48
2034	0		0		0	0				0		0					48
2035	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	48	48

Appendix-K Coordinate of Centerline

Appendix-K Coordinate of Centerline

●Bypass-Mandimba JCT

No		Station	Xcoordinates	Ycoordinates	Beginning of Radius	Parameter	End of Radius	Length	Chord Angle
	1	-1-035.883	8,409,555.733	139,339.019	0		0	375.411	325-52-45.354
	2	-0-660.472	8,409,866.520	139,128.436	6,000		6,000	322.338	325-52-45.354
	3	-0-338.135	8,410,138.097	138,954.878	0		0	11.004	328-57-26.521
	4	-0-327.131	8,410,147.525	138,949.203	-5,000		-5,000	273.435	328-57-26.507
	5	-0-053.695	8,410,377.829	138,801.865	0		0	53.695	325-49-26.499
	6	0+000.000	8,410,422.252	138,771.703					325-49-26.499

● MandimbaJCT-Lichinga

No	Station	Xcoordinates	Ycoordinates	Beginning of Radius	Parameter	End of Radius	Length	Chord Angle
1	0+000.000	8,410,422.252	138,771.703	0		0	465.832	325-49-26.500
2	0+465.832	8,410,807.642	138,510.028	3,100		3,100	310.427	325-49-26.500
3	0+776.258	8,411,072.758	138,348.789	0		0	81.348	331-33-41.369
4	0+857.606	8,411,144.289	138,310.050	-10,500		-10,500	311.415	331-33-41.368
5	1+169.021	8,411,415.886	138,157.711	0		0	1,979.383	329-51-43.849
6	3+148.404	8,413,127.696	137,163.899	-25,000		-25,000	303.189	329-51-43.848
7	3+451.593	8,413,388.971	137,010.087	0		0	727.883	329-10-02.358
8	4+179.475	8,414,013.980	136,637.024	0	300	-600	150.000	329-10-02.358
9	4+329.475	8,414,139.379	136,554.903	-600		-600	435.896	322-00-19.258
10	4+765.371	8,414,360.206	136,190.172	-600	300	0	150.000	280-22-49.415
11	4+915.371	8,414,374.848	136,040.993	0		0	990.013	273-13-06.315
12	5+905.384	8,414,430.430	135,052.541	1,100		1,100	821.564	273-13-06.315
13	6+726.948	8,414,764.726	134,322.873	0		0	2,587.084	316-00-40.584
14	9+314.033	8,416,626.072	132,526.100	-12,000		-12,000	325.177	316-00-40.584
15	9+639.210	8,416,856.941	132,297.117	0		0	232.691	314-27-31.204
16	9+871.901	8,417,019.917	132,131.032	4,500		4,500	313.028	314-27-31.204
17	10+184.929	8,417,246.751	131,915.409	0		0	25.777	318-26-39.353
18	10+210.706	8,417,266.041	131,898.309	-8,000		-8,000	339.710	318-26-39.352
19	10+550.416	8,417,515.389	131,667.635	0		0	324.390	316-00-40.584
20	10+874.806	8,417,748.780	131,442.340	0	300	-600	150.000	316-00-40.583
21	11+024.806	8,417,852.197	131,333.834	-600		-600	263.802	308-50-57.483
22	11+288.608	8,417,967.951	131,099.145	-600	300	0	150.000	283-39-28.958
23	11+438.608	8,417,991.098	130,951.047	0		0	96.261	276-29-45.858
24	11+534.869	8,418,001.988	130,855.405	0	350	700	175.000	276-29-45.857
25	11+709.869	8,418,028.993	130,682.624	700		700	134.438	283-39-28.958
26	11+844.307	8,418,073.049	130,555.828	700	350	0	175.000	294-39-42.901
27	12+019.307	8,418,158.995	130,403.527	0		0	35.734	301-49-26.001
28	12+055.041	8,418,177.838	130,373.165	0	250	-700	89.286	301-49-26.002
29	12+144.327	8,418,223.288	130,296.331	-700		-700	102.570	298-10-11.359
30	12+246.896	8,418,264.924	130,202.692	-700	250	0	89.286	289-46-27.727
31	12+336.182	8,418,291.527	130,117.479	0		0	23.543	286-07-13.081
32	12+359.725	8,418,298.064	130,094.862	0	300	700	128.571	286-07-13.085
33	12+488.297	8,418,337.512	129,972.542	700		700	334.550	291-22-55.771
34	12+822.847	8,418,527.930	129,701.340	700	300	0	128.571	318-45-55.613
35	12+951.418	8,418,629.584	129,622.698	0		0	138.789	324-01-38.298

No	Station	Xcoordinates	Ycoordinates	Beginning of Radius	Parameter	End of Radius	Length	Chord Angle
36	13+090.207	8,418,741.905	129,541.174	-1,000		-1,000	309.454	324-01-38.298
37	13+399.661	8,418,960.466	129,323.846	0		0	423.217	306-17-48.779
38	13+822.877	8,419,210.997	128,982.750	4,000		4,000	233.270	306-17-48.779
39	14+056.148	8,419,354.489	128,798.875	0		0	14.678	309-38-17.647
40	14+070.826	8,419,363.852	128,787.572	-9,000		-9,000	313.962	309-38-17.642
41	14+384.788	8,419,559.883	128,542.349	0		0	933.106	307-38-22.158
42	15+317.894	8,420,129.723	127,803.452	-35,000		-35,000	317.320	307-38-22.158
43	15+635.214	8,420,322.366	127,551.301	0		0	987.503	307-07-12.100
44	16+622.717	8,420,918.310	126,763.893	8,000		8,000	307.297	307-07-12.100
45	16+930.014	8,421,108.420	126,522.484	0		0	86.550	309-19-15.164
46	17+016.564	8,421,163.264	126,455.528	-11,000		-11,000	322.804	309-19-15.162
47	17+339.368	8,421,364.119	126,202.839	0		0	766.314	307-38-22.158
48	18+105.682	8,421,832.100	125,596.018	0	160	-270	94.815	307-38-22.157
49	18+200.497	8,421,885.440	125,517.787	-270		-270	152.266	297-34-45.566
50	18+352.763	8,421,915.199	125,370.507	-270	160	0	94.815	265-16-02.687
51	18+447.578	8,421,896.419	125,277.703	0		0	39.976	255-12-26.093
52	18+487.553	8,421,886.212	125,239.053	0	160	230	111.304	255-12-26.095
53	18+598.858	8,421,866.603	125,129.783	230		230	227.784	269-04-15.161
54	18+826.642	8,421,967.342	124,935.792	230	160	0	111.304	325-48-52.531
55	18+937.946	8,422,068.004	124,888.980	0		0	1,754.342	339-40-41.596
56	20+692.288	8,423,713.151	124,279.711	1,600		1,600	313.159	339-40-41.596
57	21+005.447	8,424,015.556	124,200.293	0		0	95.839	350-53-32.697
58	21+101.286	8,424,110.187	124,185.123	-1,100		-1,100	341.014	350-53-32.699
59	21+442.300	8,424,433.234	124,080.228	0		0	26.290	333-07-48.012
60	21+468.590	8,424,456.686	124,068.346	0	180	400	81.000	333-07-48.010
61	21+549.590	8,424,530.101	124,034.211	400		400	96.101	338-55-52.323
62	21+645.691	8,424,623.048	124,010.716	400	180	0	81.000	352-41-47.996
63	21+726.691	8,424,703.865	124,005.864	0		0	20.897	358-29-52.304
64	21+747.589	8,424,724.755	124,005.316	-1,200		-1,200	228.678	358-29-52.306
65	21+976.266	8,424,951.404	123,977.642	0		0	44.638	347-34-45.530
66	22+020.904	8,424,994.997	123,968.041	1,200		1,200	386.489	347-34-45.527
67	22+407.394	8,425,379.220	123,946.601	0		0	37.606	6-01-58.139
68	22+445.000	8,425,416.618	123,950.553	0	160	-300	85.333	6-01-58.143
69	22+530.333	8,425,501.732	123,955.486	-300		-300	48.322	357-53-02.703
70	22+578.655	8,425,549.668	123,949.829	-300	160	0	85.333	348-39-19.211
71	22+663.988	8,425,631.296	123,925.219	0		0	364.582	340-30-23.772
72	23+028.570	8,425,974.980	123,803.558	-1,000		-1,000	159.276	340-30-23.772
73	23+187.846	8,426,120.269	123,738.701	2,800		2,800	180.592	331-22-50.736
74	23+368.438	8,426,281.475	123,657.370	0		0	7.126	335-04-34.230

No	Station	Xcoordinates	Ycoordinates	Beginning of Radius	Parameter	End of Radius	Length	Chord Angle
75	23+375.564	8,426,287.937	123,654.367	0	230	-700	75.571	335-04-34.210
76	23+451.136	8,426,355.878	123,621.297	-700		-700	143.380	331-59-00.120
77	23+594.515	8,426,474.698	123,541.499	-700	230	0	75.571	320-14-51.289
78	23+670.087	8,426,531.015	123,491.121	0		0	46.921	317-09-17.200
79	23+717.008	8,426,565.418	123,459.213	4,000		4,000	322.666	317-09-17.199
80	24+039.674	8,426,810.583	123,249.568	0		0	185.861	321-46-35.873
81	24+225.535	8,426,956.596	123,134.571	0	190	500	72.200	321-46-35.874
82	24+297.735	8,427,014.362	123,091.286	500		500	55.366	325-54-48.196
83	24+353.102	8,427,061.839	123,062.856	500	190	0	72.200	332-15-28.448
84	24+425.302	8,427,127.267	123,032.368	0		0	485.309	336-23-40.769
85	24+910.610	8,427,571.968	122,838.034	-2,500		-2,500	318.767	336-23-40.769
86	25+229.377	8,427,855.144	122,692.138	0		0	800.414	329-05-20.638
87	26+029.790	8,428,541.873	122,280.961	0	200	-400	100.000	329-05-20.638
88	26+129.790	8,428,625.397	122,226.100	-400		-400	116.936	321-55-37.538
89	26+246.726	8,428,705.681	122,141.653	-400	200	0	100.000	305-10-38.293
90	26+346.726	8,428,756.253	122,055.463	0		0	97.657	298-00-55.192
91	26+444.383	8,428,802.123	121,969.250	2,500		2,500	319.880	298-00-55.193
92	26+764.262	8,428,970.005	121,697.222	0		0	26.120	305-20-47.156
93	26+790.383	8,428,985.116	121,675.917	-6,000		-6,000	300.643	305-20-47.159
94	27+091.025	8,429,152.829	121,426.438	0		0	62.345	302-28-31.828
95	27+153.371	8,429,186.304	121,373.842	0	250	500	125.000	302-28-31.829
96	27+278.371	8,429,257.706	121,271.347	500		500	288.159	309-38-14.929
97	27+566.530	8,429,493.717	121,113.040	500	250	0	125.000	342-39-29.083
98	27+691.530	8,429,615.638	121,085.861	0		0	136.725	349-49-12.185
99	27+828.255	8,429,750.211	121,061.696	-1,800		-1,800	341.219	349-49-12.185
100	28+169.474	8,430,078.351	120,970.012	0		0	377.781	338-57-31.386
101	28+547.255	8,430,430.942	120,834.374	3,500		3,500	310.345	338-57-31.387
102	28+857.600	8,430,725.151	120,735.927	0		0	1,021.599	344-02-20.869
103	29+879.199	8,431,707.368	120,455.006	-4,000		-4,000	633.671	344-02-20.869
104	30+512.870	8,432,300.293	120,233.330	0		0	504.027	334-57-44.838
105	31+016.897	8,432,756.956	120,020.020	2,500		2,500	1,065.572	334-57-44.838
106	32+082.470	8,433,788.090	119,785.241	0		0	46.139	359-23-00.872
107	32+128.609	8,433,834.227	119,784.745	0	230	-700	75.571	359-23-00.877
108	32+204.180	8,433,909.757	119,782.573	-700		-700	101.145	356-17-26.784
109	32+305.325	8,434,009.868	119,768.773	-700		0	75.571	348-00-42.928
110	32+380.897	8,434,083.169	119,750.429	0		0	301.992	344-55-08.836
111	32+682.889	8,434,374.761	119,671.856	2,400		2,400	308.768	344-55-08.837
112	32+991.657	8,434,677.234	119,610.893	0		0	36.332	352-17-25.518
113	33+027.989	8,434,713.237	119,606.019	-1,600		-1,600	319.673	352-17-25.517

No	Station	Xcoordinates	Ycoordinates	Beginning of Radius	Parameter	End of Radius	Length	Chord Angle
114	33+347.662	8,435,023.647	119,531.878	0		0	36.450	340-50-34.723
115	33+384.112	8.435.058.079	119,519.917	1,000		1,000	332.422	340-50-34.719
116	33+716.534	8.435.384.305	119,464,541	. 0		0	256.953	359-53-21.596
117	33+973.487	8,435,641.258	119,464.045	1,600		1,600	337.115	359-53-21.596
118	34+310.602	8,435,975.952	119,498.782	0		0	233.287	11-57-40.998
119	34+543.889	8,436,204.174	119,547.131	-2,200		-2,200	304.643	11-57-40.999
120	34+848.532	8,436,505.615	119,589.466	0		0	147.826	4-01-38.668
121	34+996.357	8,436,653.076	119,599.848	4,000		4,000	327.629	4-01-38.669
122	35+323.987	8,436,978.589	119,636.210	0		0	47.367	8-43-13.274
123	35+371.354	8,437,025.408	119,643.392	0	160	-230	111.304	8-43-13.276
124	35+482.658	8,437,136.139	119,651.332	-230		-230	102.979	354-51-24.212
125	35+585.637	8,437,233.278	119,619.826	-230	160	0	111.304	329-12-12.655
126	35+696.941	8,437,318.269	119,548.406	0		0	19.615	315-20-23.590
127	35+716.556	8,437,332.221	119,534.618	-2,500		-2,500	202.892	315-20-23.591
128	35+919.448	8,437,470.594	119,386.309	0		0	132.239	310-41-23.823
129	36+051.687	8,437,556.809	119,286.039	0	160	270	94.815	310-41-23.822
130	36+146.502	8,437,622.633	119,217.977	270		270	91.311	320-45-00.416
131	36+237.813	8,437,701.680	119,173.143	270	160	0	94.815	340-07-37.122
132	36+332.628	8,437,793.877	119,151.577	0		0	269.576	350-11-13.713
133	36+602.204	8,438,059.509	119,105.633	0	190	-500	72.200	350-11-13.714
134	36+674.404	8,438,130.319	119,091.623	-500		-500	50.240	346-03-01.393
135	36+724.644	8,438,178.387	119,077.084	-500	190	0	72.200	340-17-36.072
136	36+796.844	8,438,245.093	119,049.502	4,900		4,900	224.394	336-09-23.751
137	37+021.238	8,438,452.341	118,963.524	0		0	253.644	338-46-49.594
138	37+274.882	8,438,688.788	118,871.719	-8,000		-8,000	313.361	338-46-49.594
139	37+588.244	8,438,978.608	118,752.609	0		0	149.825	336-32-10.171
140	37+738.068	8,439,116.044	118,692.953	1,300		1,300	405.459	336-32-10.171
141	38+143.528	8,439,506.948	118,591.649	0		0	186.441	354-24-22.480
142	38+329.968	8,439,692.501	118,573.476	0	160	350	73.143	354-24-22.479
143	38+403.111	8,439,765.464	118,568.887	350		350	40.088	0-23-35.048
144	38+443.199	8,439,805.448	118,571.455	350	160	0	73.143	6-57-19.984
145	38+516.342	8,439,877.225	118,585.338	0		0	278.501	12-56-32.550
146	38+794.843	8,440,148.651	118,647.714	0	160	-300	85.333	12-56-32.551
147	38+880.176	8,440,232.553	118,662.851	-300		-300	124.649	4-47-37.112
148	39+004.825	8,440,355.356	118,647.534	-300	160	0	85.333	340-59-14.701
149	39+090.159	8,440,432.970	118,612.253	0		0	220.352	332-50-19.261
150	39+310.511	8,440,629.023	118,511.662	2,700		2,700	726.485	332-50-19.261
151	40+036.996	8,441,311.972	118,270.447	0		0	187.127	348-15-18.642
152	40+224.124	8,441,495.182	118,232.356	-1,000		-1,000	314.865	348-15-18.642

No	Station	Xcoordinates	Ycoordinates	Beginning of Radius	Parameter	End of Radius	Length	Chord Angle
153	40+538.989	8,441,788.379	118,121.186	01 Naulus		0 Naulus	1.695.308	330-12-53.078
154	42+234.296	8.443.259.725	117.279.041	0	160	400	64.000	330-12-53.077
155	42+298.296	8,443,316.082	117,248.750	400	100	400	59.315	334-47-54.263
156	42+357.611	8.443.371.424	117,227.557	400	160	0	64.000	343-17-40.749
157	42+421.611	8,443,433.599	117,212.459	0		0	52.570	347-52-41.933
158	42+474.182	8.443.484.997	117,201,420	-2.700		-2.700	245.513	347-52-41.932
159	42+719.695	8.443.722.363	117,139,030	2,700	170	400	72.250	342-40-06.117
160	42+791.945	8,443,791.924	117,119.599	400		400	173.907	347-50-34.408
161	42+965.852	8.443.964.462	117,120,497	400		0	72.250	12-45-11.735
162	43+038.102	8.444.033.817	117,140,650	0		0	100.205	17-55-40.029
163	43+138.307	8.444.129.157	117,171,495	0	210	-600	73.500	17-55-40.028
164	43+211.807	8,444,199.524	117,192.684	-600		-600	30.947	14-25-06.306
165	43+242.755	8,444,229.682	117,199.614	-600	210	0	73.500	11-27-47.399
166	43+316.255	8.444.302.240	117.211.266	0		0	49.942	7-57-13.677
167	43+366.197	8.444.351.702	117,218,177	2.700		2.700	309.686	7-57-13.679
168	43+675.883	8,444,655.282	117,278.506	0	210	-600	73.500	14-31-31.957
169	43+749.383	8,444,726.782	117,295.481	-600		-600	245.373	11-00-58.238
170	43+994.756	8,444,970.431	117,292.506	-600	210	0	73.500	347-35-05.211
171	44+068.256	8,445,041.495	117,273.790	0		0	42.195	344-04-31.494
172	44+110.451	8,445,082.070	117,262.213	8,000		8,000	300.170	344-04-31.493
173	44+410.621	8,445,372.199	117,185.289	0		0	139.415	346-13-30.813
174	44+550.036	8,445,507.604	117,152.093	0	230	-700	75.571	346-13-30.815
175	44+625.607	8,445,580.657	117,132.784	-700		-700	58.643	343-07-56.724
176	44+684.250	8,445,635.998	117,113.439	-700	230	0	75.571	338-19-56.871
177	44+759.821	8,445,705.172	117,083.032	0		0	17.855	335-14-22.774
178	44+777.677	8,445,721.386	117,075.553	0	240	800	72.000	335-14-22.779
179	44+849.677	8,445,787.206	117,046.385	800		800	44.796	337-49-04.695
180	44+894.473	8,445,829.138	117,030.642	800	240	0	72.000	341-01-34.608
181	44+966.473	8,445,897.892	117,009.287	0		0	149.424	343-36-16.523
182	45+115.897	8,446,041.240	116,967.110	-1,200		-1,200	326.746	343-36-16.524
183	45+442.643	8,446,338.361	116,833.604	0		0	15.656	328-00-13.074
184	45+458.299	8,446,351.639	116,825.308	1,700		1,700	302.544	328-00-13.076
185	45+760.843	8,446,621.095	116,688.617	0		0	48.765	338-12-01.390
186	45+809.608	8,446,666.373	116,670.507	-4,000		-4,000	542.608	338-12-01.391
187	46+352.216	8,447,154.988	116,435.502	0		0	282.810	330-25-41.163
188	46+635.026	8,447,400.959	116,295.931	-5,000		-5,000	300.052	330-25-41.163
189	46+935.078	8,447,657.327	116,140.112	0		0	457.690	326-59-23.126
190	47+392.768	8,448,041.133	115,890.767	-3,000		-3,000	325.718	326-59-23.126
191	47+718.486	8,448,304.111	115,698.855	0		0	239.001	320-46-08.423

No	Station	Xcoordinates	Ycoordinates	Beginning of Radius	Parameter	End of Radius	Length	Chord Angle
192	47+957.486	8,448,489.242	115,547.700	0	210	600	73.500	320-46-08.424
193	48+030.986	8,448,547.103	115,502.394	600		600	215.720	324-16-42.143
194	48+246.706	8,448,740.887	115,410.288	600	210	0	73.500	344-52-41.132
195	48+320.206	8,448,812.554	115,394.029	0		0	257.859	348-23-14.854
196	48+578.065	8,449,065.135	115,342.124	5,000		5,000	301.844	348-23-14.854
197	48+879.909	8,449,362.454	115,290.324	0		0	43.262	351-50-46.801
198	48+923.171	8,449,405.279	115,284.188	950		950	700.097	351-50-46.803
199	49+623.268	8,450,072.213	115,437.650	0		0	288.468	34-04-12.542
200	49+911.736	8,450,311.166	115,599.252	0	160	-230	111.304	34-04-12.542
201	50+023.041	8,450,407.835	115,653.836	-230		-230	40.744	20-12-23.477
202	50+063.785	8,450,447.115	115,664.458	-230	160	0	111.304	10-03-24.121
203	50+175.089	8,450,558.119	115,666.031	0		0	753.043	356-11-35.055
204	50+928.132	8,451,309.500	115,616.033	0	190	-500	72.200	356-11-35.056
205	51+000.332	8,451,381.388	115,609.509	-500		-500	31.326	352-03-22.735
206	51+031.658	8,451,412.257	115,604.211	-500	190	0	72.200	348-27-59.829
207	51+103.858	8,451,482.207	115,586.393	0		0	39.853	344-19-47.507
208	51+143.711	8,451,520.579	115,575.628	1,400		1,400	312.278	344-19-47.509
209	51+455.989	8,451,828.131	115,525.375	0		0	28.780	357-06-36.048
210	51+484.768	8,451,856.874	115,523.924	0	160	-350	73.143	357-06-36.047
211	51+557.911	8,451,929.716	115,517.698	-350		-350	66.915	351-07-23.478
212	51+624.826	8,451,994.443	115,501.134	-350	160	0	73.143	340-10-08.595
213	51+697.969	8,452,061.322	115,471.606	0		0	34.740	334-10-56.029
214	51+732.709	8,452,092.594	115,456.476	1,100		1,100	237.200	334-10-56.027
215	51+969.908	8,452,315.561	115,376.905	-2,400		-2,400	303.090	346-32-14.145
216	52+272.999	8,452,605.090	115,287.941	0		0	52.178	339-18-05.454
217	52+325.177	8,452,653.900	115,269.499	-1,300		-1,300	309.263	339-18-05.456
218	52+634.439	8,452,927.539	115,126.968	0		0	27.895	325-40-16.231
219	52+662.334	8,452,950.575	115,111.237	0	160	350	73.143	325-40-16.231
220	52+735.477	8,453,012.347	115,072.136	350		350	41.733	331-39-28.800
221	52+777.211	8,453,050.171	115,054.558	350	160	0	73.143	338-29-23.456
222	52+850.353	8,453,119.888	115,032.551	0		0	1,140.848	344-28-36.023
223	53+991.201	8,454,219.119	114,727.226	0	230	-700	75.571	344-28-36.023
224	54+066.773	8,454,291.549	114,705.696	-700		-700	162.500	341-23-01.933
225	54+229.273	8,454,438.173	114,636.492	-700	230	0	75.571	328-04-59.054
226	54+304.844	8,454,500.832	114,594.262	0		0	492.907	324-59-24.965
227	54+797.751	8,454,904.549	114,311.474	0	170	400	72.250	324-59-24.968
228	54+870.001	8,454,964.925	114,271.837	400		400	92.854	330-09-53.256
229	54+962.854	8,455,050.088	114,235.362	400	170	0	72.250	343-27-54.303
230	55+035.104	8,455,120.436	114,219.011	0		0	579.789	348-38-22.594

No	Station	Xcoordinates	Ycoordinates	Beginning of Radius	Parameter	End of Radius	Length	Chord Angle
231	55+614.894	8,455,688.866	114,104.804	0	190	500	72.200	348-38-22.592
232	55+687.094	8,455,759.957	114,092.293	500		500	76.078	352-46-34.913
233	55+763.172	8,455,835.867	114,088.494	500	190	0	72.200	1-29-39.518
234	55+835.372	8,455,907.852	114,093.846	0		0	268.639	5-37-51.838
235	56+104.011	8,456,175.194	114,120.206	0	300	-600	150.000	5-37-51.839
236	56+254.011	8,456,324.850	114,128.688	-600		-600	159.792	358-28-08.737
237	56+413.803	8,456,482.139	114,103.325	-600	300	0	150.000	343-12-36.128
238	56+563.803	8,456,621.542	114,048.230	0		0	272.674	336-02-53.029
239	56+836.478	8,456,870.736	113,937.532	-1,200		-1,200	255.254	336-02-53.028
240	57+091.732	8,457,091.274	113,809.969	0		0	2.909	323-51-38.019
241	57+094.641	8,457,093.624	113,808.254	1,200		1,200	233.685	323-51-38.013
242	57+328.327	8,457,294.530	113,689.624	0		0	91.644	335-01-05.536
243	57+419.971	8,457,377.601	113,650.920	0	180	-450	72.000	335-01-05.534
244	57+491.971	8,457,442.012	113,618.792	-450		-450	56.280	330-26-04.350
245	57+548.251	8,457,489.102	113,588.038	-450	180	0	72.000	323-16-07.390
246	57+620.251	8,457,544.413	113,541.975	0		0	199.107	318-41-06.204
247	57+819.359	8,457,693.961	113,410.525	0	160	350	73.143	318-41-06.204
248	57+892.502	8,457,750.519	113,364.201	350		350	57.129	324-40-18.773
249	57+949.630	8,457,799.611	113,335.108	350	160	0	73.143	334-01-26.295
250	58+022.773	8,457,867.402	113,307.739	0		0	123.008	340-00-38.860
251	58+145.781	8,457,983.000	113,265.690	0	160	270	94.815	340-00-38.860
252	58+240.595	8,458,073.721	113,238.582	270		270	27.622	350-04-15.455
253	58+268.218	8,458,101.126	113,235.218	270	160	0	94.815	355-55-57.453
254	58+363.033	8,458,195.710	113,239.579	0	160	-230	111.304	5-59-34.046
255	58+474.337	8,458,306.693	113,242.241	-230		-230	33.840	352-07-44.982
256	58+508.178	8,458,339.754	113,235.162	-230	160	0	111.304	343-41-56.714
257	58+619.482	8,458,439.916	113,187.289	0		0	279.651	329-50-07.649
258	58+899.133	8,458,681.698	113,046.769	0	160	400	64.000	329-50-07.648
259	58+963.133	8,458,737.854	113,016.105	400		400	76.071	334-25-08.833
260	59+039.204	8,458,809.169	112,989.961	400	160	0	64.000	345-18-55.792
261	59+103.204	8,458,871.838	112,977.065	0		0	221.906	349-53-56.977
262	59+325.110	8,459,090.304	112,938.146	0	300	600	150.000	349-53-56.977
263	59+475.110	8,459,238.844	112,918.027	600		600	154.031	357-03-40.078
264	59+629.141	8,459,391.996	112,929.853	600	300	0	150.000	11-46-12.152
265	59+779.141	8,459,535.686	112,972.539	0		0	935.646	18-55-55.253
266	60+714.787	8,460,420.717	113,276.105	0	180	-450	72.000	18-55-55.255
267	60+786.787	8,460,489.401	113,297.635	-450		-450	164.095	14-20-54.068
268	60+950.882	8,460,652.211	113,308.739	-450	180	0	72.000	353-27-18.474
269	61+022.882	8,460,723.182	113,296.734	0		0	411.369	348-52-17.289

No	Station	Xcoordinates	Ycoordinates	Beginning of Radius	Parameter	End of Radius	Length	Chord Angle
270	61+434.251	8,461,126.816	113,217.336	0	350	-700	175.000	348-52-17.289
271	61+609.251	8,461,296.852	113,176.465	-700		-700	413.724	341-42-34.188
272	62+022.975	8,461,629.933	112,941.307	-700	350	0	175.000	307-50-44.669
273	62+197.975	8,461,725.360	112,794.759	0		0	117.275	300-41-01.567
274	62+315.250	8,461,785.205	112,693.903	0	190	500	72.200	300-41-01.567
275	62+387.450	8,461,823.523	112,632.730	500		500	91.487	304-49-13.886
276	62+478.936	8,461,882.324	112,562.809	500	190	0	72.200	315-18-14.845
277	62+551.136	8,461,936.019	112,514.567	0		0	288.230	319-26-27.165
278	62+839.367	8,462,154.997	112,327.151	6,000		6,000	339.238	319-26-27.165
279	63+178.605	8,462,418.825	112,113.969	0		0	607.088	322-40-49.308
280	63+785.693	8,462,901.622	111,745.915	0	160	-270	94.815	322-40-49.308
281	63+880.508	8,462,973.436	111,684.206	-270		-270	156.292	312-37-12.716
282	64+036.800	8,463,041.087	111,545.728	-270	160	0	94.815	279-27-14.428
283	64+131.614	8,463,045.623	111,451.152	0		0	231.685	269-23-37.839
284	64+363.299	8,463,043.172	111,219.481	1,700		1,700	308.378	269-23-37.839
285	64+671.677	8,463,067.819	110,912.513	0		0	443.666	279-47-14.052
286	65+115.343	8,463,143.238	110,475.304	0	160	230	111.304	279-47-14.052
287	65+226.647	8,463,170.858	110,367.780	230		230	151.435	293-39-03.117
288	65+378.083	8,463,271.353	110,258.159	230	160	0	111.304	331-22-30.774
289	65+489.387	8,463,376.078	110,221.320	0		0	184.586	345-14-19.839
290	65+673.973	8,463,554.572	110,174.290	0	170	400	72.250	345-14-19.839
291	65+746.223	8,463,624.934	110,157.998	400		400	77.337	350-24-48.131
292	65+823.560	8,463,701.958	110,152.548	400	170	0	72.250	1-29-28.091
293	65+895.810	8,463,773.914	110,158.768	0		0	598.195	6-39-56.384
294	66+494.005	8,464,368.066	110,228.204	2,500		2,500	311.092	6-39-56.383
295	66+805.098	8,464,674.014	110,283.421	0		0	354.083	13-47-43.343
296	67+159.181	8,465,017.883	110,367.854	0	230	-700	75.571	13-47-43.345
297	67+234.752	8,465,091.578	110,384.549	-700		-700	158.940	10-42-09.254
298	67+393.692	8,465,249.751	110,396.158	-700	230	0	75.571	357-41-35.334
299	67+469.264	8,465,325.093	110,390.403	0		0	1,075.970	354-36-01.244
300	68+545.234	8,466,396.289	110,289.151	0	230	-700	75.571	354-36-01.244
301	68+620.805	8,466,471.375	110,280.688	-700		-700	151.560	351-30-27.155
302	68+772.365	8,466,617.691	110,242.316	-700	230	0	75.571	339-06-07.888
303	68+847.937	8,466,687.267	110,212.841	0		0	1,208.441	336-00-33.799
304	70+056.377	8,467,791.313	109,721.505	0	230	700	75.571	336-00-33.798
305	70+131.949	8,467,860.888	109,692.029	700		700	107.635	339-06-07.890
306	70+239.583	8,467,963.993	109,661.503	700	230	0	75.571	347-54-43.906
307	70+315.155	8,468,038.400	109,648.348	0		0	525.075	351-00-17.997
308	70+840.230	8,468,557.018	109,566.253	0	190	500	72.200	351-00-17.998

No	Station	Xcoordinates	Ycoordinates	Beginning of Radius	Parameter	End of Radius	Length	Chord Angle
309	70+912.430	8,468,628.565	109,556.686	500		500	133.214	355-08-30.316
310	71+045.644	8.468.761.229	109,563,115	500	190	0	72.200	10-24-25.066
311	71+117.844	8,468,831.516	109,579.555	0		Ö	725.640	14-32-37.386
312	71+843.484	8.469.533.903	109.761.777	0	160	-350	73.143	14-32-37.389
313	71+916.627	8,469,605.264	109,777.660	-350		-350	126.334	8-33-24.818
314	72+042.960	8.469.730.852	109,773,750	-350	160	0	73.143	347-52-32.811
315	72+116.103	8.469.801.087	109,753,457	0		0	1,428.380	341-53-20.245
316	73+544.483	8,471,158.699	109,309.431	0	180	-280	115.714	341-53-20.245
317	73+660.198	8,471,265.742	109,266.061	-280		-280	167.117	330-02-59.202
318	73+827.315	8,471,377.929	109,145.550	-280	180	0	115.714	295-51-10.696
319	73+943.029	8,471,413.540	109,035.682	0		0	51.918	284-00-49.655
320	73+994.947	8,471,426.112	108,985.309	-1,400		-1,400	307.449	284-00-49.653
321	74+302.396	8,471,467.343	108,681.261	0		0	1,143.107	271-25-52.629
322	75+445.503	8,471,495.895	107,538.510	0	230	-700	75.571	271-25-52.630
323	75+521.074	8,471,496.423	107,462.951	-700		-700	240.554	268-20-18.538
324	75+761.629	8,471,448.674	107,228.389	-700	230	0	75.571	248-38-55.817
325	75+837.200	8,471,418.649	107,159.049	0		0	115.080	245-33-21.724
326	75+952.280	8,471,371.029	107,054.284	0	160	230	111.304	245-33-21.725
327	76+063.584	8,471,333.378	106,949.849	230		230	275.123	259-25-10.789
328	76+338.708	8,471,437.437	106,712.660	230	160	0	111.304	327-57-22.373
329	76+450.012	8,471,539.779	106,669.641	0		0	94.619	341-49-11.438
330	76+544.631	8,471,629.675	106,640.119	1,600		1,600	308.178	341-49-11.438
331	76+852.809	8,471,929.893	106,572.670	0		0	42.488	352-51-20.360
332	76+895.298	8,471,972.051	106,567.386	0	160	-230	111.304	352-51-20.364
333	77+006.602	8,472,080.735	106,544.753	-230		-230	155.475	338-59-31.299
334	77+162.077	8,472,196.939	106,445.949	-230	160	0	111.304	300-15-40.986
335	77+273.381	8,472,236.754	106,342.319	0	160	350	73.143	286-23-51.921
336	77+346.524	8,472,259.822	106,272.946	350		350	55.984	292-23-04.490
337	77+402.508	8,472,285.182	106,223.103	350	160	0	73.143	301-32-57.498
338	77+475.651	8,472,327.678	106,163.615	0		0	6.231	307-32-10.067
339	77+481.882	8,472,331.474	106,158.674	0	160	300	85.333	307-32-10.069
340	77+567.215	8,472,386.563	106,093.605	300		300	49.313	315-41-05.505
341	77+616.528	8,472,424.513	106,062.203	300	160	0	85.333	325-06-10.605
342	77+701.861	8,472,498.743	106,020.268	0		0	241.299	333-15-06.044
343	77+943.160	8,472,714.221	105,911.666	2,000		2,000	276.460	333-15-06.044
344	78+219.621	8,472,968.898	105,804.670	0	160	-230	111.304	341-10-18.047
345	78+330.925	8,473,070.747	105,760.497	-230		-230	30.462	327-18-28.987
346	78+361.387	8,473,095.220	105,742.396	-230	160	0	111.304	319-43-10.350
347	78+472.691	8,473,167.282	105,657.948	0		0	8.625	305-51-21.290

No	Station	Xcoordinates	Ycoordinates	Beginning of Radius	Parameter	End of Radius	Length	Chord Angle
348	78+481.316	8.473.172.334	105.650.958	-4.500		-4.500	328.606	305-51-21.285
349	78+809.922	8,473,354.923	105,377,837	. 0		0	288.875	301-40-19.115
350	79+098.797	8.473.506.598	105,131.985	0	160	-230	111.304	301-40-19.116
351	79+210.101	8,473,557.090	105,033.117	-230		-230	179.912	287-48-30.050
352	79+390.013	8.473.543.023	104.858.322	-230	160	0	111.304	242-59-24.245
353	79+501.317	8.473.477.372	104,768,800	0		0	85.155	229-07-35.181
354	79+586.473	8,473,421.647	104,704.409	0	190	500	72.200	229-07-35.181
355	79+658.673	8,473,375.738	104,648.706	500		500	80.383	233-15-47.498
356	79+739.056	8,473,333.031	104,580.709	500	190	0	72.200	242-28-27.816
357	79+811.256	8,473,302.791	104,515.165	0		0	45.165	246-36-40.139
358	79+856.420	8,473,284.862	104,473.712	0	160	300	85.333	246-36-40.135
359	79+941.754	8,473,254.763	104,393.945	300		300	198.452	254-45-35.574
360	80+140.205	8,473,267.374	104,199.500	300	160	0	85.333	292-39-40.917
361	80+225.539	8,473,307.523	104,124.289	0		0	64.909	300-48-36.353
362	80+290.447	8,473,340.769	104,068.541	0	160	-350	73.143	300-48-36.356
363	80+363.590	8,473,376.005	104,004.486	-350		-350	47.747	294-49-23.788
364	80+411.337	8,473,393.037	103,959.919	-350	160	0	73.143	287-00-25.204
365	80+484.480	8,473,409.502	103,888.690	0		0	85.621	281-01-12.636
366	80+570.101	8,473,425.869	103,804.648	0	160	230	111.304	281-01-12.638
367	80+681.405	8,473,455.796	103,697.743	230		230	36.109	294-53-01.699
368	80+717.515	8,473,473.494	103,666.310	230	160	0	111.304	303-52-44.662
369	80+828.819	8,473,549.381	103,585.283	0		0	8.278	317-44-33.723
370	80+837.097	8,473,555.508	103,579.717	-2,000		-2,000	170.085	317-44-33.726
371	81+007.182	8,473,676.381	103,460.129	0		0	2.530	312-52-12.391
372	81+009.712	8,473,678.102	103,458.275	0	160	-230	111.304	312-52-12.432
373	81+121.016	8,473,746.833	103,371.094	-230		-230	135.011	299-00-23.366
374	81+256.028	8,473,774.934	103,241.014	-230	160	0	111.304	265-22-24.799
375	81+367.332	8,473,748.319	103,133.236	0	160	230	111.304	251-30-35.732
376	81+478.636	8,473,721.704	103,025.459	230		230	249.585	265-22-24.797
377	81+728.221	8,473,827.539	102,812.824	230	160	0	111.304	327-32-53.110
378	81+839.525	8,473,929.571	102,769.077	0		0	57.998	341-24-42.177
379	81+897.523	8,473,984.543	102,750.590	0	160	-230	111.304	341-24-42.176
380	82+008.828	8,474,086.576	102,706.843	-230		-230	61.262	327-32-53.109
381	82+070.090	8,474,133.310	102,667.513	-230	160	0	111.304	312-17-12.720
382	82+181.394	8,474,193.842	102,574.453	0		0	886.942	298-25-23.655
383	83+068.336	8,474,616.009	101,794.427	0	200	400	100.000	298-25-23.656
384	83+168.336	8,474,667.193	101,708.600	400		400	40.103	305-35-06.752
385	83+208.439	8,474,692.124	101,677.210	400	200	0	100.000	311-19-46.237
386	83+308.439	8,474,764.135	101,607.923	0		0	1,153.090	318-29-29.337

No	Station	Xcoordinates	Ycoordinates	Beginning	Parameter	End	Length	Chord Angle
				of Radius	. aramotor	of Radius		
387	84+461.529	8,475,627.634	100,843.734	-2,000		-2,000	331.893	318-29-29.337
388	84+793.422	8,475,856.827	100,604.211	0		0	1,304.759	308-59-00.367
389	86+098.181	8,476,677.646	99,589.986	-1,000		-1,000	1,192.110	308-59-00.367
390	87+290.291	8,476,772.221	98,471.212	0		0	1,610.180	240-40-50.102
391	88+900.471	8,475,983.751	97,067.291	0	160	230	111.304	240-40-50.103
392	89+011.775	8,475,937.361	96,966.433	230		230	210.178	254-32-39.166
393	89+221.953	8,475,975.120	96,767.036	230	160	0	111.304	306-54-07.118
394	89+333.257	8,476,055.175	96,690.123	0		0	1,682.186	320-45-56.181
395	91+015.444	8,477,358.138	95,626.150	1,400		1,400	301.001	320-45-56.181
396	91+316.444	8,477,609.878	95,462.199	0		0	217.717	333-05-03.189
397	91+534.161	8,477,804.010	95,363.643	7,000		7,000	332.659	333-05-03.189
398	91+866.821	8,478,104.099	95,220.158	0		0	44.272	335-48-25.460
399	91+911.093	8,478,144.483	95,202.014	-3,100		-3,100	306.556	335-48-25.462
400	92+217.649	8,478,417.452	95,062.774	0		0	29.283	330-08-28.112
401	92+246.932	8,478,442.848	95,048.195	6,000		6,000	308.197	330-08-28.117
402	92+555.130	8,478,713.956	94,901.685	0		0	280.848	333-05-03.162
403	92+835.978	8,478,964.381	94,774.551	0	200	600	66.667	333-05-03.161
404	92+902.644	8,479,024.366	94,745.482	600		600	236.861	336-16-02.318
405	93+139.505	8,479,254.181	94,694.855	600	200	0	66.667	358-53-08.963
406	93+206.172	8,479,320.829	94,696.028	0		0	718.904	2-04-08.118
407	93+925.076	8,480,039.264	94,721.981	0	170	-400	72.250	2-04-08.117
408	93+997.326	8,480,111.487	94,722.415	-400		-400	113.100	356-53-39.827
409	94+110.426	8,480,222.061	94,700.509	-400	170	0	72.250	340-41-38.493
410	94+182.676	8,480,288.663	94,672.573	0		0	803.868	335-31-10.203
411	94+986.544	8,481,020.265	94,339.463	0	160	230	111.304	335-31-10.203
412	95+097.848	8,481,124.677	94,301.746	230		230	161.584	349-22-59.267
413	95+259.432	8,481,280.783	94,327.895	230	160	0	111.304	29-38-07.991
414	95+370.736	8,481,367.204	94,397.579	0		0	555.699	43-29-57.055
415	95+926.436	8,481,770.299	94,780.091	0	170	-400	72.250	43-29-57.053
416	95+998.686	8,481,824.162	94,828.207	-400		-400	165.877	38-19-28.765
417	96+164.562	8,481,971.620	94,901.549	-400	170	0	72.250	14-33-52.406
418	96+236.812	8,482,042.489	94,915.472	0		0	111.739	9-23-24.116
419	96+348.552	8,482,152.731	94,933.703	0	190	500	72.200	9-23-24.118
420	96+420.752	8,482,223.643	94,947.190	500		500	108.054	13-31-36.433
421	96+528.806	8,482,325.164	94,983.575	500	190	0	72.200	25-54-32.044
422	96+601.006	8,482,388.499	95,018.203	0		0	19.289	30-02-44.354
423	96+620.295	8,482,405.197	95,027.861	0	210	-600	73.500	30-02-44.360
424	96+693.795	8,482,469.548	95,063.349	-600		-600	80.238	26-32-10.642
425	96+774.033	8,482,543.512	95,094.297	-600	210	0	73.500	18-52-26.965

No	Station	Xcoordinates	Ycoordinates	Beginning of Radius	Parameter	End of Radius	Length	Chord Angle
426	96+847.533	8.482.613.961	95.115.211	0		0	714.497	15-21-53.245
427	97+562.029	8.483.302.920	95,304.527	0	190	-500	72.200	15-21-53.246
428	97+634.229	8.483.372.964	95.321.972	-500		-500	16.382	11-13-40.923
429	97+650.611	8,483,389.081	95,324.898	-500	190	0	72.200	9-21-02.923
430	97+722.811	8,483,460.787	95,333.186	0		0	2.843	5-12-50.587
431	97+725.654	8,483,463.618	95,333.444	0	160	300	85.333	5-12-50.605
432	97+810.987	8,483,548.060	95,345.206	300		300	31.542	13-21-46.039
433	97+842.529	8,483,578.308	95,354.094	300	160	0	85.333	19-23-12.594
434	97+927.863	8,483,655.690	95,389.882	0		0	421.517	27-32-08.032
435	98+349.380	8,484,029.459	95,584.749	0	250	-500	125.000	27-32-08.032
436	98+474.380	8,484,142.532	95,637.833	-500		-500	165.654	20-22-24.932
437	98+640.034	8,484,304.464	95,668.965	-500	250	0	125.000	1-23-27.644
438	98+765.034	8,484,429.160	95,661.591	0		0	1,085.772	354-13-44.543
439	99+850.806	8,485,509.429	95,552.415	0	160	-270	94.815	354-13-44.541
440	99+945.621	8,485,602.916	95,537.401	-270		-270	32.561	344-10-07.953
441	99+978.182	8,485,633.631	95,526.653	-270	160	0	94.815	337-15-33.144
442	100+072.997	8,485,716.083	95,480.103	0	170	400	72.250	327-11-56.553
443	100+145.247	8,485,777.941	95,442.822	400		400	19.592	332-22-24.853
444	100+164.839	8,485,795.515	95,434.166	400	170	0	72.250	335-10-47.670
445	100+237.089	8,485,862.773	95,407.848	0		0	187.033	340-21-15.960
446	100+424.121	8,486,038.918	95,344.968	0	160	230	111.304	340-21-15.962
447	100+535.426	8,486,146.137	95,316.185	230		230	25.911	354-13-05.026
448	100+561.337	8,486,172.009	95,315.031	230	160	0	111.304	0-40-22.223
449	100+672.641	8,486,281.365	95,334.151	0		0	159.036	14-32-11.287
450	100+831.677	8,486,435.310	95,374.068	0	170	400	72.250	14-32-11.289
451	100+903.927	8,486,504.644	95,394.292	400		400	36.614	19-42-39.574
452	100+940.541	8,486,538.500	95,408.200	400	170	0	72.250	24-57-20.015
	101+012.791	8,486,602.028	95,442.558	0	160	-300	85.333	30-07-48.301
	101+098.124	8,486,677.710	95,481.812	-300		-300	112.142	21-58-52.864
455	101+210.267	8,486,787.050	95,503.605	-300	160	0	85.333	0-33-49.456
456	101+295.600	8,486,871.999	95,496.369	0		0	14.141	352-24-54.017
457	101+309.741	8,486,886.017	95,494.502	0	160	230	111.304	352-24-54.017
	101+421.045	8,486,996.883	95,488.758	230		230	30.859	6-16-43.078
	101+451.905	8,487,027.239	95,494.177	230	160	0	111.304	13-57-57.712
460	101+563.209	8,487,129.269	95,537.930	0	160	-230	111.304	27-49-46.776
461	101+674.513	8,487,231.298	95,581.682	-230		-230	25.875	13-57-57.713
	101+700.388	8,487,256.706	95,586.503	-230	160	0	111.304	7-31-12.965
463	101+811.693	8,487,367.671	95,583.162	0		0	19.942	353-39-23.894
464	101+831.635	8,487,387.491	95,580.959	6,000		6,000	304.286	353-39-23.900

No	Station	Xcoordinates	Ycoordinates	Beginning of Radius	Parameter	End of Radius	Length	Chord Angle
465	102+135.921	8,487,690.637	95,555.021	0		0	372.204	356-33-44.498
466	102+508.125	8,488,062.171	95,532.703	0	160	-230	111.304	356-33-44.498
467	102+619.429	8,488,172.091	95,517.144	-230		-230	102.595	342-41-55.432
468	102+722.025	8,488,260.135	95,466.147	-230	160	0	111.304	317-08-27.687
469	102+833.329	8,488,328.324	95,378.543	0		0	10.401	303-16-38.626
470	102+843.731	8,488,334.031	95,369.847	0	230	700	75.571	303-16-38.624
471	102+919.302	8,488,376.621	95,307.432	700		700	87.787	306-22-12.714
472	103+007.089	8,488,432.969	95,240.190	700	230	0	75.571	313-33-20.443
473	103+082.661	8,488,486.972	95,187.339	0		0	840.144	316-38-54.533
474	103+922.805	8,489,097.888	94,610.603	0	160	230	111.304	316-38-54.534
475	104+034.109	8,489,184.488	94,541.143	230		230	45.297	330-30-43.598
476	104+079.407	8,489,225.852	94,522.859	230	160	0	111.304	341-47-46.542
477	104+190.711	8,489,335.512	94,505.571	0	160	230	111.304	355-39-35.608
478	104+302.015	8,489,446.526	94,506.112	230		230	170.075	9-31-24.672
479	104+472.090	8,489,589.445	94,590.995	230	160	0	111.304	51-53-28.108
480	104+583.394	8,489,643.036	94,688.219	0		0	92.007	65-45-17.173
481	104+675.402	8,489,680.818	94,772.111	0	160	-350	73.143	65-45-17.171
482	104+748.544	8,489,713.142	94,837.684	-350		-350	45.879	59-46-04.605
483	104+794.423	8,489,738.770	94,875.697	-350	160	0	73.143	52-15-27.057
484	104+867.566	8,489,787.435	94,930.253	0		0	201.498	46-16-14.489
485	105+069.064	8,489,926.721	95,075.858	0	190	500	72.200	46-16-14.489
486	105+141.264	8,489,975.348	95,129.205	500		500	25.115	50-24-26.808
487	105+166.379	8,489,990.862	95,148.952	500	190	0	72.200	53-17-07.660
488	105+238.579	8,490,031.181	95,208.825	0	160	-350	73.143	57-25-19.980
489	105+311.722	8,490,072.667	95,269.022	-350		-350	74.146	51-26-07.412
490	105+385.868	8,490,124.662	95,321.687	-350	160	0	73.143	39-17-51.070
491	105+459.011	8,490,184.323	95,363.939	0		0	32.598	33-18-38.500
	105+491.608	8,490,211.565	95,381.841	0	160	-230	111.304	33-18-38.501
	105+602.913	8,490,308.949	95,435.139	-230		-230	192.863	19-26-49.437
494	105+795.776	8,490,495.615	95,420.201	-230	160	0	111.304	331-24-08.895
	105+907.080	8,490,583.284	95,352.095	0		0	133.638	317-32-19.829
496	106+040.718	8,490,681.873	95,261.877	1,300		1,300	310.215	317-32-19.830
497	106+350.933	8,490,933.433	95,081.612	0		0	278.468	331-12-40.195
498	106+629.401	8,491,177.482	94,947.507	-2,500		-2,500	152.922	331-12-40.195
499	106+782.323	8,491,309.167	94,869.811	0	160	230	111.304	327-42-23.258
500	106+893.627	8,491,407.482	94,818.250	230		230	81.330	341-34-12.322
501	106+974.957	8,491,487.542	94,806.571	230	160	0	111.304	1-49-49.296
502	107+086.261	8,491,596.489	94,827.896	0	160	-230	111.304	15-41-38.359
503	107+197.566	8,491,705.437	94,849.222	-230		-230	58.251	1-49-49.294

No	Station	Xcoordinates	Ycoordinates	Beginning of Radius	Parameter	End of Radius	Length	Chord Angle
504	107+255.817	8.491.763.272	94.843.729	-230	160	0 Nadius	111.304	347-19-09.639
	107+367.121	8,491,866.257	94.802.276	0	100	0	510.353	333-27-20.574
	107+877.474	8.492.322.814	94.574.205	-1.200		-1.200	310.541	333-27-20.574
	108+188.015	8.492.579.673	94.401.225	0		0	62.403	318-37-42.542
508	108+250.418	8.492.626.503	94.359.981	0	160	230	111.304	318-37-42.540
509	108+361.723	8.492.715.451	94.293.554	230	100	230	142.980	332-29-31.604
	108+504.702	8.492.854.129	94.269.852	230	160	0	111.304	8-06-36.244
511	108+504.702	8.492.960.090	94,209.852	230	100	0	11.498	21-58-25.305
	108+627.504	8,492,970.752	94.307.268	-5,000		-5,000	159.508	21-58-25.309
	108+787.012	8.493.119.599	94.364.584	3,000		0,000	758.453	20-08-45.151
	109+545.465	8.493.831.649	94,625.804	0	160	300	85.333	20-08-45.151
	109+545.465	8.493.910.209	94,658.926	300	100	300	41.928	28-17-40.591
	109+672.726	8.493.945.621	94,681.312	300	160	0	85.333	36-18-08.266
517	109+672.726	8.494.009.242	94,081.312	0	160	0	328.472	44-27-03.705
	110+086.532	8,494,009.242	94,738.066	0	160	-230	111.304	44-27-03.705
	110+086.532	8.494,243.721	95.039.205	-230	160	-230 -230	217.878	30-35-14.639
	110+197.836	8,494,528.972	95,039.205	-230 -230	160	-230 0	111.304	336-18-41.214
	110+415.714	8,494,631.590	94,991.474	-230 0	160	0	260.022	322-26-52.149
	110+527.018	8,494,631,590	94,991.474	0	160	230	111.304	322-26-52.149
	110+787.040	8,494,837.735	94,832.995	230	160	230	345.946	336-18-41.214
	111+244.291	8,494,930.910 8.495,227.312	94,772.640	230	160	230	345.946 111.304	62-29-26.763
	111+244.291	8,495,262,104	94,877.026	230	160	-230	111.304	76-21-15.828
		, ,	,	_	100	-230 -230		
	111+466.900 111+583.410	8,495,296.897	95,087.870	-230	100		116.511	62-29-26.765
	111+583.410	8,495,374.059 8,495,475,300	95,173.503	-230	160	0	111.304 985.186	33-27-59.733 19-36-10.668
		, ,	95,219.049	0	160	-300	85.333	19-36-10.669
	112+679.900	8,496,403.385	95,549.579	-300	100	-300 -300	250.899	
	112+765.234 113+016.133	8,496,484.965 8,496,722,836	95,574.345	-300 -300	160		250.899 85.333	11-27-15.229
	113+016.133	8,496,722.836 8.496.786.297	95,521.590 95.464.656	-300 0	160	0	85.333 131.904	323-32-09.613 315-23-14.174
		, ,	,	1.000		_		315-23-14.174
	113+233.370 113+545.700	8,496,880.195	95,372.018	,		1,000 0	312.330	
		8,497,132.914	95,190.655	0	100	_	319.691	333-16-56.824
	113+865.391	8,497,418.472	95,046.924	0 -500	190	-500 -500	72.200	333-16-56.823
	113+937.591	8,497,482.149	95,012.929	-500 -500	100		51.064	329-08-44.504
	113+988.654	8,497,524.574	94,984.549		190	0	72.200	323-17-39.235
	114+060.854	8,497,580.301	94,938.671	0	100	0	49.060	319-09-26.918
	114+109.914	8,497,617.415	94,906.586	0	160	270 270	94.815	319-09-26.915
	114+204.729	8,497,692.544	94,848.959	270	100		71.392	329-13-03.509
541	114+276.121	8,497,757.968	94,820.908	270 0	160	0 -600	94.815	344-22-03.104
542	114+370.936	8,497,851.507	94,806.219	0	210	-000	73.500	354-25-39.695

Γ	No	Station	Xcoordinates	Ycoordinates	Beginning	Parameter	End	Length	Chord Angle
	NO	Station	Accordinates	Toordinates	of Radius	Farameter	of Radius	Length	Chord Angle
	543	114+444.436	8,497,924.487	94,797.591	-600		-600	16.753	350-55-05.974
	544	114+461.189	8,497,940.991	94,794.716	-600	210	0	73.500	349-19-06.645
	545	114+534.689	8,498,012.589	94,778.159	0		0	302.939	345-48-32.925
	546	114+837.628	8,498,306.284	94,703.892	0	230	-700	75.571	345-48-32.926
	547	114+913.200	8,498,379.194	94,684.053	-700		-700	37.342	342-42-58.836
	548	114+950.542	8,498,414.538	94,672.013	-700	230	0	75.571	339-39-35.377
	549	115+026.114	8,498,484.397	94,643.216	0		0	1.346	336-34-01.192
	550	115+027.460	8,498,485.632	94,642.681	1,800		1,800	156.005	336-34-01.286
	551	115+183.464	8,498,631.278	94,586.918	0		0	770.920	341-31-58.093
	552	115+954.384	8,499,362.500	94,342.720	0	200	600	66.667	341-31-58.094
	553	116+021.051	8,499,426.105	94,322.780	600		600	154.087	344-42-57.249
	554	116+175.138	8,499,578.300	94,301.588	600	200	0	66.667	359-25-48.293
	555	116+241.804	8,499,644.933	94,303.394	0		0	466.589	2-36-47.451
	556	116+708.393	8,500,111.037	94,324.667	0	160	230	111.304	2-36-47.451
	557	116+819.697	8,500,221.168	94,338.642	230		230	111.786	16-28-36.516
	558	116+931.483	8,500,316.639	94,394.655	230	160	0	111.304	44-19-26.250
	559	117+042.787	8,500,382.566	94,483.975	0		0	143.674	58-11-15.313
	560	117+186.462	8,500,458.302	94,606.066	0	160	300	85.333	58-11-15.316
	561	117+271.795	8,500,499.761	94,680.563	300		300	75.773	66-20-10.753
	562	117+347.568	8,500,521.133	94,753.049	300	160	0	85.333	80-48-28.162
	563	117+432.901	8,500,526.723	94,838.123	0		0	20.289	88-57-23.597
	564	117+453.190	8,500,527.093	94,858.409	0	160	-230	111.304	88-57-23.600
	565	117+564.495	8,500,538.046	94,968.882	-230		-230	142.154	75-05-34.536
	566	117+706.648	8,500,613.448	95,086.725	-230	160	0	111.304	39-40-50.498
	567	117+817.953	8,500,709.165	95,142.963	0		0	26.652	25-49-01.437
	568	117+844.605	8,500,733.157	95,154.570	0	170	400	72.250	25-49-01.434
	569	117+916.855	8,500,797.196	95,187.966	400		400	76.459	30-59-29.728
	570	117+993.314	8,500,858.591	95,233.342	400	170	0	72.250	41-56-36.970
	571	118+065.564	8,500,909.309	95,284.761	0		0	274.120	47-07-05.263
	572	118+339.685	8,501,095.845	95,485.625	0	160	-300	85.333	47-07-05.262
	573	118+425.018	8,501,156.756	95,545.279	-300		-300	142.227	38-58-09.824
	574	118+567.245	8,501,284.047	95,605.688	-300	160	0	85.333	11-48-22.072
	575	118+652.578	8,501,368.777	95,615.151	0		0	84.055	3-39-26.636
	576	118+736.633	8,501,452.660	95,620.513	0	170	-400	72.250	3-39-26.632
	577	118+808.883	8,501,524.843	95,622.949	-400		-400	101.766	358-28-58.345
	578	118+910.649	8,501,625.138	95,607.413	-400	170	0	72.250	343-54-21.524
	579	118+982.899	8,501,693.201	95,583.252	0		0	381.047	338-43-53.236
	580	119+363.945	8,502,048.295	95,445.031	0	170	-400	72.250	338-43-53.237
	581	119+436.195	8,502,114.781	95,416.819	-400		-400	92.125	333-33-24.942

No	Station	Xcoordinates	Ycoordinates	Beginning of Radius	Parameter	End of Radius	Length	Chord Angle
582	119+528.321	8.502.191.837	95,366,699	-400	170	0	72.250	320-21-39.447
	119+600.571	8.502.244.581	95,317,361	0		0	224.046	315-11-11.155
	119+824.617	8.502.403.521	95.159.452	0	160	230	111.304	315-11-11.155
585	119+935.921	8.502.488.320	95.087.805	230		230	127.457	329-03-00.220
586	120+063.379	8.502.609.823	95,055,079	230	160	0	111.304	0-48-04.284
587	120+174.683	8.502.719.136	95,074,444	0	160	-270	94.815	14-39-53.347
588	120+269.498	8.502.811.981	95,093,017	-270		-270	19.911	4-36-16.753
589	120+289.409	8,502,831.869	95,093.883	-270	160	0	94.815	0-22-45.955
590	120+384.223	8,502,925.977	95,083.446	0		0	119.338	350-19-09.364
591	120+503.562	8,503,043.616	95,063.379	0	160	270	94.815	350-19-09.361
592	120+598.376	8,503,137.724	95,052.942	270		270	115.879	0-22-45.954
593	120+714.255	8,503,249.913	95,078.173	270	160	0	94.815	24-58-10.769
594	120+809.070	8,503,330.492	95,127.895	0		0	254.733	35-01-47.359
595	121+063.803	8,503,539.080	95,274.112	0	160	-230	111.304	35-01-47.360
596	121+175.107	8,503,634.822	95,330.308	-230		-230	71.221	21-09-58.296
597	121+246.328	8,503,704.131	95,345.414	-230	160	0	111.304	3-25-27.362
598	121+357.632	8,503,814.574	95,334.156	0		0	102.312	349-33-38.299
599	121+459.944	8,503,915.192	95,315.617	0	170	400	72.250	349-33-38.300
600	121+532.194	8,503,986.582	95,304.674	400		400	130.497	354-44-06.588
601	121+662.691	8,504,116.172	95,313.921	400	170	0	72.250	13-25-39.166
602	121+734.941	8,504,185.285	95,334.889	0		0	485.364	18-36-07.457
603	122+220.305	8,504,645.292	95,489.717	0	160	-230	111.304	18-36-07.458
604	122+331.609	8,504,753.017	95,516.543	-230		-230	159.929	4-44-18.392
605	122+491.538	8,504,904.274	95,475.499	-230	160	0	111.304	324-53-53.918
606	122+602.842	8,504,983.663	95,397.900	0		0	145.827	311-02-04.852
607	122+748.669	8,505,079.401	95,287.901	0	160	300	85.333	311-02-04.853
608	122+834.002	8,505,138.357	95,226.316	300		300	38.670	319-11-00.290
609	122+872.672	8,505,169.169	95,202.993	300	160	0	85.333	326-34-08.040
610	122+958.006	8,505,244.448	95,162.970	0		0	161.954	334-43-03.481
611	123+119.960	8,505,390.889	95,093.802	0	160	-350	73.143	334-43-03.480
612	123+193.103	8,505,455.866	95,060.297	-350		-350	50.607	328-43-50.913
	123+243.710	8,505,497.076	95,030.998	-350	160	0	73.143	320-26-46.971
	123+316.853	8,505,550.066	94,980.633	0		0	56.912	314-27-34.401
615	123+373.764	8,505,589.928	94,940.013	0	160	300	85.333	314-27-34.403
	123+459.098	8,505,652.458	94,882.059	300		300	21.286	322-36-29.846
	123+480.383	8,505,669.814	94,869.743	300	160	0	85.333	326-40-24.739
	123+565.716	8,505,745.165	94,829.858	0	160	-230	111.304	334-49-20.181
	123+677.021	8,505,841.503	94,774.692	-230		-230	167.112	320-57-31.115
620	123+844.133	8,505,923.589	94,633.336	-230	160	0	111.304	279-19-44.071

No	Station	Xcoordinates	Ycoordinates	Beginning	Parameter	End	Length	Chord Angle
NO	Station	Accordinates	Toordinates	of Radius	Farameter	of Radius	Length	Orlord Arigie
621	123+955.438	8,505,923.752	94,522.321	0		0	17.857	265-27-55.012
622	123+973.295	8,505,922.340	94,504.520	4,000		4,000	206.761	265-27-55.007
623	124+180.056	8,505,911.326	94,298.076	0		0	254.728	268-25-36.867
624	124+434.783	8,505,904.333	94,043.444	-1,000		-1,000	306.952	268-25-36.867
625	124+741.736	8,505,849.315	93,742.686	0		0	17.180	250-50-23.405
626	124+758.916	8,505,843.676	93,726.458	0	160	300	85.333	250-50-23.407
627	124+844.249	8,505,819.541	93,644.689	300		300	30.809	258-59-18.847
628	124+875.058	8,505,815.218	93,614.199	300	160	0	85.333	264-52-21.367
629	124+960.391	8,505,815.673	93,528.943	0	160	230	111.304	273-01-16.807
630	125+071.695	8,505,830.433	93,418.914	230		230	455.627	286-53-05.871
631	125+527.322	8,506,199.546	93,310.530	230	160	0	111.304	40-23-13.524
632	125+638.627	8,506,271.450	93,395.112	0		0	244.023	54-15-02.588
633	125+882.649	8,506,414.017	93,593.156	0	160	-230	111.304	54-15-02.589
634	125+993.954	8,506,485.921	93,677.739	-230		-230	64.914	40-23-13.523
635	126+058.868	8,506,540.608	93,712.312	-230	160	0	111.304	24-12-58.080
636	126+170.173	8,506,647.855	93,740.992	0		0	145.027	10-21-09.016
637	126+315.200	8,506,790.521	93,767.053	0	160	-230	111.304	10-21-09.017
638	126+426.504	8,506,900.981	93,778.144	-230		-230	42.252	356-29-19.949
639	126+468.756	8,506,942.680	93,771.708	-230	160	0	111.304	345-57-47.927
640	126+580.061	8,507,044.655	93,727.830	0		0	236.530	332-05-58.864
641	126+816.591	8,507,253.692	93,617.149	0	160	230	111.304	332-05-58.863
642	126+927.895	8,507,355.668	93,573.271	230		230	300.630	345-57-47.928
643	127+228.525	8,507,612.330	93,684.384	230	160	0	111.304	60-51-13.979
644	127+339.830	8,507,650.120	93,788.769	0		0	31.654	74-43-03.045
645	127+371.484	8,507,658.463	93,819.304	0	160	-250	102.400	74-43-03.044
646	127+473.884	8,507,692.064	93,915.833	-250		-250	413.061	62-59-00.012
647	127+886.945	8,508,046.088	94,015.012	-250	160	0	102.400	328-19-00.342
648	127+989.345	8,508,124.947	93,949.988	0		0	144.823	316-34-57.309
649	128+134.168	8,508,230.141	93,850.450	1,300		1,300	315.923	316-34-57.309
650	128+450.090	8,508,483.619	93,663.191	0		0	186.920	330-30-23.293
651	128+637.011	8,508,646.317	93,571.166	0	160	300	85.333	330-30-23.291
652	128+722.344	8,508,722.430	93,532.755	300		300	143.049	338-39-18.732
653	128+865.393	8,508,862.855	93,513.807	300	160	0	85.333	5-58-31.793
654	128+950.726	8,508,946.427	93,530.671	0		0	304.969	14-07-27.232
655	129+255.695	8,509,242.177	93,605.091	0	160	-300	85.333	14-07-27.232
656	129+341.028	8,509,325.749	93,621.955	-300		-300	150.322	5-58-31.793
657	129+491.350	8,509,472.915	93,600.278	-300	160	0	85.333	337-15-57.996
658	129+576.684	8,509,548.076	93,560.033	0		0	463.638	329-07-02.556
659	130+040.322	8,509,945.979	93,322.057	0	160	300	85.333	329-07-02.557

660 130+125.655 8.510,021.140 93.281.812 300 160 0 85.333 357-58-13.148 661 130+234.062 8.510,126.450 93.258.693 300 160 0 85.333 357-58-13.148 662 130+319.396 8.510,126.450 93.263.754 0 0 347.175 6-07-08.585 663 130+666.571 8.510,556.753 93.300.761 0 160 -300 85.333 6-07-08.585 664 130+751.904 8.510,641.860 93.305.822 -300 -300 68.182 357-58-13.145 665 130+820.086 8.510,709.141 93.295.718 -300 160 0 85.333 34-56-54.323 666 130+905.420 8.510,789.007 93.265.882 0 0 234.791 336-47-58.883 667 131+404.1592 8.511,295.402 93.097.876 0 1.000 301.381 336-47-58.883 668 131+441.592 8.511,295.402 93.097.876 0 0 255.865 354-04-03.247 669 131+282.688 8.511,672.203 93.026.097 -300 160 -300 85.333 327-36-06.890 672 131+914.031 8.511,739.540 92.973.806 0 0 54.93 19-27-11.451 673 131+928.688 8.511,739.540 92.973.806 0 0 54.93 19-27-11.451 674 132+044.450 8.511,841.876 92.893.105 500 97.701 326-36-54.516 675 132+267.151 8.511,292.173 92.876.531 500 500 97.701 326-36-54.516 675 132+267.151 8.511,292.173 92.876.531 500 400 100.000 344-58-22.158 677 132+285.181 8.512.047.361 92.895.572 0 200 400 100.000 134-58-22.158 677 132+385.181 8.512.047.361 92.890.572 0 200 400 100.000 344-58-22.158 679 132+331.171 8.512.203 92.895.572 0 200 400 100.000 13-22-46.904 680 132+385.181 8.512.203 92.898.970 0 350 70 75.571 45.990.526 681 132+385.181 8.512.12.283 92.893.105 500 90 125.000 30.37-48-39.006 681 132+385.181 8.512.2047.361 92.890.572 0 200 400 100.000 13-22-46.904 680 132+385.181 8.512.2047.361 92.890.572 0 200 400 100.000 13-22-46.904 680 132+385.181 8.512.2047.361 92.890.572 0 200 400 100.000 13-22-46.904 681 132+385.181 8.512.162.283 92.783.705 400 400 100.000 13-22-46.904 681 132+385.181 8.512.162.889 97.890.572 0 200 400 100.000 13-22-46.904 681 132+385.181 8.512.2047.361 92.890.572 0 200 400 100.000 344-58-22.158 679 132+331.171 8.512.307.316 92.790.267 400 200 0 100.000 13-22-46.904 681 132+385.181 8.512.162.889 97.00 350 0 0 75.571 60-50-40.914 688 133+494.508 8.513.070.509 99.571.62 700 700 775.571 43-45-42.093 685 133+402.566	No	Station	Xcoordinates	Ycoordinates	Beginning	Parameter	End	Length	Chord Angle
661 130+234.062 8.510,126.450 93.258.693 300 160 0 85.333 357-58-13.148 662 130+319.396 8.510,211.556 93.263.754 0 0 347.175 6-07-08.585 663 130+666.571 8.510,641.860 93.305.822 -300 -300 681.82 357-58-13.145 665 130+820.086 8.510,709.141 93.295.718 -300 160 0 85.333 34-56-54.323 666 130+905.420 8.510,789.007 93.265.882 0 0 0 234.791 336-47-58.883 667 131+140.210 8.511,004.811 93.173.387 1,000 1,000 301.381 336-47-58.883 668 131+441.592 8.511,295.402 93.097.876 0 0 0 25.865 354-04-03.247 669 131+647.457 8.511,500.165 93.076.599 0 160 -300 85.333 357-04-03.249 670 131+732.790 8.511,584.452 93.063.779 -300 -300 99.907 345-55-07.809 671 131+914.031 8.511,739.540 92.973.806 0 0 5.419 319-27-11.469 673 131+914.031 8.511,739.540 92.973.806 0 0 5.419 319-27-11.469 674 132+044.456 8.511,448.186 92.970.284 0 250 500 125.000 319-27-11.451 676 132+265.151 8.511,204.7361 92.847.631 500 250 0 125.000 37-48-39.048 676 132+245.151 8.511,928.173 92.847.631 500 250 0 125.000 37-48-39.048 676 132+245.151 8.512,047.361 92.810.247 0 0 18.030 344-58-22.158 677 132+285.181 8.512,047.361 92.890.572 0 200 400 100.000 344-58-22.158 677 132+285.181 8.512,047.361 92.890.572 0 200 400 100.000 344-58-22.158 678 132+343.1916 8.512,307.316 92.905.572 0 200 400 100.000 344-58-22.158 681 132+831.266 8.512.590.230 92.889.970 0 350 700 175.000 20-12-30.006 682 133+006.266 8.512.751.685 92.957.162 700 700 112.759 27-22-31.108 686 133+422.560 8.513.370.326 93.292.286 700 700 175.000 36-35-58.933 686 133+422.560 8.513.370.326 93.292.286 700 700 175.000 38-333 63-56-15.002 689 133+836.476 8.513.278.875 93.577.626 0 160 300 85.333 37-36-00-00 689 133+93.646 8.513.278.875 93.577.626 0 160 300 85.333 90-00-04.202 692 134+101.207 8.513.310.676 93.833.312 0 0 0 6.85.333 90-00-04.202 692 134+101.207 8.513.310.676 93.833.312 0 0 0 75.571 60-50-04.914 694 134+426.446 8.513.278.875 93.577.626 0 160 300 85.333 90-03-04.202 695 134+818.899 8.513.676.662 94.456.422 0 0 184.897 359-22-02.202 696 134+943.933 8.513.807.538 94.456.338 0 160 0 8.53.33 7-30-57.642 69					of Radius		of Radius		·
662 130+319.396 8,510,211,556 93,263.754 0 0 347,175 6-07-08.585 663 130+866.571 8,510,556.753 93,300.761 0 160 -300 85.333 6-07-08.585 664 130+751.904 8,510,641.860 93,305.822 -300 -300 68.182 357-58-13.145 665 130+820.086 8,510,709.141 93,295.718 -300 160 0 85.333 344-56-54.323 666 130+905.420 8,510,789.007 93,265.882 0 0 234.791 336-47-58.883 667 131+140,210 8,511.004.811 93,173.387 1,000 1,000 310.381 336-47-58.883 668 131+441.592 8,511,295.402 93,097.876 0 0 20,5865 354-04-03.247 669 131+674.757 8,511.500.165 93,076.599 0 160 -300 85.333 354-04-03.249 670 131+732.790 8,511.584.452 93,063.779 -300 160 0 85.333 327-36-06.890 672 131+914.031 8,511.739.540 29,973.806 0 0 5.419 319-27-11.469 673 131+919.450 8,511.841.876 92.893.105 500 0 0 5.419 319-27-11.459 673 132+248.151 8,511.928.173 92,847.631 500 250 0 125.000 319-27-11.451 677 132+285.181 8,512.044.735 92.893.105 500 250 0 125.000 319-27-11.451 678 132+285.181 8,512.047.361 92.810.247 0 0 18.030 344-58-22.147 678 132+285.181 8,512.064.775 92.805.572 0 200 400 100.000 344-58-22.147 678 132+385.181 8,512.064.775 92.805.572 0 200 400 100.000 344-58-22.147 678 132+385.181 8,512.064.775 92.805.572 0 200 400 100.000 344-58-22.147 678 132+385.181 8,512.064.775 92.805.572 0 200 400 100.000 344-58-22.147 678 132+385.181 8,512.064.775 92.805.572 0 200 400 100.000 13-02-46.904 680 132+631.171 8,512.307.316 92.790.267 400 200 0 100.000 13-02-46.904 681 132+831.266 8,512.590.230 92.889.970 0 350 700 175.000 20-12-30.006 681 132+831.266 8,512.590.230 92.889.970 0 350 700 175.000 20-12-30.006 681 133+030.6266 8,512.590.230 92.889.970 0 350 700 175.000 30-35-58.993 686 133+422.560 8,513.070.326 93.222.286 700 700 170.923 46-51-16.184 687 133+939.482 8,513.070.326 93.222.286 700 700 170.923 46-51-16.184 687 133+939.482 8,513.170.904 93.359.958 700 230 0 75.571 43-45-42.093 686 133+422.560 8,513.370.904 93.359.958 700 230 0 75.571 43-45-42.093 686 133+422.560 8,513.370.905 93.833.312 0 0 0 60 60 85.333 96-15-50.04 691 134+035.839 8,513.370.509 93.577.626 0 160 300 85.333				,					
663 130+666.571 8,510,556.753 93,300.761 0 160 -300 85,333 6-07-08,585 664 130+751,904 8,510,641,860 93,305,822 -300 -300 68,182 357-58-13,145 665 130+820,086 8,510,709,141 93,295,718 -300 160 0 85,333 344-56-54,323 666 130+905,420 8,510,799,141 93,173,387 1,000 100 31,381 336-47-58,883 667 131+140,210 8,511,004,811 93,173,387 1,000 1,000 301,381 336-47-58,883 668 131+441,592 8,511,295,402 93,097,876 0 0 205,866 354-04-03,247 669 131+647,457 8,511,500,165 93,076,599 0 160 -300 85,333 354-04-03,249 670 131+828,698 8,511,672,203 93,026,097 -300 160 0 85,333 327-36-06,890 671 131+828,698 8,511,672,203 93,026,097 -300 160 0 85,333 327-36-06,890 672 131+914,031 8,511,739,540 92,973,806 0 0 5,419 319-27-11,451 674 132+044,450 8,511,841,876 92,893,105 500 0 50 97,701 326-36-54,551 675 132+142,151 8,511,204,7361 92,893,105 500 97,701 326-36-54,551 676 132+265,151 8,512,047,361 92,893,572 0 200 400 100,000 344-58-22,158 677 132+285,181 8,512,064,775 92,805,572 0 200 400 100,000 344-58-22,147 678 132+831,171 8,512,203,7316 92,790,267 400 200 0 100,000 344-58-22,147 678 132+831,266 8,512,590,230 92,889,970 0 350 700 175,000 375-03-05,681 132+631,171 8,512,043,7361 92,895,572 0 200 400 100,000 344-58-22,147 678 132+381,266 8,512,590,230 92,889,970 0 350 700 175,000 36-35-89,93 685 133+490,026 8,512,590,230 92,889,970 0 350 700 175,000 20-12-30,006 682 133+002,266 8,512,571,885 92,975,162 700 700 175,000 36-35-89,93 684 133+294,025 8,512,978,451 93,132,417 0 0 52,963 43-45-42,098 685 133+434,088 8,513,016,702 93,169,050 0 230 700 75,571 43-54-22,036 689 133+438,6476 8,513,205,318 93,427,228 0 160 300 85,333 90-03-04,024 691 134+015,873 8,513,120,662 93,674,662 93,674,674 93,000 94,004 72-05-10,044 691 134+015,873 8,513,329,531 93,577,626 0 160 300 85,333 90-03-04,202 692 134+101,207 8,513,315,205,318 93,427,228 0 160 300 85,333 90-03-04,202 692 134+101,207 8,513,319,675 93,333,312 0 0 0 30 85,333 90-03-04,202 693 134+341,113 8,513,265,652 94,456,422 0 0 160 300 85,333 7-30-57,642 696 134+943,933 8,513,622,652 94,456,422 0 0				,		160			
664 130+751.904 8,510,641.860 93,305.822 -300 -300 68.182 357-58-13.145 665 130+820.086 8,510,709.141 93,295.718 -300 160 0 85.333 344-56-54.323 666 130+905.420 8,510,799.141 93,295.718 -300 160 0 85.333 344-56-54.323 667 131+140.210 8,511.004.811 93,173.387 1,000 1,000 301.381 36-47-58.883 667 131+441.592 8,511.295.402 93,097.876 0 0 0.205.865 354-04-03.247 669 131+647.457 8,511.500.165 93,076.599 0 160 -300 85.333 354-04-03.249 670 131+732.790 8,511.584.452 93,063.779 -300 160 -300 95.907 345-55-07.809 671 131+828.698 8,511.672.203 93,026.097 -300 160 0 85.333 327-36-06.890 672 131+914.031 8,511.739.540 92,973.806 0 0 5.419 319-27-11.451 674 132+044.450 8,511.841.876 92,893.105 500 500 125.000 319-27-11.451 674 132+044.450 8,511.841.876 92,893.105 500 500 97.701 326-36-54.551 675 132+124.151 8,511.928.173 92.847.631 500 250 0 125.000 37-48-39.048 676 132+267.151 8,512.047.361 92,810.247 0 0 18.030 344-58-22.158 677 132+285.181 8,512.064.775 92,805.572 0 200 400 100,000 344-58-22.158 679 132+285.181 8,512.064.775 92,805.572 0 200 400 100,000 13-02-46.904 680 132+631.171 8,512.307.316 92,790.267 400 200 0 100,000 13-02-46.904 680 132+631.171 8,512.307.316 92,790.267 400 200 0 100,000 13-02-46.904 681 132+631.266 8,512.590.329 92,889.970 0 350 700 175,000 20-12-30.006 682 133+006.266 8,512.751.685 92,957.162 700 700 175,000 20-12-30.006 682 133+006.266 8,512.751.685 92,957.162 700 700 175,000 20-12-30.006 681 133+934.698 8,513.016.702 93,169.050 0 230 700 75.571 43-45-42.093 684 133+934.88 8,513.106.702 93,169.050 0 230 700 75.571 43-45-42.093 684 133+934.88 8,513.106.702 93,169.050 0 230 700 75.571 43-45-42.093 686 133+424.505 8,512.788.55 93,577.626 0 160 300 85.333 90-3-04.202 692 134+101.207 8,513.319.057 93,383.312 0 0 160 0 85.333 90-3-04.202 692 134+101.207 8,513.319.057 93,383.312 0 0 160 0 85.333 90-3-04.202 692 134+101.207 8,513.319.057 93,383.312 0 0 160 0 85.333 90-3-04.202 692 134+101.207 8,513.319.057 93,833.312 0 0 160 0 85.333 90-3-04.202 692 134+101.207 8,513.319.057 93,833.312 0 0 160 0 85.333							-		
665 130+820.086 8,510,709,141 93,295,718 -300 160 0 85,333 344-56-54,322 666 130+905,420 8,510,789,007 93,265,882 0 0 234,791 336-47-58,883 667 131+140,210 8,511,004,811 93,173,387 1,000 1,000 301,381 336-47-58,883 668 131+441,592 8,511,295,402 93,097,876 0 0 205,865 354-04-03,247 669 131+647,457 8,511,500,165 93,076,599 0 160 -300 85,333 354-04-03,249 670 131+732,790 8,511,584,452 93,063,779 -300 -300 95,907 345-55-07,809 671 131+828,698 8,511,672,203 93,026,097 -300 160 0 85,333 327-36-06,890 672 131+914,031 8,511,739,540 92,973,806 0 0 5,419 319-27-11,459 673 131+919,450 8,511,841,876 92,893,105 500 500 97,701 326-36-54,551 675 132+142,151 8,511,928,173 92,847,631 500 250 0 125,000 337-48-39,048 676 132+267,151 8,512,047,361 92,810,247 0 0 18,030 344-58-22,158 677 132+285,181 8,512,064,775 92,805,572 0 200 400 100,000 344-58-22,158 679 132+385,181 8,512,064,775 92,805,572 0 200 400 100,000 344-58-22,158 681 132+831,266 8,512,590,230 92,893,970 0 350 700 175,000 36-35-58,931 682 133+006,266 8,512,751,685 92,975,162 700 700 112,759 27-22-13,108 683 133+119,025 8,512,847,222 93,016,826 700 350 700 175,000 20-12-30,006 681 132+831,266 8,512,751,685 92,975,162 700 700 112,759 27-22-13,108 685 133+349,025 8,512,847,222 93,016,826 700 350 700 175,000 20-12-30,006 681 132+831,266 8,512,751,685 92,975,162 700 700 112,759 27-22-13,108 685 133+346,988 8,513,016,702 93,168,26 700 350 700 175,000 36-35-58,939 684 133+294,025 8,512,978,451 93,132,417 0 0 52,963 43-45-42,093 686 133+422,560 8,513,070,326 93,222,286 700 700 75,571 43-45-42,093 686 133+294,025 8,512,978,451 93,132,417 0 0 52,963 33 46,940 8,513,370,326 93,222,286 700 700 75,571 43-45-42,093 686 133+294,025 8,512,978,451 93,132,417 0 0 52,963 34-45-10,846 687 133+593,482 8,513,116,702 93,168,26 700 350 0 175,000 36-35-58,930 684 133+294,025 8,512,978,451 93,132,417 0 0 52,963 34-45-20,93 686 133+294,025 8,512,978,451 93,132,417 0 0 52,963 34-45-20,93 686 133+294,025 8,512,978,451 93,132,417 0 0 52,963 34-65-15,002 689 133+593,482 8,513,179,057 93,333,312 0 0				,	_	160			
666 130+905.420 8,510,789.007 93,265.882 0 0 234.791 336-47-58.883 667 131+140.210 8,511,295.402 93,097.876 0 0 205.865 354-04-03.247 669 131+647.457 8,511,500.165 93,076.599 0 160 -300 85.333 354-04-03.249 670 131+732.790 8,511,584.452 93,083.779 -300 -300 95.907 345-55-07.809 671 131+928.698 8,511,672.203 93,026.097 -300 160 0 85.333 237-36-06.890 672 131+914.031 8,511,743.658 92,970.284 0 250 500 125,000 319-27-11.469 673 131+914.050 8,511,841.876 92,893.105 500 500 97.701 326-65.551 674 132+042.151 8,511,928.173 92,847.631 500 250 0 125,000 337-48-39.048 676 132+267.151 8,512,047.75 92,805.572 0 200 40			, ,	,					
667 131+140.210 8.511,004.811 93,173.387 1,000 1,000 301.381 336-47-58.883 668 131+441.592 8.511,295.402 93,097.876 0 0 205.865 334-04-03.247 670 131+732.790 8.511,500.165 93,076.599 0 160 -300 85.333 354-04-03.249 670 131+32.790 8.511,584.452 93,063.779 -300 -300 95.907 345-55-07.809 671 131+828.698 8.511,672.203 93,026.097 -300 160 0 85.333 327-36-06.890 672 131+914.031 8.511,739.540 92,973.806 0 0 5.419 319-27-11.451 674 132+044.450 8.511,841.876 92,893.105 500 500 125.000 319-27-11.451 674 132+044.450 8.511,841.876 92,893.105 500 500 97.701 326-36-54.551 675 132+142.151 8.511,2047.361 92,810.247 0 0 18.030 344-58-22.158 677 132+285.181 8.512,047.361 92,810.247 0 0 18.030 344-58-22.147 678 132+385.181 8.512,064.775 92,805.572 0 200 400 100.000 344-58-22.147 678 132+385.181 8.512,064.775 92,805.572 0 200 400 100.000 344-58-22.147 681 132+831.171 8.512,307.316 92,790.267 400 200 0 100.000 344-59-251 681 132+831.171 8.512,202.452 92,820.851 0 0 200.095 20-12-30.006 681 132+831.171 8.512,307.316 92,957.162 700 700 175,000 20-12-30.006 682 133+006.266 8.512,550.230 92,889.970 0 350 700 175,000 20-12-30.006 682 133+019.025 8.512,847.222 92,820.851 0 0 200.095 20-12-30.006 682 133+04.58-22.58 8.513,016.702 93,169.050 0 230 700 75.571 60-50-40.91 686 133+425.560 8.513,751.685 92,957.162 700 700 175,000 20-12-30.006 682 133+34.590.25 8.512,847.222 93,016.826 700 350 0 175,000 20-12-30.006 685 133+345.698 8.513,016.702 93,169.050 0 230 700 75.571 60-50-40.914 688 133+69.80 8.513,070.326 93,322.2266 700 700 175,000 36-35-58.993 684 133+294.025 8.512,878.55 93,359.58 700 230 700 75.571 60-50-40.914 688 133+669.054 8.513,276.692 93,165.590 300 300 94.064 72-05-10.441 691 134+015.873 8.513,205.318 93.427.228 0 0 160 30 85.333 90-03-04.202 692 134+101.207 8.513,312.662 93,655.903 300 300 94.064 72-05-10.441 691 134+015.873 8.513,205.318 93.427.228 0 0 160 30 85.333 90-03-04.202 692 134+101.207 8.513,276.692 94,155.632 -300 160 0 85.333 90-03-04.202 692 134+101.207 8.513,312.662 94,455.432 -300 160 0 85.333 7-30-57.642 693			, ,	,	-300	160			
668 131+441.592 8,511,295.402 93,097.876 0 0 205.865 354-04-03.247 669 131+647.457 8,511,500.165 93,076.599 0 160 -300 85.333 354-04-03.247 669 131+624.7457 8,511,500.165 93,076.599 0 160 -300 85.333 354-04-03.249 671 131+828.698 8,511,672.203 93,026.097 -300 160 0 85.333 327-36-06.890 672 131+914.031 8,511,739.540 92.973.806 0 0 5.419 319-27-11.459 673 131+914.031 8,511,739.540 92.973.806 0 0 5.419 319-27-11.459 674 132+044.450 8,511,841.876 92.893.105 500 500 125.000 319-27-11.451 674 132+044.450 8,511,841.876 92.893.105 500 500 97.701 326-36-54.551 675 132+142.151 8,511,928.173 92.847.631 500 250 0 125.000 337-48-39.048 676 132+267.151 8,512,047.361 92.810.247 0 0 18.030 344-58-22.158 677 132+285.181 8,512,064.775 92.805.572 0 200 400 100.000 344-58-22.147 678 132+351.171 8,512,307.316 92.783.705 400 400 145.990 352-08-05.251 679 132+531.171 8,512,307.316 92.893.606 0 0 200 0 100.000 344-58-22.148 680 132+631.171 8,512,402.452 92.820.851 0 0 0 20.0095 20-12-30.006 681 132+831.266 8,512,590.230 92.889.970 0 350 700 175.000 20-12-30.006 682 133+006.266 8,512,751.685 92.957.162 700 700 112.759 27-22-13.108 683 133+19.025 8,512,847.222 93,016.826 700 350 0 175.000 20-12-30.006 685 133+346.988 8,513,016.702 93,169.050 0 230 700 75.571 43-45-42.098 685 133+346.988 8,513,016.702 93,169.050 0 230 700 75.571 43-45-42.098 685 133+346.988 8,513,016.702 93,169.050 0 230 700 75.571 43-45-42.098 681 133+69.054 8,513,270.366 93,322.22.86 700 70 170.923 46-51-10.84 687 133+593.482 8,513,170.904 93,359.958 700 230 0 75.571 60-50-40.914 681 133+69.054 8,513,270.366 93,359.958 700 230 0 75.571 60-50-40.914 681 133+69.054 8,513,270.366 93,359.958 700 230 0 75.571 60-50-40.914 681 133+69.054 8,513,270.366 93,359.958 700 230 0 75.571 60-50-40.914 681 133+69.054 8,513,270.366 93,359.958 700 230 0 75.571 60-50-40.914 681 133+69.054 8,513,270.569 93,555.093 300 300 94.064 72-05-10.441 691 134+015.873 8,513,270.569 93,555.632 -300 160 0 85.333 90-03-04.202 692 134+101.207 8,513,319.057 93,383.312 0 0 239.906 88-11-59.643 694 134+426.				,			-		
669 131+647.457 8.511,500.165 93,076.599 0 160 -300 85.333 354-04-03.249 670 131+732.790 8.511,584.452 93,063.779 -300 -300 95,907 345-55-07.809 671 131+828.698 8.511,672.203 93,026.097 -300 160 0 85.333 327-36-06.890 672 131+914.031 8.511,739.540 92,973.806 0 0 5.419 319-27-11.469 673 131+919.450 8.511,743.658 92,970.284 0 250 500 125.000 319-27-11.451 674 132+044.450 8.511,841.876 92,893.105 500 500 97.701 326-36-54.551 675 132+142.151 8.511,928.173 92,847.631 500 250 0 125.000 319-27-11.451 674 132+0245.151 8.512,047.361 92,810.247 0 0 18.030 344-58-22.158 677 132+285.181 8.512,064.775 92,805.572 0 200 400 100,000 344-58-22.158 677 132+285.181 8.512,064.775 92,805.572 0 200 400 100,000 344-58-22.158 679 1325-351.171 8.512,007.316 92,790.267 400 200 0 100,000 13-02-46.904 680 132+631.171 8.512,402.452 92,820.851 0 0 200.095 20-12-30.006 681 132+831.266 8.512,590.230 92,889.970 0 350 700 175.000 20-12-30.006 682 133+006.266 8.512,551.884 93,132.417 0 0 52,963 43-45-2.208 683 133+119.025 8.512,847.222 93,016.826 700 350 0 175.000 36-35-58.993 684 133+2246.025 8.512,978.451 93,132.417 0 0 52,963 43-45-42.098 685 133+346.988 8.513,016.702 93,169.050 0 230 700 75.571 43-45-42.093 686 133+422.560 8.513,070.326 93,222.286 700 700 170,023 46-51-16.184 687 133+393.482 8.513,016.702 93,655.903 300 94.064 72-05-10.441 691 134+015.873 8.513,278.875 93,577.626 0 160 300 85.333 90-03-04.202 692 134+101.57 873 8.513,278.875 93,833.12 0 0 239.906 98-11-59.642 693 134+384.113 8.513,224.8480 94,070.766 0 160 -300 85.333 90-03-04.202 692 134+101.57 8.513,276.692 94,155.632 -300 160 0 85.333 90-03-04.203 695 134+885.599 8.513,577.451 94,453.323 -300 160 0 85.333 7-30-57.642 696 134+985.599 8.513,577.538 94,454.380 0 160 0 85.333 7-30-57.642 696 134+985.599 8.513,577.538 94,453.320 0 0 184.897 359-22-02.200 697 135+128.830 8.513,675.38 94,453.320 0 0 160 0 85.333 90-03-04.202 692 134+101.207 8.513,319.057 93,833.312 0 0 0 239,906 98-11-59.642 696 134+985.599 8.513,577.538 94,453.320 -300 160 0 85.333 7-30-57.642 696 134+985.599 8			, ,	,	1,000		1,000		
670 131+732.790 8.511,584.452 93,063.779 -300 -300 95,907 345-55-07.809 671 131+828.698 8.511,672.203 93,026.097 -300 160 0 85,333 327-36-06.890 672 131+914.031 8.511,739.540 92,973.806 0 0 5.419 319-27-11.469 673 131+919.450 8.511,743.658 92,970.284 0 250 500 125.000 319-27-11.451 674 132+044.450 8.511,841.876 92,893.105 500 500 97.701 326-36-54.551 675 132+142.151 8.511,928.173 92,847.631 500 250 0 125.000 337-48-39.048 676 132+267.151 8.512,047.361 92,810.247 0 0 18.030 344-58-22.158 677 132+285.181 8.512,064.775 92,805.572 0 200 400 100,000 344-58-22.147 678 132+385.181 8.512,162.283 92,783.705 400 400 145.990 352-08-05.251 679 132+531.171 8.512,307.316 92,790.267 400 200 0 100,000 13-02-46.904 680 132+631.171 8.512,307.316 92,790.267 400 200 0 100,000 13-02-46.904 681 132+831.266 8.512,590.230 92,889.970 0 350 700 175.000 20-12-30.006 682 133+006.266 8.512,590.230 92,889.970 0 350 700 175.000 20-12-30.006 682 133+04.240.2452 92,820.851 0 0 0 20.095 20-12-30.006 683 133+119.025 8.512,847.222 93,016.826 700 350 700 175.000 36-35-58.993 684 133+294.025 8.512,847.222 93,016.826 700 350 700 75.571 43-45-42.098 685 133+346.988 8.513,016.702 93,169.050 0 230 700 75.571 43-45-42.098 685 133+349.882 8.513,070.326 93,222.286 700 700 170,923 46-51-16.184 687 133+593.482 8.513,070.326 93,222.286 700 700 170,923 46-51-16.184 687 133+593.482 8.513,070.326 93,222.286 700 700 75.571 60-50-40.914 688 133+636.476 8.513,278.875 93,577.626 0 160 300 85.333 90-03-04.202 692 134+101.207 8.513,319.057 93,357.826 0 160 300 85.333 90-03-04.202 692 134+101.207 8.513,319.057 93,353.312 0 0 239.906 98-11-59.643 694 134+426.446 8.513,278.875 93,577.626 0 160 300 85.333 90-03-04.202 692 134+101.207 8.513,319.057 93,348.446 300 160 0 85.333 90-03-04.202 692 134+101.207 8.513,319.057 93,833.312 0 0 0 239,906 98-11-59.643 694 134+426.446 8.513,276.692 94,155.632 -300 -300 432.153 90-03-04.202 692 134+101.207 8.513,374.51 94.453.323 -300 160 0 85.333 7-30-57.046 696 134+943.933 8.513,622.652 94,456.422 0 0 184.897 359-22-02.200 697 135+128	668	131+441.592		,			-	205.865	
671 131+828.698 8,511,672.203 93,026.097 -300 160 0 85.333 327-36-06.890 672 131+914.031 8,511,739.540 92,973.806 0 0 5.419 319-27-11.469 673 131+919.450 8,511,743.658 92,970.284 0 250 500 125.000 319-27-11.451 674 132+044.450 8,511,841.876 92,893.105 500 500 97.701 326-36-54.551 675 132+142.151 8,511,928.173 92,847.631 500 250 0 125.000 337-48-39.048 676 132+267.151 8,512,047.361 92,810.247 0 0 18.030 344-58-22.158 677 132+285.181 8,512,064.775 92,805.572 0 200 400 100.000 344-58-22.147 678 132+385.181 8,512,162.283 92,783.705 400 400 145.990 352-08-05.251 679 132+531.171 8,512,307.316 92,790.267 400 200 0 100.000 13-02-46.904 680 132+631.171 8,512,500.330 92,898.970 0 350 700 175.000 20-12-30.006 681 132+831.266 8,512,590.230 92,899.970 0 350 700 175.000 20-12-30.006 682 133+006.266 8,512,751.685 92,957.162 700 700 112.759 27-22-13.108 683 133+119.025 8,512,847.222 93,016.826 700 350 700 75.571 43-45-42.093 684 133+294.025 8,512,874.222 93,016.826 700 350 700 75.571 43-45-42.093 686 133+422.560 8,513,070.326 93,222.286 700 700 170.923 46-51-16.184 687 133+593.482 8,513,170.904 93,359.958 700 230 700 75.571 43-45-42.093 686 133+422.560 8,513,070.326 93,222.286 700 700 170.923 46-51-16.184 687 133+593.482 8,513,170.904 93,359.958 700 230 700 75.571 60-50-40.914 688 133+69.054 8,513,278.875 93,577.626 0 160 300 85.333 63-56-15.005 699 133+93.101 8,513,284.840 94.070.766 0 160 300 85.333 90-03-04.202 692 134+101.207 8,513,319.057 93,833.312 0 0 239.906 88-11-59.642 693 134+342.111 8,513,284.840 94.070.766 0 160 -300 85.333 90-03-04.202 692 134+101.207 8,513,319.057 93,833.312 0 0 239.906 98-11-59.642 693 134+345.859 8,513,537.451 94,453.323 -300 160 0 85.333 7-30-57.642 696 134+4858.599 8,513,537.451 94,453.320 -300 160 0 85.333 7-30-57.642 696 134+495.933 8,513,607.538 94,454.380 0 160 0 85.333 7-30-57.642 696 134+945.933 8,513,607.538 94,454.380 0 160 0 85.333 7-20-02.202 697 135+128.830 8,513,807.538 94,454.380 0 160 0 85.333 7-20-02.202 697 135+128.830 8,513,807.538 94,454.380 0 160 0 85.333 111.304 359-22-02	669	131+647.457	8,511,500.165	93,076.599	-	160	-300	85.333	354-04-03.249
672 131+914.031 8.511,739.540 92,973.806 0 250 500 125.000 319-27-11.469 673 131+919.450 8.511,743.658 92,970.284 0 250 500 125.000 319-27-11.451 674 132+044.450 8.511,841.876 92,893.105 500 500 97.701 326-36-54.551 675 132+142.151 8.511,928.173 92,847.631 500 250 0 125.000 337-48-39.048 676 132+267.151 8.512,047.361 92,810.247 0 0 18.030 344-58-22.158 677 132+285.181 8.512,064.775 92,805.572 0 200 400 100.000 344-58-22.147 678 132+385.181 8.512,162.283 92,783.705 400 400 145.990 352-08-05.251 679 132+531.171 8.512,307.316 92,790.267 400 200 0 100.000 13-02-46.904 680 132+631.171 8.512,402.452 92,820.851 0 0 200.095 20-12-30.006 681 132+831.266 8.512,590.230 92,889.970 0 350 700 175.000 20-12-30.006 682 133+006.266 8.512,590.230 92,889.970 0 350 700 175.000 20-12-30.006 682 133+006.266 8.512,590.230 92,889.970 0 350 700 175.000 20-12-30.006 682 133+006.266 8.512,590.430 92,849.971 0 0 52.963 43-45-42.098 685 133+346.988 8.513,016.702 93,169.050 0 230 700 75.571 43-45-42.093 686 133+422.560 8.513,070.326 93,222.286 700 700 170.923 46-51-16.184 687 133+593.482 8.513,016.702 93,169.050 0 230 700 75.571 43-45-42.093 686 133+42.560 8.513,070.036 93,222.286 700 700 170.923 46-51-16.184 687 133+593.482 8.513,016.702 93,169.050 0 230 700 75.571 43-45-42.093 686 133+42.560 8.513,070.326 93,222.286 700 700 170.923 46-51-16.184 687 133+593.482 8.513,016.702 93,169.050 0 230 700 75.571 43-45-42.093 686 133+42.560 8.513,070.326 93,222.286 700 700 170.923 46-51-16.184 687 133+593.482 8.513,016.702 93,169.050 0 230 700 75.571 60-50-40.914 688 133+669.054 8.513,270.318 93,427.228 0 0 167.422 63-56-15.002 689 133+836.476 8.513,278.875 93,577.626 0 160 300 85.333 63-56-15.002 689 133+836.476 8.513,278.875 93,577.626 0 160 300 85.333 98-11-59.643 694 134+426.446 8.513,276.692 94,155.632 -300	670	131+732.790	8,511,584.452	93,063.779	-300		-300	95.907	345-55-07.809
673 131+919.450 8.511,743.658 92,970.284 0 250 500 125.000 319-27-11.451 674 132+044.450 8.511,841.876 92,893.105 500 500 97.701 326-36-54.551 675 132+142.151 8.511,928.173 92,847.631 500 250 0 125.000 337-48-39.048 676 132+267.151 8.512,047.361 92,810.247 0 0 18.030 344-58-22.158 677 132+285.181 8.512,064.775 92,805.572 0 200 400 100.000 344-58-22.147 678 132+385.181 8.512,162.283 92,783.705 400 400 145.990 352-08-05.251 679 132+531.171 8.512,307.316 92,790.267 400 200 0 100.000 13-02-46.904 680 132+631.171 8.512,402.452 92,820.851 0 0 200.095 20-12-30.006 681 132+831.266 8.512,590.230 92,889.970 0 350 700 175.000 20-12-30.006 682 133+006.266 8.512,751.685 92,957.162 700 700 112.759 27-22-13.108 683 133+119.025 8.512,978.451 93,132.417 0 0 52.963 43-45-42.098 685 133+346.988 8.513,016.702 93,169.050 0 230 700 75.571 43-45-42.098 685 133+346.988 8.513,016.702 93,169.050 0 230 700 75.571 43-45-42.098 685 133+386.476 8.513,278.875 93,577.626 0 160 300 85.333 63-56-15.002 689 133+836.476 8.513,278.875 93,577.626 0 160 300 85.333 63-56-15.002 689 133+836.476 8.513,278.875 93,577.626 0 160 300 85.333 98-11-59.642 693 134+31.113 8.513,284.840 94,070.766 0 160 -300 85.333 98-11-59.642 693 134+341.113 8.513,284.840 94,070.766 0 160 -300 85.333 98-11-59.642 696 134+426.446 8.513,276.692 94,455.632 -300 697 135+128.830 8.513,807.538 94,454.380 0 160 -230 111.304 359-22-02.00			8,511,672.203	93,026.097	-300	160	0	85.333	327-36-06.890
674 132+044.450 8,511,841.876 92,893.105 500 500 97.701 326-36-54.551 675 132+142.151 8,511,928.173 92,847.631 500 250 0 125,000 337-48-39,048 676 132+267.151 8,512,047.361 92,810.247 0 0 18.030 344-58-22.158 677 132+285.181 8,512,064.775 92,805.572 0 200 400 100.000 344-58-22.147 678 132+385.181 8,512,064.775 92,805.572 0 200 400 100.000 344-58-22.147 678 132+385.181 8,512,162.283 92,783.705 400 400 145,990 352-08-05.251 679 132+531.171 8,512,307.316 92,790.267 400 200 0 100.000 13-02-46.904 680 132+631.171 8,512,590.230 92,889.970 0 350 700 175.000 20-12-30.006 681 132+831.266 8,512,590.230 92,889.970 0 350 700 175.000 20-12-30.006 681 132+831.266 8,512,590.230 92,889.970 0 350 700 175.000 20-12-30.006 682 133+006.266 8,512,751.885 92,957.162 700 700 112.759 27-22-13.108 683 133+119.025 8,512,847.222 93,016.826 700 350 0 175.000 36-35-58.993 684 133+294.025 8,512,978.451 93,132.417 0 0 52,963 43-45-42.098 685 133+346.988 8,513,016.702 93,169.050 0 230 700 75.571 43-45-42.098 685 133+422.560 8,513,070.326 93,222.286 700 700 170.923 46-51-16.184 687 133+593.482 8,513,170.904 93,359.958 700 230 0 75.571 60-50-40.914 688 133+669.054 8,513,253.18 93,427.228 0 0 167.422 63-56-15.002 689 133+921.809 8,513,278.875 93,577.626 0 160 300 85.333 63-56-15.002 689 133+921.809 8,513,278.875 93,577.626 0 160 300 85.333 90-03-04.202 692 134+101.207 8,513,319.579 93,833.312 0 0 239.906 98-11-59.642 693 134+341.113 8,513,284.840 94,070.766 0 160 -300 85.333 90-03-04.202 692 134+101.207 8,513,319.579 93,833.312 0 0 239.906 98-11-59.642 693 134+858.599 8,513,537.451 94,453.323 -300 60 85.333 7-305-04.203 695 134+858.599 8,513,537.451 94,453.323 -300 60 0 85.333 7-305-04.203 695 134+858.599 8,513,537.451 94,453.323 -300 60 0 85.333 7-305-04.203 695 134+858.599 8,513,537.451 94,453.323 -300 60 0 85.333 7-305-04.203 696 134+943.933 8,513,626.25 94,456.422 0 0 885.333 7-305-02-02.00 697 135+128.830 8,513,602.652 94,456.422 0 0 184.897 359-22-02.200 697 135+128.830 8,513,602.652 94,456.422 0 0 184.897 359-22-02.200 697 135+128.830 8,5	672	131+914.031	8,511,739.540	92,973.806	0		0	5.419	319-27-11.469
675 132+142.151 8,511,928.173 92,847.631 500 250 0 125.000 337-48-39.048 676 132+267.151 8,512,047.361 92,810.247 0 0 18.030 344-58-22.158 677 132+285.181 8,512,064.775 92,805.572 0 200 400 100,000 344-58-22.147 678 132+385.181 8,512,162.283 92,783.705 400 400 145.990 352-08-05.251 679 132+531.171 8,512,307.316 92,790.267 400 200 0 100,000 13-02-46.904 680 132+631.171 8,512,402.452 92,820.851 0 0 200,095 20-12-30.006 681 132+831.266 8,512,590.230 92,889.970 0 350 700 175.000 20-12-30.006 682 133+006.266 8,512,751.685 92,957.162 700 700 112.759 27-22-13.108 683 133+119.025 8,512,847.222 93,016.826 700 350 0 175.000 36-35-58.993 684 133+294.025 8,512,978.451 93,132.417 0 0 52.963 43-45-42.098 685 133+346.988 8,513,016.702 93,169.050 0 230 700 75.571 43-45-42.093 686 133+422.560 8,513,070.326 93,222.286 700 700 170.923 46-51-16.184 687 133+593.482 8,513,170.904 93,359.958 700 230 0 75.571 60-50-40.914 688 133+69.054 8,513,278.75 93,577.626 0 160 300 85.333 63-56-15.002 699 133+921.809 8,513,327.205 93,748.446 300 160 0 85.333 90-03-04.202 692 134+101.207 8,513,312.662 93,655.903 300 30 94.064 72-05-10.441 691 134+015.873 8,513,284.840 94,070.766 0 160 -300 85.333 90-03-04.202 692 134+101.207 8,513,312.662 93,655.903 300 69.503 93.91.59.642 691 134+945.849 8,513,276.692 94,155.632 -300 -300 432.153 90-03-04.202 692 134+101.207 8,513,319.657 93,833.312 0 0 239.906 98-11-59.642 693 134+858.599 8,513,537.451 94,453.323 -300 160 0 85.333 7-30-57.642 696 134+943.933 8,513,622.652 94,456.422 0 0 885.333 7-30-57.642 696 134+943.933 8,513,622.652 94,456.422 0 0 184.897 359-22-02.202 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	673	131+919.450	8,511,743.658	92,970.284	0	250	500	125.000	319-27-11.451
676 132+267.151 8,512,047.361 92,810.247 0 0 18.030 344-58-22.158 677 132+285.181 8,512,064.775 92,805.572 0 200 400 100.000 344-58-22.147 678 132+385.181 8,512,162.283 92,783.705 400 400 145.990 352-08-05.251 679 132+531.171 8,512,307.316 92,790.267 400 200 0 100.000 13-02-46.904 680 132+631.171 8,512,402.452 92,820.851 0 0 200.095 20-12-30.006 681 132+831.266 8,512,590.230 92,889.970 0 350 700 175.000 20-12-30.006 682 133+006.266 8,512,751.685 92,957.162 700 700 112.759 27-22-13.108 683 133+119.025 8,512,847.222 93,016.826 700 350 0 175.000 36-35-58.993 684 133+294.025 8,512,978.451 93,132.417 0 52.963 43-45-24.093 685 133+346.988 8,513,016.702 93,169.050 0 230 700 75.571 43-45-42.093 686 133+422.560 8,513,070.326 93,222.286 700 700 170.923 46-51-16.184 687 133+593.482 8,513,170.904 93,359.958 700 230 0 75.571 60-50-40.914 688 133+69.054 8,513,205.318 93,427.228 0 0 167.422 63-56-15.002 689 133+836.476 8,513,278.75 93,577.626 0 160 300 85.333 63-56-15.005 690 133+921.809 8,513,312.662 93,655.903 300 94.064 72-05-10.441 691 134+015.873 8,513,312.662 93,655.903 300 160 0 85.333 90-03-04.202 692 134+101.207 8,513,319.057 93,833.312 0 0 239.906 98-11-59.642 693 134+858.599 8,513,537.451 94,453.323 -300 160 0 85.333 7-30-57.642 696 134+943.933 8,513,622.652 94,456.422 0 0 184.897 359-22-02.202 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	674	132+044.450	8,511,841.876	92,893.105	500		500	97.701	326-36-54.551
677 132+285.181 8,512,064.775 92,805.572 0 200 400 100.000 344-58-22.147 678 132+385.181 8,512,162.283 92,783.705 400 400 145.990 352-08-05.251 679 132+531.171 8,512,307.316 92,790.267 400 200 0 100.000 13-02-46.904 680 132+631.171 8,512,402.452 92,820.851 0 0 200.095 20-12-30.006 681 132+831.266 8,512,590.230 92,889.970 0 350 700 175.000 20-12-30.006 682 133+006.266 8,512,751.685 92,957.162 700 700 112.759 27-22-13.108 683 133+119.025 8,512,847.222 93,016.826 700 350 0 175.000 36-35-58.993 684 133+294.025 8,512,978.451 93,132.417 0 0 52,963 43-45-42.098 685 133+346.988 8,513,016.702 93,169.050 0 230 700 75.571 43-45-42.093 686 133+422.560 8,513,070.326 93,222.286 700 700 170.923 46-51-16.184 687 133+593.482 8,513,170.904 93,359.958 700 230 0 75.571 60-50-40.914 688 133+669.054 8,513,278.875 93,577.626 0 160 300 85.333 63-56-15.002 689 133+921.809 8,513,312.662 93,655.903 300 94.064 72-05-10.441 691 134+015.873 8,513,276.692 94,155.632 300 160 0 85.333 98-11-59.642 693 134+341.113 8,513,284.840 94,070.766 0 160 -300 85.333 98-11-59.642 696 134+943.933 8,513,574.51 94,453.323 -300 160 0 85.333 7-30-57.642 696 134+943.933 8,513,537.451 94,453.323 -300 160 0 85.333 7-30-57.642 696 134+943.933 8,513,597.538 94,454.380 0 160 -230 111.304 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.200	675	132+142.151	8,511,928.173	92,847.631	500	250	0	125.000	337-48-39.048
678 132+385.181 8,512,162.283 92,783.705 400 400 145.990 352-08-05.251 679 132+531.171 8,512,307.316 92,790.267 400 200 0 100.000 13-02-46.904 680 132+631.171 8,512,402.452 92,820.851 0 0 200.095 20-12-30.006 681 132+831.266 8,512,590.230 92,889.970 0 350 700 175.000 20-12-30.006 682 133+006.266 8,512,751.685 92,957.162 700 700 112.759 27-22-13.108 683 133+119.025 8,512,847.222 93,016.826 700 350 0 175.000 36-35-58.993 684 133+294.025 8,512,978.451 93,132.417 0 0 52.963 43-45-42.098 685 133+346.988 8,513,016.702 93,169.050 0 230 700 75.571 43-45-42.093 686 133+422.560 8,513,070.326 93,222.286 700 30 700 75.571 43-45-42.093 686 133+494.842 8,513,170.904 93,359.958 700 230 0 75.571 60-50-40.914 688 133+669.054 8,513,278.875 93,577.626 0 160 300 85.333 63-56-15.002 689 133+921.809 8,513,312.662 93,655.903 300 300 94.064 72-05-10.441 691 134+015.873 8,513,276.692 94,155.632 -300 -300 432.153 90-03-04.202 692 134+101.207 8,513,537.451 94,453.323 -300 160 -230 111.304 359-22-02.200 697 135+128.830 8,513,507.538 94,454.380 0 160 -230 111.304 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.200	676	132+267.151	8,512,047.361	92,810.247	0		0	18.030	344-58-22.158
679 132+531.171 8,512,307.316 92,790.267 400 200 0 100.000 13-02-46.904 680 132+631.171 8,512,402.452 92,820.851 0 0 200.095 20-12-30.006 681 132+831.266 8,512,590.230 92,889.970 0 350 700 175.000 20-12-30.006 682 133+006.266 8,512,751.685 92,957.162 700 700 112.759 27-22-13.108 683 133+119.025 8,512,847.222 93,016.826 700 350 0 175.000 36-35-58.993 684 133+294.025 8,512,978.451 93,132.417 0 0 52,963 43-45-42.098 685 133+346.988 8,513,016.702 93,169.050 0 230 700 75.571 43-45-42.098 685 133+422.560 8,513,070.326 93,222.286 700 700 170.923 46-51-16.184 687 133+593.482 8,513,170.904 93,359.958 700 230 700 75.571 60-50-40.914 688 133+669.054 8,513,278.875 93,577.626 0 160 300 85.333 63-56-15.002 689 133+921.809 8,513,312.662 93,655.903 300 300 94.064 72-05-10.441 691 134+015.873 8,513,327.205 93,748.446 300 160 0 85.333 90-03-04.202 692 134+101.207 8,513,319.579 93,833.312 0 0 239.906 98-11-59.642 693 134+341.113 8,513,284.840 94,070.766 0 160 -300 85.333 98-11-59.642 693 134+858.599 8,513,537.451 94,453.323 -300 160 0 85.333 7-30-57.626 696 134+943.933 8,513,516.622 94,456.422 0 0 184.897 359-22-02.202 697 135+128.830 8,513,622.652 94,456.422 0 0 184.897 359-22-02.202 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	677	132+285.181	8,512,064.775	92,805.572	0	200	400	100.000	344-58-22.147
680 132+631.171 8,512,402.452 92,820.851 0 0 200.095 20-12-30.006 681 132+831.266 8,512,590.230 92,889.970 0 350 700 175.000 20-12-30.006 682 133+006.266 8,512,751.685 92,957.162 700 700 112.759 27-22-13.108 683 133+119.025 8,512,847.222 93,016.826 700 350 0 175.000 36-35-58.993 684 133+294.025 8,512,978.451 93,132.417 0 0 52,963 43-45-42.098 685 133+346.988 8,513,016.702 93,169.050 0 230 700 75.571 43-45-42.093 686 133+422.560 8,513,070.326 93,222.286 700 700 700 170.923 46-51-16.184 687 133+593.482 8,513,170.904 93,359.958 700 230 0 75.571 60-50-40.914 688 133+669.054 8,513,278.875 93,577.626 0 160 300 85.333 63-56-15.005 690 133+921.809 8,513,312.662 93,655.903 300 300 94.064 72-05-10.441 691 134+015.873 8,513,284.840 94,070.766 0 160 -300 85.333 90-03-04.202 692 134+101.207 8,513,319.057 93,833.312 0 0 239.906 98-11-59.642 693 134+858.599 8,513,576.692 94,155.632 -300 -300 432.153 90-03-04.202 696 134+943.933 8,513,622.652 94,456.422 0 0 184.897 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	678	132+385.181	8,512,162.283	92,783.705	400		400	145.990	352-08-05.251
681 132+831.266 8,512,590.230 92,889.970 0 350 700 175.000 20-12-30.006 682 133+006.266 8,512,751.685 92,957.162 700 700 112.759 27-22-13.108 683 133+119.025 8,512,847.222 93,016.826 700 350 0 175.000 36-35-58.993 684 133+294.025 8,512,978.451 93,132.417 0 52.963 43-45-42.098 685 133+346.988 8,513,016.702 93,169.050 0 230 700 75.571 43-45-42.093 686 133+422.560 8,513,070.326 93,222.286 700 700 170.923 46-51-16.184 687 133+593.482 8,513,170.904 93,359.958 700 230 0 75.571 60-50-40.914 688 133+836.476 8,513,278.875 93,577.626 0 160 300 85.333 63-56-15.005 690 133+921.809 8,513,312.662 93,655.903 300 94.064 7	679	132+531.171	8,512,307.316	92,790.267	400	200	0	100.000	13-02-46.904
682 133+006.266 8,512,751.685 92,957.162 700 700 112.759 27-22-13.108 683 133+119.025 8,512,847.222 93,016.826 700 350 0 175,000 36-35-58.993 684 133+294.025 8,512,978.451 93,169.050 0 230 700 75.571 43-45-42.093 685 133+346.988 8,513,070.326 93,222.286 700 700 170.923 46-51-16.184 687 133+593.482 8,513,170.904 93,359.958 700 230 0 75.571 60-50-40.914 688 133+669.054 8,513,278.875 93,577.626 0 160 300 85.333 63-56-15.002 689 133+921.809 8,513,278.875 93,577.626 0 160 300 94.064 72-05-10.441 691 134+015.873 8,513,272.05 93,748.446 300 160 0 85.333 90-30-42.02 692 134+101.207 8,513,319.057 93,833.312 0	680	132+631.171	8,512,402.452	92,820.851	0		0	200.095	20-12-30.006
683 133+119.025 8,512,847.222 93,016.826 700 350 0 175.000 36-35-58.993 684 133+294.025 8,512,978.451 93,132.417 0 0 52,963 43-45-42.098 685 133+346.988 8,513,016.702 93,169.050 0 230 700 75.571 43-45-42.093 686 133+422.560 8,513,070.326 93,222.286 700 700 170.923 46-51-16.184 687 133+593.482 8,513,170.904 93,359.958 700 230 0 75.571 60-50-40.914 688 133+669.054 8,513,205.318 93,427.228 0 0 167.422 63-56-15.002 689 133+836.476 8,513,278.875 93,577.626 0 160 300 85.333 63-56-15.002 690 133+921.809 8,513,312.662 93,655.903 300 300 94.064 72-05-10.441 691 134+015.873 8,513,327.205 93,748.446 300 160 0 85.333 90-03-04.202 692 134+101.207 8,513,319.057 93,833.312 0 0 239.906 98-11-59.642 693 134+341.113 8,513,284.840 94,070.766 0 160 -300 85.333 98-11-59.643 694 134+426.446 8,513,276.692 94,155.632 -300 -300 432.153 90-03-04.202 695 134+858.599 8,513,537.451 94,453.323 -300 160 0 85.333 7-30-57.604 696 134+943.933 8,513,622.652 94,456.422 0 0 184.897 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	681	132+831.266	8,512,590.230	92,889.970	0	350	700	175.000	20-12-30.006
684 133+294.025 8,512,978.451 93,132.417 0 0 52.963 43-45-42.098 685 133+346.988 8,513,016.702 93,169.050 0 230 700 75.571 43-45-42.093 686 133+422.560 8,513,070.326 93,222.286 700 700 170.923 46-51-16.184 687 133+593.482 8,513,170.904 93,359.958 700 230 0 75.571 60-50-40.914 688 133+669.054 8,513,205.318 93,427.228 0 0 167.422 63-56-15.002 689 133+836.476 8,513,278.875 93,577.626 0 160 300 85.333 63-56-15.005 690 133+921.809 8,513,312.662 93,655.903 300 300 94.064 72-05-10.441 691 134+015.873 8,513,327.205 93,748.446 300 160 0 85.333 90-30-04.202 692 134+341.113 8,513,284.840 94,070.766 0 160 -300	682	133+006.266	8,512,751.685	92,957.162	700		700	112.759	27-22-13.108
685 133+346.988 8,513,016.702 93,169.050 0 230 700 75.571 43-45-42.093 686 133+422.560 8,513,070.326 93,222.286 700 700 170.923 46-51-16.184 687 133+593.482 8,513,170.904 93,359.958 700 230 0 75.571 60-50-40.914 688 133+669.054 8,513,205.318 93,427.228 0 0 167.422 63-56-15.005 689 133+836.476 8,513,278.875 93,577.626 0 160 300 85.333 63-56-15.005 690 133+921.809 8,513,312.662 93,655.903 300 300 94.064 72-05-10.441 691 134+015.873 8,513,327.205 93,748.446 300 160 0 85.333 90-03-04.202 692 134+101.207 8,513,319.057 93,833.312 0 0 239.906 98-11-59.642 693 134+26.446 8,513,276.692 94,155.632 -300 -300 432.153<	683	133+119.025	8,512,847.222	93,016.826	700	350	0	175.000	36-35-58.993
686 133+422.560 8,513,070.326 93,222.286 700 700 170.923 46-51-16.184 687 133+593.482 8,513,170.904 93,359.958 700 230 0 75.571 60-50-40.914 688 133+669.054 8,513,205.318 93.427.228 0 0 167.422 63-56-15.002 689 133+836.476 8,513,278.875 93,577.626 0 160 300 85.333 63-56-15.005 690 133+921.809 8,513,312.662 93,655.903 300 300 94.064 72-05-10.441 691 134+015.873 8,513,327.205 93,748.446 300 160 0 85.333 90-03-04.202 692 134+101.207 8,513,319.057 93,833.312 0 0 239.906 98-11-59.642 693 134+341.113 8,513,284.840 94,070.766 0 160 -300 85.333 98-11-59.643 694 134+426.446 8,513,276.692 94,155.632 -300 -300 432.153 90-03-07.642 696 134+943.933 8,513,622.652 94,456.422 0 0 184.897 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	684	133+294.025	8,512,978.451	93,132.417	0		0	52.963	43-45-42.098
687 133+593.482 8,513,170.904 93,359.958 700 230 0 75.571 60-50-40.914 688 133+669.054 8,513,205.318 93,427.228 0 0 167.422 63-56-15.002 689 133+836.476 8,513,278.875 93,577.626 0 160 300 85,333 63-56-15.005 690 133+921.809 8,513,312.662 93,655.903 300 300 94.064 72-05-10.441 691 134+015.873 8,513,327.205 93,748.446 300 160 0 85,333 90-03-04.202 692 134+101.207 8,513,319.057 93,833.312 0 0 239.906 98-11-59.642 693 134+341.113 8,513,284.840 94,070.766 0 160 -300 85,333 98-11-59.643 694 134+426.446 8,513,276.692 94,155.632 -300 -300 432.153 90-03-04.203 695 134+858.599 8,513,537.451 94,453.323 -300 160 0 85,333 7-30-57.642 696 134+943.933 8,513,622.652 94,456.422 0 0 184.897 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	685	133+346.988	8,513,016.702	93,169.050	0	230	700	75.571	43-45-42.093
688 133+669.054 8,513,205.318 93,427.228 0 0 167.422 63-56-15.002 689 133+836.476 8,513,278.875 93,577.626 0 160 300 85.333 63-56-15.005 690 133+921.809 8,513,312.662 93,655.903 300 300 94.064 72-05-10.441 691 134+015.873 8,513,327.205 93,748.446 300 160 0 85.333 90-03-04.202 692 134+101.207 8,513,319.057 93,833.312 0 0 239.906 98-11-59.642 693 134+341.113 8,513,284.840 94,070.766 0 160 -300 85.333 98-11-59.643 694 134+426.446 8,513,276.692 94,155.632 -300 -300 432.153 90-03-04.203 695 134+858.599 8,513,537.451 94,453.323 -300 160 0 85.333 7-30-57.642 696 134+943.933 8,513,622.652 94,456.422 0 0 0 184.897 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	686	133+422.560	8,513,070.326	93,222.286	700		700	170.923	46-51-16.184
689 133+836.476 8,513,278.875 93,577.626 0 160 300 85.333 63-56-15.005 690 133+921.809 8,513,312.662 93,655.903 300 300 94.064 72-05-10.441 691 134+015.873 8,513,327.205 93,748.446 300 160 0 85.333 90-03-04.202 692 134+101.207 8,513,319.057 93,833.312 0 0 239,906 98-11-59.642 693 134+341.113 8,513,284.840 94,070.766 0 160 -300 85.333 98-11-59.643 694 134+426.446 8,513,276.692 94,155.632 -300 -300 432.153 90-03-04.203 695 134+858.599 8,513,537.451 94,453.323 -300 160 0 85.333 7-30-57.642 696 134+943.933 8,513,622.652 94,456.422 0 0 184.897 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	687	133+593.482	8,513,170.904	93,359.958	700	230	0	75.571	60-50-40.914
690 133+921.809 8,513,312.662 93,655.903 300 300 94.064 72-05-10.441 691 134+015.873 8,513,327.205 93,748.446 300 160 0 85.333 90-03-04.202 692 134+101.207 8,513,319.057 93,833.312 0 0 239,906 98-11-59.642 693 134+341.113 8,513,284.840 94,070.766 0 160 -300 85.333 98-11-59.642 694 134+426.446 8,513,276.692 94,155.632 -300 -300 432.153 90-03-04.203 695 134+858.599 8,513,537.451 94,453.323 -300 160 0 85.333 7-30-57.642 696 134+943.933 8,513,622.652 94,456.422 0 0 184.897 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	688	133+669.054	8,513,205.318	93,427.228	0		0	167.422	63-56-15.002
691 134+015.873 8,513,327.205 93,748.446 300 160 0 85.333 90-03-04.202 692 134+101.207 8,513,319.057 93,833.312 0 0 239,906 98-11-59.642 693 134+341.113 8,513,284.840 94,070.766 0 160 -300 85,333 98-11-59.643 694 134+426.446 8,513,276.692 94,155.632 -300 -300 432.153 90-03-04.202 695 134+858.599 8,513,537.451 94,453.323 -300 160 0 85.333 7-30-57.642 696 134+943.933 8,513,622.652 94,456.422 0 0 184.897 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	689	133+836.476	8,513,278.875	93,577.626	0	160	300	85.333	63-56-15.005
691 134+015.873 8,513,327.205 93,748.446 300 160 0 85.333 90-03-04.202 692 134+101.207 8,513,319.057 93,833.312 0 0 239,906 98-11-59.642 693 134+341.113 8,513,284.840 94,070.766 0 160 -300 85,333 98-11-59.643 694 134+426.446 8,513,276.692 94,155.632 -300 -300 432.153 90-03-04.202 695 134+858.599 8,513,537.451 94,453.323 -300 160 0 85.333 7-30-57.642 696 134+943.933 8,513,622.652 94,456.422 0 0 184.897 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	690	133+921.809	8,513,312.662	93,655.903	300		300	94.064	72-05-10.441
693 134+341.113 8,513,284.840 94,070.766 0 160 -300 85.333 98-11-59.643 694 134+426.446 8,513,276.692 94,155.632 -300 -300 432.153 90-03-04.203 695 134+858.599 8,513,537.451 94,453.323 -300 160 0 85.333 7-30-57.642 696 134+943.933 8,513,622.652 94,456.422 0 0 184.897 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	691	134+015.873	8,513,327.205	93,748.446	300	160	0	85.333	90-03-04.202
694 134+426.446 8,513,276.692 94,155.632 -300 -300 432.153 90-03-04.203 695 134+858.599 8,513,537.451 94,453.323 -300 160 0 85.333 7-30-57.642 696 134+943.933 8,513,622.652 94,456.422 0 0 184.897 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	692	134+101.207	8,513,319.057	93,833.312	0		0	239.906	98-11-59.642
694 134+426.446 8,513,276.692 94,155.632 -300 -300 432.153 90-03-04.203 695 134+858.599 8,513,537.451 94,453.323 -300 160 0 85.333 7-30-57.642 696 134+943.933 8,513,622.652 94,456.422 0 0 184.897 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	693	134+341.113	8,513,284.840	94,070.766	0	160	-300	85.333	98-11-59.643
695 134+858.599 8,513,537.451 94,453.323 -300 160 0 85.333 7-30-57.642 696 134+943.933 8,513,622.652 94,456.422 0 0 184.897 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	694	134+426.446		94,155.632	-300		-300	432.153	90-03-04.203
696 134+943.933 8,513,622.652 94,456,422 0 0 184.897 359-22-02.200 697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	695	134+858.599	, ,	,	-300	160			
697 135+128.830 8,513,807.538 94,454.380 0 160 -230 111.304 359-22-02.202	696	134+943.933							
			, ,	,		160			
	698	135+240.135	8,513,918.087	94,444.219	-230		-230	61.268	345-30-13.136

699 135+301.402 8.513,974.674 94.421.209 -230 160 0 111.304 330-14-28.052 700 135+412.707 8.514,060.945 94.351.340 0 160 0 683.277 316-22-38.978 701 136+095.983 8.514,555.569 93.879.944 1,000 1,000 307.456 316-22-38.978 702 136+403.439 8.514,806.999 93.705.102 0 0 423.494 333-59-36.290 703 136+826.934 8.515,187.612 93.519.410 -1.000 -1.000 496.362 333-59-36.290 704 137+323.295 8.515,562.705 93.202.136 0 0 306.370 305-33-14.311 705 137+629.665 8.515,740.850 92.952.884 0 160 -230 111.304 305-33-14.311 706 137+740.969 8.515,813.407 92.755.521 -230 160 0 111.304 265-13-41.52 707 137+847.196 8.515,813.407 92.755.521 -230 160 0 111.304 265-13-41.52 709 138+245.470 8.515,694.819 92.645.812 0 0 286.970 251-21-52.087 709 138+245.470 8.515,694.819 92.645.812 0 0 286.970 251-21-52.087 701 138+352.604 8.515.785.89 92.945.812 0 0 286.970 251-21-52.087 711 138+425.935 8.515.667.930 92.266.178 230 230 69.161 265-13-41.153 711 138+425.935 8.515.762.548 92.197.432 230 160 0 111.304 282-27-24.649 712 138+537.240 8.515.698.89 92.083.718 0 160 230 111.304 296-19-13.712 714 138+634.363 8.515.766.984 91.935.799 -300 160 0 585.333 296-19-13.712 714 138+902.358 8.515.766.984 91.935.799 -300 160 0 85.333 296-19-13.712 714 138+902.358 8.515.766.984 91.935.799 -300 160 0 85.333 296-19-13.712 714 138+902.358 8.515.766.984 91.935.799 -300 160 0 85.333 274-32-36.514 716 138+791.054 8.515.766.984 91.935.799 -300 160 0 300 85.333 274-32-36.514 710 139+131.389 82.0486 89.105.575.2964 92.005.595 -300 -300 71.357 288-10-18.273 715 138+705.720 8.515.766.984 91.935.799 -300 160 0 300 85.333 296-19-13.712 714 138+902.358 8.515.766.984 91.935.799 -300 160 0 300 85.333 296-19-13.712 714 139+92.358 8.515.766.984 91.935.799 -300 160 0 300 85.333 296-19-13.712 714 139+92.364 8.515.606.09 91.462.734 230 230 97.766 820-14-30.946 715 717 139+91.2300 8.515.927.189 91.506.958 91 0 0 60.913 318-28-00.446 71 139+91.2300 8.515.927.189 91.590.899 91.429.313 0 0 0 60.913 318-28-00.446 7270 91.449.694 8.515.05.949 91.449.469 0 160 230 111.304 305-39-39.950.04 91.4	No	Station	Xcoordinates	Ycoordinates	Beginning	Parameter	End	Length	Chord Angle
700 135+412.707 8.514.060.945 94.351.340 0 0 683.277 316-22-38.987 701 136+095.983 8.514,555.569 93.879.944 1,000 1,000 307.456 316-22-38.987 702 136+304.349 8.514,806.999 93.705.102 0 0 423.494 333-59-36.290 703 136+826.934 8.515,187.612 93.519.410 -1,000 -1,000 496.362 333-59-36.290 704 137+323.295 8.515,562.705 93.202.136 0 0 306.370 305-33-14.311 705 137+629.665 8.515,740.850 92.952.884 0 160 -230 111.304 305-33-14.311 706 137+740.969 8.515,740.850 92.952.884 0 160 -230 110.304 305-33-14.311 706 137+740.969 8.515,813.407 92.753.521 -230 160 0 111.304 265-13-41.152 708 137+958.500 8.515,786.519 92.645.812 0 0 286.970 251-21-52.087 709 138+245.470 8.515,667.930 92.266.178 230 230 69.161 265-13-41.152 711 138+425.935 8.515.672.548 92.197.432 230 160 0 111.304 225-27-24.649 712 138+537.240 8.515,713.598 92.094.286 0 0 111.304 226-19-13.709 138+346.730 8.515,762.548 92.197.432 230 160 0 111.304 226-19-13.709 713 138+549.030 8.515,718.825 92.094.286 0 0 111.90 296-19-13.709 138+346.730 8.515,765.660 918.95.595 -300 -300 71.357 288-10-18.273 715 138+705.720 8.515,666.984 91.935.759 -300 160 0 85.333 274-32-36.514 716 138+705.720 8.515,765.660 918.50.5595 -300 -300 71.357 288-10-18.273 715 138+705.720 8.515,765.660 918.50.5595 -300 -300 71.357 288-10-18.273 717 138+902.358 8.515,767.244 91.739.555 230 230 97.726 280-15-30.140 717 139+911.339 8.515,804.633 91.649.901 230 160 0 111.304 304-32-61-340 719 139+111.339 8.515,804.633 91.649.901 230 160 0 111.304 318-28-00.446 721 139+283.664 8.516.05.949 91.427.34 230 160 0 111.304 339-28-07.975 723 139+423.624 8.516.05.949 91.429.313 0 0 0 60.971 318-28-00.446 721 139+283.664 8.516.05.949 91.429.313 0 0 0 328.944 6-22-16.866 726 140+204.892 8.516.283.769 91.419.896 0 160 230 111.304 339-28-07.975 723 139+875.948 8.516.833.89 91.649.901 230 160 0 111.304 339-28-07.975 73 140+446.949 8.517.282.593 91.449.649 0 160 230 111.304 339-28-07.975 73 140+446.948 8.517.65.226 91.549.595 91.600.082 -270 -270 46.805 26-46-02.709 731 140+460.94 8.517.782.349 91.653.990 0 0 0 0 32.834					of Radius		of Radius		
701 136+095.983 8,514,555.569 93,879.944 1,000 1,000 307.456 316-22-38.988 702 136+403.439 8,515,187.612 93,519.410 -1,000 -1,000 496,362 333-59-36.290 703 136+826.934 8,515,187.612 93,519.410 -1,000 -1,000 496,362 333-59-36.290 704 137+323.295 8,515,562.705 93,202.136 0 0 0,306.370 305-33-14.311 705 137+629.665 8,515,740.850 92,952.884 0 160 -230 111.304 305-33-14.311 706 137+740.969 8,515,797.919 92,857.660 -230 160 0 111.304 265-13-41.152 707 137+847.196 8,515,813.407 92,753.521 -230 160 0 111.304 265-13-41.152 708 137+958.500 8,515,786.519 92,945.812 0 0 0 286.970 251-21-52.087 709 138+245.470 8,515.664.818 92,373.887 0 160 0 111.304 251-21-52.087 710 138+355.775 93 8,515.667.930 92,266.178 230 230 69.161 265-13-41.153 711 138+425.935 8,515.675.248 92.197.432 230 160 0 111.304 282-27-24.649 712 138+537.240 8,515.713.598 92,094.286 0 0 111.304 282-27-24.649 713 138+549.030 8,515.752.964 92.003.595 -300 -300 71.357 288-10-13.709 713 138+549.030 8,515.766.949 19.935.799 -300 160 0 85.333 296-19-13.710 714 138+902.358 8,515.666.930 91,850.553 0 160 230 111.304 266-23-41.075 717 138+902.358 8,515.767.624 91,739.555 230 230 97.726 280-15-30.140 718 139+000.084 8,515.804.633 91,649.901 230 160 0 111.304 304-36-11.380 719 139+111.389 8,515.888 15.38 91,569.839 0 0 0 60.971 318-28-00.446 721 139+283.664 8,516.015.940 91,462.734 230 230 97.726 280-15-30.140 721 139+283.664 8,516.015.940 91,462.734 230 230 97.726 280-15-30.140 723 139+412.360 8,515.767.624 91,739.555 230 230 97.726 280-15-30.140 724 139+557.349 8,516.837.699 91,413.787 1.400 10.00 318.599 353-19-97.040 725 139+875.948 8,516.015.940 91,462.734 230 230 97.726 280-15-30.140 721 139+283.664 8,516.015.940 91,462.734 230 230 97.726 280-15-30.140 724 139+283.664 8,516.015.940 91,462.734 230 230 97.726 280-15-30.140 725 139+875.948 8,516.601.680 91,412.965 0 0 0 328.944 6-22-16.866 726 140+204.892 8,516.853.99 1,469.469 0 160 0 300 85.333 6-22-16.866 727 140+290.225 8,517.081.779 91,462.934 300 0 0 0 333.320 6-42-2-16.866 726 140+204.892 8,516.853.99 1,549.90			, ,	,		160			
702 136+403.439 8,514,806.999 93,705.102 0 0 423.494 333-59-36.290 703 136+826.934 8,515,187.612 93,519,410 -1,000 -1,000 496.362 333-59-36.290 704 137+322.295 8,515,562.705 93,202.136 0 0 0 306.370 305-33-14,311 705 137+629.665 8,515,740,850 92,952.884 0 160 -230 111.304 305-33-14,311 706 137+740,969 8,515,813.407 92,753.521 -230 160 0 111.304 265-13-41,152 708 137+958.500 8,515,786.519 92,845.812 0 0 286.970 251-21-52.087 709 138+245.470 8,515,667.930 92,265.812 0 0 286.970 251-21-52.087 710 138+356.775 8,515,667.930 92,266.178 230 160 0 111.304 251-21-52.087 711 138+425.935 8,515,672.548 92,197.432 230 160 0 111.304 282-27-24.649 712 138+537.240 8,515,718.825 92,083.718 0 160 0 111.304 282-27-24.649 713 138+549.030 8,515,718.825 92,083.718 0 160 0 11.790 296-19-13.702 714 138+634.363 8,515,765.609 49,2005.595 -300 -300 71.357 288-10-18.273 715 138+705.720 8,515,765.609 91,850.595 -300 -300 71.357 288-10-18.273 716 138+390.038 8,515,765.609 91,850.553 0 160 0 85.333 274-32-36.514 716 138+791.054 8,515,765.60 91,850.553 0 160 230 111.304 266-23-41.075 717 138+902.358 8,515,765.60 91,850.555 230 230 97.726 280-15-30.140 718 139+000.084 8,515,861.639 1,649.901 230 160 0 111.304 304-36-1.380 719 139+111.389 8,515.81.538 91,569.839 0 0 60.971 318-28-00.445 720 139+172.360 8,515,765.60 91,850.555 230 230 97.726 280-15-30.140 721 139+283.664 8,516.015.940 91,462.734 230 723 139+423.624 8,516.150.949 91,429.313 0 0 133.724 353-91.949.172 724 139+283.664 8,516.015.940 91,429.313 0 0 133.724 353-91.949.172 725 139+875.948 8,516.828.599 91,413.877 1,400 726 139+172.360 8,517,287.708 91,413.875 1,400 727 140+290.225 8,517,701.555 0 160 0 160 0 72.250 6-46-22.66.866 726 140+204.892 8,517,815.33 91,493.165 0 160 0 330 74,135 14-31-12.304 728 140+364.360 8,517,815.33 91,493.165 0 0 160 0 85.333 28-60-48.99.390 731 140+466.191 8,517,156.326 91,547.856 0 160 0 72.70 94.815 36-93.930 731 140+661.005 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+70.265 8,517,782.348 91,633.409 736 141+192.964 8,517,782.348 91,	700				_			683.277	
703 136+826.934 8,515.187.612 93,519.410 -1,000 -1,000 496.362 333-59-36.290 704 137+323.295 8,515.562.705 93,202.136 0 0 306.370 305-33-14.311 705 137+629.665 8,515.740.850 92,952.884 0 160 -230 111.304 305-33-14.311 706 137+740.969 8,515.797.919 92,857.660 -230			, ,	,	1,000		1,000		
704 137+323.295 8,515,562.705 93,202.136 0 160 -230 111.304 305-33-14.311 705 137+629.665 8,515,740.850 92,952.884 0 160 -230 111.304 305-33-14.311 706 137+740.969 8,515,797.919 92,857.660 -230	702	136+403.439	8,514,806.999	93,705.102	_		-	423.494	333-59-36.290
705 137+629.665 8,515,740.850 92,952.884 0 160 -230 111.304 305-33-14.311 706 137+740.969 8,515,797.919 92,857.660 -230 -230 106.226 291-41-25.246 707 137+847.196 8,515,813.407 92,753.521 -230 160 0 111.304 256-13-41.152 708 137+958.500 8,515,786.519 92,645.812 0 0 286.970 251-21-52.087 709 138+245.470 8,515,694.818 92,373.887 0 160 230 111.304 251-21-52.086 710 138+365.775 8,515,667.930 92,266.178 230 230 69,161 265-13-41.153 711 138+425.935 8,515,672.548 92,197.432 230 160 0 111.304 282-27-24.649 712 138+537.240 8,515,713.598 92,094.286 0 0 11.790 296-19-13.709 713 138-549.030 8,515,718.825 92,083.718 0 160 -300 85.333 296-19-13.712 714 138+53.240 8,515,765.964 92,005.595 -300 -300 71.357 288-10-18.273 715 138+705.720 8,515,766.984 91,935.799 -300 160 0 85.333 274-32-36.514 716 138+791.054 8,515,765.660 91,850.553 0 160 230 111.304 266-23-41.075 717 138+902.358 8,515,767.624 91,739.555 230 230 97.726 280-15-30.140 718 139+000.084 8,515,804.633 91,649.901 230 160 0 111.304 304-36-11.380 719 139+112.360 8,515,804.633 91,649.901 230 160 0 111.304 304-36-11.380 719 139+172.360 8,515,804.633 91,569.839 0 0 60.971 318-28-00.446 721 139+283.664 8,516.015.940 91,462.734 230 230 230 28.656 332-19-49.512 722 139+312.320 8,516.042.081 91,451.040 230 160 0 111.304 339-28-07.975 723 139+423.624 8,516.150.949 91,429.313 0 0 133.724 353-19-57.040 725 139+875.948 8,516.283.769 91,413.787 1,400 1,400 318.599 353-19-57.040 725 139+875.948 8,516.283.769 91,413.787 1,400 1,400 318.599 353-19-57.040 725 139+875.948 8,516.283.769 91,413.787 1,400 1,400 318.599 353-19-57.040 725 139+875.948 8,516.016.809 91,429.313 0 0 0 133.724 353-19-57.040 725 139+875.948 8,516.283.769 91,413.787 1,400 1,400 318.599 353-19-57.040 725 139+875.948 8,516.283.769 91,413.787 1,400 1,400 318.599 353-19-57.040 725 139+875.948 8,516.283.769 91,413.787 1,400 0 0 38.533 28-04-33.863 729 140+449.694 8,517.782.219 91,545.956 0 0 160 0 300 85.333 28-04-33.863 729 140+449.694 8,517.782.348 91,689.970 0 0 332.320 6-46-29.659 733 140+460.91 8,517.782.348 91,689	703	136+826.934	8,515,187.612	93,519.410	-1,000		-1,000	496.362	333-59-36.290
706 137+740.969 8,515,797.919 92,857.660 -230	704	137+323.295	8,515,562.705	93,202.136	0		0	306.370	305-33-14.311
707 137+847.196	705	137+629.665	8,515,740.850	92,952.884		160	-230	111.304	305-33-14.311
708 137+958.500 8,515,786.519 92,645.812 0 0 286.970 251-21-52.087 709 138+245,470 8,515,694.818 92,373.887 0 160 230 111.304 251-21-52.086 710 138+356.775 8,515,696.7930 92,266.178 230 230 69.161 265-13-41.153 711 138+425.935 8,515,672.548 92,197.432 230 160 0 111.304 282-27-24.649 712 138+537.240 8,515,713.598 92,094.286 0 0 11.790 296-19-13.709 713 138+549.030 8,515,718.825 92,083.718 0 160 -300 85.333 296-19-13.719 714 138+63.363 8,515,752.964 92,005.595 -300 -300 71.357 288-10-18.273 715 138+705.720 8,515,766.984 91,935.799 -300 160 0 85.333 274-32-36.514 716 138+791.054 8,515,765.660 91,850.553 0 160 230 111.304 266-23-41.075 717 138+902.358 8,515,767.624 91,739.555 230 230 97.726 280-15-30.140 718 139+000.084 8,515,804.633 91,649.901 230 160 0 111.304 304-36-11.380 719 139+111.389 8,515,881.538 91,569.839 0 0 60.971 318-28-00.445 720 139+172.360 8,515,675.694 91,482.734 230 230 230 28.656 332-19-49-512 722 139+312.320 8,516,042.081 91,451.040 230 160 0 111.304 339-28-07.975 723 139+423.664 8,516,150.949 91,429.313 0 0 133.724 335-19-57.039 724 139+575.349 8,516,6283.769 91,413.787 1.400 1.400 318.599 353-19-57.040 725 139+875.948 8,516,601.680 91,412.965 0 0 322.944 6-22-16.866 726 140+204.892 8,516,928.593 91,449.469 0 160 300 85.333 28-40-43.863 729 140+449.694 8,517,152.121 91,537.968 0 0 164.97 36-49-39.206 733 140+661.91 8,517,165.326 91,547.856 0 160 -270 94.815 36-49-39.206 733 140+466.191 8,517,165.326 91,547.856 0 160 -270 94.815 36-49-39.306 731 140+466.191 8,517,128.779 91,462.934 300 300 74.135 14-31-12.304 731 140+661.005 8,517,243.05 91,647.856 0 160 -270 94.815 36-49-39.306 731 140+661.005 8,517,243.05 91,647.843 -270 160 0 94.815 16-50-06.250 733 140+607.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+702.625 8,517,380.918 91,634.092 0 0 0 32.230 6-46-29.659 734 141+1034.945 8,517,782.348 91,633.970 400 400 85.69 11-56-57.948 736 141+107.995 8,517,863.720 91,710.555 400 170 0 0 72.255 24-114-05.587	706	137+740.969	8,515,797.919	92,857.660			-230	106.226	291-41-25.246
709 138+245.470 8,515,694.818 92,373.887 0 160 230 111.304 251-21-52.086 710 138+356.775 8,515,667.930 92,266.178 230 230 69.161 265-13-41.153 711 138+4537.240 8,515,713.598 92,194.286 0 0 111.790 296-19-13.709 713 138+549.030 8,515,718.825 92,083.718 0 160 -300 85.333 296-19-13.712 714 138+634.363 8,515,752.964 92,005.595 -300 -300 71.357 288-10-18.273 715 138+705.720 8,515,765.669 91,935.799 -300 160 0 85.333 274-32-36.514 716 138+902.358 8,515,765.660 91,830.553 0 160 230 111.304 266-23-41.075 717 138+902.358 8,515,767.624 91,739.555 230 230 97.726 280-15-30.140 718 139+912.360 8,515,804.633 91,649.901 230 160	707	137+847.196	8,515,813.407	92,753.521	-230	160	0	111.304	265-13-41.152
710 138+356.775 8,515,667.930 92,266.178 230 230 69.161 265-13-41.153 711 138+425.935 8,515,672.548 92,197.432 230 160 0 111.304 282-27-24.649 712 138+537.240 8,515,713.598 92,094.286 0 0 11.790 296-19-13.709 713 138+549.030 8,515,718.825 92,083.718 0 160 -300 85.333 296-19-13.712 714 138+634.363 8,515,752.964 92,005.595 -300 -300 71.357 288-10-18.273 715 138+791.054 8,515,766.984 91,935.799 -300 160 0 85.333 274-32-36.514 716 138+791.054 8,515,765.660 91,850.553 0 160 230 111.304 266-23-41.075 717 138+902.358 8,515,767.624 91,739.555 230 230 97.726 280-15-30.140 718 139+000.084 8,515,804.633 91,649.901 230 160 0 111.304 304-36-11.380 719 139+111.339 8,515,831.538 91,569.839 0 0 60.971 318-28-00.445 720 139+172.360 8,515,927.180 91,529.412 0 160 230 111.304 318-28-00.445 721 139+283.664 8,516,015.940 91,462.734 230 230 28.656 332-19-49.512 722 139+312.320 8,516,042.081 91,451.040 230 160 0 111.304 318-28-00.445 721 139+283.664 8,516,150.949 91,429.313 0 0 133.724 353-19-57.039 724 139+557.349 8,516,283.769 91,413.787 1,400 1,400 318.599 353-19-57.039 725 139+875.948 8,516,601.680 91,412.965 0 0 328.944 6-22-16.866 726 140+204.892 8,516,283.769 91,413.787 1,400 1,400 318.599 353-19-57.039 727 140+490.225 8,517,012.779 91,462.934 300 300 74.135 14-31-12.304 729 140+449.694 8,517,165.326 91,547.856 0 160 -270 94.815 36-49-39.296 730 140+466.191 8,517,165.326 91,547.856 0 160 -270 94.815 36-49-39.296 733 140+607.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+702.625 8,517,380.918 91,634.092 0 170 400 72.250 6-46-29.657 735 141+107.195 8,517,782.348 91,683.970 400 400 85.769 11-56-57.948 736 141+192.964 8,517,782.348 91,683.970 400 400 85.769 11-56-57.948	708	137+958.500	8,515,786.519	92,645.812	0		0	286.970	251-21-52.087
711 138+425.935 8,515,672.548 92,197.432 230 160 0 111.304 282-27-24.649 712 138+537.240 8,515,713.598 92,094.286 0 0 1.790 296-19-13.709 713 138+549.030 8,515,718.825 92,083.718 0 160 -300 85.333 296-19-13.712 714 138+634.363 8,515,762.964 92,005.595 -300 -300 71.357 288-10-18.273 715 138+705.720 8,515,766.984 91,935.799 -300 160 0 85.333 274-32-36.514 716 138+791.054 8,515,765.660 91,850.553 0 160 230 111.304 266-23-41.075 717 138+902.358 8,515,767.624 91,739.555 230 230 97.726 280-15-30.140 718 139+000.084 8,515,804.633 91,649.901 230 160 0 111.304 304-36-11.380 719 139+111.389 8,515,815.383 91,569.839 0 0 60.971 318-28-00.445 720 139+172.360 8,515,927.180 91,529.412 0 160 230 111.304 318-28-00.446 721 139+283.664 8,516.015.940 91,462.734 230 230 28.656 332-19-49.512 722 139+312.320 8,516,042.081 91,451.040 230 160 0 111.304 339-28-07.975 723 139+423.624 8,516.150.949 91,429.313 0 0 133.724 353-19-57.039 724 139+557.349 8,516,283.769 91,413.787 1,400 1,400 318.599 353-19-57.039 724 139+557.349 8,516,283.769 91,413.787 1,400 1,400 318.599 353-19-57.040 725 139+875.948 8,516,6928.593 91,449.469 0 160 300 85.333 6-22-16.866 726 140+204.892 8,516,928.593 91,449.469 0 160 300 85.333 28-40-43.863 727 140+290.225 8,517,012.779 91,462.934 300 300 74.135 14-31-12.304 728 140+466.191 8,517,165.326 91,547.856 0 160 -270 94.815 36-49-39.206 731 140+607.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+607.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 734 141+034.945 8,517,782.738 91,634.092 0 0 332.320 6-46-29.657 734 141+034.945 8,517,782.748 91,683.970 400 400 85.769 11-56-57.948 736 141+107.195 8,517,782.348 91,683.970 400 400 85.769 11-56-57.948 736 141+107.195 8,517,782.348 91,683.970 400 400 85.769 11-56-57.948 736 141+107.195 8,517,782.348 91,683.970 400 400 85.769 11-56-57.948	709	138+245.470	8,515,694.818	92,373.887	0	160	230	111.304	251-21-52.086
712 138+537.240 8,515,713.598 92,094.286 0 0 11.790 296-19-13.709 713 138+549.030 8,515,718.825 92,083.718 0 160 -300 85.333 296-19-13.712 714 138+634.363 8,515,752.964 92,005.595 -300 -300 71.357 288-10-18.273 715 138+705.720 8,515,766.984 91,935.799 -300 160 0 85.333 274-32-36.514 716 138+791.054 8,515,766.60 91,850.553 0 160 230 111.304 266-23-41.075 717 138+902.358 8,515,767.624 91,739.555 230 230 97.726 280-15-30.140 718 139+000.084 8,515,804.633 91,649.901 230 160 0 111.304 304-36-11.380 719 139+111.389 8,515,881.538 91,569.839 0 0 60.971 318-28-00.445 720 139+172.360 8,515,927.180 91,529.412 0 160 230 111.304 318-28-00.446 721 139+283.664 8,516,015.940 91,462.734 230 230 230 28.656 332-19-49.512 722 139+312.320 8,516,042.081 91,451.040 230 160 0 111.304 339-28-07.975 723 139+423.624 8,516,150.949 91,429.313 0 0 133.724 353-19-57.039 724 139+557.349 8,516,283.769 91,413.787 1,400 1,400 318.599 353-19-57.039 724 139+557.349 8,516,283.769 91,413.787 1,400 1,400 318.599 353-19-57.039 725 139+875.948 8,516,601.680 91,412.965 0 0 328.944 6-22-16.866 726 140+204.892 8,516,928.593 91,449.469 0 160 300 85.333 6-22-16.868 727 140+290.225 8,517,012.779 91,462.934 300 300 74.135 14-31-12.304 728 140+364.360 8,517,012.779 91,462.934 300 300 74.135 14-31-12.304 728 140+49.694 8,517,152.121 91,537.668 0 0 160 -270 94.815 36-49-39.300 731 140+466.191 8,517,156.326 91,547.856 0 160 -270 94.815 36-49-39.390 732 140+607.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+607.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+607.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+607.811 8,517,287.708 91,617.443 -270 160 0 85.333 20 6-46-29.657 734 141+034.945 8,517,710.917 91,673.296 0 170 400 72.250 6-46-29.657 734 141+1034.945 8,517,782.348 91,683.970 400 400 85.769 11-56-57.948 736 141+192.964 8,517,863.720 91,710.555 400 170 0 72.250 24-14-05.587	710	138+356.775	8,515,667.930	92,266.178	230		230	69.161	265-13-41.153
713 138+549.030 8,515,718.825 92,083.718 0 160 -300 85.333 296-19-13.712 714 138+634.363 8,515,752.964 92,005.595 -300 -300 71.357 288-10-18.273 715 138+705.720 8,515,766.604 91,935.799 -300 160 0 85.333 274-32-36.514 716 138+791.054 8,515,767.624 91,739.555 230 230 97.726 280-15-30.140 718 139+000.084 8,515,804.633 91,649.901 230 160 0 111.304 304-36-11.380 719 139+111.389 8,515,881.538 91,569.839 0 0 60.971 318-28-00.445 720 139+172.360 8,515,927.180 91,529.412 0 160 230 111.304 318-28-00.445 721 139+283.664 8,516,042.081 91,462.734 230 230 230 28.656 332-19-49.512 722 139+312.320 8,516,042.081 91,451.040 230	711	138+425.935	8,515,672.548	92,197.432	230	160	0	111.304	282-27-24.649
714 138+634.363 8,515,752.964 92,005.595 -300 -300 71.357 288-10-18.273 715 138+705.720 8,515,766.6984 91,935.799 -300 160 0 85.333 274-32-36.514 716 138+791.054 8,515,766.660 91,850.553 0 160 230 111.304 266-23-41.075 717 138+902.358 8,515,767.624 91,739.555 230 230 97.726 280-15-30.140 718 139+000.084 8,515,881.538 91,569.839 0 0 60.971 318-28-00.445 720 139+172.360 8,515,927.180 91,529.412 0 160 230 111.304 318-28-00.446 721 139+323.664 8,516,042.081 91,462.734 230 230 28.656 322-19-49.512 722 139+312.320 8,516,042.081 91,452.040 230 160 0 111.304 318-28-00.446 723 139+423.624 8,516,150.949 91,429.313 0 0 <	712	138+537.240	8,515,713.598	92,094.286	0		0	11.790	296-19-13.709
715 138+705.720 8,515,766.984 91,935.799 -300 160 0 85.333 274-32-36.514 716 138+791.054 8,515,765.660 91,850.553 0 160 230 111.304 266-23-41.075 717 138+902.358 8,515,767.624 91,739.555 230 230 97.726 280-15-30.140 718 139+000.084 8,515,804.633 91,649.901 230 160 0 111.304 304-36-11.380 719 139+111.389 8,515,881.538 91,569.839 0 0 60.971 318-28-00.445 720 139+172.360 8,516,015.940 91,462.734 230 230 28.656 332-19-49.512 722 139+312.320 8,516,042.081 91,451.040 230 160 0 111.304 339-28-07.975 723 139+423.624 8,516,150.949 91,429.313 0 0 133.724 353-19-57.039 724 139+557.349 8,516,283.769 91,412.965 0 0 328	713	138+549.030	8,515,718.825	92,083.718	0	160	-300	85.333	296-19-13.712
716 138+791.054 8,515,765.660 91,850.553 0 160 230 111.304 266-23-41.075 717 138+902.358 8,515,767.624 91,739.555 230 230 97.726 280-15-30.140 718 139+000.084 8,515,804.633 91,649.901 230 160 0 111.304 304-36-11.380 719 139+111.389 8,515,827.180 91,529.412 0 160 230 111.304 318-28-00.445 720 139+172.360 8,516,015.940 91,462.734 230 230 28.656 332-19-49.512 722 139+312.320 8,516,042.081 91,462.734 230 230 28.656 332-19-49.512 723 139+423.624 8,516,150.949 91,429.313 0 0 133.724 355-19-57.039 724 139+557.349 8,516,283.769 91,412.965 0 0 328.944 6-22-16.866 726 140+204.892 8,516,928.593 91,449.469 0 160 300 8	714	138+634.363	8,515,752.964	92,005.595	-300		-300	71.357	288-10-18.273
717 138+902.358 8,515,767.624 91,739.555 230 230 97.726 280-15-30.140 718 139+000.084 8,515,804.633 91,649.901 230 160 0 111.304 304-36-11.380 719 139+111.389 8,515,881.538 91,569.839 0 0 60.971 318-28-00.445 720 139+172.360 8,515,927.180 91,529.412 0 160 230 111.304 318-28-00.446 721 139+283.664 8,516,015.940 91,462.734 230 230 28.656 332-19-49.512 722 139+312.320 8,516,042.081 91,451.040 230 160 0 111.304 339-28-07.975 723 139+423.624 8,516,150.949 91,429.313 0 0 133.724 353-19-57.039 724 139+557.349 8,516,283.769 91,413.787 1,400 1,400 318.599 353-19-57.040 725 139+875.948 8,516,601.680 91,412.965 0 0 328.944 6-22-16.866 726 140+204.892 8,516,928.593 91,449.469 0 160 300 85.333 6-22-16.868 727 140+290.225 8,517,012.779 91,462.934 300 300 74.135 14-31-12.304 728 140+364.360 8,517,081.533 91,490.155 300 160 0 85.333 28-40-43.863 729 140+449.694 8,517,152.121 91,537.968 0 0 16.497 36-49-39.296 730 140+466.191 8,517,165.326 91,547.856 0 160 -270 94.815 36-49-39.296 731 140+561.005 8,517,281.709 91,600.082 -270 -270 46.805 26-46-02.709 732 140+607.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+702.625 8,517,380.918 91,634.092 0 0 322.320 6-46-29.657 734 141+034.945 8,517,710.917 91,673.296 0 170 400 72.250 6-46-29.659 735 141+107.195 8,517,782.348 91,683.970 400 400 85.769 11-56-57.948 736 141+192.964 8,517,783.720 91,710.555 400 170 0 72.250 24-14-05.587	715	138+705.720	8,515,766.984	91,935.799	-300	160	0	85.333	274-32-36.514
718 139+000.084 8,515,804.633 91,649.901 230 160 0 111.304 304-36-11.380 719 139+111.389 8,515,881.538 91,569.839 0 0 60.971 318-28-00.445 720 139+172.360 8,515,927.180 91,529.412 0 160 230 111.304 318-28-00.446 721 139+283.664 8,516,015.940 91,462.734 230 230 28.656 332-19-49.512 722 139+312.320 8,516,042.081 91,451.040 230 160 0 111.304 339-28-07.975 723 139+423.624 8,516,150.949 91,429.313 0 0 133.724 353-19-57.039 724 139+557.349 8,516,283.769 91,413.787 1,400 1,400 318.599 353-19-57.040 725 139+875.948 8,516,601.680 91,412.965 0 0 328.944 6-22-16.866 726 140+204.892 8,516,928.593 91,449.469 0 160 300 85.333 6-22-16.868 727 140+290.225 8,517,012.779 91,462.934 300 300 74.135 14-31-12.304 728 140+364.360 8,517,081.533 91,490.155 300 160 0 85.333 28-40-43.863 729 140+449.994 8,517,152.121 91,537.968 0 0 16.497 36-49-39.296 730 140+466.191 8,517,165.326 91,547.856 0 160 -270 94.815 36-49-39.296 731 140+607.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+607.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+067.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 734 141+034.945 8,517,710.917 91,673.296 0 170 400 72.250 6-46-29.657 734 141+034.945 8,517,710.917 91,673.296 0 170 400 72.250 6-46-29.659 735 141+107.195 8,517,782.348 91,683.970 400 400 85.769 11-56-57.948 736 141+192.964 8,517,863.720 91,710.555 400 170 0 72.250 24-14-05.587	716	138+791.054	8,515,765.660	91,850.553	0	160	230	111.304	266-23-41.075
719 139+111.389 8.515,881.538 91,569.839 0 0 60.971 318-28-00.445 720 139+172.360 8.515,927.180 91,529.412 0 160 230 111.304 318-28-00.446 721 139+283.664 8.516,015.940 91,462.734 230 230 28.656 332-19-49.512 722 139+312.320 8.516,042.081 91,451.040 230 160 0 111.304 339-28-07.975 723 139+423.624 8.516,150.949 91,429.313 0 0 133.724 353-19-57.039 724 139+557.349 8.516,283.769 91,413.787 1,400 1,400 318.599 353-19-57.040 725 139+875.948 8.516,601.680 91,412.965 0 0 328.944 6-22-16.866 726 140+204.892 8.516,928.593 91,449.469 0 160 300 85.333 6-22-16.868 727 140+290.225 8.517,012.779 91,462.934 300 300 74.135 14-31-12.304 728 140+364.360 8.517,081.533 91,490.155 300 160 0 85.333 28-40-43.863 729 140+449.694 8.517,152.121 91,537.968 0 0 164.97 36-49-39.296 730 140+466.191 8.517,282.121 91,537.968 0 0 160 -270 94.815 36-49-39.296 731 140+561.005 8.517,244.305 91,600.082 -270 -270 46.805 26-46-02.709 732 140+607.811 8.517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+702.625 8.517,380.918 91,634.092 0 0 332.320 6-46-29.657 734 141+034.945 8.517,780.917 91,673.296 0 170 400 72.250 6-46-29.659 735 141+107.195 8.517,782.348 91,683.970 400 400 85.769 11-56-57.948 736 141+192.964 8.517,783.720 91,710.555 400 170 0 72.250 24-14-05.587	717	138+902.358	8,515,767.624	91,739.555	230		230	97.726	280-15-30.140
720 139+172.360 8,515,927.180 91,529.412 0 160 230 111.304 318-28-00.446 721 139+283.664 8,516,015.940 91,462.734 230 230 28.656 332-19-49.512 722 139+312.320 8,516,042.081 91,451.040 230 160 0 111.304 339-28-07.975 723 139+423.624 8,516,150.949 91,429.313 0 0 133.724 353-19-57.039 724 139+557.349 8,516,283.769 91,413.787 1,400 318.599 353-19-57.040 725 139+875.948 8,516,601.680 91,412.965 0 0 328.944 6-22-16.866 726 140+204.892 8,516,928.593 91,449.469 0 160 300 85.333 6-22-16.868 727 140+290.225 8,517,012.779 91,462.934 300 300 74.135 14-31-12.304 728 140+364.360 8,517,81.533 91,490.155 300 160 0 85.333	718	139+000.084	8,515,804.633	91,649.901	230	160	0	111.304	304-36-11.380
721 139+283.664 8,516,015.940 91,462.734 230 230 28.656 332-19-49.512 722 139+312.320 8,516,042.081 91,451.040 230 160 0 111.304 339-28-07.975 723 139+423.624 8,516,150.949 91,429.313 0 0 133.724 353-19-57.030 724 139+557.349 8,516,803.769 91,413.787 1,400 1,400 318.599 353-19-57.040 725 139+875.948 8,516,928.593 91,412.965 0 0 328.944 6-22-16.866 726 140+204.892 8,516,928.593 91,449.469 0 160 300 85.333 6-22-16.868 727 140+290.225 8,517,012.779 91,462.934 300 300 74.135 14-31-12.304 728 140+49.694 8,517,581.533 91,490.155 300 160 0 85.333 28-40-43.863 729 140+449.694 8,517,152.121 91,537.968 0 0 16.497 36	719	139+111.389	8,515,881.538	91,569.839	0		0	60.971	318-28-00.445
722 139+312.320 8.516,042.081 91,451.040 230 160 0 111.304 339-28-07.975 723 139+423.624 8.516,150.949 91,429.313 0 0 133.724 353-19-57.039 724 139+557.349 8.516,6283.769 91,413.787 1,400 1,400 318.599 353-19-57.039 725 139+875.948 8.516,601.680 91,412.965 0 0 328.944 6-22-16.866 726 140+204.892 8.516,928.593 91,449.469 0 160 300 85.333 6-22-16.868 727 140+290.225 8.517,012.779 91,462.934 300 300 74.135 14-31-12.304 728 140+364.360 8.517,081.533 91,490.155 300 160 0 85.333 28-40-43.863 729 140+449.694 8.517,152.121 91,537.968 0 0 16.497 36-49-39.296 730 140+466.191 8,517,244.305 91,600.082 -270 -270 46.805 <td< td=""><td>720</td><td>139+172.360</td><td>8,515,927.180</td><td>91,529.412</td><td>0</td><td>160</td><td>230</td><td>111.304</td><td>318-28-00.446</td></td<>	720	139+172.360	8,515,927.180	91,529.412	0	160	230	111.304	318-28-00.446
723 139+423.624 8,516,150.949 91,429.313 0 0 133.724 353-19-57.039 724 139+557.349 8,516,283.769 91,413.787 1,400 1,400 318.599 353-19-57.040 725 139+875.948 8,516,601.680 91,412.965 0 0 328.944 6-22-16.866 726 140+204.892 8,516,928.593 91,449.469 0 160 300 85.333 6-22-16.868 727 140+290.225 8,517,012.779 91,462.934 300 300 74.135 14-31-12.304 728 140+364.360 8,517,815.33 91,490.155 300 160 0 85.333 28-40-43.863 729 140+449.694 8,517,152.121 91,537.968 0 0 16.497 36-49-39.296 730 140+466.191 8,517,165.326 91,547.856 0 160 -270 94.815 36-49-39.300 731 140+561.005 8,517,287.708 91,617.443 -270 160 0 94.815 </td <td>721</td> <td>139+283.664</td> <td>8,516,015.940</td> <td>91,462.734</td> <td>230</td> <td></td> <td>230</td> <td>28.656</td> <td>332-19-49.512</td>	721	139+283.664	8,516,015.940	91,462.734	230		230	28.656	332-19-49.512
724 139+557.349 8,516,283.769 91,413.787 1,400 1,400 318.599 353-19-57.040 725 139+875.948 8,516,601.680 91,412.965 0 0 328.944 6-22-16.866 726 140+204.892 8,516,928.593 91,449.469 0 160 300 85.333 6-22-16.868 727 140+290.225 8,517,012.779 91,462.934 300 300 74.135 14-31-12.304 728 140+364.360 8,517,081.533 91,490.155 300 160 0 85.333 28-40-43.863 729 140+449.694 8,517,152.121 91,537.968 0 0 0 16.497 36-49-39.296 730 140+466.191 8,517,165.326 91,547.856 0 160 -270 94.815 36-49-39.300 731 140+561.005 8,517,244.305 91,600.082 -270 -270 46.805 26-46-02.709 732 140+607.811 8,517,287.708 91,617.443 -270 160 0 </td <td>722</td> <td>139+312.320</td> <td>8,516,042.081</td> <td>91,451.040</td> <td>230</td> <td>160</td> <td>0</td> <td>111.304</td> <td>339-28-07.975</td>	722	139+312.320	8,516,042.081	91,451.040	230	160	0	111.304	339-28-07.975
725 139+875.948 8,516,601.680 91,412.965 0 0 328.944 6-22-16.866 726 140+204.892 8,516,928.593 91,449.469 0 160 300 85.333 6-22-16.868 727 140+290.225 8,517,012.779 91,462.934 300 300 74,135 14-31-12.304 728 140+364.360 8,517,081.533 91,490.155 300 160 0 85.333 28-40-43.863 729 140+449.694 8,517,152.121 91,537.968 0 0 16.497 36-49-39.296 730 140+466.191 8,517,165.326 91,547.856 0 160 -270 94.815 36-49-39.300 731 140+561.005 8,517,244.305 91,600.082 -270 -270 46.805 26-46-02.709 732 140+607.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+702.625 8,517,380.918 91,634.092 0 0 332.320	723	139+423.624	8,516,150.949	91,429.313	0		0	133.724	353-19-57.039
726 140+204.892 8,516,928.593 91,449.469 0 160 300 85.333 6-22-16.868 727 140+290.225 8,517,012.779 91,462.934 300 300 74.135 14-31-12.304 728 140+364.360 8,517,081.533 91,490.155 300 160 0 85.333 28-40-43.863 729 140+449.694 8,517,152.121 91,537.968 0 0 16.497 36-49-39.296 730 140+466.191 8,517,165.326 91,547.856 0 160 -270 94.815 36-49-39.300 731 140+561.005 8,517,244.305 91,600.082 -270 -270 46.805 26-46-02.709 732 140+607.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+702.625 8,517,380.918 91,634.092 0 0 332.320 6-46-29.657 734 141+034.945 8,517,710.917 91,673.296 0 170 400	724	139+557.349	8,516,283.769	91,413.787	1,400		1,400	318.599	353-19-57.040
727 140+290.225 8,517,012.779 91,462.934 300 300 74.135 14-31-12.304 728 140+364.360 8,517,081.533 91,490.155 300 160 0 85.333 28-40-43.863 729 140+449.694 8,517,152.121 91,537.968 0 0 16.497 36-49-39.296 730 140+466.191 8,517,244.305 91,600.082 -270 -270 46.805 26-46-02.709 731 140+607.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+702.625 8,517,380.918 91,634.092 0 0 332.320 6-46-29.657 734 141+034.945 8,517,710.917 91,673.296 0 170 400 72.250 6-46-29.659 735 141+192.964 8,517,863.720 91,710.555 400 170 0 72.250 24-14-05.587	725	139+875.948	8,516,601.680	91,412.965	0		0	328.944	6-22-16.866
728 140+364.360 8,517,081.533 91,490.155 300 160 0 85.333 28-40-43.863 729 140+449.694 8,517,152.121 91,537.968 0 0 16.497 36-49-39.296 730 140+466.191 8,517,165.326 91,547.856 0 160 -270 94.815 36-49-39.300 731 140+561.005 8,517,244.305 91,600.082 -270 -270 46.805 26-46-02.709 732 140+607.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+702.625 8,517,380.918 91,634.092 0 0 332.320 6-46-29.657 734 141+034.945 8,517,710.917 91,673.296 0 170 400 72.250 6-46-29.659 735 141+107.195 8,517,283.48 91,683.970 400 400 85.769 11-56-57.948 736 141+192.964 8,517,863.720 91,710.555 400 170 0	726	140+204.892	8,516,928.593	91,449.469	0	160	300	85.333	6-22-16.868
729 140+449.694 8,517,152.121 91,537.968 0 0 16.497 36-49-39.296 730 140+466.191 8,517,165.326 91,547.856 0 160 -270 94.815 36-49-39.300 731 140+561.005 8,517,244.305 91,600.082 -270 -270 46.805 26-46-02.709 732 140+607.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+702.625 8,517,380.918 91,634.092 0 0 332.320 6-46-29.657 734 141+034.945 8,517,710.917 91,673.296 0 170 400 72.250 6-46-29.659 735 141+107.195 8,517,283.48 91,683.970 400 400 85.769 11-56-57.948 736 141+192.964 8,517,863.720 91,710.555 400 170 0 72.250 24-14-05.587	727	140+290.225	8,517,012.779	91,462.934	300		300	74.135	14-31-12.304
730 140+466.191 8.517,165.326 91,547.856 0 160 -270 94.815 36-49-39.300 731 140+561.005 8.517,244.305 91,600.082 -270 -270 46.805 26-46-02.709 732 140+607.811 8.517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+702.625 8.517,380.918 91,634.092 0 0 332.320 6-46-29.657 734 141+034.945 8.517,710.917 91,673.296 0 170 400 72.250 6-46-29.659 735 141+107.195 8.517,782.348 91,683.970 400 400 85.769 11-56-57.948 736 141+192.964 8.517,863.720 91,710.555 400 170 0 72.250 24-14-05.587	728	140+364.360	8,517,081.533	91,490.155	300	160	0	85.333	28-40-43.863
731 140+561.005 8,517,244.305 91,600.082 -270 -270 46.805 26-46-02.709 732 140+607.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+702.625 8,517,380.918 91,634.092 0 0 332.320 6-46-29.657 734 141+034.945 8,517,710.917 91,673.296 0 170 400 72.250 6-46-29.659 735 141+107.195 8,517,782.348 91,683.970 400 400 85.769 11-56-57.948 736 141+192.964 8,517,863.720 91,710.555 400 170 0 72.250 24-14-05.587	729	140+449.694	8,517,152.121		0		0	16.497	36-49-39.296
732 140+607.811 8,517,287.708 91,617.443 -270 160 0 94.815 16-50-06.250 733 140+702.625 8,517,380.918 91,634.092 0 0 332.320 6-46-29.657 734 141+034.945 8,517,710.917 91,673.296 0 170 400 72.250 6-46-29.659 735 141+107.195 8,517,782.348 91,683.970 400 400 85.769 11-56-57.948 736 141+192.964 8,517,863.720 91,710.555 400 170 0 72.250 24-14-05.587	730	140+466.191	8,517,165.326	91,547.856	0	160	-270	94.815	36-49-39.300
733 140+702.625 8,517,380.918 91,634.092 0 0 332.320 6-46-29.657 734 141+034.945 8,517,710.917 91,673.296 0 170 400 72.250 6-46-29.659 735 141+107.195 8,517,782.348 91,683.970 400 400 85.769 11-56-57.948 736 141+192.964 8,517,863.720 91,710.555 400 170 0 72.250 24-14-05.587	731	140+561.005	8,517,244.305	91,600.082	-270		-270	46.805	26-46-02.709
734 141+034.945 8,517,710.917 91,673.296 0 170 400 72.250 6-46-29.659 735 141+107.195 8,517,782.348 91,683.970 400 400 85.769 11-56-57.948 736 141+192.964 8,517,863.720 91,710.555 400 170 0 72.250 24-14-05.587	732	140+607.811	8,517,287.708	91,617.443	-270	160	0	94.815	16-50-06.250
735 141+107.195 8,517,782.348 91,683.970 400 400 85.769 11-56-57.948 736 141+192.964 8,517,863.720 91,710.555 400 170 0 72.250 24-14-05.587	733	140+702.625	8,517,380.918	91,634.092	0		0	332.320	6-46-29.657
736 141+192.964 8,517,863.720 91,710.555 400 170 0 72.250 24-14-05.587	734	141+034.945	8,517,710.917	91,673.296	0	170	400	72.250	6-46-29.659
	735	141+107.195	8,517,782.348	91,683.970	400		400	85.769	11-56-57.948
737 141+265.214 8,517,927.675 91,744.110 0 0 14.612 29-24-33.877	736	141+192.964	8,517,863.720	91,710.555	400	170	0	72.250	24-14-05.587
	737	141+265.214	8,517,927.675	91,744.110	0		0	14.612	29-24-33.877

No	Station	Xcoordinates	Ycoordinates	Beginning of Radius	Parameter	End of Radius	Length	Chord Angle
738	141+279.826	8,517,940.404	91,751.285	0	160	-230	111.304	29-24-33.879
739	141+391.130	8,518,041.189	91,797.834	-230		-230	133.273	15-32-44.815
740	141+524.403	8,518,172.583	91,795.416	-230	160	0	111.304	342-20-44.747
741	141+635.708	8,518,271.587	91,745.191	0	160	230	111.304	328-28-55.684
742	141+747.012	8,518,370.591	91,694.966	230		230	301.675	342-20-44.747
743	142+048.687	8,518,634.316	91,790.543	230	160	0	111.304	57-29-48.085
744	142+159.992	8,518,678.154	91,892.537	0	160	230	111.304	71-21-37.148
745	142+271.296	8,518,705.050	92,000.244	230		230	48.187	85-13-26.211
746	142+319.483	8,518,704.021	92,048.332	230	160	0	111.304	97-13-40.459
747	142+430.787	8,518,672.542	92,154.790	-900		-900	155.190	111-05-29.524
748	142+585.977	8,518,629.424	92,303.670	0		0	75.056	101-12-42.561
749	142+661.034	8,518,614.831	92,377.294	0	160	-230	111.304	101-12-42.560
750	142+772.338	8,518,602.085	92,487.575	-230		-230	330.607	87-20-53.497
751	143+102.945	8,518,811.832	92,706.062	-230	160	0	111.304	4-59-24.134
752	143+214.249	8,518,922.541	92,697.826	0		0	283.104	351-07-35.070
753	143+497.353	8,519,202.257	92,654.156	0	160	230	111.304	351-07-35.072
754	143+608.657	8,519,312.966	92,645.919	230		230	87.708	4-59-24.133
755	143+696.365	8,519,396.802	92,669.824	230	160	0	111.304	26-50-21.027
756	143+807.670	8,519,486.520	92,735.208	0		0	8.290	40-42-10.094
757	143+815.960	8,519,492.804	92,740.615	-900		-900	246.022	40-42-10.091
758	144+061.982	8,519,698.792	92,873.730	0		0	20.485	25-02-26.082
759	144+082.467	8,519,717.352	92,882.400	0	200	400	100.000	25-02-26.091
760	144+182.467	8,519,806.049	92,928.431	400		400	164.630	32-12-09.192
761	144+347.097	8,519,923.654	93,041.974	400	200	0	100.000	55-47-02.686
762	144+447.097	8,519,972.772	93,128.999	0		0	8.858	62-56-45.776
763	144+455.954	8,519,976.801	93,136.888	0	180	-450	72.000	62-56-45.788
764	144+527.954	8,520,011.237	93,200.096	-450		-450	220.931	58-21-44.603
765	144+748.885	8,520,167.779	93,352.845	-450	180	0	72.000	30-13-57.323
766	144+820.885	8,520,231.812	93,385.721	0		0	486.769	25-38-56.139
767	145+307.654	8,520,670.616	93,596.422	1,300		1,300	397.067	25-38-56.140
768	145+704.721	8,520,996.973	93,819.875	0		0	23.642	43-08-56.900
769	145+728.364	8,521,014.222	93,836.044	0	160	-230	111.304	43-08-56.902
770	145+839.668	8,521,101.067	93,905.198	-230		-230	285.357	29-17-07.837
771	146+125.025	8,521,366.878	93,876.052	-230		0	111.304	318-11-58.392
	146+236.330	8,521,436.674	93,789.722	0		230	111.304	304-20-09.328
	146+347.634	8,521,506.470	93,703.392	230		230	51.630	318-11-58.393
	146+399.264	8,521,548.482	93,673.569	230		0	111.304	331-03-40.218
775	146+510.568	8,521,653.004	93,636.157	0		0	426.103	344-55-29.284
776	146+936.672	8,522,064.443	93,525.334	0	160	230	111.304	344-55-29.283

	No	Station	Xcoordinates	Ycoordinates	Beginning of Radius	Parameter	End of Radius	Length	Chord Angle
Г	777	147+047.976	8,522,173.614	93,505.186	230		230	80.239	358-47-18.349
	778	147+128.215	8,522,252.511	93,517.375	230	160	0	111.304	18-46-36.965
	779	147+239.519	8,522,350.511	93,569.531	0		0	1.202	32-38-25.968
	780	147+240.721	8,522,351.524	93,570.179	-1,200		-1,200	157.073	32-38-26.030
	781	147+397.794	8,522,488.950	93,646.013					25-08-27.140

