Appendix 5: Calculation of Design Water Supply

_		_	_	_	_	_	1.0		_	I ==	٥.	I	1		~	~	-	1)7 tc			
[14]	er supply	L/sec					1,895	1,881	1,870	1,861	1,852	1,844	1,847	1,850	1,853	1,858	1,861					age from 200			
[13]	Design water supply	m³/day					163,734	162,528	161,607	160,775	160,027	159,358	159,548	159,808	160,131	160,518	160,809		e series.		ery year.	uction of leak			
[12]	Maximum hourly supply	m³/day					95,457	96,054	97,934	99,841	101,777	103,742	106,259	108,829	111,451	114,128	116,747		[8]=Population in previous year*(1+[2]/100) [3]: By 2017, it increases to 100% in the time series.		From 2009 to 2017, It improves 1.5% every year	The value of 1.5% is average rate of reduction of leakage from 2007 to			
[11]	Maximum daily supply	m³/day					70,709	71,151	72,544	73,956	75,390	76,846	78,710	80,614	82,556	84,539	86,479		increases to 1	[6]: It is actual value by 2008.	to 2017, It imp	of 1.5% is aver			
[10]	Total water demand	m³/day					26,567	56,921	58,035	59,165	50,312	61,477	52,968	54,491	56,045	57,631	59,183		3]: By 2017, it	6]: It is actual	From 2009	The value			
[6]	Water demand of population inflow	m³/day					1,776	1,794	1,812	1,830	1,848	1,867	1,895	1,923	1,952	1,981	2,011		r*(1+[2]/100) [
[8]	Population inflow	Persons					29,600	29,896	30,195	30,497	30,802	31,110	31,577	32,051	32,532	33,020	33,515		in previous yea	00				/100)	09/0
[2]	Capacity of all pumping stations	L/sec					1,728	1,728	1,728	1,728	1,728	2,138	2,138	2,138	2,138	2,138	2,138		[8]=Population	[9]=60L*[8]/1000	[10]=[5]+[9]	[11]=[10]*1.25	[12]=[11]*1.35	[13]=[12]/(1-[6]/100)	[14]=[13]/24/60/60
[9]	Ratio of Water Leakage	%		44.0	43.0	40.9	41.7	40.9	39.4	37.9	36.4	34.9	33.4	31.9	30.4	28.9	27.4		ar*(1+[2]/100)						sign value
[2]	Water demand	m³/day					54,791	55,127	56,223	57,335	58,464	59,610	61,073	62,568	64,093	65,650	67,172	method >	in previous yea	ne	Design value		000	Design value	apacity and de
[4]	Population served	Persons					163,068	164,068	167,330	170,640	174,000	177,410	181,766	186,213	190,753	195,387	199,917	< Calculation method >	336 Uperson*day [1]=Population in previous year*(1+[2]/100)	[2]=Design value	[3]=Actual or Design value	[4]=[1]*[3]/100	[5]=[4]*336L/1000	[6]=Actual or [60 L/person*day [7]=Existing capacity and design value
[3]	Rate of Population Population Served	%						92.0	92.9	93.8	94.7	92.6	96.5	97.4	98.3	99.2	100.0		L/person*day				L/sec	29,600 Persons(2007)	L/person*day
[2]	Rate of Population increase	%						1.0	1.0	1.0	1.0	1.0	1.5	1.5	1.5	1.5	1.5		336	1.25	1.35	1,728 L/sec	2,138 L/sec	29,600	09
[1]	Population	Persons	168,736	170,876	172,626	174,401	176,569	178,335	180,118	181,919	183,738	185,575	188,359	191,184	194,052	196,963	199,917	condition >		eak factor of daily maximum	Peak factor of hourly maximum	capacity	pacity	Population inflow in daytime	Supply unit for population inflow
	Year		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	< Calculation condition >	Supply unit	Peak factor of c	eak factor of h	Existing pump capacity	New pump capacity	Population infle	Supply unit for p

Tills taide Ct. 1.50 is a vei age take Ct. leducació. Or leducació is a compage inclus	nt of leakage	Design water supply	m³/day L/sec	163,734 1,895	162,528 1,881	165,709 1,918	168,936 1,955	172,212 1,993	175,536 2,032	179,795 2,081	184,144 2,131	188,580 2,183	193,110 2,235	
	Table-3 Design water supply without improvement of leakage	Maximum daily D supply	m³/B m	95,457	96,054	97,934	99,841	101,777	103,742	106,259	108,829	111,451	114,128	110 111
	in water supply	Ratio of Water Leakage	%	41.7	40.9	40.9	40.9	40.9	40.9	40.9	40.9	40.9	40.9	000
	Fable-3 Desig	Year		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	20047

	[1]	[2]	[3]	[4]	[2]	[6]	[7]
Year	Distributed amount	d amount	Lekage volume	volume	Effective wa	Effective water amount	Leakage rate
	m³/year	m³/day	m³/year	m³/day	m³/year	m³/day	%
2004	38,615,000	105,795	17,002,000	46,581	21,613,000	59,214	44.0
2005	38,319,000	104,984	16,464,000	45,107	21,855,000	59,877	43.0
2006	39,804,000	109,052	16,272,000	44,581	23,532,000	64,471	40.9
2007	41,282,000	113,101	17,221,000	47,181	24,061,000	65,920	41.7
2008	42,874,000	117,463	17,545,000	48,068	25,329,000	69,395	40.9
2009	31,931,000	87,482	12,134,000	33,244	19,797,000	54.238	38.0

Table-4-1 Population in the area with interruption in water supply

	_	_	_
The second secon	Rate of no-water population	(%)	14.3
	Population served No-water population Rate of no-water population	Persons	23,911
o to the contract of the contr	Population served	Persons	167,330
	Voor	- cai	2009

Estimated population in the area with interruption in water so	ppiy (2012)
served	177,410 人
in the area with interruption in water supply: 177,410 X 14.3% =	25,370 人

		_	_		-	01	-			m		_
	[2]	ter supply	with leakage prevention L/sec	1,870	1,861	1,852	1,844	1,847	1,850	1,853	1,858	1,861
ents (1)	[9]	Design water supply	without leakade L/sec	1,918	1,955	1,993	2,032	2,081	2,131	2,183	2,235	2,286
l able-5 Calculation of design water supply considered for the aging of existing equipments (1	[2]	Design capacity of all	station	1,677	1,655	1,633	2,051	2,037	2,023	2,009	1,995	1,980
the aging of e	[4]	of Mareza 2	New L/sec				096	096	096	096	096	096
considered for	[3]	Pump capacity of Mareza 2	Existing L/sec	544	536	528	520	512	504	496	488	480
water supply	[2]	Current capacity of	existing pump L/sec	1,677	1,655	1,633	1,611	1,589	1,567	1,545	1,523	1,500
ation of design	[1]	Design capacity of	existing pump L/sec	2,093	0	0	0	0	0	0	0	0
l able-5 Calcul		Year		2009	2010	2011	2012	2013	2014	2015	2016	2017

<Calculation method>

[1]:The value of 1,677 is actual value. [2]:The value of 544 is actual value and 480 is the assumued value. [2]=The value in previous year -(1677-1500)/8 [3]=The value in previous year -(544-480)/8

[4]=Total capacity of the renewed Mareza 2

It is assumed that value of [2] reduces to 480 from 544 in 8 years.

[5]=[2] (Year 2009-2011), [2]-[3]+[4] (Year2012-2017) [6]=Refer to the value in the table-3 [7]=Refer to [14] in the table-1

prevention with leakag Table-6 Calculation of design water supply considered for the aging of existing equipments (2) [1] [2] [3] [4] [5] [6] Design water supply 2,081 leakade 2,037 2,009 capacity of all Design pumping stations 096 096 096 096 Pump capacity of Mareza 2 New Existing Capacity of the existing pumping stations without 1,077 1,049 1,063 Marez a2 2012 2013 2014 2015 2016 2017 2009 2010 2011 Year

[1]=1,677-[2]

[1]: The value of 1,677 is actual value. [2]: Refer to [3] in the table-5 [3]: Total capacity of the renewed Mareza 2 [2]=Value in preevious year -(544-480)/8

[3]=Total capacity of the renewed Mareza 2

[4]=[1]+[2] (Year 2009-2011), [1]+[3] (Year 2012-2017) [5]=Refer to the value in the table-3 [6]=Refer to [14] in the table-1

Assumed pur	capacity in	L/sec		000	000			480	400			070	2				338				63				12		1,500	
_	reduction rate of pump capacity in	%		100%	%0			250/	0/07			10%	° 2				40%				10%				10%			
	Age			Less than 10	years			More than 20	years			Less than 10	years			l see than 10	Cost uidii io	years		10 use than 10	COS AIGH	years			Less than 10			
Actual	capacity*	oes/T		376	2/3			544	*			300	995				375				20				13		1,677	
Design	capacity	L/sec		376	3/3			080	006			300	200				375				20				13		2,093	
Motor	Country of	origin	Serbia	Serbia	Serbia	Serbia	Serbia	Serbia	Serbia	Serbia	Serbia	Serbia	Germany	Germany	Italy	Italy	Germany	Italy	Germany	Italy	Italy	Italy			Italy			
Mo	Mobor	Manel	SERVER	SERVER	SERVER	SERVER	SERVER	SERVER	SERVER	SERVER	SERVER	SERVER	KSB	KSB	Caprari	Caprari	Vogel	Caprari	KSB	Caprari	Caprari	Lowara			Caprari	Wilo		
	Country of	origin	Croatia	Serbia	Serbia	Croatia	Slovenia	Slovenia	Slovenia	Slovenia	Slovenia	Slovenia	Germany	Germany	Italy	Italy	Germany	Italy	Germany	Italy	Italy	Italy			Italy			
Pump	Motor	Manel	Jugoturbina	Jastrebac	Jastrebac	Jugoturbina	Litostroj	Litostroj	Litostroj	Litostroj	Litostroj	Litostroj	KSB	KSB	Caprari	Caprari	Vogel	Caprari	KSB	Caprari	Caprari	Lowara			Caprari	Wilo		
	Topo	- Abe	CP182/3	VPN250-2R	VPN250-2R	4.8BO34-30/4	VO23/20-III	VO23/21-III	VO23/22-III	VO23/23-III	VO17/16-IV	VO17/17-IV	UPA200B-130/7B	UPA2008-2 6 0B/250- 6 E	E10S55/4K	E8S64/7A	TV103-3SN KMC7502D	E148502AB 2 5 0 · 5 E	UPA250B250/5E	E8S64/7A	E4XH/20MCK410	FZ658/12-SD			E6S55/9AMC625	NR850		DIA/C
	Pump No.		P3	P4	P5	P6	P1	P2	P3	P4	P1	P2	P3	P4	P1	P2	P3	P4	P5	P1	P2	P3			P1			The date is every been from DIAID
	Pump station			Mareza 1	(DIO)			Mareza 2	(New)			Zagorio	Zagone			Camoveko	Odello	afilod			Milje		Tuzi 1	Tuzi 2	Tuzi 3	Dinosa	Total	* The date is

Table-7 Estimated value of reduction of pump capaity in 2017

2,500 2,000 1,500 1,000 200 Total capacity of existing pumping stations 2017 Design water supply without leakage with leakage pre-principle Design water supply and Capacity of pumping stations 2016 2015 2014 2013 Year Total capacity of existing 5 pumping stations 2012 Pump capacity
of Mareza2
without
rehabilitation of 2011 Design capacity of existing pump (2,093) 2010 2,000 F 6xh 2009 2,500 1,500 200 000 T/sec

**The data is produced from PWS.
**Design capacity

Appendix 6: Socio-Condition Survey

The aim of survey is to grasp information on social condition in order to consider the relevance and necessity of proposed project components and the PDM's indicators for the Project. The outline of survey is shown in Table-1.

Items	Contents
Target Area	Central Podgorica, Momisici, Tolosi, Vrela Ribnicka, Dybabel
No. of Samples	106 samples
No. of Interviewers	5 persons
Survey Period	From 27 th May to 2 nd June, 2009 (5 days)
Respondent	Families in the target area
Questionnaire	Questionnaire is shown in the "Questionnaire of Socio-Condition"

Table-1 Outline of Socio-Condition Survey

Based on the information gathered from Podgorica Water Supply and Sewerage, the Study team selected the area with low water pressure and high water pressure to carry out this survey.

1) Family structure

Based on the result of survey, average family size is 4.8 persons per household. (The range of persons in family varies from 1 to 15.)

Current condition of water supply

<Interruption in water supply>

On average, the frequency of interruption in water supply is 2 times per month, and number of areas with interruption in water supply for 2 hours or more is 2 as shown in Figure-2 and Figure-3. These two areas are deemed to face serious level of interruption in water supply.

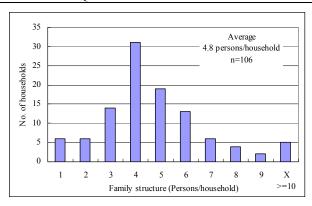


Figure-1 Average family size

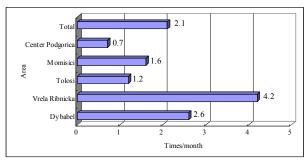
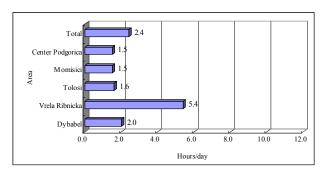
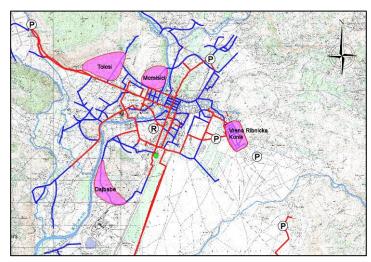



Figure-2 Frequency of interruption in water supply

The socio-condition survey was carried out in June 2009. In summer season, especially in the month of August, when air temperature gets very high, the water demand reaches to the highest level and the number of people who are affected by the interruption in water supply is estimated to increase due to lack of water supply capacity.



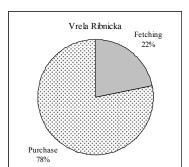

Figure-4 Areas of interruption in supply

Figure-4 shows interruption in water supply identified through socio-economic survey. Figure-5 and Figure-6

of

show alternative water sources and detail on impacts due to water supply interruption in Vrena Ribnicka, the area where the impact is most significant.

In case of interruption in water supply, affected people manage drinking water either through purchase of water bottle or

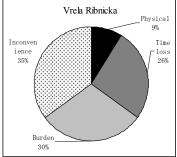


Figure-5 Alternative water source (Left) Figure-6 Damage of interruption in supply (Right)

through fetching water from neighborhoods because many of the households are not equipped with their own storage tanks. These measures are limited only to the case of drinking water. People use toilet in their office or park and they avoid using water for washing during interruption in water supply.

<Water use>

Figure-7 shows per capita daily water consumption. The daily water consumption the area where interruption in water supply occurs more frequently is smaller than the area where number of occurrences of interruption is low. In Podgorica city, there is only one zone (within target area) where average

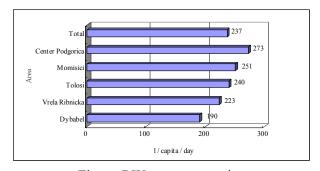


Figure-7 Water consumption

daily water consumption reaches to 273 L/c/d. In most of the target areas, water consumption is about 10% to 30% lower than the average. Average water consumption in Podgorica city is little higher compared to 260L/c/d in Belgrade, Serbia. However, the minimum water demand for daily life in Podgorica city is estimated as 250L/c/d. Therefore,

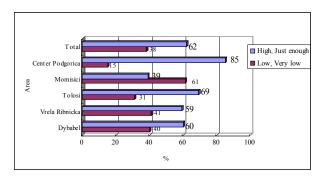


Figure-8 Water pressure

available water supply in 3 areas (Tolosi, Vrela Ribnicka and Dybabel) is limited when compared to average water consumption in Podogorica city. Figure-8 shows existing level of water pressure. The topography of Podgorica city is plain and difference in elevation is very small. According to the information from Podgorica Water Supply and Sewerage, the target of direct water supply is up to 4th floor only and the possibility of occurrence of interruption in water supply due to lack of pump head and topographic condition is low. However, except for Central Podgorica, where water pressure is high, interruption in water supply due to low water pressure is observed in 4 areas. This is because water is supplied in these areas in insufficient amount and at low pressure due to poor management of pump operation and valve position and lack of valves. To deal with this situation, distribution management should be carried out based on adequate distribution network calculation.

Figure-9 shows water uses in the target area. The water consumption for shower, bathing and washing is large. During interruption in water supply, people respond by purchase of water bottle for drinking. However, lack of sufficient amount of water in these urban areas results into limitation of water supply for other water uses and thereby causes poor living condition. The reply to question related to this is observed to have wide variation. In order to figure out more detail on water uses, it is necessary to investigate on frequency of each water

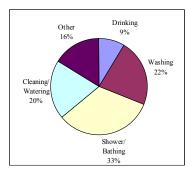


Figure-9 Water use

uses, and corresponding water consumption at a time.

Figure-10 shows the level of purchase of water bottle. In Central Podgorica where frequency of interruption in water supply is little, the rate of purchase of water bottle is low and it is high in the other

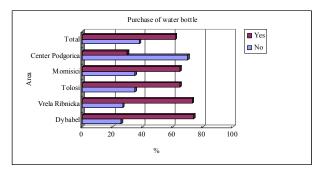


Figure-10 Situation for purchase of water

areas. In Vrela Ribnicka and Dybabel where frequency of interruption is more than 2 times and period of interruption in water supply is more than 2 hours, the level of water bottle purchase is high and people often purchase water bottle.

<Water quality>

Figure-11 shows condition of water quality. In all target areas, most of respondents feel that water quality level is "Good" or "Acceptable". Especially, in Central Podgoria, Momisici and Tolosi, more than 50% of respondents expressed the water quality to be "Good". Figure -12 shows the results of responses on taste and smell for water supply. In Vrela Ribnicka and Dybabel, more than 60% of respondents replied that they experience smell of chlorine in supplied water, and therefore. proper management residual chlorine should be considered. The presence of excess residual chlorine supplied water causes bad impression of water quality. In other areas, no marked comment about water quality has been observed.

<Water charge>

Figure-13 shows monthly water charge. The average of monthly water charge in the target areas is 12.1 EUR/month.

Figure-14 shows the ratio of monthly water charge as a part of total expenditure of household. In the target areas, 80% of people spend less than 5% of their total household expenses as water charge. Therefore, it is assumed that among the domestic expenses, water

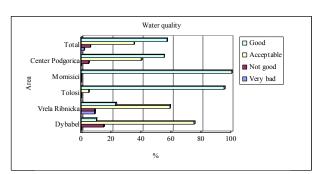


Figure-11 Water quality

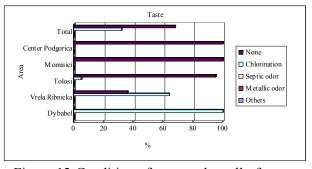


Figure-12 Condition of taste and smell of water supply



Figure-13 Monthly water charge

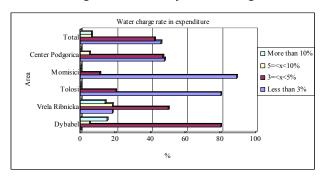


Figure-14 Water charge rate in expenditure

charge is not a burden. However, many households have agreement with water vendor for supply of 20 litter bottle as alternative water source in case of water supply interruption and for this they need to pay on average about 20 EUR every month, for a family size of 4-5 persons. This causes burden to domestic expenses and it also becomes physical and mental burden for urban people. Therefore, it is a serious problem in the city that has administrative responsibility

of water supply.

Figure-15 shows the method of payment of water charge. Most of respondents pay their water charge in PWS's office or branch office of PWS after receiving their monthly invoice.

Figure-16 shows impression of the users on the level of water charge. Approx. 60% of respondents expressed that existing water charge is "Cheap" or "Reasonable". However,

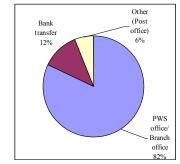


Figure-15 Payment method of water charge

in Vrela Ribnicka and Dybabel, where frequency of interruption in water supply is high, the people expressed that the water rate is "Expensive" and "Very expensive" compared to other 3 areas. Monthly water charge seems to be reasonable, however, it is indicated that people are unsatisfied with poor services of water supply.

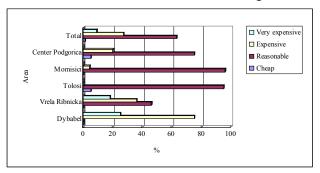


Figure-16 Impression of water charge

Table-2 Result of socio-condition survey (1)

							Area			
Sections	No.	Que	stions	Unit	Dybabel	Vrela Ribnicka	Tolosi	Momisici	Center Podgorica	Total
Number of Respon	dents			Persons	20	23	20	23	20	106
Section 1	1-1	Sex	Male	No.	19	21	13	15	9	77
Interviewee's				%	95	91	72	83	45	78
Information			Female	No.	1	2	5	3	11	22
				%	5	9	28	17	55	22
			Total	No.	20	23	18	18	20	99
				%	100	100	100	100	100	100
		Age		Average	56.9	55.9	55.1	67.5	51.4	57.6
Section 2 Family	2-1	Total number		Persons	4.3	4.9	4.4	5.9	4.4	4.8
Structure		Male		Persons	2.4	2.6	2.2	2.9	1.9	2.4
		Female		Persons	1.9	2.3	2.2	3.0	2.5	2.4
Section 3 Water	3-1	Experience	Yes	No.	20	22	18	23	11	94
Abailability				%	100	96	90	100	55	89
			No	No.	0	1	2	0	9	12
				%	0	4	10	0	45	11
			Total	No.	20	23	20	23	20	106
				%	100	100	100	100	100	100
	3-2	Frequency		times/month	2.6	4.2	1.2	1.6	0.7	2.1
	3-3	Hours		hours/day	2.0	5.4	1.6	1.5	1.5	2.4
	3-4	Alternative	Water truck	No.	0	0	0	0	0	0
	-			%	0	0	0	0	0	0
			Water tank	No.	0	0	2	1	0	3
				%	0	0	11	4	0	3
			Fetching	No.	8	5	4	9	1	27
				%	40	22	22	39	17	30
			Purchase	No.	10	18	12	13	5	58
				%	50	78	67	57	83	64
			Well		1	0	0	0	0	
			Well	No.	5	0	0	0	0	1
			Othern							1.5
			Others (Waiting)	No.	5	0	0	0	0	1.5
			Total	No.	20 100	23 100	18	100	100	90
	3-5	Damage	Dhygiaal		0	2	0	0	100	
	3-3	Damage	Physical	No.					12.5	3
			Ti 1	% N-	0	9	0	0		
			Time loss	No.	13	6	7	8	1	35
				%	65	26	44	47	12.5	42
			Burden	No.	2	7	9	8	1	27
				%	10	30	56	47	12.5	32
			Inconvenience	No.	5	8	0	1	4	18
				%	25	35	0	6	50	21
			Others	No.	0	0	0	0	1	1
			(Waiting)	%	0	0		0	12.5	1
			Total	No.	20	23	16	17	8	84
				%	100	100	100	100	100	100

Table-3 Result of socio-condition survey (2)

			abic-5 Resu				Area			
Sections	No.	Que	estions	Unit	Dybabel	Vrela Ribnicka	Tolosi	Momisici	Center Podgorica	Total
Section 4 Water	4-1	Consumption		m ³ / capita	190	223	240	251	273	237
consumption and	4-2	Pressure	High	No.	1	0	2	0	9	12
Water use	-			%	5	0	11	0	45	12
			Just enough	No.	11	13	11	9	8	52
				%	55	59	58	39	40	50
			Low	No.	7	6	6	14	2	35
				%	35	27	31	61	10	34
			Very low	No.	1	3	0	0	1	5
				%	5	14	0	0	5	4
			Total	No.	20	22	19	23	20	104
				%	100	100	100	100	100	100
	4-3	Water use	Drinking	%	8	12	6	6	14	9
			Washing	%	18	29	15	17	31	22
			Bathing	%	44	36	20	21	47	33
			Cleaning	%	10	13	37	30	8	20
			Others	%	20	10	22	26	0	16
			(Cleaning)							
			Total	%	100	100	100	100	100	100
	4-4	Water tank	Yes	No.	14	16	13	15	6	64
				%	74	73	65	65	30	62
			No	No.	5	6	7	8	14	40
				%	26	27	35	35	70	38
			Total	No.	19	22	20	23	20	104
				%	100	100	100	100	100	100
Section 5 Water	5-1	Quality	Good	No.	2	5	19	23	11	60
quality				%	10	23	95	100	55	57
			Acceptable	No.	15	13	1	0	8	37
				%	75	59	5	0	40	35
			Not good	No.	3	2	0	0	1	6
				%	15	9	0	0	5	6
			Very bad	No.	0	2	0	0	0	2
				%	0	9	0	0	0	2
			Total	No.	20	22	20	23	20	105
				%	100	100	100	100	100	100
	5-2	Taste	None	No.	0	8	19	23	23	73
				%	0	36	95	100	100	68
			Chlorination	No.	20	14	1	0	0	35
				%	100	64	5	0	0	32
			Septic odor	No.	0	0	0	0	0	0
				%	0	0	0	0	0	0
			Metallic odor	No.	0	0	0	0	0	0
				%	0	0	0	0	0	0
			Others	No.	0	0	0	0	0	0
				%	0	0	0	0	0	0
			Total	No.	20	22	20	23	23	108
		0.1		%	100	100	100	100	100	100
	5-3	Color	None	No.	20	17	20	23	18	98
			P 1	%	100	77	100	100	90	93
			Red	No.	0	0	0	0	0	0
			T. 1177	%	0	0	0	0	0	0
			Turbidity	No.	0	5	0	0	2	7
			0.1	%	0	23	0	0	10	7
			Others	No.	0	0	0	0	0	0
			m	%	0	0	0	0	0	0
			Total	No.	20	22	20	23	20	105
			1	%	100	100	100	100	100	100

Table-4 Result of socio-condition survey (3)

							Area			
Sections	No.	Que	stions	Unit	Dybabel	Vrela Ribnicka	Tolosi	Momisici	Center Podgorica	Total
Section 6 Water	6-1	Water charge	Water charge	EUR/month	13.4	9.1	11.4	15.7	11.0	12.1
charge	6-2	Method	Branch office	No.	19	10	18	23	13	83
				%	100	45	100	100	68	82
			Bank account	No.	0	9	0	0	3	12
				%	0	41	0	0	16	12
			Others (Post	No.	0	3	0	0	3	6
			office)	%	0	14	0	0	16	6
			Total	No.	19	22	18	23	19	101
				%	100	100	100	100	100	100
	6-3	Rate	More than	No.	3	3	0	0	0	6
			10%	%	15	14	0	0	0	6
			5= <x<10%< td=""><td>No.</td><td>1</td><td>4</td><td>0</td><td>0</td><td>1</td><td>6</td></x<10%<>	No.	1	4	0	0	1	6
				%	5	18	0	0	5	6
			3= <x<5%< td=""><td>No.</td><td>16</td><td>11</td><td>4</td><td>2</td><td>9</td><td>42</td></x<5%<>	No.	16	11	4	2	9	42
				%	80	50	20	11	47	42
			Less than 3%	No.	0	4	16	17	9	46
				%	0	18	80	89	48	46
			Total	No.	20	22	20	19	19	100
				%	100	100	100	100	100	100
	6-4	Feel	Very	No.	5	4	0	0	0	9
			expensive	%	25	18	0	0	0	9
			Expensive	No.	15	8	0	1	4	28
				%	75	36	0	4	20	27
			Reasonable	No.	0	10	19	22	15	66
				%	0	46	95	96	75	63
			Cheap	No.	0	0	1	0	1	2
				%	0	0	5	0	5	1
			Total	No.	20	22	20	23	20	105
				%	100	100	100	100	100	100

SOCIO-CONDITION SURVEY

Survey No).:
, 2009	1. Botum 2. Daybabel 3. Tolosi 4. Momisici 5. Center Podgorio

		Questionnaire	
Interv	viewer:	, Interviewed date:/	, 2009
Town	:		
	ΓΙΟΝ 1	Interviewee's Information	
1-1	Name of Interviewe Sex: M / F	Age:	
SECT	ΓΙΟN 2	Family Structure	
2-1	Total number of hou	·	
	(Male:persons,	Female:persons)	
SECT	ΓΙΟN 3	Water Availability	
3-1	Experiences of interrupt	tion in supply	
	Has your family ever ex	sperienced interruption in supply?	
	Code for answer:	1. Yes	
		2. No	
3-2	Frequency of interruption	on in supply	
		mily experience interruption in supply in a month?	
		Times	
3-3	Average hours of interru	uption in supply	
		Hours	
3-4	Alternative water source	2	
	When it is interruption i	in supply, where does your family get drinking water from ?	
	Code for answer:	1. Water truck from corporation	
		2. Individual water tank for storage of water supply	
		3. Fetching water from supply area	
		4. Purchase of bottled water	
		5. Own well	
		6. Others	

3-5 Damages caused by interruption in water supply

When it is interruption in supply and you get water from where you answered in "3-4", what kind

	of damage did you have	at that time ?	
	Code for answer	1. Physical condition defectiveness (diarrhea)	
		2. Time loss by fetching water	
		3. Increase of burden for domestic account by purchase of drinking water	
		4. Inconvenience of daily life (Shortage of shower water, washing water	.)
		5. Others	
a r a	TYON 4		
	TION 4	Water consumption and Water use	
4-1	• `	ase check invoice from Podgorica Water and Sewerage Corporation)	
	How much water does	our family use last month? Please see the invoice from corporation.	
		m³/month	
4-2	Pressure of water suppl		
	How does your family	eel the pressure of water supply in your house connection?	
	Code for answer	1. High	
		2. Just enough	
		3. Low	
		4. Very low	
4-3	Water use		
	What is rate of each wa	er consumption by water use ?	
	Drinking and Co	• •	
	Washing	%	
	Bathing	nd Shower%	
	Cleaning	and Watering%	
	Others	%	
	Total	_100%	
4-4	Water tank		
	Do you buy water bottl	for drinking?	
	-	1. Yes (Capacity L/month)	
		2. No	
SEC	TION 5	Water quality	
5-1	How do you feel w	ter quality for domestic use?	
	Code for answer	1. Good quality	
		2. Not perfect, but basically acceptable	
		3. Not good	
		4. Very bad	

5-2	Taste and	ann a11
3-2	raste and	SHIEH

How is taste and smell of water supply?

Code for answer: 1. None

- 2. Smelling of chlorination
- 3. Septic odor
- 4. Metallic odor
- 5. Others

5-3 Color

How is color of water supply?

Code for answer: 1. None

- 2. Red water
- 3. Turbidity
- 4. Others

SECTION 6

Water charge

6-1 Water charge

How much is your family spending for water use?

____EUR/month

6-2 Method of payment of water charge

How does your family pay for water charge?

Code for answer: 1. Payment at branch of Podgorica Water and Sewerage Corporation

- 2. Pulling down from bank account
- 3. Others_

6-3 Rate of water charge in monthly expenditure

How much is your family spending on water for domestic use in a month?

- Code for answer: 1. More than 10%
 - 2. 5 = < x < 10%
 - 3.3 = < x < 5%
 - 4. Less than 3%

6-4 How do you feel water charge?

Code for answer: 1. Very expensive

- 2. Expensive
- 3. Reasonable
- 4. Cheap

Appendix 7: Water Hammer Analysis

Water Hammer Analysis on New Water Transmission Pipeline (800mm ϕ) from Mareza 2 Pump Station to Ljubovic Reservoir (20,000 m³)

Under this Project the water distribution pumps in Mareza 2 pump station are replaced. Meanwhile, PWS is going to construct the new reservoir of 20,000 m³ at Ljubovic and to lay the new water transmission pipeline from Mareza pump stations to Ljubovic reservoir by use of finance related to EC. When these projects are completed, water transmission system is switched so that water transmission is made through the said pipeline from Mareza 2 pump station.

Although Mareza 2 pump station has two air chambers and one air compressor for the water hammer prevention facilities at present, they are not used. This is because the existing water transmission pipeline has both the function of water transmission and it of water distribution concurrently. When system is switched to water transmission and all the pumps in Mareza 2 pump station shut down with power failure or miss operation, there is possibility that water hammer occurs in the water transmission pipeline. Accordingly in case that the said air chambers and air compressor are restored and used for the said water transmission pipeline, this effectiveness for water hammer prevention was studied for reference.

This study was made for both the case having non water hammer prevention facilities and it having the said water hammer prevention facilities. Both cases are approached as follows;

- ① to confirm whether the maximum increasing pressure at all pumps shutdown does not exceed the maximum working pressure of the said pipeline by calculating the maximum increase pressure at all pumps shutdown.
- ② to confirm whether the minimum decreasing pressure at all pumps shutdown does not make water column separation in the said pipeline by calculating the minimum deceasing pressure at all pumps shutdown.

The result of study is summarized the table below. As a result of it, it was confirmed that the existing water hammer prevention facilities could be applied to the said pipeline. For details of the study, refer to the attached data.

Table Result of Study on Water Hammer

	Case of non water hammer	Case of the existing water
	prevention facilities	hammer prevention facilities
1. Pressure occurring at all pumps		
shutdown		
-Maximum increasing pressure in pipeline	1.1739 MPa (11.970 kgf/cm ²)	0.9379 MPa (9.564 kgf/cm ²)
-Minimum decreasing pressure in pipeline	-0.4436 MPa (-4.523 kgf/cm ²)	-0.0419 MPa (-0.428 kgf/cm ²)
2. Maximum working pressure in pipeline	0.9807 MPa (10 kgf/cm ²)	Same as left
3. Water column separation	Yes	No
4. Applicability of pipeline	No, this is because the maximum	Yes
	increasing pressure exceeds the	
	maximum working pressure and	
	water column separation occurs.	

WATER HAMMER ANALYSIS REPORT

1. PURPOSE : To examine Water Hammer Phenomena at trip of all operating pumps

2. METHOD : Easy Transient Analysis Program (Easy TRAP)

3. CRITERIA : Minimum allowable negative pressure is -0.058842 MPa (-6m)

4. BASIC CONDITIONS

(1) Main Pump

Pump service Transmission Pump EBARA Model 400 VY2M No. of installed pumps 4 sets No. of operating pumps 3 sets Rated pump capacity (Q) 19.2 m³/min Rated pump total head (HT) 90 m 1470 min⁻¹ Rated speed of rotation (N) Rated pump efficiency (ηP) 77 %

(2) Motor and GD^2

Motor output : 400 kW

Motor type : Squirrel cage

Motor voltage : 6000 V

Motor frequency : 50 Hz

No. of pole : 4 P

Motor GD² : 15.3 kg m²

Pump GD² : 15.9 kg m²

(3) Valve

1) Check Valve

Valve bore : 400 mm
Valve type : Ordinary check

2) Discharge Valve

Type of Discharge Valve :
Discharge Valve Bore :
Valve Closing Time :

(4) Pipeline

1) Discharge Pipeline

Pipe No. : 1
Pipe material : Steel
Pipe diameter (D) : 800 mm
Pipe thickness (t) : 8 mm
Value of K/E : 0.01

Wave speed (a) : 1007.63 m/sec Pipeline length (L) : 8910 m Loss co-efficient (C) : 160 Pipeline loss (Hf) : 21.85 m

(5) Operating Conditions

Flow condition : Design capacity
Flow capacity (QT) : 57.6 m³/min
Suction water level : NWL 32.5 EL m
Discharge water level : NWL 99 EL m
Actual head (Ha) : 66.5 m

Pipeline loss (Hf) : 21.848 m Pump station loss (Hp) : 1.652 m Pump capacity ratio : 100% Pump head ratio : 100%

5. CALCULATION RESULTS WITHOUT COUNTERMEASURE (CASE 1)

Distance from PS (m) Elevation (EL m)
Minimum Pressure -0.4436 MPa 8464.5 m 64.0 EL m

Maximum Pressure : 1.1739 MPa 0.0 m 32.0 EL m

Water Column separation will occur. Countermeasures are necessary.

Maximum pressure should be checked by Customer whether it is within allowable pressure of the pipeline.

Maximum and Minimum Pressure Line are shown as attached herewith.

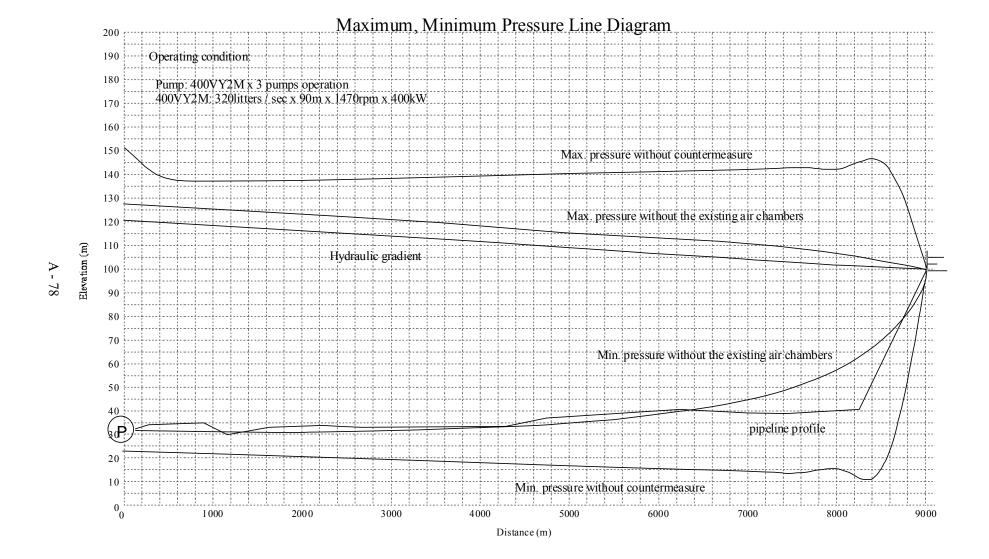
6. RECOMMENDED WATER HAMMER PROTECTION DEVICES

(1) Installation of air chamber

Air chamber volume : 16.0 m³
Location from pump station : 0 m
Installed elevation : 32.5 EL m
Air chamber volume : 16.0 m³
Location from pump station : 0 m
Installed elevation : 32.5 EL m

7. CALCULATION RESULTS AFTER PROTECTION DEVICES ARE INSTALLED (CASE 2)

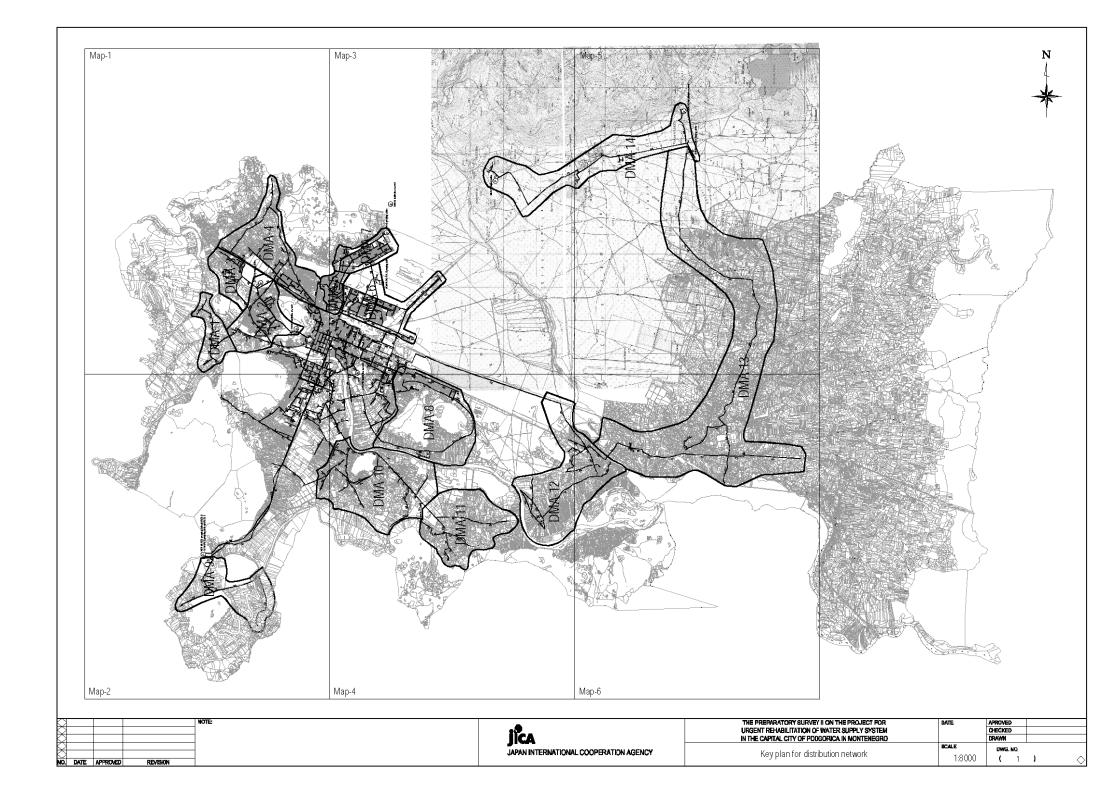
Distance from PS (m) Elevation (EL m)
Minimum Pressure -0.0419 MPa 8869.6 m 95.8 EL m

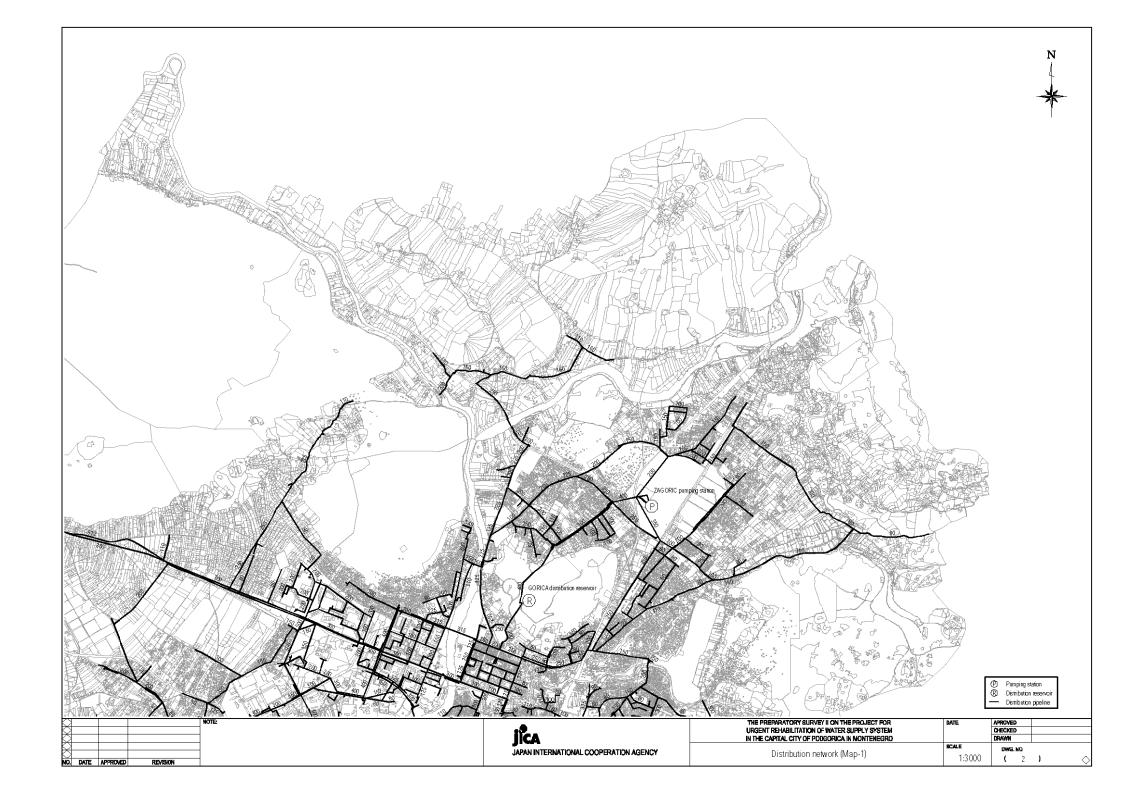

Maximum Pressure : 0.9379 MPa 0.0 m 32.0 EL m

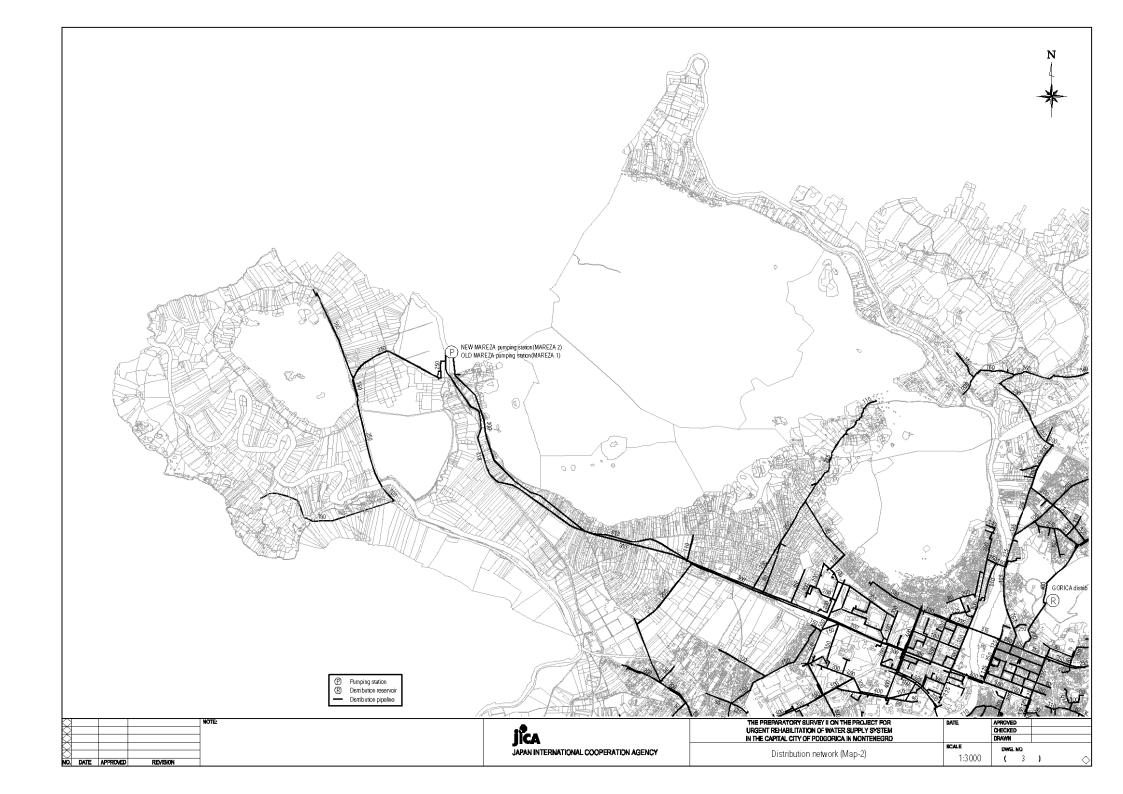
Pressure in the pipeline will become negative.

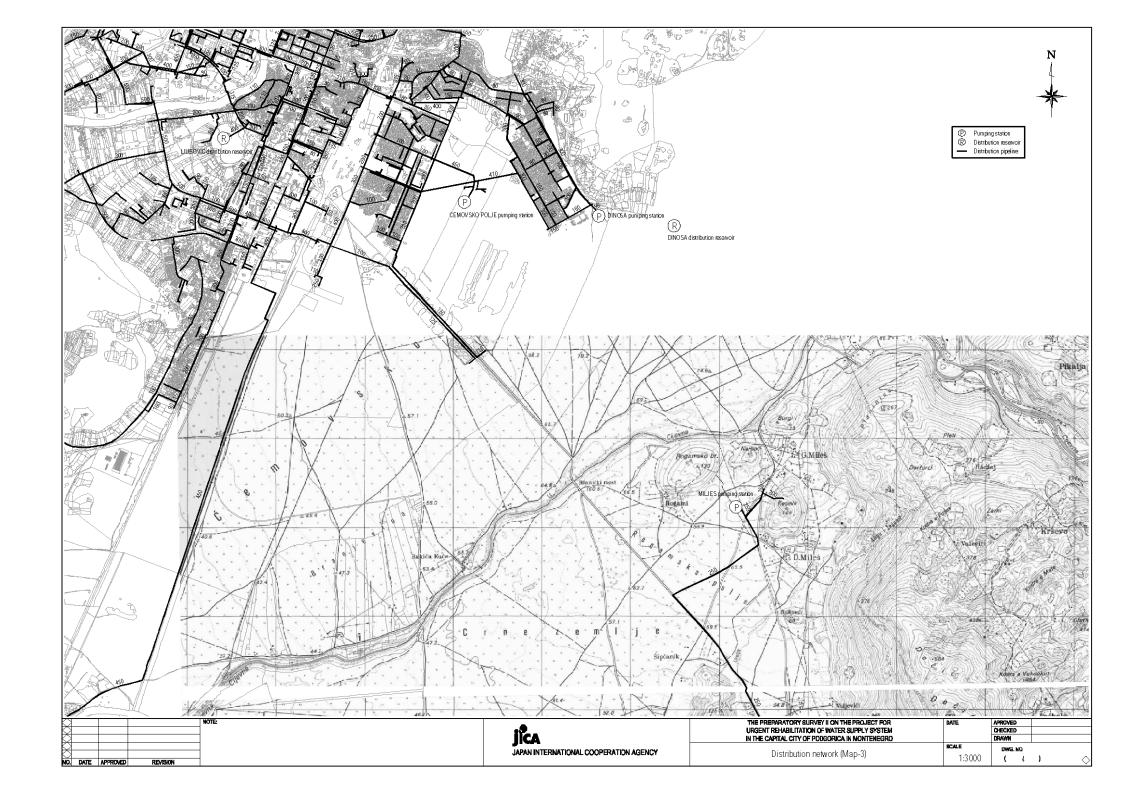
However, water column separation will not occur.

Maximum pressure in the pipeline is within allowable range.


Maximum and Minimum Pressure Lines are shown as attached herewith.




Appendix 8: Drawings for distribution network


Table-1 List of drawings

<u> </u>		
DWG No.	Title	
1	Key plan for distribution network	
2	Distribution network (Map-1)	
3	Distribution network (Map-2)	
4	Distribution network (Map-3)	
6	Distribution network (Map-4)	
7	Distribution network (Map-5)	
8	Distribution network (Map-6)	

