2-3 Obligation of Recipient Country

The Government of Kenya will undertake the following measures on condition that the Grant Aid by the Government of Japan is extended to the Project;

- ✓ To provide data and information necessary for the Project
- ✓ To secure the land necessary for the execution of the Project, such as the land for construction works, stock yards, work shops, field offices, and others
- ✓ To provide borrow pits, quarry sites and waste disposal areas
- ✓ To bear commissions to the bank in Japan for its banking service in connection with the Project
- ✓ To ensure prompt tax exemption, customs clearance, and effective inland transportations of materials and equipments
- ✓ To exempt Japanese nationals engaged in the Project from any customs duties for the supply of products and services necessary for the project.
- ✓ To accord Japanese nationals necessary legal rights for their entry and stay in Kenya.
- ✓ To provide all necessary permission, licenses and certificates in connection with environmental issues and earthwork for the Project (EIA approval, construction permission, traffic control permission, detour permission, construction permission in river, earthwork permission etc.)
- ✓ To relocate all obstruction structures such as electric poles & wires, telephone poles & cables, water pipes, sewer pipes, optical fibre cables, billboards & signboards, etc. in the project road
- ✓ To arrange proper use and effective maintenance of the road after the completion of the project
- ✓ To coordinate and solve any issues related to the Project that may be raised from residents and/or third parties
- ✓ To bear all the expenses, other than covered by the Japanese Grant Aid, agreed and necessary for the Project
- ✓ To secure safety of the construction site

2-4 Project Management and Maintenance Plan

2-4-1 Organization for Road Management and Maintenance

Road management and maintenance after the Project is under the responsibility of Kenya Urban Road Authority (KURA). The KURA was officially established in July 2009, and they do not have actual implementation of the road management and maintenance works yet, therefore, their capabilities are still unknown.

However, most of their technical staffs are transferred from road related departments of the Ministry of Roads, Ministry of Local Government, and City Council of Nairobi. Execution of road projects and management and maintenance works have been carried out by those technical staffs before transformation without any particular problems, they will have reasonable capability for the road management and maintenance requirements, once the organization start working properly.

2-4-2 Road Maintenance Plan

Necessary road maintenance works are as follows;

Periodical Maintenance

✓ Routine inspection and cleaning of side ditches, culverts, supplemental facilities, etc

Ad-hoc Maintenance

✓ Repair for damaged parts, such as ceiling & patching pavement, repainting pavement marking, and any other damaged parts

2-4-3 Present Road Maintenance Conditions and Recommendations

Recent road management & maintenance conditions observed are as follows;

- ✓ Road surfaces have been relatively repaired regularly
- ✓ Road side ditches and inlets have not been well maintained periodically. For instance, cleaning works of road surfaces and drainages are observed at various places in the City, on the other hand, long time clogged drainage pipes and inlets as well as submerged points are also observed at several segments in the City

To achieve effective results of the Project and sustain good conditions of the road facilities, it is important to manage and maintain road facilities adequately by keeping in good condition

of the pavements and other supplemental facilities and extending their life spans, so the following recommendations are proposed;

- ✓ To check facilities regularly for controlling their conditions
- ✓ To clean facilities up, especially drainage
- ✓ To secure necessary budget for maintenance

2-5 Project Cost Estimation

2-5-1 Initial Cost Estimate

(1) Cost borne by the Government of the Republic of Kenya

✓ Total Cost : 156.0 Million Kenya Shillings

(Approx. 190.3 Million Yen)

✓ Social Cost for Relocation of houses 12.7 M. KSH (Approx. 15.5 M. Yen) ✓ Land Acquision Cost 111.8 M. KSH (Approx. 136.4 M. Yen) ✓ Social Cost for Relocation of Person 5.0 M. KSH (Approx. 6.1 M. Yen) ✓ Supervision Cost for Relocation 1.9 M. KSH (Approx. 2.3 M. Yen) ✓ Utility Relocation Cost 16.0 M. KSH (Approx. 19.5 M. Yen) ✓ Environmental Assessment Cost 7.8 M. KSH (Approx. 9.5 M. Yen) ✓ Bank Commission 1.0 M. Yen) 0.8 M. KSH (Approx.

(2) Conditions in Cost Estimate

✓ Time of Cost Estimate : April 2009

✓ Exchange Rate : 1 United States Dollar = 96.08 Yen

1 Kenya Shilling = 1.22 Yen

✓ Construction Period : As shown in the Implementation Schedule

✓ Other Conditions : Cost estimate is implemented in accordance

with the guideline of Japan's Grant Aid

2-5-2 Operation and Maintenance Cost

Kenya Urban Road Authority is in charge of maintenance for the road rehabilitated by the Project.

Annual maintenance cost necessary for the road is estimated at 2,342 Thousand Million Kenya Shillings (Approximately US\$ 30,400). Details are shown in Table 2-5-1.

Table 2-5-1 Maintenance Work and Annual Cost for Missing Link No.3/6/7

✓ Routine Inspection

(unit: Kenya Shilling)

Facility	Inspection Item	Frequency	No. of Staff	Equipment	Quantity	Unit Price	Cost
Pavement	Crack, deformation,	12 times a year	2 persons	Scoop,	24 man-day	2,500	60,000
Shoulder/slope	pothole, etc.	1 day each time		hammer,	/ year	/day	
Road marking	Rainwater erosion &			sickle,			
Drainage	collapse, etc.			barricade,			
	Injury, deformation,			pick-up truck	12 veh-day/ year	2,500	240,000
	stain, splitting				=96 hours/year	/hour	
	Damage and				(8 hours/day)		
	obstruction						
						Total	300,000

✓ Daily Maintenance Work

(unit: Kenya Shilling)

						,	
Facility	Inspection Item	Frequency	No. of Staff	Equipment	Quantity	Unit Price	Cost
Cleaning	Cleaning soil,	4 times a year	5 persons	Scoop,	80 man-day	5,000	400,000
Drainage	obstacles			hammer,	/ year	/day	
Pavement	Cleaning	4 days each time		sickle,			
Shoulder	Cutting grass,			barricade,			
Road marking	cleaning			Pick-up truck	12 veh-day/ year	6,000	384,000
	Cleaning			(2 units)	(8 hours/day)	/day	
						Total	784,000

1,084,000

✓ Repair

(unit: Kenya Shilling)

Facility	Repair Item	Frequency	Unit Price (per Year, per km)	Road length
Pavement	Patching pothole	1 times / 5 years	69,200	
Shoulder/slope	Repairing damaged part	1 times / 5 years	9,500	
Drainage	Repairing damaged part	1 times / 2 years	57,400	8.36 km
Road attached facilities	Repairing damaged part	1 times / 5 years	4,800	
Structure	Repairing damaged part	1 times / 10 years	9,600	
		Total	150,500	1,258,000

2,335,600

CHPTER 3 PROJECT EVALUATION AND RECOMMENDATIONS

3-1 Project Effect

The direct and indirect effects brought by the Project are as follows:

Present Problem

- Existing road is disconnected at river and the traffic congestion is very hard on the detour route.
- Pedestrians and bicycle users are inconvenient due to the lack of roadside facilities for NMT.

Measure by the Project

Construction of concerned road

Direct Effect and Impact of Betterment

- Travel time at off peak hour will be shorten from 14 minutes to 8 minutes on 4.61 km stretch of ML3 & ML6 and from 13 minutes to 6 minutes on 3.75 km stretch of ML7.
- Safety and convenience of pedestrians and bicycle users will be secured by the construction of sidewalk and bicycle lane.

Indirect Effect and Impact of Betterment

- Traffic congestion of surrounding roads will be mitigate by the construction of missing link.
- The accessibility of logistics will be improved and it will support the promotion of regional economy.

3-2 Recommendation

To fully secure and sustain the Project effects, Kenyan side shall execute the following issues.

- To carry out the proper maintenance, in particular cleaning of drainage facilities to prevent the earlier deterioration of the road
- To secure the budget of road maintenance in accordance with long term maintenance program
- To develop ability of staffs of maintenance

[Appendices]

1. Member List of the Study Team	1
5. Study Schedule	1
6. List of Parties Concerned in Kenya	1
4. Minutes of Discussion (M/D)	1
5. Technical Note	1
6. Design Data	1

1. Member List of the Study Team

(1) Field Survey

Mr. Takahashi Yoshiyuki Team Leader Chief Representative, JICA Kenya Office

Ms. Wakamiya Ai Program Officer Officer

Traffic Plan

Economic Infrastructure Department, JICA H.Q.

Mr. Isomoto Kenji Chief Consultant/ Katahira & Engineers International

Mr. Murakami Keiichi Deputy Chief Katahira & Engineers International

Consultant/Road Design

Mr. Izawa Mamoru Bridge Design Katahira & Engineers International

Mr. Aoki Yasushi Natural Condition Katahira & Engineers International

Survey

Mr. Hatakeyama Yuji Environmental & Katahira & Engineers International

Social Consideration

Mr. Sato Tadashi Construction Plan/ Katahira & Engineers International

Cost Estimation

Mr. Yamajyuku Tsuyoshi Construction Plan/ Katahira & Engineers International

Cost Estimation

(2) Explanation of Draft Report

Mr. Sanui Kazumasa Team Leader Assistant Director

Economic Infrastructure department, JICA H.Q.

Mr. Isomoto Kenji Chief Consultant/ Katahira & Engineers International

Traffic Plan

Mr. Murakami Keiichi Deputy Chief Katahira & Engineers International

Consultant/Road Design

2. Study Schedule

	/JITVPV	
•	₹	3
	O	
*	=	-

				242 112	Adv Med delate	Mr Isomoto	Mr Murakami	Mr Sato	Mr.Aoki	Mr.Izawa	Mr. Hatakeyama	Mr.Yamajuku
Position			Team Leader, Chief Representative (JICA Kenya Office)	/ Team Leader, / Director al (JICA HQ)	ge of A HQ)	ager / lan Engineers	d Design igineers	rk Plan and ment (Katahıra eers	Natuaral Condition Survey (Katahira & Engineers	Structure catahira & s	udy emnt)	Civil Work Plan and Procurement II (Katahira & Engineers International)
Date		Day				International)	International)	international)	memational	incinational)		()
23-Mar-09	. 6	Mon				Arrive at Nairobi / Visit at JICA Kenya Office	at JICA Kenya Office		Arrive at Nairobi / Visit at JICA Kenya Office			
24-Mar-09	0	Tue			/	Coutecy call at Ministry Government, CCN	y of Local		Coutecy call at Ministry of Local Government, CCN			
25-Mar-09	0.0	wed			/	Consutation on Local Consultants Contract	Site survey	/	Consultation on Local Consultants Contract			
26-Mar-09	60	Thu				Site survey			Site survey		/	
27 - Mar - 09	60	Fri				Consultation on Local Consultants Contract	Site survey		Consutation on Local Consultants Contract			
28-Mar-09	60	Sat		_	Haneda-Kansai	Site survey	Site survey	Haneda-Kansai	Site survey	Haneda-kansai	-kansai	
29-Mar-09	-09	+			Dubai-Nairobi			Dubai-Nairobi		Dubat-Nairobi	Nairobi	
30-Mar-09	60-	Mon	Kick off meeting with Local Government, CCN		Coutecy visit at Embass	sy of Japan / JICA Kenya Office / krck off meeting with Local Government, CCN	ya Office / kıck off me	eting with Local Goverr	ıment, CCN			
31-Mar-09	-09	Tue		Tanzania-Kenya	Consultation of th	Consultation of the project with GoK	Site survey		Supervision of Local Consultants	Site survey	urvey	
01-Apr-09	60-	wed			Site visit		Consultation of Road Plan	Site survey	Supervision of Local Consultants	Site survey	urvey	
02-Apr-09	-09	Thu		Visit at Doner	Visit at Doner (EU, WB etc) / Site visit	of project site	Consultation of Road Plan	Data collection	Supervision of Local Consultants	Site survey	urvey	
03-Apr-09	-09	E		Nairobi-Dubai	Visit at Doner (EU, V projec	Visit at Doner (EU, WB etc) / Site visit of project site	Consultation of Road Plan	Data collection	Supervision of Local Consultants	Consultation of Bridge Meeting with Local & Structure Design Government	Meeting with Local Government	
04-Apr-09	-09	Sat		Kansai-Haneda			Site survey		Site survey			
05-Apr-09	00	Sun					Data analysis		Supervision of L.C.			
06-Apr-09	60	Mon			Confirmation of MD	Confirmation of MD / Study of the / Supervision of Local Consultants	Project Site	Planing of Execution of Civil Works	Supervision of Local Consultants	Consultation of Bridge & Structure Design	Environmnetal and Social Impact Study	
07-Apr-09	60-	Tue	AM Signing of Minuite of Discussion		AM Signing of Minuite of Discussion PM Nairobi-Dubai	AM Signing of Minuite of Discussion PM Site Survey		Planing of Execution of Civil Works	Supervision of Local Consultants	Consultation of Bridge & Structure Design	Environmnetal and Social Impact Study	
08-Apr-09	-09	wed			Kansai-Haneda	Study of the Project Site	Consultation of Road Plan	Planing of Execution of Civil Works	Supervision of Local Consultants	Consultation of Bridge & Structure Design	Environmnetal and Social Impact Study	Arrive at Nairobi
09-Apr-09	60	Thu				AM Site visit with MoL, MoLG, CCN PM Study of the Project site	Consultation of Road Plan	Planing of Execution of Civil Works	AM Site visit with MoL, MoLG, CCN PM Supervision of Local Consultants	Consultation of Bridge & Structure Design	Environmnetal and Social Impact Study	Site visit with MoL, MoLG, CCN
10-Apr-09	60	Frt				Study of the Project Site	Consultation of Road Plan	Planing of Execution of Civil Works	Study of the Project Sit Consultants	Study of the Project Site / Supervision of Local Environminetal and Consultants		Planing of Execution of Civil Works
		-			,							

	id sers				uo	u _o	uo	uo	uo	T.		ď										_
Mr.Yamajuku	Civil Work Plan and Procurement II (Katahira & Engineers	International)	Data analysis	Data analysis	Planing of Execution of Civil Works	Planing of Execution I of Civil Works	Data analysis	Nairobi-Dubaí	Kansai-Haneda					_	_				-			
Mr.Hatakeyama	Environment Study (Project Environemnt)		Data analysis	Data analysis	Environmnetal and Social Impact Study	AM Meeting with MoL, CCN PM Emvironmental and Social Impact Study	Data analysis	Data analysis	Environmnetal and Social Impact Study	Environmnetal and Social Impact Study	Environmnetal and Social Impact Study	Environmnetal and Social Impact Study	Environmnetal and Social Impact Study	NairobiDubai	Kansai-Haneda	AM Meeting with MoLG, MoL, CCN PM Report to JICA Office	Nairobí-Dubai	kansai-Haneda				
Mr.Izawa	Bridge & Structure Design (Katahira & Engineers	International)	Data analysis	Data analysis	Consultation of Bridge & Structure Design	AM M Consultation of Bridge CCN & Structure Design PM Er Social	Site survey	Data analysis	Data collection	Data collection	Data collection	Data collection	Report to JICA Kenya Office & Embassy of Japan	Nairob	Kansai				_			
Mr.Aoki		International)	Data analysis	Data analysis	Supervision of Local Consultants	Supervision of Local Consultants	Supervision of Local Consultants	Supervision of Local Consultants	AM Meeting with MoLG, MoL, CCN PM Supervision of Local Consultants	Site survey	Data analysis	Supervision of Local Consultants	Supervision of Local Consultants	Supervision of Local Consultants	Supervision of Local Consultants	Data collection	Data analysis	Data analysis	AM Data collection PM Report to JICA Ofice	Data collection	Nairobi-Dubai	
Mr.Sato	Civil Work Plan and Procurement (Katahira & Engineers	International)	Data analysis	Data analysis	Planing of Execution of Civil Works	Planing of Execution of Civil Works	Planing of Execution of Civil Works	Planing of Execution of Civil Works	Planing of Execution of Civil Works	Data analysis	Data analysis	Data collection	Data collection	Data collection	Data collection	Report to JICA Kenya Office & Embassy of Japan	Nairobi-Dubai	Kansai-Haneda		/	/	/
Mr.Murakami	Assistant Project Manager/Road Design (Katahira & Engineers	International)	Data analysis	Data analysis	Consultation of Road Plan	Consultation of Road Plan	Consultation of Road Plan	Consultation of Road Plan	AM Meeting with MoLG, MoL, CCN PM Report to JICA Office	Data analysis	Nairobi-Dubai	Kansai-Haneda										
Mr.Isomoto	Project Manager / Transport Plan (Katahira & Engineers	International)											Visit at EOC/ Study of the Project Site	Study of the Project Site	Study of the Project Site	Report to JICA Kenya Office & Embassy of Japan	Data analysis	Data analysis	AM Meeting with MoLG, MoL, CCN PM Report to JICA Office	Data analysis	Nairobi-Dubai	2
	Officer in charge of the Project (JICA HQ)																					
Mr. Ito	Deputy Team Leader, Deputy Director General (JICA HQ)																					
Mr.Takahashi	Team Leader, Chief Representative (JICA Kenya Office)																					
		Day	Sat	ons (Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	uns (Мол	Tue	Wed	F
			9	9	-06	-08	r-09	50-	-09	-06	r-09	r-09	r-09	r-09	r-09	r-09	09	-09	-09	-09	-09	8
Name	Position	Date	11-Apr-09	12-Apr-09	13-Apr-09	14-Apr-09	15-Apr-09	16-Apr-09	17-Apr-09	18-Apr-09	19~Apr-09	20-Apr-09	21-Apr-09	22-Apr-09	23-Apr-09	24-Apr-09	25-Apr-09	26-Apr-09	27-Apr-09	28-Apr-09	29-Apr-09	30-Apr-09

(2) Explanation of Draft Report

		Mr. Kazumasa SANUI Team Leader (JICA HQ)	Mr. Kenji ISOMOTO	Mr. Keiichi MURAKAMI
10/21/2009	Wed		Tokyo (EK 6257 and EK 317, 19:55) \rightarrow	
10/22/2009	Thu		→ Dubai (05:30) Dubai (EK 719, 10:40) → Nairobi (14:50)	
10/23/2009	Fri	A PM at JICA 16F : Draft Ex	AM Chief Representative of JICA Kenya Office PM at JICA 16F: Draft Explanation & Minutes Discussion to MoR, MoLG, KURA, Nairobi City	e oLG, KURA, Nairobi City
10/24/2009	Sat		Internal Meeting for Discussion	
10/25/2009	Sun		Internal Meeting for Discussion	
10/26/2009	Mon	AM at JICA 1	AM at JICA 16F: Minutes Discussion with MoLG, KURA, Nairobi City Signing on M/D at MoLG (P.M.)	, Nairobi City
10/27/2009	Tue	Signi	Signing M/D at MoR (A.M.) 11:30 Embassy of Japan	apan
		Nairobi (EK 720, 16:40) →	Nairobi (JO 835, 14:15) →	Nairobi (EK 720, 16:40) \rightarrow
		Dubai (22:40)	Juva (16:15)	Dubai (22:40)
10/28/2009	wed	Dubai (EK 316 and EK 6252, 03:10) →		Dubai (EK 316 and EK 6252, 03:10) \rightarrow
		Tokyo (20:25)		Tokyo (20:25)

3. List of Parties Concerned in Kenya

Ministry of Local Government

Mr. Sammy Kirui, CBS

Permanent Secretary

Mr. Tom N. Omai

Mr. Silas O. Nyambok

Mr. E. Kibe

Mr. Joshva Maitho Ndiango

Mr. Marclus Mwai

Ministry of Roads

Eng. Michael M.S. Kamau, CBS

Permanent Secretary

Eng. J. M. Mwatu

Principal Superintending Engineer

Ministry of Land

Mr. Ephantus Murage

Director of Surveys

Mr. Bowers Owino

Deputy Director of Surveys

Mr. C. Mwangi

Mr. S. Kiruma

National Environment Management Authority

Mr. Wilkister Magangi

Ministry of Labor and Human Resource Development

Mr. Samuel M. Kariuki

Mr. Nicholas W. Mugambi

City Council of Nairobi

Mr. G.C.K. Katsolleh

Ag. Town Clerk

Mr. Philip M.A. Kisia

Town Clerk

Mr. Kainga K. Mario

Mr. Erastus K. Chepkwony

Mr. Mumo Richard

Mr. Eston Kimathi

Mr. Anderson M. Njenga

Mr. Benjamin K. Njenga

Mr. Marrian Mutete Kioko

Mr. Isaac Wagangi

Eng. Cristine A. Ogut

Kenya Urban Roads Authority

Eng. Joseph N. Nkadayo Director General & CEO

Mr. James W. Theuri General Manager
Eng. Silas M. Kinoti General Manager

4. Minutes of Discussion (M/D)

Minutes of Discussions

on

the Preparatory Survey

on

the Project for the Construction

of

Nairobi Missing Links 3, 6 & 7

Referring to the results of Preliminary Study conducted in August 2008, the Government of Japan decided to conduct a Preparatory Survey for Basic Design on the Project for the Construction of Nairobi Missing Links 3,6 & 7 (hereinafter referred to as "the Project") and entrusted the study to the Japan International Cooperation Agency (hereinafter referred to as "JICA").

JICA sent to Kenya the Preparatory Survey team for Basic Design headed by Mr. Yoshiyuki TAKAHASHI, Chief Representative, JICA Kenya Office, and is scheduled to stay in the country from March 23rd to April 29th, 2009.

The Team held discussions with the concerned officials the Government of Kenya. In the course of the discussions, both sides have confirmed the main items described in the attached sheets. The Team will proceed to further works and prepare the Preparatory Survey Report.

Nairobi, April 7, 2009

Mr. Yoshiyuki Takahashi

Leader

Preparatory Survey Team

Japan International Cooperation Agency

Japan

Eng. Michael M.S. Kamau, CBS

Permanent Secretary Ministry of Roads

The Republic of Kenya

Mr. Sammy Kirui, CBS

Permanent Secretary

Office of the Deputy Prime Minister and

Ministry of Local Government

The Republic of Kenya

Eng. Joseph N. Nkadayo

Director General & CEO

Kenya Urban Road Authority

The Republic of Kenya

Mr. G.C.K. Katsolleh

Ag. Town Clerk

City Council of Nairobi

The Republic of Kenya

De

ATTACHMENT

1. Objective of the Project

The objective of the Project is to construct the Missing Link of No.3, 6 and 7 in Nairobi City in order to formulate a radial and circumferential road network and to encourage non-motorized transport.

2. Project Site

The site of the Project is shown in Annex-1.

- 3. Responsible and Implementing Organizations
- 3-1. The responsible Ministries are Ministry of Road (MOR) and Office of the Deputy Prime Minister and Ministry of Local Government (ODPM&MOLG).

The organization charts of the responsible Ministries are shown in Annex-2 and Annex-3.

- 3-2. The implementing organizations are Kenya Urban Road Authority (KURA) and City Council of Nairobi (CCN). The organization charts of the implementing organizations are shown in Annex-4 and Annex-5.
- 4. Items Requested by the Government of Kenya

After discussions with the Team, the items described below were requested by the Kenyan side.

Construction of Missing Link 3, 6 and 7(ML 3, 6 and 7) which contain unpaved sections and paved sections

ML3: Mandera Road/ Riverside Drive to Lantana Road/ Westlands (1.76km)

ML6: Ole Dume Road/ Mazeras Road to Mandera Road (2.85km)

ML7: James Gichuru Road/ Mugumo Road to Argwings Kodhek Road/ Ngong Road (3.75km)

(1) Unpaved Section

ML3: Riverside Drive – Lantana Road (0.66km)

ML6: Mazeras Road - Mandera Road (2.40km)

ML7: Mugumo Road - Argwings Kodhek Road (2.20km)

- Construction of 3 bridges: Nairobi River(ML3), Kirichwa Ndogo River(ML7), Kirichwa Kubwa River(ML7)

- Road Pavement Construction (2-lane carriageway)
- Construction of Non-Motorized Transport(NMT) facilities
- Construction of storm water drainage system
- Street light facilities
- Traffic signals and/or roundabouts to be installed as per the recommendations of the final report

(2) Paved Section

ML3: Mandera Road - Riverside Drive(0.95km)
Lantana Road - Westlands (0.15km)

ML6: Ole Dume Road - Mazeras Road (0.45km)

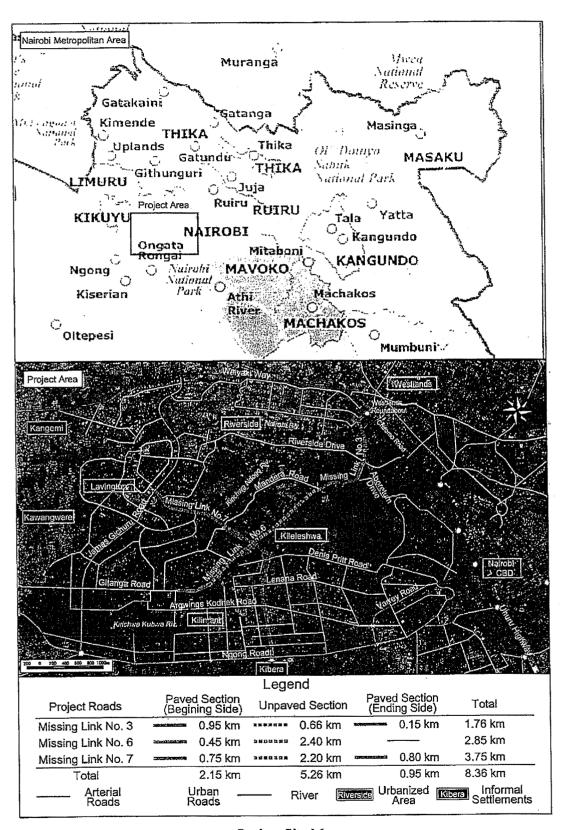
ML7: James Gichuru Road - Mugumo Road (0.75km) Argwings Kodhek Road - Ngong Road(0.80km)

- Construction of storm water drainage system
- Construction of NMT facilities
- Widening intersections needed
- Traffic signals and/or roundabouts to be installed as per the recommendations of the final report
- Construction of culverts
- Overlay of the section heavily damaged
- Street light facilities
- Widening to 4-lane carriageways if necessary

JICA will assess the appropriateness of the request and will recommend to the Government of Japan. JICA will report the result to the Kenyan side when explaining the draft report.

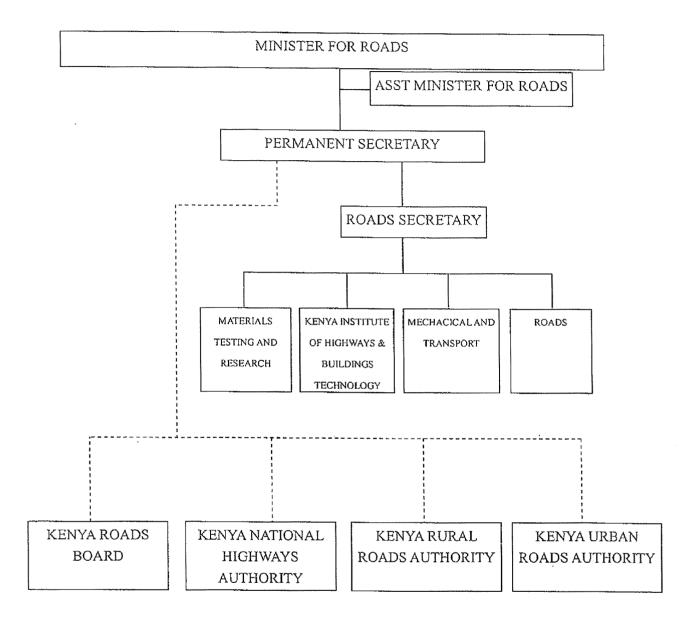
- 5. Japan's Grant Aid Scheme
- 5-1. The Kenyan side understands the Japan's Grant Aid scheme (for General Project) explained by the Team, as described in Annex-6.
- 5-2. The Kenyan side will take the necessary measures, as described in Annex-7, for smooth implementation of the Project, as a condition for the Japanese Grant Aid to be implemented.
- 6. Schedule of the study
- 6-1. The consultants will proceed to further study in Kenya until April 29th, 2009.
- 6-2. JICA will prepare the draft report in English and dispatch a mission to Kenya in order to explain its contents around the beginning of October, 2009.

21

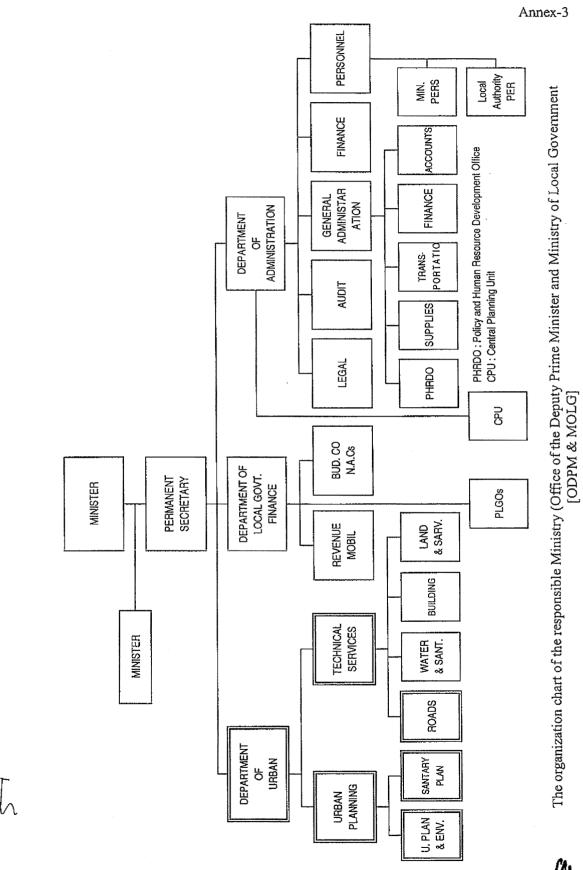

6-3. After the contents of the report is accepted in principle by the Government of Kenya, JICA will complete the final report in English and send it to the Government of Kenya around by January, 2010.

7. Other Relevant Issues

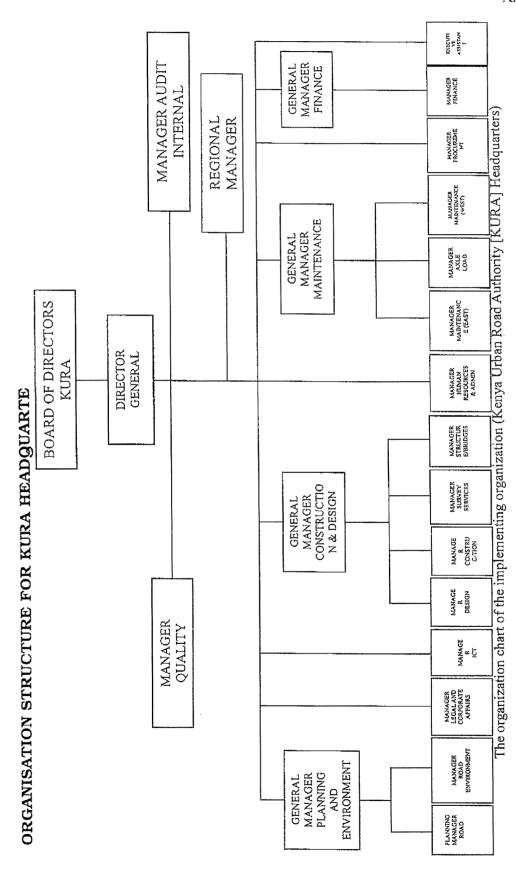
- 7-1. Both sides confirmed that the Kenyan side will install beacons along the boundary lines on both sides of Project Road and the truncations of the intersections in appropriate manner based on the related regulations by the end of June, 2009.
- 7-2.Both sides confirmed that the Kenyan side should conduct the necessary procedure concerning the environmental assessment (including stakeholder meetings for effective public participation about the outline of the Project, the EIA survey, RAP etc.) based on the relevant law of Kenya by the end of September, 2009.
- 7-3. Both sides confirmed that the Kenyan side shall secure the land necessary for the Project with its own expenses by the commencement of the construction.
- 7-4. The Kenyan side confirmed that the following undertakings should be taken by the Kenyan side at the Kenyan expenses.
 - Relocation of existing utilities (power, telecommunication lines, water lines, plants, trees etc) and removal of obstructing facilities by the commencement of the construction in accordance with necessary procedure,
 - Necessary arrangement and coordination with concerned Ministries, Agencies and other relevant organizations,
 - Budget allocation to the Public Relation of stakeholder meetings, public hearings etc for the Project through electronic and/or print media,
 - Securing and clearance of the temporary yard.
 - Securing of site for disposal of waste
- 7-5. The Kenyan side shall provide security for all concerned Japanese nationals working for the Project, if deemed necessary.
- 7-6. The Kenyan side shall secure enough budget and personnel necessary for the operation and maintenance of the facilities implemented by the Project, including the periodical maintenance work after the completion of the Project.
- 7-7. The Kenyan side shall provide all necessary information requested in the Questionnaire, which the Team handed to the Kenyan side, by April 29, 2009.



de


Project Site Map

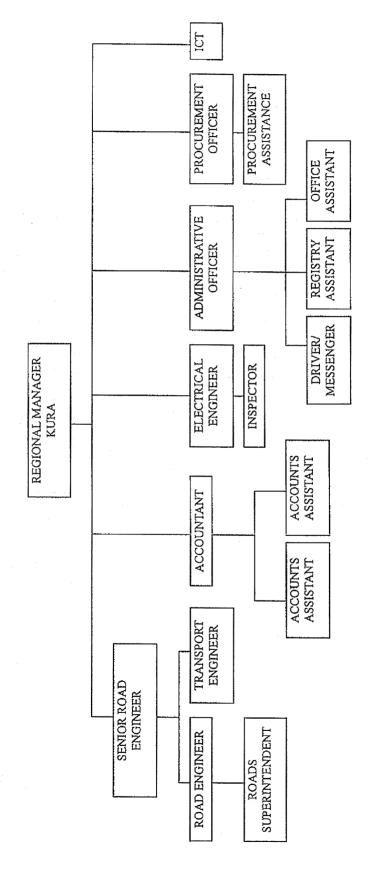
SL

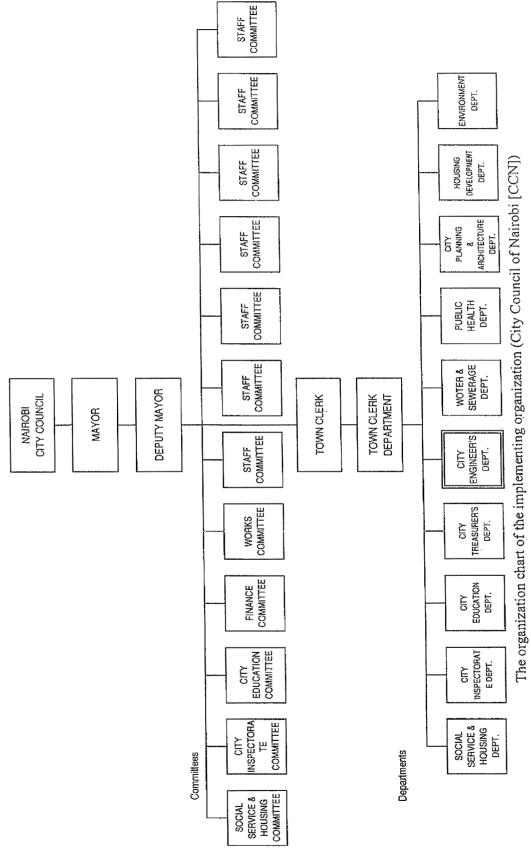


The organization chart of the responsible Ministry (The Ministry of Road [MOR])

1

Annex-4




REGIONAL ORGANIZATION CHART

NOTE: Regional Roads Manager reports directly to Director General

The organization chart of the implementing organization (Kenya Urban Road Authority [KURA] Regional Organization)

SU

9/

JAPAN'S GRANT AID

The Government of Japan (hereinafter referred to as "the GOJ") is implementing the organizational reforms to improve the quality of ODA operations, and as part of this realignment, JICA was reborn on October 1, 2008. After the rebirth of JICA, following the decision of the GOJ, Grant Aid for General Project is extended by JICA.

Grant Aid is non-reimbursable fund to a recipient country to procure the facilities, equipment and services (engineering services and transportation of the products, etc.) for economic and social development of the country under principles in accordance with the relevant laws and regulations of Japan. The Grant Aid is not supplied through the donation of materials as such.

1. Grant Aid Procedures

Japanese Grant Aid is conducted as follows-

- Preparatory Survey (hereinafter referred to as "the Survey")
 - The Survey conducted by JICA
- Appraisal & Approval
 - -Appraisal by The GOJ and JICA, and Approval by the Japanese Cabinet
- · Determination of Implementation
 - -The Notes exchanged between the GOJ and a recipient country
- Grant Agreement (hereinafter referred to as "the G/A")
 - -Agreement concluded between JICA and a recipient country
- · Implementation Implementation of the Project on the basis of the G/A

2. Preparatory Survey

(1) Contents of the Survey

The aim of the Survey is to provide a basic document necessary for the appraisal of the Project by JICA and the GOJ. The contents of the Survey are as follows:

Confirmation of the background, objectives, and benefits of the Project and also institutional capacity of agencies concerned of the recipient country necessary for the implementation of the Project.

- Evaluation of the appropriateness of the Project to be implemented under the Grant Aid Scheme from a technical, financial, social and economic point of view.
- Confirmation of items agreed on by both parties concerning the basic concept of the Project.
- Preparation of a basic design of the Project.
- Estimation of costs of the Project.

The contents of the original request by the recipient country are not necessarily approved in their initial form as the contents of the Grant Aid project. The Basic Design of the Project is confirmed considering the guidelines of the Japan's Grant Aid scheme.

JICA requests the Government of the recipient country to take whatever measures are necessary to ensure its self-reliance in the implementation of the Project. Such measures must be guaranteed even though they may fall outside of the jurisdiction of the organization in the recipient country actually implementing the Project. Therefore, the implementation of the Project is confirmed by all relevant organizations of the recipient country through the Minutes of Discussions.

(2) Selection of Consultants

For smooth implementation of the Survey, JICA uses (a) registered consulting firm(s). JICA selects (a) firm(s) based on proposals submitted by interested firms.

(3) Result of the Survey

The Report on the Survey is reviewed by JICA, and after the appropriateness of the Project is confirmed, JICA recommends the GOJ to appraise the implementation of the Project.

3. Japan's Grant Aid Scheme

(1) The E/N and the G/A

After the Project is approved by the Cabinet of Japan, the E/N will be singed between the GOJ and the Government of the recipient country to make a plead for assistance, which is followed by the conclusion of the G/A between JICA and the Government of the recipient country to define the necessary articles to implement the Project, such as payment conditions, responsibilities of the Government of the recipient country, and procurement conditions.

(2) Selection of Consultants

The consultant firm(s) used for the Survey will be recommended by JICA to the recipient country to also work on the Project's implementation after the E/N and the G/A, in order to maintain technical consistency.

(3) Eligible source country

Under the Japanese Grant Aid, in principle, Japanese products and services including transport or those of the recipient country are to be purchased. When JICA and the Government of the recipient country or its designated authority deem it necessary, the Grant Aid may be used for the purchase of the products or services of a third country. However, the prime contractors, namely, constructing and procurement firms, and the prime consulting firm are limited to "Japanese nationals". (The term "Japanese nationals" means persons of Japanese nationality or Japanese corporations controlled by persons of Japanese nationality.)

(4) Necessity of "Verification"

The Government of recipient country or its designated authority will conclude contracts denominated in Japanese yen with Japanese nationals. Those contracts shall be verified by JICA. This "Verification" is deemed necessary to secure accountability to Japanese taxpayers.

(5) Major undertakings to be taken by the Government of the Recipient Country

In the implementation of the Grant Aid Project, the recipient country is required to undertake such necessary measures as Annex-7.

(6) "Proper Use"

The Government of recipient country is required to maintain and use the facilities constructed and the equipment purchased under the Grant Aid properly and effectively

h

2

and to assign staff necessary for this operation and maintenance as well as to bear all the expenses other than those covered by the Grant Aid.

(7) "Export and Re-export"

The products purchased under the Grant Aid should not be exported or re-exported from the recipient country.

(8) Banking Arrangements (B/A)

- a) The Government of the recipient country or its designated authority should open an account in the name of the Government of the recipient country in a bank in Japan (hereinafter referred to as "the Bank"). JICA will execute the Grant Aid by making payments in Japanese yen to cover the obligations incurred by the Government of the recipient country or its designated authority under the Verified Contracts.
- b) The payments will be made when payment requests are presented by the Bank to JICA under an Authorization to Pay (A/P) issued by the Government of the recipient country or its designated authority.

(9) Authorization to Pay (A/P)

The Government of the recipient country should bear an advising commission of an Authorization to Pay and payment commissions to the Bank.

(10) Social and Environmental Considerations

A recipient country must ensure the social and environmental considerations for the Project and must follow the environmental regulation of the recipient country and JICA socio-environmental guideline.

(End)

IL

Annex-7

Major Undertakings to be taken by Each Government

	Triagor Ordertakings to be taken by Each G	overnment	
МО	Ĭtems	To be covered by	To be covered by Recipient
1	To secure land	the Grant	side
$\frac{1}{2}$	• • • • • • • • • • • • • • • • • • •		•
3	To clear, level and reclaim the site when needed		•
	To construct gates and fences in and around the site		•
4	To bear the following commissions to a bank of Japan for the banking services based upon the B/A		
	1) Advising commission of A/P		
	2) Payment commission		
5	To ensure prompt unloading and customs clearance at the port of disembarkation in recipient country		
	1) Marine(Air) transportation of the products from Japan to the recipient country	•	
	Tax exemption and customs clearance of the products at the port of disembarkation		•
	3) Internal transportation from the port of disembarkation to the project site	•	
	To accord Japanese nationals whose services may be required in connection with the supply of the products and the services under the verified contract such facilities as may be necessary for their entry into the recipient country and stay therein for the performance of their work		•
7	To exempt Japanese nationals from customs duties, internal taxes and other fiscal levies which may be imposed in the recipient country with respect to the supply of the products and services under the verified contract		•
8 - 1	To maintain and use properly and effectively the facilities constructed and equipment provided under the Grant Aid	***	•
9	To bear all the expenses, other than those to be borne by the Grant Aid, necessary for construction of the facilities as well as for the transportation and installation of the equipment		•

(B/A: Banking Arrangement, A/P: Authorization to pay, N/A: Not Applicable)

Minutes of Discussions

on the Basic Design Study

on The Project for the Construction of Nairobi Western Ring Roads

in the Republic of Kenya

(Explanation on Draft Report)

In March 2009, Japan International Cooperation Agency (hereinafter referred to as "JICA") dispatched a Basic Design Study Team on the Project for the Construction of Nairobi Western Ring Roads (hereinafter referred to as "the Project") to the Republic of Kenya (hereinafter referred to as "Kenya"), and through discussion, field survey as well as after technical examination of the results in Japan, JICA prepared a draft report of the study.

In order to explain and consult with the officials of the Government of Kenya on the components of the draft report, JICA sent to Kenya the Basic Design Explanation Team (hereinafter referred to as "the Team") which is headed by Kazumasa Sanui, Assistant Director of Economic Infrastructure Department, JICA from October 22 to October 27, 2009.

As the result of the discussion, both parties confirmed the main items described on the attached sheets hereto;

Nairobi, October 26, 2009

Mr. Kazumasa Sanui

Leader

Basic Design Explanation Team

Japan International Cooperation Agency

Japan

Eng. Michael M.S. Kamau, CBS, HSC

Permanent Secretary Ministry of Roads

The Republic of Kenya

Mr. Saminy Kirui, CBS

Permanent Secretary

Office of the Deputy Prime Minister and

Ministry of Local Government

The Republic of Kenya

Eng. Silas M. Kinoti

Manager - Roads

Kenya Urban Roads Authority (KURA)

for Eng. Joseph N. Nkadayo

Director General & CEO

Kenya Urban Rhads Authority (KURA)

The Republic of Kenya

Mr. Philip M.A. Kisia, MBS

Town Clerk

City Council of Nairobi

The Republic of Kenya

ATTACHMENT

1. Contents of the Draft Report

The Kenyan side agreed and fully accepted the contents of the draft final report explained by the Team.

2. Japans' Grant Aid scheme

The Kenyan side understands the Japan's Grant Aid Scheme and the necessary measures to be taken by the Government of Kenya as explained by the Team and described in Annex-1.

3. Schedule of the Study

JICA will complete the final report in accordance with the confirmed items and send it to the Government of Kenya by January, 2010.

4. Cost Estimation

The Project Cost Estimation, as attached in Annex-2, is confidential and should never be duplicated or disclosed to any outside parties before the signing of all the contracts for the Project.

5. Other Relevant Issues

- 5-1. The Team confirmed with the Kenyan side that the Project title to be changed from the previous title ("The Project for the Construction of Nairobi Missing Links 3, 6 and 7") to read as follows; "The Project for the Construction of Nairobi Western Ring Roads".
- 5-2. The Kenyan side proposed, on April 28, 2009, that 24 meter wide road reserve includes dual carriage way two lanes both ways. The Team examined and came to a conclusion that dual two-lane carriage way is technically difficult due to site topography and the expected traffic volume. The Kenyan side accepted the Team's counterproposal of single carriage way two lanes.
- 5-3. The Kenyan side confirmed that it has obtained Environmental Impact Assessment License and Resettlement Action Plan (RAP) agreed with the Project Affected Persons (PAPs).

 The Kenyan side shall complete the land acquisition and relocations before commencement of the Construction Work.
- 5-4. The Kenyan side shall bear the banking commissions as a condition for the Japan's Grant Aid to be implemented, and secure the sufficient budget to cover the following cost.
 - 1) The commissions for the banking services based upon Banking Arrangement (B/A)
 - 2) The advising commission of the Authorization to Pay (A/P).

でえ

Grind &

1

- 5-5. The Kenyan side ensured that tax exemption for the Project shall be fulfilled in a timely manner, as a condition for the Japan's Grant Aid to be implemented.
- 5-6. The Kenyan side shall secure enough budget and personnel necessary for operation and maintenance of the roads, bridges and relevant facilities constructed by the Project.
- 5-7. The Team requested the Kenyan side to clarify the responsible organization(s) for each undertaking issue as shown in Annex-4 for the purpose of smooth implementation of the Project. The Kenyan side should agree and inform JICA Kenya Office within 2 weeks from the signing date, namely November 10, 2009.

Annex-1: Major Undertakings to be taken by Each Government

Annex-2: Project Cost to be borne by Japan's Grant Aid

Annex-3: Environmental Impact Assessment Licence

Annex-4: Responsible Organization for Undertakings of Kenyan side

V 332

Carrie &

2

An nex-1

Major Undertakings to be taken by Each Government

No.	Items	To by	be covered Grant Aid	To be covered by Recipient side
1	To secure land			•
2	To clear, level and reclaim the site when needed			•
3	Relocation, improvement and/or repair of existing utilities(power lines, telecommunication lines, water lines, etc.), if necessary			•
4	To bear the following commissions to a bank of Japan for the banking services based upon the B/A			
	I) Advising commission of A/P			•
	2) Payment commission			•
5	To ensure prompt unloading and customs clearance at the port of disembarkation in recipient country			
	1) Marine(Air) transportation of the products from Japan to the recipient country		•	
	Tax exemption and custom clearance of the products at the port of disembarkation			•
	3) Internal transportation from the port of disembarkation to the project site		•	
6	To accord Japanese nationals whose services may be required in connection with the supply of the products and the services under the verified contract such facilities as may be necessary for their entry into the recipient country and stay therein for the performance of their work			•
7	To exempt Japanese nationals from customs duties, internal taxes and other fiscal levies which may be imposed in the recipient country with respect to the supply of the products and services under the verified contract			•
8	To maintain and use properly and effectively the facilities constructed and equipment provided under the Grant Aid			•
9	To bear all the expenses, other than those to be borne by the Grant Aid, necessary for the transportation and installation of the equipment			•

32

Carried &

Environmental Impact Assessment Licence

or official use

NATIONAL ENVIRONMENT MANAGEMENT AUTHORITY (NEMA)

THE ENVIRONMENTAL MANAGEMENT AND CO-ORDINATION ACT ENVIRONMENTAL IMPACT ASSESSMENT LICENCE

This is to cert if y that the Project Report/Environmental Impact Assessment S tudy Report received from
THE PERMANENT SECRETARY MINISTRY OF LOCAL GOVERNMENT (Name
ofindividual/firm)P.QBOX30004-00100NAIRORI(Address)
submitted to the National Environment Management Authority in accordance with the Environmental Impact
Assessment & Audit Regulations regardingPROPOSEDROADPROJECTFORTHE MISSING
LINKS ROADS NO. 3,5, 4.7
(title of project) whose objective is to carry on CONSTRUCTIONOFTHEMISSINGLINKSROADS
WITHIN KILELESHWA AND LAYINGTON TO EASE TRAFFIC CONGESTION WITHIN CITY
(briefly describe purpose) located
at XILIMANI, LAVINGTON AND XILELESHWA AREA, NAIROBI
(locality and district)
has been reviewed and a licence is hereby issued for implementation of the project, subject to attached conditions.
Dated this15THdaySEPT of 2009
Signature
(SEAL)

Director General
The National Environment Management Authority

CONDITIONS OF LICENCE

- 2. The Director-General shall be notified of any transfer/variation/surrender of this licence.

Guind:

22

5

M

- 3. The proponent shall take care of the temporary occupiers who will be displaced by the project.
- 4. The proponent shall adhere to Environmental Management and Coordination (Noise and Excessive Vibrations Pollution Control) Regulations of 2009 during construction.
- 5. The proponent shall ensure that valuable trees species that will cut down are replaced.
- 6. The proponent shall ensure that a functional traffic management plan is in place.
- 7. The proponent shall ensure that blasting is not done at night.
- 8. The proponent shall also put clear signage to warn motorists and pedestrians.
- 9. The proponent shall ensure that construction activities are undertaken during the day (and not at night) between 08.00 hrs and 17.00 hrs; and that transportation of construction material to site are undertaken during weekdays (and not weekends) off peak hours.
- 10. The proponent shall ensure strict adherence to the Environmental Management Plan developed throughout the project cycle.
- 11. The proponent shall collaborate with the EIA Expert(s) and contractor(s) to ensure that proposed mitigation measures are adhered to during the construction phase and where necessary appropriate mending -up activities undertaken and a report of the same submitted to NEMA. Emphasis must be given to control of dust, noise, vibrations and occupational hazards and provision of sanitary accommodation to construction workforce.
- 12. The proponent shall comply with the relevant principal laws, by-laws and guidelines issued for development of such a project within the jurisdiction of the Ministry of Lands, City Council of Nairobi, Nairobi City Water and Sewerage Company, Ministry of Roads, Kenya Roads Board and other relevant Authorities.
- 13. The proponent shall ensure that the development adheres to zoning specifications issued for development of such a project within the jurisdiction of the City Council of Nairobi with emphasis on approved land use for the area.
- 14. The proponent shall ensure that during the construction phase, the operations adhere to Occupational Safety and Health Act, No. 15 of 2007.
- 15. The proponent shall ensure that environmental protection facilities or measures to prevent pollution and ecological deterioration such as proper disposal of excavated soils, re-vegetation, landscaping, storm water drains, traffic management plans are designed, constructed and employed simultaneously with the proposed Project.
- 16. The proponent shall ensure that records on conditions of licences/approval and project monitoring and evaluation shall be kept on the project site for inspection by NEMA's Environmental Inspectors.
- 17. The proponent shall submit an Environmental Audit Report in the first year of occupation/operation/commissioning to confirm the efficacy and adequacy of the Environmental Management Plan.
- 18. The proponent shall comply with NEMA's improvement orders throughout the project cycle.

Carriel - ol

Z)

Responsible Organization for Undertakings of Kenyan side

Before Exchange of Note (January 2010) MoLG MoR Item CCN KURA To provide data & information for the Project To execute RAP Before Construction (September 2010) MoLG. MoR CCN KURA To execute land acquisition To relocate PAPs To remove & relocate existing trees To relocate public utilities & other obstacles To maintain the route of inland transportation To make Banking Arrangement (B/A) & Authorization to Pay (A/P) To bear advising commission of A/P & payment commission to the bank To accord Japanese nationals necessary legal rights for their entry & stay in Kenya To exempt Japanese nationals engaged in the Project from customs duties, internal taxes and other fiscal levies During Construction (~ January 2012) MoLG MoR KURA CCN To ensure TAX exemption and custom clearance of the product at the port of disembarkation To maintain the route of inland transportation To provide all necessary permissions, licenses & certificates for the project To provide necessary coordination with related agencies and personal To arrange traffic control during construction of existing road To coordinate and solve any issues related to the Project that may be raised from residents & third parties To secure the office, construction & stock yard To secure borrow pit, quarry & waste disposal site To relocate public utilities & other obstacles After Construction MoLG MoR ltem KURA CCN To demolish existing bridges To install underground duct pipe To install traffic signal, if necessary

To maintain the road & facilities

Carrier &

#

7

5. Technical Note

The Preparatory Survey on the Project for the Construction of Nairobi Missing Links 3, 6 & 7

TECHNICAL NOTE

Kenyan Counterpart Team and JICA Preparatory Survey Team discussed and confirmed following matters. It is, however, understood that the decision for the draft report will be made through the discussions with concerned Japanese agencies during the analysis in Japan.

Design Conditions;

a. Road Classification : Urban Collector Road

b. Design Speed : Basically 50 kph, Absolute Value 30 kph

c. Lane Width : Basically 3.3 m, and 3.0 m for Exclusive Right Turn Lane

d. Median Width : Basically 1.5 m, and 0.6 m for Widening Section near Intersection

e. Shoulder Width : 0.6 m for Outer Lane

f. Sidewalk Width : Basically 2.5 m, however reduced to secure other facilities, if necessary
 g. Cycle Lane Width : Basically 2.0 m, however reduced to secure other facilities, if necessary

h. Maximum Grade : Basically 8.0 %

i. Pavement : Basically Design Load for up to 15 years based on Revised Future Traffic

Demand (especially Heavy Vehicle Demand)

j. Live Load (Bridge) : Equivalent Load with HA Load in BS5400

k. Intersection : Basically, Roundabout or Conventional Intersection (either signalized or

non-signalized), based on the evaluation criteria, such as space available,

traffic conditions, classifications of crossing roads, etc.

Drainage : Basically 0.75m wide
 Facility Space : Basically 0.8m wide

Basic Design Drawings will be prepared in Japan based on the above design conditions. The drawings will be presented to Kenyan side during the explanation of Draft Final Report, which is scheduled in October 2009.

27 April 2009

Noted by:

Noted by:

Noted by:

Eng. James W. Theuri

General Manager

Planning & Environment

Kenya Urban Road Authority

Eng. Christine A. Ogut

City Engineer

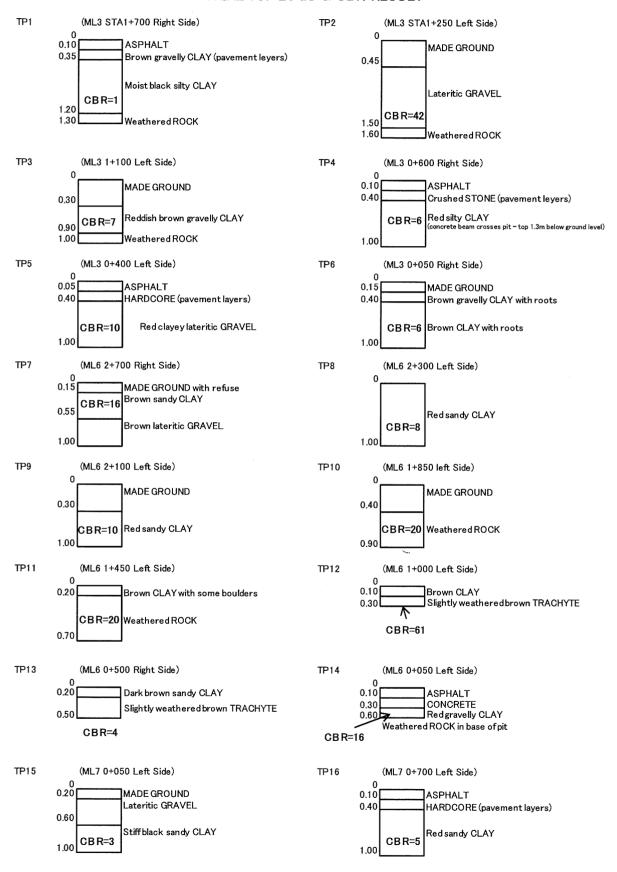
black

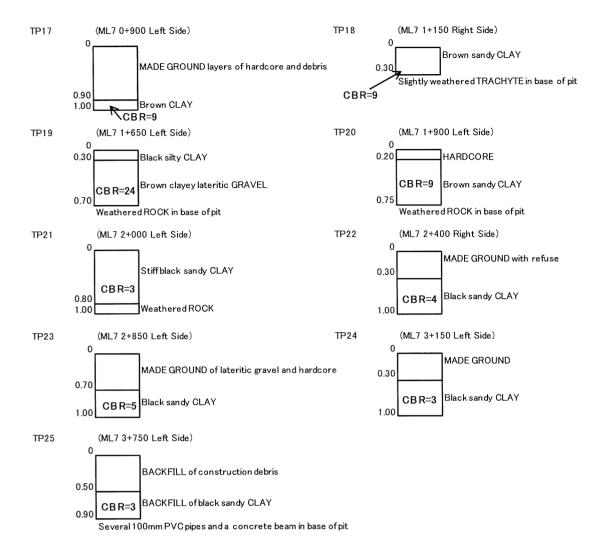
City Council of Nairobi

Mr. Kenji Isomoto

Chief Consultant

JICA Preparatory Survey Team


6. Design Data6.1 Traffic Survey Result


			i							TW							ENZ	<u></u>	
			ППе	e .				,	-				A 45.	TM		Dodoc			TMM
Jct.	Jct. Name	WEEKDAY/	į	177	Motor Cycles	Cars	P/ups Jeeps	Matatu / Minibus	Large Bus	Truck	Medium	Heavy Truck	Truck	Total	- I	reues -trian	Bicycle	Carts	Total
2		ACMOS	Ē		0.5	1.0	1.0	1.5	2.0	1.5	2.0	2.5	3.0		3		•		
		Weekday	24hr	16hr	3,181	103,870	65,353	30,933	2,667	3,882	2,778	1,756	4,196	221,616	256,904	30,030	359	21	30,410
	Westlands	Sunday	12hr	12hr	621	49,220	31,822	15,448	2,721	1,515	813	099	1,597	104,417	120,306	28,556	176	22	28,754
2	Rhapta	Weekday	16hr	12hr	689	17,415	8,504		30	246	92	12	0	27,355	27,457	24,405	617	28	25,080
(1	Weekday	24hr	16hr	712	18,436	10,354	1,988	41	348	208	47	4	32,138	33,278	11,469	277	7	12,057
n	Kiverside	Sunday	12hr	12hr	136	6,065	3,603	815	13	69	48	11	9	10,766	11,230	3,544	206	9	3,756
4	Aboretum	Weekday	16hr	12hr	435	20,021	8,876	2,003	70	260	99	36	1	31,767	32,872	9,356	241	0	9,597
'		Weekday	24hr	16hr	521	15,424	10,867	4,914	128	184	22	44	2	32,161	34,725	12, 135	180	_	12,316
9	Mandera	Sunday	12hr	12hr	111	3,437	4,423	1,292	36	20	18	8	-	9,376	10,060	3,120	99	9	3,192
9	ML6/ML7	Weekday	16hr	12hr	233	4,103	3,188	103	21	29	32	4	0	7,751	7,779	9,697	232	7	9,936
֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		Weekday	24hr	16hr	828	14,723	10,326	5,394	1,522	133	153	74	10	33,163	37,319	8,807	1,188	13	10,008
`	Gitanga	Sunday	12hr	12hr	176	7,407	5,173	2,372	820	106	34	6	4	16,101	18,128	4,877	539	4	5,420
	James	Weekday	24hr	16hr	691	14,806	16,117	3,963	192	539	280	80	18	36,686	39,220	3,438	772	0	4,210
œ		Sunday	12hr	12hr	187	5,234	5,710	983	52	161	99	41	4	12,438	13,104	2,526	574	2	3,105
6		Weekday	16hr	12hr	205	6,325	4,676	1,182	40	109	47	7	2	12,593	13,238	5,789	211	=	6,001
10	Ď	Weekday	16hr	12hr	211	5,054	3,560	195	11	66	42	7	0	9,179	9,284	8,366	331	2	8,699
-	1	Weekday	16hr	12hr	415	7,134	4,695	720	84	266	61	72	0	13,447	13,986	13,352	242	25	13,619
9		Weekday	24hr	16hr	540	18,971	11,008	4,878	1,294	298	87	43	7	37,126	40,904	24,957	663	12	25,632
12		Sunday	12hr	12hr	144	8,431	5,138	3,319	785	98	35	7	0	17,945	20,406	10,737	367	13	11,117
13	ļ	Weekday	16hr	12hr	778	906'9		2,665	889	233	40	17	10	15,392	17,437	10,748	293	1	11,052
		Weekday	24hr	16hr	665	16,590	10,614		1,699	721	286	134	48	37,674	43,443	33,209	288	39	33,836
14	Ngong	Sunday	12hr	12hr	417	13,941	10,116	5,765	1,794	246	164	22	28	32,526	37,420	25,239	471	12	25,722
15	Waivaki	Weekday	16hr	12hr	1,013	25,444	19,156	15,005	3,024	2,489	1,530	1,029	1,057	69,747	86,199	9,964	548	2	10,514
		Total			12,909	388,957	257,123	111,221	20,943	12,107	926'9	4,153	6,995	821,364	1	294,321	9,441	271	304,033
		PCU	***************************************		6,455	388,957	257,123	166,832	41,886	18,161	13,912	10,383	20,985	•	924,692	-	-	,	,
				1															

6.2 Calculation of Pavement Tickness

(1) CBR Test Result

TRIAL PIT LOGS & CBR RESULT

Soil Condition	CBR Result		1	,
Moist black silty clay Lateritic gravel	1 Destruction 42 Rejection	→Replacement	Design CBR	9
Reddish browm gravelly clay	7	9 points		
Red silty clay	9	ML3&6 $\gamma = 0.437$	Average	10.4
Red clayey lateritic gravel	10	Ring Road $42-20/42-6=0.61>\gamma$ Rejection		5.1
Brown clay with roots	人 9			
Brown lateric gravel	16	r=0.468		
Red sandy clay	8	$20-16/20-6=0.29 < \gamma$ Adoption		
Red sandy clay	10			
Weathered rock	20			
Weathered rock	Z0)			
Slightly weathered brown Trachyte	61 Destruction	ML6 3 points	Average	13,3
Slightly weathered brown Trachyte	4	Radial Road $\gamma = 0.941$	Standard Deviation	8.3
Red gravelly clay		16-4/20-4=0.75< ア Adoption		5
Stiff black sandy clay	3 ->6 Timprovement			
Red sandy clay	22	5 points		
Brown clay	人。	ML7 $\gamma = 0.642$	Average	6.3
Slightly weathered Trachyte	5	Radial Road 24-9/24-3=0.71> γ Rejection		3.7
Brown clay lateric gravel	24 Rejection			က
Brown sandy clay	6			
Stiff black sandy clay	3 Destruction	3 points		
lack sandy clay	4	ML7 $\gamma = 0.941$	Average	9.0
Black sandy clay	5	Road 9-5/9-4=0		2.6
Black sandy clay	3 ->6 Improvement		Section CBR	က
Backfill of black sandy clay	3 ->6 Improvement			
	Design CBR ML3&6	5%		
	ML7 Radial Road			
	ML7 Ring Road	3%		

(2) Design CBR

(3) Traffic Load

No. Sec	tion From	To	2005	2010	2015	2020	2025					
No.3	1 Westlands R/A	Ring Rd Kileleshwa	7,300	19,800	27,100	32,300	36,300					
	2 Ring Rd Kileleshwa	Nairobi River	7,600	20,500	28,100	33,500	37,700					
	3 Nairobi River	Riveside Dr	8,100	21,800	29,800	35,500	39,900					
	4 Riveside Dr	Arboretum Dr	8,000	21,500	29,400	35,000	39,300					
No.fr	5 Arboratum Dr	Mandera Rd	1	1000		-		Ecologous I	secause of the	nossibility of	f d-tare with	nilities.
	6 Mandera Rd	Ring Rd Kilimani	100					Position (1)	sandada vi sud	becaminatel o	4 1004 1000	ome.
	7 Ring Rd Kilimani	Denis Pritt Rd	5,000	15,800	21,600	25,700	28,900					
	8 Denis Pritt Rd	Ole Odume Rd	6,200	16,800	23,000	27,400	30,800					
No.7	9 James Gichuru Rd	Ring Rd Kileleshwa		16,300	22,300	26,500	29,800					
	10 Ring Rd Kilelashwa	Denis Pritt Rd	17,01111	THI, SHIRI	22,500	10,000	2.3,000					
	11 Denis Pritt Rd	Linnana Rd	6,700	18,200	24,900	29,600	33,300					
	12 Lenana Rd	Argwings Kodhek R		22,200	30,400	36,200	40,700					
	13 Argwings Kodhek R		0,200	zz, cou	50,400	20,200	40,700					
	14 Chania Ave		2.200	19,600	25 500	21 000	at non		A Section			
	14 Chania Ave	Ngong Rd	7,200	19,600	26,800	31,900	35,800		Will per lane			
		1,010,101,101,10							2013-2020	2013-2022	2013-2027	
		ML386 Ring Road	Average	20,467	28,000	33,350	37,500		7.12E+05	0.21E+05	1.496+06	
		ML6 Radial Road	Average	10,600	23,000	27,400	30,800		5.86E+05	7.60E+05	1.23E+06	
		ML7 Radial Road	Acerage	16,300	22,300	26.500	20,800		5.66E+05	7.32E+05	1 18E+06	
		ML7 Ring Road	Average	21,280	29,140	34,660	38,080		7.39E+05	0.57E+05	1 55E+06	
			But	M-Truck	L-Trunk	A-Truck (Traller/Tar	th Larry)	1			
		Distribution	0.9%	0.0%	0.5%	0.25			Design Load	for Payne	nt Design	
		Ave PCU	2 50	2.50	3.00	0.00			A A MISA			
		ML386 Ring Road							Bus	M-tolille.	L-trunk	A-tru
			Pau	Bun	M-trunk	L-trunk	A-truck	Conversion		1.0	4.0	A.0
	2013-2020	2010	20,467	- 78	7.5	32	16	100	2.77E+04	2.50E+04	4,67E+04	2.046
	ESAL for 8 years	2011	21,797	81	77	34	17		2.96E+04	2.81E+04	4.96E+04	2.400
	1.42E+06		23,214	86	82	36	18		3.14E+04	2.99E+04	5,26E+04	2.631
	2013 2022	2013	24,723	9.2	88	38	19		3.36E+04	3,21E+04	5 55E+04	2.77
	ESAL for 10 years	2014	26,330	98	94	41	21		3 58E+04	3.43E+04	5.99E+04	3.07
	1.848+06		28,000	104	99	43	22		3.80E+04	3.61E+04	6.28E+04	3.211
	2013 2027	2016	29,008	108	103	45	28		3 94E+04	3.70E+04	0.57E+04	3.36
	ESAL for 15 years	2017	30,052	112	107	47	24		4.00E+04	3,91E+04		
	2 BBE+06			116							6.80E+04	3.50
	2.302.100		31,134		00	48	24		4,23E+04	4.05E+04	7.01E+04	3.50
		2019	32,255	120	115	50	25		4.38E+04	4.20E+04	7.30E+04	3.05
		2020	33,350	124	(18	52	26		4 53E+04	4.31E+04	7,50E+04	3 80
		2021	34.150	127	121	51	27		4 64E+04	4.42E+04	7.74E+04	3.94
		2022	34,970	130	124	54	27		4 75E+04	4.53E+04	7.88E+04	3.04
		2023	35,809	133	127	56	211		4 85E+04	4.646+04	8.18E+04	4.006
		2024	36.568	136	130	87	29		4.96E+04	4.75E+04	B-32E+04	4.236
		2025	37,500	139	133	58	2.0		5.07E+04	4.65E+04	8.47E+04	4,236
		2026	38,400	142	136	60	20		5 185+04	4 80E+04	B 76E+04	4 386
		2027	39,322	146	140	61	31		5 335+04	5 11E+04	B.B1E+04	4 531
		ML6 Radial Road							Bus	M-truck	L-trunk	A-tru
	mar Carrier		PCU	Due	M-truck	L-truck	Artruok	Conversion	1.0	1.0	4.0	4.0
	2013"2020	2010	18,600	62	60	2.6	1,3		2 28E+04	2.19E+04	3.80E+04	1.901
	ESAL for 8 years	2011	17.1192	88	114	2.6	1.5		2.41E+04	2 34E+04	4.08E+04	2.041
	1.176+06	2012	19.055	7.1	6.0	30	16		2.59E+04	2.48E+04	4.38E+04	2.19
	2013 2022	2013	20,284	75	72	32	16		2.74E+04	2.63E+04	4.67E+04	2.34
	ESAL for 10 years	2014	21.613	80	77	34	17		2 92E+04	2.81E+04	4.96E+04	2.481
	1.526+06	2015	20,000	85	82	3.6	18		3/10E+04	2.88E+04	5.28E+04	2.631
	2013 2027	2010	23,628	An	85	37	110		3.216+04	3.1DE+04	5.40E+04	2.771
	ESAL for 15 years	2017	24,880	92	8.0	36	19		3.38E+04	3.21E+04	5.55E+04	2.771
	2.45E+06	2018	25,575	95	91	40	50		3.47E+04	3 32E+04	5.84E+04	2.921
	A	2019	26,496	90	94	41	21		3.58E+04	3.43E+04	5.88E+04	0.07
		2020	27,400	102	97	43	22		3.726+04	3.54E+04	5.28E+04	3.211
		2021	28,058	104	190	44	22		3.80E+04	3.65E+04	5-42E+04	3.211
		2022	28,731	107	102	45	23		3.81E+04	3 72E+04	6.57E+64	3.361
		2023	20,421	100	195	46	23		3.98E+04	3.836+04	6.72E+04	3.366
		2024	30,127	112	107	47	24		4.09E+04	3.91E+04	8.88E+04	3.50
		2025	30,800	114	109	48	24		4.18E+04	3.98E+04	7.01E+04	3.50
		2026	31,539	117	112	49	25		4.27E+04	4.09E+04	7.15E+04	3.656
		2027	32,296	120	115	50	25		4.386+04	4.20E+04	7.305+04	0.65
		ML2 Radial Road	241644		114				Bus	M-truck	L-truck	Antru
		A. A. Salan Dank	POU	Bus	M-truck	L-truck	A-truck	Conversion		1.0	4.0	4.0
	2013 2020	2010	16,300	00	58	25	13	- more remain	2.19E+04	2.126+04	3.65E+DA	1.00
	EBAL for 8 years	2011	17,360	64	62	27	14		2.34E+04	2.266+04	3.94E+04	
	1.13E+00	2012	18,400	69	66							2.04
	2013 2022					20	16		2.52E+04	2.416+04	4.236+04	2.191
		2012	19,690	73	70	91	15		2.84E+Q4	2.588+04	4.53E+04	2 191
	EBAL for 10 years	2014	20,970	78	7.4	93	1.6		2.85E+04	2.700+04	4.820+04	2.34
	1.40E+00	2015	22,300	83	70	35	19		3.03E+04	2.880+04	5.110+04	2.48
	2013 2027	2018	23,081	86	82	96	10		3.14E+04	2.99[+04	5.266=04	2.63
	ESAL for 15 years	2017	23.840	8.9	85	97	10		3.250+04	3.100+04	5.40E+04	2.771
	2.37E+06	2010	24,726	9.2	88	3.0	10		3.36E+04	3,216+04	5.55E=04	2.771
		2010	25,590	0.5	91	40	20		3.47E+04	3.026+04	5.84E+04	2.92
		2020	26,500	9.6	0.4	41	21		3.58E+04	3,430+04	5.996+04	3.07
		2021	27,136	101	0.0	42	21		3.696+04	3,500+04	6.136+04	3.071
		2022	27.787	103	0.0	43	22		3.76E+04	3.61E+04	6.28E+04	3,211
		2023	28,454	106	101	44	22		3.87E+04	3.69E+04	8.42E+04	3.211
		2024	20,137	108	104	45	23		3.64E+04	3.80E+04	0.576+04	3,36

	2025	29,800	111	106	46	23		4.05E+04	3.87E+04	6.72E+04	3.36E+04
	2026	30,515	113	108	47	24		4.12E+04	3.94E+04	6.86E+04	3.50E+04
	2027	31,247	116	111	49	25		4.23E+04	4.05E+04	7.15E+04	3.65E+04
	ML7 Ring Road							Bus	M-truck	L-truck	A-truck
		PCU	Bus	M-truck	L-truck	A-truck	Conversion	1.0	1.0	4.0	4.0
2013~2020	2010	21,280	79	76	33	17		2.88E+04	2.77E+04	4.82E+04	2.48E+04
ESAL for 8 years	2011	22,663	84	81	35	18		3.07E+04	2.96E+04	5.11E+04	2.63E+04
1.48E+06	2012	24,136	90	86	37	19		3.29E+04	3.14E+04	5.40E+04	2.77E+04
2013~2022	2013	25,705	95	91	40	20		3.47E+04	3.32E+04	5.84E+04	2.92E+04
ESAL for 10 years	2014	27,376	102	97	43	21		3.72E+04	3.54E+04	6.28E+04	3.07E+04
1.91E+06	2015	29,140	108	104	45	23		3.94E+04	3.80E+04	6.57E+04	3.36E+04
2013~2027	2016	30,160	112	107	47	24		4.09E+04	3.91E+04	6.86E+04	3.50E+04
ESAL for 15 years	2017	31,216	116	111	48	24		4.23E+04	4.05E+04	7.01E+04	3.50E+04
3.10E+06	2018	32,309	120	115	50	25		4.38E+04	4.20E+04	7.30E+04	3.65E+04
	2019	33,440	124	119	52	26		4.53E+04	4.34E+04	7.59E+04	3.80E+04
	2020	34,660	129	123	54	27		4.71E+04	4.49E+04	7.88E+04	3.94E+04
	2021	35,492	132	126	55	28		4.82E+04	4.60E+04	8.03E+04	4.09E+04
	2022	36,344	135	129	56	29		4.93E+04	4.71E+04	8.18E+04	4.23E+04
	2023	37,216	138	132	58	29		5.04E+04	4.82E+04	8.47E+04	4.23E+04
	2024	38,109	141	135	59	30		5.15E+04	4.93E+04	8.61E+04	4.38E+04
	2025	38,980	145	138	61	31		5.29E+04	5.04E+04	8.91E+04	4.53E+04
	2026	39,916	148	142	62	31		5.40E+04	5.18E+04	9.05E+04	4.53E+04
	2027	40,874	152	145	63	32		5.55E+04	5.29E+04	9.20E+04	4.67E+04

(4) Calculation of Pavement Tickness

(DML6 Radial Road Section (General Section)

	all concrete.	1.152		0.797		0.850		
3.0	75 cm of aspiral concrete.	29= 1	15 cm	254= 0	200	2.94= 0.	2.799 OK	7.5 cm 15.0 cm
= NS	= 16	15/	-2	187	5=	782		
2.4%	ACP This knows Considering a marrown thickness D1 =	= 0390 ×	Base Course Thickness Considering a minimum thickness D2 =	e= 0.135 x	Subbase Thickness Considering a momentum thickness D2 =	x = 0.108 ×	= EN3	Asphalt Concrete Course Bituminous treated Base Course
CBR-	() ACP Thickness Considering a men	SNI of asplat =	2) Base Course Thickness Considering a minimal	SN2 of the Base =	3) Subbase Thickness Considering a money	SN3 of Subbase =	SNI + SN2+ SN3=	Asphalt Concrete Course Bituminous treated Base

splat counts.	1.152		1,063		0.850	OK	
75 cmefz	2.54=	200	2.54=	19.00	2.9=	m	7.5 cm 20.0 cm 20.0 cm
	13/		700		/02		
reman thickness D1 =	× 0660 =	iciness inimum thickness D2 =	== 0.135 ×	ess riennes frichness DD =	z= 0.108 ×	N3 =	Asphalt Concrete Course Biliuminous treated Base Course Crashed Gravel Base Course
Considering a m	SNI of asplat	() Base Course The Considering a m	SN2 of the Base	Subbase Thekm Considering a m	SN3 of Subbase	SN1 + SN2+ S	Asphalt Concrete Course Biliuminous treated Base Cou Crashed Gravel Base Course
	ACP Thickness Considering a minimum thickness D1 = 7.5 cm of applied countries.	man thickness D1 = 0.390 × 7.5 /	0.390 x 7.5 / 3.7 mm thickness D2 = 0.390 x 7.5 / 3.7 mm thickness D2 = 0.000 mm thickness D3 = 0.000	0.390 x 7.5 /	0.390 x 7.5 / 5 bickness D2 = 0.135 x 20 / 5 bickness D2 = 0.135 x 20 / 5	0.390 x 7.5 / 25 / 25 / 25 / 25 / 25 / 25 / 25 /	0.390 x 7.5 / 25 / 25 / 25 / 25 / 25 / 25 / 25 /

(2)M6 Radial Road Section (Special Section: On the Rock)

級) Standard Composition on the Book

Asphalt Concrete Course 10.00 Lean Concrete 10.00	(JML3 Ring Road Section (Special Section)	CBR= 6% SN= (Replaced Material for Subgrade)	ACP Theirass Considering a manuscribicioness DI =	SNI of asplast = 0.390 × 7.5 /	 Base Course Thickness Considering a minimum thickness D2 = 	SN2 of the Base = 0.135 x 15/	3) Subbuse Thickness Considering a minimum thickness D2 =	SN3 of Subbase = 0.108 × 20 /	SNI +5N2+ SN3=	Asphalt Concrete Course 75 Bitaminous treated Base Course 15.0 Crasked Gravel Base Course 20.0
5 5		2.8	75 cm of aspirals concrete	254= 1.152	15 cm	254= 0.797	200	2.94= 0.890	2799 08.	5 5 5

(S)ML7 Radial Section (General Section)

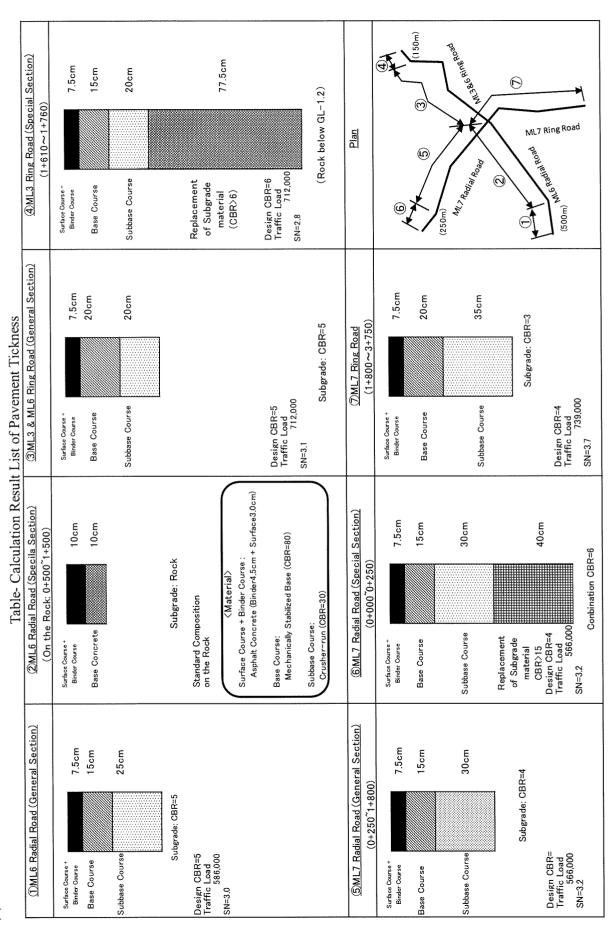
	7.5 on of asplied concrete.	25		161		90	
	and a	1.152		0.797		2	Ä
3.2	75 cm o	254 =	13 68	254=	9	254= 1276	3.134 OK
- XX		15/		15%		30 /	
	ACP Thickness Considering a minimal dischess DI =	× 06E0	Base Course Thickness Considering a minimum flucturess D2 =	0.135 ×	Subtase Thickness Considering a minima flictness D2 =	x 8010	
77		R.	in the	9	10 m	11	SN3
CBR- 4%	1) ACP Thickness Considering a m	SNI of asplait	2) Base Course Thickness Considering a minimum	SN2 of the Base =	3) Subbase Thickness Considering a minim	SN3 of Subbase =	SNI + SN2+ SN3 =
	=		23		3)		

Concrete Course	7.5	8
us treated Base Course	15.0	B
Gravel Base Course	30.0	85

(JML7 Ring Road Section)

	norse.						
	75 cm of asphal concrete.	1.152		1.063		1.488	30
373	7.5 cm of	254= 1.152	20 (2)	254=	35 G	254=	3.7
= NS		151		18		35/	
	ACP Thickness Considering a mirrum frickness DI =	SNI of noplat = 0.390 x 75 /	Base Course Thickness Considering a minimum thickness D2 =	SN2 of the Base - 0.135 x	Subbase Thakness Considering a minimum thickness D2 =	0.105 x	
3.50	OSS Marinum	-	Thickness	51	Bess	**	883=
CBR= 3%	ACP Thickness Considering a mini	SNI of supla	Base Course Considering a	SN2 of the B.	3) Subbase Thakness Considering a minim	SN3 of Subbase = 0.108	SNI+SN2+SN3=
	0		F		3)		

. .


7.5 20.0 35.0

Asphalt Centrete Course Bitaminous treated State Course Crushed Gravel Base Course

(SML7 Radial Section (Special Section)

	75 cm of asplast concrete.	1.152		0.797		1276	300	
3.2	7.5 cm of	254=	15 cm	254=	30 cm	254=	3.124	7.5 cm 15.0 cm 30.0 cm
= NS		151		18/		30/		
*	m Bickness DI =	x 0650	on fickness D2 =	0.135 ×	m fickness D2 =	0.106 ×		Surse Base Course se Course
CBR= 69	1) ACP Thickness Considers a minima frickness D1 =	SNI of asplasi =	 Bise Course Thickness Considering a minimum fitickness D2 = 	SN2 of the Base =	3) Subbase Thickness Considering a minimum finciness D2 =	SNJ of Subbase =	SNI+SN2+SN3=	Asphalt Cencrete Course Bituminous treated Base Course Crashed Gravel Base Course
	2	ď.	R		6			

(5) Calculation Result List

6.3 Calculation of Drainage

(1) Rain fall - Data

Source: Kenya Meteorological Department, Ministry of Transport and Communication

Station 9136164(=164): Dagoretti Corner

Data period: 1970~2004

No Date: -98 Missing data: -99 Data Unit: x10-1 mm

0 0 0 0 47 0 0 0 89 21 0 0 164 2003 2 0 0 0 0 0 22 n n n 164 2003 3 0 0 317 0 138 583 486 337 164 2003 164 2003 164 2003 0 313 0 119 164 2003 n 164 2003 0 245 679 n ຄ Ω 164 2004 5 146 628 674 30 415 n Ω n 164 2004 0 32 28 164 2004 10 0 119 10 56 3 0 0 177 53 563 2 249 36 0 180 0 0 122 0 39 49 164 2004 11 0 5 37 166 62 69 5 0 0 0 0 0 32 0 0 0 0 0 0 0 0 164 2004 12 4 0 30

Rainfall Data

Source: Kenya Meteorological Department, Ministry of Transport and Communication

Station 9136164(=164): Dagoretti Corner

Data period: 2005~2008

No Date: -98

Missing data: -99

Data Unit: x10-1 mm

2005 0 0 0 10 20 0 5 0 66 130 0 0 0 24 49 0.1 0 0.1 2 516 2005 0 155 0 0 0 74 14 0 0 0 0 0 2 2 7 0 2 8 0 0 0 5 5 0 0 17 0 0 0 0.1 38 46 0 113 0 153 0 0 0 0 0 14 30 0 0 14 76 29 53 0 1 20 10 36 16 89 0 0 1 56 0 0 378 0.1 0 6 0 0.1 22 0 0 0 0 12 0 0 0 10 0 9 525 136 0.1 0 0.1 266 398 209 0 0 96 0 0 0.1 0 0 231 0 0 67 17 142 0 0 2 2 2 48 10 0 16 0 36 0.1 0 6 0 186 0 5 0 0 0 0 0.1 0 0 0 0 0 132 0 0 0 200 0 13 0.1 10 0 90 0 0 5 0 0,1 0 56 0.1 7 0 0 8 0 12 0 22 50 17 0.1 0 0.1 0 0.2 22 0 0 0 73 0 0 0 150 62 8 13 7 3 0 0 17 0 0 197 16 0 0 0 0 0 0.1 0.1 2 0 0 0 0.1 0 0 0 0.1 0.1 60

(2) Rainfall Calculation by Gumbel Method

Rainfall Data and Gumbel Method (Exteam Value distribution)

	Rainfall Data	and Gumbel	Method (Exte	am Value di	stribution)
(1)	(2)	(3)	(4)	(5)
Rank		Rainfall	Exceedance		Peak
	Year	х	Probability	\mathbf{x}^2	Variate
i		(mm)	F(x)		У
1	1973	139.1	0.97500	19,348.81	3.6762
2	2001	128.4	0.95000	16,486.56	2.9702
3	1980	125.6	0.92500	15,775.36	2.5515
4	1981	111.7	0.90000	12,476.89	2.2504
5	1986	104.5	0.87500	10,920.25	2.0134
6	1978	98.0	0.85000	9,604.00	1.8170
7	1971	97.6	0.82500	9,525.76	1.6483
8	2005	97.6	0.80000	9,525.76	1.4999
9	1998	88.1	0.77500	7,761.61	1.3669
10	1977	86.9	0.75000	7,551.61	1.2459
11	1972	85.5	0.72500	7,310.25	1.1345
12	1989	80.2	0.70000	6,432.04	1.0309
13	1970	77.5	0.67500	6,006.25	0.9338
14	2007	77.2	0.65000	5,959.84	0.8422
15	1995	73.4	0.62500	5,387.56	0.7550
16	2006	70.1	0.60000	4,914.01	0.6717
17	1979	69.0	0.57500	4,761.00	0.5917
18	1982	67.5	0.55000	4,556.25	0.5144
19	1983	67.5	0.52500	4,556.25	0.4395
20	1990	66.5	0.50000	4,422.25	0.3665
21	1988	63.6	0.47500	4,044.96	1 1
22	1987	60.5	0.45000	3,660.25	1 1
23	1991	59.9	0.42500	3,588.01	0.1559
24	1997	59.6	0.40000	3,552.16	1
25	1996	58.8	0.37500	3,457.44	1
26	2004	58.8	0.35000	3,457,44	1 1
27	2003	58.3	0.32500	3,398.89	
28	1975	58.2	0.30000	3,387.24	
29	2008	58.0	0.27500	3,364.00	1 1
30	1976		0.25000	3,203.56	1 1
31	1993	1	0.22500	3,091.36	1 1
32	1992	54.5	0.20000	2.970.25	1 1
33	1	1	0.17500	2,550.25	1
34		1	0.15000	2,304.00	1
35			0.13500	2,152.96	1 1
36	1	i i	0.10000	1,971.36	1
37	1		0.07500		1
38		1	0.05000		1 1
39		i	0.03500	1 '	1 1
1 33	Total	2,831.2		228,868.8	
	Ave. $\Sigma x/N=$	72.59		5868.431	
	11ve. 21 A/ 1V-		1 4 X / IN-		
		Х		$\frac{\overline{x^2}}{x}$	

*) (3): F(x)=1-j/(N+1)(5): $-\ln\{-\ln F(x)\}$

 $S_X = (\overline{x}^2 - (\overline{x})^2) \hat{0}.5 = 24.4770$

 \overline{y} = 0.543 Sy = 1.1388 (N=39, See Table A) 1/a=Sx/Sy= 21.4937

 $\overline{x_0} = \overline{x} - (1/a) * \overline{y} = 60.919$

x=60.919+21.4937*y

*Relation between Probability Year T and Peak Variate y is shown in Table B, therefore Probability Rainfall x is calculated by above formula.

Probability Year			Probabi	lity Rainfall (mr	/day)	
T	F(%)	У	(1/a)*y	x		
2	50	0.3665	7.877	68.80		
3	67	0.9027	19.402	<u>80.32</u>	\Rightarrow	=(24*6)(2/3)*X/24 91.9 (mm/hr)
4	75	1.2459	26.779	87.70		(For Side Ditch)
5	80	1.4994	32.228	<u>93.15</u>	\Rightarrow	=(24*6)(2/3)*X/24 106.6 (mm/hr)
10	90	2.2504	48.369	109.29		(For Cross Drainage)
20	95	2.9702	63.840	124.76		
30	97	3.3843	72.741	133.66		
40	98	3.6763	79.017	139.94		
50	98	3.9019	83.866	144.79		
100	99	4.6002	98.875	159.79		

	Table	A -	Sumple	no.	and	v'	Sv
--	-------	-----	--------	-----	-----	----	----

	Sumple no.	and y',Sy
Sumple No.	У	Sy
15	0.5128	1.0206
16	0.5157	1.0316
17 18	0.5181 0.5202	1.0411 1.0493
19	0.5220	
20	0.5236	1.0628
21 22	0.5252 0.5268	1.0696 1.0754
23	0.5283	1.0811
24	0.5296	1.0864
25 26	0.5309 0.5320	1.0915 1.0961
26 27	0.5320	1.1004
28	0.5343	1.1047
29	0.5353 0.5362	1.1086
30 31	0.5362	1.1124 1.1159
32	0.5380	1.1193
33	0.5388	1.1226
34 35	0.5396 0.5403	1.1255 1.1285
36	0.5410	1.1313
37	0.5418	1.1339
38 39	0.5424 0.5430	1.1363 1.1388
40	0.5436	1.1413
41	0.5442	1.1436
42 43	0.5448 0.5453	1.1458 1.1480
44	0.5458	1.1499
45	0.5463	1.1519
46 47	0.5468 0.5473	1.1 538 1.1557
48	0.5477	1.1574
49	0.5481	1.1590
50 51	0.5485 0.5489	1.1607 1.1623
52	0.5493	1.1638
53	0.5497	1.1653
54 55	0.5501 0.5504	1.1667 1.1681
56	0.5508	1.1696
57	0.5511	1.1708
58	0.5515	1.1721
59	0.5518	1.1734
60 61	0.5521 0.5524	1.1747 1.1759
62	0.5527	1.1770
63	0.5530	1.1782
64	0.5533	1.1793
65 66	0.5536 0.5538	1.1804 1.1814
67	0.5536	1.1824
68	0.5543	1.1834
69	0.5546 0.5548	1.1844 1.1854
70 71	0.5550	1.1854
72	0.5552	1.1873
73 74	0.5555 0.5557	1.1882 1.1890
74 75	0.5559	1.1890
76	0.5561	1.1906
77 70	0.5563	1.1915
78 79	0.5565 0.5567	1.1923 1.1931
80	0.5569	1.1938

Table B - T and y

	ore D I ar	iu y
Probability Rainfall	1/T=	Peak Variate
T	1-F	У
500	0.00200	6.21361
400	0.00250	5.99021
300	0.00333	5.70213
250	0.00400	5.51946
200	0.00500	5.29581
150	0.00667	5.00729
100	0.01000	4.60015
80	0.01250	4.37574
60	0.01667	4.08595
50	0.02000	3.90194
40	0.02500	3.67625
30	0.03333	3.38429
25	0.04000	3.19853
20	0.05000	2.97020
15	0.06667	2.67375
10	0.10000	2.25037
8	0.12500	2.01342
7	0.14286	1.86983
6	0.16667	1.70198
5	0.20000	1.49940
4	0.25000	1.24590
3	0.33333	0.90272
2	0.50000	0.36651

(3) Calculation of Dischange

Discharge Q

cu.m/sec 0.118

0.237 0.355 0.474 0.592 0.711 0.829 0.948

1.184 0.089

0.178 0.267 0.355 0.444 0.622 0.711 0.800 0.888 0.059 0.118 0.118 0.237 0.236 0.355

0.474 0.533 0.592

Tab	Table – Calculation of Discharge (Side Ditch)	on of Disch	וarge (Sid	e Ditch)		Tabl	Table – Calculation of Discharge (Gross Drainage)	n of Dische	arge (Cross	Drainage)
No.	Catchments Area A	Return	Reinfall R	Discharge Coefficient	Discharge Q	No.	Catchments Area A	Return	Reinfall	Discharge Coefficient
	ha		mm/hr	С	cu.m/sec		ha	5	mm/hr	O
	0.5	3	91.9	0.80	0.102		0.5	2	106.6	080
Road Surface,	1.0	3	91.9	0.80	0.204	Road Surface,	1.0	5	106.6	0.80
Commercial Area	1.5	3	91.9	0.80	0.306	Commercial Area	1.5	5	106.6	0.80
	2.0	3	91.9	0.80	0.408		2.0	5	106.6	0.80
C=0.8	2.5	3	91.9	08'0	0.511	C=0.8	2.5	5	106.6	0.80
	3.0	8	91.9	0.80	0.613		3.0	5	106.6	0.80
	3.5	3	91.9	0.80	0.715		3.5	5	106.6	0.80
	4.0	3	91.9	08'0	0.817		4.0	5	106.6	0.80
	4.5	ε	91.9	0.80	0.919		4.5	5	106.6	08.0
	5.0	3	91.9	0.80	1.021		5.0	2	106.6	08'0
	0.5	ε	91.9	09:0	0.077		0.5	5	106.6	09'0
	1.0	3	91.9	0.60	0.153		1.0	5	106.6	09.0
Residential Area	1.5	3	91.9	0.60	0.230	Residential Area	1.5	9	106.6	09'0
	2.0	5	91.9	0.60	0.306		2.0	9	106.6	09'0
	2.5	3	91.9	09:0	0.383		2.5	2	106.6	09'0
9:0=O	3.0	3	91.9	0.60	0.460	0=0°	3.0	5	106.6	09.0
	3.5	3	91.9	0.60	0.536		3.5	2	106.6	09'0
	4.0	3	91.9	0.60	0.613		4.0	9	106.6	09.0
	4.5	5	91.9	09:0	0.689		4.5	5	106.6	09.0
	5.0	3	91.9	09.0	0.766		5.0	5	106.6	09.0
	0.5	3	91.9	0.40	0.051	· · · · · · · · · · · · · · · · · · ·	0.5	5	106.6	0.40
	1.0	3	91.9	0.40	0.102		1.0	5	106.6	0.40
Residential Area	1.5	3	91.9	0.40	0.153	Residential Area	1.5	5	106.6	0.40
with wide garden	2.0	5	91.9	0.40	0.204	with wide garden	2.0	S	106.6	0.40
	2.5	3	91.9	0.40	0.255		2.5	9	106.6	0.40
	3.0	3	91.9	0.40	0.306		3.0	5	106.6	0.40
C=0.4	3.5	3	91.9	0.40	0.357	C=0.4	3.5	5	106.6	0.40
	4.0	3	91.9	0.40	0.408		4.0	5	106.6	0.40
	4.5	5	91.9	0.40	0.460		4.5	5	106.6	0.40
	5.0	3	91.9	0.40	0.511		2.0	5	106.6	0.40

※) Q=A*R*C ∕ 360

(4) Calculation of Velocity and Depth

Table - Calculation of Velocity and Depth (Pipes)

No.	Pipe Dia.	Roughness	Catchments	Retum	Rainfall	Discharge	Discharge	Gradient	Velocity	W. Depth	Sec Area	R		Remarks
No.	φ(m)	n	Area (ha)	Period	(mm/hr)	Coefficient	Q(m3/sec)	i(%/100)	V(m/sec)	(m)	(m²)	(m)	Spec.	remand
ML6-1A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.015	2.264	0.215	0.090	0.118	DP-600	Side Ditch, (0+000~0+320)
ML6-2A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.050	3.488	0.157	0.059	0.091	DP-600	Side Ditch, (0+320~0+560)
ML6-3A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.025	2.722	0.188	0.075	0.106	DP-600	Side Ditch, (0+560~0+700)
ML6-4A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.025	2.722	0.188	0.075	0.106	DP-600	Side Ditch, (0+700~0+820)
ML6-5A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.025	2.722	0.188	0.075	0.106	DP-600	Side Ditch, (0+820~0+920)
ML6-6A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.005	1.512	0.291	0.135	0.147	DP-600	Side Ditch, (0+920~1+140)
ML6-7A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.040	3.221	0.166	0.063	0.096	DP-600	Side Ditch, (1+140~1+350)
ML6-8A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.060	3.722	0.150	0.055	0.088	DP-600	Side Ditch, (1+350~1+500)
ML6-9A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.015	2.264	0.215	0.090	0.118	DP-600	Side Ditch, (1+500~1+700)
ML6-10A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.010	1.953	0.239	0.105	0.128	DP-600	Side Ditch, (1+700~1+960)
ML6-11A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.010	1.953	0.239	0.105	0.128	DP-600	Side Ditch. (1+960~2+200)
ML6-12A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.020	2.512	0.199	0.081	0.111	DP-600	Side Ditch, (2+200~2+520)
ML6-13A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.010	1.953	0.239	0.105	0.128	DP-600	Side Ditch, (2+520~2+620)
ML6-14A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.030	2.906	0.179	0.070	0.102	DP-600	Side Ditch, (2+620~2+860)
14120 1471	, 0.007	0.010	1.0		0170									
ML6-1B	0.594	0.013	1.5	5	106.6	0.8	0.355	0.005	1.709	0.417	0.208	0.176	DP-600	Cross Drainage, (0+320)
ML6-2B	0.594	0.013	1.0	5	106.6	: 0.8	0.237	0.005	1,569	0.318	0.151	0.155	DP-600	Cross Drainage, (0+700)
ML6-3B	0.594	0.013	1.0	5	106.6	0.8	0.237	0.005	1.569	0.318	0.151	0.155	DP-600	Cross Drainage, (0+820)
ML6-4B	0.594	0.013	1.5	5	106.6	0.8	0.355	0.005	1.709	0.417	0.208	0.176	DP-600	Cross Drainage, (1+140)
ML6-5B	0.594	0.013	1.5	5	106.6	0.8	0.355	0.005	1.709	0.417	0.208	0.176	DP-600	Cross Drainage, (1+500)
ML6-6B	0.594	0.013	1.5	5	106.6	0.8	0.355	0.005	1.709	0.417	0.208	0.176	DP-600	Cross Drainage, (1+960)
ML6-7B	0.594	0.013	1.5	5	106.6	0.8	0.355	0.005	1.709	0.417	0.208	0.176	DP-600	Cross Drainage, (2+200)
ML6-8B	0.594	-		5	106.6	0.8	0.237	0.005	1.569	0.318	0.151	0.155	DP-600	Cross Drainage, (2+520)
ML6-9B	0.594	 	1.5	5	106.6	0.8	0.355	0.005	1.709	0.417	0.208	0.176	DP-600	Cross Drainage, (2+860)
LO 0.D	1 0.00 1	1 0.0.0			,			4						
ML3-1A	0.594	0.013	1.5	3	91.9	0.8	0.306	0.038	3.528	0.209	0.087	0.115	DP-600	Side Ditch, (0+000~0+540)
ML3-2A	0.594			3	91.9	0.8	0.204	0.030	2.906	0.179	0.070	0.102	DP-600	Side Ditch, (0+540~0+700)
ML3-3A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.010	1.953	0.239	0.105	0.128	DP-600	Side Ditch, (0+700~0+940)
ML3-4A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.010	1.953	0.239	0.105	0.128	DP-600	Side Ditch, (0+940~1+200)
ML3-5A	0.594			3	91.9	0.8	0.306	0.025	3.045	0.233	0.101	0.125	DP-600	Side Ditch, (1+200~1+620)
ML3-6A	0.594		1.0	3	91.9	0.8	0.204	0.015	2.264	0.215	0.090	0.118	DP-600	Side Ditch, (1+620~1+790)
				harrier -			•				***************************************	***************************************		•
ML3-1B	0.594	0.013	1.5	5	106.6	0.8	0.355	0.005	1.709	0.417	0.208	0.176	DP-600	Cross Drainage, (0+540)
ML3-1B	0.594	0.013	1.0	5	106.6	0.8	0.237	0.005	1.569	0.318	0.151	0.155	DP-600	Cross Drainage, (1+620)
ML7-1A	0.594	0.013	1.0	3	91.9	8.0	0.204	0.005	1.512	0.291	0.135	0.147	DP-600	Side Ditch, (0+000~0+160)
ML7-2A	0.594	0.013	1.0	3	91.9	8.0	0.204	0.014	2.179	0.221	0.094	0.120	DP-600	Side Ditch, (0+160~0+460)
ML7-3A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.020	2.512	0.199	0.081	0.111	DP-600	Side Ditch, (0+460~0+740)
ML7-4A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.060	3.722	0.150	0.055	0.088	DP-600	Side Ditch, (0+740~1+080)
ML7-5A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.070	3.931	0.144	0.052	0.085	DP-600	Side Ditch, (1+080~1+280)
ML7-6A	0.594	0.013	2.0	3	91.9	0.8	0.408	0.025	3.286	0.273	0.124	0.140	DP-600	Side Ditch, (1+280~1+800)
ML7-7A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.080	4.122	0.139	0.050	0.082	DP-600	Side Ditch, (1+800~1+940)
ML7-8A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.080	4.122	0.139	0.050	0.082	DP-600	Side Ditch, (1+940~2+160)
ML7-9A	0.594	0.013	1.5	3	91.9	0.8	0.306	0.010	2.170	0.301	0.141	0.150	DP-600	Side Ditch, (2+160~2+600)
ML7-10A	0.594	0.013	1.0	3	91.9	0.8	0.204	0.005	1.512	0.291	0.135	0.147	DP~600	Side Ditch, (2+600~2+980)
ML7-11A	0.594	0.013	1.5	3	91.9	0.8	0.306	0.005	1.662	0.375	0.184	0.169	DP-600	Side Ditch, (2+980~3+300)
ML7-12A		0.013	1.0	3	91.9	0.8	0.204	0.005	1.512	0.291	0.135	0.147	DP-600	Side Ditch, (2+980~3+300)
h														
ML7-1B	0.594	0.013	1.0	5	106.6	0.8	0.237	0.005	1.569	0.318	0.151	0.155	DP-600	Cross Drainage, (0+160)
ML7-2B	0.594	0.013	1.0	5	106.6	0.8	0.237	0.005	1.569	0.318	0.151	0.155	DP-600	Cross Drainage, (0+460)
ML7-3B	0.594		+	5	·	0.8	0.237	1	1.569	1	0.151	0.155	DP-600	Cross Drainage, (0+740)
ML7-4B	0.594		÷	5	÷	0.8	0.355	0.005	1.709	0.417	0.208	0.176	DP-600	Cross Drainage, (1+800)
ML7-5B	0.594			5			0.355	1	1.709	+	0.208	0.176	DP-600	Cross Drainage, (2+160)
ML7-6B	0.594		÷	5			+	-	1.709	- i	0.208	0.176		Cross Drainage, (3+300)
L.,,,, 0D	, 0.554	, 0.010			, 100.0		, 0.000	, ,,,,,,,						

^{**)} Open drainage Area is bigger than pipes, therefore calculation of open drainage should be abbreviated because of more safty than pipes.