8. Financial and Economic Analyses

8.1 Tariff Review

8.1.1 Willingness-to-Pay Survey Results

Willingness-to-pay survey was conducted from November to December in 2008 by Peninsular Group of Companies with support of JICA Team. The results are summarized as follows from the financial viewpoint (the survey aimed at the demand, too).

- (1) Domestic Consumers
- 1) NPA Supply Hours

On average, the NPA supply hours are 9.2 hours ranging from 6 to 12.8 hours by area and 1 to 24 hours by individual household. Therefore, NPA electric power is supplied only for less than 40% within a day.

2) NPA Average Consumption

On average, NPA monthly domestic consumption is 229 kWh ranging from 49 to 543 kWh by area and from 5 to 2,199 kWh by individual household.

3) NPA Payment

Average monthly payment to the NPA is 114,000 leones ranging from 42,000 to 204,000 leones by area and from 7,000 to 740,000 leones by individual household.

4) Cooking Energy

Mostly charcoal (86%) is used for cooking. Secondly, kerosene is used (11%). Thirdly, wood is used (8.6%). Of course, some use multiple energy resources for cooking.

A	Supply	Monthly	Payment/	0		Wood for
Area	Hours	kWh	M	for	for	Cooking
East 1	6.0	63.4	41,875	75.0%	12.5%	12.5%
East 2	7.2	148.0	110,118	88.9%	0.0%	11.1%
East 3	7.0	161.0	53,513	77.8%	0.0%	22.2%
West 1	11.4	49.3	53,750	75.0%	25.0%	12.5%
West 2	9.4	543.8	193,333	88.9%	11.1%	11.1%
West 3	10.4	222.9	203,715	100.0%	25.0%	0.0%
Central 1	12.8	408.7	115,522	100.0%	0.0%	0.0%
Central 2	8.9	158.9	144,886	77.8%	22.2%	0.0%
Total	9.2	228.8	114,412	85.7%	11.4%	8.6%

Table 8.1-1 Household Consumers' Energy Use

[Source] JICA Study Team

5) Lighting Energy

NPA electric power is 100% used for lighting except in Central 2 area. So it is used 97.1% on average. Secondly, self generators are used 60% on average ranging from 40% (Central 1) to 100% (East 3). Thirdly, kerosene is used 56% on average ranging from 25% (West 3) to 89% (Central 2). Of course, most consumers use multiple energy resources for lighting.

6) Willingness to Pay for 24 Hours Supply

Most domestic consumers (97%) have willingness to pay for 24 hours supply of the NPA except 22% of Central 2. On average, consumers think that they can pay 40% more ranging from 23% (West 1) to 111% (West 3) by area and from -15% to 357% by individual household if they can get NPA electric power for 24 hours a day.

Area	NPA for	Kerosene	e Generator Willingness		No	Payment
Alea	Lighting	for	for	vviiiirigriess	Willingness	Increase
East 1	100.0%	50.0%	50.0%	100.0%	0.0%	107%
East 2	100.0%	66.7%	55.6%	100.0%	0.0%	107%
East 3	100.0%	55.6%	100.0%	100.0%	0.0%	96%
West 1	100.0%	50.0%	50.0%	100.0%	0.0%	23%
West 2	100.0%	44.4%	55.6%	100.0%	0.0%	44%
West 3	100.0%	25.0%	75.0%	100.0%	0.0%	111%
Central 1	100.0%	60.0%	40.0%	100.0%	0.0%	78%
Central 2	77.8%	88.9%	55.6%	77.8%	22.2%	41%
Total	97.1%	55.7%	60.0%	97.1%	2.9%	40%

Table 8.1-2 Household Consumers' Willingness-to-Pay

[Source] JICA Study Team

7) Own Generator

60% of the total households have own generators ranging from 40% (Central 1) to 100% (East 3) by area. Consumption of fuel for the generators is 14.3 gallons per month on average ranging from 4.5 to 22 gallons per month by area and from 2 to 60 gallons per month. Average monthly costs including repair and fuel costs for the generators are 206,000 leones. Average investment cost of the generator is 1.6 million leones. Average generator capacity is 1.8 kW ranging from 1.3 (East 2) to 2.6 kW (West 2) by area and from 0.4 to 4.4 kW by individual household.

Conorator	Fuel	Maint.	Fuel Cost	Monthly	Investment	Capacity
Generator	(gall.) /M	Cost (Le) /	(Le)/M	Costs (Le)	Cost (Le)	(kW)
50.0%	4.50	25,000	56,250	81,250	875,000	1.42
55.6%	10.60	18,000	132,500	150,500	918,300	1.31
100.0%	15.11	12,222	188,889	201,111	1,388,869	1.77
50.0%	11.00	23,750	137,500	161,250	1,247,875	1.40
55.6%	13.40	22,000	167,500	189,500	2,598,132	2.57
75.0%	20.17	46,667	251,042	297,708	2,089,000	2.18
40.0%	13.00	18,750	162,500	181,250	1,552,000	2.10
55.6%	22.20	54,000	277,500	331,500	1,587,624	1.63
60.0%	14.33	26,905	179,018	205,923	1,553,657	1.82
	55.6% 100.0% 50.0% 55.6% 75.0% 40.0% 55.6%	Generator (gall.) /M 50.0% 4.50 55.6% 10.60 100.0% 15.11 50.0% 11.00 55.6% 13.40 75.0% 20.17 40.0% 13.00 55.6% 22.20	Generator (gall.) /M Cost (Le) / 50.0% 4.50 25,000 55.6% 10.60 18,000 100.0% 15.11 12,222 50.0% 11.00 23,750 55.6% 13.40 22,000 75.0% 20.17 46,667 40.0% 13.00 18,750 55.6% 22.20 54,000	Generator (gall.) /MCost (Le) / (Le)/M50.0%4.5025,00056,25055.6%10.6018,000132,500100.0%15.1112,222188,88950.0%11.0023,750137,50055.6%13.4022,000167,50075.0%20.1746,667251,04240.0%13.0018,750162,50055.6%22.2054,000277,500	Generator (gall.) /MCost (Le) / (Le)/MCosts (Le)50.0%4.5025,00056,25081,25055.6%10.6018,000132,500150,500100.0%15.1112,222188,889201,11150.0%11.0023,750137,500161,25055.6%13.4022,000167,500189,50075.0%20.1746,667251,042297,70840.0%13.0018,750162,500181,25055.6%22.2054,000277,500331,500	Generator (gall.) /M Cost (Le) / (Le)/M Costs (Le) Cost (Le) 50.0% 4.50 25,000 56,250 81,250 875,000 55.6% 10.60 18,000 132,500 150,500 918,300 100.0% 15.11 12,222 188,889 201,111 1,388,869 50.0% 11.00 23,750 137,500 161,250 1,247,875 55.6% 13.40 22,000 167,500 189,500 2,598,132 75.0% 20.17 46,667 251,042 297,708 2,089,000 40.0% 13.00 18,750 162,500 181,250 1,552,000 55.6% 22.20 54,000 277,500 331,500 1,587,624

Table 8.1-3 Household Consumers' Own Generation

[Remarks] 1Le=0.03060JPY [Source] JICA Study Team

(2) Commercial Consumers

1) NPA Supply Hour

On average, NPA supply hours are 9 hours ranging from 6.2 to 11.9 hours by area and 1 to 24 hours by individual consumer. (This result is almost similar to that of 1. Domestic consumers.) Therefore, NPA electric power is supplied only for less than 40% within a day.

2) NPA Average Consumption

On average, NPA monthly commercial consumption is 215 kWh ranging from 50 to 372 kWh by area and from 11 to 1,445 kWh by individual consumer.

3) NPA Payment

Average monthly payment to NPA is 198,000 leones ranging from 53,000 to 515,000 leones by area and from 5,000 to 3,069,000 leones by individual consumer.

4) Cooking Energy

Charcoal is used for cooking (33%). Secondly, electricity is used (5.7%). Thirdly, gas is used (4.3%). Of course, some use multiple energy resources for cooking.

Supply	Monthly	Payment/	Charcoal	Electricity	Gas for	Kerosene	Wood
Hours	kWh	Μ	for	for	Cooking	for	for
6.2	98.7	54,375	28.6%	0.0%	0.0%	14.3%	0.0%
7.3	72.8	52,895	11.1%	0.0%	0.0%	0.0%	0.0%
8.7	50.0	82,004	88.9%	0.0%	0.0%	0.0%	0.0%
7.9	153.1	168,269	50.0%	12.5%	0.0%	0.0%	0.0%
8.8	337.6	203,572	25.0%	0.0%	25.0%	0.0%	0.0%
10.3	372.1	515,166	16.7%	25.0%	0.0%	0.0%	8.3%
11.9	155.8	214,125	11.1%	0.0%	11.1%	11.1%	0.0%
10.4	182.1	244,750	37.5%	0.0%	0.0%	0.0%	0.0%
9.0	214.5	197,504	32.9%	5.7%	4.3%	2.9%	1.4%
	6.2 7.3 8.7 7.9 8.8 10.3 11.9 10.4	Supply Hours Monthly kWh 6.2 98.7 7.3 72.8 8.7 50.0 7.9 153.1 8.8 337.6 10.3 372.1 11.9 155.8 10.4 182.1	Supply Hours Monthly kWh Payment/ M 6.2 98.7 54,375 7.3 72.8 52,895 8.7 50.0 82,004 7.9 153.1 168,269 8.8 337.6 203,572 10.3 372.1 515,166 11.9 155.8 214,125 10.4 182.1 244,750	Supply Hours Monthly kWh Payment/ M Charcoal for 6.2 98.7 54,375 28.6% 7.3 72.8 52,895 11.1% 8.7 50.0 82,004 88.9% 7.9 153.1 168,269 50.0% 8.8 337.6 203,572 25.0% 10.3 372.1 515,166 16.7% 11.9 155.8 214,125 11.1% 10.4 182.1 244,750 37.5%	Supply Hours Monthly kWh Payment/ M Charcoal for Electricity for 6.2 98.7 54,375 28.6% 0.0% 7.3 72.8 52,895 11.1% 0.0% 8.7 50.0 82,004 88.9% 0.0% 7.9 153.1 168,269 50.0% 12.5% 8.8 337.6 203,572 25.0% 0.0% 10.3 372.1 515,166 16.7% 25.0% 11.9 155.8 214,125 11.1% 0.0% 10.4 182.1 244,750 37.5% 0.0%	Supply Hours Monthly kWh Payment/ M Charcoal for Electricity for Gas for Cooking 6.2 98.7 54,375 28.6% 0.0% 0.0% 7.3 72.8 52,895 11.1% 0.0% 0.0% 8.7 50.0 82,004 88.9% 0.0% 0.0% 7.9 153.1 168,269 50.0% 12.5% 0.0% 8.8 337.6 203,572 25.0% 0.0% 25.0% 10.3 372.1 515,166 16.7% 25.0% 0.0% 11.9 155.8 214,125 11.1% 0.0% 11.1% 10.4 182.1 244,750 37.5% 0.0% 0.0%	Supply Hours Monthly kWh Payment/ M Charcoal for Electricity for Gas for Cooking Kerosene for 6.2 98.7 54,375 28.6% 0.0% 0.0% 14.3% 7.3 72.8 52,895 11.1% 0.0% 0.0% 0.0% 8.7 50.0 82,004 88.9% 0.0% 0.0% 0.0% 7.9 153.1 168,269 50.0% 12.5% 0.0% 0.0% 8.8 337.6 203,572 25.0% 0.0% 0.0% 0.0% 10.3 372.1 515,166 16.7% 25.0% 0.0% 0.0% 11.9 155.8 214,125 11.1% 0.0% 11.1% 11.1% 10.4 182.1 244,750 37.5% 0.0% 0.0% 0.0%

Table 8.1-4 Commercial Consumers' Energy Use
--

[Source] JICA Study Team

5) Lighting Energy

NPA electric power is 97% used for lighting. West 3 and Central 1 areas are 92% and 89%, respectively. The other areas are 100%. Secondly, self generators are used 67% on average ranging from 0% (West 2) to 100% (East 3 and Central 2) by area. Thirdly, kerosene is used 11% ranging from 0% to 33% (East 3) by area. Of course, most consumers use multiple energy resources for lighting.

6) Willingness to Pay for 24 Hours Supply

Most commercial consumers (96%) have willingness to pay for 24 hours supply of NPA except 11% of East 2 and 8.3% of West 3. On average, commercial consumers think that they can pay 95% more ranging from 32% (West 3) to 199% (East 1) by area and from -10% to 288% by individual commercial consumer if they can get NPA electric power for 24 hours a day.

Table 8.1-5 Commercial Consumers withingness-to-1 ay										
Area	NPA for	Kerosene	Generator	Willingness	No	Payment				
	Lighting	for Lighting	for Lighting	vviiii igriess	Willingness	Increase				
East 1	100.0%	14.3%	14.3%	100.0%	0.0%	199%				
East 2	100.0%	22.2%	66.7%	88.9%	11.1%	101%				
East 3	100.0%	33.3%	100.0%	100.0%	0.0%	48.3%				
West 1	100.0%	12.5%	62.5%	100.0%	0.0%	56.6%				
West 2	100.0%	0.0%	0.0%	100.0%	0.0%	85.4%				
West 3	91.7%	8.3%	91.7%	91.7%	8.3%	32.4%				
Central 1	88.9%	0.0%	77.8%	88.9%	0.0%	60.8%				
Central 2	100.0%	0.0%	100.0%	100.0%	0.0%	46.3%				
Total	97.1%	11.4%	67.1%	95.7%	2.9%	95.2%				
10 110										

Table 8.1-5 Commercial Consumers' Willingness-to-Pay

[Source] JICA Study Team

7) Own Generator

76% of the total commercial consumers have own generators raging from 14% (East 1) to 100% (East 3 and Central 2) by area. Consumption of fuel for the generators is 48.5 gallons per month on

average ranging from 4 to 94 gallons per month by area and from 4 to 400 gallons per month by individual commercial consumer. Average monthly costs including repair and fuel costs for the generators are 1,303,000 leones. Average investment cost of the generator is 5.4 million leones. Average generator capacity is 6.96 kW ranging from 1.5 (East 2) to 22.9 kW (West 2) by area and from 0.44 to 108 kW by individual commercial consumer.

Area	Generator	Fuel (gall.) /M	Maint. Cost (Le) / M	Fuel Cost (Le)/M	Monthly Costs (Le)	Investment Cost (Le)	Capacity (kW)
East 1	14.3%	4.00	25,000	50,000	75,000	2,600,000	2.72
East 2	66.7%	16.33	14,500	204,167	218,667	1,469,517	1.47
East 3	100.0%	28.11	21,667	351,389	373,056	2,168,246	1.98
West 1	62.5%	24.80	59,000	310,000	369,000	2,348,300	2.96
West 2	75.0%	94.33	1,693,333	4,833,333	6,526,667	10,471,067	22.93
West 3	91.7%	91.55	246,364	1,144,318	1,390,682	11,971,200	12.36
Central 1	77.8%	20.86	66,429	260,714	327,143	3,128,860	2.89
Central 2	100.0%	46.38	135,000	579,688	714,688	3,638,335	3.86
Total	75.7%	48.47	283,340	1,019,575	1,302,915	5,437,568	6.96
	=-0.03060IPY			.,	.,,	0,101,000	0.00

Table 8.1-6 Commercial Consumers' Own Generation

[Remarks] 1Le=0.03060JPY [Source] JICA Study Team

(3) Institutional Consumer

1) Type of Supply

On average, 3x415v is 71% ranging from 50% to 89% by area. 11kv is 29%.

2) Transformer

On average, 97% of institutional consumers have no transformer. Only 2 institutions (3%) in Central 2 have 11kv transformers.

3) Appliances

On average, power of appliances is 10,000 watts per institution ranging from 1,530 to 24,700 watts by area and from 160 to 155,500 watts by individual institution.

A.r.o.o.	0.445.4	110	No	11kv	Appliance
Area	3x415v	11kv	Transformer	Transformer	(W)
East 1	75.0%	25.0%	100.0%	0.0%	2,454
East 2	83.3%	16.7%	100.0%	0.0%	1,527
East 3	50.0%	50.0%	100.0%	0.0%	12,328
West 1	60.0%	40.0%	100.0%	0.0%	2,711
West 2	87.5%	12.5%	100.0%	0.0%	11,108
West 3	83.3%	16.7%	100.0%	0.0%	11,062
Central 1	88.9%	11.1%	100.0%	0.0%	8,954
Central 2	50.0%	50.0%	75.0%	25.0%	24,676
Total	70.8%	29.2%	96.9%	3.1%	10,040

 Table 8.1-7
 Institutional Consumers' Electrical Demand Situation

[Source] JICA Study Team

4) Own Generator

72% of institutions have own generators, on average, ranging from 40% (West 1) to 100% (East 3) by area.

Consumption of fuel for the generators is 195 gallons per month on average ranging from 35 to 408

gallons per month by area and from 4 to 1,320 gallons per month by individual institution. Average monthly costs including repair and fuel costs for the generators are 2,772,000 leones. Average investment cost of the generator is 75 million leones. Average generator capacity is 26.7 kW ranging from 3.7 (East 1) to 49.3 kW (West 2) by area and from 1.1 to 200 kW by individual institution.

Area	Generator	Fuel	Maint. Cost	Fuel Cost	Lubricant	Monthly	Investment	Capacity	
	Generator	(gall.) /M	(Le) / M	(Le)/M	Cost (Le)/M	Costs (Le)	Cost (Le)	(kW)	
East 1	87.5%	34.9	394,286	435,714	315,429	1,145,429	4,682,857	3.7	
East 2	66.7%	75.0	52,250	937,500	41,800	1,031,550	43,625,000	11.1	
East 3	100.0%	135.3	116,500	1,691,250	93,200	1,900,950	111,672,650	36.4	
West 1	40.0%	71.0	162,500	887,500	130,000	1,180,000	13,550,000	6.1	
West 2	75.0%	408.3	80,000	5,104,167	64,000	5,248,167	106,883,333	49.3	
West 3	83.3%	274.4	190,000	3,430,000	152,000	3,772,000	139,430,000	32.4	
Central 1	66.7%	248.0	85,833	3,100,000	68,667	3,254,500	17,236,000	16.4	
Central 2	62.5%	337.6	381,000	4,220,000	304,800	4,905,800	141,800,000	47.5	
Total	72.3%	195.3	183,702	2,441,223	146,962	2,771,887	75,086,649	26.7	
D	0.020601	DV							

Table 8.1-8 Institutional Consumers' Own Generation

[Remarks] 1Le=0.03060JPY

[Source] JICA Study Team

(4) Industrial Consumer

1) Type of Supply

On average, 3 X 415V is 91% ranging from 67% to 100% by area. 11 kv is 5.5%.

2) Transformer

On average, 75% of industrial consumers have no transformer. 22% of industrial consumers have 11kv transformers.

3) Appliances

On average, power of appliances is 6,400 watts per industrial consumer ranging from 18 to 17,800 watts by area and from 0.3 to 193,545 watts by individual industrial consumer.

Table 8.1-9 Industrial Consumers Electrical Demand Situation										
Area	3x415v	11kv	No	11kv	Appliance					
Alea	374137	IIKV	Transformer	Transformer	(kW)					
East 1	77.8%	22.2%	77.8%	22.2%	24					
East 2	77.8%	0.0%	88.9%	11.1%	33					
East 3	100.0%	0.0%	80.0%	20.0%	100					
West 1	100.0%	0.0%	0.0%	50.0%	21					
West 2	100.0%	0.0%	100.0%	0.0%	43					
West 3	100.0%	0.0%	100.0%	0.0%	18					
Central 1	66.7%	33.3%	33.3%	66.7%	69					
Central 2	100.0%	0.0%	66.7%	27.8%	17,813					
Total	90.9%	5.5%	74.5%	21.8%	6,442					

Table 8.1-9 Industrial Consumers' Electrical Demand Situation

[Source] JICA Study Team

4) Own Generator

91% of industrial consumers have own generators, on average, ranging from 50% (West 1) to 100% by area.

Consumption of fuel for the generators is 873 gallons per month on average ranging from 520 to 1,621 gallons per month by area and from 20 to 7,080 gallons per month by individual industrial consumer. Average monthly costs including repair and fuel costs for the generators are 13 million

leones. Average investment cost of the generator is 261 million leones. Average generator capacity is 200 kW ranging from 96 (West 2) to 313 kW (East 2) by area and from 4.3 to 1,680 kW by individual industrial consumer.

Area	Fuel (gall.)	Fuel Cost	Maint. Cost	Lubricant	Monthly	Investment	Capacity
Alea	/M	(Le) / M	(Le)/M	Cost (Le)/M	Costs (Le)	Cost (Le)	(kW)
East 1	726	9,073,214	553,810	703,048	10,330,072	234,221,638	209.2
East 2	1,270	15,876,563	699,583	637,500	17,213,646	493,177,941	312.9
East 3	838	10,470,000	1,040,000	832,000	12,342,000	262,936,856	230.4
West 1	1,621	20,262,500	600,000	4,200,000	25,062,500	874,875,008	160.0
West 2	520	6,500,000	470,000	376,000	7,346,000	90,562,500	96.0
West 3	704	8,796,875	473,250	63,750	9,333,875	41,162,850	141.8
Central 1	1,205	15,066,667	1,313,333	361,667	16,741,667	69,408,000	249.3
Central 2	756	9,451,471	2,343,529	1,396,941	13,191,941	272,921,261	162.1
Total	873	10,917,750	1,266,187	882,007	13,065,943	260,845,701	200.3

Table 8.1-10 Industrial Consumers' Own Generation

[Remarks] 1Le=0.03060JPY

[Source] JICA Study Team

8.1.2 Comparison with NPA's Tariff

Based on the results of the survey, consumers' own generation costs are compared with the NPA's tariffs as follows.

The survey result shows the average monthly fuel cost of each category consumer and assuming 30 US cents/kWh as general generation cost, own generator demand (kWh/month) can be calculated. Then, the average generator investment cost can be exchanged to US dollars and annuitized using the following formula.

Investment cost X Discount Rate (10%) X (1+ Discount rate)^{Economic Life (year)} (1+ Discount Rate)^{Economic Life (year)} -1

The annuitized investment cost can be divided by 12 and monthly costs can be calculated. The average operation and maintenance cost (including fuel cost) obtained from the survey is added and monthly total own-generator cost can be calculated.

The old and new tariffs of the NPA are applied to each category consumer's average monthly used electricity volume of own generation calculated above and compared with the own generation cost. The result is shown in Table 8.1-11.

Own generation cost is more than NPA charges for domestic, commercial and institutional consumers. However, industrial consumers' own generation cost is less than the NPA charges, even old charges. Therefore, they may use their own generators rather than NPA power as long as the tariff of the NPA for industry is as expensive as the old tariff. The new tariff is, needless to say. The factors other than cost may be noise, air pollution and operation and maintenance work.

Category	Fuel Cost	Fuel Cost	Demand	Investment	Annuitized	O&M	Cost	NPA(old)	NPA(new)		
Calegory	Le/M	UScents/M	kWh/M	US\$/Y	US\$/M	US\$/M	US\$/M	US\$/M	US\$/M		
Household	179,018	5,631	188	129	10.7	64.8	75.5	32.1	48.2		
Commercial	1,019,575	32,072	1,069	451	37.6	410	447	280	420		
Institution	2,441,223	76,790	2,560	6,231	519	872	1,391	629	943		
Industry	10,917,750	343,426	11,448	21,645	1,804	4110	5,914	6323	9484		
[D 1 1 1]	0.020(010)	11100 07 0010	37						-		

 Table 8.1-11
 Comparison of Own Generation Costs and Corresponding NPA Charges

[Remarks] 1Le=0.03060JPY, 1US\$=97.28JPY [Source] JICA Study Team

8.2 Long-run Marginal Cost Calculation

8.2.1 Concept of Long-run Marginal Cost

According to the JBIC's "Power Tariff Theory and Analysis Handbook" (only Japanese version) published in February 2000, since the electrical market is a natural monopoly and there is no competitive pressure, it is necessary to set tariff at the price equal to "marginal cost" politically in order to attain efficient resource allocation. Long-run marginal cost is marginal cost (necessary cost to attain production increase per unit) in the long term as the capital (facility investment) changes (increases and decreases) (in the case of electricity, usually 20 years).

The guideline indicates the causes bringing about the difference of marginal cost as follows.

• Voltage class

Marginal cost is calculated depending on cost necessary to increase electrical supply and so the marginal cost differs depending on the voltage class at which each user receives electricity. Long-run marginal cost of high voltage users such as factories is cheaper than that of low voltage user households. Generally, different tariffs are imposed on voltage classes based on the marginal costs.

• Peak and off-peak

Marginal costs at peak and off-peak times differ. In particular, demand increase at peak time causes not only energy cost increase but also facility cost increase because of additional generation facility capacity need and it is the main cause of marginal cost difference between peak and off-peak times. Generally, introduction of tariffs based on the marginal cost difference between 1) peak and off-peak in a day (night time off-peak tariff) and 2) seasonal peak and off-peak in a year (such as summer tariff) is examined.

• Area

Marginal costs of a densely populated area and a rural dispersed area or areas with very different distances from the generation station differ because necessary facilities differ. If the marginal costs by areas differ very much, it is efficient to impose different tariffs by each area. However, there is a case that a nation adopts a policy to impose national uniform tariffs from the viewpoint of equity and if the uniform tariff policy is prioritized, a cross-subsidy happens.

The calculation methods of long-run marginal cost are different between generation and transmission & distribution. Marginal cost of generation includes energy cost, but that of transmission & distribution is only facility cost excluding loss. Long-run marginal cost is regarded as long-run average increment cost obtained from dividing the least facility investment cost of original investment plan by annual demand increase based on the existing demand forecast. The calculation method is described as follows.

- (1) Find A= (Present value sum of investment and O&M costs during a certain period) / (Present value sum of annual peak demand increase during the same period)
- (2) Convert A (kW) resulting from (1) above to annual value, namely annuitize $A \times i \times (1+i)^n / ((1+i)^n 1) = B k/kW/year$
- (3) Convert B in \$/kW/year resulting from (2) above to value in \$/kWh
 B/ 365days/ 24hours / Load Factor (0.65)

Long-run marginal cost of generation requires addition of fuel and variable costs calculation. It is said that the power industry is one of the plant industries and so initial investment cost is high and past accumulated investment cost becomes great. Therefore, tariffs of power operators to maintain their sound financial balance may tend to be higher than those to cover the future cost (Long-run marginal cost). In this case, it is necessary to set tariffs higher than Long-run Marginal Cost in order to continue their business.

8.2.2 Application of Long-run Marginal Cost to This Project

An example table to calculate long-run marginal cost is applied to the JICA Study using the power development plan with investment and NPA's existing financial data. The result is shown from Table 8.2-1 to Table 8.2-4.

Long-run marginal costs of generation, transmission (actually, HV&MV in the case of NPA) and distribution are summarized as follows.

Generation (Base Case: Hydro Main):	13.5	US cents/kWh
HV&MV:	3.17	US cents/kWh
Distribution:	0.48	US cents/kWh
Total:	17.2	US cents/kWh
Generation (Alternative: Thermal Main):	15.5	US cents/kWh
HV&MV:	3.17	US cents/kWh
Distribution:	0.48	US cents/kWh
Total:	19.2	US cents/kWh

Hydro Main Base Case Assumption					
Growth Rate of Peak Demand	6.5%-7.8%				
Discount Rate	10%				
Plant Cost (Million US\$)					
15MW X 0	0				
8.28MW X 3	34.9				
8.0MW X 6	82.8				
1.8MW X 21	17.4				
Yiben I	189.6				
Yiben II	245.9				

Table 8.2-1 Long-run Marginal Costs of Original Generation Development Plan (Base Case: Hydropower Main)

[Peak Demand Forecast										
	Year	Peak Demand	Incremental	Existing	New Construction	· ·	Year	Investment Costs			
2008	0	(MW) 17	Demand (MW)	Capacity (MW)	(MW)			(MUS\$)		NPV Inc. Demand N	PV Investment
2009	1	30.5	0	30.5			1	4.7		0	4.229090909
2010	2	46.7	16.2	55.0	24.5		2	23.4		13.38842975	19.35371901
2011	3	50.0	3.3	61.1	6.1		3	9.3		2.479338843	6.990232908
2012	4	53.8	3.8	62.6	1.5		4	0.8		2.59545113	0.565535141
2013	5	58.0	4.2	67.8	5.2		5	2.5		2.607869557	1.542368566
2014	6	62.5	4.5	71.2	3.4		6	4.4		2.540132685	2.492716875
2015	7	67.4	4.9	76.4	5.2		7	14.6		2.514474779	7.506476953
2016	8	72.6	5.2	83.7	7.3		8	42.2		2.425838377	19.70387222
2017	9	78.2	5.6	91.0	7.3		9	80.2		2.374946663	33.99269641
2018	10	84.1	5.9	98.2	7.2		10	77.4		2.274705408	29.8383518
2019	11	90.4	6.3	156.5	58.3		11	28.4		2.208111567	9.96699502
2020	12	. 97.0	6.6	156.2	0.0		12	0.0		2.102963397	0
2021	13	104.0	7.0	155.9	0.0		13	0.0		2.027650658	0
2022	14	111.5	7.5	155.5	0.0		14	0.0		1.974984407	0
2023	15	119.3	7.8	155.2	0.0		15	0.0		1.867257985	0
2024	16	127.6	8.3	154.9	0.0		16	0.0		1.806321827	0
2025	17	136.3	8.7	154.6	0.0		17	0.0		1.721248619	0
2026	18	145.5	9.2	157.9	3.3		18	41.3		1.654700867	7.427376645
2027	19			170.6	12.7		19	99.6		1.586027511	16.2815371
2028	20	165.4	10.2	190.0	19.4		20	93.8		1.520624315	13.93985889
	Total		134.9				otal	522.6		51.7	173.8
	PV		51.7			P\	V	173.8			
_										_	
		ty Cost for Generatior									
		Capital Expenditure fo	r Generation Investm	ent divided by Dis	counted Incrementa	I Demand			3,364 US\$/kW		
	nuitize 1)								339.3 US\$/kW/year		
3) Co	onvert 2) al	bove into US\$/kWh a	ssuming 65% load fac	ctor					5.96 cents/kWh		
		Cost (Fuel + Variable		1							
	1) Discounted fuel and variable O&M costs								lillion US\$		
2) Discounted power purchase cost from Bumbuna Hydro								lillion US\$			
	3) Discounted change (increase) in Peak Demand							51.7 M			
	above /									5170.9 U	
		unted generation								3,540,699,665.7 k	
6) Co	nvert 4) ab	ove into US\$/kWh as	suming 65% load fac	tor						7.55 U	S cents/kWh

Generation Marginal Costs	US\$/kW/year	US cents/kWh
Capacity Cost	339.3	5.96
Energy + O&M Cost + Bumbuna Purchase	5,170.9	7.55
Total	5,510.2	13.51

[Remarks] 1US\$=97.28JPY [Source] JICA Study Team

Table 8.2-2 Long-run Marginal Costs of Original Generation Development Plan (Alternative Case: Thermal Main)

Thermal Main Alternative Case Assumption				
Growth Rate of Peak Demand	6.5%-7.8%			
Discount Rate	10%			
Economic Life of Distribution System	35			
Plant Cost (Million US\$)				
15MW X 3	113.85			
8.28MW X 3	34.9			
8.0MW X10	138.0			
1.8MW X 19	15.7			

Poak Domand Forecast

	Peak Demand Forecast										
	Year	Peak Demand	Incremental	Existing	New Construction		Year	Investment Costs			
2008	0	(MW) 17	Demand (MW)	Capacity (MW)	(MW)			(MUS\$)		NPV Inc. Demand	NPV Investment
2009	1	30.5	0	00.0			1	4.7		0	4.229090909
2010	2	46.7	16.2	55.0	24.5		2	23.4		13.38842975	19.35371901
2011	3	50.0	3.3	61.1	6.1		3	9.3		2.479338843	6.990232908
2012	4	53.8	3.8	62.6	1.5		4	0.8		2.59545113	0.565535141
2013	5	58.0	4.2	67.8	5.2		5	2.5		2.607869557	1.542368566
2014	6	62.5	4.5	71.2	3.4		6	4.4		2.540132685	2.492716875
2015	7	67.4	4.9	76.4	5.2		7	14.6		2.514474779	7.506476953
2016	8	72.6	5.2	83.7	7.3		8	13.8		2.425838377	6.437801847
2017	9		5.6	91.0	7.3		9	13.8		2.374946663	5.852547134
2018	10		5.9	98.2	7.2		10	11.0		2.274705408	4.256397915
2019	11	90.4	6.3	101.4	3.2		11	4.4		2.208111567	1.54778106
2020	12		6.6	110.6	9.2		12	21.9		2.102963397	6.991397402
2021	13		7.0	124.4	13.8		13	30.4		2.027650658	8.794210569
2022	14		7.5	125.8	1.4		14	4.4		1.974984407	1.162870819
2023	15		7.8	136.7	10.9		15	17.9		1.867257985	4.294693366
2024	16		8.3	145.7	9.0		16	21.1		1.806321827	4.595021573
2025	17	136.3	8.7	159.4	13.7		17	33.9		1.721248619	6.71643082
2026	18		9.2	166.3	6.9		18	18.6		1.654700867	3.350769256
2027	19		9.7	179.8	13.5		19	33.1		1.586027511	5.415384656
2028	20	165.4	10.2	190.2	10.4		20	107.1		1.520624315	15.91861773
	Total		134.9				Total	391.3		51.7	118.0
	NPV		51.7				NPV	118.0			
Morgi	al Canadit	v Cost for Distribution								1	
		apital Expenditure for	Concration Invoctm	ont divided by Die	counted Incremente	Domo	ad		2283.9 US\$/kW		
	nuitize 1) a		Generation investin	ent divided by Dis		Demai	lu		268.3 US\$/kW/year		
		ove into US\$/kWh as	ourning 65% load for	tor					4.71 cents/kWh		
3) 00	JIIVEIL Z) al		summing 05 % load lad	101				ļ	4.71 Cerits/KWII	1	
Margir	nal Energy	Cost (Fuel + Variable	O&M) for Generation	1							
1) Disconted fuel and variable O&M costs							253.1	Million US\$			
2) Discounted power purchase cost from Bumbuna Hydro								129.0			
3) Discounted change (increase) in Peak Demand								51.7	MW		
	-2) above /									7395.0	US\$/kW
		inted generation								3,540,699,665.7	kWh
6) Co	nvert 4) ab	ove into US\$/kWh ass	uming 65% load fac	tor						10.79	US cents/kWh

Generation Marginal Costs	US\$/kW/year	US cents/kWh
Capacity Cost	268.3	4.71
Energy + O&M Cost + Bumbuna Purchase	7,395.0	10.79
Total	7,663.2	15.50

ò	
1	
0	

[Remarks] 1US\$=97.28JPY [Source] JICA Study Team

Table 8.2-3	Long-run Marginal	Cost of Transmission	(HV & MV) Development Plan

Assumption	
Growth Rate of Peak Demand	6.5%-7.8%
Discount Rate	10%
Economic Life of Transmission System	20

		and Forecast at Ent					
		Peak Demand	Incremental	Existing	New Construction	Year	Inveastment + Fixed
2008	0	(MW) 1		Capacity (MW)	(MW)		O&M Costs (MUS\$)
2009	1	30				1	0.00
2010	2	46		51.2	16.2	2	3.33
2011	3	50		54.5	3.3	3	11.70
2012	4	53		58.3	3.8	4	19.38
2013	5			62.5	4.2	5	
2014	6	62		67.0	4.5	6	
2015	7	67		71.9	4.9	7	17.96
2016		72		77.1	5.2	8	
2017	9	78		82.7	5.6	9	
2018				88.6	5.9	10	_
2019		90		94.9	6.3	11	4.38
2020	12	97		101.5	6.6	12	3.87
2021	13			108.5	7.0	13	
2022	14			116.0	7.5	14	
2023	15			123.8	7.8	15	
2024	16			132.1	8.3	16	
2025	17	136		140.8	8.7	17	
2026	18	145		150.0	9.2	18	
2027	19			159.7	9.7	19	
2028	20	165		169.9	10.2	20	
	Total		134.9			Total	146.5
	PV		51.7			PV	79.3

Marginal Capacity Cost for Transmission	
1) Discounted Capital Expenditure for Transmission Investment divided by Discounted Incremental Demand 2) Annuitize 1) above	1,535 US\$/kW 180.3 US\$/kWh/year
3) Convert 2) above into US\$/kWh assuming 65% load factor	3.17 cents/kWh

Table 8.2-4Long-run Marginal Cost of Distribution Development Plan

Assumption	
Growth Rate of Peak Demand	6.5%-7.8%
Discount Rate	10%
Economic Life of Distribution System	35

	Peak Dem	and Forecast at En	ry to Di	stribution Syste	em (e.g. 33kV sys			
	Year	Peak Demand	Incr	emental	Existing	New Construction	Year	Inveastment + Fixed
2008	0	(MW) 1	7 Den	nand (MW)	Capacity (MW)	(MW)		O&M Costs (MUS\$)
2009	1	30		0			1	0.0
2010	2	46	.7	16.2	51.2	16.2	2	0.0
2011	3	50	.0	3.3	54.5	3.3	3	1.0
2012	4	53		3.8	58.3	3.8	4	1.5
2013	5			4.2	62.5	4.2	5	2.0
2014	6	-		4.5	67.0	4.5	6	2.0
2015	7	67		4.9	71.9	4.9	7	2.0
2016	8			5.2	77.1	5.2	8	0.4
2017	9	-		5.6	82.7	5.6	9	3.1
2018	10	-		5.9	88.6	5.9	10	6.3
2019	11			6.3	94.9	6.3	11	2.2
2020	12	-		6.6	101.5	6.6	12	1.5
2021	13			7.0	108.5	7.0	13	1.0
2022	14			7.5	116.0	7.5	14	1.0
2023	15			7.8	123.8	7.8	15	1.1
2024	16			8.3	132.1	8.3	16	1.1
2025	17			8.7	140.8	8.7	17	2.1
2026	18			9.2	150.0	9.2	18	
2027	19			9.7	159.7	9.7	19	
2028	20	165	.4	10.2	169.9	10.2	20	
	Total			134.9			Total	28.6
	NPV			51.7			NPV	12.0

Varginal Capacity Cost for Distribution	
1) Discounted Capital Expenditure for Distribution Investment divided by Discounted Incremental Demand	231.6 US\$/kW
2) Annuitize 1) above	27.2 US\$/kWh/year
	-
3) Convert 2) above into US\$/kWh assuming 65% load factor	0.48 cents/kWh

[Remarks] 1US\$=97.28JPY [Source] JICA Study Team

In these tables, peak and off-peak times are not distinguished because Sierra Leone is in the situation requiring simpler tariffs and cheaper meters (which do not respond to tariffs depending on the peak and off-peak times). Furthermore, it is generally indicated to estimate border prices converted from market prices of costs in order to exclude effects of the national policy distorting economic efficiency, but in this study, most procured equipment and materials are imported from abroad without tax and local cost share is small and so prices are not converted.

The long-run marginal costs calculated cannot be just adopted directly. Financial estimate of NPA in the future is necessary.

8.3 Comparison of NPA Tariffs with International Level

Japan External Trade Organization (JETRO) that is a governmental agency in Japan publishes JETRO Sensor as monthly journal. Its December 2006 special edition shows costs of worldwide cities including electricity cost. It is limited to the household user's viewpoint, but the result is summarized in Table 8.3-1. The costs of the other cities are cheaper than those of Freetown, even the old NPA tariff. JETRO Sensor published newer data as of January 2008 but limited to Asian major cities. The tariffs for domestic users are shown in Table 8.3-2. Tariffs comparable to Freetown's are Tokyo's (15 – 21 cents/kWh), Manila's (19 cents/kWh), Kuala Lumpur's (22 cents/kWh) and Singapore's (16 cents/kWh). Assuming household users in Freetown use 200 kWh a month, the average tariff is 20 cents/kWh as old tariff or 28 cents/kWh as new tariff in Freetown. Therefore, the new tariff of NPA is very expensive.

r	`````	/	city cost in worldwide Capital Cities
Country	Capital	Cost	Note
Korea	Seoul	2,090	For domestic
China	Beijing	1,380	
Vietnam	Hanoi	1,253	
Thailand	Bangkok	1,788	
Malaysia	Kuala Lumpur	1,341	
Singapore		2,129	For domestic excluding tax
Indonesia	Jakarta	1,458	
Bangladesh	Dhaka	1,890	
India	New Delhi	2,155	Including service charge and tax
Pakistan	Karachi	2,261	
Peru	Lima	2,175	
Brazil	Sao Paulo	3,547	
Chile	Santiago	3,047	For domestic
Argentina	Buenos Aires	939	
Turkey	Istanbul	2,228	
Nigeria	Lagos	480	
South Africa	Johannesburg	1,080	
Sierra Leone	Freetown	3,384	For domestic (old tariff) excluding service charge
	Freetown	5,080	For domestic (new tariff) excluding service charge

Table 8.3-1 (Domestic) Electricity Cost in Worldwide Capital Cities

[Note] Electricity cost is amount per 200 kWh.

Cost currency is Japanese yen almost equal to US cent in 2009.

Cost is as of 2006 except Sierra Leone

[Source] Modified from JETRO, "JETRO Sensor," December 2006

Country	Capital	Tariff for Household	Remarks
Japan	Tokyo	2.53 - 15.19	Contract current (10A - 60A)
Japan	ТОКУО	0.15 - 0.21	Different depending on used kWh
Korea	Seoul	5.50/kW	Contract kW: <1,000kW
		0.07	
China	Beijing	0	
	, ,	0.07	
The Philippines	Manila	0.12	Monthly use 201 - 300kWh
		0.10	
Vietnam	Hanoi	0.034 - 0.11	
Thailand	Bangkok	1.23	Monthly use 150kWh<
Indianu	Банукок	0.05:1-150kWh, 0.08: 151-400kWh, 0.09: 400kWh<	
Malaysia	Kuala Lumpur	0	
Malayola		0.22	
Singapore		0.1583	Excluding GST (7%)
-	1		<2,200VA
Indonesia	Jakarta		60kWh<
			Including VAT (5%)
Bangladesh	Dhaka		Different depending on kWh
اسمانم	New Delhi	0.31/kW	
India	New Deini	0.06-0.12	Different depending on used kWh
Sri Lanka	Colombo		Including fuel control tax (20%, =<90kWh) different
	Colonibo		depending on used and contract kWhs, VAT exempted
Pakistan	Karachi		Different depending on unit number, including sales tax
			(15%), additionally 0.14-0.37 for monthly meter rental
	1		Old tariff
Sierra Leone	Freetown	0.124: <30kWh, 0.178: 30-150kWh, 0.282: 150kWh<	Minimum US\$3.727
		=	New tariff
	1	0.187: <30kWh, 0.267: 30-150kWh, 0.355: 150kWh<	IVIINIMUM US\$5.59

Table 8.3-2 Domestic Electricity Tariffs in Asian Capital Cities

[Note] The upper row shows the service charge and the lower row shows the charge per kWh.

The currency is US dollar.

Tariffs are as of January 2008 except Sierra Leone

[Source] Modified from JETRO, "Comparison of Investment Related Costs in Asian Major Cities and Regions," 'JETRO Sensor,' June 2008

The JETRO Sensor article displays tariffs for industrial consumers in Table 8.3-3. The tariffs per kWh are expensive in Manila (13 cents/kWh), Singapore (14 cents/kWh), New Delhi (13 cents/kWh) and Colombo (15 - 20 cents/kWh, but in peak time), but the NPA's are much more expensive (31 cents/kWh as old tariff and 47 cents/kWh as new tariff).

Expensive electricity for industry impedes foreign direct investment and export and weakens international competitiveness of Sierra Leone. Therefore, it is necessary to decrease the NPA's tariffs for industry.

Japan Tokyo 14.22 Special high voltage (10kv=< <50kv)		Idole	8.3-3 Electricity failing for model	
Japan 10kyo 0.082 0.09 for summer season (from July to September) Korea Seoul 0.082 0.09 for summer season (from July to September) Korea Seoul 0.06 From Nov. to Feb. (different depending on the season China Beijing 0.04 - 0.1 The Philippines Manila 0.143 - 0.1 Vietnam Hanoi 0.049 - 0.056 Depending on the type of industry and used kWh Thailand Bangkok 0.688 Additional demand charge 2.24/kW at peak time (9 to 0.068 Thailand Bangkok 0.069 22 from Monday to Friday) <64kV	Country	Capital	Tariff for Industry	Remarks
Korea Seoul 0.080 for summer season (from July to September) Korea Seoul 0.06 From Nov. to Feb. (different depending on the season China Beijing 0.06 From Nov. to Feb. (different depending on the season China Beijing 0.04 - 0.1 The Philippines Manila 0.04 - 0.1 Vietnam Hanoi 0 Thailand Bangkok 0.049 - 0.056 Malaysia Kuala Lumpur 0.049 - 0.056 Singapore 0.01417 - 0.1428 Mania 0.07 Singapore 0.1417 - 0.1428 Mania 0.02 - 0.052 Bangladesh Dhaka Dhaka 0.02 - 0.052 Dhaka 0.02 - 0.028 Different depending on the used kWh India New Delhi Sri Lanka Colombo 2.22: <10kVA, 4.62: <42kVA, 27.73: 42kVA	lanan	Tokyo	14.22	Special high voltage (10kv=< <50kv)
Korea Seoul 4.46/kw <300kW including VAT China Beijing 0 6 China Beijing 0 0 The Philippines Manila 0.13 0 Vietnam Hanoi 0 0 Thailand Bangkok 0.049 - 0.056 Depending on the type of industry and used kWh Thailand Bangkok 0.088 Additional demand charge 2.24/kW at peak time (9 to 0.088 Malaysia Kuala Lumpur 5.99/kW 22 from Monday to Friday) <64kV	Japan	ТОКУО	0.082	0.09 for summer season (from July to September)
KotedSecul0.06From Nov. to Feb. (different depending on the season 0ChinaBeijing00The PhilippinesManila23.98+10.42/kW 0.13VietnamHanoi00ThailandBangkok6.88Additional demand charge 2.24/kW at peak time (9 to 0.0560.066ThailandBangkok0.88Additional demand charge 2.24/kW at peak time (9 to 0.07MalaysiaKuala Lumpur5.99/kW 0.07Singapore0.1417 - 0.1428IndonesiaJakarta0.02 - 0.08Dhaka0.02 - 0.08Different depending on the used kWhIndiaNew DelhiSri LankaColomboPakistanKarachiKarachi0.05 - 0.20; peak contract kWhs, taxes exempted 0.06 - 0.073; off-peak, 0.15 - 0.20; peak contract kWhs, taxes exempted 0.06 - 0.11Sierra LeoneFreetownFreetown18.62+0.724/kWNew tariff	Kanaa	Casul	4.46/kw	<300kW including VAT
The Philippines Manila 23.98+10.42/kW Vietnam Hanoi 0 Vietnam Hanoi 0 Thailand Bangkok 6.88 Malaysia Kuala Lumpur 6.88 Singapore 0.1417 - 0.1428 excluding GST Indonesia Jakarta 0.09 2008 VA=< , <350 hours/month	Korea	Seoul		
The Philippines Manila 23.98+10.42/kW Vietnam Hanoi 0 Vietnam Hanoi 0 Thailand Bangkok 6.88 Malaysia Kuala Lumpur 6.88 Singapore 0.1417 - 0.1428 excluding GST Indonesia Jakarta 0.09 2008 VA=< , <350 hours/month	China	Deiline	0	
The Philippines Manifa 0.13 Vietnam Hanoi 0 Thailand Bangkok 6.88 Malaysia Kuala Lumpur 6.88 Malaysia Kuala Lumpur 5.99/kW Singapore 0.1417 - 0.1428 excluding GST Indonesia Jakarta 0.13 Bangladesh Dhaka 0.072 - 0.08 Dhaka 0.02 - 0.08 Different depending on the used kWh India New Delhi 0.13 Sri Lanka Colombo 2.22: <10kVA, 4.62: <42kVA, 27.73: 42kVA<	China	Beijing	0.04 - 0.1	
Vietnam Hanoi 0.13 Vietnam Hanoi 0.049 - 0.056 Depending on the type of industry and used kWh Thailand Bangkok 6.88 Additional demand charge 2.24/kW at peak time (9 to 0.08 Malaysia Kuala Lumpur 5.99/kW Singapore 4.93/kW Within the contract kW (7.39/kW for excess), excluding GST Indonesia Jakarta 0.1417 - 0.1428 excluding GST Indonesia Jakarta 0.02 - 0.08 Different depending on the used kWh India New Delhi 0.128/kW 0.13 Sri Lanka Colombo 2.22: <10kVA, 4.62: <42kVA, 27.73: 42kVA	The Dhilingines	N 4	23.98+10.42/kW	
Thailand Bangkok 0.049 - 0.056 Depending on the type of industry and used kWh Thailand Bangkok 0.08 22 from Monday to Friday) <64kV	The Philippines	Manila	0.13	
Thailand Bangkok 0.049 - 0.056 Depending on the type of industry and used kWh Thailand Bangkok 0.08 22 from Monday to Friday) <64kV	\/: a tra a rea	Llana:	0	
Thailand Bangkok 6.88 Additional demand charge 2.24/kW at peak time (9 to 0.08 Malaysia Kuala Lumpur 5.99/kW Singapore 4.93/kW Within the contract kW (7.39/kW for excess), 0.1417 - 0.1428 Indonesia Jakarta 3.14 Bangladesh Dhaka 0.09 India New Delhi 0.02 - 0.08 Sri Lanka Colombo 2.22: <10kVA, 4.62: <42kVA, 27.73: 42kVA	vietnam	Hanoi	0.049 - 0.056	Depending on the type of industry and used kWh
Malaysia Kuala Lumpur 5.99/kW Singapore 0.07 Singapore 0.1417 - 0.1428 Indonesia Jakarta 0.09 Bangladesh Dhaka 0.02 - 0.08 Dhaka 0.02 - 0.08 Different depending on the used kWh India New Delhi 0.13 Sri Lanka Colombo 2.22: <10kVA, 4.62: <42kVA, 27.73: 42kVA	Theilend	Demakak		
Malaysia Kuala Lumpur 5.99/kW Singapore 4.93/kW Within the contract kW (7.39/kW for excess), excluding GST Indonesia Jakarta 0.1417 - 0.1428 excluding GST Indonesia Jakarta 200kVA=< , <350 hours/month	Thalland	вапдкок	0.08	22 from Monday to Friday) <64kV
Singapore 0.007 Model and the second seco	Malavaia			
Singapore 0.1417 - 0.1428 excluding GST Indonesia Jakarta 3.14 200kVA=<, <350 hours/month	walaysia	Kuala Lumpur		
0.1417 - 0.1428 [excluding GS1] Indonesia Jakarta 0.09 200kVA=< , <350 hours/month	Cinganara		4.93/kW	Within the contract kW (7.39/kW for excess),
Bangladesh Dhaka 8.73 Including VAT (5%), India 0.02 - 0.08 Different depending on the used kWh India New Delhi 1.28/kW 0.13 Sri Lanka Colombo 2.22: <10kVA, 4.62: <42kVA, 27.73: 42kVA	Singapore		0.1417 - 0.1428	excluding GST
Bangladesh Dhaka 8.73 Including VAT (5%), India 0.02 - 0.08 Different depending on the used kWh India New Delhi 1.28/kW 0.13 Sri Lanka Colombo 2.22: <10kVA, 4.62: <42kVA, 27.73: 42kVA	Indonasia	lakarta	3.14	200k) (A = < <250 baura/manth
Bangladesh Dhaka 0.02 - 0.08 Different depending on the used kWh India New Delhi 0.13 0.13 Sri Lanka Colombo 2.22: <10kVA, 4.62: <42kVA, 27.73: 42kVA	muonesia	Jakalla	0.09	
India New Delhi 1.28/kW Sri Lanka Colombo 2.22: <10kVA, 4.62: <42kVA, 27.73: 42kVA	Panaladaah	Dhaka	8.73	Including VAT (5%),
India New Delhi 1.28/kW 0.13 0.13 Sri Lanka Colombo 2.22: <10kVA, 4.62: <42kVA, 27.73: 42kVA	Dariyiauesii	Dilaka	0.02 - 0.08	Different depending on the used kWh
0.13 Sri Lanka Colombo 2.22: <10kVA, 4.62: <42kVA, 27.73: 42kVA	India	Now Dolhi		
One of the second contract Contract with second contract kWhs, taxes exempted Pakistan 5.02 - 5.52 Different depending on the used unit number, including Pakistan 0.066 - 0.073: off-peak, 0.15 - 0.20: peak contract kWhs, taxes exempted Pakistan 5.02 - 5.52 Different depending on the used unit number, including 0.066 - 0.11 sales tax (15%), additionally 0.14-0.37 for monthly 12.41+0.4827/kW Old tariff Sierra Leone Freetown 18.62+0.724/kW New tariff	mula	New Deini	0.13	
One of the second contract Contract with second contract kWhs, taxes exempted Pakistan 5.02 - 5.52 Different depending on the used unit number, including Pakistan 0.066 - 0.073: off-peak, 0.15 - 0.20: peak contract kWhs, taxes exempted Pakistan 5.02 - 5.52 Different depending on the used unit number, including 0.066 - 0.11 sales tax (15%), additionally 0.14-0.37 for monthly 12.41+0.4827/kW Old tariff Sierra Leone Freetown 18.62+0.724/kW New tariff	Sri Lonko	Colombo	2.22: <10kVA, 4.62: <42kVA, 27.73: 42kVA<	Depending on the max. instanteneous used and
Calactin 0.06 - 0.11 sales tax (15%), additionally 0.14-0.37 for monthly 12.41+0.4827/kW Old tariff Sierra Leone Freetown 18.62+0.724/kW New tariff	SILLAIIKA	COlOIIDO	0.066 - 0.073: off-peak, 0.15 - 0.20: peak	contract kWhs, taxes exempted
0.06 - 0.11 sales tax (15%), additionally 0.14-0.37 for monthly 12.41+0.4827/kW Old tariff 0.3137 Minimum 39.43Le 18.62+0.724/kW New tariff	Dakiatan	Karaahi	5.02 - 5.52	Different depending on the used unit number, including
Sierra Leone Freetown 12.41+0.4827/kW Old tariff 0.3137 Minimum 39.43Le 18.62+0.724/kW New tariff	Fakislall	Naracili	0.06 - 0.11	sales tax (15%), additionally 0.14-0.37 for monthly
18.62+0.724/kW New tariff			12.41+0.4827/kW	Old tariff
18.62+0.724/kW New tariff	Siorra Loono	Freetown	0.3137	Minimum 39.43Le
0.4707 Minimum 59.15Le	Sierra Leone		18.62+0.724/kW	New tariff
			0.4707	Minimum 59.15Le

 Table 8.3-3
 Electricity Tariffs for Industry in Asian Capital Cities

[Note] The upper row shows the service charge and the lower row shows the charge per kWh. The currency is US dollar.

Tariffs are as of January 2008 except Sierra Leone

[Source] Modified from JETRO, "Comparison of Investment Related Costs in Asian Major Cities and Regions," 'JETRO Sensor,' June 2008

8.4 Financial Estimate Based on Power Development Plan

8.4.1 Estimate Model Structure

Based on the power development plan, a financial estimate model of the NPA for the future is prepared. It starts from 2009 and continues until 2030. The revenue of the NPA in 2009 is estimated from the sale data from January to April except February. The other income is assumed to be 10% of sale based on the past data. The expenditure is estimated based on the past data, too. Bumbuna hydropower is assumed to begin supply power from December, 2009. The purchase price is set at 7 US cents/kWh, but it can be changed in the model calculation. In addition, the currency used is US dollar. The exchange rate is 3,179.07 Le/US\$ according to the rate of Bank of Sierra Leone as of June 3, 2009. The other assumptions are as follows.

• Revenue

The past tariff (before the raise in December, 2008) of the NPA is set, but increase rate (e.g. 120% shows 120% of the past tariff) can be changed (e.g. 100% is the same as the past tariff). The tariff is multiplied by demand in each consumer category based on the demand forecast except industrial consumer category for which 93.5% is set because the industrial tariff is necessary to be competitive with own generation based on the willingness to pay survey result. Furthermore, institution users are included in commercial users. However, it is assumed that the rates of system loss and collection (namely arrears) are 40% and 70% in 2009 and would be improved to 15% and 95% in 2025 (transmission and distribution investment completion), respectively, improving proportionately between 2009 and 2025.

• Expenditure

General administration and payroll costs are supposed to change proportionately to the revenue. Operation and maintenance costs for new facilities and fuel cost are based on the power development plan. Income electric generation (payment) will continue until February 2011 and capacity charge (US\$ 100,000 per month) will be paid to Income Electric until accumulated monthly payment becomes US\$ 12 million

• Depreciation

The existing asset depreciation is calculated based on the NPA asset data. Lifetimes are as follows.

Building: 50 or 30 years Diesel generator (middle-speed): 20 years Transmission and distribution facility: 20 years General and office equipment and furniture: 5 years Vehicle: 4 years

Lifetimes of the new investment facilities are as follows. Low-speed generator: 30 years High-speed generator: 10 years Hydropower facilities: 50 years

Scrap value is null and depreciation is linear.

• Long-term liability

The existing long-term liabilities such as EU's and IDA's have not been repaid because the NPA has had deficits. When the NPA gets profits, interest payment and repayment of the existing long-term liabilities would be started at once. The conditions are as follows.

EU: 15 years for repayment and 2% as interest rate IDA: 20 years for repayment with 5 years grace period and 7.75% as interest rate BADEA and Saudi Fund: 30 years for repayment with 10 years grace period and 1% as interest rate

New investment in the power development plan of this study is assumed to be funded as follows based on the Bumbuna Hydroelectric Company loan by the AfDB and other donors and Power and Water project loan of the IDA.

Yiben Hydroelectric Generation: 40 years repayment with 10 years grace period and 2% interest rate Other investment (diesel and distribution): 20 years repayment with 5 years grace period and 5% interest rate

• After profit

Corporate tax is 28%. Dividend is 10%. Commercial bank interests for lending and saving are 15% and 4%, respectively.

The power development plan shows two cases. One is Hydro Dominant Case and the other is Thermal Dominant Case. Therefore, the financial estimate models are prepared for these two cases with the assumptions above. In addition, another model is prepared in the case that Yiben I and II would be constructed and operated by Bumbuna Hydropower Company and their generated power would be purchased by the NPA at the same price of Bumbuna's (Yiben IPP Case).

8.4.2 Model Calculation Results

The model calculation results are shown from Table 8.4.1 to Table 8.4-3.

Table 8.4-1 is Hydro Dominant Case in which Bumbuna price is 7 cents/kWh and NPA tariffs are 130% of the past tariffs (before December 2008), or approximately 27 cents/kWh on average (22.6 cents/kWh for household, 34.1 cents/kWh for commercial users and 27.7 cents/kWh for industrial users). The result shows that Net Present Value (NPV) (discount rate 10%) from 2009 to 2030 is US\$ 41 million and DSCR (Debt Service Coverage Ratio)¹ is from 0.43 in 2009, to 116.1 in 2016 at the maximum and to 0.25 in 2030. If Bumbuna price becomes 10 cents/kWh, the NPA tariff increase rate needs to be 165% (32~30 cents/kWh for industrial users) in order to keep DSCR sound (0.46~61.7~0.21). In this case, NPV (discount rate 10%) is US\$ 74 million. If Bumbuna price becomes 20 cents/kWh, NPA tariff increase rate needs to be 280% (50~46 cents/kWh on average, 48.7 cents/kWh for household, 73.4 cents/kWh for commercial users and 27.7 cents/kWh for industrial users) in order to keep DSCR sound (0.56~8.33~0.14). NPV becomes US\$ 180 million in this case.

Although Bumbuna purchase price is set at 7 cents/kWh, why do the NPA tariffs become expensive like 27 cents/kWh on average? There are several reasons, but what seems most important is system loss and collection rates (arrears). Those are set at 40% and 70% in 2009 and would be improved to 15% and 95% in 2025, respectively. If 40% and 70% in 2009 are changed to 15% and 95%, the NPA tariff change rate can be decreased to 80% (19 cents/kWh on average, 13.9cents/kWh for household, 21 cents/kWh for commercial users and 27.7 cents/kWh for industrial users). In this case, NPV is US\$ 5 million. DSCR is 0.43~15.5~0.38. The issue of system loss and collection rates is explained as follows.

If the hydropower generation cost is 7 cents/kWh and system loss and collection rates are 15% and 95%, respectively, tariff to cover the generation cost will become 8.7 cents/kWh (7/(1-0.15)/0.95=8.7) excluding other costs. However, if the system loss and collection rates are 40% and 70%, respectively, tariff to cover the generation cost will become 16.7 cents/kWh (7/(1-0.4)/0.7=16.7), more than twice the generation cost. Therefore, the NPA tariffs are critically depending on the purchase price of Bumbuna power, system loss and collection rate (arrears).

If the existing long-term liabilities of the NPA such as EU's, IDA's and others are transferred to the government to privatize the NPA, the tariffs will need to be 115% up (24~25 cents/kWh on average, 20.0 cents/kWh for household, 30.1 cents/kWh for commercial users and 27.7 cents/kWh for industrial users). NPV (discount rate 10%) is US\$ 1 million and DSCR is 0~1.03~0.29. However, new investment is supposed to be funded by soft loan such as IDA's in this case.

Table 8-4-2 shows the Thermal Dominant Case result. Although the conditions are similar to those in Table 8-4-1, NPA tariffs need to be 155% up of old tariffs (30 cents/kWh on average, 27.0 cents/kWh for household, 40.6 cents/kWh for commercial users and 27.7 cents/kWh for industrial users), more than that of Hydro Dominant Case, and NPV (10%) is US\$ 9 million, less than that of Hydro Dominant Case. DSCR is 0.43~1.97~0.82.

Table 8-4-3 is the result of Yiben IPP Case. The NPA tariff increase rate needs to be 135% (27 cents/kWh on average, 23.5 cents/kWh for household, 35.4 cents/kWh for commercial users and 27.7 cents/kWh for industrial users) and NPV (10%) is US\$ 54 million. DSCR is 0.43~11.6~0.26.

¹ Debt Service Coverage Ratio is defined as (annual repayment plus interest payment)/(annual profit). Although it depends on the situation, $DSCR=1.2 \sim 1.3$ is considered desirable usually.

Table 8.4-1	Financial Estimate of the NPA (Base Case: Hydropower Dominant)

																					mt. U		
100-1-0470	year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
US\$= Le 3179 Bumbuna c/kWh 7.0 Household c/kWh 22.6 Comm. c/kWh 34.1 Indust. c/kWh 27.7 Indust. c/kW 42.6 Increase rate 130%	Assets Vility Plant Capital Lease Investment & Other Assets Current Assets Accounts Receivables	9,903	51,102	65,501	82,227	96,786	115,905	149,268	173,780	191,893	205,140	380,772	380,439	362,390	353,846	335,652	317,729	306,818	290,551	288,934	275,063	272,839	498,346
Interest: 4.0%	Cash and Cash Equivalent	3,517	536	-1,243	-2,389	-3,755	-5,166	-6,554	-8,142	-10,429	-23,095	-19,122	-12,028	1,705	30,011	60,137	94,227	133,953	173,872	213,473	252,528	285,082	342,664
	Total Assets	13,419	51,638	64,257	79,838	93,031	110,740	142,715	165,638	181,465	182,045	361,650	368,411	364,095	383,857	395,789	411,956	440,771	464,423	502,407	527,591	557,921	841,010
Interest: 15.0%	<capital Capital Retained Earnings Total <clabilities> Short Term Debt Long Term Debt</clabilities></capital 	1 5,109 5,110 0 36,240	1 <u>3,737</u> 3,738 0 59.615	1 <u>1,343</u> 1,343 1,243 74,793	1 -1,289 -1,288 2,389 93 465	1 - <u>5,164</u> -5,163 3,755 110 933	1 - <u>10,095</u> -10,094 5,166 134,073	1 - <u>16,167</u> - <u>16,166</u> 6,554 173,480	1 -24,265 -24,265 8,142 205,052	1 -33,356 -33,356 10,429 228,014	1 -42,704 -42,704 23,095 248,620	1 -22,336 -22,335 19,122 436,474	1 -2,541 -2,540 12,028 446,327	1 19,270 19,270 0 432,063	1 45,452 45,453 0 425,827	1 75,059 75,060 0 407,986	1 108,902 108,902 0 390 145	1 147,591 147,592 0 380 730	1 186,262 186,262 0 365,546	1 225,293 225,294 0 364 474	1 262,840 262,840 0 351,945	1 299,898 299,898 0 345 191	1 361,292 361,293 0 574,096
	Total Capital and Liabilities	41,350	63,353	77,379	94,565	109,524	129,144	163,867	188,929	205,086	229,011	433,261	455,815	451,334	471,280	483,046	499,048	528,322	551,808	589,767	614,785	645,089	935,389
	<profit and="" loss=""> Revenue Sale Other Total Revenue</profit>	21,903 2,190 24,093	30,792 3,079 33,871	34,597 3,460 38,057	38,990 3,899 42,889	43,937 4,394 48,330	49,475 4,948 54,423	55,646 5,565 61,211	62,494 6,249 68,743	70,065 7,006 77,071	78,411 7,841 86,252	87,587 8,759 96,346	97,651 9,765 107,416	108,667 10,867 119,534	120,704 12,070 132,775	133,835 13,384 147,219	148,141 14,814 162,955	163,708 16,371 180,078	174,499 17,450 191,949	185,840 18,584 204,424	197,760 19,776 217,536	210,291 21,029 231,321	223,473 22,347 245,820
	Operation, Maintenance and General Expenses New O & M Expenses Fuel C Expenses Payoli Expenses (Admin. & Gen. And Oper. & Maint.) Depreciation and Amortization Others Total Operation, Maintenance and General Expenses Operating Profit	0 5,348 2,795 3,171 824 2,322 14,460 9,633	1,247 7,436 3,929 4,458 807 <u>15,459</u> <u>33,336</u> 535	1,490 8,478 4,415 5,009 3,031 <u>16,028</u> <u>38,451</u> - <u>394</u>	1,778 10,255 4,975 5,645 3,902 <u>16,608</u> 43,164 -275	2,129 12,592 5,607 6,361 4,925 17,126 48,740 -409	2,516 15,149 6,313 7,163 5,936 17,659 54,737 -314	2,944 17,741 7,101 8,057 7,265 18,185 61,293 -82	3,415 20,010 7,975 9,048 9,488 18,711 68,647 96	3,948 22,784 8,941 10,144 11,188 <u>19,141</u> 76,146 925	4,560 26,088 10,006 11,353 12,653 19,429 84,089 2,164	1,068 14 11,177 12,681 13,948 14,726 53,615 42,731	1,089 50 12,461 14,138 17,632 17,172 62,543 44,873	1,168 438 13,867 15,733 18,049 20,159 69,415 50,120	1,342 1,398 15,403 17,476 18,044 21,397 75,060 57,715	1,581 2,746 17,079 19,377 18,194 22,579 81,556 65,663	1,860 4,310 18,904 21,449 17,923 23,770 88,215 74,740	2,171 6,066 20,891 23,702 17,712 24,165 94,707 85,371	2,562 8,381 22,268 25,265 17,922 26,234 102,633 89,317	3,129 11,853 23,715 26,907 17,901 27,325 110,829 93,595	3,861 16,976 25,236 28,633 18,839 28,169 121,714 95,822	4,706 22,559 26,835 30,447 19,336 28,701 132,584 98,736	3,087 6,214 28,517 32,356 20,357 14,657 105,188 140,632
	Other Income and Expenses Other Income Interest Income Other Income Total Other Expenses Interest Expenses	0 0 1,749	141 0 141 1,632	21 0 21 1,873	0 0 2,356	0 0 3,466	0 0 4,617	0 0 5,990	0 0 0 8,195	0 0 10.016	0 0 11,512	0 0 14,442	0 0 17,380	0 0 16,853	68 0 68 14,404	1,200 0 1,200 14,160	2,405 0 2,405 13,336	3,769 0 3,769 12,629	5,358 0 5,358 12,222	6,955 0 6,955 11,572	8,539 0 8,539 11,651	10,101 0 10,101 11,088	11,403 0 11,403 11,009
	Other Expense Total	0	1,632	1,873	2,356	3,466	4,617	5,990 0 5,990	8,195	10,010	0 11,512	0	0	0 16,853	0	0	0	0 12,629	0	0 11,572	0	0 11,088	0 11,009
Tax Rate: 28.0%	Net Income before Tax Income Tax Net Income after Tax	7,884 2,208 5,677	-956 0	-2,245 0 -2 245	-2,631 0 -2 631	-3,875 0 -3,875	-4,931 0 -4 931	-6,072 0 -6.072	-8,099 0 -8,099	-9,091 0 -9.091	-9,348 0 -9,348	28,289 7,921 20,368	27,493 7,698 19,795	33,266 9,315 23,952	43,379 12,146 31,233	52,704 14,757 37,947	63,810 17,867 45,943	76,511 21,423 55,088	82,453 23,087 59,366	88,978 24,914 64,064	92,710 25,959 66,751	97,750 27,370 70,380	141,026 39,487 101,538
Dividend Ratio: 10.0%	Retained Earnings at Beginning (Dividends) Retained Earnings at End	0 568 5,109	5,109 415 3,737	3,737 149 1.343	1,343	-1,289	-5,164	-10,095 0	-16,167 0 -24,265	-24,265	-33,356 0	-42,704	-22,336	-2,541 2,141 19,270	19,270 5,050 45,452	45,452 8,340 75,059	75,059 12,100 108,902	108,902 16,399 147,591	147,591 20,696 186,262	186,262 25,033 225,293	225,293 29,204 262,840	262,840 33,322 299,898	299,898 40,144 361,292
	<cashflow></cashflow>	0,100	0,101	1,010	1,200	0,101	10,000	10,107	24,200	00,000	42,104	22,000	2,011	10,270	40,402	10,000	100,002	147,001	100,202	220,200	202,040	200,000	001,202
	Cashflow from Operating Activities Net Income Depreciation Operating Assets (Increase)/Decrease Cashflow from Investing Activities	5,677 824	- <mark>956</mark> 807 0	- <mark>2,245</mark> 3,031 0	- <mark>2,631</mark> 3,902 0	- <mark>3,875</mark> 4,925 0	- <mark>4,931</mark> 5,936 0	- <mark>6,072</mark> 7,265 0	- <mark>8,099</mark> 9,488 0	- <mark>9,091</mark> 11,188 0	- <mark>9,348</mark> 12,653 0	20,368 13,948 0	19,795 17,632 0	23,952 18,049 0	31,233 18,044 0	37,947 18,194 0	45,943 17,923 0	55,088 17,712 0	59,366 17,922 0	64,064 17,901 0	66,751 18,839 0	70,380 19,336 0	101,538 20,357 0
	Construction Expenditures/Sales of Assets Cashflow from Financing Activities	-4,652	-29,199	-28,128	-22,928	-23,584	-27,016	-36,228	-64,337	-97,253	-93,493	-44,537	-15,200	-13,600	-9,600	-2,100	-2,100	-2,000	-4,416	-50,404	-93,781	-100,405	-36,880
	Long-term Borrowing Repayment Capital/Grant	4,652 -2,416	29,199 -2,416	28,128 -2,416	22,928 -2,416	23,584 -2,416	27,016 -2,416	36,228 -2,582	64,337 -2,978	97,253 -4,383	93,493 -15,972	44,537 -30,343	15,200 -30,334	13,600 -26,126	9,600 -15,921	2,100 -17,675	2,100 -17,675	2,000 -16,674	4,416 -16,674	50,404 -17,331	93,781 - 17,331	100,405 -23,840	36,880 -24,169
	Dividend Net Increase (Decrease) Cash at Beginning	- <mark>568</mark> 3,517	-415 -2,981 3.517	-149 -1,780 536	0 -1,145 -1 243	0 -1,366	0 -1,411 -3.755	0 -1,388 -5 166	0 -1,589 -6 554	0 -2,286 -8 142	0 -12,667 -10,429	0 3,973	0 7,094 -19 122	-2,141 13,734	-5,050 28,306 1,705	- <mark>8,340</mark> 30,126 30,011	-12,100 34,090 60,137	-16,399 39,727 94 227	-20,696 39,918 133,953	-25,033 39,601 173,872	-29,204 39,055 213,473	-33,322 32,554 252 528	-40,144 57,583 285.082
	Cash at End 12.1% Cashflow IRR (22years) 12.1% Cashflow NPV 10.0% 41,393 DSCR	3,517 5,805 5,805 0.43	-27,857 -24,850 7.57	-1,243 -25,491 -20,285 -10.89	-2,389 -19,301 -13,701 -17,34	-2,389 -3,755 -19,068 -12,075 -14,37 48,330	-5,166 -21,394 -12,085 -22.39	-6,554 -29,045 -14,636 -104.53	-8,142 -54,753 -24,613 116.10	-10,429 -85,140 -34,142 15.56	-23,095 -78,676 -28,145 12.70	-23,095 -19,122 12,142 3,875 1.05 96,346	-12,028 47,306 13,466 1.06	-12,028 1,705 54,568 13,857 0.86 119,534	30,011 66,158 14,987 0.53	60,137 81,757 16,521 0.48	94,227 90,563 16,326 0.41	133,953 101,083 16,255 0.34	173,872 102,823 14,750 0.32	213,473 61,092 7,818 0.31	252,528 20,880 2,384 0.30	285,082 17,668 1,799 0.35	342,664 622,455 56,544 0.25
	Turnover: Gross Int. Cov. : Fixed Charges Cov. : RCF % D : Dy Margin : EBITD A Cov. : EBITD A Cov. : EBIT % Capital : ROA % alter Tax : ROE % alter Tax : ROE % alter Tax : RCF % Invest. Activities : Invest. Activities % Cap. : Dividend Payout : Tol Cap. : Equity % Cap. :				42,889 5.5% (0.1) 1.3% -0.6% 1.5 -0.3% -9502.6% (0.1) 6% 24.2% 0.0% 101.4% -1.4% 94,565	48.330 7.2% (0.1) 0.9% -0.8% -0.8% -1.3 -0.4% 4.5% 120.1% (0.1) 4% 21.5% 0.0% 104.7% -4.7% 109,524	54,423 8.5% (0.1) 0.7% -0.6% 1.2 -0.2% 4.8% 64.6% (0.1) 4% 20.9% 0.0% 0.0% 107.8% -7.8% 129,144	61,211 9.8% (0.0) 0.7% -0.1% 1.2 -0.1% 48.2% (0.0) 3% 22.1% 0.0% 109.9% -9.9% 163,867	68,743 11.9% 0.0 0.7% 0.1% 1.2 0.1% 40.1% 0.0 2% 34.1% 0.0% 112.8% 112.8% 188,929	77.071 13.0% 0.1 0.9% 1.2% 1.2 0.5% 31.6% 0.1 2% 47.4% 0.0% 116.3% 205,086	86,252 13.3% 0.2 1.2% 2.5% 1.3 0.9% -5.1% 24.6% 0.2 4% 40.8% 0.0% 118.6% 229,011	96,346 15.0% 3.0 7.5% 44.4% 3.9 9.9% 7.5% -62.6% 3.0 77% 10.3% 0.0% 105.2% -5.2% 433,261	107,416 16.2% 2.6 8.2% 3.6 9.8% 5.4% -159.2% 2.6 246% 3.3% 0.0% 100.6% 455,815	$\begin{array}{c} 119.534\\ 14.1\%\\ 3.0\\ 9.2\%\\ 41.9\%\\ 4.0\\ 11.1\%\\ 6.5\%\\ 286.3\%\\ 3.0\%\\ 8.9\%\\ 95.7\%\\ 4.3\%\\ 451,334\end{array}$	$\begin{array}{c} 132,775\\ 10.8\%\\ 4.0\\ 10.4\%\\ 43.5\%\\ 5.3\\ 12.3\%\\ 8.4\%\\ 96.5\%\\ 4.0\\ 461\%\\ 2.0\%\\ 16.2\%\\ 9.6\%\\ 471,280\end{array}$	$\begin{array}{c} 147,219\\ 9.6\%\\ 4.7\\ 11.7\%\\ 6.0\\ 13.8\%\\ 9.7\%\\ 63.0\%\\ 4.7\\ 2276\%\\ 0.4\%\\ 22.0\%\\ 84.5\%\\ 15.5\%\\ 483,046\end{array}$	162,955 8.2% 5.8 13.3% 45.9% 7.1 15.5% 11.4% 49.9% 5.8 2465% 0.4% 26.3% 78.2% 21.8% 499,048	180,078 7.0% 7.1 14.8% 47.4% 8.5 16.9% 43.0% 7.1 2820% 0.4% 29.8% 72.1% 27.9% 528,322	191,949 6.4% 7.7 15.5% 9.2 17.2% 35.6% 7.7 1282% 0.8% 34.9% 66.2% 33.8% 551,808	204,424 5.7% 8.7 15.6% 45.8% 10.2 17.0% 31.1% 8.7 113% 8.5% 39.1% 61.8% 38.2% 589,767	217,536 5.4% 9.0 16.0% 44.0% 10.6 17.0% 27.3% 9.0 60% 15.3% 43.8% 57.2% 42.8% 614,785	$\begin{array}{c} 231,321\\ 4.8\%\\ 9.8\\ 16.3\%\\ 42.7\%\\ 11.6\\ 16.9\%\\ 13.0\%\\ 25.0\%\\ 9.8\\ 56\%\\ 47.3\%\\ 47.3\%\\ 45.5\%\\ 645,089\end{array}$	245,820 4.5% 13.8 14.2% 57.2% 30.7% 30.7% 13.8 222% 3.9% 39.5% 61.4% 38.6% 935,389
	Total Demand (GWh) Average Rate (UScents/kWh)	249	266 27.6	285 27.6	307 27.6	330 27.5	356 27.5	384 27.5	413 27.5	445 27.4	479 27.4	514 27.3	552 27.3	592 27.3	635 27.2	679 27.2	726 27.1	776 27.1	828 26.1	884 26.0	942 26.0	1,003 26.0	1,068 25.9
	·																						

(Unit: US\$ 1,000)

 Table 8.4-2
 Financial Estimate of the NPA (Alternative Case: Thermal Power Dominant)

Image: set in the set																							· · ·	
Number 10 / 10 / 10 / 10 / 10 / 10 / 10 / 10	1166- 1 0 2170	year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Target St Converte	Bumbuna c/kWh 7.0 Household c/kWh 27.0 Comm. c/kWh 40.6 Indust. c/kWh 27.7 Indust. c/kWh 42.6	Utility Plant Capital Lease Investment & Other Assets Current Assets	9,903	51,102	65,501	82,227	96,786	115,905	149,268	173,780	191,893	205,140	192,848	213,253	235,759	230,211	231,131	229,562	262,232	255,610	272,636	265,902	260,796	278,074
Line cont Section Image: section <thimage: section<="" th=""> Image: section</thimage:>			3,517	2,736	3,578	5,506	8,092	11,567	16,110	21,927	28,369	35,964	44,147	52,025	60,433	69,162	79,579	93,610	112,535	128,936	146,510	162,423		
Image: 1 1 1 1 </th <th></th> <th></th> <th>13,419</th> <th>53,838</th> <th>69,079</th> <th>87,732</th> <th>104,878</th> <th>127,473</th> <th>165,378</th> <th>195,707</th> <th>220,262</th> <th>241,104</th> <th>236,995</th> <th>265,278</th> <th>296,192</th> <th>299,373</th> <th>310,710</th> <th>323,172</th> <th>374,767</th> <th>384,546</th> <th>419,146</th> <th>428,324</th> <th>438,952</th> <th>471,107</th>			13,419	53,838	69,079	87,732	104,878	127,473	165,378	195,707	220,262	241,104	236,995	265,278	296,192	299,373	310,710	323,172	374,767	384,546	419,146	428,324	438,952	471,107
Image: set of states Image: set of state	Interest: 15.0%	Capital Retained Earnings Total <liabilities> Short Term Debt</liabilities>	5,110	5,938	6,165	6,606	6,684 0	6,639	6,498	5,805	5,442	5,927	7,409	12,493	19,555	27,500	38,573	52,536	70,817	87,286	105,193	121,378	137,624	155,014
Image: Proper intervent of or encrosence of the state of the																								
Image: Property image:		Revenue Sale Other Total Revenue	2,190	3,493	3,921	4,416	4,973	5,597	6,292	7,064	7,918	8,860	9,895	11,031	12,275	13,635	15,119	16,736	18,497	19,719	21,005	22,358	23,781	25,280
Internal Image: State Stat		New O & M Expenses Fuel A & G Expenses Payroll Expenses (Admin. & Gen. And Oper. & Maint.) Depreciation and Amortization Others Total Operation, Maintenance and General Expenses Operating Profit	5,348 2,795 3,171 824 2,322 14,460	7,440 4,457 5,057 807 <u>15,856</u> 34,863	8,480 5,004 5,678 3,031 16,423 40,106	10,261 5,635 6,393 3,902 16,944 44,913	12,600 6,346 7,200 4,925 17,474 50,673	15,176 7,142 8,103 5,936 17,999 56,872	17,771 8,029 9,110 7,265 18,535 63,655	20,032 9,015 10,228 9,488 19,009 71,187	22,802 10,104 11,464 11,188 19,339 78,845	26,104 11,306 12,828 12,653 19,606 87,056	30,594 12,627 14,327 13,948 19,397 96,106	34,641 14,077 15,972 14,006 18,809 103,432	37,758 15,664 17,773 15,444 18,809 112,194	43,515 17,399 19,741 16,704 18,809 123,762	48,987 19,293 21,890 17,020 18,809 134,497	54,760 21,357 24,232 17,852 18,809 146,456	59,166 23,604 26,781 18,580 18,809 157,392	65,616 25,164 28,551 20,422 18,809 170,060	70,806 26,805 30,413 20,925 18,809 180,370	78,189 28,531 32,371 22,190 18,809 193,870	86,171 30,347 34,432 23,046 18,809 207,818	92,800 32,260 36,602 23,984 18,809
Latence Interde Egenese Interde Egenese <th></th> <th>Other Income Interest Income Other Income Total</th> <th>0 0 0</th> <th>141 0 141</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>463 0 463</th> <th>0</th> <th>877 0 877</th> <th>0</th>		Other Income Interest Income Other Income Total	0 0 0	141 0 141	0	0	0	0	463 0 463	0	877 0 877	0	0	0	0	0	0	0	0	0	0	0	0	0
Tarkar 2001 Production Tax 7.84 2.00 1.20		Interest Expense Other Expense	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
University of the second after far and beginning attern in begi	Tax Rate: 28.0%	Net Income before Tax	7,884	2,066	1,267	1,633	1,139	961	807	7,212 -48 0	336	1,588	3,202	8,989	12,826	15,279	21,331	27,501	36,318	36,344	41,104	41,210	43,802	48,074
Strates Example to the strates family at End (second particle) Strate family at End (second particle)<		Net Income after Tax Retained Earnings at Beginning	0	5,109	5,937	6,164	6,606	6,683	6,638		5,804	5,441	5,926	7,409	12,493	19,554	27,500	38,573	52,536	70,816	87,285	105,192	31,537 121,377	34,613 137,623
Cathly from Operaing Activities 5,77 1,48 9,27 1,48 2,42 1,142 1,232 1,100 1,533 19,401 2,149 2,018	Dividend Ratio: 10.0%																							
Dividend -568 -660 -674 -773		Cashflow from Operating Activities Net Income Operating Assets (Increase)/Decrease Cashflow from Investing Activities Cashflow from Financing Activities Borrowing Repayment	824 -4,652 4,652	807 0 -29,199 29,199	3,031 0 -28,128 28,128	3,902 0 -22,928 22,928	4,925 0 -23,584 23,584	5,936 0 -27,016 27,016	7,265 0 -36,228 36,228	9,488 0 -35,900 35,900	11,188 0 -30,900 30,900	12,653 0 -27,140 27,140	13,948 0 -20,516 20,516	14,006 0 -37,142 37,142	15,444 0 -43,960 43,960	16,704 0 -14,016 14,016	17,020 0 -20,040 20,040	17,852 0 -23,214 23,214	18,580 0 -35,948 35,948	20,422 0 -18,630 18,630	20,925 0 -33,120 33,120	22,190 0 -15,456 15,456	23,046 0 -22,770 22,770	23,984 0 -33,672 33,672
Cash at End 5.517 2.738 3.578 5.500 8.092 11.567 16.10 21.927 28.369 35.064 44.147 52.025 60.433 69.162 79.579 93.610 11.2535 128.369 146.350 128.369 146.351 128.369 146.354 128.369 146.354 128.369 146.354 128.369 146.354 128.369 146.354 128.369 146.354 128.369 146.354 128.369 146.354 128.369 146.354 128.369 146.354 128.369 146.354 128.369 146.354 128.369 146.354 128.369 146.354 128.369 146.354 128.369 146.354 118.31 163.31 128.31 128.327 128.30 146.354 128.369 146.355 128.369 128.356 128.369 128.357 128.369 128.369 128.367 128.310 128.327 128.308 128.369 128.369 128.369 128.369 128.369 128.369 128.369 128.369 128.369 128.369		Dividend Net Increase (Decrease)		-781	842	1,928	2,587	3,475	4,543	5,817	6,442	7,594	8,183	7,878	8,408	8,728	10,418	14,030	18,925	16,401	17,574	15,912	15,734	14,876
NPV (16x) 8,778 5,805 -22,576 -11,545 -9,994 -10,707 -13,211 -10,208 -5,455 -1,733 2,300 -1,831 -1,811 6,374 7,581 7,728 6,246 9,625 6,203 0,57 0,74 0,75 0,75		Cash at End					8,092						44,147	52,025		69,162	79,579	93,610	112,535	128,936	146,510	162,423	178,156	193,032
Total Demand (GWh) 249 266 285 307 330 356 384 413 445 479 514 552 592 635 679 726 776 828 884 942 1,003 1,068 Average Rate (UScents/kWh) 29.8 29.8 29.8 29.8 29.8 29.7 29.7 29.7 29.6 29.6 29.5 29.4 29.4 29.3 29.3		NPV (rdv%) 8,778 DSGR Turnover: Gross Int. Cov. : Fixed Charges Cov. : RCP % TD : Op. Margin : EBITD A Capital : EBITT & Capital : EBIT % Capital : ROF % interest activities : Pretax Int. Cov. : RCF % Invest. Activities : Invest. Activities % Cap. : Dividend Payout : TD % Cap. : Equity % Cap. :	5,805			1.25 48,572 4.5% 1.8 4.6% 7.5% 3.6 3.8% 1.5% 18.4% 1.8 19% 62.4% 62.4% 6.6%	-9,994 1.37 54,700 5.7% 1.4 4.5% 7.4% 3.0 3.6% 0.9% 12.3% 1.4 21% 20.1% 90.5% 94.3% 5.7%	1.38 61,563 6.6% 1.2 4.4% 7.6% 2.7 3.6% 0.6% 10.4% 1.2 22% 10.6% 19.2% 106.6% 95.3% 4.7%	1.40 69,214 7.5% 1.2 4.1% 8.0% 2.5 3.3% 0.4% 8.8% 1.2 20% 20.1% 124.2% 96.4% 3.6%	1.56 77,706 9.3% 1.0 4.3% 8.4% 2.3 3.4% 0.0% -0.8% 1.0 24% 17.0% -1332.9% 97.2% 2.8%	1.60 87,099 10.1% 1.0 4.7% 9.5% 2.3 3.9% 0.1% 4.3% 1.0 35% 13.2% 249.8% 97.7% 2.3%	1.49 97,457 10.2% 1.2 5.3% 10.7% 2.4 4.5% 0.5% 20.1% 1.2 48% 10.7% 57.6% 97.7% 2.3%	2,380 1.43 108,847 10.1% 1.3 6.4% 11.7% 2.6 5.7% 1.0% 34.6% 1.3 75% 8.2% 35,7% 3.0%	-1,831 1.22 121,344 8.8% 1.8 7.1% 14.8% 3.2 7.0% 2.6% 65.0% 1.8 51% 13.1% 21.4% 95.6% 4.4%	1.15 135,027 9.0% 2.1 7.7% 16.9% 3.3 7.9% 3.3% 57.6% 2.1 51% 14.0% 23.5% 93.8% 6.2%	8,374 1.12 149,984 8.9% 2.1 8.5% 17.5% 3.4 9.0% 3.7% 46.8% 2.1 176% 4.4% 27.8% 91.3% 8.7%	7,581 0.97 166,307 8.0% 2.6 9.7% 19.1% 3.9 10.5% 5.0% 46.5% 2.6 140% 6.1% 27.9% 88.2% 11.8%	7,728 0.83 184,098 7.2% 3.1 11.0% 20.4% 4.4 12.0% 6.2% 43.5% 3.1 137% 6.8% 29.5% 84.6% 84.6%	6,248 0,68 203,468 6,6% 3,7 11,6% 22,6% 7,5% 42,4% 3,7 103% 9,3% 30,1% 81,7% 18,3%	9,625 0.76 216,914 6.9% 3.4 11.9% 21.6% 6.9% 6.9% 33.1% 3.4 12.9% 6.9% 33.1% 3.4 198% 4.7% 37.1% 78.0% 22.0%	6,923 0.71 231,058 6.4% 3.8 11.9% 21.9% 7.4% 30.8% 3.8 11.9% 7.4% 3.8 11.7% 3.8 11.7% 3.8 11.7% 3.8 5.2 12.9% 7.4% 3.8 11.7% 5.2 12.9% 7.4% 3.8 11.9% 5.2 12.9% 7.4% 3.8 11.9% 5.2 12.9% 7.4% 3.8 11.9% 5.2 12.7% 5.2 12.7% 5.2 12.7% 5.2 12.7% 5.2 12.5% 5.2% 5.2% 5.2% 5.2% 5.2% 5.2% 5.2%	9,614 0.75 245,936 6.8% 3.5 12.0% 21.2% 7.0% 26.2% 3.5 248% 3.5% 45.5% 72.5%	6,034 0,74 261,594 6,3% 3,7 12,5% 20,6% 5,1 13,3% 7,3% 24,4% 3,7 173% 5,0% 48,5% 69,6% 30,4%	44,011 0.75 278,081 5.9% 20.6% 20.6% 20.6% 5.4 13.3% 7.6% 23.7% 3.9 123% 6.9% 49.8% 68.0% 68.0% 32.0%
		Total Demand (GWh) Average Rate (UScents/kWh)	249	266 29.8	285 29.8	307 29.8	330 29.8	356 29.8	384 29.8	413 29.8	445 29.7	479 29.7	514 29.7	552 29.7	592 29.6		679 29.6	726 29.6	776 29.5	828 29.5	884 29.4	942 29.4		

[Remarks] 1US\$=97.28JPY [Source] JICA Study Team

(Unit: US\$ 1,000)

Normal Part of the																				```			· ·	
 Note: 1. 20 No. 1. 20 No. 2. 20 No. 1. 20 No. 1.		year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Image: problem Out Out Out Out <	Bumbuna c/kWh 7.0 Household c/kWh 23.5 Comm. c/kWh 35.4 Indust. c/kWh 27.7	Utility Plant Capital Lease Investment & Other Assets	9,903	51,102	65,501	82,227	96,786	115,905	149,268	173,780	191,893	205,140	191,192	194,650	180,393	175,641	161,238	147,107	145,659	132,901	134,792	124,429	125,713	108,863
Alter Note of the second	Increase rate 135%	Accounts Receivables	3,517	1,152	21	-183	-261	-73	508	1,271	1,766	2,848	18,527	35,623	53,079	72,182	92,859	117,271	146,572	176,567	206,265	235,527	264,811	302,570
Processes Processes <t< td=""><td></td><td>Total Assets</td><td>13,419</td><td>52,254</td><td>65,522</td><td>82,043</td><td>96,525</td><td>115,833</td><td>149,776</td><td>175,051</td><td>193,659</td><td>207,989</td><td>209,719</td><td>230,274</td><td>233,472</td><td>247,823</td><td>254,097</td><td>264,378</td><td>292,232</td><td>309,467</td><td>341,057</td><td>359,955</td><td>390,524</td><td>411,433</td></t<>		Total Assets	13,419	52,254	65,522	82,043	96,525	115,833	149,776	175,051	193,659	207,989	209,719	230,274	233,472	247,823	254,097	264,378	292,232	309,467	341,057	359,955	390,524	411,433
Processes Processes <t< td=""><td></td><td>Canitale</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		Canitale																						
Image: book with the second		Capital Retained Earnings	1 5,109 5.110		1 2,607 2,608	1 917 917	1 -1,669 -1,669	1 -5,002 -5.001	1 -9,105 -9.105	1 -14,852 -14,851	1 -21,162 -21,161	1 -27,189 -27,188	1 -18,211 -18,210	1 -3,744 -3.743	1 13,552 13,553	1 34,324 34.325	1 58,273 58,274	1 86,230 86,230	1 118,285 118,286		1 183,177 183,177	1 214,438 214.438		
Introduction 201 100 100 100 <th< td=""><td></td><td><liabilities></liabilities></td><td></td><td></td><td></td><td>100</td><td>004</td><td>70</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		<liabilities></liabilities>				100	004	70																
Like	Interest: 10.0%	Long Term Debt		59,615	74,793	93,465	110,933	134,073	173,480			248,620												
Image: book with the section of the sectin of the section		Total Capital and Liabilities	41,350	63,969	77,400	94,565	109,524	129,144	164,375	190,201	206,852	221,431	222,996	247,316	250,349	264,885	270,993	281,108	303,749	320,819	352,384	371,116	401,659	422,403
Sec. 1		<profit and="" loss=""></profit>																						
Umain Umain <th< td=""><td></td><td>Revenue</td><td>01.000</td><td>24.040</td><td>05 504</td><td>10.000</td><td>15 005</td><td>50 770</td><td>57 404</td><td>04 400</td><td>74 000</td><td>00.440</td><td>00.000</td><td>400.400</td><td></td><td>100.000</td><td>407.000</td><td>454 005</td><td>407.000</td><td>470.000</td><td>100.000</td><td>000.004</td><td>045 700</td><td>000 000</td></th<>		Revenue	01.000	24.040	05 504	10.000	15 005	50 770	57 404	04 400	74 000	00.440	00.000	400.400		100.000	407.000	454 005	407.000	470.000	100.000	000.004	045 700	000 000
Line Display D		Other																						
Image: Proper tension: Properties Propertimate Properties Properties Propertimate Properties Propere		Total Revenue	24,093	34,781	39,073	44,025	49,604	55,851	62,811	70,536	79,077	88,493	98,846	110,202	122,633	136,217	151,037	167,184	184,756	196,942	209,751	223,216	237,375	252,272
Image: state		Operation, Maintenance and General Expenses																						
Image: Second			0 5 349	1,247			2,129	2,516		3,415			183	203							2,243	2,976	3,820	1,308
Let be been been been been been been been		A & G Expenses	2.795	4.035	6,478	5.107	12,092	6,479	7.287	20,010	22,784	26,088	14 11.467			1,398	2,746 17.522	4,310	21.433	6,381 22,847	24.333	25.895	22,559	29.266
Image: manual processing of the second proces and processing of the second processing of the secon		Payroll Expenses (Admin. & Gen. And Oper. & Maint.)	3,171	4,578	5.143	5.795	6,529	7,351	8.267	9,284	10,408	11.648	13,010	14,505	16,141	17,929	19,880	22,005	24,318	25,922	27,608	29,380	31,244	33,205
Like with the finance of the		Others														14,252 43.856								
Alterna Alterna <t< td=""><td></td><td>Total Operation, Maintenance and General Expenses</td><td>14,460</td><td></td><td>38,703</td><td>43,445</td><td></td><td>55,090</td><td></td><td></td><td></td><td>84,644</td><td></td><td>80,243</td><td></td><td></td><td></td><td>109,332</td><td></td><td></td><td>135,550</td><td>147,211</td><td></td><td></td></t<>		Total Operation, Maintenance and General Expenses	14,460		38,703	43,445		55,090				84,644		80,243				109,332			135,550	147,211		
Image: State		Operating Profit Other Income and Expenses	9,633	1,220	370	580	549	760	1,122	1,445	2,434	3,850	23,333	29,959	35,832	42,523	49,623	57,852	66,808	70,483	74,201	76,005	78,366	94,007
International problem 0		Other Income																						
Interest 0 14 4 1 0 5 5 1			0	141	46	1	0	0	0	20	51	71	114	741	1,425	2,123	2,887	3,714	4,691	5,863	7,063	8,251	9,421	10,592
Late Start Line Start <thline start<="" th=""> Line Start Line Sta</thline>		Total	ő	141	46	1	ő	ő	0	20	51	71	114	741	1,425	2,123	2,887	3,714	4,691	5,863	7,063	8,251	9,421	10,592
The start Note that the start is a start of the start of		Other Expenses	1.740	1.622	1.072	2 170	2 125	4 002	E 226	7 212	9 705	0.047	10.077	10,606	44.444	10,400	10.255	0.421	9 700	0.210	7 667	7 745	7 102	7 024
Interstep 100 22 142 142 242 44		Other Expense	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7,234
Late 230 - 200 - 0				1,632	1,873	2,170	0,100	4,093	5,226	7,212	0,100	9,947												7,234
Description	Tax Rate: 28.0%	Income Tax	2,208	0	0	0	-2,080	-3,332	4,105	0	0,310	0,027	3,491	5,626	7,312	9,561	11,831	14,598	17,577	19,048	20,607	21,423	22,569	27,262
Under Star:			5,677	-272	-1,457	-1,589	-2,586	-3,332	-4,103	-5,747	-6,310	-6,027	8,978		18,802	24,586		37,538			52,990	55,088		70,103
Sector Sector<	Dividend Ratio: 10.0%	(Dividends)		484	290	102	0	0	0	0	0	0	0	0	1,506	3,814	6,475	9,581	13,143	16,727	20,353	23,826	27,247	31,533
Link Hole First F		Retained Earnings at End	5,109	4,354	2,607	917	-1,669	-5,002	-9,105	-14,852	-21,162	-27,189	-18,211	-3,744	13,552	34,324	58,273	86,230	118,285	150,540	183,177	214,438	245,226	283,795
Net toome 5.67 3.72 -1.457 -3.52 -4.10 -4.177 -4.519 -0.60 -0		<cashflow></cashflow>																						
Deprecision B24 B07 3.03 3.03 3.02 4.025 5.08 7.285 9.488 11.88 12.027 14.207 14.207 14.207 14.207 14.010 14.111 13.000 14.444 14.300 15.31			5.677	272	1.457	1 590	2 599	2 222	4 102	6.747	6 210	8 027	9.079	14 497	10 000	24 596	20.424	27 5 29	45 109	49.091	F2 000	55 099	59.025	70.102
Catabox from investing Activities - - - - <		Depreciation	824	807			4,925	5,936			11,188		13,948	13,841	14,257	14,252	14,403	14,131	13,920	14,414	14,393	15,331	15,828	16,849
Control Episochian State of Assets 4.62 2.19 2.2.59 2.2.54 2.7.54 2.9.590 3.0.50 2.7.10 1.5.00 1.5.00 2.0.00				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ung-term Borrowing 4,452 22,19 22,28 22,58 22,58 22,58 32,500 33,000 27,140 11,210 1		Construction Expenditures/Sales of Assets	-4,652	-29,199	-28,128	-22,928	-23,584	-27,016	-36,228	-35,900	-30,900	-27,140	-16,100	-15,200	-13,600	-9,600	-2,100	-2,100	-2,000	-4,416	-13,524	-7,728	-14,352	0
Regimment 24.16		Cashflow from Financing Activities Long-term Borrowing	4.652	29,199	28.128	22.928	23.584	27.016	36.228	35.900	30.900	27.140	16.100	15.200	13.600	9.600	2.100	2.100	2.000	4.416	13.524	7.728	14.352	0
Dubber		Repayment	-2,416	-2,416	-2,416	-2,416	-2,416	-2,416	-2,582	-2,978	-4,383	-5,543	-7,247	-11,212	-14,098	-15,921	-17,675	-17,675	-16,674	-16,674	-17,331	-17,331	-17,331	-17,661
Cash at Beginning 131 347 112 21 120 221 73 500 127 11627 31627 11627 31627 317 11627 <td></td> <td>Dividend</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>		Dividend					0	0	0	0	0	0	0	0										
Communication 3.817 1182 121 128 2381 73 968 1271 1248 1282 138.20 92.803 117.271 144.552 118.257 188.22 188.23 188.24 188.25 188.24 188.25 188.24 188.25 188.25 1158 12.95 114.55 145.25 28.250			3,517	-2,364 3.517		-205 21	-77 -183	188 -261	580 -73	764 508			15,679 2.848											
WP/16% 53.663 -36.233 +1967 +11.664 +11.478 +12.288 +11.178 +12.584 +1				1,152	21	-183	-261	-73																
OPCR 0.43 3.32 11.58 7.91 10.11 8.56 6.86 7.05 5.41 4.02 0.73 0.70 0.82 0.67 0.38 0.35 0.34 0.33 0.31 0.31 0.23 0.37 0.70 0.82 0.68 0.47 0.38 0.35 0.34 0.33 0.31 0.31 0.31 0.31 0.32 0.37 0.23 0.70 0.82 0.68 0.47 0.38 0.35 0.34 0.33 0.31 0.31 0.31 0.35 0.44 0.35 0.43 0.33 0.31 0.31 0.31 0.31 0.35 0.44 0.35 0.44 0.35 0.44 0.35 0.44 0.35 0.44 0.35 0.44 0.35 0.44 0.35 0.44 0.35 0.44 0.35 0.44 0.35 0.44 0.35 0.44 0.35 0.44 0.35 0.44 0.35 0.44 0.35 <th0.34< th=""> 0.35 0.34 <t< td=""><td></td><td></td><td></td><td>-27,172</td><td>-24,727</td><td>-18,446</td><td>-18,110</td><td>-20,319</td><td></td><td>-24,967</td><td>-17,278</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></th0.34<>				-27,172	-24,727	-18,446	-18,110	-20,319		-24,967	-17,278													
Greas bit Cov:: 4.9% 6.3% 7.3% 8.3% 10.2% 11.1% 11.1% 10.6% 11.1% 6.8% 1.1% 5.6% 4.7% 4.2% 3.7% 3.0% 3.0% 2.2% Fined/Dages Cov:: 0.3 1.5% 0.1% 0.1% 0.4% 1.5% 1.1% 1.4%		DSCR	0.43	3.32	11.58	7.91	10.11	8.56	6.96	7.05	5.41	4.02	0.78	0.73	0.70	0.62	0.56	0.47	0.38	0.35	0.34	0.33	0.31	0.26
Field Changes Corx:: 0.3 0.2 0.2 0.2 0.2 0.3 0.4 2.1 2.9 3.3 4.3 5.1 6.5 8.2 9.2 10.8 10.9 12.4 4.3 RCP K1D: 2.4% 2.1% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6%						44,025	49,604	55,851		70,536						136,217			184,756		209,751			252,272
Op. Murgin: 1.1% 1.1% 1.4% 1.4% 1.4% 1.4% 2.0% 3.1% 4.4% 2.2% 2.2% 3.2% 3.2% 3.2% 3.2% 3.6% 3.6% 3.4% 3.1% 4.4% 2.2% 2.2% 3.2% 3.2% 3.2% 3.6% 3.6% 3.4% 3.1% 3.1% 3.2% 3.2% 3.2% 3.2% 3.2% 3.2% 3.2% 3.2% 3.4% 3.1% 3.2%		Fixed Charges Cov. :				0.3	0.2	0.2	0.2	0.2	0.3	0.4	2.1	2.9	3.3	4.3	5.1	6.5	8.2	9.2	10.6	10.9	12.2	14.5
EBITLA Cov.: 2.1 1.7 1.6 1.6 1.5 1.6 1.7 3.4 4.2 4.6 5.6 6.5 8.0 9.8 1.09 1.25 1.29 1.4 1.68 1.5 1.6 1.7 3.4 4.2 4.6 5.6 6.5 8.0 9.8 1.09 1.25 1.29 1.44 1.68 EBIT Copie: 0.05% 0.5% 0.5% 0.5% 0.5% 1.2% 1.2% 1.65% 1.44 1.69% 1.65% 1.2% 1.69% 1.2% 1.65%		RCF % TD : On Margin :				2.4%	2.1%	1.9%	1.8%	1.8%	2.1%	2.7%	9.5%	11.3%	13.3%	15.2%	18.0%	21.6%	24.8%	27.4%	27.8%	29.7%	29.8%	40.0%
EBIT's Capabel ::::::::::::::::::::::::::::::::::::		EBITDA Cov. :				2.1	1.7	1.6	1.6	1.5	1.6	1.7	3.4	4.2	4.6	5.6	6.5	8.0	9.8	10.9	12.5	12.9	14.4	16.8
PRCE* shert Tax: -90.1% 688.2% 99.9% 58.2% 40.0% 55.0% 24.9% 38.6% 1102.7% 65.7% 52.0% 44.2% 38.6% 31.6% 22.7% 25.5% 24.2% 38.6% 31.6% 22.7% 25.7% </td <td></td> <td>EBIT % Capital :</td> <td></td> <td></td> <td></td> <td>0.6%</td> <td></td> <td>21.9%</td> <td>24.8%</td>		EBIT % Capital :				0.6%																	21.9%	24.8%
RCF* livest.Activities: 10% 12% 24% 12% 38% 2004% 2209% 1007% 34% 03% 32% 010/0 Invest.Activets V.Cor. 42% 25% 20% 10.5% 10.2% 12.3% 6.1% 5.4% 0.5% 0.5% 0.0% 0.5% 0.0% 0.5% 0.0% 0.5% 0.0% 0.5% 0.0%		ROE % after Tax :				-90.1%	688.2%	99.9%	58.2%	48.0%	35.0%	24.9%	-39.6%	-131.8%	383.3%	102.7%	65.7%	52.0%	44.2%	36.4%	31.8%	27.7%	25.3%	26.5%
Invest Activities (Sop.: Divided Psyout: 242% 21.5% 20.9% 22.0% 18.9% 14.9% 12.3% 7.2% 6.1% 5.4% 3.0% 0.7% 0.7% 0.1% 3.8% 2.1% 3.6% 4.0% 0						0.3																10.9	12.2	
Dwiderd Psyout: -6.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 10.5% 11.2% 10.0% 10.0% 10.5% 12.3% 10.0% 10.5% 11.2% 10.0% 10.0% 10.5% 11.2% 10.0% 10.5% 10.2% 11.2% 10.0% 10.5% 10.2% 11.2% 10.0% 10.5% 12.3% 0.0% <td></td> <td>Invest. Activities % Cap. :</td> <td></td> <td></td> <td></td> <td>24.2%</td> <td>21.5%</td> <td>20.9%</td> <td>22.0%</td> <td>18.9%</td> <td>14.9%</td> <td>12.3%</td> <td>7.2%</td> <td>6.1%</td> <td>5.4%</td> <td>3.6%</td> <td>0.8%</td> <td>0.7%</td> <td>0.7%</td> <td>1.4%</td> <td>3.8%</td> <td>2.1%</td> <td>3.6%</td> <td>0.0%</td>		Invest. Activities % Cap. :				24.2%	21.5%	20.9%	22.0%	18.9%	14.9%	12.3%	7.2%	6.1%	5.4%	3.6%	0.8%	0.7%	0.7%	1.4%	3.8%	2.1%	3.6%	0.0%
Equity % Caps.: 10% -1.5% -3.9% -5.5% -7.2% -10.2% -12.3% -8.2% -15% 5.4% 13.0% 21.5% 5.4% 30.7% 38.9% 46.9% 52.0% 57.8% 61.1% 67.2% Tot. Caps.: 94.665 109.524 129.144 164.375 190.201 206.852 221.431 222.996 24.858 270.943 281.108 30.749 320.191 352.84 371.116 41.01.659 422.403 Total Demand (GWh) 249 269 265 307 330 336 334 413 445 479 514 552 592 635 679 726 776 528 884 94.44 44 44 100. 100.3 100.3		Dividend Payout :				-6.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	8.0%	15.5%	21.3%	25.5%	29.1%	34.1%	38.4%	43.3%	46.9%	45.0%
Tat Cape,: 94.55 109.52 109.14 16.45 92.06 21.43 222.96 14.55 223.96 284.85 201.95 30.374 </td <td></td> <td>Equity % Cap. :</td> <td></td> <td></td> <td></td> <td>1.0%</td> <td>-1.5%</td> <td>-3.9%</td> <td>-5.5%</td> <td>-7.8%</td> <td>-10.2%</td> <td>-12.3%</td> <td>-8.2%</td> <td>-1.5%</td> <td>5.4%</td> <td>13.0%</td> <td>21.5%</td> <td>30.7%</td> <td>38.9%</td> <td>46.9%</td> <td>52.0%</td> <td>57.8%</td> <td>61.1%</td> <td>67.2%</td>		Equity % Cap. :				1.0%	-1.5%	-3.9%	-5.5%	-7.8%	-10.2%	-12.3%	-8.2%	-1.5%	5.4%	13.0%	21.5%	30.7%	38.9%	46.9%	52.0%	57.8%	61.1%	67.2%
Total Demand (GWh) 249 265 307 330 356 384 413 445 479 514 552 592 635 679 726 776 828 884 942 1,003 1,068 Average Rate (UScenst/Wh) 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 26.9 26.9 26.8 26.8 26.8 26.7 26.7 26.6 26.8		Tot. Cap. :				94,565	109,524	129,144	164,375	190,201	206,852	221,431	222,996	247,316	250,349	264,885	270,993	281,108	303,749	320,819	352,384	371,116	401,659	422,403
Average Rate (UScentsKWh) 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0		Total Demand (GWh)	249	266	285	307	330	356	384	413	445	479	514	552	592	635	679	726	776	828	884	942	1,003	1,068
		Average Rate (UScents/kWh)	I	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0	26.9	26.9	26.9	26.8	26.8	26.8	26.7	26.7	26.6	26.6

 Table 8.4-3
 Financial Estimate of the NPA (Yiben IPP Case)

[Remarks] 1US\$=97.28JPY [Source] JICA Study Team

(Unit: US\$ 1,000)

Those financial estimate model calculation results can be summarized in Table 8-4-4.

	D	Gaustana	Callerting	I an a tama			Tariff			NPV					
Case	Bumbuna	loss 09	Collection rate 09	Long-term liability	Increase	Average	Domestic	Commercial	Industrial	(10%)	DSCR				
	price	1088 09	Tate 09	nabinty						Mill. US\$					
Hydro															
main	10 c/kWh	40%	70%	Existing	165%	31 c/kWh	29 c/kWh	43 c/kWh	28 c/kWh	74	0.21~62				
	20 c/kWh	40%	70%	Existing	280%	48 c/kWh	49 c/kWh	73 c/kWh	28 c/kWh	180	0.14~8.3				
	7 c/kWh	15%	95%	Existing	80%	19 c/kWh	14 c/kWh	21 c/kWh	28 c/kWh	5	0.38~16				
	7 c/kWh	40%	70%	Transferred	115%	25 c/kWh	20 c/kWh	30 c/kWh	28 c/kWh	1	0~1.03				
Thermal	7 c/kWh	40%	70%	Existing	155%	30 c/kWh	27 c/kWh	41 c/kWh	28 c/kWh	9	0.43~2.0				
Yiben IPP	7 c/kWh	40%	70%	Existing	135%	27 c/kWh	24 c/kWh	35 c/kWh	28 c/kWh	54	0.26~11.6				

 Table 8.4-4
 Financial Estimate Model Calculation Results

[Remarks] 1US\$=97.28JPY [Source] JICA Study Team

Thus, the Base Case is most desirable from the financial viewpoint. However, if Yiben is to be developed as IPP and purchase price can be as cheap as possible, Yiben IPP Case can be considered although tariff is 135% up and NPV (10%) is US\$ 54 million.

8.4.3 Consideration of Long-run Marginal Cost

Long-run marginal costs of this project described above are much less than NPA tariffs which enable NPA to continue to manage financially as estimated above. Therefore, long-run marginal cost is different from financial needs. However, most industrial consumers use higher voltage than other consumers and industrial tariffs should reflect the less cost for high and middle voltage users than other users who should bear the distribution costs in long-run marginal cost calculation (8.2.2). (But, this is not necessarily concluded through calculation of long-run marginal cost.) However, the domestic users are poor in Sierra Leone and so the tariff structure is shifted to industrial consumers. Therefore, it is desirable that in the future industrial tariffs should be equal to or less than domestic user's although industrial tariffs are more expensive than other user's at present. In addition, recent study of the World Bank insists that the government subsidy to the NPA for households (NPA's deficits are covered by the government and so it is a kind of subsidy) is not necessarily useful for poor households but rich domestic users who use more electricity receive benefits.

8.5 Financial and Economic Analyses of Distribution Projects

The impacts of power development plan on NPA's finance were analyzed in relation to the tariffs in 8.4, but this section focuses on the distribution projects to which donors will pay attention instead of the whole power development plan and financial and economic effects are analyzed for each of the packaged projects of distribution development as follows.

8.5.1 Preconditions for Packaged Distribution Project Analysis

Packaged distribution projects were described in the distribution plan previously. Key indexes such as system loss, outage time, electrification rate and general household number and investment amounts by each package are described previously as well. In addition to these, preconditions necessary to calculate power demand of each package for financial and economic analyses are shown as follows.

- a) Power demand of each project shows estimated annual electricity demand in the target year.
- b) Household demand share on the whole is supposed to be 50% based on the 2008 record and average annual demand is used for each household's demand and new household demand as well.
- c) A new 33 kV transformer substation is supposed to contribute to power demand at 50% of

peak demand in each distribution district.

- d) Calculated power demand is annual.
- e) Average annual increase of power demand is supposed to be 3~5% taking into account the Sierra Leone situation.
- f) Transformers for distribution are supposed to renew low loss transformers of 25.8MVA within the whole 91.3MVA based on the record at the end of 2008 and distribution loss improvement is assumed 2% of the demand in each year.
- g) Extension of 60/80MVA transformers at Freetown transformer substation in Phase-II-2 is considered to contribute to reducing outage time accompanied with reliability improvement, but it is not decided to consider the improvement because the estimated outage time is short at this point.
- h) It is expected that extension of 33kV distribution line between Goderich and York town will contribute to electrification of some villages along the line so that it is decided that 20% of Goderich peak power demand is contribution to rural electrification.
- i) Number of houses subject to the rural electrification (Phase-II-1 and Phase-III) is supposed to be 3,000 for each and new demand households by the extension are not included.
- j) 3,000 new demand households are considered in the renewal of Goderich and Jui Districts in Phase-I-3.
- k) Estimated annual power demand of each project is just for the completed year.

Furthermore, O&M costs of distribution and transformation are supposed to be 3% of initial investment amount. Based on these, power demand in each project completed year is shown in Table 8.5-1 Energy Consumption by Project. However, after the completed year, power demand is supposed to be proportional to economic growth rate.

8.5.2 Financial Analysis of Distribution Projects

The distribution projects are limited part of NPA projects and financial analysis separating generation has only limited meaning because it is not entire profit and loss. The entire account was analyzed in 8.4 previously and so financial analysis in this section shows the profit and loss extent of distribution projects, in particular, packaged projects in the total accounts.

The revenues of distribution are calculated multiplying the total revenues by distribution cost share $(50.7\%)^2$ which can be derived from tentative calculation in the model and sharing the total distribution revenues among the projects with the shares of project power demand to the whole demand. Concerning costs, O&M costs are supposed to be 3% of initial investment costs and others such as administration costs of distribution in the model are divided with the shares of project power demand to the whole demand.

Construction time period of each project is supposed to be one year and cash flow is calculated for 20 years from the construction year so that IRR (Internal Rate of Return) can be obtained. Since the account is partial, it may be minus (loss) or IRR cannot be calculated. In addition, 20 years may be beyond 2030 which is the final year of the model depending on the construction year. In that case, increase rates of 2030 are used to extend the revenues and expenditures.

The average tariff, 27 cents/kWh (22.6 cents/kWh for household, 34.1 cents/kWh for commercial users and 27.7 cents/kWh for industrial users), that is 130% increase of the old tariffs, in the standard hydro main case with 7cents/kWh as purchase price from Bumbuna hydro power is used as income. Based on these conditions, the calculated results are shown in Table 8.5-2. Cash flows of all the distribution projects are minus and IRRs cannot be obtained.

² Bumbuna power purchase cost is calculated on the generation side in the long-run marginal cost calculation, but it is calculated on the distribution side in this section.

8.5.3 Economic Analysis of Distribution Projects

While the costs in the benefit/ cost analysis of each distribution project are the same as those in 8.5.2, namely investment cost and expenditures, the benefits are not revenues but economic benefits. Considering what the economic benefit of distribution project is, it is defined as satisfaction or utility of users obtaining electricity in this section. Concretely, the benefit is considered to be the cost which users pay

		_	Target	Cost	Expected Energy
To. Title of the Project	Major Components	Funded by	Year	(10 ⁶ US\$)	Consumption at Target Year
		1			[GWh]
: Phase-I (from 2010 to 2015)					
1 Rehabilitation of 11 kV and	1) Improvement of 33 kV system of Kingtom P/S		2012	25.6	28.7
Improvement of 33 kV System	2) Improvement of 33 kV system from Kingtom to Blackhall Road P/S				
	3) Construction of Falconbridge S/S				
	4) Rehabilitation of 11 kV system		2014	25.4	
2 Improvement of 33 kV System in	1) Installation of 33 kV line (about 20 km)		2014	35.4	9.4
Goderich and Jui Area	2) Construction of Goderich and Jui S/S				
2 Incompany of 11 by Distribution Es	3) Improvement of 11 kV existing lines cil 1) Replacement of 11 kV transformer more than 40 years		2015	32.0	2.3
3 Improvement of 11 KV Distribution Fac	2) Replacement of 11 kV transformers more than 40 years		2015	32.0	2.3
	3) Rehabilitation of existing 11 kV system				
	4) Electrification around Goderich and Jui S/S				
	+) Electrication around obtainen and sur 5/5				
3	Sub-total			93.0	
: Phase-II (from 2016 to 2020)					
1 Improvement of 33 kV System	1) Construction of 33 kV line (about 32 km)		2017	33.7	7.2
	2) Construction of Lumpa and Tombo S/S				
	3) Rural electrification around Lumpa and Tombo S/S				
2 Expansion of 33 kV System and	1) 1-161/33 kV Trf. (60/80 MVA, OLTC with AVR)		2020	31.4	4.1
Improvement of Network	2) 33 kV line from Goderich S/S to York town (29 km)				
	3) Rehabilitation of trunk lines and rural electrification Sub-total			65.1	
2	Sub-totai			03.1	
: Phase-III (from 2021 to 2025)					
1 Improvement of Distribution Network	1) Expansion of 33 kV system		2025	16.3	0.9
-	2) Rural electrification				
	3) Power Purchase Agreement to the neighboring country				
1	Sub-total			16.3	
	Grand Total			174.4	

Table 8.5-1Energy Consumption by Project

									j			liteutio							(Unit:	US\$ 1,0)00)
	Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
	Investment cost	25,600																			
Phase I-1	Revenue	,	2.036	2,295	2,584	2,906	3.264	3,659	4,095	4,574	5,100	5,675	6,304	6,990	7,737	8,550	9,113	9,706	10.328	10.982	11,671
	Expenditure		2,963	3,106	3,262	3,429	3,609	3,795	3,981	3,759	4,244	4,734	5,080	5,442	5,827	6,162	6,562	6,882	7,189	7,478	6,415
	Cash flow	-25,600	-927	-811	-678	-523	-346	-135	114	815	856	941	1.223	1,547	1,909	2,387	2,551	2,824	3,140	3.504	5,256
	IRR	-												,	,	,			,		
	Year	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
	Investment cost	35,400																			
Dhanalla	Revenue		729	820	920	1,032	1,155	1,290	1,438	1,600	1,778	1,971	2,182	2,411	2,570	2,737	2,912	3,097	3,291	3,497	3,717
Phase I-2	Expenditure		1,765	1,812	1,863	1,915	1,968	1,905	2,042	2,180	2,278	2,380	2,489	2,583	2,696	2,786	2,873	2,954	2,654	2,730	2,808
	Cash flow	-35,400	-1,037	-993	-943	-884	-813	-616	-604	-580	-500	-409	-307	-172	-126	-49	40	143	637	767	909
	IRR	-																			
	Year	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
	Investment cost	32,000																			
Phase I-3	Revenue		186	209	234	262	293	326	363	404	447	495	547	583	621	661	703	747	794	844	897
	Expenditure		1,130	1,142	1,154	1,166	1,151	1,183	1,214	1,236	1,259	1,284	1,305	1,331	1,351	1,371	1,390	1,322	1,339	1,358	1,376
	Cash flow	-32,000	-944	-933	-920	-904	-859	-856	-851	-833	-812	-789	-758	-748	-730	-710	-686	-574	-545	-514	-479
	IRR	-																			
	Year	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
	Investment cost	33,700																			
Phase II-1	Revenue		632	708	790	881	981	1,089	1,208	1,337	1,477	1,575	1,677	1,784	1,898	2,016	2,143	2,277	2,420	2,572	2,733
r nase ir i	Expenditure		1,534	1,566	1,528	1,612	1,696	1,756	1,819	1,885	1,943	2,012	2,067	2,120	2,170	1,987	2,034	2,082	2,131	2,181	2,232
	Cash flow	-33,700	-902	-859	-737	-730	-716	-667	-611	-548	-466	-438	-390	-336	-273	30	109	196	289	391	500
	IRR	-																			
	Year	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
	Investment cost	31,400																			
Phase II-2	Revenue		404	450	500	554	613	678	722	769	819	871	925	983	1,045	1,110	1,180	1,254	1,332	1,416	1,505
i nase i-z	Expenditure		1,218	1,256	1,284	1,313	1,343	1,370	1,401	1,427	1,451	1,474	1,390	1,412	1,434	1,457	1,480	1,503	1,527	1,551	1,576
	Cash flow	-31,400	-813	-807	-784	-758	-730	-692	-679	-657	-632	-603	-464	-428	-389	-346	-300	-249	-194	-135	-71
	IRR	-															_				
	Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043
	Investment cost	16,300																			<u> </u>
Phase III	Revenue		106	113	120	128	136	145	154	163	173	184	196	208	221	235	250	265	282	300	319
i nase ili	Expenditure		556	561	565	569	572	559	562	566	570	573	577	580	584	588	591	595	599	603	607
	Cash flow	-16,300	-450	-448	-445	-441	-436	-414	-409	-403	-396	-389	-381	-372	-363	-353	-342	-330	-317	-303	-288
	IRR	-																			

Table 8.5-2Financial Analysis Result of Distribution Projects

actually or think reasonable to pay for obtaining electricity.

The willingness-to-pay survey from November to December in 2008 described in 8.1.1 clarifies payments which users will pay and actual costs of their own generation. There is a method to calculate benefits by clarifying economic tariff based on amounts which users pay for alternative electricity actually or intended to pay and calculating benefits.³ It is explained as follows.

The part "ABFC" shown in Fig. 8.5-1 is called consumer's surplus and calculated by the following formula.

 $(ABFC) = (P'_E - P_E) \times Q_E \times R \quad -----(1)$

Here, the definitions are as follows.

 P_E : existing electricity tariff, P'_E : upper limit of willing-to-pay P''_E : economic electricity tariff Q_E : electricity demand at electricity price P_E R: ratio of area ABFC to area of rectangle (ABO'C)

 P_{E}^{*} is electricity tariff P_{E} converted from consumer surplus and so area of rectangle (ADO"C) is equal to area of ABFC. Therefore, ABFC is expressed in the following formula.

 $(ABFC) = (ADO"C) = (P"_E - PE) \times Q_E$ ------(2)

Based on (1) and (2) formulae,

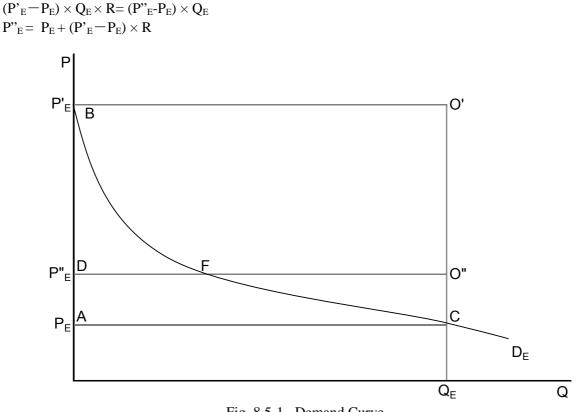


Fig. 8.5-1 Demand Curve

Both the willingness-to pay amounts and own independent generation costs are surveyed in the willingness-to-pay survey of this Master Plan Study and the result shows that the own generation cost

³ Desai, N., Economic Analysis of Power Projects: Asian Development Bank Economic Staff Paper No.24, Asian Development Bank, 1985

is more expensive than the willing-to-pay amount. Therefore, the own generation cost is used. The survey was conducted for three categories: household, commercial and industrial users. Concerning household and commercial users, the tariff units, which are costs divided by electricity volumes, of own generation are more expensive than the tariffs of the NPA. However, it is the contrary concerning industrial users and the industrial own generation unit cost is used as economic tariff. Concerning household and commercial users, economic tariffs are calculated by the method above. Those economic tariffs including generation are separated to distribution by use of the distribution cost share in the financial analysis model. The resultant economic distribution tariffs for household, commercial and industrial users are multiplied by the total electricity demands of household, commercial and industrial users, respectively. Then, the three multiplied numbers are summed up and distribution project share of electricity demand is used to obtain the project benefit. In addition, system loss improvement effects by the distribution projects are considered using total economic tariffs because it is effective to not only distribution but also generation.

For example, the household economic tariff is calculated as follows.

Using monthly fuel volumes and costs for own generation and monthly investment costs which result from dividing annuitized investment costs with five years lifetime and 10% discount rate by 12 according to the household samples of the willingness-to pay survey, own generation costs per kWh can be calculated dividing the monthly costs by monthly own generated electricity in kWh. The generation maintenance cost data exceeding 1,000 leones/kWh are supposed to have required a lot of repair costs and excluded from the calculation. In addition, generation facilities with very low use rates (less than 3%) are also excluded similarly because fixed cost shares in own generation costs are too many. The resultant own generation costs per kWh of the samples are assumed distribution of demand curve and 2,819 leones/kWh, the maximum among them, is defined as P'_E . The distribution curve is shown in Fig. 8.5-2.

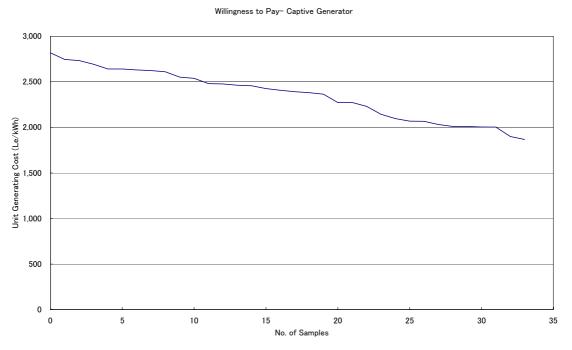


Fig. 8.5-2 Sample Distribution Curve of Own Generation Costs

On the other hand, the NPA's tariffs at the survey time are as shown in Table 8.5-3. Using these and 0.73 as standard conversion factor $(SCF)^4$ derived from export and import and others in Sierra Leone

⁴ SCF: used to exclude national policy effects distorting economic efficiency concerning investment costs and estimate to convert the costs from market prices to economic costs (border costs) SCF = (M + X) / ((M + Tm) + (X - Tx - SB))

Where M: import (CIF), Tm: import duty, X: export (FOB), Tx: export tax, SB: export subsidy

and assumed consumer surplus 25%, the economic electricity tariff is shown in Table 8.5-4.

Table 8.5-3	NPA's Tariffs for Household

Table 8.5-3 NPA's	fariffs for Ho	ousehold	Table 8.5-4 Economic	c Tariffs for
Old Tariff	Le/kWh	cents/kWh	Economic Tariff	Le/kWh
0-30 kWh	373	11.7	0-30 kWh	719
31-150 kWh	533	16.8	31-150 kWh	806
above 150 kWh	709	22.3	above 150 kWh	903
N . 1110D 0 1701				

Note: 1USD=3,179Le

According to the willingness-to pay survey, general household's average monthly NPA and own generation electricity demands are 228.8kWh and 107.2 kWh, respectively, and the sum is 336 kWh. This is applied to the economic tariffs and $22.6 \times 30 + 120 \times 25.4 + 186 \times 28.4 = \text{US}$ \$9,008.4. The average is 9,008.4 / 336 = 26.8 cents/kWh. The distribution part is its 50.7% and it is multiplied by annual household power demand and the benefit is obtained.

Similarly the commercial user benefits are calculated. The commercial users' economic tariffs calculated are shown in Table 8.5-6. Commercial user's average monthly NPA and own generation electricity demands are 214.5 kWh and 341.35 kWh, respectively, according to the willingness-to pay survey and the sum is 555.85 kWh. This is applied to the economic tariffs and the average is 16,666.8 /555.85 = 30.0 cents/kWh.

Table 8.5-5	NPA's Tariffs for Commercial Users
-------------	------------------------------------

Old Tariff	Le/kWh	Economic Tariff	Le/kWh	cents/kV
0-30 kWh	651	0-30 kWh	861	27
31-150 kWh	781	31-150 kWh	932	29
above 150 kWh	846	above 150 kWh	968	30

 Table 8.5-6
 Economic Tariffs for Commercial Users

Concerning industrial users, own generation unit cost, 27.7 cent/kWh, is multiplied by SCF $27.7 \times 0.73 = 20.2$ cent/kWh and it is used as economic tariff.

The results of benefit / cost analyses are shown in Table 8.5-7. IRR of Phase I-1 is 6.7%, but cash flows of the other projects are minus and so IRR cannot be calculated.

8.5.4 **Consideration of Financial and Economic Analyses of Distribution Projects**

Financial analyses of the distribution projects result in worse account than the whole electricity development plan including generation. This shows that revenues of the distribution projects are smaller and cannot cover the costs. It means that the demand increase by the distribution project implementation is smaller proportionally to the whole plan and the revenues cannot cover the investment and expenditures and so the other existing demand contributes much more financially.

Economic analyses are similar, but barely IRR of Phase I-1 is 6.7% and the other distribution projects show that the benefits cannot cover the costs (including investment). This is also because of small proportion of demand increase by the distribution project implementation to the whole. As the phases progress, distribution network is extended to the areas with low demand density and demand increase by the project implementation is smaller so that financial and economic balances become worse.

However, the whole plan can avoid financial loss and so the projects can be implemented. After Bumbuna hydro power begins to generate and expansion of Kingtom generation station and construction of Blackhall Road are completed, generation capacity responding to the most urgent demand can be ensured. Nevertheless, power supply situation in Western Area cannot be improved unless the transmission and distribution network supplying power to the end users is improved. Namely, effects of generation facility investment cannot be realized. Networking of distribution brings about effects which cannot be calculated and included in the economic benefits such as stabilization of

power supply. They become the existing user's benefits, too. In addition, the Hydro Dominant Case has economic effects on greenhouse gas reduction which are not included in the benefits. Furthermore, the projects have effects on reduction of air pollution and noise caused by own generation. These economic effects are difficult to quantify so that they are not calculated, but they exist absolutely.

Since there are benefits which cannot be expressed simply in numbers such as IRR above and an electricity supply system has characteristics that it functions as a total system and if part of it is missing, electricity supply is impeded, implementation of the distribution projects in this Master Plan is meaningful enough to improve electricity supply in Western Area.

							Jenein	Cost	I mary .	515 ICC5		1501100		rojects					(Unit	: US\$ 1,	(000)
	Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
	Investment cost	25,600																			
	Benefit	-,	3,852	4,146	4,466	4,810	5,178	5,572	5,991	6,437	6,908	7,407	7,935	8,492	9,079	9,700	10,354	11,045	11,774	12,544	13,358
Phase I-1	Expenditure		2,963	3,106	3,262	3,429	3,609	3,795	3,981	3,759	4,244	4,734	5,080	5,442	5,827	6,162	6,562	6,882	7,189	7,478	6,415
	Cash flow	-25,600	890	1,040	1,204	1,380	1,569	1,778	2,010	2,678	2,664	2,673	2,854	3,049	3,252	3,537	3,792	4,163	4,586	5,066	6,943
	IRR	6.7%																			
	Year	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
	Investment cost	35,400																			
Phase I-2	Benefit		1,463	1,575	1,696	1,825	1,962	2,108	2,263	2,426	2,599	2,781	2,974	3,177	3,391	3,618	3,856	4,109	4,375	4,659	4,961
Fildse FZ	Expenditure		1,765	1,812	1,863	1,915	1,968	1,905	2,042	2,180	2,278	2,380	2,489	2,583	2,696	2,786	2,873	2,954	2,654	2,730	2,808
	Cash flow	-35,400	-303	-237	-167	-90	-6	203	220	246	321	401	485	594	695	832	984	1,154	1,721	1,929	2,154
	IRR	-																			
	Year	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
	Investment cost	32,000																			
Phase I-3	Benefit		385	415	447	480	516	554	594	636	681	728	777	830	885	944	1,005	1,071	1,140	1,214	1,293
i nuse i o	Expenditure		1,130	1,142	1,154	1,166	1,151	1,183	1,214	1,236	1,259	1,284	1,305	1,331	1,351	1,371	1,390	1,322	1,339	1,358	1,376
	Cash flow	-32,000	-745	-727	-707	-686	-636	-629	-620	-600	-579	-556	-528	-501	-466	-427	-384	-251	-199	-144	-83
	IRR	-																			
	Year	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
	Investment cost	33,700																			
Phase II-1	Benefit		1,398	1,503	1,615	1,733	1,858	1,991	2,130	2,278	2,433	2,598	2,771	2,954	3,147	3,351	3,569	3,800	4,047	4,309	4,589
i nace ii i	Expenditure		1,534	1,566	1,528	1,612	1,696	1,756	1,819	1,885	1,943	2,012	2,067	2,120	2,170	1,987	2,034	2,082	2,131	2,181	2,232
	Cash flow	-33,700	-136	-63	87	122	162	234	312	393	490	585	704	833	977	1,365	1,535	1,719	1,916	2,128	2,357
	IRR	-																			
	Year	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
	Investment cost	31,400																			
Phase II-2	Benefit		987	1,058	1,134	1,213	1,297	1,386	1,479	1,578	1,682	1,792	1,908	2,032	2,164	2,304	2,454	2,613	2,783	2,963	3,156
	Expenditure		1,218	1,256	1,284	1,313	1,343	1,370	1,401	1,427	1,451	1,474	1,390	1,412	1,434	1,457	1,480	1,503	1,527	1,551	1,576
	Cash flow	-31,400	-231	-198	-150	-99	-46	16	78	151	231	318	519	621	730	848	974	1,110	1,256	1,412	1,580
	IRR	-															r		r		
	Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043
	Investment cost	16,300																			
Phase III	Benefit		304	325	346	369	393	419	446	475	506	539	574	611	651	693	738	786	837	891	949
	Expenditure		556	561	565	569	572	559	562	566	570	573	577	580	584	588	591	595	599	603	607
	Cash flow	-16,300	-252	-236	-218	-199	-179	-140	-116	-91	-64	-34	-3	30	66	105	146	190	238	288	342
	IRR	-																			

 Table 8.5-7
 Benefit/ Cost Analysis Result of Distribution Projects

9. Capacity Building

In this chapter, capacity building for technical staffs of the Generation Division, and the Transmission and Distribution Division of the NPA has been planned as follows:

Firstly, standard services are described as Operation and Maintenance Guidelines which the NPA technical staffs shall acquire to operate and maintain the diesel engine generators, and transmission and distribution network. Secondly, current knowledge and skills of technical staffs of Generation Division, and Transmission and Distribution Division, Technical Department, NPA are described who actually conduct the operation and maintenance of these facilities in the Republic of Sierra Leone. Lastly, the technical items which shall be transferred and capacity development schedule are planned in consideration of the distance between knowledge and skills which the NPA technical staffs shall possess and actually possess.

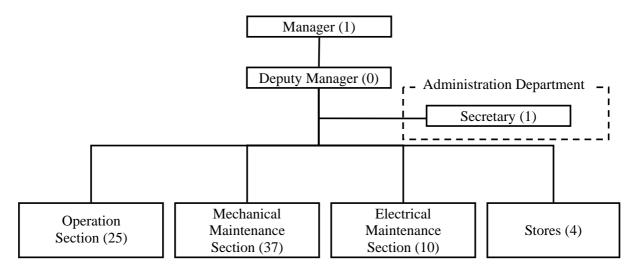
9.1 Operation and Maintenance Guidelines for Power Supply Facilities

Power system is composed of generation facilities, and transmission and distribution network including transformation equipment.

Concerning generation equipment, operation and maintenance guidelines for diesel engine generator are described. In consideration of the situation that the diesel engine generators (two sets of 5 MW Rated Output) are the only generators the NPA will operate and maintain by themselves which will be procured under the Project, "Urgent Improvement of Electric Power in Freetown" of Japan's Grant Aid, Operation and Maintenance Guidelines for the diesel engine generators are featured. It is shown as "Operation and Maintenance Guidelines for Diesel Engine Generator" in Appendices 2.

On the other hand, concerning transmission and distribution network, the equipment currently operated by the NPA is so decrepit that the Transmission and Distribution Division is forced to handle a huge number of repair works. In consideration of the situation, it is difficult to operate and maintain the current equipment in accordance with Operation and Maintenance Guidelines. Load Dispatching Procedures, Patrol Procedures and Inspection Procedures are shown as Operation and Maintenance Guidelines in assumption that, in future, the equipment will be improved and dispatch of power will be in stable condition. It is shown as "Operation and Maintenance Guidelines for Transmission and Distribution Network" in Appendices 2.

9.2 Current Situation and Problems of Technical Staffs in the NPA


Operation and maintenance for generation facilities and power system of the NPA are conducted by Generation Division, and Transmission and Distribution Division, Technical Department (Refer to Fig. 3.2-1). The current situations and problems of these two divisions are shown below. Both divisions are forced to operate and maintain the facilities under the situation far from sound status and the organization for stable and qualitative power supply becomes weak. Requirement for capacity development of technical staffs is clearly confirmed.

9.2.1 Organization of Generation Division and Transmission and Distribution Division

The organization of the Generation Division is shown in Fig. 9.2-1. The numbers in the brackets in the figure show the numbers of the staffs belonging to each group. The post of Deputy Manager is vacant and Operation Manager currently holds the post. There are 77 staffs in the Generation Division as of May 2009 (Secretary, who belong to Administration Department, is not counted as a staff of the Generation Division). The Division is composed of four Sections, Operation Section, Mechanical Maintenance Section, Electrical Maintenance Section and Stores.

At present, the generation equipment of NPA is out of service because of deterioration and critical damages, and operation and maintenance of equipment necessarily stopped from the end of 2006. Therefore, the organization for operation and maintenance is as obscure as the staffs who belong to plural sections. Though 16 (4 staffs * 4 groups) out of total 25 staffs in Operation Section are in charge of shift work, after resumption of operation and maintenance of their equipment, the number of staffs in charge will be increased.

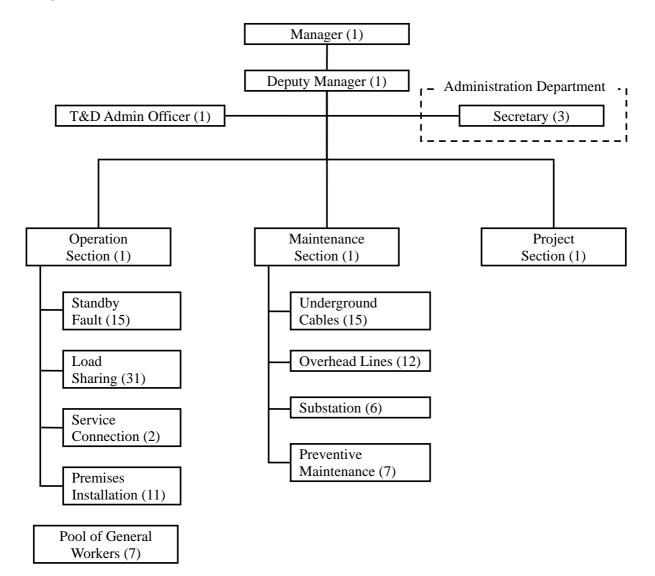
At the beginning of 2010, concerning two sets of 5 MW diesel engine generators procured under the Project of Japan's Grant Aid, the organization shall be reconstructed. In addition, two sets of 8.26 MW diesel engine are planned for installation in the area of Blackhall Road Substation in August 2010 and, moreover, one set is planned to be added there in 2011. As total three sets are operated and maintained in Blackhall Road, additional technical staffs shall be secured in the near future. The composition of staffs in the Generation Section is shown in Table 9.2-1.

Total Number of Official Staff: 77

As of May, 2009 [Source] Generation Division, NPA

Fig. 9.2-1 Organization Chart of the Generation Division

	Operation Section	Mechanical Maintenance Section	Electrical Maintenance Section	Stores
Section Manager	1	1		
Chief Superintendent		1	1	
Senior Superintendent		1	2	
Superintendent	5	3		
Assistant Superintendent	3	2	1	
Senior. Engine Attendant	8			
Senior. Shift Supervisor	2			
Senior. Switch Board Attendant	1			
Senior. Fitter	4	8		
Fitter	1	3		
Senior. Plumber		1		
Tools Keeper		1		
Electrician			6	
Storekeeper				2
Data Processing Clerk				1
Stores Support Staff				1
General Worker		16		
Total	25	37	10	4


 Table 9.2-1
 Number of Technicians of Each Section in Generation Division

As of May 2009 [Source] Generation Division, NPA

The organization of the Transmission and Distribution Division is shown in Fig. 9.2-2. There are 112 staffs as of May 2009 (Secretary is not counted as a staff of the Transmission and Distribution Division). The Division is composed of three Sections, i.e. the Operation Section, Maintenance Section and Project Section. The Standby Fault Party under Operation Section is in charge of fist aid action for faults and the actual repair work for faults is executed by parties under the Maintenance Section. As the Project Section has only just been established in May 2009 and the actual staffs for planning have not been secured, general workers do not belong to a particular section and engage in general works of three sections.

In addition to the situation where the Transmission and Distribution Division is forced to handle a huge number of repair works for faults, they lack such necessary goods and equipment for work as cars for patrol and computers.

Technical staffs who have basic knowledge for electrical equipment exist in the section and it is a issue of the section to train these staffs as chief engineers by the Capacity Development Plan. The composition of staffs in the Transmission and Distribution Division is shown in Table 9.2-2.

Total: 112

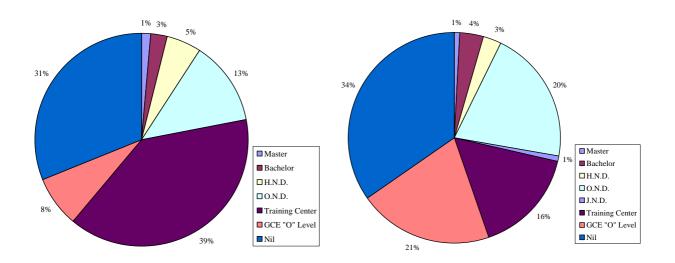
```
As of May 2009
[Source] T&D Division, NPA
```

Fig. 9.2-2 Organization Chart of Transmission and Distribution Division

-				reennen		beetion	mitabi	011151011		
		Opera	ation Section			Maintenar	nce Section		Project	Pool of
	Standby Fault	Load Sharing	Service Connection	Premises Installation	Underground Cables	Overhead Lines	Substation	Preventive Maintenance	Project Section 1	General Workers
Section Manager			1				1		1	
Chief Superintendent							2			
Senior Superintendent		2	1							
Superintendent	1	2		2	4	3	1	2		
Assistant Superintendent	2	6			2	2	1			
Senior Electrician	2	2		3						
Electrician	1	14		4						
Senior Technician		1					1			
Technician		2			1	1	1	1		
Senior Linesman	2							1		1
Linesman	4			1		3		3		1
Linesman Mate						1				
Senior Cable Jointer					1					
Cable Jointer					4					
Senor Fitter		1								
Fitter		1								
Lift Maintenance Technician				1						
Telephone Operator	3									
General Worker			1		3	2				5
Total	15	31	2	11	15	12	6	7	1	7

 Table 9.2-2
 Number of Technicians of Each Section in T&D Division

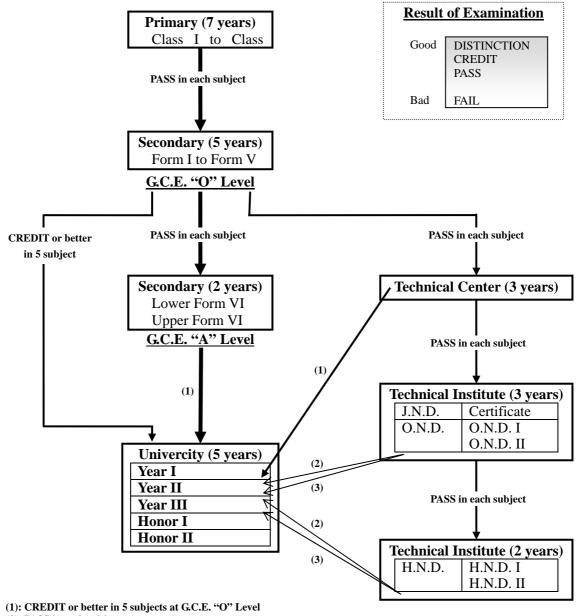
As of May, 2009 [Source] T&D Division, NPA


9.2.2 Technical Level and Problems in the Generation Division and Transmission and Distribution Division

Technical knowledge and skills of technical staffs are acquired via technical education and trainings and mastered through the practice. The current problems in technical capacity are clarified through confirmation of technical education and trainings which the staffs of Generation Division and Transmission and Distribution Division have received in the past.

(1) Academic backgrounds of technical staffs, NPA

The education system has been transferred to the new system, composed of 6 years of primary, 3 years of junior secondary, 3 years of senior secondary and 4 years of university education since 1993. Before 1993, education was conducted in the system shown in Fig. 9.2-5. Recently, the NPA has not hired new employees (2 new employees in 2007 and 2008 for each year) and most of its technical staffs received their education according to the system shown in Fig. 9.2-5. One example of Technical Center in the figure is NPA Training Center in Kingtom Power Plant. Fourah Bay University is the only national one which has engineering faculty in Sierra Leone. In Technical Institute, higher education can be received than Technical Center. G.C.E. "O" Level is the same level as graduation of high school.


As is shown in 9.2.1, the number of staffs in the Generation Division and the Transmission and Distribution Division are respectively 77 and 112. Compositions of their academic background are shown in Fig. 9.2-3 and Fig. 9.2-4. The numbers of graduates from university, who possess capability to be trained as chief engineers are three in Generation Division and five in Transmission and Distribution Division. And the numbers of graduates from Technical Institute, who possess capability to be trained as chief technicians are 14 in Generation Division and 27 in Transmission and Distribution Division. Though academic backgrounds of staffs are one of the most reliable indicators which show the potential to grow as chief engineers and chief technicians, final decision on selection of trainees for the capacity development plan shall be made with consideration of such items as business experience and vocation after the careful discussion with managers of each division.

[Source] JICA Study Team

Fig. 9.2-3 Academic Background of staffs in Generation Division [Source] JICA Study Team

Fig. 9.2-4 Academic Background of staffs in Transmission and Distribution Division

(2): PASS in each subject (3): CREDIT or better in each subject

G.C.E. "O" Level: General Certificate of Education at Ordinary Level G.C.E. "A" Level: General Certificate of Education at Advanced Level J.N.D.: Junior National Diploma O.N.D.: Ordinary National Diploma H.N.D.: Higher National Diploma

[Source] JICA STUDY TEAM

Fig. 9.2-5 Education Structure in Old System

(2) Technical level achieved in the NPA Technical Center

Though the NPA Training Center is located in the area of Kingtom Power Plant, currently, it is not the training center for NPA staffs. It is a technical school for general students who graduate from senior secondary school. At present, as the NPA hardly hires new employees, there is no student who enters the NPA after graduation of the NPA Training Center. From 1985 to 1993, as it was in charge as the training center of the NPA, the technical staffs who passed G.C.E. "O" Level and entered the NPA were trained in the training center. The training center has two technical courses, which are Electrical Course and Mechanical (Fitter General) Course. The curriculums of them are shown in Table 9.2-3 and Table 9.2-4. Both courses are composed of 30% theoretical training and 70% practical training. The subjects specializing in power equipment are not confirmed in both courses. From the viewpoint that they are the training for technical staffs who operate and maintain the national power system, there is concern that they are not sufficient.

Concerning Electrical Course, practice for simple work of cable and overhead lines is only conducted and such knowledge and skills as structure of power system, protection method of power system, pole assembling practice and termination and jointing of cables, which are basic for electricians, are not trained.

Concerning Mechanical Courses, practice for disassembling and maintenance of small and simple diesel engines which are used in each household at the time of blackouts is only conducted. There is concern that it is impossible to operate and maintain the thermal power plants which are in charge of national power supply and are composed of such utility facilities as fuel oil system, cooling water system and lubricating oil system, only based on trained techniques in the training center. The situation of the NPA Training Center is shown in Table 9.2.3-5.

Table 9.2-3	Curriculum of Electrical Course
-------------	---------------------------------

Category	Contents	
Theory	Electrical Calculations	
	Electrical Technology	
	Electro-Technical Drawing	
	Electronics	
	Protection and Regulation	
Practice	Basic Metal Work	
	Installation	
	Control Circuit	
	Lines and Cable Network	
	Winding	
	Electrical Appliance Repairs	
	Project Work	

[Source] NPA Training Center

Table 9.2-4Curriculum of Mechanical Courses

Category	Contents	
Theory	Technical Mathematics	
	Workshop Technology	
	Technical Drawing	
	Diesel Technology	
	Basic Electricity	
Practice	Bench Work	
	Gas and Arc Welding	
	Diesel Fitting	
	Machining	
	Pipe Fitting	
	Project Work	

[Source] NPA Training Center

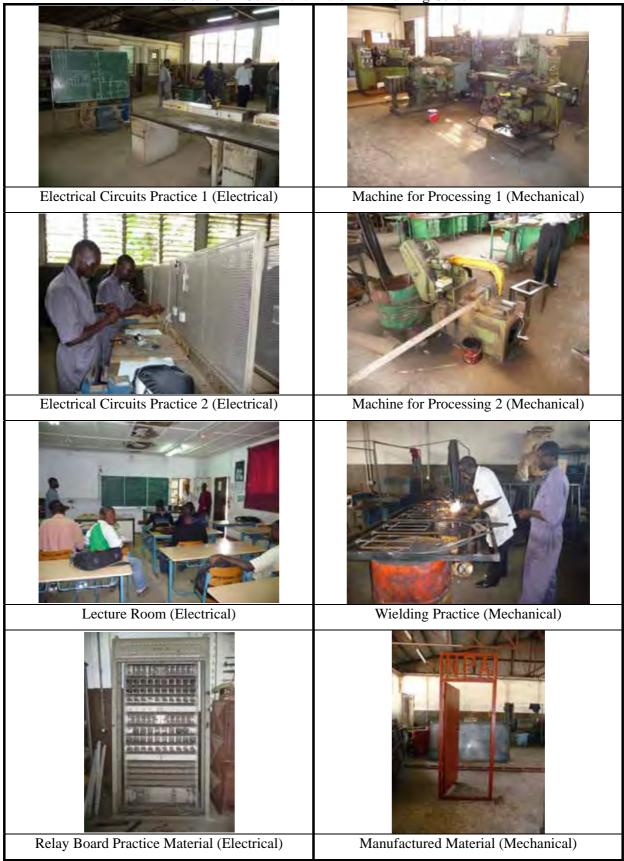


Table 9.2-5Conditions in the NPA Training Center

(3) Technical level achieved in Faculty Engineering, Fourah Bay University

At the time of transformation of the education system in 1993, education of university was changed to four-year education from five-year education. But, because of the relic of old system, even now, curriculums of university have five- year education and some students spend five years in university to finish the curriculums. The curriculum of Electrical Modules and Mechanical Modules, Faculty Engineering, Fourah Bay University are shown in Table 9.2-6.

Though the number of technical subjects is relatively less, such significant subjects as dynamics and material engineering are included and it is considered that basic knowledge as an engineer is achieved from the curriculums. But the achievement in universities is only basic knowledge and it is necessary in case of technical staffs who operate and maintain power equipment to also acquire technical knowledge and skills such as operation and maintenance procedures of equipment, protection system and planning of power system. Especially, in case of developing countries, as it is hard to secure the maintenance service providers, all the maintenance works such as disassembling, inspection and reassembling have to be done autonomously. Therefore, the additional systematic trainings to university education for operation and maintenance are indispensable.

	Table 9.2-6 Curriculum of FBC					
			al Modules		nical Modules	Term
		Power Engineering	Light Current	Mechanical	Maintenance	
Year 1	First & Second	Mathmatics	Same as on the left	Same as on the left	Same as on the left	26 wee
	Semester	Physics				
		Chemistry				
		Workshop Technology				
		Engineering Drawing				
		Foundamation Course				
ear 2		Electronics	Same as on the left	Same as on the left	Same as on the left	26 wee
		Applied Electricity				
		Mechnics of Fluids				
		Thermo Dynamics				
		Material and Structures				
		Applied Mathmatics				
		Workshop Technology				
		Engineering Drawing				
ear 3	First Semester	Electronics	Same as on the left	Applied Mechanics	Same as on the left	13 we
		Electric Circuits		Manufacturing Processes		-
		Communications		Mechanics of Fluids		
		Digital Systems	l	Plant Component and System		-
		Microcomputer Engineering		Energy Conversion Applied Mathematics & Calculus		
		Power Engineering Applied Mathematics & Calculus		Applied Mathematics & Calculus		
		Applied Mathematics & Calculus				
	C 1 C	Flaatsonics	Some as on the left	Applied Mechanics	Some as on the left	13 we
	Second Semester	Electronics Communications	Same as on the left	Applied Mechanics Manufacturing Processes	Same as on the left	15 we
		Digital Systems		Thermodynamics		-
		Microcomputer Engineering		Industrial Engineering		-
		Field Theory		Energy Studies		
		Partial Differential Equations		Partial Differential Equation		
		and Laplace Transform		and Laplace Transform		
		and Explace Hanstorm				
'ear 4	First Semester	Signal Analysis	Same as on the left	Mechanics of Machines & Controls	Mechanics of Machines & Controls	13 we
cui i	T not bemester	Controls Systems		Mechanics of Solids	Mechanics of Solids	
		Power Engineering		Mechanics of Fluids	Statistics & Operational Research	
		Digital Systems		Engineer Thermodynamics	Maintenance Procedure & Organizing	
		Communications		Industrial Economics & Management	Engineering Management	
		Engineers-in-Society		Design Engineering	Design Engineering	
				Engineer - in - Society	Engineer - in - Society	
	Second Semester	Dete Deservice	Course on the lafe	Ditta	Ditte	12
	Second Semester	Control Systems	Same as on the left	Ditto	Ditto	13 we
		Power Engineering(Power Electronics)				
		Digital Systems				
		Engineers-in-Society				
		Projects and Mini Project				
		Communications				
ear 5	First Semester	Industrial Attachment for 5months	Same as on the left	Same as on the left	Same as on the left	13 we
car J	Thist Semester	industrial Attachment for Smolithis	Same as on the left	Same as on the left	Same as on the left	15 wc
	<u> </u>				+	-
	1				1	1
_	Second Semester	Industrial Electronics	Industrial Electronics	Mechanics of Machines & Controls	Electronic Instrumentation	13 we
		Power Electronics	Power Electronics	Thermodynamics	Mechanics of Machines & Controls	
			Control Systems	Material Science	Material Science	
		Control Systems				
		Electrical Machines	Computer Aided Design (CAD)	Production Engineering	Maintenance Procedure & Organization	
		Electrical Machines Electrical Power System	Computer Aided Design (CAD) Communications	Introduction in Chemical Engineering	Instrumentation, Quality Control & Reliabili	ity
		Electrical Machines	Computer Aided Design (CAD)	Production Engineering Introduction in Chemical Engineering Dissertation / Project		ity

Table 9.2-6Curriculum of FBC

(4) Practice and Problems of Technical Training in the NPA

In the NPA, staffs hired after the graduation of engineering faculty of universities, are engaged in three-year training as pupil engineers. During this period, they are assigned to Technical Department, Commercial Department, Administration Department and so on, and on-the-job training is conducted. The purpose of this training is for understanding of outline of power industry, not for transferring technical knowledge and skills for operation and maintenance of power equipment. At present, the NPA conducts no technical training for staffs and they operate and maintain the equipment by knowledge only achieved in school education. Though, at the time of execution of the project by foreign donors, on-the-job training was conducted, the NPA currently lacks systematically planned technical training.

In consideration of commissioning of 5 MW diesel engine generators procured under Japan's Grant Aid and connection Bumbuna System in the near future, it is an urgent issue of Generation Division and the Transmission and Distribution Division to transfer and improve technical knowledge and skills for operation and maintenance of power system based on the Operation and Maintenance Guidelines described in 9.1. In addition, as most of the technical staffs of the NPA digressed from school education long before, it is suggested to supplement programs with basic theory concerning electrical and mechanical engineering in case of technical transfer.

9.3 Capacity Development Plan for the NPA

Firstly, in consideration of "Operation and Maintenance Guidelines for Power Supply Facilities" described in 9.1 and "Current Situation and Problems of Technical Staffs in the NPA" described in 9.2, technical items to be transferred to technical staffs in the NPA are identified in this section.

At the beginning of 2010, coinciding with the start of operation and maintenance of two sets of 5 MW diesel engine generators procured under the Project of Japan's Grant Aid, capacity of operation and maintenance for the equipment shall be established urgently. Therefore the transfer of the technical items shall be scheduled through the practice of operation and maintenance of the equipment.

9.3.1 Technical Items to be Transferred

As described in 9.2.2, technical staffs in the Generation Division do not have the experience of systematic technical training programs. In addition, from the end of 2006, the practice of operation and maintenance of generation facilities stopped. Therefore, there is concern that technical works shown in Operation and Maintenance Guidelines shall be transferred from the basic steps for development of certain capacity. As diesel engines are operated in such severe conditions as high pressure, high temperature and high speed, early breakdown of engine cannot be avoided without appropriate operation and maintenance. Based on Operation and Maintenance Guidelines for Diesel Engine Generators, technical items to be transferred are shown in Table 9.3-1.

Section	Generation Facility Operation	Contents
Operation	Operation	Start-up/Stop Procedure
operation		Mechanical Protection System of Diesel Engine
		Fitting and Adjustment Operation
		Emergency Shutdown and the conditions
		Preparation for Dormant State
		Operation Management of Engine
		Operation Management of Fuel Oil System
		Operation Management of Lubricating Oil System
		Operation Management of Cooling Water System
		Operation Management of Start-up Air System
		Operation Management of Waste Oil Disporsal Facility
	Management of Operation Data	Preparation of Check Lists and Reports
	Management of Recirculating Flow	Management of Fuel Oil, Lubricating Oil and Cooling Water
	Management of Recirculating Flow	
		Stock Management
	Combustion Management	Management of Discharged Water, and Waste (Residual Ash)
	Combustion Management	Adjustment of Injection Timing
		Adjustment of Fuel Injection Pump Rack
	Preparation of Operation Manuals	Preparation of Manuals
	Preparation of Waste Management Manuals	Preparation of Manuals
	Trouble Shooting for Failures	Trouble Shooting Procedures
	Budgetary Planning for Operation	Estimation Procedure of Budget
Maintenance	Planning and Implementation of	Planning and Implementation Procedures of Periodical
and Planning	Periodical Overhauls	Overhauls
	Arrangement/Rearrangement Works for	B Overhaul
	Periodical Overhauls	D1 Overhaul
		D2 Overhaul
		D3 Overhaul
		E2 Overhaul
		Stock Management of Spare Parts Management
	Implementation Procedures for	Fitting and Inspection Procedure of Intake/Exhaust
	Periodical Overhauls	Valve
		Overhaul Procedures of Fuel Injection Valve and Pump
		Inspection Procedure of Cylinder Liner
		Disassembling and Inspection Procedure of
		Piston and Connection Rod
		Disassembling and Inspection Procedure of Rocker Arm and Cam Function
		Replacement Procedure of Main Bearing
		Inspection Procedure of Crank Shaft
		Inspection Procedure of Gears
		Overhaul Procedure of Turbocharger
		Overhaul Procedure of Torsion Vibration Damper Overhaul Procedure of Governor
		Overhaul Procedure of Other Accessory Equipment
	Overhaul Procedures of Auxiliary Equipment	Overhaul Procedures of Filtering Equipment
		Overhaul Procedures of Purifiers
		Overhaul Procedures of Pumps
		Overhaul Procedure of Compressor
		Overhaul Procedures of Measurement Instruments
	Preparation of Overhaul Manuals of Engine	Preparation of Manuals
	Preparation of Overhaul Manuals of Auxiliary	Preparation of Manuals
	Equipment	

Table 9.3-1 Capacity D	Development for Lead Engineers of		
Generation Facility Operation and Maintenance			

	Budgetary Planning for Maintenance	Estimation Procedure of Budget
	Trouble Shooting for Failures	Trouble Shooting Procedures
Common Item for,	Theory	Theory of Diesel Cycle
Operation, Maintenance		Sequence Control System
and Planning		Preventive Maintenance
		Non-Destructive Inspection
		Automatic Control of Generation Facilities
		Control Systems of Generation Facilities
	Others	Structure and Function of Governor
		Principle of Function of Purifiers
Electrical Facility	Theory	Voltage and Frequency Management
2		Sequence Control System
		Protection Coordination and Setting
		Automatic Voltage Regulator
	Operation Management	Sequence Control of Generation Facilities
		Control Systems of Generation Facilities
		Protection Relays and Setting of Generation Facilities
		Synchronous Running of Generation Facilities
		Operation Management of Generation Facilities
		Voltage and Frequency Management
	Management of Operation Data	Preparation of Check Lists and Reports
	Maintenance Management	Overhaul Procedure of Synchronous Generator
		Overhaul Procedure of Switchgears
		Overhaul Procedure of Control Panel and Synchronizing Panel
		Overhaul Procedure of Station Transformers
		Overhaul Procedure of MCC
		Overhaul Procedure of DC Supply Panel
		Performance Test of Protection Relays
	Trouble Shooting for Failures	Trouble Shooting Procedures
	Applications of Tools and Instruments	Purpose and Method of Usage
	Others	Structure and Operation of Governor
Common	Outline of Generation Facility	Outline of Engine
		Outline of Fuel System
		Outline of Lubricating Oil System
		Outline of Cooling Water System
		Outline of Start-up Air System

[Source] JICA Study Team

Technical staff in the Transmission and Distribution Division also do not have the experience of systematic technical training programs. Therefore, there is concern that the technical works shown in Operation and Maintenance Guidelines shall be transferred from the basic steps for development of certain capacity. After the commissioning of Bumbuna Hydraulic Power Plant, such policies as protection coordination and demand and supply planning shall fundamentally be revised. In addition, as the Transmission and Distribution Division is forced to conduct a huge number of repair works for faults, the appropriate and efficient procedures for repair work shall also be transferred. Based on Operation and Maintenance Guidelines, technical items to be transferred are shown in Table 9.3-2.

Section	Items to be trained	Contents
Operation	Operation Management	Formulation of Observation Framework
		Start-up/Stop/Switching Operation Procedures of
		Power System
		Emergency Operation Procedures
		at Failures
		Commissioning/Recommissioning Procedures of
		Power System
		Improvement of Power Factor
		Load Shedding
	Protections of Power System	Main and Back-up Protections
		Protection Coordination and Setting
		Performance Tests of Protection Relays
		Functional Tests of Switchgears
	Management of Operation Data	Preparation of Check Lists and Reports
	Planning of Demand and Supply	Analysis of Operation Data
		Analysis of Time Schedule Periodical Overhauls
		Analysis of Reservoir Utilization Plan
	Management of Power System	Voltage and Frequency Management
		Improvement of Power Factor
	Preparation of Operation Manuals	Preparation of Manuals
	Trouble Shooting for Failures	Trouble Shooting Procedures
	Applications of Tools and Instruments	Purpose and Method of Usage
Maintenance	Maintenance Management	Overhaul Procedure of Transformer
and Planning		Inspection of Overhead Lines
		Inspection of Underground Cables
		Overhaul Procedure of Switchgears
		Overhaul Procedure of DC Supply Panels
		Performance Test of Protection Relays
		Overhaul Procedure of Auto Reclosers
		Overhaul Procedure of Arresters
	Repair Work	Overhead Lines
	Repuir Work	Underground Cables
	Patrol and Inspection Procedure	Overhead Lines
	r unor und mispection r rocedure	Underground Cables
		Transformation Equipment
		Preparation of Patrol and Inspection Check List
	Budgetary Planning for Operation and	Estimation Procedure of Budget
	Maintennce	Estimation Procedure of Budget
	Trouble Shooting for Failures	Trouble Shooting Procedures
Common	Theory	Voltage and Frequency Management
	-	Sequence Control Systems
		Calculation for Failures
		Protection Coordination and Setting

Table 9.3-2 Capacity Development for Lead Engineers of Power Distribution Facility Operation and Maintenance

1		Automatic Voltage Regulator
		Power System and Stability
	Applications of Tools and Instruments	Purpose and Method of Usage

[Source] JICA Study Team

Though services concerning the power system planning are conducted in the System Planning Section of the Corporate Planning Department presently, the NPA depends on assistance from the foreign donors and the staff capable of planning the future system do not exist in the NPA. Even in case of reception of assistances from foreign donors, the NPA shall be able to coordinate consistency of each project from technical viewpoints. In the near future, system planning engineers who can plan and evaluate power system development projects shall be secured in the NPA. Especially, concerning the low voltage distribution network, essential problems for stable and reliable power supply are caused not only by lack of knowledge and skills for operation and maintenance in technical staff but also deterioration and overload of equipment. As the distribution network is composed of huge numbers of equipment, it is difficult for foreign donors to assist improvement of the distribution networkt in limited term projects. From this viewpoint, the existence of system planning engineers is necessary. Technical items to be transferred for power system planning are shown in Table 9.3-3.

Table 9.3-3	Capacity Developme	nt for Lead Engineers of
	Power System Pla	anning
Items	s to be trained	Contents

Section	Items to be trained	Contents
Power Distribution	Present Data Analysis	Preparation of Single-Line Diagram for 11kV Distribution
Facility Planning		Line
		Preparation of Single-Line Diagram for Low Voltage
		Distribution Line
		Preparation of Route Map for 11kV Distribution Line
		Preparation of Route Map for Low Voltage Distribution
		Line
		Analysis of Load Characteristic
		Analysis of Operation Data
		Analysis of Voltage Drop and Power Loss
		Confirmation of Projects by Foreign Donors
	Demand Forecast	Macro Demand Forecast
		Micro Demand Forecast
	Distribution Network Planning	Planning for Renewal of Distribution Line
		Planning for Empowerment of Distribution Line
		Planning for Extension of Distribution Line
		Designing Procedure for Distribution Network
		Evaluation of Profitability of Projects
		Planning for Reduction of Voltage Drop and Power Loss
		Planning for Introduction of Power Factor Improvement
		Equipment
	Power System Analysis	Calculation of Power Flow
		Calculation of Short-circuit Capacity
		Calculation for Failures
		Evaluation of Stability of Power System
Power	Analysis of Existing Generation Facility	Evaluation of Current Performance and Life Duration of
Development Planning		Existing Generation Facility
		Analysis of Load Characteristic
		Confirmation of Projects by Foreign Donors
	Demand Forecast	Macro Demand Forecast
	Evaluation for Potential of Power	Feasibility Study for Hydroelectric Power Plant
	Development	Feasibility Study for Thermal Power Plant
	-	Analysis of Characteristics of each Power Source Type
	Formulate and Evaluation of Power	Evaluation of Initial Costs and Running Costs of Each

. –		
I	Development Planning	Development Plan
		Study for Best Mix of Power Development
		(Screening Method)
		Evaluation of Flexibility for Operation
		Study for Optimal Layout of Power Source
		Study for Construction Period
		Evaluation of Flexibility of Development Plan

[Source] JICA Study Team

9.3.2 Schedule of Capacity Development

Though i the capacity for operation and maintenance of generation facilities has declined since the practice stopped from the end of 2006, the new facilities will be commissioned from 2010. Therefore, the capacity for operation and maintenance for the facilities shall be developed as soon as possible. On the other hand, it is necessary to develop synthetically such basic capacity for independently and continuously reliable power supply as operation, maintenance and planning of power generation facilities and power system.

In consideration of these situations, the Capacity Development Plan for the NPA is scheduled shown in Table 9.3-4.

(1) Urgency of Capacity Development for Operation of Diesel Engine Generators

The management techniques for operation and maintenance of diesel engine generators cannot be accomplished in short time and needs deep understanding and experience of the equipment. In case of Generation Division, NPA, capacity development for and the practice of operation and maintenance shall be conducted at the same time, as operation of the new facilities will start from the beginning of 2010. In Table 9.3-4, the time schedule of the practice of operation and maintenance is shown at the top of the table and Capacity Development Plan is established according to the schedule. As capacity development for operation and maintenance is an urgent issue, a long-term expert for "Operation Planning for Generation Facilities" shall be dispatched as fiscal year 2010 starts. The red bars in Table 9.3-4 are processes for urgent capacity development for operation and maintenance of diesel engine generators. The deep red-colored bars show the terms of personnel dispatching.

In case of such developing countries as Sierra Leone, it is difficult to consign maintenance work to maintenance service providers. Therefore, the NPA shall maintain the equipment by itself. Technical staffs for diesel engine generators shall achieve knowledge and skills for such difficult procedures as the internal inspections at major overhauls which require deep understanding and experience of operation and maintenance. In consideration of the current situation of the Generation Division, NPA, it is regarded that it is the first step to master knowledge and skills for operation, before learning knowledge and skills for operation shall be scheduled in the first year. But, even in the first year, as 4,000-hour and 8,000-hour overhauls shall be implemented as shown in Table 9.3-4, a short-term expert "Maintenance Planning for Overhauls" shall assist the practice of maintenance work in the term. In addition, as the generation facilities include such electrical equipment as synchronous generators and switchgears, a short-term expert for "Operation and Maintenance Planning for Electrical Equipment" shall be dispatched as shown in Table 9.3-4.

(2) Necessity of Synthetic Capacity Development for Operation, Maintenance and Planning of Generation Facilities and Power Systems

In the NPA, no synthetic technical training program is conducted and technical staffs fundamentally lack technical knowledge and skills for operation, maintenance and planning of the power system. It is necessary to implement technical cooperation for synthetic capacity building for such basic knowledge

and skills for independently and continuously reliable power supply. Such synthetic technical cooperation processes are shown by blue bars in Table 9.3-4. In the table, deep blue-colored bars show the terms of personnel dispatching.

1) Capacity Development for Maintenance of Diesel Engine Generators

Maintenance management requires deep understanding of internal combustion engines and running conditions at each part of engines. From the situation of the Generation Division, NPA, a lot of problems are observed for proper maintenance management. Periodical overhauls are the main services of maintenance work of diesel engine generators. Periodical overhauls are composed of such works which require high management techniques as disengaging of cylinder heads, extraction of pistons and connection rods and replacement of main bearings. As equipment and instruments such as overhead crane and hydraulic pump are used in these works, safety control measures shall also be transferred step by step. Therefore, it is predicted that relatively long period is necessary to transfer proper management. As is shown in Table 9.3-4, dispatching of an expert for "Training of Chief Engineer for Engine Maintenance is scheduled along with implementation of periodical overhauls.

But the knowledge and skills achieved through the overhauls implemented a few times in a year are limited. Therefore, it is recommended to transfer knowledge and skills for maintenance effectively at such locations as the manufacturer's factory in Japan or a garage of a maintenance work provider in a third country by dispatching the staffs of the NPA after their capacity is improved by training in Sierra Leone. Such technical transfers are scheduled before the first 16,000-hour overhaul, 24,000-hour overhaul and 32,000-hour (four years) overhauls in Table 9.3-4, which include important and complicated contents. It is shown in yellow-colored bars in Table 9.3-4. One cycle of the periodical maintenance of the diesel engine generators is four years. To train the whole steps of the periodical maintenance, the capacity development plan shall be scheduled for more than four years.

2) Capacity Development for Operation and Maintenance of Power System

As operation of Bumbuna 161 kV Line will start in near future, the present management for the power system shall be reviewed after commissioning. As improving the current operation conditions for the power system, it is necessary to make control and protection systems conform with new conditions. In addition, as transmission and distribution network of the NPA suffers from a lot of failures caused of deterioration, the technical knowledge and skills for proper repair procedures shall be transferred. For the purpose, personnel for "Training of Chief Engineers for Power System Operation" and "Training of Chief Engineers for Power System Maintenance" are as shown in Table 9.3-4. As the size of the power system in Sierra Leone is not so huge, it is strongly recommended to transfer knowledge and skills for planning as soon as possible after capacity for operation and maintenance of the power system are improved at an early stage.

3) Capacity Development for Planning of Generation Facilities and Power Systems

For capacity building for planning, dispatching of personnel for "Training of Chief Engineer for Power System Planning" and "Training of Chief Engineer for Power Development Planning" is scheduled as shown in Table 9.3-4. Concerning Training of Chief Engineer for Power System Planning, so many problems such as deterioration, voltage drop and overload exist in transmission and distribution network of the NPA, especially in low-voltage network. Though it is necessary to start identifying areas of severe voltage drop and overload, a relatively long term will be required for identification as the low-voltage network is composed of huge numbers of equipment.

Even after commissioning of Bumbuna Hydraulic Power Plant which has enough rated output to meet the demand in supply area, additional power plants for dry season will be required. As the technical transfer for maintenance of diesel engine progresses, technical transfer for power development planning shall be scheduled. Though it is recommended to transfer knowledge and

skills for power development planning form the early stage, capacity building for maintenance management of diesel engine generators shall be prioritized, as the numbers of technical staffs who have capability to be trained as chief engineers and chief technicians are limited. In the NPA, power system in the future is planned in System Planning Section, Corporate Planning Department. As planning is so significant service for improvement of current situation of the NPA, it is necessary to select carefully superior personnel who are trained as planning engineers from the whole NPA without persisting in staff existing presently in the System Planning Section.

Though consistency of details of technical points such as control systems and protection systems between each generation facility shall be examined by the NPA, as power development planning is a large-scale project, it is necessary that the Ministry of Energy and Water Resources (MEWR) shall control the project. To control the project, technical knowledge shown in Table 9.3-3 shall also be imparted to the concerned staffs of MEWR, as such controls require understanding such technical points as load-frequency characteristics, generator-frequency characteristics and evaluation of existing generation facilities.

															:Sch :Trai	connel D edule of connel D edule of ning in J	each lte			.01		n (Every on (Ever on (Ever on (Ever on (Ever	Operatio r 4,000 H ry 8,000 H ry 16,000 ry 24,000 ry 24,000 ry 32,000	(
		20					010				011				12			201				20		
enerator Set Provided by Japan Grant Aid Project	10	2Q		_	10	20	3Q ▲	4Q	1Q	2Q	3Q	4Q	10	2Q	30	4Q	10	2Q	30	4Q	1Q	20	3Q	4Q
ellerator Set Provided by Sapan Grant Ald Project	-		-	n Unit 8	*								<u> </u>		<u> </u>				~				"	Ē
echnical Guidance by Consultant	-				^		-		-		-		-	-	-	-	-		-		-	_	-	-
JT by Manufacturer	1																							
· · ·	1																							
			P	ariad	for A	oquia	ition	of Qu		tion I	Facilit	v On	eretic											
			-	on rou		oyuna	aun	07 Ge	on ton en		aumų		or acio	-										
ong-Term Expert "Operation Planning for Generation Facilities"																								
Operation Management of Engine									-	—														-
Management of Operation Data																								<u> </u>
Management of Circulating Fluids				_								-		-								_		<u> </u>
Preparation of Operation Manuals Management of Waste Products							-				-	-		-								_		-
	-						L,		L															
Arrangement/Rearrangement Works for Overhauls Trouble Shooting for Failures	<u> </u>						F			-	+	-						\vdash		_				
Others	<u>†</u>								<u> </u>		1								-					
hort-Term Expert "Maintenence Planning for Overhauls"	t							-			1													
B Overhaul Procedure	1	1					<u> </u>		<u> </u>		1													
D1 Overhaul Procedure	1	1							5	1	1	1												
hort-Term Expert "Operation and Maintenance Planning for Electrical Facility"										1	1													
Operation Management of Electrical Equipment																								
Maintenance Management of Electrical Equipment	1																							
Management of Operation Data																								
Others																								
						Pari	ad for	1.400	vioito		Gana		1 Freed	liter M	ainta		Inde	pende	with c					
echnical Cooperation Project						1-0/1		AUG	unanto		Gono	auun	rau	ny m	a	anot	шие	Demae	nuy					L
Training of Chief Engineer for Engine Maintenance																								
Theory																								
Combustion Management																								<u> </u>
Management of Circulating Fluids	<u> </u>																							<u> </u>
Planning and Implement of Periodical Maintenance	<u> </u>										-		P											<u> </u>
Procedures of Assembling, Disassembling and Inspection of Each Machine Elements													-	1							-			-
Preparation of Periocical Overhaul Manuals of Engine																								-
Preparation of Periocical Overhaul Manuals of Auxiliary Equipment																			_					-
Budgetary Planning for Operation and Maintenance												<u>L</u>			۲.	_			_	_				-
Training in Japan (Major Overhaul Procedures) Training of Chief Engineer for Auxiliary Equipment Maintenance												Γ_			L.	Ē			_	-				-
Overhaul Procedures of Each Auxiliary Equipment	-												E		5				_					<u> </u>
Preparation of Manuals for Overhaul Procedures of Each Auxiliary Equipment	-												-		5							_		
Training of Chief Engineer for Electrical Equipment of Diesel Engin Generator	-										<u> </u>								-	-				
Theory	-										Г													
Operation and Maintenance of Electrical Equipment											±.,		-											
operation and maintenance of Electrical Equipment	1										E													
						Peri	od foi	- Acq	uisitic	on of	Powe	r Dis	tribut	ion F	oility	Оре	ration	and	Maint	enan	08			
Training of Chief Engineer for Power System Operation	1										-													
Theory	1																							
Operation Management											þ													
Protection of Power System											÷ –	Ē							_	_				
Management of Operation Data	<u> </u>										-													
Planning of Demand and Supply	L										1		0	-										
Management of Quality of Supplying Power											-	<u> </u>	0											
Applications of Tools and Instruments	<u> </u>																							
Training of Chief Engineer for Power System Maintenance											—													-
Theory											<u> </u>		_											-
Repair Work	+										Ľ													-
Patrol and Inspection Procedures Budgetary Planning of Operation and Maintenance	<u> </u>	-							-	<u> </u>	Ē-	F	1					\vdash						-
Applications of Tools and Instruments	+								-		I		-											
Approacions or roots and instruments	+								-	_	Ē													
	t								-		Perío	d for	Acqu	isition	of P	ower	Syste	om Pla	ennin,	3				
	t										5													
Training of Chief Engineer for Power System Planning		1									5									-				
Training of Chief Engineer for Power System Planning Present Data Analvsis	-						-	-	-	+	+			_	_									
Present Data Analysis								_					E											
Present Data Analysis Demand Forecast											-		E	F						-				
Present Data Analysis Demand Forecast Distribution Network Planning													E											
Present Data Analysis Demand Forecast Distribution Network Planning Power System Analysis																								
Present Data Analysis Demand Forecast Distribution Network Planning Power System Analysis Training of Chief Engineer for Power Development Maintenance																								
Present Data Analysis Demand Forecast Distribution Network Planning Power System Analysis																								
Present Data Analysis Demand Forecast Distribution Network Planning Power System Analysis Training of Chief Engineer for Power Development Maintenance Analysis of Existing Generation Facility																מומות ה ותות								

Table 9.3-4Capacity Development Plan for the NPA

[Source] JICA Study Team

9.3.3 Third Country Training

Load dispatching facilities are composed of transformation equipment which shall be reliable and huge numbers of transmission and distribution lines and supports. The technical staffs in charge of the service shall acquire appropriate knowledge and skills for operation and maintenance. Especially, as power companies in developing countries, like the NPA, cannot consign maintenance works such as repair works to maintenance work providers, technical staffs shall acquire properly not only knowledge but also skills for them. For deep understanding of practice procedures, it is effective to acquire knowledge and skills from systematic training programs held in training centers in power companies which have good facilities and programs. To confirm the feasibility of training for technical staffs in neighboring countries around Sierra Leone, the Training Center of Electricity Company of Ghana (hereinafter referred to as ECG) was visited.

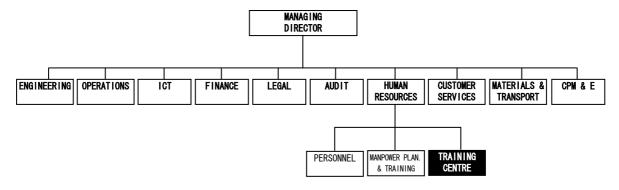

The power system in Ghana is operated and maintained in the formation shown in Table 9.3-5. As the voltage classes of the ECG systems are 33 kV, 11 kV and low voltage, i.e. the same as the NPA, it can be said that ECG Training Center is an appropriate training facility for the NPA.

Table 9.3-5	Framework of Power Companies in Ghana	
14010 7.5 5	rume work of rower companies in onana	

Department	Entities	Voltage class
Generation Volta River Authority: VRA		-
Transmission	Ghana Grid Company: GRIDCO	161 kV, 69kV
Distribution	Electricity Company of Ghana: ECG Nothern Electricity Department: NED	33 kV, 11kV and low voltage

[Source] JICA Study Team

The organization chart of ECG is shown in Fig. 9.3-1 and Training Center under Human Resources Department is in charge of practice of capacity building of technical staffs.

[Source] JICA Study Team

Fig. 9.3-1 Organization Chart of ECG

In the center, there are seven full-time instructors. The academic backgrounds and business experiences of the instructors and their subjects are shown in Table 9.3-6. From the table, it is confirmed that the instructors have enough capacity to transfer knowledge and skills for operation and maintenance of power system. Though the number of full-time instructors is seven, in case of lack of instructors, part-time instructors shall be provided from the Engineering Department or Operation Department. The education system in Ghana is shown in Table 9.3-7.

No.	Items	Contents				
	Academic Background	Master of Electrical Engineering				
1.	Length of Business Experience	19 years				
	Subjects to take charge of	Power System Engineering, Power System Simulation				
	Academic Background	Polytechnical School Part IV Full Technical Certificate				
2.	Length of Business Experience	9 years				
	Subjects to take charge of	Operation of Distribution Network				
	Academic Background	Polytechnical School Part IV Full Technical Certificate				
3.	Length of Business Experience	11 years				
	Subjects to take charge of	Distribution Technology				
	Academic Background	Polytechnical School Part II Electricals				
4.	Length of Business Experience	17 years				
	Subjects to take charge of	Safety Measure				
	Academic Background	Polytechnical School Part IV Full Technical Certificate				
5.	Length of Business Experience	9 years				
	Subjects to take charge of	Installation and Maintenance of Substation Equipment				
	Academic Background	Polytechnical School Part III Electricals				
6.	Length of Business Experience	9 years				
	Subjects to take charge of	Installation and Maintenance of Overhead Lines and Cables				
	Academic Background	High National Diploma				
7.	Length of Business Experience	4 years				
	Subjects to take charge of	Installation and Maintenance of Overhead Lines				

Table 9.3-6 Technical Level of Instructors in ECG

[Source] ECG Training Center

Table 9.3-7Education System in Ghana

University Education	Polytechnical Education
Elementary School	
Junior Secondary School	
Secondary School	
University	Polytechnical School
Graduate School	Part I
	Part II
	Part III
	Part IV Full Technological Certificate

[Source] JICA Study Team

The only training program actually implemented in the center is shown in Table 9.3-8. It is the program for new employees in charge as technicians of the Transmission and Distribution Division, ECG. It lasts ten months, then the trainees engage in on-the-job training after training in the center for twelve months, and then, lastly, they go back to the center for evaluation of achievement for two months. Concerning graduates form universities, there is no specified training program.

Classification	Subjects
	Overhead Line Construction Procedures
	Underground Line Construction Procedures
Theory	Operation and Maintenance of Transformers
Theory	Operation of Distribution Network
	Machine Works
	Distribution Technology
	Low Voltage Cable Jointing
	11 kV Cable Jointing and Termination
	33 kV Cable Jointing and Termination
	Basic Substation Maintenance
Practice	Basic Operation of Distribution Network
Flactice	Meter Installation
	Construction of Overhead Line
	Transformer Erection and Maintenance
	Safety Measure for Construction of Overhead Line
	Pole Erection Techniques

Table 9.3-8Contents of Training in ECG Training Center

[Source] ECG Training Center

The photographs of the center are shown in Table 9.3-9. Such efficient equipment for understanding of structures and protection of power system as operation simulator are confirmed. Though such equipment as transformation practice equipment, cable joint and termination practice materials are deteriorated, they have enough functions for technical staffs, but the NPA does not have experience of systematic and basic technical training in the past. Though the program is finished for ten months in ECG, the program shall be finished within the effective schedule for technical staffs. It will be achieved by the conditions that, for example, cable jointers shall be trained with focus on works concerning cable jointing and termination, and linesmen shall be trained with focus on works concerning overhead lines. The rainy season, which includes many system failures, shall be avoided as the time of the training. It shall be held in dry seasons from January to April.

From the viewpoint of technical level of instructors and facilities in the center, though it is not enough for personnel who graduate from electrical engineering courses of university and shall be trained as chief engineers, it is suitable for technicians who shall be trained as chief engineers and do not have experience of systematic and basic trainings.

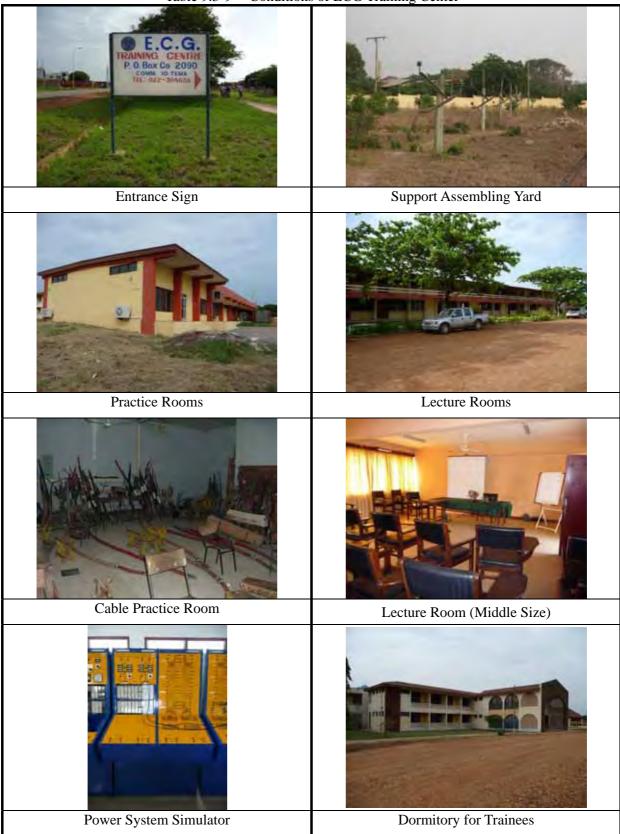


 Table 9.3-9
 Conditions of ECG Training Center

10. Conclusions and Recommendations

10.1 Conclusions

In order to meet the growing power demand in the future and to supply stable and reliable power in Western Area, the power supply system rehabilitation and expansion projects described in the following section 10.1.1 and 10.1.2 are recommended to be completed by 2025. Revision of electricity tariff explained in section 10.1.3 is recommended in order for the NPA to manage investment for the development of power supply system and to be an independent and sustainable entity.

10.1.1 Power Development Planning

High-speed and middle-speed diesel engine generators and Yiben-I hydroelectric power plant are to be developed in line with the schedule indicating completion year and capacity as shown in Table 10.1-1. Investment cost for such power development is described in Table10.1-2 and total investment requires approximately US\$268 million.

			,	Unit: MW
	High-speed	Mid-speed	Yiben-I	Annual
Year	Diesel (MW)	Diesel (MW)	Hydro (MW)	Total
	(1.8MW/unit)	(8.0MW/unit)	(20.5MW/unit)	(MW)
2010	5.4			5.4
2011		8.28		8.3
2012	1.8			1.8
2013	5.4			5.4
2014	3.6			3.6
2015	1.8	8.0		9.8
2016		8.0		8.0
2017		8.0		8.0
2018		8.0		8.0
2019	(-18.0)		61.5	61.5
2020				0.0
2021				0.0
2022				0.0
2023				0.0
2024				0.0
2025				0.0
Total	18.0	40.3	61.5	119.8

Table 10.1-1	Power Development Plan
(Hydro	Dominant Scenario)

Table 10.1-2 Investment for Power Development

	Unit : US\$million, expressed in Y2009 price								
	High-speed	Mid-speed	Yiben-I	Annual	Cumulative				
Year	Diesel	Diesel	Hydro	Investment	Investment				
	(1.8MW/unit)	(8.0MW/unit)	(20.5MW/unit)	Cost	Cost				
2010	2.48	3.01		5.49	5.49				
2011	0.00	12.03		12.03	17.52				
2012	0.83	0.00		0.83	18.35				
2013	2.48	0.00		2.48	20.83				
2014	1.66	2.76		4.42	25.25				
2015	0.83	13.80		14.63	39.87				
2016	0.00	13.80	28.44	42.24	82.11				
2017	0.00	13.80	66.35	80.15	162.26				
2018	0.00	11.04	66.35	77.39	239.66				
2019	0.00	0.00	28.44	28.44	268.09				
2020	0.00	0.00		0.00	268.09				
2021	0.00	0.00		0.00	268.09				
2022	0.00	0.00		0.00	268.09				
2023	0.00	0.00		0.00	268.09				
2024	0.00	0.00		0.00	268.09				
2025	0.00	0.00		0.00	268.09				
Total	8.28	70.23	189.58	268.09					

10.1.2 Improvement of Distribution System

Rehabilitation, enhancement and expansion of distribution network until 2025 as shown in Table 10.1-3 shall be implemented by dividing the planning period by 5 year-windows. The total investment costs approximately US\$172 million. Even though this Master Plan does not take interconnection of WAPP and national grid into consideration, in case when these transmission lines are realized and connected to the Western Area power system, the following distribution rehabilitation, enhancement and expansion projects should be reviewed and revised based on power system analysis on new network configuration.

No.		Project Packages	Major Components	Target Year	Cost (10 ⁶ US\$
ha	se-	I (from 2010 to 2015)		I cai	(10 053
		Rehabilitation of 11 kV and	1) Improvement of 33 kV system at Kingtom P/S	2012	25.0
		Improvement of 33 kV System	2) Construction of 33 kV line from Kingtom to		
			Falcon Bridge S/S (about 2 km)		
			3) Construction of 33 kV line from Kingtom to		
			Blackhall Road P/S (about 4 km)		
			 Construction of 11/33kV Substation at Falconbridge S/S 		
			5) Rehabilitation of 11 kV switchgears		
	2	Construction of 33 kV System in	1) Construction of 33 kV line from Wilberforce S/S	2011	
		Goderich and Jui Area	to Goderich S/S (about 7 km)	2014	35.4
			2) Construction of 33 kV line from Wellington S/S		
			to Jui S/S (about 13 km)		
			3) Construction of Goderich and Jui S/S		
			4) Improvement of 11 kV lines and extension of LV		
	3	Improvement of 11 kV Distribution	system 1) Replacement of old 11 kV transformers (more	2015	
	0	Facilities	than 40 years)	2015	30.
			2) Replacement of old 11 kV transformers (more		
			than 30 years)		
			3) Rehabilitation of existing 11 kV facilities		
			4) Promote new customer connections around		
			Goderich and Jui S/S Sub-total		91.
ha	se-	II (from 2016 to 2020)	Sub-total		<i>9</i> 1.
		Construction of 33 kV System in	1) Construction of Lumpa S/S and 33 kV line from		
	•	Lumpa and Tombo Area	Jui S/S to Lumpa S/S (about 15 km)	2017	33.
			2) Construction of Tombo S/S and 33 kV line from		
			Lumpa to Tombo S/S (about 17 km)		
			3) Electrification around Lumpa and Tombo S/S		
	2	Expansion of 33 kV System and	1) Installation of 161/33 kV transformer (60/80	2020	31.4
		Improvement of Network	MVA, OLTC with AVR) at Freetown S/S 2) Construction of 33 kV line from Goderich S/S to		
			2) Construction of 55 kV line from Goderich 5/5 to York town (29 km)		
			Rehabilitation of 11kV trunk lines and		
			³⁾ electrification		
			Sub-total		65.
ha		III (from 2021 to 2025)			
	1	Expansion of Distribution Network	 Construction of 33 kV line from Lumpa S/S to Fogbo town (about 16 km) 	2025	16.
			2) Construction of 33 kV lines from York S/S to		
			Tombo S/S (about 20 km)		
			3) Extension of 11kV lines and electrification		
			Sub-total		16.3
			Grand Total		172.4

 Table 10.1-3
 Distribution Rehabilitation, Enhancement and Expansion Plans

10.1.3 Revision of Electricity Tariffs

In the case where the power development scenario is the hydro dominant case and the Bumbuna hydro power purchase price is 7 cents/kWh, it is necessary for the NPA to set the average tariff at 27 cents/kWh shown in Table 10.1-4 for the purpose of enabling the NPA to sustain financially with investment of facilities planned by the Master Plan.

		Old tariff (bef	ore Dec. 2008)	Proposed tariff
Category	Subcategory	Le/kWh	US	US cents/kWh
		Le/K WII	cents/kWh	
	0-30 kWh	373	11.7	
Household	31-150 kWh	533	16.8	23
	Above 150 kWh	709	22.3	
	0-30 kWh	651	20.5	
Commercial	31-150 kWh	781	24.6	34
	Above 150 kWh	846	26.6	
Industrial	All units	941	29.6	28
Average	—	816	25.7	27

Table 10.1-4Revised Tariff Plan

[Note] US\$1 = 3,179 Le

Preconditions of proposed tariff calculation

- Power development scenario: hydro main case
- Power purchase price from Bumbuna: 7 cents/kWh
- System loss: improved from 40% in 2009 to 15% in 2025
- Collection rate: improved from 70% in 2009 to 95% in 2025
- Long-term liability: repayment by the NPA supposed to continue

10.2 Recommendations

10.2.1 Recommendations concerning PPP (Public-Private Partnership) Introduction into Power Development

It is difficult for the Government of Sierra Leone with financial difficulties to give funds to power facility investment even if facilities belong to the electricity sector with high priority. In addition, donor support is not sufficient to invest in the power sector in which demand is increasing. Furthermore, there are no funds and time for the NPA to attain worldwide levels of technical knowhow and efficient management quickly. Therefore, it is very necessary to introduce private activities in order to realize the power development plan in this Master Plan. Concretely, private entry including foreign companies is a theme on the occasion of IPP introduction and NPA participation. However, the NPA is suffering from chronic deficiency and needs the government support and technical capacity building so that it has a lot of issues to solve before the privatization which seems a long way off in the future although the privatization of the NPA is included in the long-term strategy of NCP.

While private generation companies have participated in urgent generation (rental power) already, it is necessary to introduce private company activities from now on. It requires establishment of the following conditions to introduce private activities in future Sierra Leone smoothly.

• Establishment of legal institutions

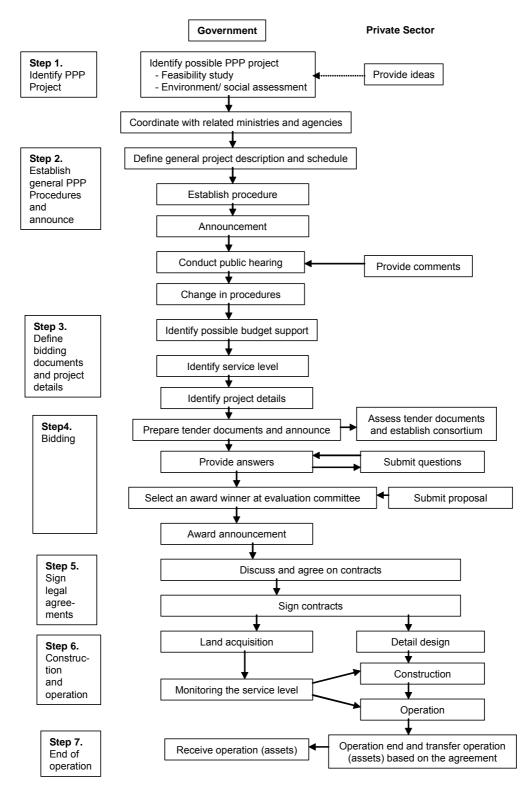
It is necessary to establish laws and regulations arranging investment conditions to introduce the private sector without problems so that the private sector can participate without anxiety. Undoubtedly, since it will be a problem only if the situation changes from public monopoly to private monopoly, the laws and regulations of the process below based on the competition policies are necessary. Contracts, implementation, penalties, etc. are prescribed.

- Establishment of transparent and fair introduction process It is necessary to establish transparent processes such as public participation invitation and tender which can ensure fair competition. In addition, it is essential to establish an independent regulating organization to monitor and supervise these processes.
- Clarification of roles and risks born by the public and private sectors Share of the roles, in particular, risks, between the government and private sector should be designed appropriately in order to complete the project successfully without cancellation or

suspension. Treating the private sector too well may cause too much government burden, whereas pushing too many risks onto the private sector may cause no entry so that balance is necessary. Study on the past best practices and suitable adviser's consultation are necessary.

• Investment promotion policies Private investment promotion policies such as government's guarantee of power projects which the private sector enters, incentive tax systems and abolition of foreign investment restriction should be implemented. Since Sierra Leone Investment and Export Promotion Agency (SLIEPA) established in May 2007 is attracting investors and doing publicity work in Sierra Leone, it is desirable that the Ministry of Finance and Economic Development, Ministry of Energy and Water Resources and SLIEPA cooperate to promote investment in the power sector much more.

A standard process of PPP introduction as an example of private introduction into public works is shown in Fig. 10.2-1.


On the other hand, private introduction requires attention. There has already been an example where rental power introduction brought about high costs because of the free contract. Therefore, the competitive process described above is necessary. Indonesia and the Philippines had problems after IPP introduction. For instance, the government introduced IPP responding to lack of power supply in the 1990s in the Philippines. However, high price agreements have made the National Power Corporation (NPC) and later the liquidation organization (Power Sector Assets and Liabilities Management Corporation established by the government to dispose NPC's stranded liabilities and stranded IPP contract costs before the unbundling and privatization of NPC) suffer from huge liabilities and annual adverse income/costs of IPP are still continuing now. Therefore, universal charge imposed on electricity consumers may be increased so that the burden is transferred to the consumers.

In the case of a project close to a monopoly such as electricity supply business, there is a case where tariff negotiation between the government and electricity company is decided with the following formula.

Tariff increase rate = CPI (Consumer Price Index) – alpha

Here, alpha is a productivity improvement goal which is negotiated between the government and operator so that appropriate tariffs can be attained.

Privatization of the NPA is a long-term future matter and it is necessary to attain profits financially and train the staff so that they can operate and maintain technically before the privatization. After the NPA becomes an independent public corporation, it will be necessary to re-examine the privatization and unbundling. At present, NCP has a long-term strategy to unbundle the NPA to generation, transmission and distribution and privatize each, but it should reconsider how to privatize the NPA when it can become independent. It will be necessary to examine desirable aspects of power sector in Sierra Leone because international competitiveness may be necessary when West Africa Power Pool (WAPP) is established. There are some examples of electricity companies without unbundling in the world and it is not necessary to decide how to privatize the NPA at present in a hasty way.

[Source] JICA, "Public-private Partnership (PPP) Program for Cairo Urban Toll Expressway Network Development," March 2006 Fig. 10.2-1 Standard PPP Introduction Process

10.2.2 Recommendations concerning Transmission and Distribution System

(1) 161 kV Bumbuna Transmission Line

In the future, power supply to Western Area will largely depend on hydroelectric power plants such as Bumbuna, Yiben, etc. However, the only transmission line that sends electricity from those hydro power plants to the capital region is 161kV-single circuit Bumbuna line. Therefore, system load must be reduced to the level that is equal to diesel generators' capacity connected to the Kingtom's bus bar on that occasion if an accident occurs on the Bumbuna line, as explained in section 6.4 6) power frequency calculation and 7) stability analysis. The Bumbuna line has the length of approximately 205 km and there is a high possibility of line accident and shut down. If such situation happens, the functions of the capital region will be heavily impeded. In order to avoid such catastrophe, it is highly recommended to implement the following countermeasures.

- 1) The Western Area power system should be interconnected with cross-border transmission link. The desirable location of new substation will be such that;
 - Power supply is hampered when the existing 161 kV line is out,
 - A load dispatch center can be easily constructed in the future, and
 - No negative impact on the environment is anticipated.

One of the recommended nominal 230 kV transmission line routes is Mano-Kenema-Bo-Makongo-Lumpa but final decision shall be made through the comprehensive examination on future road plan, demand forecast and conservation areas.

2) Diesel generators which are connected to the Western Area power system might be disconnected if fast load cut back is impossible in case of Bumbuna line outage. This will lead to the collapse of whole Western Area power system. In order to minimize blackout area, it is necessary to cut back system load as soon as possible. To do so, preliminary system flow monitoring, transmission of accident information on Bumbuna line, calculation of the amount of load cut back after an accident happens, and automated load cut back systems should be equipped. In addition, prioritization of feeders at each substation should be defined beforehand.

(2) Operation of Loop System

In the Western Area power system, system configuration that is suitable for loop system operation is preferred and actually the system is composed of complicated multi-loops. A loop system has an advantage in that blackout can be avoided by sending power from a normal path in case an N-1 accident happens. On the other hand, a loop system has the disadvantage that it is difficult to monitor power flow and system operators and planners are required to have higher skills compared with radius network.

In order to maximize the advantages of loop system, it is necessary to establish a distribution network which can cater to change of power flow in case of an accident. Careful system analyses on trunk distribution lines and the selection of configuration of network which will meet various load patterns should be conducted in advance. In addition, loop system operation should be accompanied with the modification of the existing system (adoption of frequency relays, etc.). Furthermore, training for system operators and planners and the introduction of supporting system on system operation and planning would be necessary.

10.2.3 Recommendation for Environmental and Social Considerations in the Future

10.2.3.1 Important Points in the Next Step of Feasibility Study or Project Implementation

This Master Plan presents the plans of power development and renewal, enforcement and extension of distribution lines from now on. To implement the Master Plan, in the next step, feasibility study or project implementation, it is necessary to consider the following points.

(1) To Avoid Involuntary Resettlement

Involuntary resettlement has to be avoided as much as possible since the financial capacity of the government to pay such costs is very weak. Thus, routes or height and position of pylons and poles for distribution lines need to be carefully considered, and the location of a power plant and dam is also carefully considered.

(2) To Conduct Environmental Survey

There are the forest reserves and mangrove swamps in Western Area, and the possibility that endangered species live there is very high. It is necessary to conduct survey on the protected areas and their ecosystems, and then consider mitigation measures again after the current conditions become clear. As for a new dam, it is necessary to start field survey at an early stage and collect basic information as there is no data on the environment in rural areas.

(3) To Have Enough Time and Budget for Study

Unfortunately, there are few reliable data in Sierra Leone. It is not realistic to depend on only the existing data. As with the population data or accurate maps for resettlement, the information on protected areas and ecosystem for environmental protection are necessary. Therefore, it is required to have enough time and budget to conduct field survey and collect necessary data.

(4) To Work with the Forestry Division, NGOs, etc. in a Coordinated Manner

The Forestry Division under the Ministry of Agriculture and Food Security is implementing the project to protect WAPF assisted by a donor, and there is a forestation plan in some areas in WAPF. It is necessary to obtain update information before the start of projects in Western Area. Local environmental NGOs have more detailed information on protected areas and ecosystems through their activities than the government. It is worth cooperating with them.

10.2.3.2 Recommendations to NPA on Environmental and Social Considerations

(1) Current System of Environmental and Social Considerations in NPA

NPA does not have an organizational and institutional framework for environmental and social considerations, which are needed before the NPA starts a new project. Nor does the NPA have an environmental management system to monitor and manage activities. There is no department or section to deal with environmental and social issues. A safety specialist under the safety division of the technical department is also assigned as an environmental officer. An acting commercial director under the customer services section of the commercial department is assigned as a social/resettlement officer. Except for these two officers, no one has been involved in environmental and social considerations.

There is no environmental department or division. So when the officers in charge have some problems, they consult with the deputy general manager.

As there is no formal organizational structure to deal with environmental and social issues, no budget is available. When they need budget for their work, they request to the general manager, but the weak financial standing of the NPA hinders allocation of money.

The two officers do not have enough formal background in the field of the environment and social considerations. No training has been organized in the NPA. Therefore, they have been learning through their works and acquire necessary knowledge from practical experiences

As for the environmental officer, he helped an environmental audit study of the Kingtom Power Station done by a German consulting company funded by the World Bank in 2004, which was his first experience. Then he participated in a study to prepare EIA for 33 kV line done by a Ghanaian consultant company under the power and water project of the World Bank in 2004. He prepared a simple EIA for a mini hydro dam in 2008. That's all his experience as an environmental officer

As for the social/resettlement officer, he had the first experience when the RAP for 33 kV line under the power and water project of the World Bank were prepared in 2004. This was led by the World Bank and international consultants were hired to conduct the study. The RAP was revised and updated in 2007, and he was also involved in the study. And he is now supervising the implementation of the RAP.

Even though the two of them participated in the projects above, the role of them was still limited. Because, it was not the NPA that took initiative but it was the World Bank and the consultants. The two officers think their knowledge and capacity are not adequate enough to carry out their work. The workload of their main posts makes it difficult for them to concentrate on their secondary posts of the environmental and social/resettlement officers.

In the first place, there are no environmental regulations or standards in Sierra Leone which regulate the activities of the NPA. The NPA does not have an environmental management system or plan. Consequently, environmental monitoring has never been conducted at the only Kingtom power station. No monitoring equipment or budget has been available.

In addition, waste management and cleaning of the power station or substations are not carried out. Waste management has not properly been handled, and a harmful waste such as waste oil is discharged without proper treatment to the sea. All kinds of wastes are discharged to the landfills, which have no facilities to separate wastes. The ground of the power plant is contaminated by waste oil or leaked oil. Substations are also contaminated by leaked transformer oil and several types of waste are scattered in the substations.

(2) Recommendation

It is recommended that NPA introduce an environmental management system. The "Plan, Do, Check and Act management cycle" is often used.

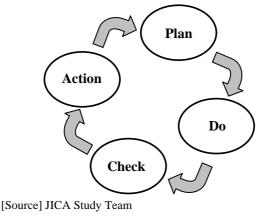


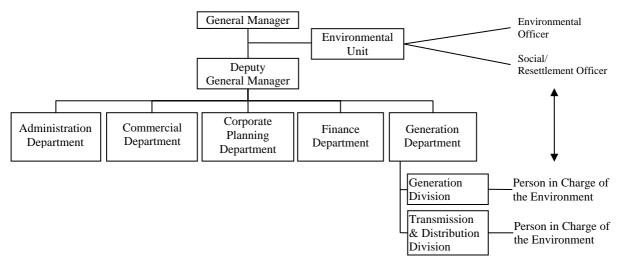
Fig. 10.2-2 PDCA Cycle

Plan	To develop environmental policy, set environmental targets and prepare an	
	environmental management plan	
Do	To implement the plan to protect the environment	
Check	To monitor and evaluate the results of actions regularly	
Act	Review the original plan for improvement	
[Source] IICA Study Team		

[Source] JICA Study Team

To operate this management system, following steps will be needed.

1) Establish an environmental unit


It is ideal to have an environmental department consisting of several qualified staff in the future. But it is not feasible to create this kind of environmental department from the current condition of the NPA. As a first step, it is recommended to create an environmental unit under the direct supervision of the general manager in order to deal with the environmental and social issues seriously as an authority. This unit consists of at least two environmental officers and two social/ resettlement officers. They work with all the other concerned departments. The TOR of the officers is as follows. It is encouraged to hire new staff members who have basic knowledge and qualifications.

	TOR
Environmental officer	Develop an environmental policy
	Set internal environmental targets
	 Prepare an environmental management plan
	• Conduct EIA or contract out EIA and supervise it
	Organize training for NPA staff
	Conduct the environmental monitoring
	• Analyze the results of the environmental monitoring
	• Report the results to the management
	Take necessary counter measures
	Coordinate with concerned ministries and agencies
	· Supervise activities of and coordinate with other
	departments, especially the Generation Division and
	Transmission & Distribution Division
Social and resettlement	• Develop a land acquisition and resettlement policy
officer	• Conduct EIA or contract out EIA and supervise it
	• Prepare a resettlement action plan or contract out the plan
	to consultants and supervise them
	• Coordinate with donors
	• Coordinate with concerned ministries and agencies for
	land acquisition and resettlement
	• Give information to the public and negotiate with project
	affected people
	• Report the progress of land acquisition and implementation of a resettlement action plan to the
	management
[Source] IICA Study Team	management

Table 10.2-2 TOR of Officers

[Source] JICA Study Team

One officer each in the Transmission and Distribution Division, Generation Division and the power stations should be assigned as the person in charge of the environment and supervise their activities in each office.

[Source] JICA Study Team

Fig. 10.2-3 Organization Chart of the NPA

2) Develop environmental policy and management plan

The environmental officers with collaboration with the management are expected to develop an environmental policy of the NPA. Then minimal environmental targets will be set and management plan will be developed. Although no national environmental standards are available, the NPA should develop an internal reference by referring to environmental standards of international organizations, developed counties or neighboring countries. It is important to set the feasible targets to the NPA, which has no experience of environmental considerations and monitoring.

The environmental management plan should include environmental pollution control measures for and monitoring plan of power plants, environmental and social monitoring plan for distribution lines, waste management plan and chemical control plan. In the future when the NPA has a hydro plant, it is expected to monitor environmental and social impacts of the hydro plant.

Harmful wastes, such as oil or chemicals, should be collected separately and discharged in a proper manner. Since no landfill or treatment facilities for industrial wastes exist in Sierra Leone, the NPA as a generator of wastes should take adequate measures.

In addition, development of an EIA guideline to help the NPA officers assess environmental and social impacts of a new project is highly needed since the NPA will implement many new projects in the coming years. It is believed that donors will fund those projects. Thus, it is required to study the guidelines of donors and explain them in the NPA EIA guideline. In particular, the standards of donors' for resettlement are more effective for protecting affected people than the national law. This NPA guideline for EIA should include a part for resettlement.

3) Allocate necessary budget

A budget to take actions for the environmental protection needs to be secured. The budget includes not only recurrent cost of the environmental unit, but also the procurement costs of necessary equipment, costs of environmental monitoring and so on.

As the NPA's financial status is very weak, it is difficult to allocate budgets. But this is necessary costs that the NPA should bear to protect the environment.

4) Procure monitoring equipment

The NPA does not have any monitoring equipment. So it is recommended to procure monitoring equipment as follows for the thermal plant.

- Gas emission monitoring equipment (NOx, SOx, dust)
- Noise emission monitoring equipment
- Vibration monitoring equipment
- Water quality monitoring equipment

And a laboratory at each power plan is expected to be created for the monitoring purpose. When the NPA has a hydro power plant, it will be necessary to buy additional monitoring equipment.

5) Participate and organize training

It is required to give a chance to take technical training for the environmental officers and social/ resettlement officers to equip advanced knowledge. A seminar or training on EIA or environmental monitoring is recommended for environmental officers. A seminar or training to learn other cases of resettlement, EIA or social-economic survey is recommended for social/resettlement officers. And environmental education training to all the NPA staffs to raise their awareness should be conducted.

The current environmental disaster in the power plants is caused partly by poor operation and

maintenance practices. To train the workers how to operate and maintain the generating facilities and incidental facilities is also needed.

6) Monitoring, reporting and evaluation

Monitoring according to the environmental management plan should be conducted and reported to the management regularly. Monitoring should cover:

- 1. Gas emissions
- 2. Noise emissions
- 3. Vibration
- 4. Water quality
- 5. Waste
- 6. Soil contamination
- 7. Ecosystem

In case of a project which needs involuntary resettlement of people, monitoring of the progress of rebuilding of lives of project-affected people after the construction stage is needed.

The results of the monitoring are compared to the targets set by the environmental management plan and evaluated. If the results are not satisfactory, necessary measures should be taken.

Introduction of this environmental management system will improve the operation structure of the NPA in order to take environmental and social issues into consideration.

Appendices

1. Distribution System Rehabilitation, Upgrade and Expansion Programs

Distribution Project Packages and Components

No.	Project Packages	Major Components	Financial Resources	Target Year	Cost (10 ⁶ US\$)	Remarks
A :		 Improvement of 33 kV system at Kingtom P/S Construction of 33 kV line from Kingtom to Falcon Bridge S/S (about 2 km) Construction of 33 kV line from Kingtom to Blackhall Road P/S (about 4 km) Construction of 11/33kV Substation at Falconbridge S/S Rehabilitation of 11 kV switchgears 		2012	25.6	
		 Construction of 33 kV line from Wilberforce S/S to Goderich S/S (about 7 km) Construction of 33 kV line from Wellington S/S to Jui S/S (about 13 km) Construction of Goderich and Jui S/S Improvement of 11 kV lines and extension of LV system 		2014	35.4	
	3 Improvement of 11 kV Distribution Facilities	 Replacement of old 11 kV transformers (more than 40 years) Replacement of old 11 kV transformers (more than 30 years) Rehabilitation of existing 11 kV facilities Promote new customer connections around Goderich and Jui S/S 		2015	32.0	
	3 packages	Sub-total			93.0	
B:	 Phase-II (from 2016 to 2020) 1 Construction of 33 kV System in Lumpa and Tombo Area 	 Construction of Lumpa S/S and 33 kV line from Jui S/S to Lumpa S/S (about 15 km) Construction of Tombo S/S and 33 kV line from Lumpa to Tombo S/S (about 17 km) Electrification around Lumpa and Tombo S/S 		2017 2017	33.7	
	2 Expansion of 33 kV System and Improvement of Network	 Installation of 161/33 kV transformer (60/80 MVA, OLTC with AVR) at Freetown S/S Construction of 33 kV line from Goderich S/S to York town (29 km) Rehabilitation of 11kV trunk lines and electrification 		2020	31.4	
	2 packages	Sub-total			65.1	
C:	Phase-III (from 2021 to 2025) Expansion of Distribution Network 	 Construction of 33 kV line from Lumpa S/S to Fogbo town (about 16 km) Construction of 33 kV lines from York S/S to Tombo S/S (about 20 km) Extension of 11kV lines and electrification 		2025	16.3	
	1 package	Sub-total			16.3	
		Grand Total			174.4	

Phase-I: Emergency Program (1/3)

1.	Title	Rehabilitation of 11 kV and Improvement of 33 kV System	
2.	Location	Freetown Area	
3.	Implementing Agency	National Power Authority (NPA)	
4.	Objectives	Rehabilitation of 11 kV switchgears and improvement of 33 kV system from Kingtom P/S to Blackhall Road via Falcon Bridge,	
5.	Expected Effects	 Establishment of reliable power supply, Reducing energy losses, and Reducing unexpected power cut off 	
6.	Investment Cost	US\$25.6 Million	

7. Description:

The power supply to the Falcon Bridge area is coming from Kingtom and Blackhall Road P/S by 11 kV lines. There are three (3) trunk lines from Kingtom P/S and two (2) trunk lines from Blackhall Road P/S.

However, these lines are not so reliable because underground cables are too old and it is very difficult to repair them because theses cables are installed along with paved roads which are always congested by traffic and passengers.

The electric power supply to the areas will contribute to the improvement of social infrastructure, economical and industrial development as well as the improvement of living conditions for residents. The projects prepared as a part of the Master Plan shall be studied in the subsequent stage such as Feasibility Study.

Basic plans and designs should be prepared for other parts. And basic planning will follow the same procedure as taken for the area considering power supply route, etc. which may consist of the following:

- 1) Study power flow and system analysis including load density and protection system,
- 2) Conduct environmental assessment, and
- 3) Prepare detailed design considering existing conditions.

8. Major Components of the Project;

- 1) Rehabilitation of protection and metering system in 11 kV switchgear at existing major substations and junction stations,
- 2) Construction of 11/33 kV substation at Falcon Bridge S/S, and
- 3) Construction of 33 kV systems from Kingtom P/S, Falcon Bridge S/S and Blackhall Road P/S

- 1) Route Map for 33 kV Distribution Line (Western Area) (DWG No. GR-2025-1)
- 2) Route Map for 33 kV Distribution Line (Western Urban) (DWG No. GR-2025-2)
- 3) Western Area Power System 2025 (DWG No. GE-2025)
- 4) Western Area Network (Western Part 2009) (DWG No. GE-2009-1)
- 5) Western Area Network (Eastern Part 2009) (DWG No. GE-2009-2)
- 6) 11/33 kV Switchgear Feeders: Kingtom P/S (100) (DWG No. KT-E1)
- 7) 11/33 kV Switchgear Feeders: Falconbridge S/S (200) (DWG No. FB-E1)
- 8) 11/33 kV Switchgear Feeders: Blackhall Road P/S (300) (DWG No. BR-E1)

Phase-I: Emergency Program (2/3)

1.	Title	Improvement of 33 kV System in Goderich and Jui Area	
2.	Location	Western Area	
3.	Implementing Agency	National Power Authority (NPA)	
4.	Objectives	Improvement of 33 kV system and construction of Goderich and Jui S/S and expansion of LV system	
5.	Expected Effects	 Establishment of stable power distribution system, Reducing energy losses, and Promotion of rural electrification 	
6.	Investment Cost	US\$35.4 Million	

7. Description:

The power supply to Goderich and Jui areas is not stable and not enough because present power distribution system is 11 kV which cannot dispatch enough power.

There are a lot of residences around Goderich and small industry around Jui area. The electric power supply to the areas will contribute to the improvement of social infrastructure, economical and industrial development as well as the improvement of living conditions for residents.

The projects prepared as a part of the Master Plan shall be studied in the subsequent stage such as Feasibility Study.

Basic plans and designs should be prepared for other parts. And basic planning will follow the same procedure as taken for the area considering power supply route, etc. which may consist of the following:

- 1) Study demand and future development plans,
- 2) Conduct environmental assessment, and
- 3) Prepare detailed design considering existing conditions.

8. Major Components of the Project;

- 1) Expansion of 33 kV line about 30 km,
- 2) Construction of 11/33 kV Substation at Goderich and Jui Area, and
- 3) Improvement of the existing 11 kV system and expansion of LV system.

- 1) Route Map for 33 kV Distribution Line (Western Area) (DWG No. GR-2025-1)
- 2) Route Map for 33 kV distribution Line (Western Urban) (DWG No.GR-2025-2)
- 3) Western Area Power System 2025 (DWG No. GE-2025)
- 4) 11/33 kV Switchgear Feeders: Wilberforce S/S (600) (DWG No. WF-E1)
- 5) 11/33 kV Switchgear Feeders: Wellington S/S (700) (DWG No. WN-E1)
- 6) 11/33 kV Switchgear Feeders: Regent S/S (800) (DWG No. RT-E1)
- 7) 11/33 kV Switchgear Feeders: Goderich S/S (1000) (DWG No. GR-E1)
- 8) 11/33 kV Switchgear Feeders: Jui S/S (1100) (DWG No. JU-E1)

Phase-I: Emergency Program (3/3)

1.	Title	Improvement of 11 kV Distribution Facilities
2.	Location	Western Area
3.	Implementing Agency	National Power Authority (NPA)
4.	Objectives	Replacement of old transformers with related facilities and improvement of 11 kV system
5.	Expected Effects	 Establishment of stable power supply system, Reducing energy losses, and
		3) Promotion of rural electrification
6.	Investment Cost	US\$32.0 Million

7. Description:

There are a lot of old distribution transformers which total capacity is about 10 MVA for more than 40 years old and about 16 MVA for more than 30 years old and also these are not only faulty but also the cause of increasing of energy losses.

Goderich and Jui area are one of developing area which requires sufficient and stable power supply.

The projects prepared as a part of the Master Plan shall be studied in the subsequent stage such as Feasibility Study.

Basic plans and designs should be prepared for other parts. And basic planning will follow the same procedure as taken for the area considering power supply route, etc. which may consist of the following:

- 1) Study demand and future development plans,
- 2) Conduct environmental assessment, and
- 3) Prepare detailed design considering existing conditions.

8. Major Components of the Project;

1) Replacement of more than 40 years old transformers (About 10 MVA),

- 2) Replacement of more than 30 years old transformers (about 16 MVA),
- 3) Replacement Ring Main Unit, fuse cut out switch and installation of lightning arresters,
- 4) Promotion of rural electrification, and
- 5) Improvement of power sector and review of Master Plan.

- 1) General Route Map of Freetown Area (DWG No. RM-G01)
- 2) Route Map of Area-1 of Freetown (DWG No.RM-D01)
- 3) Route Map of Area-2 of Freetown (DWG No.RM-D02)
- 4) Route Map of Area-3 of Freetown (DWG No.RM-D03)
- 5) Route Map of Area-4 of Freetown (DWG No.RM-D04)
- 6) Western Area Power System 2025 (DWG No. GE-2025)
- 7) Western Area network (Western Part 2009) (DWG No. GE-2009-1)
- 8) Western Area network (Eastern Part 2009) (DWG No. GE-2009-2)
- 9) 11/33 kV Switchgear Feeders: Congo Cross J/S (DWG No. CC-E1)
- 10) 11/33 kV Switchgear Feeders: Brookfield J/S (DWG No. BF-E1)

Phase-II: Improvement Program (1/2)

1.	Title	Improvement of 33 kV System
2.	Location	Western Area
3.	Implementing Agency	National Power Authority (NPA)
4.	Objectives	Expansion of 33 kV lines with construction of Lumpa and Tombo S/S and rural electrification
5.	Expected Effects	 Improvement of 33 kV system, Reducing energy losses, and Promotion of rural electrification
6.	Investment Cost	US\$33.7 Million

7. Description:

There are a lot of non-electrified areas especially in rural areas. Lumpa and Tombo area are developing areas which require sufficient and stable power supply.

The projects prepared as a part of the Master Plan shall be studied in the subsequent stage such as Feasibility Study.

Basic plans and designs should be prepared for other parts. And basic planning will follow the same procedure as taken for the area considering power supply route, etc. which may consist of the following:

- 1) Study demand and future development plans,
- 2) Conduct environmental assessment, and
- 3) Prepare detailed design considering existing conditions and safety rules.

8. Major Components of the Project;

1) Expansion of 33 kV lines about 32 km,

- 2) Construction of Lumpa and Tombo S/S,
- 3) Expansion of LV system around Lumpa area, and
- 4) Promotion of rural electrification around Tombo area.

- 1) Route Map for 33 kV Distribution Line (Western Area) (DWG No. GR-2025-1)
- 2) Route Map for 33 kV Distribution Line (Western Urban) (DWG No. GR-2025-2)
- 3) Western Area Power System 2025 (DWG No.GE-2025)
- 4) 11/33 kV Switchgear Feeders: Jui S/S (1100) (DWG No.JU-E1)
- 5) 11/33 kV Switchgear Feeders: Lumpa S/S (1200) (DWG No.LP-E1)
- 6) 11/33 kV Switchgear Feeders: Tombo S/S (1300) (DWG No. TB-E1)

Phase-II: Improvement Program (2/2)

1.	Title	Expansion of 33 kV System and Improvement of Network		
2.	Location	Western Area		
3. Implementing Agency National Power Authority (NPA)				
4. Objectives Expansion of Freetown S/S and rural electrification				
5.	Expected Effects	1) Establishment of stable 33 kV system,		
		2) Reducing energy losses, and		
		3) Promotion of rural electrification		
6.	Investment Cost	US\$31.4 Million		

7. Description:

Electric power demand is increasing in proportion with economic development and new power stations will be constructed, however the 33 kV system capacity at Freetown S/S is not sufficient.

It is necessary to expand 33 kV system to comply with requirements. Accordingly, new 161/33 kV transformer shall be installed in the Freetown S/S and also it is necessary to expand trunk lines.

Also promote rural electrification around York area which is a leisure venue.

The projects prepared as a part of the Master Plan shall be studied in the subsequent stage such as Feasibility Study.

Basic plans and designs should be prepared for other parts. And basic planning will follow the same procedure as taken for the area considering power supply route, etc. which may consist of the following:

- 1) Study demand and future development plans,
- 2) Conduct environmental assessment, and
- 3) Prepare detailed design considering existing conditions and safety rules.

8. Major Components of the Project;

- 1) Installation of 1-161/33 kV, 60/80 MVA transformer at Freetown S/S,
- 2) Extension of 33 kV line from Goderich S/S to York area about 29 km with required distribution transformers along with lines, and
- 3) Promotion of rural electrification.
- 4) Improvement of 11 kV system

9. References;

- 1) Route Map for 33 kV Distribution Line (Western Area) (DWG No. GR-2025-1)
- 2) Route Map for 33 kV Distribution Line (Western Urban) (DWG No. GR-2025-2)
- 3) Western Area Power System 2025 (DWG No.GE-2025)
- 4) 11/33 kV Switchgear Feeders: Freetown S/S (900) (DWG No.FT-E1)
- 5) 11/33 kV Switchgear Feeders: Goderich S/S (1000) (DWG No.GR-E1)
- 6) Western Area Network (Western Part 2009) (DWG No. GE-2009-1)
- 7) Western Area Network (Eastern Part 2009) (DWG No. GE-2009-2)

Phase-III: Secure and Reliable Program (1/1)

1.	Title	Improvement of Distribution Network
2.	Location	Western Area
3.	National Power Authority (NPA)	
4.	Objectives	Expansion of 33 kV system and rural electrification
5.	Expected Effects	1) Establishment of secure and reliable network,
		2) Reducing energy losses, and
		3) Promotion of rural electrification
6.	Investment Cost	US\$16.3 Million

7. Description:

Electric power demand is increasing in proportion with economic development, and a more secure, reliable and qualified power supply system is required.

In order to have enough power supply to demand, it is necessary to consider international transmission lines. However before connection to neighboring country systems, it is required to complete Power Purchase Agreement (PPA) and confirm protection coordination and also it is necessary to establish Load Dispatching Center (LDC) to have stable and economic power supply system.

The projects prepared as a part of the Master Plan shall be studied in the subsequent stage such as Feasibility Study.

Basic plans and designs should be prepared for other parts. And basic planning will follow the same procedure as taken for the area considering power supply route, etc. which may consist of the following:

- 1) Study demand and future development plans,
- 2) Conduct environmental assessment, and
- 3) Prepare detailed design considering existing conditions and safety rules.

8. Major Components of the Project;

- 1) Expansion of 33 kV line from Lumpa S/S to Fogbo town about 16 km,
- 2) Extension of 33 kV line from York to Tombo S/S about 22 km with required distribution transformers along with lines,
- 3) construction of 11 kV system from Tombo S/S to Kent town about 13 km,
- 4) Improvement of 11 kV system,
- 5) Promotion of rural electrification, and
- 6) Protection coordination with neighboring countries.

9. References;

- 1) Route Map for 33 kV Distribution Line (Western Area) (DWG No. GR-2025-1)
- 2) Western Area Power System 2025 (DWG No.GE-2025)
- 3) 11/33 kV Switchgear Feeders: Lumpa S/S (1200) (DWG No.LP-E1)
- 4) 11/33 kV Switchgear Feeders: Tombo S/S (1300) (DWG No.TB-E1)

2. Operation and Maintenance Guidelines for Power Supply Facilities Part-1: Operation and Maintenance of Diesel Engine Generator

1. Operation and Maintenance of Diesel Engine Generator

(1) Operation Standards for Diesel Engine Generator

Diesel engine generators are composed of many kinds of exactly designed machine elements. Without appropriate operation and maintenance, early breakdown of engine will be unavoidable instead of fulfilling its lifetime, as engines are operated under high pressure, high temperature and high speed, which are most severe conditions for mechanical materials. Operation Standards for Diesel Engine Generators are shown in Table 1-8. It is necessary to train the shift staffs to be able to operate the diesel engines properly.

(2) Maintenance Standards for Diesel Engine Generator

As diesel engines are operated in such severe conditions necessarily, appropriate maintenance is necessary with deep understanding of the principles and structures such as periodical replacement of spare parts, inspection of internal damage at rubbing surface and location exposed to high temperature, and sticking of combustion residue. Maintenance Guidelines for Diesel Engine Generators are shown in Table 1-11. In the maintenance work, high management capacity of the work is necessary, because the work includes such processes as disassembling of engine and reassembling with careful measurement of dimensions, confirmation of fitting and tightening torque. In addition, inspections after assembling need knowledge and skills to evaluate internal damage degrees in accordance with understanding of internal-combustion engine.

(3) Management Standards of Fuel Oil

Fuel oil shall be managed in accordance with the criteria shown in Table 1-1.

(4) Management Standards of Cooling Water

Cooling water shall be managed in accordance with the criteria shown in Table 1-2.

(5) Management Standards of Lubrication Oil

Lubrication oil shall be managed in accordance with the criteria shown in Table 1-3 and Table 1-4. And products which meet the criteria are shown in Table 1-5.

Item	Heavy Oil A		Obstacle
Density at 60 °F (15.6°C)	Max. 0.853 g/cm ³	Max. 0.96 g/cm ³	Separability of water content
Kinematic viscosity at 122 °F (50°C)	Max. 2.9 mm ² /s (cSt)	Max. 175 cSt	Atomization, Combustibility
Flash point	Min. 80 °C	Min. 150 °F (65.6°C)	Hazard
Pour point	Max10 °C	Max. 75 °F (23.9°C)	Fluidity
Carbon residue	Max. 1.3 wt.% *	Max. 12.0 wt.%	Wear, Degradation of Lubrication Oil
Water content	Max. 0.02 vol.%	Max. 1.0 vol.%	Occurrence of rust, Fastening of valve
Ash content	Max. 0.01 wt.%	Max. 0.12 wt.%	Wear, Degradation of Lubrication Oil
Sulphur content	Max. 0.17 wt.%	Max. 3.0 wt.%	Low temperature corrosion
Vanadium	Nil *	Max. 150 mg/kg	High temperature corrosion
Aluminum + silicon	Nil *	Max. 30 mg/kg	Abnormal wear
Sodium	Nil *	Max. 80 mg/kg	High temperature corrosion
Asphalten	-	Max. 3 wt.%	Raise of exhaust gas temperature
Cetane index	Min. 45*	-	Flammability, Starting characteristic
CCAI	Max. 825# *	800~860# *	Flammability
(Calculated Carbon Aromaticity Index)			

Table 1-1	Management	Criteria	of Fuel Oil

[Note] # CCAI = D - 140 x log [log (V + 0.85)] - 81 (wher, D: Density in kg/m³ at 15°C, V: Kinematic viscosity in cSt at 50°C) [Source] Documents for Management Criteria of Cooling Water prepared by Niigata Power Systems Co., Ltd.

Table	Management Criteria						
Item	ţ		Obstacle				
	Supply Water	Circulating Water					
Turbidity	10 Degree	15 Degree	Deposit, Corrosion				
pH at 25°C	6 - 8.5	6 - 8.5	Corrosion				
Conductivity at 25°C	$< 400 \mu S/cm$	< 600µS/cm	Corrosion				
M-alkalinity as CaCO ₃	< 140 ppm	< 250 ppm	Corrosion				
Total hardness as CaCO ₃	< 80 ppm	< 120 ppm	Scale				
Chloride ion (C1 ⁻)	< 100 ppm	< 200 ppm	Scale				
Sulphate ion (SO4 ⁻)	< 100 ppm	< 100 ppm	Corrosion				
Ammonium ion (NH4 ⁻)	< 10 ppm	< 10 ppm	Soft scale, Deposit, Corrosion				
Hydrogen sulfide (H2S)	< 10 ppm	< 10 ppm	Corrosion				
Iron (Fe)	< 0.3 ppm	< 1 ppm	Corrosion				
Silica (SiO2 ⁻)	< 30 ppm	< 60 ppm	Coloration, Scale				
Total residue on evaporation	< 400 ppm	< 800 ppm	Scale				
(Total Solid)							
Total residue on ignition	*	*	Scale, Corrosion				
Dissolve oxygen	*	*	Corrosion				

Table 1-2Management Criteria of Cooling Water

[Note] 1) ppm = mg/L

2) The analysis values marked with asterisk (*) must be considered in connection with the whole items of water analysis results.

[Source] Documents for Management Criteria of Cooling Water prepared by Niigata Power Systems Co., Ltd.

	Item	Management Criteria	1	/lethod	Obstacle	
Kinematic cSt (mm ² /s	•	-20 \sim +30 % of Kinematic Viscosity at the fed -15 \sim +30 % of Kinematic Viscosity at the fed	JIS K 2283	applied for Heavy Oil A applied for Heavy Oil C	Film strength, Fluidity	
Flash Tem	perature °C	more than 160	JIS K 2265	PM Method	Safety	
Total Base Number (TBN)		see Table 1-4	JIS K 2501	Per chlorine Acid Method	A aid noutrality	
mgKOH/g	mgKOH/g not specified		JIS K 2501 Hydrochloric Acid Method Acid neutrality			
Total Acid Number (TAN) mgKOH/g		not specified	JIS K 2501		Deterioration by Acid, Detergent dispersion	
Strong Act mgKOH/g	id Number (SAN)	shall be not detected	JIS K 2501		Deterioration by Acid, Detergent dispersion	
Moisture	Content vol %	less than 0.1	JIS K 2275	Alert Value	Occurrence of rust, Emulsion	
woisture		less than 0.3	JIO K 2273	Critical Value	Occurrence of rust, Emulsion	
Insoluble	(I) n-Pentane	Alert Value: 1.0 Critical Value: 1.5			Oxidation of oil	
Content	(II) Toluene	Alert Value: 0.8 Critical Value: 1.0	ASTM D893	A Method	Pollution	
wt %	(I)-(II)	not specified	101010075	7 method	Oxidation of oil, Pollution	

Table 1-3 Management Criteria of Lubrication Oil

[Source] Documents for Management Criteria of Lubrication Oil prepared by Niigata Power Systems Co., Ltd.

Table 1-4	Management Criteria of Total Base Number
-----------	--

		Use of I	Engine	Remarks	
Type of Oil	Content of Sulfur in Oil wt % Land Engine, Marine Engine High-Power Engine for Continuous Generator		(Classification according to NES 34002)		
Heavy Oil A		More than 50 % of TBN at t	he fed and more than TBN	Kerosene Oil	
Heavy OII A		8	Heavy Oil A		
Heavy Oil A		More than 50 % of TBN at t 10	AA		
Heavy Oil C	less than 2.0	More than 50 % of TBN at t 15	More than 50 % of TBN at the fed and more than TBN 15		
Heavy Oil C	from 2.0 to 3.5	More than 50 % of TBN at t 20	C25B, C35B, C35C, C45C, C55C		
Heavy Oil C	from 3.5 to 5.0	more than TBN 25		C45H, C55H	

[Source] Documents for Management Criteria of Total Base Number prepared by Niigata Power Systems Co., Ltd.

Fuel Oil	Gas Oil & Diesel Oil		Heavy	Fuel Oil	
Sulphur Content	$S \leq 1.0$	$S \leq 1.0$	$1.0 < S \leq 2.0$	$2.0 < S \leq 3.5$	$3.5 < S \leq 5$
Standard TBN	15 ~20	20~25	25 ~ 30	30~40	40
Min. TBN retention	8	10	15	20	25
IDEMITU	DAPHNE MARINE SW-40 (20) SX-40 (12)	DAPHNE MARINE SW-40 (20) MW-40 (25)	DAPHNE MARINE SA-40 (30) MW-40 (25)	DAPHNE MARINE SA-40 (30)	DAPHNE MARINE SA-40 (30)
MOBIL	MOBIL GARD 412 (15) POWER GARD 42 (12)	MOBIL GARD 412 (15) POWER GARD 2040 (20)	MOBIL GARD 424 (30) POWER GARD 3040 (30)	MOBIL GARD 424 (30) POWER GARD 3040 (30)	MOBIL GARD 442 (40) POWER GARD 3040 (30)
ESSO	EXXMAR 12TP40 (12) STAMARINE EXTRA 40 (15)	EXXMAR 24TP40 (24) STAMARINE EXTRA 40 (15)	EXXMAR 24TP40 (24) EXXMAR 30TP40 (30) STAMARINE EXTRA SR-40 (15)	EXXMAR 30TP40 (30) STAMARINE EXTRA SR-40 (30)	EXXMAR 40TP40 (30) STAMARINE EXTRA SR-40 (30)
CALTEX	RPM DELO 2000 40 (20) RPM DELO 1000 40 (12)	RPM DELO 2000 40 (20)	RPM DELO 3000 40 (30) RPM DELO 2000 40 (20)	RPM DELO 3000 40 (30) RPM DELO 3400 40 (40)	RPM DELO 3400 40 (40)
CHEVRON	DELO 2000 40 (20) DELO 1000 40 (12)	DELO 2000 40 (20)	DELO 3000 40 (30) DELO 2000 40 (20)	DELO 3000 40 (30) DELO 3400 40 (40)	DELO 3400 40 (40)
TEXACO	TARO XD40 (16)	TARO XD40 (16) TARO DP40 (32)	TARO DP40 (32)	TARO DP40 (32)	TARO XL40 (42)
CASTROL	220 MXD (22) MARINE MLC40 (12)	220 MXD (22) MARINE MLC40 (12)	MXD 304 (30) 220 MXD (22)	MXD 304 (30) MXD 404 (40)	MXD 404 (40)
SHELL	ARGINA S 40 (20)	ARGINA S 40 (20)	ARGINA T 40 (30) ARGINA S 40 (20)	ARGINA T 40 (30)	ARGINA X 40 (40)
ELF	DISOLA M4015 (15)	DISOLA M4015 (15) AURELIA 4030 (30)	AURELIA 4030 (30)	AURELIA 4030 (30) AURELIA XT 4040 (40)	AURELIA XT 4040 (40)
TOTAL	RUBIA ST 420 (20) RUBIA S40 (12)	RUBIA ST 420 (20)	HMA 430 (30) RUBIA ST 420 (20)	HMA 430 (30)	HMA 440 (40)
INDIAN OIL	SERVO MARINE C 204 (20) SERVO MARINE C 104 (10)	SERVO MARINE C 204 (20)	SERVO MARINE C 304 (30) SERVO MARINE C 204 (20)	SERVO MARINE C 304 (30)	
PETRON CORP.	PETROMAR 1540 (15)	PETROMAR 2040 (20)	PETROMAR 3040 (30) PETROMAR TPO 40 (30) PETROMAR 2040 (20)	PETROMAR 3040 (30) PETROMAR 4040 (40) PETROMAR TPO 40 (30)	PETROMAR 4040 (40)

Table 1-5Recommended Lube Oil

[Note] 1) The fuel oil shall be classified into five (5) classes according to the sulphur content in fuel oil.

2) The figure in () means Total Basic Number (TBN) of lube oil.

3) When lube oil other than the recommended will be used, contact NIIGATA to determine usability of that oil.

(6) Maintenance Budget Planning

The estimated costs for spare parts are shown in Table 1-6 under the condition of ex-godown (at a store in Japan) as of July, 2009. As shown in the table, the costs for the overhauls of diesel engine generators are not small. Therefore, the budget for maintenance shall be planned carefully upon setting down a standard procedure for the budget planning based on the replacement records and stock management records of spare parts. In consideration of the current financial state of the NPA, though they are high-costs, periodical overhauls are essential for stable and reliable operation of diesel engine generator. The NPA shall keep revising the table according to the latest quotations and secure the budget.

At the time of commissioning of the diesel engine generators, spare parts for two year operation are procured and the NPA shall prepare from the first 16,000 hour overhaul. Care is taken to ensure that the costs in the table are affected by price increase and do not include the costs of transport.

Maintenance terms for each overhaul are shown in Table 1-7, not including the terms for arrangement/rearrangement works. As these overhauls require expertise and skills of internal combustion engine, it is strongly recommended that experts of overhaul works shall assist the practice of the NPA at least for the term shown below and term for arrangement/rearrangement works until capacity for maintenance in the NPA has been developed.

Maintenance	Maintenance	Operation Hours (Unit: hours)							
Classification	Cost	4,000	8,000	12,000	16,000	20,000	24,000	28,000	32,000
В	4,100	0	0	0	0	0	0	0	0
D1	4,800		0		0		0		0
D2	47,000				0				0
D3	13,000						0		
E2	39,000								0
Others	2,500		0		0		0		0
Total	Cost	4,100	11,400	4,100	59,100	4,100	24,400	4,100	99,000

Table 1-6	Cost of Spare	Parts for	Periodical	Overhaul

(Unit : thousand yen)

[Source] Niigata Power Systems Co., Ltd.

[Remark] *1 "Others" mean the auxiliary equipment maintenance cost.

As this equipment is not manufactured by Niigata Power Systems Co., Ltd., it is shown for reference.

Maintenance	Operation Hours (Unit: hours)							
Classification	4,000	8,000	12,000	16,000	20,000	24,000	28,000	32,000
В	0	0	0	0	0	0	0	0
D1		0		0		0		0
D2				0				0
D3						0		
E2								0
Maintenance Term	10 days	30 days	10 days	30 days	10 days	30 days	10 days	45 days

Table 1-7	Maintenance Terms for Periodical Overhaul
-----------	---

[Source] Niigata Power Systems Co., Ltd.

		Table		U U U U U U U U U U U U U U U U U U U
	Stages	Parts or Time	Contents	Confirmation Points or Measures
1.	Preparation	Engine	Checking bolts for tightness	inside the crankcase
	for starting			Main bearing stud nuts
				Crank pin bolts
				Bolts and nuts for internal oil pipe joints
				• inside the cylinder heads
				Fuel injector stud nuts
				Rock arm bolts and stud nuts
				Starting air valve volts
				Cylinder head stud nuts
				Tappet adjusting bolts and lock nuts
				Mounting bolts and anchor bolts
			Checking the linkage for operation	Move the fuel control lever, and check that the link
				pins for fuel control lay shaft and governor control
				link, the knock pins and cotter pins for the levers are
				securely in place
				Check the linkage moves smoothly without lost
				motion
			Checking the fuel injection pump	Check the fuel injection
			Checking existence of rust inside the	Check, in particular, the cylinder liners, the
			crankcase	connecting rods, and crankshaft
			Checking the clearance at main	Checking the clearance at main bearings and crank
			bearings and crank pin bearings	pin bearings
			Checking by turning of engine	• After flushing the lubrication oil, check the
				followings before turning of engine
				Keep places the fuel control lever to the stop
				position
				Open the crankcase doors, and check there is no
				foreign matter left inside
				Start the lubrication oil pump and prime well
				Fully open the indicator cocks for all cylinders
				• Make sure that the engine is turned smoothly
				without abnormal resistance
				• Check to see if water or oil runs out of indicator
				cocks
			Checking the rocker gears and intake	• Check the intake and exhaust valve rocker gears
			e e	-
			and exhaust valves	operate properly while the engine is turning
				• Adjust the intake and exhaust valve tappet
				clearance to 0.5 mm
		Protective Devices	Pressure Switch	• Close the cock on the pipe to the pressure switch
				and check if the alarm sounds and the engine stops
				• Check the pressure switch setting with a standard
				pressure tester
			Temperature Switch	• Check the alarm by making contact
				• If necessary, check the temperature switch alone
				by using boiling pot or the like
			Water Off Relay	Slowly close the relay inlet valve and check relay
				operation
			Level Alarms and Control Switches	Check that the level alarms and control switches for
			for the Various Tanks	the various tanks operate properly
			Lamps and Buzzers	Check that the lumps and buzzers operate properly
		Fuel Oil System	Heavy Fuel Oil A	• If the fuel pipes have scale, rust or the like, clean
				them by pickling
				• Discharge drains from fuel service tank
				• Check the oil level of the fuel service tank, and add
•	I	I		check the off level of the fuel service tank, and add

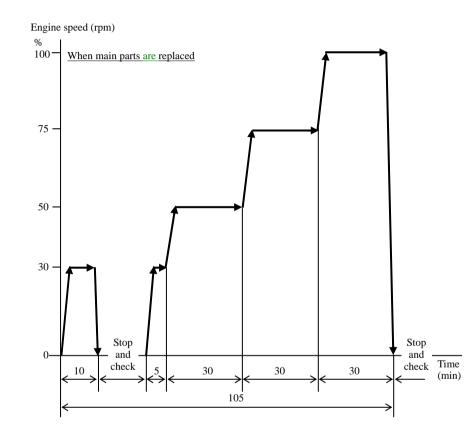
 Table 1-8
 Operation Guidelines for Diesel Engine

Stages	Parts or Time	Contents	Confirmation Points or Measures
			fuel oil if necessary
			• Open the fuel feed valve to the engine
			• Start fuel feed pump, and make sure that both the
			pumps and motor operate properly
			• Clean the fuel oil filter (No.1, No.2). and vent air
			• Check the oil leakage
			• Vent air from the fuel injection pumps, fuel
			injection pipes and fuel injectors
			• Prime the fuel injection pumps
		Heavy Fuel Oil C	• If the fuel pipes have scale, rust or the like, clean
			them by pickling
			• Discharge drains from fuel service tank
			• Operate the fuel oil heater and purifier, and
			circulate the heavy fuel oil through heating circuit
			outside the engine
			(In this case, open the three-way changing over
			valve to the heavy oil position, and take the
			same steps as Heavy Oil A)
			• When the fuel temperature has reached the
			required level, make sure it remains at the level
	Lubrication Oil	System lubrication Oil System	Check that the system is correctly piped, according
	System	bysem noneation on bysem	to the specifications
	5 y stem		• In case of a newly installed engine or an
			overhauled engine, be sure to flush the lubrication
			oil system, and clean the piping by pickling
			Clean and check the lubrication oil cooler
			• Clean the filter, and set the changeover lever to the
			operation position
			(if the lubrication oil filter is a changeover open
			cleaning type)
			• Discharge drainage from the sump tank, and check
			to see if cooling water is mixed with it.
			• Check the sump tank oil level with the oil level
			gage, and add oil if necessary
			• If a lubrication oil heater is provided, operate it
			and heat the lubrication oil from 10 to 30 degrees
			Start the lubrication oil priming pump, and check the
			followings while turning the engine
			• Check that oil is fed
			· Adjust the pressure regulating valve to required
			lubrication oil pressure.
			(Oil Temperature shall be from 45 to 55 degrees)
			· Check that enough lubrication oil is fed to the
			following parts:
			Main bearing
			Crank pin bearing
			Piston pin bearing
			Pistons
			Roller guides
			Gear train
			• Check the pipe joints and plugs for oil leakage
			• If the filter is an automatic cleaning type, check its
			operation
			• Open the cock of the coolers and filters, and
			discharge air
			• After priming for some time, check the oil level of

	Stages	Parts or Time	Contents	Confirmation Points or Measures
				the sump tank, and add as much as necessary
				• During operation, check the motors and pumps are
				free of any trouble
				• Continuously operate the lubrication oil purifier to
				remove foreign matter and water from the
				lubrication oil
			Checking the lubrication oil system	• Check the oil level gage, and add the required
			of accessories	amount of oil
				• Check that all rocker gears are well and evenly lubricated
				• Oil the followings not oiled by forced lubrication
				Governor control link
				Fuel control lay shaft
				• Grease the parts that require greasing
				Starting air distributor
				Rod end bearing
				Turning handle
				Fuel handle
		Cooling Water		• Charge the cooling water to the engine and piping
		System		• Turn the valves or cocks on the piping to the
				operation position
				Start the cooling water pump and check the following
				• Fill the piping with water, and make sure that no
				water leaks from the cylinder heads and cylinder
				blocks
				• Check the pipe joint and plugs for water leakage
				• Open the air vent cocks or plugs on the piping, and
				discharge air
				• Check the pump seals for water leaks
				(small leakages are not abnormal)
				• During operation, check that the motors and pumps are free of any trouble
				• Check the cooling water pressure meets the
				requirements
		Starting Air and		• Fill starting air receiver to the required pressure
		Mist Piping System		from 2.5 to 2.9 MPa
		whist I tping bystem		• After that, discharge drainage of starting air
				receiver by opening the drain valve
				• Disconnect the joint which connects the starting
				distributor inlet pipe, and open the main valve or
				starting air stop valve to feed the starting air into
				the main pipe to blow clean the inside of the piping
				• Disassemble and clean the starting air distributor
				and the starting valve
				Perform air running
		Load Limiter		Check that the load limiter is at the 100 to 110%
		(Governor)		position Check that, when the turning device is discharged,
		Turning Devices with Motor		the flywheel and pinion are well apart from each
				other
2.	Starting the	Check Before	Reminders about Engine Stopping	Check that, when the fuel control lever is moved to
	Engine	Starting Engine	acout Engine Stopping	the stop position, the fuel injection pumps are in the
	6 -			fuel cut of position
		Starting Conditions		Check the all pumps are running
		J a		• Check that all pressure and temperature readings

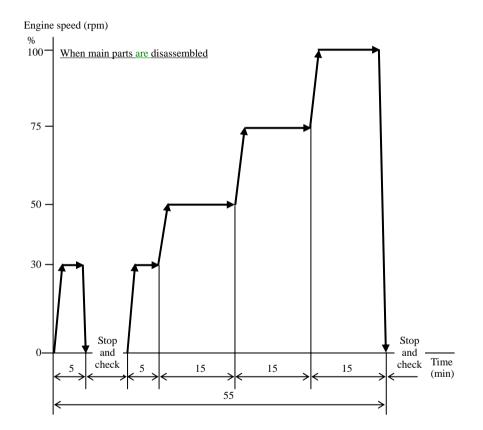
Stages	Parts or Time	Contents	Confirmation Points or Measures
			Discharge the turning reduction gear
			Check the all indicator cocks are closed
			Discharge the engine load
			• Set engine speed to about $1/2$ the rated rpm with
			the governor handwheel of synchronizer
			Close the protective device circuits
	Starting Procedure		• Open the main valve from the starting air receiver
			· Move the fuel control lever to an operating
			position
			• Quickly open the starting air stop valve or main air
			starting valve, and then close it immediately when
			the sound at fuel burning heard from the engine
			Close the main valve from the starting air receiver
	Check immediately		Set engine speed to about 1/2 the rated rpm, and
	after Starting		check the following
	Engine		• Immediately after starting the engine, check that
			the pressure gages and temperatures read normal
			• If engine-driven pumps are installed, stop the
			standby pumps, and check that the pressure
			stabilizes at normal level
			• Check that the engine is running at a steady speed.
			• Open the indicator cocks, and check all the
			cylinders are working by burst gas
			• Touch the following parts on the outside to see
			whether they are overheated:
			Fuel injection pump
			Starting air main and branch pipes
			Governor driving gear case
			Roller guide case
			Crankcase door
			Liner ring
			Lubrication oil pump
			Cooling water pump
			Starting air distributor
			Cam case door
			Other
			Check the following parts for abnormal vibration Exhaust manifold
			Intake manifold
			Intake manifold Intake and exhaust valve gears
			Turbocharger
			Air cooler
			Governor
			Pipes
			Other
			• Check the following parts for abnormal noise
			Inside crankcase
			Inside gear case
			Exhaust manifold
			Turbocharger
			Other
			• Check various parts the engine for oil, water and
			exhaust gas leaks
			• Check the color and quantity of mist from the mist
			pipe of the crankcase
			• Check the exhaust gas color
	_ <u>_</u>		Show the enhance Sub color

	Stages	Parts or Time	Contents	Confirmation Points or Measures
				Check various bolts of the engine for tightness
3.	Engine	Running-in	When main parts are replaced	Heavy Oil A is recommended as fuel oil
	Operation	Procedure	* Main parts:	• At no-load operation, engine speed shall be
	_		Pistons, Cylinder Liners, Piston	increased as shown in Fig. 1-1
			Ring, Main Bearing, Crank Pin	• At on-load operation, engine load shall be
			Bearing, etc	increased as shown in Fig. 1-2
				After starting the engine, check the inside at the
				following time and parts
				• No-load operation: after operation at 30% and 100% engine speeds
				• On-load operation: after operation at 75% and 100% loads
				Inside crankcase door:
				Inner surface condition of cylinder liners
				Temperatures of main bearings, crank pin
				bearings and cylinder liners: Check by touch
				• Inside the cam case door
				Sliding surfaces of the cams and rollers
				Check the following during Running-in
				Abnormal noise, vibration and overheat
				• Check that the bolts for various parts are tightened
				enough and are locked
				· Check exhaust gas temperature and maximum
				cylinder pressure: Combustion
				 Colors of exhaust gas and mist
				· Check revolution speed of turbochargers and
				intake air pressure to cylinders
				• Operation speed and charged air pressure of
				turbocharger
				• Check temperatures of fuel oil, lubrication oil, and
				cooling water
				• Operation of accessories
				• Clean the lubrication oil filter at a suitable time
				and completely remove foreign matter
			When main parts are disassembled	• Heavy Oil A is recommended as fuel oil
			* Main parts:	• At no-load operation, engine speed shall be
			Pistons, Cylinder Liners, Piston	increased as shown in Fig. 1-3
			Ring, Main Bearing, Crank Pin	• At on-load operation, engine load shall be increased as shown in Fig. 1-4
			Bearing, etc	0
				Check the followings during Running-inAfter starting the engine, check the inside at the
				same time and same parts as main parts replaced
				• Check the the same points as main parts replaced
				during Running-in
		Adjustment	Starting Test	Fill the starting air receiver with air, set it to the
		Operation		required pressure, and see how many times the
		operation		engine can be started.
			Adjustment of Engine Parts	• Adjust the lubrication oil pressure with the
			Justinent of Engine Futures	lubrication oil pressure regulation valve
				• Adjust the maximum cylinder pressure by
				adjustment of the fuel injection pump timing
			Measurement of Temperature of	Measure the temperature of each bearing
			Each Bearing	• Main bearing: Value added to engine inlet
				lubrication oil temperature to 20 degrees
				• Crank pin bearing: Value added to engine inlet
				lubrication oil temperature to 25 degrees
. 1	I			

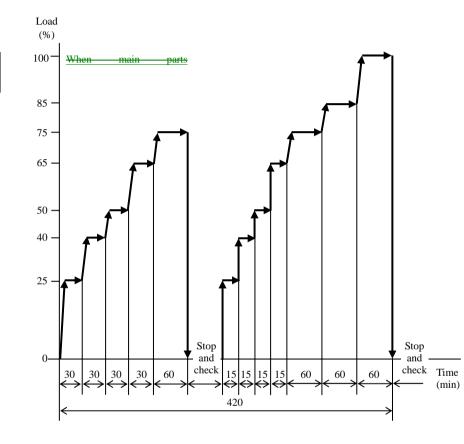

	Stages	Parts or Time	Contents	Confirmation Points or Measures
				• Piston Pin Bearing: Value added to engine inlet
				lubrication oil temperature to 30 degrees
			Governor Test	· Measure the momentary fluctuation rate and
				fluctuation rate at stabilized engine speed when the
				load is disengaged and engaged, and measure the
				time from a load change until the engine steadies
				• Check time until revolution speed of engine
				settles after changing load
			Protective Devices Operation Test	Check the pressure switches, thermal switches, and other protective devices for operation
		Routine Operation	Load Engaging Procedures	Load increase intervals depend on mainly the
		Routine Operation	Load Engaging Procedures	following temperatures
				Starting condition 1: In case that cooling water and
				lubrication oil temperatures is between 10 and 30
				degrees, load shall be increased as shown in Table 1-11
				• Starting condition 2: In case that cooling water
				temperature is more than 40 degrees and
				lubrication oil temperatures is more than 30
				degrees, load shall be increased as shown in Table
				1-12
			Precautions to follow while	Pay attention to the following while increasing load:
			increasing load	• Vibration in cooling water and lubrication oil
				pressure
				• Vibration in cylinder outlet exhaust gas
				temperature
				Vibration in turbocharger speedMist color and quantity
		Checks during	Fuel Oil System	• Check the fuel service tank oil level, and add oil if
		Operation		necessary
		-1		• Discharge drainage from the fuel service tank
				• Clean the filter if necessary
				• The pressure of fuel feed to the engine is
				controlled by the pressure regulating valve located
				between the fuel return main pipe and the service
				tank
				• Check the feed pressure and temperature of the
				fuel oil to the engine
				 Check the piping for oil leak and air inhalation Check tightness of pipe clips
				Shift from Heavy Oil A to Heavy Oil C shall be made
				after the confirmation of the following conditions
				• Cylinder cooling water inlet temperature: Over 50
				degrees
				• Preheat the Heavy Oil C to raise the Heavy Oil A
				temperature at the engine inlet from 50 to 60
				degrees by the line heater at a heating rate of 3
				degrees per minute
				• Keep the engine load at 40% to 50%, and change $U_{1} = 0.14$
				Heavy Oil A over to Heavy Oil C
				• Gradually increase the load
				Shift from Heavy Oil C to Heavy Oil A shall be made after the confirmation of the following conditions
				• Keep the engine load at 40% to 50%, and change
				Heavy Oil A over to Heavy Oil C
			Lubrication Oil System	• Check oil level of the lubrication oil sump tank,
• I		I	Zaonouton On Oystom	show on lever of the fublication on sump talk,

	Stages	Parts or Time	Contents	Confirmation Points or Measures
				record it, check oil consumption and add oil if
				necessary
				• Discharge drains from the lubrication oil sump
				tank
				• Check that the pump delivery pressure is correct
				• Check that the engine inlet pressure and
				temperature are correct
				Check the pipe clips for tightness
				Check the piping for oil leak and air inhalation
				• Periodically analyze the properties of the
				lubrication oil
			Cooling Water System	• Check that the engine inlet pressure and outlet
			Cooming water System	temperature are correct
				-
				 Check the piping for water leaks and air inhalation Check the fresh water expansion tank for water
				-
				quantity, and add water if necessary
				Periodically check the quality of the fresh water
			Turbocharger	• To confirm turbocharger performance, take data
				periodically, and compare it with the shop trial
				data and local witness test data under the same
				operation conditions
				• Watch for turbocharger speed variation, abnormal
				noise and abnormal vibration
			Air Cooler	Watch for the cooling efficiency of the air cooler, and
				clean the cooler according to the following
				• If cooling efficiency is less than 0.60, clean the
				cooling water side of the cooler
				• If cooling efficiency fails to return to more than
				0.70, clean the air side of the cooler
			Main Parts of Engine	Check the following around the cylinder heads:
				· Check the intake and exhaust value rocker arm
				devices for operation
				Check each valve water leak
				Check oil and water leaks
				Check bolts and nuts for tightness
				• Check that the proper amount of oil is fed
				Check the following for other parts of the engine
				• Check the pipe joint for water and oil leaks
				• Vent air from the piping and cooler
				• Check various parts for overheat, abnormal
				vibration and abnormal noise
				Check bolts and nuts for tightness
				• Check exhaust gas color, mist quantity, and mist
				color
				Prepare engine performance journal, and periodically
				take the following data mainly
				Cylinder outlet exhaust gas temperature difference
				among the cylinders must be less than \pm 30 degrees
				of average exhaust gas temperature
				• Maximum cylinder pressure difference among the
				cylinders must be less than 0.7 MPa of the rated maximum pressure
4.	Stopping	Ordinary Engine		• Gradually decrease the load to 50% load in 15
4.	Stopping the Engine	Ordinary Engine		-
	the Engine	Stop		minutes
				• Operate the engine at 50% load for 30 minutes.
I				Gradually decrease the load to zero.

Stages	Parts or Time	Contents	Confirmation Points or Measures
			• Move the fuel control lever to the stop position.
			• Keep operation of cooling water and lubricating
			oil pumps for more than 30 minutes for after
			cooling while turning the engine.
			• Open the indicator cocks during and after cooling
			to discharge burnt gases out of the cylinders.
			• Close those valves, which shall be closed when
			the engine is still.
			Take the following steps to ready the engine for the
			next start:
			• Fill the starting air receiver with air.
			• Add cooling water, lubricating oil and fuel oil if
			necessary.
			• Clean all filters
			• Service and repair as necessary
	Steps taken after	Measures in case of halt for more	• Completely discharge the cooling water from the
	Stopping the	than one week	engine and coolers so no remains in the piping
	Engine		• Spray or apply anti-corrosive oil to the following
	Zinginio		shiny and sliding parts of the engines:
			Starting air valve
			Fuel control lay shaft
			Cylinder head top surface
			Fulcrum supporter
			Other machined surfaces of exposed parts
			• Remove the exhaust valves or fuel injectors, spray
			anti-corrosive oil into the combustion chambers
			while turning the engine, and mount the removed
			valves
			• Check tightness of bolts and pipe joints of main
			parts
			• Put covers on the stack and mist outlet outside the
			engine
			• Ventilate the engine room
	Emergency Engine	Emergency Engine Stop Procedure	• Close the main valve at the fuel main pipe inlet
	Stop		• Give the lowest-speed governor revolution
	1		command
		Conditions where engine stop is	Stop the engine at the following conditions:
		urgent	• Engine speed has increased on its own, and cannot
		C	be controlled
			• Fuel scale has risen abnormally, and engine speed
			has dropped
			· Bearings or other moving parts have been
			overheated
			Engine vibrates abnormally
			Engine makes abnormal noise
			Crankcase mist quantity or color is abnormal
			Lubrication oil pressure has dropped suddenly
			• Cooling water temperature has risen suddenly
			• Turbocharger makes abnormal noise or vibration
			and is over heated
			• Exhaust gas temperature has changed suddenly
		Steps taken after emergency stop	• After an emergency stop, keep the cooling water
			pump and lubrication oil pump operating for
			after-cooling
			• If much mist is discharged from the mist pipe, it is
			because the mist pressure inside the crankcase is

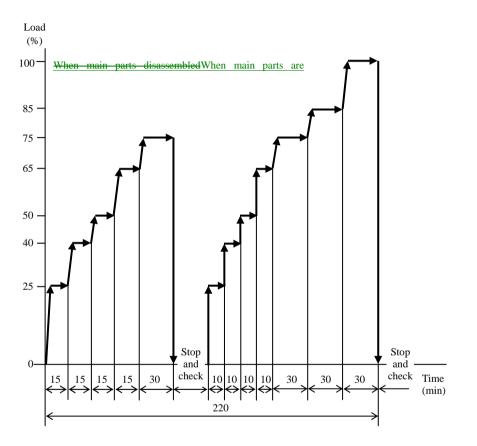

Stages	Parts or Time	Contents	Confirmation Points or Measures	
			 abnormally high. In this case, do not open the crankcase door until mist discharge rage decreases. (about more than 20 minutes) In the case where the engine is burning in heavy oil, keep the line heater and fuel feed pump on to circulate the fuel oil as long as possible after stopping the engine 	
	Non-use of Engine		stopping the engine • Turn the engine at least once a week to change the piston and bearing positions • Prime the lubrication oil • Oil the sliding parts with an oiler • Lubricate the intake and exhaust valve rocker gears • Check the outside of the engine once a month for any signs of trouble • Spray or apply anti-corrosive oil to the shiny and sliding parts of the engine once a month	
			 Remove the exhaust valves or fuel injection valves every three months, spray anti-corrosive oil into the combustion chambers while turning the engine, and remount valves Analyze the lubrication oil properties every month 	

[Source] Operation Manual for Diesel Engine 28HLX prepared by Niigata Power Systems Co., Ltd.



[Source] Operation Manual for Diesel Engine 28HLX prepared by Niigata Power Systems Co., Ltd.

Fig. 1-1 Running-in Procedure No-load Operation (When main parts are replaced)



- [Source] Operation Manual for Diesel Engine 28HLX prepared by Niigata Power Systems Co., Ltd.
- Fig. 1-2 Running-in Procedure No-load Operation (When main parts are disassembled)

[Source] Operation Manual for Diesel Engine 28HLX prepared by Niigata Power Systems Co., Ltd.

Fig. 1-3 Running-in Procedure Load Increase Operation (When main parts are replaced)

[Source] Operation Manual for Diesel Engine 28HLX prepared by Niigata Power Systems Co., Ltd.

Fig. 1-4 Running-in Procedure Load Increase Operation (When main parts are disassembled)

	×		
Load	Normal	Sudden	Emergency
Load	rtorinar	Load-On	Load-On
$0\sim 65$ %	8 min	4 min	2 min
$65 \sim 90 \%$	15 min	8 min	4 min
90 \sim 100 %	7 min	4 min	2 min
Total	30 min	16 min	8 min

Table 1-9Load Engaging Procedure(Cooling water and lubricating oil temperatures between 10°C and 30°C)

[Source] Operation Manual for Diesel Engine 28HLX prepared by Niigata Power Systems Co., Ltd.

Table 1-10Load Engaging Procedure(Cooling water 40°C or over, lubricating oil temperature 30°C or over)

Load	Normal	Sudden Load-On	Emergency Load-On
$0\sim 65$ %	4 min	2 min	1 min
$65 \sim 90$ %	8 min	4 min	0.5 min
90 \sim 100 %	4 min	2 min	0.5 min
Total	16 min	8 min	2 min

[Source] Operation Manual for Diesel Engine 28HLX prepared by Niigata Power Systems Co., Ltd.

Table 1-11	Maintenance	Guidelines	for	Diesel	Engine
14010 1 11	1, raintentanee	Garaennes	101	Dieser	Binginie

○: Check & Cleaning●: Replace

-	D 1
-	Replace
~	Replace

Inspection item	Contents of maintenance	В	D1	D2	D3	E2	Remarks
Cylinder head	• Combustion chamber, intake and		0	0	0	0	
	exhaust passage clean and check						
	Combustion surface dye check		0	0	0	0	
	• Cylinder head stud tightening force	0	0	0	0	0	
	check						
	• O-ring Pipe (FV body) check					•	
Intake valve	Valve check, measure, dye check	0	0	•	0	•	
	Valve guide inner diameter measuring	0	0	•	0	•	
	Valve seat*IV lapping	0	0	•	0	•	
	• Spring*IEV check	0	0	0	0	•	
	Retainer overhaul	0	0	0	0	•	
Exhaust valve	Valve check, measure, dye check	0	0	•	0	•	
Exhlust vuive	 Valve guide inner diameter measuring 	0	0	•	0		
	 Valve guide inner diameter measuring Valve seat*EV lapping 	0	0	•	0		
	 Spring*IEV check 	0	0	0	0		
	Retainer overhaul	0	0	0	0		
	Valve seat*EV O-ring replace	0	Ŭ	•	0		
Fuel injection nozzle		•			•	•	Knock pin replace i
Fuel injection nozzie	Fuel injection nozzle checkInjection pressure test, spray check	-	•	•	-	-	
	 Fuel injection valve body dye check 	0	0	0	0	0	necessary
	· ·	0	0	0	0	0	
	Spring and spindle check	0	0	•	0	•	
Starting air valve	Visually check and lapping		0	0	0	0	
	Spring check		0	0	0	•	
Indicator cock	Body*NCV and cock*indicator lapping		\triangle	0	\triangle	•	riangle daily start stop
	Spring check		\triangle	0	\triangle	٠	
Piston	Piston cleaning and check		0	0	0	0	
	Piston diameter measuring		0	0	0	0	
	• Piston pin boss inner diameter		0	0	0	0	
	measuring						
	Piston pin diameter measuring		0	0	0	0	
	Ring groove clearance measuring		0	0	0	0	
	• Ring check, and ring dimension		•	•	•	٠	Change the Piston ring, if lube
	measuring						oil consumption increased
	Snap ring *piston check		0	0	0	٠	
	Bolt*piston tightening force check		0	•	0	•	
Cylinder liner	• Visual check through doors* crankcase	0	0	0	0	0	
	Outer surface corrosion check			0		0	
	• Combustion surface, and inner surface		0	0	0	0	
	check						
	• Deglazing			0		0	
	• Fire ring diameter measuring and dye		0	•	0	•	
	check						
	Cylinder liner dismount			0		0	
Connecting rod	Big-end bearing check		0	•	0	•	**
0 -	Serration check		0	0	0	0	
	• Crank pin bolt check and tightening		0	0	•	0	
	force check		-	_	-	_	
	 Oil holes check and cleaning 		0	0	0	0	
	 Plug check 		0	0	0	0	Air blow off after washing
	 Big end inner diameter measuring 		0	0	0	0	Uneven wear measuring
	 Small end bearing check 			0		•	Cheven wear measuring
	Sman thu bearing theth		0	0		-	

Inspection item	Contents of maintenance	В	D1	D2	D3	E2	Remarks
-	Crank pin and journal measuring check		0	0	0	0	See 5.2
	• Crank pin and journal dye check					0	
	• Balance weight fitting bolt tightening					0	
	force check						
Damper	Disassembly and check					0	
(torsion)	 Springs *leaf check 					•	
()	 Bearing check 					•	
	 Check that the contact surface of spring 					0	
	guide pieces, inner and outer ring.					_	
	 Bolts check 					•	
Damper* cam gear	 Disassembly and check 			0		0	
Dumper cum geur	 Springs*leaf check 			0		•	
	Spacer check			0		•	
	 Check that the contact surface of spring 			0		0	
	guide pieces, inner and outer ring.			0		Ŭ	
	 Set screw and washer check 			0		•	
Main bearing and	Main bearing check		\triangle	0	•	0	** \triangle : Check the bearing at
location bearing	 Main bearing check Main bearing (Location bearing) check 			0	•		middle throws only.
iocation bearing	 Main bearing (Location bearing) check Thrust bearing check and clearance 			0			muute unows omy.
	measuring					•	
Rocker arm			0	0			
Rocker ann	Shaft check and oil hole cleaningBushing*rocker arm check		-	0	0	0	
	-		0	0	0	•	
	• Clearance between shaft and bushing		0	0	0	0	
	measuring					-	
	• Adjust bolt, collar, spring check	_	0	0	0	•	
	Tappet clearance adjustment	0	0	0	0	0	
a 11	Rocker arm dye check		0	0	0	0	
Cam, cam roller, cam	Cam visual check	0	0	0	0	0	
bearing	• Roller contact visually check	0	0	0	0	0	
	• Cam bearing clearance measuring			0		0	
	Cam bearing check					•	
Valve gear	Push rod check		0	0	0	0	Top and bottom pieces check
	• Tappet*IE disassembly and check, and			0		0	and push rod bend check
	oil holes cleaning						
	Bush*roller check			0		•	
	• Shaft, pin*roller*IE and tappet*IE			0		0	
	inner diameter measuring						
	• Roller, pin, snap ring and tappet dye			0		•	
	check						
Fuel injection pump	• Eye bolt and delivery valve, and		0	•	0	•	
	plunger assembly check						
	 Control rack scale position check 		0	0	0	0	
	Injection timing check		0	0	0	0	
	 Disassembly and cleaning 		0	0	0	0	
	 Spring*plunger and spring seat check 		0	0	0	•	
Governor driving	 Gear contact and pitting check 			0		0	
device	Backlash check			0		0	
	Ball bearing check			•		•	
	Gears check					•	
Governor	Governor oil change	0	0	0	0	0	Send to Maker
	Governor overhaul		0	0	0	0	
Fuel injection union	 Injection union seat surface check 		0	0	0	0	
	Collar surface check		0	0	0	0	
All sorts of gear wheel	Crank gear contact and pitting check		0	0	0	0	
	 Cam gear contact and pitting check 		0	0	0	0	
	Cam gear contact and pitting check						

Inspection item	Contents of maintenance	В	D1	D2	D3	E2	Remarks
	• Each pump driving gear contact and		0	0	0	0	
	pitting check						
	 Each gear backlash check 		0	0	0	0	
	 Idle gear bushing check 					٠	
Starting air distributor	 Disassembly, cleaning and check 		0	0	0	•	
	Rotor check		0	0	0	٠	
Main starting valve	 Disassembly, cleaning and check 		0	0	0	0	
	 Valve seat lapping 		0	0	0	0	
	Spring check		0	0	0	٠	
Lubricating oil pump	Gear pitting check			0		0	The engine driving
	 Bushing *LOP check 			0		•	
Fuel control lay shaft	 Linkage looseness check 	0	0	0	0	0	
and Governor linkage	 Spring *GV link check 		0	0	0	•	
	 Ball bearing and bushing wear check 		0	•	0	•	
	• Pin*lack, Reamer bolt, Link wear check		0	0	0	٠	
	 Rod end bearing and link pin check 		0	•	0	٠	
Turbo charger	 Disassembly, cleaning and check 		0	0	0	0	Refer to the instruction
	 Bearing and labyrinth ring check 		0	•	0	٠	Manual for Turbo charger
Air cooler	 Cooling water passage cleaning 		0	0	0	0	
	 Air passage cleaning 		0	0	0	0	
	Pressure test		0	0	0	0	
	Anti-corrosion zinc replace		٠	•	•	٠	
	(only sea water, if provided)						
Spring	 Turing safety valve spring check 			0		٠	
	• Lube. Oil pressure regulating valve			0		٠	
	spring (turbo charger)						
Exhaust manifold	 Expansion joint check 		0	0	٠	0	
	• Manifold inner surface check and				0		
	cleaning						
	• Expansion joint fitting surface				0		
	deformation check						
	 Lagging repair 		0	0	0	0	
	Gasket (branch) replace	٠	٠	•	٠	٠	
Intake manifold and	 Drain separator check 		0	0	0	0	
intake duct	Duct crack check		0	0	0	0	
	• Manifold inner surface check and				0		
	cleaning						
Cooling water pump	Oil seal replace		•	•	•	•	Depend on specification
	 Mechanical seal replace 		•	•	•	•	
	Ball bearing and roller bearing change		0	•	0	•	
Lubricating oil cooler	Cleaning and check		0	0	0	0	
Low temperature water	Cleaning and check		0	0	0	0	
cooler							
High temperature	Cleaning and check		0	0	0	0	
water cooler							

** [Note] After checking the condition of bearing, if necessary replace crank pin gearing and main bearing.

Inspection Item	Contents of maintenance	Interval	Remarks
General item	Each tank level check	Every day	Watch and record
	Each gauge indication check	Every day	Record
	Each thermometer indication check	Every day	Record
	Oil leak, water leak check	Every day	Watch
	Exhaust gas color check	Every day	Watch
	Each part vibration check	Every day	Watch and touch
	Each valve opening and closing check	Every day	
	Each drain discharge	Every day	
	Abnormal noise check	Every day	
Fuel oil system	Viscosity control	Every day	
	Fuel oil drain quantity check	Every day	
	fuel oil temperature check	Every day	
Cooling water system	Water quality analysis	500h	
Lubricating oil system	 Lubricating oil quality analysis 	500h	
	Spot testing	500h	
	Sludge checker check	Every day	
Turbo charger	Sponge filter cleaning	100h	
	Blower washing	500h	
	Turbine washing	100h	
Engine mist	Color and quantity check	Every day	
Exhaust gas	Color and quantity check	Every day	

Table 1-12Contents of daily check (A check)

Part-2: Operation and Maintenance of Transmission and Distribution Network

2. Operation and Maintenance of Transmission and Distribution Network

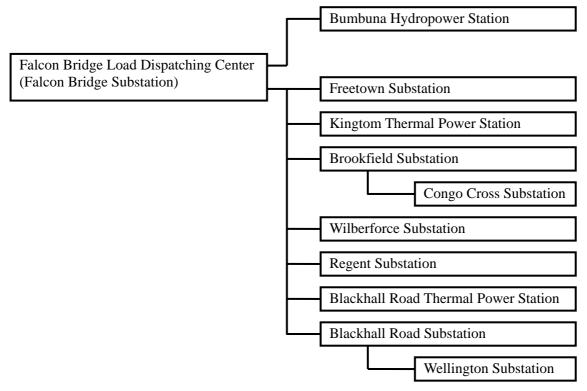
(1) Operation Guidelines for Power System

Standard operation services are shown in Table 2-1. To supply qualitative power with appropriate management of voltage and frequency, it is prerequisite to compose the system of reliable equipment. In addition, it is necessary for achievement of qualitative supply to plan Supply and Demand Balance based on operation data, operate the system based on it and modify it while forecasting the demand change momentarily. In case of the NPA, it is difficult to operate and maintain the system in accordance with Operation and Maintenance Guidelines, as the system of the NPA deviates from the sound status in that the system is decrepit and needs a huge number of repair works and the reliability is significantly low. The following guidelines are simply one example. From the situation of the NPA, they will be effective gradually after engineers who can plan replacement and empowerment of the system are secured in the NPA and the system is improved.

Items	Contents
Observation	Observe operation situations of power supply equipment, demand and so on for reliable and qualitative power supply
Operation	Decide, order and operate load dispatching commands for reliable and qualitative power supply
Demand and Supply Planning	Plan Demand and Supply Balance
Voltage, Frequency Management	Decide and maintain the management range of voltage and frequency
Recovery Works for Failures	Minimize blackout area and recover failures in power system safely and rapidly
Load Shedding	Decide, order and operate load shedding commands
Management of Operation Records	Prepare and keep operation records, manuals and reports

 Table 2-1
 Standard Operation Services of Power System

[Source] JICA Study Team


1) Observation and Operation of Power System

To keep power in qualitative status, proper observation of operation data of the system is necessary such as frequency, voltage and power flow. It is also necessary to build up the framework for chain of load dispatching commands, communicate information of operation or failure in accordance with the framework and operate equipment surely based on the commands made under appropriate judgment. The types of load dispatching commands and an example of the framework for the NPA are shown in Table 2-2 and Fig. 2-1. In near future, Bumbuna Hydraulic Power Plant will be commissioned and operated and maintained by other corporate entities under the power supply contract. It is necessary to regulate properly such items as types of generator control, power conditioning and protection coordination between the NPA and the entities. While clarifying the work demarcation between them, the internal framework of the NPA for load dispatching shall be made clear at early stage.

	1 0
Items	Contents
Generator	ON / OFF, Power Conditioning, Control Function
Transformer	ON / OFF
Phase modifying equipment	ON / OFF
Transmission and Distribution Lines	ON / OFF
Grounding Equipment	ON / OFF
Protection Relay	Setting, Control Function

Table 2-2Load Dispatching Commands

[Source] JICA Study Team

[Source] JICA Study Team

Fig 2-1 Example of the Framework for Load Dispatching Commands

Demand and Supply Planning 2)

Supply shall meet demand changing momentarily while considering the load characteristics and generator characteristics, and keeping hot reserve and instant reserve of power, as electrical power is not storable. It can be secured by planning demand and supply balance, operating the system based on the balance and reflecting actual load situation to generator outputs. To plan demand and supply balance, firstly, such data as operation records, timetable of equipment maintenance, reservoir utilization plan shall be prepared. As the first step, the NPA shall prepare these data.

lable	e 2-3 Classification of Demand and Supply Balance		
Classification	Contents		
Short-Term Planning	Plan Demand and Supply Balance in consideration of past operation data, weather, social affairs and so on Daily Plan Next Day Plan Next Week Plan Next Month Plan		
Long-Term Planning	Plan demand and supply balance in consideration of operation records, timetable of equipment maintenance, reservoir utilization plan and so on from longer viewpoint than short-term planning Dry Season / Rainy Season Plan Annual Plan		

[Source] JICA Study Team

3) Voltage Management

It is the duty of power companies to maintain voltage in management range even at the tail of distribution lines at times of heavy load, as all electrical appliances are manufactured as they exercise normal functions under the rated voltage. Measures for management of voltage and an example of management range of voltage are shown in Table 2-4 and Table 2-5.

Table 2-4	Adjustment Measures of Voltage
-----------	--------------------------------

Adjustment Measures				
Adjustment by excitation of generators				
Adjustment by modification of tap locations				
Adjustment by reactive power from phase modifying				
equipment				
Adjustment by reactive power from Start / Stop of				
generators				
Adjustment by switching of power system				

[Source] Load Dispatching Service Manual

prepared by Okinawa Power Company

Table 2-5	Example of Management Range
14010 - 0	Entering of the angement frange

Range	
$415~V~\pm~42V$	
$240~\mathrm{V}~\pm 24\mathrm{V}$	

[Source] JICA Study Team

In case of the NPA, concerning 11 kV and low-voltage, such basic data as single-line diagram, route map are not prepared. In addition, as operation records have not been kept, there is no way to know the distribution situation of voltage. Firstly, the NPA shall prepare such basic data for proper voltage management. Then, it is necessary to plan appropriate replacement and empowerment of the distribution system and arrange it so that it does not suffer from voltage drop even in time of heavy load by relocation of the secondary substations (11 kV / low-voltage). As a result of the improvement work, voltage management is possible by the measures in Table 2-4.

4) Frequency Management

Fluctuation of power frequency causes various obstacles as fluctuation of revolution speed of rotary machines in manufacturing processes of large demand as manufacturing plant. For proper management of frequency, it is necessary to operate the system based on demand and supply planning and keep the balance between demand and supply. In case of the NPA, holding capacity of power supply is too limited in the present situation to keep balance with demand. The NPA shall keep frequency in the management range after commissioning of Bumbuna Hydraulic Power Plant and other power plants have been developed. An example of management criteria of frequency is shown as follows:

Frequency management range : $50 \text{ Hz} \pm 0.25 \text{ Hz}$

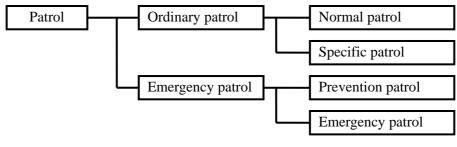
In addition, hereafter, there is concern that load sharing cannot be controlled only by governor-free control and it is necessary to apply the control systems of load frequency control and economic load dispatching, in the case where a number of power plants are developed.

5) Recovery Operations after Failures

In case failures occur in the power system, first aid actions of operation staffs are immediately required based on load dispatching commands. From viewpoints of personnel protection and prevention of expansion of blackout area, operation staffs shall conduct emergency measures and recovery works based on load dispatching commands. As the NPA frequently suffers from many faults arising from decrepit equipment, the issues which the NPA shall work on at the present time are to prepare a format for fault record, record the faults and classify the recurrent faults. For these faults, the emergency measures, diagnosis procedures and recovery works shall be standardized and such a framework shall be secured as site staffs can solve the problems by themselves in communication with engineers.

6) Load Shedding

At present, the NPA has no choice but to operate the system under a lack supply capacity to demand


and load shedding is carried out as daily work. Though the Load Shedding Manual is set down in the NPA, management of load shedding cannot be conducted according to the manual because of frequent faults. After achievement of proper management of power flow, voltage and frequency, the policy for load shedding and Load Shedding Manual shall be reconstructed.

(2) Maintenance Guidelines for Transmission and Distribution Network

Maintenance work of transmission and distribution network is composed of patrol, inspection and repair. In these three kinds of work, Patrol and Inspection shall be standardized and carried out periodically. Contents of patrol and inspection are shown below. As overhead lined are located in the public, it is necessary to grasp the conditions of the equipment and keep them in sound status by periodical and efficient observation. Patrol is carried out mainly by visual observation and it is the purpose to find out effectively parts which need to be repaired. On the other hand, inspection examines more details by using measurement instruments.

1) Patrol of Overhead Transmission and Distribution Lines

Patrols are classified as shown in Fig. 2-2. The definition and frequency of each patrol is shown in Table 2-6. Especially, as Normal Patrol is most effective for confirmation of status of equipment, the contents of Normal Patrol are shown in Table 2-7.

[Source] JICA Study Team

Fig. 2-2 Classification of Patrols

Table 2-6	The Definition and Fre	equency of Patrols for Overhead Line
10010 - 0		

Type of Patrol Definition		Definition	Frequency
Ordinary patrol	Normal patrol	This is a patrol regularly performed along whole lines to investigate the condition of the concerned equipment and the surrounding condition of transmission and distribution lines. Such as over closing of house and trees to said lines, topographical situation, sinking of road and over construction crossing over closed.	Once per 3 months
	Specific patrol	This is a patrol performed deciding specific zones / individual lines to find out abnormality earlier and prevent the damage, which is apt to happen where construction such as building, reclamation, laying something underground, and road will be done within the area of security	Over once per 1 month
Emergency patrol	Prevention patrol	This is a patrol temporally performed to prevent damage during times of storm, abnormal weather or growing period of vegetation	As required
	Emergency patrol	This is a patrol performed to find out the spot and to grasp the condition when an accident or damage of line happens	As required

[Source] Service Works of Power Systems, Corona Sya

Items	Detail Items	Contents		
Right-of-way	Interfering and dangerous	Interfering and dangerous trees, bush, stumps and other inflammable materia		
	trees			
	Crossing	Situation of crossing of houses, distribution line and/or etc to right-of-way		
	Lay of the land	Confirmation of subsidence, crumbling slope, falling rock and/or etc		
	Access road	Damage of access road		
Supports	Pole	Damage of pole, pole hole depth, direction, unfastened bolt		
	Cross arm	Warping, crack, damage and unfastened bolt		
	Neighbourhood of pole	Crack, collapse		
	Guy wire	Snapping, rust, damage of ball type insulator, exposed anchor, damage of		
		grounding wire		
Conductors	Conductor	Rust, kink, abnormal sag, abnormal sound		
	Sleeve	Rust, deformation, abnormal sound		
Insulators	Prefabricated conductor tie	Slipping conductor, rust, discoloration		
	for top tie insulator			
	Insulator	Crack, damage, chipping, vestige of arcs, unfastened bolt		

Table 2-7Contents of Normal Patrol

[Source] JICA Study Team

2) Inspection of Overhead Transmission and Distribution Lines

The contents of Inspection of Overhead Transmission and Distribution Lines are shown in Table 2-8.

	1abic 2-8	inspection items and inequency of ration for C	Verneua Enne
Items		Contents	Frequency
Supports	Steel tower	Foundation concrete and lay of the land	Once every 5 years
	Steel pole	Deformation and bend of materials	
		Rust in material and bolt/nut	
		Unfastened bolt	
		Measurement of earthing resistance	
	Wooden	Deterioration	Once every 4 years
		Tilt	
		Damage of guy wire	
		Measurement of earthing resistance	
Conductors		Damage, Rust	Once every 4-5
		Abnormal Clamp, Sleeve and Spacer	years
Insulators		Defect Insulator	Once every 3-10
		Crack, Chipping	years
		Rust and damage in cotter bolt and pin	
		Unfastened binding wire	
		Abnormal fitment	
Others		Caution sign	As required

 Table 2-8
 Inspection items and Frequency of Patrol for Overhead Line

[Source] JICA Study Team

3) Patrol and Inspection of Underground Transmission and Distribution Lines

In case of the underground transmission and distribution lines of the NPA, as they are directly located in the ground, the parts observed by patrol are only cable head and rising part from the ground. Such items as insulation resistance test and conduction of pipes for cables shall be carried out in the period of about 5 years. In case of the NPA's cables, as earth faults are recurrent because of deterioration of equipment, diagnosis measures for fault location such as Murray-loop Method shall be achieved firmly and efficient repair works shall be carried out.

(3) Maintenance Guidelines for Transformation Equipment

Maintenance work of transformation equipment is also composed of patrol, inspection and repair. In these three kinds of work, patrol and inspection shall be standardized and carried out periodically.

1) Patrol of Transformation Equipment

The classification of patrol of transformation equipment is shown in Table 2-9. The observation points in patrol are shown in Table 2-10.

Table 2-9 Categories of Patrol for Transformation Installation				
Item	Interval	Condition	Description	
Daily Patrol	Daily energize		Visual inspection	
Weekly Patrol	Every week	energized	Visual inspection and recording of indication of instruments	
Monthly Patrol	Every month	energized	Visual inspection, recording of indication of instruments and	
		repair work which can be carried out under energized condition		
Emergency Patrol	-	energized	Performed upon requirements	

 Table 2-9
 Categories of Patrol for Transformation Installation

[Source] Final Report on the Master Plan Study for the Upgrading of Electric Power Supply in the Republic of Palau

Equipment	Item of check		Action			
		Daily	Weekly	Monthly		
Transformer	Appearance	×	×	×		
	Oil level	×	0	0		
	Temperature	×	0	0		
	Silica Gel	-	-	×		
	Counter of hot line oil purifier	×	0	0		
	On load tap changer					
	Counter	×	0	0		
	Tap position	×	0	0		
Circuit Breaker	Appearance	×	×	0		
	Operation counter	×	×	0		
Protection & Control Board	Appearance	×	×	×		
	Target	×	×	×		
	Meters	×	0	0		
Disconnecting Switch	Appearance	×	×	×		
Arrester	Appearance	×	×	×		
	Counter	×	0	0		
Station Service Transformer	Appearance	×	×	×		
Cable & Bushing	Appearance	×	×	×		
Lamps	Replacement of damaged bulbs	×	×	×		
Battery	Electrolyte level	-	×	×		
Potential Transformer	Appearance	×	×	×		

 Table 2-10
 Items of Patrol for Transformation Installation

×: Confirmation

 $\circ\colon$ Confirmation and Recording

[Source] Final Report on the Master Plan Study for the Upgrading of Electric Power Supply in the Republic of Palau

2) Inspection of Transformation Equipment

The classification of inspection of transformation equipment is shown in Table 2-11. The confirmation points in patrol are shown in Table 2-12.

Table 2-11 Categories of hispection				
Item	Interval	Condition	Description	
Periodical Inspection	Once per 2 or	Blackout	Confirmation of functions of equipment and cleaning not including	
	3 years		disassembling	
Periodical Inspection	Once per 2 or	Blackout	Disassembling based on manufacturer's recommendation	
	3 years			
Special Inspection	As required	Blackout	Performed in the following conditions	
			- When abnormal phenomenon is found at Patrol or Inspection	
			 When number of short-circuit interruptions or over loads occur more than specified 	
			- When the equipment is contaminated by salt due to surrounding conditions	
			- When the equipment has been given a severer condition exceeding	
			the rating assigned	
			 When fault occurs in the equipment 	

Table 2-11Categories of Inspection

[Source] Final Report on the Master Plan Study for the Upgrading of Electric Power Supply in the Republic of Palau

Table 2-12Items of Inspection

Equipment	Items of Inspection	Period
Transformer	Appearance	Once a year
	Alarm contact	Once every 3 years
	Insulation Check	Once every 3 years
	Main circuit	
	Insulation oil	
	Bushing	Once every 3 years
	On load tap chnger	Once every 3 years
	Changing silica gel	Once a year
Circuit Breaker	Appearance	Once a year
	Operation test	Once every 3 years
	Insulation check	Once every 3 years
	Bushing	Once every 3 years
	Operation mechanism	Once every 3 years
	Interrupting parts	Once every 3 years
	Accessories	Once every 6 years
	Others	Once every 6 years
Protection & Control Board	Appearance	Once a year
	Characteristic test	Once every 3 years
	Calibration of meters	Once every 3 years
	Sequence test	Once every 3 years
Disconnecting Switch	Appearance	Once a year
	Operation test	Once every 3 years
Potential Transformer	Appearance	Once a year
	Insulation check	Once every 3 years
	Bushing	Once every 3 years
	Insulation oil	Once every 3 years
Insulator	Appearance	Once a year
	Cleaning	Once every 3 years
Battery	Appearance	Once a year
	Equalizing charge	Once every 6 months

[Source] Final Report on the Master Plan Study for the Upgrading of Electric Power Supply in the Republic of Palau