E タ 1

メイワン, キューロムかんがい 農業開発事業

実施計画調査報告書

(付属書)

JICA LIBRARY 1194936[9]

昭和55年1月

E 業団 В, 力 쪌

SALLAN IN

AN	NEX CONTENT.
ÄNNEX 1.	Situation of Project Area
ANNEK Z.	Land Use and Cropping Pattern
ANNEX 3.	Irrigation and Drainage Scheme
ANNEX 4.	On-farm Development Scheme
ANNEX 5.	Agriculture Plan
ANNEX 6.	Project Schadule and Costs
ÄNNEX 7.	Project Implementation
ANNEX 8,	Evaluation and Farmers' Economy

s,

.

4

ANNEX 1-1. Meterology and Hydrology Table 1-1-1. Status of Hydro-Meteorological Observation " 1-1-2. Lancpang Climatological Summaries 1-1-3. Monthly Rainfall, Amphore Muong Lampang (16013) 1-1-4. Annual Rainfall of Each Stations 1-1-5. Rainy Days in Lampang Station 1-1-6. Correlation Coefficient of Annual Rainfall in 4 Each Station 1-1-7. Monthly River Discharge (WI, WIA) (WIO, WIOA) 1-1-8. (W16) 1-1-9. (WSA) 1-1-10 1-1-11, (WIS) 1-1-12. Monthly Diversion Discharge at Sop Ang

Figure 1-1-1. Location of Hydro-Meteorological Observation

73

Item	Station	Code Number	Available Period	Note
Rainfall	Lampang	16013	1952 - 1978	No record period included
	Ko Kha	16032	1953 - 1978	- do -
	Mae Tha	16052	1952 - 1978	
	Hang Chat	16062	1953 - 1978	- do -
	Chae Hom	16022	1953 - 1978	- do -
	Wang Nua	16112	1956 - 1978	- qo -
•	Sop Prap	16042	1954 - 1978	•
River Discharge	Chae Hom	MIG	1971 - 1977	
	Kew Lon	OTM	1962 - 1967	
		AOLW	1966 - 1977	
	Ratsada Phisek Bridge	ТМ	1952 - 1966	
•••••	Kittikhachon II Bridge	MIA	1967 - 1978	
	Ko Kha Bridge	W5A	1963 - 1974	
	Ban Sop Po	SIW	1969 - 1978	· · · ·
Mețeorological Data Lampang	a Lampang		1951 - 1975	ł

Status of Hydro-Meteorological Observation

ANNEX 1-1 Table 1-1-1

Meteorological Data are provided by Neteorological Department

.

٢

Summaries
Climatological
Lampang

Period 1951 - 1975

	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year
Temperature (°C) Mean	21.5	24.1	27.5	29.8	28.9	28.0	27.6	27.1	26.6	25.9	24.1	21.5	26.0 22 E
Mean Max. Mean Min.	30.1 13.5	33.2 15.1	35.8 18.7	37.0 22.3	34.9 23.9	32.8 24.0	32.2 23.7	31.7 23.4	31.5 23.0	31.2	30.5 18.4	29.4 14.7	20.2
Relative Humidity (%)		-											
Mean	66.0	61.1	55.0	56.0	69°0	75.0	75.0	79.0	81.0 06 6	80°0	77.0	73.0 96.6	71.0
Mean Max. Mean Min.	95.9	92.1 34.1	86.9 31.6	85.7 35.6	91.1 50.8	93.2 60.4	92.9 62.4	92.1 65.9	57.8	51.2 64.9	56.7	8.0t	51.9
Dew Point (°C)									1			د ر	. c
Mean	15.1	15.4	16.6	19.7	22.7	23.4	23.2	23.6	23.7	22-1	20.0	ч. Ч	20.0
<u>Evaporation (mm)</u> Mean - Piche	66 . l t	86.8	86.8 122.5	121.2	86.8	64.3	62.3	49 . 1	38.9	41.3	43.7	51.8	835.1
Wind (Knots)													
Prevailing Wind Mean Wind Speed	N.S 2.3	S 2.6	3.0 3.0	S 3.7	s.5 3.5	SW 4.0	SW 3.9	ч. т	S 2.2	NE 1.9	NE 1.7	NE 1.9	1 1
Cloudiness (0-8)	-												
Mean	2.7	2.2	2.4	З.4	5.4	6 . 4	6.8	6°9	6.3	5.2	0 +	а. С	4.6
Rainfall (mm)	1 4	ب د	28 <u>,</u> 9	63.2	152.6	137.6	131.3	215.7	210.8	122.0	26.6	5.7	1,107.0
Mean rainy days	1	0	3.1	6.2	13.9	15.9	17.7	20.3	18.4	12.0	3.7	1.7	115.2
, ,	Data	Data source:	ce: Me	steorol	teorological Department	Departm	ent					:	

į

ANNEX 1-1 Table 1-1-2

L ULLE

Monthly Rainfall A. Muang, Lampang (16013)

4

Total	***	***	***	1,074.9	1,011.3	748.1	4.998	1,247.7	1,157.4	1,223.2	934.5	1,030.1	1,011.1	955.I	1,121.9	902.3	933.3	1,075.8	1,506.4	1,331.1	1,104.3	l,224.8	1,410.4	1,466.8	728.0	1,286.4	954.2	1,097.4	
Dec.	0.0	***	0.0	25.0	0.0	Ò.O		•							9.7													.6.0	í
Nov.	15.9	20.9	10.3	14.7	14.7	0.9	13.0	0.0	46.7	24.5	0.0	55.2	1.5	23.1	26.8	47.2	13.9	0.0	10.7	2.0	93.5	49.2	134.4	25.4	14.7	н. С	0.0	24.5	
Oct.	85.6	55.8	229.3	43.9	63.4	88.2	92.7	85.1	101.7	179.7	120.1	170.2	152.5	140.5	115.0	49.0	85.8	52.3	100.1	154.5	196.0	92.2	62.8	257.1	92.6	175.6	86.4	115.9	
Sep.	174.6	281.7	194.0	116.9	224.0	183.6	138.4	219.5	258.1	201.9	238.2	183.1	272.9	119.5	170.6	242.6	125.1	305.0	323.4	216.1	139.5	306.2	326.2	179.9	193.1	282.8	206.7	215.7	
Aug.	193.2	228.5	229.3	292.5	211.1	106.4	160.5	235.2	274.2	317.7	246.3	192.4	126.9	222.2	235.9	189.8	131.4	193.7	316.6	204.9	215.9	212.3	180.9	413.4	169.3	323.8	130 . 5	220.5	
Jul.	108.8	162.8	28.6	83.7	156.1	0.40	67.4	155.1	194.8	56.1	144.3	140.2	148.4	59.4	130.7	104.7	77.9	82.2	109.2	332.2	107.9	241.5	135.5	207.7	62.0	131.4	213.0	130.9	
Jun.	103.0	165.6	60.7	288.9	. 66.5	119.7	193.3	121.8	131.µ	103.8	70.7	196.8	79.5	142.5	123.5	103.9	203.9	129.2	230.4	102.6	108.9	90.8	136.1	119.6	40.3	11.3	66.7	122.6	
May	58.0	65.0	123.7	147.7	161.4	80.0	69.1	318.6	115.4	239.I	89.1	24.1	184.5	98.7	288.1	114.9	151.3	168.5	250.2	224.1	81.2	151.7	154.5	142.6	120.2	127.7	202.3	146.4	
Apr.	48.8	27.0	10.4	43.0	113.2	48.8	32.4	108.9	0.6	58.6	19.2	58.8	42.3	55.6	1.0	ц 8. 2	136.1	126.4	75.0	10 ° 0	111.4	24.3	236.5	23.2	19.9	119.4	15-0	60.9	
Mar.	***	0.0	***	0.0	0.9	22.7	95.8	3.4	16. 3	36.6	0.9	6.1	0.0	35.3	7.8	7°	6.4	12.2	51.0	25-2	31.9	56.5	37.6	24.2	0-0	12.3	0.0	19.3	
Feb.	***	2.1	***	18.6	0.0	3.8	0.0	0.0	0.0	2.4	0.0	2.0	1.4	56.5	0.2	0.0	1.5	010	11.6	8.8	0.0	0.1	0.0	6.1	13.8	0.0	15.7	5.8	
Jan.	***	24.5	***	0.0	0.0	0.0	36.8	0.1	16.3	0.4	4.3	0.0	0.0	0.0	12.6	0.2	0.0	3.8	0.0	0.0	3.2	0.0	0.0	59.7	0.0	0.*69	17.9	10.0	
Year	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	A Mean	-1
																												٩.	

ANNEX 1-1 Table 1-1-3

Annual Rainfall of Each Station

.

Year	Lampang	Hang Chat	Ko Kha	Mae Tha	Sop Prap	Chae Hom
1952			, -		-	•••
53	· ·	1,454.0	· -	1,313.1	. . .	1,754.5
54		1,023.7	1,463.8	935.7	742.9	í,419.7
55	1,074.9	1,181.7	1,486.5	1,103.3	881.4	1,634.0
56	1,011.3	1,145.2	-	1,117.5	1,100.4	1,360.1
57	748.1	854.4	656.3	1,116.5	865.2	1,348.0
58	899.4	905.2	841.2	957.7	868.9	947.6
59	1,247.7	900.8	1,215.2	1,441.3	1,034.0	944.5
1960	1,157.4	1,546.7	1,145.2	1,114.1	1,240.2	848.1
61	1,223.2	1,161.1	1,235.3	988,5	1,288.7	1,051.3
62	934.5	1,301.8	1,063.6	1,033.9	1,045.4	1,000.4
63	1,030.1	1,208.7	-	1,091.6	1,090.1	970.5
64	1,011.1	900.4	996.3	1,238.5	1,235.3	851.2
65	955.1	735.5	964.8	978.7	839.9	810.2
66	1,121.9	-	916.7	965,0	1,135.3	593.6
67	902.3	-	1,021.3	1,012,0	1,034.7	1,200.1
68	933.3	666.3	860 . 8	1,142.0	815.2	714.8
69	1,075.8	1,262.5	1,091.2	1,278.0	1,427.1	849.5
1970	1,506.4	1,564,2	1,306,5	1,275,8	1,144.1	1,143.8
71	1,331.1	1,289,3	1,193,8	1,095,9	1,085.8	1,043.0
72	1,104.3	929.6	1,118,7	1,000,7	1,032.2	958.0
73	1,224,8	1,400.7	1,111.1	1,333.1	1,176.3	1,070.4
74	1,410.4	1,191.5	1,507.3	1,106.0	1,332.7	-
75	1,466.8	1,871.1	1,337.0	1,390.1	1,820.5	951.9
. 76	728.0	1,233.9	930,4	820.7	1,045.9	768.5
77	1,286.4	1,170.0	1,21,5.1	1,092.7	906.3	880.0
78	• 954.2	1,018.2	-	992,0	1,224.4	697.6
Mean	1,097.4	1,163.2	1,121.7	1,112.9	1,096.5	1,032.5

Data source: RID Hydrology Section

	Year	1 6	86	64	107	107	06	109	120	120	137	116	112	112	107	120	112	105	66	126	911	107	132	124	120	120	114	104	112
	Dec.	0	ı	0	2	0	0	0	0	2	1	2	2	ო	-1	က	H	0	-1	7	ლ	7	0	ч	~1	ო	7	0	2
••	Nov.	2	ო	Ч	ო	ო	2	ო	0	8	S	0	7	ო	S	ŝ	Q	ŗ	0	ഗ	ო	10	ر	7	. 1	9	7	0	<u>n</u>
	Oct.	15	11	11	7	8	7	16	9	20	18	JG	井	51 13	17		01	13	C)	#	12	11	Ц	12	13	18	1ţ	10	12
	Sep.	18	14.	16	19	20	17	17	21	<u>19</u>	25	δŢ	18	22	1 5	1 5	22	12	17	6T	16	16	20	24	61	18	15	19	18
	Aug.	17	21	20	23	16	20	19	20	20	6T	20	- 6T	16	18	22	18	16	21	22	20	21	26	15	24	23	18	16	20
0	Jul.	18	74 7	6	15	19	14	19	24	16	18	17	20	19	15	16	15	17	17	15	19	15	22	19	22	16	22	18	17
	Jun.	14	12	თ	19	12	14	15	18	14	24	20	16	12	21	17	13	15 1	17	21	抗	თ	18	12	, T2	14	2	10	15
	May	7	9	11	11	20	8	10	20	ET	15	14	6	16	9	21	15	15 1	ħ.	13	15	80	22	18	16	15	20	15	14
•	Apr.	č	2	2	7	œ	6	÷	80	1	9	ഹ	8	7	4	Ч	10	11	7	10	TO	1	ო	10	7	9	7	ഹ	9
	Mar	 1	0	ł	0	Ч	ഹ	ო	5	5	ო	h	ო	0	ო	2	Ч	ო	ч	7	9	\$	Q	O	1	0	ы	0	7
	Feb.	ı	1	ł		0	Ч	0	0	0	2	0	гı	ч	7	ч	0	2	0	Ч	Ъ	0	Ч	0	4	г	0	ؚڡ	Ч
	Jan.	ı	ო	I	0	0	0	ဗ	Ч	ъ	ત્ન	7	0	0	0	ო	Ч	0	, 2 ,	0	0	7	0	0	თ	0	4	S	2
	Year	1952	53	54	55	56	57	58	59	1960	61	62	63	64	65	. 66	67	68	69	1970	11	72	73	74	- 75	76	77		Mean

Rainy Days in Lampang Station

1-5

ANNEX 1-1 Table 1-1-5

Data source: RID Hydrological Section

Each Station
Fall in
l Rainf
Annua]
of
Coefficient
Correlation

	Lanpang	Mae Tha	Ko Kha	Sop Prap	Hang Chat	Chae Hom	Wong Nua
Lampang	I	0.57	0.78	0.54	0.60	0.03	0.16
Mae Tha	ľ	ı	0.23	0.47	0.38	0.19	0.22
Ko Kha	1	t	J	0.29	0.48	940	0.10
Sop Prap	I	ı	ı	1	0.70	-0.27	0.37
Hang Chat	I	I	ł	. 1	I	0.20	0.21
Chae Hom	, I	1	ı	ł	•	1	0.03

ANNEX 1-1 Table 1-1-6

Nov. Dec.	93.3 60.2 49.9 ***	59.7 33.1	38.5 25.3	10.0 5.0	22.8 8.2	19.7 5.9	12.1 3.9	12.3 7.2	36.3 42.5	65.4 28.3 1	27.4 IO.8	157.5 29.3	52.1 20.1	55.6 12.8	18.0 6.8	21.9 11.3	16.4 7.3	22.1	43.0 44.4 J	48.3 I7.8	73.1 38.3	40.6 25.7 1	112.7 11.6	49.6 26:2	79.6 21.4	60.5 🖉	27.1 11.2	113.8 46.0 20.5 619.0	> 1978 indicate at WIA Station.
	389 . 4	. *																	۰.							1		199.4]	of 1967 to
Aug	110.6	91.8	75.2	273.5	231.9	63.8	48.6	94.5	130.2	222.8	55.3	192.1	15.8	56.1	90.7	24.6	58.6	111.4	358.0	300.1	52.3	483.2	163.4	208.8	86.7	41.3	164.7	139.1	The data
 <u>Jul.</u>	***	23.8	5.5	4.5	77.6	3°0	12.6	36.2	48.3	16.9	10.1	30.4	36.6	2.8	5.3	3.7	9.7	9.1	80.4	102.4	1.5	85.4	41.8	41.6	13.7	16.8	133.3	32.8	
Jun.	***	37.3	40,1	24.3	22.8	39.6	9.1	15.7	, 7.5	66.0	н. н	26.3	15.2	10.2	16.4	7.0	25.9	31.4	154.7	8.1	2.0	9 . 4	6.44	40.7	12.5	15.1	18.7	27.1	Wl Station
May	***	50.7	***	1.3	58.8	0.6	5.0	43.3	4.7	51.3	15.4	2.4	16.9	H. 7	25.7	11.2	13.6	5.9	68 4	11.7	3.1	20.8	39.5	7 6	10.7	16.3	23.0	20.8	icate at
AFra	***	14.5	****	4°T -	6.8	4.2	. 1.8	n •0	0.3	2.7	3.1	3.0	2.4	2.1	0.8	. 2.2	4.0	0.8	4.7	1.6	11.7	23.5	13.7	9.0	10.2	10.0	15 * 5	0*9	1966 ind
 Mar.	***	14.0	0 8	1 , 4	1.1	1.9	. 1.0	0.1	1.0	0.8	9*9	2.9	3.1	2.9	1.6	1.4	0.4	0.0	0.0	2.1	1.9	6° 8	6. 4	2,3	7.3	8.7	12.7	1.4	1952 to
Feb.	***	21.9	8.0	н.5	1.7	2.6	2.0	1.3	3.8	1.9	6.6	2.8	•	30	1.9	1.6	0.0	0.2	0.3	3.8	2.5	7.1	2.3	4 . 6	5.0	7.1	14.1	4,4	data of .
Jan.	*** **	27.9	13.1	10.3	2.0	3.1	4.3	1.6	3.2	9.2		4.8	7.2	5,9	2.9	2.0	1.4	1.3	.0.8	11.2	8.7	6 •6	12.6	46.5	10.6	21.7	17.3	9.7	: The
Year	1952	53	54	55	· 56.	57	58	59	1960	61	62	.63	64	.65	66	67	68	69	1970	171	72	73	74	75	76	LL ?	78	Mean	Note

Monthly River Discharge (Wl, WlA)

ANNEX 1-1 Table 1-1-7

	<u>Total</u>	***	716.6	643.5	420.7	434.2	497.6	349.7	347.0	876.1	827.8	· 482.5	1,499.6	729.9	1,369.9	589.3	668.8	716.5	1. 869				***	197 <i>:</i> 6		251.9	496.7	219.5	240.5	324.9
	Dec.	18.2	32.2	30.9	18.5	15.3	12.2	16.4	16.1	42.1	22.9	23.1	42.0	34.1		31.7	40.4	17.7	26.9	OA		,		11.7	11.4	9 .5	14 .7	6 °3	9.2	10.8
	Nov	31.7	136.9	57.7	50.4	29.8	28.6	21.2	28.9	38,9	45.4	64.0	77.4	122.2	79.7	84.2	72.1	36.7	59.2	te at WlOA			16.4	٠	21.5	43.5	27.4	33.3	23.0	27.6
	Oct.	193.4	206.6	205.5	118.0	46.3	92.4	54.3	55.1	67.3	153.2	86.0	206.0	64.9	198.8	139.5	170.2	83.8	126.0	'2 indicate			61.0	36.6	60.5	26.6	83.5		72.3	57.3
(VOTM	Sep.	89.7	1001	176.3	91.3	150.8	262.2	91.9	51.8	187.1	191.6	106.4	452.2	137.6	335.2	136.9	166.2	131.7	168.2	. in 1972			79.9	43.6	164.0	64.1	146.9	61.5	63.2	0.68
(MI0,	<u>Aug.</u>	59.0	152.7	26.4	54.7	94.5	42.l	67.7	107.7	266.6	240.3	120.1	486.6	131.9	389.1	52.3	62.2	165,8	148.2		of Dam	(<u>W</u> 16)	147.2	51.8	227.6	55.9	147.2	20.5	25.0	96.5
Discharge	Jul.	17.1	36.6	53.1	7.7	13.9	10.3	20.0	22.5	74.0	93.5	8.4	110.6	51.6	91.9	17.6	27.4	159.3	48.0	in	from outflow of	Monthly River Discharge	33.7	1.7	29.0	13.3	27.1	5.4	9 ° 8	17.1
y River	Jun.	8.5	18.4	23.3	18.2	22.1	12.7	29.9	34.3	110.1	15.0	9.7	49.2	47.5	74.9	. 19.9	10.1	20.9	30.9	~		y River	6.4	6.2	11.1	11.9	20.1	8.0	2.9	9.5
Monthly	May	20.8	2,3	23.7	8 ,9	40.2	16.0	20.2	12.6	60.6	19.6	6 •0	28.8	6.44	24.3	23.5	40.9	34.0	25.4	dicate at	estimated	Monthl	444	3.0	6.5	9.7	3.5	6.3	15.4	7.4
·	Apr.	6°9	3.5	0°9	ວ ້ ມ	2.2	4.1	6 ° 6	2.9	•	8.8	17.5	12.1	22.5	21.1	12.5	15.3	16.2	10.5	1967 ind	1978 are		***	ц. 5 Ц	1.5 1	3.1	3.7	2.2	4.7	3.3
•	Mar.	***	7.3	8-8		3.8	9°3	4.7	2.7	4.1	٠	8.3	ġ.	23.3	9.	ئ	ۍ د	12.5	10.8	Nov.	1972 -		ななな	2.1	2.8	3,4	3.4	2.5	2.1	2.7
	Feb.	***	8.2	11.2	14.4	5.7	4.6	5.4	4 . 5		9.8	10.0	•	23.5		ۍ.	13.5	<u>ى</u>	12.1	÷ F	Aug. in		ななな	2.8	2.2	•	•	3.8		3.2
	Jan.	***	•	18.8	21.0	•	•	8.1		0	•	б		25.9	ŗ.	ф	•	21.4	19.7	Note:			***	ς π'	5.1	6 . 8	15.4	6.2	10.6	ຕ ໍ ສ
•	Year	1962		64	65	. 66	67	68	69	1970	11	72	73	74	75	76	77	78	Mean				1971	72	73	74	75	76	77	Mean

1-8

ANNEX 1-1 Table 1-1-8, 9

\$

Monthly River Discharge (W5A)

Total	***	1,249.2	717.8	907.9	818.6	375.8	658.3	2,038.4	1,569.1	554.5	***	***	987.7					***	307.1	260.6	127.6	270.3	219.2	234.7	104.9	126.0	***	206.3	
Dec.	72.8	47.9	42.7	21.8	17.8	16.1	20.3	56.3	25.5	40.2	18.4	***	34.5					2.1		2.5	2.8	3.6	2.8	T. 0	0.4	0.4	***	2.2	
Nov.	284.9	93.9	106.1	52.9	25.8	23.7	53.0	49.9	58.8	96.6	52.4	***	81.6					5. 5	6.5	4.9	7.2	8.3	41.3	5.4	5°2	4.0	***	6.9	
Oct.	350.6	413.8	154.4	68.3	112.8	64.8	129.9	166.2	306.5	139.4	***	****	190.7					****	24.5	78.3	40.4	52.0	13.8	47.6	22.6	27.1	***	38.3	
Sep.	230.8	371.7	150.5	316.0	482.0	80.2	181.4	532.2	368.5	130.1	709.9	285.6	319.9					***	93°I	47.9	16.3	114.7	56.5	91.8	41.9	4,68	***	68.9	
Aug.	314.3	41.6	89.9	196.5	38.Q	59 . 1	153.5	710.2	536.0	73.2	619.0	205.5	253.1				ge (W15)	***	102.2	79.1	47.8	62.9	68.1	60.6	23.5	3.6	***	56.0	
Jul.	ц7 . 9	91.0	10.0	19.3	7.3	15.1	26.4	121.0	183.8	2.0	117.7	. 49.5	57.6				Discharge	***	22.3	33.1	2.3	11.0	4.8	24.7	7.4	0.0	***	13.2	
Jun.	7.1	33.2	20.7	56.4	13.8	32.3	42.4	255.7	15.8	5.1	14.5	54.0	45.9	•			ly River	たたた	39.6	6.6	3.1	9.7	11.5	1.1	2.1	0.5	***	9.3	
Vell	***	42.3	18.8	62.2	23.1	21.2	7.8	105.7	27.3	5.8	23.3	58.6	36.0				Monthly	6.2	10.3	5.1	1.5	3°6	9 . 8	т ° О	0.5	0.6	***	4.3	
Apr.	***	11.8	20.8	5.4	10.0	9.2	2.9	12.8	7.1	20.7	25.5	15.2	12,9			• .		1.1	0.8	0,1	3,3	0'6	5.5	0.1	0.0	0.0	***	1.3	
Mar.	***	21.3	40.4	20.9	26.2	4.1	14.8	8.1	10.2	12.5	13.1	2.9	15.9	•			-	***	0.8	0.5	0.6	0.9	1. 5	0.2	0.1	0.0	0*0	0.5	
Feb.	***	39.5	32.7	43.7	25.9	27.8	8.3	13.0	8.8	10.5	11.9	2.2	20.4					***	1.1	0.0	0.8	1.0	1 ,6	0.5	0.3	0.0	0.0	0.7	
Jan.	***	41.1	30.7	h. µ4	35.9	22.2	17.6	7.1	20.8	18.5	13.1	4.7	23.3		·			****	1.4		1.5				0.5	0.3	0.0	1.2	
Year	1963	64	65	66	67	68	69	1970	71	72	73	η <i>Γ</i>	Mean					1969	70	. 11	72	73	74	75	76	<i>LL</i>	78	Mean	

ANNEX 1-1 Table 1-1-10, 11

1- Y

Ţ										ĥ	Unit: MCM	5	
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug	Sep.	Oct.	Nov.	Dec.	Annual
1968	, I	I , , ,	. I	8.4	15.3	16.4	20.7	26.3	26.9	30.8	18.5	10.8	ł
69	. 6	5.1	3.1	3.9	6.0	19.0	25.5	26.8	22.6	24.9	14.5	12.4	173.3
1970	11.2	5.8	5 . #	5.5	2.1	15.0	24.4	8 6	20.5	21.1	16.9	6.4	142.0
11	11.8	0*6	8.8	10.0	11.1	16.1	24.4	23.2	18.0	21.5	20.6	9.2	183.7
72	15.6	12.7	13.3	12.6	9.7	13.1	30.8	23.1	27.0	29.2	18.0	7.9	213.0
73	19.3	10.7	13.4	17.7	19.2	. 1 4 .2	21.4	25.6	9°6	19.5	11.0	9°2	191.1
74	10.5	15.9	15.9	15.6	15.2	18.7	22.1	21.1	18.1	20.0	17.6	6.9	197.6
75	4.5	10.6	12.6	10.4	13.3	18.0	22.1	22.7	12.8	16.2	7.1	4,0	154.3
76	18.6	14.8	15.0	11.7	11.8	17.9	18.9	19.7	14.9	17.4	12.5	12.0	185.2
77	14.1	10.8	10.8	10.1	11.5	15.2	21.8	19.6	10.0	25.2	17.9	8.8	175.8
78	13.5	14.7	14.3	15.1	9 ° 8	18.1	18.3	20.2	18.7	22.3	14.3	14.0	193.3
19	19.5	13.4	14.6	13.2	6.2	12.0	Ĩ	ı	I	ſ	'. !	l I	t .
Mean	13.5	11.2	11.5	11.1	11.7	16.1	22.8	22.8	18.1	22.6	15.4	6.3	186.1
		Data	source:	RID Hyc	Hydrological	al Section	, uo			•			

Monthly Diversion at Sop-Ang

ANNEX 1-1 Table 1-1-12

J

10

ANNEX 1 Figure 1-1-1 Sop Ang Diversion Kew Lom Dam Wang/N JEUDYS 840 190 BUOM BOW 8 Ę AMPANG Wiang Pa Home a °≘() ≥ Mae Tha **OBSERBATION** Cha $\overline{\mathbf{A}}$ WATER LEVEL AND RAINTALL STATION Ko Kha o N te o Hang 1 **METEOROLOGICAL** HYDRO STATI ON PROJECT AREA OF RAINFALL LEGEND OCATION \bigcirc 0

1.11

1-2. Soil and Land Classification

1-2-1. Feelogy and Topography in the Project Area 1- 2-2. Characteristics of the Soil 1-2-3. Sail of the Sample Areas 1-2-4. Land Classification

Table 1-2-1. Acreage of Mapping Unit in the Project Area 1-2-2. Land Use of Baring Test Sites 1-2-3. Fluctuation of Sail Texture by the Depth 1-2-4. Result of Analysis of PH and Available Phophasus 1-2-5. Summary of Measurement of PH and Available Phypharus 1-2-6. Result of Sail Analysis 1-2-7. Specification of Land Classification " 1-2-8. Acreage of Land Class Group 4

Figure 1-2-1. Location of Sample Area 1-2-2. Map showing land Use and Lacation of Baring Sites in the Sample Areas 1-2-3. Cross Section of Sample Areas 1-2-4. Relationship Between Soil Texture of Surface Soil and Subsail 1-2-5. Map Showing Soil Texture of Surface Soil and Occurrence of Fravel, Pisolite, Limestone Fragment and Hard Layers Status of PH in the Sample Areas 1-2-6. Status of Available Phospherus in the Sample Maa 1-2-7. Diagramatic Representations of Sail Profiles 1-2-8. 1-2-9, Propertion of Particle Size of Test Pits

Мар Sail Map of the Project Area 1-2-1. Map showing Land Farm in the Project Area /-2-2, Map Showing Land Class Group in the Project Area 1-2-3.

1-2 土壤 上土地分類

(1). 地質及び地形(地形図参照)

Lampan Basim の中央を流れる Wang River 及びその支 流の川筋に招って Recent 或いる Semi-reant alluvium を母村とする Semi-recent Earrow や. Old level か 形成されておい, Wang River の上琉郎 には、flowd plain かあるか Old level の背後には Semi-kecent terrowe か 発達しており、これに母する 標商 240~250 m 以上の部住には、Old alluvium F 母科をする terrace 或いは for か 形成されている 右岸地域の Expansion area 及び 下琉地域 ならびに 左岸町町の Mae Fung area の大部分は Old alluvium F 母科とする berace で 広められている。

なお Expansion area の内部の低位部と Semi-recent alluvium を田.杯とする土壌が分布している、右岸最 上流部の Kew. Lom Dam 附近には、 Lampany Group-Treasure に属する Celluvium が分布し、開打侵蝕面や丘陵地 を形成している。

1). marine and nonmarine sandston, shale and lineston folded - Triassic by F. R. Moorman. 1972.

(2)、主要土壤の特徵(表1-2-1土壤図参照)

Fiood plain (650^{ka}. 7.7%) の土壤は. The Muang/ Samplays association に属する. The Muang seriesの田村 は secont alluvium で 排水度 ないこ良好な 細かい 砂壊 エないし、シルナ質壊土 で PH は 6.0~6.5 である.

Sanghaya series 13. viven alluvium, そ田村とし、 Fhe Muang series より、やや低位部に存在する。 表土日猿土 ないレ、シルト賞壌土で、下層日、壌土ないし、シルト 増壊エごある。 PHIS SS~65 ごめるが場所によって ほ、下層土の PHIS S,0~4.5 と、強酸性を示す。 FM Muang IT 畑作物に好道な土壌であり、一般にII. 水田に日、不道である。 - 方 Sanghanga は畑地 より秋田に 遍する土である。

Semi-recent terrace (5,340 to 30.3%)の土壌IT. Mae Sai deries (低爾植7ウイエ)と Hang Dong Series (低爾植 77ライエ/水成非石灰質褐色工)に属する、Mae Sai 13 alleurium を母材とし Sami-recent terraceの平坦でいし ほとんど平坦な地形に在する排水不良な土である。 表土IJ シルト質埴壊工、埴壊エないし、シルト質壊エであり、 下層上IJ 埴エないし、シルト質壊エであり、 下層上IJ 埴エないし、シルト質壊エであり、

Hang Dang series 17 allavium plain & terrace of \$ 13 the

から、やや起伏のある地形のところに存在する、排水 はやや、不良ないし良の土で、表土にす壊土ないし堰壊工 であり、下骨に、堰壊土である。表土のPHは s.s~ 6.7 で、下骨のPHに、6.5~ 2.0 である。Mai Sai 及び Hang Dang は、水田に邁している土である。

Kamphaeng Saen series (非石灰質褐色土)と. Si Satchanalaiseries が Old lever (2,160 th, 12,1%)の主なる 生壌である。 Kamphaeng Saen 13. Semi-Aecent alluvium 下母林とする土で、表土は、壊土ないし塩壊土 であり、下層土は、埴壊土の排水良好な土である. PH 13. 表エ 7: 6.0~ 6.5. 下層で 7.0~ 8.0 である。 この 土壌の分布地帯は、主に宅地、や、畑地、果樹園に利 用されている。 Si Satchanalai 13. やや平坦ないし起伏 のある Old lever のうえに、alluvium そ母林として出来に 土である。 排水の良い土層の厚い土壊で、表工はシルト 質埴土で、下層13. ラルト質埴壊土ないし埴土である。 PH 13 表エ で 5.5~7.0. 下層で 6.0~ 8.0 となる。

Old alluvium を田村とする 14の Sail Series が単独 に式いは、association として、Old Lerrace (8730 Ka 49%)の工壌で構成している。その主なるものについて 以下に述べる。 · Roi El series (低腐垣ブライエ)

である

土骨は厚いが排水不良のエで、表土は、壊土、砂壊 土、康質砂土、下層土は、砂質埴土、壊土或りは埴壊 土である、PHは表エで S.S~6.S、下骨エ ご 4.5~5.5

· Hang Chart Series (赤黄色水。ッツル土)

表土は、砂壊土で塩壊工、埴土ないし、砂質塩土の下骨 土をシュ土骨の厚い、排水良好な土である。PHは、表土 でよくってのり、下骨土ではよく~5.5となる、比較的 畑地に通する土であるが、やや高い地形のため、 一般には、水田に通しない土である。

· Mae Rim Series (赤黄色水ッソル土)

開打Old terrace に出来下、Old gravily, story alluvium そ母科とする主境である、社員の厚い確質の排水良好な まである、表工は砂壊土ないし球質砂土で、下層土は 砂質塩壊土、塩壊土ないし砂質塩土である。 表土のPHは45~60で一般に下層になる程低いPH そ示す、一般に水明には不適なエである。

· Satur series (the Etry YIL I)

表土が初壊土、下層土は砂質塩壌土ないし増壊 エの土骨の厚い土壌である、表土のPHはSSへらSで 下層土は 似~ 5.5 である、一般には畑地に比較的 適する土であり、水田には不適当な土である。

·Lampang Series (1会) 11 7"ライエ)

非水性不良で工骨の厚い土壌であり、表土は壊 土ないし塩東エであり、下骨は、塩壊エ,シル)質塩壌 エないし塩土である。PHは表土で、ふふへんか、 下骨エで45~55となる、粘軟的水田に適する土である、

(3) Sample 地区 の土 境

日場整備計画のためのSample地区として選定された 5地区(図1参照)について、試穿調査を行なった、試穿 は4ねにっきノ個所(200加間隔)の精度で行ない、基 図として縮尺/:1,000の地形図及び縮尺/:40000航 空写具を用いた。

また調査に当っては、Detailed Reconnaissance Sail Man & Lampang Province (Land Survey Dis, Land Development Dept) を発告とした。

試穿下行, た個所数 は全体で 275 地点。(NO1地区 67点, NO2地区 59点, NO.3地区 47点, NO-4地区 48点, NO.5地区 54点)である。(四2参照) 調査に際 しては る試穿母に、土深、土性、土色、斑較 PH 等 に関する調査 5 行うと共に PH 可給態燐酸 の 室内測 足に供するため、各試穿母に、表工及び下骨工を採取 した、採取した分析試料の合計 は 550点となる。 調査時期が雨季水稻栽培期間中であったため、水田 の試坑調査 は不可能であった、 そのため 体開水田 及び 畑地かち 代表 地点を選び 各 Sample 地区母に 試統 調査 5 行ない 5 個 町の 試坑から 22 の 分析試料 そ 採取し、土 遠分折 13 Sal Chemulty & Physics 406. P1D1= 委託した。なか野外調査期間中、試穿地点の関係農家に対する作付体形、耕種法、収量、水利条件等に関する関取調査を行ない、Samule地区の営農の実態の把握に努めた。

Sample 地区内に分布する Sail Series そまとめると 下記のようになる。これらの Sail series は単独に、式いる association として分布している。

Sample It 2% 土壤名 <u>स</u> रहे -NO. 1 Semi-recent alluvium Kamphaeng Sain Si Satchanalai Old alluirum Satuk Mae Rim Hang Chat Karat Hang Dong Semi-recent alluvium NO. 2 Kamphaeng Saen Old allurium Kue Lom Hang Chat Satuk, gravely variant Send-recent allurium Hang Dong NO. 3 . Old alluvium Korat

Mai Sai NO.4 Rai Et San Sai

Semi-recent alluvium ald alluvium

Old allurium San Sai NOS Mai Rim Hang Chat Karat

Sample地区の断面図を示すと図1-2-3になる。この 図に示しす様にやや起状にとんだSample 地区への 及びんの、2、2、際けぼ他の3地区は何川とゆるやかな傾 行の地形のうえに位置している。図1+2-4は表土と下層土 の土性の関係を示したものである。

一般に表土は各地区共に、如や、細粒質の土柱であり、 埴壊土、砂質塩壊土である場合が多い、Wang Riven 右岸に位置する、Sample地区 NO.1、NO.2 及び NO.4には やや細粒質の土性の表土が多いが、下層になるにつれて 細粒質の土壌が多くなり、埴土となる、腰向がある。 これに対し、左岸に位置する Sample 地区 NPC、 ほび NO.5 の土壌に 各層を通じて、やや 細粒質の土壌が タい傾向がみられる。 なお Sample 地区 NO.4 では 表層 から下層に至るまで 埴土である場合が 別く、また。

NIVE CONGREGATION OF THE

Sample 地区 NO.1 では、調査地点の 30%の表土は壊土である。

一般的には地表下500のまでの工層では、表層より下層 の方に、より細かい粒質の土壌が現われる傾向を示し 7113 to sample te E NO.3, NO.4, B W NO.5 or 場合 は、NO.1 及び NO.2にくらべ、土性の変動は近ない。 EP5. Sample IT I NO. 4 T' II IE ± D' It. Sample IT € NO.3 Q U NO.5 では 砂質道壤土でもって地表下50m の土層を白めている場合が約い、 Sample 地区 NO.3 E NO.5 の 2 老 1 年水田 の地表 下 SOM まで の骨の土雌を比較した場合(四1-2-4)調査水田中 前者では95%後者では、74%に当る地点は、やや、粗 粒質から、かや細粒質の土場である。(御壊工 壊土 垣壤土, 砂質埴壤土, シルト質壊土) これらのことが 両地区が他の地区に較べて水田2毛作の普及度内 高い理由の一つとなっているものと推察される 一方· Sample 地区 NO.5 の雨季水稻单作水田の丰壤 ののかんは、細粒質である埴土ないレシルト質埴土であり Sample 地区NO.3 n 雨季水稻单作水田 n 81% 加 地表下 50 = まで 塘遠土、または、砂質塩境土である

全 sampli地区の調査水田207点の地義下の10001性の傾向をみると全体の50%が細粒質の土壌であり、

45.9%がやや細粒質の土壌となっている、これらの ことから、一般的傾向として、これらの水田の透水性は 小ないし、中程度のものと考えられ、また、保水性もな 較的良好なものと推察される。全地区の試穿を通 じ、土層中にマンガン鉄結核。反び斑紋が出現し 711ることからしても、浸透水の下降運動の存在が推察 出来る·レカレ、 Sample 地区別にみた場合には Sample 地区 NO. 3 の 試穿 NO 15 及び 47、 NO. 5 の 試穿 NO. 31.32 40 及心 50 日地表下 50 m の土性 13、砂質環土7、为川 これらの地点の透水性は大きいものと考えられる。 聞取調查の結果でも上記地点以外に sample 地区 NO. 5 7 13 B & NO. 6. 7. 13 21. 23 24 36 BU 37 BU Sample HE NOSO \$\$\$ \$ 10. 4. 21, 42 0 B & A O X 持ち期間はノーマ目間となってあり、近水性の大きいこと どホレアルる、作付体形に異にする水田の表土及び 下層土の土性の傾向を概括的に示すと下記のように 15 3

作付体系 表土的土性	下骨子的开始
水稻2期作水用、中中和杜寅	細粒質
2毛作水田、 ヤや湖社貨	一世祖就算
雨季水稻单作水田 中中細粒質	和粒旗

各 Sample 地区 13. Somi-recent terrace, Old leve, Old allivium terrace 或いは、これらの漸初地帯に位置 してあるため、ビッフィト,石灰岩、砕片,研、等が地中に 移在している。(四1-2-5) ビッフィトは果粒状の鉄結核 で場所により下層に硬結したビッフライト結核(ラテライト ブロック類似のもの)が出る場合がある。ビッソライトは、主に Old alliviumの どの 土壌に出る、これが 地表下100m までの間で、出現した地点は Sample 地区 NO.17 4点, NO.27 5点、NO.5 では 1点あり、 すらに 1500mの間では Sample 地区 NO.17 6点, NO.2 で 10点, NO.4 2 3点, NO.5 で 3点、上増えている。

Somple 地区 WQ1 では 主に 礫、NQ2 では石灰岩碑片 NQ4 7 15 ビリライト NO.5 では 礫の存在が 150 cm 37" の 武 穿不可能の主な 原因となっている。 Expansion area に 社置する Sample 地区 XO1 Ru NO.2 の 段 止.或いは その周縁 地.た. での、Soil: Auger 貫入不能の工境 13 Old allunium (主: Mai Rimseries) 或いる Cellunium (石灰岩を为く含む Takhli series)の 分布を示すものと考 えらりま。 Sample 地区 NO.5 の 東緑部 a 標高 234~ 240m 地帯 (試 穿 NO. 20.21, 31, 32, 41, 42) には、地表 20m 以下に.石英片岩, 硅石, 粘板岩、子枝岩、耐岩 泥 質硅岩 等の混合 礫層が出現しており、日場整備の対象

としては、不適格と思われる部分がある。 PHの測定結果は表1-2-4に示すとおりである。

土壤反応は試穿地海に異なるが各Sample area の 土壤反応を見均的にみるとSample area NO.2.NO.3 及び NO.5 の表土は微酸性 (PH.6.1~6.4), Sample area, NO.11日中酸性(PH6.0), Sample area NO.4 G PH 6.6 の中性反応を示している。 一方下層土の反応は Sample area NO.3 及び NO.4 IT PH 6.8~7.0 の中性反応 支星を、Sample area NO.5 IT 微酸性 (PH6.4), Sample area NO.1 及び NO.2 TH. 天文PH 5.9, S.B の中酸水生反 底了示している。

表1205日間程度の土壌反応の地点の分布を示すもの 下、この表がら表主及び下層工の夫々の土壌反応の傾 何が判る。表土と同程度、或い日異なる範囲の土壌 反蔵を見っ下層工の数を示したものが図1-2.6 である。 この照に示すをおり、表土及び下層土共に酸性反応 (冬PH&5)を示す地点、日 Samyle area No.1 7 46点 (各7点中)、NO.2 で 36点(59点中)、NO.3 2 12点(47点中) No.4 7 11点(47点中)、NOS 7 20点(54点中)をなって、 おり、これらのうち表土、下層工共に、強酸性(<PHSS) の土壌がSamyle area No.1 7 17点、No.2 7 12 歳 ある。 これら 路酸性土壌は、地区周縁部のかん本地 及び 畑地に主に分布している。

一方、表エ及び下骨土共に中性ないし、アルカリ性反応の土壌はSample asea NO17"11点, NO27"10点, Na3で18点, NO.47"25点, NO.57"10点、あり, このうち No.1, NO.2の2点, NO.3の4点, NOAの1点, it Fildy 性反応を示している。

土境中可給熊燐酸の分析結果は表1-2-4に示すよかり である、同程度の可給熊燐酸含量の地点の分布を示 したこのが表1-2-57であり、また表土と同程度或いな、 異なる含量の下層土の数を示す図1-2-7の様になる

91国がやや全しい土壌中可給態燐酸含量とされ 11310PPM以下の工境はSample area NO.1に23点, NO.2に38点、NO.3に16点、NO.4に11点、NO.5に15点。 あり、一方表土、下層土共に10PPM以上の土壌15

Somple area 200、1 7、19点,20、27、10点,20、37、22点 20、47、18点;20、ブン1点となっマスリ、残余の地点, に表主或しば下層土の何川かが10ppm以下の含量 となっている。また、施用燐酸肥料の影響がりない と考えられる地表下 Sy20~Somの土壌の平均可 給態燐酸下みた場合各区とモ10ppm1以下の値を示 している。

は PPm 2X エの高い値いで示す表 エ 13 Sample area NO.1 1=25点, NO.2 ** 13点, NO.3 1= 11点, NO.4 1= 12点, NO.5 第23点、とでっており、これらのうち持に 45 PPm 2X 上の 地点, Sample area NO.1 1= 6点, NO.2 1= 6点, NO.3 1= 3点, NO.4 1= 4点, NOS.1=5点, あるか, 11 等 13. 局部 的に分布し、最高は Sample area NO.1 - 14 (裏1) paelie 用)の表 エ 7" 274 ppm, 下層土 7" 386 PPm, NO2-19(米稲 Z毛作田)の表 エ 131 Ppm, 下層土 106 Ppm, NO3-33(果樹 圖)の表 エ 1336 Ppm, 下層 エ 157 Ppm, NO4-44 (宅地)の 表 エ 946 Ppm, 下層 ± 409 ppm, NO5-4 (裏159バコ)の表 土 66 ppm, 下層 ± 19 Ppm とでっている。

一般傾向として果樹園、畑地、2毛作水田が他に較べ高い傾向をして果樹園、畑地、2毛作水田が他に を各地区で通じ局部的に高合量の土壌はある が可給態燐酸とはいい難いか Sample asea NO.3. NO.4、及び NO.5 は他の2地区より比較的含量の高い 土壌が分布している様に思われる。

水田为毛作化の進んでいる Sample No.5の作付体系別水田の可倫熊燐酸は下記のとかりである。

雨季水稲単作田 水稻十乾季9バコ 水稻十乾季9バコ 水稻十乾季9バコー畑作物 204 96 水稻十二二-7 205 79

と記に示す様に水稲単作水田土境にくらべ乾季畑 作水田工境の可給態燐酸は高い値を示しており、持に タバコ作付水田のそれは高い。これはタバコに対す399 量の燐酸肥料が影響しているこのと考えられる。

各試坑の土壌町面の状況は四1-2-3に示すらたリイ ある、斑紋 Sui その分布状態から各土壌とを漫遊水の 下降運動のあったことが推定出来る、一般に素もは暗 褐色ないし褐色の砂壊土、シルト質塩壊土、編土があ り、下層土はにぶい橙色、灰褐色、暗赤褐色、にぶい 尊橙色, 灰黄褐色の垣壤土, 砂質垣壌土、埴土とな、 7113. 主なる斑紋の色は黄褐色, 明褐色, 明黄 褐色 イ ある. 上述の如く各試坑共に中粒質,及 び、やや細粒質の土壌が主体ではあるが 図1-2-91= 市す如く、下層程粘土の含有量が多くなる傾向を示 している. 個し Sample area NO.3の試坑の土壌では 励反び シルトの含有量が他にくらべて多い。

試坑NO2-17に地表下55m以下に対数の石及岩砕 片(直径4~6m)が存在しているが、これは石灰岩をみ 林とする石を乱にseriesに由来するこのに考えられる。 試坑NO5-17には東下0-8mに直径1-3mの、又 8-16mでは直径5~6mの円礫(石英片岩、硅岩、粘板岩 、干牧岩、砂岩、泥質硅岩)が多数出現し16m以下は これらの礫層となっている。

土壌の分析結果は表1-2-6に示すとみリアある. 以下その概要を述べる。表土の工壌反応は計坑 NO.2-32の微アルカリ性を除き、徴酸性ないし中酸性 であるが下層土は試坑NO.4-1、NO.S-17"中程反応、 試坑NO.2-32、NO.3-17"は中アルカリ桂反応を示している が試坑NO.1-17"は強酸性である、電気伝導度は試 坑NO.3-1を除き表土より下層土がやや高い傾向下 示しているかいずれも1mmkoo/cm以下の低い値である。

試坑 NO3-1 の地表 25 cm 以下 13. 10-75 m mhos/m の値でありこれはまに ハイインに原因するものと考え られる、塩基置換容量は下層程高い傾向にあるが一般 1= 20 mag/100g以下の中程度ないしやや高川値で示して 但レ試坑、104-1は全層を通じ24-43と高い 115. 値をテレ、また 試 抗人のひろの の 表下の分子の層 は 7.7-8.9 1009のやや低い値となっている、置換 塩基の主体は石灰及びマグネシウムであるが試坑 203-1の地表より25の以下のナトリウムは他にろらへて 異常に高く置換性ナトリウム率も22-36%と高い またこれちの層の這基置換容量の値54-25 meg/100g 1 5 7 3 E U.S Salinity Laboratory O 分類 1= 5 3 Saline alkali-Sail に相当するものと考えられる。これらの 成因について今後詳細な調査研究が必要であろう、 塩基館和度田試坑 NO 2-32 及び NO 3-1 E D余寺 いずれもみかアノ%と中程度の値でテレマリる、有機物 にそしい土壌であり、また窒素置換性加里も低い値を 示している。可給熊燐酸は試坑10.2-32の15-80m層 on 10 ppm, NOZ-1 & O-10 cm 1 on 20 ppm, NOS-1 0 0-8 cm 層の14ppmを除す何れも只2ppm以下の個百元している。 以上の結果で統合的に評価すると各地区の土壤」は中程度 の肥沃度をむっ土壌といえる。 (2)参考資料、加5参照

以上の調査結果をまとめると地形的にみた場合、 Sample 地区人のノ及び入の2には、地区内にやや小商 い地形や、独立した小丘が存在し、さらに、これらの 地帯には一礫、石灰岩砕片、或いは、ビッライト層が地 表下100加前後で出現してく3個所がありは易整備 に当ってはこれらの点、5十分に考慮する必要があるう、 すた、Sample 地区人のふの東隅部では表工の達に研究 算土境の分布が確認されており、行場整備計画に当って は、詳細な事前調査、が必要であるう。

一般に、有効土層は厚くレベリング工事の際の表土扱いの必要性は、土木工事の立場からするとりない、フあうう。 しかしレベルリング工事の際には現在の作土が剥ぎ取られ、一般に作土より、肥沃度の多る下層土が新たに作工として、作物栽培に彼されることになる後、「これらの土壤に対しては、工事定了後、数年間は、従来以上の有機物及び肥料の投入を行なわない限り現在の収量水準を維持することは困難であろう、開取調査の結果では、Sangle 地区 NO2, NOA 及び NOSの北部周縁部は、ノバン2月の水稲収穫時においてき、田面に湿潤状態であるとされすい。

(4) 土地分類

RID 17 19.72年12今回の計画地区2合む 82000 Ka (\$5900 rad)の地域を対象をする Mae Wang Project Area の土地分類を行うり報告書として公表している。今回 外調査15際し、当該資料を検討した結果、Expansian Areaの周縁部約900 Ka 加未調査であることが判明した の7"補足調査を行なり、あらためて Kew-Lom - Mae Wang Project Area の土地分類四 を編集した。 RID か採用している土地分類区分を要すると次のよう になる。

101.アルナフ。うんがい畑作に最も適する土地

しアプルナファジェ東土形或いは、排水条件等に若干の 欠陥があるため、水がい畑作の適地として 日かかある土地

・ USグルーフ·主境、地形或いは排水条件等が極め 7末良のため、かんがい畑作として明ら かに劣る土地

R1ブル-20:水田とし7最も適す3土地

R2 グルーフ。:水田として若干欠陥のある土地

R3、フェルーフ。: 水田として明らかにR2フェルーフ。ナリ

伤了土地

U2/R27"ルーフ。: 若于の欠陥はあるが、畑作にも、水稻にさ 適する土地 フラスム:耕作不適地

土地分類に当っては現地調査を行ない別添に示す 規準に基づき分類を行ない(表・2-7)、さらに、 class 及び Sub-class を下記の如く已分している。

計画地域22,700ねについて土地分類を行なった結果 各クラスク"ルーフ"の分布ロ、別添図に示すとおりとなり、 表8は夫々の面積を示したものである。

土地介類別にみた場合、畑地として分類された土 地(U1-U3 7"11-70)は全体の13.7%にあたう3120れ。 また、水田ブル-フ·(R,-R,フ·ル-フ·)は 8400 Ra (37.0%) 2 13 1), U2/R, 711-7013 4040 Ka (17.8%) ET3 3. -75 土地利用の現況資料にようと水田面積は、12.300加 烟面積は、2250ねとなってあり、工地分類上の面積のら みた場合し/R2ブルーフ。の土地の大部分が現在水 田ととて利用されていることが推察出来る Zone NO3-NO.7の 統耕地面積 6,773 Raのうち 案に 93.3%に当る6.329 な水田を73、7113か、当該地正 の土地分類上水田として分類された面積は 4.399米 となってわりそのメタマケイノコンの地区の耕地の244 % (1050 m) E, 与从 3. 1/R. 7"11-70 及び、 K田地 1"11-70 724 ねのうち水利条件の良好な土地がすでに水田に 転用されているものと推察され、この地区の水田開発 の余地はかないものと考えられる。一方 Zane NO.1271な 土地分類上の水田面積が小いるねなのに対し現在 の水田面積は、ふち、となっている。またし、し、クリレーフ。 及びしれた フッルーフ・ヒレフ分類された土地の合計加 2519ねなのに対レフ現在の畑地面積は1590 *となって いる、従ってこれらの数字からみた場合、 Bone NO12で は、しノタマクルーフの土地で今後水田として開発

しつる可能性が十分にあるものと考えられる。

n de la companya de la comp

Acreage	of	Mapping	Unit	in	The	Project	Area	

RECENT ALLUVIUM FLOOD PLAIN		(3.7%)/
2 Tha Muang	99	
3 Alluvial soil, poorly drained	96	÷
5 Tha Muang/Sanphaya Assn.	445	(00 08)
SEMI RECENT ALLUVIUM-SEMI RECENT TERRACES		(30.3%)
6 Mae Sai	2,774	
7 Hang Dong	1,292	
9 Phan	84	
12 Lap Lae	159	
14 Mai Sai/Hang Dong	1,031	
SEMI RECENT ALLUVIUM-OLD LEVEE	•	(12.1%)
21 Kamphaeng Saen	1,188	
23 Si Satchanalai	128	
25 Kamphaeng Saen/Si Satchanalai Assn	844	
COMBINED UNIT OF RECENT, SEMI RECENT AND OLD	ALLUVIUM 480	(2.7%)
28 Si Satchanalai/Mae Tha Assn.	480	
OLD ALLUVIUM-OLD ALLUVIUM TERRACE AND FANS	8,730	(49.0%)
32 Lampang	570	
33 Lampang, basic variant	164	
35 Roi Et	630	
36 San Sai	982	
37 Tha Tum	55	
38 On	32	
39 Mae Tha	702	
40 Roi Et/San Sai Assn.	303	
40 Kor Et/San Sar Assn. 42 Lampang/Lampang, basic variant, Assn.	206	
48 Korat	189	
· ·	55	
50 Satuk	206	
51 Hang Chat	242	
52 Kue Lom	116	
55 Mae Rim	521	
61 Hang Chat/Satuk, gravelly variant, Assn.	122	
62 Kue Lom/Hang Chat Assn.	48	
65 Hang Chat/Satuk/San Patong Assn.	217	
66 Mae Rim/Hang Chat/Satuk Aosn.	2,615	
68 Mae Rim/Hang Chat/Korat Assn.	2,013 194	
69 Mae Rim/Korat/Satuk Assn.		
72 Mae Taeng/Hang Chat/Satuk Assn.	34	
75 Hang Chat/Satuk/Korat Assn.	527	(2.5%)
COLLUVIUM		(2.30)
82 Bang Chong/Muak Lek/Li Assn.	405	
98 Takli	35	-
Total	17,800	ha. 1)

Note: 1) excluding residential area of 4,000 ha and others of 900 ha in the whole project area of 22,700 ha.

Data Source: Detailed Reconnaissance Soil Map of Lampang Province. Soil Survey Division, Department of Land Development. MOAC

3

Land Use of Boring Test Sites

		Sampl	e Area	No	
	No.1	No.2	No.3	No.4	No.5
PADDY FIELD					
1) Rainy season paddy	l	10	21	33	8
2) Two paddy a year	42	13	1	-	-
3) Double cropping	8	2	20	2	38
4) One paddy & two upland crops	-	~ ·	-	-	8
UPLAND FIELD	8	6	-	-	-
ORCHARD	-	5	-	3	-
SHRUB	8	12	3	4	-
SHRUB mixed with small paddy field	-	l	~		-
SHRUB mixed with small upland field	-	5	~	-	-
WASTE LAND	-	-	-	1	-
VILLAGE & RESIDENTIAL AREA	-	5	2	5	-
Number of boring by area	67	59	47	48	54
Total of boring					27 5

Fluctuation of Soil Texture by the Depth

No. of boring	67	5	L#	, tt 8	2#
Impene- trable	0070	0 0 S O	0000) O O O M -	0046
U U	4 2 2 3 7 4 2 3 7 4 7 3 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	L + 2 4	11.35	22 33 34	o n o n o n o
SiC	0000	るサイク	0000	N 0 0 0	mooo
s		2 7 7 0	11 3 0 0 11 3 0 0	0457	11 11 39
Sicl.	00 H t	#044	0000	0000	0000
Sc1	B D D D D D D D D D D D D D D D D D D	9400	13 23 19	တကက	27 29 17 5
G	22 16 2	30 0 T - 7	21 13 3	0000	~ + ~ 0
SiL	0000	0000	0000	0000	0000
	00 000	0000	m000	0000	0010
SL	nooo	r000	თ ს კ ო	8 6 4 4	๛๛๛๚
SI	0000	0000	0000	0010	0000
Sample Area	No.l Surface soil at 50cm depth 100cm depth 150cm depth	No.2 surface soil at 50cm depth 100cm depth 150cm depth	surface soil at 50cm depth 100cm depth 150cm depth	surface soil at 50cm depth 100cm depth 150cm depth	surface soil at 50cm depth 100cm depth 150cm depth
Sa	No.1	No. 2	No.3	No.4	No. 5

ANNEX 1-2 Table 1-2-3

Table

Result of Analysis of pH and Available Phosphrus

 $\mathbb{C}_{\mathbb{C}}^{n} \gg$

							•			•						•							_					-	
	•	рН	<u></u>	P DDM	4 2 4	рH	[Pr	opm		і рН	[Pp		1	Pł		<u> </u>		-	<u>PH</u>	<u> </u>	<u> </u>			рн	 .	<u> </u>	
	No.	II	ī ī	II	No.	I	II	I	II	No	Ī	II	I	II	No.	I	II	I	II	No.	<u> </u>	<u> </u>	I	11	No.	<u> </u>	<u> </u>	<u> </u>	<u>II</u>
÷.,		مستور ، محمد مند ا		☆. →						~7	с Б	6.2	16	31	14.	6.5	6.1	10	12	14,	7.1	7.4	3.8	2.9	12.	6.6	6.8 9	9.3	16
	S	ample Ar			51.		6.5	17	5.5			5.6			15.		6.9	17		15.		6.3	22		13.		6.6	14	15
	1.	.5.7 6.		7 36	52.		6.5	46	40	28.			7.7		16.	5.9	5.7	1.9		16.		7.1	13				6.2	23 1	7.4
	2.	6.3 5.			53.		7.2	16	2.0	29.							6.2	1.9		17.		6.7	15	17	15.			3.9	13'
	3.	5.2 5.	1 8.	4 10	54.	, 6.4	5.6	5.9	4.0	30.					17.	6.0			3.7	18.		6.8	15	17	16.		6.6	15	18
•	4.	6.0 5.	7 4.	7 2.1	55.			5.8	2.8	31.			4.1		18.	6.6	6.8	3.2							17.		6.7	20	14
÷	5.	6.4 6.	6 8.	2 3.7	56.	5.4	5.9	5.2	3,9	32.	7.5	7.7	8.2		19.	8.1	8.4	9.3	8.5	19.	-	,	.2.8				7.0	32	16
÷	6.	4.6 4.	5 ġ.	2 7,6	57.	5.3	4.9	5.4	5.4	33,	6.8	6.4	15	13	20.	6.9	6.8	4.0	4.7	20.			3.5		18.				7.4
	7	6.7 6.		2 18	58.	5.1	4.7	16	14	34.	6.7	6.0	5.7	7.5	21.	5.9	6.6	19	10	21.		6.4	34	15	19.		5.5		
	8.	6.3 6.		5 12	59.	5.2	4.8	7.4	13	35.	7.3	7.3	8.6	8.7 -	22.	6.1	6.3	9.5	13	22.	7.4	-	426	-	20.		5.8		4.9
	ă,	5.5 4.			60.	4.8	4.8	4.6	5.5	36.	5.1	5.1	4.6	2.8	23.	6.9	6.5	9.5	12	23,		7.3	1.9	2.0	21.	5.8	6.7	18	16
	10.	5,4 4,	1.1	8 3.0		5.7	5.2	6.4	5.4	37.	5.1	4.8	7.6	4.7	24.	6.5	6.8	25	15	24.	6.7	6.7	3.0	3.6	22.	6.8	6.8	8.5	9.T
		5.2 6		- 1 - E - E - E - E - E - E - E - E - E		5.5	5.1	11	15	38.	5.6	5.2	9,3	4,2	25.	6.4	6.7	4.3	2.4	25.	6.8	7.1	11	12	23.	6.7	6.9	9.3	11
·	11.			- F		6.5		30	10	39.	6,5	5.7	6,6	4.0	26,	6.4	6.7	13	11	26,	6,7	7.1	2.9	7.6	24	6.9			7.3
	13.	5,9 5,				5.4	6.6	2.7	2.1	40.	6,4	6.7	6.6	4.7	27.	7.4	8.9	2.8	8.3	27,	6,9	6,9	16	<u>1</u> 4	25.	6.7	6.6	11	9,3
•	14.	6.6 6.		74 386				23	10	41.	5.4	4.9	7.7		28.	6.0	6.8	10	ц	28.	6.8	7.1	11	13	26.	5.7	5.7	16	16
	15.			21 7.5		5.5	5.1			42,	5.1	5.0	3.7	4.6	29.	6.1	5.8	2.4	4.7	29,	5.7	6,3	8.6	15	27.	7.2	6.3	2,8	8.1
	16.	6.3 6.		26 6.6			5.0		11					9.4	30.	6.2	6.2	4.8	4.0	30.	6.0	7.3	3.8	2.7	28.	<i>c</i>	6.3	13	14
	17.	6.0 6.		L3 4.0		4.4	4.4	14	11	43.		5.1	9.2			6.5	6.6	12	10	31.	6.4	6.5	11	2.0	29.		6.9		6.5
	18.	6.7 6		29 16		4.9	4.7	3.7	2.7	44.		7.4	15	17	31.				157	32.	6.2	6.9	16	3.0	30.		7.2		19
	19.	5.5 5		35 39		6.1	6.7	21	11	45.	6.7	6.1	56	24	33.	8.0	7.8	1336			6.2	6.9	2.0	2.0	31.	5.8	6.7	18	10
	21.	5.9 5	78	.8 6.3	70.	6.3	5.1	17	12	46.	5.5	5.3	4.7	5.7	34.	6.2	6.6	17	13	33.				, 12		5.1		16	15
	22.	6.6 6	.5 3	31 19) ¹					47.	5.6	4.7	5.0	3.9	35.	6.0	6.8	13	8.8	. 34		7.0	3.4				6.6	21	11
	23.	6.5 6		27 5.5	i l	Sample	Area	No.	2	48.	4.9	4.9	4,7	4.6	36.	6.6	7.9	e 12	12	35,	6.8/	7.4	10	4.8	33.	6.5		2 2	2 0
÷	24.			19 4.7	(1.	5.9	7.0	4,6	3.8	49.	6.2	7.2	13	12	37.	5.8	6.5	12	2.9	36.	6.6	7.0	2.1	2.1	34.	5.3	4.9	3.3	2.0
	25.	6.9 6		19 15	2.	6.5	7.3	15	11	.50.	5.6	5.3	11	4.7	38.	6.1	5.3	106	221	37.	4.6	6.7	11	15	35.	6.0	6.9	• • -	6.6
	26.			12 2.]	÷.,	5.5	`4.8	4.9	9.2	51.	7.3	7.5	15	16	40.	6.6	6.8	15	5.9	38.	6.2	6.3	13	12	36.	6.8	6.9		7.1
	27.	• •		. 3.4		7.4	7.2	. 10	15	52.	6.3	6.6	23	7.4	41.	6.5	6.7	11	11	39.	6.3	6.5	8.6	12	37.	4.7	6.2	14	18
				4 3.7	1	6.0	6.1	6.7	4.6			5.5	9.5	9.2	42.	6.0	6.7	2.6	3.3	40.	5.7	6.6	2,0	6.7	38.	5.9	6.6	9.2	16
	28.		·	.5 2.0			6.0	11	4.6	54.	5.5	5.0	5.7	2.3	43.	6.8	6.7	23	13	41.	6.5	6.9	14	14	39.	6.5	6.6	61	10
	30.			4.1		6.3	5-7	121	6.6	55.	4.6	4.6	8.4	15	44.	5.8	6.2	13	10	42.	6.2	6.2	2.4	2.0	40.	5.9	6.9	47	7.5
	31.			ير ا				4.0		56.	5.0	4.8	4.7	4.1	45.	5.0	5.0	. 11	12	43.	6.5	7.2	10	8.2	41.	5.4	5.3	7.3	9.1
	32.	_		19 5.6			5.3			57.		4.8	6.5	5 7	47,	6.5	6.6	15	5.6	44.	6.6	7.3	946	409	42.	6.8	6.5	4.4	4.6
	33.			10 7.4				131				6.3	6.6	9.5	48.	6.0	6.7	13	12	45.	5.4	6.0	213	211	43.	6.3	5.4	14	6.4
	34.			11 3.		-	5.0	8.1		58.	6.6			8.4	49.	5.2	5.8	3.7	4.5	46.	7.1	7.2	10	8.1	44.	6.6	6.3	11	6.4
	35.			.9 3.1			5.2		•	59.	6.2	6.6	18	0.4		5.8	7.7	3.8	3.6	47	6.6	6.4	9.6	11		6.5	7.2	3.3	4.0
		6.0 5	.8		3 12.		5.1			•				•	50.	5.0	/./	0.0	0.0		5.6	-				5.9	5.8	4.8	6.0
		[.] 5.5 5		.3 9.					6.4		Sample					7 1		- No I	11		5.6						6.7		
	38.	4.7 4	.6	10 6.	5 14.	, 7.1			5.4	1.	6.7	7.4	11	10				a No. 4			5.0	0.2	51	5.0	ця 119	6.0		11	13
	.39.	6.3 5	.8	55 2	7 15.	. 7.2	7.0	127	21		7.0	7.4	2.5	2.0				4.7		· ,	n		- NA	E			5.9	16	
	40.	7.0 7	.3 7	.3 1	2 16.	5.8	- 5-2	- 5.6	6.0	3.	7.3	7.8	. 16	28			8.0		14		Sample			5 70	49.			57	
		6.9 6	.9	15 4.	7 17.	4.9	5:0	4.9	3.8	4.	7.9	7.8	5.4	3.2			7.2		9.3		5.4	5.6		13			7.5		
		6.3 5	.9	12 6.	5 18.	6.8	5.9	13	3.7	5.	6.6	7.5	1.9	2.7	5.	6.7	7.6		9.8		6.3	7.5		8.1			4.9	6.4	
		5.5 5		2.9 3.	2 19	. 6.0	5.4	5.5	4.9		5.7			14	6.	6.6	7.7		1.9		6.8	6.7	66			6.6			6.5
	- 11 B	. 6.0 6	2 2	a .a	8 2.20	5 7	.5.0	- 8.1	4.6		6.8	7.3	- 23		77!	6.9	7.1	12	10	5.	6.9	7.0		2.4	53.	6.0	5.8		23
				35 1	ц. 21	- A - A	5.9	9.0	7.7		6.4	7.0	613		· 8.	7.3	7.1		28	6.	7.3			. 8.8	54.	5.7		9.3	
	45.	6.76		31, 9		- 0.3 7 E	7 2	21	່ , 1 ປ		6.6	6.9	11	11			7.3		16		6.5			11	55.	6.2	6.5	9.2	3.1
	46	6.6 6.2		10 E		. 1.J .c 1	,.J c ^	1.7	. <u>+</u> 7 ⊔nti⊂	10	67	7 9	7.0	3.7	10	6.6	6.6		2.0		6.7			3.7					
	47	. 0.2		το 3	1 23	سل، ⊙ بر ج	.5.0	· ~//		11	6.0 6 6	ر راغ د راغ	7 5	20		7.5	7.0	233	2.5			5.7							
	48	6.3 (5.0 3	5.1~ ~ 2.	<u> </u>	. 0.4	5.5	0.0		10	- 6 - 0		· 6 11	. 00 13					10		6.3								
	49	6.1	.4	12 6.	5 25	. 5.9	2.8	9 4. 9	. 3.0	12.	0./ 6 1	6 0	. U. 7	 ຊີ11	12	7 1	7 0		16							•			
	50	. 7.5 '	1.2	15 3.	L 26	• ,5-8	5.2	5.6	9 9.1	з.	0.1	0.0	0.1			/.4		20		• • •									
	•						· · ·	ан 1. Эт	·· .	1	r · '			1 - F	i J						,								

1, 1

Remarks: No.: boring site number	P ppm: available phosphorus (P ppm) by Bray II Method
	I : surface soil (0-15/20 cm.)

II: subsoil (15/20-50 cm.) The analysis was conducted by Soil Chemistry and Physics Laboratory Research and Laboratory Division RID.

1-38

Υ. 1 ANNEX 1-2 Table 1-2-4

Summary of Measurement of PH and Available Phosphorus

		Nc. 1		No. 2		No.3	~	No.4		No.5	
	Sample Area	Surface soil	Sub- soil	Surface soil	Sub- soil	Surface soil	Sub- soil	Surface soil	Sub- soil	Surface soil	Sub- soil
1 17	<4.5	Ч	J	ı	ł	J	ł	ı	1	I	1
	<u>]</u> 4.5 - 5.0	S	12	, N	14	г	Г	Ч	1	г	2
	5.1 - 5.5	1t	8	7	14	Ч	ч	Ч	t	Q	. ⊐
	5.6 - 6.0	б	13	15	10	11	ო	. 🕫	ਜ	16	8
На	6.1 - 6.5	24	15	15	ີນ	14	6	11	11	16	11
	6.6 - 7.3	13	18	12	13	16	21	23	29	. 15	26
· .	7.3 - 7.8	Т	ł	ۍ ۲	ຕັ	Ч	ω	ы	4	1	e
	>7.9	i	I	.1		რ	4	ł	3	ı	t
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	01	ı	~	9	ы	10	o	2	2
t	9 1 8	12	53	2Ó	30	ο Φ	12	ო	. L	ىڭ	ഹ
ppn	6 - 10	11	11	20	15	7	ო	9	5	14	20
ч.	10 - 15	15	15	9	S	Т5	21	16	12	10	14
Ĺĭŧ	15 - 25	6	e	7	ى ،	<b>CO</b>	Ч	م	<b>00</b>	12	13
5vA	25 - 45	10	Ŧ	ł	ц,	J	2	ო	t	9	r F
	>45	6	1	ف	Ч	n	ю	4	2	<b>.</b>	1
	Number of Samples	67		59		47		84	·	A54	
^	Data source:	Report on Soil Soil Chemistry	i y	Analysis, Ma and Physics	Mae Wang-Kew s Laboratory		ect, and	Lab. No.51/2522 Laboratory Divi	/2522. Division	RID.	

ANNEX 1-2 Table 1-2-5

#### TABLE RESULT OF SOIL ANALYSIS

			1				4 4 1			5										•		/44		-
	•			, <b>, , , , , , , , , , , , , , , , , , </b>	•	<b>.</b> .					· .		CEC		÷		ب ريس		,					
1	•	Field		Par	ticle S	ize	Text. Class	,	рН			Sat.	NH4 Ext.	ESP	Excha	ange Ca	tions		Base	Org. Mat.		Phosph P	orus	
	Sample	Site	·	Hy	dromete:	r	Lab.	Wate	r	KC1	Elect.	8	meq./	NHu		q./100g			Satu-		Total	<u>_</u>	Avail.	
•	Area	<u>No.</u>	<u>Depth</u>	<u>Sand</u> (%)	Silt (%)	<u>Clay</u> (%)<2	Hvd.	<u>Pasto</u>	1:1	<u>1:1</u>	$\frac{Cond.}{EC \times 10^3}$	<u>S.P.</u>	<u>100g.</u>	<u>Ext.</u>		Ca+Mg	<u>Ca</u>	K	ration (%)	<u>0.M.</u>		Sorpt. (ppm.)	(Bray II) (ppm.)	
			0- 15	48.6	30.8	20.6	L	6.2	6.0	4.9	0.32	29.6	14	<2	0.10	8.8	6.5	0.10	64	1.9	0.12	76	2.6	
1	Area	(1)	15- 39	40.5	28.8	30.6	CL	5.4	5.4	4.0	<0.20	36.2	14	<2	0.10	6.9	5.4	0.10	61	0.85	0.05	148	2.9	
	No.1		39- 8 <del>9</del>	37.6	28.0	.34.4	CL	5.1	5.2	3.7	<0.20	10.5	16	<2	0.10	7.0	5.3	0.10	56	0.69	0.06	176	2.7	
	· -		53-100	33.6	27.0	39.4	CL+	5.3	5.3	3.7	<0.20	46.6	18	<2	0.10	9.3	6.9	0.10	53	0.51	0.05	202	4.5	•
		:	0- 11	20.0	45.4	34.6	CL,SICL	7.3	7.5	6,6	0.65	64.2	22	<2	0.38	31	29	0,10		4.3	0.19	183	$8.2\frac{1}{2}$	
		(32)	11+ 15	39.0	35.4	25.6	L+	7.6	7.7	6.7	0.50	42.2	14	`<2	<0.10	31	28	0.10	. •	2.0	0.13	107		
	Area		15- <b>B</b> O	46.2	25.8	28.0	SCL	7.7	7.9	6.8	0.42	40.4	21	<2	0.40	27	26	0.10	-	1.1	0.07	107	$6.1\frac{1}{1}$	
•	No.2		0- 10	60.4	22.2	17.4	SL ⁺	6.3	6.5	5.5	0.30	25.4	17	<2	<0.10	11	8.1	0.14	66	2.8	0.16	42	20	
		(1)	10- 25	58.0	20.2	21.8	SCL	5.8 -	- 6.1	5.1	<0.20	31.5	15	<2	<0.10	9.9	7.4	0.10	67	2.0	0.10	42 74	5.6	
		(1)	25- 55	49.0	13.2	37.8	sc	6.1	6.1	5.1	<0.20	49.7	19	<2	<0.10	12	9.5	0.10	64	0.96	0.08	142		
	-	۰.	55-100	34.0	13.0	53.0	С	7.6	7.7	6.6	0.25	71.0	31	<2	0.38	50	42	0.10	. ~	0.66	0.06	135	3.9 2.9 <u>1</u> /	-
			0- 15	48.4	34.2	17.4	L	5.5	5.7	4.1	0.29	24.0	8.9	5.6	0.50	6.2	4.1	0.10	76	1.1	0.07	60	3.7	
	Area		15- 25	58.8	29.7	12.0	SL	6.4	7.1	5.1	1.0	19.1	7.7	6.5	0.50	5.8	3.4	0.10	83	0.45	0.04	57	3.7	
	No.3	(1)	25- 65	51.4	32.2	16.4	r_	6.9	7.6	6.0	5.4	23.4	7.8	22	1.8	5.8	4.0	0.21	-	0.50	0.03	48	3.7	
	NO.5		65-110	45.2	27.4	26.4	SCL	7.6	7.9	6.5	1.4*	41.1	15	42	6.3	7.5	4.6	0.14	93	0.21	0.04	29	3,8	
·	,		110-180	40.8	25.0	34.2	CL	7.6	8.1	6.6	7.5	50.5	21	36	7.6	7.0	3.9	0.10	70	0.28	0.03	43	3.9	
			0- 10	10:4	39.2	50.4	c-	5.6	5.7	4.3	0.42	52.6		3.0										
ź.	Area	(1)	10- 22	8.8	38.6	52.6	ć-	6.0	6.2	4.8	<0.20	52.0	24 33		0.72	14	10	<0.10	62	2.1	0.16	209	3.8	
	No.4	(+)	22-100	7.8	29.0	63.2	c	6.2	6.7	4.8	0.42			<.2	,0.40	15	11	<0.10	47	1.8	0.12	179	3.4	
	ذ		 V	:								58.9	43	3.1	1.3	19	12	0.16	48	1.1	0.09	208	2.8	
	Area	(	0- 8	48.8	30.6	20.6	L	5.8	5.5	4.6	0.57	36.1	15	2.7	0.41	8.3	6.5	<0.10	59	3.1	0.21	145	14	
	No.5	(1)	8- 16	53.8	27.0	19.2	SL+	6.3	6.5	5.0	0.36	26.0	14	2.3	0.32	8.0	6.3	<0,10	60	0.64	0.11	119	9.2	
• .			16- <b>5</b> 5	<u>'2</u> /	<u>2</u> /	<u>2</u> /	<u>2/</u>	<u>2</u> /	<u>2</u> /	<u>2</u> /	<u>2/</u>	<u>2/</u>	17	4.7	0.80	, 11	8.4	0.22	71	1.0	0.09	89	3.7	
			1																					

NOTE: * Lab. Sample No. 5388 saturation extract dilution ratio 1'9 has  $EC \ge 10^3 - 1.4$ 1/ Lime is found in the sample by qualitative determination 2/ Out of sample to complete determination

1 and a

Sample	Field Site		Нq	Sat,	Elect.		Soluble (	and the second se	aturatio	n Extract	t oluble «A	nione	the second secon	Sod. Adsorp		T C D		
<u>Area</u>	No.	<u>Depth</u>	Paste	<u>r:1</u> sp.	Cond.	Na	Ca+Mg	Са	K	C03	HCO3	S04	C1	Ratio SAR	C.E.C. (19)	(20a)	Goluble Salt	
<u>к</u>	•	1		1 -	(ECx10 ³ )	(meq/l)	(meq/l)	(meq/l)	(meq/l)	$(meq/\ell)$	(meq/l)	(meq/%)	) $\overline{(meq/l)}$		(meq/100g			
Area No.3	(1)		7.6		1- 1-44	46 110	8.8 - 23	6.0 15	0.10 <0.05	0.27	1.1 2.0	54 137	7.2 10	22 32	7.8 `15 '	22 42	0.10 0.41	Lab. Sample No.5388 saturation
	••	110-180 DATA SO		8.1 50.9	on soil	90 analysi	4.4 s. Mae 1	2.7 Wang-Kew	<0.05 Lom Pro	0.45 ject.	2.2	79	7.6	61	21	36	0.32	extract dilution ratio 1:9 has ECx10 ³ =1.4

1 ......

Soil Chemistry and Physics Laboratory. RID. (Lab. No.51/2522)

ANNEX 1-2 Table 1-2-6

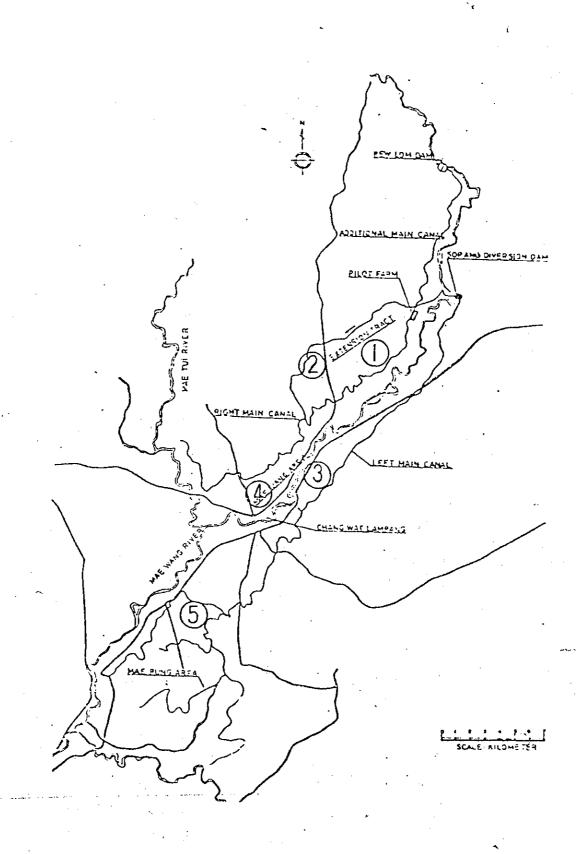
Specification for		stailed Land (	Semi-detailed Land Classification		Maz Wang Project	
Classification		Upland			Rice-land	
Characteristics	1-0	<u>0-2</u>	U-3	R-1	<u>R-2</u>	R-3
Soil Texture	sl-fri.CL	CLLS-p.C LS 30cm	LS = sp.C LS 60cm	cL-vsp.C CL 30cm	SL-vsp.C SL 15cm L 30cm CL 30cm	LS-sp.C LS 15cm
Depth to compacted horizon	150 cm	120 cm	90 cm	90 cm	60~90cm	30 cm
pH Salinity EC × 10 ³	5.5-8.5 4	5.0-8.5 6	4.5-8.5 8	5.0-8.5 4	4.5-8.5 6	4.0-8.5 8
. Exchangeable Sodium meg/100gm	N	2	ო	m	4	#
Water-holding capacity in 120cm depth	l5 cm	11 cm	8 cm	not applicable	not applicable	not applicable
Topography	smooth	, wavy	undulating	smooth	wavy	undulating
Slope.	28	48	6.8	28	84	48
Levelling Requirement	low	medium	high	low	. low	medium
Gravel or Rock	few	few	some but tillable	few	few	some but tillable
Rock Removal	none	none	some	none	none	some
Trees or brush	slight	moderate	heavy	slight	moderate	heavy
Cover	clearing	clearing	clearing	clearing	clearing	clearing
DRAINAGE			·	·	,	)
Surface	excellent	good	good	good	fair	fair ot poor
Sub-surface	good	good	fair	poor	fair	good
Flood	ou	оп	occasional	infrequent	periodic	annual
Class 6 is the lands which the soils do not meet minimum requirements for other land classes.	he soils do no	ot meet minim	um requirement	s for other	land classes.	·

ANNEX 1-2 Table 1-2-7

1-40

¢

### Acreage of Land Class Group

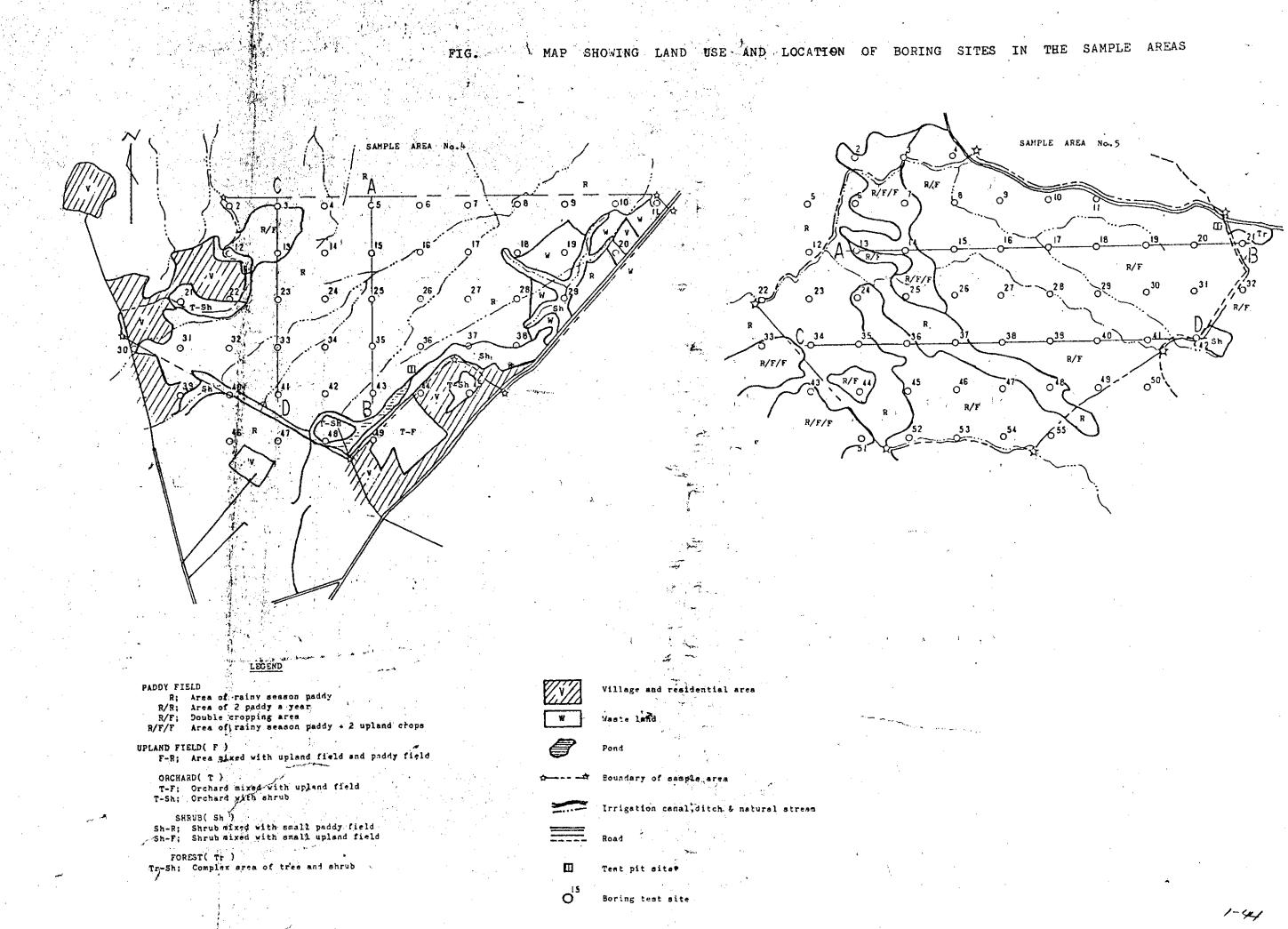

Land Class Group	Acreage (ha)	8
. 10	2,290	10.1
U2	690	3.0
U3	140	0.6
Upland field sub-total	3,120	13.7
Rl	7,290	32.1
R2	170	0.7
R3	940	4.2
Paddy field sub-total	8,400	37.0
U2/R2	4,040	17.8
U6/R6	2,240	9.9 (
Village & residential ar	ea 4,000	17.6
Others	900	4.0
Total	22,700	100.0

Note: Land Classification Classes by RID.

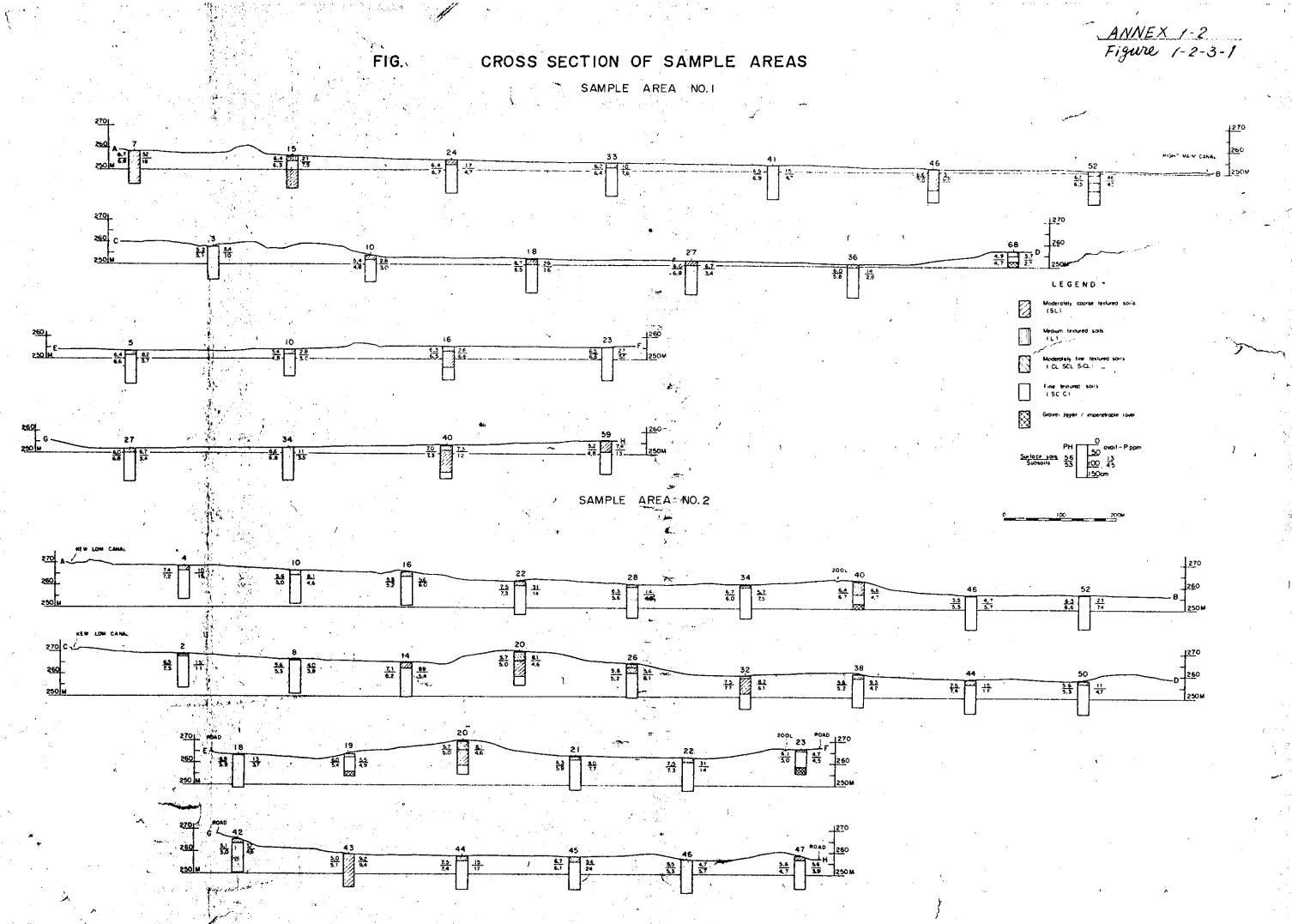
Class Ul:	Land best suitable for upland irrigation crops.
Class U2:	Land less suitable for upland irrigation crops with
	one or more limitation in the soil, topography or
	drainage characteristics.
Class U3:	Land of distinctly restricted suitability for up-
·	land crops because of extreme limitation in the
· · ·	'soils, topography or drainage characteristics.
Class U2/R	2: Land suitable for either upland crops or rice
	production with some limitation.
Class R1:	Land best suited for rice production.
Class R2:	Land adopted for rice production but with one or
	more limitations.
Class R3:	Land distinctly restricted for rice production
	because of extreme limitations
Class 6:	Land unsuitable for the production of crops.

ANA/EX 1-2 Figure 1-2-1

## FIG. : LOCATION OF SAMPLE AREA

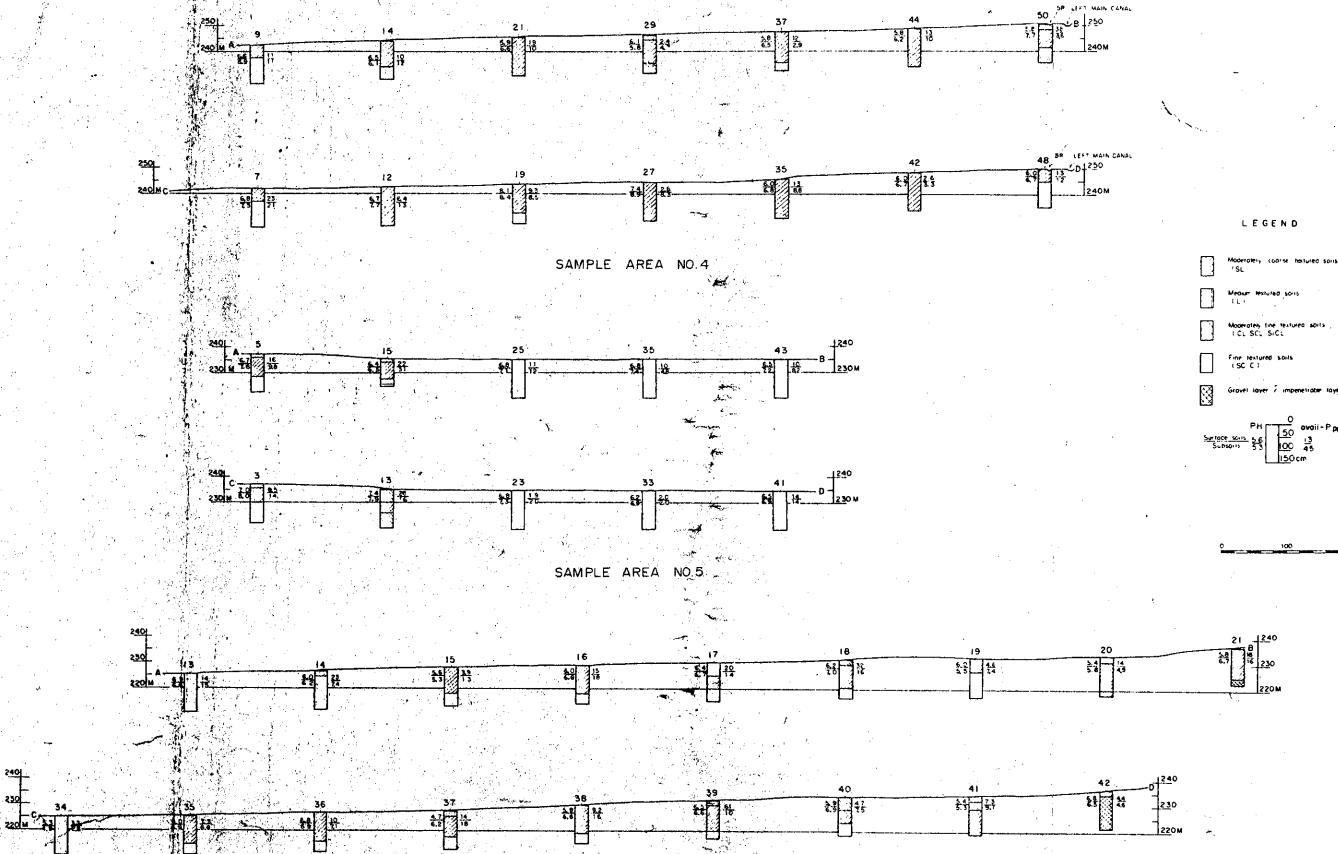



1-42


:..



ANNEX 1-2

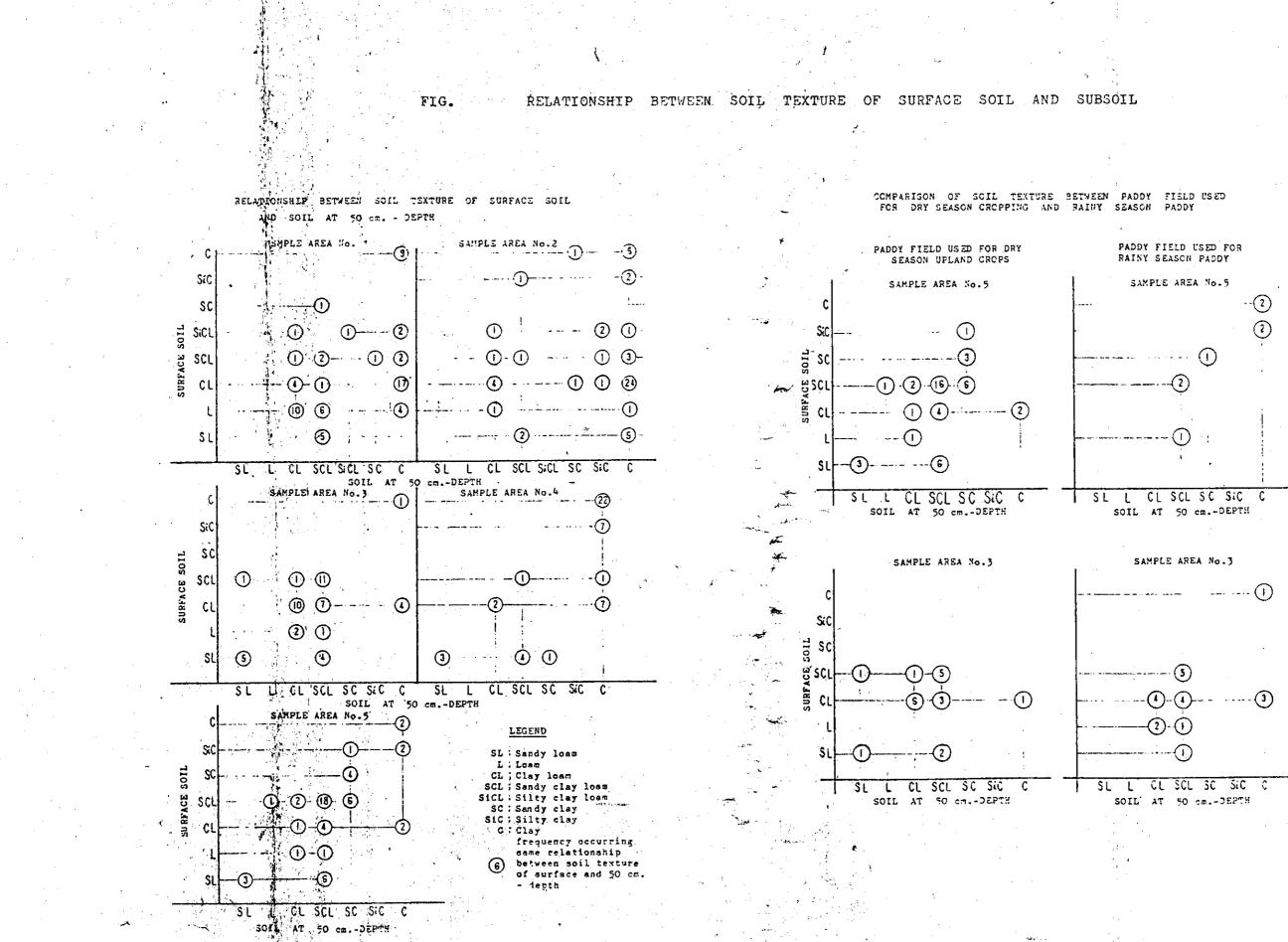



ANNEX Figure 1-2-2-2

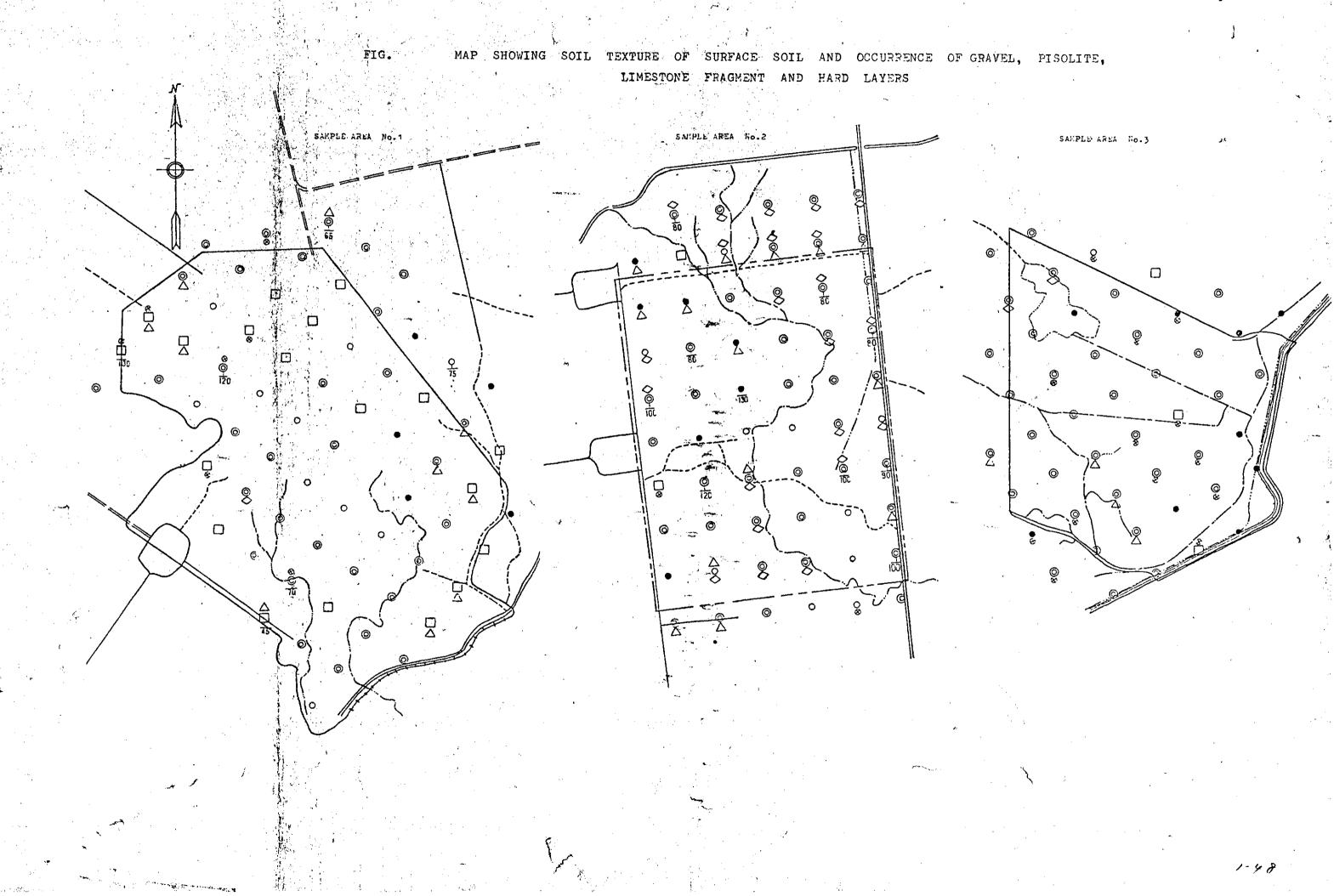




SAMPLE AREA NO.3




240


230

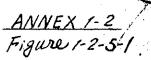
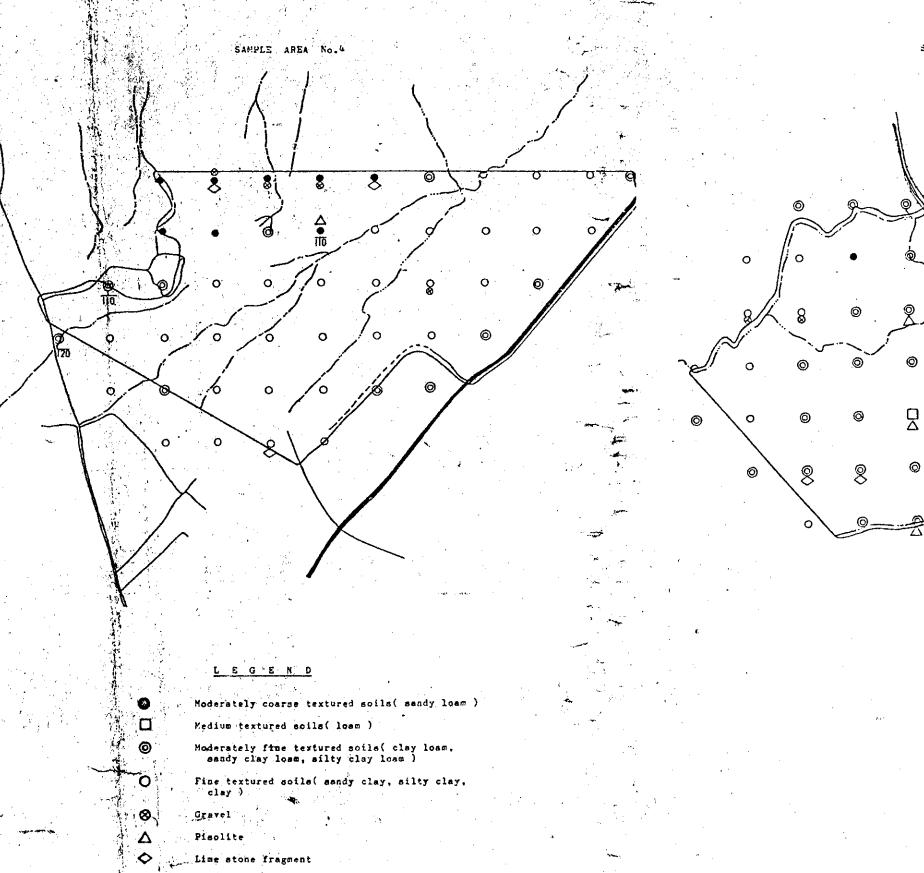
્યુડ્રો

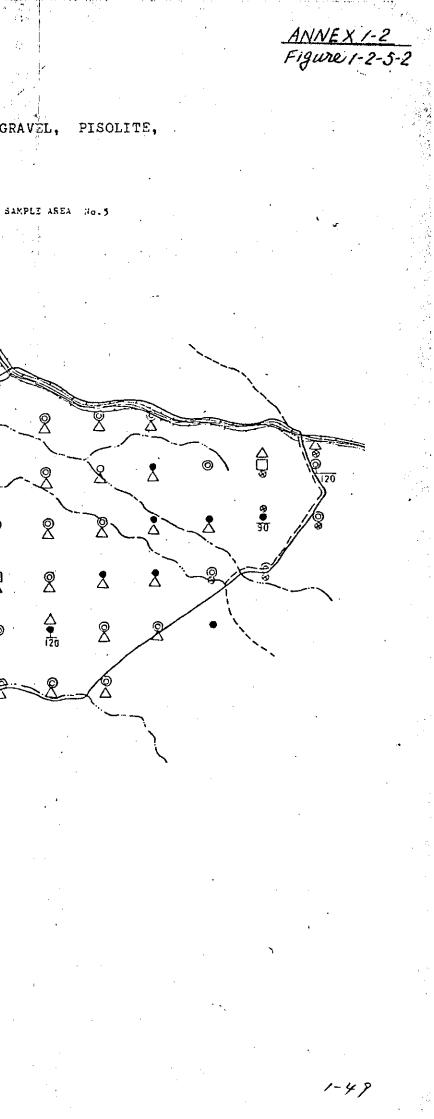
ANNEX 1-2 Figure 1-2-3-2

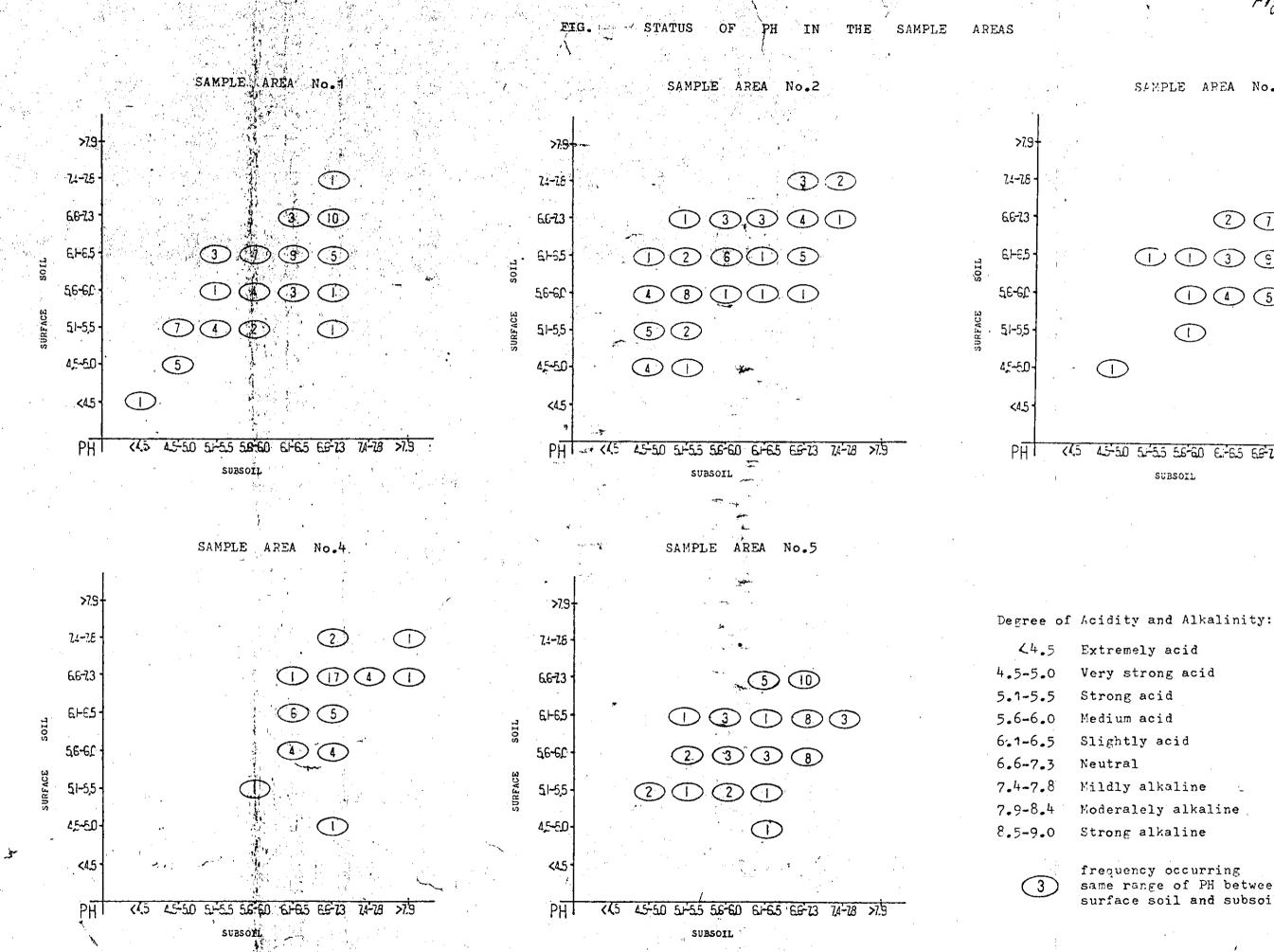


ANNEX 1-2 Figure 1-2-4

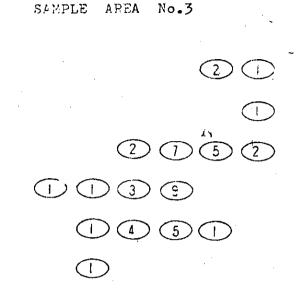




FIG. MAP SHOWING SOIL TEXTURE OF SURFACE SOIL AND OCCURPENCE OF GRAVEL, PISOLITE, LIMESTONE FRAGMENT AND HARD LAYERS



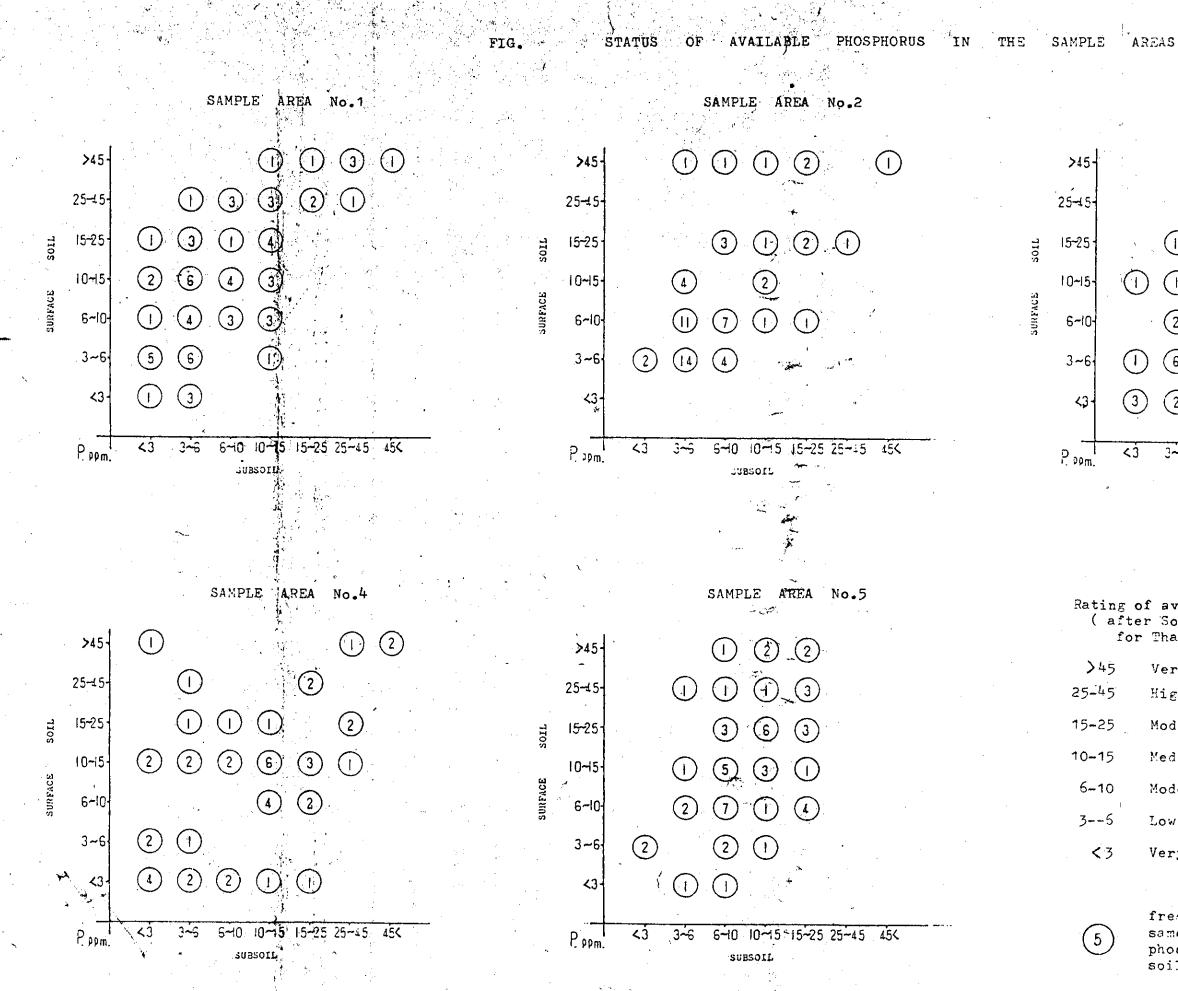

hard pan/hard layer & position(cm.)


120

W






ANNEX 1-2 Figure 1-2-6



<4.5 4.5-50 5+55 56-60 6.-65 68-73 74-78 >7.9 SUBSOIL

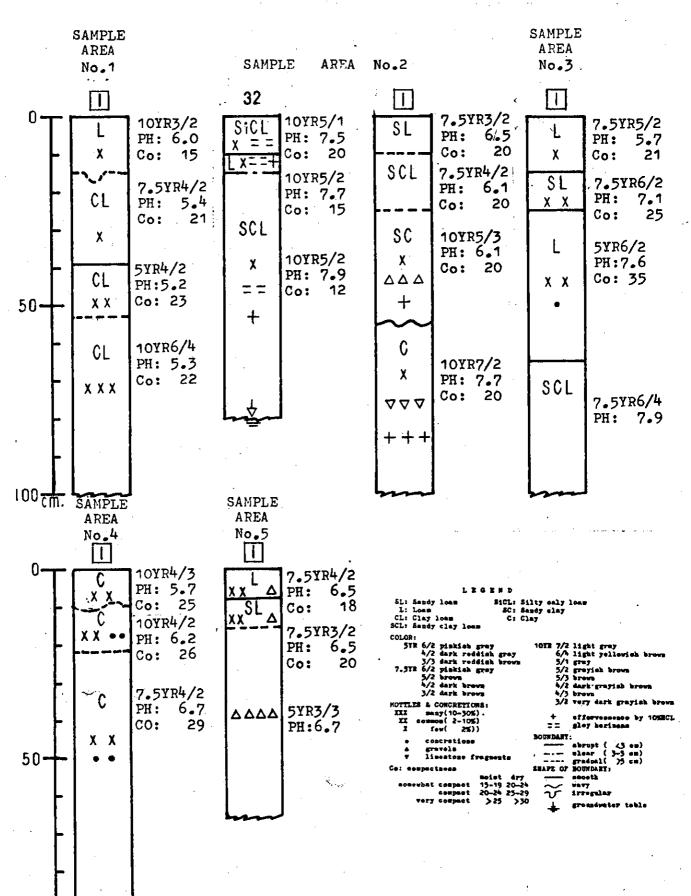
(D)

Extremely acid Very strong acid Strong acid Medium acid Slightly acid Neutral Mildly alkaline Moderalely alkaline Strong alkaline frequency occurring same range of PH between surface soil and subsoil



ANNEX 1-2 Figure 1-2-7

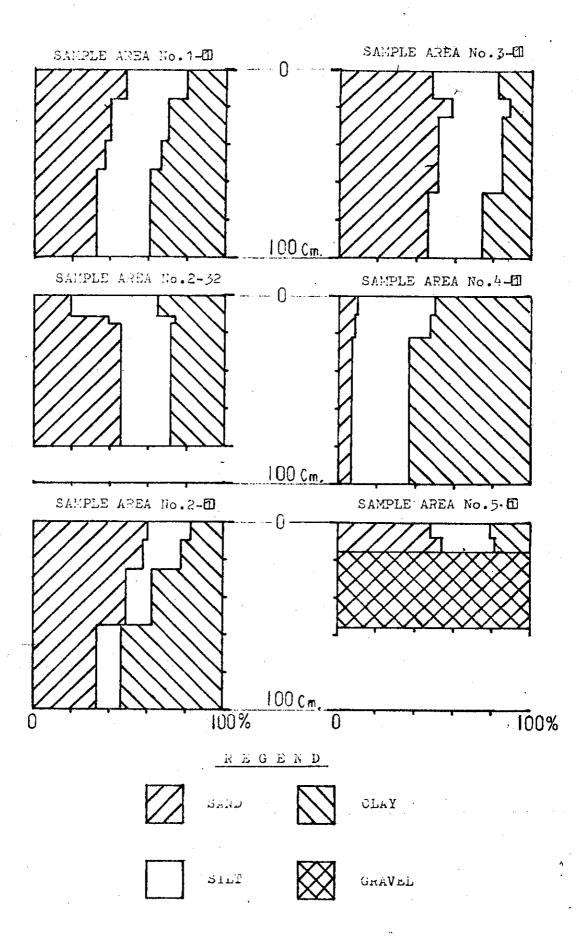
SAMPLE AREA No.3 (3) 5 (1)(12)(1) (+)3 (2)1)  $(\mathbf{I})$ (6)  $(\top)$ (3) (2) (1)<3 ુન્દ 6-10 10-15 15-25 25--5 454 JUBSOIL


Rating of available phosphorus( P. ppm ) ( after Soil Interpretation Handbook for Thailand 1973. )

- Very high
- High
- Moderately high
- Medium
- Moderately low
- Low
- Very low

frequency occurring same rating of available phosphorus between surface soil and subsoil

DIAGRAMATIC REPRESENTATIONS OF PROFILES SOIL

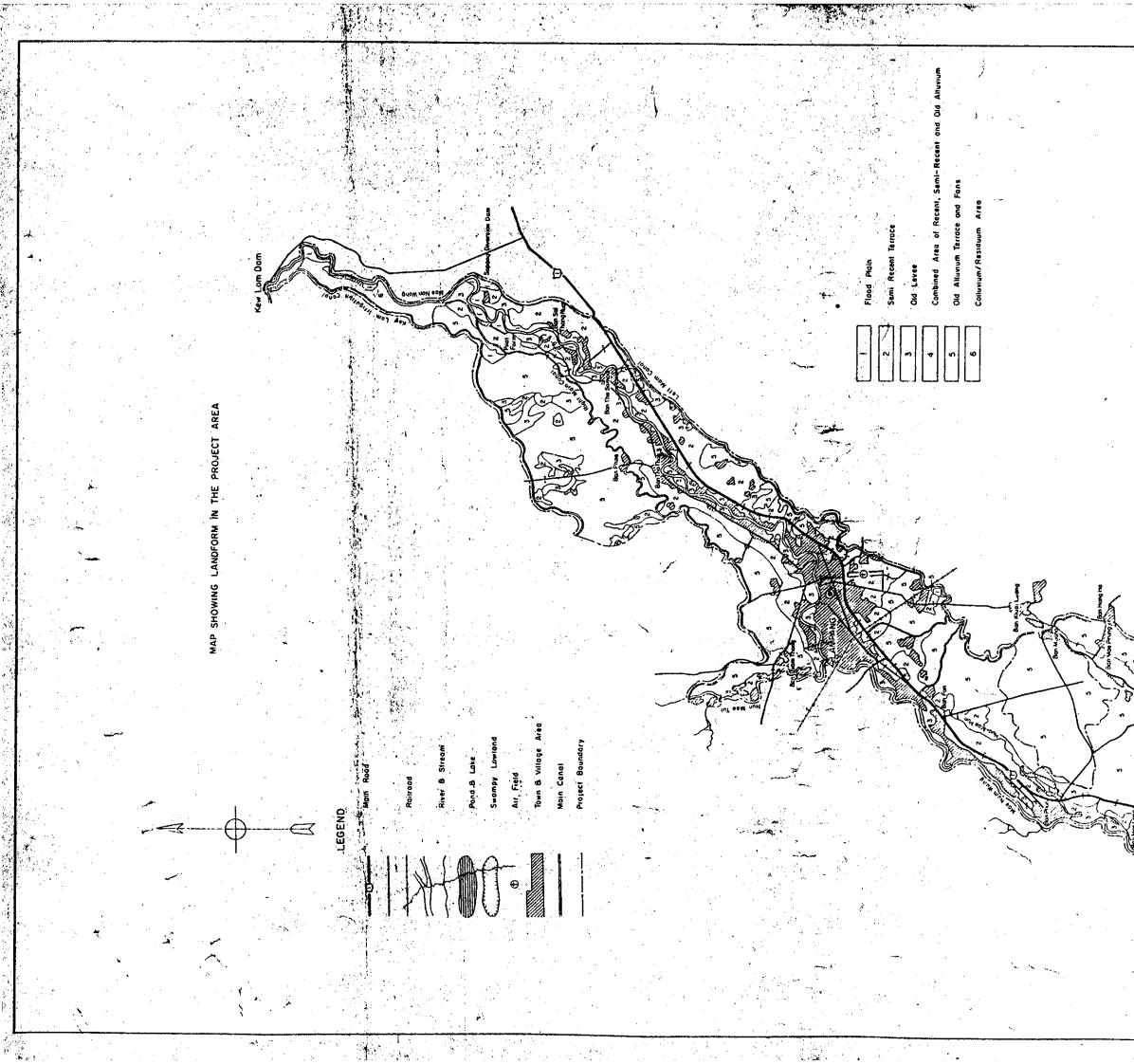

ANNEX 1-2 Figure 1-2-8



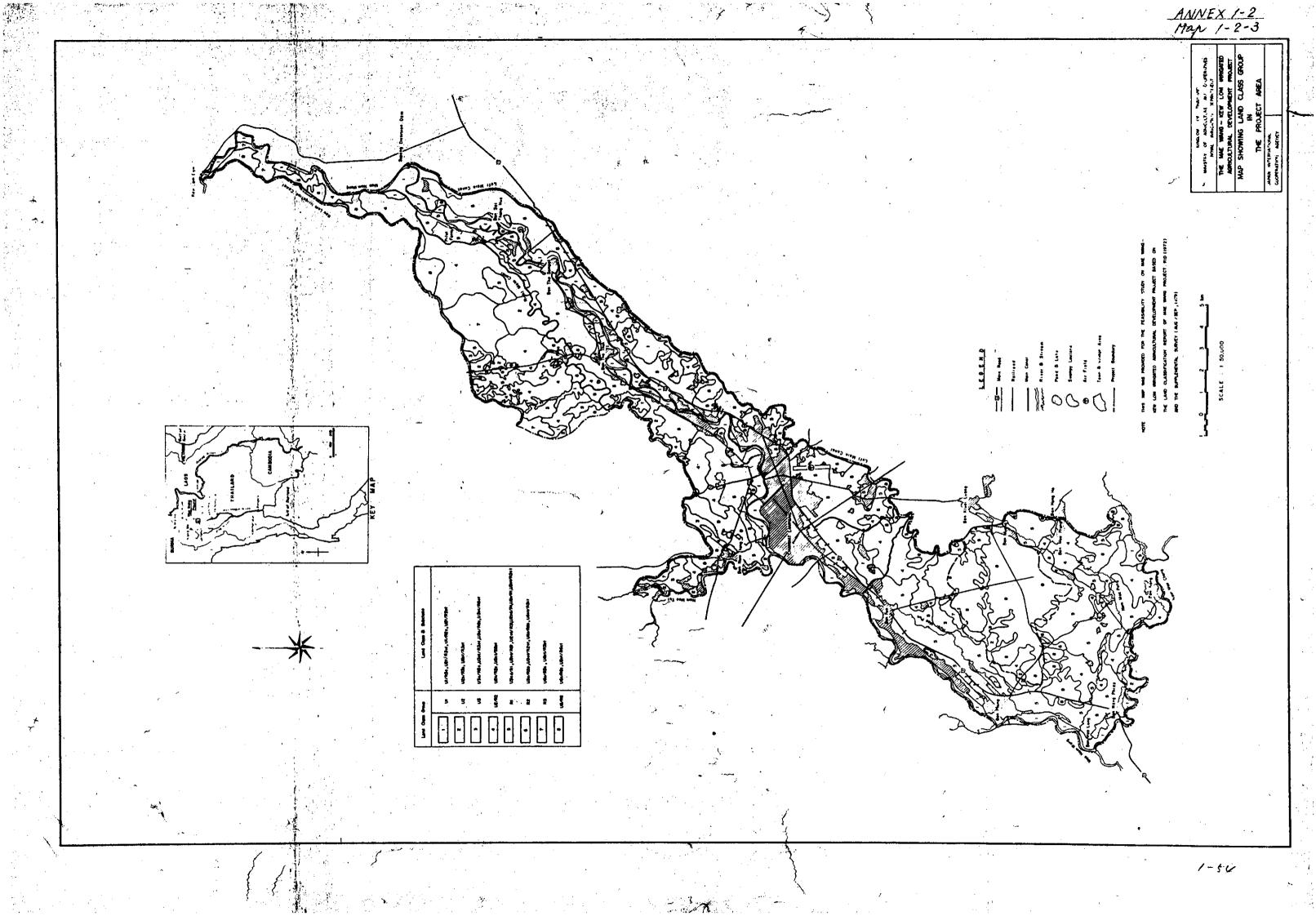
100<del>.</del>m.

PROPORTION OF PARTICLA SIZE OF TEST PITS

ANNEX 1-2 Figure 1-2-9




r___'


1-51"



ANNEX 1-2 Map 1-2-1 AREA IGATED OVECT 4 SOIL MAP OF THE PROJECT 16 - KÈW LOW IR DEVELOPMENT P ú, ULTURE ö THE MAE WANG AGRICULTURAL Scole AGR 2000 1000 0 5 MINISTRY OF ROYAL JAPAN INTERNATI COOPERATION AG õ 5 õ 22 D.---



<u>ANNEX 1-2</u> Map 1-2-2 ð 1-53



1-3. Agriculture 1-3-1. Situation of Agriculture Extension 1-3-2. Situation of Agriculture Cooperatives Table 1-3-1. Cultivated Area Classified by Type of Land Tenure. Figure 1-3-1. Change in Cultivated Acreage with Years of Six Major Crops 1-3-2. Organization of MOAC. 1-3-3. Organization of Department of Agriculture Extension, MOAC. 1-3-4. arganization of Department of Cooperatives Promotion, MOAC. Map 1-3-1 Land Use Map 1-4. Present Inrigation, Drainage and ORM Systems Table 1-4-1. Existing Canal Length and Conditions " 1-4-2. List of Structures Figure 1-4-1. arganization of Many Operation and Maintenance Office 1-4-2. Location Map of OBM Zone in the Project Area 1-4-3. Existing Inigation System

# 1-3 農業

1-3-1 農業普及の現状

タイの農業普及事業は、タイ全土の農業人口3000万人 の福祉の向上を目的として、農業省の数局を翻に 設けられていた。しかし農民の農業技術、農業経 営能力を向上させるべく一つの部局として、1966年 農業普及局が設立された。農業普及局はANNEX1-3 Figure 1-3-3 に示すまうに、1979年時点では、9部か らなっている。さらに農業普及局は、その下部組織 として全国にるRegion の地方農業普及事務所、 72県に県農業普及事務所 686 郡に現地しべんの 農業普及事務所を有している。

現在、国家農業普及辛業が進められており、農民に 密着した普及辛業を行うべくTamesonレベルヨマ農民に 近づけた普及活動を進めている。

Tambon レベルには、Extension Agents えおき、彼らは 農民に普及し易いように 10農家から1人の Canlact Farman を農民から選んで、それら Contact Farmenを 週して普及活動を行うようにしている。 国家農業普及事業の概要

国家農業普及事業(National Agricultural Extension Project)が1977年より世銀の援助により開始され た.この事業は1991年までの55年計画で農業省 の普及局が主体に進めているものである。

事業の目的は、

1.

2.

Ġ.

4.

主要農作物の栽培技術の普及強化、いかゆる 新技術で取り入れた普及方法の改善 普及職員の増員

普及職員の資質向上のための職員訓練

普及活動環境の改善(機動力、活動用資材、 行過等事業の規模は全国72県の500万農家に 対して、1000農家当り1人の普及員で配置すること を目標にしている、この事業はオ1段階及びオ2 段階からなりその概要はAnniex1-3、石acele1-3-2 1-3-3に示すとおりである。

WERE STRAFT CRATCHER OF

メワン事業の位置するランパン県は、この事業のオノ段 階地域に含まれており、1979年度 1= Extension Agents の増員がなされ現在県全体で127名の普及員になった 1980 \$ 1X F& 15 Regional Training Center ( chang mad ) provincial Training Center (8 4.), District Training Center (B BP). Subdistrict Center (Extension Agents or Offica兼事務行)、普及活動を円滑に行うための車輌。 申務所設備品の拡充管備、デモンスレーションのための 種F.農業,肥料于投入更到計圖になっている。 農業普及員 (Extension Agento) 13 郡事務产1= みい7 毎週(回、前週の普及活動結果と次週の普及活動 予定の検討打合せを打う weekly meeting モイテッフ いる、那県の段階では、県の防除河、かんかい 局, 農業協同組合, 地方開発局等が集り semi-monthly meeting 8 17 27 11 3.

·普及員 · 任務

農業普及員は、農民と直接接し農業に関する 栽培技術、その他農業経営に必要な諸業務そ 行う職員である、ランパン県における職員の基本 的任務は以下のとおり、

1. 農業知識と耕作技術の普及

2. かんが川農業における有利7、集約的農業経営

・強代化農業における技術上の困難で克服する 援助

4 農民の当面している問題の解決策の発見につ いて試験研究機関を協力して行うこと。 5、農業協同組合,関連企業,教育,厚生での 関係機関との連携

また農業普及員になるには大学卒、職業学校卒 あるいは、人事院の行う試験にパマスすることが必要 とされている。 1-3-2 農業協同組合

¥~*-

91の農協は、1916年以降、信用事業のみて営む 単営組合であった、そして伝統的に信用協同組合で ある、また組合員全体が信用に連帯で無限責任で 見つ方式であり、組合員資格がきびしく、村落結合で 利用した村民全員参加の形がむずカレい状況にある。 1989年に体産資料に対し信用を与える生産信用組 合が導入され、1960年代後半になると従来の信用小組 合下台供になると従来の信用小組 合下台供に大型化し、同時にこ外に信用事業だけで なく、地事業をむ加えす方向がうち出すれ、統合化をめ ずしない、1970年代に入って太聖農協化が進み 農協の信用利用は、有限責任型にきり変えられつのり 生産物資料の購入、農産物の販売、生産技術指導等 各種の機能を兼営する統合組合化傾向にある。

農業協同組合の農業金融の面をみると1966年に設 立されて、BAACを中心とする信用供与かさかんになり 1970年 BAAC及び商業銀行の農家に対する農業信 用供与額は次表のとおりである。

主要銀行の貸付額の推移 単位: 百万パーツ 1974年4 1976年 银行名 1972年 1970.耳 金額增率 金額 增率 虚顏 增率 金額 增率 89.74 0.9 173.53 1.9 93.15: 10 1084.27 11.6 バンコク銀行 1.90 10 712291 " 4.26 2.2 4.50 3.4 386.75 2036 6.69 10 刘震民" 24.92 3.7 4314 6.4 98.93 148 920:17 10 1213.99 1.3 3518.63 3.8 BAAC 1926.95 2.1 訂 1021.91 1.0 1332.91 1.3 2142,12 2.1 5052.58 4.9

しかし、毎年の作付前の営農資金、収穫前の生活資金の借入金として非制度的資金源に依存する農家がかなりの割合下占めている。1976年全国的な傾向でみると愛手別負債割合で最も高い比重とらめるのが政有資金BAAC以外では認識、商人がりくなっている。

		ប	Cultivated Area Classified by Type of Land Tenure [®] /	Area	Classifi	ed by 1	lype of	Land Te	nure#/			
	- -	) Junev farmere	ŭ	Parti.	Partial-tenant farmers	, t	, and	I.andlonds		•	Total .	
Amphor	Area	Sa Lating	0	Area		י. 	Area			Area		
	ha	<b>%</b>	Н	ha	0/0	H	ha	0/0	12	ha	9/0	Н
Muang Lampang	20,435	87.5	16 <b>,</b> 243	429	1.8	655 2	2,503	10.7	1 <b>,</b> 057	23,367	100.0	17,955
Mae Tha	15,505	98.7	1,187	72	0 4	95	138	0.9	66	15,715	100.0	11,381
Ko <b>Kha</b>	14,055	97.0	8 <b>,</b> 914	137	6.0	135	297	2.1	198	14,489	100.0	9,247
Total	49,995	93.3	36,344	638	1.2	885	2,938	5.5	1,354	53,571	100.0	38,583
		•		•	·-		•		-			
		Area of	of Actua	11y.Cu	ltivated	l land p	per Hous	ehold,	Classifi	Actually Cultivated land per Household, Classified by Type of Farmer $\check{z}'$	e of Farme	er*/
				Par	Partial-tenant	lant		Pure-tenant	enant			
	Owne	Owner farmers	S		farmers			farmers	SUS		Total	
Amphor	:	A	ě	:	A	é		AX	Area	:	Area	ea
	r	na	ha/H	Ŧ	ha '	na/H	1,	na	па/н	r:	na	па/п
Muang Lampang	16 <b>,</b> 243	20,435	1.26	655	1,186	1.81	624	975	1 <b>.</b> 56	17,522	22,595	1.29
Mae Tha	11,187	15,505	1.39	95	145	1.53	58	25	1.24	11,340	15,722	л.39
Ko Kha	8,914	14,055	1.58	135	301	2.23	62	123	1.29	9,144	14 <b>,</b> 479	1.58

ANNEX 1-3 Table 1-3-1

1.39

52,796

38,006

1.51

777 1,170

1.84

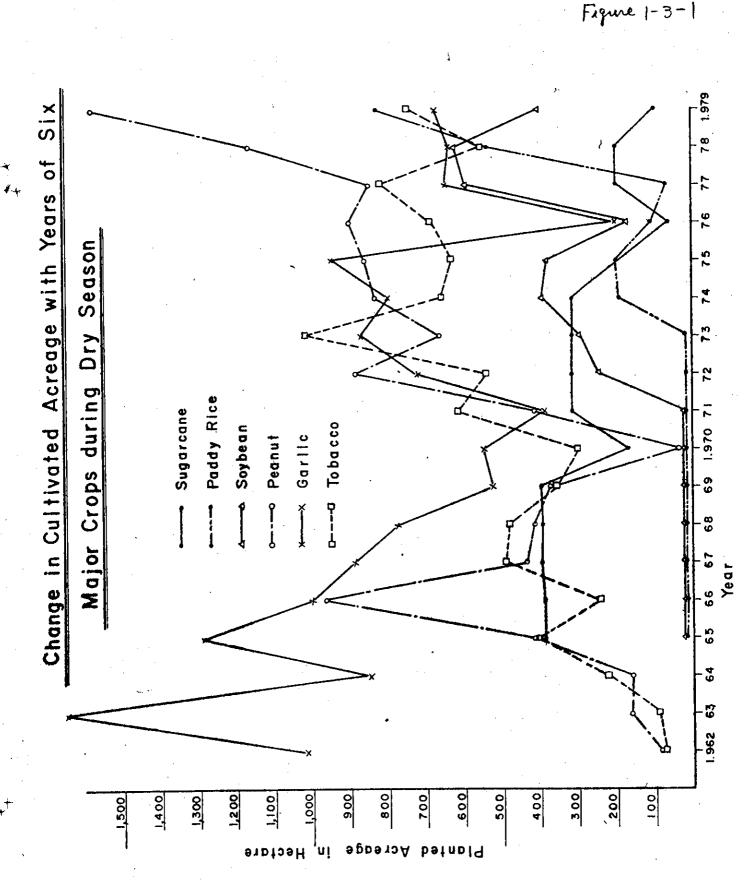
1,632

885

1.38

49,995

36,344


Total

Note: H = Household

Department of Land Development, MOAC

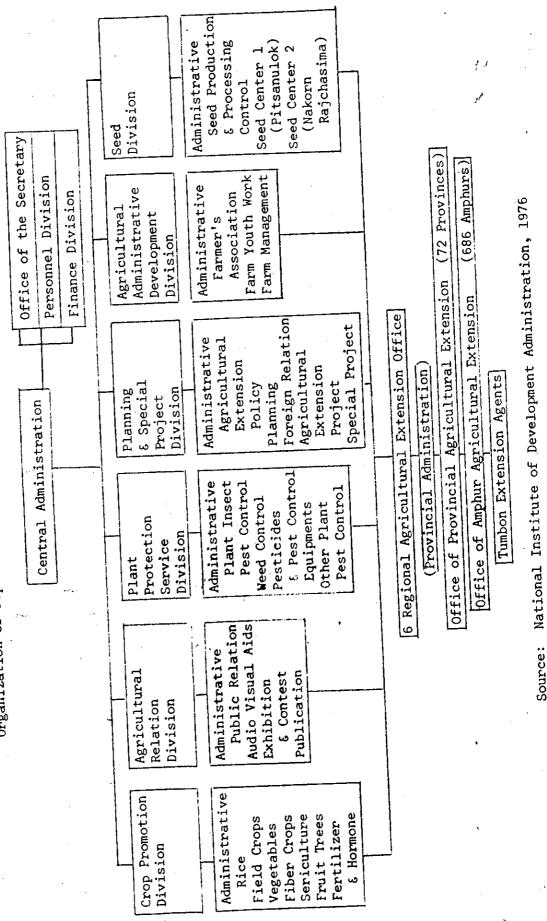
Data Source: * --- "Agricultural Land Tenure, Crop Year 1976 - 1977, Lampang Province No.75"

2



ANNEX 1-3

Agricultural Cooperatives Fish Marketing Organization Organization of Thialand Rubber Estate Organization Bank for Agriculture and Government Gold Storage Dairy Farming Promotion Marketing Organization Replanting Aid Fund State Enterprises Office of Rubber Forest Industry Organization Organization for Farmers Office of the Secretary to the Minister Agricultural Technology Agricultural Extension Ministry of Agriculture Organization of MOAC Cooperative Promotion Livestock Development Cooperative Auditing and Cooperatives Under-Secretary Office of the Departments Agricultural Land Royal Irrigation Land Development Reform Office Royal Forest Fisheries Land Consolidation Office Agricultural Information Agricultural Economics Agricultural Aviation Regional Agricultural Agricultural Research Foreign Agricultural Divisions Coordination Relations Centers Personnel Planning Finance Central Central

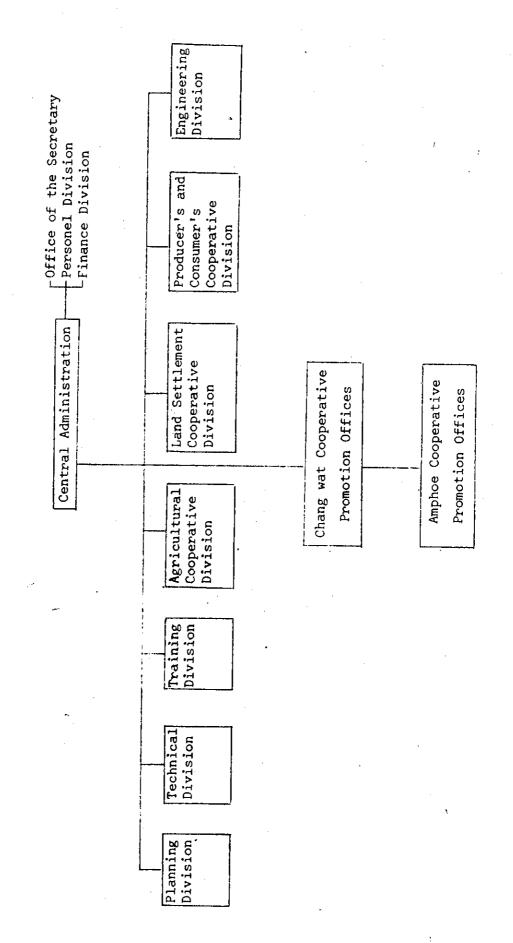

ANNEX 1-3 Figure 1-3-2

National Institute of Development Administration 1979.

Source:

J,

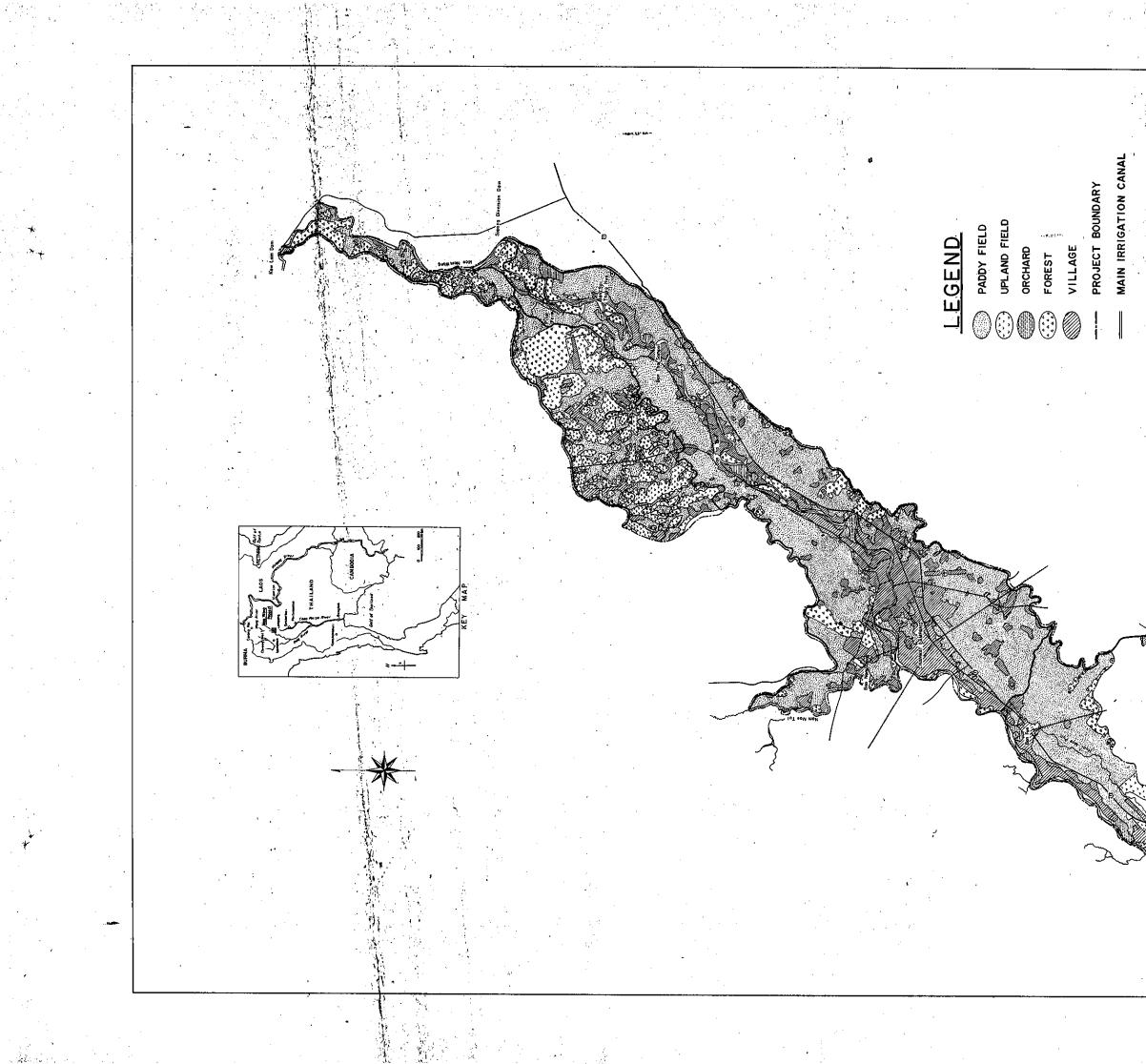
Organization of Department of Agricultural Extension, M.O.A.C.




1-65

ANNEX Figure 1-3 1-3-3

Source:


Organization of Department of Cooperative Promotion M.O.A.C.



}

1-66

ANNEX 1-3 Figure 1-3-4



<u>ANNEX 1-3</u> Map 1-3-1 APAN INTERNATIONAL COOPERATION AGENCY MAE WANG AND KEW LOM PROJECT LAND USE MAP KINGDOM OF THAILAND MEMISTRY OF AGRICULTURE AND CO OPEI ROYAL IRRIGATION DEPARTMENT DENCHED DA.DEN

1-67

λ

Name or No. of Canal	Length km	Cond Earth Canal km	itions Concrete Lined Canal km	Remarks
Mae Wang Left Main Canal	38,450	38,450	-	
No.l Lateral	2,760	2,760	<b>–</b> .	
No.2 "	2,440	2,440		
No.3 "	1,090	1,090		C
No.4 "	2,180	. –	2,180	- <
No.5 "	3,140	_	3,140	· •
No.6 "	2,360	2,360	· –	
No.7 "	0.618	0.613		
No.8 "	0.748	0.748	<b>*</b>	
No.9 "	2,040	-	2,040	. ·
No.10 "	4,580	·	4,580	
Sub-total	60,406	48,466	11,940	
No.l Lateral No.2 " No.2-1 " No.3 "	3,080 1,350 0.977 1,957	-	3,080 1,350 0.977 1,957	
No.1R+3L "	·1,050	-		Sub lateral
• No.4 <b>4</b> No.4-1 " No.5 "	1,770 1,185 3,220	-	1,770 1,185 3,220	
No.6 "	2,520	2,520	- · . -	
No.7 "	2,537	-	2,537	
No.8 "	2,300	<b>-</b> .	.2,300	
No.9 "	2,877	2,877		
No.10 "	1,290	÷	1,290	
No.10-1 "	2,050	-	2,050	•
Sub-total	66,933	44,167	22,766	•

## Existing Canal Length and Conditions

-continued-

1-68

Y

•		Cond	itions	:
		Earth	Concrete	
Name or No. of Canal	Length	Canal	Lined Canal	Remarks
	m	m	m	<b>v</b> .
Mae Pung Main Canal	8,040	8,040	-	
No.1 Lateral	*	_	-	
No.2 "	*	-	-	
No.3 "	*	_	-	
No.4 "	4,500	-	4,500	
Mae Pung Right	9,600	9,600	-	
" Left	6,520	6,520	-	
Sub-total	28,660	24,160	4,500	
Total	155,999	116,793	39,206	
Kew Lom Main Canal	23,800	18,800**	5,000**	
10.4L	1,620	-	1,620	
11.2L	1,050	-	1,050	
11.2L-0,1R	0.750	-	0.750	Sub Lateral
14.5L	2,700	-	2,700	
15.2L	3,970	-	3,970	
15.2L-2.4L	1,450	-	1,450	Sub Lateral
16.6L	3,950	-	3,950	•
16.6L-0.5L	1,270	-	1,270	Sub Lateral
18.3L	3,880	<del></del>	3,880	
18.3L-1.4L	1,270	-	1,270	Sub Lateral
18.3L-1.4L-0.5L	1,450	•	1,450	. 11
20.0L	1,440		1,440	
23.0L	2,830	-	2,830	•
23.0L-2.0R	1,440		1,440	Sub Lateral
	1,500	-	1,500	ft
23.0L-2.1R-0.5L	1,725	<del>.</del> .	1,725	91
23.3L	2,950	-	2,950	
23.8L	2,474	-	2,474	
23.8L-0.5L	3,850	· _	3,850	Sub Lateral
Sub-total	65,349	18,800	46,549	
Grand Total	221,348	135,593	85,755	

# Existing Canal Length and Conditions (cont')

* Those lateral canals are regarded as farmditch** Assumed length

٤

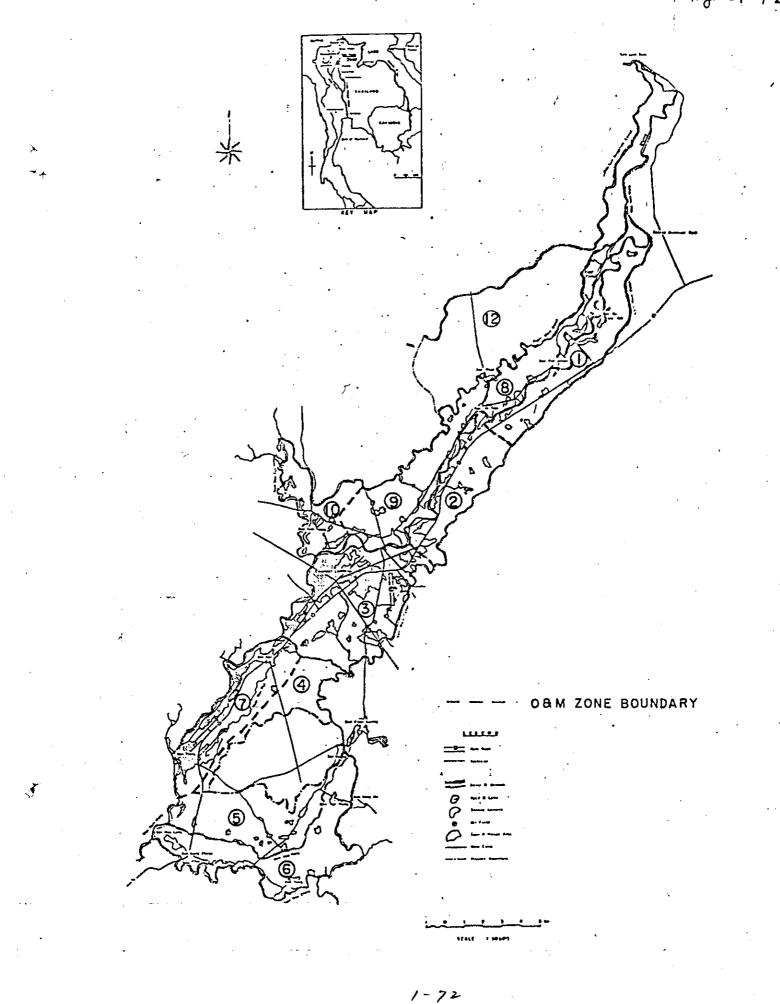
#### List of Structures

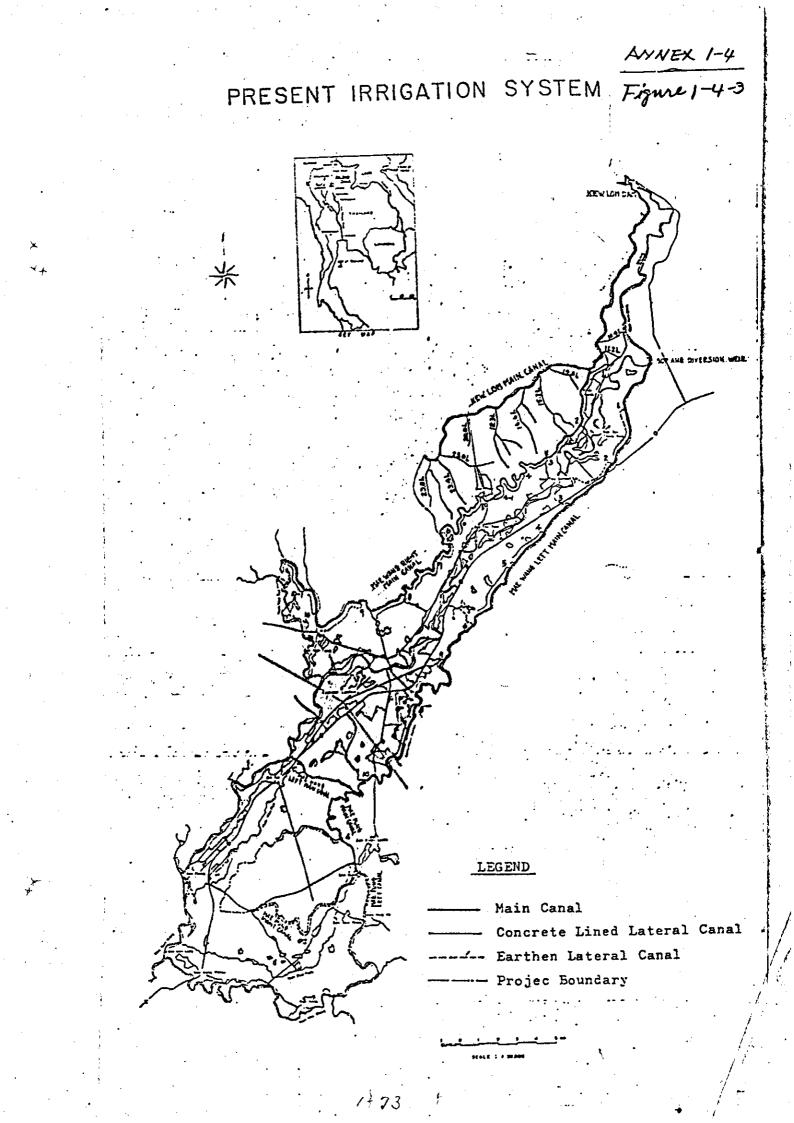
## Y

•			vement	
Canal Name	Structure	Completed	Incompleted	Total
		place	place	place
Left Main Canal	Siphon	4	0	4
	Diversion	5	6	11
	Drop	l	· 0	1 、
	Bridge	12	19	31
Sub-total		22	25	<u>47</u>
Right Main Canal	Siphon	2	0	2
	Diversion	10	2	12
	Drop	l	0	1 -
	Bridge	24	20	24
Sub-total		17	22	39
· .				
Mae Pung Canal	Culvert	1.	0	l
	Diversion	2	3	5
	Bridge	0	l	1
Sub-total		<u>3</u>	4	<u>7</u>
•~	~*			
Kew Lom Main Canal	Aqueduct'	1	0	1
	Diversion	10	0	10
· · ·	Bridge	4	0	4
Sub-total		15	. <u>o</u>	15
		<b>5</b> 2	<b>F</b> 3	100
Grand Total		57	51	108

Note: Spillway and scouring sluice are fixed with each siphon. Check gate in the main canal is fixed with each diversion work. Organization of Mae Wang Operation and Maintenance Office

X 7+


				Chief Engi	Engineer			
	Management Support	Operation and Maintenance	Mechanical. Engineering	* Water Master (Left Main Canal)	Water Master (Right Main Canal)	Water Master (Mae Pung Canal)	Water Master (Mae Tha)	Water Master (Mae Wa)
· •	- Admini- stration	- Admini- stration	- Work Shop skilled	- Water Master 1		0	0 	0
	Clerk 2	Clerk 0	) Techni- cians 2	- Zone man 3	ო l	<del>د</del>		
	nte- ce son-	- Design man 0	) - Operator 1	- Fore man 3	е — — — — — — — — — — — — — — — — — — —	ю 	н 	امم ل
	nel 20 -Fore man 1	- Agricul- ture Clerk 3		Common Irri- - gator 10	-10	م ا	0	0 l
	- Labor 8	Labor 0		Sub Common Irrigator 10	-10	ى ا	0	0
¢,	-Account 1				-12	ی اــــ	= 	6 i
	Store Keeper 2		Note: Fl	Figures show the number of	ber of persons.	·	)	


ANNEX 1-4' Figure 1-4-1

1-71

LOCATION MAP of O&M ZONE

ANNEX 1-4 Figure 1-4-2





ANNEX 2. Land Use and Proposed Cropping Pattern

Table 2-1, Present and Proposed Cropping Patterns " 2-2. Present Cropping Patterns in Wet Season " 2-3. in Dry Season 2-3. In uny season 2-4. Proposed Cropping Pattern in Wet Season in Day Season - 11 4 2-5, in Dry Season

Figure 2-1. Proposed Crops Calendar

(7)

			-			
	Present	ent			Proposed	
Crops	Wet Season	Dry Season	Total	Wet Season	Dry Season	Total
1. Paddy	12,300	472	12,772	13,400	0 <b>†</b> 2 <b>†</b> 0	18,140
2. Peanut	10#	1,275	1,676	330	3,100	3,430
3. Торассо	95	704	799	340	850	1,190
4. Soybean	144	462	606	255	800	1,055
5. Chilli	174	32	209	230	560	190
6. Garlic	O	531	531	0	1,500	1,500
7. Sugarcane	200	200	200	200	200	200
8. Pineapple	100	100	100	100	100	100
9. Vegetable	346	371	717	295	600	895
10. Orchard	250	250	250	250	250	250
	14,010	00164	17,860	15,400	12,700	27,550

Present and Proposed Cropping Patterns (Project Area as a Whole)

ж

4

ANNEX 2 Table 2-1

3

Z-/

++

¥

Present Cropping Pattern and Acreage

A. Wet Season

~

Total	1,172	891	1 <b>,</b> 796	684	1,508	1,678	1,107	1,030	1,310	683	2,151	<u>14,010</u>
Orchard	06	ο,	10	0	<b>0</b>	: 0	10	70	56	14	0	250
Vegetables	۲.	28	ĨT	46	37	16	68	1	14	22	67	346
Sugarcane	•	. t	 I	I	50	50	í	ι.	I	t	100	200
Pineapple	10	20	ŧ	ſ	ı	1	 P	J	I	ł	70	100
<u>chilli</u>	50	I	ł	ł	I	I	30	30	, I	20	<b>†</b> †	174
Soybean	1	ı	1°	4 - 4 - 4 - 4	ł	• •	25	30	ı	I	68	144
Tobacco	ł	<b>I</b> 	ł	, s	ET	ŝ	(*) ~ 1	ı	1	I	23	95
Peanut	, I	1	F	10	25	I	25	I.	J	I	341	101 1
Rice	1,015	648	1,775	623	1,383	1,607	936	006	1,240	627	1,351	12,300
No. of Zone	r-4	3	ო	4	ŝ	9	7	ω	6	10	, 12	Total

ANNEX 2 Table 2-2 Present Cropping Pattern and Acreage

:≁ ★4

B. Dry Season

•~~

Total	395	226	623	302	405	294	233	393	396	237	896	ц , 400
Orchard	06	0	10		0	0	10	70	56	14	0	250
Vegetables	1 ·	31	I	31	31	I.	62	62	84	13	63	371
<u> Pineapple</u>	10	20	J	I .	ŝ	ı	I	ı	, <b>i</b>	I	70	100
Sugarcane	J	<u>,</u> 1	I	1	50	50	I	I	I	ı	100	200
Garlic	21	46	103	33	16	23	15	15	92	36	131	531
<u>chilli</u>	t.	ı	* I	I	±.	9	Q	ł	ę	ı	16	35
Soybean	ار.	ı	173	G		ຸຫ	99	8 ⁵	35	ΞŢ	58	462
Tobacco	141	12	182	129	124	25	1	37	12	42	i	704
Peanut	61	88	123	103	123	- <b>3</b> 6	25	91	119	115	302	1,275
Rice	42	29	32	I	57	86	611	20	31	ı	126	472
No. of Zone	-	0	ۍ ۲	#	S	9	7	æ	<b>б</b>	10	13	Total

2-3

ANNEX 2 Table 2-3

١,

Proposed Cropping Pattern and Acreage

++

A. Wet Season

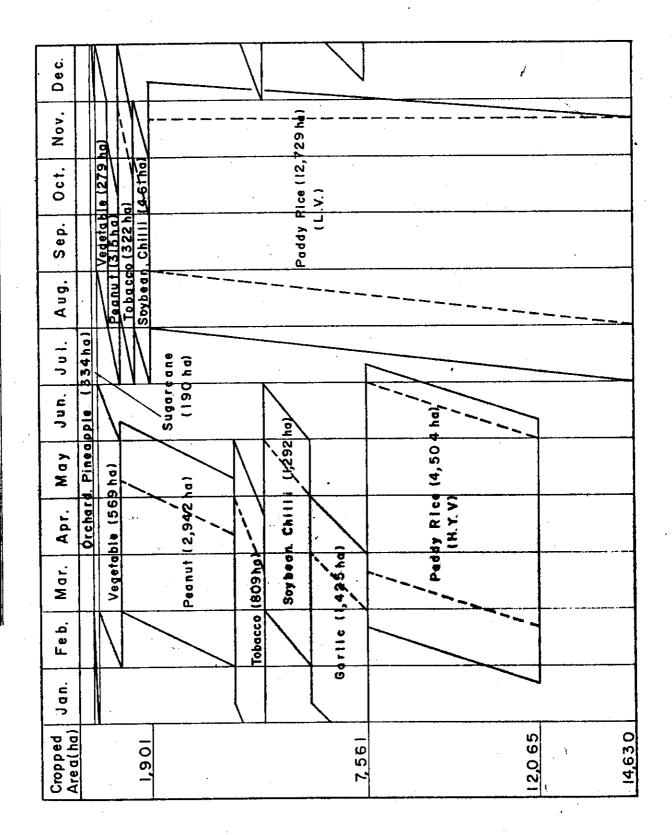
	Total	1,172	891	1 <b>,</b> 796	684	I,508	1,678	1,107	1,030	1,310	683	3,541	15,400
	Orchard	06	I	10	l	I	I	10	70	56	14	F	250
	Vegetables	2	28	11	Гη	25	11	56	 I	Ţμ	, 22	80	295
	Sugarcane	I		ł		50	50	ı	• •	I	 I	100	200
	<b>Pineapple</b>	JO	20	. I		1	1	I	, a 1	I	1	70	100
	<u>chilli</u>	50	• I	I	,	I	J	30	30	I	20	100	230
*1	Soybean	· I	i	ı	ı	1	۱ ,	25	30	1	ı	200	255
•	Ĕ	ł	ı	). 	TO	25 -	10	25	ł	I	1	270	340
	Peanut	I				25	l	25	ı	J	I	270	330
	Rice	1,015	843		623	1,383			006	1,240	627	2,451	13,400
•••	No. of Zone	<b>-1</b>	5	Ċ	#	ហ	<b>G</b>	7	<b>co</b> ,	6	10	12	Total
									•				

ANNEX 2 Table 2-4

2-4

Proposed Cropping Pattern and Acreage

B. Dry Season


	•																	
	TOTAL	696	722		1,441	559	1,231	1 256	2006	920	950	), ) )	1,124	496	( <del>6</del> 0	20060	10,700	× · · · ·
-	Orchard	06	ı		10	I	I		<b>1</b>	10	Ē	0	56	14		1	760	
	Vegetables	· 1	С Ч	<b>)</b>	1,	50	50		-	TOO		TOO	78	22		150		
	Pineapple	TO	ç	DY ,	ļ	I	I	•	ı	ı			ı			10		100
	Sugarcane	1		•	1	1	Ċ	00	50	ŀ		I	. •		I.	100		200
	Garlic	60	1	130	290	ηρ	1	с <del>н</del> С	66	13	) t	42	260		100	370		1,500
	chilli			 1	I		i	60	100		DOT	.1	50	1	I	250		560
- <b>- 4</b>	Sovbean		1	l	300	, ,		F 	15		cTT .	170	Ú¥ Ú	3	30	100		800
	Unharron Unharron		0/. <del>T</del>	T2	020		ecT	150	30		ı	45		CT	50	ı	·	850
	+	Legin	220	215	000	000	250	300	230	) 1	60	220		062	280			3,100
		KICE	419	292		176	1	576	230		492	203	) 	315	I	1.257	- - -	1,740
• •	No. of	Zone	<b>г</b>		<b>1</b>	m	===	ຸທ	ţ	D	7	a	D	თ	10	<u>ر ا</u>	4	Total

ANNEX 2 Table 2-5

4

٦

PROPOSED CROPS CALENDAR



ANNEX Z Figure 2-1.

2-6

ANNEX 3. Irrigation and Drainage Scheme

3 - 1. Inigation Scheme

3-1-1. Water Resources Planning 3-1-2, Inrigation Scheme 3-1-3. Inigation System Planning

3-2, Drainage Scheme

3-2-1. Calculation of Drainage Discharge 3-2-2. Nain Drainage System Planning 3-2-3. Reviewal of Main Drainage Stuice 3-2-4, Drainage System Planning

Table 3-1-1. Proposed Cropping Pattern and Inizable Areafor Water Balance Study 3-1-2. Consumptive Use for Each Crops 3-1-3. Monthly Effective Rainfall for Paddy Rice 3-1-4. Monthly Effective Rainfall for Upland Crops 3-1-5. Return Period of Monthly Effective Rainfall in Net Season 3-1-6. Return Period of Ten Days Effective Rainfall in Wet Season 3-1-7. Effective Rainfall for Each Crops in 1967 3-1-8. Diversion Water Requirement for Paddy Rice in 1967 Upland Crops in 1967 3-1-*9*, 3-1-10. 3-1-11, Water Roguirement of Paddy Rice and Upland Crops in 1967 3-1-12. Monthly Run-off at Kew Low Dam Site 3-1-13, Water Release Programme from Kew Low Dam 3-1-14. Water Shortage List of Special years in July 3-1-15, Return Period of Run-off Discharge at Kowlom Dom Site

3-4

(n9)

Table 3-2-1. Calculation of Peak Discharge of Main Drainage Canal " 3-2-2. Extreme Homentary Discharge Recards at Kittikkachon Bridge Site

Figure 3-1-1. Lacation Map of Project Areas in the Mar Wang River Basin 3-1-2. Measuring Site of Percolation Rate on Paddy Field 3-1-3, Crops Calendar for Water Balance Study 3-1-4. Monthly Mean River Discharge at Kew Lom Dam, SopAng and Kittikhachon Site. 3-1-5. Correlation of Run-off Discharge Between Kew Lom and Kittikhachon Water Shortage and Water Surface Elevation of Dam 3-1-6 3-1-7. Summary of Water Balance for Kow Low Reservoir Water Shertage and Water Surface Elevation of Dam 3-1-8 (Excepting Mac Pung - In Case of Revised Operation Rule) 3-1-9 (Including Mae Pung - In Case of Revised Operation Rule) Hydraulic Calculation Fraph of Lateral Canal 3-1-10 3-1-11 Standard Cross Section of Inigation Conal 3-2-/ Standard Cross Section of Drainage Canal Proposed Irrigation system Map 3-1-1 Proposed Drainage System 3-2-1

3-B.

Annox 3-1 用水計画

3-1-1 水源計画

(1) 現況

本計画地已の水源は Sop Ang 頭首エの約14 Km上流 にある Kew Loom ダムである。本ダムは1972年に完成した 有効貯水量110 McMのコンクリートダムで、主な諸えは次 のとあいりである。

Ken Lom Reservoir Drainage area 27.00 ×m3 Maximum operating water elevation 285 MSL Minimum 272 MSL. Sunfall area water elevation 285.MSL 16 KMZ - 272 MSL 2 Fm Capacity water elevation 285MSL 112 MCM 272MS4 ID MCM Dam type Concrete gravity Dam Crest elevation 286.5MS4 Spillway type Gated dan-flow with elevated flip Spillway elevation 277.4 MSL Maximum spillway discharge, water elevation 285 MSL

本地点での手間流出は、600~700 km3 であり、ダルにく らべダム貯水容量が小さい、これは、本 Dam site 7:13. 地形、地學、及び技術的にみて、堤高下上げ貯水容量 ド増す事が可能であったか上流の水没地域に制約 そうけたためである、現在 RIDでは Kew Lam 94の 上流に建設予定のKew Kor Mah ダムの水源開発 F. 計画中で、すてに Kew Lom Main Canal 13. Kew Lom Stage I QUI, Max Wang Pight Bank のかんかいい 受益地と Kew Kor Mak ダム 完成後にかんかい 没益地となる Mae Tul III 面方の Kew Lom Stage II 天考奏し下: 旅かんがい 面積約19000 ha I= 対する Canal conacity 25.0^{m3}/5の水 路の建設が進められている。

Kew Kor Mak ダム 完成後 は、月間 ハヨオかの水量 そ Kew Lom Dam 1= 放流す3計画になっている。 現在の Kew Lom ダムの Operation 13 常時 (2019)s E Wang River に放流している。 イビマ 余水吐 Crest 標高、2724 MSL 以上の貯水位の場合は、ダムの安全川生の確保と下 流の洪水被害と考え、降雨、貯水位による 余水吐ケー トの嫌作基準により管理されている。 旅って現れは Kew Lom ダムより大量の無效放流,があるか、 Kew Kor Mak ダム 完成後 マ有効な水利用が可能となるでありた Sop Ang Diversion Weir 15 Mae Wong Loft Main Canal にかんかい水を供給しているか ダム 下読の残流 成は 小さく、Kew Lom Dam かちの放流水によって賄りれてい る、 当 Diversion Wei/rの 鶴元 は次のとおりである。 (2) Mae Wang Basinにおける将来計画

現在 Mae Wang-Kew Lom Project Area on o'h th'in 水源 17. Kew Lom 9'4 Z"、 取水施設 として Kew Lom 9'4 及 u"

Sop Ang 頭首エがあるでこれらの話詞記 1=よって、かんかい される地域は Mae Wang III をはまんで、Lefz Bank, Right Bank 及び Kew Lom Canal 1= よってかんかいされる Kew Lom 地区である。

Wang siver casin の Lampang E 中心にした地域の かんかい農業を拡大するために、将案計画として Kew Lom 94 3 含めた 5 つの 94 建設計画がある。 (Kew Lom Project Feasibility Report I and I sy ECI) これらの 94 計画 及びかんかい面積は次のとおりてある。

Norme of dam site	Reservoir Capacity (MCM)	Ittigal Ra	le Area
Kew Kor Mah	260		(270,000 )*1
Kew Lom ( Existin	g) 112		(133,300 )*2
Mae Tui	135		( 49,000 )
Mae Yao	68		( 27,000)
Mae chang	175		( 99,000 )

internated ?	*12	Chae Hom.	Ma	eWang	Kew Lom
	43.200	= 10,400	+ 14,	080 +	18.720
· · · · · · · · · · · · · · · · · · ·	(270,000)	(65,000)	(88,	000)	(117,000)
			· · · · ·		

J. Sar

nate: *2) Kew Kor Mak Dam 宮成後1=13. Kew Kor Mah Dam of Int gabele Areaの中に含すHL3

·北方a Project a 根要國 E Figure J-1-11=示す

これらの Project の中で本計画 に関係する方がム Project は Kew Kor Mah Dam Project & Mae Chang Dam Project である。

Kew Kos Mah Dam Project

前項ご述べたように Keur Kor Mah Dam 13. Keur Lam Dam の上流に進設手定の3"ム で完成後13. 2つの水源で 本計画地記を含む約43000 ho をかんかいする計画である。

Mae Chang Dam Project

Mae chang ga は、Mae Tha E中心にした地域をかん かい受益地として、現在RIDによって建設計画か 進みられている。これらの受益地の一部に、本計画 地区の Mae Fung 地区が含まれる。

建設予定のMae Chang ダムの主な諸元は次のとかり 7、ある。

in fan de ferste fan de ferste fe De ferste fer	
Catchment Area	1100 Km2
Capacity at the Maximum Retention level	135 MCM
Capacity at the Minimum Storage	25 MCM
Effective Capacity	110 MCM
Crest Elevation	268. MCL
Maximum Retonsion Elevation	2655 MCM
Minimum Storage Elevation	258.0 MCM
Dam Height	28.0 im 11
Istigated Wet Season Rico Fried	90.000 tai
	(14,400 ha)
Irrigated Dry Season land	90,000 rai
	(14,400 ha)

出典:1975年R1D作成の計画概要書による.

3-1-2 用水計画

(1) かんかい面積

本地区の用水計画は計画土地利用面積に基づいて 算定されるかんかい水の需要量とKew Lom ダムからの 供給量との関係を明確にする必要がある。

本計画地区のKew Lom Stage I, Mae Wang 地区及び Mae Pung 地区の他に, Kew Lom Stage II 1= ついてやの 様に考える。

ECIF/S Report によれば、Keur Loom 9'4 によるす かんかい愛在地は Mae Wang 地区及い Kew Loom Fransman 地区(Stage I)で、統面積 21300 ha (133300 hail) となっている。一方本計画のかんかい愛 証拠は、上に述べた愛猛地と一部異っている。しかし 本計画に Kew Loom Stage II を取り入れた場合、Crop いたのにな を考慮したかんかい面積 17 1717: 同じとなる。 以上を考慮して 算定されたかんかい面積 17 Table 3-1.1 に示すとおりとなる。

算定して、菜,発散量(ET)は次表のとおりである. 燕発散量 (ET) mm/ day mm / day F 2.70 83. 7 8 42 25 8 2 4.29 133.0 3 4.99 149.0 4 34 5 140.7 ં ટેં ટેં ટેં ટે 114.9 6 3.52 109.1 7 3.21 99.5 3.32 9 99:6 0. 26 101.1 10 2.79 83.7 11 12 2 50 77.5 دى بى 1288.3 total

ンルによると葉、発散量の変化は4月に最大4.99^{mm}/day となり、最小は12月の2.50^{mm}/day 7"ある. 年葉、発散量は1.288、3^{mm}で、これは、葉、発量835^{mm} の約15倍である. (2) かんかい用水量

(a)用水量算定の基本事項

かんかい用水量の算定日次式による。 ・ 純用水量(NWR)=作物消費水量 + 浸透量 +代加き用水量及びその他準備用水量

。ほ場用水量(FWR)= 純用水量-有效雨量+活場損失水量 。かんがい用水量(DWR)=活場用水量+送水吸い操作損失水量

(b) 作物消黄水量

作物消費水量(ω) は蒸発散量(ET)に、作物の生育 時間によって異る(作物係数(K)で来じて求められる. 蔵べ板 蒸発散量(ET)

緊発散量(ET)の算定は、蒸発計蒸発量の観測値よ り算定する方法、あるいは、気象データを用いた経験式に よって算定する方法等がある、本地区にわける作物 の蒸発散量は Pan man 式によって算定する。算定に必 要了気温、凡速 等。気象データ は Lampangの25年間 (1951~1975)の観測データを用いる。

# 作物係数

各作物の成育段階に応じて次表のような作物係較 (K)が決められる

Crop factors (K)

Month	Lr	HLY	Sugarcome	Up-land Ctops	Vagatable Of chard
1. st	1.0	1.0	06	04	0.7
2 nd	1.0	1.25	0.8	07	0.7
3 Fd	1.2	735	10	1.0	0.7
4. th	1.35	1.3 .	1.2	08	07
5 th	1.3	1.1	1.25	05	
6 th	1.2		1.2		
7 H.	1-1	n e de la seconda. Notes de la seconda de	1.15	e vezgi e gali e vez i gali e di. Nagi e vezgi Ale stange	a de la companya de l La companya de la comp
8 th			1.0 .		
9 th	in the second		0.85	· · · · · · · · · · · · · · · · · · ·	
10 th			0.65	н, 	
it the			0.6	en de la production de la Reference de la production d	
12 th			05		

It) (1) Abave factors are based on the actual measurements by Irrigated Agricultural Section, RID in 1979 作物係教と惑発散量から求められに各導入作物の 消費水量は、10日単位で算定した。(Table 3-1-2) それによると最大日消費水量は、水猫の場合で乾 期134月2旬の769.mm/day, 同期139月2旬の5.27 mm/ day 7 7 3

(C) 浸透量

浸透量は耕地の土性によって大きく影響される. 本地区の土性は土壤調査の結果から明らかなよう に、一般に粘質性が、その浸透量は小さい。

本地区では、水田浸透量を算定するために、Figure 3-1-2 に示すような、8ヶ所の地点で、浸透量測定を 行なった、それらの測定結果を下記に示す。

Test Site NO	Sustace Soil Texture	Percolation tate *	Period	(1978)
		(mm/day)		
	. S4	1.0	20, Sep -	4. oct .
2	SLC4	0.6	ана — <b>— — — — — — — — — — — — — — — — — —</b>	)
ં ર	C4-4	0.6		<b>/</b>
4	54	2.6	5. Sep	30. SeP
Sec. Sec. 1	SC .	0.5	9. Sep	15. Sep
6	SL - L	0.4	" 9. SeP	18. SeP
7	SL	a3	9. Sep	17. Sep.
8	SCL-CL	ۍ د	9. Sep	15. Sep
Mean		and the second	•	

*):各Test ate 7" 25 竹丁 > 测定した平均值7两3.

調査結果によると、NO4及びNO.8で除いていずれた 0.3~1.0mm/dayで浸量は小さい。

上記の値は短期間調査であること及び測定誤差が 含まれていると考えられる。本地でではこれのの実測値反び 既住把事業地での値を参考にして、雨期、乾期を通じて、1.0 May とする。 (d).代如き用水及び 30他 準備用水

水田の代かき用水と畑心における栽培のための準備用水が行物消費水量の他に必要である、作物別のこれらの用水量を下表に示すように想定した。

Additional <u>Crops</u> <u>water Requirements (mm)</u> 200 200 50 Sugarcane 40 Upland

代かき日数は、作付体系及び現況層行より 30日とする。又準備用水供給期間はSugarcaneか。 90日、Tobaccoか40日、その他のUpland Chop 13、 30日とする

(1) 有効雨量

×クロンマスターフ。ラン調査(JICA)において:有効用 量を耕地の貯水機能をタンクモデルに表現し、21%所 の代表降用観測記録を用いてシュミレートしている。 この結果下記に示すような降用量と有効用量の関係を 得ている。この studyの結果は RIDにおいてなまれ に有効用量の計算 + 1715、同じである。

Effective Upper limit (mm) CLOND Rainfall one month. 10 days Paddy . 0.75 R 200 70 Sugarlane 0.75R 50 150 Upland 0.75R 120 40

1≠) R. Rainfall (mm)

1852年から1878年の27年間のランパン観測所の降 前記録から求めて、月有効雨量は下記の3-1-3 みび Tacle 3-1-4に示すとおりである。その結果によると、 転期作の場合、有効雨量はほとんど期待できない が、雨期作の場合、有効雨量によって、かんかい用水 量が大きく異る。サニア用水量を算定するよで必要 となる確率有効雨量を求めると次のようになる。

39 1				unit: mm
Probable	Paddy F	Field	Uplana	Fieldo
Year	Jul-Nou	Annual	Jul-Nov	
		а. С. С. С		•
12	458.8	726.3	361.7	579.4
15	389.4	627.2	319.5	512.7
10	356.3	577.5	299.4	480.7
/20	330.5	537.4	283.7	455.6

注)詳細はTable 3-1-5 1= 示す

これによると1967年がほぼ1/10確率年1=相当している。

本計画では旬単位7、用水量で算定する。メニイ、 かんがい必要水量の97い7月、8月の旬単位の確容有 効用量も求めると次のようになる。

Paddy Fields Upland Fields 2 1/5 1/10 1/2 1/5 1/10 1/2

Jul 1 182 7.6 4.3 4.9 . 18.3 8.6. 20.7 8.7 4.9 - 2 2.6 20.1 5.4 33.7 175 3 10.9 29.4 17.9 12.1 Aug 1 30.7 17.3 11.6 24.4 12.4 8.7 2 46.0 26.9 17.6 30.2 19.3 15.3 47.0 27.3 206 3 33.4 22.6 18.5 注):詳細IT Table 3-1-61=示す

(方) 損失水量

1. 日場損失水,

日場へ供給されたかんがい水の一部は、旺畔からの 横浸透及び日場からの表面流出等により、損失水と なる。従って日場に供給しなけれずならないほ場用 水重は次式より求められる

> FWR - MUR - FR Ff

ここで、FWR = 13場用水量 NWR = 純用水量 ER = 有効雨量

E+ -

行场效学

目場効率はかんがい方法、ほ場の整備状況等によって 異るが、本地区では、水田207、畑地かの60下適用 する。

2. 送水損失水及び操作損失水

幹線水路及び支線水路によって、必要なかんかい用水量下送水する間に、水路内にあいて水損失が生いる。送水損失水量は水路の構造によって要う。

操作損失水は、降雨があった場合の水管理操作システムによって異り、降雨の切び、乾期では、ほとんど考え

аны, далк дора басыр **3 - 14**°сс - • なくてもさしっかえない. これらの損失を考慮すると、頭首工地点,かの竹 要かんがい用水量は次式によ、フ求められる.

	= <u>FwR</u>	NWR - ER
DWK		
с. ₁₀ .	EC X EU	Ef × Ec × Eo

ここで DWR = かんがい用水量 FWR = 1月場用水量 NWR = 純用水量 Ef = 1日場効率 Ec = 送水効率 Eo = 操作効率

any the state of the second for the second

本地ででは送水効率は、ライニング水路で、0.90で、 適用する。又操作効率は0.95を適用する。 (8)かんかい用水量

上記の条件とFigure 3-1-21=示す 名作物の Proposed Cropping Pattern 1= もとずき かんかい用水量 を10日単位 7" 26年前(1953、~1978)算定した。

算定結果の中から本計画地区の有効雨量の10年 確率早に相当する1967年の名作物別のかんがい用 水量を石をとる-1-8~石をとる-1-10に示す、それによる とかんがい用水量の最大は、雨期、乾期、ずれも水猫 の場合で、それがれ1,380代5/4a、1840代5/4aである 名作物別の期別かんがい用水量は次のとありである。

- - -	ь.	Upland Crops						
1	Rice	Reanut	Tobacco	Soybean Chill	Gardie	Vegeitable Fruits	Angar -Cane	Weighted Average
Dry			· · ·				*.	557
wet	83£	102	173	128		214	268	189

Diversion Water Requirements in 1967

unit : mm

in the

1

nate:加重平均に用いた UP-land Crops の各面積は次のと おりである。

		· ·				unun. na	
			Soy bean		Vegitable Fruits	Sugar	
	Peanuts	Tobacco	chill	Garlie	Fruits	- Cane	
4	3076	902	1410	1395	1476	490	
et	307	317	451		822	490	

3-16

(h) 施設計画の用水量算定

用水路の設計は、本計画地区の有効雨量が10年確 率年に相当とている1967年の単位用水量を用いて 行う。この時、雨期の有効雨量は考慮するが、乾期 の有効雨量に考慮しない、これの一般的に乾期の 雨量に少なく、降雨パターンも年によって一定でないので ある確率で雨量を期待することができないためで洗る 又、本計画地区の畑作物は、その種類が多く、乾朝 尽び用期にかける作付面積、なび用水量も異なる。 従って畑作の用水量は、各畑作物の加重平均によって 算定した。

算定結果 Table 3-1-1 1=示す.

(3) 水収支の検討

(a) 基本方針

各ゾーン毎の土地利用計画に基むい7算定された かんがい用水量と、Kew Lomgiaからの供給量との 関係を水収支計算を行なって明確にする必要がある. この場合、Kew Lom TA E 含めた将来の水源計画を 考慮して検討すべきである、本計画に関連する 水源計画 IJ Annex 3-1-7 7 のべたように Kew Kor Math 19 4 & Mae chang 7 4 b 3. The Kew Lom J'A上流に建設予定のKiew Kor Mak 9"ム 完成後はKew Loom gua の安定供給がなされ、水の 有効利用によって本計画地でを含む Mae Wang Basin のかんがい面積が増大する しかし、Ken Kor Mah 9"ム 完成までは, Ken Lom 9"4 が 本計画地区の水源上 Mae Chang 7'4 15 Annex 3-1-1 7" It ~ T= 5 12 3 . うに本計画地区のMacPung地区をかんかい受益地 の一部としている. しかし現在 Mae Wang Left Canal * Mae Pung Canal 13 linke * 11. 7 Fr 1). Kew Loom q"h

を水源として、かんがい水の供給が行なりれている。 従、て Mae Pung地区をMae chang ダムのかんかい険益 地としてもダム完成までは、Kew Lom ダムが水源の 一部となる。

以上の検討から水收支の検討は、Kew Lom gru を水源とし (1) Mae Pung地区を含む場合, (2) Mae Pung地区を除く場合の2ケースについて行なり ダムの水収支計算を明確にするためには、長期間の シュミレーション Ludy が必要である.

そこでシュミレーションをtudy は 10日単位で最近の26年間 (1953-1978) に行なう。

(b) 74地点, の流出量

水収支計算」に必要な94地点の流出量は10日単位 で24年間(1953~1978)算定す3必要かある。 ダム地点の流出量観測は、1962年から始められている。 1972年の94年成後は、94からの放流量及び94 の貯水位が観測されている。従って1962年から1972年 の94年成までの流出量は、流出量観測記録から 求めた。1972年以降の流出量はずんからの放流量 及び94の貯水位変化から算定した。しかし観測 値のでい、1953年から1961年の流出量は、推定した。 ければならない。

Mae Wang II O 5可川流量観測期間は Lam Pang o Kittl Khackon II Bridge (W1, W1A)以外は、比較的

3-19

短く, 観測手も1969年以降である。 從って Kittikhackon, I Bridge での観羽値を用いて、 ダム地点の流出量子推定する。ダム完成前の1962年 から 1971年の 2地点の平均月流出量 は. Figure 3-1-4の ヒおりてある. これにきると 雨朝の 8.9.10月を除い て、上流のg"4 地点,の流出量が下流のKittlehachon 地点より271. 流出量の小ない範期にその差が顕 著がある、これはダム下流の Sop Ang 頭首エからの 取水による影響と思われる、顕首エからの取水量観測 15. 1968 7 10 5 the & 5 11 7 11 3 ( Annex 1-1 Table 1-1-12) 年取水量は142~2/3加0ハッブ、年間変動は小さい。 平均年取水量で考慮、した Kittlehackon 地点、の年流出高 と 了在地点。 の年流出高的, 外的要用 21万mm, 200 mm とほぼ、等しい。 さらにタンム党成前の1968年~1971年の 取水量で考慮した自流出量の2地点の相関は非常 「高い (Figure 3-1-5)。 サンマ この 2 地(点, の 木目 関 関係 から、1953年から1961年のダイ地点の流出量を算定する。 この時頭首エからの現水量は、1968年から1978年の各月 平均取水量から推定した。以上の検討の結果から算定 された流出量を石とし 3-1-121=示す

(C) Sop Ang. 頭首工地点, n流量

Sop Ang頭首工地点の流出量は、74からの放流 量と残流域からの流出量である。残流域面積は 245 Mile 小さい。残流域からの流出量は94地 点の比流量から算定する。後って日平均流出量は 29~155 MCMで、年平均流出量は58.0 MCMと少ない。

(d) 整発量

ダム貯水面からの蒸発量は実制値がない。 従って近傍のランバン観測所の観測値を用いる (Annex 1+1, Table 1-1-2)

(f) 秋收支計算

本地区のかんかい用水の供給 IJ Kew Lom 7'んから 取水する Kew Lom Canal I= よって、Mae Wang Right Bouke Kew Lom Stage I 及び Stage I か、 Sop Ang 頭首 I から 取水する Mae Wang Left Canal I= よって、Mae Wang Left Bank 及び Mae Pung tt E か"かんかい される。

各地区の26年間の平均かんかい用水量は、次のとありである.

Piversian water Reguriment Water resources (MCM) Kenr Lom Dam 33. 3 Mae wang Right 41.4 Kent Lom Stage I 28.5 Sub - tatal 103.2 Sop. Ang Diversion Mae wong Left 67.1 Mae Pung 43.4 sub- total 110.5 total 213.7

水収支計算は次の于順で行う. • 水收支計算行 11) IMae Pung 地区 E 含七場合 (2) Mae Pung 地区下宫まない場合 のスケース分かう 現在ジムの水操作は、貯水位と降雨による余水吐ゲ 一ト操作基準にもとずいて行なのれている。この時、下 流のSop Ang 頭首エへの責任放流量は12m3/57ある。 この Operation 基準にもとす"リア、アムの水坂支町算を 15 15 うと. Keu Lom 9"4 からの大量の無動放流のため 1-. 乾期に、からりのかんかい水不足が生いる(Figure 3-1-6) したがって、必要な、かんがい用水量を確保するためには 現在の操作基準は次のように変更しなければならない (1)下流への無効放流量をできるだけ小はくする。 (11) 乾期作の植行前的12月には、9~4 は満水状態に しておく したかって、 ダムの Operation を次のように 設定する。

i) 下流への責任放流量は、Sop Ang頭首エ地点の
 残流域からの流出量が、ほとんど期待ですないの
 で、Mae Wang Left Bank 及び Mae Pung 地区の
 必要かんかい川水量を考慮して、Table 3.-1-13 に
 示す値とする。

J-23

(11)) 余水吐丁十操作基準は特に設定しないが、責任 放流量以外の無効放流量は特に乾期には、 できるだけりなくする。

以上の Operation 基準にもとす"いて、 7"4 or 永坂支計 算を行う. その然音県 E Figure 3-1-7 ~ Figure 3-1-9 に示す.

年間の水収支の点からみれば、94地点の平均統流出量は663McMで、この量は410人がい用水量214McMの約3倍に相当している。

水不足を生じている年は次のとおりである。

	流入量	有如雨量	*1) かんかい、 用水量	7足水量
	(MCM)	(mm)	(MCM)	(мст)
1965	421	661	216	13 (0)
1967	501	554	241 (193)	34 (14)
,972	483	786	196	16 (0)

注)。*1):有动雨量は作物別の加重平均により求めに

水桶、烟作物、計

倒天童(ha)15,118 2.387 17.505

· Mae Pung ち豚、「小物后: 水不是 (±1967.年のみ): 生(3

·本義は不足水量かのハレハントの場合のみを記して

これらの年の水不足は各年とも水田の代かう期である 7月1-19い. (麦 3-1-14)

、右年の水不足の原国として以下の点か考えられる。

·1965年版1972年は年流出量は421 MCM友ひ 483 MCMで平年76みてある。(か)以要かんかい用水量の外、7月の流出量か、光れそれ77 MCM, 85 MCM と 非常に少しい、これらの値は10年74年流出量9.5 MCM

より少(+、、ス1965年の7月の有効雨量44.5mm は10.年確率有効雨量1-相当している。(表3-1-15)

1967年は26年间で最大水不足か生(こいう、この年の 終二流生量は501 MCMでほぼ平年なみであるか。 乾期の11月から4月までの流生量から6,1 MCMでこの 値は10年確率流生量64.6 MCMとほぼ同じである。 さらに計画地での年有効雨量は554.mmでこの値は

10年,確率有効用量に等(...

以上の検討の結果水石足を生いている年はいたれも 10年確率の淘水期と考えられる、さらにこれらの水石足も Kew Lom ダム上流のKew Kor Mah ダムの見成後には 2つの水源による水の有効利用によって解消されないあろう。 3.1.3. 用水施設計画

(1) 用水路改修の以要性

メイワン維持管理事務所の年間用水管理費は次 のとおりである。この経費はメイワン 圧岸 及び 右岸用水路 と メイアンブ 幹線用水路 に 対する 1975年 から、1979 年までの 実績である。

单位:1000 g

		R	1	7	Ŕ		: ب	**	8-75	13	貫	- -	2	人民	- 74	113	貨	1	Xà	台	2	<u></u>	
, Seco Seco		19	7	ح	، پرې نور وړ		· · ·		. <i>д</i> ,	47	٢	1.5		9	230	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			28	Ŷ1		6,28	6
53		14	7	6			i i je Na seleta		2.	97	۶	، د ۱۹۹۹ ۱۹۹۹		. 4	92	li i teri Universita		i. Altere	29	6S		6.4.3	ີ
		19	7	7		-1.		مربع، -	.4.,	001	2			1,6	268				3.1	71		8,23	9
5111 .73	1	19	7	<b>P</b>					4	14	0		ý J	1.6	2.75		n por des La section		3.7	44		8.95	9
در در رو کر مراجع		19	71	1		1940°-1			4,	21	0	i k	{ ير مر	× 1	46	1. A. A.			43	96		965	ِّدٍ ال
		F	¥5	1	· · · )	<u>.</u>	ويو العلي الدواري العام العلي و		Ye	66	0			<u> </u>	22				24	31	4	191	L

水路補修費の年平均は、約822,000 パップ メイフンプ 左右 岸日水路分を含めるそ約100万パーツ程度と雅足 Jれる、年間の 物価工具率を6%と仮定すると、耐用年数元年の、続維持 管理費は次式で表される。

維持管理費 = (初年度の管理費) × 1-1-

今、土水路及びコンフリート水路の航用年数系子れぞれ 15年及び、50年とすれて、30年間の資本額に次の とおりてある。

	種 81	水路改修费	雄持管理費	_ <u>_</u>
;	工水路	71,119 11	79,058	150,177
4	コンクリート水路	121,473	12,290 -1	133,763
•	差額	(-) 50,354	(1) 66.768	(+) 16 # 14

注: 1」 エ水路の改修費は初回改修費と 16年目に 水路整形費を次の様に算定した。

> 政修費(71,119)={11費(24,370)+構造的等(23,379)} + {工費(24,370)}

シュニンクリート水路の管理費目 ひ修後 5年K1度 1.00 Tバーツ程度の改修を行う場合で次式K より算定した。

管理費(12290)=1000(1.06"+1.06"+1.06"+1.06"+1.06")

以上の比較から年間資車投資額で約55万バーソ コンフリートライニンフェとすることが有利であり水の搬送 ロスが大きいため下流部に水不足を生じ管理方法 か 容易ですい。 (2) メイフッンフッ地区の用水路改修計画

× 1 70 > 7" WE O 1X & NE 4942 " /sec & +2-0694 から供給する場合の水収支は既述の女人 喝水年を 除いて、水不足は少ない。今三の地域の用水を キューロムダムからの、給水とした場合と、メイヤンダム 特しとした、協合について、その工事費を比較する。 前着了 既設メイワン左岸解線を拡けひ修し、メイプシワ、解線 及び、物人20大加の暗渠を全自改修する計画とし、 後者は原果にする場合である。雨果による水路規模 流量、増加用地面積は概略次のとおりである。 原果 振り星 R H 流量 水路在中水路高 流量 水路底中 水路高 雨吧切

(KM) (m3/5) (m)(m 3/5) (m)(m) (m)(n) 0~9+200 8:02 2.70 2.07 12.96 3.50 193 2.45 9+200 ~ 14+600 7.11 2.70 1.97 12.05 2.50 2.38 2.02 14+600 ~ 23 + 500 5.67 2.70 1.80 10.61 1.81 3.00 2.31 23+500-27+650 5:14 2.70 6.62 10:08 3.00 2.22 2.09 27+ 650 -33+ 890 3.88 2.10 1.56 8.82 3.00 2.11 2.55 33+890~35+590 1:74 1.90 1.09 . 6.69 1.78 2.70 2.87 35+590 - 36+990 1.42 1.90 1.01. 6.36 2.70 1.74 3.01 26+990 ~ 39+500 1.08 1.20 1:03 6.02 2.70 1.70 3.53 · 39+500 ~ 40+700 4.94 200 200

用地の増加面積は約9.0元(56 nai)でその関4又費は、約560,000パーツである、又RIDが1975年に計画してメイキャンダムの建設工事費は1980年単個に17.

約560,000,000 バーツと見積られる. この計画に おける かんかい 受益 創種 ほ、約16,000 兄a (100,000 ライ)で メイフッンフ"地区の受益 旬積 約3200 兄a (20,000 ライ) は 20% に相当する. 従って. 9 ム 関連 工事費の メイフッンブ 負担分 は 約112,000,000 パーツと見積られる. 既述の 水路 施設に要する 雨案の、工事費 は 概略 次のとおり てある。

水路名 原案工事責 抗中东工事骨 差额 メイワン左岸水路 50767 74, 368 (1) 23,601 メイフェブ幹線 7.756 13.588 (+) + 832 暗渠 10,173 (+) 10:173 メイアンフリンフ水路 1.960 (-) 1960 用地買収 250 560 (+) 310 60.733 98.689 (1) 37.956 94関連工事實 112,000 (-) 112,000

従って建設工事費は約7×00万バーツ原案、即5×1 サンダム案が副価とするが将来の水管理、メイモン流域開発の促進、開発効果を考慮し、9イ政府案の原案を 採用する。尚この場合の内部収益率は約24元為で 十分経済的に分当である。 (3) 各用水路の計画流量の決定

計画用水量の 算定日、次式による。

Q = 8p Ap + 8u + AU

ここに Q:計画流量(m^ys) 8p:水田の単位用水量(^{m^ys/ka)} Ap: かんかい面積(ta) 80 X田の単位用水量(^{my}s/ka) Au: , かんかい面積(ta)

水田の単位用水量

本文で 述べた如く、しろかき期間一定流量とする方式 を採用し、水田の単位用水量は次式で示される。 (誘導過程については後述)

 $g_P = \frac{Dt}{8.64. Ec} (1 - e^{-(Dt/Ds)N})$ 

ここと	Dt	水稻の所要水量	(m/day)
	Ds	1.3かき所要水量	(m)
	$\mathcal{N}$	全面積の13かき	日数 (day)
	Ec:	かんかい 効率	

Dt は水田の作付面積が最大となる雨期の作付期の値 を用いる.

7月367。	の消費水量	4.52	ma / day
"	有效雨量		
	Dx =		

(3かき附要水量 Ds = 200 mm

13 10 3 日数 N = 30 days

3 - 3/

かんか" 助率 Ec = 0.60

故に上式より

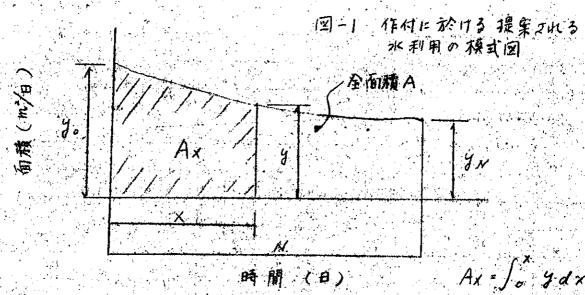
81 = 8.64 × 0.60 × (1-E - (3.36/200.) × 30

= 0.00163 m³/s/ ha kati 3

畑の単位用水量

火田の単位 用水量 1日 次式 で 末 43 8- = <u>x × 10-* × 10*</u> 8- = <u>x × 10-* × 10*</u>

==1、 d. X田地の日消費水量(""/day) Ec. X山北小动率


7月3旬の、湖北日销費水量行名作物の作村面積での 加重平均で、ニュス・アタッン/dag 直効自動ニン・シーン/dag

0.000 35 m/s/ ha

カムが"い効率 = 1.53 ~ "/ day かんか"い効率 = 10.51

故下。

作材準備期間一定流量とする水路規模の決定 時間 X と 作材面積 y の 北率の関係を y=f(x) と する。即ち 次回 K 示す様 K X=0の時の y= yのを 始点とし, X=N, y=yx の 終点で、面積 A を 持 っという条件下で、時間 X での 13かき 用水量及び 縮の 移植時の12季水量 13 それぞれ



Qs = y.Ds

 $Qt = A \times Dt = Dt \int^{x} y dx$ 

又 Qs と Qt の合計 17

 $Q = y \cdot Ds + Dt \int_{0}^{1} y \, dx$ 

水路の規模決定に当り最も経済的は条件は 全作付期間を通じて一定流量を供給すまため、 Q=一定とし、(1)の微分方程式は

A = J ydx

--- (1)

 $0 = Ds \times \frac{dy}{dx} + Dty$ 

 $\frac{dy}{dx} = \frac{Dt}{Ds} \frac{y}{y}$ 

前記 微分才程式(2) IT Qs+Qt IT 常K一定 流量水等しいという条件であり、その解は

- (2)

 $\int \frac{dy}{y} = -\frac{Dt}{D} \int dx + C$ 

 $\begin{array}{l} \mathbb{E}T5 \quad \log y = -\frac{Dt}{Ds} \times + C \\ Ds \\ y = e^{-Ct} \cdot \frac{Dt}{Ds} \times f = e^{-Ct} \cdot e^{-\frac{Dt}{Ds} \times f} \end{array}$ 

-- 作 e:自然対数の底 2.718282

常数 E、IT X=0 で y= y。の条件を与えることに より毎座され

 $y = y_0 e^{-\frac{Dt}{Ds} \cdot X}$ (3)

伯子となれ、ほ

A = J ydx  $A = \mathcal{Y}_{a} \int_{0}^{N} e^{-(Dt/Os)X} dx = \mathcal{Y}_{o} \left( \frac{e^{-(Dt/Os)X}}{-(Dt/Ds)} \right)^{N}$  $A = \gamma_0 - \frac{e^{-(Dt/Ds)N}}{-(Dt/Ds)}$  $\gamma_o = \frac{ADt}{Ds (I - e^{-(Dt/Ds)N})}$ 

yoの値を(3)式に代入すれば

 $g = \frac{A D t e^{-(Dt/Ds)X}}{Ds (1 - e^{-(Dt/Ds)N})}$ 

流量Qは作件準備の全期間一定であることより, X=Nの時のQは客易に求められる。(1)及び(5)式 ほそれぞれ

$$Q = \mathcal{Y}_N Ds + ADt$$
  
$$\mathcal{Y}_N = \frac{ADt e^{-(Dt/Ds)N}}{Ds(1-e^{-(Dt/Ds)N})} - - - - (6),$$

-(5)

 $\overline{DT} K Q = \frac{ADt e^{-(DT/Ds)N}}{1 - e^{-(DT/Ds)N}} + ADt$ 

水路の導水中の損失を考えれば流量の日

 $Q = \frac{ADt}{1 - e^{-(Dt/Ds)N}} \cdot \frac{1}{(1-h)} \cdot (7)$ 

決定式

報送効率 Ec が (7)式で 適用されれ(下,最終の)修正式17

$$Q(m^{\prime}/B) = \frac{ADt}{Ec(I-e^{-(Dt/Os)N})}$$
(8)

Q(CmS)-(9) 8.64 Ec (1- C (Dt/DS)N) 面積 La AR: ント Ec: 百分率の小数 水路の規模(最大流量) Q かんがい 面積 加? A 水稻の所要水量 加伯 Dt -水田を湿潤にするのに必要なし3かき所要水量加 Ds: 全面積 A の作付準備期間 日数 日  $\mathcal{N}$ 日の秋数 T

解,線石	区間	流量	勾. 两已	百幅	水滨	流过
		m3/5		m	m	m
lae Wang	0~9200	8.019	16,000	z.70	1.67	0.91
oft Main	9.200 ~ 14.600	7.108	. 1	"	1.57	0.81
Canal	14,600 ~ 23,500	5.666	• #	*	1.40	0.84
	23,500 ~ 27,650	5.136	1/5.000	<i>t y</i>	1.27	0.81
	27,650~33,890	3. 818	*	2.10	1.21	0.8
	33890 ~ 38400	0.697	1/1000	1.20	0.40	0.9
			42	an a		
Mae Wang	3.372 ~ 11.800	v 973	14000	2.10	. 1.16	1.8
Right Main	11,800~ 21,868	3.299		4 - <b>4</b>	1.05	0.8
Canal	21,868 ~ 28.700	2.514	<b>,</b>	1.90	0.95	0.7
	28.700 ~ 31,600	0.969		1.20	0.69	0.6-
	31600~38,658	0.643	n an		0.56	0.5
				n de la composition d La composition de la c	• • • • • • • • • • • •	
lae Pung	0~1.700	1. 143	14000	1.90	0.79	0.74
Tain Canal	1.700 ~ 3100	1.418	<b>7</b> * .	• "	0.71	0.68
	3.100~ 5608	1.075	· · · · · · · · · · · · · · · · · · ·	120	0.78	0.68
lae Pung	an sea	> > 20	1	. 0.		
Pright Canal	0~ 2,800	2.298	14,000	1.90	0.91	0.7
and the second	2,800 ~ 8,300	1.355		4 80	0.69	0.6
	8,300 ~ 12,300	0-815		0.80	0.80	0.60
lae Pung	0~ 3.000	2.644	13.000	1.90	0.90	0.91
eft Canal	000 ~ 4500	1.927		er en	0.76	0.64
V	4,500 ~ 6,520	0.209.	1/2500	*	0.40	0.55

3-2 排水計画

3-2-1 排水量の重定

排水量の算足は一流出特性の異る地区内の排水と、地区水の午れとを区別して考える1公要がある。

(1) かんか 11 水田

一般に地形傾斜をわた水田の排水現象は 降風後田面上の余剰水が高位部の水田から 他位部の水田へ流下する為本地区の様に、傾斜 がある水田地帯では、他位部へ自然排水が可能 である。従って、他位部にす余剰水が一時的に 港水するが、竹が許容範国内であるほらげ、湛水 被害の心眠は少ない。

単位排水量の算麗方法

一般 K 水稲 は 10 cm 以上の港水 W ある場合. その港水期間とその期間中の平均水深 K 5~7 その収量 K 影響を愛ける。

従ってかんがリ水田の単位排水量は水下の様は

。割位部の瞬間により麻制水はただちになな部の水田に排水2れる。

·地区内に降った目は、全地区の名を占める 低位部に販溜まれる。

強降雨の時期はかんがいを中止する。

·降雨開始後九日後の田面湛水深は火井に より求まる。

 $D = A \{ R(n, max)_T - n(DC + CU) \}$ 

ンド D ひ日後の田面上の港水深(mm) R (n, max)T: 超過確率 1/5年におけるハ 日間最大降雨量(mm/day) DC: 排水容量(mm/day) CU: 水稻の日消費水量(mm/day)

。地区内の低位部日全面横の4 至想定する。 即ち A=4とする。

A=4と決定したが、これ以上の値とすれば 小面積に深くかっ長時間にわたり港水が 集中的に生することとなり、減収が激しくな る、また以下の値とすれば、大面積に残く かつ短時間の港水となる。減収率は少 なくなる。従って全体的に見れば、被響の量は Aによってそれ程は変化しない。

• 丁の値は経済的な観点から決定すれるか。 本計画に於ては「=10とする(物年超過確率)

•一般に田面に10cm以上の港水があっても、その 港水期間か、3日以内でその期間内の平均 港水深か。20cm以下であれば水稻への被居 は少すい。

以上の様び諸条件から、田面上10cm以上の *港水期間を3日以内で、その期間内の平均港水深 を20cm以下に保う為にす次の条件を満足しな りればすらない。

 $D_1 = A \left\{ R \left( 1, max \right) T - DC - CU \right\}$ 

D2 = A { R (2, max) T - 2DC - 2CU } & JHLIJ"

 $\frac{D_{1}+D_{2}}{2} = \frac{A}{2} \left\{ R(1, max)T + R(2, max)T - 3DC - 3CU \right\} \left\{ 200 \right\}$ 

上式をDCについて変形すれば次の様になる。

 $DC > \frac{1}{3}R(1, \max)T + \frac{1}{3}R(2, \max)T - \frac{400}{3A} - CU$ 

1/1 確率雨量は Lampang 市の 1952年~ 1978年の 降雨データより 次の様に計算された。

	加最大日日	1 R (1, max	)10	/10 最大	2日連続到廿	R (2, ma)	x)10
·	98.	8 mm			125.3 mm		

上記の値を用いて単位排水量は次の様に計算11人る。

 $DC = \frac{1}{3} (.98.8 + 125.3) - \frac{400}{344} - 5.2$ 

= 36.2 m m/day

= 4.19 \$/s/ ha = 0.67 \$/s/ pai

単位排水量は 4.19%/ね と計算されたが この 値は モンスーン 地帯の降雨の特色である 降雨の局地 性, 即ち広域になるにつれて 降雨強度け 他くほろと いう点を考慮し、流域の大までにより、減少する。 流域による 減少率と単位排水量は次の様になる。

流域	<u>我 你</u> 奉	¥	位排水量	
ka			2/5/ h	2
0~ 320	1:00		4.19	• •
120 - 200	0.90		3.77	·
800 ~ 1.600	0.85		3.56	
,600 ~ 3200	0.80		سمي و. س	;
3,200 ~ 8,000	0.75		3.14	•
8,000 ~ 16000	0.70		2.93	

流域 153 单位排水量

(Z) 地区外排水

■場内の排水を検討する中でも、地区外の流域 を大きくかかえる急激は流出を受ける排水路には 地区外流域に対する to-7 流出量は ラミョナル 式を適 用する。

ラショナルゴロ次式で表かりれる。

Q = 1/26 . f . r. A

rt: 波水到建時間内の平均降和強度(""hr) A: 流球面積(km・)

決水到達時間は次式により求まる。

 $T = T_1 + T_2$ 

5214

丁: 洪水到建時間 T, 山腹流下時間 T, 河道流下時間

山腹流下時間(Ti)は次のカーベイ式T"求める。 T=(%×3.28×l×デラ)^{0.467} こに と:山腹流下延長(m) S 平均勾配

n:粗度係数に類似した 遅滞係数=0.60

河道流下時間(T2)は Rziha 式による。 T2=-/W W=20(H/L)06 ニド W:流速(M/sec)

L:河道水平延長(m) H:河道上下端標高差(m)

法水到達時間内の平均降雨強度(な)は次式 に 5) 求める。 た・たい(デ)ⁿ

「Su! 確率日用量 の - 5

上記の諸式を用いて地区外の流域を持つ排水路 No.3,5.7.9 の設計 10-7流量け Tacle 3-2-1 ド 示する。 約.流域面積 ド する 低減率も前項と同様 適用する。 3-2-2 幹線排水路の計画

本地区の幹線排水路と17、図 3-2-1 に示す通り 11路線を改修する。現在用排兼用と(利用IM7 113 Mae Poon 排水路, Mae Pung 排水路では途中の 堰等の構造物はすべて取り除き 排水施設と17 改修する。

	an a		The tot (ha)		
排水路名	<u>政修延長(m)</u>	REA	THE BY		
NO. 1	3,300	272	en e		
NO. 2	2.900	241	—		
NO. 3	3,300	4011	1.210		
NO. 3-1	1:000	(227)			
NO. 4	1.2.850	6.105	الله شرائی از العمالات بالانتخاب المراجع		
NO.5	16.650	3.9.98	1925		
NO. 5-1	2.600	(195)	1.120		
NO.6	5,600	5.13	na an a		
NO. T	2500	103	5.263		
No. 8	8400	1.178			
NO. 9	1.850	1.53	620		
Total	60.950	12.974	10191		

尚、一部の排水路は用水路で、地区外、地泵排水をキャッチしてものかが放流される為その流量も加味する。

3-2-3 排水植門の12要性の検討

(1) Mae Wang 11 の 詞川水位

Mae Wang川の水位観週川は Lampang市及い kokha 都で"行日の山ており、その観測に結果は表 3-2-2 に示す通りである。

kokha地点の観測資料が「リル為 Lampeng 中の 資料による確率水位は次のとおりである。

· · · · · · · · · · · · · · · · · · ·	د . د وبر منهده .	an an an an an an	a Arran a Arr		an a	
石器	寧年	• ••••		流量		
	н н. н. Са				ي او در او در او مرکز برد در او	ر میں ۱۹۹۰ - ۲۹۹۹ ۱۹۹۰ - ۲۹۹۹ - ۲
	1/2	n an		372		
	1/5			552		
n da an	1/10	a en historia.		6.78		
	1/20			805		
	1/50		а 	976		
	1/100			1.109	ne transformation transformation (t	1.

(2) 排水植門の18要性

前項において推定して河川水位と各幹線排水路の 出口の推定水位を比較すれば、Lampang 京上流でで 問題はないか、下流排水路 No.4, No.5 及び、No.8 について 外水位が内水位を上かる事が、予想をれる為、排水種門 の設置が以至て: ひろう。 しかし ほがら、Mae brang 川の 河川勾配, 名排水路出口敷高等の Data が 不足(ている 為、 烏後 詳細灯 調査の上 旋計 が 15 要 7、 ある。 3-2-4 神設計画

## 蘇線排水路の計画流量 及び諸元

N 0, 1	0 ~ 2,500 2500~ 3.300	m ³ /s 4.9	219 - 112 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 119 - 11	a w	m	m/s
17 4 4		4.7		•		
	2500~ 3500	<b>A</b>	1500	2.0	1.2.3	1.04
		0.5	2	0.5	0.60	0.59
NO.Z.	on 2000	1.0	1,000	1.0	0.80	0.54
	2000~ 2900	· 0. 3	1600	0.3	0.55	0.49
NO. 3	0~ 1370	31.9	1/550	7.0	2.05	1.55
an bar An Anna - Chairman Bar, a' Anna - Chair An Anna - Chairman Anna - Chairman Anna - Chairman An Anna - Chairman Anna - Chairman Anna - Chairman - Chairman	1370 ~ 3300	0.7	11.000	0.5	0.82	0.50
					· · · · ·	
NO 3-1	0~ 1,000	31.0	1600	6.0	. 2.20	1.51
N 0:4	0~2380	19.2	1860	5.0	2.00	1.18
	2360~ 4920	17.6	1/1600	4.5	2.37	0.92
	4.920 ~ 8.700	15.4	"	4,0	2.31	0.89
	8700 ~ 10550	11.2	"	"	1.97	0.82
	10550 ~ 12850	8.9	"	سکی ہی	1.83	0.78
No.5	0 ~ 1800	610	1/2000	12.0	44. س	1.12
	1,800 - 7,400	60.3	1/830	10.0	2.75	A. \$\$
	7,400 - 12950		1,	10.0	2.60	1.1-2
	12950~ 16650		1/700	7.0	2.18	1.43
No.5-1	0 ~ 2600	18.4	1/200	5.0	1.88	j: 25
	•	,		•	1.04	,
NO.6	0 ~ 2350 2350 ~ 5600	5.8	1/1000	3.0	1.38	0.83
	2,350~ 5600	5.0	1/450.	2.0	1.21	• •
No.7	0~ 2+00			. •	ده. د	1.54

			an afair a start a star		
解耀转水路No	反開	流量	an k	<b>振</b> 7K 题	流速
	a and a second secon	m 3/5	<u>, , , , , , , , , , , , , , , , , , , </u>	n m	mls
		and a start of the second start			<b>1</b> 0
and a star of the second second	e in the second seco		San and a start of the start of the	ليربع المراجع المراجع المراجع	and a second second Second second

NO.8 0~ 18:50 4.2 /1000 25 125 1.77 1850 ~ 3.600 3.8 3,600 ~ 6600 28 /800 1.5 1.14 0.76

6400 - 8400 1.1 1900 1.0 0.79 0.63

No.9 0~1850 137 160 40 1.72 1.21

a and a second secon Second second

			<del>م</del> د						Unit: ha	
	•		<b>.</b> .		2				Vegetable	
Season	Name of Tract	Zone	Rice	Rice Peanuts	Tobacco	Soybean Chilli	Garlic	Sugarcane	Orchard Pineapple	Total
Wet	Mae Wang Left	1,2,3,4,7	4,829	33	33	67	1	•	263	5,255
	Mae Wang Right	8, 9, 10	2,573	ı	ŀ	. 75	ł	I	163	2,811
	Mae Pung	5, 6	2,781	23	33	ļ	1	93	33	2,963
	Kew Lom I	12	2,279	251	251	279	,	. 93	139	3,292
	Kew Lom II	I	2,656	ı	ı	۰,	ı	304	224	3,184
•	Total	•	15,118	307	317	<u>451</u>		061	822	17,505
Dry	Mae Wang Left	1,2,3,4,7	1,417	972	521	488	574	\$	316	4,288
	Mae Wang Right	8,9,10	482	735	102	289	374	ı	316	2,298
	Mae Pung	5 <b>,</b> 6	1,340	493	167	163	103	<b>£</b> 6	47	2,406
	Kew Lom I	12 -	1,169	684	F	326	944	63	205	2,821
	Kew Lom II	ł	ł	192	112	144	•	304	592	1°344
	Total		4,408	3,076	902	1,410	1,395	490	1,476	13,157

ľ

•uo (2) The irrigable area in Kew Lom II are estimated by the ECI Feasibility Report.

(3) The ratio of wet to dry season crops in project area assumed at 80% tentativel $m{j}$ 

(4) The ratio of Kew Lom II is 42% by the ECI Feasibility Report.

ANNEX 3-1 Table 3-1-1

## Consumption Use for Each Crops

Unit: mm/day

		Ric	e		Upla	nd Crop	1		
Month		H.Y.V.	L.V.	Peanut	Tobacco	Soybean or Chilli	Garlic	Vegita- ble or Fruits	Sugar- cane
	1 2 3	3.10			1.27 1.44 1.69		1.22 1.43 1.80	1.89 1.89 1.89	1.39 1.69 2.00
	1 2 3	4.40 4.45 4.63		1.37 1.37 1.56	2.62 2.93 3.13	1.37 1.37 1.41	2.82 3.12 3.19	2.39 2.39 2.39	2.86 3.08 3.28
	1 2 3	5.86 6.22 6.48		2,31 2,90 3,62	3,99 3,84 3,13	2.14 2.58 3.21	3.29 1.92 0.83	3.00 3.00 3.00	4.35 4.56 4.78
+	1 2 3	7.55 7.69 7.65		4,56 3,81 2.18	2.44 1.47 0.60	4.34 4.73 4.56	0.01	3.49 3.49 3.49	5.77 5.88 5.99
May	1 2 3	6.97 6.81 6.50		0.62	. •	3.22 1.88 0.75		3.18 3.18 3.18	5.51 5.49 5.46
Jun.	1 2 3	4.47 3.17 1.78						2.68 2.68 2.68	4.55 4.45 4.35
Jul.	1 2 3		4.52 4.52 4.52	1.41 1.41 1.62	1.41 1.41 1.41	1.41 1.41 1.49		2.46 2.46 2.46	3.88 3.75 3.61
Aug.	1 2 3	~ 1	4.21 4.33 4.56	1.75 2.22 2.73	1.48 1.69 1.98	1.63 1.94 2.45		2.25 2.25 2.25	3.13 2.96 2.77
Sep.	1 2 3		5.03 5.27 5.41	3.01 2.52 1.45	2.51 2.81 3.01	2.90 3.13 3.04		2.32 2.32 2.32	2.69 2.55 2.41
Oct.	1 2 3	·	5.30 5.18 5.03	0.45	3.03 2.92 2.37	2.39 1.43 0.63		2.28 2.28 2.28	2.13 1.83 1.52
Nov.	1 2 3		4.28 4.15 0.24		1.36 0.82 0.34	0.01		1.95 1.95 1.95	1.15 1.13 1.10
Dec.	1 2 3			·	0.27 1.00 1.02		1.00 1.00	1.75 1.75 1.75	1.00 1.00 1.12

Note: Consumptive use for Rice crops are including percolation 1.00 mm/day.

Monthly Effective Rainfall for Paddy Rice

*

Total	***	4°169	532.6	651.7	728.8	543.5	674.5	775.6	785.2	803.4	601.4	742.8	710.8	. 675.5	796.7	564.7	683.9	735.2	936.8	1.010	801.0	816.5	882.2	930.l	533.4	820.2	649.1	
Dec.	0.0	0.0	0.0	18.7	0.0	0.0	0.0	0.0	<b>⁺</b> •7	1.8	1.0	6°0	0.9	1.3	7.3	1.0	0.0	1.9	21.1	15.0	11.2	0.0	+ -	5,9	1.6	22.3	0.0	
Nov.	9.Lf	15.7	7.7	11.0	11.0	0.7	9.7	0.0	35.0	18.4	0.0	41 4	1.1	17.3 [°]	20.1	35.4	10.4	0.0	8.0	1.5	70.1	36.9	100.8	19.0	11.0	2.5	0.0	
Oct.	64.2	41.8	102.1	32.9	47.5	66.1	69.5	63.8	76.3	122.8	90.1	127.6	102.5	105.4	36.2	36.7	64.3	39.2	75.1	115.9	119.8	.69 <b>.</b> 1	47.l	146.4	69.4	131.7	64-8	
Sep.	130.9	177.9	96.2	87.7	152.6	124.4	103.8	116.3	168.9	145.0	163.5	137.3	184.0	89.6	127.9	120.8	93.8	172.4	186.7	162.1	104.6	171.4	203.9	133.7	132.2	152.6	154.0	
Aug	144 <b>.</b> 9	149 <b>.</b> 3	147.8	168.7	157.1	79.8	120.4	112.1	177.9	180.1	123.8	144°3	80.2	128.3	165.1	<b>h</b> *16	98.5	129.9	134.0	140.8	161.9	128.5	102.3	187.6	127.0	157.8	9 <b>6 8</b>	
Jul	81.6	98.7	21.4	62.8	117.1	70.5	50.5	116.3	115.7	42.1	84.8	105.1	111.3	44.5	89.7	78.5	58.4	61.6	81.9	186.9	80.9	168.0	88.5	155.8	46.5	98.5	129.5	
Jun.	77 2	119.0	45.5	112.9	49.9	89.8	145.O	91.3	98.5	77.8	53 <b>.</b> 0	117.8	59.6	105.2	84.6	77.9	136.8	96.9	159.0	76.9	81.7	68.1	102.1	89.7	30.2	8.5	50.0	
May	43.5	48.8	92.8	110.8	110.5	55.6	51.8	191.4	86.5	141.8	66.8	18.1	138.4	73.1	199.5	86.2	113, 5	126.4	167.7	154.9	60.9	113.8	115.8	106.9	1.06	95.8	117.5	
Apr	36.6	20.3	7.8	32.2	82.4	36.6	24.3	81.7	0.4	43.9	14°1	14.1	31.7	41.7	0.8	36.1	102.1	94.8	56.2	30.5	83.5	18.2	89.0	17.4	14.9	89.5	11.2	
Mar.	***	0.0	10.0	0.0	0.7	17.0	71.8	· 2.5	12.2	27.4	0.7	4,6.	0.0	26.5	5.8	0.3	4.8	9.1	38.3	18.9	23.9	ц2. ц	28.2	18.1	0.0	9.2	0.0	
Feb.	***	1.6	1.1	13.9	0.0	2.8	0.0	0.0	0.0	1.8	0.0	1.5	1.0	42.4	0.1	0.0	1.1	0.0	8.7	9.0	0.0	0.1	0.0	4.6	10.3	0.0	11.8	
Jan.	***	18.4	0.0	0.0	0.0	0.0	27.6	1.0	12.2	0.3	3.2	0.0	0.0	0.0	9.4	0.1	0.0	2.8	0.0	0.0	2.4	0.0	0.0	4 <b>4.</b> 8	0.0	51.7	13.4	
Year	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968 ·	1969	1970	1971	1972	1973	1974	1975	9261.	1977	1978	

ANNEX 3-1 Table 3-1-3

Note: Upper limit (10 days) are 70 mm.

Monthly Effective Rainfall for Upland Crops

1

Total **** 527.4 412.1 552.2 559.1 559.1 559.3 601.5 556.6 608.2 556.6 608.2 556.6 608.2 556.6 608.2 556.2 602.3 718.2 651.8 652.3 652.3 652.3 556.0 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 555.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 555.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 556.2 5 0ct. 61.6 73.11.8 73.11.8 73.11.8 73.11.8 73.11.8 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 73.12.9 74.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.12.9 75.1 Jul. 72.2 69.7 21.4 221.4 23.6 93.6 93.6 986.7 70.9 855.4 855.4 855.4 855.4 855.4 855.4 855.4 70.9 922.9 792.8 123.0 123.0 123.0 109.8 123.0 109.8 123.0 100.5 555.5 100.5 555.5 100.5 555.5 100.5 555.5 100.5 555.5 100.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555.5 555 May 48.8 48.8 48.8 48.8 81.5 75.0 75.0 75.0 81.5 63.3 123.0 63.3 123.0 63.3 123.0 63.3 123.0 63.3 95.9 95.9 95.9 95.5 95.5 95.5 88.5 73.9 92.5 88.5 83.6 83.6 Apr. 36.66 7.88 7.88 7.88 53.42 65.1 85.22 65.1 85.2 85.2 85.2 82.2 82.2 82.2 72.1 18.2 72.1 18.2 11.2 11.2 11.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 lar. Jan. 

others 8,259ha x 40mm/8,749ha = 41 mm (10 days)

average 41 mm/10 days.

Upper limit are weighted Sugarcane 490ha x 50mm +

Note:

Unit: mm	Annual	726.3	627.2	577.5	537.4	4.524		579.4	512.7	480.7	455.6	, 428.8	
•	JulNov.	458.8	389.4	356.3	330.5	303.2		361.7	319.5	1, 552	283.7	266.3	
	Oct.	76.3	53.1	43.0	- 35.7	28.3		67.6	50.7	143.0	37.2	31.3	
	Sep.	139.5	112.4	98.8	87.8	75.8		104.0	91.0	84.9	80.2	75.2	
~	Aug.	131.2	107.2	96.4	88.4	80.1	÷	96.6	80.0	72.5	6.9	61.0	
	<u>Jul.</u>	83.7	56.3	45.0	37.1	29.4		72.0	52.1	42.6	35.2	27.3	
• . •	Rice	1/2	1/5	1/10	1/20	1/50	Upland	1/2	1/5	1/10	1/20	1/50	

Return Period of Monthly Effective Rainfall in Wet Season

3-52

ANNEX 3-1 Table 3-1-5

Station: Lampang 1952 - 1978

*

	(m	1	19.8	8.8	5.0	2.6	0.4		19.6	<b>д.</b> ц	5.4	2.6	0.0	
Mim	0ct.		19.1	1°6	5.5	3.1	1.0		19.2	9.5	5.7	3.1	0.6	
Unit:	4	ļ	31.3	16.7	11.2	7.4	3.8		25.2	15.3	11.8	9.5	7.5	
	3,		41.3	26.5	21.0	17.4	14.0		33.0	24.7	21.2	18.7	16.3	
	Sep.		40.9	25.9	20.4	16.7	13.4		33.1	24.0	20.3	17.7	15.L	
			41.3	23.1	17.0	13.2	10°0		32.5	20.3	15.9	13.0	10.4	
	m		47.0	27.3	20.6	16.3	12.5		33.4	22.6	18.5	15.6	12.9	
	Aug.		46.0	26.9	17.6	10.3	2.4		30.2	19.3	15 <b>.</b> 3	12.6	10.1	
		<b>、</b> ·	30.7	17.3	11.6	.1.5	, <b>3.</b> 3		24.4	12.4	. 8.7	6.5	4.7	
	. თ		33.7	17.5	10.9	6.3	1.9		29.4		12.1	7.4	2.2	
·	Jul.		20.7	8.7	4.9	2.6	0.6		20.1	9 <b>°</b> 6	5.4	2.4	0.0	
•		Rice	1/2	1/5	1/10	1/20	1/50	Upland	1/2	1/5	01/1	1/20	1/50	·

Return Period of Ten Days Effective Rainfall in Wet Season

52-53

ANNEX 3-1 Table 3-1-6

Station: Lampang 1952 - 1978

.

		Pac	ldy	Sugar	cane	Upla	nd
		Effec-		Effec-		Effec-	•
<u>Month</u>	Rainfall	tive	Rainfall	tive	Rainfall	tive	Rainfall
	(mm)	(mm )	(mm/day)	(mm)	(mm/day)	(mm)	(mm/day)
Jan. 1					د		
2	0.2	0.1	0.01	0.1	0.01	0.1	0.01
3				0.1	0.01	0.1	0.01
Fab 1							1
Feb. 1 2							•
3							
Mar. 1							
2	0.4	0.3	0.03	0.3	0.03	0.3	0,03
3			•		,		
Apr. 1							
2	24.9	18.7	1,87	18.7	1.87	18.7	1.87
3	23.3	17.5	1.75	17.5	1.75	17.5	1.75
May 1	52.9	39.7	3.97	39.7	3.97	39.7	3.97
2	28.3	21.2	2.12	21.2	2.12	21.2	2.12
3	33.7	25.3	2.30	25.3	2.30	25.3	2.30
7							
Jun. 1 2	74.1	55.6	5.56	50.0	5.00	40.0	4.00
3	18.3 11.5	13.7	1.37	13.7	1.37	13.7	1.37
	. TT • O	8.6	0.86	8.6	0.86	. 8.6	0.86
Jul. 1	21.3	16.0	1.60	16.0	1.60	16.0	1.60
2	64.8	48.6	4,86	48.6	4.86	40.0	4.00
3	18.6	13.9	1.26	13.9	1.26	13.9	1.26
Aug. l	19.1	14.3	1.43	14.3	1.43	14.3	1.43
2	9.5	7.1	0.71	7.1	0.71	7.1	0.71
3	161.2 ···	70.0	6.36	50.0	4.55	40.0	3.64
Sep. l	22.1	16.6	1.66	16.6			
2	~~45.7	-34.3	3.43	34.3	1.66	16.6	1.66
3	174.8	70.0	7.00	50.0	3.43 5.00	34.3 40.0	3.47
						40.0	4.00
0ct. 1	14.9	11.2	1.12	11.2	1.12	11.2	1.12
2 3	26.1	19.6	1.96	19.6	1.96	19.6	1.96
. 3	8.0	6.0	0.55	6.0	0.55	6.0	0.55
Nov. 1	16.2	12.1	1.21	12.1	1.21	12.1	1.21
2	23.3	17.5	1.75	17.5	1.75	17.5	1.75
3	7.7	5.8	0.58	5.8	0.58	5.8	0.58
Dec. 1	1.4	1.0	0.10	1.0	0.10	1.0	0.10
2					0.40	<b></b>	0.10
. 3							
Total	902.3			510 I		400 T	
IULAL	302.3			<u>519.1</u>		480.5	

Effective Rainfall for Each Crops in 1967

Note: Effective Rainfall = 0.75 x Rainfall

Upper limit of effective rainfall are 70 mm for Paddy, 50mm for Sugarcane and 40mm for Upland.

ANNEX 3-1 Table 3-1-8

## Diversion Water Requirement for Paddy Rice in 1967

		H.Y	Υ.		L.	v.	
	Effective		Diversion Water		t Water		ion Water
	Rainfall	Requirement	Requirement		uirement		irement
	(mm/day)	(mm/day) (l/s/ha)	(mm/day) $(mm)$ $(l/s/h)$	a) (mm/da	y) (l/s/ha)	(mm/day) (	(mm) (%/s/ha)
Jan. 1	0.00			• .			
2	0.01	0.6284 0.072	1.03 10.3 0.120				
3	0.00	6,95 0,809	11.58 127.4 1.340	•			
Feb. 1	0.00	8.53 0.987	14.22 142.2 1.645				
2	0.00	9.93 1.149	16.55 165.5 1.915			•	
3	0.00	4.63 0.535	7.72 61.8 0.892				
Mar. 1	0.00	5.86 0.678	9.77 97.7 1.130				•
. 2	0.03	6.19 0.716	10.32 103.2 1.193		- ,		•
3	0.00	6.48 0.750	10.80 118.8 1.250				
Apr. 1	0.00	7.55 0.874	12.58 125.8 1.457	-			
2	1.87	5.82 0.674	9.70 97.0 1.123			•	
3	1.75	5.90 0.683	9.83 98.3 1.138				. *
May 1	3.97	3.00 0.347	5.00 50.0 0.578				
2	2.12	4.68 0.542	7.80 78.0 0.903				
	2.30	4.20 0.486	7.00 77.0 0.810				· · ·
1 4 March 19	5.56						'
Jun. 1	1.37	0.00 0.000 1.49 0.172	0.00 0.0 0.000 2.48 24.8 0.283				
3	0.86	0.46 0.053	0.77 7.7 0.088			•	· · · · ·
	1.60			. ,	0.74	10.00	100 0 1 100
i, 2;	4.86	1	•	6.17 4.73			102.8 1.190
3			•	8.35		7.88 13.92	78.8       0.912         153.1       1.612
				1	1		
Aug. 1	1.43		•	3.35		5.58	55.8 0.647
2	0.71		· ·	3.62		6.03	60.3 0.698
	•	, ·		0.00		0.00	0.0 0.000
Sep. 1	1.66			3.37		5.62	56.2 0.650
1. 2	3.43	• •		1.85		3.08	30.8 0.357
3	7.00	· .	>	0.00	0.000	0.00	0.00 0.000
, Oct. 1	I.12	· · · · · · · · · · · · · · · · · · ·		4.19		6.98	69.8 0.808
2	1.96		(	3.22		5.37	53.7 0.622
3	0.55			4.48	0.519	7.47	82.2 0.865
Nov. 1	1.21		· •	3.07	0.355	5.12	51.2 0.592
<b>2</b>	1.75			2.40	0.278	4.00	40.0 0.463
3	0.58	n en		0.00	0.000	0.00	0.0 0.000
Dec. 1	0.10						
2	0.00			,			- ;
3	0.00	•		1997 - A.	• * · · · · · · · · · · · · · · · · · ·		

Note: (1) Effective Rainfall (See Table 3-1-7)

3-55

(2) Diversion Water Requirement: Net Water Requirement/Irrigation Efficiency (0.60).

<u>a)</u>

Diversion Water Requirement for Upland Crops in 1967

	•		Effective	Nat	Hater I	Peanuts					obacco			·	Soybean	and Chill	i	
			Rainfall		rement		sion W uireme		Net W Requir			rsion W		Net W	ater	Diver	sion W	
			(mm/day)	(mm/day)		(mm/day)	(mm)	(l/s/ha)	(mm/day)	(l/s/ha)	(mm/day)	uireme (mm)		Requir (mm/day)	ement (l/s/ha)	Rec	uireme	
	Jan.	1	0.00			•			2.08	0.241	4.08			(mu/day)	(x/s/na)	(mm/day)	(mm)	(l/s/ha)
		2	0.01						1.42	0.164	2.78	10.8 27.8	0.473 0.322					
	н м	3	0.00			,			1.67	0.193	3.27	36.0	0.378				*	·,
	Feb.		0.00	1.59	0.184	3.12	31.2	0.361	2.61	0.302	5.12	51.2	0.592	1.59	0 104		•••	
	•	2	0.00	2.06	0.238	4.04	40,4	0.467	2.92	0.338	5.73	57.3	0.663	2,06	0.184 0.238	3.12 4.04	31.2 40.4	0.361 0.467
		3	0.00	2.64	0.305	5.18	41.4	0.598	3.10	0.359	6.08	48.6	0.704	2,53	0.922	4.96	40.4 39.7	1.808
	Mar.		0.00	2.41	.0.279	4.73	47.3	0.547	3.97	0.459	7.78	77.8	0.900	2.27	0.263	4.45		
. :		2	0.03	2.87	0.332	5.63	56.3	0.651	3.82	0.442	7.49	74.9	0.867	2.55	0.205	5.00	44.5 50.0	0.516 0.578
	•	3	0.00	3.62	0.419	7.10	78.1	0.822	3.15	0.365	6.18	68.0	0.716	3.21	0.371	6.29	69.2	0.727
	Apr.		0.00	4.56	0.528	8.94	89.4	1.035	2.45	0.284	4.80	48.0	0.557	4.34	0.502	8.51	85.1	0.984
• •		2 3	1.87	1.94	0.225	3.80	38.0	0.441	0.00	0.000	0.00	0.0	0.000	2,86	0.331	5.61	56.1	0.984 0.649
	•	3	1.75	0.43	0.050	0.84	8.4	0.098	0.00	0.000	0.00	0.0	0.000	2.82	0.326	5.53	55.3	0.639
	May	1	3.97	0.00	0.000	0.00	0.0	0.000	•					0.00	0.000	0.00	0.0	0.000
		2 3	2.12											0.00	0.000	0.00	0.0	0.000
		÷		4			· ·			· · · · ·				0.00	0.000	0.00	0.0	0.000
	Jun.		4.00							-								
		2 3	1.37 0.86		•													
	<b>-</b> •							•		· .								
	Jul.	1 2	1.60	0.75	0.087	1.47	14.7	0.171	0.59	0.068	1.57	15.7	0.133	0.75	0.087	1.47	14.7	0.171
		23	1.26	0.00	0.000	0.00 2.14	0.0	0.000	0.00	0.000	0.00	0.0	0.000	0.00	0.000	0.00	0.0	0.000
			4	· .	•		23.5	0.247	¥ 0,73	0.084	1.43	15.7	0.165	0.99	0,115	1.94	21.3	0.225
	Aug.	1 2	1.43	0.40	0.046	0.78	7,8	0.090	0.67	0.078	1.31	13.1	0,153	0.28	0.032	1.82	18.2	0.063
		3 .	3,64	1:50 0.00	0.174 0.000	2.94	29,4	0.341	0,98	0.113	1.92	19.2	0.222	1.23	0.142	2.41	24.1	0,278
			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				0.0	0,000	0.00	0.000	0.00	0.0	0.000	0,00	0.000	0.00	0.0	0.000
	Sep.	2	1.66 5 3.43	1.36	0.157	2.67	26.7	0.308	0.85	0.098	1.67	16.7	0.192	1.24	0.144	2.43	24.3	0,282
		3	4.00	0.00	0.000	0.00	0.0	0,000	0.00	0.000	0.00	0.0	0,000	0.00	0.000	0.00	0.0	0.000
	0-+	-					0,0	0.000	0,00	0.000	0.00	0.0	0.000	0.00	0.000	0.00	0.0	0.000
	Oct.	` <u>г</u> . 2	1.12	0.00	0,000	0.00	0.0	0.000	1,92	0.222	3.77	31.7	0.435	1,28	0.148	2.51	25.1	0.290
	•	3	0.55		•				0,96	0.111	1.88	18,8	0.218	0.00	0.000	0.00	0.0	0.000
	Nov			· .					1.83	0.212	3.59	39.5	0.416	0.03	0.000	0.06	0.7	0.000
	Nov.	2	1.21						0.15	0.017	0.29	2.9	0.033	0.00	0.000	0.00	0.0	0.000
	ι.	3	0.58						0.00	0.000	0.00	0.0	0.000					
÷				 14					0.00	0.000	0.00	0.0	0.000					,
	Dec.	2	0.10 0.00	1 · · · •					0,98	0.113	1.92	19.2	0.222					
	•	3	0.00		·				0.35 0.63	0.041	0.69	6.9	0.080				2	
•									V.03	0.073	· 1.24	13.6	0.143					

Note: (1) Effective Rainfall (See Table 3-1-7)

(2) Diversion Water Requirement = Net Water Requirement/Irrigation Efficiency (0.51)

3-56

- نام ا

ANNEX 3-1 Table 3-1-9

Diversion	Water Rec	uirement	for l	Upland	Crops	in	1967

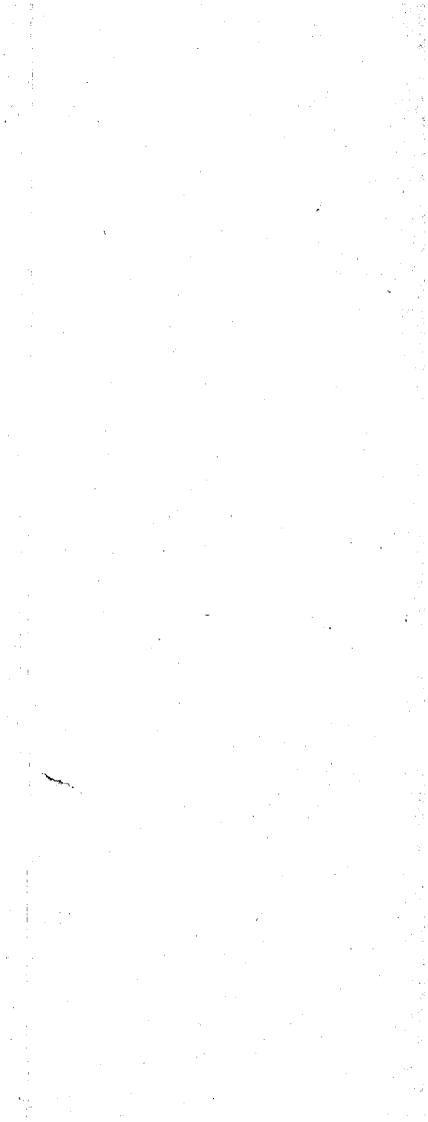
					a stationed and a station of the state of th	• •											
				Garlic	19			Vegetab	le or Frui	ts			Su	igarcane			
· · · ·	Effective	Net W	later	Diver	sion W	ater	Net h	later	Diver	sion W	ater	Net W	ater	Diver	sion Wa	ater	
	Raterall	Requir	rement	Req	luireme	nt	Requir	ement	Req	luireme		Requir	ement	Rec	luiremen	nt	_
		(mm/day)	(l/s/ha)	(mm/day)	(mm)	(l/s/ha)	(mm/day)	(l/s/ha)	(mm/day)	(mm)	(l/s/ha)	(mm/day)	(l/s/ha)	(mm/day)	(mm)	(l/s/ha)	
· · · · · · · · · · · · · · · · · · ·	0.00	2.26	0.262	4.43	44.3	0.514	1.61	0.186	3.16	31.6	0.365	1.92	0.222	3.76	37.6	0.435	
Jan. 1		1	0.166	2.80	28.0	0.325	1.87	0.216	3.67	36.7	0.424	2.19	0.253	4.29	42.9	0.496	
	0.0 <u>-</u> 0.0	1.80	0.208	3.53	38.8	0.408	1.89	0.219	3.71	40.8	0.429	2.51	0.291	4.92	54.1	0.571	
.3		<ul> <li>Markassen</li> </ul>	7			i National and the second s			· · · ·								
Feb. 1	0.00	1. 2.82	0.326	5.53	55.3	0.639	2.39	0.277	4.69	46.9	0.543	1.91	0.221	3.75	37.5	0.433	
2	0.00	3,12	0.361	6.12	61.2	0.708	2.39	0.277	4.69	46.9	0.543	3.08	0.356	6.04	60.4	0.698	
3	0.00	3.19	0.369	6.25	50.0	0.724	2.39	0.277	4.69	37.5	0.543	3.28	0.380	6.43	51.4	0.745	
Mar. 1	0.00	3.29	0.381	6.45	64.5	0.747	3.00	0.347	5.88	58.8	0.680	4.35	0.503	8.53	85.3	0.986	
2	0.CE	1,92	0.222	,3.76	37.6	0.435	2.97	0.344	5.82	58.2	0.675	4.53	0.524	8.88	88.8	1.027	
3	orca a	Ó.75	0.087	1.47	16.2	0.171	3.00	0.347	5.88	64.7	0.680	4.78	0,553	9.37	103.1	1.084	
			· · · · ·	a sa an								· ·					
Apr. 1	0.0C	0.01	0.000	0.02	0.2	0,000	3.49	0.404	6.84	68.4	0.792	5.77	0.668	11.31	113.1	1.310	
2	1.8	¥an an an san an sa Marana san an		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			1.63	0.189	3.20	32.0	0.371	4.01	0,464	7.86	78.6	0.910	
3	1.75	\$		n n			1.75	0.203	3.43	34.3	0.399	4.24	0.491	8.31	83.1	0.963	
May 1	3.5	).				1. State 1.	0.00	0.000	0.00	0.0	0.000	1.54	0.178	3 02	30.2	0.349	
2	2.12	n n Ni l'ma				•	1.06	0.123	2.08	20.8	0.241	3.36	0.389	6.59	65.9	0.763	
<b>3</b>							0.88	0.102	1.73	19.0	0.200	3.16	0.366	6.20	68.2	0.718	
T	4.00		·				0.00	0.000	0.00	0.0	0.000	0.00	0.000	0.00	0.0	0.000	
Jun. 1 2	· · · · · · · · · · · · · · · · · · ·	1			1.1		1.31	0,152	2.57	25.7	0.298	3.08	0.356	6.04	60.4	0.698	
	1.1		A state of the second sec		· · · .	* 4 1	1.82	0.211	3.57	35.7	0.414	.3.48	0.403	6.82	68.2	0.790	
	a da transmissione de la companya de						1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1						1				
Jul, 1						· · · · ·	0.87	0.101	1.71	17.1	0.198	2.28	0.264	4.47	44.7	0.518	
				ta de la competition de la competition La competition de la c		مهريا المراجع والمرمية	0.00	0.000	0.00	0.0	0.000	0.00	0.000	0.00	0.0	0.000	
فمر الراب ال	3 1.2÷						1.20	0.139	2.35	25.9	0.273	2.34	0.271	4.59	50.5	0.531	
Aug.	1.43			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			0.81	0.938	1.59	15.9	1.839	1.70	0.197	3,33	33.3	0.386	
	2 0.71						1,53	0.177	3.00	30.0	0.347	2.25	0.260	4,41	44,1	0.510	
	3 3.6-				•		0.00	0.000	0.00	0.0	0.000	0.00	0,000	0,00	0.0	0.000	
	1 1.65		and the second		÷.		0.67	0.078	1.31	13.1	0.153	1.04	0.120	2,04	20.4	0.235	
Sep.	2 3.45						0.00	0.000	0.00	0.0	0.000	0.00	0.000	0,00	0,0	0.000	
· · · ·	3 4,65				· .		0.00	0.000	0.00	0.0	0.000	0.00	0.000	0.00	0.0	0.000	
	and the first second	1		and the second sec	· .			· · · · · · · · · · · · · · · · · · ·			•		1.1	1. A.			
Oct.				i de la composición d			1.16	0.134	2.27	22.7	0.263	1.01	0.117	1.98	19.8	0.229	
	2 1.95						0.32	0.037	0.63	6.3	0.073	0.00	0.000	0.00	0,0	0.000	
	3 9.55				1. A.	an a	1.74	0.201	3.41	37.5	0.394	0.97	0.112	1.90	20.9	0.220	
Nov.	1 1.2	w			•		0,74	0.086	1.45	14.5	0.169	0.41	0.047	0.80	8.0	0.092	
	2 1.75					· · · ·	0.21	0.024	0.41	4.1	0.047	0.35	0.041	0.69	6.9	0.080	
	3 0.58			1997 - A.			1.38	0.160	2.71	27.1	0.314	1.00	0.116	1.96	19.6	0.227	
Dee		0.12	0.014	0.24	2.4	0.027	1.64	0.190	3.22	32.2	0.373	1.42	0.164	2.78	27.8	0.322	
Dec.	2 0.00	1.42	0.164	2.78	27.8		1.75	0.203	3.43	34.3	2.512	1.59	0.184	3.12	31.2	0.361	
	3 0.00	1.75	0.203	3,43	37.7		1.51	0.175 K	2.96	32.6	0.343	1.64	0.190	3.22	35.4	0.373	
3				<b>~</b> , 1 <b>~</b>		01000				02.00	010,0						
*,				en glinge site									- <b></b>	:		-	

Note: (1) Effecgive Rainfall (See Table 3-1-7)

(2) Diversion Water Requirement = Net Water Requirement/Irrigation Efficiency (0.51)

3-57

1.1	Water	Requirement	of	Paddy	Rice	and	Upland	Crops	in 196	57


		Б.	ddy Rice	· · ·		land Field	
		Effective	ddy KICe		Effective	tand rield	
ionth	Rainfall	Rainfall	N.W.R.	W.R.	Rainfall	N.W.R.	W.R.
	(mm)	(mm) (mm/day)	$\frac{1}{(mm/day)}$	(mm/day)	(mm) (mm/day)	(mm/day)	(mm/day
	(	(1)	(2)	(mm/ ddy /	(1)	(2)	(initi/day
22		·					
an. 1		· · ·	· .			2.41	2.41
2 3	•	<b>)</b>	2 70	2 70	1	1.51	1.51
3	a de la composición d		3.70	3.70		1.82	1.82
eb. 1	1		4.42	4.42		2.68	2.68
.2	.!		4.45	4.45	·	2.78	2.78
3			4.63	4,63		2.90	2.90
ar. l			5.86	5.86		2.78	2.78
2		2 0	6.22	6.22		2.82	2,82
3			6.48	6.48		2.91	2.91
	•						
pr. 1			7.55	7.55		4.11	4.11
2	1. 1.	- <u>.</u> .	7,69	7.69		3.71	3.71
3		•	7.65	7.65		2.78	2.78
lay l	· · ·		6.97	6.97	•	1.86	1,86
2			6,81	6.81		2.66	2.66
3		8 - 1	6.50	6.50		2.01	2.01
un. l			4.47	4.47		3.01	3.01
2			3.17	3.17	· · · ·	2,99	2.99
3			1.78	1.78		2.95	2.95
•	01 0	16 0 1 60					· .
Jul. 1	21.3	16.0 1.60	4.52	2.92	16.0 1,60	2.71	1.11
2	64.8	48.6 4.86	4.52	0.0	41.0 4.10	2.69	0.0
	18.6	13.9 1.26	4.52	3.26	13.9 1.26	2.79	1.53
ug. l	19.1	14.3 1.43	4.21	2.78	14.3 1.43	2.14	0.71
2	9.5	7.1 0.71	4.33	3.62	7.1 0.71	2.15	1.44
3	161.2	70.0 6.36	4,56	0.0	41.0 3.73	2.38	0.0
Sep. 1	22.1	16,6 1,66	5,03	3.37	16.6 1,66	2.64	0.98
2	45.7.	34.3 3,43	5,27	1.84	34.3 3,43	2.66	0.0
3	174.8	70.0 7.00	5,41	0.0	41.0 4.10	2.48	0.0
Dct 1	5a	11,2 1.12	5.30	4.18	11.2 1,12		
) )	26.1	19.6 1.96	5,18	3.22	19.6 <b>1.96</b>	2.12 2.11	1.00
4	8.0	6.0 0.55	5.03	4.48	6.0 0.55		0,15
						1.71 ·	1,16
iov. 1	16.2	12.1 1.21	4.28		12.1 1.21	1.74	0.53
2	23.3	17.5 1.75	4.15	2.40	17.5 1.75	1.58	0,0
3	7.7	5.8 0.58	0.24	0.0	5.8 0.58	1.44	0.86
Dec. 1					•	1.33	
2			· · · · · ·			2.16	
•				1	$\mathbf{X}^{(1)}$ and	2.18	

Note: N.W.R. = Net Water Requirement. N.W.R. in Paddy Field are shown in Table 3-1-2.

N.W.R. in Upland Field are weighted average.

W.R. = Water Requirement = (2) - (1)

Upper limit of Effective Rainfall in Upland Field are weighted acreage 41mm/days



# Monthly Run-off at Kew Lom Dam Site

, Unit: MCM

		5. M.										W. A.
	Year	Jan.	<u>Feb.</u>	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.
	1953	30.10	23.64	17.55	17.72	46.61	39,56	34.20	87.50	224.04	95.26	56.41
	1954	18.50	12.80	13.90	16.65	32.75	41.74	19.87	74.44	110.39	165.61	39.90
	1955	16.35	9.99	9.92	7.59	7.95	29.40	19.05	229.70	249.74	76.45	17.56 -
	1956	9,85	7.81	7.57	11.77	52.94	28.20	76.32	197,84	231.01	52.68	27.55
Ŷ	1957	10.70	8.54	8.18	9.79	13.91	38.61	18.62	65.51	167.49	110.00	25.15
Ň	1958	11.60	8.10	7.70	7.90	10.92	17.46	25.41	53.68	79.88	59.62	19.17
	1959	9.48	7.47	6.81	6.78	40.80	22.64	44.08	89.57	193.39	57.88	19.40
1	1960	10.79	9.50	7.52	6.68	10.56	16.20	53.33	117.50	179.59	138.21	38.15
с. 	1961	15.44	7.99	7.32	8,61	47.03	62.01	28.76	190.01	294.52	189.57	60.94
44 44	1962	17.80	11.72	11.90	6.65	20.84	8.49	17.06	58.99	89.68	193.45	31.67
ि .•ः स	<b>્ર 1963</b>	11.89	8.18	7.31	3.47	2.29	18.42	36.56	152.67	100.14	206.58	136.86
	, 1964	18.76	11.16	8.83	7.96	23.66	23.31	53.06	26.39	176.26	205.46	57.72
	1965	21.03	14.41	11.69	5.86	8.86	18,17	7.74	54.72	91.33	117.98	50.37
1	1966	9.61	5.74	3.82	2.19	40.19	22.06	13.90	94,46	150.85	46.29	29.84
	1967	9.04	4.57	3.30	4.07	16.01	12.73	10.30	42.11	262.22	92.45	28.60
ų.	1968	8,14	5.43	4.68	9,88	20.17	29.89	20.03	67 <b>.7</b> 0	91.90	54.35	21.16
	1969-	7.86	4 47	2.74	2.89	12.63	34.26	22,49	107.72	51.84	55.13	28.90
	1970	10.25	5,75	4.09	9,21	60.65	110.07	74.05	266,63	187.14	67.31	38.88
	1971	19.09	9.81	8.55	8.78	19.60	15,02	93,47	240,28	191.64	153.19	45.45
	1972	19.13	9.98	8.31	17.49	9.89	9.72	8.39	120,04	106.35	85.98	63,89
	1973	7.53	10.76	17.85	12.94	29.29	49,69	110.68	486,58	452.11	205.96	77.30
	1974	25.67	23.63	23.77	23.44	45.79	47.98	52.15	131,95	137.52	64.86	122.10
	1975	60,96	24.69	26.08	21.61	25.08	75.36	92,41	389.07	335.11	198.78	79,56
	1976	29.25	26.08	16.02	13.38	24.36	20,55	18.02	52.57	137.10	139.44	84.09
	1977	35.05	13.63	15.65	16.25	41.74	10.84	27.96	62.58	166.17	170.11	71.99
Ì	1978	21.20	16.68	13.13	17.13	34.71	21.58	159.26	165.68	131.66	83.77	36.57
			т., .						· · ·			
्म है। इन्ह	Mean	17.88	11.64	10.55	10.64	26.89	31.69	43.74	139.46	176.50	118.71	50.35
		<b></b>	1. 1. 1. 1. 1.		· .	· · ·		· ·				

3-59

have

	-
Dec.	Annual
30.84	703.43
24.79	571.34
8.88	682.58
11.19	714.73
9.60	486.10
8.05	309,49
10.60	508.90
38,25	626.28
27.09	939.29
18.19	486.44
32.23	716.60
30.91	643.48
18.52	420.68
15.30	434.25
12.20	497.60
16.41	349.74
16.07	347.00
42.10	876.12
22,94	827.36
22,92	482.09
41.87	1,502,56
33.97	732.83
42.75	1,371.46
31.55	592.41
40.24	672.21
17.60	718.97
24.04	662.09

/s	ጋቢ	Water Release	12.0	12.0	12.0	6.5	6.5	6.5	י ע ע		6.5	6.5		6.5	ις Έ	2 2 2	5.5	0, Ġ	0.6	0.6	
Unit: cu.m/s	Incl Mae	D.W.R.	0.6	10.7	12.6	6.4	5.7	6.0	6. 6	р. д	7.1	7.0	6.8	6.5	5.6	2. tr	0.4	0.3	0.5	0.6	all.
. *	Excepting Mae Pung	Water Release	8.0	8.0	8.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0,4	0.4	4.0	2.0	2.0	2.0	Effective Rainfall
	Exc. Mae	D.W.R.	5.7	6.8	8.0	4.0	3.7	3.8	с, с т	1	4.6	<b>т</b> ~ п	4.3	4.2	3.6	3.5	0.2	0.2	0.4	0.4	ou
		Month	Jul. 1	2	š,	Aug. 1	2	ຕ	Sep. 1		က	0ct. 1 ~	2	e	Nov. 1	3	<b>Ω</b>	Dec. 1	2	n	s in case of
		e l										-									rement
	Including Mae Pung	water Release	1.0	3.0	ດ ເ	5.0	6.0	4.3	5.0	5.1	5.3	6.0	6.0	5.1	4.1	3.7	3 <b>.</b> 4	1.0	1.0	1.0	er Requi
	Incl Mae	D.W.R.	0.0	2.9	3°t	5.0	5,9	t.3	5.0	5.1	5.2	6.0	5.7	5.1	4.1	3.7	3 H	2.3	1.4	0.7	Diversion Water Requirements
				⊸.		,								,							
	epting Pung urren	water Release	2.0	2.0	2.0	3.5	3.5	3.5	3.5	3.5	3°2	4.0	4.0	4.0	3.0	3.0	3.0	2 40	2.0	2.0	D.W.R. =
	Excepting Mae Pung	D.W.R.	0.7	1.6	1.9	2.9	3.4	2.7	3.0	3.1	3.1	3°2	е <b>.</b> е	2.9	2.2	2.0	1.8	1.2	0.8	0.4	Note:
		Month	Jan. l	0	ო	Feb. 1	5	m	Mar. l	2	ო	Apr. 1	2	ო	May l	7	ო	Jun. l	7	ຕ ,	<b>.</b>

Water Reclease Programme from Kew Lom Dam

3-60

Ţ

	Ratio (A)/(B) (%)	8	75 (55)	100	
·	Annual Shortage (B) (MCM)	13.4	34.4 (14.0)	15.7	<b>ć</b>
ars in July	July Shortage (A) (MCM)	0.0 0.0 7.8 7.8	0.0 (0.0) 5.9 (0.0) 19.8 (7.7) 25.7 (7.7)	0.0 0.0 15.7 <u>15.7</u>	
Water Shortage List of Special Years in July	Diversion Requirement (MCM)	18.2 21.6 15.6 <u>55.4</u>	15.9 (13.0). 12.0 ( 9.8) 23.9 (19.6) 51.8 (42.4)	17.4 10.7 25.2 53.3	<pre>%1) Weighted Averaged Effective Rainfall. ( ): In case of excepting Mae Pung.</pre>
Water Shortage l	Effective ^{*1)} Rainfall (mm)	1.8 2.1 40.6 44.5	16.0 48.6 13.9 78.5	6.7 64.1 10.0 80.8	<ul> <li>I) Weighted Averaged Effective Ra</li> <li>): In case of excepting Mae Pung.</li> </ul>
	Inflow (MCM)		2.1 4.4 3.8 10.3	3.5 2.4 2.6 8.5	*1) Weig ( ): In c
·	July	L 2 3. Total	l 2 3 Total	l 2 3 Total	Note:
	Year	1965	1967	1972	

÷

4

3-61

1,957.8	330 <b>.</b> 3	654.7	838.0	294.7	155.6	84.2	383.0	001/1
1,687.6	295.4	536.5	649.6	227.0		72.8	338.7	1/50
1,357.8	249.0	400.5	444.7	153.5	84.7	58.3	281.2	1/20
1,125.9	212.9	311.1	318.6	108.5	61.7	47.7	237.8	1/10
905.2	174.8	231.7	214.1	71.3	42.6	37.1	193.4	1/5
616.3	116.2	138.3	103.3	31.9	22.1	22.1	128.4	1/2
	·							Maximum
287.4	20.0	53.9	22.6	3°6	6.9	2.2	32.9	1/100
306.6	27.7	57.9	25.6	4.6	7.4	3.5	39.8	1/50
341.9	40.7	. 65.5	31.7	6.7	8.6	5.9	51.9	1/20
381.5	53.9	74.7	39.5	9.5	10.1	8.5	64.6	1/10
442.6	72.3	8.8	53.4	14.4	12.7	12.2	82.7	1/5
616.3	116.2	138.3	103.3	31.9	22.1	22.1	128.4	1/2
				,				Minimum
Annual	Oct.	Sep.	Aug	Jul.	Jun.	May	NovApr.	Year
			·				<b>43</b> -	Probable
Unit: MCM							•	

Return Period of Run-off Discharge at Kew Lom Dam Site

.

ጽ

•

ţ

ANNEX 3-1 Table 3-1-15

j

Note: Measuring periods are 17 years from 1962 to 1978.

¢.

Calculation of Peak Discharge of Main Drainage Canal

Drainage lischarge	و ۳³/s	26.6	30.6	59.2	10.0	
Rainfall Drainage intensity discharge	γt mm/hr	20.2	15.9	12.0	14.3	
	ᆔᆧ	1.0*	1.6	2.8	2.0	
	E-  - []	4.08 24.5 45.5 1.0*	2.74 48.7 93.2 1.6	2.43 116.6 168.1 2.8	120.9 2.0	
	T2 Ein	24.5	48.7	116.6	1.53 65.4	
po	N S/E	4.08	2.74	2.43]	1.53	
Arrival time of flood	⊢┙│⋿	21.0 250 6,000	8,000	7,000	6,000	
l time	ΞE	250	150	250 I	35	
lrriva]	ri nin	21.0	44.5	51.5	55.5	
	ν	0.6000	0.1500 44.5 150 8,000	0.0800 51.5 250 17,000	0.0286	
••••	र व	00	1,000	1,000	700	
Reducing		0.85	0.80	0.75	0.90	
Drainage	Area km ²	12.13	19.25	51.63	6.23	
Drainage	'Canal	No.3	No.5	No.7	No.9	

* One (1.0) hour is adopted because calculated value is less than 1.0 hour.

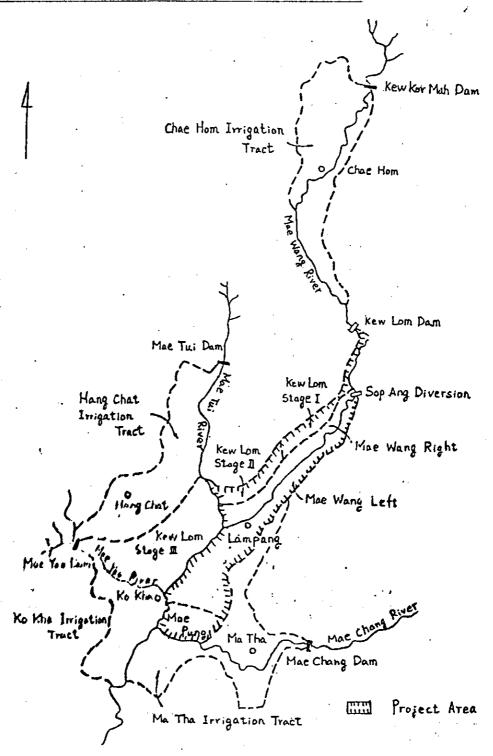
3-63

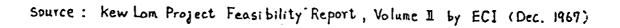
5

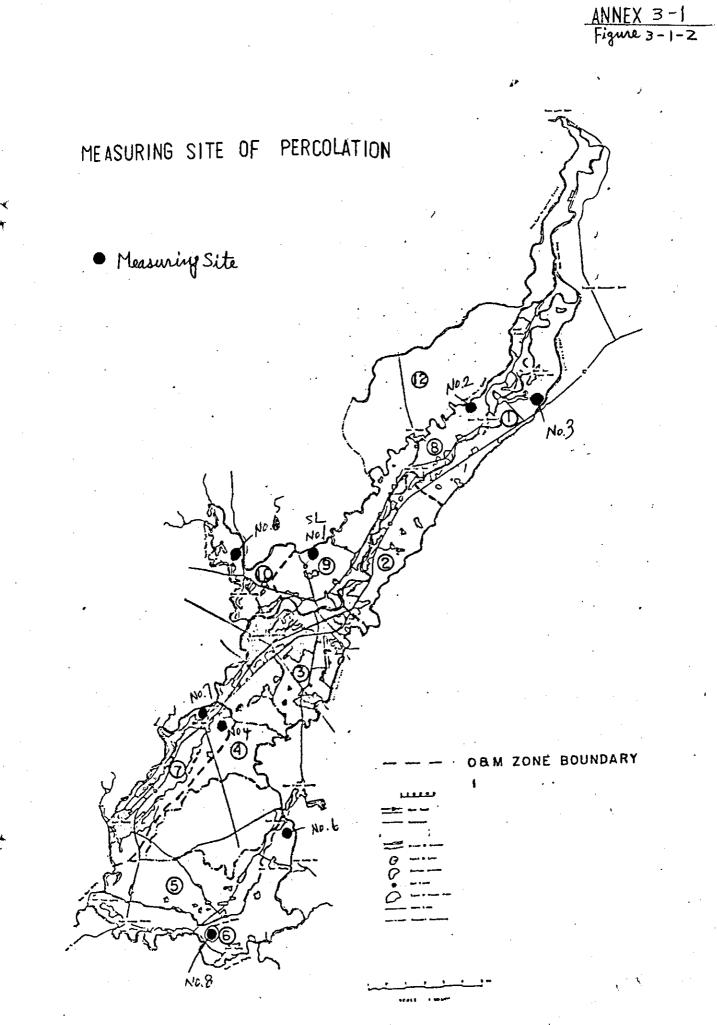
1

1

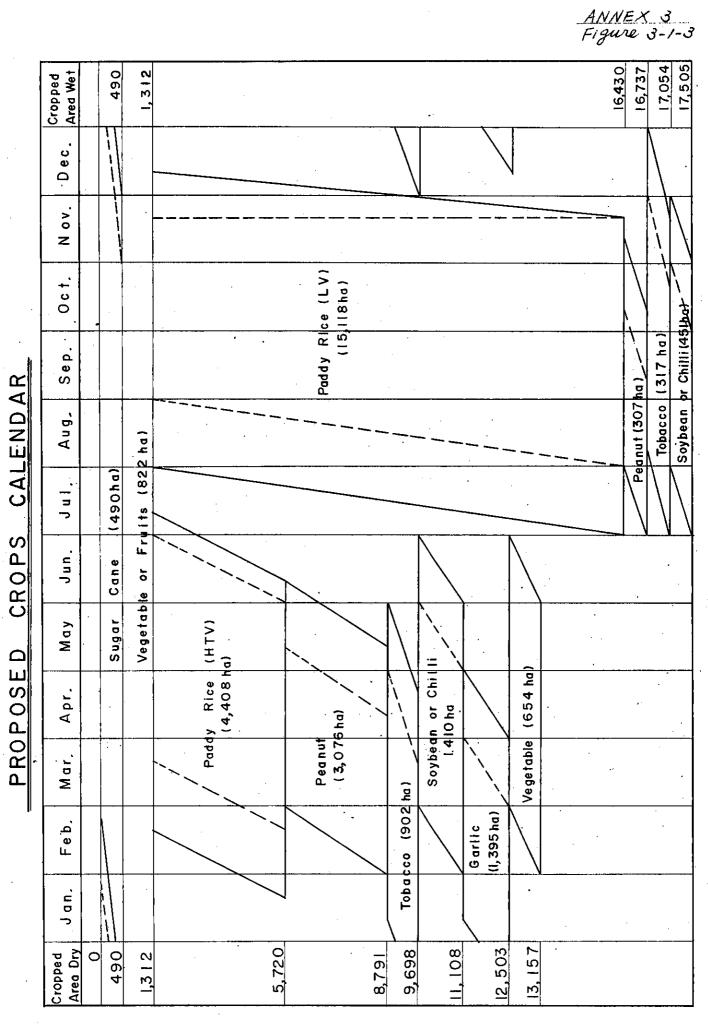
Year	Date	Discharge (cu.m/s)	Watey Level (M.S.L.)
1952	Sep: 22	787	233.91
1953	Sep. 16	450	232.69
1954	Oct. 9	495	232.88
1955	Sep. 1	392	231.86
1956	Aug. 16	665	233.59
1957	Sep. 3	465	233.21
1958	Oct. 27	181	231.24
1959	Sep. 10	366	232.41
1960	Oct. 22	542	232.87
1961	Aug. 23	808	234.17
1962	Oct. 16	453	232.71
1963	Oct. 30	554	233.16
1964	Oct. 4	365	232.30
1965	Oct. 28	408	232.51
1966	Sep. 2	202	231.37
1967	Sep. 26	522	232.27
1968	Sep. 14	166	230.43
1969	Oct. 3	284	231.59
1970	Aug. 21	418	232.38
1971	Aug. 28	445	232.28
1972	Oct. 5	201	230,59
~ 1973	Aug. 29	704	232.95
1974	Aug. 18	211	230.79
1975	Aug. 30	307	232.19
1976	Oct. 29	202	230.71
1977	Oct. 30	318	231.34
1978	Oct. 13	211	230.80


# Extreme Momentary Discharge Records at Kittikhachon II Bridge


Data Source: RID Hydrological Section.


# LOCATION MAP OF PROJECT AREAS IN THE MAE WANG BASIN

 $\mathcal{T}$ 


T





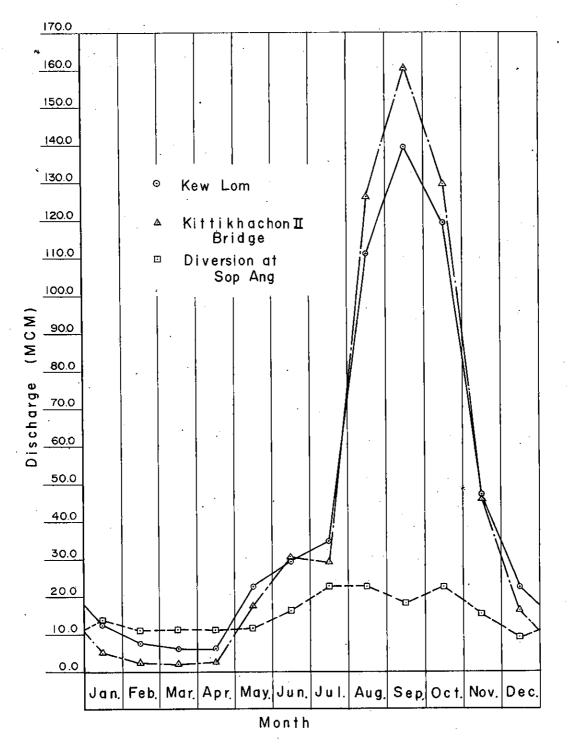


3-66



3-67

×

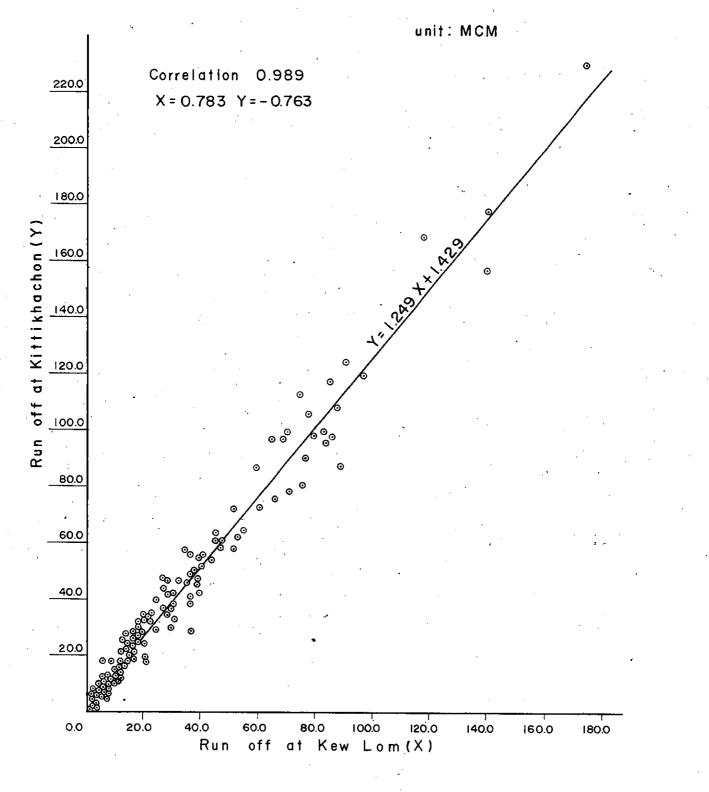

÷,

Ŧ

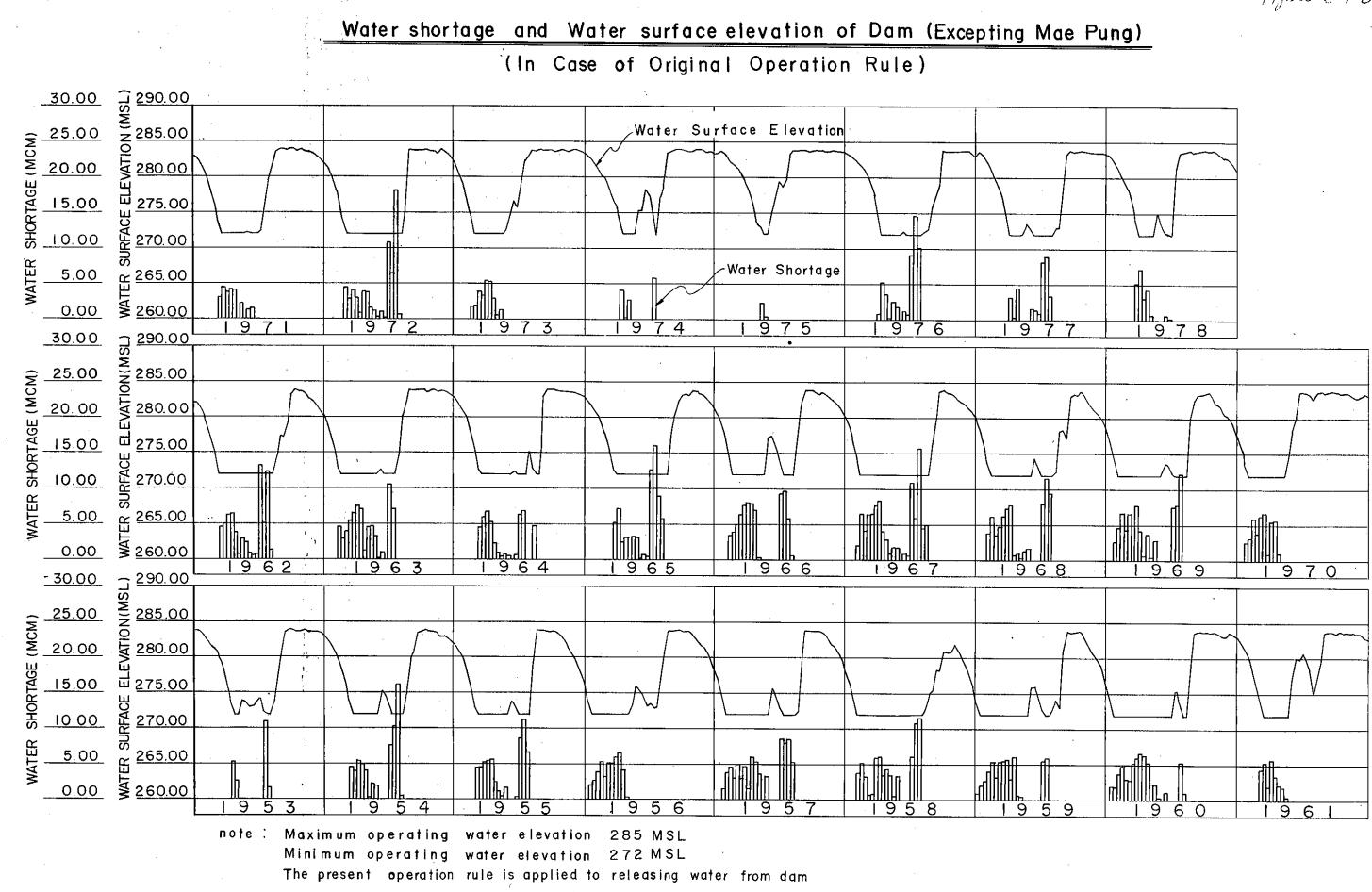
ANNEX 3 Figure 3-1-4

Monthly Mean River Discharge at Kew Lom Dam

Sop Ang and Kittikhachon

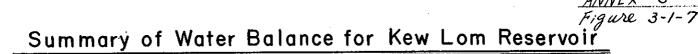



4

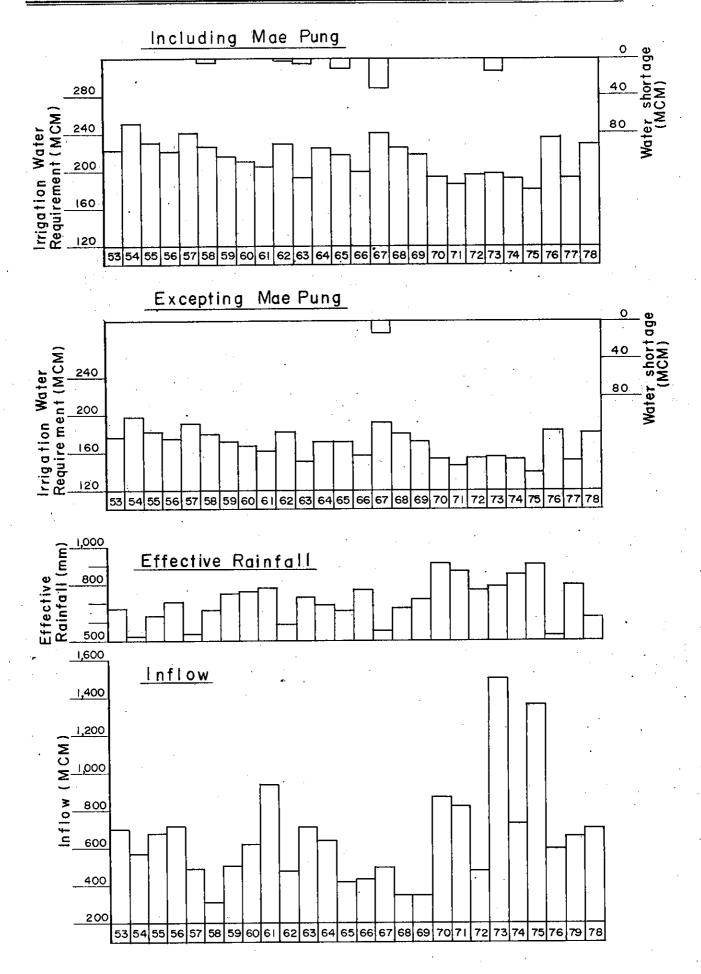

ANNEX 3 Figure 3-1-5

Correlation of Run-off Discharge Between Kew Lom

# <u>and Kittikhachon</u>

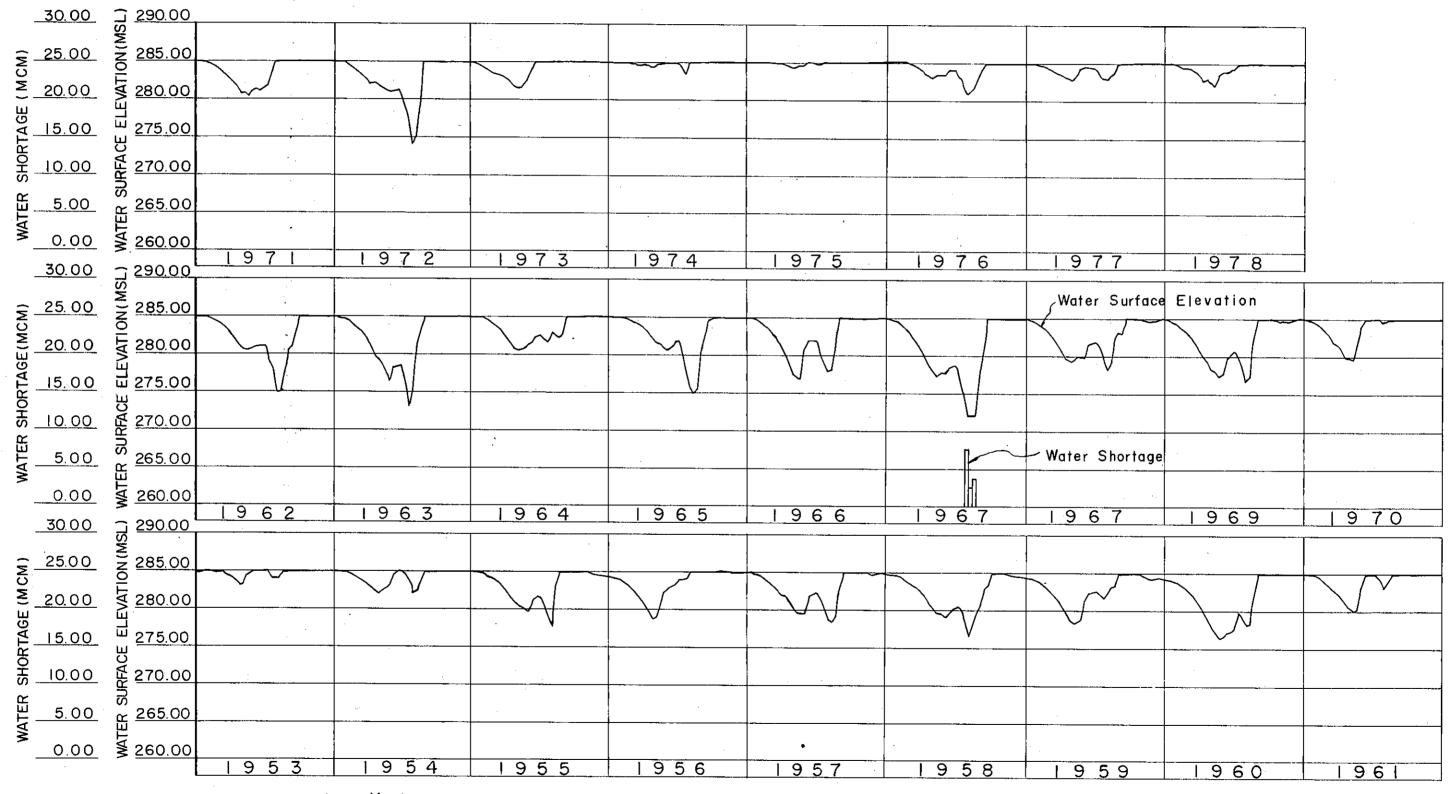



note : Period 1962-1971




3-70

ANNEX 3-1 Figure 3-1-6



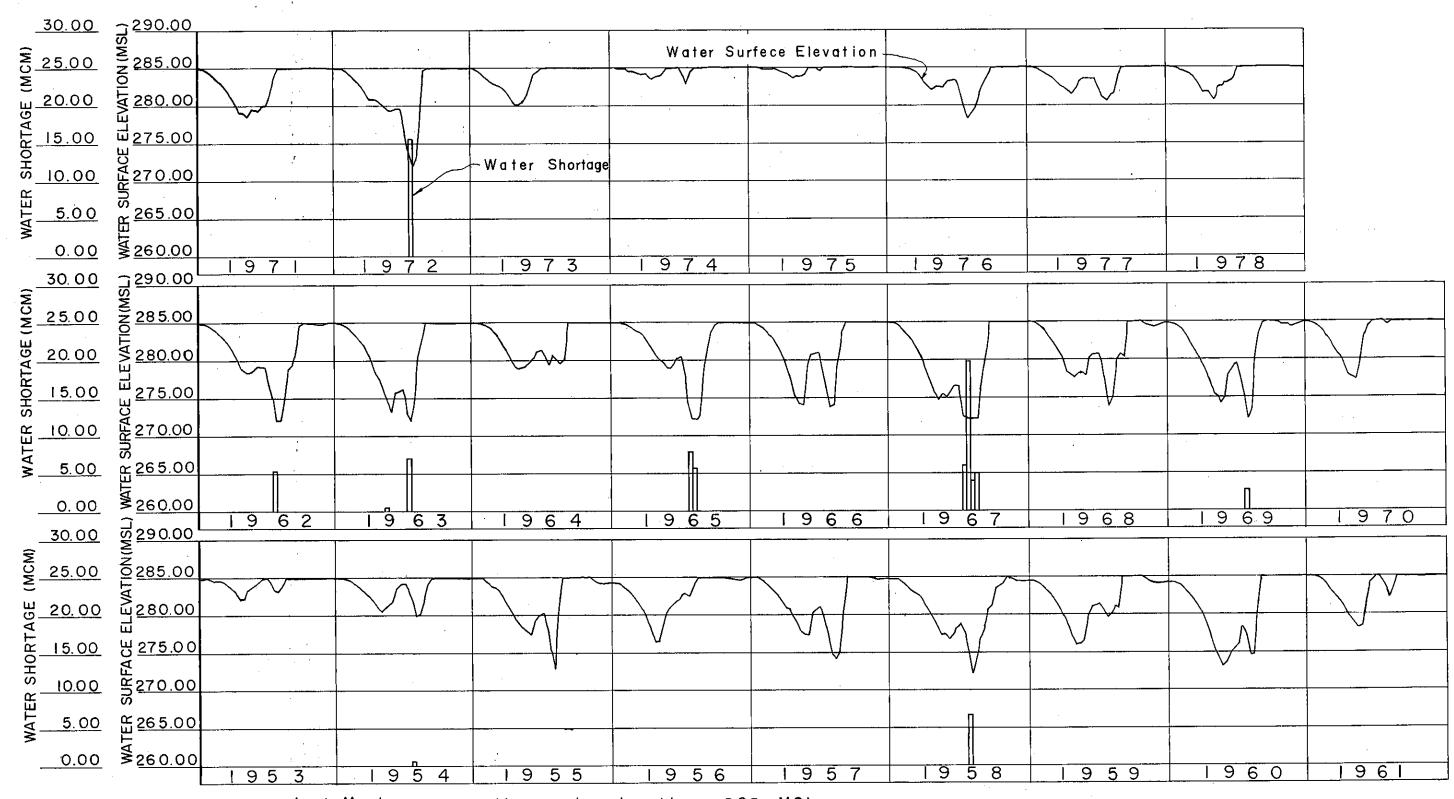

ANNEX 3



Water shortage and Water surface elevation of Dam (Excepting Mae Pung)

(In Case of Revised Operation Rule)

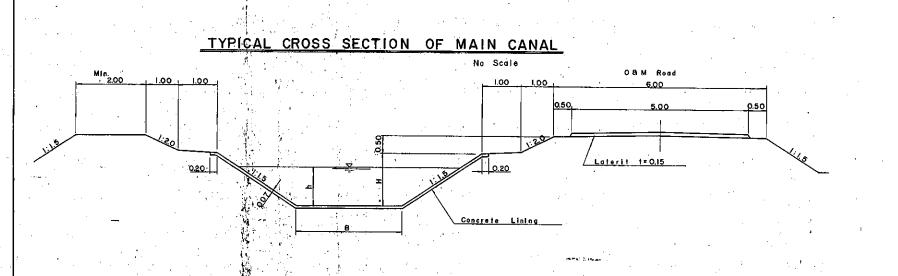


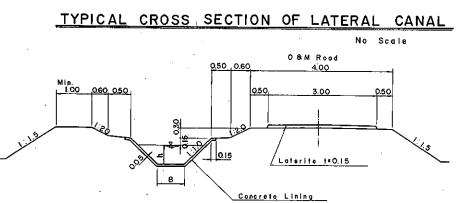

note: Maximum operating water elevation 285MSL Minimum operating water elevation 272MSL

3-72

ANNEX 3-1 Figure 3-1-8

Water shortage and Water surface elevation of Dam (Including Mae Pung)


(In Case of Revised Operation Rule)




285 MSL note : Maximum operating water elevation Minimum operating water elevation 272 MSL

3 - 73

ANNEX 3-1 Figure 3-1-9



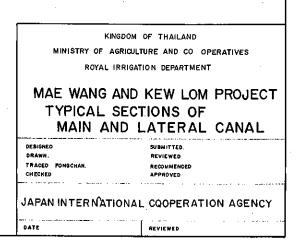


### <u>DIMENSION TABLE OF MAIN CANAL</u>

	<b>\$</b>		· · ·	· · · · · · · · · · · · · · · · · · ·		
Name of Canal	Length (kng)r	Discharge ( ^{m3} /s)	Slope	h (m)	B (m)	H (m)
Mae Wang Left Cand	ı 9,20	8 02	1/6,000	1.67	2.70	2.07
	5 40	7.11	1/6,000	1.57	2.70	1.97
•	8 9 0	. 5 67	1/6,000	1:40	2.70	1.80
	4 (1.5	5   4	1/5,000	1.27	2.70	1.62
	6 2 4	3 88	1/5,000	1, 21	2.10	1.56
	4,51	0 70	1/1,000	0.40	1.20	0,65
· · · · · · · · · · · · · · · · · · ·	(38 40)					
Mae Wang Right Cana	1 8 4 3	3 97	1/4.000	I. 1°6	; 2.10	1.51
	10.0.7	3 30	1/4,000	1.05	2.10	1.40
,	6 8 3	2.51	1/4,000	0.95	' I. 90	1.25
-	2.90	0. 97	1/4,000	0.69	1.20	0.94
	7 0 6	0 64	1/4,000	0.56	1.20	0.81
	(35.29)		ι τ,		· · · · · · · · · · · · · · · · · · ·	
Mae Pung Main Cana	I 170	174	1/4,000	0.79	1.90	1.09
· · · ·	1.40	1.42	174,000	0.71	1.90	1.01
	2.5 1	1.08	1/4,000	0.73	1.20	1.03
	(5.61)				·	
Mae Pung Left Cana	I 3.0:0	2.64	17.3,000	0.90	1.90	1.20
	1.50	1.93	1/3,000	0.76	1.90	1.06
· ·	2.02	0 30	1/2,500	0.40	0.50	0.55
	(6.52)	ļ				ļ
Mae Pung Right Can	1 2.80	2 30	1/4.000	0.91	1.90	1.21
	5.50	1.36	1/4,000	0.69	1.90	0.99
	4 0 0	0.82	1/4,0.00	0.80	0.80	0.95
	(12,30)	• 		·····	· · · · ·	
Link Canal	2.00	4 94	1/4,000	1.20	2.10	1.55

*

# DIMENSION TABLE OF LATERAL


	Name of Main Canal	Lateral No	Leng th (km)	Discharge (m ³ /s)	Slope	h (m)	.8 (m)	
	Mae Wang	MLIR	2.50	0.43	1/5,000	0.70	0.60	1
	Left Canal	ML 2 R	1.55	0.37	1/3.000	0,60	0.50	
. '	· · · ·	ML3R	0.40	.0.15	1/4,000	0.40	0.50	
		ML3-IR	0.55	0.14	1/4.000	040	0.50	
		ML 6R	2.20	0.21	1/2,000	0.40	0.50	
		ML9R-IR	1.60	0.39	1/1.500	0.50	0.50	
		MLIORIR	1.40	0.16	1/3,000	0.40	0.50	
•		MLIORIL	3.30	0.28	1/1,000	0.40	0.50	
		M LIOR-2L	1.40	0.37	1/1,000	0.45	0.50	
		MEHL	3.00	0.75	1/1,500	0.60	0.70	
		MLIL	3,00	0.38	1/2,000	0.50	0.60	
		MULLIR	1.70	0.16	1/4.000	0.40	0.50	
	Mae Wang	MR4L-IL	1.40	0.20	1/2,000	0.40	0.50	[
•	Right Canal	MRGL	2.30	Q.14	1/1.500	0.40	0.50	
		MR7L-IL	1.40	0.20.	1/2,000	0.40	0.50	
		MR8L-IR	1.90	0.29	1/2,500	0.50	0.50	
		MR8L-IRHL	1.10	0.20	1/2.000	0.40	0.50	
-		MR8L-IL	2.00	0.46	1/2.000	0.60	0.60	
		MR8L-2L	1.20	0.19	1/2,500	0.40	0.50	
		MR9L	2.90	0.35	1/2.000	0.50	0.60	
		MR9L-IR	1 . <b>1:0</b>	0.20	1/2,000	0.40	0.5-0	
		MRIOL	1.29	0.24	]Enlargem	ent to exs	isting	
		MRIO-IL	2.05	0.22	fCanal			
	Mae Pung	MPIR	2.50	0.35	1/2,000	0.50	0.60	
	Main Canat	MP2 R	2.00	0.37	1/2,000	0.50	0.60	
	•	MR-3 R	2.80	0.51	1/ 1,000	0.50	0.60	
		MP4 R	4.50	0.64	1/4.000	0.70	0.80	
		MP4 R	3.00	0.30	1/1.500	0.45	0.50	
	·	MP4 R	2.70	0.14	1/4,000	0.40	0.50	,
	· · ·	MP4R-IR	1.60	0.21	1/2,000	0.40	0.50	

3-74

ANNEX 3 Figure 3-1-11

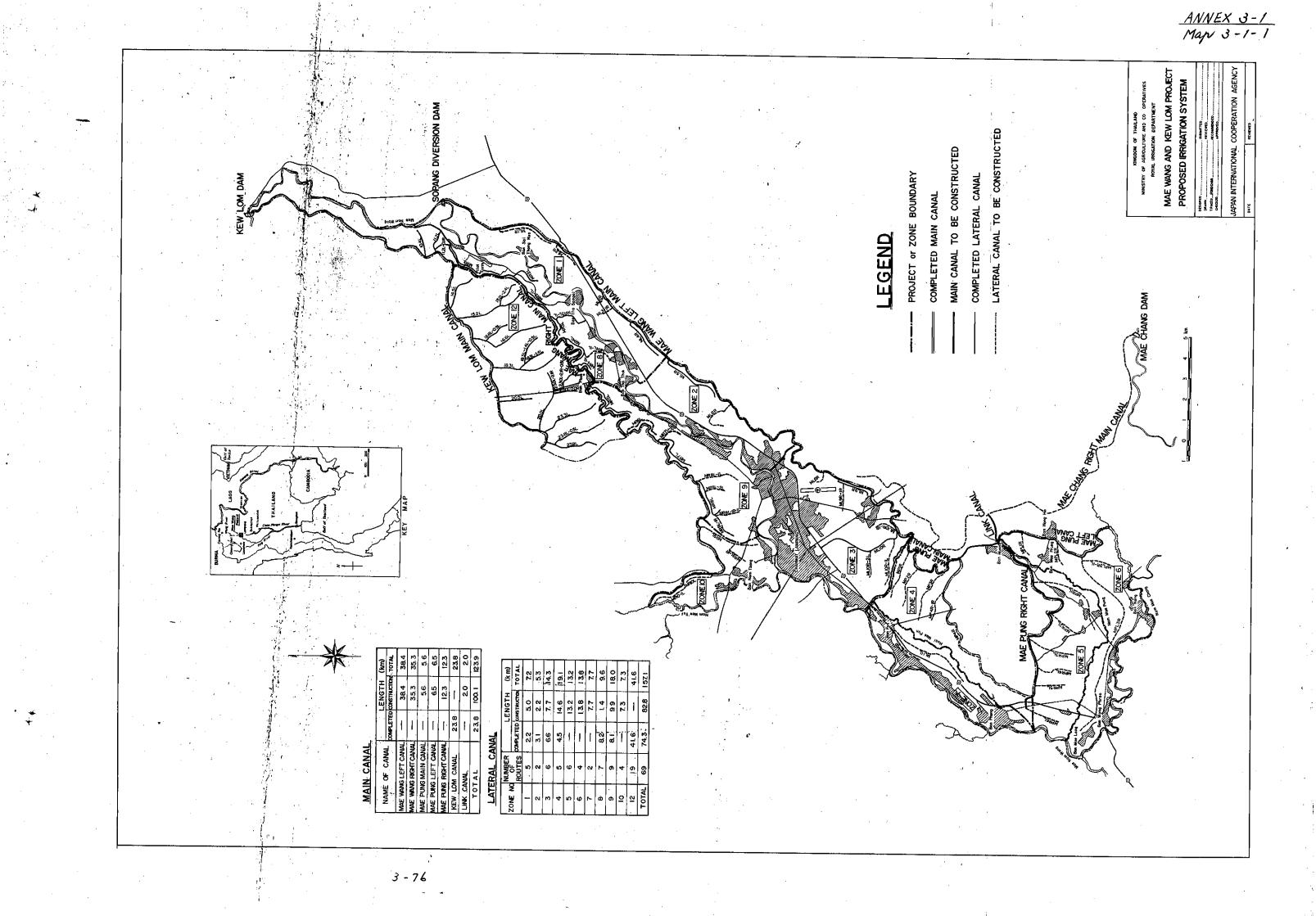
C	>	ŀ	7	Ν	А	L

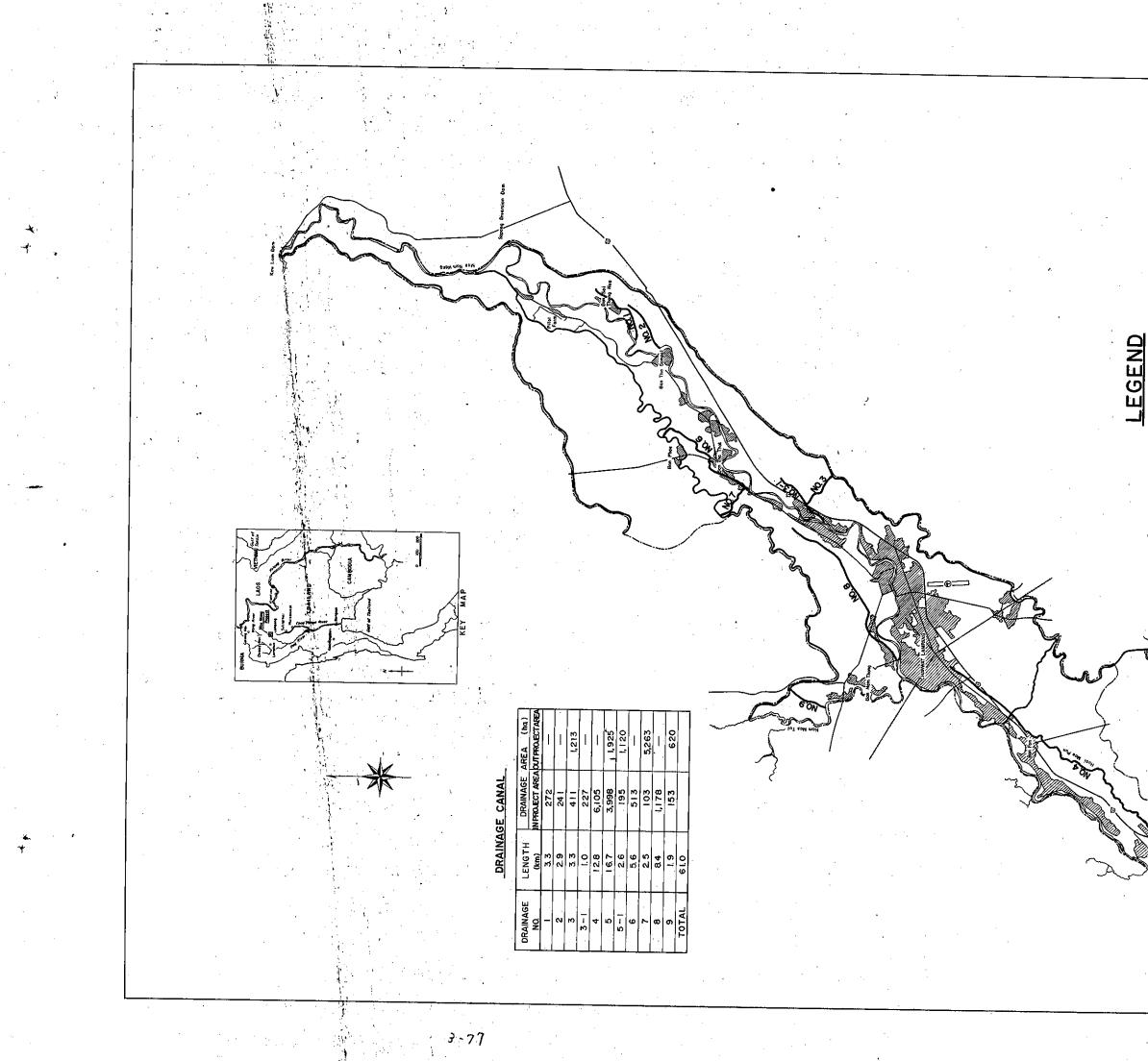
Name of	Lateral	Leng th	Di scharge	Slope	h .	в
Main Canal	N o.	(km)	(m /s)	1	(m)	(m)
Mae Pung	MPLIR	1.10	0.23	1/2,000	0.40	0.50
Left Canal	MPL2R	1.10	0.23	1/2,000	0.40	0.50
	MPL 3R	3.00	1.56	1/2,000	0.90	0.90
	MPL 3R	3.00	1.09	1/2,500	0.80	0.90
	MPL 3R	4.00	0.62	1/1,500	0.60	0.60
	MPL3R-IL	1.55	0.24	1/2,000	0.40	0.50
Mae Pung	MPRIL	3.00	0.80	1/2,500	0.70	0.70
Right Canal	MPRIL	1.70	0.29	1/ 1,500	0.45	0.50
	MPR2L	1.60	0.28	1/ 1,000	0.40	0.50
	MPR3L	2.50	0.26	1/ 1,500	0.40	0.50
	MPR4L	1.90	0.22	1/2.000	0.40	0.50
	MPR5L	1.30	0.28	1/ 1,000	0.40	0.50
	MPRGL	1.20	0.31	1/1,500	0.45	0.50



DIME	NSION	TABLE

Drainage	Length	Discharge	Slope	h	В	н
No	(km)	(m³/s)	1.	(m)	(m·)	(m)
NO. 1	2.50	4.9	1/500	1.23	2.0	1.5
	0,80	0.5	1/500	0.60	0.5	1.0
	(3,30)					
NO.2.	2.00	10	1/1,000	0.83	1.0	1.3
· ·	0.90	10.3	17 600	0.55	0.3	¹ .0
	(2,90)	3	-			
NO.3	1.37	31.9	1/550	0.05	7.0	2.6
	1,93	0.7	1/1,000	0.82	0.5	1.2
	(3,30)					
NO.3-1	1.00	31.0	1/600	2.20	6.0	2.7.
-	(4.30)					
·NO, 4	·2.36	19.2	1/860	2.03	5.0	2.6
	2.26	17.6	. 1/1,600.	2.37	4.5	2.6
	, 3.78	115.4	_ I /1,600	2.31	4.0	2.6
· .	1,85	311.2	° 171,600	1.97	4.0	2.3
	2.30	8.9	/ 1/1,600	1.83	3.5	2.3
i	(12.85)					
NQ.5	1.80	61.0	1/2,000	3.24	12.0	3.6
	5.60	160 3	1/830	2.75	10.0	3.1
	5.55	55.0	1/830	2:60	10.0	3.0
	3.70	32.2	1/700	2.18	- 7 0	2.5
	(16,65)	5				
NO 5-1	2.60	18.4	1/700	1.88	5.0	2.2
	(19.25)	1		i .		
NO. 6	2.35	5 8	171,000	. 1.38.	3.0	2.5
	3.25	5.0	. 1/450	I,2I	2.0	1.8
	(5.60)					
N0.7	2.50	170 5	1/900	2.82	10.0	3.3
NO. 8	1.85	4.2	1/1,000	1.25	2,5	1.6
· -	1.75	4.2	171,000	1.25	2.5	1.6
	3.00	2.8	1/800	1.14	1.5	1.5
	1.80	1.1	1/7.00	0. 719	1.,0	1.1
	(8.40)					• • •
NO.9	1., 85	13.7	1/600	1.72	4.0	· 2.1
Total	60.95	<u>`.</u> .	j		· ·	


CROSS SECTION OF DRAINAGE CANAL


No Scale 06M Road 050 100 100 8+3H 100 050 4.00 H.W.L 7 H.W.L

3-75

.

ANNEX 3-2 Figure 3-2-1 O&M Road 0.50 KINGDOM OF THAILAND MINISTRY OF AGRICULTURE AND CO OPERATIVES ROYAL IRRIGATION .DEPARTMENT MAE WANG AND KEW LOM PROJECT TYPICAL SECTION OF MAIN DRAINAGE CANAL SUBMITTEO REVIEWED RECOMMENDEO A P PROVED DESIGNED DRAWN. TRACED FONGCHA Checked JAPAN INTERNATIONAL COOPERATION AGENCY DATE REVIEWED





ANNEX 3 Map 3-2-1 IAPAN INTERNATIONAL COOPERATION AGENCY MAE WANG AND KEW LOM PROJECT PROPOSED MAIN DRAINAGE SYSTEM OPERATIVES KUNGDOM OF THALLAND MINISTRY OF AGRICOLTURE AND CO OFER ROYAL IRRIGATION DEPARTMENT MAIN DRAINAGE CANAL TO BE CONSTRUCTED DENGHED DRAMM TANGED MAIN IRRIGATION CANAL PROJECT BOUNDARY

ANNEX 4. Land Consolidation Scheme

A.- 1. Present Situation of Land Consolidation in Frailand 4-1-1. Historical Background 4-1-2. The Government's Basic Approach to the Project

4-2. Present Condition of the Project Area 4-2-1. (Teneral Topography of the Project Area 4-2-2. Topography and Soils in the Sample Area 4-2-3. Farmers' Attitude toward Land Consolidation Project

4-3. Guideline of Designing the Land Consolidation Project 4-3-1. Basic concept of the On-farm Development 4-3-2. Design Criteria

4-4. Detailed Design for the Sample Area 4-4-1. Approach to the study 4-4-2. Detailed Design

4-5 Approach to the Land Consolidation and proposed Acroage for the Scheme 4-5-1. Determination of the Land Consolidation Method 4-5-2. Proposed Acreage for the Scheme

Land Slope Classification of Rice Field Table 4-1. Water Requirement for Each Crops 4-Z, Density of Canal and Read Networks 4-3, Situation of Inigation by Provided Canal Networks 4-4, in Sample Areas Acreage Estimation Table for Each Sample 4-5, Summary of ON-farm Development Cost **4-**Ь,

Method - wise Acreage for the Scheme 4-7,

4-4

60)

	Figure 4-	1 Detailed Des	ign Drawing of Sample NO 1 (case A-1-1)
	" 4-		NO 2 (Case A-1-2)
	11 4-	3 🥠	NO3 (Case A-2-1)
-	1 4 -	4 "	NO 5 (Case A-2-2)
4	" 4-	5 4	103 (Case A-3)
		6 +	NO4 (Case B-1)
	* 4-	7 . "	×104 ( + )
	··· * 4-	8 "	NO5 (Case B-2)
	1 4-	9 4	NO5 ( 4 )

•

.

.

Map 4-1. Land Slope Classification 1 4-2. On farm Development Method

·-

***** 

· ·

4.1.91国K抗什る1F場整備爭業の現状: 4.1.1.厂史的背景

シイ国のほ場整備等業の必要性は "たん Land Consolidation Art" かソタフムキに公布エれる以前かう認識によれ、近年急速に手掌の 拡大からけばれている。この法律の通用を受けた事業地区数は、 ノタフタ年9月末日現在でも地区、その事業計画面積はおのその たみ、そのうち完了分はまるら、ファムのである。 一方、基幹用排水路に付す通じて未端用水路板の排水路 を新設することにより、各軍へ」通知な用水を配合するために、、182年 Ditches and Dideo Project シネか公布エれた。この法律にたたか で計画エれた事業地区数は92地区、その受益面積け約206.95 たみ、ウラノタフタ与タ月本日月を天で完了した面積に、約26.15たれ でその進歩率はまる61%である。

シイバおける考地整備争業(On-farm Dewelopment Project, は以上に述いたかく、新天見争業にて積和的に取り和かれ ており、1月場未端施設の値的向上を果たす重要を役割を担い、 農業政策の重要を科ををこている。

各種事業が経験にいる如く、ほ協整備事業(Land Consolidation Project)は初期段階においては、就行錯誤をくりか え、改善、検討をかれ、定形によれるわてあると考えられる。

\$

付常施設の整備にあるので、

事業計画の業主にあたっては、農民の安求、コンセンサス、事業の 経済性、限益等を考え、長期的展望に立って、設階的周発 精想のもとに、検討エれなけれはならない。アイ政府はDitches and Dikes Projectの成果を評価こっつ、技術内も、社会的、経済かう 分野から、15場整/痛事業の内容を検討し、15場整備注い示 ンれた範囲において、その事業を円滑に推進し、最大の便益を得 引法を模案中である。

4、1、2、タイ政府の本事業に対する基本姿勢、

中央日場整備委員会は,日場整備事業の役階的開発として以下の見解を決定した,(1978年10月30日府1進の8/1978全議議

零掌地域の基地整備計画 (ON-farm development scheme) は 暫定的に Intensive method & Extensive method KB

分上れる。Intensive method tot 区面内的海安更及ひ用排水路道路内新設、改修在行、软合的に要地内整确を行うものである。従って

ニの方がを通用打地域は完全を下場整備により最大の便益を得る可能性を持った地域とする、一才Extensive method は原則として

整地は行わす、用排水路の新淡改良、必要にないて道路を設けるわて、Intensive methodを採用する場合に過大投資になる

場合,或いは,部分的を施設。改善のみを行う場合に適合する。 いたちから、この方式により改良にたかくかい施設は、Ditches and Difes Project による施設よりも良いしのことをければららちいっ、上言し 委員会の見解は、公利論的には、その開発方式を已分わけする ことは望ましくないしとし、物開発計画にあくまても、「んののののはんだの" こあるかっ、その開発の手法は、その理状式いま環境に よって変化するものである。この開発手法は少なくとも年間を通じ すべての磨地にかんかい用水をが充住やすなくとも年間を通じ すべての磨地にかんかい用水をが存在を取水出来る磨地の数は、 少ちくとも各地区毎に、その上地が有着数のアの%以上であること、 残りの30%はたい形象にたたことにの筆から間接的に困趣にか んかいっにより、給水をかりればっちっちい。

· 以上a基本的是解下出于いて各地域で·尊掌小实施工化, 知晓美で最適の手法と思われ、方式を採用でいる可是状である。

メマ、事業計画地域の現況

Ľ

4.2.1 計画地域の地形概要.

(目場整備計画を植起す3場合、その地域の地形、土地/規科を知ることに主要を事項の一つてある、本地区の場合、Mae Wang 11

に沿ったMae Wang地域、地区南部のMae Pungtet或及い新建南 然か行われている Kew Lom Extendion tet或に大きく区合することか-

出来了. Mae Wang toto it Mae Wang M Brak Kit Apht top

の木田及い、相地は1/100~1/200の北夏斜をちこ Mae Wang 11に直南市 何の化良斜を持ろ田越にかんかいかがわれて113、 Mae Pungs世球

は一部の山麓に隣接した地域を除いて比較的ゆみかなな強料 の水田地域である Kew Lom 地域は一部の既耕地を含む山林

原野かうをり複雑を地形奈件を呈し,現在関係農家による自己前墾か-行われている)新拓地である。

1日場整備事業費の中に占める整地工事費の創合は一般に 35~45%である、その工事費は承到とて要民員担となること、事 業便益の評価の美草から地形爬科と1日場整備計画の予弦 運免には塞接を民」係かある、この主目にかくかみ、森底、1/0,000 の地形図から分類にた本田の絶科区分はTable - 4.1 のよろつ てある。 4、2、2、サンフ・ル地区の地形及小土壤

\$

事業地域に5つのサンフロレ地区を設定した目的は、各種の要素を 考慮し、現場条件に、最も合致した、ほ場整備手法を見出すこと、 事業地域の諸条件を代表する各サンフロレバタすして必要な工事費を算 出することである、計画地域の地形条件について既述の如く、地域る に累地の団地構成、土地利用、地形か一要る、これらを勘案して次のサンフロ ルを選定し、地形測量及び地籍測量を実施した。その祝眠では次のと ちりてある。

サンフロレ名	<u>ソーン番号</u>	面積明	10) 11月10月	土土	也利	用(%)
			,	米田	大田	山林
1	12	220	1/20 - 1/200	76	12	12
2	12	210	110 - 1180	51	12	37
S	2		1/100 - 1/200			
4	9		1/800 - 11.000			
5	4.7		1/50 - 1/250			

Kaw Lom extension areaに属するハロノスロールロンセンは一部の記存 水田及い比較的低平地の用田地域を除いて好人とーかい山或り開墾 或い作原野の状況で、田地内のかか参れ中は福田で複雑である、こ かいたら末端施設の新設により、より高度を土地利用と用田か可能と たろう、ハロ3地区はMae Mang 左岸幹線に勝接する比較的急加科 初で一部の用水路によるかんかいのほかは、田越にかんかいいによってい 3、地区の加良科は祝田各一定方向に整然とここだり、用排水対案も比較 約定形に計画、エルよう。 NOイナゼ Bは 振めて平担な 秋田地域で、中央を専合家排水路 かうえ下し、Mae Wang 左岸幹線のら最も遠かくナゼにあるの、NOS 地区は Mae Pung 幹線から 給水土れ, 地域の中央部に防置し、順 余斗は高焼初の急水原余斗地から低焼部りの比較的援らかな水田之と 変化した地形である。

各サンフロレ地区の土壤は3.2.1 (main report) こき社はたれく、 祝に良好である、ほ場整備計画上、留意すへき争項は祝わ次 の美に集約エルよう、

i) NOIBU-NOZa小高い地形や小立a一部に一線、石灰岩碎片度 ひとのソライト層か地表下、の川前後に出現するため整地を

行;場合注意了;必要かあうう。

- ii) NOSa東隅部では、表土a浅、研算土壤a分布かっ記められる。
- 前)有効土層は一般に厚く、整地工事にちいける素土を理るが 要性は少ちいであろう、この症事業の持復として表土

を制き取り、工事完了後心土。一部から派土と江利用 エル3場合かある、ニルうの地域では工事完了後、数年间

は従来以上の有我物及い肥料の投入を行わちい限) 一時的演岐はまめかれないであろう。

4.2.3. 费民的F场整備事業に対する意識

事業地域内の20町村の中か引登はれた100戸の登み、聴阪り調査によう事業に対す意識の祝要は次の打てある

D D KDIMU用水

調査に繋家のうち33%か雨期に水不足を生いち6%か乾朝 に不足を許えている、これらのうちの多くはMae Pungt也での豊成と

思われる、不足を新えている要なのううフォバの者は、その考地に、かんかい施設の新設を望んている。

的港水被害

全体の23%の慶家の竹府要地の一部か一何らかの建水被害を受けている。これは全要地に対しては振めて限られた被害であろう、

的末端用排水路a用地

水路施設に必要を用地の提供に対する費民の意見はなわ 次のとおりてある。

·無償提供 55% 有償提供 11% 政府和政策に從) 15% 行初也 19%

11) 澧道《公安性、計画幅員

78%の農家は農地に従った農道を持ていない。残りの22%。 は記記の集落道路或いは豊道に沿った豊地(Pilot farmを 含む)の計断者と思われる上記78%の患家のうろの68%は、 豊産物の運搬路とこて要道の建設を希望にいる、悪趣幅 夏は314,414,514を希望するそのかしそれそれ25%,40% R2. 5%、2全体の70%をよめている。

辺濃道用地

道路用地a提供(对打3 農民,意見は次a とおりである 無償提供 60% 有)償提供 15%

初、憲家の自己資金による整地工事

14%の憲家は可能な限り早く、初土地を整地したいと希望しているかトラケイの憲家は非来、出来れはやりたいとのことで、積

福的に配資金で行うことは困難であろう.

以上の結果いて、ほ場整備事業の内容につて要款の理解 度けぶずは高くはないか、かんかい、排水施設及い道路施設 a 整備は強く望んでおり、地区北部に1978年実施にたみのなる a Pilot Farmの評価か降之に浸透いつあり、地域要民の

1日傷整備事業に対する熱空は高まりっつあるとことよう。

4.3. (F揭整備計画の設計指針、

4.3.1. On-farm Development a基本探合

一般に、時場整備計画を案定する場合に配慮したけれけてうない争項は次の知く集約されよう。

》技标的祖矣.

地形,加小排水拖鼓和现状、道路状况、上壞, 施設。維持管理状况等.

们社会轻情的観美

旅行体系と農業普及サービスの現状、農協組織の農業金。 融、土地所有形態、施設政定整備のための投資額とその便 益、事業に対する農民の意識と要求、受益農民の事業量見組 に対する政府の補助案。

は場整備事業は豊村地域を取けく環境を統合的に調和 のとれた姿で改善、整備取りのである。事業計画は上記諸年頃 か初至の関連と長期展望のたにく組み込まれ、近っ政府と豊民 との相互理解のたた計画上れるへまれである、その地域の特徴をおよ 会、経済条件からいが要にならて後び皆的開発計れの導入も又必 要欠くへからからしのと考えられる。

当面投資と便益、工事費と農民員担題和軽減,地域の農民の事業に対する理解度、要求等から,次の=実を計画の骨子 とて、段階的開発材を検討する、変要か-あるう。 うほ場整備事業完了後にあいても、商単に改良可能なもの、

前時場整備事業完了後において、改良なことか不可能、文いは困難をもの,

具体的事例とこで前落は水路のライニンク、道路の装工、平坦地での整地等か考えられる、その工事に対称妥当投资额は,年業実施

a 国において、空要最小限にととめ、その後における、又要を改良は、 特果、紫家経済が安定成長にに肝真において行うことか出来る。

-方後席は1記の設計、道路水路の居置、換地業務を通いての区 画反い土地附有の用編写かっ含まれる、これらは本来、甲業計画 苯主時において考慮、これた事項といて暫定計画の中に知み入れられ ろくっきかっ理想的とこここよう。

以上述へ下基本事項を充分認識しい,本地区の設計 基準良なサルフ・ル地区の設計を行いほ場整備事業計画を 策定する。 4,3,2,設計基準.

本地区15場整備計画の設計基準は3見地の地形,土壤,土地が有形態、営農形態,用排水積行を考慮に、以下の基準にもとすいて計画移、この基準に示す主要項目は次のとおりである。

门区画创計画,基本,標準形状、

前用水計畫,

11) 排水計画

的道路計画

i) 木路及U道路o配置(Itil Extensive method)

前 精造物

ひ区画創計画の基本を標準形状:

本地区の土地村有形態はタイ国の平均植を大幅に下週小平 均一户当り裏地村有面積は、30 Raである。日場整備争掌で実施 う日排水路及い道路等の公共用地は換地による共同減多で 文理シれる、法律に示シれた公共用地学の範囲、実施慣例等を 動率し、本地区のそれは、竹有面積かり、大見模であるため「起力」、 なり率にとどめる必要かある、区画家」計画は上記条件のほか、か Intensive method における

人加·小排水施設·維持管理、地形勾配,建設工事業を考慮し次の 基準1-5-3-60-573.

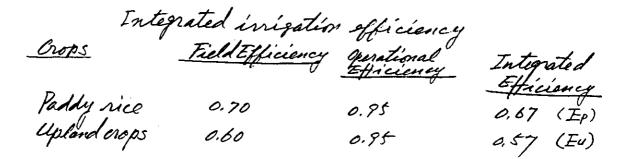
地形顺和	標準区面	面積	* • • •
	(長江)×(短江)	ha	
1/200 ~ 1/500	(100~140)×(30~40)		
1500 ~ 11.000	(130~150)×(40~50)		
11.000 YAF	(130~150)K (50~60m)	0.65-0.90	4.06 - 5.63
			1

### 4-11

後って用水路、排水路、によってかこうれる区町の長辺の長江は現れるののへいの、短辺の長さは現ね 30~60mとする。

的用水計画

本項に述いる用水計画はMain Report 4.2.3 項に述いた用水諸 えにおすいて未端施設に通応させるために菜定する.


A. 単注用大量 (Water requirement)

一般にのかっ方ないか、全地との用木管の算定及い施設な街面の決定は両期 及い売時期におけるり下はかの相達類及いからけ面積かっ見るいめ、各期 に花りるし、フえ着を検討する、父愛かある。基幹施設の八法の数け 現況における人間行及い事業完了ののり下はり本系及い施設の補助参期间 等を考慮しるの日としたから、未効ドレヘールのかんかいのファロックを考えが完全, 現実にはようかし気をかく考えるべてのかある。又発来ローティショナル、イ リエーション(れるなだかののこではなく)を考えるため、 施設かったえ可能にすのことでけれはったちない、地地区の別人及い過去 の裕願から本地との未読者「(Lateral canal 以及)の人体を日数は 20日1町とする。 A.I. 水猫及び火期を分の消費水量及び浸達量、

各体物制の消費水量はTable より要務すれは下落のとろり である、又本田の浸達量は現地での実制データー及い一段住事業に思る/面から ノMm/dayをする。

4-12

A.2. 秋谷かんかいの効率。 水稻度の火田作りのにタオオる秋谷かんかしい支力学は次の1互を使用する。



A.3 加人加小川用水量の算定.

一般に水稍作と知族の混在お地域でのかんかい用水量は次利

Q:= Ap· &pi + Au· &ui

Q:: かんかい以電木量(m3/2ec) Ap: 水稲かんかいの面積(ta) Bpi: 水稲かんかいの御屋(ta) Bpi: 水稲かんかいの御屋(ta) Bpi: 松塔時単注用木量(m3/2ec/ta) Bpi: 松塔時単注用木量(m3/2ec/ta) Bpi: 松塔時単注用木量(m) Bui: 畑原かんかい単注用木量(m) Bui: 松榕時単注用木量(m) Bui: 松榕時単注用木量(m) Bui: 常理単注用木量(m) Au: 畑(たかんかいの面積(ta) L: 1AU-22-1下期を示す。

各単位用水量 &pi, &ui はそれそれ次則で計算工れる

$$\begin{split} &\mathcal{B}_{P1} = \frac{D_{L} + (\mathcal{R} - I)(D_{E} + \mathcal{P}_{P})}{8.640 \times \mathcal{R} \times \mathcal{E}_{P}} \\ &\mathcal{B}_{P2} = \frac{D_{E} + D_{P}}{8.640 \times \mathcal{E}_{P}} \end{split}$$

$$\dot{B}ul = \frac{Du}{8.640 Eu}$$
,  $Buz = \frac{Du'}{8.640 \times Eu}$ 

Bur: MIZEATXMA	物学注用水量	( M13/ poc,	(ha)
タリマ: 「あり手かんからの世	リメロイをおの単にう	(日大春/)	113/au/ Pa)
Du: X田作消量水	テ (お石助	) (mm/d	ay)
Du'r "	(403)	( "	<b>´</b> )
Eu: 旅行カルカル	小动学		5. 15

ì

M	rap wall	requi	rement.	tor la	ch cro	ps sea	0011		·
<u>117</u>	期	季别	DL	DE	DE'	Dp	n	Ξp	8.Pi
代搭册	K (Feb, 2)	Dry	200	З,5	· _	1.0	20	0.67	0,0025
4	(Jul, 3)		200	2,3	-	1.0	20	0.67	0.0023
常時用	K (Apl. 1)	Dry	-	. <b>-</b>	6,7	1.0	-	0.67	0.00 13
4	(act. 3)	Wet	-	-	3.5	1.0	-	0.67	0,0008
17	期	季别	Du	Du		Eu	·Z u	1	8uz
/ ĭ 搔 朋	(Feb.z)	Dry	2,8	-		0,57	0,0	006	_
	(Jul. 3)	Wet	1,5	<b>–</b>		0,57	0,00	03	· -
嵩肝脷	. (Apl. 1)	Dry	-	4.1		0,57	.	-	0.0008
1,	(act. 3)	Wet	-	1. 2		0,57	-	-	0.0002

Peak water requirement for each crops season

4-14

A, 4, 税加人加-い用水量の算定。

前項で求はた各期別の単位用水量及ひ-1次付計画から考えて,末端施設断面決定のための最大用水量は乾期1次の代接時に生起する、従って流量算定は下大1、51分子の5す3、

Q = &p1 · Ap + Bul · Au

= 0,0025 Ap + 0.0006 · Au

Q: 最大用水量 (m3/arc) Ap: 雨期作水稻面積(Aa) Au: 水用作面積(Aa)

B. 水理設計Bar水路断面形, B.1. 本耳野井茶· 水路の水王里計算IF Mannings Formula E1使用L,水路街面的决 定を行う。

$$Q = AV = \frac{1}{\mathcal{R}} R^{\frac{2}{3}} \cdot I^{\frac{1}{2}} \cdot A$$

### B.2. 新客厅大流莲

水路の許容最大流速は土質及ひ、ラインンク・エンラトトック、長ろか、板わ次の基準によるすのを方う、

土垣	Thit (m/sec)
Sandy silt	0.45
Loan	0.75
Silty Loan.	0.90

B.3. 木路查门前多

用水路をいまれなるの御には真色にに1.0とする

### 训排水計画

本項に記述打排水計画に1/am neport 4,2,4 項に述ったおりけ 画読えにチャオールで未満施設に適応ませるために発定する。

A. 单注排水量

計風地域内の地目は主に、農用地及い住宅已成でMae Mang Kew Kom & u-Mae Pung 幹希家水路により土也区外就域からの降荫 流出かっカットンれるため、原則とにの一farm Levelの降雨流生景 のみをす象とここを重面する。その単注排水量は記述の世史ののの22m2m2

haztz.

B.計画排水流量

計画排水と・-ク流量は次式で算出工れる。 Q=A·Bo

Q;計画,排水量(m?/sec) A;計画,排水面積(tra) Bo;単注排水量(m?/sec/tra)

C. 水理設計及U-水路断面形

水理該計及11水路街面形は頁則とに用水路超設と同様の 考之オとすい1近,許容最大流進は用水計画にあける数/直の150% むこ許容するものをする。

10道路計画

A. 農道の種類 B ひの布.

本地区の主要道路は配点加タレ、かちり整備シれているから、磨業 用道路は極めて少ない、農業用道路の整備に用排水施設と同称。 (Runal nood) の一種類を計画する、Runal nood 18 配存公共道路と、憲道 或いけ集落道路とを結ふ一道路で、地区の基幹的道路をにて考える、 Farm noodに農業生活に直接利用形道路で、原則といて「形物 路」におって設けるの合わる。

Extensive development method area 1: 计; z 并 闭起 7年1年, 永3名のの, M を考之, 12 安康小 院房の道路(farm rood)を 報付る.

B. 道路响扇员

-般に道路の備員は通行車柄の渡美の、頻度、工手量ない、射 持管理等を考慮に決定する本地已燃業は比較的集好思葉 か定着になり、土地竹存かちちいこと、将来の浅核化の程度からん 国の人地地域に比へて、低いすのを想定される又夏」尽寒和のバタオマン 調査若早でしたろ~5mからく、中で手んのいを発望すいたの一番多く」、 当街通行車輛は、Hand tractore ox-canto、文文を考え次のものく んのいとする。

Effective width of Hand Tractor 1.30 m of ox-cart 1.30 " Medial clearance between vehicles 0,50 . Outer allowance of both side of nood 0.60 " (0,3070,30) Total 3.70 "

第って神話をは4.0mをこてすいてきもあする

C. 路面高大,

道路的路面高地周辺田面上,原则长了0.50m とする

的水路BU道路,配置

A. MILDINA KBE.

かんかい日秋路の配置は出来得らか主り、区画内を通すす;土地 所有着境界に沿って設ける。末端用水路のかんかいの面積は、 300ハai(おうちのRa)を標準とこ、それ以人上、ケラ3路孫は東国にて 副水路(Sad dited)を設け、直接用水路からの分水を立ける。 又、かんかいい面積から3000mix人上、大路は長からか水を立ける。 マ、かんかいい面積から300mix人上、大路は長かいまか、のたかい人上、ケラ 3時常合は、その超過部分の水路はコンクリートラインシラーをううう。 これうの用水路網から直接かんかいい本来ない地域に対しては小清 (Small dited)を設け、振力田越にかんかいにもつける、これらの水路面で 置は現沈水路を有効に利用につつ検討になければならった。 8. 科本路

一般に正地的 method E 通用する地域。排水路は各筆 の排水E 直接行う以要はない。既設水路及い 剪辞家排外路に 連絡する水路,及い上流集水面積か、振ね 20~50~10~(5~80) となる地域に排水路を設ける、水路の配置,注置は用水路と同样 の手方を、有る、排水路へ配置可隔は祝れ.200~300mとする。 C. 赛道

集落道路,幹方線用水路に併設に広管理道路と連絡すれため,必要に応じて用水路に幅量3~4mの道路を設ける

#### 的構造物

(日場整備地域内の用排木路,道路に付带打着造物。該 置基準は概ね次のようにする。

A. AKI (Constant Head Orifice - C. H. O)

C.H.Oは幹支線用水路から取水する施設で用水路始長に 設ける、この施設には流量計測施設を併設する。調整ゲート 下流の膳草部は流量になってコレクルートルイクのをノ運スは2運はふ B. 分水杯(Division Box)

主用松路(Leading ditch)から分流に他の水路に連路下 3施設で、その分水注置に言文ける。

C. 時享 (Farm Ditch or Drain Culnert)

用松路(Farm ditch) あるいは排松路(Drain)か道路と交叉 する谷野に致ける施設と、暗渠の長ま、反ひちの上下流の水注花 を考えいの170日圣を決定する。

D. 進入路(Farm Entrance)

道路的信惕、進入打大的に永路、設的暗導施設工 通行車輛、使用頻度を考えてるまたは 4~6m, 知設置所 隔は2~3户の土地附有為境界或いは系台200mに 4所設ける。 E 水浴問整施設(Check Structure) 用水路の水径の変化或いは低下トンオノス、常い必要水量を取水すため、又輛番かくかいうれど採用する物合等に水径の調節を行う施設である。この施設の設置両隔は振ね250~300mに がかった防いな路内に落差エ、分水杯かある場合にその注置 との関連を考慮し併設なことか出来る。

F. KEE (Farm Inlet)

用水路から各区画に用水を含水お施設で20011111コニクリート 11017・を布設する、設置の基準はおらうイにノ、のケカケの割合とこ ちライン人下の土地的有着は加っ土地削有着と芝用する。 4.4.サンフッル地区の詳和設計

4.4.1. スタディーの方針.

ニのANNEXのスノ及ひここで速いた如く計画地域の地形及ひり頃 余斗は各用水系統別に要った特徴をもっている。スクラッイーの目的及 ひるサンフッルの地形、土地利用現況を勘案し、各サンフ・ルるに以下 のスタテッイーを行う。

Case - A (Extensive development method)

A-1.; #27012NO1BU-NO2

このサンフ·ルは水田、油林(開墾うき地)が混在 する地区でいすれた Kew Lom Extension Area 15属する.

コク地域は土地利用、地形条件か複雑で一定せす; 将来とも完全をには感察/なの実施は困難と思われる。

開発就了基本il,各支線引路(記設)a水径154/ 自然かんかい(mavity inigation)可能与地域

は水田とし、水陸より高位部は氷田地として利用される なんして用水計画を存まさする、氷田地に対する用水施設

はホリアのにはるかんかいいとちるため、この手掌では考慮しないか、用水量の真定は施設新面に加けまする。

従って施設計画は用却水路,道路の新設と、これ

A-Z: #>7ºIUNO. 3 BU-NO5

このサンフッルは Mae Wang & Mae Pung Jutis にな お比較的 急ル夏余斗 マーム,地形奈/キかー複雑な地 どてある。整地工を実施にた場合、ライメリノンの~/5043 以上となり、建設工事業か、高もこと、表土処理等技 行的 問題矣も多いものと 超全土れる。 従って A-15-ス 同様、 原排水路の新設、政修、道路の利定 と、付帶構造物の 診蛋のみについて検討する。 A-3:サンフッルNO.3

施設計画は原則とうてムースケースと同称の考えれて ある。地形ル復余年の方向かけ較約一定の方向に 走ってかり、一將来整地工事を実施する場合。 用排水路及び道路施設の殆んとか利用可能 となる称、この事業で、施設の配置を考慮する、従って 現況水路の利用と併せ、一部の新設水路に正面,

a 中央を通過することとなる。

Case - B (Intensive development method)

B-1: 7-7.1V NO. 4

ニョサンフッルは地区の低平地水田と小をすろれてある。 従って完全なほよ易整備計画の持ちかし可能である。

饭了,地区中央市鲜绿排水路加南百大时,基新花 致a政家事業上a 阿連及小水路用地。又至理我年多 充分换到有3次要加あ3。

B-Z; #27012NO,5

*

二の地区の地形的属金斗を細分すると次のとよってある

北夏军斗	面積	比平
150~ /150	49,3 ha	35,5%
1100-1150	38.9	28,0
1150 ~ 1/250	50.7	36,5
言十	138.9	100.0

整地工を含むすへての施設をB-1ケース同称に実施した場合について検討する、この場合A-2ケースとの

比較什句論。こと,加科区分别の工事費。比較か可能で,開発不利決定の行命か見、出せよう。

4.4.2. 詳細設計

前項の検討なけにもから、詳細設計を行った結果は以下に 末れおりである。該計図は別添四-4.2~4.10に示す。

八道路、水路窟底·楚地土量

ケース A-1, A-2 BU-A-3の Extensione Method による 用水路の 配置は各国地上地村有着彩数の70%以上からの水路から在接 かんかい出来るよう計画に、排水路及い道路は現況の位置及れ-施設を利用しい要最い限度に「F. 又ケースB-1及かB-21はそれ 它れの地形条件、公共用地学を考慮ん該計基準にわたいてInterview methodisFy計画, CK, 各ケ-スにおける,道路,大路の边長察度, B

ケースの参与地土量を下来-4.3に示す、治サンフッルNO.51+各水息斜之 今省に地域を分類に=フロケースに利分に整理した。

- B	- 4.3、1里~	1000 11/3	zxu z-v				
<u> 7- 7</u>	+>7.10ND.	型地量	農道.	用水路	排化路,	構造物 棉	南居
		MIT/ha	ni/tia	m/tig	"/ha	471/60	
A-1	NO.1	-	Z, Z	52,5	1.6	1.5	
<b>4</b>	NO. 2	<del>-</del> ,	-	59, Z	1.3	1.5	
A-Z	NO. 3	-	7.3	724	12,2	3,7	
1.	N0.5	-	9.1	67.7	<u> </u>	2,5	
A-3	×10,3		8.0	. 70,7	37.9	3,4	
<u>(4t)</u>			5,3	64.5	10.6	2,5	
_B-1	NO,4 X	393	57.8	57.9	37.7	<b>Z</b> ,2	
B-Z	NO, 5 X	785	61.0	66.9	47.0	3. Z	
4	4	388	61.5	76.9	45,3	3,4	
¢ .	4	700	64.6	69.Z	45.0	3,0	
4.	4	1.26/	57.5	58.7	49.7	3,0	
(平均)	)	589	59.4	62.4	42.4	2,7	
	平t匀值 /X	FPairtilez	t3.				

丰-43、首大路察营助小费切大管

又、Entensine method において、新設に、用木路より 直接 農用地 に用たり茨給出来3 割合は素-4.4のとおりて-、現在9/15次府 か 暫定的5に定めてい3技術基準に合致的存水路施設を計画に、 素-4.4、かんかい、用水族給状況

29

		土土	也附	有者数			
<u> 4- Z</u>	#27012NO,	£17		石積水力	)" V1	国境人力	hnn
		加加新	<u>     //</u>	加醋数	<u>⁄。</u>	的旅行	%
A-1	N.O. 1	160	100	121	76	39	24
4	x10, Z	143		107			25
A - Z	NO, 3	270	100	195		75	28
11	NO.5	257	100	185	72	7Z	28
A-3	×10, 3	270	100	196	73	74	27

的末端拖設 K文材3 公共用地学

÷ × 各ケースの施設建設い公要な公共用地作表-4.5 バネオニーとく である、A-1、A-2及ローA-3ケースの公共用地率は平ちりメ、みら、減 学学は Z-4% マー、B-1及ローB-2ケースのどれけ、どれそいれ 65%、4.1% となった。平均かちり寒地前角面積のからい本地区マーケニトトラの公 英用地を極力ふよく、最大の効果を発生軍引施設計画を搭注 下31公 愛いある、地形奉作の複雑を本地区の場合どExtensine 24 Method にかずにてはまるちゃ、 Intensine method にかずにては 6.5~20 % a 公共用地学は確得する 以愛かある。 前建設工事費:技術的検討

sint. Sint

事業をRIDの直営オガで実施に、198の会計年度の単価で積等に、 建設工事費は素-4,6のとおりにある、現現の木路道路察度及い 工事業の検討結果から計画地域のon-farm development method について次の事頃かりりらかとなった。 Case A-1: TITONNO, IBN-NO, 217 Kew Lom extension and に属し、入植計画にしきずく道路網かからり整備 ゴルていること及い支線用水路かー他のこのモバビセー一窓に配置エルているため工事費かー比較的低れ人 となった、又一方当日地的府面積1大主く、辺、集団化しているため構造物も少ない、単位面積多り (なるちり)の工事費とにては6,500 baht程度かん? 要である。 サンフ・ルルの、31ま年均主相身科 1/20の地区で支線 Case A-Z ; 用本路に隣接にた地図であるため全体工事費の中 にもめる構造物の工事費か-年360%をちょうた、Mae Wang左右岸幹報に沿った類小人相見斜の地とは ニハサンフッレトイ以大加夏町を末すトッと考えられる、なの当 10 I 手貫は希日 13.000 Balt (2,130 B/nai) 2万3。 サンフロルNO,5の加度系科は150~1250まて-多化に官 人てあり、平均的な工事費としてはいのろによせいで ETA + 51 \$310.000 Baht/La Z-53.

7. 808 6.8% 11.515 13,602 22.434 5,227 15.083 2,550 430% 26412 17.870 33.45 10.126 11,500 Ceet 116121 26.447 Tetal Unit: Balit pur Hictore 20 Structure 2,892 8925 5,007 Cent 4.063 4.4.98 5 353 8.983 10.690 3,442 4.836 5,959 6,292 10,462 Jist / 10.904 9.163 2 8 9 66 181 646 だっ Cent 331 649 23 270 343  $\sim$ 513 621 Land Charing Land Levelling Farm Read Inigation Ditch ł ł ~ ۱ ١ 3.477 3,645 5594 5,272 3,765 5,755 2,820 2,233 2225 Coat 4.176 1795 Summary of On-farm Development lost 3,369 3.468 1497 1841 2.811 ~ 4.4.96 Cart 575 4,664 2.519 いくや ややか 2.429 4,195 068 06 167 666 Ser 2,266 l 1 2 ł ł ł ŧ. ŧ ١ ١ 13.076 Cent 3.603 97C 2 6.431 3.624 694.9 ۱ ł L ۱ % ŝ , **4** ì ŧ 1 . 1 1 ł ١ 1399 608 1.397 1.399 600 807 Cent 1 ł I ł ł % ۱ Į. J t 1 ı. L ١ (Aurage) Sample (//to~/210) X0X Not ZON Not 101 103 X05 103 ∑o. A - 2 A-1 A-3 8-1 Case * \$ 3

ł

4-29

<u>ANNEX 4</u> Table 4-6

Case A-2a Sample NO3 2比較 i Z 排水路赴意 加·增加 CKK的 Ga当1 工手盾 は #3.15,700 Balit Case A-3 ; とちった。この手法によれは、将来、区画形垣の変更を行う場合、用排木路,道路施設等は,利用可能 となる、今回事業で投資、大施設のうち構造物の一部は将来事業で再成修同父愛か生いよう。この 場合全体工事費の約30%加·再投貨必要領 となうう。又本手法による木路の新設により、サンフ。 儿内a土地附有着税-数270户a35,68户开台。 25.5%a土地附有为a摆地加水路从利分数 ゴれることになる。この问題、関連に公共用地の提 波者かケースA-2に比へて持定の土地が有差に かち寿3ル夏向かあり、実施に当たけ「題かるい。 サンフ·ルNO,41+453主化原余斗まる/800の早期を てあり ha当り L手董はまな/8,000 Baht (2,920 Kper Case B-1 ; nai) z·全体工事費15日的3 经地工费(\$335%. z-比较的5万51. =a ran = z·1+ land cleaning E 合む整地工事費を極力、安くおうとか-cast recoveryの視気から考み経済の安定に寄与出来よう。 サンフロルNO,5のませ开ちは記述のとあいり150~1250 まて、変化しているため、150~1150、1100~1150、1150 Case B-Z i ~治のの順斜に翔分して手前検討を行っ

+

た。タイ国で実施中の1月場整備事業で、整地作業を伴う場合の整地土量は一般になるもの多いの

500113(ライちり60~8013)程度であり、工事費1 金作になずひ40%以下の場合が多い。

主/1項年4/100~/1500/综合の整地费1+行40%,/50 ~/1502/154%避時日全住工学费+高/西上73./150

~1/250の工事費はなるちり22.000 Balt 7. 整地費の 第1合はお30% 2-ある。二の建設工事費は将来二れらの

地域にかなり具行化土的な寒草か原南土りないでも、既往の辛草地巴と比較に防命、投資の限度額

*

.

に近れな推察される。

•

• • •

4-3/

**.** .

4.5. 1部整備耗生計画面積.

4,5,1.1日揭整備手法の决定。

サンフ·ル地区の詳新田設計の結果、水田地域の平均主順新 1200より急与地域は東則とことExtensive method によみのとこ、

1200よ11 緩勾配の地域はIntensive method 8 採用 i 整地工を含む 計画にある。前着の適用区分は更に次の三項に知分する。

门相有斗1100以上a地域;E1

=a地域は四-4.11,素-4.1 に示すせひく、Kenhom Extension area Bu-Mae Nans 左右岸幹系用大路部の日本地である。

ZoneNO, ス~10までの地域はCase A-2,NO,3aサンフロレを計画の基本方式なに適用こZoneNO121FP字<.

ii) Zone NOIZ (Kew Lome Extension Area) attest : E2

この地域は地形条件か複雜で加度科、土地利用か多 化に宙くているため、原則とは全域 Case A-1, NO. 20サン

プルを適用する.

11) 順科 1/100~1/200 att ( E3

Zone NO12を降く Zone NO.1~10までの該当加度デキサゼ区 ドウオン Case A-Z. NO.5のサンア・ルを通用する。

更KIntensive methodを採用する地域は次のない=20月 法、分類する.

11) N夏科 1200~1/500 a tet (: I1

ZoneND12を除く認当は展斜地域にすに case B-X. NOSサンフロルの1/50~1/250の該許林18通用する。

的相斜 1500 X Fateby: IZ

12~11)の該当地域を降く全水田に対し, case B-1,NO, 4のサンフ・ルを適用する。

火田地地域内の施設は毎期にこ計画にないこととする。湖地か ハカールのオシュはうわ何かんかいかが主体をなる。乾期になっ水田地 域での火田派栽培に対するかんかいしまうね建てにより、うわ何たん 水かんかいいかい可能であるため何題はない、火田地をハフちのたの うち、その62.3%のハの90名のオーマのひんり21=1を置にている。他の このたの火田地 660名の、方す属1地250名の17年12世間近、行れた 高住部に育文在こているため、水田用本路からに愛い友でして、 人力かんかいい、或いにすかいです客水バモリかんかいかで可能なな

る、現時美でのこれらの地域に対する施設投資は効用かしない ため、計上しないたのとする。

# 4.5,2, 計画面積

前項の開発手法に行主素4.1 を手法到に分類なを表-4.7 の女D<与3。前素-4.1.9中のZone NOZ & -NO3/1合まれる New

City Planning地域は原則とに、土地政家投資を行わちいことであため降外にな。

表-4.7. 開発手法别面積

r <del></del>	<b>.</b>				Unit	t; hecl	are	
Zore	Exten	sing M.	ethod		Inte	nsine 1	Acthod	+1
NO,	E1	E2	ЕЗ	Sub-total	I /	ΙZ	Sub-total	Total
/	0	0	<i>482</i>	482	90	443	533	1.015
Z	59	0	428	487	45	245	290	777
Э	441	0	.46	487	Ò	399	399	886
4	409	0	150	559	ځې	9	64	623
5	239	0	463	70 Z	<i>322</i>	359.	681	1.383
6	6	0	336	342	768	497	1,265	1.607
7	0	0	56	56	206	674	880	936
8	43	0	14	57	157	686	843	900
9	106	0	335	441	432	367	799	1,240
10	9	0	164	173	269	185	454	627
12	0	2.451	0	2.451	0	0	0	2.451
		•						
Total	1,312	2,451	2,474	6.237	2,344	3,864	6,208	12.445
10	10.5	19.7	19.9	50.1	18.8	31,0	49.9	100.0

以上の若果 Extensive Entensive method の 第11合け それそれ 50% 2"ある。

Less than 1/1,000	ц ц о	1/1,000-1/500	-1/500	Land Slope 1/500-1/200	51ope 1/200	1/200	1/200-1/100	Nore than 1/100	than 00	10	<u>Total</u>
0	J.	443	1	06	ļ	482	ï	O		1,015	
0	ı	245		64	(19)	428	٢	. 106	(41)	843	(99)
37 (3	(37)	802	(403)	14	(14)	343	(297)	579	(138)	1,775	(688)
G		0	ı	. 55	ı	150	<b>I</b>	409	1	623	I
124		235	ł	322	1	463	ł	239	I	1,383	I
0	, F	497	. 1	768	. I	<b>336</b>	<b>1</b>	v	<b>1</b>	1,607	4
368	<u> </u>	306	t	206		. 56	ł	0	I	936	1
505	T	181	1	157	I	14	I	43	l	006	I
367 (7	(62)	0	1	432	(11)	335	(3)	106	I	1,240	(66)
130 (128)	(8)	55	(6)	269	(63)	164	(20)	6	(2)	627	(222)
0	ŧ	0	ı	315	ł	793	I	1,338	I	2,451	I
<b>1,</b> 540 (244)		2,764	(412)	2,692	(113)	3,569	(320)	2,835	(187)	13,400	(1,276)
Proportion (%) 11.5 (19.1)	(1.	20.6	(32.3)	20.1	(8.8)	26.6	(25.1)	21.2	(14.7)	100.0	(100-0)

Land Slope Classification of Rice Field

BAXXIEX 4 Table 4-1

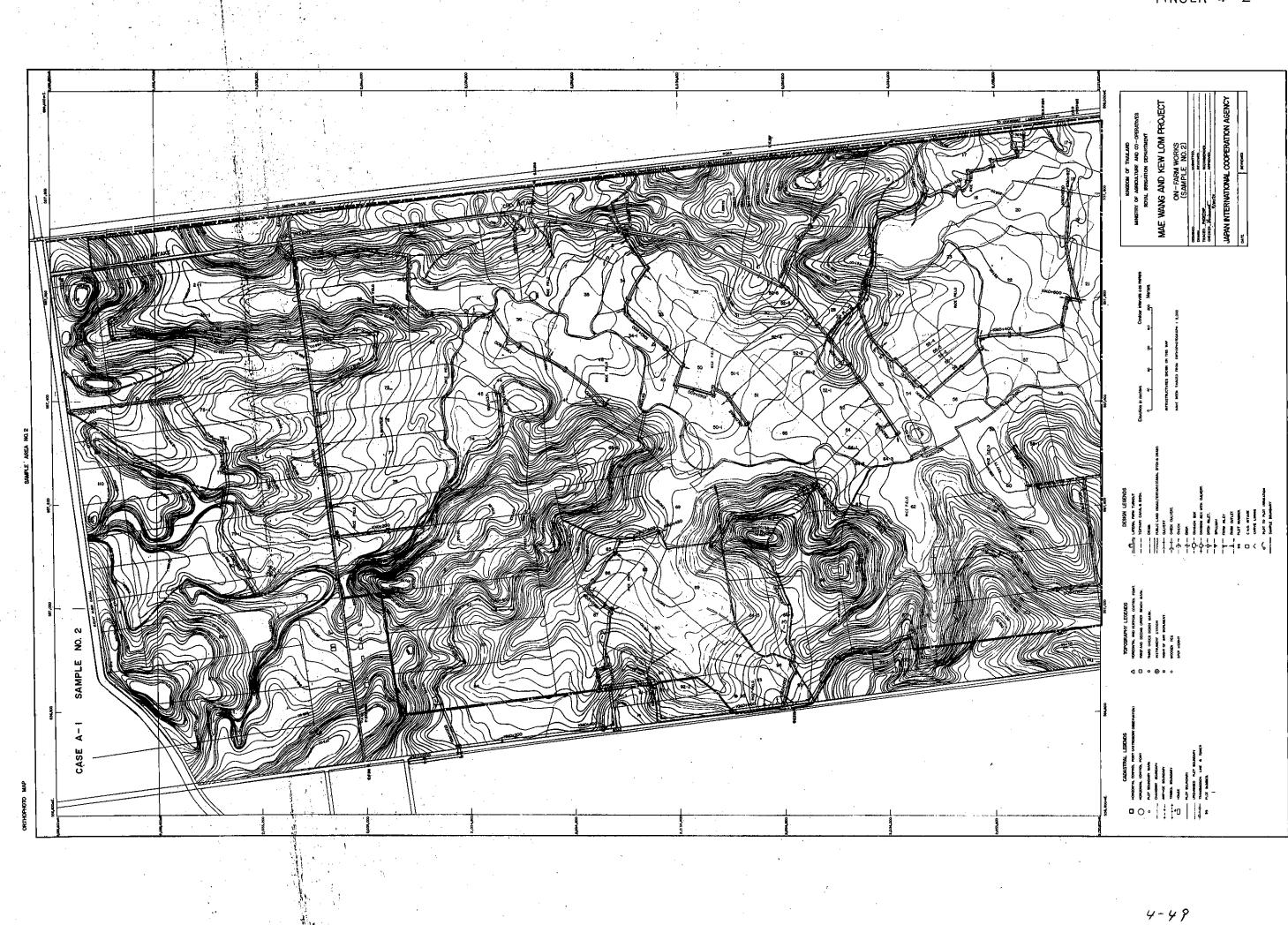
<u>ANNEX 4</u> Table 4-2

				,	Unit ! W	MH per da	4
Month	Period		y Season	Math	Period	Wet s	v
		Paddy Rice	upland crops	Month	perioa_	Poddy Rice	Upland nops
Jan.	1	-	0.81	Jul.	/	9.59	1.16
	Ζ	10.37	0,84		2	6,33	0,00
	З	10.37	0,87		3	9,93	1.53
Feb.	/	11.09	1.12	Aug.	/	9.45	1.31
	2	11.27	1.08	V	2	3,62	1.44
	3	4,75	1.10		3	0.00	0.00
Mar.	1.	5.97	1.41	Sept.	1	3,37	0.98
	2	6.28	1.33	,	2	1.84	0.00
	3	6.54	1.45		Ĵ	0.00	0.00
Apr.	/	7.58	1.71	Qct.	1	4.18	1.00
	Z	7.67	1.72		Z	3,22	0.15
	3	7.63	1,73		3	4.48	1,16
May	/	6.97	1. 58	Nov.	. /	3.07	0.53
· ·	2	6.77	1.53		2	2.40	0.00
	3	6.47	1,53		3	0.00	0,86
Jun	1	4.47	1, 32	Dec.	1	<del></del>	1.61
	2	3.17	1.31		2	-	1.72
	3	1.90	1.30		3		1.60

Water Requirement for each crops in 1967

4-46

*

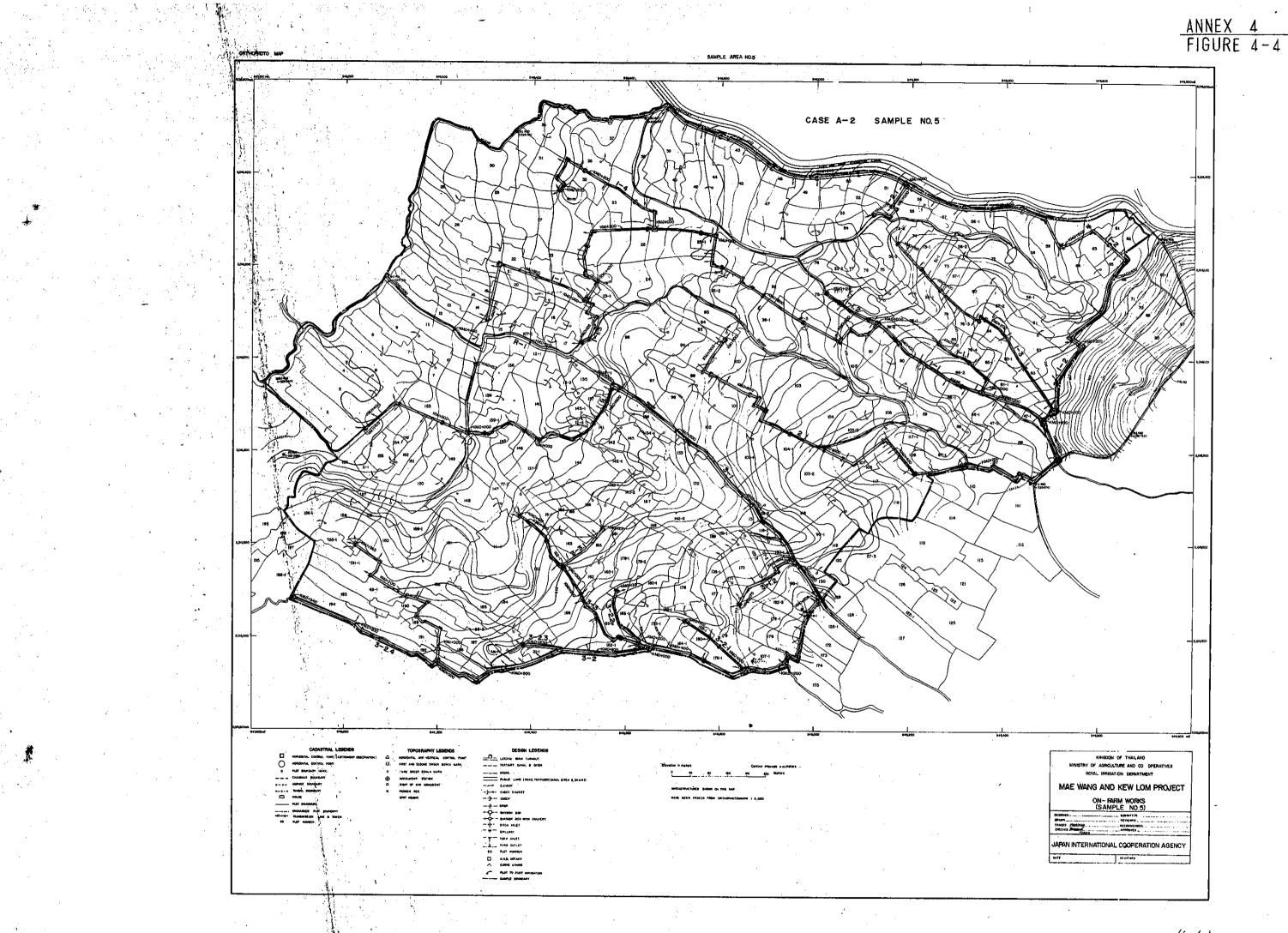

ANNEX 4 Table 4-5

Unit, hictore

Acrage Estimation Table for Each Sample

		,	Pro	1 + 1 - 1	1.10		6		-			
		Sample		1/ WUENT X ANA War	HA WAR			propesta land use	and us		Reduction	
Case	Sub-Case NO.	NO.	Farm And Road Canal Total Public Part	Road. Canal	Tatal	Purlic lart natio	Farm loud	Read. Carrol	Total	Farm land Read card Total Public Land	ratio	Remarks
T			(	(7)	(3) = (1) + (1) = (2) = (3)	(r)= (3)	(9) (5)		(2)=(2)+(2) (3)= (2)		(4)-(8)-(6)	
						%				1	%	
N	A-1 A-1-1 NO.1	NO.1	183,2	ۍ, ع	188.5	do Ni	127.9	10,6	188.5	5.6	م. ب	
	A-1-2	X10, Z	163.4	3,0	166.4	ر تو	158.4	Q, /	166.4	2 0 3 7	) ) ) ) ) )	
A - 2	4-2-1	<i>X0.</i> 3	104.9	24	1073	2,2	102,2	5,1	107.3	0	<i>を</i> 、 <i>そ</i>	/ +2.4%
	A-2-2	Not	1447	*	149.1	3,0	2 /#/	6 7	149.1		<i>w</i> ,0	
ラーマ	4-3.	NO.3	104.9	2. Z	107.3	N N	101,6	5.7	107.3	بې	3, 1	
B - 1	B-/-	×10.4	X0.4 849	1.6	86.5	00 \`	2 /J	بې کې	86.5	6.1		
	Thebuding Heindrein	ND,4	848	3.7	88.5	75	118	7.4	88,5	8. K	4 7	Anuage =
8-2	8-2	NO.S	144.7	\$ \$	149.1	б О ́ ́ ́	138.9	10,2	1.921	6, D	Q, (r)	





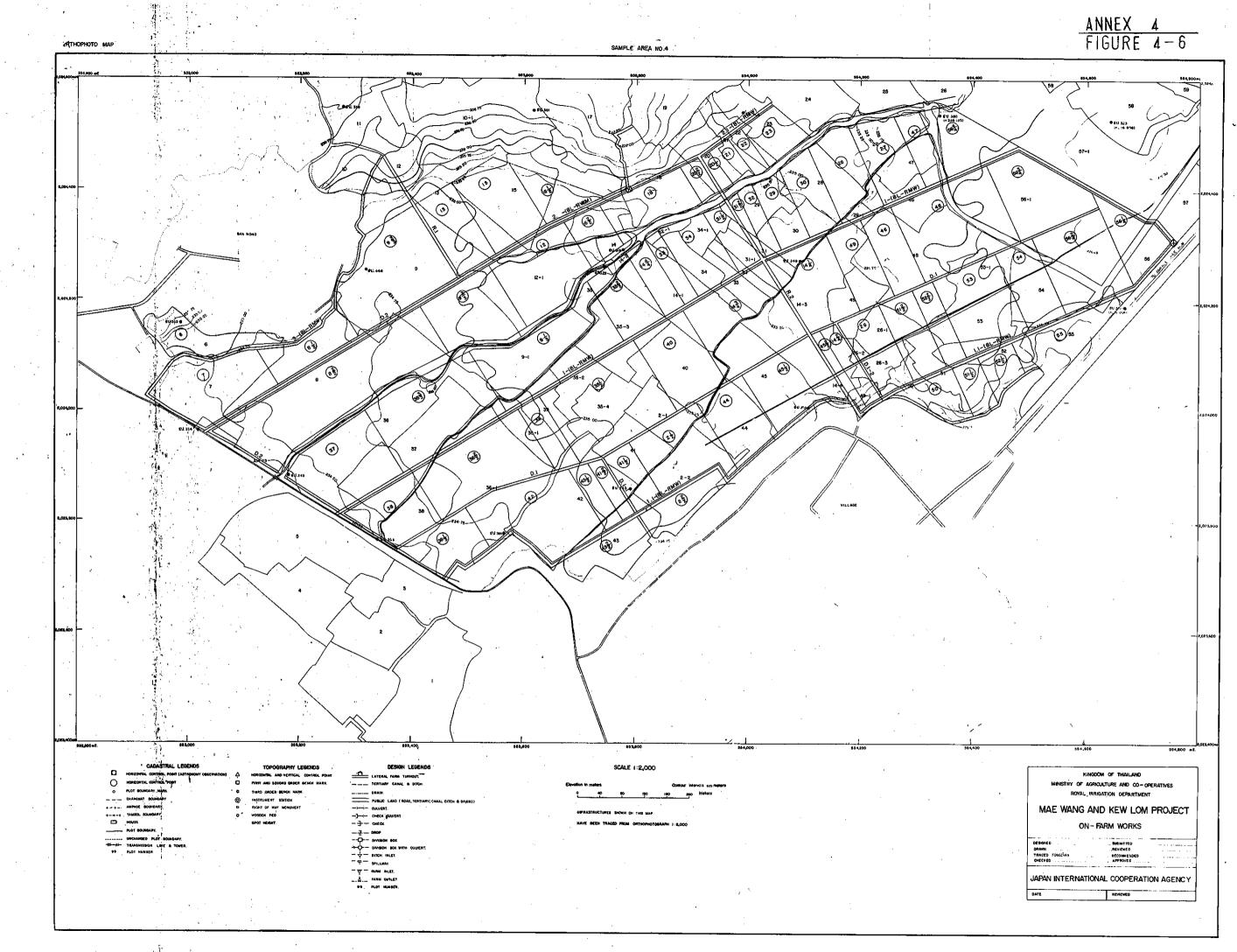

. <del>+</del>

11

ANNEX 4 FINGER 4-2

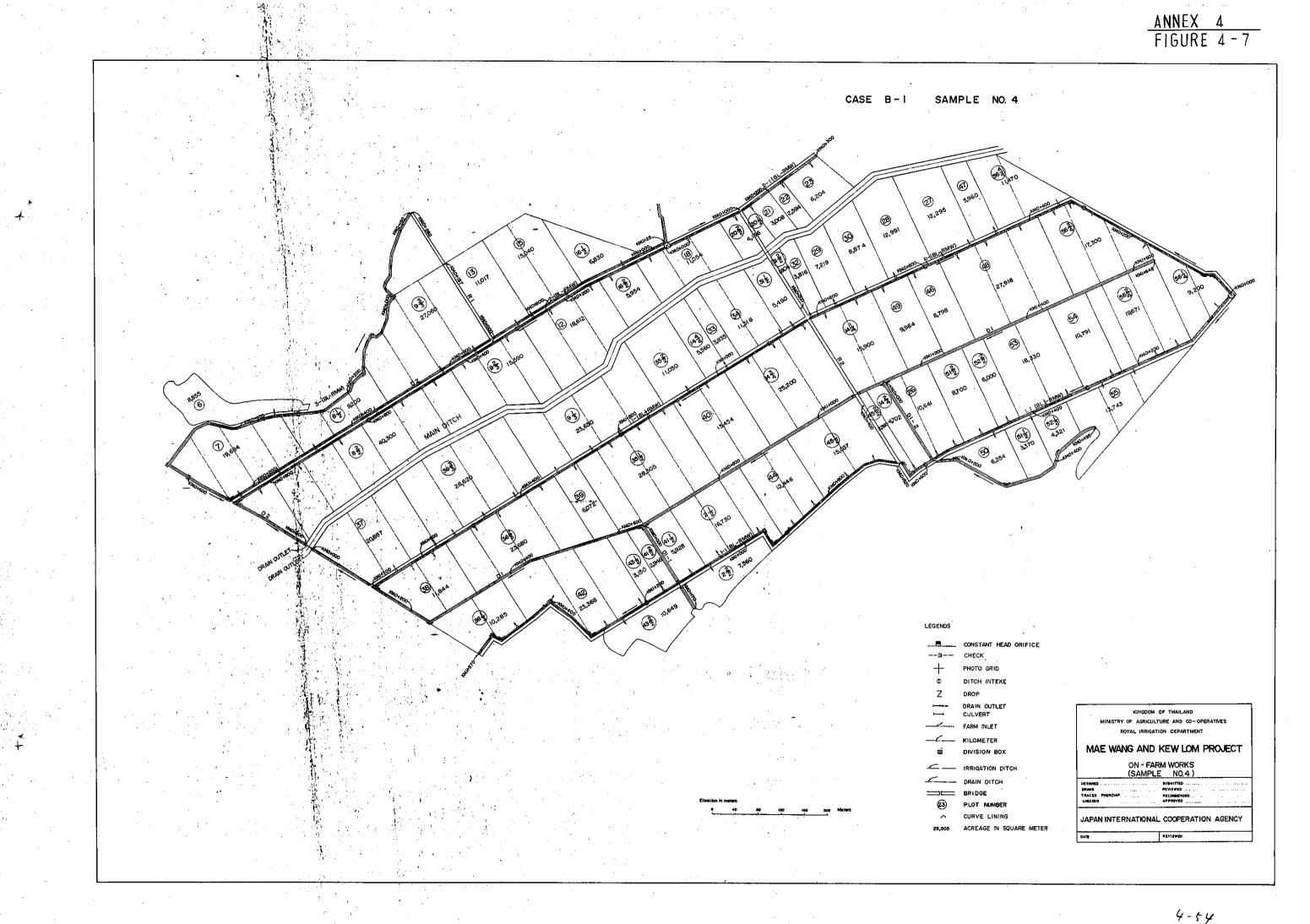


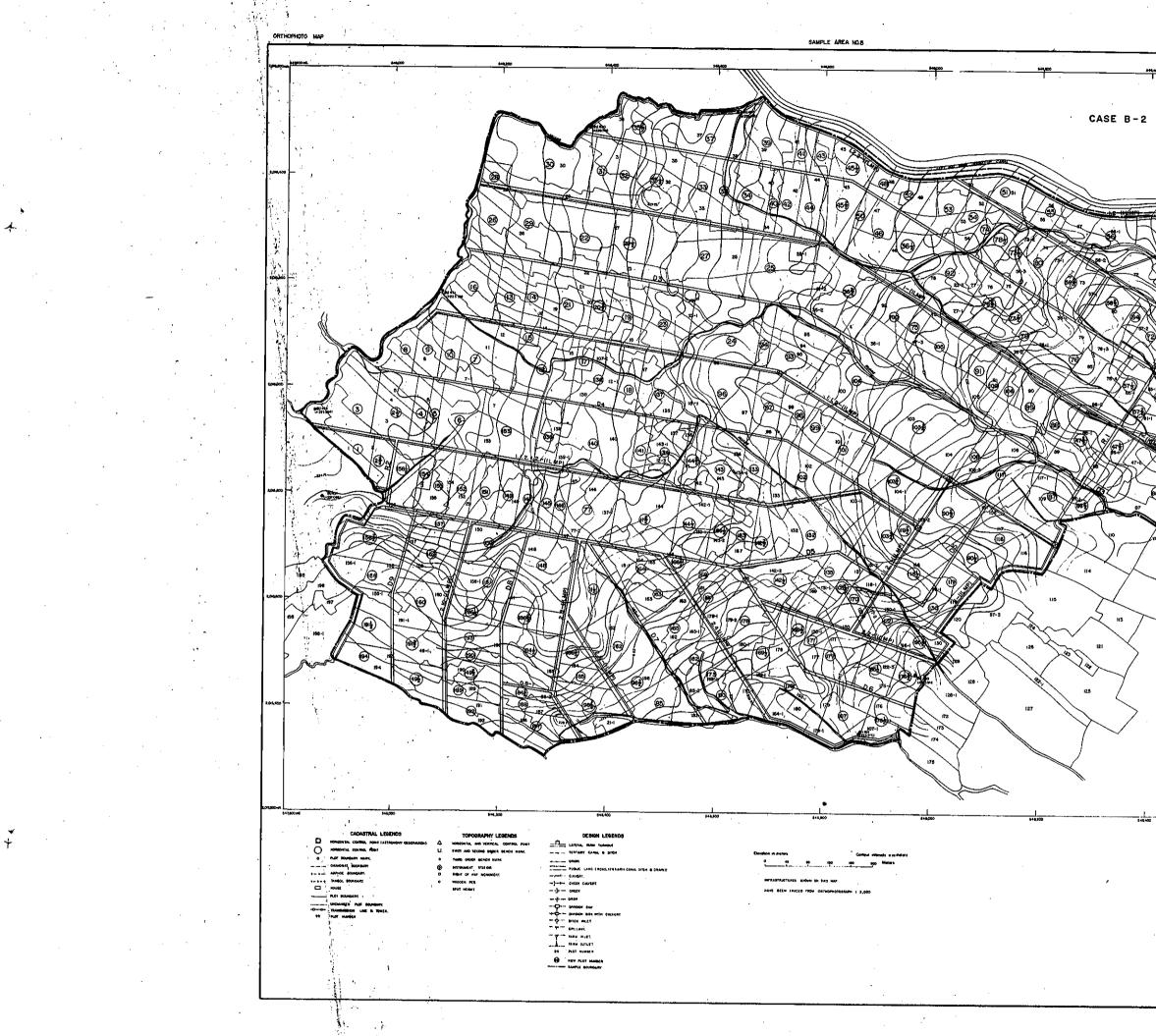



.

.

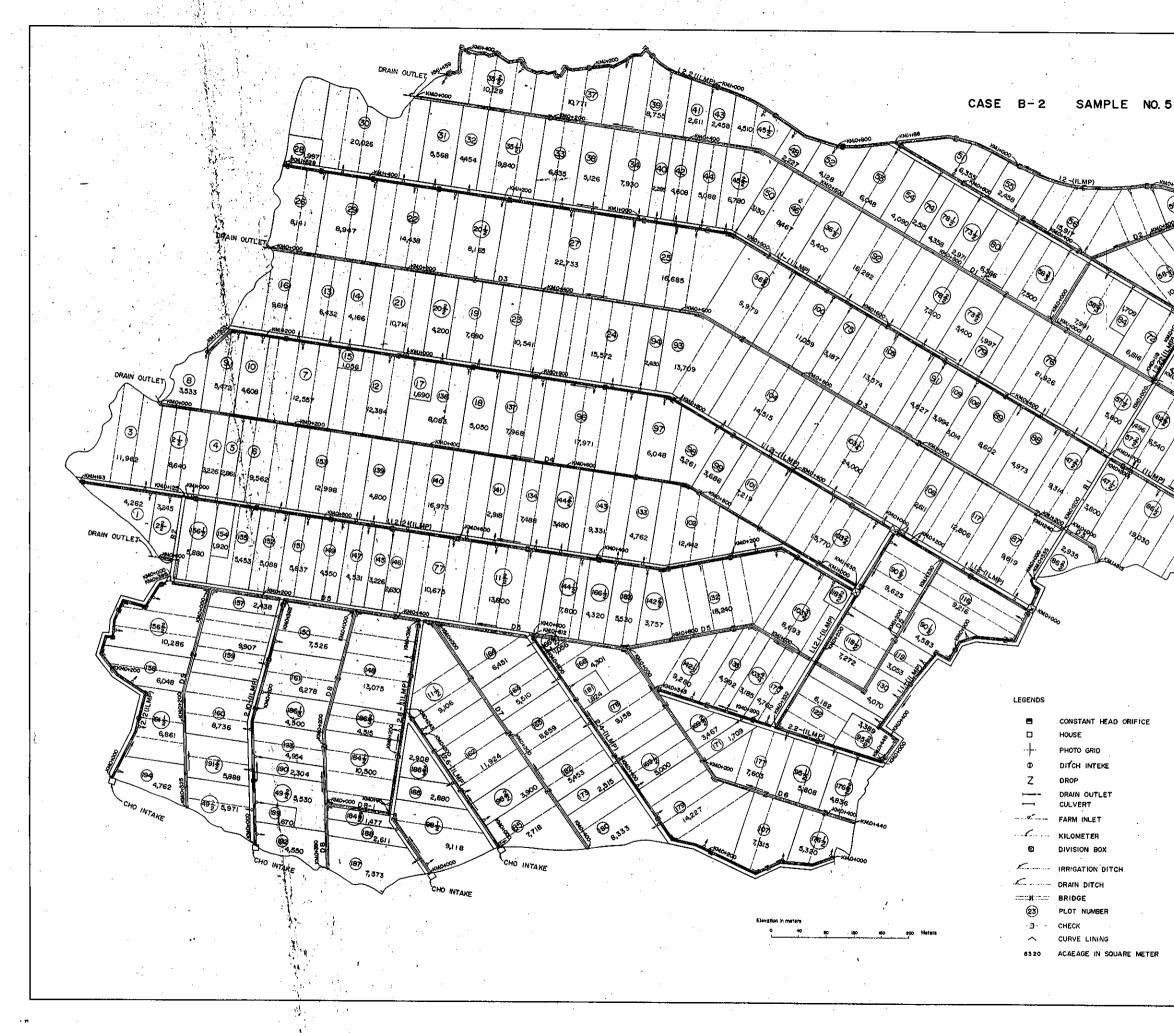



Descent name     Descent name       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0	Control in other     Control in one marking of mark	Main         Constrained         Constrained <thconstrained< th=""> <thco< th=""><th>Image: contract interval       Image: contra       Image: contract interval<!--</th--></th></thco<></thconstrained<>	Image: contract interval       Image: contra       Image: contract interval </th
Comession in mension Comession in mension comes criteria è dunes La comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comession comess	Minici. Chevrolosia in anter a Drock. Chevrolosia in anter del processo de Jueio anterioradore de Jueio anter come criter a Dueio anter come come come come come come come come		Immerian registration (2) be construct and variant, control and the many material of the mathematical and the mat
Cleverican la materi Const. Crista è Sulvas Remarcanta materi Remarcanta materi Remarcanta materiale Remarcanta ma	Amon		Increase
Cleverican la materi Const. Orica è Journo Remainment de la constante Remainment de la constante La constante Remainment de la constante La constante Remainment de la constante Remain	A DATA B DATA: D DA	Accurate memory         Compose to memory	Introduction         Consist memory         Consist memory           Intervention         Description         Description           Interventin         Description         Description
Cuence Carlos de Santas	a ono. a ono. co.renue can. ora a puesa co.rent		Amount reserverous)     De curstre, aux overture, correct, corret,
	Польтичности польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Польтичности     Пол		


ANNEX 4



¥

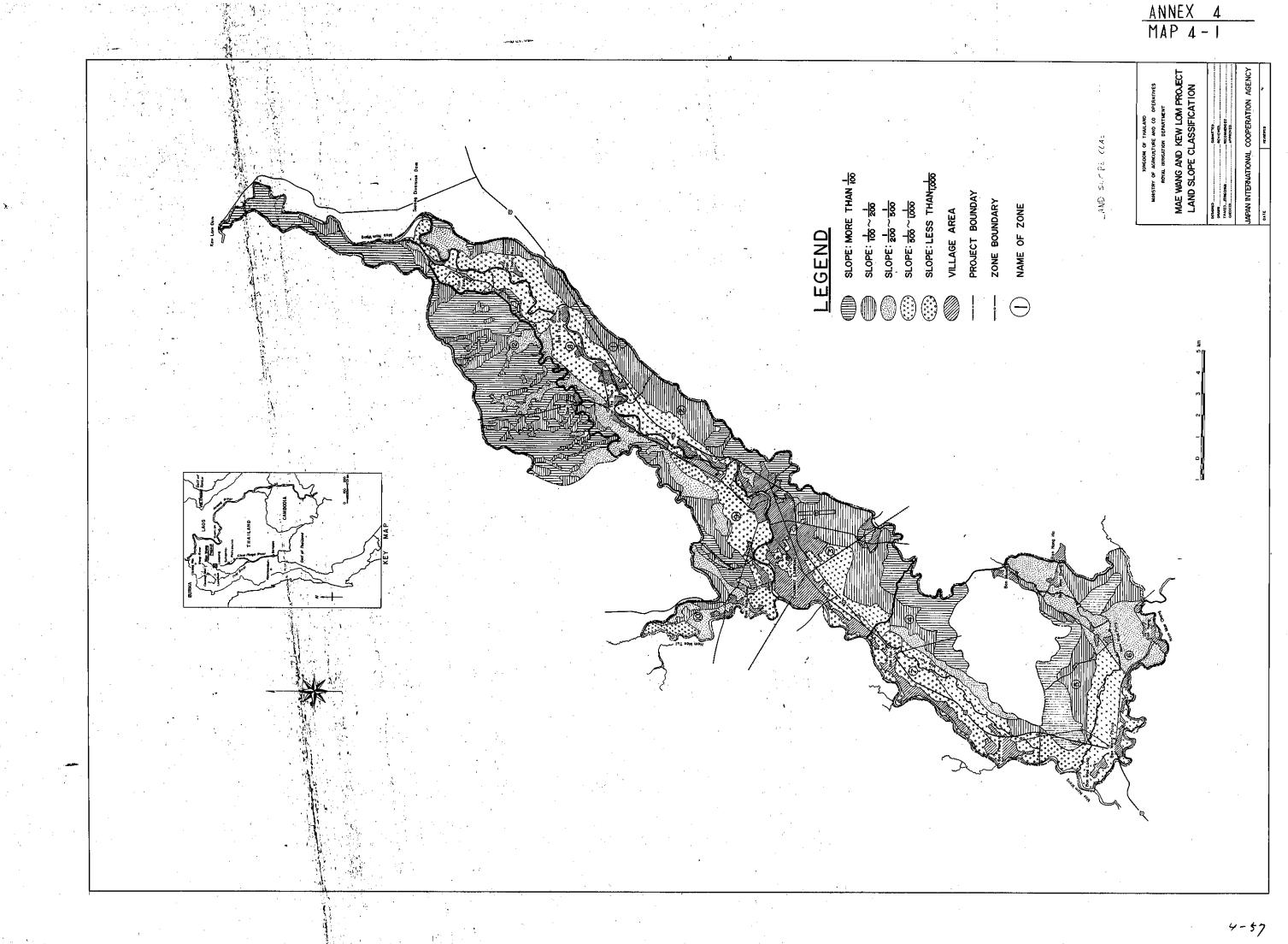

⁴⁻⁵³ 

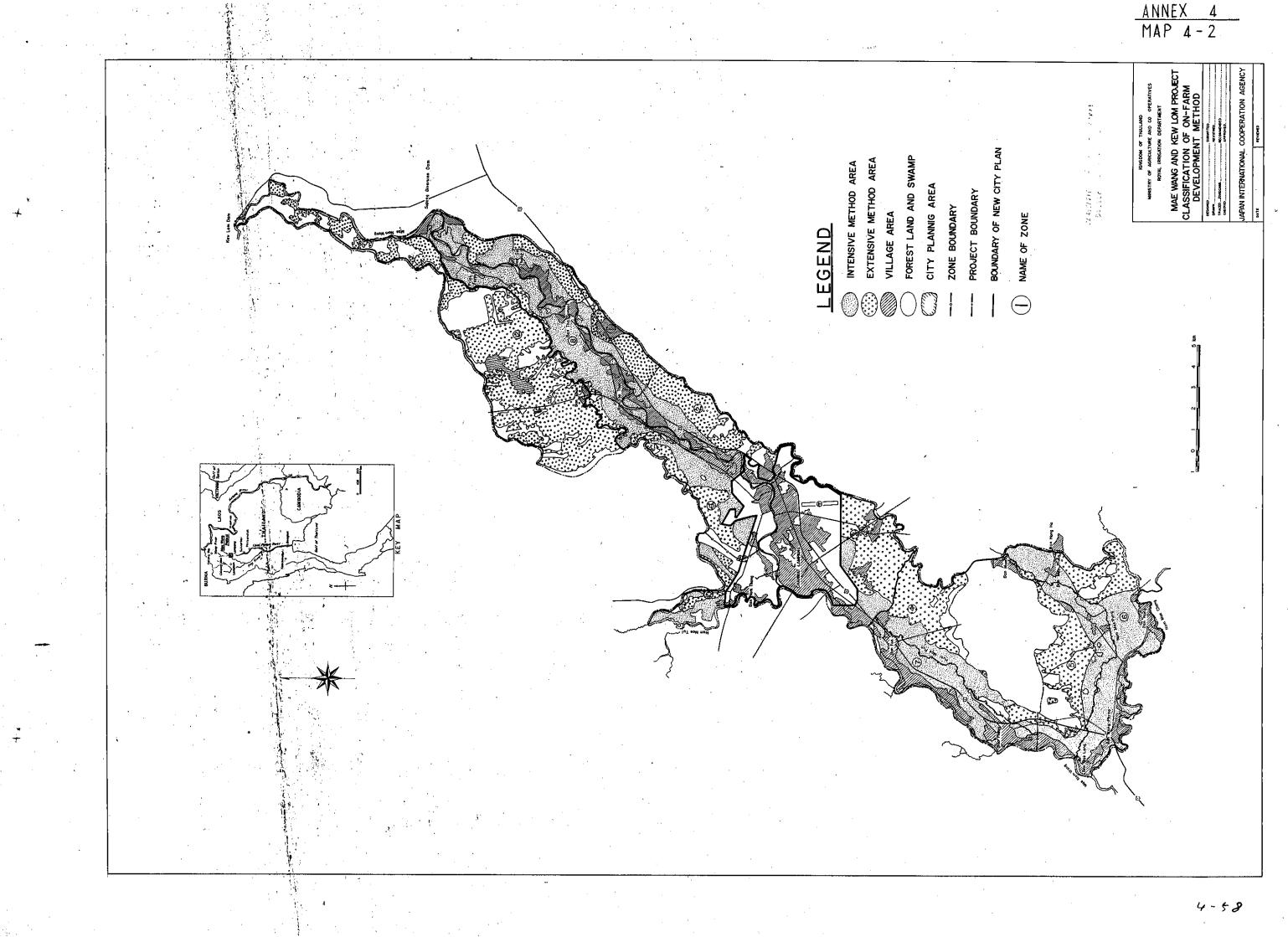




÷.)

ANNEX 4 . FIGURE 4-8 CASE B-2 SAMPLE NO. 5 .u 112 KINGDOM OF THAILAND TRY OF AGRICULTURE AND DD OPERATIVES ROYAL IRRIGATION DEPARTMENT MAE WANG AND KEW LOM PROJECT ON-FARM WORKS (SAMPLE NO.5) агранер Базир Такста (бассная счиских Мілания Кулон JAPAN INTERNATIONAL COOPERATION AGENCY Plystem a





ANNEX 4 FIGURE 4-9 62 (592) 15201 15201 No. - e-9/40. 5 400 /J. Ange Contraction of the second ø 9.95, (Prod) Ì 13630 KINGDOM OF THAILAND NISTRY OF AGRICULTURE AND CO OPERATIVES ROYAL IRRIGATION DEPARTMENT MAE WANG AND KEW LOM PROJECT ON-FARM WORKS (SAMPLE NO.5) .. SUBNITTED .. REVIEWED RECOMMENDE APPROVED... DESIGNED DRAWN TRACED . FOI CHECKED JAPAN INTERNATIONAL COOPERATION AGENCY DATE ACVIEWED

4-56

CONSTANT HEAD ORIFICE

ACAEAGE IN SQUARE METER





ANNEX 5. Agriculture Scheme

5-1. Agricultural Production 5-1-1. Wet Season Paddy 5-1-2 Dry Season Paddy 5-1-3, Peanut and Soybean 5-1-4, Garlic 5-1-5. Tobacco

67)

Table 5-1. Effect of Various Formulae of Fertilizer on the Tield of Nio Sanpatong Rice 5-2. Effect of Various Formulae of Fertilizer on the Jield of RD2 Rice 5-3. Analysis of Paddy Soil in Amplice Muang Lampang 5-4. Effect of Transplanting Time and made of Nitrogen Application on Yield of Paddy 5-5, Response of RDI Rice to Nitrogen in the Wet and Dry Seasons Effect of Seedling Age and Number of Seedlings 5-6, per Hill on the Tield of RDIRice 5-7. Effect of Various Formulae of Fertilizers on the Tield of Peanut 5-8. Physical Inputs per Hectare. by Crop

ANNEX 5

## 5.1. 農業生產量

計画地域は現時実にあいては灌溉水の供紙もイナ分 であるが、計画定了時には軽期に、も耕地の約80%に オ羅瓶水の十分を供給入期待されている。これに伴っ て作す率も現在の約130%のら180%に上昇し、 計画地域全体としての農業生産量は増大きる。海湖水の供給人を送すいば、肥料農薬をごつ形での資本技下 。効率がより、再いものになり、農業生産に対して相乗効 果をもんらし、飛躍的増差が期待される。 1かじながら、タイ国において生活通機構が不窘全 F元金であるため、農業生産物の個路が不当に低く 生夏資材の何於何不当に高いために、落砺施酸のよう を基礎的投資がその成力主完全には発揮しない場合が 多く、当地域においてもこの美に国にてサキへに配度 1.老協の協気強化を計るなどしなければならたい。 かべての農業生産で牧養新成業がはたらいて、この 5最高快量が最大性益と意味しないのは当然であるが 91回い中生産資付が到南なのじ、肥料の投下量の非較的少ない所で最高收益に建し、その彼を肥料投下量 の唯大に伴って岩を物版堂は増大する水経済的收益は 軟戒し、ウベニは現失になるに到る。このことは第3-2 表の收量增加領行と粗利益を以較対照ちれよ明うかで

あり、第メ表にもしたように在来品種を使った喝合は 利益になる場合が少ない位である。 上述の諸美を尽慮した上で、以下に述べる試験研究 成績を基礎にして、計画完了時における目標收量を次 「「「ちょうに決定した。計画進行中の年次到收量学 加の詳細に浅しては、経済評価の章に示す。 各種作物的現在及以目標收量 (1979 -- 1990) 喀加率 日摆收量 現在收量 1. kg/ha kg/ha 40 水稻 (雨期作在来积, 叛) 4,000 2,845 1 107 水稻(軽期作 RD 7 揪) 2,365 4,900 2. 30 3,120 滚花生(雨期你 影休生> 2,400 3 30 茨尼生(帮期你 爱休生) 4,458 3,429 4 たばこ (乾朝你、生葉) 10 10,884 11,972 5 大豆 (乾韵作, 星乾) 30 1,499 1,949 6 とうがらし (転前外 生電) 3,38/ 2,601 30 7 甘蔗, (通年, 生圣) 20 28,607 34,328 8 にんにく(轄期作,生球根) 6,204 4,772 30 9 パイナップル(-年半,生量) 13,311 15,973 20 10 キャベッ(そそい代表生) 15,938 200 7,969 11

States a second that for the

増産計画を之案するに当っては、過考において Troject areaの異家園場で行われた試験の結果を基礎とした。 特にタイ国バFAOの援助の下に行った試験は結果の有意理の検討の厳密に行われているのでこれを重視した。 = 4.5 \$ FAO/UNDP/SF Soil Fertility Research Project in Phailand. Technical Report No.3 (1970), No.6 (1972) = \$ -7. " 3. 新雄密度,播種學,施肥,除草、病生害防除二润し 過当后試験が行われていたいもの二润して女,190 Coordination of Plant Production Research in Thailand. Project Norking Paper No. 1. (15 #31X) (7), No. 3 (35-76.14. J.Z. 14) (7) を発照した。この報告は過去にタイ国を行われた試験総報の経境である。近人になるの23001510円(て はこの解説に記録のないので、現当者である岩業局国 吉が高の必要員科を入外した。 15-11、周期作米路の反使唠加

1、译理:

現在 Roject ann の 差民 ギ New San patong E主とする 欄の 庄 来種を利诺して、て、 欄改民種(RD 2,4) ドサ興中を デスない。これは Nio San patong の 創味の ちぐれてい る ことその 収量が、 かく t 型肥料条件下では、 改良種

にあうないことに基因していると思われる。このこと サ第一秋(Nao Sanypatong)第二汞(RD2)に示される肥料試 試験の登記科Eの牧量を比較すれば明らかである。 中央平原では改良種の出現(1969年)ととトニ 急速に改良種(RD1)に転換を別始したべ計画地時かは木印に転換するに到っていたい。これは凝め改良種 が在来種に比べて非常に勝っているのに対して、糯の 改良種がそれほどすぐれたものではなかったことと糖 の在来種ことに Neo Sampatong な優参であったことに起因する、しかにながう長期的な観光に立った場合に計画 地域農民は改良種に転換すべきである。これには二つの理むだちる。 等一の理由なたると どんしょう めに、今後来るべく輸作体系と融近壁のないものにう る。Nio Sanpatray サの月から9月までの灯時に植えてた 登記サリノ月下旬に信る。一方たばこやにんにくせんの Sanpatongの收積後に起えるのでは良質のキのは得がた い。非成光性の改良種ならば、このような場合に筒単 に指数数数することが出来る。 たとえば、現在管期 上科法しているRDYを使うとすれば、7月1日に移 地方れば10月10日に牧瑾出来る。第二の理由世筆 「本と第二表の牧量増加の個月を見ればある。Nio Sanpating は肥料の単位量に対する牧量増加が少ない。すべれた

改良種ドン之ド·RDノまたはワンは較するとこの違い 中更に降之ってくる。現在RICE DIVISIONではRDノベ

う交型変要によっ之登生した物約の素統を育成中でこ れをRDIOとして近日中に放出するといわれているか この系統は食味もよく、收量も高いとのことであるから 放出と同時に計画地域違氏に紹介する火要なある。し かしたがら、望時気に於いては崇氏の反応は不明なの で取り取えまよかの同差氏はNio Sanpatong その他の在 来種を栽培するものとして計画をえてた。

-2 袍肥

第メ表の結果から考えて、N及びK20を50大9/Aa 施用するものとする。 肥初は結計的に広意でないので使用したい。また本村

1発博生 9 報告 (1973. The report of de joint research work on the study on advance in rice production by soil management, 些 群業なた).

によってもLampung地はっ土場は下層エキで有効燐酸含 量が高、(分析)。 経ってを燐酸ご料法(てた) 相当長期にわたって燐酸欠全による減酸日茶えられた い。としろ加里に肥効が有意ではないが燐酸より高い。 上展中の有効態加里も 80 ppm で, entical point といわれる いのppm、この実に用したせ普及自によって、計画地域 の豊新園場で確認の父軍があると茶え、そのことにつ

の考家園場で確認の父軍があると考え、そのことについて、技術省人の項で再度論及する。

空季の施肥治としては半量支基肥とし、半量を穂肥 として、出穂前25日, Nio Sanpatongの場合は10月1日前下=施明す るのか今理的である。

3 植付時期 植分時期に実してけ、感光性の在来種、特に獨(全部早生種) は8月に花えるのがよいことはJable *4 に下方通りて あるの本表に於ける9月植えと云うのよ9月1日の二 とである。タ月ノのロ水降にたると牧量は数載する。 業為生長期间が不当に短端されてしまうからである。 病告害 4 タイ国は康濃であるから、いもち病生ほとんどべ配 する必要はない。超之ている品種があべてIndicaであ 72, いもち病に本来広応理があることもチョアいる。 101, 自要結病は可なり方く見うれ Nio Sanpatong t 罹病性である。しかし薬剤ドよる防除は経済的に引き 今わるい。農民は営業成本の低い培訓な出生育成し、 尚を坂き取っそ後もあたばをりりや水をまりにつける ようちうとをせず,軽いただん ビニ積みエザてかく慣 行主持っているの経験的に自要枯病防衛対策を実施し そいるのひはないかと思われる。 計画地域水田には,馬鹿苗病へ可伝)広く蔓延して いるの公観空され相当の彼等の予想される。この病気 日種る消毒によって前単に根絶出来るので、経済到に 引き合う、病理関係者の指導によって根絶をはかるへ

5-6

さじわる。

以上のような諸施策を実施するキのとして、計画地 域の前期作反版は2,845 紹/AA から4,000 kg に上早す るものと見込んだ。もしキ党民が、近く放出をいるRD 10を就得するキのとすると、室季の施用量を50kg AA から75 kg/Aa に増加するおけで、4,5000 kg はほと 人と確実に取りる。

转期作水稻

前述のように豊家牧量の調査結果によれば、乾期作水路の牧量は当地域では雨期昨水路の牧量よりも低い。 ニルオ地域農民の科培技術の大理によるものと思われる。1、1国全体の朝期作水路の牧量を1900kg/Ra でおきのた対して乾朝你のそれ出きののた男/なと推 定されている。雨朝後には時に收量の低、東北地帯の 会まれているのに対して転期作には合まれていたいつ で正確に比較にはなり得合いな、同一地具で、同一品 種,同一肥料を使ってい較した場合の3年平均の結果 は第5天にもされている。根long Luangのように,土実 が強酸性で、乾朝の高温多照条件下で1土壤有機物の分解が旺盛に行わな、易行な別として、通岸は有機物 小島翌ドヤよく分解する所では乾朝外の有利進は疑问の分肥がない。計画地域は土壤的にはChainatに近い ので、 RP.7 毛科培している現況では、5,000 kg/Ra 程

度の收量を得て、なければならない。ケイともSuphan Buriの收量に匹敵するものは得られるはずである。 そこで計画地域報期作の收量にぜ不当に低いかに実し 2,3の考察を行って見た。

7. 品種

計画地域差民十理任整期作にRD7を新培しているが、この運転日正し、RD7はRD/に比べて炊量 は変らたい上に、シラハかし病に対して強い抵抗性を 持っているからてある。

累氏生用期作にな光輝品種を新海し、十余な業養業 長期间へ取れるような博行演ど確シしており、前食に な超調やすめり得た。しかしたり、前食に う品種ですあるが牧童に影響することす等美表のデリ 通りである。これすあ会が大きくなること、染養生長期 何が短かくなって十分な聴数を確保出来ないからであ る。長にも明らかなように、このような易会には、一 林治りの数を増加られば、被害を気を殺友軽減出来 ろ。しかしこれはほんとうう解決策ですない、107 を雨代にちの日以上ちけば南代での異常出たがあこる し、これがおころない場合す、描述直方に本田での異 ち磨がおころ。 光路局下生苗会25日で移植するよ う歴んに指導しているバンれか守られているの確かめる父軍がある。

3 肥料

現在整民生水稻二对方百政府奖励肥料であるammophos (16-20-0) 赵便用17い30,当地域で出国老の余地 がある。前期你水稻の項でディキように当地域土壤で は、雌酸、加皂に対する肥効は少ない(第1表,等2表)。 望彰のい率を動くし燐酸を低くケベモで、 RD モニ対す 3肥料試験の結果から考えて、水-Bg-KaDの比率主 の時期は 75-38-0(なんの)とすべきである。拒肥タイ国のよう 后熱帯のは、聴飲を増加して増快かることは困難であ ろ反面境をの増加は容易であるから、75枚の10方 ち半量も基肥とし、半量は穂肥として追応すべきでお 3、登季追肥の時期は、出想前25日であるが、出想 の予制が困難ならよ、由人25日の南を移植した場合 には, 植好後 50日でよい。本村、陸博士の今析による X.可給態陸酸が59、ppmで可なり少ない。日本のよう (土地の) お恐怖では雄骸欠之のちころ危険のある濃度であるが 教学では土壤鉱物の分解公平…から心配けないと考え ちりるが、万一の喝瓜を茶之ておく必要はあろう

5-9

(4. 病告官, 鳥害, わずみの害

乾期中多照であるため、病害中に較的少ないか出害 18人なる。乾朝作の豊家牧量調査の際と、 じいまか 報期作低收の原因であると中告した農家もある。スミ ケイン等の噴務、またはBHCの土壤施用によって防除 ( Colombo Plan \$ 175. Rice Protection Center/ するよう指導する父史のおる。安格京三国王(日天敵死 兄の権成であるか同博士によれば、乾朝のめい出客を 迴避了了后*,水田二植什より3週间ほど前二港水し 稻株中に休眠中の幼生の活動を用始させ、植けまでに 天滅によって絶滅えせるのが経済的であるという。症 付連前に清水ケると、休眠から眼のたぜかりのめいち 12、桃枝道行の裕に移るのだという。この方法は水か 得られるのちかにかかっているが、ためして見る父を いある。安松博士によれば、タイ 回いゆめい言の天敵 は種類を数も極めて多くこのために人組織的防衛を行 お店くとも減貨をは較約少ないのだといわれる。ニッ ほかに鳥害、わずみの宅が報告されているか、これら はいづれし、計画地域における乾朝作米額の栽培面積 バリマくて、そのいて、面積に乗中攻害な行われるた めではたいかと茶マラリる、乾朝作水移生非感光性の 改良種が放出されて転期作の可能になった1969年 以来の10年间に40万ヘクタールにまで急速に拡大

以下,1071015400ヘリリールには(天)近131入 1累民の截欲中盛人であることから考えると,計画地 成下+,現在の500 Raから計画通り5000 な程度

に協大之北れか, めい岩, 鳥の岩, ねずみの害未稀釈 されて大きな大文女问題にならないのではないかと思 われる。実際问題として乾朝水移の天規模科培地では そのような特殊な害は国かれないし, 報時回種は着欠 として伸びている。今回の計画地域が犯地域に比べて 害と受けやすい条件は見当らない。

5-13落花生かよび大豆

1. 品種

大臣は最新品種のSJ4バ科塔されており泊題はない。 客花生は在来種であるか国内的二日既二Lampang種と 呼ばれている程確之したものである。しかし品種の生 種が比較試験でLampang種を演算するものも見られるの で今後機行の命地がある。

2. 服料

要素は根宿蔵に版信する。計画地域は古くから豊料 作物の栽培に絶争しているから上案中によ根海島出豊 高である。しかし作物毎に根宿蔵の好唐 Stain は違う から、その都度 史業局農業化学が根宿底 破死室に連絡

して通正なStrainの根瘤菌を取得する父要がある。

磷酸及び加里に润しては、第乎表に示ちよう后試験 結果を得ているので加里(K20) 75 駒/Raの単用が経済

約に最も有利である。注意すべきことは、サイ国ごは 扱い量の少分、肥料は南人へ不当に何格を吊りヒアろ