STUDY ON WASTEWATER MANAGEMENT KNOW-HOW TRANSFER TO THE METROPOLITAN MANILA DEVELOPMENT AUTHORITY

City of Yokohama March 2008

TABLE OF CONTENTS

		Page No.
1.	Background and Objectives	1
2.	Schedule	1
3.	Government Policy, Its Efforts and Challenges in the Sewerage Sector	2
4.	Conditions and Issues in the Project Area	3
5.	Proposals for Measures to Improve the Project Plan	4
6.	Advice on Developing Sewerage Systems in Metro Manila	6
Al	NNEXES	
1.	Sewage Works in Yokohama	
2.	Operations Overview of Manila Water Company, Inc.	

Proposed Project Plan for Marikina River Basin Sewerage System
 Presentation Material for Wrap-Up Meeting of JBIC's Yokohama Mission

5. Photographs

STUDY ON WASTEWATER MANAGEMENT KNOW-HOW TRANSFER TO THE METROPOLITAN MANILA DEVELOPMENT AUTHORITY

1. Background and Objectives

The Metropolitan Manila Development Authority (MMDA), the Republic of the Philippines, has requested technical guidance from Yokohama City on planning the Project for Marikina River Basin Sewerage System (hereinafter referred to as "the Project") through Japan Bank for International Cooperation

Since Manila is a sister city, the City of Yokohama responded to this request and conducted a field survey to transfer the know-how of wastewater management technology.

Against this background, the study examined the existing sewerage system in the Philippines and the present state of the rivers and drainage facilities, including the Marikina River and Laguna Lake. The terms of references (TORs) of the study are as follows:

- Assessment of the Philippine government policy, its efforts and challenges in the sewerage sector;
- Examination of the conditions and issues in the Project area, which is currently in the
 planning stage (including conditions of sewage treatment, sanitation and rivers, living
 conditions of local people, urban planning, etc.);
- Formulation of proposal for measures to improve the Project plan;
- Provision of advice on developing sewerage systems in Metro Manila in the coming years; and
- Other TORs deemed necessary by JBIC on developing sewerage systems in Metro Manila.

2 Schedule

Date & Place	Counterpart	Note
February 18 (Mon) Technical Guidance at MWCI	Mr. Ronald R. Muana, Associate Manager, Project Development, Wastewater Department Ms. Ginger V. Vergara, Project Development Officer, Wastewater Department Mr. Ferdinand S. Asuncion, NJS, etc.	Annex 1, 2 and 3
February 19 (Tue) Courtesy Call on MWSS	Mr. Lorenzo H. Jamora, Administrator (Attended initially) Ms. Leonor C. Cleofas, Deputy Administrator for Operations Mr. Edgardo Q. Esteban, Chief of Staff of Administrator Mr. Jose M. Dimatulac, Manager, Engineering and Project Management Department, etc	
February 19 (Tue) Courtesy Call on MWCI	Mr. Antonino T. Aquino, President Ms. Evangeline R. Matibag, Manager, Wastewater Department Mr. Ronald R. Muana, etc.	Annex 1

February 20 (Wed) Courtesy Call on MMDA	Mr. Bayani Fernando, Chairman Mr. Robert C. Nacianceno, General Manager Ms. Corazon Bautista-Cruz, Assistant General Manager for Planning Mr. Martin Louis C. Ongpin, Technical Consultant	Annex 1		
February 20 (Wed) Visits to Marikina City Hall, Proposed three STP sites of the Project, etc	MMDA Mr. Rey Lunas, etc. MWCI Ms. Ginger V. Vergara, Project Development Officer, etc. NJS Mr. Kageyama, Mr. Asuncion CTI Mr. Seki, Mr. Suzuki and Mr. Fujimoto			
February 21 (Thu) Coordination Meeting with MWCI, Site Visit to Mangahan Floodway and Laguna Lake Area	Ms. Evangeline R. Matibag, Manager, Wastewater Department Mr. Ronald R. Muana Ms. Ginger V. Vergara			
February 22 (Fri) Inspection of Septic Tank Desludging	MWCI Ms. Ginger V. Vergara, Project Development Officer, etc.			
February 22 (Fri) MMDA Wrap-up Meeting	Mr. Robert C. Nacianceno, General Manager Ms. Corazon Bautista-Cruz, Assistant General Manager for Planning			

3. Government Policy, Its Efforts and Challenges in the Sewerage Sector

(1) Government Policy and Efforts

The basic law on sewerage legislated by the government is the Code on Sanitation of the Philippines (Presidential Decree No. 856, effective in December 1975).

(2) Challenges

The sewerage system is a social capital which requires substantial cost for development. In the City of Yokohama with a population of 3.63 million, the total amount of investment in this sector is about 3 trillion yen.

Annual investment in the water and sanitation sector in the Philippines amounts to approximately 3-4 billion peso (9-12 billion yen). In Metro Manila, investment in the sanitation sector amounts to about 500 million peso (1.5 billion yen), which was covered by water and sewerage charges collected from citizens.

As public funds are not used in providing sewage service, it is expected to take a very long time to complete the sewerage system, considering that Metro Manila has a population of about 10 million.

The overall plan for the Project does not have a clear distinction of responsibilities between the departments handling the flood control projects and those handling sewage treatment projects including environmental improvement. In addition, the unavailability of basic data necessary for completing the Project might hinder the implementation of the plan.

4. Conditions and Issues in the Project Area

(conditions of sewage treatment, sanitation and rivers, living conditions of local people, urban planning, etc.)

(1) Sewage Treatment

In February 2008, the groundbreaking ceremony was held for the World Bank-funded construction of the Olandes Sewage Treatment Plant (STP) having a capacity of 10,000 cubic meters per day. While this is part of efforts to increase sewage treatment capacity, the current capacity of 60,000-80,000 cubic meters per day accounts for only 3% of the required capacity of 2.4 million cubic meters for the entire areas to be covered by Metropolitan Waterworks and Sewerage System (MWSS).

For sludge treatment, a new plant has been in operation.

(2) Sanitation

The coverage of sewerage system is about 4% in the Philippines as a whole and 10% in Metro Manila. In the areas without sewerage system, household sewage is treated in the septic tank. However, since most of the wastewater is discharged into drainage channels, there has been increasing pollution in the channels and rivers.

Manila Water Company, Inc. (MWCI) has recently allocated 90 vacuum desludging trucks (of which 30 trucks with permits are in operation) and also constructed new septage treatment plants.

Septic tanks are often not well-maintained and placed in the underground of houses. Thus there are cases where maintenance is difficult in some houses, posing challenges to public health as well as operation and maintenance.

(3) Rivers

The Marikina and Pasig Rivers run into Laguna Lake and Manila Bay. As the two water bodies are connected with high and low tides, the weir has been built to manage water flows.

The level of pollution in the rivers is high due to underdeveloped STPs, lack of management of septic tanks and domestic wastewater discharge. As there is odor as one comes closer to the rivers, it is routine to see illegal dumping of garbage into drainage channels and rivers.

In the wet seasons and dry seasons in the Philippines, there is a marked difference in rainfall in the two seasons. During the wet season, the water levels in the rivers tend to rise significantly with squalls. For example, the water level in the Marikina River near the Marikina City Hall at one time rose about 8.5 meters in the past.

Thus when rainfall is scarce in the dry season, the water quality of river severely deteriorates with polluted water. Even in the wet season, inflow of polluted water remains unchanged although water pollution is seemingly avoided through dilution (see Annex 4, 1.).

While the STPs are planned to be constructed along the downstream of the Marikina River basin under the Project, the land acquired for each proposed STP site amounts to only 3,000-7,000 square meters.

In case the Project is implemented, its plan needs to be consistent with the river improvement plan of the Marikina River basin which is under planning.

(4) Living Conditions of Local People

Metro Manila has a high population density with more than 10% of the national population

living in this area. As a commuter town of Metro Manila, the Marikina River basin area is predicted to promote urbanization with rapid population growth by approximately 1.4-foldfrom 1.54 million to 2.22 million between 2008 and 2023. Given this projection, this area is faced with a major challenge of providing basic services, including sewerage and sanitation.

(5) Urban Planning

Master plan for developing sewerage systems, METROSS I-V, has not been managed for implementation.

5. Proposals for Measures to Improve the Project Plan

Due to significant pollution and difficulty in acquiring land necessary for proposed STP sites, it is more effective to directly purify water in the Marikina River rather than building STPs to improve water quality of river by constructing a purifying facility. The facility is a simple structure that can be constructed in the river or creek with light on-site work, and most of the construction materials can be locally procured.

In planning to construct such facility, the first stage is to install a facility using the contact aeration method that removes biochemical oxygen demand (BOD) and suspended solids (SS) (see Figure 2 and 3). The second stage is to improve this facility in stages, converting it to the Shimanto-gawa system that removes nitrogen and phosphorus (see Photograph 1 and Figure 4). In this way, the project will be economically implemented in a short period.

In constructing a purifying facility, the first stage is to fill a concrete box unit with filter made of processed charcoal, deadwood, rocks and other natural materials, and force air into it to improve the water quality (see Figure 1). The second stage is to develop a more elaborate system by constructing additional units and replacing filter materials.

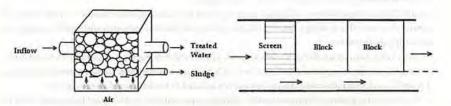
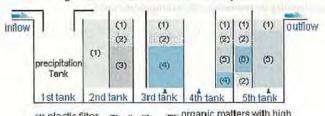

These units should be placed at downstream end of tributaries in the number and scale needed to meet the level of pollution in the drainage channels and rivers (see Figure 2). A screen to remove garbage and over flow weir necessary as a flood countermeasure will also be developed (see Figure 3).

Figure 1: Map of Unit Locations The conceptualized locations of the equipment

Figure 2: Cross Section of a Unit (Image of Treatment Unit

Figure 3: Layout of Units


Photograph 1: Example of the Shimanto-Gawa System (See Annex 4, 2-1) (Kubokawa Town, Kochi Prefecture, Japan)

Capacity: 2,000 m³/day (Facility: [width] 2.5 m; [length] 88 m; [depth] 3.3 m)

Construction Cost: About 50,000-100,000 yen/m3 (in Japan)

Figure 4: Structure of Shimanto-Gawa System

(1) plastic filter (2) nitrolite

(a) organic matters with high carbon-nitrogen ratio

(5) charcoal (6) charcoal (6) processed limestone

A aeration pipe

6. Advice on Developing Sewerage Systems in Metro Manila

(1) Environmental Improvement in Residential Areas

In the Philippines, inflows of effluents from septic tanks of households, domestic wastewater and stormwater into the drainage that are laid along the residential roads are causing deterioration in the living environment.

Since only purification of riverwater will not improve the living environment of local residents, construction of sewage treatment tank for each barangay, a minimum administrative unit (see Figure 5), and separate sewer-storm pipe networks need to be developed (see Figure 6).

In constructing sewage treatment tanks, existing septic tanks for individual households will be maintained, for this will enable to downsize sewage treatment tanks and purification facilities, as well as reduce sludge treatment at STPs.

Construction of separate sewer-storm pipe networks inside the existing drainage will solve the problems of excavation and traffic control during the civil works. It will also contribute to about 80% of cost reduction compared with constructing sewer pipes under the road (see Annex 4, 2-2).

Figure 5: Plan View

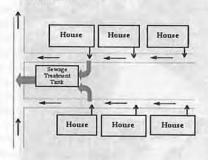
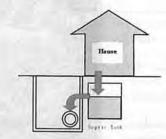



Figure 6: Cross-Section View

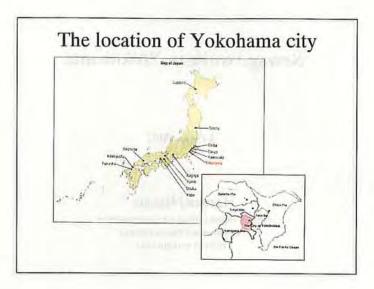
(2) Others

- a. Promoting the Project with public funding
- b. Developing the institutional and legal framework for promoting the overall urban planning
- Securing the water quality by developing the sewerage system law and regulating illegal discharge of effluents (see Annex 4, 2-3.)
- d. Consensus building on maintaining the existing septic tanks

ANNEX 1

Sewage Works in Yokohama

Sewage works in Yokohama

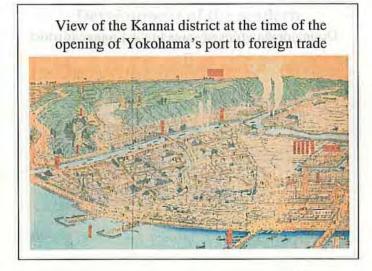

24 Aug 2007

Hozumi Nakata

Policy Planning Director for Administration Environmental Planning Bureau CITY of YOKOHAMA

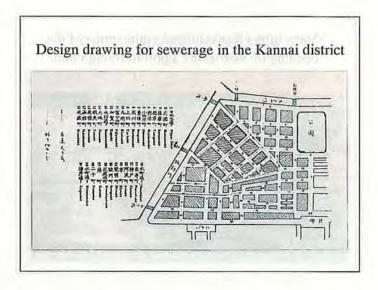
Location and Topography of Yokohama

- Yokohama is situated at 139 degrees east longitude and 35 degrees north latitude
- •Total area is 434.95 square kilometers
- •The width of the city is 23.63 kilometers from east to west and 31.11 kilometers from north to south
- •The highest point of the city is 159.4 meters above sea level
- •The lowest point of the city is 6.7 meters below sea level



The history of Yokohama city

of population


1960s All river sections were seriously contaminated

2007 The sewered population rate to 99.7%

Development of the modern sewerage system in Yokohama (I)

1881 The modern sewerage system began in Japan
 1881~87 The construction of modern sewerage system took place in the Foreigner's Settlement in Yokohama

Development of the modern sewerage system in Yokohama

(II)
1881 The modern sewerage system began in Japan
1881~87 The construction of modern sewerage
system took place in the Foreigner's Settlement
in Yokohama

1922 The Great Kanto Earthquake occurred1945 The air raids during the Second World War destroyed the city

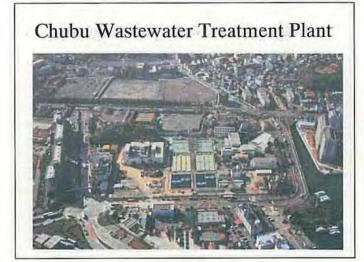
The burnt-out of Yokohama's central area in 1945

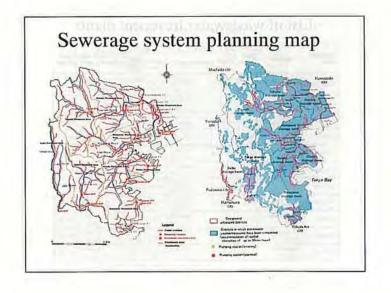
Development of the modern sewerage system in Yokohama(III)

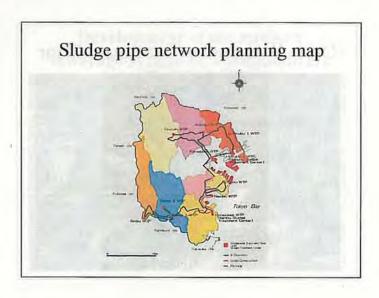
1881 The modern sewerage system began in Japan

1881~87 The construction of modern sewerage system took place in the Foreigner's Settlement in Yokohama

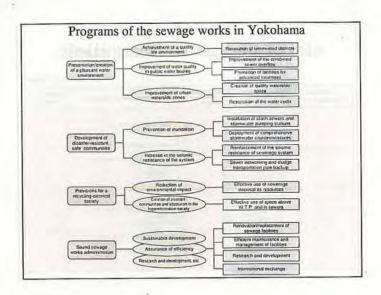
1922 The Great Kanto Earthquake occurred


1945 The air raids during the Second World War destroyed the city


1957 Full-fledged construction of sewerage in Yokohama commenced with the Chubu treatment district


1962 The Chubu wastewater treatment plant was placed into operation

1984 All eleven of the wastewater treatment plants in the master plan had been constructed



1 and	111111111111111111111111111111111111111		1000	Current	Design			five	ron Makey
Treatment plant	Location	Site	Area served	Treatment capacity	Area served	Advanced Wastewater Treatment	1 2 1 1 N L TO 1	Receiving water	Opera- ton starter
† Hokuburi (Motomys Trunimi-ka	100,320	10412	108.000 (11.600)	, ha 2,150	minusy 81,200	Actuald skept Froms	Tourses Noted	July 10A
HOLDU II	Soohea Tsurumi Fu	186,400	663.6	110,500	/21	388 # 50	oj.	Takyo bay	Aug 64
3 Kanagawa	Oliwaka Kanagawa ku	103.330	4 020	299.400 (92.140)	4,764	263,600	oa	Tokyo .	Mai 78
a Chiani	Honmchaunnen Naka-ka	66,300	9214	96,300	942	121 300	60	Tuhyo bay	Apr. 62
5 Hamby	Shinalogo Isogo tu	70.620	2,147.9	187.400 L 01	2,119	243 200	02	Tokyo" biy	July 65
n hanazaes	Sachura Kanazawa ku	129,440	1846.8	345.000 L 01	4,913	263 700	00	Lorica rivor	Oct 79
7 Kohoku	Futo Konceu+u	124.960	1565.0	245,800 (57,920)	0.279	284.500	00	Teorumi	Die 77
n Tsuzuki	Sneda Tsuruki ku	67,000	5,339.0	144,250 (82,200)	0.096	338100	(23)	Tsurumi river	4477
9 Seba	Higatimatani Totsuka-ku	101.910	23518	95.400 (0)	3.513	150,700	cn	Sakal river	MW 83
OSM in (Kosugaya. Sakasika	31.200	1220.0	77.500 (fi)	2,703	93,100	60	Hadle Hett	Doc At
11 5akse#	Naginura Sakag-ku	92.000	2254.7	177,500	4,232	711.600	00	Kashia tivis	Cct 72

Sludge	Wastevrator treatment	Sludge treatment		Operatio
treatment center	plants served	(m3/day)	Sludge treatment process	started
Hokubis	Tsuzuki Kofiolau Hokubu I Hokubu II Kanagawa	12.500	Thickening (by gravity & contribugation) Anaerobic digestion Devistering (by centribugation) Incineration	Sep. 97
Chubu Nambu Kanazawa Saker I Saker I Sebu		14 700	Thickening (by centrifugation) Anaerobic digestion Dewatering (by pressurization) Incineration	Nov 199

Pumping stat	ion Name	Location	Designed pumping capacity (mGA)	Current purpose columbs (mile)	Specified started
1 Surviv	24	Shanopeycala Trusum-ini	10 40	10.79	Mr 64
2 Tunes	uch-	Taumachi, Battaku ku	46.20	46.22	Apr WZ
g 3 ritam	majfirma	Hypera Eutohalia	33.20	23.12	May 72
# 4 Iseru	This is a second	Teammeturi Trummitu	17.00	12.29	July 73
# 5 Selver	arpri.	Tobetionicho, tilistriky	28.90	19.28	Aug 70
E & Hoston	Tay &	Terrocha Hotographi	31.50	34.40	Sex 78
E 1 tunys		tsajo lugaka	42.20	42.20	1 24/4 65
A Manag	ina.	Urindicon, Karistawskis	15.10	56.87	Mar 61
2 9 FLES		Futotra: Retain his	1480	14.77	Acr. Vil.
# 10 Ucpo		Neperto Kotokuku	67.10	57.09	May 78
5 It Total	a .	Transporter Totsumpain	23.90	31.99	Oct 79
12 Hame	myodi.	Karrieurypers, Traderskil	13 20	13.30	May W.
13 Egan	N.	Volume Transactions	16.00	16.07	1404 101
E 14 Takan	3	Takacacho Koholuka	32 20	33.76	Uar 15
I 16 teletra	ta.	Murpicho Teurumau	160	5.79	Aug 55
# 16 teletra		tenta himocho Tsirum eu	6.60	663	July 53
\$ 17 Heranu	CTCR	Himmucha-thinny	20.30	20.33	O.1 93
E till Yamas	264	Yamoobracho Fisko ku	14 45	18.40	Oct 87
A 10 Marie		Myranicka Wagniky	20.70	70.67	Oct 117
20 rede	à ·	Cotterocho Meanika	29.30	20 33	1/ar 23
E 21 Isago	n .	torgo fuego-ka	75.00	12.67	Mw.00
0 72 Mary	d'a	Massum Rangange.	11.10	11.42	Table 73
23 Rawar	nektra	Karamunoucho, Taumannia	20 70	20.73	May 19
24 Harrio		Higgshavegochia, Multiniku	19 (11)	1893	143/ 86
25 Kasan		Katamacko Sakapku	13 50	12.68	July 87
male I Kudon	phi.	Pagaroketo, National	7.49	-	-
1 Sinus	automa	Si rushinatri Katagaraka	4.50		
2 Terror	parthi	Terrinchia Hodagoya-eu	250		

Achievement of a quality life environment

· Resolution of unsewered district

Background:

attainment of the civil minimum

Task:

construction of sewerage

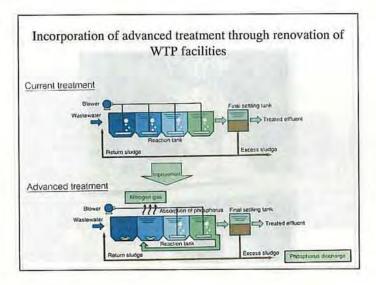
Improvement of water quality in public water bodies (I)

 Improvement of the combined sewer overflow Background:

discharge of some pollutants during wet weather Task:

construction of stormwater tanks and improvement of storm overflow chambers

Improvement of water quality in public water bodies (II)


Promotion of advanced treatment

Background:

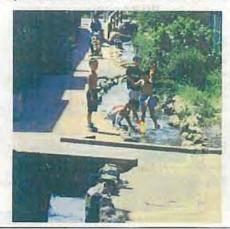
attainment of environment standards for water quality and tightening of regulations regarding concentrations of nitrogen and phosphorus (nutrient salts) in sea area

Task:

efficient incorporation of advanced treatment

Improvement of urban waterside zones

- · Creation of quality waterside space
- · Restoration of the water cycle


Background:

dissatisfaction with neighborhood waterside environments and desires for quality ones

Task:

creation of waterside space featuring clean and clear water

Stream replenished with effluent from advanced treatment

Prevention of inundation

- · Installation of storm sewers and stormwater pumping stations
- · Development of comprehensive stormwater countermeasures

Background:

urban-type flooding-massive damage to property and urban functions

Task:

creation priority improvement in inundation-prone districts and curtailment of stormwater runoff

Rain radar & Inundation on the street fronting the city hall

Increase in the seismic resistance of the sewerage system

- Reinforcement of the seismic resistance of sewerage system facilities
- Sewer networking and sludge transportation pipe backup

Background:

assurance of the security of lifeline

Task:

reinforcement of the seismic resistance of the entire sewerage system

Reduction of environmental impact

• Effective use of sewerage disposal as resources (treated water, sludge, digestion gas etc)

Background:

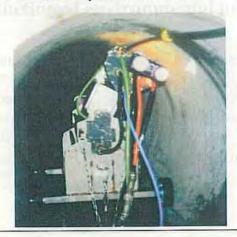
construction of a recycling-oriented, zero-emissions society

Task:

effective use of treated effluent, and reduction and effective use of sewage sludge

Supply of treated effluent and thermal energy from sewage to the international stadium Yokohama

Creation of pleasant communities and adaptation to the hyper-information society


Effective use of space above WTP and in sewers

Background:

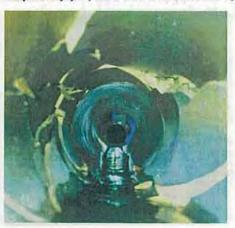
approaches to improvement of citizen service

Task:

improvement and streamlining of maintenance and management capabilities, and provision of open space Installation of optical fiber circuits by a robot

Sustainable development

· Renovation/replacement of sewage facilities


Background:

progressive superannuation, functional deterioration, and damage

Task:

systematic replacement, functional improvement, and reduction of lifecycle cost

Ruptured pipe (a cause of road subsidence)

Assurance of efficiency

Effective maintenance and management of facilities

Background:

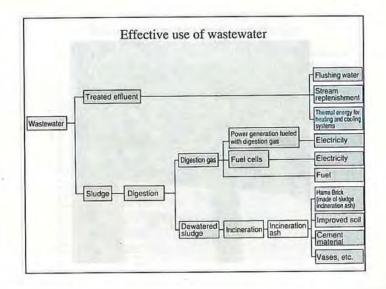
maintenance of the functional capabilities of the huge stock of sewerage system facilities

Task:

proper maintenance and management, saving of energy and labor, and curtailment of costs

Cleaning of sewer pipes with a high-pressure cleaning truck

Research and development, etc.(I)


· Research and development

Background:

new technology for efficient performance

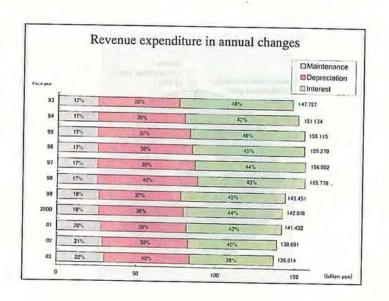
Task:

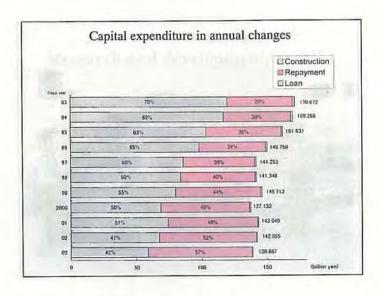
development of efficient technology for wastewater treatment and for effective application of sewage works resources

Research and development, etc. (II)

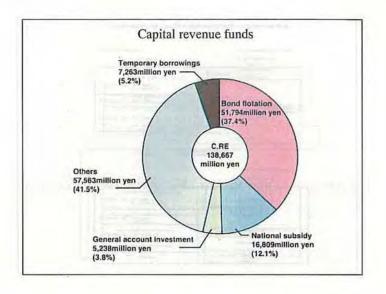
International exchange

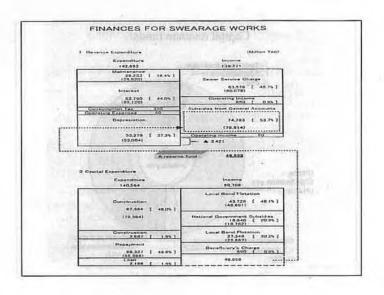
Background:


international cooperation and technical exchange

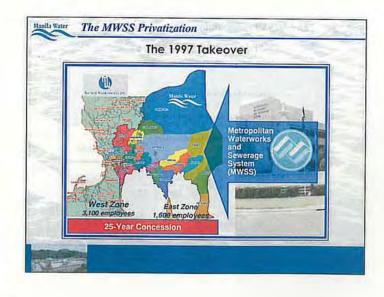

Task:

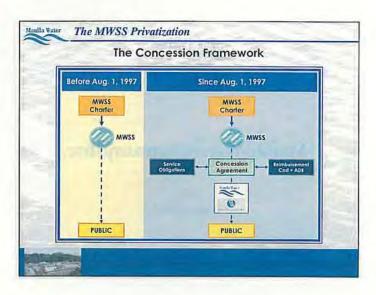
participation in international conferences, dispatch of engineers to and acceptance of trainees from othercoutries





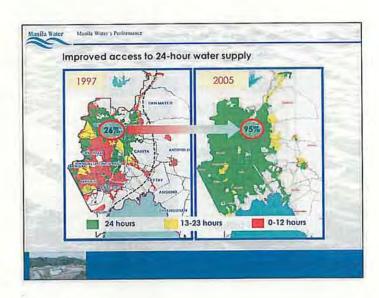
Category	Stage	Treatable area	Orainage area
	0 - Brd (Base charge)	SODyer	
	0~10 (yor/mill)	20.	- 色而
	11-23 (second)	110	5
	21-30 (NO.002)	(1)	
	31+30 (pm/rd)	231	106
Domestic usage	Statou (wants)	294	-1
	101-200 Lucrentii	299	
	201-5/0 (pining)	3/11	
	101 - 1000 (pinned)	389	10
	1001-2000/years01	416	W.
	2501 - (poninci)	472	12
ublic bith house	yerand-	THE STATE OF	THE STATE OF THE S

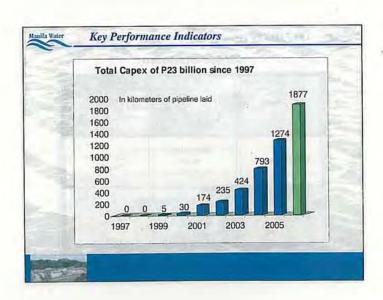


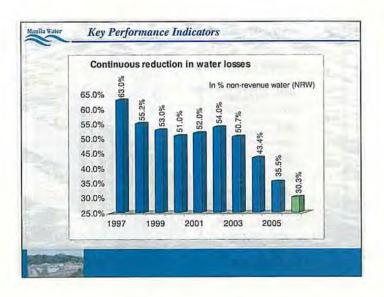


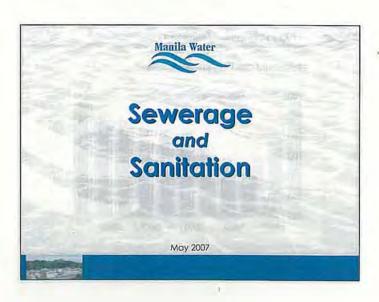
ANNEX 2

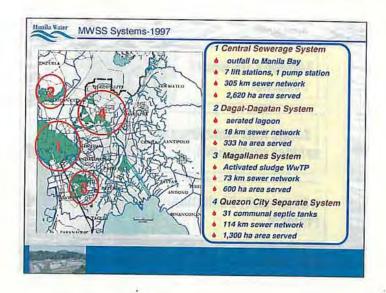
Operations Overview of Manila Water Company, Inc.

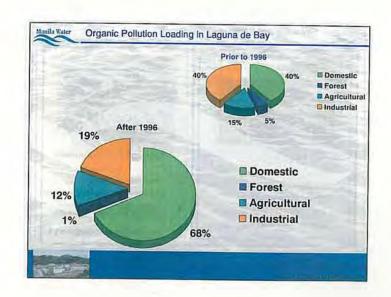


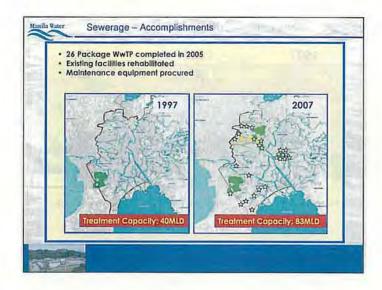


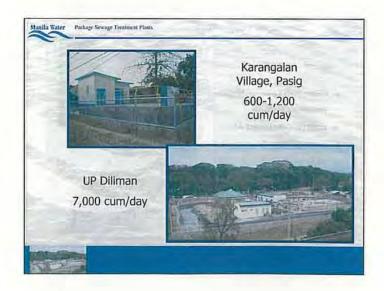


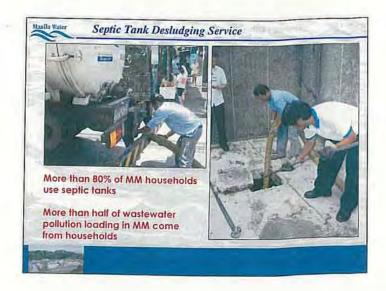


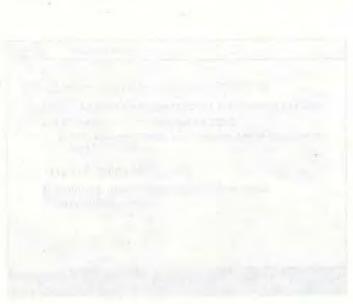


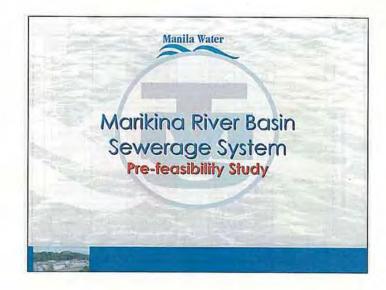


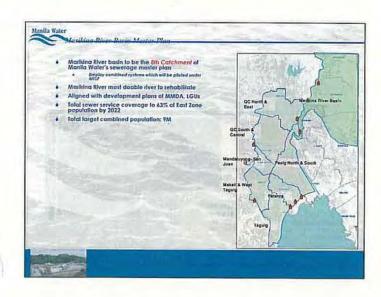




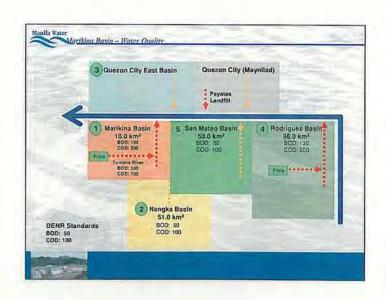


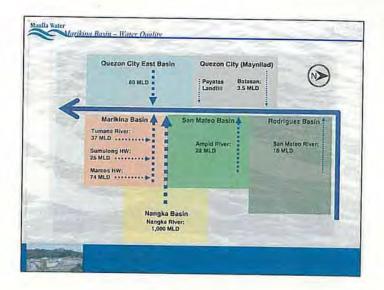

ANNEX 3

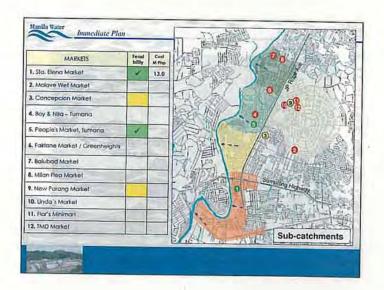

Proposed Project Plan


for

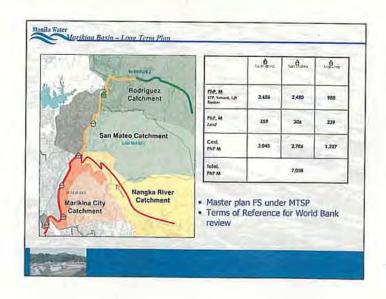
Marikina River Basin Sewerage System







Balanasteroni Aras	Chullish poole	Fire proje	Flow mill	Water Divisity	Area ser ³	Population
Montation Watershed Area	-	n.d.	nd.		253	
	100	0.01	10	10000		
Montalban Urban Area	2	0.04	2	DDD(200)	86.5	-135,000
	1	0.13	-11.		A SALE	
San Water-OC	4	0.25	22	BDD; 50 COD: 100	East (Includes Mayolist Area)	+162,00
Hangka River	1	11.70	1,011	800:50 COD; 100	31.4	-51,00
- 100		0.43	31		Princip.	
The second	10	0.29	25	000 too	MORE TO THE	
Marihina-QC	12	0.14	12	C00:200		-391,00
	15	0.68	74		V 700	
	7	0.38	31		/ -	The same
		0.05			26.6	
		0.02	- 1			-76,000
OC Ridge	11.	0.14	13	600 100 C00:300	1000	
	13	8.02	1.		Resident Cont.	
	14	0.19	16			
	78.	0.20	17			
	17	8.63	1		The same of the	17.0 -17,512
QC-Pasig	18	0.01	1.	nd	17.0	
	18	0.04	8.7		41	
TOTAL		16.94	1,201	-	-520	-78530



ANNEX 4

Presentation Material

for

Wrap-Up Meeting of JBIC's Yokohama Mission

Ophinin

Tre/ Insert rear

Approach to this has

at the hoster of Flores

and any Continue of Flores

and Experiment

Outline

- 1. The Present Issue
- 2. Approach to the Issue
- 2-1. Purification of Riverwater
- 2-2. Sanitary Condition in Metro Manila
- 2-3. Regulation

1. The Present Issue

During dry season

Only wastewater flow into the drainage, Cause of water pollution in Marikina, San Juan and Pasig River

During wet season

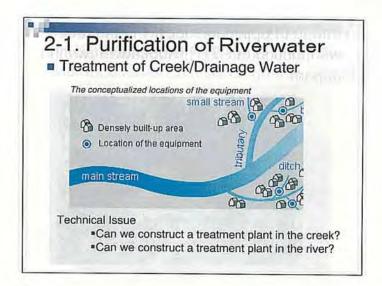
Wastewater & Storm water flow together in the drainage

Water pollution is seemingly avoided through dilution.

Approach to the issue Short-term strategy (in next few years)

2-1. Purify Riverwater

Because of Necessity and Urgency of purification of riverwater, treatment of the existing creek/drainage water before joining Marikina river is recommended through usage of existing structures.


Long-term (in next decade)

2-2. Improve Sanitary Condition of Metro Manila

Laying culvert/pipe instead of open drainage to keep smooth flow and to avoid contamination of water caused by solid waste

2-3. Set up relevant Regulations

To guide stakeholders with proper operation and maintenance, set-up of relevant regulations and monitoring and enforcement structure is necessary.

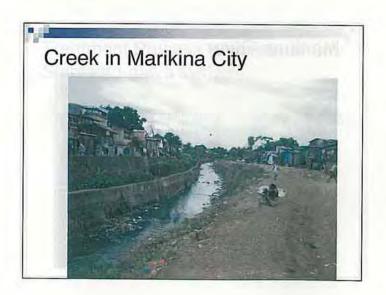
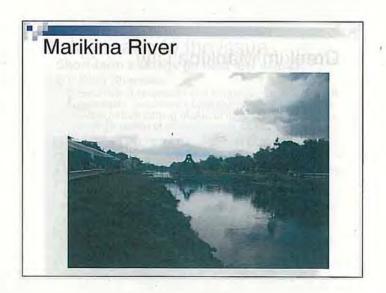
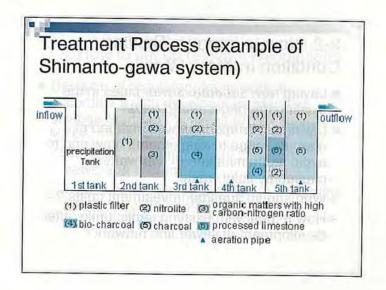




Image of applicable facility in the creek with function of STP (Kubokawa-town in Japan)

General Ability of this Facility

Water quality at the inlet and the outlet of the equipment.

	BOD		COD		Total Nitrogen		Total Phosphorus		Detergents	
	inlet	outlet	inlet	outlet	inlet	outlet	inlet	outlet	inlet	outlet
average (mg/l)	43.0	3.5	25.0	4.7	1.80	0.77	0.77	0.19	0.660	0.057
maximum (mg/l)	330.0	6.9	220.0	7.6	6.50	1,20	1,20	0.94	3.100	0.170
minimum (mg/l)	1.5	0.7	1.4	1.8	0.32	0.23	0.23	0.04	< 0.001	<0.00

2-2. How to improve Sanitary Condition in Metro Manila

- Laying new separate sewer pipes in the existing drainages along roads
- Laying culvert/pipe network instead of open drainage to keep smooth flow and to avoid contamination of river water caused by solid waste
- → Who should shoulder investment costs?
- → How to deal with existing septic tanks after development of sewer line network?

Utilization of existing septic tanks

Merit	Demerit
>Decrease of volume of sludge from STP >Decrease of capacity of STP	>Necessity of maintenance of septic tanks (regular desludging) and vacuum tank truck for ever

2-3. How to set up relevant Regulations

- Revision of regulatory framework in accordance with development stage of sewage treatment facilities (DENR, DPWH, MMDA, MWSS and LGUs)
 - □Solid waste management to secure sewerage system
 - □House connection obligation to sewer line network by residents

		April 1
	- Alcohesty of national basepile	
	nation (l'utres necessaries (l'utres	Tanisana at reportir in STP

2-2. How to improve Sanitar anolisings in avelet on les of work S-9

Paymon, at resultation, figuressort, and a necessitation with viewellages and selection of the selection of

Piwell Pikelin spinled in the mean apawase of the management states of the mean apawase are secured as a secure and a secure as a secure and a secur

returned by a recommendate against wear

antiayes constantly at the not asymptotic

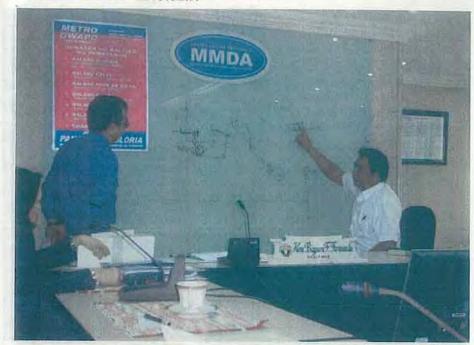
How to the second secon

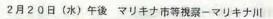
The second second

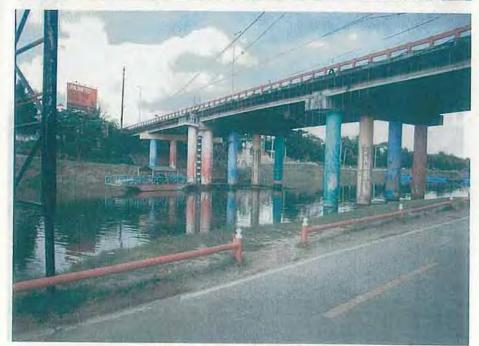
ANNEX 5

Photographs

arinamutoria -







2月20日(水)午後 マリキナ市等視察-マリキナ川とSTP予定地

2月20日(水)午後 マリキナ市等視察-マリキナ川とSTP予定地



2月20日 (水) 午後 マリキナ市等視察-STP予定地

2月20日 (水) 午後 マリキナ市等視察-汚泥処理施設

2月20日(水)午後 マリキナ市等視察-汚泥処理施設

2月21日(木)午前 MWCI調整会議

2月21日(木)午後 ラグナ湖視察

2月22日(金)午前 Septic Tank引抜作業視察

2月22日(金)午前 マニラ首都圏家屋状況

2月22日(金)午前 水道メーターとバキューム車

2月22日(金)午後 Wrap-up meeting

2月22日 (金) 午後 Wrap-up meeting

