4. Fauna and Flora List

4.1 Appendix I. List of Plant Species Found in Spray Zone of Victoria Powerhouse

Family	Species	Common name	Life Form	Relative density (%)	
Euphorbiaceae	Flueggea leucopyrus	Heen katu pila	Shrub		
Rutaceae	Glycosmis angustifolia	Bol pana	Shrub	7.55	
Euphorbiaceae	Dimorphocalyx glabellus	Weliwanna	Shrub	7.19	
Euphorbiaceae	Croton laccifer	Keppetiya	Tree	7.19	
Euphorbiaceae	Drypetes sepiaria	Weera	Tree	5.76	
Combretaceae	Terminalia arjuna	Kumbuk	Tree	4.68	
Rubiaceae	Ixora pavetta	Rathmal	Shrub	4.32	
Sterculiaceae	Pterospermum suberifolium	Welan	Tree	3.6	
Ebenaceae	Diospyros ebenum	Kaluwara	Tree	3.24	
Rhamnaceae	Ziziphus lucida* ^{CR}	Eraminiya	Liana	2.88	
Moraceae	Strblus taxoides	Katupol	Shrub	2.52	
Tiliaceae	Grewia damini	Damaniya	Tree	2.52	
Anacardiaceae	Nothopegia beddomei	Bala	Tree	2.52	
Hippocrateaceae	Salacia reticulata	Himbutu wel	Liana	2.16	
Verbenaceae	Vitex altissima	Milla	Tree	2.16	
Rubiaceae	Ixora coccinea	Rathmal	Shrub	1.8	
Rubiaceae	Haldina cordifolia	Kolon	Tree	1.8	
Sapotaceae	Madhuca longifolia	Mi	Tree	1.8	
Verbinaceae	Premna tomentosa	Seru	Tree	1.8	
Tiliaceae	Grewia carpinifolia		Liana	1.44	
Ulmaceae	Celtis trimorensis	Gurenda	Shrub	1.44	
Rutaceae	Glycosmis pentaphylla	Dodanpana	Shrub	1.44	
Malvaceae	Hibiscus erocarpus		Shrub	1.44	
Moraceae	Streblus asper	Gata nithul	Shrub	1.44	
Fabaceae	Cassia spectabilis	Kahakona	Tree	1.44	
Meliaceae	Chukrasia tabularis	Holan hik	Tree	1.44	
Rubiaceae	Mitragyna tubulosa	Helaba	Tree	1.44	
Malpighiaceae	Hiptage benghalensis	Puwakgediya wel	Liana	1.08	
Clusiaceae	Garcinia spicata	Ela gokatu	Shrub	1.08	
Loganiaceae	Strychnos potatorum	Ingini	Shrub	1.08	
Boraginaceae	Cordia sinensis	Lolu	Tree	1.08	
Ebenaceae	Diospyros malabarica	Thimbiri	Tree	1.08	
Moraceae	Ficus racemosa	Attikka	Tree	1.08	
Tiliaceae	Muntingia calabura	Jam	Tree	1.08	
Sapindaceae	Schleichera oleosa	Kone	Tree	1.08	
Ulmaceae	Celtis philippensis		Shrub	0.72	
Rubiaceae	Kanthium coramandalicum	Kara	Shrub	0.72	
Euphorbiaceae	Phllanthus polypyllus	Kuretiya	Shrub	0.72	
Rutaceae	Toddalia asiatica	Kudumirissa	Liana	0.36	
Astaraceae	Vernonia zeylanica		Liana	0.36	

Family	Species	pecies Common name		Relative density (%)	
Appendix I ctd.					
Apocynaceae	Carissa spinarum	Karaba	Shrub	0.36	
Fabaceae	Bauhinia racemosa	Maila	Tree	0.36	
Euphorbiaceae	Bridelia retusa	Ketakala	Tree	0.36	
Rutaceae	Chloroxylon swietenia	Burutha	Tree	0.36	
Flacourtiaceae	Flacourtia indica	Wal ugurassa	Tree	0.36	
Apocynaceae	Ochrosia oppositifolia	Gonna	Tree	0.36	

Appendix II. List of Plant Species Recorded in Home Gardens 4.2

Family Species		Common name	Life Form	Relative density (%)	
Fabaceae	Gliricidia sepium	Ginisiriya	Tree	21.6	
Marantaceae	Thespesia populnea	Gansooriya	Tree	5.8	
Euphorbiaceae	Jatropha curcas	Wata endaru	Shrub	5.5	
Arecaceae	Cocos nucifera	Pol	Tree	4.0	
Sapindaceae	Schleichera oleosa	Kone	Tree	3.3	
Loganiaceae	Strychnos potatorum	Ingini	Shrub	3.3	
Arecaceae	Caryota urens	Kithul	Tree	2.8	
Fabaceae	Pongamia pinnata	Karada	Tree	2.8	
Tiliaceae	Grewia damini	Damaniya	Tree	2.5	
Sapotaceae	Madhuca longifolia	•		2.5	
Euphorbiaceae	Flueggea leucopyrus	Heen katu pila	Shrub	2.3	
Sterculiaceae	Pterospermum suberifolium	Welan	Tree	2.3	
Anacardiaceae	Anacardium occidentale	Kaju	Tree	1.8	
Arecaceae	Areca catechu	Puwak	Tree	1.8	
Rutaceae	Chloroxylon swietenia	Burutha	Tree	1.8	
Rubiaceae	Morinda umbellata	Kiri wel	Liana	1.8	
Anacardiaceae	Mangifera indica	Amba	Tree	1.5	
Meliaceae	Melia azedarach	Lunumidella	Tree	1.5	
Moringaceae	Moringa oleifera	Murunga	Tree	1.5	
Fabaceae	Sesbania grandiflora	Kathuru murunga	Tree	1.5	
Fabaceae	Acacia caesia	Hinguruwel	Liana	1.3	
Sapindaceae	Cardiospermum halicacabum	Wal penela	Liana	1.3	
Moraceae	Ficus racemosa	Attikka	Tree	1.3	
Musaceae	Musa paradisiaca	Kesel	Shrub	1.3	
Moraceae	Streblus asper	Gata nithul	Shrub	1.3	
Convolvulaceae	Argyreia populifolia	Girithilla	Liana	1.0	
Rutaceae	Citrus aurantifolia	Dehi	Shrub	1.0	
Rubiaceae	Coffea arabica	Kopi	Tree	1.0	
Euphorbiaceae	Manihot glaziovii	Gas manyokka	Shrub	1.0	
Euphorbiaceae	Phllanthus polypyllus	Kuretiya	Shrub	1.0	
Moraceae	Artocarpus heterophyllus	Kos	Tree	0.8	
Euphorbiaceae	Bridelia retusa	Ketakala	Tree	0.8	
Fabaceae	Cassia spectabilis	Kahakona	Tree	0.8	

^{*} Endemic species CR Criticaly Endangered

Family	Species	Common name	Life Form	Relative density (%)	
Sapindaceae	Filicium decipiens	Pehibiya	Tree	0.8	
Rutaceae	Atalantia ceylanica	Yakinaran	Shrub	0.5	
Moraceae	Ficus hispida	Kotadibula	Tree	0.5	
Euphorbiaceae	Meineckia parvifolia		Shrub	0.5	
Tiliaceae	Muntingia calabura	Jam	Tree	0.5	
Lauraceae	Persea americana	Alipera	Tree	0.5	
Araceae	Pothos scandens	Pota wal	Liana	0.5	
Myrataceae	Psidum guawa	Pera	Tree	0.5	
Fabaceae	Samanea saman			0.5	
Appendix II ctd.					
Meliaceae	Swietenia mahagoni	Mahogani	Tree	0.5	
Myrtaceae	Syzygium caryophyllatum	Dan	Tree	0.5	
Bignoniaceae	Tecoma stans	Kalani thissa	Tree	0.5	
Verbinaceae	Tectona grandis	Tekka	Tree	0.5	
Meliaceae	Toona ciliata	Toona	Tree	0.5	
Verbenaceae	Vitex trifolia	Nika	Tree	0.5	
Annonaceae	Annona reticulata	Wali anoda	Tree	0.3	
Fabaceae	Bauhinia racemosa	Maila	Tree	0.3	
Cariaceae	Carica papya	Papol	Tree	0.3	
Apocynaceae	Carissa spinarum	Karaba	Shrub	0.3	
Ulmaceae	Celtis trimorensis	Gurenda	Shrub	0.3	
Meliaceae	Cipadessa baccifera	Halbembiya	Tree	0.3	
Rutaceae	Citrus grandis	Jambola	Tree	0.3	
Cucurbitaceae	Coccinia grandis	Kowakka	Liana	0.3	
Fabaceae	Dichrostachys cinerea	Andara	Shrub	0.3	
Euphorbiaceae		Weliwanna	Shrub	0.3	
Fabaceae	Dimorphocalyx glabellus Erythrina subumbrans	Eramudu	Tree	0.3	
	·	Eramudu	Shrub	0.3	
Euphorbiaceae	Euphorbia heterophylla	Danadamanina			
Tiliaceae	Grewia helicterifolia	Boradamaniya	Tree	0.3	
Oleaceae	Jasminum angustifolium	Wal pichcha	Liana	0.3	
Fabaceae	Leucaena leucocephala	Ipil ipil	Tree	0.3	
Euphorbiaceae	Macaranga peltata	Kanda	Tree	0.3	
Rubiaceae	Mitragyna tubulosa	Helaba	Tree	0.3	
Rubiaceae	Morinda coreia	Ahu	Tree	0.3	
Apocynaceae	Ochrosia oppositifolia	Gonna	Tree	0.3	
Pandanaceae	Pandanus odoratissimus	Watakeiya	Shrub	0.3	
Apocynaceae	Plumeria rubra	Araliya	Tree	0.3	
Araliaceae	Schefflera stellata	Iththawal	Liana	0.3	
Fabaceae	Tamarindus indica	Siyabala	Tree	0.3	
Combretaceae	Terminalia arjuna	Kumbuk	Tree	0.3	
Combretaceae	Terminalia bellirica	Bulu	Tree	0.3	
Rutaceae	Toddalia asiatica	Kudumirissa	Liana	0.3	
Verbenaceae	Vitex altissima	Milla	Tree	0.3	
Rubiaceae	Wendlandia bicuspidate	Rawan idala	Tree	0.3	
Rhamnaceae	Ziziphus lucida* ^{CR}	Eraminiya	Liana	0.3	

^{*} Endemic species CR Criticaly Endangered

4.3 Appendix III. List of Plant Species Recorded in Chenalands

Family	Family Species		Life Form	Relative density (%)	
Moraceae	Artocarpus heterophyllus	Kos	Tree	12.0	
Myrataceae	Psidum guawa	dum guawa Pera		12.0	
Ulmaceae	Trema orientalis	Gadumba	Tree	12.0	
Rutaceae	Chloroxylon swietenia	Burutha	Tree	8.0	
Moraceae	Ficus hispida	Kotadibula	Tree	8.0	
Rubiaceae	Haldina cordifolia	Kolon	Tree	8.0	
Meliaceae	Melia azedarach	Lunumidella	Tree	8.0	
Astaraceae	Tithonia diversifolia	Wal sooriyakantha	Shrub	8.0	
Fabaceae	Adenanthera pavonina	Madatiya	Tree	4.0	
Euphorbiaceae	Bridelia retusa	Ketakala	Tree	4.0	
Sterculiaceae	Helicteres isora	Lihiniya	Tree	4.0	
Anacardiaceae	Mangifera indica	indica Amba		4.0	
Marantaceae	Thespesia populnea	Gansooriya	Tree	4.0	
Lythraceae	Woodfordia fruticosa	Malitta	Shrub	4.0	

4.4 Appendix IV. List of Plant Species Recorded in Grasslands

Family			Life Form	Relative density (%)	
Astaraceae			Shrub	25.3	
Euphorbiaceae	Drypetes sepiaria	Weera	Tree	12.6	
Rutaceae	Chloroxylon swietenia	Burutha	Tree	10.3	
Euphorbiaceae	Phllanthus polypyllus	Kuretiya	Shrub	10.3	
Convolvulaceae	Argyreia populifolia	Girithilla	Liana	6.9	
Euphorbiaceae	Flueggea leucopyrus	Heen katu pila	Shrub	6.9	
Fabaceae	Acacia caesia	Hinguruwel	Liana	5.7	
Hernandiaceae	Gyrocarpus americanus	Diya labu	Tree	3.4	
Euphorbiaceae	Meineckia parvifolia		Shrub	2.3	
Moraceae	Streblus asper	Gata nithul	Shrub	2.3	
Verbenaceae	Vitex altissima	Milla	Tree	2.3	
Apocynaceae	Alstonia macrophylla	Hawarinuga	Tree	1.1	
Apocynaceae	Alstonia scholaris	Rukattana	Tree	1.1	
Fabaceae	Cassia spectabilis	Kahakona	Tree	1.1	
Cycadaceae	Cycas circinalis	Madu	Tree	1.1	
Fabaceae	Dalbergia pseudo	Bambara wel	Liana	1.1	
Tiliaceae	Grewia orientalis	Keliya	Liana	1.1	
Meliaceae	Melia azedarach	Lunumidella	Tree	1.1	
Rubiaceae	Mitragyna tubulosa	Helaba	Tree	1.1	
Verbinaceae	Premna tomentosa	Seru	Tree	1.1	
Myrataceae	Syzygium assimile	Wal jambu (Dambu)	Tree	1.1	

4.5 Appendix V. List of Plant Species Recorded in Scrublands

Family	Species	Common name	Life Form	Relative density (%)	
Fabaceae	Flueggea leucopyrus	Heen katu pila	Shrub		
Apocynaceae	Croton laccifer	Keppetiya	Tree	6.80	
Apocynaceae	Toddalia asiatica	Kudumirissa	Liana	4.98	
Euphorbiaceae	Chloroxylon swietenia	Chloroxylon swietenia Burutha		4.53	
Moraceae	Phllanthus polypyllus	Kuretiya	Shrub	4.38	
Euphorbiaceae	Grewia damini	Damaniya	Tree	3.93	
Lauraceae	Leucaena leucocephala	Ipil ipil	Tree	3.78	
Fabaceae	Streblus asper	Gata nithul	Shrub	3.78	
Rhamnaceae	Ziziphus lucida* ^{CR}	Eraminiya	Liana	3.78	
Asaparagaceae	Pterospermum suberifolium	Welan	Tree	3.63	
Euphorbiaceae	Gliricidia sepium	Ginisiriya	Tree	2.72	
Euphorbiaceae	Drypetes sepiaria	Weera	Tree	2.27	
Anacardiaceae	Glycosmis angustifolia	Bol pana	Shrub	2.27	
Apocynaceae	Gyrocarpus americanus	Diya labu	Tree	2.27	
Anacardiaceae	Eupatorium odoratum	Podisinno	Shrub	1.96	
Marantaceae	Strblus taxoides	Katupol	Shrub	1.96	
Rubiaceae	Thespesia populnea	Gansooriya	Tree 1.60		
Hippocrateaceae	Morinda umbellata	Kiri wel	Liana	1.51	
Rutaceae	Cipadessa baccifera	Halbembiya	Tree	1.36	
Annonaceae	Hiptage benghalensis	Puwakgediya wel	Liana	1.36	
Lecythidaceae	Micromelum minutum	Wal karapincha	Tree	1.36	
Fabaceae	Strychnos potatorum	Ingini	Shrub	1.36	
Lauraceae	Grewia orientalis	Keliya	Liana	1.21	
Euphorbiaceae	Litsea glutinosa	Bombu	Tree	1.21	
Moraceae	Ochna lanceolata	Mal bo kera	Shrub	1.21	
Rhamnaceae	Tithonia diversifolia	Wal sooriyakantha	Shrub	1.21	
Pandanaceae	Jatropha curcas	Wata endaru	Shrub	1.06	
Meliaceae	Schleichera oleosa	Kone	Tree	1.06	
Meliaceae	Derris parviflora	Kalawel	Liana	0.91	
Lauraceae	Diospyros ebenum	Kaluwara	Tree	0.91	
Myrataceae	Meineckia parvifolia		Shrub	0.91	
Combretaceae	Salacia reticulata	Himbutu wel	Liana	0.91	
Flacourtiaceae	Acacia caesia	Hinguruwel	Liana	0.76	
Rutaceae	Artocarpus heterophyllus	Kos	Tree	0.76	
Tiliaceae	Bauhinia racemosa	Maila	Tree	0.76	
Hernandiaceae	Carissa spinarum	Karaba	Shrub	0.76	
Araliaceae	Nerium oleander Kaneru		Tree	0.76	
Euphorbiaceae	Euphorbia antiquorum	Daluk	Tree	0.60	
Loganiaceae	Persea americana Alipera		Tree	0.60	
Fabaceae	Vernonia zeylanica		Liana	0.60	
Lythraceae	Woodfordia fruticosa	Malitta	Shrub	0.60	
Euphorbiaceae	Alstonia macrophylla	Hawarinuga	Tree	0.45	

Family	Species	Common name	Life Form	Relative density (%)	
Appendix V ctd.					
Rutaceae	Asparagus racemosus	Hathawariya W	Liana	0.45	
Tiliaceae	Bridelia retusa	Ketakala	Tree	0.45	
Sterculiaceae	Chukrasia tabularis	Chukrasia tabularis Holan hik		0.45	
Rutaceae	Dimorphocalyx glabellus	Weliwanna	Shrub	0.45	
Meliaceae	Euphorbia heterophylla		Shrub	0.45	
Euphorbiaceae	Neolitsia cassia	Kududawla	Tree	0.45	
Cycadaceae	Premna tomentosa	Seru	Tree	0.45	
Datiscaceae	Schefflera stellata	Iththawal	Liana	0.45	
Sapindaceae	Syzygium caryophyllatum	Dan	Tree	0.45	
Fabaceae	Trema orientalis	Gadumba	Tree	0.45	
Verbenaceae	Ventilago madraspatana	Yakadawel	Liana	0.45	
Meliaceae	Atalantia ceylanica	Yakinaran	Shrub	0.30	
Ebenaceae	Careya arborea	Kahata	Tree	0.30	
Malpighiaceae	Cordia sinensis	Lolu	Tree	0.30	
Rutaceae	Ficus racemosa	Attikka	Tree	0.30	
Boraginaceae	Filicium decipiens	Pehibiya	Tree	0.30	
Rubiaceae	Gmelina asiatica	Demata	Tree	0.30	
Anacardiaceae	Haldina cordifolia	Kolon	Tree	0.30	
Ochnaceae	Helicteres isora	Lihiniya	Tree	0.30	
Euphorbiaceae	Limonia acidissima	Diwul	Tree	0.30	
Verbinaceae	Mangifera indica	Amba	Tree	0.30	
Sterculiaceae	Mitragyna tubulosa	Helaba	Tree	0.30	
Astaraceae	Tectona grandis	Tekka	Tree	0.30	
Astaraceae	Tricalysia dalzellii		Shrub	0.30	
Moraceae	Vitex altissima	Milla	Tree	0.30	
Sapindaceae	Abrus precatorius	Olinda	Liana	0.15	
Euphorbiaceae	Anacardium occidentale	Kaju	Tree	0.15	
Fabaceae	Annona reticulata	Wali anoda	Tree	0.15	
Verbenaceae	Azadirachta indica	Kohoba	Tree	0.15	
Rubiaceae	Cassia spectabilis	Kahakona	Tree	0.15	
Euphorbiaceae	Cycas circinalis	Madu	Tree	0.15	
Rubiaceae	Flacourtia indica	Wal ugurassa	Tree	0.15	
Astaraceae	Macaranga peltata	Kanda	Tree	0.15	
Euphorbiaceae	Melia azedarach	Lunumidella	Tree	0.15	
Sapindaceae	Nothopegia beddomei	Bala	Tree	0.15	
Moraceae	Pandanus odoratissimus	Watakeiya	Shrub	0.15	
Myrtaceae	Phllanthus emblica	Nelli	Tree	0.15	
Verbinaceae	Psidum guawa	Pera	Tree	0.15	
Rutaceae	Terminalia bellirica	Bulu	Tree	0.15	
Ulmaceae	Tetrameles nudiflora	Gira gas	Tree	0.15	
Verbenaceae	Vitex trifolia	Nika	Tree	0.15	

^{*} Endemic species CR Criticaly Endangered

4.6 Appendix VI. List of Plant Species Recorded in Secondary Forests

Family	Species	Common name	Life Form	Relative Density (%)	
Fabaceae	Derris parviflora	Kalawel	Liana	7.7	
Verbinaceae	Premna tomentosa	Seru	Tree	7.1	
Euphorbiaceae	Flueggea leucopyrus	Heen katu pila	Shrub	6.1	
Rutaceae	Aegle marmelos	Beli	Tree	5.6	
Meliaceae	Cipadessa baccifera	Halbembiya	Tree	5.6	
Tiliaceae	Grewia damini	Damaniya	Tree	5.6	
Lauraceae	Litsea glutinosa	Bombu	Tree	5.1	
Fabaceae	Gliricidia sepium	Ginisiriya	Tree	4.6	
Euphorbiaceae	Croton laccifer	Keppetiya	Tree	4.1	
Hippocrateaceae	Salacia reticulata	Himbutu wel	Liana	4.1	
Rutaceae	Chloroxylon swietenia	Burutha	Tree	3.6	
Euphorbiaceae	Dimorphocalyx glabellus	Weliwanna	Shrub	3.6	
Sterculiaceae	Pterospermum suberifolium	Welan	Tree	3.6	
Euphorbiaceae	Phllanthus polypyllus	Kuretiya	Shrub	3.1	
Rutaceae	Toddalia asiatica	Kudumirissa	Liana	3.1	
Malpighiaceae	Hiptage benghalensis	Puwakgediya wel	Liana	2.6	
Moraceae	Artocarpus heterophyllus	Kos	Tree	2.0	
Rubiaceae	Haldina cordifolia	Kolon	Tree	2.0	
Meliaceae	Melia azedarach	Lunumidella	Tree	2.0	
Tiliaceae	Grewia helicterifolia	Boradamaniya	Tree	1.5	
Moraceae	Streblus asper	Gata nithul	Shrub	1.5	
Ulmaceae	Trema orientalis	Gadumba	Tree	1.5	
Fabaceae	Cassia siamea	Wa	Tree	1.0	
Meliaceae	Chukrasia tabularis	Holan hik	Tree	1.0	
Boraginaceae	Cordia sinensis	Lolu	Tree	1.0	
Euphorbiaceae	Drypetes sepiaria	Weera	Tree	1.0	
Sapindaceae	Filicium decipiens	Pehimbiya	Tree	1.0	
Rutaceae	Glycosmis angustifolia	Bol pana	Shrub	1.0	
Malvaceae	Hibiscus erocarpus		Shrub	1.0	
Rutaceae	Micromelum minutum	Wal karapincha	Tree	1.0	
Lauraceae	Neolitsia cassia	Kududawla	Tree	1.0	
Anacardiaceae	Nothopegia beddomei	Bala	Tree	1.0	
Sapindaceae	Schleichera oleosa	Kone	Tree	1.0	
Fabaceae	Tamarindus indica	Siyabala	Tree	1.0	
Rubiaceae	Canthium coramandalicum	Kara	Shrub	0.5	
Moraceae	Ficus hispida	Kotadibula	Tree	0.5	
Anacardiaceae	Mangifera indica	Amba	Tree	0.5	
Verbenaceae	Vitex altissima	Milla	Tree	0.5	

4.7 Appendix VII. List of Plant Species Recorded in Stream Bank Vegetation

Family	Species	Common name	Life Form	Relative density (%)	
Sterculiaceae	Pterospermum suberifolium	Welan	Tree	13.9	
Hippocrateaceae	Salacia reticulata	Himbutu wel	Liana	10.1	
Euphorbiaceae	Mallotus philippensis	Hamparila	Shrub	9.38	
Euphorbiaceae	Croton laccifer	Keppetiya	Tree	5.9	
Euphorbiaceae	Phllanthus polypyllus Kuretiya		Shrub	4.86	
Euphorbiaceae	Flueggea leucopyrus Heen katu pila		Shrub	4.17	
Moraceae	Strblus taxoides	Katupol	Shrub	4.17	
Malpighiaceae	Hiptage benghalensis	Puwakgediya wel	Liana	3.47	
Anacardiaceae	Nothopegia beddomei	Bala	Tree	2.78	
Fabaceae	Acacia caesia	Hinguruwel	Liana	2.43	
Annonaceae	Miliusa indica	Kekili messa	Shrub	2.08	
Fabaceae	Pongamia pinnata	Karada	Tree	2.08	
Rubiaceae	Morinda umbellata	• •		1.74	
Rhamnaceae	Ziziphus lucida* ^{CR}			1.74	
Sapindaceae	Schleichera oleosa			1.74	
Fabaceae	Derris parviflora	Kalawel	Liana	1.39	
Rutaceae	Atalantia ceylanica	Yakinaran	Shrub	1.39	
Apocynaceae	Carissa spinarum	Karaba	Shrub	1.39	
Moraceae	Ficus racemosa	Attikka	Tree	1.39	
Tiliaceae	Grewia damini	Damaniya	Tree	1.39	
Myrtaceae	Psidum guawa	Pera	Tree	1.39	
Loganiaceae	Strychnos trichocalyx	Gon karaba	Tree	1.39	
Combretaceae	Terminalia bellirica	Bulu	Tree	1.39	
Convolvulaceae	Argyreia populifolia	Girithilla	Liana	1.04	
Rutaceae	Toddalia asiatica	Kudumirissa	Liana	1.04	
Euphorbiaceae	Dimorphocalyx glabellus	Weliwanna	Shrub	1.04	
Euphorbiaceae	Drypetes sepiaria	Weera	Tree	1.04	
Sapotaceae	Madhuca longifolia	Mi	Tree	1.04	
Myrtaceae	Syzygium caryophyllatum	Dan	Tree	1.04	
Tiliaceae	Grewia carpinifolia		Liana	0.69	
Rubiaceae	Tricalysia dalzellii		Shrub	0.69	
Apocynaceae	Alstonia scholaris	Rukattana	Tree	0.69	
Meliaceae	Cipadessa baccifera	Halbembiya	Tree	0.69	
Sapindaceae	Dimocarpus longan	Mora	Tree	0.69	
Moraceae	Ficus hispida	Kotadibula	Tree	0.69	
Sapindaceae	Filicium decipiens	Pehibiya	Tree	0.69	
Rutaceae	Glycosmis mauritiana	•	Tree	0.69	
Rutaceae	Micromelum minutum	Wal karapincha	Tree	0.69	
Lauraceae	Neolitsia cassia	Kududawla	Tree	0.69	
Apocynaceae	Ochrosia oppositifolia Gonna		Tree	0.69	
Flacourtiaceae	Scolopia pusilla Katu keera		Tree	0.69	
Combretaceae	Terminalia arjuna	Kumbuk	Tree	0.69	
Appendix VIIctd.	<u> </u>				
Rhamnaceae	Ventilago madraspatana	Yakadawel	Liana	0.35	
	· .				

Family	Species	Common name	Life Form	Relative density (%)
Euphorbiaceae	Bridelia retusa	Ketakala	Tree	0.35
Meliaceae	Chukrasia tabularis	Holan hik	Tree	0.35
Moraceae	Ficus amplissma	Ela nuga	Tree	0.35
Moraceae	Ficus bengalensis	Maha nuga	Tree	0.35
Meliaceae	Melia azedarach	Lunumidella	Tree	0.35
Flacourtiaceae	Scolopia acuminata	Katu Kurundu	Tree	0.35
Verbenaceae	Vitex altissima	Milla	Tree	0.35

4.8 Appendix VIII. List of Fauna Recorded during Sampling in the Study Area

a. Butterflies

Family	Species	Common name	HG	Chena	GL	SF	SeF	SB
Danaidae	Danaus Chrysippus	Plain Tiger	+	+	+	+	+	+
Danaidae	Danaus genutia	Common Tiger	+	-	-	+	+	+
Danaidae	Parantica aglea	Glassy Tiger	+	+	+	+	+	+
Danaidae	Tirumala limniace	Blue Tiger	-	+	-	-	-	+
Danaidae	Euploea core	Common Indian Crow	+	+	+	+	+	+
Lycaenidae	Catochysops strabo	Foget- me- not	+	-	-	+	-	-
Lycaenidae	Castalius rosimon	Common Pierrot	+	+	-	+	-	-
Nymphalidae	junonina iphita	Chocolate Solidier	+	+	+	+	+	+
Nymphalidae	Neptis hylas	Common Sailer	+	+	-	+	+	+
Nymphalidae	Phalanta phalantha	Common lepard	+	+	+	+	+	+
Nymphalidae	Hypolimnas bolina	The great Egg Fly	-	+	+	-	+	+
Nymphalidae	Euthalia aconthea	The baron	+	-	-	+	-	-
Nymphalidae	Neptis jumbah	The Common Sailer	-	+	-	+	-	+
Nymphalidae	Junonina lemonias	The Lemon Pansy	+	+	+	+	+	+
Papilionidae	Graphium agamemnon	Tailed Jay	+	+	+	+	+	+
Papilionidae	Pachliopta aristolochiae	Common Rose	+	+	+	+	+	+
Papilionidae	Pachliopta hector	Crimson Rose	+	+	+	+	+	+
Papilionidae	Paoilio polytes	Common Mormon	+	+	-	+	+	+
Papilionidae	Papilio polymnestor	Blue Mormon	+	-	+	+	+	+
Papilionidae	Troides darsius* ^{NT}	Common Birdwing	+	-	-	-	+	+
Papilionidae	Graphium sarpendon	The common blue bottle	+	+	-	-	+	-
Papilionidae	Papilio demoleus	The Lime butterfly	+	+	-	+	+	+
Pieridae	Catopsilia crocale	Common Emigrant	+	-	-	+	-	-
Pieridae	Catopsilia Pomona	Lemon Emigrant	+	+	+	+	+	+
Pieridae	Delias eucharis	Common Jezebel	+	+	-	+	+	+
Pieridae	Eurema brigitta	Small Grass Yellow	+	+	+	+	+	+
Pieridae	Eurema hecabe	Common Grass Yellow	+	+	+	+	+	+
Pieridae	Leptosia nina	Psyche	+	+	-	+	+	-
Pieridae	Eurema blanda	Three spot Grass Yellow	+	-	-	+	-	+
Pieridae	Appias albina	The common albat rose	+	+	+	+	+	+
Satyridae	Ypthima ceylonica	White Four Ring	+	+	+	+	+	+
Satyridae	Melanitis phedima	Dark Evening Brown	+	+	-	-	+	-
Satyridae	Orsotriena medues	The nigger	+	-	-	+	+	+

b. Land snails

Family	Species	HG	Chena	SF	SeF	SB
Achatinoidae	Lissachatina fulica	+	+	+	+	-
Ariophantidae	Cryptozona bistrialis	+	+	+	+	-
Cyclophoridae	Cyclophorus ceylanicus* ^{NT}	-	-	-	-	+

c. Amphibians

Family	Species	Common name	HG	SF	SeF	SB
Bufonidae	Duttaphrynus melanostictus*	Common house toad	+	+	-	-
Nyctibatrachidae	Lankanectes corrugatus*	Corrugated water frog	-	-	-	+
Dicroglossidae	Fejervarya kirtisinghei*	Montain paddy field frog	-	-	-	+
Dicroglossidae	Fejervarya limnocharis	Common paddy field frog	_	-	-	+
Ranidae	Hylarana tempolaris	Bronzed frog	-	-	-	+

d. Reptiles

Family	Species	Common name	HG	Chena	GL	SF	SeF	SB
Agamidae	Calotes calotes	Green Forest Lizard	+	+	-	+	+	+
Agamidae	Calotes versicolor	Garden Lizard	+	+	+	+	+	+
Colubridae	Ptyas mucosa	Rat Snake	+	+	-	+	+	-
Colubridae	Coelognathus Helena	Trinket Snake	+	+	-	+	-	-
Colubridae	Ahaetulla nasuta	Green Vine Snake	+	-	-	+	+	+
Colubridae	Atretium schistosum	Olive Keelback Water Snake	-	-	-	-	-	+
Colubridae	Chrysopelea taprobanica*VU	Sri lankan Flying Snake	-	-	-	+	-	-
Elapidae	Bungarus ceylonicus* ^{NT}	Sri lankan Krait	+	+	-	+	-	-
Elapidae	Naja naja	Spectacled Cobra	+	+	-	+	-	-
Scincidae	Mabuya macularia	Rock Skink	+	+	-	+	+	+
Scincidae	Mabuya Carinata	Common Skink	+	+	-	+	+	-
Varanidae	Varanus bengalensis	Land Monitor	+	+	+	+	+	+
Viperidae	Trimeresurus trigonocephala*	Green Pit-Viper	-	+	-	-	+	-
Viperidae	Hypnale hypnale	Hump-nosed Pit Viper	+	+	-	-	+	-

e. Birds

Family	Species	Common name	HG	Chena	GL	SF	SeF	SB
Accipitridae	Haliaeetus leucogaster	White-bellied Fish Eagle	+	-	+	-	-	+
Accipitridae	Spizaetus cirrhatus	Changeable Hawk Eagle	+	-	+	+	+	+
Accipitridae	Spilornis cheela	Crested Serpent Eagle	+	-	-	+	+	+
Accipitridae	Elanus caeruleus	Black Winged Kite	-	-	+	+	-	+
Accipitridae	Haliastur indus	Brahminy Kite	-	+	-	+	+	+
Accipitridae	Ictinaetus malayensis	Black Eagle	+	-	-	+	+	+
Alaudidae	Alauda gulgula	Oriental Sky Lark	+	-	+	-	+	+
Alcedinidae	Halcyon capensis	Stalk-billed Kingfisher	-	-	-	-	-	+
Alcedinidae	Alcedo atthis	Common Kingfisher	-	-	-	+	+	+
Alcedinidae	halcyon smyrnensis	White-throated kingfisher	+	-	-	+	+	+
Bucerotidae	Ocyceros gigalensis*	Sri Lanka Grey Hornbill	+	-	-	-	+	+
Capitonidae	Megalaima zelanica	Brown-headed Barbet	+	+	-	+	+	+
Columbidae	Chalcophaps indica	Emerald Dove	+	-	-	-	+	-
Columbidae	Streptopelia chinensis	Spotted Dove	+	+	-	+	+	+
Corvidae	Corvus macrorhynchos	Large-billed Crow	+	+	-	+	-	+

Family	Species	Common name	HG	Chena	GL	SF	SeF	SB
Cuculidae	Rhopodytes viridirostris	Blue-faced Malkoha	-	-	-	+	-	-
Cuculidae	Centropus sinensis	Greater coucal	+	+	-	+	+	+
Dicruridae	Dicrurus caerulescens	White-bellied Drongo	+	-		-	+	-
Estrildidae	Lonchura malacca	Black headed munia	+	+	-	+	-	+
Estrildidae	Lonchura punctulata	Scaly Breasted munia	-	-	-	+	-	-
Hirundinidae	Hirundo daurica	Red-rumped Swallow	-	-	-	+	+	+
Irenidae	Aegithina tiphia	Common Iora	+	-	-	+	+	-
Irenidae	Chloropsis cochinchinensis	Jerdon's Leafbird	-	-	-	+	-	-
Meropidae	Merops orientalis	Green bee-eater	-	+	-	+	-	+
Monarchidae	Rhipidura aureola	white-Browed fantail	+	+	-	+	-	-
Monarchidae	Terpsiphone paradisi	Asian Paradise-flycatcher	+	+	-	+	-	+
Motacillidae	Motacilla cinerea	Gray wag tail	-	-	-	-	+	+
Nectariniidae	Nectarinia lotenia	Long-billed Sunbird	+	+	-	+	-	+
Nectariniidae	Nectarinia Zelonica	Purple-rumped Sunbird	-	-	-	+	+	-
Phasianidae	Gallus lafayettii*	Sri Lanka Jungle fowl	+	-	-	+	+	+
Picidae	Dinopium benghalense	Red backed woodpecker	+	-	-	-	+	+
Picidae	Picoides moluccensis	Brown-capped Woodpecker	-	-	-	+	-	-
Psittacidae	Psittacula eupatria	Alexandrine Parakeet	+	-	-	+	-	+
Psittacidae	Loriculus beryllinus*	Sri Lanka Hanging Parrot	+	-	-	+	+	-
Psittacidae	Psittacula cyanocephala	Plum-headed Parakeet	+	-	-	+	-	+
Pycnonotidae	Pycnonotus cafer	Red-vented Bulbul	+	+	+	+	+	+
Strigidae	Bubo zeylonensis	Brown Fish Owl	-	-	-	-	+	-
Sturnidae	Acridotheres tristis	Common Myna	+	-	-	+	-	+
Sylviidae	Prinia socialis	Ashy Prinia	+	+	-	-	+	-
Sylviidae	Orthotomus sutorius	Common Tailorbird	+	+	-	+	-	-
Timaliidae	Pellorneum fuscocapillum* ^{NT}	Brown-capped Babbler	-	-	-	-	+	-
Timaliidae	Turdoides affinis	Yellow-billed Babbler	+	-	-	+	-	-
Turdidae	Copsychus saularis	Oriental Magpie Robin	+	+		+	-	+
AppendixCt	td				•	•		
Turdidae	Saxicoloides fulicata	Black-back Robin	+	+	-	+	+	-
Turnicidae	Turnix suscitator	Barred Buttonquail	-	-	-	-	+	-
Zosteropidae	Zosterops palpebrosa	Oriental White-eye	+	-	-	+	-	+

f. Mammals

Family	Species	Common name	HG	Chena	GL	SF	SeF	SB
Canidae	Canis aureus	Ceylon Jackal	-	-	-	-	+	-
Cercopithecidae	Macaca sinica* ^{NT}	Toque monkey	+	-	-	+	+	+
Cercopithecidae	$Semnopithecus\ priam^{NT}$	Grey Langur	+	-	-	+	+	+
Cervidae	Axis asix	Spotted Deer	-	-	-	-	+	+
Cervidae	Cervus unicolor	Sambhur Deer	-	-	-	-	+	-
Cervidae	Muntiacus muntjak	Barkin Deer	-	-	-	+	+	+
Elephantidae	Elephas maximus	Elephant	-	-	-	-	+	-
Hystericidae	Hystrix indica	Indian Porcupine	+	-	-	+	+	+
Leporidae	Lepus nigricolis	Indian Hare	+	+	+	+	+	+
Manidae	Manis crassicaidata ^{NT}	Indian Pangolins	-	-	+	-	-	-
Scuridae	Funambulus palmarum	Palm Squirrel	+	+	+	+	+	+
Suidae	Sus scrofa cristatus	Indian Wild Boar	+	+	-	+	+	+
Viverridae	Herpestes fuscus	Brown mongoose	+	+	-	+	-	+
Viverridae	Herpestes edwardsi	Grey mongoose	+	_	_	-	-	_

Family	Species	Common name	HG	Chena	GL	SF	SeF	SB
Viverridae	Viverricula indica	Small Civet Cat	+	+	-	+	-	-
Viverridae	Paradoxurus hermaphroditus	Palm cat	+	-	-	-	-	-
Viverridae	Herpestes vitticollis	Striped necked Mongoose	+	+	-	+	-	-
Viverridae	Herpestes smithii	Sri Lanka Ruddy Mongoose	+	+	+	-	-	+

Conservation Status:

NT-Near Threatened / VU-Vulnerable / EN-Endangered / CR-Critically Endangered

^{*-}Endemic Species

Fauna Group	Total no of Species	No of Endemic Species	No of Threatened Species
Butterflies	34	01	01(NT)
Land Mollusca	03	01	01(NT)
Amphibia	05	03	0
Reptiles	14	02	01(VU)
Birds	46	04	01(NT)
Mammles	18	01	02(NT)

Ecological Survey of Proposed Tunnel Waste Dumping Sites

5.1 Dumping Site 01: Near Victoria Powerhouse

This area has been used as a tunnel waste dumping site during the construction of Victoria Dam and the Power station. The site has very little vegetation cover (**Figure 5-1**) as ground is still covered with rocks and sand and remain as a bare patch. The ground surface is presently covered with *Panicum* grass (*Panicum maximum*). In areas where the surface soil layer has exposed fast colonizing species such as *Leucaena leucocephala* and *Memecylon rostratum* has established in patches (**Figure 5-2**). CEB has planted some tree species such as *Bauhinia racemosa*, *Tamarindus indica*, and *Filicium decipiens* in an attempt to re-vegetate the area (**Table 5-1**). The planted species has shown poor growth due to the rocky nature of the substrate. The area now supports about 12 species of trees and one shrub species. *Memecylon rostratum* which is an early colonizing species in disturbed sites is the most abundant species in the site. Since the site is still at the early stage of succession (scrubland vegetation) butterflies and birds are common found than the other animal groups. Elephants have been occasionally recorded in the area (**Table 5-2**).

The site is still in degraded condition and has a poor growth of vegetation. Therefore, it is suitable for tunnel waste dumping.

Table 5-1 List of Plant Species Recorded from the Proposed Dumping Site 1

Family	Species	Common name	Life form	Relative density (%)
Melastomataceae	Phyllanthus polyphyllus	Kuretiya	Shrub	19.0
Fabaceae	Bauhinia racemosa	Maila	Tree	14.3
Myrtaceae	Syzygium caryophyllatum	Dan	Tree	14.3
Euphorbiaceae	Bridelia retusa	Ketakela	Tree	9.5
Apocynaceae	Alstonia scholaris	Rukaththana	Tree	4.8
Fabaceae	Tamarindus indica	Siyabala	Tree	4.8
Hernandiaceae	Gyrocarpus americanus	Diya labu	Tree	4.8
Rubiaceae	Haldina cordifolia	Kolon	Tree	4.8
Sapindaceae	Schleichera oleosa	Kone	Tree	4.8
Sapindaceae	Sapindua trifoliata	Kahapenela	Tree	4.8
Sapindaceae	Filicium decipiens	Pehibiya	Tree	4.8
Sapotaceae	Madhuka longifolia	Mee	Tree	4.8
Tiliaceae	Grewia damini	Damaniya	Tree	4.8

^{*} endemic species

Figure 5-1 Bare Ground in the site near Powerstation

Figure 5-2 Colonization of the Site by Leucaena leucocephala

Table 5-2 Summary of Fauna Recorded in the Site 1

Faunal Group	No. of Families	No. of Species	No. of Endemic Species
Butterflies	05	24	00
Amphibians	01	01	00
Reptiles	04	09	00
Birds	24	36	02
Mammals	07	10	01
Land Snails	02	02	00

5.2 Dumping Site 02: near Hakuruthale Police Point

This is also a tunnel waste dumping site during the Victoria project (Phase I). Tunnel waste have been compacted and leveled off from the surface so that site has an appearance of a playground, with very little grass cover (**Figure 5-3**). Riverward slope of the ground has washed way exposing the remains of the previously dumped tunnel waste (**Figure 5-4**).

Leucaena leucocephala which is an introduced rapidly colonizing tree species in open up sites has established on the exposed slopes of the site (**Figure 5-4**). Most of the tree species found in the site is early colonizers. A few economically important species such as *Chloroxylon swietenia* are found in very low abundance in the site. In all 12 tree species, 03 shrub species, 03 liana species and 01 herb species have been recorded from the site (**Table 5-3**).

Butterfly and bird diversity is high in this site too (**Table 5-4**). Thirty species of butterflies and 45 species of birds have been recorded from the site during the survey. Abundance of plant species such as *Lantana camara* and *Muntingia calabura* which serve as preferred food plants for variety of butterflies and birds has attracted many butterflies and birds to the site.

Table 5-3 List of Plant Species Recorded from the Proposed Dumping Site 2

Family	Species	Common name	Life form	Relative density (%)
Fabaceae	Leucaena leucocephala	Ipil ipil	Tree	25.8
Rutaceae	Toddalia asiatica	Kudumiris	Liana	15.7
Tiliaceae	Grewia damini	Damaniya	Tree	7.9
Moraceae	Ficus racemosa	Attikka	Tree	7.9
Euphorbiaceae	Flueggea leucopyrus	Katupila	Shrub	7.9
Melastomataceae	Phyllanthus polyphyllus	Kuretiya	Shrub	6.7
Fabaceae	Acacia caesia	Hinguru wel	Liana	4.5
Sterculiaceae	Helicteres isora	Lihiniya	Tree	3.4
Boraginaceae	Cordia dichotoma	Lolu	Tree	3.4
Verbenaceae	Vitex altissima	Milla	Tree	2.2
Tiliaceae	Muntingia calabura	Jam	Tree	2.2
Rhamnaceae	Ziziphus lucida*	Eraminiya	Liana	2.2
Marantaceae	Thespesia populnea	Gansooriya	Tree	2.2
Capparidaceae	Capparis sp	Wellangiriya	Shrub	2.2
Streculaceae	Melochia nodiflora		Herb	1.1
Sapindaceae	Sapindua emarginata		Tree	1.1
Rutaceae	Chloroxylon swietenia	Burutha	Tree	1.1
Myrtaceae	Syzygium caryophyllatum	Dan	Tree	1.1
Hernandiaceae	Gyrocarpus americanus	Diya labu	Tree	1.1

Figure 5-3 Bare Ground at the Dumping Site 02 near Hakuruthale Police point

Figure 5-4 Washed-off Sides Colonized by Leucaena leucocephalain Proposed Dumping

Table 5-4 Summery of Fauna at Hakuruthale Site

	•		
Faunal Group	No. of Families	No. of Species	No. of Endemic Species
Butterflies	05	30	00
Amphibians	03	03	01
Reptiles	07	12	01
Birds	27	45	03
Mammals	08	13	01
Land Snails	02	02	00

5.3 Dumping Site 03: Kohobagana

This site comprises of two main habitat types: a paddy field and an abandoned chena (sifting cultivation) lands. Paddy fields are cultivated once a year (Maha season) during November – April, using rain water. During rest of the year in vegetable crops are cultivated in some parts of these fields (**Figure 5-5**). Nine households are located bordering the paddy fields. The lands are

owned by the people living in Kohombagana village. The other part of the area surveyed comprises of abandoned chena fields (**Figure 5-6**). The chena cultivations in the area have been abandoned by the villagers sometimes back due to regular crop damage by the elephants. The farmers have now moved toward the main Kandy – Randenigala road and have started some vegetable farming. The survey conducted on the abandoned chena fields and adjoining scrublands has resulted in recorded 32 tree species, 10 shrub species and 08 lina species (**Table 5-5**). The paddy fields generally supported some grass species.

The area shows a rich faunal diversity (**Table 5-6**). Elephants frequently roam in this area. Other large mammals such as spotted deer (*Axix axis*), Sambar (*Cervus unicolor*) of are also found in considerable number in the area.

Selecting this site for tunnel waste dumping will lead to many problems. The fertile paddy fields will be lost and the farmers will have to be resettled. This area also falls within the Victoria-Randenigala-Rantanme (VRR) wildlife sanctuary and permission will have to be obtained in order the use this site for the proposed activity. Considering all these factors it could be concluded that this site is not suitable for selecting as a tunnel waste dumping site.

Table 5-5 List of Plant Species Recorded from the Proposed Dumping Site 3

Family	Species	Common name	Life form	Relative density (%)
Moraceae	Streblus asper	Nithul	Tree	14.8
Fabaceae	Tamarindus indica	Siyambala	Tree	6.6
Fabaceae	Acacia caesia	Hinguru wel	Liana	5.9
Sterculiaceae	Helicteres isora	Lihiniya	Tree	5.9
Rhamnaceae	Ziziphus lucida*	Eraminiya	Liana	4.8
Verbenaceae	Vitex trifolia	Nika	Shrub	4.8
Apocynaceae	Carissa spinarum	Karaba	Shrub	3.8
Hippocrateaceae	Salacia reticulata	Himbutu	Liana	3.8
Moraceae	Strblus taxoides	Katu pol	Shrub	3.1
Euphorbiaceae	Drypetes sepiaria	Weera	Tree	2.8
Fabaceae	Gliricidia sepium	Ginisiriya	Tree	2.4
Melastomataceae	Phyllanthus polyphyllus	Kuretiya	Shrub	2.4
Myrtaceae	Syzygium caryophyllatum	Dan	Tree	2.4
Rutaceae	Chloroxylon swietenia	Burutha	Tree	2.4
Rutaceae	Toddalia asiatica	Kudumiris	Liana	2.4
Rubiaceae	Haldina cordifolia	Kolon	Tree	2.1
Fabaceae	Pongamia pinnata	Karanda	Tree	1.7
Moraceae	Ficus racemosa	Attikka	Tree	1.7
Tiliaceae	Griwia oriantalis	Keliya	Liana	1.7
Tiliaceae	Griwia carpinifolia		Tree	1.7
Euphorbiaceae	Flueggea leucopyrus	Katupila	Shrub	1.4
Fabaceae	Abrus precatorius	Olinda	Liana	1.4
Rubiaceae	Mitragyna tubulosa	Halaba	Tree	1.4
Sterculiaceae	Pterospermum suberifolium	Welan	Tree	1.4
Boraginaceae	Cordia dichotoma	Lolu	Tree	1

Family	Species	Common name	Life form	Relative density (%)
Combretaceae	Terminalia arjuna	Kumbuk	Tree	1
Euphorbiaceae	Dimorphocalyx glabellus	Waliwenna	Shrub	1
Fabaceae	Derris parviflora*	Kalawel	Liana	1
Fabaceae	Bauhinia racemosa	Maila	Tree	1
Hernandiaceae	Gyrocarpus americanus	Diya labu	Tree	1
Malpighiaceae	Hiptage bengalensis		Liana	1
Moraceae	Ficus molis	Nuga	Tree	1
Sterculiaceae	Sterculis foetida	Thelabu	Tree	1
Tiliaceae	Grewia damini	Damaniya	Tree	1
Apocynaceae	Ochrosia oppositifolia	Gonna	Tree	0.7
Meliaceae	Cipadessa baccifera	Halbembiya	Shrub	0.7
Rhamnaceae	Glycosmis pentaphyla	Dodan pana	Shrub	0.7
Sapindaceae	Schleichera oleosa	Kone	Tree	0.7
Verbenaceae	Vitex altissima	Milla	Tree	0.7
Euphorbiaceae	Bridelia retusa	Ketakela	Tree	0.3
Fabaceae	Cassia spectabilis	Kahakona	Tree	0.3
Flacourtiaceae	Hydnocarpus venenata*	Makulu	Tree	0.3
Loganiaceae	Strychnos potatorum	Ingini	Tree	0.3
Loganiaceae	Strychnos wallichiana	Wal beli	Tree	0.3
Meliaceae	Chukrasia tabularis	Hik	Tree	0.3
Meliaceae	Melia azedarach	Lunumidella	Tree	0.3
Rubiaceae	Canthium coramandalicum	Kara	Shrub	0.3
Ulmaceae	Trema orientalis	Gadumba	Tree	0.3
Verbinaceae	Premna tomentosa	Seru	Tree	0.3

Figure 5-5 Paddy Fields at Kokombagana (in fallow stage)

Figure 5-6 Abandoned Chena Lands at Kohobagana

Table 5-6 Summary of the Faunal Recorded at Kohombagana Site.

Faunal Group	No. of Families	No. of Species	No. of Endemic Species
Butterflies	05	29	01
Amphibians	01	01	00
Reptiles	06	11	01
Birds	28	48	03
Mammals	08	13	01
Land Snails	02	02	00

5.4 Dumping Site 04: Serge Chamber

Compared to all the sites surveyed, this site is very small in extent. The area has been used for some temporary buildings during the Victoria project. Since the original vegetation in the site has been cleared previously, the area is at presently colonized by the number of shrub and herb species. Invasive shrub *Lantana camara* occupies most of the landscape in the site (**Table 5-7**). *Leucaena leucocephala* is the dominant tree species in the area (**Figure 5-7**). On the slopes facing the Randenigala road, some recent encroachments could be seen (**Figure 5-8**). A single family is living in this area. This family has to be evacuated and resettled before dumping the tunnel waste to the site.

Faunal diversity is comparatively low in this site (**Table 5-8**). Lack of ground cover and open tracts of land has made this site a less preferable for species such as amphibians and mammals. Due to the availability of food plants such as *Lantana camara* considerable number of butterflies and birds has been observed in the site.

Table 5-7
List of Plant Species Recorded from the Proposed Dumping Site 4 near Surge Chamber

Family	Species	Common name	Life form	Relative density (%)
Verbenaceae	Lantana camara	Gandapana	Shrub	28.8
Fabaceae	Leucaena leucocephala	Ipil ipil	Tree	19.5
Streculaceae	Melochia nodiflora		Herb	13.3
Melastomataceae	Phyllanthus polyphyllus	Kuretiya	Shrub	8.6
Boraginaceae	Heliotropium indicum		Shrub	7.8
Moraceae	Streblus asper	Nithul	Shrub	7.0
Solanaceae	Solanum seaforthianum		Liana	6.3
Rutaceae	Toddalia asiatica	Kudumiris	Liana	5.5
Apocynaceae	Allamanda cathartica	Wal rukaththana	Liana	4.7
Euphorbiaceae	Ricinus communis	Endaru	Tree	3.9
Convolvulaceae	Argyreia populifolia*	Girithilla	Liana	3.9
Astaraceae	Vernonia zeylanica		Liana	3.9
Euphorbiaceae	Flueggea leucopyrus	Katupila	Shrub	3.1
Meliaceae	Azadirachta indica	Kohomba	Tree	2.3
Amaranthaceae	Aerva javanica	Polpala	Herb	1.6
Menispermaceae	Pachygone ovata		Liana	1.6
Loganiaceae	Strychnos potatorum	Ingini	Tree	1.6
Verbinaceae	Premna tomentosa	Seru	Tree	0.8
Sterculiaceae	Pterospermum suberifolium	Welan	Tree	0.8
Rubiaceae	Nauclea orientalis		Shrub	0.8
Rhamnaceae	Ziziphus lucida*	Eraminiya	Liana	0.8
Moraceae	Ficus racemosa	Attikka	Tree	0.8
Moraceae	Artocarpus heterophyllus	Kos	Tree	0.8
Moraceae	Ficus hispida	Kotadimbula	Tree	0.8

Figure 5-7 Scrub Vegetation near Serge Chamber

Figure 5-8 Encroachment on the slopes near Serge chamber

Table 5-8 Summary of the Faunal Recorded near Surge Chamber

Faunal Group	No. of Families	No. of Species	No. of Endemic Species
Butterflies	05	25	01
Reptiles	05	07	00
Birds	24	37	03
Mammals	06	08	01

5.5 Dumping Site 05: Additional Intake

This has been a tunnel waste dumping site during the Victoria project. Vegetation in the area is sparse, and mainly dominated by shrub species and some pioneer tree species such as *Grewia damini* (**Figure 5-9** & **Figure 5-10**). Tree species diversity is low in the site and only nine species of trees were recorded during the survey (**Table 5-9**).

The site is frequently visited by the large herbivores such as elephant and the sambar to feed on the grasses and herbs growing tin the open patches. Lack of thick vegetation cover in the site has made it less favorable for faunal groups such as butterflies, amphibians, and birds (**Table 5-10**).

Table 5-9
List of Plant Species Recorded from the Proposed Dumping Site 5 near Additional Intake

Family	Species	Common name	Life form	Relative density (%)
Tiliaceae	Grewia damini	Damaniya	Tree	18.5
Apocynaceae	Alstonia scholaris	Rukaththana	Tree	14.8
Melastomataceae	Phyllanthus polyphyllus	Kuretiya	Shrub	14.8
Moraceae	Streblus asper	Nithul	Shrub	14.8
Rutaceae	Chloroxylon swietenia	Burutha	Tree	7.4
Ulmaceae	Trema orientalis	Gadumba	Tree	7.4
Asclepiadaceae	Calotropis gigantia	Wara	Shrub	3.7
Meliaceae	Chukrasia tabularis	Hik	Tree	3.7

Family	Species	Common name	Life form	Relative density (%)
Moraceae	Ficus racemosa	Attikka	Tree	3.7
Rubiaceae	Haldina cordifolia	Kolon	Tree	3.7
Sapindaceae	Sapindua trifoliata	Kahapenela	Tree	3.7
Sapotaceae	Madhuka longifolia	Mee	Tree	3.7

Figure 5-9 Additional Intake site

Figure 5-10 Sparse Vegetation near Additional Intake Site

Table 5-10 Summary of the Faunal Recorded near Additional Intake

	<u> </u>		
Faunal Group	No. of Families	No. of Species	No. of Endemic Species
Butterflies	05	22	01
Amphibians	01	01	00
Reptiles	05	06	00
Birds	18	23	02
Mammals	08	11	01
Land Snails	01	01	01

5.6 Dumping Site 06: Quarry Site

Very little plant growth was observed inside the quarry as it has no soil substratum so support the growth plants. A part of the floor is filled with water (**Figure 5-11** & **Figure 5-12**). In this site the vegetation bordering the quarry was surveyed. In the site herbs, shrubs and lianas are more abundant than the tree species (**Table 5-11**). Faunal diversity is very poor at the quarry. The site does not provide suitable habitat for animals groups such as butterflies, mammals and birds. Mammal diversity is extremely low in the site (**Table 5-12**).

Table 5-11
List of Plant Species Recorded from the Proposed Dumping Site 6-old Quarry Site

Family	Species	Common name	Life form	Abundance*
Anacardiaceae	Mangifera indica	Amba	Tree	+
Apocynaceae	Alstonia scholaris	Rukaththana	Tree	+
Apocynaceae	Alstonia macrophylla	Hawarinuga	Tree	+
Asclepiadaceae	Calotropis gigantia	Wara	Shrub	+
Astaraceae	Vernonia zeylanica		Liana	+
Astaraceae	Eupatorium odoratum	Podisinno	Shrub	++
Astaraceae	Tithonia diversifolia	Wal sooriyakantha	Shrub	+
Astaraceae	Gynuralycopersicifolia	Holanthala	Herb	+
Combretaceae	Terminalia arjuna	Kumbuk	Tree	+
Combretaceae	Terminalia bellirica	Bulu	Tree	+
Convolvulaceae	Argyreia populifolia*	Girithilla	Liana	+++
Dichapetalaceae	Dichapetalum gelonioides	Balunakuta	Shrub	+++
Euphorbiaceae	Flueggea leucopyrus	Katupila	Shrub	+
Fabaceae	Acacia caesia	Hinguru wel	Liana	+
Fabaceae	Cassia spectabilis	Kahakona	Tree	+
Fabaceae	Clitoria laurifolia	Adanahiriya	Herb	+
Lamiaceae	Ocimum tenuiflorum	Maduruthala	Herb	+
Melastomataceae	Phyllanthus polyphyllus	Kuretiya	Shrub	+
Meliaceae	Melia azedarach	Lunumidella	Tree	+
Meliaceae	Cipadessa baccifera	Halbembiya	Shrub	+
Moraceae	Streblus asper	Nithul	Shrub	+
Myrtaceae	Syzygium caryophyllatum	Dan	Tree	+
Poaceae	Panicum maximum	Gini thana	Grass	++++
Rhamnaceae	Ziziphus lucida*	Eraminiya	Liana	+
Rutaceae	Toddalia asiatica	Kudumiris	Liana	+
Santalaceae	Santalum album	Sudu hadun	Tree	+
Sapindaceae	Schleichera oleosa	Kone	Tree	+
Sterculiaceae	Helicteres isora	Lihiniya	Tree	+
Sterculiaceae	Pterospermum suberifolium	Welan	Tree	+
Tiliaceae	Grewia damini	Damaniya	Tree	+
Verbenaceae	Lantana camara	Gandapana	Shrub	+++

^{*}Abundance: + Present (< 25%), ++ (25 -50%), +++ (50 -70%), +++ (>75%)

Figure 5-11 Dumping Site 06 – Quarry

Figure 5-12 Dumping Site 06 – Quarry

Table 5-12 Summary of the Faunal Recorded at the Quarry

Faunal Group	No. of Families	No. of Species	No. of Endemic Species
Butterflies	05	22	00
Amphibians	01	01	00
Reptiles	05	06	00
Birds	17	21	00
Mammals	02	02	00

5.7 Dumping Site 07: Shooting Gallery

The site has been used for various activities during the Victoria project and hence devoid of vegetation (**Figure 5-13**). Fast growing species such as *Leucaena leucocephala* and *Cassia spectabilis* has established well in the area bordering the site (**Table 5-13**).

Few remaining buildings near the site are presently occupied by the Sri Lanka army personnel.

Proposed site for tunnel waste dumping is at present used by the army as a "shooting practice area" for the new recruits and is under the control of the army. Therefore, permission has to be obtained from the Sri Lanka army to use this area for tunnel waste dumping.

This site is poorly colonized by animals (**Table 5-14**). The site is continuously being cleared and used by the army and hence the heavy disturbance has made this a least favorable site for many animal groups.

Table 5-13
List of Plant Species Recorded from the Proposed Dumping Site 7- Shooting Gallery

Family	Species	Common name	Life form	Abundance
Anacardiaceae	Mangifera indica	Amba	Tree	+
Astaraceae	Eupatorium odoratum	Podisinno	Shrub	+
Fabaceae	Gliricidia sepium	Ginisiriya	Tree	+
Fabaceae	Leucaena leucocephala	Ipil ipil	Tree	+++
Fabaceae	Cassia spectabilis	Kahakona	Tree	++
Moraceae	Ficus racemosa	Attikka	Tree	+
Moraceae	Artocarpus heterophyllus	Kos	Tree	+
Moraceae	Ficus relegeosa	Во	Tree	+
Myrtaceae	Eucaliptus Grandis	Eucalyptus	Tree	+
Sterculiaceae	Pterospermum suberifolium	Welan	Tree	+++
Poaceae	Panicum maximum	Gini thana	Grass	++++
Tiliaceae	Muntingia calabura	Jam	Tree	+

^{*}Abundance: + Present (< 25%), ++ (25 -50%), +++ (50 -70%), +++ (>75%)

Table 5-14 Summary of the Faunal Recorded at the Shooting Gallery

Faunal Group	No. of Families	No. of Species	No. of Endemic Species
Butterflies	05	19	00
Reptiles	04	04	00
Birds	08	10	00
Mammals	05	05	01

Figure 5-13 Bare Ground at Shooting Gallery

Figure 5-14 Vegetation Bordering Shooting Gallery

5.8 Dumping Site 08: Adikarigama

The site is located near the junction bordering the road to Victoria dam. A Garment factory is also located within the close proximity to the site. This site has also been used for some activities during the Victoria project and hence as very little natural vegetation. The site is now colonized by some planted species such as *Nerium oleander* and *Cassia spectabilis* (**Table 5-15**). Information gathered during the survey indicates that this site is reserved for some building construction for CEB in the future. Therefore, CEB has to be consulted before selecting this site for tunnel waste disposing.

Faunal diversity of this site is also very poor (**Table 5-16**). The site is surrounded by households and a garment factory and also has very little ground cover. Thus the site is poorly colonized by ,any animal groups.

Table 5-15 List of Plant Species Recorded from the Proposed Dumping Site at Adikarigama

Family	Species	Common name	Life form	Abundance
Apocynaceae	Alstonia scholaris	Rukaththana	Tree	++
Apocynaceae	Alstonia macrophylla	Hawarinuga	Tree	+
Apocynaceae	Nerium oleander	Kaneru	Tree	+++
Astaraceae	Eupatorium odoratum	Podisinno	Shrub	+
Dichapetalaceae	Dichapetalum gelonioides	Balunakuta	Herb	+
Elaeocarpaceae	Elaeocarpus serratus	Weralu	Tree	+
Euphorbiaceae	Ricinus communis	Endaru	Tree	+
Euphorbiaceae	Bridelia retusa	Ketakela	Tree	+
Euphorbiaceae	Croton laccifer	Keppetiya	Tree	+
Euphorbiaceae	Flueggea leucopyrus	Katupila	Shrub	+
Fabaceae	Gliricidia sepium	Ginisiriya	Tree	+
Fabaceae	Leucaena leucocephala	Ipil ipil	Tree	+
Fabaceae	Cassia spectabilis	Kahakona	Tree	+++
Fabaceae	Bauhinia racemosa	Maila	Tree	+
Fabaceae	Tamarindus indica	Siyabala	Tree	+

Family	Species	Common name	Life form	Abundance
Hernandiaceae	Gyrocarpus americanus	Diya labu	Tree	+
Melastomataceae	Memecylon rostratum*	Kuretiya	Shrub	+
Meliaceae	Azadirachta indica	Kohomba	Tree	+
Meliaceae	Melia azedarach	Lunumidella	Tree	+
Moraceae	Ficus racemosa	Attikka	Tree	+
Moraceae	Artocarpus heterophyllus	Kos	Tree	+
Moraceae	Ficus relegeosa	Bo	Tree	+
Moringaceae	Moringa oleifera	Murunga	Tree	+
Poaceae	Panicum maximum	Gini thana	Grass	+
Rhamnaceae	Ziziphus lucida*	Eraminiya	Liana	+
Rutaceae	Chloroxylon swietenia	Burutha	Tree	+
Verbenaceae	Lantana camara	Gandapana	Shrub	++
Santalaceae	Santalum album	Sudu hadun	Tree	+

Figure 5-15 Adikarigama Site

Table 5-16 Summary of the Faunal Recorded at Adikarigama Site

Faunal Group	No. of Families	No. of Species	No. of Endemic Species
Butterflies	05	24	00
Amphibians	01	01	00
Reptiles	06	09	00
Birds	15	19	01
Mammals	05	08	01

Recommendations

Looking at the present ecological statues of the sites examined four sites namely Power Station, Hakuruthale, Additional Intake, and Quarry are highly suitable for tunnel waste dumping. Site near the surge chamber could also be used if the encroachment is removed from the vicinity (Here the safety of the villager has to be taken into consideration). Although the "shooting gallery" is a possible candidate, it is now being used by the different stakeholder for a different purpose. This

has to be discussed with the relevant authority (Sri Lanka Army). Kohombagana site will not be suitable for the purpose as this will involve relocation, resettlement and payment of compensation to the displaced families. Wildlife Department consent will also have to be obtained to use the site. Adikarigama site will also not be suitable as this is located in the centre of commercial area. Further, CEB has made plans to use this site in the future to construct some buildings.

5.9 Proposed Sand Mining Site at Maha Oya, Adikarigama

This report provides an ecological analysis of the proposed sand mining site at Maha Oya, Adikarigama.

The proposed sand mining site is the exposed bed of Maha Oya (river), before it reaches the Victoria reservoir (**Figure 5-16** & **Figure 5-17**). The extent of the exposed sand deposit is about 24 haters and extend from the Maha Oya bridge (culvert No 4/3) on the Kandy – Randenigala road to the Victoria reservoir. When the Victoria reservoir is filled to the capacity, the area concerned will be submerged completely. Ecologically this is a temporary habitat which is formed between the high and low water levels of the Victoria reservoir.

Since this is a temporary habitat the site is colonized by some herb and liana species only. No large tree species were recorded from the site (**Table 5-17**). At preset about 90% of the site is covered by the invasive (problem) shrub species namely Mimosa pigra (**Figure 5-18**). Beneath the ground vegetation cover a thick layer of sand could be seen (**Figure 5-19**).

Table 5-17 List of Plant Species Recorded from the Proposed Sand Mining Site

Family	Species	Common name	Life form
Amaranthaceae	Amaranthus spinosus	Katu keera	Herb
Boraginaceae	Heliotropium indicum	Eth honda	Herb
Convolvulaceae	Cuscuta chinensis	Agamula nathi wal	Liana
Fabaceae	Mimosa pigra	Yoda nidikumba	Shrub
Fabaceae	Cassia auriculata	Ranawara	Liana
Malpighiaceae	Hiptage bengalensis	Puwakgediya wel	Liana
Malvaceae	Hibiscus lobatus		Herb
Onagaraceae	Ludwigia hyssopifolia	Diyanilla	Herb
Papaveraceae	Argemone mexicana		Herb
Passifloraceae	Passiflora feotida		Liana
Sapindaceae	Cardiospermum halicacabum	Walpenela	Liana

Figure 5-16 Map of Proposed Sand Mining Area

Figure 5-17 Exposed River Bed

Figure 5-18 Memosa Covered dry River Bed

Figure 5-19 Exposed Sand Layer of the Dry River Bed

Faunal diversity of this area is also very low (**Table 5-18**). During the dry period the exposed river bed provide a grazing ground for domestic livestock, especially the cattle and buffaloes. The other faunal groups occupying the areas are opportunistic species such as small mammals and some birds. The invasive plant Mimosa pigra (flowers) attract some butterflies to the area. Human disturbance to the area is very high. During some dry periods the villagers in surrounding areas use this site for vegetable cultivation.

Activities such as sand mining in this area are banded by the Mahaweli Authority. Permission has to be obtained from the Mahaweli Authority to do the sand mining in this area.

Table 5-18 Summary of the Faunal Richness in the area.

Faunal Group	No. of Families	No. of Species	No. of Endemic Species
Butterflies	05	24	00
Fish	02	02	00
Amphibians	02	02	01
Reptiles	03	03	00
Birds	16	20	01
Mammals	04	04	00

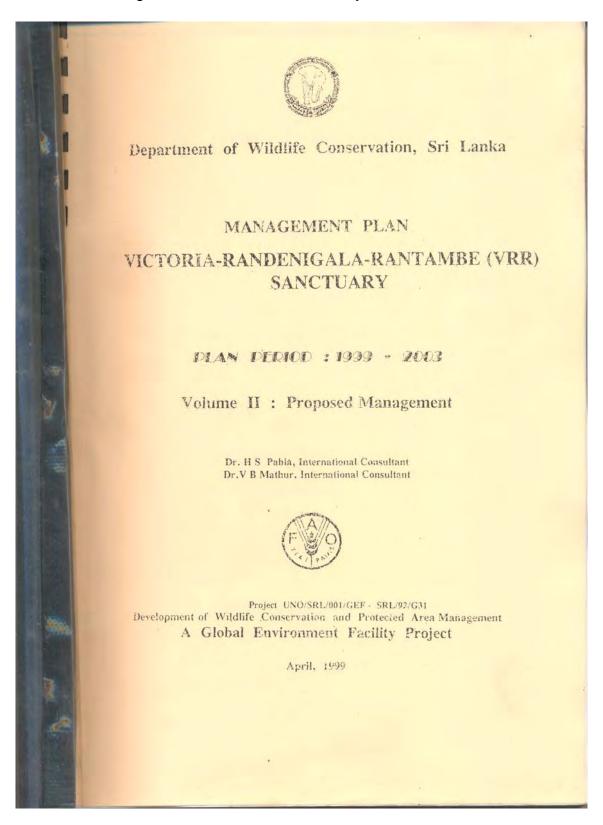
Appendix 1. Fauna Recorded at the Proposed Sand Mining Site

	Family	Scientific name	Common name
Butterflies	Danaidae	Danaus Chrysippus	Plain Tiger
	Danaidae	Danaus genutia	Common Tiger
	Danaidae	Parantica aglea	Glassy Tiger
	Danaidae	Tirumala limniace	Blue Tiger
	Danaidae	Euploea core	Common Indian Crow
	Nymphalidae	junonina iphita	Chocolate Solidier
	Nymphalidae	Neptis hylas	Common Sailer
	Nymphalidae	Phalanta phalantha	Common lepard
	Nymphalidae	Hypolimnas bolina	The great Egg Fly
	Nymphalidae	Euthalia aconthea	The baron
	Nymphalidae	Junonina lemonias	The Lemon Pansy
	Papilionidae	Graphium agamemnon	Tailed Jay
	Papilionidae	Pachliopta aristolochiae	Common Rose
	Papilionidae	Pachliopta hector	Crimson Rose
	Papilionidae	Paoilio polytes	Common Mormon
	Papilionidae	Papilio polymnestor	Blue Mormon
	Papilionidae	Graphium sarpendon	The common blue bottle
	Papilionidae	Papilio demoleus	The Lime butterfly
	Pieridae	Catopsilia Pomona	Lemon Emigrant
	Pieridae	Delias eucharis	Common Jezebel
	Pieridae	Eurema brigitta	Small Grass Yellow
	Pieridae	Eurema hecabe	Common Grass Yellow
	Pieridae	Appias albina	The common albat rose
	Satyridae	Ypthima ceylonica	White Four Ring
Freshwater Fishes	Cyprinidae	Devario malabaricus	Giant Danio
	Cyprinidae	Puntius sarana	Olive barb
Amphibians	Bufonidae	Bufo melonostictus	Common house toad
	Ranidae	Rana temporalis*	Common wood frog
Reptiles	Agamidae	Calotes calote	Green Forest Lizard
	Agamidae	Calotes versicolor	Garden Lizard
	Colubridae	Ahaetulla nasuta	Green Vine Snake

	Family	Scientific name	Common name
Birds	Accipitridae	Spilornis cheela	Crested Serpent Eagle
	Accipitridae	Haliastur indus	Brahminy Kite
	Accipitridae	Ictinaetus malayensis	Black Eagle
	Alaudidae	Alauda gulgula	Oriental Sky Lark
	Alcedinidae	Alcedo atthis	Common Kingfisher
	Alcedinidae	halcyon smyrnensis	White-throated kingfisher
	Bucerotidae	Ocyceros gigalensis*	Sri Lanka Grey Hornbill
	Capitonidae	Megalaima zelanica	Brown-headed Barbet
	Columbidae	Chalcophaps indica	Emerald Dove
	Columbidae	Streptopelia chinensis	Spotted Dove
	Cuculidae	Centropus sinensis	Greater coucal
	Estrildidae	Lonchura malacca	Black headed munia
	Hirundinidae	Hirundo daurica	Red-rumped Swallow
	Irenidae	Aegithina tiphia	Common Iora
	Meropidae	Merops orientalis	Green bee-eater
	Nectariniidae	Nectarinia Zelonica	Purple-rumped Sunbird
	Pycnonotidae	Pycnonotus cafer	Red-vented Bulbul
	Sturnidae	Acridotheres tristis	Common Myna

5.10 Appendix 1. Methodology of Biological Survey

Methodology Used in Sampling Flora and Fauna (biological environment)


Vegetation sampling was done using belt transects. Transects were 50m in length and 5m in width. Transects were always oriented along an altitudinal gradient (ie. up and down the hills). Three transects were sampled in each site. All woody plant species and herbs encountered in transects were identified and counted. Small branch of the species that could not be identified in the field were brought to the laboratory for preservation and later confirmations of identify comparing to the authenticated samples at the National Herbarium, Peradeniya.

Fauna in the habitats were sampled using line transects. In each habitat an experienced observer walked 100m along a predetermined transect line. Amphibians, and reptiles encountered within 2m on each side of transect was identified and counted. Butterflies fling within a distance of 5m on each side of transect line was identified and counted. Birds flying or resting within 20m to each side of the transect line was identified and counted. At least three transect lines were sampled in each habitat

Extents of Sites

Site No. & Name	Extent (Ha)
1. Near power station	1.8
2. Hakuruthale	2.4
3. Kohombagana	30.4
4. Surge chamber	1.2
5. Additional intake	6.5
6. Quarry	2
7. Shooting gallery	2.1
8. Adikarigama	1.9

6. DWLC Management Plan for VRR Sanctuary

SUMMARY

- This management plan covers Victoria-Randenigala-Ramembe (VRR) Sanctuary, area 42,078 ha, lying along the banks of Mahaweli Ganga and spans across three administrative districts, wz. Kandy and Nuwara Eliya in the Central Province and Badulla in the Uva Province of Sri Lanka. The VRR sanctuary is the largest sanctuary of Sri Lanka and was gazetted in 1987. It serves as an immediate catchment for three major hydroelectric reservoirs wz. Victoria, Randenigala and Rantembe constructed under the Accelerated Mahaweli Development Programme. Apart from meeting nearly half of the country's electricity demand these reservoirs provide water for dry zone agriculture.
- The management of the VRR Sanctuary is aimed at achieving the following goals:
 - To conserve the biodiversity of the 'intermediate zone', with special emphasis on the flagship species, the elephant (Elephas maximas).
 - To protect the catchment of the three major hydroelectric reservoirs
 viz. Victoria, Randenigala and Rantembe, constructed under the
 Accelerated Mahaweli Development Programme
 - To promote nature tourism and conservation awareness amongst the various target groups
- Based on the above mentioned goals the following management objectives have been formulated for the VRR Sanetuary
 - To protect the catchments of Victoria. Randenigala and Rantembe multipurpose reservoirs
 - To improve the management of the 'intermediate zone' forests including the endemic plant and animal species.
 - To provide opportunities for conservation-compatible tourism, nature interpretation and conservation education

- To develop appropriate systems, staff structure and associated infrastructure for effective law enforcement, resource protection and inanagement.
- · To mitigate human-elephant conflict (HEC)
- To reduce the natural resource dependencies of the adjoining communities on VRR sanctuary through ecodevelopment measures.
- To promote research, monitoring and training in biodiversity conservation
- A number of problems and other internal and external constraints produce hindrance in the way of achieving the above objectives. A matrix showing the hindrance value of each problem in the achievement of various management objectives of VRR Sanctuary is given in Table 1.

Problems.	Objectives	Hino	Hindrance Score						Hindrance Rank
	J P=3	2 p _m	3 Paz	4 P=2	5 P-2	6 P=2	7 P=2		
Sligtings of staff for production and	3*3	3*3	2*2	2+3	2*2	7+3	2*2	47.	F
minagement	3*3	3+2	2+3	242	2*2	2*1	212	10	2
haloquate funds	3*2	312	2+1	2+2	2+2	2*2	2*2	18.	1
l w daff motivation	3*2	313	2*2	241	2*2	2*2	212	11	4
Task of training		3*3	2*1	212	2*2		2*1	32	1
findequate conservation awareness	3*2	3*3	2.7	211	2*2	2*2	2*0	32.	2
United (edling	3*2	3*2	2*2	2*0	2*3	2*3	2*1	361	B.
lack of co-ordination with other line against			100				2-1	.361	
Other Encroachments	3*2	3.7	2.1	2*3	2.7	2.2	2.0	28	7
limin settlements and dependencies	3+3	3.5	2*1	2*()	2*2	2*3	2*0	27	8
Absence of research/monitoring infrastructure	3*1	3.3	2*1	2*1	2*1	2*1	2*3	26	ý.
These cultivation	3*2	3*2	2+1	2*1	2.2	242	2*0	24	100
Procheng	3*()	3.3	2*2	2*2	3.1	2*2	5.4)	23.	137
Lad of NGO support	3*1	3*2	2*1	2*0	2*2	213	2*0	21	12
Indequacy of protection infrastructure	3*1	3.1	2*1	2*3	3.1	2*1	2*1)	18	13
Hidemarented houndary	3*1	3*2	2.50	2*2	2*0	2*2	2*0	17	14
link of roads	3.1	3+1	212	212	2.0	21	2*0	10-	15
lika Collection of NWFP	2.1	3*2	.2*(1	2*()	2*1	2*2	2*0	15	- (0)
Dustimble Fishing	3*0	341	2*2	2*1	2*()	243	5.0	15	16
Mansmade fires	3*1	372	3.1	2.1	21)	T.0	2.50	15	16
livestock grazing	3.1	4.1	2*	2.1	2.1	2*1	.2*/1	14:	17
Telegro cultivation	3*1	3+1	2*():	2*()	2*1	2*2	2.50	12	18
eral Carnivores	3*0	3*2	2*2	2*1	2*11	2*()	2*11	12	18
plend Annual Cropping	3*1	X.1	2*0	2*()	2*1	2.*1	2*(1	101	10-
Sortinge Drumping.	3*[3.7	2*1	2*1	2*1)	2*()	2*0	10	10
Said Mining	3*0	3.1	211	2*1	2*//	2*1	2*0	4	20
nvasion of Exotic Species	370	342	3.1	2*//	240	2*0	280	9	20
but maintenance of electric fences	3*()	3.11	2*0	2*1	2*3	2*3	2*0	8:	2)
TAC TAC	3*0	3.4(1	2.0	2*0	2*3	2717	.2*().	8	21.
nadequate patture tourism facilities	3*0	3,411	21.7	2*50	7+((2.41	250	10.	31
letterdes	3*()	1.5	2*11	250	2*0	\$40	2*()	1:0	21-
fetal	105	150	70.	62	711	98	20	577	

on a scale of 3, where 3 is the highest priority, followed by 2 (medium) and 1 (low). Similarly, the problems have been assigned "hindrance" value on a scale of 3, where 3 denotes high severity, followed by 2 (medium) and 1 (low). The product of the priority rank of the objective and the hindrance value of the problem, gives the total "hindrance score" of a problem. The problems are ranked on the basis of their hindrance score.

- As per this analysis, the staff shortage and other internal problems of the DWLC rank the highest while purely biological problems rank the lowest. It is, therefore, very clear that unless the DWLC takes steps to strengthen the organization in the field it will be difficult to solve the other problems. The management planaccordingly, proposes strategies and prescriptions in the same order of priority.
 - Considering the goals, objectives, problems and management issues a number of management strategies have been proposed for achieving the objectives. To begin with it is important to review/revise the legal status of VRR sanctuary and its boundaries, the VRR sanctuary was created to protect the immediate catchment of the reservoirs. However, a sanctuary status by itself does not facilitate the protection of the catchment, as there are no legal restrictions on incompatible land uses. As per the FFPO, the rights of the people, which existed before the declaration of the sanctuary, can continue even after the declaration. Although the government has been successful in relocating a large number of families from the sanctuary area, many resettled families are reported to have come back. DWLC is not able to do any thing about this because of the legal problem. The MDA, which initially resettled these people, appears no longer interested in this issue. The remaining human habitations are now concentrated, more or less, along the boundary of the sanctuary. Therefore, if the interior areas of the sanctuary, more or less defined by the core area boundary, are upgraded to the level of a national park, it will give the DWLC much better control on the area and will facilitate multipurpose management. The scenic beauty of the area can be used to promote

nature tourism, while the resettlement programme can be continued under a logal mandate.

The boundaries of the present sanctuary are generally defined by contour lines and imaginary lines joining various trigonometrical points (popularly called trig points) without any reference to the forest boundaries. This has resulted in the unnecessary inclusion of a large number of villages in the sanctuary. Whereas this has unrealistically enlarged the area of the sanctuary, it has also stretched the staff resources. This is clear from the fact that while the notified area of the sanctuary is 420.78 km², the actual area covered by natural vegetation is only 205.24 km². This gives DWLC or MDA no advantage in terms of the protection of forests, wildlife or catchinent. Therefore, it is proposed that the present boundaries of the sanctuary be revised to make them approximately coterminous with the forest boundaries, as far as possible. The revised boundaries will facilitate modern wildlife management, such as the management of wild pig population, proposed in this plan and will also make the PA more compact and manageable. The proposed reorganization of the VRR Sanctuary is shown in Table 2.

Table 2: Proposed Reorganisation of VRR sanctuary

Sr. No.	Name	Forest Area (km²)	Non-Forest Area (km²)	Submerged Area (km²)	Total (km²)	Area
1	Proposed VRR Sanctuary	202.92	5.82	24.06	232.80	
2	Proposed VRR National Park	107-13	3.26	22.70	133 00	
3	Total	310.05	9.08	46,76	365,89	

The reconstituted PA shall consist of a national park as the core and the sanctuary as the buffer zone. Whereas the human habitation in the proposed national park shall have to be relocated, large ecodevelopment inputs are proposed in the remaining villages inside the sanctuary to make their lifestyles and economic practices compatible with natural resource conservation. Although, as a result of the proposed changes in the boundary, there will be a net reduction in the size of

the PA, the extent of the forest area in the sanctuary shall go up by 16.89 km² as shown in Table 3 below. However, there will be a drastic reduction in the non-torest area amounting to 70.71 km². This reorganisation will rationalise the boundaries of the PA and will make it more compact and compatible with the surrounding land-use.

Fable 3: Comparative Area Statement of Existing and Proposed PA: (All areas in kn)

	Forest	Non-Forest	Submerge	Total
	Area	Area	nce Area	Area
Existing PA	293 10	79.79	46.76	419.71
Proposed PA	310.05	9.08	46.76	365.89

- The current structure and strength of the sanctuary administration is not adequate even to perform the low-key functions undertaken at present. To enable a fit cope with a quantum jump in activity and responsibility, proposed in the current plan, a comprehensive restructuring and strengthening is proposed. The major approach in restructuring is to increase the staff strength, provide them the infrastructure and support required performing the difficult tasks expected of them and then making them accountable for well-defined and manageable major in order to make the range and beat organization more effective, it is proposed adopt a "Compartment-based Management Approach" in VRR Sanctuary. This approach envisages the organization of the total geographical area of VRR Sanctuary into small units called "compartments." A compartment is based on administration, description and record. The number of compartments proposed in VRR Sanctuary is 94.
- The proposed reorganization of the ranges and beats is based on the necu to protect the territorial integrity of the area as well as its flora and fauna Scotting considerations we geographical attributes, accessibility, accountability and we

need to efficiently carry out the protection, habitat management, ecodevelopment and other functions envisaged in the plan, have guided the proposed number and location of the range and beat headquarters. The existing ranges and beats were rather remotely located with little basic infrastructure support in terms of electricity, communication, accommodation, roads and vehicles. All this had severe implications on work efficiency and the staff motivation and morale. Moreover, with the range and beat offices located away from the habitations, the interaction and involvement of the sanctuary staff with the local communities was minimal. This plan, therefore, puts forward proposals to ameliorate the above situation. It is proposed to have five territorial ranges and tivelve beats. Table 4 gives the summary of the proposed organisation.

Table 4: Proposed organization of ranges and heats in VRR Sanctuary.

Range	Area (km2)	Beat	Area (km²)
Hasalaka	235.15	Hasalaka	67.03
		Ambagahapalessa	53.83
		Moragahamula	56,56
	1	Dagavilla	57,32
Kandaketiya	184.56	Kandaketiya	41,02
	0110000	Reerthibandarapura	98.44
	-1	Theripalsa	45.10
Total	436.76		419.71

In order to professionally administer the plan it is necessary that the organization and location of sanctuary headquarters be at a place, which is conducive to overall control and coordination. It is proposed that the sanctuary will be managed by a Grade I Ranger, who will be designated as the Sanctuary Warden (SW), who would be under administrative control of the Assistant Director (Central Region). The present VRR headquarters at Ambagahapalessa is also not appropriate to the enhanced role and responsibility of the Sanctuary Warden, as envisaged in this plan. The coordination role of the Sanctuary Warden will be significantly enlarged and he will be required to liase with various individuals and agencies, especially in relation to the ecodevelopment activities. In future, the sanctuary is

going to be managed as a part of the overall development programme of the area rather than m isolation. For this the SW will have to work with a host of stakeholders and other concerned agencies. Therefore, his location has to be at a place where he has easy contact and access to various government agencies. It is therefore proposed to locate the office of the SW at Hasalaka.

The achievement of more than one management objectives in a protected area requires differential treatment to be given to different parts of the habitat. The problems and pressures faced by different areas within the PA may vary and the areas may also have a varied ecological history and may be specifically suitable for the fulfillment of a specific management objective. Thus, the forests on the hills are to some extent, pristine, those in the plains have been subjected to much higher levels of disturbance in history. Many ecologically sensitive springs occar in the hills and need to be handled with extreme care. At the same time many areas mabe required to cater to the various needs of the resource dependent communities. On these considerations, area of VRR Sanctuary is proposed to be divided into two distinct zones (Table 5), each with a specific purpose and enabling management prescriptions.

Table 5 : Proposed Zonation in VRR Sanctuary. All areas in sq km

Zone	Range								
		Ha	salaka	Kandaketiya					
	Forest Area	Non- Forest Area	Submer- gence Area	Total	Forest Area	Non- Forest Area	Submer- gence Area	Tota	
Core	49 44	2.24		51.68	57 12	1.02	22.70	80.8	
Buffer	144.32	39 13		183.45	42.27	37-40	24.06	103.	
Total	193.76	39.13		235.15	99.39	38,42	46.76	184.5	

X

- Although the forest-side communities suffer damage from many species, the 12. discussion on the subject, in Sri Lanka, generally gets confined to the humanelephant conflict (HEC). Although losses due to the elephants are more visible, crop losses due to attacks from wild pig: monkeys, purcupines and many other animals are in no way insignificant. In the case of the VRR sanctuary, while elephant damage has been reported in only 31 villages, leopard depredations have been reported from 44 villages, damage due to wild pig, sambar, deer, porcupine, loque monkey and grey langur has been reported from almost all of the 92 villages surveyed by the Resource Inventory team. During discussions with villagers, crop damage due to wild pig was reported to be much more rampant and serious than that due to elephants. Therefore, the PA management has to find ways of mitigating the difficulties of the people from all aspects, rather than limiting themselves to the solutions of HEC. This plan proposes an innovative wild pig management programme with the following objectives. (a) Management of its population. (b) Development of an efficient and systematic system for the compensation of crop losses, occurring due to animal depredations, (c) Demonstration that wildlife can be managed on the principle of 'sustained yield' (d) Promotion of people's participation and stakes in the conservation of natural resources. The scheme proposed below shall be run on a pilot basis in a few selected villages and shall be expanded and/or modified on the basis of experience.
- To ensure better protection and law enforcement new initiatives have been proposed. These include institutional strengthening, patrolling on foot, by vehicles, elephants and speedboats as appropriate, improving footpath network, establishing radio-communication network and enhancing staff motivation through incentives and other welfare measures.
- The ecodevelopment approach proposed in the plan seeks to achieve the following objectives: (a) check the growth of demand for fuelwood in the adjoining communities, (b) reduce the economic dependencies of the adjoining

villages on the PA and securing the participation of all stakeholders in achieving thuse objectives. The importance of inter-agency co-ordination in ecodevelopment has been emphasized in the plan. Without this being made a very specific prescription, this aspect can be easily ignored because it is one of the most difficult tasks in ecodevelopment. But if pursued seriously, it can make the difference between a successful programme and a sham. The strategies for the achievement of the above objectives have been determined on the basis of their notential effectiveness and sustainability. All the strategies proposed in the plan are based on one fundamental premise-the conservation of natural resources in Sri Lanka, as elsewhere in South Asia, can be done only if it does not adversely affect the lives and livelihoods of the rural communities and that the participation of the local people and other stakeholders is a must for effective conservation. The protected areas are a part of the large local and regional landscape and resourcebase. Their management cannot be done in isolation of the regional development programmes and conservation of these resources must be made a part of the integrated development planning of the region. In conformity with these principles, strategies have been proposed to address the specific issues related to PA-people relations viz. (a) promoting fuel saving technologies-biogas, improved cook stoves and solar cookers. (b) implementing alternative income generation programmes and (c) establishing community-based organizations. A sum of approx. Rs 31 million SLR has been proposed for implementing ecodevelopment strategies

The VRR sanctuary and its immediate environs have the potential to provide a unique visitor experience, which has been termed as "VRR Heritage Experience. The specific objectives of the tourism management in VRR Sanctuary are (a) in develop general facilities for promoting safe tourism in the sanctuary and enhancing the quality of visitor experience, (b) to keep the impact of tourism on the resources of the sanctuary to the minimum and (c) to develop nature interpretation and conservation education facilities in the sanctuary. Considering the tugged nature of terrain and varied ropography along with an enchantuary.

landscape, the thrust of tourism activities in VRR will be towards the development of sites, which are scenic and provide scope for outdoor activities. Nature has already endowed VRR with a number of such scenic sites with cascading waterfalls and perennial water hodies, which are eminently suitable for bird watching, camping and adventure hiking. Many of these sites are already used by people, but these sites are deteriorating because of unregulated use and lack of awareness about their conservation. In order to disperse the tourist pressure, which is likely to grow in the coming years, no single designated tourism zone is being proposed in this plan. Instead tourism activities will be allowed at a number of sites under adequate supervision so that both resource protection and positive wilderness experience to the visitors can be ensured. Development of visitor amenities, minimization of disturbance, enhancing visitor satisfaction, and wilderness experience through better information and interpretation would be the major thrust of management of tourism in VRR.

The Wildlife Trust of Sri Lanka has been very actively involved in carrying out a 15. range of nature tourism and interpretation activities in VRR sanctuary for a long time It manages a comprehensive infrastructure at Randenigala, which is the hub of their activity. It is, therefore, proposed that DWLC and the Wildlife Trust should work in close collaboration in planning, development and management of all tourism, interpretation and conservation education activities in VRR sanctuary In order to formalize the relationship a Memorandum of Understanding (MoU) between the DWLC and the Wildlife Trust will be signed which should cover the broad range and scope of activities and also their specific details. Mechanism for sharing of revenue generated by these activities will also need to be worked out IT the Wildlife Trust agrees to fund the tourism/interpretation infrastructure development then it should keep the entire revenue generated during the first five years in order to recover its investments. This arrangement should then bereviewed and an appropriate revenue sharing mechanism should be worked out Development of visitor amenities, minimization of disturbance, enhancing visitor satisfaction and wilderness experience through better information and interpretation would be the major thrust of management of tourism in VRR Sanctuary

Research, Monitoring and Training provide sound foundation to the scientific management of Protected Areas (PAs). Due to a variety of reasons these activities have not been given the due consideration they deserve. The focus of research activities will therefore be to generate basic information on flora, fauna, and the attendant human aspects, which will enable the PA managers to address the critical management issues. Broadly, the information that needs to be generated through research belongs to the following two categories. (i) Ecological and (ii) PA-People Interaction. Considering the present limited capability of the DWLC for carrying out field research in the PAs it is proposed that the system of contractual research as already in vogue in the GEF project should be continued Universities, research organizations, NGOs and individuals should be encouraged to take up field research on mutually agreed terms and conditions. It is also proposed to recruit a Research Coordinator on a contract basis to organize and coordinate the research and monitoring activities in VRR Sanctuary. A scheme fimonitoring of wildlife populations through "Daily Observation Diary" and "Transect Walk" has been proposed to generate information on population dynamics. Field managers and staff should constantly upgrade their knowledge and skills in order to enable and empower themselves to efficiently discharge then duties. Apart from the formal basic training, which is essential for all staff to. laying the foundation, the field staff has also to be provided opportunities for "on the job" and 'in service' training. It is equally important to learn from the field experiences of PA managers in areas with similar management issues through visus and study tours. Participation in training workshops and specialized courseis a standard means for acquiring professional knowledge and skills. There is a need to adopt the "Competency-based" training approach in which the performance criteria, the acceptable range, underpinning knowledge and understanding are developed in a participatory manner to increase the efficacy of training.

- 18 Corridors are the habitat parches linking two or more Protected Areas (PAs). The corridors are considered extremely important for the long-term survival of those animal populations e.g. elephants in Sri Lanka which (i) are pocketed in areas legally designated as PAs and/or adjoining non-PA areas, (ii) have small population size and (iii) need large areas to fulfill their seasonal habitat requirements. The prescriptions for management of the VRR-WNP-Maduru Oya corridor have been provided in the plan.
- A system of boundary demarcation and maintenance has been proposed in the plan. Development of infrastructure viz Footpaths, trails, barriers, vehicles, equipment, radio communication network and buildings has been proposed in a planned way. A realistic need-based assessment of additional staff requirement has been made and following staff positions-9 Range Assistants, 10 Wildlife Guards and 31 personnel in the office staff, mahouts and labour category are required to implement the management plan.
- It is emphasized that this is the first management plan of the area. Hitherto, the management has been adhoc and there are no traditions of implementing sound wildlife management practices. Further, many of the prescriptions contained in this plan e.g. institutional strengthening, rationalization of the boundaries, subsidized power fencing, subsidized crop insurance will be difficult to implement without the DWLC creating a proper policy framework to facilitate the job of the PA managers.
- 2) No plan can be prefect because all plans are based partly on facts and partly on assumptions. There is always an inherent uncertainty about the biological processes and marked complexity about the socio-economic processes. Therefore, the strategies prescribed in the plan have to carefully implemented and closely monitored. If any mid-course correction is required it should be promptly.

discussed and implemented. A flexible approach in the implementation of this plan is strongly recommended.

22. The overall implementation of the Management Plan for the 5-year period has been estimated at Rs.183 million or US \$ 2.65million Conversion Rate 1 US \$=SLR 09

XVI

PART II PROPOSED MANAGEMENT

Chapter Five MANAGEMENT GOALS AND OBJECTIVES

5.1 Introduction

Victoria-Randenigala-Rantembe (VRR) sanctuary, area 42,078 ha, lies along the banks of Mahaweli Ganga and spans across three administrative districts, viz. Kandy and Nuwara Eliva in the Central Province and Badulla in the Uva Province of Sri Lanka. The VRR sanctuary is the largest sanctuary of Sri Lanka and was gazetted in 1987. It serves as an immediate catchinem for three major hydroelectric reservoirs viz. Victoria, Randenigala and Rantembe constructed under the Accelerated Mahaweli Development Programme. Apart from meeting nearly half of the country's electricity demand these reservoirs provide water for dry zone agriculture.

The VRR region falls within the intermediate climatic zones of the country. Biogeographical classifications identify VRR sanctuary as part of the intermediate zone tropical semi-evergreen forests. A wide range of vegetation types ranging from mature climax vegetation types, comprising (i) sub-montane forests, (ii) semi-evergreen forests, (iii) riverine forests, (iv) bamboo forests and (v) rock-outcrop forests, the late successional vegetation represented by (vii) scrub forests and (viii) savannas; and the early successional vegetation represented by (viii) homegardens, (ix) abandoned homegardens, (x) chenchands, (xi) abandoned chenalands, (xii) grasslands and (xiii) Lencour stands are found in VRR sanctuary. The VRR forests harbour 76 endemic plant

species of which 31, 18 and 11 are found in the semi-evergreen forests, riverine forests and sub-montane forests, respectively.

The VRR sanctuary harbours an extremely rich fauna. It ranges from the megaherbivore species elephant and the relict hump-nosed lizard to many species of endangered butterflies. The vertebrate fauna include an (six endemic) freshwater fish, 10 (eight endemic) amphibian, 35 (eight endemic) reptilian, 153 (twelve endemic) bird and 29 (one endemic) mammalian species, making a total of 267 species of vertebrates, of which 35 species are endemic to Sri Lanka. This is approximately 40% of the total inland vertebrate species and 20% of the endemic vertebrate species found in Sri Lanka. The invertebrate fauna includes 71 species (three endemic) of butterflies. 41 species (thirty one endemic) of freshwater and terrestrial mollusks and many species of spiders, beetles and fermites as well.

Presently, approximately 96,000 people live within the sanctuary. The sanctuary is surrounded by 122 Grama Niladhari Divisions all along its periphery and about 113,000 people live in close proximity to the sanctuary boundary. The major non-forest landuse types in the sanctuary include chemi cultivation, home gardens, paddy cultivation and tabacco farming.

The VRR sanctuary on account of its splendid landscape, diverse flora and fauna, historical sites, central location and easy access attracts nearly 600,000 visitors (mostly local), although the visitor amenities are virtually non-existent. The area has a great potential for ecotourism/nature tourism, which is quite popular among foreign as well as local tourists.

These considerations have formed the basis for determining the management goals and objectives of VRR sanctuary.

Ī		
	5,2	Goals
		The management of VRR sanctuary is aimed at achieving the
		following goals.
	5.2.1	To conserve the biodiversity of the 'intermediate zone', with special emphasis on the flagship species, the elephant (Elephas maximas).
	5.2.2	To protect the catchment of the three major hydroelectric reservoirs
		ive. Victoria, Randemgala and Rantembe, constructed under the
		Accelerated Mahaweli Development Programme
	5.2.3	To promote nature tourism and conservation awareness amongst the
		various target groups.
	5,3	Objectives
		The management objectives for VRR sanctuary are defined as follows
	531	To protect the catchments of Victoria, Randenigala and Rantembe
		multipurpose reservoirs.
	5.3.2	To improve the management of the 'intermediate zone' forests including
		the endemic plant and animal species
	533	To provide opportunities for conservation-compatible tourism, nature
		interpretation and conservation education
	53.4	To develop appropriate systems, staff structure and associated infrastructure for effective law enforcement, resource protection and management
	535	To mitigate human-elephant conflict (HEC)
	5 3.6	To reduce the natural resource dependencies of the adjoining
	150	communities on VRR sanctuary through ecodevelopment measures
	5.3.7	To promote research, monitoring and training in biodiversity conservation.
		3

5.4 Rationale for Management Objectives

The raison d'être of the VRR sanctuary was to conserve and protect the immediate catchment and prevent siltation of the three multipurpose reservoirs. The catchment area has a steep topography and is extensively cultivated, both of which pose a severe siltation threat to the reservoirs. Due to the geographic location of VRR sanctuary in the intermediate zone it harbours a diverse range of flora and fauna, many of which are endemic to Sri Lanka. The rare geomorphological formations inside the VRR sanctuary, which have unique assemblages of species, need to be preserved. Tourism is a very important economic activity in the country and is a major source of foreign exchange carning. By virtue of its central location and unique landscape the VRR sanctuary attracts large numbers of local visitors. The rugged terrain and the accompanying waterfalls alongwith other waterhodies provide high potential for developing nature tourism especially the adventure tourism. Therefore, providing opportunities for tourism, interpretation and conservation education will be an important management activity under this plan Despite the ecological significance and tourism potential of the area, the existing field organization for the management of the area is rather weak and ineffective. Therefore, this plan seeks to strengthen the field organization. The natural resource dependencies of the people living around the VRR sanctuary, result in conflict between the management agencies and them, especially under the strengthence protection regime. It is, therefore, imperative for the management in look for approaches that take into account the needs and aspirations of the local communities and also seek their support and participation to management. The extensive agricultural development both inside and on fringes of the sanctuary increases the intensity of human-elephan. conflict on one hand and also threatens the reservoir life, due increased siltation rates. The mitigation of the human-elephant confliis an important consideration for PA management. Supporting research monitoring and training is an integral part of the management of PAs The location of the sanctuary near the educational centres at Kanprovides unique opportunities for conducting biodiversity research monitoring and training activities

7. Cost Benefit Analysis

7.1 Appendix 1: Reduction of Energy during Constructions

The downstream option and pumped storage option require drawdown of the Randenigala reservoir water level during the construction of the outlet structure. To confirm the impact of the drawdown during the construction stage, the water balance simulation is carried out by using the inflow and downstream demand obtained in the feasibility study. The model of the water balance study is developed by the network river basin simulation software package "MODSIM". The model structure is shown in **Figure 7-1**.

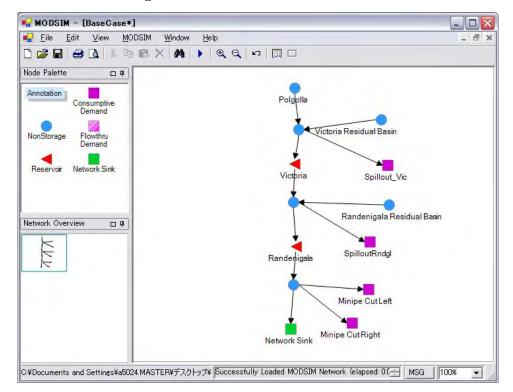


Figure 7-1 Water Balance Simulation Model

The data used in this water balance are:

Inflow : Monthly Inflow discharge data at Polgolla diversion given by MASL.

Residual Basin Inflow: Inflow is calculated in proportion to river basin area.

Demand : Monthly demand quantity of "Minipe Cut Left Bank" and "Minipe Right

Bank" given by MASL.

Spill out : Spill out discharge is the water quantity not used for hydropower

generation.

The operation of the Victoria and Randenigala reservoirs and hydropower stations is envisaged as shown in **Table 7-1**.

¹ Labadie, J.W., (2005) "MODSIM: River Basin Management Decision Support System," Chapter 23 in Watershed Models, V. Singh and D. Frevert, eds., CRC Press Boca Raton, Florida.

Table 7-1 Operation Rule during Construction

	Basic Option	Downstream option	Pumped Storage Option
Victoria	Normal	Hydropower generation considering with irrigation demand	Hydropower generation considering with irrigation demand
Randenigala	Normal	Lowering WL to 209 Generating like run-of-river type	Lowering to 207 mASL. No hydropower generation.

In the simulation of the above water balance, the Randenigala reservoir water level is lowered to the sill elevation as described before. Following **Table 7-2** shows the reduction of the energy by the Victoria and the Randenigala hydropower stations combined.

Table 7-2 Reduction of Energy during Construction

Item Unit		Basic option	Downstream Option	Pumped Storage Option
Reduction of Annual Energy	GWh/year	0	108	349
Duration of drawdown	year	0	1	1.5
Total reduction of energy	GWh	0	108	524

As shown in the above table, annual energy of the downstream option will be decreased of 108 GWh, and that of the pumped storage option will be decreased by 524 GWh during construction.

7.2 Appendix 2: Road Repairing Costs (RDA estimates)

MS1-005B Patching pot holes of medium, depth of 20-75mm with premix material (site made) using cut back bitumen 10% - 20% @ rate of 83.5 ltr per cu.m of 19 mm and down gauge stone aggregate, including pr. surf - part 2 of the item MS-005

Analysis for 9.29 Sq.m

No	Item Description	Item Ref	Unit	Quantity	Rate	Amount	
1	Patching Pothole including	Н					
	Tack Coat						
1.01	Labour Semi Skilled (S/SK)	B0-003	Day	1	516.84	516.84	
1.02	Labour Unskilled (U/SK)	B0-004	Day	1	474.29	474.29	
1.03	Allow 2.5% of Items	A			24.78	24.78	
	(1.01, 1.02) for Tools						
1.04	Emulsion -C.S.S.1	B0-352	litre	6.97	26.1	181.92	
	(Excluding transp.)						
		Total for	9.29	Sq.m		1,197.83	
		Rate for	1	Sq.m		128.94	
		Rate (Say)				903.35	

8. Answers for Annex I of TOR/EIA

8.1

Requirement of TOR

The MASL must have a reasonable water policy to avoid any shortage of D/S irrigation releases for System B and C if the pump- turbine alternatives are implemented. This alternative must be accompanied with the Regulatory reservoir incorporating the pump intake that also serves as the tailrace for the turbine, to avoid possible restrictions of using the active storage of the Randenigala reservoir should have a capacity of approximately 1-2 MCM being the daily peak volume pump back. The minimum operating level of the regulatory reservoir must match the pump intake level.

Further, diversion of the 150-200 MCM off the Mahaweli Basin with the Implementation of the Uma Oya project and the expansion of the Maduru Oya RB are also to be considered.

However, presently about 1200- 1500 MC is being released through Victoria and 2000-2500 MCM passed via Randenigala-Rantambe complex annually. The water rights should be retained with the MASL giving priority to irrigation issues.

Measures by PP

As mentioned in 2.1.5 of EIA Report, the basic option was selected as the most preferable plan for the proposed expansion project. Therefore, the pumped storage option will not be implemented. Hence, this requirement is not relevant to the proposed project.

8.2

Requirement of TOR

Lowering the proposed turbine axis by 5-10 meters with respect to the existing turbine is to be considered. Such a lowering of the proposed turbine axis would not be interfere with the back water of the Randenigala reservoir as it virtually operates far below the FSL for most month of the year.

Measures by PP

The feasibility study team (Study Team) conducted a comparative study on Layout A and Layout B in the downstream option as described during the initial stage of the Comparison Study on the three alternative options.

8.2.1 Layout A;

To avoid any open-air structures located on landslide deposits area, an open-air powerhouse and outlet are installed downstream of the landslide area. The Layout A has longer tunnel length than the Layout B mentioned below.

It is noted that any open-air type structure could not be installed upstream of the landslide deposits area, because there are small valleys on which do not deems suitable to install open-air structures.

8.2.2 Layout B;

Turbine center elevation is EL. 218 m which is 10 m lower than that of the existing facilities to prevent the Randenigla reservoir water level from being lowered during construction of the outlet structure. A powerhouse is of underground type to avoid the adverse geological condition, but the outlet is located in the landslide area and its sill elevation is EL. 220 m.

It noted that Layout B corresponds to the layout required in Annex I of TOR.

The general plan and profile of "Layout A" and "Layout B" are shown in **Figure 8-1** and **Figure 8-2**, respectively.

The number of generation units is considered as three, and the maximum discharge for generation is 140 m³/s for both layouts in this comparative study.

In order to confine the internal pressure of the water conveyance tunnel, it is required to have enough rock cover above the tunnel roof. For determining alignment of the headrace tunnel, the tunnel alignment is laid on where ground surface elevation is EL. 450 m or higher on the topographic map.

The tunnel length of each layout is shown in **Table 8-1**;

Table 8-1 Tunnel Length of Layout A and B

Layout A	Layout B
9.1 km	7.0 km

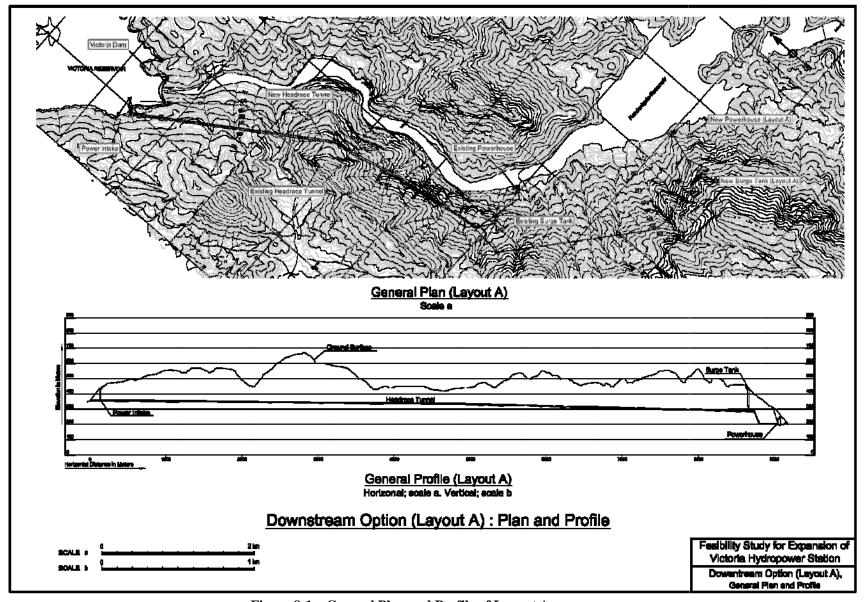


Figure 8-1 General Plan and Profile of Layout A

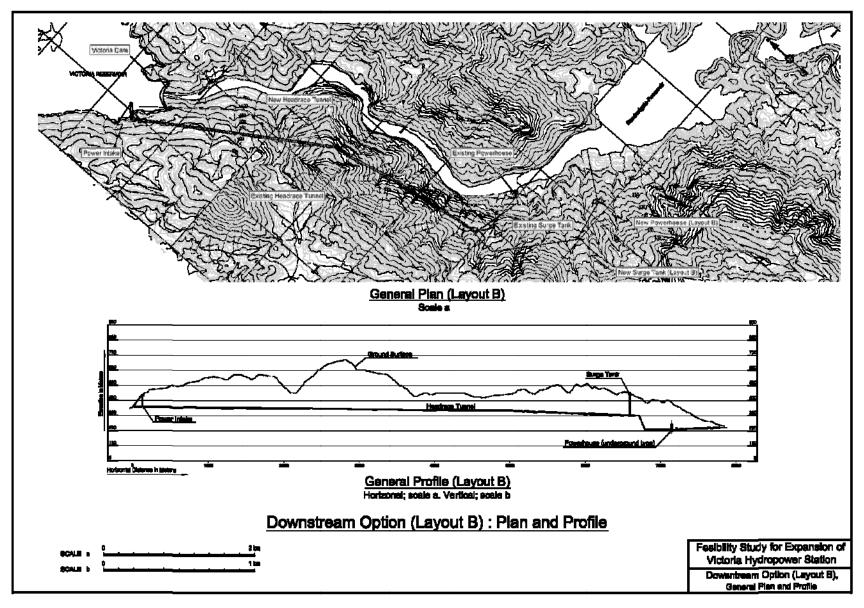


Figure 8-2 General Plan and Profile of Layout B

After that, annual energy and construction cost for both layouts were calculated in the same way mentioned in 2.1.3 of EIA Report. Details of the comparative study are attached in 9.1 of ANNEX VI of EIA Report.

The ratio of the benefit to the cost for "Layout A" and "Layout B" is calculated as tabulated in **Table 8-2**.

Table 8-2 B/C Analysis of Layout A and B

Item	Unit	Layout A	Layout B
Installed capacity	MW	219	225
Benefit	Mill. US\$/year	41	42
Cost	Mill. US\$/year	29	31
B/C		1.42	1.37

As shown in the table, the B/C of "Layout A" is larger than that of "Layout B". Therefore, "Layout A" is the better to be the downstream option from the economic point of view and compared with the other two options in the feasibility study and in 2.1.4 of EIA report.

8.3

Requirement of TOR

If pump-turbines are installed Randenigala Minimum Operating Level will have to be raised and the MASL will have to face difficulties in using the full active storage of Randenigala.

Measures by PP

As mentioned in 2.1.5 of EIA Report, the basic option was selected as the most preferable plan for the proposed expansion project. Therefore, the pumped storage option will not be implemented. Hence, this requirement is not relevant to the proposed project.

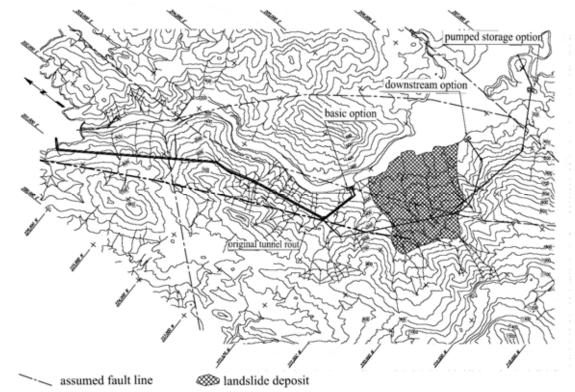
8.4

Requirement of TOR

A full inspection of the Tunnel the Dam and the Power Station by an independent consultant such as the original designers. M/S Gibb is recommended to ascertain any structural problems before construction and after commissioning.

Water tightness of both the existing and the proposed tunnel, after its construction is to be tested and ensured before elapsing of its contract maintenance period.

Measures by PP


It is proposed that the above requirement should be discussed among relevant organizations such as MASL, CEB, etc. during the detailed design stage, because this subject is an important technical

issue for the project implementation and necessary to consider a lot of things such as possibility to stop operating the Victoria Hydropower Station, procedures, time schedule, etc.

Optimal Layout of Downstream Option for Comparative Study of Alternative Options

9.1 General

The Study Team conducted the comparative study of the alternative options on a preliminary feasibility study level as specified in the inception report. During the comparative study, the following layouts are examined for the downstream option in consideration of the landslide deposit area shown in **Figure 9-1**;

Note: Layout A is shown in this Figure.

Figure 9-1 Main Geological Structures

9.1.1 Layout A;

To avoid any open-air structures located on landslide deposits area, an open-air powerhouse and outlet are installed downstream of the landslide area. The Layout A has longer tunnel length than the Layout B mentioned below.

It is noted that any open-air type structure could not be installed upstream of the landslide deposits area, because there are small valleys on which do not deems suitable to install open-air structures.

9.1.2 Layout B;

Turbine center elevation is EL. 218 m which is 10 m lower than that of the existing facilities to prevent the Randenigla reservoir water level from being lowered during construction of the outlet

structure. A powerhouse is of underground type to avoid the adverse geological condition, but the outlet is located in the landslide area and its sill elevation is EL. 220 m.

9.2 Scale of Expansion

9.2.1 General Layout

The general plan and profile of "Layout A" and "Layout B" are shown in **Figure 9-2** and **Figure 9-3**, respectively.

9.2.2 Number of Units and Discharge for Generation

The number of generation units is considered as three, and the maximum discharge for generation is 140 m³/s for both layouts in this comparative study.

9.2.3 Tunnel Length

In order to confine the internal pressure of the water conveyance tunnel, it is required to have enough rock cover above the tunnel roof. For determining alignment of the headrace tunnel, the tunnel alignment is laid on where ground surface elevation is EL. 450 m or higher on the topographic map.

The tunnel length of each layout is shown in **Table 9-1**;

Table 9-1 Tunnel Length of Layouts A and B

Layout A	Layout B		
9.1 km	7.0 km		

ANNEX VI - 77

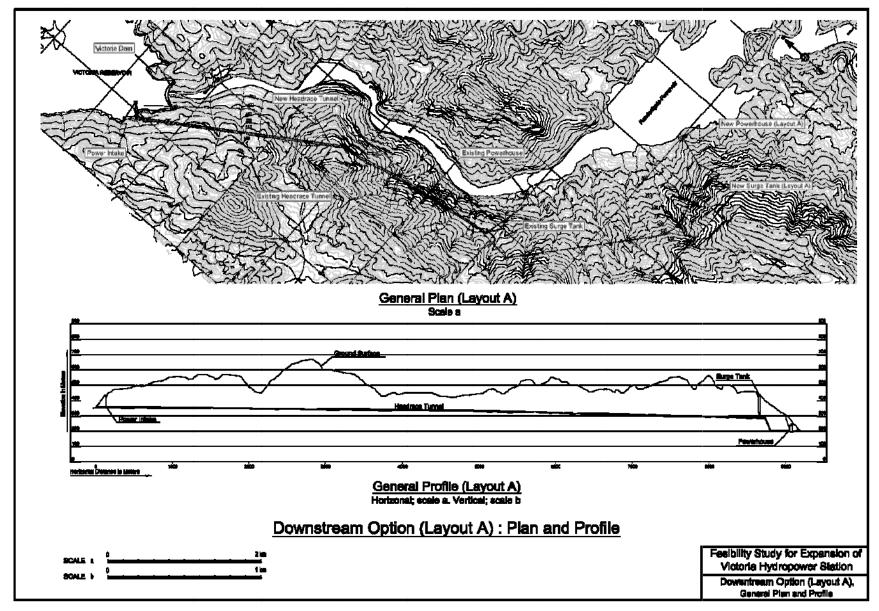


Figure 9-2 General Plan and Profile of Layout A

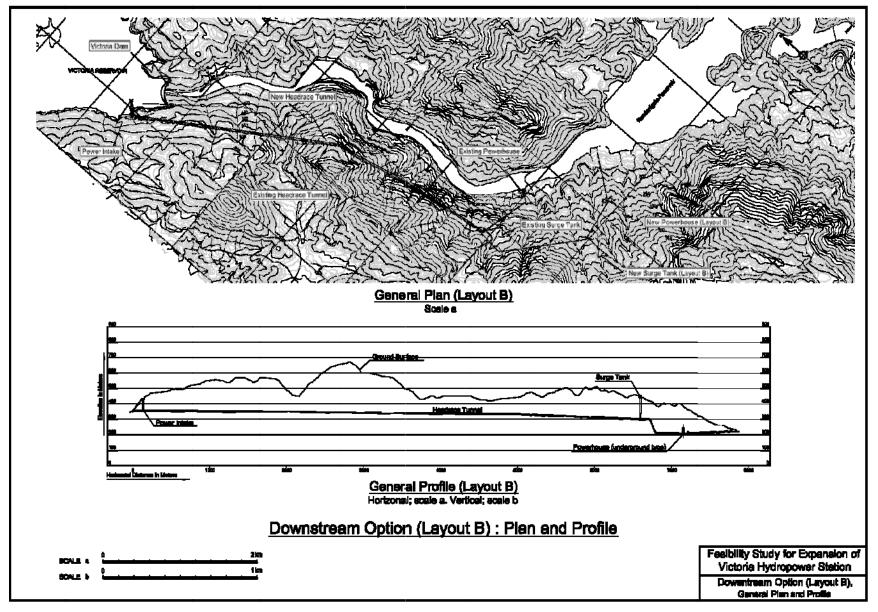


Figure 9-3 General Plan and Profile of Layout B

9.3 Annual Energy

Annual energy for "Layout A" is calculated as 652 GWh/year by the simulation on power generation using monthly inflow data into the Victoria reservoir. The detail of the calculation is given in the Chapter 6, Feasibility Study for Expansion of Victoria Hydropower Station Final Report (June 2009, JICA).

The annual energy for "Layout B" is calculated by using the same data for "Layout A". The duration of the inflow data used in the power generation simulation is from 1985 to 2006.

The result of the power generation simulation of "Layout B" is shown with that of "Layout A" in **Table 9-2**.

Table 9-2 Annual Energy and Dependable Capacity of Layouts A and B

Option	# of units	Installed Capacity (MW)	Annual Energy (GWh)	Firm Energy (GWh)	Secondary Energy (GWh)	95% Dependable Capacity (MW)
Downstream Option: Layout A	3	219	652	449	203	361
Downstream Option: Layout B	3	225	658	460	198	359

9.4 Construction Cost

The construction cost of "Layout A" is described as the 3-unit expansion of the downstream option in the Chapter 6, the final report of the feasibility study. For "Layout B", the cost due to lowering the reservoir water level of Randenigala reservoir may not be necessary during the construction, because the sill elevation is EL. 220 m with temporary coffer dam. However, the underground power house necessitates more construction cost than the surface type powerhouse. The estimated cost of "Layout A" and "Layout B" is summarized in **Table 9-3**.

Table 9-3 Project Cost of Layouts A and B

Item	Unit	Layout A peak duration = 3 hrs 3 unit	Layout B peak duration = 3 hrs 3 unit
Preparatory Works	Mill. US\$	1.96	1.96
Civil works	Mill. US\$	90	109
Equipment & Transmission Line	Mill. US\$	83	81
Environmental Cost	Mill. US\$	3	3
Administration & Engineering Fee	Mill. US\$	17	19
Contingency	Mill. US\$	20	21
Reduction of Energy	GWh/year	108	0
Period of reduction	years	1	0
kWh value by coal	US\$/kWh	0.053	0.053
Cost of reduction of energy covered by Coal power	Mill. US\$	5.8	0
Total construction cost	Mill. US\$	215	236
Total construction cost incl. cost of reduction of energy	Mill. US\$	220	236

It is noted that the total construction cost of "Layout B" is larger than that of "Layout A". This is mainly due to the increment of construction cost of underground power house.

9.5 Benefit and Cost Analysis

9.5.1 Cost

The benefit and cost analysis is to comparing the ratio of annualized benefit and cost (B/C). The method of the B/C analysis is given in the chapter 6 of the final report of the feasibility study. The annualized cost of "Layout A" and "Layout B" is given in **Table 9-4**.

Table 9-4 Annualized Cost of Layouts A and B

Table 9-4 Annualized Cost of Layouts A and B					
		Layout A	Layout B		
Item	Unit	peak duration = 3 hrs	peak duration = 3 hrs		
		3 unit	3 unit		
1) Additional capacity	MW	219	225		
 Installed capacity including existing units of 210 MW 	MW	429	435		
3) Depandable capacity	MW	361	359		
4) Annual Energy	GWh	652	658		
Firm Energy	GWh	449	460		
Secondary Energy	GWh	203	198		
5) Total Construction cost	Mill. US\$	215	236		
Construction cost: civil works	Mill. US\$	90	109		
Equipment & Transmission Line	Mill. US\$	83	81		
Construction cost: others	Mill. US\$	42	45		
6) Construction period	years	5.5	5.5		
7) Economic life of hydropower	years	50	50		
8) Interest rate	%	10.0	10.0		
9) Capital recovery factor	%	10.1	10.1		
10) O & M rate for civil works	%	0.50	0.50		
11) O & M rate for Equipment & Transmission Line	%	1.50	1.50		
12) Annual O & M Cost	Mill. US\$/year	2	2		
13) Interest during construction(IDC)	Mill. US\$	47	52		
14) Annualized cost: Construction, IDC and O&M: $[5) + 13] \times 9 + 12$	Mill. US\$/year	28	31		
15) Cost of reduction of energy during construction	Mill. US\$	6	0		
16) Annualized Cost of 15)	Mill. US\$/year	1	0		
17) Pump-up cost (using coal kWh value)	Mill. US\$/year	-			
Annualized cost: $14) + 16) + 17$)	Mill. US\$/year	29	31		

9.5.2 Benefit

The benefit of "Layout A" and "Layout B" is calculated by the increment of the benefit to the existing generation facilities. The detail of the method of benefit calculation is given in the chapter 6 of the final report of the feasibility study. The annualized benefit of the both "Layout A" and "Layout B" is shown in **Table 9-5**.

Table 9-5 Benefit of Layout A and B

	Description	Unit	Existing	Downstream	Downstream
				Layout A	Layout B
1.	Annual Energy	GWh	632	652	658
	Firm Energy	GWh	230	449	460
	Secondary Energy	GWh	402	203	198
2.	Dependable Peak Capacity	MW	210	361	359
3.	Power to be Generated (Gas)	MW	248	427	425
4.	Energy to be Generaged (Gas)	GWh/yr	235	459	470
5.	Energy to be Generaged (Coal)	GWh/yr	435	220	214
6.	kWh-Value (Gas)	US\$/MWh	177	177	177
7.	kWh-Value (Coal)	US\$/MWh	53	53	53
8.	kW-Value (Gas)	US\$/kW	70	70	70
9.	Annual Benefit (Gas) for capacity	Mill.US\$/yr	17	30	30
10.	Annual Benefit (Gas) for firm energy	Mill.US\$/yr	42	81	83
11.	Annual Benefit (Coal) for secondary energy	Mill.US\$/yr	23	12	11
12.	Annual Benefit (Gas&Coal)	Mill.US\$/yr	82	123	124
	Increment of Benefit	Mill.US\$/yr	0	41	42

As shown in the table, the benefit of "Layout B" is slightly larger than that of "Layout A".

9.5.3 B/C

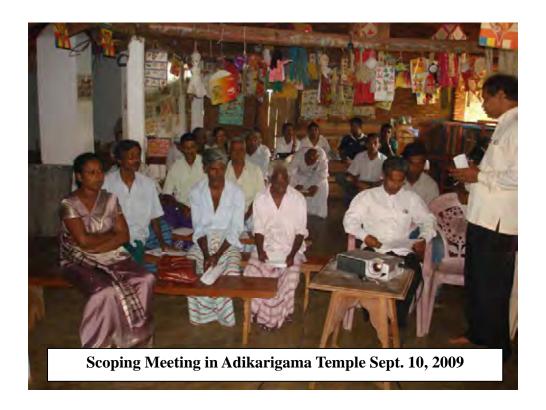
The ratio of the benefit to the cost for "Layout A" and "Layout B" is calculated as tabulated in **Table 9-6**.

Table 9-6 B/C Analysis of Layouts A and B

Item	Unit	Layout A	Layout B
Installed capacity	MW	219	225
Benefit	Mill. US\$/year	41	42
Cost	Mill. US\$/year	29	31
B/C		1.42	1.37

As shown in the table, the B/C of "Layout A" is larger than that of "Layout B". Therefore, "Layout A" is the better to be the downstream option from the economic point of view and compared with the other two options in the Study.

10. Cracks in the Houses in Hakurutale


CRACKS IN THE HOUSES IN HAKURUTALE

11. Photographs of Some Scoping Meetings in the Impact Area

