No. 1

THE MASTER PLAN STUDY ON URBAN FACILITIES RESTORATION AND IMPROVEMENT IN MONROVIA IN THE REPUBLIC OF LIBERIA

FINAL REPORT

(TOPOGRAPHIC MAPPING)

May 2009

AERO ASAHI CORPORATION

PREFACE

In response to a request from the Government of the Republic of Liberia, the Government of Japan decided to conduct a Topographic Mapping on the Master Plan Restoration and Improvement in Monrovia and entrusted to the study to the Japan International Cooperation Agency (JICA).

JICA selected and dispatched a study team headed by Mr. Takashi Harada of Aero Asahi Corporation between November 2008 and May 2009.

The team held discussions with the officials concerned of the Government of the Republic of Liberia and conducted field surveys at the study area. Upon returning to Japan, the team conducted further studies and prepared this final report.

I hope that this report will contribute to the enhancement of friendly relationship between our two countries.

Finally, I wish to express my sincere appreciation to the officials concerned of the Government of the Republic of Liberia for their close cooperation extended to the study.

May 2009

Eiji Hashimoto, Vice-President Japan International Cooperation Agency May 2009

Mr. Eiji Hashimoto Vice President Japan International Cooperation Agency

Letter of Transmittal

Dear Sir

We are pleased to submit to you the final report of the Topographic Mapping on the Master Plan Restoration and Improvement in Monrovia in the Republic of Liberia.

This study was conducted by Aero Asahi Cooperation, under a contract to JICA, during the period from October 15th 2008 to May 29th 2009. In conducting the study, we have prepared Digital Topographic Maps and Ortho-photos with contour lines in Monrovia and its vicinity.

Our Study Team hopes that the final report will serve for the implementation of further studies and various development of Monrovia, and also wishes to take this opportunity to express our sincere appreciation for the kind assistance and cooperation extended by the people in Monrovia, and all other parties concerned in the Republic of Liberia.

Finally, we hope that this report will contribute to further promotion of the project.

Very Truly Yours

Takashi HARADA

Study Team Leader, Topographic Mapping team on The Master Plan Restoration and Improvement in Monrovia

Location Map of Republic of Liberia and Monrovia City

View of West Point of Monrovia

New Residential Area in Paynesville

Discussion of Inception Report

Signing of Inception Report

Study Office in MPW

Undertaking of GOL, Consultation for provision of Guide with LCS

Large sized printer printing of Topographic Maps during Field verification

Consultation and Discussion of Draft Final Report

Existing Control Station RAMROD

Existing BM BM2 under Water Tower in Free Port

Category	No.	Work Items	Work Volume
	[6]	Aerial Photography (sub-contracting)	
		Photograph Scale, 1:10,000	
		Photography Area , Approx. 287km ²	
		Negative Films	1 roll
		Digital Data File	2 sets
		Contact Prints	2 sets
		Flight Index	2 sets
	[7]	Pre-marking and Pricking (37 points)	2 sets
	[7]	Control Point survey (37 points)	2 sets
	[7]	Simple leveling, Approx. 100km	
1:10	[8]	Production of Interpretation Key (31 objects)	2 sets
),00([9]	Field Verification (sub-contracting)	
) To	[10]	Digital Compilation of Field Verification Result	
1:10,000 Topographic mapping	[11]	Aerial Triangulation, DEM acquisition, Orthophoto production	
aphi	[11]	Ortho-photo, 1/10,000 Ortho-photo, 12 sheets	1 set
c ma		Digital Data File	6 sets
uppii	[12]	Digital Plotting	
gr	[13]	Digital Compilation	
	[14]	Symbolization	
	[15]	Creation of Data File, 1:10,000 Topographic Map Data	6 set
	[16]	Report	
		Quality Control	1 set
		Inception Report	English: 5sets
		Final Report, Main	English: 5 sets
		Final Report, Summary	English: 5 sets
		Final Report, Summary	Japanese: 5 sets

PRODUCT OF THE STUDY

THE MASTER PLAN STUDY ON URBAN FACILITIES RESTORATION AND IMPROVEMENT IN MONROVIA IN THE REPUBLIC OF LIBERIA

TOPOGRAPHIC MAPPING

FINAL REPORT

TABLE OF CONTENTS

1.1	Duenground of the Study	-	-
1.2	Undertaking of Government of Liberia	·1-	1

Chapter 2. Outline of the Study

2.1	Study Objectives2-1
2.2	Works and Staffing Schedule2-1
2.3	Study Area2-3
2.4	Executed Work General2-5

Chapter 3. Description of Works

<Works in Japan>

[1]	Data Collection
[2]	Inception Report(Draft)

<Works in Liberia>

[3]	Consultation of Inception Report
[4]	Field Reconnaissance
[5]	Consultation of Topographic Mapping Work Specification
[6]	Aerial Photography
[7]	Pre-marking, Control Point Survey and Simple Leveling
[8]	Interpretation Key
[9]	Field Verification
[10]	Digital Compilation after Field Verification

<Works in Japan>

[11]	Film Scanning, Aerial Triangulation,	
	DEM Creation & Ortho-photo Production3	3-19
[12]	Digital Plotting3	6-27
[13]	Digital Compilation	3-30
[14]	Symbolization3	-33
[15]	Creation of Data File3	3-33
[16]	Quality Control3	-33
Chapter 4.	Participation to the Seminar4	-1
Chapter 5.	Discussion of Draft Final Report5	-1
Chapter 6.	Final Product6	5-1
Chapter 7.	Conclusion7	'-1

APPENDICES

APPENDIX 1: SW/MM
APPENDIX 2: M/M for 4 th Working Group Meeting
APPENDIX 3: M/M for Inception Report
APPENDIX 4: M/M for Topographic Mapping Work Specification
APPENDIX 5: Description Sheets for Photo Controls
APPENDIX 6: Photo Interpretation Keys
APPENDIX 7: Symbol Specification
APPENDIX 8: M/M for Draft Final Report
APPENDIX 9: Quality Controls

WORK FLOW & OUTLINE OF 1:10,000 TOPOGRAPHIC MAPPING

ABBREVIATIONS

GOL	Government of Liberia
GOJ	Government of Japan
LCAA	Liberian Civil Aviation Authority
LCS	Liberian Cartographic Service
LISGIS	Liberia Institute of Statics & Geo-information Service
MPW	Ministry of Public Works
MLM&E	Ministry of Lands, Mines and Energy
UNMIL	United Nations Mission in Liberia

Chapter 1. Introduction

1.1 Background

During the years of conflict, Liberia's infrastructures have been nearly completely destroyed and the majority of services ceased being rendered. Moreover, the population in Monrovia has increased twice before the conflict according to the preliminary results of 2008 National Population and Housing Census. So that, the living environment is rapidly getting worse, the improvement of infrastructures is immediately needed.

Employment and rehabilitation of the infrastructure were declared a top priority for the Government because of their direct impact on security and long- term peace process as noted in the Poverty Reduction Strategy.

As emergency projects have been conducted by some donors, it is also necessary to develop projects taking mid-term improvement and development into consideration. In order to achieve the urban facilities restoration and improvement for short- and mid-term, the Government of the Republic of Liberia (hereinafter referred to as "GOL") requested the government of Japan(hereinafter referred to as "GOJ") for Development Study "Master Plan Study on Urban Facilities Restoration and Improvement in Monrovia" (hereinafter referred to as "the Study").

In response to the request of the GOL, the GOJ has decided to conduct the Study.

Accordingly, the Japan International Cooperation Agency (hereinafter called JICA), the official agency responsible for the technical cooperation program of GOJ, will undertake the Study in close cooperation with the concerned authorities of GOL. JICA dispatched this Study Team to produce the initial step of the Study.

1.2 Undertaking of Government of Liberia

At the beginning of the study, the Study Team requested MPW as a counterpart of the project to execute following items and the GOL (MPW) conducted following tasks during the study works for the Study Team.

- To support an acquisition of miscellaneous permissions such as flight permission, permission for handing of aerial photographs, permission for taking out of contact prints from Liberia and photograph data from Liberia and so on
 - Various permissions were acquired on time except for aerial photography and there was no disturbance for the works.
- 2. To provide the guide for field works
 - LCS under MLM&E provided 6 persons as a guide and supporting field works as well. The Guide works were for Point selection of Control Point Survey with GPS, Air-photo signal, pricking and simple leveling. Assignment period was

around 3 weeks and some were for a week.

- 3. To provide project office to the Study Team
 - MPW, counterpart of the project prepared 3 rooms for an office space for the project. 2 rooms for the Master plan team and another room for mapping team. Though there was electricity stoppage sometimes in general it was a pleasant condition.
- 4. To cooperate Liberian Cartographic Service to this project
 - Before starting the field survey such as control point survey and simple leveling, Study Team requested to provide the coordinates and height results of existing control stations and Benchmarks. LCS guided study team to assist in point finding and seeking and acquiring of result of control point with sincerity.

Chapter 2. Outline of the Study

2.1 Study Objectives

The Objectives of the study was to produce 1:10,000 Digital Topographic Map and Ortho-photos for successive THE MASTER PLAN STUDY ON URBAN FACILITIES RESTORATION AND IMPROVEMENT IN MONROVIA.

2.2 Works and Staffing Schedule

The members of the study team and individual tasks shown in Table 1.

Name	Assignment	No.	Works
Takashi HARADA	Team Leader	(1)	Adjustment and analysis of collected data
		(2)	Preparation of Inception Report
		(3)	Consultation of Inception Report
		(4)	Field Reconnaissance
		(5)	Consultation of Work Specification
		(6)	Aerial Photography
		(7)	Pre-marking, Control Point Survey, Simple Leveling
		(8)	Interpretation Key
		(9)	Field Verification
		(10)	Digital Compilation after Field Verification
		(11)	Aerial Triangulation, DEM production, Ortho-photo Production
		(12)	Digital Plotting
		(13)	Digital Compilation
		(14)	Symbolization
		(15)	Creation of Data File
		(16)	Final Report
Kentaro USUDA	Interpretation key	(4)	Field Reconnaissance
	Simple leveling	(5)	Consultation of Work Specification
	Pre-marking	(7)	Pre-marking, Control Point Survey, Simple Leveling
	Control point survey	(8)	Interpretation Key
	Field verification	(9)	Field Verification
	Digital compilation of Field Verification in field	(10)	Digital Compilation after Field Verification
		(16)	Final report
Nobuteru MATSUSHITA	Field verification	(9)	Field Verification
	Digital compilation of F.V.	(10)	Digital Compilation after Field Verification
Yuji OUCHI	Coordinator		

2.2 Work Schedule and Staffing Schedule

The study was conducted from October 2008 to May 2009. The individual Work Schedule of the Study is shown in Table 2. and Staffing Schedule are shown in following Table 3.

-	Ycar/month	1	2008	3 4	5	6 20	7	8	9
				2008(fiseal year)			09	2009(fiscal year))
	Work Items	10	11	12 1	2	3	4	5	6
. Worl	k in Japan								
(1)	Data collection	-							
	Adjustment and analysis of collected data	-							
	Preparation of tender document	-							
	Preparation of Work Specification	-							
(2)	Inception report	-							
2. Worl	k in Libeira								
(3)	Consultation of Inception report		<u> </u>						
(4)	Field recconnaissance								
(5)	Consultation of work specification								
(6)	Aerial photography								
(7)	Pre-marking, control point survey, simple leveling								
(8)	Interpretation key								
(9)	Field verification					1			
(10) Digital compilation after field verification						-		
8. Worl	k in Japan								
(11	Acrial triangulation, DEM creation, Orthophoto production				E				
(12) Digital plotting								
(13) Digital compilation after field verification						_		-
(14) Symolization								_
(15) Creation of data file								Carrier -
(16) Final report								Delivery

Table 2 Work Schedule

Table 3	Staffing Sch	edule
I abic J	COMMERCIAL COURSE	

				1	2	3		5	6	7	8	. 9
		Assignment	Name		2008				20	09		
		Assignment	Contra			2008(fis	cal year)				2009(fiscal y	4m)
_				10	11	12	1	2	3	4	5	6
	1	Team Leader	Takashi HARADA		-	-				-	-	
100	2	Pre-marking, control point survey, simple leveling	Kentaro USUDA									
Works in Libera	3	Field verification, Digital compilation	Rentaro USUDA						-			
Wo	4	Field verification, Digital compilation	Nobuteru MATSUSHITA								-	
	5	Coordinator	Ү өјі ОUСНІ	1								
1	_				IC/R							F/R.
		Report			A A					-		▲5/30
				10	11	12	1	2	3	4	5	6

2.3 Study Area

The Study Area for Digital Topographic Mapping covers the entire city of Monrovia and adjoining areas such as Paynesville, and Johnsonville. Zone and Township names involved in the Study Area are listed in Table 4 as shown below.

No.	Zone Name
1	Commonwealth
2	New kru Town
3	Logan Town
4	Clara Town
5	West Point
6	Central Monrovia A
7	Central Monrovia B
8	Sinkor
9	Lakpazee
10	Old Road
11	Congo Town
12	Paynesville
13	Gardnesville
14	New Georgia
15	Barnesville
16	Caldwell

Table 4

The actual previous Study Area was agreed on Scope of Works signed and shown in APPENDIX 1 on June 11th 2008 between MPW and Preparatory Study Team. However the Study Area boundary was modified due to the latest change of Zone boundary such as Caldwell, Johnsonville (a part of the Commonwealth) instructed by LISGIS (Liberia Institute of Statics & Geo-Information Services). GOL and the study team agreed on this change during the Meeting on February 13th 2009 (refer to APPENDIX 2) between MPW and Study Team (Master Plan Team). As a result, Study Team (Mapping Team) acquired new boundary data from LISGIS and took place to modify the Study Area following new boundary as shown as Figure 1.

Figure 1 Area for Topographic Mapping and for Ortho-Photo production

2.4 Executed Work General

The general of executed work contents are shown in following Table 5.

-	1	Table 5. Executed	Works	
Category	Work Classification	Work Items	Work Contents	Work Volume
	Preparatory works in Japan	(1)Data Collection	-Existing Data collection, information and analysis -Preparation of bidding document for the determination of sub-contractor -Preparation of Symbol Specification (draft), basic approach, work plan, schedule and so on.	1 set
		(2) Preparation of Inception Report		
		(3)Explanation and consultation of Inception Report	With counterpart	1 set
		(4)Field Reconnaissance	Collection of Existing data and information	1 set
		(5)Consultation of Work Specification	With counterpart	1 set
1:10,00	Works in	(6)Aerial Photography (sub-contract)	Panchromatic film and 1:10,000 photo-scale is	Approx. 287km ²
1:10,000 Topographic mapping	Liberia	(7)Pre-marking, Control Point survey, Simple leveling (sub-contract)	GPS observation, leveling	Approx. 35points, 100km
graphi		(8)Production of Interpretation Key	Main filed objects and etc	1 set
c mapj		(9)Field Verification (sub-contract)	With digitally compiled sheet	Approx. 260km ²
ping		(10)Digital Compilation of Field Verification Result	Data modification and addition if necessary	Approx. 260km ²
		(11)Aerial Triangulation, DEM acquisition, Orthophoto production		266 models
		(12)Digital Plotting	Digitizing of various topographic features	Approx. 260km ²
	Works in	(13)Digital Compilation	Compilation of digitally plotted data	Approx. 260km ²
	Japan	(14)Symbolization	Map symbolization of digitally compiled data	Approx. 260km ²
		(15)Creation of Data File	Quality check, data file format check	1set
		(16)Final Report		1set

Table	5.	Executed	Works
14010	~.	Diffectica	,, OI 110

Chapter 3 Description of Works

The details of Executed Works for the Study are designated in following paragraphs.

<Works in Japan>

[1] Data Collection

Before work starts, following works were carried out in Japan.

- Adjustment and analysis of collected data.
- Preparation of bidding documents, bidding and selection of subcontractor for Aerial Photography, Control Point survey and Field Verification.
- Preparation of Symbol Specification
- Adjustment of approach, methodology and schedule of the project.
 Especially the bidding of subcontracting work started after the sign of the contract of JICA to immediately complete study within contracted time period.

[2] Inception Report (Draft)

Before work starts, Inception Report (draft) consists of Study Approach, Methodology and Study Schedule that was prepared for consultation with counterpart.

<Works in Liberia>

[3] Consultation of Inception Report

Consultation of work contents and methodology was carried out with counterpart MPW to discuss the finalized Inception Report for steering the study. The discussed items are;

- Work methodology
- Study approach
- Study Schedule
- Undertaking of GOL

At the same time, Minutes of Meeting for Inception report was prepared and signed for a confirmation of agreement for both sides on November 5th 2008. (APPENDIX 3)

[4] Field Reconnaissance

Field Reconnaissance was carried out at the beginning of study for data collection and confirmation of work planning. Main checking work items were as follows:

- Location of the existing control points including benchmarks
- Geographical condition and vegetation of the study area
- Transportation, accommodation for the members and preparation of study office

[5] Consultation of Topographic Mapping Work Specification

Symbol Specification for Topographic Mapping was discussed with MPW and LCS before the work starts. The agreed Draft Symbol Specification was confirmed by a Minutes of Meeting signed on December 2nd 2008 shown on APPENDIX 4. However the Study Team informed that the agreed Symbols might have minor changes during mapping works. GOL agreed with Study Team.

Symbol Specification includes Specification of Topographic Mapping as well. All digital mapping works and includes were carried out based on the Map Symbol Specification. Since 1:10,000 topographic maps don't exit in Liberia, symbols are designed following actual symbols of existing 1:50,000 topographic maps of Liberia. All symbols were adopted referring to existing map symbols and designed digitally.

[6] Aerial Photography

Aerial photography included photo processing work were required for subsequent topographic mapping works. All works related to Aerial Photography were carried out by selected subcontractor since an aerial photography aviation company was not available in Liberia. Acquisition of flight permission was projected on sub-contractor's hands with the assist of counterpart from LCAA. (Liberian Civil Aviation Authority). The Photography was completed in January 16th 2009.

i. Specification of Aerial Photography

Specification of Aerial Photography is as follows.

-	Subcontractor	: CTK NETWOR	K AVIATION
		No.7 First street	, P.O.BOX CT1216, ACCRA
		Republic of Gha	na
-	Aerial Camera Type	: RMK A 15/23, F	Precision Photogrammetric Camera
		Lens	:PLEOGON A2
		Focal Length	:153.579m/m
		Image Format	:230 x 230m/m
-	Platform	: CESSNA C206	Registration No. 9G-CTK

Due to acceleration of the Aerial Photography Work, the proposed flight plan was modified from East to West to North to South. It didn't make an impact for further works. Target area and outline of Aerial Photography are follows.

-	Area	: 287km2 approx.
-	Scale	: 1:10,000 approx.
-	Overlap (forward overlap)	: 60%
-	Sidelap (lateral overlap)	: 30%
-	Film Type	: Panchromatic
-	Number of Flight Line	: 15 lines
-	Number of Aerial Photographs	: 292 photos

ii. Related works of Arial Photography

Aerial Photography was carried out taking in consideration of a geographical features condition in the project area into work execution, not causing loss of the overlap and the side lap, and the flight line and the quality control for the accuracy improvement of the Aerial Triangulation. Aerial Photography was started on January 15th 2009 due to the delay of flight permission and the weather. The generals of Aerial Photography and carried out works are as follows.

- Air Base

Air Base was the International airport in Margibi County due to the less vacant space for the aircraft parking of the domestic airport.

- Permission of Flight, handling of Aerial Photographs and Negative Film and taking out Contact Prints and Photograph Data from Liberia
 Flight permission was acquired by sub-contractor from LCAA (Liberia Civil Aviation Authority) and UNMIL (United Nation Mission in Liberia) with an assistance of counterparts. Regarding the permission of the handling of aerial photographs and negative film and taking out contact prints and photograph data were the same.
- Flying Requirement

The quality control of aerial photography was carried out by sub-contractor and submitted to an expert of the Study Team. The Study Team also checked and approved the quality of aerial photography.

- Film processing

The Film Processing work was done under the responsibility of a sub-contractor after the aerial photography. Aerial Film Processing facility is as follows.

- KODAK VERSAMAT automatic processor
- AGFA Process 44, AGFA Process 70 (Chemistry)

- Production of Contact print

2 sets of 292 Contact Prints were produced by using processed negative film under the responsibility of a sub-contractor for the delivery. Another 1 set was produced and used for the quality control work of Aerial photography. Contact print production facility is as follows.

- Dodging Contact Printer : Scanatron P-11C
- Dodging Print Processor : Colenta RA4-processor

iii. Aerial Photographs

The List of Photographs is shown in Table 6.

Na	Line No	Photogr	aph No.	Overstitu
No.	Line No.	Start	End	Quantity
1	L1	39	46	8
2	L2	47	61	16
3	L3	34	49	16
4	L4	50	65	16
5	L5	66	83	18
6	L6	87	110	24
7	L7	111	130	20
8	L8	131	157	27
9	L9	158	185	28
10	L10	186	217	32
11	L11	218	249	32
12	L12	250	266	17
13	L13	10	22	13
14	L14	23	30	17
15	L15	31	38	8
	Total			292

Table 6	List of Photographs
---------	---------------------

Sample of Contact print of aerial photograph is shown below.

*Central Part of Monrovia and MPW buildings (Photo scale on this text is 1:15,000 approx.)

iv. Flight Index

Topographical condition of target area for the photography is almost flat. However flight was attacked by strong winds from the sea sometimes causing photograph rotation and inclination. Nowadays thanks to the state of the art technology of the software for digital photogrammetry, most of such inconvenient phenomena for photogrammetric process can be solved without problem. Target area and Flight Index is shown in Figure 3.

Figure 3. Flight Index for Aerial Photography

v. Quality Control of Aerial Photography

Quality control of aerial photographs were carried out by sub-contractor and Study Team. The result of Quality Control is shown following Table 7.

			The Maste			Aircra	aft No.	CE	ESSNA 2	206		Roll No.	1,2
Nam	e of Pr	oject	urban R improveme the Repu	nt in Mor	nrovia in	Came	ra No.	ZEISS F	RMK A No	o.134636	Film	Length	100m
Da	te of F	light				Lens	No.	PL	EOGON	A2	GPS Di	skette No.	None
Da	LE UI FI	iignit				Lens	f	1	53.579m	ım			
ine No.	Expos	sure N	o. Number of	O.L	(%)	S.L	.(%)	Qu	ality of F	ilms		Domort	
Ine No.			Photograph	Max.	Min.	Max.	Min.	Cloud	Smoke	Haze		Remark	5
L1	39	- 46	6 8	65	61	35	30	None	None	Slight			
L2	47	- 6	16	51	74	35	30	None	None	Slight			
L3	34	- 49	16	74	57	35	30	None	None	Slight			
L4	50	- 65	i 16	65	57	35	30	None	None	Slight			
L5	66	- 83	18	70	51	35	30	None	None	Slight			
L6	87	- 11	24	70	54	35	30	None	None	Slight			
L7	111	- 13	20	70	51	35	30	None	None	Slight			
L8	131	- 15	7 27	70	57	35	30	None	None	Slight			
L9	158	- 18	5 28	65	52	35	30	None	None	Slight			
L10	186	- 21	7 32	70	63	35	30	None	None	Slight			
L11	218	- 24	9 32	74	59	35	30	None	None	Slight			
L12	250	- 26	6 17	63	52	35	30	None	None	Slight			
L13	10	- 22	13	10	22	30	27	None	None	slight			
L14	23	- 30	17	23	30	30	27	None	None	slight			
L15	31	- 38	8	31	38	30	27	None	None	slight			
		-											
Rema	arks									Contr	actor		
								Ch	eck	Date			
										Chec	ked by		
								Inspe	ection	Date			
								mape		Inspe	cted by		

 Table 7
 Quality Control Sheet

[7] Pre-marking, Control Point Survey and Simple Leveling

Based on selected site at the scale of 1/50,000 map pre-marking and pricking were carried out while taking their keeping period and environment surrounding into account. The number of photo control points (PC) was 37 points and their descriptions were prepared. (APPENDIX 5) The photo control points (PC) distribution is shown in Figure 4.

Figure 4. Distribution Map for Photo Control Points

- Pre-marking

In particular, the pre-marking (shape: three or four wings type, size: 75 cm x 25 cm) of 11 points was placed while taking their keeping period and reality surrounding into account. After aerial photography, all of them were clearly-identified as in the shape of three or four wings on the aerial photos successfully.

- Pricking

Since there were no places for pre-markings at a selected site, the pricking of 26 points was selected by taking an identifiable feature such as a corner of buildings/houses or a structural foundation into account. As with identification of pre-marking, all of pricking points were identified on the aerial photos clearly.

*Left Photograph shows a sample of pre-marked Control point.

*Right Photograph shows Point selection for a Pricking point of Control Point.

- Control Point Survey

i. At the beginning of the works, the Study Team explained that Liberian maps were produced with the local datum. The datum of Liberia 1964 was selected for the best fitting to Liberia. While newer worldwide maps are mostly produced with geocentric datum. As a result, the following coordinate system was approved on the meeting of the technical specification for mapping between MPW and Study Team on December 2^{nd} 2008 (shown in APPENDIX 4).

Coordinate System	: UTM	
Zone Name	: Zone 29	
Geodetic Datum		
- Ellipsoid	: WGS 84	
Semi-major Axis (m)	: 6378137.000	
1/f	: 298.257223563	
Map Projection	: Transverse Mercat	tor

- Map Projection Parameters

False Northing	:	0.000 (m)
False Easting	:	500,000.000 (m)
Longitude of the Central Meridian	:	9 °W
Latitude of the Origin of the Projection	:	Equator
Scale Reduction Factor at the Central Meridian	:	0.9996

ii. The remaining useful existing geodetic control points in the vicinity of Monrovia mainly were three (AE-937, RAMROD and TP-1). RAMROD was selected as a base station in the view of the location from among three. However, since RAMROD had not a geodetic coordinate such as the longitude and the latitude in WGS 84 coordinate system. The geodetic coordinates of RAMROD were determined by standalone positioning of GPS observation. 4 sets of Leica SR530 series were used for the observation.

*Left Photograph shows the existing control station RAMROD. The Study Team introduced field survey work to Ghana's Ambassador Mr. Katakami made reconnaissance with First secretary Ms. Iwatani.

iii Static GPS surveying was carried out based on RAMROD to obtain a coordinate for each photo control point (PC) used in an aerial triangulation.

iv. A height of each photo control point (PC) was determined based on existing BM 2 (located in Free Port) by leveling survey basically. However, in the case of some of photo controls located in a remote area their heights were determined by using a geoid height or interpolation from an undulation assumed on a Geoid Map. (refer to figure 5) The result of coordinates and height are listed on Table 8.

 LEGEND

 Bench Mark & Temporary Bench Marks

 Leveling Route

 Photo Control (PC)

 Geoid undulations

Figure 5. Geoid Map

PC19	9	19	58.68613	10	43	18.23474	36.10428	700,327,559	309,547.561	4.662	31,44	直接水準
PC20	9	19	11.94469	10	14	22,44695	41.15082	698,879,989	313,101.715	9.92	3123	ジオイドマップ
PC21	9	20	23,46201	10	47	17.10361	34.92039	701,113,518	302,208,190	3,436	31.48	直接水準
PC22	9	19	7.37343	10	48	38.42426	69.73458	698,784.626	299,700.505	38.238	31.50	直接水準
PC23	9	19	2.14558	10	4	45.75760	34.00491	698,599.586	306,851.611	2.54	31.46	ジオイドヤップ
PC24	9	18	29.49202	10	40	11.73653	43.02822	697,568,855	315,270.895	368.11	31.13	直接水準
PC25	9	19	22.35996	10	39	3,46176	37.25443	699,186.224	317,374,570	6.14	шк	ジオイドマップ
PC27	9	17	46.14891	10	47	25.54506	39.98030	696,281.557	301,932.103	7301	31.10	直接水準
PC28	9	17	33.01114	10	45	26.04666	35,39059	695,865,480	305,604,005	4.17	31.22	ジオイドマップ
PC29	9	11	8.92106	10	39	21.35640	35.94554	695,088,848	316,811.556	4.83	31.12	9418429
PC30	9	16	27.50622	10	41	43.10740	45.29173	693,830,552	312,450,290	14.487	none	直接水潭
PC31	9	16	10.72841	10	44	3.03382	41.72408	693,329,205	308,147,342	10.408	31.32	直接水埠
PC32	9	15	41.98339	10	39	34.11703	33.11924	692,419,441	316,410.868	2.00	31.12	ジオイドマップ
PC33	9	14	2.53960	10	41	27.79409	35.89765	689,375,715	312,906.683	4.789	II'IE	直接水埠
PC34	9	13	59.77687	10	39	40.59219	42.30582	689,280.374	316,201.917	11.194	31.11	直接水埠
PC35	9	13	32.62984	10	37	21.79456	40.02923	688,433.177	320,466.076	8.940	31.09	直接水準
RAMROD/PC26	9	17	47,62864	10	42	9.12582	48,10356	696,294,490	311,658.518	16.666	31.44	GPS 観測基準点
TP1_JFK	9	17	12.66297	10	46	25.32291	71.18758	695,246.521	303,779.788	none	none	高さ無し
AE973_1	6	15	47.33092	10	42	52.11342	52.26918	692,603.268	310,325,069	20.940	31.33	直接水埠

Table 8-1. Coordinates & Heights for Photo Control Points

PC19	6	19	58,68613	10	43	18.23474	36.10428	700,327.559	309,547,561	4.662	31.44	by direct leveling
PC20	9	19	11.94469	10	41	22.44695	41.15082	698,879,989	313,101,715	9.92	31.23	by geoid map
PC21	6	20	23,46201	10	47	17.10361	34.92039	701,113.518	302,208,190	3.436	31.48	by direct leveling
PC22	6	19	7.37343	10	48	38.42426	69.73458	698.784.626	299,700.505	38.238	31.50	2.462
PC23	9	19	2.14558	10	44	45.75760	34,00491	698,599,586	306,851,611	2.54	31.46	by geoid map
PC24	6	18	29,49202	10	40	11.73653	43.02822	697.568.855	315,270,895	11.895	31.13	by direct leveling
PC25	9	19	22.35996	10	39	3.46176	37.25443	699,186,224	317,374,570	6.14	11.16	by geoid map
PC27	9	17	46.14891	10	47	25.54506	39.98030	696.281.557	301,932,103	7.301	31.10	by direct leveling
PC28	9	11	33.01114	10	45	26.04666	35.39059	695,865,480	305,604.005	4.17	31.22	by geoid map
PC29	9	17	8.92106	10	39	21.35640	35.94554	695.088.848	316,811,556	4.83	31.12	1.40
PC30	9	16	27.50622	10	41	43.10740	45.29173	693,830.552	312,450.290	14.487	none	by direct leveling
PC31	9	16	10.72841	10	44	3.03382	41.72408	693.329.205	308,147,342	10.408	31.32	. 41
PC32	6	15	41.98339	10	39	34.11703	33.11924	692,419,441	316,410.868	2.00	31.12	by geoid map
PC33	9	14	2.53960	10	41	27.79409	35.89765	689,375,715	312,906.683	4.789	31.11	by direct leveling
PC34	9	13	59.77687	10	39	40.59219	42.30582	689,280.374	316,201.917	11.194	31.11	#
PC35	9	-13	32.62984	10	37	21.79456	40.02923	688,433.177	320,466.076	8.940	31.09	4
RAMROD/PC26	9	11	47.62864	10	42	9.12582	48.1 0356	696,294,490	311,658.518	16.666	31.44	Based point for GPS
TP1_JFK	6	17	12,66297	10	46	16228.32	71.18758	695,246,521	303,779.788	none	none	none
AE973_1	9	15	47.33092	10	42	52,11342	52.26918	692,603.268	310,325.069	20.940	31.33	by direct leveling
v. Quality Control of Control Point Survey was carried out by comparing the data of exiting control station and height from existing Benchmark with Geoid map. Details are shown on attached Quality Control Sheet shown as Table 9.

CCD	Hori	zontal Position	S.D.	Ellipsoidal	Height S.D.
GCP	M _{X (m)}	$M_{Y(m)}$	Allowance	$M_{\rm H}$	Allowance
PC-01	0.0180	0.0190	15cm	0.0459	30cm
PC-02	0.0188	0.0199	"	0.0521	"
PC-03	0.028	0.0423	"	0.0844	"
PC-04	0.0514	0.0392	"	0.0800	"
PC-05	0.0184	0.0200	"	0.0440	"
PC-06	0.0366	0.0266	"	0.0666	"
PC-07	0.0179	0.0163	"	0.0432	"
PC-08	0.0257	0.0376	"	0.0672	"
PC-09	0.0308	0.0246	"	0.0520	"
PC-10	0.0304	0.0297	"	0.0597	"
PC-11	0.0282	0.0238	"	0.0492	"
PC-12	0.0215	0.0255	"	0.0648	"
PC-13	0.0351	0.0389	"	0.1017	"
PC-14	0.0353	0.0286	"	0.0692	"
PC-15	0.0221	0.0231	"	0.0517	"
PC-16	0.0238	0.0250	"	0.0469	"
PC-17	0.0213	0.0265	"	0.0559	"
PC-18	0.0091	0.0093	"	0.0284	"
PC-19	0.0228	0.0332	"	0.0576	"
PC-20	0.0111	0.0108	"	0.0206	"
PC-21	0.0132	0.0131	"	0.0295	"
PC-22	0.0208	0.0196	"	0.0378	"
PC-23	0.0212	0.0192	"	0.0518	"
PC-24	0.0095	0.0117	"	0.0312	"
PC-25	0.0192	0.0180	"	0.0475	"
RAMROD	0.000	0.000	"	0.0000	"
PC-27	0.0253	0.0251	"	0.0570	"

 Table 9
 Quality Control Table (Standard Deviation of PC)

0.0235	0.0328	"	0.0578	"
0.0220	0.0304	"	0.0838	"
0.0148	0.0208	"	0.0378	"
0.0257	0.0262	"	0.0492	"
0.0186	0.0182	"	0.0437	"
0.0224	0.0228	"	0.0570	"
0.0214	0.0315	"	0.0525	"
0.0262	0.0358	"	0.0872	"
0.0212	0.0171	"	0.0336	"
0.0092	0.0103	"	0.0270	"
	0.0220 0.0148 0.0257 0.0186 0.0224 0.0214 0.0262 0.0212	0.0220 0.0304 0.0148 0.0208 0.0257 0.0262 0.0186 0.0182 0.0224 0.0228 0.0214 0.0315 0.0262 0.0358 0.0212 0.0171	0.0220 0.0304 " 0.0148 0.0208 " 0.0257 0.0262 " 0.0186 0.0182 " 0.0224 0.0228 " 0.0214 0.0315 " 0.0262 0.0358 "	0.0220 0.0304 " 0.0838 0.0148 0.0208 " 0.0378 0.0257 0.0262 " 0.0492 0.0186 0.0182 " 0.0437 0.0224 0.0228 " 0.0570 0.0214 0.0315 " 0.0525 0.0262 0.0358 " 0.0872 0.0212 0.0171 " 0.0336

- Simple Leveling

Based on the existing BM-2 (3.034 m from mean sea level), established in 1967 by USGS located in free port, a height of some of photo control points (PC) as well as spot heights for height control of Aerial Triangulation was obtained by simple leveling. The total length of the leveling was 102 km. The routes and closure errors are as follows. (See Table 10) The leveling routes are shown below. (See Figure 6)

*Left photograph shows simple leveling work with the help of LCS guide.

Quality Control of Simple Leveling was carried out as following Table 10. Closure Error of Leveling.

No.	Route	Length	Error (Tolerances)
1	BM 2~ TBM1~TBM 2~BM2	31.5 km	- 46 mm< ± 224mm
2	TBM 2~ TBM 4~ PC 8~TBM 3~BM 2	27.0 km	$+120 \text{ mm} < \pm 207 \text{mm}$
3	TBM 4~PC 8	17.0 km	-95mm < ± 165mm
4	PC 10~PC 19	7.0 km	- 56mm<±106mm
5	TBM 3~PC 7	7.0 km	+ 78mm<±106mm
6	TBM 1~PC 35	12.5 km	- 103mm<±141mm

Table 10. Closure Error of Leveling

*Tolerances: 40mm S (S is one way distance in km)

Figure 6. Leveling Route

[8] Interpretation Key

In order to secure the Digital Plotting work quality, Interpretation Key was produced by using IKONOS satellite imagery when the Interpretation key started to prepare due to incomplete aerial photography. After the aerial photography, IKONOS images used for Interpretation Key were replaced to the stereo aerial photograph images. Filed objects for Interpretation Key was selected before work starts. The list of field object prepared as Interpretation key is shown in Table 11. The interpretation key is shown in APPENDIX 6.

No.	Objects	No.	Objects
1	Antenna 1	17	Market
2	Antenna 2	18	Mixed Forest
3	Bridge 1	19	Overpass
4	Bridge 2	20	Palm
5	Bridge 3	21	Road, less than 3m
6	Cemetery 1	22	Road, unpaved
7	Cemetery 2	23	Rubber
8	Cemetery 3	24	Separator, narrow
9	Cemetery 4	25	Separator, wide
10	Cliff, Rock, Scattered Rock	26	Vegetation
11	Crop Land	27	Water Tank
12	Culvert 1	28	Well, large 1
13	Culvert 2	29	Well, large 2
14	Disposal Area	30	Well small
15	Gas Station	31	Wreck
16	Grass Land		

Table 11. List of Photo Identification Keys

[9] Field Verification

Based on the data collected from two organizations, which are UNMIL(United Nations Mission in Liberia) and LISGIS (Liberia Institute of Statistics & Geo-Information Services) as well as unidentified features in digital plotting, the field verification was carried out using an orthophoto at a scale of 1/5,000 at the site to verify their consistency and correctness. The work was held by a sub-contractor under the supervision and instruction of Study Team. The works were carried out for the duration of one (1) month from the end of April.

Data collected as SHP file format from UNMIL were as follows:

- Road and street
- Building (Governmental buildings, Post offices, Hospitals/clinics, Power plant, Market, Embassies, Theaters, Fire station, Hotel, Gas station, Schools, Churches, Mosques, Police stations, Factories and Warehouses.
- Administrative boundaries (Zone boundaries)

Data collected in Excel and PDF format from LISGIS were as follows:

- Administrative boundaries in PDF format (County, District/Zone and Township/Communication boundaries)
- Road and street
- Building (Governmental buildings, Post offices, Hospitals/clinics, Power plant, Market, Embassies, Theaters, Fire station, Hotel, Gas station, Schools, Churches, Mosques, Police stations, Factories and Warehouses.
- Small objects (Wells, Antennas and Oil tanks)

Unidentifiable items extracted in digital plotting were as follows:

- Road types (classification of paved or unpaved)
- Exact location of school, church, wells and towers/antennas and so on
- Vegetation classification (rice field, crop land, swamp, forest and plantation and so on)

Above-mentioned items were correctly verified at the site and compiled in digital format.

[10] Digital Compilation after Field Verification

Digital Compilation after Field Verification was carried out for the completion of Topographic Map data with verified information such as objects with symbol, boundary and road information and so on.

The result of Field Verification was reflected to the topographic map data especially symbolized objects such as school, church, government buildings and so on.

Positioning of some the symbols were shifted due to the low accuracy of handy GPS for checking of position. This displacement of the object symbols was corrected onto the Topographic map data digitally.

Confirmed road surface information was reflected to the Topographic Maps and polygonal representation was carried out for coloring.

<Works in Japan>

[11] Film Scanning, Aerial Triangulation, DEM Acquisition & Ortho-photo <u>Production</u>

- Film Scanning

Analog/Digital conversion of aerial photographs was carried out by using a photogrammetric scanner with the resolution of 15 micron. Data was stored as uncompressed TIFF format.

The work had been involved in subcontracting works when the study started. However due to delay of aerial photography, the work was changed to one of the "Works in Japan" to compensate the study schedule.

*Left photograph shows LEICA LH System, Photogrammetric Scanner, DSW500 (Digital Scanning Work Station Type 500)

- Aerial Triangulation

Aerial Triangulation was performed with scanned photograph data, result of control point and simple leveling by use of work-station and bundle adjustment software ORIMA. Index Map for Aerial Triangulation is shown in Figure 7. As for Quality Control of the Aerial Triangulation, the residuals of Aerial Triangulation are shown in Table 12.

The result of Aerial Triangulation, rotation of each photograph is stored in the final data CD_ROM.

*Left photograph shows Work Station for Aerial Triangulation, used software is ISAT (Image Station Automatic Triangulation).

Figure 7. Index Map for Aerial Triangulation

Table 12.Residuals of Aerial Triangulation

e No. C	Monrovia, Liberi C1-C15	0						Organizati	on:	Aero Asahi Con	poration		
int No.		rmed Coordinat			in Cooridinates					Residuate			
80010	X	Y and the second	H	X	Y .	H	DX	DY	DX2+DY2	√ DX2+DY2	DH	DH	DH2
50010	312196.245 315585.067	71 4863 999 71 51 53 882	13.263	312196.400 315585.170	714963 730 715154 000	13259	-0.155 -0.103	-0.118	0.096	0310	-0.187	0.004	0.0
50000	315629.793	712553.645	25.400	315629.920	712553.790	25,440	-0.127	-0.145	0.007	0.193	-0.007	0.007	0.0
50040	310928.274	711197536	11941	310928290	711197.420	11,950	-0.016	0.116	0.014	0.117	-0.009	0.009	0.0
50060	312059.428	708279.405	16,491	312059-490	708279.570	16.490	-0.062	-0.165	0.031	0.176	0.001	0.005	0.0
50070	301541.611	707763 222	6.638	301541.790	707763.240	6,730	-0.179	-0.018	0.032	0.180	-0.092	0.092	0.0
50080	308502.812	707803 684	8.939	306502.860	707803.640	8.860	-0.049	0.044	0.004	0.065	0.079	0.079	0.0
50090	315487.219	708577.009	12.877	315487.210	708577.370	12.850	0.009	-0.361	0.130	0361	0.027	0.027	0.0
50100	311424.942	705652 347	10.024	311424930	705652.490	9973	0.012	-0.143	0.021	0144	0.051	0.051	0.0
50110 50120	300689-801 306095 555	705450,131 704402,304	4.305	302689.950 306095.640	705450,250 704402,290	4290	-0.149 -0.085	-0.119	0.036	0.191 0.086	0.015	0.015	0.0
50130	309574.318	704258.677	8.953	300574200	704258.730	8990	0.118	-0.053	0.017	0.129	-0.027	0.027	0.0
50140	315433.339	704098.621	28510	315433270	704098.920	28590	0.069	-0.299	0.094	0.307	-0.080	0.080	0.0
50150	301620.696	703176 364	4.737	301621.030	703176.110	4.835	-0334	0.254	0.176	0.420	-0.098	0.098	0.0
50160	312982 498	702217.926	17,785	312982.410	702218.070	17.650	0.088	-0.144	0.028	0.169	0.135	0.135	0.0
50170	305714.267	701422.935	6.272	305714300	701422.790	6280	-0.033	0.145	0.022	0.149	-0.008	0.008	0.0
50180	316573.127	700252 652	10.076	316573.120	700353.050	9,990	0.007	-0.398	0.158	0398	0.096	0.096	0.0
50190	306547.716	700327.550	4.879	306547,630	700327.600	4830	-0.171	-0.050	0.010	0.099	0.049	0.049	0
50200 50210	313101.519 302208.116	698880.268 701113.640	10.236 3.607	313101690 302208190	696890.050 701113.520	10210	-0.074	0.218	0.020	0277	0.026	0.026	0.0
50220	299700.454	698784 852	38.281	299700510	698784 630	38.450	-0.056	0.222	0.052	0229	-0.169	0.169	0.0
50230	306851 685	698599 636	3.059	306851.650	698599 580	3.060	0.035	0.056	0.004	0.066	-0.001	0.001	0.0
50240	315271.020	697568.537	13,785	315270.900	697568.860	14050	0.120	-0.323	0.119	0345	-0.265	0.265	0.0
50250	317374.866	699185.897	6.000	317374570	699186.220	6140	0.296	-0.323	0.192	0.438	-0.140	0.140	0.0
50260	311658555	696294613	16.744	311658520	696294.490	16666	0.035	0.123	0.016	0.128	0.078	0.078	0.0
50270	301932.188	696281 820	8.608	301932100	696281.560	8.890	0.088	0.260	0.075	0274	-0.272	0.272	0.0
50280	305604196	695965.604	4.087	305604010	695965.480	4170	0.198	0.124	0.050	0224	-0.083	0.083	0.0
50290	316811.769 312450.421	695088.910 693820.584	6.926 16.551	316811.640	695088 890 693830 550	6.870	0.129	0.020	0.017	0.131 0.135	0.056	0.056	0.0
50300	308147.223	693830 584 693329 187	12.524	312450290 308147360	683329.150	12510	-0.137	0.034	0.020	0.135	0.014	0.049	0.0
50321	316411.067	692419 513	3.341	316410.868	692419.441	3240	0.199	0.072	0.045	0212	0.101	0.101	0.0
50330	312906.808	689375.741	5.987	312906.680	689375.720	6310	0.128	0.021	0.017	0.130	-0.323	0.323	01
50340	316201.868	689280.715	12,335	316201920	689280.370	12.410	-0.052	0.345	0.122	0349	-0.075	0.075	0.0
50350	320466.235	688432 990	9,031	320466.080	688433 180	9.040	0.155	-0.190	0.060	0245	-0.009	0.009	0.0
59731	310325.107	692603513	20.987	310325.070	692603 270	20940	0.037	0.243	0.060	0245	0.047	0.047	0.0
50000	303779.920	695246.611	0.000	303779.790	695246.520	0.000	0.130	0.091	0.025	0.159	0.000	0.000	0.0
50050	307222.343	709224,374	0.000	307222.620	709224.350	0.000	-0.277	0.024	0.077	0278	0.000	0.000	0.0
40010	0.000	0.000	13.154	0.000	0.000	13240	0.000	0.000	0.000	0.000	-0.086	0.086	0.0
40030	0.000	0.000	12,883	0.000	0.000	12.620	0.000	0.000	0.000	0.000	0.263	0.263	- 00
40040	0.000	0.000	10.509	0.000	0.000	10650	0.000	0.000	0.000	0.000	-0.141	0.141	0.0
40070	0.000	0.000	11.499	0.000	0.000	11290	0.000	0.000	0.000	0.000	0.209	0.209	0.0
40100	0.000	0.000	8.270	0.000	0.000	8,230	0.000	0.000	0.000	0.000	0.040	0.040	0.0
40110	0.000	0.000	12,380	0.000	0.000	12.330	0.000	0.000	0.000	0.000	0.050	0.050	0.0
40120	0.000	0.000	10.406	0.000	0.000	10.490	0.000	0.000	0.000	0.000	-0.084	0.084	0.
40130	0.000	0.000	11.802	0.000	0.000	11.780	0.000	0.000	0.000	0.000	0.022	0.022	0.0
40140	0.000	0000	10593	0.000	0.000	10.450	0.000	0.000	0.000	0000	0.143	0.143	0.0
40150	0.000	0.000	15215	0.000	0.000	15260	0.000	0.000	0.000	0.000	-0.045	0.045	0.0
40170	0.000	0.000	7.185	0.000	0.000	7220	0.000	0.000	0.000	0.000	-0.035	0.035	0.0
40180	0.000	0.000	17.831	0.000	0.000	17.710	0.000	0.000	0.000	0.000	0.121	0.121	0.0
40190	0.000	0.000	17.320	0.000	0.000	17300	0.000	0.000	0.000	0.000	0.020	0.020	0.0
40200	0.000	0.000	22571	0.000	0.000	22540	0.000	0.000	0.000	0.000	0.631	0.001	0.0
40210	0.000	0.000	27.838	0.000	0.000	27910	0.000	0.000	0.000	0.000	-0.072	0.072	0.0
40220	0.000	0.000	21.686	0.000	0.000	21.650	0.000	0.000	0.000	0.000	0.036	0.036	0.
40240	0.000	0.000	13,435	0.000	0.000	13250	0.000	0.000	0.000	0.000	0.165	0.185	0.0
40250	0.000	0.000	15.687	0.000	0.000	15.600	0.000	0.000	0.000	0.000	-0.085	0.087	0.0
40270	0.000	0.000	24.055	0.000	0.000	24020	0.000	0.000	0.000	0.000	0.035	0.035	0.0
40280	0.000	0.000	6.733	0.000	0.000	6.630	0.000	0.000	0.000	0.000	0.103	0.100	0.0
40300	0.000	0.000	7.622	0.000	0.000	7640	0.000	0.000	0.000	0.000	-0.018	0.018	0.0
40310	0.000	0.000	12.895	0.000	0.000	12,950	0.000	0.000	0.000	0.000	-0.055	0.055	0.0
40320	0.000	0.000	10.336	0.000	0.000	10350	0.000	0.000	0.000	0.000	-0.014	0.014	- 0)
40330	0.000	0000	7.234	0.000	0.000	7.150	0.000	0.000	0.000	0000	0.084	0.084	00
40350	0.000	0000	6.674	0.000	0.000	6.640	0.000	0.000	0.000	0000	0.034	0.034	0
40360	0.000	0.000	6.008	0.000	0.000	6.020 2.810	0.000	0.000	0.000	0.000	-0.012	0.012	0.
40380	0.000	0.000	5.487	0.000	0.000	5,490	0.000	0.000	0.000	0.000	-0.003	0.022	0.0
40390	0.000	0.000	7.083	0.000	0.000	6.990	0.000	0.000	0.000	0.000	0.103	0.103	0
40.400	0.000	0.000	27.009	0.000	0,000	27210	0.000	0.000	0.000	0000	-0.201	0.201	0.0
40410	0.000	0.000	7.186	0.000	0.000	7.090	0.000	0.000	0.000	0.000	0.096	0.096	0
40420	0.000	0.000	4.726	0.000	0.000	4740	0.000	0.000	0.000	0.000	-0.014	0.014	00
40430	0.000	0.000	5.398	0.000	0.000	5310	0.000	0.000	0.000	0000	0.076	0.076	0
40450	0.000	0.000	6.630	0.000	0.000	6660	0.000	0.000	0.000	0.000	-0.030	0.000	-0
40.450	0.000	0.000	7.223 6.354	0.000	0.000	6.490	0.000	0.000	0.000	0000	0.013	0.013	0
40480	0.000	0.000	6.912	0.000	0.000	7.050	0.000	0.000	0.000	0.000	-0.138	0.138	0)
40490	0.000	0.000	4.917	0.000	0.000	4920	0.000	0.000	0.000	0000	-0.003	0.003	0
40500	0.000	0.000	4.088	0.000	0.000	4100	0.000	0.000	0.000	0.000	-0.012	0.012	0
40510	0.000	0.000	3.393	0.000	0.000	3.460	0.000	0.000	0.000	0.000	-0.067	0.067	0
40520	0.000	0.000	3.734	0.000	0.000	3.630	0.000	0.000	0.000	0.000	0.104	0.104	0
40530	0.000	0.000	4.176	0.000	0.000	4,430	0.000	0.000	0.000	0000	-0.254		0.
40550	0.000	0.000	4.444	0,000	0.000	4360	0.000	0.000	0.000	0000	0.084		0.0
40570	0.000	0.000	7.010	0.000	0.000	6,900	0.000	0.000	0.000	0.000	0.110	0.110	0
40590	0.000	0.000	5.684	0.000	0.000	5.620	0.000	0.000	0.000	0.000	0.064	0.064	0
40610	0.000	0.000	4.167	0.000	0.000	4.040	0.000	0.000	0.000	0.000	0.127	0.127	0
40630	0.000	0.000	2.154	0.000	0.000	2320	0.000	0.000	0.000	0.000	-0.166	0.166	0
40640	0.000	0.000	4.685	0.000	0.000	4,840	0.000	0.000	0.000	0.000	-0.155	0.155	0)
40650	0.000	0.000	2.783	0.000	0.000	2.430 7.010	0.000	0.000	0.000	0.000	0.353	0.353	0.
40660	0.000	0.000	7.287	0.000	0.000	7.010	0.000	0.000	0.000	0.000	0.277	0.277	.0.0
	A. A. S.				10.00	0.1204040		dX2+dY2				[dH2]	13
-		President de la	1	Tolerate Discre	pancy	0.000	-	No. of Con		Horizontal	37	Height	
-		Standard deviat	hon	Horizontal		0300	-	Standard d	Neviation	Horizontal	0.233		
-		Maximum	-	Vertical Horizontal		0.000	-	Maximum	-	Vertical Horizontal	0.118	Point Name	503
		a de contraction		Vertical		0.600	-	- Annual Contraction		Vertical		Point Name	400
				and the second second					1		-2.01.040	and the second second	
		Standard deviat	tion	(Deviation/mm)	0.015		Standard d	leviation	mm, deviation	0.006		

- DEM Acquisition

By using of the result of Aerial Triangulation, 5m grid interval of DEM (Digital Elevation Model) was generated with stereo-matching method for ortho-photo.

- Ortho-photo Production

A scale of 1:10,000 ortho-photo was produced for the study area that includes the area of "White Plain", water pump station and water pipeline exists, by using generated DEM data. After generation of ortho-photo, contour line data was consolidated.

Sample Ortho-Photo with contour lines (Ortho-photo map)

Quality Control of Ortho-photo was carried and the results are shown in following Table 13, 14 and 15.

				Remarks	т																Out of Area	Out of Area																
					XX																																	
	H. Miura			- terreter C	Residuais	0.20	1.34	0.26	0.16	1.17	0.05	0.05	0.26	1.85	0.50	0.11	0.24	0.45	0.90	0.09	5.79	7.02	0.46	0.19	0.20	0.36	0.35	0.87	0.31	0.14	0.30	0.16	0.19	0.06	1.33	0.15	0.33	0.04
	Checker	2009		C.V.	Ζ	13.24	9.66	12.62	10.65	11.29	8.23	12.33	10.49	11.78	10.45	15.26	22.13	7.22	17.71	17.30	22.54	27.91	21.65	13.25	15,60	18.75	24.02	6.63	7.64	12.95	10.35	7.15	6.64	6.02	2.81	5.49	6.98	27.21
	T.Harada	To Feb.20 2009		M.V.	2	13.44	8.32	12.88	10.49	12.46	8.19	12.28	10.75	13.63	10.95	15.37	22.37	7.67	18.61	17.39	28.33	34,93	22.11	13.44	15.80	19.11	24.37	7.50	7.95	12.81	10.65	7.31	6.83	5.96	4.14	5.34	6.66	27.25
c	Supervisor	From Feb.14 2009		netry	Y	311479.15	311458.84	312004.75	312845.71	314899.36	317786.01	318616.64	319572.27	316092.59	316687.62	317108.53	316620.80	314607.97	315040.65	315396.21	316350.77	316467.23	314894.98	314459.55	313949.84	312967.81	313919.64	312278.51	311679.83	312493.38	311741.76	311551.84	312800.63	310124.31	311582.25	311470.02	311114.68	309755.67
Quality Control for Ortho-photo Production	Aero Asahi Corporation	From F	Digital Terrain Model	Planimetry	х	692758, 06	691669.34	690531.17	690097.07	689253.03	689019.48	688757, 58	688449.61	699422.94	701476.98	702126.70	703041.25	714939.85	713807.75	713182.39	711533.42	709257.28	703778.90	696830.09	696392.70	695800.46	703875.60	692883.78	703513.37	705084.57	706781.24	713149.94	714551.30	707390.94	710634.03	711427.79	692753.84	692885, 95
o-photo			Digital Ter		Ž	40010	40020	40030	40040	40070	40100	40110	40120	40130	40140	40150	40160	40170	40180	40190	40200	40210	40220	40240	40250	40260	40270	40280	40300	40310	40320	40330	40350	40360	40370	40380	40390	40400
for Orth	Working Organization	Work Term		-1	Residuals	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
y Control 1	storation and	Liberia		Value	Y	311479.15	311458.84	312004.75	312845.71	314899.36	317786.01	318616.64	319572.27	316092.59	316687.62	317108.53	316620.80	314607.97	315040.65	315396.21	316350.77	316467.23	314894.98	314459.55	313949.84	312967.81	313919.64	312278, 51	311679.83	312493.38	311741.76	311551.84	312800.63	310124.31	311582.25	311470.02	311114.68	309755.67
<u>Qualit</u>	c Mapping ar an Facilities Re ement	Sheet Name		Check Value	Х	692758, 06	691669.34	690531.17	690097.07	689253.03		688757.58	688449.61	699422.94	701476.98	702126.70	703041.25	714939.85	713807.75	713182.39	711533.42	709257.28	703778.90	696830.09	696392, 70	695800.46	703875.60	692883.78	703513.37	705084, 57	706781.24	713149.94	714551.30	707390.94	710634.03	711427.79	692753.84	692885, 95
	Topographic Mapping for Ihe Master Paln Study on Urban Facilities Restoration and Improvement	ria		g Value	٧	311479.15	311458.84	312004.75	312845.71	314899.36	317786.01	318616.64	319572.27	316092.59	316687.62	317108.53	316620.80	314607.97	315040.65	315396.21	316350.77	316467.23	314894.98	314459.55	313949.84	312967.81	313919.64	312278.51	311679.83	312493.38	311741.76	311551.84	312800.63	310124.31	311582.25	311470.02	311114.68	309755.67
	The Master Pal	Liberia	Digital Ortho Data File	Measuring Value	×	692758.06	691669.34	690531.17	690097.07	689253.03	689019.48	688757.58	688449.61	699422.94	701476.98	702126.70	703041.25	714939.85	713807.75	713182.39	711533.42	709257.28	703778.90	696830.09	696392.70	695800.46	703875.60	692883.78	703513.37	705084.57	706781.24	713149.94	714551.30	707390.94	710634.03	711427.79	692753.84	692885.95
	Work	Area	Digital Orth	-12	N	40010	40020	40030	40040	40070	40100	40110	40120	40130	40140	40150	40160	40170	40180	40190	40200	40210	40220	40240	40250	40260	40270	40280	40300	40310	40320	40330	40350	40360	40370	40380	40390	40400

 Table 13.
 Quality Control for Ortho-photo

			in the second										
		Topograph	Topographic Mapping										
Work	The Master Pa	In Study on Uri Improv	tor The Master Pain Study on Urban Facilities Restoration and Improvement	storation and	Working Organization	Aero Asa	Aero Asahi Corporation	Supervisor	T.Harada	Checker	H. Miura		
Area	Liberia	ria	Sheet Name	Liberia	Work Term		From F	From Feb.14 2009 1	To Feb.20 2009	5003			
Digital Ort	Digital Ortho Data File					Digital Ter	Digital Terrain Model						
MA	Measuring Value	ng Value	Check Valu	Value	Decidinale		Planimetry	hetry	M.V.	C.V.	Decidinale	Re	Remarks
NO.	×	y	X	Y	Kesiduals	ÖŽ	×	Y	2	2	Kesiduals	XX	т
40410	701889.03	308246.91	701889.03	308246.91	0.00	40410	701889.03	308246.91	7.27	7.09	0.18		
40420	703185.24	308562.43	703185.24	308562.43	0.00	40420	703185.24	308562.43	6.05	4.74	1.31		
40430	700085.56	308849.19	700085, 56	308849.19	0.00	40430		308849.19	5.62	5, 31	0.31		
40450	708461.30	309295.94	708461.30	309295.94	0.00	40450	708461.30	309295.94	6.60	6, 66	0.06		
40460	709286.89	310486.65	709236. 89	310486,65	0, 00	40460	709286.89	310486.65	7.35	7.21	0.14		
40470	710264.58	311385.43	710264.58	311385.43	0.00	40470	710264.58	311385.43	6.63	6.49	0.14		
40480	707398.44	307643.39	707398.44	307643.39	0.00	40480	707398.44	307643.39	6.66	7.05	0.39		
40490	706985.15	306936.17	706985, 15	306936.17	0.00	40490	706985.15	306936.17	5,04	4.92	0.12		
40500	706507.50	306164.28	706507.50	306164.28	0.00	40500	706507.50	306164.28	4, 12	4.10	0, 02		
40510	705788.82	304992.51	705788.82	304992.51	0.00	40510	705788. 82	304992.51	3.69	3.46	0.23		
40520	705136.70	303774.91	705136.70	303774.91	0.00	40520	705136.70	303774.91	4.60	3. 63	0.97		
40530	704738.45	303133.00	704738.45	303133.00	0.00	40530	704738.45	303133.00	4.37	4.43	0.06		
40560	706022.84	302928.63	706022.84	302928.63	0, 00	40560	706022.84	302928.63	4, 65	4.36	0.29		
40570	707052.67	302763.43	707052.67	302763.43	0.00	40570	707052.67	302763.43	7.37	6.90	0.47		
40580	708181.89	302536.48	708181.89	302536.48	0.00	40580	708181.89	302536.48	3, 18	3. 32	0.14		
40590	703976.20	302296.51	703976.20	302296.51	0.00	40590	703976.20	302296.51	7.11	5.62	1.49		
40610	702562.14	302376.26	702562.14	302376.26	0.00	40610	702562.14	302376.26	4,78	4.04	0, 74		
40630	700828.51	301627.89	700828.51	301627.89	0.00	40630	700828.51	301627.89	2.84	2.32	0.52		
40640	701095.20	302815.08	701095.20	302815.08	0.00	40640	701095.20	302815.08	4.83	4.84	0.02		
40650	700916.93	304185.95	700916.93	304185.95	0.00	40650	700916.93	304185.95	3.44	2.43	1.01		
40660	698896.90	300676.77	698896.90	300676.77	0.00	40660	698896.90	300676.77	9,26	7.01	2.25		
50000	695253, 64	303776.11	695246, 52	303779.79	8.02	50000	695253, 64	303776.11	13.46			Due to Building top	Without Height measuring
50010	714864.22	312196.36	714863.73	312196.40	0.49	50010	714864.22	312196.36	13.53	13.26	0.27		
50020	715153.59	315585.12	715154.00	315585.17	0.41	50020	715153.59	315585.12	13.51	14.20	0.69		
50030	712553.05	315629.08	712553.79	315629.92	1.12	50030	712553.05	315629.08	25.34	25,44	0.10		
50040	711199.27	310927.81	711197.42	310928, 29	1, 91	50040	711199.27	310927.81	10,51	11.95	1.44		
50050	709225.50	307222.25	709224.35	307222.62	1.21	50050	709225.50	307222.25	8.02	4	1	Due to Building top	Without Height measuring
50060	708279.14	312060.05	708279.57	312059.49	0.71	50060	708279.14	312060.05	16.41	16,49	0.09		
50070	707762.79	301541.21	707763.24	301541.79	0.73	50070	707762.79	301541.21	5.39	6.73	1.34		

Quality Control for Ortho-photo Production

Table 14. Quality Control for Ortho-photo

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
Operation Image Image Image Image Itloria Justria Justria Fron Astni Lophoration Supervised Image Image Itloria Justria Justria Fron Feb.14.2000 To Feb.20.2000 Image Itloria Justria Justria Fron Feb.14.2000 To Feb.20.2000 Image Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Justria Jus			Topograph	nic Mapping for		Working									
Liberia Retk Team From Feb.14.2003 To Feb.20.2004 Liberia Retk Team No. From Feb.14.2003 To Feb.20.2004 Liberia No. \overline{X} Residuals No. \overline{X} Residuals No. \overline{X} Residuals No. \overline{X} Residuals No. \overline{X} \overline{X} Residuals No. Liber 1.2 60080 70675.91 31455.68 10.06 2.34 Liber 1.2 6010 705561.99 31455.68 10.06 2.24 00555.41 1.25 6010 70575.91 31455.68 10.06 2.24 00555.41 1.23 6010 70458.65 30957.59 30550.61 2.24 00555.41 1.12 6010 70458.66 30955.55 1.16 0.96 0151.0 704768.65 30955.66 30955.66 3.74 0.86 0.74 0151.0 70458.66 30955.66 30955.66 0.76 0.	Work	The Master Pa	In Study on Ur Improv	rban Facilities Ru vement	estoration and	Organization	Aero Asa	hi Corporation	Supervisor	T.Harada	Checker	H. Mura			
Ogital Terrain Model V X V CV Residuals No. Y X X X X X X 05602.28 0.71 50/60 70780.93 516466.23 7.58 8.97 0.09 05602.28 0.72 50/60 70780.93 516466.29 313468.23 1.43 Xv 05602.58 0.72 50/20 70561.99 313456.23 7.85 8.96 1.01 05667.59 0.72 50/10 705451.93 300573.99 5.81 6.78 1.43 05667.51 0.22 704404.55 300573.99 5.61 0.79 0.99 7.24 05667.51 0.210 704404.55 300573.99 5.61 0.79 0.99 1.45 0.99 05674.50 0.39 56676.53 5.81 6.78 0.99 1.79 05674.51 1.12 5019 704144.55 30573.96 5.81 1.92 1.417	Area	Libe	ria	Sheet Name	Liberia	Work Term		From F	1	To Feb.20	2009				
$ \begin{array}{ $	Digital Or	tho Data File					Digital Ter	rrain Model							
Y Nestodars No. X × resodars No. X resodars No. x resodars No.	-	Measurin	ng Value	Check	Value	Dool 4 who	A La	Planin	metry	M.V.	C.V.	Consideration of the second	R	emarks	Γ
0.8702.86 0.71 50.080 707803.93 308502.21 7.85 8.86 9.97 115437.21 1.52 50090 708575.97 315496.63 13.09 12.85 1.285 11424.43 0.82 50100 705651.93 311435.88 10.06 9.97 11424.93 0.82 50100 705651.93 311435.86 30.97 9.97 02689.45 2.07 50100 705514.93 301650.04 3.76 4.29 00571.43 0.27 50130 704285.66 309573.99 6.74 8.98 01521.03 0.92 50160 702219.40 312982.37 16.69 17.65 01521.13 0.12 50190 702219.40 312982.37 16.69 17.65 01521.13 0.12 50190 702219.40 313101.69 10.58 10.21 01521.13 0.125 5010 702219.40 313101.69 10.58 10.21 01521.13 0.125 5010 70212.23 <th>N</th> <th>×</th> <th>Y</th> <th>X</th> <th>Y</th> <th>Residuals</th> <th>-ON</th> <th>X</th> <th>Y</th> <th>t4</th> <th>Z</th> <th>Residuals</th> <th>ΥX</th> <th>т</th> <th></th>	N	×	Y	X	Y	Residuals	-ON	X	Y	t4	Z	Residuals	ΥX	т	
115487.21 1.52 50000 708575.97 315486.63 13.09 12.85 11424.93 0.82 50100 705651.99 311425.58 10.06 9.97 02589.95 1.68 50110 705651.99 311425.58 10.06 9.97 02574.2 0.27 50120 704404.35 305053.42 5.81 5.60 05574.2 0.29 50140 704409.02 31541.05 5.81 5.60 05574.3 0.29 50140 704409.02 31541.15 8.21 8.45 01521.03 0.99 50130 703176.13 301650.04 3.76 4.84 01521.03 0.99 50140 700376.13 301650.04 3.76 4.84 01521.12 1.12 50170 701423.36 305571.75 8.29 4.84 01571.43 1.12 50130 703176.13 31101.69 17.65 17.65 011301.69 0.25 603030 7035714.75 5.31 6.68 <	50080	707803.93	308502.21	707803.64	308502.86	0.71	50080	707803.93		7.85	8.86	1.01			
111424.93 0.82 50100 705651.99 311425.58 10.06 9.97 N 005085.45 1.68 50110 705451.93 302639.56 2.86 4.29 8.88 005075.41 2.07 50120 704404.35 306055.42 5.81 5.60 8.88 00574.20 0.27 50130 704258.66 309573.99 6.74 8.89 8.89 01550.31 0.299 50150 704258.66 309573.99 6.74 8.89 8.98 01550.31 0.129 50160 704258.56 305715.26 5.81 6.28 4.29 01550.41 1.13 50160 70428.56 305515.26 5.81 0.29 9.99 01550.42 1.12 50100 70316.141 312982.37 16.69 17.65 8.43 01550.41 1.12 50100 70316.141 312392.237 16.05 17.65 17.65 01550.42 5.81 0.51 5.81 1.7.65 1.4.05 <td>50090</td> <td>708575.97</td> <td>315486.63</td> <td>708577.37</td> <td>315487.21</td> <td>1.52</td> <td>50090</td> <td>708575, 97</td> <td>315486.63</td> <td>13, 09</td> <td>12.85</td> <td>0.24</td> <td></td> <td></td> <td></td>	50090	708575.97	315486.63	708577.37	315487.21	1.52	50090	708575, 97	315486.63	13, 09	12.85	0.24			
002689.95 1.68 60110 705451.93 302689.96 2.86 4.29 5.81 5.60 00574.20 0.27 50120 704404.35 306505.42 5.81 5.60 4.29 01547.20 0.27 50130 704285.56 30575.399 6.74 8.98 01547.21 0.29 50160 703176.13 310520.04 3.76 4.84 01521.03 1.123 50160 703176.13 310520.04 3.76 4.84 01521.03 1.123 50160 703176.13 310511.69 1.765 5.20 4.83 01551.12 1.140 50190 700327.50 30571.75 8.29 3.44 01557.153 0.26 50200 69880.30 31101.69 10.58 10.21 01557.163 0.25 50200 698850.30 313101.69 10.58 14.05 01557.153 0.25 50210 701114.15 30250.54 3.44 17 02570.54 1.4 50	50100	705651.99	311425.58	705652.49	311424.93	0.82	50100	705651.99	311425.58	10,06	9.97	0.09			
06095.64 2. 07 50.10 704404.35 306095.42 5.81 5.60 016574.20 0. 27 50130 704258.56 309573.99 6.74 8.98 016574.20 0. 27 50130 704258.56 309573.99 6.74 8.98 01651.12 0. 29 50140 704099.02 316571.75 8.20 9.29 01553.12 1. 133 50160 702319.40 312982.37 16.69 17.65 01553.12 1. 40 50180 700342.50 309548.48 6.08 4.83 01551.65 0. 26 50210 700327.50 30554.48 6.08 4.83 01551.65 0. 26 50210 700327.50 30551.65 3.44 5.65 01551.65 0. 25 50200 698580.30 313101.69 10.58 10.21 01557.15 0. 25 50210 701144.15 302548.48 6.08 4.83 01557.15 0. 25 50210 701114.15 302506.51 30	50110	705451.93	302689.86	705450.25	302689.95	1.68	50110	705451.93	302689.86	2.86	4.29	1.43			
00574.20 0.27 50130 704258.56 309573.399 6.74 8.98 1 01621.03 0.29 50140 704099.02 315433.00 26.67 28.59 1 01621.03 0.99 50150 703176.13 301620.04 3.76 4.84 1 01621.03 0.99 50150 703176.13 301620.04 3.76 4.84 1 05714.30 1.12 50100 700327.50 305715.26 5.81 6.28 1.0.21 055714.30 0.55 50100 700327.50 305715.26 5.81 6.28 1.0.21 03547.51 0.86 50100 700327.50 305715.26 5.81 0.99 5.81 03101.61 0.55 50210 69874.59 305715.75 5.81 1.0.21 1.0.21 03101.61 0.55 50210 69874.59 301574.75 5.79 6.14 1.7 04551.65 1.0.51 502200 69587.56 3116.67 1.1.67	50120	704404.35	306095.42	704402.29	306095, 64	2.07	50120	704404.35	306095.42	5.81	5, 60	0.21			
11543.27 0.29 50140 704090.02 315433.00 26.67 28.59 17.65 01621.03 0.99 50150 703176.13 301620.04 3.76 4.84 1 01621.03 0.99 50150 703176.13 301620.04 3.76 4.84 1 01514.30 1.12 50100 700227.50 305115.26 5.81 6.29 9.99 05514.30 1.12 50100 700227.50 313014.69 17.65 1.0.21 0551.63 1.140 50100 700327.50 31301.69 10.23 10.21 0551.63 0.256 69861.63 30250.56 30355.96 3.19 3.45 0551.65 2.43 50230 69861.63 301574.75 5.79 6.14 16.67 0551.65 2.43 50230 695866.51 3015274.75 5.79 6.14 17 05694.01 1.16 65230 695896.51 3013274.75 5.79 6.14 16	50130	704258.56	309573.99	704258, 73	309574.20	0.27	50130	704258, 56	309573.99	6.74	8.98	2.24			
01621.03 0.99 50150 703176.13 301620.04 3.76 4.84 1.6 112382.41 1.33 50160 702219.40 312982.37 16.69 17.65 8.28 05714.30 1.12 50170 701423.36 305715.26 5.81 6.28 1 055714.30 1.12 50190 700237.50 305548.48 6.08 4.83 055714.30 0.55 50200 69880.30 313101.69 10.21 6.28 059547.63 0.55 50200 698890.30 313101.69 10.58 1.0.21 05970.51 0.51 50200 698784.59 299700.00 38.40 3.44 05851.65 2.43 50200 698784.59 213374.75 5.79 6.14 1.0 05851.65 1.04 5.33 50250.54 313574.75 5.71 6.14 1.7 6 05851.65 1.6 6.03 313574.75 5.73 14.05 1.6 6 1.4 <t< td=""><td>50140</td><td>704099.02</td><td>315433.00</td><td>704098.92</td><td>315433.27</td><td>0.29</td><td>50140</td><td>704099, 02</td><td>315433.00</td><td>26.67</td><td>28.59</td><td>1.92</td><td></td><td></td><td></td></t<>	50140	704099.02	315433.00	704098.92	315433.27	0.29	50140	704099, 02	315433.00	26.67	28.59	1.92			
112982. 41 1.33 50160 702219. 40 312982. 37 16.69 17.65 8.20 9.99 05714. 30 1.12 50170 701423. 36 305715. 26 5.81 6.28 6.28 055714. 30 1.12 50130 700352. 78 316571. 75 8.20 9.99 8.33 055714. 30 0.86 50190 700352. 750 303548. 48 6.08 4.83 10.21 00557. 13 0.55 50210 695880. 30 313101. 69 10.58 10.21 10.21 0.30547. 63 0.55 50210 695880. 30 313101. 69 10.58 10.21 10.21 0.45 50200 695880. 30 313101. 69 10.58 10.21 10.21 0.551 0.51 50220 695880. 50 313574. 75 5.19 6.14 10.61 0.551 0.520 695880. 50 31554. 52 16.14 16.67 14.05 0.551 0.510 695880. 50 31554. 52 16.14	50150	703176.13	301620.04	703176.11	301621.03	0.99	50150	703176, 13	301620.04	3.76	4.84	1.08			
06714.30 1.12 50170 701423.36 305715.26 5.81 6.28 9.99 016573.12 1.40 50180 700352.750 305543.82 6.08 4.83 7.03 00547.63 0.86 50190 700352.750 309548.48 6.08 4.83 7.03 01101.69 0.25 50210 69880.30 313101.69 10.58 10.21 02508.19 0.65 50210 701114.15 302208.36 3.44 5.79 4.83 5.65 02508.19 0.51 50220 698704.59 299700.00 38.10 38.45 5.65 025010 0.511 50220 699860.61 306852.96 3.13 3.06 5.65 01932.10 1.66 5.243 50230 699855.94 3.1675 5.14 16.67 5.67 01932.210 0.16 695866.51 31659.52 16.14 16.67 5.66 01932.210 0.331450 5.81 13.66 5.816 4.17 <td>50160</td> <td>702219.40</td> <td>312982.37</td> <td>702218.07</td> <td>312982.41</td> <td>1.33</td> <td>50160</td> <td>702219.40</td> <td>312982.37</td> <td>16,69</td> <td>17.65</td> <td>0.96</td> <td></td> <td></td> <td></td>	50160	702219.40	312982.37	702218.07	312982.41	1.33	50160	702219.40	312982.37	16,69	17.65	0.96			
Id573.12 1.40 50180 700352.750 316571.75 8.20 9.99 1.00 00547.63 0.86 50190 700327.50 309548.48 6.08 4.83 10.21 0111.69 0.25 50200 698880.30 313101.69 10.58 10.21 10.21 02008.19 0.65 50210 70114.15 302208.36 3.99 3.44 02008.19 0.65 50210 69874.59 299700.00 38.10 38.45 10.21 02001.51 0.51 50220 69874.59 299700.00 38.10 38.45 10.21 02010.51 0.51 60220 69876.59 317374.75 5.79 6.14 10.65 011527.0 1.66 69289.10 317374.75 5.79 6.14 10.65 015664.01 1.15 50290 695880.51 312450.65 14.17 16.67 015664.01 1.166 5331 695880.52 31450.65 14.17 16.67 <td< td=""><td>50170</td><td>701423.36</td><td>305715.26</td><td>701422.79</td><td>305714.30</td><td>1.12</td><td>50170</td><td>701423, 36</td><td>305715.26</td><td>5.81</td><td>6.28</td><td>0.47</td><td></td><td></td><td></td></td<>	50170	701423.36	305715.26	701422.79	305714.30	1.12	50170	701423, 36	305715.26	5.81	6.28	0.47			
09547.63 0.86 50190 700327.50 309548.48 6.08 4.83 113101.69 0.25 50200 698880.30 313101.69 10.58 10.21 292700.51 0.65 50210 701114.15 302208.36 3.99 3.44 29700.51 0.65 50210 701114.15 302208.36 3.99 3.45 20208.19 0.65 50210 698784.59 299700.00 38.10 38.45 20550.165 2.43 50220 699185.94 317374.75 5.79 6.14 10.57 115570.90 0.27 50230 699185.94 317374.75 5.73 6.14 16.67 01932.10 1.66 50230 695866.51 317374.75 5.73 6.14 17.7 01955.21 0.33 50220 695866.51 317374.75 5.73 6.14 16.67 01932.10 1.66 50230 695866.51 317374.75 5.73 6.14 17.7 019355.210	50180	700352.78	316571.75	700353.05	316573.12	1.40	50180	700352.78	316571.75	8.20	9.99	1.79			
113101.69 0.25 50200 69880.30 313101.69 10.58 10.21 10.21 29770.51 0.65 50210 701114.15 302208.36 3.99 3.44 10.21 29770.51 0.51 50220 698784.59 299700.00 38.10 38.45 10.21 205851.65 2.43 50220 698601.63 306852.96 3.13 3.06 0.05851.65 2.43 50220 699185.94 317374.75 5.79 6.14 10.67 0.11558.52 1.04 50220 699185.94 317374.75 5.79 6.87 14.05 0.11558.52 1.04 50230 695866.51 305604.53 3.14.17 6.87 0.11568.52 1.046 51310 695866.51 305604.53 3.14.16 6.87 0.1168.164 1.155 50230 695866.51 301345.66 14.17 6.87 0.168.164 1.156 5030 695869.10 315410.72 2.56 3.24 16.60	50190	700327.50	309548.48	700327.60	309547.63	0.86	50190	700327, 50	309548.48	6.08	4.83	1.25			
002208.19 0.65 50210 701114.15 302208.36 3.99 3.44 1 99710.51 0.51 50220 698784.59 299700.00 38.10 38.45 3 05851.65 2.43 50230 698601.63 306852.96 3.13 3.06 3 3.06 3 05851.65 2.43 50230 699185.94 317374.75 5.79 6.14 16 17574.57 0.33 50250 699185.94 317374.75 5.79 6.14 16.67 11568.52 1.04 50220 695894.17 317374.75 5.79 6.14 16.67 013932.10 1.66 50230 695894.51 317374.75 5.79 6.14 16.67 019332.10 1.66 50230 695894.51 317374.75 5.73 6.14 16.67 015604.01 1.15 50230 695893.067 318410.72 2.56 3.24 17 058147.36 1.33 5.38 16.60	50200	698880.30	313101.69	698880, 05	313101.69	0.25	50200	698880, 30	313101.69	10,58	10.21	0.37			
09700.51 0.51 50220 698784.59 299700.00 38.10 38.45 3 06851.65 2.43 50230 698601.63 306852.96 3.13 3.06 3 115270.90 0.27 50240 699185.94 317374.75 5.79 6.14 0.65 115570.91 0.27 50240 699185.94 317374.75 5.79 6.14 0.65 1155752 1.04 50250 699185.94 317374.75 5.79 6.14 0.67 115681.52 1.04 50250 695866.51 305604.55 3.61 4.17 0.7 05604.01 1.15 50230 695895.10 305604.55 3.61 4.17 0.7 05604.01 1.15 50230 695895.07 31450.65 14.46 16.60 0.87 058147.36 1.3 312450.65 14.46 16.60 12.41 1 16.60 058147.35 1.16 53310 6938320.57 315410.72 2.56	50210	701114.15	302208.36	701113.52	302208.19	0.65	50210	701114.15	302208.36	3.99	3.44	0.55			
06861.65 2.43 50.230 698601.63 306852.96 3.13 3.06 3.13 115270.90 0.27 50240 697568.59 315270.94 13.38 14.05 14.05 115737.4.57 0.33 50250 699185.94 317374.75 5.79 6.14 16.67 11557.52 1.04 50250 699185.94 317374.75 5.79 6.14 16.67 11658.52 1.04 50250 699185.94 317374.75 5.79 6.14 16.67 01932.10 1.66 50230 695895.15 301932.21 8.55 8.88 8.88 05604.01 1.15 50230 695895.17 312450.66 14.417 16.60 058147.36 1.39 55310 693830.67 312416.58 16.405 3.241 058147.36 1.39 50310 693830.67 312416.58 16.60 12.41 058147.36 1.16 50310 693830.67 312416.58 16.60 12.41 16.60<	50220	698784.59	299700.00	698784.63	299700.51	0.51	50220	698784, 59	299700.00	38.10	38.45	0.35			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	50230	693601.63	306852.96	698599, 58	306851.65	2.43	50230	698601, 63	306852.96	3.13	3.06	0.07			
117374.57 0.33 50250 699185.94 317374.75 5.79 6.14 16.67 11658.52 1.04 50260 695294.76 311659.52 16.14 16.67 16.67 01932.10 1.66 50270 695284.51 30932.21 8.55 8.88 05604.01 1.15 50230 695866.51 305604.53 3.61 4.17 05604.01 1.16 603380.67 316811.39 5.82 6.87 058147.36 1.39 50300 695880.51 305604.53 3.61 4.17 058147.36 1.39 50300 693830.67 312460.66 14.48 16.60 08147.36 1.16 5031 692420.59 312460.52 16.41 2.51 3.24 05146.08 1.16 50321 692420.59 312966.91 5.81 6.31 6.41 11506.68 0.71 50320 693520.23 312906.91 5.81 6.31 6.41 12046.08 1.04 50321 692420.55 312206.60 8.78 9.04 120206.08 1.04 50321 692420.55 312202.62 11.66 12.41 12006.08 1.04 50321 692603.45	50240	697568.59	315270.94	697568.86	315270.90	0.27	50240	697568, 59	315270.94	13.38	14.05	0.67			
III658.52 1.04 50260 696294.76 311659.52 16.14 16.67 16.67 001932.10 1.66 50270 696283.22 301932.21 8.55 8.88 8.88 005604.01 1.15 50230 695896.51 305604.53 3.61 4.17 8.61 4.17 005604.01 1.15 50230 695896.51 305604.53 3.61 4.17 8.63 16811.64 0.33 50290 695899.01 316611.39 5.82 6.87 8.75 112450.29 0.39 50301 693830.67 312450.66 14.48 16.60 8.75 03147.36 1.16 50321 693229.27 305416.59 10.60 12.41 11.66 05140.68 0.71 50321 692420.59 316410.72 5.81 6.31 11.61 12.41 12.41 12.41 12.41 12.41 12.04 12.64 12.41 12.64 12.44 12.64 12.64 12.64 12.64 12.6	50250	699185.94	317374.75	699186.22	317374.57	0.33	50250	699185, 94	317374.75	5.79	6.14	0.36			
0.01332. 10 1. 66 50.270 696283. 22 3.01932. 21 8. 55 8. 88 8. 0.05604. 01 1. 15 50280 695866. 51 305604. 53 3. 61 4. 17 7 0.16811. 64 0. 33 50290 6958930. 67 315811.39 5. 82 6. 87 8 1.15 50300 6958930. 67 312450. 66 14. 48 16. 60 7 0.12450. 29 0. 39 50310 693830. 67 312450. 66 14. 48 16. 60 7 0.12450. 28 0.301 693830. 67 312450. 66 14. 48 16. 60 7 0.12450. 28 0.301 693830. 67 312450. 66 12. 51 7 0.16410. 87 1.16 5031 693576. 39 312906. 91 5. 81 6. 31 0.16410. 87 1.16 5031 689376. 39 312906. 91 5. 81 6. 31 1.2006. 61 1.1 5031 689376. 39 312906. 91 5. 81 6. 41 7 1.2001.	50260	696294.76	311659, 52	696294.49	311658, 52	1.04	50260	696294.76	311659, 52	16.14	16.67	0.53			
005604.01 1.15 50280 695866.51 305604.53 3.61 4.17 4.17 16811.64 0.33 50290 695089.10 316811.39 5.82 6.87 8 12450.29 0.39 50300 693830.67 312450.66 14.48 16.60 8 03147.36 1.39 50310 693830.67 312450.66 14.43 16.60 8 03147.36 1.16 50310 693830.67 312450.65 14.43 16.60 8 03147.36 1.16 50310 693830.67 312450.66 12.51 8 1 6 3 1 6 1 4 1	50270	696283.22	301932.21	696281.56	301932.10	1.66	50270	696283, 22	301932.21	8, 55	8.88	0.34			
Identified 0.33 50290 695089.10 316811.39 5.82 6.87 6.87 012450.29 0.39 50300 693830.67 312450.66 14.48 16.60 1 08147.36 1.39 50310 693830.67 312450.66 14.48 16.60 1 08147.36 1.39 50310 693830.67 312450.66 14.43 16.60 1 016410.87 1.16 5031 693529.27 308145.98 10.60 12.51 1 016410.87 1.16 5031 693576.39 312906.91 5.81 6.31 1	50280	695866.51	305604.53	695865.48	305604.01	1.15	50280	695866, 51	305604.53	3.61	4, 17	0.56			1
I12450.29 0.39 50300 693830.67 312450.66 14.48 16.60 08147.36 1.39 50310 693829.27 308145.98 10.60 12.51 016410.87 1.16 50321 693529.27 308145.98 10.60 12.51 16410.87 1.16 50321 693576.39 315410.72 2.56 3.24 112906.68 0.71 50330 689376.39 312906.91 5.81 6.31 112906.68 0.71 50340 689376.39 312906.91 5.81 6.31 12206.6108 1.04 50340 689280.28 316202.62 11.66 12.41 20466.08 1.04 50350 688432.54 320466.90 8.78 9.04 20466.08 0.24 59731 692603.45 310324.91 21.41 20.94 Average 0.24 59731 692603.45 310324.91 21.41 20.94 Max 8.02 Max 8.02 310324.91 21.41	50290	695089, 10	316811.39	695088, 89	316811.64	0.33	50290	695089, 10	316811.39	5.82	6.87	1.05			
08147.36 1.39 50310 693329.27 308145.98 10.60 12.51 1 116410.87 1.16 50321 69376.39 316410.72 2.56 3.24 1 112906.68 0.71 50330 689376.39 312906.91 5.81 6.31 1 112906.68 0.71 50340 689376.39 312906.91 5.81 6.31 1 112006.08 1.04 50340 689280.28 316202.62 11.66 12.41 20.44 20466.08 1.04 50350 688432.54 320466.90 8.78 9.04 20.46 20466.08 1.04 50351 692603.45 310324.91 21.41 20.94 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.44 20.44 20.44 20.44 20.44 20.44 20.44 20.44 20.44 20.44 20.44 20.44 20.44 20.44 <	50300	693830.67	312450.66	693830, 55	312450.29	0.39	50300	693830, 67	312450.66	14,48	16.60	2.12			
I16410.87 1.16 50321 692420.59 316410.72 2.56 3.24 8 112906.68 0.71 50330 689376.39 312906.91 5.81 6.31 8 112906.68 0.71 50340 689376.39 312906.91 5.81 6.31 8 116201.92 0.71 50340 689280.28 316202.62 11.66 12.41 8 20466.08 1.04 50350 688432.54 320466.90 8.78 9.04 8 20466.08 1.04 50350 688432.54 310324.91 21.41 20.94 8 Average 0.24 59731 692603.45 310324.91 21.41 20.94 8 Max 8.02 Max 8.02 310324.91 21.41 20.94 8 8 Max 8.02 Max 8.02 310324.91 21.41 20.94 8 8 8 8 8 8 8 8 8 8	50310	693329.27	308145.98	693329.15	308147.36	1.39	50310	693329, 27	308145.98	10.60	12.51	1.91			
112906. 68 0. 71 50330 689376. 39 312906. 91 5. 81 6. 31 6. 31 116201. 92 0. 71 50340 689280. 23 316202. 62 11. 66 12. 41 7 20466. 08 1. 04 50350 688432. 54 320466. 90 8. 78 9. 04 7 20466. 08 1. 04 50350 688432. 54 32034. 91 21. 41 20. 94 7 Average 0. 24 59731 692603. 45 310324. 91 21. 41 20. 94 7 Max 8.02 Max 8.02 310324. 91 21. 41 20. 94 7	50321	692420.59	316410.72	692419.44	316410.87	1.16	50321	692420.59	316410.72	2.56	3.24	0.68			
i16201.92 0.71 50340 689280.28 316202.62 11.66 12.41 20466.08 1.04 50350 688432.54 320466.90 8.78 9.04 20466.08 1.04 50350 688432.54 320466.90 8.78 9.04 Average 0.24 59731 692603.45 310324.91 21.41 20.94 Average 0.46 . . 692603.45 310324.91 21.41 20.94 Max 8.02 . <td< td=""><td>50330</td><td>689376.39</td><td>312906.91</td><td>689375, 72</td><td>312906.68</td><td>0.71</td><td>50330</td><td>689376, 39</td><td>312906.91</td><td>5.81</td><td>6.31</td><td>0.51</td><td></td><td></td><td></td></td<>	50330	689376.39	312906.91	689375, 72	312906.68	0.71	50330	689376, 39	312906.91	5.81	6.31	0.51			
20466.08 1.04 50350 688432.54 320466.90 8.78 9.04 0.10325.07 0.24 59731 692603.45 310324.91 21.41 20.94 Average Average 0.46 Max 8.02 Max 8.02 Max 8.02 Max 8.02 Max 8.02	50340	689280.28	316202.62	689280.37	316201.92	0.71	50340	689280.28	316202.62	11.66	12.41	0.75			é di
110325.07 0.24 59731 692603.45 310324.91 21.41 20.94 Average 0.46 Average 0.46 Max 8.02 Max 8.02 SD Max	50350	688432.54	320466.90	688433.18	320466.08	1.04	50350	688432.54	320466.90	8.78	9.04	0.26			
Average 0.46 Max 8.02 Max 8.02 MSE 1.09	59731	692603.45	310324.91	692603.27	310325.07	0.24	59731	692603.45	310324.91	21.41	20.94	0.47			
Max 8.02 Max MSE 1.09 S.D	Tone	Defomation	Image Join	Sheet Join	Average	0.46					Average	0.73			
MSE 1.09 S.D	C	C	C	C	Max	8.02					Max	7.02			
	ş	>	2	Ş	MSE	1.09					S.D	1.27			

Quality Control for Ortho-photo Production

Table 15. Quality Control for Ortho-photo

[12] Digital Plotting

Ground objects and topographic features were digitally plotted in spatial model created by stereo pair of aerial photograph data. Plotted and expressed topographic features were stored on each layer as a scale of 1:10,000 topographic map data. Individual features and object data were categorized based on the accuracy of aerial 1:10,000 photography as following manner.

*Left Photograph shows Digital plotting work with Photogrammetric Work Station, Softplotter.

i. Preparatory Work

Before work started following preparatory works were carried out.

i-1 Categorize of Data Structure of Topographic Data File

Topographic data file were categorized as the following 4 data types.

- Line data

The continuous data from the starting point to the ending point.

- Area (Polygon) data

The data to be obtained as an enclosed feature such as building and continuous data from the starting point to the ending point as enclosed line. However, coordinates of the starting point and the ending point shall coincide with each other.

- Point data

The data to be obtained independently as isolated points such as buildings, vegetation symbol and so on.

- Text data

The data to be shown as an annotation and explanation of features on the topographic map

Furthermore, above-mentioned data consists of following 4 attribute data.

- Layer (level)
- Color
- Line weight
- Line style

i-2 Map Feature Code

Map Feature Code (MFC) was prepared prior to actual digital data acquisition to classify the obtained data. The Digital data was acquired based on the MFC.

i-3 Map Symbols

Prior to commencement of actual work, Map Symbol Specification was consulted and agreed on during the consultation between Counterparts and JICA Study Team. Some of the map symbols were modified and finalized during the topographic mapping works. Finalized Symbols Specification is shown on APPENDIX 7.

ii. Digital Plotting Works

Following are the major points of field objects to be acquired as a digital data during the plotting based on the Symbol Specification.

- ii-1 Road, bridge and railway
 - National road, local main road

Roads were obtained one side by one side (not to use the parallel lined commend).Sidewalk, roadside tree and green belt more than 3 meters width were defined and expressed on the map.

- Paved and earth road

The paved road and earth road were judged by photo interpretation (They were verified during Field Verification). The roads and tracks within the city area were judged as a paved road and the road in countryside were mostly earth roads.

- Under-construction road

The edges of under-construction roads are not clear and the widths of under construction road become wide and narrow depending on the condition. In this case, the lines of under-construction road were obtained by same width at the average width estimated by zoom up of photo image of digital plotter.

- Footpath

The footpath with 100 m length (1 cm on 1:10,000 topographic map) was not expressed. However a footpath, shorter than 100m connecting between double line

road and to village, connecting the double line road to double line road, were obtained according to the importance of the footpath.

- Railway

Railway data was obtained by single line symbol at the center of railway's track.

ii-2. House and building

All houses and buildings were interpreted and plotted on 3D spatial image consists of photograph stereo pairs. Houses under trees or behind tall building were interpreted carefully. Especially at the edge of photo model, houses behind tall buildings may often not be identified. In congested housing areas, considering the drawing limit on 1:10,000 scale topographic maps, the shape of the houses were generalized. However generalizations of houses were done only in limited areas of the study area, such as Red Light, because of 1:10,000 photograph scale.

ii-3 Fences and Revetment

The fence/wall and artificial revetment of school, factory and so on, more than 100 m (1 cm on 1:10,000 scale topographic map) were expressed. Even when shorter than 100m, if these objects were judged as important, fencing and walls were acquired.

ii-4 River, stream, lake and pond

Minimum size data acquisition of pond was 50 m \times 50 m (5 mm \times 5 mm on 1:10,000 scale topographic map). Ponds smaller than this size were omitted. Streams less than 100 m (1 cm on 1:10,000 scale topographic map) and has no connection with another stream or river were not expressed.

ii-5 Vegetation

Vegetation were obtained at approximately $200m \times 200m$ unit ($2cm \times 2cm$ on 1;10,000 scale topographic map). A small non-cultivation area ($5mm \times 5mm$ on 1:10,000 scale topographic map) within cultivation area were not shown on the map.

ii-6 Zone Boundary

Zone Boundaries were expressed on the map. However the boundary data was not suitable to express on to 1:10,000 topographic map due to the scale of collected boundary map. The Study Team proposed that the alignment of Administrative boundaries following natural features such as Roads, Rivers and so on, were adjusted to its shapes to distinct features when boundary runs along the lines of such features. In the open area, such as fields, forest and so on, boundary is expressed as following the collected boundary data of LISGIS.

ii-7 Spot elevation

Spot elevation were obtained the density approximately 9 (nine) points within 1km x 1km (10cm \times 10cm on 1:10,000 scale topographic map) due to the importance of height information for the project.

The observation point and order of observation of spot elevation were as follows:

- Intersections of main road
- Intersections of double line road
- Corners of double line road
- Intersections of footpaths or corners of footpaths

ii-8 Contour line

The project area is considerably flat. The flying height of the aerial photography was made with enough accuracy of 1:2,500 topographic map production. The contour line interval was set to 2 m because of needs of further study for Master Plan. The contour line for depression area was drawn also and spot height was observed as an additional height information if the size of depression area is large.

[13] Digital Compilation

Digital Compilation was carried out on the digital plotting data. The works include a data amendment, annotation of geographical names and other items not modified on digital plotting stage as following manner.

* Left Photograph shows Digital Compilation work with AutCAD.

i. Checking of Data Structure

The checking of data structure consists of following items.

i-1 Planimetric features between adjacent sheets

The discrepancy of horizontal position of data at the neat-line was checked. In case the

planimetric features do not coincide between adjacent sheets, data amendment was carried out by using orthophoto image.

i-2 Data type and attribute

The acquired topographic map data were checked according to the data type and attribute defined prior to the commencement of the actual work.

i-3 Visual check on a plotted Manuscript

After completion of digital compilation works, topographic data was plotted. Plotted data was checked with orthophoto image, field verification data and so on visually.

i-4 Control point and contour lines

- Density of geodetic points including spot heights and height values of contour lines.
 The density of geodetic points including spot heights and contour value is approximately 9 (nine) points at 10cm × 10cm on 1:10,000 scale topographic map an average.
- Relation between geodetic points and contour lines
 The relation between geodetic points including spot heights and contour lines was checked.
- i-5 All expressed data were checked based on following check items.
 - Lack of data acquisition
 - Shape
 - Type
 - Location

ii. Marginal information

"Marginal information" is the map information shown at the outside of neat-line of topographic map. The information such as map scale, scale bar, map symbol, history of mapping and so on are shown in marginal information.

The items to be shown in marginal information are as follows:

- Neat-line, Sheet name & number, Grid and longitude and latitude
- Administrative names, Information and history of Topographic map
- Map scale, Map symbols, Sheet index and other necessary information

Marginal information was prepared sheet by sheet. The draft of marginal information applied to the topographic maps of the study shown on Figure 8.

Figure 8. Instruction for Marginal Information

[14] Symbolization

Digitally compiled data (point, line and polygon) were symbolized to convert the topographic map data to printing by printer. Digitized data were symbolized based on the finalized Topographic Map Symbols shown on APPENDIX 7.

[15] Creation of Data File

Finalized topographic data were checked for matching with work specification. Topographic data were recorded in certain format agreed with counterpart. Study Team converted topographic map data into following 3 data types format.

- KML data
- DXF file
- PDF file

[16] Quality Control

Quality control of individual works was carried out as follows. Result of Quality Control of Individual Work is shown at the end of each work paragraph. List for Quality Control for major works is shown Table 16.

No.	Work Items
1	Control Point Survey
2	Simple Leveling
3	Aerial Photography
4	Digital Plotting and Compilation
5	Symbolization
6	Creation of Data File

Table 16 List of Works for Quality Control

i. Digital Plotting and Compilation and 5. Symbolization, 6. Creation of Data File are shown on APPENDIX 8.

ii. Addition to the major works, Quality Control of following works was done shown as follows.

- Ortho-photo production
- Aerial Triangulation

Chapter 4. Participation of the Seminar

The Study Team participated in the Interim Report Seminar of the Project held on April 29th 2009 in the Cape Hotel, Monrovia. The Seminar Program is shown in following Figure 9. While the seminar implementation, the Study Team presented methodology of Topographic Mapping and Ortho-photo Production and Data application simply by presentation of a Fly Through movie created by Computer Graphic software by using produced Topographic Mapping Data and IKONOS satellite image. The CD_ROM of Fly through Movie is attached to the Final Report. At the same time the Study Team announced that the copy right of Topographic Map belongs to MPW and JICA. Map user should receive approval of one of the both organization.

Seminar for Interim Report of Master Plan Study Team

The Master Plan Study on Urban Facilities Restoration and Improvement in Monrovia in the Republic of Liberia

Interim Report Seminar Program Outline

- (1) Date: April 29, 2009
- (2) Venue: Cape Hotel, Monrovia
- (3) Program Schedule

Time	Speech/ Presentation	Presenter/ Speaker
9:00 - 9:30	Registration	
9:30 - 9:45	Opening Speech	Hon. Loseni Dunzo, Minister Ministry of Public Works
9:45 - 10:00	Speech by Chief Guest	Mr. Daniel G, Johnson, Chairman of City Council
10:00 - 10:20	Tea Break	
10:20 - 10:30	Presentation of Mapping Team	Mr. Takashi Harada, Team Leader, JICA Study Team for Mapping
10:30 - 10:45	Introduction of the Study by JICA Study Team Leader	Mr. Masatsugu Komiya, JICA Study Team Leader
10:45 - 11:15	Theme 1: Socio-Economic Characteristics and Land Use	Planning Sector Team
11:15 - 11:30	Questions & Answers	
11:30 - 12:00	Theme 2: Road and Transportation	Road Sector Team
12:00 - 12:15	Questions & Answers	
12:15 - 12:45	Theme 3: Water Supply / Sewerage / Storm Water Drainage	Water Sector Team
12:45 - 13:00	Questions & Answers	
13:00 - 13:10	Speech by Special Guest	Mr. Isamu Kikuchi, Country Manager JICA Liberia Field Office
13:10 - 13:20	Vote of Thanks and Closing	Mr. Edsel Edward Smith, Assistan Minister for Technical Services, Ministry of Public Works
13:20 - 14:20	Lunch	

Figure 9. Seminar Program

Chapter 5. Discussion of Draft Final Report

At the end of the field works of the project, discussion of Draft final Report was held by MPW and Study Team with the witness of representative of JICA Liberia field office. Following are discussed and agreed items.

1. Out line of Final Report (Draft)

Both sides discussed and agreed on the outline of the Draft Final Report for the Topographic Mapping as attached APPENDIX 8.

2. Number of Final Report to be submitted

JICA Study Team agreed that five (5) sets of Final Report are submitted to GOL after the Work Completion.

3. Final Data Type for delivery

JICA Study Team and GOL agreed that final Topographic Map Data type for delivery is DXF, PDF and KML data format and additionally SHP file data.

4. Zone Boundaries

Zone boundaries are shown to the map along the distinct features such as roads and rivers and so on when a boundary runs along the lines of them. Boundaries are not shown in the sea area.

5. Report, Result of Surveying, Topographic Map and Ortho-photo Data Disclosure JICA Study Team requested to GOL to disclose Report, Result of Surveying, produced Topographic Map and Ortho-photo Data to the Governmental, International and Academic organization with the approval of GOL (MPW). GOL agreed with Study Team.

6. Negative Films and Contact Prints

JICA Study Team delivered following result as a part of final deliveries to GOL.

- Negative Films :2 Rolls
- Contact Prints :1 set

7. Polyester Base Sheet Map Print production

GOL (MPW) requested to JICA Study Team to produce 1 set of the maps printed on polyester base sheet adding to the delivery. JICA Study Team agreed with GOL.

8. Handover of Equipment used for Study

GOL (MPW) requested to JICA the handover of Equipment, shown in APPENDIX 3 used for the Topographic Mapping Works in Liberia by JICA Study Team. JICA Study Team promised to convey the request to JICA.

Chapter 6. Final Products

Final products to be delivered are as below. Among the final products, some of products such as Negative films and Contact prints were already delivered to GOL at the end of the field work in Liberia.

As a sample of Topographic Maps and Ortho-photo to be delivered are shown Figure 10.

(1) Final Result (Topographic Map Data and others)

1)		Aerial Photography	
	-	Negative Film	: 1 set (Delivered to GOL)
	-	Digital Data File	: 2 sets (1 set for GOL)
	-	Contact Print	: 2 sets (1 set for GOL)
	-	Flight Index Map	: 2 sets (1 set for GOL)
2)		Field Survey	
	-	Survey Result	: 2 sets (1 sets for GOL)
3)		1:10,000 Topographic Map	
	-	Topographic Map Data File	: 6 sets (5 sets for GOL)
		1.10.000 O de a bata	
4)		1:10,000 Ortho-photo	
	-	Ortho-photo Data File	: 6 sets (5 sets for GOL)
(2)		Reports	
(2)		Reports	
1)		Inception Report	: 5 sets (3 sets delivered to GOL)
2)		Final Report	
	-	Main Report	: 5 sets (3 sets for GOL)
	-	Summary	: 5 sets (3 sets for GOL)
	-	Main Report (Japanese Version)	: 5 sets

Figure 10. Sample of 1:10,000Topographic

Ortho-photo Map

Chapter 7. Conclusion

Followings are the items that Study Team paid attention and innovated through the Study of Topographic Mapping.

1. A large scale of Aerial Photography

During the work planning before work start, a scale of Aerial Photography was selected to 1:10,000 for 1:10,000 topographic maps due to the reasons as below.

- To secure the acquisition of aerial photograph data without disturbance of clouds existed in the sky over the area of the project.
- To make contour interval 2m to secure the purpose of further Master Plan Study. Generally standard contour interval of 1:10,000 is 5 m (aerial photograph scale is 1:20,000 to 1:25,000).

2. Shape file conversion

To make data useful and convenient, the Study Team decided to convert DWG data to SHP data for the software of MPW. However it doesn't mean that all data has an attribute or structured like data for GIS. They are just Topographic Map data possible to open with ArcGIS.

3. Data Classification

All topographic data was classified into 3 types of data, such as point, line and polygon data, and stored onto each layer as geodetic information data for GIS. However they are not structured as GIS basic data.

4. Application of Topographic map data

Study Team produced 3 dimensional fly through movie of study area to handle the condition of study area by using of IKONOS satellite imagery, Ortho-photo data and 3 dimensional topographic map data.

Further more, Study Team recommends followings about the Topographic Map Data.

1. Up-dating of Topographic Map Data

Study Team hopes that produced topographic map data shall be up-dated by Liberia's effort in future. Study Team recommends to use satellite imagery for this purpose. It doesn't mean that high resolution of a satellite imagery guarantees high accuracy of topographic map data, satellite images can be applied to an up-dating of topographic map data are Qucikbird or IKONOS.

2. Further Usage of Topographic Map Data

Study Team hopes that Liberia use topographic map data for other purposes effectively. Produced topographic map data can be deemed to be equivalent to an accuracy of 1:2,500 topographic map.

Therefore, Study Team recommends that a data can be utilized for not only master plan study but for various designing such as development planning, City planning, Cadastral surveying and so on.