Feasibility Study $0 n$
 Agro-industrial Park Development in the Jordan River Rift Valley

Final Report

Volume 2
(Reference Data and Materials of Engineering Study)
2/2

March 2009

JAPAN INTERNATIONAL COOPERATION AGENCY

KRI INTERNATIONAL CORP.
NIPPON KOEI CO., LTD.

Feasibility Study $0 n$
 Agro-industrial Park Development in the Jordan River Rift Valley

Final Report

Volume 2
(Reference Data and Materials of Engineering Study)
2/2

March 2009

JAPAN INTERNATIONAL COOPERATION AGENCY

KRI INTERNATIONAL CORP.
NIPPON KOEI CO., LTD.

Chapter II Engineering Calculation Sheet

II-1 Road

RD-1 Pavement design for off-site access roads and on-site roads
RD-2 Design for storm water drainage channel

II-2 Water Supply Facilities

WS-1 Results of interview survey on working periods
WS-2 Calculation for rate of loading and hourly factor
WS-3 Results of field interview survey on existing agriculture wells
WS-4 Hydraulic gradient lines along the water transmission pipelines
WS-5 Results of hydraulic analysis for the water distribution networks

II-3 Wastewater treatment Facilities

WT-1 W astewater treatment flow
II-4 Cost estimate
CE-1 Project cost for Agro-industrial Park Development Stage 1, 2 and 3
CE-2 Project cost for Agro-industrial Park Development Stage (1+2) and 3

RD-1 Pavement Design for Off-site Access Roads and On-site Roads

1. Methodology of the Pavement Design
2. Pavement Design for Access Roads
3. Pavement Design for On-site Major and Minor Roads

1. Methodology of the Pavement Design

Pavement design of the Access road and On-site roads were designed on the basis of "Design of Pavement Structures 1993" published by American Association of State Highway and Transportation Officials (AASHTO).

The Methodology for pavement design base on above manual is shown as following figure.

Flow of the Pavement Design

2. Pavement Design for Access Roads

Pavement Design of Access Road for Stage I

The Estimation for design EASL toward traffic volume from the agro-industrial park is shown following table. In this estimation, analysis period was defined as 10 years for considering the short term use.

Design ESAL of Access Road for Stage I

Vehicle Types	Design Daily Traffic Volume (vehicles/day)	Design Annual Traffic Volume (vehicles/year)	Design Traffic *Analysis period of 10years	ESAL Factor	Design ESAL
Passenger cars	440	160,600	$1,606,000$	0.001	1,606
Buses	60	21,900	219,000	0.870	190,530
Single Unit Trucks	80	29,200	292,000	0.980	286,160
Heavy Trailer	70	25,550	255,500	1.480	378,140
Total	650	237,250	$2,372,500$		856,436

Design lane traffic (DsgnW_{18}) was calculated by applying following formula. In this calculation, Directional distribution factor is setup a value of 0.5 as general and lane distribution factor is setup a value of 1.0 for one lane in each direction of travel.

$$
\begin{aligned}
& \text { DsgnW } W_{18}=\mathrm{D}_{\mathrm{D}} \times \mathrm{D}_{\mathrm{L}} \times \text { Total } \mathrm{W}_{18} \\
& \text { where, Total } \mathrm{W}_{18} \text { : Design ESAL } \\
& \mathrm{D}_{\mathrm{D}} \quad: \text { Directional distribution factor } \\
& \mathrm{D}_{\mathrm{L}} \quad: \text { Lane distribution factor }
\end{aligned}
$$

As the result of above estimation, design fane traffic of 428,218 was obtained.
And Structural number (SN) is examined by applying the following formula.

$$
\log W_{18}=Z_{R} \times S_{0}+9.36 \log (S N+1)-0.20+\frac{\log \left(\frac{\Delta P S I}{4.2-1.5}\right)}{0.40+\frac{1094}{(S N+1)^{5.19}}}+2.32 \log \left(M_{R}\right)-8.07
$$

where, W_{18} : the Number of ESALs over the lifetime of the pavement
SN : Structural number
$\mathrm{Z}_{\mathrm{R}} \quad$: Standard normal deviate
$\mathrm{S}_{0} \quad$: Overall Standard Deviation
$\triangle P S I \quad: \mathrm{p}_{\mathrm{o}}-\mathrm{p}_{\mathrm{t}}$
MR : Roadbed Soil Resilient Modulus (psi)

In the estimation, each coefficient is defined as shown in the following table.
Pavement Design factor of Access Road for Stage I

Factor	Value	Remarks	
Z_{R}	-1.037	Reliability: 85%	
$\mathrm{~S}_{0}$	0.45		
p_{o}	4.2		
p_{t}	2.5		
M_{R}	$12,000 \mathrm{psi}$	$1500 \times$ CBR	*CBR=8 (assumption)

Result of above calculation, structural number of 2.42 was obtained. And the estimated thickness of the pavement structure is calculated from the structural number equation as:

$$
\mathrm{SD}=\mathrm{a} 1 * \mathrm{D} 1+\mathrm{a} 2 * \mathrm{D} 2+\mathrm{a} 3 * \mathrm{D} 3
$$

Thicknesses of each pavement layer (asphalt, base and sub-base) are determined as associated SN of the pavement is satisfied with structural number required as shown in the following table.

Calculation of Layer Thickness of Access Road for Stage I

Layer	Description	Layer Coefficient	Drainage Coefficient *Assumption	Elastic Modulus (psi) *Assumption	Practical Layer Thickness (cm)	Associated SN
D1	AC Layer	0.420	1.00	400,000	5.0	0.83
D2	Gran Base	0.132	1.00	28,500	35.0	1.82
				Total SN	$2.65>2.42$	

Source: JICA Study Team
The design procedure results in the following preliminary thickness of;

D 1 (i.e., thickness of the asphalt concrete layer) $=5 \mathrm{~cm}$
D 2 (i.e., thickness of the base course layer) $=35 \mathrm{~cm}$

Pavement Design of Access Road

Estimation for design EASL toward traffic volume from the agro-industrial park is shown following table. In this estimation, analysis period was defined as 20 years.

Design ESAL for Access Road

Vehicle Types	Design Daily Traffic Volume (vehicles/day)	Design Annual Traffic Volume (vehicles/year) *1year=365days	Design Traffic *Analysis period of 20years	ESAL Factor	Design ESAL
Passenger cars	4,190	$1,529,350$	$30,587,000$	0.001	30,587
Buses	570	208,050	$4,161,000$	0.870	$3,620,070$
Single Unit Trucks	820	299,300	$5,986,000$	0.980	$5,866,280$
Heavy Trailer	260	94,900	$1,898,000$	1.480	$2,809,040$
Total	5,840	$2,131,600$	$42,632,000$		$12,325,977$

Source: JICA Study Team
Design lane traffic (DsgnW_{18}) was calculated by applying following formula. In this calculation, Directional distribution factor is setup a value of 0.5 as general and lane distribution factor is setup a value of 0.9 for two lanes in each direction of travel.

$$
\begin{aligned}
& \text { DsgnW }{ }_{18}=\mathrm{D}_{\mathrm{D}} \times \mathrm{D}_{\mathrm{L}} \times \text { Total } \mathrm{W}_{18} \\
& \text { where, Total } \mathrm{W}_{18} \text { : Design ESAL } \\
& \mathrm{D}_{\mathrm{D}} \quad: \text { Directional distribution factor } \\
& \mathrm{D}_{\mathrm{L}} \quad: \text { Lane distribution factor }
\end{aligned}
$$

As the result of estimation, design fane traffic of 5,546,690 was obtained. And Structural number (SN) is examined by applying the following formula.
$\log W_{18}=Z_{R} \times S_{0}+9.36 \log (S N+1)-0.20+\frac{\log \left(\frac{\Delta P S I}{4.2-1.5}\right)}{0.40+\frac{1094}{(S N+1)^{5.19}}}+2.32 \log \left(M_{R}\right)-8.07$
where, W_{18} : the Number of ESALs over the lifetime of the pavement
SN : Structural number
$\mathrm{Z}_{\mathrm{R}} \quad$: Standard normal deviate
$\mathrm{S}_{0} \quad$: Overall Standard Deviation
$\triangle P S I: \mathrm{p}_{\mathrm{o}}-\mathrm{p}_{\mathrm{t}}$
MR : Roadbed Soil Resilient Modulus (psi)
In the estimation, each coefficient is defined as shown in the following table.
Pavement Design factor for Access Road

Factor	Value	Remarks	
Z_{R}	-1.037	Reliability: 85%	
$\mathrm{~S}_{0}$	0.45		
p_{0}	4.2		
p_{t}	2.5		
M_{R}	$12,000 \mathrm{psi}$	$1500 \times$ CBR $\quad{ }^{* C B R=8}$ (assumption)	

Source: JICA Study Team

Result of above calculation, structural number of 3.69 was computed. And the estimated thickness of the pavement structure is calculated from the structural number equation as:

$$
\mathrm{SD}=\mathrm{a} 1 * \mathrm{D} 1+\mathrm{a} 2 * \mathrm{D} 2+\mathrm{a} 3 * \mathrm{D} 3
$$

Thicknesses of each pavement layer (asphalt, base and sub-base) are determined as associated SN of the pavement is satisfied with structural number required as shown in the following table.

Calculation of Layer Thickness for Access Road

Layer	Description	Layer Coefficient	Drainage Coefficient *Assumption	Elastic Modulus (psi) *Assumption	Practical Layer Thickness (cm)	Associated SN
D1	AC Layer	0.420	1.00	400,000	7.0	1.16
D2	Gran Base	0.132	1.00	28,500	30.0	1.56
D3	Gran. Sub-base	0.110	1.00	15,000	30.0	1.30
					Total SN	$4.02>3.69$

Source: JICA Study Team
The design procedure results in the following preliminary thickness of:

D1 (i.e., thickness of the asphalt concrete layer)	$=$	7 cm
D2 (i.e., thickness of the base course layer)	$=$	30 cm
D3 (i.e., thickness of the sub-base course layer)	$=$	30 cm

3. Pavement Design for On-site Major and Minor Roads

Pavement Design of Major Road

Traffic volume trough on major road is assumed to be same volume as generated from agro-industrial park. The estimation for design EASL is shown following table. In this estimation, analysis period was defined as 20 years.

Design ESAL for Major Road

Vehicle Types	Design Daily Traffic Volume (vehicles/day)	Design Annual Traffic Volume (vehicles/year) *1year=365days	Design Traffic *Analysis period of 20years	ESAL Factor	Design ESAL
Passenger cars	4,190	$1,529,350$	$30,587,000$	0.001	30,587
Buses	570	208,050	$4,161,000$	0.870	$3,620,070$
Single Unit Trucks	820	299,300	$5,986,000$	0.980	$5,866,280$
Heavy Trailer	260	94,900	$1,898,000$	1.480	$2,809,040$
Total	5,840	$2,131,600$	$42,632,000$		$12,325,977$

Source: JICA Study Team
Design lane traffic (DsgnW_{18}) was calculated by applying following formula. In this calculation, Directional distribution factor is setup a value of 0.5 as general and lane distribution factor is setup a value of 1.0 for one lane in each direction of travel.
$\operatorname{DsgnW}_{18}=\mathrm{D}_{\mathrm{D}} \times \mathrm{D}_{\mathrm{L}} \times$ Total W_{18} where, Total W_{18} : Design ESAL
$\begin{array}{ll}\mathrm{D}_{\mathrm{D}} & : \text { Directional distribution factor } \\ \mathrm{D}_{\mathrm{L}} & : \text { Lane distribution factor }\end{array}$
As the result of estimation, design fane traffic of $6,162,989$ was obtained. And Structural number (SN) is examined by applying the following formula.

$$
\log W_{18}=Z_{R} \times S_{0}+9.36 \log (S N+1)-0.20+\frac{\log \left(\frac{\Delta P S I}{4.2-1.5}\right)}{0.40+\frac{1094}{(S N+1)^{5.19}}}+2.32 \log \left(M_{R}\right)-8.07
$$

where, W_{18} : the Number of ESALs over the lifetime of the pavement
SN : Structural number
$\mathrm{Z}_{\mathrm{R}} \quad$: Standard normal deviate
$\mathrm{S}_{0} \quad$: Overall standard deviation
$\triangle P S I \quad: \mathrm{p}_{\mathrm{o}}-\mathrm{p}_{\mathrm{t}}$
MR : Roadbed Soil Resilient Modulus (psi)
In the estimation, each coefficient is defined as shown in the following table.

Pavement Design factor for Major Road

Factor	Value	Remarks
Z_{R}	-1.037	Reliability: 85%
$\mathrm{~S}_{0}$	0.45	
p_{o}	4.2	
p_{t}	2.5	
M_{R}	$12,000 \mathrm{psi}$	$1500 \times$ CBR $\quad{ }^{*} \mathrm{CBR}=8$ (assumption)

Source: JICA Study Team
Result of above calculation, structural number of 3.75 was computed. And the estimated thickness of the pavement structure is calculated from the structural number equation as:

$$
\mathrm{SD}=\mathrm{a} 1 * \mathrm{D} 1+\mathrm{a} 2 * \mathrm{D} 2+\mathrm{a} 3 * \mathrm{D} 3
$$

Thicknesses of each pavement layer (asphalt, base and sub-base) are determined as associated SN of the pavement is satisfied with structural number required as shown in the following table.

Calculation of Layer Thickness for Major Road

Layer	Description	Layer Coefficient	Drainage Coefficient *Assumption	Elastic Modulus (psi) *Assumption	Practical Layer Thickness (cm)	Associated SN
D1	AC Layer	0.420	1.00	400,000	7.0	1.16
D2	Gran Base	0.132	1.00	28,500	30.0	1.56
D3	Gran. Sub-base	0.110	1.00	15,000	30.0	1.30
					Total SN	$4.02>3.75$

Source: JICA Study Team
The design procedure results of major road in the following preliminary thickness of:

D1 (i.e., thickness of the asphalt concrete layer)	$=$	7 cm
D2 (i.e., thickness of the base course layer)	$=$	30 cm
D3 (i.e., thickness of the sub-base course layer)	$=$	30 cm

Pavement Design of Minor Road

Minor road was assumed to be taken a half of traffic volume generated from agro-industrial park. Therefore the Design EASL of minor road was adopted 6,162,989 as a half of Design ESAL of major road.

Design lane traffic (DsgnW_{18}) was calculated by applying following formula. In this calculation, Directional distribution factor is setup a value of 0.5 as general and lane distribution factor is setup a value of 1.0 for one lane in each direction of travel.

DsgnW $W_{18}=\mathrm{D}_{\mathrm{D}} \times \mathrm{D}_{\mathrm{L}} \times$ Total W_{18}
where, Total W_{18} : Design ESAL
$\mathrm{D}_{\mathrm{D}} \quad:$ Directional distribution factor
$\mathrm{D}_{\mathrm{L}} \quad:$ Lane distribution factor
As the result of estimation, design fane traffic of $3,081,494$ was obtained. And Structural number (SN) is examined by applying the following formula.

$$
\log W_{18}=Z_{R} \times S_{0}+9.36 \log (S N+1)-0.20+\frac{\log \left(\frac{\Delta P S I}{4.2-1.5}\right)}{0.40+\frac{1094}{(S N+1)^{5.19}}}+2.32 \log \left(M_{R}\right)-8.07
$$

where, W_{18} : the Number of ESALs over the lifetime of the pavement
SN : Structural number
$\mathrm{Z}_{\mathrm{R}} \quad$: Standard Nomal Deviate
$\mathrm{S}_{0} \quad$: Overall Standard Deviation
$\triangle P S I: \mathrm{p}_{\mathrm{o}}-\mathrm{p}_{\mathrm{t}}$
MR : Roadbed Soil Resilient Modulus (psi)
In the estimation, each coefficient is defined as shown in the following table.
Pavement Design factor for Minor Road

Factor	Value	Remarks	
Z_{R}	-1.037	Reliability: 85%	
$\mathrm{~S}_{0}$	0.45		
p_{o}	4.2		
p_{t}	2.5		
M_{R}	$12,000 \mathrm{psi}$	$1500 \times$ CBR \quad *CBR=8 (assumption)	

Source: JICA Study Team
Result of above calculation, structural number of 3.35 was computed. And the estimated thickness of the pavement structure is calculated from the structural number equation as:

$$
\mathrm{SD}=\mathrm{a} 1 * \mathrm{D} 1+\mathrm{a} 2 * \mathrm{D} 2+\mathrm{a} 3 * \mathrm{D} 3
$$

Thicknesses of each pavement layer (asphalt, base and sub-base) are determined as associated SN of the pavement is satisfied with structural number required as shown in the following table.

Calculation of Layer Thickness for Minor Road

Layer	Description	Layer Coefficient	Drainage Coefficient *Assumption	Elastic Modulus (psi) *Assumption	Practical Layer Thickness (cm)	Associated SN
D1	AC Layer	0.420	1.00	400,000	5.0	0.83
D2	Gran Base	0.132	1.00	28,500	30.0	1.56
D3	Gran. Sub-base	0.110	1.00	15,000	30.0	1.30
					Total SN	$3.69>3.35$

Source: JICA Study Team
The design procedure results for minor road in the following preliminary thickness of:

D 1 (i.e., thickness of the asphalt concrete layer) $=5 \mathrm{~cm}$
D 2 (i.e., thickness of the base course layer) $=30 \mathrm{~cm}$
D3 (i.e., thickness of the sub-base course layer) $=30 \mathrm{~cm}$

RD-2 Design for Storm Water Drainage Design

1. Methodology of Drainage Design
2. Drainage Design

1. Methodology of Drainage Design

The figure below shows the flow of design for storm water drainage channel.

Flow of Design for Storm Water Drainage Channel

2. Drainage Design

Estimation of Rainfall Intensity

Maximum dairy rainfall volumes for the period of 1995 to 2005 at Jericho metrological station No. 0000015 are shown in the following Figure III-4-11. It is indicated $36.9 \mathrm{~mm} /$ day of maximum volume in the decade from 1995.

Source: Palestinian Water Authority
Maximum Dairy Rainfall Data for the period 1995-2005 at Jericho Metrological Station

Rainfall Intensity of each return period was estimated using Gumbel's method with above rainfall data. Gumbel's method is estimation approach that makes a graph by plotting data on the Gumbel matrix. The result of estimation of rainfall intensity is shown in following Figure III-4-12 and Table III-4-10. In view of safety and reasonable, $29 \mathrm{~mm} /$ day of return period 10 year is accepted for storm water drainage design.

Source: JICA Study Team

Maximum Dairy Rainfall for 1995-2005 at Jericho Metrological Station

Rainfall Intensity of Each Return Period

Return period	5 year	$\mathbf{1 0}$ year	20 year	30 year	50 year	100 year
Rainfall (mm/day)	24	$\mathbf{2 9}$	33	36	40	45

Source: JICA Study Team

Preparing Design Rainfall Intensity Formula

Rainfall intensity formula for calculation of storm water volume is prepared using Talbot's Formula. In this calculation, 1 hour rainfall volume is $14(\mathrm{~mm} / \mathrm{h})$ of half of dairy rainfall volume $29(\mathrm{~mm} / \mathrm{h})$ as assumption. The Talbot's Formula is expressed below;

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{N}}{ }^{24}=\mathrm{R}_{\mathrm{N}}{ }^{24} \mathrm{x} \beta_{\mathrm{N}} \\
& \beta_{\mathrm{N}}=\mathrm{a}^{\prime} /(\mathrm{T}+\mathrm{b}) \\
& \mathrm{a}^{\prime}=\mathrm{b}+24 \\
& \mathrm{~b}=\left(24-\beta_{\mathrm{N}}{ }^{\mathrm{t}} \mathrm{x} \mathrm{t}\right) /\left(\beta_{\mathrm{N}}{ }^{\mathrm{t}}-1\right) \\
& \beta_{\mathrm{N}}{ }^{\mathrm{t}}=\mathrm{I}_{\mathrm{N}}{ }^{t} / \mathrm{I}_{\mathrm{N}}{ }^{24} \\
& \mathrm{I}_{\mathrm{N}}{ }^{\mathrm{t}}=\mathrm{R}_{\mathrm{N}}{ }^{t} \mathrm{x}(24 / \mathrm{t})
\end{aligned}
$$

where, $\quad \mathrm{I}_{\mathrm{N}}{ }^{24} \quad: 24$ hours rainfall intensity for N years of return period (mm/24h)
$\mathrm{R}_{\mathrm{N}}{ }^{24} \quad: 24$ hours rainfall volume for N years of return period (mm)
$\beta_{\mathrm{N}} \quad$: characteristic coefficient value for N years of return period
$\mathrm{I}_{\mathrm{N}}{ }^{\mathrm{t}} \quad: \mathrm{t}$ hours rainfall intensity for N years of return period (mm/24h)
$\mathrm{R}_{\mathrm{N}}{ }^{\mathrm{t}} \quad$: t hours rainfall volume for N years of return period (mm)
$\mathrm{t} \quad$: discretionary duration (h)
$\mathrm{T} \quad$: rainfall duration (h)
a', b: value for the constants

Result of the calculation, design rainfall intensity formula was obtained as below.

Source: JICA Study Team

Design Rainfall Intensity Formula

Estimation of Water Flow Volume and Drainage Design

<Volume of storm water flow>
The type and size of drainage are planed as it has capability of carrying off storm water to the river. The volumes of storm water flow are examined the applying rational formula as expressed below.

$$
\begin{array}{ccl}
\mathrm{Q}=\mathrm{C} \text { I A } \\
\text { where, } & \mathrm{Q} & \text { : design flow }\left(\mathrm{m}^{3} / \mathrm{s}\right) \\
& \text { C } & \text { : drainage area runoff coefficient }(-) \\
& \mathrm{I} & \text { : design rainfall intensity }(\mathrm{mm} / \mathrm{h}) \\
& \text { A } & \text { : drainage area }\left(\mathrm{m}^{2}\right)
\end{array}
$$

In estimating the volume of storm water flow, drainage area runoff coefficient is set up a value of 0.5 as general value in development area.
<Drainage capability for facility design>
Flow conditions of designed drainage are examined by applying the "Manning's Formula" as expressed below.

$$
\begin{aligned}
& \mathrm{V}=1 / \mathrm{n} \times \mathrm{R}^{2 / 3} \times \mathrm{I}^{1 / 2} \\
& \mathrm{Q}=\mathrm{V} \times \mathrm{A} \\
& \text { where, } \mathrm{V} \text { : flow velocity (} \mathrm{m} / \mathrm{s} \text {) } \\
& \text { n : roughness coefficient (-) } \\
& \text { R : hydraulic radius (m) } \\
& \text { I : flow gradient (-) } \\
& \text { Q : discharge (} \mathrm{m}^{3} / \mathrm{s} \text {) } \\
& \text { A : section area of flow }\left(\mathrm{m}^{2}\right)
\end{aligned}
$$

Possible storm water in the agro-industrial park is planned to be collected, discharged through primarily the roadside ditch along the road network and release to the Wadi. Pipe culvert is installed in the section that
capability of the road side ditch is lacking. As Result of calculation for storm water drainage, drainage designs in the section of discharge to on-site river are shown in table below and designed drainage network is shown in figure below.

Result of Storm Water Drainage

Drainage No.	Drainage area (ha)	Drainage type	Volume of Strom Water $\left(\mathbf{m}^{\mathbf{3} / \mathbf{s})}\right.$
107	22.65	Pipe Curvert 800mm	0.680
192	1.68	Roadside Ditch	0.012
307	26.18	Pipe Curvert 800 mm	0.812
507	31.62	Pipe Curvert 800mm	0.949
582	1.95	Roadside Ditch	0.062
594	2.97	Roadside Ditch	0.092
605	16.36	Pipe Curvert 800mm	0.507
801	3.64	Roadside Ditch	0.106

Source: JICA Study Team

Source: JICA Study Team
Planned Network of Drainage
WS-1 Results of Interview Survey on Working Periods
Hours/ Day
(Ex. Friday and Saturday)
Annually:_—___ (Ex. Friday (Ex. Lamadan Period, 7days)
Yes No ——_Hours/ Day
iod, 7days)
(ep.10 H с)
Retion
Questionnaire

1. How long is the standard hour of operation per day?
Starts time
Ends time
2. How long is the standard hour of operation per day?
3. When is holiday?
4. Do you have some special operating period?
If yes,
a), when is that period?
b), how long is the hour of operation per day?

Answ											
No.	Name of Company	Interview Date	1. Standard Operation Hour				2. Holiday		3. Special Operation Hours		
			Working Hours (hours)	Starts Time (hh:mm)		Ends Time (hh:mm)	Weekly	Annually (days)	Answer (Yes or No)	Periods	Working Hours (hh:mm)
1	Rich for Food Processing	25 June 2008	8.0	8:00	\sim	16:00	Friday	12.0	Yes	45 days	10.0
2	Ali brothers Agriculutural Co .	26 June 2008	9.0	7:00	\sim	16:00	None	7.0	Yes	4 months	24.0
3	Al-Juneidi for Trade \& Industrial Engineering Co .	10 July 2008	8.5	8:00	\sim	16:30	Friday	10-12	No		
4	Salwa Food Co.	23 Jun. 2008	15.0	7:00	\sim	22:00	Friday	8.0	Yes	Ramadan month (22 days)	7.5
5	K.A.R for Maccaroni \& Food Stuff manufacturing Co .	02 July 2008	8.0	8:00	\sim	16:00	Friday	8.0	Yes	6 weeks	24.0
6	Golden Wheat Mills	02 July 2008	8.0	7:30	\sim	15:30	Friday	10.0	Yes	6 months	24.0
7	Al-Sanabel Maccaroni \& Vermicelli Production Co.	02 July 2008	8.5	7:30	\sim	16:00	Sunday	12.0	Yes	110 days	16.5
8	Amro \& Rushdi Alool Co.	10 July 2008	6.0	5:00	\sim	11:00	Friday	12.0	No	-	-
9	Al-Juneidi Co. for Dairy Products	10 July 2008	$\begin{array}{\|c\|} \hline 8.0 \\ \text { except cooling } \\ \text { (24 hours) } \\ \hline \end{array}$	8:00	\sim	16:00	Friday	9.0	Yes	60 days	18.0
10	Al-Hiliaz for Chocolate	26 June 2008	8.0	6:00	\sim	14:00	Friday	8.0	Yes	July - December	24.0
11	Al-Morooj (Mawasem) Feed Co.	23 June 2008	8.5	7:30		16:00	Friday	8.0	Yes	36 days	0.0

WS－2 Calculation for Rate of Loading and Hourly Factor
Working Hours for Standard Operation Period

－		！ 1	1	！2	！ 3	3	！ 4		5	！6		$!$	8	8 ：9	9	！10	11		12	！13	14	！15	！16		17	！18		19	¢20	！21		22	！23	Subtotal	Day	Total／year
1														चाप	\＃11	ma	立市	114	位	立	In	\％												8.0	256	2，048
2		：			：		，			，		zur		\＃in	\＃10	\％10	\＃1	7in	W7	\％10	\＃1	¢1							，					9.0	201	1，809
3																																				0
4												ZIIT	（1）10	पil	\＃11	Int	Int	＂it	पाप	（171	IT1	！			17	1010	4	717	IT	！				15.0	305	4，575
5														चाप	W17	T10	IIT	Til		17n	＂17	T17												8.0	269	2，152
6													सim	\＃1：	Win	T10	\＃17	यiा		\％17	\＃17	412												8.0	146	1，168
7		－			－		－			！			योग	चix	III	पוn	प110	ai̇	位立		立	in									，			8.5	191	1，624
8																																				0
9														चII：	याप	ITI	It	गit	－1710	ITI	717	4												8.0	244	1，952
10											\＃Iİ	III	चim	चix．	\＃11	Im	İİ	चì	चसा	\％17														8.0	148	1，184
11		：		，	：		：			：			चin	\＃17］	चाप	VITV	U170	चivi	W］IT	\％17	717	IVI				，			，		：		，	8.5	269	2，287
00			00		0	0	0	00	0	00.5	0.50 .5	1.5	34.5	4.54 .5	4.54 .5	54.5	4.54	54.5	4.54 .5	4.5	4	4	0.	． 5	0.5	50.5		0.50	50.5	0.5	0.5	0	00		Sub－total A	18，798
Hour	0		1		2	3		4	5		6	7		8	9	10		11	12	13	14				17			19			1	22	23	Subtotal		
Total	0.0		0.0		0.0	0.0		0.0	0.0		1.0	4.5		9.0	9.0	9.0		9.0	9.0	9.0	8.0				1.0	1.		1.0	1.		0	0.0	0.0	81		

\square Working Hours for Special Operation Period

\bigcirc		！ 1		！2	－3	！ 4		！ 5	！ 6	： 7	\vdots	8	！9	：10	！11	1	：12	！13	¢14		！ 15	！16		17	！18		19	！20		21	：22	¢23	23	Subtotal	Day	Total／year
1											？	प｜710				\＃1																		10.0	45	450
2						\％			n		－																							24.0	105	2，520
3					，																															0
4											साII	चापा	！	717	II	पात	而	710	T	Iİ	T1］	या1	，		IV	¢	III	，	ixi	IIII				15.0	0	0
5												\％121	！	田	\＃1	पा1	！un	TIN	\＃1	II：	（1IU													24.0	36	864
6											8	（17m	！17	ITIT	İIT	\＃17	\％17	İIT	T17	Iİ	174													24.0	157	3，768
7												立兂	㐭硡	亩侕	亠10		ऐ－10	－	ITI	तix														16.5	110	1，815
8																																				0
9											mur	דIT	ITIT	\＃12	T1	ITI	ITI	ITIT	IT	IIT．	12													18.0	60	1，080
10										पापा．	पाता	！إा1	，	TIT	IT	पाר	！إ10	T11	－		，													24.0	157	3，768
11											－	（1）10	¢1／	पो	dive	ItII	पोत	पो17	TII	चiil	पात				：									9.0	36	324
	2	2	2	2	2	2	2	2	222.5	2.52 .5	44.5	4.54 .5	54.5	54.5	4.54 .5	4.54 .5	4.5	54.5	4.5	54.5	4.54	4	4	3.5	53.5	3.5	3.5	53.5	3.5	3.5	5	3	33		Sub－total B	14，589
Hour	0		1	2		3	4	5	5	6	7	8	9	10		11	12	13		14	15		6	17			19			21	22		23	Subtotal		
Total	4.0		4.0	4.0		4.0	4.0	4.0	4．0 50	5.0	8.5	9.0	9.0	9.0		9.0	9.0	9.0		9.0	9.0	8		7.0			7.0			7.0	6.0		6.0	164.5	aily Maxim	m（D．M）
max	9.0		9.0	9.0		9.0	9.0	9.0	． 0	9.0	9.0	9.0	9.0	9.0		9.0	9.0	9.0		9.0	9.0	9		9.0	9		9.0			9.0	9.0		9.0	216.0	Hourly Maxim	num（H．M）

Notes：1）Numbers from 1 to 11 are shown factories which replied to the questionnaire．
2）Factory $N 0.3$ and $N o .8$ are not included because these two factory dose not have special operation periods．

WS-3 Results of Field Interview Survey on existing Agricultural Wells (1/5)

WS-3 Results of Field Interview Survey on existing Agricultural Wells (2/5)

WS-3 Results of Field Interview Survey on existing Agricultural Wells (3/5)

License No. 19-13/047	
Survey date 07 June 2008	
Location Left Bank/ Al-Magtas St.	-
Status Dried Up	a lover
Depth -	1
Quantity	
Quality -	
Information - Dried up since 2006.	2
License No. 19-13/048	
Survey date 07 June 2008	
Location Left Bank/ Al-Magtas St.	
Status Pumping for Agriculture.	
Depth 112 m	(Photo is not available.)
Quantity $55 \mathrm{~m} 3 /$ hour	
Quality Drinkable	
Information	
License No. 19-13/049	
Survey date 07 June 2008	
Location Left Bank/ Al-Magtas St.	
Status Pumping for Agriculture.	
Depth $\quad 75 \mathrm{~m}$	
Quantity $\quad 35 \mathrm{~m} 3 / \mathrm{hr}$	
Quality Brackish	
Information - Improved in 2006.	
License No. 19-13/050A	
Survey date 07 June 2008	
Location Left Bank/ Al-Magtas St.	
Status Pumping for Agriculture.	
Depth 120 m	
Quantity $\quad 50 \mathrm{~m} 3 / \mathrm{hr}$	
Quality Brackish	
Information - Quantity is decresing. $90 \mathrm{~m} 3 / \mathrm{hr}$ could be pumped up before 4-5 years.	

WS-3 Results of Field Interview Survey on existing Agricultural Wells (4/5)

WS-3 Results of Field Interview Survey on existing Agricultural Wells (5/5)

License No. 19-14/052 Survey date 07 June 2008 Location Left bank/ Route 449 Status Dried Up. Depth - Quantity - Quality - Information (Nobody there at survey time.)	
License No. Jericho Well No.1 (19-14/101) Survey date 12 June 2008 Location Left Bank/ Ahmad Ashuqairi St. Status Not Active Depth $?$ Quantity - Quality - Information - When a stone fall into the well, sound hear after 20sec.	
License No. Jericho Well No. 1 (19-14/101) Survey date 12 June 2008	
License No. Jericho Well No. 1 (19-14/101) Survey date 12 June 2008	

WS-4 Hydraulic Gradient Lines along the Water Transmission Pipeline

From Agricultural Wells

WT-1 Wastewater Treatment Flow

Desion Solid Volume (Stage I)

Desion Sludge Volume

Design Sludge Generation $=\mathrm{S} \times 100 /$ Sludge Density $(\%) \times 1 / 1000(\mathrm{~kg})$
$=\quad 74.4 \mathrm{~m} 3 /$ day

WSludge Density $\Rightarrow \quad$| $86.8 \mathrm{~m} 3 /$ day |
| :---: |\quad (\%6days in a week)

			SS_concentration
1 Dewatered Sludge	$260.4 \mathrm{~kg} / \mathrm{day}$	$1.7 \mathrm{~m} 3 /$ day	15.0\%
2 Thickened: (into Sludge Dewatering Facility)	$2893.3 \mathrm{~kg} /$ duy	19.3 m3/day	1.5\%
(into Sludge Stornge Tank)	$248.0 \mathrm{~kg} /$ day		
3 Filtered Water	$28.9 \mathrm{~kg} /$ day		
4 Sludge into Sludge Thickening Tank	$275.6 \mathrm{~kg} / \mathrm{day}$	$45.9 \mathrm{~m} 3 /$ day	0.6\%
\$ Thickner Effluent	$27.6 \mathrm{~kg} / \mathrm{day}$		
6 SS volume in Return Sludge	$56.5 \mathrm{~kg} / \mathrm{day}$		
7 SS volume in Influent	312.0 kg/dny		
8 SS volume in treated water	$14.4 \mathrm{~kg} / \mathrm{day}$		
9 Excess Sludge Volume	$223.2 \mathrm{~kg} / \mathrm{day}$	$37.2 \mathrm{~m} 3 /$ day	0.6\%

Desion Solid Volume (Stage II)

Desion Sludge Volume

Design Sludge Generation $=\mathrm{S} \times 100 /$ Sludge Density(\%) $\times 1 / 1000(\mathrm{~kg})$

			SS_concentration
1 Dewatered Sludge	$805.2 \mathrm{~kg} / \mathrm{day}$	$6.0 \mathrm{~m} 3 /$ day	15.0\%
2 Thickened : (into Sludge Dewatering Facility)	90.47 kg/duy	$66.3 \mathrm{~m} 3 /$ day	1.5\%
(into Sludge Storage Tank)	$8526 \mathrm{~kg} / \mathrm{day}$		
3 Filtered Water	$90.5 \mathrm{~kg} /$ day		
4 Sludge into Sludge Thickening Tank	$947.3 \mathrm{~kg} / \mathrm{duy}$	$157.9 \mathrm{~m} 3 /$ day	0.6\%
5 Thickner Effluent	$94.7 \mathrm{~kg} / \mathrm{day}$		
6 SS volume in Return Sludge	$194.2 \mathrm{~kg} /$ day		
7 SS volume into Oxidation Ditch	$1,072.5 \mathrm{~kg} /$ day		
8 SS volume in treated water	$49.5 \mathrm{~kg} / \mathrm{day}$		
9 Exceas Sludge Volume	$767.3 \mathrm{~kg} / \mathrm{day}$	$1279 \mathrm{~m} 3 /$ duy	0.6\%

Desion Solid Volume (Stage I + II)

Design Sludge Voluae

Design Sludge Generation= $=\mathrm{S} \times 100 /$ Sludge Density $(\%) \times 1 / 1000(\mathrm{~kg})$

$=$| $328.6 \mathrm{~m} 3 /$ day \Rightarrow | $383.4 \mathrm{~m} 3 /$ day |
| :---: | :---: |
| \%Sludge Density | $=0.3 \quad \%$ |

			SS concentration
1 Dewatered Sludge	$1.130 .1 \mathrm{~kg} / \mathrm{day}$	$7.7 \mathrm{~m} 3 /$ day	15.0\%
2 Thickened : (into Sludge Dewatering Facility)	$1.2779 \mathrm{~kg} /$ day	$85.2 \mathrm{~m} 3 /$ day	1.5\%
(into Sludge Storage Tank)	$1.095 .3 \mathrm{~kg} / \mathrm{day}$		
3 Filtered Water	$127.8 \mathrm{~kg} /$ day		
4 Sludge into Sludge Thickening Tank	$1,217.0 \mathrm{~kg} /$ day	202.8 m3/day	0.6\%
5 Thickner Emluent	$121.7 \mathrm{~kg} / \mathrm{day}$		
6 SS volume in Return Sludge	$249.5 \mathrm{~kg} / \mathrm{day}$		
7 SS volume into Oxidation Ditch	$1,378.0 \mathrm{~kg} / \mathrm{day}$		
8 SS volume in treated water	$63.6 \mathrm{~kg} / \mathrm{day}$		
9 Excess Sludge Volume	$985.8 \mathrm{~kg} / \mathrm{day}$	$164.3 \mathrm{~m} 3 /$ day	0.6\%

Desion Solid Volume (Stage III)

$\mathrm{S}=\mathrm{Qi} \times[\mathrm{SSi} \times \mathrm{RI} / 100+\{\mathrm{SSi} \times(1-\mathrm{RI} / 100)-\mathrm{SSt}\} \times \mathrm{R} 2 / 100] \times 1 / 10^{-} 3$				
-	$1,139 \mathrm{~kg} /$ day	\Rightarrow	$1,329.2 \mathrm{~m} 3 /$ day	(\%6days in a week)
Q	Design Daily Maximun	astaw		$2,450 \mathrm{~m} 3 /$ day
SSi	Design Influent SS Qu			$650 \mathrm{mg} / \mathrm{L}$
SSt	Design Eflluent SS Qu			$30 \mathrm{mg} / \mathrm{L}$
R	Sludge Generation Rat	Oxi		75 \%

Design Sludge Volume

Dosign Sludge Generation $=\$ \times 100 /$ Sludge Density $(\%) \times 1 / 1000(\mathrm{~kg})$

$$
\begin{gathered}
=379.77 \mathrm{~m} 3 / \text { day } \Rightarrow \\
\text { *Sludge Density }=043.1 \mathrm{~m} 3 / \text { day } \quad \text { (林6days in a woek) } \\
0.3 \mathrm{~K}
\end{gathered}
$$

			S8_concentration
1 Dewatered Sludge	$1.320 .2 \mathrm{~kg} / \mathrm{day}$	$8.9 \mathrm{~m} 3 /$ day	15.0\%
2 Thickened ! (into Sludge Dewatering Facility)	$1.4769 \mathrm{~kg} / \mathrm{day}$	$98.5 \mathrm{~m} 3 /$ day	1.5\%
(into Sludge Storage Tank)	$1.205 .9 \mathrm{~kg} / \mathrm{day}$		
3 Filtered Water	$1.47 .7 \mathrm{~kg} / \mathrm{day}$		
4 Sludge into Sludge Thickening Tank	$1,406.6 \mathrm{~kg} / \mathrm{day}$	$234.4 \mathrm{~m} 3 /$ day	0.6\%
5 Thickner Efluent	$140.7 \mathrm{~kg} /$ day		
6 SS volume in Return Sludge	$288.4 \mathrm{~kg} / \mathrm{day}$		
7 SS volume into Oxidation Ditch	$1,592.5 \mathrm{~kg} /$ day		
8 SS volume in treated water	$73.5 \mathrm{~kg} / \mathrm{day}$		
9 Excess Sludge Volume	$1,139.3 \mathrm{~kg} /$ day	$189.9 \mathrm{~m} 3 /$ day	0.6\%

CE-1 Project Cost for Agro-Indusrtial Park Development Stages I, II and III

Infrastructure	Stage I		Stage II		Stage III		Total	
	(NIS)	(USD)	(NIS)	(USD)	(NIS)	(USD)	(NIS)	(USD)
I. Base Cost								
A Off-site								
A. 1 General requirements	2,815,893	0	5,873,962	0	2,695,611	0	11,385,466	0
A. 2 Access roads	8,217,508	0	47,805,851	0	0	0	56,023,359	0
A. 3 Power supply facilities	0	714,284	0	0	0	0	0	714,284
A. 4 Telecommunication facilities	0	150,000	0	0	0	0	0	150,000
A. 5 Water supply facilities	1,148,455	631,110	2,691,919	784,760	693,975	434,710	4,534,349	1,850,580
A. 6 Wastewater treatment facilities	3,347,658	3,685,670	7,994,961	6,560,870	9,515,253	7,502,870	20,857,872	17,749,410
A. 7 Solid waste treatment facilities	3,127,139	175,400	8,356,720	295,890	8,356,720	324,140	19,840,579	795,430
A. 8 Building Structures	0	0	3,278,200	0	0	0	3,278,200	0
Sub-total (A)	18,656,653	5,356,464	76,001,613	7,641,520	21,261,559	8,261,720	115,919,825	21,259,704
B. On-site								
B. 1 General requirements	2,614,937	0	6,955,923	0	7,131,000	0	16,701,860	0
B. 2 Land reclamation	5,634,070	0	40,133,845	0	51,252,975	0	97,020,890	0
B. 3 Wadi improvement	0	0	7,409,956	0	4,386,755	0	11,796,711	0
B. 4 Internal roads	4,196,234	0	23,478,225	0	28,515,789	0	56,190,248	0
B. 5 Storm water drainage channel	889,400	0	2,986,600	0	3,265,400	0	7,141,400	0
B. 6 Power distribution facilities	0	392,155	0	1,719,420	0	1,756,634	0	3,868,209
B. 7 Telecommunication facilities	45,000	0	225,000	0	225,000	0	495,000	0
B. 8 Water distribution facilities	2,897,374	141,840	4,683,574	816,840	5,220,334	608,850	12,801,282	1,567,530
B. 9 Wastewater treatment facilities	605,098	0	3,060,190	0	2,895,175	0	6,560,463	0
B. 10 Solid waste collection facilities	0	562,500	0	523,550	0	697,500	0	1,783,550
B. 11 Security facilities	0	2,034,250	0	864,000	126,000	662,750	126,000	3,561,000
B. 12 Building Structures								
i) Parks	86,480	0	896,060	0	1,218,150	0	2,200,690	0
ii) Office building	6,925,240	0	9,728,050	0	7,174,020	0	23,827,310	0
iii) Model factory	17,190,000	0	0	0	0	0	17,190,000	0
iv) Car parking	1,004,500	0	7,149,100	0	4,873,050	0	13,026,650	0
Sub-total (B)	42,088,333	3,130,745	106,706,523	3,923,810	116,283,648	3,725,734	265,078,504	10,780,289
Total (A to B)	60,744,986	8,487,209	182,708,136	11,565,330	137,545,207	11,987,454	380,998,329	32,039,993
II. Land Acquisition								
A Off-site								
A. 1	928,500	0	4,069,100	0	0	0	4,997,600	0
B. On-site								
B. 1	0	0	14,529,000	0	14,907,000	0	29,436,000	0
Sub-total	928,500	0	18,598,100	0	14,907,000	0	34,433,600	0
III. Administration	925,102	127,308	3,019,594	173,480	2,286,783	179,812	6,231,479	480,600
IV. Engineering Services								
(1) Detailed design	3,755,915	516,871	12,259,550	704,329	9,284,339	730,036	25,299,804	1,951,236
(2) Supervision	3,755,915	516,871	12,259,550	704,329	9,284,339	730,036	25,299,804	1,951,236
Sub-total	7,511,830	1,033,742	24,519,100	1,408,658	18,568,678	1,460,072	50,599,608	3,902,472
Total (I to IV)	70,110,418	9,648,259	228,844,930	13,147,468	173,307,668	13,627,338	472,263,016	36,423,065
V. Physical Contingency (10% of Total I to IV)	7,011,042	964,826	22,884,493	1,314,747	17,330,767	1,362,734	47,226,302	3,642,307
VI. Grand Total (Total I to V)	77,121,460	10,613,085	251,729,423	14,462,215	190,638,435	14,990,072	519,489,318	40,065,372
VII. Grand total equivalent in USD		32,035,713		84,387,055		67,945,193		184,367,960

Note: General requirement (A. 1 and B.1) consists of temporary facilities required for the construction such as temporary buildings for staff quarter and labor camp,
motor pools, repair shop, warehouse, water supply system and power supply system for the construction works etc., and mobilization and de-mobilization.

CE-2 Project Cost for Agro-Indusrtial Park Development Stages (I+II) and III

Infrastructure	Stage I+II		Stage III		Total	
	(NIS)	(USD)	(NIS)	(USD)	(NIS)	(USD)
I. Base Cost						
A Off-site						
A. 1 General requirements	6,260,758	0	2,695,611	0	8,956,369	0
A. 2 Access roads	47,805,851	0	0	0	47,805,851	0
A. 3 Power supply facilities	0	714,284	0	0	0	714,284
A. 4 Telecommunication facilities	0	150,000	0	0	0	150,000
A. 5 Water supply facilities	3,831,767	1,415,870	693,975	434,710	4,525,742	1,850,580
A. 6 Wastewater treatment facilities	8,774,847	7,081,670	9,515,253	7,502,870	18,290,100	14,584,540
A. 7 Solid waste treatment facilities	9,496,207	338,800	8,356,720	324,140	17,852,927	662,940
A. 8 Building Structures	3,278,200	0	0	0	3,278,200	0
Sub-total (A)	79,447,630	9,700,624	21,261,559	8,261,720	100,709,189	17,962,344
B. On-site						
B. 1 General requirements	8,980,866	0	7,131,000	0	16,111,866	0
B. 2 Land reclamation	45,767,915	0	51,252,975	0	97,020,890	0
B. 3 Wadi improvement	7,420,314	0	4,386,755	0	11,807,069	0
B. 4 Internal roads	27,674,459	0	28,515,789	0	56,190,248	0
B. 5 Storm water drainage channel	3,842,400	0	3,265,400	0	7,107,800	0
B. 6 Power distribution facilities	0	2,111,575	0	1,756,634	0	3,868,209
B. 7 Telecommunication facilities	270,000	0	225,000	0	495,000	0
B. 8 Water distribution facilities	5,480,224	949,780	5,220,334	608,850	10,700,558	1,558,630
B. 9 Wastewater treatment facilities	3,089,584	0	2,895,175	0	5,984,759	0
B. 10 Solid waste collection facilities	0	697,500	0	697,500	0	1,395,000
B. 11 Security facilities	0	2,898,250	126,000	662,750	126,000	3,561,000
B. 12 Building Structures						
i) Parks	982,540	0	1,218,150	0	2,200,690	0
ii) Office building	15,641,450	0	7,174,020	0	22,815,470	0
iii) Model factory	17,190,000	0	0	0	17,190,000	0
iv) Car parking	8,153,600	0	4,873,050	0	13,026,650	0
Sub-total (B)	144,493,352	6,657,105	116,283,648	3,725,734	260,777,000	10,382,839
Total (A to B)	223,940,982	16,357,729	137,545,207	11,987,454	361,486,189	28,345,183
II. Land acquisition						
A Off-site						
A. 1	4,606,000	0	0	0	4,606,000	0
B. On-site						
B. 1	14,529,000	0	14,907,000	0	29,436,000	0
Sub-total	19,135,000	0	14,907,000	0	34,042,000	0
III. Administration	3,646,140	245,366	2,286,783	179,812	5,932,923	425,178
IV. Engineering services						
(1) Detailed design	14,803,327	996,186	9,284,339	730,036	24,087,666	1,726,222
(2) Supervision	14,803,327	996,186	9,284,339	730,036	24,087,666	1,726,222
Sub-total	29,606,654	1,992,372	18,568,678	1,460,072	48,175,332	3,452,444
Total (I to IV)	276,328,776	18,595,467	173,307,668	13,627,338	449,636,444	32,222,805
V. Physical Contingency (10% of Total I to IV)	27,632,878	1,859,547	17,330,767	1,362,734	44,963,645	3,222,281
VI. Total (Total I to V)	303,961,654	20,455,014	190,638,435	14,990,072	494,600,089	35,445,086
VII. Grand total equivalent in USD		104,888,807		67,945,193		172,834,000

Note: General requirement (A.1 and B.1) consists of temporary facilities required for the construction such as temporary buildings for staff quarter and labor camp,
motor pools, repair shop, warehouse, water supply system and power supply system for the construction works etc., and mobilization and de-mobilization.

