Ministry of Planning and Ministry of National Economy Palestinian National Authority (PNA)

Japan International Cooperation Agency (JICA)

Feasibility Study on Agro-industrial Park Development in the Jordan River Rift Valley

Final Report

Volume 2 (Reference Data and Materials of Engineering Study)

2/2

March 2009

JAPAN INTERNATIONAL COOPERATION AGENCY

KRI INTERNATIONAL CORP. NIPPON KOEI CO., LTD.

> IDD JR

09-018

No.

Ministry of Planning and Ministry of National Economy Palestinian National Authority (PNA)

Japan International Cooperation Agency (JICA)

Feasibility Study on Agro-industrial Park Development in the Jordan River Rift Valley

Final Report

Volume 2 (Reference Data and Materials of Engineering Study)

2/2

March 2009

JAPAN INTERNATIONAL COOPERATION AGENCY

KRI INTERNATIONAL CORP. NIPPON KOEI CO., LTD.

> IDD JR

09-018

No.

Chapter II Engineering Calculation Sheet

II-1 Road

- RD-1 Pavement design for off-site access roads and on-site roads
- RD-2 Design for storm water drainage channel

II-2 Water Supply Facilities

- WS-1 Results of interview survey on working periods
- WS-2 Calculation for rate of loading and hourly factor
- WS-3 Results of field interview survey on existing agriculture wells
- WS-4 Hydraulic gradient lines along the water transmission pipelines
- WS-5 Results of hydraulic analysis for the water distribution networks

II-3 Wastewater treatment Facilities

WT-1 Wastewater treatment flow

II-4 Cost estimate

- CE-1 Project cost for Agro-industrial Park Development Stage 1, 2 and 3
- CE-2 Project cost for Agro-industrial Park Development Stage (1+2) and 3

RD-1 Pavement Design for Off-site Access Roads and On-site Roads

- 1. Methodology of the Pavement Design
- 2. Pavement Design for Access Roads
- 3. Pavement Design for On-site Major and Minor Roads

1. Methodology of the Pavement Design

Pavement design of the Access road and On-site roads were designed on the basis of "Design of Pavement Structures 1993" published by American Association of State Highway and Transportation Officials (AASHTO).

The Methodology for pavement design base on above manual is shown as following figure.

Flow of the Pavement Design

2. Pavement Design for Access Roads

Pavement Design of Access Road for Stage I

The Estimation for design EASL toward traffic volume from the agro-industrial park is shown following table. In this estimation, analysis period was defined as 10 years for considering the short term use.

Vehicle Types	Design Daily Traffic Volume (vehicles/day)	Design Annual Traffic Volume (vehicles/year)	Design Traffic *Analysis period of 10years	ESAL Factor	Design ESAL
Passenger cars	440	160,600	1,606,000	0.001	1,606
Buses	60	21,900	219,000	0.870	190,530
Single Unit Trucks	80	29,200	292,000	0.980	286,160
Heavy Trailer	70	25,550	255,500	1.480	378,140
Total	650	237,250	2,372,500		856,436

Design ESAL of Access Road for Stage I

Design lane traffic ($DsgnW_{18}$) was calculated by applying following formula. In this calculation, Directional distribution factor is setup a value of 0.5 as general and lane distribution factor is setup a value of 1.0 for one lane in each direction of travel.

As the result of above estimation, design fane traffic of 428,218 was obtained.

And Structural number (SN) is examined by applying the following formula.

$$\log W_{18} = Z_R \times S_0 + 9.36 \log(SN+1) - 0.20 + \frac{\log\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \log(M_R) - 8.07$$

where,	W_{18}	: the Number of ESALs over the lifetime of the pavement
	SN	: Structural number
	Z _R	: Standard normal deviate
	S_0	: Overall Standard Deviation
	ΔPSI	$: p_o - p_t$
	MR	: Roadbed Soil Resilient Modulus (psi)

In the estimation, each coefficient is defined as shown in the following table.

Factor	Value	Remarks	
Z _R	-1.037	Reliability: 85%	
\mathbf{S}_0	0.45		
po	4.2		
\mathbf{p}_{t}	2.5		
M _R	12,000psi	1500 x CBR *CBR=8 (assumption)	
Source: IICA Study	Team		

Pavement Design factor of Access Road for Stage I

Source: JICA Study Team

Result of above calculation, structural number of 2.42 was obtained. And the estimated thickness of the pavement structure is calculated from the structural number equation as:

SD=a1*D1+a2*D2+a3*D3

Thicknesses of each pavement layer (asphalt, base and sub-base) are determined as associated SN of the pavement is satisfied with structural number required as shown in the following table.

Layer	Description	Layer Coefficient	Drainage Coefficient	Elastic Modulus (psi)	Practical Layer Thickness	Associated SN
			*Assumption	*Assumption	(cm)	
D1	AC Layer	0.420	1.00	400,000	5.0	0.83
D2	Gran Base	0.132	1.00	28,500	35.0	1.82
					Total SN	2.65>2.42

Calculation of Layer Thickness of Access Road for Stage I

Source: JICA Study Team

The design procedure results in the following preliminary thickness of;

D1 (i.e., thickness of the asphalt concrete layer)	=	5 cm
D2 (i.e., thickness of the base course layer)	=	35 cm

Pavement Design of Access Road

Estimation for design EASL toward traffic volume from the agro-industrial park is shown following table. In this estimation, analysis period was defined as 20 years.

Vehicle Types	Design Daily Traffic Volume (vehicles/day)	Design Annual Traffic Volume (vehicles/year) *1year=365days	Design Traffic *Analysis period of 20years	ESAL Factor	Design ESAL
Passenger cars	4,190	1,529,350	30,587,000	0.001	30,587
Buses	570	208,050	4,161,000	0.870	3,620,070
Single Unit Trucks	820	299,300	5,986,000	0.980	5,866,280
Heavy Trailer	260	94,900	1,898,000	1.480	2,809,040
Total	5,840	2,131,600	42,632,000		12,325,977

Design ESAL for Access Road

Source: JICA Study Team

Design lane traffic ($DsgnW_{18}$) was calculated by applying following formula. In this calculation, Directional distribution factor is setup a value of 0.5 as general and lane distribution factor is setup a value of 0.9 for two lanes in each direction of travel.

 $DsgnW_{18} = D_D x D_L x Total W_{18}$

where, Total W_{18} : Design ESAL D_D : Directional distribution factor D_L : Lane distribution factor

As the result of estimation, design fane traffic of 5,546,690 was obtained. And Structural number (SN) is examined by applying the following formula.

$$\log W_{18} = Z_R \times S_0 + 9.36 \log(SN+1) - 0.20 + \frac{\log\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \log(M_R) - 8.07$$

where, W_{18} : the Number of ESALs over the lifetime of the pavement

- SN : Structural number
- Z_R : Standard normal deviate
- S₀ : Overall Standard Deviation
- ΔPSI : $p_o p_t$
- MR : Roadbed Soil Resilient Modulus (psi)

In the estimation, each coefficient is defined as shown in the following table.

Pavement	Design	factor	for	Access	Road
1 aveniene	DUSIGH	lactor	101	ILCCOB	nouu

Factor	Value	Remarks
Z _R	-1.037	Reliability: 85%
S ₀	0.45	
po	4.2	
p _t	2.5	
M _R	12,000psi	1500 x CBR *CBR=8 (assumption)

Source: JICA Study Team

Result of above calculation, structural number of 3.69 was computed. And the estimated thickness of the pavement structure is calculated from the structural number equation as:

SD=a1*D1+a2*D2+a3*D3

Thicknesses of each pavement layer (asphalt, base and sub-base) are determined as associated SN of the pavement is satisfied with structural number required as shown in the following table.

Layer	Description	Layer Coefficient	Drainage Coefficient *Assumption	Elastic Modulus (psi) *Assumption	Practical Layer Thickness (cm)	Associated SN
D1	AC Layer	0.420	1.00	400,000	7.0	1.16
D2	Gran Base	0.132	1.00	28,500	30.0	1.56
D3	Gran. Sub-base	0.110	1.00	15,000	30.0	1.30
					Total SN	4.02>3.69

Calculation	of Laver	Thickness	for	Access	Road
Calculation	UI Layu	1 menness	101	ALLOS.	Nuau

Source: JICA Study Team

The design procedure results in the following preliminary thickness of:

D1 (i.e., thickness of the asphalt concrete layer)	=	7 cm
D2 (i.e., thickness of the base course layer)	=	30 cm
D3 (i.e., thickness of the sub-base course layer)	=	30 cm

3. Pavement Design for On-site Major and Minor Roads

Pavement Design of Major Road

Traffic volume trough on major road is assumed to be same volume as generated from agro-industrial park. The estimation for design EASL is shown following table. In this estimation, analysis period was defined as 20 years.

Vehicle Types	Design Daily Traffic Volume (vehicles/day)	Design Annual Traffic Volume (vehicles/year) *1year=365days	Design Traffic *Analysis period of 20years	ESAL Factor	Design ESAL
Passenger cars	4,190	1,529,350	30,587,000	0.001	30,587
Buses	570	208,050	4,161,000	0.870	3,620,070
Single Unit Trucks	820	299,300	5,986,000	0.980	5,866,280
Heavy Trailer	260	94,900	1,898,000	1.480	2,809,040
Total	5,840	2,131,600	42,632,000		12,325,977

Design 1	ESAL fo	r Major	Road
----------	---------	---------	------

Source: JICA Study Team

Design lane traffic ($DsgnW_{18}$) was calculated by applying following formula. In this calculation, Directional distribution factor is setup a value of 0.5 as general and lane distribution factor is setup a value of 1.0 for one lane in each direction of travel.

As the result of estimation, design fane traffic of 6,162,989 was obtained. And Structural number (SN) is examined by applying the following formula.

$$\log W_{18} = Z_R \times S_0 + 9.36 \log(SN+1) - 0.20 + \frac{\log\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \log(M_R) - 8.07$$

where, W_{18} : the Number of ESALs over the lifetime of the pavement

SN : Structural number

 Z_R : Standard normal deviate

S₀ : Overall standard deviation

$$\Delta PSI$$
 : $p_o - p_t$

MR : Roadbed Soil Resilient Modulus (psi)

In the estimation, each coefficient is defined as shown in the following table.

Factor	Value	Remarks
Z _R	-1.037	Reliability: 85%
\mathbf{S}_0	0.45	
p_{o}	4.2	
p_t	2.5	
M _R	12,000psi	1500 x CBR *CBR=8 (assumption)
	·	•

Pavement Design factor for Major Road

Source: JICA Study Team

Result of above calculation, structural number of 3.75 was computed. And the estimated thickness of the pavement structure is calculated from the structural number equation as:

SD=a1*D1+a2*D2+a3*D3

Thicknesses of each pavement layer (asphalt, base and sub-base) are determined as associated SN of the pavement is satisfied with structural number required as shown in the following table.

Layer	Description	Layer Coefficient	Drainage Coefficient *Assumption	Elastic Modulus (psi) *Assumption	Practical Layer Thickness (cm)	Associated SN
D1	AC Layer	0.420	1.00	400,000	7.0	1.16
D2	Gran Base	0.132	1.00	28,500	30.0	1.56
D3	Gran. Sub-base	0.110	1.00	15,000	30.0	1.30
					Total SN	4.02 > 3.75

Calculation of Layer Thickness for Major Road

Source: JICA Study Team

The design procedure results of major road in the following preliminary thickness of:

D1 (i.e., thickness of the asphalt concrete layer)	=	7 cm
D2 (i.e., thickness of the base course layer)	=	30 cm
D3 (i.e., thickness of the sub-base course layer)	=	30 cm

Pavement Design of Minor Road

Minor road was assumed to be taken a half of traffic volume generated from agro-industrial park. Therefore the Design EASL of minor road was adopted 6,162,989 as a half of Design ESAL of major road.

Design lane traffic ($DsgnW_{18}$) was calculated by applying following formula. In this calculation, Directional distribution factor is setup a value of 0.5 as general and lane distribution factor is setup a value of 1.0 for one lane in each direction of travel.

$DsgnW_{18} = D_D x D_L x Total W_{18}$						
where, Total W_{18} : I	Design ESAL					
D_D	: Directional distribution factor					
D_L	: Lane distribution factor					

As the result of estimation, design fane traffic of 3,081,494 was obtained. And Structural number (SN) is examined by applying the following formula.

$$\log W_{18} = Z_R \times S_0 + 9.36 \log(SN+1) - 0.20 + \frac{\log\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \log(M_R) - 8.07$$

where, $\ \ W_{18} \$: the Number of ESALs over the lifetime of the pavement

- SN : Structural number
- Z_R : Standard Nomal Deviate
- S₀ : Overall Standard Deviation
- ΔPSI : $p_o p_t$
- MR : Roadbed Soil Resilient Modulus (psi)

In the estimation, each coefficient is defined as shown in the following table.

Value Remarks	Value	Factor
-1.037 Reliability: 85%	-1.037	Z _R
0.45	0.45	\mathbf{S}_0
4.2	4.2	p _o
2.5	2.5	pt
12,000psi 1500 x CBR *CBR=8 (assumption)	12,000psi	M _R
-1.037 Reliability: 85% 0.45	-1.037 0.45 4.2 2.5 12,000psi	$\begin{array}{c} Z_{R} \\ S_{0} \\ p_{o} \\ p_{t} \\ M_{R} \end{array}$

Pavement Design factor for Minor Road

Source: JICA Study Team

Result of above calculation, structural number of 3.35 was computed. And the estimated thickness of the pavement structure is calculated from the structural number equation as:

SD=a1*D1+a2*D2+a3*D3

Thicknesses of each pavement layer (asphalt, base and sub-base) are determined as associated SN of the pavement is satisfied with structural number required as shown in the following table.

Layer	Description	Layer Coefficient	Drainage Coefficient	Elastic Modulus (psi) *Assumption	Practical Layer Thickness (cm)	Associated SN
D1	AC Laver	0.420	1 00	400 000	(cm) 5.0	0.83
		0.420	1.00	+00,000	5.0	0.05
D2	Gran Base	0.132	1.00	28,500	30.0	1.56
D3	Gran. Sub-base	0.110	1.00	15,000	30.0	1.30
					Total SN	3.69 > 3.35

Calculation of Layer Thickness for Minor Road

Source: JICA Study Team

The design procedure results for minor road in the following preliminary thickness of:

D1 (i.e., thickness of the asphalt concrete layer)	=	5 cm
D2 (i.e., thickness of the base course layer)	=	30 cm
D3 (i.e., thickness of the sub-base course layer)	=	30 cm

RD-2 Design for Storm Water Drainage Design

- 1. Methodology of Drainage Design
- 2. Drainage Design

1. Methodology of Drainage Design

The figure below shows the flow of design for storm water drainage channel.

Flow of Design for Storm Water Drainage Channel

2. Drainage Design

Estimation of Rainfall Intensity

Maximum dairy rainfall volumes for the period of 1995 to 2005 at Jericho metrological station No. 0000015 are shown in the following Figure III-4-11. It is indicated 36.9mm/day of maximum volume in the decade from 1995.

Source: Palestinian Water Authority

Maximum Dairy Rainfall Data for the period 1995-2005 at Jericho Metrological Station

Rainfall Intensity of each return period was estimated using Gumbel's method with above rainfall data. Gumbel's method is estimation approach that makes a graph by plotting data on the Gumbel matrix. The result of estimation of rainfall intensity is shown in following Figure III-4-12 and Table III-4-10. In view of safety and reasonable, 29 mm/day of return period 10 year is accepted for storm water drainage design.

Source: JICA Study Team

Maximum Dairy Rainfall for 1995-2005 at Jericho Metrological Station

Rainfall Intensity of Each Return Period

Return period	5 year	10 year	20 year	30 year	50 year	100 year
Rainfall (mm/day)	24	29	33	36	40	45

Source: JICA Study Team

Preparing Design Rainfall Intensity Formula

Rainfall intensity formula for calculation of storm water volume is prepared using Talbot's Formula. In this calculation, 1 hour rainfall volume is 14 (mm / h) of half of dairy rainfall volume 29 (mm /h) as assumption. The Talbot's Formula is expressed below;

$$I_{N}^{24} = R_{N}^{24} x \beta_{N}$$

$$\beta_{N} = a' / (T + b)$$

$$a' = b + 24$$

$$b = (24 - \beta_{N}^{t} x t) / (\beta_{N}^{t} - 1)$$

$$\beta_{N}^{t} = I_{N}^{t} / I_{N}^{24}$$

$$I_{N}^{t} = R_{N}^{t} x (24 / t)$$

where,	I_N^{24}	: 24hours rainfall intensity for N years of return period (mm/24h)
	R_N^{24}	: 24hours rainfall volume for N years of return period (mm)
	β_{N}	: characteristic coefficient value for N years of return period
	$I_N^{\ t}$: t hours rainfall intensity for N years of return period (mm/24h)
	$R_N^{\ t}$: t hours rainfall volume for N years of return period (mm)
	t	: discretionary duration (h)
	Т	: rainfall duration (h)
	a', b : v	alue for the constants

Result of the calculation, design rainfall intensity formula was obtained as below.

Source: JICA Study Team

Design Rainfall Intensity Formula

Estimation of Water Flow Volume and Drainage Design

<Volume of storm water flow>

The type and size of drainage are planed as it has capability of carrying off storm water to the river. The volumes of storm water flow are examined the applying rational formula as expressed below.

Q = C I A		
where,	Q	: design flow (m^3/s)
	С	: drainage area runoff coefficient (-)
	Ι	: design rainfall intensity (mm/h)
	А	: drainage area (m ²)

In estimating the volume of storm water flow, drainage area runoff coefficient is set up a value of 0.5 as general value in development area.

<Drainage capability for facility design>

Flow conditions of designed drainage are examined by applying the "Manning's Formula" as expressed below.

$$V = 1/n \times R^{2/3} \times I^{1/2}$$

$$Q = V \times A$$
where, V : flow velocity (m/s)
n : roughness coefficient (-)
R : hydraulic radius (m)
I : flow gradient (-)
Q : discharge (m³/s)
A : section area of flow (m²)

Possible storm water in the agro-industrial park is planned to be collected, discharged through primarily the roadside ditch along the road network and release to the *Wadi*. Pipe culvert is installed in the section that

capability of the road side ditch is lacking. As Result of calculation for storm water drainage, drainage designs in the section of discharge to on-site river are shown in table below and designed drainage network is shown in figure below.

Drainage No.	Drainage area (ha)	Drainage type	Volume of Strom Water (m ³ /s)
107	22.65	Pipe Curvert 800mm	0.680
192	1.68	Roadside Ditch	0.012
307	26.18	Pipe Curvert 800mm	0.812
507	31.62	Pipe Curvert 800mm	0.949
582	1.95	Roadside Ditch	0.062
594	2.97	Roadside Ditch	0.092
605	16.36	Pipe Curvert 800mm	0.507
801	3.64	Roadside Ditch	0.106

Result of Storm Water Drainage

Source: JICA Study Team

Source: JICA Study Team

Planned Network of Drainage

WS-1 Results of Interview Survey on Working Periods

Questionnaire 1. How long is the standard hour of operation per day?

2. When is holiday?

Starts time Hours/ Day Starts time Ends time (Ex. Friday and Saturday) Weekly: _______ (Ex. Lamadan Period, 7days) Annually: ______, ____days (Ex. Lamadan Period, 7days) Yes No ______, ____days (Ex. Lamadan Period, 7days)

_ Hours/ Day

Answers

 Do you have some special operating period? If yes, a), when is that period? b), how long is the hour of operation per day?

		- - -	:					-	:	
		1. Standard Uper	ation Hour			2. Holiday		3. Special Upera	ation Hours	
No.	Interview Date	Working Hours	Starts Time		Ends Time	Weekly	Annually	Answer	Periods	Working Hours
		(hours)	(hh:mm))	hh:mm)		(days)	(Yes or No)		(hh:mm)
1 Rich for Food Processing	25 June 2008	8.0	8:00	٤	16:00	Friday	12.0	Yes	45 days	10.0
2 Ali brothers Agriculutural Co.	26 June 2008	0.9	7:00	2	16:00	None	7.0	Yes	4 months	24.0
3 Al-Juneidi for Trade & Industrial Engineering Co.	10 July 2008	8.5	8:00	٢	16:30	Friday	10-12	No		I
4 Salwa Food Co.	23 Jun. 2008	15.0	7:00	۲	22:00	Friday	8.0	Yes	Ramadan month (22 days)	7.5
5 K.A.R for Maccaroni & Food Stuff manufacturing Co.	02 July 2008	8.0	8:00	٢	16:00	Friday	8.0	Yes	6 weeks	24.0
6 Golden Wheat Mills	02 July 2008	8.0	7:30	2	15:30	Friday	10.0	Yes	6 months	24.0
7 AI-Sanabel Maccaroni & Vermicelli Production Co.	02 July 2008	8.5	7:30	٢	16:00	Sunday	12.0	Yes	110 days	16.5
8 Amro & Rushdi Alool Co.	10 July 2008	6.0	5:00	2	11:00	Friday	12.0	No	•	1
9 Al-Juneidi Co. for Dairy Products	10 July 2008	8.0 except cooling (24 hours)	8:00	2	16:00	Friday	9.0	Yes	60 days	18.0
10 AI-Hijaz for Chocolate	26 June 2008	8.0	6:00	٤	14:00	Friday	8.0	Yes	July - December	24.0
11 Al-Morooj (Mawasem) Feed Co.	23 June 2008	8.5	7:30	٢	16:00	Friday	8.0	Yes	36 days	0.0

WS-2 Calculation for Rate of Loading and Hourly Factor

	Total/year	2,048	1,809	0	4,575	2,152	1,168	1,624	0	1,952	1,184	2,287	18,798		
	Day	256	201		305	269	146	191		244	148	269	Sub-total A		
	Subtotal	8.0	9.0		15.0	8.0	8.0	8.5		8.0	8.0	8.5		Subtotal	81
	23												0 0	23	0.0
	22												0 0	22	0.0
	21												0.5 0.5	21	1.0
	0						•						0.5 0.5	20	1.0
	19 2												0.5 0.5	19	1.0
	18												0.5 0.5	18	1.0
	1								••••				0.5 0.5	17	1.0
	9												0.5 0.5	16	1.0
	5 1												4 3.5	15	7.5
	1												4 4	14	8.0
	1												5 4.5	13	0.0
	13												5 4.5 4.	12	0.
	12												4.5 4.1	1	6 0.
	11												4.5 4.5	` 0	6 0
	10												4.5 4.5	1	.6 C
	6												4.5 4.5	6	.6 0.
p	8			••••									3 4.5	8	9.0
Peric	7	••••						<u>N</u>		•••••		.	.5 1.5	7	4.5
ation	9												0 0.5 (9	1.0
Opera	5												0 0	2	0.0
dard (4												0	4	0.0
Stan	3												0 0	3	0.0
's for	2												0 0	2	0.0
Hour													0 0	1	0.0
-king					·		•						0 0	0	0.0
Wor]	-	2	3	4	2	9	7	∞	6	10	11		Hour	Total

Working Hours for Special Operation Period

	/year	450	2,520	0	0	864	3,768	1,815	0	1,080	3,768	324	14,589		(V	(M.
	Total	2	5		с	5	7	C		C	7	5	B 1		mum (D.N	ximum (H
	Day	4	101		•	3(15.	11(99	15.	3(Sub-total		= Daily Maxi	= Hourly Ma
	Subtotal	10.0	24.0		15.0	24.0	24.0	16.5		18.0	24.0	9.0		Subtotal	164.5	216.0
	23												3 3	23	6.0	0.6
	22												3 3	22	6.0	0.6
	21												3.5 3.5	21	7.0	0.6
	50												3.5 3.5	20	7.0	0.6
	6												3.5 3.5	19	7.0	0.6
	8												3.5 3.5	18	7.0	0.6
	7 1												3.5 3.5	17	7.0	0.6
	6 1									-			4 4	16	8.0	0.6
	5 1												.5 4.5	15	0.6	0.6
	4 1												.5 4.5 4	14	0.6	0.6
	3 1												.5 4.5 4	13	0.6	0.6
	1												5 4.5 4	12	0.6	0.6
	1												5 4.5 4.	11	0.6	0.6
	11									-			5 4.5 4.	10	0.0	9.0.6
	10								••••				5 4.5 4.	6	0.0	0.0
	6												5 4.5 4.	8	5 0'i	5 0'i
Ð	8								••••				4.5 4.5	7	5 5	5 0 ⁻
Perio	7	.Ø.			፟ <u>₿</u>			••••					5 2.5 4	9	3 0'	5 O:
ation	9	••••		••••	••••			••••	••••	.Ø.			2 2.5	5	.0	6 0.
Oper	5												2 2	4	0.4	6 0.
ecial	4		-										2 2	~	0 4	6 0
orsp	3		-										2 2	0	0 4	6 0
ours 1	2												2 2		0 4.	.6 0.
н Эн Би	1							 					2 2	1	0 4.	'6 C
vorki	0												2	our G	ital 4.(AX 9.(
	\backslash	<u> </u>	2	3	4	5	9	7	8	6	10	11		Ĭ	To	Ň

Notes: 1) Numbers from 1 to 11 are shown factories which replied to the questionnaire. 2) Factory No.3 and No.8 are not included because these two factory dose not have special operation periods.

 $\begin{array}{c|c} Daly \mbox{ Average}(D,A): & 91.5 \\ \mbox{ Rate of Loading } (D,A,D,M) & 0.556 \\ \mbox{ Hourly Factor } (H,M,D,M) & 1.31 \\ \mbox{ Hourly Factor } 1.3 \\ \mbox{ Hourly Hour$

(= 1.8)

r		
License No. Survey date Location Status Depth Quantity Quality Information - Dried up &	19-13/006 07 June 2008 Left Bank/ Al-Magtas St. Pumping for Agriculture. 100 m 30 m3/hour Brackish	
License No. Survey date Location Status Depth Quantity Quality Information (Nobody the	19-13/015A 07 June 2008 Left Bank/ Al-Magtas St. Pumping for Agriculture. 130 m 70 m3/hour Brackish ere at survey time.)	
License No. Survey date Location Status Depth Quantity Quality Information - Dried up & but water do	19-13/018 07 June 2008 Right Bank/ Al-Qadesiya St. Dried Up - - - - - - - 	
License No. Survey date Location Status Depth Quantity Quality Information - Dried up &	19-13/020 07 June 2008 Right Bank/ Al-Qadesiya St. Pumping for Agriculture. 100m 5 m ³ /hr Sweet drilled 30m (70m→100m) in 2007.	

WS-3 Results of Field Interview Survey on existing Agricultural Wells (1/5)

WS-3 Results of Field Interview Survey on existing Agricultural Wells (2/5)

License No. Survey date Location Status Depth Quantity Quality Information - Possible to - Well was f	 19-13/024A 04 June 2008 Right Bank/Horse Riding Club Pumping for Agriculture. 90 m 35 m³/hr Brackish purchase the water. illed 30m (120m→90m) against salt. 	
License No. Survey date Location Status Depth Quantity Quality Information (Nobody the	19-13/025A 04 June 2008 Left Bank/ Al-Magtas St. Dried Up - - -	
License No. Survey date Location Status Depth Quantity Quality Information - Possible to	19-13/026A 04 June 2008 Right Bank/ Al-Qadesiya St. Pumping for Iron Industry. 95 m 75 m3/hour Brackish purchase the water.	
License No. Survey date Location Status Depth Quantity Quality Information - Pump is bro	19-13/029A 04 June 2008 Right Bank/ Al-Qadesiya St. Not Active - - -	

License No. Survey date Location Status Depth Quantity Quality Information - Dried up si	19-13/047 07 June 2008 Left Bank/ Al-Magtas St. Dried Up - - - nce 2006.	
License No. Survey date Location Status Depth Quantity Quality Information	19-13/048 07 June 2008 Left Bank/ Al-Magtas St. Pumping for Agriculture. 112 m 55 m3/hour Drinkable	(Photo is not available.)
License No. Survey date Location Status Depth Quantity Quality Information - Improved i	19-13/049 07 June 2008 Left Bank/ Al-Magtas St. Pumping for Agriculture. 75 m 35 m3/hr Brackish n 2006.	
License No. Survey date Location Status Depth Quantity Quality Information - Quantity is up before 4-:	19-13/050A 07 June 2008 Left Bank/ Al-Magtas St. Pumping for Agriculture. 120 m 50 m3/hr Brackish decressing. 90m3/hr could be pumped 5 years.	

WS-3 Results of Field Interview Survey on existing Agricultural Wells (3/5)

		r
License No. Survey date Location Status Depth Quantity Quality Information - Quality wa years ago.	 19-13/052 07 June 2008 Left Bank/ Al-Magtas St. Pumping for Agriculture. 120 m 55 m3/hr Drinkable s changed from salty to sweet since few 	
License No. Survey date Location Status Depth Quantity Quality Information - Pumping is problem.	19-13/055 07 June 2008 Left Bank/ Al-Magtas St. Pumping for Agriculture. 110 m 40 m3/hr Drinkable interrupted due to the internal	
License No. Survey date Location Status Depth Quantity Quality Information (Nobody the	19-14/023 07 June 2008 Left Bank/ Al-Magtas St. Dried Up - - -	
License No. Survey date Location Status Depth Quantity Quality Information - Drilled 40m	19-14/037 07 June 2008 Left bank/ Route 449 Pumping for Agriculture. 120 m 15 m3/hr Brackish n (80m→120m) in 2008 against salt.	

WS-3 Results of Field Interview Survey on existing Agricultural Wells (4/5)

License No. Survey date Location Status Depth Quantity Quality Information (Nobody the	19-14/052 07 June 2008 Left bank/ Route 449 Dried Up. - -	
License No. Survey date Location Status Depth Quantity Quality Information - When a sto 20sec.	Jericho Well No.1 (19-14/101) 12 June 2008 Left Bank/ Ahmad Ashuqairi St. Not Active ? - -	
License No. Survey date	Jericho Well No.1 (19-14/101) 12 June 2008	
License No. Survey date	Jericho Well No.1 (19-14/101) 12 June 2008	

WS-3 Results of Field Interview Survey on existing Agricultural Wells (5/5)

WS-4 Hydraulic Gradient Lines along the Water Transmission Pipeline

From Mekorot Connection Point

WS-5 Results of the hydraulic analysis for the water distribution networks

WT-1 Wastewater Treatment Flow

Reclaimed wastewater supply

Design Solid Volume (Stage 1)

S=Qi×[S	SSi×R1/10	00+{8	Si = (1 - R)	1/100)-SSt	<r2 100]="1/10" 3<="" th=""><th></th><th></th></r2>		
	ai .	223	kg/day	\rightarrow	260.4 m3/day	(≋6days ii	n a week)
Qi	Desig	n Daily	Maximum	Wastawator	Quantity	480	m3/day
SSi	Desig	n Influ	ent SS Qua	lity		650	mg/L
SSt	Desig	n Efflu	ent SS Qua	lity		30	mg/L
R	Sludge	Gene	ration Rate	in Oxidatio	n Ditch	75	%

Design Sludge Volume

-

Design Sludge Generation=S×100/Sludge Density(%)×1/1000(kg)

÷

74.4 m3/day

(%6days in a week)

₩Sludge Density == 0.3

Ana analysia a wat

86.8 m3/day

%

					SS_concentration
1 Dewatered Sludge	260.4	kg/day	1.7	m3/day	15.0%
2 Thickened ! (into Sludge Dewatering Facility)	289.3	kg/day	19.3	m3/day	1.5%
(into Sludge Storage Tank)	248.0	kg/day			
3 Filtered Water	28.9	kg/day			
4 Sludge into Sludge Thickening Tank	275.6	kg/day	45.9	m3/day	0.6%
5 Thickner Effluent	27.6	kg/day			
6 SS volume in Return Sludge	56,5	kg/day			
7 SS volume in Influent	312.0	kg/day			
8 SS volume in treated water	14.4	kg/day			
9 Excess Sludge Volume	223,2	kg/day	37.2	m3/day	0.6%

Design Solid Volume (Stage 11)

S=Qi×[5	$Si = R1/100 + {SSi = (1 - R1/100) - SSt} \times R2/100] \times 1/10^{-3}$	
	= 767 kg/day \Rightarrow 895.2 m3/day	(%6days in a week)
Qi	Design Daily Maximum Wastawater Quantity	1,650 m3/day
SSi	Design Influent SS Quality	650 mg/L
SSt	Design Effluent SS Quality	30 mg/L
R	Sludge Generation Rate in Oxidation Ditch	75 %

Design Sludge Volume

Design Sludge Generation= S×100/Sludge Density(%)×1/1000(kg)

255.77 m3/day -298.4 m3/day ₩Sludge Density = %

(%6days in a week)

0,3

						SS_concentration
1	Dewatered Sludge	895.2	kg/day	6.0	m3/day	15.0%
2	Thickened : (into Sludge Dewatering Facility)	9947	kg/day	66.3	m3/day	1.5%
	(into Sludge Storage Tank)	852.6	kg/day			
3	Filtered Water	99.5	kg/day			
4	Sludge into Sludge Thickening Tank	947.3	kg/day	157.9	m3/day	0.6%
5	Thickner Effluent	94.7	kg/day			
6	SS volume in Return Sludge	194.2	kg/day			
7	SS volume into Oxidation Ditch	1,072.5	kg/day			
8	SS volume in treated water	49.5	kg/day			
9	Excess Sludge Volume	767.3	kg/day	127.9	m3/day	0.6%

Design Solid Volume (Stage 1 + 11)

....

S=Qi×[8	Si×R1/10	0+(5:	$Si \times (1 - R)$	1/100)-SSt	×R2 /100]×1/10 ⁻³		
	-	986	kg/day	\Rightarrow	1,150.1 m3/day	(≋6days ir	ı a week)
Qi	Desig	n Daily	Maximum	Wastawater	Quantity	2,120	m3/day
SSi	Desig	n Influ	ent SS Qua	lity		650	mg/L
SSt	Desig	n Efflu	ent SS Qua	lity		30	mg/L
R	Sludge	Gene	ration Rate	in Oxidatio	on Ditch	75	9%

Design Sludge Volume

Design Sludge Generation=S×100/Sludge Density(%)×1/1000(kg)

328.6 m3/day

(滋6days in a week)

₩Sludge Density = 0.3

 \Rightarrow

%

383.4 m3/day

					SS_concentration
1 Dewatered Sludge	1,150.1	kg/day	7.7	m3/day	15.0%
2 Thickened ! (into Sludge Dewatering Facility)	1,277.9	kg/day	85.2	m3/day	1.5%
(into Sludge Storage Tank)	1.095.3	kg/day			
3 Filtered Water	127.8	kg/day			
4 Sludge into Sludge Thickening Tank	1,217.0	kg/day	202.8	m3/day	0.6%
5 Thickner Effluent	121.7	kg/day			
6 SS volume in Return Sludge	249.5	kg/day			
7 SS volume into Oxidation Ditch	1,378.0	kg/day			
8 SS volume in treated water	63.6	kg/day			
9 Excess Sludge Volume	985.8	kg/day	164.3	m3/day	0.6%

Design Solid Volume (Stage 111)

S=Qi×[8	Si×R1/100+{SSi×(1-R1	/100)-SSt} ×R2 /1	00]×1/10 ³		
	= 1,139 kg/day	->	1,329.2 m3/day	(%6days in a	week)
Qi	Design Daily Maximum V	Vastawater Quant	ty	2,450 m3	i/day
SSi	Design Influent SS Quali	ty		650 mg	/L
SSt	Design Effluent SS Qual	ty		30 mg	/L
R	Sludge Generation Rate	in Oxidation Ditch	le la	75 %	

Design Studge Volume

-

Design Sludge Generation=S×100/Sludge Density(%)×1/1000(kg)

379.77 m3/day => (%6days in a week)

₩Sludge Density = 0.3

443.1 m3/day

%

						SS_concentration
11	Dewatered Sludge	1.329.2	kg/day	8.9	m3/day	15.0%
2	Thickened : (into Sludge Dewatering Facility)	1,476.9	kg/day	98.5	m3/day	1.5%
	(into Sludge Storage Tank)	1,265.9	kg/day			
31	Filtered Water	1.47.7	kg/day			
4 5	Sludge into Sludge Thickening Tank	1,406.6	kg/day	234.4	m3/day	0.6%
5 1	Chickner Effluent	140.7	kg/day			
6 5	SS volume in Return Sludge	288.4	kg/day			
7 5	S volume into Oxidation Ditch	1,592.5	kg/day			
8 5	S volume in treated water	73.5	kg/day			
9 E	Excess Sludge Volume	1,139.3	kg/day	189.9	m3/day	0.6%

CE-1	Project	Cost for	Agro-Indusrtial	Park Development	Stages I,	, II and I	Ш
------	---------	----------	------------------------	-------------------------	-----------	------------	---

Infractmentura	Stage I		Stage II		Stage III		Total	
mirastructure	(NIS)	(USD)	(NIS)	(USD)	(NIS)	(USD)	(NIS)	(USD)
I. Base Cost								
A Off-site								
A. 1 General requirements	2,815,893	0	5,873,962	0	2,695,611	0	11,385,466	0
A. 2 Access roads	8,217,508	0	47,805,851	0	0	0	56,023,359	0
A. 3 Power supply facilities	0	714,284	0	0	0	0	0	714,284
A. 4 Telecommunication facilities	0	150,000	0	0	0	0	0	150,000
A. 5 Water supply facilities	1,148,455	631,110	2,691,919	784,760	693,975	434,710	4,534,349	1,850,580
A. 6 Wastewater treatment facilities	3,347,658	3,685,670	7,994,961	6,560,870	9,515,253	7,502,870	20,857,872	17,749,410
A. 7 Solid waste treatment facilities	3,127,139	175,400	8,356,720	295,890	8,356,720	324,140	19,840,579	795,430
A. 8 Building Structures	0	0	3,278,200	0	0	0	3,278,200	0
Sub-total (A)	18,656,653	5,356,464	76,001,613	7,641,520	21,261,559	8,261,720	115,919,825	21,259,704
B. On-site								
B. 1 General requirements	2,614,937	0	6,955,923	0	7,131,000	0	16,701,860	0
B. 2 Land reclamation	5,634,070	0	40,133,845	0	51,252,975	0	97,020,890	0
B. 3 Wadi improvement	0	0	7,409,956	0	4,386,755	0	11,796,711	0
B. 4 Internal roads	4,196,234	0	23,478,225	0	28,515,789	0	56,190,248	0
B. 5 Storm water drainage channel	889,400	0	2,986,600	0	3,265,400	0	7,141,400	0
B. 6 Power distribution facilities	0	392,155	0	1,719,420	0	1,756,634	0	3,868,209
B. 7 Telecommunication facilities	45,000	0	225,000	0	225,000	0	495,000	0
B. 8 Water distribution facilities	2,897,374	141,840	4,683,574	816,840	5,220,334	608,850	12,801,282	1,567,530
B. 9 Wastewater treatment facilities	605,098	0	3,060,190	0	2,895,175	0	6,560,463	0
B. 10 Solid waste collection facilities	0	562,500	0	523,550	0	697,500	0	1,783,550
B. 11 Security facilities	0	2,034,250	0	864,000	126,000	662,750	126,000	3,561,000
B. 12 Building Structures								
i) Parks	86,480	0	896,060	0	1,218,150	0	2,200,690	0
ii) Office building	6,925,240	0	9,728,050	0	7,174,020	0	23,827,310	0
iii) Model factory	17,190,000	0	0	0	0	0	17,190,000	0
iv) Car parking	1,004,500	0	7,149,100	0	4,873,050	0	13,026,650	0
Sub-total (B)	42,088,333	3,130,745	106,706,523	3,923,810	116,283,648	3,725,734	265,078,504	10,780,289
Total (A to B)	60,744,986	8,487,209	182,708,136	11,565,330	137,545,207	11,987,454	380,998,329	32,039,993
II. Land Acquisition								
A Off-site								
A. 1	928,500	0	4,069,100	0	0	0	4,997,600	0
B. On-site								
B. 1	0	0	14,529,000	0	14,907,000	0	29,436,000	0
Sub-total	928,500	0	18,598,100	0	14,907,000	0	34,433,600	0
III. Administration	925,102	127,308	3,019,594	173,480	2,286,783	179,812	6,231,479	480,600
IV. Engineering Services								
(1) Detailed design	3,755,915	516,871	12,259,550	704,329	9,284,339	730,036	25,299,804	1,951,236
(2) Supervision	3,755,915	516,871	12,259,550	704,329	9,284,339	730,036	25,299,804	1,951,236
Sub-total	7,511,830	1,033,742	24,519,100	1,408,658	18,568,678	1,460,072	50,599,608	3,902,472
Total (I to IV)	70,110,418	9,648,259	228,844,930	13,147,468	173,307,668	13,627,338	472,263,016	36,423,065
V. Physical Contingency (10 % of Total I to IV)	7,011,042	964,826	22,884,493	1,314,747	17,330,767	1,362,734	47,226,302	3,642,307
VI. Grand Total (Total I to V)	77,121,460	10,613,085	251,729,423	14,462,215	190,638,435	14,990,072	519,489,318	40,065,372
VII. Grand total equivalent in USD		32,035,713		84,387,055		67,945,193		184,367,960

Note: General requirement (A.1 and B.1) consists of temporary facilities required for the construction such as temporary buildings for staff quarter and labor camp,

motor pools, repair shop, warehouse, water supply system and power supply system for the construction works etc., and mobilization and de-mobilization.

CE-2	Project	Cost for	Agro-Indusrtia	al Park	Development	Stages (I+	II) and III
					- • · • • • • • • • • • • • • • • • • •		=

To fire store stores	Stage	I+II	Stage	e III	Total		
Infrastructure	(NIS)	(USD)	(NIS)	(USD)	(NIS)	(USD)	
I. Base Cost							
A Off-site							
A. 1 General requirements	6,260,758	0	2,695,611	0	8,956,369	0	
A. 2 Access roads	47,805,851	0	0	0	47,805,851	0	
A. 3 Power supply facilities	0	714,284	0	0	0	714,284	
A. 4 Telecommunication facilities	0	150,000	0	0	0	150,000	
A. 5 Water supply facilities	3,831,767	1,415,870	693,975	434,710	4,525,742	1,850,580	
A. 6 Wastewater treatment facilities	8,774,847	7,081,670	9,515,253	7,502,870	18,290,100	14,584,540	
A. 7 Solid waste treatment facilities	9,496,207	338,800	8,356,720	324,140	17,852,927	662,940	
A. 8 Building Structures	3,278,200	0	0	0	3,278,200	0	
Sub-total (A)	79,447,630	9,700,624	21,261,559	8,261,720	100,709,189	17,962,344	
B. On-site							
B. 1 General requirements	8,980,866	0	7,131,000	0	16,111,866	0	
B. 2 Land reclamation	45,767,915	0	51,252,975	0	97,020,890	0	
B. 3 Wadi improvement	7,420,314	0	4,386,755	0	11,807,069	0	
B. 4 Internal roads	27,674,459	0	28,515,789	0	56,190,248	0	
B. 5 Storm water drainage channel	3,842,400	0	3,265,400	0	7,107,800	0	
B. 6 Power distribution facilities	0	2,111,575	0	1,756,634	0	3,868,209	
B. 7 Telecommunication facilities	270,000	0	225,000	0	495,000	0	
B. 8 Water distribution facilities	5,480,224	949,780	5,220,334	608,850	10,700,558	1,558,630	
B. 9 Wastewater treatment facilities	3,089,584	0	2,895,175	0	5,984,759	0	
B. 10 Solid waste collection facilities	0	697,500	0	697,500	0	1,395,000	
B. 11 Security facilities	0	2,898,250	126,000	662,750	126,000	3,561,000	
B. 12 Building Structures							
i) Parks	982,540	0	1,218,150	0	2,200,690	0	
ii) Office building	15,641,450	0	7,174,020	0	22,815,470	0	
iii) Model factory	17,190,000	0	0	0	17,190,000	0	
iv) Car parking	8,153,600	0	4,873,050	0	13,026,650	0	
Sub-total (B)	144,493,352	6,657,105	116,283,648	3,725,734	260,777,000	10,382,839	
Total (A to B)	223,940,982	16,357,729	137,545,207	11,987,454	361,486,189	28,345,183	
II. Land acquisition							
A Off-site							
A. 1	4,606,000	0	0	0	4,606,000	0	
B. On-site							
B. 1	14,529,000	0	14,907,000	0	29,436,000	0	
Sub-total	19,135,000	0	14,907,000	0	34,042,000	0	
III. Administration	3,646,140	245,366	2,286,783	179,812	5,932,923	425,178	
IV. Engineering services							
(1) Detailed design	14,803,327	996,186	9,284,339	730,036	24,087,666	1,726,222	
(2) Supervision	14,803,327	996,186	9,284,339	730,036	24,087,666	1,726,222	
Sub-total	29,606,654	1,992,372	18,568,678	1,460,072	48,175,332	3,452,444	
Total (I to IV)	276,328,776	18,595,467	173,307,668	13,627,338	449,636,444	32,222,805	
V. Physical Contingency (10 % of Total I to IV)	27,632,878	1,859,547	17,330,767	1,362,734	44,963,645	3,222,281	
VI. Total (Total I to V)	303,961,654	20,455,014	190,638,435	14,990,072	494,600,089	35,445,086	
VII. Grand total equivalent in USD	104,888,807			67,945,193	172,834,000		

Note: General requirement (A.1 and B.1) consists of temporary facilities required for the construction such as temporary buildings for staff quarter and labor camp, motor pools, repair shop, warehouse, water supply system and power supply system for the construction works etc., and mobilization and de-mobilization.