# PART 6

# GROUNDWATER SIMULATION OF MASTER PLAN

# **Final Report**

# (Supporting Report)

### PART 6 GROUNDWATER SIMULATION OF MASTER PLAN

# **Table of Contents**

|                                             | Page |
|---------------------------------------------|------|
| Table of Contents                           |      |
| List of Tables and Figures                  | ii   |
|                                             |      |
|                                             | Page |
| PART - 6. GROUNDWATER SIMULATION            | 6-1  |
| CHAPTER 1. OUTLINE OF THE MODEL             |      |
| 1.1. BOUNDARY CONDITIONS                    | 6-1  |
| 1.2. NEWLY PLANNED PUMPING WELLS            | 6-3  |
| 1.3. CALIBRATED MODEL                       | 6-4  |
| CHAPTER 2. DRADOWN FORECAST                 | 6-5  |
| 2.1. HEAD OBSERVATION WELLS                 | 6-5  |
| 2.2. HEAD OBSERVATION RESULTS               | 6-5  |
| 2.3. DISCHARGE - DRAWDOWN RELATION          | 6-8  |
| 2.4. HEAD RECOVERY WITH TIME                | 6-8  |
| 2.5. DRAWDOWN IN OUATERNARY SEDIMENT LAYERS | 6-11 |

# **List of Tables and Figures**

|                                                                                     | Page   |
|-------------------------------------------------------------------------------------|--------|
| Table-6. 1 Details of Boundary Conditions                                           | 6-1    |
| Table-6. 2 Details of Planned Wells in the Model                                    | 6-3    |
| Table-6. 3 Detailed Location of Observation Wells                                   | 6-5    |
| Table-6. 4 Head Observation Data for the Cretaceous Aquifer                         | 6-6    |
| Table-6. 5 Discharge (Q) - Drawdown (s) Relation                                    | 6-8    |
| Table-6. 6 Head Recovery with Time after Termination of Pumping for Scenario 1      | 6-8    |
| Table-6. 7 Head Recovery with Time after Termination of Pumping for Scenario 6      | 6-9    |
| Table-6. 8 Drawdown in Quaternary Sediment Layers for Scenario 6                    | 6-11   |
| Figure-6. 1 Cross-sectional Views of Grid/layer and Boundary Conditions of the Mode | el 6-2 |
| Figure-6. 2 Head Distribution of the Calibrated Steady State Model                  | 6-4    |
| Figure-6. 3 Drawdown in the Cretaceous Aquifer at Different Pumping Rates           | 6-7    |
| Figure-6. 4 Time-Drawdown relations for Scenario 1 to 6                             | 6-10   |

#### PART - 6. GROUNDWATER SIMULATION

#### **CHAPTER 1. OUTLINE OF THE MODEL**

#### 1.1. Boundary Conditions

The basic information (model structure, parameters, boundary conditions) of the model is given in Table 1 of the main report. The following table presents the details of the boundary conditions employed in this model.

**Table-6. 1 Details of Boundary Conditions** 

| Structure              |                        | Boundary condition (BC)                                             |
|------------------------|------------------------|---------------------------------------------------------------------|
| Layer                  | BC Type                | Detail                                                              |
| 1st layer:             | Constant Head Boundary | In basin: Fixed heads for rivers and dams,                          |
| Quaternary             | General Head Boundary  | GHB for mountain ridges (see Figure 1 in main report)               |
|                        |                        | External Head = $cell top - 50 m$ ,                                 |
|                        |                        | $Conductance = 1200 \text{m}^2/\text{day}$                          |
|                        | Recharge boundary      | Groundwater recharge (see Figure 2 in main report)                  |
|                        | Drain boundary         | Outside Bogota basin: Drain for major rivers                        |
|                        |                        | Conductance = $2 \sim 10 \text{ m}^2/\text{day}$                    |
| 3rd & 4th layer:       | Constant Flux Boundary | 4897 existing wells, fully penetrated (see Figure 3 in main report) |
| Guadalupe              | (Pumping well)         | Pumping rate range 0.89~6684 m <sup>3</sup> /day                    |
|                        |                        | 59 newly planned wells (hypothetical)                               |
| 8th layer              | General Head Boundary  | for outermost perimeter cells                                       |
| Paleozoic              |                        | External Head = $cell top + 15 m$ ,                                 |
|                        |                        | $Conductance = 400 \text{m}^2 / \text{day}$                         |
| 10th layer:            | General Head Boundary  | for outermost perimeter cells                                       |
| Paleozoic              |                        | External Head = $cell top + 100 \sim 500 m$ ,                       |
|                        |                        | $Conductance = 400 \text{m}^2 / \text{day}$                         |
| 12 <sup>th</sup> layer | No Flow Boundary       | No groundwater is considered to move across the bottom of the       |
| Paleozoic              |                        | model.                                                              |

The vertical cross-section of the model showing grid/layer and major boundary conditions is shown in Figure-6.1.



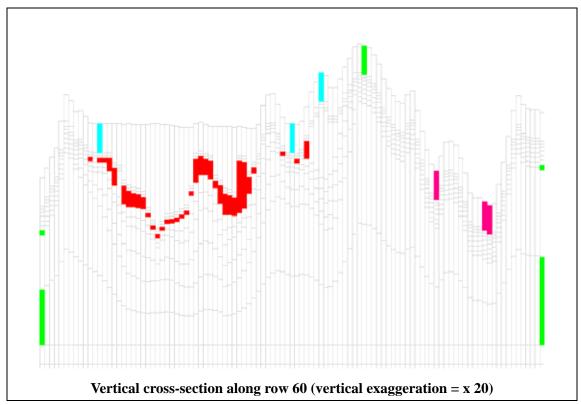



Figure-6. 1 Cross-sectional Views of Grid/layer and Boundary Conditions of the Model **Note**:

- The columns are vertical strips in the model plan view (Figure 1 in main report) and serially numbered 1 to 105 from the left.
- The rows are horizontal strips in the model plan view (Figure 1 in main report) and serially numbered 1 to 120 from the top.
- Red cells: well boundary, blue cells: constant head boundary, pink cells: drain boundary, green cells: general head boundaries.

#### 1.2. Newly Planned Pumping Wells

The following table shows the list of the 59 pumping wells newly planned in this study. Some wells are located close together and thus integrated in one cell in the model. Such integrated result is shown in the right most two columns titled "Output Cell" and "No of wells per cell".

Table-6. 2 Details of Planned Wells in the Model

|          |               |              | Tabi     | e-0. 2 D | etans of Pr         | aiiiieu vvei          | 15 111 1116  |
|----------|---------------|--------------|----------|----------|---------------------|-----------------------|--------------|
| SN       | Name (New)    | Code         | Row      | Column   | Pump rate<br>(m3/d) | Output cell<br>(m3/d) | No. of wells |
| 17       | S-1           | 8743         | 84       | 28       | 5857.6              |                       |              |
| 18       | S-2           | 8743         | 84       | 28       | 5857.6              | -11715.2              | 2            |
| 19       | S-3           | 8744         | 84       | 29       | 5857.6              | -5857.6               | 1            |
| 14<br>15 | S-4<br>S-5    | 8849<br>8849 | 85<br>85 | 29<br>29 | 5857.6<br>5857.6    |                       |              |
| 16       | EX-1          | 8849         | 85       | 29       | 5857.6              | -17572.8              | 3            |
| 13       | S-6           | 8954         | 86       | 29       | 5857.6              | -5857.6               | 1            |
| 9        | B-1           | 9061         | 87       | 31       | 5857.6              |                       |              |
| 10       | B-2           | 9061         | 87       | 31       | 5857.6              |                       |              |
| 11       | EX-2          | 9061         | 87       | 31       | 5857.6              | -17572.8              | 3            |
| 8        | B-3           | 9166         | 88       | 31       | 5857.6              | -5857.6               | 1            |
| 12<br>6  | U-103<br>U-3  | 9070<br>9385 | 87<br>90 | 40<br>40 | 0<br>5857.6         | 0                     | 1            |
| 7        | U-4           | 9385         | 90       | 40       | 5857.6              | -11715.2              | 2            |
| 4        | U-2           | 9490         | 91       | 40       | 5857.6              | -5857.6               | 1            |
| 2        | EX-3          | 9595         | 92       | 40       | 5857.6              |                       |              |
| 3        | U-1           | 9595         | 92       | 40       | 5857.6              | -11715.2              | 1            |
| 1        | U-101         | 9805         | 94       | 40       | 0                   | 0                     | 1            |
| 5        | U-102         | 9491<br>8127 | 91<br>78 | 41<br>42 | 0                   | 0                     | 1            |
| 23       | E-2           | 8337         | 80       | 42       | 5857.6              | -5857.6               | 1            |
| 20       | E-1           | 8757         | 84       | 42       | 5857.6              | -5857.6               | i            |
| 27       | E-4           | 7918         | 76       | 43       | 5857.6              | -5857.6               | 1            |
| 26       | E-3           | 8023         | 77       | 43       | 5857.6              | -5857.6               | 1            |
| 24       | E-102         | 8128         | 78       | 43       | 0                   |                       |              |
| 25       | -             | 8128         | 78       | 43       | 0                   | 0                     | 2            |
| 22       | E-101         | 8338         | 80       | 43       | 0                   | 0                     | 1            |
| 28<br>58 | E-103<br>Y-20 | 7814<br>5296 | 75<br>51 | 44<br>46 | 5857.6              | -5857.6               | 1            |
| 56       | Y-18          | 5401         | 52       | 46       | 5857.6              | -5857.6               | i            |
| 54       | Y-16          | 5506         | 53       | 46       | 5857.6              |                       |              |
| 55       | Y-17          | 5506         | 53       | 46       | 5857.6              | -11715.2              | 2            |
| 52       | Y-14          | 5611         | 54       | 46       | 5857.6              |                       | _            |
| 53       | Y-15          | 5611         | 54       | 46       | 5857.6              | -11715.2              | 2            |
| 51<br>49 | Y-13<br>Y-11  | 5716<br>5821 | 55<br>56 | 46<br>46 | 5857.6<br>5857.6    | -5857.6               | 1            |
| 50       | Y-12          | 5821         | 56       | 46       | 5857.6              | -11715.2              | 2            |
| 47       | Y-9           | 5926         | 57       | 46       | 5857.6              | 11710.2               | -            |
| 48       | Y-10          | 5926         | 57       | 46       | 5857.6              | -11715.2              | 2            |
| 46       | Y-8           | 6031         | 58       | 46       | 5857.6              | -5857.6               | 1            |
| 44       | Y-6           | 6136         | 59       | 46       | 5857.6              | 447450                | •            |
| 45<br>42 | Y-7<br>Y-4    | 6136<br>6241 | 59<br>60 | 46<br>46 | 5857.6<br>5857.6    | -11715.2              | 2            |
| 43       | Y-5           | 6241         | 60       | 46       | 5857.6              | -11715.2              | 2            |
| 39       | Y-1           | 6346         | 61       | 46       | 5857.6              | 11713.2               | 2            |
| 40       | Y-2           | 6346         | 61       | 46       | 5857.6              |                       |              |
| 41       | Y-3           | 6346         | 61       | 46       | 5857.6              | -17572.8              | 3            |
| 38       | E-14          | 6451         | 62       | 46       | 5857.6              | -5857.6               | 1            |
| 34       | E-10          | 6766         | 65       | 46       | 5857.6              | 117150                | 0            |
| 35<br>33 | E-11<br>E-9   | 6766<br>6871 | 65<br>66 | 46<br>46 | 5857.6<br>5857.6    | -11715.2<br>-5857.6   | 2<br>1       |
| 32       | E-8           | 6976         | 67       | 46       | 5857.6              | -5857.6               | 1            |
| 31       | E-7           | 7081         | 68       | 46       | 5857.6              | -5857.6               | 1            |
| 29       | E-5           | 7291         | 70       | 46       | 5857.6              |                       |              |
| 30       | E-6           | 7291         | 70       | 46       | 5857.6              | -11715.2              | 2            |
| 59       | Y-21          | 5192         | 50       | 47       | 5857.6              | -5857.6               | 1            |
| 57       | Y-19          | 5402         | 52       | 47       | 5857.6              | -5857.6               | 1            |
| 37       | E-13<br>E-12  | 6662<br>6767 | 64<br>65 | 47<br>47 | 5857.6<br>5857.6    | -5857.6<br>-5857.6    | 1<br>1       |
| 64       | Y-26          | 4878         | 47       | 48       | 5857.6              | -5857.6               | 1            |
| 62       | Y-24          | 4983         | 48       | 48       | 5857.6              | 5557.0                |              |
| 63       | Y-25          | 4983         | 48       | 48       | 5857.6              | -11715.2              | 2            |
| 60       | Y-22          | 5088         | 49       | 48       | 5857.6              | l                     |              |
| 61       | Y-23          | 5088         | 49       | 48       | 5857.6              | -11715.2              | 2            |
| 67<br>65 | Y-29<br>Y-27  | 4564<br>4669 | 44<br>45 | 49<br>49 | 5857.6<br>5857.6    | -5857.6               | 1            |
| 66       | Y-27<br>Y-28  | 4669         | 45<br>45 | 49<br>49 | 5857.6<br>5857.6    | -11715.2              | 2            |
| 30       | 1 20          | 7000         | 70       | 70       | Total               | -345,598              |              |
| Ь        |               |              |          |          | i Utai              | UTU,U30               |              |

#### <Note>

The numbers under "code" correspond to a cell in the model. Thus the wells that have the same code are located in the same model grid cell to produce a combined pumping rate under "Output cell".

The pumping rate of wells are that for Scenario 4 in the drawdown forecast.

The pumping rate of a pumping well (wells taking water out of the model) is defined to have negative value in the model.

The shaded wells are temporality or permanently not in operation for some reasons.

#### 1.3. Calibrated Model

The final outcome of the calibration under steady state condition as head distribution maps in plan view. The following Figures present head distribution in cross sectional views.

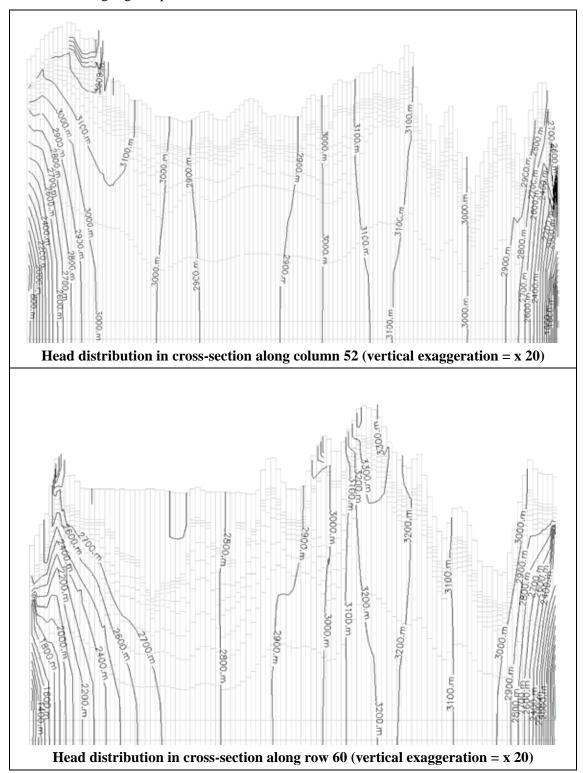



Figure-6. 2 Head Distribution of the Calibrated Steady State Model

#### **CHAPTER 2. DRADOWN FORECAST**

The influence of pumping from the 59 planned deep wells (from the Cretaceous aquifer) over the hydraulic head distribution of the surrounding aquifers was investigated using the calibrated model.

#### 2.1. Head Observation Wells

The drawdown of water table and hydraulic heads due to pumping of newly planned wells were observed through hypothetical observation wells (only existing in the model) installed in the Cretaceous aquifer and in the Quaternary sediment layer above it. The following table summarizes details of the observation wells.

**Table-6. 3 Detailed Location of Observation Wells** 

| Well Name | Model Layer | X         | Y          |
|-----------|-------------|-----------|------------|
|           | Screened    | (Easting) | (Northing) |
| OBW-Q-1   | 1           | 1003259   | 1031261    |
| OBW-Q-2   | 1           | 998989    | 1032491    |
| OBW-Q-3   | 1           | 992257    | 1034786    |
| OBW-Q-4   | 1           | 999646    | 999461     |
| OBW-Q-5   | 1           | 993406    | 1001838    |
| OBW-Q-6   | 1           | 987331    | 1004379    |
| OBW-1     | 3 to 5      | 1007392   | 1029531    |
| OBW-2     | 3 to 5      | 1003382   | 1024430    |
| OBW-3     | 3 to 5      | 1003473   | 1015414    |
| OBW-4     | 3 to 5      | 996363    | 1009585    |
| OBW-5     | 3 to 5      | 999507    | 1002572    |
| OBW-6     | 3 to 5      | 991532    | 995422     |
| OBW-7     | 3 to 5      | 997365    | 994603     |

Note that the locations of these hypothetical observation wells are determined on the map and do not consider actual site conditions.

#### 2.2. Head Observation Results

The following table gives details of the observation results. .

Table-6. 4 Head Observation Data for the Cretaceous Aquifer

| Н | lead ob       | servati      |              |              | umping |              |              |              |   |                                 |                |              | _            |      | g rate 4     | .0m <sup>3</sup> /se | c            |
|---|---------------|--------------|--------------|--------------|--------|--------------|--------------|--------------|---|---------------------------------|----------------|--------------|--------------|------|--------------|----------------------|--------------|
|   | Time<br>(day) |              |              |              | OBW-4  |              |              |              | Ī | Time<br>(day)                   |                |              |              |      | OBW-5        |                      |              |
|   | 1             | 0.00         | 0.00         | 0.00         | 0.00   | 0.00         | 0.00         | 0.00         | ı | 1                               | 0.00           | 0.00         | 0.00         | 0.00 | 0.00         | 0.00                 | 0.00         |
|   | 2             | 0.00         | 0.00         | 0.00         | 0.00   | 0.00         | 0.00         | 0.00         |   | 2<br>3<br>4<br>5<br>6<br>7<br>9 | 0.01           | 0.00         | 0.00         | 0.00 | 0.00         | 0.00                 | 0.00         |
|   | 3             | 0.01         | 0.00         | 0.00         | 0.00   | 0.00         | 0.00         | 0.00         |   | 3                               | 0.02           | 0.00         | 0.00         | 0.00 | 0.00         | 0.00                 | 0.00         |
|   | 4<br>5        | 0.01<br>0.02 | 0.00         | 0.00         | 0.00   | 0.00         | 0.00         | 0.00<br>0.00 |   | 4<br>5                          | 0.02<br>0.03   | 0.00         | 0.00         | 0.00 | 0.00         | 0.00                 | 0.00<br>0.00 |
|   | 6             | 0.02         | 0.00         | 0.00         | 0.00   | 0.00         | 0.00         | 0.00         |   | 6                               | 0.03           | 0.00         | 0.00         | 0.00 | 0.00         | 0.00                 | 0.00         |
|   | 7             | 0.03         | 0.00         | 0.00         | 0.00   | 0.00         | 0.00         | 0.00         |   | 7                               | 0.06           | 0.00         | 0.00         | 0.00 | 0.00         | 0.00                 | 0.00         |
|   | 9             | 0.04         | 0.00         | 0.00         | 0.00   | 0.00         | 0.00         | 0.00         |   | 9                               | 0.09           | 0.00         | 0.00         | 0.00 | 0.00         | 0.00                 | 0.00         |
|   | 11            | 0.06         | 0.00         | 0.00         | 0.00   | 0.00         | 0.00         | 0.00         |   | 11                              | 0.12           | 0.00         | 0.00         | 0.00 | 0.00         | 0.00                 | 0.00         |
|   | 13            | 0.08         | 0.00         | 0.00         | 0.00   | 0.00         | 0.00         | 0.00         |   | 13                              | 0.17           | 0.00         | 0.00         | 0.00 | 0.00         | 0.00                 | 0.00         |
|   | 15            | 0.11         | 0.00         | 0.00         | 0.00   | 0.00         | 0.00         | 0.00         |   | 15                              | 0.21           | 0.01         | 0.00         | 0.00 | 0.00         | 0.01                 | 0.00         |
|   | 17<br>19      | 0.13<br>0.16 | 0.00<br>0.01 | 0.00         | 0.00   | 0.00         | 0.00<br>0.01 | 0.00<br>0.00 |   | 17<br>19                        | 0.27<br>0.32   | 0.01<br>0.01 | 0.00<br>0.01 | 0.00 | 0.00         | 0.01<br>0.01         | 0.00<br>0.00 |
|   | 21            | 0.10         | 0.01         | 0.00         | 0.00   | 0.00         | 0.01         | 0.00         |   | 21                              | 0.32           | 0.01         | 0.01         | 0.00 | 0.00         | 0.01                 | 0.00         |
|   | 24            | 0.25         | 0.01         | 0.01         | 0.00   | 0.00         | 0.01         | 0.00         |   | 24                              | 0.49           | 0.02         | 0.01         | 0.00 | 0.00         | 0.02                 | 0.00         |
|   | 27            | 0.30         | 0.01         | 0.01         | 0.00   | 0.00         | 0.01         | 0.00         |   | 27                              | 0.61           | 0.03         | 0.01         | 0.00 | 0.00         | 0.02                 | 0.00         |
|   | 30            | 0.37         | 0.02         | 0.01         | 0.00   | 0.00         | 0.01         | 0.00         | l | 30                              | 0.74           | 0.04         | 0.02         | 0.00 | 0.00         | 0.03                 | 0.00         |
|   | 33            | 0.44         | 0.02         | 0.01         | 0.00   | 0.00         | 0.02         | 0.00         |   | 33                              | 0.87           | 0.04         | 0.02         | 0.00 | 0.00         | 0.03                 | 0.00         |
|   | 36            | 0.51         | 0.03         | 0.01         | 0.00   | 0.00         | 0.02         | 0.00         |   | 36<br>39                        | 1.01           | 0.05         | 0.03         | 0.00 | 0.00         | 0.04                 | 0.00         |
|   | 39<br>42      | 0.58<br>0.66 | 0.03<br>0.04 | 0.02<br>0.02 | 0.00   | 0.00         | 0.02<br>0.02 | 0.00<br>0.00 |   | 39<br>42                        | 1.17<br>1.33   | 0.07<br>0.08 | 0.03<br>0.04 | 0.00 | 0.00         | 0.04<br>0.05         | 0.00<br>0.00 |
|   | 45            | 0.00         | 0.04         | 0.02         | 0.00   | 0.00         | 0.02         | 0.00         |   | 45                              | 1.49           | 0.00         | 0.04         | 0.00 | 0.00         | 0.05                 | 0.00         |
|   | 48            | 0.83         | 0.05         | 0.02         | 0.00   | 0.00         | 0.03         | 0.00         |   | 48                              | 1.67           | 0.11         | 0.05         | 0.00 | 0.00         | 0.06                 | 0.00         |
|   | 51            | 0.92         | 0.06         | 0.03         | 0.00   | 0.00         | 0.03         | 0.00         |   | 51                              | 1.84           | 0.12         | 0.06         | 0.00 | 0.00         | 0.06                 | 0.00         |
|   | 61            | 1.25         | 0.09         | 0.04         | 0.00   | 0.00         | 0.04         | 0.00         |   | 61                              | 2.49           | 0.18         | 0.09         | 0.00 | 0.00         | 0.08                 | 0.00         |
|   | 71            | 1.59         | 0.13         | 0.06         | 0.00   | 0.00         | 0.05         | 0.00         |   | 71                              | 3.17           | 0.26         | 0.12         | 0.00 | 0.00         | 0.10                 | 0.00         |
|   | 81<br>91      | 1.94<br>2.30 | 0.17<br>0.22 | 0.08<br>0.10 | 0.00   | 0.00         | 0.06<br>0.06 | 0.00<br>0.00 |   | 81<br>91                        | 3.88<br>4.61   | 0.34<br>0.44 | 0.16<br>0.20 | 0.00 | 0.01<br>0.01 | 0.11<br>0.12         | 0.00<br>0.00 |
|   | 101           | 2.67         | 0.22         | 0.10         | 0.00   | 0.00         | 0.00         | 0.00         |   | 101                             | 5.34           | 0.55         | 0.24         | 0.00 | 0.01         | 0.12                 | 0.00         |
|   | 111           | 3.04         | 0.33         | 0.14         | 0.00   | 0.01         | 0.08         | 0.00         |   | 111                             | 6.08           | 0.66         | 0.29         | 0.00 | 0.02         | 0.15                 | 0.00         |
|   | 121           | 3.41         | 0.39         | 0.17         | 0.00   | 0.01         | 0.08         | 0.00         |   | 121                             | 6.82           | 0.78         | 0.34         | 0.00 | 0.03         | 0.16                 | 0.01         |
|   | 131           | 3.78         | 0.46         | 0.20         | 0.00   | 0.02         | 0.09         | 0.00         |   | 131                             | 7.56           | 0.91         | 0.40         | 0.00 | 0.03         | 0.17                 | 0.01         |
|   | 141           | 4.15         | 0.52         | 0.23         | 0.00   | 0.02         | 0.10         | 0.00         |   | 141<br>151                      | 8.29<br>9.02   | 1.05         | 0.45<br>0.51 | 0.00 | 0.04<br>0.05 | 0.19<br>0.20         | 0.01<br>0.01 |
|   | 151<br>161    | 4.51<br>4.87 | 0.60<br>0.67 | 0.25<br>0.29 | 0.00   | 0.02<br>0.03 | 0.10<br>0.11 | 0.01<br>0.01 |   | 161                             | 9.02           | 1.19<br>1.34 | 0.51         | 0.00 | 0.05         | 0.20                 | 0.01         |
|   | 171           | 5.22         | 0.75         | 0.23         | 0.00   | 0.03         | 0.11         | 0.01         |   | 171                             | 10.44          | 1.50         | 0.64         | 0.00 | 0.06         | 0.22                 | 0.02         |
|   | 181           | 5.57         | 0.83         | 0.35         | 0.00   | 0.04         | 0.12         | 0.01         |   | 181                             | 11.13          | 1.65         | 0.70         | 0.00 | 0.07         | 0.23                 | 0.02         |
|   | 191           | 5.91         | 0.91         | 0.38         | 0.00   | 0.04         | 0.13         | 0.01         |   | 191                             | 11.82          | 1.82         | 0.77         | 0.00 | 0.09         | 0.24                 | 0.03         |
|   | 201           | 6.24         | 0.99         | 0.42         | 0.00   | 0.05         | 0.13         | 0.01         |   | 201                             | 12.49          | 1.98         | 0.84         | 0.00 | 0.10         | 0.25                 | 0.03         |
|   | 211           | 6.57         | 1.08         | 0.45         | 0.00   | 0.05         | 0.14         | 0.02         | l | 211                             | 13.15          | 2.15         | 0.91         | 0.00 | 0.11         | 0.26                 | 0.03         |
|   | 221<br>231    | 6.90<br>7.21 | 1.16<br>1.25 | 0.49<br>0.53 | 0.00   | 0.06<br>0.07 | 0.14<br>0.15 | 0.02<br>0.02 |   | 221<br>231                      | 13.80<br>14.43 | 2.32<br>2.50 | 0.98<br>1.05 | 0.00 | 0.12<br>0.14 | 0.28<br>0.29         | 0.04<br>0.04 |
|   | 241           | 7.53         | 1.23         | 0.56         | 0.00   | 0.07         | 0.15         | 0.02         |   | 241                             | 15.05          | 2.67         | 1.13         | 0.00 | 0.15         | 0.20                 | 0.05         |
|   | 251           | 7.83         | 1.42         | 0.60         | 0.00   | 0.07         | 0.16         | 0.02         | l | 251                             | 15.66          | 2.85         | 1.21         | 0.00 | 0.16         | 0.31                 | 0.06         |
|   | 261           | 8.13         | 1.51         | 0.64         | 0.00   | 0.09         | 0.17         | 0.03         | l | 261                             | 16.26          | 3.03         | 1.28         | 0.00 | 0.18         | 0.33                 | 0.06         |
|   | 271           | 8.43         | 1.60         | 0.68         | 0.00   | 0.10         | 0.18         | 0.03         | l | 271                             | 16.85          | 3.21         | 1.36         | 0.00 | 0.19         | 0.34                 | 0.07         |
|   | 281           | 8.71         | 1.69         | 0.72         | 0.00   | 0.10         | 0.18         | 0.04         | l | 281                             | 17.43          | 3.39         | 1.44         | 0.00 | 0.21         | 0.35                 | 0.07         |
|   | 291           | 9.00         | 1.78         | 0.76         | 0.00   | 0.11         | 0.19         | 0.04         |   | 291<br>301                      | 17.99<br>18.55 | 3.57<br>3.75 | 1.52<br>1.60 | 0.00 | 0.23<br>0.24 | 0.36<br>0.38         | 0.08<br>0.09 |
|   | 301<br>311    | 9.27<br>9.54 | 1.87<br>1.97 | 0.80<br>0.84 | 0.00   | 0.12<br>0.13 | 0.20<br>0.21 | 0.04<br>0.05 | l | 311                             | 19.09          | 3.73         | 1.68         | 0.00 | 0.24         | 0.38                 | 0.09         |
|   | 321           | 9.81         | 2.06         | 0.88         | 0.00   | 0.13         | 0.21         | 0.05         | l | 321                             | 19.62          | 4.11         | 1.77         | 0.00 | 0.28         | 0.40                 | 0.10         |
|   | 331           | 10.07        | 2.15         | 0.92         | 0.00   | 0.15         | 0.22         | 0.05         | l | 331                             | 20.14          | 4.30         | 1.85         | 0.00 | 0.29         | 0.42                 | 0.11         |
|   | 341           | 10.33        | 2.24         | 0.97         | 0.00   | 0.15         | 0.23         | 0.06         | l | 341                             | 20.66          | 4.48         | 1.93         | 0.00 | 0.31         | 0.43                 | 0.11         |
|   | 351           | 10.58        | 2.33         | 1.01         | 0.00   | 0.16         | 0.24         | 0.06         | l | 351                             | 21.16          | 4.66         | 2.02         | 0.00 | 0.33         | 0.45                 | 0.12         |
|   | 361           | 10.83        | 2.42         | 1.05         | 0.00   | 0.17         | 0.24         | 0.07         | l | 361<br>371                      | 21.65<br>22.14 | 4.84<br>5.02 | 2.10<br>2.19 | 0.00 | 0.35<br>0.37 | 0.46<br>0.47         | 0.13<br>0.14 |
|   | 371           | 11.07        | 2.51         | 1.09         | 0.00   | 0.18         | 0.25         | 0.07         | L | 3/1                             | 44.14          | 0.02         | 2.13         | 0.00 | 0.07         | 0.47                 | 0.14         |
|   |               |              |              |              |        |              |              |              |   |                                 |                |              |              |      |              |                      |              |

Drawdown graphs for the Cretaceous aquifer for different pumping rates of 1.0 to  $6.0~\rm{m}^3/\rm{sec}$  (corresponding to Scenario 1 to 6) are presented below.

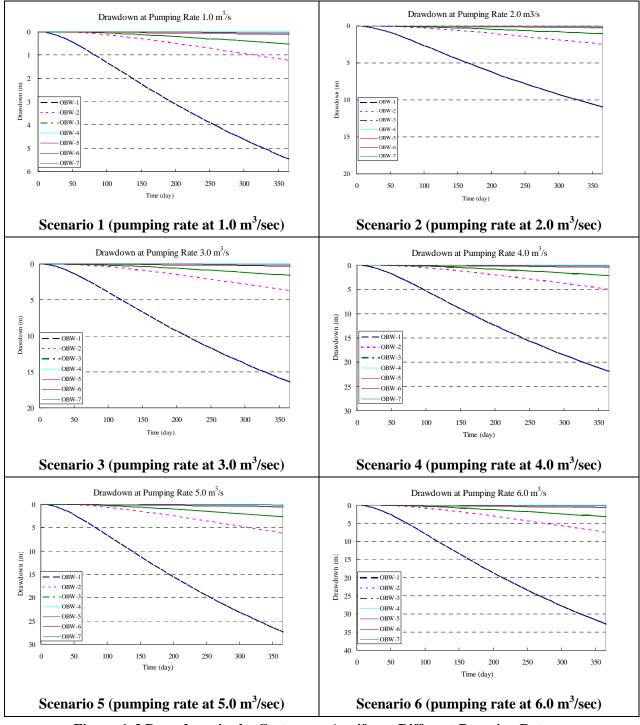



Figure-6. 3 Drawdown in the Cretaceous Aquifer at Different Pumping Rates

#### 2.3. Discharge - Drawdown Relation

The relation between drawdown (s) observed at each observation wells and the collective pumping rate (Q) was investigated at the minimum and maximum pumping duration of one (1) month and nine (9) months respectively. The following tables correspond to the graphed representations.

Table-6. 5 Discharge (Q) - Drawdown (s) Relation

At Day 30 (1 month)

| $Q (m^3/s)$                                          | OBW-1                                                                     | OBW-2                                                                | OBW-3                                                                | OBW-4                                                                        | OBW-5                                                                | OBW-6                                                                | OBW-7                                                                |
|------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| 0.0                                                  | 0.00                                                                      | 0.00                                                                 | 0.00                                                                 | 0.00                                                                         | 0.00                                                                 | 0.00                                                                 | 0.00                                                                 |
| 0.5                                                  | 0.09                                                                      | 0.00                                                                 | 0.00                                                                 | 0.00                                                                         | 0.00                                                                 | 0.00                                                                 | 0.00                                                                 |
| 1.0                                                  | 0.18                                                                      | 0.01                                                                 | 0.00                                                                 | 0.00                                                                         | 0.00                                                                 | 0.01                                                                 | 0.00                                                                 |
| 1.5                                                  | 0.28                                                                      | 0.01                                                                 | 0.01                                                                 | 0.00                                                                         | 0.00                                                                 | 0.01                                                                 | 0.00                                                                 |
| 2.0                                                  | 0.37                                                                      | 0.02                                                                 | 0.01                                                                 | 0.00                                                                         | 0.00                                                                 | 0.01                                                                 | 0.00                                                                 |
| 2.5                                                  | 0.46                                                                      | 0.02                                                                 | 0.01                                                                 | 0.00                                                                         | 0.00                                                                 | 0.02                                                                 | 0.00                                                                 |
| 3.0                                                  | 0.55                                                                      | 0.03                                                                 | 0.01                                                                 | 0.00                                                                         | 0.00                                                                 | 0.02                                                                 | 0.00                                                                 |
| 3.5                                                  | 0.64                                                                      | 0.03                                                                 | 0.02                                                                 | 0.00                                                                         | 0.00                                                                 | 0.02                                                                 | 0.00                                                                 |
| 4.0                                                  | 0.74                                                                      | 0.04                                                                 | 0.02                                                                 | 0.00                                                                         | 0.00                                                                 | 0.03                                                                 | 0.00                                                                 |
| 4.5                                                  | 0.83                                                                      | 0.04                                                                 | 0.04                                                                 | 0.00                                                                         | 0.00                                                                 | 0.03                                                                 | 0.00                                                                 |
| 5.0                                                  | 0.92                                                                      | 0.04                                                                 | 0.02                                                                 | 0.00                                                                         | 0.00                                                                 | 0.03                                                                 | 0.00                                                                 |
| 5.5                                                  | 1.01                                                                      | 0.05                                                                 | 0.02                                                                 | 0.00                                                                         | 0.00                                                                 | 0.04                                                                 | 0.00                                                                 |
| 6.0                                                  | 1.10                                                                      | 0.05                                                                 | 0.03                                                                 | 0.00                                                                         | 0.00                                                                 | 0.04                                                                 | 0.00                                                                 |
| At Day 271 (9                                        | month)                                                                    |                                                                      |                                                                      |                                                                              |                                                                      |                                                                      |                                                                      |
| $Q (m^3/s)$                                          | OBW-1                                                                     | OBW-2                                                                | OBW-3                                                                | OBW-4                                                                        | OBW-5                                                                | OBW-6                                                                | OBW-7                                                                |
| 0.0                                                  | 0.00                                                                      | 0.00                                                                 | 0.00                                                                 | 0.00                                                                         | 0.00                                                                 | 0.00                                                                 | 0.00                                                                 |
|                                                      | 0.00                                                                      | 0.00                                                                 | 0.00                                                                 | 0.00                                                                         | 0.00                                                                 | 0.00                                                                 | 0.00                                                                 |
| 0.5                                                  | 2.11                                                                      | 0.00                                                                 | 0.17                                                                 | 0.00                                                                         | 0.02                                                                 | 0.04                                                                 | 0.00                                                                 |
| 0.5<br>1.0                                           | 2.11<br>4.21                                                              |                                                                      |                                                                      |                                                                              |                                                                      |                                                                      |                                                                      |
|                                                      | 2.11                                                                      | 0.40                                                                 | 0.17                                                                 | 0.00                                                                         | 0.02                                                                 | 0.04                                                                 | 0.01                                                                 |
| 1.0                                                  | 2.11<br>4.21                                                              | 0.40<br>0.80                                                         | 0.17<br>0.34                                                         | 0.00                                                                         | 0.02<br>0.05                                                         | 0.04<br>0.09                                                         | 0.01<br>0.02                                                         |
| 1.0<br>1.5                                           | 2.11<br>4.21<br>6.32                                                      | 0.40<br>0.80<br>1.20                                                 | 0.17<br>0.34<br>0.51                                                 | 0.00<br>0.00<br>0.00                                                         | 0.02<br>0.05<br>0.07                                                 | 0.04<br>0.09<br>0.13                                                 | 0.01<br>0.02<br>0.02                                                 |
| 1.0<br>1.5<br>2.0                                    | 2.11<br>4.21<br>6.32<br>8.43                                              | 0.40<br>0.80<br>1.20<br>1.60                                         | 0.17<br>0.34<br>0.51<br>0.68                                         | 0.00<br>0.00<br>0.00<br>0.00                                                 | 0.02<br>0.05<br>0.07<br>0.10                                         | 0.04<br>0.09<br>0.13<br>0.18                                         | 0.01<br>0.02<br>0.02<br>0.03                                         |
| 1.0<br>1.5<br>2.0<br>2.5                             | 2.11<br>4.21<br>6.32<br>8.43<br>10.53                                     | 0.40<br>0.80<br>1.20<br>1.60<br>2.00                                 | 0.17<br>0.34<br>0.51<br>0.68<br>0.85                                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                                         | 0.02<br>0.05<br>0.07<br>0.10<br>0.12                                 | 0.04<br>0.09<br>0.13<br>0.18<br>0.21                                 | 0.01<br>0.02<br>0.02<br>0.03<br>0.04                                 |
| 1.0<br>1.5<br>2.0<br>2.5<br>3.0                      | 2.11<br>4.21<br>6.32<br>8.43<br>10.53<br>12.64                            | 0.40<br>0.80<br>1.20<br>1.60<br>2.00<br>2.41                         | 0.17<br>0.34<br>0.51<br>0.68<br>0.85<br>1.02                         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                 | 0.02<br>0.05<br>0.07<br>0.10<br>0.12<br>0.14                         | 0.04<br>0.09<br>0.13<br>0.18<br>0.21<br>0.25                         | 0.01<br>0.02<br>0.02<br>0.03<br>0.04<br>0.05                         |
| 1.0<br>1.5<br>2.0<br>2.5<br>3.0<br>3.5               | 2.11<br>4.21<br>6.32<br>8.43<br>10.53<br>12.64<br>14.74                   | 0.40<br>0.80<br>1.20<br>1.60<br>2.00<br>2.41<br>2.81                 | 0.17<br>0.34<br>0.51<br>0.68<br>0.85<br>1.02                         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                  | 0.02<br>0.05<br>0.07<br>0.10<br>0.12<br>0.14<br>0.17                 | 0.04<br>0.09<br>0.13<br>0.18<br>0.21<br>0.25<br>0.29                 | 0.01<br>0.02<br>0.02<br>0.03<br>0.04<br>0.05<br>0.06                 |
| 1.0<br>1.5<br>2.0<br>2.5<br>3.0<br>3.5<br>4.0        | 2.11<br>4.21<br>6.32<br>8.43<br>10.53<br>12.64<br>14.74<br>16.85          | 0.40<br>0.80<br>1.20<br>1.60<br>2.00<br>2.41<br>2.81<br>3.21         | 0.17<br>0.34<br>0.51<br>0.68<br>0.85<br>1.02<br>1.19<br>1.36         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.02<br>0.05<br>0.07<br>0.10<br>0.12<br>0.14<br>0.17<br>0.19         | 0.04<br>0.09<br>0.13<br>0.18<br>0.21<br>0.25<br>0.29                 | 0.01<br>0.02<br>0.02<br>0.03<br>0.04<br>0.05<br>0.06<br>0.07         |
| 1.0<br>1.5<br>2.0<br>2.5<br>3.0<br>3.5<br>4.0<br>4.5 | 2.11<br>4.21<br>6.32<br>8.43<br>10.53<br>12.64<br>14.74<br>16.85<br>18.96 | 0.40<br>0.80<br>1.20<br>1.60<br>2.00<br>2.41<br>2.81<br>3.21<br>3.61 | 0.17<br>0.34<br>0.51<br>0.68<br>0.85<br>1.02<br>1.19<br>1.36<br>1.53 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.02<br>0.05<br>0.07<br>0.10<br>0.12<br>0.14<br>0.17<br>0.19<br>0.22 | 0.04<br>0.09<br>0.13<br>0.18<br>0.21<br>0.25<br>0.29<br>0.34<br>0.38 | 0.01<br>0.02<br>0.02<br>0.03<br>0.04<br>0.05<br>0.06<br>0.07<br>0.08 |

<sup>\*</sup> The drawdown is in meter

#### 2.4. Head Recovery with Time

A simulation was conducted to see the recovery process of hydraulic heads at each observation wells after pumping is stopped after 9 months (271 days) of operation. The following tables show the data corresponding to the two graphs for Scenario 1 and 6.

Table-6. 6 Head Recovery with Time after Termination of Pumping for Scenario 1

Drawdown (m)

| Time (day) | OBW-1 | OBW-2 | OBW-3 | OBW-4 | OBW-5 | OBW-6 | OBW-7 |
|------------|-------|-------|-------|-------|-------|-------|-------|
| 0          | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| 30         | 0.26  | 0.02  | 0.01  | 0.00  | 0.00  | 0.01  | 0.00  |
| 60         | 0.67  | 0.07  | 0.03  | 0.00  | 0.00  | 0.02  | 0.00  |
| 90         | 1.16  | 0.13  | 0.06  | 0.00  | 0.00  | 0.03  | 0.00  |
| 120        | 1.68  | 0.22  | 0.09  | 0.00  | 0.01  | 0.04  | 0.00  |
| 150        | 2.20  | 0.32  | 0.14  | 0.00  | 0.01  | 0.04  | 0.00  |
| 180        | 2.72  | 0.43  | 0.18  | 0.00  | 0.02  | 0.05  | 0.01  |
| 210        | 3.21  | 0.55  | 0.23  | 0.00  | 0.03  | 0.06  | 0.01  |
| 240        | 3.68  | 0.67  | 0.29  | 0.00  | 0.04  | 0.07  | 0.01  |
| 270        | 4.12  | 0.80  | 0.35  | 0.00  | 0.05  | 0.07  | 0.02  |
| 300        | 4.28  | 0.92  | 0.39  | 0.00  | 0.06  | 0.07  | 0.02  |
| 330        | 4.27  | 1.00  | 0.44  | 0.00  | 0.07  | 0.07  | 0.03  |
| 360        | 4.15  | 1.07  | 0.47  | 0.00  | 0.08  | 0.06  | 0.03  |
| 390        | 3.99  | 1.12  | 0.50  | 0.00  | 0.09  | 0.06  | 0.03  |
| 420        | 3.81  | 1.15  | 0.52  | 0.00  | 0.10  | 0.06  | 0.03  |

| 450  | 3.62 | 1.17 | 0.54 | 0.00 | 0.11 | 0.06  | 0.04  |
|------|------|------|------|------|------|-------|-------|
| 480  | 3.43 | 1.18 | 0.55 | 0.00 | 0.11 | 0.06  | 0.04  |
| 510  | 3.26 | 1.18 | 0.56 | 0.00 | 0.12 | 0.05  | 0.04  |
| 540  | 3.09 | 1.17 | 0.57 | 0.00 | 0.12 | 0.05  | 0.04  |
| 570  | 2.93 | 1.16 | 0.57 | 0.00 | 0.12 | 0.05  | 0.04  |
| 600  | 2.79 | 1.15 | 0.58 | 0.00 | 0.13 | 0.04  | 0.04  |
| 630  | 2.65 | 1.13 | 0.58 | 0.00 | 0.13 | 0.04  | 0.03  |
| 690  | 2.42 | 1.09 | 0.58 | 0.00 | 0.13 | 0.03  | 0.03  |
| 750  | 2.22 | 1.06 | 0.57 | 0.00 | 0.13 | 0.02  | 0.02  |
| 810  | 2.04 | 1.02 | 0.57 | 0.00 | 0.13 | 0.00  | 0.01  |
| 870  | 1.88 | 0.98 | 0.56 | 0.00 | 0.12 | -0.01 | 0.00  |
| 930  | 1.75 | 0.94 | 0.55 | 0.00 | 0.12 | -0.03 | -0.01 |
| 990  | 1.63 | 0.91 | 0.54 | 0.00 | 0.12 | -0.05 | -0.03 |
| 1050 | 1.52 | 0.88 | 0.53 | 0.00 | 0.12 | -0.07 | -0.04 |
| 1110 | 1.42 | 0.85 | 0.52 | 0.00 | 0.11 | -0.09 | -0.06 |
| 1210 | 1.28 | 0.80 | 0.50 | 0.01 | 0.11 | -0.13 | -0.08 |
| 1310 | 1.16 | 0.76 | 0.49 | 0.01 | 0.11 | -0.17 | -0.11 |
| 1410 | 1.06 | 0.73 | 0.47 | 0.01 | 0.10 | -0.22 | -0.14 |
| 1510 | 0.97 | 0.70 | 0.46 | 0.01 | 0.10 | -0.27 | -0.17 |
| 1610 | 0.89 | 0.67 | 0.45 | 0.01 | 0.10 | -0.32 | -0.21 |
| 2110 | 0.65 | 0.57 | 0.40 | 0.02 | 0.08 | -0.61 | -0.37 |
| 2610 | 0.50 | 0.49 | 0.36 | 0.03 | 0.07 | -0.90 | -0.53 |

Table-6. 7 Head Recovery with Time after Termination of Pumping for Scenario 6

|            |       |       |       |       |       |       | awdown (m) |
|------------|-------|-------|-------|-------|-------|-------|------------|
| Time (day) | OBW-1 | OBW-2 | OBW-3 | OBW-4 | OBW-5 | OBW-6 | OBW-7      |
| 0          | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00       |
| 30         | 1.57  | 0.12  | 0.06  | 0.00  | 0.00  | 0.05  | 0.00       |
| 60         | 4.04  | 0.39  | 0.18  | 0.00  | 0.01  | 0.11  | 0.00       |
| 90         | 6.97  | 0.79  | 0.35  | 0.00  | 0.03  | 0.18  | 0.01       |
| 120        | 10.09 | 1.30  | 0.56  | 0.00  | 0.05  | 0.24  | 0.02       |
| 150        | 13.23 | 1.90  | 0.81  | 0.00  | 0.09  | 0.29  | 0.03       |
| 180        | 16.29 | 2.57  | 1.10  | 0.00  | 0.13  | 0.35  | 0.04       |
| 210        | 19.24 | 3.29  | 1.40  | 0.00  | 0.18  | 0.41  | 0.06       |
| 240        | 22.05 | 4.04  | 1.73  | 0.00  | 0.24  | 0.46  | 0.08       |
| 270        | 24.72 | 4.82  | 2.07  | 0.00  | 0.31  | 0.52  | 0.11       |
| 300        | 25.67 | 5.49  | 2.37  | 0.00  | 0.38  | 0.54  | 0.14       |
| 330        | 25.60 | 6.02  | 2.62  | 0.00  | 0.44  | 0.53  | 0.17       |
| 360        | 24.93 | 6.43  | 2.82  | 0.00  | 0.50  | 0.53  | 0.20       |
| 390        | 23.96 | 6.71  | 2.98  | 0.00  | 0.56  | 0.54  | 0.23       |
| 420        | 22.85 | 6.90  | 3.11  | 0.00  | 0.61  | 0.55  | 0.25       |
| 450        | 21.72 | 7.01  | 3.22  | 0.00  | 0.65  | 0.57  | 0.27       |
| 480        | 20.61 | 7.06  | 3.30  | 0.00  | 0.68  | 0.58  | 0.29       |
| 510        | 19.54 | 7.06  | 3.36  | 0.00  | 0.71  | 0.60  | 0.31       |
| 540        | 18.54 | 7.03  | 3.41  | 0.00  | 0.73  | 0.62  | 0.32       |
| 570        | 17.60 | 6.97  | 3.44  | 0.00  | 0.74  | 0.64  | 0.34       |
| 600        | 16.73 | 6.89  | 3.46  | 0.00  | 0.76  | 0.65  | 0.35       |
| 630        | 15.92 | 6.79  | 3.47  | 0.00  | 0.76  | 0.67  | 0.35       |
| 690        | 14.52 | 6.57  | 3.46  | 0.00  | 0.77  | 0.70  | 0.36       |
| 750        | 13.30 | 6.34  | 3.43  | 0.01  | 0.76  | 0.72  | 0.36       |
| 810        | 12.24 | 6.11  | 3.39  | 0.01  | 0.75  | 0.75  | 0.36       |
| 870        | 11.31 | 5.88  | 3.34  | 0.01  | 0.74  | 0.76  | 0.36       |
| 930        | 10.48 | 5.67  | 3.29  | 0.02  | 0.73  | 0.78  | 0.35       |
| 990        | 9.75  | 5.46  | 3.23  | 0.02  | 0.71  | 0.79  | 0.34       |
| 1050       | 9.10  | 5.27  | 3.17  | 0.02  | 0.70  | 0.80  | 0.33       |
| 1110       | 8.51  | 5.09  | 3.11  | 0.03  | 0.69  | 0.80  | 0.31       |
| 1210       | 7.68  | 4.83  | 3.01  | 0.04  | 0.66  | 0.80  | 0.29       |
| 1310       | 6.97  | 4.59  | 2.92  | 0.05  | 0.64  | 0.80  | 0.26       |
| 1410       | 6.35  | 4.37  | 2.83  | 0.06  | 0.62  | 0.78  | 0.23       |
| 1510       | 5.82  | 4.18  | 2.75  | 0.07  | 0.60  | 0.76  | 0.19       |
| 1610       | 5.35  | 4.01  | 2.68  | 0.08  | 0.59  | 0.73  | 0.16       |
| 2110       | 3.90  | 3.39  | 2.40  | 0.13  | 0.53  | 0.50  | -0.02      |
| 2610       | 2.97  | 2.93  | 2.18  | 0.18  | 0.48  | 0.22  | -0.19      |

The result of head recovery observations for all Scenarios including 1 and 6 are presented in time-drawdown graphs below.

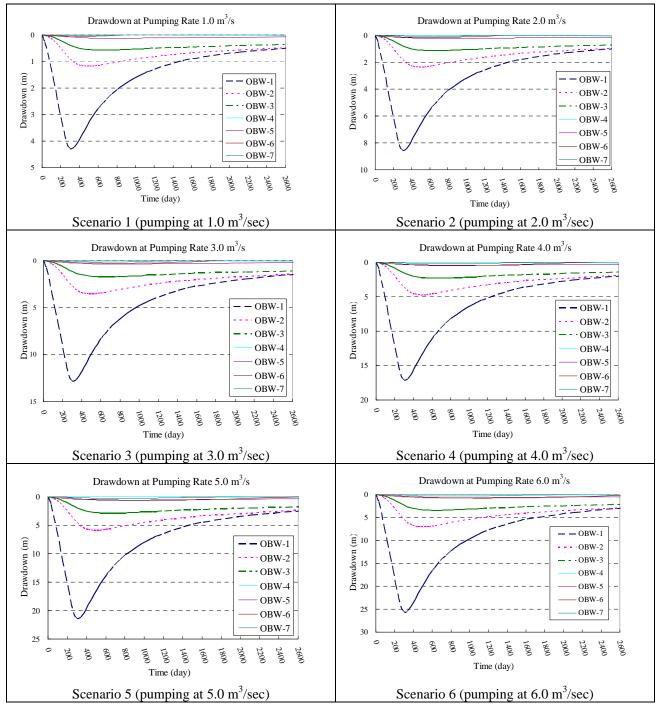



Figure-6. 4 Time-Drawdown relations for Scenario 1 to 6

#### 2.5. **Drawdown in Quaternary Sediment Layers**

For the Quaternary sediment layers, the maximum drawdown was found to be very small. The following table is the time-drawdown data. The simulation time was extended up to 2600 days (approximately 7 years).

Table-6. 8 Drawdown in Quaternary Sediment Layers for Scenario 6

|            |         |         |         |         |         | Drawdown (m) |
|------------|---------|---------|---------|---------|---------|--------------|
| Time (day) | OBW-Q-1 | OBW-Q-2 | OBW-Q-3 | OBW-Q-4 | OBW-Q-5 | OBW-Q-6      |
| 0          | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00         |
| 30         | 0.00    | 0.00    | 0.00    | 0.02    | 0.00    | 0.00         |
| 60         | 0.00    | 0.00    | 0.00    | 0.04    | 0.00    | 0.00         |
| 90         | 0.00    | 0.00    | 0.00    | 0.06    | 0.00    | 0.00         |
| 120        | 0.01    | 0.00    | 0.00    | 0.07    | 0.00    | 0.00         |
| 150        | 0.01    | 0.00    | 0.00    | 0.09    | 0.00    | 0.00         |
| 180        | 0.02    | 0.00    | 0.00    | 0.11    | 0.00    | 0.00         |
| 210        | 0.03    | 0.00    | 0.00    | 0.12    | 0.00    | 0.00         |
| 240        | 0.03    | 0.00    | 0.00    | 0.13    | 0.00    | 0.00         |
| 270        | 0.04    | 0.00    | 0.00    | 0.14    | 0.00    | 0.00         |
| 300        | 0.05    | 0.00    | 0.00    | 0.15    | 0.00    | 0.00         |
| 330        | 0.06    | 0.00    | 0.00    | 0.15    | 0.00    | 0.00         |
| 360        | 0.08    | 0.00    | 0.00    | 0.15    | 0.00    | 0.00         |
| 390        | 0.09    | 0.00    | 0.00    | 0.15    | 0.00    | 0.00         |
| 420        | 0.10    | 0.00    | 0.00    | 0.15    | 0.00    | 0.00         |
| 450        | 0.11    | 0.00    | 0.00    | 0.15    | 0.00    | 0.00         |
| 480        | 0.12    | 0.00    | 0.00    | 0.15    | 0.00    | 0.00         |
| 510        | 0.14    | 0.00    | 0.00    | 0.15    | 0.00    | 0.00         |
| 540        | 0.15    | 0.00    | 0.00    | 0.15    | 0.00    | 0.00         |
| 570        | 0.16    | 0.00    | 0.00    | 0.15    | 0.00    | 0.00         |
| 600        | 0.17    | 0.00    | 0.00    | 0.14    | 0.00    | 0.00         |
| 630        | 0.18    | 0.00    | 0.00    | 0.14    | 0.00    | 0.00         |
| 690        | 0.20    | 0.00    | 0.00    | 0.14    | 0.00    | 0.00         |
| 750        | 0.22    | 0.00    | 0.00    | 0.13    | 0.00    | 0.00         |
| 810        | 0.23    | 0.00    | 0.00    | 0.13    | 0.00    | 0.00         |
| 870        | 0.25    | 0.01    | 0.00    | 0.12    | 0.00    | 0.00         |
| 930        | 0.26    | 0.01    | 0.00    | 0.12    | 0.00    | 0.00         |
| 990        | 0.27    | 0.01    | 0.00    | 0.12    | 0.00    | 0.00         |
| 1050       | 0.28    | 0.01    | 0.00    | 0.11    | 0.00    | 0.00         |
| 1110       | 0.29    | 0.01    | 0.00    | 0.11    | 0.00    | 0.00         |
| 1210       | 0.30    | 0.01    | 0.00    | 0.11    | 0.00    | 0.00         |
| 1310       | 0.31    | 0.02    | 0.00    | 0.10    | 0.01    | 0.00         |
| 1410       | 0.31    | 0.02    | 0.00    | 0.10    | 0.01    | 0.00         |
| 1510       | 0.31    | 0.02    | 0.00    | 0.09    | 0.01    | 0.00         |
| 1610       | 0.32    | 0.02    | 0.00    | 0.09    | 0.01    | 0.00         |
| 2110       | 0.30    | 0.04    | 0.00    | 0.06    | 0.01    | 0.00         |
| 2610       | 0.28    | 0.05    | 0.00    | 0.03    | 0.01    | 0.00         |

# PART 7

# GROUNDWATER SIMULATION OF FEASIBILITY STUDY

# **Final Report**

# (Supporting Report)

### PART 7 GROUNDWATER SIMULATION OF FEASIBILITY STUDY

# **Table of Contents**

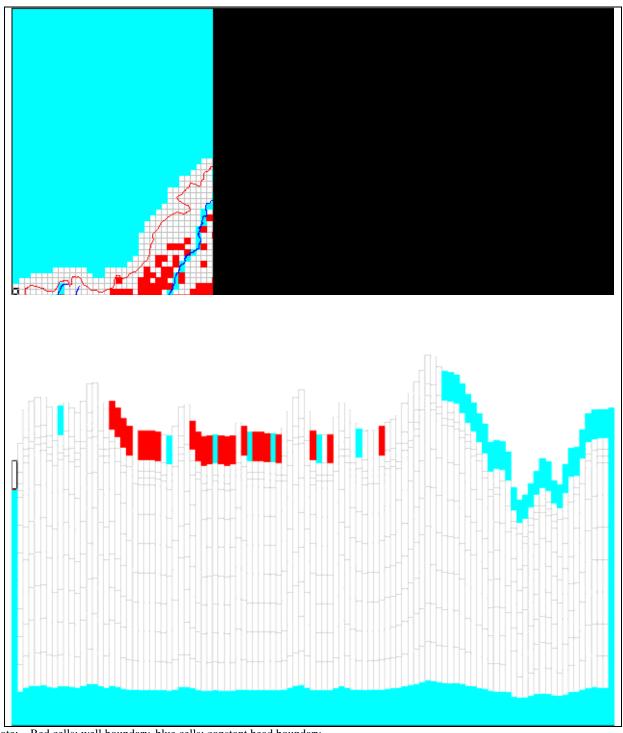
| Table of Contents                 | Page : |
|-----------------------------------|--------|
| List of Tables and Figures        |        |
|                                   |        |
|                                   | Page   |
| CHAPTER 1. OUTLINE OF THE MODEL   | 7-1    |
| 1.1. Boundary Conditions          | 7-1    |
| 1.2. Newly Planned Pumping Wells  | 7-3    |
| 1.3. Calibrated Model             | 7-5    |
| CHAPTER 2. DRAWDOWN FORECAST      | 7-7    |
| 2.1. Head Observation Wells       | 7-7    |
| 2.2. Drawdown Observation Results | 7-7    |

# **List of Tables and Figures**

|                                                                                                 | Page     |
|-------------------------------------------------------------------------------------------------|----------|
| Table-7. 1 Details of Boundary Conditions                                                       | 7-1      |
| Table-7. 2 Coordinates of 64 pumping wells                                                      | 7-4      |
| Table-7. 3 Detailed Location of Observation Wells                                               | 7-7      |
| Table-7. 4 Drawdown Observation Data for the Hypothetical Observation Boreholes                 | 7-7      |
| Figure-7. 1 Cross-sectional Views of Grid/layer and Boundary Conditions of the Model row 50)    |          |
| Figure-7. 2 Cross-sectional Views of Grid/layer and Boundary Conditions of the Model column 49) | l (along |
| Figure-7. 3 Head Distribution of the Calibrated Steady State Model (along row 50)               |          |
| Figure-7. 4 Head Distribution of the Calibrated Steady State Model (along column 49).           |          |

## PART 7 GROUNDWATER SIMULATION OF F/S

#### CHAPTER 1. OUTLINE OF THE MODEL


#### 1.1. Boundary Conditions

The basic information (model structure, parameters, boundary conditions) of the model is given in Table-7.1 of the main report. The following table presents the details of the boundary conditions employed in this model.

**Table-7. 1 Details of Boundary Conditions** 

| Structure                                  |                        | Boundary condition (BC)                                    |
|--------------------------------------------|------------------------|------------------------------------------------------------|
| Layer                                      | BC Type                | Detail                                                     |
| 1st layer:                                 | Constant Head Boundary | In basin: Fixed heads for rivers, dams and area 2 km more  |
| Quaternary                                 |                        | out side of the Bogota basin.                              |
| Plain area                                 | Recharge boundary      | Groundwater recharge (see Figure 5 in main report)         |
| Tertiary                                   | Evapotranspiration     | Evapotraspiration from groundwater                         |
| Boundary of plain area and                 | boundary               | Maximum ET rate: 0.0026 (m/day)                            |
| mountainous area.                          |                        | Elevation of the ET Surface: 0.3m                          |
| Guadalupe:                                 |                        | ET Extinction Depth: 1.5m                                  |
| Mountainous area arround                   | Well boundary          | Existing wells: 4918 existing wells are specified into 983 |
| the Bogota plain.                          |                        | cells (see Figure 4 in main report)                        |
| (see Figure2 in main report)               |                        | Projected wells: 65 projected wells are set for the three  |
|                                            |                        | projects,                                                  |
|                                            |                        | 34 in the Easern Project side; 13 in the Southern          |
|                                            |                        | Project side and 17 in the Yerbabuena Project side.        |
| and a                                      | G                      | (see Figure 1 in main report 3.2.2)                        |
| 2 <sup>nd</sup> layer                      | Constant Head Boundary | All the cells along the model domain boundary.             |
| Tertiary                                   |                        |                                                            |
| Quaternary and Teriary                     |                        |                                                            |
| area in layer 1                            |                        |                                                            |
| Guadalupe: The same as layer1              |                        |                                                            |
| 3 <sup>rd</sup> and 4 <sup>th</sup> layers | Constant Head Boundary | All the cells along the model domain boundary.             |
| Guadalupe                                  | Constant Head Boundary | An the cens along the model domain boundary.               |
| 5th layer                                  | Constant Head Boundary | All the cells along the model domain boundary.             |
| Cretaceous                                 | Constant Head Boundary | Thi the constitong the model domain boundary.              |
| 6 <sup>th</sup> to 11 <sup>th</sup> layer  | Constant Head Boundary | All the cells along the model domain boundary.             |
| Paleozoic                                  | Constant Head Boundary | The title control and model domain counting.               |
| 12 <sup>th</sup> layer                     | Constant Head Boundary | All the cells within the 12 <sup>th</sup> layer            |
| Paleozoic                                  |                        | .,,                                                        |
|                                            | <u> </u>               | ı                                                          |

The vertical cross-section of the model showing grid/layer and major boundary conditions is shown in Figure 7-1 and 7-2.



Note: Red cells: well boundary, blue cells: constant head boundary.

Figure-7. 1 Cross-sectional Views of Grid/layer and Boundary Conditions of the Model (along row 50)

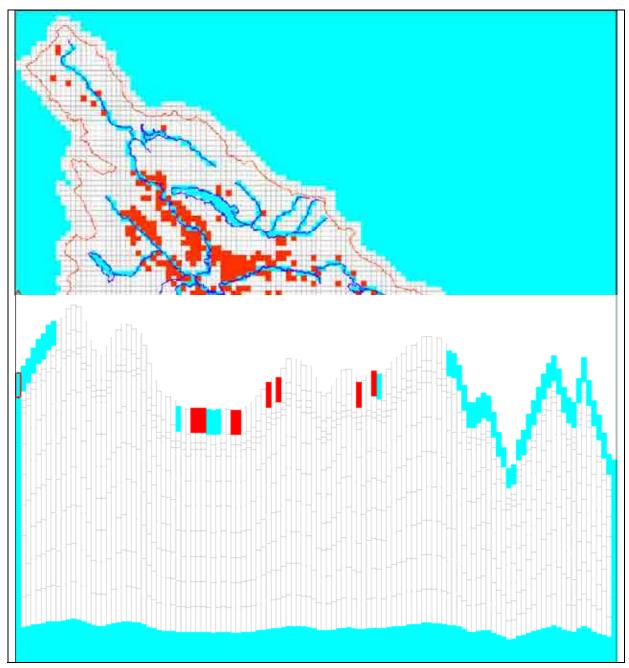



Figure-7. 2 Cross-sectional Views of Grid/layer and Boundary Conditions of the Model (along column 49)

#### 1.2. Newly Planned Pumping Wells

The following table shows the list of the 64 pumping wells newly planned in this study.

Table-7. 2 Coordinates of 64 pumping wells

| No.         Project   Designation   A-503 Application   A-503 Applicatio |      |           |          |            | imates of o   | . PP      |            |     |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|----------|------------|---------------|-----------|------------|-----|--------|
| E34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No_  | Project   | Latitude | Longitude  | Site          | Elavation | Yield_M3_D | Row | Column |
| Heastern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E-1  | Eastern   | 4.563    | -74.065333 | Vitelma       | 2810      | 2000       | 84  | 42     |
| IS-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E-3  | Eastern   | 4.627056 | -74.055194 | Chapinero     | 2825      | 2000       | 77  | 43     |
| S-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E-4  | Eastern   | 4.634556 | -74.05575  | Chapinero     | 2768      | 2000       | 76  | 43     |
| T-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TS-2 |           |          |            | <u> </u>      |           |            |     | 46     |
| E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |           |          |            |               |           |            |     |        |
| E-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |           |          |            |               |           |            |     |        |
| ST-1         Eastern         4.711722         -74.083389         Suban         2.589         2.500         68         40           ST-2         Eastern         4.712111         -74.084333         Suban         2.583         2.500         68         40           ST-3         Eastern         4.7125         -74.084333         Suban         2.583         2.500         67         40           E-8         Eastern         4.7125         -74.025800         Usaquen         2.583         2.500         66         46           E-9         Eastern         4.722733         -74.022417         Usaquen         2.577         2000         66         46           E-11         Eastern         4.7360         -74.022417         Usaquen         2.577         2000         65         46           E-10         Eastern         4.745222         -74.022417         Usaquen         2.583         2000         64         47           E-13         Eastern         4.745229         -74.022417         Usaquen         2.578         2000         63         47           E-14         Eastern         4.762639         -74.026889         Usaquen         2.578         2000         61         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |           |          |            | <del>-</del>  |           |            |     |        |
| ST-2         Eastern         4.7121 11         -74.084333 Suba         2588         2500         68         40           E-7         Eastern         4.712 -74.084333 Suba         2583 2000         68         46           E-8         Eastern         4.722972 -74.08533 Suba         2589 2500         67         40           E-8         Eastern         4.722972 -74.025300 Usaquen         2587 2000         66         46           E-9         Eastern         4.722972 -74.02530 Usaquen         2597 2000         65         46           E-10         Eastern         4.733778 -74.022412 Usaquen         2587 2000         65         46           E-10         Eastern         4.733778 -74.022412 Usaquen         2587 2000         65         47           E-12         Eastern         4.745833 -74.022917 Usaquen         2592 2000         64         47           E-14         Eastern         4.754833 -74.022917 Usaquen         2605 2000         63         47           E-15         Eastern         4.754833 -74.022917 Usaquen         2605 2000         63         47           E-15         Eastern         4.754833 -74.024918 Suaquen         2613 2000         62         46           V-1         Eastern         4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |           |          |            | <u> </u>      |           |            |     |        |
| E-7         Eastern         4.712         -74.028972         Usaquen         2583         2000         68         46           ST-3         Eastern         4.7125         -74.048433         Suba         2589         2500         67         40           E-9         Eastern         4.722733         -74.022917         Usaquen         2597         2000         65         46           E-11         Eastern         4.7337         -74.02340         Usaquen         2577         2000         65         47           E-11         Eastern         4.730167         -74.02340         Usaquen         2587         2000         65         47           E-12         Eastern         4.740167         -74.02242         Usaquen         2583         2000         64         47           E-15         Eastern         4.740163         -74.022421         Usaquen         2592         2000         64         47           E-15         Eastern         4.756283         -74.022733         Usaquen         2578         2000         62         46           E-14         Eastern         4.776283         3.74.024501         Saquen         2570         2000         61         46 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |           |          |            |               |           |            |     |        |
| ST-3         Eastern         4.7125         -74.084833         Subar         2589         2500         67         40           E-8         Eastern         4.722972         -74.025806         Usaquen         2583         2000         66         46           E-11         Eastern         4.7336         -74.0244         Usaquen         2597         2000         65         47           E-11         Eastern         4.733778         -74.0244         Usaquen         2587         2000         65         47           E-12         Eastern         4.7347878         -74.022472         Usaquen         2583         2000         64         47           E-13         Eastern         4.754583         -74.022472         Usaquen         2505         2000         63         47           E-15         Eastern         4.764833         -74.022818         Saquen         2572         2000         62         46           CO-2         Eastern         4.776283         -74.022810         Usaquen         2643         2000         61         46           Y-1         Eastern         4.776288         -74.029819         Bogota Rural         2571         2000         61         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |           |          |            |               |           |            |     |        |
| E-8         Eastern         4,722972         -74,025806         Usaquen         2583         2000         66         46           E-9         Eastern         4,727333         -74,022407         Usaquen         2597         2000         66         47           E-10         Eastern         4,733778         -74,023444         Usaquen         2587         2000         65         47           E-12         Eastern         4,740167         -74,022472         Usaquen         2583         2000         64         47           E-13         Eastern         4,754833         -74,022472         Usaquen         2583         2000         64         47           E-14         Eastern         4,754833         -74,022889         Usaquen         2578         2000         62         46           E-15         Eastern         4,766263         -74,028611         Usaquen         2578         2000         62         46           V-1         Eastern         4,776278         -74,028611         Bogota Rural         2571         2000         61         46           Y-2         Eastern         4,776278         -74,028611         Bogota Rural         2571         2000         60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |           |          |            | <u> </u>      |           |            |     |        |
| E-9         Eastern         4.727333         -74.022917         Usaquen         2597         2000         66         47           E-10         Eastern         4.736         -74.0234         Usaquen         2577         2000         65         46           E-12         Eastern         4.740167         -74.022447         Usaquen         2583         2000         64         47           E-13         Eastern         4.745222         -74.02240         Usaquen         2592         2000         64         47           E-15         Eastern         4.75232         -74.02240         Usaquen         2592         2000         62         46           E-15         Eastern         4.76833         -74.022405         Usaquen         2578         2000         62         46           CO-2         Eastern         4.776833         -74.024050         Usaquen         2578         2000         62         46           V-1         Eastern         4.776278         -74.026611         Bogota Rural         2571         2000         60         46           V-3         Eastern         4.78655         -74.027417         Bogota Rural         2571         2000         60         46 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |           |          |            |               |           |            |     |        |
| E-11         Eastern         4.736         -7.4024         Usaquen         2577         2000         65         46           E-10         Eastern         4.743778         -7.402344         Usaquen         2587         2000         65         47           E-13         Eastern         4.745222         -7.40224         Usaquen         2583         2000         64         47           E-14         Eastern         4.754823         -7.4022917         Usaquen         2592         2000         63         47           E-15         Eastern         4.754833         -74.022056         Usaquen         2605         2000         62         46           CO-2         Eastern         4.764833         -74.024056         Usaquen         2643         2000         62         46           CO-2         Eastern         4.776383         -74.026617         Bogota Rural         2570         2000         61         46           Y-1         Eastern         4.776278         -74.028611         Bogota Rural         2571         2000         60         46           Y-3         Eastern         4.78625         -74.02889         Bogota Rural <t>2575         2000         59</t>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | Eastern   |          |            |               |           |            |     |        |
| E-10         Eastern         4.733778         7-4.023444         Usaquen         2587         2000         65         47           E-12         Eastern         4.740167         -74.022472         Usaquen         2593         2000         64         47           E-14         Eastern         4.7454833         -74.022917         Usaquen         2592         2000         63         47           E-15         Eastern         4.762639         -74.026889         Usaquen         2598         2000         63         47           E-15         Eastern         4.762639         -74.026889         Usaquen         2578         2000         62         46           CO-2         Eastern         4.776283         -74.026017         Bogota Rural         2571         2000         61         46           Y-2         Eastern         4.776258         -74.026811         Bogota Rural         2571         2000         60         46           Y-5         Eastern         4.78625         -74.027889         Bogota Rural         2575         2000         59         46           Y-6         Eastern         4.789278         -74.027889         Bogota Rural         2573         2000         59 </td <td>E-9</td> <td>Eastern</td> <td>4.727333</td> <td>-74.022917</td> <td>Usaquen</td> <td>2597</td> <td>2000</td> <td>66</td> <td>47</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E-9  | Eastern   | 4.727333 | -74.022917 | Usaquen       | 2597      | 2000       | 66  | 47     |
| E-12         Eastern         4.740167         -74.022472         Usaquen         2583         2000         64         47           E-13         Eastern         4.745222         -74.022         Usaquen         2592         2000         64         47           E-15         Eastern         4.762639         -74.026889         Usaquen         2578         2000         62         46           CO-2         Eastern         4.764833         -74.024056         Usaquen         2578         2000         62         46           V-1         Eastern         4.776283         -74.02480         Usaquen         2571         2000         61         46           Y-2         Eastern         4.776278         -74.026917         Bogota Rural         2571         2000         60         46           Y-3         Eastern         4.776278         -74.028417         Bogota Rural         2571         2000         60         46           Y-5         Eastern         4.78925         -74.02883         Bogota Rural         2571         2000         59         46           Y-7         Eastern         4.76111         -74.08189         Bogota Rural         2571         2000         59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E-11 | Eastern   | 4.736    | -74.024    | Usaquen       | 2577      | 2000       | 65  | 46     |
| E-13         Eastern         4.745222         -74.022         Usaquen         2592         2000         64         47           E-14         Eastern         4.754833         -74.022917         Usaquen         2605         2000         62         46           CO-2         Eastern         4.75633         -74.02406         Usaquen         2578         2000         62         46           V-1         Eastern         4.776833         -74.026917         Bogota Rural         2570         2000         61         46           Y-2         Eastern         4.776278         -74.026911         Bogota Rural         2571         2000         60         46           Y-3         Eastern         4.776278         -74.026811         Bogota Rural         2571         2000         60         46           Y-3         Eastern         4.78625         -74.027883         Bogota Rural         2571         2000         59         46           Y-5         Eastern         4.78625         -74.027883         Bogota Rural         2573         2000         59         46           Y-7         Eastern         4.792278         -74.028383         Bogota Rural         2571         2500         63 </td <td>E-10</td> <td>Eastern</td> <td>4.733778</td> <td>-74.023444</td> <td>Usaquen</td> <td>2587</td> <td>2000</td> <td>65</td> <td>47</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E-10 | Eastern   | 4.733778 | -74.023444 | Usaquen       | 2587      | 2000       | 65  | 47     |
| E-14         Eastern         4.754833         -74.022917         Usaquen         2605         2000         63         47           E-15         Eastern         4.762639         -74.026889         Usaquen         2578         2000         62         46           V-1         Eastern         4.776283         -74.027333         Bogota Rural         2570         2000         61         46           Y-2         Eastern         4.776278         -74.026611         Bogota Rural         2571         2000         60         46           Y-3         Eastern         4.776278         -74.028417         Bogota Rural         2571         2000         60         46           Y-4         Eastern         4.78655         -74.028417         Bogota Rural         2571         2000         60         46           Y-5         Eastern         4.78625         -74.02889         Bogota Rural         2571         2000         59         46           Y-6         Eastern         4.78925         -74.028583         Bogota Rural         2571         2000         59         46           E-16         Eastern         4.7515         74.0815         Soata         2575         2500         62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E-12 | Eastern   | 4.740167 | -74.022472 | Usaquen       | 2583      | 2000       | 64  | 47     |
| E-15         Eastern         4.762639         -74.026880         Usaquen         2578         2000         62         46           CO-2         Eastern         4.776833         -74.027333         Bogota Rural         2570         2000         61         46           Y-2         Eastern         4.776583         -74.026917         Bogota Rural         2571         2000         61         46           Y-3         Eastern         4.776278         -74.026911         Bogota Rural         2571         2000         60         46           Y-5         Eastern         4.778625         -74.028417         Bogota Rural         2575         2000         60         46           Y-5         Eastern         4.78625         -74.028478         Bogota Rural         2575         2000         59         46           Y-6         Eastern         4.78625         -74.028478         Bogota Rural         2571         2000         59         46           Y-7         Eastern         4.795278         -74.029417         Bogota Rural         2573         2000         59         46           Y-7         Eastern         4.75595         -74.031611         Bogota Rural         2578         2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E-13 | Eastern   | 4.745222 | -74.022    | Usaquen       | 2592      | 2000       | 64  | 47     |
| CO-2         Eastern         4.764833         -74.024056         Usaquen         2643         2000         62         46           Y-1         Eastern         4.770528         -74.027333         Bogota Rural         2570         2000         61         46           Y-2         Eastern         4.774528         -74.02611         Bogota Rural         2571         2000         60         46           Y-3         Eastern         4.784556         -74.028417         Bogota Rural         2575         2000         60         46           Y-5         Eastern         4.784556         -74.028417         Bogota Rural         2571         2000         59         46           Y-6         Eastern         4.78925         -74.02848         Bogota Rural         2571         2000         59         46           Y-7         Eastern         4.792278         -74.029417         Bogota Rural         2571         2000         59         46           Y-7         Eastern         4.792278         -74.031611         Bogota Rural         2581         2500         63         40           E-17         Eastern         4.76111         -74.031618         Bogota Rural         2568         2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E-14 | Eastern   | 4.754833 | -74.022917 | Usaquen       | 2605      | 2000       | 63  | 47     |
| CO-2         Eastern         4.764833         -74.024056         Usaquen         2643         2000         62         46           Y-1         Eastern         4.770528         -74.027333         Bogota Rural         2570         2000         61         46           Y-2         Eastern         4.774528         -74.02611         Bogota Rural         2571         2000         60         46           Y-3         Eastern         4.784556         -74.028417         Bogota Rural         2575         2000         60         46           Y-5         Eastern         4.784556         -74.028417         Bogota Rural         2571         2000         59         46           Y-6         Eastern         4.78925         -74.02848         Bogota Rural         2571         2000         59         46           Y-7         Eastern         4.792278         -74.029417         Bogota Rural         2571         2000         59         46           Y-7         Eastern         4.792278         -74.031611         Bogota Rural         2581         2500         63         40           E-17         Eastern         4.76111         -74.031618         Bogota Rural         2568         2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E-15 | Eastern   | 4.762639 | -74.026889 | Usaquen       | 2578      | 2000       | 62  | 46     |
| Y-1         Eastern         4.770583         -74.027333         Bogota Rural         2570         2000         61         46           Y-2         Eastern         4.774528         -74.026917         Bogota Rural         2571         2000         61         46           Y-3         Eastern         4.776278         -74.026917         Bogota Rural         2571         2000         60         46           Y-4         Eastern         4.784556         -74.028417         Bogota Rural         2575         2000         59         46           Y-5         Eastern         4.78252         -74.027889         Bogota Rural         2582         2000         59         46           Y-6         Eastern         4.78252         -74.028583         Bogota Rural         2581         2000         59         46           E-16         Eastern         4.751111         -74.078389         Suba         25373         2000         59         46           E-17         Eastern         4.761111         -74.078389         Suba         2575         2500         62         40           Y-8         Eastern         4.805604         -74.030139         Bogota Rural         2581         2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |           |          |            |               |           |            |     |        |
| Y-2         Eastern         4.774528         -74.026917         Bogota Rural         2571         2000         61         46           Y-3         Eastern         4.776278         -74.026611         Bogota Rural         2571         2000         60         46           Y-4         Eastern         4.784526         -74.028417         Bogota Rural         2575         2000         59         46           Y-5         Eastern         4.78625         -74.028483         Bogota Rural         2582         2000         59         46           Y-6         Eastern         4.78925         -74.028483         Bogota Rural         2573         2000         59         46           E-16         Eastern         4.7575         -74.029417         Bogota Rural         2573         2000         59         46           E-17         Eastern         4.75886         -74.03189         Suba         2581         2500         62         40           Y-8         Eastern         4.95806         -74.03169         Bogota Rural         2581         2000         57         46           Y-10         Eastern         4.817278         -74.0318         Bogota Rural         2569         2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |           |          |            | · ·           |           |            |     |        |
| Y-3         Eastern         4.776278         -74.026611         Bogota Rural         2571         2000         60         46           Y-4         Eastern         4.784556         -74.028417         Bogota Rural         2575         2000         59         46           Y-5         Eastern         4.78625         -74.027889         Bogota Rural         2582         2000         59         46           Y-6         Eastern         4.78925         -74.02883         Bogota Rural         2571         2000         59         46           Y-7         Eastern         4.795278         -74.029417         Bogota Rural         2573         2000         59         46           E-16         Eastern         4.761111         -74.0315         Suba         2581         2500         63         40           Y-8         Eastern         4.795806         -74.03161         Bogota Rural         2581         2000         57         46           Y-10         Eastern         4.809556         -74.03169         Bogota Rural         2586         2000         57         46           Y-11         Eastern         4.817278         -74.0315         Bogota Rural         2586         2000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |           |          |            |               |           |            |     |        |
| Y-4         Eastern         4.784556         -74.028417         Bogota Rural         2575         2000         60         46           Y-5         Eastern         4.78625         -74.027889         Bogota Rural         2582         2000         59         46           Y-7         Eastern         4.789278         -74.028583         Bogota Rural         2571         2000         59         46           E-16         Eastern         4.789278         -74.028583         Bogota Rural         2573         2000         59         46           E-16         Eastern         4.7575         -74.078389         Suba         2581         2500         63         40           E-17         Eastern         4.795806         -74.03161         Bogota Rural         2568         2000         57         46           Y-9         Eastern         4.805694         -74.030139         Bogota Rural         2568         2000         57         46           Y-10         Eastern         4.817878         -74.0318         Bogota Rural         2568         2000         55         46           Y-11         Eastern         4.821583         -74.0318         Bogota Rural         2568         2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |           |          |            |               |           |            |     |        |
| Y-5         Eastern         4.78625         -74.027889         Bogota Rural         2582         2000         59         46           Y-6         Eastern         4.78925         -74.028483         Bogota Rural         2571         2000         59         46           Y-7         Eastern         4.792278         -74.028417         Bogota Rural         2573         2000         59         46           E-16         Eastern         4.767111         -74.03819         Bogota Rural         2575         2500         62         40           E-17         Eastern         4.761111         -74.03151         Bogota Rural         2581         2000         58         46           Y-9         Eastern         4.805694         -74.030139         Bogota Rural         2570         2000         57         46           Y-10         Eastern         4.817278         -74.0315         Bogota Rural         2569         2000         56         46           Y-12         Eastern         4.821583         -74.0315         Bogota Rural         2569         2000         55         46           Y-12         Eastern         4.821583         -74.0315         Bogota Rural         2569         2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    |           |          |            |               |           |            |     |        |
| Y-6         Eastern         4.78925         -74.028583         Bogota Rural         2571         2000         59         46           Y-7         Eastern         4.792278         -74.029417         Bogota Rural         2573         2000         59         46           E-16         Eastern         4.7575         -74.078389         Suba         2581         2500         63         40           E-17         Eastern         4.761111         -74.0815         Suba         2575         2500         62         40           Y-8         Eastern         4.761111         -74.0815         Suba         2575         2500         62         40           Y-9         Eastern         4.805694         -74.0316         Bogota Rural         2588         2000         57         46           Y-10         Eastern         4.80556         -74.0318         Bogota Rural         2569         2000         55         46           Y-12         Eastern         4.81728         -74.0315         Bogota Rural         2560         2000         55         46           Y-12         Eastern         4.821583         -74.1631         Bogota Rural         2560         2000         56         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |           |          |            |               |           |            |     |        |
| Y-7         Eastern         4.792278         -74.029417         Bogota Rural         2573         2000         59         46           E-16         Eastern         4.7575         -74.078389         Suba         2581         2500         63         40           E-17         Eastern         4.795806         -74.03161         Bogota Rural         2575         2500         62         40           Y-9         Eastern         4.890596         -74.03161         Bogota Rural         2568         2000         57         46           Y-10         Eastern         4.805694         -74.031039         Bogota Rural         2569         2000         57         46           Y-11         Eastern         4.807586         -74.0318         Bogota Rural         2569         2000         56         46           Y-12         Eastern         4.81783         -74.0318         Bogota Rural         2566         2000         55         46           Y-12         Eastern         4.821838         -74.16315         Bogota Rural         2569         2000         55         46           H-12         Eastern         4.821838         -74.16715         Ciudad Bolova         2945         1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |           |          |            | <del> </del>  |           |            |     |        |
| E-16         Eastern         4.7575         -74.078389         Suba         2581         2500         63         40           E-17         Eastern         4.761111         -74.0815         Suba         2575         2500         62         40           Y-8         Eastern         4.805694         -74.03139         Bogota Rural         2581         2000         57         46           Y-10         Eastern         4.809556         -74.03039         Bogota Rural         2570         2000         56         46           Y-11         Eastern         4.817278         -74.031         Bogota Rural         2569         2000         56         46           Y-12         Eastern         4.821583         -74.0315         Bogota Rural         2586         2000         55         46           B-4         Southern         4.531194         -74.168056         Ciudad Bolova         2945         1000         88         31           B-5         Southern         4.5339417         -74.169426         Ciudad Bolova         2987         1000         87         31           EX-2         Southern         4.534083         -74.165583         Ciudad Bolova         2867         1000 <td< td=""><td></td><td></td><td></td><td></td><td>ŭ</td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |           |          |            | ŭ             |           |            |     |        |
| E-17         Eastern         4.761111         -74.0815         Suba         2575         2500         62         40           Y-8         Eastern         4.798806         -74.031611         Bogota Rural         2581         2000         58         46           Y-10         Eastern         4.80556         -74.030639         Bogota Rural         2568         2000         57         46           Y-11         Eastern         4.817278         -74.030639         Bogota Rural         2569         2000         56         46           Y-12         Eastern         4.821583         -74.0315         Bogota Rural         2569         2000         55         46           B-4         Southern         4.531194         -74.168056         Ciudad Bolova         2945         1000         88         31           B-5         Southern         4.535417         -74.160472         Ciudad Bolova         2987         1000         88         31           EX-2         Southern         4.534083         -74.164361         Ciudad Bolova         2867         1000         87         31           B-2         Southern         4.534083         -74.165583         Ciudad Bolova         2917         1000 <td></td> <td></td> <td></td> <td></td> <td>ŭ</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |           |          |            | ŭ             |           |            |     |        |
| Y-8         Eastern         4.795806         -74.031611         Bogota Rural         2581         2000         58         46           Y-9         Eastern         4.805694         -74.030139         Bogota Rural         2568         2000         57         46           Y-10         Eastern         4.809556         -74.03103039         Bogota Rural         2570         2000         56         46           Y-11         Eastern         4.817278         -74.0315         Bogota Rural         2569         2000         55         46           Y-12         Eastern         4.821583         -74.0315         Bogota Rural         2586         2000         55         46           B-4         Southern         4.53194         -74.168056         Ciudad Bolova         2945         1000         88         31           B-5         Southern         4.534947         -74.164361         Ciudad Bolova         2987         1000         87         31           Ex-2         Southern         4.534033         -74.165583         Ciudad Bolova         22967         1000         87         31           B-3         Southern         4.532833         -74.179556         Soacha         2786         1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |           |          |            |               |           |            |     |        |
| Y-9         Eastern         4.805694         -74.030139         Bogota Rural         2568         2000         57         46           Y-10         Eastern         4.809556         -74.030639         Bogota Rural         2570         2000         57         46           Y-11         Eastern         4.817278         -74.0313         Bogota Rural         2569         2000         55         46           Y-12         Eastern         4.821583         -74.0315         Bogota Rural         2586         2000         55         46           B-4         Southern         4.531194         -74.168056         Ciudad Bolova         2945         1000         88         31           B-5         Southern         4.534917         -74.160472         Ciudad Bolova         2987         1000         87         31           EX-2         Southern         4.534083         -74.160472         Ciudad Bolova         2867         1000         87         31           EX-1         Southern         4.556028         -74.167956         Ciudad Bolova         2918         1000         87         31           EX-1         Southern         4.550202         -74.180528         Soacha         2786         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | Eastern   |          |            |               | 2575      | 2500       | 62  | 40     |
| Y-10         Eastern         4.809556         -74.030639         Bogota Rural         2570         2000         57         46           Y-11         Eastern         4.817278         -74.031         Bogota Rural         2569         2000         56         46           Y-12         Eastern         4.821583         -74.0315         Bogota Rural         2569         2000         55         46           B-4         Southern         4.531194         -74.168056         Ciudad Bolova         2987         1000         88         31           B-5         Southern         4.5349417         -74.160472         Ciudad Bolova         2987         1000         87         31           EX-2         Southern         4.534083         -74.164561         Ciudad Bolova         2867         1000         87         31           B-2         Southern         4.534083         -74.167956         Ciudad Bolova         2907         1000         87         31           EX-1         Southern         4.5526028         -74.17956         Goacha         2786         1000         85         29           S-5         Southern         4.551722         -74.180528         Soacha         2809         1000 <td>Y-8</td> <td>Eastern</td> <td>4.795806</td> <td>-74.031611</td> <td>Bogota Rural</td> <td>2581</td> <td>2000</td> <td>58</td> <td>46</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y-8  | Eastern   | 4.795806 | -74.031611 | Bogota Rural  | 2581      | 2000       | 58  | 46     |
| Y-11         Eastern         4.817278         -74.031         Bogota Rural         2569         2000         56         46           Y-12         Eastern         4.821583         -74.0315         Bogota Rural         2586         2000         55         46           B-4         Southern         4.531194         -74.168056         Ciudad Bolova         2945         1000         88         31           B-5         Southern         4.53858         -74.16778         Ciudad Bolova         2987         1000         88         31           B-1         Southern         4.537333         -74.164361         Ciudad Bolova         2887         1000         87         31           EX-2         Southern         4.534083         -74.167056         Ciudad Bolova         2997         1000         87         31           B-2         Southern         4.552083         -74.167056         Ciudad Bolova         2918         1000         87         31           EX-1         Southern         4.552028         -74.189528         Soacha         2786         1000         85         29           S-5         Southern         4.552028         -74.189111         Soacha         2837         1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y-9  | Eastern   | 4.805694 | -74.030139 | Bogota Rural  | 2568      | 2000       | 57  | 46     |
| Y-12         Eastern         4.821583         -74.0315         Bogota Rural         2586         2000         55         46           B-4         Southern         4.531194         -74.168056         Ciudad Bolova         2945         1000         88         31           B-5         Southern         4.528528         -74.160472         Ciudad Bolova         2987         1000         87         31           B-1         Southern         4.537333         -74.16472         Ciudad Bolova         2835         1000         87         31           EX-2         Southern         4.534083         -74.16756         Ciudad Bolova         2907         1000         87         31           EX-2         Southern         4.532833         -74.167056         Ciudad Bolova         2918         1000         87         31           EX-1         Southern         4.556028         -74.179556         Soacha         2786         1000         85         29           S-5         Southern         4.552111         -74.182305         Soacha         2889         1000         85         29           S-1         Southern         4.562028         -74.189111         Soacha         2876         1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Y-10 | Eastern   | 4.809556 | -74.030639 | Bogota Rural  | 2570      | 2000       | 57  | 46     |
| B-4         Southern         4.531194         -74.168056         Ciudad Bolova         2945         1000         88         31           B-5         Southern         4.528528         -74.167778         Ciudad Bolova         2987         1000         88         31           B-1         Southern         4.539417         -74.160472         Ciudad Bolova         2835         1000         87         31           EX-2         Southern         4.534083         -74.165583         Ciudad Bolova         2907         1000         87         31           B-2         Southern         4.534083         -74.167056         Ciudad Bolova         2907         1000         87         31           B-3         Southern         4.552028         -74.167056         Ciudad Bolova         2918         1000         87         31           EX-1         Southern         4.552472         -74.189528         Soacha         2786         1000         85         29           S-5         Southern         4.552472         -74.189238         Soacha         2837         1000         85         29           S-1         Southern         4.561722         -74.189111         Soacha         2746         1000 <td>Y-11</td> <td>Eastern</td> <td>4.817278</td> <td>-74.031</td> <td>Bogota Rural</td> <td>2569</td> <td>2000</td> <td>56</td> <td>46</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Y-11 | Eastern   | 4.817278 | -74.031    | Bogota Rural  | 2569      | 2000       | 56  | 46     |
| B-5         Southern         4.528528         -74.167778         Ciudad Bolova         2987         1000         88         31           B-1         Southern         4.539417         -74.160472         Ciudad Bolova         2835         1000         87         31           EX-2         Southern         4.537333         -74.164361         Ciudad Bolova         2867         1000         87         31           B-2         Southern         4.534083         -74.167056         Ciudad Bolova         2907         1000         87         31           B-3         Southern         4.556028         -74.179556         Soacha         2786         1000         85         29           S-5         Southern         4.552472         -74.180528         Soacha         2809         1000         85         29           S-6         Southern         4.55111         -74.182308         Soacha         2837         1000         85         29           S-1         Southern         4.561722         -74.185611         Soacha         2746         1000         84         28           S-2         Southern         4.562028         -74.182333         Soacha         2760         1000         84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Y-12 | Eastern   | 4.821583 | -74.0315   | Bogota Rural  | 2586      | 2000       | 55  | 46     |
| B-1         Southern         4.539417         -74.160472         Ciudad Bolova         2835         1000         87         31           EX-2         Southern         4.537333         -74.164361         Ciudad Bolova         2867         1000         87         31           B-2         Southern         4.534083         -74.165583         Ciudad Bolova         2907         1000         87         31           B-3         Southern         4.532833         -74.167056         Ciudad Bolova         2918         1000         87         31           EX-1         Southern         4.556028         -74.189528         Soacha         2786         1000         85         29           S-5         Southern         4.552472         -74.182306         Soacha         2809         1000         85         29           S-6         Southern         4.562028         -74.182306         Soacha         2837         1000         84         28           S-2         Southern         4.561722         -74.18233         Soacha         2746         1000         84         29           S-3         Southern         4.567228         -74.182333         Soacha         2748         1000         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B-4  | Southern  | 4.531194 | -74.168056 | Ciudad Bolova | 2945      | 1000       | 88  | 31     |
| EX-2         Southern         4.537333         -74.164361         Ciudad Bolova         2867         1000         87         31           B-2         Southern         4.534083         -74.165583         Ciudad Bolova         2907         1000         87         31           B-3         Southern         4.532833         -74.167056         Ciudad Bolova         2918         1000         87         31           EX-1         Southern         4.556028         -74.179556         Soacha         2786         1000         85         29           S-5         Southern         4.55111         -74.180528         Soacha         2809         1000         85         29           S-6         Southern         4.550111         -74.182306         Soacha         2837         1000         85         29           S-1         Southern         4.561722         -74.185611         Soacha         2746         1000         84         28           S-2         Southern         4.562028         -74.185611         Soacha         2748         1000         84         29           S-3         Southern         4.562028         -74.182333         Soacha         2762         1000         84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B-5  | Southern  | 4.528528 | -74.167778 | Ciudad Bolova | 2987      | 1000       | 88  | 31     |
| EX-2         Southern         4.537333         -74.164361         Ciudad Bolova         2867         1000         87         31           B-2         Southern         4.534083         -74.165583         Ciudad Bolova         2907         1000         87         31           B-3         Southern         4.532833         -74.167056         Ciudad Bolova         2918         1000         87         31           EX-1         Southern         4.556028         -74.179556         Soacha         2786         1000         85         29           S-5         Southern         4.552472         -74.180528         Soacha         2809         1000         85         29           S-6         Southern         4.550111         -74.182306         Soacha         2837         1000         85         29           S-1         Southern         4.561722         -74.185611         Soacha         2746         1000         84         28           S-2         Southern         4.562028         -74.185611         Soacha         2748         1000         84         29           S-3         Southern         4.559333         -74.179889         Soacha         2762         1000         84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B-1  | Southern  | 4.539417 | -74.160472 | Ciudad Bolova | 2835      | 1000       | 87  | 31     |
| B-2         Southern         4.534083         -74.165583         Ciudad Bolova         2907         1000         87         31           B-3         Southern         4.532833         -74.167056         Ciudad Bolova         2918         1000         87         31           EX-1         Southern         4.556028         -74.179556         Soacha         2786         1000         85         29           S-5         Southern         4.552472         -74.180528         Soacha         2809         1000         85         29           S-6         Southern         4.550111         -74.182306         Soacha         2837         1000         85         29           S-1         Southern         4.562028         -74.189111         Soacha         2746         1000         84         28           S-2         Southern         4.562028         -74.182333         Soacha         2748         1000         84         29           S-3         Southern         4.559333         -74.179889         Soacha         2762         1000         84         29           Y-13         Yerbabuen         4.829278         -74.031028         Chia         2566         2000         55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |           | 4 537333 | -74 164361 | Ciudad Bolova |           |            |     |        |
| B-3         Southern         4.532833         -74.167056         Ciudad Bolova         2918         1000         87         31           EX-1         Southern         4.556028         -74.179556         Soacha         2786         1000         85         29           S-5         Southern         4.552472         -74.180528         Soacha         2809         1000         85         29           S-6         Southern         4.550111         -74.182306         Soacha         2837         1000         85         29           S-1         Southern         4.562028         -74.189111         Soacha         2746         1000         84         28           S-2         Southern         4.561722         -74.185611         Soacha         2760         1000         84         29           S-3         Southern         4.562028         -74.182333         Soacha         2748         1000         84         29           S-4         Southern         4.559333         -74.179889         Soacha         2762         1000         84         29           Y-13         Yerbabuen         4.832611         -74.031028         Chia         2566         2000         55         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |           |          |            |               |           |            |     |        |
| EX-1         Southern         4.556028         -74.179556         Soacha         2786         1000         85         29           S-5         Southern         4.552472         -74.180528         Soacha         2809         1000         85         29           S-6         Southern         4.550111         -74.182306         Soacha         2837         1000         85         29           S-1         Southern         4.562028         -74.189111         Soacha         2746         1000         84         28           S-2         Southern         4.561722         -74.185611         Soacha         2760         1000         84         29           S-3         Southern         4.562028         -74.182333         Soacha         2748         1000         84         29           S-4         Southern         4.559333         -74.179889         Soacha         2762         1000         84         29           Y-13         Yerbabuen         4.832611         -74.031028         Chia         2566         2000         55         46           Y-14         Yerbabuen         4.874861         -74.029917         Chia         2558         2000         54         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |           |          |            |               |           |            |     |        |
| S-5         Southern         4.552472         -74.180528         Soacha         2809         1000         85         29           S-6         Southern         4.550111         -74.182306         Soacha         2837         1000         85         29           S-1         Southern         4.562028         -74.189111         Soacha         2746         1000         84         28           S-2         Southern         4.562028         -74.182333         Soacha         2760         1000         84         29           S-3         Southern         4.562028         -74.182333         Soacha         2748         1000         84         29           S-4         Southern         4.559333         -74.179889         Soacha         2762         1000         84         29           Y-13         Yerbabuen         4.829278         -74.031028         Chia         2566         2000         55         46           Y-14         Yerbabuen         4.835306         -74.029917         Chia         2558         2000         54         46           Y-21         Yerbabuen         4.840889         -74.026972         Chia         2556         2000         50         47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |           |          |            |               |           |            |     |        |
| S-6         Southern         4.550111         -74.182306         Soacha         2837         1000         85         29           S-1         Southern         4.562028         -74.189111         Soacha         2746         1000         84         28           S-2         Southern         4.561722         -74.185611         Soacha         2760         1000         84         29           S-3         Southern         4.562028         -74.182333         Soacha         2748         1000         84         29           S-4         Southern         4.559333         -74.179889         Soacha         2762         1000         84         29           Y-13         Yerbabuen         4.829278         -74.031028         Chia         2566         2000         55         46           Y-14         Yerbabuen         4.832611         -74.030111         Chia         2564         2000         54         46           Y-15         Yerbabuen         4.874861         -74.029917         Chia         2558         2000         54         46           Y-21         Yerbabuen         4.8480889         -74.026722         Chia         2564         2000         53         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |           |          |            |               |           |            |     |        |
| S-1         Southern         4.562028         -74.189111         Soacha         2746         1000         84         28           S-2         Southern         4.561722         -74.185611         Soacha         2760         1000         84         29           S-3         Southern         4.562028         -74.182333         Soacha         2748         1000         84         29           S-4         Southern         4.559333         -74.179889         Soacha         2762         1000         84         29           Y-13         Yerbabuen         4.829278         -74.031028         Chia         2566         2000         55         46           Y-14         Yerbabuen         4.832611         -74.030111         Chia         2564         2000         54         46           Y-15         Yerbabuen         4.835306         -74.029917         Chia         2558         2000         54         46           Y-21         Yerbabuen         4.874861         -74.029917         Chia         2570         2000         50         47           Y-16         Yerbabuen         4.848788         -74.026722         Chia         2564         2000         53         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |           |          |            |               |           |            |     |        |
| S-2         Southern         4.561722         -74.185611         Soacha         2760         1000         84         29           S-3         Southern         4.562028         -74.182333         Soacha         2748         1000         84         29           S-4         Southern         4.559333         -74.179889         Soacha         2762         1000         84         29           Y-13         Yerbabuen         4.829278         -74.031028         Chia         2566         2000         55         46           Y-14         Yerbabuen         4.832611         -74.030111         Chia         2564         2000         54         46           Y-15         Yerbabuen         4.835306         -74.029917         Chia         2558         2000         54         46           Y-21         Yerbabuen         4.874861         -74.029917         Chia         2558         2000         50         47           Y-16         Yerbabuen         4.848889         -74.026722         Chia         2564         2000         53         46           Y-17         Yerbabuen         4.854194         -74.023778         Chia         2556         2000         52         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |           |          |            | 1             |           |            |     |        |
| S-3         Southern         4.562028         -74.182333         Soacha         2748         1000         84         29           S-4         Southern         4.559333         -74.179889         Soacha         2762         1000         84         29           Y-13         Yerbabuen         4.829278         -74.031028         Chia         2566         2000         55         46           Y-14         Yerbabuen         4.832611         -74.030111         Chia         2564         2000         54         46           Y-15         Yerbabuen         4.835306         -74.029917         Chia         2558         2000         54         46           Y-21         Yerbabuen         4.874861         -74.029917         Chia         2558         2000         50         47           Y-16         Yerbabuen         4.840889         -74.026722         Chia         2564         2000         53         46           Y-17         Yerbabuen         4.848778         -74.0265         Chia         2556         2000         52         46           Y-18         Yerbabuen         4.854194         -74.023778         Chia         2571         2000         52         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |           |          |            |               |           |            |     |        |
| S-4         Southern         4.559333         -74.179889         Soacha         2762         1000         84         29           Y-13         Yerbabuen         4.829278         -74.031028         Chia         2566         2000         55         46           Y-14         Yerbabuen         4.832611         -74.030111         Chia         2564         2000         54         46           Y-15         Yerbabuen         4.835306         -74.029917         Chia         2558         2000         54         46           Y-21         Yerbabuen         4.874861         -74.014944         Chia         2570         2000         50         47           Y-16         Yerbabuen         4.848889         -74.026722         Chia         2564         2000         53         46           Y-17         Yerbabuen         4.848778         -74.0265         Chia         2556         2000         52         46           Y-18         Yerbabuen         4.854194         -74.023778         Chia         2571         2000         52         46           Y-19         Yerbabuen         4.860778         -74.021566         Chia         2577         2000         52         47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |           |          |            |               |           |            |     |        |
| Y-13         Yerbabuen         4.829278         -74.031028         Chia         2566         2000         55         46           Y-14         Yerbabuen         4.832611         -74.030111         Chia         2564         2000         54         46           Y-15         Yerbabuen         4.835306         -74.029917         Chia         2558         2000         54         46           Y-21         Yerbabuen         4.874861         -74.014944         Chia         2570         2000         50         47           Y-16         Yerbabuen         4.848089         -74.026722         Chia         2564         2000         53         46           Y-17         Yerbabuen         4.848778         -74.0265         Chia         2556         2000         52         46           Y-18         Yerbabuen         4.854194         -74.023778         Chia         2571         2000         52         46           Y-19         Yerbabuen         4.855944         -74.021556         Chia         2571         2000         52         47           Y-20         Yerbabuen         4.860778         -74.024667         Chia         2577         2000         51         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |           |          |            |               |           |            |     |        |
| Y-14         Yerbabuen         4.832611         -74.030111         Chia         2564         2000         54         46           Y-15         Yerbabuen         4.835306         -74.029917         Chia         2558         2000         54         46           Y-21         Yerbabuen         4.874861         -74.014944         Chia         2570         2000         50         47           Y-16         Yerbabuen         4.840889         -74.026722         Chia         2564         2000         53         46           Y-17         Yerbabuen         4.848778         -74.0265         Chia         2556         2000         52         46           Y-18         Yerbabuen         4.854194         -74.023778         Chia         2571         2000         52         46           Y-19         Yerbabuen         4.855944         -74.021556         Chia         2617         2000         52         47           Y-20         Yerbabuen         4.860778         -74.024667         Chia         2577         2000         51         46           Y-22         Yerbabuen         4.87875         -74.013444         Sopo         2566         2000         49         48     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |           |          |            |               |           |            |     |        |
| Y-15         Yerbabuen         4.835306         -74.029917         Chia         2558         2000         54         46           Y-21         Yerbabuen         4.874861         -74.014944         Chia         2570         2000         50         47           Y-16         Yerbabuen         4.840889         -74.026722         Chia         2564         2000         53         46           Y-17         Yerbabuen         4.848778         -74.0265         Chia         2556         2000         52         46           Y-18         Yerbabuen         4.854194         -74.023778         Chia         2571         2000         52         46           Y-19         Yerbabuen         4.855944         -74.021556         Chia         2617         2000         52         47           Y-20         Yerbabuen         4.860778         -74.024667         Chia         2577         2000         51         46           Y-22         Yerbabuen         4.87875         -74.013444         Sopo         2566         2000         49         48           Y-23         Yerbabuen         4.881194         -74.012667         Sopo         2563         2000         49         48     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |           |          |            |               |           |            |     |        |
| Y-21         Yerbabuen         4.874861         -74.014944         Chia         2570         2000         50         47           Y-16         Yerbabuen         4.840889         -74.026722         Chia         2564         2000         53         46           Y-17         Yerbabuen         4.848778         -74.0265         Chia         2556         2000         52         46           Y-18         Yerbabuen         4.854194         -74.023778         Chia         2571         2000         52         46           Y-19         Yerbabuen         4.855944         -74.021556         Chia         2617         2000         52         47           Y-20         Yerbabuen         4.860778         -74.024667         Chia         2577         2000         51         46           Y-22         Yerbabuen         4.87875         -74.013444         Sopo         2566         2000         49         48           Y-23         Yerbabuen         4.881194         -74.012667         Sopo         2563         2000         49         48           Y-24         Yerbabuen         4.889311         -74.007472         Sopo         2557         2000         47         48     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _    | Yerbabuen |          |            |               |           |            |     | 46     |
| Y-16         Yerbabuen         4.840889         -74.026722         Chia         2564         2000         53         46           Y-17         Yerbabuen         4.848778         -74.0265         Chia         2556         2000         52         46           Y-18         Yerbabuen         4.854194         -74.023778         Chia         2571         2000         52         46           Y-19         Yerbabuen         4.855944         -74.021556         Chia         2617         2000         52         47           Y-20         Yerbabuen         4.860778         -74.024667         Chia         2577         2000         51         46           Y-22         Yerbabuen         4.87875         -74.013444         Sopo         2566         2000         49         48           Y-23         Yerbabuen         4.881194         -74.012667         Sopo         2563         2000         49         48           Y-24         Yerbabuen         4.88925         -74.009667         Sopo         2557         2000         48         48           Y-25         Yerbabuen         4.893111         -74.007472         Sopo         2559         2000         47         48 </td <td>Y-15</td> <td>Yerbabuen</td> <td>4.835306</td> <td>-74.029917</td> <td>Chia</td> <td>2558</td> <td>2000</td> <td>54</td> <td>46</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y-15 | Yerbabuen | 4.835306 | -74.029917 | Chia          | 2558      | 2000       | 54  | 46     |
| Y-17         Yerbabuen         4.848778         -74.0265 Chia         2556         2000         52         46           Y-18         Yerbabuen         4.854194         -74.023778 Chia         2571         2000         52         46           Y-19         Yerbabuen         4.855944         -74.021556 Chia         2617         2000         52         47           Y-20         Yerbabuen         4.860778         -74.024667 Chia         2577         2000         51         46           Y-22         Yerbabuen         4.87875         -74.013444 Sopo         2566         2000         49         48           Y-23         Yerbabuen         4.881194         -74.012667 Sopo         2563         2000         49         48           Y-24         Yerbabuen         4.88925         -74.009667 Sopo         2557         2000         48         48           Y-25         Yerbabuen         4.893111         -74.007472 Sopo         2559         2000         47         48           Y-26         Yerbabuen         4.896333         -74.006278 Sopo         2559         2000         47         48           Y-27         Yerbabuen         4.91375         -73.997306 Sopo         2558 <td< td=""><td>Y-21</td><td>Yerbabuen</td><td>4.874861</td><td>-74.014944</td><td>Chia</td><td>2570</td><td>2000</td><td>50</td><td>47</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Y-21 | Yerbabuen | 4.874861 | -74.014944 | Chia          | 2570      | 2000       | 50  | 47     |
| Y-18         Yerbabuen         4.854194         -74.023778         Chia         2571         2000         52         46           Y-19         Yerbabuen         4.855944         -74.021556         Chia         2617         2000         52         47           Y-20         Yerbabuen         4.860778         -74.024667         Chia         2577         2000         51         46           Y-22         Yerbabuen         4.87875         -74.013444         Sopo         2566         2000         49         48           Y-23         Yerbabuen         4.881194         -74.012667         Sopo         2563         2000         49         48           Y-24         Yerbabuen         4.88925         -74.009667         Sopo         2557         2000         48         48           Y-25         Yerbabuen         4.893111         -74.007472         Sopo         2559         2000         47         48           Y-26         Yerbabuen         4.896333         -74.006278         Sopo         2559         2000         47         48           Y-27         Yerbabuen         4.91375         -73.997306         Sopo         2558         2000         45         49     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y-16 | Yerbabuen | 4.840889 | -74.026722 | Chia          | 2564      | 2000       | 53  | 46     |
| Y-19         Yerbabuen         4.855944         -74.021556         Chia         2617         2000         52         47           Y-20         Yerbabuen         4.860778         -74.024667         Chia         2577         2000         51         46           Y-22         Yerbabuen         4.87875         -74.013444         Sopo         2566         2000         49         48           Y-23         Yerbabuen         4.881194         -74.012667         Sopo         2563         2000         49         48           Y-24         Yerbabuen         4.88925         -74.009667         Sopo         2557         2000         48         48           Y-25         Yerbabuen         4.893111         -74.007472         Sopo         2559         2000         47         48           Y-26         Yerbabuen         4.896333         -74.006278         Sopo         2559         2000         47         48           Y-27         Yerbabuen         4.91375         -73.997306         Sopo         2558         2000         45         49           Y-28         Yerbabuen         4.919028         -73.997528         Sopo         2554         2000         45         49     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y-17 | Yerbabuen | 4.848778 | -74.0265   | Chia          | 2556      | 2000       | 52  | 46     |
| Y-19         Yerbabuen         4.855944         -74.021556         Chia         2617         2000         52         47           Y-20         Yerbabuen         4.860778         -74.024667         Chia         2577         2000         51         46           Y-22         Yerbabuen         4.87875         -74.013444         Sopo         2566         2000         49         48           Y-23         Yerbabuen         4.881194         -74.012667         Sopo         2563         2000         49         48           Y-24         Yerbabuen         4.88925         -74.009667         Sopo         2557         2000         48         48           Y-25         Yerbabuen         4.893111         -74.007472         Sopo         2559         2000         47         48           Y-26         Yerbabuen         4.896333         -74.006278         Sopo         2559         2000         47         48           Y-27         Yerbabuen         4.91375         -73.997306         Sopo         2558         2000         45         49           Y-28         Yerbabuen         4.919028         -73.997528         Sopo         2554         2000         45         49     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y-18 | Yerbabuen | 4.854194 | -74.023778 | Chia          | 2571      | 2000       | 52  | 46     |
| Y-20         Yerbabuen         4.860778         -74.024667         Chia         2577         2000         51         46           Y-22         Yerbabuen         4.87875         -74.013444         Sopo         2566         2000         49         48           Y-23         Yerbabuen         4.881194         -74.012667         Sopo         2563         2000         49         48           Y-24         Yerbabuen         4.88925         -74.009667         Sopo         2557         2000         48         48           Y-25         Yerbabuen         4.893111         -74.007472         Sopo         2559         2000         47         48           Y-26         Yerbabuen         4.896333         -74.006278         Sopo         2559         2000         47         48           Y-27         Yerbabuen         4.91375         -73.997306         Sopo         2558         2000         45         49           Y-28         Yerbabuen         4.919028         -73.997528         Sopo         2554         2000         45         49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | Yerbabuen |          |            |               |           |            |     | 47     |
| Y-22         Yerbabuen         4.87875         -74.013444         Sopo         2566         2000         49         48           Y-23         Yerbabuen         4.881194         -74.012667         Sopo         2563         2000         49         48           Y-24         Yerbabuen         4.88925         -74.009667         Sopo         2557         2000         48         48           Y-25         Yerbabuen         4.893111         -74.007472         Sopo         2559         2000         47         48           Y-26         Yerbabuen         4.896333         -74.006278         Sopo         2559         2000         47         48           Y-27         Yerbabuen         4.91375         -73.997306         Sopo         2558         2000         45         49           Y-28         Yerbabuen         4.919028         -73.997528         Sopo         2554         2000         45         49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |           |          |            |               |           |            |     |        |
| Y-23         Yerbabuen         4.881194         -74.012667         Sopo         2563         2000         49         48           Y-24         Yerbabuen         4.88925         -74.009667         Sopo         2557         2000         48         48           Y-25         Yerbabuen         4.893111         -74.007472         Sopo         2559         2000         47         48           Y-26         Yerbabuen         4.896333         -74.006278         Sopo         2559         2000         47         48           Y-27         Yerbabuen         4.91375         -73.997306         Sopo         2558         2000         45         49           Y-28         Yerbabuen         4.919028         -73.997528         Sopo         2554         2000         45         49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |           |          |            | 1             |           |            |     |        |
| Y-24         Yerbabuen         4.88925         -74.009667         Sopo         2557         2000         48         48           Y-25         Yerbabuen         4.893111         -74.007472         Sopo         2559         2000         47         48           Y-26         Yerbabuen         4.896333         -74.006278         Sopo         2559         2000         47         48           Y-27         Yerbabuen         4.91375         -73.997306         Sopo         2558         2000         45         49           Y-28         Yerbabuen         4.919028         -73.997528         Sopo         2554         2000         45         49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |           |          |            | -             |           |            |     |        |
| Y-25     Yerbabuen     4.893111     -74.007472     Sopo     2559     2000     47     48       Y-26     Yerbabuen     4.896333     -74.006278     Sopo     2559     2000     47     48       Y-27     Yerbabuen     4.91375     -73.997306     Sopo     2558     2000     45     49       Y-28     Yerbabuen     4.919028     -73.997528     Sopo     2554     2000     45     49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |           |          |            |               |           |            |     |        |
| Y-26     Yerbabuen     4.896333     -74.006278     Sopo     2559     2000     47     48       Y-27     Yerbabuen     4.91375     -73.997306     Sopo     2558     2000     45     49       Y-28     Yerbabuen     4.919028     -73.997528     Sopo     2554     2000     45     49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |           |          |            |               |           |            |     |        |
| Y-27         Yerbabuen         4.91375         -73.997306         Sopo         2558         2000         45         49           Y-28         Yerbabuen         4.919028         -73.997528         Sopo         2554         2000         45         49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |           |          |            | · ·           |           |            |     |        |
| Y-28         Yerbabuen         4.919028         -73.997528         Sopo         2554         2000         45         49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |           |          |            |               |           |            |     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |           |          |            |               |           |            |     |        |
| Y-29 Yerbabuen 4.922556 -73.996611 Sopo 2561 2000 44 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |           |          |            |               |           |            |     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y-29 | Yerbabuen | 4.922556 | -73.996611 | Sopo          | 2561      | 2000       | 44  | 49     |

#### 1.3. Calibrated Model

The following Figures present head distribution in cross sectional view.

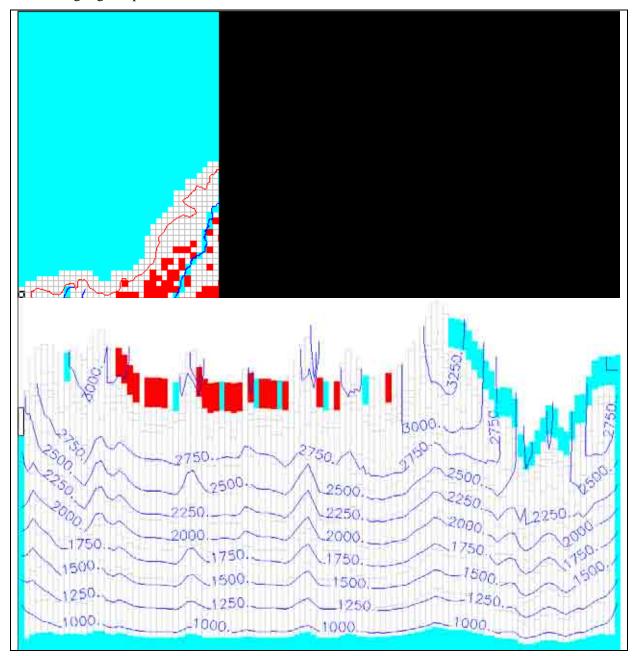



Figure-7. 3 Head Distribution of the Calibrated Steady State Model (along row 50)

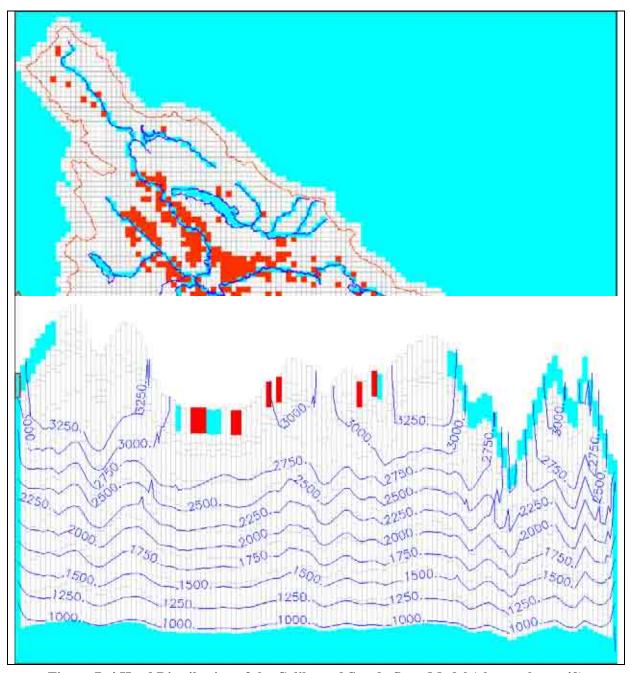



Figure-7. 4 Head Distribution of the Calibrated Steady State Model (along column 49)

#### **CHAPTER 2. DRAWDOWN FORECAST**

The influence of pumping from the 64 planned deep wells over the hydraulic head distribution of the surrounding aquifers was investigated using the calibrated model.

#### 2.1. Head Observation Wells

The drawdown of water table and hydraulic heads due to pumping of newly planned wells were observed through hypothetical observation wells. The following table summarizes details of the observation wells.

 No.
 Borehole Name
 Active
 X (easting)
 Y (northing)

 1
 South-1
 2
 South-2
 3
 South-3
 4
 East-1
 5
 East-2
 6
 East-3
 6
 East-3
 6
 East-3
 7
 6
 East-3
 7
 6
 Fast-3
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7

**Table-7.3** Detailed Location of Observation Wells

Note that the locations of these hypothetical observation wells are determined on the map and do not consider actual site conditions.

#### 2.2. Drawdown Observation Results

The following table gives details of the observation results.

YBB-1 YBB-2 YBB-3

Table-7. 4 Drawdown Observation Data for the Hypothetical Observation Boreholes

| Time(day) | East-1 | East-2 | East-3 | South-1 | South-2 | South-3 | YBB-1 | YBB-2 | YBB-3 |
|-----------|--------|--------|--------|---------|---------|---------|-------|-------|-------|
| 0         | 0      | 0      | 0      | 0       | 0       | 0       | 0     | 0     | 0     |
| 10        | 0.78   | 1.08   | 1.02   | 0.82    | 0       | 0.8     | 0.6   | 0.65  | 0.61  |
| 20        | 1.33   | 1.87   | 1.7    | 1.4     | 0.01    | 1.38    | 1.06  | 1.1   | 1.06  |
| 30        | 1.73   | 2.47   | 2.16   | 1.8     | 0.02    | 1.81    | 1.41  | 1.43  | 1.42  |
| 60        | 2.35   | 3.47   | 2.85   | 2.39    | 0.06    | 2.5     | 2.05  | 1.97  | 2.03  |
| 90        | 2.73   | 4.09   | 3.25   | 2.48    | 0.11    | 2.92    | 2.48  | 2.32  | 2.43  |
| 120       | 3      | 4.53   | 3.51   | 2.58    | 0.17    | 3.19    | 2.78  | 2.58  | 2.72  |
| 150       | 3.21   | 4.86   | 3.7    | 2.68    | 0.23    | 3.39    | 3.01  | 2.78  | 2.94  |
| 180       | 3.39   | 5.14   | 3.86   | 2.78    | 0.29    | 3.54    | 3.2   | 2.96  | 3.14  |
| 210       | 3.55   | 5.39   | 4      | 2.88    | 0.35    | 3.67    | 3.36  | 3.12  | 3.31  |
| 240       | 3.69   | 5.61   | 4.12   | 2.98    | 0.41    | 3.78    | 3.49  | 3.26  | 3.46  |
| 270       | 3.83   | 5.82   | 4.24   | 3.07    | 0.48    | 3.88    | 3.61  | 3.4   | 3.6   |
| 300       | 2.46   | 3.86   | 2.46   | 2.82    | 0.52    | 2.39    | 2.46  | 2.26  | 2.49  |
| 665       | 1.09   | 1.62   | 0.83   | 0.99    | 0.55    | 0.76    | 0.79  | 0.96  | 1.08  |
| 1030      | 0.81   | 1.14   | 0.54   | 0.56    | 0.49    | 0.48    | 0.42  | 0.63  | 0.75  |
| 1395      | 0.66   | 0.9    | 0.41   | 0.43    | 0.42    | 0.37    | 0.28  | 0.47  | 0.59  |
| 1760      | 0.55   | 0.73   | 0.34   | 0.35    | 0.36    | 0.3     | 0.21  | 0.37  | 0.48  |
| 2125      | 0.47   | 0.61   | 0.29   | 0.29    | 0.31    | 0.25    | 0.17  | 0.31  | 0.4   |
| 2490      | 0.41   | 0.52   | 0.25   | 0.24    | 0.27    | 0.21    | 0.14  | 0.26  | 0.34  |
| 2855      | 0.36   | 0.44   | 0.22   | 0.21    | 0.23    | 0.18    | 0.12  | 0.22  | 0.29  |
| 3220      | 0.32   | 0.38   | 0.2    | 0.18    | 0.2     | 0.15    | 0.1   | 0.19  | 0.25  |
| 3585      | 0.28   | 0.33   | 0.18   | 0.16    | 0.17    | 0.13    | 0.09  | 0.16  | 0.22  |
| 3950      | 0.25   | 0.29   | 0.16   | 0.14    | 0.15    | 0.12    | 0.08  | 0.14  | 0.19  |
| 4315      | 0.22   | 0.25   | 0.15   | 0.12    | 0.13    | 0.1     | 0.07  | 0.13  | 0.17  |
| 4680      | 0.2    | 0.22   | 0.13   | 0.11    | 0.12    | 0.09    | 0.06  | 0.11  | 0.15  |
| 5045      | 0.18   | 0.19   | 0.12   | 0.09    | 0.1     | 0.08    | 0.05  | 0.1   | 0.13  |
| 5410      | 0.16   | 0.17   | 0.11   | 0.08    | 0.09    | 0.07    | 0.05  | 0.09  | 0.12  |
| 5775      | 0.15   | 0.15   | 0.1    | 0.07    | 0.08    | 0.06    | 0.04  | 0.08  | 0.11  |
| 6140      | 0.13   | 0.14   | 0.09   | 0.06    | 0.07    | 0.05    | 0.04  | 0.07  | 0.1   |
| 6505      | 0.12   | 0.12   | 0.08   | 0.06    | 0.06    | 0.05    | 0.04  | 0.07  | 0.09  |

# PART 8 LAND SUBSIDENCE

# **Final Report**

# (Supporting Report)

# PART 8 LAND SUBSIDENCE

# **Table of Contents**

|                                     | Page |
|-------------------------------------|------|
| Table of Contents                   |      |
| List of Tables and Figures          | i    |
|                                     |      |
|                                     | Page |
| PART 8 LAND SUBSIDENCE              |      |
| CHAPTER 1. MODEL OF LAND SUBSIDENCE | 8-1  |
| CHAPTER 2. RESULT OF ANALYSIS       | 8-3  |

# **List of Tables and Figures**

|                                                                   | Page |
|-------------------------------------------------------------------|------|
| Table-8. 1 Final Consolidated Length of Model Layer of Quaternary | 8-4  |
| Table-8. 2 Amount of Land Subsidence                              |      |
|                                                                   |      |
| Figure-8. 1 Consolidation Model                                   | 8-1  |
| Figure-8. 2 Consolidation Model of alluvial Layers                | 8-2  |
| Figure-8 3 Land Subsidence                                        | 8-5  |

#### PART 8 LAND SUBSIDENCE

#### CHAPTER 1.MODEL OF LAND SUBSIDENCE

#### (1) Analysis of land subsidence

Land subsidence by proposed project was analyzed in M/P Report. Mechanism of land subsidence was already explained in M/P Report. Therefore, in this part, supplemental explanation will be given regarding description of M/P Report/ Please refer to Main Report. Fundamental model of land subsidence by pumping is given by Figure-8.1 as explained in Main Report.

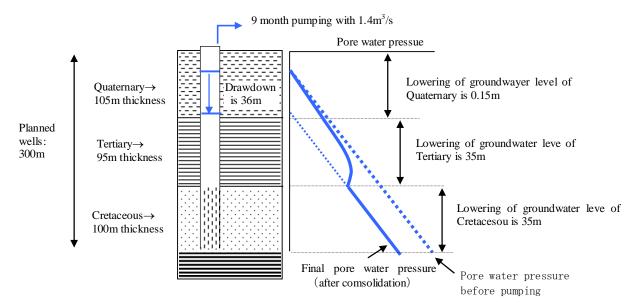



Figure-8. 1 Consolidation Model

#### (2) Speed of land subsidence

Consolidation of a layer will proceed in proportional to reduce in excess water pressure within the layer, which was caused by reduce in water pressure of a neighboring confined aquifer. Progress of consolidation can be predicted by formula of Terzaghi. As shown in the formula, speed of consolidation is proportional to coefficient of permeability of clay layer. Consequently, it will take long time until consolidation of clay layer finishes because of its low permeability.

$$\frac{\delta u}{\delta t} = \frac{k}{m_{v} \gamma_{w}} \times \frac{\delta^{2} u}{\delta^{2} z}$$

u: Excess water pressure of layer.

k: Coefficient of permeability.

 $m_{v}$ : Coefficient of volume compressibility.

 $\gamma_w$ : Unit weight of water.

#### (3) Consolidation model for Quaternary (Alluvial clay)

There is the existing consolidation model for alluvial clay in the northern part of Bogotá city (see Figure-8.2). This model was used for analysis. It was assumed that groundwater drained from clay layers by consolidation will go down and finally flow away from the bottom layer (layer No. 16 in Figure-8.2).

| Symbol                                  | S   | oil layer  | Depth of layer | Thickness of layer | Unit<br>weight | Compression index | Cy         | Converted thickness |
|-----------------------------------------|-----|------------|----------------|--------------------|----------------|-------------------|------------|---------------------|
| Symbol                                  | No. | Soil name  | (m)            | (m)                | $(t/m^2)$      | (Cc)              | $(cm^2/d)$ | (m)                 |
|                                         | 1   | Fill       | 1.0            | 1.0                | 1.56           | -                 | -          | -                   |
|                                         | 2   | Silt       | 2.5            | 1.5                | 1.38           | 1.72              | 2.59       | 1.2                 |
|                                         | 3   | Clay       | 6.7            | 4.2                | 1.48           | 0.99              | 20.74      | 1.2                 |
|                                         | 4   | Clay       | 20.1           | 13.4               | 1.34           | 1.48              | 0.86       | 19.0                |
|                                         | 5   | Clay       | 26.4           | 6.3                | 1.32           | 1.55              | 1.73       | 6.3                 |
|                                         | 6   | Clay       | 30.5           | 4.1                | 1.46           | 1.37              | 117.07     | 0.5                 |
|                                         | 7   | Clay       | 36.2           | 5.7                | 1.41           | 1.6               | 1.73       | 5.7                 |
|                                         | 8   | Clay       | 39.7           | 3.5                | 1.33           | 3.77              | 1.73       | 3.5                 |
|                                         | 9   | Clay       | 42.3           | 2.6                | 1.53           | 2.21              | 1.73       | 2.6                 |
|                                         | 10  | Clay       | 50.5           | 8.2                | 1.46           | 1.16              | 1.73       | 8.2                 |
|                                         | 11  | Clay       | 62.3           | 11.8               | 1.5            | 0.95              | 24.19      | 3.2                 |
|                                         | 12  | Tuff       | 66.5           | 4.2                | 1.07           | 2.26              | 4.75       | 2.5                 |
|                                         | 13  | Clay+sand  | 71.0           | 4.5                | 1.67           | 0.77              | 42.34      | 0.9                 |
|                                         | 14  | Clay+sand  | 85.0           | 14.0               | 1.73           | 0.7               | 1.30       | 16.2                |
| 300000000000000000000000000000000000000 | 15  | Clay+sand  | 89.8           | 4.8                | 1.84           | 0.62              | 1.30       | 5.5                 |
|                                         | 16  | Sandy clay | 105.0          | 15.2               | 1.7            | 0.97              | 9.50       | 6.5                 |
|                                         | То  | otal       |                | 105.0              |                | _                 |            | 83.0                |

Source: National University.

Figure-8. 2 Consolidation Model of alluvial Layers

#### (4) Coefficient of consolidation and thickness of layers

Speed of consolidation is dominated by coefficient of consolidation (Cv). The Quaternary layers consist of multiples layers with different Cv. For easy analysis, the Quaternary layers were unified into single layer with unified Cv by method bellow.

Converted thickness of each layer =  $\sqrt{\text{thickness each of layer} \times \text{Cv of each layer} \div \text{unified Cv}}$ 

Unified  $Cv = 1.73 \text{ cm}^2/\text{day}$  (Cv of layer No. 5, No. 7 – No. 10)

Thickness of unified layer = Total thickness of converted layers

On the other hand, coefficient of consolidation of Tertiary and Cretaceous layer can not be defined because they are expected elastic compression.

#### **CHAPTER 2. RESULT OF ANALYSIS**

#### (1) Result of Calculation

According top the result of groundwater simulation (see M/P Report), draw down of groundwater level of Quaternary aquifer is 0.15m. Based on this result, the final consolidation amount by draw-down of groundwater level of Quaternary aquifer was calculated, and its result is shown in Table-8.1. It must be noticed that consolidation amount in Table-8.1, 0.02m, means final value of consolidation under condition that pumping will continue for ever. But emergency well will not be operated forever but for only 9 month at longest. Consequently, to get exact value of consolidation after 9 month pumping, some modification must be done to the result, 0.02m.

Table-8. 1 Final Consolidated Length of Model Layer of Quaternary

|           | Layer j             | parameter              |                              |                    |                                 | edrawdo<br>undwaterk              |                                   |                                         |                                   | drawdov<br>indwater l            |      |      |      |                                             |            |          |              |       |            |            |                    |                    |                              |
|-----------|---------------------|------------------------|------------------------------|--------------------|---------------------------------|-----------------------------------|-----------------------------------|-----------------------------------------|-----------------------------------|----------------------------------|------|------|------|---------------------------------------------|------------|----------|--------------|-------|------------|------------|--------------------|--------------------|------------------------------|
| Layer     | Depth of Bottom (m) | Thickness of layer (m) | Depth of center of layer (m) | Unit weight (t/m2) | Effective stress of layer(t/m2) | Effective stress in bottom (t/m2) | Effective stress of center (t/m2) | Reconsolidation stress of center (t/m2) | Effective stress of center (t/m2) | Reconsolidation stress of center | 09   | Cc   | Cr   | Increase of effective stress(=P2-P1) (t/m2) | log(P2/P1) | H/(1+eo) | C*log(P2/P1) | dh(m) | Cv (cm2/s) | Cv (cm2/s) | Average Cv (cm2/s) | Average Cv (cm2/d) | Converted thickness of layer |
| fill      | 1                   | 1.0                    | 0.5                          | 156                | 1.6                             | 1.6                               | 0.8                               | -1.1                                    | 0.8                               | -1.1                             |      |      |      | 0.00                                        | 0          | 1.00     | 0.00         | 0.00  |            |            |                    |                    |                              |
| Silt      | 25                  | 15                     | 1.8                          | 138                | 2.1                             | 3.6                               | 2.6                               | -03                                     | 2.6                               | -03                              | 284  | 1.72 | 024  | 0.00                                        | 0.00       | 0.39     | 0.00         | 0.00  | 0.00005    | 0.00001    | 0.00003            | 259                | 123                          |
| Clay      | 6.7                 | 42                     | 4.6                          | 1.48               | 62                              | 9.8                               | 6.7                               | 1.4                                     | 6.7                               | 1.4                              | 237  | 0.99 | 0.18 | 0.00                                        | 0.00       | 1.25     | 0.00         | 0.00  | 0.00043    | 0.00005    | 0.00024            | 20.74              | 1.21                         |
| Clay      | 20.1                | 13.4                   | 13.4                         | 134                | 129                             | 22.7                              | 163                               | 6.6                                     | 163                               | 6.6                              | 3.1  | 1.48 | 0.3  | 0.00                                        | 0.00       | 3.27     | 0.00         | 0.00  | 0.00001    | 0.00001    | 0.00001            | 0.86               | 1896                         |
| Clay      | 26.4                | 63                     | 233                          | 132                | 20                              | 24.7                              | 23.7                              | 125                                     | 23.7                              | 125                              | 324  | 1.55 | 02   | 0.01                                        | 0.00       | 1.49     | 0.00         | 0.00  | 0.00003    | 0.00001    | 0.00002            | 1.73               | 630                          |
| Clay      | 305                 | 4.1                    | 28.5                         | 1.46               | 19                              | 26.6                              | 25.7                              | 15.6                                    | 25.7                              | 15.6                             | 3.72 | 137  | 0.22 | 0.02                                        | 0.00       | 0.87     | 0.00         | 0.00  | 0.00190    | 0.00081    | 0.00136            | 117.07             | 0.50                         |
| Clay      | 362                 | 5.7                    | 33.4                         | 1.41               | 23                              | 28.9                              | 27.8                              | 185                                     | 27.8                              | 185                              | 254  | 1.6  | 0.44 | 0.03                                        | 0.00       | 1.61     | 0.00         | 0.00  | 0.00003    | 0.00001    | 0.00002            | 1.73               | 5.70                         |
| Clay      | 39.7                | 35                     | 38.0                         | 133                | 12                              | 30.1                              | 295                               | 21.2                                    | 29.6                              | 21.2                             | 3.6  | 3.77 | 0.15 | 0.04                                        | 0.00       | 0.76     | 0.00         | 0.00  |            |            | 0.00002            | 1.73               | 350                          |
| Clay      | 423                 | 2.6                    | 41.0                         | 153                | 1.4                             | 315                               | 30.8                              | 23.0                                    | 30.8                              | 23.0                             | 296  | 221  | 0.17 | 0.04                                        | 0.00       | 0.66     | 0.00         | 0.00  | 0.00003    | 0.00001    | 0.00002            | 1.73               | 2.60                         |
| Clay      | 50.5                | 82                     | 46.4                         | 1.46               | 3.8                             | 352                               | 33.4                              | 262                                     | 33.4                              | 262                              | 228  | 1.16 | 037  | 0.05                                        | 0.00       | 250      | 0.00         | 0.00  | 0.00003    | 0.00001    | 0.00002            | 1.73               | 8.20                         |
| Clay      | 623                 | 11.8                   | 56.4                         | 15                 | 59                              | 41.1                              | 382                               | 322                                     | 38.3                              | 322                              | 202  | 0.95 | 021  | 0.07                                        | 0.00       | 3.91     | 0.00         | 0.00  | 0.00054    | 0.00002    | 0.00028            | 24.19              | 3.16                         |
| Tuff      | 665                 | 42                     | 64.4                         | 1.07               | 0.3                             | 41.4                              | 413                               | 37.0                                    | 41.4                              | 37.0                             | 4.07 | 226  | 0.16 | 0.08                                        | 0.00       | 0.83     | 0.00         | 0.00  | 0.00010    | 0.00001    | 0.00006            | 4.75               | 253                          |
| Clay+sand | 71                  | 45                     | 68.8                         | 1.67               | 3.0                             | 445                               | 429                               | 395                                     | 43.0                              | 395                              | 152  | 0.77 | 0.04 | 0.09                                        | 0.00       | 1.79     | 0.00         | 0.00  | 0.00097    | 0.00001    | 0.00049            | 4234               | 0.91                         |
| Clay+sand | 85                  | 14.0                   | 78.0                         | 1.73               | 102                             | 54.7                              | 49.6                              | 45.0                                    | 49.7                              | 45.0                             | 1.18 | 0.7  | 0.15 | 0.10                                        | 0.00       | 6.42     | 0.00         | 0.00  | 0.00002    | 0.00001    | 0.00002            | 130                | 16.18                        |
| Clay+sand | 89.8                | 4.8                    | 87.4                         | 1.84               | 4.0                             | 58.7                              | 56.7                              | 50.6                                    | 56.8                              | 50.6                             | 132  | 0.62 | 0.11 | 0.12                                        | 0.00       | 2.07     | 0.00         | 0.00  | 0.00002    | 0.00001    | 0.00002            | 130                | 555                          |
| Sandyclay | 105                 | 15.2                   | 97.4                         | 1.7                | 10.6                            | 693                               | 64.0                              | 56.6                                    | 64.2                              | 56.6                             | 133  | 0.97 | 0.03 | 0.14                                        | 0.00       | 652      | 0.00         | 0.01  | 0.00014    | 0.00008    | 0.00011            | 950                | 6.49                         |
| Total     | -                   | 105                    | -                            | -                  | -                               | -                                 | -                                 | -                                       | -                                 | -                                | -    | -    | -    | -                                           | -          | -        | -            | 0.02  | -          | -          | -                  | -                  | 83                           |

Study on Sustainable Water Supply for Bogotá City and Surrounding Area Based on the Integrated Water Resources Management, Colombia

#### (2) Degree of consolidation

Emergency wells will be operated only for 9 month. Therefore, decrease of pore pressure (u) will finish after 9 month of pumping. Behavior of pore pressure (u) with time can be analyzed by formula below:

$$\frac{\delta u}{\delta t} = \frac{k}{m_{v} \gamma_{w}} \times \frac{\delta^{2} u}{\delta^{2} z}$$

Above equation can be approximated by finite difference equation below:.

$$cv(u1-2u0+u2)/(\Delta ZH)2=(ut-u0)/\Delta t$$
 
$$cv(u1-2u0+u2)/(\Delta Z)2=(ut-u0)/(cv/H2t)=(ut-u0)/\Delta Tv$$
 
$$(\Delta Z=\Delta z/H)$$
 
$$Tv=cv/H2t$$

Degree of consolidation (Uz) is function of time factor (Tv). Tv is defined as shown below.

Time factor  $Tv = Cv/H2 \times t$ 

Cv: Coefficient of Consolidation (cm<sup>2</sup>/day)

H: Thickness of layer (cm)

t: Time after consolidation begins (day)

Calculation result by finite difference methods is shown in Figure-\*

Decrease of pre pressure (u) will finish after 9 month (270days) of pumping. Therefore, Tv of that case is calculated for the model shown in Figure-7.27,

$$Tv = 1.733/(8300)2 \times 270 = 6.79 \times 10-6$$

If pumping continues for 11 years, Tv=.0001 and Uz=5%. But emergency well will be pumped for 9 month only, and  $Tv=6.79\times10-6$  and Uz= must be much smaller than 5%. It means that it must be less than 5% when  $Tv=6.79\times10-6$ . Therefore, applying Uz=5% for final land subsidence for Quaternary will give higher estimate of land subsidence for Quaternary.

| Time constant (Tv)           |             |   |      |      |      | 0.0004 | 0.0005 | 0.0006 |
|------------------------------|-------------|---|------|------|------|--------|--------|--------|
| Degree of Consolidation (Uz) | on          | 0 | 5    | 5.09 | 5.19 | 5.29   | 5.38   | 5.47   |
| Year after pumping           |             | 0 | 11   | 22   | 33   | 44     | 55     | 65     |
| Soil Model                   | Calculation |   |      |      | 0    | 0      | 0      | 0      |
|                              | 0           | 1 | 1    | 1    | 1    | 1      | 1      | 1      |
|                              | 1           | 1 | 1    | 1    | 1    | 1      | 1      | 1      |
|                              | 2           | 1 | 1    | 1    | 1    | 1      | 1      | 1      |
|                              | 3           | 1 | 1    | 1    | 1    | 1      | 1      | 1      |
|                              | 4           | 1 | 1    | 1    | 1    | 1      | 1      | 1      |
|                              | 5           | 1 | 1    | 1    | 1    | 1      | 1      | 1      |
|                              | 6           | 1 | 1    | 1    | 1    | 1      | 1      | 1      |
|                              | 7           | 1 | 1    | 1    | 1    | 1      | 1      | 1      |
|                              | 8           | 1 | 1    | 1    | 1    | 1      | 1      | 1      |
|                              | 9           | 1 | 1    | 1    | 1    | 1      | 1      | 1      |
| 100000000                    | 10          | 1 | 0.99 | 0.98 | 0.97 | 0.961  | 0.952  | 0.943  |

Figure-8. 3 Land Subsidence

#### (3) Amount of land subsidence

Amount of land subsidence of the model layer in Figure-1 was finally calculated as shown in Table-8.2.

Table-8. 2 Amount of Land Subsidence

|            |                                                    |                      | Amount of land subsidence after 9 month pumping |     |            |  |                                           |  |  |
|------------|----------------------------------------------------|----------------------|-------------------------------------------------|-----|------------|--|-------------------------------------------|--|--|
| Geology    | Darin condition Time factor for consolidation (Tv) |                      |                                                 |     | subsidence |  | Land subsidence after 9 month pumping (m) |  |  |
|            |                                                    |                      | (a)                                             | (b) | (a)×(b)    |  |                                           |  |  |
| Quaternary | One side                                           | 9.6×10 <sup>-5</sup> | 0.02                                            | 5   | 0.001      |  |                                           |  |  |
| Tertiary   | -                                                  | -                    | 0.003325                                        | 100 | 0.003325   |  |                                           |  |  |
| Cretaceous | -                                                  | -                    | 0.00105                                         | 100 | 0.00105    |  |                                           |  |  |
|            | _                                                  | Total                |                                                 |     | 0.0091     |  |                                           |  |  |

As shown in Table-8.2, amount of land subsidence after 9 month pumping is small and negligible. This is because intermediate Tertiary layers between Quaternary and Cretaceous layers prevent land subsidence of soft Quaternary layers.

# PART 9 WELL PRODUCTION MANAGEMENT

# **Final Report**

# (Supporting Report)

## PART 9 WELL PRODUCTION MANAGEMENT

# **Table of Contents**

| Table of Contents                   | Page |
|-------------------------------------|------|
| List of Tables and Figures          |      |
| Eist of Tuolos and Eightes          |      |
|                                     | Page |
| PART 9 WELL PRODUCTION MANAGEMENT   | 9-1  |
| CHAPTER 1. WELL interference        | 9-1  |
| CHAPTER 2. Optimum Yield from Wells | 9_3  |

# **List of Tables and Figures**

|                                                                     | Page |
|---------------------------------------------------------------------|------|
| Table-9. 1 Yield by Draw-down                                       | 9-4  |
| Table-9. 2 Summary of Calculation                                   |      |
|                                                                     |      |
| Figure-9. 1 Well Interference                                       | 9-1  |
| Figure-9. 2 Calculation Method of Draw-down of Well Interference    | 9-1  |
| Figure-9. 3 Example of Well interference of Well field with 5 wells |      |
| Figure-9. 4 Well Distance                                           |      |
| Figure-9. 5 Total Yield and Draw-down                               |      |
| Figure-9. 6 Draw-down by Optimum Yield (Case: max draw-dawn=40m)    |      |

#### PART 9 WELL PRODUCTION MANAGEMENT

#### **CHAPTER 1. WELL INTERFERENCE**

#### 1. Well Interference

Pumping from one well will cause lowering of the groundwater level of neighboring wells, as shown in Figure-9.1.

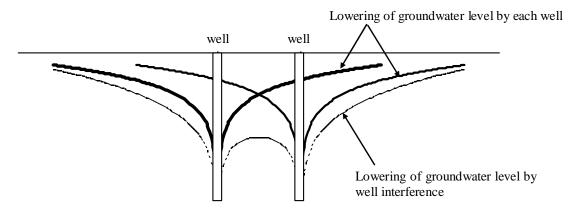



Figure-9. 1 Well Interference

#### 2. Calculation of well interference

Drawdown of groundwater level by pumping with well interference was calculated by well formula below:

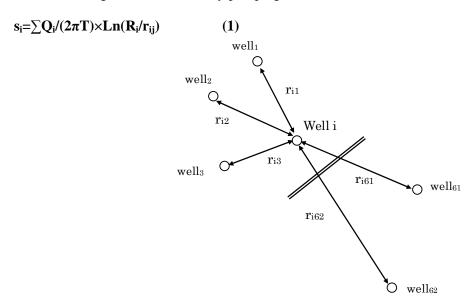



Figure-9. 2 Calculation Method of Draw-down of Well Interference

Where,

s<sub>i</sub>: lowering of groundwater level of well No. i

R<sub>i</sub>: Radius of influence of well No. i

Q<sub>i</sub>: Yield from well No. i

r<sub>ii</sub>: Distance between well No. i and well No. j

T<sub>i</sub>: Transmissivity of well No. i

As example, calculation of well interference is explained below in well filed with 5 wells. Max draw down will be at the center of well filed (= well-3 in Figure-9.3) and minimum drawdown will be well at the end of well field (= well-1 and well-5 in Figuer-9.3).

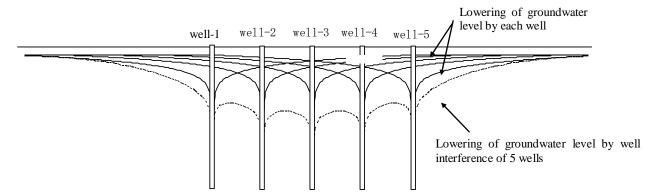



Figure-9. 3 Example of Well interference of Well field with 5 wells

If radius of influence (=R), yield (=Q) and transmissivity (=T) is the same among 5 wells, ratio of Maximum draw down/Minimum draw down of well filed is only function of well distance as shown in the next table.

| Distance | Max/Min       |
|----------|---------------|
| of well  | IVIAA/ IVIIII |
| 50       | 2.35          |
| 100      | 2.07          |
| 150      | 1.91          |
| 200      | 1.79          |
| 250      | 1.70          |
| 300      | 1.63          |
| 350      | 1.56          |
| 400      | 1.51          |
| 450      | 1.46          |
| 500      | 1.43          |

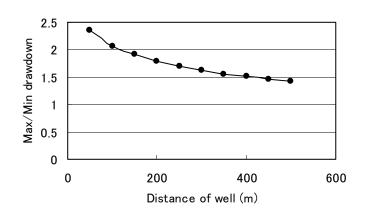



Figure-9. 4 Well Distance

#### **CHAPTER 2. OPTIMUM YIELD FROM WELLS**

#### 1. Theory

Considering well interference of well filed comprising 5 wells, optimum yield from each well should satisfy condition below:

- a) Total yield =  $Q_1 + Q_2 + Q_3 + Q_4 + Q_5 \rightarrow Maximum$
- b) Lowering of groundwater level is same at every well

$$s_1 = s_2 = s_3 = s_4 = s_5$$

In M/P Study, total number of 62 wells was proposed. If well interference by 62 wells is taken into account, optimum yield of each 62 wells should satisfy condition below:

- a) Total yield =  $Q_1 + Q_2 + Q_3 + \cdot \cdot \cdot + Q_{60} + Q_{61} + Q_{62} \rightarrow Maximum$
- b) Lowering of groundwater level is same at every well

$$s_1 = s_2 = s_3 = \cdot \cdot \cdot = s_{60} = s_{61} = s_{62}$$

Above problem can be resoled by Simplex method. In general, Simplex method is expressed as below:

a) Objective function:  $Z = \sum p_i x_i$  (i=1,...n)

 $\begin{array}{l} b_i \geqq 0 \\ x_i \geqq 0 \qquad (j=1,...,n) \end{array}$ 

Solution of a) and b) can be solved by Simplex method by conversion of variables as below:

$$\begin{aligned} & p_i \!\! \to \!\! 1 \\ & x_i \!\! = \!\! \to \!\! Qi \\ & a_{ii} \!\! \to \!\! 1/(2\pi T) \!\! \times \!\! Ln(R_i/r_{ij}) \end{aligned}$$

#### 2. Result of calculation

Parameter given is as follow:

• Transmissivity of well  $T_i = 400 \text{m}^2/\text{day}$ • Radius of influence of well  $R_i = 10,000 \text{m}$ 

• Draw-down si=20m, 30m, 40m, 50m, 60m, 70m

By Simplex method, optimum yield from each well for given draw-down was calculated. Result is shown in Table-9.1

Table-9. 1 Yield by Draw-down

|     | Well       | Co        | ordinate  | 1 Held by |       | ld by Draw | down (m <sup>3</sup> /d | ov)            |       |
|-----|------------|-----------|-----------|-----------|-------|------------|-------------------------|----------------|-------|
| No. | No.        |           |           | 20m       | 30m   | 40m        | 50m                     | 60m            | 70m   |
| 1   | S-1        | 987,615   | 996,222   | 853       | 1,279 | 1,705      | 2,131                   | 2,558          | 2,984 |
| 2   | S-1<br>S-2 | 988,003   | 996,222   | 686       | 1,029 | 1,703      |                         | 2,058          | 2,401 |
|     |            |           |           |           |       |            | 1,715                   |                |       |
| 3   | S-3        | 988,367   | 996,222   | 669       | 1,004 | 1,338      | 1,673                   | 2,007          | 2,342 |
| 4   | S-4        | 988,638   | 995,924   | 618       | 928   | 1,237      | 1,546                   | 1,855          | 2,164 |
| 5   | S-5        | 988,567   | 995,165   | 607       | 911   | 1,215      | 1,518                   | 1,822          | 2,125 |
| 6   | S-6        | 988,370   | 994,904   | 705       | 1,057 | 1,409      | 1,762                   | 2,114          | 2,466 |
| 7   | EX-1       | 988,675   | 995,558   | 588       | 882   | 1,176      | 1,470                   | 1,764          | 2,058 |
| 8   | B-1        | 990,793   | 993,721   | 891       | 1,337 | 1,783      | 2,229                   | 2,674          | 3,120 |
| 9   | B-2        | 990,226   | 993,132   | 742       | 1,113 | 1,484      | 1,855                   | 2,226          | 2,597 |
| 10  | B-3        | 990,062   | 992,993   | 817       | 1,225 | 1,633      | 2,041                   | 2,450          | 2,858 |
| 11  | EX-2       | 990,361   | 993,491   | 750       | 1,125 | 1,500      | 1,875                   | 2,249          | 2,624 |
| 12  | EX-3       | 999,615   | 988,689   | 1,060     | 1,590 | 2,119      | 2,649                   | 3,179          | 3,709 |
| 13  | U-1        | 999,720   | 988,954   | 937       | 1,405 | 1,873      | 2,341                   | 2,810          | 3,278 |
| 14  | U-2        | 999,788   | 989,227   | 986       | 1,479 | 1,972      | 2,465                   | 2,958          | 3,451 |
| 15  | U-4        | 999,298   | 990,978   | 1,038     | 1,557 | 2,075      | 2,594                   | 3,113          | 3,632 |
| 16  | E-2        | 1,001,713 | 1,000,691 | 1,514     | 2,271 | 3,028      | 3,785                   | 4,542          | 5,300 |
| 17  | E-3        | 1,002,476 | 1,003,412 | 1,341     | 2,011 | 2,682      | 3,352                   | 4,023          | 4,693 |
| 18  | E-4        | 1,002,414 | 1,004,241 | 1,370     | 2,054 | 2,739      | 3,424                   | 4,109          | 4,793 |
| 19  | E-5        | 1,005,868 | 1,010,407 | 1,109     | 1,664 | 2,218      | 2,773                   | 3,328          | 3,882 |
| 20  | E-6        | 1,005,745 | 1,010,683 | 1,057     | 1,585 | 2,113      | 2,642                   | 3,170          | 3,698 |
| 21  | E-7        | 1,005,384 | 1,012,806 | 952       | 1,428 | 1,903      | 2,379                   | 2,855          | 3,331 |
| 22  | E-8        | 1,005,736 | 1,014,019 | 733       | 1,099 | 1,466      | 1,832                   | 2,199          | 2,565 |
| 23  | E-9        | 1,006,056 | 1,014,501 | 660       | 991   | 1,321      | 1,651                   | 1,981          | 2,312 |
| 24  | E-10       | 1,005,998 | 1,015,214 | 535       | 803   | 1,070      | 1,338                   | 1,605          | 1,873 |
| 25  | E-10       | 1,005,936 | 1,015,460 | 508       | 763   | 1,017      | 1,271                   | 1,525          | 1,780 |
| 26  | E-11       | 1,006,105 | 1,015,920 | 546       | 819   | 1,092      | 1,365                   | 1,638          | 1,911 |
| 27  | E-12       | 1,006,158 | 1,016,479 | 591       | 886   | 1,182      | 1,477                   | 1,773          | 2,068 |
| 28  | E-15       | 1,005,615 | 1,018,405 | 572       | 858   | 1,144      | 1,477                   | 1,717          | 2,003 |
| 29  | Y-1        |           |           | 495       | 742   | 990        | 1,431                   |                |       |
|     | Y-1<br>Y-2 | 1,005,566 | 1,019,284 | 493       |       | 862        |                         | 1,485<br>1,292 | 1,732 |
| 30  |            | 1,005,612 | 1,019,720 |           | 646   |            | 1,077                   |                | 1,508 |
| 31  | Y-3        | 1,005,646 | 1,019,914 | 442       | 663   | 884        | 1,105                   | 1,326          | 1,547 |
| 32  | Y-4        | 1,005,445 | 1,020,829 | 417       | 625   | 834        | 1,042                   | 1,251          | 1,459 |
| 33  | Y-5        | 1,005,504 | 1,021,016 | 397       | 595   | 794        | 992                     | 1,191          | 1,389 |
| 34  | Y-6        | 1,005,427 | 1,021,348 | 409       | 614   | 819        | 1,023                   | 1,228          | 1,433 |
| 35  | Y-7        | 1,005,334 | 1,021,683 | 438       | 657   | 876        | 1,095                   | 1,314          | 1,532 |
| 36  | Y-8        | 1,005,091 | 1,022,073 | 504       | 756   | 1,008      | 1,259                   | 1,511          | 1,763 |
| 37  | Y-9        | 1,005,254 | 1,023,167 | 543       | 814   | 1,086      | 1,357                   | 1,628          | 1,900 |
| 38  | Y-10       | 1,005,199 | 1,023,593 | 543       | 814   | 1,085      | 1,357                   | 1,628          | 1,899 |
|     | Y-11       | 1,005,159 | 1,024,447 | 551       | 826   | 1,102      | 1,377                   | 1,653          | 1,928 |
| 40  | Y-12       | 1,005,103 | 1,024,924 | 554       | 830   | 1,107      | 1,384                   | 1,661          | 1,938 |
| 41  | Y-13       | 1,005,155 | 1,025,774 | 537       | 805   | 1,073      | 1,342                   | 1,610          | 1,878 |
| 42  | Y-14       | 1,005,257 | 1,026,143 | 501       | 751   | 1,001      | 1,252                   | 1,502          | 1,752 |
| 43  | Y-15       | 1,005,279 | 1,026,441 | 529       | 793   | 1,058      | 1,322                   | 1,587          | 1,851 |
| 44  | Y-16       | 1,005,633 | 1,027,058 | 577       | 865   | 1,154      | 1,442                   | 1,731          | 2,019 |
| 45  | Y-17       | 1,005,658 | 1,027,931 | 582       | 872   | 1,163      | 1,454                   | 1,745          | 2,035 |
| 46  | Y-18       | 1,005,959 | 1,028,530 | 528       | 793   | 1,057      | 1,321                   | 1,585          | 1,849 |
| 47  | Y-19       | 1,006,206 | 1,028,723 | 548       | 822   | 1,096      | 1,370                   | 1,644          | 1,918 |
| 48  | Y-20       | 1,005,861 | 1,029,258 | 645       | 967   | 1,289      | 1,612                   | 1,934          | 2,256 |
| 49  | Y-21       | 1,006,939 | 1,030,815 | 646       | 969   | 1,293      | 1,616                   | 1,939          | 2,262 |
| 50  | Y-22       | 1,007,105 | 1,031,245 | 580       | 869   | 1,159      | 1,449                   | 1,739          | 2,029 |
| 51  | Y-23       | 1,007,192 | 1,031,516 | 600       | 900   | 1,200      | 1,500                   | 1,800          | 2,100 |
| 52  | Y-24       | 1,007,524 | 1,032,407 | 666       | 999   | 1,332      | 1,665                   | 1,998          | 2,332 |
| 53  | Y-25       | 1,007,768 | 1,032,834 | 673       | 1,009 | 1,346      | 1,682                   | 2,019          | 2,355 |
| 54  | Y-26       | 1,007,900 | 1,033,190 | 758       | 1,136 | 1,515      | 1,894                   | 2,273          | 2,652 |
| 55  | Y-27       | 1,008,895 | 1,035,116 | 976       | 1,464 | 1,952      | 2,440                   | 2,928          | 3,416 |
| 56  | Y-28       | 1,008,870 | 1,035,700 | 963       | 1,444 | 1,925      | 2,407                   | 2,888          | 3,370 |
| 57  | Y-29       | 1,008,972 | 1,036,090 | 1,089     | 1,634 | 2,179      | 2,723                   | 3,268          | 3,813 |
| 58  | E-1        | 1,001,405 | 996,374   | 1,552     | 2,329 | 3,105      | 3,881                   | 4,657          | 5,433 |
| 59  | E-14       | 1,006,064 | 1,017,515 | 619       | 928   | 1,238      | 1,547                   | 1,857          | 2,166 |
| 60  | E-17       | 999,554   | 1,018,241 | 1,245     | 1,867 | 2,489      | 3,111                   | 3,734          | 4,356 |
| 00  | L-1/       | 777,334   | 1,010,441 | 1,443     | 1,007 | 4,407      | ا 111                   | 2,134          | +,೨೨∪ |

| No.  | Well | Coore                           | dinate    |       | Yie   | ld by Draw | down (m <sup>3</sup> /d | ay)   |       |
|------|------|---------------------------------|-----------|-------|-------|------------|-------------------------|-------|-------|
| 140. | No.  | X                               | ,,        |       | 30m   | 40m        | 50m                     | 60m   | 70m   |
| 61   | E-16 | 999,911                         | 1,017,843 | 1,180 | 1,769 | 2,359      | 2,949                   | 3,539 | 4,128 |
| 62   | U-3  | 999,332                         | 990,801   | 1,010 | 1,516 | 2,021      | 2,526                   | 3,031 | 3,536 |
|      |      | Total yield (m <sup>3</sup> /s) | 1         | 0.53  | 0.80  | 1.07       | 1.34                    | 1.60  | 1.87  |

#### Calculated result is summarized as shown in Table-9.2

**Table-9. 2 Summary of Calculation** 

| Draw down (m) | Total yield from 62 wells (m <sup>3</sup> /s) |
|---------------|-----------------------------------------------|
| 20            | 0.53                                          |
| 30            | 0.80                                          |
| 40            | 1.07                                          |
| 50            | 1.34                                          |
| 60            | 1.60                                          |
| 70            | 1.87                                          |

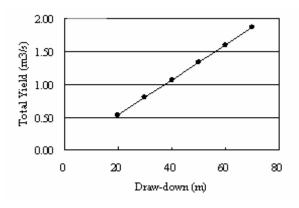



Figure-9. 5 Total Yield and Draw-down

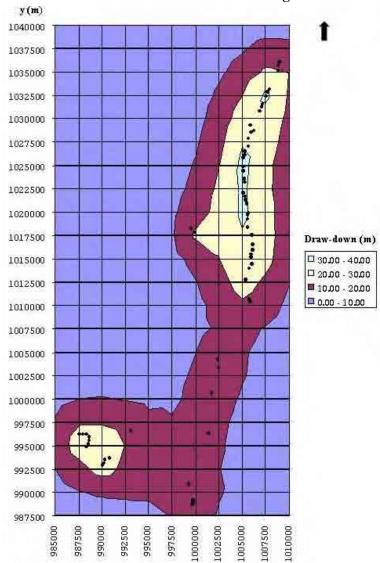



Figure-9. 6 Draw-down by Optimum Yield (Case: max draw-dawn=40m)

# PART 10 WELLS IN FOREST PROTECTION AREA

# **Final Report**

# (Supporting Report)

### PART 10 WELLS IN FOREST PROTECTION AREA

# **Table of Contents**

|                    |                                                  | Page             |
|--------------------|--------------------------------------------------|------------------|
| Table of Contents  |                                                  |                  |
| List of Tables and | Figures                                          | i                |
|                    |                                                  |                  |
|                    |                                                  | Page             |
| PART 10            | WELLS IN FOREST PROTECTION AREA                  | 10-1             |
| CHAPTER 1.         | EASTERN PROJECT WITH WELLS IN FOREST PROTECTION  |                  |
|                    | AREA                                             | 10-1             |
| CHAPTER 2.         | FACILITY PLAN FOR PILOT PROJECT                  | 10-5             |
| CHAPTER 3.         | FACILITY PLAN FOR PROJECT OF WELLS INSIDE FOREST |                  |
|                    | PROTECTION AREA                                  | 10- <del>6</del> |
| CHAPTER 4.         | COST ESTIMATE OF PROJECT                         | 10-13            |

# **List of Tables and Figures**

|                                                                                     | Page  |
|-------------------------------------------------------------------------------------|-------|
| Table-10. 1 Outline of Eastern Project with Wells inside Forest Protection Area     | 10-1  |
| Table-10. 2 Wells within Forest Protection Area                                     | 10-2  |
| Table-10. 3 Composition and Connection Point for Emergency Water Supply Unit (Pilot |       |
| Project)                                                                            |       |
| Table-10. 4 Composition and Connection Point for Emergency Water Supply Unit (1st   |       |
| Priority Project)                                                                   | 10-6  |
| Table-10.5 Cost Estimate of Project                                                 | 10-14 |
| ·                                                                                   |       |
|                                                                                     |       |
| Figure-10. 1 Location of Wells                                                      | 10-3  |
| Figure-10. 2 Criteria of Drilling site in Eastern Hills                             |       |
| Figure-10. 3 Unit Lauout Plan for PP-51                                             |       |
| Figure-10. 4 Unit Layout Plan for 1-51                                              | 10-7  |
| Figure-10. 5 Unit Layout Plan for 1-52                                              | 10-7  |
| Figure-10. 6 Unit Layout Plan for 1-53                                              | 10-8  |
| Figure-10. 7 Unit Layout Plan for 1-54                                              | 10-8  |
| Figure-10. 8 Unit Layout Plan for 1-55                                              | 10-9  |
| Figure-10. 9 Unit Layout Plan for 1-56                                              | 10-9  |
| Figure-10. 10 Unit Layout Plan for 1-57                                             | 10-10 |
| Figure-10. 11 Unit Layout Plan for 1-58                                             | 10-10 |
| Figure-10. 12 Unit Layout Plan for 1-59                                             | 10-11 |
| Figure-10. 13 Unit Layout Plan for 1-60                                             | 10-11 |
| Figure-10. 14 Facilities Composition for Water Supply for Use of Groundwater        | 10-12 |

#### PART 10 WELLS IN FOREST PROTECTION AREA

# CHAPTER 1.EASTERN PROJECT WITH WELLS IN FOREST PROTECTION AREA

Any activity for economic development is prohibited within the forest protection area of the Eastern Hills. Therefore in M/P study, sites of emergency wells should be selected in the area out of the forest protection area. On the other hand, it is expected that drilling of emergency wells will be approved within the protection area in the near future, by reason below:

- Construction of emergency wells in the Eastern Hills is not economic activity but public activity to resolve water shortage and mountain fire.
- Impact to natural environment by construction and operation of emergency wells is negligible and easily recovered.
- Vegetation of the Eastern Hills is closely related to water/moisture in the soil. Pumping from emergency wells will be from deep aquifer, and has no effect to water/moisture of the soil. Therefore, pumping from emergency well will not affect vegetation in the Eastern Hills.

The Eastern Hills is located near the city center of Bogotá, to which it is easy to deliver water. Therefore, it is very effective to construct emergency wells in the Eastern Hills. However, number of wells proposed in the Eastern Project was limited, because wells sites were selected only from the area out of the forest protection area. Then, it was suggested from Colombia side that more wells are necessary in case of emergency. Following a change in institutional condition of the forest protection area, well sites were proposed even inside the forest protection area.

#### (1) Outline of Eastern Project with Wells inside Forest Protection Area

Outline of the Eastern Project with wells inside the forest protection area is shown in Table-10.1. Proposed wells inside the forest protection area are shown in Table-10.2 and Figure-10.1. Total amount of 52,000m³/day of groundwater can be produced from 26 emergency wells inside the forest protection area.

Table-10. 1 Outline of Eastern Project with Wells inside Forest Protection Area

| Area          | Number of wells | Water supplied (m <sup>3</sup> /day) | Area for water supply | Population supplied |
|---------------|-----------------|--------------------------------------|-----------------------|---------------------|
| San Cristobal | 4               | 8,000                                |                       | 530,000             |
| Santa Fe      | 8               | 16,000                               | Entire Bogotá         | 1,066,000           |
| Chapinero     | 11              | 22,000                               | Entire Bogota         | 1,466,000           |
| Usaqunen      | 3               | 6,000                                |                       | 400,000             |
| Total         | 26              | 52,000                               |                       | 3,462,000           |

Note-1)It is under condition of unit consumption rate of 15ℓ/person/day

**Table-10. 2 Wells within Forest Protection Area** 

|                 | Site                  | No.  | Coor            | dinate           | Elevation | Mark | Note           |
|-----------------|-----------------------|------|-----------------|------------------|-----------|------|----------------|
|                 | Site                  | INO. | Latitude        | Longitude        | Elevation | Mark | Note           |
| 1               | Vitelma               | VI-1 | N 4°33' 33.5"   | W 74°03' 48.0"   | 2,881     | K2d  | Acueducto site |
| San<br>Cristbal |                       | VI-2 | N 4°33' 23.3"   | W 74°03' 44.2"   | 2,911     | K2d  | Acueducto site |
| S <sub>2</sub>  |                       | VI-3 | N 4°33' 19.1"   | W 74°03' 37.3"   | 2,918     | K2d  | Acueducto site |
|                 |                       | VI-4 | N 4°33' 12.8"   | W 74°03' 31.2"   | 2,921     | K2d  | Acueducto site |
|                 | Sant Isabel           | SI-1 | N 4°33' 08.1"   | W 74°03' 26.0"   | 2,871     | K2d  | Acueducto site |
|                 | Casa Morino           | CM-1 | N 4°35' 07.1"   | W 74°03' 44.3"   | 2,715     | K2d  | Acueducto site |
| e.              |                       | CM-2 | N 4°36' 04.5"   | W 74°03' 33.0"   | 2,728     | K2d  | Acueducto site |
| Santa Fe        |                       | TS-1 | N 4°36' 01.6"   | W 74°03' 31.5"   | 2,771     | K2d  | Acueducto site |
| ant             | Tank Silencio         | TS-2 | N 4°36' 02.9"   | W 74°03' 26.7"   | 2,774     | K2d  | Acueducto site |
| $\infty$        |                       | TS-3 | N 4°37' 06.2"   | W 74°03' 28.4"   |           | K2d  | Acueducto site |
|                 | Olaya Herrera         | OH   | N 4°36' 42.168" | W 74°03' 31.645" |           | K2d  | -              |
|                 | Rio Arzobispo         | RA-1 | N 4°37' 10.8"   | W 74°03' 25.8"   | 2,721     | K2d  | -              |
|                 | Unv. Poli-Technology  | UP-1 | N 4°37'37.4"    | W 74°03'18.7"    | 2,725     | K2d  | -              |
|                 |                       | VC-1 | N 4°38'04.4"    | W 74°03'20.7"    | 2,733     | K2d  | Acueducto site |
|                 | La Vieja Creek        | VC-2 | N 4°38'16.0"    | W 74°03'10.0"    | 2,757     | K2d  | Acueducto site |
| _               |                       | VC-3 | N 4°38' 57.6"   | W 74°02' 48.9"   | 2,777     | K2d  | Acueducto site |
| iero            |                       | RC-1 | N 4°38' 55.7"   | W 74°02' 44.4"   | 2,722     | K2d  | -              |
| ıpir            | Rosales Creek         | RC-2 | N 4°38' 50.1"   | W 74°02' 38.9"   | 2,774     | K2d  | -              |
| Chapinero       |                       | RC-3 | N 4°39' 18.6"   | W 74°02' 48.0"   | 2,827     | K2d  | -              |
|                 |                       | RC-4 | N 4°39' 17.8"   | W 74°02' 41.9"   | 2,857     | K2d  | -              |
|                 |                       | CH-1 | N 4°39' 10.6"   | W 74°02' 30.3"   | 2,709     | K2t  | Acueducto site |
|                 | Chico                 | CH-2 | N 4°39' 05.2"   | W 74°02' 22.8"   | 2,748     | K2t  | Acueducto site |
|                 |                       | CH-3 | N 4°40' 05.0"   | W 74°02' 20.5"   | 2,757     | K2t  | -              |
| 7               | Escuelade             | EC-1 | N 4°39' 59.7"   | W 74°02' 15.6"   | 2,600     | K2t  | Military site  |
| Usaq<br>uen     | Caballeria(Military)  | EC-2 | N 4°39' 55.3"   | W 74°02' 11.3"   | 2,613     | K2t  | Military site  |
| )<br>m          | Cavaliena (willitary) | EC-3 | N 4°40' 49.8"   | W 74°02' 14.4"   | 2,618     | K2t  | Military site  |

|        | Q2c, Q2ch | Quaternaru         | K2t | Labor & Tierna (Cretaceosu) |
|--------|-----------|--------------------|-----|-----------------------------|
| Regend | E1b       | Bogota (Tertiary)  | K2p | Plaeners (Cretacesou)       |
|        | K2E1g     | Guaduas (Tertiary) | Ksd | Dura (Cretacesou)           |

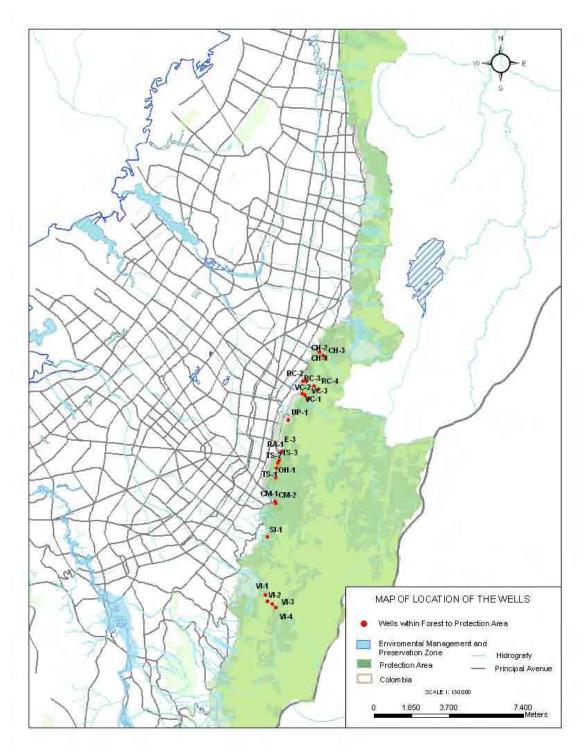



Figure-10. 1 Location of Wells

#### (2) Topographic Future of Forest Protection Area

Bogotá fault forms geological boundary between the Cretaceous and Tertiary. Moreover, it forms boundary of topographic future (see Figure-10.2). In the west of Bogotá fault, the Tertiary is distributed, of which slope is gentle, due to lower resistance of Tertiary rocks against erosion. On the other hand, in the east of Bogotá fault, the Cretaceous is distributed, of which slope is steep, due to higher resistance of Cretaceous rocks against erosion. As a result, area of the Tertiary is relatively flat, where residential area is developed. On the other hand, area of the Cretaceous is rugged, where only forest is spreading without development. So this area is regulated as the forest protection area.

Steep slopes with higher elevation are generally seen in the forest protection area. Consequently, it is not suitable for drilling wells in such area. However, there are some places where mountain streams cuts the wide and deep valley. Areas inside valleys are sometimes suitable for drilling. Drilling sites were selected from areas mentioned above.

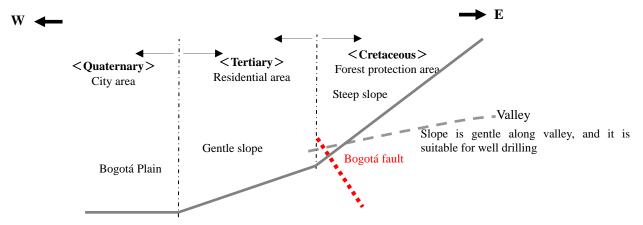



Figure-10. 2 Criteria of Drilling site in Eastern Hills

#### **CHAPTER 2. FACILITY PLAN FOR PILOT PROJECT**

#### (1) Facility Plan for Emergency Water Supply System

#### 1) Composition and Connection Point for Emergency Water Supply Unit

The composition and the connection points for the emergency water supply unit on the pilot project are as shown in the following table.

**Table-10. 3 Composition and Connection Point for Emergency Water Supply Unit (Pilot Project)** 

| e ct            |          |             | Water              |      | W              | ell          |              | V            | lell Pum    | пр          | Conve        | eyance Line   | Water Treat        | ment Process                         | Transmis     | sion Line     | Connection to       |              |
|-----------------|----------|-------------|--------------------|------|----------------|--------------|--------------|--------------|-------------|-------------|--------------|---------------|--------------------|--------------------------------------|--------------|---------------|---------------------|--------------|
| Project<br>Name |          | Site        | Supply<br>Unit No. | No.  | New/<br>Exist. | Dia<br>(in.) | Depth<br>(m) | Dia<br>(in.) | Head<br>(m) | PWR<br>(kW) | Dia<br>(in.) | Length<br>(m) | Volume<br>(m3/day) | Process                              | Dia<br>(in.) | Length<br>(m) | (Exist<br>Facility) | Supply<br>1) |
| Pilot Project   | Santa Fe | Casa Morino | PP-51              | CM-1 | New            | 8"+6"        | 300          | 4            | 190         | 75          | 6            | 45            | 2,000              | Chlorine +<br>Pressure<br>Filtarlate | 1            | -             | -                   | 1            |

Note-1) Type of the supply is shown in the Figure-10.14.

#### 2) Layout Plan for Emergency Water Supply Unit

The emergency water supply unit for the pilot project forms the unit which one (1) water treatment plant (WTP) consists on one (1) well. Therefore, the layout plan for each water supply unit is as shown in Figure-10.3.

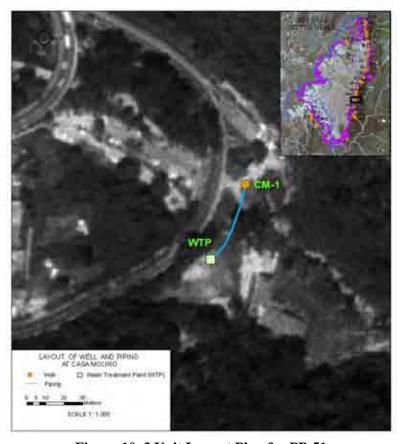



Figure-10. 3 Unit Lauout Plan for PP-51

# CHAPTER 3. FACILITY PLAN FOR PROJECT OF WELLS INSIDE FOREST PROTECTION AREA

#### (1) Facility Plan for Emergency Water Supply System

The composition and the connection points for the emergency water supply unit on the 1<sup>st</sup> priority project are as shown in the following table.

Table-10. 4 Composition and Connection Point for Emergency Water Supply Unit (1st Priority Project)

| e ct                 |           |             | Water    |        | W        | 'ell  |       | V     | ell Pum | ıp   | Conve | eyance Line | Water Trea | tment Process             | Transmis | sion Line | Connection to | Type of |
|----------------------|-----------|-------------|----------|--------|----------|-------|-------|-------|---------|------|-------|-------------|------------|---------------------------|----------|-----------|---------------|---------|
| Project<br>Name      |           | Site        | Supply   | No.    | New/     | Dia   | Depth | Dia   | Head    | PWR  | Dia   | Length      | Volume     | Process                   | Dia      | Length    | (Exist        | Supply  |
| م ک                  |           | 1           | Unit No. |        | Exist.   | (in.) | (m)   | (in.) | (m)     | (kW) | (in.) | (m)         | (m3/day)   | 1100633                   | (in.)    | (m)       | Facility)     | 1)      |
|                      |           |             |          | (E-1)  | (Pilot)  | -     | -     | -     | -       | -    | -     | -           |            |                           |          |           |               |         |
|                      | ma        |             |          | VI-1   | New      | 8"+6" | 300   | 4     | 100     | 37   | 6     | 960         |            |                           |          |           | Tank          |         |
|                      | Vitelma   | Vitelma     | 1-51     | VI-2   | New      | 8"+6" | 300   | 4     | 100     | 37   | 6     | 1,370       | 8,000      | (Exist. WTP)              | -        | -         | Vitelma       | 2       |
|                      | >         |             |          | VI-3   | New      | 8"+6" | 300   | 4     | 100     | 37   | 6     | 1,660       |            |                           |          |           |               |         |
|                      |           |             |          | VI-4   | New      | 8"+6" | 300   | 4     | 100     | 37   | 6     | 1,970       |            |                           |          |           |               |         |
|                      |           |             |          |        |          |       |       |       |         |      |       |             |            | Chlorine +                |          |           |               |         |
|                      |           | Sant Isabel | 1-52     | SI-1   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 25          | 2,000      | Pressure                  | -        | -         | -             | 1       |
|                      |           |             |          |        |          |       |       |       |         |      |       |             |            | Filtarlate<br>(Chlorine + |          |           |               |         |
|                      |           |             |          | (CM-1) | (Pilot)  |       | _     | _     | _       | _    | _     | _           | (2.000)    | Pressure                  |          |           |               |         |
|                      |           |             |          | (OW 1) | (1 1100) |       |       |       |         |      |       |             | (2,000)    | Filtarlate)               |          |           |               |         |
|                      |           | Casa Morino | 1-53     |        |          |       |       |       |         |      |       |             |            | Chlorine +                | -        | _         | -             | 1       |
|                      | P.        |             |          | CM-2   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 90          | 2,000      | Pressure                  |          |           |               |         |
|                      | ta        |             |          |        |          |       |       |       |         |      |       |             |            | Filtarlate                |          |           |               |         |
|                      | Santa     | Olaya       |          | OH-1   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 955         |            |                           |          |           |               |         |
| ید                   |           | Herrera     |          | TS-1   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 555         |            | Chlorine +                |          |           | Tank          |         |
| i iğ                 |           | Tank        | 1-54     |        |          | 8"+6" | 300   |       | 190     |      | -     |             | 8,000      | Pressure<br>Filtarlate    | 12       | 83        | Silencio      | 2       |
| E                    |           | Silencio    |          | TS-2   | New      |       |       | 4     |         | 75   | 6     | 25          |            | Filtariate                |          |           |               |         |
| - <del>-</del>       |           |             |          | TS-3   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 205         |            | Chlorine +                |          |           | -             |         |
| 1st Priority Project |           | Rio         | 1-55     | RA-1   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 25          | 2.000      | Pressure                  | _        | _         | _             | 1       |
| j.                   |           | Arzobispo   | 1 00     | 1011   | 11011    | 0 .0  | 000   | •     | 100     | 70   | ·     | 20          | 2,000      | Filtarlate                |          |           |               |         |
| 냃                    |           | Unv. Poli-  |          |        |          |       |       |       |         |      |       |             |            | Chlorine +                |          |           |               |         |
| -                    |           | Technology  | 1-56     | UP-1   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 25          | 2,000      | Pressure                  | -        | -         | -             | 1       |
|                      |           | rechilology |          |        |          |       |       |       |         |      |       |             |            | Filtarlate                |          |           |               |         |
|                      |           | La Vieja    |          | VC-1   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 25          |            | Chlorine +                |          |           |               |         |
|                      |           | Creek       | 1-57     | VC-2   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 251         | 6,000      | Pressure                  | -        | -         | -             | 1       |
|                      | ero       |             |          | VC-3   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 711         |            | Filtarlate                |          |           |               |         |
|                      | Chapinero |             |          | RC-1   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 255         | ]          | Chlorine +                |          |           |               |         |
|                      | Sha       | Rosales     | 1-58     | RC-2   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 25          | 8.000      | Pressure                  | _        | _         | _             | 1       |
|                      |           | Creek       | 1 33     | RC-3   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 453         | 0,000      | Filtarlate                |          |           |               | '       |
|                      |           |             |          | RC-4   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 760         | 1          |                           |          |           |               |         |
|                      |           |             |          | CH-1   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 457         |            | Chlorine +                |          |           |               |         |
|                      |           | Chico       | 1-59     | CH-2   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 185         | 6,000      | Pressure                  | 12       | 25        | Tank Chico    | 2       |
|                      |           |             |          | CH-3   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 65          | 1          | Filtarlate                |          |           |               |         |
|                      | E C       | Escuela de  |          | EC-1   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 25          |            | Chlorine +                |          |           |               |         |
|                      | Usaquen   | Caballeria  | 1-60     | EC-2   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 295         | 6,000      | Pressure                  | _        | -         | _             | 1       |
|                      | Usa       | (Military)  |          | EC-3   | New      | 8"+6" | 300   | 4     | 190     | 75   | 6     | 475         | 1          | Filtarlate                |          |           |               |         |
| ш                    |           |             |          |        | 14377    | 0 .0  | 000   |       | 100     | , 0  | ,     | 470         |            |                           |          |           |               |         |

Note-1) Type of the supply is shown in the figure-10.14.

#### 2) Layout Plan for Emergency Water Supply Unit

The emergency water supply unit for the  $1^{st}$  priority project forms the unit which one (1) water treatment plant (WTP) consists on one (1) to four (4) wells. Therefore, the layout plan for each water supply unit is as shown in Figure-10.4 to 10.13.

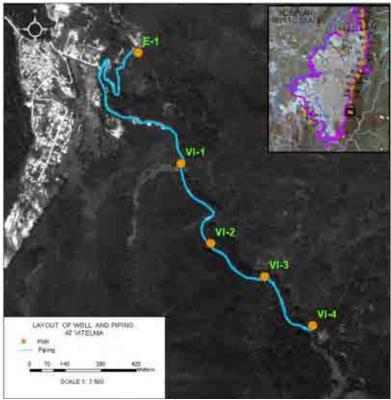



Figure-10. 4 Unit Layout Plan for 1-51

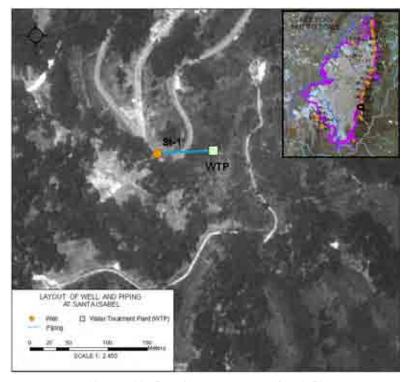



Figure-10. 5 Unit Layout Plan for 1-52

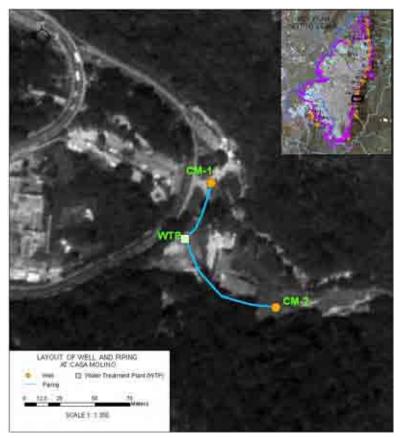



Figure-10. 6 Unit Layout Plan for 1-53

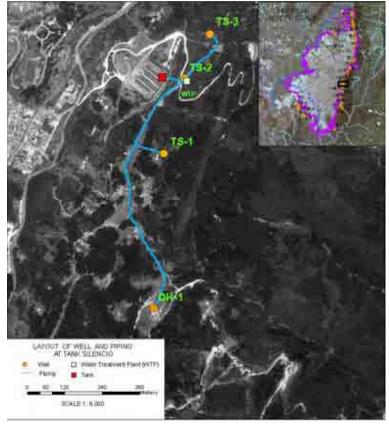



Figure-10. 7 Unit Layout Plan for 1-54

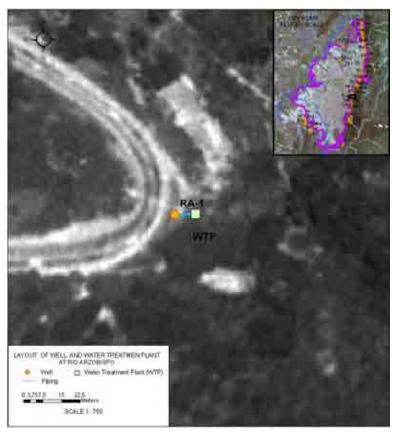



Figure-10. 8 Unit Layout Plan for 1-55

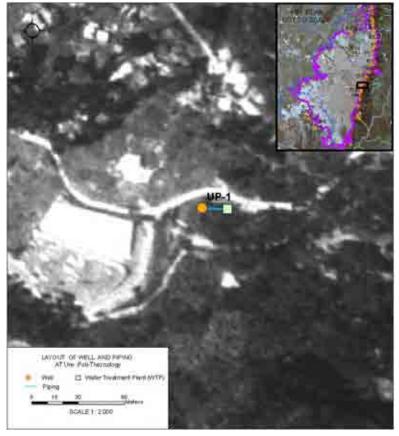



Figure-10. 9 Unit Layout Plan for 1-56

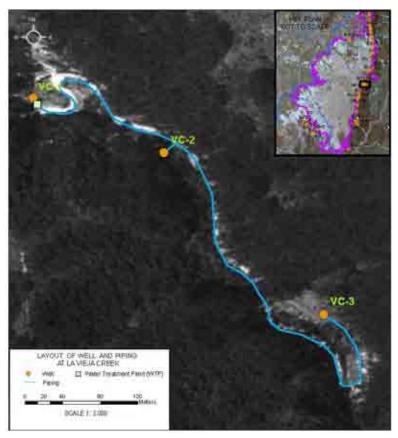



Figure-10. 10 Unit Layout Plan for 1-57

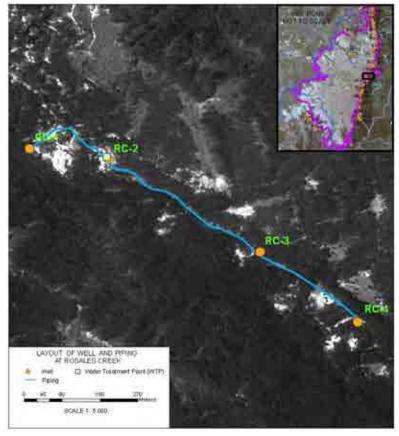



Figure-10. 11 Unit Layout Plan for 1-58

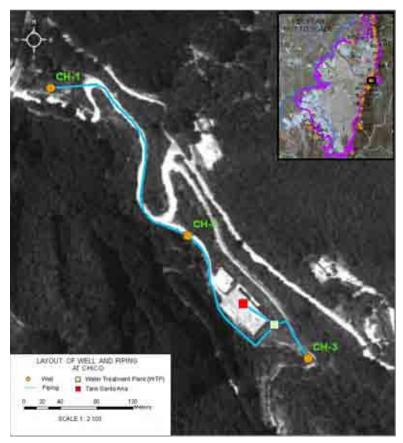



Figure-10. 12 Unit Layout Plan for 1-59

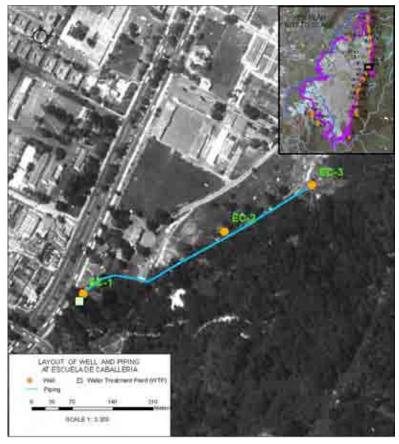
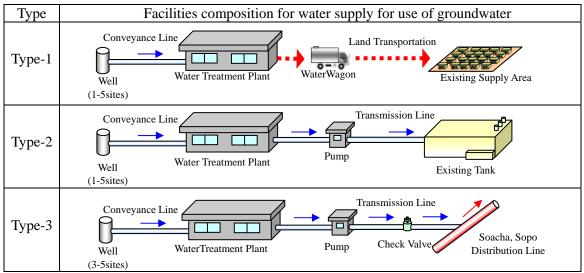




Figure-10. 13 Unit Layout Plan for 1-60

#### 2) Plan for Water Supply Facility

As the composition of facilities for water supply, three (3) types of facilities are planned as shown in Figure-10.14. These facilities should be able to supply by the water wagon for the primary emergency in case of not only type-1 but also type-2 and type-3.



(Source: JICA Study Team)

Figure-10. 14 Facilities Composition for Water Supply for Use of Groundwater

# **CHAPTER 4. COST ESTIMATE**

Cost of Project inside the protection area was estimated as shown in Tabel 10.5.

### **Table 10.5 Cost of Project inside Forest Protection Area**

#### Forest Protection Area Breakdown

| Description                                                              |                                                                                                  | 11-2-                  | S        | San Cris        | stbal (Vi | telma)    | Sant I         | Isabel | Casa          | Morino              |                   | Tank Silenc | cio      | Olaya Herrei                                     | a Rio Arz    | obispo Un     | nv. Prli T | ech            | La Vieja         | Creek            | Ro        | osales Cre | eek           | 1        | Chico       | 1       |                 | aballeria (M       |         |                       |                 | on Cost                   | Material & Ed              |                        | A   |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------|----------|-----------------|-----------|-----------|----------------|--------|---------------|---------------------|-------------------|-------------|----------|--------------------------------------------------|--------------|---------------|------------|----------------|------------------|------------------|-----------|------------|---------------|----------|-------------|---------|-----------------|--------------------|---------|-----------------------|-----------------|---------------------------|----------------------------|------------------------|-----|
| Description                                                              |                                                                                                  | Unit                   | VI-1     | VI-2            | VI-3 \    | VI−4 WTI  | SI-1           | WTP C  | M-1 CM        | M <sup>-2</sup> WTP | TS-1              | TS-2 TS-    | -3 WTP   | OH-1 WTF                                         | RA-1         | WTP UF        | P-1 w      | TP VC-1        | VC-2             | VC-3 WTP         | RC-1 RC-  | 2 RC-3     | RC-4 WT       | P CH-1   | CH-2 CH     | 1−3 WTF | EC-1 EC         | C-2 EC-3           | WTP Tot | al Unit P<br>(Col\$1, | 000)            | Amount<br>(Col\$1,000)    | Unit Price<br>(Col\$1,000) | Amount<br>(Col\$1,000) | Ame |
| Deep Well Pump                                                           |                                                                                                  |                        |          |                 |           |           |                |        |               |                     |                   |             |          | ЬĒ                                               |              |               | Ī          |                |                  |                  |           |            |               |          |             |         |                 |                    |         |                       |                 |                           |                            |                        |     |
| (1) Well Construction (2) Well Construction                              | 8in 150m + 6in 150m<br>10in 150m + 8in 150m                                                      | well<br>well           | 1        | 1               | 1         | 1         | 1              |        | 1             | 1                   | 1                 | 1 1         | +        | 1                                                | 1            |               | 1          | 1              | 1                | 1                | 1 1       | 1          | 1             | 1        | 1           | 1       | 1               | 1 1                |         |                       | 7,600<br>5,120  | 12.602.880                | 0                          | 0                      |     |
| (3) Well Construction                                                    | 10in 200m + 8in 200m                                                                             | well                   |          |                 |           |           |                |        |               |                     | ĽÏ                |             |          |                                                  |              |               |            |                | 岸井               |                  |           |            |               |          |             |         |                 |                    |         |                       | 2,000           | 0                         | 0                          | 0                      |     |
| (4) Pumping Test and Repot<br>(5) Deep Well Submersible Pump             | 0.7m <sup>3</sup> /min, 120m, 440V, 60Hz, 26KW                                                   | lot<br>set             |          |                 |           |           |                |        |               |                     | 1                 |             |          |                                                  |              |               | -          |                | 1                |                  |           |            |               |          |             |         |                 |                    |         | 0 1                   | 0.000           | 0                         | 64.400                     | 0                      |     |
| (6) Deep Well Submersible Pump                                           | 0.7m <sup>3</sup> /min, 170m, 440V, 60Hz, 37KW                                                   | set                    |          |                 |           |           |                |        |               |                     |                   |             |          |                                                  |              |               |            |                |                  |                  |           |            |               |          |             |         |                 |                    |         |                       | 0,400           | 0                         | 69,000                     | 0                      |     |
| (7) Deep Well Submersible Pump (8) Deep Well Submersible Pump            | 1.4m <sup>3</sup> /min, 120m, 440V, 60Hz, 37KW<br>1.4m <sup>3</sup> /min, 140m, 440V, 60Hz, 45KW | set<br>set             | 1        | 1               | 1         | 1         | 1              |        | 1             | 1                   | 1                 | 1 1         |          | 1                                                | 1            |               | 1          | 1              | 1                | 1                | 1         | 1          | 1             |          |             | 1       | 1               | 1 1                |         |                       | 0,400<br>2,200  | 256,200                   | 69,000<br>73,600           |                        |     |
| (9) Deep Well Submersible Pump                                           |                                                                                                  | set                    |          | -               |           |           | + '            |        |               | '                   |                   |             |          |                                                  | + +          |               | _          | + '            |                  |                  | 1         |            |               |          | 1           | '       | + ' +           | <del>'   '  </del> |         |                       | 3,400           | 26,800                    | 81,000                     |                        |     |
| (10) Deep Well Submersible Pump                                          | 1.4m <sup>3</sup> /min, 190m, 440V, 60Hz, 75KW                                                   | set                    |          |                 |           |           |                |        |               |                     |                   |             |          |                                                  |              |               |            |                |                  |                  |           |            |               | 1        |             |         |                 |                    |         | 1 1                   | 3,800           | 13,800                    | 92,025                     |                        |     |
|                                                                          |                                                                                                  |                        |          |                 |           |           |                |        |               |                     |                   |             |          |                                                  |              |               |            |                |                  |                  |           |            |               |          |             |         |                 |                    |         |                       |                 | 12,899,680                |                            | 1,799,625              |     |
| Aqueduct (1) Piping, Above Ground                                        | 6in carbon steel                                                                                 | m                      |          |                 |           | 20        | 20             | 50     | 20 2          | 20                  | 20                | 20          | -        |                                                  |              | 50            | 5          | 50             | 20               | 20               | 20 20     | 20         | 20            | 20       | 20 2        | 20      | 20 2            | 20 20              |         | 510                   | 206             | 105,060                   | 229                        | 116,790                |     |
|                                                                          | 8in carbon steel                                                                                 | m                      | - 10     | 40              |           | 100       | )              |        |               | 100                 |                   | 100         | 100      |                                                  | 0.5          |               |            |                | 20               | 100              |           |            | 100           | 0        |             | 100     |                 |                    | 100     | 800                   | 315             | 252,000                   | 350                        | 280,000                |     |
| (2) Piping, Under Ground                                                 | 6in PVC 1.38Mpa<br>8in PVC 1.38Mpa                                                               | m<br>m                 | 10       | 10              | 350       | 400 50    |                |        | 80 1          | 20                  | 25                | 25          | <b>'</b> | 25                                               | 25           | -   2         | 25         | 50             |                  |                  | 300 50    | + +        | 300           | 420      | 220 10      | 00      | 50              | 200                | 2       | 475<br>350            | 162             | 371,250<br>56,700         | 46<br>78                   | 113,850<br>27,300      |     |
|                                                                          | 10in PVC 1.38Mpa<br>12in PVC 1.38Mpa                                                             | m<br>m                 | 250      | 450             |           |           |                |        |               |                     |                   |             |          |                                                  |              |               |            | _              | 220              | 550              |           | 400        |               |          |             |         | 3               | 50                 | 20 1    | 540                   | 175             | 269,500                   | 120<br>169                 |                        |     |
|                                                                          | 14in PVC 1.38Mpa                                                                                 | m                      | 650      |                 |           |           |                |        |               |                     |                   |             |          |                                                  |              |               |            |                |                  |                  |           |            |               |          |             |         |                 |                    |         | 0                     | 200             | 0                         | 206                        | 0                      |     |
|                                                                          | 16in PVC 1.38Mpa<br>18in PVC 1.38Mpa                                                             | m<br>m                 |          |                 |           |           | +              |        |               |                     | 1                 |             |          |                                                  |              |               | -          |                | 1                |                  |           | + +        |               |          |             |         |                 |                    |         | 0                     | 212             | 0                         | 247<br>288                 |                        |     |
|                                                                          | 20in PVC 1.38Mpa                                                                                 | m                      |          |                 |           |           |                |        |               |                     |                   |             |          |                                                  |              |               |            |                |                  |                  |           |            |               |          |             |         |                 |                    |         | 0                     | 234<br>267      | 0                         | 329                        | 0                      |     |
| (2) Gate Valves                                                          | 24in         PVC 1.38Mpa           6in         with flange, gasket etc.                          | m<br>sets              | 1        | 1               | 1         | 1 1       | 1              | 1      | 1             | 1                   | 1                 | 1 1         |          | 1                                                | 1            | 1             | 1          | 1 1            | 1                | 1                | 1 1       | 1          | 1             | 1        | 1           | 1       | 1               | 1 1                |         | 28                    | 290             | 8,120                     | 412<br>965                 | 27,020                 |     |
|                                                                          |                                                                                                  | sets<br>sets           | $\vdash$ | $\vdash$        |           | -         | +              |        | $\perp$       | 1                   | $\vdash$          |             | +        |                                                  | +            |               | $\perp$    | $\perp$        | $\vdash$         |                  |           | +          | _             |          | $\vdash$    | -       |                 | +                  | 1       | 2                     | 438<br>676      | 0<br>1.352                | 1,461<br>2,254             |                        |     |
| (0) 01 1 1 1 1                                                           | 12in with flange, gasket etc.                                                                    | sets                   |          |                 |           | 1         |                |        |               |                     |                   |             | 1        |                                                  |              |               | .          |                |                  | 1                |           |            | 1             |          |             | 1       |                 |                    |         | 5                     | 1,551           | 7,755                     | 5,170                      | 25,850                 |     |
| (3) Check Valves                                                         | 6in with flange, gasket etc. 8in with flange, gasket etc.                                        | sets<br>sets           | 1        | 1               | 1         | 1         | 1              |        | 1             | 1                   | 1                 | 1 1         | $\pm$    | 1                                                | 1            |               | 1          | 1              | 1                | 1                | 1 1       | 1          | 1             | 1        | 1           | 1       | 1               | 1 1                |         | 0                     | 445<br>594      | 10,680<br>0               | 1,484<br>1,979             | 35,616<br>0            |     |
|                                                                          | 10in with flange, gasket etc.                                                                    | sets                   |          |                 |           |           |                |        |               |                     |                   |             |          |                                                  |              |               |            |                |                  |                  |           |            |               |          |             |         |                 |                    |         |                       | 1,157           | 0                         | 3,856<br>5,392             | 0                      |     |
|                                                                          | 12in with flange, gasket etc.                                                                    | sets                   |          |                 |           |           |                |        |               |                     |                   |             |          |                                                  |              |               |            |                |                  |                  |           |            |               |          |             |         |                 |                    |         | U                     | 1,016           | 1,082,417                 | 5,392                      | 815,734                |     |
| vil Works                                                                |                                                                                                  |                        |          |                 |           |           |                |        |               |                     | -                 |             |          |                                                  |              |               |            |                | -                |                  |           |            |               |          |             |         |                 |                    |         |                       |                 |                           |                            |                        |     |
| (1) Site Survey                                                          | 10m x 20m                                                                                        | m <sup>2</sup>         | 50       | 50              |           |           | 50             |        |               |                     |                   | 50 50       |          | 50                                               | 50           |               |            | 40 50          |                  |                  |           |            | 50 240        |          |             |         | 50 5            | 50 50              | 240 3   |                       | 3               | 11,550                    | 0                          | 0                      |     |
| Cutting Trees and bush     Development of Land                           | 10m x 20m<br>Excavation of Land (5m x 10m x 3mH)                                                 | m <sup>2</sup>         |          | 50<br>50        | 50<br>50  | 50        | 50<br>50       |        |               | 200 240             |                   | 50          | 240      | 50                                               |              |               |            | 40 50<br>40 50 |                  | 50 240<br>50 240 |           |            |               |          | 50 5        |         |                 | -                  | 240 3   | 120                   | 25              | 24,960<br>75,500          | 0                          | 0                      |     |
| Site Grading                                                             | 10m x 20m                                                                                        | m <sup>3</sup>         | 50       |                 |           | 50 240    |                |        |               |                     |                   | 50 50       | 240      |                                                  |              |               |            | 40 50          |                  | 50 240           |           |            |               |          |             | 50 240  |                 | 50 50              | 240 3   |                       | 40              | 152,000                   | 0                          | 0                      |     |
| 5) Road Construction, 5m wide                                            | Gravel Road                                                                                      | m                      |          |                 |           |           |                |        | 1             | 00 20               |                   |             |          |                                                  |              |               |            |                |                  |                  |           |            |               |          |             |         |                 |                    |         |                       | 120             | 0                         | 0                          | 0                      |     |
| (7) Bridge Construction<br>(7) Concrete Pavement                         | Concrete Pipe 1m Dia., 6m<br>H 100, base H 100                                                   | sets<br>m <sup>2</sup> |          |                 |           |           |                | 50     |               | 50                  |                   | 50          | 50       |                                                  |              |               | 1          |                |                  |                  |           |            |               |          |             |         |                 |                    | 50      | 250                   | 80              | 20,000                    | 0                          | 0                      |     |
| 8) Security fence<br>9) Gate for Fence                                   | Galvanized Fabric H=3.0m                                                                         | m                      | 25<br>1  |                 | 25<br>1   | 25        |                |        |               | 25 120<br>1 1       |                   |             | 120      | 25                                               | 25           | 80 2          | 25 8       | 30 25          | 25               | 25 120           | 25 25     | 25         | 25 120        | 25       | 25 2        | 25 120  | 25 2            | 25 25              | 120 1   | 000                   | 150<br>3.500    | 244,500<br>42,000         | 150                        | 244,500                |     |
| 10) Out-Door Lighting                                                    | W= 5m, H=2.5m, Double Swing<br>200V-200W, with concrete pole 11m                                 | sets<br>sets           |          |                 | 2         |           | 2              |        |               | 2 8                 |                   | 2 2         |          | 2                                                | 2            | 4             | 2 4        | 4 2            | 2                | 2 8              | 2 2       | 2          | 2 10          | 2        | 2 :         | 2 8     | 2               | 2 2                | 4       | 118                   | 300             | 35,400                    | 500                        |                        |     |
|                                                                          |                                                                                                  |                        |          |                 | -         |           | +              |        |               |                     |                   |             |          |                                                  |              |               | -          | _              |                  |                  |           |            |               |          |             |         |                 |                    |         |                       |                 | 605,910                   |                            | 303,500                |     |
| rchitect Works                                                           |                                                                                                  | 2                      |          |                 |           |           |                |        |               |                     |                   |             | <b>—</b> |                                                  |              |               |            |                |                  |                  |           |            |               |          |             | 400     |                 |                    |         |                       |                 | 4 005 000                 | 750                        | 4 450 000              |     |
| (1) Pump Station: 96 m² for each s                                       | site L=12m, W=8m, H=4.0m, RC, block                                                              | m <sup>2</sup>         |          | 96              |           | 96        | 96             |        | 96            | 96                  |                   | 96          | 96       |                                                  |              | 96            | 9          | 96             |                  | 192              |           |            | 192           | 2        |             | 192     |                 |                    | 192 1   | 536                   | 850             | 1,305,600<br>1,305,600    | 750                        | 1,152,000<br>1,152,000 |     |
| liesel Engine Generator                                                  |                                                                                                  |                        |          |                 |           |           |                |        |               |                     |                   |             |          |                                                  |              |               |            |                |                  |                  |           |            |               |          |             |         |                 |                    |         |                       |                 |                           |                            |                        |     |
| (1) Diesel Engine Generator-1                                            | 125kVA, 440V 60Hz 3ph 4W, 1800 rpm                                                               | sets                   |          |                 |           |           |                | (1)    |               |                     |                   |             |          |                                                  |              | (1)           | (          | 1)             |                  |                  |           |            |               |          |             |         |                 |                    |         | 1                     | 800             | 800                       | 77,900                     |                        |     |
| (2) Diesel Engine Generator-2 (3) Diesel Engine Generator-3              | 220kVA, 440V 60Hz 3ph 4W, 1800 rpm<br>400kVA, 440V 60Hz 3ph 4W, 1800 rpm                         | sets<br>sets           |          |                 |           | (1)       | +              |        |               | (1)                 | 1                 |             | (1)      |                                                  |              |               |            |                | 1                | (1)              |           | -          | (1)           | <u> </u> |             | (1)     |                 |                    | (1)     | 1                     | 800<br>900      | 800<br>900                | 106,780<br>159,000         | 106,780<br>159,000     |     |
| (4) Diesel Engine Generator-4                                            | 500kVA, 440V 60Hz 3ph 4W, 1800 rpm                                                               | sets                   |          |                 |           | (1)       |                |        |               |                     |                   |             |          |                                                  |              |               |            |                |                  |                  |           |            | (1)           |          |             | (1)     |                 |                    | (1)     | 0                     | 1,000           | 0                         | 326,000                    | 0                      |     |
|                                                                          |                                                                                                  |                        | $\vdash$ |                 |           |           | +              |        |               | -                   | $\vdash$          |             | -        | <del>                                     </del> | +            |               | +          | -              | $\vdash$         |                  |           | +          |               | -        | <del></del> | _       |                 | _                  |         |                       | -               | 2,500                     |                            | 343,680                |     |
| ower Receiving                                                           |                                                                                                  |                        |          |                 |           |           |                |        |               |                     |                   |             |          |                                                  |              |               |            |                |                  |                  |           |            |               |          |             |         |                 |                    |         |                       |                 |                           |                            |                        |     |
| (1) Concrete Pole and Accessory<br>(2) Step-Down Transformer-1           | 13m height, with arms and insulators<br>125kVA, 11.4kV-440V,                                     | sets<br>sets           |          |                 |           | 1         |                | 1      |               | 1                   |                   |             | 1        |                                                  |              | 1             |            | 1              |                  | 1                |           | + +        | 1             |          |             | 1       |                 |                    | 1       |                       | 1,000<br>3,900  | 10,000<br>11,700          | 1,000<br>20,300            | 10,000<br>60,900       |     |
| (3) Step-Down Transformer-2                                              | 200kVA, 11.4kV-440V,<br>300kVA, 11.4kV-440V.                                                     | sets                   |          |                 |           | 1         |                |        |               | 1                   |                   |             | ٠,       |                                                  |              |               |            |                |                  | 1                |           |            |               |          |             | 1       |                 |                    | 1       | 4                     | 5,700<br>7,500  | 22,800                    | 30,400<br>42,300           | 121,600<br>126,900     |     |
| (4) Step-Down Transformer-3<br>(5) Step-Down Transformer-4               | 400kVA, 11.4kV-440V,                                                                             | sets<br>sets           |          |                 |           |           |                |        |               |                     |                   |             |          |                                                  |              |               |            |                |                  |                  |           |            |               |          |             |         |                 |                    |         |                       | 9,100           | 22,500<br>0               | 53,800                     | 126,900                |     |
| (6) Step-Down Transformer-5<br>(7) Lightning Arrestor                    | 500kVA, 11.4kV-440V,<br>11.4kV, 1 set = 3 units                                                  | sets<br>sets           |          |                 |           | 1         |                | 1      |               | 1                   |                   |             | 1        |                                                  |              | 1             |            | 1              |                  | 1                |           | -          | 1             |          |             | 1       |                 |                    | 1       | 0 1                   | 0,500<br>600    | 6,000                     | 59,300<br>4,000            | 40,000                 |     |
| 8) Cut-out switch                                                        | 11.4kV, 1 set = 3 units                                                                          | sets                   |          |                 |           | 1         |                | 1      |               | 1                   |                   |             | i        |                                                  |              | i             |            | 1              |                  | 1                |           |            | 1             |          |             | 1       |                 |                    | 1       | 10                    | 600             | 6,000                     | 4,000                      | 40,000                 |     |
| (9) Watt hour meter panel<br>10) Power Cable & Accessory                 | WH, V, A, Hz,<br>11.4kV,                                                                         | sets<br>sets           |          |                 |           | 1         |                | 1      |               | 1                   |                   |             | 1        |                                                  |              | 1             |            | 1              |                  | 1                |           | 1          | 1             |          |             | 1       |                 |                    | 1       |                       | 2,700<br>4,500  | 27,000<br>45,000          | 18,000<br>8,100            | 180,000<br>81,000      |     |
| <ol> <li>11.4kV, Over-Head Line,</li> </ol>                              | connection to city power                                                                         | m                      |          |                 |           | 100       | )              | 300    |               | 300                 |                   |             | 300      |                                                  |              | 300           |            | 00             |                  | 300              |           |            | 300           |          |             | 300     |                 |                    | 300 2   |                       | 35              | 98,000                    | 45                         | 126,000                |     |
| 12) Commissioning and test operat                                        | uon                                                                                              | lots                   |          |                 |           |           |                | 1      |               |                     |                   |             |          |                                                  |              |               |            |                |                  | 1                |           |            | 1             |          |             |         |                 |                    | 1       | 10                    | 1,000           | 10,000<br><b>259,000</b>  |                            | 786,400                |     |
| ectrical Works                                                           |                                                                                                  |                        |          |                 | $\exists$ |           | $+\Box$        |        |               |                     |                   |             |          |                                                  |              | -             |            |                |                  |                  |           | +          |               |          |             |         |                 |                    |         |                       | $\exists$       |                           |                            |                        |     |
| (1) Power Reciving Panel-1                                               |                                                                                                  | panel                  |          |                 |           |           |                | 1      |               |                     |                   |             |          | oxdot                                            |              | 1             |            | 1              |                  |                  |           |            |               |          |             |         |                 |                    |         |                       | 9,600           | 28,800                    | 19,000                     |                        |     |
| (2) Power Reciving Panel-2<br>(3) Power Reciving Panel-3                 | 300kVA, with changeover                                                                          | panel<br>panel         |          | <u></u>         | _+        | 1         | $\pm$          |        | _+            | 1                   | ╁┤                |             | 1        |                                                  | $\pm \dashv$ | _+            | _+         | _              | ╁┤               | 1                |           |            | _+            | $\pm$    | $\vdash$    | 1       |                 | +                  | 1       | 4 2                   | 5,200<br>20,800 | 30,400<br>83,200          | 30,000<br>42,000           | 168,000                |     |
| (4) Power Reciving Panel-4<br>(5) Power Reciving Panel-5                 | 400kVA, with changeover                                                                          | panel                  |          |                 |           |           | $\blacksquare$ |        |               |                     | H                 |             | 1        |                                                  |              |               |            |                | H                |                  |           |            | 1             |          |             |         |                 |                    |         | 1 2                   | 4,800           | 24,800                    | 50,000<br>60,700           | 50,000                 |     |
| (6) Distribution Panel                                                   | MCCB, V, A                                                                                       | panel                  |          |                 |           |           |                |        |               |                     | $\Box$            |             |          |                                                  |              |               |            |                | $\Box$           |                  |           |            |               |          |             |         |                 |                    |         |                       | 4,600           | 0                         | 11,000                     | 0                      |     |
| (7) Power Cable-1<br>(8) Power Cable-2                                   | XLPE/SWA/PVC/4c x 50mm2<br>XLPE/SWA/PVC/4c x 70mm2                                               | m<br>m                 | 850      | $\vdash \vdash$ |           | _         | 50             |        | 80 1          | 20                  | 450               | 120 280     | 0        | <del>                                     </del> | 50           | 5             | 50         | 50             | 320              |                  | 320<br>50 | +          |               | +        | 280         | 70      | 50              | 50                 | 2       | 690<br>850            | 4<br>5          | 2,760<br>14,250           | 23                         | 15,870<br>76,950       |     |
| Power Cable-3                                                            | XLPE/SWA/PVC/4c x 95mm2                                                                          | m                      | 1        | 1,300           | 1.050     |           |                |        |               |                     |                   | 200         |          | 920                                              |              |               |            |                | 520              | 640              |           | 500        | 050           | 550      |             |         | $\perp$ $\perp$ | 600                | 4       | 510                   | 6               | 27,060                    | 36                         | 162,360                |     |
| Power Cable-4     Power Cable-6                                          | XLPE/SWA/PVC/4c x 120mm2<br>XLPE/SWA/PVC/4c x 185mm2                                             | m<br>m                 |          |                 | 1,650     | 2,050     |                |        | <u>_</u>      |                     |                   |             | $\pm$    |                                                  |              |               | <u>_</u>   |                |                  |                  |           |            | 850           | _        |             |         |                 |                    | 2       |                       | 8<br>16         | 20,000<br>32,800          | 44<br>81                   | 110,000<br>166,050     |     |
| 2) Control Cable                                                         | PVC/SWA/PVC/10c x 2mm2                                                                           | m                      | 850      | 1300            | 1,650 2   | 2,050 200 | 100            | 100    | 80 1          | 20 100              | 450               | 120 280     | 0 100    | 920                                              | 50           | 100 5         | 50 10      | 00 50          | 320              | 640 100          | 320 50    | 500        | 850 100       | 550      | 280 7       | 70 100  | 50 3            | 50 600             | 100 13  |                       | 15              | 206,250<br><b>470,320</b> | 66                         | 907,500<br>1,773,730   |     |
|                                                                          |                                                                                                  |                        | Ħ        |                 |           |           | $\Box$         |        |               |                     |                   |             |          |                                                  |              |               | #          |                |                  |                  |           | $\Box$     |               |          |             |         |                 | $\Box$             |         |                       |                 | 770,320                   |                            | 1,773,730              |     |
| ter Treatment Plant  1) Chlorination Plant                               | 2,000m3/day                                                                                      | sets                   | $\vdash$ | $\vdash$        |           | -         | +              |        | -             |                     | $\vdash$ $\vdash$ |             | +        | <del>                                     </del> | +            | -             | -          |                | $\vdash$         |                  |           | +          | +             |          | $\vdash$    |         | 1               | +                  |         | 0                     | 4,400           | 0                         | 22,100                     | 0                      | 1   |
| (2) Chlorination + Filterate Plant                                       | 2,000m3/day                                                                                      | sets                   |          |                 |           |           |                | 1      |               |                     |                   |             |          |                                                  |              | 1             | 1          | 1              |                  |                  |           |            |               |          |             |         |                 |                    |         | 3 7                   | 1,700           | 215,100                   | 286,700                    | 860,100                |     |
| (3) Chlorination + Filterate Plant<br>(4) Chlorination + Filterate Plant | 6,000m3/day                                                                                      | sets<br>lots           | $\vdash$ | $\vdash$        |           | -         | +              |        |               | 1                   | +                 |             | +        | <del>                                     </del> | +            | -             | +          |                | +                | 1                |           |            |               |          |             | 1       |                 | + +                | 1       |                       | 5,800<br>9,800  | 115,800<br>479,400        | 463,000<br>639,300         |                        |     |
| (5) Chlorination + Filterate Plant<br>(6) Chlorination + Filterate Plant | 8,000m3/day                                                                                      | lots                   |          |                 | _         | 1         |                |        |               |                     |                   |             | 1        |                                                  |              |               |            |                |                  |                  |           |            | 1             | -        |             |         |                 |                    |         | 3 20                  | 3,900           | 611,700                   | 815,600                    |                        |     |
| (7) Chlorination + Filterate Plant                                       | 2,500m3/day                                                                                      | lots<br>lots           |          |                 |           |           |                |        |               |                     | Ш                 |             |          |                                                  |              |               |            |                | Ш                |                  |           |            |               |          |             |         |                 |                    |         | 0 8                   | 2,700           | 0                         | 991,900<br>330,800         | 0                      |     |
| (8) Chlorination + Filterate Plant<br>(9) Chlorination + Filterate Plant |                                                                                                  | lots<br>lots           | +        |                 | -         |           | +              | -      | $-\mathbb{H}$ |                     | $\vdash \exists$  |             | -        |                                                  | +            | $-\mathbf{F}$ |            |                | $\vdash \exists$ |                  |           |            | $-\mathbf{F}$ |          |             |         | +               | +                  |         |                       | 7,800<br>2,900  | 0                         | 551,200<br>771,500         |                        |     |
| (10) Aeration + Chlorination + Filterate Pl                              |                                                                                                  | lots                   | 1 1      |                 | $\neg$    |           | 1 1            |        |               |                     |                   |             | $\top$   |                                                  | +            | -+            |            |                | 1 1              |                  |           | 1 1        |               | 1        |             | -1-     |                 |                    |         |                       | 1,500           | 0                         | 126,200                    |                        |     |
| (10) Aeradon + Chlorinadon + Filterate Fi                                |                                                                                                  |                        |          |                 |           |           |                |        |               |                     |                   |             |          | 1 1 -                                            |              |               |            |                |                  |                  |           |            |               |          |             |         |                 |                    |         |                       | .,              | 1.422.000                 |                            | 5.687.800              |     |

# PART 11 WATER QUALITY

# **Final Report**

# (Supporting Report)

# **PART 11 WATER QUALITY**

# **Table of Contents**

|                                             | Page |
|---------------------------------------------|------|
| Table of Contents                           | i    |
| List of Tables and Figures                  | ii   |
| C                                           |      |
|                                             | Page |
| PART 11 WATER QUALITY                       | 11-1 |
| CHAPTER 1. RESULTS OF WATER QUALITY SURVEY  |      |
| CHAPTER 2. SUPPLEMENTARY WATER QUALITY TEST |      |

# **List of Tables and Figures**

|                                                                        | Page  |
|------------------------------------------------------------------------|-------|
| Table-11. 1 Water Standards in Colombia                                | 11-1  |
| Table-11. 2 shows the results of water quality of Chingaza River Basin | 11-14 |
| Table-11. 3 Water Quality of CHINGAZA River Basin                      | 11-15 |
| Table-11. 4 The results of well water quality testing                  | 11-18 |
|                                                                        |       |
|                                                                        |       |
| Figure-11. 1 Volume of the Bogota River                                | 11-3  |
| Figure-11. 2 DO ( Dissolved Oxygen)                                    | 11-3  |
| Figure-11. 3 BOD5 total                                                | 11-4  |
| Figure-11. 4 COD Total                                                 | 11-4  |
| Figure-11. 5 SST                                                       | 11-5  |
| Figure-11. 6 SST Volumes                                               | 11-5  |
| Figure-11. 7 NKT                                                       | 11-6  |
| Figure-11. 8 Ammonia                                                   | 11-6  |
| Figure-11. 9 Nitrite nitrogen                                          | 11-7  |
| Figure-11. 10 Nitrate nitrogen                                         | 11-7  |
| Figure-11. 11 Sulfate                                                  | 11-8  |
| Figure-11. 12 Nickel                                                   |       |
| Figure-11. 13 Chromium                                                 | 11-9  |
| Figure-11. 14 Lead - Pb                                                | 11-9  |
| Figure-11. 15 Copper                                                   |       |
| Figure-11. 16 Cadmium                                                  |       |
| Figure-11. 17 Total Coliform (NMP)                                     |       |
| Figure-11. 18 Escherichia Coli (NMP)                                   |       |
| Figure-11. 19 Summary of Water Quality in Bogota River Basin           |       |
| Figure-11. 21 Sampling sites Map                                       |       |

# PART 11 WATER QUALITY

# **CHAPTER 1.RESULTS OF WATER QUALITY SURVEY**

#### 1.1. Water Quality Standard

Table-11. 1 Water Standards in Colombia

| PARAMETERS                                     | MINISTERIO DE PROTECCION SOCIAL DECRETO 1575 & 2115 De 2007 Potable Water regulations |                                     | MINISTERIO DE<br>PROTECCION SOCIAL<br>DECRETO 1594 De 1984<br>Water resource regulation | DAMA<br>RESOLUCION<br>1074 De 1997<br>Waste water regulations |
|------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Al                                             | 2.0                                                                                   | 0.2                                 |                                                                                         |                                                               |
| Sb                                             | 0.02                                                                                  | 0.005                               |                                                                                         |                                                               |
| As ( mg/l )                                    | 0.05                                                                                  | 0.01                                | 0.05                                                                                    | 0.1                                                           |
| Ba (mg/l)                                      | 1.0                                                                                   | 0.5                                 | 1.0                                                                                     | 5.0                                                           |
| B (mg/l)                                       | 1.0                                                                                   | 0.3                                 |                                                                                         |                                                               |
| Cd (mg/l)                                      | 0.005                                                                                 | 0.003                               | 0.01                                                                                    | 0.003                                                         |
| CN (mg/l)                                      | 0.1                                                                                   | 0.05                                |                                                                                         |                                                               |
| CNTotal ( mg/l )                               | 0.2                                                                                   | 0.1                                 | 0.2                                                                                     | 1.0                                                           |
| CHCL <sub>3</sub> (mg/l)                       | 0.7                                                                                   | 0.03                                |                                                                                         |                                                               |
| Cr <sup>+6</sup> ( mg/l )                      | 0.025                                                                                 | 0.01                                | 0.05                                                                                    | 0.5                                                           |
| Cu (mg/l)                                      | 2.0                                                                                   | 1                                   | 1                                                                                       | 0.25                                                          |
| Phenol ( mg/l )                                | 0.01                                                                                  | 0.001                               | 0.002                                                                                   | 0.2                                                           |
| Hg (mg/l)                                      | 0.002                                                                                 | 0.001                               | 0.002                                                                                   | 0.02                                                          |
| Mo (mg/l)                                      | 0.2                                                                                   | 0.07                                |                                                                                         |                                                               |
| Ni ( mg/l )                                    | 0.1                                                                                   | 0.02                                |                                                                                         | 0.2                                                           |
| NO <sub>2</sub> (mg/l)                         | 1.0                                                                                   | 0.1                                 | 1.0                                                                                     |                                                               |
| NO <sub>3</sub> (mg/l)                         | 10                                                                                    | 10                                  | 10                                                                                      |                                                               |
| Ag ( mg/l )                                    | 0.05                                                                                  | 0.01                                | 0.05                                                                                    | 0.5                                                           |
| Pb (mg/l)                                      | 0.02                                                                                  | 0.01                                | 0.05                                                                                    | 0.1                                                           |
| Se ( mg/l )                                    | 0.015                                                                                 | 0.01                                | 0.01                                                                                    | 0.1                                                           |
| ABS ( mg/l )                                   | 0.7                                                                                   | 0.5                                 | 0.5                                                                                     | 20                                                            |
| THMs ( mg/l )                                  | ≤ 1.0                                                                                 | 0.1                                 |                                                                                         |                                                               |
| Ca (mg/l)                                      | 100                                                                                   | 60                                  |                                                                                         |                                                               |
| CaCO <sub>3</sub> /Acidity ( mg/l )            | 60                                                                                    | 50                                  |                                                                                         |                                                               |
| CaCO <sub>3</sub> /Hydroxide                   | <ld< td=""><td><ld< td=""><td></td><td></td></ld<></td></ld<>                         | <ld< td=""><td></td><td></td></ld<> |                                                                                         |                                                               |
| CaCO <sub>3</sub> /Alkalinity total (<br>mg/l) | 120                                                                                   | 100                                 |                                                                                         |                                                               |
| Cl (mg/l)                                      | 300                                                                                   | 250                                 | 250                                                                                     |                                                               |
| CaCO <sub>3</sub> /Hardness total (mg/l)       | 180                                                                                   | 160                                 |                                                                                         |                                                               |
| Fe (mg/l)                                      | 0.5                                                                                   | 0.3                                 |                                                                                         |                                                               |

| PARAMETERS                    | MINISTERIO DE<br>PROTECCION SOCIAL<br>DECRETO 1575 & 2115 De<br>2007<br>Potable Water regulations |           | MINISTERIO DE PROTECCION SOCIAL DECRETO 1594 De 1984 Water resource regulation | DAMA<br>RESOLUCION<br>1074 De 1997<br>Waste water regulations |
|-------------------------------|---------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------|---------------------------------------------------------------|
| Mg (mg/l)                     | 60                                                                                                | 36        |                                                                                |                                                               |
| Mn ( mg/l )                   | 0.15                                                                                              | 0.1       |                                                                                | 0.12                                                          |
| SO <sub>4</sub> (mg/l)        | 350                                                                                               | 250       | 400                                                                            |                                                               |
| Zn (mg/l)                     | 10                                                                                                | 5         | 15.0                                                                           | 5.0                                                           |
| F (mg/l)                      | 1.7                                                                                               | 1.2       |                                                                                |                                                               |
| PO <sub>4</sub> (mg/l)        | 0.4                                                                                               | 0.2       |                                                                                |                                                               |
| Color real (UPC)              | <25                                                                                               | <15       | <20                                                                            |                                                               |
| Odor, Taste                   | Aceptable                                                                                         | Aceptable |                                                                                |                                                               |
| Turbility/UNT                 | ≤5                                                                                                | <5        | 10/UJT                                                                         |                                                               |
| TDS (mg/l)                    | <1000                                                                                             | < 500     |                                                                                |                                                               |
| Electric Conductivity (µS/cm) | ≤1500                                                                                             | 50-1000   |                                                                                |                                                               |
| Ph                            |                                                                                                   |           | 6.5-8.5                                                                        | 05-sep                                                        |
| Total Coniform (nmp)          |                                                                                                   |           | 1000                                                                           |                                                               |
| NH <sub>3</sub> (mg/l)        |                                                                                                   |           | 1.0                                                                            |                                                               |
| Total organic carbon          |                                                                                                   |           |                                                                                | 0.1                                                           |
| Chloroform ( mg/l )           |                                                                                                   |           |                                                                                | 1.0                                                           |
| Organochlorine ( mg/l )       |                                                                                                   |           |                                                                                | 0.05                                                          |
| Organophosphorus ( mg/l )     |                                                                                                   |           |                                                                                | 0.1                                                           |
| Cr total ( mg/l )             |                                                                                                   |           |                                                                                | 1.0                                                           |
| DBO <sub>5</sub> (mg/l)       |                                                                                                   |           |                                                                                | 1000                                                          |
| Ethylene dichloride           |                                                                                                   |           |                                                                                | 1.0                                                           |
| Polychlorinate binphenyl      |                                                                                                   |           |                                                                                | No detectable                                                 |
| DQO (mg/l)                    |                                                                                                   |           |                                                                                | 2000                                                          |
| Suspended Solid -SS ( mg/l    |                                                                                                   |           |                                                                                | 2.0                                                           |
| Total Suspended Solid (mg/l)  |                                                                                                   |           |                                                                                | 800                                                           |
| Hg organic ( mg/l )           |                                                                                                   |           |                                                                                | No detectable                                                 |
| Sulfate ( mg/l )              |                                                                                                   |           |                                                                                | 1.0                                                           |
| Carbon tetrachloride ( mg/l ) |                                                                                                   |           |                                                                                | 1.0                                                           |
| Trichioroethylene ( mg/l )    |                                                                                                   |           |                                                                                | 1.0                                                           |
| Temperature (°C9              |                                                                                                   |           |                                                                                | <30                                                           |
| SAAM ( mg/l )                 |                                                                                                   |           |                                                                                | 0.5                                                           |

Decreto 1575 & 2115: Potable water regulation.

**DAMA RESOLUCION 250 De 1997**: Groundwater regulation, which defined the social and environmental costs to use..

**DECRETO 1594 De 1984**: Water use and control regulation for water resources as surface water, groundwater etc, to obtain the concessions, permits, licenses to use the water.

**DAMA RESOLUCION 1074 De 1997**: Waste water regulation which established environmental parameters.

#### 1.2. Bogota River Water Quality

#### (1) The result of Water quality

Figure 1 to 18 indicate the Bogota River Water Quality along to the River

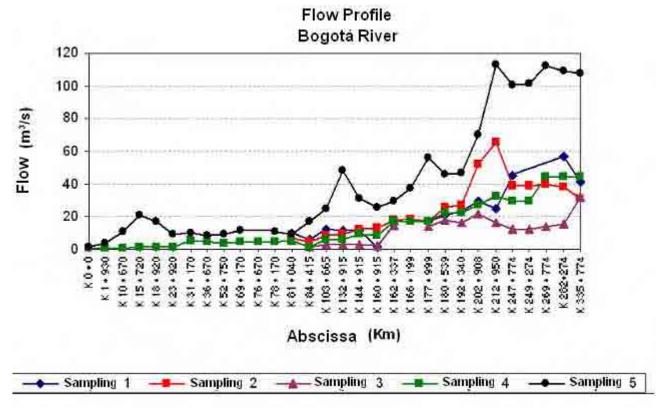



Figure-11. 1 Volume of the Bogota River

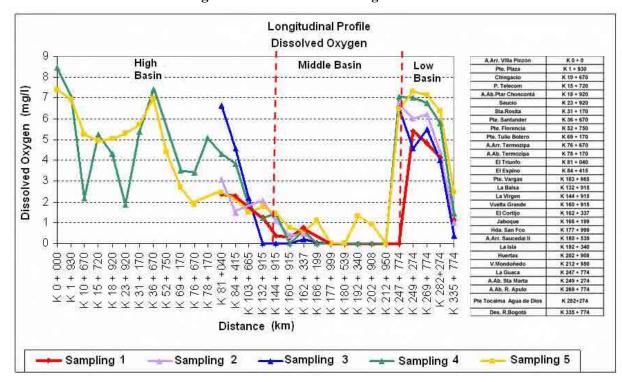



Figure-11. 2 DO (Dissolved Oxygen)

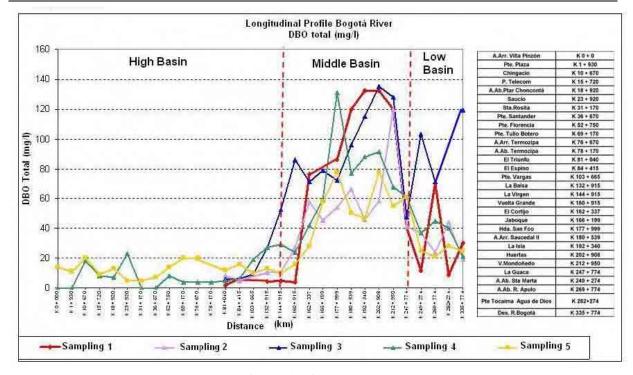



Figure-11. 3 BOD<sub>5</sub> total

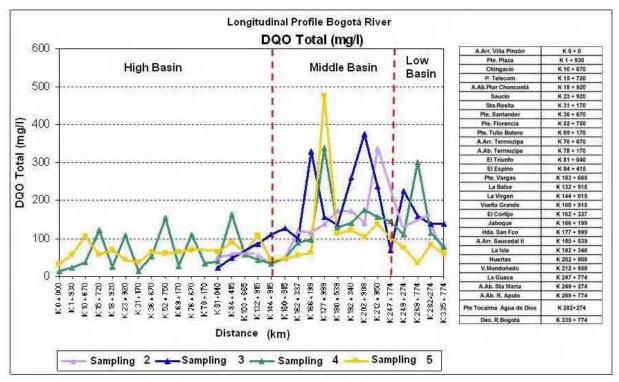



Figure-11. 4 COD Total

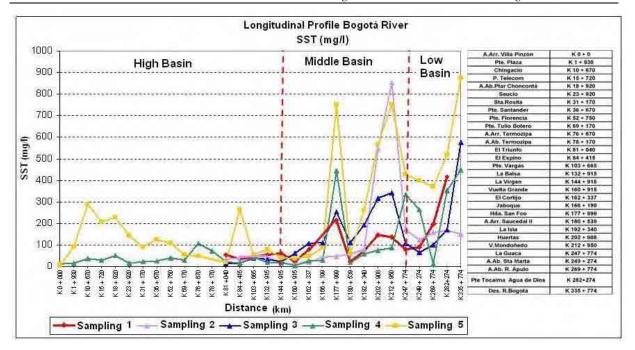



Figure-11. 5 SST

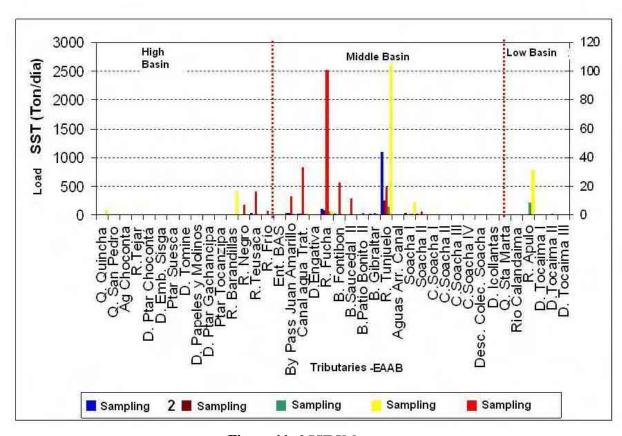



Figure-11. 6 SST Volumes

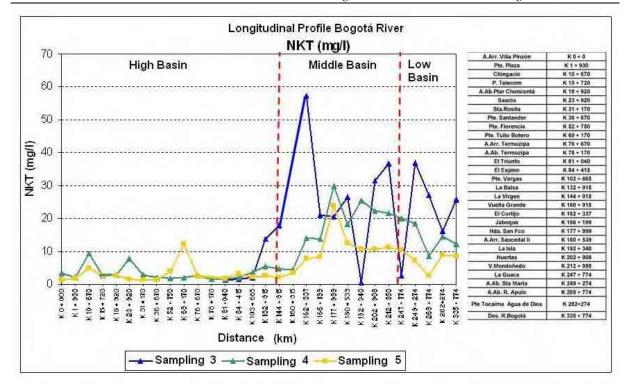



Figure-11. 7 NKT

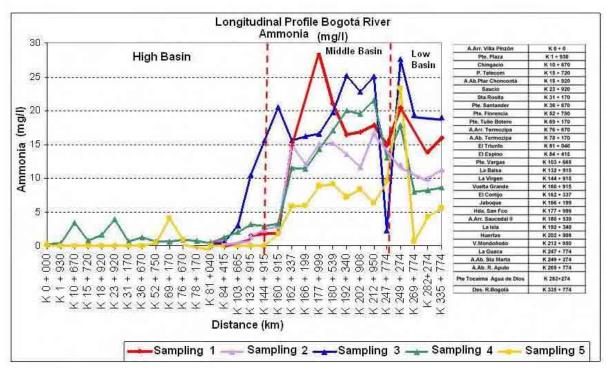



Figure-11. 8Ammonia

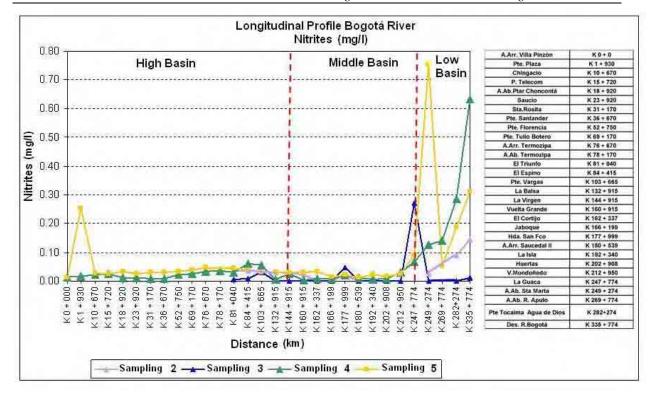



Figure-11. 9 Nitrite nitrogen

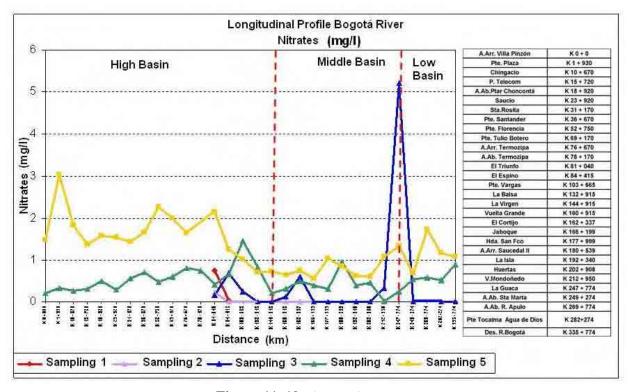



Figure-11. 10 Nitrate nitrogen

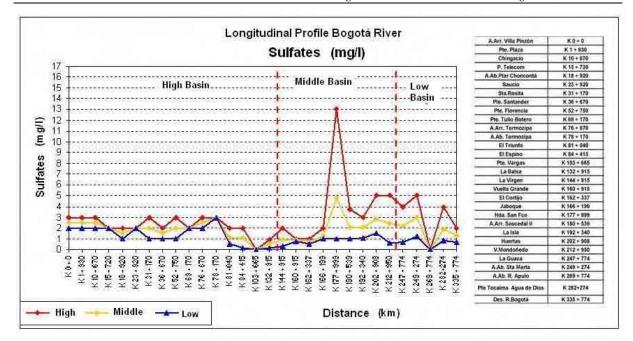



Figure-11. 11 Sulfate

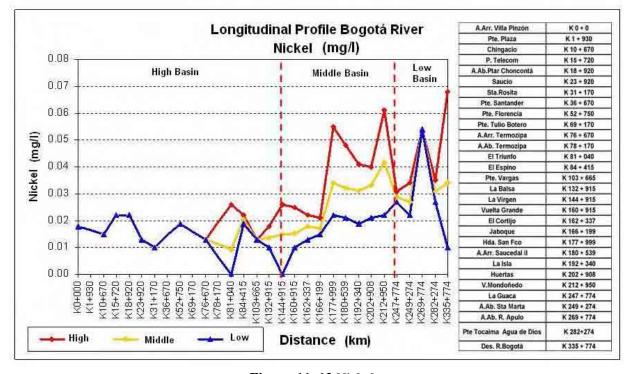



Figure-11. 12 Nickel

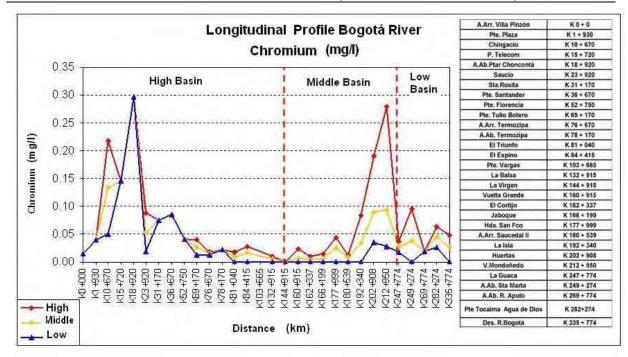



Figure-11. 13 Chromium

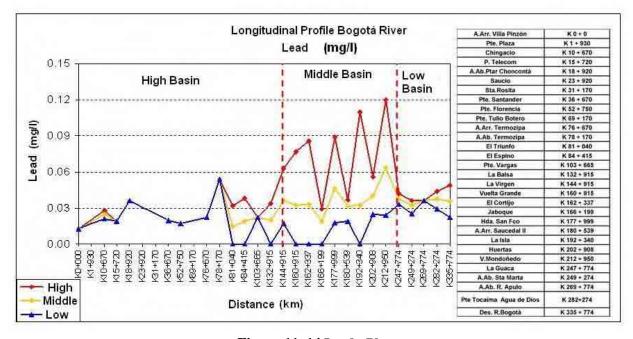



Figure-11. 14 Lead - Pb

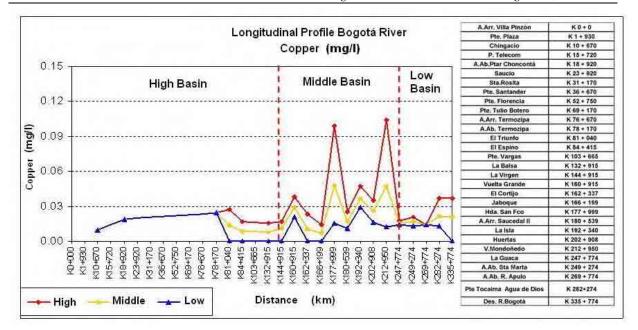



Figure-11. 15 Copper

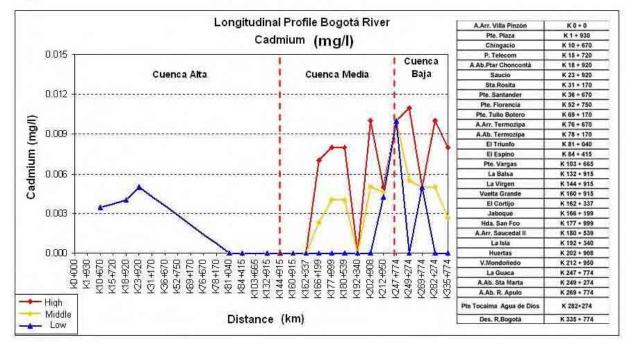



Figure-11. 16 Cadmium

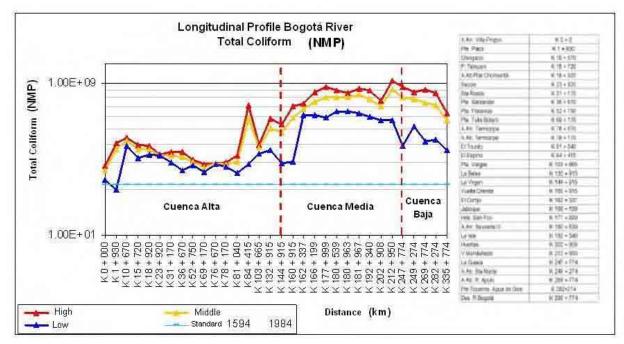



Figure-11. 17 Total Coliform (NMP)

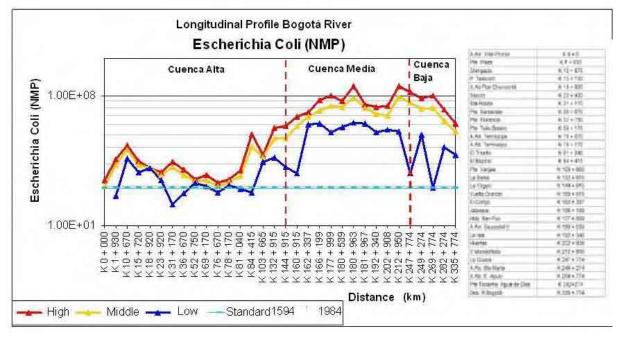



Figure-11. 18 Escherichia Coli (NMP)

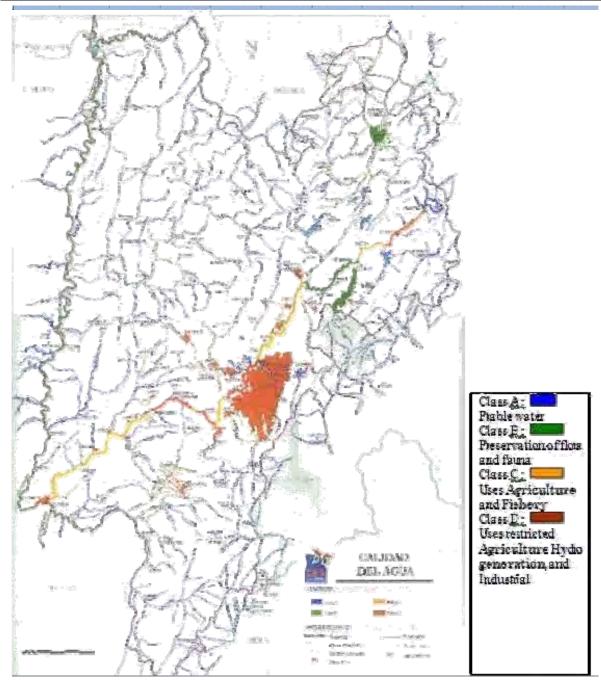



Figure-11. 19 Summary of Water Quality in Bogota River Basin

#### 1.3. Considerations on Characteristics of Water Quality of Bogota River

In relation to the water pollution aspect of the Bogotá River, there are detected 4 distinct characteristics.

The first characteristic is the good quality of the water in the area starting of the Bogotá River up to Villapinzon, where the BOD is lower than  $2 \text{ mg/}\ell$ . The OD (Dissolved Oxygen) also registers a level below  $6 \text{ mg/}\ell$  and the amount of organic substances is also at level of only  $0.1 \text{tonO}_2/\text{day}$ .

The second characteristic refers to the stretch between Villapinzon and Choconta.

In this area, there are 171 tanneries, of which 121 are located in Villapinzon and 50 in Choconta.

The wastes of these companies are flushed untreated into the Bogotá River, polluting it immensely.

Due to this industrial waste, the DO is reduced 2 mg/ $\ell$ , and, not only increase of BOD (10 mg/ $\ell$ ) but sodium sulphate, hydrated lime, ammonium sulphate, formic acid, sulphuric acid, sodium carbonate, besides the post-treatment oils are also flushed away. Another significant aspect is the detection of harmful heavy metals such as chrome and lead. Ten years ago, mercury was also detected but currently, there is no information about its presence. The explanation given by CAR was that mercury is no longer used in tanning processes. At the La Virgen metrological point, an average of 13 mg/ $\ell$  of BOD is registered. It is said, however, that the fact of many branch rivers into the Bogotá River increases its flow and the auto-purification effect restores the quality of the water.

In the Furio River which is the limit of the initial of the medium Bogotá River Basin, the average flow quantity of  $13~\text{m}^3/\text{s}$ . At the Purification Station of Tibitoc Water Treatment Plant (WTP) which intake  $4~\text{m}^3/\text{s}$ , at proximity 40 km downstream from Villapinzon. From Villapinzon to the Juan Amarillo River (The Salitre River is the name given to the initial part of the Juan Amarillo River and are the same river. Hereinafter, we will refer to it only as the Salitre River), which is the river closest to the urban area of Bogotá, the water is mainly used as irrigation for crops and fields. The agricultural and cattle breeding waste runs directly to the Bogotá River. The waste standards for these agricultural and cattle breeding wastes was established, but, in reality, neither examination of water nor the regulation is done.

The third characteristic refers to the quality of water in the urban area of Bogotá which corresponds to the medium basin of the Bogotá River. When Bogota River is in a town area, the water turns worse dramatically. The domestic waste water of the entire population of Bogotá, which is 6.4 million, is discharged into the Bogotá River. The main rivers flowed into Bogotá River are the Salitre River, the Fucha River, and the Tunjuelo River.

In the urban area of Bogotá, there is only the Salitre WWTP which operates only the primary treatment, with a low index of elimination of BOD since the organic treatment is not operated.

Untreated waste water into the Bogotá River also through another two important rivers, the Fucha and the Tunjuelo

At the Salitre River point, the BOD is on average  $120\,\mathrm{mg/\ell}$ ,  $130\,\mathrm{mg/\ell}$  are registered at the Fucha River and  $140\,\mathrm{mg/\ell}$  at the Tunjuelo River. The contamination of the water quality is caused by the sewage inflow (domestic and industrial waste) from urban area of the Bogotá. It is registered that the volume of organic substances is, on average,  $482\mathrm{tonO_2/day}$ . The water quality of the Bogotá River, at the joint of the Tunjuelo River, is awful and it has a grayish color, is cloudy and foul smelling. It is confirmed that a chemical material and heavy metal from Tunjuelo River are extremely big by water examination. It is much bigger than pollution of hides factory of the Villapinzon described as the second characteristic. There are a lot large-scale hides factories, a metal factory of a car in a Tunjuelo River sub-basin, and industrial waste water flows into Bogotá River as most non-tratment.

The volume of waste from the rivers in the urban area of Bogotá is approximately 23  $\text{m}^3/\text{s}$ , which corresponds to 2/3 of the entire average flow 37  $\text{m}^3/\text{s}$  of the Bogotá River.

The impact of the waste of the urban area on the contamination of the quality of the Bogotá River is very considerable. The bacterial contamination content is also extremely high along this stretch.

There is information that at the Salitre River and in Lake Muña the Total Coliform bacteria  $10\sim28$  million/100m $\ell$ , of which  $3\sim7$  million/100m $\ell$  correspond to the faecal coliform bacteria.

On the other hand, in much the same way that the contamination of the water quality in the Bogotá river is very important, the pollution of the waters in Lake Muña, which originate from the Bogotá River for the purpose of generating electrical power is also very important. The existence of any type of fish has not been confirmed.

The fourth characteristic is the quality of the water on the stretch between Subachoque River, at the final stretch of the Bogotá River, and the Magdalena River.

From the urban area up to the Tequendama Falls, the course of the river is slow and, even though a

recovery in the quality of the water is not expected, the BOD there is at a level of  $18\sim34~\text{mg/}\ell$  and the DO at  $2\sim7~\text{mg/}\ell$ .

Summary of the water quality in the River Basin of Bogotá is shown. in Figure 19. The water quality of Middle Bogotá River Basin presents an inferior aspect as above. However, a sewer system plan is already devised by ACUEDUCT and CAR, and it is a stage conducted to enforcement. A fund supply of a Salitre WWPT expansion plan was already prepared, and construction from 2008 is planned. In addition, now sewage intercepting system is under construction. Canoa WWPT is still planning, but the water quality of Bogotá River will be improved greatly at a complete the system.

#### 1.4. Chingaza River Basin

Principal Water quality examination results of Chingaza River Basin are as follows.

Table-11. 2 shows the results of water quality of Chingaza River Basin

| Parameters              | Water quality                     | Remark                                                   |
|-------------------------|-----------------------------------|----------------------------------------------------------|
| Handmaga                | 50ma/8                            | Ministry of Health of Colombia Decret 475 : 160          |
| Hardness                | 50mg/ℓ                            | mg/ℓ、 Japanese Water Quality standard: 300 mg/ℓ          |
| Turbidity               | <1.25NT                           | WHO Guideline: 5NTU                                      |
| PH                      | 6.3-7.6                           | Neutral                                                  |
| Alkalinity              | 5-17 mg/l                         | Ministry of Health of Colombia Decret 475: 100 mg/l      |
| Mg                      | 0.2 - 0.9  mg/l                   | Ministry of Health of Colombia Decret 475: 60 mg/l       |
| Mn                      | 0.02 - 0.08                       | Ministry of Health of Colombia Decret 475: 0.15 mg/l     |
| Fe                      | 0.2 - 1.1  mg/l                   | Ministry of Health of Colombia Decret 475 : 0.5 mg/ℓ     |
| Total Coliform Bacteria | 50-500                            | Ministry of Agriculture Decret 1594/1984 : <1000         |
| Nitrato                 | $0.004 \sim 0.09 \text{ mg/}\ell$ | WHO: <50                                                 |
| Ammonia                 | $0.11 \sim 0.4 \text{ mg/}\ell$   | Ministry of Agriculture Decret 1594/1984 : <10           |
| Chloride                | 1.7∼7.36 mg/ℓ                     | Not indicated in WHO Guideline. Generally minor than 250 |
| Nitrito                 | $0.006 \sim 0.14 \text{ mg/}\ell$ | Ministry of Agriculture Decret 1594/1984 : <10           |
| Conductibity            | 30 - 60                           | Ministry of Health of Colombia Decret 475 : 1500μS/cm    |
| TDS                     | 30 – 115 mg/l                     | Ministry of Health of Colombia Decret 475: 1000mg/l      |
| 100                     | 50 – 115 Hig/1                    | Not indicated in WHO Guideline                           |

By the above results it can be judged it to be clean river water as the source of drinking water ( Class A)

Table-11. 3 Water Quality of CHINGAZA River Basin

| M0NITOREO                              | Е      | MBALSE | CHUZ       | A         | EM      | BALSE S | AN RAFAE   | L         | ]     | EMBALSE | CHISAC     | A         |        | EMBASE<br>REGADERA |            |           |
|----------------------------------------|--------|--------|------------|-----------|---------|---------|------------|-----------|-------|---------|------------|-----------|--------|--------------------|------------|-----------|
| PARAMETROS                             | MARZO  | JUNIO  | SEPTIEMBRE | DICIEMBRE | MARZO   | JUNIO   | SEPTIEMBRE | DICIEMBRE | MARZO | JUNIO   | SEPTIEMBRE | DICIEMBRE | MARZO  | JUNIO              | SEPTIEMBRE | DICIEMBRE |
| Turbiedad UNT                          | 1.99   | 3.72   | 2.58       | 2.05      | 3.07    | 3.33    | 2.53       | 10.23     | 7.67  | 93.33   | 7.77       | 9.67      | 14.23  | 118.33             | 8.10       | 12.00     |
| CONDUCTIVIDAD/µS/cm                    | 30.7   | 37.50  | 34.50      | 35.33     | 52.18   | 64.17   | 57.75      | 54.67     | 31.73 | 31.67   | 23.67      | 23.00     | 33.50  | 27.17              | 15.33      | 23.00     |
| pН                                     | 6.31   | 7.09   | 7.59       | 755       | 6.99    | 6.82    | 7.41       | 7.57      | 6.93  | 6.67    | 7.63       | 6.97      | 7.18   | 6.65               | 7.48       | 6.98      |
| ALCALINIDAD/mgCaCO <sub>3</sub> /L     | 13.7   | 13.16  | 14.3       | 15.4      | 15.7    | 14.6    | 17.3       | 15.3      | 12.3  | 5.7     | 7.7        | 7.7       | 16.3   | 4.5                | 6.7        | 7.7       |
| DUREZA<br>TOTAL/mgCaCO <sub>3</sub> /L | 29.2   | 19.04  | 15.00      | 12.58     | 24.33   | 18.80   | 27.92      | 21.58     | 23.33 | 11.03   | 13.67      | 8.33      | 17.00  | 12.35              | 6.33       | 8.67      |
| CALCIO mg!L                            | 10.9   | 6.04   | 5.09       | 3.09      | 9.05    | 6.16    | 6.95       | 6.12      | 8.60  | 3.34    | 3.54       | 2.28      | 6.29   | 3.68               | 2.96       | 2.21      |
| MAGNESIO mg/L                          | 0.95   | 0.79   | 0.67       | 0.49      | 0.47    | 0.82    | 0.92       | 0.77      | 0.46  | 0.65    | 0.60       | 0.38      | 0.27   | 0.77               | 0.60       | 0.39      |
| HIERRO TOTAL mg/L                      | 0.52   | 0.33   | 0.31       | 0.24      | 0.48    | 0.53    | 0.48       | 0.41      | 0.94  | 1.14    | 0.65       | 0.46      | 3.36   | 2.12               | 0.76       | 0.54      |
| MANGANESO mg/L                         | 0.04   | 0.03   | 0.17       | 0.01      | 0.03    | 0.04    | 0.03       | 0.02      | 0.07  | 0.05    | 0.04       | 0.02      | 0.08   | 0.07               | 0.04       | 0.04      |
| FOSFORO TOTAL mg/L                     | 0.04   | 0.03   | 0.02       | 0.01      | 0.48    | 0.53    | 0.48       | 0.41      | 0.06  | 0.13    | 0.03       | 0.04      | 0.09   | 0.15               | 0.06       | 0.09      |
| NKT mg/L                               | 0.43   | 0.37   | 0.34       | 0.43      | 0.82    | 0.45    | 0.95       | 0.66      | 0.63  | 134     | 0.67       | 0.63      | 0.93   | 1.17               | 1.87       | 1.03      |
| COT mg/L                               | 2.98   | 2.78   | 2.44       | 1.86      | 2.78    | 1.86    | 2.90       | 3.11      | 2.93  | 4.90    | 5.27       | 4.70      | 5.33   | 4.90               | 3.83       | 4.10      |
| SOLIDOS mg/L                           | 37.9   | 30.67  | 32.08      | 28.58     | 46.5    | 48.67   | 42.50      | 48.05     | 64    | 117     | 32         | 38        | 40.3   | 115.67             | 33.67      | 21.67     |
| COLIFORMES TOTALE                      | 258.50 | 429.03 | 469.62     | 367.51    | 1007.73 | 527.01  | 10108.95   | 638.25    | 51.13 | 1060.67 | 6.67       | 151.83    | 316.87 | 2683.83            | 261.83     | 931.89    |

The Study on Sustainable Water Supply for Bogotá City and Surrounding Area Based on the Integrated Water Resources Management, Colombia

Font: ACUEDUCT 2004-2005 Annual Report of Water Quality

#### CHAPTER 2. SUPPLEMENTARY WATER QUALITY TEST

#### 2. 1. Test sites

#### (1) Test sites

This Study placed emphasis on surveying the Cretaceous layer groundwater in the Bogota plain. Specifically, the Study area covered the Bogota metropolitan area and the southern hill zone. The previous JICA study revealed a paucity of groundwater quality data with regard to the southern hill zone of the Bogota metropolitan area. Cretaceous layer is distributed over the southern hill zone, within which 20 well sites were selected for water quality survey under this Study.

#### (2) Number of water quality tests

Sampling for water quality testing is divided into two phases. The goal of this testing is to identify long-term changes in water quality. In addition, by identifying water quality in wells located in Cretaceous layer distributed over the Bogota city eastern area and the southern hill zone, a sanitizing method is to be determined to enable this water to be effectively potable. In this regard, water quality testing is as follows:

- Phase 1 (January 2007 ~ March 2007):
  - Water quality testing is carried out during the dry season. This enables subsequent comparison with and identifying of groundwater characteristics during the rainy season.
- Phase 2 (August 2007 ~ December 2007):
  - o Water quality testing is carried out during the rainy season, enabling confirmation of groundwater characteristics during the rainy season.

Groundwater quality is linked to factors including topographical well location, target aquifer and production amount.

#### (3) Sampling sites

Representative aquifers, rivers and wells are selected.

- Rivers and wells for sampling are selected in the Bogota river surrounding area. The status of groundwater contamination and the effect of river pollution on groundwater is then identified.
- To the extent possible, samples are taken from wells in Cretaceous layer within the Bogota metropolitan area
- From the standpoint of water quality change, sampling wells are selected to enable an accurate estimation of groundwater flow conditions.
- On the basis of water quality testing results, study and proposal is made with regard to the necessity for chlorination treatment to render groundwater safe for potable water supply.
- Sampling sites are indicated in Figure-20.

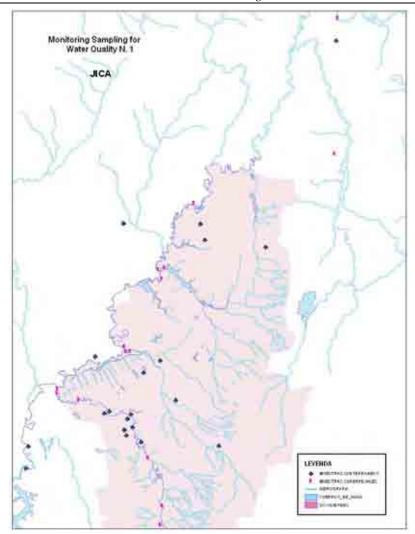



Figure-11. 20 Sampling sites Map

#### 2. 2. Results of supplementary water quality testing

Results of river and well water quality testing are indicated in Table-00 for the river and Table-00 for the wells. Specifically, the tables compare the results of supplemental water testing with water quality standards set by the Colombian government, with those items marked where values are in excess of standard values.

Table-11. 4 The results of well water quality testing

| POZO                  | HORA  | PH   | TEM AMB | TEM AGUA | CONDUCTIVIDAD | OD   | TURBIEDAD NTU | Zn mg/L Zn | Ba mg /L | Cr <sup>+6</sup> mg/L | CN mg/L | F mg/L | Ag mg/L | Mn mg/L |
|-----------------------|-------|------|---------|----------|---------------|------|---------------|------------|----------|-----------------------|---------|--------|---------|---------|
| Bavaria               | 10:30 | 5,85 | 13,1    | 22,6     | 95,7          | 0,64 | 4             | 0.04       | 3        | 0.035                 | 0.004   | 0.74   | 0.00    | 0.047   |
| Carboquimica          | 11:45 | 5,95 | 20      | 21       | 24,8          | 0,6  | 0             | 0.02       | 2        | 0.004                 | 0.009   | 0.48   | 0.032   | 0.106   |
| Dersa                 | 10:00 | 6,67 | 17,8    | 19,2     | 32,2          | 3,97 | 2             | 0.00       | 0        | 0.000                 | 0.000   | 0.00   | 0.00    | 0.733   |
| Districarnazas luna   | 14:45 | 5,54 | 20      | 18,3     | 19,3          | 1,59 | 3             | 0.00       | 0        | 0.067                 | 0.000   | 0.18   | 0.00    | 0.217   |
| Frigorifico guadalupe | 15:30 | 6,52 | 21,6    | 19,1     | 37            | 2,1  | 20            | 0.00       | 3        | 0.020                 | 0.018   | 0.00   | 0.00    | 0.166   |
| Gaseosas colombiana 2 | 12:10 | 6,06 | 20,9    | 20,2     | 34,3          | 1,8  | 0             | 0.00       | 3        | 0.002                 | 0.009   | 0.08   | 0.00    | 0.103   |
| Gibraltar             | 12:20 | 5,94 | 15,6    | 18,7     | 49,9          | 3,5  | 10            | 0.06       | 4        | 0.046                 | 0.007   | 0.00   | 0.00    | 0.042   |
| Gm colmotores         | 15:00 | 7,2  | 21,9    | 20,1     | 80,7          | 1,78 | 7             | 0.00       | 3        | 0.000                 | 0.012   | 0.21   | 0.00    | 0.255   |
| Indumil               | 15:30 | 6,07 | 22,4    | 19,9     | 22,6          | 0,87 | 2             | 0.00       | 4        | 0.039                 | 0.003   | 0.32   | 0.00    | 0.698   |
| Jardines apogeo       | 12:10 | 7,14 | 20,7    | 20,7     | 25,7          | 1,6  | 6             | 0.00       | 2        | 0.000                 | 0.003   | 0.00   | 0.00    | 0.150   |
| La diana              | 11:30 | 6,61 | 20,8    | 19,3     | 30,6          | 2,5  | 11            | 0.01       | 0        | 0.000                 | 0.004   | 0.04   | 0.00    | 0.114   |
| La salle              | 11:12 | 6,28 | 20      | 19,5     | 22,2          | 2,3  | 5             | 0.00       | 2        | 0.000                 | 0.003   | 0.16   | 0.00    | 0.034   |
| Manufacturas eliot    | 16:20 | 7,61 | 17,8    | 18       | 61,2          | 1,6  | 14            | 0.00       | 1        | 0.029                 | 0.011   | 0.41   | 0.00    | 0.091   |
| Mariscal sucre        | 12:45 | 6,68 | 19,8    | 20       | 54            | 2,16 | 13            | 0.07       | 1        | 0.126                 | 0.000   | 0.24   | 0.00    | 0.024   |
| Parque tunal          | 09:05 | 6,12 | 18,3    | 18,6     | 37,9          | 0,3  | 7             | 0.02       | 2        | 0.000                 | 0.005   | 0.40   | 0.026   | 0.081   |
| Petco                 | 13:00 | 5,34 | 22,8    | 18,7     | 21,3          | 1,15 | 1             | 0.00       | 1        | 0.000                 | 0.000   | 0.29   | 0.00    | 0.265   |
| Quintas de santa ana  | 13:00 | 7,09 | 23,4    | 23,5     | 13,5          | 3,41 | 0             | 0.04       | 2        | 0.006                 | 0.001   | 0.23   | 0.00    | 0.176   |
| Siberia               | 14:45 | 6,65 | 18,3    | 19,4     | 157,4         | 1,71 | 23            | 0.00       | 0        | 0.000                 | 0.003   | 0.00   | 0.045   | 0.147   |
| Suba                  | 12:00 | 6,01 | 21,5    | 23,6     | 50            | 2    | 7             | 0.00       | 1        | 0.216                 | 0.012   | 0.00   | 0.00    | 0.378   |
| Vitelma               | 10:20 | 6,38 | 10,6    | 13       | 19,5          | 2,6  | 20            | 0.03       | 3        | 0.111                 | 0.00    | 0.18   | 0.00    | 0.356   |

| POZO                  | Cu mg/Lcu | Fe mg/L | Dureza mg/LCaCO <sub>3</sub> | $SO_4  mg/L$ | S <sup>-</sup> μg/L | $NO_{3m/1NO3}$ | Mo mg/Lmo | $NH_4$ mg/L | Fenol mg/L | $NO_2 mg/L$ | Al mg/L | Cu mg/L | B mg/L | Mn mg/L | CI mg/L | CI libre mg/L | Cl total mg/L |
|-----------------------|-----------|---------|------------------------------|--------------|---------------------|----------------|-----------|-------------|------------|-------------|---------|---------|--------|---------|---------|---------------|---------------|
| Bavaria               | 0.02      | 6.21    | 12.73                        | 1            | 15                  | 2.0            | 0.02      | 10.35       | 0.002      | 0.000       | 0.211   | 0.02    | 0.0    | 0.047   | 12.7    | 0.00          | 0.03          |
| Carboquimica          | 0.02      | 10.52   | 10.68                        | 2            | 6                   | 1.0            | 0.02      | 0.81        | 0.005      | 0.000       | 0.171   | 0.02    | 0.0    | 0.106   | 6.0     | 0.01          | 0.07          |
| Dersa                 | 3.33      | 10.28   | 2.21                         | 0            | 14                  | 34.5           | 0.13      | 8.36        | 0.006      | 0.00        | 0.137   | 3.33    | 0.0    | 0.756   | 42.8    | 0.00          | 0.14          |
| Districarnazas luna   | 0.82      | 2.93    | 13.59                        | 0            | 7                   | 0.0            | 0.03      | 0.92        | 0.003      | 0.00        | 0.194   | 0.82    | 0.0    | 0.217   | 12.4    | 0.02          | 0.02          |
| Frigorifico guadalupe | 0.07      | 3.87    | 14.57                        | 2            | 2                   | 0.9            | 0.03      | 2.12        | 0.002      | 0.000       | 0.315   | 0.07    | 0.0    | 0.166   | 44.8    | 0.00          | 0.02          |
| Gaseosas colombiana 2 | 0.03      | 6.52    | 8.71                         | 5            | 7                   | 0.3            | 0.08      | 0.26        | 0.002      | 0.000       | 0.042   | 0.03    | 0.0    | 0.103   | 17.3    | 0.00          | 0.02          |
| Gibraltar             | 0.02      | 1.74    | 14.06                        | 0            | 43                  | 0.7            | 0.02      | 12.61       | 0.010      | 0.008       | 0.050   | 0.02    | 0.0    | 0.042   | 10.2    | 0.00          | 0.02          |
| Gm colmotores         | 0.04      | 15.72   | 11.04                        | 3            | 10                  | 0.00           | 0.13      | 0.23        | 0.003      | 0.000       | 0.048   | 0.04    | 0.2    | 0.255   | 45.8    | 0.00          | 0.06          |
| Indumil               | 0.33      | 10.84   | 9.55                         | 18           | 5                   | 0.0            | 0.03      | 0.79        | 0.002      | 0.000       | 0.042   | 0.33    | 0.0    | 0.698   | 2.1     | 0.02          | 0.04          |
| Jardines apogeo       | 0.04      | 4.61    | 10.74                        | 0            | 4                   | 0.0            | 0.00      | 0.85        | 0.003      | 0.000       | 0.181   | 0.04    | 0.0    | 0.150   | 14.2    | 0.00          | 0.01          |
| La diana              | 0.01      | 2.21    | 12.52                        | 0            | 5                   | 0.0            | 0.01      | 19.06       | 0.004      | 0.000       | 0.000   | 0.01    | 0.0    | 0.114   | 0.8     | 0.02          | 0.04          |
| La salle              | 0.04      | 0.25    | 9.96                         | 0            | 1                   | 1.3            | 0.00      | 0.00        | 0.000      | 0.002       | 0.000   | 0.04    | 0.0    | 0.034   | 2.2     | 0.01          | 0.02          |
| Manufacturas eliot    | 0.03      | 0.45    | 10.25                        | 1            | 5                   | 0.1            | 0.00      | 4.91        | 0.003      | 0.000       | 0.379   | 0.03    | 0.0    | 0.091   | 14.0    | 0.00          | 0.02          |
| Mariscal sucre        | 0.04      | 0.12    | 18.44                        | 0            | 103                 | 0.4            | 0.00      | 1.36        | 0.003      | 0.058       | 0.045   | 0.04    | 0.0    | 0.024   | 21.2    | 0.05          | 0.07          |
| Parque tunal          | 0.03      | 5.01    | 12.03                        | 14           | 11                  | 1.0            | 0.01      | 0.24        | 0.006      | 0.00        | 0.005   | 0.03    | 0.0    | 0.081   | 26.9    | 0.02          | 0.06          |
| Petco                 | 0.23      | 8.48    | 14.83                        | 1            | 2                   | 0.00           | 0.01      | 0.15        | 0.001      | 0.000       | 0.201   | 0.23    | 0.0    | 0.265   | 12.8    | 0.00          | 0.00          |
| Quintas de santa ana  | 0.08      | 1.11    | 12.01                        | 0            | 6                   | 0.0            | 0.00      | 0.00        | 0.001      | 0.00        | 0.036   | 0.08    | 0.2    | 0.176   | 1.9     | 0.00          | 0.07          |
| Siberia               | 0.04      | 0.95    | 3.13                         | 0            | 19                  | 0.2            | 0.00      | 50.22       | 0.002      | 0.002       | 0.089   | 0.04    | 0.0    | 0.147   | 81.2    | 0.04          | 0.08          |
| Suba                  | 0.04      | 4.31    | 12.58                        | 1            | 76                  | 0.0            | 0.01      | 0.30        | 0.002      | 0.000       | 0.029   | 0.04    | 0.0    | 0.378   | 13.9    | 1             | 0.01          |
| Vitelma               | 0.04      | 1.06    | 11.23                        | 0            | 80                  | 1.1            | 0.00      | 0.00        | 0.002      | 0.000       | 0.030   | 0.04    | 0.0    | 0.356   | 2.1     | 0.01          | 0.05          |

The Study on Sustainable Water Supply for Bogotá City and Surrounding Area Based on the Integrated Water Resources Management, Colombia

Table-11. 5 The results of river water quality testing

| RIO                                              | ident | HORA           | PH   | TEM AMB      | TEM AGUA     | CONDUCTIVI   | OD           | TURBIEDAD  | Zn mg/L      | Ba mg/L      | Cr+6 mg/L      | CN mg/L        | F mg/L | Ag mg/L        | Mn mg/L        | Cu mg/L | Fe mg/L      |
|--------------------------------------------------|-------|----------------|------|--------------|--------------|--------------|--------------|------------|--------------|--------------|----------------|----------------|--------|----------------|----------------|---------|--------------|
| BOGOTA CIERRE                                    | 1     | 7.30           | 7.12 | 12.9         | 17.7         | 76.9         | 0            | 105        | 0.00         | 14.00        | 0.300          | 0.009          | 0.24   | 0.00           | 0.172          | 0.00    | 1.10         |
| BOGOTA CIERRE                                    | 1     | 8.00           | 7.03 | 12.7         | 17.7         | 77.8         | 0            | 99         | 0.01         | 14.01        | 0.300          | 0.009          | 0.24   | 0.00           | 0.172          | 0.00    | 1.11         |
| BOGOTA CIERRE                                    | 1     | 8.30           | 7.02 | 13           | 17.7         | 77.9         | 0            | 105        | 0.02         | 14.02        | 0.300          | 0.009          | 0.24   | 0.00           | 0.172          | 0.00    | 1.12         |
| BOGOTA CIERRE                                    | 1     | 9.00           | 7    | 15.3         | 17.7         | 77.1         | 0            | 90         | 0.03         | 14.03        | 0.300          | 0.009          | 0.24   | 0.00           | 0.172          | 0.00    | 1.13         |
| BOGOTA CIERRE                                    | 1     | 9.30           | 6.99 | 15.9         | 17.8         | 76.9         | 0            | 100        | 0.04         | 14.04        | 0.300          | 0.009          | 0.24   | 0.00           | 0.172          | 0.00    | 1.14         |
| BOGOTA CORTIJO                                   | 2     | 7.50           | 6,62 | 11,2         | 16,8         | 37,7         | 1,22         | 45         | 0.03         | 3.00         | 0.00           | 0.004          | 0.48   | 0.013          | 0.061          | 0.04    | 0.06         |
| BOGOTA CORTIJO                                   | 2     | 8.20           | 6,58 | 11,6         | 17,1         | 37,4         | 1,77         | 45         | 0.04         | 3.01         | 0.00           | 0.004          | 0.48   | 0.013          | 0.061          | 0.04    | 0.06         |
| BOGOTA CORTIJO  BOGOTA CORTIJO                   | 2     | 8.50           | 6,71 | 12,5         | 17,2         | 28,2         | 1,9          | 47         | 0.05         | 3.02         | 0.00           | 0.004          | 0.48   | 0.013          | 0.061          | 0.04    | 0.06         |
| BOGOTA CORTIJO  BOGOTA CORTIJO                   | 2     | 9.20<br>9.50   | 6,82 | 13,4         | 17,7         | 44,1         | 1,68         | 75         | 0.06         | 3.03         | 0.00           | 0.004          | 0.48   | 0.013          | 0.061<br>0.061 | 0.04    | 0.06         |
| BOGOTA CORTISO  BOGOTA DESPUES DE                | 2     | 11.10          | 6,76 | 13,7<br>14.2 | 17,7<br>18.5 | 50,6<br>78.4 | 1,41         | 77<br>190  | 0.07         | 3.04<br>10.0 | 0.00<br>0.303  | 0.004          | 0.48   | 0.013          | 0.154          | 0.04    | 0.06<br>1.31 |
| LA DESCARGA PTE<br>METALICO                      | 3     | 11.10          | 0    | 14.2         | 18.3         | 78.4         | 0            | 190        | 0.00         | 10.0         | 0.303          | 0.00           | 0.09   | 0.00           | 0.154          | 0.00    | 1.31         |
| BOGOTA DESPUES DE<br>LA DESCARGA PTE<br>METALICO | 3     | 11.40          | 6.2  | 15.5         | 18.7         | 76.8         | 0.01         | 220        | 0.01         | 10.1         | 0.303          | 0.00           | 0.09   | 0.00           | 0.154          | 0.00    | 1.32         |
| BOGOTA DESPUES DE<br>LA DESCARGA PTE             | 3     | 12.10          | 6.1  | 17.1         | 19           | 78.8         | 0            | 210        | 0.02         | 10.2         | 0.303          | 0.00           | 0.09   | 0.00           | 0.154          | 0.00    | 1.33         |
| METALICO<br>BOGOTA DESPUES DE                    | 3     | 12.40          | 6.04 | 18.9         | 19.2         | 79.8         | 0.02         | 227        | 0.03         | 10.3         | 0.303          | 0.00           | 0.09   | 0.00           | 0.154          | 0.00    | 1.34         |
| LA DESCARGA PTE<br>METALICO                      |       |                |      |              |              |              |              |            |              |              |                |                |        |                |                |         |              |
| BOGOTA DESPUES DE<br>LA DESCARGA PTE<br>METALICO | 3     | 13.10          | 6.14 | 18.9         | 19.3         | 81.2         | 0            | 217        | 0.04         | 10.4         | 0.303          | 0.00           | 0.09   | 0.00           | 0.154          | 0.00    | 1.35         |
| BOGOTA LISBOA                                    | 4     | 13.30          | 7.49 | 20.2         | 19.7         | 19.9         | 2            | 5          | 0.02         | 0.00         | 0.59           | 0.004          | 0.00   | 0.00           | 0.010          | 0.00    | 0.04         |
| BOGOTA LISBOA                                    | 4     | 14.00          | 7.27 | 20.3         | 19.2         | 25.3         | 1.7          | 6          | 0.02         | 0.00         | 0.59           | 0.004          | 0.00   | 0.00           | 0.010          | 0.00    | 0.04         |
| BOGOTA LISBOA                                    | 4     | 14.30          | 7.83 | 19.1         | 19.4         | 24.9         | 1.6          | 6          | 0.02         | 0.00         | 0.59           | 0.004          | 0.00   | 0.00           | 0.010          | 0.00    | 0.04         |
| BOGOTA LISBOA                                    | 4     | 15.00          | 7.4  | 18.2         | 19.4         | 25           | 1.57         | 6          | 0.02         | 0.00         | 0.59           | 0.004          | 0.00   | 0.00           | 0.010          | 0.00    | 0.04         |
| BOGOTA LISBOA                                    | 4     | 15.30          | 6.89 | 19.5         | 19.4         | 25           | 1.81         | 7          | 0.02         | 0.00         | 0.59           | 0.004          | 0.00   | 0.00           | 0.010          | 0.00    | 0.04         |
| BOGOTA PTE<br>CUNDINAMARCA                       | 5     | 8.00           | 5.95 | 11.2         | 17.2         | 58           | 0.01         | 205        | 0.00         | 9.00         | 0.101          | 0.001          | 0.00   | 0.000          | 0.109          | 0.04    | 0.08         |
| BOGOTA PTE<br>CUNDINAMARCA                       | 5     | 8.30           | 5.84 | 11.2         | 17.4         | 59           | 0            | 230        | 0.01         | 9.01         | 0.101          | 0.001          | 0.00   | 0.000          | 0.109          | 0.04    | 0.08         |
| BOGOTA PTE<br>CUNDINAMARCA<br>BOGOTA PTE         | 5     | 9.00           | 6.07 | 12.1         | 17.7         | 59.2<br>56.2 | 0            | 248<br>220 | 0.02         | 9.02         | 0.101          | 0.001          | 0.00   | 0.000          | 0.109          | 0.04    | 0.08         |
| CUNDINAMARCA<br>BOGOTA PTE                       | 5     | 10.00          | 6.34 | 12.6         | 17.8         | 57           | 0            | 230        | 0.03         | 9.04         | 0.101          | 0.001          | 0.00   | 0.000          | 0.109          | 0.04    | 0.08         |
| CUNDINAMARCA<br>BOGOTA PTE LA VIRGEN             | 6     | 11.00          | 6.5  | 17.8         | 17.4         | 22.7         | 2.11         | 17         | 0.00         | 2.00         | 0.035          | 0.001          | 0.18   | 0.017          | 0.016          | 0.03    | 0.93         |
| BOGOTA PTE LA VIRGEN                             | 6     | 11.30          | 6.42 | 17.9         | 17.6         | 22.9         | 2.11         | 17         | 0.01         | 2.01         | 0.035          | 0.001          | 0.18   | 0.017          | 0.016          | 0.03    | 0.93         |
| BOGOTA PTE LA VIRGEN                             | 6     | 12.00          | 6.45 | 18           | 17.8         | 23           | 1.43         | 18         | 0.02         | 2.02         | 0.035          | 0.001          | 0.18   | 0.017          | 0.016          | 0.03    | 0.93         |
| BOGOTA PTE LA VIRGEN                             | 6     | 12.30          | 6.44 | 19.4         | 18.1         | 23.3         | 1.54         | 17         | 0.03         | 2.03         | 0.035          | 0.001          | 0.18   | 0.017          | 0.016          | 0.03    | 0.93         |
| BOGOTA PTE LA VIRGEN                             | 6     | 13.00          | 6.47 | 18.5         | 18.2         | 23.4         | 2.46         | 18         | 0.04         | 2.04         | 0.035          | 0.001          | 0.18   | 0.017          | 0.016          | 0.03    | 0.93         |
| BOGOTA SAN<br>BERNARDINO                         | 7     | 13.30          | 6.36 | 23.1         | 18.9         | 61.8         | 0.01         | 208        | 0.00         | 10.00        | 0.088          | 0.003          | 0.00   | 0.000          | 0.155          | 0.01    | 1.25         |
| BOGOTA SAN<br>BERNARDINO                         | 7     | 14.00          | 6.52 | 22.8         | 18.8         | 59.6         | 0.02         | 212        | 0.01         | 10.01        | 0.088          | 0.003          | 0.00   | 0.000          | 0.155          | 0.01    | 1.26         |
| BOGOTA SAN<br>BERNARDINO                         | 7     | 14.30          | 6.69 | 20.3         | 18.8         | 61.8         | 0            | 226        | 0.02         | 10.02        | 0.088          | 0.003          | 0.00   | 0.000          | 0.155          | 0.01    | 1.27         |
| BOGOTA SAN<br>BERNARDINO                         | 7     | 15.00          | 6.53 | 20.3         | 18.9         | 61.6         | 0            | 233        | 0.03         | 10.03        | 0.088          | 0.003          | 0.00   | 0.000          | 0.155          | 0.01    | 1.28         |
| BOGOTA SAN<br>BERNARDINO                         | 7     | 15.30          | 6.56 | 20.1         | 18.7         | 61.4         | 0            | 258        | 0.04         | 10.04        | 0.088          | 0.003          | 0.00   | 0.000          | 0.155          | 0.01    | 1.29         |
| BOGOTA TIBITOC                                   | 8     | 13.45          | 6.29 | 18.9         | 18.8         | 11.3         | 5.58         | 21         | 0.05         | 4.00         | 0.073          | 0.002          | 0.09   | 0.016          | 0.026          | 0.03    | 0.66         |
| BOGOTA TIBITOC<br>BOGOTA TIBITOC                 | 8     | 14.15          | 6.64 | 18.7         | 18.6         | 11.1         | 5.49         | 21         | 0.06         | 4.01         | 0.073          | 0.002          | 0.09   | 0.016          | 0.026          | 0.03    | 0.66         |
| BOGOTA TIBITOC<br>BOGOTA TIBITOC                 |       | 15.45<br>15.15 | 6.24 | 18.2<br>18.4 | 18.6<br>18.8 | 10.5<br>9.3  | 5.41<br>4.02 | 21<br>26   | 0.07<br>0.08 | 4.02<br>4.03 | 0.073<br>0.073 | 0.002<br>0.002 | 0.09   | 0.016<br>0.016 | 0.026<br>0.026 | 0.03    | 0.66<br>0.66 |
| BOGOTA TIBITOC                                   | 8     | 15.15          | 6.41 | 17.4         | 18.4         | 9.3          | 4.02         | 24         | 0.08         | 4.04         | 0.073          | 0.002          | 0.09   | 0.016          | 0.026          | 0.03    | 0.66         |
| FUCHA CON ALAMEDA                                | 9     | 13.10          | 6.28 | 21.3         | 20.6         | 105.3        | 0.5          | 129        | 0.09         | 20.00        | 0.313          | 0.002          | 0.09   | 0.00           | 0.020          | 0.00    | 1.54         |
| FUCHA CON ALAMEDA                                | 9     | 13.40          | 6.68 | 19           | 20.7         | 108.3        | 0.3          | 141        | 0.01         | 20.01        | 0.313          | 0.002          | 0.00   | 0.00           | 0.264          | 0.00    | 1.55         |
| FUCHA CON ALAMEDA                                | 9     | 14.10          | 6.7  | 20.2         | 20.7         | 110.9        | 0.2          | 163        | 0.02         | 20.02        | 0.313          | 0.002          | 0.00   | 0.00           | 0.264          | 0.00    | 1.56         |
| FUCHA CON ALAMEDA                                | 9     | 14.40          | 6.47 | 19.3         | 20.9         | 112.7        | 0.1          | 174        | 0.03         | 20.03        | 0.313          | 0.002          | 0.00   | 0.00           | 0.264          | 0.00    | 1.57         |
| FUCHA CON ALAMEDA                                | 9     | 15.10          | 6.51 | 20.2         | 21           | 111.2        | 0.2          | 167        | 0.04         | 20.04        | 0.313          | 0.002          | 0.00   | 0.00           | 0.264          | 0.00    | 1.58         |
|                                                  |       |                |      |              | •            |              |              |            |              |              |                |                |        |                |                |         |              |

The Study on Sustainable Water Supply for Bogotá City and Surrounding Area Based on the Integrated Water Resources Management, Colombia

| RIO                              |    | HORA          | PH   | TEM AMB         | TEM 40114        | OON DU OT 11       | OD    | TURBIEDAD         | 7 //            | D//             | 00                 | ON//            | F //           | A = //          | M //             | 0               | E/              |
|----------------------------------|----|---------------|------|-----------------|------------------|--------------------|-------|-------------------|-----------------|-----------------|--------------------|-----------------|----------------|-----------------|------------------|-----------------|-----------------|
| TUNJUELO 100m ABAJO              | 10 | HORA<br>11.30 | 5.81 | TEM_AMB<br>19.6 | TEM_AGUA<br>17.8 | CONDUCTIVI<br>46.8 | 0.89  | TURBIEDAD_<br>851 | Zn mg/L<br>0.00 | Ba mg/L<br>5.00 | Cr+6 mg/L<br>0.055 | CN mg/L<br>0.00 | F mg/L<br>0.00 | Ag mg/L<br>0.00 | Mn mg/L<br>0.254 | Cu mg/L<br>0.00 | Fe mg/L<br>1,92 |
| DF YOMASA                        | 10 | 11.50         | 5.81 | 19.6            | 17.8             | 40.8               | 0.89  | 851               | 0.00            | 5.00            | 0.055              | 0.00            | 0.00           | 0.00            | 0.254            | 0.00            | 1.92            |
| TUNJUELO 100m ABAJO              | 10 | 12.00         | 6.09 | 20.1            | 17.8             | 46                 | 1.05  | 832               | 0.00            | 5.00            | 0.055              | 0.00            | 0.00           | 0.00            | 0.254            | 0.00            | 1.92            |
| DE YOMASA                        | -  |               |      |                 |                  |                    |       |                   |                 |                 |                    |                 |                |                 |                  |                 | -               |
| TUNJUELO 100m ABAJO              | 10 | 12.30         | 6.24 | 20.1            | 18               | 48.1               | 1.04  | 814               | 0.00            | 5.00            | 0.055              | 0.00            | 0.00           | 0.00            | 0.254            | 0.00            | 1.92            |
| DE YOMASA                        |    |               |      |                 |                  |                    |       |                   |                 |                 |                    |                 |                |                 |                  |                 |                 |
| TUNJUELO 100m ABAJO              | 10 | 13.00         | 6.17 | 20.2            | 18.2             | 47.3               | 0.91  | 820               | 0.00            | 5.00            | 0.055              | 0.00            | 0.00           | 0.00            | 0.254            | 0.00            | 1.92            |
| DE YOMASA                        | 10 | 12.20         | 6.10 | 21              | 10.6             | 40.1               | 1.01  | 755               | 0.00            | 5.00            | 0.055              | 0.00            | 0.00           | 0.00            | 0.254            | 0.00            | 1.92            |
| TUNJUELO 100m ABAJO<br>DE YOMASA | 10 | 13.30         | 6.19 | 21              | 18.6             | 49.1               | 1.01  | /55               | 0.00            | 5.00            | 0.055              | 0.00            | 0.00           | 0.00            | 0.254            | 0.00            | 1.92            |
| TUNJUELO SAN BENITO              | 11 | 6.30          | 6.12 | 10.8            | 14.2             | 65.9               | 0.06  | 231               | 0.00            | 6.00            | 0.133              | 0.00            | 0.01           | 0.00            | 0.171            | 0.06            | 0.73            |
| TONGOLLO GAN BLINTO              |    | 0.50          | 0.12 | 10.0            | 14.2             | 05.7               | 0.00  | 231               | 0.00            | 0.00            | 0.155              | 0.00            | 0.01           | 0.00            | 0.171            | 0.00            | 0.75            |
| TUNJUELO SAN BENITO              | 11 | 7.00          | 6.02 | 11.1            | 14.3             | 65.5               | 0.08  | 372               | 0.00            | 6.00            | 0.133              | 0.00            | 0.01           | 0.00            | 0.171            | 0.06            | 0.73            |
|                                  |    |               |      |                 |                  |                    |       |                   |                 |                 |                    |                 |                |                 |                  |                 |                 |
| TUNJUELO SAN BENITO              | 11 | 7.30          | 6.12 | 12.4            | 14.6             | 64.3               | 0.08  | 311               | 0.00            | 6.00            | 0.133              | 0.00            | 0.01           | 0.00            | 0.171            | 0.06            | 0.73            |
|                                  |    |               |      |                 |                  |                    |       |                   |                 |                 |                    |                 |                |                 |                  |                 |                 |
| TUNJUELO SAN BENITO              | 11 | 8.00          | 6.21 | 12.9            | 14.7             | 64.7               | 0.02  | 292               | 0.00            | 6.00            | 0.133              | 0.00            | 0.01           | 0.00            | 0.171            | 0.06            | 0.73            |
| TUNJUELO SAN BENITO              | 11 | 0.20          | 614  | 14.6            | 14.7             | 44.7               | 0.00  | 100               | 0.00            | 6.00            | 0.400              | 0.00            | 0.04           | 0.00            | 0.171            | 0.06            | 0.73            |
| TUNJUELO SAN BENITO              | 11 | 8.30          | 6.14 | 14.6            | 14.7             | 64.7               | 0.08  | 488               | 0.00            | 6.00            | 0.133              | 0.00            | 0.01           | 0.00            | 0.171            | 0.06            | 0.73            |
| TUNJUELO USME                    | 12 | 7.00          | 6.08 | 9.7             | 12.7             | 23.6               | 2.28  | 82                | 0.00            | 3.00            | 0.103              | 0.002           | 0.00           | 0.00            | 0.101            | 0.07            | 0.99            |
| TUNJUELO USME                    | 12 | 7.30          | 6.05 | 10.4            | 12.4             | 24.3               | 1.9   | 80                | 0.00            | 3.00            | 0.103              | 0.002           | 0.00           | 0.00            | 0.101            | 0.07            | 0.99            |
| TUNJUELO USME                    | 12 | 8.00          | 5.93 | 11.3            | 12.8             | 25.9               | 2     | 80                | 0.00            | 3.00            | 0.103              | 0.002           | 0.00           | 0.00            | 0.101            | 0.07            | 0.99            |
| TUNJUELO USME                    | 12 | 8.30          | 5.73 | 11.9            | 13.3             | 25.2               | 1.91  | 80                | 0.00            | 3.00            | 0.103              | 0.002           | 0.00           | 0.00            | 0.101            | 0.07            | 0.99            |
| TUNJUELO USME                    | 12 | 9.00          | 5.6  | 13.2            | 13.7             | 26.5               | 1.78  | 80                | 0.00            | 3.00            | 0.103              | 0.002           | 0.00           | 0.00            | 0.101            | 0.07            | 0.99            |
| TUNJUELO ISLA                    | 13 | 10.00         | 6.79 | 16.7            | 16.4             | 159.1              | 0.3   | 164               | 0.00            | 16.00           | 0.320              | 0.003           | 1.11           | 0.00            | 0.234            | 0.00            | 1.27            |
| PONTON SAN JOSE                  |    |               |      |                 |                  |                    |       |                   |                 |                 |                    |                 |                |                 |                  |                 |                 |
| TUNJUELO ISLA                    | 13 | 10.30         | 7.06 | 15              | 16.3             | 179.5              | 0     | 158               | 0.00            | 16.00           | 0.320              | 0.003           | 1.11           | 0.00            | 0.234            | 0.00            | 1.27            |
| PONTON SAN JOSE                  |    |               |      |                 |                  |                    |       |                   |                 |                 |                    |                 |                |                 |                  |                 |                 |
| TUNJUELO ISLA<br>PONTON SAN JOSE | 13 | 11.00         | 6.87 | 14.8            | 16.5             | 169.7              | 0.6   | 116               | 0.00            | 16.00           | 0.320              | 0.003           | 1.11           | 0.00            | 0.234            | 0.00            | 1.27            |
| TUNJUELO ISLA                    | 13 | 11.30         | 6.86 | 15.4            | 16.9             | 156.8              | 0.3   | 126               | 0.00            | 16.00           | 0.320              | 0.003           | 1.11           | 0.00            | 0.234            | 0.00            | 1.27            |
| PONTON SAN JOSE                  | 13 | 11.50         | 0.80 | 15.4            | 10.9             | 150.8              | 0.3   | 120               | 0.00            | 16.00           | 0.320              | 0.003           | 1.11           | 0.00            | 0.234            | 0.00            | 1.27            |
| TUNJUELO ISLA                    | 13 | 12.00         | 7    | 17              | 16.9             | 172.1              | 0.1   | 126               | 0.00            | 16.00           | 0.320              | 0.003           | 1.11           | 0.00            | 0.234            | 0.00            | 1.27            |
| PONTON SAN JOSE                  |    | 12.00         | 1    | .,              | 10.5             | 172.1              | 0.1   | 120               | 0.00            | 10.00           | 0.020              | 0.000           |                | 0.00            | 0.20             | 0.00            | 1.2             |
| QUIBBA                           | 14 | 7.15          | 7.83 | 10.4            | 10.4             | 21.4               | 8.53  | 15.9              | 0.00            | 3.00            | 0.022              | 0.002           | 0.20           | 0.00            | 0.011            | 0.02            | 0.16            |
| QUIBBA                           | 14 | 7.45          | 7.55 | 10.4            | 10.4             | 23.2               | 9.48  | 13.6              | 0.00            | 3.00            | 0.022              | 0.002           | 0.20           | 0.00            | 0.011            | 0.02            | 0.16            |
| QUIBBA                           | 14 | 8.15          | 7.43 | 11.3            | 11.3             | 22.3               | 10.67 | 10.4              | 0.00            | 3.00            | 0.022              | 0.002           | 0.20           | 0.00            | 0.011            | 0.02            | 0.16            |
| QUIBBA                           | 14 | 8.45          | 7.29 | 11.2            | 11.2             | 22.3               | 8.76  | 15.4              | 0.00            | 3.00            | 0.022              | 0.002           | 0.20           | 0.00            | 0.011            | 0.02            | 0.16            |
| QUIBBA                           | 14 | 9.15          | 7.15 | 11.7            | 11.7             | 22.4               | 11.9  | 11.1              | 0.00            | 3.00            | 0.022              | 0.002           | 0.20           | 0.00            | 0.011            | 0.02            | 0.16            |
| JUAN AMARILLO                    | 15 | 11.00         | 8.5  | 20.5            | 19.5             | 61.1               | 0.02  | 76                | 0.02            | 6.00            | 0.091              | 0.015           | 0.05           | 0.006           | 0.141            | 0.08            | 0.86            |
| JUAN AMARILLO                    | 15 | 11.30         | 8.21 | 18.4            | 19.6             | 69.7               | 0.35  | 77                | 0.02            | 6.00            | 0.091              | 0.015           | 0.05           | 0.006           | 0.141            | 0.08            | 0.86            |
| JUAN AMARILLO                    | 15 | 12.00         | 7.19 | 21.2            | 19.5             | 69.1               | 0.67  | 79                | 0.02            | 6.00            | 0.091              | 0.015           | 0.05           | 0.006           | 0.141            | 0.08            | 0.86            |
| JUAN AMARILLO                    | 15 | 12.30         | 7.68 | 20.3            | 19.5             | 70                 | 0.43  | 80                | 0.02            | 6.00            | 0.091              | 0.015           | 0.05           | 0.006           | 0.141            | 0.08            | 0.86            |
| JUAN AMARILLO                    | 15 | 13.00         | 7.29 | 20.8            | 20.5             | 71                 | 0.37  | 81                | 0.02            | 6.00            | 0.091              | 0.015           | 0.05           | 0.006           | 0.141            | 0.08            | 0.86            |

| RIO                                              | Dureza mg/LCaCO3 | SO4      | S-         | NO3 mg/L | Mo mg/L | NH4            | Fenol | NO2 mg/L       |
|--------------------------------------------------|------------------|----------|------------|----------|---------|----------------|-------|----------------|
|                                                  | -                | mg/L     | μg/L       | -        | _       |                | mg/L  |                |
| BOGOTA CIERRE                                    | 0.00             | 33       | 510        | 9.0      | 0.16    | 60.19          | 0.073 | 0.021          |
| BOGOTA CIERRE                                    | 0.01             | 33       | 510        | 9.1      | 0.17    | 60.20          | 0.073 | 0.021          |
| BOGOTA CIERRE                                    | 0.02             | 33       | 510        | 9.2      | 0.18    | 60.21          | 0.073 | 0.021          |
| BOGOTA CIERRE                                    | 0.03             | 33       | 510        | 9.3      | 0.19    | 60.22          | 0.073 | 0.021          |
| BOGOTA CIERRE                                    | 0.04             | 33       | 510        | 9.4      | 0.20    | 60.23          | 0.073 | 0.021          |
| BOGOTA CORTIJO                                   | 15.01            | 21       | 120        | 2.4      | 0.00    | 14.28          | 0.016 | 0.027          |
| BOGOTA CORTIJO                                   | 15.02            | 21       | 120        | 2.5      | 0.01    | 14.29          | 0.016 | 0.027          |
| BOGOTA CORTIJO                                   | 15.03            | 21       | 120        | 2.6      | 0.02    | 14.30          | 0.016 | 0.027          |
| BOGOTA CORTIJO                                   | 15.04            | 21       | 120        | 2.7      | 0.03    | 14.31          | 0.016 | 0.027<br>0.027 |
| BOGOTA CORTIJO<br>BOGOTA DESPUES DE              | 15.05            | 30       | 120<br>400 | 2.0      | 0.04    | 14.32<br>96.05 | 0.016 | 0.027          |
| LA DESCARGA PTE<br>METALICO                      | 4.17             | 30       | 400        | 8.8      | 0.00    | 96.05          | 0.092 | 0.064          |
| BOGOTA DESPUES DE<br>LA DESCARGA PTE<br>METALICO | 4.18             | 30       | 400        | 8.9      | 0.01    | 96.06          | 0.092 | 0.064          |
| BOGOTA DESPUES DE<br>LA DESCARGA PTE             | 4.19             | 30       | 400        | 8.10     | 0.02    | 96.07          | 0.092 | 0.064          |
| METALICO<br>BOGOTA DESPUES DE<br>LA DESCARGA PTE | 4.20             | 30       | 400        | 8.11     | 0.03    | 96.08          | 0.092 | 0.064          |
| METALICO<br>BOGOTA DESPUES DE                    | 4.21             | 30       | 400        | 8.12     | 0.04    | 96.09          | 0.092 | 0.064          |
| LA DESCARGA PTE<br>METALICO                      |                  |          |            |          |         |                |       |                |
| BOGOTA LISBOA                                    | 9.79             | 7        | 9          | 0.3      | 0.00    | 1.01           | 0.004 | 0.012          |
| BOGOTA LISBOA                                    | 9.80             | 7        | 9          | 0.3      | 0.00    | 1.02           | 0.004 | 0.012          |
| BOGOTA LISBOA                                    | 9.81             | 7        | 9          | 0.3      |         |                | 0.004 | 0.012          |
| BOGOTA LISBOA                                    | 9.82             | 7        | 9          | 0.3      | 0.00    | 1.04           | 0.004 | 0.012          |
| BOGOTA LISBOA                                    | 9.83             | 7        | 9          | 0.3      | 0.00    | 1.05           | 0.004 | 0.012          |
| BOGOTA PTE<br>CUNDINAMARCA<br>BOGOTA PTE         | 11.52<br>11.53   | 25<br>25 | 202        | 3.4      | 0.00    | 24.19          | 0.020 | 0.067          |
| CUNDINAMARCA<br>BOGOTA PTE                       | 11.54            | 25       | 202        | 3.6      | 0.01    | 24.20          | 0.020 | 0.067          |
| CUNDINAMARCA<br>BOGOTA PTE                       | 11.55            | 25       | 202        | 3.7      | 0.03    | 24.22          | 0.020 | 0.067          |
| CUNDINAMARCA<br>BOGOTA PTE                       | 11.56            | 25       | 202        | 3.8      | 0.04    | 24.23          | 0.020 | 0.067          |
| CUNDINAMARCA<br>BOGOTA PTE LA VIRGEN             | 11.29            | 7        | 20         | 1.6      | 0.01    | 4.80           | 0.006 | 0.064          |
| BOGOTA PTE LA VIRGEN                             | 11.30            | 7        | 20         | 1.7      | 0.02    | 4.81           | 0.006 | 0.064          |
| BOGOTA PTE LA VIRGEN                             | 11.31            | 7        | 20         | 1.8      | 0.03    | 4.82           | 0.006 | 0.064          |
| BOGOTA PTE LA VIRGEN                             | 11.32            | 7        | 20         | 1.9      | 0.04    | 4.83           | 0.006 | 0.064          |
| BOGOTA PTE LA VIRGEN<br>BOGOTA SAN               | 9.3              | 7 27     | 20<br>258  | 1.10     | 0.05    | 4.84<br>18.49  | 0.006 | 0.064          |
| BERNARDINO<br>BOGOTA SAN                         | 9.4              | 27       | 258        | 6.2      | 0.00    | 18.50          | 0.087 | 0.144          |
| BERNARDINO<br>BOGOTA SAN                         | 9.5              | 27       | 258        | 6.3      | 0.02    | 18.51          | 0.087 | 0.144          |
| BERNARDINO<br>BOGOTA SAN<br>BERNARDINO           | 9.6              | 27       | 258        | 6.4      | 0.03    | 18.52          | 0.087 | 0.144          |
| BOGOTA SAN<br>BERNARDINO                         | 9.7              | 27       | 258        | 6.5      | 0.04    | 18.53          | 0.087 | 0.144          |
| BOGOTA TIBITOC                                   | 10.85            | 0        | 23         | 1.1      | 0.01    | 0.40           | 0.002 | 0.076          |
| BOGOTA TIBITOC                                   | 10.86            | 0        | 23         | 1.2      | 0.01    | 0.40           | 0.002 | 0.076          |
| BOGOTA TIBITOC                                   | 10.87            | 0        | 23         | 1.3      | 0.01    | 0.40           | 0.002 | 0.076          |
| BOGOTA TIBITOC                                   | 10.88            | 0        | 23         | 1.4      | 0.01    | 0.40           | 0.002 | 0.076          |
| BOGOTA TIBITOC                                   | 10.89            | 0        | 23         | 1.5      | 0.01    | 0.40           | 0.002 | 0.076          |
| FUCHA CON ALAMEDA                                | 7.85             | 45       | 680        | 69.5     | 0.00    | 56.99          | 0.114 | 0.136          |
| FUCHA CON ALAMEDA                                | 7.86             | 45       | 680        | 69.6     | 0.01    | 56.99          | 0.114 | 0.136          |
| FUCHA CON ALAMEDA                                | 7.87             | 45       | 680        | 69.7     | 0.02    | 56.99          | 0.114 | 0.136          |
| FUCHA CON ALAMEDA                                | 7.88             | 45       | 680        | 69.8     | 0.03    | 56.99          | 0.114 | 0.136          |
| FUCHA CON ALAMEDA                                | 7.89             | 45       | 680        | 69.9     | 0.04    | 56.99          | 0.114 | 0.136          |

| RIO                              | Dureza mg/LCaCO3 | SO4  | S-   | NO3 mg/L | Mo mg/L | NH4   | Fenol | NO2 mg/L |
|----------------------------------|------------------|------|------|----------|---------|-------|-------|----------|
|                                  |                  | mg/L | μg/L |          |         |       | mg/L  |          |
| TUNJUELO 100m ABAJO<br>DE YOMASA | 1.88             | 10   | 352  | 8.6      | 0.29    | 22.83 | 0.040 | 0.224    |
| TUNJUELO 100m ABAJO<br>DE YOMASA | 1.88             | 10   | 352  | 8.6      | 0.29    | 22.83 | 0.040 | 0.224    |
| TUNJUELO 100m ABAJO<br>DE YOMASA | 1.88             | 10   | 352  | 8.6      | 0.29    | 22.83 | 0.040 | 0.224    |
| TUNJUELO 100m ABAJO<br>DE YOMASA | 1.88             | 10   | 352  | 8.6      | 0.29    | 22.83 | 0.040 | 0.224    |
| TUNJUELO 100m ABAJO<br>DE YOMASA | 1.88             | 10   | 352  | 8.6      | 0.29    | 22.83 | 0.040 | 0.224    |
| TUNJUELO SAN BENITO              | 9.3              | 32   | 138  | 3.9      | 0.00    | 9.75  | 0.032 | 0.005    |
| TUNJUELO SAN BENITO              | 9.3              | 32   | 138  | 3.9      | 0.00    | 9.75  | 0.032 | 0.005    |
| TUNJUELO SAN BENITO              | 9.3              | 32   | 138  | 3.9      | 0.00    | 9.75  | 0.032 | 0.005    |
| TUNJUELO SAN BENITO              | 9.3              | 32   | 138  | 3.9      | 0.00    | 9.75  | 0.032 | 0.005    |
| TUNJUELO SAN BENITO              | 9.3              | 32   | 138  | 3.9      | 0.00    | 9.75  | 0.032 | 0.005    |
| TUNJUELO USME                    | 11.8             | 10   | 85   | 2.4      | 0.00    | 9.74  | 0.085 | 0.006    |
| TUNJUELO USME                    | 11.8             | 10   | 85   | 2.4      | 0.00    | 9.74  | 0.085 | 0.006    |
| TUNJUELO USME                    | 11.8             | 10   | 85   | 2.4      | 0.00    | 9.74  | 0.085 | 0.006    |
| TUNJUELO USME                    | 11.8             | 10   | 85   | 2.4      | 0.00    | 9.74  | 0.085 | 0.006    |
| TUNJUELO USME                    | 11.8             | 10   | 85   | 2.4      | 0.00    | 9.74  | 0.085 | 0.006    |
| TUNJUELO ISLA<br>PONTON SAN JOSE | 7.48             | 69   | 941  | 15.3     | 0.00    | 42.38 | 0.137 | 0.146    |
| TUNJUELO ISLA<br>PONTON SAN JOSE | 7.48             | 69   | 941  | 15.3     | 0.00    | 42.38 | 0.137 | 0.146    |
| TUNJUELO ISLA<br>PONTON SAN JOSE | 7.48             | 69   | 941  | 15.3     | 0.00    | 42.38 | 0.137 | 0.146    |
| TUNJUELO ISLA<br>PONTON SAN JOSE | 7.48             | 69   | 941  | 15.3     | 0.00    | 42.38 | 0.137 | 0.146    |
| TUNJUELO ISLA<br>PONTON SAN JOSE | 7.48             | 69   | 941  | 15.3     | 0.00    | 42.38 | 0.137 | 0.146    |
| QUIBBA                           | 8.29             | 0    | 19   | 1.3      | 0.00    | 0.00  | 0.002 | 0.001    |
| QUIBBA                           | 8.29             | 0    | 19   | 1.3      | 0.00    | 0.00  | 0.002 | 0.001    |
| QUIBBA                           | 8.29             | 0    | 19   | 1.3      | 0.00    | 0.00  | 0.002 | 0.001    |
| QUIBBA                           | 8.29             | 0    | 19   | 1.3      | 0.00    | 0.00  | 0.002 | 0.001    |
| QUIBBA                           | 8.29             | 0    | 19   | 1.3      | 0.00    | 0.00  | 0.002 | 0.001    |
| JUAN AMARILLO                    | 0.00             | 25   | 266  | 11.0     | 0.00    | 41.96 | 0.064 | 0.226    |
| JUAN AMARILLO                    | 0.00             | 25   | 266  | 11.0     | 0.00    | 41.96 | 0.064 | 0.226    |
| JUAN AMARILLO                    | 0.00             | 25   | 266  | 11.0     | 0.00    | 41.96 | 0.064 | 0.226    |
| JUAN AMARILLO                    | 0.00             | 25   | 266  | 11.0     | 0.00    | 41.96 | 0.064 | 0.226    |
| JUAN AMARILLO                    | 0.00             | 25   | 266  | 11.0     | 0.00    | 41.96 | 0.064 | 0.226    |

#### 2. 3. Considerations

#### (1) Rivers

Supplemental water quality results were confirmed as being essentially identical to those obtained by ACUECTO testing. In the case of the Bogota river, Cr+6 (hexavalent chromium) has been detected around Tibitoc due to inflow of tannery effluents. Other items are generally satisfactory. Cr+6 is not detected upstream of urban area. Although some items are slightly above standards for wastewater, actual overall river discharge pollution is at a satisfactory level. Nevertheless, water quality degrades dramatically as river discharge passes through urban area. For example, although turbidity value is  $6\sim50$  upstream of urban area, this value rises to 200 by the time river discharge has traversed urban area. Dissolved oxygen (OD) value is zero due to the fact that wastewater is released untreated into rivers from Bogota urban area. The Juan Amarillo river flows through the northern part of Bogota urban area (residential district) and exhibits a high turbidity value of 50. Nevertheless, the presence of other contaminants is within standard values for wastewater. The Tujuelo river on the other hand flows through the southernmost part of urban area and exhibits turbidity values of 200 in its middle reaches. This zone has a heavy presence of industrial establishments including tanneries, metal processing plants and food processing plants. Cr+6 values are a high  $0.1\sim0.3$  mg/ $\ell$ . NH<sub>4</sub> values are also high; and this is attributed to the anaerobic characteristic of river sedimentation.

#### (2) Wells

A large number of the wells exceeds the standard value for the items of Fe, Mn and NH<sub>4</sub> throughout the Study area. For Fe, although 0.5 mg/ $\ell$  is set as the water standard, almost all sampled wells in the Study area exhibited a value of 1~10. For Mn, 0.15 mg/ $\ell$  is set as water standard, several wells exhibited a value of 0.05~0.3 mg/ $\ell$ . It is clear the Fe and Mn content area a result of the geology of the area. By the comparison of geographical condition, the water quality of Mn in the Quaternary is much larger value exhibited than that in the Cretaceous.

Evenif groundwater quality in the tributary upstream areas (Cretaceous layer) exhibits a high concentration of Fe and Mn, overall, water quality is good.

Methods for treating this are oxidation, oxidation-reduction, or absorption. Specific method to be applied will be studied in more detail at the feasibility study stage.

Other hand NH<sub>4</sub> value is high, but this is not considered due to river pollution. Surface water permeation is not on a scale commensurate with the amount of sulfur (hydrogen sulfide) exhibited by groundwater samples. Furthermore, sulfur content is detected in locations located at considerable distance from sources of river contamination. In general, there are almost no specific guidelines or standards for potable water and this item must be studied in the future. Also, Ba (barium) has been detected in high concentrations throughout the Study area. Barium content has been categorized as an item requiring further study in light of the fact that toxicity evaluation standards have not been established, as well as the fact that the existing content within treated water remains unclear.

Cr+6 has been detected from wells in the vicinity of the Tunjuelo river, indicating that contamination from river discharge has permeated into groundwater aquifer.

# PART 12 FACILITIES FOR SEWAGE SYSTEMS

# **Final Report**

# (Supporting Report)

# PART 12 FACILITIES FOR SEWAGE SYSTEMS

# **Table of Contents**

| Table of Conten   | ts                                              | Page       |
|-------------------|-------------------------------------------------|------------|
|                   |                                                 |            |
| List of Tables ai | nd Figures                                      | 11         |
|                   |                                                 |            |
|                   |                                                 | Page       |
| PART 12 FA        | CILITIES FOR SEWAGE SYSTEMS                     | 12-1       |
| CHAPTER 1.        | FACILITIES FOR SEWAGE DRAINAGE AND TREATMENT.   | 12-1       |
| CHAPTER 2.        | SALITRE WASTEWATER TREATMENT PLANT              | 12-4       |
| CHAPTER 3.        | ONGOING AND FUTURE SEWAGE INFRASTRUCTURE PRO    | OJECTS12-6 |
| CHAPTER 4.        | SEWAGE SERVICE SUPPLY SITUATION IN AREAS OUTSII | DE THE     |
|                   | CITY OF BOGOTÁ                                  | 12-7       |

# **List of Tables and Figures**

|                                                                               | Page |
|-------------------------------------------------------------------------------|------|
| Table-12. 1 Projected population                                              | 12-2 |
| Table-12. 2 Average sewage volume                                             |      |
| Table-12. 3 Actual states of Collection pipe                                  |      |
| Table-12. 4 Overview of sewage infrastructure projects and status of progress | 12-6 |
| Table-12. 5 The Waste Water Treatment Plant of CAR and the current situation  | 12-8 |
|                                                                               |      |
| Figure-12. 1 The sewage system in the urban area of Bogotá                    | 12-2 |
| Figure-12. 2 Overview of the WWTP Salitre                                     |      |
| Figure-12. 3 El Salitre WWTP                                                  | 12-5 |
| Figure-12. 4 Overview of sewage infrastructure projects                       | 12-6 |
| Figure-12. 5 The location of the sewage treatment plants                      | 12-7 |

#### PART 12 FACILITIES FOR SEWAGE SYSTEMS

#### **CHAPTER 1. Facilities for Sewage Drainage and Treatment**

#### 1.1 Summary

In the case of the Bogota river basin which is the target area under the Study, wastewater treatment for urban area as stipulated under the Urban Maintenance Project (POT) falls within the jurisdiction of ACUEDUCTO. Remaining area is under the jurisdiction of the Autonomous Regional Corporation of Cundinamarca (Corporación Autonoma Regional de Cundinamarca – CAR). Between ACUEDUCTO and CAR, there is not mutual cooperation system as the public sewerage. The sewage service coverage in Bogota urban area is 85%~90%. However, the definition of sewage service coverage rate in Colombia is the number of persons availing of sewage service divided by the total population of the area. In other words, this is equivalent to the wastewater collection rate for sewers. Nevertheless, not all collected sewage is subsequently treated. Main sewage pipeline and wastewater treatment facilities exist only within the Salitre system. The Salitre Station of Sewage Treatment Plant (Salitre WWTP), the only sewage treatment station in the area of the city of Bogotá, was built with an investment made by DAMA and its management was consigned to ACUEDUCTO.

DAMA is responsible for the maintenance control costs, and ACUEDUCTO is responsible for operation, administration and maintenance of the Salitre Waste Water Treatment Plant (WWTP). It is decided that CAR bears expansion of a Salitre WWTP and a construction of a Canoa WWTP as a future plan.

In addition, ACUEDUCTO performs the sewage maintenance of the urban area of Bogotá (sewage piping grid, sewage trunk line) using its own funds (derived from the collection of taxes for water and sewage) and it invests on equipment, operation and maintenance.

On the other hand, CAR has built and managed small-scale sewage treatment stations at 2 locations using its own funds and at 27 locations using the funds of the Interamerican Development Bank (IDB), distributed over 24 of the main municipalities.

However, in relation to the rural areas that are managed by CAR, the sewage treatment is carried out on onsite (septic well, septic tank and outhouses).

By taking into consideration the population density, the installation of a sewage service would not be feasible in terms of cost but since the largest part of the sewage is being treated in unsuitable septic tanks, we believe that this is leading to the contamination of the rivers and the groundwater.

#### 1.2 Actual Situation of Sewage System in the urban area of Bogotá.

The sewer spread rate (tasa de servicio de alcantarillado) in a urban area of Bogotá is called  $85\% \sim 90\%$ . The sewage maintenance service in the urban area of Bogotá is being adequately performed but the definition of the index of penetration of the sewage (tasa de servicio de alcantarillado) should be the "population that is benefited by the sewage/population", which means that it relates to a sewage collection index and this does not mean that all the collected sewage is being treated. The most collection sewage water is discharged into a river as non-treated directly. The main trunk and the treatment station are only ready in the Salitre System. However the Salitre WWPT system is only primary processing , the BOD removal rate of it is around 40%.

Although sewage pipelines are under construction within other delineated treatment sectors, sewage at present runs untreated into tributaries of the Bogota River. Even in the case of the Salitre treatment plant, BOD elimination rate is around 40%.

Figure -12.1 indicate the situation of the sewage system in the urban area of Bogotá.

The following three main tributaries within the Bogota urban area as well as the Soacha area are under the sewage treatment jurisdiction of ACUEDUCTO. Specifically, the Soacha area was transferred to ACUEDUCTO control in 2005 and ACUEDUCTO has subsequently not yet completed a sewage pipe

inventory.

- (a) Salitre System
- (b) Fucha System
- (c) Tunjuelo System
- (d) Soacha System

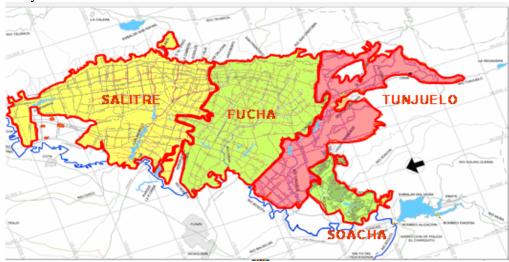



Figure-12. 1 The sewage system in the urban area of Bogotá

Table -12.1 and Table -12.2 indicate the projected target population and sewage volume within the respective wastewater treatment sectors.

Table-12. 1 Projected population

| Treatment sector | 2000      | 2005      | 2010      | 2015      | 2020       | Saturation value |
|------------------|-----------|-----------|-----------|-----------|------------|------------------|
| Salitre          | 2,038,102 | 2,246,180 | 2,490.869 | 2,800,546 | 3,171,965  | 3,306,934        |
| Fucha            | 2,287,190 | 2,611,238 | 2,767,524 | 2,933,240 | 3,153,876  | 3,496,275        |
| Tunjuelo         | 2,117,618 | 2,448,870 | 2,775,736 | 3,047,517 | 3,298,957  | 3,422,820        |
| Soacha           | 353,026   | 434.528   | 506,890   | 568,670   | 617,775    | 793,255          |
| Total            | 6,795,936 | 7,740,816 | 8,541,019 | 9,349,973 | 10,242,572 | 11,019,284       |

Unit: persons

Table-12. 2 Average sewage volume

| Treatment sector  | 2000 | 2005 | 2010 | 2015 | 2020 | Saturation value |
|-------------------|------|------|------|------|------|------------------|
| Salitre           | 5.9  | 6.4  | 7.1  | 7.8  | 8.5  | 10.8             |
| Fucha             | 7.5  | 8.3  | 9.0  | 9.5  | 9.9  | 10.7             |
| Tunjuelo + Soacha | 5.7  | 6.4  | 7.2  | 7.8  | 8.2  | 8.3              |
| Total             | 19.1 | 21.1 | 23.3 | 25.1 | 26.6 | 29.8             |

Source: ACUEDUCTO, Aspetos Técnicos Análisis del Saneamiento del Río Bogotá, May 2006. Unit: m³/sec

Sewage systems are basically separate. Because existing sub-main sewage pipelines are combined sewer systems, rainwater gets mixed in with sewage. As a result, system design is such that in cases where discharge increases during periods of rain, discharge is subsequently diverted to rivers or regulating ponds by means of overflow facilities constructed along the sewage pipeline (intercepting sewer). Numerous instances of problems as a result of pipe connection method have be confirmed, including cases where sewage collector pipes are connected to rain drainage pipes and vice versa. Table–12.3 shows the actual states of collection pipe.

#### Table-12. 3 Actual states of Collection pipe

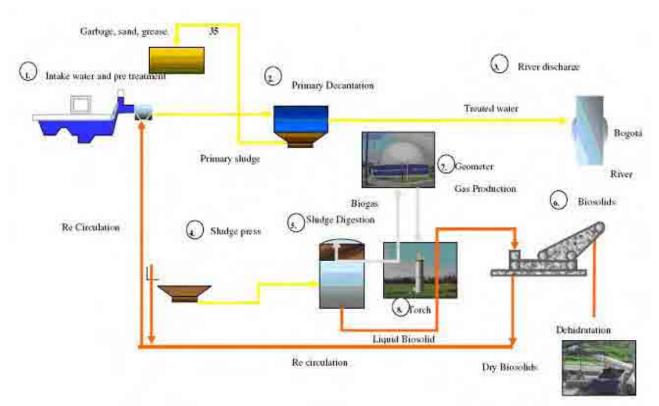
| Treatment sector | Sewage collector pipes are connected to Rain drainage | Rain drainage are connected to sewage collector pipes |
|------------------|-------------------------------------------------------|-------------------------------------------------------|
| Salitre          | 37%                                                   | 42.5%                                                 |
| Fucha            | 22.4%                                                 | 56%                                                   |
| Tunjuelo         | 15.2%                                                 | 90%                                                   |

#### CHAPTER 2. SALITRE WASTEWATER TREATMENT PLANT

The Salitre wastewater treatment plant (WWTP) is the only one in the Bogota city area. The Bogota D.C. (SDA) holds the ownership rights for the treatment plant. The SDA has subsequently consigned responsibility for operation, administration and maintenance of the plant to ACUEDUCTO. A general description of the Salitre WWPT is given below.

- Served population: 2.1 million
- Treatment method: First degree primary treatment (through chemically induced precipitation and basin sedimentation)
- Treatment capacity: 4m³/s on average; maximum of 9.94 m³/s
- Treatment efficiency: 40% BOD (biochemical oxygen demand) elimination (220 mg/l  $\rightarrow$  130 mg/l); TTS (total soluble solids) elimination of 60% (150 mg/l  $\rightarrow$  60 mg/l)
- Sludge treatment: 135 tons/day by anaerobic treatment
- Biogas production: 15,000 m³/day

The Salitre Sewage Treatment Station operates twenty-four hours a day; its operational system is divided into three shifts with sixty-five employees. The monthly operational and maintenance cost is COL Peso \$1,200 million (around US\$ 600,000 per month). This amount is paid to ACUEDUCTO by SDA.


An expense breakdown is as follows:

Operation Cost: 70% (Chemical 63%, Transportation and Disposal 22%, Electricity, fuel 14%, Labor and Water analysis1%), Administration Cost: 25% (Personnel expenses 54%, Articles of consumption 25%, Insurance 11%, Tax 0%), Maintenance: 4%



Source: ACUEDUCTO

Figure-12. 2 Overview of the WWTP Salitre



Source: ACUEDUCTO

Figure-12. 3 El Salitre WWTP

The following problems of the Salitre System are already known by ACUEDUCTO

- Inability to control the water collection volume when it rains
- Inability to collect all the sewage during periods of the dry season
- Significant mix of soil and sand due to the Intake structure and slowness velocity
- Low capacity of IRB and Tibabuyes Interceptors, and this continues to be an issue to be seen to in the future.

The following factors are considered to be the causes of the problems pointed out:

- The sewage collection pipelines are connected to the rainwater and the rainwater pipelines are connected to the sewage collection pipelines
- Lack of capacity of the Intake pumps of WWTP, besides the fact that they are placed too high and this hinders the collection of sewage in times of the dry season.
- During the rainy season, the level of the water in the Bogotá River rises, which pressures the level of the water of the Salitre River hindering the outflow of the sewage.

The main sewage trunk has already been concluded and is now an open water circuit of approximately 800m alongside the Intake point of the Salitre WWTP.

The main trunk branches into 4 lines, the first line (tramo 1) and the second line (tramo 2) is mainly combination system pipelines. During the rainy season when the volume increases, the water volume to be collected is controlled through its outflow

# CHAPTER 3. ONGOING AND FUTURE SEWAGE INFRASTRUCTURE PROJECTS

In order to upgrade measures to cope with sewage from the Bogota metropolitan area, ACUEDUCTO is either currently executing, or planning for the future, the projects described below. Figure-12.4 gives an overview of the target area, and Table-12.4 gives an overview of projects as well as implementation status.

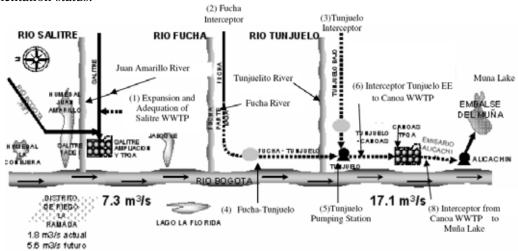



Figure-12. 4 Overview of sewage infrastructure projects

Table-12. 4 Overview of sewage infrastructure projects and status of progress

| No. | Facilities                                                                  | Project overview                                                                                                                                                  | Estimated construction cost (million US \$ ) | Progress                                                                                                                                                                                                                                                                                                          |
|-----|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) | Expansion of<br>Salitre treatment<br>plant                                  | (1) Facility expansion from current primary treatment capacity of 4 m³/s to 8 m³/s. (2) Construction of secondary treatment facilities with a capacity of 8 m³/s. | 200<br>CAR funding                           | Construction scheduled for 2008~2010. Design and construction combined under a single turnkey contract. Owner of the existing facility is SDA; construction funding is to be provided by CAR. Facility is operated by ACUEDUCTO. Institutional agreement among the concerned agencies has not yet been finalized. |
| (2) | Fucha interceptor                                                           | Sewage main line construction to connect collector pipeline to the Fucha sector.                                                                                  | ACUEDUCTO funding                            | Completed                                                                                                                                                                                                                                                                                                         |
| (3) | Tunjuelo<br>interceptor                                                     | Sewage mainline construction to connect a collector pipeline to the Tunjuelo sector.                                                                              | ACUEDUCTO funding                            | There are four sectors: of which the upstream 1 <sup>st</sup> and 2 <sup>nd</sup> sectors are completed. The 4 <sup>th</sup> sector down river is currently under construction and construction for the 3 <sup>rd</sup> sector is scheduled for completion in 2008~2009.                                          |
| (4) | Fucha-Tunjuelo interceptor                                                  | Connects the Fucha sewage system with Tunjuelo pump station.                                                                                                      | 70<br>ACUEDUCTO<br>funding                   | Construction scheduled for early 2007 to 2009 (33 months).                                                                                                                                                                                                                                                        |
| (5) | Tunjuelo pump<br>station                                                    | Sewage from the Fucha and Tunjuelo sectors is conveyed to the Canoa WWTP. Capacity: 17.1 m <sup>3</sup> /s.                                                       | 90<br>ACUEDUCTO<br>funding                   | Bidding procedures in 2007. Construction start at the end of 2007; completion planned in 2011.                                                                                                                                                                                                                    |
| (6) | Tunjuelo<br>interceptor                                                     | Conveyance pipe from Tunjuelo pumping station to Canoa WWTP.                                                                                                      | 100<br>ACUEDUCTO<br>funding                  | Preparatory works for bidding in 2007. Basic design completed in fiscal 2007. Tendering in 2008. Contract is to include both detailed design and construction.                                                                                                                                                    |
| (7) | Canoa WWTP                                                                  | (1) Primary treatment facilities: 18 m³/s capacity. (2) Secondary treatment facilities: 18 m³/s capacity.                                                         | (1)350<br>(2)350<br>CAR funding<br>planned   | CAR project. Basic design scheduled for completion in 2007. Construction scheduled for 2009~2014. However, funding source has not yet been finalized.                                                                                                                                                             |
| (8) | Canoa pumping<br>station<br>(conveyance from<br>Canoa WWTP to<br>Muña lake) | A pump station is to be constructed at the treatment plant, and discharge for hydropower generation is to be diverted to Muña lake.                               | 50<br>CAR funding                            | CAR project. Muña lake environment restoration plan has been drafted.                                                                                                                                                                                                                                             |

Source: ACUEDUCTO presentation, 2007

# CHAPTER 4. SEWAGE SERVICE SUPPLY SITUATION IN AREAS OUTSIDE THE CITY OF BOGOTÁ

In the outskirts of Bogotá, CAR directly executes the construction and control of the management and maintenance. CAR performed in 1991, the "CAR-BID Water Improvement Quality Project for the waters of the Bogota plain." This project was executed with funding from the Interamerican Development Bank (IDB) and cost 55.6 million U.S. dollars. In relation to the sewage service supply, 27 small-scale sewage treatment stations were built in 24 municipalities.

The planning of the project, the undertaking and the construction of the premises were carried out by CAR and after the conclusion of the setup, the management and the control of the conservation were handed over to the jurisdiction of each city (municipality). The treatment methods are many since they were not standardized. An average scale of the treatment capacity is about  $50\ell/s$ . The areas benefited by the sewage service supply are only the urban areas of each municipality and, outside these (farming areas) the treatment is carried out onsite (septic wells and tanks, outhouses, external, etc.)

The following problems, however, were pointed out in the setup situation:

- The area that receives treatment is small.
- The preparation of the pipeline grid for the collection of sewage is delayed.
- The small treatment capacity of the treatment station adds to the problem of low treatment efficiency.
- There are installations whose projects have technical problems.
- Since the management and control of conservation require a considerable amount of money, the municipality will not allow the sewage treatment installations.

Due to these problems and the inability of the municipality to cover the expenses, besides not being able to address the technical aspect, the installations are now practically abandoned.

Therefore, CAR signed an agreement with ESSERE, a privately-owned company, for the management and conservation of the sewage treatment stations in October of 2005. The mature system in the contract is 2 years with the option to renew every year after that. The management company will only be responsible for management and conservation, and the interceptors and setup of the trunks are the responsibility of each municipality. The configurations of the grids are all of the junction kind.

Figure-12.5 indicates the location of the sewage treatment plants.

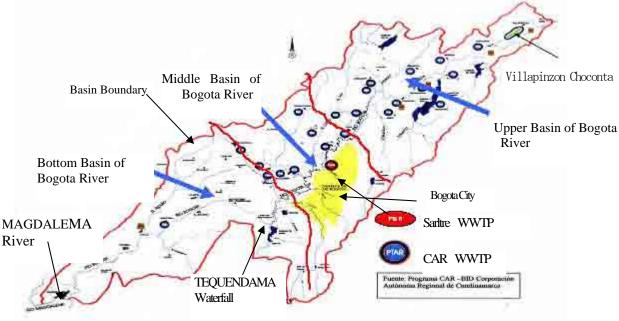



Figure-12. 5 The location of the sewage treatment plants

The Waste Water Treatment Plant of CAR and the current situation are shown in Table -12.5.

Table-12. 5 The Waste Water Treatment Plant of CAR and the current situation

| No. | Municipality | Serviced<br>Population | Construction Cost by IDB ≅ mil US\$ | Treatment system and Capacity (l/s)                                                                                                          | Current Situation                                                                                                                                                                                                                                                       |
|-----|--------------|------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Anapoima     | 10,000                 | 5000                                | Combination of UASB system and Stabilization Pond. Designed treatment capacity: 38 (l/s), BOD elimination of 85% ~ 90%, Pond Area: 20,000 m² | Completed in 1991. It was no management before transferred to the private company. After improvement of the facilities., operation capacity has 12 (l/s) (1/3 of designed capa.) Actual attend population: 6,500. Furthermore on planning improvement of the facilities |
| 2   | Bojaca       |                        | 500                                 | OD system<br>Treatment capacity: 8(l/s)                                                                                                      | Constructed by CAR, management by municipality. Operation state is good.                                                                                                                                                                                                |
| 3   | Cajicá       | 41,000                 | 500                                 | Stabilization Pond method Designed treatment capacity: $115(\ell/s)$ Pond area: $13,000 \text{ m}^2$                                         | Completed in 1996. Actual operation: 13( $\ell$ /s). Operation and maintenance state are also not good. An aquatic flora grows thick                                                                                                                                    |
| 4   | Chia I       | 23,500                 | 200                                 | Stabilization Pond system.  Designed treatment capacity: $100(\ell/s)$ Pond area: 33,000 m <sup>2</sup>                                      | Completed in 1990. Actual operation: $35(\ell/s)$ . There is a structural problem On planning improvement of the facilities.                                                                                                                                            |
| 5   | Chocontá     | 15,000                 | 1000                                | Stabilization Pond system. Designed treatment capacity: 18 (l/s)                                                                             | Completed in 1997. Actual operation: 136 ( $\ell$ /s). DBO elimination of 110 $\rightarrow$ 37 mg/ $\ell$ ) 68%. There is a channel design problem.                                                                                                                     |
| 6   | Cogua        | 6,100                  | 700                                 | Stabilization Pond system.  Designed treatment capa.:  17.5(l/s)                                                                             | Actual operation : $16(\ell/s)$ . Operation state is good.                                                                                                                                                                                                              |
| 7   | Cota         | 4,500                  | 160                                 | OD system. Designed treatment capa. : $5(\ell/s)$                                                                                            | Completed in 1981, before CAR-IDB program. Management by Municipality. Acutual operation: 5(l/s). BOD elimination of 80%                                                                                                                                                |
| 8   | El Rosal     |                        | 450                                 | OD system. Designed treatment capa. : 26.4(l/s)                                                                                              | Actual operation : 18.5(l/s)                                                                                                                                                                                                                                            |
| 9   | Facatativá   | 120,000                | 7000                                | OD system. Designed treatment capa.: 560 (l/s),                                                                                              | Completed in 1997. On construction of improvement of the facilities. Actual attending population: 161,600. actual operation: 359(l/s). DBO elimination of 65%                                                                                                           |
| 10  | Funza        | 122,000                | 8500                                | OD system. 6 channels Designed treatment capa. : $240(\ell/s)$                                                                               | Completed in 1997. Aeration efficiency is not good. On construction improvement of the facilities. Actual attending population: 23,900. Actual operation: 60(l/s), DBO elimination of 90-95%                                                                            |
| 11  | Gachancipá   | 5,000                  | 500                                 | Stabilization Pond system. Designed treatment capa.: 20(l/s) Pond area: 36,000 m²                                                            | Actual attending population : 2,300. Actual operation : $6(\ell/s)$ BOD elimination of 70%. Operation state is good.                                                                                                                                                    |
| 12  | Guatativa    | 6,000                  | 400                                 | OD system Designed treatment capa. : 8 ( $\ell$ /s)                                                                                          | Complete operation. There is no problem. BOD elimination of 95%. Operation cost is high.                                                                                                                                                                                |
| 13  | La Calera    | 2,100                  | 2200                                | SBR system. Designed treatment capa. :                                                                                                       | Actual operation : $24(\ell/s)$ . Operation state is good.                                                                                                                                                                                                              |

|       |                       |        |      | 32(l/s)                                                                                        |                                                                                                                                                  |
|-------|-----------------------|--------|------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 14    | Madrid I              | 25,000 | 1900 | Stabilization Pond system.  Designed treatment capa. : 50(l/s)                                 | Completed in 1998. Actual operation: 25(l/s). BDO elimination of 86% On improvement construction. Be completed in 2008. Operation state is good. |
| 15    | Madrid II             | 25,000 | 1300 | Idem                                                                                           | Idem                                                                                                                                             |
| 16    | Mosquera              |        | 4000 | Stabilization Pond system.  Designed treatment capa.: 120(l/s),                                | Completed in 1997. Actual operation : 50(l/s). BOD elimination of 80%                                                                            |
| 17    | Nemocon               | 7,500  | 850  | OD system. Designed treatment capa. : $12(\ell/s)$                                             |                                                                                                                                                  |
| 18    | Sesquilé              | 1,400  | 400  | Sedimentation pond.  Designed treatment capa. : $5.8(\ell/s)$ Pond area : $10,000 \text{ m}^2$ | Actual operation : $5(\ell/s)$                                                                                                                   |
| 19    | Sopó                  | 7,000  | 550  | Stabilization Pond system. Designed treatment capa.: 20(l/s)                                   | Actual attending population : 5,400. Actual operation : 8(l/s), BOD elimination of 75%                                                           |
| 20    | Subachoque            | 4,200  | 350  | Stabilization Pond system. Designed treatment capa. : $14.6(\ell/s)$                           | Completed in 1996. Actual operation : $7(\ell/s)$ . BOD elimination of 76%                                                                       |
| 21    | Suesca                | 8,000  | 500  | Sedimentation pond. (SS elimination) $\ \ $ Designed treatment capa. : $18(\ell/s)$            | Actual attending population: 1,500. Actualoperation: 6 (\$\ell\s'\s\) Operating 1 pond of 2. No maintenance state. Algae grows thick.            |
| 22    | Tabio                 | 8,000  | 500  | Sedimentation pond.  Designed treatment capa. : $17(\ell/s)$                                   | Financed by CAR-IDBprogram                                                                                                                       |
| 23    | Tenjo                 | 5,900  | 800  | RAP (Anaerobic Reactor a Piston) Designed treatment capa.: 12.7(l/s)                           | Completed in 1990. Actual operation : $8(\ell/s)$                                                                                                |
| 24    | Tocancipá             | 5,300  | 1200 | Stabilization Pond system.  Designed treatment capa.:  26(l/s)  Pond area: 16,700 m²           | Completed in 1991 Financed by CAR-IDBprogram. Actual atending population : 3,600. Actual operation : $10(\ell/s)$                                |
| 25    | Zipaquira I           | 39,500 | 650  | Stabilization Pond system.  Designed treatment capa.:  132(l/s)  Pond area: 66,500 m²          | Completed in 1991. Financed by                                                                                                                   |
| 26    | Zipaquira II          | 50,000 | 700  | Stabilization Pond system.  Designed treatment capa.:  200(l/s)  Pond area: 67,700 m²          | Completed in 1992. Actual operation: 29( $\ell$ /s) A rate of operation is not good.                                                             |
| 27    | Ubaté                 | 18,000 |      | RAP (Anaerobic Reactor a Piston) Designed treatment capa.: 60(l/s)                             | Completed in 1997. Actual operation: $40(\ell/s)$                                                                                                |
| 28    | Cucunbá               | 900    |      | Stabilization Pond system. Designed treatment capa. : 2(l/s)                                   | Completed in 1990. Actual operation : $2(\ell/s)$                                                                                                |
| 29    | Saboyá                | 700    |      | Stabilization Pond system. Designed treatment capa. : $4(\ell/s)$                              |                                                                                                                                                  |
| 30    | San Miguel<br>de Sema | 400    |      | Stabilization Pond system.  Designed treatment capa.: $1(\ell/s)$                              | BOD elimination of 76%                                                                                                                           |
| 31    | Lenguazaque           | 1,200  |      | Activated sludge method. Facility area: 120 m² Designed treatment capa.: 2.5(l/s)              | BOD elimination of 98%                                                                                                                           |
| Total |                       |        |      |                                                                                                |                                                                                                                                                  |

Most of WWTP facilities were built by the middle in 1990. However, Operation rate is not satisfactory, it depends on low sewage collection network to WWPT, and luck of a maintenance management, because a construction of sewage collection water pipe and sewage main line are burdens of each municipality.

An important aspect is that the industrial waste of the area of Villapinzon alongside the Bogotá River is being disposed of untreated into the Bogotá River.

IDB financed a new loan to CAR in October, 2006 as a Improvement of water quality of Bogota river. In this project, the improvement of the WWTPs which built in the first CAR-IDB program is included.

# PART 13 ENVIRONMENTAL AND SOCIAL STUDY

# **Final Report**

# (Supporting Report)

# PART 13 ENVIRONMENTAL AND SOCIAL STUDY

# **Table of Contents**

| Table of Contents                      | Page |
|----------------------------------------|------|
| List of Tables and Figures             |      |
|                                        | Page |
| PART 13 ENVIRONMENTAL AND SOCIAL STUDY |      |

# **List of Tables and Figures**

# PART 13 ENVIRONMENTAL AND SOCIAL STUDY

Table-13.1 Current Environmental and Social Conditions in and the Project sites

|                                   | Region      |               | No.               | Location Conditions | Environmental and Social Consideration                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                     |      |
|-----------------------------------|-------------|---------------|-------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                   | Region      |               | 110.              |                     | Requirements                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                     |      |
|                                   |             |               |                   | E-1                 | Vitelma distribution reservoir. A well already exists and is owned by ACUEDUCTO. Treatment facilities required.                                                                                                                                                                                                                                                                                                          | Owned by ACUEDUCTO. An area suitable to locate a decontamination facility exists. Residents do not reside near to the site, therefore environmental and social considerations minimized.                                                                                                                                                                                                                |                                                                                                                                                                                                                     |      |
|                                   | Bogota City | San Cristobal | Vitelma           | VI-1                | The area covers from the Vitelma distribution reservoir to the southeast (mountainside) forest area. Many old unpaved roads exist. The entire project area owned by ACUEDUCTO. The project area includes "Ranger house". Deforestation not required. Electricity available. The existing roads are suitable for transporting well drilling equipment. However, along the roadside area construction space is inadequate. | All the project areas are owned by ACUEDUCTO. Procurement of land is therefore not required. However, the areas are located within a Forest Protection Area, and therefore an environmental permit will be required. The manager of ACURDUCTO is the sole resident within the entire area. The project areas are roadside or grassland areas around the ranger's residence. Deforestation not required. |                                                                                                                                                                                                                     |      |
|                                   |             |               |                   | VI-2                | Same as above                                                                                                                                                                                                                                                                                                                                                                                                            | Same as above                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     |      |
|                                   |             |               |                   | VI-3                | Same as above                                                                                                                                                                                                                                                                                                                                                                                                            | Same as above                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     |      |
|                                   |             |               |                   | VI-4                | Same as above                                                                                                                                                                                                                                                                                                                                                                                                            | Same as above                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     |      |
|                                   |             |               |                   | VI-5                | Same as above                                                                                                                                                                                                                                                                                                                                                                                                            | Same as above                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     |      |
|                                   |             |               | Santa<br>Isabel   | SI-1                | Owned by ACUEDUCTO. Roadside. Access to the area not an issue. However, earthwork required for securing space and conserving the mountain.                                                                                                                                                                                                                                                                               | The site is owned by ACUEDUCTO, but it is located within a Forest Protection Area and therefore a drilling permit needs to be obtained. The area is generally open field, grasslands, but some trees will need to be cut down.                                                                                                                                                                          |                                                                                                                                                                                                                     |      |
|                                   |             |               | encio Casa Morino | CM-1                | The area is near to the intake of the San Diego water purification plant. Roadside. Owned by ACUEDUCTO. Grassland.                                                                                                                                                                                                                                                                                                       | Owned by ACUEDUCTO. Located in a Forest Protection Area. A drilling permit required. Deforestation not required.                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                     |      |
| ect                               |             |               |                   |                     | CM-2                                                                                                                                                                                                                                                                                                                                                                                                                     | Located about 150 meters along the eastside (mountainside) of the CM-1 area. Grassland and wooded area. The construction area is adequate and suitable, although access roads are unpaved.                                                                                                                                                                                                              | Owned by ACUEDUCTO. Located in a Forest Protection Area. A drilling permit required. Resettlement not required.                                                                                                     |      |
| astern Project<br>Eastern Project | Sity        | 9             |                   |                     | CM-3                                                                                                                                                                                                                                                                                                                                                                                                                     | Located about 300 meters along the eastside (mountainside) of the CM-1 area. Conditions for equipment transport are not good. The mountain slope is nearly adjacent to the road. Deforestation not required. However, to secure space and conserve the mountain, earthwork is required.                                                                                                                 | Owned by ACUEDUCTO. Located in a Forest Protection Area. A drilling permit required. Deforestation (secondary forest) and earthwork required for the access road and construction works. Resettlement not required. |      |
|                                   | Bogota City | Santa Fe      |                   |                     | encio                                                                                                                                                                                                                                                                                                                                                                                                                    | encio                                                                                                                                                                                                                                                                                                                                                                                                   | Tank Silencio                                                                                                                                                                                                       | TS-1 |
|                                   |             |               | Sil               | TS-2                | Same as above                                                                                                                                                                                                                                                                                                                                                                                                            | Same as above                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     |      |
|                                   |             |               | Tank              | Tank                | TS-3                                                                                                                                                                                                                                                                                                                                                                                                                     | Located in the Silencio distribution reservoir (storage capacity: 30,000 m3) area. Located 400 meters south and about 100 meters east (mountainside) from an unpaved road. An access road needs to be constructed. The area is flat grassland. Deforestation not required. Close proximity to the mountain slope.                                                                                       | Same as above                                                                                                                                                                                                       |      |
|                                   |             |               | Rio<br>Arzobispo  | RA-1                | The opposite side and across the road from a National Park. Located in a Forest Protection Area. The road is rather congested with traffic. The site is along the roadside but there is an insufficient working area. Owned by ACUEDUCTO. "Ranger's house" is located within the area.                                                                                                                                   | Construction in a National Park is not possible. The area is located next to a heavily trafficked road and also close to the mountain slope, and therefore there is little space for construction. Earthwork to secure working space and mountain conservation would be required.                                                                                                                       |                                                                                                                                                                                                                     |      |
|                                   | Bogota City | Chapinero     | Paraiso           | E-3                 | The site is located just down from the Paraiso Ill distribution reservoir and is owned by ACUEDUCTO. The site is forested, and runs along side the steep slope of the mountain. A paved road runs and leads up to an unpaved road. Legally owned properties of Residences of low-income group in the area. Electricity and gas are available. Each household treats water separately.                                    | The site is within the boundary of the distribution reservoir of ACUEDUCTO. Resettlement not required. Some deforestation required. The area is 2825 meters above sea level and not located in a Forest Protection Area. The site is far from the residential area. It is assumed that construction works will not cause negative impact.                                                               |                                                                                                                                                                                                                     |      |

|         | Rubio                               | E-4           | The site is located near the Pardo Rubio III distribution reservoir (storage capacity: 90 m3). A high-voltage electric transmission line is located near the site. There is a loose gravel road about 100 meters long that feeds off a paved road. The road is usable for construction work access.                                      | Deforestation not required. Some houses are scattered near the site, but resettlement will not be required. All the residences are legally owned. No other environmental and social considerations required. In close proximity to the site, a postmortem facility once existed.                                            |                                                                                                                                                                                                                                                                   |
|---------|-------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | University<br>Politecnica           | UP-1          | The site is located within the university campus, concrete paved and used as a parking lot and soccer field.                                                                                                                                                                                                                             | Owned by the university. Adequate space for construction works cannot be secured. Reexamination required.                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |
|         |                                     | VC-1          | A vacant , wide and flat land area. Sufficient space available. Deforestation not required. Resettlement not required.  An access road is maintained for operation and maintenance an aqueduct that runs though the area.                                                                                                                | Owned by ACUEDUCTO. Located in a Forest Protection Area. A drilling permit required. There is an upper-class residential area near to the site, and therefore noise prevention measures are required to be considered.                                                                                                      |                                                                                                                                                                                                                                                                   |
|         | La Vieja Creek                      | VC-2          | Roadside. Deforestation not required. The site abuts alongside a steep mountain stream, but there is sufficient space for construction works.                                                                                                                                                                                            | Same as above                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                   |
|         | La Vie                              | VC-3          | Located within the boundary of ACUEDUCTO. Near to a tunnel used for administrate an aqueduct leading to Chinguaza-Usaquen. The space is wide open. Deforestation not required. Flat grassland. Resettlement not required. An existing well-maintained road for operation and maintenance of the aqueduct can be used to access the area. | Owned by ACUEDUCTO. Located within a Forest Protection Area. A drilling permit required. Construction works and a building area are to be considered so that the operation and maintenance of the aqueduct is not hindered. Residential areas do not exist within the vicinity.                                             |                                                                                                                                                                                                                                                                   |
|         |                                     | RC-1          | Located in front of the Metropolitan Club. Private property. Presently vacant land. Sufficient space for construction works available. Deforestation not required. The site is close to 5th Avenue and lies close to upper-class condominiums.                                                                                           | The area is located within a Forest Protection Area that has been turned into a residential area. Noise prevention and safety needs are to be a consideration when constructing. Deforestation not required.                                                                                                                |                                                                                                                                                                                                                                                                   |
|         | ıles Creek                          | Rosales Creek | RC-2                                                                                                                                                                                                                                                                                                                                     | Private property. About 100 meters from the road. The road is unpaved but can be used for accessing. Vacant land. Sufficient space available for construction and storage. Deforestation not required. A devastated house whose construction has been stopped exists on the site.                                           | Land procurement required. The area is located in a Forest Protection Area. A drilling permit required. Deforestation required. The area is significantly distanced from the residential area, consequently environmental and social considerations not at issue. |
|         | Rosa                                | RC-3          | Private property. Adjacent to a paved road. Deforestation not required. Sufficient space available, but the site runs alongside the mountainside and requires some earthwork.                                                                                                                                                            | Located within a Forest Protection Area. A drilling permit required. No other environmental and social considerations required.                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   |
|         |                                     | RC-4          | Private property. Sufficient flat space for construction available. One house is standing close to the site. The owner of the house has a cooperative attitude. The project area is grassland, but about 20 trees are to be cleared. Close to a stream.                                                                                  | Located within a Forest Protection Area. A drilling permit required. Only one house is in the area. The owner is cooperative, but noise prevention and safety measures are needed. The road has little traffic.                                                                                                             |                                                                                                                                                                                                                                                                   |
|         | Chico                               | CH-1          | Adjacent to the road (Carreteria la Carrela). An access road leading from this road is required. The opposite side of the road runs along a stream. Sufficient space for construction works available.                                                                                                                                   | Private property. Located within a Forest Protection<br>Area. A drilling permit required. Construction of an<br>access road, some deforestation and earthwork<br>required. No resettlement.                                                                                                                                 |                                                                                                                                                                                                                                                                   |
|         |                                     | CH-2          | Located about 20 meters west from the entrance of the Chico distribution reservoir. Adjacent to a paved road. Sufficient space for construction works available.                                                                                                                                                                         | Private property. Located within a Forest Protection<br>Area. A drilling permit required. Resettlement not<br>needed. Other social and environmental<br>considerations not required.                                                                                                                                        |                                                                                                                                                                                                                                                                   |
|         | C                                   | СН-3          | Located about 70 meters to the east (mountainside) from the Chico distribution reservoir. An unpaved road for maintenance exists. The road is somewhat suitable for the transport of drilling equipment. The site lies in a gradual slope manner. Deforestation and earthwork are needed for securing construction works space.          | Owned by ACUEDUCTO. Located within a Forest Protection Area. A drilling permit required. Deforestation (secondary forest) and earthwork are needed for construction space. Resettlement not required. The area is located within the boundary of distribution reservoir. No apparent problem exists for construction works. |                                                                                                                                                                                                                                                                   |
| Usaquen | Escuela de Caballeria<br>(Military) | EC-1          | Located within the property of the military school. Sufficient construction works space available. The area is close to Route 7. This road is convenient for carrying equipment. The location is advantageous in terms of emergency water distribution as well. The area also has the best geological condition compared to other sites. | Drilling permit of the military required. Not located in a Forest Protection Area. There is sufficient space for construction works. If these works do not hinder military training, environmental and social considerations not required.                                                                                  |                                                                                                                                                                                                                                                                   |
|         | Escu                                | EC-2          | Same as above                                                                                                                                                                                                                                                                                                                            | Drilling permit of the military required. The project area is located in a Forest Protection Area.                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                   |
|         |                                     | EC-3          | Same as above                                                                                                                                                                                                                                                                                                                            | Same as EC-1                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                   |

|  |             |         |                 |          | The distribution reservoir of ACUEDUCTO had                                                                                                                                                                                                                                                                                                                                                                                       | Not located within a Forest Protection Area. Noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                          |
|--|-------------|---------|-----------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |             |         | Tank Santana    | TA-1     | earlier existed within the area. Within property owned<br>by ACUEDUCTO. Adjacent to an upper income<br>residential area and the property of a military school.<br>Access by a paved road is possible. Sufficient<br>construction works space available.                                                                                                                                                                           | not located within a Forest Protection Area. Noise prevention and safety measures are needed for the adjacent residential area.                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                          |
|  |             |         | Ta              | TA-2     | Owned by ACUEDUCTO. Separated by the other area from TA-1. Adjacent to upper class residences. Limited construction works space available.                                                                                                                                                                                                                                                                                        | Same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                          |
|  |             |         | La Aguadora     | E-5      | As a pilot project, drilling has started.  The project area is located about 300 meters from the Santa Ana distribution reservoir, on flat land (downside) side. Owned by ACUEDUCTO. Close to a well-maintained road that is good for accessing the site. Located in a wooded area. Adjacent to a upper class condominiums.                                                                                                       | Owned by ACUEDUCTO. As a pilot operation, drilling has started. Not located within a Forest Protection Area. A drilling permit has been obtained from SDA. Deforestation was undertaken in an area of 15m x 30m. Earthwork and drilling to the depth of about 1 meter has also been carried out. No effect on the locate traffic. Construction is carried out during the daytime. Complaints from the residences have not been reported. Waste dump from drilling is treated by a mud pit. The waste dump from drilling treatment standard of IDEAM is being fulfilled. |                                                                                                                                                                                                                                                                                                                                                                          |
|  |             |         |                 | E-6      | Located beside the Entrance house of Santa Anna Reservoir. Near to a middle and upper class residential area and towards the mountainside. There are no houses in the area. Construction works is planned to be close to the paved road. Deforestation of secondary forest is required.                                                                                                                                           | Owned by ACUEDUCTO. Sufficient space available. Because of the site is near the residential area, the safety measures and noise and vibration measures during construction are to be carefully planned.                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                          |
|  |             | Usaquen | Bosque Medina   | E-7      | Located within Bogotá city. Along Route 7, the main street leads to the central part of the city from a residential area. Very congested traffic. A concrete plant had earlier stood in the area; however, the area is now a vacant land. A guard is stationed there. High-rise office buildings and up-scale condominiums are neighboring the area. This location is the central area of the northern regional development zone. | The project area is privately owned. Presently a construction plan for a new building, etc. has not been filed, but it is assumed that in the future a building will be constructed on the site. In the immediate vicinity four large-scale buildings are under construction. Considering the construction of these buildings, the noise and vibration caused by drilling is not an issue.                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                          |
|  | City        |         | Boeque de Pinos | E-8      | Within the property exists a nursing school (Colegio Pureza de Maria). Located along Route 7. The project area is well maintained and located in a vacant land, behind a soccer field. Adjacent to an upper-class residential area.                                                                                                                                                                                               | The nursing school owns the site. The agreement on land procurement or a lease agreement is required. The availability of electricity and road access is not an issue, but safety measures and the prevention of noise and vibration for students in class, and the treatment of waste dumps from drilling are to be carefully planned.                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                          |
|  |             |         | Boedu           | E-9      | A graveled road about 100 meters in length leads to the area from Route 7. Used as a building materials yard. The area is about 1,000 m2. The mountain, on the backside of the area, was formerly a rock quarry, while steep cliffs are also close by. There are no houses at the bottom of mountain.                                                                                                                             | The site is privately owned. An access road and the availability of electricity is not a problem. The area is about 100 meters from the road and there is only one house near the site. No issues are expected with regards to construction, and the measures to satisfy the residents are easy.                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |
|  |             |         | Cerro Norte     | E-10     | Along Route 7. Formally a rock quarry. A steep cliff is adjacent to the property. The site is a large empty space. In the vicinity new office buildings and apartments are being built. On the slope of the mountain, residences of low-income group are prevalent.                                                                                                                                                               | The project area is privately owned. The agreement on land procurement or a lease agreement is required. It is quite certain that new construction works will occur in the area in the future. On the opposite side of Route 7, low- to mid-income housing is prevalent.                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                          |
|  | Bogota City |         |                 | E-11     | The area is located in the same rock quarry as above mentioned.                                                                                                                                                                                                                                                                                                                                                                   | Same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                          |
|  |             | Usaquen | Soratama        | E-12     | Along Route 7. The site is used as a yard to store building materials such as gravel. Owned by a company (named Servita) and co-managed by 5 individuals. Next to the site a former rock quarry exist and a steep cliff. The mountain surface is laid bare.                                                                                                                                                                       | A company owns the site. The agreement on land procurement or a lease agreement is required Resettlement not required. Access and the transport of building materials to the site are possible. Residents do not reside around the area and thus only slight consideration of construction works is required.                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                          |
|  |             |         | Soratama        | E-13     | Formally a rock quarry. Located along Route 7. The mountainside of the road is not very steep. On the slope of the mountain, low- to mid-income housing is prevalent.                                                                                                                                                                                                                                                             | The site is privately owned. The agreement on land procurement or a lease agreement is required On the opposite side of Route 7 a middle-income house is being built. The road has a lot of traffic.                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                          |
|  |             |         |                 | La Salle | E-14                                                                                                                                                                                                                                                                                                                                                                                                                              | The site includes the pilot operation known as La Salle. It is located on a wide, privately owned land facing Route 7. Fifty meters to the east (mountainside) from the entrance the land is owned by ACUEDUCTO, an artesian well (Jumping Well) is already located. Treatment facilities are to be built using this well.                                                                                                                                                                                                                                              | It is assumed that a condominium will be built in this area in the future, but ACUEDUCTO already holds the land around the well. Therefore, land procurement is not needed. Resettlement not required. A well is already drilled. Treatment facilities are to be built on the site. Sufficient space is available. Environmental and social considerations not required. |

|  |              | r -          | 1                 | 1    | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                             |                                                                                                                                                        |
|--|--------------|--------------|-------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |              |              |                   | E-15 | Vacant land in the middle of a densely built residences area of low-income group. Near to the Condito 1 distribution reservoir. Private property. Roadside. Grassland. Across the road, houses are also densely built.                                                                                                                                                                                                                                                                                                                                                 | Land procurement required. The road has a lot of traffic. A residential area neighbors the site. Social and environmental considerations required, with regards to traffic, noise and vibration, safety measures, and installation of equipment during construction.                                                                          |                                                                                                                                                                                                                                                                             |                                                                                                                                                        |
|  |              |              | Codito            | CO-2 | Located about 2 kilometers from Route 7 to the east (mountainside). Roadside. The road has a lot of traffic. The project area is on the west side (down side of the mountain) of the road. Maintained, vacant land. About 20 trees with the diameter of 30 cm are planned. Sufficient construction space is available. Low-income housing (from level 2 to 3) along the mountainside exist. The project is located in the middle of Codito distribution reservoir II and III. Under the sidewalk, a distribution pipe network under the ownership of ACUEDUCTO exists. | The project area is privately owned. Surrounded by a wire mesh fence, the site is maintained. Some trees need to be cut. Due to the heavy traffic in the vicinity, consideration for the residents residing in the area is also required. Sufficient space is available at the site and thus construction works do not appear to be an issue. |                                                                                                                                                                                                                                                                             |                                                                                                                                                        |
|  |              | Suba         | Suba              | E-16 | Planned as a Pilot Project.  A well owned by ACUEDUCTO (Suba Well) already exists. Located in the parking lot of a restaurant.                                                                                                                                                                                                                                                                                                                                                                                                                                         | The well can be used "as is", but a Treatment facilities (WTP) is required. Sufficient construction space is available. The site is located on the property of a restaurant, and safety measures and noise prevention during construction will be required.                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                                                                        |
|  | <i>h</i>     |              | Mariscal<br>Sucre | E-17 | Planned as a Pilot Project.  Locate on the property of a primary, college, and high school of Military. A well already exists, but it is not suitable in its present state. A Treatment facilities (WTP) is needed. Construction access is good. The best location for Pilot Project.                                                                                                                                                                                                                                                                                  | A land usage permit of the school needed. No resettlement. Other social and environmental considerations not required.                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                             |                                                                                                                                                        |
|  | Bogota City  | Suba         | Suba Tank         | ST-1 | Planned as a Pilot Project.  Owned by ACUEDUCTO. Located in the Suba distribution reservoir about 90,000 m3. Located nearby an administrative building exist. Grassland. Earthwork is slightly needed, but sufficient space is available Adjacent to a heavy-trafficked road, but an access road can be laid to the site.                                                                                                                                                                                                                                              | The site lies within in the property owned by ACUEDUCTO, but adjacent to upper class condominiums. Noise and vibration prevention required.                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                                                                        |
|  |              |              |                   | ST-2 | Same as above. Not planned as a Pilot Project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No environmental and social considerations required.                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                             |                                                                                                                                                        |
|  |              |              |                   | ST-3 | Same as above. Not planned as a Pilot Project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Same as above                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                             |                                                                                                                                                        |
|  |              |              |                   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y-1                                                                                                                                                                                                                                                                                                                                           | Located alongside Route 7. A yard for the storage of concrete pipes with a 3m diameter exists. Sufficient construction space is available, but the site is owned by a privately held company (American Pipe). Located in the vicinity, low-income housing is densely built. | Land procurement or a land lease agreement required. Sufficient construction space is available. Environmental and social considerations not required. |
|  | Bogota Rural |              |                   | Y-2  | A wooded area. Toward the south side, low-income housing is spread around. The site is located 50 meters to the west from Route 7. The eastside of the road is designated as a Forest Protection Area, but logging has been carried out. Pastureland, after logging, lies on the left side of the area.                                                                                                                                                                                                                                                                | The project area is privately owned. Divided with a brick wall, and a maintained pasture. Environmental and social consideration not required except an agreement with the landowner under a land lease agreement.                                                                                                                            |                                                                                                                                                                                                                                                                             |                                                                                                                                                        |
|  | Bo           |              | Bogota Rural      |      | Y-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A wide pasture area neighboring a substation. Located on the west side of Route 7. On the east side there is a suitable site, but designated as a Forest Protection Area. Confirmation required.                                                                                                                                              | Land procurement or a lease agreement required. Environmental and social considerations not required.                                                                                                                                                                       |                                                                                                                                                        |
|  | Bogota Rural | Bogota Rural |                   | Y-4  | Located on the west side of Route 7. Neighboring to a playground (grassland) for war games (paint ball). Insufficient area available. Adjacent to a car garage, horse stable and a restaurant.                                                                                                                                                                                                                                                                                                                                                                         | Heavily trafficked. The area is too small for construction. The land is privately owned. Land procurement or a lease agreement required.                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                             |                                                                                                                                                        |
|  |              | Bc           |                   | Y-5  | Located on the west side of Route 7. The project site is located within a flat pasture. The opposite side of the road gradually slopes. Residents do not reside in the area.                                                                                                                                                                                                                                                                                                                                                                                           | The land is privately owned. Environmental and social considerations not required.                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                             |                                                                                                                                                        |
|  |              |              |                   | Y-6  | Located on the west side of Route 7. The project site is within a flat pasture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The land is privately owned. Environmental and social considerations not required.                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                             |                                                                                                                                                        |
|  |              |              |                   | Y-7  | Located on the west side of Route 7. The project site is within a flat pasture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The land is privately owned. There are signs in the area writing "No venta" (No sale), "No arrenda" (No lease) and "No permuta" (No swap). No other environmental and social considerations required.                                                                                                                                         |                                                                                                                                                                                                                                                                             |                                                                                                                                                        |
|  | I            |              |                   | Y-8  | Located on the west side of Route 7. The project site is located within a flat and wide pasture area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The land is privately owned. No other social and environmental considerations required.                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                             |                                                                                                                                                        |
|  |              |              |                   | Y-9  | Located on the west side of Route 7. The project site is located within a flat and wide pasture area. Cattle are pastured. Adjacent to "Casa de Eventos". Along the east side of the road the mountain is steeply sloped.                                                                                                                                                                                                                                                                                                                                              | The land is privately owned. No other social and environmental considerations required.                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                             |                                                                                                                                                        |
|  |              |              |                   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                             |                                                                                                                                                        |

|          |           |                                                  | I                                                                                                                 | T 4 1 4 4 11 6B 4 5B 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TEL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
|----------|-----------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |           |                                                  | Y-10                                                                                                              | Located on the west side of Route 7. Private property. People are living in a hut. Adjacent to a soccer field and BABARIA (a beer factory). In the neighborhood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The land is privately owned. Insufficient construction space. Neighboring to commercial buildings and a school.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
|          |           |                                                  |                                                                                                                   | Antonio Caro).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Social consideration during construction required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
|          |           |                                                  | Y-11                                                                                                              | Located on the west side of Route 7. The site is a deserted area. Neighboring a maintained pasture. There are signs writing "No venta" (No sale), "No arrenda" (No lease) and "No permuta" (No swan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The landowner is unknown. Land preparation (earthworks) for construction works required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
|          |           |                                                  | Y-12                                                                                                              | Located on the west side of Route 7. The site is a vacant land near the road. Adjacent to a storage house, truck yard, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The land is privately owned, a vacant grassland but not for pasture. There are no residents. No other social and environmental considerations required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
|          | Additor   | Olaya Herrera                                    | OH-1                                                                                                              | Located unpaved road. The access is good. However, the distance to the site is long. Located in 10m right under the high-voltage electric transmission line. A site is grassland and no deforestation. The neighboring peace and order are bad.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Located within a Forest Protection Area. The landowner is unknown. A drilling permit required. Also needs a construction permit because of the construction near the high-voltage electric transmission line.  No resettlement. No other social considerations required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
| ity      | livar     | livar                                            | B-1                                                                                                               | Grassland by a stream and an unpaved road.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Little environmental and social consideration during construction needed. The site is not located in a Forest Protection Area, but on privately owned land. the agreement on land procurement or a lease agreement is required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
| Bogota C | iudad Bol | ıdad Boli                                        | ıdad Boli                                                                                                         | EX-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Planned as a Pilot Project. Drilling was completed by JICA. Condition of location is the same as B-1 above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A well is already drilled. Environmental and social consideration problems did not occur.                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
|          | Ü         | Ü                                                | B-2                                                                                                               | Same as B-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Same as B-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
|          |           |                                                  |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
|          |           |                                                  |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
|          |           |                                                  |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Residence area of low-income group. Densely built in the south hill area. However the site is located in the pasture, along the upper side of the city. One person owns this pasture. The densely built low-income houses reach to the vicinity of the project area, but in the pasture area no illegally built houses exist. ACUEDUCTO distributes water to some parts of the Soacha city, but the city holds control of the water | Same as above  Minor environmental and social considerations required during construction. The site is privately owned, and the agreement on land procurement or a lease is required |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
| Soacha   | Soacha    | Soacha                                           | Soacha                                                                                                            | Soacha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Soacha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Soacha                                                                                                                                                                                                                                                                                                                                                                                                                              | Soacha                                                                                                                                                                               | Soacha                                                                                                                                                | EX-1                                                                                                | Cancelled. Located in the south hill area same as S-1 to 6. This site is the best local of the Project. Pasture, sufficient space, best hydro geological condition. However no | Planned for test well drilling, but due to disagreement with the landowner the activity was cancelled. As in S-1, no other environmental and social considerations required. |
|          |           |                                                  |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S-2                                                                                                                                                                                                                                                                                                                                                                                                                                 | Same as S-1                                                                                                                                                                          | Same as S-1                                                                                                                                           |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
|          |           |                                                  |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S-3                                                                                                                                                                                                                                                                                                                                                                                                                                 | Same as above                                                                                                                                                                        | Same as above                                                                                                                                         |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
|          |           |                                                  |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The owner is the same as S-1, 2 and 3, above. The project site is located further to the center of the hill. There is no illegally built houses on the property.                                                                                                                                                                                                                                                                    | Same as above                                                                                                                                                                        |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
|          |           |                                                  |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Same as above                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
|          |           |                                                  | S-6<br>Y-13                                                                                                       | Located on the west side of Route 7. Adjacent to a restaurant. The project area is within a pasture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Same as above  The land is privately owned. A restaurant is neighboring the site; construction management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
|          |           |                                                  | Y-14                                                                                                              | Located on the west side of Route 7. The project site is located within grassland. Residents do not reside in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | consideration is required.  Environmental and social considerations not required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
|          |           |                                                  | Chia                                                                                                              | Chia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ia                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y-15                                                                                                                                                                                 | Pasture land located close to a tollbooth. Located on the west side of Route 7.                                                                       | Same as above                                                                                       |                                                                                                                                                                                |                                                                                                                                                                              |
|          | ia        | Chia                                             |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                     | ia                                                                                                                                                                                   | Y-16                                                                                                                                                  | Located on the west side of Route 7. Next to a soccer field and grassland. A gradual piedmont area. | A company owns the land. Resettlement not required. An access road near to the site exists. Environmental and social considerations not required.                              |                                                                                                                                                                              |
|          | Ch        |                                                  |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y-17                                                                                                                                                                                                                                                                                                                                                                                                                                | Located on the west side of Route 7. Roadside. Grassland.                                                                                                                            | The land is privately owned. Resettlement not required. An access road near to the site exists. Environmental and social considerations not required. |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
| ਹ<br>ਹ   |           |                                                  | Y-18                                                                                                              | Located on the east side of Route 7, about 300 meters towards the mountainside, at the bottom of a bare rock mountain. From here towards the north, the slope of the mountain area becomes gradually gentle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Environmental and social considerations not required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
|          |           |                                                  |                                                                                                                   | Y-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Located on the east side of Route 7, a grassland, about 600 meters from the road. Located within the area designated for agricultural testing by Rasagi university.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The site is located within the property of the university. Safety measures during construction works need to be consider and implemented. No other social and environmental considerations required.                                                                                                                                                                                                                                |                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |
|          |           | Chia Soacha Bogota City  Chia Soacha Soacha City | Chia     Soacha     Bogota City       Chia     Soacha     Ciudad Bolivar       Chia     Soacha     Ciudad Bolivar | Chia  Chia | Print and Babanalia (a beer factory). In the neighborhood there is a bus station and a school (Colegio Miguel Antonio Caro).  Located on the west side of Route 7. The site is a deserted area. Neighboring a maintained pasture. There are signs writing "No venta" (No savap). "No arrenda" (No lease) and "No permutat" (No savap). Located on the west side of Route 7. The site is a vacant land near the road. Adjacent to a storage house, truck yard, etc.  Located unpaved road. The access is good. However, the distance to the site is long. Located in 10m right under the high-voltage electric transmission line. A site is grassland and no deforestation. The neighboring peace and order are bad.  B-1  B-1  B-1  B-2  B-2  Planned as a Pilot Project.  Drilling was completed by JICA. Condition of location is the same as B-1 above.  Same as above  B-3  Same as above  B-3  Same as above  Residence area of low-income group. Densely built in the south hill area. However the site is located in the pasture, along the upper side of the city. One person owns this pasture. The densely built low-income houses reach to the vicinity of the project area, but in the pasture area no illegally built houses exist. ACUEDUCTO distributes water to some parts of the Soacha city, but the city holds control of the water supply network. Water is always in short supply.  Cancelled.  Located in the south hill area same as S-1 to 6. This site is the best local of the Project. Pasture, sufficiency by the complex of the water supply network. Water is always in short supply.  Cancelled.  Located on the west side of Route 7. Adjacent to a restuarant. The project area is within a pasture warmed by a wire mesh fence.  Located on the west side of Route 7. Adjacent to a restuarant. The project area is within a pasture towards the mountain grassland. Residents do not reside in the area.  Y-15  Same as above  Located on the west side of Route 7. Adjacent to a restuarant. The project area is within a pasture towards the mountain prassland, and pradual predmont are |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                              |

|                                  |      |      |      |      | Located on the east side of Route 7. Located within                                                                                                                                              | The site is located within the property of the                                                                                                                   |                                                                                                                                                       |
|----------------------------------|------|------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |      |      |      | Y-20 | the property of a women's theological university next to Catolica university.                                                                                                                    | university. Safety measures during construction works need to be consider and implemented. No other social and environmental considerations required.            |                                                                                                                                                       |
|                                  |      |      |      | Y-21 | Located on the east side of a road (freeway). Grassland across a hill. Streamside. Surrounded by walls.                                                                                          | The land is privately owned. Resettlement not required. No other social and environmental considerations required.                                               |                                                                                                                                                       |
|                                  |      |      |      | Y-22 | Located on the east side of the road (freeway). Within the property of Instituto Caro y Cuerva, behind a soccer field.                                                                           | Land lease agreement required. The site is located within the institute's property and safety measure during construction need to be considered and implemented. |                                                                                                                                                       |
|                                  |      |      |      | Y-23 | Located on the east side of the road (freeway). About 500 meters towards the mountainside. A grassland neighboring Colegio Trinidad del Monte.                                                   | The land is privately owned. Resettlement not required. No other social and environmental considerations required.                                               |                                                                                                                                                       |
|                                  |      |      |      | Y-24 | Located about 250 meters to the east from the road (freeway). A pasture.                                                                                                                         | A company owns the land. Resettlement not required.<br>No other social and environmental considerations required.                                                |                                                                                                                                                       |
|                                  | Sopo | Sopo | Sopo | Y-25 | Located about 250 meters to the east from the road (freeway). A pasture.                                                                                                                         | The project area is a pasture. Deforestation not required. A company owns the land. No other social and environmental consideration required.                    |                                                                                                                                                       |
| oject<br>1                       | Sc   | Š    | ă V  | Š    | Y-26                                                                                                                                                                                             | Located in a crop field, about 200 meters to the east from the road (freeway). In front of a school.                                                             | The project site is a crop field. Deforestation not required. The land is privately owned. No other social and environmental considerations required. |
| Yerbabuena Project<br>Yernabuena |      |      |      | Y-27 | Located about 400 meters to the east from the road (freeway). An unpaved road is available for service. The land area is grassland located at the bottom of a mountain. There is a flowing well. | The land is privately owned. No other social and environmental considerations required.                                                                          |                                                                                                                                                       |
| Yer                              |      |      |      | Y-28 | Located about 150 meters to the east from the road (freeway). Access by an unpaved road. Vacant grasslands.                                                                                      | The land is privately owned. No other social and environmental considerations required.                                                                          |                                                                                                                                                       |
|                                  |      |      |      | Y-29 | Located about 100 meters to the east from the road (freeway). Roadside. A pasture.                                                                                                               | The land is privately owned. No other social and environmental considerations required.                                                                          |                                                                                                                                                       |