Annex 4

Training for the Sierra Leonean Counterparts

PARTIVA nnexes

Annex 4 Training for the Sierra Leonean Counterparts

The Japanese experts trained the Sierra Leonean counterparts through a series of lecture, exercise and field practice in 2008, recognizing that the capacity of the counterparts in designing, implementing, and monitoring the PP had not been built up.

Inadequate capacity of the Sierra Leonean counterparts has been recognized in various occasions during the implementation period of PP 2007: miscalculation of fertilizer requirement, irregular shape of the PP plots, setting monitoring sub-plots at inappropriate locations, improper way of counting tiller numbers, etc. Actually, most extension workers have not had opportunities of having training for long time, and they needed to refresh their memory or supplement new knowledge based on those they have.

To develop the capacity of extension workers in crop cultivation, field experiment monitoring, etc., a series of training have been conducted by the Japanese experts.

Total of 20 training courses have been conducted during the period of 7 months from May to December, 2008. Date, subject, and materials used in each training session are shown in Table 4-1.

Table 4-1 Subject and Materials Used in Each Training Session

No.	Date	Subject	Materials used for training,	Lecturer
1	$28 / 05$	Importance of timely farming practice in relation to the life cycle of rice plant	Properties showing weekly calendar, on which farming practice and growth stage of rice are indicated	Mr. T. Kimijima
2	$04 / 06$	Life cycle of rice plant and calculation of seed requirement	Hand outs, and exercise (Appendix A4-1)	Mr. T. Kimijima
3	$11 / 06$	Seed requirement	Exercise (Appendix A4-2) the PP 2007 held in Feb. 2008 and fertilizer exercise	PowerPoint presentation, handouts, and exercise (Appendix A4-3)
4	$26 / 06$	Re-appraisal of the workshop on J. Yamaguchi 5	$02 / 07$	Additional Information, labor cost confirmation, and yield components
6	$03 / 07$	Field practice of growth monitoring hat Robennah upland (field)	Handouts (Appendix A4-5) 7 $09 / 07$	Field practice of plot layout at Robennah IVS (field)
Announcement	Dr. J. Yamaguchi			
8	$16 / 07$	Yield components, Refreshers and Growth Monitoring	PowerPoint presentation (Appendix A4-6)	Dr. J. Yamaguchi
9	$23 / 07$	Fertilizer calculations and some comments on transplanting	PowerPoint presentation, exercise, homework (Appendix A4-7)	Dr. J. Yamaguchi
10	$30 / 07$	Field practice on plant growth: leaf development and tillering habit of various cultivars	Exercise	
$13 / 08$	Fertilizer calculation and yield	Dramaguchi		
Power point presentation	Dr. J. Yamaguchi			

PARTIV A nnexes

		components	(Appendix A4-8)	
12	$03 / 09$	Refresher course on timely farming practice, especially nursery period and transplanting in relation to crop growth duration	Properties showing weekly calendar, on which farming practice and growth stage of rice are indicated	Mr. T. Kimijima
13	$17 / 09$	Several faults found in farming practices in the PP sites	Power point presentation (Appendix A4-9)	Mr. T. Kimijima
14	$24 / 09$	Cost and benefit analysis of rice farming	Handout (Appendix A4-10)	Dr. T. Mizobe
15	$08 / 10$	Project Progress (presentation of the summary of Progress Report 5)	Power point presentation (Appendix A4-11)	Mr. T. Kimijima
16	$22 / 10$	Plant nutrients and fertilizer application	Handout (Appendix A4-12)	Dr. J. Yamaguchi
17	$05 / 11$	Introduced techniques and presentation of watermelon disease in vegetable production for the support of women's group	Power point presentation (Appendix A4-13)	Ms. A. Mishima
18	$03 / 12$	Post-harvest handling of rice	Handout (Appendix A4-14)	Mr. H. Inoue
19	$10 / 12$	Vegetable production techniques	Handout (Appendix A4-15)	Mr. J. Harada
20	$19 / 12$	Moisture adjustment	Exercise (Appendix A4-16)	Dr. Yamaguchi

The subjects for training have been selected carefully from those which are familiar with the counterparts or those necessary to acquire the knowledge. For example, in the training course No. 12 "Several faults found in farming practices in the PP sites", we explained about undesired farming practices that have been found in the PP sites by a Japanese expert. Necessary skill and knowledge in monitoring the PP sites have been transferred through the training courses No. 6 through No.9.

A training certificate was issued to the participants who have attended more than 80% of the training sessions.

Materials used in the training sessions are presented in the appendix of this annex.

1.1. Life history of a 120-day variety grown in the tropics under the transplanting cultivation system (schematic).

The rice plant usually takes 3-6 months from germination to maturity, depending on the variety and the environment under which it grows. During this period, rice completes basically two distinct sequential growth stages: vegetative and reproductive. The reproductive stage is subdivided into pre-heading and post-heading periods. The latter is better known as the ripening (or maturity) period. Yield capacity, or the yield, which is based on the amount of starch that fills spikelets, is largely determined during post-heading. Hence, agronomically, it is convenient to regard the life history of rice plant in terms of three growth stages: vegetative, reproductive, and ripening. The vegetative stage refers to a period from germination to the initiation of panicle; the reproductive stage, from panicle initiation to heading (or flowering); and the ripening period, from heading to maturity (Fig.1.1). A 120-day variety, when planted in a tropical environment, spends about 60 days in the vegetative stage, 30 days in the reproductive stage, and 30 days in the ripening period.

The vegetative stage is characterized by active tillering, gradual increase in plant height, and leaf emergence at regular intervals. All contribute to increasing the leaf area that receives sunlight. Tillering may start when the main culm develops the 5 th or 6th leaf. The maximum tiller number stage is a stage when tiller number per plant or per square meter is maximum - before or after the initiation of panicle, depending on a variety's growth duration. Because tiller number declines after the maximum tiller number stage, there is a period before that stage (often called the end of stage of effective tillering) when the tiller number becomes numerically equal to panicle number at maturity. Tillers developed at early growth stages normally produce panicles, while those developed later may or may not.

$$
\begin{aligned}
& \text { modified, S. YOSHIDA, Fundamentals of Rice Crop } \\
& \text { Science, } 1981 \text {, IRRI. }
\end{aligned}
$$

The reproductive growth stage is characterized by culm elongation (which increases plant height), decline in tiller number, emergence of the flag leaf (the last leaf), booting, heading, and flowering. Initiation of panicle usually dates back to about 30 days before heading.

Agronomists often refer to topdressing nitrogen fertilizer at panicle initiation - a stage about 25 days before heading when the panicle has grown about 1 mm long and can be recognized visually or with a magnifying lens. Internode elongation usually begins around the initiation of panicle and continues until heading. The top five internodes may be elongated at heading. For this reason, the reproductive growth stage is sometimes called the internode elongation stage.

Heading means panicle exsertion. Spikelets anthesis (or flowering) begins with panicle exsertion, or on the following day. Consequently, heading is considered a synonym for anthesis in terms of calendar days in the life history of rice. It takes $10-14$ days for a crop to complete heading because there is variation in panicle exsertion within tillers of the same plant and between plants in the same field. Agronomically, heading is usually defined as the time when 50% of panicle have exserted. Anthesis normally occurs between 0800 and 1300 in tropical environments. Fertilization is completed within 5-6 hours later. Only a very few spikelets have anthesis in the afternoon. When the temperature is low, however, anthesis may start late in the morning and last until late afternoon. Within the same panicle it itakes 7-10 days for all the spikelets to complete anthesis; most spikelets complete anthesis within 5 days.

Ripening follows fertilization, and may be subdivided into milky, dough, yellow-ripe, and maturity stages. These terms are primarily based on the texture and color of growing grains. Ripening is characterized by leaf senescence and grain growth - increases in grain size and weight and changes in grain color. During active grain growth, both fresh and dry grain weights increase. Toward maturity, however, dry weight increases slowly but fresh weight decreases as a result of water loss. The length of ripening, largely affected by temperature, ranges from about 30 days in the tropics to 65 days in cool, temperate regions such as Hokkaido, Japan, and New South Wales, Australia.

1.2. Phasal development of the rice plant (adapted from Tanaka 1976). $\mathrm{PI}=$ panicle primordia initiation, $\mathrm{F}=$ flowering, $\mathrm{H}=$ harvest, Maximum $\mathrm{T}=$ maximum tiller number stage.

The basic processes in the life history of rice can be applied to any cultivation system, with some modifications.

First, differences in growth duration are primarily due to differences in the length of the vegetative growth stage. The length of the reproductive stage plus the ripening period may be considered about the same for any variety under a given environment. Early maturing varieties have short vegetative stages. As a consequene, they may initiate panicle primordia before the maximum tiller number stage (Type A in Fig. 1.2) and heading may be staggered because later tillers may produce panicles. Late-maturing varieties have long periods of vegetative stage and may reach the maximum tiller number stage before initiation of panicle primordia (Type C in Fig. 1.2). The period from the maximum tiller number stage to initiation of panicle primordia is sometimes referred to as vegetative-lag phase (Tanka et al 1964). When the length of the vegetative stage is adequate, the plant initiates panicle primordia right after the maximum tiller number stage (Type B in Fig. 1.2). In the tropics, this is normally attained by a 120 -day variety.

Second, direct-seeded rice normally starts tillering earlier than transplanted rice because its growth proceeds without the setback caused by growth damage during uprooting. Each direct-seeded rice plant, however, usually produces $2-5$ tillers while each transplanted rice plant produces $10-30$. Thus, tillering is much less important in direct-seeded rice.

Third, growth duration of the same variety may be slightly different between the transplanted and direct-seeded crops. Transplanted rice usually takes about 1 week more to mature because its growth has been disturbed by uprooting.

Exercise: (Seed requirement)

Calculate the required amount of seed rice (kg) per one hectare under the following conditions.

1. Use ROK10 (1,000 grain weight of 20.0 grams, germination rate of 90%) on mangrove swamp, transplanting, planting spacing with $20 \mathrm{~cm} \times 25 \mathrm{~cm}$, three (3) seedlings per hill.
$1-1$. Same as above except for planting spacing with $20 \mathrm{~cm} \times 20 \mathrm{~cm}$

1-2. Same as above except for planting four (4) seedlings per hill
2. Use ROK3 (1,000 grain weight of 27.6 grams, germination rate of 95%) on upland, broadcast, sowing 250 grains per square meter.

2-1. Same as above except sowing 400 grains per square meter.

2-2. Same as above except sowing 300 grains per square meter.
3. Use Yam Besay (1,000 grain weight of 26.8 grams, germination rate of 92%) on IVS, transplanting, planting spacing with $20 \mathrm{~cm} \times 20 \mathrm{~cm}$, four (4) seedlings per hill.

3-1. Same as above except for planting two (2) seedlings per hill.
$3-2$. Same as above except for planting spacing with $30 \mathrm{~cm} \times 20 \mathrm{~cm}$
4. Use Lasana Conteh (1,000 grain weight of 30.0 grams, germination rate of 90%) on IVS, transplanting, planting spacing with $30 \mathrm{~cm} \times 20 \mathrm{~cm}$, two (2) seedlings per hill.
$4-1$. Same as above except for germination rate of 100%.

4-2. Same as above except for four (4) seedlings per hill.

Answer (Seed requirement)
1.
(1) Planting spacing of $20 \mathrm{~cm} \times 25 \mathrm{~cm}$ means that one hill occupies $500 \mathrm{~cm}^{2}\left(20 \mathrm{~cm} \times 25 \mathrm{~cm}=500 \mathrm{~cm}^{2}\right)$. So planting density (no. of hills per square meter) is calculated at $20\left(10,000 \mathrm{~cm}^{2}\left(1 \mathrm{~m}^{2}\right) / 500 \mathrm{~cm}^{2}\right)$
(2) No. of seedlings to be planted per square meter is 60 (20 hills $/ \mathrm{m}^{2} \times 3$ seedlings/hill).
(3) No. of seedlings to be planted per hectare is 600,000 (60 seedlings $/ \mathrm{m}^{2} \times 10,000 \mathrm{~m}^{2}$).
(4) Considering 90% of germination rate, required number of seedlings per hectare is 667,000 (600,000 / $0.9)$ seedlings.
(5) As 1,000 grain weight is 20 g , seed requirement per hectare is calculated at $13.4 \mathrm{~kg}(667,000$ grains x $20 \mathrm{~g} / 1,000 \mathrm{grains} / 1,000 \mathrm{~g} / \mathrm{kg}$).

1-1
(1) The difference is the planting spacing only: not $20 \mathrm{~cm} \times 25 \mathrm{~cm}$, but $20 \mathrm{~cm} \times 20 \mathrm{~cm}$. One hill occupies $400 \mathrm{~cm}^{2}$. So planting density is calculated at $25 \mathrm{hill} / \mathrm{m}^{2}$.
(2) No. of seedlings to be planted per square meter is 75 ($25 \mathrm{hills} / \mathrm{m}^{2} \times 3$ seedlings/hill).
(3) No. of seedlings to be planted per hectare is 750,000 (75 seedlings $/ \mathrm{m}^{2} \times 10,000 \mathrm{~m}^{2}$).
(4) Considering 90% of germination rate, required number of seedlings per hectare is 833,000 (750,000 / $0.9)$ seedlings.
(5) As 1,000 grain weight is 20 g , seed requirement per hectare is calculated at $16.7 \mathrm{~kg}(833,000$ grains x $20 \mathrm{~g} / 1,000 \mathrm{grains} / 1,000 \mathrm{~g} / \mathrm{kg}$).

1-2
(1) The difference is the number seedlings only: not 3 , but 4 .
(2) No. of seedlings to be planted per square meter is $80\left(=20 \mathrm{hills} / \mathrm{m}^{2} \times 4\right.$ seedlings/hill)
(3) No. of seedlings to be planted per hectare is $800,000\left(=80\right.$ seedlings $/ \mathrm{m}^{2} \times 10,000 \mathrm{~m}^{2}$).
(4) Considering 90% of germination rate, required number of seedlings per hectare is $889,000(=800,000$ / 0.9) seedlings.
(5) As 1,000 grain weight is 20 g , seed requirement per hectare is calculated at $17.8 \mathrm{~kg}(=889,000$ grains x $20 \mathrm{~g} / 1,000 \mathrm{grains} / 1,000 \mathrm{~g} / \mathrm{kg}$).
2.
(1) As 250 grains are sown in one square meter, necessary number of seed grains for one hectare is 2,500,000 ($=250$ grains $/ \mathrm{m}^{2} \times 10,000 \mathrm{~m}^{2} / \mathrm{ha}$).
(2) Considering 95% of germination rate, required number of grain is 2,630,000 $(=2,500,000 / 0.95)$.
(3) As 1,000 grain weight is 27.6 g , seed requirement per hectare is 72.6 kg (=27.6 g/1,000 grain * 2,630,000 grain / 1,000 g/kg)

2-1

(1) The difference is the number of grains per square meter only: not 250 grains but 400 grains
(2) Necessary number of seed grain for one hectare is 4,000,000 ($=400$ grains $/ \mathrm{m}^{2} \times 10,000 \mathrm{~m}^{2} / \mathrm{ha}$)
(3) With the germination rate of 95%, required number of grain is $4,211,000(=4,000,000 / 0.95)$
(4) Given the 1,000 grain weight of 27.6 g , seed requirement per hectare is 117 kg ($=27.6 \mathrm{~g} / 1,000$ grain * 4,211,000 grain / 1,000 g/kg)

2-2

(1) The difference is the number of grains per square meter only: not 250 grains but 300 grains
(2) Necessary number of seed grain for one hectare is $3,000,000\left(=300\right.$ grains $/ \mathrm{m}^{2} \times 10,000 \mathrm{~m}^{2} / \mathrm{ha}$)
(3) With the germination rate of 95%, required number of grain is $3,158,000(=3,000,000 / 0.95)$
(4) Given the 1,000 grain weight of 27.6 g , seed requirement per hectare is 87.2 kg ($=27.6 \mathrm{~g} / 1,000$ grain * 3,158,000 grain / 1,000 g/kg)
3.
(1) Planting spacing of $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ means that one hill occupies $400 \mathrm{~cm}^{2}$ ($=20 \mathrm{~cm} \times 20 \mathrm{~cm}$). So planting density (no. of hills per square meter) is calculated at $25\left(=10,000 \mathrm{~cm}^{2}\left(1 \mathrm{~m}^{2}\right) / 400 \mathrm{~cm}^{2}\right)$
(2) No. of seedlings to be planted per square meter is $100\left(=25\right.$ hills $/ \mathrm{m}^{2} \times 4$ seedlings/hill).
(3) No. of seedlings to be planted per hectare is $1,000,000\left(=100\right.$ seedlings $/ \mathrm{m}^{2} \times 10,000 \mathrm{~m}^{2} / \mathrm{ha}$).
(4) Considering 92% of germination rate, required number of seedlings per hectare is $1,087,000$ ($=1,000,000 / 0.92$).
(5) As 1,000 grain weight is 26.8 g , seed requirement per hectare is calculated at $29.1 \mathrm{~kg}(=1,087,000$ grains x $26.8 \mathrm{~g} / 1,000 \mathrm{grains} / 1,000 \mathrm{~g} / \mathrm{kg})$.

3-1
(1) The difference is the number seedlings only: not 4 , but 2 .
(2) No. of seedlings to be planted per square meter is 50 (=25 hills $/ \mathrm{m}^{2} \times 2$ seedlings/hill)
(3) No. of seedlings to be planted per hectare is 500,000 ($=50$ seedlings $/ \mathrm{m}^{2} \times 10,000 \mathrm{~m}^{2}$).
(4) Considering 92% of germination rate, required number of seedlings per hectare is $543,000(=500,000$ / 0.92) seedlings.
(5) As 1,000 grain weight is 26.8 g , seed requirement per hectare is calculated at 14.6 kg (=543,000 grains x $26.8 \mathrm{~g} / 1,000$ grains $/ 1,000 \mathrm{~g} / \mathrm{kg}$).

3-2
(1) The difference is planting spacing only: not $20 \mathrm{~cm} \times 20 \mathrm{~cm}$, but $30 \mathrm{~cm} \times 20 \mathrm{~cm}$. One hill occupies $600 \mathrm{~cm}^{2}$. So planting density is calculated at $16.7 \mathrm{hill} / \mathrm{m}^{2}\left(=10000 \mathrm{~cm}^{2} / \mathrm{m}^{2} / 600 \mathrm{~cm}^{2}\right)$.
(2) No. of seedlings to be planted per square meter is 66.8 ($=16.7$ hills $/ \mathrm{m}^{2} \times 4$ seedlings/hill)
(3) No. of seedlings to be planted per hectare is $668,000\left(=67\right.$ seedlings $/ \mathrm{m}^{2} \times 10,000 \mathrm{~m}^{2}$).
(4) Considering 92% of germination rate, required number of seedlings per hectare is $726,000(=668,000$ / 0.92).
(5) As 1,000 grain weight is 26.8 g , seed requirement per hectare is calculated at 19.5 kg (=726,000 grains x $26.8 \mathrm{~g} / 1,000 \mathrm{grains} / 1,000 \mathrm{~g} / \mathrm{kg}$)
4.
(1) Planting spacing of $30 \mathrm{~cm} \times 20 \mathrm{~cm}$ means that one hill occupies $600 \mathrm{~cm}^{2}$ ($=30 \mathrm{~cm} \times 20 \mathrm{~cm}$). So planting density (no. of hills per square meter) is calculated at $16.7\left(=10,000 \mathrm{~cm}^{2}\left(1 \mathrm{~m}^{2}\right) / 600 \mathrm{~cm}^{2}\right)$
(2) No. of seedlings to be planted per square meter is 33.4 ($=16.7$ hills $/ \mathrm{m}^{2} \times 2$ seedlings/hill).
(3) No. of seedlings to be planted per hectare is $334,000\left(=33.4\right.$ seedlings $/ \mathrm{m}^{2} \times 10,000 \mathrm{~m}^{2} / \mathrm{ha}$).
(4) Considering 90% of germination rate, required number of seedlings per hectare is $371,000(=334,000$ / 0.9).
(5) As 1,000 grain weight is 30.0 g , seed requirement per hectare is calculated at 11.1 kg (=371,000 grains x $30 \mathrm{~g} / 1,000 \mathrm{grains} / 1,000 \mathrm{~g} / \mathrm{kg}$).

4-1
(1) The difference is the germination rate only: not 90%, but 100%. So the calculation step from (1) to (3) above is the same: No. of seedlings to be planted per hectare is $334,000\left(=33.4\right.$ seedlings $/ \mathrm{m}^{2} \times 10,000$ $\mathrm{m}^{2} / \mathrm{ha}$).
(2) Considering 100% of germination rate, required number of seedlings per hectare is 334,000 (=334,000 / 1.0).
(3) As 1,000 grain weight is 30 g , seed requirement per hectare is calculated at $10.0 \mathrm{~kg}(=334,000$ grains x $30 \mathrm{~g} / 1,000 \mathrm{grains} / 1,000 \mathrm{~g} / \mathrm{kg}$).

4-2
(1) The difference is the number seedlings only: not 2 , but 4 .
(2) No. of seedlings to be planted per square meter is 66.8 ($=16.7$ hills $/ \mathrm{m}^{2} \times 4$ seedlings/hill)
(3) No. of seedlings to be planted per hectare is $668,000\left(=66.8\right.$ seedlings $\left./ \mathrm{m}^{2} \times 10,000 \mathrm{~m}^{2}\right)$.
(4) Considering 90% of germination rate, required number of seedlings per hectare is $742,000(=668,000$ / 0.92) seedlings.
(5) As 1,000 grain weight is 30 g , seed requirement per hectare is calculated at $\underline{22.3} \mathrm{~kg}$ ($=742,000$ grains x $30 \mathrm{~g} / 1,000 \mathrm{grains} / 1,000 \mathrm{~g} / \mathrm{kg}$).

Planting space and the number of hills in unit area

Case 1: 20 cm x 20 cm

Case 3: $25 \mathrm{~cm} \times 20 \mathrm{~cm}$

Yield Analyses and the Issue of the PP (2007-2008)

1. Some aspects of grain yields measured
2. Profitability by fertilizer
3. Problems, defects, etc.
4. Additional information
5. Some aspects of grain yields
1) Grain yield measured
2) Yield variation in the fields
3) Fertilizer response
4) Calculation of total production

Main results - 1

(1) GY, 1 ton/ha, was attained in many sites of various ecologies with certain improvement of cultural practices.

Exceptions were; for instance,
Kunthai IVS (-F): delayed T/P
Kalintin (boliland): early and prolonged flooding
Robennah IVS (upper site): delayed T/P, water shortage
T/P: transplanting
Main results-1

Main results - 2

(2) No significant difference of rice GY with and without sorghum was observed in upland.
(3) GY was similar between the two treatments of fertilizer application: one and two split-application.
(4) Fertilizer response was about 0.5 ton/ha with an application rate of 4 bag/ha: $2 \mathrm{bag} / \mathrm{ha}$ each of compound fertilizer (15-15-15) and urea. Main 2-4

2) Yield variation in the fields

Grain yield per unit field area (GY) was measured at about $50 \mathrm{~m}^{2}$, setting the $\mathbf{2}$ yield-plots each treatment :
the area was practically $48 \mathrm{~m}^{2}$ simply because of easiness of measuring a rectangle (6 mx 8 m).

Error of the GY was $\mathbf{1 0 \% - 4 0 \%}$ (Table 1).
Besides, the actual GY varied in a treatment greatly: some examples are:

* The reason for low fertilizer response at Kunthai is likely due to wrong choice of fertilizer (urea) used for top-dressing.

Excess nitrogen supply induced severe leaf scald development. Mal-, or imbalanced nutrition encourages many fungus diseases, so that they are often called physiological diseases.

4) Calculation of total production with the sampling method

Total production = GY x Area x Ec
GY: grain weight per unit field area (ton/ha) at 14% moisture

Area: real acreage. Many PP sites was not a regular square, being deformed, and thus, net total acreage was less than 1 ha (projected).
Ec, Effective coverage: Proportion of field area represented (covered) with the GY measured: varied 0-1 depending on uniformity of rice growth.

Place	Ecology	Treatment	Ec	Cause of r	
Macoth	MS	$\begin{gathered} -\mathrm{F} \\ +\mathrm{F}(1) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.80 \\ & 0.90 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{H}_{2} \mathrm{~S} \text { toxicity } \\ & \text { ditto } \\ & \hline \end{aligned}$	
Kunthai	upland	-F	0.90	Bird damage at	ence
	IVS	+F	0.90	Former compost	eam
Kalintin	boli	$\begin{array}{r} \hline-\mathrm{F} \\ +\mathrm{F} \\ \hline \end{array}$	$\begin{aligned} & \hline 0.70 \\ & 0.60 \\ & \hline \end{aligned}$	Early and prolonged flood ditto	
Sabuya	IVS	$\begin{gathered} \hline \text { Dry (-F) } \\ \text { Wet } \end{gathered}$	$\begin{aligned} & \hline 0.95 \\ & 0.85 \\ & \hline \end{aligned}$	Fe excess ditto	
Ec: Proportion of the field area effectivce with the measured grain yield for calculating tatal production in a whole area. Ec was visually estimated.					
For example at unfertilized plot (-F) in Macoth, 20\% (1Ec) of the plot area was seriously damaged with $\mathrm{H}_{2} \mathrm{~S}$ toxicity, where the GY was nominal . Ec in another (ordinary) sites should be one (1).					

2. Profitability by fertilizer application

Result from the PP:
The maximum GY increment by fertilizer application ($200 \mathrm{~kg} / \mathrm{ha}$) was about 0.5 ton $/ \mathrm{ha}(=500 \mathrm{~kg} / \mathrm{ha})$.

Is this increment profitable?

Assuming that
(1) fertilizer cost is Le150,000/bag ($50 \mathrm{~kg} / \mathrm{bag}$),
(2) fertilizer rate is $4 \mathrm{bag} / \mathrm{ha}$, and
(3) price of rough rice is Le $30,000 / \mathrm{bu}(50 \mathrm{~kg} / \mathrm{bu})$.

Total cost $=$ Le150,000 x $4=$ Le600,000
Rice price of $1,000 \mathrm{~kg}=\mathrm{Le} 30,000 / 50 \times 1,000$
$=$ Le600, 000
Thus, the marginal production to recover fertilizer cost is 1 ton/ha under the present economic condition in Sierra Leone.

The GY increment by fertilizer application (a) was expected and is possible to be 1 ton/ha at least.
a) Fertilizer response

Why was not this target attained?
3. Problems, defects, etc. in various aspects

1) Cultural practices
2) Field layout
3) Wrong monitoring

3-1) Growth monitoring
3-2) Labor requirement

1) Problem of cultural practices - transplanting

Fig. dt Days after sowing and duration of transplanting at the PP sites.
Delayed and prolonged T/P in almost all sites: why?

Problems of cultural practices - deep T/P

3-2) Invalid labor requirement	Table 3. Total labor requirement for each hectare of rice cultivation in vanous agro ecolopies							
	Agroecology	PP ate	perion pertion bour day					
	Mangrove swamp	Macoth	1763	220				
		Retror	906	113				
	Miegrove swamp (assoc)	Robat	1965	246				
The result	Bolland	Karlington	678	${ }^{4} 8$				
	Inloend valley swamp	Robennah	2933	367				
		Sabuya	5219	652				
shows that	Upland	Robennah	1947	243				
there was a		Kunthai	359\%	450				
big difference	a) Summarized data on the Farming Activities presented by 2008/01/28							
in the labor	b) astoc astoczated c) Corversion rate: 8 woeking hours a day							
requirement								
(110-850 person.d/ha) among the sites, reflected with the natural status and socio-economic condition among them. Is it feasible? . . . No!								

Appendix A4-3 Yield Analyses and the Issue of the PP (2007-2008)

Re-appraisal study of the Pilot Project (PP)
(Essentially similar to the workshop on 2008/02/07)
Note 1) Bring all handouts and documents delivered in the past.
Ref.. 1: Grain yield at the PP (2008/01)

- Date of harvest, grain yield and its error, 1,000-grian weight, and fertilizer response

Ref.. 2: Key farming activities (2007/10/03 \& 2007/11/27)
Ref.. 3: Labor requirement for T/P (2007/10/03 \& 2007/11/07)
Ref.. 4: Grain yield and yield components (2007/10/30)
Ref.. 5: Measurement of grain yield (2007/10/03)
Ref.. 6: Summarized Answers to the Questionnaire for the Pilot Project (2007-2008)
Ref.. 7: Survey result of the baseline survey (Dec. 2007)
Note 2) Exercise will be given at the end of lecture.
Note 3) Table and figure numbers cited in the text are not well ordered.

1. Some aspects of grain yields

1) Grain yield (GY) measured (Ref.. 1)
(1) GY, 1 ton/ha, was attained in many sites of various ecologies with certain improvement of cultural practices.
(2) No significant difference of rice GY with and without sorghum was observed in upland.
(3) GY was similar between the two treatments of fertilizer application: one and two split-application.
(4) Fertilizer response was about $0.5 \mathrm{ton} / \mathrm{ha}$ with an application rate of $4 \mathrm{bag} / \mathrm{ha}: 2 \mathrm{bag} / \mathrm{ha}$ each of compound fertilizer (15-15-15) and urea.
2) Yield variation in the fields (Ref. 1)

Grain yield per unit field area (GY) was measured at about $50 \mathrm{~m}^{2}$, setting the 2 yield-plots each treatment: the area was practically $48 \mathrm{~m}^{2}$ simply because of easiness of measuring a rectangle $(6 \mathrm{~m}$ x 8 m). Error of the GY was $10 \%-40 \%$ (Table 1) (Ref.. 1).
Besides, the actual GY varied in a treatment greatly: some examples are:

Fig. Rp Relationship between total production of a whole field calculated on the basis of grain yield measured with the sampling method and that havested by farmers
3) Fertilizer response: an example on upland
a) Treatment allocation at sloppy land
b) The reason for low fertilizer response at Kunthai is likely due to wrong choice of fertilizer (urea) used for top-dressing. Excess nitrogen supply induced severe leaf scald development. Mal-, or imbalanced nutrition encourages many fungus diseases, so that they are often called physiological diseases.
4) Calculation of total production with the sampling method (Ref. 5)

$$
\text { Total production }=\text { GY x Area } \times \text { Ec }
$$

Where,
GY: grain weight per unit field area (ton/ha) at 14% moisture
Area: real acreage. Many PP sites was not a regular square, being deformed, and thus, net total acreage was less than 1 ha (projected).
Ec: Effective coverage: Pr oportion of field area represented (covered) with the GY measured: varied 0-1 depending on uniformity of rice growth.

Table py. Effective coverage of the grain yield measured (Ec)

Place	Ecology Treatment	Ec	Cause of reduction	
Macoth	MS	-F	0.80	$\mathrm{H}_{2} \mathrm{~S}$ toxicity
		$+\mathrm{F}(1)$	0.90	ditto
Kunthai	upland	-F	0.90	Bird damage at emergence
	IVS	+F	0.90	Former compost \& stream
Kalintin	boli	-F	0.70	Early and prolonged flood
		+F	0.60	ditto
Sabuya	IVS	Dry (-F)	0.95	Fe excess
		Wet	0.85	ditto

Ec: Proportion of the field area effectivce with the measured grain yield for calculating tatal production in a whole area. Ec was visually estimated.

For example at unfertilized plot (-F) in Macoth, 20% (1-Ec) of the plot area was seriously damaged with $\mathrm{H}_{2} \mathrm{~S}$ toxicity, where the GY was nominal. Ec in another (ordinary) sites should be one (1).

Results: see Ref. 1 and Table 1.
Fig. Rp (p.1) shows the relati onship between total production of a whole field calculated on the basis of grain yield m easured with the sam pling method and that harvested by farmers

2. Profitability by fertilizer application

Result from the PP: The maximum GY increment by fertilizer application ($200 \mathrm{~kg} / \mathrm{ha}$) was about 0.5 ton $/ \mathrm{ha}$ ($=500 \mathrm{~kg} / \mathrm{ha}$). Assuming that (1) fertilizer cost is Le150,000/bag ($50 \mathrm{~kg} / \mathrm{bag}$), (2) fertilizer rate is $4 \mathrm{bag} / \mathrm{ha}$, and (3) price of rough rice is Le30, $000 / \mathrm{bu}(50 \mathrm{~kg} / \mathrm{bu})$.

$$
\begin{aligned}
& \text { Total cost }=\text { Le } 150,000 \times 4=\text { Le } 600,000 \\
& \text { Rice price of } 1,000 \mathrm{~kg}=\mathrm{Le} 30,000 / 50 \times 1,000=\text { Le } 600,000
\end{aligned}
$$

Thus, the marginal production to recover fertili zer cost is 1 ton/ ha under the present econom ic condition in Sierra Leone.

Fertilizer response (GY increment by fertilizer application) was expected and is possible to be 1 ton/ha at least. Why was not this target attained? Many defects, for which you were responsible, were found.

Table 1. Total grain production (rough rice at 14% moisture) at the PP sites with the sampling method and with harvesting a whole plot by farmers.

PP site	Agroecology \& cultivar	Treatment		Grain yield (ton /ha)	Field area (ha)	Effective coverage	Production (kg)			
		Specific	Ferti- lizer				Calculated		Harv. by farmers	
							Within a treatment	Total at the site	Within a treatment	Total at the site (a)
Macoth	Mangr.	-	-F	1.00	0.49	0.75	366	1,000	-	890
	swamp	-	+F (1)	1.32	0.23	0.90	275		-	(870) b
	ROK 10	-	+F (2)	1.52	0.24	1.00	359		-	
Robat	As. mangr.	-	-F	2.12	0.48	1.00	1,023	2,175	-	2,420
	swamp	-	+F (1)	2.24	0.24	1.00	539		-	$(2,385) \mathrm{c}$
	ROK 10	-	+F (2)	2.54	0.24	1.00	613		-	
Rosinor	Mangr.	-	-F	0.89	0.25	1.00	223	921	278	924
	swamp	-	+F (1)	1.38	0.24	1.00	326		307	(905) b
	ROK 10	-	+F (2)	1.57	0.24	1.00	371		339	
Kunthai	Upland	Rice	-F	0.33	0.25	0.90	75	565		532
	ROK 3		+F	0.72	0.25	1.00	181			(520) d
		Rice +	-F	0.46	0.25	0.90	105			
		sorghum	+F	0.82	0.25	1.00	204			
Kunthai	IVS	-	-F	0.14	0.17	1.00	23	324		250
	Butter cup	-	+F	1.29	0.26	0.90	301			(242) ${ }^{\text {e }}$
Robennah	Upland	Rice	-F	1.21	0.25	1.00	302	1,127		1,485
	ROK 3		+F	1.07	0.25	1.00	268			$(1,462) \mathrm{f}$
		Rice +	-F	0.99	0.25	1.00	247			
		sorghum	+F	1.24	0.25	1.00	309			
Robennah	IVS	Lower	-F	1.25	0.25	1.00	313	1,185	316	844
	ROK 5	site	+F	1.80	0.25	1.00	450		459	(820) g
		Upper	-F	0.64	0.25	1.00	159			
		site	+F	1.05	0.25	1.00	263			
Kalintin	Boliland	-	-F	0.38	0.40	0.75	114	264	152	280
	ROK 10	-	+F	0.60	0.38	0.65	150		128	(275)
Sabuya	IVS	Dry	-F	1.38	0.27	0.95	359	1,129	-	1,250
	ROK 5	nursery	+F	1.60	0.24	1.00	384		-	$(1,225) \mathrm{i}$
		Wet	-F	0.85	0.27	0.85	195		-	
		nursery	+F	0.98	0.23	0.85	191		-	

a) Values in parentheses show grain production reported from each PP site. Production taken for

GY determination at $48 \mathrm{~m}^{2}+\left(1 \mathrm{~m}^{2} \times 3\right)=51 \mathrm{~m}^{2}$ was added.
b) By actural weighing
c) 45 bag $\times 53 \mathrm{~kg} / \mathrm{bag}=90 \mathrm{bu} \times 26.5 \mathrm{~kg} / \mathrm{bu}=2,385 \mathrm{~kg}$
d) 17 baff-pan $\times 30.6 \mathrm{~kg} /$ baff-pan $=520.2 \mathrm{~kg}$
e) e-mail from E.E. Bangura through T. Kimijima on 2008/02/21.
f) 34 bag $\times 43 \mathrm{~kg} / \mathrm{bag}=1,462 \mathrm{~kg}$
g) 820 kg as a total? GY at upper site $=820-(310+450)=60 \mathrm{~kg}:$ too small?
h) no valid information
i) 35 bu (by Baf pan) $\times 35 \mathrm{~kg} / \mathrm{bu}=1,225 \mathrm{~kg}$ (air-dried weight)

3. Problems, defects, etc. in the past PP

1) Problems of cultural practices: for instance,
a) Delayed and prolonged T/P in almost all sites (Fig. dt). What was a cause?
b) Deep T/P (Fig. td)
2) Deformed field layout; e.g., Fig. mc and Fig. 3.

Non-regular, deformed square affects not only yield estimation but also fertilizer rate

Fig. dt Days after sowing and duration of transplanting at the PP sites.

Fig ne Field layout of the pilot project at Macoth in mangrove swanp

Fig. td. Tiller development affected with planting depth

Regular square (quadrate)	Ares (ha)	Fertilizer		Grain yield (ton/ha)	Totalproduction (ton)
		applied (kg)	$\begin{gathered} \text { rate } \\ (\mathrm{kg} / \mathrm{ha}) \end{gathered}$		
	1	100	100	1	1
Parallelogram					
	0.5	100	200	1	0.5
100 m \quad 100 m	0.1	100	1,000	1	0.1

Fig. pL. Examples of problems caused with different shapes of field layout
3) Wrong monitoring results

3-1) Plant growth monitoring: yield component (YC) analysis (Ref. 4)
Grain yield $=\mathrm{C} \times \mathrm{D} \times \mathrm{Ex} \mathrm{G}$

Each YC is determined at the different growth stage, and thus, the YC analysis will provide us which growth stage induces low yield.
Grain weight at about 70% sub-plots was 1.5 times or larger than that at the respective yield-plots (Fig. Gw). This result induces the difficulty (made impossible) in YC analysis.

Fig. Gw. Grain weight ratio (sub-plotyilyd-plot)

Fig. 3 Allocation of the sub-plots at inland valley swamp (IVS), Kunthai (the second planting)

Wrong allocation of sub-plots: the worst case at Kunthai IVS (Fig. 3). Plant gro wth at the border is several ti mes vigorous than that inside: more num ber of tillers (panicles) p er plant and lar ger panicles.

3-2) Farming activity records: e.g., Labor requirement
The result (Table 3) shows that there was a big difference in the labor requirement (110-850 person. d / ha) for rice culture in one cropping), reflected with the natural status and socio-economic condition of each PP site. Is it feasible? Definitely, no!

Table It4. Summarized labor requirement of transplanting (included uprooting) of rice plants

Place (PP site)	Agro- ecology		Labor requir- ment $/$ ha p.h
pacoth	MS	211	26
Rosinor	MS	287	36
Robat	MSa	310	39
Robennah	IVS	349	44
Kunthai	IVS	207	26
Sabuya	IVS	353	44

Abbreviation; MS: mangrove swamp, MSa: MS associated, IVS: inland valley swamp. p.h: person x h, p.d: person x day

Table 3. Total labor requirement for each hectare of rice cultivation in various agro-ecologies

Agro-ecology	PP site	person -hour	
person			
	-day		
Mangrove swamp	Macoth	1763	220
	Rosinor	906	113
Mangrove swamp (assoc)	Robat	1965	246
Boliland	Karlington	6786	848
Inland valley swamp	Robennah	2933	367
	Sabuya	5219	652
Upland	Robennah	1947	243
	Kunthai	3596	450

a) Summarized data on the Farming Activities presented by 2008/01/28
b) assoc: associated
c) Conversion rate: 8 working hours a day

Tentative result of labor requirement of transplanting (Table lt4) (Ref. 3): Did you find any rational reason for such a big difference ($26-44 \mathrm{p} . \mathrm{d} / \mathrm{ha}$) among the PP sites?

Note 1) The first version was presented to the task-force meeting on 2 007/10/03 (varied 24-65 p.d/ha) and tentatively finalized on 2007/11/07 through repeated corrections.

Note 2) The average labor requirement of transplanting was about $14 \mathrm{p} . \mathrm{d} / \mathrm{ha}$ in Japan.
Note 3) Total labor requirement or rice cultivation was $178-585 \mathrm{p} . \mathrm{d} / \mathrm{ha}$ for IVS and $185-635 \mathrm{p} . \mathrm{d} / \mathrm{ha}$ for upland in the baseline survey (Table 7.12 in Ref. 6).
c) Farm ing activity: e.g., no record of (a) flow ing date in all PP sites except Robat (stil 1 the record was am biguous) and (b) even of harvesting date at Robat, Kunthai (two ecologies) an d Kalintin (Ref. 2).

4. Additional information

a) Low fertilizer response at the PP sites indicates that crop management practiced was still poor.
b) Potential rice GY in Kambia district is likely about 5 ton/ha, when one considers her climatic condition during the rainy season: main rice growing season.
5. Requests to MAFFS-K staff (responses to t he answers at the appraisal workshop on 2007/02/07)
a) Follow strictly the cropping calendar instructed in the technical package (TP).
b) Avoid deep T/P by puddling deep enough.
c) Participate actively into all farming practices.
d) Standardize the recording s ystem in farming activity sheets. All data in the past year should be reassessed by your own re sponsibility. At the same time, provide the bac kground data on grain yield, especially when no valid information is shown in Table 1.
e) Consult farmers closely in the group activity
f) Watch carefully plant growth: plants never tell you lie.
g) Find any problem in the TP for realization of the sustainability
h) Show us how much and how often you have claimed or approached to your government on your requests.
i) JPT will not support any simple introduction of mechanization or credit system. Find the results in our farm machinery survey. Besides, bear in mind that how many machinery and credit sy stems were introduced into the country after the independence: all projects failed.
j) Always think about what you can do by yourself. All foreign aid
k) Any proposal or request to the JPT should be presented with full background: e.g., animal draft.

Important notes:

1) The JPT have provi ded every opportunit y for capacity building of t he MAFFS-K staf f, especially through on-the-job training (Ref.. 6), and is willing to do so this year too as far as y ou are keen in your own skill-up. The evaluation of the JPT attitude as being 'down to earth' is highly appreciated by one of the FEWs in Answers to the Questionnaire (Ref.. 6), because he himself understand the importance. Yet, unfortunately, any training on soil analyses is not planned.
2) The JPT is pay ing close attention to sustai nable agricultural developm ent through technical assistance, not through material provision that is ephemerally vanished into air.
3) The JPT is look ing forward to hav ing your po sitive suggestion or advice to im prove the project.

Name: \qquad

Short Exercise

Q: When a recommended rate of nitrogen is at $40 \mathrm{~kg} / \mathrm{ha}$ and urea $(46 \% \mathrm{~N})$ as a f ertilizer is provided, calculate how much fertilizer you have to apply into one (1) acre field area?

Ans. (show an equation too):

Today's topic

Last week exercise
Fertilizer calculation
on the PP
Some additional information
Labor cost
Confirmation

- Today's main topic

Grain yield and its components

Fertilizer calculation

What is the percentage?

None of you understands it, at least practically.

The similar example;
Formulation of Draft Technical Package (page 4) describes that 'apply $40 \mathrm{~kg}_{\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}}$ and $x x x$ for IVS rice as a basal fertilizer'.

Yet, the description is simply a copy of a textbook without real (practical) understanding, isn't it?

Some additional information on PP

1. T / P depth
2. Cultivation procedure in fields
3. Tillering
4. Salt tolerance

Strong (obligatory/compulsory) recommendation:

Puddle twice at least with an orthogonal angle

Otherwise, the same result as last year would be obtained.

Final confirmation

Table lf! Total labor requirement for each hectare of nice

Agro-ecology	PP site	person perion-day as		
		hour	$8 \mathrm{~h} / \mathrm{d}$	$6 \mathrm{~h} / \mathrm{d}$
Mangrove swimp	Macoth	1763	220	294
	Rosinor	906	113	151
Mangrove swamp (assoc)	Robat	1965	246	328
Boliland	Karlington	6786	848	1131
Inland valley swamp	Robennah	2933	367	489
	Sabuya	5219	652	870
Upland	Robennth	1947	243	325
	Kunthai	3596	450	599

[^0]YC (yield component)
analysis

Each YC is determined at
the different growth stage,
and thus, the YC analysis
will provide us which
growth stage induces low
yield.

| The handout was |
| :--- | :--- |
| already delivered |
| to all staff. |

Please bear in mind that
each value of yield and every components are assumed to be, and should be, an average over a given plot (treatment).
in the Pilot Project (2007).

This year, we will adopt another approach to the growth monitoring.

See a handout.

Measurement of Plant Density and Growth

1. Measurement of plant (hill) density

1-1) Refer to Table 1 for the growth stage to be measured and the sub-plot size.

Table 1 Time and the size of a sub-plot for plant (hill) density measurement

Growth stage	Size of a sub-plot	
	Upland	Lowland
2 weeks after sowing	$1 \mathrm{~m} \times 2 \mathrm{~m}$	-
Immediately after T/P	-	1 mx 3 m
Immediately after harvest	$2 \mathrm{~m} \times 2 \mathrm{~m}$	$2 \mathrm{~m} \times 3 \mathrm{~m}$
T/P: transplanting.		

Fig. 1 Three replications of monitoring sub-plots in a treatment plot.

1-2) Watch carefully the plant growth and density in an entire treatment plot from all four peripheries.
1-3) Find three locations (replications) of the average plant density (the number of plants [hills] per unit field area) (Fig. 1). They should be three-meter away, at least, from all sides of a treatment plot.
1-4) Count and record the number of plants (hills) in the sub-plots with the help of sticks, twigs, leaves, drawing lines, etc.

2. Measurement of plant height and the number of tillers

2-1) The measurement should start at the time of plant density measurement, and continue until harvest by a two-week interval.
2-2) Carefully watch and select three (3) plants (hills) each in the monitoring plot (Fig. 2): the plants (hills) should be representatives of average growth of whole plants in a treatment plot. Measurement should be made on the same plants throughout the plant growth (until harvest).
2-3) Measure plant height and count the number of tillers of selected plants (hills), and record them in a monitoring sheet.

Fig. 2 An example of plant (hill) selection for growth monitoring.

1. Comments on the homework: yield components
2. Refresher items:
various topics lessons from failures
3. Modified method of growth monitoring

Homework:

Result of pre-pilot project (2006)						
Panicle Technology package m^{-2}	Grains per panicle	Filled grains $(\%)$	1,000 grain wt (g)	Grain yield $(\mathrm{kg} /$ ha)		
Improved technology	334	144	97.2	28.9	3,318	
Farmers' practice	140	113	93.8	21.5	1,104	

We could apparently deduce from the result: e.g.,

1) Improved technology contributed greatly in GY increase, 2) YC was xx times larger with improved technology compared with farmers' practice,
2) Profit by fertilizer application was Le1,000,000 ???

Result of pre-pilot project (2006)					
Technology package	Panicle m^{-2}	Grains per panicle	Filled grains (\%)	1,000 grain wt (g)	Grain yield (kg/ha)
Improved technology	334	144	97.2	28.9	3,318
Farmers' practice	140	113	93.8	21.5	1,104
	A	B	C	D	E
$\begin{aligned} & \text { Improved tech.: } \quad \text { A x B x C x D = E } \\ & \quad 334 \times 144 \times 0.972 \times 28.9 \times 10,000 / 1,000 \\ & =13,511 \mathrm{~kg} / \mathrm{ha} \end{aligned}$					
$\begin{aligned} & \text { Farmers' practice: } \\ & 140 \times 113 \times 0.937 \times 21.5 \times 10,000 / 1,000 \\ & =3,190 \mathrm{~kg} / \mathrm{ha} \end{aligned}$					

2. Refresher items:

lessons from failures
2-1) T/P sequence
2-2) Old seedlings
2-3) Tiller number counting
2-4) Field layout

3. Modified method of growth monitoring

Thank you!

Homework on 02/07/2008					
Result of pre-pilot project (2006)					
Technology package	$\begin{gathered} \text { Panicle } \\ \mathrm{m}^{-2} \end{gathered}$	Grains per panicle	Filled grains (\%)	1,000 grain wt (g)	Grain yield (kg/ha)
Improved technology	334	144	97.2	28.9	3,318
Farmers' practice	140	113	93.8	21.5	1,104

The improved technology practice consisted of the recommended fertilizer dose of 100:60:60 kg NPK per ha

100: 60: 60 kg NPK per ha
100: 60: 60 kg of $\mathrm{N}: \mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{K}_{2} \mathrm{O}$ per ha

Total quantity of fertilizer
$=100+60+60=220 \mathrm{~kg} / \mathrm{ha}$???

Several lessons from the recent events at the PP sites (2008)

Poor examples:
a) Deep planting depth
b) Many number of seedlings per hill
c) Folded stem by planting fork
d) Insufficient puddling
e) Old seedlings

Good idea:
f) Palm-leaflet rope for marking
a) Deep
planting depth

Kunthai (2008/07/21)

b) Too many number of seedlings per
hill
Number of seedlings per hill was 7-12 at the beginning (about 100^{2}).
No instruction to
them by the MAFFSK staff? Great fault.

Kunthai (2008/07/21)

c) Folded stem
by planting fork

Growing point is
located at the base of
the stem (close to the
roots). Can you
imagine how the new
leaves develop?

Difficulty of shallow planting due to poor puddling
\square
e) Old seedlings

Watch etiolated stem and disease occurrence.

【Appendix A4-7】

Name:
Q. How many bags of fertilizers do you need in a half-hectare field area, when the recommended rate of fertilizer nutrients is at $106-60-60 \mathrm{~kg} / \mathrm{ha}$ of $\mathrm{N}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{K}_{2} \mathrm{O}$?

Note that (1) available fertilizers are urea ($46 \% \mathrm{~N}$) and a high-analysis compound fertilizer (15-15-15), and the weight of fertilizers is 50 kg a bag.

Ans.:

Homework
2008/07/23
Name:
Q. The total acreage of the PP in 2008 is basically 0.5 ha, and it is equally split into two sub-plots: with and without fertilizer. How much fertilizer do you apply to a fertilized plot of the main field? Compound fertilizer (17-17-17) has been already supplied and urea will be delivered later. The recommended fertilizer rate per hectare is two bags of compound fertilizer as a basal application and one bag each of compound fertilizer and urea as a top dressing.

Calculate the application rate (the weight per unit field area, $\mathrm{kg} / \mathrm{ha}$) of nutrients (ingredients) in total, too.

Ans.:

Today's topics
Refreshers
1. Fertilizer calculation for the PP
2. An application of yield
components
(from Radio Kolentin)
Notes
1. Pot culture
2. Modification of growth monitoring

Homework on 23/07/2008
Q. The total acreage of the PP in 2008 is basically 0.5 ha (a), and it is equally split into two sub-plots: with and without fertilizer.
a) Rosinor, Kunthai, Robennah, Kalintin, Sabuya

Q1. How much fertilizers do you apply to a fertilized plot of the main field?

Compound fertilizer (17-17-17) has been already supplied and urea will be delivered later.

The recommended fertilizer rate per hectare is:
a) two bags of the compound fertilizer as a basal application, and,
b) one bag each of the compound fertilizer and urea as a top dressing.

Refresher item

* Difference between the rate and quantity

The rate is:
The quantity per unit length, area, volume, weight, time, etc
e.g., kg/ha, km/h, Le3,000/d, etc.

The rate is different from a fraction and percentage.

Q2. The application rate of ingredients (nutrients)?

> Answer should be:

$$
\begin{aligned}
& \mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5} \text {, and } \mathrm{K}_{2} \mathrm{O} \\
= & \mathrm{X}, \mathrm{Y} \text { and } \mathrm{Z} \mathrm{~kg} / \mathrm{ha}
\end{aligned}
$$

Best answer will be given (explained)
by whom ?

Ans. to Q2:

	Fertillizer	Nutrient rate (kg/ha)		
		N	$\mathrm{P}_{2} \mathrm{O}_{5}$	$\mathrm{K}_{2} \mathrm{O}$
Basal	17-17-17	17	17	17
Top	17-17-17	8.5	8.5	8.5
dressing	Urea	23	0	0
Total		48.5	25.5	25.5

Topic 2. YC application

A bumper crop with minimum rice seed: one (1) bushel of seed rice produces 100 bushels at harvest.
(Voice of a farmer in Radio Kolentin)

Is it realistic or unrealistic?

You are now able to answer it through logical approach of the yield component concept.

> 1 to 100?

YC approach;

1) How many panicles per plant are feasible (or are expected) from a seed?
2) How many grains per panicle are feasible (or are expected)?

Is the pot culture an ideal condition?

2. Careless handling of uprooted seedlings: Roots of the uprooted seedlings should be given water.

Uniform application of fertilizer 1

- If small amount of fertilizer remains, mix it with dry coarse sand thoroughly. The coarse sand is available at the side of stream.
- Apply sand with fertilizer in the same way as apply fertilizer only.

Uniform application of fertilizer 1

3. Too sparse planting density

will decrease in yield, as tillers cannot compensate.
What are the causes?

- Fail to refill the missing hills?
- Insufficient number of seedlings as a result of planting too many seedlings per hill, or as a result of lower germination rate, or any other reason?
- Crab damage?

Proposed cost components for rice production per ha

1.Clarification of the following issues through the cost analys
1)Production cost per ha
2)Marginal benefit per ha
3)Justification of technical package point of view from economic aspect
2.The sales price (farm gate price) of rice will adopted the in December and August.
3.Farme gate price estimates divided two types such as husk rice and milled rice
4.Yield is decided by the PP result

Summary of cost components for rice production per ha

Items	Technical Package for Mangrove Swamp			
	Quantities (kg)	Unit price (kg/Le)	Total (Le)	Remarks
I. Gross income 1. Seed rice 2. Milled rice 3. Parboild rice				
II. Expenditures (1+2)				
1. Flow expenses(1.1+1.2)				
1.1 Direct inputs (materials) Seed (local) Fertilizers				
1.2 Direct labor cost Brushing/Land clearing Ploughing/Harrowing Nursery/Transplanting Weeding Harvesting Transportation Threshing/Winnowing				
2. Fixed expenses (2.1+2.2+2.3+2.4)				
2.1 Farm tools Planting folk Sacks Brushing knife Cutlass Axe Large hoe(ploughing) Medium hoe(ploughing) Small hoe (weeding) Mattock Shovel Harvesting knife Basket sub-total				
2.2 Land rental				
2.3 Milling cost				
2.4 Repair				
III. Estimate Benefit (I-II) (Estimate benefit of before labor cost)				

	L9＇82t\＄Sn	$00 \cdot \mathrm{SIE}$ S ${ }^{\text {c }}$												
	000＇98て＇I	000＇St6	0	0	88		Lع	8		ZI	E9I	60I	${ }^{\text {әәКоIdü }}$	${ }^{210}{ }^{\text {a }}$
	0	0	0	0	St		$\dagger 乙$	8		sz	It	$\dagger 乙$		
дәрепәч от Кэиериәdәр вио．й әч⿺	0	0	0	0	0		0	0		0	0	0	${ }^{\text {әәКоIdü }}$	
		0	0	0	0		0	0		0	0	0	$\kappa_{\text {！！} \text { ！ue }_{\text {¢ }}}$	
	0	0	0	0	0		0	0		0	0	0	әวイоІdü	
		0	0	0	6		9	乙		I	\dagger	乙		
	0	0	0	0	0		0	0		0	0	0	${ }^{\text {әәКо！dü }}$	
		0	0	0	0	0	0	0		0	0	0		
	000＊00¢	000＇0IZ	000 9	$000^{\circ} \angle$	8		6	I		I	0 S	0ε	әәКоІdu＇	Sumpanieh＇L
		0	0	0	8		S	1		1	01	S		
	$\begin{aligned} & 000^{\circ} 0 \angle Z \\ & 0 \end{aligned}$	0	000 9	0	8		6	ε		L	SI	\dagger	${ }^{\text {әәКо［dug }}$	［о．пиог／ио！̣วәүо． 9
		0	0	0	8		ε	I		$0 Z$	S	s	$\kappa_{\text {！！uee }}^{\text {¢ }}$	
	0	0	0	0	0		0	0		0	0	0	әəКоІdü	
		0	0	0	0		0	0		0	0	0		
	000 08 ¢	000＇ऽ LI	000¢9	$000{ }^{\circ}$	8		6	I		I	0ε	SZ	әวイоІdü	Зи！рәәМ＇t
	0	0	0	0	8		0	1		0	0I	0		
uoḷe．rado on	0	0	0	0	0		0	0		0	0	0	${ }^{\text {әәКо！dü }}$	
	0	0	0	0	0	0	0	0		0	0	0	$\kappa_{\text {П！}}^{\text {Ш⿺𠃊 }}$ ¢	
8и！мо．иеч рәәл＂¢и！моя	$\begin{aligned} & 000^{\circ} 00 z \\ & 0 \end{aligned}$	000\％ 0 ¢ I	000¢ ${ }^{\text {¢ }}$	000\％\angle	9		S	I		I	0t	02	әәКо｜dü	
Suب̣Mos		0	0	0	9		S	I		I	0I	s	$\kappa_{\text {！！uex }}$	
	000＇98¢	000\％0Zt	000¢9	000 \angle	8		S	2		乙	82	0ε	әәКо｜dü	uoḷexedand puer＇T
		0	0	0	9		5	乙		z	乙	\angle	$\kappa_{\text {¢！шев }}$	
sұгхшәу													roqe7	иоп̣е．әдо

（K．IE

	$\begin{array}{\|l\|} \hline 000^{4} 0 \text { St } \\ 0 \end{array}$	000‘065‘I	$\begin{aligned} & \hline 000^{\prime} z 9 \varepsilon \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 000 \mathrm{c} \mathrm{sz6} \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 000 \text { 'SSt } \\ & 0 \\ & \hline \end{aligned}$						$\begin{array}{\|l\|} \hline \mathrm{s}^{\prime} \angle \tau \\ \mathrm{s}^{\prime} 8 \varepsilon \\ \hline \end{array}$	$\begin{aligned} & \hline \text { St } \\ & \text { ZS } \end{aligned}$	82 εt	$\begin{aligned} & \hline 6 I \\ & 8 \varepsilon \end{aligned}$	$\begin{aligned} & \hline t S \\ & t+ \end{aligned}$	$\begin{aligned} & \mathrm{II} \\ & \angle \varepsilon \end{aligned}$	SI ž	$\begin{gathered} 9 \\ 9 Z \end{gathered}$	$\begin{gathered} \hline L \\ 6 \varepsilon \end{gathered}$	$\begin{gathered} \angle \\ 0 \varepsilon \end{gathered}$	$\begin{aligned} & \hline 8 \varepsilon \\ & \text { IS } \end{aligned}$	$\begin{gathered} \hline \text { S9I } \\ 89 \end{gathered}$	$\begin{aligned} & \hline \varepsilon \mathrm{S} \\ & \mathrm{sZ} \end{aligned}$	$\begin{aligned} & 06 \\ & \varepsilon \dagger \end{aligned}$	$\begin{aligned} & \hline 8 L \\ & 0 Z \end{aligned}$	әәКоןdшヲ $\kappa_{\text {ппшен }}$	${ }_{\text {［POL }}$
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	әəイо｜dug	
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\kappa_{\text {！！}}^{\text {¢ }}$	
	0	0	0	0	$0^{000} 0$	0	0	0	0	000＇01	0	0	0	0	\llcorner	0	0	0	0	I	0	0	0	0	I	әəイо｜dug	
	0	0	0	0	0	0	0	0	0	0	L	L	6	s	\angle	I	I	ε	I	I	ε	ε	\dagger	ε	Z	$\kappa_{\text {！！uee }}$	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Bu¢¢．／．＇0t
	0	0	0	0	0	0	0	0	0	0	\dagger	\angle	0	S	\angle	ε	1	0	I	ε	8	01	0	01	s		
	0	${ }^{000} 09$	0	0	$0^{000}{ }^{\text {cs }}$	0	$000{ }^{\circ} \mathrm{E}$	0	0	000＇s	0	ε	0	0	II	0	I	0	0	I	0	$0 z$	0	0	s	әә¢оןdug	
	0	0	0	0	0	0	0	0	0	0	t	0	0	S	II	I	0	0	I	I	8	0	0	0I	S		
	000＇sz	000＇0St	000＇09	000＇00	000＇09	000＇s	000＇s	000＇t	000＇s	000＇s	†	\angle	S	S	\downarrow	I	I	I	I	I	s	0ε	SI	02	ZI	әәイоןdü	
	0	0	0	0	0	0	0	0	0	0	\dagger	\angle	s	s	\dagger	I	I	I	I	1	8	01	ε	s	s	$\kappa_{\text {¢！}}^{\text {Wex }}$ ，	
		000 ¢0¢9	0	0	0	0	000 ¢	0	0	0	0	\angle	0	0	0	0	L	0	0	0	0	0ε	0	0	0	әəイоןdug	
		0	0	0	0	0	0	0	0	0	ε	ε	I	1	ε	02	\angle	†	02	01	ε	01	ε	5	1		
	0	0	0	0	000＇08	0	0	0	0	$0^{000} \mathrm{z}$	0	0	0	0	ε	0	0	0	0	S	0	0	0	0	8	әวイоןdug	Виирәәм 9
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ε	0	0	0	0	S	0	0	0	0	I		
8up̣ue｜d－əy	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	әวイоןdü	sy．0м ［巴uo！̣！̣pp＇G
	0	0	0	0	0	0	0	0	0	0	L	\angle	S	\dagger	ε	s	s	ε	8	ε	¢	S	ε	1	乙	$\kappa_{\text {！！uex }}$	
	000＇S \angle	000＇00¢	000 0 \％	000 00 I	$000{ }^{\circ} \mathrm{S}$ L	000＇s	000＇s	000＇t	000＇s	000＇s	s S	\angle	8	9	9	\bigcirc	乙	I	I	I	ε	0ε	0I	02	SI	әวイo｜dug	Supureldsue．Lit
	0	0	0	0	0	0	0	0	0	0	s＇s	L	8	9	9	s	2	I	1	I	8	01	ε	1	1	$\kappa_{\text {п！шe }}^{\text {¢ }}$	
	0	000＇0St	000 0 ¢	0	000＇02	0	0^{000}＇s	000\％\angle	0	$0^{00 s}$＇z	0	L	S	0	9	0	z	I	0	I	0	SI	0I	0	8	әวイоןdü	ภuبpəəs＇ε
		0	0	0	0	0	0	0	0	0	\dagger	L	s	\dagger	9	ε	τ	1	乙	I	8	01	ε	01	1		
	000 002	000＇00¢	000＇891	000＇s $¢ 9$	000＇sZI	000＇s	000＇s	000＇L	000＇s	000＇s	\dagger	L	5	\dagger	II	乙	乙	z	ε	I	02	0ε	ZI	St	Sz	әวイо｜du®	uо̣̣е．．едә．ı риет＇Z
	0	0	0	0	0	0	0	0	0	0	0	\angle	s	\dagger	乙	0	τ	乙	ε	01	0	0I	ε	ε	1	$\kappa_{\text {¢！}}^{\text {wee }}$	
	000＊0SI	0	$000{ }^{\circ} \downarrow$ 亿	000＇0S	000＇09	000＇s	000＇s	000＇t	000＇s	000＇s	\dagger	\angle	5	\dagger	6	ε	0	I	乙	I	01	0I	9	5	ZI	әәКоןdü	uоп̣е．．едә』д K．ıs．inn＇I
		0	0	0	0		0	0	0	0	\dagger	\angle	s	\dagger	乙	1	Z	I	z	て	8	01	ε	s	z	$\kappa_{\text {¢！}}$	
sяrвшәу																					exnqus uos．ad sındụ［e］ol					．\quad ¢9ет	uо̣̣e．ıdо

Project Purpose and Outputs

Project Purpose]
To strengthen the technical support system for
farmers with farmers' participation in the Kambia District

Expected Outputs]

- Improvement of agricultural support system at MAFFS-K
- Formulation of agricultural technical package to
improve productivity for model farmers
Preparation of agricultural technical support guideline

Contents of the Guidelines

- Part I: Main Report
- Part II: Agricultural Technical Packages
- Part III: Agricultural Technical Manuals
- Part IV: Annexes

Part I Main Report

- Chapter 1 Introduction
- Chapter 2 Background Information
- Chapter 3 Formulation of Agricultural Technical Packages
- Chapter 4 Dissemination Plan of the Agricultural Technical Packages
- Chapter 5 Recommendations

Part III Agricultural Technical Manuals

- Chapter 1 Introduction
- Chapter 2 Rice Production Manual
- Chapter 3 Post Harvest Handling Manual
- Chapter 4 Vegetable Cultivation Manual

Part IV Annexes

- Annex 1 Pilot Project for Rice Production
- Annex 2 Pilot Trial for Vegetable Production
- Annex 3 Results of Field Surveys
- Annex 4 Training of Extension Workers

Technical Package for Rice Cultivation

- Key techniques introduced
- Timely farming based on well-planned cropping calendar,
- Rational seed rate,
- Proper land preparation,
- Proper water control such as bund making,
- Efficient fertilizer application, and
- Appropriate transplanting methods for the transplanting system in lowlands
Integrated approach will improve grailn yield under the low-input condition.

Technical Manuals for Rice
- Timely farming practice based on well-planned cropping calendar
- Decide the farming scale this year
- Secure seed rice (variety, growth duration, 1,000 grain weight, etc. are necessary basic information)
- Plan the cropping calendar (ex. mangrove swamp) 1. Determine transplanting date (to be low tide period) 2. Determine sowing date in the nursery (four weeks before transplanting) the area
4. Early implementation of first digging to wash salts

Issues on fertilizer application

- Split application (basal and 1 top dressing at panicle initiation stage) of fertilizer increased grain yield by 0.5 to 1.0 ton/ha.
- Under the present economic situation and farming environment, incremental benefit by yield increase hardly cover the fertilizer cost.
- Heavy rainfall and uncontrolled water conditions also negatively affect the efficiency of fertilizer application.

Dissemination Plan of Technical Package

- Framework of the plan
- Objective: to increase rice yield in the Kambia district
- Implementation period: three (3) years
- Target farmers: all farmers in the Kambia district

Dissemination Plan of Technical Package

- Institutional plan
- Office to be established under the district council
- Office to be autonomous and financially independent
- Close collaboration with MAFFS-K
- Formation of Technical Package Dissemination Team
- One managing director, two experts, two coordinators, seven facilitators, and two support staff.

Recommendations

- Dissemination of the technical package to the whole Kambia district (on-farm trial and demonstration, use of radio)
- Further improvement of the technical package through basic research and on-farm trial (effective fertilizer application, water control, etc.)
- More capacity building of extension workers (training)
- Standardization of measuring unit (volumetric weight)
- Securing pure seed (provision of quality seed)

Appendix A4-11 Plant Nutrients and Fertilizer Application

1. Essential elements for plant growth

Table 1

Essential elements of higher plants and animals		
Element	Plant	Animal
Macro	$\mathrm{C}, \mathrm{H}, \mathrm{O}, \mathrm{N}, \mathrm{P}, \mathrm{S}$	$\mathrm{C}, \mathrm{H}, \mathrm{O}, \mathrm{N}, \mathrm{P}, \mathrm{S}$
	$\mathrm{K}, \mathrm{Ca}, \mathrm{Mg}$	$\mathrm{K}, \mathrm{Ca}, \mathrm{Mg}$
		Na, Cl
Micro	$\mathrm{Fe}, \mathrm{Mn}, \mathrm{Cu}, \mathrm{Zn}$	$\mathrm{Fe}, \mathrm{Mn}, \mathrm{Cu}, \mathrm{Zn}$
	Mo	Mo
	$\mathrm{B}, \mathrm{Cl},(\mathrm{Ni}$?)	$\mathrm{I}, \mathrm{Co}, \mathrm{Se}, \mathrm{Cr}, \mathrm{As}$, etc.

Benificial elements for plants:
$\mathrm{Si}, \mathrm{Na}, \mathrm{Al}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Se}$

Definition of element essentiality

1. Necessity: When an element lacks, plants show abnormal growth and are not able to fulfill an entire life cycle.
2. Non-substitution: A deficiency symptom is specific to an element and the element does not substitutable with other elements.
3. Direct contribution: Recovery of affected growth is due to a direct effect of the addition of an element. It is not a result of an indect effect like removal of toxic substances or amendment of soil condition.
4. Unique function: An element is a constituent of materials that are inevitable to plant growth, or it is deeply involved in physiological or biochemical reactions.
5. Universality: The above-mentioned ability (or role) is not confined to a specific species.

Essentiality should be $((1+2+3)$ or 4$)$ and 5

Fig. 1

Table 2
Major physiological functions of the essential elements

$\begin{aligned} & \text { Oxygen } \\ & \text { (O) } \end{aligned}$	1. Key element in respiratory metabolism 2. Constituent of water and carbon dioxide 3. Dominant element of various plant structural matters
Hydrogen (H)	1. Involvement in all physiological metabolisms like water 2. Dominant element of organic matters like oxygen (Produced from water decomposition in chlorophyll)
Carbon (C)	1. CO_{2} assimilation through photosynthesis 2. Core element of organic compounds like oxygen 3. End product of respiratory metabolism
Nitrogen (N)	1. Constituent of proteins that are dominant in protoplasm 2. Constituent of chlorophyll, enzymes, hormones, nucleic acids, etc.
Phosphorus (P)	1. Intermediate products of photosynthesis, respiration, carbon metabolism, etc. 2. Energy transmission as a form of ATP and ADP 3. Constituent of nucleic acid and enzymes
Potassium (K)	1. Water control through turgor pressure in cells 2. Involvement in absorption and reduction of nitrate and in protein synthesis 3. Stimulation of disease and insect resistance
Calcium (Ca)	1. Involvement in synthesis and strengthening of membrane by combining with pectic acid 2. Neutralization of toxic substances like organic acids
$\begin{aligned} & \hline \text { Magnesium } \\ & (\mathrm{Mg}) \end{aligned}$	1. Constituent of chlorophyll 2. Involvement in absorption and internal movement of phosphorus 3. Activation and constituent of enzymes
$\begin{aligned} & \hline \text { Sulfur } \\ & \text { (S) } \end{aligned}$	1. Constituent of proteins, amino acids, vitamins, etc. 2. Involvement in oxidation and reduction reaction 3. Formation and constituent of specific compounds
$\begin{aligned} & \hline \hline \text { Iron } \\ & (\mathrm{Fe}) \end{aligned}$	1. Involvement in chlorophyll synthesis 2. Antagonistic reaction with cupper, manganese, etc. 3. Involvement in oxidation and reduction reaction as Fe -enzymes
$\begin{gathered} \hline \text { Manganese } \\ (\mathrm{Mn}) \end{gathered}$	1. Chlorophyll synthesis and involvement in photosynthesis and vitamin C 2. Activation of oxidation-reduction enzymes
Boron (B)	1. Involvement in water, carbohydrate and nitrogen metabolisms Involvement in Ca uptake and translocation, formation of membrane, and 2. maintenance of translocation tissues 3. Activation of various enzymes
$\begin{aligned} & \text { Zinc } \\ & \text { (Zn) } \end{aligned}$	1. Constituent and activation of enzymes, and catalysis of oxidation and reduction reaction 2. Involvement in tryptophan synthesis 3. Antagonistic reaction with iron and manganese
Molybdenum (Mo)	1. Constituent of oxidation-reduction enzymes 2. Involvement in nitrogen fixation in root nodules and in nitrate reduction 3. Involvement of vitamin C synthesis
Cupper (Cu)	1. Constituent of Cu enzymes involved in oxidation and reduction 2. Indirect involvement in chlorophyll synthesis 3. Mutual reaction with $\mathrm{Fe}, \mathrm{Zn}, \mathrm{Mn}$ and Mo
Chloride (Cl)	1. Involvement in light reaction in photosynthesis 2. Involvement in synthesis of starch, cellulose and lignin

2. Why do we apply fertilizers?

a) Natural vegetation thrives without artificial fertilizers (see slides).
b) Natural supply of nutrients varies greatly depending on climate, soils and anthropological activities (Fig. 1).

Full recycling

Non-recycling

Full and non-recycling of nutrients in food production and consumption

Fig. 2 Fig.

3

Adult person excretes all nutrients taken. When excreta are fully recycled, the potential productivity would be maintained at the original level at least (Fig. 2). Yet, the present life style does not allow to do so. Hence, human being induces soil degradation.

Human being has created two agricultural systems to maintain production level constant or even raise it.

1) Slash-and- burn shifting agriculture (Fig. 3)
2) Application of fertilizers: either of organic matters or chemicals

3. The three principles of fertilizer application:

1) The minimum law
2) The law of diminishing return (Fig. 5)
3) Identical nutrient requirement for production regardless of yield level

Fig. 4 Donebek's element barrel
(The minimum law)
Quantity of water (crop production) is determined with the lowest height of board (minimum nutrient).

4. Critical level of nutrients

Nutrient supply
Fig. 12.1 Relationship between nutrient supply and growth.
Fig. 6

Fig, nd Proportion of soils of which nutrient concentration is lower than the critival level.

Genral soil nutrient status in Kambia

1. Many nutrients were widely low, being even below the critical deficiency level in several soils. For instance, the majority of soils lack phosphorus, zinc, manganese, etc.
2. General nutrient status was better in uplands th an in inland valley swamps (IVSs) and bolilands, although soil fertility in the latter two varied greatly.
3. No single, common nutrient responsible for low rice yield was identified: i.e., nutrient status was site-specific.

Today's topics

1. Techniques introduced to eggplant, pepper and watermelon
2. Presentation of watermelon disease

Seed drilling in the nursery bed

To prevent from uneven growth and difficulty of uprooting, seeds were drilled in the nursery bed followed by inter-row cutting by knife before transplanting to stimulate new root growth.

Raising plug seedlings

To raise healthy seedlings, plug seedlings were raised by plastic cups. 1 or 2 seeds for each cup were sown. Seedlings were watered substantially before transplanting. Soil blocks were taken out from the cup by 2 fingers pinching stems when transplanted.

Fertilizer application in liquid form

Prior to transplanting, liquid form of NPK compound in the concentration of $200 \mathrm{~g} / 20 \mathrm{~L}$ water was infused in each planting hole to hasten the plant growth. Hot water is preferable.

Basal application $\mathrm{N}: \mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{K}_{2} \mathrm{O}=4: 4: 4 \mathrm{~kg} / 10 \mathrm{a}$ was done after a week.

Prunning eggplant

To produce high quality fruits and to manage easily, stems were pruned except primary stem and 2 of the vigorous secondary stems.
\qquad
early stage.
Prune leaves after
first fruit.

Prunning pepper

To produce high quality fruits and to manage easily, stems were pruned except primary stem and 3 of the vigorous secondary stems.

Prunning watermelon

To produce high quality fruits and to manage easily, primary vine leaving 6 leaves were pruned at first. Then secondary vines leaving 3-4 of vigorous secondary vines were pruned. Also, tertiary vines to the fruit set node were pruned.

Damage of watermelon disease

Views on watermelon disease

As a result, it is highly assumed as a damage of common name tephtrid fruit fly, scientific name Bactrocera invadens.

There is no formal report which detected in Sierra Leone, however, it is highly distributed in tropical Africa especially in lowland and rainy season.
In MAFFS-K, experiment to catch male fly by pheromone (Methyl Eugenol) is ongoing now.
Although, some reports can be found for mango and citrus damage, no knowledge is known for watermelon.

Post-harvest losses

1. Characteristic of rice production in Cambia
a) Single cropping
b) Harvesting period: start from the end of rainy season (upland rice) toward the dry season
c) Manual harvesting by harvesting knife
d) Manual threshing by beating
2. Summary of the results of the post harvest practices of rice in pilot project village survey in 2007

Table 1. Indicator for harvesting time of rice in each Pilot Project village

	Pilot project village	Color of grain	Color of leaf	Grain dryess
1	Macoth		100	
2	Rosinor	70	30	
3	Kunthai	90	10	
4	Robar	100		
5	Robennah	70	30	
6	Kalingion	85	15	
7	Sobura	80	20	

Table 2 Position to be cut for harvesting rice (right figure)

	Pilot project	w	x	y	2
1	Mreoth	X	X		
2	Rosinor	X	X		
3	Kunthai		X		
4	Robal		X		
5	Robernah		X		
6	Kalington		X		
7	Sabrya		X		

Table 3 Place for putting rice sheaves before threshing

	Pilot project village	In the rice field	Outside of the rice field	At their home		Pilot project village	In the rice field	Outside of the rice field	At their home
1	Macoth	30	20	50	1	Macoth	30	20	50
2	Rosinor	30		70	2	Rosinor	30		70
3	Kunthai	100			3	Kunthai	100		
4	Robat	100			4	Robat	50	30	20
5	Robennah	60	40		5	Robennah	60	40	
6	Kalington	85	15		6	Kalington	75	25	
7	Sabuya	50	50		7	Sabuya	50	50	

Table 5 Number of day for drying sheaves before threshing

	Pilot project	Days
1	Macoth	7
2	Rosinor	2
3	Kunthai	21
4	Robat	60
5	Robennah	3
6	Kalington	2
7	Sabuya	5

Table 6 Estimated rice losses at each stage of the post-harvest practices (\%)

Works	Macoth	Rosinor	Kunthai	Robat	Robennah	Kalingtin	Sabuya
1. Harvesting	41	33	36	60	74	47	53
2. Drying of sheaves before threshing)	10	16	27	14	7	29	21
3. Threshing	30	31	24	9	7	14	9
4. Winnowing after threshing	19	20	13	17	13	10	17
Total	100	100	100	100	100	100	100

3. Post-harvest losses

Table 7 Reported Losses of Rice within the Postharvest System

$\begin{gathered} \hline \text { Region } \\ \text { and } \\ \text { Country } \end{gathered}$	Total Percent Weight Loss	Remarks
West Africa	6-24	Drying 1-2; 0n-farm storage 2-10; parboiling 1-2; milling 2-10
Sierra Leone _-... 10		
Uganda 11		
Rwanda 9		
Sudan	17	Central storage
Egypt	2.5	
Bangledesh	7	
India	6	Unspecified storage
	3-5.5	Improved traditional storage
Indoresia	6-17	Drying 2; storage 2-5
Malaysia	17-25	Central storage 6; lhreshing 5-13; Drying 2; on-farm storage 5;
	c. 13	handing 6
Nepal	4-22	On-farm 3-4; on-farm storage 15; central storage 1-3
Pakistan	7	Unspecified storage 5
	2-6	Unspecified storage 2
	5-10	Unspecified storage 5-10
Philippines Sri Lanka	9-34	Drying 1-5; unspecified storage 2-6; threshing 2-6
	13-40	Drying 1-5; central storage 6.5 ; threshing 2-6
	6-18	Drying 1-3; 00-farm storage 2-6; milling 2-6; parboiling 1-3
Thailand	8-14	On-farm storage 1.5-3.5; central storage 1.5-3.5
Belize	20-30	Ot-fam storage
Bolivia	16	On-flarm 2; drying 5; unspecified storage 7
Brazil	1-30	Unspecified storage 1-3U
Dominican Republic	6.5	On-farm storage 3; central storage 0.3

Table 8 Comparison of total recorded project losses

Operation	Sri Lanka	Thailand	Myanmar	Indonesia	Bangladesh	Nepal	AVG
Cutting	0.86	10.1	2.1	0.8	2.3	1.9	3.0
Field drying (including bundling)	0.5	1.2	0.4		0.7	1.9	0.9
Transport		1.2	0.4	-	0.5	0.5	0.7
Stacking, pre-threshing	2.8	1.4					2.1
Threshing (including cleaning)	0.5	0.9	0.4	-	1.4	2.2	1.1
Drying	-	-	-	2.9	2.3	1.6	2.3
Parboiling					1.9	-	1.9
Storage	7.5	-	-	3.2	0.9	6.3	4.5
Milling	-	-	-	4.4	3.8	4.4	4.2
Average total losses	12	14.6		12.2	13.2	16	13.6
Source: Calverley, 1994.							

Table 9 Rice losses occur at all stages of the post-harvest chain

Harvesting	Handling	Threshing	Drying	Storage	Milling	Total
$1-3$	$2-7$	$2-6$	$1-5$	$2-6$	$2-10$	$10-37$

Source: Rice in human nutrition (1993) FAO

Table 10 Grain losses at different harvesting times based on crop maturity date.

Harvesting time, week(s)	-1	Maturity date (0)	1	2	3	4
Loss, \%	0.77	3.35	5.63	8.64	40.7	60.46

Source: Almera, 1997

Table 11 Average losses related to condition of ripeness of three rice varieties when harvested by traditional hand cutting method, Philippines.

Variety	3 days before normal stage, $\%$	Normal stage for traditional, $\%$	3 days after normal stage, $\%$	5 days afler normal stage, $\%$
IR8	13	17	23	29
Peta	3	7	11	15
Raminad	3.5	6	8	9

Source: NAPHIRE, 1997.

Table 12 Percentage grain losses resulting from dates of cutting of two varieties of rice.

Cutting date	Grain loss, \%			
	Before reaping			IR-38
	IR-36	IR-36	IR-38	
5 days before maturity	0.05	0.23	0.39	0.35
5 days after maturity	0.16	0.23	0.49	0.58
At maturity	0.16	0.54	0.42	0.42

Source: Calpatura, 1978.

Table 13 Average cutting losses related to condition of ripeness of rice.

Harvesting system	3 days before normal stage	Normal stage for traditional	3 days after normal stage	5 days after normal stage
	$(\%)$	$(\%)$	$(\%)$	$(\%)$
Traditional hand cut	6	8.7	10.5	12
Reaper-binder	1	3.1	1.2	5.8
Combine harvester	2	3.1	1.2	5.8

Source: Hilangalantileke

Figure I Optimum time of harvest on the basis of maximum grain yield and high percentages of head rice and germination as indicated by percent moisture of the grain at harvest and percent green kernels. IRRI, 1968 dry season and wet season. (Adapted from

Fig. 2 Effect of delay in harvesting on shattering loss by plants in the field and at cutting time. Variety D52-37. (from Wanders 1974)

Nangju and De Datta 1970)

Photo 1 Rice terrace in Hyogo, Japan
Photo 2 One of rice drying methods in Hyogo Japan

Training on Vegetable Production

10th, Dec. 2008
Junnosuke Harada, JICA Expert

1. Raising seedlings (Nursery)

Raising seedlings is the most important process in vegetable production.
Advantages of raising seedlings are considered to be as follows,

1) Small plants can be effectively managed in the nursery while it is difficult for them to grow in open field due to unfavorable climatic condition and early pest attack.
2) Pests and diseases can be controlled effectively in small area of nurse
3) Seeds can be saved by reducing mortality and disease damage after germination
4) Help to replace early damaged seedlings in the main field.
5) Healthy seedlings can be selected for transplanting.
6) Early weed competition in the main field is reduced.

Disadvantages of raising seedlings can be,

1) Require high labor and skills i.e fertilizer application, thinning, protection and transplanting etc.
2) Problem of getting equipments like, coffee cups etc.

1.1 Preparation of nursery soil.

1) Prepare soil free from contamination. Note that very rich compost mixed with chemical fertilizer might render rapid elongation in seedlings. Paddy soil or virgin soil is supposed to be less contaminated.
2) Use well decomposed compost.
3) Apply fertilizer as shown in the table below and mix well with the soil.

Recommended amount of fertilizer to be applied to nursery soil

Ingredient $\left(\mathrm{g} / 1 \mathrm{~m}^{3}\right.$ of soil)	Fertilizer $\left(\mathrm{g} / \mathrm{m}^{3}\right.$ of soil)	
NPK compound	NPK compound $(15,15,15)$	$866 \sim 1,800$

Note: Used 4 buckets of top soil from uncontaminated field mixed with 3 to 4 hand grips of NPK compound $(15,15,15)$ as nursery soil.

1.2 Sowing methods

(1) Broadcasting

Inconvenient for management of seedlings and waste of seeds
(2) Drilling

Convenient for management, easy to estimate number of seedlings in nursery and easy for thinning if necessary

1.3 Sowing procedure:

Plow well and worked in prepared nursery soil in nursery beds ($1 \mathrm{~m} \times 2 \mathrm{~m}$) size.
(1) Make sowing ditches keeping 15 to 25 cm between them using your finger or stick.
(2) Sow seeds in the ditches and cover them with the same soil

Note: Heavy soil like clay soil is not to be used for covering, fine soil containing sand and organic matter is recommended to be used
(3) Put rice straw or any sorts of light and dry leaves on the seed bed after sowing to keep soil wet
(4) After germination, remove the cover immediately
(5) If shade is set up on the nursery, it should be removed after germination when it does not rain
(6) Thinning is to be done to avoid dense population and eliminate abnormal and tiny seedlings

In case of nursery set up on a bed, the soil might be contaminated with disease. It is recommended to bring the soil from paddy field or virgin area which should be much less contaminated with diseases. Recommended amount of fertilizer is applied and mixed well with soil at least 15 cm deep. Then seeds are sown in the procedure as mentioned above.

Flat bed nursery

1.4 Raising seedlings using planting pots

In Sierra Leone, repeatable use of planting pot adequate for vegetable seedlings is not available. Coffee cups are suggested to be used.

Advantages of using planting pots:

1) Seedlings can be planted completely with soil block without any damage of their root during transplanting.
2) Seeds can be saved
3) Seedlings can be managed intensively
4) Easy to move the seedlings if necessary

Utilization of plastic coffee cups

Cucurbit crops like cucumber, watermelon and other gourd plants are very sensitive for transplanting. Direct sowing has been commonly conducted in Sierra Leone to avoid transplanting shock, which may be beyond the recovery level. Considering the importance of intensive management at the seedling stage, raising seedlings is recommended for careful management on watering and fertilizer application, intensive control of pest and disease as well as maintenance of plant vigor in the small area of nursery.
Small size of plastic coffee cups can be substituted as planting pots for raising vegetable seedlings by making nail head size of hole on the bottom for drain. Colored cups are more suitable for root development because of the growth habit of plants.

Caution:

Watering must be carefully done because of its characteristics that soil in the pots easily gets dried up as compared with nursery on the ground soil.

Seedlings must be transplanted at proper stage since the volume of pot is limited for root development.

2.5 Status of shading in the nursery:

Weather condition	Status of shade	Phenomenon of
Sunny, High temp.	Shaded	Seedlings get elongated.
	Non-shaded	Seedlings may get wilted, but it can be amended by watering.
Rainy, High temp	Shaded	Seedlings get elongated and feeble in humid condition under the shade. Shading material should be thinly covered.
	Non-shaded	It facilitates disease occurrence

1.6 Thinning:

This is the reduction of seedlings in the nursery especially those nursed in seed bed. This facilitates maximum space and nutrient utilization by seedlings.

2 Ridging

After the field is plowed, ridges are to be made at the standard interval depending on the planting crops as mentioned below. It depends on what and when to be planted whether making high or low ridge. Root tuber vegetables require rather high ridge than fruit and leaf vegetables. In rainy season, higher ridges are suitable because of its characteristics of quick drainage. On the contrary in dry season, lower ridges are better for plants to uptake water from the soil because of easy access to ground water for the plant root.

Spacing

vegetables	Spacing between (cm) rows	Spacing between plants (cm)
Carrot	$25-45$	$10-12$
Cabbage	60	40
Onion	30	10
Cowpea	45	25
Cucumber	90	45
Watermelon	180	150
Pumpkin	180	90
Eggplant	90	60
Pepper	90	45
Okra	90	36
Sweet potato	90	30
Yam	$60-90$	45
Taro	90	$45-60$
Ginger	60	30

3 Transplanting

Transplanting is the most crucial task for seedlings. It must be very careful to handle this work adeptly to mitigate transplanting shock as much as possible. Prior to transplanting, field must be well prepared to welcome the seedlings.

In Sierra Leone, temperature is always rather high all year round. Transplanting should be done in the evening which is cooler than daytime. Procedures of transplanting are explained as follows.

1) Hardening of seedlings in nursery is important to mitigate transplanting shock by reducing watering starting from 2 to 3 days before transplanting
2) Cutting interrow space by knife to stimulate new root growth 3 days before transplanting.
3) Water is given sufficiently to seedlings 1 hour before transplanting to facilitate easy uprooting with a ball soil around.
4) Field must be well prepared to be rather good condition than nursery. Field soil should be well moistened than nursery soil.
5) Seedlings should be planted in the adequate depth which is 1 to 2 cm deeper than previous level in nursery
6) If seedlings are elongated, adjust the level by slanting seedlings
7) Seedlings should be transplanted in the evening to avoid transplanting shock from sunlight
8) Transplanting of seedlings should be suspended when it is windy and rainy to avoid wilting and disease infection
9) If weather condition is severe like in rainy season, younger seedlings should be transplanted because of its quick recovery from transplanting shock

4. Crop management

4.1 Fertilizer application

Fertilizer application is to supply plant nutrient that is not sufficiently contained in the soil. Fertilizer is dispensable for vegetable production because of much more sensitive and weak in absorption of nutrients from soil than other extensive crops like cereal crops. Fertilizer should be applied to the field at least one or two days before transplanting or sowing.

Determination of fertilizer dose

Absorption of total nutrient by vegetable crops

Vegetables	Total nutrient absorption (kg/ha)			No. of plants in 1ha	Amount of NPK (15:15:15) to be applied on K base $\quad \mathrm{kg} / \mathrm{ha}$	Amount of NPK (15:15:15) t o be applied on K base g/pl at
	N	$\mathrm{P}_{2} \mathrm{O}_{5}$	$\mathrm{K}_{2} \mathrm{O}$			
Cucumber	15.8	9.0	31.9	24,000	212.6	8.9
Eggplant	21.0	4.5	34.1	18,000	227.3	12.6
Pepper	19.7	6.4	32.8	24,000	218.7	9.1
Cowpea	13.1	5.6	12.4	90,000	82.7	0.9
Cabbage	17.6	5.3	13.7	39,750	91.3	2.3
Onion	6.8	3.8	9.8	300,000	65.3	0.2
Carrot	11.6	5.6	13.5	180,000	90.0	0.5
Sweet potato	16.1	4.1	29.3	36,000	195.3	5.4

Practice:

In case of cucumber for example,
Total absorption of three major elements for cucumber
$\mathrm{N}: 15.8 \mathrm{~kg} / \mathrm{ha}, \quad \mathrm{P}_{2} \mathrm{O}_{5}: 9.0 \mathrm{~kg} / \mathrm{ha}, \quad \mathrm{K}_{2} \mathrm{O}: 31.9 \mathrm{~kg} / \mathrm{ha}$
These amounts are pure in major elements. These should be converted into the amount of fertilizer to be applied by multiplying by percentage composition of the fertilizer used. In case that $15: 15 ; 15$ is used, 31.9 kg of K is to be converted by multiplying by $100 / 15$, which is equal to 212.6 kg .

Top dressing

Fertilizer is applied around the plants in the amount of NPK 6kg/10a at maximum if necessary It is a usual practice to use a hand palm grip quantity of fertilizer for any plant stand being worked in the soil around the root area of the vegetable plant.

Method of fertilizer application

1) Ridge application

This is practiced for most of vegetables especially direct sown vegetable crops like onion, carrot and ets. Fertilizer is applied along the ridges to be in uniform for all the plants
$2)$ Spot or ring application (around each plant stand).
This is adequate for transplanted vegetable crops Fertilizer is applied around the plants.

4.2 Pinching

This is to encourage the growth of bigger and quality fruits.

Pepper and eggplant

Full vegetative growth after transplanting, select the best 3 to 4 vigorous primary branches and remove the rest of other branches using your fingers. All the shoots are left as they grow after three to four stems are determined. Probably the first flower shall be removed if the plants are weak in the growth.

Watermelon

(1) Select the best 4 vigorous branches two each side making them grow the same direction.
(2) Remove all the fruits below the 10th leaf on each branches selected.
(3) Pinch any secondary branches noticed below the fruit set position. The first fruit on each branch must be beyond the 10th leaf.

Subject 1. Relationship between Production, Area and Grain Yield

(for an example of rice, but applicable to any crops)

1. Definition of variables
a) Production [P]: the quantity of products (grain weight) regardless of harvested area, e.g., ton, kg, g, etc.
b) Area [A]: harvested (or planted, cropped) acreage, e.g., ha, m^{2}, acre, etc.
c) Grain yield [Y]: grain weight per unit field area, e.g., ton/ha, $\mathrm{kg} / \mathrm{ha}, \mathrm{g} / \mathrm{m}^{2}$, etc.
2. Relationship between 3 variables

$$
\begin{array}{lll}
\text { Production }=\text { Grain yield } \times \text { Area, } & \mathrm{P}=\mathrm{Y} \text { x A } \\
\text { or } & \text { Grain yield }=\text { Production / Area, } & \mathrm{Y}=\mathrm{P} / \mathrm{A}
\end{array}
$$

Note that this is an equation with 3 variables, so that any variable cannot be calculated unless two other variables are measured.

Subject 2. Grain Weight Correction with Moisture

Net grain weight (applicable to any variable like grain yield, production, etc.) is affected with the moisture amount (note). The higher the moisture amount the larger the apparent grain weight (production), even though the dry matter production is the same. So, any country defines own standardized (official) moisture amount to all crops. For rice, the standard moisture amount is 14% in Sierra Leone (SL).

Note) Grain weight that we commonly measure is an apparent one, which is composed of dry matter and moisture (water). The dry matter can be measured only when we have a temperature-controlled dryer or oven.

Exercise 1: Calculate the grain yield adjusted to 14% moisture (the standard in SL), when the grain yield is 1.40 ton/ha at 17.0% moisture. Note that 17.0% is often the moisture amount of grains equilibrated to air humidity during rainy season.

Exercise 2: Calculate the grain yield adjusted to 14% moisture, when the grain yield is 1.40 ton/ha at 12.0% moisture. Note that 12.0% is often the moisture amount of grains equilibrated to air humidity during dry season or exposed under strong sunshine for a long period.

An extra training session will be open on these subjects in December 2008. Name (in block letter): \qquad

Answers to the Exercise
Question: Calculate the grain yield at 14.0%.

Exercise 1: When grain yield is 1.40 ton/ha at 17.0%,
Ans.:

Exercise 2: When grain yield is 1.40 ton/ha at 12.0%,
Ans.:

Submit the answer at the next task force meeting.

Grain Yield (Production) Correction with Moisture

1. Basic calculation (a premise) of a fractional equation

$$
\mathrm{a}=\mathrm{bc}, \quad \mathrm{~b}=\mathrm{a} / \mathrm{c}, \quad \mathrm{c}=\mathrm{a} / \mathrm{b}
$$

2. Concept of the moisture adjustment (See the text on 19/11/2008)

3. How to adjust the moisture of grain yield

3-1. Definition

$$
\text { GY measured }(\mathrm{GYm})=\mathrm{DM}+\mathrm{W}
$$

where DM is dry matter and W the moisture (water) amount.
$3-2$. When the moisture amount is 14.0%, the DM is 86.0% of the GY: i.e.,
$\mathrm{DM} / \mathrm{GY}=0.86 \quad=>\quad \mathrm{GY}=\mathrm{DM} / 0.86$
Note that DM is unknown in eq. 1.
3-3. Based on the given condition: grain yield is 1.40 ton/ha at 17.0% [Exercise 1],
$\mathrm{DM} /(\mathrm{DM}+\mathrm{W})=(1-17.0 / 100) \quad=>\quad \mathrm{DM} / \mathrm{GYm}=0.83$
$\mathrm{DM} / 1.40=0.83 \quad \Rightarrow \quad \mathrm{DM}=1.40 \times 0.83=1.162$

Substitute the solution [answer] for DM in eq. 1 the grain yield at $14.0 \%=\mathrm{DM} / 0.86=1.162 / 0.86=(1.351163)=1.35 \mathrm{ton} / \mathrm{ha}$
or simply, the grain yield at $14.0 \%=(1.40 \times 0.83) / 0.86=1.35$ ton/ha
3-4. Similarly, when the grain yield is 1.40 ton/ha at 12.0% [Exercise 2],
$\mathrm{DM} / 1.40=0.88 \quad \Rightarrow \quad \mathrm{DM}=1.40 \times 0.88=1.232$ the grain yield at $14.0 \%=\mathrm{DM} / 0.86=1.232 / 0.86=1.43$ ton/ha or simply, the grain yield at $14.0 \%=(1.40 \times 0.88) / 0.86=1.43$ ton/ha

Grain Yield (Production) Correction with Moisture

1. Basic calculation (a premise) of a fractional equation

$$
\begin{align*}
& \mathrm{a}=\mathrm{bc}, \quad \mathrm{~b}=\mathrm{a} / \mathrm{c}, \quad \mathrm{c}=\mathrm{a} / \mathrm{b} \tag{1}\\
& \mathrm{a} \times \mathrm{b}=\mathrm{c} \times \mathrm{xd} \quad \text { or } \quad \mathrm{ab}=\mathrm{cd} \tag{2}
\end{align*}
$$

Note that the equation (2) can be modified as $\mathrm{a}=\mathrm{cd} / \mathrm{b}, \quad \mathrm{c}=\mathrm{ab} / \mathrm{d}$, etc.
2. Concept of the moisture adjustment (See the text on $19 / 11 / 2008$)

Moisture amount (percentage)

Note that the dry matter (weight) itself remains the same regardless of moisture percentages.

3. Calculation procedure

Definition

$$
\begin{equation*}
\text { Grain Yield measured }(\mathrm{GYm})=\mathrm{DM}+\mathrm{W} \tag{3}
\end{equation*}
$$

where DM is dry matter (weight) and W the moisture (water) amount (weight).
Exercise 1: GY at 14% when GYm is 1.40 ton/ha at 17.0%,
pDM14 : Dry matter percentage at 14% moisture $=(100-14)=86 \%$ or 0.86
pDM17 : Dry matter percentage at 17% moisture $=(100-17)=83 \%$ or 0.83
DM14 : Dry matter (weight) at 14% moisture $=$ GY14 x pDM14 $=$ GY14 x 0.86
DM17 : Dry matter (weight) at 17% moisture $=$ GY17 x pDM17 $=1.40 \times 0.83$
GY14 : GY at 14\% moisture
GY17 : GY at 17% moisture
$($ DM17 $)=($ DM14 $)$
$1.40 \times 0.83=$ GY14 $\times 0.86 \quad->\quad$ GY14 $=(1.40 \times 0.83) / 0.86=(1.351163)=1.35$ ton $/ \mathrm{ha}$
(a) (b)
(c) (d)
($\mathrm{c}=\mathrm{ab} / \mathrm{d}$)

Exercise 2: GY at 14% when GYm is 1.40 ton/ha at 12.0%,

$$
1.40 \times 0.88=\text { GY14 x } 0.86 \quad->\quad \text { GY14 }=(1.40 \times 0.88) / 0.86=1.43 \text { ton/ha }
$$

Important notice: bear in mind always the effective number of digits.

[^0]: a) Summarized data on the Farming Activites presented
 by 2008/01/28
 b) assoc: associated

