3 CHAPTER 8 REHABILITATION AND EXPANSION PLAN OF THE VAKHSH CONDUITS

Appendix Rehabilitation and Expansion Plan of

the Vakhsh Conduits

(1) Attached Tables

(2) Attached Figures

3 CHAPTER 8 REHABILITATION AND EXPANSION PLAN OF THE VAKHSH CONDUITS

Appendix Rehabilitation and Expansion Plan of the Vakhsh Conduits

3. CHAPTER 8 REHABILITATION AND EXPANSION PLAN OF THE VAKHSH CONDUITS

8.1 REHABILITATION AND EXPANSION PLAN

8.1.1 TARGET FACILITIES OF THE PLAN

The Scope of the Study on the Plan is limited in the Rayons of Vakhsh, Dzhilikul and Kumsangir except Rayon Centers. The Study Team accordingly established the rehabilitation plan for the following systems:

- The Vakhsh Conduits from the Sarband Intake to Vakhsh, and Dzhilikul, Dusti, and Kolkhozobod via Uzun (refer to the *Figure 8.1.2*) and the sub-mains which connect the main and the WSSs
- The WSSs located in the area in Bokhtar Rayon shall be excluded
- The WSSs owned by the Vodokanal
- The WSSs located in the area where the main conveyance pipe is owned by the Vodokanal of Kolkhozobod (downstream area from the valve which locates around 2.2km before Kolkhozobod) shall be excluded
- The area where CIP is installed in Vakhsh Rayon shall be excluded except section between the connection point of the CIP with the Steel Pipe of Vakhsh Conduits and the Mehnatobod village WSS¹. Because, the brittle CIP of which the age is reportedly over 30 is to be replaced and no WSS connects with the Conduits in this area. Furthermore, the Conduits in this area have not reached the Vakhsh Rayon center yet. A WSS in the Vakhsh Rayon center pumps up water from the Stalin canal. The intake locates at the downstream point of the Sarband SB (Intake).

After all, the number of WSSs to be studied for rehabilitation is 53 and is shown in the unshaded cells of *Table 3.3.1 (Chapter 3)*.

Regarding the WSSs of which water source is a well or an irrigation canal, it is recommended establishing independent WSS with a treatment plant considering the cost efficiency.

8.1.2 PROPOSED PROJECT TIMELINE

Table 8.1.1 presents the proposed Project Timeline which is the base of the financial analysis including population projection and water demand prediction. As shown in the table, the Project duration of the Project's financial situation is considered 20 years starting from 2009 until 2028. If the Project duration is long, there will be the risk that the capacity of facilities will be excessive due to the uncertainty of the prediction and if the Project period is short, the next phase rehabilitation will not be able to be planned and designed based on the actual water supply data, and, moreover, if the actual water demand exceeds the projected one, there will not be sufficient time and maybe budget to prepare further expansion work.

¹ A drain facilities should be installed just after the connection point of Mehnatobod village WSS to evacuate water of the Vakhsh Conduits into nearby canal.

year	event
2007	Starting the JICA Study
2008	Rehabilitation Planning
2009	Completion of the JICA Study, Starting the detailed survey and planning, Financing
2010	Detailed planning and design, Financing
2011	Detailed design and construction works
2012	Detailed design and construction works
2013	Partial Inauguration of the Systems, Detailed design and construction works
	OM&M, Detailed survey and design, and construction works
2028	Final year of the Project duration of the Rehabilitation Project of the Vakhsh Conduits
	System

Table 8.1.1Proposed Project Timeline

Source: own study

8.1.3 WATER DEMAND PREDICTION

(1) Factors to be Applied to the Water Demand Prediction

The following factors are necessary for the water demand projection:

1) Per capita consumption per day

Considering the existence of a developed irrigation canal system, the rural water supply system should be more convenient in terms of fetching water. The Study Team accordingly recommends designing the WSS based on a yard connection in order to assure the sustainability of the water supply. If a consumer wants to have a yard connection, it should be installed at a cost of service facilities such as service pipe (from just after a stop valve to a yard tap via a water meter), water meter and other fixtures should be borne by it.

It will make the service facilities consumer's property and consumers should consequently maintain it, the consumer shall bear the cost of maintenance. Furthermore, a metered rate system can be applied and it will reduce the UFW i.e. foster the sense of water saving. A progressive rate system can be developed which can consider people who are in a financially difficult condition and to recover the renewal cost of the WSS.

The rehabilitation project should be based on collective water supply including yard connections on a request basis and the project should aim to achieve the rate of yard connection at nearly 100% by the end of the Project duration, 2028.

Considering the above, the Study Team proposes that the per capita consumption per day in the final year of the project duration as 50 liters referring to the literature of WHO, and other organizations. That of 2013, which is the first year of starting the operation of the WSSs and Vakhsh Conduits after the rehabilitation and communal taps seems to prevail, and is set as 20 liters due to the relatively short distance between a house and a communal tap, i.e. the time for fetching water is not long.

As for the Rayon Centers, considering the water supply of Vodokanal for the several stories apartment house which has two (2) or three (3) taps and rather rapid urban development, 100 liters/capita/day in the final year of the project duration and 50 liters/capita/day in 2013 have been projected.

2) Coverage

Though the definition of "the water supply coverage" in Tajikistan is not clear, the National Development Strategy (NDS) of the Tajikistan Government approved in 2007 sets the targets of the water supply coverage as shown in *Table 8.1.2*. The national water supply program promulgated in 2006 reportedly shows the urban water supply coverage in 2006 as 87% and targets the rural water supply coverage in 2020 for 90%.

	2004	2010	2015
Rural Water Supply	47	64	74
Urban Water Supply	93	96	97

Table 8.1.2 Targeted Water Supply Coverage in NDS

Source: own study

As mentioned above, the Study Team assumed the water supply coverage to be applied to the water demand prediction from 2004 to 2028 in the following *Table 8.1.3*.

Table 6.1.5	water	Supply	Joverage	applied	o the Stu	uy
	2004	2006	2010	2015	2020	2028
Rural Water Supply	47	52	64	74	90	90
Urban Water Supply		87	96	97	97	97

Table 8.1.3Water Supply Coverage applied to the Study

Source: own study

The water supply coverage in the years shown in the Table, assume an increase incrementally in equal intervals up to 90% in case of the rural water supply and 97% in case of the urban water supply in 2020 and both rural and urban coverage will not change from 2020 to 2028 considering the difficulty to achieve 100% water supply coverage in a number of countries.

3) Rate of unaccounted-for water (UFW)

According to the NDS, the loss in drinking water supply system is 50 to 60% on average. 50% is accordingly applied to the rate of UFW in 2013 and UFW of 30% in the final year considering the contribution of the rehabilitation during the project duration. The rate from 2014 to 2027 is assumed to decrease incrementally by equal intervals up to 30% in 2028.

4) Water demands of factories, businesses, public institutions and WSS's use as

percentage of a domestic water demand

Since, data and literature concerning the water demand of factories, businesses and public institutions for water supply systems in rural towns and villages is scarce, the Study Team referred to the Second Water Utilities Book (Asian Development Bank, 1996) which shows such data of relatively large urban water supply systems. According to this literature, the lowest industrial, commercial, and public institutional water use among 23 WSSs as a percentage of the domestic water demand is 4% respectively. Considering that data is rather old, 5% of domestic use is assumed as water demands of factories, businesses, and public institutions to the water supply in the Rayon Center and 2% for the rural water supply, taking into account micro-businesses will be set up according to the development of rural areas.

(2) Population Projection

The population projection of six (6) Rayons and Kurgan Tyube is made using statistics shown in *Table 3.2.1* and *Table 3.2.2* in order to estimate the water demand for the Vakhsh Conduits system.

1) Methodology for Population Projection

In case the data of several years are available as shown in *Table 3.2.1*, the following three methods are used to estimate the future population, and one method which gives the result between the largest and the smallest ones. Because socio-economic factors such as investment plans, development trends of industries, etc. which influence population growth are not available.

If only a datum is given as shown in *Table 3.2.2*, the projection by geometric series is applied referring to the estimation result of the related Rayon shown in the *Table 3.2.1*.

Concerning the population in the service area of WSSs connected to the Vakhsh Conduits, it is assumed that the ratio between the populations in the service area to that of Rayon is constant during the project duration.

Supporting Report 3 Chapter 8 Rehabilitation and Expansion Plan of the Vakhsh Conduits

i) projection by arithmetic series

 $P=P_0(1+a\cdot n)$

where Р : Population

- P_0 : Population in reference year
- a : Coefficient relative to population growth
- n : Number of years from the reference year
- projection by geometric series ii)

 $P = P_0(1+r)^n$

where

Ρ : Population

- \mathbf{P}_0 : Population in reference year
- : Population growth rate r
- : Number of years from the reference year n
- iii) projection by power function

where

 $P=P_0+An^a$

Р : Population

- : Population in reference year \mathbf{P}_0
- A, a : Constants
- : Number of years from the reference year n

2) Population Projection of six (6) Rayons and Kurgan Tyube

The method of projection by arithmetic series is applied to Sarband Rayon and Kurgan Tyube, and the population project of other Rayons are made by the method of projection by power function. The results are shown in Attached Tables 8.1-8.7 and the following Table 8.1.4 presents the projected population in 2013 and 2028 of six (6) Rayons and Kurgan Tyube.

.1.4	Projected F	Population of Rayons and	I Kurgan Tyube in 2013 a
		Population in 2013	Population in 2028
Sarba	nd	29,100	41,100
Bokh	tar	243,500	337,300
Vakhs	sh	166,400	217,600
Kolkł	nozobod	175,800	237,800
Dzhil	ikul	103,100	139,000
Kums	sangir	117,100	157,400
Kurga	an Tyube	79,800	100,800
	Total	914,800	1,231,000

Та 28

Source: own study

3) Projection of Rayon Centers Population and Rural Population

Since the population in 2007 is the only available data of each Rayon Center, the population projection is made in the following manner:

- i) Population growth rate is computed based on the result of each Rayon mentioned above.
- ii) Add 0.5% to the population growth rate considering more rapid population growth than that of the rural area due to expected socio-economic growth. This assumption means some population will flow into the Rayon Centers from the rural areas.
- iii) The population of each year in the project duration is made applying the method of projecting by geometric series.

The rural population is calculated by subtracting the population of Rayon Center from that of the whole Rayon.

The results of the projection are shown in *Attached Tables 8.1-8.7* and the following *Table 8.1.5* shows the Population of Rayon Centers and Rural Population in 2013 and 2028.

	Populatio	n in 2013	Population	in 2028
	Rayon Center	Rural Area	Rayon Center	Rural Area
Sarband	16,700	12,400	27,000	14,100
Bokhtar	8,800	234,700	13,400	323,900
Vakhsh	14,300	152,100	20,500	197,100
Kolkozabad	15,300	160,500	22,800	215,000
Dzhilikul	16,200	86,900	24,200	114,800
Kumsangir	15,300	101,800	22,700	134,700
Total	86,600	748,400	130,600	999,600

Table 8 1 5	Projected Population	on of Rayon Centers	and Rural Areas in 20	13 and 2028
1 abie 0.1.J	riojecieu ropulatio	n oi nayon centers	anu Nurai Areas in Zu	715 anu 2020

Source: own study

(3) Water Demand Prediction

1) Average Daily Water Demand

The Study Team made the water demand prediction based on the Population Projection applying the factors described in *Section 8.1.3 (1)* for all the Vakhsh Conduits System as well as the target part of Conduits, i.e. from the Sarband SB to Vakhsh, and Dzhilikul , Kolkhozobod and Dusti via Uzun.

Following *Table 8.1.6* shows the water demand prediction of the rural area in six (6) Rayons for reference in the final year of the project duration.

			year	2028
(1)	rural water supply coverage	%		90
(2)	Assumed rate of UFW	%		30
(3)	rural population			999,600
(4)	rural population will be served		(3)x(1)/100	899,600
(5)	liter per capita per day	liter		50
(6)	domestic use	m ³ /day	(4)x(5)/1000	44,980
(7)	industrial use (2% of domestic use)	m ³ /day	(6)x0.02	900
(8)	commercial use (2% of domestic use)	m ³ /day	(6)x0.02	900
(9)	Institutional use (2% of domestic use)	m ³ /day	(6)x0.02	900
(10)	sub-total	m ³ /day	(6)+(7)+(8)+(9)	47,680
(11)	UFW	m ³ /day	(10)x((2)/(1-(2)/100)/100	20,434
(12)	sub-total	m ³ /day	(10)+(11)	68,114
(13)	water use of WSS (5% of above)	m ³ /day	(12)x0.05	3,406
(14)	average daily water demand in rural	m ³ /day	(12)+(13)	71,520

 Table 8.1.6
 Water Demand Projection in Rural Area of six (6) Rayons

Projected Water Demand of Sarband, Bokhtar, Vakhsh, Kolkhozobod, Dzhilikul and Kumsangir Rayons and Kurgan Tyube

Projected water demand in 2013 and 2028 of the Sarband, Bokhtar, Vakhsh, Kolkhozobod, Dzhilikul and Kumsangir Rayons and Kurgan Tyube are 595,00 m³/day and 123,900 m³/day respectively. Details are shown in the *Attached Table 8.8* (Supporting Report).

Projected Water Demand on the Vakhsh Conduits from Sarband Settling Basin to Vakhsh, and Dzhilikul, Kolkhozobod, and Dusti via Uzun

As aforementioned, the Study covers captioned Vakhsh Conduits. The projection of water demand on the Conduits is necessary to prepare their rehabilitation plans. Having the water demand, following water demand is to be subtracted from the total projected water demand mentioned in Section 8.1.3 (1).

- Water demand of Kurgan Tyube and Sarband Rayon because they are out of the study scope
- Water demand of the Vakhsh Rayon Center. The WSS in this area reportedly takes water from a downstream point of the Stalin canal. Considering the necessity of water treatment, it is recommended constructing independent WSS by selecting an appropriate place for gravity intake in the Starling canal. Extension of 3.5km around the 600mm diameter conduit does not seem to be economical because the diameter of the conveyance pipe for Vakhsh Rayon Center will be apparently smaller than 600mm.
- 60% of the projected water demand of the rural area of Vakhsh Rayon is to be subtracted from the total projected water demand. Other rural WSSs in the Vakhsh rayon of which the water source is a canal are also recommended constructing an independent WSS though some of them can be constructed by a centralized water treatment plant. According to the result of the inventory survey implemented by the JICA Study Team, Nine (9) WSSs out of 15 (60%) have an intake at the irrigation canal. It is assumed that this rate will not change until the final year of the project duration.

Projected water demand of following WSSs

riojection on the	larger cond	Juits		
WSS	Jamoat	Rayon	Water Source	Population
Kirov village from the bore hole 5 to Main pipe line	Tugalang	Kolkhozobod	well	5,000
Yosh-Lrninchi (From bore hole 4 to main pipe-line)	Tugalang	Kolkhozobod	well	5,000
Water constructions Uzun 1	Uzun	Kolkhozobod	well	3,986
Pyatiletka of Jamoat Tugalang	Tugalang	Kolkhozobod	irrigation canal	2,791
5-th village	Pyanj	Kumsangir	irrigation canal	6,600
total				23,377

Table 8.1.7WSSs and their service population excluded from the Water Demand
Projection on the target Conduits

Since these WSSs might have their water source nearby and the conveyance, it seems to be economical to operate as independent system rather than the WSS having water from the Vakhsh Conduits.

Following *Table 8.1.8* shows the projected water demand in 2028 on the Vakhsh Conduits covered by the JICA Study. *Attached Tables 8.9-8.12* (Supporting Report) presents the detail of water demand projection for the *Table 8.1.8*.

	Area		Water demand (m ³ /day)
(1)	Total		123,892
(2)	Kurgan Tyube		30,514
(3)	Sarband		5,530
(4)	Vakhsh Rayon Center		3,435
(5)	60% of Vakhsh Rural		8,461
(6)	four (4) WSSs in Kolkhozobod and one (1)		2,489
	WSS in Kumsangir		
	Average Daily Water Demand on the Vakhsh Conduits	(1)-(2)-(3)-(4)-(5)-(6)	73,463

 Table 8.1.8
 Water Demand on the Vakhsh Conduits covered by the JICA Study

Table 8.1.9 shows the yearly projected water demand from 2013 to 2028 on the Vakhsh Conduits covered by the JICA Study.

		2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
rural water supply coverage	%	<i>1</i> 0	72	74	LL	80	83	86	06	06	06	90	06	06	06	06	90
urban water supply coverage	%	67	76	76	76	76	97	76	76	76	76	76	797	76	76	76	79
assumed rate of UFW	%	50	49	47	46	45	43	42	41	39	38	37	35	34	33	31	30
Total Water Demand of Six (6)																	
Rayons and Kurgan Tyube	m ³ /day	59,476	63,378	67,456	72,037	76,784	81,822	86,981	92,875	96,758	100,575	104,433	108,302	112,174	116,077	119,970	123,892
Kurgan Tyube	m ³ /day	26,006	26,326	26,555	26,878	27,164	27,441	27,767	28,064	28,352	28,651	28,982	29,239	29,576	29,915	30,175	30,514
Sarband Rayon	m ³ /day	2,343	2,532	2,741	2,927	3,129	3,373	3,587	3,808	4,042	4,225	4,425	4,673	4,880	5,070	5,317	5,530
Vakhsh Rayon Center	m ³ /day	1,680	1,785	1,909	2,001	2,104	2,224	2,332	2,438	2,576	2,694	2,800	2,921	3,045	3,169	3,307	3,435
Vakhsh Rural	m ³ /day	4,744	5,321	5,920	6,637	7,380	8,155	8,974	9,930	10,450	10,975	11,513	12,024	12,548	13,069	13,587	14,102
60% of Vakhsh Rural	m ³ /day	2,846	3,193	3,552	3,982	4,428	4,893	5,385	5,958	6,270	6,585	6,908	7,214	7,529	7,841	8,152	8,461
four (4) WSSs in Kolkhozabad																	
and one (1) WSS in Kumsangir	m ³ /day	806	911	1,013	1,147	1,274	1,407	1,554	1,723	1,815	1,924	2,012	2,117	2,211	2,297	2,403	2,489
Average Daily Water Demand																	
on the Vakhsh Conduits	m ³ /day	25,795	28,631	31,686	35,102	38,686	42,483	46,357	50,884	53,703	56,496	59,307	62,138	64,933	67,785	70,616	73,463
Vakhsh Conduits to be loaded																	
(based on the maximum daily																	
water supply)	m ³ /day	35,596	39,511	43,727	48,441	53,386	58,627	63,973	70,220	74,110	77,964	81,843	85,751	89,607	93,544	97,450	101,378
Population corresponded to		423,621	446,388	469,948	500,526	532,448	565,185	598,609	640,377	653,938	667,723	681,607	695,428	709,363	723,592	737,499	751,908
Maximum daily water demand	,																
by 83 WSSs	m ³ /day	21,427	23,297	24,915	26,803	28,736	30,295	32,236	34,153	35,735	37,706	39,726	41,232	43,264	45,347	46,869	48,959
Population corresponded to		256,050	261,961	268,034	274,049	280,272	286,456	292,695	298,820	305,106	311,633	318,169	324,508	331,064	337,810	344,256	348,790
water	3	10, 10		-00 00	111 10			100		0/01/	00000		010 010	000 10	0100	01.0.10	
demand on the Conduits	m'/day	21,427	20,757	32,087	37,417	42,747	48,077	53,408	58,738	64,068	69,398	14,728	80,08	886,68	90,718	96,048	101,378

Table 8.1.9 Projected Water Demand on the Vakhsh Conduit

2) Maximum Daily Water Demand

The water demand varies seasonally, it is big in summer and small in winter. The peak factor for daily water demand acquired by following formula shown in "3.4 (2) Establishment of Quantitative Service Level Indicator" represents the scale of this variation. (Though water supply and water demand is different, if "water demand" replaces "water supply" in the formula, it can be considered that the return will be same.)

the peak factor for daily water demand = the maximum daily water supply (usually in summer) the average daily water supply (yearly water supply/365)

The capacity of the Vakhsh Conduits should be sufficient to deliver the MDWD.

Namely, the Vakhsh Conduits shall have the capacity over the total of MDWD of the WSSs covered by the Conduits.

The Study Team established the rehabilitation plan through the hydraulic model applying the MDWD to the Vakhsh Conduits acquired by following manner:

- summing up the average daily water demand of the 83WSSs covered by the Vakhsh Conduits
- summing up the MDWD of said 83WSSs
- calculation of the peak factor to be applied to the Conduits
- having the MDWD on the Vakhsh Conduits

Concerning the MDWD and the peak factor of the WSSs, the value of them depend on the scale of service area, climate, etc. Usually, the data of actual water demand in the past several years or the values applied to the WSS under the similar conditions, however, no data is available for the WSSs covered by the Conduits.

The Study Team consequently borrows the data on the peak factor from the following *Figure* 8.1.1.

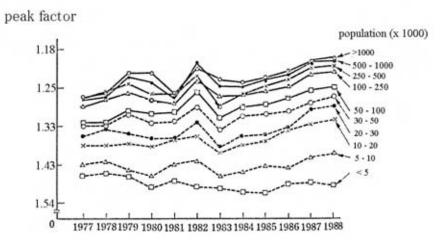


Figure 8.1.1 Peak Factor for Daily Water Demand

Source: Japan Water Works Association, 1990, Design Criteria for Waterworks Facilities Following table shows the peak factor for daily water demand applied to the WSSs:

Service Population	Peak Factor
1 - 5,000	1.45
5,001 - 10,000	1.34
10,001 - 20,000	1.27

Table 8.1.10	Peak Factor for Daily Water Demand Applied

Source: own study

The peak factor to be applied to the Vakhsh Conduits is got as following:

- total of the average daily water demand of the 83 WSSs: $35,400 \text{ m}^3/\text{day}$

- total of the MDWD of the 83 WSSs: 48,960m³/day

- the peak factor for the daily water demand = 48,960/35,400 = 1.38

The MDWD on the Vakhsh Conduits by applying this peak factor is:

73,463 m³/day (predicted average daily water demand in 2028, refer to *Table 8.1.9*) x 1.38 = 101,378 m³/day

3) The Maximum Daily Water Demand of each year in the Project duration

As mentioned above, there are 83 WSSs connect with the Vakhsh Conduits among which 27 is under shutdown and 15 can not distribute water to meet the demand. The repair and restoration of these WSSs are urgent matters and it should be kept abreast with the Plan.

On the other hand, there is the difference between the average daily water demand on the Vakhsh Conduits; 73,500m³/day and that of 83 WSSs; 35,400m³/day. The difference; 38,100m³/day is the water demand of the areas where WSSs do not exist. It is assumed that the WSSs will be constructed keeping pace with the progress of the Plan.

Considering above mentioned fact, the Study Team applied the following assumption to the plan:

- The MDWD on the Vakhsh Conduits in 2013, the first year of project duration: the MDWD of 83 WSSs; 21,400m³/day.

- The MDWD on the Vakhsh Conduits in 2028, the final year of project duration: the MDWD on

the Vakhsh Conduits based on the projected service population; 101,400m³/day.

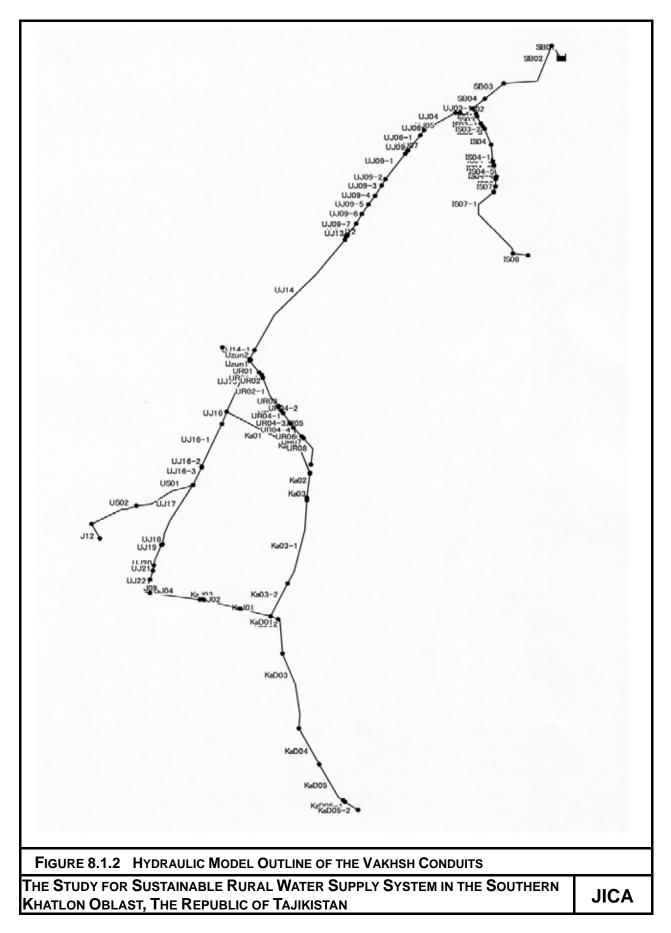
Table 8.1.9 shows the projected MDWD on the Vakhsh Conduits of each year in the project period.

8.1.4 REHABILITATION PLAN

Figure 8.1.2 shows the rough outline of hydraulic model of the Vakhsh Conduits. The name of each zone is frequently referred in the following text and attached tables.

(1) Projected Intake

As explained in "3.3 Current Conditions of the Vakhsh Conduits", there are two pipeline routs in the Vakhsh Conduits, one is for Kurgan Tyube with double pipelines and another is single but dendritic pipeline for Bokhtar, Vakhsh, and Dzhilikul, Kolkhozobod, Kumsangir via Uzun.


The water supply to the areas mentioned above complying with the national plan will necessitate around $140,200m^3/day$. The breakdown of it is as follow:

- for Kurgun Tyube: 38,800m³/day

the average daily water demand in 2028: $30,514m^3/day$ the peak factor for the daily demand: 1.27 (shown in *Table 8.1.10*) the MDWD in 2028: $30,514 \times 1.27 = 38,800 m^3/day$

- for five (5) Rayons: 101,400m³/day

Supporting Report 3 Chapter 8 Rehabilitation and Expansion Plan of the Vakhsh Conduits

Project intake should have 10% allowance and accordingly it should be 155,000m³/day at the intake in the Sarband SB facilities.

Regarding the capacity of intake, it seems to be possible to take $155,000m^3/day$ because the cross section area of intake channel is $2.6m^2$ makes the velocity of flow only a little less than 0.7m/s.

(2) Hydraulic Analysis of the Vakhsh Conduits Based on Water Demand Prediction

1) Hydraulic Analysis

The Study Team made the hydraulic analysis making use of the hydraulic model of the Vakhsh Conduits explained in "3.3.9 Capacity of the Vakhsh Conduits under the Current Situation". The objective of the analysis is to establish appropriate model of Plan in order to introduce the sufficient capacity into the Conduits to meet the water demand in 2028.

2) Water Demand Loaded to the Conduits in the Analysis

As aforementioned, there are a number of areas where the WSS does not exisit in target five (5) Rayons.

Following table shows the Rayon-wise comparison of the total water demands of the WSSs in 2028 based on the assumption described in "8.1.3 (2) Population Projection and (3) Water Demand Prediction" and that of the rayon. In this comparison, it is assumed that the number of WSSs will not change.

Rayon	WSS (m ³ /day)	Rayon (m ³ /day)	Ratio
Bokhtar	4,255	23,177	5.45
Vakhsh	2,196	5,641	2.57
Dzhilikul	3,323	8,211	2.47
Kolkhozobod	8,575	13,541	1.58
Kumsangir	3,323	8,211	2.47

Table 8.1.11 Total Water Demand of WSSs and Rayon in 2028

Note) The water demand for WSSs which take water from the canal is excluded in the Vakhsh Rayon Source: own study

Followings are assumptions to introduce above mentioned "non-water supply" into the hydraulic analysis:

- The Vakhsh Conduits will deliver water to the areas where WSS does not exist
- Each WSS is the point to load the water demand on the Vakhsh Conduits (outflow of water takes place at the point of WSS)
- The water demand at the above-mentioned point is the MDWD of the WSS times ratio shown in the *Table 8.1.11*.
- Inflow to WSSs is regulated with a valve and accordingly discharge will never exceed the water demand mentioned above.
- The water demand of Rayon Centers is the predicted one in 2028
- Discharge is constant during 24 hours

Attached Table 8.13 (Supporting Report) shows the MDWD represented by liter/second unit in 2028 of each WSSs and the water demand (total is equivalent to the total of the MDWD on the Vakhsh Conduits in 2028) applied to the hydraulic analysis.

3) Lessons Learned from the Hydraulic Analysis

Hydraulic analysis gave several points to consider in the Plan:

Insufficient Capacity of Pipeline between the Sarband Settling Basin and Uzun Pumping Station

Negative pressure takes place in the vicinity of Uzun PS by loading of MDWD of the WSSs only. It is consequently impossible for the Conduits to deliver total water demand in 2028 without expansion of this section in the Conduits.

Critical Point regarding Flow Rate of the Vakhsh Conduits

As shown in *Figure 8.1.2*, the single pipeline comes to Uzun PS and then it starts the ramification and finally four (4) pipelines appear representing by zone D, E, F, G, H, I. There are Rayon Centers, etc. which have big water demand at the end points of the zone D, E, G, H. Unless there is sufficient dynamic pressure at Uzun PS (it represent the position of the Conduits and hereinafter there are similar descriptions), necessary water accordingly will not come to the end of each pipeline. Hydraulic Analysis shows that existing 700mm in inside diamter (hereinafter referred to as ID700) can not maintain the sufficient dynamic pressure to deliver water to all the WSSs in the downstream area of Uzun. It is necessary to expand the conduit between Sarand Settling Basin and Uzun PS.

Conveyance to G Area is Difficult from the Viewpoint of the Costs

The conduit to Dusti (The Kumsangir Rayon Center) starts the connection point where around 4.2km to the south-west of Uzun in D area and go through nearby point of the south of Kolkhozobod Rayon Center and then go southward until Dusti via Kalinin PS. It extends up to Kolkhoz Lenin WSS (Q-04). Most of the conduit has ID514mm and the total length is around 40km. The elevation of Q-04 is 390m and that of Uzun is 364m, Q-04 is 26m higher than Uzun in elevation.

Total water demand of G in 2028 is 206 liter/second (17,900 m^3/day) and it necessitates around 126m water head energy to deliver this flow rate to Q-04 from Uzun. However, the elevation difference between the Sarband SB and Uzun PS is only 80m, it is impossible to deliver the said discharge from Uzun to Q-04 through existing conduit even if there is not any friction loss head between SB and Uzun PS.

Decreasing the friction loss head between Sarband SB and Uzun PS by the expansion of the conduit and expansion of around 40km of conduit between Uzun PS and Q-04 will make it possible to deliver necessary water to G area. However, the cost of expansion seems to be very expensive for the conveyance of only 17,900m³/day.

Kalinin PS makes currently convey water to Dusti by pumping up from the Kumsangir canal. Kumsangir canal flows nearby area of the WSSs in Kumsangir Rayons. It seems to be more economical if respective WSSs or group of WSSs construct a water treatment plant by pumping up water from the canal than having water from the Vakhsh Conduits by expansion.

Furthermore, the exclusion of G area from the service area of the Vakhsh Conduits will bring following merits:

- To decrease the load on the conduit between the Sarband SB and Uzun
- To restrain the project cost
- To make it possible to convey water from Sarband SB to other areas by gravity

Regarding the water right to take water from the Kumsangir canal, it does not seem to be problem because the Kumsangir canal connects with the Stalin canal, if only RWSA will be able to set the water right for the necessary volume of water mentioned earlier.

Expansion of Conduits to and in H area

Around 9.6km of ID313mm steel pipe in H area connects with the Vakhsh Conduits in D area at around 10km to the south-west of Uzun. The maximum flow rate in 2028 of the conduit for Dzhilikul at just after Uzun is 458 liter/second and that of just after the connection point with the conduit for F area which locates around 4.2km to the south of Uzun is 246 liter/second. These flow rates consume around 77m water head energy between Uzun and the connection point with the conduit of H area.

Followings are rough calculation of the total water head at the said connection point in 2028.

- Elevation difference between Uzun and the connection point is only 8m
- Available dynamic pressure at Uzun in 2028 is around 55m water head after the expansion of conduit between Sarband SB and Uzun
- Total water head at Uzun = 364m (elevation of Uzun) + 55m = 419m
- Total water head at the connection point = 419m 77m + (364m 356m (elevation of the connection point)) = 350m < 356m (elevation of the connection point)

It shows that there is a negative pressure at the connection point in 2028. Namely, the current Vakhsh Conduits in D area can not convey necessary water to H area in 2028.

Moreover, the connection points of the WSSs in the downstream area of the connection point in D area will have the negative pressure because there is not enough elevation difference between such WSSs, of which elevation is 350m to 355m, and the connection point.

It is consequently necessary to lay the new conduit from Uzun to the connecting point to connect with the conduit in H.

Insufficient Diameter of Several Connecting Pipelines between the Vakhsh Conduits and WSS

The Diameter of Several connecting pipelines between the Vakhsh Conduits and the WSS will become insufficient with increasing the water demand. These pipeline should be renewed appropriately.

Pumping Stations

The hydraulic analysis result shows that energy increase of flow by the operation of the Bokhtar Head PS will cause higher friction loss head between Bokhtar Head PS and Uzun PS and most of increase energy is consumed by the Uzun PS. Considering this inefficiency, the Study Team did not include the operation of the Bokhtar Head PS in the Plan.

The Study Team discussed about making use of Uzun PS as the booster PS for the conduit with ID514mm in D area which has insufficient capacity as mentioned above. However, the flow rate of the conduit in 2028 is 252 liter/second after deduction of the flow rate to G area and the velocity is 1.2m/second. It exceeds the efficient velocity of pump operation, 1.2m/second and therefore, the position of Uzun PS is not appropriate as the booster PS. The Study Team consequently did not consider the Uzun PS in the Plan.

The Kalinin PS currently pump up water from the Kumsangir canal and make pump pressurized conveyance to the Dusti and Dzhilikul WSSs. When the Plan is realized, the water conveyance to Dzhilikul is made by gravity from the Sarband SB. As for the Dusti WSS, as mentioned already, the Team recommended constructing independent WSS. After all, the Kalinin PS will stop its work after the construction of the WSSs in G area which take water from the Kumsangir canal.

(3) Alternative Plans

1) Location of Water Treatment Plant

There are two (2) ways to locate the water treatment plant; one is centralized and the other is decentralized. Specifically, the former is to locate the plant near the Sarband SB or Bokhtar Head PS and the latter is to locate near respective WSSs or groups of WSSs.

In case of a centralized water treatment, the WSS has to distribute the treated water to WSSs through the existing Vakhsh Conduits. However, considering the pipe material of Conduits, which does not have an internal protective lining though the outside is coated with asphalt, and its age, the condition of the conduits might have deteriorated to some extent. Internal corrosion of iron pipes decreases their structural durability and may create leaks and at worst may cause a rupture, and also consumes disinfectant residual, accumulates deposits, creates encrustations and biofilms and consequently decreasing the pipe cross section, i.e. decrease the capacity of the Conduits.

As discussed earlier, one of the factors which influence the sustainability of the Plan is "the differentiation between the waters of irrigation canal and pipe supply". If the water quality of the piped supply is poorer than that of the water of irrigation canal, the consumers will not use the piped water supply so much. For example, the scales, sediments, biofilms, etc. in the conduits detaches from the inner surface might put color and odor to the supplied water and it has the population who shall be the consumer of the WSS return to the conventional water sources such as irrigation canals, shallow wells, etc.

Considering the potential of the Vakhsh Conduits to deteriorate the water in terms of aesthetic and microbial quality, it should be avoided to utilize the Vakhsh Conduits to distribute the treated water.

There is an option to adopt the centralized treatment method by applying in-situ pipe cleaning and lining, however, it is extremely expensive. Even if the decentralized water treatment plant is constructed, it necessitates the construction cost, i.e. the cost of cleaning and lining is net increase of the project cost. Hence, the Study Team can not recommend adopting this option from the viewpoint of the cost efficiency.

In Japan, uncoated steel pipe and galvanized steel pipe are not considered as service and distribution pipe.

The Study Team consequently recommends establishing decentralized water treatment system.

2) Water Supply to Kolkhozobod Rayon Center

As mentioned in "8.1.4 (2) Hydraulic Analysis of the Vakhsh Conduits Based on Water Demand Prediction", the dynamic pressure at Uzun affects the conveyance of water to the downstream area of Uzun. The decrease of water demand in the downstream area accordingly makes the Conduits hydraulically stable and it contributes the decrease of the cost of rehabilitation.

Though, the WSS of Kolkhozobod Rayon Center currently have water from the Conduits, it pumped up water from the Kumsangir canal which runs just aside the WSS.

Therefore, if the cost of water from the Vakhsh Conduits is higher than that of pumping up from the canal, the Vodokanal of Kolkhozobod probably will change the water source from the Conduits to the Kumsangir canal. In fact, in case that the cost recovery of the Plan targets the Vodokanal, such change will take place easily.

Consequently, the Plan considers the alternative of supplying or not supplying water to the WSS of Kolkhozobod Rayon Center. In case no supplying water, the target WSSs are those connects with the conduits between Kolkhozobod Rayon Center and the valve located 3.3km before the Center. Because this section is the property of the Vodokanal. Total number of WSSs will be excluded from the Plan is seven (7); R-05, R-04, R-32, R-37, R-38, R-06, R-30 including that of the Rayon center (R-05) and the total water demand including the water demand of non-water supply area is 102 liter/second (8,800m³/day)

Among seven (7) WSSs, the elevation of R-05 is the highest and the distance between the

farthest WSS and R-05 is around 2.4km. Hence, the distribution by gravity from the R-05 is better than having water from the Vakhsh Conduits which makes a long distance conveyance.

(4) Rehabilitation Plan

1) Vakhsh Main Conduits

The Plan intends to limit the repair and rehabilitation of existing conduits to repair the parts where the parties concerned has already recognize the leakage, etc. The Study Team recommends making out the drawings which shows the conduit routes with elevation, length, thickness of soil cover, etc, social and natural settings along the Conduits, etc. through the detailed survey to be implemented at the initial stage of the Plan. Then RWSA will be able to maintain and/or improve the performance of the Conduits as current OM/M. The Plan consequently does not have the rehabilitation plan of the existing conduits. However, the renewal of existing gray cast iron pipe is projected to renew due to following reasons:

- Low performance against shock power
- Socket joint necessitates thrust concrete blocks, restrained couplings, etc. to the uneven force caused by the pipe inner flow is necessary
- Low performance of earthquake protection (Khatlon Oblast exists in the seismic zone)
- Degradation of hydraulic performance and water quality caused by incrustation, etc.

Besides, if the rehabilitation work finds out leakages, corrosion, etc., they will be repaired or partially renewed.

Followings are proposed rehabilitation plan of the Vakhsh Conduits based on the water demand prediction and the hydraulic analysis:

Rehabilitation Plan of the Vakhsh Conduits

- a) installing the valve, which has a good functions to control flow rate, in all the conduits which connect the Vakhsh Conduits with the WSSs and the flow-meter to manage the volume of water delivered to the WSSs.
- b) disconnecting G area and the WSSs of Kolkhozobod Rayon Center and six (6) WSSs (R-04, R-32, R-37, R-38, R-06, R-30) in the vicinity of it from the service area of the Vakhsh Conduits
- c) renewal of existing pipe by equivalent or more grade pipe in the following sections which the RWSA reported.

* 350m of ID1200mm concrete pipe in the section between Sarband SB and Bokhtar Head PS * around 3.2km of ID700mm steel pipe in the B area

- d) to replace the existing ID313mm steel pipe of 7.8m in H area by ID414mm steel pipe
- e) installation of ID996mm steel pipe with around 7.7km long from the Sarband SB to juction of B and C area. This conduit should make a short cut without going through the Bokhtar Head PS. The conduit in the C area connects with this new conduit.
- f) installation of new ID414mm steel pipe with around 10.2km long between Uzun and the junction of the D and H areas and connection with the existing ID700mm steel pipe at Uzun and newly installed ID414mm steel pipe in the H area. Disconnecting the conduit in the H area from the existing ID514mm steel pipe in D area.
- g) installation of iD720mm steel pipe with 25.4km long in parallel with the conduit in the B area and connection with newly installed ID996mm steel pipe in the A area and the existing ID514mm conduits of D and E areas.
- h) disconnecting the conduit in the F area from the conduit between Uzun and Dzhilikul and connecting the conduit in the F area with newly installed ID414mm steel pipe from Uzun to the H area.

- i) to replace the existing CIP ID600mm by ID614mm steel pipe in the section between the connection point of the existing steel pipe and CIP, and WSS of B-24. Length is around 400m. This newly installed steel pipe should be stopped just after B-24 by installing a valve for a wash out. There is a irrigation canal nearby.
- j) installation of ID614mm with around 500m long steel pipe between the new junction of the conduits in the A, B and C areas and the WSS of V-15 in parallel with existing ID614mm steel pipe. V-15 will have water from this new conduit.

The capacity of the Vakhsh Conduit after the above mentioned rehabilitation is around $78,200m^3/day$.

Alternative Plan

a) same as a) of above-mentioned rehabilitation plan

- b) disconnecting G area from the service area of the Vakhsh Conduits
- (c) f) same as (c) f) of above-mentioned rehabilitation plan.
- g) installation of ID820mm steel pipe with 25.4km long in parallel with the conduit in the B area and connection with newly installed ID996mm steel pipe in the A area and the existing ID514mm conduits of D and E areas.
- (h) j) same as (h) j) of above-mentioned rehabilitation plan.

The capacity of the Vakhsh Conduit after the above mentioned alternative rehabilitation is around 84,100m³/day.

2) Vakhsh sub-main Conduits (from Main Conduit to a WSS)

The diameter of the sub-main conduit to several WSSs will be insufficient with increasing water demand. Following table shows the rehabilitation plan. High density polyethylene pipe (HDPE) is applied to the sub-main conduit to the WSSs, which are projected to construct a water treatment plant, and steel pipe is applied to the WSSs which are supposed to have water from the centralized water treatment plant of several WSSs.

	area WSS		existing	condui	t		renewe	d condui	t
area	w 22	Material	ID	С	length (m)	material	ID	С	length (m)
	V15	SP	234.0	44	57	SP	414.0	110	57
С	B08	SP	81.0	55	1,189	HDPE	110.2	110	1,189
	B09	SP	81.0	55	968	HDPE	123.4	110	968
Е	R38	SP	68.0	44	223	HDPE	141.0	110	223
F	R15	SP	156.0	55	409	SP	234.0	110	409
Н	J12	SP	208.0	55	1,257	SP	208	110	1,257
п	J13	SP	313.0	44	1,747	SP	313.0	110	1,747

Table 8.1.12 Renewal Plan of Sub-main Conduits

Note: SP- Steel Pipe, HDPE- High Density Polyethylene Pipe, ID- Inside Diameter

C- Hydraulic factor related to the roughness of pipe inner surface; the value is as of 2028 (the "C" value of SP decreases with aging)

Table 8.1.13 shown in the following page presents the overview of the rehabilitation plan.

Pipe	N.D.	I.D.	existing	to abandoned	to be renewed	to be installed	total
	(mm)	(mm)	(m)	(m)	(m)	(m)	(m)
Main							
SP	1220	1192	5223				5223
SP	1020	996	3975			7669	11644
SP	920	900	8030				8030
SP	720	700	16330	3151	3151	25443	41773
SP	630	614	6194			885	7079
SP	530	514	54044	3000			51044
SP	426	414	3215	3215	7840	10214	18054
SP	325	313	17773	9141			8632
Concrete	1200	1200	1229	350	350		1229
CIP	600	600	7526	7526			0
CIP	500	500	8984	8984			0
sub-total			132523	35367	11341	44211	152708
Sub-main							
SP	426	414			57		57
SP	325	313	2199	1747	1747		2199
SP	273	262	50	50			0
SP	245	234	57	57	409		409
SP	219	208	6583	4979	1257		2861
SP	150	156	1745	409			1336
SP	140	132	533				533
SP	133	124	217				217
SP	114	105	7171				7171
SP	89	81	3155	2157			998
SP	76	68	737	223			514
SP	32	36.7	71				71
SP	25	27.9	192				192
SP	20	24.1	23				23
HDPE	225	198.2	287		222		287
HDPE	160	141			223		223
HDPE	140	123.4			968		968
HDPE	125	110.2	202	166	1189		1189
HDPE HDPE	110 50	96.8 40.8	383 49	166			217 49
CIP	200	200	49				49 435
CIP CIP	200 150	200 150	433 3973				433 3973
CIP	100	100	1723	123			1600
PVC	225	207.8	50	50			1000
PVC	160	207.8 147.6	50 64	50			64
PVC	110	101.6	231	8			223
PVC	40	36.2	442	5			442
sub-total		- - . -	30370	9969	5850	0	26251
total			162893	45336	17191	44211	178959

Table 8.1.13 The Rehabilitation Plan Overview of the Vakhsl	h Conduits
---	------------

Note : SP - Steel Pipe, HDPE - High Density Polyethylene, CIP - Gray Cast Iron Pipe, PVC - Polyvinyl Chloride,

3) Pumping Facilities

According to the rehabilitation plan of the Vakhsh Conduit, the water is drawn by gravity to Kalinin. Therefore, it is not necessary to rehabilitate pumping stations.

(i) Bokhtar Head Pumping Station

The reason mention above, this pumping station isn't necessary. So rehabilitation will not be implemented.

(ii) Uzun Pumping Station

The reason mentioned above, this pumping station isn't necessary. So rehabilitation will not be implemented.

(iii) Kalinin Pumping Station

This pumping station will continue to be used till 2012 in this rehabilitation plan of Vakhsh Conduits. Prediction of water demand in 2013 in the area is $3,177 \text{ m}^3/\text{day}$ (=132 m³/h) where this pumping station will distribute.

It is enough to cover this water demand with using one existing pump that has a specification $(320 \text{ m}^3/\text{h}, 50\text{m})$, so it is not necessary to rehabilitate. Intake pumps have enough condition to continue to work till 2012 if regularly maintenance is going well.

4) Water Treatment Plant

As mentioned in the section "8.1.4 Rehabilitation Plan, (3) Alternative Plans, 1) Location of Water Treatment Plant", though the Study Team proposed to construct a WTP in the vicinity of a WSS, the Team also planned to make the scale of WTP big by grouping existing WSSs and accordingly decreasing the number of WSSs to be constructed. Followings are the reasons:

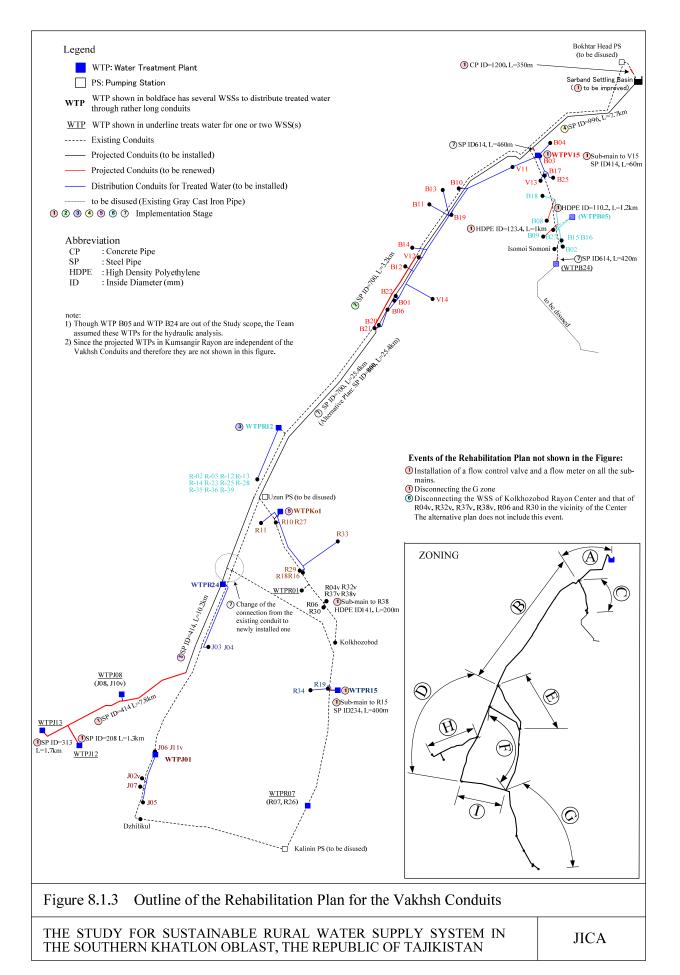
- the bigger the capacity of WTP is, the less inexpensive the unit construction cost of water to

be treated providing that the water treatment process is same.

- the more the number of WTPs increases, the more the number of staffs for the WTP

increases and accordingly the fixed cost of WTP operation as well as the water rate to be

applied increase.


WSSs which meet the following condition are grouped: "Around 20m or more water head of dynamic pressure should be secured at the entrance of WSSs when an elevated tank with 20m height is constructed in the vicinity of the WTP which connects with the WSSs through the appropriate diameter of conduit regarding flow rate" In practice, if a site of which elevation is 20m or more higher than that of the WTP is available, the construction of semi-buried tank should have the priority.

The Plan assumed that WSSs can distribute water by gravity providing that the dynamic pressure at the entrance of WSSs is at least around 20m water head. It consequently necessitates to study the change of inflow conduit route in order to have higher dynamic pressure then 20m water head or necessity of booster PS in the distribution system at the implementation stage.

Above mentioned plan includes the WSSs operated by the Vodokanal to avoid the construction of a number of small scale WTPs in the Study area due to the difference of operator. Institutional arrangement regarding the Rural Water Supply will be necessary at the implementation stage.

Though the Scope of Study does not cover the WSSs in Bokhtar Rayon, the Study Team incorporated them into the planning and made the hydraulic analysis to prepare the rational Plan.

Projected WTPs are shown in *Attached Table 8.14*. shows the projected WSSs with the maximum daily water demand to them and *Figure 8.1.3* presents the location of projected WTPs with the WSSs connected.

(i) Selection of water treatment method

Nature of water source is as follows.

- Type of Water Source : Irrigation canal,
- Water quality : Average conductivity in rainy season about 10-30NTU
- Temperature : 5 to 25 degree Celsius

(ii) Treatment method

The rapid sand filtration method (auto filter type) is applied as the treatment method. Following facilities are included in the treatment plant.

a. Backwashing pump

Large output is required. The view point of energy saving is considered. Backwashing method by gravity flow is applied considering the frequent power failure. Required number of filter is more than eight (8). If the number of filter is less than eight (8), water in the auxiliary tanks and elevated tanks to increase the backwashing ability.

b. Surface washing pump

Pressurized water is used for backwashing because 0.3MPaof pressure is required. However, emergency power generator can be used when electric power failure since high pressure is not required. In order to prevent freezing in winter season, filters are covered by transit shed. Surface lying pipes are protected by heat insulating material.

c. Suspended solid contact clarifier

Horizontal baffled channel flocculation method is applied for the coagulation basin. The method is also applied for suspended solid contact clarifiers, considering frequent electric power failure and saving energy.

There are two (2) types in the baffled channel flocculation method. The Horizontal baffled channel flocculation method is preferable to avoid freezing in the winter season. Even if weak freezing is happened, the method is not affected to its function.

d. Sedimentation basin

Horizontal flow type is applied for the sedimentation basin. If capacity of the basin is large, vertical shaft type scraper is used for desludging. Average conductivity in the winter season is 10 to 30 NTU. Due to low conductivity, sedimentation of sludge is not much. However, it is preferable to install a scraper to make desludging easy. If the capacity of the filter is not large, only bottom desludging hopper is installed because manual desludging is easy. In order to prevent freezing in winter season, inlet and outlet are covered by transit shed. Surface lying pipes are protected by heat insulating material.

d. Coagulant

Aluminum sulphate is generally used as the coagulant. Effect of aluminum sulphate is declined under the low temperature in the winter season. Therefore, it is preferable to use either coagulation aid or polyaluminium chloride. However, using of both coagulators at the same time shall be avoid because they will be consolidated and plug the inside of the pipes.

e. Chlorination

Chlorine feeding is indispensable to avoid water deterioration during the distribution. Calcium hypochlorite is used as the chlorine agent.

(iii) Wastewater treatment facility

Wastewater and sludge are stored in the temporary sedimentation tank. Then, supernatant is discharged to channels. Since capacity of 14 treatment facilities out of 15 is less than 10,000 m3/day, volume of wastewater from the treatment facilities is not large.

Deposited sludge shall be periodically baled out. Then, it is air drying or disposed to the repository site.

Sludge drained from the treatment facilities contains small amount of aluminum, however, it cause no negative impact to environment. Therefore, it is available as joint soil of turf and backfilling material after processed.

(iv) Mechanic and Electric Facilities

Mechanic and electric facilities are designed by following basic concepts;

- Solid, long life
- Decreasing maintenance work
- Well used ordinary equipments as possible
- No excessive specification. (ex. puissance)

<u>a. Pump</u>

Basically, pump will be selected type of single or multi stage spiral and horizontal installation. For the chemical injection facility, pump will be used type of Diaphragm pump of constant flow rate. But on the situation, as quality of liquid, piston pump, plunger pump and rotary pump will be selected.

Total height manometer and flow rate are different by facilities. When the pump is selected, pipe resistance (roughness) as well as total height manometer and flow rate must be well considered.

For the shield axis of pump, mechanical type without using water will be recommended.

Some pumps like large capacity (intake pump or distribution pump) and pumps for chemical injection facility are recommended the Japanese products, but other pumps will be selected in the market of this country.

b. Electric Motor

Electric motor is used type of low voltage three phased induction motor with a squirrel-cage type rotor, because this type of electric motor is solid and easy maintenance. Less than 100kW of capacity, low voltage (380V) one will be used, but more than 150kW is needed, high voltage one will be selected. Type of wound-rotor induction motor won't be used because maintenance work is trouble-some job about treatment of brushes. If control of rotation speed is necessary with frequency control, inverter could be used. Specification of electric motor is shown in *Attached Table 8.16*.

	Basic Specification	Remarks
1. Structure	Three phased induction motor with a squirrel-cage type rotor	
2. Protection Structure	IP54	There's much dust particles
3. Normal rotation speed	1,500 /min	
4. Voltage	380V	A small motor like under 1kW of capacity, three-phased or sigle-phased 220 V will be used
5. Frequency	50Hz	Frequency will be adapted to Commercial power
6. Insolation, Heat Resistance Level	Class F	(Max. admissible temperature of coil: 155° C)
7. Paint	Rust proof	
8. Time Rating	Continuous Rating	
9. Starting method	Selection from among ; Direct 37kW), Reactor (Over 45kW)	t (Under 3.7kW), Star-Delta (From 5.5 to

Attached Table 8.16 Basic Specifications of Electric Motor

c. Valves

Valves which used in water treatment plant without closing valve has already mentioned in the part of aqueduct, there are for control, for prevention of backward flow and for removing air etc.

a) Closing and control valve

For the reference of specifications, See the *Attached Table 8.32* in 1) Valves of (4) Ancillary Facilities of the Conduits (Valves, Wash Outs, Instrumentation Equipments, Water Pipe Bridge).

b) Check Valves

Check valves type swing is used at point of outlet of pump for prevention of backward flow. Capacity pressure is 0.98 Mpa, inside paint is powdered epoxy resins paint.

c) Air Valves

Air valves of antifreeze type must be installed in the center of water pipe bridge or some places where the air remains inside of pipe for removing air.

d) Special valves

Exhaust mud valve will be selected among type of Diaphragm, pinch valve or eccentric valve etc which have a little flow resistance at full open, because liquid contain sludge. For valves for chemical injection facilities, depending on the using liquid, it must be used anticorrosive and acid-resistant material at the section of contact of liquid.

d. High Voltage Incoming and Switching Panels

These Panels are to supply electricity to load equipments after receiving high voltage (10kV) of commercial power line. In this project, each water treatment plant (WTP) have one receiving line of electricity from the reason why each WTPs are small and cutting down of construction cost. But one emergency generator will be installed instead of second receiving line because there're many power failures in winter season. The voltage of emergency generator is 380 volts of low voltage and method of switching between

commercial line and emergency generator line is one of a mechanical interlock. A sample design of single diagram is shown in *Attached Figure 8.1.6 (Appendix)* Single Diagram of Water Treatment Plant of TV15. This is for the WTP that a maximum treatment quantity 40,000m³/day in this project. Flowing articles are for general explication of main components applied for this project.

a) Disconnecting Switch

If the current flow the circuit like a load current or a short-circuit current, this switch can't be operational. In the time of maintenance, this switch is used for opening and discharging the circuit to no voltage.

b) Vacuum Circuit Breaker

This breaker can cut the large current like an over load current or a short-circuit current. This breaker is installed for protecting another feeder from extending incidents that broke out on this feeder of second side of this breaker. Section of opening and closing terminal is put in the vacuum chamber, so appearance of arc is so little at the moment of open circuit. So that the lifetime is longer than other type of arc extinguish.

c) Protective Relay

Protective relay has the role to detect failures like an over road, short-circuit or ground-circuit that occurs on the equipments (power line, electric motor, transformer etc.) through voltage transformer and current transformer, and to cut off the accident line by making circuit breaker work rapidly for the purpose which make accident area minimum to give the signal to prevent from extending the accident area to normal area. There're many type of protective relay, but the relay that will be used in these panels are an over current relay, an under voltage relay, an over current ground relay and a directional ground relay. The over current relay orders t to open the circuit to breaker when the current flow over a setting current. The under voltage relay protect the equipments from unusual voltage. The over current ground relay protect the equipments from accident of ground fault. The directional ground relay has the function of the over current ground relay and has an additional function for avoiding a ground fault of another feeder.

d) Voltmeter, Ammeter, Wattmeter, Watt-hour meter

Using a voltage transformer and a current transformer mentioned above, these meters show an instantaneous current, voltage and electric power. Watt-hour meter show a cumulated electric power used until present.

e) Arrester

Arrester protects the cables and equipments from extremely and abnormal high voltages like a lightning. When a line voltage become over a setting voltage, arrester close the circuit and pass the abnormal high voltage to the ground, and protect an isolation of equipments from he abnormal high voltage. It is necessary for an arrester for low voltage to change after two or three times of function.

The ground must be applied a connection earth by the point of view of protection from lightning.

e. Transformer

Transformer is used for step-down from high commercial voltage to low voltage for using pumps. The capacity is different as each water treatment plant and the basic specifications are shown in *Attached Table 8.17*.

	Basic Specification	Remarks	
1. Type	Oil cooling transformer		
2. Cooling Method	Natural oil circulation		
3. Voltage	Primary side : 10,000V Secondary side : 380V	On primary side, a tap changer will be atached	
4. Phase	Three phases		
5. Capacity	(By case of scale of water treatment plant)		
6. Connection	Primary side : Delta, Secondary side : Star Neutral point will be grounded and the electric power will be distributed with three phase four line method.		

Attached Table 8.17 Transformer Basic Specifications

f. Generator

Generator must be selected one that can work continually for 24 ~ 72 hours. Prime motor will be selected a diesel engine, because of easy maintenance and most ordinary motor. The capacity of generator is calculated as one third of total capacity of WTP facilities. This reason is for minimum operation of WTP with distribution water of one third of WTP capacity. Three pumps of same capacity are designed as intake pump and also distribution pump. And so that while the generator works, one pump of intake pump and distribution pump and another small pump can work. Output voltage is 380V of low voltage because maximum capacity may be 200kW and it is easy to operate low voltage generator. The basic specifications are shown in *Attached Table 8.18*.

Attached Table 8.18	Generator Basic Specifications
---------------------	--------------------------------

	Basic Specification	Remarks
1. Туре	Brushless synchronous generator	Continuous operation for
2. Prime Motor	Diesel engine	from 24 to 72 hours
3. Normal rotation speed	1,500/min	
4. Output Voltage	Three phase four line, 380V/220V	
5. Starting Method	Battery	
6. Capacity	(By case of scale of water treatment plant)	
7. Cooling System	Forced-water-cooled circulation	
8. Protection	High temperature of cooling water, oil Overroad generator	pressure and temperature,

g. Control Panel

A control panel for pump is explained as below. Power-supply of control and operation won't be used direct stabilized power-supply, it must basically be AC 220V. In this country in summer temperature is so high, so electronic equipments won't be used because they are weak for high temperature. The basic specifications are shown in *Attached Table 8.19*.

	Basic Specification	Remarks	
1. Structure	For outside, freestanding, totally enclosed	Dust-resistance, Dripproof	
2. Main Switch	Operational switch on the outside of door upper side	Structure that power line is switched off if the door is opened.	
3. Breaker	Main breaker will be type of GFI (Ground - fault circuit interrupter), installed at the top place inside the panel. One breaker is necessary for one electric motor.		
4. Thermal Relay	Included the open - pahse protect	ion	
5. Lightning Arrester	Lightning arrester must be installed and connected to each phases of the cables comming from outside .		
6. Cable Connectiog Terminal Block	Terminal blocks for outside cables must be installed at the bottom inside of the pannel.		
7. Entrance Place of Cable	A base height about 50mm for fixing panel will be installed at the bottom of the panel and from there the outside cables will be inserted. Never insert the cables from upper position of panel.		
8. Ventilating Fan	Ventilation slots with filter will be made at the lower positon and ventilation slots with fan and filter will be made at the upper position of the door of panel.		
9. Light in the Panel	Fluorescent light (40W)		
10. Earth	Connection of panel body to a good protective ground		
11. Nameplate	Putting the nameplate of panel on the surfafe of outside and also putting the nameplates of pumps near the breaker and magnetic switch on the visible position inside of panel		

Attached Table 8.19 Basic Specifications of Control Panel for Pump

h. Hoist

Hoist on electricity will be installed neat the roof in the pumping station. Maximum lifting charge is five ton, one or two ton as scale of WTP will be considered.

i. Air Conditioning and Ventilation

a) Ventilation

In a warehouse, a control room, a pumping house, electric incoming and distribution room, generator room, ventilation facilities will be installed that take and evacuate air under power. Capacity of fan will be calculated with heat capacity that the equipments run and with heat capacity get into the room.

b) Air Condition

An air condition will be installed in the control room.

j. Illumination

Illumination will be selected fluorescent light for inside use and high brightness bulb like a high-pressure mercury lamp for outside use. Required luminance is different as each place. Referring the flowing in *Attached Table 8.20*, the number and position will be designed.

Place	Illuminance	Light fixture type
Control room	500(lx)	Fluorescent light
Pumping house, Electric room, Warehouse	200(lx)	Fluorescent light
Outside power facilities	50(lx)	Fluorescent light for outside or High-pressure mercury lamp
Outside aisles	20(lx)	Fluorescent light for outside or High-pressure mercury lamp

Attached Table 8.20 Necessary Illumination

(v) Measurement, Control and Watching Facilities

The purpose of measurement instruments is different as quality improvement, saving resources, improvement of safety performance, collecting data of operation etc. In this project, the purpose is to collect operation data and to improve the operation and facilities, and finally to progress the quality. And saving the constructing cost, WTP has minimum functions of measurement.

With this line, the plan is shown in *Attached Figure 8.1.7 Concept Design of Control Flow of Water Treatment Plant (Appendix)*. Intake facilities, chemical injection facilities and distribution facilities will be controlled automatically by flow rate or pressure. And the flow rate, pressure and water level etc. of other facilities will controlled by manual. And also water quality control like sampling, measurement and recording will be done by operators.

a. Flow Meter

Electromagnetic flow meter will be used because it is most applicable flow meter. And that's why measuring objects are liquids which is almost water and also there's minimum required straight length of pipe before this flow meter; $5D\sim10D$

This flow meter will be installed at flowing places;

- For control of discharging rate of intake and distribution water
- For control of injection flow rate of chemical liquid
- For measurement of water from intake basin
- For measurement of water from filtering basin

b. Pressure Gauge

Pressure gauge will be used for measuring pressure at the point of pump outlet. For water pressure, type Bourdon is normally used. For the intake pumps or distribution pumps, it will be for control of pressure or flow rate, so that it is necessary to have a function to output the measuring pressure. Their some type generally have an electrical output like $4 \sim 20$ mA. Then for measurement of chemical liquid, Diaphragm-seal type must be used to protect the instrument from chemical liquid.

c. Water Level Gauge

Water level gauge will be used mainly at the temporary charging well, the flock tank, sedimentation basin, filtration basin and distribution tank. In this plan, this gauge type float will be used for indicating these water levels to the control room.

d. Measuring Instrument of Water Quality

In this plan, minimum necessary items in WTP will measure. The operators will measure these items at regular interval not always, automatically.

a) Thermometer

Use the thermometer attached on instrument pH meter.

b) Turbid meter

Turbid meter which hardly receives the influence of measured water colors will be selected. There's large difference of turbidity, an automatic change range type is recommended.

c) pH Meter

Portable type with function of thermometer will be selected.

d) Conductivity Meter

Portable type

e) Residual Chlorine Meter

By using reagents, free residual chlorine and combined residual chlorine will be measured separately.

e. Operation and Monitoring Board

Facilities will be operated by manual and operation boards will be installed near the facilities. But for some part of important facilities, by installing a control room and then important operating measurements like flow rate of intake and distribution and important state of pump will be supervised together in the control room. Supervising items are shown in following *Attached Table 8.21*.

Attached Table 8.21	Basic Specifications of	Operation and Monitoring Board

	Basic Specification	Remarks			
1. Structure	Desk type for inside use	Dust-resistance, Dripproof			
2. Display and	Intake pump: Run/Hault lamp (Each pump one lamp)				
Operation Item	Flow rate of intaking water (m^3 / h)	Flow rate of intaking water (m^3 /h), Pumping pressure of intake pump (Mpa)			
	Surface wash pump: Run/Hault lamp (Each pump one lamp)				
	Back wash pump: Run / Hault lamp (Each pump one lamp)				
	Distribution pump: Run/Hault lamp (Each pump one lamp)				
	Flow rate of distribution water (m^3/h) ,				
	Pumping pressure of distribution pump (Mpa)				
	Water level :Higher limit / Lower limit (Flock tank, Sedimentation reservoir,				
	Filtring tank, Distribution tank)				

5) Distribution Facilities

Water Distribution Conduits

This section describes the Plan on the conduits which connect the WTP and WSSs and the distribution system of respective WSSs are explained later. As aforementioned, the distribution system of WSSs will have water directly without installing a distribution tank from the WTP in

Supporting Report 3 Chapter 8 Rehabilitation and Expansion Plan of the Vakhsh Conduits

the Plan. The variation of water demand on the WSSs will consequently govern the diameter of conduits between the WTP and WSSs. The maximum hourly water demand on the WSSs is the condition to determine the diameter of conduits. *Attached Table 8.14* shows the maximum hourly water demand of each WSS in 2028.

The target conduits are those connects the WSS with three or more WSSs shown in Table 8.15.

Followings are design conditions:

- Flow rate

: The maximum hourly water demand in 2028 to be loaded on the nodes, which represent the location of WSSs, in the hydraulic model comes from multiplying the average maximum daily water demand per hour by the time coefficient explained in the section "3.5 Underlying Difficulties in the Rehabilitation of the Vakhsh Conduits, (2) Establishment of Quantitative Service Level Indicator, 2)".

Since the applicable data regarding the time coefficient is not available in Tajikistan, the Study Team determined the values of time coefficient based on the following mathematical expression derived from the data in Japan. *Table 8.1.14* shows the value of time coefficient to be applied to the Study.

where K: time coefficient

Q: maximum daily water demand					
Table 8.1.14	Time Coefficient				

	Maximum Daily Water	Time Coefficient	
	Demand (m ³ /day)		
	<100	2.6	
	100-500	2.3	
	500-1000	2.1	
	1001-2000	2.0	
	>2000	1.9	
Elevation of WTP outlet	: Elevation of WTP site + 20m (C	Construction of elevated ta	

or semi-buried tank on a neighboring plot where the elevation is 20m or more higher than that of the WTP site)

- Dynamic pressure at the entrance of WSSs

: 20m water head at the minimum

- Pipe to be used and hydraulic factor related to pipe inner surface for having the friction loss head

: High density polyethylene pipe, 110 is applied to the hydraulic factor considering the minor loss caused by valves,

etc. and long term use.

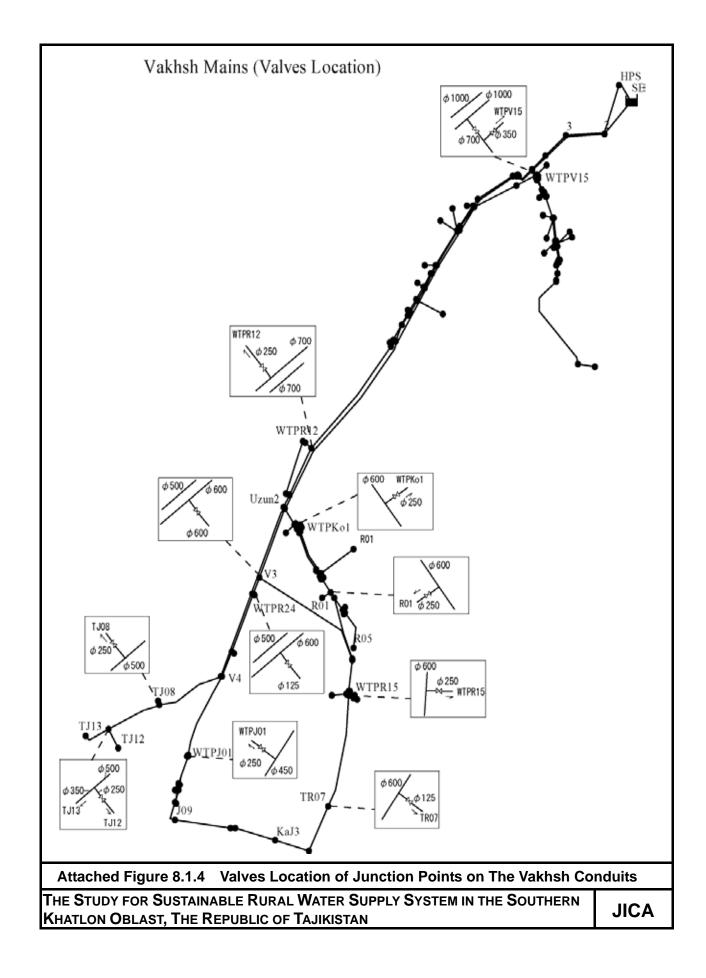
Attached Table 8.22 – 27 present he outline of them conduits layout by projected WTPs.

6) Ancillary Facilities

(i) Valves

The places where valves will be installed are designed following four categories.

- For branches of Vakhsh Conduits
- For branches of distribution main from water treatment plants to water supply system
- For separation of long pipeline of Vakhsh Conduits Main
- For water pipe bridges of Vakhsh Conduit


Total 13 valves will be installed at the Branches for each 11 water treatment plants and two point of Vakhsh Conduits Branch. These are shown in *Attached Table 8.28* (Appendix) Valves List for Branches of Vakhsh Conduits. These valves positions are shown in *Attached Figure 8.1.4*.

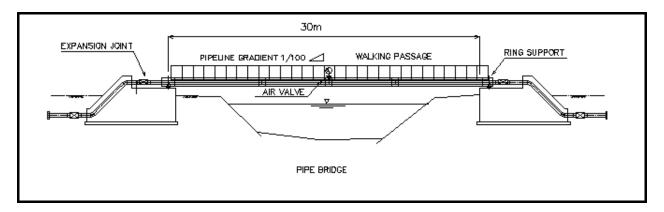
As the same way, valves list for branches of distribution main is shown in *Attached Table 8.29* (Appendix), valves list for separation of Vakhsh Conduits Main *in Attached Table 8.30* (Appendix) and valves list for water pipe bridges of Vakhsh Conduit in *Attached Table 8.31* (Appendix). The valves for separation of Vakhsh Conduits will be installed at the point of each length of 3 km.

About specifications of valve, stopping valve will be basically used for the pipeline. There are some kinds of type of valve, but they say that butterfly type is economic for pipe that diameter is more than 600mm and stopping type is economic for pipe that diameter is less than 600mm. Basic specification is shown in *Attached Table 8.32*.

	Basic Specification	Remarks		
1. Structure	Cone valve, butterfly valve,	- Over ϕ 600mm :butterfly valves under ϕ		
	Stopping valve	600mm :stopping valve		
		- Cone valve will be used as flow rate control for		
		pump with large diameter		
2. Purpose	Stop, Control Stopping valve are for closing the pipeline.			
3. Operation Method	Manual or Electric	Under condition of over ϕ 400mm, purpose,		
		installation place, electric type will be considered		
4. Capacity Presure	0.98Mpa			
5. Paint	Powdered epoxy resins paint			
6. Other	Pipeline over ϕ 400mm, bypass pipe and valves will be installed			

Attached Table 8.32 Basic Specifications of Stopping and Control Valve

(ii) Wash Outs


A wash out valve will be installed at the lowest place around Uzun pumping station. The drainage will draw to nearest canal.

(iii) Instrumentation Equipments

Flow meter must be installed for the purpose of control of discharging water and analyze for water leakage at after the settlement basin and four after junction points of branches of Vakhsh Conduits. Flow meter will be type of electro-magnetic, instant flow rate and added up flow rate can be readable in the valves box.

(iv) Water Pipe Bridge

Topography wasn't executed in this study, so correct places and quantity that the water pipe bridge must be installed aren't understood. But as the chief engineer of Vakhsh Conduits of RWSA explained that there are 23 points. The width of canals is 30 meters maximum. Then total 23 water pipe bridges will be programmed. Two valves will be installed before and after pipeline. General structure of water pipe bridge is shown below in *Attached Figure 8.1.5*.

Attached Figure 8.1.5 General Structure of Water Pipe Bridge

7) WSSs connected to the Conduits

This section describes the rehabilitation planning of distribution conduits of WSSs connected to the Vakhsh Conduits. The Study Team prepared the Plan in the following manner referring the Inventory Survey result.

Inside Diameter of Conduits

* In case of the distribution by gravity, it can be considered that multiplying the number of communal taps by their design flow rate is the flow rate used to determine the ID of distribution mains². The Study Team determined the ID of projected diameter when the friction loss head of projected distribution mains caused by the maximum hourly water demand in 2028 or the flow rate mentioned above whichever is bigger matched approximately the friction loss head of existing distribution mains by the flow rate mentioned above.

The IDs of projected distribution sub-mains were computed applying the ratio of IDs of the

² The definition of the distribution main in the planning is as follows: The conduit which has the biggest inside diameter among the distribution conduits is the distribution main and the conduits which have smaller inside diameter up to two sizes than that of the distribution main are the distribution sub-main.

existing distribution mains and sub-mains.

Followings are the assumptions applied to the above-mentioned calculation.

- The design flow rate of communal tap is assumed as 0.1 liter/second based on the information of UNDP.
- The number of communal tap will not change.

* In case of the distribution by gravity with little information on existing facilities, the following conditions considering the assumption applied to the Plan that the minimum dynamic pressure at the entrance of WSSs is around 20 meters and the Inventory Survey result determined the ID of the conduits:

- the minimum dynamic pressure at the communal taps is 5 meters
- the maximum total loss head of the distribution conduits from the entrance of WSS to the furthest communal tap is 15 meters
- the friction loss head of projected distribution mains is 5 meters at the maximum

Above-mentioned method is applied to have the IDs of projected distribution sub-mains.

* In case of pump pressurized distribution, the relationship between pipe ID and flow rate for economical pump operation was applied to determine the ID of distribution mains. The flow rate to determine the ID of distribution main comes from the maximum hourly water demand in 2028. The same manner applied to the case of distribution by gravity determined the IDs of sub-mains.

* The WSS of R36 will not utilize the dynamic pressure given by the Vakhsh Conduit due to the realization of Plan. It was considered that this case is same as that of the distribution by gravity with little information on existing facilities.

Length of Distribution Conduits

* The calculation of projected length of distribution mains and sum-mains was made based on the assumption that the length increases in proportion as the population growth. However, the point to compute the length is the implementation year of the Plan explained later. Since the prediction of the service area expansion is quite difficult, it was assumed that the detailed design would be made based on the service area in the implementation year of rehabilitation work.

* In case that the WSS of which information on distribution conduits are not available, the ratio of distribution mains to sub-mains was assumed as 1 to 2.

Minimum Diameter of Distribution Sub-mains

* Since the Plan targets on the realization of yard connection, the Study Team proposed to apply 75mm of ID as the minimum diameter of distribution sub-main in order to secure sufficient dynamic pressure in the service pipe.

Material of Conduits

* The HDPE pipe was considered because the pipe can be procured in Tajikistan.

Utilization of Existing Conduits

* The HDPE pipe will replace the SP without inside coating and CIP which are not suitable to deliver treated water due to recontamination.

* PVC and HDPE pipes will not be replaced.

Attached Table 8.33-36 shows the quantity of projected distribution mains and sub-mains of targeted WSSs.

8.1.5 FACILITY DESIGN AND COST ESTIMATION (CIVIL WORK)

(1) Newly planned Water Supply Facilities in the Water Supply Area of Vakhsh Conduit

1) General Facility Design

This plan schedules to rehabilitate Vakhsh Transmission Pipeline, and constructs thirteen water treatment plants with intake facilities at vicinity irrigation canal and transmission/distribution pipe to supply water from new water treatment plant to existing water supply area along the Vakhsh Pipeline.

Adopted design standard is shown as follows.

The composition of the main facilities of the new WTP is shown as following.

- Intake facilities

Intake Weir, Intake Grid, Sand Settlement Basin, Intake Pump Station, Raw Water Main

- Water Treatment Plant (WTP)

Receiving Well, Coagulation and Sedimentation Basin, Rapid Sand Filtration Basin, Distribution Reservoir, Distribution Pump Station, Sludge Lagoon, Transmission Main/Distribution Main

If necessary, elevated tank should be installed.

Kind of facilities	Design	Standard	No. of Basin/	Remarks
	Standard	Value	Component	
Intake weir, intake grid	-	-	-	According to intake amount, water level and surrounding ground level.
Sand Settlement	Retention	About	2basins	
Basin	Time	15minute		
Receiving well	Retention Time	About 1.5minute	2basins	
Chemical Sedimentation Basin	Baffling Type			
-Coagulation Basin	Retention Time	About 45minute	2basins	(Baffling Basin)
-Sedimentation Basin	Surface Load	15-30 mm/min	2basins	Area of Basin÷Volume
	Velocity	>0.4 m/min		Sectional area of flow direction of Basin÷Volume
Rapid Filtration	Filtration	120-150	About 8-12basin	Small *WTP:
Basin	Speed	m/day	Including 1standby Basin	Less than 8basin
			Totally 20% standby	Refer to Patterned
			capacity	Drawing: A,B,C,D
Reservoir	Retention Time	6 hours	1Basin 2Tanks	
Transmission /Distribution Main	Velocity	Less than 3m/s		

 Table 8.1.15
 Adopted Design Standard (Excluding Mechanical Equipment)

Note, *WTP : Water Treatment Plant

2) Patterned Design of Water Treatment Plant

As for newly proposed Water Treatment Plants (WTP) are scheduled to be set up in fifteen places in the existing water supply areas along the Vakhsh Transmission Pipeline. As a lot of numbers of Water Treatment Plant (WTP) is planed in this study. Some standard type of

designs (patterned design) of the facilities is made according to the structural condition, and the construction cost is estimated according to the patterned design. Developed patters of facilities of proposed Water Treatment Plants and patterned design of Water Treatment Plants are shown as follows.

The following patterns of facilities are collectively described in each figure.

- Attached Figure 8.1.8 Site Facility Arrange Plan

Type A in capacity of 1,000-4,500m³/day

Type B in capacity of 6,400-8,200m³/day

- Attached Figure 8.1.9 Site Facility Arrange Plan

Type C in capacity of 40,000m³/day

Type D in capacity of 80,000m³/day

- Attached Figure 8.1.10 Structural Drawing of Coagulation ands Sedimentation Basin

Type A in capacity of 1,000-4,500m³/day

Type B in capacity of $6,400-8,200 \text{ m}^3/\text{day}$

Type C in capacity of 40,000m³/day

- Attached Figure 8.1.11 Structural Drawing of Rapid Filtration Basin

Type A in capacity of 1,000-4,500m³/day

Type B in capacity of 6,400-8,200m³/day

- Attached Figure 8.1.12 Structural Drawing of Rapid Filtration Basin

Type C in capacity of $40,000 \text{m}^3/\text{day}$

- Attached Figure 8.1.13 Structural Drawing of Rapid Filtration Basin

Type D in capacity of 80,000m³/day

- Attached Figure 8.1.14 Distribution Reservoir

TYPE A/BAND C

The Drawings are shown in the end of this Chapter.

	1			•	1			
	Name	Estimated	Total	Type	WTP	Patterned	Filtration	Number
NO	of	Demand	Necessary	of	Pattern	Nominal	Max.	of
	Proposed	(m ³ /day)	Filtration	WTP	Code	Capacity	Speed	Basin
	WTP		Basin Area					
			(m^2)					Including
						(m ³ /day)	(m/day)	1Stanby
								Basin
1	TR-01	900	6.7	Type A	A-1200	1,200	150	4
2	TJ01	3,600	26.7	Type A	A-4400	4,400	150	12
3	TK01	5,100	40.0	Type B	B-6400	6,400	150	8
4	TR24	1,200	13.3	Type A	A-1200	1,200	150	6
5	TV15	38,400	266.7	Type C	C-40000	40,000	150	10
6	TR12	7,800	53.3	Type B	B-8200	8,200	150	12
7	TR15	2,700	20.0	Type A	A-3500	3,500	150	10
8	TR07	2,400	20.0	Type A	A-2800	2,800	150	8
9	TQ04	6,600	46.7	Type B	B-8000	8,000	150	10
10	TQ05	4,800	33.3	Type B	B-6400	6,400	150	8
11	TQ06	2,100	20.0	Type A	A-2800	2,800	150	8
12	TQ02	1,800	13.3	Type A	A-2000	2,000	150	6
13	TJ-12	1,800	13.3	Type A	A-2000	2,000	150	6
14	TJ-13	1,500	13.3	Type A	A-2000	2,000	150	6
15	TJO8	4,500	30.0	Type B	B-6400	6,400	150	8
	TOTAL	77,400				93,300		

 Table 8.1.16
 Proposed Water Treatment Plant

1			1		С	hap	oter	8	The	e Va	khs	h C	Con
	Size	Outer L		(m)	18.8	20.9	23.4	24.9	25.5	31.0	35.0	48.0	
	Total Outer Size	Outer B		(m)	5.6	8.0	8.0	9.0	9.4	12.4	14.4	40.8	
	Total Aria			(m ²)	105	146	187	224	240	384	504	1,958	
		Volume	H∗L*B	(m ³)	168	255	328	410	446	756	1008	5180	
in	Sedimentation Basin	Length	L	(m)	10.8	12.4	14.4	15.9	16.5	21.0	24.0	35.0	
tation Bas		Volume	B*L*H	(m ³)	15.6	34.2	34.2	38.7	40.5	72.0	105.0	222.0	
Typical Sedimentation Basin	Coagulation Basin	Length	Г	(m)	2.0	3.0	3.0	3.0	3.0	4.0	5.0	6.0	
able 8.37 Ty		Depth	D	(m)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.7	
Attached Ta	Dimension of Basin	Width	В	(m)	2.6	3.3	3.8	4.3	4.5	6.0	7.0	10.0	
1	No.of Basin				2	2	2	2	2	2	2	4	
	Patterned Nominal Capacity			(m ³ /day)	1,200	2,000	2,800	3,500	4,400	6,400	8,200	40,000	
	Type of WTP	No.			Type A	Type B	Type B	Type C					
	WTP Pattern Code				A-1,200	A-2,000	A-2,800	A-3,500	A-4,400	B-6,400	B-8,200	C-40,000	
	NO.				P1	P2	P3	P4	P5	P6	P7	P8	

18.8	20.9	23.4	24.9	25.5	31.0	35.0	48.0													ĺ
5.6	8.0	8.0	9.0	9.4	12.4	14.4	40.8			Basic	Drawing				Type A				Type B	Type C
105	146	187	224	240	384	504	1,958		ic	ings	ength	m)								
168	255	328	410	446	756	1008	5180		Basic	Design Drawings	Width/Length	(m x m)	47	50	53	56	59	63	68	120
10.8	12.4	14.4	15.9	16.5	21.0	24.0	35.0	d Land		Required Land Area	Area		2,244	2,525	2,834	3,164	3,489	3,918	4,646	14,430
15.6	34.2	34.2	38.7	40.5	72.0	105.0	222.0	⁻ acilities an		Total	Area		749	915	1,105	1,314	1,526	1,815	2,319	8,038
2.0	3.0	3.0	3.0	3.0	4.0	5.0	6.0	Required Dimensions of Facilities and Land	4.	Other Facilities			500	500	500	500	500	500	500	1000
3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.7	eauired Dim	3.	Reservoir		(m ²)	100	167	233	300	367	533	683	2,000
2.6	3.3	3.8	4.3	4.5	6.0	7.0	10.0	8.38	2.	Sedimentation Basin	Outer Basin Area		83	118	155	188	202	322	418	1,958
2	2	2	2	2	2	2	4	Attached Table		Basin	asin 1								7	
1,200	2,000	2,800	3,500	4,400	6,400	8,200	40,000	Atta		I. Filtration Basin	Outer Basin Area		44	102	184	290	420	397	632	3,080
Type A 1.	Type A 2,	Type A 2,	Type A 3,	Type A 4,	Type B 6,	Type B 8,	Type C 4(Type	ot WTP		Type A	Type B	Type B	Type C				
A-1,200	A-2,000	A-2,800	A-3,500	A-4,400	B-6,400	B-8,200	C-40,000			WTP	Pattern Code		A-1,200	A-2,000	A-2,800	A-3,500	A-4,400	A-4,400	B-6 ,400	C-40,000
P1	P2	P3	P4	P5	P6	Ρ7	P8				NO		P1	P2	P3	P4	P5	P6	P7	P8

Attached Tahle 8.37 Tynical Sedimentation Basin

8 - 37

Supporting Report 3 Chapter 8 The Vakhsh Consuits Rehabilitation and Expansion Plan of the Vakhsh Conduits

	Patterned Nominal Capacity (Excent	StandbyCapacity of 10%	Q1x0.9	1,215	2,025	2,835	3,645	4,455	6,426	8,262	41,310
acity)	Total Capacity	Ð	(m ³ /day)	1,350	2,250	3,150	4,050	4,950	7,140	9,180	45,900
tandby cap	Total Filtration Area	(Excluding 1 Standby Basin)	(m ²)	9.0	15.0	21.0	27.0	33.0	47.6	61.2	306.0
rached Table 8.39 Typical Filtration Basin 0m/day: Except 1stanby Basin and other 10% of standby capacity)	NO. of Basin	(Excludir		4 (3)	6 (5)	8 (7)	10(9)	12 (11)	8 (7)	10(9)	10 (9)
ached rable 0.33 Typical Filitation basin 0m/day: Except 1stanby Basin and other 10	Capacity of 1 Basin	1	(m ³)	450	450	450	450	450	1020	1020	5100
ept 1stanby	Max. Filtration Sneed		(m/day)	150	150	150	150	150	150	150	150
uneu lau Vday: Exc	Area of 1 Basin	А	(m^2)	3.00	3.00	3.00	3.00	3.00	6.80	6.80	34.00
ына Мах.150m	Length	Г	(m)	2	2	2	2	2	4	4	5
AI (Filtration Speed Max.15)	Width	В	(m)	1.5	1.5	1.5	1.5	1.5	1.7	1.7	6.8
(Filtratic	Type of WTP			Type A	Type B	Type B	Type C				
	WTP Pattern	Code		A-1,200	A-2,000	A-2,800	A-3,500	A-4,400	B-6,400	B-8,200	C-40,000
	NO.			P1	P2	P3	P4	P5	P6	ΡŢ	P8

	Attache	d Table 8.40	Attached Table 8.40 Distribution Reservoir	Reservoi	-
	dT/M	Patterned	Reservoir		Depth
NO.	w 1.r Pattern	Nominal	(Retention	Area	(D)
_	Code	Capacity	time: 6Hours)		
		(m ³ /day)	(m ₃)	(m ²)	(m)
P1	A-1,200	1,200	300	100	3.0
P2	A-2,000	2,000	500	167	3.0
P3	A-2,800	2,800	700	233	3.0
P4	A-3,500	3,600	900	300	3.0

Atta	ched Table	Attached Table 8.41 Other facilities: Sand Settlement Basin	r facili	ties: Sa	nd Settlem	ent Basin
NO.	WTP Pattern	Patterned Nominal Capacity	No. of Basi	Si 1	Size Of 1 basin	Retention Time
	COUE	(m ³ /day)	n	B(m)	L(m)	
P1	A-1,200	1,200	2	1.0	3.0	
P2	A-2,000	2,000	2	1.0	3.0	
P3	A-2,800	2,800	2	1.5	5.0	
P4	A-3,500	3,500	2	1.5	5.0	
P5	A-4,400	4,300	2	1.5	5.0	
P6	B-6,400	6,400	2	2.0	6.0	
Ъ7	B-8,200	8,200	2	2.0	7.0	
P8	C-40,000	40,000	2	5.0	15.0	

(D) <u>3.0</u> <u>3.0</u> <u>3.0</u> <u>3.0</u>

3.0 3.0 5.0

300 367 533 683 2,000

900 1,100 1,600 2,050

3,6004,400

A-4,400 **B-6,400** B-8,200

P5 P6 10,000

6,400 8,200 40,000

C-40,000

P8

Ъ

Supporting	Report 3
Chapter 8	Rehabilitation and Expansion plan of the Vakhsh Conuits

8 - 38

	actieu tab	10 0.42 Uli		1163.116	Leiving L			me i.sininj
NO.	WTP Pattern Code	Nominal Capacity	Width	Length	No. of Basin	Depth	Volume	Retention time: 1.5min= 0.025hour
	Code	(m^{3}/day)	B(m)	L(m)		D(m)	B*L*H	(hour)
P1	A-1,200	1,200	1	1	2	3	3	0.120
P2	A-2,000	2,000	1	1	2	3	3	0.072
P3	A-2,800	2,800	1	1	2	3	3	0.051
P4	A-3,500	3,500	1	1	2	3	3	0.041
P5	A-4,400	4,300	1	1	2	3	3	0.033
P6	B-6,400	6,400	1.5	1	2	3	4.5	0.034
P7	B-8,200	8,200	1.5	1	2	3	4.5	0.026
P8	C-40,000	40,000	3	3	2	3	27	0.032

Attached Table 8.42 Other Facilities : Receiving Basin (Retention time 1.5min)

3) Vakhsh Pipeline facilities

Renewal/Rehabilitation plan of a partial Vakhsh pipeline are shown as follows.

Pipe ID	Diameter (mm)	Length(m)	Total Renewal Length of Each Diameter (m)	Pipe Materials standard adopted for cost estimation
SBO1	1,200	1,229	1,229	Steel Pipe for Water Supply
V1+16++	900	25,769	25,769	Steel Pipe for Water Supply
16++V2	800	3,886	3,886	Steel Pipe for Water Supply
UJO9-5	700	852		
UJO9-6	700	825		
UJO9-7	700	1,030		
UJ10	700	156		
UJ11	700	36		
UJ12	700	22	2,921	Steel Pipe for Water Supply
V1+Va1+	614	440		
Va1+Va2+	614	21	461	Steel Pipe for Water Supply
US01	414	4,348		
US02	414	3,492		
V15	414	57		
V218	414	10,214	18,111	Steel Pipe for Water Supply
R15	234	409	409	Polyethylene Pipe for Water Supply
JO1	148	51		
R10	148	13		
R38	141	223	287	Polyethylene Pipe for Water Supply
R32	100	223		
R23	97	217	440	Polyethylene Pipe for Water Supply
V13	36	442	442	Polyethylene for Water Supply
Total			53,955	
Note: Steel I	Pipe for Water Su	pply: with coa	ting and lining	

Table 8.1.17 Renewal Pipeline List

(2) Cost Estimation (Civil Work)

1) Procurement of main materials and equipment

The manufacturing products are imported from nearby countries of the Soviet years and other vicinal countries. The main importing countries of construction materials are shown as follows. However, days might be required to clear the customs, it is necessary to note it.

Items	Contents
Tajikistan Domestic products	Reinforcing bar
The third country products	 Steel Pipe and vinyl chloride pipe etc for Water Supply. Russia and other r vicinity countries. Cement: Pakistan
Import route	The main import route to transport Japanese product is through China or through Russian Siberia railway. Transportation from third countries by road and railway can be available.

Table 8.1.18	Procurement of Main Materials and Equipment
--------------	---

2) Design Criteria

Tajikistan Government adopts Design Criteria and Industrial Standard that Established in Soviet years presently. Therefore Tajikistan Government is programming to establish own Design Criteria and Industry Standard within this year (2008).

It might be noticed that though a lot of imported materials and equipment is distributed in the market, defective imported products are often seen in this country. To adopt adequate Design Criteria and industry standard is essential for this project.

Vakhsh Transmission main is passing through long distance in cotton field. As plastic pipe such as Polyethylene Pipe is seen getting damage while calibration by tractor and other works, pipe laying work shall be taken notice of protection of the pipeline such as pipe depth etc. even if the material of transmission main is steel.

3) Estimation of approximate implementation cost

In the rehabilitation and expansion plan for the Vakhsh Conduits, it is required to construct 15 water treatment facilities (capacity: $1,200 \sim 40,000 \text{ m3/day}$, total capacity: 93,000 m3/day), and partial replacement of existing pipe and installation of new pipelines (diameter: $125 \sim 1,200 \text{ mm}$, length: 61 km).

Required implementation cost is approximately 441 Million Somoni (130 Million US\$, 13,900 Million Yen) as shown in *Table 8.1.19*.

Item	Appr	oximate Construction	Cost
	(Million Somoni)	(Million US\$)	(Million Yen)
Construction of Water Treatment Facilities (15 sites) (Capacity: 93,000m3/day including 20% of Standby capacity)	222	65.4	7,000
Construction of Pipelines (diameter: 125~1,200mm, length: 61km)	127	37.4	4,000
Construction of Intake and Pumping Station(15 sites) (including electromechanic facilities)	63	18.7	2,000
Other Ancillary Facilities	29	8.4	900
Total	441	129.9	13,900

Table 8.1.19 Approximate Implementation Cost

Note: 1Somoni=0.294 US\$, 1US\$=107Yen、1 Somoni=31.5Yen (July 2008)

8.1.6 PHASED IMPLEMENTATION PROGRAM

The Study Team proposed following implementation program on the Plan based on "8.1.4 Rehabilitation Plan, (2) Hydraulic Analysis of the Vakhsh Conduits Based on Water Demand Prediction and (4) Rehabilitation Plan"

However, it is necessary to conduct the water analysis of samples taken from several points on the Vakhsh Conduits. Sampling should be made at least one in a month throughout one year and all the samples should be analyzed on all the parameters stipulated in the Guidelines for Drinking-water Quality as much as possible and to study the necessity of the WTP. If the result of water analysis will show the necessity of WTP, the water treatment process should be determined and the effect of it should be confirmed through the operation of rather small scale pilot WTP. It is preferable to train the OM/M staffs of WTP in the pilot one.

- Phase 1 1. Appropriate valves are installed to control the flow rate, which meets the maximum daily water demand of WSS, of the Vakhsh sub-mains which connect the Vakhsh main with the installation of WSS.
 - 2. Area G is disconnected.
 - 3. Improving the Sarband SB
 - 4. Concrete pipe in the section between SB and HPS in the area A is renewed, D1200mm, L350m
 - WTP is constructed in the site of V15 of C area for 20 WSSs (B-04, B-01, B-06, B-10, B-11, B-12, B-13, B-14, B-19, B-20, B-21, B-22, V-11, V-12, V-14, B-03, B-17, B-25, V-13, V-15) and the neighboring areas without water supply service of them.
 - Conduits in the area H is replaced with SP-D426mm, L7.8km and the sub-mains to J12 and J13 are renewed with SP-D219mm, L1.3km and SP-D325mm, L1.7km respectively
 - 7. WTP is constructed in the site of R15 of F area for three WSSs (R15, R19, R34) and the neighboring areas without water supply service of them.

	8.	Pipe R38 is replaced with HDPE-D160mm, L200m
	9.	Pipe V15 is replaced with SP-D426mm, L60m
	10.	Pipe B08 is replaced with HDPE-D125mm, L1.2km
	11.	Pipe B09 is replace with HDPE-D140mm, L1.0km
	12.	Pipe R15 is replaced with SP-D245mm, L400m
Phase 2	1.	SP-D720mm, L3.2km is renewed in the B area from around 11km down from V1
		(junction of the conduits in the A, B and C areas).
Phase 3	1.	WTP is constructed in the vicinity of around 1km north to the Uzun PS in the B area
		for 11WSSs (R-02, R-03, R-12, R-13, R-14, R-23, R-25, R-28, R-35, R-36, R-39)
		and the neighboring areas without water supply service of them.
	2.	WTP is constructed in the vicinity of B05 of the C area for 8WSSs (B-02, B-05,
		B-08, B-09, B-18, B-23, B-15, B-16) and the neighboring areas without water
		supply service of them.
Phase 4	1.	Conduit is doubled between SB and V1 by installing SP-D1020mm, L=7.7km.
Phase 5	1.	WTP is constructed in the vicinity of Ko1 of E area for 7WSSs (R-11, R-33, R-10,
		R-27, R-16, R-18, R-29) and the neighboring areas without water supply service of
		them.
	2.	Conduit is doubled between V2 (junction of the conduits in the B, D and E areas)
		and V6 (junction of the conduits in the D and H areas) by installing SP-D426mm
		L=10.2km
Phase 6	1.	The WSSs in the vicinity of and the WSS of Kolkhozabad; 7 WSSs in total (R-05,
		R-04, R-32, R-37, R-38, R-06, R-30), are disconnected
Phase 7	1.	The conduit from V1 to V2 in the B area is doubled by installing SP-D720mm,
		L=25.4km
	2.	The conduit to the F area is now connected with the conduit from V2 to Dzhilikul in
		the D area. The junction is shifted from the said conduit in the D area to the newly
		installed conduit from V2 to V6.
	3.	The existing CIP-D600mm up to the WSS of B24, which is located the farthest from
		V1 in the C area, is replaced with SP-D630mm, L420m.
	4.	The conduit is doubled from V1 to the Junction to WSS of V15 in the C area by
		installing SP-D630mm, L460mm. The sub-main to V15 is changed it's connection
		to newly installed conduit.

Table 8.1.20 shows the yearly water demand and the capacity of Vakhsh Conduits according to the phased implementation program.

<Alternative Plan>

The Vakhsh Conduits will cover the seven (7) WSSs in Kolkhozobod Rayon Center and it's vicinity.

Phase 1 to 5		Same as the Plan mentioned above
Phase 6	1.	The conduit from V1 to V2 in the B area is doubled by installing SP-D820mm,
		L=25.4km

- 2. The conduit to the F area is now connected with the conduit from V2 to Dzhilikul in the D area. The junction is shifted from the said conduit in the D area to the newly installed conduit from V2 to V6.
- 3. The existing CIP-D600mm up to the WSS of B24, which is located the farthest from V1 in the C area, is replaced with SP-D630mm, L420m.
- 4. The conduit is doubled from V1 to the Junction to WSS of V15 in the C area by installing SP-D630mm, L460mm. The sub-main to V15 is changed it's connection to newly installed conduit.

Table 8.1.21 shows the yearly water demand and the capacity of Vakhsh Conduits according to the phased implementation program on the alternative Plan.

Table 8.1.20Stage Implementation Plan

	~		<u> </u>																					
Phase 7	78,228																							
Phase 6	49,098																							
Phase 5	45,307																							
Phase 3 Phase 4 Phase 5 Phase 6	41,476																							
Phase 3	39,394																							
Phase 2	38,812																							
Phase 1	37,229																							
ansion Phase	Capacity of the Conduits	(m ³ /day)						37,229	37,229	37,229	37,229	37,229	39,394	45,307	45,307	49,098	78,228	78,228	78,228	78,228	78,228	78,228	78,228	78.228
Rehabilitation and Expansion Phase Phase 1	Deadline of Construction							Phase 1					Phase 2 and 3	Phase 4 and 5		Phase 6	Phase 7							
Reha	Tasks		nent of JICA Study	n Planning	Detailed Study and Planning	Detailed Planning and Design				4			Design and	Construction	of WSSs for	the areas	where they	do not evict	ISING THAT AND					
	Ta		Commenceme	Rehabilitation Planning	Detailed Stud	Detailed Plan		•			Design and	Construction												
Assumed actual maximun daily water demand on the Conduits (m^3/day)	Area G and WSSs in the vicinity of Kolkhozabad are	disconnected							13,714	17,847	21,981	26,114	30,247	34,380	38,514	42,647	46,780	50,913	55,047	59,180	63,313	67,446	71,580	75.713
Assumed actual maximun on the Conduits (m ³ /day)	Area G is disconnected								17,044	21,484	25,923	30,363	34,802	39,242	43,681	48,121	52,560	57,000	61,439	65,879	70,318	74,758	79,197	83.637
Assume on the C	whole area								21,427	26,757	32,087	37,417	42,747	48,077	53,408	58,738	64,068	69,398	74,728	80,058	85,388	90,718	96,048	101.378
year			2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028

Assumed actual maximun daily water demand on the ConduitsRehabilitation and Ewater demand on the ConduitsTasksDeadline ofCap (m^3/day) Area G is disconnectedTasksDeadline ofConstructionConwhole areadisconnectedCommencement of JICA StudyConstructionConConand EDetailed Study and PlanningDetailed Study and PlanningPlanePlanePlane21,42717,044Detailed Study and DesignPhase 1PlanePlanePlane37,27630,36325,923ConstructionPlanePlase 1Plase 1Plase 121,42717,044Design andDesign andPlase 2 and 3Plase 1Plase 1Plase 1Plase 1Plase 2Plase 1Plase 2Plase 1Plase 2Plase 1Plase 1Plase 1Plase 1Plase 2Plase 2Pl	r	1	Γ																					
Assumed actual maximun daily vare derival maximun daily ware derivationAssumed actual maximun daily ware derivationRehabilitation and Expansion PhasePhase 1Phase 2Phase 3 $(m)(abs)$ Area G is ($m)(abs)$ Area G is ($m)(abs)$ TasksDeadline of ($m)(abs)$ ConstructionConduits ($m'(abs)$ 37,22938,81239,39441,476 $(m)(abs)$ CommencenedCommencenedCommencenedS3,122938,81239,39441,476 $(m)(abs)$ Deadle StudyConstructionConduits ($m'(abs)$ 37,22938,81239,39441,476 $(m)(abs)$ Deadle StudyDeadle PlanningPhase 137,22937,229 $(m)(abs)$ $(m)(ab$	Phase 7	84,119																						
Assumed actual maximum daily varet demand on the ConduitsAssumed actual maximum daily water demand on the ConduitsPhase 1Phase 2Phase 3water demand on the ConduitsArea G is disconnectedArea G is37,22938,81239,394whole area disconnecteddisconnectedCommencentin of ICA StudyConstructionConduits (m^3/day)37,22938,81239,394whole area disconnecteddisconnectedCommencentin of ICA StudyPhase 137,22937,229171Detailed Study and Planning and DesignDetailed Study and Planning and DesignPhase 137,229111Detailed Study and Planning and Design21,437T1704437,2291111Detailed Study and Planning and Design and 53,21421,437Phase 137,2291111Detailed Study and Planning and Design and 53,21421,433Phase 244,191111Detailed Study and Planning and Design and 53,214Design and 53,22937,229111111Detailed Study and Design and 53,21442,539ConstructionPhase 2 and 337,2291111Design and 53,69053,69053,73233,394Phase 784,119111111Design and 53,69053,69053,69053,69094,11911111111<	Phase 5	45,307																						
Assumed actual maximum daily water demand on the ConduitsRehabilitation and Expansion PhasePhase 1Phase 2 (m^3/day) (m^3/day) (m^3/day) $37,229$ $38,812$ whole areadisconnectedCommencent of IICA StudyConstruction (m^3/day) $37,229$ $38,812$ whole areadisconnectedCommencent of IICA StudyConstruction (m^3/day) $37,229$ $38,812$ Detailed Study andErabilitatingConstructionConduits (m^3/day) $37,229$ $38,812$ Detailed Study andDetailed Study and Planning $37,229$ $37,229$ $77,229$ $77,229$ Detailed Study and $37,229$ $37,229$ $77,229$ $77,229$ $77,229$ Detailed Study and $37,229$ $37,229$ $77,229$ $77,229$ $77,229$ Detailed Study and $37,229$ $37,229$ $77,229$ $77,229$ $77,229$ Detailed Study and $77,229$ $37,229$ $77,229$ $77,229$ $77,229$ Detailed Study and $77,229$ $37,229$ $77,229$ $77,229$ $77,229$ Detailed Study and $74,56$ $61,439$ $77,229$ $77,229$ $77,229$ $77,229$ Detailed Study and $74,56$ $53,729$ $74,507$ $74,119$ $74,56$ Detailed Study and $74,56$ $61,439$ $74,56$ $74,119$ $74,56$ Detailed Study and $74,56$ $53,729$ $74,119$ $74,119$ $74,119$ Detailed Study and $74,56$ $53,729$ $74,119$ 7	Phase 4	41,476																						
Assumed actual maximun daily water denand on the ConduitsRehabilitation and Expansion Phase Phase IPhase I (m^3/day) Area G is disconnectedTasksDeadline of ConstructionConduits (m^3/day)37,229whole area disconnecteddisconnectedConstructionConduits (m^3/day)37,22937,229bEquiled Study and DamingPhase I37,2292626c21,42717,044Detailed Study and Daming23,22923,22923,229c21,42717,044Detailed Study and Daming37,22937,22926c31,99325,923Gonstruction37,22937,22926c31,99325,923Construction37,22937,22926c31,93325,923Construction37,22937,22927c31,93325,903Besign andPhase I37,22937,229c31,93325,503Besign andPhase I37,22927c32,55039,36625,503Besign andBasic37,22927c33,12443,119Phase 784,11914c58,97350,00S3,50394,11914c74,25661,430Note sit84,11914c74,25861,430Attase84,11914c90,010474,75890,01084,11914c90,010474,75884,1191414<	Phase 3	39,394																						
Assumed actual maximun daily water demand on the ConduitsRehabilitation and Expansion Phase(m³/dav)Area G is (m³/dav)TasksDeadline of ConstructionCapacity of the Constructionwhole areadisconnectedCommencement of JICA StudyDeadline of ConstructionConduits (m³/dav)whole areadisconnectedCommencement of JICA StudyConstructionConduits (m³/dav)bDetailed PlanningPhase I37,229b26,71021,484Detailed Planning37,229c21,42717,044Detailed Planning37,229c31,29325,90337,22937,229c31,29325,90337,22937,229c31,29325,90337,22937,229c31,29325,90337,22937,229c31,29325,90337,22937,229c42,55934,802Construction37,229c53,12448,121Phase I37,229c53,12448,121Phase I37,229c53,12448,121Phase Z and 337,229c53,12448,129of WSs forPhase Z and 337,229c53,12448,129of WSs forPhase Z and 337,329c53,0791,94Phase Z and 337,329c53,0791,94Phase Z and 337,329c63,99357,000Phase P84,119c74,25661,439	Phase 2	38,812																						
Assumed actual maximun daily water demand on the ConduitsRehabilitation and Expansion Phase(m³/dav)Area G is (m³/dav)TasksDeadline of ConstructionCapacity of the Constructionwhole areadisconnectedCommencement of JICA StudyDeadline of ConstructionConduits (m³/dav)whole areadisconnectedCommencement of JICA StudyConstructionConduits (m³/dav)bDetailed PlanningPhase I37,229b26,71021,484Detailed Planning37,229c21,42717,044Detailed Planning37,229c31,29325,90337,22937,229c31,29325,90337,22937,229c31,29325,90337,22937,229c31,29325,90337,22937,229c31,29325,90337,22937,229c42,55934,802Construction37,229c53,12448,121Phase I37,229c53,12448,121Phase I37,229c53,12448,121Phase Z and 337,229c53,12448,129of WSs forPhase Z and 337,229c53,12448,129of WSs forPhase Z and 337,329c53,0791,94Phase Z and 337,329c53,0791,94Phase Z and 337,329c63,99357,000Phase P84,119c74,25661,439	Phase 1	37,229																						
Assumed actual maximun daily water demand on the ConduitsAssumed actual maximun daily water demand on the Conduits (m^3/dav) water demand on the Conduits (m^3/dav) Area G is disconnectedTasks $mole$ areadisconnectedCommencement of JICA Study $mole$ areaDetailed Study and PlanningF $mole$ $mole$ Detailed Study and PlanningF $mole$ $mole$ $mole$ Detailed Study and PlanningF $mole$ $mole$ $mole$ $mole$ F $mole$ $mole$ $mole$ mo	and Expansion Phase	Capacity of the Conduits (m ³ /day)						37,229	37,229	37,229	37,229	37,229	39,394	45,307	84,119	84,119	84,119	84,119	84,119	84,119	84,119	84,119	84,119	84,119
Assumed actual maximum daily water demand on the Conduits (m^3/day) Taskin marker demand on the Conduits (m^3/day) Area G is Taskin whole area disconnected Commencement of Rehabilitation Pla whole area 37,276 30,363 whole area 63,690 52,560 whole area 65,879 <td>Rehabilitation</td> <td>Deadline of Construction</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Phase 1</td> <td></td> <td></td> <td></td> <td></td> <td>Phase 2 and 3</td> <td>Phase 4 and 5</td> <td>Phase 7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Rehabilitation	Deadline of Construction						Phase 1					Phase 2 and 3	Phase 4 and 5	Phase 7									
Assumed actual maximun daily water demand on the Conduits (m^3/day) Area G is disconnected vhole area $area G is$ disconnected vhole area $area G is$ discone vhole a		isks	nt of JICA Study	Planning	/ and Planning	ing and Design							Design and	Construction	of WSSs for	the areas	where they do	not exist						
Assumed actual maximun da water demand on the Condui (m^3/day) Area G is disconnected is dis disconnected is dis dis disconnected is dis disconnected is disc		Ta	Commenceme	Rehabilitation	Detailed Study	Detailed Plann		-		Design and	Construction													
	al maximun daily on the Conduits	Area G is disconnected							17,044	21,484	25,923	30,363	34,802	39,242	43,681	48,121	52,560	57,000	61,439	65,879	70,318	74,758	79,197	83,637
year 2007 2008 2008 2010 2011 2011 2011 2015 2015 2016 2016 2016 2016 2017 2019 2016 2022 2023 2025 2025 2025 2025 2025 2025	Assumed actua water demand	whole area							21,427	26,710	31,993	37,276	42,559	47,841	53,124	58,407	63,690	68,973	74,256	79,539	84,822	90,104	95,387	100,670
	vear		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028

Table 8.1.21Stage Implementation Plan (Alternative)

8.2 REVIEW OF THE PLAN

This sub-chapter reviews the Rehabilitation Plan of Vakhsh Conduits under the Study in order to have clearer idea on detailed surveys and designs which will be implemented to materialize the Plan.

It is said that around 90% of the 800 thousand population in eight (8) Rayons of the southern region of the Khatlon Oblast where the Study covers lives and most of them are considered as poor. The water supply service, which is one of the basic utilities, is insufficient and existing water supply systems are deteriorating. The beneficiary population in Bokhtar, Vakhsh, Dzhilikul, Kolkhozobod and Kumsangir Rayons, who have the water supply service through the Vakhsh Conduits, is 298 thousand as of 2006. It is only 43.5% of the total population in the said five (5) Rayons.

Since the five (5) Rayons mentioned above have scarcely groundwater resources, most of the population in the Rayons depends on developed irrigation canals for its domestic water. This situation gives the population burdens of water fetching, limited water quantity for living, the danger of diseases related to water.

The rehabilitation plan prepared by the Study intends to renew or expand the existing Vakhsh conduits and to construct water treatment plants, if necessary in order to transmit water to existing or planned water supply systems. This scheme is supposed to enable to supply the population with drinking water which meets the forthcoming drinking water quality standards of Tajikistan through yard taps. This projected water supply facilities will be more convenient than fetching water from existing irrigation canals. Consequently, the realization of Plan will hopefully contribute to the poverty reduction, the public health, the rural development, etc.

Though, it has 30 years passed since the Vaksh conduits was constructed, the Plan will make use of the existing systems and facilities as long as possible except those which necessitates rehabilitation. Te double conduits of existing and projected pipelines will be able to meet the increased water demand in a future. It can be considered to be more economical than the change of all the conduits.

Since the steel pipe without internal coating, which, in general, generates rust-colored water due to incrustation of rust on the pipe inner wall, is used for the Vakhsh Conduits, the Plan locates projected water treatment plant in upstream area of the water supply systems and installs the high density polyethylene pipe, which does not have the danger of incrustation, for the distribution network of them.

The total construction cost of water treatment plants will be higher than that of integrated water treatment plant, however, it necessitates to replace all the existing pipes with new pipes with internal coating and hence the total project cost of the Plan will be far less than that of the rehabilitation plan to adopt the integrated water treatment plant.

The following is description of the Plan:

* Target Rayons: Bokhtar, Vakhsh, Dzhilikul, Kolkhozobod

* Target year:	2013	2028	25years
* Projected population to be served:	424,000	752,000	
* Service coverage (rural):	70% (2020: 90%)	90%	NDS, National water supply program
* Service coverage (Rayon Center):	97%	97%	ditto
* Projected rate of UFW:	50%	30%	
* Projected specific consumption:	20 lpcd	50 lpcd	
* Projected average daily conveyance of water:	25,800m ³ /day	73,500m ³ /day	

* Rehabilitation plan:

- Rehabilitation of existing conveyance conduits (ND20mm to 1020mm) 162.9km (to be abondoned: 45.3km, to be renewed: 17.2km, to be newly installed: 44.2km Total pipe length after rehabilitation: 179km)
- Construction of water treatment plant: 15 $(1,200 40,000 \text{ m}^3/\text{day} 93,300 \text{m}^3/\text{day} \text{ in total})$
- Renewal and new installation of ancillary facilities of the Conduits: valves, flow meters, water pipe bridge, etc.

The Study Team recommends reviewing the following points mentioned in "3.4 Underlying Difficulties in the Rehabilitation of the Vakhsh Conduits" in the implementation stage of the Plan and taking necessary measures to improve them.

- (1) Collection of Data and Information Necessary for the OM/M
- (2) Establishment of Quantitative Service Level Indicator
- (3) Necessity of Water Quality Control
- (4) Raising Population's Awareness of the Benefits of Water Supply and the Principle of "Beneficiary Payment"
- (5) Establishment of Organization for OM/M of the WSSs
- (6) Necessity of Drainage Facilities

As mentioned in "3.3.8 WSSs Connected to the Conduits", the number of existing WSSs which receive the water from the Vakhsh Conduits are 78 (the WSSs in Kumsangir Rayon are excluded) and a little less than 50% of them now stop their operation due to the deterioration or so. Even if 78 WSSs can operate, the total population served will be 349 thousand in 2028. It is accordingly necessary to construct WSSs for remaining 403 thousand population keeping pace with the progress of the Plan implementation.

The total cost to realize the Plan is estimated as about 441 million Tajikistan Somoni (US\$ 130 million), the Study Team strongly recommends reviewing the construction plan of rural WSSs to be prepared in a near future as well as the rehabilitation Plan of the Vakhsh Conduits from the view points of the cost and financing.

Furthermore, it is necessary to prepare the detail layout of the Vakhsh Conduits which should have the attributed information such as repair records, specification of facilities, etc. by the implementation of detailed survey and design, to make out a topographic map of which scale is 1/5000, to analyze the raw water and to appraise the project considering the following points:

- Whether the target population wants to have water supply through the Vakhsh Conduits, or not?
 (Is the Vakhsh Conduits only the solution for the water supply in aforementioned four (4) Rayons?)
- Is the cost of water supply less than that from assumed alternative water sources such as groundwater, etc.?

Is it possible to include the OM/M cost of the Vakhsh Conduits into the water rate to be set for the WSSs connected/will be connected with the Vakhsh Conduits?

3 CHAPTER 8 REHABILITATION AND EXPANSION PLAN OF THE VAKHSH CONDUITS

Appendix Detail of Rehabilitation and extension Plan for the Vakhsh Conduits

(1) Attached Table

222 222 222 222 222 222 222 222 222 22	year 2001 2003 2005 2005 2005 2005 2005 2005 2016 2011 2011 2011 2011 2011 2012 2013 2013	Population in Rayon 19,500 20,300 21,200 22,1,800 22,1,800 22,3,400	Population in Ravon 24,300 25,100 25,900 25,900 27,500 27,500 29,100 29,100 33,700 33,7100 33,7100 33,7100 33,7100 37,100	Urban Poulation 13,800	Projected Urban Population 13,800 14,200 14,700 14,700 15,200 15,200 15,200 15,200 15,200 15,200 15,200 19,600 19,600 20,300 23,000	Projected Rural Population 10,500 11,200 11,200 11,200 11,500 11,500 11,500 11,500 12,400 12,400 13,800 13,800 13,800 13,900 13,10000000000
	2024 2025 2026 2026 2027 2028		38,700 38,700 39,500 40,300 41,100		23,000 24,600 25,400 26,200 27,000	14,100 14,100 14,100 14,100 14,100

			-	1 J	•					•	•		
~	year	Population in Rayon	Predicted Population in Rayon	Urban Poulation	Projected Urban Population	Projected Rural Population		year	Population in Rayon	Predicted Population in Rayon	Urban Poulation	Projected Urban Population	Projected Rural Population
1	2001	130,800					0	2001					
1	2002	133,100					1	2002	2 79,000				
1	2003	135,800					2	2003	3 81,100				
1	2004	138,600					3	2004					
1	2005	141,300					4	2005	5 85,200				
1	2006	144,400					5	2006	6 87,300				
1	2007		147,400	12,400	12,400	135,000	9	2007	7	89,600	13800	13,800	75,800
1	2008		150,500		12,700	137,800	L	2008	8	91,800		14,200	77,600
1	2009		153,600		13,000	140,600	8	2009	6	94,000		14,600	79,400
1	2010		156,700		13,300	143,400	6	2010	C	96,300		15,000	81,300
	2011		159,900		13,600	146,300	10	2011	1	009'86		15,400	83,200
1	2012		163,100		14,000	149,100	11	2012	2	100,800		15,800	85,000
1	2013		166,400		14,300	152,100	12	2013	3	103,100		16,200	86,900
1	2014		169,600		14,700	154,900	13	2014	t	105,500		16,600	88,900
1	2015		172,900		15,000	157,900	14	2015	5	107,800		17,100	90,700
1	2016		176,300		15,400	160,900	15		2	110,100		17,600	92,500
1	2017		179,600		15,800	163,800	16	2017	2	112,500		18,000	94,500
1	2018		183,000		16,100	166,900	17	2018	8	114,900		18,500	96,400
1	2019		186,400		16,500	169,900	18		6	117,200		19,000	98,200
1	2020		189,800		16,900	172,900	19	2020	0	119,600		19,500	100,100
1	2021		193,200		17,300	175,900	20		1	122,000		20,100	101,900
L	2022		196,600		17,800	178,800	21		2	124,400		20,600	103,800
1	2023		200,100		18,200	181,900	22		3	126,800		21,200	105,600
I I	2024		203,500		18,600	184,900	23		+	129,200		21,700	107,500
I I	2025		207,000		19,100	187,900	24		2	131,600		22,300	109,300
1	2026		210,500		19,600	190,900	25		2	134,100		22,900	111,200
1	2027		214,100		20,000	194,100	26		7	136,500		23,600	112,900
l I	2028		217,600		20.500	197,100	27	2028	8	139,000		24,200	114,800

akhsh Conduits

1 1 0	year 2001 2003 2003 2004 2005 2005 2005 2005 2005 2005 2005	Population in Rayon 87,700 92,000 94,500 99,300	Population in Rayon Rayon 101,800 104,300 104,300 104,300 111,900 114,500	Urban Poulation 13000	Projected Urban Population 13,000 13,400 13,400 13,400 13,400 14,500 14,500	Projected Rural Population 88,800 90,900 95,200 95,200 97,400 99,600
13 13 14 15	2014 2015 2015 2016 2017		119,700 122,300 125,000 127,600		15,700 16,100 16,500 17,000	
$\frac{1}{2}$	2019 2018 2019 2020 2021		130,300 130,300 135,600 135,600 138,300		17,400 17,400 17,900 18,400 18,900	
22 23 23 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	2022 2023 2024 2025 2025 2027 2027 2028		141,000 143,700 146,500 149,200 151,900 151,900 157,400		19,400 19,900 20,400 21,600 22,100 22,700	121,000 123,800 128,200 128,200 130,300 132,500 134,700

n	Projected Rural Population							139,700	143,100	146,600	150,000	153,500	157,000	160,500	164,100	167,700	171,300	174,900	178,500	182,200	185,800	189,400	193,100	196,700	200,400	204,100	207,700	211,300	215,000	Source: own study
Attached Table 8.5 Population Projection of Kolkhozabod Rayon	Projected Urban Population							13,000	13,400	13,700	14,100	14,500	14,900	15,300	15,700	16,100	16,500	17,000	17,500	17,900	18,400	18,900	19,400	20,000	20,500	21,000	21,600	22,200	22,800	%
Projection of	Urban Poulation							13,000																						center is 2.7
e 8.5 Population I	Predicted Population in Rayon							152,700	156,500	160,300	164,100	168,000	171,900	175,800	179,800	183,800	187,800	191,900	196,000	200,100	204,200	208,300	212,500	216,700	220,900	225,100	229,300	233,500	237,800	Applied population growth rate to the Rayon center is 2.7%
Attached Table	Population in Rayon	132,400	135,200	138,600	142,500	145,200	148,600																							pulation growth
	year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	Applied pol
		0	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	

jection of Kurgan Tyube	Predicted Population in Kurgan Tybe							71,400	72,800	74,200	75,600	77,000	78,400	79,800	81,200	82,600	84,000	85,400	86,800	88,200	89,600	91,000	92,400	93,800	95,200	96,600	98,000	99,400	100,800	Source: own study
Attached Table8.7 Population Projection of Kurgan Tyube	Population in Kurgan P	63,000	64,500	65,700	67,200	68,800	69,900																							
Attac	year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	
		0	-	7	ю	4	5	9	7	×	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	

Tent Markensen i a			2007	2008	2009 201 201		0 2011 2012 2013 2014 2015 2015 2019 2015 2015 2016 2017 2018 2019 2020	2012	2013	2014	2015	2016 2	2017 20	2018 20	2019 2020	20 2021	1 2022	2023	2024	2025	2026	2027	2028
mode mode <th< td=""><td>rural water supply coverage</td><td>%</td><td>55</td><td>58</td><td>9</td><td></td><td></td><td>68</td><td>70</td><td>72</td><td>74</td><td><i>LL</i></td><td>80</td><td>83</td><td>86</td><td>06</td><td>06</td><td>5 06</td><td></td><td></td><td></td><td>06</td><td></td></th<>	rural water supply coverage	%	55	58	9			68	70	72	74	<i>LL</i>	80	83	86	06	06	5 06				06	
	urban water supply coverage	%	68	92	76			96	97	97	57	97	97	70	~		57	97	7 9.	26 /	26	97	5
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	basis of coverage					NDS					NDS				NWS	(only	<u> </u>						
N N	events	If .		JICA Study	Completion of JICA Study, Detailed Planning, Financing	Detailed Planning, Financing	Detailed Design, Construction	Detailed Design, Construction	inauguration														
1 1000 10		%		_					50	49	47				01							31	
No. No. <td>rural population</td> <td></td> <td>651,900</td> <td>667,600</td> <td>683,600</td> <td>669</td> <td></td> <td></td> <td>748,400</td> <td>764,900</td> <td>781,500</td> <td></td> <td>_</td> <td></td> <td>_</td> <td>_</td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>982,700</td> <td>09,600</td>	rural population		651,900	667,600	683,600	669			748,400	764,900	781,500		_		_	_		_	_	_	_	982,700	09,600
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Bokhtar		202,100	207,300	212,700	218			234,700	240,400	246,100	251,900 2	57,700 26	_	2	2	_	_	_	m	_	317,800	323,90
(100000 (1000000 (1000000 (1000000 (10000000 (100000000 (10000000000 (1000000000 (1000000000 (10000000000 (100000000000000000000	Sarband		10,500	10,900	11,200	=			12,400	12,600	12,900			_				_	_	Ì		14,100	14,1(
Type Type <th< td=""><td>Vakhsh</td><td></td><td>135,000</td><td>137,800</td><td>140,600</td><td>143</td><td></td><td>149,100</td><td>152,100</td><td>154,900</td><td>157,900</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>194,100</td><td>197,10</td></th<>	Vakhsh		135,000	137,800	140,600	143		149,100	152,100	154,900	157,900			_				_				194,100	197,10
Month Bission Windle Bission Windle Display Di	Kolkhozabod		75 000	143,100	140,600	N I		157,000	160,500	164,100	167,700											211,500	215,00
model model <th< td=""><td>Dzhihkul</td><td></td><td>008,67</td><td>009/1/</td><td>79,400</td><td>8</td><td></td><td>85,000</td><td>86,900</td><td>88,900</td><td>90, 00</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>112,900</td><td>114,800</td></th<>	Dzhihkul		008,67	009/1/	79,400	8		85,000	86,900	88,900	90, 00				_							112,900	114,800
Network Network <t< td=""><td>Kumsangir</td><td></td><td>88,800</td><td>90,900</td><td>93,100</td><td>95</td><td></td><td>99,600</td><td>101,800</td><td>104,000</td><td>106,200</td><td></td><td>~</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>132,500</td><td>134,70</td></t<>	Kumsangir		88,800	90,900	93,100	95		99,600	101,800	104,000	106,200		~									132,500	134,70
m m	rural population will be served	14							523,900	550,700	5/8,300											884,400	009'668
(metted) m ⁽¹⁾	nter par capita per day	11ter 3							202	77	1											- 1 0	
Mile Mile <th< td=""><td>domestic use</td><td>m'/day</td><td></td><td></td><td></td><td></td><td></td><td></td><td>10,478</td><td>12,115</td><td>13,879</td><td></td><td></td><td></td><td></td><td></td><td>30</td><td>32,</td><td></td><td></td><td></td><td>42,451</td><td>44,98(</td></th<>	domestic use	m'/day							10,478	12,115	13,879						30	32,				42,451	44,98(
of denomicantion m m m m m m m m m m m m m m m m m m m m m m m m	industrial use (2% of domestic use)	m ⁵ /day							210	242	278	320	365	414	467							849	006
of damesitation m (up	commercial use (2% of domestic use)	m ³ /day							210	242	278	320	365	414	467							849	906
m(up m(up <th< td=""><td>Institutional use (2% of domestic use)</td><td>m³/day</td><td></td><td></td><td></td><td></td><td></td><td></td><td>210</td><td>242</td><td>278</td><td>320</td><td>365</td><td>414</td><td>467</td><td>530</td><td>_</td><td></td><td></td><td></td><td></td><td>849</td><td>906</td></th<>	Institutional use (2% of domestic use)	m ³ /day							210	242	278	320	365	414	467	530	_					849	906
	sub-total	m ³ /day							11,108	12,841	14,713											44,998	47,680
m(m) m(m) <th< td=""><td>UFW</td><td>m³/day</td><td></td><td></td><td></td><td></td><td></td><td></td><td>11.108</td><td>12,191</td><td>13.206</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>20.501</td><td>20,434</td></th<>	UFW	m ³ /day							11.108	12,191	13.206											20.501	20,434
W data W data<	sub-total	m ³ /day							22.216	25,032	27.919											65,499	68,114
	water use of WSS (5% of above)	m ³ /dav							1111	1 252	1 396											3 275	3 40
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	much motion domond	3/4 m	I							FOC 2C	310.00									Ĺ		0 7 7 V	1000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	urhan normulation	III /uay	73 400	75 500	105 111			84 300	86 600	89 000	01 400							_			_	127 100	130.60
13300 13200 <td< td=""><td>Bokhtar</td><td></td><td>7,400</td><td>7,600</td><td>7.800</td><td></td><td></td><td>8.500</td><td>8.800</td><td>9,000</td><td>9.300</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td>1</td><td>13.000</td><td>13.40</td></td<>	Bokhtar		7,400	7,600	7.800			8.500	8.800	9,000	9.300							1	1		1	13.000	13.40
	Sarband		13,800	14,200	14,700			16,200	16,700	17,300	17,800	18,400			_						Ì	26,200	27,00
	Vakhsh		12,400	12,700	13,000			14,000	14,300	14,700	15,000	15,400		6,100 1	5,500 1		~		_	~		20,000	20,50
	Kolkhozabod		13,000	13,400	13,700			14,900	15,300	15,700	16,100	16,500										22,200	22,8(
evened - roome - roome <th< td=""><td>Dzhilikul Kumeanair</td><td></td><td>13,000</td><td>14,200</td><td>14,600</td><td></td><td></td><td>14 900</td><td>15 300</td><td>15,700</td><td>16,100</td><td>16 500</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>25,600</td><td>24,20</td></th<>	Dzhilikul Kumeanair		13,000	14,200	14,600			14 900	15 300	15,700	16,100	16 500										25,600	24,20
y_{11} y_{11} y_{12}	urban nonulation will be served		000101	OOL ST	V0 / CT	5		00/11	84.000	86.300	88.700				Ē							123.300	126.70
m/day m/day <t< td=""><td>liter par capita per day</td><td>liter</td><td></td><td></td><td></td><td></td><td></td><td></td><td>50</td><td>53</td><td>57</td><td></td><td></td><td></td><td></td><td>~</td><td></td><td></td><td></td><td></td><td>93</td><td>57</td><td>Ĩ</td></t<>	liter par capita per day	liter							50	53	57					~					93	57	Ĩ
m/lug m/lug <th< td=""><td>domestic use</td><td>m³/day</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4,200</td><td>4,574</td><td>5,056</td><td>5,466</td><td>5,903</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11,960</td><td>12,67(</td></th<>	domestic use	m ³ /day							4,200	4,574	5,056	5,466	5,903									11,960	12,67(
of domestic use) m ¹ day o v u d u d u	industrial use (5% of domestic use)	m ³ /day							210	229	253	273	295	322	346							598	634
of domestic uso) $n^1 duy$ $n^1 duy$ $n^1 duy$ $an^1 duy$ $an^2 duy$ $a^2 du$	commercial use (5% of domestic use)	m ³ /day							210	229	253	273	295	322	346							598	634
m'ady $m'ady$ <	Institutional use (5% of domestic use)	m ³ /day							210	229	253	273	295	322	346							598	634
m' day $m' day$	sub-total	m ³ /day							4,830	5,261	5,815	6,285	6,788									13,754	14,572
$w^{d}dy$ <	UFW	m ³ /day							4,830	4,994	5,219	5,354										6,266	6,245
m' dup m' dup	sub-total	m ³ /day							9,660	10,255	11,034											20,020	20,817
m ¹ m ² <t< td=""><td>water use of WSS (5% of above)</td><td>m³/day</td><td></td><td></td><td></td><td></td><td></td><td></td><td>483</td><td>513</td><td>552</td><td></td><td>614</td><td>654</td><td>686</td><td>720</td><td></td><td></td><td></td><td></td><td></td><td>1,001</td><td>1,04</td></t<>	water use of WSS (5% of above)	m ³ /day							483	513	552		614	654	686	720						1,001	1,04
m ¹ disp m ² disp 2 disp 2 disp <	urban water demand	m ³ /day							10,143	10,768	11,586											21,021	21,858
model 71,400 72,800 77,000 78,400 89,100 89,200 88,200 99,600 93,800 93,700<	total of urban and rural	m ³ /day							33,470	37,052	40,901				4							89,795	93,37
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Kurgan Tyube Vureen Turka condition will ha sorread		71,400	72,800	74,200	75	77,	78,400	79,800	81,200	82,600 s0 100				_							99,400 06,400	100,800
	liter par capita per day	liter							100	102	104									2	126	128	1
m^3 day m^3 day m^3 day m^3 day m^3 day 1.548 1.608 1.606 1.728 1.788 1.872 1.917 1.918 2.049 2.115 2.184 2.232 2.324 % of domestic use) m ³ day m 1.548 1.606 1.728 1.788 1.852 1.917 1.981 2.049 2.115 2.184 2.232 2.324 % of domestic use) m ³ day 1 1.566 1.728 1.788 1.580 1.6591 2.115 2.184 2.232 2.324 % of domestic use) m ³ day 1 1.566 1.728 1.788 1.580 1.6391 2.116 2.118 2.334 2.530 2.948 2.712 2.049 2.119 2.118 2.324 2.324 2.324 m ³ day m ³ day 1.156 1.1.75 1.566 1.738 1.580 1.636 1.013 9.801 9.716 2.324 2.324 2.324 m ³ day m ³ day 2	domestic use	m ³ /day							7,740	8,038	8,330	8,639										12,339	12,71
w of domestic use) m^3 day (a) (a) <td>industrial use (20% of domestic use)</td> <td>m³/day</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1,548</td> <td>1,608</td> <td>1,666</td> <td>1,728</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2,468</td> <td>2,543</td>	industrial use (20% of domestic use)	m ³ /day							1,548	1,608	1,666	1,728										2,468	2,543
m/duy m/duy m/duy m/duy 1.548 1.608 1.668 1.728 1.738 1.917 1.918 2.049 2.115 2.184 2.232 2.232 2.232 2.232 2.232 2.232 2.232 2.231 1.531 1.616 1.017 1.688 $1.5.01$ 1.536 1.747 1.801 1.820 m/duy m/duy m/duy m/duy 1.2344 1.2201 11.916 11.916 10.671 0.576 12.360 19.747 18.701 18.20 m/duy m/duy 1.2344 1.2201 11.962 11.540 11.561 11.67 11.361 11.361 11.742 12.81 12.921	commercial use (20% of domestic use)	m ³ /day							1,548	1,608	1,666	1,728										2,468	2,543
m^3 day	Institutional use (20% of domestic use)	m ³ /day							1,548	1,608	1,666	1,728	1,788									2,468	2,543
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	sub-total	m ³ /day							12,384	12,862	13,328											19,743	20,343
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	UFW	m ³ /day							12,384	12,210	11,962											8,995	8,718
% of above) m ³ (day) m ² (day) m ² (day) 1.238 1.254 1.265 1.280 1.391 1.336 1.364 1.386 1.386 1.380 1.380 1.380 1.380 1.380 1.380 1.380 1.380 1.380 1.380 1.381 1.381 1.361 1.381 1.386 1.41 27.567 28.565 26.555 26.878 27.164 27.367 28.3651 28.982 29.239 29.575 domand m ³ (day) m ³ (day) 56.784 87.822 86.981 97.867 106.575 104.433 108.302 112.174 1	sub-total	m ³ /day							24,768	25,072	25,290									~		28,738	29,06
demand m ³ /day 26,506 26,535 26,878 27,164 27,767 28,352 28,651 28,376 m ³ /day 39,476 66,535 67,856 72,037 76,744 27,764 28,352 28,651 28,575 26,575 m ³ /day 39,476 66,5378 67,456 72,037 76,784 81,822 86,981 92,875 96,758 104,433 102,174 1	water use of WSS (5% of above)	m ³ /day							1,238	1,254	1,265												1,453
m ³ day [m ³ day] [m ³ day] [m ³ day] 6.5,378 6.7,456 72,057 76,784 81,822 86,981 92,875 96,758 100,575 104,433 108,502 112,174	Kurgan Tyube water demand	m²/day	ļ						26,006	26,326	26,555												30,514
	Total Water Demand	m ² /day							59,476	63,378	67,456							_				119,970	123,893

		2013	2014	2015	2016	2017	2018	2019	2016 2017 2018 2019 2020	2021	2022	2023	2024	2025	2026	2027	2028
rural water supply coverage	%	10	72	74	LL	80	83	86	06	06	06	06	06	06	06	06	90
urban water supply coverage	%	26	79	97	97	97	76	67	97	79	67	97	76	797	26	67	97
basis of coverage				NDS					NWSP (only	rural)							
assumed rate of UFW	%	50	49	47	46	45	43	42	41	39	38	37	35	34	33	31	30
Vakhsh Rural																	
rural population		152,100	154,900	157,900	160,900	163,800	166,900	169,900	172,900	175,900	178,800	181,900	184,900	187,900	190,900	194,100	197,100
rural population will be served		106,500	111,500	116,800	123,900	131,000	138,500	146,100	155,600	158,300	160,900	163,700	166,400	169,100	171,800	174,700	177,400
liter par capita per day	liter	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
domestic use	m ³ /day	2,130	2,453	2,803	3,221	3,668	4,155	4,675	5,290	5,699	6,114	6,548	6,989	7,440	7,903	8,386	8,870
industrial use (2% of domestic use)	m ³ /day	43	49	56	64	73	83	94	106	114	122	131	140	149	158	168	177
commercial use (2% of domestic use)	m ³ /day	43	49	56	64	73	83	94	106	114	122	131	140	149	158	168	177
Institutional use (2% of domestic use)	m ³ /day	43	49	56	64	73	83	94	106	114	122	131	140	149	158	168	177
sub-total	m ³ /day	2,259	2,600	2,971	3,413	3,887	4,404	4,957	5,608	6,041	6,480	6,941	7,409	7,887	8,377	8,890	9,401
UFW	m ³ /day	2,259	2,468	2,667	2,908	3,142	3,363	3,590	3,849	3,911	3,972	4,024	4,042	4,063	4,070	4,050	4,029
sub-total	m ³ /day	4,518	5,068	5,638	6,321	7,029	7,767	8,547	9,457	9,952	10,452	10,965	11,451	11,950	12,447	12,940	13,430
water use of WSS (5% of above)	m ³ /day	226	253	282	316	351	388	427	473	498	523	548	573	598	622	647	672
rural water demand	m ³ /day	4,744	5,321	5,920	6,637	7,380	8,155	8,974	9,930	10,450	10,975	11,513	12,024	12,548	13,069	13,587	14,102
vaknsn kayon Center urban population		14.300	14.700	15.000	15.400	15.800	16.100	16.500	16.900	17,300	17,800	18,200	18.600	19,100	19.600	20.000	20.500
urban population will be served		13,900	14,300	14,600	14,900	15,300	15,600	16,000	16,400	16,800	17,300	17,700	18,000	18,500	19,000	19,400	19,900
liter par capita per day	liter	50	53	57	60	63	67	70	73	77	80	83	87	90	93	67	100
domestic use	m ³ /day	695	758	832	894	964	1,045	1,120	1,197	1,294	1,384	1,469	1,566	1,665	1,767	1,882	1,990
industrial use (5% of domestic use)	m ³ /day	35	38	42	45	48	52	56	60	65	69	73	78	83	88	94	100
commercial use (5% of domestic use)	m ³ /day	35	38	42	45	48	52	56	60	65	69	73	78	83	88	94	100
Institutional use (5% of domestic use)	m ³ /day	35	38	42	45	48	52	56	60	65	69	73	78	83	88	94	100
sub-total	m ³ /day	800	872	958	1,029	1,108	1,201	1,288	1,377	1,489	1,591	1,688	1,800	1,914	2,031	2,164	2,290
UFW	m ³ /day	800	828	860	877	896	917	933	945	964	975	979	982	986	987	986	981
sub-total	m ³ /day	1,600	1,700	1,818	1,906	2,004	2,118	2,221	2,322	2,453	2,566	2,667	2,782	2,900	3,018	3,150	3,271
water use of WSS (5% of above)	m ³ /day	80	85	91	95	100	106	111	116	123	128	133	139	145	151	157	164
urban water demand	m ³ /day	1,680	1,785	1,909	2,001	2,104	2,224	2,332	2,438	2,576	2,694	2,800	2,921	3,045	3,169	3,307	3,435
Vakhsh total water demand	m ³ /day	6,424	7,106	7,829	8,638	9,484	10,379	11,306	12,368	13,026	13,669	14,313	14,945	15,593	16,238	16,894	17,537
Projected Water Demand (deduction)	m ³ /day	2,846	3,193	3,552	3,982	4,428	4,893	5,385	5,958	6,270	6,585	6,908	7,214	7,529	7,841	8,152	8,461
Bokhtar rural water demand for Vakhsh (m ³ /dav	1.898	2.128	2.368	2.655	2.952	3.262	3.589	3.972	4.180	4.390	4.605	4.810	5.019	5.228	5.435	5.641
	C			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2				-	2 2 2 4 f	2						
Bokhtar water demand by existing WSSs.	. m ³ /day	949	1,042	1,115	1,208	1,301	1,370	1,462	1,554	1,619	1,710	1,801	1,863	1,953	2,044	2,106	2,196

Supporting	Report 3
	Rehabilitation and Expansion Plan of the Vakhsh Conduits

rural water supply coverage urban water supply coverage basis of coverage assumed rate of UFW Dzhilikul Rural rural population rural population rura population rura population will be served		C107	2014	2015	0107	1107	20102		0707	1707	7707	C2U2	2024	C707	2020	707	2707
an water supply coverage is of coverage indic overage hilken Rural al population al population in portation	%	70	72	74	LL	80	83	86	06	06	06	06	06	06	06	06	90
is of coverage med rate of UFW illikul Rural Il population Il population Mil be served	%	67	67	67	97	97	67	97	76	97	97	76	26	76	97	67	97
uned rate of UFW ilikul Rural I population I population will be served			~	NDS					NWSP (only rural)								
i jikul Rural I population I population will be served	%	50	49	47	46	45	43	42	41	39	38	37	35	34	33	31	30
I population I population will be served ter near conits near day																	
I population will be served		86,900	88,900	90,700	92,500	94,500	96,400	98,200	100,100	101,900	103,800	105,600	107,500	109,300	111,200	112,900	114,800
ter nar canita ner dav		60,800	64,000	67,100	71,200	75,600	80,000	84,500	90,100	91,700	93,400	95,000	96,800	98,400	100,100	101,600	103,300
w pai vapita pvi uaj	liter	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
domestic use	m ³ /day	1,216	1,408	1,610	1,851	2,117	2,400	2,704	3,063	3,301	3,549	3,800	4,066	4,330	4,605	4,877	5,165
industrial use (2% of domestic use)	m ³ /day	24	28	32	37	42	48	54	61	66	71	76	81	87	92	98	103
commercial use (2% of domestic use)	m ³ /day	24	28	32	37	42	48	54	61	66	71	76	81	87	92	98	103
Institutional use (2% of domestic use)	m ³ /day	24	28	32	37	42	48	54	61	66	71	76	81	87	92	86	103
sub-total	m ³ /day	1,288	1,492	1,706	1,962	2,243	2,544	2,866	3,246	3,499	3,762	4,028	4,309	4,591	4,881	5,171	5,474
UFW	m ³ /day	1,288	1,416	1,531	1,671	1,813	1,943	2,075	2,228	2,265	2,306	2,335	2,351	2,365	2,372	2,356	2,346
sub-total r	m ³ /day	2,576	2,908	3,237	3,633	4,056	4,487	4,941	5,474	5,764	6,068	6,363	6,660	6,956	7,253	7,527	7,820
water use of WSS (5% of above)	m ³ /day	129	145	162	182	203	224	247	274	288	303	318	333	348	363	376	391
rural water demand	m ³ /day	2,705	3,053	3,399	3,815	4,259	4,711	5,188	5,748	6,052	6,371	6,681	6,993	7,304	7,616	7,903	8,211
, , ,																	
Dzhilikul Rayon Center		0	007 7 7			000	0	000	0	0		0		000	000	007 00	0000
urban population		16,200	16,600	17,100	17,600	18,000	18,500	19,000	19,500	20,100	20,600	21,200	21,700	22,300	22,900	23,600	24,200
urban population will be served		15,700	16,100	16,600	17,100	17,500	17,900	18,400	18,900	19,500	20,000	20,600	21,000	21,600	22,200	22,900	23,500
liter par capita per day	liter	50	53	57	60	63	67	70	73	17	80	83	87	90	93	97	100
domestic use r	m ³ /day	785	853	946	1,026	1,103	1,199	1,288	1,380	1,502	1,600	1,710	1,827	1,944	2,065	2,221	2,350
industrial use (5% of domestic use)	m ³ /day	39	43	47	51	55	60	64	69	75	80	86	91	97	103	111	118
commercial use (5% of domestic use)	m ³ /day	39	43	47	51	55	60	64	69	75	80	86	91	97	103	111	118
Institutional use (5% of domestic use)	m ³ /day	39	43	47	51	55	60	64	69	75	80	86	91	97	103	111	118
sub-total r	m ³ /day	902	982	1,087	1,179	1,268	1,379	1,480	1,587	1,727	1,840	1,968	2,100	2,235	2,374	2,554	2,704
UFW	m ³ /day	902	932	976	1,004	1,025	1,053	1,072	1,089	1,118	1,128	1,141	1,146	1,151	1,153	1,164	1,159
sub-total r	m ³ /day	1,804	1,914	2,063	2,183	2,293	2,432	2,552	2,676	2,845	2,968	3,109	3,246	3,386	3,527	3,718	3,863
water use of WSS (5% of above)	m ³ /day	90	96	103	109	115	122	128	134	142	148	155	162	169	176	186	193
urban water demand	m ³ /day	1,894	2,010	2,166	2,292	2,408	2,554	2,680	2,810	2,987	3,116	3,264	3,408	3,555	3,703	3,904	4,056
Dzhilikul total water demand	m ³ /day	4,599	5,064	5,565	6,108	6,667	7,265	7,868	8,558	9,040	9,486	9,945	10,401	10,859	11,319	11,807	12,267
Jillikul rural water demand for Vakhsh ${f C}^{3/{ m day}}$	n ³ /day	2,705	3,053	3,399	3,815	4,259	4,711	5,188	5,748	6,052	6,371	6,681	6,993	7,304	7,616	7,903	8,211
Tillikul water demand hv evisting WSSs	m ³ /dav	1 408	1 554	1 665	1 805	1 949	2 055	2 195	2 337	2 436	0 579	2715	2 814	2 952	3 094	3 181	3 373
	(mm / m	101.67	· 226+	70067	70064	11.764	22264	~~~~~~~~		1000	1 1 1 1 1	A. 164				****	

		2012	100	Atta	iched Table	8.11 Project	ted Water D	Demand of K	Attached Table 8.11 Projected Water Demand of Kolkhozobod Rayon	Rayon		2002	1000	2000	2000	2000	acuc
mean water constants	70		507	VL CIN7		08	53 50107	86	0707	1707	00	00	1202	00	00	00	0707
tutat watet suppry coverage	0%	0/	10	t 0	07	00	070	00	10	70	10	70	10	10	06	10	07
basis of coverage	2	16		NDS	10	10	10	-	NWSP (only	rural)	10	10	10	10	16	1	
assumed rate of UFW	%	50	49	47	46	45	43	42	41	39	38	37	35	34	33	31	30
Kolkozabod Rural																	
rural population		160,500	164,100	167,700	171,300	174,900	178,500	182,200	185,800	189,400	193,100	196,700	200,400	204,100	207,700	211,300	215,000
rural population will be served		112,400	118,200	124,100	131,900	139,900	148,200	156,700	167,200	170,500	173,800	177,000	180,400	183,700	186,900	190,200	193,500
liter par capita per day	liter	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
domestic use	m ³ /day	2,248	2,600	2,978	3,429	3,917	4,446	5,014	5,685	6,138	6,604	7,080	7,577	8,083	8,597	9,130	9,675
industrial use (2% of domestic use)	m ³ /day	45	52	60	69	78	89	100	114	123	132	142	152	162	172	183	194
commercial use (2% of domestic use)	m ³ /day	45	52	60	69	78	89	100	114	123	132	142	152	162	172	183	194
Institutional use (2% of domestic use)	m ³ /day	45	52	60	69	78	89	100	114	123	132	142	152	162	172	183	194
sub-total	m ³ /day	2,383	2,756	3,158	3,636	4,151	4,713	5,314	6,027	6,507	7,000	7,506	8,033	8,569	9,113	9,679	10,257
UFW	m ³ /day	2,383	2,616	2,834	3,097	3,355	3,599	3,848	4,137	4,213	4,290	4,352	4,383	4,414	4,428	4,410	4,396
sub-total	m ³ /day	4,766	5,372	5,992	6,733	7,506	8,312	9,162	10,164	10,720	11,290	11,858	12,416	12,983	13,541	14,089	14,653
water use of WSS (5% of above)	m ³ /day	238	269	300	337	375	416	458	508	536	565	593	621	649	677	704	733
rural water demand	m ³ /day	5,004	5,641	6,292	7,070	7,881	8,728	9,620	10,672	11,256	11,855	12,451	13,037	13,632	14,218	14,793	15,386
Kolkhozabod Rayon Center		000	000	001.71	0000	000	001	000	001 01	00001	007.01	00000	002.00	000.0		000000	000000
urban population		14 800	15,700	16,100	10,000	1 / ,000	000,71	17,400	13,400	18,900	19,400	20,000	20,200	21,000	21,000	22,200	008,22
Urban population will be served	litor	14,800	10,200	000,01	10,000	10,200	1 /,000	1/,400	1 /,800	18,500	18,800	19,400	19,900	20,400	21,000	21,000	100
ind par capita per aay	3/1		700	10	000	0101	ò ; ;	0101	0001	11	102	017 1	ò t	200 F	0.01	1000	100
domestic use	m ⁷ /day		806	889	960	1,040	1,139	1,218	1,299	1,409	1,504	1,610	1,/31	1,836	1,933	2,086	2,210
industrial use (5% of domestic use)	m'/day	37	40	44	48	52	57	61	65	70	75	81	87	92	98	104	111
commercial use (5% of domestic use)	m ³ /day	37	40	44	48	52	57	61	65	70	75	81	87	92	98	104	111
Institutional use (5% of domestic use)	m ³ /day	37	40	44	48	52	57	61	65	70	75	81	87	92	98	104	111
sub-total	m ³ /day	851	926	1,021	1,104	1,196	1,310	1,401	1,494	1,619	1,729	1,853	1,992	2,112	2,247	2,398	2,543
UFW	m ³ /day	851	879	916	940	967	1,000	1,015	1,025	1,048	1,060	1,074	1,087	1,088	1,092	1,093	1,090
sub-total	m ³ /day	1,702	1,805	1,937	2,044	2,163	2,310	2,416	2,519	2,667	2,789	2,927	3,079	3,200	3,339	3,491	3,633
water use of WSS (5% of above)	m ³ /day	85	90	97	102	108	116	121	126	133	139	146	154	160	167	175	182
urban water demand	m ³ /day	1,787	1,895	2,034	2,146	2,271	2,426	2,537	2,645	2,800	2,928	3,073	3,233	3,360	3,506	3,666	3,815
			i t	100 0								101				0.0	.0001
Kolkhzabod total water demand	m /day	0,/91	056,1	8,521	117.6	10,152	cc1,11	/01,21	13,31/	14,000	14,/85	15,24	10,2,01	10,992	11,124	18,458	19,201
Projected Water Demand (deduction)	m ³ /day	601	678	755	852	947	1,048	1,154	1,283	1,346	1,426	1,491	1,568	1,640	1,704	1,781	1,845
Kolkhozabad rural water demand for Vak $\mathrm{m}^3/\mathrm{day}$	uk m ³ /day	4,403	4,964	5,537	6,218	6,935	7,680	8,466	9,389	9,909	10,429	10,960	11,469	11,993	12,514	13,012	13,541
Kolkhozabad water demand by existing $M m^3/day$	W m ³ /dav	3.586	3.954	4.242	4.608	4.976	5.247	5.615	5.983	6.245	6.614	6.978	7.234	7.602	7.967	8.212	8.575
					6.							6 -					

Supporting	Report 3
Chapter 8	Rehabilitation and Expansion Plan of the Vakhsh Conduits

		2013	2014	A 2015	Attached Table 8.12 Projected Water Demand of Kumsangir Rayon 2016 2017 2018 2019 2020 20 2019 2016 2017 2018 2019 2020 20	e 8.12 Proje 2017	cted Water 2018	Demand of 2019	Kumsangir 1 2020	kayon 2021	2022	2023	2024	2025	2026	2027	2028
rural water supply coverage	%	70	72	74	<i>LL</i>	80	83	86	06	06	90	06	06	06	06	06	90
urban water supply coverage	%	26	79	79	26	76	76	79	79	76	76	79	76	76	76	26	76
basis of coverage				NDS					NWSP (only	rural)							
assumed rate of UFW	%	50	49	47	46	45	43	42	41	39	38	37	35	34	33	31	30
Kumsangir Rural																	
rural population		101,800	104,000	106,200	108,500	110,600	112,900	115,100	117,200	119,400	121,600	123,800	126,100	128,200	130,300	132,500	134,700
rural population will be served		71,300	74,900	78,600	83,500	88,500	93,700	99,000	105,500	107,500	109,400	111,400	113,500	115,400	117,300	119,300	121,200
liter par capita per day	liter	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
domestic use	m ³ /day	1,426	1,648	1,886	2,171	2,478	2,811	3,168	3,587	3,870	4,157	4,456	4,767	5,078	5,396	5,726	6,060
industrial use (2% of domestic use)	m ³ /day	29	33	38	43	50	56	63	72	LL	83	89	95	102	108	115	121
commercial use (2% of domestic use)	m ³ /day	29	33	38	43	50	56	63	72	77	83	89	95	102	108	115	121
Institutional use (2% of domestic use)	m ³ /day	29	33	38	43	50	56	63	72	77	83	89	95	102	108	115	121
sub-total	m ³ /day	1,513	1,747	2,000	2,300	2,628	2,979	3,357	3,803	4,101	4,406	4,723	5,052	5,384	5,720	6,071	6,423
UFW	m ³ /day	1,513	1,658	1,795	1,959	2,124	2,275	2,431	2,610	2,655	2,700	2,738	2,756	2,774	2,779	2,766	2,753
sub-total	m ³ /day	3,026	3,405	3,795	4,259	4,752	5,254	5,788	6,413	6,756	7,106	7,461	7,808	8,158	8,499	8,837	9,176
water use of WSS (5% of above)	m ³ /day	151	170	190	213	238	263	289	321	338	355	373	390	408	425	442	459
rural water demand	m ³ /day	3,177	3,575	3,985	4,472	4,990	5,517	6,077	6,734	7,094	7,461	7,834	8,198	8,566	8,924	9,279	9,635
Kumsandir Ravon Center																	
urban population		15,300	15,700	16,100	16,500	17,000	17,400	17,900	18,400	18,900	19,400	19,900	20,400	21,000	21,600	22,100	22,700
urban population will be served		14,800	15,200	15,600	16,000	16,500	16,900	17,400	17,800	18,300	18,800	19,300	19,800	20,400	21,000	21,400	22,000
liter par capita per day	liter	50	53	57	60	63	67	70	73	77	80	83	87	90	93	67	100
domestic use	m ³ /day	740	806	889	960	1,040	1,132	1,218	1,299	1,409	1,504	1,602	1,723	1,836	1,953	2,076	2,200
industrial use (5% of domestic use)	m ³ /day	37	40	44	48	52	57	61	65	70	75	80	86	92	98	104	110
commercial use (5% of domestic use)	m ³ /day	37	40	44	48	52	57	61	65	70	75	80	86	92	98	104	110
Institutional use (5% of domestic use)	m ³ /day	37	40	44	48	52	57	61	65	70	75	80	86	92	98	104	110
sub-total	m ³ /day	851	926	1,021	1,104	1,196	1,303	1,401	1,494	1,619	1,729	1,842	1,981	2,112	2,247	2,388	2,530
UFW	m ³ /day	851	879	916	940	967	995	1,015	1,025	1,048	1,060	1,068	1,081	1,088	1,092	1,088	1,084
sub-total	m ³ /day	1,702	1,805	1,937	2,044	2,163	2,298	2,416	2,519	2,667	2,789	2,910	3,062	3,200	3,339	3,476	3,614
water use of WSS (5% of above)	m ³ /day	85	90	97	102	108	115	121	126	133	139	145	153	160	167	174	181
urban water demand	m ³ /day	1,787	1,895	2,034	2,146	2,271	2,413	2,537	2,645	2,800	2,928	3,055	3,215	3,360	3,506	3,650	3,795
Kumsanoir total water demand	m ³ /dav	4 964	5 471	6019	6619	7 261	7 930	8613	9 380	9 894	10 389	10 889	11 413	11 976	12 430	17 979	13 430
	111 / rug	10/11	111.0	CTO'O	100	10761	0000	CT010	000%	1/01/	(ncint	10000	C11.11	07/11	001/71	14/17	001.01
Projected Water Demand (deduction)	m ³ /day	205	234	258	295	327	359	399	440	468	498	521	549	571	593	622	644
Kumsangir rural water demand on Vakhs m^3/day	s m ³ /day	2,972	3,342	3,727	4,178	4,663	5,158	5,678	6,294	6,626	6,963	7,314	7,649	7,994	8,331	8,656	8,990
Kumsangir water demand by existing WS $\rm m^3/day$	S m ³ /day	1,334	1,469	1,575	1,711	1,844	1,946	2,079	2,212	2,308	2,441	2,574	2,668	2,798	2,930	3,019	3,151

		Water Demar	nds to be Lo	aded on t	he Vakhsl	h Conduits fo	or theAnalys
Area	IDNo	LPCD2028	total 2028	Area	IDNo	LPCD2028	total 2028
E	R-01	5.13			R-14	4.68	7.39
E (RC)	R-05vc	59.12	59.12	В	R-23	1.75	2.77
E	R−04∨	5.75	9.09		R-25	3.28	5.18
E	R−32∨	3.7	5.85		R-28	10.45	16.51
E	R-37v	5.75	9.09		R-35	3.76	5.94
E	R-38vc	5.75	9.09		R-36	7.59	11.99
E	R-06v	3.7	5.85		R-39	1.54	2.43
E	R-30v	2.26	3.57		B-24	11.96	65.18
C	B-02	0.68		C (RC)	B-07v	34.78	34.78
C	B-05	0.86	4.69		J-02∨	0.91	2.25
C	B-08	1.06	5.78		J-11v	3.44	8.5
C	B-09	1.00		D (RC)	J-09∨	68.03	68.03
C	B-18	0.86	4.69		R-15	5.13	8.11
C	B-23	0.80	3.54		R-19vc	7.18	11.34
C	B-15	0.06	0.33		R-34vc	3.44	5.44
С	B-16	0.03	0.16		R-07	6.57	10.38
D	J-01	2.3	5.68		R-26	6.45	10.19
D	J-05	3.72	9.19		Q-03	2.53	7.21
D	J-07	3.83	9.46		Q-04	21.24	60.53
D	J-06	1.35	3.33		Q-05	15.89	45.29
E	R-11	8.46	13.37		Q-06	3.1	8.84
E	R-33	2.26	3.57	G	R-09	5.86	9.26
E	R-10	2.48	3.92	G	Q-02	2.26	6.44
E	R-27	2.47	3.9	G	Q-07	3.54	10.09
E	R-16	1.22	1.93	G (RC)	Q-01vc	58.85	58.85
E	R-18	3.43	5.42		J-12	7.69	18.99
E	R-29	9.99	15.78		J-13	18.3	45.2
D	J-03	1.15	2.84		J-08	8.5	21
D	J-04	1.35			J-10v	1.74	4.3
D	R-24	2.67	4.22			566.79	1170.47
Ā	B-04	0.81	4.41				
B	B-01	0.22	1.2				
B	B-06	0.03					
В	B-10	1.6	8.72				
B	B-11	0.86	4.69				
B	B-12	2.25	12.26				
B	B-13	1.28					
B	B-14	3.21	17.49				
B	B-19	1.71	9.32				
B	B-20	19.12	104.2				
B	B-20 B-21	0.43	2.34				
B	B-21 B-22	0.43	0.93				
B	V-11	1.37	3.52				
B	V-11 V-12	0.39	J.JZ				
B	V-12 V-14	0.39	1.26				
			0.55				
C C	B-03	0.1					
	B-17	0.02	0.11				
C	B-25	18.16	98.97				
C	V-15	30.14	77.46				
C	V-13	0.2	0.51				
В	R-02	2.67	4.22				
В	R-03	3.7	5.85				
В	R-12	2.67	4.22				
В	R-13	1.47	2.32				

Attached Table 8.13 The Maximum Daily Water Demand of Each Water Supply Systems and Water Demands to be Loaded on the Vakhsh Conduits for theAnalysis

	Maximum Dail	y Water Demand in 2	1 able 8.14 1 2028 (m ³ /day)		-	y Water Demand in 20	$0.028 (m^3/dav)$
ID No		Un-Supplied Areas	Total	ID No		Un-Supplied Areas	Total
WTP R-01	443	288	731	R-02	231	150	381
J-01	199	240	439	R-03	320	208	528
J-05	321	389	710	R-12	231	150	381
J-07	331	400	731	R-13	127	83	210
J-06	117	140		R-14	404	263	667
J-02v	79	95		R-23	151	99	250
J-11v	297	360			283	184	467
WTP J-01	1344	1624		R-28	903	587	1490
R-11	731	475		R-35	325	211	536
R-10	214	139		R-36	656	426	1082
R-27	213	140		R-39	133	86	219
R-16	105	69		WTP R-12	3764	2447	6210
R-18	296	193		R-15	443	288	731
R-29	863	561	1424		620	404	1024
R-33	195	113		R-34	297	194	491
WTP Ko1	2617	1690		WTP R-15	1360	886	2246
J-03	99	120		R-07	568	369	937
J-04	117	140		R-26	557	362	919
R-24	231	150		WTP R-07	1125	731	1856
WTP R-24	447	410		WTP Q-04	1835	3395	5230
B-04	70			WTP Q-05	1373	2540	3913
B-01	19	85		Q-06	268	496	764
B-06	3	11		R-09	506	329	835
B-10	138	615		WTP Q06	774	825	1599
B-11	74	331		Q-02	195	361	556
B-12	194	865		Q-07	306	566	872
B-13	111	492		WTP Q-02	501	927	1428
B-14	277	1234		WTP J-12	664	804	1468
B-19	148	657		WTP J-13	1581	1913	3494
B-20	1652	7351	9003	J-08	734	889	1623
B-21	37	165		J-10v	150	183	333
B-22	15	65		WTP J-08	884	1072	1956
V-11	118	186	304	WTP Q-03	219	404	623
V-12	34	52	86				
V-14	42	67	109				
B-03	9	39	48				
B-17	2	8	10				
B-25	1569	6982	8551				
V-15	2604	4089	6693				
V-13	17	27	44				
WTP V-15		23632	30765			ilv water demand of u	

Attached Table 8.14 LIST of Projected WTPs

note: "Total" is sum of "the maximum daily water demand of WSS" and "the maximum daily water demand of un-supplied are

IDNo	Maximum Hourly Water Demand in 2028 (L/s)	IDNo	Maximum Hourly Water Demand in 2028 (L/s)
B-01	0.54	Q-03	5.56
B-02		Q-04	40.46
B-03	0.27	Q-05	30.28
B-04	2.02	Q-06	6.79
B-05	2.11	Q-07	7.77
B-06	0.06	R-01	11.23
B-08	2.65	R-02	5.86
B-09	2.72	R-03	8.09
B-10	3.51	R-07	13.15
B-11	2.11	R-09	12.83
B-12	4.92	R-10	5.4
B-13		R-11	16.92
B-14	7.03	R-12	5.86
B-15	0.15	R-13	3.22
B-16	0.09	R-14	10.22
B-17	0.06	R-15	11.23
B-18	2.11	R-16	2.66
B-19	3.75	R-18	7.51
B-20	36.44	R-19	14.34
B-21	1.05	R-23	3.83
B-22	0.42	R-24	5.86
B-23	1.59	R-25	7.19
B-24	23.92	R-26	12.91
B-25	34.58	R-27	5.4
J-01	5.03	R-28	20.9
J-02	2.26	R-29	19.98
J-03	2.5	R-33	4.95
J-04	2.98	R-34	7.53
J-05	8.15	R-35	8.23
J-06	2.98	R-36	15.19
J-07	8.41	R-39	3.38
J-08	16.99	V-11	2.98
J-10	3.81	V-12	0.96
J-11	7.53	V-13	0.48
J-12	15.36	V-14	1.2
J-13	34.86	V-15	54.54
Q-02	4.92		

Attached Table 8.15 The Maximum Hourly Water Demand in 2028 on Each WSS

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nodes					Link - Noc	ie			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Noda ID	Elevation	Demand	Total Head	Pressure	Link ID	Start	End	Length	Diameter
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Node ID	m	LPS	m	m		Node	Node	m	mm
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	СР			434.25	0	CPWTP	СР	WTP	60	313.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	WTP	422		425.00	3.00	V15P	WTP	ET		Pump
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ET	442		445.00	3.00	B04T	ET	B04	897	96.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V15	422	54.54	443.10	21.10	V15T	ET	V15	50	176.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B25	425	34.58	432.84	7.84	V11T	ET	V11	1363	312.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V11	410	2.98	440.26	30.26	V11/8-1T	V11	8-1T	2926	312.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V12	394	0.96	419.77	25.77	UJ06-1T	8-1T	11T	1499	312.8
B01386 0.54 415.47 29.47 $UJ09-2T$ $11-2T$ $11-3T$ 540 312 B03 414 0.27 444.21 30.21 $UJ09-3T$ $11-3T$ $11-4T$ 905 312 B04 423 2.02 443.59 20.59 $UJ09-4T$ $11-4T$ $11-5T$ 810 312 B06 384 0.06 413.82 29.82 $UJ09-5T$ $11-5T$ $11-6T$ 852 277 B10 404 3.51 425.76 21.76 $UJ09-6T$ $11-6T$ $B06$ 825 277 B11 397 2.11 420.69 23.69 $UJ09-7T$ $B06$ $12T$ 1030 277 B12 390 4.92 415.01 25.01 $B10T$ $8.1T$ $B10$ 442 79 B13 402 2.82 422.35 20.35 $B19T$ $11T$ $B19$ 157 79 B14 395 7.03 414.87 19.87 $B13T$ $11-1T$ $B11$ 1171 79 B17 417 0.66 438.86 21.86 $B13T$ $11-4T$ $B12$ 420 96 B19 400 3.75 424.51 24.51 $B12T$ $11-4T$ $B12$ 420 96 B20 389 36.44 410.42 21.42 $B20T$ $12T$ $B20$ 70 $Va2-1T$ 414 0 444.22 30.22 $V14T$ $11-6T$ $B22$ 85 79	V13	421	0.48	441.98	20.98	UJ09T	11T	11-1T	225	312.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V14	390	1.2	414.44	24.44	UJ09-1T	11-1T	11-2T	2388	312.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B01	386	0.54	415.47	29.47	UJ09-2T	11-2T	11-3T	540	312.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B03	414	0.27	444.21	30.21		11-3T	11-4T	905	312.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B04	423	2.02	443.59	20.59	UJ09-4T	11-4T	11-5T	810	312.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B06	384	0.06	413.82	29.82	UJ09-5T	11-5T	11-6T	852	277.6
B12 390 4.92 415.01 25.01 $B10T$ $8-1T$ $B10$ 442 79 B13 402 2.82 422.35 20.35 $B19T$ $11T$ $B19$ 157 79 B14 395 7.03 414.87 19.87 $B19T$ $11T$ $B19$ 157 79 B17 417 0.06 438.86 21.86 $B13T$ $11-1T$ $B11$ 1171 79 B21 388 1.05 411.31 23.31 $B13T$ $11-1T$ $B13$ 1249 96 B22 382 0.42 415.52 33.52 $814T$ $11-2T$ $B14$ 704 110 B22 389 36.44 410.42 21.42 $B20T$ $12T$ $B20$ 70 176 B20 389 36.44 410.42 21.42 $B20T$ $12T$ $B20$ 70 176 B21T $12T$ $B20$ 70 176 $B21T$ $12T$ $B20$ 70 176 Va2-1T 414 0 442.21 30.22 $V14T$ $11-5T$ $V14$ 1859 79 Va2-2T 421 0 442.11 21.11 $801T$ $11-6T$ $B01$ 213 79 Va2-3T 417 0 438.70 9.70 $V15Va2T$ ET $Va2-1T$ 180 246 $11-T$ 400 0 426.57 20.57 $IS03-1T$ $Va2-2T$ $Va2-3T$ 198 176 $11-2T$ <t< td=""><td>B10</td><td>404</td><td>3.51</td><td>425.76</td><td>21.76</td><td>UJ09-6T</td><td>11-6T</td><td>B06</td><td>825</td><td>277.6</td></t<>	B10	404	3.51	425.76	21.76	UJ09-6T	11-6T	B06	825	277.6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B11	397	2.11	420.69	23.69	UJ09-7T	B06	12T	1030	277.6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B12	390	4.92		25.01	B10T	8-1T	B10	442	79.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B13		2.82	422.35	20.35	B19T	11T	B19	157	79.2
B213881.05411.3123.31B223820.42415.5233.52B194003.75424.5124.51B2038936.44410.4221.42Va2T4270444.8117.81Va2-1T4140444.2230.22Va2-2T4210442.1121.11Va2-3T4170438.8621.86Va3T4250434.709.70Va3T4250434.709.7011-1T3970425.9929.9011-2T4000420.8020.8011-3T3940419.9025.9011-4T3920418.4526.4511-5T3900417.4027.4011-6T3810415.5434.54	B14	395	7.03		19.87	B11	11-1T	B11	1171	79.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B17	417	0.06	438.86	21.86	B13T	11-1T	B13	1249	96.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B21	388	1.05	411.31	23.31	B14T	11-2T	B14	704	110.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B22	382	0.42	415.52	33.52	V12T	11-3T	V12	49	66.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B19	400	3.75	424.51	24.51	B12T	11-4T		420	96.8
Va2-1T4140444.2230.22V14T11-5TV14185979Va2-2T4210442.1121.11801T11-6T80121379Va2-3T4170438.8621.86801T11-6TB228579Va3T4250434.709.70822T11-6TB228579Va3T4010430.9029.901503TVa2TVa2-1T18024611-1T3970425.9928.991803-1TVa2-1TVa2-2T64624611-2T4000420.8020.801503-2TVa2-3TVa3T25417611-3T3940419.9025.90B03Va2-1TB03847911-6T3810415.5434.54B25TVa3TB2568158	B20	389	36.44	410.42	21.42	B20T	12T	B20		176.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Va2T	427	0	444.81	17.81	B21T	12T	B21	299	79.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									1859	79.2
Va3T4250434.709.708-1T4010430.9029.9011T4060426.5720.5711-1T3970425.9928.9911-2T4000420.8020.8011-3T3940419.9025.9011-5T3900417.4027.4011-6T3810415.5434.54	Va2-2T		0		21.11		11-6T			79.2
8-1T4010430.9029.90ISO3TVa2TVa2-1T18024611T4060426.5720.57ISO3-1TVa2-1TVa2-2T64624611-1T3970425.9928.99ISO3-2TVa2-2TVa2-3T19817611-2T4000420.8020.80ISO3-3TVa2-3TVa3T25417611-3T3940419.9025.90B03Va2-1TB03847911-4T3920418.4526.45V13Va2-2TV134427911-5T3900417.4027.40B17TVa2-3TB17717911-6T3810415.5434.54B25TVa3TB2568158	Va2-3T	417	0	438.86	21.86		11-6T			79.2
11T4060426.5720.57IS03-1TVa2-1TVa2-2T64624611-1T3970425.9928.99IS03-2TVa2-2TVa2-3T19817611-2T4000420.8020.80IS03-3TVa2-3TVa3T25417611-3T3940419.9025.90B03Va2-1TB03847911-4T3920418.4526.45V13Va2-2TV134427911-5T3900417.4027.40B17TVa2-3TB17717911-6T3810415.5434.54B25TVa3TB2568158	Va3T		0	434.70	9.70			Va2T	57	246.8
11-1T3970425.9928.99IS03-2TVa2-2TVa2-3T19817611-2T4000420.8020.80IS03-3TVa2-3TVa3T25417611-3T3940419.9025.90B03Va2-1TB03847911-4T3920418.4526.45V13Va2-2TV134427911-5T3900417.4027.40B17TVa2-3TB17717911-6T3810415.5434.54B25TVa3TB2568158	8-1T	401	0	430.90	29.90	IS03T	Va2T	Va2-1T	180	246.8
11-2T4000420.8020.80IS03-3TVa2-3TVa3T25417611-3T3940419.9025.90B03Va2-1TB03847911-4T3920418.4526.45V13Va2-2TV134427911-5T3900417.4027.40B17TVa2-3TB17717911-6T3810415.5434.54B25TVa3TB2568158	11T		0	426.57	20.57	IS03-1T	Va2-1T	Va2-2T	646	246.8
11-3T3940419.9025.9011-4T3920418.4526.4511-5T3900417.4027.4011-6T3810415.5434.54										176.2
11-4T3920418.4526.45V13Va2-2TV134427911-5T3900417.4027.40B17TVa2-3TB17717911-6T3810415.5434.54B25TVa3TB2568158										176.2
11-5T3900417.4027.40B17TVa2-3TB17717911-6T3810415.5434.54B25TVa3TB2568158					25.90					79.2
11-6T 381 0 415.54 34.54 B25T Va3T B25 68 158										79.2
	11-5T	390	0	417.40		B17T	Va2-3T	B17	71	79.2
			0	415.54	34.54	B25T	Va3T	B25	68	158.6
12T 387 0 411.69 24.69	12T	387	0	411.69	24.69					

Attached Table 8.22 Network Tables from WTP V15 Nodes Link - Node

note: CP; Connecting Point with Vakhsh Conduits,

WTP; Water Treatment Plant, ET; Elevated Tank

Toucs					Link 100	uc		
Node ID	Elevation	Demand	Total Head	Pressure	Link ID	Start	End	
Noue ID	m	LPS	m	m		Node	Node	
CP		-553.1	429.78	0	CPWTP	CP	WTP	ſ
WPT	370	484.1	373	3	WTPET	WTP	ET	
ET	390	-48.23	393	3	R12	ET	R12	
R12	372	91.97	391.88	19.88				

Attached Table 8.23 Network Tables from WTP R12 Nodes Link - Node

note: CP; Connecting Point with Vakhsh Conduits,

WTP; Water Treatment Plant, ET; Elevated Tank

Attached Table 8.24 Network Tables from WTP R24

Nodes				
Node ID	Elevation	Demand	Total Head	Pressure
Noue ID	m	LPS	m	m
CP		-43.8	400.58	0
WTP	366	32.8	369	3
ET	386	-5.56	389	3
17-1T	366	0	386.96	20.96
17-2T	362	0	383.78	21.78
17-3T	363	0	383.77	20.77
R24	366	5.86	386.4	20.4
J03	362	2.5	382.89	20.89
J04	363	2.98	383.54	20.54

Link - Node							
Link ID	Start	End	Length	Diameter			
	Node	Node	m	mm			
CPWTP	СР	WTP	100	105			
WTPET	WTP	ET		Pump			
R24RR	ET	17-1T	100	110.2			
UJ16-1T	17-1T	17-2T	3528	158.6			
UJ16-2T	17-2T	17-3T	3	96.8			
R24	17-1T	R24	49	96.8			
J03	17-2T	J03	143	79.2			
J04	17-3T	J04	131	110.2			

Length Diameter

mm

287 Pump 555

m

220

2996

note: CP; Connecting Point with Vakhsh Conduits,

WTP; Water Treatment Plant, ET; Elevated Tank

Attached Table 8.25	Network Tables from	WTP J01
Nodes		Link - Node

Nodes	Nodes							
Node ID	Elevation	Demand	Total Head	Pressure				
Node ID	m	LPS	m	m				
СР		-298.25	380.23	0				
WTP	355	259.25	358.00	3.00				
ET	375	-18.22	378.00	3.00				
20T	355	0	377.97	22.97				
19T	355	0	376.43	21.43				
21T	355	0	375.02	20.02				
22T	353	0	373.53	20.53				
23T	350	0	371.10	21.10				
J06	355	2.98	376.18	21.18				
J11v	355	7.53	376.27	21.27				
J01	355	5.03	376.81	21.81				
J02v	355	2.26	374.71	19.71				
J07	353	8.41	372.93	19.93				
J05	350	8.15	370.35	20.35				

Link - Node							
Link ID	Start	End	Length	Diameter			
	Node	Node	m	mm			
CPWTP	СР	WTP	100	234			
J01P	WTP	ET		Pump			
J01T	ET	20T	10	246.8			
UJ18T	20T	19T	87	110.2			
UJ19T	20T	21T	1655	220.4			
UJ20T	21T	22T	355	176.2			
UJ21T	22T	23T	728	141.0			
J06T	19T	J06	28	79.2			
J11	19T	J11v	28	123.4			
J01	20T	J01	51	79.2			
J02	21T	J02v	59	79.2			
J07	22T	J07	171	141.0			
J05T	23T	J05	68	110.2			

note: CP; Connecting Point with Vakhsh Conduits,

WTP; Water Treatment Plant, ET; Elevated Tank

Nodes					Link - Nod	e	
Node ID	Elevation	Demand	Total Head	Pressure	Link ID	Start	End
Node ID	m	LPS	m	m		Node	Node
СР		-50.01	427.48	0	CPWTP	СР	WTP
WTP	375	2.01	378.00	3.00	WTPET	WTP	ET
ET	395	-32.42	398.00	3.00	Ko1T	ET	Ko01T
Ko01T	375	0	397.95	22.95	Ko01V2-1	Ko01T	V2-1T
V2-1T	373	0	397.71	24.71	R11	V2-1T	R11
R11	367	16.92	388.82	21.82	UR02T	Ko01T	Ko1-1T
Ko1-1T	375	0	397.20	22.20	UR02/3/4	Ko1-1T	Ko3-1T
Ko3-1T	372	0	392.06	20.06	Ko3-1Ko3-2	Ko3-1T	Ko3-2T
Ko3-2T	369	0	389.77	20.77	Ko3-2Ko3-3	Ko3-2T	Ko3-3T
Ko3-3T	368	0	389.73	21.73	R10	Ko1-1T	R10
R10	372	5.4	397.18	25.18	R27	Ko1-1T	R27
R27	369	5.4	397.18	28.18	R33T	Ko3-1T	R33
R33	371	4.95	391.83	20.83	R29T	Ko3-2T	R29
R29	369	19.98	388.80	19.80	R16T	Ko3-3T	R16
R16	369	2.66	389.68	20.68	R18T	Ko3-3T	R18
R18	368	7.51	389.44	21.44			

Attached Table 8.26 Network Tables from WTP K01 Nodes

note: CP; Connecting Point with Vakhsh Conduits,

WTP; Water Treatment Plant, ET; Elevated Tank

Attached Table 8.27	Network Tables from	WTP R15
Nodos		Link

Nodes							
Node ID	Elevation	Elevation Demand Total Head		Pressure			
Node ID	m	LPS	m	m			
СР		-34.62	392.99	0			
WTP	387	9.62	390.00	3.00			
ET	407	-17.24	410.00	3.00			
R15	387	11.23	409.98	22.98			
Ka2-1T	377	0	407.12	30.12			
Ka2T	377	0	405.78	28.78			
R19	377	14.34	403.93	26.93			
R34	375	7.53	398.71	23.71			

Link - Node								
Link ID	Start	End	Length	Diameter				
	Node	Node	m	mm				
R15	СР	WTP	409	208.0				
WTPTank	WTP	ET		Pump				
TankR15	ET	R15	1	176.2				
R15Ka2-1	R15	Ka2-1T	409	176.2				
Ka2-1Ka2	Ka2-1T	Ka2T	191	176.2				
R19	Ka2T	R19	264	176.2				
R34	R19	R34	947	123.4				

Length Diameter

m

100

10

274

690

246

180

16

13

13

29

7

6

2618

2798

mm

234.0 Pump

277.6

246.8

141.0

277.6 277.6

176.2

158.6

141.0

141.0

246.8 123.4

79.2

79.2

note: CP; Connecting Point with Vakhsh Conduits,

WTP; Water Treatment Plant, ET; Elevated Tank

No	Valve ID	Place (between start and end)		Design Diameter	Selected Diameter	type	Pressure
		Start Node	End Node	(mm)	(mm)		(Mpa)
	For branch line						
1	V1-1	V1+	Va2+	614	700	В	0.98
2	WTPV15-1	Va2+	WTPV15	313	350	G	0.98
3	WTPR12-1	16+	R16+	287	300	G	0.98
4	WTPKo1-1	Ko1	WTPKo1	234	250	G	0.98
5	WTPR01-1	Ko3-4	TR01	208	250	G	0.98
6	V3-1	V3	Ka1	514	600	В	0.98
7	WTPR24	17-1	WTPR24	105	125	G	0.98
8	WTPJ08	30	WTPJ08	208	250	G	0.98
9	WTPJ12	31	WTPJ12	208	250	G	0.98
10	WTPJ13	31	WTPJ13	313	350	G	0.98
11	WTPJ01	20	WTPJ01	234	250	G	0.98
12	WTPR15	Ka2-1	WTPR15	208	250	G	0.98
13	WTPR07	Ka2-2	WTPR07	105	125	G	0.98
	Valve Typ	e: Gate Valve(G	ve(B)				

Attached Table 8.28 Valves List for Branches of Vakhsh Conduits

No	Valve ID	Place (betwee	en start and end)	Design Diameter	Selected Diameter	type	Pressure
		Start Node	End Node	(mm)	(mm)		(Mpa)
1	WTPV15-B04	TV15	B04	96.8	100	G	0.98
2	WTPV15-V15	TV15	V15	176.2	200	G	0.98
3	WTPV15-B03	Va2-1T	B03	79.2	80	G	0.98
4	WTPV15-V13	Va2-2T	V13	79.2	80	G	0.98
5	WTPV15-B17	Va2-3T	B17	79.2	80	G	0.98
6	WTPV15-B25	Va3T	B25	158.6	200	G	0.98
7	WTPV15-V11	V11+	V11	312.8	350	G	0.98
8	WTPV15-B10	8-1T	B10	79.2	80	G	0.98
9	WTPV15-B19	11T	B19	79.2	80	G	0.98
10	WTPV15-B13	11-1T	B13	96.8	100	G	0.98
11	WTPV15-B11	11-1T	B11	79.2	80	G	0.98
12	WTPV15-B14	11-2T	B14	110.2	125	G	0.98
13	WTPV15-B13	11-3T	V12	66	80	G	0.98
14	WTPV15-B12	11-4T	B12	96.8	100	G	0.98
15	WTPV15-V14	11-5T	V14	79.2	80	G	0.98
16	WTPV15-B22	11-6T	B22	79.2	80	G	0.98
17	WTPV15-B01	11-6T	B01	79.2	80	G	0.98
18	WTPV15-B06	11-7T	B06	79.2	80	G	0.98
19	WTPV15-B20	12T	B20	176.2	200	G	0.98
20	WTPV15-B21	12T	B21	79.2	80	G	0.98
21	WTPR12-R02	TR12	R02	124	125	G	0.98
22	WTPR12-R03	TR12	R03	200	200	G	0.98
23	WTPR12-R12	TR12	R12	105	125	G	0.98
24	WTPR12-R13	TR12	R13	105	125	G	0.98
25	WTPR12-R14	TR12	R14	105	125	G	0.98
26	WTPR12-R23	TR12	R23	96.8	100	G	0.98
27	WTPR12-R25	TR12	R25	150	150	G	0.98
28	WTPR12-R28	TR12	R28	208	250	G	0.98
29	WTPR12-R35	TR12	R35	198.2	200	G	0.98

Attached Table 8.29 Valves List for Branches of Distribution Main(1/2)

No	Valve ID	Place (betwee	en start and end)	Design Diameter	Selected Diameter	type	Pressure
		Start Node	End Node	(mm)	(mm)		(Mpa)
30	WTPR12-R36	TR12	R36	95	100	G	0.98
31	WTPR12-R39	TR12	R39	200	200	G	0.98
32	WTPKo1-R11	Ko1T	V2-1T	246.8	250	G	0.98
33	WTPKo1-R27	Ko1-1T	R27	141	150	G	0.98
34	WTPKo1-R10	Ko1-1T	R10	141	150	G	0.98
35	WTPKo1-R33	Ko3-1T	R33	246.8	250	G	0.98
36	WTPKo1-R29	Ko3-2T	R29	123.4	125	G	0.98
37	WTPKo1-R18	Ko3-3T	R18	79.2	80	G	0.98
38	WTPKo1-R16	Ko3-3T	R16	79.2	80	G	0.98
39	WTPR24-R24	17-1T	R24	96.8	100	G	0.98
40	WTPR24-J03	17-2T	J03	79.2	80	G	0.98
41	WTPR24-J04	17-3T	J04	110.2	125	G	0.98
42	WTPJ08-J08	TR08	J08	208	250	G	0.98
43	WTPJ08-J10	TR08	J08	208	250	G	0.98
44	WTPJ01-J06,J11	20T	19T	110.2	125	G	0.98
45	WTPJ01-J01	20T	J01	79.2	80	G	0.98
46	WTPJ01-J06	19T	J06	79.2	80	G	0.98
47	WTPJ01-J11	19T	J11	123.4	125	G	0.98
48	WTPJ01-J02	21T	J02	79.2	80	G	0.98
49	WTPJ01-J07	22T	J07	79.2	80	G	0.98
50	WTPJ01-J05	23T	J05	110.2	125	G	0.98
51	WTPR15-R15	TR15	R15	100	100	G	0.98
52	WTPR15-R19	TR15	R19	100	100	G	0.98
53	WTPR07-R07	TR07	R07	105	125	G	0.98
54	WTPR07-R26	TR07	R26	105	125	G	0.98

Attached Table 8.29 Valves List for Branches of Distribution Main(2/2)

Valve Type: Gate Valve(G), Butterfly Valve(B)

Pipe ID	Node	Node		Total Length Diameter		Number of Valves	Selected Diameter	type	Pressure
	Start		(m)	(m)	(mm)	(Each 3km)	(mm)		(Mpa)
SB01	SB	HPS	1229	1229	1200				
SB02	HPS	3	5223	6,452	1192	2	1200	В	0.98
SB03	3	3-1	1776	8,228	996				
SB04	3-1	V1	1116	9,344	996	1	1000	В	0.98
IS08	Va6	Va7	1044		600				
UJ01	V1	4	1083	1083	996				
UJ02	4	5	32	1,115	900				
UJ03	5	5-1	94	1,209	900				
UJ03-1	5-1	6	238	1,447	900				
UJ04	6	7	2545	3,992	900	1	900	В	0.98
UJ05	7	8	14	4,006	900				
UJ06	8	8-1	455	4,461	900				
UJ06-1	8-1	9	1417	5,878	900				
UJ07	9	10	28	5,906	900				
UJ08	10	11	54	5,960	900				
UJ09	11	11-1	225	6,185	900	1	900	В	0.98
UJ09-1	11-1	11-2	2388	8,573	900				
UJ09-2	11-2	11-3	540	9,113	900	1	900	В	0.98
UJ09-3	11-3	11-4	905	10,018	700				
UJ09-4	11-4	11-5	810	10,828	700				
UJ09-5	11-5	11-6	852	11,680	700				
UJ09-6	11-6	B06	825	12,505	700	1	700	В	0.98
UJ09-7	B06	12	1030	13,535	700				
UJ10	12	13	156	13,691	700				
UJ11	13	14	36	13,727	700				
UJ12	14	15	22	13,749	700				
UJ13	15	16	230	13,979	700				
UJ14	16	16+	7578	21,557	700	3	700	В	0.98
UJ14-1	16-1	17	758	22,315	700				

Attached Table 8.30 Valves List for Separation of Vakhsh Conduits Main (1/3)

Pipe ID	Node	Node		Total Length	Diameter	Number of Valves	Selected Diameter	type	Pressure
	Start	End	(m)	(m)	(mm)	(Each 3km)	(mm)		(Mpa)
Uzun1	17	Uzun2	102		700				
Uzun2	Uzun2	Uz2-1	8		700				
Uzun3	Uz2-1	V2	22		700				
B25	Va3	B25	68		208				
IS01	V1+	Va1	440	440	614				
IS02	Va1	Va2	21	461	614				
IS03	Va2	Va2-1	180	641	614				
IS03-1	Va2-1	Va2-2	646	1,287	614				
IS04	Va3	Va3-1	1269	2,556	614				
IS04-1	Va3-1	Va3-2	1291	3,847	614	1	700	В	0.98
IS04-2	Va3-2	Va3-3	224	4,071	614				
IS04-3	Va3-3	Va3-4	116	4,187	614				
IS04-4	Va3-4	Va3-5	765	4,952	614	1	700	В	0.98
IS04-5	Va3-5	Va3-6	86	5,038	614				
IS04-6	Va3-6	V4	120	5,158	614	1	700	В	0.98
IS05	V4	Va4	584	5,742	614				
IS06	Va4	Va5	384	6,126	600	1	700	В	0.98
IS07	Va5	B24	40	6,166	600				
IS07-1	B24	Va6	6058	12,224	600	2	700	В	0.98
ISO3-2	Va2-2	Va2-3	198		614				
ISO3-3	Va2-3	Va3	254		614				
UJ15	V2	V3	4212	4212	514	1	700	В	0.98
UJ16	V3	17-1	978	5,190	514				
UJ16-1	17-1	17-2	3528	8,718	514	1	700	В	0.98
UJ16-2	17-2	17-3	3	8,721	514				
UJ16-3	17-3	18	1493	10,214	514	1	700	В	0.98
UJ17	18	19	4926	15,140	514	1	700	В	0.98
UJ18	19	20	87	15,227	514				
UJ19	20	21	1655	16,882	514				

Attached Table 8.30 Valves List for Separation of Vakhsh Conduits Main (2/3)

Pipe ID	Node	Node		Total Length	Diameter	Number of Valves	Selected Diameter	type	Pressure
	Start	End	(m)	(m)	(mm)	(Each 3km)	(mm)		(Mpa)
UJ20	21	22	355	17,237	514				
UJ21	22	23	728	17,965	514				
UJ23	23	24	1293	19,258	514	1	700	В	0.98
UR01	V2	V2-1	1079	1079	514				
UR01-1	V2-1	Ko1	274	1,353	514				
UR02	Ko1	Ko1-1	246	1,599	514				
UR02-1	Ko1-1	Ko2	2393	3,992	514	1	600	В	0.98
UR03	Ko2	Ko3	23	4,015	514				
UR04	Ko3	Ko3-1	382	4,397	514				
UR04-1	Ko3-1	Ko3-2	180	4,577	514				
UR04-2	Ko3-2	Ko3-3	16	4,593	514				
UR04-3	Ko3-3	Ko3-4	945	5,538	514				
UR04-4	Ko3-4	Ko4	403	5,941	514				
UR05	Ko4	V5	5	5,946	514				
UR06	V5	V5-1	882	6,828	514	1	600	В	0.98
UR07	V5-1	V5-2	167	6,995	514				
UR08	V5-2	R05	2237	9,232	514	1	600	В	0.98
Ka01	V3	Ka1	7740	7740	514	2	600	В	0.98
Ka02	Ka1	Ka2	1792	9,532	514	1	600	В	0.98
Ka03	Ka2	Ka2-1	191	9,723	514				
Ka03-1	Ka2-1	Ka2-2	6448	16,171	514	2	600	В	0.98
Ka03-2	Ka2-2	R08	2755	18,926	514				
US01	18+	30	4348	4348	414	1	500	G	0.98
US02	30	31	3492	7,840	414	1			
KaJ01	R08	KaJ3	2193	2193	313				
KaJ02	KaJ3	KaJ2	2626	4,819	313	1	400	G	0.98
KaJ03	KaJ2	KaJ1	299	5,118	313				
KaJ04	KaJ1	24	3514	8,632	313	1	400	G	0.98

Attached Table 8.30 Valves List for Separation of Vakhsh Conduits Main (3/3)

Valve Type: Gate Valve(G), Butterfly Valve(B)

Pipe ID	Node		Length	Total Length	Diameter	Pipe Bridge	Number of Valve	Selected Diameter	type	Pressure
	Start	End	(m)	(m)	(mm)	Point		(mm)		(Mpa)
SB01	SB	HPS	1229	1229	1200	1	2	1200	В	0.98
SB02	HPS	3	5223	6,452	1192	2	4	1200	В	0.98
SB03	3	3-1	1776	8,228	996	2	4	1000	В	0.98
SB04	3-1	V1	1116	9,344	996					
IS08	Va6	Va7	1044		600					
UJ01	V1	4	1083	1083	996					
UJ02	4	5	32	1,115	900					
UJ03	5	5-1	94	1,209	900	1	2	900	В	0.98
UJ03-1	5-1	6	238	1,447	900					
UJ04	6	7	2545	3,992	900	1	2	900	В	0.98
UJ05	7	8	14	4,006	900	1	2	900	В	0.98
UJ06	8	8-1	455	4,461	900					
UJ06-1	8-1	9	1417	5,878	900					
UJ07	9	10	28	5,906	900					
UJ08	10	11	54	5,960	900					
UJ09	11	11-1	225	6,185	900					
UJ09-1	11-1	11-2	2388	8,573	900					
UJ09-2	11-2	11-3	540	9,113	900					
UJ09-3	11-3	11-4	905	10,018	700					
UJ09-4	11-4	11-5	810	10,828	700					
UJ09-5	11-5	11-6	852	11,680	700					
UJ09-6	11-6	B06	825	12,505	700					
UJ09-7	B06	12	1030	13,535	700					
UJ10	12	13	156	13,691	700					
UJ11	13	14	36	13,727	700					
UJ12	14	15	22	13,749	700					
UJ13	15	16	230	13,979	700					
UJ14	16	16+	7578	21,557	700	2	4	700	В	0.98
UJ14-1	16-1	17	758	22,315	700	1	2	700	В	0.98

Attached Table 8.31 Valves List for Water Pipe Bridges of Vakhsh Conduit (1/3)

N Pipe ID	Node	Node		Total Length	Diameter	Pipe Bridge Point	Number of Valve	Selected Diameter	type	Pressure
	Start	End	(m)	(m)	(mm)	Point		(mm)		(Mpa)
Uzun1	17	Uzun2	102		700					
Uzun2	Uzun2	Uz2-1	8		700					
Uzun3	Uz2-1	V2	22		700					
B25	Va3	B25	68		208					
IS01	V1+	Va1	440	440	614					
IS02	Va1	Va2	21	461	614					
IS03	Va2	Va2-1	180	641	614					
IS03-1	Va2-1	Va2-2	646	1,287	614	1	2	700	В	0.98
IS04	Va3	Va3-1	1269	2,556	614					
IS04-1	Va3-1	Va3-2	1291	3,847	614	1	2	700	В	0.98
IS04-2	Va3-2	Va3-3	224	4,071	614					
IS04-3	Va3-3	Va3-4	116	4,187	614					
IS04-4	Va3-4	Va3-5	765	4,952	614	1	2	700	В	0.98
IS04-5	Va3-5	Va3-6	86	5,038	614					
IS04-6	Va3-6	V4	120	5,158	614					
IS05	V4	Va4	584	5,742	614	1	2	700	В	0.98
IS06	Va4	Va5	384	6,126	600					
IS07	Va5	B24	40	6,166	600					
IS07-1	B24	Va6	6058	12,224	600					
ISO3-2	Va2-2	Va2-3	198		614					
ISO3-3	Va2-3	Va3	254		614					
UJ15	V2	V3	4212	4212	514					
UJ16	V3	17-1	978	5,190	514					
UJ16-1	17-1	17-2	3528	8,718	514	1	2	600	В	0.98
UJ16-2	17-2	17-3	3	8,721	514					
UJ16-3	17-3	18	1493	10,214	514	2	4	600	В	0.98
UJ17	18	19	4926	15,140	514					
UJ18	19	20	87	15,227	514					
UJ19	20	21	1655	16,882	514					

Attached Table 8.31 Valves List for Water Pipe Bridges of Vakhsh Conduit (2/3)

Pipe ID	Node		Length	Total Length	Diameter	er Pipe Bridge Point Number of Valve	Selected Diameter	type	Pressure	
	Start	End	(m)	(m)	(mm)	Point Of Valve		(mm)		(Mpa)
UJ20	21	22	355	17,237	514					
UJ21	22	23	728	17,965	514					
UJ23	23	24	1293	19,258	514					
UR01	V2	V2-1	1079	1079	514	1	2	600	В	0.98
UR01-1	V2-1	Ko1	274	1,353	514					
UR02	Ko1	Ko1-1	246	1,599	514					
UR02-1	Ko1-1	Ko2	2393	3,992	514	1	2	600	В	0.98
UR03	Ko2	Ko3	23	4,015	514					
UR04	Ko3	Ko3-1	382	4,397	514					
UR04-1	Ko3-1	Ko3-2	180	4,577	514	1	2	600	В	0.98
UR04-2	Ko3-2	Ko3-3	16	4,593	514					
UR04-3	Ko3-3	Ko3-4	945	5,538	514					
UR04-4	Ko3-4	Ko4	403	5,941	514					
UR05	Ko4	V5	5	5,946	514					
UR06	V5	V5-1	882	6,828	514					
UR07	V5-1	V5-2	167	6,995	514					
UR08	V5-2	R05	2237	9,232	514					
Ka01	V3	Ka1	7740	7740	514					
Ka02	Ka1	Ka2	1792	9,532	514					
Ka03	Ka2	Ka2-1	191	9,723	514					
Ka03-1	Ka2-1	Ka2-2	6448	16,171	514					
Ka03-2	Ka2-2	R08	2755	18,926	514					
US01	18+	30	4348	4348	414	1	2	500	G	0.98
US02	30	31	3492	7,840	414					
KaJ01	R08	KaJ3	2193	2193	313	1	2	400	G	0.98
KaJ02	KaJ3	KaJ2	2626	4,819	313					
KaJ03	KaJ2	KaJ1	299	5,118	313					
KaJ04	KaJ1	24	3514	8,632	313					

Attached Table 8.31 Valves List for Water Pipe Bridges of Vakhsh Conduit (3/3)

Valve Type: Gate Valve(G), Butterfly Valve(B)

V-11 Rayon Vakhsh Tojikobod Jamoat Water Supply System Zarkhez village Year of Construction 1987 Projected Year of Completion 2012 Population in 2007 700 Projected Population in 2012 773 Maximum Hourly Water Demand in 2028 (liter/second) 2.98 Number of Communal Taps in 2007 60 Population per Tap in 2007 12 Remarks Proposed Distribution Pipes Outside dia. Pipe wall thickness Inside dia Status Pipe material (mm) (mm) (mm) Distribution main 1 HDPE new 90 5.4 79. Distribution main 2 Distribution sub-main 1 Distribution sub-main 2

V-12

Distribution sub-main 3 Distribution sub-main 4

Rayon	Vakhsh
Jamoat	Tojikobod
Water Supply System	Military part MChS
Year of Construction	2000
Projected Year of Completion	2012
Population in 2007	200
Projected Population in 2012	221
Maximum Hourly Water Demand in 2028 (liter/second)	0.96
Number of Communal Taps in 2007	4
Population per Tap in 2007	50
Remarks	
Proposed Distribution Pipes	

	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status		(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	90	5.4	79.2	100
Distribution main 2						
Distribution sub-main 1						
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

V-13

V-13	
Rayon	Vakhsh
Jamoat	Tojikobod
Water Supply System	Pakhtaobod village
Year of Construction	1987
Projected Year of Completion	2012
Population in 2007	100
Projected Population in 2012	110
Maximum Hourly Water Demand in 2028 (liter/second)	0.48
Number of Communal Taps in 2007	4
Population per Tap in 2007	25

Remarks Proposed Distribution Pipes

Troposed Distribution Tripes								
	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length		
	Status		(mm)	(mm)	(mm)	(m)		
Distribution main 1	new	HDPE	90	5.4	79.2	900		
Distribution main 2								
Distribution sub-main 1								
Distribution sub-main 2								
Distribution sub-main 3								
Distribution sub-main 4								

Length

(m)

1300

Attached Table 8.33 Projected Distribution Pipe Length of the WSSs in the Vakhsh Rayon

(2/2)

Vakhsh
Tojikobod
Navobod village

Rayon
Jamoat
Water Supply System
Year of Construction
Projected Year of Completion
Population in 2007
Projected Population in 2012
Maximum Hourly Water Demand in 2028 (liter/second)
Number of Communal Taps in 2007
Population per Tap in 2007
Remarks
Proposed Distribution Pipes

Troposed Distribution Tipes								
	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length		
	Status		(mm)	(mm)	(mm)	(m)		
Distribution main 1	new	HDPE	110	6.6	96.8	3600		
Distribution main 2								
Distribution sub-main 1								
Distribution sub-main 2								
Distribution sub-main 3								
Distribution sub-main 4								

V-15

V-14

Rayon	Vakhsh
Jamoat	Tojikobod
Water Supply System	c/f S.Jumaev
Year of Construction	1980
Projected Year of Completion	2012
Population in 2007	17667
Projected Population in 2012	19512
Maximum Hourly Water Demand in 2028 (liter/second)	54.54
Number of Communal Taps in 2007	340
Population per Tap in 2007	52
Remarks	pump pressurized distribution
Proposed Distribution Pipes	
District District Outside dia.	Pipe wall thickness Inside dia I

	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	r ipe materiai	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	255	13.4	228.2	1800
Distribution main 2	existing	PVC	280	10.7	258.6	1620
Distribution sub-main 1	new	HDPE	125	7.4	110.2	6600
Distribution sub-main 2	existing	PVC	160	6.2	147.6	6000
Distribution sub-main 3	new	HDPE	90	5.4	79.2	11000
Distribution sub-main 4	existing	PVC	110	4.2	101.6	10000

R-01 Kolkhozabad Rayon Jamoat Tugalang Water Supply System Jomi jamoat Tugalang Year of Construction 1987 Projected Year of Completion 2018 Population in 2007 2497 Projected Population in 2018 3191 Maximum Hourly Water Demand in 2028 (liter/second) 11.23 Number of Communal Taps in 2007 25 Population per Tap in 2007 100 Remarks Proposed Distribution Pipes Outside dia. Pipe wall thickness Inside dia Length Status Pipe material (mm) (mm) (mm) (m) Distribution main 1 Distribution main 2 HDPE 450 26.7 396.6 1500 new Distribution sub-main 1 Distribution sub-main 2 HDPE 200 11.9 176.2 3800 new Distribution sub-main 2 Distribution sub-main 3 Distribution sub-main 4

R-02

Rayon				Kolkhozabad
Jamoat				Uzun
Water Supply System				Ittifoq-1
Year of Construction				1974
Projected Year of Comple	tion			2017
Population in 2007				1300
Projected Population in 20	017			1628
Maximum Hourly Water I	Demand in 20	28 (liter/second)		5.86
Number of Communal Ta	ps in 2007			20
Population per Tap in 200	7			65
Remarks				
Proposed Distribution Pip	pes			
			Outside dia	Pine wall thickn

	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Fipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	225	13.4	198.2	3500
Distribution main 2						
Distribution sub-main 1						
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

R-03

Rayon	Kolkhozabad
Jamoat	Uzun
Water Supply System	Pakhtaaral Street
Year of Construction	1978
Projected Year of Completion	2017
Population in 2007	1800
Projected Population in 2017	2254
Maximum Hourly Water Demand in 2028 (liter/second)	8.09
Number of Communal Taps in 2007	12
Population per Tap in 2007	150
Remarks	

Proposed Distribution Pipes

	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Pipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	450	26.7	396.6	600
Distribution main 2						
Distribution sub-main 1	new	HDPE	250	14.8	220.4	1900
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

(1/9)

Attached Table 8.34

Projected Distribution Pipe Length of the WSSs in the Kolkhozobod Rayon

(2/9)

R-06						
Rayon				Kolkhozabad		
Jamoat				S. Isaeva		
Water Supply System				Central district hos	pital	
Year of Construction				1978	•	
Projected Year of Comple	etion			2020		
Population in 2007				1800		
Projected Population in 2	020			2394		
Maximum Hourly Water		028 (liter/second)	8.09		
Number of Communal Ta		,	, ,	12		
Population per Tap in 200	•			150		
Remarks	,,			100		
Proposed Distribution Pi	nas					
Troposed Distribution Ti	l	1	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Pipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	355	21.1	312.8	900
Distribution main 2			000	2	012.0	000
Distribution sub-main 1	new	HDPE	180	10.7	158.6	1300
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						
	-					

R-07

Rayon	Kolkhozabad
Jamoat	Kalinin
Water Supply System	40 year Oktyabr
Year of Construction	1974
Projected Year of Completion	2018
Population in 2007	3200
Projected Population in 2018	4089
Maximum Hourly Water Demand in 2028 (liter/second)	13.15
Number of Communal Taps in 2007	20
Population per Tap in 2007	160
Remarks	
Proposed Distribution Pipes	
Outsic	e dia Pine wall thickness

	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Pipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	250	14.8	220.4	3200
Distribution main 2						
Distribution sub-main 1						
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

R-09

Rayon	Kolkhozabad
Jamoat	Kalinin
Water Supply System	Uzbekobod Street
Year of Construction	1984
Projected Year of Completion	2013
Population in 2007	2854
Projected Population in 2013	3279
Maximum Hourly Water Demand in 2028 (liter/second)	12.83
Number of Communal Taps in 2007	35
Population per Tap in 2007	82

Remarks

Pro	nosed	Distribution	Pines

	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Pipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	160	9.5	141	1800
Distribution main 2	existing	HDPE	110	6.6	96.8	1600
Distribution sub-main 1	new	HDPE	140	8.3	123.4	2300
Distribution sub-main 2	existing	HDPE	90	5.4	79.2	2000
Distribution sub-main 3	new	HDPE	110	6.6	96.8	2300
Distribution sub-main 4	existing	HDPE	75	4.5	66	1000

R-10							
Rayon				Kolkhozabad			
Jamoat				Madaniyat			
Water Supply System				Qizil-bairak kolkhoz T. Esangulov			
Year of Construction				1985			
Projected Year of Completion 2018							
Population in 2007 1202							
Projected Population in 2018				1536			
Maximum Hourly Water Demand in 2028 (liter/second)				5.4			
Number of Communal Ta				30			
Population per Tap in 200	•			40			
Remarks							
Proposed Distribution Pig	pes						
		D :	Outside dia.	Pipe wall thickness	Inside dia	Length	
	Status	Pipe material	(mm)	(mm)	(mm)	(m)	
Distribution main 1	new	HDPE	160	9.5	141	1500	
Distribution main 2	existing	HDPE	160	9.5	141	1200	
Distribution sub-main 1	new	HDPE	110	6.6		3800	
Distribution sub-main 2	new	HDPE	110	6.6	96.8	3000	
Distribution sub-main 3							

R-11

Distribution sub-main 4

R-11	
Rayon	Kolkhozabad
Jamoat	Madaniyat
Water Supply System	kolkhoz T. Esanqulov
Year of Construction	1978
Projected Year of Completion	2018
Population in 2007	4120
Projected Population in 2018	5264
Maximum Hourly Water Demand in 2028 (liter/second)	16.92
Number of Communal Taps in 2007	30
Population per Tap in 2007	137
Remarks	
Proposed Distribution Pipes	

	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Pipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	355	21.1	312.8	5100
Distribution main 2						
Distribution sub-main 1	new	HDPE	225	13.4	198.2	1000
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

R-12

Rayon	Kolkhozabad
Jamoat	Navobod
Water Supply System	Urtabuz
Year of Construction	1987
Projected Year of Completion	2017
Population in 2007	1300
Projected Population in 2017	1628
Maximum Hourly Water Demand in 2028 (liter/second)	5.86
Number of Communal Taps in 2007	15
Population per Tap in 2007	87
Domarka	

Remarks

Proposed Distribution Pipes

	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Fipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	200	11.9	176.2	1800
Distribution main 2						
Distribution sub-main 1						
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

(3/9)

(4/9)

R-13						
Rayon				Kolkhozabad		
Jamoat				Navobod		
Water Supply System				Qizil Namuna c/fai	m N. Begov	a
Year of Construction				1962		
Projected Year of Comple	etion			2017		
Population in 2007				714		
Projected Population in 20	017			894		
Maximum Hourly Water I	Demand in 2	028 (liter/second))	3.22		
Number of Communal Ta	ps in 2007					
Population per Tap in 200	07					
Remarks						
Proposed Distribution Pip	pes					
	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Fipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	160	9.5	141	5100
Distribution main 2						
Distribution sub-main 1	new	HDPE	90	5.4	79.2	2600
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

R-14

Rayon	Kolkhozabad						
Jamoat			Navobod				
Water Supply System				Andreev collective	farm N.Beg	gova	
Year of Construction				1964			
Projected Year of Comple	tion			2017			
Population in 2007				2274			
Projected Population in 20	017			2847			
Maximum Hourly Water I	Demand in 20	28 (liter/second))	10.22			
Number of Communal Tap	ps in 2007			30			
Population per Tap in 200	17			76			
Remarks							
Proposed Distribution Pip	pes						
	Status	Pine material	Outside dia.	Pipe wall thickness	Inside dia	Ler	

	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Pipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	200	11.9	176.2	6500
Distribution main 2						
Distribution sub-main 1						
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

R-15

Rayon	Kolkhozabad
Jamoat	Tugalang
Water Supply System	Engels of Tugalang Jamoat
Year of Construction	1987
Projected Year of Completion	2012
Population in 2007	2500
Projected Population in 2012	2668
Maximum Hourly Water Demand in 2028 (liter/second)	11.23
Number of Communal Taps in 2007	25
Population per Tap in 2007	100
Remarks	

Proposed Distribution Pipes

	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Pipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	315	18.7	277.6	2100
Distribution main 2						
Distribution sub-main 1	new	HDPE	200	11.9	176.2	900
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

R-16 Rayon Kolkhozabad Jamoat Tugalang Water Supply System Khlopkorob Street Year of Construction 1978 Projected Year of Completion 2018 Population in 2007 590 Projected Population in 2018 754 Maximum Hourly Water Demand in 2028 (liter/second) 2.66 Number of Communal Taps in 2007 18 Population per Tap in 2007 33 Remarks Proposed Distribution Pipes Pipe wall thickness Inside dia Outside dia. Length Status Pipe material (mm) (mm) (mm) (m) Distribution main 1 Distribution main 2 HDPE 140 1800 8.3 123.4 new Distribution sub-main 1 Distribution sub-main 2 Distribution sub-main 2 Distribution sub-main 3 Distribution sub-main 4

R-18

R-18							
Rayon				Kolkhozabad			
Jamoat				Tugalang			
Water Supply System				Lenin jamoat Tuga	lang		
Year of Construction				1978			
Projected Year of Comple	tion			2018			
Population in 2007				1670			
#REF!				2134			
Maximum Hourly Water I	Demand in 20	028 (liter/second)	7.51				
Number of Communal Ta	ps in 2007		25				
Population per Tap in 200	7	67					
Remarks							
Proposed Distribution Pip	pes						
	Status	Ding material	Outside dia.	Pipe wall thickness	Insid		

	Status	Status Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Pipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	180	10.7	158.6	2300
Distribution main 2						
Distribution sub-main 1						
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

R-19

Rayon	Kolkhozabad
Jamoat	Tugalang
Water Supply System	Leningrad jamoat Tugalang
Year of Construction	1987
Projected Year of Completion	2012
Population in 2007	3493
Projected Population in 2012	3926
Maximum Hourly Water Demand in 2028 (liter/second)	14.34
Number of Communal Taps in 2007	28
Population per Tap in 2007	125
Remarks	pump pressurized distribution
Proposed Distribution Pipes	

-	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Pipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	200	11.9	176.2	1100
Distribution main 2						
Distribution sub-main 1	new	HDPE	110	6.6	96.8	3400
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

(5/9)

Attached Table 8.34

Projected Distribution Pipe Length of the WSSs in the Kolkhozobod Rayon

(6/9)

R-23							
Rayon				Kolkhozabad			
Jamoat				Uzun			
Water Supply System				Ittifoq Jumaev co	ollective farm		
Year of Construction				2001			
Projected Year of Comple	etion			2017			
Population in 2007				850			
Projected Population in 2	017			1064			
Maximum Hourly Water		028 (liter/second)	3.83			
Number of Communal Ta			, ,	32			
Population per Tap in 200	•			27			
Remarks							
Proposed Distribution Pi	nes						
		D:	Outside dia.	Pipe wall thicknes	s Inside dia	Length	
	Status	Pipe material	(mm)	(mm)	(mm)	(m)	
Distribution main 1	new	HDPE	125	7	4 110.2	1100	
Distribution main 2							
Distribution sub-main 1							
Distribution sub-main 2							
Distribution sub-main 3							
Distribution sub-main 4							

-	~ •
к-	-24

IX 67	
Rayon	Kolkhozabad
Jamoat	Uzun
Water Supply System	K. Marks
Year of Construction	1987
Projected Year of Completion	2014
Population in 2007	1300
Projected Population in 2014	1527
Maximum Hourly Water Demand in 2028 (liter/second)	5.86
Number of Communal Taps in 2007	5
Population per Tap in 2007	260
Remarks	
Proposed Distribution Pipes	

	Chathar		Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Pipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	315	18.7	277.6	700
Distribution main 2						
Distribution sub-main 1	new	HDPE	200	11.9	176.2	1200
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

R-25

Rayon	Kolkhozabad
Jamoat	Uzun
Water Supply System	Pravda S. Jumaev collective farm
Year of Construction	1978
Projected Year of Completion	2017
Population in 2007	1593
Projected Population in 2017	1994
Maximum Hourly Water Demand in 2028 (liter/second)	7.19
Number of Communal Taps in 2007	30
Population per Tap in 2007	53
Remarks	

Proposed Distribution Pipes

	Status Dina material	Outside dia.	Pipe wall thickness	Inside dia	Length	
	Status	Pipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	250	14.8	220.4	2500
Distribution main 2						
Distribution sub-main 1	new	HDPE	160	9.5	141	3100
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

R–26 Rayon Kolkhozabad Jamoat Kalinin Water Supply System construction village Kalenina Year of Construction 1986 Projected Year of Completion 2018 Population in 2007 3142 Projected Population in 2018 4015 Maximum Hourly Water Demand in 2028 (liter/second) 12.91 Number of Communal Taps in 2007 45 Population per Tap in 2007 70 Remarks Proposed Distribution Pipes Outside dia. Pipe wall thickness Inside dia Length Status Pipe material (mm) (mm) (mm) (m) Distribution main 1 Distribution main 2 Distribution sub-main 1 Distribution sub-main 2 HDPE 180 10.7 158.6 new 3800 Distribution sub-main 2 Distribution sub-main 3 Distribution sub-main 4

R-27

Rayon				Kolkhozabad				
Jamoat	Jamoat				Madaniyat			
Water Supply System				Esanqulov collective farm				
Year of Construction				1985				
Projected Year of Comple	etion			2018				
Population in 2007	Population in 2007				1200			
Projected Population in 2018				1533				
Maximum Hourly Water l	Maximum Hourly Water Demand in 2028 (liter/second)				5.4			
Number of Communal Ta	ps in 2007			12				
Population per Tap in 200)7			100				
Remarks				pump pressurized of	listribution			
Proposed Distribution Pip	pes							
	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length		
	Status	•	(mm)	(mm)	(mm)	(m)		
		LIDDE	1 4 0	0.0	400.4			

			(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	140	8.3	123.4	1800
Distribution main 2						
Distribution sub-main 1	new	HDPE	110	6.6	96.8	4500
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

R-28

Rayon	Kolkhozabad
Jamoat	Navobod
Water Supply System	Chapeav
Year of Construction	1980
Projected Year of Completion	2017
Population in 2007	5510
Projected Population in 2017	6898
Maximum Hourly Water Demand in 2028 (liter/second)	20.9
Number of Communal Taps in 2007	85
Population per Tap in 2007	65
D	

Remarks

Proposed Distribution Pipes

	Status Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length	
	Status	Pipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	355	8.3	338.4	1000
Distribution main 2						
Distribution sub-main 1	new	HDPE	250	14.8	220.4	1300
Distribution sub-main 2	new	HDPE	180	10.7	158.6	5000
Distribution sub-main 3						
Distribution sub-main 4						

(7/9)

Attached Table 8.34

Projected Distribution Pipe Length of the WSSs in the Kolkhozobod Rayon

R-29 Kolkhozabad Rayon Jamoat Tugalang Water Supply System Communist jamoat Tugalang Year of Construction 1987 Projected Year of Completion 2018 Population in 2007 4862 Projected Population in 2018 6212 Maximum Hourly Water Demand in 2028 (liter/second) 19.98 Number of Communal Taps in 2007 25 Population per Tap in 2007 194 Remarks Proposed Distribution Pipes Pipe wall thickness Inside dia Outside dia. Length Status Pipe material (mm) (mm) (mm) (m) Distribution main 1 Distribution main 2 HDPE 400 23.7 352.6 2600 new HDPE 280 16.6 246.8 3800 Distribution sub-main 1 Distribution sub-main 2 new HDPE 140 8.3 123.4 600 new Distribution sub-main 3 Distribution sub-main 4

R-30

R-30	
Rayon	Kolkhozabad
Jamoat	Tugalang
Water Supply System	Galaba jamoat Tugalang
Year of Construction	1987
Projected Year of Completion	2020
Population in 2007	1101
Projected Population in 2020	1464
Maximum Hourly Water Demand in 2028 (liter/second)	4.95
Number of Communal Taps in 2007	26
Population per Tap in 2007	42
Remarks	
Proposed Distribution Pipes	

	Status	Status Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Fipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	160	9.5	141	1900
Distribution main 2						
Distribution sub-main 1						
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

R-34

Rayon	Kolkhozabad
Jamoat	Tugalang
Water Supply System	Shakhtiyor Street of Tugalang
Year of Construction	1987
Projected Year of Completion	2012
Population in 2007	1673
Projected Population in 2012	1880
Maximum Hourly Water Demand in 2028 (liter/second)	7.53
Number of Communal Taps in 2007	38
Population per Tap in 2007	44
Remarks	

Proposed Distribution Pipes

	Status	s Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	ripe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	160	9.5	141	1800
Distribution main 2						
Distribution sub-main 1						
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

(8/9)

R-35						
Rayon				Kolkhozabad		
Jamoat				Uzun		
Water Supply System				Sanoat		
Year of Construction				1988		
Projected Year of Comple	etion			2017		
Population in 2007				1832		
Projected Population in 20	017		2294			
Maximum Hourly Water I	Demand in 20	028 (liter/second)	8.23			
Number of Communal Ta	ps in 2007		75			
Population per Tap in 200	07			24		
Remarks						
Proposed Distribution Pip	pes					
	Status	Pipe material	Outside dia.	Pipe wall thickness	Insid	
	Status	Pipe material	(mm)	(mm)	(m	
Distribution main 1	new	HDPE	250	14.8		

r reposed Bistrication r q	roposed Distribution ripes						
	Status Discusstanial	Outside dia.	Pipe wall thickness	Inside dia	Length		
	Status	Pipe material	(mm)	(mm)	(mm)	(m)	
Distribution main 1	new	HDPE	250	14.8	220.4	800	
Distribution main 2							
Distribution sub-main 1	new	HDPE	180	10.7	158.6	2000	
Distribution sub-main 2	new	HDPE	125	7.4	110.2	1800	
Distribution sub-main 3							
Distribution sub-main 4							

R-36

R-36						
Rayon				Kolkhozabad		
Jamoat				Uzun		
Water Supply System				Pakhtaobod Jamoa	t Uzun	
Year of Construction				1986		
Projected Year of Comple	tion			2017		
Population in 2007				3700		
Projected Population in 20	017			4632		
Maximum Hourly Water I	Demand in 20	028 (liter/second))	15.19		
Number of Communal Ta	ps in 2007		120			
Population per Tap in 200	17			31		
Remarks						
Proposed Distribution Pip	pes					
	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside	
	Status	i ipe illaterial	(mm)	(mm)	(mm	

Proposed Distribution Pipes						
	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Pipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	225	13.4	198.2	2300
Distribution main 2						
Distribution sub-main 1	new	HDPE	110	6.6	96.8	4600
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

R-39

R-39	R-39									
Rayon			Kolkhozabad							
Jamoat				Uzun						
Water Supply System				Mehnatobod Jamoa	at Uzun fron	n S. Jumaev	collective farm			
Year of Construction				1988						
Projected Year of Comple	tion			2017						
Population in 2007				748						
Projected Population in 20	017			936						
Maximum Hourly Water I	Demand in 20	28 (liter/second))	3.38						
Number of Communal Tay	ps in 2007			62						
Population per Tap in 200	17			12						
Remarks										
Proposed Distribution Pipes										
	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length	1			
	Status	ripe material	(mm)	(mm)	(mm)	(m)	1			

	Status	Status Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Fipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	225	13.4	198.2	2300
Distribution main 2						
Distribution sub-main 1	new	HDPE	160	9.5	141	4600
Distribution sub-main 2	new	HDPE	125	7.4	110.2	2500
Distribution sub-main 3						
Distribution sub-main 4						

(9/9)

(1/3)

1100

700

Attached Table 8.35 Projected Distribution Pipe Length of the WSSs in the Dzhilikul Rayon

J-01 Rayon Dzhilikul Dehkanabad Jamoat Water Supply System Agronomy village of Dehkanabad Jamoat Year of Construction 1990 2014 Projected Year of Completion 1138 Population in 2007 1335 Projected Population in 2014 Maximum Hourly Water Demand in 2028 (liter/second) 5.03 Number of Communal Taps in 2007 16 Population per Tap in 2007 71 Remarks Proposed Distribution Pipes

	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	r ipe materiai	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	225	13.4	198.2	1600
Distribution main 2	existing	PVC	160	6.2	147.6	1400
Distribution sub-main 1	new	HDPE	160	9.5	141	2300
Distribution sub-main 2	existing	PVC	110	4.2	101.6	2000
Distribution sub-main 3						
Distribution sub-main 4						

J-03

Rayon	Dzhilikul
Jamoat	Dehkanabad
Water Supply System	Kirov village of Dehkanabad Jamoat
Year of Construction	1990
Projected Year of Completion	2014
Population in 2007	566
Projected Population in 2014	649
Maximum Hourly Water Demand in 2028 (liter/second)	2.5
Number of Communal Taps in 2007	15
Population per Tap in 2007	38
Remarks	

Proposed Distribution Pipes Outside dia. Pipe wall thickness Inside dia Length Status Pipe material (mm) (mm) (mm) (m) HDPE Distribution main 1 new 225 13.4 198.2 Distribution main 2 HDPE Distribution sub-main 1 new 140 8.3 123.4 Distribution sub-main 2 Distribution sub-main 3

J-04

Distribution sub-main 4

3-04
Rayon
Jamoat
Water Supply System
Year of Construction
Projected Year of Completion
Population in 2007
Projected Population in 2014
Maximum Hourly Water Demand in 2028 (liter/second)
Number of Communal Taps in 2007
Population per Tap in 2007
Remarks
Proposed Distribution Pipes

Dzhilikul
Dehkanabad
Moskva village of Dehkanabad Jamoat
1991
2014
672
788
2.98
15
45

	Status	atus Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Fipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	225	13.4	198.2	1100
Distribution main 2						
Distribution sub-main 1	new	HDPE	160	9.5	141.0	1200
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

Attached Table 8.35 Projected Distribution Pipe Length of the WSSs in the Dzhilikul Rayon

(2/3)

J-05							
Rayon				Dzhilikul			
Jamoat				Dehkanabad			
Water Supply System				Kuibeshev village,	Dehkanaba	d Jamoat	
Year of Construction				1990			
Projected Year of Completion				2014			
Population in 2007				1837			
Projected Population in 2014				2154			
Maximum Hourly Water Demand in 2028 (liter/second)				8.15			
Number of Communal Ta	ps in 2007			30			
Population per Tap in 200	17			61			
Remarks							
Proposed Distribution Pip	<i>res</i>						
	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length	
	Status	r ipe materiai	(mm)	(mm)	(mm)	(m)	
Distribution main 1	new	HDPE	250	14.8	220.4	700	
Distribution main 2							
Distribution sub-main 1	new	HDPE	180	10.7	158.6	5900	
Distribution sub-main 2							

J-06

Distribution sub-main 3 Distribution sub-main 4

Rayon	Dzhilikul
Jamoat	Dehkanabad
Water Supply System	Surh Ribhoz village
Year of Construction	1976
Projected Year of Completion	2014
Population in 2007	670
Projected Population in 2014	786
Maximum Hourly Water Demand in 2028 (liter/second)	2.98
Number of Communal Taps in 2007	10
Population per Tap in 2007	67
Remarks	
Proposed Distribution Pipes	

r repelled Brish to anon r ipels								
	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length		
	Status	r ipe materiai	(mm)	(mm)	(mm)	(m)		
Distribution main 1	new	HDPE	180	10.7	158.6	1600		
Distribution main 2								
Distribution sub-main 1								
Distribution sub-main 2								
Distribution sub-main 3								
Distribution sub-main 4								

Dzhilikul Dehkanabad Mirovoy village 1988 2014 1897 2225 8.41 25 76

J-07

a -07
Rayon
Jamoat
Water Supply System
Year of Construction
Projected Year of Completion
Population in 2007
Projected Population in 2014
Maximum Hourly Water Demand in 2028 (liter/second)
Number of Communal Taps in 2007
Population per Tap in 2007
Remarks

Proposed Distribution Pipes

	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Fipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	400	23.7	352.6	400
Distribution main 2						
Distribution sub-main 1	new	HDPE	280	16.6	246.8	2900
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

Attached Table 8.35 Projected Distribution Pipe Length of the WSSs in the Dzhilikul Rayon

(3/3)

J-08	
Rayon	Dzhilikul
Jamoat	Kabadiyon
Water Supply System	area Kabadiyor
Year of Construction	1989
Projected Year of Completion	2014
Population in 2007	4200
Projected Population in 2014	4926
Maximum Hourly Water Demand in 2028 (liter/second)	16.99
Number of Communal Taps in 2007	26
Population per Tap in 2007	162
Remarks	
Proposed Distribution Pipes	

	Status	Status Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	r ipe materiai	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	500	29.7	440.6	1400
Distribution main 2						
Distribution sub-main 1						
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

J-12

	B 1 111
Rayon	Dzhilikul
Jamoat	Nuri Vakhsh
Water Supply System	Ergash Sattarov Kolhoz
Year of Construction	1987
Projected Year of Completion	2014
Population in 2007	3800
Projected Population in 2014	4457
Maximum Hourly Water Demand in 2028 (liter/second)	15.36
Number of Communal Taps in 2007	40
Population per Tap in 2007	95
Remarks	pump pressurized distribution
Proposed Distribution Pipes	

	Status	Status Dina matarial	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Pipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	180	10.7	158.6	8000
Distribution main 2	existing	PVC	160	6.2	147.6	6800
Distribution sub-main 1	new	HDPE	125	7.4	110.2	11700
Distribution sub-main 2	new	HDPE	125	7.4	110.2	10000
Distribution sub-main 3						
Distribution sub-main 4						

J-13

•	
Rayon	Dzhilikul
Jamoat	Nuri Vakhsh
Water Supply System	s/z Moskva k/z E. Satorov
Year of Construction	1987
Projected Year of Completion	2014
Population in 2007	9800
Projected Population in 2014	11494
Maximum Hourly Water Demand in 2028 (liter/second)	34.86
Number of Communal Taps in 2007	75
Population per Tap in 2007	131
Remarks	pump pressurized distribution
Proposed Distribution Pipes	

	Chatria	Dine meterial	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Pipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	280	16.6	246.8	3300
Distribution main 2						
Distribution sub-main 1	new	HDPE	180	10.7	158.6	6600
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

Attached Table 8.36 Projected Distribution Pipe Length of the WSSs in the Kumsangir Rayon

(1/2)

Q-02								
Rayon				Kumsangir				
Jamoat	Krupskaya	Krupskaya						
Water Supply System	Drinkable							
Year of Construction				1985				
Projected Year of Comple	etion			2013				
Population in 2007				1112				
Projected Population in 20	013			1275				
Maximum Hourly Water	Demand i	n 2028 (liter/se	econd)	4.92				
Number of Communal Ta	ps in 200	7		26				
Population per Tap in 200	07			43				
Remarks				pump pressurized distribution				
Proposed Distribution Pip	pes							
	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length		
	Status	Fipe material	(mm)	(mm)	(mm)	(m)		
Distribution main 1	new	PVC	110	4.2	101.6	400		
Distribution main 2	existing	PVC	110	4.2	101.6	2600		
Distribution sub-main 1								
Distribution sub-main 2								
Distribution sub-main 3								

Q-03

Distribution sub-main 4

Vumaanain
Kumsangir
Krupskaya
Drinkable
1986
2013
1255
1439
5.56
30
42

Proposed Distribution Pipes

	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	ripe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	110	6.6	96.8	3000
Distribution main 2	existing	HDPE	110	6.6	96.8	2600
Distribution sub-main 1	new	HDPE	90	5.4	79.2	3000
Distribution sub-main 2	new	HDPE	90	5.4	79.2	2600
Distribution sub-main 3						
Distribution sub-main 4						

Q-04

Rayon
Jamoat
Water Supply System
Year of Construction
Projected Year of Completion
Population in 2007
Projected Population in 2013
Maximum Hourly Water Demand in 2028 (liter/second)
Number of Communal Taps in 2007
Population per Tap in 2007
Remarks
Proposed Distribution Pipes

Kumsangir Pyanj Lenin kolkhoz of Qumsangir village 1987 2013 11979 13733 40.46 88 136 pump pressurized distribution

r toposed Bistito atton r q	000					
	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	r ipe materiai	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	280	16.6	246.8	19500
Distribution main 2	existing	PVC	225	8.6	207.8	17000
Distribution sub-main 1	new	HDPE	200	11.9	176.2	20600
Distribution sub-main 2	existing	PVC	160	6.3	147.4	18000
Distribution sub-main 3						
Distribution sub-main 4						

Attached Table 8.36 Projected Distribution Pipe Length of the WSSs in the Kumsangir Rayon

(2/2)

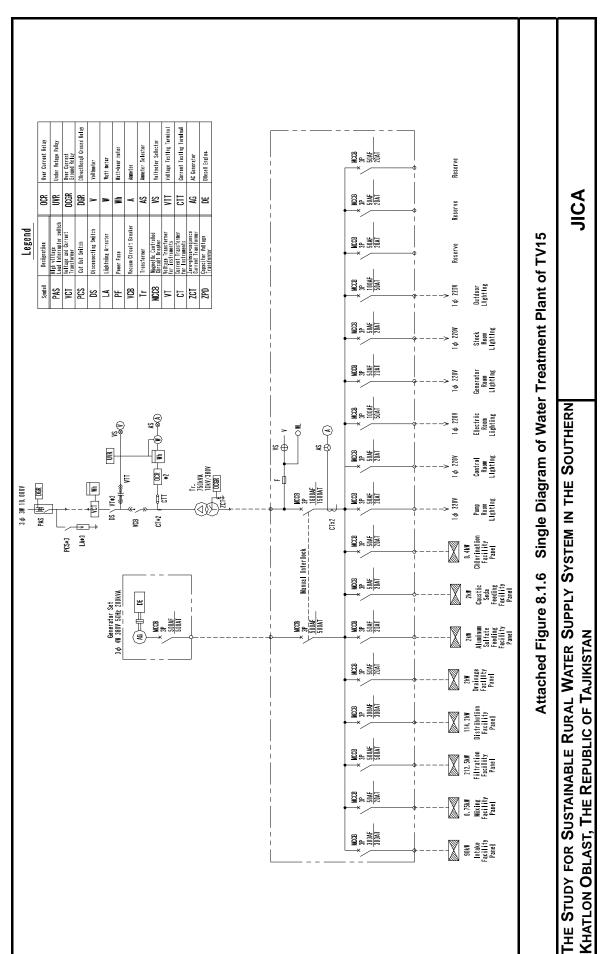
Q-05								
Rayon				Kumsangir				
Jamoat		Telman						
Water Supply System		drinkable						
Year of Construction		1988						
Projected Year of Comple	2013							
Population in 2007	8496							
Projected Population in 2	013			9740				
Maximum Hourly Water	30.28							
Number of Communal Ta	35							
Population per Tap in 200	243							
Remarks				pump pressurized of	distribution			
Proposed Distribution Pi	pes							
	Status	Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length		
	Status	r ipe materiai	(mm)	(mm)	(mm)	(m)		
Distribution main 1	new	HDPE	250	14.8	220.4	1100		
Distribution main 2								
Distribution sub-main 1	new	HDPE	200	11.9	176.2	2300		
Distribution sub-main 2	new	HDPE	125	7.4	110.2	4600		
Distribution sub-main 3								
Distribution sub-main 4								

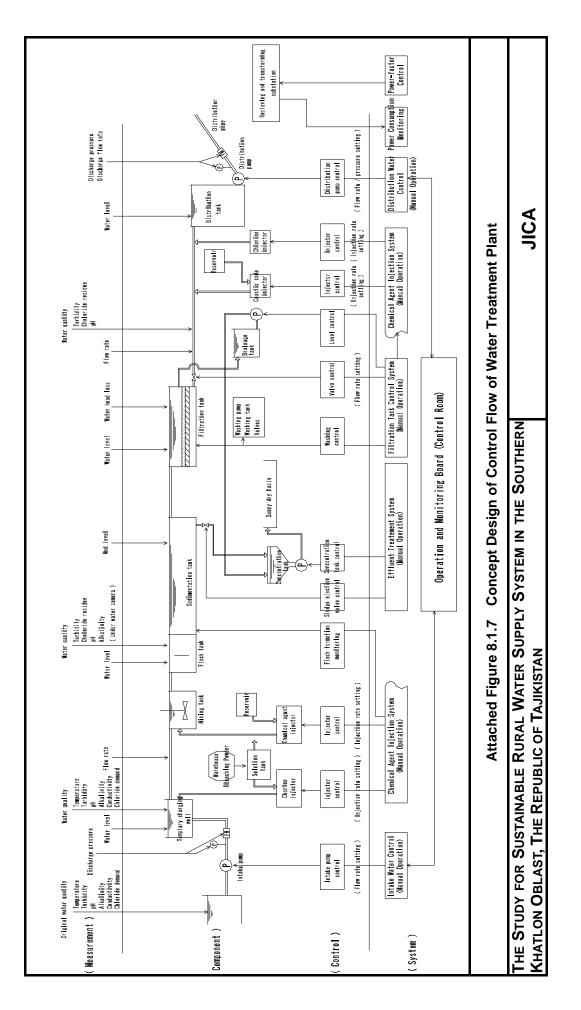
Q-06

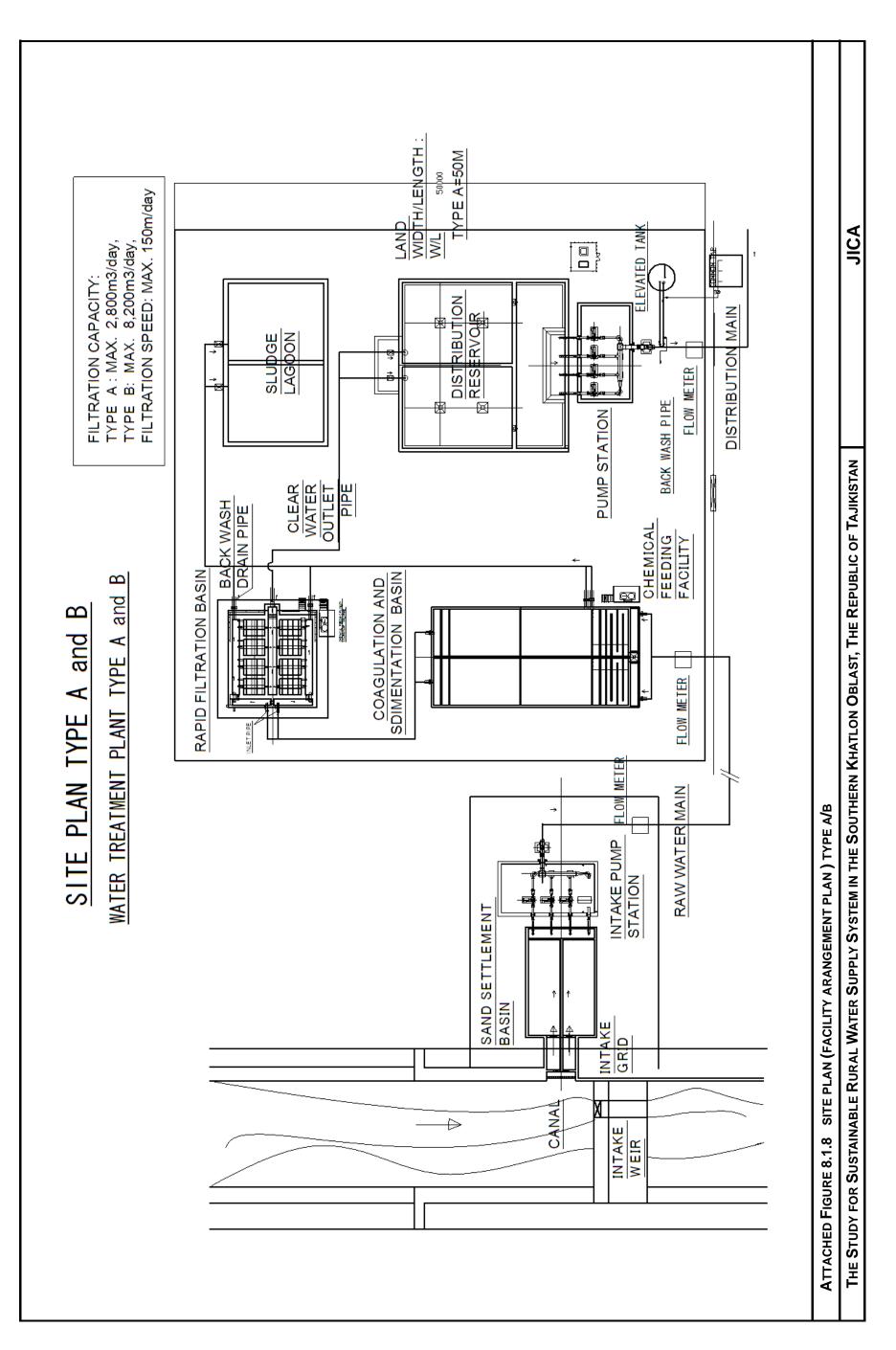
Rayon	Kumsangir
Jamoat	Krupskaya
Water Supply System	village Udarnik
Year of Construction	1987
Projected Year of Completion	2013
Population in 2007	1534
Projected Population in 2013	1759
Maximum Hourly Water Demand in 2028 (liter/second)	6.79
Number of Communal Taps in 2007	40
Population per Tap in 2007	38
Remarks	
Proposed Distribution Pipes	

	Status	Dine motorial	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status	Pipe material	(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	140	8.3	123.4	3400
Distribution main 2						
Distribution sub-main 1	new	HDPE	110	6.6	96.8	3200
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

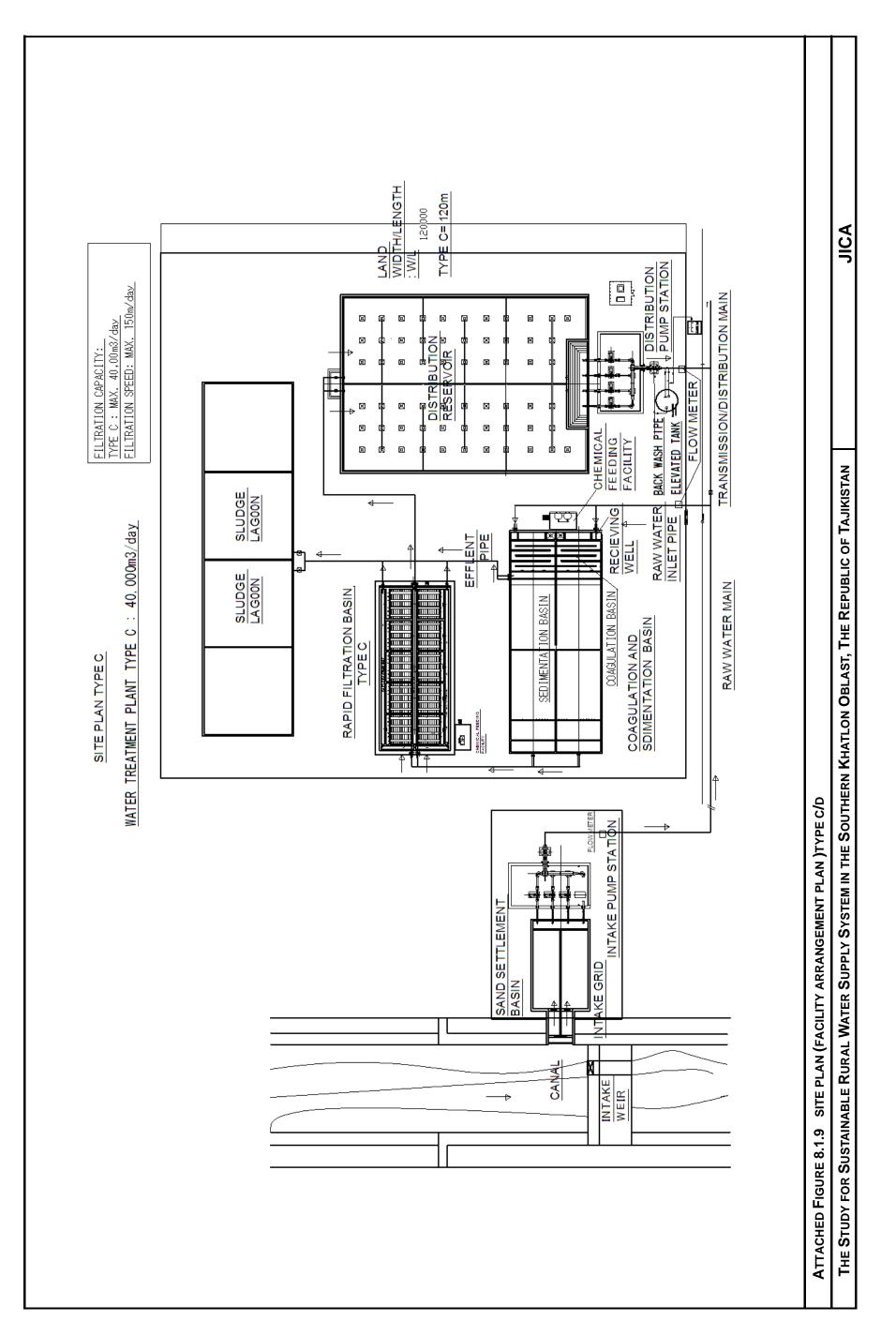
Q-07

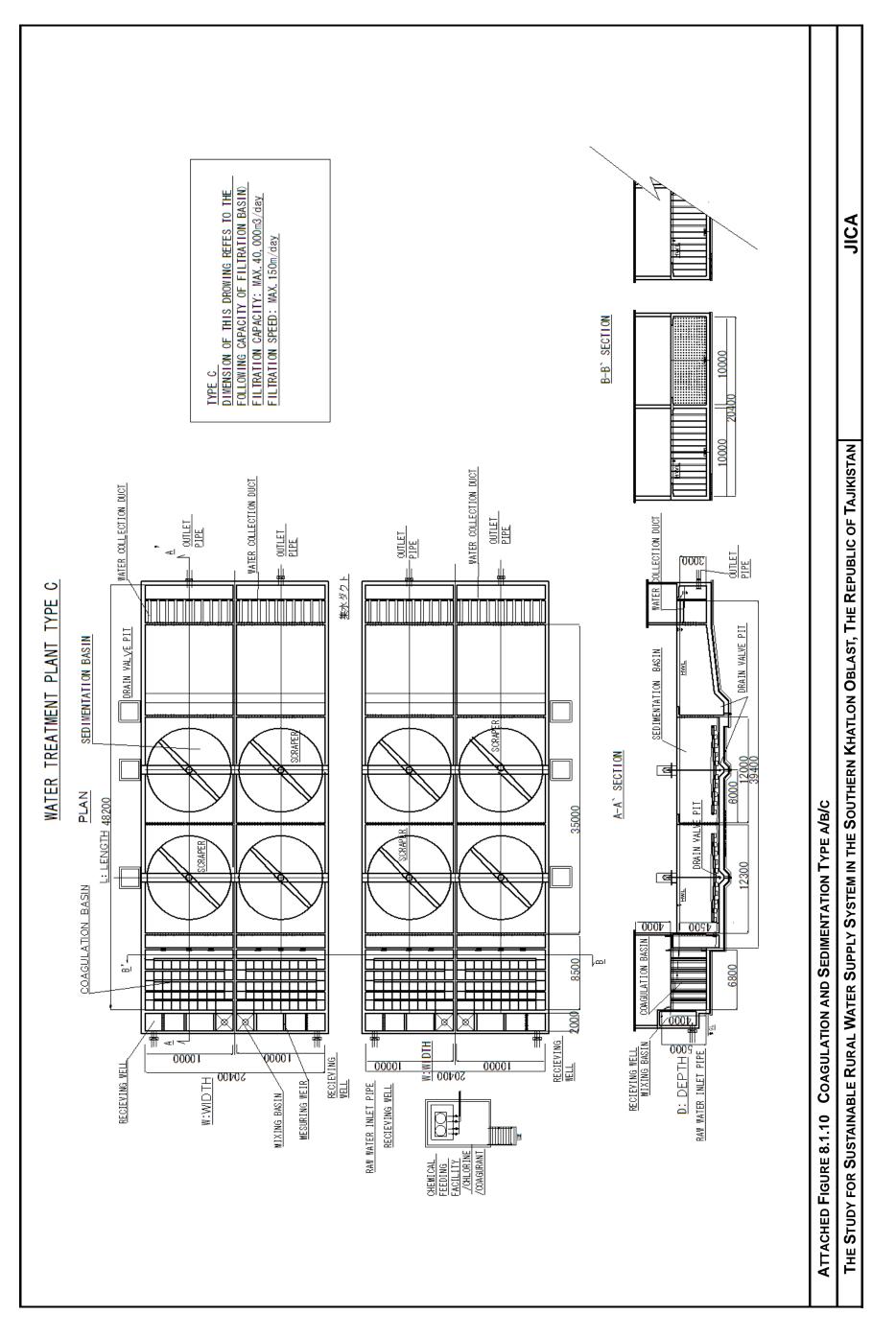

Q-07	
Rayon	Kumsangir
Jamoat	Krupskaya
Water Supply System	Drinkable
Year of Construction	1985
Projected Year of Completion	2013
Population in 2007	1749
Projected Population in 2013	2005
Maximum Hourly Water Demand in 2028 (liter/second)	7.77
Number of Communal Taps in 2007	24
Population per Tap in 2007	73
Remarks	pump pressurized distribution
Proposed Distribution Pines	

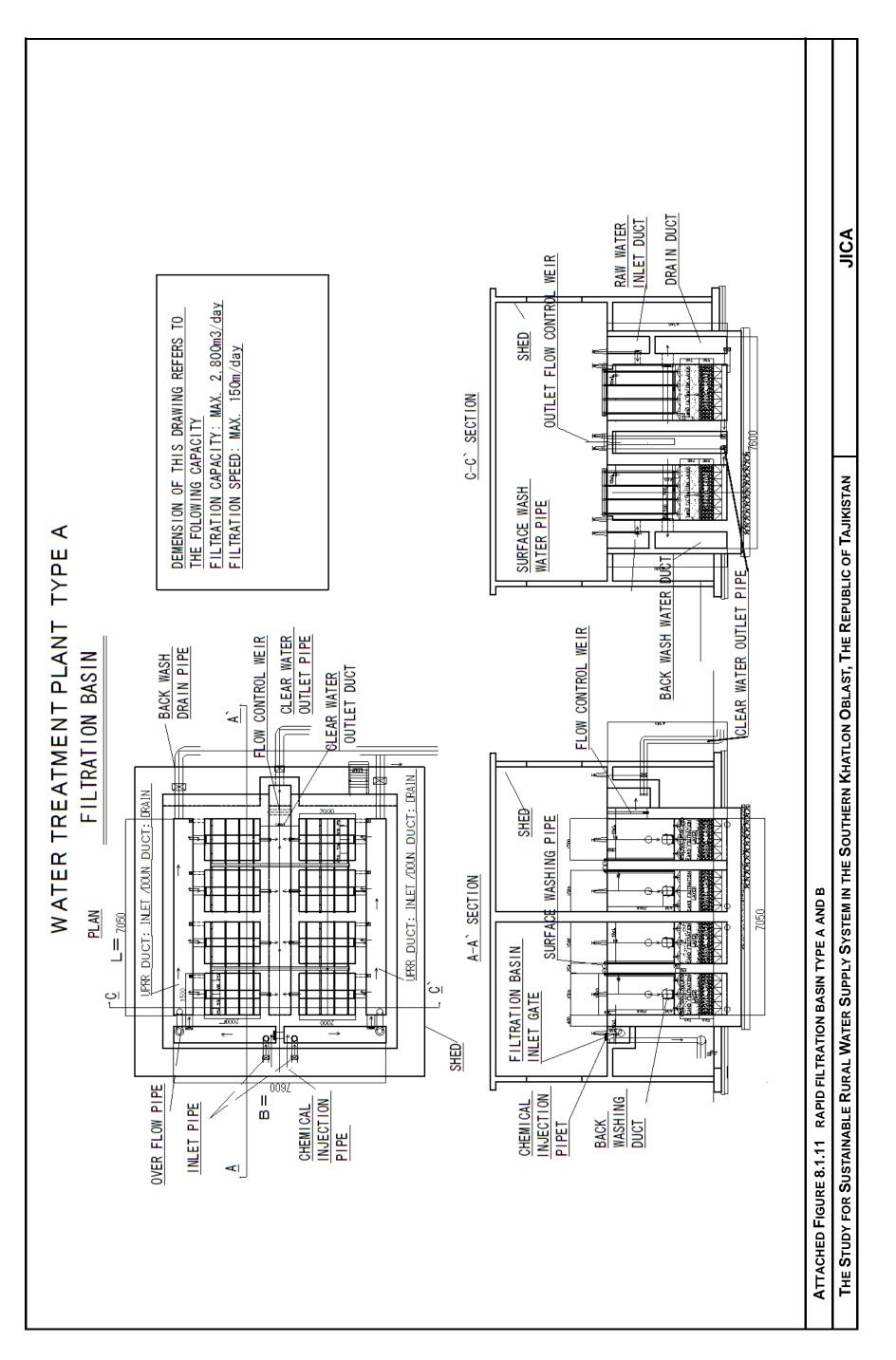

Proposed Distribution Pi	pes					
	Status	Status Pipe material	Outside dia.	Pipe wall thickness	Inside dia	Length
	Status		(mm)	(mm)	(mm)	(m)
Distribution main 1	new	HDPE	140	8.3	123.4	2800
Distribution main 2	existing	HDPE	110	6.6	96.8	2400
Distribution sub-main 1						
Distribution sub-main 2						
Distribution sub-main 3						
Distribution sub-main 4						

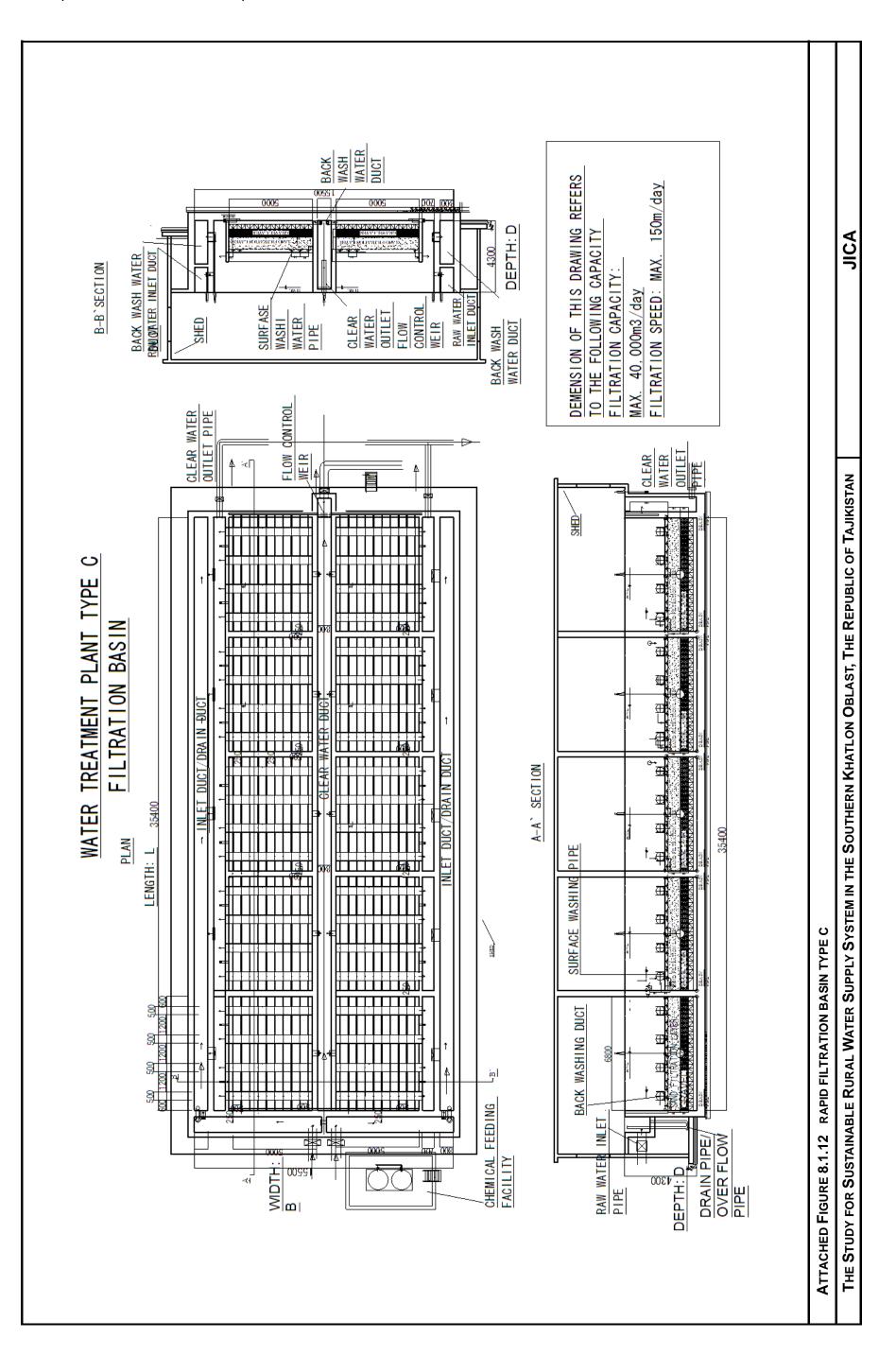

3 CHAPTER 8 REHABILITATION AND EXPANSION PLAN OF THE VAKHSH CONDUITS

Appendix Detail of Rehabilitation and extension Plan for the Vakhsh Conduits

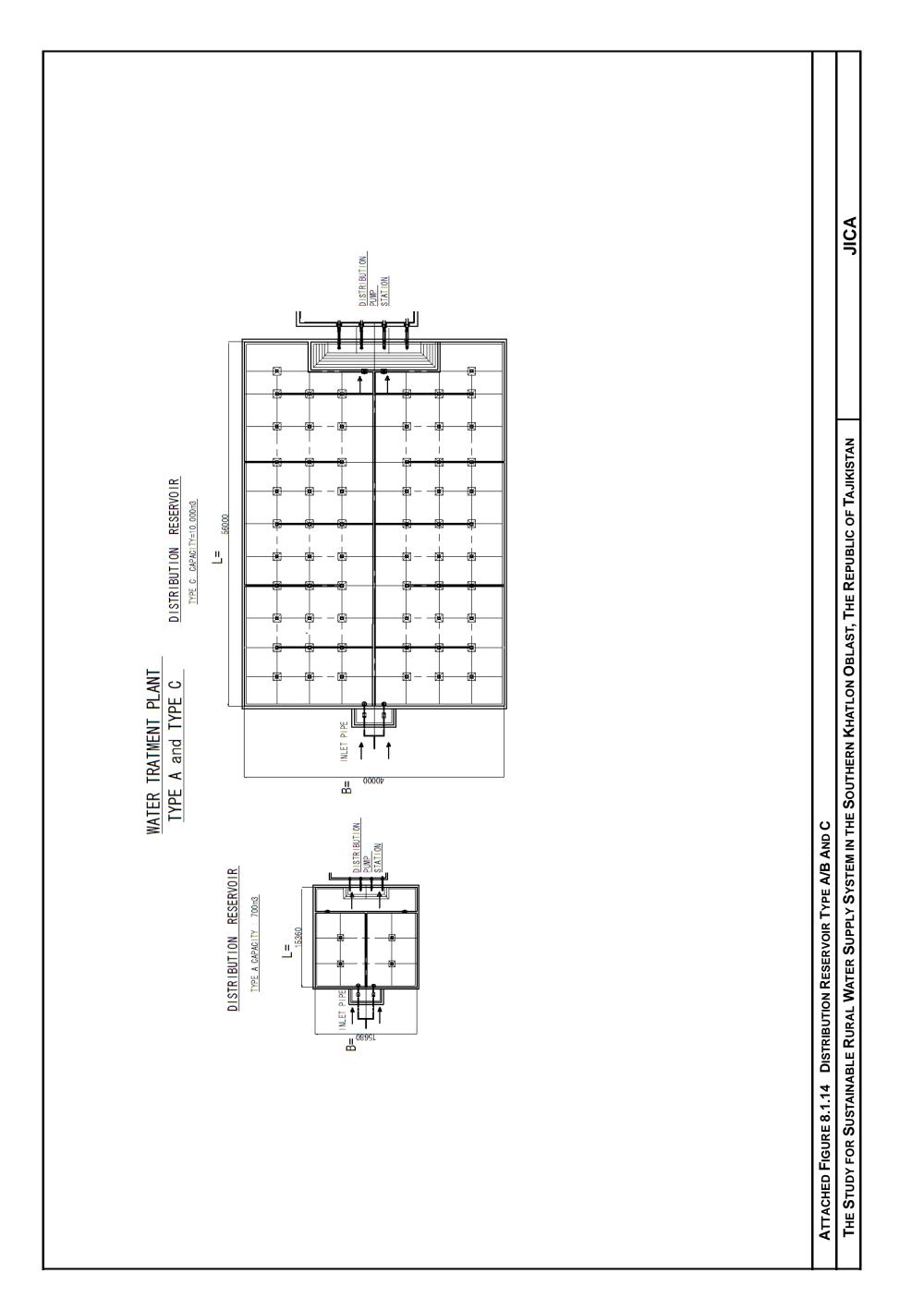

(2) Attached Figures




8 - 90

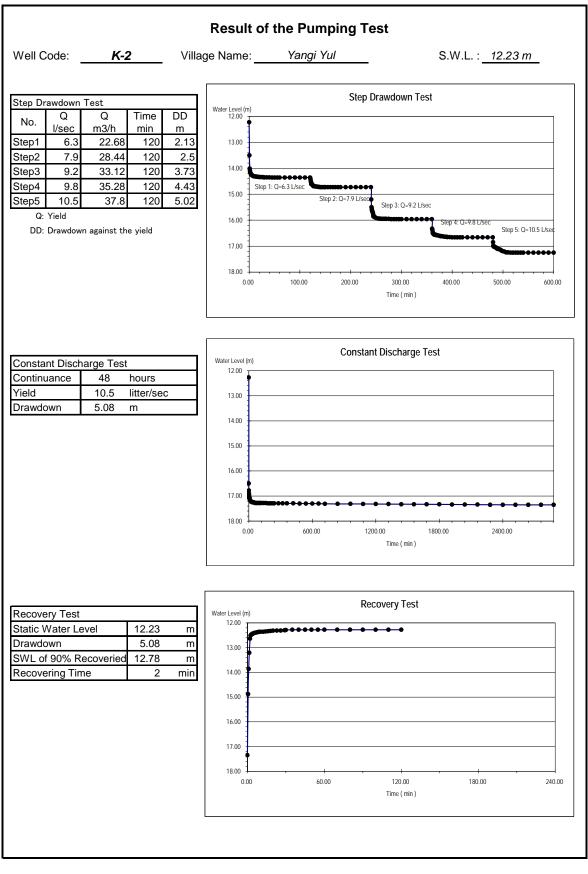

8 - 91

8 - 92


8 - 93

8 - 94

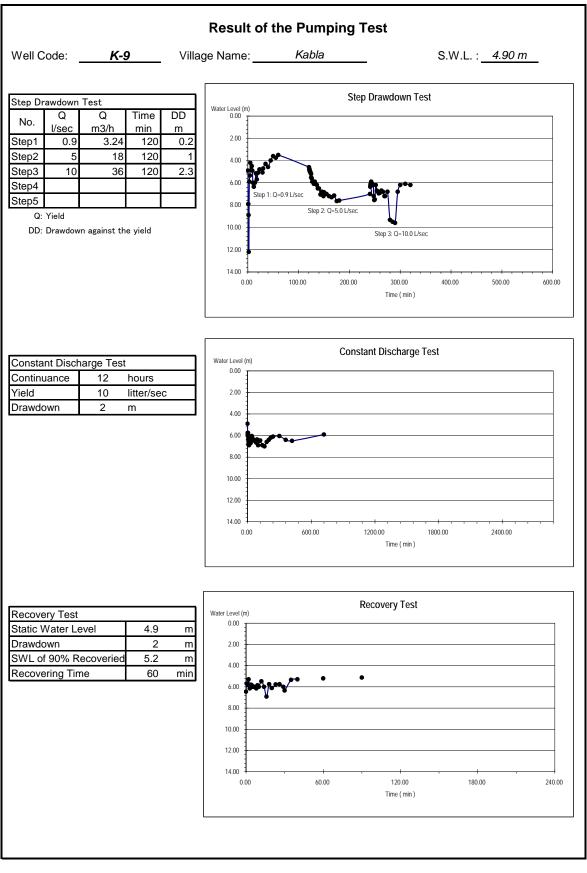
8 - 95


4 CHAPTER 9 REHABILITATION AND EXPANSION PLAN OF RURAL WATER SUPPLY SYSTEM

Attached Figures

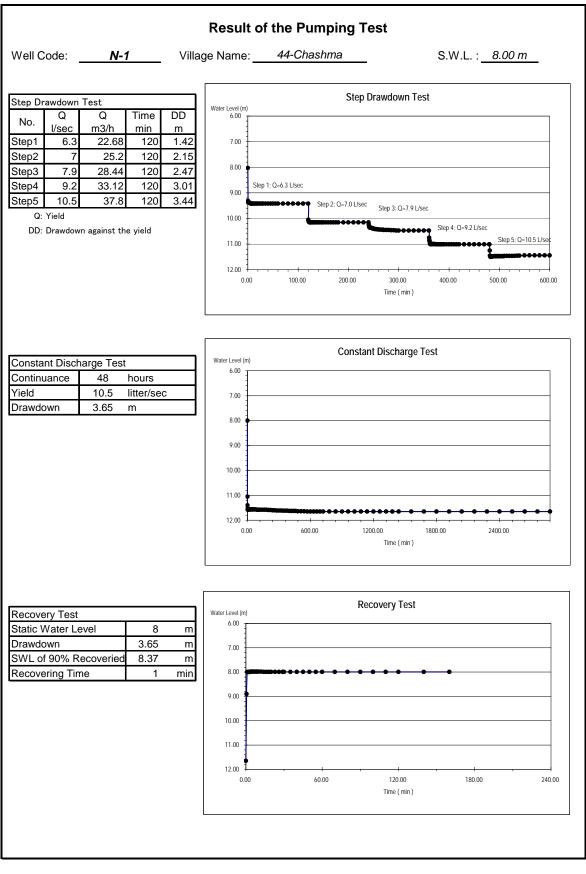
- (1) **Results of Pumping Test**
- (2) Rehabilitation and Expansion Plan
- (3) Design of Facility Structure

4 CHAPTER 9 REHABILITATION AND EXPANSION PLAN OF RURAL WATER SUPPLY SYSTEM


Attached Figures (1) Results of Pumping Test

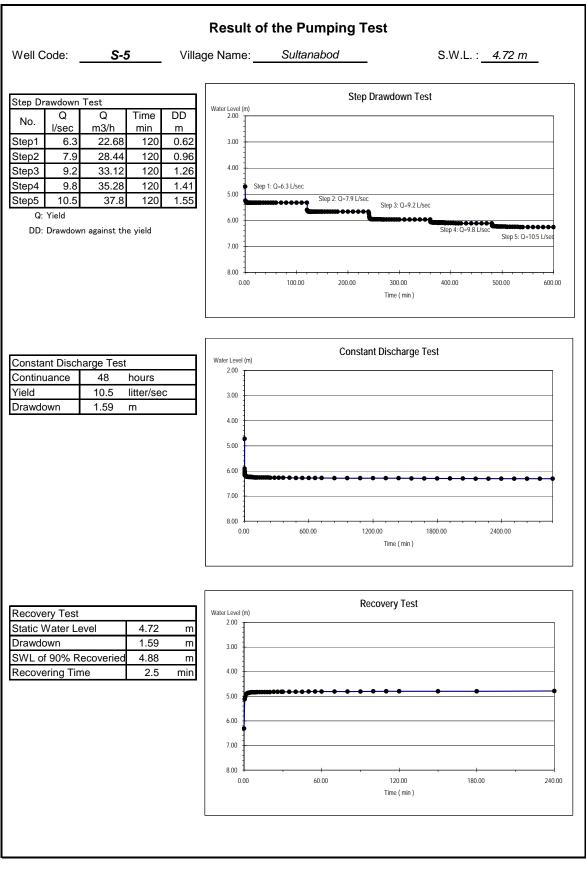
Result of Pumping Test (K-2)

ell Code: K-	5	Villa	ge Name:	Navruz			S.W.L.	: <u> </u>)
					Step [Drawdown Te	st		
ep Drawdown Test	Time	DD	Water Level (m) 2.00						
No. l/sec m3/h	min	m	3.00						
ep1 4.1 14.76	120	5.29	4.00						
ep2 4.8 17.28	120	6.63	5.00						
ep3 5.1 18.36		7.29	6.00						
ep4 6 21.6		7.48	7.00						
ep5 6.2 22.32	120	7.61	8.00 Step-	1: Q=4.1 L/sec					
Q: Yield DD: Drawdown against th	vield		9.00	Step 2:	Q=4.8 L/sec				
	ic yield		10.00			Step 3: Q=5.1 L/s	ec Step 4: Q=6.0	L/sec Step 5: Q	=6.2.1./sec
			11.00					***	
			12.00	100.00	200.00	300.00	400.00	500.00	
			0.00	100.00	200.00	Time (min)	400.00	500.00	600.00
nstant Discharge Test			Water Level (m)		Constar	It Discharge	ſest		
Instant Discharge Test	hours		2.00						
eld 6.2	litter/sec	;	3.00						
awdown 7.65	m		4.00						
			5.00						
			6.00						
			8.00						
			9.00						
			10.00						
			11.00						
			12.00						
			0.00	600.00	120	00.00 Time (min)	1800.00	2400.00	
			[
covery Test			Water Level (m)		Ree	covery Test			
atic Water Level	3.78	m	2.00						
awdown	7.65	m	4.00		• • •	• • •	•	•	
VL of 90% Recoveried		m	5.00						
covering Time	6	min	6.00						
			7.00						
			8.00						
			9.00						
			10.00						
			11.00						
			12.00 1	60.00		120.00	18	0.00	240.00
						Time (min)			


Result of Pumping Test (K-5)

Attached Figure-9.3

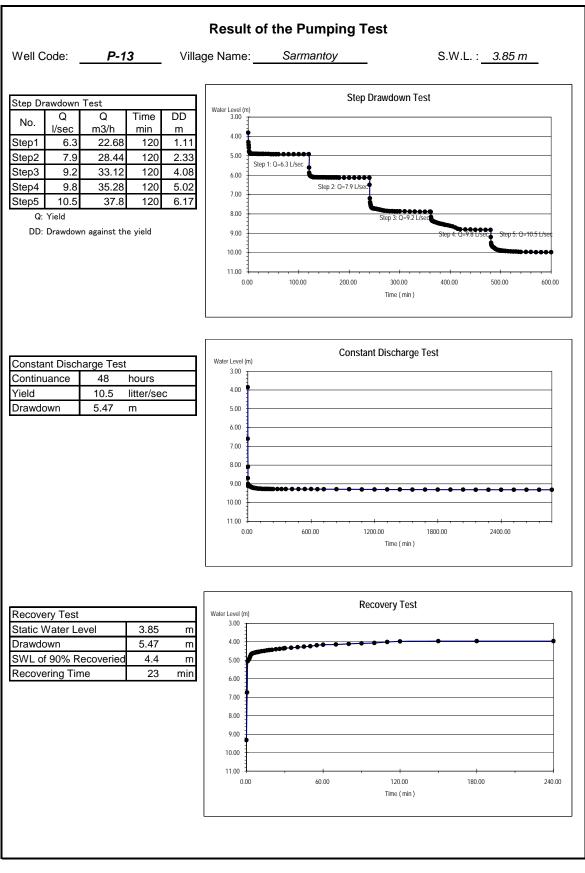
Result of Pumping Test (K-9)


Step3 9.2 33.12 120 1.57 Step4 9.8 35.28 120 1.82 Step5 10.5 37.8 120 1.92 Q: Yield DD: Drawdown against the yield 14.00 15.00 16.00 0.00 16.00 0.00 Constant Discharge Test 0.00 0.00 Continuance 48 hours 9.00 Vield 10.5 litter/sec 10.00 Orawdown 2.01 m 10.00	Step Drawdown Test O-6.3 L/sec Step 2: O-7.9 L/sec Step 2: O-7.9 L/sec Step 3: O-9.2 L/sec Step 4: O-9.8 L/sec Step 5: O-10.5 L/sec 100.00 200.00 300.00 400.00 500.00 600 Time (min) Constant Discharge Test
No. Q Q Time DD Step1 6.3 22.68 120 0.87 Step2 7.9 28.44 120 1.16 Step3 9.2 33.12 120 1.57 Step5 10.5 37.8 120 1.92 Q: Yield DD: Drawdown against the yield 14.00 15.00 DD: Drawdown against the yield 15.00 16.00 0.00 Constant Discharge Test 0.00 0.00 10.00 Grend 10.5 litter/sec 10.00 10.00 0.00 10.00 10.00 10.00 10.00	Step 2: Q=7.9 L/sec Step 3: Q=9.2 L/sec Step 4: Q=9.8 L/sec—Step 5: Q=10.5 L/sec 100.00 200.00 300.00 400.00 500.00 600 Time (min)
No. I/sec m3/h min m Step1 6.3 22.68 120 0.87 Step2 7.9 28.44 120 1.16 Step3 9.2 33.12 120 1.57 Step5 10.5 37.8 120 1.92 Q: Yield DD: Drawdown against the yield 14.00 15.00 16.00 0.00 15.00 16.00 0.00 Constant Discharge Test 0.00 0.00 0.00 0.00	Step 2: Q=7.9 L/sec Step 3: Q=9.2 L/sec Step 4: Q=9.8 L/sec—Step 5: Q=10.5 L/sec 100.00 200.00 300.00 400.00 500.00 600 Time (min)
Step1 6.3 22.68 120 0.87 Step2 7.9 28.44 120 1.16 Step3 9.2 33.12 120 1.57 Step4 9.8 35.28 120 1.82 Step5 10.5 37.8 120 1.92 Q: Yield DD: Drawdown against the yield 14.00 15.00 16.00 0.00 0.00 16.00 0.00 Constant Discharge Test 0.00 0.00 10.00 10.00 Continuance 48 hours 9.00 10.00 10.00 10.00 10.5 litter/sec 9.00 10.00 10.00	Step 2: Q=7.9 L/sec Step 3: Q=9.2 L/sec Step 4: Q=9.8 L/sec—Step 5: Q=10.5 L/sec 100.00 200.00 300.00 400.00 500.00 600 Time (min)
Constant Discharge Test Continuance 48 Mark 10.5 Water Level (m) 0.00	Step 2: Q=7.9 L/sec Step 3: Q=9.2 L/sec Step 4: Q=9.8 L/sec—Step 5: Q=10.5 L/sec 100.00 200.00 300.00 400.00 500.00 600 Time (min)
Step4 9.8 35.28 120 1.82 Step5 10.5 37.8 120 1.92 Q: Yield DD: Drawdown against the yield 14.00 15.00 DD: Drawdown against the yield 16.00 0.00 Water Level (m) Constant Discharge Test Continuance 48 hours Vield 10.5 litter/sec Drawdown 2.01 m	Step 2: Q=7.9 L/sec Step 3: Q=9.2 L/sec Step 4: Q=9.8 L/sec—Step 5: Q=10.5 L/sec 100.00 200.00 300.00 400.00 500.00 600 Time (min)
Step5 10.5 37.8 120 1.92 Q: Yield 13.00 14.00 14.00 DD: Drawdown against the yield 16.00 16.00 16.00 Constant Discharge Test 0.00 0.00 16.00 0.00 Constant Discharge Test 0.00 10.00 10.00 10.00 Yield 10.5 litter/sec 10.00 10.00 10.00	Step 2: Q=7.9 L/sec Step 3: Q=9.2 L/sec Step 4: Q=9.8 L/sec—Step 5: Q=10.5 L/sec 100.00 200.00 300.00 400.00 500.00 600 Time (min)
Step5 10.5 37.8 120 1.92 Q: Yield 13.00 14.00 14.00 DD: Drawdown against the yield 15.00 16.00 16.00 Constant Discharge Test 0.00 0.00 0.00 Continuance 48 hours 9.00 10.00 Vield 10.5 litter/sec 10.00 10.00	Step 2: O=7.9 L/sec Step 3: O=9.2 L/sec Step 4: O=9.8 L/sec=Step 5: O=10.5 L/sec 100.00 200.00 300.00 400.00 500.00 600 Time (min)
DD: Drawdown against the yield DD: Drawdown against the yield Constant Discharge Test Continuance 48 hours field 10.5 litter/sec Drawdown 2.01 m	100.00 200.00 300.00 400.00 500.00 600 Time (min)
Constant Discharge Test 15.00 Continuance 48 Yield 10.5 Drawdown 2.01	Time (min)
Constant Discharge Test Water Level (m) Continuance 48 hours Yield 10.5 litter/sec Orawdown 2.01 m	Time (min)
Constant Discharge Test Water Level (m) Continuance 48 hours Yield 10.5 litter/sec Orawdown 2.01 m	Time (min)
Constant Discharge Test Water Level (m) Continuance 48 hours Vield 10.5 litter/sec Orawdown 2.01 m	Time (min)
Continuance 48 hours 9.00 Yield 10.5 litter/sec 10.00 Drawdown 2.01 m 10.00	
Continuance 48 hours 9.00 /ield 10.5 litter/sec 10.00 Drawdown 2.01 m 10.00	Constant Discharge Test
Continuance48hoursYield10.5litter/secDrawdown2.01m	Constant Discharge Test
Continuance 48 hours 9.00 Yield 10.5 litter/sec 10.00 Drawdown 2.01 m 10.00	Constant Discharge Test
Continuance 48 hours 9.00 Vield 10.5 litter/sec 10.00 Drawdown 2.01 m 10.00	Constant Discharge Test
Continuance48hours800/ield10.5litter/sec9.00Orawdown2.01m10.00	
Yield 10.5 litter/sec 9.00 Drawdown 2.01 m 10.00	
Drawdown 2.01 m 10.00	
/ ·	
11.00	
12.00	
13.00	
14.00	
15.00	
16.00	
0.00	600.00 1200.00 1800.00 2400.00
	Time (min)
	Recovery Test
Recovery Test Water Level (m)	Recovery rest
Static Water Level 10.49 m	
Drawdown 12.5 m 9.00	
SWL of 90% Recoveried 10.69 m 10.00	
Recovering Time 6 min 11.00	*******
12.00	
13.00	
14.00	
15.00	
16.00	
0.00	60.00 120.00 180.00 240
	Time (min)

Result of Pumping Test (N-1)

Vell Code: <u>S-4</u>	Village Name:	Vatan			S.W.L.	: <u>2.80 m</u>	
			Ctop [Drawdown Te	-+		
Step Drawdown Test	D Water Level (m)		Stept		51		
No. Q Q Time D I/sec m3/h min m	n 0.00						
	.73 1.00						
Step2 7 25.2 120 0	.83						
	.07						
		1: Q=6.3 L/sec	Q=7.0 L/sec				
tep5 10.5 37.8 120 1 Q: Yield	.28			Step 3: Q=7.9 L/s			
DD: Drawdown against the yield	4.00					9.2 L/sec Step 5: Q	=10.5 L/sec
	5.00						
	6.00	100.00	200.00	300.00	400.00	500.00	600.00
	0.00	100.00	200.00	Time (min)	400.00	500.00	000.00
Constant Discharge Test	Water Level (m)		Constar	nt Discharge 1	Test		
Continuance 48 hours	0.00						
ield 10.5 litter/sec	1.00						
Prawdown 1.32 m	1.00						
•	2.00						
	2 00						
	3.00						
	4.00			•••••	•••	• • • •	
	5.00						
	6.00			+			
	0.00	600.00	120	0.00 Time (min)	1800.00	2400.00	
ecovery Test	Water Level (m)		Re	covery Test			
tatic Water Level 2.8	m 0.00						
Prawdown 1.32	m 1.00						
WL of 90% Recoveried 2.93	m						
ecovering Time 3 i	nin 2.00						
	3.00		• • •	• • •			
	4.00						
	5.00						
	6.00	60.00		120.00	19	80.00	240.00
	0.00	55.00		Time (min)	10		2 70.00

Result of Pumping Test (S-4)

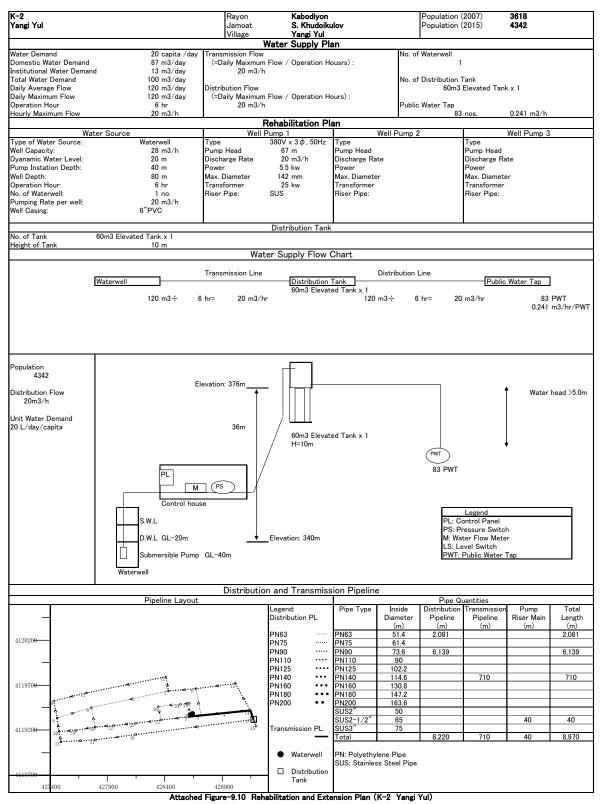

Attached Figure-9.7

Result of Pumping Test (S-5)

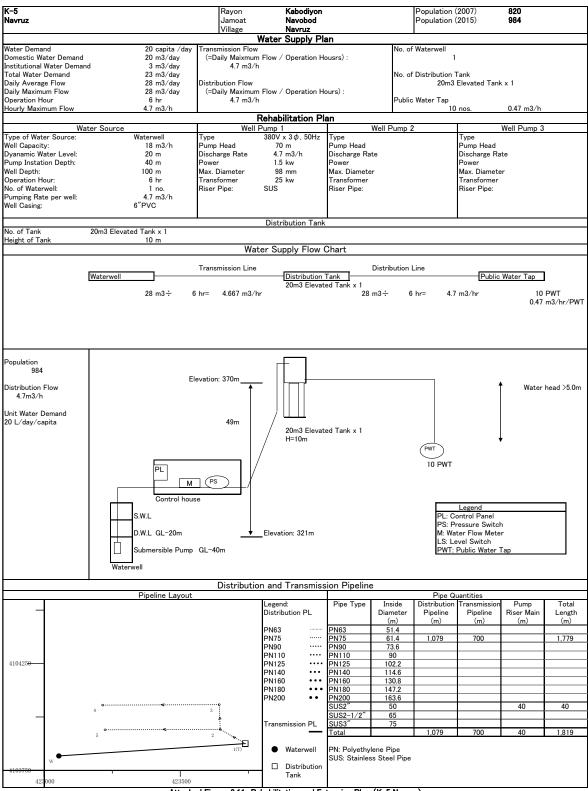
Step Drawdown Test No. V/sec Main	600.00
No. l/sec m3/h min m Step1 1 3.6 120 0.21 Step3 5 18 120 1.35 Step4 7 25.2 120 1.46 Step5 10 36 120 1.51 Q: Yield DD: Drawdown against the yield Step 2: 0-30 L/sec Step 4: 0-70 L/sec Step 5: 0-10.01 Constant Discharge Test 0.00 100.00 200.00 300.00 400.00 500.00 Constant Discharge Test 0.00 100.00 200.00 300.00 400.00 500.00 Tield 10 litter/sec 30 40 40 40 40 40 40 40 500 500.00 500	
Constant Discharge Test Constant Discharge Test Constant Discharge Test 000 Cond 000	
Step3 5 18 120 1.35 Step4 7 25.2 120 1.46 Step5 10 36 120 1.51 Q: Yield DD: Drawdown against the yield Step 3: 0 = 5.0 L/sec Step 4: 0 = 7.0 L/sec Step 5: 0 = 1001 Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Orawdown 1.28 m Aug Aug Aug Aug Aug Mater Level (m) Constant Discharge Test Drawdown 1.28 m Aug Aug Aug Aug Aug Step 3: 0 = 0 Discharge Test Discharge Test Discharge Test Discharge Test Discharge Test Discharge Test Discharge Test Discharge Test Discharge Test Discharge Test Discharge Test Discharge Test Discharge Test Discharge Test Discharge Test Discharge Test Discharge Test Discharge Test Discharge Test Discharge Test Discharge Test	
Step 4 7 25.2 120 1.46 Step 5 10 36 120 1.51 Q: Yield DD: Drawdown against the yield Step 3: Q=5.0 Usec Step 4: Q=7.0 L/Sec Step 5: Q=1001 Step 3: Q=5.0 Usec Step 4: Q=7.0 L/Sec Step 5: Q=1001 Step 5: Q=1001 Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant Discharge Test Constant	
Step5 10 36 120 1.51 Q: Yield DD: Drawdown against the yield 600 600 600 7.00 200.00 300.00 400.00 500.00 Constant Discharge Test 000 100.00 200.00 300.00 400.00 500.00 Water Level (m) 000 000 100.00 200.00 300.00 400.00 500.00 Constant Discharge Test 000	
Q: Yield DD: Drawdown against the yield DD: Drawdown against the yield	
Constant Discharge Test Constant Discharge Test Continuance 48 hours Yield 10 Drawdown 1.28 m	600.00
Constant Discharge Test Constant Discharge Test Constant Discharge Test 0.0 Constant Discharge Test 0.0 Vater Level (m) 0.0 3.00 10.00 10.01 100 10.02 100	600.00
0.00 100.00 200.00 300.00 400.00 500.00 Time (min) Time (min) Constant Discharge Test Image: Test (min) Image: Test (min) Sontinuance 48 hours Image: Test (min) Image: Test (min) Sontinuance 48 hours Image: Test (min) Image: Test (min) Sontinuance 10 litter/sec Image: Test (min) Image: Test (min) Sontinuance 1.28 Image: Test (min) Image: Test (min) Sontinuance 5.00 Image: Test (min) Image: Test (min)	600.00
Constant Discharge Test Constant Discharge Test Continuance 48 Yield 10 Drawdown 1.28 Mater Level (m)	600.00
Constant Discharge Test Constant Discharge Test Constant Discharge Test Vater Level (m) 2.0 3.00 3.00 Jorawdown 1.28 5.00 5.00	
Constant Discharge Test Water Level (m) Continuance 48 hours /ield 10 litter/sec Drawdown 1.28 m	
Constant Discharge Test Water Level (m) Continuance 48 hours /ield 10 litter/sec Drawdown 1.28 m	
Constant Discharge Test Water Level (m) Continuance 48 hours /ield 10 litter/sec Drawdown 1.28 m 5.00 5.00	
Water Level (m) Continuance 48 hours Yield 10 litter/sec Drawdown 1.28 m	
Continuance 48 hours /ield 10 litter/sec Drawdown 1.28 m 4.00 5.00	
Drawdown 1.28 m 4.00 5.00	
4.00 5.00	_
5.00	
7.00 8.00 0.00 600.00 1200.00 1200.00 1200.00 1800.00 2400.00 Time (min)	
Recovery Test Static Water Level 3.29 m	
Drawdawn 1 29 m	
SWL of 90% Recoveried 3.6 m	\neg
Recovering Time 4 min 4.00	\neg
5.00	
6.00	
7.00	
8.00	
0.00 60.00 120.00 180.00	240.00
Time (min)	

Attached Figure-9.8

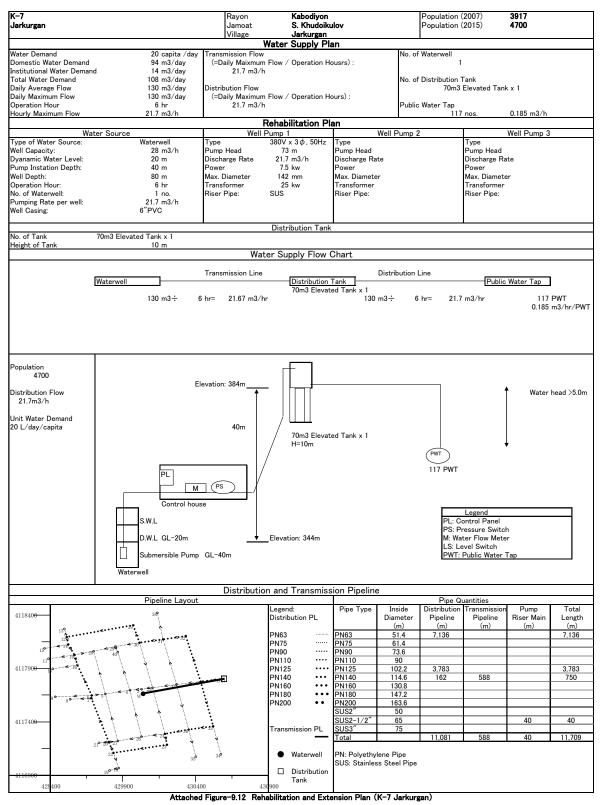
Result of Pumping Test (S-9)

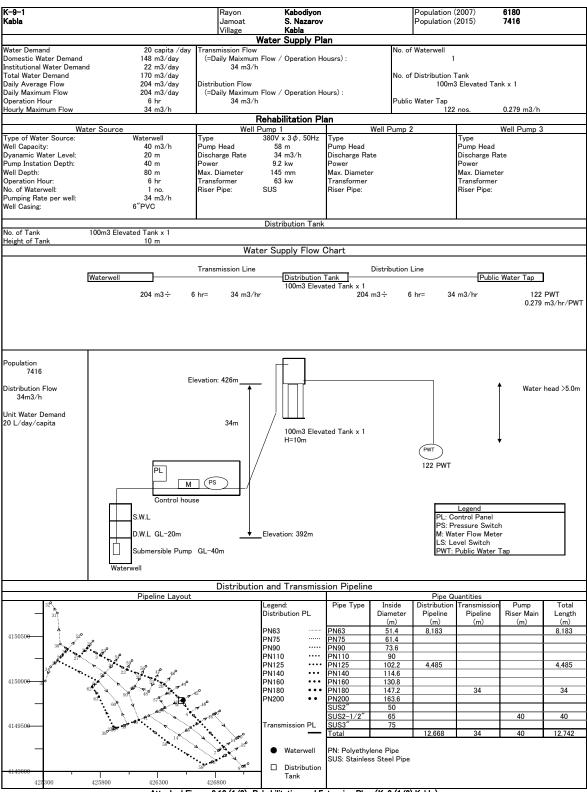


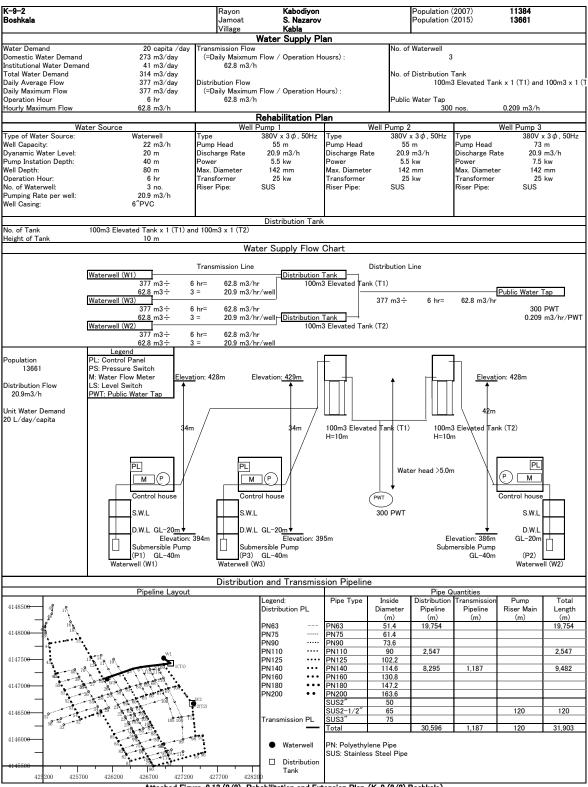
Attached Figure-9.9

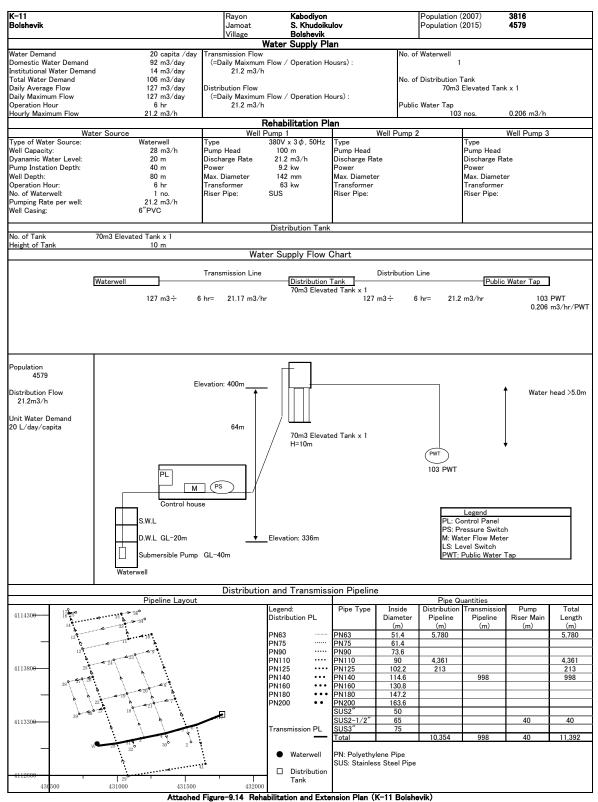

Result of Pumping Test (P-13)

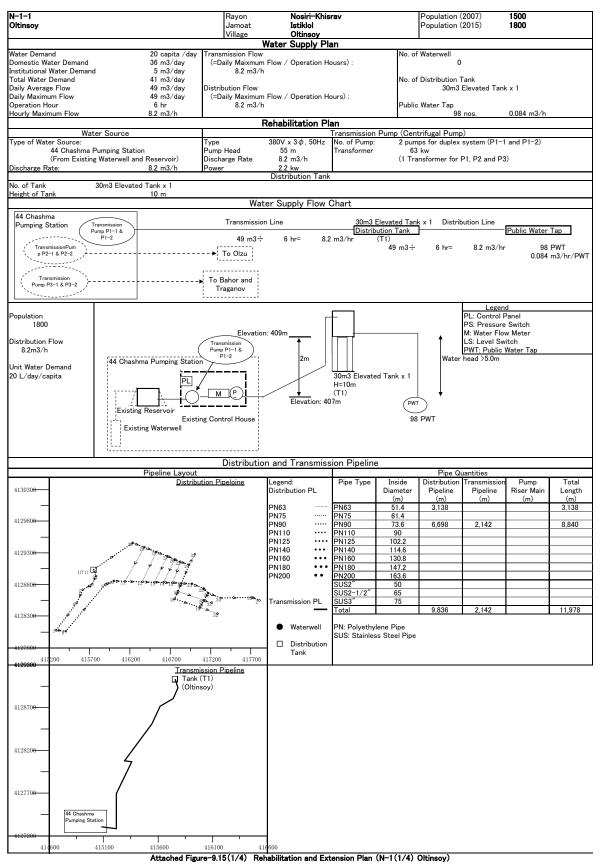
4 CHAPTER 9 REHABILITATION AND EXPANSION PLAN OF RURAL WATER SUPPLY SYSTEM

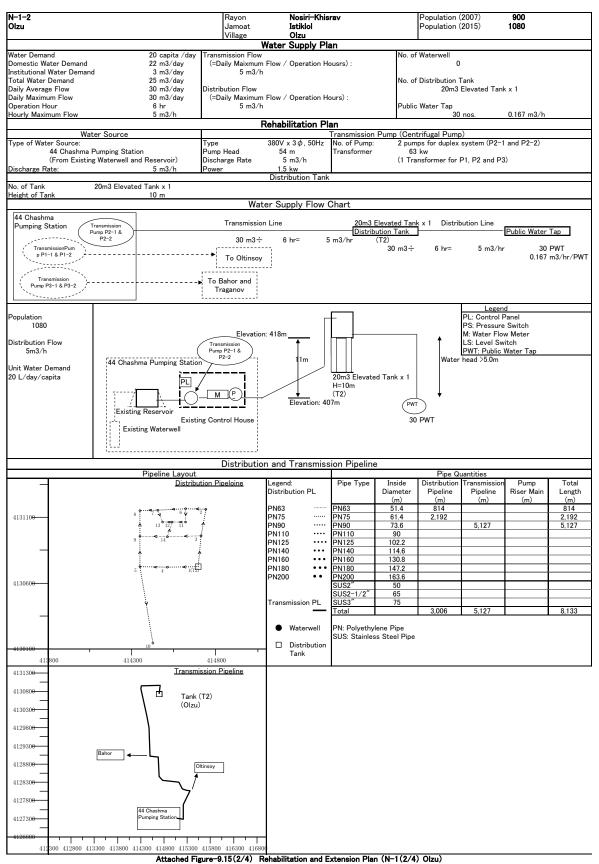

Attached Figures(2) Rehabilitation and Expansion Plan

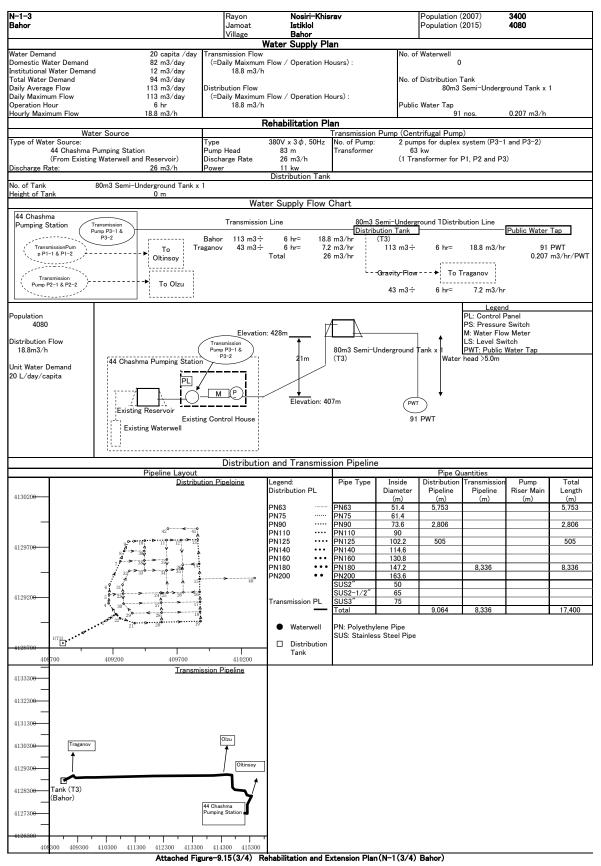

Rehabiliation Plan of Water Supply System

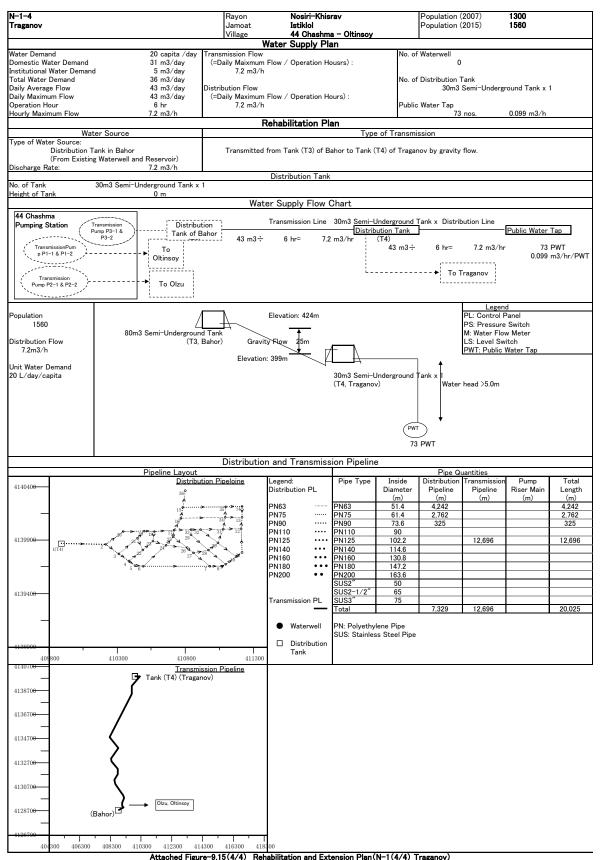

Attached Figure-9.11 Rehabilitation and Extension Plan (K-5 Navrus)

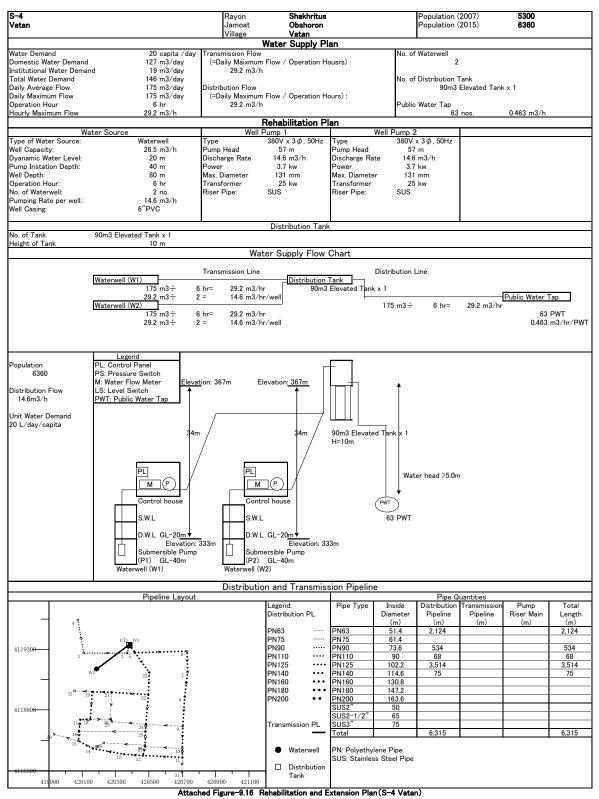

Rehabiliation Plan of Water Supply System

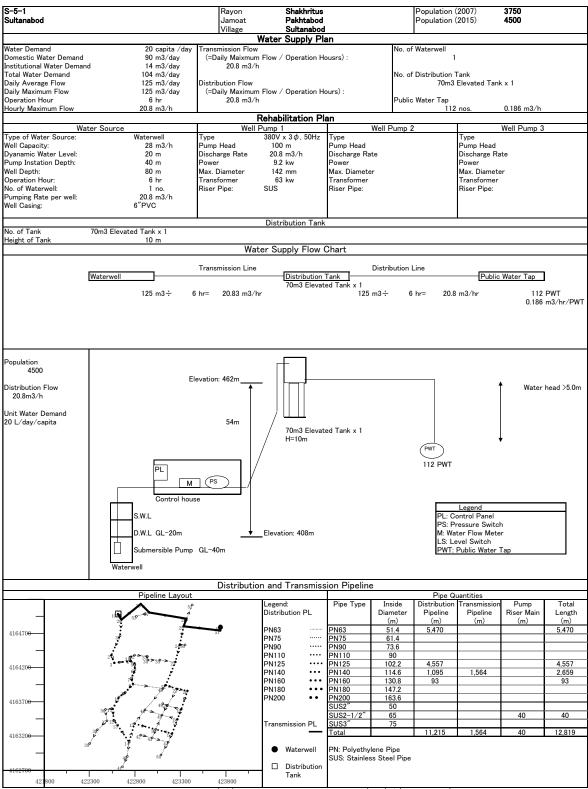


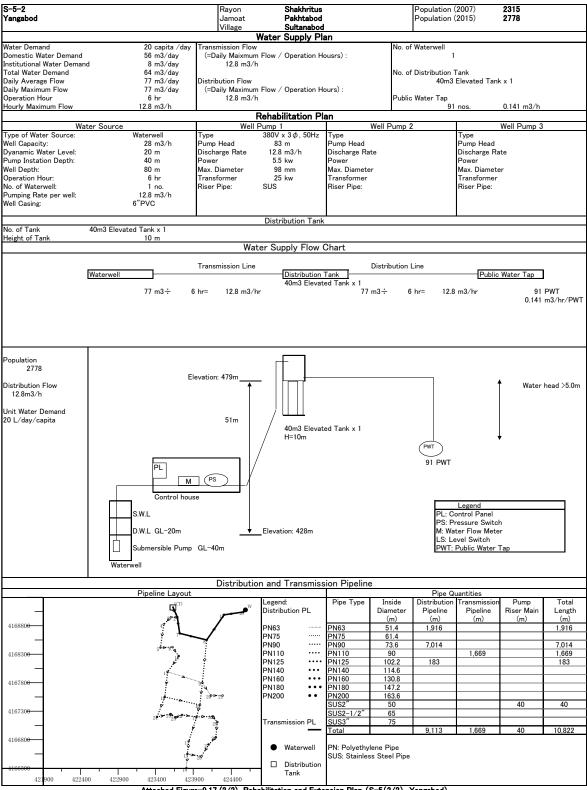

Attached Figure-9.13 (1/2) Rehabilitation and Extension Plan (K-9 (1/2) Kabla)



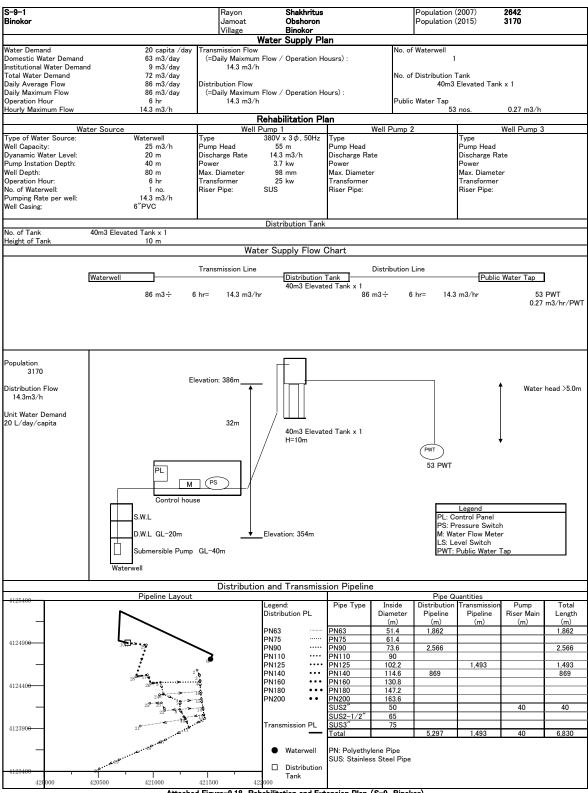

Attached Figure-9.13 (2/2) Rehabilitation and Extension Plan (K-9 (2/2) Boshkala)



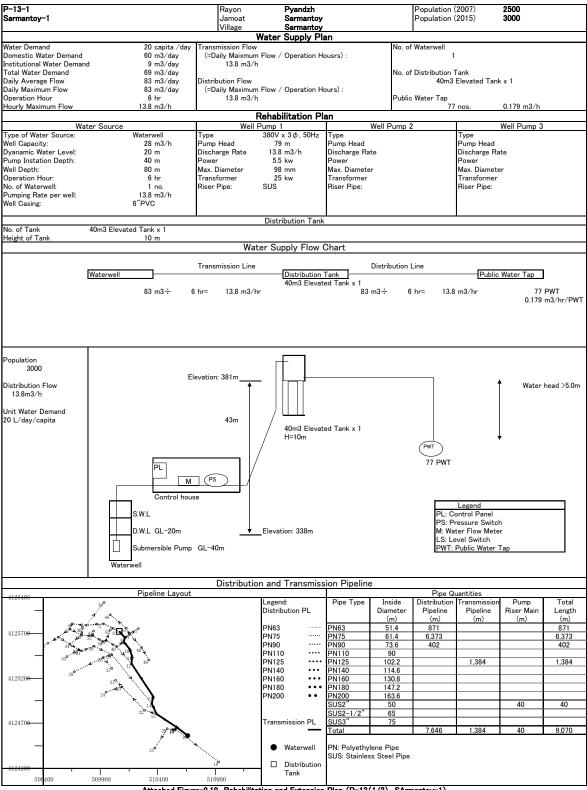




Rehabiliation Plan of Water Supply System

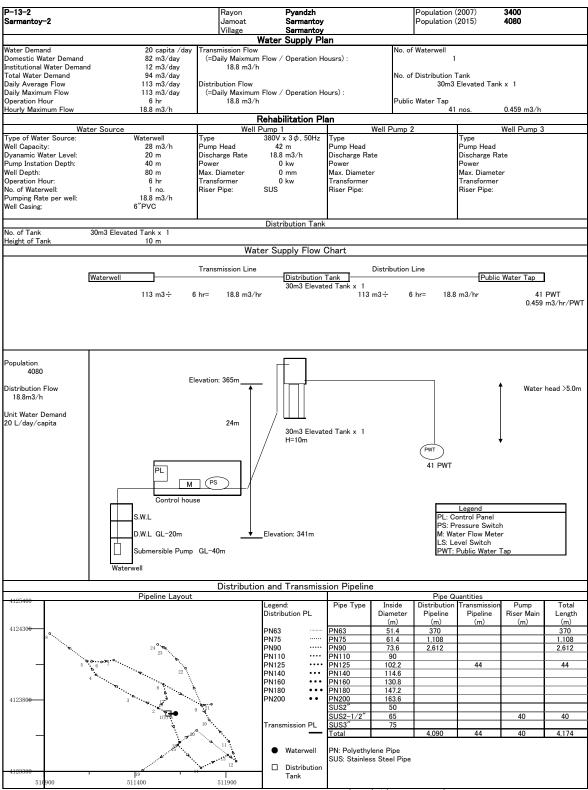


Attached Figure-9.17 (1/2) Rehabilitation and Extension Plan (S-5(1/2) Sultanabod)



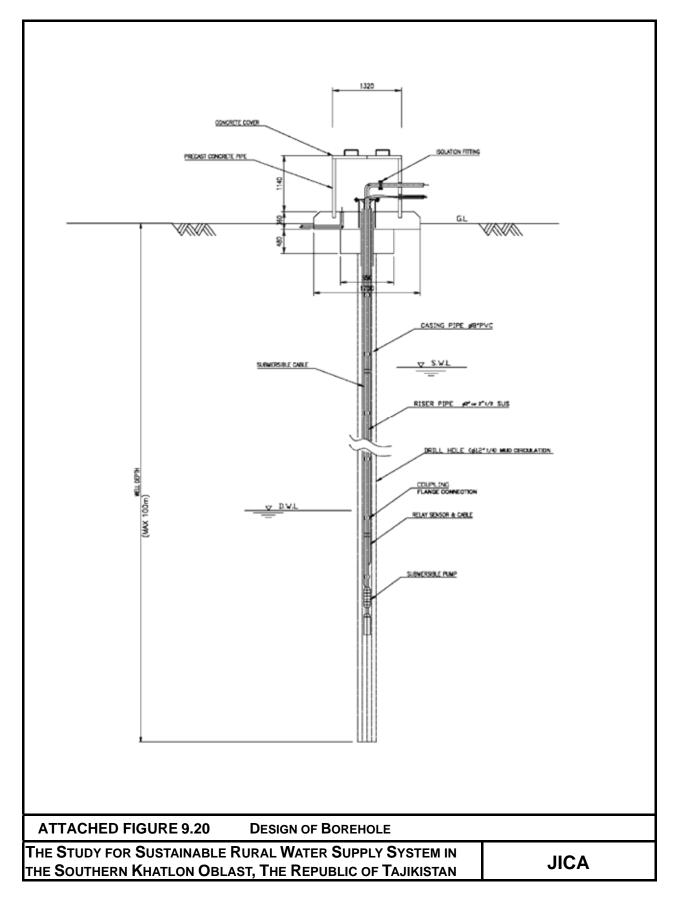
Attached Figure-9.17 (2/2) Rehabilitation and Extension Plan (S-5(2/2) Yangabod)

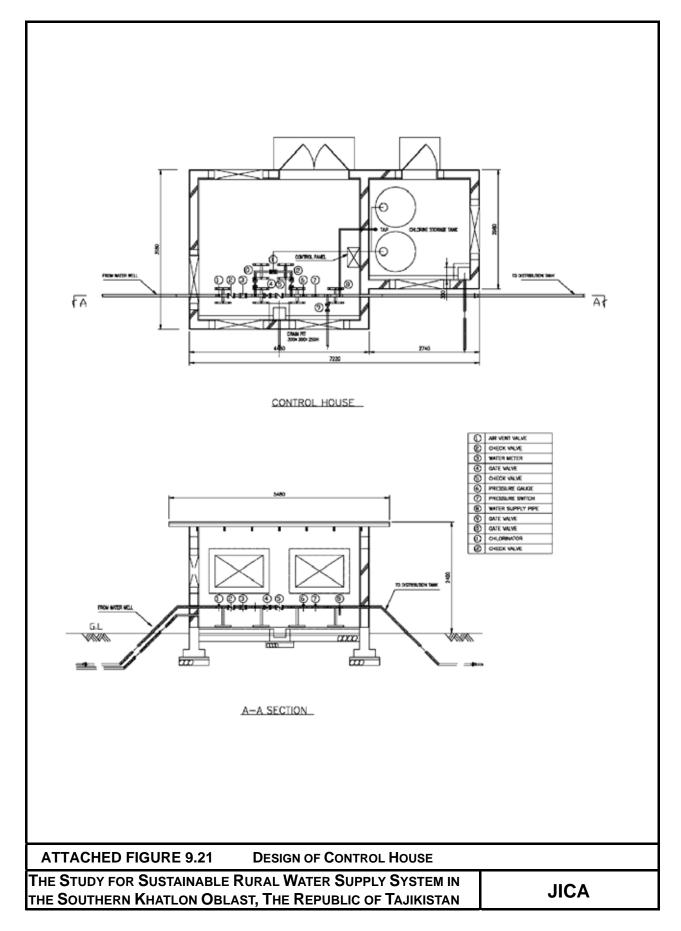
Rehabiliation Plan of Water Supply System

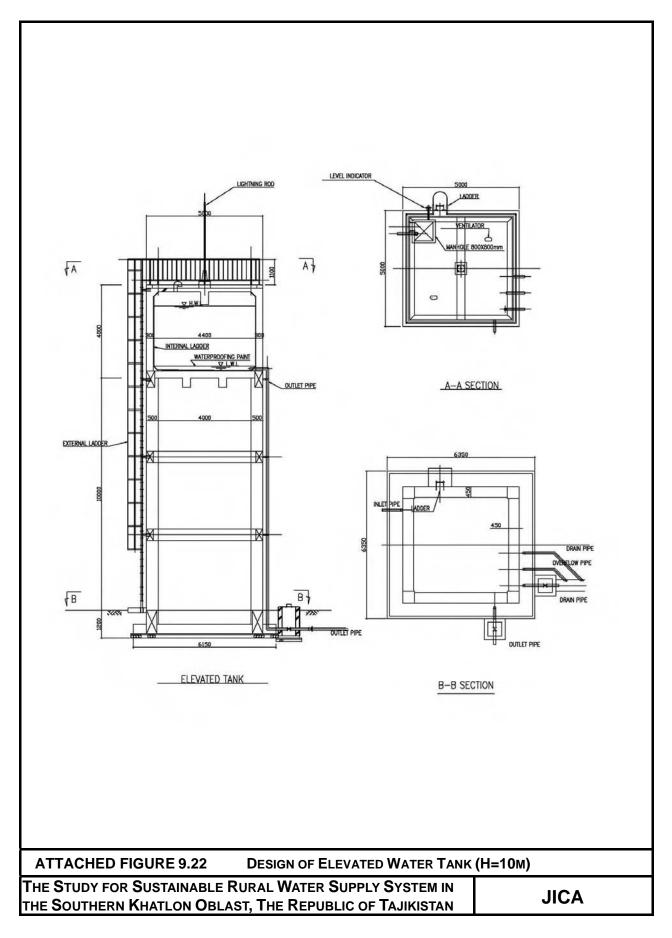


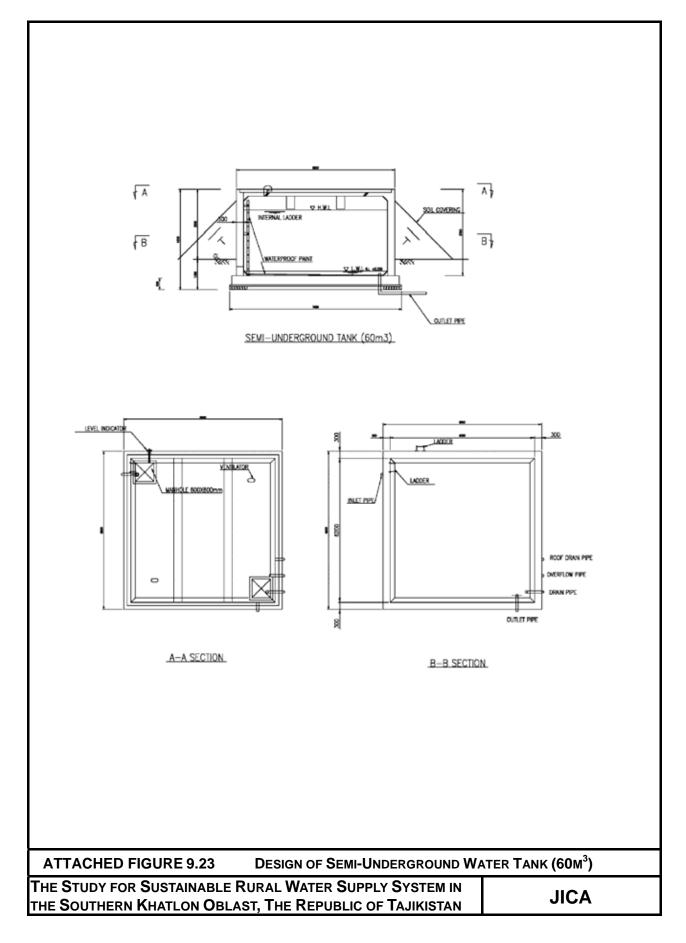
Attached Figure-9.18 Rehabilitation and Extension Plan (S-9 Binokor)

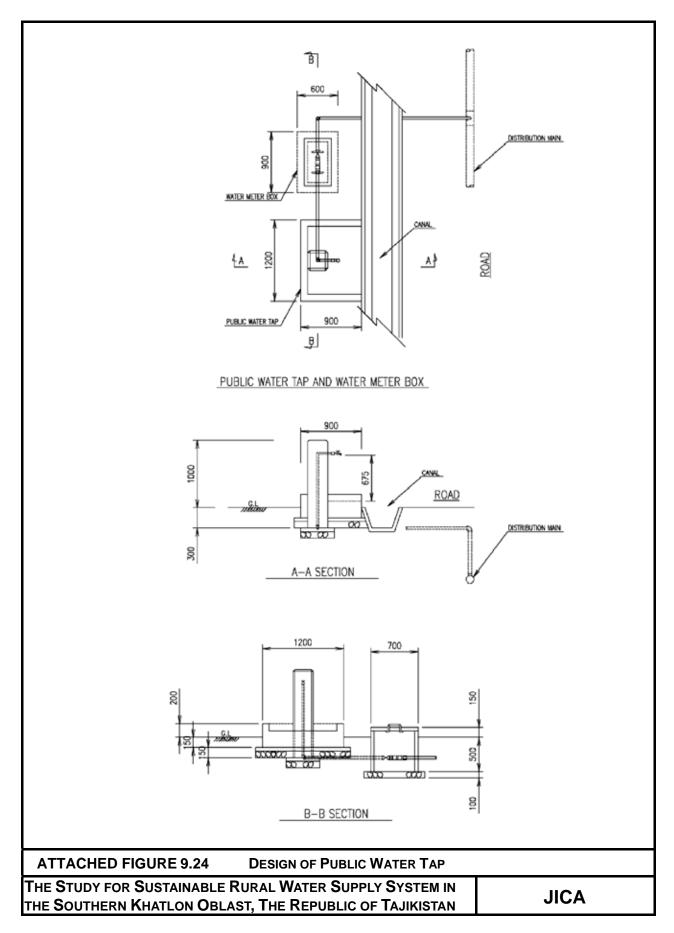
Attached Figure-9.19 Rehabilitation and Extension Plan (P-13(1/2) SArmantoy-1)


Rehabiliation Plan of Water Supply System




Attached Figure-9.19 Rehabilitation and Extension Plan (P-13(2/2) Sarmantoy-2)


4 CHAPTER 9 REHABILITATION AND EXPANSION PLAN OF RURAL WATER SUPPLY SYSTEM


Attached Figures (3) Design of Facility Structure

