7. その他の資料・情報

7-1. 自然条件調査結果

- 7-1-1. ボーリング調査結果
- 7-1-2. 陸上地形・深浅測量結果
- 7-1-3. 設計波及び護岸の天端高の算出
- 7-1-4. 土木施設の設計震度の算出
- 7-1-5. 水質検査結果
- 7-1-7. プリンスルパート湾の海岸形状
- 7-1-8. プリンスルパート湾内流入河川の状況

7-1. 自然条件調査結果

7-1-1. ボーリング調査結果

	TITINDAD, WI	-	HEPURI HE	- 01 020			encoson	a rest.
		BO	REHOLE	LOG		809	EHOLE NO	B 3
North rejusit recation recatio	Fothenes Eng. Co. Ltd. Soil Inv. for Portamouth Fishenes I Deminica Eventse, m lened Hollow Stem Augering A. Budhram Israel on 91503 Completed on 9	Centre	Cove Sample Water Level	ngle Collected ngle Langle Sample at End of Dvilling Di fus, or more	Water Pairs Natur Stream Union Union Union Union Union Union Union Union Union Union Union	Control c and L of Mole Strend Strend of Mane Vane d Vane	ent (WHL) kp/8 Link tare Content eth (Cu) ad Onlinine Compression of Thesis, PV Share, FV Resistance	Triantat, UU UO
lynbol	6çil Description	Depth (m)	-1 22 49 Ca 60 193	40 0 180 5	62 (kPe)	lançie e	Viet Density	Additional Tests and
	Ground Sarface Loose, blackleti, GAND, with traces of gravel, site and clay,	.0	Nivstve 20 40	(9t) 82 J		6 <u>1</u>	Wint	Parane
			\					
00	Modum done, SANDY (IRAUE), with some cit and day	3	Y			2		
000	LOOME BACKER, SILTY, GLAVEY, GRAVELLY BAND	a	1			4		
000						4		
	gravel, ell and clay.	. 4	\mathbf{N}					
	Medium dense, blackish, SAND, with some sit, slay and a trace of gravel	7	1			•		
		•	*			10		
24	Cener, blackish, SARD, with some gravel, and succes of all and cire.	•	1			12		

	VE LIPERING	NINCHER	in the second	2.5. BRIVE NU	ABERS		ENC	LOSUR	E Nat.	
000000000000000000000000000000000000000	1 1000	15 34 23		10 14/10 20 20	40 50 70 700	140200	HYD	ROMETE	R	_
	1. 1011	11/16-1		1.00		1811				
		I NIC				BIII		ШП		
×		111//						****	++-	-
		1111				- 1811-1			+++	-
*						8111		1111		_
				AHC II	R I					
			IIIN	1 111	1/3	000				
20				\$ 111	11/1	18111		11111		-
		$ \rightarrow $			<u> </u>	811				-
-		1111 1		1 (N	1/1.13	811				_
	1				INTH.					
				1.111	ELV WY					
80			IN I		111			11111		
45			IIIn		<u>FI N N</u>	118111				
40				<u>i</u>	11/1	VEIL				-
35					EI 1/11			####		_
						1811				
					INI					
35				1 1111		VIII		11111		-
-				<u> </u>		11347			++-	-
15				1 111		(ABITE				-
+2						VE I			-	-
9L-L-L-	100	11.1.1	07814	ITE IN MULTIN	1104			191	-	-
	-	204600	arous	Page IN MILLING	e tena			911		-
COB	BLES	same fre	course	medum	frie	-	SILT	RCLA	80	
Sample Lt	Gardt a		Classif	Brabon.	1110	Mesc 1	1 8	Pi	Cé	0
an a set	a and	-	C Garage	insaturoni i		110.4	- 12			
0 1/0 /	10						-	-	+ 12	
B 3.46 7		-					-		1.34	
01/04		-					-	-	-	-
83/81	5.8				_		-		1.79	- 12.1
Sample Id	Depth.n	n D100	D63	D50	D30	NGravel	%Sand	168	t 3	Cia
8 2/81	6 8.2	17.60	0.24	6197	15.118	16.5	05.6	6.1		11.1
8 3/5 1	1.0	25.00	0.40	0.309	0.201	8.7	81.5		8.8	-
83/82	1.8	25.00	11.13	0.888	0.396	53.T	28.3		18.0	_
0 3/8 4		25.00	0.41	0.147	0.059	24.8	52.1		23.3	
83/87	5.6	37.68	0.27	0.228	0.160	19.3	74.2		10.5	-
PROJEC	T BOI INV.	for Potanouth	Fisheries	Centre & Aut	y-	JOB	NO.	GA DE	310	
	Dominica	4				DAT	E N	ovemb	er 200	6
i como			GRA	DATION	CURVE	5				
			Geod	och Assocu	tes Limito	0				

7-1-2. 陸上地形・深浅測量結果

	456	900X 457000X	457100X	457200X
500Y	N	$2_{2} 2_{2} 1_{9}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1721		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1_{6} 1_{5} 1_{3} 1 0_{7} 0_{4} 0 0_{8} 1_{7}	Warked
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
	5	$\begin{bmatrix} 5_{1} \\ 4_{6} \\ 4_{3} \\ 4_{5} \\ 4_{5} \\ 4_{1} \\ 3_{9} \end{bmatrix} \begin{bmatrix} 3_{6} \\ 3_{5} \\ 3_{5} \\ 3_{2} \end{bmatrix} \begin{bmatrix} 2_{9} \\ 2_{7} \\ 2_{6} \\ 2_{4} \\ 2_{2} \\ 2_{6} \\ 2_{3} \\ 2_{6} \\ 2_{3} \\ 2_{2} \\ 2_{1} \\ 2_{1} \end{bmatrix} \begin{bmatrix} 2_{9} \\ 2_{7} \\ 2_{6} \\ 2_{4} \\ 2_{2} \\ 2_{2} \\ 2_{1} \\ 2_{1} \\ 2_{1} \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1007	$ \begin{array}{c c} & 6_3 & 5 \\ & 8 & 7_3 & 6_5 & 5 \\ \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
17214	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
300Ү	6 8 8 7 8 7 7 7 7 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1721	< 0.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	1. 100 - 1. 100 2. 00 - 2. 00 4. 00 - 4. 00 5. 00 - 5. 00 6. 00 - 6. 00 1. 00 - 1. 00 1. 00 - 1. 00 1. 00 - 1. 00 1. 00 - 1. 00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Motors 0	25
	1 00 - 1 09 12 01 - 1 09 13 01 - 12 09 14 00 - 14 00	4 7 4 6		
(456	900X 457000X	457100X	457200X

1

457300X				
REFL		1721		
		500Y		
		1721400Y		
	all topographic data relative to Chart Datum (Chart datum = is 0.56m belkow Mean Sea Level (MSL))	1721300Y		
150 Weters	all topographic heights are deemed as negative above Chart Datum and all depths are taken as positive below Chart Datum			

7-1-3. 設計波及び護岸の天端高の算出

(1) 沖波諸元

計画地の土木施設設計に用いる波浪諸元は、これまでの推算結果、事業実施後の施設の 経過、さらに計画地の向きを考慮し、平成8年度事業化審査報告書による30年確率波高値 を基本として、沖波波向きは計画施設位置において危険となるものを採用することを前提 に、3主方向の波を対象に「平成8年度 事業化審査報告書」による30年確率波諸元を用 いる。

波向き W、WSW、SW H₀=7.0m T=10.5sec

(2) 換算沖波波高

換算沖波波高は、エネルギー平衡方程式により計画地前面の値を求める。 エネルギー平行方程式の計算結果は、沖波波向き別(W、WSW、SW)に波向変化図、換算 沖波波高分布図として、図(付)-1~図(付)-3に示す。

その結果より、計画地前面における換算沖波波高と浅海波向きは計画地全面の平均値から、 表(付)-1のようになる。

沖波波向	W	WSW	SW	
沖波波高	H ₀ =7.0m			
周期	T=10.5sec			
浅海波向き	$N108.10^{\circ}$ W	$N108.85^{\circ}$ W	N113.68° W	
換算沖波波高(H ₀ ')	4.61m	4.72m	4.35m	

表(付)-1: 換算沖波一覧表

V2.0.0-(利益H) 換算沖波波高 波向:W 周期To= 10.50秒 Smax = 10.0 w). N P 망 गुर -E.F J. adi. 110 1 Ţ 4 1 T 1.00 82 8 100 101 ng: 95/2 깐 82[5 1 꺅 d: nj. N) S すい 반 nje i 반 nj. 핸 뱐 11 5 id i 123 812 90 5 nje e i \$45. 10 Ŷ 100 밧 ų 7 Ą ŋ 31 방 P ēt! 방 anj z nj: t 백 942 *1j3 맨 17 94 j 4 ų. 115 387 12 Ŷ nj: ng: nija V 1 ġ, ids V Ŷ 1 1 ţ -NO D ÷ 15 M) m(a 90/2 10년 1 \$ 반 1 향 Ŷ ٩ 볫 V angs V enja nj2 Ť st s 947 U 13 1 19.7 Ľ म्ब्रे । q. 맨 125 47 Ľ, 빤 Ŷ 4 21(1 민 14 忱 1010 脫 ÷ ÷ 반 anj U 墩 mit i Ng P 14 빤 ing z 1047 쒏 밧 8E[4 網日 3 12 뱐 njo d's 4 ų, 셴 ng g sey's 82.2 2017 3917 蜀 ♥ ♥ ♥ ♥ ●計画地 igs : V2.0.0-(NSH) 換算沖波波高 周期T₀= 10.50秒 Smax = 10.0 波向:# ŧŔ. 1.94 5.54 111 1.11 1.16 1.0 \$.82 8.84 4.94 6.82 6.82 6 87 - 4 81 E 80 1.10 611 611 6.82. 8 m 8.74 / 5.10 8,94 4.54 A42 (415 4.71 8.47 5.52 6.12 8.53 6.51 10.10-1.10 4.46 NI 11 62 62 67 67 6 5.32 4.05 ER AN EN EN EN 170 121 1.3 -----計画地 4.22 5.54 4.11 4.21 2.46 5 4.5

図(付)-1: 波浪変形計算結果(沖波波向:W) (上図:波向変化図、下図:換算沖波波高分布図)

12.0.0-[#S#d:H] 換算沖波波高 周期T_a= 10.50秒 波向:#S# Smax = 10.0 af. à, 1 1 ndu nfe 104.4 5Å.2 ef e 63.2 104,2 253, 4 108 1 af s inf 2 nf i n a ind a e foo 42 104 103.9 104.4 nd a 15,00 103,5 o , fo À7 A. 3 h 6 do ni e 114.2 à, Ą: mje. Μo 1047 1012 d'i 103,2 팏 4: ng e 1045 1040 명; Ø.; 0Ą.2 i s 1 1045 oi e 4 sik o 36.1 108,3 10Å Z 194.9 108,3 nh 7 백 23 щo eej z 1211 11/2 計画地 V2.0.0-[WSR,2:H] 換算沖波波高 波向:WSW 周期To= 10.50秒 Smax = 10.0 3.81 6.96 6.93 4.10 5.00 1.95 6.34 4.97 6.14 6,94 4.94 8.48 6.77 8.41 6.78 4.15 8.71

図(付)-2: 波浪変形計算結果(沖波波向:WSW) (上図:波向変化図、下図:換算沖波波高分布図)

5.45 5.94

1.81

2.44

4.00

5,24 6,00

442 8.00 8.25 8.71

.....

3.95

計画地

1.65

4 91

8,16

V2.0.0-[58:0] 換算沖波波高 10.50秒 周期T.= Smax 波向 10,0 122.8 122.1 1,221 1,221 th(n'i itte i 13K B N. 11NJ ur (3 n Se ing o th_é it's it s 2 23 113,8 1.00 124 15 116, 9 125,0 14.5 12/3 104.7 113.0 ing a 1203 a li 꼓 n ja ing.e Ŗ 1125 2 111.1 185 83.6 in e 100.0 nje 87,4 M.I HĮ: ٩ ηs 41 MO 計画地 V2.0.0-[SR(\$H) 換算沖波波高 周期T.= 10.50秒 Smax = 10.0 波向:SW 6 50-04 40 4.8 6.96 4.55 64 5.65 6,50 9,52 8.40 6,40 6.34 5.31 4.20 計画地

図(付)-3: 波浪変形計算結果(沖波波向:SW) (上図:波向変化図、下図:換算沖波波高分布図)

(3) 設計波高の算出

設計波高は、施設毎、また施設の工区毎の水深において、3主方向の沖波波向きの中から、 構造物に対して最も危険となるものを選定して決定する。

1) 現況海底地盤面高

a) 桟橋

①大型漁船用先端部	:	D.L. – 2.2m
②中央部	:	D.L. –2.1m
③小型漁船用先端部	:	D.L. – 1.3m
b) 護岸	:	D.L. – 0.7m

2) 海底勾配

海底勾配は、1.0≦h/H₀'≦2.5の範囲を海図から読み取り、1/20とする。

3) 波高の算定

「漁港・漁場施設の設計の手引(2003年版)」により、施設毎、工区毎の水深における 沖波波向別の波高を求める。図(付)-4の水深による波高変化図を用いて、各施設の計画 水深(h(DL))に潮位(+0.7m)を加えた水深(h(m))の波高を求め、さらにその波高の5 倍の水平方向沖側までの間で最大となる波高を設計波(H1/3)とする。その結果は、表(付) -2に示す。

波向き		W WSW		SW	備考
H ₀ (m)					
	T (sec)		10.5		
	L ₀ (m)		171.99		
	H' ₀ (m)	4.61	4.72	4.35	
	H'_{0}/L_{0}	0.027	0.027	0.025	
		防波	護岸		
	H(DL)		D.L. – 0.7 m		
	H(m)		1.4		潮位考慮
	H/H' ₀	0.30	0.30	0.32	グラフによる
]	$H_{1/3}/H'_{0}$	0.34	0.34	0.35	読み取り
	H _{1/3} (m)	1.57	1.60	1.52	
		桟	橋		
小	H(DL)		D.L. – 1.4 m		
型	H(m)		2.1		潮位考慮
漁	H/H' ₀	0.46	0.44	0.48	グラフによる
船	H _{1/3} /H' ₀	0.46	0.45	0.49	読み取り
用	H _{1/3} (m)	2.12	2.12	2.13	
	H(DL)		D.L. – 2.1 m		
中	H(m)		2.8		潮位考慮
間	H/H' ₀	0.61	0.59	0.64	グラフによる
部	$H_{1/3}/H'_0$	0.58	0.57	0.59	読み取り
	H _{1/3} (m)	2.67	2.69	2.57	
大	H(DL)		D.L. – 2.2 m		
型	H(m)		2.9		潮位考慮
漁	H/H' ₀	0.63	0.61	0.67	グラフによる
船	H _{1/3} /H' ₀	0.63	0.63	0.67	読み取り
用	H _{1/3} (m)	2.90	2.97	2.91	

表(付)-2: 設計波高算定結果一覧表

④ 入射角度

構造物に対する波浪の入射角は、エネルギー平衡方程式による波浪変形計算の波向き変 化の結果より図面上の構造物の垂線に対する角度より求める。

図(付)-1~図(付)-3より、構造物に対する入射波向は、表(付)-1のようになる。

表(付)-3: 沖波波向別入射波向一覧表

図(付)-5: 浅海波向き一覧表

⑤ 設計波諸元一覧表

設計波諸元は、施設毎、また施設の工区毎の水深において、3主方向の沖波波向きの中から、構造物に対して最も危険となるものから、表(付)-4に示す値を採用する。

	沖波諸元					
沖波波向き	沖波波高	周期	沖波波長			
W、WSW	$H_0 = 7.0m$	T=10.5sec	L ₀ =171.99m			
	設計波諸元					
大型漁船用 先端部	中間部	小型漁船用 先端部	防波護岸 (基部設計)			
(D.L2.2m)	(D.L2.1 m)	(D.L1.3 m)	(D.L 0.7m)			
H=3.0m	H=2.7m	H=2.1m	H=1.6m			
(h=D.L.2.4m)	(h=D.L.2.1m)	(h=D.L.1.4m)	(h=D.L.0.7m)			
入射角	入射角	入射角	入射角			
B(±15°考慮)	$\beta = 0^{\circ}$	$\beta = 0^{\circ}$	$\beta = 0^{\circ}$			

表(付)-4: 設計波諸元一覧表

(4) 水位上昇量の算定

a)砕波による水位上昇量

ハリケーンの来襲時において計画地は、水深が浅いので砕波により海水面が上昇する現象がおきる。ここでは、計画地にける護岸前面位置での海水面の水位上昇量を算定する。 「漁港・漁場施設の設計の手引(2003年版)」による図(付)-6より、護岸法線における 沖波波向別の平均水位の上昇量を求める。その結果を表(付)-5に示す。

波向き	W	WSW	SW	備考
H ₀ (m)				
T (sec)		10.5		
L ₀ (m)	171.99			
H' ₀ (m)	4.61	4.72	4.35	
H'0/L0	0.027	0.027	0.025	
H(DL)		D.L. – 0.7 m		
H(m)	1.4			潮位考慮
h / H' ₀	0.30	0.30	0.32	グラフによる
<i>n /</i> H' ₀	0.14	0.14	0.13	読み取り
<i>n</i> (m)	0.65	0.66	0.57	

表(付)-5: 砕波による平均水位上昇量算定結果一覧表

図(付)-6: 砕波による平均水位の上昇量

護岸の位置における砕波による水位上昇量は0.66mとなる。

b) 吹き寄せによる平均水位の上昇

吹き寄せによる海岸線での上昇量は以下の一般式で算定することが出来る。

$$\eta_0 = k \frac{F}{h} (U\cos\alpha)^2$$

ここに、

η₀; 吹き寄せによる平均水位の上昇量(cm)

F;吹送距離(km)

海岸線の沖合い近傍位置に島嶼などの遮蔽されるものが無い為、吹送距 離を無限長として、100kmとする。

U; 風速(m/sec)

現地での最大風速の観測値が得られていない。ここでは、これまで計画 地を含むカリブ海諸国の西側沿岸に最も大きな影響を与えた、1999年11月 のハリケーレニーの規模が直撃した場合を想定し、最大風速記録からU= 69.4m/secとする。

h;平均水深(m)

計画地の西側の沖合いの水深は、1000m以上である。従って、平均水深は1000mとする。

k;湾によって異なる係数。バルチック海の資料より(k=4.8×10²)

 α ;風向きと海岸線に直角な線となす角度。 $\alpha = 0^{\circ}$ とする。

上記より吹き寄せによる水位上昇量は、23 c m となる。

c) 気圧降下による静的吸上げ

気圧がゆっくりと∠P(hPa)だけ降下すると、その付近に海域は、周囲の気圧の降下して

いない海域と気圧差によって水面が上昇する。この上昇量 ζ (cm)は以下の式で求められる。 $\zeta = 0.99 \times \angle P$

ここに、

ζ ; 気圧降下による水面の上昇量(cm)

△P;気圧偏差(hPa)

気圧偏差は、これまで計画地を含むカリブ海諸国の西側沿岸に最も大きな影響を与えた、 1999年11月のハリケーレニーの規模が直撃した場合を想定し、算定する。最低気圧記録は U=933(hPa)常時の標準的は気圧は一般値の1010(hPa)とすると、

$$\zeta = 0.99 \times \Delta P = 0.99 \times (1010-933) = 0.99 \times 77 = 76 c m$$

となる。

以上よりに砕波による平均水位の上昇と吹き寄せ、気圧低下による水位上昇が同時に発 生した場合、水面上昇は、

$$0.66 \pm 0.23 \pm 0.76 \equiv 1.65 \,\mathrm{m}$$

となる。

さらに、H.W.L.時にこの水位の上昇が重なった場合は、D.L.表示で

$$H.W.L.+0.70 + 1.65 = D.L.+2.35m$$

となる。

(5) 護岸の天端高さの検討

1) 許容越波流量による検討

許容越波流量は、「漁港・漁場施設の設計の手引(2003年版)」から表(付)-6~表(付) -8のように、施設自体の被災限界、護岸や堤防の背後地にある施設の区分による限界、背 後地の利用区分による限界に区分されそれぞれ設定されている。

計画地において異常時の波浪はトロピカルストームやハリケーンによる波浪時だけであ り、波浪が来襲したときは、漁労活動は出来ず施設の利用はない。また、直背後は重大な 被害が予想される施設は無い。従って、許容越波流量は、設計波相当の波浪が来襲した時 にも施設自体が被災しない越波流量を許容値として設定する。背後地は舗装を前提として いるので許容越波流量は、qa=0.20㎡/m/secとする。

種	別	被 覆 工	越 波 流 量 q(m²/m/sec)
護	岸	背後舗装済み 非後舗装た!	0. 20
		コンクリート三面巻き	0. 05
堤	防	天端舗装,裏のり未施工	0. 02
		天端舗装なし	0.005以下

表(付)-6: 護岸・堤防の限界越波流量

表(付)-7: 背後地に被害が予想される場合の許容越波流量

要	件	越 波 流 量 q(m²/m/sec)
背後に人家,公共施設等が密 飛沫等の進入により重大な被	集しており,特に越波, 害が予想される地区	0.01程度 (バケツ1杯程度)
その他重要な地区		0.02程度
その他の地区		0.02~0.06

表(付)-8: 背後地利用状況からみた許容越波流量

利用方法	状態(護岸のすぐ背後)	越 波 流 量 q(㎡/m/sec)
步行	危険ない	2×10 ⁻⁴ (コップ1杯程度)
自動車	高速通行可能 運転可能	2×10^{-5} 2×10^{-4}
家屋	大丈夫	7×10 ⁻⁵

設定した許容越波流量(qa=0.20m³/m/sec)から沖波波向き別に、天端高を、図(付)-7 算出する。この推定図はパラメーターである波形勾配(H'₀/L₀=0.017、0.036)と海底勾配(1/10 と1/30)の別によりグラフが作成されているが、現地の波形勾配は(H'₀/L₀=0.025、0.027)、 海底勾配は1/20である。海底勾配は危険側の1/10グラフを用い、波形勾配は按分して必要天 端高さを推定する。

算定結果は、波向き別に下表に示す。この結果、被災限界越波流量qa=0.20m³/m/secに対して必要天端高さはD.L.+2.5mとなる。

波向き	W	WSW	SW	備考
H ₀ (m)		7.0		
T (sec)		10.5		
L ₀ (m)		171.99		
H' ₀ (m)	4.61	4.72	4.35	
H'0/L0	0.027	0.027	0.025	
h (DL)		D.L. – 0.7 m		
h (m)		1.4		潮位考慮(H.W.L. +0.70)
h / H' ₀	0.3037	0.2965	0.3217	
$q / \sqrt{(2gH_0)^3}$	0.0046	0.0044	0.0050	$qa = 0.2 \text{ m}^3/\text{m/sec}$
hc / H' ₀	グラフ	7による読取り(画	直立)	海底勾配 1/10
	0.5	0.5	0.5	$H'_0/L_0 = 0.017$
	0.25	0.25	0.25	$H'_0/L_0 = 0.036$
h ₀ /H' ₀ 平均值	0.38	0.38	0.38	
h ₀ (m)	1.73	1.77	1.63	
D.L. +(m)	2.43	2.47	2.33	潮位考慮(H.W.L. +0.70)

表(付)-9: 必要天端高算定表

図(付)-7: 直立護岸の越波流量推定図(海底勾配 1/10)

2) 打ち上げ高の算定

護岸設置後の直立壁に作用した波浪の打ち上げ高を「漁港・漁場施設の設計の手引(2003 年版)」により試算する。直立壁の打ち上げ高は、図(付)-8から算定できる。

算定結果は、波向き別に表(付)-10に示す。打ち上げ高さは最大でD.L.+4.5mとなる。 算定に用いたグラフは、直立壁が無限高さの場合の実験から作成されていたもので、こ れ以下の高さの場合は、構造物に当たった波は直立壁真上に打ち上がり、飛沫となり落下 しながら飛散することになる。

波向き	W	WSW	SW	備考
H ₀ (m)		7.0		
T (sec)		10.5		
L ₀ (m)		171.99		
H' ₀ (m)	4.61	4.72	4.35	
H'0/L0	0.027	0.027	0.025	
h (DL)		D.L. – 0.7 m		
h (m)		1.4		潮位考慮(H.W.L. +0.70)
h / L ₀	0.008	0.008	0.008	
R / H' ₀	0.80	0.80	0.80	グラフによる読取り
R (m)	3.69	3.78	3.48	
	1.20	4.40	1.1.0	Martin In Her (

表(付)-10: 打ち上げ高算定一覧表

図(付)-8: 打ち上げ高(直立堤)海底勾配 1/20

3) 施設天端高の設定

これまでの検討の結果より護岸の天端高さは、被災限界から求めD.L.+2.5mとする。この 高さは、今回の測量結果による計画地南側の既設護岸と同程度の高さとなる。

しかし、ハリケーン時には新たに汀線付近に直立構造物を設ける事により打ち上げられ た飛沫が高く上がり、そのしぶきが風により陸側に飛散することが予想される。従って、 計画される施設は十分な強度と、塩害対策を施す必要がある。

また、過去に計画地に最も影響を及ぼしたハリケーンが直撃した場合の海水面は、最大 で、D.L.+2.35mまで上昇する結果となる。従って施設設計においては、冠水しても問題が無 いようにしておく必要がある。 7-1-4. 土木施設の設計震度の算出

ポーツマスの計画地点における設計震度は、過去にドミニカ国周辺で発生した地震記録 を基に極値統計を用いて設定する。

「National Earthquake Information Center」のデータベースの記録に残る最も古いものから 2008年9月までの期間において、計画地を中心として半径150kmのマグニチュード5以上 の大きなエネルギーのケースを抽出する。抽出されたものから、発生日時が接近して震源 が近いものは同一の現象と見做し、最もマグニチュードが大きいものを代表とし整理する と、1973年から31ケースの該当データが抽出された。

これらの結果を用いて、「漁港・漁場施設の設計の手引(2003 年版)」に基づきマグニ チュード、と震央距離から、計画地における水平加速度、震度を求めると表(付)-11 のと おりとなる。最も震度が大きかったのは、2007 年 11 月 29 日に発生した地震である。

ڊ ر	発生		緯度	経度	震源深度	フカーエュート	震央距離	水平加速度	雪中
年	月	日	(北緯)	(西経)	(km)	=71−r</td <td>(km)</td> <td>(gal)</td> <td>辰戊</td>	(km)	(gal)	辰戊
1973	3	22	15.31	61.31	156	5.1	33	41.06	0.0419
1973	7	8	15.91	60.71	19	5.1	88	13.14	0.0134
1974	9	7	15.1	60.63	58	5.7	103	21.45	0.0219
1976	3	10	16.76	61.13	77	5.9	134	18.68	0.0190
1976	7	1	16.6	61.24	36	5.1	114	9.24	0.0094
1977	11	28	15.91	60.88	62	5.4	72	24.02	0.0245
1979	10	9	16.64	61.24	62	5.3	118	11.15	0.0114
1981	1	9	16.82	61.51	56	5.2	136	8.04	0.0082
1981	9	4	16.82	61.47	50	5.3	137	8.96	0.0091
1982	1	30	16.74	61.43	63	6	127	22.63	0.0231
1982	6	29	15.03	60.44	65	5.0	125	7.18	0.0073
1983	3	3	14.88	60.47	63	5.4	131	10.78	0.0110
1987	8	15	15.26	61.35	151	5.1	37	36.39	0.0371
1988	5	19	16.81	61.15	57	5.1	140	6.83	0.0070
1988	7	14	16.89	61.1	51	5.1	149	6.21	0.0063
1990	3	1	16.72	60.95	42	5.4	137	10.09	0.0103
1990	7	12	14.65	60.46	28	5.7	148	12.76	0.0130
1992	3	6	15.98	61.61	126	5.1	47	28.02	0.0286
1992	8	3	15.91	60.88	43	5.4	72	24.02	0.0245
1994	7	23	16.71	61.37	67	5.5	125	12.99	0.0132
1996	4	8	15.04	61.51	181	5.2	59	24.22	0.0247
1996	9	24	15.19	61.44	146	5.8	43	66.58	0.0679
1999	6	8	15.04	60.42	54	5.8	126	18.20	0.0186
2001	1	5	16.11	61.03	33	5.7	74	32.67	0.0333
2001	4	5	15.91	60.88	51	5.1	71	17.26	0.0176
2001	12	7	16.71	61.09	33	5.1	130	7.64	0.0078
2004	11	21	15.68	61.71	14	6.3	28	157.50	0.1606
2004	12	2	15.67	61.29	18	5.0	20	60.65	0.0618
2005	2	14	15.77	61.74	11	5.8	37	77.37	0.0789
2007	11	29	14.94	61.27	156	7.4	73	168.42	0.1717
2008	2	6	15	60.41	27	5.3	129	9.80	0.0100

表(付)-11: ポーツマス計画地周辺における発生地震(1973-2008)と震度

出典: USGS「National Earthquake Information Center」

上記の 31 データの基づき、確率分布のワイブル分布を当てはめると、係数(k=0.75)が 最も相関が良く、その分布関数を用いて再現期間別の確率震度を計算した結果は、表(付) - 12 のようになる。

再現期間(年)	Rp	2	5	10	20	30	50	100
未超過確率	Р	0.4194	0.7677	0.8839	0.9419	0.9613	0.9768	0.9884
正規化変数	γv	0.444	1.656	2.780	4.034	4.817	5.852	7.332
確率震度	Х	0.0130	0.0440	0.0730	0.1050	0.1250	0.1510	0.1890

表(付)-12: 再現期間と確率震度(ワイブル分布k=0.75)

図(付)-9: 震度の再現確率

一方、漁港施設設計に用いる設計震度は「漁港・漁場施設の設計の手引(2003 年版)」 により地域別、施設別に表(付)-13のように与えられている。

計画地の地震発生の状況および、係留施設の水深が大きくない事を考慮し、さらに、現 地の地質結果より、計画地の土層は砂質地盤の堆積層厚は最大で19mで、25m以下であ ることが確認できていることから、設計震度は、最も危険地域とされる地域の係留施設B 区分(主要な陸揚げ岸壁及び定期船・フェリーが利用する岸壁以外)として

Kh=0.15

とする。

	北海道(根室、創 路、十勝、日高), 関東(千葉県、東京 都の八丈島及び小笠 原諸島を除く地域、 特奈川県),中部(編 井県、静岡県、愛知 県),近畿(三重県、 滋賀県、大阪府,兵 庫県、和歌山県)	東北(青森県の尻屋 崎辺庸の太平洋岸, 岩手県,宮城県。福 島県),岡東(茨城 県),近畿(京都 府),四国(徳島県。 高知県)	北海道(阻握、渡 島,檜山),東北(青 森県の尻躍範以南の 太平洋岸を乾以南の 太平洋岸を乾以南の 城,秋田県、山形 県),中部(新福県、 富山県、石川県), 中国(鳥取県、広島 県),四国(愛媛 県),九州(桃本県、 定島県の奄美諸島)	北海道(網走,後 志,石狩,空知,留 南),中国(鳥根県。 岡山県),四国(鳥根県、 岡山県),四山島河島、 老岐及び対馬を除く 地域、鹿児島県の奄 美諸島を除く地域、 沖縄県の大東諸島を 除く地域)	北海道(宗谷), 関東 (東京都の八丈島及 び小笠原諸島), 中 国(山口県), 九州 (福岡県,長崎県の 五島列島,壱岐及び 対馬,沖縄県の大東 諸島)
係留施設A	0,18 (0,22)	0.16 (0.19)	0.14 (0.17)	0, 13 (0, 16)	0.10 (0.12)
親水施設	0,18 (0,22)	0.16 (0.19)	0.14 (0.17)	0, 13 (0, 16)	0.10 (0.12)
係留施設B	0, 15 (0, 20)	0.13 (0.16)	0.12 (0.14)	0, 11 (0, 13)	0.08 (0.10)
外郭施設	0.15 (0.20)	0.13 (0.16)	0,12 (0,14)	0.11 (0.13)	0.08 (0.10)
基盤の最大加 速度 (Gal)	350	250	200	150	100

表(付)-13: 設計震度

(注1)第四記書(沖積層、洪積層)の厚さが、下記のいずれかの場合は()書の設計展度を用いる。
 ① 一般の砂及び粘土地盤の厚さが5m以上の場合
 ② 軟紫地盤の厚さが5m以上の場合
 ここでいう軟別地盤とは、N値が4以下の砂地盤、または一幅圧縮強度が20kPa以下の地盤であり、運常の軟弱地盤の概念とは若干異なる。
 (注2)係留施設Aは、主要な酸揚岸壁及び定現船・フェリーが発着する岸壁であり、係留施設Bは、係留施設A以外の岸壁及び物描場である。
 (注3)観水施設は、純水性を考慮した薄岸及び防波堤である。
 (注4)外界施設は、純水地を考慮した薄岸及び防波堤である。

出典:「漁港・漁場施設の設計の手引(2003年版)」

7-1-5. 桟橋の比較検討結果

桟橋の杭の根入長は、波浪による揚圧力により支配されることから、上部工揚圧力を軽 減し、杭の根入を短くするように、上部工にグレーチングを有するタイプと無いタイプの 比較を行った。比較表を下表に示す。

その結果、グレーチング床版式はRC床版式に比べて杭の長さが 1.0m短くなるものの、 グレーチングの費用がかかるので経済的には優位とならない結果となった。従って、桟橋 上部工の形式は、RC床版式桟橋を提案する。

	①RC床版式桟橋	②グレーチング床版式桟橋
標準断面図		
特徴	上部工(床版、梁部)を鉄筋コンクリート RC構造とする。桟橋の一般的な構造で施 工実績は多い。	 ・上部工の梁部は鉄筋コンクリート構造とし、揚圧力低減のため一部床版をグレーチングとする。 ・多少の波浪でもグレーチング部からの越波があり、上部利用を阻害する。 ・グレーチングはコンクリートに比べ耐久性や腐食に対する信頼性が劣る。
構造	・上部工全面に揚圧力が作用するため、揚 圧力により杭径・ピッチが決定される。 ・波圧力は前面梁部に作用する。	・上部工全面(グレーチング部は約60%低 減)に揚圧力が作用するため、低減された 揚圧力により杭径・ピッチが決定される。 ・波圧力は前面梁部とグレーチング孔側面 に作用する。
検討結果 施工	 ・検討の結果、杭諸元はφ600×9t、杭長 15.0m、ピッチ2.6mとなる。 ・杭の下端は-14.0mとなる。 上部工の下型枠の面積が多い。 	 ・検討結果、水平力が左案より増加する分 グレーチングの効果はあまり無く、杭諸元 は φ 600×9t、ピッチ 2.6m杭長 14.0m、 となる。 ・杭の下端は-13.0mとなる。 上部工の形状がRC床版式よりも複雑とな
性		る。
工事費比較	1.0	1.1
工期	どちらの形式も工期は変わらない。	
評価	0	\bigtriangleup

表(付)-14: 桟橋の比較表

7-1-6. 水質検査結果

- 採水日時 : 2008年8月11日
- 採水箇所 : 6ヶ所 ※採水地点は、採水位置図(下図(付)-10)に示す。
- 検查項目 : 水温、pH 、COD、大腸菌群数
- 検査方法 : 水温 : デジタル温度計(直営) pH : デジタル pH 計(直営) COD(化学的酸素要求量): 簡易パックテスト(比色)(直営) 大腸菌群数 : 簡易大腸菌数検出紙(直営)
- 検査結果 : 結果を表(付)-15に示す。

表(付)-15:水質検査結果

採水地点	水温	pН	COD	大腸菌群数
(図内番号と一致)			(mg/L)	(MPN/100ml)(注)
1	26.7	7.0	8.0	8.0 × 10 ³
2	29.0	7.6	2.0	6.0 × 10 ²
3	29.0	7.7	2.0	1.0 × 10 ²
(4)	29.0	7.7	2.0	3.0×10^{2}
5	29.0	7.7	6.0	1.1 × 10 ³
6	29.0	7.2	8.0	カウント不能

(注)約30度にて24時間培養。

表-2:我が国における水質基準

	項目 類型	pН	COD	大腸菌数
1)	環境基本法 公共水域の水質基準 環境保全(C 型)	7.0 以上 8.3 以下	8mg/L 以下	_
2)	水道法 水質基準	_	_	検出されないこと

注) C型:国民の日常生活(沿岸の遊歩などを含む)において不快を感じない限度

図(付)-10:水質検査 採水位置図

7-1-7. プリンスルパート湾の海岸形状

図(付)-11: プリンスルパート湾の海岸性状調査 位置図

位置	海岸性状	写 真
①観光船桟橋 周辺	*こぶし~人頭大の玉石海岸 *海底勾配は急	
②石積消波 道路護岸-1	 * 玉石海岸の上に1~2トン石積み護岸 * 天端高さは5m程度 	2.石積消波遵路講幕:
③石積消波 道路護岸-2	 * 玉石海岸の上に1~2トン石積み護岸 * 天端高さは2.5m程度 	
④サイト北側 海岸	 * 幅 10m~50m程度の砂浜 * 海水浴場として利用されている * 2軒のビーチレストランが専用木製桟 橋を設けている。先端の水深は 1m程 度 	④サイト北側砂浜-1 ④サイト北側砂浜-2

表(付)-16:プリンスルパート湾の海岸性状

位置	海岸性状	写 真
⑤計画地北側(ノースリバ一右岸側)	 * 海浜に突き出た民家の基礎部分が洗堀 により崩落している。かつては、崩落 した部分も建築物であった名残がある * 民家の直立壁の前面には砂浜が無い 	
⑥計画地	 * 海側から望む * 幅の狭い砂浜がある * 海底勾配は緩い 	
 ⑦既設波返し 護岸 	 * 聞き取りによると、この護岸は 50 年 以上前にはすであったとのことである。 * 護岸前面には砂浜が無い 護岸前面水深は深いところで 1m以上あ る。洗堀により掘られたと考えられる * 既設波返付護岸前面は砂浜が無い 	

位置	海岸性状	写 真
	* 護岸は砂浜の上に築造したと考えられ る	
	 * 既設護岸に打ち寄せられた沈船に係留 している貨物船(左側)沈船の脇は 2 mの水深があった * 手前側は浸食対策に設置したと見られ る突堤 	
	 * 既設護岸の南端。砂浜のほうが汀線が 前にある * 護岸が無ければ砂浜は前面に回復して いることが伺える 	
 ⑧既設波返し 護岸~インデ ィアンリバー 北岸 	 * 既設波返し護岸の切れ目からインディ アンリバー右岸(北側)までは幅の狭 い砂浜がある * 一部の護岸に消波ブロックにより防護 された部分がある 	
⑨インディアンリバー南岸ペポーツマス商港	 * インディアンリバー南岸から南側は幅 の狭い砂浜がある * 海底勾配は緩い 	

位置	海岸性状	写 真
⑩ポーツマス	* 玉石海岸の上に道路護岸設置され、海	
商港周辺	浜は無い	and the second second
	* 護岸の一部に崩壊が見られる	
	* 海底勾配が急	Antin Alter
⑪ピカード川	* 玉石海岸	
南岸	* 海底勾配は緩い	
12ロス大学前	* 幅の狭い砂浜	and the second s
面の海岸	* 海底勾配は緩い	
	 * すぐ背後地は自然の崖地 	III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
13南側海浜	* ピカード湾の南側に行くほど砂浜幅が	2
	広くなっている	
	* 海底勾配がゆるい	
	* 人工的な構造物が一切無い区間が多い	
	* 砂浜の南端	

7-1-8. プリンスルパート湾内流入河川の状況

図(付)-12: プリンスルパート湾内流入河川 位置図

河川名	サイトから河口	河川及び河口の状況	備老
1.17.12	までの直線距		J Brite S
	离隹		
1 ラモアン	南へ3.1km	・ 小川程度で川幅3m	 河口部にボックスカルバート
(LRAMOINS)		 ・ 河口から200m程度上流は湿地 第のとられ) 第のとうれい 第一次 	かあるか、闭塞し機能してい
		市のような状況であった。海がらの海水の遡上は見られない。	・河口部砂
		 河口部閉塞なし 	
2 ピカード	南へ1.6km	・ 川幅15m	・ 上流に上水用小規模ダム有
(PICARD)		 水深50cm程度 	・ 河口部砂利
		・水量やや多く清流	
		 ・ 護戸なし ・ 河口郊閉塞なし 滋油小 	
2 インディアン	茜~0.7 1-m		・「孫の地に上法への知业田ボ」
(INDIAN)	闱 ³ \0.7KIII	 ・ 波除堤車に廃船綱1隻 	ト用護岸あり。ボート15隻、
		・ 河口部は濁水、流速は殆ど無い	エンジン使用禁止
		・ 河口部の南側に波除堤30mが	・ 河口から約2~4キロは沼沢池
		あるが、ハリケーンにより崩壊	状態で河床勾配が無い汽水域。
		している。	* マンクローノや八小域の生物 が生息すろ自然保護区域とか
		 ・ 北側に 1 個 堤10 m ・ 南北 堤 根 元 に 浸 合 / 堆 待 け 目 	っている。
		日北堤低九に役長/堆積は先られず	・ 河口から2~4キロの沼沢池は
		・ 河口部水深1~2m	河道部分が熱帯雨林で覆われ
		・ 河口閉塞なし	風もさえさられることから、 ハリケーン時の小刑海船の渡
			難地として利用されている。
			 上流約1kmのところに、コンク
			リート製の鉄道橋のアバット
4 2 7	古人也加		か残つしいる。 潮太期間市 マー・ハの吉然
$\begin{pmatrix} 4 \end{pmatrix} - \chi \\ (NOPTH) \end{pmatrix}$	しく北側	・ 川幅15m ・ タ小濁りなり 法演小	 - 前
(NOKTH)		 ・ 北側にけ ・ 北 ・ 北 ・ 北	・ 河口部砂/砂利
		・調査期間中は、南側から砂嘴が	
		延びた状態であるが、河口閉塞	
		は無い	
5 ラゴン	北へ0.3km	· 川幅10m	・ 河口部砂/砂利
(LAGON)		 ・ ・ ・ ・	
		- ^{ル*元以頃} ・ 多小濁りあり 流速小	
		・ 護岸あり	
		・ 河口閉塞なし	

表(付)-17: プリンスルパート湾内流入河川の状況

(注) ピカード川以外は、市街地道路から上流側は森林地帯のため、容易に河川際にアクセスできる道路は無い。