An Estimation of Energy Utilization by Heat Pump

• 256 units of energy can be used with 100 units of fossil fuels.

(Source: "Environmental Action Plan by the Japanese Electric Utility Industry," the Federation of Electric Power Companies, September 2006)

Efficient Air Conditioner (AC)

Efficiency Improvement of House AC

- The annual electricity consumption for heating and cooling decreased by about 40% in past ten years.
- •Recently, air conditioners with close to COP 7 have made their debut.

 Cooling and heating AC, 2.8kW cooling capacity, average consumption of high class products.
 Annual electricity consumption is calculated by the standard of "Japan Refrigerator and AC Industry (JRA4046)" Source: Association of Japan Refrigerator and Industry

Efficiency Improvement

Efficiency of air conditioners and Eco Cute increased twice as high and 50%, respectively.

Changes in Performance of Centrifugal Chillers

- Centrifugal chillers are mainly used for air conditioning in large facilities such as buildings and factories.
- Advanced centrifugal chillers, of which the efficiency is increased to

COP=20 or higher by inverter-controlled variable-speed operation

at the time of partial load, are also newly developed.

 These are actively introduced by 24-hour air conditioning semiconductor plants equipped with clean rooms, computer centers, etc.

Heat Pump Water Heater

What is "Eco Cute" ?

The natural refrigerant (CO₂) heat pump water heater, **"Eco Cute"**, is highly efficient.

1 (Electric Energy) + $2 \sim 4$ (Atomospheric Heat) = $3 \sim 5$ (Available Hot Water Supply)

%"Eco Cute" is the name used by the electric power companies and water heater manufactures when they call the natural refrigerant (CO₂) heat pump water heaters.

Main Features of "Eco Cute"

High Efficiency

 "Eco Cute" pumps up air heat to hot water, so that it can produce thermal energy 3 to 5 times more than the energy (electricity) required for running its system.

Natural Refrigerant

- Natural refrigerant (CO₂) has very little impact on global warming.
- It can heat water as high as up to a maximum of 90°C by solely operating a heat pump due to the physical properties of CO₂ refrigerant.

Low Running Cost

 By combining inexpensive electricity of the night-only service with the highly efficient heat pump system, it is able to achieve superior running cost performance.

Various Types of "Eco Cute"

Solar Hybrid Type

The hot water heated by the solar water heater is mainly used for daytime, and the running short of hot water is supplied by "Eco Cute".

"Eco Cute" calculates the quantity of required hot water automatically.

This system achieves **COP6.0** or more.

Performance Improvement and Shipments Trend of "Eco Cute" for Residential Use

- •COP of the first model has been improved from 3.5 * to 4.9 *, and the operating noises have decreased from 45dB to 38dB. (*under the rated heating condition of the JRA(Japan Refrigeration Association))
- In fiscal 2006 only, about 350,000 units were shipped throughout the country, and it is now reaching over **1** million units in total.
- The Japanese government sets a plan to introduce **5.2 million units** by the time of 2010.

TEPCO's Development of Heat Pump Water Heater for Business Use

Various types of Heat Pump Water Heater for **business use** depending on hot water supply loads for hotels, hospitals, sports facilities, stores and restaurants have been placed on the market.

©2009 The Tokyo Electric Power Company, Inc. All rights Reserved.

"Hot Power Eco

(28kW) COP4.5

(Toshiba Carrier)

BIG"

16

Potential and Promotion

Potential of Reduction in CO₂ Emissions in Japan

(actual results in FY2002)

CO2 emissions if heat pumps spread widely in the commercial sector and the industrial sector

About <u>130 million tons</u> of reduction in the residential + business + industrial sectors in Japan.

Source: Calculation by HPTCJ

Governmental Policy Support

- 1. Encourage dissemination of heat pumps as the government's policy
 - "Kyoto Protocol Target Achievement Plan" (2005)
 - "New National Energy Strategy" (2006)
 - "Basic Energy Plan"
- 2. Apply subsidies and tax breaks
 - Eco Cute
 - Highly efficient heat pumps for air conditioning

(2007)

Thank you for your attention!

Feedback Seminar on Energy-Efficiency Potential in South Africa

Efficient Operation and Maintenance of Existing Coal Power Plants

January 2009 JICA Study Team Kiyoshi Kataoka

Power Generation Trend by Source

Power Plants and Network

Generation Curve of A Day

Source: TEPCO Corporate Brochure 2007

Operation of Thermal Power Plants by Fuel Types

- Coal-fired power plants are of base-load operation.
 - Coal-fired power plants can continue safe operation at approximately 50% without auxiliary fuels.
- LNG power plants represent middle-load operation.
 In case of TEPCO, most power plants operating in densely-populated areas such as Tokyo are LNG-fired.
- Heavy oil/crude oil power plants are used to adjust the load or cope with the peak.

Many plants repeatedly start and stop operation every day.

Characteristics of Thermal Power Plants in Japan

- All fuels used at thermal power plants are imported. (crude oil, heavy oil, coal, LNG, etc.)
- Thermal power plants are built along coastlines. (seawater is used as the cooling water for condensers in most cases)
- The capacity per generator of thermal power plants has increased to 125, 175, 350, 600, and 1000 MW. The steam conditions have also been upgraded in parallel with the increase of the capacity.
- 600 and 1000 MW class boilers are categorized as supercritical pressure boilers or ultra supercritical pressure boilers.

Operation/Maintenance of a Thermal Power Plant – 1/2 (securing quality and safety of facilities under laws and regulations)

- Maintenance of the reliability and safety of thermal power generation facilities is controlled under the Electricity Enterprise Law established by the Government (it is obliged to report occurrence of facility and personal accidents).
- Power producers must strive to maintain/improve thermal power plants operated under harsh service conditions with high temperature and high pressure (welding repair and non-destructive inspections must be performed by engineers who have passed national examination).
- Only facilities that have received and passed on-the-spot inspections by specialized inspectors of the government when they are opened for periodical inspection/maintenance are allowed to operate.
- In case of a facility accident or personal accident, the plant may be suspended from operation depending on the content of the accident (the power producer must identify the cause of the accident and take a countermeasure, and receive an onthe-spot inspection by a specialized inspector of the government. The plant cannot resume operation unless it passes the inspection).

Operation/Maintenance of a Thermal Power Plant – 2/2 (securing the environment under laws and regulations)

- The Basic Environment Law defines the environmental standards and standard values for air-quality issues, water-quality issues, noise, vibrations, etc. (in many cases, standards by local governments are added to regulation values of the national government, and on-thespot inspections by a dedicated inspector may by involved).
- Major environmental preservation measures
- Air quality control \rightarrow SOX, NOX, dust, coal dust fly
- Water quality control \rightarrow drainage, warm drainage, oil leakage
- Noise and vibrations \rightarrow noise, vibrations
- Wastes \rightarrow coal ash, desulfurized gypsum
- Environmental harmonization with surroundings \rightarrow greening, scenic preservation

Standard Inspection and Maintenance Intervals under the Electric Enterprise Law

	Minor Inspection	Major Inspection
BOILER	Every 2 years	Every 4 years
STEAM TURBINE	Every 4 years	Every 8 years
GAS TURBINE	Every 2 years	

Plants that are not inspected and maintained within the period defined under the law cannot be operated.

State of inspection and maintenance of gas turbines is controlled in EOH. Gas turbine combustors: minor inspection after 8,000 hr (EOH) Gas turbine main units: major inspection after 25,000 hr (EOH)

[EOH = Equivalent Operation Hour]

Maintenance Mechanism

Examples of Specific Contents of TBM and CBM

- Contents of TBM (time based maintenance) (examples of major inspection)
 - Building a temporary scaffolding at the top inside the furnace
 - Visual inspection of the furnace interior, and measurement of thickness/outer diameter of representative regions (comparison with the previous data, inspection of corroded/thinned, discolored or bulged regions in particular)
 - -Removal of sample tubes (scale thickness measurement, metallographic inspection)
 - Repair of burner tiles and repair of burnt region of the air nozzle
 - Replacement of deteriorated and damaged parts
- Contents of CBM (condition based maintenance) (examples of major inspection)
 - Diagnosis of points where abnormally high temperature is indicated with SH and RH tube metal
 - Follow-up inspection of regions where abnormal metal texture was detected in the previous inspection data
 - Inspection of the bearings of large auxiliary units that have been operated at allowable limit of vibrations
 - -Lateral spread check of trouble that has occurred in similar units

Operation of Thermal Power Generation Facilities

- Formation of teams on watch for coal-fired power generation facilities (e.g., latest facility with 600 - 1000 MW, 1 control room for 1 unit) 8-hour shift with 5 teams, 1 team consisting of 4 to 5 people (1 team consisting of 6 to 7 people in case of 1 control room for 2 units)
- Operation of auxiliary facilities is commissioned to an external organization

Coal facilities (coal unloader, coal storage, coal feeder) Ash handling system (clinker-based wet type, ash-based dry type) Electrostatic precipitator, desulfurization equipment (wet type) *Effective utilization of ash and gypsum

Maintenance Structure for Thermal Power Generation Facilities

- Daily maintenance (performed by plant employees in principle) Minor repair/instrument calibration that can be performed during operation
- Scheduled outage maintenance (performed by an affiliated specialty company)
 Stop the facility for 1 to 2 weeks due to supply-demand adjustment, and perform minor repairs and condenser tube cleaning.
- Periodical inspection/maintenance (performed by affiliated company, while quality, safety and process control is performed by the plant)
 Voluntarily maintain weak facilities/regions based on legal inspection
- Preventive maintenance (to be studied based on the inspection/maintenance database)

Replacement and major repair of age-deteriorated regions

Example: replacement of boiler tubes, replacement of facilities with degraded performance

New Employee Training Program (in Case of Staff on Watch)

- Basic training (on routine work, for 2 months)
 Education on the mechanism of power plant and on safety, and how to read related drawings
- Training on work on watch (introductory training for 1 month in routine work)

Safety education mainly on-site work, knowledge on patrols, etc.

- Training on work on watch (for 6 months)
 Basics of equipment operation, maintenance and disaster control, OJT
- Simulator-based training and repetitive training on OJT (all group members to be on watch will participate, and recognize their respective roles allocated)

Facility operation and response to generated alarms

Efforts to Improve Independent Technological Capability

 Mechanism of education and training Establishment of various technical documents, manuals, etc.

Education and training using the company's training facility Training for external specialized lecturers

Mechanism of skill certification

Certify employee who have specialized knowledge and contribute to the company as special staff (treatment according to the techniques/skills)

Identification of personal technique/skills using a skill map

Loss Reduction & Reliability Improvement in Distribution System

January 2009

Tokyo Electric Power Company (JICA Study Team) Koichi HOSHI

This documentation includes technical knowledge and secret information that belong to our company and our licensors. Therefore, it shall neither be disclosed to any third parties, be copied, nor be used for any purpose other than that accorded by our company.

THE TOKYO ELECTRIC POWER COMPANY, INC.

Copyright© 2009, Tokyo Electric Power Co, Inc. All rights reserved

Image of Distribution Loss

Transmission & Distribution Loss

International Comparison of Line Loss

(%)

Copyright© 2009, Tokyo Electric Power Co, Inc. All rights reserved

Transmission & Distribution Loss

Copyright© 2009, Tokyo Electric Power Co, Inc. All rights reserved

Types of Distribution System Loss

Countermeasures for Distribution Loss

(Focusing on the Technical Loss)

Leveling distribution system loads by

- network re-configuration(for MV, LV system)
- Power factor correction by capacitor placement
- □Install new feeders
- □Install new transformers
- ■Build a substation
- □Re-conductoring

(Replace with larger cross section conductor)

Overview of Countermeasures

1. Leveling of distribution system loads by network re-configuration

Basic Idea

•Some loads in the heavy loaded feeder shifted to another lightly loaded feeder

- •Sectionalizing switchgear allocation for load shift (new interconnection between feeders may be required)
- •Optimal switching allocation may be done by distribution system analysis software

Comments

•First step for loss reduction with less investment

Copyright© 2009, Tokyo Electric Power Co, Inc. All rights reserved

Overview of Countermeasures

- Power factor correction by capacitor placement
 Basic Idea
 - Improvement of power factor reduces power flow in a feeder.
 Thus, system loss reduction achieved
 - Power factor improved by compensating the reactive power

□Image of Reactive Current Compensation

Overview of Countermeasures

- 3. Install new feeders/transformers/substationsBasic Idea
 - •Heavy loaded area to be supplied by new feeder so that existing feeder supplies less loads (for new feeder install, sometimes new HV/MV transformer needed)
 - •New substation to be built in the center of high load density area so that existing feeder supplies less loads

Comments

•Building new facilities(feeders, transformers, substations) requires a certain level of investment. Impact of loss reduction and investment must be carefully considered.

Evaluation of Loss Reduction Measures

 When "Cost of Loss Reduction" > "Economic Value of Reduced Energy Loss", the loss reduction measure is considered feasible

→Determine the most effective measures and their respective input

TOKYO ELECTRIC POWER COMPANY

Copyright© 2009, Tokyo Electric Power Co, Inc. All rights reserved

TEPCO Loss Reduction Experiences

Loss Reduction & Reliability Improvement in Jamaica Client: Marubeni, Jamaica Public Service (JPS) ➢ Period: Aug 2007 − July 2008 Power Distribution System Loss Reduction(Phase II) Client: Flectricite du Laos/World Bank ➢ Period: Mar 2007 – Dec 2008 (Phase II) ➢ Period: Mar 2004 – Mar 2005 (Phase I) Feasibility Study on Loss Reduction of Distribution Network Client: National Electric Power Co. Jordan/JICA ➢ Period: Sep 1999 − Oct 2000

Reliability Indices

SAIDI : System Average Interruption Duration Index (Annual Average Interruption Duration per Customer)

 $\sum_{i=1}^{\Sigma} \text{ (Interruption Duration } \times \text{ Number of Interrupted} \\ \text{SAIDI=} \frac{\sum_{i=1}^{\Sigma} \text{ (Interruption Duration } \times \text{ Number of Interrupted} \\ \text{ Total Number of Customers} \\ \text{ Total Number of Customers} \\ \text{ SAIDI=} \frac{\sum_{i=1}^{\Sigma} \text{ (Interruption Duration } \times \text{ Number of Interrupted} \\ \text{ SAIDI=} \frac{\sum_{i=1}^{\Sigma} \text{ (Interruption Duration } \times \text{ Number of Interrupted} \\ \text{ SAIDI=} \frac{\sum_{i=1}^{\Sigma} \text{ (Interruption Duration } \times \text{ Number of Interrupted} \\ \text{ SAIDI=} \frac{\sum_{i=1}^{\Sigma} \text{ (Interruption Duration } \times \text{ Number of Interrupted} \\ \text{ SAIDI=} \frac{\sum_{i=1}^{\Sigma} \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ SAIDI=} \frac{\sum_{i=1}^{\Sigma} \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ SAIDI=} \frac{\sum_{i=1}^{\Sigma} \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ SAIDI=} \frac{\sum_{i=1}^{\Sigma} \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ SAIDI=} \frac{\sum_{i=1}^{\Sigma} \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ SAIDI=} \frac{\sum_{i=1}^{\Sigma} \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ SAIDI=} \frac{\sum_{i=1}^{\Sigma} \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ SAIDI=} \frac{\sum_{i=1}^{\Sigma} \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ SAIDI=} \frac{\sum_{i=1}^{\Sigma} \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ SAIDI=} \frac{\sum_{i=1}^{\Sigma} \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ SAIDI=} \frac{\sum_{i=1}^{\Sigma} \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ SAIDI=} \frac{\sum_{i=1}^{\Sigma} \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ (Interrupted } \times \text{ Number of Interrupted} \\ \text{ (Interrupted } \times \text{ Number of Interrupted$

TEPCO = 3 minutes

SAIFI : System Average Interruption Frequency Index (Annual Average Interruption Frequency per Customer)

 Σ (Total Number of Interrupted Customers)

Total Number of Customers

TEPCO = 0. 04 times

SAIFI=

Distribution Network in TEPCO

Typical Multi-Divided and Multi-Connected System(Standard Configuration)

 \sim : Feeding Cable from Substation

- **Section Switch (Closed)**
- □ :Section Switch (Open) = Interconnection Switch
- : Distribution Line

Flexible network to demand growth Restored automatically (Distribution Automation System(DAS)) Section switch remote operation capability

Copyright© 2009, Tokyo Electric Power Co, Inc. All rights reserved

Image of Control Center with DAS

Distribution Network in Urban Area

DAutomatic switching when one line contingency

Copyright© 2009, Tokyo Electric Power Co, Inc. All rights reserved

Equipment for Reliability Improvement

Non-interruption Work Method

- MV Non-interruption Methods
 - Temporary switch method
 - MV by-pass method
 - Temporary interconnection method

LV Non-interruption Methods

- Temporary switch method
- Temporary transformer method

Generating Vehicle (Generator) Method

Various Methods for reduction of outage time

Introduction of Live Line Distribution Work

- By using "By-Pass Cables" & "By-Pass Switches", "Planned Outage" is avoided. (Work Area is by-passed.)
- Low voltage (LV) supply is continued by connecting to a neighboring LV system or temporary transformers.

Copyright© 2009, Tokyo Electric Power Co, Inc. All rights reserved

Effect of Non-interruption Work Method

Reduction of "Planned Outage" Duration

Copyright© 2009, Tokyo Electric Power Co, Inc. All rights reserved

TEPCO's Power Supply Reliability

Minutes/customer/year

Copyright© 2009, Tokyo Electric Power Co, Inc. All rights reserved

20

Feedback Seminar on Energy – Efficiency Potential on South Africa

Energy Demand Forecasting Model

Jan 27, 2009

The Institute of Energy Economics, Japan (JICA Study Team)

Tomoyuki INOUE

Contents

Concepts of Energy Master Plan
 Trial Energy Demand Forecasts for SA
 Considerations

1. Concepts of Energy Master Plan

2. Trial Energy Demand Forecasts for SA

2.1 Framework of Energy Demand Forecasting Model

2.2 Scenario and Case Setting

	BAU case	EEC case						
Economic Policy & Plans	OGDP growth rate GDP: 2008-2010:3.0%, 2011-2020:4.0%, 2021-2030:5.0% OStability of macro economy (exchange rate, inflation and money supply) Exchange rate: 7.5R/\$ - 10.0R/\$ from 2008 to 2030 OInvestments Road, Water supply, Energy supply, Housing, Public facilities OSectoral Industry policy Enhancing Labor intensive industry (Business outsourcing, Tourism, Bio fuels)							
Energy Policy & Plans	OCTL : +10,000ktoe in 2010 OGTL: +4% per year from 2009 to 2025	OCTL: +10,000ktoe in 2010 OGTL: +4% per year from 2009 to 2025						
Power Policy & plans	OOpen cycle gas turbine: 750MW in 2009, 3 ONuclear power : Additional +1GW per year ONG power generation : 800 MW in 2011, 80 ORenewable Energy: 1.0% in 2010 to 4.0% OReserve margin : 5% in 2009 to 16% in 200 OIPP shares : 5% 2009 to 30% in 2023	OOpen cycle gas turbine: 750MW in 2009, 300MW in 2010 ONuclear power : Additional +1GW per year from 2020 to 2030 (total= +11GW) ONG power generation : 800 MW in 2011, 800 MW in 2015, 800MW in 2020, 800 MW 2026 ORenewable Energy: 1.0% in 2010 to 4.0% in 2025 OReserve margin : 5% in 2009 to 16% in 2017 OIPP shares : 5% 2009 to 30% in 2023						
Energy Efficiency Policy	OEfficiency of coal power station: 34% ODistribution loss : 8.5% from 2009 to 2030 OSectoral Energy Efficiency Strategy (Refer to Next Page)	O38% O8.5% in 2009 to 5.0% in 2016 OMining:15%, Transport:9%, Commerce:15% Residential:10% Total:12%						

2.3 Intensities in BAU and EEC

2.4 Final Energy Demand

_	unit: million toe					
	2005	2010	2015	2020	2025	25/10
Agriculture	1.6	1.8	1.9	1.9	1.9	0.1
Mining	4.5	4.7	4.8	4.8	4.8	0.1
Manufacturing	22.5	24.1	28.8	34.3	42.9	3.9
Commercial	4.0	4.5	5.6	7.1	9.4	5.1
Transportation	15.7	17.9	21.3	25.8	32.9	4.1
Residential	16.7	17.6	19.3	21.3	23.6	2.0
Total	65.0	70.7	81.7	95.1	115.4	3.3

	EEC case				unit: million toe		
	2005	2010	2015	2020	2025	25/10	
Agriculture	1.6	1.8	1.8	1.7	1.6	-0.9	
Mining	4.5	4.6	4.4	4.1	3.7	-1.4	
Manufacturing	22.5	23.8	26.3	29.0	33.7	2.4	
Commercial	4.0	4.4	5.1	6.0	7.4	3.5	
Transportation	15.7	17.7	20.2	23.4	28.4	3.2	
Residential	16.7	17.4	18.1	19.0	20.0	0.9	
Total	65.0	69.8	75.9	83.2	94.9	2.1	

12.5% down in 2020_

17.8% down in 2025

Copyright© 2009, IEEJ, All rights reserved

2.5 Power Demand

		BAU ca	BAU case			unit: TWh	
	2005	2010	2015	2020	2025	25/10	
Agriculture	5.5	6.5	6.9	7.3	7.6	1.1	
Mining	28.3	29.8	30.3	30.3	30.1	0.1	
Manufacturing	81.5	98.8	126.3	160.1	213.2	5.3	
Commercial	27.1	30.8	38.6	48.8	64.9	5.1	
Transportation	5.4	6.2	7.4	8.9	11.3	4.1	
Residential	37.0	43.8	53.6	65.6	79.3	4.0	
Total	184.8	215.9	263.0	321.0	406.4	4.3	

EEC case

unit: TWh

	2005	2010	2015	2020	2025	25/10
Agriculture	5.5	6.4	6.5	6.5	6.5	0.0
Mining	28.3	29.3	27.6	25.6	23.7	-1.4
Manufacturing	81.5	97.3	115.3	135.6	167.4	3.7
Commercial	27.1	30.3	35.2	41.4	50.9	3.5
Transportation	5.4	6.1	7.0	8.1	9.8	3.2
Residential	37.0	43.4	50.5	58.7	67.5	3.0
Total	184.8	212.9	242.1	275.9	325.8	2.9

14.0% down in 2020_

19.8% down in 2025-

Copyright© 2009, IEEJ, All rights reserved

2.6 Power capacity

		BAU ca	BAU case			unit: MW		
	2005	2010	2015	2020	2025	25/10(%)		
Coal (Eskom)	39,378	40,484	44,134	46,510	50,015	1.4		
Coal (Auto)	2,044	2,096	7,897	16,040	22,734	17.2		
Natural gas	1	12	1,756	2,634	2,634	43.6		
Hydro	1,321	2,342	2,342	2,342	2,342	0.0		
Nuclear	1,840	1,842	1,842	2,780	7,472	9.8		
Other	0	1106	1106	1106	1106	0.0		
Total	44,584	47,882	59,078	71,413	86,303	4.0		

EEC case

unit: MW

2005	2010	2015	2020	2025	25/10
39,378	39,838	39,254	38,269	37,528	-0.4
2,044	2,063	7,024	13,161	17,007	15.1
1	12	1,756	2,634	2,634	43.6
1,321	2,342	2,342	2,342	2,342	0.0
1,840	1,842	1,842	2,780	7,472	9.8
0	1,106	1,106	1,106	1,106	0.0
44,584	47,203	53,324	60,293	68,089	2.5
70.0%	72 5%	72 5%	72 59/	72 5%	72 5%
6.0%	5.0%	12.0%	16.0%	16 <u>0%</u>	16.0%
	2005 39,378 2,044 1 1,321 1,840 0 44,584 70.0% 6.0%	2005201039,37839,8382,0442,0631121,3212,3421,8401,84201,10644,58447,20370.0%72.5%6.0%5.0%	20052010201539,37839,83839,2542,0442,0637,0241121,7561,3212,3422,3421,8401,8421,8421,8401,1061,10644,58447,20353,32470.0%72.5%72.5%6.0%5.0%12.0%	200520102015202039,37839,83839,25438,2692,0442,0637,02413,1611121,7562,6341,3212,3422,3422,3421,8401,8421,8422,78001,1061,1061,10644,58447,20353,32460,29370.0%72.5%72.5%72.5%6.0%5.0%12.0%16.0%	2005201020152020202539,37839,83839,25438,26937,5282,0442,0637,02413,16117,0071121,7562,6342,6341,3212,3422,3422,3422,3421,8401,8421,8422,7807,47201,1061,1061,1061,10644,58447,20353,32460,29368,08970.0%72.5%72.5%72.5%72.5%6.0%5.0%12.0%16.0%16.0%

15.6% down in 2020_

21.1% down in 2025

Copyright© 2009, IEEJ, All rights reserved

2.7 Power & Energy Demand Comparison

Power demand / GDP

Final Energy Demand / GDP

- 3.1 The consistency between Economic strategy and Energy plan is important for making Strategic Energy Plan. In order to keep the consistency, Energy Demand Forecasting Model and Energy optimization model are required.
- 3.2 And also, for the consistency among several energy plans such as, power development plans, coal development plans and so on, the above models are used. The Models are used to evaluate the energy projects programmed differentially in view point of country wide energy balance.
- 3.3 For maintaining the models, several kinds of experts such as Energy policy maker and Model builder are required in energy responsible departments and/or agencies. Then capacity building for the experts are required.

Thank you !!

1

Energy Supply Optimization Model January 27,2009

The Institute of Energy, Economics, Japan (JICA Study Team) Tatsuyuki ASAKURA

Position of Mathematical Energy model

Structure of Optimization Model

Concept of Optimization model

Samples of Scenarios/case study

Case Setting of Philippine project

Analyze(1)—Total Primary Energy & CO2

At 2030 u	unit=ktoe				
	Total Primary Energy	ratio	case	CO2 emission (Mton)	ratio
S-EEC	59, 803	0.82	S-EEC	113.09	0.72
LowGrowth	62, 183	0.85	Low growth	119.88	0.77
EEC	66, 011	0.91	EEC	134.40	0.86
S-HighPrice	70, 305	0.97	E85	137.68	0.88
HighPrice	71, 515	0.98	S-HighPrice	149.32	0.96
E85	72, 762	1.00	E20	149.42	0.96
E20	72, 770	1.00	High Price	152.96	0.98
ref	72, 774	1.00	reference	156. 21	1.00
LowPrice	74, 178	1.02	Low Price	160. 74	1.03
Vehicle-plus	74, 578	1.02	Motorization	161.39	1.03
BAU	84, 450	1.16	High growth	194.40	1.24
HighGrowth	84, 474	1.16	BAU	195.13	1.25

In order to decrease the total primary energy (TPE) and CO2 emission, It is best to promote the energy efficiency and conservation (EEC).

Economic growth gives the second effect to the TPA & CO2 emission.

The price gives a little effect to TPE & CO2 emission.

7
Analyze(2) Ref and Nuclear

8

Analyze(3) - Ref and Refinery Cap enlarge

mtoe

Primary Energy Supply: Reference Case

mtoe

Double Refinery Capacity Case (Refcap2)

9

Trial Optimization model for SA

Copyright $\ensuremath{\mathbb{C}}$ 2009, IEEJ, All rights reserved

The result of BAU (1)

Criterion for oil stockpiling

28 days of consumption of total petroleum production

It starts at 2008.

11

The result of BAU (2)

The comparison of BAU and EEC case(1)

13

The result of BAU and EEC case(2)

- 1 Best energy supply can be estimated from the optimization model using the energy scenarios and the energy plan under the keeping consistency with demand.
- 2 Using the models, various energy scenarios/case study can be simulated.

Economic situation changes, Energy price changes, Energy efficiency increases, Environment regulation changes, etc.

3 The models can help to formulate the national energy plan, where well-examined, consensus-obtained data shall be applied.

Thank you very much !

Copyright $\ensuremath{\mathbb{C}}$ 2009, IEEJ, All rights reserved

<u> </u>	T	T			- T	T	ŤΤ	T	1	Т	- T	Т	- T	T	Т	Т	- T	Т	T		Т				Ţ	T								
		Attended																									· · · · · · · · · · · · · · · · · · ·					•		
	edback Session - Z/ January US	Organisation	Aluminium Federation of SA	AngloGold Ashanti	ArcelorMittal	ArcelorMittal	AroelorMittai SA	Bank of Tokyo-Mitsubishi UFJ, Ltd.	BHP Billion	Central Energy Fund	Central Energy Fund	Central Energy Fund	Central Energy Fund (CEF) Pty Ltd	City of Johannesburg	City of TSHWANE	CSIR	CSIR	DBSA	DBSA - REMT	Department of Minerals and Energy	Department of Minerals and Energy	Department of Minerals and Energy	Department of Public Enterprises	Department of Trade and Industry	Department of Trade and Industry	Department of Trade and Industry	Department Public Enterprises	Department Public Enterprises	DME	. 11Q	DTI	DTI	Embassy of Japan	Embassy of Japan
	ergy Efficiency ree	Name	1 Dr Tony Paterson	2 Mr Keith Arnold	3 Mr Peter Nott	4 Mr Dennis Brits	5 Mr Francois van der Bank	6 Mr Koji Baba	7 Ms Ntsiki Mbono	· 8 Mr Barry Bredenkamp	9 Mr Raoul Goosen	10 Mr Tebogo Snyer	11 Ms Gillian Chan-Sam	12 Mr Thabo Mahlatsi	13 Mr Frans Dekker	14 Mr Kagiso Keatimilwe	15 Mr Mongo Mehlwana	16 Mr Moses Chundu	17 Mr Yaw Afrane-Okese	18 Mr Lambona Aphane	19 Mr Maphuti Legodi	20 Ms Neilsiwe Magubane	21 Dr Edwin Ritchken	22 Mr Maesela John Kekana	23 Ms Chanel van Zyl	24 Mrs Marba Visagle	25 Mr Chris Fortee	26 Mr Johan van Zyl	27 Dr Elsa du toit	28 Mir Dumisane Buthelezi	29 Mr Maesela Kekana	30 Mr Tsheko Modise	31 Mr Yohei Miyauchi	32 Mr Yusuke Nakanishi
	Ľ																			ļ														

. 4

33 Mr Craig van Zyl	Eris Property Group	
34 Mr Piet Buys	Eskom	
35 Mr Raj Pandaram	Eskom	
36 Mr Nigel Vlok	Eskom	
37 Mr Dhevan Pillay	Estom	•
38 Mr Lawrence Padachi	Eskom	
39 Ms Rochelle Chetiy	Eskom	
40 Mr Wark Chettlar	Eskom Holdings Limited	
41 Mr Corrie Visagie	Eskom Holdings Limited	
42 Mr Zaheer Khan	Eskom Holdings Ltd	
43 Mr Monkwe Mpye	Eskom Holdings Ltd	
44 Mr Raj Pandaram	Eskom Holdings Lid	
45 Mr Nigel Volk	Eskom Holdings Ltd	
46 Mr Mike Hughes	Exxaro	
47 Mrs Madeleine Ronquest	FirstRand Ltd.	
48 Mr Idi Okada	Httachi	
49 Mr Tatsuyuki Asakura	[] 프린	
50 Mr Tomoyuki Inoue		
51 Mr Takeo Suzuki		
52 Mr Ono	JICA SA	
53 Mr Sakurai	JICA SA	
54 Ms Kea Tihaphane	Johnson Matthey	
55 Mr Phillip de Bruyn	Marubeni Corp	
56 Mr Rob Ashdown	Merchantec Coprorate Finance	
57 Mr Tatsuya Hori	Mitsui & Co. Europe pic.	
58 Mrs Christine Dunbar	National Business Initiative	
59 Mrs Valerie Geen	National Business Initiative	
60 Mr Nhlanhla Sibisi	National Business Initiative	
61 Ms Candice Wakefield	National Business Initiative	
62 Mr Thembani Bukula	NERSA	
63 Mr.J.Coetzer	NERSA	•
64 Ms Elsie Coetzee	NMISA	
65 Mr Mhlonipheni Shezi	Pretoria Portland Cement	
66 Ms Amanda Luxande	REEEP	
•		

•

•

9	7 Mr Bolkanvo Mokoatle	SAPA
-		
0	8 Mr Nelson Mbatha	
	o Mar Varin M Iraton	Standard Bank
D	2 IVIS NALILI NI LICIOLI	
r,	ol Mr M Yshima	Sumitomo Corp
	1 Mr Hone Mashele	TFMC
•		
	7 Mr Marc James Thomson	Tovota Tsusho Africa (Pty) Ltd
`		
Ľ	2 Dr. William dan Haller	University of North West
	A har Charl Marsie	University of North West
`		
	T Mr Deat dri Ploov	MWF
-		

+ 東寶側団員4名、佐川氏(BTMU)

• •

•

• . --

. .

Appendix II

Workshop on Energy Demand Forecast and Supply Optimization Model 28th, January 2009, at DTI meeting room, Pretria

Appendix II:

Workshop on Energy Demand Forecast and Supply Optimization Model 28th, January 2009, at DTI meeting room, Pretria

1. 報告資料

1) Energy Demand Forecasting Model

Mr. T. Inoue, IEEJ

2) Energy Supply Optimization Model

Mr. T. Asakura, IEEJ

2. 出席者

以下の表の通り

	名前	所属
1	Tshilidzi Ramuedzisi	DME Planning, Director
2	Mmabakwena Dithupe	DME Planning
3	Nombuelo Mahlangu	DME Planning
4	Elias Modiba	DME Planning
5	Sarau Lepawanc	DME Planning
6	Jeff Subramoncy	DME Planning
7	Rabelani Tshikalange	DME EE
8	Gabriel Jamo	Dti ecomic infr.
9	Thobo Gopane	Dti
10	Paula MakcabnHere	Dti
11	Ehvis Ramafamba	Dti
12	Velalphi Msimarg	DST-Energy
13	Roumen Anguela	Univ. of Pretoria

Energy Demand Forecasting Model

Workshop, Jan 2009

CONTENTS

1. Methodology for Energy Demand Forecasting Model

- 2. Energy Demand Forecasting Model Building
- 3. Simulation Results & Evaluation

The Institute of Energy Economics, Japan

Energy Supply Optimization Modeling

The Institute of Energy, Economics, Japan

Tatsuyuki ASAKURA

28/Jan, 2009

Position of Mathematical Energy model

What is the LP optimization model ?

Structure of Optimization Model

Typical Flow Diagram of Coal Gas Electricity

Typical Flow Diagram for Refinery model

Definition:

- **(1)LP model is composed of many constraints and one objective function and many variables.**
- **2**Constrain and objective function are represented in linear formula.
- **③LP model is to get variables values with max or min objective function under satisfying all constraints.**

Set of variables satisfying constraints is convex polyhedron.

Optimal solution always exists on vertex of convex polyhedron.

- 1 production=Yield * Raw material feed ex) gasoline production=0.3 * Crude oil feed
- 2 fuel consumption=860*Generating power /
 (heat value*thermal efficiency) (power plant)
- **3** production + import export = **Demand :balance**
- 4 Generating power≦Capacity * load factor * (1−self_use) (power plant)
- 5 Min of Imp/Exp \leq Imp/Exp \leq Max of Imp/Exp

Brown letter : variables (model will decide) Blue letters : input data

Total cost = Σ (y) (year cost) / (1+r)^(y-2008) :NPV

year cost = production cost + import cost + transfer cost + operation /maintenance cost - export sales - domestic sales(demand) r: deflator by year y: year

General form of LP model

Constrains

$$a_{1,1} * X_{1} + a_{1,2} * X_{2} + \cdots + a_{1,n} * X_{n} \leq b_{1}$$

$$a_{2,1} * X_{1} + a_{2,2} * X_{2} + \cdots + a_{2,n} * X_{n} \leq b_{2}$$

$$\vdots$$

$$a_{n,1} * X_{1} + a_{n,2} * X_{2} + \cdots + a_{n,n} * X_{n} \leq b_{n}$$

Objectivefunction
$$Z = c_1 * X_1 + c_2 * X_2 + \dots + c_n * X_n \rightarrow Max$$
 or MinVariables: $X_j \ge 0$ for $j = 1, 2, \dots, n$ parameter: $a_{i,j}, b_i$ for $i = 1, 2, \dots, m$ $j = 1, 2, \dots, n$ Righthandside: b_j Operator: $\leq , =$ operatorin constrains:anykindsof $\leq , \geq , =$ anykindsof $\leq , \geq , =$

10

- 1 **Optimal solution** is mathematically guaranteed . (It is difficult to solve optimization model except LP in the real business field)
- 2 There are some useful LP software.Even if you do not know how to solve LP, you can solve it.All you have to know is how to use solver.
- **3** There are many cases which LP can be applied in business field including energy field .

- **1** All constraints and objective function should be linear. If it is non linear, it must be approximated to linear.
- **2 Optimal solutions are apt to be extreme.** ex) It is full load today, stop the next day in the case plant load, This pattern often happens. (Not realistic)
 - measure) After getting the solution, new constraints should be added or modified in trial and error in order that solutions comes to near realistic.
- **3 True cause of infeasibility may be difficult to be founded** (infeasibility means that constraints can not be satisfied In many cases miss data and miss constraints)

How to build up the optimization model

and sample of Technical Transfer

Procedure to solve the LP model

The role of persons who want to solve the problem

- 1 Define the purpose to build the optimization model
- 2 Define the energy flow
- 3 Define the constraints
- 4 Collect data
- 5 Analyze the results

The role of the modeler

- 1 Cooperate to define the energy flow and constraints with the above person
- 2 Actualize the LP model using GAMS
- 3 Cooperate to analyze the results

System tool

GAMS: The Generalized Algebraic Modeling System product name of GAMS Co.ltd home page address = www.gams.com
GAMS is a modeling system for mathematical programming and optimization

- **1** Computer language
- 2 MARKAL uses GAMS. (LP base)
- **3** Many oil refining companies in USA, Europe and Japan use GAMS as a tool of optimal production planning system.

The barrier of building the model

There are some barriers in building up the optimization model.

The hardest problem is to collect data.

Reason) 1 Every data is requested in order to build up the model. There are many confidential data.

ex) Oil refinery plant technical specification.This plant is belonging to the private company.This data is usually confidential outside the company.

Reason) 2 The optimization model is used for the future energy policy. So many data of the future is not easy to get.

The concept of optimization model by LP (lecture) 1 •What is optimization model ? • What is LP model ? • Feature of LP model • Application area of LP model How to make LP model 2 (lecture) • how to draw energy flow • how to make constraint • how to make object function How to use tool(=GAMS) 3 •GAMS grammar (lecture) • Simple LP examples by GAMS (exercise) Making the energy model & test (cooperation) 4 Doing the various case studies (cooperation) 5 Analyzing the various case studies (cooperation) 6

Example of the optimization model

Ex) Philippines supply optimization model

Target year = 2006 ~ 2030 (25 years)

No of constraints = 7,700 No of variables = 10,700

execution time < 1 second

Software : GAMS (Generalized Algebraic Modeling Software)

Input and Output

Production Demand Import/Export

Technology Cost/Price Economy/Security Environment

EXCEL

Input

Balance Check of Result Check of Input

EXCEL

Input items(1)

Production	Max/Min production / year Capacity of each Plant (power, refinery etc) Base Generation of power (Nuclear, Hydro)
Demand	All energy (ktoe/y) (Coal, Gas, Petroleum products, RE)
Import/Export	Max/Min of Import for each energy Max/Min of Export for each energy
Economy Security	Deflator Exchange rate Stock day for oil stockpiling Initial oil stock
Environment	CO2 emission CO2 emission max (if necessary)

Input items(2)

Technology	Yield for every plant (ex refinery) plant Heat Value for each energy Specific gravity of energy Power Plant Availability Thermal Efficiency for each power plant Self Use ratio in power plant and refinery Distribution loss ratio in power
Cost / Price	Production cost Import cost / Export price Operation/Maintenance cost Domestic sales price
Structure	All energy flow Policy (ex Domestic production/Import>= xx)

Example of the demand data

k	demand KTOE	KTOE	KTOE	KT0E	KTOE	KTOE	KT0E	KTOĘ	KT0E	KTOE	
K	Coal	gas	LPG	gasoline	jet_fuel	kerosene	Diesel	Fuel_oil	el	RE	
	2006 1/500.08	1868	5/	8405	1/54	625	/260	49	163/0	996/	
	2007 19044 68		50.5105	8844.235			/505.31	50.72719	17466 41	9/80.002	Save File
			50.89907	9000.509		80. /8488	1013.2/1	51. U0321	1/400.41	9/35.12	
	2009 19/04.2	1002 65	0.09.02900	9103.410	1091.203/11	02.02//0	7006 46	52. 33039	10003.14	9977.079-	
	2010 20070.0	2017 80	63 04825	9304.211	1008 250124	82 09020 82 0016	2120 202	52.10012	10304.04	10151 7	
	2011 20071.00	2104 171	66 83086	10031 54	2068 216780	83 1/30/	8347 085	52 20704	20078 83	10262 73	
	2012 21030 00	2161 525	69 93088	10387 89	2142 610008	83 20899	8585 738	52 25698	20888 95	10202.75	
	2014 22176 24	2219 979	73 23562	10765 26	2221 406186	83 22645	8837 178	52 17276	21734 97	10517 79	
	2015 22741.68	2279.557	76.73798	11163.34	2304, 532612	83. 21559	9101.58	52.06702	22617.52	10656 67	
	2016 23322.04	2340.307	80. 43592	11581.89	2391, 958529	83. 13653	9378.344	51,90996	23537.17	10800.92	
	2017 23916.96	2402.216	84. 32848	12021.05	2483. 688237	83.04609	9668.383	51.74208	24495.1	10949.48	
	2018 24526.48	2465.298	88. 41797	12480.97	2579.755719	82.94663	9971.881	51.56453	25492.38	11101.6	
	2019 25150.55	2529.564	92.70847	12961.94	2680. 220413	82.83904	10289.03	51.37802	26530.01	11256.76	
	2020 25789.44	2595.029	97. 20547	13464.35	2785. 163889	82. 72282	10620.13	51. 1814	27609.45	11414. 58	
	2021 26675.85	2691.06	102.905	14121.95	2922. 520743	82. 57957	11053.87	50. 93362	28939.56	11563.35	
	2022 27592.85	2790.087	108.9273	14813.92	3067.050693	82. 43518	11510.25	50.67783	30335.82	11714.03	
	2023 28541.42	2892.187	115. 2885	15541.72	3219.063212	82.29095	11990.29	50. 41444	31801.39	11866. 47	
	2024 29522.58	2997.442	122.0059	16306.95	33/8.891228	82. 14813	12495.07	50.14383	33339.58	12020.57	
	2025 30537.43	3105.931	129.0983	1/111.33	3546 890982	82.00/96	13025.73	49.86638	34953.86	121/6.26	
	2026 31587.06	3217.738	136.5854	1/956.6/	3/23.442105	81.8/1/1	13583.51	49.58243	36647.92	12333.49	
		3332.945		18844.9	3908.94/8/4		14109. /	49. 29232	38425.59	12492.22	
		3451.038		19//8.08	4103.83004		14/80.08	48.99038	40290.91		
		35/3.903		20/58.3/	4308.00/399	01 20140	15432.91	48.09493	42248.13	12014.00	
	2030 30137.47	2033. 0Z0	1/0.910	21/00.00	4020.090490	01. 39140	10112.91	40. 00020	44301.09	129/1.1	

- 1 This is the 1 sheet of input_data.xls.
- 2 This data comes from the forecasting model result.
- 3 This sheet data is converted to 1 file with extention "csv" by click the "Save File".

Output item

Balance	Energy Balance Refinery Balance Electricity Balance
Check of output	Production Supply Consumption Import Export
Check of Input	Cost Bound Demand

Examples of the output

Balance table

year		term	crude	coal	gas	LPG		gasoline	kerosene	jet_fuel	diesel	fuel_oil	el
			ktoe	ktoe	ktoe	ktoe		ktoe	ktoe	ktoe	ktoe	ktoe	ktoe
	2008	production	1278	84369.42	1619.57		56.9	2620.22	0	1106.09	2955.02	5829.31	21448.29
	2008	import	7386.74	0	271.55		0	6380.35	80.78	747.57	4658.25	0	0
	2008	export	0	0	0		0	0	0	0	0	5778.25	0
	2008	surplus	0	0	0		0	0	0	0	0	0	0
	2008	stock pilin	0	0	0		0	0	0	0	0	0	0
	2008	supply	8664.74	84369.42	1891.12		56.9	9000.57	80.78	1853.66	7613.27	51.06	21448.29
	2008	transform	8664.74	59169.44	0		0	0	0	0	0	0	0
	2008	own-use	0	0	0		0	0	0	0	0	0	2359.31
	2008	loss(waste	0	0	0		0	0	0	0	0	0	1622.56
	2008	final consu	0	19090.66	1889.77		56.9	9000.57	80.78	1853.66	7613.27	51.06	17466.41
	2009	production	1278	89177.23	1619.57	Ę	59.53	3516.34	0	1481.61	3965.64	7923.99	22107.38
	2009	bio	0	0	0		0	0	0	0	0	0	0
	2009	import	10350.09	0	342.25		0	5667.08	82.83	409.59	3809.11	0	0
	2009	export	0	0	0		0	0	0	0	0	7871.66	0
	2009	surplus	0	0	0		0	0	0	0	0	0	0
	2009	stock pilin	0	0	0		0	0	0	0	0	0	0
	2009	supply	11628.09	89177.23	1961.82	Ę	59.53	9183.42	82.83	1891.2	7774.75	52.33	22107.38
	2009	transform	11628.09	61107.94	0		0	0	0	0	0	0	0
	2009	own-use	0	0	0		0	0	0	0	0	0	2431.81
	2009	loss(waste	0	0	0		0	0	0	0	0	0	1672.42
	2009	final consu	0	19764.2	1960.11	Ę	59.53	9183.42	82.83	1891.2	7774.75	52.33	18003.14

How to utilize Scenarios/case study

Samples of the other country

Case Setting

1 Case studies only demand changes.

- 1) Reference(EEC, GR, price) = (0.5%, 5%, 160\$)2) BAU(EEC, GR, price) = (0.0%, 5%, 160\$)
- 3) EEC (EEC, GR, price) = (1.0%, 5%,160\$)
- 4) Super+EEC (EEC, GR, price) = (1.5%, 5%, 160\$)
- 5) E20 ref + (bio+ethanol =20%)
- 6) E85 ref + (bio+ethanol =85%)
- 7) High Growth (EEC, GR, price) = (0.5%, 6%, 160\$)
- 8) Low Growth (EEC, GR, price) = (0.5%, 4%, 160\$)
- 9) High Price (EEC, GR, price) = (0.5%, 5%, 200\$)
- 10) Super High Price (EEC, GR, price) = (0.5%, 5%, 240\$)
- 11) Low Price (EEC, GR, price) = (0.5%, 5%, 140\$)
- 12) Vehicle+plus(motorization) ref + (motor owner 10—20% up)

Analyze(1)—Total Primary Energy & CO2

At 2030

	Total Primary Energy	ratio	case	CO2 emission (Mton)	ratio
S-EEC	59, 803	0.82	S-EEC	113.09	0.72
LowGrowth	62, 183	0.85	Low growth	119.88	0.77
EEC	66, 011	0.91	EEC	134.40	0.86
S-HighPrice	70, 305	0.97	E85	137.68	0.88
HighPrice	71, 515	0.98	S-HighPrice	149.32	0.96
E85	72, 762	1.00	E20	149.42	0.96
E20	72, 770	1.00	High Price	152.96	0.98
ref	72, 774	1.00	reference	156. 21	1.00
LowPrice	74, 178	1.02	Low Price	160. 74	1.03
Vehicle-plus	74, 578	1.02	Motorization	161.39	1.03
BAU	84, 450	1.16	High growth	194.40	1.24
HighGrowth	84, 474	1.16	BAU	195.13	1.25

In order to decrease the total primary energy (TPE) and CO2 emission, It is best to promote the energy efficiency and conservation (EEC).

Economic growth gives the second effect to the TPA & CO2 emission.

The price gives a little effect to TPE & CO2 emission.

2 Case studies only supply changes. (demand=Reference)

Reference (EEC, GR, price) = (0.5%, 5%,160\$)
 nuclear begins to start.
 Refinery capacity twice
 Renewable energy twice

Comparison between Ref and Nuclear

Primary Energy Supply: Reference Case

Comparison between Ref and Refinery Capacity enlarge

Primary Energy Supply: Reference Case

Double Refinery Capacity Case (Refcap2)

Trial Optimization model for SA

The result of crude oil balance

Domestic import Stock Piling

Criterion for oil stockpiling

28 days of consumption of total petroleum production

The result of coal balance

The result of Gasoline/Diesel oil balance

The result of Power balance and CO2 emission

The result of BAU and EEC case

The result of BAU and EEC case

The Optimization model has the following true worth.

- 1 If the situation surrounding energy changes, what happens?
- 2 If policy for energy is set, what comes?

Using the optimization model, you can get various information for answering above questions.

I recommend that you will have the Demand Forecasting model and Supply Optimization model of national wide, however in order to realize this idea, you are needed to have experts of modeling because you have always to maintain models.

Thank you very much !

1. Methodology for Energy Demand Forecasting Model

JAPAN

• Link to the social economic development plan

- Consider energy policies.
- Incorporate energy price effects
- Link to Power Development Plan
- Estimation for CO2 emission
- Demand data creation for Optimization model

Scenario setting

Social & Economic Plans are selected Energy Plans and Power supply plans are referred.

Model building

The model is based on Econometric theory The model engine is Simple E (MS-EXCEL Add-in software) Forecasting equations are estimated by Regression analysis

Simulation

Check the forecasting values and the growth rates.

Check the targets and goal levels.

Data are linkage to Optimization model

1.4 Model Structure in Simple-E

Model structure in EXCEL sheets

1	SA-Intensity sheet	Energy intensity estimation	
2	Data sheet	Actual data input	Controlled by Simple-E
3	Model sheet	Model structure description	Controlled by Simple-E
4	Simulation sheet	Simulation result output	Controlled by Simple-E
5	Share sheet	Share & contribution calculation	
6	Growth sheet	Growth rate calculation	
7	Summary sheet	Forecast data summary	
8	CO2 sheet	CO2 emission calculation	

Energy Demand Forecasting Model is built in MS-EXCEL.

Main menu of Simple-E in MS-EXCEL

N 🔤	Aicros	oft Excel – Ene	rgy Demand BAU ()2					
	ファイル	(E) 編集(E) 表	示(⊻) 挿入(1) 書式(0) ツール(T) データ(D) ウィンドウ(<u>M)</u> ヘル	パー Adobe PE)F(<u>B</u>)			
M	si 🐼	rab 🔁 💂							
10		A A B 19 8	1× == =	🗠 - 🔍 Σ - 👌 🛣 🚮 100% - 🥳					
1									
: 1	AE060		0						
	F		н	T	٨٨	AB	AC		ΔF
1		Base ca	se	1	16	17	18	19	20
2	F	G H		I	2005	2006	2007	2008	2009
3	3								
4	4	Macro Economic	3						
5	5	Econom	MAIN MENU (Simple	e E. V2005) 🛛 🗙 💻	6.3264	6.7716	7.0454	7.500	8.000
243	243			Simple E	55	55			
244	244		Man la la		11	11			
245	245		MALIA Graph Correlation	Sensitivity Preferences Utility	638	684			
246	246		Main Flow		2	2			
247	247		Check	Solve Simulate					
248	248				100.0	100.0	100.0	100.0	100.0
249	249		Check & Solve	Solve & Simulate	65.9	64.7	64.7	64.7	64.7
250	250		Δ	LL THROUGH	2.7	2.6	2.6	2.6	2.6
251	251				0.5	0.5	0.5	0.5	0.5
252	252		✓ Link Single Flow [=a	b]	30.9	32.1	32.1	32.1	32.1
253	253		(m		0.1	0.1	0.1	0.1	0.1
254	254		Sheets Names Additional I	Data Sheets					
255	255	Manufac	Data Sheet (Source #U)	Model Sheet Simulation	22,496	21,854			
256	256	sector			123.5	114.0	114.0	114.0	114.0
257	257		Create Simple F. Worksh	eate	31.1	33.0	33.5	34.0	34.5
258	258		Cleate Shimie L Works						
259	259		Add to New Workboo	k Add to Active Workbook	100.0	100.0			
260	260				0.0	0.0	0.0	0.0	0.0
261	261		Simple Econom	etric Simulation System by IEEJ	-1.30	0.00	-0.05	-0.05	-0.05
262	262			Power intensity to Manufacturing GDP	447.1	437.8			
263	263			Power demand before E.save	7,007	7,215			
264	264			Yower demand after E.save	7,007	7,215			
265	265			Yower demand after E.save	81,477	83,895			
266	266								

1.5 Data Flow of the Energy Demand Forecasting Model

Survey of economic activ	ities Forecast of GDE	Forecast of GDP
Economic Resources	Gross Domestic Demand	Gross Domestic Products
Investment and equipment Labor force & Wages Labor productivity Operation load for factories Export and Import FDI and Saving	 Private consumption Government consumption Gross Capital Fixed Formation Exports Imports Total 	Agriculture & Fishery Mining Manufacturing Commercial Transport Service & Others Total

• Exchange rat	te				
Population &	Households				
• Labor force r	number (Agri, Mini,	Manu, Serv, Unemply)			
Main Econom	nic Indicators				
Nom Rea GDP	Nominal GDP Real GDP at 2000 GDP deflator at 2000				
Gross Domes	stic Products by Sec	tor			
Agri Man Trar	culture nufacturing nsport	Mining Commercial Service & Others			
Gross Dome	estic Expenditure (N	lominal, Real)			
Final consumption Gross fixed capital formation Exports of goods and services Import of goods and services GDE					

1.8 Energy Demand Forecasting Items

Ξ	Н
AP/	A IN

Energy	Energy Demand Sectors						
	Agriculture Manufacturing Commercial & Service	Mining Transportation Residential Use					
Final co	nsumption Energies						
	Coal Jet-fuel Fuel oil	LPG Kerosene City gas	Gasoline Diesel Natural gas				
Power g	jeneration						
	Coal (Eskom) Fuel oil Nuclear	Coal (Auto) Renewable	Natural gas Hydro				
Effected	I Items to Energy Intens	sity					
	Energy conservation (Technical Improvement) Energy price (Elasticity to Energy demand) Power prices and tariffs (Elasticity to Power Demand) Power ratio (Power share in the sectroal demand) Share function (Energy source share in the sector)						

2. Energy Demand Forecasting Model Building

JAPAN

- Data identification description in Free area.
- Data names (Variable names) in Variable name area
- Time (1990 2030) in Time area
- Actual data input in Data area
- Political data input in Exogenous variable in Data area

F	G	H	l.	J	TIME	2000	2001	2002	2003	2004	2005	2005	2007	2008	2009	2010
3																
4	Macro L	CODOBIOS	Durlance anti-	01-/024	00000	8.04	0.01	10.5.1	7.50	6.10	0.0007	6 7712	7.0/57	7,500	0.000	0.500
R R		Contomic dara	Lucanșe rate	(38)/38/ 000	CLEN.	0.34	0.01	10.24	1,30	0.40	0.5204	0,1110	1,0404	7.500	0.000	0.000
1		Population	Country number	Willion persons	POPNEN	44.0	44.8	45.2	45.8	46.3	46.9	47.4	47.9			
8			Growth rate	X	POPNGR	25	18	1.0	12	12	1.2	12	12	12	12	12
9			Irban number	Willion persons	POPUBN	24.7	25.5	26.0	26.5	27.1	27.6	28.2	28.7			
10			Urban population share	5%	POPUGR	56.2	56.9	57,4	58.0	58.5	58.9	59.4	59.9	60.3	60.7	61.1
11																
12		Bousehold	County Number("80=Pop/8.15, "04=Pop/5.	1000 HE	EEVIN	11,282	11,490	11,790	12,841	12,194	12,526	12,972	13,261			
13			Growth rate	26	HINE	2.5	1.8	26	2.1	1.3	27	3.6	22			
14			Trbun Number('90=Pop/6.15, '04=Pop/5.8	1000 HE	EETEN	6,338	6,538	6,771	6,980	7,133	7,378	7,705	7,943			
15			Growth rate	Gi .	2012	3.8	3.2	3.6	3.1	22	3.4	4.4	3.1			
16			11 81	1000	1.15.105	10.010	10 503	*0.000	10.000	40.007	10.751	10.700	10.070			
17		Labor number	Labor Male	1000 persons	LANGA	18,216	18,597	18,822	19,099	19,327	19,554	19,762	19,972			
18		(including foreigners)	Labor female	1000 persons	1.42707	1,541	1,/18	1,630	1,304	8,059	8,154	5,241	8,321			
13			10181 Takan Banas akana ka Dan	1000 persons	LADIUI	20,101	20,313	20,002	21,003	21,201	21,100	20,003	20,288	50.7	60.3	60.0
20			name, toroe stare of top	A	LADOUT	30.3	1 90	20.8	28.I		38.1	38.1	38.1	38.7	00.5	00.8
21		lahor starve	labor Vale	ST.	LASAGR	70.7	70.7	70.6	70.6	70.6	70.6	70.6	70.6	70.6	70.6	70.6
23		MARCHE MARKENA	labor Femile	ST.	LASIGA	29.3	29.3	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4
24			Total	SI	LASTOT	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
25																

Energy demand in the sector	MANTOL	=	MANELR*RGPMAN
Intensity to Manufacturing GDP	MANELR	II	MANELR
Power ratio	MANPOR	=	MANPOR
Power Efficiency rate	MAPWCO	II	L1.MAPWCO*(1-APWTEC)*(1+MAPWELA*GRPRELI)
Improvement by EC policy	MAPWTEC	I	MAPWTEC
Elasticity to Power price	MAPWELA	II	MAPWELA
P-intensity to Manufacturing GDP	MAPWITN	II	MAPWDEW*1000/RGPMAN
Power demand before E.save	MAPWDEB	=	MANTOL*MANPOR/100
Power demand after E.save	MAPWDEA	I	MAPWDEB*MAPWCO/100
Power demand after E.save	MAPWDEW	II	MAPWDEA*10000/860
Energy Efficiency rate	MAENCO	=	L1.MAENCO*(1-MAENTEC)*(1+MAENELA*GRPRCRD)
Improvement by EC policy	MAENTEC	I	MAENTEC
Elasticity to Crude oil price	MAENELA	II	MAENELA
E-Intensity to Manufacturing GDP	MAENITN	I	MAENDEA*1000/RGPMAN
Energy demand before E.save	MAENDEB	=	MANTOL*(1-MANPOR/100)
Energy demand after E.save	MAENDEA	=	MAENDEB*MAENCO/100

Total of fossil energy demand	MAFOTOT	=	MAENDEA
Coal	MAFOCOL	=	MAFOTOT*MASHCOL/100
Coal (Non-Energy Use)	MAFOCOU	II	MAFOTOT*MASHCOU/100
Coal (Other sector)	MAFOCOT	II	MAFOTOT*MASHCOT/100
City gas	MAFOGAS	II	MAFOTOT*MASHGAS/100
LPG	MAFOLPG	II	MAFOTOT*MASHLPG/100
Kerosene	MAFOKER	II	MAFOTOT*MASHKER/100
Diesel	MAFODIE	II	MAFOTOT*MASHDIE/100
Fuel oil	MAFOFUL	II	MAFOTOT*MASHFUL/100
Shares of fossil energy demand	MASHTOT	II	MASHTOT
Coal	MASHCOL	II	MASHCOL
Coal (Non-Energy Use)	MASHCOU	II	MASHCOU
Coal (Other sector)	MASHCOT	II	MASHCOT
City gas	MASHGAS	II	MASHGAS
LPG	MASHLPG	I	MASHLPG
Kerosene	MASHKER	=	MASHKER
Diesel	MASHDIE	=	MASHDIE
Fuel oil	MASHFUL	=	MASHFUL

- Data identification description in Free area.
- Time (1990 2030) in Time area
- Format description

F (6	н	1	J	TIME	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
3																		
- 5		Economic data	Exchange rate	Rando/TIS8	ROFIC	7.56	6.46	6.3264	8.7716	7 0454	7.500	8.000	8.500	8.000	9.500	10.000	10.000	10.000
8										1.00101								
1		Population	Country number	Million persons	POPNTH	45.8	46.3	45.9	47.4	47.9	48.5	49.0	49.6	50.2	50.7	51.3	51.8	52.4
8			Growth rate	G%	POPNGE	12	12	1.2	12	1.2	12	12	1.2	1,1	1,1	1.1	1.1	1.1
9			Urban number	Million persons	POPUEN	28.5	27.1	27.6	28.2	28.7	29.2	29.8	30.3	30.8	31.4	31.9	32.5	33.1
10			Irban population share	5%	POPOGR	58.0	58.5	58.9	59.4	59.9	60.3	60.7	61.1	61.5	61.9	62.3	62.7	63.1
12		Household	County Number('90=Pop/8.15, '04=Pop/5.85)	1000 HE	EBVIX	12,041	12,194	12,526	12,972	13,261	13,417	13,574	13,733	13,885	14,037	14,192	14,348	14,506
13			Growth rate	6%	EENGE	21	13	27	3.6	22	12	12	1.2	1,1	1,1	1,1	1,1	1.1
- 14			Urban Mumber("90=Pop/8.15, "(4=Pop/5.85)	1000 EH	EEUBA	6,980	7,133	7,378	7,705	7,943	8,090	8,239	8,391	8,539	8,689	8,841	8,996	9,153
15			Growth rate	GX.	EEDER	3.1	2.2	3.4	4.4	3.1	1.8	1.8	1.8	1.8	1.8	1.8	1.7	1.7
18				1.000	1.10.100												41.448	
17		Labor sumber	Labor Bale	1000 persons	LABAGE	19,099	19,327	19,554	19,762	19,972	20,408	20,855	21,310	21,760	22,219	22,689	23,167	23,657
18		(Including Foreigners)	Labor Fenale	1000 persons	LABUGE	7,964	8,059	8,154	8,241	8,327	8,509	8,695	8,895	9,073	9,264	9,450	9,659	9,863
19			lotal	1000 persons	LABIUI	27,063	27,387	21,708	28,003	28,299	28,917	29,549	30,195	30,833	31,484	32,148	32,821	33,520
20			Labor force assive to rop	jā	LADORY	29	28	29	29	28	00	50	01	01	02	03	0.5	04
22		Labor shares	Labor Male	SX	LASAGR	70.6	70.6	70.6	70.6	70.6	70.6	70.6	70.6	70.6	70.6	70.6	70.6	70.6
23			Labor Female	5%	LASOGE	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4
24			Total	5%	LASTOT	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
25					21000		1.484					0.007	4.8.4					
26		1916 1	mill' at current price	Sillion Hands	NEUP	1,251	1,374	1,541	1,741	1,994	2,218	2,467	2,745	3,054	3,399	3,782	4,209	4,684
27			uronts rate	(c)à	CORPUS.	14	98	121	130	14.5	11.2	112	11.2	11.3	11.3	11.3	11.3	11.3
29			wCDP at NS \$ bage	Billion US\$	TICOP	166	213	244	257	283	298	308	323	339	358	378	421	468
20			Growth rate	GX.	GROGDP	49.8	28.5	14.5	5.5	10.1	4.5	4.3	4.7	5.1	5.4	5.7	11.3	11.3
- 51																		
- 32			uCDP per capita on USS base	IS\$ per capita	DEDCAP	3,614	4,591	5,195	5,425	5,908	6,102	6,290	6,509	6,767	7,055	7,378	8,121	8,939
- 12			Growth rate	62	GROCEC	48.0	27.0	13.2	44	8.9	3.3	3,1	3.5	4.0	43	4.6	10,1	10.1
- 34				A . 1 A	R. 18-2													
- 35			rGDP at 2000 price	Billion Bands	BERP	1,009	1,046	1,115	1,175	1,235	1,273	1,311	1,350	1,404	1,460	1,519	1,580	1,643
36			Growth rate	62	G833Y	28	3.7	5.6	54	5,1	3.0	3.0	3.0	4.0	4,0	4.0	40	4.0
- 61 - 50			ATTR a MAR a los	D.X., 1708	DOTION	120	220	2.64	267	170	575	504	202	2.07	940	957	245	250
40			water at avo prot	DUBIOE U 24	0000000	220	229	244	201 1.1	2/0	210	200	200	401	\$19	004	242	209
55			uromis fale	24	Calcuruo	- 68	5.1	0.0	34	5,1	4.0	50	\$10	4.0	4.0	4.0	40	40
40			1															

SA- Intensity Sheet

Estimation of future sectoral energy intensities.

Share Sheet

Calculation of future economic and energy component shares in a classification table.

Growth rate Sheet

Calculation of annual growth rates and average growth rates for variables.

Summary sheet

Summary table for future final energy demand, power demand and primary energy supply.

CO2 sheet

Calculation of CO2 emission by sector.

3. Simulation Results

3.1 Framework of Energy Demand Forecasting Model

Software:

Simple-E (Econometric Model building engine) MS-Excel add-in software

Actual Data : 1990-2007 (18 years)

Forecast years: 2008-2030(23 years)

Forecasted items

Final Energy Demand Power demand Fuel supply to Power sector Power generation & Power capacity Primary Energy Supply by Energy Energy consumption per GDP Energy consumption per population Power consumption per GDP Power consumption per Household CO2 emission by sector

3.2 Scenario and Case Setting

	BAU case	EEC case								
Economic Policy & Plans	OGDP growth rate GDP: 2008-2010:3.0%, 2011-2020:4.0 OStability of macro economy (exchange rate Exchange rate: 7.5R/\$ - 10.0R/\$ OInvestment Road, Water supply, Energy supply, Hous OSectoral Industry policy Enhancing Labor intensive industry (Bus	GDP growth rate GDP: 2008-2010:3.0%, 2011-2020:4.0%, 2021-2030:5.0% Stability of macro economy (exchange rate, inflation and money supply) Exchange rate: 7.5R/\$ - 10.0R/\$ nvestment Road, Water supply, Energy supply, Housing, Public facilities Sectoral Industry policy Enhancing Labor intensive industry (Business outsourcing, Tourism, Bio fuels)								
Energy Policy & Plans	OCTL: +10,000ktoe in 2010 OGTL: +4% per year from 2009 to 2025									
Power Policy & plans	OOpen cycle gas turbine: 750MW in 2009, 300MW in 2010 ONuclear power : Additional +1GW per year from 2020 to 2030 (total = +11GW) ONG power generation : 800 MW in 2011, 800 MW in 2015, 800MW in 2020, 800 MW 2026 ORenewable Energy: 1.0% in 2010 to 4.0% of total power supply in 2025 OReserve margin : 5% in 2009 to 16% in 2017									
Energy EfficiencyOEfficiency of coal power station: 34%O38%ODistribution loss : 8.5% from 2009 to 2030 OSectoral Energy Efficiency Strategy (Refer to Next Page)O38%OBOBOBOSectoral Energy Efficiency Strategy (Refer to Next Page)OBOSectoral Energy Efficiency Strategy <br< th=""></br<>										

3.3 Intensities in BAU and EEC

700 600

400

300

200 100

0

,990

`%

million US\$ 500

toe/

- South Africa(BAU)

South Africa(EEC)

Japan

,0°,0°,0°,0°

202A

3.4 Final Energy Demand

 1P/	4 11

	BA	U case	unit: million toe			
	2005	2010	2015	2020	2025	25/10
Agriculture	1.6	1.8	1.9	1.9	1.9	0.1
Mining	4.5	4.7	4.8	4.8	4.8	0.1
Manufacturing	22.5	24.1	28.8	34.3	42.9	3.9
0						

Manufacturing	22.5	24.1	28.8	34.3	42.9	3.9	
Commercial	4.0	4.5	5.6	7.1	9.4	5.1	
Fransportation	15.7	17.9	21.3	25.8	32.9	4.1	
Residential	16.7	17.6	19.3	21.3	23.6	2.0	
Fotal	65.0	70.7	81.7	95.1	115.4	3.3	

	EE		unit: million toe			
	2005	2010	2015	2020	2025	25/10
Agriculture	1.6	1.8	1.8	1.7	1.6	-0.9
Mining	4.5	4.6	4.4	4.1	3.7	-1.4
Manufacturing	22.5	23.8	26.3	29.0	33.7	2.4
Commercial	4.0	4.4	5.1	6.0	7.4	3.5
Transportation	15.7	17.7	20.2	23.4	28.4	3.2
Residential	16.7	17.4	18.1	19.0	20.0	0.9
Total	65.0	69.8	75.9	83.2	94.9	2.1

12.5% improved in 2020

17.8% improved in 2025

3.5 Power Demand

		unit: TWh				
	2005	2010	2015	2020	2025	25/10
Agriculture	5.5	6.5	6.9	7.3	7.6	1.1
Mining	28.3	29.8	30.3	30.3	30.1	0.1
Manufacturing	81.5	98.8	126.3	160.1	213.2	5.3
Commercial	27.1	30.8	38.6	48.8	64.9	5.1
Transportation	5.4	6.2	7.4	8.9	11.3	4.1
Residential	37.0	43.8	53.6	65.6	79.3	4.0
Total	184.8	215.9	263.0	321.0	406.4	4.3

EEC case

unit: TWh

	2005	2010	2015	2020	2025	25/10
Agriculture	5.5	6.4	6.5	6.5	6.5	0.0
Mining	28.3	29.3	27.6	25.6	23.7	-1.4
Manufacturing	81.5	97.3	115.3	135.6	167.4	3.7
Commercial	27.1	30.3	35.2	41.4	50.9	3.5
Transportation	5.4	6.1	7.0	8.1	9.8	3.2
Residential	37.0	43.4	50.5	58.7	67.5	3.0
Total	184.8	212.9	242.1	275.9	325.8	2.9

14.0% improved in 2020

19.8% improved in 2025

3.6 Power capacity

Hydro

Other

Total

Nuclear

	E
JAP/	٩N

		BAU ca	Ise	unit: MW				
	2005	2010	2015	2020	2025	25/10(%)		
Coal (Eskom)	39,378	40,484	44,134	46,510	50,015	1.4		
Coal (Auto)	2,044	2,096	7,897	16,040	22,734	17.2		
Natural gas	1	12	1,756	2,634	2,634	43.6		
Hydro	1,321	2,342	2,342	2,342	2,342	0.0		
Nuclear	1,840	1,842	1,842	2,780	7,472	9.8		
Other	0	1106	1106	1106	1106	0.0		
Total	44,584	47,882	59,078	71,413	86,303	4.0		
		EEC case			unit: MW			
	2005	2010	2015	2020	2025	25/10		
Coal (Eskom)	39,378	39,838	39,254	38,269	37,528	-0.4		
Coal (Auto)	2,044	2,063	7,024	13,161	17,007	15.1		
Natural gas	1	12	1,756	2,634	2,634	43.6		

	_					
Load Factor	70.0%	72.5%	72.5% 🧲	> 72.5%	72.5%	72.5%
Reserve Margin	6.0%	5.0%	120%>	16.0%	16.0%	> 16.0%

2,342

1,842

1,106

53,324

15.6% improved in 2020

2,342

1,842

1,106

47,203

1,321

1,840

44,584

0

21.1% improved in 2025

0.0

9.8

0.0

2.5

2,342

7,472

1,106

68,089

2,342

2,780

1,106

60,293

3.7 Power & Energy Demand Comparison

Power demand / GDP

Final Energy Demand / GDP

25

- The consistency between Economic strategy and Energy plan is important for making Strategic Energy Plan. In order to keep the consistency, Energy Demand Forecasting Model and Energy optimization model are useful.
- And also, for keeping consistency among several energy plans such as, power development plans, coal development plans and so on, the above models are significant. The Models are used to evaluate the energy projects planned differentially.
- For maintaining the models, several kinds of experts such as Energy policy maker and Model builder are required in energy responsible departments and/or agencies. Then capacity building for the experts are required.

Thank you

