# CHAPTER 10

# WATER DEMAND AND DESIGN WATER CAPACITY

# CHAPTER 10 WATER DEMAND AND DESIGN WATER CAPACITY

#### **10.1** Population Forecast

The results of population forecast for each village in the 24 communes are shown from Table 10.1.2 to Table 10.1.5. The population growth rate is calculated or determined from socio-economical condition, topographical condition and development plan in each commune. Table 10.1.1 shows definition of population growth rate and its background.

|         |              |             |                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                               |                                                            |                                                                                                                                                                                                                                                                                  |
|---------|--------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Province     | e/ Commune  | Information on population trends<br>(Result of discussion in workshop regarding<br>socio-economic survey)                                                                                                                                                                                                                               | Details of direct/indirect factors<br>influencing population trends, based on<br>"Commune development plan in<br>2006/2007".<br>(Industrial development, establishment<br>of industrial plant and construction of<br>road etc.) | Other<br>information                                       | Definition of population growth rate                                                                                                                                                                                                                                             |
|         | P-1          | Xuan Phuoc  | • Commune carries out campaign regarding family planning in order to reduce birthrate and usage rate of contraception is going up.                                                                                                                                                                                                      | Only small factory                                                                                                                                                                                                              | • —                                                        | • Since campaign regarding family planning was started 5 years ago, population growth rate is calculated based on the data of population trends for the last 5 years.                                                                                                            |
|         | P-2          | Anh Dinh    | <ul> <li>Population growth rate is stable.</li> <li>Commune carries out campaign regarding family planning in order to reduce birthrate. However, birthrate has not changed.</li> </ul>                                                                                                                                                 | • None                                                                                                                                                                                                                          | • –                                                        | • Since commune experienced consolidation and division many times with other communes, population forecast by using past population data is difficult. Therefore, population growth rate which is analyzed and presented by CPC is adopted for population forecast in this case. |
| 5       |              | Anh Tho     | <ul> <li>Commune is located in the mountainous area<br/>and is not influenced much by economic<br/>activities of provincial capital.</li> <li>Livelihood is through livestock and sugarcane.</li> <li>Rate of seasonal migration of workers is<br/>1~2% of commune population and is not a<br/>cause of population decrease.</li> </ul> | • None                                                                                                                                                                                                                          | • -                                                        | • Commune doesn't experience any factors influencing population change. Therefore, population growth rate is calculated based on the population data of the last 10 years.                                                                                                       |
| Phu Yen | P-4          | Anh My      | • Commune faces national road, which has<br>access to provincial capital and economic<br>activity is growing up. Number of population<br>emigrating is small and commune has natural<br>population growth.                                                                                                                              | • Construction plan of rice processing factory and fish sauce factory.                                                                                                                                                          | • –                                                        | • Commune doesn't have any specific causes for population change. Therefore, population growth rate is calculated based on the population data of the last 10 years.                                                                                                             |
|         | P-5          | Son Phuoc   | <ul> <li>The rate of minority is 60%. Minority group doesn't have tendency to move</li> <li>Number of seasonal migration of workers is small.</li> </ul>                                                                                                                                                                                | • GoV carries out program 134 to<br>support minority people. Main purpose<br>is water supply                                                                                                                                    | Commune<br>was<br>established in<br>1999.                  | <ul> <li>New commune</li> <li>Commune experienced large population inflow.</li> <li>Population growth rate in Soui May village (P-1) is adopted for this commune, since social condition and topography condition of this commune is similar to this village.</li> </ul>         |
|         | P-6          | Ea Cha Rang | <ul> <li>Mainly inhabited by minority people</li> <li>Number of guest workers decreases.</li> </ul>                                                                                                                                                                                                                                     | • GoV carries out program 135 to support minority people.                                                                                                                                                                       | • Number of<br>villages will<br>be changed to<br>6 in 2009 | • Since commune experienced consolidation and division many times with other communes, population forecast from past population data is difficult. Therefore, population growth rate which is analyzed and presented by CPC is adopted for population forecast in this case.     |
|         | P-7 Suoi Bac |             | • 2 out of 6 villages in commune are populated by minority group.                                                                                                                                                                                                                                                                       | • Number of people who carry on commercial activity increased.                                                                                                                                                                  | Commune     experienced                                    | • Since commune experienced consolidation and division many times with other communes, population forecast from past                                                                                                                                                             |

 Table 10.1.1
 Definition of Population Growth Rate and its Background

The Study on Groundwater Development in the Rural Provinces of the Southern Coastal Zone in the Socialist Republic of Vietnam Final Report - Supporting - Chapter 10 Water Demand and Design Water Capacity

|            | Province | / Commune         | Information on population trends<br>(Result of discussion in workshop regarding<br>socio-economic survey)                                                                                                                                     | Details of direct/indirect factors<br>influencing population trends, based on<br>"Commune development plan in<br>2006/2007".<br>(Industrial development, establishment<br>of industrial plant and construction of<br>road etc.) | Other<br>information                                               | Definition of population growth rate                                                                                                                                                                                                                            |  |  |  |  |
|------------|----------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|            |          |                   |                                                                                                                                                                                                                                               | • GoV carries out program 134 to support minority people.                                                                                                                                                                       | consolidation<br>and division                                      | population data is difficult. Therefore, population growth<br>rate which is analyzed and presented by CPC is adopted for<br>population forecast.                                                                                                                |  |  |  |  |
|            | P-8      | Son Thanh<br>Dong | <ul> <li>Commune carries out campaign regarding family planning in order to reduce birthrate. However, achievement in terms of implementation is low compared to other communes.</li> <li>Number of guest workers has not changed.</li> </ul> | • None                                                                                                                                                                                                                          | Commune<br>experienced<br>consolidation<br>and division<br>in 2003 | • Since commune experienced consolidation and division many times with other communes, population forecast from past population data is difficult. Therefore, population growth rate which is analyzed and presented by CPC is adopted for population forecast. |  |  |  |  |
|            | K-1      | Cam An Bac        | • Population increase is constant. Depopulation has not occurred.                                                                                                                                                                             | • None                                                                                                                                                                                                                          | • —                                                                | • Commune doesn't have any specific causes for population change. Therefore, population growth rate is calculated based on the population data of the last 10 years.                                                                                            |  |  |  |  |
| Khanh Hoa  | K-2      | Cam Hiep<br>Nam   | • Commune is located near Cam Ranh,<br>provincial capital. There are many<br>opportunities of recruitment and commercial<br>activities in this region. Therefore, number of<br>people migrating from this area is small.                      | <ul> <li>Construction of road and sugarcane processing plant.</li> </ul>                                                                                                                                                        | • –                                                                | • Commune doesn't have any specific causes for population change. Therefore, population growth rate is calculated based on the population data of the last 10 years.                                                                                            |  |  |  |  |
| Kh         | K-3      | Cam Hai Tay       | • Commune is located near Cam Ranh,<br>provincial capital. There are many<br>opportunities of recruitment and commercial<br>activities. Employment is stable in the sector<br>of shrimp cultivation and depopulation has not<br>occurred.     | Growth of business for general merchandise and handcraft sectors.                                                                                                                                                               | • -                                                                | • Commune doesn't have any specific causes for population change. Therefore, population growth rate is calculated based on the population data of the last 10 years.                                                                                            |  |  |  |  |
| nan        | N-1      | Nhon Hai          | • Seasonal workers who work in Thap Cham, provincial capital and urban city exist, and this does not cause population decrease.                                                                                                               | • None                                                                                                                                                                                                                          | • Khanh Phuoc village will be divided into 2 villages.             | • Population in this commune increased due to consolidation.<br>Therefore, population growth rate is calculated based on the<br>population data from 2004 onwards.                                                                                              |  |  |  |  |
| Ninh Thuan | N-2      | Cong Hai          | <ul> <li>Participants assumed that number of seasonal workers emigrating from this commune will decrease in the future, and hence population decrease will not be caused.</li> <li>Number of minority people is large</li> </ul>              | • None                                                                                                                                                                                                                          | • Commune<br>was<br>established in<br>2001.                        | • Commune doesn't have any specific causes for population change. Therefore, population growth rate is calculated based on the population data for the last 5 years.                                                                                            |  |  |  |  |

| Provin | ce/ Commune | Information on population trends<br>(Result of discussion in workshop regarding<br>socio-economic survey)                                                                                                                                                                                    | Details of direct/indirect factors<br>influencing population trends, based on<br>"Commune development plan in<br>2006/2007".<br>(Industrial development, establishment<br>of industrial plant and construction of<br>road etc.) | Other<br>information                           | Definition of population growth rate                                                                                                                                                                                                                                            |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N-3    | Bac Son     | <ul> <li>There are many minority groups. (Cham and Lac Lay) Number of people who migrate from the area is small.</li> <li>Number of seasonal workers for coffee harvesting is large. However, they return home within 2 months and this does not result into population decrease.</li> </ul> | • None                                                                                                                                                                                                                          | Commune<br>was<br>established in<br>Oct 2005.  | • This being new commune, past population data doesn't exist.<br>Therefore, average of population growth rate of 2 villages,<br>Ka Rom and Suoi Gieng in Cong Hai commune is adopted,<br>since rate of minority people in these 2 villages is similar to<br>the entire commune. |
| N-4    | Phuoc Minh  | • Guest workers to work in Dalat exist and this is not expected to cause population decrease.                                                                                                                                                                                                | • None                                                                                                                                                                                                                          | Commune<br>was<br>established in<br>2002       | • Commune doesn't have any specific causes for population change. Therefore, population growth rate is calculated based on the population data of the last 5 years.                                                                                                             |
| N-5    | Phuoc Hai   | <ul> <li>Thanh Tin is minority village.</li> <li>Livelihood is mainly through livestock and seasonal workers exist.</li> </ul>                                                                                                                                                               | <ul> <li>Plan of road construction around Hoa<br/>Tuy village (4.7km and 2km in total<br/>with a cost of 1.5 billion VND)</li> <li>No development plans of industry</li> </ul>                                                  | • Tu Tam<br>village was<br>divided in<br>2005. | • Tu Tam village was divided into 2 villages (Tu Tam I/II) in 2005 and population data of 2 villages doesn't exist. Therefore, population growth rate is calculated from the population data of last 10 years of Tu Tam village.                                                |

|           | Province/ Commune             |            | Information on population trends<br>(Result of discussion in workshop regarding<br>socio-economic survey)                                                                                                                                                                                 | Details of direct/indirect factors<br>influencing population trends, based on<br>"Commune development plan in<br>2006/2007".<br>(Industrial development, establishment<br>of industrial plant and construction of<br>road etc.) | Other<br>information                                   | Definition of population growth rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------|-------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | N-6                           | Phuoc Dinh | <ul> <li>Number of shrimp cultivation farms by utilizing topography condition and its number of staffs have increased recently.</li> <li>Population emigration is small, since people have many job opportunities, such as in shrimp cultivation sector.</li> </ul>                       | • Construction of welding shop (4<br>locations), fish sauce factory (4<br>locations) and squid processing facility<br>and establishment of shrimp product<br>company                                                            | Commune<br>was<br>consolidated<br>in 1997 and<br>1999. | <ul> <li>High value of population growth rate is observed from the past population data. Commune has various development plans, therefore, population outflow is small and it is assumed that high value of population growth rate continues in the short term. (4.0%)</li> <li>However, this value shall not continue in the medium and long term due to limitation of commune capacity.</li> <li>As mentioned above, population growth rate calculated from the past data is adopted for future 5 years. For the later years (beyond 5 years), population growth rate in Nhon Hai (N-1) that has same topography condition is adopted.</li> <li>As for Son Hai village, it was consolidated with other village in 1999 and population growth rate is calculated based on past population data from 2000 onwards.</li> <li>As for Tu Thien village and Vinh Truong village, it was consolidated with other communes in 1997 and population growth rate is calculated some aconsolidated with other communes in 1998 onwards.</li> </ul> |
| _         | B-1                           | Muong Man  | <ul> <li>Commune faces national road and is located<br/>near Phan Thiet, provincial capital. Population<br/>who work for other business, such as retail<br/>business is increasing slowly.</li> <li>Some of guest workers exist and they do not<br/>cause population decrease.</li> </ul> | • Development plan doesn't exist.                                                                                                                                                                                               | • -                                                    | • Commune doesn't have any specific causes for population change. Therefore, population growth rate is calculated based on the population data of the last 10 years.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Binh Thua | B-2 Gia Huynh<br>B-3 Nghi Duc |            | <ul> <li>Occurrence of big population inflow due to growth of economical activity in forest resources sector.</li> <li>Population distribution is diffuses and there exists the plan to divide commune.</li> <li>The trend of birthrate decreases.</li> </ul>                             | <ul> <li>Construction of plant for forest<br/>industry</li> <li>Construction plan of processing plant<br/>for wheat and cassava</li> </ul>                                                                                      | Commune has     a plan to     divide.                  | • It is difficult to calculate the population growth rate from the past population data due to rapid population inflow for several years. Therefore, population growth rate which is analyzed and presented by CPC is adopted for population forecast.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                               |            | <ul> <li>Main crop is rice. Forest industry is growing<br/>up recently.</li> <li>Constant seasonal workers exist in this</li> </ul>                                                                                                                                                       | • None                                                                                                                                                                                                                          | • _                                                    | • Commune doesn't have any specific causes for population change. Therefore, population growth rate is calculated based on the population data of the last 10 years.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

The Study on Groundwater Development in the Rural Provinces of the Southern Coastal Zone in the Socialist Republic of Vietnam Final Report – Supporting - Chapter 10 Water Demand and Design Water Capacity

| Province    | e/ Commune | Information on population trends<br>(Result of discussion in workshop regarding<br>socio-economic survey)                                                                                                                                                                                                      | Details of direct/indirect factors<br>influencing population trends, based on<br>"Commune development plan in<br>2006/2007".<br>(Industrial development, establishment<br>of industrial plant and construction of<br>road etc.) | Other<br>information | Definition of population growth rate                                                                                                                                                                                                                                                                                     |
|-------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B-4 Tan Duc |            | <ul> <li>commune</li> <li>Number of guest workers decreases.</li> <li>Birthrate of households is also decreasing.</li> </ul>                                                                                                                                                                                   | Construction plan of multipurpose dam                                                                                                                                                                                           | • -                  | • Commune was established in 2004 and it is impossible to calculate the population growth rate due to unavailability of past data. Therefore, population growth rate which is analyzed and presented by CPC is adopted for population forecast.                                                                          |
| B-5         | Me Pu      | <ul> <li>Manufacture of brick is a booming business in this area. 300 persons work for it in commune. Number of guest workers is small.</li> <li>Birthrate of each household is decreasing.</li> <li>Village 9 is minority group</li> </ul>                                                                    | <ul> <li>Construction of road to B-3 Nghi Duc<br/>commune (4 hundred million VND)</li> <li>Growth of business for general<br/>merchandise and handcraft.</li> </ul>                                                             | •                    | <ul> <li>Commune experienced consolidation and division many times (1998, 2000, 2001, 2003 and 2005), and it is difficult to calculate the population growth rate.</li> <li>Employment condition has not changed and has been stable. Therefore, population growth rate which is presented by CPC is adopted.</li> </ul> |
| B-6         | Sung Nhon  | <ul> <li>Most of residents are located along the main road</li> <li>Birthrate of households is decreasing and number of people in a family has decreased from 6 to 4 or 5.</li> <li>Manufacture of brick is booming business. 125 persons work for it in commune. Number of guest workers is small.</li> </ul> | <ul> <li>Construction plan of brickfield</li> <li>Construction plan of road to mountain area</li> </ul>                                                                                                                         | •                    | • Since commune experienced consolidation and division many times with other communes, population forecast from past population data is difficult. Therefore, the growth rate which is analyzed and presented by CPC is adopted for population forecast.                                                                 |
| B-7         | Da Kai     | <ul> <li>Most of residents are located along the main road. Only village 10 is located in the mountainous area.</li> <li>Number of seasonal workers is approx. 1,000 and this is not a cause of population decrease.</li> </ul>                                                                                | • Except for agriculture, number of other business, such as retail business and manufacture of brick, has increased.                                                                                                            | • _                  | <ul> <li>It is possible to calculate population growth rate after exclusion of singular values due to consolidation and division of commune</li> <li>As for Village 10, population data is missing, therefore, the growth rate which is analyzed and presented by CPC is adopted for population forecast.</li> </ul>     |

\* In the case when the population growth is more than 7% compared to previous year, it is assumed that the data is incorrect or this is because of commune consolidation or population inflow, and its value is not referred for calculation of average population growth rate.

\* Basically, population growth rate is calculated based on the past population data However, in case of the commune that experiences big population inflow (P-5), the past population data is not used for population forecast and the data of other commune or village with same social conditions/ topographical conditions is adopted.

\*Guest workers are not considered to be cause of population decrease, because this kind of workers is only for off season.

| 615         621         623         633         643         651         653         665         772         779           1217         1229         1241         1233         1246         1279         1222         1305         1318         1313         1344         1446           155         1370         1344         1388         1412         1428         1440         1458         1348         1348         1448           1649         1059         1070         1081         1092         1103         1114         1252         138         1147         1.163           1798         779         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         77                                                                                                                                                           |        |        |        |            |        |        |         |        |                                            |        |        |                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|------------|--------|--------|---------|--------|--------------------------------------------|--------|--------|--------------------------------------------|
| 2.281         2.285         2.995         2.995         3.031         3.047         3.144         3.179           1.474         1.486         1.510         1.522         1.534         1.546         1.556         1.576         2.247         3.221         3.331           3.08         4.041         4.01         4.24         4.31         4.36         4.45         4.450         4.66           9.400         9.55         9.865         9.818         9.444         1.0285         1.0386         1.0356         1.056         1.022         1.038         1.131         1.341           4.13         4.43         4.441         4.66         4.17         4.66         4.17         4.144         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.4                                                                                                     | 2009   | 2010   | 2011   | 2012       | 2013   | 2014   | 2015    | 2016   |                                            | 2018   | 2019   | 2020                                       |
| 2.281         2.285         2.995         2.995         3.031         3.047         3.144         3.179           1.474         1.486         1.510         1.522         1.534         1.546         1.556         1.576         2.247         3.221         3.331           3.08         4.041         4.01         4.24         4.31         4.36         4.45         4.450         4.66           9.400         9.55         9.865         9.818         9.444         1.0285         1.0386         1.0356         1.056         1.022         1.038         1.131         1.341           4.13         4.43         4.441         4.66         4.17         4.66         4.17         4.144         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.446         1.4                                                                                                     | 1,833  | 1,864  | 1,896  | 1,928      | 1,961  | 1,994  | 2,028   | 2,062  | 2,097                                      | 2,133  | 2,169  | 2,206                                      |
| 2.944         2.944         2.944         2.942         3.371         3.371           3.84         440         410         412         424         431         438         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         445         446         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144                                                                                                                                                 |        |        |        |            |        |        |         |        |                                            |        |        | 3,217                                      |
| 1.174         1.488         1.408         1.512         1.522         1.534         1.548         1.568         1.500         1.583         1.596           9.430         9.557         9.665         9.818         9.949         10.083         10.219         10.356         16.485         10.827         10.781           0.13         6.21         6.21         6.23         6.33         6.439         6.445         6.51         6.53         6.68         6.72         6.72         6.72         6.72         6.72         6.72         6.72         6.72         6.72         6.72         6.72         6.72         6.72         6.72         6.72         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.76         7.78         7.76         7.78         7.76         7.78         7.76         7.78         7.76         7.78         7.77         7.75         7.76         7.78         7.77         <                                                                                                   |        |        |        |            |        |        |         |        |                                            |        |        | 3.422                                      |
| 398         404         410         417         424         431         438         445         452         452         453         657         655         9.81         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.937         0.9                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 1,609                                      |
| 9.430         9.57         9.665         9.816         9.440         10.003         10.219         10.556         10.445         10.027         10.781           615         621         627         9.33         6.63         645         651         656         665         672         679           1217         1229         1244         1252         1246         1242         1232         1344         1331         1344         446         446         446         447         4478         448         446         446         447         4478         448         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446         446                                                                                                                                           |        |        |        |            |        |        |         |        |                                            |        |        | 473                                        |
| 615         621         623         633         643         651         653         665         772         779           1217         1229         1241         1233         1246         1279         1222         1305         1318         1313         1344         1446           155         1370         1344         1388         1412         1428         1440         1458         1348         1348         1448           1649         1059         1070         1081         1092         1103         1114         1252         138         1147         1.163           1798         779         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         778         77                                                                                                                                                           |        |        |        |            |        |        |         |        |                                            |        |        | 10.927                                     |
| 1.217       1.229       1.241       1.253       1.266       1.279       1.292       1.305       1.318       1.311       1.448         1.356       1.370       1.344       1.338       1.412       1.425       1.440       1.456       1.468       1.464       1.464         1.356       1.370       1.344       3.341       3.360       3.36       3.360       3.384       3.382       3.392       3.398         1.043       1.059       1.070       1.081       0.022       1.163       1.144       1.445       1.440       1.446       1.460       1.468       1.164       1.168       1.168       1.168       1.168       1.168       1.168       1.179       1.797       1.797       8.13       8.297       8.654       6.721       6.654       6.721       6.854       6.721       6.854       6.721       6.854       6.722       786       786       782       786       786       787       785       786       787       786       781       787       336       782       786       786       787       336       782       786       357       786       377       3312       3.441       3.441       3.443       3.444       3.453                                                                                                                                                                                             |        |        | 100    |            |        |        |         |        | State and the second                       |        |        |                                            |
| 1.217       1.229       1.241       1.253       1.266       1.279       1.292       1.305       1.318       1.311       1.448         1.356       1.370       1.344       1.338       1.412       1.425       1.440       1.456       1.468       1.464       1.464         1.356       1.370       1.344       3.341       3.360       3.36       3.360       3.384       3.382       3.392       3.398         1.043       1.059       1.070       1.081       0.022       1.163       1.144       1.445       1.440       1.446       1.460       1.468       1.164       1.168       1.168       1.168       1.168       1.168       1.168       1.179       1.797       1.797       8.13       8.297       8.654       6.721       6.654       6.721       6.854       6.721       6.854       6.721       6.854       6.722       786       786       782       786       786       787       785       786       787       786       781       787       336       782       786       786       787       336       782       786       357       786       377       3312       3.441       3.441       3.443       3.444       3.453                                                                                                                                                                                             | 615    |        |        | 633        |        |        |         |        | 665                                        | 672    |        | 686                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 1,357                                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 439    | 443    |        |            |        |        |         |        |                                            |        |        | 491                                        |
| 356         360         364         368         372         376         380         384         388         392         396           778         778         778         784         792         800         808         816         824         832         840         848           6.141         6.202         6.204         6.326         6.31         6.46         6.521         6.584         6.721         6.78           736         751         766         781         797         813         829         846         833         880         899           613         627         6.54         718         735         752         769         335         751         766         711         666         702         718         735         752         769           307         314         422         410         448         352         366         332         340         3485         3320         4014         4101         4199         4280           4423         4478         4539         4655         4.751         4808         4924         4983         3355         3375         3375         3375         3375         33                                                                                                                                                                           | 1,356  | 1,370  |        |            | 1,412  |        | 1,440   | 1,454  |                                            | 1,484  | 1,499  | 1,514                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |            |        |        |         |        |                                            |        |        | 382                                        |
| 778         778         774         792         900         816         816         824         832         840         846           6.141         0.202         6.244         6.22         6.31         6.456         6.521         6.534         6.544         6.721         6.788           736         751         766         781         797         813         829         846         883         880         889           336         304         402         410         418         426         435         444         463         462         471           3365         3531         3007         3644         379         384         326         344         325         366         435         443         463         442         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492         492                                                                                                                                                                    |        |        |        |            |        |        |         |        |                                            |        |        | 400                                        |
| 6.141       6.202       6.244       6.321       6.456       6.521       6.587       6.654       6.721       6.788         1.414       1.445       1.477       1.500       1.542       1.576       1.611       1.146       1.882       1.719       1.757         736       751       766       751       766       751       766       752       759         313       627       641       656       671       666       702       718       735       752       769         307       314       321       322       336       344       352       300       386       376       385         3.450       3.531       3.060       3.684       3.774       3845       3.292       4.014       4.109       4.280         4.423       4.476       4.530       4.695       4.751       4.806       4.886       4924       4.983         3.061       3.049       3.161       3.183       3.217       3.342       3.342       3.345       3.327         3.127       7.21       7.27       733       739       736       322       388       394       400         442       4.49                                                                                                                                                                                                                                                                   |        |        |        |            |        |        |         |        |                                            |        |        | 1,170                                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 856                                        |
| 736       751       766       781       797       813       829       846       883       889       889         845       304       402       410       418       426       435       444       453       442       441       453       442       441       453       442       441       441       441       441       441       441       441       441       441       442       443       444       453       344       352       300       368       4364       432       4473       4478       4423       4476       4423       4476       4531       3123       3151       3121       3247       3279       3124       3345       3378       3752       755       757       753       769       775       3378       3745       751       757       763       769       775       388       3329       366       400       404       406       412       417       422       427       427       427       427       427       427       427       427       427       427       427       427       427       427       427       427       427       427       429       55       533                                                                                                                                                                                                                                             | 6,141  | 6,202  | 6.264  | 6,326      | 6,391  | 6.456  | 6.521   | 6.587  | 6 6 5 4                                    | 6.721  | 6.788  | 6.856                                      |
| 736       751       766       781       797       813       829       846       883       889       889         845       304       402       410       418       426       435       444       453       442       441       453       442       441       443       445       444       453       444       453       442       441       4419       442       442       444       443       444       443       444       443       444       443       444       442       442       447       4423       4476       453       44693       312       3141       3141       3142       3143       3143       3143       3143       3143       3143       3143       3143       3143       3143       3143       3143       3143       3144       3448       3482       3577       775       783       779       783       779       783       779       783       779       783       779       783       779       322       427       427       427       427       427       427       427       427       427       427       427       427       427       427       429       55       533                                                                                                                                                                                                                                        |        |        |        |            |        |        |         |        |                                            |        |        |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |            |        |        |         |        |                                            |        |        | 1.796                                      |
| 386         394         402         410         418         426         435         344         352         360         388         376         385           3.456         3.531         3.607         3.864         3.764         3.845         3.229         4.014         4.101         4.189         4.280           4.433         4.476         4.530         4.564         4.639         4.695         4.751         4.206         4.866         4.924         4.983           3.058         3.069         3.120         3.314         3.347         3.275         3.247         3.279         3.312         3.345         3.357           3.217         3.249         3.281         3.314         3.347         3.380         3.414         3.442         3.492         3.967         755           3.84         3.98         3.922         3.96         4.00         4.048         4.12         4.17         4.224         4.27           11.977         11.823         1.200         1.2178         12.306         12.439         12.571         12.704         12.840         15.8         4.66         4.65         4.62         4.71         14.254         1.515         13.15         13.15 </td <td></td> <td>916</td> |        |        |        |            |        |        |         |        |                                            |        |        | 916                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 787                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 480                                        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |        |        |            |        |        |         |        |                                            |        |        | 394                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,456  | 3,531  | 3,607  | 3,684      | 3,764  | 3,845  | 3,929   | 4,014  | 4,101                                      | 4,189  | 4,280  | 4.373                                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        |                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 5.043                                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 3,412                                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 3,588                                      |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 781                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 432                                        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11,797 | 11,923 | 12,050 | 12.178     | 12,308 | 12,439 | 12,571  | 12,704 | 12,840                                     | 12,977 | 13,115 | 13.256                                     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |        |        |            |        |        |         |        |                                            |        |        |                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 406                                        |
| 525       533       542       551       560       569       578       587       596       606       616         815       823       841       854       868       882       896       910       925       940       955         3.419       3.473       3.529       3.885       3.643       3.702       3.761       3.821       3.882       3.945       4.008         1.206       1.221       1.236       1.251       1.267       1.283       1.299       1.315       1.331       1.348       1.365         3.92       397       402       407       412       417       422       427       432       437       442         2.64       2.67       2.70       2.73       2.76       2.73       884       895       906       917       928         2.662       2.715       2.748       2.782       2.817       2.852       2.867       2.923       2.959       2.996       3.033         458       462       466       470       474       478       482       487       492       497       502         653       659       665       671       677       683       689                                                                                                                                                                                                                                                                   |        |        |        |            |        |        |         |        |                                            |        |        | 526                                        |
| 815 $828$ $841$ $854$ $868$ $882$ $996$ $910$ $925$ $940$ $955$ $3.419$ $3.473$ $3.529$ $3.585$ $3.643$ $3.702$ $3.761$ $3.821$ $3.882$ $3.945$ $4.008$ $1.206$ $1.221$ $1.226$ $1.251$ $1.267$ $1.283$ $1.299$ $1.315$ $1.331$ $1.348$ $1.365$ $392$ $397$ $402$ $407$ $412$ $417$ $422$ $427$ $432$ $437$ $442$ $264$ $267$ $270$ $273$ $276$ $279$ $282$ $286$ $290$ $294$ $298$ $820$ $830$ $840$ $851$ $862$ $873$ $884$ $895$ $906$ $917$ $928$ $2.682$ $2.715$ $2.748$ $2.782$ $2.817$ $2.852$ $2.887$ $2.92$ $2.959$ $2.969$ $2.996$ $3.633$ $659$ $665$ $671$ $677$ $683$ $689$ $695$ $702$ $709$ $716$ $653$ $659$ $665$ $671$ $677$ $683$ $689$ $695$ $702$ $709$ $716$ $884$ $892$ $900$ $308$ $917$ $926$ $935$ $944$ $933$ $962$ $971$ $1678$ $1.694$ $1.792$ $1.742$ $1.788$ $1.775$ $1.792$ $1.809$ $1826$ $1.843$ $482$ $487$ $492$ $497$ $502$ $507$ $512$ $517$ $522$ $527$ $532$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |        |        |            |        |        |         |        |                                            |        |        | 1,543                                      |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 626                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        | 925                                        |        |        | 970                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,419  | 3,473  | 3,529  | 3.585      | 3,643  | 3,702  | 3,761   | 3,821  | 3,882                                      | 3,945  | 4,008  | 4,071                                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        | SAN SAN SAN                                |        |        |                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 1,382                                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 448                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 302                                        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 940                                        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,682  | 2,715  | 2,748  | 2,782      | 2,817  | 2,852  | 2,887   | 2,923  | 2,959                                      | 2,996  | 3,033  | 3,072                                      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 450    |        |        |            |        | 170    |         |        |                                            | 40.7   |        |                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 507                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 723                                        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |        |        |            |        |        |         |        |                                            |        |        | 980                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 1.860                                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 537                                        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |            |        |        |         |        |                                            |        |        | 1,804                                      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,783  | 5,837  | 5,891  | 5,946      | 6,002  | 6,058  | 6,115   | 6,173  | 6,232                                      | 6,291  | 6,351  | 6,411                                      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 510    | 500    |        |            | 507    | 540    | <i></i> |        |                                            | 500    |        | 1998 H B B B B B B B B B B B B B B B B B B |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |        |        |            | 537    |        |         |        |                                            |        |        | 572                                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        |        |            |        |        |         |        |                                            |        |        | 1.482                                      |
| 1.608         1.622         1.636         1.650         1.664         1.678         1.692         1.707         1.722         1.737         1.752           1.455         1.468         1.481         1.494         1.507         1.520         1.533         1.546         1.559         1.572         1.586           859         866         873         881         889         897         905         913         921         929         937           526         531         536         541         546         551         556         561         566         571         576           8.450         8.524         8.598         8.674         8.750         8.826         8.902         8.979         9.056         9.133         9.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        |        |            |        |        |         |        |                                            |        |        | 1,118                                      |
| 1,455         1,468         1,481         1,494         1,507         1,520         1,533         1,546         1,559         1,572         1,586           859         866         873         881         889         897         905         913         921         929         937           526         531         536         541         546         551         556         561         566         571         576           8,450         8,524         8,598         8,674         8,750         8,826         8,902         8,979         9,056         9,133         9,212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |        |            |        |        |         |        |                                            |        |        | 1.227                                      |
| 859         866         873         881         889         897         905         913         921         929         937           526         531         536         541         546         551         556         561         566         571         576           8.450         8.524         8.598         8.674         8.750         8.826         8.902         8.979         9.056         9.133         9.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |        |            |        |        |         |        |                                            |        |        | 1,767                                      |
| 526         531         538         541         546         551         556         561         566         571         576           8.450         8.524         8.598         8.674         8.750         8.826         8.902         8.979         9.056         9.133         9.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |        |        |            |        |        |         |        |                                            |        |        | 1,600                                      |
| 8.450 8.524 8.598 8.674 8.750 8.826 8.902 8.979 9.056 9.133 9.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |        |        |            |        |        |         |        |                                            |        |        | 945                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |            |        |        |         |        |                                            |        |        | 581                                        |
| 51,158 51,762 52,372 52,991 53,624 54,261 54,905 55,557 56,219 56,889 57,568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8,450  | 8,524  | 8,598  | 8,674      | 8,750  | 8.826  | 8,902   | 8.979  | 9,056                                      | 9,133  | 9,212  | 9.292                                      |
| 51,158 51,762 52,372 53,624 54,261 54,905 55,557 56,219 56,889 57,568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        |        |            |        |        |         |        | SECONDER S                                 |        |        |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51,158 | 51,762 | 52,372 | 52,991     | 53,624 | 54,261 | 54,905  | 55,557 | 56,219                                     | 56,889 | 57,568 | 58,258                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        | 1111111111 |        |        |         |        | he saaanaa ahaa ahaa ahaa ahaa ahaa ahaa a |        | SSS .  | annaan                                     |

#### Table 10.1.2 The result of population forecast for Phu Yen province

2008

2,788

2,861

1,462

392

9,305

609

1,205

435

1,343

338

352

1,039 760

6.081

1,384

722

599

378

300

3,383

4,371

3.028

3,185

709

380

11,673

336

435

517

802

3,366

1,191

387

261

810

2,649

454

647

876

478

5,730

515

1,337

1,107

1,594

1,443

852

522

8,379

50,566

1,662

1,613

1,276

2007

2,755

2.819

1,450

386

9,182

603

1,193

431 1,330

335

349

1,029

752

6.022

1,354

708 586

371

293

3,312

4,319

2,998

3,153

703

376

331

428 1.256

509

789

3.313

1.176

382

258

800

2,616

450

641

868

1.647

474

1,598

5,678

511

1.326

1.000

1.098

1,580

1,431

845

518

8,309

49,981

11,549

Rate %

1.70%

1.20%

1.50%

0.80%

1.60%

1.30%

1.00%

1.00%

1.00%

1.00%

1.00%

1.00%

1.00%

1.00%

1.00%

2.20%

2.00%

2.30%

2.00%

2.30%

2.18%

1.20%

1.00%

1.00%

0.80%

1.10%

1.10%

1.60%

1.60%

1.60%

1.60%

1.60%

1.60%

1.25%

1.25%

1.25%

1.25%

1.25%

0.94%

0.94%

0.94%

0.94%

0.94%

0.94%

0.94%

0.86%

0.86%

0.86%

0.86%

0.86%

0.86%

0.86%

0.86%

0.86%

1.20%

Average Growth

Xuan Phu A

Xuan Phu B Phuoc Hoa

Phu Hoi

Suoi May

Dunh Trung 1

Dunh Trung II

Dunh Trung III

Phong Nien Phong Hanh

Phong Thang

Phong Hau

Long Hoa Total

Phu Can

Phu My

Lam Son

Kim Son

Quang Duc

Total

Hoa Da Phu Long

Giai Son

Phu Hoa

Tan Lap Total

Ma Gu Tan Hien

Tan Hoa

Tan Binh

Hon Ong Total

Kien Thiet

Doc Lap A

Doc Lap B

Doc Lap C Total

Tan Lap

Tan An

Tan Thanh Tan Phu

Phu Huu

Suoi Bac

Phu Thinh

My Binh

Lac Dien

Thanh An

Total

Total

Truong Thanh

Le Loc Binh Binh Thang

Total

Son Thanh Dong Than Binh Dong

Total

P-1 Xuan Phuoc

P-2 Anh Dinh

P-3 Anh Tho

P-4 Anh My

P-5 Son Phuoc

P-6 Ea Cha Rang

P-7 Suoi Bac

P-8

Phu Yen

The Study on Groundwater Development in the Rural Provinces of the Southern Coastal Zone in the Socialist Republic of Vietnam ŋ 2 Ð 0 3 0 Wat D 5 5 5 Wat ÷

|                 | Average Growth | Rate % 2007  | 2008   | 2009   | 2010   | 2011 2012     | 2013   | 2014   | 2015   | 2016 2017     | 2018   | 2019           | 2020   |
|-----------------|----------------|--------------|--------|--------|--------|---------------|--------|--------|--------|---------------|--------|----------------|--------|
| K-1 Cam An Bac  | Hien Luong     | 0.80% 1,261  | 1,271  | 1,281  | 1,291  | 1,301 1,311   | 1,321  | 1,332  | 1,343  | 1,354 1,365   | 1,376  | 1,387          | 1,398  |
|                 | Thuy Ba        | 2.60% 1.163  | 1,193  | 1.224  | 1.256  | 1.289 1.323   | 1,357  | 1,392  | 1.428  | 1.465 1,503   | 1.542  | 1.582          | 1,623  |
|                 | Trieu Hai      | 1.20% 1.279  | 1,294  | 1,310  | 1,326  | 1,342 1,358   | 1,374  | 1,390  | 1,407  | 1,424 1,441   | 1,458  | 1,475          | 1,493  |
|                 | Cua Tung       | 2.60% 1.397  | 1,433  | 1,470  | 1,508  | 1,547 1,587   | 1,628  | 1,670  | 1,713  | 1,758 1,804   | 1,851  | 1,899          | 1,948  |
|                 | Tan An         | 2.70% 1,340  | 1,376  | 1,413  | 1,451  | 1,490 1,530   | 1,571  | 1,613  | 1,657  | 1,702 1,748   | 1,795  | 1,843          | 1,893  |
|                 | Total          | 2.02% 6.440  | 6,567  | 6,698  | 6,832  | 6,969 7,109   | 7,251  | 7,397  | 7,548  | 7,703 7,861   | 8,022  | 8,186          | 8,355  |
|                 |                |              |        |        |        |               |        |        |        |               |        |                |        |
| K-2 Cam Hiep Na | m Quang Duc    | 0.90% 1.579  | 1,593  | 1,607  | 1,621  | 1,636 1,651   | 1,666  | 1,681  | 1,696  | 1,711 1,726   | 1,742  | 1,758          | 1,774  |
|                 | Suoi Cat       | 2.90% 2.704  | 2,782  | 2,863  | 2,946  | 3,031 3,119   | 3,209  | 3,302  | 3,398  | 3,497 3,598   | 3,702  | 3,809          | 3,919  |
|                 | Vinh Thai      | 1.20% 1.943  | 1,966  | 1,990  | 2,014  | 2,038 2,062   | 2,087  | 2,112  | 2,137  | 2,163 2,189   | 2,215  | 2,242          | 2,269  |
|                 | Total          | 1.91% 6,226  | 6,341  | 6,460  | 6,581  | 6,705 6.832   | 6,962  | 7,095  | 7,231  | 7,371 7,513   | 7,659  | 7,809          | 7.962  |
| K-3 Cam Hai Tay | Bai Gieng I    | 1.30% 0      | 0      | 0      | 0      | 0 0           | 0      | 0      | 0      | 0 0           | 0      | 0              | 0      |
|                 | Bai Gieng II   | 1.30% 2.375  | 2,406  | 2,437  | 2,469  | 2,501 2,534   | 2,567  | 2,600  | 2,634  | 2,668 2,703   | 2,738  | 2,774          | 2.810  |
|                 | Tan Hai        | 1.40% 1,276  | 1,294  | 1,312  | 1,330  | 1.349 1.368   | 1,387  | 1,406  | 1,426  | 1.446 1.466   | 1,487  | 1,508          | 1,529  |
|                 | Bac Vinh       | 1.50% 2.174  | 2,207  | 2,240  | 2,274  | 2.308 2.343   | 2,378  | 2,414  | 2,450  | 2.487 2.524   | 2,562  | 2,600          | 2.639  |
|                 | Total          | 1.40% 5.825  | 5,907  | 5,989  | 6,073  | 6,158 6,245   | 6,332  | 6,420  | 6,510  | 6,601 6,693   | 6,787  | 6,882          | 6,978  |
|                 |                |              |        |        |        |               |        |        |        |               |        |                |        |
| Khanh Hoa       | Total          | 1.70% 18,491 | 18,815 | 19,147 | 19,486 | 19,832 20,186 | 20,545 | 20,912 | 21,289 | 21,675 22,067 | 22,468 | 22,877         | 23,295 |
|                 |                |              |        |        |        |               |        |        |        |               |        | 20102<br>20102 |        |

| Table 10.1.3 | The result of population forecast for Khanh Hoa province |
|--------------|----------------------------------------------------------|

|          | Vhon Hai<br>Cong Hai                | Khanh Nhon<br>Khanh Phuoc<br>My Tuong I<br>My Tuong II<br>Total<br>Hiep Kiet<br>Hiep Thanh | 2 10% 4,825<br>2 10% 2,732<br>2 40% 3,986<br>2 50% 3,691<br>2 30% 15,234<br>2 70% 1,180 | 4,926<br>2,789<br>4,082<br>3,783<br>15,580 | 5,029<br>2,848<br>4,180<br>3,878<br>15,935 | 5,135<br>2,908<br>4,280<br>3,975 | 5 243 5 353<br>2 969 3 031<br>4 383 4 488<br>4 074 4 176 | 5,465<br>3,095<br>4,596 | 5,580<br>3,160<br>4,706 | 5,697<br>3,226<br>4,819 | 5,817<br>3,294<br>4,935 | 5 939<br>3 363<br>5 053 | 6,064<br>3,434<br>5,174 | 6,191<br>3,506<br>5,298 | 6,321<br>3,580<br>5,425 |
|----------|-------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| N-2 C    | Cong Hai                            | My Tuong I<br>My Tuong II<br>Total<br>Hiep Kiet                                            | 2.40% 3.986<br>2.50% 3.691<br>2.30% 15,234                                              | 4,082<br>3,783                             | 4,180<br>3,878                             | 4,280<br>3,975                   | 4,383 4,488                                              | 4,596                   |                         |                         |                         |                         |                         |                         |                         |
| N-2 C    | Cong Hai                            | My Tuong II<br>Total<br>Hiep Kiet                                                          | 2.50% 3,691<br>2.30% 15,234                                                             | 3,783                                      | 3.878                                      | 3,975                            |                                                          |                         | 4,706                   | 4819                    | 4 935                   | 5.052                   | 5 174                   | 5 298                   | 5 425                   |
| N-2 C    | Cong Hai                            | Total<br>Hiep Kiet                                                                         | 2.30% 15,234                                                                            |                                            |                                            |                                  | 4 074 4 176                                              |                         |                         |                         |                         | 0,000                   | 3,174                   |                         | 0.120                   |
| N-2 C    | Cong Hai                            | Hiep Kiet                                                                                  |                                                                                         | 15,580                                     | 15,935                                     |                                  |                                                          | 4,280                   | 4,387                   | 4,497                   | 4,609                   | 4,724                   | 4,842                   | 4,963                   | 5,087                   |
| N-2 C    | Cong Hai                            |                                                                                            | 2 70% 1 100                                                                             |                                            |                                            | 16,298                           | 16,669 17,048                                            | 17,436                  | 17,833                  | 18,239                  | 18,655                  | 19,079                  | 19,514                  | 19,958                  | 20,413                  |
| IN-2 C   | oong mai                            |                                                                                            |                                                                                         | 1.212                                      | 1,245                                      | 1.279                            | 1,314 1,349                                              | 1,385                   | 1,422                   | 1.460                   | 1,499                   | 1,539                   | 1,581                   | 1.624                   | 1.668                   |
|          |                                     |                                                                                            | 1.60% 329                                                                               | 334                                        | 339                                        | 344                              | 350 356                                                  | 362                     | 368                     | 374                     | 380                     | 386                     | 392                     | 398                     | 404                     |
|          |                                     | Suoi Vang                                                                                  | 1.80% 2.038                                                                             | 2.075                                      | 2.112                                      | 2.150                            | 2.189 2.228                                              | 2.268                   | 2.309                   | 2.351                   | 2.393                   | 2.436                   | 2.480                   | 2.525                   | 2,570                   |
|          |                                     | Suoi Gieng                                                                                 | 1.90% 2.058                                                                             | 2.097                                      | 2,137                                      | 2,178                            | 2,219 2,261                                              | 2,304                   | 2,348                   | 2,393                   | 2,438                   | 2,484                   | 2,480                   | 2.579                   | 2.628                   |
|          |                                     | Som Den                                                                                    | 2.00% 700                                                                               | 714                                        | 728                                        | 743                              | 758 773                                                  | 788                     | 804                     | 820                     | 836                     | 853                     | 870                     | 887                     | 905                     |
|          |                                     | Ka Rom                                                                                     | 2.00% 982                                                                               | 1.002                                      | 1,022                                      | 1,042                            | 1,063 1,084                                              | 1,106                   | 1,128                   | 1,151                   | 1,174                   | 1.197                   | 1,221                   | 1.245                   | 1.270                   |
|          |                                     | Binh Tien                                                                                  | 2.40% 243                                                                               | 249                                        | 255                                        | 261                              | 267 273                                                  | 280                     | 287                     | 294                     | 301                     | 308                     | 315                     | 323                     | 331                     |
|          |                                     | Total                                                                                      | 2.00% 7,530                                                                             | 7,683                                      | 7,838                                      | 7,997                            | 8,160 8,324                                              | 8,493                   | 8,666                   | 8,843                   | 9,021                   | 9,203                   | 9,390                   | 9,581                   | 9,776                   |
|          |                                     |                                                                                            |                                                                                         |                                            |                                            |                                  |                                                          |                         |                         |                         |                         |                         |                         |                         |                         |
| N-3 B    | Bac Son                             | Binh Nghia                                                                                 | 1.95% 1.424                                                                             | 1,452                                      | 1,480                                      | 1,509                            | 1,538 1,568                                              | 1,599                   | 1,630                   | 1,662                   | 1,694                   | 1,727                   | 1,761                   | 1,795                   | 1,830                   |
|          |                                     | Xom Bang                                                                                   | 1.95% 2.295                                                                             | 2,340                                      | 2,386                                      | 2,433                            | 2,480 2,528                                              | 2,577                   | 2,627                   | 2,678                   | 2,730                   | 2,783                   | 2,837                   | 2,892                   | 2.948                   |
|          |                                     | Lang Me                                                                                    | 1.95% 2,203<br>1.95% 5.922                                                              | 2,246                                      | 2,290                                      | 2,335                            | 2.381 2.427<br>6.399 6.523                               | 2,474                   | 2,522                   | 2,571 6,911             | 2.621                   | 2,672                   | 2,724                   | 2,777                   | 2.831<br>7.609          |
|          |                                     | Total                                                                                      | 1.90% 0,922                                                                             | 0,038                                      | 0,100                                      | 0,277                            | 0,399 0,323                                              | 0,00                    | 0,779                   | 0,911                   | 7,045                   | 7,182                   | 1,322                   | /,404                   | 7,009                   |
| N-4 P    | Phuoc Minh                          | Lac Tien                                                                                   | 2 40% 2 220                                                                             | 2.273                                      | 2,328                                      | 2,384                            | 2.441 2.500                                              | 2,560                   | 2,621                   | 2.684                   | 2,748                   | 2,814                   | 2,882                   | 2,951                   | 3.022                   |
|          |                                     | Quan The1                                                                                  | 2.60% 1,090                                                                             | 1,118                                      | 1,147                                      | 1,177                            | 1,208 1,239                                              | 1,271                   | 1,304                   | 1,338                   | 1,373                   | 1,409                   | 1,446                   | 1,484                   | 1,523                   |
|          |                                     | Quan The2                                                                                  | 2.40% 286                                                                               | 293                                        | 300                                        | 307                              | 314 322                                                  | 330                     | 338                     | 346                     | 354                     | 362                     | 371                     | 380                     | 389                     |
|          |                                     | Total                                                                                      | 2 48% 3,596                                                                             | 3,684                                      | 3,775                                      | 3,868                            | 3,963 4,061                                              | 4,161                   | 4,263                   | 4,368                   | 4,475                   | 4,585                   | 4,699                   | 4,815                   | 4,934                   |
| N-5 P    | Phuoc Hai                           | Thanh Tin                                                                                  | 1.80% 4.663                                                                             | 4,747                                      | 4.832                                      | 4,919                            | 5,008 5,098                                              | 5,190                   | 5,283                   | 5.378                   | 5,475                   | 5.574                   | 5.674                   | 5,776                   | 5,880                   |
|          | nuoc nai                            | Hoa Thuy                                                                                   | 2.80% 2.065                                                                             | 2,123                                      | 2,182                                      | 2,243                            | 2,306 2,371                                              | 2,437                   | 2,505                   | 2,575                   | 2.647                   | 2.721                   | 2.797                   | 2.875                   | 2,956                   |
|          |                                     | Tu Tam l                                                                                   | 1.70% 4.351                                                                             | 4,425                                      | 4,500                                      | 4.577                            | 4,655 4,734                                              | 4.814                   | 4.896                   | 4,979                   | 5.064                   | 5.150                   | 5.238                   | 5.327                   | 5.418                   |
|          |                                     | Tu Tam II                                                                                  | 1.70% 2.047                                                                             | 2.082                                      | 2,117                                      | 2,153                            | 2,190 2,227                                              | 2.265                   | 2.304                   | 2.343                   | 2.383                   | 2,424                   | 2.465                   | 2,507                   | 2,550                   |
|          |                                     | Total                                                                                      | 1.90% 13,126                                                                            | 13,377                                     | 13.631                                     | 13,892                           | 14,159 14,430                                            | 14,706                  | 14,988                  | 15.275                  | 15.569                  | 15,869                  | 16,174                  | 16.485                  | 16,804                  |
| N-6 P    |                                     | Tu Thien                                                                                   | 1.70                                                                                    | 1.0.40                                     | 1 00 1                                     | 1 000                            | 1.400                                                    | 1 400                   | 1 503                   | 1 500                   | 1 500                   | 1.005                   | 1.673                   | 1.711                   |                         |
|          | <sup>o</sup> huoc Dinh<br>・2012年以降は |                                                                                            | 4.70% 1,187<br>3.90% 543                                                                | 1.243<br>564                               | 1.301<br>586                               | 1,362<br>609                     | 1,426 1,459<br>633 648                                   | 1.493<br>663            | 1,527<br>678            | 1.562<br>694            | 1.598<br>710            | 1,635<br>726            | 743                     | 760                     | 1,750<br>777            |
|          | 2012年以降18                           |                                                                                            | 3 90% 227                                                                               | 236                                        | 245                                        | 255                              | 265 271                                                  | 277                     | 283                     | 290                     | 297                     | 304                     | 311                     | 318                     | 325                     |
| 2        |                                     | Son Hai 1                                                                                  | 4 20% 4 558                                                                             | 4,749                                      | 4.948                                      | 5,156                            | 5.373 5.497                                              | 5.623                   | 5.752                   | 5.884                   | 6.019                   | 6,157                   | 6.299                   | 6,444                   | 6,592                   |
|          |                                     | Son Hai 2                                                                                  | 4.20% 4.338                                                                             | 2.498                                      | 2.603                                      | 2.712                            | 2.826 2.891                                              | 2.957                   | 3.025                   | 3.095                   | 3,166                   | 3.239                   | 3.313                   | 3.389                   | 0.332<br>3.467          |
|          |                                     | Total                                                                                      | 4.20% 8.912                                                                             | 9,290                                      | 9.683                                      | 10.094                           | 10.523 10.765                                            | 11.013                  | 11,266                  | 11.525                  | 11,790                  | 12.061                  | 12.338                  | 12.622                  | 12,912                  |
|          |                                     |                                                                                            |                                                                                         | 0,200                                      | 0,000                                      |                                  |                                                          |                         |                         | 11,940                  |                         |                         | .2.000                  |                         | 10000000                |
| Ninh Thu | ian                                 | Total                                                                                      | 2 40% 54 320                                                                            | 55,652                                     | 57,018                                     | 58,426                           | 59,873 61,151                                            | 62,459                  | 63,795                  | 65,161                  | 66,555                  | 67,979                  | 69,437                  | 70,925                  | 72,448                  |
|          |                                     |                                                                                            |                                                                                         |                                            |                                            |                                  |                                                          |                         |                         |                         |                         | 1110100000              |                         |                         | <u>unununu</u>          |

 Table 10.1.4
 The result of population forecast for Ninh Thuan province

| The Study on Groundwater Development in the Rural Provinces of the Southern Coastal Zone in the Socialist Republic of Vietnam<br>Final Report – Supporting - Chapter 10 Water Demand and Design Water Capacity |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| f Vie<br>Cap                                                                                                                                                                                                   |

#### Average Growth Rate % 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 B-1 Muong Man Dang Thanh 140% 2.237 2.268 2.300 2,332 2.365 2.398 2.432 2,466 2.501 2,536 2,572 2.608 2.645 2.682 Dai Thanh 1.40% 2.120 2,150 2,180 2,211 2.242 2,273 2.305 2,337 2.370 2,403 2,437 2,471 2,506 2,541 Van Phong 1.80% 1,710 1,741 1,772 1,804 1,836 1,869 1,903 1,937 1,972 2,007 2.043 2,080 2,117 2,155 1.50% 6.067 6,159 6.252 6.347 6,443 6.540 6,640 6.740 6.843 6.946 7.052 7,159 7.268 7,378 Total 1.13% 1,847 1 868 1.889 1,910 1,976 1 998 2 0 2 1 2 0 4 4 2.067 2 090 2,114 2,138 B-2 Gia Huynh Village 1 1.932 1 954 Village 2 1.13% 1.734 1.754 1.774 1.794 1.814 1,834 1.855 1.876 1.897 1,918 1,940 1.962 1.984 2,006 1.13% 1.724 1.743 1.763 1.783 1,803 1.823 1,865 1,907 1,973 Village 3 1.844 1,886 1.929 1,951 1,995 Total 1.13% 5,365 5,426 5,487 5,549 5,611 5,675 5,739 5,804 5,869 6,003 6.071 6.139 Village 1 1 4 4 1 1,547 1.566 1.585 1.604 1.662 1.682 B-3 Nghi Duc 1.20% 1.458 1.475 1.493 1.511 1,529 1,623 1.642 Village 2 0.90% 1.325 1,337 1,349 1,361 1,373 1,385 1,397 1,410 1,423 1,436 1,449 1,462 1,475 1,488 1.375 Village 3 0.90% 1.291 1.303 1.315 1.327 1.339 1,351 1.363 1.387 1,399 1.412 1,425 1.438 1.451 1.649 1.665 1.682 1.733 1.750 1.768 1.786 1.804 1.822 1.840 1.858 Village 4 1.00% 1 6 3 3 1.699 1.716 1,605 1,623 1 64 1 1,659 1,695 1714 1 733 1,752 1 771 1,790 1,830 Village 5 1.10% 1677 1.810 1 850 Village 6 1.20% 1,282 1,297 1,313 1,329 1.345 1,361 1,377 1.394 1,411 1,428 1,445 1,462 1,480 1,498 Village 7 1.30% 1.726 1.748 1,771 1.794 1,817 1,841 1.865 1,889 1,914 1,939 1.964 1,990 2,016 2.042 10,415 10.529 10.761 11,117 11.240 11,741 11.869 Total 1.10% 10 303 10 6 4 5 10.878 10.996 11363 11 487 11.613 B-4 Tan Duc Village 1 1.42% 767 778 789 800 811 823 835 847 859 871 883 896 909 922 Village 2 1.42% 1.247 1.265 1.283 1.301 1.319 1,338 1,357 1.376 1.396 1,416 1,436 1.456 1,477 1.498 Village 3 1.42% 1.751 1,776 1,801 1,827 1,853 1,879 1,906 1,933 1,960 1,988 2.016 2,045 2,074 2,103 Village 4 1.42% 619 628 637 646 655 664 683 693 703 713 723 733 743 673 717 747 Village 5 142% 668 677 687 697 707 727 737 758 769 780 791 802 5,421 Total 1.42% 5.052 5,124 5,197 5,271 5,345 5,498 5.576 5.655 5,736 5,817 5,900 5.984 6.068 2.395 B-5 Me Pu 1.50% 2.159 2.191 2.224 2.257 2.291 2.325 2.360 2.431 2.467 2.504 2.542 2.580 2.619 village 1 1 391 1412 1 433 1 4 5 4 1.520 1 543 1 589 1.637 1.662 1 687 village 2 1.50% 1 4 7 6 1 4 9 8 1.566 1.613 1.50% 1.822 1.849 1.877 1.905 1.934 1,963 1.992 2.022 2.052 2.083 2 1 1 4 2,146 2,178 2,211 village 3 1.50% 1,973 2,003 2.033 2,063 2.094 2,125 2,157 2,189 2.222 2,255 2.289 2.323 2.358 2.393 village 4 village 5 1.50% 1.917 1,946 1,975 2,005 2,035 2,066 2,097 2,128 2,160 2,192 2,225 2,258 2.292 2,326 village 6 1.50% 837 850 863 889 944 972 987 1.002 825 876 902 916 930 958 village 7 1.50% 192 195 198 201 204 207 210 213 216 219 222 225 228 231 village 8 1.50% 2 746 2,787 2,829 2,871 2,914 2,958 3,002 3,047 3,093 3,139 3,186 3,234 3,283 3.332 1.50% 424 430 436 443 450 457 464 471 478 499 506 514 485 492 village 9 13,449 14.488 14,924 16.074 Total 1.50% 13.650 13.855 14.062 14.274 14,704 15,148 15.373 15.603 15.836 16.315 1.30% 1,160 1,175 1,190 1,237 1,253 1,269 1,285 1,302 1.319 1,336 1,353 1,371 B-6 Sung Nhon Village 1 1,205 1,221 Village 2 1.30% 1,607 1,628 1.649 1,670 1,692 1.714 1,736 1,759 1,782 1,805 1,828 1,852 1,876 1,900 1.30% 1,274 1,291 1,308 1,325 1,342 1,359 1,377 1,395 1,413 1,431 1.450 1,469 1,488 1.507 Village 3 1,312 1 346 1.363 1417 1 435 1 4 5 4 1,473 1.511 1,531 Village 4 1.30% 1.329 1.381 1.399 1,492 1 551 1 485 Village 5 1.30% 1,255 1 2 7 1 1 288 1 3 0 5 1 322 1.339 1.356 1 374 1 3 9 2 1,410 1,428 1 4 4 7 1 466 Village 6 1.30% 841 852 863 874 885 897 909 921 933 945 957 969 982 995 1.30% 833 844 855 866 877 888 900 912 924 936 948 960 972 985 Village 7 Total 1.30% 8,390 8,499 8.608 8,720 8.948 9,065 9,183 9.422 9,544 9.668 9.794 1,190 B-7 Da Kai Village 1 2.00% 1,214 1,238 1,263 1,288 1,314 1,340 1,367 1,394 1,422 1,450 1479 1,509 1,539 2.50% 870 892 937 984 1,009 1,034 1,060 1.087 1,114 1,142 1,171 Village 2 849 914 960 1.50% 1.114 1,131 1,148 1,165 1,182 1 200 1.218 1,236 1.255 1,274 1.293 1,312 1.332 1.352 Village 3 Village 4 2 70% 1 481 1,521 1 562 1 604 1 6 4 7 1 691 1 7 3 7 1 784 1.832 1.881 1.932 1 984 2 0 3 8 2 093 1,943 Village 5 1.40% 1715 1.739 1.763 1.788 1.813 1,838 1.864 1.890 1.916 1,970 1.998 2.026 2.054 0.60% 1.541 1.550 1.559 1,568 1.577 1.586 1.596 1,606 1,616 1,636 1.656 Village 6 1,532 1.626 1.646 Village 7 1.70% 1,335 1,358 1,381 1,404 1,428 1,452 1,477 1,502 1,528 1,554 1,580 1,607 1,634 1,662 Village 8 1.00% 1.009 1.019 1.029 1.039 1.049 1.059 1.070 1.081 1,092 1,103 1,114 979 989 999 1.003 1.039 1.057 1.097 Village 9 0.90% 976 985 994 1.012 1 0 2 1 1.030 1.048 1.067 1.077 1.087 Village 10 1.30% 444 450 456 462 468 474 480 486 492 498 504 511 518 525 11,798 11,983 12.171 12,362 12,755 12,958 13,164 13,375 13,810 14,035 14,263 Total 1.60% 11.615 12,556 13,590 67.037 68,907 71,826 1.40% 60.073 60,901 61,741 62.591 63,454 64,327 65.216 66,119 67.964 69,865 70.841 Binh Thuan Total TOTAL 4 provinces 1.60% 182,865 185,934 189,064 192,265 195,531 198,655 201,844 205,087 208,392 211,751 215,172 218,659 222,211 225,827

#### Table 10.1.5 The result of population forecast for Binh Thuan province

#### 10.2 Water Demand

The results of calculation for water demand in the 24 communes are shown from next page.

The water used for the retail business in the rural area is classified as non-domestic water. Considering the feature of each commune, the rate of non-domestic water is classified into three, 5%, 10% and 13% by quartiles of actual data. The detailed result of the rate of domestic and non-domestic water uses in the Study area is shown in below.

|               |            |                   | [1]      | [2]              | [3]      | [4]                         | [5]                   | [6]                | [7]                                                                                                                                                              |  |  |
|---------------|------------|-------------------|----------|------------------|----------|-----------------------------|-----------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Prov          | ince/C     | ommune            |          | interview to CPC |          | workshop in<br>nomic servey | Result of calculation | Adopted percentage | Remark                                                                                                                                                           |  |  |
|               |            |                   | Domestic | Non-domestic     | Domestic | Non-domestic                | Non-domestic          |                    |                                                                                                                                                                  |  |  |
| Phu Yen       | P-1        | Xuan Phuoc        | 95%      | 5%               | 89%      | 11%                         | 12.4%                 | 13%                |                                                                                                                                                                  |  |  |
|               | P-2        | An Dinh           | 96%      | 4%               | 95%      | 5%                          | 5.3%                  | 10%                | The result of calculation for [5] is 5.3% and it is more than 5%, therefore this value is classified to 10%.                                                     |  |  |
|               | P-3        | An Tho            | 99%      | 1%               | 93%      | 8%                          | 8.1%                  | 10%                |                                                                                                                                                                  |  |  |
|               | P-4        | An My             | 65%      | 35%              | 89%      | 11%                         | 11.9%                 | 13%                |                                                                                                                                                                  |  |  |
|               | P-5        | Son Phuoc         | 85%      | 5%               | 90%      | 10%                         | 11.6%                 | 13%                |                                                                                                                                                                  |  |  |
|               | P-6        | Ea Cha Rang       | 96%      | 4%               | 92%      | 8%                          | 8.7%                  | 10%                |                                                                                                                                                                  |  |  |
|               | P-7        | Suoi Bac          | 92%      | 8%               | 88%      | 12%                         | 13.6%                 | 13%                |                                                                                                                                                                  |  |  |
|               | P-8        | Son Thanh<br>Dong | 96%      | 4%               | -        | -                           | -                     | 5%                 | It is calculated based on the information of [2]                                                                                                                 |  |  |
| Khanh         | K-1        | Cam An Bac        | 95%      | 5%               | 94%      | 6%                          | 6.6%                  | 10%                |                                                                                                                                                                  |  |  |
| Hon           | K-2        | Com Hiep<br>Nam   | 90%      | 10%              | 88%      | 12%                         | 13.7%                 | 13%                |                                                                                                                                                                  |  |  |
|               | K-3        | Cam Hai<br>Tay    | 85%      | 15%              | 86%      | 14%                         | 16.1%                 | 13%                |                                                                                                                                                                  |  |  |
| Ninh<br>Thuan | N-1        | Nhon Hai          | 96%      | 4%               | 70%      | 30%                         | 42.9%                 | 13%                | [5] is 43%, however, considering<br>for [2], 13% is appropriate value                                                                                            |  |  |
|               | N-2        | Cong hai          | 80%      | 20%              | 77%      | 23%                         | 29.9%                 | 13%                | [2] and [5] are more than 20%,<br>however, considering for feature<br>of N-4 commune, it is similar<br>with N-2 commune, therefore,<br>13% is appropriate value. |  |  |
|               | N-3        | Bac Son           | 96%      | 4%               | -        | -                           | -                     | 13%                | This commune is expected the economic growth.                                                                                                                    |  |  |
|               | N-4        | Phuoc Minh        | 85%      | 15%              | -        | -                           | -                     | 13%                | It is calculated based on the information of [2]                                                                                                                 |  |  |
|               | N-5        | Phuoc Hai         | 96%      | 4%               | -        | -                           | -                     | 5%                 | It is calculated based on the information of [2]                                                                                                                 |  |  |
|               | N-6        | Phuoc Dinh        | 95%      | 5%               | 90%      | 10%                         | 11.1%                 | 13%                |                                                                                                                                                                  |  |  |
| Binh          | B-1        | Muong Man         | 95%      | 5%               | 90%      | 10%                         | 11.1%                 | 13%                |                                                                                                                                                                  |  |  |
| Thuan         | B-2        | Gia Huynh         | 95%      | 5%               | 89%      | 11%                         | 12.0%                 | 13%                |                                                                                                                                                                  |  |  |
|               | B-3        | Nghi Duc          | 96%      | 4%               | 94%      | 6%                          | 6.8%                  | 10%                |                                                                                                                                                                  |  |  |
|               | B-4        | Tan Duc           | 95%      | 5%               | 92%      | 8%                          | 8.8%                  | 10%                |                                                                                                                                                                  |  |  |
|               | B-5        | Me Pu             | 95%      | 5%               | 97%      | 3%                          | 3.1%                  | 5%                 |                                                                                                                                                                  |  |  |
|               | B-6        | Sung Nhon         | 95%      | 5%               | -        | -                           | -                     | 10%                | It is calculated based on the<br>information of [2]                                                                                                              |  |  |
|               | B-7 Da Kai |                   | 95%      | 5%               | 97%      | 3%                          | 2.6%                  | 5%                 |                                                                                                                                                                  |  |  |

\*1: The result of calculation for rate of non-domestic water in case when rate of domestic water is 100%.

\*2: Based on the results of quartiles of [5], rate of non-domestic water is classified into 3 categories, 5%, 10% and 13%.

| υ                 |               |                          |                    | 2007                       |                       |                 |                          |                    | 2008                       |                       |                  |                          |                    | 2009                       |                       |                  | 2010                     |                    |                            |                       |                  |
|-------------------|---------------|--------------------------|--------------------|----------------------------|-----------------------|-----------------|--------------------------|--------------------|----------------------------|-----------------------|------------------|--------------------------|--------------------|----------------------------|-----------------------|------------------|--------------------------|--------------------|----------------------------|-----------------------|------------------|
| Do Drovino<br>Cod | e Commene     | Popiulation<br>(Persons) | Domestic<br>(m3/d) | Non-<br>domestic<br>(m3/d) | Leakage<br>(10%,m3/d) | Total<br>(m3/d) | Popiulation<br>(Persons) | Domestic<br>(m3/d) | Non-<br>domestic<br>(m3/d) | Leakage<br>(10%,m3/d) | Total<br>(m3/d)) | Popiulation<br>(Persons) | Domestic<br>(m3/d) | Non-<br>domestic<br>(m3/d) | Leakage<br>(10%,m3/d) | Total<br>(m3/d)) | Popiulation<br>(Persons) | Domestic<br>(m3/d) | Non-<br>domestic<br>(m3/d) | Leakage<br>(10%,m3/d) | Total<br>(m3/d)) |
| P-1               | Xuan Phuoc    | 9,182                    | 551                | 72                         | 69                    | 692             | 9,305                    | 558                | 73                         | 70                    | 701              | 9,430                    | 566                | 74                         | 71                    | 711              | 9,557                    | 573                | 74                         |                       | 719              |
| P-2               | An Dinh       | 6,022                    | 361                | 36                         | 44                    | 441             | 6,081                    | 365                | 37                         | 45                    | 447              | 6,141                    | 368                | 37                         | 45                    | 450              | 6,202                    | 372                | 37                         |                       | 454              |
| 5 P-3             | An Tho        | 3,312                    | 199                | 20                         | 24                    | 243             | 3,383                    | 203                | 20                         | 25                    | 248              |                          | 207                | 21                         | 25                    | 253              | 3,531                    | 212                | 21                         |                       | 259              |
| ₩ P4              | An My         | 11,549                   | 693                | 90                         | 87                    | 870             | 11,673                   | 700                | 91                         | 88                    | 879              | 11,797                   | 708                | 92                         | 89                    | 889              | 11,923                   | 715                | 93                         |                       | 898              |
| 2 P-5             | Son Phuoc     | 3,313                    | 199                | 26                         | 25                    | 250             | 3,366                    | 202                | 26                         |                       | 253              | 3,419                    | 205                | 27                         | 26                    | 258              | 3,473                    | 208                | 27                         |                       | 261              |
| <sup>н</sup> Р-б  | Ea Cha Rang   | 2,616                    |                    | 16                         | 19                    | 192             |                          | 159                | 16                         | 19                    | 194              |                          | 161                | 16                         | 20                    | 197              | 2,715                    | 163                | 16                         |                       |                  |
| P-7               | Suoi Bac      | 5,678                    |                    | 44                         | 43                    | 428             | 5,730                    | 344                | 45                         | 43                    | 432              | 5,783                    | 347                | 45                         | 44                    | 436              | 5,837                    | 350                | 46                         |                       | 440              |
| P-8               | Son Thanh Don | 8,309                    | 499                | 25                         | 58                    | 582             | 8,379                    | 503                | 25                         | 59                    | 587              | 8,450                    | 507                | 25                         | 59                    | 591              | 8,524                    | 511                | 26                         |                       | 597              |
| 출 K-1             | Cam An Bac    | 6,440                    | 386                | 39                         | 47                    | 472             | 6,567                    | 394                | 39                         | 48                    | 481              | 6,698                    | 402                | 40                         | 49                    | 491              | 6,832                    | 410                | 41                         |                       |                  |
| -g K-2            | Cam Hiep Nam  | 6,226                    | 374                | 49                         | 47                    | 470             | 6,341                    | 380                | 49                         | 48                    | 477              | 6,460                    | 388                | 50                         | 49                    | 487              | 6,581                    | 395                | 51                         |                       | 496              |
| 2 K-3             | Cam Hay Tay   | 5,825                    | 350                | 46                         | 44                    | 440             | 5,907                    | 354                | 46                         | 44                    | 444              | 5,989                    | 359                | 47                         | 45                    | 451              | 6,073                    | 364                | 47                         |                       | 457              |
| N-1               | Nhon Hai      | 15,234                   | 914                | 119                        | 115                   | 1,148           | 15,580                   | 935                | 122                        | 117                   | 1,174            | 15,935                   | 956                | 124                        | 120                   | 1,200            | 16,298                   | 978                | 127                        |                       | 1,228            |
| N-2               | Cong Hai      | 7,530                    | 452                | 59                         | 57                    | 568             | 7,683                    |                    | 60                         | 58                    | 579              |                          | 470                | 61                         | 59                    | 590              | 7,997                    | 480                | 62                         |                       | 602              |
| 년 N-3             | Bac Son       | 5,922                    | 355                | 46                         | 45                    | 446             | 6,038                    | 362                | 47                         | 45                    | 454              | 6,156                    | 369                | 48                         | 46                    | 463              | 6,277                    | 377                | 49                         |                       | 473              |
| -g N-4            | Phuoc Minh    | 3,596                    | 216                | 28                         | 27                    | 271             | 3,684                    | 221                | 29                         | 28                    | 278              | 3,775                    |                    | 30                         | 29                    | 286              | 3,868                    | 232                | 30                         |                       | 291              |
| Z N-5             | Phuoc Hai     | 13,126                   | 788                | 39                         | 92                    | 919             | 13,377                   | 803                | 40                         | 94                    | 937              | 13,631                   | 818                | 41                         | 95                    | 954              | 13,892                   | 834                | 42                         |                       | 973              |
| N-6               | Phuoc Dinh    | 8,912                    | 535                | 70                         | 67                    | 672             | 9,290                    | 557                | 72                         | 70                    | 699              | 9,683                    | 581                | 76                         | 73                    | 730              | 10,094                   | 606                | 79                         |                       | 761              |
| B-1               | Muong Man     | 6,067                    | 364                | 47                         | 46                    | 457             | 6,159                    | 370                | 48                         | 46                    | 464              | 6,252                    | 375                | 49                         | 47                    | 471              | 6,347                    | 381                | 50                         |                       | 479              |
| ਦੂ B-2            | Gia Huynh     | 5,305                    | 318                | 41                         | 40                    | 399             | 5,365                    | 322                | 42                         | 40                    | 404              | 5,426                    | 326                | 42                         | 41                    | 409              |                          | 329                | 43                         |                       | 413              |
| р B-3             | Nghi Duc      | 10,303                   | 618                | 62                         | 76                    | 756             | 10,415                   | 625                | 63                         | 76                    | 764              | 10,529                   | 632                | 63                         | 77                    | 772              | 10,645                   | 639                | 64                         |                       | 781              |
| È B-4             | Tan Duc       | 5,052                    | 303                | 30                         | 37                    | 370             | 5,124                    | 307                | 31                         | 38                    | 376              | 5,197                    | 312                | 31                         | 38                    | 381              | 5,271                    | 316                | 32                         |                       |                  |
| .g B-5            | Me Pu         | 13,449                   | 807                | 40                         | 94                    | 941             | 13,650                   | 819                | 41                         | 96                    | 956              |                          | 831                | 42                         | 97                    | 970              |                          | 844                | 42                         |                       | 984              |
| <sup>щ</sup> В-б  | Suong Nhon    | 8,282                    | 497                | 50                         | 61                    | 608             | 8,390                    | 503                | 50                         | 61                    | 614              | 8,499                    | 510                | 51                         | 62                    | 623              | 8,608                    | 516                | 52                         |                       | 631              |
| B-7               | Da Kai        | 11.615                   | 697                | 35                         | 81                    | 813             | 11,798                   | 708                | 35                         | 83                    | 826              | 11.983                   | 719                | 36                         | 84                    | 839              | 12.171                   | 730                | 37                         | 85                    | 852              |

 Table 10.2.1
 The Results of Calculation for Water Demand in the 24 Communes (1)

| Table 10.2.2 The Results of Calculation for Water Demand in the 24 Communes (2) | Table 10.2.2 | The Results of Calculation for Water Demand in the 24 Communes (2 | ) |
|---------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------|---|
|---------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------|---|

|          |      |               |                          |                    | 2011                       |                       |                  |                          |                    | 2012                       |                       |                  |                          |                    | 2013                       |                       |                  |                          |                    | 2014                       |                       |                  |
|----------|------|---------------|--------------------------|--------------------|----------------------------|-----------------------|------------------|--------------------------|--------------------|----------------------------|-----------------------|------------------|--------------------------|--------------------|----------------------------|-----------------------|------------------|--------------------------|--------------------|----------------------------|-----------------------|------------------|
| Province | Code | Commene       | Popiulation<br>(Persons) | Domestic<br>(m3/d) | Non-<br>domestic<br>(m3/d) | Leakage<br>(10%,m3/d) | Total<br>(m3/d)) | Popiulation<br>(Persons) | Domestic<br>(m3/d) | Non-<br>domestic<br>(m3/d) | Leakage<br>(10%,m3/d) | Total<br>(m3/d)) | Popiulation<br>(Persons) | Domestic<br>(m3/d) | Non-<br>domestic<br>(m3/d) | Leakage<br>(10%,m3/d) | Total<br>(m3/d)) | Popiulation<br>(Persons) | Domestic<br>(m3/d) | Non-<br>domestic<br>(m3/d) | Leakage<br>(10%,m3/d) | Total<br>(m3/d)) |
|          | P-1  | Xuan Phuoc    | 9,685                    | 581                | 76                         | 73                    | 730              | 9,816                    | 589                | 77                         | 74                    | 740              | 9,949                    | 597                | 78                         | 75                    | 750              | 10,083                   | 605                | 79                         | 76                    | 760              |
|          | P-2  | An Dính       | 6,264                    | 376                | 38                         | 46                    | 460              | 6,326                    | 380                | 38                         | 46                    | 464              | 6,391                    | 383                | 38                         | 47                    | 468              | 6,456                    | 387                | 39                         | 47                    | 473              |
| =        | P-3  | An Tho        | 3,607                    | 216                | 22                         | 26                    | 264              | 3,684                    | 221                | 22                         | 27                    | 270              | 3,764                    | 226                | 23                         | 28                    | 277              | 3,845                    | 231                | 23                         | 28                    | 282              |
| Ye       | P-4  | An My         | 12,050                   | 723                | 94                         | 91                    | 908              | 12,178                   | 731                | 95                         | 92                    | 918              | 12,308                   | 738                | 96                         | 93                    | 927              | 12,439                   | 746                | 97                         | 94                    | 937              |
| Phu      | P-5  | Son Phuoc     | 3,529                    | 212                | 28                         | 27                    | 267              | 3,585                    | 215                | 28                         | 27                    | 270              | 3,643                    | 219                | 28                         |                       | 274              | 3,702                    | 222                | 29                         | 28                    | 279              |
| <u>م</u> | P-6  | Ea Cha Rang   | 2,748                    | 165                | 17                         | 20                    | 202              | 2,782                    | 167                | 17                         | 20                    | 204              | 2,817                    | 169                | 17                         | 21                    | 207              | 2,852                    | 171                | 17                         | 21                    | 209              |
|          | P-7  | Suoi Bac      | 5,891                    | 353                |                            | 44                    | 443              | 5,946                    | 357                | 46                         | 45                    | 448              | 6,002                    | 360                | 47                         |                       | 452              | 6,058                    | 363                | 47                         | 46                    | 456              |
|          | P-8  | Son Thanh Don | 8,598                    | 516                |                            | 60                    | 602              | 8,674                    | 520                | 26                         | 61                    | 607              | 8,750                    | 525                | 26                         |                       | 612              | 8,826                    | 530                | 27                         | 02                    | 619              |
| Hos      | K-1  | Cam An Bac    | 6,969                    | 418                |                            | 51                    | 511              |                          | 427                | 43                         | 52                    | 522              | 7,251                    | 435                | 44                         |                       | 532              | 7,397                    | 444                | 44                         |                       | 542              |
| anh      | K-2  | Cam Hiep Nam  | 6,705                    | 402                | 52                         | 50                    | 504              |                          | 410                | 53                         | 51                    | 514              | 6,962                    | 418                | 54                         |                       | 524              | 7,095                    | 426                | 55                         |                       | 534<br>483       |
| KIh      | K-3  | Cam Hay Tay   | 6,158                    | 369                |                            | 46                    | 463              |                          | 375                | 49                         | 47                    | 471              | 6,332                    | 380                | 49                         | 1.0                   | 477              | 6,420                    | 385                | 50                         |                       |                  |
|          | N-1  | Nhon Hai      | 16,669                   | 1,000              | 130                        | 126                   | 1,256            | 17,048                   | 1,023              | 133                        | 128                   | 1,284            | 17,436                   | 1,046              | 136                        |                       | 1,313            | 17,833                   | 1,070              | 139                        |                       | 1,343            |
| uan      | N-2  | Cong Hai      | 8,160                    | 490                |                            | 62                    | 616              | 8,324                    | 499                | 65                         | 63                    | 627              | 8,493                    | 510                | 66                         |                       | 640              | 8,666                    | 520                | 68                         |                       | 653              |
| Ē        | N-3  | Bac Son       | 6,399                    | 384                | 50                         | 48                    | 482              | 6,523                    | 391                | 51                         | 49                    | 491              | 6,650                    | 399                | 52                         |                       | 501              | 6,779                    |                    | 53                         |                       | 511              |
| - qu     | N-4  | Phuoc Minh    | 3,963                    | 238                |                            | 30                    | 299              |                          | 244                | 32                         | 31                    | 307              | 4,161                    | 250                | 33                         |                       | 314              | 4,263                    | 256                | 33                         | 0.2                   | 321              |
| ĨZ       | N-5  | Phuoc Hai     | 14,159                   | 850                | 43                         | 99                    | 992              | 14,430                   | 866                | 43                         | 101                   | 1,010            | 14,706                   | 882                | 44                         |                       | 1,029            | 14,988                   | 899                | 45                         | ****                  | 1,049            |
|          | N-6  | Phuoe Dinh    | 10,523                   | 631                | 82                         | 79                    | 792              | 10,766                   | 646                | 84                         | 81                    | 811              | 11,013                   | 661                | 86                         |                       | 830              | 11,265                   | 676                | 88                         |                       | 849              |
|          | B-1  | Muong Man     | 6,443                    | 387                | 50                         | 49                    | 486              | 6,540                    | 392                | 51                         | 49                    | 492              | 6,640                    | 398                | 52                         |                       | 500              | 6,740                    | 404                | 53                         |                       | 508              |
| E        | B-2  | Gia Huynh     | 5,549                    | 333                |                            | 42                    | 418              | 5,611                    | 337                | 44                         | 42                    | 423              | 5,675                    | 341                | 44                         |                       | 428              | 5,739                    | 344                | 45                         | 1.5                   | 432              |
| Thu      | B-3  | Nghi Duc      | 10,761                   | 646                | 65                         | 79                    |                  | 10,878                   | 653                | 65                         | 80                    | 798              | 10,996                   | 660                | 66                         |                       | 807              | 11,117                   | 667                | 67                         | -                     | 816              |
|          | B-4  | Tan Duc       | 5,345                    | 321                | 32                         | 39                    | 392              | 5,421                    | 325                | 33                         | 40                    | 398              | 5,498                    | 330                | 33                         |                       | 403              | 5,576                    | 335                | 34                         |                       | 410              |
| Binh     | B-5  | Me Pu         | 14,274                   | 856                | 43                         | 100                   | 999              | 14,488                   | 869                | 43                         | 101                   | 1,013            | 14,704                   | 882                | 44                         |                       | 1,029            | 14,924                   | 895                | 45                         | 104                   | 1,044            |
| 1        | B-6  | Suong Nhon    | 8,720                    | 523                |                            | 64                    | 639              | 8,833                    | 530                | 53                         | 65                    | 648              | 8,948                    | 537                | 54                         |                       | 657              | 9,065                    | 544                | 54                         |                       | 664              |
|          | B-7  | Da Kai        | 12,362                   | 742                | 37                         | 87                    | 866              | 12,556                   | 753                | 38                         | 88                    | 879              | 12,755                   | 765                | 38                         | 89                    | 892              | 12,958                   | 777                | 39                         | 91                    | 907              |

| Final Report – Suppor                | The Study on Groundwater Development in the Rural Province |
|--------------------------------------|------------------------------------------------------------|
| ting -                               | s of the                                                   |
| Chapter 10                           | Southern                                                   |
| 10 Water                             | Coastal Z                                                  |
| 0 Water Demand and Design Water Cape | al Zone in the                                             |
| and L                                | Social                                                     |
| )esign                               | ist Repu                                                   |
| Water                                | ublic o                                                    |
| Capacity                             | of Vietnam                                                 |

| 0        |            |               |                          |                    | 2015                       |                       |                  |                          |                    | 2016                       |                       |                  |                          |                    | 2017                       |                       |                  |                          |                    | 2018                       |                       |                  |
|----------|------------|---------------|--------------------------|--------------------|----------------------------|-----------------------|------------------|--------------------------|--------------------|----------------------------|-----------------------|------------------|--------------------------|--------------------|----------------------------|-----------------------|------------------|--------------------------|--------------------|----------------------------|-----------------------|------------------|
| Province | Code       | Commene       | Popiulation<br>(Persons) | Domestic<br>(m3/d) | Non-<br>domestic<br>(m3/d) | Leakage<br>(10%,m3/d) | Total<br>(m3/d)) | Popiulation<br>(Persons) | Domestic<br>(m3/d) | Non-<br>domestic<br>(m3/d) | Leakage<br>(10%,m3/d) | Total<br>(m3/d)) | Popiulation<br>(Persons) | Domestic<br>(m3/d) | Non-<br>domestic<br>(m3/d) | Leakage<br>(10%,m3/d) | Total<br>(m3/d)) | Popiulation<br>(Persons) | Domestic<br>(m3/d) | Non-<br>domestic<br>(m3/d) | Leakage<br>(10%,m3/d) | Total<br>(m3/d)) |
|          | P-1        | Xuan Phuoc    | 10,219                   | 613                | 80                         | 77                    | 770              | 10,356                   | 621                | 81                         | 78                    | 780              | 10,495                   | 630                | 82                         | 79                    | 791              | 10,637                   | 638                | 83                         | 80                    | 801              |
|          | P-2        | An Dinh       | 6,521                    | 391                | 39                         | 48                    | 478              | 6,587                    | 395                | 40                         | 48                    | 483              | 6,654                    | 399                | 40                         | 49                    | 488              | 6,721                    | 403                | 40                         | 49                    | 492              |
| Ę        | P-3        | An Tho        | 3,929                    | 236                | 24                         | 29                    | 289              | 4,014                    | 241                | 24                         | 29                    | 294              | 4,101                    | 246                | 25                         | 30                    | 301              | 4,189                    | 251                | 25                         |                       | 307<br>978       |
| Y.       | P-4        | An My         | 12,571                   | 754                | 98                         | 95                    | 947              | 12,704                   | 762                | 99                         | 96                    | 957              | 12,840                   | 770                | 100                        | 97                    | 967              | 12,977                   | 779                | 101                        | 98                    | 978              |
| Phu      | P-5        | Son Phuoe     | 3,761                    | 226                | 29                         | 28                    | 283              | 3,821                    | 229                | 30                         | 29                    | 288              | 3,882                    | 233                | 30                         | 29                    | 292              | 3,945                    | 237                | 31                         |                       | 298              |
| д.       | P-6        | Ea Cha Rang   | 2,887                    | 173                | 17                         | 21                    | 211              | 2,923                    | 175                | 18                         | 21                    | 214              | 2,959                    | 178                | 18                         | 22                    | 218              | 2,996                    | 180                | 18                         | 22                    | 220<br>473       |
|          | P-7        | Suoi Bac      | 6,115                    | 367                | 48                         | 46                    | 461              | 6,173                    | 370                | 48                         | 46                    | 464              | 6,232                    | 374                | 49                         | 47                    | 470              |                          | 377                | 49                         | 47                    |                  |
|          | P-8        | Son Thanh Don | 8,902                    | 534                | 27                         | 62                    | 623              | 8,979                    | 539                | 27                         | 63                    | 629              | 9,056                    | 543                | 27                         | 63                    | 633              | 9,133                    | 548                | 27                         | 64                    | 639              |
| S<br>H   | K-1        | Cam An Bac    | 7,548                    | 453                | 45                         | 55                    | 553              | 7,703                    | 462                | 46                         | 56                    | 564              | 7,861                    | 472                | 47                         | 58                    | 577              | 8,022                    | 481                | 48                         | 59                    | 588              |
| [ que    | K-2        | Cam Hiep Nam  | 7,231                    | 434                | 56                         | 54                    | 544              | 7,371                    | 442                | 57                         | 55                    | 554              | 7,513                    | 451                | 59                         | 57                    | 567              | 7,659                    | 460                | 60                         | 58                    | 578              |
| Ehe      | K-3        | Cam Hay Tay   | 6,510                    | 391                | 51                         | 49                    | 491              | 6,601                    | 396                | 51                         | 50                    | 497              | 6,693                    | 402                | 52                         | 50                    | 504              | 6,787                    | 407                | 53                         |                       | 511              |
| _        | N-1        | Nhon Hai      | 18,239                   | 1,094              | 142                        | 137                   | 1,373            | 18,655                   | 1,119              | 145                        | 140                   | 1,404            | 19,079                   | 1,145              | 149                        | 144                   | 1,438            | 19,514                   | 1,171              | 152                        |                       | 1,470            |
| 181)     | N-2<br>N-3 | Cong Hai      | 8,843                    | 531                | 69                         | 67                    | 667              | 9,021                    | 541                | 70                         | 68                    | 679              | 9,203                    | 552                | 72                         | 69                    | 693              | 9,390                    | 563                | 73                         |                       | 707              |
| Ē        | N-3        | Bac Son       | 6,911                    | 415                | 54                         | 52                    | 521              | 7,045                    | 423                | 55                         | 53                    | 531              | 7,182                    | 431                | 56                         | 54                    | 541              | 7,322                    | 439                | 57                         | 55                    | 551              |
| linh.    | N-4        | Phuoc Minh    | 4,368                    | 262                | 34                         | 33                    | 329              | 4,475                    | 269                | 35                         | 34                    | 338              | 4,585                    | 275                | 36                         | 35                    | 346              | 4,699                    | 282                | 37                         |                       | 354              |
| Ξ        | N-5        | Phuoc Hai     | 15,275                   | 917                | 46                         | 107                   | 1,070            | 15,569                   | 934                | 47                         | 109                   | 1,090            | 15,869                   | 952                | 48                         | 111                   | 1,111            | 16,174                   | 970                | 49                         | 113                   | 1,132            |
|          | N-6        | Phuoc Dinh    | 11,525                   | 692                | 90                         | 87                    | 869              | 11,790                   | 707                | 92                         | 89                    | 888              | 12,061                   | 724                | 94                         | 91                    | 909              | 12,339                   | 740                | 96                         | 93                    | 929              |
|          | B-1        | Muong Man     | 6,843                    | 411                | 53                         | 52                    | 516              | 6,946                    | 417                | 54                         | 52                    | 523              | 7,052                    | 423                | 55                         | 53                    | 531              | 7,159                    | 430                | 56                         | 54                    | 540              |
| =        | B-2        | Gia Huynh     | 5,804                    | 348                | 45                         | 44                    | 437              | 5,869                    | 352                | 46                         | 44                    | 442              | 5,936                    | 356                | 46                         | 45                    | 447              | 6,003                    | 360                | 47                         | 45                    | 452              |
| Thua     | B-3        | Nghi Duc      | 11,240                   | 674                | 67                         | 82                    | 823              | 11,363                   | 682                | 68                         | 83                    | 833              | 11,487                   | 689                | 69                         | 84                    | 842              | 11,613                   | 697                | 70                         | 85                    | 852              |
| E.       | B-4        | Tan Duc       | 5,655                    | 339                | 34                         | 41                    | 414              | 5,736                    | 344                | 34                         | 42                    | 420              | 5,817                    | 349                | 35                         | 43                    | 427              | 5,900                    | 354                | 35                         | 43                    | 432              |
| Binh     | B-5        | Me Pu         | 15,148                   | 909                | 45                         | 106                   | 1,060            | 15,373                   | 922                | 46                         | 108                   | 1,076            | 15,603                   | 936                | 47                         | 109                   | 1,092            | 15,836                   | 950                | 48                         | 111                   | 1,109            |
| 8        | B-6        | Suong Nhon    | 9,183                    | 551                | 55                         | 67                    | 673              | 9,302                    | 558                | 56                         | 68                    | 682              | 9,422                    | 565                | 57                         | 69                    | 691              | 9,544                    | 573                | 57                         | 70                    | 700              |
|          | B-7        | Da Kai        | 13.164                   | 790                | 40                         | 02                    | 022              | 13 375                   | 803                | 40                         | 94                    | 937              | 13 590                   | 815                | 41                         | 95                    | 951              | 13.810                   | 829                | 41                         | 97                    | 967              |

 Table 10.2.3
 The Results of calculation for water demand in the 24 communes (3)

 Table 10.2.4
 The Results of Calculation for Water Demand in the 24 Communes (4)

| 9              |      |               |                          |                    | 2019                       |                       |                  |                          |                    | 2020                       |                       |                  |
|----------------|------|---------------|--------------------------|--------------------|----------------------------|-----------------------|------------------|--------------------------|--------------------|----------------------------|-----------------------|------------------|
| Province       | Code | Commene       | Popiulation<br>(Persons) | Domestic<br>(m3/d) | Non-<br>domestic<br>(m3/d) | Leakage<br>(10%,m3/d) | Total<br>(m3/d)) | Popiulation<br>(Persons) | Domestic<br>(m3/d) | Non-<br>domestic<br>(m3/d) | Leakage<br>(10%,m3/d) | Total<br>(m3/d)) |
|                | P-1  | Xuan Phuoc    | 10,781                   | 647                | 84                         | 81                    | 812              | 10,927                   | 656                | 85                         | 82                    | 823              |
|                | P-2  | An Dính       | 6,788                    | 407                | 41                         | 50                    | 498              | 6,856                    | 411                | 41                         | 50                    | 502              |
| en             | P-3  | An Tho        | 4,280                    | 257                | 26                         | 31                    | 314              | 4,373                    | 262                | 26                         | 32                    | 320              |
| $\geq$         | P-4  | An My         | 13,115                   | 787                | 102                        | 99                    | 988              | 13,256                   | 795                | 103                        | 100                   | 998              |
| Plm            | P-5  | Son Phuoc     | 4,008                    | 240                | 31                         | 30                    | 301              | 4,071                    | 244                | 32                         | 31                    | 307              |
| <b>H</b>       | P-6  | Ea Cha Rang   | 3,033                    | 182                | 18                         | 22                    | 222              | 3,072                    | 184                | 18                         | 22                    | 224              |
|                | P-7  | Suoi Bac      | 6,351                    | 381                | 50                         | 48                    | 479              | 6,411                    | 385                | 50                         | 48                    | 483              |
|                | P-8  | Son Thanh Don | 9,212                    | 553                | 28                         | 65                    | 646              | 9,292                    | 558                | 28                         | 65                    | 651              |
| Hoa            | K-1  | Cam An Bac    | 8,186                    | 491                | 49                         | 60                    | 600              | 8,355                    | 501                | 50                         | 61                    | 612              |
| dne            | K-2  | Cam Hiep Nam  | 7,809                    | 469                | 61                         | 59                    | 589              | 7,962                    | 478                | 62                         | 60                    | 600              |
| ų.             | K-3  | Cam Hay Tay   | 6,882                    | 413                | 54                         | 52                    | 519              | 6,978                    | 419                | 54                         | 53                    | 526              |
| -              | N-1  | Nhon Hai      | 19,958                   | 1,197              | 156                        | 150                   | 1,503            | 20,413                   | 1,225              | 159                        | 154                   | 1,538            |
| Thuan          | N-2  | Cong Hai      | 9,581                    | 575                | 75                         | 72                    | 722              | 9,776                    |                    | 76                         | 74                    | 737              |
| É              | N-3  | Bac Son       | 7,464                    | 448                | 58                         | 56                    | 562              | 7,609                    | 457                | 59                         | 57                    | 573              |
| Ninh           | N-4  | Phuoe Minh    | 4,815                    | 289                | 38                         | 36                    | 363              | 4,934                    | 296                | 38                         | 37                    | 371              |
| ĨŹ             | N-5  | Phuoc Hai     | 16,485                   | 989                | 49                         | 115                   | 1,153            | 16,804                   | 1,008              | 50                         | 118                   | 1,176            |
|                | N-6  | Phuoe Dinh    | 12,622                   | 757                | 98                         | 95                    | 950              | 12,911                   | 775                | 101                        | 97                    | 973              |
|                | B-1  | Muong Man     | 7,268                    | 436                | 57                         | 55                    | 548              | 7,378                    | 443                | 58                         | 56                    | 557              |
| E              | B-2  | Gia Huynh     | 6,071                    | 364                | 47                         | 46                    | 457              | 6,139                    | 368                | 48                         | 46                    | 462              |
| Thuan          | B-3  | Nghi Duc      | 11,741                   | 704                | 70                         | 86                    | 860              | 11,869                   | 712                | 71                         | 87                    | 870              |
|                | B-4  | Tan Duc       | 5,984                    | 359                | 36                         | 44                    | 439              | 6,068                    | 364                | 36                         | 44                    | 444              |
| Bình           | B-5  | Me Pu         | 16,074                   | 964                | 48                         | 112                   | 1,124            | 16,315                   | 979                | 49                         | 114                   | 1,142            |
| Г <sup>ш</sup> | B-6  | Suong Nhon    | 9,668                    | 580                | 58                         | 71                    | 709              | 9,794                    | 588                | 59                         | 72                    | 719              |
| 1              | B-7  | Da Kai        | 14,035                   | 842                | 42                         | 98                    | 982              | 14,263                   | 856                | 43                         | 100                   | 999              |

#### **10.3 Deducted Water Demand**

The population supplied by existing water system is deducted from total water demand in the commune. The deducted water demand from 2006 to 2020 is shown in the below. The results of calculation for water demand in the 22 communes are shown from next page.

| Code | Commune       | 2006   | 2007   | 2012   | 2017   | 2020   |
|------|---------------|--------|--------|--------|--------|--------|
| P-1  | Xuan Phuoc    | 683    | 692    | 740    | 791    | 823    |
| P-2  | An Dinh       | 438    | 441    | 464    | 488    | 502    |
| P-4  | An My         | 861    | 870    | 918    | 967    | 998    |
| P-5  | Son Phuoc     | 187    | 190    | 206    | 223    | 234    |
| P-6  | Ea Cha Rang   | 133    | 135    | 143    | 153    | 157    |
| P-7  | Suoi Bac      | 424    | 428    | 448    | 470    | 483    |
| P-8  | Son Thanh Don | 577    | 582    | 607    | 633    | 651    |
| K-1  | Cam An Bac    | 367    | 374    | 414    | 458    | 485    |
| K-2  | Cam Hiep Nam  | 461    | 470    | 514    | 567    | 600    |
| K-3  | Cam Hay Tay   | 800    | 440    | 471    | 504    | 526    |
| N-1  | Nhon Hai      | 1,122  | 1,148  | 1,284  | 1,438  | 1,538  |
| N-2  | Cong Hai      | 557    | 568    | 627    | 693    | 737    |
| N-3  | Bac Son       | 120    | 122    | 134    | 148    | 156    |
| N-5  | Phuoc Hai     | 902    | 919    | 1,010  | 1,111  | 1,176  |
| N-6  | Phuoc Dinh    | 644    | 672    | 811    | 909    | 973    |
| B-1  | Muong Man     | 451    | 457    | 492    | 531    | 557    |
| B-2  | Gia Huynh     | 396    | 399    | 423    | 447    | 462    |
| B-3  | Nghi Duc      | 748    | 756    | 798    | 842    | 870    |
| B-4  | Tan Duc       | 343    | 347    | 373    | 400    | 416    |
| B-5  | Me Pu         | 928    | 941    | 1,013  | 1,092  | 1,142  |
| B-6  | Suong Nhon    | 600    | 608    | 648    | 691    | 719    |
| B-7  | Da Kai        | 800    | 813    | 879    | 951    | 999    |
|      | Total         | 12,542 | 12,372 | 13,417 | 14,507 | 15,204 |

Table 10.3.1The Deducted Water Demand from 2006 to 2020

| 0        |      |               | Percentage             |                 | 2007                     |                 |                 | 2008                     |                 |                 | 2009                     |                 |                 | 2010                     |                 |                 | 2011                     |                 |
|----------|------|---------------|------------------------|-----------------|--------------------------|-----------------|-----------------|--------------------------|-----------------|-----------------|--------------------------|-----------------|-----------------|--------------------------|-----------------|-----------------|--------------------------|-----------------|
| Province | Code | Commune       | of<br>deduction<br>(%) | Water<br>demand | Existing<br>water supply | Total<br>(m3/d) |
|          | P-1  | Xuan Phuoc    | 0%                     | 692             | 0                        | 692             | 701             | 0                        | 701             | 711             | 0                        | 711             | 719             | 0                        | 719             | 730             | 0                        | 730             |
|          | P-2  | An Dinh       | 0%                     | 441             | 0                        | 441             | 447             | 0                        | 447             | 450             | 0                        | 450             | 454             | 0                        | 454             | 460             | 0                        | 460             |
| en       | P-4  | An My         | 0%                     | 870             | 0                        | 870             | 879             | 0                        | 879             | 889             | 0                        | 889             | 898             | 0                        | 898             | 908             |                          | 908             |
| 12       | P-5  | Son Phuoc     | 24%                    | 250             | -60                      | 190             | 253             | -60                      | 193             | 258             | -61                      | 197             | 261             | -62                      | 199             | 267             | -64                      | 203             |
| Phu      | P-6  | Ea Cha Rang   | 30%                    | 192             | -57                      | 135             | 194             | -58                      | 136             | 197             | -59                      | 138             | 199             | -60                      | 139             | 202             | -60                      | 142             |
|          | P-7  | Suoi Bac      | 0%                     | 428             | 0                        | 428             | 432             | 0                        | 432             |                 | 0                        | 436             | 440             | 0                        | 440             | 443             |                          | 443             |
|          | P-8  | Son Thanh Don | 0%                     | 582             | 0                        | 582             | 587             | 0                        | 587             | 591             | 0                        | 591             | 597             | 0                        | 597             | 602             | 0                        | 602             |
| Ноа      | K-1  | Cam An Bac    | 21%                    | 472             | -98                      | 374             | 481             | -100                     | 381             | 491             | -102                     | 389             | 501             |                          | 397             | 511             |                          | 405             |
| art a    | K-2  | Cam Hiep Nam  | 0%                     | 470             | 0                        | 470             | 477             | 0                        | 477             | 487             | 0                        | 487             | 496             | 0                        | 496             | 504             |                          | 504             |
| Kha      | K-3  | Cam Hay Tay   | 0%                     | 440             | 0                        | 440             | 444             |                          | 444             | 451             | 0                        | 451             | 457             | 0                        | 457             | 463             | 0                        | 463             |
| E        | N-1  | Nhon Hai      | 0%                     | 1,148           | 0                        | 1,148           | 1,174           | 0                        | 1,174           | 1,200           | 0                        | 1,200           | 1,228           | 0                        | 1,228           | 1,256           | 0                        | 1,256           |
| Thuan    | N-2  | Cong Hai      | 0%                     | 568             | 0                        | 568             | 579             | 0                        | 579             | 590             | 0                        | 590             | 602             | 0                        | 602             | 616             | 0                        | 616             |
| T        |      | Bac Son       | 73%                    | 446             | -324                     | 122             | 454             | -330                     | 124             |                 | -337                     | 126             | 473             | -344                     | 129             | 482             | -350                     | 132             |
| √inh     | N-5  | Phuoc Hai     | 0%                     | 919             | 0                        | 919             | 937             | 0                        | 937             | 954             | 0                        | 954             | 973             | 0                        | 973             | 992             | 0                        | 992             |
| 4        | N-6  | Phuoc Dinh    | 0%                     | 672             | 0                        | 672             | 699             | 0                        | 699             | 730             | 0                        | 730             | 761             | 0                        | 761             | 792             |                          | 792             |
|          | B-1  | Muong Man     | 0%                     | 457             | 0                        | 457             | 464             |                          | 464             |                 | 0                        | 471             | 479             |                          | 479             | 486             |                          | 486             |
| an       |      | Gia Huynh     | 0%                     | 399             | 0                        | 399             | 404             |                          | 404             |                 | 0                        | 409             | 413             | 0                        | 413             | 418             |                          | 418             |
| Thuan    | B-3  | Nghi Duc      | 0%                     | 756             | 0                        | 756             | 764             |                          | 764             |                 | 0                        | 772             | 781             | 0                        | 781             | 790             |                          | 790             |
| L q      | B-4  | Tan Due       | 6%                     | 370             | -23                      |                 | 376             |                          | 352             | 381             | 24                       | 357             | 387             | 24                       | 363             | 392             |                          | 367             |
| Binh     | B-5  | Me Pu         | 0%                     | 941             | 0                        | 941             | 956             |                          | 956             |                 | 0                        | 970             | 984             | 0                        | 984             | 999             |                          | 999             |
| 1        | B-6  | Suong Nhon    | 0%                     | 608             | 0                        | 608             | 614             |                          | 614             |                 | 0                        | 623             | 631             | 0                        | 631             | 639             | 0                        | 639             |
|          | B-7  | Da Kai        | 0%                     | 813             | 0                        | 813             | 826             | 0                        | 826             | 839             | 0                        | 839             | 852             | 0                        | 852             | 866             | 0                        | 866             |

 Table 10.3.2
 The Result of Calculation for the Deducted Water Demand in 22 Communes (1)

| 0        |      |               | Percentage             |                 | 2012                     |                 |                 | 2013                     |                 |                 | 2014                     |                 |                 | 2015                     |                 |                 | 2016                     |                 |
|----------|------|---------------|------------------------|-----------------|--------------------------|-----------------|-----------------|--------------------------|-----------------|-----------------|--------------------------|-----------------|-----------------|--------------------------|-----------------|-----------------|--------------------------|-----------------|
| Province | Code | Commune       | of<br>deduction<br>(%) | Water<br>demand | Existing<br>water supply | Total<br>(m3/d) |
|          | P-1  | Xuan Phuoc    | 0%                     | 740             | 0                        | 740             | 750             | 0                        | 750             | 760             | 0                        | 760             | 770             | 0                        | 770             | 780             | 0                        | 780             |
|          | P-2  | An Dinh       | 0%                     | 464             | 0                        | 464             | 468             | 0                        | 468             | 473             | 0                        | 473             | 478             | 0                        | 478             | 483             | 0                        | 483             |
| en       | P-4  | An My         | 0%                     | 918             | 0                        | 918             | 927             | 0                        | 927             | 937             | 0                        | 937             | 947             | 0                        | 947             | 957             | 0                        | 957             |
| L a      | P-5  | Son Phuoe     | 24%                    | 270             | -64                      | 206             | 274             | -65                      | 209             | 279             | -66                      | 213             | 283             | -67                      | 216             | 288             | -69                      | 219             |
| Phu      | P-6  | Ea Cha Rang   | 30%                    | 204             | -61                      | 143             | 207             | -62                      | 145             | 209             | -62                      | 147             | 211             | -63                      | 148             | 214             | -64                      | 150             |
|          | P-7  | Suoi Bae      | 0%                     | 448             | 0                        | 448             | 452             | 0                        | 452             | 456             | 0                        | 456             | 461             | 0                        | 461             | 464             | 0                        | 464             |
|          | P-8  | Son Thanh Don | 0%                     | 607             | 0                        | 607             | 612             | 0                        | 612             | 619             | 0                        | 619             | 623             | 0                        | 623             | 629             | 0                        | 629             |
| Hoa      | K-1  | Cam An Bac    | 21%                    | 522             | -108                     | 414             | 532             | -110                     | 422             | 542             | -112                     | 430             | 553             | -114                     | 439             | 564             | -117                     | 447             |
| - fa     | K-2  | Cam Hiep Nam  | 0%                     | 514             | 0                        | 514             | 524             | 0                        | 524             | 534             | 0                        | 534             | 544             | 0                        | 544             | 554             | 0                        | 554             |
| Kh       | K-3  | Cam Hay Tay   | 0%                     | 471             | 0                        | 471             | 477             | 0                        | 477             | 483             | 0                        | 483             | 491             | 0                        | 491             | 497             | 0                        | 497             |
| g        | N-1  | Nhon Hai      | 0%                     | 1,284           | 0                        | 1,284           | 1,313           | 0                        | 1,313           | 1,343           | 0                        | 1,343           | 1,373           | 0                        | 1,373           | 1,404           | 0                        | 1,404           |
| Thuan    | N-2  | Cong Hai      | 0%                     | 627             | 0                        | 627             | 640             | 0                        | 640             | 653             | 0                        | 653             | 667             | 0                        | 667             | 679             | 0                        | 679             |
| E        | N-3  | Bac Son       | 73%                    | 491             | -357                     | 134             | 501             | -364                     | 137             | 511             | -371                     | 140             | 521             | -379                     | 142             | 531             | -386                     | 145             |
| √inh     | N-5  | Phuoe Hai     | 0%                     | 1,010           | 0                        | 1,010           | 1,029           | 0                        | 1,029           | 1,049           | 0                        | 1,049           | 1,070           | 0                        | 1,070           | 1,090           | 0                        | 1,090           |
| Z        | N-6  | Phuoe Dinh    | 0%                     | 811             | 0                        | 811             | 830             | 0                        | 830             | 849             | 0                        | 849             | 869             | 0                        | 869             | 888             | 0                        | 888             |
|          | B-1  | Muong Man     | 0%                     | 492             | 0                        | 492             | 500             | 0                        | 500             | 508             | 0                        | 508             | 516             | 0                        | 516             | 523             | 0                        | 523             |
| E        | B-2  | Gia Huynh     | 0%                     | 423             | 0                        | 423             | 428             | 0                        | 428             | 432             | 0                        | 432             | 437             | 0                        | 437             | 442             | 0                        | 442             |
| Thuan    | B-3  | Nghi Duc      | 0%                     | 798             |                          | 798             | 807             | 0                        | 807             | 816             | 0                        | 816             | 823             | 0                        | 823             | 833             | 0                        | 833             |
| E        | B-4  | Tan Due       | 6%                     | 398             | -25                      | 373             | 403             | -25                      | 378             | 410             | -26                      | 384             | 414             | -26                      | 388             | 420             | -26                      | 394             |
| Binh     | B-5  | Me Pu         | 0%                     | 1,013           | 0                        | 1,013           | 1,029           | 0                        | 1,029           | 1,044           | 0                        | 1,044           | 1,060           | 0                        | 1,060           | 1,076           | 0                        | 1,076           |
| <u>ш</u> | B-6  | Suong Nhon    | 0%                     | 648             | 0                        | 648             | 657             | 0                        | 657             | 664             | 0                        | 664             | 673             | 0                        | 673             | 682             | 0                        | 682             |
|          | B-7  | Da Kai        | 0%                     | 879             | 0                        | 879             | 892             | 0                        | 892             | 907             | 0                        | 907             | 922             | 0                        | 922             | 937             | 0                        | 937             |

 Table 10.3.3
 The Result of Calculation for the Deducted Water Demand in 22 Communes (2)

|           |      |               | D          |        | 2017         |        |        | 2018         |        |        | 2019         |        |        | 2020         |        |
|-----------|------|---------------|------------|--------|--------------|--------|--------|--------------|--------|--------|--------------|--------|--------|--------------|--------|
| e e       |      |               | Percentage |        | 2017         |        |        | 2018         |        |        | 2019         |        |        | 2020         |        |
| Province  | Code | Commune       | of         | Water  | Existing     | Total  |
| Pro       |      |               | deduction  | demand | water supply | (m3/d) |
|           |      |               | (%)        |        |              |        |        | 11.2         |        |        | 11.5         |        |        |              |        |
|           | P-1  | Xuan Phuoc    | 0%         | 791    | 0            | 791    | 801    | 0            | 801    | 812    | 0            | 812    | 823    | 0            | 823    |
|           | P-2  | An Dinh       |            | 488    | 0            | 488    | 492    | 0            | 492    | 498    | 0            | 498    | 502    | 0            | 502    |
| Cen       | P-4  | An My         |            | 967    | 0            | 967    | 978    | 0            | 978    | 988    |              | 988    | 998    |              | 998    |
| η         | P-5  | Son Phuoe     | 24%        | 292    | -69          | 223    | 298    | -71          | 227    | 301    | -72          | 229    | 307    | -73          | 234    |
| Phu       | P-6  | Ea Cha Rang   | 30%        | 218    | -65          | 153    | 220    | -66          | 154    | 222    | -66          | 156    | 224    | -67          | 157    |
|           | P-7  | Suoi Bac      |            | 470    | 0            | 470    | 473    | 0            | 473    | 479    | 0            | 479    | 483    | 0            | 483    |
|           | P-8  | Son Thanh Don | 0%         | 633    | 0            | 633    | 639    | 0            | 639    | 646    | 0            | 646    | 651    | 0            | 651    |
| Ioa       | K-1  | Cam An Bac    | 21%        | 577    | -119         | 458    | 588    | -122         | 466    | 600    | -124         | 476    | 612    | -127         | 485    |
| Khanh Hoa | K-2  | Cam Hiep Nam  | 0%         | 567    | 0            | 567    | 578    | 0            | 578    | 589    | 0            | 589    | 600    | 0            | 600    |
| Khe       | K-3  | Cam Hay Tay   | 0%         | 504    | 0            | 504    | 511    | 0            | 511    | 519    | 0            | 519    | 526    | 0            | 526    |
| a         | N-1  | Nhon Hai      | 0%         | 1,438  | 0            | 1,438  | 1,470  | 0            | 1,470  | 1,503  | 0            | 1,503  | 1,538  | 0            | 1,538  |
| Thuan     | N-2  | Cong Hai      | 0%         | 693    | 0            | 693    | 707    | 0            | 707    | 722    | 0            | 722    | 737    | 0            | 737    |
| E         | N-3  | Bac Son       | 73%        | 541    | -393         | 148    | 551    | -401         | 150    | 562    | -409         | 153    | 573    | -417         | 156    |
| Ninh      | N-5  | Phuoc Hai     | 0%         | 1,111  | 0            | 1,111  | 1,132  | 0            | 1,132  | 1,153  | 0            | 1,153  | 1,176  | 0            | 1,176  |
| Z         | N-6  | Phuoc Dinh    | 0%         | 909    | 0            | 909    | 929    | 0            | 929    | 950    | 0            | 950    | 973    | 0            | 973    |
|           | B-1  | Muong Man     | 0%         | 531    | 0            | 531    | 540    | 0            | 540    | 548    | 0            | 548    | 557    | 0            | 557    |
| -         | B-2  | Gia Huynh     | 0%         | 447    | 0            | 447    | 452    | 0            | 452    | 457    | 0            | 457    | 462    | 0            | 462    |
| Thuan     | B-3  | Nghi Duc      | 0%         | 842    | 0            | 842    | 852    | 0            | 852    | 860    | 0            | 860    | 870    | 0            | 870    |
| Ē         | B-4  | Tan Duc       | 6%         | 427    | -27          | 400    | 432    | -27          | 405    | 439    | -28          | 411    | 444    | -28          | 416    |
| Binh      | B-5  | Me Pu         | 0%         | 1,092  | 0            | 1,092  | 1,109  | 0            | 1,109  | 1,124  | 0            | 1,124  | 1,142  | 0            | 1,142  |
| B         | B-6  | Suong Nhon    | 0%         | 691    | 0            | 691    | 700    | 0            | 700    | 709    | 0            | 709    | 719    | 0            | 719    |
|           | B-7  | Da Kai        | 0%         | 951    | 0            | 951    | 967    | 0            | 967    | 982    | 0            | 982    | 999    | 0            | 999    |

 Table 10.3.4
 The Result of Calculation for the Deducted Water Demand in 22 Communes (3)

# 10.4 Design Capacity

The results of calculation for design capacity in the 22 communes are shown from next page.

|           |              |               |                                   | 2006                              |                                        |                                   | 2007                              |                                        |                                   | 2012                              |                                        |
|-----------|--------------|---------------|-----------------------------------|-----------------------------------|----------------------------------------|-----------------------------------|-----------------------------------|----------------------------------------|-----------------------------------|-----------------------------------|----------------------------------------|
| Province  | Code         | Commune       | Daily Average<br>Supply<br>(m3/d) | Daily Maximum<br>Supply<br>(m3/d) | Hourly<br>Maximum<br>Supply<br>(m3/hr) | Daily Average<br>Supply<br>(m3/d) | Daily Maximum<br>Supply<br>(m3/d) | Hourly<br>Maximum<br>Supply<br>(m3/hr) | Daily Average<br>Supply<br>(m3/d) | Daily Maximum<br>Supply<br>(m3/d) | Hourly<br>Maximum<br>Supply<br>(m3/hr) |
|           | P-1          | Xuan Phuoc    | 683                               | 820                               | 68.3                                   | 692                               | 830                               | 69.2                                   | 740                               | 888                               | 74.0                                   |
|           | P-2          | An Dinh       | 438                               | 526                               | 43.8                                   | 441                               | 529                               | 44.1                                   | 464                               | 557                               | 46.4                                   |
| ц         | P-4          | An My         | 861                               | 1033                              | 86.1                                   | 870                               | 1044                              | 87.0                                   | 918                               | 1102                              | 91.8                                   |
| Yen       | P-5          | Son Phuoc     | 187                               | 224                               | 18.7                                   | 190                               | 228                               | 19.0                                   | 206                               | 247                               | 20.6                                   |
| Phu       | P-6          | Ea Cha Rang   | 133                               | 160                               | 13.3                                   | 135                               | 162                               | 13.5                                   | 143                               | 172                               | 14.3                                   |
| Р         | P <b>-</b> 7 | Suoi Bac      | 424                               | 509                               | 42.4                                   | 428                               | 514                               | 42.8                                   | 448                               | 538                               | 44.8                                   |
|           | P-8          | Son Thanh Don | 577                               | 692                               | 57.7                                   | 582                               | 698                               | 58.2                                   | 607                               | 728                               | 60.7                                   |
|           |              | Sub-total     | 3,303                             | 3,964                             |                                        | 3,338                             | 4,005                             |                                        | 3,526                             | 4,232                             |                                        |
| loa       | K-1          | Cam An Bac    | 367                               | 440                               | 36.7                                   | 374                               | 449                               | 37.4                                   | 414                               | 497                               | 41.4                                   |
| Khanh Hoa | K-2          | Cam Hiep Nam  | 461                               | 553                               | 46.1                                   | 470                               | 564                               | 47.0                                   | 514                               | 617                               | 51.4                                   |
| nan       | K-3          | Cam Hay Tay   | 800                               | 960                               | 80.0                                   | 440                               | 528                               | 44.0                                   | 471                               | 565                               | 47.1                                   |
| KI        |              | Sub-total     | 1,628                             | 1,953                             |                                        | 1,284                             | 1,541                             |                                        | 1,399                             | 1,679                             |                                        |
| _         | N-1          | Nhon Hai      | 1,122                             | 1346                              | 112.2                                  | 1,148                             | 1378                              | 114.8                                  | 1,284                             | 1541                              | 128.4                                  |
| Thuan     | N-2          | Cong Hai      | 557                               | 668                               | 55.7                                   | 568                               |                                   | 56.8                                   | 627                               | 752                               | 62.7                                   |
| Th        | N-3          | Bac Son       | 120                               | 144                               | 12.0                                   | 122                               | 146                               | 12.2                                   | 134                               | 161                               | 13.4                                   |
|           | N-5          | Phuoc Hai     | 902                               | 1082                              | 90.2                                   | 919                               | 1103                              | 91.9                                   | 1,010                             | 1212                              | 101.0                                  |
| Ninh      | N-6          | Phuoc Dinh    | 644                               | 773                               | 64.4                                   | 672                               | 806                               | 67.2                                   | 811                               | 973                               | 81.1                                   |
|           |              | Sub-total     | 3,345                             | 4,013                             |                                        | 3,429                             | 4,115                             |                                        | 3,866                             | 4,639                             |                                        |
|           |              | Muong Man     | 451                               | 541                               | 45.1                                   | 457                               | 548                               | 45.7                                   | 492                               | 590                               | 49.2                                   |
|           | B-2          | Gia Huynh     | 396                               | 475                               | 39.6                                   | 399                               | 479                               | 39.9                                   | 423                               | 508                               | 42.3                                   |
| uan       | B-3          | Nghi Duc      | 748                               | 898                               | 74.8                                   | 756                               | 907                               | 75.6                                   | 798                               | 958                               | 79.8                                   |
| Thuan     | B-4          | Tan Duc       | 343                               | 412                               | 34.3                                   | 347                               | 416                               | 34.7                                   | 373                               | 448                               | 37.3                                   |
| hh        | B-5          | Me Pu         | 928                               | 1114                              | 92.8                                   | 941                               | 1129                              | 94.1                                   | 1,013                             | 1216                              | 101.3                                  |
| Binh      | B-6          | Suong Nhon    | 600                               | 720                               | 60.0                                   | 608                               | 730                               | 60.8                                   | 648                               | 778                               | 64.8                                   |
|           | B-7          | Da Kai        | 800                               | 960                               | 80.0                                   | 813                               | 976                               | 81.3                                   | 879                               | 1055                              | 87.9                                   |
|           |              | Sub-total     | 4,266                             | 5,120                             |                                        | 4,321                             | 5,185                             |                                        | 4,626                             | 5,553                             |                                        |
|           |              | Total         | 12,542                            | 15,050                            |                                        | 12,372                            | 14,846                            |                                        | 13,417                            | 16,103                            |                                        |

 Table 10.4.1
 The Results of Calculation for Design Capacity in 22 Communes from 2006 to 2020 (1)

|            |              |               |                                   | 2017                              |                                        |                                   | 2020                              |                                        |
|------------|--------------|---------------|-----------------------------------|-----------------------------------|----------------------------------------|-----------------------------------|-----------------------------------|----------------------------------------|
| Province   | Code         | Commune       | Daily Average<br>Supply<br>(m3/d) | Daily Maximum<br>Supply<br>(m3/d) | Hourly<br>Maximum<br>Supply<br>(m3/hr) | Daily Average<br>Supply<br>(m3/d) | Daily Maximum<br>Supply<br>(m3/d) | Hourly<br>Maximum<br>Supply<br>(m3/hr) |
|            | P-1          | Xuan Phuoc    | 791                               | 949                               | 79.1                                   | 823                               | 988                               | 82.3                                   |
|            | P-2          | An Dinh       | 488                               | 586                               | 48.8                                   | 502                               | 602                               | 50.2                                   |
| a l        | P-4          | An My         | 967                               | 1160                              | 96.7                                   | 998                               | 1198                              | 99.8                                   |
| Yen        | P-5          | Son Phuoc     | 223                               | 268                               | 22.3                                   | 234                               | 281                               | 23.4                                   |
| Phu '      | P-6          | Ea Cha Rang   | 153                               | 184                               | 15.3                                   | 157                               | 188                               | 15.7                                   |
|            | P-7          | Suoi Bac      | 470                               | 564                               | 47.0                                   | 483                               | 580                               | 48.3                                   |
|            | P-8          | Son Thanh Don | 633                               | 760                               | 63.3                                   | 651                               | 781                               | 65.1                                   |
|            |              | Sub-total     | 3,725                             | 4,471                             |                                        | 3,848                             | 4,618                             |                                        |
| loa        | K-1          | Cam An Bac    | 458                               | 550                               | 45.8                                   | 485                               | 582                               | 48.5                                   |
| ЧH         | K-2          | Cam Hiep Nam  | 567                               | 680                               | 56.7                                   | 600                               | 720                               | 60.0                                   |
| Khanh Hoa  | K-3          | Cam Hay Tay   | 504                               | 605                               | 50.4                                   | 526                               | 631                               | 52.6                                   |
| X          |              | Sub-total     | 1,529                             | 1,835                             |                                        | 1,611                             | 1,933                             |                                        |
|            | N-1          | Nhon Hai      | 1,438                             | 1726                              | 143.8                                  | 1,538                             | 1846                              | 153.8                                  |
| Ninh Thuan | N-2          | Cong Hai      | 693                               | 832                               | 69.3                                   | 737                               | 884                               | 73.7                                   |
| Th         | N-3          | Bac Son       | 148                               | 178                               | 14.8                                   | 156                               | 187                               | 15.6                                   |
| hh         | N-5          | Phuoc Hai     | 1,111                             | 1333                              | 111.1                                  | 1,176                             | 1411                              | 117.6                                  |
| N.         | N-6          | Phuoc Dinh    | 909                               | 1091                              | 90.9                                   | 973                               | 1168                              | 97.3                                   |
|            |              | Sub-total     | 4,299                             | 5,160                             |                                        | 4,580                             | 5,496                             |                                        |
|            | B-1          | Muong Man     | 531                               | 637                               | 53.1                                   | 557                               | 668                               | 55.7                                   |
| _          | B-2          | Gia Huynh     | 447                               | 536                               | 44.7                                   | 462                               | 554                               | 46.2                                   |
| uan        | B-3          | Nghi Duc      | 842                               | 1010                              | 84.2                                   | 870                               | 1044                              | 87.0                                   |
| Th         | B <b>-</b> 4 | Tan Duc       | 400                               | 480                               | 40.0                                   | 416                               | 499                               | 41.6                                   |
| Binh Thuan | B-5          | Me Pu         | 1,092                             | 1310                              | 109.2                                  | 1,142                             | 1370                              | 114.2                                  |
| Bi         | B-6          | Suong Nhon    | 691                               | 829                               | 69.1                                   | 719                               | 863                               | 71.9                                   |
|            | B-7          | Da Kai        | 951                               | 1141                              | 95.1                                   | 999                               | 1199                              | 99.9                                   |
|            |              | Sub-total     | 4,954                             | 5,943                             |                                        | 5,165                             | 6,197                             |                                        |
|            |              | Total         | 14,507                            | 17,409                            |                                        | 15,204                            | 18,244                            |                                        |

Table 10.4.2The Results of Calculation for Design Capacity in 22 Communes from 2006 to 2020 (2)

# CHAPTER 11

# DESIGN WATER SUPPLY SYSTEM

# CHAPTER 11 DESIGN WATER SUPPLY SYSTEM

# 11.1 Basic Conditions for Water Supply System

The basic conditions for water supply system are shown in the following page.

| Desig  | gn conditions for | intake facility an | d transmission | pipe                                               |           |
|--------|-------------------|--------------------|----------------|----------------------------------------------------|-----------|
| ission | Design            | Intake GL—         | Necessity      | Necessity of                                       | Necessity |
| (km)   | interval (km)     | Service area       | of high lift   | special                                            | of        |
|        |                   | GL=vertical        | pump           | structure                                          | treatment |
|        |                   | drop(m)            |                |                                                    |           |
|        | 20                | 10                 |                |                                                    | x         |
|        | 8                 | 15                 |                |                                                    | x         |
|        | 0                 | 0                  |                |                                                    |           |
|        | 6                 | -120               | x              | Road<br>crossing<br>(No.25)                        | ×         |
|        | 0                 | 0                  |                |                                                    |           |
|        | 0                 | 0                  |                |                                                    | x         |
| i      | 24                | 0                  |                |                                                    | x         |
| =5     | 8                 | -10                |                | Road<br>crossing<br>(No.1)                         | x         |
|        | 23                | 0                  |                | Road<br>crossing<br>(No.1) Rail<br>way<br>crossing | x         |
|        | 12                | 0                  |                | Road<br>crossing<br>(No.1) Rail<br>way<br>crossing | x         |
|        | 8                 | 10                 |                |                                                    | х         |
| i      | 24                | 20                 |                |                                                    | x         |
|        | 6                 | -20                |                |                                                    | x         |

# Table 11.1.1 Basic Design Conditions for Water Supply System

Structure of

intake

Transmission

interval (km)

11-2

Facility

No.

System

Commune

Population

in 2020

Design flow

(m3/d)

Intake flow

(m3/d)

|        |        |                          |        |                      |                       |                                     |            |    |         | r r |                                                    |   |
|--------|--------|--------------------------|--------|----------------------|-----------------------|-------------------------------------|------------|----|---------|-----|----------------------------------------------------|---|
|        |        |                          |        |                      |                       |                                     |            |    | drop(m) |     |                                                    |   |
| Single | FPS-1  | P-1                      | 10,927 | 980                  | 1,080                 | River intake                        | 13         | 20 | 10      |     |                                                    | х |
| Single | FPS-2  | P-2                      | 6,859  | 600                  | 660                   | Pipe<br>connection of<br>dam outlet | 5          | 8  | 15      |     |                                                    | x |
| Single | FPS-3  | P-4                      | 13,256 | 1190                 | 1,190                 | Well                                | 0          | 0  | 0       |     |                                                    |   |
| Group  | FPG-4  | P-5<br>P-6<br>P-7        | 12,136 | 1080                 | 1,190                 | River intake                        | 4          | 6  | -120    | x   | Road<br>crossing<br>(No.25)                        | x |
| Single | FPS-5  | P-8                      | 9,292  | 770                  | 770                   | Well                                | 0          | 0  | 0       |     |                                                    |   |
| Single | FKS-6  | K-1                      | 6,462  | 560                  | 560                   | Well                                | 0          | 0  | 0       |     |                                                    | х |
| Single | FKW-7  | K-2                      | 7,962  | 710                  | 780                   | Reservoir                           | 16         | 24 | 0       |     |                                                    | х |
| Single | FKS-8  | K-3                      | 12,840 | 403+747=1150<br>1150 | 403+822=1,225<br>1230 | Irrigation<br>channel               | 1+4=5<br>5 | 8  | -10     |     | Road<br>crossing<br>(No.1)                         | x |
| Group  | FNW-9  | N-1<br>N-2<br>N-3        | 34,850 | 3,120                | 3,430                 | Surface water                       | 15         | 23 | 0       |     | Road<br>crossing<br>(No.1) Rail<br>way<br>crossing | x |
| Wide   | FNG-10 | N-5<br>N-6               | 34,649 | 3,000                | 3,300                 | Surface water                       | 8          | 12 | 0       |     | Road<br>crossing<br>(No.1) Rail<br>way<br>crossing | x |
| Single | FBS-11 | B-1                      | 7,378  | 660                  | 730                   | Surface water                       | 5          | 8  | 10      |     | 6                                                  | х |
| Wide   | FBW-12 | B-2<br>B-4               | 12,207 | 1,080                | 1,190                 | Surface water                       | 16         | 24 | 20      |     |                                                    | x |
| Group  | FBG-13 | B-3<br>B-5<br>B-6<br>B-7 | 52,241 | 4,430                | 4,880                 | Surface water                       | 4          | 6  | -20     |     |                                                    | x |

# CHAPTER 12

# ORGANIZATIONAL PROFILES OF P-CERWASS

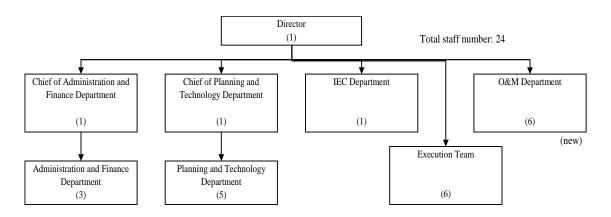
# CHAPTER 12 ORGANIZATIONAL PROFILES OF P-CERWASS

# 12.1 Introduction

P-CERWASS is an implementing authority of rural water supply and sanitation at provincial level, which belongs to DARD. Major roles of P-CERWASS are water supply project planning, facility designing, construction supervision, establishing O&M organization, staff training, IEC activities, etc. Not a small number of P-CERWASS carry out O&M of facilities, depending on policy of province.

Four P-CERWASS of the study areas are assessed to profile the management organization and activities. The information is based on field survey in July 2007.

#### 12.2 Profiles of P-CERWASS


#### 12.2.1 Phu Yen P-CERWASS

# (1) Roles of P-CERWASS

P-CERWASS Phu Yen is responsible for project planning, facility designing, construction supervision, establishing O&M organization, staff training, IEC activities. To date the P-CERWASS don't carry out O&M of facilities. However, in the course of the Study, O&M structure was proposed by the Study Team, which is to be managed directly under the P-CERWASS. And P-CERWASS is mandated by DARD and PPC as an O&M entity for newly constructed water supply facility. In this regard, O&M department was newly established and embarked on O&M at Xuan Tho Commune.

# (2) Organization Chart

Phu Yen P-CERWASS was established in 1992. As of October 2008, 24 staff is engaged in Phu Yen P-CERWASS. In general, every staff has high loyalty to the organization.



Source: Phu Yen P-CERWASS, July 2007 and October 2008, modified by Study Team



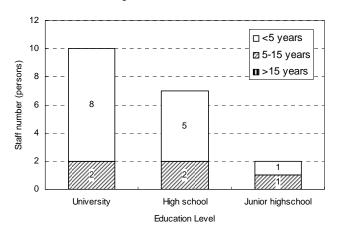

| Department                 | Duty                                                           |
|----------------------------|----------------------------------------------------------------|
| Administration and Finance | Personnel affairs                                              |
|                            | General managerial affairs                                     |
|                            | Coordination with the union about working conditions, etc.     |
| Planning and Technology    | Coordination with the administration and finance department to |
|                            | prepare and implement the government's resolution              |
|                            | Preparation of annual plan and activity report                 |
| Communication              | IEC activity                                                   |
| Execution team             | Construction work under P-CERWASS execution plan               |
|                            | Management and control of workers in drilling wells            |
|                            | Selection of drilling points and aquifer, etc.                 |
|                            | Water quality check                                            |
|                            | Building biogas cesspool, hygienic latrines                    |
| O&M                        | O&M of water supply facility (As a trial case, so far they are |
|                            | engaged in Xuan Tho Commune)                                   |

Table 12.2.1Main Duties by Section

Source: Information from Phu Yen P-CERWASS, October 2008

#### (3) Education Level and Working Experience

There are 24 staff engaged, out of which 10 are university graduates and 7 are high school graduates. Most staff has working experience under 5 years, which implies insufficient technological level. Since it seems difficult to provide sufficient training to staff among the current organization, external training resources should be utilized, such as urban water corporation, etc. In this regard, capacity development plan is described in the main report.



(Note) There is a contradiction in staff number between the organization chart and this chart, although both are provided by P-CERWASS. Source: Information from Phu Yen P-CERWASS, July 2007

Figure 12.2.2 Number of Staff by Education Level and Work Experience

#### (4) Staff Training

Staff training is mainly performed through on-the-job training. No particular training course is provided by P-CERWASS to staff. Office staffs occasionally attend the training course organized by C-CERWASS. Training for executive officers are seldom provided.

P-CERWASS realizes necessity of training in the fields of hydraulic engineering, geological

engineering, water supply planning, technical workmanship and O&M skill. In this connection, technical seminar was organized in 2008 with 61 participants by inviting lectures from the urban water cooperation and the construction technical college No.3.

# (5) Financial Status

P-CERWASS is financially dependent on central and/or provincial budget. According to information from P-CERWASS, investment cost is borne by the central government and budget for annual activity is provided by the provincial government. The budget for Phu Yen P-CERWASS is shown in Table below:

 Table 12.2.2
 Budgetaty Trend for Phu Yen P-CERWASS

(Unit: million VND)

|      |              | Budget by fund source |              |                     |                |                             |  |  |
|------|--------------|-----------------------|--------------|---------------------|----------------|-----------------------------|--|--|
| Year | Total Amount | Central Gov't         | Donor Agency | Provincial<br>Gov't | District Gov't | From business (water sales) |  |  |
| 2005 | 198          | -                     | -            | 198                 | -              | -                           |  |  |
| 2006 | 198          | -                     | -            | 198                 | -              | -                           |  |  |
| 2007 | 198          | =                     | -            | 198                 | -              | -                           |  |  |

Source: Information from Phu Yen P-CERWASS, July 2007

# (6) Physical Assets

P-CERWASS owns buildings, vehicles and machineries as shown in table.

| Table 12.2.3 | Major Accete | owned by | <b>P-CERWASS</b> |
|--------------|--------------|----------|------------------|
| Table 12.2.3 | Major Assets | owneu by | I-CENWASS        |

| Item                       | Quantity                     |
|----------------------------|------------------------------|
| 1. Administration Building | 1 Building                   |
| 2. Vehicles and Machinery  | 1 Pickup                     |
|                            | 1 Drilling rig               |
|                            | 2 Motorbikes (Old condition) |

Source: Information from Phu Yen P-CERWASS, July 2007

# (7) IEC activity

IEC is performed by the communication department of P-CERWASS.

# (8) Document and Information Management

Document is managed in conventional way; stored in cabinet only. Information management and sharing seem to be on insufficient level.

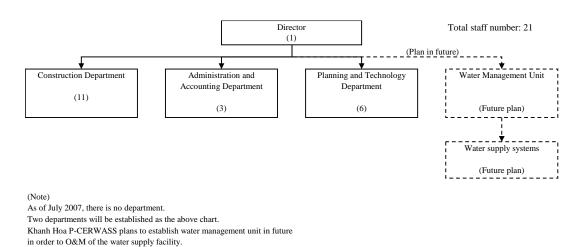
# (9) Prospect of organizational capacity

Although Phu Yen P-CERWASS hasn't experienced in O&M of water supply facilities, it has provided technical assistance to establish O&M organization in local level and training for operators. Recent effort by the DARD and P-CERWASS should be appreciated that they recognizes necessity of staff training on O&M in response to new management policy of P-CERWASS, under which new

water supply facilities are to be managed under P-CERWASS, and that technical training begun by using external training resources, such as the urban water corporation and construction technical college No.3. Also Phu Yen P-CERWASS is receiving technical assistance from Binh Thuan P-CERWASS which is successfully managed and capable to provide sufficient technical training.

Since there is a strong leadership of PPC Phu Yen, coordination among related organizations seems done well. In this sense, the P-CERWASS has good potential to learn sufficient knowledge and skill through external training resources for a few years ahead when the proposed project in the Study would be completed.

#### 12.2.2 Khanh Hoa P-CERWASS

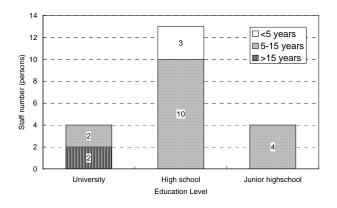

#### (1) Roles of P-CERWASS

P-CERWASS Khanh Hoa has the same organizational background and roles as the Phu Yen P-CERWASS. To date the P-CERWASS don't carry out O&M of facilities. However, as proposed by the Study Team, the P-CERWASS is also mandated by DARD and PPC as an O&M entity for newly constructed water supply facility. In this regard, P-CERWASS has a plan to establish water management unit under P-CERWASS for O&M of the new water supply facilities.

#### (2) Organization Chart

Khanh Hoa P-CERWASS was established in 1996. As of July 2007, 21 staff is engaged in the P-CERWASS. To date there is no department so that each staff work under instruction by director of P-CERWASS. There will be establishment of two departments in near future; administration and accounting department and planning and technology department.

Currently P-CERWASS has no water supply activity but plans to own and operate piped water supply systems in future when new water supply system will be build in any commune.




Source: Khanh Hoa P-CERWASS, July 2007

#### Figure 12.2.3 Organization Chart of Khanh Hoa P-CERWASS

#### (3) Education Level and Working Experience

Number of staff having more than 15 years experience is only two while most staff have experience of 5-15 years. Number of university graduate employees is four which seems relatively small considering broad tasks, such as planning and management.



Source: Information from Khanh Hoa P-CERWASS, July 2007 Figure 12.2.4 Number of Staff by Education Level and Work Experience

# (4) Staff Training

Staff training is mainly performed through on-the-job training. No particular training course is provided by P-CERWASS to staff. Office staffs occasionally attend the training course organized by C-CERWASS.

P-CERWASS realizes necessity of training in every field of engineering, financial and management.

# (5) Financial Status

P-CERWASS is financially dependent mainly on central and/or provincial budget. According to information from P-CERWASS, investment cost is borne by the central government and budget for annual activity is also provided by the central government. In the past the P-CERWASS received some budget support from donor agencies. The budget for the P-CERWASS is shown in Table below:

| Table 12.2.4 | <b>Budgetaty Trend for Khanh Hoa P-CERWASS</b> |
|--------------|------------------------------------------------|
|--------------|------------------------------------------------|

(Unit: million VND)

|      |              | Budget by fund source |              |                     |                |                                |  |
|------|--------------|-----------------------|--------------|---------------------|----------------|--------------------------------|--|
| Year | Total Amount | Central Gov't         | Donor Agency | Provincial<br>Gov't | District Gov't | From business<br>(water sales) |  |
| 2005 | 250          | 200                   | 50           | -                   | -              | -                              |  |
| 2006 | 217          | 200                   | 17           | -                   | -              | -                              |  |
| 2007 | 200          | 200                   | -            | -                   | -              | -                              |  |

Source: Information from Khanh Hoa P-CERWASS, July 2007

#### (6) Physical Assets

Physical assets owned by P-CERWASS are summarized in Table.

| Item                       | Quantity                           |
|----------------------------|------------------------------------|
| 1. Administration Building | 1 Building                         |
| 2. Vehicles and Machinery  | 1 Pickup truck                     |
|                            | 1 Sedan                            |
|                            | 3 Motorbikes                       |
|                            | 2 Drilling rigs (old Chinese rigs) |
| 3. Water quality test kit  | No                                 |

 Table 12.2.5
 Major Assets owned by P-CERWASS

Source: Information from Khanh Hoa P-CERWASS, July 2007

#### (7) IEC activity

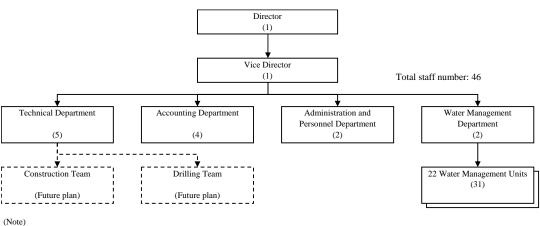
IEC for sanitation improvement is one of responsibility of P-CERWASS. P-CERWASS receives subsidy for IEC from PPC. No particular department is in charge of IEC. P-CEWASS recently proposed to PPC that loan conditions of government support for building dug well and toilet will be extended from currently 3 years to 10 years in order to attract more people to apply.

#### (8) Prospect of organizational capacity

As discussed in the above sub-section of Phu Yen P-CERWASS, Khanh Hoa P-CERWASS hasn't experienced in O&M of water supply facilities, it has provided technical assistance to establish O&M organization in local level and training for operators. Khan Hoa P-CERWASS is to receive technical assistance from Ninh Thuan P-CERWASS which is in the adjacent province and experienced in O&M for years.

Since involvement of the provincial organization, namely DARD, seems still low, progress of developing O&M capacity is behind that of Phu Yen. However, Khanh Hoa P-CERWASS keeps discussion with DARD to reform the organization in order to perform O&M of new facilities. Hence, progress of reforming organizational structure and necessary capacity development should be monitored in the project implementation phase.

# 12.2.3 Ninh Thuan P-CERWASS


# (1) Roles of P-CERWASS

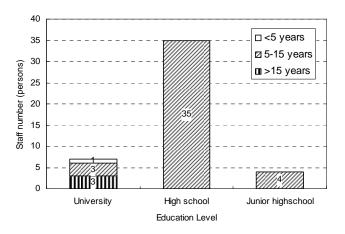
Unlike the aforementioned P-CERWASS, Ninh Thuan P-CERWASS provides O&M of water supply facilities, in addition to the project planning, designing and construction supervision.

Although Ninh Thuan P-CERWASS is the mandate authority of RWSS in the province, there exist 20 water supply systems managed by DPC or Commune, since they were constructed before establishment of the P-CERWASS. These facilities are discussed to be merged into management of P-CERWASS. However, these systems are currently managed as a part of public service, including garbage collection, public market, etc. Therefore, it is said difficult to transfer soon.

#### (2) Organization Chart

Ninh Thuan P-CERWASS was established in 1999. As of July 2007, 46 staff are engaged in the P-CERWASS.




P-CERWASS is planning to establish construction and drilling team under technical department. As of July 2007, it has not been realized yet.

(Source) Ninh Thuan P-CERWASS, July 2007

#### Figure 12.2.5 Organization Chart of Ninh Thuan P-CERWASS

#### (3) Education Level and Working Experience

Most staff, 45 out of 46 staff, has more than 5-year experience. On the other hand, there was only one employment of new graduates for this five years. According to director of P-CERWASS, water supply engineer is most needed to recruit since there is no water supply engineer in P-CERWASS and civil engineers substitute so far.



Source: Information from Ninh Thuan P-CERWASS, July 2007

#### Figure 12.2.6 Number of Staff by Education Level and Work Experience

#### (4) Staff Training

Staff training is mainly performed through on-the-job training. No particular training course is

provided by P-CERWASS to staff nor operators. Office staffs occasionally attend the training course organized by C-CERWASS.

# (5) Financial Status

Since Ninh Thuan P-CERWASS has revenue from water sales, it is financially independent from central and/or provincial budget as shown in the table below. But investment costs are to be borne by central and provincial governments. In year 2007, they received donor fund as a budget for NTP II. Financial status is described in the Main report.

# Table 12.2.6 Budgetaty Trend for Ninh Thuan P-CERWASS

(Unit: million VND)

|      |              | Budget by fund source |              |                     |                |                                |  |  |
|------|--------------|-----------------------|--------------|---------------------|----------------|--------------------------------|--|--|
| Year | Total Amount | Central Gov't         | Donor Agency | Provincial<br>Gov't | District Gov't | From business<br>(water sales) |  |  |
| 2005 | 460          | -                     | -            | -                   | -              | 460                            |  |  |
| 2006 | 610          | -                     | -            | -                   | -              | 610                            |  |  |
| 2007 | 1,134        | -                     | -            | -                   | -              | 1,134                          |  |  |

Source: Information from Ninh Thuan P-CERWASS, July 2007

# (6) Physical Assets

Physical assets owned by P-CERWASS are summarized in Table.

| Table 12.2.7 | Major Assets owned by P-CERWASS  |
|--------------|----------------------------------|
|              | Major Assets owned by I CERWINDD |

| Item                       | Quantity                           |
|----------------------------|------------------------------------|
| 1. Administration Building | 1 Building                         |
| 2. Vehicles and Machinery  | 2 Pickup truck (one out of order)  |
|                            | 1 Drilling rig (old Chinese rig)   |
| 3. Water quality test kit  | 1 unit (to measure 5-6 parameters) |

Source: Information from Ninh Thuan P-CERWASS, July 2007

# (7) Water Tariff

Water tariff is set by user category. Tariff is proposed by P-CERWASS and approved by PPC. Same tariff schedule is applied to all 22 systems managed under P-CERWASS.

| Table 12.2.8 | Water Tariff (applicable from January 2007) |
|--------------|---------------------------------------------|
|--------------|---------------------------------------------|

|                                      | - · · · · · · · · · · · · · · · · · · ·  | <u>.</u>                 |
|--------------------------------------|------------------------------------------|--------------------------|
| Water source                         | User category                            | Tariff                   |
| 1. Pond, dam, channels               | Delta rural area                         | 3,000 VND/m <sup>3</sup> |
|                                      | Mountainous rural area<br>Poor household | 2,500 VND/m <sup>3</sup> |
| 2. Underground water, gravity system | Delta rural area                         | 2,500 VND/m <sup>3</sup> |
|                                      | Mountainous rural area<br>Poor household | 2,000 VND/m <sup>3</sup> |

Source: Quyet Dinh, 29/2007/QD-UBND, Ninh Thuan PPC

#### (8) Non Revenue Water

According verbal information from P-CERWASS, there is no case of non-payment compared to total billed water. No information is available for leakage ratio.

# (9) Water Quality Control

Water quality of every water supply facility is tested. 9 out of 22 parameters are tested in accordance with Decision 09/2005/QD-BYT. Water quality test is carried out by the science and technology application & telecommunication center, department of science and technology of Ninh Thuan Province.

# (10) IEC activity

IEC for sanitation improvement is one of responsibility of P-CERWASS. To date no particular department is in charge of IEC. Instead, all departments are engaged in IEC.

Public awareness on sanitation is said to be insufficient in rural communes in Ninh Thuan. IEC activity shall also be focused and enhanced.

# (11) Water Resources Development

Research and well drilling for groundwater development is usually performed by private firms under contract. P-CERWASS owns old drilling rig and plans to establish drilling team under technical department of P-CERWASS.

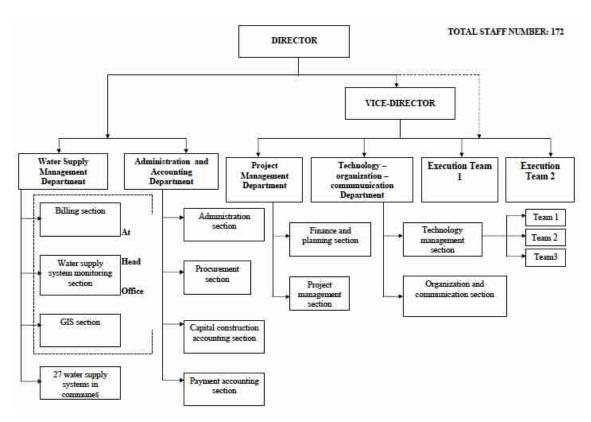
# (12) Prospect of organizational capacity

Due to severer natural conditions, where water resources development is very difficult in Ninh Thuan Province, development and management of rural water supply systems is generally difficult and inefficient. Under the circumstances, Ninh Thuan P-CERWASS has made efforts to manage their 22 existing systems under self-support accounting system.

As for O&M techniques, all of the existing facilities are surface water system. Operators are trained through OJT and familiar with surface water treatment system. However, most existing facilities are old and need rehabilitation. As a result, water treatment is often difficult when raw water become high turbidity. In this sense, P-CERWASS is conscious of upgrading capacity of water quality control through procurement of laboratory equipment and staff training. In this case, external training of short-or mid-term could be applicable, e.g. the urban water corporation and the water sector training center in the south of the construction technical college No.2.

As above explained, Ninh Thuan P-CERWASS as a whole has basic knowledge and skill necessary for operating the proposed water supply system in the Study.

# 12.2.4 Binh Thuan P-CERWASS


# (1) Roles of P-CERWASS

Roles of Binh Thuan P-CERWASS is as same as that of Ninh Thuan. It provides O&M in addition to planning, designing and construction supervision of rural water supply systems.

There are also existing water supply systems which are managed by DPC for the same reasons of Ninh Thuan. Although discussions were made to merge into P-CERWASS management, it has not been realized yet.

# (2) Organization Chart

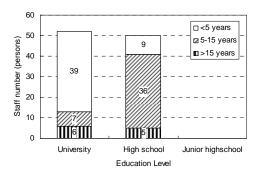
Binh Thuan P-CERWASS was established in 1997, which had formerly been an counterpart office to UNICEF program since 1987. As of July 2007, 172 staff are engaged in Binh Thuan P-CERWASS. Approx. 20 personnel are recruited every year, and most of them are operators.



Source: Binh Thuan P-CERWASS, October 2007

# Figure 12.2.7 Organization Chart of Binh Thuan P-CERWASS

| Department   | Section                 | Duty                                     |
|--------------|-------------------------|------------------------------------------|
| Water Supply | Customer management     | Monthly billing to customers             |
|              |                         | Customer relationship                    |
|              |                         | Execution of water cut                   |
|              | Water supply monitoring | Monitoring O&M activities of 24 systems  |
|              |                         | Preparation of monthly monitoring report |
|              | O&M                     | Integrated control of management units   |


| Table 12.2.9 | Main Duties by Section |
|--------------|------------------------|
|--------------|------------------------|

|                      |                           | Supply of spare parts                          |
|----------------------|---------------------------|------------------------------------------------|
|                      |                           | Water quality control (every 6 months, test by |
|                      |                           | DOH)                                           |
|                      | Water supply management   | Daily O&M of water supply system               |
|                      | unit                      | Water metering                                 |
|                      |                           | Bill collection                                |
|                      |                           | Minor repair                                   |
| Planning, Technology | Planning, environment and | Preparation of action plan, annual report      |
| and Organization     | human resources           | Public relationship activity (IEC, etc.)       |
|                      |                           | Personnel affairs                              |
|                      | Technology and project    | Facility design                                |
|                      |                           | Project management                             |
|                      |                           | Construction supervision                       |
| Accounting           | Bank accounting           | Handling cash more than VND 3 million          |
|                      | Casher                    | Casher                                         |
|                      | Financial management      | Budget preparation                             |
|                      |                           | Approval of expenditure                        |
|                      | Procurement               | Procurement of materials, equipment and        |
|                      |                           | spare parts                                    |
| Construction team    | Team 1 & 2                | All construction work under P-CERWASS if       |
|                      |                           | it is VND 1 billion.                           |
|                      |                           | Be able to work other private construction     |
|                      |                           | business                                       |

Source: Information from Binh Thuan P-CERWASS, July 2007

#### (3) Education Level and Working Experience

More than 50 staff are university graduates and about 50 are high school graduates. There is a tendency that young staff have higher educational background. It implies that P-CERWASS goes well to attract job applications. New challenges may be how to educate the inexperienced staff.



Source: Information from Binh Thuan P-CERWASS, July 2007 Figure 12.2.8 Number of Staff by Education Level and Work Experience

#### (4) Staff Training

#### 3-1) Training to operators

Training is regularly performed to operators at every six months to keep and improve their knowledge and skill. Operators attend 2-day course held by the water supply department of P-CERWASS. Courses are graded into two classes; one for skilled and another for unskilled operators. Trainees will take examination at the end of course, which is linked to the contract so that

salary will be cut if they fail exam and even contract will be terminated in case three continuous failure.

#### 3-2) Training to headquarter staff

In the most case, training to office staff is performed through on-the-job training. Although regular training course is not provided by P-CERWASS, special training course for a couple of weeks is occasionally organized by C-CERWASS. Staffs in general seem to have good willingness to educate themselves. And English language education is popular among staffs.

Binh Thuan P-CERWASS introduces staff valuation system, in which every staff is rated for performance at the end of year. And ones who are highly evaluated can be awarded with prize, even though salary shall accord with the government regulation. This system could give staff good incentives as long as credit is fairly given.

## (5) Financial Status

Since Binh Thuan P-CERWASS has revenue from water sales, it is financially independent from central and/or provincial budget as shown in the table below. In the past it received some subsidy from central government and budget support by donor agency as the special project fund. Investment costs are to be borne by central and provincial governments. Financial status is detailed in the Main report.

#### Table 12.2.10 Budgetaty Trend for Binh Thuan P-CERWASS

(Unit: million VND)

|      |              | Budget by fund source |              |                     |                |                                |  |  |  |  |  |  |  |  |
|------|--------------|-----------------------|--------------|---------------------|----------------|--------------------------------|--|--|--|--|--|--|--|--|
| Year | Total Amount | Central Gov't         | Donor Agency | Provincial<br>Gov't | District Gov't | From business<br>(water sales) |  |  |  |  |  |  |  |  |
| 2005 | 10,144       | 34                    | 84           | -                   | -              | 10,026                         |  |  |  |  |  |  |  |  |
| 2006 | 12,008       | -                     | 4            | -                   | -              | 12,004                         |  |  |  |  |  |  |  |  |
| 2007 | 12,800       | -                     | -            | -                   | -              | 12,800                         |  |  |  |  |  |  |  |  |

Source: Information from Binh Thuan P-CERWASS, July 2007

#### (6) Physical Assets

P-CERWASS owns lands, buildings, water supply facilities, machineries necessary to execute water supply activities. Facilities and lands by state and provincial budget and handed-over to P-CERWASS.

| Item                       | Quantity                                                               |
|----------------------------|------------------------------------------------------------------------|
| 1. Administration Building | 1 Building                                                             |
| 2. Water supply facility   | 24 systems with total production capacity of 9,043 m <sup>3</sup> /day |
| 3. Vehicles and Machinery  | 1 Pickup                                                               |
|                            | 1 Minibus                                                              |
|                            | 1 Lorry                                                                |
|                            | 1 Sedan                                                                |
|                            | 2 Generator                                                            |

Table 12.2.11 Major Assets owned by P-CERWASS

|               | 1 Drilling rig<br>2 Air compressor         |
|---------------|--------------------------------------------|
| 4. Laboratory | To be equipped in administration buildings |
| 5. Computers  | Every section is equipped with PCs.        |

Source: Information from Binh Thuan P-CERWASS, July 2007

#### (7) Water Tariff

Water tariff is set by user category. Tariff is proposed by P-CERWASS and approved by PPC. Same tariff schedule is applied for whole systems managed under P-CERWASS.

| User Category                   | Tariff                                               |
|---------------------------------|------------------------------------------------------|
| 1. Ethnic Minority              | 1,680 VND/m <sup>3</sup> (VAT 5% inclusive)          |
| 2. Others (except category 1)   | $4,410 \text{ VND/m}^3$ (subject to VAT 5%)          |
| 3. Users for production purpose | Not exceeds $5,500 \text{ VND/m}^3$ (to be agreed by |
|                                 | both parties)                                        |
| 4. Users for service business   | Not exceeds $8,000 \text{ VND/m}^3$ (to be agreed by |
|                                 | both parties)                                        |

 Table 12.2.12
 Water Tariff (applicable from April 2007)

Source: Thong Bao 399/TB-TTN-CN, 10/4/2007

#### (8) Non Revenue Water

It is informed that approx. 5% of billed water is unpaid by customers. According to regulation, P-CERWASS may cut water supply to customers after nonpayment for two months. Leakage ratio is estimated to be approx. 20% of all production volume.

To date, practical leakage control is not performed by P-CERWASS. But P-CERWASS has willingness to begin leakage control activity by using leakage detection equipment.

#### (9) Water Quality Control

Water quality of each water supply facility is tested every six months. 15 parameters are tested out of 22 parameters in accordance with Decision 09/2005/QD-BYT.

Water quality test is currently carried out by DOH of Binh Thuan Province. P-CERWASS has prepared a laboratory room in the head office so that water quality test will be done by P-CERWASS after test equipment arrives.

#### (10) IEC activity

For sanitation improvement, P-CERWASS mainly focus on IEC which is in charge of the planning, environment and human resources section of the planning, technology and organization department. Approx. VND 300 million is annually allocated for IEC from state budget.

#### (11) Water Resources Development

Research and well drilling for groundwater development is usually performed by private firms under contract, although P-CERWASS is said to be fully capable of these tasks.

## (12) Document and Information Management

Document and information management seems to be properly done in accordance with ISO 9001 requirements. Most information is easy to access.

It is notable that GIS software is effectively used to manage facility data as well as customer information. Geographical data is accurate and every data is always updated by the all staff of water supply department. P-CERWASS is planning to improve the GIS system to integrate with the billing system, which enables further efficient customer management.

## (13) Prospect of organizational capacity

In fact, Binh Thuan P-CERWASS would be one of the most successful CERWASS in the country. Their management policy and O&M practice is sufficient level and even far ahead of other P-CERWASS in any aspects. It is notable that the P-CERWASS introduces ISO quality management system in their business which is functioning well to guarantee and improve not only water quality but also water supply service itself.

Hence, Binh Thuan P-CERWASS is capable of O&M of water supply facilities proposed in the Study. And it is also expected that Binh Thuan P-CERWASS, as the model waterworks, has good influence to the P-CERWASS of other provinces.

# CHAPTER 13

# SELECTION OF THE TARGET COMMUNES FOR FS

# CHAPTER 13 SELECTION OF THE TARGET COMMUNES FOR FS

# 13.1 Evaluation for Priority Commune

The detailed selection of the target communes for F/S is showed in the below.

|           |        |                | Scarcity of Potable Water     Effectiveness to<br>poverty reduction     Active participation of the community |           |                                            |           |                    |                                                     |        |         | 1          | Technical rationality to install house connection using groundwater |                 |                            |                                                  |       |                                                                  |                   |            |                                                 |      |             |                                                       |        |       |                                           |         |           |       |             |       |
|-----------|--------|----------------|---------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------|-----------|--------------------|-----------------------------------------------------|--------|---------|------------|---------------------------------------------------------------------|-----------------|----------------------------|--------------------------------------------------|-------|------------------------------------------------------------------|-------------------|------------|-------------------------------------------------|------|-------------|-------------------------------------------------------|--------|-------|-------------------------------------------|---------|-----------|-------|-------------|-------|
| Province  | Code   | Commune        |                                                                                                               | Fe        | Fetching water in dry season <sup>*1</sup> |           | Rate of population | Satisfaction level of available water <sup>*2</sup> |        |         |            |                                                                     | Rate of poverty | Rate of<br>ethnic<br>group | Willingness to pay / Affordability <sup>*3</sup> |       |                                                                  | Project ownership | Population | n Affordability to connection fee <sup>*4</sup> |      |             |                                                       |        | ,     | Rate of<br>households<br>having<br>toilet |         |           |       |             |       |
|           |        |                | Less than 5                                                                                                   |           | (%)                                        | More than |                    |                                                     | served | Good    | (%         | <u> </u>                                                            |                 | Expectation                | (%)                                              | (%)   | (%) (VND)<br>Less than 20.50 50.00 80.100 More than Transmission |                   |            |                                                 |      | (Persons)   | (%) (VND)                                             |        |       |                                           |         |           | (%)   |             |       |
|           |        |                | min.                                                                                                          | 5-10 min. |                                            | 0-60min.  | 60min.             | Expectation                                         |        | quality | Acceptable |                                                                     | Very bad        | *                          |                                                  |       | 30                                                               | 30-50             | 50-80      | 80-100                                          | 100  | Expectation | No organization                                       | . ,    | 300   | 300-500                                   | 500-800 | 800-1,000 | 1.000 | Expectation |       |
|           | P-1    | Xuan Phuoc     | 41.7%                                                                                                         | 38.3%     | 17.8%                                      | 1.1%      | 1.1%               | 8.6                                                 | 0%     | 27.8%   | 23.3%      | 30.6%                                                               | 17.8%           | 1.3                        | 20.9%                                            | 4.2%  | 66.7%                                                            | 25.0%             | 6.7%       | 1.7%                                            | 0.0% | 25,833      | No organization<br>No organization<br>No organization | 10,927 | 59.4% | 25.0%                                     | 5.0%    | 7.2%      | 3.3%  | 320,000     | 17.2% |
|           | P-2    | An Dinh        | 54.8%                                                                                                         | 16.1%     | 13.5%                                      | 14.2%     | 1.3%               | 12.5                                                | 0%     | 100.0%  | 0.0%       | 0.0%                                                                | 0.0%            | 3.0                        | 13.9%                                            | 0.0%  | 61.3%                                                            | 9.0%              | 10.3%      | 11.6%                                           | 7.7% | 37,710      | CPC has plan for establishment                        | 6,856  | 49.7% | 20.0%                                     | 13.5%   | 9.0%      | 7.7%  | 401,290     | 31.0% |
|           | P-3    | An Tho         | 36.5%                                                                                                         | 20.3%     | 21.6%                                      | 20.3%     | 1.4%               | 16.7                                                | 6%     | 9.1%    | 54.5%      | 36.4%                                                               | 0.0%            | 1.4                        | 29.0%                                            | 0.0%  | 83.8%                                                            | 9.5%              | 4.1%       | 2.7%                                            | 0.0% | 21,419      | No organization<br>Residents have experience of O&M   | 4,373  | 24.3% | 47.3%                                     | 9.5%    | 12.2%     | 6.8%  | 464,189     | 9.5%  |
| Phu Yen   | P-4    | An My          | 18.1%                                                                                                         | 19.1%     | 52.5%                                      | 8.2%      | 2.1%               | 17.3                                                | 0%     | 67.7%   | 3.5%       | 21.9%                                                               | 7.0%            | 2.1                        | 9.7%                                             | 0.0%  | 75.2%                                                            | 22.3%             | 2.1%       | 0.0%                                            | 0.4% | 21,950      | No organization<br>No plan for establishment          | 13,256 | 51.8% | 23.8%                                     | 14.5%   | 5.0%      | 5.0%  | 361,525     | 38.7% |
|           | P-5    | Son Phuoc      | 63.8%                                                                                                         | 17.4%     | 18.8%                                      | 0.0%      | 0.0%               | 6.7                                                 | 24%    | 27.3%   | 18.2%      | 36.4%                                                               | 18.2%           | 1.2                        | 28.2%                                            | 58.5% | 60.9%                                                            | 23.2%             | 5.8%       | 5.8%                                            | 4.3% | 31,739      | No organization<br>CPC has plan for establishment     | 3,101  | 52.2% | 11.6%                                     | 10.1%   | 10.1%     | 15.9% | 441,304     | 4.3%  |
|           | P-6    | Ea Cha Rang    | 32.2%                                                                                                         | 18.6%     | 37.3%                                      | 6.8%      | 5.1%               | 15.8                                                | 0%     | 100.0%  | 0.0%       | 0.0%                                                                | 0.0%            | 3.0                        | 41.0%                                            | 73.7% | 62.7%                                                            | 23.7%             | 1.7%       | 5.1%                                            | 6.8% | 31,356      | No organization<br>CPC has plan for establishment     | 2,624  | 54.2% | 18.6%                                     | 15.3%   | 5.1%      | 6.8%  | 368,644     | 5.1%  |
|           | P-7    | Suoi Bac       | 29.0%                                                                                                         | 27.6%     | 20.7%                                      | 9.0%      | 13.8%              | 19.2                                                | 11%    | 80.9%   | 14.9%      | 4.3%                                                                | 0.0%            | 2.7                        | 30.0%                                            | 30.5% | 84.0%                                                            | 15.1%             | 0.9%       | 0.0%                                            | 0.0% | 19,245      | No organization<br>CPC has plan for establishment     | 6,411  | 42.8% | 26.2%                                     | 17.2%   | 5.5%      | 8.3%  | 413,448     | 44.8% |
|           | P-8    | Son Thanh Dong | 73.5%                                                                                                         | 21.2%     | 4.2%                                       | 1.1%      | 0.0%               | 4.7                                                 | 0%     | 2.1%    | 0.0%       | 0.0%                                                                | 0.0%            | 0.1                        | 25.0%                                            | 0.1%  | 58.2%                                                            | 31.2%             | 5.8%       | 2.1%                                            | 2.6% | 29,550      | No organization<br>CPC has plan for establishment     | 9,292  | 49.2% | 23.3%                                     | 7.4%    | 9.0%      | 11.1% | 407,143     | 12.7% |
|           | K-1    | Cam An Bac     | 70.9%                                                                                                         | 22.2%     | 6.0%                                       | 0.9%      | 0.0%               | 5.0                                                 | 20%    | 90.0%   | 10.0%      | 0.0%                                                                | 0.0%            | 2.9                        | 22.0%                                            | 0.0%  | 85.5%                                                            | 11.1%             | 3.4%       | 0.0%                                            | 0.0% | 19,487      | No organization<br>CPC has plan for establishment     | 6,462  | 59.0% | 26.5%                                     | 8.5%    | 5.1%      | 0.9%  | 304,701     | 40.2% |
| Khanh Ho  | a K-2  | Cam Hiep Nam   | 18.5%                                                                                                         | 41.5%     | 32.3%                                      | 5.4%      | 2.3%               | 13.8                                                | 0%     | 14.3%   | 21.4%      | 57.1%                                                               | 7.1%            | 0.9                        | 15.8%                                            | 0.0%  | 62.3%                                                            | 33.8%             | 3.1%       | 0.8%                                            | 0.0% | 25,577      | No organization<br>CPC has plan for establishment     | 7,962  | 49.2% | 40.0%                                     | 5.4%    | 0.8%      | 4.6%  | 321,923     | 63.8% |
|           | K-3    | Cam Hai Tay    | 15.0%                                                                                                         | 42.5%     | 16.7%                                      | 13.7%     | 12.0%              | 20.3                                                | 0%     | 6.5%    | 88.6%      | 5.0%                                                                | 0.0%            | 2.0                        | 9.0%                                             | 0.0%  | 36.5%                                                            | 43.3%             | 14.6%      | 2.1%                                            | 3.4% | 37,661      | No organization<br>CPC has plan for establishment     | 6,978  | 35.2% | 37.8%                                     | 18.9%   | 3.0%      | 5.2%  | 405,150     | 70.8% |
|           | N-1    | Nhon Hai       | 41.7%                                                                                                         | 38.3%     | 19.2%                                      | 0.4%      | 0.4%               | 8.2                                                 | 0%     | 0.4%    | 67.9%      | 31.7%                                                               | 0.0%            | 1.4                        | 13.0%                                            | 0.0%  | 12.9%                                                            | 36.7%             | 33.8%      | 12.1%                                           | 4.6% | 54,000      | No organization<br>CPC has plan for establishment     | 20,413 | 5.4%  | 41.7%                                     | 35.8%   | 14.6%     | 2.5%  | 563,958     | 56.3% |
|           | N-2    | Cong Hai       | 33.6%                                                                                                         | 19.5%     | 32.9%                                      | 13.4%     | 0.7%               | 15.3                                                | 0%     | 4.0%    | 44.0%      | 36.0%                                                               | 16.0%           | 1.0                        | 25.3%                                            | 46.2% | 54.4%                                                            | 36.9%             | 8.7%       | 0.0%                                            | 0.0% | 28,591      | No organization<br>No plan for establishment          | 9,776  | 47.0% | 37.6%                                     | 9.4%    | 4.7%      | 1.3%  | 337,584     | 7.4%  |
| Ninh Thua | in N-3 | Bac Son        | 54.6%                                                                                                         | 5.4%      | 23.1%                                      | 11.5%     | 5.4%               | 14.8                                                | 71%    | 23.4%   | 26.0%      | 41.6%                                                               | 7.8%            | 1.2                        | 32.0%                                            | 76.6% | 81.5%                                                            | 15.4%             | 3.1%       | 0.0%                                            | 0.0% | 20,385      | CPC has managed the existing system                   | 4,661  | 69.2% | 20.8%                                     | 3.8%    | 4.6%      | 1.5%  | 268,846     | 5.4%  |
|           | N-5    | Phuoc Hai      | 78.3%                                                                                                         | 8.3%      | 12.6%                                      | 0.0%      | 0.9%               | 5.6                                                 | 35%    | 3.2%    | 22.6%      | 58.1%                                                               | 16.1%           | 0.5                        | 16.0%                                            | 31.2% | 73.5%                                                            | 24.3%             | 1.7%       | 0.0%                                            | 0.4% | 22,326      | CPC has WMU for existing system                       | 16,804 | 34.3% | 47.0%                                     | 12.6%   | 3.5%      | 2.6%  | 378,696     | 57.8% |
|           | N-6    | Phuoc Dinh     | 44.9%                                                                                                         | 32.9%     | 16.5%                                      | 3.8%      | 1.9%               | 9.7                                                 | 19%    | 17.7%   | 58.2%      | 24.1%                                                               | 0.0%            | 1.7                        | 20.0%                                            | 0.1%  | 51.3%                                                            | 40.5%             | 5.7%       | 1.3%                                            | 1.3% | 30,000      | No organization<br>No plan for establishment          | 12,911 | 60.8% | 36.1%                                     | 1.9%    | 0.0%      | 1.3%  | 260,443     | 53.2% |
|           | B-1    | Muong Man      | 50.0%                                                                                                         | 17.1%     | 17.1%                                      | 9.3%      | 6.4%               | 14.0                                                | 0%     | 32.8%   | 43.8%      | 21.9%                                                               | 0.0%            | 1.9                        | 6.3%                                             | 0.0%  | 30.7%                                                            | 54.3%             | 9.3%       | 2.1%                                            | 3.6% | 37,857      | No organization                                       | 7,378  | 32.1% | 44.3%                                     | 7.1%    | 7.9%      | 8.6%  | 428,214     | 54.3% |
|           | B-2    | Gia Huynh      | 77.1%                                                                                                         | 16.9%     | 5.1%                                       | 0.8%      | 0.0%               | 4.6                                                 | 2%     | 0.0%    | 30.3%      | 33.3%                                                               | 36.4%           | 0.6                        | 8.4%                                             | 9.6%  | 51.7%                                                            | 21.2%             | 8.5%       | 9.3%                                            | 9.3% | 39,449      | CPC has plan for establishment<br>No organization     | 6,139  | 36.4% | 50.0%                                     | 6.8%    | 5.1%      | 1.7%  | 361,441     | 33.9% |
|           | B-3    | Nghi Duc       | 24.6%                                                                                                         | 60.6%     | 13.8%                                      | 0.5%      | 0.5%               | 8.4                                                 | 0%     | 1.5%    | 34.5%      | 32.5%                                                               | 28.6%           | 0.7                        | 8.1%                                             | 0.0%  | 66.5%                                                            | 30.5%             | 3.0%       | 0.0%                                            | 0.0% | 24,113      | CPC has plan for establishment<br>No organization     | 11,869 | 46.3% | 45.3%                                     | 6.9%    | 0.5%      | 1.0%  | 309,852     | 28.1% |
| Binh Thua | n B-4  | Tan Duc        | 76.7%                                                                                                         | 13.8%     | 5.2%                                       | 1.7%      | 2.6%               | 6.3                                                 | 47%    | 19.0%   | 22.4%      | 7.8%                                                                | 50.9%           | 1.0                        | 30.0%                                            | 6.3%  | 43.1%                                                            | 36.2%             | 12.1%      | 3.4%                                            | 5.2% | 37.069      | CPC has plan for establishment<br>No organization     | 6,068  | 39.7% | 23.3%                                     | 16.4%   | 15.5%     | 5.2%  | 450,431     | 41.4% |
|           | B-5    | Me Pu          | 67.0%                                                                                                         | 5.6%      | 4.8%                                       | 3.7%      | 18.9%              | 16.1                                                | 0%     | 0.0%    | 82.9%      | 17.1%                                                               | 0.0%            | 1.7                        | 9.8%                                             | 2.9%  | 63.7%                                                            | 30.0%             | 3.7%       | 1.9%                                            | 0.7% | 26,370      | No plan for establishment<br>No organization          | 16.315 | 37.8% | 37.4%                                     | 7.8%    | 10.7%     | 6.3%  | 416,481     | 49.6% |
|           | B-6    | Sung Nhon      | 100.0%                                                                                                        | 0.0%      | 0.0%                                       | 0.0%      | 0.0%               | 2.5                                                 | 0%     | 0.0%    | 0.0%       | 0.0%                                                                | 0.0%            | 0.0                        | 12.0%                                            | 2.2%  | 95.8%                                                            | 3.6%              | 0.6%       | 0.0%                                            | 0.0% | 16.212      | No plan for establishment<br>No organization          | 9,794  | 62.4% | 32.7%                                     | 1.8%    | 1.8%      | 1.2%  | 264,848     | 44.8% |
|           | B-7    | Da Kai         | 34.2%                                                                                                         | 20.9%     | 29.5%                                      | 10.3%     | 5.1%               | 16.0                                                | 0%     | 15.0%   | 36.3%      | 23.9%                                                               | 13.7%           | 1.2                        | 23.0%                                            | 2.2%  | 69.2%                                                            | 21.8%             | 4.3%       | 2.1%                                            | 2.6% | 26.368      | CPC has plan for establishment<br>No organization     | 14,263 | 47.9% | 34.6%                                     | 6.4%    | 8.5%      | 2.6%  | 354.487     | 51.7% |
|           | в-/    | Da Kai         | 34.2%                                                                                                         | 20.9%     | 29.3%                                      | 10.3%     | 5.1%               | 16.0                                                | 0%     | 15.0%   | 30.3%      | 23.9%                                                               | 13.7%           | 1.2                        | 23.0%                                            | 2.9%  | 09.2%                                                            | 21.8%             | 4.3%       | 2.1%                                            | 2.0% | 20,368      | No plan for establishment                             | 14,203 | 47.9% | 34.0%                                     | 0.4%    | 8.3%      | 2.0%  | 334,487     | 51.7% |

Note: \*1, 2, 3, 4: Expectation values ware calculated by weighted average, based on assumed values mentioned below.

\*1: Less than 5min: 2.5 min, 5-10min: 7.5min, 10-30min: 20min, 30-60min: 45min, More than 60min: 60min

\*2: Good quality: 3pts, Acceptable: 2pts, Not good: 1pt, Very bad: 0pt

\*3: Less than 30: 15,000VND, 30-50: 40,000VND, 50-80: 65,000VND, 80-100: 90,000VND, More than 100: 100,000VND

\*4: Less than 300: 150,000VND, 300-500: 400,000VND, 500-800: 650,000VND, 800-1,000: 900,000VND, More than 1,000: 1,000,000VND

Final Report - Supporting - Chapter13 Selection of the Target Communes for FS

Significance of each criterion is weighted with reference to and in view of five indices of Project Evaluation prepared by the Development Assistance Committee (DAC) of the Organization for Economic Cooperation and Development (OECD). Each index is defined as follows:

- (i) Relevance: Relevance to national policy
- (ii) Effectiveness: Effectiveness of the Project
- (iii) Efficiency: Efficiency of the Project (Input and accomplishment)
- (iv) Impact: Positive and negative impact on socio-economic aspect by the project
- (v) Sustainability: Sustainability of water supply system and management

The estimated magnitude of criteria on the basis of DAC indices is shown in Table 13.1.2. According to the estimated magnitude of criteria, the assessment score is defined. In most cases, the assessment score of criteria is classified into three (3) by quartile range. However, since the collected data for some items are not quantitative, the qualitative evaluation has been adopted for those criteria. Based on the criteria and magnitude, assessment score is summarized in Table 13.1.3. In case when criteria related to 3 out of DAC's 5 indices, they are weighted 5 points and others are weighted 3 points.

| 10010 15.11                                        |                  | eu magintuu           |                     |                |                       |           |
|----------------------------------------------------|------------------|-----------------------|---------------------|----------------|-----------------------|-----------|
| Criteria                                           | (i)<br>Relevance | (ii)<br>Effectiveness | (iii)<br>Efficiency | (iv)<br>Impact | (v)<br>Sustainability | Magnitude |
| A Scarcity of Potable water                        |                  |                       | · · · ·             | •              |                       | 11        |
| A1 Fetching water in dry season                    | Х                | Х                     |                     | Х              |                       | 5         |
| A2 Rate of population served                       | Х                |                       |                     |                |                       | 3         |
| A3 Satisfaction level of available water           |                  | X                     |                     | Х              |                       | 3         |
| B Effectiveness to poverty reduc                   | ction            |                       |                     |                |                       | 6         |
| B1 Rate of poverty                                 | Х                | X                     |                     |                |                       | 3         |
| B2 Rate of ethnic minorities                       | Х                | X                     |                     |                |                       | 3         |
| C Active participation of the co                   | mmunity          |                       |                     |                |                       | 6         |
| C1 Willingness to pay /<br>Affordability           |                  |                       |                     |                | Х                     | 3         |
| C2 Project ownership                               |                  |                       |                     |                | Х                     | 3         |
| D Technical rationality to install h               | nouse connect    | ion                   |                     |                |                       | 11        |
| D1 Total population served                         | Х                | Х                     | Х                   | Х              |                       | 5         |
| D2 Affordability to connection fee                 |                  |                       |                     |                | X                     | 3         |
| D3 Rate of households having toilet                |                  |                       |                     |                | X                     | 3         |
| E Technical conditions for water s                 | supply system    | (alternative sou      | irce)               |                | -                     | 25        |
| E1 Raw water flow capacity                         | Х                | X                     | Х                   | Х              | X                     | 5         |
| E2 Raw water quality                               | Х                | X                     | Х                   | Х              | X                     | 5         |
| E3 Difficulty in intake construction               | Х                | X                     | Х                   | Х              | Х                     | 5         |
| E4 Distance between intake and service area        | Х                | X                     | Х                   | Х              | X                     | 5         |
| E5 Difficulty in transmission<br>pipe construction | Х                | X                     | Х                   | Х              | Х                     | 5         |
| F Financial conditions                             |                  |                       |                     |                |                       | 5         |
| F1 Construction cost per m <sup>3</sup><br>(VND)   | Х                | X                     | Х                   | Х              | X                     | 5         |

 Table 13.1.2
 Estimated Magnitude of Criteria by DAC Indices

|     | Ass     | essment criteria                                   | e 15.1.5 Assessment s                                                                        | Assessment Point                                                                                                            |                                                                                                                   |  |  |  |  |
|-----|---------|----------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| A   |         | y of Potable Water                                 |                                                                                              | Assessment I Onit                                                                                                           |                                                                                                                   |  |  |  |  |
|     | A-1     | Fetching water in dry season                       | 5 pts<br>more than 15 minutes                                                                | 3 pts<br>from 10 to 15 minutes                                                                                              | 1 pt<br>less than 10 minutes                                                                                      |  |  |  |  |
|     | A-2     | Rate of population served                          | 3 pts<br>0%                                                                                  | 2 pts<br>from 1 % to 20 %                                                                                                   | 1 pt<br>More than 21 %                                                                                            |  |  |  |  |
|     | A-3     | Satisfaction level of available water              | 3 pts<br>more than 2.0                                                                       | 2 pts<br>from 1.0 to 2.0                                                                                                    | 1 pt<br>less than 1.0                                                                                             |  |  |  |  |
| В   | Effecti | veness to poverty reduc                            | ction                                                                                        |                                                                                                                             |                                                                                                                   |  |  |  |  |
|     | B-1     | Rate of poverty                                    | 3 pts<br>more than 25 %                                                                      | 2 pts<br>from 10 % to 25 %                                                                                                  | 1 pt<br>less than 10 %                                                                                            |  |  |  |  |
|     | B-2     | Rate of ethnic minorities                          | 3 pts<br>more than 15 %                                                                      | 2 pts<br>from 5 % to 15 %                                                                                                   | 1 pt<br>less than 5 %                                                                                             |  |  |  |  |
| 2   | Active  | participation of the con                           | mmunity                                                                                      |                                                                                                                             |                                                                                                                   |  |  |  |  |
|     | C-1     | Willingness to pay<br>/ Affordability              | 3 pts<br>more than 33,000 VND                                                                | 2 pts<br>from 20,000 VND to<br>33,000 VND                                                                                   | 1 pt<br>less than 20,000 VND                                                                                      |  |  |  |  |
|     | C-2     | Project ownership                                  | 3 pts<br>Commune has an<br>organization or<br>experiences for O&M of<br>water supply system. | 2 pts<br>Commune doesn't have<br>any organization for<br>O&M. However,<br>Commune has planned to<br>establish organization. | l pt<br>Commune doesn't have<br>any organization for O&M<br>and so far has no plans to<br>establish organization. |  |  |  |  |
| D   | Techni  | cal rationality to install                         | house connection using g                                                                     |                                                                                                                             |                                                                                                                   |  |  |  |  |
|     | D-1     | Total population<br>served                         | 5 pts<br>more than 10,000                                                                    | 3 pts<br>from 6,000 to 10,000                                                                                               | 1 pt<br>less than 6,000                                                                                           |  |  |  |  |
|     | D-2     | Affordability to connection fee                    | 3 pts<br>more than 400,000 VND                                                               | 2 pts<br>from 300,000 VND to<br>400,000 VND                                                                                 | 1 pt<br>less than 300,000 VND                                                                                     |  |  |  |  |
|     | D-3     | Rate of households<br>having toilet                | 3 pts<br>more than 50 %                                                                      | 2 pts<br>from 15 % to 50 %                                                                                                  | 1 pt<br>less than 15 %                                                                                            |  |  |  |  |
| Ε'Ί |         | l conditions for alterna                           |                                                                                              |                                                                                                                             | Γ                                                                                                                 |  |  |  |  |
|     | E-1     | Water capacity                                     | 5pts<br>Enough                                                                               | 3pts<br>marginal in dry season                                                                                              | 1pt<br>not enough                                                                                                 |  |  |  |  |
|     | E-2     | Water quality                                      | 5pts<br>No treatment<br>Including disinfection)                                              | 3pts<br>Requires normal treatment<br>(Removal of Iron and<br>Turbidity)                                                     | lpt<br>High risk of contaminate<br>by heavy metal or<br>pesticide                                                 |  |  |  |  |
|     | E-3     | Difficulty in intake construction                  | 5pts<br>Connection with existing<br>pipe                                                     | 3pts<br>Connection with irrigation<br>channel                                                                               | lpt<br>River intake                                                                                               |  |  |  |  |
|     | E-4     | Distance between<br>intake and service<br>area     | 5 pts<br>Less than 10km                                                                      | 3 pts<br>from 10 km to 15km                                                                                                 | 1 pt<br>more than 15km                                                                                            |  |  |  |  |
|     | E-5     | Difficulty in<br>transmission pipe<br>construction | 5pts<br>No facility                                                                          | 3pts<br>Crossing of small river or<br>provincial road                                                                       | 1pt<br>Crossing of big river or<br>national road                                                                  |  |  |  |  |
| F   | F1 Fina | ancial conditions                                  |                                                                                              |                                                                                                                             |                                                                                                                   |  |  |  |  |
|     | F-1     | Construction cost<br>per m3 (VND)                  | 5 pts<br>Less than 2 million                                                                 | 3 pts<br>from 2 to 5million                                                                                                 | 1 pt<br>more than 5 million                                                                                       |  |  |  |  |

 Table 13.1.3
 Assessment Score for the Criteria

Note: Except for C-2, range for each assessment point is determined by result of quartiles of results or calculated data i Table 13.1.1.

|            |      |                |                              | Sc     | carcity of Po             | otable Wate | er                                    |        | Effect          | iveness to j | poverty redu         | uction | Ac                                    | tive partic | ipation of th     | e commun | ity    | Technical rationality to install house connection using groundwate |        |                                    |        |                                    |        |
|------------|------|----------------|------------------------------|--------|---------------------------|-------------|---------------------------------------|--------|-----------------|--------------|----------------------|--------|---------------------------------------|-------------|-------------------|----------|--------|--------------------------------------------------------------------|--------|------------------------------------|--------|------------------------------------|--------|
|            |      |                | A-                           | -1     | А                         | -2          | A                                     | -3     | В               | -1           | B                    | -2     | C·                                    | -1          |                   | C-2      |        | D                                                                  | -1     | D                                  | -2     | D                                  | -3     |
| Province   | Code | Commune        | Fetching water in dry season |        | Rate of population served |             | Satisfaction level of available water |        | Rate of poverty |              | Rate of ethnic group |        | Willingness to pay /<br>Affordability |             | Project ownership |          |        | Population                                                         |        | Affordability to<br>connection fee |        | Rate of household<br>having toilet |        |
|            |      |                | (min)                        | points | (%)                       | points      | -                                     | points | (%)             | points       | (%)                  | points | (VND)                                 | points      | organization      | plan     | points | (Persons)                                                          | points | (VND)                              | points | (%)                                | points |
|            | P-1  | Xuan Phuoc     | 8.6                          | 1      | 0%                        | 3           | 1.3                                   | 2      | 20.9%           | 2            | 4.2%                 | 1      | 25,833                                | 2           | 0                 | 0        | 1      | 10,927                                                             | 5      | 320,000                            | 2      | 17.0%                              | 2      |
|            | P-2  | An Dinh        | 12.5                         | 3      | 0%                        | 3           | 3.0                                   | 1      | 13.9%           | 2            | 0.0%                 | 1      | 37,710                                | 3           | 0                 | 1        | 2      | 6,856                                                              | 3      | 401,290                            | 3      | 31.0%                              | 2      |
|            | P-4  | An My          | 17.3                         | 5      | 0%                        | 3           | 2.1                                   | 1      | 9.7%            | 1            | 0.0%                 | 1      | 21,950                                | 2           | 0                 | 0        | 1      | 13,256                                                             | 5      | 361,525                            | 2      | 38.7%                              | 2      |
| Phu Yen    | P-5  | Son Phuoc      | 6.7                          | 1      | 24%                       | 1           | 1.2                                   | 2      | 28.2%           | 3            | 58.5%                | 3      | 31,739                                | 2           | 0                 | 1        | 2      | 3,101                                                              | 1      | 441,304                            | 3      | 4.3%                               | 1      |
|            | P-6  | Ea Cha Rang    | 15.8                         | 5      | 0%                        | 3           | 3.0                                   | 1      | 41.0%           | 3            | 73.7%                | 3      | 31,356                                | 2           | 0                 | 1        | 2      | 2,624                                                              | 1      | 368,644                            | 2      | 5.1%                               | 1      |
|            | P-7  | Suoi Bac       | 19.2                         | 5      | 11%                       | 2           | 2.7                                   | 1      | 30.0%           | 3            | 30.5%                | 3      | 19,245                                | 1           | 0                 | 1        | 2      | 6,411                                                              | 3      | 413,448                            | 3      | 44.8%                              | 2      |
|            | P-8  | Son Thanh Dong | 4.7                          | 1      | 0%                        | 3           | 0.1                                   | 3      | 25.0%           | 3            | 0.1%                 | 1      | 29,550                                | 2           | 0                 | 1        | 2      | 9,292                                                              | 3      | 407,143                            | 3      | 12.7%                              | 1      |
| Khaab Haa  | K-1  | Cam An Bac     | 5.0                          | 1      | 20%                       | 1           | 2.9                                   | 1      | 22.0%           | 2            | 0.0%                 | 1      | 19,487                                | 1           | 0                 | 1        | 2      | 6,462                                                              | 3      | 304,701                            | 2      | 40.2%                              | 2      |
| Khanh Hoa  | K-3  | Cam Hai Tay    | 20.3                         | 5      | 0%                        | 3           | 2.0                                   | 1      | 9.0%            | 1            | 0.0%                 | 1      | 37,661                                | 3           | 0                 | 1        | 2      | 6,978                                                              | 3      | 405,150                            | 3      | 70.8%                              | 3      |
| NL-1 Thorn | N-5  | Phuoc Hai      | 5.6                          | 1      | 35%                       | 1           | 0.5                                   | 3      | 16.0%           | 2            | 31.2%                | 3      | 22,326                                | 2           | 1                 | 1        | 3      | 16,804                                                             | 5      | 378,696                            | 2      | 57.8%                              | 3      |
| Ninh Thuan | N-6  | Phuoc Dinh     | 9.7                          | 1      | 19%                       | 2           | 1.7                                   | 2      | 20.0%           | 2            | 0.1%                 | 1      | 30,000                                | 2           | 0                 | 0        | 1      | 12,911                                                             | 5      | 260,443                            | 1      | 53.2%                              | 3      |
|            | B-1  | Muong Man      | 14.0                         | 3      | 0%                        | 3           | 1.9                                   | 2      | 6.3%            | 1            | 0.0%                 | 1      | 37,857                                | 3           | 0                 | 1        | 2      | 7,378                                                              | 3      | 428,214                            | 3      | 54.3%                              | 3      |
|            | B-3  | Nghi Duc       | 8.4                          | 1      | 0%                        | 3           | 0.7                                   | 3      | 8.1%            | 1            | 0.0%                 | 1      | 24,113                                | 2           | 0                 | 1        | 2      | 11,869                                                             | 5      | 309,852                            | 2      | 28.1%                              | 2      |
| Binh Thuan | B-5  | Me Pu          | 16.1                         | 5      | 0%                        | 3           | 1.7                                   | 2      | 9.8%            | 1            | 2.9%                 | 1      | 26,370                                | 2           | 0                 | 0        | 1      | 16,315                                                             | 5      | 416,481                            | 3      | 49.6%                              | 2      |
|            | B-6  | Sung Nhon      | 2.5                          | 1      | 0%                        | 3           | 0.0                                   | 3      | 12.0%           | 2            | 2.2%                 | 1      | 16,212                                | 1           | 0                 | 1        | 2      | 9,794                                                              | 3      | 264,848                            | 1      | 44.8%                              | 2      |
|            | B-7  | Da Kai         | 16.0                         | 5      | 0%                        | 3           | 1.2                                   | 2      | 23.0%           | 2            | 2.9%                 | 1      | 26,368                                | 2           | 0                 | 0        | 1      | 14,263                                                             | 5      | 354,487                            | 2      | 51.7%                              | 3      |

#### Table 13.1.4 Scoring for the Estimation of Socio-economic Conditions for Each Commune

<C-2 Organization> 0 pt; No organization

1 pt; CPC has organization regarding water supply

0pt; No plan 1pt; CPC has plan for establishment or CPC has experience for O&M

<C-2 Plan>

<C-2 points>

Total score of organization and plan is;

#### Table 13.1.5 Scoring for the Estimation of Socio-economic Con

|            |           |        |                    | Sc     | carcity of Po    | otable Wate | er                      |                         | Effect  | iveness to | poverty red | uction    | Ac                   | tive partic |                            |                    |        |           |        |                    | onnect | ion using gr         | roundwater            |
|------------|-----------|--------|--------------------|--------|------------------|-------------|-------------------------|-------------------------|---------|------------|-------------|-----------|----------------------|-------------|----------------------------|--------------------|--------|-----------|--------|--------------------|--------|----------------------|-----------------------|
|            |           |        | A                  | -1     | А                | -2          | A                       | 3                       | B       | -1         | В           | -2        | C-                   | -1          |                            |                    |        | -         |        | -                  | -      | D                    | <b>)-</b> 3           |
| Province   | Code      | System | Fetching w<br>seas | •      | Rate of p<br>ser | *           | Satisfactio<br>availabl | on level of<br>le water | Rate of | poverty    | Rate of eth | nic group | Willingnes<br>Afford |             | Pro                        | ject owners        | hip    | Popula    | ation  | Afforda<br>connect | 2      | Rate of ho<br>having | ouseholds<br>g toilet |
|            |           |        | (min)              | points | (%)              | points      | -                       | points                  | (%)     | points     | (%)         | points    | (VND)                | points      | organization <sup>*1</sup> | plan <sup>*2</sup> | points | (Persons) | points | (VND)              | points | (%)                  | points                |
|            | P-1       | FPS-1  | 8.6                | 1      | 0.0%             | 3           | 1.3                     | 2                       | 21.0%   | 2          | 4.0%        | 1         | 25,833               | 2           | 0                          | 0                  | 1      | 10,927    | 5      | 320,000            | 2      | 17.0%                | 2                     |
| -          | P-2       | FPS-2  | 12.5               | 3      | 0.0%             | 3           | 3.0                     | 1                       | 14.0%   | 2          | 0.0%        | 1         | 37,710               | 3           | 0                          | 1                  | 2      | 6,856     | 3      | 401,290            | 3      | 31.0%                | 2                     |
| Phu Yen    | P-4       | FPS-3  | 17.3               | 5      | 0.0%             | 3           | 2.1                     | 1                       | 9.7%    | 1          | 0.0%        | 1         | 21,950               | 2           | 0                          | 0                  | 1      | 13,256    | 5      | 361,525            | 2      | 38.7%                | 2                     |
|            | P-5,6,7   | FPG-4  | 15.3               | 5      | 12.0%            | 2           | 2.4                     | 1                       | 32.0%   | 3          | 47.0%       | 3         | 25,056               | 2           | 0                          | 1                  | 2      | 12,136    | 5      | 410,878            | 3      | 26.0%                | 2                     |
|            | P-8       | FPS-5  | 4.7                | 1      | 0.0%             | 3           | 0.1                     | 3                       | 25.0%   | 3          | 0.1%        | 1         | 29,550               | 2           | 0                          | 1                  | 2      | 9,292     | 3      | 407,143            | 3      | 12.7%                | 1                     |
| Vhanh Haa  | K-1       | FKS-6  | 5.0                | 1      | 20.0%            | 1           | 2.9                     | 1                       | 22.0%   | 2          | 0.0%        | 1         | 19,487               | 1           | 0                          | 1                  | 2      | 6,462     | 3      | 304,701            | 2      | 40.2%                | 2                     |
| Khanh Hoa  | K-3       | FKS-8  | 20.3               | 5      | 0.0%             | 3           | 2.0                     | 1                       | 9.0%    | 1          | 0.0%        | 1         | 37,661               | 3           | 0                          | 1                  | 2      | 6,978     | 3      | 405,150            | 3      | 70.8%                | 3                     |
| Ninh Thuan | N-5,6     | FNG-10 | 7.4                | 1      | 28.0%            | 1           | 1.0                     | 2                       | 18.0%   | 2          | 18.0%       | 3         | 25,660               | 2           | 1                          | 1                  | 3      | 29,715    | 5      | 327,316            | 2      | 56.0%                | 3                     |
| Binh Thuan | B-1       | FBS-11 | 14.0               | 3      | 0.0%             | 3           | 1.9                     | 2                       | 6.3%    | 1          | 0.0%        | 1         | 37,857               | 3           | 0                          | 1                  | 2      | 7,378     | 3      | 428,214            | 3      | 54.3%                | 3                     |
| Dim Thuản  | B-3,5,6,7 | FBG-13 | 11.8               | 3      | 0.0%             | 3           | 1.0                     | 2                       | 13.0%   | 2          | 2.0%        | 1         | 23,952               | 2           | 0                          | 0                  | 1      | 52,241    | 5      | 346,902            | 2      | 44.0%                | 2                     |

Final Report – Supporting - Chapter13 Selection of the Target Communes for FS

<sup>0: 1</sup>pts

<sup>1: 2</sup>pts 2: 3pts

|            |           | 10010 10110                  | L'uluunon of got                   |                                       |                                                                              |       |
|------------|-----------|------------------------------|------------------------------------|---------------------------------------|------------------------------------------------------------------------------|-------|
| Province   | Code      | Scarcity of Potable<br>Water | Effectiveness to poverty reduction | Active participation of the community | Technical<br>rationality to install<br>house connection<br>using groundwater | Total |
|            | P-1       | 6                            | 3                                  | 3                                     | 9                                                                            | 21    |
|            | P-2       | 7                            | 3                                  | 5                                     | 8                                                                            | 23    |
| Phu Yen    | P-4       | 9                            | 2                                  | 3                                     | 9                                                                            | 23    |
|            | P-5,6,7   | 8                            | 6                                  | 4                                     | 10                                                                           | 28    |
|            | P-8       | 7                            | 4                                  | 4                                     | 7                                                                            | 22    |
| Khanh Hoa  | K-1       | 3                            | 3                                  | 3                                     | 7                                                                            | 16    |
| кпапп поа  | K-3       | 9                            | 2                                  | 5                                     | 9                                                                            | 25    |
| Ninh Thuan | N-5,6     | 4                            | 5                                  | 5                                     | 10                                                                           | 24    |
| Dinh Thuan | B-1       | 8                            | 2                                  | 5                                     | 9                                                                            | 24    |
| Binh Thuan | B-3,5,6,7 | 8                            | 3                                  | 3                                     | 9                                                                            | 23    |

## Table 13.1.6 Evaluation of Socio-economic Conditions

# Table 13.1.7 Evaluation for Priority Commune (Groundwater Sources)

|              |         | (1) Score of                 |                                | (2) Technical conditions   |                                       |                          |                            |  |
|--------------|---------|------------------------------|--------------------------------|----------------------------|---------------------------------------|--------------------------|----------------------------|--|
| Facility No. | Commune | socio-economic<br>conditions | (2-1) Water yield of test well | (2-2) Raw water<br>quality | (2-3) Difficulty in well construction | (3) Financial conditions | Total Score<br>(1)+(2)+(3) |  |
| FPS-3        | P-4     | 23                           | 5                              | 5                          | 3                                     | 5                        | 41                         |  |
| FPS-5        | P-8     | 22                           | 5                              | 5                          | 5                                     | 5                        | 42                         |  |
| FKS-6        | K-1     | 16                           | 5                              | 3                          | 3                                     | 5                        | 32                         |  |

| Facility No. | Commune             | (1) Score of   |                 | (2) Te          | echnical conditions |                | -             | (3) Financial | Total Score |
|--------------|---------------------|----------------|-----------------|-----------------|---------------------|----------------|---------------|---------------|-------------|
|              |                     | socio-economic | (2-1) Raw water | (2-2) Raw water | (2-3) Difficulty    | (2-4) Distance | (2-5)         | conditions    | (1)+(2)+(3) |
|              |                     | conditions     | flow capacity   | quality         | in intake           | between        | Difficulty in |               |             |
|              |                     |                |                 |                 | construction        | intake and     | transmission  |               |             |
|              |                     |                |                 |                 |                     | service area   | pipe          |               |             |
|              |                     |                |                 |                 |                     |                | construction  |               |             |
| FPS-1        | P-1                 | 21             | 5               | 3               | 1                   | 1              | 1             | 1             | 33          |
| FPS-2        | P-2                 | 23             | 5               | 3               | 5                   | 5              | 3             | 3             | 47          |
| FPG-4        | P-5,6,7             | 28             | 5               | 3               | 1                   | 5              | 1             | 5             | 48          |
| FKS-8        | K-3                 | 25             | 5               | 3               | 3                   | 5              | 1             | 1             | 43          |
| FNG-10       | N-5,6               | 24             | 5               | 3               | 1                   | 3              | 1             | 3             | 40          |
| FBS-11       | B-1                 | 24             | 5               | 3               | 3                   | 5              | 3             | 3             | 46          |
| FBG-13       | B-3,5,6,7           | 23             | 5               | 3               | 1                   | 5              | 5             | 5             | 47          |
| (Note)       | Scoring             |                |                 |                 |                     |                |               |               |             |
|              | (1) Socio -economic | conditions     |                 |                 |                     |                |               |               |             |

 Table 13.1.8
 Evaluation for Priority Commune (Alternative Water Sources)

Total score of evaluation in the 1st fiscal year study

(2) Technical conditions

2-1) Raw water flow capacity

2-2) Raw Water quality

2-3) Difficulty in intake construction

2-4) Distance between intake and service area

2-5) Difficulty in transmission pipe construction

(3) Financial conditions

Construction cost per population served (X)

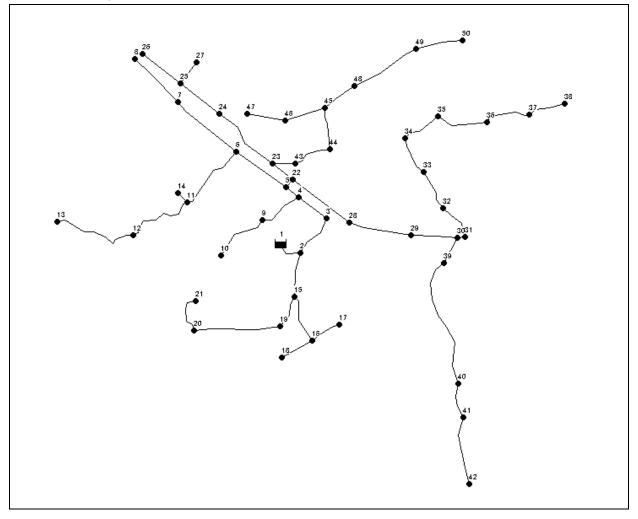
1pt: Not enough 3pts: Marginal in dry season 5pts: Good 1pt: High risk of contaminated by heavy metal or pesticide 3pts: Requires normal treatment 5pts: No treatment 1pt: River intake 3pts: Connection with irrigation channel 5pts: Connection with exiting pipe 1pt: 15km < X 3pts: 10km < X < 15km 5pts: X < 10km 1pt: Crossing big river or national road (class I) 3pts: Crossing railway or small river 5pts: Not found

1pt: VND 4.0 million < X 3pts: VND 3 million < X < VND 4 million 5pts: X < VND 3 million

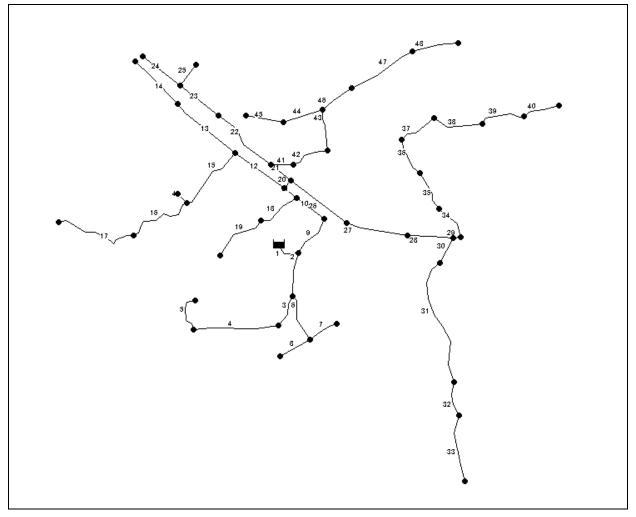
Final Report – Supporting - Chapter13 Selection of the Target Communes for FS

# CHAPTER 14

PIPE NETWORK ANALYSIS


# CHAPTER 14 PIPE NETWORK ANALYSIS

# 14.1 FPS-2

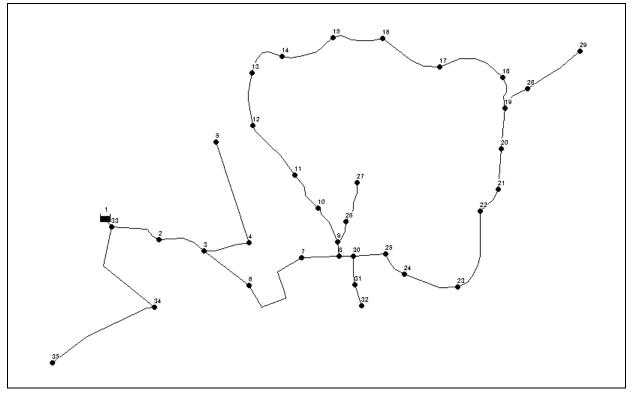

(1) Result of distribution network analysis

|                    |                 |                | ble – Nodes  |              |          |                    |                | Netw     | ork Table - | Links        |          |                   |
|--------------------|-----------------|----------------|--------------|--------------|----------|--------------------|----------------|----------|-------------|--------------|----------|-------------------|
|                    | Elevation       | Base           | Demand       | Head         | Pressure |                    | Length         | Diameter | Roughness   | Flow         | Velocity | Unit              |
| Node ID            | m               | Demand<br>m3∕d | m3/d         | m            | m        | Link ID            | m              | mm       | -           | m3/d         | m/s      | Headloss<br>m/km  |
| Resvr 1            | 41              | iiio/ u        | -1200.6      | 41.0         |          | Pipe 1             | 213.7          | 200      | 110         | 1200.6       | 0.4      | 1.6               |
| Junc 2             | 10              | 18.3           | 36.6         | 40.7         |          | Pipe 2             | 384.9          | 65       | 110         | 170.8        | 0.6      | 10.5              |
| June 3             | 10              | 12.2           | 24.4         | 40.2         |          | Pipe 3             | 289.5          | 50       | 110         | 73.2         | 0.4      | 7.9               |
| Junc 4             | 20              | 12.2           | 24.4         | 39.9         |          | Pipe 4             | 740.3          | 50       | 110         | 48.8         | 0.3      | 3.7               |
| Junc 5             | 15              | 12.2           | 24.4         | 39.8         |          | Pipe 5             | 349.6          | 50       | 110         | 24.4         | 0.1      | 1.0               |
| Junc 6             | 10              | 12.2           | 24.4         | 39.6         | 29.6     | Pipe 6             | 423.5          | 50       | 110         | 73.2         | 0.4      | 7.9               |
| Junc 7             | 15              | 12.2           | 24.4         | 39.5         | 24.5     | Pipe 7             | 269.5          | 50       | 110         | 24.4         | 0.1      | 1.0               |
| Junc 8             | 15              | 12.2           | 24.4         | 39.5         | 24.5     | Pipe 8             | 294.1          | 50       | 110         | 24.4         | 0.1      | 1.0               |
| Junc 9             | 25              | 12.2           | 24.4         | 38.5         |          | Pipe 9             | 386.6          | 200      | 110         | 993.2        | 0.4      | 1.2               |
| Junc 10            | 30              | 12.2           | 24.4         | 37.9         |          | Pipe 10            | 302.2          | 200      | 110         | 968.8        | 0.4      | 1.1               |
| Junc 11            | 10              | 6.1            | 12.2         | 39.4         |          | Pipe 11            | 134.7          | 200      | 110         | 895.6        | 0.3      | 1.0               |
| Junc 12            | 10              | 12.2           | 24.4         | 39.3         |          | Pipe 12            | 526.6          | 125      | 110         | 146.4        | 0.1      | 0.3               |
| Junc 13            | 20              | 12.2           | 24.4         | 39.3         |          | Pipe 13            | 658.0          | 100      | 110         | 48.8         | 0.1      | 0.1               |
| Junc 14            | 15              | 6.1            | 12.2         | 39.4         |          | Pipe 14            | 521.5          | 100      | 110         | 24.4         | 0.0      | 0.0               |
| Junc 15            | 10              | 12.2           | 24.4         | 36.6         |          | Pipe 15            | 629.7          | 100      | 110         | 73.2         | 0.1      | 0.3               |
| Junc 16            | 20              | 12.2           | 24.4         | 33.3         |          | Pipe 16            | 623.7          | 100      | 110         | 48.8         | 0.1      | 0.1               |
| Junc 17            | 20              | 12.2           | 24.4         | 33.0         |          | Pipe 17            | 727.4          | 100      | 110         | 24.4         | 0.0      | 0.0               |
| Junc 18            | <u>20</u><br>10 | 12.2           | 24.4         | 33.0         |          | Pipe 18            | 384.2          | 50<br>50 | 110<br>110  | 48.8<br>24.4 | 0.3      | <u>3.7</u><br>1.0 |
| Junc 19<br>Junc 20 | 10              | 12.2<br>12.2   | 24.4<br>24.4 | 34.3<br>31.6 |          | Pipe 19<br>Pipe 20 | 495.6<br>90.9  | 200      | 110         | 724.8        | 0.1      | 0.6               |
| Junc 20            | 20              | 12.2           | 24.4         | 31.0         |          | Pipe 20<br>Pipe 21 | 226.0          | 125      | 110         | 339.2        | 0.3      | 1.6               |
| June 22            | 10              | 12.2           | 24.4         | 39.7         |          | Pipe 21<br>Pipe 22 | 640.6          | 50       | 110         | 48.8         | 0.3      | 3.7               |
| June 23            | 10              | 24.4           | 48.8         | 39.3         |          | Pipe 22<br>Pipe 23 | 420.3          | 50       | 110         | 48.8         | 0.3      | 3.7               |
| Junc 24            | 0               | 0.0            | 0.0          | 37.0         |          | Pipe 24            | 410.3          | 50       | 110         | 24.4         | 0.0      | 1.0               |
| June 25            | 0               | 0.0            | 0.0          | 35.4         |          | Pipe 25            | 228.2          | 50       | 110         | 24.4         | 0.1      | 1.0               |
| Junc 26            | 15              | 12.2           | 24.4         | 35.0         |          | Pipe 26            | 606.7          | 125      | 110         | 361.2        | 0.3      | 1.7               |
| Junc 27            | 10              | 12.2           | 24.4         | 35.2         |          | Pipe 27            | 545.2          | 125      | 110         | 361.2        | 0.3      | 1.7               |
| Junc 28            | 10              | 0.0            | 0.0          | 38.6         |          | Pipe 28            | 398.7          | 125      | 110         | 361.2        | 0.3      | 1.7               |
| Junc 29            | 10              | 0.0            | 0.0          | 37.7         | 27.7     | Pipe 29            | 61.5           | 125      | 110         | 239.2        | 0.2      | 0.8               |
| Junc 30            | 20              | 12.2           | 24.4         | 37.0         | 17.0     | Pipe 30            | 249.0          | 80       | 110         | 97.6         | 0.2      | 1.4               |
| Junc 31            | 20              | 12.2           | 24.4         | 36.9         |          | Pipe 31            | 1143.8         | 80       | 110         | 73.2         | 0.2      | 0.8               |
| Junc 32            | 15              | 23.2           | 46.4         | 36.3         |          | Pipe 32            | 302.5          | 80       | 110         | 48.8         | 0.1      | 0.4               |
| Junc 33            | 20              | 23.2           | 46.4         | 35.8         |          | Pipe 33            | 588.9          | 80       | 110         | 24.4         | 0.1      | 0.1               |
| Junc 34            | 10              | 12.2           | 24.4         | 35.6         |          | Pipe 34            | 327.7          | 100      | 110         | 214.8        | 0.3      | 2.0               |
| Junc 35            | 15              | 12.2           | 24.4         | 35.4         |          | Pipe 35            | 365.4          | 100      | 110         | 168.4        | 0.3      | 1.3               |
| Junc 36            | 20              | 12.2           | 24.4         | 35.3         |          | Pipe 36            | 339.9          | 100      | 110         | 122.0        | 0.2      | 0.7               |
| Junc 37            | 20              | 12.2           | 24.4         | 35.3         |          | Pipe 37            | 342.2          | 100      | 110         | 97.6         | 0.1      | 0.5               |
| June 38            | 20              | 12.2           | 24.4<br>24.4 | 35.3<br>36.7 |          | Pipe 38            | 445.7<br>407.2 | 100      | 110<br>110  | 73.2<br>48.8 | 0.1      | 0.3               |
| Junc 39<br>Junc 40 | 25<br>15        | 12.2<br>12.2   | 24.4         | 36.7         |          | Pipe 39<br>Pipe 40 | 320.1          | 80<br>80 | 110         | 48.8         | 0.1      | 0.4               |
| Junc 40<br>Junc 41 | 20              | 12.2           | 24.4         | 35.7         |          | Pipe 40<br>Pipe 41 | 194.9          | 125      | 110         | 24.4         | 0.1      | 0.1               |
| June 41            | 20              | 12.2           | 24.4         | 35.6         |          | Pipe 41<br>Pipe 42 | 339.5          | 125      | 110         | 192.8        | 0.2      | 0.8               |
| June 42            | 10              | 24.4           | 48.8         | 39.2         |          | Pipe 42<br>Pipe 43 | 354.4          | 125      | 110         | 168.4        | 0.2      | 0.3               |
| Junc 44            | 10              | 12.2           | 24.4         | 39.0         |          | Pipe 43            | 359.1          | 50       | 110         | 48.8         | 0.2      | 3.7               |
| Junc 45            | 10              | 12.2           | 24.4         | 38.8         |          | Pipe 45            | 334.5          | 50       | 110         | 24.4         | 0.1      | 1.0               |
| Junc 46            | 10              | 12.2           | 24.4         | 37.5         |          | Pipe 46            | 318.9          | 80       | 110         | 95.2         | 0.1      | 1.0               |
| Junc 47            | 10              | 12.2           | 24.4         | 37.2         | 27.2     | Pipe 47            | 615.9          | 80       | 110         | 48.8         | 0.1      | 0.4               |
| June 48            | 10              | 23.2           | 46.4         | 38.4         |          | Pipe 48            | 407.7          | 80       | 110         | 24.4         | 0.1      | 0.1               |
| Junc 49            | 10              | 12.2           | 24.4         | 38.2         |          | Pipe 49            | 114.2          | 50       | 110         | 12.2         | 0.1      | 0.3               |
| Junc 50            | 10              | 12.2           | 24.4         | 38.2         | 28.2     |                    |                |          |             |              |          |                   |

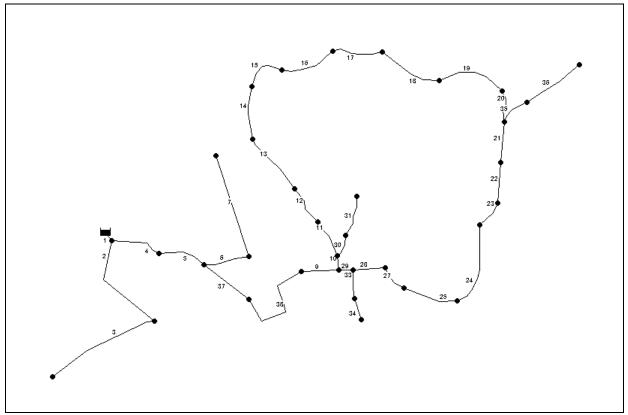
# (2) Location of junctions



# (3) Location of links




# 14.2 FPS-3

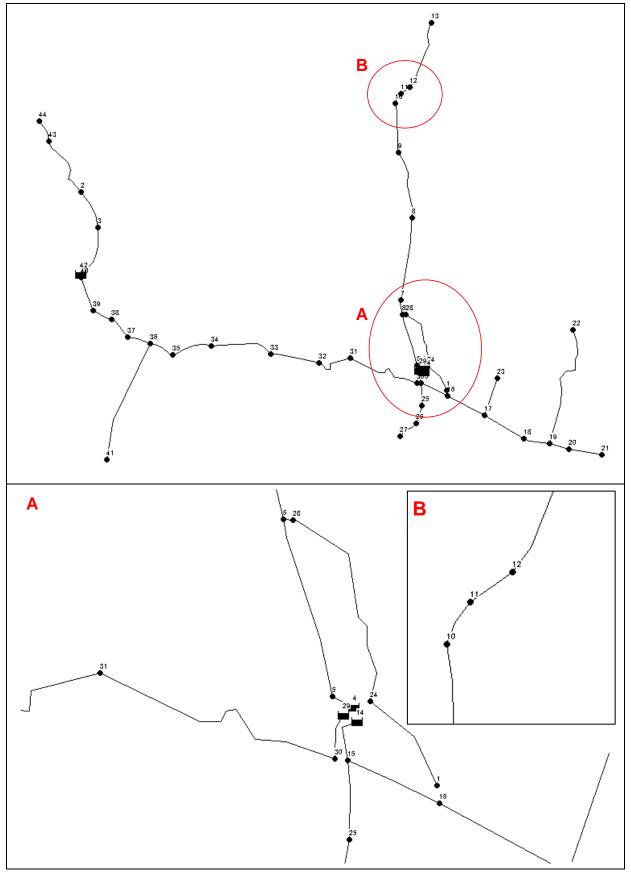

(1) Result of distribution network analysis

|         |           | Network Ta     | ble - Nodes |      |          |         |        | Netw     | ork Table - | Links  |          |                  |
|---------|-----------|----------------|-------------|------|----------|---------|--------|----------|-------------|--------|----------|------------------|
|         | Elevation | Base<br>Demand | Demand      | Head | Pressure |         | Length | Diameter | Roughness   | Flow   | Velocity | Unit<br>Headloss |
| Node ID | m         | m3/d           | m3/d        | m    | m        | Link ID | m      | mm       |             | m3/d   | m/s      | m/km             |
| Resvr 1 | 54        |                | -2402.4     | 54.0 | 0.0      | Pipe 1  | 77.8   | 250      | 110         | 2402.4 | 0.6      | 2.0              |
| Junc 2  | 20        | 36.4           | 72.8        | 53.1 | 33.1     | Pipe 2  | 787.7  | 50       | 110         | 60.8   | 0.4      | 5.6              |
| Junc 3  | 10        | 36.4           | 72.8        | 52.5 | 42.5     | Pipe 3  | 879.2  | 50       | 110         | 40.0   | 0.2      | 2.6              |
| Junc 4  | 10        | 36.4           | 72.8        | 42.9 | 32.9     | Pipe 4  | 384.7  | 250      | 110         | 2341.6 | 0.6      | 1.9              |
| Junc 5  | 10        | 36.4           | 72.8        | 36.7 | 26.7     | Pipe 5  | 368.6  | 250      | 110         | 2268.8 | 0.5      | 1.8              |
| Junc 6  | 10        | 36.4           | 72.8        | 51.8 | 41.8     | Pipe 6  | 340.4  | 50       | 110         | 145.6  | 0.9      | 28.1             |
| Junc 7  | 10        | 36.4           | 72.8        | 50.7 | 40.7     | Pipe 7  | 794.5  | 50       | 110         | 72.8   | 0.4      | 7.8              |
| Junc 8  | 10        | 62.4           | 124.8       | 50.4 | 40.4     | Pipe 9  | 282.3  | 250      | 110         | 1904.8 | 0.5      | 1.3              |
| Junc 9  | 10        | 46.4           | 92.8        | 50.3 | 40.3     | Pipe 10 | 105.9  | 200      | 110         | 906.1  | 0.3      | 1.0              |
| Junc 10 | 10        | 36.4           | 72.8        | 50.1 | 40.1     | Pipe 11 | 298.4  | 200      | 110         | 667.7  | 0.3      | 0.6              |
| Junc 11 | 10        | 36.4           | 72.8        | 50.0 | 40.0     | Pipe 12 | 314.9  | 200      | 110         | 594.9  | 0.2      | 0.4              |
| Junc 12 | 10        | 36.4           | 72.8        | 49.8 | 39.8     | Pipe 13 | 490.6  | 200      | 110         | 522.1  | 0.2      | 0.4              |
| Junc 13 | 10        | 36.4           | 72.8        | 49.7 | 39.7     | Pipe 14 | 396.2  | 200      | 110         | 449.3  | 0.2      | 0.3              |
| Junc 14 | 15        | 36.4           | 72.8        | 49.6 | 34.6     | Pipe 15 | 329.8  | 200      | 110         | 376.5  | 0.1      | 0.2              |
| Junc 15 | 15        | 36.4           | 72.8        | 49.4 | 34.4     | Pipe 16 | 427.6  | 150      | 110         | 303.7  | 0.2      | 0.5              |
| Junc 16 | 20        | 36.4           | 72.8        | 49.3 | 29.3     | Pipe 17 | 382.7  | 150      | 110         | 230.9  | 0.2      | 0.3              |
| Junc 17 | 10        | 36.4           | 72.8        | 48.7 | 38.7     | Pipe 18 | 490.5  | 100      | 110         | 158.1  | 0.2      | 1.1              |
| Junc 18 | 10        | 36.4           | 72.8        | 48.5 | 38.5     | Pipe 19 | 529.3  | 100      | 110         | 85.3   | 0.1      | 0.4              |
| Junc 19 | 10        | 36.4           | 72.8        | 48.5 | 38.5     | Pipe 20 | 237.7  | 100      | 110         | 12.5   | 0.0      | 0.0              |
| Junc 20 | 10        | 36.4           | 72.8        | 48.6 | 38.6     | Pipe 21 | 305.8  | 150      | 110         | -205.9 | 0.1      | 0.3              |
| Junc 21 | 10        | 36.4           | 72.8        | 48.8 | 38.8     | Pipe 22 | 306.0  | 150      | 110         | -278.7 | 0.2      | 0.4              |
| Junc 22 | 10        | 36.4           | 72.8        | 48.9 | 38.9     | Pipe 23 | 214.2  | 150      | 110         | -351.5 | 0.2      | 0.7              |
| Junc 23 | 10        | 36.4           | 72.8        | 49.5 | 39.5     | Pipe 24 | 640.9  | 150      | 110         | -424.3 | 0.3      | 1.0              |
| Junc 24 | 10        | 36.4           | 72.8        | 50.1 | 40.1     | Pipe 25 | 417.7  | 150      | 110         | -497.1 | 0.3      | 1.3              |
| Junc 25 | 10        | 36.4           | 72.8        | 50.1 | 40.1     | Pipe 27 | 217.1  | 200      | 110         | -569.9 | 0.2      | 0.4              |
| Junc 26 | 10        | 36.4           | 72.8        | 49.8 | 39.8     | Pipe 28 | 246.5  | 200      | 110         | -642.7 | 0.2      | 0.5              |
| Junc 27 | 10        | 36.4           | 72.8        | 49.5 | 39.5     | Pipe 29 | 102.4  | 200      | 110         | -873.9 | 0.3      | 0.9              |
| Junc 28 | 10        | 36.4           | 72.8        | 47.9 | 37.9     | Pipe 30 | 173.3  | 80       | 110         | 145.6  | 0.3      | 2.9              |
| Junc 29 | 10        | 36.4           | 72.8        | 44.1 | 34.1     | Pipe 31 | 316.3  | 80       | 110         | 72.8   | 0.2      | 0.8              |
| Junc 30 | 10        | 42.8           | 85.6        | 50.3 | 40.3     | Pipe 33 | 214.8  | 50       | 110         | 145.6  | 0.9      | 28.1             |
| Junc 31 | 10        | 36.4           | 72.8        | 44.2 | 34.2     | Pipe 34 | 164.1  | 50       | 110         | 72.8   | 0.4      | 7.8              |
| Junc 32 | 10        | 36.4           | 72.8        | 43.0 | 33.0     | Pipe 35 | 231.0  | 80       | 110         | 145.6  | 0.3      | 2.9              |
| Junc 33 | 40        | 0.0            | 0.0         | 53.9 | 13.9     | Pipe 36 | 485.1  | 50       | 110         | 72.8   | 0.4      | 7.8              |
| Junc 34 | 10        | 10.4           | 20.8        | 49.5 | 39.5     | Pipe 37 | 425.5  | 250      | 110         | 2050.4 | 0.5      | 1.5              |
| Junc 35 | 40        | 20.0           | 40.0        | 47.2 | 7.2      | Pipe 38 | 791.6  | 250      | 110         | 1977.6 | 0.5      | 1.4              |

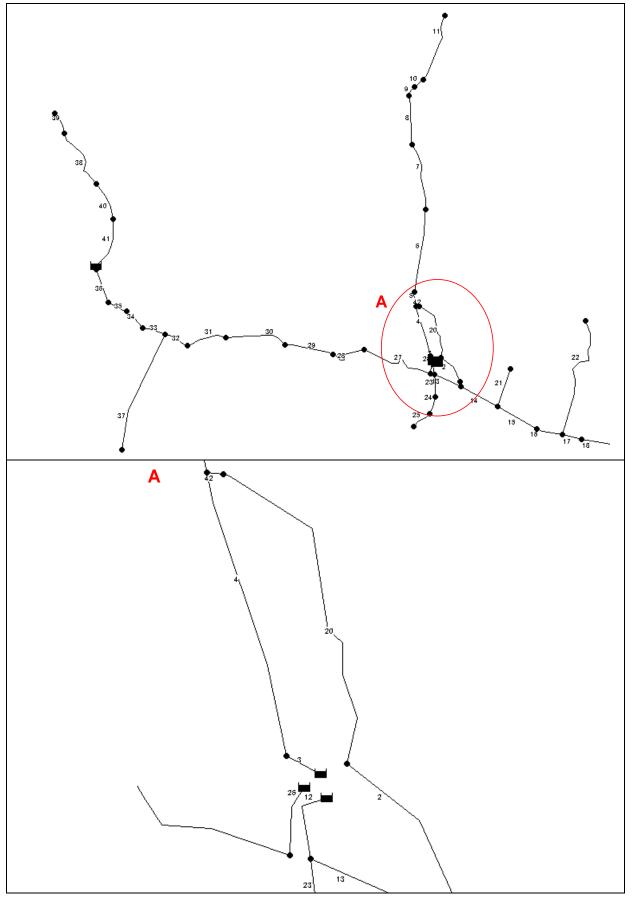
# (2) Location of junctions



# (3) Location of links




# 14.3 FPG-4

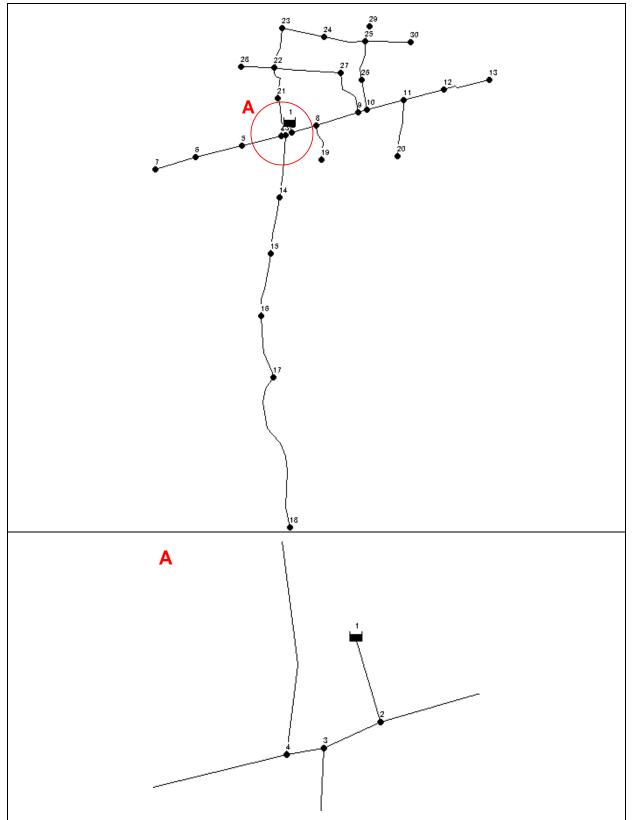

(1) Result of distribution network analysis

|          |           | Network Ta     | ble – Nodes |       |          |         |        | Netw     | ork Table - I | Links  |          |                  |
|----------|-----------|----------------|-------------|-------|----------|---------|--------|----------|---------------|--------|----------|------------------|
|          | Elevation | Base<br>Demand | Demand      | Head  | Pressure |         | Length | Diameter | Roughness     | Flow   | Velocity | Unit<br>Headloss |
| Node ID  | m         | m3/d           | m3/d        | m     | m        | Link ID | m      | mm       |               | m3/d   | m/s      | m/km             |
| Resvr 4  | 215       |                | -621.4      | 215.0 | 0.0      | Pipe 3  | 173.3  | 150      | 110           | 621.4  | 0.4      | 2.0              |
| Resvr 14 | 130       |                | -960.0      | 130.0 | 0.0      | Pipe 4  | 1352.5 | 150      | 110           | 601.4  | 0.4      | 1.8              |
| Resvr 29 | 211       |                | -468.6      | 211.0 | 0.0      | Pipe 5  | 384.0  | 150      | 110           | 561.4  | 0.4      | 1.6              |
| Resvr 42 | 240       |                | -133.6      | 240.0 | 0.0      | Pipe 6  | 2145.6 | 150      | 110           | 481.2  | 0.3      | 1.2              |
| Junc 5   | 120       | 10.0           | 20.0        | 214.7 | 94.7     | Pipe 7  | 1754.3 | 150      | 110           | 401.0  | 0.3      | 0.9              |
| Junc 6   | 140       | 10.0           | 20.0        | 212.2 | 72.2     | Pipe 8  | 1265.9 | 150      | 110           | 320.8  | 0.2      | 0.6              |
| Junc 7   | 140       | 40.1           | 80.2        | 211.6 |          | Pipe 9  | 282.5  | 150      | 110           | 240.6  | 0.2      | 0.3              |
| Junc 8   | 140       | 40.1           | 80.2        | 208.9 | 68.9     | Pipe 10 | 297.4  | 150      | 110           | 160.4  | 0.1      | 0.2              |
| Junc 9   | 140       | 40.1           | 80.2        | 207.4 |          | Pipe 11 | 1786.1 | 150      | 110           | 80.2   | 0.1      | 0.0              |
| Junc 10  | 160       | 40.1           | 80.2        | 206.7 |          | Pipe 12 | 361.4  | 200      | 110           | 960.0  | 0.4      | 1.1              |
| Junc 11  | 160       | 40.1           | 80.2        | 206.6 |          | Pipe 13 | 748.6  | 200      | 110           | 640.0  | 0.2      | 0.5              |
| Junc 12  | 150       | 40.1           | 80.2        | 206.5 |          | Pipe 14 | 1082.6 | 200      | 110           | 560.0  | 0.2      | 0.4              |
| Junc 13  | 170       | 40.1           | 80.2        | 206.5 | 36.5     | Pipe 15 | 1189.4 | 200      | 110           | 400.0  | 0.2      | 0.2              |
| Junc 15  | 120       | 40.0           | 80.0        | 129.6 |          | Pipe 16 | 667.9  | 200      | 110           | 320.0  | 0.1      | 0.1              |
| Junc 16  | 120       | 40.0           | 80.0        | 129.2 | 9.2      | Pipe 17 | 528.2  | 200      | 110           | 160.0  | 0.1      | 0.0              |
| Junc 17  | 100       | 40.0           | 80.0        | 128.8 |          | Pipe 18 | 869.5  | 200      | 110           | 80.0   | 0.0      | 0.0              |
| Junc 18  | 90        | 40.0           | 80.0        | 128.6 |          | Pipe 20 | 1610.8 | 50       | 110           | -20.0  | 0.1      | 0.7              |
| Junc 19  | 80        | 40.0           | 80.0        | 128.5 |          | Pipe 21 | 1023.2 | 50       | 110           | 80.0   | 0.5      | 9.3              |
| Junc 20  | 80        | 40.0           | 80.0        | 128.4 |          | Pipe 22 | 3295.2 | 50       | 110           | 80.0   | 0.5      | 9.3              |
| Junc 21  | 70        | 40.0           | 80.0        | 128.4 |          | Pipe 23 | 581.9  | 100      | 110           | 240.0  | 0.4      | 2.4              |
| Junc 22  | 60        | 40.0           | 80.0        | 97.9  |          | Pipe 24 | 474.3  | 100      | 110           | 160.0  | 0.2      | 1.1              |
| Junc 23  | 90        | 40.0           | 80.0        | 119.3 |          | Pipe 25 | 540.4  | 100      | 110           | 80.0   | 0.1      | 0.3              |
| Junc 24  | 130       | 5.0            | 10.0        | 211.0 |          | Pipe 26 | 326.9  | 150      | 110           | 468.6  | 0.3      | 1.2              |
| Junc 25  | 110       | 40.0           | 80.0        | 128.2 |          | Pipe 27 | 2008.4 | 150      | 110           | 388.6  | 0.3      | 0.8              |
| Junc 26  | 100       | 40.0           | 80.0        | 127.7 |          | Pipe 28 | 1022.5 | 150      | 110           | 308.6  | 0.2      | 0.5              |
| Junc 27  | 100       | 40.0           | 80.0        | 127.5 |          | Pipe 29 | 1272.8 | 150      | 110           | 308.6  | 0.2      | 0.5              |
| Junc 28  | 140       | 0.0            | 0.0         | 212.1 |          | Pipe 30 | 1632.8 | 150      | 110           | 278.4  | 0.2      | 0.4              |
| Junc 30  | 120       | 40.0           | 80.0        | 210.6 |          | Pipe 31 | 1059.2 | 150      | 110           | 248.2  | 0.2      | 0.4              |
| Junc 31  | 120       | 40.0           | 80.0        | 209.0 |          | Pipe 32 | 670.0  | 150      | 110           | 218.0  | 0.1      | 0.3              |
| Junc 32  | 110       | 0.0            | 0.0         | 208.4 |          | Pipe 33 | 613.2  | 150      | 110           | 177.8  | 0.1      | 0.2              |
| Junc 33  | 130       | 15.1           | 30.2        | 207.7 |          | Pipe 34 | 604.7  | 150      | 110           | 147.6  | 0.1      | 0.1              |
| Junc 34  | 160       | 15.1           | 30.2        | 207.0 |          | Pipe 35 | 541.1  | 150      | 110           | 97.2   | 0.1      | 0.1              |
| Junc 35  | 160       | 15.1           | 30.2        | 206.6 | 46.6     | Pipe 36 | 909.7  | 150      | 110           | 67.0   | 0.0      | 0.0              |
| Junc 36  | 160       | 15.1           | 30.2        | 206.5 |          | Pipe 37 | 3217.6 | 50       | 110           | 10.0   | 0.1      | 0.2              |
| Junc 37  | 160       | 15.1           | 30.2        | 206.3 | 46.3     | Pipe 39 | 588.8  | 50       | 110           | 33.4   | 0.2      | 1.8              |
| Junc 38  | 160       | 25.2           | 50.4        | 206.3 | 46.3     | Pipe 2  | 1000.0 | 50       | 110           | 10.0   | 0.1      | 0.2              |
| Junc 39  | 180       | 15.1           | 30.2        | 206.2 | 26.2     | Pipe 38 | 1674.5 | 50       | 110           | -66.8  | 0.4      | 6.6              |
| Junc 40  | 189       | 33.5           | 67.0        | 206.2 |          | Pipe 40 | 1026.4 | 65       | 110           | -100.2 | 0.4      | 3.9              |
| Junc 41  | 200       | 5.0            | 10.0        | 205.8 | 5.8      | Pipe 41 | 1384.4 | 65       | 110           | -133.6 | 0.5      | 6.7              |
| Junc 43  | 160       | 16.7           | 33.4        | 215.6 | 55.6     | Pipe 42 | 76.4   | 50       | 110           | 20.0   | 0.1      | 0.7              |
| Junc 44  | 160       | 16.7           | 33.4        | 214.6 | 54.6     |         |        |          |               |        |          |                  |
| Junc 1   | 120       | 5.0            | 10.0        | 210.8 | 90.8     |         |        |          |               |        |          |                  |
| Junc 2   | 220       | 16.7           | 33.4        | 226.7 | 6.7      |         |        |          |               |        |          |                  |
| Junc 3   | 220       | 16.7           | 33.4        | 230.8 | 10.8     |         |        |          |               |        |          |                  |

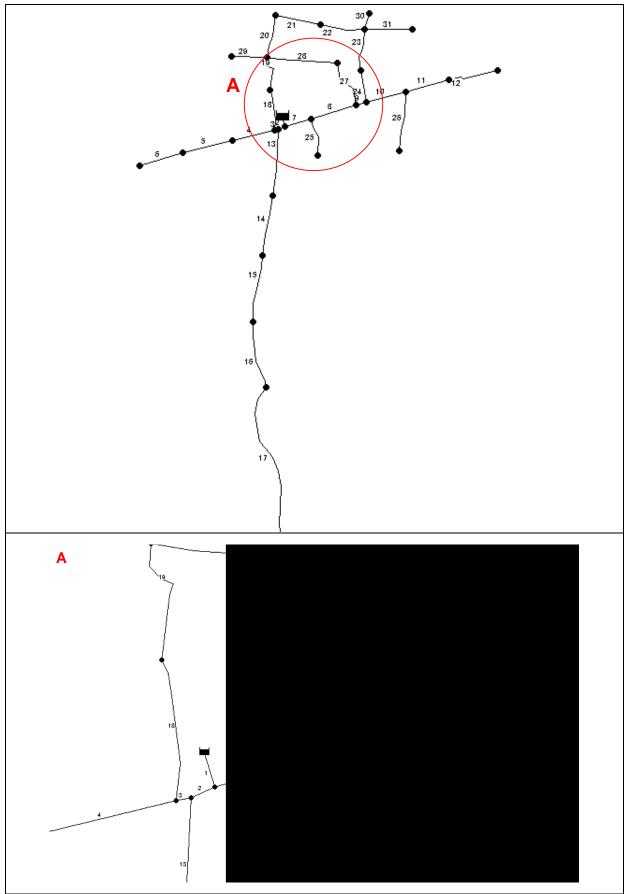
# (2) Location of junctions



# (3) Location of links




# 14.4 FPS-5

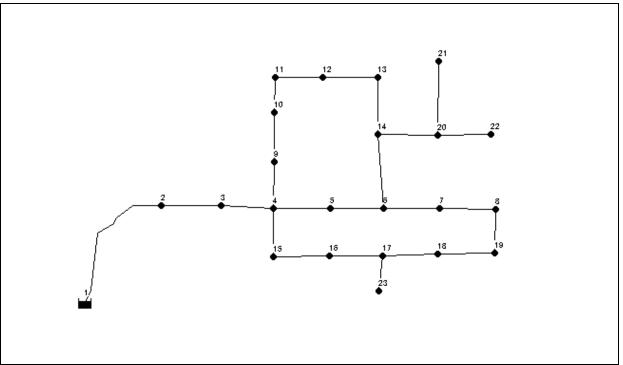

(1) Result of distribution network analysis

|         |           | Network Ta     | ble - Nodes | ;    |          |         |        | Netw     | ork Table - | Links  |          |                  |
|---------|-----------|----------------|-------------|------|----------|---------|--------|----------|-------------|--------|----------|------------------|
|         | Elevation | Base<br>Demand | Demand      | Head | Pressure |         | Length | Diameter | Roughness   | Flow   | Velocity | Unit<br>Headloss |
| Node ID | m         | m3/d           | m3/d        | m    | m        | Link ID | m      | mm       |             | m3/d   | m/s      | m/km             |
| Resvr 1 | 68        |                | -1560.2     | 68.0 | 0.0      | Pipe 1  | 113.4  | 200      | 110         | 1560.2 | 0.6      | 2.7              |
| Junc 2  | 55        | 26.9           | 53.8        | 67.7 | 12.7     | Pipe 2  | 79.7   | 150      | 110         | 632.6  | 0.4      | 2.0              |
| Junc 3  | 55        | 26.9           | 53.8        | 67.5 | 12.5     | Pipe 3  | 48.0   | 150      | 110         | 538.8  | 0.4      | 1.5              |
| Junc 4  | 55        | 26.9           | 53.8        | 67.5 | 12.5     | Pipe 4  | 469.8  | 150      | 110         | 161.4  | 0.1      | 0.2              |
| Junc 5  | 60        | 26.9           | 53.8        | 67.4 | 7.4      | Pipe 5  | 550.8  | 150      | 110         | 107.6  | 0.1      | 0.1              |
| Junc 6  | 60        | 26.9           | 53.8        | 67.4 | 7.4      | Pipe 6  | 493.1  | 150      | 110         | 53.8   | 0.0      | 0.0              |
| Junc 7  | 60        | 26.9           | 53.8        | 67.3 | 7.3      | Pipe 7  | 295.1  | 150      | 110         | 873.8  | 0.6      | 3.7              |
| Junc 8  | 54        | 43.8           | 87.6        | 66.6 | 12.6     | Pipe 8  | 509.7  | 150      | 110         | 732.4  | 0.5      | 2.7              |
| Junc 9  | 53        | 43.8           | 87.6        | 65.3 | 12.3     | Pipe 9  | 110.9  | 150      | 110         | 551.9  | 0.4      | 1.6              |
| Junc 10 | 52        | 26.9           | 53.8        | 65.1 | 13.1     | Pipe 10 | 440.1  | 150      | 110         | 269.0  | 0.2      | 0.4              |
| Junc 11 | 52        | 53.8           | 107.6       | 64.9 | 12.9     | Pipe 11 | 484.7  | 150      | 110         | 107.6  | 0.1      | 0.1              |
| Junc 12 | 45        | 26.9           | 53.8        | 64.9 | 19.9     | Pipe 12 | 548.0  | 150      | 110         | 53.8   | 0.0      | 0.0              |
| Junc 13 | 45        | 26.9           | 53.8        | 64.9 | 19.9     | Pipe 13 | 724.9  | 50       | 110         | 40.0   | 0.2      | 2.6              |
| Junc 14 | 45        | 0.0            | 0.0         | 65.7 | 20.7     | Pipe 14 | 652.3  | 50       | 110         | 40.0   | 0.2      | 2.6              |
| Junc 15 | 45        | 10.0           | 20.0        | 64.0 | 19.0     | Pipe 15 | 735.6  | 50       | 110         | 20.0   | 0.1      | 0.7              |
| Junc 16 | 35        | 0.0            | 0.0         | 63.5 | 28.5     | Pipe 16 | 737.6  | 50       | 110         | 20.0   | 0.1      | 0.7              |
| Junc 17 | 35        | 0.0            | 0.0         | 63.0 | 28.0     | Pipe 17 | 1843.4 | 50       | 110         | 20.0   | 0.1      | 0.7              |
| Junc 18 | 35        | 10.0           | 20.0        | 61.7 | 26.7     | Pipe 18 | 443.5  | 100      | 110         | 323.6  | 0.5      | 4.2              |
| Junc 19 | 50        | 26.9           | 53.8        | 64.8 | 14.8     | Pipe 19 | 400.2  | 100      | 110         | 269.8  | 0.4      | 3.0              |
| Junc 20 | 50        | 26.9           | 53.8        | 62.0 | 12.0     | Pipe 20 | 465.9  | 100      | 110         | 147.5  | 0.2      | 1.0              |
| Junc 21 | 55        | 26.9           | 53.8        | 65.6 | 10.6     | Pipe 21 | 495.6  | 100      | 110         | 93.7   | 0.1      | 0.4              |
| Junc 22 | 53        | 53.8           | 107.6       | 64.4 |          | Pipe 22 | 481.6  | 100      | 110         | 39.9   | 0.1      | 0.1              |
| Junc 23 | 50        | 26.9           | 53.8        | 63.9 |          | Pipe 23 | 456.2  | 100      | 110         | -175.3 | 0.3      | 1.4              |
| Junc 24 | 50        | 26.9           | 53.8        | 63.7 | 13.7     | Pipe 24 | 353.0  | 100      | 110         | -229.1 | 0.3      | 2.2              |
| Junc 25 | 45        | 53.8           | 107.6       | 63.7 | 18.7     | Pipe 25 | 419.0  | 50       | 110         | 53.8   | 0.3      | 4.4              |
| Junc 26 | 50        | 26.9           | 53.8        | 64.3 | 14.3     | Pipe 26 | 650.1  | 50       | 110         | 53.8   | 0.3      | 4.4              |
| Junc 27 | 50        | 26.9           | 53.8        | 64.6 | 14.6     | Pipe 27 | 545.4  | 80       | 110         | 92.9   | 0.2      | 1.2              |
| Junc 28 | 50        | 26.9           | 53.8        | 62.7 | 12.7     | Pipe 28 | 767.0  | 80       | 110         | 39.1   | 0.1      | 0.3              |
| Junc 29 | 40        | 26.9           | 53.8        | 62.9 |          | Pipe 29 | 390.1  | 50       | 110         | 53.8   | 0.3      | 4.4              |
| Junc 30 | 43        | 26.9           | 53.8        | 61.4 | 18.4     | Pipe 30 | 177.6  | 50       | 110         | 53.8   | 0.3      | 4.4              |
|         |           |                |             |      |          | Pipe 31 | 523.6  | 50       | 110         | 53.8   | 0.3      | 4.4              |

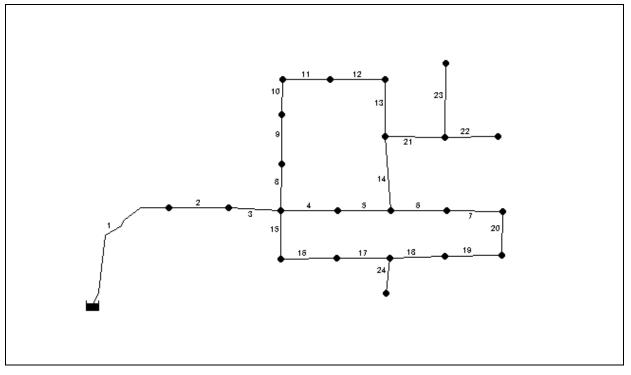
# (2) Location of junctions



# (3) Location of links




# 14.5 FKS-6

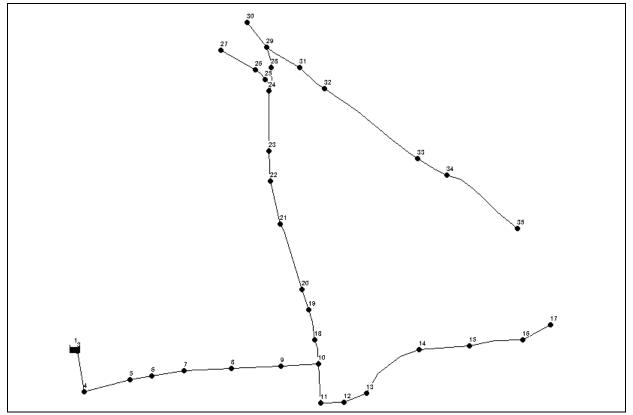

(1) Result of distribution network analysis

|         | Ν         | letwork Ta     | ble - Node: | S    |          |         |        | Netwo    | ork Table - | Links  |          |                  |
|---------|-----------|----------------|-------------|------|----------|---------|--------|----------|-------------|--------|----------|------------------|
|         | Elevation | Base<br>Demand | Demand      | Head | Pressure |         | Length | Diameter | Roughness   | Flow   | Velocity | Unit<br>Headloss |
| Node ID | m         | m3/d           | m3∕d        | m    | m        | Link ID | m      | mm       |             | m3/d   | m/s      | m/km             |
| Resvr 1 | 89        |                | -1166       | 89.0 | 0.0      | Pipe 1  | 847.4  | 200      | 110         | 1166.0 | 0.4      | 1.6              |
| Junc 2  | 60        | 26.5           | 53          | 87.7 | 27.7     | Pipe 2  | 347.1  | 200      | 110         | 1113.0 | 0.4      | 1.4              |
| Junc 3  | 60        | 26.5           | 53          | 87.2 | 27.2     | Pipe 3  | 304.8  | 200      | 110         | 1060.0 | 0.4      | 1.3              |
| Junc 4  | 60        | 26.5           | 53          | 86.8 | 26.8     | Pipe 4  | 331.1  | 200      | 110         | 593.8  | 0.2      | 0.4              |
| Junc 5  | 60        | 26.5           | 53          | 86.7 | 26.7     | Pipe 5  | 309.7  | 200      | 110         | 540.8  | 0.2      | 0.4              |
| Junc 6  | 55        | 26.5           | 53          | 86.5 | 31.5     | Pipe 6  | 325.7  | 200      | 110         | 248.1  | 0.1      | 0.1              |
| Junc 7  | 55        | 26.5           | 53          | 86.5 | 31.5     | Pipe 7  | 325.8  | 200      | 110         | 195.1  | 0.1      | 0.1              |
| Junc 8  | 55        | 26.5           | 53          | 86.5 | 31.5     | Pipe 8  | 272.4  | 100      | 110         | 237.2  | 0.4      | 2.4              |
| Junc 9  | 60        | 26.5           | 53          | 86.2 | 26.2     | Pipe 9  | 286.6  | 100      | 110         | 184.2  | 0.3      | 1.5              |
| Junc 10 | 55        | 26.5           | 53          | 85.7 | 30.7     | Pipe 10 | 199.4  | 100      | 110         | 131.2  | 0.2      | 0.8              |
| Junc 11 | 55        | 26.5           | 53          | 85.6 | 30.6     | Pipe 11 | 277.7  | 100      | 110         | 78.2   | 0.1      | 0.3              |
| Junc 12 | 55        | 26.5           | 53          | 85.5 | 30.5     | Pipe 12 | 320.4  | 100      | 110         | 25.2   | 0.0      | 0.0              |
| Junc 13 | 55        | 26.5           | 53          | 85.5 | 30.5     | Pipe 13 | 325.7  | 100      | 110         | -27.8  | 0.0      | 0.0              |
| Junc 14 | 55        | 26.5           | 53          | 85.5 | 30.5     | Pipe 14 | 433.7  | 100      | 110         | -239.8 | 0.4      | 2.4              |
| Junc 15 | 65        | 26.5           | 53          | 86.4 | 21.4     | Pipe 15 | 283.0  | 100      | 110         | 175.9  | 0.3      | 1.4              |
| Junc 16 | 65        | 26.5           | 53          | 86.2 | 21.2     | Pipe 16 | 325.8  | 100      | 110         | 122.9  | 0.2      | 0.7              |
| Junc 17 | 60        | 26.5           | 53          | 86.1 | 26.1     | Pipe 17 | 309.7  | 100      | 110         | 69.9   | 0.1      | 0.3              |
| Junc 18 | 55        | 26.5           | 53          | 86.1 | 31.1     | Pipe 18 | 320.6  | 100      | 110         | -36.1  | 0.1      | 0.1              |
| Junc 19 | 50        | 26.5           | 53          | 86.3 | 36.3     | Pipe 19 | 331.2  | 100      | 110         | -89.1  | 0.1      | 0.4              |
| Junc 20 | 55        | 26.5           | 53          | 82.3 | 27.3     | Pipe 20 | 251.0  | 100      | 110         | -142.1 | 0.2      | 0.9              |
| Junc 21 | 55        | 26.5           | 53          | 80.5 | 25.5     | Pipe 21 | 347.1  | 65       | 110         | 159.0  | 0.6      | 9.2              |
| Junc 22 | 50        | 26.5           | 53          | 81.0 | 31.0     | Pipe 22 | 309.8  | 50       | 110         | 53.0   | 0.3      | 4.3              |
| Junc 23 | 60        | 26.5           | 53          | 85.2 | 25.2     | Pipe 23 | 427.2  | 50       | 110         | 53.0   | 0.3      | 4.3              |
|         |           |                |             |      |          | Pipe 24 | 204.6  | 50       | 110         | 53.0   | 0.3      | 4.3              |

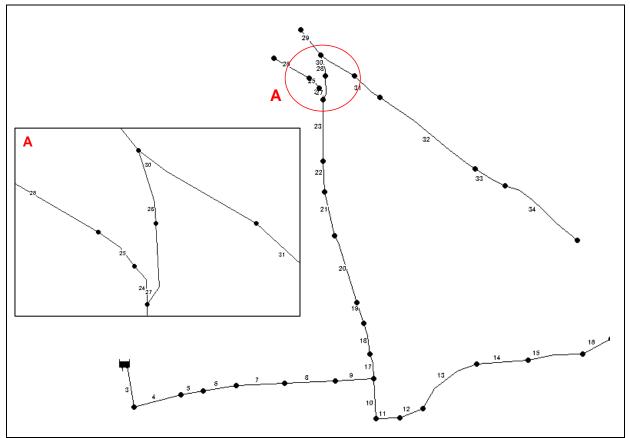
# (2) Location of junctions



# (3) Location of links




# 14.6 FKS-8


(1) Result of distribution network analysis

|         |           | Network Ta     | able - Nodes | 6    |          |         |         | Netwo    | rk Table - | Links  |          |                  |
|---------|-----------|----------------|--------------|------|----------|---------|---------|----------|------------|--------|----------|------------------|
|         | Elevation | Base<br>Demand | Demand       | Head | Pressure |         | Length  | Diameter | Roughness  | Flow   | Velocity | Unit<br>Headloss |
| Node ID | m         | m3/d           | m3/d         | m    | m        | Link ID | m       | mm       |            | m3∕d   | m/s      | m/km             |
| Resvr 1 | 49        |                | -1250.0      | 49.0 | 0.0      | Pipe 3  | 402.0   | 200      | 110        | 1212.2 | 0.5      | 1.7              |
| Junc 3  | 29        | 18.9           | 37.9         | 48.9 | 19.9     | Pipe 4  | 435.0   | 200      | 110        | 1174.3 | 0.4      | 1.6              |
| Junc 4  | 28        | 18.9           | 37.9         | 48.3 | 20.3     | Pipe 5  | 202.0   | 200      | 110        | 1136.4 | 0.4      | 1.5              |
| Junc 5  | 27        | 18.9           | 37.9         | 47.6 | 20.6     | Pipe 6  | 303.1   | 200      | 110        | 1098.5 | 0.4      | 1.4              |
| Junc 6  | 27        | 18.9           | 37.9         | 47.3 | 20.3     | Pipe 7  | 437.9   | 200      | 110        | 1060.6 | 0.4      | 1.3              |
| Junc 7  | 26        | 18.9           | 37.9         | 46.9 | 20.9     | Pipe 8  | 459.8   | 200      | 110        | 1022.8 | 0.4      | 1.2              |
| Junc 8  | 26        | 18.9           | 37.9         | 46.3 | 20.3     | Pipe 9  | 349.5   | 200      | 110        | 984.9  | 0.4      | 1.1              |
| Junc 9  | 25        | 18.9           | 37.9         | 45.8 | 20.8     | Pipe 10 | 360.2   | 100      | 110        | 228.9  | 0.3      | 2.2              |
| Junc 10 | 22        | 37.9           | 75.8         | 45.4 | 23.4     | Pipe 11 | 216.2   | 100      | 110        | 191.1  | 0.3      | 1.6              |
| Junc 11 | 22        | 18.9           | 37.9         | 44.6 | 22.6     | Pipe 12 | 226.2   | 100      | 110        | 153.2  | 0.2      | 1.1              |
| Junc 12 | 22        | 18.9           | 37.9         | 44.2 | 22.2     | Pipe 13 | 653.1   | 50       | 110        | 115.3  | 0.7      | 18.2             |
| Junc 13 | 22        | 18.9           | 37.9         | 44.0 | 22.0     | Pipe 14 | 460.7   | 50       | 110        | 96.4   | 0.6      | 13.1             |
| Junc 14 | 22        | 9.5            | 18.9         | 32.1 | 10.1     | Pipe 15 | 503.4   | 50       | 110        | 75.8   | 0.5      | 8.4              |
| Junc 15 | 19        | 9.5            | 18.9         | 26.1 | 7.1      | Pipe 16 | 289.8   | 50       | 110        | 37.9   | 0.2      | 2.3              |
| Junc 16 | 10        | 18.9           | 37.9         | 21.8 | 11.8     | Pipe 17 | 231.3   | 150      | 110        | 680.2  | 0.5      | 2.3              |
| Junc 17 | 5         | 18.9           | 37.9         | 21.2 | 16.2     | Pipe 18 | 278.9   | 150      | 110        | 642.3  | 0.4      | 2.1              |
| Junc 18 | 22        | 18.9           | 37.9         | 44.8 | 22.8     | Pipe 19 | 203.1   | 150      | 110        | 604.4  | 0.4      | 1.9              |
| Junc 19 | 20        | 18.9           | 37.9         | 44.2 | 24.2     | Pipe 20 | 636.5   | 150      | 110        | 566.5  | 0.4      | 1.7              |
| Junc 20 | 20        | 18.9           | 37.9         | 43.9 | 23.9     | Pipe 21 | 404.2   | 150      | 110        | 528.7  | 0.4      | 1.5              |
| Junc 21 | 22        | 18.9           | 37.9         | 42.8 | 20.8     | Pipe 22 | 277.0   | 150      | 110        | 490.8  | 0.3      | 1.3              |
| Junc 22 | 23        | 18.9           | 37.9         | 42.2 | 19.2     | Pipe 23 | 559.1   | 150      | 110        | 452.9  | 0.3      | 1.1              |
| Junc 23 | 20        | 18.9           | 37.9         | 41.9 | 21.9     | Pipe 24 | 110.9   | 50       | 110        | 113.6  | 0.7      | 17.8             |
| Junc 24 | 10        | 18.9           | 37.9         | 41.3 | 31.3     | Pipe 25 | 130.7   | 50       | 110        | 75.8   | 0.5      | 8.4              |
| Junc 25 | 10        | 18.9           | 37.9         | 39.3 | 29.3     | Pipe 26 | 364.6   | 50       | 110        | 37.9   | 0.2      | 2.3              |
| Junc 26 | 10        | 18.9           | 37.9         | 38.2 | 28.2     | Pipe 27 | 220.0   | 100      | 110        | 301.4  | 0.4      | 3.7              |
| Junc 27 | 10        | 18.9           | 37.9         | 37.4 | 27.4     | Pipe 28 | 194.6   | 100      | 110        | 263.5  | 0.4      | 2.9              |
| Junc 28 | 7         | 18.9           | 37.9         | 40.5 | 33.5     | Pipe 29 | 291.4   | 50       | 110        | 37.9   | 0.2      | 2.3              |
| Junc 29 | 7         | 18.9           | 37.9         | 39.9 | 32.9     | Pipe 30 | 358.4   | 100      | 110        | 187.7  | 0.3      | 1.5              |
| Junc 30 | 7         | 18.9           | 37.9         | 39.2 | 32.2     | Pipe 31 | 303.4   | 100      | 110        | 149.9  | 0.2      | 1.0              |
| Junc 31 | 5         | 18.9           | 37.9         | 39.4 | 34.4     | Pipe 32 | 1072.8  | 50       | 110        | 112.0  | 0.7      | 17.3             |
| Junc 32 | 5         | 18.9           | 37.9         | 39.0 | 34.0     | Pipe 33 | 313.1   | 50       | 110        | 74.1   | 0.4      | 8.0              |
| Junc 33 | 5         | 18.9           | 37.9         | 20.5 | 15.5     | Pipe 34 | 829.4   | 50       | 110        | 36.2   | 0.2      | 2.1              |
| Junc 34 | 5         | 18.9           | 37.9         | 18.0 | 13.0     | Pipe 1  | 31.7    | 200      | 110        | 1250.0 | 0.5      | 1.8              |
| Junc 35 | 5         | 18.9           | 37.9         | 16.2 | 11.2     | Pipe 2  | 1336.81 | 12       | 100        | -1.66  | 0.17     | 7.35             |

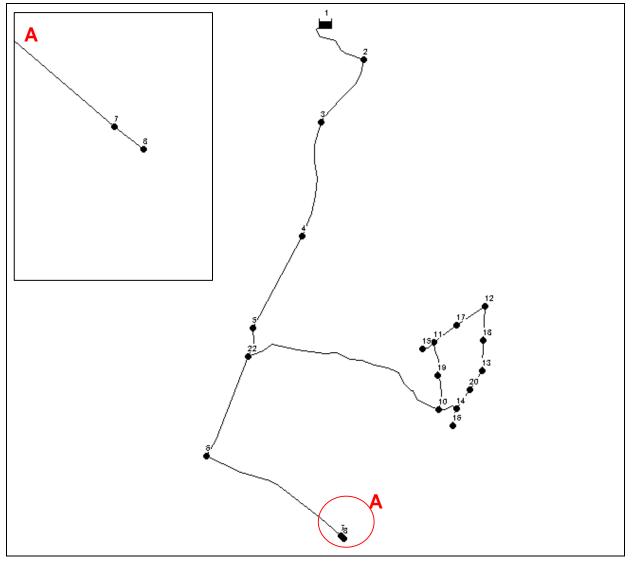
# (2) Location of junctions



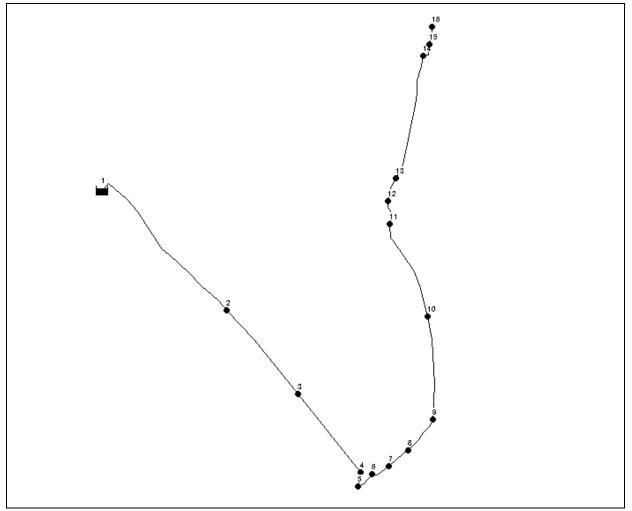
# (3) Location of links



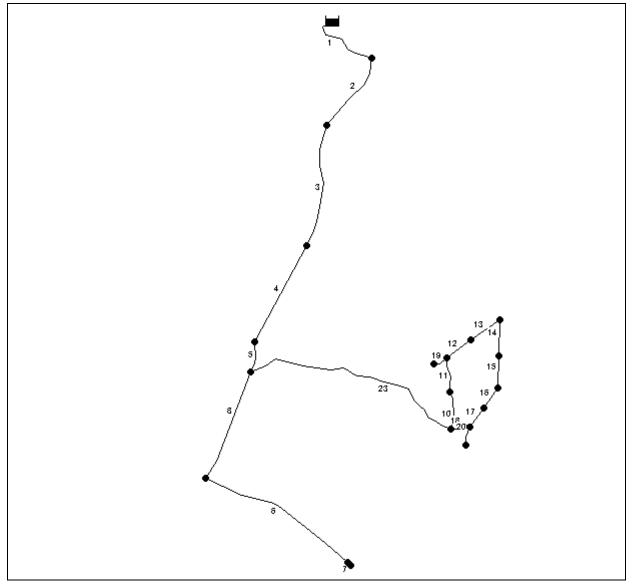
# 14.7 FNG-10


|         |           | Network Ta     | ble – Nodes | 3    |          |         |        | Netwo    | ork Table - | Links   |          |                  |
|---------|-----------|----------------|-------------|------|----------|---------|--------|----------|-------------|---------|----------|------------------|
|         | Elevation | Base<br>Demand | Demand      | Head | Pressure |         | Length | Diameter | Roughness   | Flow    | Velocity | Unit<br>Headloss |
| Node ID | m         | m3/d           | m3/d        | m    | m        | Link ID | m      | mm       |             | m3/d    | m/s      | m/km             |
| Resvr 1 | 84        |                | -3989.6     | 84.0 | 0.0      | Pipe 1  | 1728.0 | 300      | 110         | 3989.6  | 0.7      | 2.1              |
| Junc 2  | 10        | 0.0            | 0.0         | 80.4 | 70.4     | Pipe 2  | 1941.8 | 300      | 110         | 3989.6  | 0.7      | 2.1              |
| Junc 3  | 15        | 0.0            | 0.0         | 76.3 | 61.3     | Pipe 3  | 2940.8 | 300      | 110         | 3989.6  | 0.7      | 2.1              |
| Junc 4  | 20        | 0.0            | 0.0         | 70.2 | 50.2     | Pipe 4  | 2604.8 | 300      | 110         | 3989.6  | 0.7      | 2.1              |
| Junc 5  | 15        | 0.0            | 0.0         | 64.7 | 49.7     | Pipe 6  | 3966.1 | 200      | 110         | 1168.0  | 0.4      | 1.6              |
| Junc 6  | 20        | 0.0            | 0.0         | 59.0 | 39.0     | Pipe 7  | 102.6  | 250      | 110         | 1168.0  | 0.3      | 0.5              |
| Junc 7  | 50        | 0.0            | 0.0         | 52.8 | 2.8      | Pipe 10 | 889.9  | 200      |             | 1143.5  | 0.4      | 1.5              |
| Junc 8  | 50        | 584.0          | 1168.0      | 52.8 |          | Pipe 11 | 826.0  | 200      |             | 841.1   | 0.3      | 0.8              |
| Junc 10 | 10        | 151.2          | 302.4       | 48.8 | 38.8     | Pipe 12 | 712.7  | 150      | 110         | 488.7   | 0.3      | 1.3              |
| Junc 11 | 10        | 151.2          | 302.4       | 46.7 | 36.7     | Pipe 13 | 841.2  | 150      | 110         | 186.3   | 0.1      | 0.2              |
| Junc 12 | 10        | 151.2          | 302.4       | 45.7 | 35.7     | Pipe 14 | 855.3  | 150      | 110         | -116.1  | 0.1      | 0.1              |
| Junc 13 | 10        | 151.2          | 302.4       | 46.5 | 36.5     | Pipe 15 | 765.4  | 150      |             | -418.5  | 0.3      | 0.9              |
| Junc 14 | 10        | 151.2          | 302.4       | 47.5 | 37.5     | Pipe 16 | 564.0  | 200      | 110         | -720.9  | 0.3      | 0.6              |
| Junc 15 | 10        | 25.0           | 50.0        | 45.4 | 35.4     | Pipe 17 | 574.3  | 200      | 110         | -1023.3 | 0.4      | 1.2              |
| Junc 16 | 10        | 25.0           | 50.0        | 45.8 |          | Pipe 18 | 496.7  | 200      |             | -1375.7 | 0.5      | 2.5              |
| Junc 17 | 10        |                | 302.4       | 45.8 | 35.8     | Pipe 19 | 354.3  | 50       |             | 50.0    | 0.3      | 3.9              |
| Junc 18 | 10        | 151.2          | 302.4       | 45.7 |          | Pipe 20 | 441.1  | 50       |             | 50.0    | 0.3      | 3.9              |
| Junc 19 | 10        |                | 302.4       | 47.4 |          | Pipe 5  | 732.9  | 300      |             |         | 0.7      | 2.1              |
| Junc 20 | 10        |                | 302.4       | 46.8 |          | Pipe 8  | 2719.0 | 200      |             | 1168.0  | 0.4      | 1.6              |
| Junc 22 | 15        | 0.0            | 0.0         | 63.2 | 48.2     | Pipe 23 | 5385.7 | 250      | 110         | 2821.6  | 0.7      | 2.7              |
|         |           |                |             |      |          |         |        |          |             |         |          |                  |

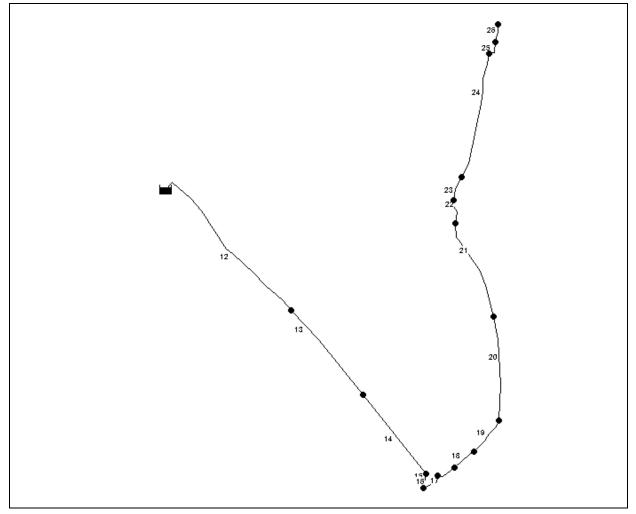
(1) Result of distribution network analysis - 1


# (2) Result of distribution network analysis - 2

| Network Table – Nodes |           |                |         |       |          | Network Table – Links |        |          |           |        |          |                  |
|-----------------------|-----------|----------------|---------|-------|----------|-----------------------|--------|----------|-----------|--------|----------|------------------|
|                       | Elevation | Base<br>Demand | Demand  | Head  | Pressure |                       | Length | Diameter | Roughness | Flow   | Velocity | Unit<br>Headloss |
| Node ID               | m         | m3/d           | m3∕d    | m     | m        | Link ID               | m      | mm       |           | m3/d   | m/s      | m/km             |
| Resvr 1               | 124       |                | -2312.4 | 124.0 | 0.0      | Pipe 12               | 2412.6 | 250      | 110       | 2312.4 | 0.6      | 1.9              |
| Junc 2                | 80        | 10.0           | 20.0    | 119.5 | 39.5     | Pipe 13               | 1430.8 | 250      | 110       | 2292.4 | 0.5      | 1.8              |
| Junc 3                | 70        | 10.0           | 20.0    | 116.9 | 46.9     | Pipe 14               | 1310.5 | 250      | 110       | 2272.4 | 0.5      | 1.8              |
| Junc 4                | 10        | 87.4           | 174.8   | 114.6 | 104.6    | Pipe 15               | 188.0  | 250      | 110       | 2097.6 | 0.5      | 1.6              |
| Junc 5                | 10        | 87.4           | 174.8   | 114.3 | 104.3    | Pipe 16               | 256.9  | 250      | 110       | 1922.8 | 0.5      | 1.3              |
| Junc 6                | 10        | 87.4           | 174.8   | 113.9 |          | Pipe 17               | 267.3  | 250      | 110       | 1748.0 | 0.4      | 1.1              |
| Junc 7                | 10        | 87.4           | 174.8   | 113.7 |          | Pipe 18               | 319.1  | 250      |           | 1573.2 | 0.4      | 0.9              |
| Junc 8                | 10        | 87.4           | 174.8   | 113.4 |          | Pipe 19               | 524.3  | 150      | 110       | 1398.4 | 0.9      | 8.8              |
| Junc 9                | 10        | 87.4           | 174.8   | 108.8 |          | Pipe 20               | 1355.2 | 150      |           | 1223.6 | 0.8      | 6.9              |
| Junc 10               | 10        | 87.4           | 174.8   | 99.5  |          | Pipe 21               | 1332.5 | 150      |           | 1048.8 | 0.7      | 5.2              |
| Junc 11               | 10        | 87.4           | 174.8   | 92.6  |          | Pipe 22               | 310.5  | 150      | 110       | 874.0  | 0.6      | 3.7              |
| Junc 12               | 10        | 87.4           | 174.8   | 91.4  |          | Pipe 23               | 320.4  | 150      | 110       | 699.2  | 0.5      | 2.4              |
| Junc 13               | 10        | 87.4           | 174.8   | 90.7  | 80.7     | Pipe 24               | 1640.6 | 125      | 110       | 524.4  | 0.5      | 3.5              |
| Junc 14               | 10        | 87.4           | 174.8   | 85.0  | 75.0     | Pipe 25               | 208.9  | 125      |           | 349.6  | 0.3      | 1.6              |
| Junc 15               | 10        | 87.4           | 174.8   | 84.6  |          | Pipe 26               | 235.2  | 125      | 110       | 174.8  | 0.2      | 0.5              |
| Junc 16               | 10        | 87.4           | 174.8   | 84.5  | 74.5     |                       |        |          |           |        |          |                  |
|                       |           |                |         |       |          |                       |        |          |           |        |          |                  |
|                       |           |                |         |       |          |                       |        |          |           |        |          |                  |
|                       |           |                |         |       |          |                       |        |          |           |        |          |                  |
|                       |           |                |         |       |          |                       |        |          |           |        |          |                  |
|                       |           |                |         |       |          |                       |        |          |           |        |          |                  |


#### (2) Location of junctions - 1



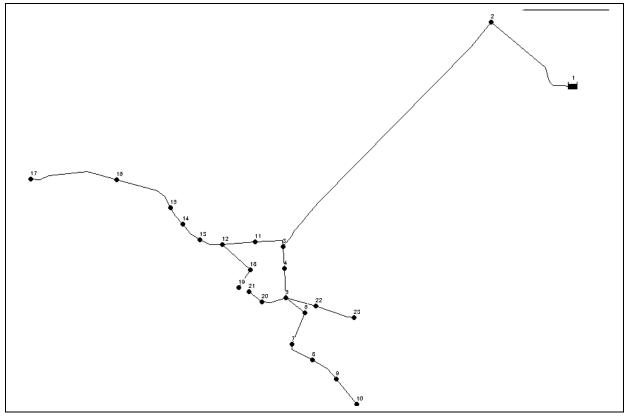

(2) Location of junctions -2



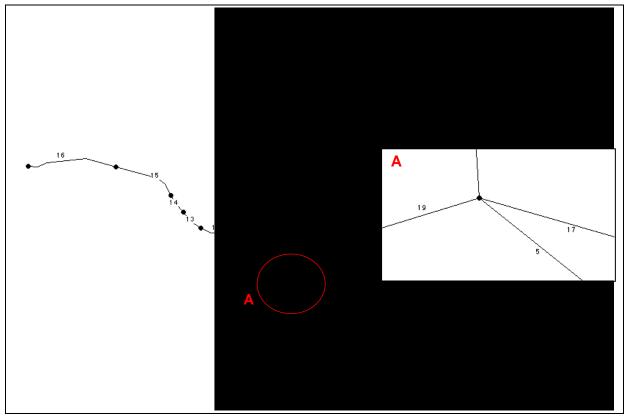
#### (3) Location of links – 1



#### (3) Location of links – 2




#### 14.8 FBS-11


| (1) Result of distribution network analysis |
|---------------------------------------------|
|---------------------------------------------|

|         |           | Network Ta     | ble – Nodes |       |          |         |         | Netw     | ork Table - | Links  |          |                  |
|---------|-----------|----------------|-------------|-------|----------|---------|---------|----------|-------------|--------|----------|------------------|
|         | Elevation | Base<br>Demand | Demand      | Head  | Pressure |         | Length  | Diameter | Roughness   | Flow   | Velocity | Unit<br>Headloss |
| Node ID | m         | m3/d           | m3/d        | m     | m        | Link ID | m       | mm       |             | m3/d   | m/s      | m/km             |
| Resvr 1 | 46        |                | -1335.6     | 46    | 0        | Pipe 1  | 1229.32 | 200      | 110         | 1335.6 | 0.49     | 1.99             |
| Junc 2  | 20        | 0              | 0           | 43.56 | 23.56    | Pipe 2  | 3414.9  | 200      | 110         | 1335.6 | 0.49     | 1.99             |
| Junc 3  | 25        | 53.6           | 107.2       | 36.77 | 11.77    | Pipe 3  | 244.89  | 150      | 110         | 656    | 0.43     | 2.16             |
| Junc 4  | 25        | 31.8           | 63.6        | 36.24 |          | Pipe 4  | 328.24  |          |             |        | 0.39     | 1.79             |
| Junc 5  | 25        | 53.6           | 107.2       | 35.65 | 10.65    | Pipe 5  | 266.36  | 150      | 110         |        | 0.21     | 0.57             |
| Junc 6  | 25        | 31.8           | 63.6        | 35.5  | 10.5     | Pipe 6  | 382.38  | 150      |             |        | 0.17     | 0.37             |
| Junc 7  | 25        | 31.8           | 63.6        | 35.36 |          | Pipe 7  | 312.99  |          |             |        | 0.28     | 1.58             |
| Junc 8  | 25        | 31.8           | 63.6        | 34.86 |          | Pipe 8  | 343.47  | 100      | 110         |        | 0.19     | 0.75             |
| Junc 9  | 25        | 31.8           | 63.6        | 34.6  |          | Pipe 9  | 366.24  | 100      | 110         |        | 0.09     | 0.21             |
| Junc 10 | 25        | 31.8           | 63.6        | 34.53 | 9.53     | Pipe 10 | 369.57  | 150      | 110         |        | 0.37     | 1.68             |
| Junc 11 | 25        | 31.8           | 63.6        | 36.15 |          | Pipe 11 | 360.14  |          |             |        | 0.33     | 1.35             |
| Junc 12 | 25        | 53.6           | 107.2       | 35.66 | 10.66    | Pipe 12 | 266.54  | 150      | 110         |        | 0.21     | 0.57             |
| Junc 13 | 25        | 31.8           | 63.6        | 35.51 |          | Pipe 13 | 258.42  | 150      | 110         |        | 0.17     | 0.37             |
| Junc 14 | 25        | 31.8           | 63.6        | 35.41 |          | Pipe 14 | 234.91  | 150      |             |        | 0.12     | 0.22             |
| Junc 15 | 25        | 31.8           | 63.6        | 35.36 | 10.36    | Pipe 15 | 717.04  | 100      | 110         |        | 0.19     | 0.75             |
| Junc 16 | 25        | 31.8           | 63.6        | 34.83 |          | Pipe 16 | 975.66  |          |             |        | 0.09     | 0.21             |
| Junc 17 | 25        | 31.8           | 63.6        | 34.62 | 9.62     | Pipe 17 | 340.69  |          | 110         | 83.6   | 0.49     | 10.05            |
| Junc 18 | 25        | 31.8           | 63.6        | 31.45 |          | Pipe 18 | 451.43  |          | 110         |        | 0.12     | 0.71             |
| Junc 19 | 25        | 10             | 20          | 31.28 |          | Pipe 19 | 278.23  |          | 110         |        | 0.49     | 10.05            |
| Junc 20 | 25        | 31.8           | 63.6        | 32.85 |          | Pipe 20 | 185.16  |          | 110         |        | 0.12     | 0.71             |
| Junc 21 | 25        | 10             | 20          | 32.72 | 7.72     | Pipe 21 | 419.41  | 50       | 110         | 83.6   | 0.49     | 10.05            |
| Junc 22 | 25        | 31.8           | 63.6        | 32.23 |          | Pipe 22 | 233.7   | 50       | 110         | 20     | 0.12     | 0.71             |
| Junc 23 | 25        | 10             | 20          | 31.91 | 6.91     |         |         |          |             |        |          |                  |

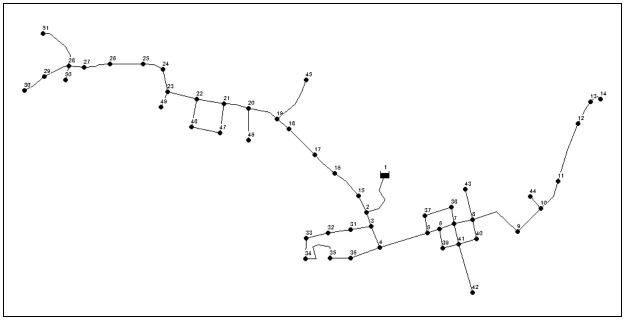
#### (2) Location of junctions

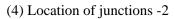


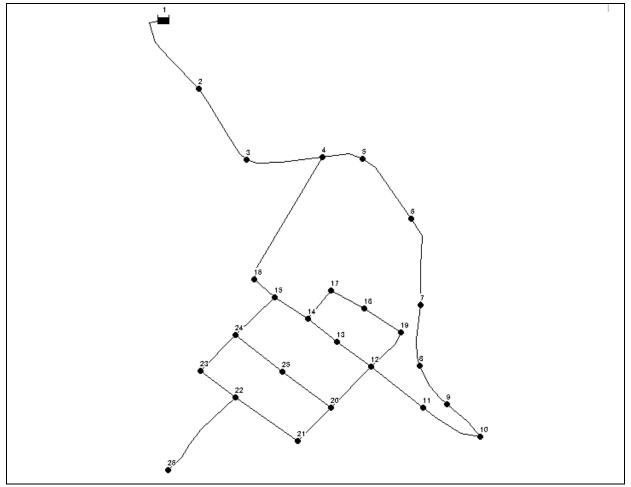
#### (3) Location of links



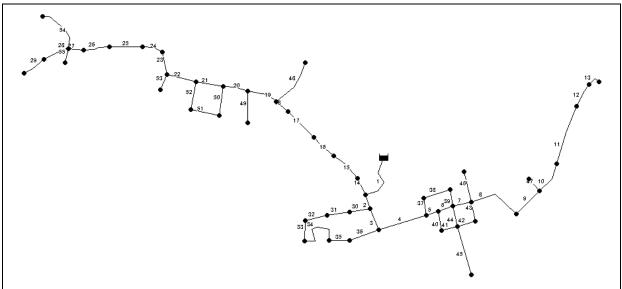
#### 14.9 FBG-13


| (1) Result of distribution network analysis - 1 |  |
|-------------------------------------------------|--|
|-------------------------------------------------|--|

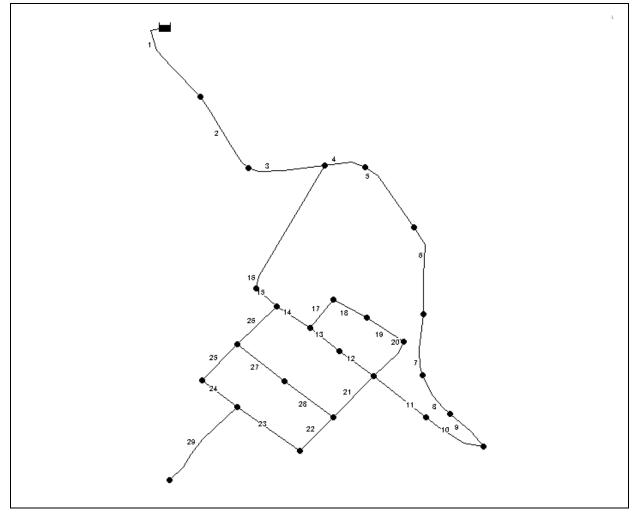

|         |           |                | ble – Nodes |       |          |         |        | Netw     | ork Table - | Links  |          |                  |
|---------|-----------|----------------|-------------|-------|----------|---------|--------|----------|-------------|--------|----------|------------------|
|         | Elevation | Base<br>Demand | Demand      | Head  | Pressure |         | Length | Diameter | Roughness   | Flow   | Velocity | Unit<br>Headloss |
| Node ID | m         | m3∕d           | m3∕d        | m     | m        | Link ID | m      | mm       |             | m3/d   | m/s      | m/km             |
| Resvr 1 | 164       |                | -7908.6     | 164.0 | 0.0      | Pipe 1  | 1181.4 | 400      | 110         | 7908.6 | 0.7      | 1.8              |
| Junc 2  | 120       | 50.8           | 101.6       | 161.8 | 41.8     | Pipe 2  | 331.2  | 350      | 110         | 4597.2 | 0.6      | 1.3              |
| Junc 3  | 120       | 50.8           | 101.6       | 161.4 | 41.4     | Pipe 3  | 542.0  | 350      | 110         | 4142.5 | 0.5      | 1.1              |
| Junc 4  | 120       | 50.8           | 101.6       | 160.8 | 40.8     | Pipe 4  | 1149.4 | 350      | 110         | 3784.4 | 0.5      | 0.9              |
| Junc 5  | 120       | 80.6           | 161.2       | 159.8 | 39.8     | Pipe 5  | 289.9  | 350      | 110         | 3460.4 | 0.4      | 0.8              |
| Junc 6  | 120       | 80.6           | 161.2       | 159.6 | 39.6     | Pipe 6  | 358.0  | 350      | 110         | 3200.6 | 0.4      | 0.7              |
| Junc 7  | 120       | 80.6           | 161.2       | 159.4 | 39.4     | Pipe 7  | 442.7  | 350      | 110         | 2431.4 | 0.3      | 0.4              |
| Junc 8  | 120       | 80.6           | 161.2       | 159.2 | 39.2     | Pipe 8  | 1263.7 | 350      | 110         | 2011.2 | 0.2      | 0.3              |
| Junc 9  | 120       | 80.6           | 161.2       | 158.8 | 38.8     | Pipe 9  | 756.9  | 300      | 110         | 1850.0 | 0.3      | 0.5              |
| Junc 10 | 125       | 80.6           | 161.2       | 158.5 | 33.5     | Pipe 10 | 762.8  | 300      | 110         | 1527.6 | 0.3      | 0.4              |
| Junc 11 | 130       | 80.6           | 161.2       | 158.2 | 28.2     | Pipe 11 | 1426.9 | 300      | 110         | 1366.4 | 0.2      | 0.3              |
| Junc 12 | 130       | 80.6           | 161.2       | 157.8 | 27.8     | Pipe 12 | 576.4  | 300      | 110         | 1205.2 | 0.2      | 0.2              |
| Junc 13 | 135       | 80.6           | 161.2       | 157.6 | 22.6     | Pipe 13 | 321.4  | 300      | 110         | 1044.0 | 0.2      | 0.2              |
| Junc 14 | 135       | 522.0          | 1044.0      | 157.6 | 22.6     | Pipe 14 | 437.4  | 300      | 110         | 3209.8 | 0.5      | 1.4              |
| Junc 15 | 120       | 50.8           | 101.6       | 161.2 | 41.2     | Pipe 15 | 761.9  | 300      | 110         | 3108.2 | 0.5      | 1.3              |
| Junc 16 | 120       | 50.8           | 101.6       | 160.2 | 40.2     | Pipe 16 | 634.3  | 300      | 110         | 3006.6 | 0.5      | 1.2              |
| Junc 17 | 120       | 50.8           | 101.6       | 159.4 | 39.4     | Pipe 17 | 849.4  | 300      | 110         | 2905.0 | 0.5      | 1.2              |
| Junc 18 | 120       | 50.8           | 101.6       | 158.5 | 38.5     | Pipe 18 | 355.0  | 300      | 110         | 2803.4 | 0.5      | 1.1              |
| Junc 19 | 120       | 50.8           | 101.6       | 158.1 | 38.1     | Pipe 19 | 733.7  | 300      | 110         | 2600.2 | 0.4      | 1.0              |
| Junc 20 | 120       | 50.8           | 101.6       | 157.4 | 37.4     | Pipe 20 | 583.9  | 250      | 110         | 2397.0 | 0.6      | 2.0              |
| Junc 21 | 120       | 79.9           | 159.8       | 156.2 | 36.2     | Pipe 21 | 639.3  | 250      | 110         | 2077.6 | 0.5      | 1.5              |
| Junc 22 | 120       | 79.9           | 159.8       | 155.2 | 35.2     | Pipe 22 | 698.5  | 250      | 110         | 1757.8 | 0.4      | 1.1              |
| Junc 23 | 120       | 79.9           | 159.8       | 154.5 | 34.5     | Pipe 23 | 542.2  | 250      | 110         | 1438.2 | 0.3      | 0.8              |
| Junc 24 | 125       | 79.9           | 159.8       | 154.0 | 29.0     | Pipe 24 | 492.2  | 250      | 110         | 1278.4 | 0.3      | 0.6              |
| Junc 25 | 120       | 79.9           | 159.8       | 153.7 | 33.7     | Pipe 25 | 770.0  | 250      | 110         | 1118.6 | 0.3      | 0.5              |
| Junc 26 | 120       | 79.9           | 159.8       | 153.4 | 33.4     | Pipe 26 | 608.9  | 250      | 110         | 958.8  | 0.2      | 0.4              |
| Junc 27 | 120       | 79.9           | 159.8       | 153.1 | 33.1     | Pipe 27 | 347.9  | 250      | 110         | 799.0  | 0.2      | 0.3              |
| Junc 28 | 120       | 129.8          | 259.6       | 153.1 | 33.1     | Pipe 28 | 626.1  | 250      | 110         | 319.6  | 0.1      | 0.1              |
| Junc 29 | 120       | 79.9           | 159.8       | 153.0 | 33.0     | Pipe 29 | 566.6  | 250      | 110         | 159.8  | 0.0      | 0.0              |
| Junc 30 | 120       | 79.9           | 159.8       | 153.0 | 33.0     | Pipe 30 | 483.6  | 125      | 110         | 353.1  | 0.3      | 1.7              |
| Junc 31 | 120       | 50.8           | 101.6       | 160.6 | 40.6     | Pipe 31 | 538.0  | 125      | 110         | 251.5  | 0.2      | 0.9              |
| Junc 32 | 120       | 50.8           | 101.6       | 160.1 | 40.1     | Pipe 32 | 523.0  | 125      | 110         | 149.9  | 0.1      | 0.3              |
| Junc 33 | 120       | 50.8           | 101.6       | 160.0 | 40.0     | Pipe 33 | 477.5  | 125      | 110         | 48.3   | 0.1      | 0.0              |
| Junc 34 | 120       | 50.8           | 101.6       | 159.9 | 39.9     | Pipe 34 | 1218.4 | 125      | 110         | -53.3  | 0.1      | 0.1              |
| Junc 35 | 120       | 50.8           | 101.6       | 160.0 | 40.0     | Pipe 35 | 477.5  | 125      | 110         | -154.9 | 0.2      | 0.4              |
| Junc 36 | 120       | 50.8           | 101.6       | 160.2 | 40.2     | Pipe 36 | 733.0  | 125      | 110         | -256.5 | 0.2      | 0.9              |
| Junc 37 | 120       | 80.6           | 161.2       | 146.4 | 26.4     | Pipe 37 | 388.8  | 50       | 110         | 162.8  | 1.0      | 34.5             |
| Junc 38 | 120       | 80.6           | 161.2       | 146.4 | 26.4     | Pipe 38 | 640.4  | 50       | 110         | 1.6    | 0.0      | 0.0              |
| Junc 39 | 120       | 80.6           | 161.2       | 153.4 | 33.4     | Pipe 39 | 389.9  | 50       | 110         | -159.6 | 0.9      | 33.3             |
| Junc 40 | 120       | 80.6           | 161.2       | 153.1 | 33.1     | Pipe 40 | 454.6  | 50       | 110         | 98.6   | 0.6      | 13.7             |
| Junc 41 | 120       | 80.6           | 161.2       | 155.6 | 35.6     | Pipe 41 | 381.0  | 50       | 110         | -62.6  | 0.4      | 5.9              |
| Junc 42 | 120       | 80.6           | 161.2       | 154.3 | 34.3     | Pipe 42 | 426.3  | 50       | 110         | 63.5   | 0.4      | 6.0              |
| Junc 43 | 120       | 80.6           | 161.2       | 134.5 | 14.5     | Pipe 43 | 456.1  | 50       | 110         | -97.8  | 0.6      | 13.4             |
| Junc 44 | 125       | 80.6           | 161.2       | 145.9 | 20.9     | Pipe 44 | 483.7  | 100      | 110         | 448.4  | 0.7      | 7.7              |
| Junc 45 | 120       | 50.8           | 101.6       | 141.4 | 21.4     | Pipe 45 | 1167.8 | 100      | 110         | 161.2  | 0.2      | 1.2              |
| Junc 46 | 120       | 50.8           | 101.6       | 146.7 | 26.7     | Pipe 46 | 726.7  | 50       | 110         | 161.2  | 1.0      | 33.9             |
| Junc 47 | 120       | 79.9           | 159.8       | 133.4 | 13.4     | Pipe 47 | 370.9  | 50       | 110         | 161.2  | 1.0      | 33.9             |
| Junc 48 | 120       | 79.9           | 159.8       | 133.4 | 13.4     | Pipe 48 | 1158.8 | 50       | 110         | 101.6  | 0.6      | 14.4             |
| Junc 49 | 120       | 79.9           | 159.8       | 141.4 | 21.4     | Pipe 49 | 739.3  | 50       | 110         | 101.6  | 0.6      | 14.4             |
| Junc 50 | 120       | 79.9           | 159.8       | 141.9 | 21.9     | Pipe 50 | 685.0  | 50       | 110         | 159.6  | 0.9      | 33.3             |
| Junc 51 | 120       | 30.0           | 60.0        | 147.0 | 27.0     | Pipe 51 | 676.6  | 50       | 110         | -0.2   | 0.0      | 0.0              |
|         |           |                |             |       |          | Pipe 52 | 652.4  | 50       | 110         | -160.0 | 0.9      | 33.5             |
|         |           |                |             |       |          | Pipe 53 | 392.7  | 50       | 110         | 159.8  | 0.9      | 33.4             |
|         |           |                |             |       |          | Pipe 54 | 1111.7 | 50       | 110         | 60.0   | 0.4      | 5.4              |
|         |           |                |             |       |          | Pipe 55 | 334.3  | 50       | 110         | 159.8  | 0.9      | 33.4             |


|         | ١         | Network Ta     | ble - Nodes | 6     |          |         |        | Netw     | ork Table - | Links   |          |                  |
|---------|-----------|----------------|-------------|-------|----------|---------|--------|----------|-------------|---------|----------|------------------|
|         | Elevation | Base<br>Demand | Demand      | Head  | Pressure |         | Length | Diameter | Roughness   | Flow    | Velocity | Unit<br>Headloss |
| Node ID | m         | m3/d           | m3/d        | m     | m        | Link ID | m      | mm       |             | m3∕d    | m/s      | m/km             |
| Resvr 1 | 185       |                | -2095.8     | 185.0 | 0.0      | Pipe 1  | 969.0  | 250      | 110         | 2095.8  | 0.5      | 1.5              |
| Junc 2  | 145       | 0              | 0           | 183.5 | 38.5     | Pipe 2  | 853.1  | 250      | 110         | 2095.8  | 0.5      | 1.5              |
| Junc 3  | 145       |                | 0           | 182.2 |          | Pipe 3  | 768.1  | 250      | 110         | 2095.8  | 0.5      | 1.5              |
| Junc 4  | 150       | 0              | 0           | 181.0 | 31.0     | Pipe 4  | 410.4  | 200      | 110         | 915.2   | 0.3      | 1.0              |
| Junc 5  | 155       | 0              | 0           | 180.6 | 25.6     | Pipe 5  | 770.0  | 200      | 110         | 915.2   | 0.3      | 1.0              |
| Junc 6  | 160       | 49.9           | 99.8        | 179.8 | 19.8     | Pipe 6  | 892.3  | 200      | 110         | 815.4   | 0.3      | 0.8              |
| Junc 7  | 140       | 49.9           | 99.8        | 179.1 | 39.1     | Pipe 7  | 605.8  | 200      | 110         | 715.6   | 0.3      | 0.6              |
| Junc 8  | 140       | 49.9           | 99.8        | 178.7 | 38.7     | Pipe 8  | 483.1  | 200      | 110         | 615.8   | 0.2      | 0.5              |
| Junc 9  | 138       | 49.9           | 99.8        | 178.5 | 40.5     | Pipe 9  | 454.8  | 200      | 110         | 516.0   | 0.2      | 0.3              |
| Junc 10 | 135       | 49.9           | 99.8        | 178.4 | 43.4     | Pipe 10 | 641.5  | 200      | 110         | 416.2   | 0.2      | 0.2              |
| Junc 11 | 135       | 49.9           | 99.8        | 178.2 | 43.2     | Pipe 11 | 663.0  | 200      | 110         | 316.4   | 0.1      | 0.1              |
| Junc 12 | 135       | 49.9           | 99.8        | 178.1 | 43.1     | Pipe 12 | 425.2  | 200      | 110         | -257.2  | 0.1      | 0.1              |
| Junc 13 | 135       | 49.9           | 99.8        | 178.2 | 43.2     | Pipe 13 | 361.9  | 200      | 110         | -357.0  | 0.1      | 0.2              |
| Junc 14 | 135       | 49.9           | 99.8        | 178.2 | 43.2     | Pipe 14 | 391.9  | 200      | 110         | -621.0  | 0.2      | 0.5              |
| Junc 15 | 135       | 49.9           | 99.8        | 178.4 | 43.4     | Pipe 15 | 271.4  | 200      | 110         | -1080.8 | 0.4      | 1.3              |
| Junc 16 | 135       | 49.9           | 99.8        | 178.8 | 43.8     | Pipe 16 | 1405.3 | 200      | 110         | -1180.6 | 0.4      | 1.6              |
| Junc 17 | 138       | 49.9           | 99.8        | 177.8 | 39.8     | Pipe 17 | 366.0  | 100      | 110         | 164.2   | 0.2      | 1.2              |
| Junc 18 | 138       | 49.9           | 99.8        | 177.7 | 39.7     | Pipe 18 | 375.1  | 100      | 110         | 64.4    | 0.1      | 0.2              |
| Junc 19 | 138       | 49.9           | 99.8        | 177.7 | 39.7     | Pipe 19 | 434.0  | 100      | 110         | -35.4   | 0.1      | 0.1              |
| Junc 20 | 130       | 49.9           | 99.8        | 175.5 | 45.5     | Pipe 20 | 460.3  | 100      | 110         | -135.2  | 0.2      | 0.8              |
| Junc 21 | 130       | 49.9           | 99.8        | 174.8 | 44.8     | Pipe 21 | 569.6  | 100      | 110         | 338.6   | 0.5      | 4.6              |
| Junc 22 | 130       | 49.9           | 99.8        | 174.5 | 44.5     | Pipe 22 | 471.5  | 100      | 110         | 190.1   | 0.3      | 1.6              |
| Junc 23 | 125       | 49.9           | 99.8        | 174.7 | 49.7     | Pipe 23 | 752.9  | 100      | 110         | 90.3    | 0.1      | 0.4              |
| Junc 24 | 130       | 49.9           | 99.8        | 175.7 | 45.7     | Pipe 24 | 438.4  | 100      | 110         | -109.3  | 0.2      | 0.6              |
| Junc 25 | 130       | 49.9           | 99.8        | 173.3 | 43.3     | Pipe 25 | 499.5  | 100      | 110         | -209.1  | 0.3      | 1.9              |
| Junc 26 | 125       | 49.9           | 99.8        | 160.7 | 35.7     | Pipe 26 | 537.0  | 100      | 110         | -360.0  | 0.5      | 5.1              |
|         |           |                |             |       |          | Pipe 27 | 591.8  | 50       | 110         | 51.0    | 0.3      | 4.0              |
|         |           |                |             |       |          | Pipe 28 | 604.8  | 50       | 110         | -48.8   | 0.3      | 3.7              |
|         |           |                |             |       |          | Pipe 29 | 990.5  | 50       | 110         | 99.8    | 0.6      | 14.0             |

#### (2) Result of distribution network analysis - 2


(3) Location of junctions -1








#### (5) Location of links -1



#### (6) Location of links – 2



# CHAPTER 15

**COST ESTIMATION** 

# CHAPTER 15 COST ESTIMATION

#### 15.1 Construction Cost of Water Supply Facility

The construction cost of water supply facility and its cost break down are shown from next page.

(1) Summary

| Component                                                                    |            |            |             |            | Cost (JPY) |            |             |            |             | Total         |
|------------------------------------------------------------------------------|------------|------------|-------------|------------|------------|------------|-------------|------------|-------------|---------------|
| -                                                                            | FPS2       | FPS3       | FPG4        | FPS5       | FKS6       | FKS8       | FNG10       | FBS11      | FBG13       |               |
| 1-1 Intake facility                                                          | 3,229,000  | 12,209,800 | 22,204,900  | 4,840,500  | 5,043,500  | 8,721,700  | 21,226,150  | 5,816,250  | 35,882,800  | 119,174,600   |
| 1) Civil works                                                               | 0          | 4,068,000  | 15,000,000  | 2,034,000  | 2,034,000  | 4,034,000  | 15,000,000  | 2,000,000  | 15,000,000  | 59,170,000    |
| 2) Mechanical and Electrical works                                           | 1,479,000  | 5,341,800  | 5,454,900   | 1,406,500  | 1,609,500  | 2,937,700  | 4,476,150   | 2,066,250  | 18,782,800  | 43,554,600    |
| 3) Building works                                                            | 1,750,000  | 2,800,000  | 1,750,000   | 1,400,000  | 1,400,000  | 1,750,000  | 1,750,000   | 1,750,000  | 2,100,000   | 16,450,000    |
| 1-2 Raw water transmission pipelines &<br>Clean water transmission pipelines | 19,108,800 | 4,416,100  | 56,374,500  | 6,635,000  | 1,561,000  | 39,744,900 | 313,033,140 | 29,145,800 | 112,754,900 | 582,774,140   |
| 1-3 Water treatment plant                                                    | 69,512,000 |            | 95,537,500  |            | 40,313,100 | 46,924,000 | 217,495,900 | 70,394,200 | 342,822,000 | 882,998,700   |
| 1) Civil works                                                               | 38,450,000 |            | 52,450,000  |            | 25,000,000 | 4,100,000  | 128,750,000 | 36,950,000 | 209,550,000 | 495,250,000   |
| 2) Mechanical and Electrical works                                           | 19,862,000 |            | 30,837,500  |            | 6,913,100  | 31,624,000 | 69,595,900  | 22,244,200 | 107,872,000 | 288,948,700   |
| 3) Building works                                                            | 11,200,000 |            | 12,250,000  |            | 8,400,000  | 11,200,000 | 19,150,000  | 11,200,000 | 25,400,000  | 98,800,000    |
| 1-4 Distribution facility                                                    | 50,958,300 | 65,691,000 | 143,922,000 | 52,786,000 | 33,818,000 | 46,707,750 | 210,803,000 | 33,949,550 | 389,377,800 | 1,028,013,400 |
| 1) Civil works                                                               | 10,000,000 | 20,000,000 | 16,650,000  | 13,350,000 | 10,000,000 | 10,000,000 | 43,350,000  | 11,650,000 | 75,000,000  | 210,000,000   |
| 2) Mechanical and Electrical cost                                            | 1,905,300  | 0          | 8,787,000   | 3,441,000  | 0          | 3,675,750  | 12,847,000  | 4,145,550  | 19,957,800  | 54,759,400    |
| 3) Building works                                                            | 0          | 2,800,000  | 0           | 4,550,000  | 0          | 0          | 0           | 0          | 0           | 7,350,000     |
| 4) Primary distribution mains                                                | 39,053,000 | 42,891,000 | 118,485,000 | 31,445,000 | 23,818,000 | 33,032,000 | 154,606,000 | 18,154,000 | 294,420,000 | 755,904,000   |
| 1-5 Distribution pump station                                                |            |            | 3,732,700   |            |            |            | 11,285,250  |            | 10,510,950  | 25,528,900    |
| 1) Civil works                                                               |            |            | 0           |            |            |            | 0           |            | 0           | 0             |
| 2) Mechanical and Electrical cost                                            |            |            | 2,357,700   |            |            |            | 9,635,250   |            | 8,860,950   | 20,853,900    |
| 3) Building cost                                                             |            |            | 1,375,000   |            |            |            | 1,650,000   |            | 1,650,000   | 4,675,000     |

(1) Summary

| Component                                              |             |                                    |             |            | Cost (JPY) |             |                                                                                     |             |             | Total         |
|--------------------------------------------------------|-------------|------------------------------------|-------------|------------|------------|-------------|-------------------------------------------------------------------------------------|-------------|-------------|---------------|
|                                                        | FPS2        | FPS3                               | FPG4        | FPS5       | FKS6       | FKS8        | FNG10                                                                               | FBS11       | FBG13       |               |
| 1-6 House connection                                   | 5,586,000   | 10,536,000                         | 9,419,000   | 6,883,000  | 4,051,000  | 4,458,000   | 16,989,000                                                                          | 5,433,000   | 34,744,000  | 98,099,000    |
| 1) House connection pipes                              | 1,371,000   | 2,586,000                          | 2,312,000   | 1,690,000  | 994,000    | 1,094,000   | 4,170,000                                                                           | 1,334,000   | 8,529,000   | 24,080,000    |
| 2) Water meter                                         | 4,215,000   | 7,950,000                          | 7,107,000   | 5,193,000  | 3,057,000  | 3,364,000   | 12,819,000                                                                          | 4,099,000   | 26,215,000  | 74,019,000    |
| 1-7 Administration building                            |             |                                    |             |            |            |             |                                                                                     |             | 14,000,000  | 14,000,000    |
| Total<br>(1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9) | 148,394,100 | 148,394,100 92,852,900 331,190,600 | 331,190,600 | 71,144,500 | 84,786,600 | 146,556,350 | 71,144,500 84,786,600 146,556,350 790,832,440 144,738,800 940,092,450 2,750,588,740 | 144,738,800 | 940,092,450 | 2,750,588,740 |

# (2) Cost Break Down USD1 = 1) FPS2 1)-1 Intake facility

106.17 yen

|     | Component                                  | Quantity |         | Cost      | (JPY)                |                    |
|-----|--------------------------------------------|----------|---------|-----------|----------------------|--------------------|
|     |                                            |          | Unit    | Amount    | Foreign<br>Component | Local<br>Component |
| 1)  | Civil works                                |          |         | 0         |                      |                    |
| 2)  | Mechanical and Electrical works            |          |         | 1,479,000 |                      |                    |
| 2.1 | ) Centrifugal pumps<br>1.5kW x (2+1 units) | 3 nos    | 493,000 | 1,479,000 |                      |                    |
| 3)  | Building works                             | 25 m2    | 70,000  | 1,750,000 |                      |                    |

#### 1)-2 Raw water transmission pipelines and Clear water transmission

| Component                                                           | Quantity |       | Cost       | (JPY)                |                    |
|---------------------------------------------------------------------|----------|-------|------------|----------------------|--------------------|
|                                                                     |          | Unit  | Amount     | Foreign<br>Component | Local<br>Component |
| 1) Raw water transmission pipelines and<br>Clear water transmission |          |       | 19,108,800 |                      |                    |
| 1.1) Pipe Dia. 125mm<br>PVC                                         | 7,200 m  | 2,654 | 19,108,800 |                      |                    |

#### 1)-2 Water treatment plant

|    |      | Component                              | Quantity                       |            | Cost       | (JPY)                |                    |
|----|------|----------------------------------------|--------------------------------|------------|------------|----------------------|--------------------|
|    |      |                                        |                                | Unit       | Amount     | Foreign<br>Component | Local<br>Component |
| 1) |      | Civil works                            |                                |            | 38,450,000 |                      |                    |
|    | 1.1) | Coagulation and Sedimentation basin    | Capacity<br>490 m3<br>Capacity | 50,000     | 24,500,000 |                      |                    |
|    | 1.2) | Filtration basin                       | 221 m3                         | 50,000     | 11,050,000 |                      |                    |
|    | 1.3) | Treated water reservoir                | Capacity<br>58 m3              | 50,000     | 2,900,000  |                      |                    |
| 2) |      | Mechanical and Electrical works        |                                |            | 19,862,000 |                      |                    |
|    | 2.1) | Mechanical and Electrical works        | 1 set                          | 19,862,000 | 19,862,000 |                      |                    |
| 3) |      | Building works                         |                                |            | 11,200,000 |                      |                    |
|    | 3.1) | Administration office                  | 30 m2                          | 140,000    | 4,200,000  |                      |                    |
|    | 3.2) | Pump station                           | 35 m2                          | 70,000     | 2,450,000  |                      |                    |
|    | 3.3) | Chemical building                      | 40 m2                          | 70,000     | 2,800,000  |                      |                    |
|    | 3.4) | Chlorinator building                   | 25 m2                          | 70,000     | 1,750,000  |                      |                    |
|    | 3.5) | Operation building of filtration basin | 0 m2                           | 55,000     | 0          |                      |                    |

# 1)-3 Distribution facility

|      | Component                                | Quantity           |         |            | (JPY)                |                    |
|------|------------------------------------------|--------------------|---------|------------|----------------------|--------------------|
|      |                                          |                    | Unit    | Amount     | Foreign<br>Component | Local<br>Component |
| 1)   | Civil works                              |                    |         | 10,000,000 |                      |                    |
| 1.1) | Distribution reservoir                   | Capacity<br>200 m3 | 50,000  | 10,000,000 |                      |                    |
| 2)   | Mechanical and Electrical works          |                    |         | 1,905,300  |                      |                    |
|      | Centrifugal pumps<br>3.7kW x (2+1 units) | 3 nos              | 635,100 | 1,905,300  |                      |                    |
| 3)   | Building works                           | m2                 |         |            |                      |                    |
| 4)   | Primary distribution mains               |                    |         | 39,053,000 |                      |                    |
|      | Pipe Dia. 50mm<br>PVC                    | 5,781 m            | 1,168   | 6,752,000  |                      |                    |
| 4.2) | Pipe Dia. 65mm<br>PVC                    | 387 m              | 1,380   | 534,000    |                      |                    |
|      | Pipe Dia. 80mm<br>PVC                    | 6,195 m            | 1,699   | 10,525,000 |                      |                    |
|      | Pipe Dia. 100mm<br>PVC                   | 3,121 m            | 2,230   | 6,960,000  |                      |                    |
|      | Pipe Dia. 125mm<br>PVC                   | 3,338 m            | 2,654   | 8,859,000  |                      |                    |
|      | Pipe Dia. 150mm<br>PVC                   | 0 m                | 3,397   | 0          |                      |                    |
| 4.7) | Pipe Dia. 200mm<br>PVC                   | 1,135 m            | 4,778   | 5,423,000  |                      |                    |
|      | Fittings and valves                      | %                  |         | 0          |                      |                    |
| 4.9) | Extra works such as sheeting             | %                  |         | 0          |                      |                    |

## 1)-4 Distribution pump station

| $\square$ | Component                       | Quantity   |      | Cost   | (JPY)                |                    |
|-----------|---------------------------------|------------|------|--------|----------------------|--------------------|
|           |                                 |            | Unit | Amount | Foreign<br>Component | Local<br>Component |
| 1)        | Civil works                     | $\searrow$ |      |        |                      |                    |
| 2)        | Mechanical and Electrical works | set        |      |        |                      |                    |
| 3)        | Building works                  | set        |      |        |                      |                    |

## 1)-5 House connection

|    | Component                    | Quantity  |       | Cost      | (JPY)                |                    |
|----|------------------------------|-----------|-------|-----------|----------------------|--------------------|
|    |                              |           | Unit  | Amount    | Foreign<br>Component | Local<br>Component |
| 1) | House connection pipes<br>PE | 17,140 m  | 80    | 1,371,000 |                      |                    |
| 2) | Water meter                  | 1,714 nos | 2,459 | 4,215,000 |                      |                    |

# 1)-6 Administration building

| Component                  | Quantity | Cost (JPY) |        |                      |                    |
|----------------------------|----------|------------|--------|----------------------|--------------------|
|                            |          | Unit       | Amount | Foreign<br>Component | Local<br>Component |
| 1) Administration building | 1 set    |            |        |                      |                    |

#### USD1 = 2) FPS3 2)-1 Intake facility

106.17 yen

|    | Component                                                                                   | Quantity |           | Cost      | (JPY)                |                    |
|----|---------------------------------------------------------------------------------------------|----------|-----------|-----------|----------------------|--------------------|
|    |                                                                                             |          | Unit      | Amount    | Foreign<br>Component | Local<br>Component |
| 1) | Civil works                                                                                 |          |           | 4,068,000 |                      |                    |
|    | Deep wells<br>(plus 1 stand by)                                                             | 4 nos    | 1,017,000 | 4,068,000 |                      |                    |
| 2) | Mechanical and Electrical works                                                             |          |           | 5,341,800 |                      |                    |
| 2. | <ol> <li>Submersible pumps</li> <li>5.5kW x (3 units)</li> <li>(plus 1 stand by)</li> </ol> | 4 nos    | 1,335,450 | 5,341,800 |                      |                    |
| 3) | Building works<br>10 m2 × 4 locations=40 m2                                                 | 40 m2    | 70,000    | 2,800,000 |                      |                    |

#### 2)-2 Raw water transmission pipelines and Clear water transmission

| Component                                                           | Quantity |       | Cost      | Cost (JPY)AmountForeign<br>ComponentLocal<br>Component4,416,100 |  |
|---------------------------------------------------------------------|----------|-------|-----------|-----------------------------------------------------------------|--|
|                                                                     |          | Unit  | Amount    | 0                                                               |  |
| 1) Raw water transmission pipelines and<br>Clear water transmission |          |       | 4,416,100 |                                                                 |  |
| 1.1) Pipe Dia. 150mm<br>PVC                                         | 1,300 m  | 3,397 | 4,416,100 |                                                                 |  |

## 2)-3 Water treatment plant

|    | Component                               | Quantity |        | Cost   | (JPY)                |                    |
|----|-----------------------------------------|----------|--------|--------|----------------------|--------------------|
|    |                                         |          | Unit   | Amount | Foreign<br>Component | Local<br>Component |
| 1) | Civil works                             | _        |        | 0      |                      |                    |
|    |                                         | Capacity |        |        |                      |                    |
| 1  | .1) Coagulation and Sedimentation basin | m3       | 50,000 | 0      |                      |                    |
|    |                                         | Capacity |        |        |                      |                    |
| 1  | .2) Filtration basin                    | m3       | 50,000 | 0      |                      |                    |
|    |                                         | Capacity | ,      | -      |                      |                    |
| 1  | .3) Treated water reservoir             | m3       | 50,000 | 0      |                      |                    |
| 2) | Mechanical and Electrical works         |          |        | 0      |                      |                    |
| 2  | .1) Mechanical and Electrical works     | set      |        | 0      |                      |                    |
| 3) | Building works                          |          |        |        |                      |                    |

## 2)-4 Distribution facility

|    |       | Component                              | Quantity           |         | Cost       | (JPY)                |                    |
|----|-------|----------------------------------------|--------------------|---------|------------|----------------------|--------------------|
|    |       |                                        |                    | Unit    | Amount     | Foreign<br>Component | Local<br>Component |
| 1) |       | Civil works                            |                    |         | 20,000,000 |                      |                    |
|    | 1.1)  | Distribution reservoir                 | Capacity<br>400 m3 | 50,000  | 20,000,000 |                      |                    |
| 2) |       | Mechanical and Electrical works        |                    |         |            |                      |                    |
| 3) |       | Building works                         |                    |         | 2,800,000  |                      |                    |
|    | 3.1)  | Administration office                  | 20 m2              | 140,000 | 2,800,000  |                      |                    |
|    | 3.2)  | Pump station                           | m2                 | 70,000  | 0          |                      |                    |
|    | 3.3)  | Chemical building                      | m2                 | 70,000  | 0          |                      |                    |
|    | 3.4)  | Chlorinator building                   | m2                 | 70,000  | 0          |                      |                    |
|    | 3.5)  | Operation building of filtration basin | m2                 | 55,000  | 0          |                      |                    |
| 4) |       | Primary distribution mains             |                    |         | 42,891,000 |                      |                    |
|    | 4.1)  | Pipe Dia. 50mm<br>PVC                  | 2,854 m            | 1,168   | 3,333,000  |                      |                    |
|    | 4.2)  | Pipe Dia. 65mm<br>PVC                  | 0 m                | 1,380   | 0          |                      |                    |
|    | 4.3)  | Pipe Dia. 80mm<br>PVC                  | 1,229 m            | 1,699   | 2,088,000  |                      |                    |
|    | 4.4)  | Pipe Dia. 100mm<br>PVC                 | 1,030 m            | 2,230   | 2,297,000  |                      |                    |
|    | 4.5)  | Pipe Dia. 125mm<br>PVC                 | 0 m                | 2,654   | 0          |                      |                    |
|    | 4.6)  | Pipe Dia. 150mm<br>PVC                 | 3,976 m            | 3,397   | 13,506,000 |                      |                    |
|    | 4.7)  | Pipe Dia. 200mm<br>PVC                 | 1,361 m            | 4,778   | 6,503,000  |                      |                    |
|    | 4.8)  | Pipe Dia. 250mm<br>PVC                 | 2,267 m            | 6,689   | 15,164,000 |                      |                    |
|    | 4.9)  | Fittings and valves                    | %                  |         | 0          |                      |                    |
| 4  | 4.10) | Extra works such as sheeting           | %                  |         | 0          |                      |                    |

## 2)-5 Distribution pump station

| /  | Component                       | Quantity |      | Cost   | (JPY)                |                    |
|----|---------------------------------|----------|------|--------|----------------------|--------------------|
|    |                                 |          | Unit | Amount | Foreign<br>Component | Local<br>Component |
| 1) | Civil works                     |          |      |        |                      |                    |
| 2) | Mechanical and Electrical works | set      |      |        |                      |                    |
| 3) | Building works                  | set      |      |        |                      |                    |

## 2)-6 House connection

|    | Component                    | Quantity  |       | Cost      | (JPY)                | / |  |  |
|----|------------------------------|-----------|-------|-----------|----------------------|---|--|--|
|    |                              |           | Unit  |           | Foreign<br>Component |   |  |  |
| 1) | House connection pipes<br>PE | 32,330 m  | 80    | 2,586,000 |                      |   |  |  |
| 2) | Water meter                  | 3,233 nos | 2,459 | 7,950,000 |                      |   |  |  |

# 2)-7 Administration building

| Component                  | Quantity |      | Cost   | (JPY)                |                    |  |
|----------------------------|----------|------|--------|----------------------|--------------------|--|
|                            |          | Unit | Amount | Foreign<br>Component | Local<br>Component |  |
| 1) Administration building | 1 set    |      |        |                      |                    |  |

#### USD1 = 3) FPG4 3)-1 Intake facility

106.17 yen

| Component                                    | Quantity |            | Cost       | (JPY)                |                    |
|----------------------------------------------|----------|------------|------------|----------------------|--------------------|
|                                              |          | Unit       |            | Foreign<br>Component | Local<br>Component |
| 1) Civil works                               |          |            | 15,000,000 |                      |                    |
| 1.1) Intake facility                         | 1 no     | 15,000,000 | 15,000,000 |                      |                    |
| 2) Mechanical and Electrical works           |          |            | 5,454,900  |                      |                    |
| 2.1) Submersible pumps<br>15kW x (2+1 units) | 3 nos    | 1,818,300  | 5,454,900  |                      |                    |
| 3) Building works                            | 25 m2    | 70,000     | 1,750,000  |                      |                    |

## 3)-2 Raw water transmission pipelines and Clear water transmission

| Component                                                                             | Quantity |       | Cost       | (JPY)                | / |  |
|---------------------------------------------------------------------------------------|----------|-------|------------|----------------------|---|--|
|                                                                                       |          | Unit  | Amount     | Foreign<br>Component |   |  |
| <ol> <li>Raw water transmission pipelines and<br/>Clear water transmission</li> </ol> |          |       | 56,374,500 |                      |   |  |
| 1.1) Pipe Dia. 150mm<br>DCI                                                           | 5,900 m  | 9,555 | 56,374,500 |                      |   |  |

#### 3)-3 Water treatment plant

|    |      | Component                              | Quantity                       |            | Cost       | (JPY)                |                    |
|----|------|----------------------------------------|--------------------------------|------------|------------|----------------------|--------------------|
|    |      |                                        |                                | Unit       | Amount     | Foreign<br>Component | Local<br>Component |
| 1) |      | Civil works                            |                                |            | 52,450,000 |                      |                    |
|    | 1.1) | Coagulation and Sedimentation basin    | Capacity<br>677 m3<br>Capacity | 50,000     | 33,850,000 |                      |                    |
|    | 1.2) | Filtration basin                       | 280 m3                         | 50,000     | 14,000,000 |                      |                    |
|    | 1.3) | Treated water reservoir                | Capacity<br>92 m3              | 50,000     | 4,600,000  |                      |                    |
| 2) |      | Mechanical and Electrical works        |                                |            | 30,837,500 |                      |                    |
|    | 2.1) | Mechanical and Electrical works        | 1 set                          | 30,837,500 | 30,837,500 |                      |                    |
| 3) |      | Building works                         |                                |            | 12,250,000 |                      |                    |
|    | 3.1) | Administration office                  | 30 m2                          | 140,000    | 4,200,000  |                      |                    |
|    | 3.2) | Pump station                           | 40 m2                          | 70,000     | 2,800,000  |                      |                    |
|    | 3.3) | Chemical building                      | 50 m2                          | 70,000     | 3,500,000  |                      |                    |
|    | 3.4) | Chlorinator building                   | 25 m2                          | 70,000     | 1,750,000  |                      |                    |
|    | 3.5) | Operation building of filtration basin | 0 m2                           | 55,000     | 0          |                      |                    |

# 3)-4 Distribution facility

|    |      | Component                                | Quantity           |           | Cost (JPY)  |                      |                    |  |  |
|----|------|------------------------------------------|--------------------|-----------|-------------|----------------------|--------------------|--|--|
|    |      |                                          |                    | Unit      | Amount      | Foreign<br>Component | Local<br>Component |  |  |
| 1) |      | Civil works                              |                    |           | 16,650,000  |                      |                    |  |  |
|    | 1 1) | Distribution reservoir                   | Capacity<br>333 m3 | 50,000    | 16,650,000  |                      |                    |  |  |
|    | 1.1) | Distribution reservoir                   | 555 115            | 50,000    | 10,030,000  |                      |                    |  |  |
| 2) |      | Mechanical and Electrical works          |                    |           | 8,787,000   |                      |                    |  |  |
|    | 2.1) | Centrifugal pumps                        | 3 nos              | 1,464,500 | 4,393,500   |                      |                    |  |  |
|    | o o) | 5.5kW x (2+1 units)                      | 0                  | 4 404 500 | 4 000 500   |                      |                    |  |  |
|    | 2.2) | Centrifugal pumps<br>3.7kW x (2+1 units) | 3 nos              | 1,464,500 | 4,393,500   |                      |                    |  |  |
|    |      | · · ·                                    |                    |           |             |                      |                    |  |  |
| 3) |      | Building works                           |                    |           | 0           |                      |                    |  |  |
| 4) |      | Primary distribution mains               |                    |           | 118,485,000 |                      |                    |  |  |
|    | 4.1) | Pipe Dia. 50mm<br>PVC                    | 14,295 m           | 1,168     | 16,697,000  |                      |                    |  |  |
|    | 4.2) | Pipe Dia. 65mm<br>PVC                    | 2,411 m            | 1,380     | 3,327,000   |                      |                    |  |  |
|    | 4.3) | Pipe Dia. 80mm<br>PVC                    | 0 m                | 1,699     | 0           |                      |                    |  |  |
|    | 4.4) | Pipe Dia. 100mm<br>PVC                   | 1,618 m            | 2,230     | 3,608,000   |                      |                    |  |  |
|    | 4.5) | Pipe Dia. 125mm<br>PVC                   | 0 m                | 2,654     | 0           |                      |                    |  |  |
|    | 4.6) | Pipe Dia. 150mm<br>PVC                   | 20,295 m           | 3,397     | 68,942,000  |                      |                    |  |  |
|    | 4.7) | Pipe Dia. 200mm<br>PVC                   | 5,423 m            | 4,778     | 25,911,000  |                      |                    |  |  |
|    | 4.8) | Pipe Dia. 250mm<br>PVC                   | 0 m                | 6,689     | 0           |                      |                    |  |  |
|    | 4.9) | Fittings and valves                      | %                  |           | 0           |                      |                    |  |  |
| 4  | 10)  | Extra works such as sheeting             | %                  |           | 0           |                      |                    |  |  |

## -3)-5 Distribution pump station

|     | Component                                  | Quantity | Cost (JPY) |           |                      |                    |  |
|-----|--------------------------------------------|----------|------------|-----------|----------------------|--------------------|--|
|     |                                            |          | Unit       |           | Foreign<br>Component | Local<br>Component |  |
| 1)  | Civil works                                |          |            |           |                      |                    |  |
| 2)  | Mechanical and Electrical works            |          |            | 2,357,700 |                      |                    |  |
| 2.1 | ) Centrifugal pumps<br>1.1kW x (2+1 units) | 3 nos    | 785,900    | 2,357,700 |                      |                    |  |
| 3)  | Building works                             | 25 m2    | 55,000     | 1,375,000 |                      |                    |  |

## 3)-6 House connection

|    | Component              | Quantity  | Cost (JPY) |                      |                    |  |  |
|----|------------------------|-----------|------------|----------------------|--------------------|--|--|
|    |                        | Unit      | Amount     | Foreign<br>Component | Local<br>Component |  |  |
| 1) | House connection pipes | 28,900 m  | 80         | 2,312,000            |                    |  |  |
| 2) | Water meter            | 2,890 nos | 2,459      | 7,107,000            |                    |  |  |

# 3)-7 Administration building

| Component                  | Quantity | Cost |        | (JPY)                |                    |
|----------------------------|----------|------|--------|----------------------|--------------------|
|                            |          | Unit | Amount | Foreign<br>Component | Local<br>Component |
| 1) Administration building | 1 set    |      |        |                      |                    |

#### usp1 = 4) FPS5 4)-1 Intake facility

106.17 yen

|      | Component                                    | Quantity | Cost (JPY) |           |                      |                    |  |
|------|----------------------------------------------|----------|------------|-----------|----------------------|--------------------|--|
|      |                                              |          | Unit       | Amount    | Foreign<br>Component | Local<br>Component |  |
| 1)   | Civil works                                  |          |            | 2,034,000 |                      |                    |  |
|      | Deep wells                                   | 2 nos    | 1,017,000  | 2,034,000 |                      |                    |  |
| 2)   | Mechanical and Electrical works              |          |            | 1,406,500 |                      |                    |  |
| 2.1) | ) Submersible pumps<br>2.2kW x (2 units)     | 2 nos    | 703,250    | 1,406,500 |                      |                    |  |
| 3)   | Building works<br>10 m2 × 2 locations =20 m2 | 20 m2    | 70,000     | 1,400,000 |                      |                    |  |

## 4)-2 Raw water transmission pipelines and Clear water transmission

| Component                                                           | Quantity | Cost (JPY) |           |                      |                    |  |
|---------------------------------------------------------------------|----------|------------|-----------|----------------------|--------------------|--|
|                                                                     |          | Unit       | Amount    | Foreign<br>Component | Local<br>Component |  |
| 1) Raw water transmission pipelines and<br>Clear water transmission |          |            | 6,635,000 |                      |                    |  |
| 1.1) Pipe Dia. 125mm<br>PVC                                         | 2,500 m  | 2,654      | 6,635,000 |                      |                    |  |

#### 4)-3 Water treatment plant

|      | Component                           | Quantity |        | Cost   | (JPY)                |                    |
|------|-------------------------------------|----------|--------|--------|----------------------|--------------------|
|      |                                     |          | Unit   | Amount | Foreign<br>Component | Local<br>Component |
| 1)   | Civil works                         |          |        | 0      |                      |                    |
|      |                                     | Capacity |        |        |                      |                    |
| 1.1) | Coagulation and Sedimentation basin | m3       | 50,000 | 0      |                      |                    |
|      |                                     | Capacity |        |        |                      |                    |
| 1.2) | Filtration basin                    | m3       | 50,000 | 0      |                      |                    |
|      |                                     | Capacity |        |        |                      |                    |
| 1.3) | Treated water reservoir             | m3       | 50,000 | 0      |                      |                    |
| 2)   | Mechanical and Electrical works     |          |        | 0      |                      |                    |
| 2)   | Mechanical and Electrical works     |          |        | 0      |                      |                    |
| 2.1) | Mechanical and Electrical works     | set      |        | 0      |                      |                    |
| 3)   | Building works                      |          |        |        |                      |                    |

# 4)-4 Distribution facility

|    |      | Component                                | Quantity           |           | Cost       | (JPY)                |                    |
|----|------|------------------------------------------|--------------------|-----------|------------|----------------------|--------------------|
|    |      |                                          |                    | Unit      | Amount     | Foreign<br>Component | Local<br>Component |
| 1) |      | Civil works                              | o "                |           | 13,350,000 |                      |                    |
|    | 1.1) | Distribution reservoir                   | Capacity<br>267 m3 | 50,000    | 13,350,000 |                      |                    |
| 2) |      | Mechanical and Electrical works          |                    |           | 3,441,000  |                      |                    |
| 2  |      | Centrifugal pumps<br>2.2kW x (2+1 units) | 3 nos              | 1,146,950 | 3,441,000  |                      |                    |
| 3) |      | Building works                           |                    |           | 4,550,000  |                      |                    |
| 3  | 3.1) | Administration office                    | 20 m2              | 140,000   | 2,800,000  |                      |                    |
| 3  | 3.2) | Pump station                             | 25 m2              | 70,000    | 1,750,000  |                      |                    |
| :  | 3.3) | Chemical building                        | m2                 | 70,000    | 0          |                      |                    |
| 3  | 3.4) | Chlorinator building                     | m2                 | 70,000    | 0          |                      |                    |
| 3  | 3.5) | Operation building of filtration basin   | m2                 | 55,000    | 0          |                      |                    |
| 4) |      | Primary distribution mains               |                    |           | 31,445,000 |                      |                    |
| 2  | 4.1) | Pipe Dia. 50mm<br>PVC                    | 6,874 m            | 1,168     | 8,029,000  |                      |                    |
| 4  | 4.2) | Pipe Dia. 65mm<br>PVC                    | 0 m                | 1,380     | 0          |                      |                    |
| 2  | 4.3) | Pipe Dia. 80mm<br>PVC                    | 1,320 m            | 1,699     | 2,243,000  |                      |                    |
| 4  | 4.4) | Pipe Dia. 100mm<br>PVC                   | 3,113 m            | 2,230     | 6,942,000  |                      |                    |
| 4  | 4.5) | Pipe Dia. 125mm<br>PVC                   | 0 m                | 2,654     | 0          |                      |                    |
| 4  | 4.6) | Pipe Dia. 150mm<br>PVC                   | 4,009 m            | 3,397     | 13,619,000 |                      |                    |
| 4  | 4.7) | Pipe Dia. 200mm<br>PVC                   | 128 m              | 4,778     | 612,000    |                      |                    |
| 4  | 4.8) | Pipe Dia. 250mm<br>PVC                   | 0 m                | 6,689     | 0          |                      |                    |
| 4  | 4.9) | Fittings and valves                      | %                  |           | 0          |                      |                    |
| 4. | .10) | Extra works such as sheeting             | %                  |           | 0          |                      |                    |

## 4)-5 Distribution pump station

|    | Component                       | Quantity                                                                                                                                           |      | Cost | (JPY)                |                    |
|----|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----------------------|--------------------|
|    |                                 |                                                                                                                                                    | Unit |      | Foreign<br>Component | Local<br>Component |
| 1) | Civil works                     | $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ |      |      |                      |                    |
| 2) | Mechanical and Electrical works | set                                                                                                                                                |      |      | /                    |                    |
| 3) | Building works                  | set                                                                                                                                                |      |      |                      |                    |

## 4)-6 House connection

|    | Component                    | Quantity  | Cost (JPY) |           |                      |                    |  |
|----|------------------------------|-----------|------------|-----------|----------------------|--------------------|--|
|    |                              |           | Unit       | Amount    | Foreign<br>Component | Local<br>Component |  |
| 1) | House connection pipes<br>PE | 21,120 m  | 80         | 1,690,000 |                      |                    |  |
| 2) | Water meter                  | 2,112 nos | 2,459      | 5,193,000 |                      |                    |  |

# 4)-7 Administration building

| Component                  | Quantity | Cost |        | (JPY)                |                    |
|----------------------------|----------|------|--------|----------------------|--------------------|
|                            |          | Unit | Amount | Foreign<br>Component | Local<br>Component |
| 1) Administration building | 1 set    |      |        |                      |                    |

#### USD1 = 5) FKS6 5)-1 Intake facility

106.17 yen

|      | Component                                   | Quantity | Cost (JPY) |           |                      |                    |  |
|------|---------------------------------------------|----------|------------|-----------|----------------------|--------------------|--|
|      |                                             |          | Unit       | Amount    | Foreign<br>Component | Local<br>Component |  |
| 1)   | Civil works                                 |          |            | 2,034,000 |                      |                    |  |
|      | Deep wells                                  | 2 nos    | 1,017,000  | 2,034,000 |                      |                    |  |
| 2)   | Mechanical and Electrical works             |          |            | 1,609,500 |                      |                    |  |
| 2.1) | Submersible pumps<br>3.7kW x (2units)       | 2 nos    | 804,750    | 1,609,500 |                      |                    |  |
| 3)   | Building works<br>10 m2 × 2 locations=20 m2 | 20 m2    | 70,000     | 1,400,000 |                      |                    |  |

## 5)-2 Raw water transmission pipelines and Clear water transmission

| Component                                                           | Quantity | Cost (JPY) |           |                      |                    |
|---------------------------------------------------------------------|----------|------------|-----------|----------------------|--------------------|
|                                                                     |          | Unit       | Amount    | Foreign<br>Component | Local<br>Component |
| 1) Raw water transmission pipelines and<br>Clear water transmission |          |            | 1,561,000 |                      |                    |
| 1.1) Pipe Dia. 100mm<br>PVC                                         | 700 m    | 2,230      | 1,561,000 |                      |                    |

#### 5)-3 Water treatment plant

| (      | Component                              | Quantity                       |           | Cost       | (JPY)                |                    |
|--------|----------------------------------------|--------------------------------|-----------|------------|----------------------|--------------------|
|        |                                        |                                | Unit      | Amount     | Foreign<br>Component | Local<br>Component |
| 1) (   | Civil works                            |                                |           | 25,000,000 |                      |                    |
|        | Coagulation and Sedimentation basin    | Capacity<br>m3                 | 50,000    | 0          |                      |                    |
| 1.2) F | Filtration basin                       | Capacity<br>450 m3<br>Capacity | 50,000    | 22,500,000 |                      |                    |
| 1.3) 1 | Treated water reservoir                | 50 m3                          | 50,000    | 2,500,000  |                      |                    |
| 2) 🛛   | Mechanical and Electrical works        |                                |           | 6,913,100  |                      |                    |
| 2.1) N | Mechanical and Electrical works        | 1 set                          | 6,913,100 | 6,913,100  |                      |                    |
| 3) E   | Building works                         |                                |           | 8,400,000  |                      |                    |
| 3.1) A | Administration office                  | 30 m2                          | 140,000   | 4,200,000  |                      |                    |
| 3.2) F | Pump station                           | 35 m2                          | 70,000    | 2,450,000  |                      |                    |
| 3.3) ( | Chemical building                      | m2                             | 70,000    | 0          |                      |                    |
| 3.4) ( | Chlorinator building                   | 25 m2                          | 70,000    | 1,750,000  |                      |                    |
| 3.5) ( | Operation building of filtration basin | m2                             | 55,000    | 0          |                      |                    |

# 5)-4 Distribution facility

| 1    | Component                             | Quantity           |        | Cost       | (JPY)                |                    |
|------|---------------------------------------|--------------------|--------|------------|----------------------|--------------------|
|      |                                       |                    | Unit   | Amount     | Foreign<br>Component | Local<br>Component |
| 1)   | Civil works                           |                    |        | 10,000,000 |                      |                    |
| 1.1  | 1) Distribution reservoir             | Concrete<br>200 m3 | 50,000 | 10,000,000 |                      |                    |
| 2)   | Mechanical and Electrical works       |                    |        |            |                      |                    |
| 3)   | Building works                        |                    |        |            |                      |                    |
| 4)   | Primary distribution mains            |                    |        | 23,818,000 |                      |                    |
| 4.1  | 1) Pipe Dia. 50mm<br>PVC              | 949 m              | 1,168  | 1,108,000  |                      |                    |
| 4.2  | 2) Pipe Dia. 65mm<br>PVC              | 344 m              | 1,380  | 475,000    |                      |                    |
| 4.:  | 3) Pipe Dia. 80mm<br>PVC              | 0 m                | 1,699  | 0          |                      |                    |
| 4.4  | 4) Pipe Dia. 100mm<br>PVC             | 3,989 m            | 2,230  | 8,895,000  |                      |                    |
| 4.   | 5) Pipe Dia. 125mm<br>PVC             | 0 m                | 2,654  | 0          |                      |                    |
| 4.6  | 6) Pipe Dia. 150mm<br>PVC             | 0 m                | 3,397  | 0          |                      |                    |
| 4.   | 7) Pipe Dia. 200mm<br>PVC             | 2,792 m            | 4,778  | 13,340,000 |                      |                    |
| 4.8  | B) Pipe Dia. 250mm<br>PVC             | 0 m                | 6,689  | 0          |                      |                    |
| 4.9  | <ul><li>Fittings and valves</li></ul> | %                  |        | 0          |                      |                    |
| 4.10 | 0) Extra works such as sheeting       | %                  |        | 0          |                      |                    |

## 5)-5 Distribution pump station

| $\square$ | Component                       | Quantity   |      | Cost   | (JPY)                |                    |
|-----------|---------------------------------|------------|------|--------|----------------------|--------------------|
|           |                                 |            | Unit | Amount | Foreign<br>Component | Local<br>Component |
| 1)        | Civil works                     | $\searrow$ |      |        |                      |                    |
| 2)        | Mechanical and Electrical works | set        |      |        |                      |                    |
| 3)        | Building works                  | set        |      |        |                      |                    |

## 5)-6 House connection

|    | Component                    | Quantity  | Cost (JPY) |           |                      |                    |  |
|----|------------------------------|-----------|------------|-----------|----------------------|--------------------|--|
|    |                              |           | Unit       | Amount    | Foreign<br>Component | Local<br>Component |  |
| 1) | House connection pipes<br>PE | 12,430 m  | 80         | 994,000   |                      |                    |  |
| 2) | Water meter                  | 1,243 nos | 2,459      | 3,057,000 |                      |                    |  |

# 5)-7 Administration building

| Component                  | Quantity |      | Cost   | (JPY)                |                    |  |
|----------------------------|----------|------|--------|----------------------|--------------------|--|
|                            |          | Unit | Amount | Foreign<br>Component | Local<br>Component |  |
| 1) Administration building | 1 set    |      |        |                      |                    |  |

#### USD1 = 6) FKS8 6)-1 Intake facility

106.17 yen

|    | Component                                               | Quantity | Cost (JPY) |           |                      |                    |
|----|---------------------------------------------------------|----------|------------|-----------|----------------------|--------------------|
|    |                                                         |          | Unit       | Amount    | Foreign<br>Component | Local<br>Component |
| 1) | Civil works                                             |          |            | 4,034,000 |                      |                    |
|    | 1.1) Intake facility                                    | 1 no     | 2,000,000  | 2,000,000 |                      |                    |
|    | 1.2) Deep wells                                         | 2 nos    | 1,017,000  | 2,034,000 |                      |                    |
| 2) | Mechanical and Electrical works                         |          |            | 2,937,700 |                      |                    |
| 2  | 2.1) Submersible pumps for river<br>0.5kW x (2+1 units) | 3 nos    | 510,400    | 1,531,200 |                      |                    |
| 2  | 2.2) Submersible pumps for wells<br>2.2kW x (2 units)   | 2 nos    | 703,250    | 1,406,500 |                      |                    |
| 3) | Building works                                          |          |            | 1,750,000 |                      |                    |
| 3  | 3.1) River intake                                       | 25 m2    | 70,000     | 1,750,000 |                      |                    |
| :  | 3.2) Wells (2 deep wells)                               | 20 m2    | 70,000     | 1,400,000 |                      |                    |

## 6)-2 Raw water transmission pipelines and Clear water transmission

| Component Quantity                                                  |          |       | Cost       | Cost (JPY)           |                    |  |
|---------------------------------------------------------------------|----------|-------|------------|----------------------|--------------------|--|
|                                                                     |          | Unit  | Amount     | Foreign<br>Component | Local<br>Component |  |
| 1) Raw water transmission pipelines and<br>Clear water transmission |          |       | 39,744,900 |                      |                    |  |
| 1.1) Pipe Dia. 150mm<br>PVC                                         | 11,700 m | 3,397 | 39,744,900 |                      |                    |  |

# 6)-3 Water treatment plant

|    |      | Component                              | Quantity                      |            | Cost       | (JPY)                |                    |
|----|------|----------------------------------------|-------------------------------|------------|------------|----------------------|--------------------|
|    |      |                                        |                               | Unit       | Amount     | Foreign<br>Component | Local<br>Component |
| 1) |      | Civil works                            |                               |            | 4,100,000  |                      |                    |
|    | 1.1) | Coagulation and Sedimentation basin    | Capacity<br>14 m3<br>Capacity | 50,000     | 700,000    |                      |                    |
|    | 1.2) | Filtration basin                       | 14 m3                         | 50,000     | 700,000    |                      |                    |
|    | 1.3) | Treated water reservoir                | Capacity<br>54 m3             | 50,000     | 2,700,000  |                      |                    |
| 2) |      | Mechanical and Electrical works        |                               |            | 31,624,000 |                      |                    |
|    | 2.1) | Mechanical and Electrical works        | 1 set                         | 31,624,000 | 31,624,000 |                      |                    |
| 3) |      | Building works                         |                               |            | 11,200,000 |                      |                    |
|    | 3.1) | Administration office                  | 30 m2                         | 140,000    | 4,200,000  |                      |                    |
|    | 3.2) | Pump station                           | 35 m2                         | 70,000     | 2,450,000  |                      |                    |
|    | 3.3) | Chemical building                      | 40 m2                         | 70,000     | 2,800,000  |                      |                    |
|    | 3.4) | Chlorinator building                   | 25 m2                         | 70,000     | 1,750,000  |                      |                    |
|    | 3.5) | Operation building of filtration basin | 0 m2                          | 55,000     | 0          |                      |                    |

# 6)-4 Distribution facility

|    |       | Component                                | Quantity           |           | Cost       | (JPY)                |                    |
|----|-------|------------------------------------------|--------------------|-----------|------------|----------------------|--------------------|
|    |       |                                          |                    | Unit      | Amount     | Foreign<br>Component | Local<br>Component |
| 1) |       | Civil works                              |                    |           | 10,000,000 |                      |                    |
|    | 1.1)  | Distribution reservoir                   | Capacity<br>200 m3 | 50,000    | 10,000,000 |                      |                    |
| 2) |       | Mechanical and Electrical works          |                    |           | 3,675,750  |                      |                    |
|    | 2.1)  | Centrifugal pumps<br>3.7kW x (2+1 units) | 3 nos              | 1,225,250 | 3,675,750  |                      |                    |
| 3) |       | Building works                           |                    |           | 0          |                      |                    |
| 4) |       | Primary distribution mains               |                    |           | 33,032,000 |                      |                    |
|    | 4.1)  | Pipe Dia. 50mm<br>PVC                    | 6,302 m            | 1,168     | 7,361,000  |                      |                    |
|    | 4.2)  | Pipe Dia. 65mm<br>PVC                    | 0 m                | 1,380     | 0          |                      |                    |
|    | 4.3)  | Pipe Dia. 80mm<br>PVC                    | 0 m                | 1,699     | 0          |                      |                    |
|    | 4.4)  | Pipe Dia. 100mm<br>PVC                   | 1,980 m            | 2,230     | 4,415,000  |                      |                    |
|    | 4.5)  | Pipe Dia. 125mm<br>PVC                   | 0 m                | 2,654     | 0          |                      |                    |
|    | 4.6)  | Pipe Dia. 150mm<br>PVC                   | 2,582 m            | 3,397     | 8,771,000  |                      |                    |
|    | 4.7)  | Pipe Dia. 200mm<br>PVC                   | 2,613 m            | 4,778     | 12,485,000 |                      |                    |
|    | 4.8)  | Pipe Dia. 250mm<br>PVC                   | 0 m                | 6,689     | 0          |                      |                    |
|    | 4.9)  | Fittings and valves                      | %                  |           | 0          |                      |                    |
| 4  | 4.10) | Extra works such as sheeting             | %                  |           | 0          |                      |                    |

## 6)-5 Distribution pump station

|    | Component                       | Quantity   | Cost (JPY) |        |                                  |                    |
|----|---------------------------------|------------|------------|--------|----------------------------------|--------------------|
|    |                                 |            | Unit       | Amount | Forei <del>gn</del><br>Component | Local<br>Component |
| 1) | Civil works                     | $\searrow$ |            |        |                                  |                    |
| 2) | Mechanical and Electrical works |            |            |        |                                  |                    |
| 3) | Building works                  |            |            |        |                                  |                    |

## 6)-6 House connection

|    | Component                    | Quantity  | Cost (JPY) |           |                      |                    |
|----|------------------------------|-----------|------------|-----------|----------------------|--------------------|
|    |                              |           | Unit       | Amount    | Foreign<br>Component | Local<br>Component |
| 1) | House connection pipes<br>PE | 13,680 m  | 80         | 1,094,000 |                      |                    |
| 2) | Water meter                  | 1,368 nos | 2,459      | 3,364,000 |                      |                    |

# 6)-7 Administration building

| Component                  | Quantity | Cost (JPY) |        |                      |                    |
|----------------------------|----------|------------|--------|----------------------|--------------------|
|                            |          | Unit       | Amount | Foreign<br>Component | Local<br>Component |
| 1) Administration building | 1 set    |            |        |                      |                    |

#### USD1 = 7) FNG10 7)-1 Intake facility

106.17 yen

| C       | Component                                | Quantity | Cost (JPY) |            |                      |                    |
|---------|------------------------------------------|----------|------------|------------|----------------------|--------------------|
|         |                                          |          | Unit       | Amount     | Foreign<br>Component | Local<br>Component |
| 1) C    | Civil works                              |          |            | 15,000,000 |                      |                    |
| 1.1) lı | ntake facility                           | 1 no     | 15,000,000 | 15,000,000 |                      |                    |
| 2) N    | Mechanical and Electrical works          |          |            | 4,476,150  |                      |                    |
|         | Submersible pumps<br>3.7kW x (2+1 units) | 3 nos    | 1,492,050  | 4,476,150  |                      |                    |
| 3) E    | Building works                           | 25 m2    | 70,000     | 1,750,000  |                      |                    |

#### 7)-2 Raw water transmission pipelines and Clear water transmission

| Component                                                           | Quantity | Cost (JPY) |             |                      |                    |
|---------------------------------------------------------------------|----------|------------|-------------|----------------------|--------------------|
|                                                                     |          | Unit       | Amount      | Foreign<br>Component | Local<br>Component |
| 1) Raw water transmission pipelines and<br>Clear water transmission |          |            | 313,033,140 |                      |                    |
| 1.1) Pipe Dia. 300mm<br>DCI                                         | 11,340 m | 19,111     | 216,718,740 |                      |                    |
| 1.2) Pipe Dia. 200mm<br>DCI                                         | 7,560 m  | 12,740     | 96,314,400  |                      |                    |

#### 7)-3 Water treatment plant

|    |           | Component                              | Quantity                         |            | Cost        | (JPY)                |                    |
|----|-----------|----------------------------------------|----------------------------------|------------|-------------|----------------------|--------------------|
|    |           |                                        |                                  | Unit       | Amount      | Foreign<br>Component | Local<br>Component |
| 1) |           | Civil works                            |                                  |            | 128,750,000 |                      |                    |
|    | 1.1)      | Coagulation and Sedimentation basin    | Capacity<br>1,508 m3<br>Capacity | 50,000     | 75,400,000  |                      |                    |
|    | 1.2)      | Filtration basin                       | 825 m3                           | 50,000     | 41,250,000  |                      |                    |
|    | ,<br>1.3) | Treated water reservoir                | Capacity<br>242 m3               | 50,000     | 12,100,000  |                      |                    |
| 2) |           | Mechanical and Electrical works        |                                  |            | 69,595,900  |                      |                    |
|    | 2.1)      | Mechanical and Electrical works        | 1 set                            | 69,595,900 | 69,595,900  |                      |                    |
| 3) |           | Building works                         |                                  |            | 19,150,000  |                      |                    |
|    | 3.1)      | Administration office                  | 30 m2                            | 140,000    | 4,200,000   |                      |                    |
|    | 3.2)      | Pump station                           | 50 m2                            | 70,000     | 3,500,000   |                      |                    |
|    | 3.3)      | Chemical building                      | 60 m2                            | 70,000     | 4,200,000   |                      |                    |
|    | 3.4)      | Chlorinator building                   | 25 m2                            | 70,000     | 1,750,000   |                      |                    |
|    | 3.5)      | Operation building of filtration basin | 100 m2                           | 55,000     | 5,500,000   |                      |                    |

## 7)-4 Distribution facility

|    |       | Component                               | Quantity           |           | Cost        |                      |                    |
|----|-------|-----------------------------------------|--------------------|-----------|-------------|----------------------|--------------------|
|    |       |                                         |                    | Unit      | Amount      | Foreign<br>Component | Local<br>Component |
| 1) |       | Civil works                             |                    |           | 43,350,000  |                      |                    |
|    | 1.1)  | Distribution reservoir                  | Capacity<br>867 m3 | 50,000    | 43,350,000  |                      |                    |
| 2) |       | Mechanical and Electrical works         |                    |           | 12,847,000  |                      |                    |
|    | 2.1)  | Centrifugal pumps<br>22kW x (3+1 units) | 4 nos              | 3,211,750 | 12,847,000  |                      |                    |
| 3) |       | Building works                          |                    |           | 0           |                      |                    |
| 4) |       | Primary distribution mains              |                    |           | 154,606,000 |                      |                    |
|    | 4.1)  | Pipe Dia. 50mm<br>PVC                   | 795 m              | 1,168     | 929,000     |                      |                    |
|    | 4.2)  | Pipe Dia. 65mm<br>PVC                   | 0 m                | 1,380     | 0           |                      |                    |
|    | 4.3)  | Pipe Dia. 80mm<br>PVC                   | 0 m                | 1,699     | 0           |                      |                    |
|    | 4.4)  | Pipe Dia. 100mm<br>PVC                  | 0 m                | 2,230     | 0           |                      |                    |
|    | 4.5)  | Pipe Dia. 125mm<br>PVC                  | 2,185 m            | 2,654     | 5,799,000   |                      |                    |
|    | 4.6)  | Pipe Dia. 150mm<br>PVC                  | 7,055 m            | 3,397     | 23,966,000  |                      |                    |
|    | 4.7)  | Pipe Dia. 200mm<br>PVC                  | 9,455 m            | 4,778     | 45,176,000  |                      |                    |
|    | 4.8)  | Pipe Dia. 250mm<br>PVC                  | 11,771 m           | 6,689     | 78,736,000  |                      |                    |
|    | 4.9)  | Fittings and valves                     | %                  |           | 0           |                      |                    |
| 4  | 4.10) | Extra works such as sheeting            | %                  |           | 0           |                      |                    |

## 7)-5 Distribution pump station

| Component                                    | Quantity | Cost (JPY) |           |                      |                    |
|----------------------------------------------|----------|------------|-----------|----------------------|--------------------|
|                                              |          | Unit       | Amount    | Foreign<br>Component | Local<br>Component |
| 1) Civil works                               |          |            |           |                      |                    |
| 2) Mechanical and Electrical works           |          |            | 9,635,250 |                      |                    |
| 2.1) Centrifugal pumps<br>15kW x (2+1 units) | 3 nos    | 3,211,750  | 9,635,250 |                      |                    |
| 3) Building works                            | 30 m2    | 55,000     | 1,650,000 |                      |                    |

## 7)-6 House connection

|    | Component                    | Quantity  | Cost (JPY) |                      |                    |  |
|----|------------------------------|-----------|------------|----------------------|--------------------|--|
|    |                              | Unit      |            | Foreign<br>Component | Local<br>Component |  |
| 1) | House connection pipes<br>PE | 52,130 m  | 80         | 4,170,000            |                    |  |
| 2) | Water meter                  | 5,213 nos | 2,459      | 12,819,000           |                    |  |

## 7)-7 Administration building

| Component                  | Quantity |      | Cost   | (JPY)                | Y)                 |  |  |
|----------------------------|----------|------|--------|----------------------|--------------------|--|--|
|                            |          | Unit | Amount | Foreign<br>Component | Local<br>Component |  |  |
| 1) Administration building | 1 set    |      |        |                      |                    |  |  |

#### usp1 = 8) FBS11 8)-1 Intake facility

106.17 yen

| Component                                     | Quantity | Cost (JPY) |           |                      |                    |
|-----------------------------------------------|----------|------------|-----------|----------------------|--------------------|
|                                               |          | Unit       | Amount    | Foreign<br>Component | Local<br>Component |
| 1) Civil works                                |          |            | 2,000,000 |                      |                    |
| 1.1) Intake facility                          | 1 no     | 2,000,000  | 2,000,000 |                      |                    |
| 2) Mechanical and Electrical works            |          |            | 2,066,250 |                      |                    |
| 2.1) Centrifugal pumps<br>1.1kW x (2+1 units) | 3 nos    | 688,750    | 2,066,250 |                      |                    |
| 3) Building works                             | 25 m2    | 70,000     | 1,750,000 |                      |                    |

## 8)-2 Raw water transmission pipelines and Clear water transmission

| Component                                                           | Quantity | Cost (JPY) |            |                      |                    |
|---------------------------------------------------------------------|----------|------------|------------|----------------------|--------------------|
|                                                                     |          | Unit       | Amount     | Foreign<br>Component | Local<br>Component |
| 1) Raw water transmission pipelines and<br>Clear water transmission |          |            | 29,145,800 |                      |                    |
| 1.1) Pipe Dia. 200mm<br>PVC                                         | 6,100 m  | 4,778      | 29,145,800 |                      |                    |

#### 8)-3 Water treatment plant

|    |      | Component                              | Quantity                       |            | Cost       | (JPY)                |                    |
|----|------|----------------------------------------|--------------------------------|------------|------------|----------------------|--------------------|
|    |      |                                        |                                | Unit       | Amount     | Foreign<br>Component | Local<br>Component |
| 1) |      | Civil works                            |                                |            | 36,950,000 |                      |                    |
|    | 1.1) | Coagulation and Sedimentation basin    | Capacity<br>432 m3<br>Capacity | 50,000     | 21,600,000 |                      |                    |
|    | 1.2) | Filtration basin                       | 240 m3                         | 50,000     | 12,000,000 |                      |                    |
|    | 1.3) | Treated water reservoir                | Capacity<br>67 m3              | 50,000     | 3,350,000  |                      |                    |
| 2) |      | Mechanical and Electrical works        |                                |            | 22,244,200 |                      |                    |
|    | 2.1) | Mechanical and Electrical works        | 1 set                          | 22,244,200 | 22,244,200 |                      |                    |
| 3) |      | Building works                         |                                |            | 11,200,000 |                      |                    |
|    | 3.1) | Administration office                  | 30 m2                          | 140,000    | 4,200,000  |                      |                    |
|    | 3.2) | Pump station                           | 35 m2                          | 70,000     | 2,450,000  |                      |                    |
|    | 3.3) | Chemical building                      | 40 m2                          | 70,000     | 2,800,000  |                      |                    |
|    | 3.4) | Chlorinator building                   | 25 m2                          | 70,000     | 1,750,000  |                      |                    |
|    | 3.5) | Operation building of filtration basin | 0 m2                           | 55,000     | 0          |                      |                    |

## 8)-4 Distribution facility

|    |       | Component                                | Quantity           |           | Cost       | (JPY)                |                    |
|----|-------|------------------------------------------|--------------------|-----------|------------|----------------------|--------------------|
|    |       |                                          |                    | Unit      | Amount     | Foreign<br>Component | Local<br>Component |
| 1) |       | Civil works                              | _                  |           | 11,650,000 |                      |                    |
|    | 1.1)  | Distribution reservoir                   | Capacity<br>233 m3 | 50,000    | 11,650,000 |                      |                    |
| 2) |       | Mechanical and Electrical works          |                    |           | 4,145,550  |                      |                    |
|    | 2.1)  | Centrifugal pumps<br>5.5kW x (2+1 units) | 3 nos              | 1,381,850 | 4,145,550  |                      |                    |
| 3) |       | Building works                           |                    |           | 0          |                      |                    |
| 4) |       | Primary distribution mains               |                    |           | 18,154,000 |                      |                    |
|    | 4.1)  | Pipe Dia. 50mm<br>PVC                    | 1,923 m            | 1,168     | 2,246,000  |                      |                    |
|    | 4.2)  | Pipe Dia. 65mm<br>PVC                    | 0 m                | 1,380     | 0          |                      |                    |
|    | 4.3)  | Pipe Dia. 80mm<br>PVC                    | 0 m                | 1,699     | 0          |                      |                    |
|    | 4.4)  | Pipe Dia. 100mm<br>PVC                   | 2,373 m            | 2,230     | 5,292,000  |                      |                    |
|    | 4.5)  | Pipe Dia. 125mm<br>PVC                   | m                  | 2,654     | 0          |                      |                    |
|    | 4.6)  | Pipe Dia. 150mm<br>PVC                   | 3,125 m            | 3,397     | 10,616,000 |                      |                    |
|    | 4.7)  | Pipe Dia. 200mm<br>PVC                   | 0 m                | 4,778     | 0          |                      |                    |
|    | 4.8)  | Pipe Dia. 250mm<br>PVC                   | 0 m                | 6,689     | 0          |                      |                    |
|    | 4.9)  | Fittings and valves                      | %                  |           | 0          |                      |                    |
| 4  | 4.10) | Extra works such as sheeting             | %                  |           | 0          |                      |                    |

## 8)-5 Distribution pump station

|    | - Component                     | Quantity   | Cost (JPY) |        |                                  |                    |
|----|---------------------------------|------------|------------|--------|----------------------------------|--------------------|
|    |                                 |            | Unit       | Amount | Forei <del>gn</del><br>Component | Local<br>Component |
| 1) | Civil works                     | $\searrow$ |            |        |                                  |                    |
| 2) | Mechanical and Electrical works |            |            |        |                                  |                    |
| 3) | Building works                  |            |            |        |                                  |                    |

## 8)-6 House connection

|    | Component                    | Quantity  | Cost (JPY) |           |                      |                    |
|----|------------------------------|-----------|------------|-----------|----------------------|--------------------|
|    |                              |           | Unit       | Amount    | Foreign<br>Component | Local<br>Component |
| 1) | House connection pipes<br>PE | 16,670 m  | 80         | 1,334,000 |                      |                    |
| 2) | Water meter                  | 1,667 nos | 2,459      | 4,099,000 |                      |                    |

## 8)-7 Administration building

| Component                  | Quantity | Cost (JPY) |        |                      |                    |
|----------------------------|----------|------------|--------|----------------------|--------------------|
|                            |          | Unit       | Amount | Foreign<br>Component | Local<br>Component |
| 1) Administration building | 1 set    |            |        |                      |                    |

# USD1 =9) FBG139)-1 Intake facility

106.17 yen

|    |      | Component                                    | Quantity |            | Cost       | (JPY)                |                    |
|----|------|----------------------------------------------|----------|------------|------------|----------------------|--------------------|
|    |      |                                              |          | Unit       | Amount     | Foreign<br>Component | Local<br>Component |
| 1) |      | Civil works                                  |          |            | 15,000,000 |                      |                    |
|    | 1.1) | Intake facility                              | 1 no     | 15,000,000 | 15,000,000 |                      |                    |
| 2) |      | Mechanical and Electrical works              |          |            | 18,782,800 |                      |                    |
|    | 2.1) | Submersible pumps<br>7.5kW(x2) x (2+1 units) | 6 nos    | 2,963,800  | 17,782,800 |                      |                    |
|    | 2.2) | Others                                       | 1 set    | 1,000,000  | 1,000,000  |                      |                    |
| 3) |      | Building works                               | 30 m2    | 70,000     | 2,100,000  |                      |                    |

## 9)-2 Raw water transmission pipelines and Clear water transmission

| Component                                                           | Quantity | Cost (JPY) |             |                      |                    |  |
|---------------------------------------------------------------------|----------|------------|-------------|----------------------|--------------------|--|
|                                                                     |          | Unit       | Amount      | Foreign<br>Component | Local<br>Component |  |
| 1) Raw water transmission pipelines and<br>Clear water transmission |          |            | 112,754,900 |                      |                    |  |
| 1.1) Pipe Dia. 300mm<br>DCI                                         | 5,900 m  | 19,111     | 112,754,900 |                      |                    |  |

## 9)-3 Water treatment plant

|    |      | Component                              | Quantity                         |             | Cost        | (JPY)                |                    |
|----|------|----------------------------------------|----------------------------------|-------------|-------------|----------------------|--------------------|
|    |      |                                        |                                  | Unit        | Amount      | Foreign<br>Component | Local<br>Component |
| 1) |      | Civil works                            |                                  |             | 209,550,000 |                      |                    |
|    | 1.1) | Coagulation and Sedimentation basin    | Capacity<br>1,860 m3<br>Capacity | 50,000      | 93,000,000  |                      |                    |
|    | 1.2) | Filtration basin                       | 1.231 m3                         | 50,000      | 61,550,000  |                      |                    |
|    | ,    | Treated water reservoir                | Capacity<br>1,100 m3             | 50,000      |             |                      |                    |
| 2) |      | Mechanical and Electrical works        |                                  |             | 107,872,000 |                      |                    |
|    | 2.1) | Mechanical and Electrical works        | 1 set                            | 107,872,000 | 107,872,000 |                      |                    |
| 3) |      | Building works                         |                                  |             | 25,400,000  |                      |                    |
|    | 3.1) | Administration office                  | 50 m2                            | 140,000     | 7,000,000   |                      |                    |
|    | 3.2) | Pump station                           | 60 m2                            | 70,000      | 4,200,000   |                      |                    |
|    | 3.3) | Chemical building                      | 60 m2                            | 70,000      | 4,200,000   |                      |                    |
|    | 3.4) | Chlorinator building                   | 25 m2                            | 70,000      | 1,750,000   |                      |                    |
|    | 3.5) | Operation building of filtration basin | 150 m2                           | 55,000      | 8,250,000   |                      |                    |

## 9)-4 Distribution facility

|    |       | Component                               | Quantity                       |           | Cost        | (JPY)                |                    |
|----|-------|-----------------------------------------|--------------------------------|-----------|-------------|----------------------|--------------------|
|    |       |                                         |                                | Unit      | Amount      | Foreign<br>Component | Local<br>Component |
| 1) |       | Civil works                             |                                |           | 75,000,000  |                      |                    |
|    | 1.1)  | Distribution reservoir for B-3          | Capacity<br>350 m3<br>Capacity | 50,000    | 17,500,000  |                      |                    |
|    | 1.2)  | Distribution reservoir for B-5,6,7      | 1,150 m3                       | 50,000    | 57,500,000  |                      |                    |
| 2) |       | Mechanical and Electrical works         |                                |           | 19,957,800  |                      |                    |
|    | 2.1)  | Centrifugal pumps<br>30kW x (2+1 units) | 3 nos                          | 6,652,600 | 19,957,800  |                      |                    |
| 3) |       | Building works                          |                                |           | 0           |                      |                    |
| 4) |       | Primary distribution mains              |                                |           | 294,420,000 |                      |                    |
|    | 4.1)  | Pipe Dia. 50mm<br>PVC                   | 12,402 m                       | 1,168     | 14,486,000  |                      |                    |
|    | 4.2)  | Pipe Dia. 65mm<br>PVC                   | 0 m                            | 1,380     | 0           |                      |                    |
|    | 4.3)  | Pipe Dia. 80mm<br>PVC                   | 0 m                            | 1,699     | 0           |                      |                    |
|    | 4.4)  | Pipe Dia. 100mm<br>PVC                  | 6,604 m                        | 2,230     | 14,727,000  |                      |                    |
|    | 4.5)  | Pipe Dia. 125mm<br>PVC                  | 4,541 m                        | 2,654     | 12,052,000  |                      |                    |
|    | 4.6)  | Pipe Dia. 150mm<br>PVC                  | 0 m                            | 3,397     | 0           |                      |                    |
|    | 4.7)  | Pipe Dia. 200mm<br>PVC                  | 9,261 m                        | 4,778     | 44,249,000  |                      |                    |
|    | 4.8)  | Pipe Dia. 250mm<br>PVC                  | 8,484 m                        | 6,689     | 56,749,000  |                      |                    |
|    | 4.9)  | Pipe Dia. 300mm<br>PVC                  | 7,630 m                        | 10,723    | 81,816,000  |                      |                    |
| •  | 4.10) | Pipe Dia. 350mm<br>PVC                  | 4,355 m                        | 12,316    | 53,636,000  |                      |                    |
| ·  | 4.11) | Pipe Dia. 400mm<br>PVC                  | 1,192 m                        | 14,014    | 16,705,000  |                      |                    |
| •  | 4.12) | Fittings and valves                     | %                              |           | 0           |                      |                    |
| •  | 4.13) | Extra works such as sheeting            | %                              |           | 0           |                      |                    |

## 9)-5 Distribution pump station

|     | Component                                  | Quantity | Cost (JPY) |           |                      |                    |
|-----|--------------------------------------------|----------|------------|-----------|----------------------|--------------------|
|     |                                            |          | Unit       |           | Foreign<br>Component | Local<br>Component |
| 1)  | Civil works                                |          |            |           |                      |                    |
| 2)  | Mechanical and Electrical works            |          |            | 8,860,950 |                      |                    |
| 2.1 | ) Centrifugal pumps<br>7.5kW x (2+1 units) | 3 nos    | 2,953,650  | 8,860,950 |                      |                    |
| 3)  | Building works                             | 30 m2    | 55,000     | 1,650,000 |                      |                    |

## 9)-6 House connection

|    | Component                    | Quantity   | Cost (JPY) |            |                      |                    |
|----|------------------------------|------------|------------|------------|----------------------|--------------------|
|    |                              |            | Unit       | Amount     | Foreign<br>Component | Local<br>Component |
| 1) | House connection pipes<br>PE | 106,610 m  | 80         | 8,529,000  |                      |                    |
| 2) | Water meter                  | 10,661 nos | 2,459      | 26,215,000 |                      |                    |

## 9)-7 Administration building

| Component                  | Quantity | Cost (JPY) |            |                      |                    |
|----------------------------|----------|------------|------------|----------------------|--------------------|
|                            |          | Unit       | Amount     | Foreign<br>Component | Local<br>Component |
| 1) Administration building | 1 set    |            | 14,000,000 |                      |                    |
| 1.1) Dec Phu Village       | 20 m2    | 140,000    | 2,800,000  |                      |                    |
| 1.2) Da Kai commune        | 80 m2    | 140,000    | 11,200,000 |                      |                    |

#### (3) Unit Cost

#### (3)-1 Intake facility

a. Well Construction

| Cost of sub-contract for test drilling wells (USD) | 229,851.08 |
|----------------------------------------------------|------------|
| Number of test drilled wells                       | 24         |
| Unit cost of well construction (USD)               | 9,577      |
| Unit cost of well construction (JPY)               | 1,017,000  |

b. Intake for river

Outline of the intake (FBG-13) Type: Direct intake from river Size of intake: 1.5m width Intake channel: RC structure with stop-log and bar screen

• Estimation from Company "A" Total cost : <u>¥15,000,000</u> (including indirect cost and expensive)

- Brake down –

i) Construction work including materials: ¥12,800,000 -Shore protection (Stone mason work) -Concrete work

-Piping work (RC pipe, 700mm) -Screen and stop-log

- ii) Temporally work (block for work space by piling) \$2,200,000
  - Steel pile (loss cost)
  - Construction by vibro-pile hammer
- iii) Scouring protection work ¥1,000,000
  - Steel pile
  - Gabion mat ( t =500mm)
- Estimation from Company "B"

The cost is to be  $\underline{\$17,000,000}$  including piping work (RC pipe, 700mm).

Brake down

| i)   | Temporary work           | ¥ 5,000,000 |
|------|--------------------------|-------------|
| ii)  | Scouring protection work | ¥ 1,500,000 |
| iii) | Main construction work   | ¥ 8,000,000 |
| iv)  | Miscellaneous work       | ¥ 2,500,000 |

• Comparative cost

The adopted cost is \$15,000,000.

| Company    | Company A (adopted Cost) | Company B  |
|------------|--------------------------|------------|
| Total cost | 15,000,000               | 17,000,000 |

c. Intake for irrigation channel

<Concrete volume>

FKS-8 and FBS-11: approx. 30m<sup>3</sup>

FBG-13: approx. 120m<sup>3</sup>

Therefore, concrete volume is about one-fourth of FBG-13.

### $(\$12,800,000^{*1} - \$5,000,000^{*2}) / 4 = 1,950,000 = approx. \$2,000,000$

\*1: Cost for construction work including materials in FBG-13

\*2: Intake of FKS-8 and FBS-11 doesn't involve shore protection and piping work, because of intake from irrigation channel. Cost is assumed from result of interview from construction company.

(3)-2 Pipe

a. PVC

| [A1]     | [A2]     | [B]      | [C1]     | [C2]       | [C3]       | [D]               | [E]         | [F]               | [G1]              |
|----------|----------|----------|----------|------------|------------|-------------------|-------------|-------------------|-------------------|
| Diameter | Outer    | Width(m) | Earth    | Excavation | Excavation | Sand;10cm         | Backfill of | Soil              | Asphalt           |
| (mm)     | diameter |          | covering | depth      | (m3)       | ,Crown;10c        | excavated   | transportati      | pavement          |
|          | (mm)     |          | depth    | (m)        | [B]x[C2]   | m                 | material    | on                | (m <sup>2</sup> ) |
|          |          |          | (m)      |            |            | (m <sup>3</sup> ) | (m3)        | (m <sup>3</sup> ) | [B] x 30%         |
|          |          |          |          |            |            | [B]x(10cm         | [C3]-       | [C3]-[E]          | of length         |
|          |          |          |          |            |            | +[A2]+10c         | [B]x50cm    |                   |                   |
|          |          |          |          |            |            | m)-pipe           |             |                   |                   |
|          |          |          |          |            |            | profile           |             |                   |                   |
| 50       | 63       | 0.50     | 0.60     | 0.763      | 0.382      | 0.128             | 0.13        | 0.25              | 0.15              |
| 65       | 75       | 0.50     | 0.60     | 0.775      | 0.388      | 0.133             | 0.14        | 0.25              | 0.15              |
| 80       | 90       | 0.60     | 0.60     | 0.790      | 0.474      | 0.168             | 0.17        | 0.30              | 0.18              |
| 100      | 125      | 0.65     | 0.60     | 0.825      | 0.536      | 0.199             | 0.21        | 0.33              | 0.20              |
| 125      | 140      | 0.70     | 0.60     | 0.840      | 0.588      | 0.223             | 0.24        | 0.35              | 0.21              |
| 150      | 180      | 0.70     | 0.60     | 0.880      | 0.616      | 0.241             | 0.27        | 0.35              | 0.21              |
| 200      | 225      | 0.75     | 0.60     | 0.925      | 0.694      | 0.279             | 0.32        | 0.38              | 0.23              |
| 250      | 280      | 0.80     | 0.60     | 0.980      | 0.784      | 0.322             | 0.38        | 0.40              | 0.24              |
| 300      | 355      | 0.80     | 0.60     | 1.055      | 0.844      | 0.345             | 0.44        | 0.40              | 0.24              |
| 350      | 380      | 1.00     | 0.60     | 1.080      | 1.080      | 0.467             | 0.58        | 0.50              | 0.30              |
| 400      | 440      | 1.10     | 0.60     | 1.140      | 1.254      | 0.552             | 0.70        | 0.55              | 0.33              |

#### Table 15.1.1 Volume of Excavation and Landfill

 Table 15.1.2
 Unit Cost Per Volume of Civil Work

| [A1]     | [CC]       | [DD]          | [EE]     | [FF]                | [GG]             |
|----------|------------|---------------|----------|---------------------|------------------|
| Diameter | Excavation | Sand + Laying | Backfill | Soil transportation | Asphalt pavement |
| (mm)     | (\$/m3)    | (\$/m3)       | (\$/m3)  | (\$/m3)             | (\$/m2)          |
|          |            |               | =[CC]    | =[CC]x50%           |                  |
| 50       | 3.5        | 12            | 3.5      | 1.75                | 12               |
| 65       | 3.5        | 12            | 3.5      | 1.75                | 12               |
| 80       | 3.5        | 12            | 3.5      | 1.75                | 12               |
| 100      | 3.5        | 12            | 3.5      | 1.75                | 12               |
| 125      | 3.5        | 12            | 3.5      | 1.75                | 12               |
| 150      | 3.5        | 12            | 3.5      | 1.75                | 12               |
| 200      | 3.5        | 12            | 3.5      | 1.75                | 12               |
| 250      | 3.5        | 12            | 3.5      | 1.75                | 12               |
| 300      | 3.5        | 12            | 3.5      | 1.75                | 12               |
| 350      | 3.5        | 12            | 3.5      | 1.75                | 12               |
| 400      | 3.5        | 12            | 3.5      | 1.75                | 12               |

The Study on Groundwater Development in the Rural Provinces of the Southern Coastal Zone in the Socialist Republic of Vietnam Final Report - Supporting - Chapter15 Cost Estimation

| [A1]     | [CCC]      | [DDD]         | [EEE]    | [FFF]               | [GGG]            | [HHH] |  |
|----------|------------|---------------|----------|---------------------|------------------|-------|--|
| Diameter | Excavation | Sand + Laying | Backfill | Soil transportation | Asphalt pavement | Total |  |
| (mm)     | (\$/m)     | (\$/m)        | (\$/m)   | (\$/m)              | (\$/m)           |       |  |
|          | [C3]x[CC]  | [D]x[DD]      | [E]x[EE] | [F]x[FF]            | [G1]x[GG]        |       |  |
| 50       | 1.34       | 1.54          | 0.46     | 0.44                | 1.80             | 5.57  |  |
| 65       | 1.36       | 1.60          | 0.48     | 0.44                | 1.80             | 5.67  |  |
| 80       | 1.66       | 2.01          | 0.61     | 0.53                | 2.16             | 6.96  |  |
| 100      | 1.88       | 2.39          | 0.74     | 0.57                | 2.34             | 7.91  |  |
| 125      | 2.06       | 2.67          | 0.83     | 0.61                | 2.52             | 8.69  |  |
| 150      | 2.16       | 2.89          | 0.93     | 0.61                | 2.52             | 9.11  |  |
| 200      | 2.43       | 3.35          | 1.12     | 0.66                | 2.70             | 10.25 |  |
| 250      | 2.74       | 3.87          | 1.34     | 0.70                | 2.88             | 11.54 |  |
| 300      | 2.95       | 4.14          | 1.55     | 0.70                | 2.88             | 12.23 |  |
| 350      | 3.78       | 5.60          | 2.03     | 0.88                | 3.60             | 15.88 |  |
| 400      | 4.39       | 6.62          | 2.46     | 0.96                | 3.96             | 18.40 |  |

 Table 15.1.3
 Unit Cost Per Construction Cost

Table 15.1.4Total Cost of Pipe Laying

|          | Table 15.1.4 Total Cost of Pipe Laying |           |             |                     |                     |        |  |  |
|----------|----------------------------------------|-----------|-------------|---------------------|---------------------|--------|--|--|
| Material | [A1]                                   | [P]       | [Q]         | [HHH]               | [R]                 | [X]    |  |  |
|          | Diameter                               | Pipe cost | Laying cost | Cost of earth works | Administration cost | Total  |  |  |
|          | (mm)                                   | (\$/m)    | (\$/m)      | (\$/m)              | 30%                 |        |  |  |
|          |                                        |           | [HHH]x30%   |                     |                     |        |  |  |
| PVC      | 50                                     | 1.79      | 1.11        | 5.57                | 2.54                | 11.02  |  |  |
| PVC      | 65                                     | 2.75      | 1.13        | 5.67                | 2.87                | 12.42  |  |  |
| PVC      | 80                                     | 3.66      | 1.39        | 6.96                | 3.61                | 15.62  |  |  |
| PVC      | 100                                    | 6.16      | 1.58        | 7.91                | 4.70                | 20.35  |  |  |
| PVC      | 125                                    | 8.65      | 1.74        | 8.69                | 5.73                | 24.81  |  |  |
| PVC      | 150                                    | 13.62     | 1.82        | 9.11                | 7.36                | 31.91  |  |  |
| PVC      | 200                                    | 22.26     | 2.05        | 10.25               | 10.37               | 44.93  |  |  |
| PVC      | 250                                    | 34.35     | 2.31        | 11.54               | 14.46               | 62.65  |  |  |
| PVC      | 300                                    | 63.31     | 2.45        | 12.23               | 23.40               | 101.38 |  |  |
| PVC      | 350                                    | 70.00     | 3.18        | 15.88               | 26.72               | 115.78 |  |  |
| PVC      | 400                                    | 80.00     | 3.68        | 18.40               | 30.62               | 132.70 |  |  |

#### b. DCI

Unit cost of per meter

Conditions

1.Material: Ductile Cast Iron pipe with fittings

2. Including material and construction

3. Flow velocity: 1m/sec.

| ND (mm) | \$/m | JPY/m  |
|---------|------|--------|
| 100     | 70   | 7,432  |
| 125     | 80   | 8,494  |
| 150     | 90   | 9,555  |
| 200     | 120  | 12,740 |
| 250     | 150  | 15,926 |
| 300     | 180  | 19,111 |

c. PE

c-1. Number of households

Number of households is same as number of house connections.

| System | [1]        | [2]            | [1]/[2]    |
|--------|------------|----------------|------------|
| -      | population | persons/house  | households |
|        | (2020)     | (2006, actual) |            |
| FPS-2  | 6,856      | 4.0            | 1,714      |
| FPS-3  | 13,256     | 4.1            | 3,233      |
| FPG-4  | 11,666     | 4.0            | 2,890      |
| FPS-5  | 9,292      | 4.4            | 2,112      |
| FKS-6  | 6,626      | 5.3            | 1,243      |
| FKS-8  | 6,978      | 5.1            | 1,368      |
| FNG-10 | 29,715     | 5.7            | 5,213      |
| FBS-11 | 7,378      | 4.2            | 1,757      |
| FBS-13 | 52,241     | 4.9            | 10,661     |

#### Table 15.1.5Number of Households in Each System

#### c-2. Unit price

According to the result of interview to pipe company, unit cost of PE is 0.36USD/m and unit cost of fittings for house connection is assumed 110% of PE unit cost.

0.36 X (1.0+1.1) X 106.17= 80.3 = JPY80

#### d. Water meter

According to result of interview to water meter company, unit cost of water meter is 23.16USD and water meter is produced Malaysia.

#### 23.16 X 106.17= 2,458.8 = JPY2,459

#### (3)-3 Building

| No. | Building               | [A]        | [B1]       | [B2]      | [B2]÷[B1]   | [B1]÷[A]     | [B1+2]÷[A]   |
|-----|------------------------|------------|------------|-----------|-------------|--------------|--------------|
|     |                        | Floor area | Building   | Building  | Ratio (%,   | Unit cost of | Unit cost of |
|     |                        | (m2)       | cost (JPY) | equipment | Equipment/  | building per | building     |
|     |                        |            |            | (JPY)     | Constructio | floor area   | including    |
|     |                        |            |            |           | n)          | (JPY)        | equipment    |
|     |                        |            |            |           |             |              | per floor    |
|     |                        |            |            |           |             |              | area (JPY)   |
| 1   | Administration room    | 20         | ¥2,148,000 | ¥673,000  | 31%         | 107,400      | 141,050      |
| 2   | Intake pump room       | 24         | ¥1,764,000 | ¥99,000   | 6%          | 73,500       | 77,625       |
| 3   | Distribution pump room | 27         | ¥1,430,000 | ¥33,000   | 2%          | 52,963       | 54,185       |
| 4   | Administration room    | 24         | ¥2,260,000 | ¥920,000  | 41%         | 94,167       | 132,500      |
| 5   | Intake pump room       | 84         | ¥6,458,000 | ¥44,000   | 1%          | 76,881       | 77,405       |
| 6   | Distribution pump room | 27         | ¥1,430,000 | ¥33,600   | 2%          | 52,963       | 54,207       |
| 7   | Administration room    | 20         | ¥2,190,000 | ¥702,000  | 32%         | 109,500      | 144,600      |
| 8   | Intake pump room       | 84         | ¥6,458,000 | ¥347,000  | 5%          | 76,881       | 81,012       |
| 9   | Distribution pump room | 27         | ¥1,430,000 | ¥47,237   | 3%          | 52,963       | 54,712       |
| 10  | Administration room    | 24         | ¥2,275,000 | ¥952,000  | 42%         | 94,792       | 134,458      |
| 11  | Intake pump room       | 36         | ¥2,767,000 | ¥148,000  | 5%          | 76,861       | 80,972       |
| 12  | Distribution pump room | 27         | ¥1,502,473 | ¥47,237   | 3%          | 55,647       | 57,397       |
| 13  | Administration room    | 20         | ¥2,120,000 | ¥651,000  | 31%         | 106,000      | 138,550      |

# Table 15.1.6 Building

| No. | Building               | Unit cost of building per |        | Unit cost of | Adopted |         |
|-----|------------------------|---------------------------|--------|--------------|---------|---------|
|     |                        | floor area                |        | including eq | cost    |         |
|     |                        | (JPY)                     |        | floor are    | (JPY)   |         |
|     |                        | Max Min                   |        | Max          | Min     |         |
| 1   | Administration room    | 109,500                   | 94,167 | 144,600      | 132,500 | 140,000 |
| 2   | Intake pump room       | 76,881                    | 73,500 | 81,012       | 77,405  | 70,000  |
| 3   | Distribution pump room | 55,647                    | 52,963 | 57,397       | 54,185  | 55,000  |

Table 15.1.7Unit cost of Building

#### (3)-4 Costs for Water Treatment Plant

In order to determine cost of water treatment plant, corrected past experience data for construction cost of water supply systems has analysis as follows;

#### **1.** Case 1: Per m<sup>3</sup> cost for rural water in Vietnam

The unit cost was estimated based on the data collected from each P-CERWASS of Phu Yen and Binh Thuan.

#### 2. Case 1-1: Correction cost of case 1

Case 1-1 means correction cost of case 1 considering following conditions.

- (1) The costs of samples are estimated before 5 years and the cost is corrected present including escalation cost.
- (2) Considering construction work by Japanese contractor.
- (3) It is corrected the cost for water treatment plant only. Because, the costs of sample are included in all facility as water supply system such as intake, water treatment and distribution net work.

#### 3. Case 2: Per m<sup>3</sup> cost for urban water supply in Vietnam

Case 2 means the construction cost for urban water supply system including all equipment in Vietnam.

#### 4. Case 2-1: Correction cost of case 2

The cost is corrected same conditions as case 1-1.

#### 5. Case 3: Past experience of the construction cost for water treatment plant

Considering construction by Japanese contractor, the cost carve of case 3 is compared case 1-1 and case 2-1 carve.

#### **Comparing Case 1-1**

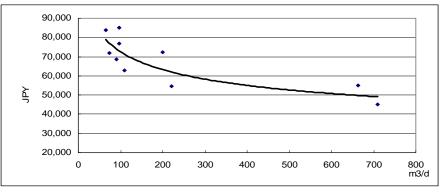
The curve of case 1-1 can not compare case 3 curve by difference of treatment system. Because, the facility of case 1-1 almost designed slow sand filter system due to small water supply capacity.

#### **Comparing Case 2-1**

The scope and system of the curve case 2-1 is almost same as curve case 3. Corrected cost curve

case 2-1 until 15,000 m<sup>3</sup>/d of facilities capacity is approximately consistent with case 3. Therefore, case 3 curve is considered reasonable and proper to make estimation.

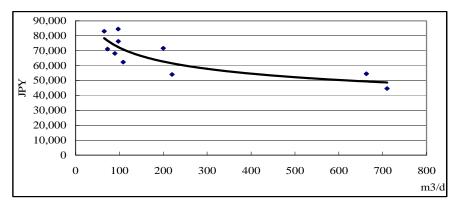
#### Data for Cost Estimation for Water Treatment Plant


#### **1.** Case 1: Per m<sup>3</sup> cost for rural water in Vietnam

|     |       |                        | Cost VND/m                                | 3 for water s          | upply system                 |                                |                            |                      |
|-----|-------|------------------------|-------------------------------------------|------------------------|------------------------------|--------------------------------|----------------------------|----------------------|
| No. | Prov. | A: Project Name        | B: Total Project<br>Cost<br>(million VND) | C: Pop. Served<br>(pp) | D: Water<br>Supply<br>(m3/d) | E: Unit cost<br>(x1000 VND/m3) | E: Unit cost<br>(xy en/m3) | Correction<br>cost * |
| 1   | PY    | Hoi Son-An Hoa commune | 845                                       | 1,558                  | 73                           | 11,575                         | 71,695                     | 71,139               |
| 2   | PY    | B Lam wss              | 1,334                                     | 1,076                  | 97                           | 13,753                         | 85,186                     | 84,525               |
| 3   | PY    | Hoa Hoi wss            | 885                                       | 1,113                  | 65.5                         | 13,511                         | 83,687                     | 83,038               |
| 4   | PY    | Duc Binh Tay wss       | 1,210                                     | 1,330                  | 97.5                         | 12,410                         | 76,867                     | 76,271               |
| 5   | РҮ    | Suoi Cau, Son Ha wss   | 1,100                                     | 909                    | 108.5                        | 10,138                         | 62,794                     | 62,308               |
| 6   | РҮ    | An Thach wss           | 993                                       | 1,671                  | 89.5                         | 11,095                         | 68,722                     | 68,189               |
| 7   | BT    | Tan Minh wss           | 5,885                                     | 1,747                  | 663                          | 8,876                          | 54,978                     | 54,552               |
| 8   | BT    | Hong Phong wss         | 2,331                                     | 946                    | 200                          | 11,655                         | 72,191                     | 71,631               |
| 9   | BT    | Hong Thais wss         | 5,161                                     | 398                    | 710                          | 7,269                          | 45,024                     | 44,675               |
| 10  | BT    | Ba Bau wss             | 1,935                                     | 614                    | 220                          | 8,795                          | 54,476                     | 54,054               |

Table 15.1.8Cost VND / m³ for Water Supply System

Source: P-CERWASS Phu Yen and Binh Thuan


Exchange rate Yen: VND=1:161.44



#### 2. Case 1-1 : Correction cost of case 1

Correction cost is based on the following factors.


- Escalation cost: Ave.8% x 5years: (47%)
- Factor of based on Japanese market (x 1.5)
- Cost ratio: treatment plant / total cost =45%

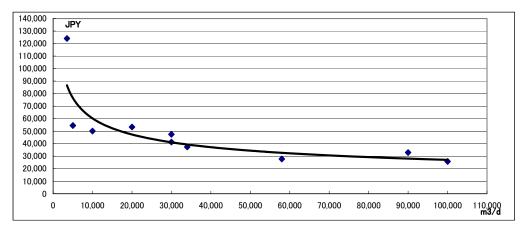


#### 3. Case 2 :Unit cost per m<sup>3</sup> for urban water supply in Vietnam

| City / Town        | Financed by        | Cap.(m <sup>3</sup> /d) | Cost          | cost per m <sup>3</sup> | Correction cost |
|--------------------|--------------------|-------------------------|---------------|-------------------------|-----------------|
| Quan Ninh          | WB                 | 90,000                  | 3,552,150,000 | 39,468                  | 32,946          |
| Hai Phong          | WB                 | 100,000                 | 3,793,300,000 | 30,933                  | 25,821          |
| Thai Nguyen        | ADB                | 30,000                  | 1,482,495,000 | 49,417                  | 41,250          |
| Thanh Hoa          | ADB                | 30,000                  | 1,705,305,000 | 56,844                  | 47,450          |
| Nha Trang          | ADB                | 58,000                  | 1,927,695,000 | 33,236                  | 27,744          |
| Phan Thiet         | ADB                | 20,000                  | 1,278,375,000 | 63,919                  | 53,356          |
| Lon Xuyen          | ADB                | 34,000                  | 1,522,920,000 | 44,792                  | 37,390          |
| Ha Tinh            | Vietnam government | 3,500                   | 520,000,000   | 148,571                 | 124,020         |
| Cao Bang           | Vietnam government | 5,000                   | 326,666,667   | 65,333                  | 54,537          |
| Anh, Quang<br>Ngai | Vietnam government | 10,000                  | 600,000,000   | 60,000                  | 50,085          |

| Table 15.1.9 | Per m <sup>3</sup> | Cost for Urban | Water Supply in Vietnam |
|--------------|--------------------|----------------|-------------------------|
|--------------|--------------------|----------------|-------------------------|



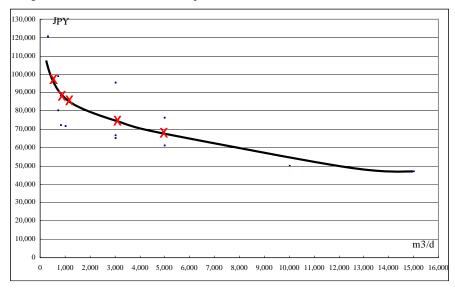

#### 4. Case 2-1: Correction cost of case 2

Source: Ministry of Construction, 1998, Dinh Huong Phat Trien Cap Nuoc Do Thi Den Nam 2020 Correction conditions

- Escalation cost: Ave. 5 to 6% during 9years: (59%) until year 2001

- Factor of based on Japanese market (x 1.5)

- Cost ratio: treatment plant / total cost = 35% (The distribution pipe laying and intake works are more difficult than rural water supply.)




|     |         | <b>Table 15.1</b> | .10 Past    | Experien    | ice of Water   | <b>Treatment</b>             | Plant       |               |
|-----|---------|-------------------|-------------|-------------|----------------|------------------------------|-------------|---------------|
| No, | Donor   | Process           | Year of Est | Co          | untry /Area    | Capacity (m <sup>3</sup> /d) | cost (JPY)  | cost (Yen/m3) |
| 1   | OECF    | C, S, RF          | 1996        | Indonesia   | Java. Bali     | 700                          | 56,000,000  | 80,000        |
| 2   | OECF    | C, S, RF          | 1996        | Indonesia   | Java. Bali     | 800                          | 57,600,000  | 72,000        |
| 3   | unclear | SF                | -           | Indonesia   | Rural          | 1,000                        | 71,700,000  | 71,700        |
| 4   | EBRD    | C,S,RF            | 1987        | Egipt       | Behera         | 700                          | 69,300,000  | 99,000        |
| 5   | EBRD    | C,S,RF            | 1987        | Egipt       | Behera         | 800                          | 70,400,000  | 88,000        |
| 6   | JICA    | C,S,RF            | 1988        | Kenia       | Itanga         | 300                          | 36,110,000  | 120,367       |
| 7   | JICA    | SF                | 1992        | Indonesia   | Sulawesi       | 3,000                        | 195,000,000 | 65,000        |
| 8   | JICA    | C,S,RF            | 2001        | Papua New C | Guinea, Goroka | 5,000                        | 305,000,000 | 61,000        |
| 9   | unclear | C,S,RF            | 1995        | Nepal       | Rural          | 3,000                        | 285,000,000 | 95,000        |
| 10  | JICA    | RF                | 1995        | Ditto       | Rural          | 5,000                        | 380,000,000 | 76,000        |
| 11  | EBRD    | C,S,RF            | 2003        | M acedonia  | Rural          | 3,000                        | 200,000,000 | 66,667        |
| 12  | ADB     | C,S,RF            | 2002        | Viet Nam    | 6 Urban cities | 15,000                       | 700,005,000 | 46,667        |
| 13  | JICA    | AT,RF             | 1998        | Viet Nam    | Hai Duon       | 10,000                       | 500,000,000 | 50,000        |

#### 5. Case 3 : Past experience of water treatment plant

Remarks

Escalation cost: 6.7% per year during 2004-2008 (IMF World economic outlook database, Oct. 2007) Abbreviation: C: Coagration, S: Sedimentation, RF: Rapid filter. SF: Slow filter, AT: Aeration tower



According to case 3 curve, the unit per  $m^3$  and total cost for each capacity of the system was shown in the following table.

| System No. | Capacity<br>(m <sup>3</sup> /d) | Unit cost<br>(JY) | Total cost<br>(JY) |  |  |  |  |  |  |
|------------|---------------------------------|-------------------|--------------------|--|--|--|--|--|--|
| FPS-2      | 700                             | 99,000            | 69,512,000         |  |  |  |  |  |  |
| FPG-4      | 1,100                           | 86,900            | 95,537,500         |  |  |  |  |  |  |
| FNG-10     | 2,900                           | 75,000            | 217,495,900        |  |  |  |  |  |  |
| FBS-11     | 800                             | 88,000            | 70,394,200         |  |  |  |  |  |  |
| FBG-13     | 5,000                           | 69,000            | 342,822,000        |  |  |  |  |  |  |

#### Table 15.1.11Capacity and Cost

This cost includes mechanical, electrical, building and civil works of the treatment plant. The civil cost is estimated based on tank volume and unit cost. The building cost is estimated based on floor space and unit cost. The cost of mechanical and electrical components is calculated by reducing cost of

civil works and architectural works from total cost.

Since the process and material of system FKS-6 and FKS-8 are different compared to the case 3 curve, the electrical and mechanical equipment costs were adopted considering the lowest price offer by the Maker. The cost is expected considered to be 10% lower than the offered price.

| System | Offer pric  | e by Maker   | Adartian     | Noto     |  |
|--------|-------------|--------------|--------------|----------|--|
| System | А           | В            | Adoption     | Note     |  |
| FKS6   | US\$72,350  | JY8,000,000  | JY6,913,100  | "A"x.90% |  |
| FKS8   | US\$331,000 | JY45,000,000 | JY31,624,000 | "A"x.90% |  |

Table 15.1.12Mechanical and Electrical Cost

According to the cost evaluation for system FPS-2, FPG-4, FNG-10, FBS-11 and FBG-13, the mechanical and electrical cost contributes 29% to 32% of the total cost from Table 15.1.13. It is considered reasonable and propriety in the system operated by manual.

| ١  | Vater treatment                    | Cost (JPY) |                     |            |            |             |            |             |  |  |  |
|----|------------------------------------|------------|---------------------|------------|------------|-------------|------------|-------------|--|--|--|
|    | plant                              | FPS2       | FPS2 FPG4 FKS6 FKS8 |            | FKS8       | FNG10       | FBS11      | FBG13       |  |  |  |
| 1) | Total cost                         | 69,512,000 | 95,537,500          | 40,313,100 | 46,924,000 | 217,495,900 | 70,394,200 | 342,822,000 |  |  |  |
| 2) | Civil works                        | 38,450,000 | 52,450,000          | 25,000,000 | 4,100,000  | 128,750,000 | 36,950,000 | 209,550,000 |  |  |  |
| 3) | Mechanical and<br>Electrical works | 19,862,000 | 30,837,500          | 6,913,100  | 31,624,000 | 69,595,900  | 22,244,200 | 107,872,000 |  |  |  |
|    | Rate= 3) / 1)                      | 29%        | 32%                 | 17%*1)     | 67%*2)     | 32%         | 32%        | 31%         |  |  |  |
| 4) | Building works                     | 11,200,000 | 12,250,000          | 8,400,000  | 11,200,000 | 19,150,000  | 11,200,000 | 25,400,000  |  |  |  |

 Table 15.1.13
 Cost Evaluation for Mechanical and Electrical Equipment

Remarks

The system for FKS-6 and FKS-8 is singular case of the structure and process as follows;

\*1): The process of the water treatment plant is slow sand filter type by concrete structure.

\*2): The system is package type water treatment plant and the materials for all tanks are made from steel plate.

|        |         |              |                       | [1]                       | [2]       | [3] | [4]       | [5]       | [6]                 | [7]        | [8]    | [11]      |
|--------|---------|--------------|-----------------------|---------------------------|-----------|-----|-----------|-----------|---------------------|------------|--------|-----------|
|        |         |              |                       | Total                     | Total no. | No. | Operating | Intake f  | low/nos             | Total head | Motor  | Quotation |
| System | Commune | Location     | Category              | Category intake flow of p |           |     | time      |           |                     |            | Power  |           |
|        |         |              |                       | $(m^{3}/d)$               | (nos)     |     | (hr)      | [1]/[2]   | [5]/[4]/60          | (m)        | Rating | (JPY)     |
|        |         |              |                       |                           |           |     |           | $(m^3/d)$ | (m <sup>3</sup> /m) |            | (kW)   |           |
| FPS-2  | P-2     | Reservoir    | Intake pump           | 700                       | 3         | 1   | 20        | 350       | 0.29                | 16         | 1.5    | 493,000   |
|        |         | WTP          | Transmission pump     | 600                       | 3         | 1   | 20        | 300       | 0.25                | 39         | 3.7    | 635,100   |
| FPS-3  | P-4     | Well         | Intake pump           | 1200                      | 3         | 1   | 20        | 400       | 0.33                | 61         | 5.5    | 1,335,450 |
| FPG-4  | P-5,6,7 | River        | Intake pump           | 1100                      | 3         | 1   | 20        | 550       | 0.46                | 99         | 15     | 1,818,300 |
|        |         | WTP          | Distribution pump P-5 | 556                       | 3         | 1   | 20        | 278       | 0.23                | 85         | 5.5    | 1,464,500 |
|        |         | WTP          | Transmission pump &   | 376                       | 3         | 1   | 20        | 188       | 0.16                | 81         | 3.7    | 1,464,500 |
|        |         |              | Distribution pump P-6 |                           |           |     |           |           |                     |            |        |           |
|        |         | Distribution | Distribution pump     | 164                       | 3         | 1   | 20        | 82        | 0.07                | 51         | 1.1    | 785,900   |
|        |         | Reservoir    |                       |                           |           |     |           |           |                     |            |        |           |
| FPS-5  | P-8     | Well         | Intake pump           | 800                       | 3         | 1   | 20        | 267       | 0.22                | 29         | 2.2    | 703,250   |
|        |         | WTP          | Distribution pump     | 1600                      | 3         | 1   | 20        | 800       | 0.67                | 12         | 2.2    | 1,146,950 |
| FKS-6  | K-1     | Well         | Intake pump           | 600                       | 2         | 1   | 20        | 300       | 0.25                | 46         | 3.7    | 804,750   |
| FKS-8  | K-3     | Well         | Intake pump           | 403                       | 2         | 1   | 20        | 202       | 0.17                | 26         | 2.2    | 703,250   |
|        |         | River        | Transmission pump     | 250                       | 3         | 1   | 20        | 125       | 0.1                 | 12         | 0.5    | 510,400   |
|        |         | WTP          | Distribution pump     | 1200                      | 3         | 1   | 20        | 600       | 0.5                 | 25         | 3.7    | 1,225,250 |
| FNG-10 | N-56    | River        | Intake pump           | 2900                      | 3         | 1   | 20        | 1450      | 1.21                | 11         | 7.5    | 1,492,050 |
|        |         | WTP          | Transmission &        | 4000                      | 4         | 1   | 20        | 1333      | 1.11                | 72         | 22     | 3,211,750 |
|        |         |              | Distribution pump     |                           |           |     |           |           |                     |            |        |           |
|        |         | Pump station | Booster pump          | 1200                      | 3         | 1   | 20        | 600       | 0.5                 | 85         | 15     | 3,211,750 |
| FBS-11 | B-1     | Intake       | Booster pump          | 800                       | 3         | 1   | 20        | 400       | 0.33                | 8          | 1.1    | 688,750   |
|        |         | WTP          | Distribution pump     | 1400                      | 3         | 1   | 20        | 700       | 0.58                | 29         | 5.5    | 1,381,850 |
| FBG-13 | B-3567  | Intake       | Transmission pump     | 5000                      | 3         | 1   | 20        | 2500      | 2.08                | 13         | 7.5    | 2,963,800 |
|        |         | WTP          | Transmission pump     | 4500                      | 3         | 1   | 20        | 2250      | 1.88                | 53         | 30     | 6,652,600 |
|        |         | Pump station | Booster pump          | 1044                      | 3         | 1   | 20        | 522       | 0.44                | 50         | 7.5    | 2,953,650 |

#### Table 15.1.14Unit Cost of Pump

# CHAPTER 16

# FINANCIAL AND ECONOMIC ANALYSIS

## CHAPTER 16 FINANCIAL AND ECONOMIC ANALYSIS

#### 16.1 Study on Water Charges

First of all, the Study Team defines the WTP and ATP of water as follows;

Willingness To Pay --- The WTP generally refers to the value of water to a person as what they are willing to pay. In the Study, the WTP was estimated through the questionnaire survey "Willingness of payment for monthly usage cost (water tariff) of water supply (refer to Table 3.2.14) in the socio-economic survey conducted by the Study Team. The result indicates, thus, the maximum charge per month that water users are willing to pay for water usage in the four Provinces. According to the survey, 62.7% of the total respondents expect that monthly expenditure on water shall be less than 30,000VND.

Affordability To Pay --- The ATP was computed with reference to monthly expenditure (refer to Table 3.2.6) in the Socio-economic survey. As is usual with the water supply projects funded by the international organization such as the World Bank and the ADB, monthly expenses on water and sanitation are supposed to be between 3 to 5 % of the total expenditure of a household. In the Study, 5% shall be used for the calculation of the ATP, and then 5% of the monthly expenditure was divided with the average water consumption per household, namely 9m<sup>3</sup>, to compute the ATP/m<sup>3</sup>.

According to the result of the socio-economic survey, about 60% of total respondents replied that they have never paid any expenses on water, even in the dry season (refer to Table 3.2.7). In other words, more than half of water users in the targeted Provinces may not have any idea how much it cost. In a sense, especially in the four Provinces, it is effective to compare the WTP and ATP in order to clarify the current situation.

WTP, ATP and water charges including depreciation are calculated in the following methods;

|                      |        | *WTP/  | month/Hou    | sehold (00 | OVND) |                       | **Total/            |       |  |
|----------------------|--------|--------|--------------|------------|-------|-----------------------|---------------------|-------|--|
|                      | 15     | 40     | 65 80 100 To |            | Total | Household<br>(000VND) | ***WTP/m³<br>(US\$) |       |  |
|                      |        |        |              |            |       |                       |                     |       |  |
| Phu Yen (# of HH)    | 774    | 252    | 68           | 34         | 25    | 1,153                 | 27.173              | 0.179 |  |
| (# of HH x WTP/M/HH) | 11,610 | 10,080 | 4,420        | 2,720      | 2,500 | 31,330                | 27.175              | 0.179 |  |
| Khan Hoa (# of HH)   | 266    | 158    | 42           | 6          | 8     | 480                   | 29.833              | 0.197 |  |
| (# of HH x WTP/M/HH) | 3,990  | 6,320  | 2,730        | 480        | 800   | 14,320                | 29.855              | 0.197 |  |
| Ninh Thuan (# of HH) | 499    | 337    | 115          | 31         | 14    | 996                   | 22,450              | 0.214 |  |
| (# of HH x WTP/M/HH) | 7,485  | 13,480 | 7,475        | 2,480      | 1,400 | 32,320                | 32.450              | 0.214 |  |
| Binh Thuan (# of HH) | 781    | 343    | 64           | 28         | 30    | 1,246                 | 27.057              | 0.184 |  |
| (# of HH x WTP/M/HH) | 11,715 | 13,720 | 4,160        | 2,240      | 3,000 | 34,835                | 27.957              | 0.184 |  |

#### a) WTP

(Remarks)

\* WTP/month/household confirmed in the socio-economic survey is divided into five categories as follows.

- 1. 15,000VND --- (median of 0 to 30,000VND)
- 2. 40,000VND --- (median of 30,000 to 50,000VND)
- 3. 65,000VND --- (median of 50,000 to 70,000VND)
- 4. 80,000VND --- (Although survey data shows "80,000 to 100,000VND", this figure might be recognized as an abnormal value by measure of the result of monthly expenditure. Thus, 80,000VND shall be adopted to lessen the impact on the calculation.)
- 5. 100,000VND --- (Although survey data shows "more than 100,000", same as the above reason, 100,000VND shall be adopted to lessen the impact on the calculation.)

Then, each WTP shall be multiplied by the number of household in the five categories.

(eg.) 15,000VND x 774HHs = 11,610,000VND

\*\*Total/Household means the total WTP/month/HH shall be divided by the total number of household in the Province. It leads to the averaged WTP/HH.

(eg.) 31,330,000VND / 1,153HHs = 27,172VND

\*\*\*Finally, the averaged WTP/HH is divided by the expecting water consumption per person  $(9m^3)$ . It leads to the WTP/m<sup>3</sup>.

- WTP/m<sup>3</sup> --- (WTP/HH) x 1,000 / <u>9 m<sup>3</sup></u> / 16,852 VND/US\$ (9 m<sup>3</sup> = 0.06 m<sup>3</sup> x 5 family members/HH x 30 days)

#### b) ATP

|            | Monthly expenditure - Median (VND) | ATP/m <sup>3</sup> * (US\$) |  |  |
|------------|------------------------------------|-----------------------------|--|--|
|            |                                    |                             |  |  |
| Phu Yen    | 1,655,000                          | 0.546                       |  |  |
|            |                                    |                             |  |  |
| Khan Hoa   | 2,076,000                          | 0.684                       |  |  |
|            | 1 700 000                          | 0.571                       |  |  |
| Ninh Thuan | 1,733,000                          | 0.571                       |  |  |
| Binh Thuan | 2,754,000                          | 0.908                       |  |  |

(Remark)

\* ATP/m<sup>3</sup> --- {(Monthly expenditure) / 16,852 VND/USx 5% } / 9 m<sup>3</sup>

|            | Project Cost<br>(US\$) | Depreciation<br>Cost (US\$)* | Annual<br>Consumption<br>Amount (m <sup>s</sup> )** | Additional<br>Cost for<br>Depreciation<br>(US\$) /m <sup>°</sup> *** | Proposed<br>Tariff (US\$) /<br>m³ | Water Charge<br>inc.<br>Depreciation<br>(US\$) /m <sup>a</sup> **** |
|------------|------------------------|------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------|
| Phu Yen    | 8,736,400              | 249,611                      | 915,202                                             | 0.273                                                                | 0.255                             | 0.528                                                               |
|            |                        |                              |                                                     |                                                                      |                                   |                                                                     |
| Khan Hoa   | 3,141,000              | 89,743                       | 290723                                              | 0.309                                                                | 0.159                             | 0.468                                                               |
|            |                        |                              |                                                     |                                                                      |                                   |                                                                     |
| Ninh Thuan | 10,734,100             | 306,689                      | 598199                                              | 0.513                                                                | 0.229                             | 0.742                                                               |
|            |                        |                              |                                                     |                                                                      |                                   |                                                                     |
| Binh Thuan | 14,724,600             | 420,703                      | 1258155                                             | 0.334                                                                | 0.153                             | 0.487                                                               |

#### c) Water charges including depreciation

(Remark)

\* Depreciation cost (flat rate system) --- Project cost / 35 years

\*\* Annual Consumption Amount --- Total amount of the estimated water consumption in the targeted coverage areas in the year of 2012.

\*\*\* Additional cost for Depreciation --- Depreciation cost / Annual Consumption in the year 2012 (eg.) 249,611 / 915,202 = 0.273

\*\*\*\* Water Charge including Depreciation --- Additional cost for Depreciation + Proposed Tariff (eg.) 0.273US/m<sup>3</sup> + 0.255US/m<sup>3</sup> = 0.528US/m<sup>3</sup>

# CHAPTER 17

# ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

## CHAPTER 17 ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

#### 17.1 Legal System concerning Environmental and Social Considerations

Construction of new water supply facilities with groundwater development and new operation works are certain to cause some effects on the natural and social environment. In general, most impacts are considered to be positive, but some might be negative and monitoring and mitigation measures would be required. Environmental and social impacts caused by the projects are identified according to their relations with existing environmental conditions at the planning sites.

In this section, the legal systems concerning the environmental and social considerations and others in Vietnam are described.

#### Environmental and Social Considerations in Vietnam

#### 1) The Legal Systems of the Environmental and Social Considerations

Environmental concerns and developments of environmental legislation and policies in Vietnam began in the early 1990s. The system of the environmental impact assessment of Vietnam was provided in the "Environment Protection Law" on 1993 (defunct law) and "Providing Guidance for the Implementation of the Law on Environmental Protection" (Government Decree No. 175/CP, defunct Decree). These specify the requirements of an EIA at different stages of the project development.

However, the following problems were pointed out on environmental impact enforcement at that time.

- The definition of the object project was not clear.
- There were discordance between the law and the degree.
- In spite of having specified recognition of the EIA report as one of the requirements for project approval, many cases of irregularities were recognized after implementation of project.

Review of laws was required for solving the above issues, and the Environment Protection Law (1993) was amended as the new Environment Protection Law on November 29, 2005 that was passed by the eleventh National Assembly of the Socialist Republic of Vietnam in its eighth session. Subsequently the Decree No. 80/ 2006/ ND-CP was issued on the 9th August 2006 providing details and guidance on the implementation of a number of articles of the Environment Protection Law, and the Decree No. 140/260/ND-CP was issued on the 22nd November 2006 to provide guidance for the environmental protection at stages of elaboration, evaluation, approval and implementation of development strategies, plannings, plans, programs and projects. In the new Environment Protection Law, improvement and the strengthened point are described below compared to old Environment Protection Law.

- Introduction of Strategic Environmental Impact Assessment (SEA)
- Clear notification of projects with requirement of the Environmental Impact Assessment

- Consistency between the Law and Regulations
- Introduction of citizens' participation and information disclosure

#### 2) Contents of Environmental and Social Considerations in Vietnam

The environmental and social considerations for implementation of Project in Vietnam consist of mainly three items that are Strategic Environmental Impact Assessment (SEA), Environmental Impact Assessment (EIA), and Environmental Protection Commitments (EPC). These environmental considerations are required according to the contents of plans and projects and its scale. Outlines of SEA, EIA and EPC are listed in Table 17.1.1 and Table 17.1.2, and flowchart of environmental and social considerations procedure is shown in Figure 17.1.1.

 Table 17.1.1
 Outlines of Strategic Environmental Impact Assessment (SEA) and

 Environmental Impact Assessment (EIA)

| Item               | Strategic Environmental Assessment (SEA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Environmental Impact Assessment (EIA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Objects            | Objects subject to elaboration of the SEA reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Objects subject to elaboration of the EIA reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                    | <ul> <li>National socio-economic development<br/>strategies, plannings and plans;</li> <li>Strategies, plannings and plans for<br/>development of branches or domains on<br/>national scale;</li> <li>Socio-economic development strategies,<br/>planning and plans of provinces, centrally<br/>run cities (hereinafter collectively referred<br/>to as provinces or provincial level) or<br/>regions;</li> <li>Planning for land use, forest protection and<br/>development; exploitation and utilization of<br/>other natural resources in inter-provincial<br/>or inter-regional areas;</li> <li>Planning for development of key economic<br/>regions;</li> <li>General planning of inter-provincial river<br/>watersheds.</li> <li>(The Environment Protection Law (EPL),<br/>Articles 14)</li> </ul> | <ul> <li>Projects of national importance;</li> <li>Projects planned to use part of land of or exerting adverse impacts on, the natural sanctuaries, national parks, historical and cultural relic sites, natural heritages or beautiful landscapes which have been ranked;</li> <li>Projects to potentially exert adverse impacts on the river watershed, coastal areas or areas of protected ecosystems;</li> <li>Projects to construct new urban centers or concentrated residential areas;</li> <li>Projects to exploit and use groundwater or natural resources on a large scale;</li> <li>Other projects having potential risks or adverse impacts on the environment;</li> <li>Projects to exploit groundwater with a capacity of 10,000m<sup>3</sup>/day or more.</li> </ul> |  |  |
| Execution<br>phase | SEA report constitutes an important content of<br>the project and must be prepared at <b>the time of</b><br><b>project formulation.</b><br>(EPL, Articles 15-2, and Decree 140/2006/ND<br>-CP, Articles 6-1.c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EIA reports must be elaborated simultaneously<br>during formulation of <b>the Feasibility Study</b><br><b>report of projects</b> .<br>(EPL, Articles 19-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |

| (Continue)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Item                    | Strategic Environmental Assessment (SEA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Environmental Impact Assessment (EIA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Contents                | Contents of the SEA reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contents of the EIA reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         | <ul> <li>Overview of the project's objectives, size and characteristics related to the environment.</li> <li>General description of natural, socio-economic and environmental conditions related to the project.</li> <li>Forecasts for possible negative environmental impacts when the project is executed.</li> <li>Proposed orientations and measures to address environmental issues during project execution. (EPL, Articles 16)</li> </ul>                                                                                                                                                                                                                                                     | <ul> <li>Enumeration and detailed description of the project</li> <li>Overall assessment of the environmental status at the project site</li> <li>Detailed assessment of possible environmental impacts when the project is executed.</li> <li>Specific measures to minimize negative environmental impacts, and commitments to take environmental protection measures</li> <li>Lists of project items, the program on management and supervision of environmental issues during project execution.</li> <li>Cost estimates for establishment of environmental protection works within the total cost estimate of the project.</li> <li>Opinions of the commune-level People's Committees and people in the project site must be presented in this report. (EPL, Articles 20)</li> </ul>                                                                                                                                                                                                                                                                 |
| Responsibilities        | Responsibilities for organizing councils for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Responsibilities for organizing councils for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| for organizing councils | appraisal of the SEA reports are defined as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | appraisal of the EIA reports are defined as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | <ul> <li>The Ministry of Natural Resources and<br/>Environment shall organize councils for<br/>appraisal of the SEA reports of projects<br/>subject to approval by the National<br/>Assembly, the Government or the Prime<br/>Minister;</li> <li>Ministries, ministerial-level agencies or<br/>Government-attached agencies shall<br/>organize councils for appraisal of the SEA<br/>reports for projects falling under their<br/>approving competence;</li> <li>Provincial-level People's Committees shall<br/>organize councils for appraisal of the SEA<br/>reports for projects falling under their<br/>deciding competence or under the<br/>same level.</li> <li>(EPL, Articles 17-7)</li> </ul> | <ul> <li>The Ministry of Natural Resources and<br/>Environment shall organize councils or<br/>choose service organizations for appraisal of<br/>the EIA reports of projects decided or<br/>approved by the National Assembly, the<br/>Government or the Prime Minister;<br/>inter-branch or inter-provincial projects;</li> <li>Ministries, ministerial-level agencies or<br/>Government-attached agencies shall organize<br/>councils or choose service organizations for<br/>appraisal of the EIA reports for projects<br/>falling under their respective deciding or<br/>approving competence, excluding<br/>inter-branch or inter-provincial projects;</li> <li>Provincial-level People's Committees shall<br/>organize councils or choose service<br/>organizations for appraisal of the EIA reports<br/>for projects located in their localities and<br/>falling under their respective deciding or<br/>approving competence and under the<br/>competence of the People's Councils of the<br/>same level.</li> <li>(EPL, Articles 21-7)</li> </ul> |

| (Continue)                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                             |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Item                                     | Strategic Environmental Assessment (SEA)                                                                                                                                                                                                                                                       | Environmental Impact Assessment (EIA)                                                                                                       |
| Term of<br>limitation for<br>appraisal   | 5 5 H <b>6</b>                                                                                                                                                                                                                                                                                 | Assembly, the Government or the Prime Minister,<br>ctor (branches): within 45 days after documents<br>eipt                                  |
| Publication,<br>conference and<br>others | Hearing of opinions and comments from<br>relevant province, department and agency,<br>authority, People's committee and resident in<br>the project site must be carried out at the time<br>of formation of the development strategies and<br>plans.<br>(Decree 140/2006/ND-CP, Articles 6-1.e) | The announcement of the environmental<br>protection measures is carried out in the project<br>implementation site.<br>(EPL, Articles 23-1b) |

| 1able 17.1.2 Outlines of the Environmental Protection Commitments (EPC) | Table 17.1.2 | <b>Outlines of the Environmental Protection Commitments (EPC)</b> |
|-------------------------------------------------------------------------|--------------|-------------------------------------------------------------------|
|-------------------------------------------------------------------------|--------------|-------------------------------------------------------------------|

| Item                    | Environmental Protection Commitments (EPC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objects                 | Subjects obliged to make written environmental protection commitments<br>Household-based production, business or service establishments and entities not defined in Articles<br>14 and 18 of the Environment Protection Law i.e., project without SEA or EIA requirement must<br>make written environmental protection commitments.<br>(EPL, Articles 24)                                                                                                                                                   |
| Execution<br>phase      | The above-mentioned project may commence production, business or service activities after registration of written environmental protection commitments. (EPL, Articles 26-3)                                                                                                                                                                                                                                                                                                                                |
| Contents                | <ul> <li>Contents of environmental protection commitments</li> <li>Location of execution.</li> <li>Type and scale of production, business or service, and materials and fuel used</li> <li>Kinds of generated wastes</li> <li>Commitments to apply measures to minimize negative environmental impacts, and strictly comply with the provisions of law on environmental protection.</li> <li>(EPL, Articles 25)</li> </ul>                                                                                  |
| Appraisal &<br>approval | <ul> <li>Registration of written environmental protection commitments</li> <li>1. District-level People's Committees shall have to organize registration of written environmental protection commitments; when necessary, they may authorize this work to commune-level People's Committees.</li> <li>2. The time limit for acceptance of written environmental protection commitments shall be five working days after the date of receipt of valid written commitments. (EPL, Articles 26-1,2)</li> </ul> |

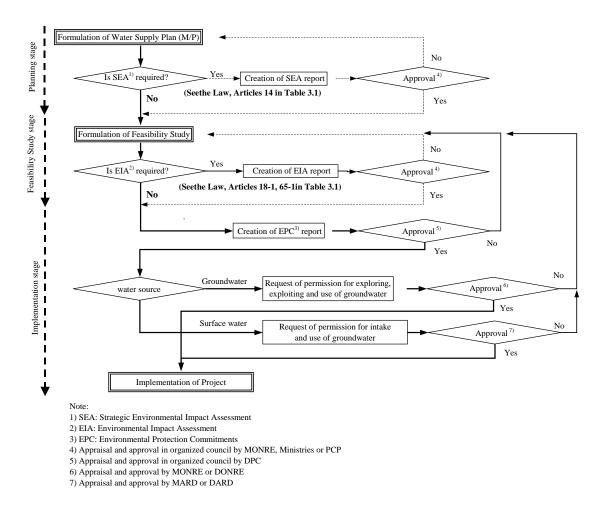



Figure 17.1.1 Flowchart of Environmental and Social Considerations Procedure

#### Permission for Exploring, Exploiting and Use of Groundwater and Surface Water in Vietnam

The implementation of the EIA for water supply project with water services of 10,000 m<sup>3</sup>/day or more is one of requirements for project authorization request, and the Environmental Protection Law obliges the formulation of EIA Report and its approval by appraisal councils or appraisal service organizations before implementation of project. In case of a small-scale rural water supply project where EIA is not necessary, the start of approval procedure requires that project owner prepares EPC and submits to district people's committee.

Similar regulations related to acquisition of permission for exploring, exploiting and use of groundwater and surface water are provided in the Law on Water Resource (No.8/1998/QH10 of May 20, 1998). According to this Law, the water supply project with groundwater and surface water development must obtain the permission for exploring, exploiting and use of groundwater and surface water before implementation of project. This is one of important requirement for project authorization. The outline of the Law on Water Resource in Vietnam is described below.

The Law on Water Resources (No.8/1998/QH10 of May 20, 1998) passed by the X<sup>th</sup> National Assembly, 3<sup>rd</sup> session on May 20, 1998, and the unified and comprehensive management as well as rational exploitation and stringent protection of water resources are stipulated in the Law. The main

items are shown below:

- Introduction of a management system for every river basin unit
- Introduction of approval system for exploring, exploiting and use of water sources
- State control of water resources
- Establishment of the National Water Resource Council
- Establishment of the River Basin Organization as substructure of the Ministry of Agricultural and Rural Development

Following this, a series of legal documents on the water resource protection have been promulgated, including:

- Decree No. 179/1999/ND-CP of December 30, 1999 providing for the implementation of the Water Resources Law;
- Decree No. 149/2004/ND-CP of July 27, 2004 providing for the licensing of exploration, exploitation and use of water resources and discharge of wastewater into water sources.

In the above-mentioned Decrees, it is specified that MARD and MONRE undertake duty concerning preservation of water resources. In Article 3 of the Decree No. 179/1999/ND-CP is described as follows.

< Article 3 of the Decree No. 179/1999/ND-CP>

The Ministry of Agriculture and Rural Development shall assume the prime responsibility and coordinate with the concerned ministries and branches and the People's Committees of the provinces and centrally-run cities in;

a/ Organizing the survey and assessment of deteriorated and depleted water sources;

b/ Planning the protection and development of forests in conformity with the river basin zoning in order to protect the water resources, prevent and combat flood and drought;

c/ Working out plans for restoration, upgrading, supplementary construction and renovation of water conservancy works in order to raise their water supply capability and restore the deteriorated and depleted water sources;

d/ Inspecting and supervising the exploitation and use of underground water; devising timely measures to protect underground water sources in regions and/or areas which are in danger of water reserve depletion and pollution;

e/ Inspecting and supervising places where waste water is discharged into water sources; stipulating the application of measures to treat waste water according to provisions of law.

Moreover, permission for exploring, exploiting and use of groundwater is provided in the Decree No. 149/2004/ND-CP, and its outline is presented in Table 17.1.3.

| Table 1' | 7.1.3 | <b>Outline of Permission for Exploring, Exploiting</b> |
|----------|-------|--------------------------------------------------------|
|          | and   | Use of Groundwater and Surface Water                   |
|          |       |                                                        |

| Items            | Description                                                              |
|------------------|--------------------------------------------------------------------------|
| Scope of Project | All of the project subject to permit application except following cases: |

|                                  | <ul> <li>a. Small - scale exploitation and use of surface water or underground water for daily - life household activities.</li> <li>b. Small - scale exploitation and use of surface water or underground water for agricultural production, forestry, aquaculture, cottage industry, hydroelectricity and other household purposes.</li> <li>(Decree No. 149/2004/ND – CP, Article 6-1)</li> </ul>                                                                                                                                                                                     |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Competence to issue              | <ul> <li>The Ministry of Natural Resources and Environment shall issue permission for exploring, exploiting underground water for projects with the flow of 3,000 m<sup>3</sup>/day or more, and exploiting, using surface water with flow of 50,000 m<sup>3</sup>/day or more.</li> <li>The provincial - level People's Committees shall issue permission for cases not defined above.</li> <li>(Decree No. 149/2004/ND – CP, Article 13)</li> </ul>                                                                                                                                    |
| Term and Extension of<br>Permits | <ul> <li>The term of exploitation and use of permit for surface water:</li> <li>It shall not exceed twenty (20) years and may be considered for extension but for not more than ten (10) years.</li> <li>The term of exploration permit for groundwater:</li> <li>It shall not exceed three (3) years and may be considered for extension but for not more than two (2) years.</li> <li>The term of exploitation and use of permit for groundwater:</li> <li>It shall not exceed fifteen (15) years and may be considered for extension but for not more than ten (10) years.</li> </ul> |

#### (Continue)

| Continue)                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Items                                                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Agencies receiving and<br>Managing Dossiers and<br>Permits | Natural Resources and Environment shall be responsible for receiving and managing dossiers and permits issued by <b>the Ministry of Natural Resources and Environment</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                            | <u>The provincial/municipal Services of Natural Resources and Environment</u><br>shall be responsible for receiving and managing dossiers as well as permits<br>issued by <b>the provincial - level People's Committees.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Dossier of Application                                     | Organizations and individuals applying for <b>underground water</b> - exploration<br>permits shall submit two (2) sets of dossier at the dossier-receiving agencies.<br>Such a dossier shall include:<br>a. The application for permit.<br>b. The underground water - exploitation scheme.<br>c. The map of the area and position of the underground water - exploitation<br>project, of 1/50,000 - 1/25,00 scale.<br>d. The report on the results of exploration and evaluation of underground<br>water deposit, for projects with the flow of 200 m3/day and night; the report<br>on the results of construction of exploitation wells, for projects with the flow<br>of under 200 m3/day and night; the report on the current exploitation situation<br>of operating underground water - exploitation projects.<br>e. The results of analysis of the quality of water sources of use purposes<br>according to the State's regulations at the time of application for the permit.<br>f. The notarized copies of the certificate or valid papers on the right to use<br>land where exploitation well (s) is (are) located, according to the Land Law's<br>provisions. In cases where the exploitation well land falls beyond the land use<br>right of the applying organizations or individual, there must be a written land -<br>use agreement between the exploiting organization or individual and the |  |

| organization or individual having the land use right, which must be certified                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| by the competent People's Committee.                                                                                                                                 |
| (Decree No. 149/2004/ND – CP, Article 20)                                                                                                                            |
| (Derec 100.14)/2004/10D = C1, Anter 20)                                                                                                                              |
| Organizations and individuals applying for <b>surface water</b> - exploitation and –                                                                                 |
| use permits shall submit two (2) dossier sets at the dossier - receiving                                                                                             |
| agencies. Such a dossier includes:                                                                                                                                   |
| a. The application for permit.                                                                                                                                       |
| b. The water - exploitation and - use scheme enclosed with the operation                                                                                             |
| process, for cases where exploitation and - use scheme enclosed with the operation<br>process, for cases where exploitation works are unavailable; the report on the |
| current water - exploitation and - use situation, for cases where exploitation                                                                                       |
| works already exist.                                                                                                                                                 |
| c. The results of analysis of the quality of water sources for use purposes                                                                                          |
| according to the State's regulations at the time of application for the permit.                                                                                      |
| d. The map of the area and position of the exploitation project, of 1/50,000 -                                                                                       |
| a. The map of the area and position of the exploration project, of $1/50,000 - 1/25,000$ scale.                                                                      |
|                                                                                                                                                                      |
| e. The notarized copies of the certificate of, or valid papers on, the right to use                                                                                  |
| land where the exploitation work is to be located, according to the Land Law's                                                                                       |
| provisions. In cases where the exploitation work land falls beyond the land use                                                                                      |
| right of the applying organization or individual, there must be a written                                                                                            |
| agreement on land use between the exploiting organization or individual and                                                                                          |
| the organization or individual having the land use right, which must be                                                                                              |
| certified by the competent People's Committee.                                                                                                                       |
| (Decree No. 149/2004/ND – CP, Article 21)                                                                                                                            |
|                                                                                                                                                                      |

#### Agrarian System in Vietnam

The agrarian system in Vietnam is governed by the following Law and five Decrees related to land.

- Law on Land (No 13/2003/QH11)
- Decree No. 181/2004/ND-CP of October 29, 2004 on the implementation of the Land Law.
- Decree No. **182/2004/ND-CP** of October 29, 2004 on administrative sanctioning in the land domain.
- Decree No. **188/2004/ND-CP** of November 16, 2004 on methods to determine land prices and land price categories.
- Decree No. **197/2004/ND-CP** of December 3, 2004 on compensations, supports and resettlement upon the State recovery of land.
- Decree No. 198/2004/ND-CP of December 3, 2004 on the collection of land use levies.

The above Government's Decrees, together with a number of guiding documents of the Ministry of Natural Resources and Environment and the Ministry of Finance, have created an important breakthrough in land management. The outline of the Law on Land (the agrarian system of Vietnam) and five Decrees is described below.

1) Land Law of Vietnam

A new Land Law was passed on November 26, 2003 by the XIth National Assembly of the Socialist Republic of Vietnam at its 4th session. It became effective on July 01, 2004.

The following items are mentioned as salient features of the agrarian system of Vietnam.

- Land is under the ownership of the entire people, and the State is the representative of the owner. The State performs uniform management of land.
- The laws of Vietnam also recognize ownership deriving from holding Land Use Rights.
- The State shall recover the land when the State needs to use it for the purposes of national defense and security, national interests, public interests, or economic development.

Summaries of the articles most relevant to the projects are provided below.

| No.       | Description: Law on Land (No 13/2003/QH11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Article-5 | Land ownership                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|           | <ol> <li>Land ownership</li> <li>Land belongs to the entire-people with the State acting as the owner's representative.</li> <li>The State exercises the right to dispose land as follows:         <ul> <li>a. To decide on land use purposes through deciding on, considering and approving land use plans</li> <li>b. To stipulate land assignment norms and land use duration;</li> <li>c. To decide on land assignment, land lease, land recovery, and to permit the change of land use purposes; and</li> <li>d. To set land prices.</li> </ul> </li> <li>The State shall exercise the rights regarding benefits gained from land through financial policies on land by:         <ul> <li>a) Collecting land use fees and rent;</li> <li>b) Collecting land use tax and income tax imposed on income from transfer of land use rights; and</li> <li>c) Adjusting the added value of land which is not a result of the investment of the land user.</li> </ul> </li> <li>The State assigns land use rights to land users in the form of land assignment, land lease, recognition of land use rights for current stable land users; and prescribes the rights and obligations</li> </ol> |  |
|           | of land users.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

Table 17.1.4Law on Land (No. 13/2003/QH11) (abstract)

#### (Continue)

| No.       | Description: Law on Land (No 13/2003/QH11)                                                  |
|-----------|---------------------------------------------------------------------------------------------|
| Article-6 | State management over land                                                                  |
|           | 1. The State performs the uniform management of land.                                       |
|           | 2. The contents of the State management of land include:                                    |
|           | a. Promulgating legal documents on land management and use and organize the                 |
|           | implementation thereof;                                                                     |
|           | b. Determining administrative boundaries, compiling and managing the administrative         |
|           | boundary dossiers, drawing administrative maps;                                             |
|           | c. Surveying, measuring, evaluating and categorizing land; drawing cadastral maps, land     |
|           | use status quo maps and land use-planning maps;                                             |
|           | d. Managing land use planning and plans;                                                    |
|           | e. Managing the land use assignment, land lease, land recovery, and change of land use      |
|           | purposes;                                                                                   |
|           | f. Registering land use rights, compiling and managing cadastral dossiers, and granting     |
|           | land use right certificates (LURC);                                                         |
|           | g. Making land statistics and inventories;                                                  |
|           | h. Managing land-related finance;                                                           |
|           | i. Managing and developing the land use right transfer market in the real estate market;    |
|           | j. Managing and supervising the performance of rights and obligations of land users;        |
|           | k. Inspecting and examining the observance of law provisions on land and handling           |
|           | violations of land legislation;                                                             |
|           | 1. Settling land disputes; settling complaints and denunciations against violations in land |

|            | management and use; and                                                                                                                                                                                                                                                                                                                                                                           |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | m. Managing land-related public service activities.                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 3. The State adopts policies on investment in the performance of tasks of State management over                                                                                                                                                                                                                                                                                                   |
|            | land, builds up a modern and fully capable land management system, ensuring the effective and                                                                                                                                                                                                                                                                                                     |
|            | efficient management of land.                                                                                                                                                                                                                                                                                                                                                                     |
| Article-38 | Recovery of Land                                                                                                                                                                                                                                                                                                                                                                                  |
|            | The State shall recover the land in the following cases:                                                                                                                                                                                                                                                                                                                                          |
|            | 1. The State needs to use the land for the purposes of national defense and security, national interests,                                                                                                                                                                                                                                                                                         |
|            | public interests, or economic development;                                                                                                                                                                                                                                                                                                                                                        |
|            | (From 2 to 12 are omitted.)                                                                                                                                                                                                                                                                                                                                                                       |
| Article-39 | Recovery of Land for the Purposes of National Defense, Security, National Interests or Public                                                                                                                                                                                                                                                                                                     |
|            | Interests                                                                                                                                                                                                                                                                                                                                                                                         |
|            | 1. The State shall carry out the land recovery, compensation and site clearance after land use zoning and land use plan has been publicly announced or where investment projects having land use                                                                                                                                                                                                  |
|            | demands in conformity with the land use zoning and land use plan have been approved by the competent state authorities.                                                                                                                                                                                                                                                                           |
|            | 2. At least ninety days prior to the recovery of agricultural land or one hundred and eighty days prior to the recovery of non-agricultural land, the competent state authorities shall notify the land users of the reasons for which the land is to be recovered; the time; the plan for movement; and the matter plan for appropriate state authorities and relevant on the plan for movement. |
|            | master plan for compensation, site clearance and relocation.                                                                                                                                                                                                                                                                                                                                      |
|            | 3. After the decision on recovery has been issued and the plan for compensation, site clearance and relocation has been approved by the competent state authorities publicly announced, and takes                                                                                                                                                                                                 |
|            | effects, the person whose land is recovered must comply with the decision.                                                                                                                                                                                                                                                                                                                        |
|            | If the person whose land is recovered does not comply with the land recovery decision, the People's Committees which have issued such decision shall decide to enforce its decision. The person                                                                                                                                                                                                   |
|            | subject to the enforcement decision shall comply with the enforcement decision and have the right                                                                                                                                                                                                                                                                                                 |
|            | to make complain against such decision.                                                                                                                                                                                                                                                                                                                                                           |

2) Procedure of Land Recovery for Public Projects

As mentioned above, as for land acquisition in the public project in Vietnam, required land for the project will be arranged under the responsibility of the state government. The procedure of land recovery for public projects is shown in Figure 17.1.2. The main point concerning this procedure is described below.

- The state shall acquire the land when the state needs to use it for the purposes of national defense and security, national interests, public interests, or economic development.
- The project owner submits a project document to the competent state authorities (province, district and commune-level people's committees), and needs to obtain approval.
- After obtaining approval, the competent state authorities establish compensation, assistance, and re-settlement council, and starts preparation of land recovery.
- At least ninety days prior to the recovery of agricultural land or one hundred and eighty days prior to the recovery of non-agricultural land, the competent state authorities shall notify the land users of the reasons for which the land is to be recovered; the time; the plan for movement; and the master plan for compensation, site clearance and relocation.
- Persons who have land recovered shall be compensated with new land having the same use purpose. If there is no land for compensation, they shall receive compensation equal to the land use right value at the time of issuance of the recovery decisions.
- After the decision on recovery has been issued and the plan for compensation, site clearance and

relocation has been approved by the competent state authorities, it is publicly announced. This decision takes effects, and the person whose land is recovered must comply with the decision.

If the person whose land is recovered does not comply with the land recovery decision, the people's committees which have issued such decision shall decide to enforce its decision. The person subject to the enforcement decision shall comply with the enforcement decision and have the right to lodge complain against such decision.

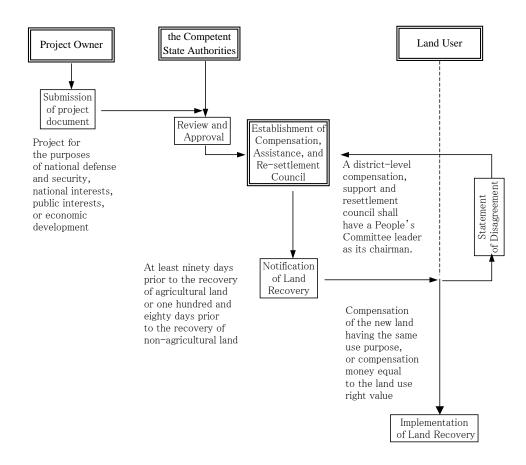



Figure 17.1.2 Procedure of Land Recovery for Public Projects

Decree 197/2004/ND-CP of December 03, 2004 provides key articles on compensation, assistance and resettlement for cases when land is recovered by the State. A summary of the articles most relevant to the project is listed below.

| No.       | Description: Decree No. 197/2004/ND-CP of December 3, 2004                                                                                                                                                                                                                                                                                                                                   |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Article-5 | Compensation, supports                                                                                                                                                                                                                                                                                                                                                                       |
|           | <ul><li>Compensation, supports for land users who have land recovered by the State under the provisions of this Decree are prescribed as follows:</li><li>1. Compensation or supports for the whole land area recovered by the State.</li><li>2. Compensation or supports for the existing property attached to land and for expenses invested in the land recovered by the State.</li></ul> |

Table 17.1.5Law on Land (Decree No.197/2004/ND-CP) (abstract)

|            | 3. Supports for relocation, supports for life stabilization, supports for job change training and other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | supports for persons who have land recovered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | 4. Supports for stabilization of production and life in the resettlement areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Article-6  | Compensation principles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | <ol> <li>If persons whose land have land recovered been acquired by the State meet all conditions prescribed in Article 8 of this Decree, they shall receive compensation; if they fail to meet all conditions for compensation, the People's Committees of the provinces or centrally-run cities (hereinafter referred collectively to as provincial-level People's Committees) shall consider and provide supports.</li> <li>Persons whose land have been recovered shall be compensated with new land having the same use purpose; if there is no land for compensation, they shall receive compensation equal to the land use right value at the time of issuance of the recovery decisions; in case of compensation with new land or houses, if there is any difference in value, such difference shall be paid in cash.</li> <li>In case of land users whose land have been recovered by the State receive compensation while they have not yet fulfilled their land-related financial obligations towards the State according to law provisions, the money amounts for fulfilling such financial obligations shall be subtracted from the compensation, support money for payment to the State budget.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Article-10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Article-10 | <ul> <li>Compensation, supports for agricultural land of households, individuals</li> <li>1. Households, individuals using agricultural land to be recovered by the State shall be compensated with land of the same use and value; if there is no such land for compensation, they shall receive monetary compensation calculated at the price of land having the same value as prescribed in Clause 1, Article 9 of this Decree.</li> <li>2. For agricultural land lying intermixed with residential areas, and garden and pond land lying adjacent to residential areas, apart from compensation at the price of agricultural land having the same use purpose, monetary supports are also provided; the prices for calculation of supports shall be between 20% to 50% of the prices of adjacent residential land; the specific support levels shall be decided by the provincial-level People's Committees to suit the local realities.</li> <li>3. Where compensation is made in the form of assignment of new land priced lower than the price of the recovered land, apart from being assigned new land, persons who have land recovered shall also receive monetary compensation equal to the difference in value; where compensation is made in the form of assignment of the recovered land.</li> <li>4. For households, individuals using agricultural land in excess of the prescribed limit, when their land is recovered, compensation shall be made as follows: <ul> <li>a/ Where the land areas in excess of the prescribed limit are those inherited, donated or transferred from other persons, are reclaimed under the planning approved by competent State bodies, compensation shall be paid therefore;</li> <li>b/ For land areas in excess of the prescribed limit, which do not fall into the cases prescribed at</li> </ul> </li> </ul> |
|            | <ul> <li>Point "a" of this Clause, compensation shall only be paid for remaining expenses invested in land, but not for such land areas.</li> <li>5. For households, individuals currently using land assigned by State-owned agricultural or forestry farms on a contractual basis being used for agricultural, forestry, aquaculture purposes (excluding land under special-use forests and protective forests), if their land is recovered by the State, they shall receive compensation only for remaining expenses invested in land, but not for the land, and supports according to the following provisions:</li> <li>a/ Supports for households, individuals that receive land on a contractual basis and are public employees or workers of State-owned agricultural or forestry farms, who are working or have retired, have stopped working due to loss of working capacity or have quit their jobs and enjoyed allowances and are directly engaged in agricultural production or forestry; households, individuals that receive land on a contractual basis and are directly engaged in agricultural production as their major source of livelihood.</li> <li>The highest level of monetary support shall be equal to the price of land to be compensated, calculated on the basis of the actually recovered land area which shall, however, not exceed the local agricultural land assignment limits; the provincial-level People's Committees shall decide on the specific support levels to suit the local realities.</li> <li>b/ Where households, individuals receive land on a contractual basis but are other than the subjects specified at Point "a" of this Clause, they shall only receive compensation for remaining</li> </ul>                                                                                                           |

| Article-24 | <ul> <li>expenses invested in land.</li> <li>c/ When agricultural land commonly used by State-owned agricultural or forestry farms is recovered by the State, compensation shall only be paid for remaining expenses invested in land if they do not originate from the State budget, but not for the land.</li> <li>6. For households, individuals that use agricultural land to be recovered by the State but do not meet the conditions for compensation prescribed in Article 8 of this Decree, if they are directly engaged in agricultural production as their main source of livelihood, the People's Committees of competent levels shall consider and assign them new land, as suitable to the local conditions.</li> <li>7. Where the recovered land is agricultural land belonging to the public land fund of a commune, ward or township, compensation shall not be paid for such land but the renters of such land shall receive compensation for remaining expenses invested in land.</li> <li>Compensation for cultivated plants and reared animals</li> </ul> |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 1. The level of compensation for annual trees shall be equal to the value of the output of their crop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | <ul><li>The value of the output of a crop shall be calculated on the basis of the productivity of the biggest crop in the last three years of the major cultivated tree in the locality and the average price at the time of land recovery.</li><li>The level of compensation for perennial trees shall be equal to the existing value (exclusive of the land use right value) of the orchard, calculated at the local price at the time of land recovery.</li><li>For unharvested crops which may be moved elsewhere, compensation for expenses for moving and</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | for actual damage from relocation and re-planting shall be paid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | <ol> <li>Forest trees planted with the source of State budget capital, natural forest trees assigned to organizations and households for growing, management, tending and protection, compensation for the value of the actual damage to the gardens shall be paid; monetary compensation shall be divided to forest managers, tenders and keepers according to law provisions on forest protection and development.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | <ul> <li>5. For reared animals (in aquaculture), compensation shall be paid as follows:</li> <li>a/ For reared animals that have reached the harvest time by the time of land recovery, compensation shall not be paid;</li> <li>b/ For reared animals that have not yet reached the harvest time by the time of land recovery, compensation shall be paid for actual damage caused by premature harvest; where they can be moved elsewhere, compensation for expenses for moving and for damage there from; the specific compensation levels shall be prescribed by the provincial-level People's Committees to suit the realities.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Article-39 | Assignment of compensation, support and resettlement tasks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Alucie-39  | <ol> <li>Assignment of compensation, support and resettlement tasks</li> <li>Basing themselves on the local realities, the provincial People's Committees shall assign the compensation, support and resettlement work to:         <ul> <li>The compensation, support and resettlement councils of rural districts, urban districts, towns and provincial cities (collectively referred to as the district level);             <li>Land fund development organizations.</li> </li></ul> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | <ul> <li>2. A district-level compensation, support and resettlement council shall have a People's Committee leader as its chairman and the following members:</li> <li>- A finance agency's representative as its vice chairman;</li> <li>- The investor as a standing member;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | <ul> <li>A natural resources and environment agency's representative as member;</li> <li>A representative of the commune-level People's Committee of the place where land is recovered as member;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | <ul> <li>One or two representatives of households having land recovered;</li> <li>A number of other members shall be decided by the compensation, support and resettlement council chairman to suit the local realities.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Article-43 | Responsibilities of People's Committees at all levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | <ol> <li>The provincial-level People's Committees shall have the responsibilities:         <ul> <li>a/ To direct, organize, propagate and mobilize all organizations and individuals concerning compensation, support and resettlement policies and ground clearance according to the land recovery decisions of competent State bodies;</li> </ul> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | b/ To direct the provincial/municipal services, departments, branches and district-level People's Committees:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| - To draw up resettlement and resettlement area plans in service of the land recovery;                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
| - To draw up compensation, support and resettlement plans according to their competence;                                                      |
| c/ To approve or assign the district-level People's Committees to approve compensation, support                                               |
| and resettlement plans;                                                                                                                       |
| d/ To approve land prices; promulgate the property price tables for compensation                                                              |
| calculation; prescribe support levels and supporting measures according to their                                                              |
| competence; resettlement arrangement plans, job change training plans according                                                               |
| to their assigned competence;                                                                                                                 |
| e/ To direct the concerned agencies to settle citizens' complaints, denunciations related to                                                  |
| compensation, support and resettlement according to their law-prescribed competence;                                                          |
| f/ To guarantee impartiality and equity when considering and deciding on the compensation,                                                    |
| support and resettlement when land is recovered by the State according to their competence                                                    |
| prescribed in this Decree;                                                                                                                    |
| g/ To decide or assign the district-level People's Committees to apply coercion to cases                                                      |
| of deliberately failing to abide by the State's land recovery decisions according to                                                          |
| their competence;                                                                                                                             |
| h/ To direct the examination and handling of violations in the compensation, support and                                                      |
| resettlement domain.                                                                                                                          |
| 2. The district-level People's Committees of the places where land is recovered shall have the                                                |
| responsibilities:                                                                                                                             |
| a/ To direct, organize, propagate and mobilize all organizations and individuals concerning                                                   |
| compensation, support and resettlement policies and ground clearance according to the land                                                    |
| recovery decisions of competent State bodies;                                                                                                 |
| b/ To direct the compensation, support and resettlement councils of the same level to draw up, and                                            |
| organize the implementation of, the compensation, support and resettlement plans; approve the                                                 |
| compensation, support and resettlement plans according to the responsibility assignment by the                                                |
| provincial-level People's Committees;                                                                                                         |
| c/ To coordinate with the provincial/municipal services, departments and branches, organizations                                              |
| and investors in executing investments projects to build and plans to create resettlement areas in                                            |
| their localities according to the assignment of the provincial-level People's Committees;                                                     |
| d/ To settle citizens' complaints, denunciations related to compensation, support and resettlement                                            |
| according to their assigned competence; issue coercive decisions and organizing coercion in the                                               |
| cases falling under their competence; coordinate with the functional agencies in organizing                                                   |
| coercion according to the decisions of competent bodies.                                                                                      |
| 3. The commune-level People's Committees shall have the responsibilities:                                                                     |
| a/ To organize propaganda on the land recovery purposes, compensation, support and resettlement                                               |
| polices of the projects;                                                                                                                      |
| b/ To coordinate with the compensation, support and resettlement councils in certifying land and property of persons who have land recovered; |
|                                                                                                                                               |
| c/ To join in, and create conditions for, the payment of compensation and support money to, and                                               |
| arrange resettlement for, persons who have land recovered, and create conditions for the ground                                               |
| clearance.                                                                                                                                    |

Some decrees and circulars are announced publicly for revision and supplement of the land law, and are listed below.

- DECREE No. 17/2006/ND-CP: Amending and Supplementing A Number of Articles of the Decrees Guiding the Implementation of the Land Law and Decree No. 187/2004/ND-CP on Transformation of State companies into Joint-stock companies (27 Jan. 2006)
- DECREE No. 84/2007/ND-CP: Additionally Stipulating the Grant of land Use Right Certificates, Recovery of Land, Exercise of Land Use Rights, Order and Procedures for Compensation, Support and Resettlement Upon land Settlement of land-Related Complaints (25 May 2007)

- DECREE No. 123/2007/ND-CP: Amending and Supplementing a Number of Articles of Decree No. 188/2004/ND-CP of November 16, 2004, on Methods of Determining land Prices and Price Limits of Land of Different Categories (27 Jul. 2007)
- **DECREE No. 44/2008/ND-CP**: Amending and Supplementing A Number of Articles of the Government's Decree No. 198/2004/ND-CP of December 3, 2004, on the Collection of Land Use Levels (9 Apr. 2008)
- **CIRCULAR No. 116/2004/ TT-BTC**: Guiding the Implementation of the Government's Decree No. 197/2004/ND-CP of December 3, 2004 on Compensation, Support and Resettlement when Land is Recovered by the State (7 Dec.2004)
- **CIRCULAR No. 69/2006/TT-BTC**: Amending and Supplementing the Finance Ministry's Circular No. 116/2004/TT-BTC of December 7, 2004, which Guides the Implementation of the Government's Decree No. 197/2004/ND-CP of December 3, 2004, on Compensation, support and resettlement upon Land Recover by the State (2 Aug. 2006)
- **CIRCULAR No. 05/2007/ TT-BTC**: Providing Guidance on Cases Eligible for Land Use Incentives and the Management of Land Used by Education and Training, Health, Cultural, Sports and Physical Training, Scientific and Technological, Environmental, Social, population, Family, and Children protection and care Establishments (30 May 2007)
- CIRCULAR No. 06/2007/TT-BTNMT: Guiding the Implementation of A Number of Articles of the Government's Decree No. 84/2007/ND-CP of May 25, 2007, Additionally Stipulating the Grant of Land Use Right Certificates, Recovery of Land Exercise of Land Use Rights, Order and Procedures for Compensation, Support and Resettlement when Land is Recovered by the State, and Settlement of Land-related Complains (2 Jul. 2007)

#### **Drinking and Domestic Water Quality Standards and Others**

List of water quality standard relevant to water supply and other standards for environmental condition are shown in Table 17.1.6. The drinking and domestic water quality standards and others are shown from Table 17.1.7 to Table 17.1.31.

Three water quality standards in Table 17.1.7 are applied as follows.

a) Drinking water hygienic standards (No. 1329/2002/BYT/QD dated April 18, 2002)

This water quality standard for drinking water is provided by Ministry of Health (MoH), and number of water quality parameters included in this standard is 112.

b) Domestic supply water quality requirements (TCVN 5502-2003)

The Vietnam standard of TCVN 5502-2003 is applied for domestic use water of water supply system in urban area, and number of water quality parameters included in this standard is 34.

c) <u>Clean water hygienic standards (No. 09/2005/QD/BYT dated March 11, 2005)</u>

According to the MoH's Decision No. 09/2005/QD-BYT on clean water hygienic standards, water from small-scale water supply system in rural area will be tested and monitored. Total number of water quality parameters included in this standard is 22.

Considering these points, the MoH's Decision No. 1329/2002/BYT/QD is applied as the water quality standards for drinking water. However, of total parameters defined in the standard provided by the MoH's Decision of No. 1329/2002/BYT/QD and No. 09/2005/QD-BYT, only 12 to 20 water quality parameters are considered for monitoring in water supply systems of four provinces are due to the reason described below.

- The laboratory, which can perform analysis of all the parameters of the drinking water standards, is not yet established.
- High cost is required to carry out water quality analysis of all the parameters of the drinking water standards.

On application of water quality standards for selected water supply project of the Feasibility Study, the following policies will be proposed.

- a) The water quality standards of TCVN 5502-2003 (Domestic supply water quality requirements) are set as target values for water treatment facilities design.
- b) The MoH's Decision No. 1329/2002/BYT/QD is applied as the water quality standards for drinking water.

However, the monitoring of water quality parameters and its frequency should be set on consultations with Department of Health in province before operation of water supply service.

| Item       | Name of Standards                                                              | Table No.     |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------|---------------|--|--|--|--|--|
| Drinking   | Drinking water hygienic standards (Promulgated together with the Decision of   | Table 17.1.7  |  |  |  |  |  |
| and        | Minister of Health No 1329/2002/BYT/QD dated April 18, 2002)                   |               |  |  |  |  |  |
| domestic   | TCVN 5502-2003 Domestic supply water quality requirements                      | Table 17.1.8  |  |  |  |  |  |
| water      | Clean water hygienic standards (Issued in accordance with the Decision No      | Table 17.1.9  |  |  |  |  |  |
| quality    | 09/2005/QD/BYT Dated March 11, 2005 of Minister of Health)                     |               |  |  |  |  |  |
| standards  |                                                                                |               |  |  |  |  |  |
| Standards  | TCVN 5942-1995 - Water quality - Quality standard of surface water             | Table 17.1.10 |  |  |  |  |  |
| related to | TCVN 5943-1995 - Water quality - Quality standard of coastal seawater          | Table 17.1.11 |  |  |  |  |  |
| water      | TCVN 5944-1995 - Water quality - Quality standard of underground water         | Table 17.1.12 |  |  |  |  |  |
| quality    | TCVN 5945-1995 - Industrial waste water - Waste standard                       | Table 17.1.13 |  |  |  |  |  |
|            | TCVN 6772:2000 - Water quality - Daily-life wastewater - Permitted pollution   | Table 17.1.14 |  |  |  |  |  |
|            | limit                                                                          |               |  |  |  |  |  |
|            | TCVN 6773:2000 - Water quality - Quality of water used for irrigation          | Table 17.1.15 |  |  |  |  |  |
|            | TCVN 6774:2000 - Water quality - Quality of fresh water for protection of      | Table 17.1.16 |  |  |  |  |  |
|            | aquatic life                                                                   |               |  |  |  |  |  |
|            | TCVN 6980:2001 - Water quality - Standard of industrial waste water            | Table 17.1.17 |  |  |  |  |  |
|            | discharged into river sections used for supply of water for daily life         |               |  |  |  |  |  |
|            | TCVN 6981:2001 - Water quality - Standard of industrial wastewater             | Table 17.1.18 |  |  |  |  |  |
|            | discharged into lakes used for supply of water for daily life                  |               |  |  |  |  |  |
|            | TCVN 6982:2001 - Water quality - Standard of industrial wastewater             |               |  |  |  |  |  |
|            | discharged into river sections used for water sport and entertainment purposes |               |  |  |  |  |  |
|            | TCVN 6983:2001 - Water quality - Standard of industrial wastewater             | Table 17.1.20 |  |  |  |  |  |
|            | discharged into lakes used for water sport and entertainment purposes          |               |  |  |  |  |  |
|            | TCVN 6984:2001 - Water quality - Standard of industrial wastewater             | Table 17.1.21 |  |  |  |  |  |
|            | discharged into river sections used for protection of aquatic life             |               |  |  |  |  |  |

 Table 17.1.6
 List of Drinking and Domestic Water Quality Standards and Others

| Item           | Name of Standards                                                             | Table No.     |  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------|---------------|--|--|--|--|--|
| item           | TCVN 6985:2001 - Water quality - Standard of industrial wastewater            | Table 17.1.22 |  |  |  |  |  |
|                | discharged into lakes used for protection of aquatic life                     | 14010 171122  |  |  |  |  |  |
|                | TCVN 6986:2001 - Water quality - Standard of industrial wastewater            |               |  |  |  |  |  |
|                | discharged into coastal seawater areas used for protection of aquatic life    | Table 17.1.23 |  |  |  |  |  |
|                | TCVN 6987:2001 - Water quality - Standard of industrial wastewater            | Table 17.1.24 |  |  |  |  |  |
|                | discharged into coastal seawater areas used for water sport and entertainment |               |  |  |  |  |  |
|                | purposes                                                                      |               |  |  |  |  |  |
| Standards      | TCVN 5937-1995 - Air quality - Quality Standard of Surrounding Air            | Table 17.1.25 |  |  |  |  |  |
| related to air | TCVN 5938-1995 - Air quality - Permitted maximum concentrations of a          | Table 17.1.26 |  |  |  |  |  |
| quality        | number hazardous matters in surrounding air                                   |               |  |  |  |  |  |
|                | TCVN 5939-1995 - Air quality - Industrial waste gas standard for dust and     | Table 17.1.27 |  |  |  |  |  |
|                | inorganic matters.                                                            |               |  |  |  |  |  |
|                | TCVN 5940-1995 - Air quality - Industrial waste gas standard for organic      | Table 17.1.28 |  |  |  |  |  |
|                | matters                                                                       |               |  |  |  |  |  |
| Standards      | TCVN 5949-1998 - Acoustics - Noise in Public and Residential Areas            | Table 17.1.29 |  |  |  |  |  |
| related to     | Maximum Permitted Noise Level                                                 |               |  |  |  |  |  |
| noise          | TCVN 5948-1999 - Acoustics - Road Motor Vehicle Noise Maximum                 | Table 17.1.30 |  |  |  |  |  |
|                | Permitted Noise Level                                                         |               |  |  |  |  |  |
| Standards      | TCVN 5941-1995 - Soil quality - Permitted maximum limit of residues of        | Table 17.1.31 |  |  |  |  |  |
| related to     | plant protection chemicals in the soil.                                       |               |  |  |  |  |  |
| soil quality   |                                                                               |               |  |  |  |  |  |

|                 |                    |                                                          |                                | DRINKING                            | WATER                      | VIE                           | TNAMESE          | STANDARD                         | CL F     | AN WATE          | RHYGIENIC                  | Gui                  | delines         |
|-----------------|--------------------|----------------------------------------------------------|--------------------------------|-------------------------------------|----------------------------|-------------------------------|------------------|----------------------------------|----------|------------------|----------------------------|----------------------|-----------------|
|                 | Water Quality      |                                                          |                                | DRINKING WATER<br>HYGIENIC STANDARD |                            | VIETNAMESE STANDARD<br>(TCVN) |                  | CLEAN WATER HYGIENIC<br>STANDARD |          |                  | Guidelines<br>for          |                      |                 |
|                 | Standards          |                                                          |                                | (Promulgated together with the      |                            |                               |                  | (Issu                            |          | lance with the   |                            |                      |                 |
|                 |                    |                                                          | Decision of Minister of Health |                                     | DOMESTIC SUPPLY            |                               | Decision No      |                                  |          | Third            | Edition                    |                      |                 |
|                 |                    |                                                          | N                              | lo 1329/200                         | 2/BYT/QD                   |                               | WATER-QU         |                                  |          | 09/2005/Q        | D/BYT                      | World                | d Health        |
|                 |                    |                                                          |                                | dated April                         | 18, 2002)                  |                               | REQUIRE          | MENTS                            | I        | Dated March      | 11, 2005                   |                      | nization        |
|                 |                    | Items                                                    | 1                              | 15                                  | TOU                        | 1                             | 15               |                                  |          | of Minister      |                            |                      | Geneva          |
|                 |                    | Color                                                    | 1                              | 15                                  | TCU                        | 1                             | 15<br>No strange | Mg/l Pt                          | 1        | 15<br>No strange | TCU                        | 15                   | TCU             |
|                 |                    | Taste                                                    | 2                              | No str                              | ange taste                 | 2                             | taste            |                                  | 2        | taste            | ,                          | No stra              | ange taste      |
|                 |                    | Turbidity                                                | 3                              | 2                                   | NTU                        | 3                             | 5                | NTU                              | 3        | 5                | NTU                        | 5                    | NTU             |
|                 |                    | pH                                                       | 4                              | 6.5-8.5                             |                            | 4                             | 6.0-8.5          |                                  | 4        | 6.0-8.5          |                            | 6.5-9.5              |                 |
|                 |                    | Hardness                                                 | 5                              | 300                                 | mg/l                       | 5                             | 300              | mg/l                             | 5        | 350              | mg/l                       | 500                  | mg/l            |
|                 |                    | Dissolved oxygen content                                 | 6                              | -                                   |                            | 6                             | 6                | mg/l                             | 12       | -                |                            | 1 000                | -               |
|                 |                    | Total dissolved substance (TDS)<br>Aluminum content      | 6                              | 1,000                               | mg/l<br>mg/l               | 19                            | 1,000            | mg/l<br>mg/l                     | 13       | 1,200            | mg/l                       | 1,000                | mg/l<br>mg/l    |
|                 |                    | Ammonia content (NH <sub>4</sub> <sup>+</sup> )          | 8                              | 1.5                                 | mg/l (as N)                | 8                             | 3                | mg/l (as NH4 <sup>+</sup> )      | 6        | 3                | mg/l (as N)                | 1.5                  | mg/l (as N)     |
|                 |                    | Antimony content                                         | 9                              | 0.005                               | mg/l (as IN)               | 10                            | 0.005            | mg/l                             | 0        | -                | ing/1 (as in)              | 0.02                 | mg/l            |
|                 |                    | Arsenic content                                          | 10                             | 0.01                                | mg/l                       | 9                             | 0.01             | mg/l                             | 10       | 0.05             | mg/l                       | 0.01 (P)             | mg/l            |
|                 |                    | Barium content                                           | 11                             | 0.7                                 | mg/l                       |                               | -                | 6                                |          | -                | 0                          | 0.7                  | mg/l            |
| 1               |                    | Boron content                                            |                                |                                     |                            |                               |                  |                                  |          |                  |                            |                      |                 |
|                 |                    | (including borate and boric acid)                        | 12                             | 0.3                                 | mg/l                       |                               | -                |                                  |          | -                |                            | 0.5 (T)              | mg/l            |
|                 | I.                 | Cadmium (Cd) content<br>Chloride content                 | 13<br>14                       | 0.003 250                           | mg/l<br>mg/l               | 11                            | - 250            | mg/l                             | 9        | - 300            | mg/l                       | 0.003 250            | mg/l<br>mg/l    |
| 1               | Perceptive         | Chromium content                                         | 14                             | 0.05                                | mg/l<br>mg/l               | 13                            | 0.05             | mg/l                             | 7        |                  | mg/1                       | 0.05 (P)             | mg/1<br>mg/1 1) |
| 1               | standard           | Copper (Cu) content                                      | 16                             | 2                                   | mg/l                       | 14                            | 1                | mg/l                             | 14       | 2                | mg/l                       | 2                    | mg/1 2)         |
|                 | and inorganic      | Cyanide content                                          | 17                             | 0.07                                | mg/l                       | 24                            | 0.07             | mg/l                             | 15       | 0.07             | mg/l                       | 0.07                 | mg/l            |
|                 | component          | Fluoride content                                         | 18                             | 0.7-1.5                             | mg/l                       | 15                            | 0.7-1.5          | mg/l                             | 16       | 1.5              | mg/l                       | 1.5                  | mg/1 3)         |
|                 |                    | Hydrogen sulfide content                                 | 19                             | 0.05                                | mg/l                       | 17                            | 0.05             | mg/l                             | 11       | -                |                            | 0.05                 | mg/l            |
|                 |                    | Iron content<br>Lead content                             | 20                             | 0.5                                 | mg/l                       | 22                            | 0.5              | mg/l                             | 11<br>17 | 0.5              | mg/l                       | 0.3                  | mg/l            |
|                 |                    | Manganese content                                        | 21                             | 0.01                                | mg/l<br>mg/l               | 12                            | 0.01             | mg/l<br>mg/l                     | 17       | 0.01             | mg/l<br>mg/l               | 0.01<br>0.4 (C)      | mg/l<br>mg/l    |
|                 |                    | Mercury content                                          | 23                             | 0.001                               | mg/l                       | 23                            | 0.001            | mg/l                             | 19       | 0.001            | mg/l                       | 0.001                | mg/1 4)         |
|                 |                    | Molybdenum content                                       | 24                             | 0.07                                | mg/l                       |                               | -                | 0                                |          | -                | 0                          | 0.07                 | mg/l            |
|                 |                    | Nickel content                                           | 25                             | 0.02                                | mg/l                       |                               | -                |                                  |          | -                |                            | 0.02 (P)             | mg/l            |
|                 |                    | Nitrate content                                          | 26                             | 50                                  | mg/l (as NO3)              | 20                            | 10               | mg/l (NO3-N)                     | 7        | 50               | mg/l (as NO <sub>3</sub> ) | 50                   | mg/1 5)         |
|                 |                    | Nitrite content                                          | 27                             | 3                                   | mg/l (as NO <sub>2</sub> ) | 21                            | 1.0              | mg/l (NO2-N)                     | 8        | 3                | mg/l (as NO <sub>2</sub> ) | 3                    | mg/1 5)         |
|                 |                    | Selenium content Sodium content                          | 28<br>29                       | 0.01 200                            | mg/l<br>mg/l               |                               | -                |                                  |          | -                |                            | 0.01 200             | mg/l<br>mg/l    |
|                 |                    | Sulphate content                                         | 30                             | 250                                 | mg/l                       |                               |                  |                                  |          |                  |                            | 250                  | mg/l            |
|                 |                    | Zinc content                                             | 31                             | 3                                   | mg/l                       | 16                            | 3                | mg/l                             | 20       | 3                | mg/l                       | 3                    | mg/l            |
|                 |                    | Oxygenation degree                                       |                                |                                     | 0                          |                               |                  | 0                                |          |                  | 0                          |                      | 0               |
|                 |                    | (Potassium permanganate                                  | 32                             | 2                                   | mg/l                       |                               | -                |                                  | 12       | 4                | mg/l                       |                      | -               |
|                 |                    | Carbon tetrachloride                                     | 33                             | 2                                   | μg/l                       |                               | -                |                                  |          | -                |                            | 0.004                | mg/l            |
|                 | _                  | Dichloromethane                                          | 34                             | 20                                  | μg/l                       |                               | -                |                                  |          | -                |                            | 0.02                 | mg/l            |
|                 | a.<br>Chlorination | 1,2 Dichloroethane                                       | 35<br>36                       | 30<br>2000                          | μg/l                       |                               | -                |                                  |          | -                |                            | 0.03 <sup>b</sup>    | mg/l            |
|                 | alkan              | 1,1,1-Trichloroethane<br>Vinyl chloride                  | 30                             | 2000                                | μg/l                       |                               | -                |                                  |          | -                |                            | 0.0003 <sup>b</sup>  | -<br>mg/l       |
|                 | group              | 1,2 Dichloroethene                                       | 37                             | 50                                  | μg/l<br>μg/l               |                               | -                |                                  |          | -                |                            | 0.0003               | mg/l<br>mg/l    |
|                 | 5. Sup             | Trichloroethene                                          | 39                             | 70                                  | μg/1<br>μg/l               |                               | -                |                                  |          | -                |                            | 0.05<br>0.07 (P)     | mg/l            |
|                 |                    | Tetrachloroethene                                        | 40                             | 40                                  | μg/l                       |                               | -                |                                  |          | -                |                            | 0.04                 | mg/l            |
|                 |                    | Benzene                                                  | 41                             | 10                                  | μg/l                       | 26                            | 0.01             | mg/l                             |          | -                |                            | 0.01 <sup>b</sup>    | mg/l            |
| I               | b.                 | Toluene                                                  | 42                             | 700                                 | μg/l                       |                               | -                |                                  |          | -                |                            | 0.7 (C)              | mg/l            |
| ent             | Hydrocarbure       | Xylene                                                   | 43                             | 500                                 | μg/l                       |                               | -                |                                  |          | -                |                            | 0.5 (C)              | mg/l            |
| Organic content | s                  | Ethylbenzene                                             | 44                             | 300                                 | μg/l                       |                               | -                |                                  |          | -                |                            | 0.3 (C)              | mg/l            |
| ic              | aromatiques        | Styrene                                                  | 45                             | 20                                  | μg/l                       |                               | -                |                                  |          | -                |                            | 0.02 (C)             | mg/l            |
| gan             | с.                 | Benzo (a) pyrene<br>Monochlorobenzene                    | 46                             | 0.7 300                             | μg/l<br>μg/l               |                               | -                |                                  |          | -                |                            | 0.0007 <sup>b</sup>  | mg/l<br>-       |
| ١ <u>٩</u>      |                    | 1,2-dichlorobenzene                                      | 47                             | 1000                                | μg/1<br>μg/l               |                               | -                |                                  |          | -                |                            | 1 (C)                | -<br>mg/l       |
| Ħ               | benzene            | 1,4-dichlorobenzene                                      | 49                             | 300                                 | μg/1<br>μg/1               |                               | -                |                                  |          | -                |                            | 0.3 (C)              | mg/l            |
| 1               | group              | Trichlorobenzene                                         | 50                             | 20                                  | μg/l                       |                               | -                |                                  |          | -                |                            |                      | -               |
| 1               |                    | Di (2-ethylhexyl) adipate                                | 51                             | 80                                  | µg/l                       |                               | -                |                                  |          | -                |                            |                      | -               |
| 1               |                    | Di (2-ethylhexyl) phthalate                              | 52                             | 8                                   | μg/l                       |                               | -                |                                  |          | -                |                            | 0.008                | mg/l            |
| 1               | d.                 | Acrylamide                                               | 53                             | 0.5                                 | μg/l                       |                               | -                |                                  |          | -                |                            | 0.0005 <sup>b</sup>  | mg/l            |
| 1               | Complicated        | Epichlohydrine                                           | 54                             | 0.4                                 | μg/l                       |                               | -                |                                  |          | -                |                            | 0.0004 (P)<br>0.0006 |                 |
| 1 '             | organic            | Hexachloro butadiene<br>Adetic acid (EDTA)               | 55                             | 0.6                                 | μg/l                       |                               | -                |                                  |          | -                |                            | 0.0006               | mg/l            |
| 1               | organic            |                                                          |                                |                                     |                            |                               |                  |                                  |          |                  |                            |                      |                 |
|                 | group              |                                                          | 56                             | 200                                 | ug/l                       |                               | _                |                                  |          | -                |                            | 0.6                  | mg/l(6)         |
|                 | <b>.</b>           | Ethylendiamine tetraacetic acid<br>Nitrilotriacetic acid | 56<br>57                       | 200<br>200                          | μg/l<br>μg/l               |                               | -                |                                  |          | -                |                            | 0.6                  | mg/l 6)<br>mg/l |

 Table 17.1.7
 Drinking and Domestic Water Quality Standards (1)

|                                | 1able 17.1.8 L                                              |            | iking and Don              |          |          | -              | -     |                           |                                  |                       |
|--------------------------------|-------------------------------------------------------------|------------|----------------------------|----------|----------|----------------|-------|---------------------------|----------------------------------|-----------------------|
| $\sim$                         | Water Quality                                               |            | DRINKING WATER             | VIE      |          |                | CLE   | AN WATER HYGIENIC         | Gu                               | idelines              |
|                                | Standards                                                   |            | GIENIC STANDARD            |          | (TC      |                |       | STANDARD                  |                                  | for                   |
|                                |                                                             | · ·        | nulgated together with the |          | TCVN 55  |                | (Issu | ed in accordance with the | 0                                | water Quality         |
|                                |                                                             |            | sion of Minister of Health |          | DOMESTIC |                |       | Decision No               |                                  | d Edition             |
|                                |                                                             |            | o 1329/2002/BYT/QD         |          | WATER-C  |                | Ι.    | 09/2005/QD/BYT            |                                  | ld Health             |
|                                | Items                                                       |            | lated April 18, 2002)      |          | REQUIRI  | EMENIS         |       | Dated March 11, 2005      |                                  | anization<br>. Geneva |
|                                | Alachlor                                                    | 59         | 20 µg/l                    |          |          |                |       | of Minister of Health)    | 0.02 <sup>b</sup>                | mg/l                  |
|                                | Aldicarb                                                    | 60         | 10 µg/l                    |          | -        |                |       | -                         | 0.02                             | mg/1 7)               |
|                                | Aldrin/dieldrin                                             | 61         | 0.03 µg/l                  |          | -        |                |       | -                         | 0.00003                          |                       |
|                                | Atrazine                                                    | 62         | 2 μg/l                     |          | -        |                |       | -                         | 0.002                            | mg/l                  |
|                                | Bentazone                                                   | 63         | 30 µg/l                    |          | -        |                |       | -                         | 0.007                            | - /1                  |
|                                | Carbofuran<br>Chlordane                                     | 64<br>65   | 5 μg/l<br>0.2 μg/l         |          | -        |                |       | -                         | 0.007                            | mg/l<br>mg/l          |
|                                | Chlorotoluron                                               | 66         | 30 µg/l                    |          | -        |                |       | -                         | 0.0002                           | mg/l                  |
|                                | DDT                                                         | 67         | 2 μg/l                     |          | -        |                |       | -                         | 0.001                            | mg/l                  |
|                                | 1,2-Dibromo-3 Chloropropan                                  | 68         | 1 μg/l                     |          | -        |                |       | -                         | 0.001 <sup>b</sup>               | mg/l                  |
|                                | 2,4-D                                                       | 69         | 30 μg/l                    |          | -        |                |       | -                         | 0.03                             | mg/1 9)               |
|                                | 1,2-Dichloropropane                                         | 70         | 20 μg/l                    |          | -        |                |       | -                         | 0.04 (P)                         | mg/l                  |
|                                | 1,3-Dichloropropene                                         | 71         | 20 µg/l                    |          | -        |                |       | -                         | 0.02 <sup>b</sup>                | mg/l                  |
|                                | Heptaclo and heptaclo epoxide                               | 72         | 0.03 µg/l                  |          | -        |                |       | -                         | -                                |                       |
| III.                           | Haxachlorobenzene<br>Isoproturon                            | 73<br>74   | 1 μg/l<br>9 μg/l           |          | -        |                |       | -                         | - 0.009                          | mg/l                  |
| Botanical                      | Lindane                                                     | 75         | 2 μg/l                     |          | -        |                |       | -                         | 0.009                            | mg/l                  |
| protection<br>chemical         | MCPA                                                        | 76         | 2 µg/1                     |          | -        |                |       |                           | 0.002                            | mg/l                  |
| chemical                       | Methoxychlor                                                | 77         | 20 µg/l                    |          | -        |                |       | -                         | 0.02                             | mg/l                  |
|                                | Metolachlor                                                 | 78         | 10 μg/l                    |          | -        |                |       | -                         | 0.01                             | mg/l                  |
|                                | Molinate<br>Den dimethalin                                  | 79<br>90   | 6 μg/l<br>20 μg/l          |          | -        |                |       | -                         | 0.006                            | mg/l                  |
|                                | Pendimethalin                                               | 81         | 10                         |          | -        |                |       | -                         | 0.02                             | mg/l                  |
|                                | Pentachlorophenol<br>Permethrin                             | 81         | 9 μg/l<br>20 μg/l          |          | -        |                |       | -                         | 0.009 <sup>b</sup> (F            | ) mg/l                |
|                                | Propanil                                                    | 83         | 20 µg/l                    |          | -        |                |       | -                         |                                  | -                     |
|                                | Pyridate                                                    | 84         | 100 µg/l                   |          | -        |                |       | -                         |                                  | -                     |
|                                | Simazine                                                    | 85         | 20 μg/l                    |          | -        |                |       | -                         | 0.002                            | mg/l                  |
|                                | Trifluraline                                                | 86         | 20 μg/l<br>90 mg/l         |          | -        |                |       | -                         | 0.02                             | mg/l                  |
|                                | 2,4 DB,<br>Dichlorprop                                      | 87<br>88   | 90 mg/l<br>100 μg/l        |          | -        |                |       | -                         | 0.09                             | mg/l<br>mg/l          |
|                                | Fenoprop                                                    | 89         | 9 μg/l                     |          | -        |                |       | -                         | 0.009                            | mg/l                  |
|                                | Mecoprop                                                    | - 90       | 10 µg/l                    |          | -        |                |       | -                         | 0.01                             | mg/l                  |
|                                | 2,4,5-T                                                     | 91         | 9 μg/l                     |          | -        |                |       | -                         | 0.009                            | mg/l                  |
|                                | Monochloramin                                               | 92         | <u>3 μg/l</u>              |          | -        |                |       | -                         | 3                                | mg/l                  |
|                                | Residual chlorine                                           | 93         | 0.3 - 0.5 mg/l             |          | -        |                |       | -                         | 0.5                              | mg/l                  |
|                                | Bromate<br>Chlorite                                         | 94<br>95   | 25 μg/l<br>200 μg/l        |          | -        |                |       | -                         | 0.01 <sup>b</sup> (A,<br>0.7 (D) | F) mg/l<br>mg/l       |
|                                | 2,4,6 trichlorophenol                                       | 96         | 200 µg/l                   |          | -        |                | _     | -                         | 0.2 <sup>b</sup> (C)             | mg/l                  |
|                                | Formaldehyde                                                | 90         | <u>900 μg/1</u>            |          | -        |                |       | -                         | 0.2 (C)                          | mg/l                  |
| IV.                            | Bromoform                                                   | 98         | 100 µg/l                   |          | -        |                |       | -                         | 0.1                              | mg/l                  |
| Disinfection                   | Dibromochloromethane                                        | - 99       | 100 µg/l                   |          | -        |                |       | -                         | 0.1                              | mg/l                  |
| chemical                       | Bromodichloromethane                                        | 100        | 60 μg/l                    |          | -        |                |       | -                         | 0.06 <sup>b</sup>                | mg/l                  |
| and by-product                 | Chloroform                                                  | 101        | 200 µg/l                   |          | -        |                |       | -                         | 0.2                              | mg/l                  |
|                                | Dichloroacetate<br>Trichloroacetate                         | 102        | 50 μg/l<br>100 μg/l        |          | -        |                |       | -                         | 0.05 (T,E<br>0.2                 | , 0                   |
|                                | Chloral hydrate                                             | 103        | 100 μg/l<br>10 μg/l        |          | -        |                |       | -                         | 0.2<br>0.01 (P)                  | mg/l<br>mg/l          |
|                                | Dichloroacetonitrile                                        | 104        | 90 µg/l                    |          | -        |                |       | -                         | 0.01 (P)                         | mg/l                  |
|                                | Dibromoacetonitrile                                         | 106        | 100 µg/l                   |          | -        |                |       | -                         | 0.07                             | mg/l                  |
|                                | Trichloroacetonitrile                                       | 107        | 1 μg/l                     |          | -        |                |       | -                         |                                  | -                     |
| V. Radioactive                 | Xyanua chlorite (as per CN)                                 | 108<br>109 | 70 μg/l<br>0.1 Bα/l        | 22       | -        | eCi/l          |       | -                         | 0.1                              | -<br>                 |
| V. Radioactive<br>effect level | Total activity α<br>Total activity β                        | 109        | 0.1 Bq/l<br>1 Bq/l         | 33       | 30       | pCi/l<br>pCi/l |       |                           | 0.1                              | Bq/l<br>Bq/l          |
| VI.                            | Total coliform                                              | 111        | 0 MPN/100ml                | 30       | 2.2      | MPN/100ml      | 21    | -<br>50 MPN/100ml         | 0                                | MPN/100ml             |
| Microorganism                  | E. Coli or Thermotolerance                                  | 112        | 0 MPN/100ml                | 31       |          | MPN/100ml      | 22    | 0 MPN/100ml               | 0                                | MPN/100ml             |
|                                | Surface activate object,                                    |            |                            |          |          |                |       |                           |                                  |                       |
|                                | as per Linear Alkyl                                         |            |                            | ~~       |          |                |       |                           |                                  |                       |
| Others                         | Benzene Sulphonate (LAS)<br>Phenol and derivative of phenol | ┝─┨        | -                          | 25<br>26 | 0.5      | mg/l<br>mg/l   |       | -                         |                                  | -                     |
| Oulers                         | Oil and oil compounds                                       |            | -                          | 20       | 0.01     | mg/l           |       | -                         |                                  | -                     |
|                                | Organic phosphate pesticide                                 |            | -                          | 28       | 0.01     | mg/l           |       | -                         |                                  | -                     |
|                                | Organic Chlorine pesticide                                  |            |                            | 29       | 0.1      | mg/l           |       | -                         |                                  | -                     |

#### Table 17.1.8 Drinking and Domestic Water Quality Standards (2)

P = provisional guideline value, as there is evidence of a hazard, but the available information on health effects is limited; T = provisional guideline value because calculated guideline value is below the level that can be achieved through practical treatment methods, source protection, etc.; A = provisional guideline value because calculated guideline value is below the achievable quantification level; D = provisional guideline value because disinfection is likely to result in the guideline value being exceeded; C = concentrations of the substance at or below the health-based guideline value may affect the appearance, taste or odour of the water, leading to consumer complaints. b: For substances that are considered to be carcinogenic, the guideline value is the concentration in drinking-water associated with an upper-bound excess lifetime cancer risk of 10-5 (one additional cancer per 100,000 of the population ingesting drinking-water containing the substance at the guideline value for 70 years). Concentrations associated with upper-bound estimated excess lifetime cancer risks of 10-4 and 10-6 can be calculated by multiplying and dividing, respectively, the guideline value by 10. For total chromium

Staining of laundry and sanitary were may occur below guideline value
 Volume of water consumed and intake from other sources should be considered when setting national standards

4) For total mercury (inorganic plus organic)

5) Short-term exposure6) Applies to the free acid

7) Applies to the nee addraw7) Applies to aldicarb sulfoxide and aldicarb sulfone8) For combined aldrin plus dieldrin

9) Applies to the free acid

## Surface Water Quality Standards (TCVN 5942-1995)

#### 1. Application scope

- 1.1. This standard delivers limitation of allowed parameters and allowed content of pollution substance existing in surface water.
- 1.2. This standard is applied to evaluate the polluted level of surface water.

#### 2. Limit value

- 2.1. The list of parameters, polluting materials and limit value allowed to exist in water are given in the below table.
- 2.2. The method of sampling, analyzing, defining certain parameters and content are given in the Vietnam Standard equivalently.

| No.  | Demonster og d Substan og     | Unit       | Limitation Value |         |  |  |
|------|-------------------------------|------------|------------------|---------|--|--|
| INO. | Parameter and Substance       | Unit       | А                | В       |  |  |
| 1    | pH value                      |            | 6 - 8,5          | 5,5 - 9 |  |  |
| 2    | BOD <sub>5</sub> (20°C)       | mg/l       | <4               | <25     |  |  |
| 3    | COD                           | mg/l       | <10              | <35     |  |  |
| 4    | Dissolved oxygen              | mg/l       | 6                | 2       |  |  |
| 5    | Suspended solids              | mg/l       | 20               | 80      |  |  |
| 6    | Arsen                         | mg/l       | 0,05             | 0,1     |  |  |
| 7    | Barium                        | mg/l       | 1                | 4       |  |  |
| 8    | Cadmium                       | mg/l       | 0,01             | 0,02    |  |  |
| 9    | Lead                          | mg/l       | 0,05             | 0,1     |  |  |
| 10   | Chromium, Hexavalent          | mg/l       | 0,05             | 0,05    |  |  |
| 11   | Chromium, Trivalent           | mg/l       | 0,1              | 1       |  |  |
| 12   | Copper                        | mg/l       | 0,1              | 1       |  |  |
| 13   | Zinc                          | mg/l       | 1                | 2       |  |  |
| 14   | Manganese                     | mg/l       | 0,1              | 0,8     |  |  |
| 15   | Nickel                        | mg/l       | 0,1              | 1       |  |  |
| 16   | Iron                          | mg/l       | 1                | 2       |  |  |
| 17   | Mercury                       | mg/l       | 0,001            | 0,002   |  |  |
| 18   | Tin                           | mg/l       | 1                | 2       |  |  |
| 19   | Ammonia (as N)                | mg/l       | 0,05             | 1       |  |  |
| 20   | Fluoride                      | mg/l       | 1                | 1,5     |  |  |
| 21   | Nitrate (as N)                | mg/l       | 10               | 15      |  |  |
| 22   | Nitrite (as N)                | mg/l       | 0,01             | 0,05    |  |  |
| 23   | Cyanide                       | mg/l       | 0,01             | 0,05    |  |  |
| 24   | Phenol compounds              | mg/l       | 0,001            | 0,02    |  |  |
| 25   | Oil and grease                | mg/l       | not detectable   | 0,3     |  |  |
| 26   | Detergent                     | mg/l       | 0,5              | 0,5     |  |  |
| 27   | Coliform                      | MPN/100 ml | 5000             | 10000   |  |  |
| 28   | Total pesticides (except DDT) | mg/l       | 0,15             | 0,15    |  |  |
| 29   | DDT                           | mg/l       | 0,01             | 0,01    |  |  |
| 30   | Gross alpha activity          | Bq/l       | 0,1              | 0,1     |  |  |
| 31   | Gross beta activity           | Bq/l       | 1,0              | 1,0     |  |  |

 Table 17.1.9
 Surface Water Quality Standards (TCVN 5942-1995)

Legends:

- Column A delivers surface water which can be exploited to supply domestic water after treated as being stipulated

- Column B delivers surface water which is exploited for other purposes such as water for agriculture and fishery farming under certain stipulations

## Water Quality: Coastal Water Quality Standard TCVN 5943-1995

#### 1. Scope

- 1.1 This standard specifies parameter limits and allowable concentrations of pollutants in coastal water.
- 1.2 This standard is applied to evaluating the quality of a coastal water source.

#### 2. Limitation Value

- 2.1 Parameter limits and allowable concentration of pollutants in coastal water are specified in the below table.
- 2.2 Standard methods of analysis of parameters and concentrations of coastal water are specified in available current TCVNs.

#### Table 17.1.10 Parameter Limits and Allowable Concentrations of Pollutants in Coastal Water

| Parameter and |                         |            |                 |                  |           |
|---------------|-------------------------|------------|-----------------|------------------|-----------|
| No.           | Substance               | unit       | Bathing and     | Aquatic          | Others    |
|               | Substance               |            | Recreation Area | Cultivation Area | Others    |
| 1             | Temperature             | °C         | 30              |                  |           |
| 2             | Odor                    |            | unobjectionable |                  |           |
| 3             | pH value                |            | 6,5 - 8,5       | 6,5 - 8,5        | 6,5 - 8,5 |
| 4             | Dissolved solid         | mg/l       | >or $=4$        | >or= 5           | >or= 4    |
| 5             | BOD <sub>5</sub> (20°C) | mg/l       | <20             | <10              | <20       |
| 6             | Suspended solid         | mg/l       | 25              | 50               | 200       |
| 7             | Arsenic                 | mg/l       | 0,05            | 0,01             | 0,05      |
| 8             | Ammonia (as N)          | mg/l       | 0,1             | 0,5              | 0,5       |
| 9             | Cadmium                 | mg/l       | 0,005           | 0,005            | 0,01      |
| 10            | Lead                    | mg/l       | 0,1             | 0,05             | 0,1       |
| 11            | Chromium (VI)           | mg/l       | 0,05            | 0,05             | 0,05      |
| 12            | Chromium (III)          | mg/l       | 0,1             | 0,1              | 0,2       |
| 13            | Chloride                | mg/l       |                 | 0,01             |           |
| 14            | Copper                  | mg/l       | 0,02            | 0,01             | 0,02      |
| 15            | Fluoride                | mg/l       | 1,5             | 1,5              | 1,5       |
| 16            | Zinc                    | mg/l       | 0,1             | 0,01             | 0,1       |
| 17            | Manganese               | mg/l       | 0,1             | 0,1              | 0,1       |
| 18            | Iron                    | mg/l       | 0,1             | 0,1              | 0,3       |
| 19            | Mercury                 | mg/l       | 0,005           | 0,005            | 0,01      |
| 20            | Sulfide                 | mg/l       | 0,01            | 0,005            | 0,01      |
| 21            | Cyanide                 | mg/l       | 0,01            | 0,01             | 0,02      |
| 22            | Phenol compounds        | mg/l       | 0,001           | 0,001            | 0,002     |
| 23            | Oil and fat film        | mg/l       | none            | none             | 0,3       |
| 24            | Oil and fat suspension  | mg/l       | 2               | 1                | 5         |
| 25            | Total pesticides        | mg/l       | 0,05            | 0,01             | 0,05      |
| 26            | Coliform                | MPN/100 ml | 1000            | 1000             | 1000      |

#### Water Quality: Ground water Quality Standards TCVN 5944-1995

| No. | Parameter and Pollutant          | Unit    | Limitation Value |
|-----|----------------------------------|---------|------------------|
| 1   | pH value                         |         | 6,5 - 8,5        |
| 2   | Color                            | Pt - Co | 5 - 50           |
| 3   | Hardness (as CaCO <sub>3</sub> ) | mg/l    | 300 - 500        |
| 4   | Total solids                     | mg/l    | 750 - 1500       |
| 5   | Arsenic                          | mg/l    | 0,05             |
| 6   | Cadmium                          | mg/l    | 0,01             |
| 7   | Chloride                         | mg/l    | 200 - 600        |

 Table 17.1.11
 Ground water Quality Standards

| 8  | Lead            | mg/l       | 0,05           |
|----|-----------------|------------|----------------|
| 9  | Chromium (VI)   | mg/l       | 0,05           |
| 10 | Cyanide         | mg/l       | 0,01           |
| 11 | Copper          | mg/l       | 1,0            |
| 12 | Fluoride        | mg/l       | 1,0            |
| 13 | Zinc            | mg/l       | 5,0            |
| 14 | Manganese       | mg/l       | 0,1 - 0,5      |
| 15 | Nitrate         | mg/l       | 45             |
| 16 | Phenol compound | mg/l       | 0,001          |
| 17 | Iron            | mg/l       | 1 - 5          |
| 18 | Sulphate        | mg/l       | 200,400        |
| 19 | Mercury         | mg/l       | 0,001          |
| 20 | Selenium        | mg/l       | 0,01           |
| 21 | Fecal coli      | MPN/100 ml | Not detectable |
| 22 | Coliform        | MPN/100 ml | 3              |

# Water Quality: Industrial Wastewater Discharge Standards TCVN 5945-1995

| NT  |                              | <b>TT '</b> |                | Limitation Values |       |
|-----|------------------------------|-------------|----------------|-------------------|-------|
| No. | Parameters and Substances    | Unit        | А              | В                 | С     |
| 1   | Temperature                  | °C          | 40             | 40                | 45    |
| 2   | pH value                     | -           | 6 - 9          | 5,5 - 9           | 5 - 9 |
| 3   | BOD <sub>5</sub> (20°C)      | mg/l        | 20             | 50                | 100   |
| 4   | COD                          | mg/l        | 50             | 100               | 400   |
| 5   | Suspended solids             | mg/l        | 50             | 100               | 200   |
| 6   | Arsenic                      | mg/l        | 0,05           | 0,1               | 0,5   |
| 7   | Cadmium                      | mg/l        | 0,01           | 0,02              | 0,5   |
| 8   | Lead                         | mg/l        | 0,1            | 0,5               | 1     |
| 9   | Residual Chlorine            | mg/l        | 1              | 2                 | 2     |
| 10  | Chromium (VI)                | mg/l        | 0,05           | 0,1               | 0,5   |
| 11  | Chromium (III)               | mg/l        | 0,2            | 1                 | 2     |
| 12  | Mineral oil and fat          | mg/l        | Not detectable | 1                 | 5     |
| 13  | Animal-vegetable fat and oil | mg/l        | 5              | 10                | 30    |
| 14  | Copper                       | mg/l        | 0,2            | 1                 | 5     |
| 15  | Zinc                         | mg/l        | 1              | 2                 | 5     |
| 16  | Manganese                    | mg/l        | 0,2            | 1                 | 5     |
| 17  | Nickel                       | mg/l        | 0,2            | 1                 | 2     |
| 18  | Organic phosphorous          | mg/l        | 0,2            | 0,5               | 1     |
| 19  | Total phosphorous            | mg/l        | 4              | 6                 | 8     |
| 20  | Iron                         | mg/l        | 1              | 5                 | 10    |
| 21  | Tetrachlorethylene           | mg/l        | 0,02           | 0,1               | 0,1   |
| 22  | Tin                          | mg/l        | 0,2            | 1                 | 5     |
| 23  | Mercury                      | mg/l        | 0,005          | 0,005             | 0,01  |
| 24  | Total nitrogen               | mg/l        | 30             | 60                | 60    |
| 25  | Trichlorethylene             | mg/l        | 0,05           | 0,3               | 0,3   |
| 26  | Ammonia (as N)               | mg/l        | 0,1            | 1                 | 10    |
| 27  | Fluoride                     | mg/l        | 1              | 2                 | 5     |
| 28  | Phenol                       | mg/l        | 0,001          | 0,05              | 1     |
| 29  | Sulfide                      | mg/l        | 0,2            | 0,5               | 1     |
| 30  | Cyanide                      | mg/l        | 0,05           | 0,1               | 0,2   |
| 31  | Coliform                     | MPN/100 ml  | 5000           | 10000             |       |
| 32  | Gross alpha activity         | Bq/l        | 0,1            | 0,1               |       |
| 33  | Gross beta activity          | Bq/l        | 1,0            | 1,0               |       |

 Table 17.1.12
 Industrial Wastewater Discharge Standards

#### Water Quality: Domestic Wastewater Standards TCVN 6772-2000

#### 1. Application scope

This standard is applied for waster water of service establishments, public works and apartment building as mentioned in Table 17.1.14 (hereinafter called as domestic waste water) when it is discharged into stipulated water area.

This standard is applied for domestic waste water at areas without treatment system only.

This standard is not applied for industrial wastewater as regulated in Vietnamese Standard 5945-1995

#### 2. Allowed pollution limitation

Parameters and concentration of pollution compositions of domestic wastewater is not excess limitation in Table 17.1.13 when discharging into regulated areas.

Limitation levels mentioned in Table 17.1.13 are defined according to regulated analysis methods in current correlative standards.

Depending on type, scale and used area of service establishments, public works and apartment building, pollution composition limitation levels for domestic water are followed Table 17.1.14.

| No  | Pollution parameter                        | Unit      | Allowed limitation |         |         |         |       |  |  |  |
|-----|--------------------------------------------|-----------|--------------------|---------|---------|---------|-------|--|--|--|
|     |                                            |           | Level 1            | Level 2 | Level 3 | Level 4 | Level |  |  |  |
|     |                                            |           |                    |         |         |         | 5     |  |  |  |
| 1   | pH                                         | mg/l      | 5-9                | 5-9     | 5-9     | 5-9     | 5-9   |  |  |  |
| 2   | BOD                                        | mg/l      | 30                 | 30      | 40      | 50      | 200   |  |  |  |
| 3   | Suspended solid substance                  | mg/l      | 50                 | 50      | 60      | 100     | 100   |  |  |  |
| 4   | Accumulative solid substance               | mg/l      | 0.5                | 0.5     | 0.5     | 0.5     | KQD   |  |  |  |
| 5   | TDS                                        | mg/l      | 500                | 500     | 500     | 500     | KQD   |  |  |  |
| 6   | Sulfur (per $H_2S$ )                       | mg/l      | 1.0                | 1.0     | 3.0     | 4.0     | KQD   |  |  |  |
| 7   | Nitrate (NO <sub>3</sub> <sup>-</sup> )    | mg/l      | 30                 | 30      | 40      | 50      | KQD   |  |  |  |
| 8   | Oil                                        | mg/l      | 20                 | 20      | 20      | 20      | 100   |  |  |  |
| 9   | Phosphate (PO <sub>4</sub> <sup>3-</sup> ) | mg/l      | 6                  | 6       | 10      | 10      | KQD   |  |  |  |
| 10  | Total coliforms                            | MPN/100ml | 1000               | 1000    | 5000    | 5000    | 10000 |  |  |  |
| KQD | : unregulated/unstipulated                 |           |                    |         |         |         |       |  |  |  |

 Table 17.1.13
 Pollution Parameters and Allowed Limitation

 Table 17.1.14
 Pollution Parameters and Allowed Limitation

| No | Basic type<br>Service and public<br>establishment/apartm<br>ent building | Used scale, area of<br>Service and public<br>establishment/apartment<br>building | Allowed<br>applicati<br>on level | Remark                               |
|----|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------|--------------------------------------|
| 1  | Hotel                                                                    | Less than 60 rooms                                                               | Level 3                          |                                      |
|    |                                                                          | From 60 to 200 rooms                                                             | Level 2                          |                                      |
|    |                                                                          | More than 200 rooms                                                              | Level 1                          |                                      |
|    |                                                                          |                                                                                  |                                  |                                      |
| 2  | Inn, guest house                                                         | 10 to 50 rooms                                                                   | Level 4                          |                                      |
|    |                                                                          | 50 to 250 rooms                                                                  | Level 3                          |                                      |
|    |                                                                          | Over 250 rooms                                                                   | Level 2                          |                                      |
| 3  | Small hospital, health                                                   | 10 to 30 beds                                                                    | Level 2                          | Waste water must be disinfected      |
|    | station                                                                  | > 30 beds                                                                        | Level 1                          | before discharging out               |
| 4  | General hospital                                                         |                                                                                  | Level 1                          | Waste water must be sterilized. If   |
|    |                                                                          |                                                                                  |                                  | there are any pollution components   |
|    |                                                                          |                                                                                  |                                  | out of parameters mentioned in Table |
|    |                                                                          |                                                                                  |                                  | 17.1.13 of this standard, applying   |
|    |                                                                          |                                                                                  |                                  | correlative limitation to those      |
|    |                                                                          |                                                                                  |                                  | parameters regulated in Vietnamese   |
|    |                                                                          |                                                                                  |                                  | Standard 5945-1995                   |
| 5  | Governmental                                                             | 5.000m2 to 10.000m2                                                              | Level 3                          | Calculated area is working area      |

|    | organization,           | 10.000m2 to 50.000m2  | Level 2 |                                       |
|----|-------------------------|-----------------------|---------|---------------------------------------|
|    | enterprise, foreign     | >50.000m2             | Level 1 |                                       |
|    | agency, banks, offices  |                       |         |                                       |
| 6  | School, research        | 5.000m2 to 25.000m2   | Level 2 | For specialist research institute     |
|    | institute and similar   | >25.000m2             | Level 1 | relating to chemicals and biology, if |
|    | places                  |                       |         | there are any pollution components    |
|    | 1                       |                       |         | out of parameters mentioned in Table  |
|    |                         |                       |         | 17.1.13 of this standard, applying    |
|    |                         |                       |         | correlative limitation to those       |
|    |                         |                       |         | parameters regulated in Vietnamese    |
|    |                         |                       |         | Standard 5945-1995                    |
| 7  | General store, supper   | 5.000m2 to 25.000m2   | Level 2 |                                       |
|    | market                  | >25.000m2             | Level 1 |                                       |
| 8  | Raw food market         | 500m2 to 1.000m2      | Level 4 |                                       |
|    |                         | 1.000m2 to 1.500m2    | Level 3 |                                       |
|    |                         | 1.500m2 to 2.500m2    | Level 2 |                                       |
|    |                         | >2.500m2              | Level 1 |                                       |
| 9  | Restaurant, food        | <100m2                | Level 5 | Calculated area is dinning room area  |
|    | store, public refectory | 100m2 to 250m2        | Level 4 |                                       |
|    |                         | 250m2 to 500m2        | Level 3 |                                       |
|    |                         | 500m2 to 2.500m2      | Level 2 |                                       |
|    |                         | >2.500m2              | Level 1 |                                       |
| 10 | Apartment building      | <100 apartments       | Level 3 |                                       |
|    |                         | 100 to 500 apartments | Level 2 |                                       |
|    |                         | >500 apartments       | Level 1 |                                       |

# Water Quality: Water Quality Guidelines for Irrigation TCVN 6773-2000

#### 1. Application scope:

This standard is applied as a guideline for evaluation of a water source quality for irrigation (hereinafter called "water irrigation") and as a foundation to manage water source quality to be suitable for purpose usage.

This standard is a foundation to choose suitable irrigation water source quality, avoiding making environmental soil and underground water polluted and degraded, and protecting crop plants.

#### 2. Level of water quality for irrigation

Water irrigation need to have satisfactory quality with demands in Table 17.1.15.

|     |                              |           | Water Quality for Ingation                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----|------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | Parameter                    | Unit      | Level of parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1   | Total dissolved so substance | olid mg/l | <ul> <li>&lt; 400, using for area where has bad irrigation system, and salty soil</li> <li>( water's conductance, EC £ 0.75mS/cm, 25°C)</li> <li>&lt; 1000, using for area where has good irrigation system.</li> <li>(EC £ 1.75mS/cm, 25°C)</li> <li>&lt; 2000 and ratio of SAR ( appendix A) in low water irrigation, using for area where plants can live in salty soil, good irrigation and activeness for irrigation.</li> <li>(EC £ 2.25mS/cm, 25°C)</li> </ul> |
| 2   | SAR ratio of wa              | nter      | $\leq$ 10, using for area where has bad irrigation system.<br>$\leq$ 18, using for area where has good irrigation system.<br>> 18, using for impoverished and poor nutritious soil.                                                                                                                                                                                                                                                                                   |
| 3   | Bo (B)                       | mg/l      | $\leq$ 1, using for area where plants live are sensitive with B.<br>$\leq$ 2, using for area where plants live are sensitive at average with B.<br>$\leq$ 4, using for area where other plants live.                                                                                                                                                                                                                                                                  |

Table 17.1.15Water Quality for Irrigation

| 4  | Dissolved oxygen      | mg/l  | $\geq 2$                                         |
|----|-----------------------|-------|--------------------------------------------------|
| 5  | рН                    | mg/l  | 5.5 - 8.5                                        |
| 6  | Cl                    | mg/l  | ≤ 350                                            |
| 7  | Chemical for killing  | mg/l  | ≤ 0.001                                          |
|    | grass( per each type) |       |                                                  |
| 8  | Hg                    | mg/l  | ≤ 0.001                                          |
| 9  | Cadmium               | mg/l  | 0.005 - 0.01                                     |
| 10 | As                    | mg/l  | 0.05 - 0.1                                       |
| 11 | Pb                    | mg/l  | $\leq 0.1$                                       |
| 12 | Cr                    | mg/l  | $\leq 0.1$                                       |
| 13 | Zn                    | mg/l  | $<$ 1, if pH (soil) $\leq$ 6.5                   |
|    |                       | _     | < 5, if pH (soil) > 6.5                          |
| 14 | Fecal coliform        | MPN/  | <200 (for vegetable land and other fresh plants) |
|    |                       | 100ml | No stipulation for other plants land.            |

#### Water Quality: Level of water quality for protection of aquatic lives TCVN 6774-2000

#### 1. Limitation:

This standard is applied as a guideline for evaluation of surface water source quality to be suitable and safe for aquatic lives.

This standard is applied as a foundation to establish demands on management of water sources and protect aquatic lives.

#### 2. Water quality for protection of aquatic lives.

To protect aquatic lives, all social economic activities have relation to waste water and exploitation, usage of surface water sources, does not cause any changes in level of parameters about water source quality differing from parameters in Table 17.1.16.

| No. | Parameter                    | Unit | Level of parameter     | Note                 |
|-----|------------------------------|------|------------------------|----------------------|
| 1   | Dissolved oxygen             | mg/l | 5                      | Daily average        |
| 2   | Temperature                  | °C   | Natural temperature of |                      |
|     |                              |      | water catchment area   |                      |
| 3   | $BOD_5(20^{\circ}C)$         | mg/l | < 10                   | Correlativeness with |
|     |                              |      |                        | season               |
| 4   | Chemical protection of plant | mg/l | < 0.008                |                      |
|     | (organic Cl <sup>-</sup> )   |      |                        |                      |
|     | Aldrin/ Dieldrin             | mg/l | < 0.014                |                      |
|     | Endrin                       | mg/l | < 0.13                 |                      |
|     | B.H.C                        | mg/l | < 0.004                |                      |
|     | DDT                          | mg/l | < 0.01                 |                      |
|     | Endosulfan                   | mg/l | < 0.38                 |                      |
|     | Lindan                       | mg/l | < 0.02                 |                      |
|     | Clodan                       | mg/l | < 0.06                 |                      |
|     | Heptaclo                     |      |                        |                      |
| 5   | Chemical protection of plant | mg/l | 0.40                   |                      |
|     | Organic P                    | mg/l | 0.32                   |                      |
|     | Parathion                    |      |                        |                      |
|     | Malation                     |      |                        |                      |
| 6   | Herbicide                    | mg/l | 0.45                   |                      |
|     | 2,4 D                        | mg/l | 0.16                   |                      |
|     | 2,4,5 T                      | mg/l | 1.80                   |                      |
|     | Paraquat                     |      |                        |                      |
| 7   | CO <sub>2</sub>              | mg/l | < 12                   |                      |
| 8   | pH                           |      | 6.5-8.5                |                      |

 Table 17.1.16
 Level of Water Quality for Protection of Aquatic Lives.

| 9  | NH <sub>3</sub>           | ma/l | 2.20           | $pH = 6.5; t^{\circ}C = 15$ |
|----|---------------------------|------|----------------|-----------------------------|
| 9  | INH <sub>3</sub>          | mg/l |                |                             |
|    |                           |      | 1.33           | $pH = 8.0; t^{o}C = 15$     |
|    |                           |      | 1.49           | $pH = 6.5; t^{o}C = 20$     |
|    |                           |      | 0.93           | $pH = 8.0; t^{\circ}C = 20$ |
|    |                           |      |                |                             |
| 10 | Cyanide                   | mg/l | 0.005          |                             |
| 11 | Cu                        | mg/l | 0.002 - 0.004  | Depend on hardness of       |
|    |                           | Ũ    |                | CaCO <sub>3</sub>           |
| 12 | As                        | mg/l | 0.02           |                             |
| 13 | Cr                        | mg/l | 0.02           |                             |
| 14 | Cadmium                   | mg/l | 0.08 - 1.80    | Depend on hardness of       |
|    |                           | Ũ    |                | H <sub>2</sub> O            |
| 15 | Pb                        | mg/l | 0.002 - 0.007  | Depend on hardness of       |
|    |                           | C    |                | H <sub>2</sub> O            |
| 16 | Selenium                  | mg/l | 0.001          |                             |
| 17 | Hg (total)                | mg/l | 0.10           |                             |
| 18 | Mineral grease            |      | No yellow scum |                             |
| 19 | Phenol                    | mg/l | 0.02           |                             |
| 20 | Dissolved solid substance | mg/l | 1000           |                             |
| 21 | Suspended solid substance | mg/l | 100            |                             |
| 22 | Surface activities agent  | mg/l | 0.5            |                             |

#### Water Quality: Standards for industrial effluents discharged into rivers

#### using for domestic water supply TCVN 6980-2001

#### 1. Application Scope:

This standard stipulates the detail of limitary value on parameters and concentrations of polluted substances in industrial waste water according to discharge quantity and water flow of intake rivers.

In this standard, industrial waste water are known that solution of discharge or waste water caused by manufacturing process, processing, types of industries discharging out. The distance between outlet point and intake sources according to current regulation.

This standard is applied as well as Vietnamese Standards 5945: 1995 and is used for controlling industrial waste water quality when discharging into rivers or springs (hereinafter called "river") which has water quality using for domestic water supply.

#### 2. Quotation standards

Vietnamese Standards 5945: 1995 Industrial waste water – Discharge Standards

#### 3. Limitary value

3.1 Limitary value on parameters and concentrations of polluted substances according to discharge quantity when discharging into rivers which have different water flow, do not exceed correlative values in Table 17.1.17.

Parameters and concentrations of polluted substances are not mentioned in Table 17.1.17. They are applied as Vietnamese Standards 5945 – 1995.

3.2 Method of taking sample, analyzing, calculating, defining each detailed parameter and concentration is stipulated in correlative Vietnamese Standards or using other methods which jurisdictional office relating to environment assigns.

| Table 17.1.17         Limitary Value on Parameters and Concentrations of Polluted State | ubstances in |
|-----------------------------------------------------------------------------------------|--------------|
| Industrial Waste Water when Discharging into Rivers using for Domestic Wat              | er Supply    |

| No.  | Parameter                   | $Q>200 \text{ m}^{3}/\text{s}$ |       |       | $Q = 50 - 200 \text{ m}^3/\text{s}$ |       |       | $Q < 50 \text{ m}^{3}/\text{s}$ |       |       |
|------|-----------------------------|--------------------------------|-------|-------|-------------------------------------|-------|-------|---------------------------------|-------|-------|
| INO. | Farameter                   | F1                             | F2    | F3    | F1                                  | F2    | F3    | F1                              | F2    | F3    |
| 1    | Color, Co – Pt pH=7         | 20                             | 20    | 20    | 20                                  | 20    | 20    | 20                              | 20    | 20    |
| 2    | Smell, sensibility          | smell                          | smell | smell | smell                               | smell | smell | smell                           | smell | smell |
| -    | Sillen, sensibility         | less                           | less  | less  | less                                | less  | less  | less                            | less  | less  |
| 3    | $BOD_5 (20^{\circ}C), mg/l$ | 40                             | 35    | 35    | 30                                  | 25    | 25    | 20                              | 20    | 20    |

| 4    | COD, mg/l                                         | 70   | 60   | 60   | 60   | 50   | 50   | 50   | 40   | 40   |
|------|---------------------------------------------------|------|------|------|------|------|------|------|------|------|
| 5    | Total suspended solid, mg/l                       | 50   | 45   | 45   | 45   | 40   | 40   | 40   | 30   | 30   |
| 6    | As, mg/l                                          | 0.2  | 0.2  | 0.2  | 0.15 | 0.15 | 0.15 | 0.1  | 0.05 | 0.05 |
| 7    | Pb, mg/l                                          | 0.1  | 0.1  | 0.1  | 0.08 | 0.08 | 0.08 | 0.06 | 0.06 | 0.06 |
| 8    | Oil and mineral grease, mg/l                      | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    |
| 9    | Grease, mg/l                                      | 20   | 20   | 20   | 10   | 10   | 10   | 5    | 5    | 5    |
| 10   | Cu, mg/l                                          | 0.4  | 0.4  | 0.4  | 0.3  | 0.3  | 0.3  | 0.2  | 0.2  | 0.2  |
| 11   | Zn, mg/l                                          | 1    | 1    | 1    | 0.7  | 0.7  | 0.7  | 0.5  | 0.5  | 0.5  |
| 12   | Total P, mg/l                                     | 10   | 10   | 10   | 6    | 6    | 6    | 4    | 4    | 4    |
| 13   | Cl <sup>-</sup> , mg/l                            | 600  | 600  | 600  | 600  | 600  | 600  | 600  | 600  | 600  |
| 14   | Coliform, MPN/100 ml                              | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 |
| Note | Note:                                             |      |      |      |      |      |      |      |      |      |
|      | Q : water flow, $m^3/s$                           |      |      |      |      |      |      |      |      |      |
|      | F : discharge quantity, m <sup>3</sup> /day (24h) |      |      |      |      |      |      |      |      |      |
| 50 m | $\frac{3}{day} \le F1 < 500 \text{ m}^{3}/day$    |      |      |      |      |      |      |      |      |      |

 $500 \text{ m}^3/\text{day} \le F2 < 5000 \text{ m}^3/\text{day}$ 

 $F3 >= 5000 \text{ m}^3/\text{day}$ 

#### Water Quality: Standards for Industrial Effluents Discharged into Lakes

#### using for Domestic Water Supply TCVN 6981: 2001

#### 1. Application Scope:

This standard stipulates the detail of limitary value on parameters and concentrations of polluted substances in industrial wastewater according to discharge quantity and water flow of intake lakes.

In this standard, industrial wastewater is known that solution of discharge or wastewater caused by manufacturing process, processing, types of industries discharging out. The distance between outlet point and intake sources according to current regulation.

This standard is applied as well as Vietnamese Standards 5945: 1995 and is used for controlling industrial wastewater quality when discharging into lakes (natural lakes or artificial lakes) which has water quality using for domestic water supply.

#### 2. Quotation standards

Vietnamese Standards 5945: 1995 Industrial wastewater – Discharge Standards

#### 3. Limitary value

3.1 Limitary value on parameters and concentrations of polluted substances according to discharge quantity when discharging into lakes which have different water flow, do not exceed correlative parameters in Table 17.1.18

Parameters and concentrations of polluted substances are not mentioned in Table 17.1.18, they are applied as Vietnamese Standards 5945 – 1995.

3.2 Method of taking sample, analyzing, calculating, defining each detailed parameter and concentration is stipulated in correlative Vietnamese Standards or using other methods which jurisdictional office relating to environment assigns.

|                 | Industrial Wastewater when Discharging into Lakes using for Domestic Water Supply                               |                                       |       |       |          |            |                        |       |                                          |       |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|-------|-------|----------|------------|------------------------|-------|------------------------------------------|-------|--|--|
| No.             | Parameter                                                                                                       | $V > 100 \text{ x } 10^6 \text{ m}^3$ |       |       | V = (10) | ) ÷ 100) x | $10^{6} \text{ m}^{3}$ | V <   | $V < 10 \text{ x } 10^{6} \text{ m}^{3}$ |       |  |  |
|                 | Farameter                                                                                                       | F1                                    | F2    | F3    | F1       | F2         | F3                     | F1    | F2                                       | F3    |  |  |
| 1               | Color, Co – Pt<br>pH=7                                                                                          | 20                                    | 20    | 20    | 20       | 20         | 20                     | 20    | 20                                       | 20    |  |  |
| 2               | Smell,                                                                                                          | Smell                                 | Smell | Smell | Smell    | Smell      | Smell                  | Smell | Smell                                    | Smell |  |  |
|                 | sensibility                                                                                                     | less                                  | less  | less  | less     | less       | less                   | less  | less                                     | less  |  |  |
| 3               | BOD <sub>5</sub> (20°C),<br>mg/l                                                                                | 30                                    | 30    | 30    | 20       | 20         | 20                     | 15    | 15                                       | 15    |  |  |
| 4               | COD, mg/l                                                                                                       | 60                                    | 60    | 60    | 40       | 40         | 40                     | 30    | 30                                       | 30    |  |  |
| 5               | Total suspended<br>solid substance,<br>mg/l                                                                     | 50                                    | 50    | 50    | 40       | 40         | 40                     | 30    | 20                                       | 15    |  |  |
| 6               | Arsenic, As,<br>mg/l                                                                                            | 0.05                                  | 0.04  | 0.04  | 0.04     | 0.03       | 0.03                   | 0.03  | 0.02                                     | 0.02  |  |  |
| 7               | Pb, mg/l                                                                                                        | 0.2                                   | 0.2   | 0.2   | 0.1      | 0.1        | 0.1                    | 0.1   | 0.1                                      | 0.1   |  |  |
| 8               | Cr (III), mg/l                                                                                                  | 0.2                                   | 0.2   | 0.2   | 0.15     | 0.15       | 0.15                   | 0.10  | 0.10                                     | 0.10  |  |  |
| 9               | Oil and mineral grease, mg/l                                                                                    | 5                                     | 5     | 5     | 5        | 5          | 5                      | 5     | 5                                        | 5     |  |  |
| 10              | Grease, mg/l                                                                                                    | 20                                    | 20    | 20    | 10       | 10         | 10                     | 5     | 5                                        | 5     |  |  |
| 11              | Cu, mg/l                                                                                                        | 0.4                                   | 0.4   | 0.4   | 0.3      | 0.3        | 0.3                    | 0.2   | 0.2                                      | 0.2   |  |  |
| 12              | Zn, mg/l                                                                                                        | 1                                     | 0.8   | 0.8   | 0.7      | 0.7        | 0.7                    | 0.5   | 0.5                                      | 0.5   |  |  |
| 13              | Total P, mg/l                                                                                                   | 10                                    | 8     | 8     | 8        | 6          | 6                      | 6     | 4                                        | 4     |  |  |
| 14              | Cl <sup>-</sup> , mg/l                                                                                          | 500                                   | 500   | 500   | 500      | 500        | 500                    | 500   | 500                                      | 500   |  |  |
| 15              | Coliform,<br>MPN/100 ml                                                                                         | 3000                                  | 3000  | 3000  | 3000     | 3000       | 3000                   | 3000  | 3000                                     | 3000  |  |  |
| V : w<br>F : di | Note:<br>V : water flow, $m^3/s$<br>F : discharge quantity, $m^3/day$ (24h)<br>50 $m^3/day <= F1 < 500 m^3/day$ |                                       |       |       |          |            |                        |       |                                          |       |  |  |

| Table 17.1.18 | Limitary Value on Parameters and Concentrations of Polluted Substances in |
|---------------|---------------------------------------------------------------------------|
| Industrial    | Wastewater when Discharging into Lakes using for Domestic Water Supply    |

 $500 \text{ m}/\text{day} \le F1 \le 500 \text{ m}/\text{day}$  $500 \text{ m}^3/\text{day} \le F2 < 5000 \text{ m}^3/\text{day}$ 

 $F3 >= 5000 \text{ m}^3/\text{day}$ 

# Water Quality: Standards for industrial effluents discharged into rivers

# using for water sports and recreation TCVN 6982: 2001

#### 1. Application Scope:

This standard stipulates the detail of limitary value on parameters and concentrations of polluted substances in industrial waste water according to discharge quantity and water flow of intake rivers.

In this standard, industrial waste water are known that solution of discharge or waste water caused by manufacturing process, processing, types of industries discharging out. The distance between outlet point and intake sources according to current regulation.

This standard is applied as well as Vietnamese Standards 5945: 1995 and is used for controlling industrial waste water quality when discharging into rivers or springs (hereinafter called "river") which has water quality using for swimming, recreation, games ...under water.

#### 2. Quotation standards

Vietnamese Standards 5945: 1995 Industrial waste water - Discharge Standards

#### 3. Limitary value

3.1 Limitary value on parameters and concentrations of polluted substances according to discharge quantity when discharging into lakes which have different water flow, do not exceed correlative parameters in Table 17.1.19.

Parameters and concentrations of polluted substances are not mentioned in Table 17.1.19, they are applied as

Vietnamese Standards 5945 – 1995.

3.2 Method of taking sample, analyzing, calculating, defining each detailed parameter and concentration is stipulated in correlative Vietnamese Standards or using other methods which jurisdictional office relating to environment assigns.

| No.                                                                                    | Domomotor                                         |                 | $Q > 200 \text{ m}^{3}$ | <sup>3</sup> /s |       | 50 ÷ 200 |       |       | $Q < 50 \text{ m}^3/$ |       |
|----------------------------------------------------------------------------------------|---------------------------------------------------|-----------------|-------------------------|-----------------|-------|----------|-------|-------|-----------------------|-------|
| INO.                                                                                   | Parameter                                         | F1              | F2                      | F3              | F1    | F2       | F3    | F1    | F2                    | F3    |
| 1                                                                                      | Color, Co<br>– Pt pH=7                            | 20              | 20                      | 20              | 20    | 20       | 20    | 20    | 20                    | 20    |
| 2                                                                                      | Smell,                                            | Smell           | Smell                   | Smell           | Smell | Smell    | Smell | Smell | Smell                 | Smell |
| _                                                                                      | sensibility                                       | less            | less                    | less            | less  | less     | less  | less  | less                  | less  |
| 3                                                                                      | BOD <sub>5</sub><br>(20°C),<br>mg/l               | 50              | 40                      | 40              | 40    | 30       | 30    | 30    | 30                    | 30    |
| 4                                                                                      | COD,<br>mg/l                                      | 100             | 80                      | 80              | 80    | 60       | 60    | 60    | 60                    | 60    |
| 5                                                                                      | Total<br>suspended<br>solid<br>substance,<br>mg/l | 100             | 90                      | 90              | 90    | 80       | 80    | 80    | 70                    | 70    |
| 6                                                                                      | As, mg/l                                          | 0.1             | 0.08                    | 0.08            | 0.08  | 0.07     | 0.07  | 0.06  | 0.06                  | 0.06  |
| 7                                                                                      | Pb, mg/l                                          | 0.5             | 0.5                     | 0.5             | 0.5   | 0.5      | 0.4   | 0.4   | 0.4                   | 0.4   |
| 8                                                                                      | Cr (VI),<br>mg/l                                  | 0.1             | 0.08                    | 0.08            | 0.08  | 0.08     | 0.08  | 0.06  | 0.06                  | 0.06  |
| 9                                                                                      | Total P,<br>mg/l                                  | 10              | 8                       | 8               | 8     | 6        | 6     | 6     | 5                     | 5     |
| 10                                                                                     | Cl⁻, mg/l                                         | 600             | 600                     | 600             | 600   | 600      | 600   | 600   | 600                   | 600   |
| 11                                                                                     | Coliform,<br>MPN/100                              | 3000            | 3000                    | 3000            | 3000  | 3000     | 3000  | 3000  | 3000                  | 3000  |
| ml                                                                                     |                                                   |                 |                         |                 |       |          |       |       |                       |       |
|                                                                                        |                                                   | <sup>3</sup> /s |                         |                 |       |          |       |       |                       |       |
| Q : water flow, m <sup>3</sup> /s<br>F : discharge quantity, m <sup>3</sup> /day (24h) |                                                   |                 |                         |                 |       |          |       |       |                       |       |
| $50 \text{ m}^3/\text{day} \ll F1 \ll 500 \text{ m}^3/\text{day}$                      |                                                   |                 |                         |                 |       |          |       |       |                       |       |
| $500 \text{ m}^3/\text{day} \le F2 < 5000 \text{ m}^3/\text{day}$                      |                                                   |                 |                         |                 |       |          |       |       |                       |       |
|                                                                                        | $= 5000 \text{ m}^3/\text{da}$                    |                 | 2                       |                 |       |          |       |       |                       |       |

 
 Table 17.1.19
 Limitary Vvalue on Parameters and Concentrations of Polluted Substances in Industrial Wastewater when Discharging into Rivers using for Water Sports and Recreation.

#### Water Quality: Standards for industrial effluents discharged into lakes

#### using for water sports and recreation TCVN 6983: 2001

#### 1. Application Scope:

This standard stipulates the detail of limitary value on parameters and concentrations of polluted substances in industrial waste water according to discharge quantity and water flow of intake lakes.

In this standard, industrial waste water are known that solution of discharge or waste water caused by manufacturing process, processing, types of industries discharging out. The distance between outlet point and intake sources according to current regulation.

This standard is applied as well as Vietnamese Standards 5945: 1995 and is used for controlling industrial waste water quality when discharging into lakes (natural lakes or artificial lakes) which has water quality using for swimming, recreation, games... under water.

#### 2. Quotation standards

Vietnamese Standards 5945: 1995 Industrial waste water – Discharge Standards

#### 3. Limitary value

3.1 Limitary value on parameters and concentrations of polluted substances according to discharge quantity when discharging into lakes which have different water flow, do not exceed correlative parameters in Table 17.1.20.

Parameters and concentrations of polluted substances are not mentioned in Table 17.1.20, they are applied as Vietnamese Standards 5945 – 1995.

3.2 Method of taking sample, analyzing, calculating, defining each detailed parameter and concentration is stipulated in correlative Vietnamese Standards or using other methods which jurisdictional office relating to environment assigns.

| No.                              | $V > 100 \times 10^6 \text{ m}^3$                                                                                                                                                                                                                                                        |               | V = (1)       | 0 ÷ 100) x    | $10^{6} \text{ m}^{3}$ | V ·           | $< 10 \text{ x } 10^6$ | m <sup>3</sup> |               |               |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|------------------------|---------------|------------------------|----------------|---------------|---------------|
| INO.                             | Parameter                                                                                                                                                                                                                                                                                | F1            | F2            | F3            | F1                     | F2            | F3                     | F1             | F2            | F3            |
| 1                                | Color, Co<br>– Pt pH=7                                                                                                                                                                                                                                                                   | 50            | 50            | 50            | 50                     | 50            | 50                     | 50             | 50            | 50            |
| 2                                | Smell,<br>sensibility                                                                                                                                                                                                                                                                    | Smell<br>less | Smell<br>less | Smell<br>less | Smell<br>less          | Smell<br>less | Smell<br>less          | Smell<br>less  | Smell<br>less | Smell<br>less |
| 3                                | BOD <sub>5</sub><br>(20°C),<br>mg/l                                                                                                                                                                                                                                                      | 50            | 40            | 40            | 30                     | 30            | 30                     | 30             | 20            | 20            |
| 4                                | COD,<br>mg/l                                                                                                                                                                                                                                                                             | 100           | 80            | 80            | 70                     | 60            | 60                     | 60             | 40            | 40            |
| 5                                | Total<br>suspended<br>solid<br>substance,<br>mg/l                                                                                                                                                                                                                                        | 80            | 80            | 80            | 70                     | 70            | 60                     | 60             | 50            | 50            |
| 6                                | As, mg/l                                                                                                                                                                                                                                                                                 | 0.1           | 0.08          | 0.08          | 0.08                   | 0.07          | 0.07                   | 0.06           | 0.06          | 0.06          |
| 7                                | Pb, mg/l                                                                                                                                                                                                                                                                                 | 0.5           | 0.5           | 0.5           | 0.5                    | 0.4           | 0.4                    | 0.4            | 0.4           | 0.1           |
| 8                                | Cr (III),<br>mg/l                                                                                                                                                                                                                                                                        | 0.1           | 0.08          | 0.08          | 0.08                   | 0.08          | 0.08                   | 0.06           | 0.06          | 0.06          |
| 9                                | Total P,<br>mg/l                                                                                                                                                                                                                                                                         | 8             | 6             | 6             | 6                      | 5             | 5                      | 5              | 4             | 4             |
| 10                               | Hg, mg/l                                                                                                                                                                                                                                                                                 | 0.005         | 0.005         | 0.005         | 0.005                  | 0.004         | 0.004                  | 0.004          | 0.004         | 0.004         |
| 11                               | Cl <sup>-</sup> , mg/l                                                                                                                                                                                                                                                                   | 500           | 500           | 500           | 500                    | 500           | 500                    | 500            | 500           | 500           |
| 12                               | Coliform,<br>MPN/100<br>ml                                                                                                                                                                                                                                                               | 3000          | 3000          | 3000          | 3000                   | 3000          | 3000                   | 3000           | 3000          | 3000          |
| V : w<br>F : di<br>50 m<br>500 r | Note:<br>V : water flow, m <sup>3</sup> /s<br>F : discharge quantity, m <sup>3</sup> /day (24h)<br>$50 \text{ m}^3/\text{day} \ll F1 \ll 500 \text{ m}^3/\text{day}$<br>$500 \text{ m}^3/\text{day} \ll F2 \ll 5000 \text{ m}^3/\text{day}$<br>$F2 \approx -5000 \text{ m}^3/\text{day}$ |               |               |               |                        |               |                        |                |               |               |

| Table 17.1.20 | Limitary Value on Parameters and Concentrations of Polluted Substances in   |
|---------------|-----------------------------------------------------------------------------|
| Industrial Wa | stewater when Discharging into Lakes using for Water Sports and Recreation. |

 $F3 >= 5000 \text{ m}^3/\text{day}$ 

#### Water Quality: Standards for Industrial Effluents Discharged into Rivers

#### using for Protection of Aquatic Life. TCVN 6984: 2001

#### **1.** Application Scope:

This standard stipulates the detail of limitary value on parameters and concentrations of polluted substances in industrial wastewater according to discharge quantity and water flow of intake rivers.

In this standard, industrial wastewater is known that solution of discharge or wastewater caused by manufacturing process, processing, types of industries discharging out. The distance between outlet point and intake sources according to current regulation.

This standard is applied as well as Vietnamese Standards 5945: 1995 and is used for controlling industrial wastewater quality when discharging into rivers or springs with detail (hereinafter called "river") that has water

quality is used for protection of aquatic life.

#### 2. Quotation standards

Vietnamese Standards 5945: 1995 Industrial waste water - Discharge Standards

#### 3. Limitary value

3.1 Limitary value on parameters and concentrations of polluted substances in wastewater according to discharge quantity when discharging into rivers which have different water flow, do not exceed correlative parameters in Table 17.1.21.

Parameters and concentrations of polluted substances are not mentioned in Table 17.1.21, they are applied as Vietnamese Standards 5945 – 1995.

3.2 Method of taking sample, analyzing, calculating, defining each detailed parameter and concentration is stipulated in correlative Vietnamese Standards or using different methods which jurisdictional office relating to environment assigns.

| No.  | Doromotor                              | Q     | > 200 m | <sup>3</sup> /s | Q = 1 | $50 \div 200$ | m <sup>3</sup> /s |       | V < 50 m |       |
|------|----------------------------------------|-------|---------|-----------------|-------|---------------|-------------------|-------|----------|-------|
| INO. | Parameter                              | F1    | F2      | F3              | F1    | F2            | F3                | F1    | F2       | F3    |
| 1    | Color, Co – Pt pH=7                    | 50    | 50      | 50              | 50    | 50            | 50                | 50    | 50       | 50    |
| 2    | Smell, sensibility                     | light | light   | light           | light | light         | light             | light | light    | light |
| 3    | Total indecisive solid substance, mg/l | 100   | 100     | 100             | 90    | 80            | 80                | 80    | 80       | 80    |
| 4    | pН                                     | 6-8.5 | 6-8.5   | 6-8.5           | 6-8.5 | 6-8.5         | 6-8.5             | 6-8.5 | 6-8.5    | 6-8.5 |
| 5    | BOD <sub>5</sub> (20°C), mg/l          | 50    | 45      | 40              | 40    | 35            | 30                | 30    | 20       | 20    |
| 6    | COD, mg/l                              | 100   | 90      | 80              | 80    | 70            | 60                | 60    | 50       | 50    |
| 7    | As, mg/l                               | 0.1   | 0.1     | 0.1             | 0.08  | 0.08          | 0.08              | 0.05  | 0.05     | 0.05  |
| 8    | Cd, mg/l                               | 0.02  | 0.02    | 0.02            | 0.01  | 0.01          | 0.01              | 0.01  | 0.01     | 0.01  |
| 9    | Pb, mg/l                               | 0.5   | 0.5     | 0.5             | 0.5   | 0.5           | 0.5               | 0.5   | 0.5      | 0.5   |
| 10   | Fe, mg/l                               | 5     | 5       | 5               | 4     | 4             | 4                 | 3     | 3        | 3     |
| 11   | CN <sup>-</sup> , mg/l                 | 0.1   | 0.1     | 0.1             | 0.05  | 0.05          | 0.05              | 0.05  | 0.05     | 0.05  |
| 12   | Oil and mineral grease                 | 10    | 5       | 5               | 10    | 5             | 5                 | 5     | 5        | 5     |
| 13   | Oil and grease, mg/l                   | 20    | 20      | 20              | 20    | 10            | 10                | 10    | 10       | 10    |
| 14   | P (organic), mg/l                      | 1     | 1       | 0.8             | 0.8   | 0.5           | 0.5               | 0.5   | 0.5      | 0.5   |
| 15   | Total P, mg/l                          | 10    | 8       | 8               | 6     | 6             | 6                 | 5     | 5        | 4     |
| 16   | Cl <sup>-</sup> , mg/l                 | 1000  | 1000    | 1000            | 800   | 800           | 800               | 750   | 750      | 750   |
| 17   | Surface activities agent               | 10    | 10      | 10              | 5     | 5             | 5                 | 5     | 5        | 5     |
| 18   | Coliform, MPN/100<br>ml                | 5000  | 5000    | 5000            | 5000  | 5000          | 5000              | 5000  | 5000     | 5000  |
| 19   | PCB, mg/l                              | 0.02  | 0.02    | 0.02            | 0.01  | 0.01          | 0.01              | 0.01  | 0.01     | 0.01  |

Table 17.1.21Limitary Value on Parameters and Concentrations of Polluted Substances in<br/>Industrial Wastewater when Discharging into Rivers using for Protection of Aquatic Life.

Note:

Q : water flow,  $m^3/s$ 

F: discharge quantity, m<sup>3</sup>/day (24h)

 $50 \text{ m}^3/\text{day} \le F1 < 500 \text{ m}^3/\text{day}$ 

 $500 \text{ m}^3/\text{day} \le \text{F2} < 5000 \text{ m}^3/\text{day}$ 

 $F3 >= 5000 \text{ m}^3/\text{day}$ 

#### Water Quality: Standards for Industrial Effluents Discharged into Lakes

#### using for Protection of Aquatic Life TCVN 6985: 2001

#### 1. Application Scope:

This standard stipulates the detail of limitary value on parameters and concentrations of polluted substances in industrial waste water according to discharge quantity and water quantity of intake lakes.

In this standard, industrial waste water are known that solution of discharge or waste water caused by manufacturing process, processing, types of industries discharging out.

This standard is applied as well as Vietnamese Standards 5945: 1995 and is used for controlling industrial waste water quality when discharging into lakes (natural or artificial) which used for protection of aquatic life.

#### 2. Quotation standards

Vietnamese Standards 5945: 1995 Industrial waste water - Discharge Standards

#### 3. Limitary value

3.1 Limitary value on parameters and concentrations of polluted substances in waste water according to discharge quantity when discharging into lakes do not exceed correlative parameters in Table 17.1.22. Parameters and concentrations of polluted substances are not mentioned in Table 17.1.22, they are applied

as Vietnamese Standards 5945 – 1995.

3.2 Method of taking sample, analyzing, calculating, defining each detailed parameter and concentration is stipulated in correlative Vietnamese Standards or using other methods which jurisdictional office relating to environment assigns.

| No.   | Parameter                              | V >   | 100 x 10 | $0^{6} \text{ m}^{3}$ | V = ( | 10- 100)<br>m3 | x 10 <sup>6</sup> | V <   | $< 10 \text{ x } 10^{6}$ | <sup>5</sup> m <sup>3</sup> |
|-------|----------------------------------------|-------|----------|-----------------------|-------|----------------|-------------------|-------|--------------------------|-----------------------------|
|       |                                        | F1    | F2       | F3                    | F1    | F2             | F3                | F1    | F2                       | F3                          |
| 1     | Color, Co – Pt pH=7                    | 50    | 50       | 50                    | 50    | 50             | 50                | 50    | 50                       | 50                          |
| 2     | Smell, sensibility                     | light | light    | light                 | light | light          | light             | light | light                    | light                       |
| 3     | Total indecisive solid substance, mg/l | 100   | 92       | 90                    | 80    | 70             | 70                | 70    | 70                       | 70                          |
| 4     | рН                                     | 6-8.5 | 6-8.5    | 6-8.5                 | 6-8.5 | 6-8.5          | 6-8.5             | 6-8.5 | 6-8.5                    | 6-8.5                       |
| 5     | BOD <sub>5</sub> (20°C), mg/l          | 50    | 40       | 40                    | 40    | 30             | 30                | 30    | 20                       | 20                          |
| 6     | COD, mg/l                              | 90    | 80       | 80                    | 70    | 60             | 60                | 50    | 50                       | 50                          |
| 7     | Arsenic, As, mg/l                      | 0.1   | 0.07     | 0.07                  | 0.05  | 0.05           | 0.04              | 0.04  | 0.03                     | 0.03                        |
| 8     | Cadmium, Cd, mg/l                      | 0.02  | 0.15     | 0.15                  | 0.01  | 0.01           | 0.01              | 0.05  | 0.01                     | 0.01                        |
| 9     | Pb, mg/l                               | 0.5   | 0.4      | 0.4                   | 0.3   | 0.3            | 0.3               | 0.2   | 0.1                      | 0.1                         |
| 10    | Fe, mg/l                               | 5     | 5        | 5                     | 4     | 4              | 4                 | 3     | 3                        | 3                           |
| 11    | CN <sup>-</sup> , mg/l                 | 0.1   | 0.1      | 0.1                   | 0.05  | 0.05           | 0.05              | 0.05  | 0.05                     | 0.05                        |
| 12    | Oil and mineral grease                 | 10    | 10       | 10                    | 5     | 5              | 5                 | 5     | 5                        | 5                           |
| 13    | Oil and grease, mg/l                   | 10    | 10       | 10                    | 7     | 7              | 7                 | 5     | 5                        | 5                           |
| 14    | P (organic), mg/l                      | 0.5   | 0.5      | 0.5                   | 0.5   | 0.5            | 0.5               | 0.3   | 0.3                      | 0.3                         |
| 15    | Total P, mg/l                          | 6     | 6        | 6                     | 5     | 5              | 5                 | 4     | 4                        | 4                           |
| 16    | Cl <sup>-</sup> , mg/l                 | 750   | 750      | 700                   | 650   | 600            | 600               | 500   | 500                      | 500                         |
| 17    | Free Cl <sup>-</sup> , mg/l            | 1     | 1        | 1                     | 1     | 1              | 1                 | 1     | 1                        | 1                           |
| 18    | Surface activities agent               | 5     | 5        | 5                     | 5     | 5              | 5                 | 5     | 5                        | 5                           |
| 19    | Coliform, MPN/100 ml                   | 5000  | 5000     | 5000                  | 5000  | 5000           | 5000              | 5000  | 5000                     | 5000                        |
| 20    | PCB, mg/l                              | 0.05  | 0.04     | 0.04                  | 0.04  | 0.03           | 0.03              | 0.01  | 0.01                     | 0.01                        |
| Note: |                                        |       |          |                       |       |                |                   |       |                          |                             |

Table 17.1.22Limitary Value on Parameters and Concentrations of Polluted Substances in<br/>Industrial Waste Water when Discharging into Lakes using for Protection of Aquatic Life.

Note:

Q : water flow,  $m^3/s$ 

F : discharge quantity, m<sup>3</sup>/day (24h)

 $50 \text{ m}^3/\text{day} \le F1 < 500 \text{ m}^3/\text{day}$ 

 $500 \text{ m}^3/\text{day} \le F2 < 5000 \text{ m}^3/\text{day}$ 

 $F3 >= 5000 \text{ m}^3/\text{day}$ 

# Water Quality: Standards for Industrial Effluents Discharged into Coastal water

#### using for protection of aquatic life TCVN 6986: 2001

#### 1. Application Scope:

This standard stipulates the detail of limitary value on parameters and concentrations of polluted substances in industrial waste water according to discharge quantity.

In this standard, industrial waste water are known that solution of discharge or waste water caused by manufacturing process, processing, types of industries discharging out. The distance between outlet point and intake sources according to current regulation.

This standard is applied as well as Vietnamese Standards 5945: 1995 and is used for controlling industrial waste water quality when discharging into coastal water which has water quality is used for protection of aquatic life.

#### 2. Quotation standards

Vietnamese Standards 5945: 1995 Industrial wastewater – Discharge Standards

#### 3. Limitary value

- 3.1 Limitary value on parameters and concentrations of polluted substances according to discharge quantity when discharging into coastal water which do not exceed correlative parameters in Table 17.1.23. Parameters and concentrations of polluted substances are not mentioned in Table 17.1.23, they are applied as
- Vietnamese Standards 5945 1995.
  3.2 If coastal water area has coral ecosystem or another ecosystem which it is sensitive about temperature waste water discharging into this area do not make temperature increase in coastal area where receiving waste water is over 3°C, measuring is 100m far from waste water intake place and in spreading area of waste water.
- 3.3 Waste water consists of biphenin polychlorin (PCB), poliacromat hydrocacbon (PAH) discharging into coastal water area only with low level by current analysis. Do not discharge waste water consisting of radioactive substance, inflammable solvent, suspended solid matter's dimension is more than 1 mm into coastal water area
- 3.4 National jurisdiction office or local jurisdiction office has coastal water area, can stipulate the limitation, concentrations and parameters in Table 17.1.23 strictly upon objectives and demands on protection of environmental sea.
- 3.5 Method of taking sample, analyzing, calculating, defining each detailed parameter and concentration is stipulated in correlative Vietnamese Standards or using other methods which jurisdictional office relating to environment assigns.

|      |                              | Life.      |                    |            |
|------|------------------------------|------------|--------------------|------------|
| No.  | Parameter                    |            | Allowed Limitation |            |
| INO. | Parameter                    | F1         | F2                 | F3         |
| 1    | Color- Pt, pH = 7            | 50         | 50                 | 50         |
| 2    | Smell, sensibility           | Smell less | Smell less         | Smell less |
| 3    | Suspended solid substance,   | 100        | 80                 | 50         |
|      | mg/l                         |            |                    |            |
| 4    | pH                           | 5-9        | 5-9                | 5-9        |
| 5    | $BOD_5(20^{0}C), mg/l$       | 50         | 20                 | 10         |
| 6    | COD, mg/l                    | 100        | 80                 | 50         |
| 7    | As, mg/l                     | 1          | 0.5                | 0.1        |
| 8    | Pb, mg/l                     | 1          | 0.5                | 0.5        |
| 9    | Cr (VI), mg/l                | 1          | 0.5                | 0.1        |
| 10   | Cu, mg/l                     | 1          | 0.5                | 0.1        |
| 11   | Zn, mg/l                     | 2          | 1                  | 1          |
| 12   | Mn, mg/l                     | 5          | 5                  | 1          |
| 13   | Hg, mg/l                     | 0.005      | 0.001              | 0.001      |
| 14   | Total Nitrogen (N), mg/l     | 20         | 15                 | 10         |
| 15   | Oil and mineral grease, mg/l | 10         | 5                  | 5          |
| 16   | Grease, mg/l                 | 30         | 20                 | 10         |

#### Table 17.1.23 Limitary Value on Parameters and Concentrations of Polluted Substances in Industrial Wastewater when Discharging into Coastal Water using for Protection of Aquatic Life.

| 17                         | Organic P, mg/l                                                                                                                | 0.5  | 0.2  | 0.2  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------|------|------|------|
| 18                         | Surface activities agent                                                                                                       | 10   | 5    | 5    |
| 19                         | Coliform, MPN/100 ml                                                                                                           | 5000 | 5000 | 5000 |
| Note:                      |                                                                                                                                |      |      |      |
| 50 m <sup>3</sup><br>500 m | scharge quantity, $m^3/day$ (24h)<br>$3^3/day \le F1 \le 500 m^3/day$<br>$n^3/day \le F2 \le 5000 m^3/day$<br>$= 5000 m^3/day$ |      |      |      |

#### Water Quality: Standards for industrial effluents discharged into coastal water using for

#### protection of aquatic life TCVN 6987: 2001

#### 1. Application Scope:

1.1 This standard stipulates the detail of limitary value on parameters and concentrations of polluted substances in industrial waste water according to discharge quantity.

In this standard, industrial waste water are known that solution of discharge or waste water caused by manufacturing process, processing, types of industries discharging out. The distance between outlet point and intake sources according to current regulation.

1.2 This standard applied as well as Vietnamese Standards 5945: 1995 and is used for controlling industrial waste water quality when discharging into coastal water which has water quality is used for swimming, recreation, games... under water.

#### 2. Quotation standards

Vietnamese Standards 5945: 1995 Industrial waste water – Discharge Standards

#### 3. Limitary value

- 3.1 Limitary value on parameters and concentrations of polluted substances according to discharge quantity when discharging into coastal water area which do not exceed parameters in Table 17.1.24. Parameters and concentrations of polluted substances are not mentioned in Table 17.1.24, they are applied as Vietnamese Standards 5945 1995.
- 3.2 Waste water consists of biphenin polychlorin (PCB), poliacromat hydrocacbon (PAH) discharging into coastal water area only with low level by current analysis.

Do not discharge waste water consisting of radioactive substance, inflammable solvent, suspended solid matter's dimension is more than 1 mm into coastal water area.

3.3 Method of taking sample, analyzing, calculating, defining each detailed parameter and concentration is stipulated in correlative Vietnamese Standards or using other methods which jurisdictional office relating to environment assigns.

# Table 17.1.24Limitary Value on Parameters and Concentrations of Polluted Substances in<br/>Industrial Wastewater when Discharging into Coastal Water using for Water Sport and<br/>Recreation

|      |                                 | Recicution         |            |            |  |  |
|------|---------------------------------|--------------------|------------|------------|--|--|
| No.  | Boromotor                       | Allowed Limitation |            |            |  |  |
| INO. | Parameter                       | F1                 | F2         | F3         |  |  |
| 1    | Temperature, °C                 | 50                 | 50         | 50         |  |  |
| 2    | Smell, sensibility              | Smell less         | Smell less | Smell less |  |  |
| 3    | Color, Pt, $pH = 7$             | 30                 | 30         | 30         |  |  |
| 4    | Suspended solid substance, mg/l | 100                | 80         | 60         |  |  |
| 5    | pH                              | 5.5 - 8.5          | 5.5 - 8.5  | 5.5 - 8.5  |  |  |
| 6    | BOD <sub>5</sub> , mg/l         | 50                 | 40         | 30         |  |  |
| 7    | COD, mg/l                       | 100                | 80         | 50         |  |  |
| 8    | As, mg/l                        | 1                  | 0.5        | 0.1        |  |  |
| 9    | Pb, mg/l                        | 0.5                | 0.4        | 0.4        |  |  |
| 10   | Cr (VI), mg/l                   | 1                  | 0.5        | 0.1        |  |  |
| 11   | F <sup>-</sup> , mg/l           | 25                 | 25         | 15         |  |  |

| 12                         | Hg, mg/l                                                                                                                        | 0.005 | 0.004 | 0.004 |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|
| 13                         | S, mg/l                                                                                                                         | 1     | 0.5   | 0.5   |
| 14                         | Total Nitrogen (N), mg/l                                                                                                        | 20    | 15    | 10    |
| 15                         | Total P, mg/l                                                                                                                   | 6     | 5     | 4     |
| 16                         | Oil and mineral grease, mg/l                                                                                                    | 5     | 5     | 5     |
| 17                         | Grease                                                                                                                          | 10    | 10    | 10    |
| 18                         | Surface activities agent                                                                                                        | 10    | 5     | 5     |
| 19                         | Coliform, MPN/100 ml                                                                                                            | 3000  | 3000  | 3000  |
| 50 m <sup>3</sup><br>500 m | scharge quantity, $m^3/day$ (24h)<br>/day <= F1 < 500 m <sup>3</sup> /day<br>$a^3/day <= F2 < 5000 m^3/day$<br>$a^5000 m^3/day$ |       |       |       |

#### Air Quality: Ambient Air Quality Standards TCVN 5937-1995

#### 1. Scope

- 1.1 This standard specifies concentration limits of main constituents in ambient air (carbon monoxide nitrogen dioxide, ozone, sulfur dioxide, Lead particulate, suspended particles).
- 1.2 This standard applied to evaluation of ambient air quality and to monitoring of air pollution status.

#### 2. Limitation Values

The limits of main parameters in ambient air are shown in Table 17.1.25.

|      |                              |                 | ity Standarus  |                 |
|------|------------------------------|-----------------|----------------|-----------------|
| No.  | Parameter                    | 1 hr- Averaging | 8 hr-Averaging | 24 hr-Averaging |
| INO. | Faranieter                   | Time            | Time           | Time            |
| 1    | СО                           | 40              | 10             | 5               |
| 2    | NO <sub>2</sub>              | 0,4             | -              | 0,1             |
| 3    | SO <sub>2</sub>              | 0,5             | -              | 0,3             |
| 4    | Lead (particulate)           | -               | -              | 0,005           |
| 5    | O <sub>3</sub>               | 0,2             | -              | 0,06            |
| 6    | Suspended particulate matter | 0.3             | -              | 0.2             |

#### Table 17.1.25 Ambient Air Quality Standards

Note: Standard methods of analysis of ambient air quality parameters are specified in available current TCVNs.

# Air Quality: maximum Allowable Concentration of Hazards Substances in Ambient Air TCVN 5938-1995

#### 1. Scope

- 1.1 This standard specifies maximum allowable concentration of some organic and inorganic hazardous substances in ambient air.
- 1.2 This standard is applied to evaluation of ambient air quality and to monitoring of ambient air pollution status.
- 1.3 This standard is not applicable to the workplace air quality.

#### 2. Limitation Values

Maximum allowable concentrations of the hazardous substances in ambient air are shown in Table 17.1.26.

| Table 17.1.26 | Maximum Allowable Concentrations of Some Hazardous Substances in |
|---------------|------------------------------------------------------------------|
|               | Ambient Air (mg/m <sup>3</sup> )                                 |

| No. | Substances    | Chemical Formula      | Average<br>over 24hrs | Maximum<br>One Occasion |
|-----|---------------|-----------------------|-----------------------|-------------------------|
| 1   | Acrylonitrile | CH <sub>2</sub> =CHCN | 0,2                   | -                       |
| 2   | Ammonia       | NH <sub>3</sub>       | 0,2                   | 0,2                     |
| 3   | Aniline       | $C_6H_5NH_2$          | 0,03                  | 0,05                    |

| 4     | Anhydrious vanadium                           | $V_2O_5$                                                                                    | 0,002              | 0,05       |
|-------|-----------------------------------------------|---------------------------------------------------------------------------------------------|--------------------|------------|
| 5     | Arsenic (inorganic compound, as As)           | As                                                                                          | 0,003              | -          |
| 6     | Hydrogen arsenic                              | AsH <sub>3</sub>                                                                            | 0,002              | -          |
| 7     | Acetic acid                                   | CH <sub>3</sub> COOH                                                                        | 0,06               | 0,2        |
| 8     | Hydrochloric acid                             | HCl                                                                                         | 0,06               | -          |
| 9     | Nitric acid                                   | HNO <sub>3</sub>                                                                            | 0,15               | 0,4        |
| 10    | Sulfuric acid                                 | $H_2SO_4$                                                                                   | 0,1                | 0,3        |
| 11    | Benzene                                       | C <sub>6</sub> H <sub>6</sub>                                                               | 0,1                | 1,5        |
| 12    | Particles containing SiO <sub>2</sub>         |                                                                                             |                    |            |
|       | - dianas 85-90% SiO <sub>2</sub>              |                                                                                             | 0,05               | 0,15       |
|       | - diatomic brick 50% SiO <sub>2</sub>         |                                                                                             | 0,1                | 0,3        |
|       | - cement 10% SiO <sub>2</sub>                 |                                                                                             | 0,1                | 0,3        |
|       | - dolomite 8% SiO <sub>2</sub>                |                                                                                             | 0,15               | 0,5        |
| 13    | Particles containing asbestos                 |                                                                                             | none               | none       |
| 14    | Cadmium (metal and oxide) as Cd               | Cd                                                                                          | 0,001              | 0,003      |
| 15    | Carbon disulfide                              | $CS_2$                                                                                      | 0,005              | 0,03       |
| 16    | Carbon tetrachloride                          | CCl <sub>4</sub>                                                                            | 2                  | 4          |
| 17    | Chloroform                                    | CHCl <sub>3</sub>                                                                           | 0,02               | -          |
| 18    | Tetraethyl lead                               | $Pb(C_2H_5)_4$                                                                              | none               | 0,005      |
| 19    | Chlorine                                      | Cl <sub>2</sub>                                                                             | 0,03               | 0,1        |
| 20    | Benzidine                                     | NH <sub>2</sub> C <sub>6</sub> H <sub>4</sub> C <sub>6</sub> H <sub>4</sub> NH <sub>2</sub> | none               | none       |
| 21    | Chromium-metal and compound                   | Cr                                                                                          | 0,0015             | 0,0015     |
| 22    | 1,2 -Dichlorethane                            | $C_2H_4Cl_2$                                                                                | 1                  | 3          |
| 23    | DDT                                           | C <sub>8</sub> H <sub>11</sub> Cl <sub>4</sub>                                              | 0,5                | -          |
| 24    | Hydrogen fluoride                             | HF                                                                                          | 0,005              | 0,02       |
| 25    | Formaldehyde                                  | НСНО                                                                                        | 0,012              | 0,012      |
| 26    | Hydrogen sulfide                              | $H_2S$                                                                                      | 0,008              | 0,008      |
| 27    | Hydrogen cyanide                              | HCN                                                                                         | 0,01               | 0,01       |
| 28    | Manganese and compound (as MnO <sub>2</sub> ) | Mn/MnO <sub>2</sub>                                                                         | 0,01               | -          |
| 29    | Nickel (metal and compound)                   | Ni                                                                                          | 0,001              | -          |
| 30    | Naphthalene                                   |                                                                                             | 4                  | -          |
| 31    | Phenol                                        | C <sub>6</sub> H <sub>5</sub> OH                                                            | 0,01               | 0,01       |
| 32    | Styrene                                       | C <sub>6</sub> H <sub>5</sub> CH=CH <sub>2</sub>                                            | 0,003              | 0,003      |
| 33    | Toluene                                       | C <sub>6</sub> H <sub>5</sub> CH <sub>3</sub>                                               | 0,6                | 0,6        |
| 34    | Trichloroethylene                             | CICH=CCl <sub>2</sub>                                                                       | 1                  | 4          |
| 35    | Mercury (metal and compound)                  | Hg                                                                                          | 0,0003             |            |
| 36    | Vinylchloride                                 | CICH=CH <sub>2</sub>                                                                        | -                  | 13         |
| 37    | Gasoline                                      |                                                                                             | 1,5                | 5,0        |
| 38    | Tetrachloroethylene                           | C <sub>2</sub> Cl <sub>4</sub>                                                              | 0,1                | _          |
| Stand | ard analysis methods of concentration of th   |                                                                                             | l in available aur | mant TCUNs |

Note: Standard analysis methods of concentration of the substances are specified in available current TCVNs.

# <u>Air Quality: Industrial Emission Standards Inorganic Substances and Matters</u> <u>TCVN 5939-1995</u>

#### 1. Scope

- 1.1 This standard specifies the maximum allowable concentration (in mg/m3 of emission gas) of inorganic substances and dusts in industrial emission gases emitted into the ambient air. In this standard, **Industrial emission gas** means: smoke, gas, dust, or gases or smokes containing dusts, particulate or inorganic substances produced by sources of any industrial process, or by sources of any servicing and trading activity, or by other activities.
- 1.2 This standard is applied to control of concentrations of industrial emission gases before being emitted into atmosphere.

#### 2. Limitation Values

2.1 Maximum concentration of the inorganic substances and dusts in industrial emission gases emitted by any source into atmosphere should be compliant with the values shown in Table 17.1.27.

- 2.2 The limit values of concentrations of inorganic substances, particulate and dusts specified in the **column A** are applied to the emission gases of existing sources, in **column B** are applied to all sources imposed from the date which stated by environmental authority.
- 2.3 The limit values of concentrations of substances and dusts in emission gases or smokes created by particular sources (e.g. cement production, oil refinery, vehicle exhaust, etc.) are specified in separate standards.

| Na  | Denometer                 | MAC   | $(mg/m^3)$ |
|-----|---------------------------|-------|------------|
| No. | Parameter                 | А     | В          |
| 1   | Particulate in smoke of:  |       |            |
|     | - heating of metals       | 400   | 200        |
|     | - asphalt concrete plant  | 500   | 200        |
|     | - cement plant            | 400   | 100        |
|     | - other sources           | 600   | 400        |
| 2   | Dust                      |       |            |
|     | - containing silica       | 100   | 50         |
|     | - containing asbestos     | none  | none       |
| 3   | Antimony                  | 40    | 25         |
| 4   | Arsenic                   | 30    | 10         |
| 5   | Cadmium                   | 20    | 1          |
| 6   | Lead                      | 30    | 10         |
| 7   | Copper                    | 150   | 20         |
| 8   | Zinc                      | 150   | 30         |
| 9   | Chloride                  | 250   | 20         |
| 10  | HCl                       | 500   | 200        |
| 11  | Fluoride, HF (any source) | 100   | 10         |
| 12  | H <sub>2</sub> S          | 6     | 2          |
| 13  | СО                        | 1,500 | 500        |
| 14  | SO <sub>2</sub>           | 1,500 | 500        |
| 15  | NOx (any source)          | 2,500 | 1,000      |
| 16  | NOx (acid manufacturing)  | 4,000 | 1,000      |
| 17  | $H_2SO_4$ (any source)    | 300   | 35         |
| 18  | HNO <sub>3</sub>          | 2,000 | 70         |
| 19  | Ammonia                   | 300   | 100        |

# Table 17.1.27 Maximum Allowable Concentration (MAC) of Smokes, Dusts and Inorganic Substances in the Industrial Emission Gases

Note: Standard analysis methods of concentrations of the parameters in the industrial emission gases are specified in current TCVNs.

# Air Quality: Industrial Emission Standards Organic Substances

# <u>TCVN 5940-1995</u>

#### 1. Scope

1.1 This standard specifies the maximum concentrations of organic substances in industrial emission gases (in mg/m<sup>3</sup> of emission gas) emitted into ambient air.
 In this standard, **Industrial emission gas** means: smoke, gas of organic substances or smokes, gases

containing organic substances produced by sources of any industrial process, or by sources of any servicing or trading activity, or by other activities.

1.2 This standard is applied to control of concentration of organic substances in the industrial emission gases before being discharged into atmosphere.

#### 2. Limitation Values

- 2.1 Chemical nomenclature and formula of organic substances in industrial emission gases and maximum allowable concentrations of those emitted into the atmosphere are specified in Table 17.1.28.
- 2.2 The limit values of the concentration of industrial emission gases produced by particular sources (e.g. oil refinery, etc.) are specified in separate standards. Note: Standard analysis method of concentrations of the parameters in the industrial emission gases are specified in current TCVNs.

# Table 17.1.28 Maximum Allowable Concentration (MAC) of the Organic Substances Emitted into Atmosphere

| No. | 3) Nomenclature            | Chemical Formula                                                                | MAC   |
|-----|----------------------------|---------------------------------------------------------------------------------|-------|
| 1   | Acetone                    | CH <sub>3</sub> COCH <sub>3</sub>                                               | 2,400 |
| 2   | Acetylene tetrabromide     | CHBr <sub>2</sub> CHBr <sub>2</sub>                                             | 14    |
| 3   | Acetaldehyde               | CH <sub>3</sub> CHO                                                             | 270   |
| 4   | Acrolein                   | CH <sub>2</sub> =CHCHO                                                          | 1,2   |
| 5   | Amyl acetate               | CH <sub>3</sub> COOOC <sub>5</sub> H <sub>11</sub>                              | 525   |
| 6   | Aniline                    | $C_6H_5NH_2$                                                                    | 19    |
| 7   | Acetic anhydride           | $(CH_3CO)_2O$                                                                   | 360   |
| 8   | Benzidine                  | $NH_2C_6H_4C_6H_4NH_2$                                                          | None  |
| 9   | Benzene                    | $C_6H_6$                                                                        | 80    |
| 10  | Chlorobenzyl               | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> Cl                                | 5     |
| 11  | Butadiene                  | $C_4H_6$                                                                        | 2,200 |
| 12  | Butane                     | $C_4H_{10}$                                                                     | 2,350 |
| 13  | Butylaxetate               | CH <sub>3</sub> COOC <sub>4</sub> H <sub>9</sub>                                | 950   |
| 14  | n-Butanol                  | C <sub>4</sub> H <sub>9</sub> OH                                                | 300   |
| 15  | Butylamine                 | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> | 15    |
| 16  | Cresol (o-, m-, p-)        | CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> OH                                | 22    |
| 17  | Chlorobenzene              | C <sub>6</sub> H <sub>5</sub> Cl                                                | 350   |
| 18  | Chloroform                 | CHCl <sub>3</sub>                                                               | 240   |
| 19  | β-Chloroprene              | CH <sub>2</sub> =CClCH=CH <sub>2</sub>                                          | 90    |
| 20  | Chloropicrin               | CCl <sub>3</sub> NO <sub>2</sub>                                                | 0.7   |
| 21  | Cyclohexane                | C <sub>6</sub> H <sub>12</sub>                                                  | 1,300 |
| 22  | Cyclohexanole              | C <sub>6</sub> H <sub>11</sub> OH                                               | 410   |
| 23  | Cyclohexanone              | $C_6H_{10}O$                                                                    | 400   |
| 24  | Cyclohexene                | $C_{6}H_{10}$                                                                   | 1,350 |
| 25  | Diethylamine               | $(C_2H_5)_2NH$                                                                  | 75    |
| 26  | Difluorodibromomethane     | $CF_2Br_2$                                                                      | 860   |
| 27  | o-Dichlorobenzene          | $C_6H_4Cl_2$                                                                    | 300   |
| 28  | 1,1-Dichloroethane         | CHCl <sub>2</sub> CH <sub>3</sub>                                               | 400   |
| 29  | 1,2-Dichloroethylene       | CICH=CHC1                                                                       | 790   |
| 30  | 1,2-Dichlorodifluromethane | CCl <sub>2</sub> F <sub>2</sub>                                                 | 4,950 |
| 31  | Dioxane                    | $C_4H_8O_2$                                                                     | 360   |
| 32  | Dimethylaniline            | $C_6H_5N(CH_3)_2$                                                               | 25    |
| 33  | Dichloroethyl ether        | (ClCH <sub>2</sub> CH <sub>2</sub> ) <sub>2</sub> O                             | 90    |

| 34 | Dimethylformamide            | (CH <sub>3</sub> ) <sub>2</sub> NOCH                                                     | 60    |
|----|------------------------------|------------------------------------------------------------------------------------------|-------|
| 35 | Dimethyl sulfate             | (CH <sub>3</sub> ) <sub>2</sub> NO CH<br>(CH <sub>3</sub> ) <sub>2</sub> SO <sub>4</sub> | 0.5   |
| 36 | Dimethylhydrazine            | (NH <sub>3</sub> ) <sub>2</sub> NNH <sub>2</sub>                                         | 1     |
| 37 | Dinitrobenzene (o-, m-, p- ) | $C_6H_4(NO_2)_2$                                                                         | 1     |
| 38 | Ethyl acetate                | CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub>                                         | 1,400 |
| 39 | Ethyl amine                  | CH <sub>3</sub> CH <sub>2</sub> NH <sub>2</sub>                                          | 45    |
| 40 | Ethyl benzene                | CH <sub>3</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                            | 870   |
| 41 | Ethyl bromide                | C <sub>2</sub> H <sub>5</sub> Br                                                         | 890   |
| 42 | Ethylene diamine             | NH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub>                          | 30    |
| 43 | Ethylene dibromide           | CHBr=CHBr                                                                                | 190   |
| 44 | Ethanol                      | C <sub>2</sub> H <sub>5</sub> OH                                                         | 1,900 |
| 45 | Ethyl acrylate               | CH <sub>2</sub> =CHCOOC <sub>2</sub> H <sub>5</sub>                                      | 100   |
| 46 | Ethylene chlorohydrin        | CH <sub>2</sub> ClCH <sub>2</sub> OH                                                     | 16    |
| 47 | Ethylene oxide               | CH <sub>2</sub> OCH <sub>2</sub>                                                         | 20    |
| 48 | Ethyl ether                  | C <sub>2</sub> H <sub>5</sub> OC <sub>2</sub> H <sub>5</sub>                             | 1,200 |
| 49 | Ethyl chloride               | CH <sub>3</sub> CH <sub>2</sub> Cl                                                       | 2,600 |
| 50 | Ethyl silicate               | $(C_2H_5)_4SiO_4$                                                                        | 850   |
| 51 | Ethanol amine                | NH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH                                       | 45    |
| 52 | Furfural                     | C <sub>4</sub> H <sub>3</sub> OCHO                                                       | 20    |
| 53 | Formaldehyde                 | НСНО                                                                                     | 6     |
| 54 | Furfuryl                     | C <sub>4</sub> H <sub>3</sub> OCH <sub>2</sub> OH                                        | 120   |
| 55 | Fluorotrichloromethane       | CCl <sub>3</sub> F                                                                       | 5,600 |
| 56 | n-Heptane                    | C <sub>7</sub> H <sub>16</sub>                                                           | 2,000 |
| 57 | n-Hexane                     | C <sub>6</sub> H <sub>14</sub>                                                           | 450   |
| 58 | Isopropylamine               | (CH <sub>3</sub> ) <sub>2</sub> CHNH <sub>2</sub>                                        | 12    |
| 59 | Isobutanol                   | (CH <sub>3</sub> ) <sub>2</sub> CHCH <sub>2</sub> OH                                     | 360   |
| 60 | Methyl acetate               | CH <sub>3</sub> COOCH <sub>3</sub>                                                       | 610   |
| 61 | Methyl acrylate              | CH <sub>2</sub> =CHCOOCH <sub>3</sub>                                                    | 35    |
| 62 | Methanol                     | CH <sub>3</sub> OH                                                                       | 260   |
| 63 | Methyl acetylene             | CH <sub>3</sub> C=CH                                                                     | 1,650 |
| 64 | Methyl bromide               | CH <sub>3</sub> Br                                                                       | 80    |
| 65 | Methyl cychlohexane          | CH <sub>3</sub> C <sub>6</sub> H <sub>11</sub>                                           | 2,000 |
| 66 | Methyl cychlohexanol         | CH <sub>3</sub> C <sub>6</sub> H <sub>10</sub> OH                                        | 470   |
| 67 | Methyl cychlohexanone        | CH <sub>3</sub> C <sub>6</sub> H <sub>9</sub> O                                          | 460   |
| 68 | Methyl chloride              | CH <sub>3</sub> Cl                                                                       | 210   |
| 69 | Methylene chloride           | CH <sub>2</sub> Cl <sub>2</sub>                                                          | 1,750 |
| 70 | Methyl chloroform            | CH <sub>3</sub> CCl <sub>3</sub>                                                         | 2,700 |
| 71 | Monomethylaniline            | C <sub>6</sub> H <sub>5</sub> NHCH <sub>3</sub>                                          | 9     |
| 72 | Methanol amine               | HOCH <sub>2</sub> NH <sub>2</sub>                                                        | 31    |
| 73 | Naphthalene                  | C <sub>10</sub> H <sub>8</sub>                                                           | 150   |
| 74 | Nitrobenzene                 | C <sub>6</sub> H <sub>5</sub> NO <sub>2</sub>                                            | 5     |
| 75 | Nitroethane                  | CH <sub>3</sub> CH <sub>2</sub> NO <sub>2</sub>                                          | 310   |
| 76 | Nitroglycerin                | $C_3H_5(NO_2)_3$                                                                         | 5     |
| 77 | Nitromethane                 | CH <sub>3</sub> NO <sub>2</sub>                                                          | 250   |
| 78 | 2-Nitropropane               | CH <sub>3</sub> CH(NO <sub>2</sub> )CH <sub>3</sub>                                      | 1,800 |
| 79 | Nitrotoluene                 | NO <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CH <sub>3</sub>                            | 30    |
| 80 | Octane                       | C <sub>8</sub> H <sub>18</sub>                                                           | 2,850 |
| 81 | Pentane                      | C <sub>5</sub> H <sub>12</sub>                                                           | 2,950 |
| 82 | Pentanone                    | CH <sub>3</sub> CO(CH <sub>2</sub> ) <sub>2</sub> CH <sub>3</sub>                        | 700   |
| 83 | Phenol                       | C <sub>6</sub> H <sub>5</sub> OH                                                         | 19    |
| 84 | Phenyl hydrazine             | C <sub>6</sub> H <sub>5</sub> NHNH <sub>2</sub>                                          | 22    |
| 85 | Tetrachloroethylene          | CCl <sub>2</sub> =CCl <sub>2</sub>                                                       | 670   |
| 86 | Propanol                     | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH                                       | 980   |
| 87 | Propyl acetate               | CH <sub>3</sub> -COO-C <sub>3</sub> H <sub>7</sub>                                       | 840   |
| 88 | Propylene dichloride         | CH <sub>3</sub> -CHCl-CH <sub>2</sub> Cl                                                 | 350   |

| 89  | Propylene oxide           | C <sub>3</sub> H <sub>6</sub> O                                  | 240   |
|-----|---------------------------|------------------------------------------------------------------|-------|
| 90  | Propylene ether           | C <sub>3</sub> H <sub>5</sub> OC <sub>3</sub> H <sub>5</sub>     | 2,100 |
| 91  | Pyrindine                 | C <sub>5</sub> H <sub>5</sub> N                                  | 30    |
| 92  | Pyrene                    | $C_{16}H_{10}$                                                   | 15    |
| 93  | Quinone                   | $C_6H_4O_2$                                                      | 0.4   |
| 94  | Styrene                   | C <sub>6</sub> H <sub>5</sub> CH=CH <sub>2</sub>                 | 420   |
| 95  | Tetrahydrofural           | $C_4H_8O$                                                        | 590   |
| 96  | 1,1,2,2-Tetrachloroethane | Cl <sub>2</sub> HCCHCl <sub>2</sub>                              | 35    |
| 97  | Tetrachloromethane        | $CCl_4$                                                          | 65    |
| 98  | Toluene                   | $C_6H_5CH_3$                                                     | 750   |
| 99  | Tetranitromethane         | $C(NO_2)_4$                                                      | 8     |
| 100 | Toluidine                 | $CH_3C_6H_4NH_2$                                                 | 22    |
| 101 | Toluene-2,4-diisocyanate  | $CH_3C_6H_3(NCO)_2$                                              | 0.7   |
| 102 | Triethylamine             | $(C_2H_5)_3N$                                                    | 100   |
| 103 | 1,1,2-Trichloroethane     | CHCl <sub>2</sub> CH <sub>2</sub> Cl                             | 1080  |
| 104 | Trichloroethylene         | ClCH=CCl <sub>2</sub>                                            | 110   |
| 105 | Trifluorobromethane       | CBrF <sub>3</sub>                                                | 6,100 |
| 106 | Xylene (o-,m-,p-)         | $C_{6}H_{4}(CH_{3})_{2}$                                         | 870   |
| 107 | Xylidine                  | $(CH_3)_2C_6H_3NH_2$                                             | 50    |
| 108 | Vinyl chloride            | CH <sub>2</sub> =CHCl                                            | 150   |
| 109 | Vinyltoluene              | CH <sub>2</sub> =CHC <sub>6</sub> H <sub>4</sub> CH <sub>3</sub> | 480   |

Table 17.1.29Noise in Public and Residential Areas Maximum Permitted Noise Level (TCVN<br/>5949-1995)(1 Init: dB)

|      |                                    |                             |                                        | (Unit: dB)                                |
|------|------------------------------------|-----------------------------|----------------------------------------|-------------------------------------------|
| No.  | Area                               | Period of Time              |                                        |                                           |
| INO. | Alea                               | From $6^{h}$ AM to $18^{h}$ | From 18 <sup>h</sup> to22 <sup>h</sup> | From 22 <sup>h</sup> to 6 <sup>h</sup> AM |
|      | Quiet areas:                       |                             |                                        |                                           |
|      | Hospitals                          |                             |                                        |                                           |
| 1    | Libraries                          | 50                          | 45                                     | 40                                        |
|      | Sanatoria                          |                             |                                        |                                           |
|      | Kindergartens, schools             |                             |                                        |                                           |
|      | Residential area:                  |                             |                                        |                                           |
|      | • Hotels, administration           |                             |                                        |                                           |
| 2    | offices                            | 60                          | 55                                     | 45                                        |
|      | • Houses, apartment                |                             |                                        |                                           |
|      | houses, etc.                       |                             |                                        |                                           |
| 3    | Commercial and service areas       | 70                          | 70                                     | 50                                        |
| 5    | and mix                            | 70                          | 70                                     | 50                                        |
| 4    | Small industrial factories         | 75                          | 70                                     | 50                                        |
| +    | intermingling in residential areas | 15                          | 10                                     | 50                                        |

| Table 17.1.30 | Road Motor Vehicle Noise Maximum Permitted Noise Level ( | TCVN 5948-1995) |
|---------------|----------------------------------------------------------|-----------------|
|               |                                                          |                 |

| No. | Category of Vehicles                                                                 | Maximum Noise<br>Level Permitted (dBA) |
|-----|--------------------------------------------------------------------------------------|----------------------------------------|
| 1   | Motorcycles, cylinder capacity (CC) of the engine does not exceed $125 \text{ cm}^3$ | 80                                     |
| 2   | Motorcycles, CC of the engine exceeds 125 cm <sup>3</sup>                            | 85                                     |
| 3   | Motorized tricycles                                                                  | 85                                     |
| 4   | Cars, taxi, passenger vehicle for the carriage of not more than 12 passengers        | 80                                     |
| 5   | Passenger vehicle constructed for the carriage of more than 12 passengers            | 85                                     |
| 6   | Truck, permitted maximum weight does not exceed 3,5                                  | 85                                     |

|   | tones                                                   |    |
|---|---------------------------------------------------------|----|
| 7 | Truck, permitted maximum weight exceed 3,5 tones        | 87 |
| 8 | Truck, engine is more than 150 kW                       | 88 |
| 9 | Tractor, or any other truck not elsewhere classified or | 90 |
|   | described in this column of the table                   | 90 |

# Air Quality: Maximum Allowable Limits of Pesticide Residues in the Soil TCVN 5941-1995

#### 1. Scope

- 1.1 This standard specifies maximum allowable concentrations of pesticides in soil. In this standard, **Pesticide** means: herbicide, fungicide, insecticide as specified by Ministry of the Agriculture and Foods industry in List of pesticides permitted to use in Vietnam.
- 1.2 This standard is applied to control and to evaluation of pesticide contaminant level in soil.

#### 2. Limitation Values

Names and maximum allowable concentrations of pesticides in soil are shown in Table 17.1.31.

| No. | Common and Trade Names    | Chemical Formula                                             | Use         | MAC (mg/kg) |
|-----|---------------------------|--------------------------------------------------------------|-------------|-------------|
| 1   | Atrazine                  | C <sub>8</sub> H <sub>14</sub> ClN <sub>5</sub>              | Herbicide   | 0.2         |
| 2   | 2,4 - D                   | C <sub>8</sub> H <sub>6</sub> Cl <sub>2</sub> O <sub>3</sub> | Herbicide   | 0.2         |
| 3   | Dalapon                   | $C_3H_4Cl_2O_2$                                              | Herbicide   | 0.2         |
| 4   | MPCA                      | C <sub>9</sub> H <sub>9</sub> ClO <sub>3</sub>               | Herbicide   | 0.2         |
| 5   | Sofit                     | $C_{17}H_{26}CINO_2$                                         | Herbicide   | 0.5         |
| 6   | Fenoxaprop-ethyl (Whip S) | $C_{16}H_{12}CINO_5$                                         | Herbicide   | 0.5         |
| 7   | Simazine                  | $C_7H_{12}CIN_5$                                             | Herbicide   | 0.2         |
| 8   | Cypermethrin              | $C_{22}H_{19}Cl_2NO_3$                                       | Herbicide   | 0.5         |
| 9   | Saturn (Benthiocarb)      | C <sub>12</sub> H <sub>16</sub> CINOS                        | Herbicide   | 0.5         |
| 10  | Dual (Metolachlor)        | $C_{15}H_{22}CINO_2$                                         | Herbicide   | 0.5         |
| 11  | Fuji - One                | $C_{12}H_{18}O_4S_2$                                         | Fungicide   | 0.1         |
| 12  | Fenvalerate               | $C_{25}H_{22}CINO_3$                                         | Insecticide | 0.1         |
| 13  | Lindane                   | $C_6H_6Cl_6$                                                 | Insecticide | 0.1         |
| 14  | Monitor (Methamidophos)   | $C_2H_8NO_2PS$                                               | Insecticide | 0.1         |
| 15  | Monocrotophos             | $C_7H_{14}NO_5P$                                             | Insecticide | 0.1         |
| 16  | Dimethoate                | $C_5H_{12}NO_3PS_2$                                          | Insecticide | 0.1         |
| 17  | Methyl Parathion          | C <sub>8</sub> H <sub>10</sub> NO <sub>5</sub> PS            | Insecticide | 0.1         |
| 18  | Triclofon (Clorophos)     | $C_4H_8Cl_3O_4P$                                             | Insecticide | 0.1         |
| 19  | Padan                     | $C_7H_{16}N_3O_2S_2$                                         | Insecticide | 0.1         |
| 20  | Diazinone                 | $C_{12}H_{21}N_2O_3PS$                                       | Insecticide | 0.1         |
| 21  | Fenobucarb (Bassa)        | $C_{12}H_{17}NO_2$                                           | Insecticide | 0.1         |
| 22  | DDT                       |                                                              | Insecticide | 0.1         |

 Table 17.1.31
 Pesticide Residue in Soil: Maximum Allowable Concentrations (MAC)

Note: Sampling of arable soil for determination of pesticide contaminant level should be taken just after the harvest.

#### 17.2 Initial Environmental Examination

#### (1) Objective of the Initial Environmental Examination Study

The purpose of the Initial Environmental Examination (IEE) is to ensure that development options under consideration are environmentally and socially sound and sustainable and that the environmental consequences of the project are recognized early and taken into account in the project design. The procedure should follow the Vietnamese legal frameworks, and JICA's Guidelines for Environmental and Social Considerations are also taken into account.

The major objective of IEE is to establish present environmental and social conditions of the project

area through available data/information to predict the impacts on relevant environmental and social attributes due to the construction and operation of the proposed water supply system, to suggest appropriate and adequate mitigation measures to minimise/reduce adverse impacts.

Considering the nature and social conditions of this Project, the strategic environmental assessment (SEA) and the environmental impact assessment (EIA) for selected water supply projects of the Feasibility Study are not required for the following reasons. However, Environmental Protection Commitment (EPC) is required for implementation of these projects instead of SEA and EIA.

| water Supply Project                                                                                                          |                                                                     |  |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| Prescribed Project with Requirement                                                                                           | Outline of Selected Water Supply                                    |  |
| of Environmental Considerations                                                                                               | Projects for the Feasibility Study                                  |  |
| < Condition of SEA requirement >                                                                                              | The study areas are located in 15                                   |  |
| National socio-economic development strategies and plans;                                                                     | candidate communes of four (4)                                      |  |
| • Strategies, planning and plans for development of branches or                                                               | provinces. These projects are rural                                 |  |
| domains on a national scale;                                                                                                  | water supply and these project areas                                |  |
| • Socio-economic development strategies, planning and plans of                                                                | are not planned across the provincial                               |  |
| provinces, centrally run cities or regions;                                                                                   | area.                                                               |  |
| • Planning for land use, forest protection and development;                                                                   |                                                                     |  |
| exploitation and utilization of other natural resources in                                                                    | Therefore, SEA is not required.                                     |  |
| inter-provincial or inter-regional areas;                                                                                     |                                                                     |  |
| Planning for development of key economic regions;                                                                             |                                                                     |  |
| General planning of inter-provincial river watersheds.                                                                        |                                                                     |  |
|                                                                                                                               |                                                                     |  |
| < Condition of EIA requirement >                                                                                              | These project areas do not include                                  |  |
| Projects of national importance;                                                                                              | natural preserve and historical                                     |  |
| • Projects planned to use part of land of or exerting adverse                                                                 | /cultural areas, and the environment                                |  |
| impacts on, the natural sanctuaries, national parks, historical and                                                           | impacts are minor due to small size                                 |  |
| cultural relic sites, natural heritages or beautiful landscapes;                                                              | facility of rural water supply.                                     |  |
| • Projects to potentially exert adverse impacts on the river                                                                  | Water source of four (4) water supply                               |  |
| watershed, coastal areas or areas of protected ecosystems;                                                                    | projects among nine (9) systems is                                  |  |
| • Projects to construct new urban centers or concentrated                                                                     | groundwater. The planned                                            |  |
| residential areas;                                                                                                            | groundwater exploitation (daily                                     |  |
|                                                                                                                               |                                                                     |  |
| • Projects to exploit and use groundwater or natural resources on a                                                           | average) ranges from 485 $m^3$ /day to                              |  |
| large scale;                                                                                                                  | average) ranges from 485 $m^3/day$ to 998 $m^3/day$ in 2020.        |  |
|                                                                                                                               | 998 m <sup>3</sup> /day in 2020.                                    |  |
| <ul> <li>large scale;</li> <li>Projects to exploit groundwater with a capacity of 10,000m<sup>3</sup>/day or more.</li> </ul> | 998 m <sup>3</sup> /day in 2020.<br>Therefore, EIA is not required. |  |
| <ul> <li>large scale;</li> <li>Projects to exploit groundwater with a capacity of 10,000m<sup>3</sup>/day</li> </ul>          | 998 m <sup>3</sup> /day in 2020.                                    |  |

 
 Table 17.2.1 Requirement of Environmental and Social Considerations in Vietnam for the Water Supply Project

The IEE in this study was carried out for selected water supply projects under Feasibility Study (nine (9) systems out of 13 systems of M/P). Four systems of M/P were not selected for the F/S due to the following problems.

- Between water intake point and water service area of such commune, there are other communes that have no water supply system.
- The commune adjoins the service area of other urban water supply.
- Since the distance to water intake point is long, economical efficiency is low.

For these reasons, it is judged that the examination of the alternatives which covers the Study area including other communes is required again. Consequently, IEE was undertaken only for selected

projects for the Feasibility Study.

#### (2) Overall Impact Identification

Based on field survey and data collection, adverse impacts by implementation of projects and degree of impact were considered. The overall Impact Identification is presented in Table 17.2.2.

| Tuble 17.2.2 Scope Huttix for Project Components |                                                    |    |                                    |    |                                      |    |                          |    |                           |    |                      |    |
|--------------------------------------------------|----------------------------------------------------|----|------------------------------------|----|--------------------------------------|----|--------------------------|----|---------------------------|----|----------------------|----|
| No.                                              | Environmental Items                                |    | Intake facilities<br>(Groundwater) |    | Intake facilities<br>(Surface water) |    | Water Treatment<br>Plant |    | Distribution<br>Reservoir |    | Distribution<br>Main |    |
|                                                  |                                                    | CS | OS                                 | CS | OS                                   | CS | OS                       | CS | OS                        | CS | OS                   | OS |
| 1                                                | Involuntary resettlement                           | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 2                                                | Local economy                                      | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | С  |
| 3                                                | Land use and utilization of local resources        | В  | -                                  | В  | -                                    | В  | -                        | В  | -                         | -  | -                    | -  |
| 4                                                | Social institutions                                | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 5                                                | Existing social infrastructures and services       | С  | -                                  | С  | -                                    | С  | -                        | С  | -                         | С  | -                    | -  |
| 6                                                | Split of communities                               |    | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 7                                                | Misdistribution of benefit and damage              |    | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 8                                                | Cultural heritage                                  |    | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 9                                                | Local conflict of interests                        | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 10                                               | Water usage or water rights and rights of common   | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 11                                               | Public health condition                            | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 12                                               | Hazards (risk) infection diseases such as HIV/AIDS | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 13                                               | Topography and geographical features               | -  | В                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 14                                               | Soil erosion                                       | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 15                                               | Groundwater                                        | -  | В                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 16                                               | Hydrological situation                             | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 17                                               | Coastal zone                                       | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 18                                               | Flora, fauna and biodiversity                      | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 19                                               | Meteorology                                        | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 20                                               | Landscape                                          | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 21                                               | Global warming                                     | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 22                                               | Air pollution                                      | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 23                                               | Water pollution                                    | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 24                                               | Soil contamination                                 | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 25                                               | Waste                                              | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 26                                               | Noise and vibration                                | С  | -                                  | С  | -                                    | С  | -                        | С  | -                         | С  | -                    | -  |
| 27                                               | Land subsidence                                    | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 28                                               | Offensive odor                                     | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 29                                               | Bottom sediment                                    | -  | -                                  | -  | -                                    | -  | -                        | -  | -                         | -  | -                    | -  |
| 30                                               | Accidents                                          | С  | -                                  | С  | -                                    | С  | -                        | С  | -                         | С  | -                    | С  |
| Nata                                             |                                                    |    |                                    |    |                                      |    |                          |    |                           |    |                      |    |

 Table 17.2.2
 Scope Matrix for Project Components

Note:

cs: Indicates construction stage. os: Indicates operation stage.

A: Indicates that the development scheme is foreseen to have strong impact on the environmental element.

B: Indicates that the development scheme is foreseen to have some impact on the environmental element.

C: Indicates that the development scheme is foreseen to have minor impact on the environmental element.

- : No impact

### (3) Impact Identification and Mitigation Measures

In this section, background, adverse impacts, and mitigation or reduction countermeasures for the environmental and social items mentioned above are described.

# 1) Involuntary Resettlement

In water supply projects, land acquisition for water supply facilities is necessary, and these water supply facilities are well, water intake, water treatment plant, distribution reservoir and pump station. The location of the water supply facilities was decided based on the water supply plan. The required land area for water supply facilities ranges from 50 m<sup>2</sup> to 2,025 m<sup>2</sup>, and 80% of all sites are 225 m<sup>2</sup> (15m x15m) or smaller in size. As a policy of site selection, it is selected in order of the land use situation of site as listed below, and land with building is excluded from the list of candidate for selection.

- Public land
- Private use land (vacant land /fallow land)
- Private use land (agricultural land (such as pasture, upland field))
- Private use land (agricultural land (such as paddy field))

From results of the site selection, the proposed project sites are located in public or private use land without buildings. (refer to Table 17.2.3) Therefore, no resettlement is expected by land acquisition.

| System No. | Commune | Commune        | Facility                 | Facility Land Required area(m2) |       | Land use    | Existence           | Category of farm | Crop         |             |
|------------|---------|----------------|--------------------------|---------------------------------|-------|-------------|---------------------|------------------|--------------|-------------|
| System NO. | Code    |                | Pacinty                  | owner                           | Requi |             | conditions          | of buildings     | land         | Стор        |
| FPS-2      | P-2     | An Dinh        | Intake (pipe)            | Public                          | 100   | (10m x 10m) | inside of reservoir | No               |              |             |
|            |         |                | Water treatment plant    | Public                          | 1,000 | (25m x 40m) | no use              | No               |              |             |
|            |         |                | Distribution reservoir   | Private                         | 225   | (15m x 15m) | agriculture         | No               | upland field | cassava     |
| FPS-3      | P-4     | An My          | Intake (JICA Well)       | Private                         | 25    | (5m x 5m)   | no use              | No               |              |             |
|            |         |                | Distribution reservoir   | Private                         | 225   | (15m x 15m) | no use              | No               |              |             |
| FPG-4      | P-5     | Son Phuoc      | Intake                   | Public                          | 200   | (20m x 10m) | no use              | No               |              |             |
|            | P-6     | Ea Cha Rang    | Water treatment plant    | Private                         | 1,650 | (30m x 55m) | no use              | No               |              |             |
|            | P-7     | Suoi Bac       | Distribution reservoir   | Private                         | 100   | (10m x 10m) | no use              | No               |              |             |
| FPS-5      | P-8     | Son Thanh Dong | Intake (JICA Well)       | Private                         | 25    | (5m x 5m)   | agriculture         | No               | upland field | cassava     |
|            |         |                | Distribution reservoir   | Public                          | 225   | (15m x 15m) | open area of CPC    | No               |              |             |
|            | K-1     | Cam An Bac     | Intake (JICA Well)       | Private                         | 25    | (5m x 5m)   | no use              | No               |              |             |
| FKS-6      |         |                | Water treatment plant    | Private                         | 1,125 | (45m x 25m) | no use              | No               |              |             |
|            |         |                | Distribution Reservoir   | Private                         | 100   | (10m x 10m) | no use              | No               |              |             |
| FKS-8      | K-3     | Cam Hai Tay    | Intake (Reservoir)       | Public                          | 100   | (10m x 10m) | no use              | No               |              |             |
|            |         |                | Intake (Well field)      | Private                         | 25    | (5m x 5m)   | no use              | No               |              |             |
|            |         |                | Water treatment plant    | Private                         | 800   | (40m x 20m) | agriculture         | No               | upland field | cassava     |
|            |         |                | Distribution reservoir   | Private                         | 100   | (10m x 10m) | agriculture         | No               | upland field | cassava     |
| FNG-10     | N-5     | Phuoc Hai      | Intake (River)           | Public                          | 200   | (20m x 10m) | no use              | No               |              |             |
|            | N-6     | Phuoc Dinh     | Water treatment plant    | Private                         | 4,225 | (65m x 65m) | agriculture         | No               | upland field | sugarcane   |
|            |         |                | Distribution reservoir   | Private                         | 400   | (20m x 20m) | no use              | No               |              |             |
| FBS-11     | B-1     | Muong Man      | Intake (Reservoir)       | Private                         | 150   | (10m x 15m) | no use              | No               |              |             |
|            |         |                | Water treatment plant    | Private                         | 1,500 | (30m x 50m) | no use              | No               |              |             |
| FBG-13     | B-3     | Nghi Duc       | Intake (River)           | Public                          | 200   | (10m x 20m) | no use              | No               |              |             |
|            | B-5     | Me Pu          | Water treatment plant    | Private                         | 6,750 | (90m x 75m) | agriculture         | No               | paddy field  | paddy field |
|            | B-6     | Sung Nhon      | Distribution reservoir 1 | Private                         | 400   | (20m x 20m) | no use              | No               |              |             |
|            | B-7     | Da Kai         | Distribution reservoir 2 | Public                          | 150   | (10m x 15m) | no use              | No               |              |             |
|            |         |                | Pump Station             | Private                         | 25    | (5m x 5m)   | no use              | No               |              |             |

# Table 17.2.3 Project Site of Water Supply Facilities

# 2) Local Economy

By implementation of water supply projects, residents can get safe water easily also in the dry season. However, the adverse impact on commercial activities of water vender may be expected by construction of water supply system.

Considering this issue, the situation of water venders in the target commune for F/S was investigated through interviews of the commune leaders, and the results of survey are presented in Table 17.2.4.

|               | System<br>Code | Commune<br>Code | Num   | Commercial |            |            |  |  |  |
|---------------|----------------|-----------------|-------|------------|------------|------------|--|--|--|
| Province      |                |                 | Total | Permanent  | Additional | Period     |  |  |  |
|               |                |                 |       | work       | work       | Period     |  |  |  |
|               | FPS-2          | P-2             | 0     | 0          | 0          |            |  |  |  |
|               | FPS-3          | P-4             | 0     | 0          | 0          |            |  |  |  |
| Phu Yen       | FPG-4          | P-5             | 2-3   | 0          | 2-3        | Dry season |  |  |  |
| Phu Yen       |                | P-6             | 0     | 0          | 0          |            |  |  |  |
|               |                | P-7             | 5-6   | 0          | 5-6        | Dry season |  |  |  |
|               | FPS-5          | P-8             | 0     | 0          | 0          |            |  |  |  |
| Khanh         | FKS-6          | K-1             | 2-3   | 0          | 2-3        | Dry season |  |  |  |
| Ноа           | FKS-8          | K-3             | 15    | 0          | 15         | Dry season |  |  |  |
| Ninh          | FNG-10         | N-5             | 0     | 0          | 0          |            |  |  |  |
| Thuan         |                | N-6             | 0     | 0          | 0          |            |  |  |  |
|               | FBS-11         | B-1             | 0     | 0          | 0          |            |  |  |  |
| Dinh          | FBG-13         | B-3             | 0     | 0          | 0          |            |  |  |  |
| Binh<br>Thuan |                | B-5             | 0     | 0          | 0          |            |  |  |  |
| rnuan         |                | B-6             | 0     | 0          | 0          |            |  |  |  |
|               |                | B-7             | 2-3   | 0          | 2-3        | Dry season |  |  |  |

 Table 17.2.4
 Situation of Water Vender in the Target Commune for F/S

From results of the investigation, the salient features of the water venders in the target communes are listed below.

- The activity of water vender exists in five communes.
- Water vending are the side job of the farmer in the target communes.
- Activity of the water vending is only practiced during the dry season.
- Number of the water venders in the target communes is less than five or six, except K-1 commune, which has 15 water venders. All of the water venders are residents in the target communes.
- The cow carriages and vehicles, which are mainly used for agricultural works on a daily basis, are applied for water conveyance.
- Large investment has not been made for water venders' activity.

From the existing situation of water venders, it can be said that adverse impacts on commercial activities of water vender is expected by implementation of water supply projects.

Therefore, in consideration of the water vender in the target communes, proposed countermeasures for mitigation or reduction of adverse impacts are described below.

#### i) Promotion of employment

Promotion of employment of water venders by the public corporation for O/M of water supply system

is recommended. However, since their main job is farming, their employment status should be seasonal or part-time.

### ii) Promotion of agricultural activity

It is also recommended that water venders return back to their original practices of farming.

In recent years, the farmers in this area have increased their income by retail sales of agricultural products. Considering this point, instruction of agricultural technology for cash crops is recommended. Since fundamental conditions of retail sales system have been already founded, an increase in farmer's income can be expected and it shall contribute to regional economic development.

### 3) Land use and utilization of local resources

As already described in the section of "a) Involuntary Resettlement", the proposed project sites are located in public or privately owned land, and land use of private lands are basically vacant land or agricultural. (refer to Table 17.2.3) From this Table, the land use situations of the proposed project sites are listed below.

- Total number of project sites is 27.
- Of these 27 sites, eight (8) sites are located in public land.
- 19 remaining sites include private land where Land Use Right is approved.
- Among 19 private lands, six sites are located in agricultural land.
- Among six sites of agricultural land, five sites are upland field for cassava and sugarcane, and one site includes paddy field.

In site selection, care was taken to avoid those sites that include agricultural land and prefer other alternatives. However, it was not possible to exclude sites including five agricultural lands (upland field) for cassavas or sugarcane and one paddy field as described above. This is water supply project and therefore has numerous beneficial effects in terms of providing safe and sufficient potable water and will have positive impact on health and living conditions of people. However, expropriation of agricultural land is needed as a part of the project site.

In Vietnam, compensation of land expropriation in public project such as water supply project is clearly prescribed by the Law on Land (No.13/2003/QH11) and Decree N0. 197/2004/ND-CP.

The most relevant article related to the compensation of project site is Article 6 "Compensation principles" of Decree N0. 197/2004/ND-CP and is described below.

### Article 6 Compensation principles

- Persons whose land is acquired shall be compensated with new land that could be used for same purposes.
- If there is no such land available for compensation, they shall receive compensation equal to the land use right value at the time of issuance of the acquisition decisions
- In case of compensation with new land or houses, if there is any difference in value, such difference shall be paid in cash.

In water supply projects, it is expected that proper and sufficient compensation including the grant of an alternative agricultural land is carried out based on the Vietnamese Law and Regulation, and it can be judged that an adverse impact on the land users shall be mitigated or eliminated.

### Preliminary Cost Estimation of Compensation for Private-use Land

In this section, a rough estimation of compensation cost for private land is made based on the collected information and assumptions.

As mentioned above, total number of proposed project sites are 27, and of these 27 project sites, 19 sites include private land. Basically, the compensation expense of land is required for recovery of private land. However, according to the land law and regulations in Vietnam, persons whose land is recovered shall be compensated with new land that could be used for same purposes. If such land is not available for compensation, they shall receive compensation equal to the land use right value at the time of issuance of the land acquisition decisions. In this section, compensation expense is calculated considering the assumption that compensation shall be made in terms of money.

The conditions used for this calculation are listed below.

- The compensation cost for land is calculated considering land compensation unit price and land area.
- In principle, the land compensation unit price was obtained through interview with commune leaders. This investigation was conducted in June 2008.
- Compensation for cultivated plants has also been considered. However, annual agricultural product that would be cultivated after land expropriation is not included in compensation expense.
- The estimated compensation costs are considered as the present price in 2008.

Estimation result of compensation for the private land is presented in Table 17.2.5.

| )))         |                                                             | The Study on Groundwater                                                                                                      |  |
|-------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| )<br>)<br>) |                                                             | evelopment in the Rural F                                                                                                     |  |
|             | Final Report - Supporting - C                               | Provinces of the Southern Coastal .                                                                                           |  |
| )))<br>))   | Report - Supporting - Chapter17 Environmental Consideration | The Study on Groundwater Development in the Rural Provinces of the Southern Coastal Zone in the Socialist Republic of Vietnam |  |

| Compensation cost |                 |                |                          |               | cost              |                                          |                                              |                                                    |                                               |                      |
|-------------------|-----------------|----------------|--------------------------|---------------|-------------------|------------------------------------------|----------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------|
| System No.        | Commune<br>Code | Commune        | Facility                 | Land<br>owner | Required area(m2) | Unit land price<br>(VND/m <sup>2</sup> ) | Compensation cost<br>for land<br>(x1000 VND) | Unit price<br>for Trees *<br>(VND/m <sup>2</sup> ) | Compensation cost<br>for trees<br>(x1000 VND) | Total<br>(x1000 VND) |
|                   | P-2             | An Dinh        | Intake (pipe)            | Public        | 100               | )                                        |                                              |                                                    |                                               |                      |
| FPS-2             |                 |                | Water treatment plant    | Public        | 1,000             | )                                        |                                              |                                                    |                                               |                      |
|                   |                 |                | Distribution reservoir   | Private       | 225               | 14,000                                   | 3,150                                        |                                                    |                                               | 3,150                |
| FPS-3             | P-4             | An My          | Intake (JICA Well)       | Private       | 25                | 30,000                                   | 750                                          |                                                    |                                               | 750                  |
| 115-5             |                 |                | Distribution reservoir   | Private       | 225               | 14,000                                   | 3,150                                        |                                                    |                                               | 3,150                |
|                   | P-5             | Son Phuoc      | Intake                   | Public        | 200               | )                                        |                                              |                                                    |                                               |                      |
| FPG-4             | P-6             | Ea Cha Rang    | Water treatment plant    | Private       | 1,650             | 14,000                                   | 23,100                                       | 2,600                                              | 4,290                                         | 27,390               |
|                   | P-7             | Suoi Bac       | Distribution reservoir   | Private       | 100               | 14,000                                   | 1,400                                        |                                                    |                                               | 1,400                |
| FPS-5             | P-8             | Son Thanh Dong | Intake (JICA Well)       | Private       | 25                | 14,000                                   | 350                                          |                                                    |                                               | 350                  |
| 115-5             |                 |                | Distribution reservoir   | Public        | 225               |                                          |                                              |                                                    |                                               |                      |
|                   | K-1             | Cam An Bac     | Intake (JICA Well)       | Private       | 25                | 8,000                                    | 200                                          |                                                    |                                               | 200                  |
| FKS-6             |                 |                | Water treatment plant    | Private       | 1,125             | 8,000                                    | 9,000                                        |                                                    |                                               | 9,000                |
|                   |                 |                | Distribution Reservoir   | Private       | 100               | 8,000                                    | 800                                          |                                                    |                                               | 800                  |
|                   | K-3             | Cam Hai Tay    | Intake (Reservoir)       | Public        | 100               | )                                        |                                              |                                                    |                                               |                      |
| FKS-8             |                 |                | Intake (Well field)      | Private       | 25                | 9,000                                    | 225                                          |                                                    |                                               | 225                  |
| 1163-0            |                 |                | Water treatment plant    | Private       | 800               | 9,000                                    | 7,200                                        |                                                    |                                               | 7,200                |
|                   |                 |                | Distribution reservoir   | Private       | 100               | 9,000                                    | 900                                          |                                                    |                                               | 900                  |
|                   | N-5             | Phuoc Hai      | Intake (River)           | Public        | 200               | )                                        |                                              |                                                    |                                               |                      |
| FNG-10            | N-6             | Phuoc Dinh     | Water treatment plant    | Private       | 4,225             | 18,000                                   |                                              |                                                    |                                               | 76,050               |
|                   |                 |                | Distribution reservoir   | Private       | 400               | 18,000                                   | 7,200                                        |                                                    |                                               | 7,200                |
| FBS-11            | B-1             | Muong Man      | Intake (Reservoir)       | Private       | 150               | 15,000                                   | 2,250                                        |                                                    |                                               | 2,250                |
| 105-11            |                 |                | Water treatment plant    | Private       | 1,500             | 15,000                                   | 22,500                                       |                                                    |                                               | 22,500               |
|                   | B-3             | Nghi Duc       | Intake (River)           | Public        | 200               |                                          |                                              |                                                    |                                               |                      |
|                   | B-5             | Me Pu          | Water treatment plant    | Private       | 6,750             | 12,000                                   | 81,000                                       |                                                    |                                               | 81,000               |
| FBG-13            | B-6             | Sung Nhon      | Distribution reservoir 1 | Private       | 400               | 12,000                                   | 4,800                                        |                                                    |                                               | 4,800                |
|                   | B-7             | Da Kai         | Distribution reservoir 2 | Public        | 150               |                                          |                                              |                                                    |                                               |                      |
|                   |                 |                | Pump Station             | Private       | 25                | 15,000                                   | 375                                          |                                                    |                                               | 375                  |
|                   |                 | Total          |                          | -             | 20,050            | -                                        | 244,400                                      | -                                                  |                                               | 248,690              |

 Table 17.2.5
 Preliminary Cost Estimation of Compensation for Private-use Land

17-49

## 4) Existing social infrastructures and services (such as traffic / public facilities)

Disruptions of vehicular and pedestrian traffic might occur during the construction stage of water supply system. In particular, conveyance and main distribution lines are laid along road or road maintenance area, and disruptions of traffic will be expected. Two items of traffic situations, which should be given due care, are described below.

- Since most of the conveyance and distribution lines shall be aligned along community roads, not much passing of vehicles is expected. However, even on community roads the traffic of motorbikes is concentrated during peak hours mainly in morning and evening. Therefore, occupancy of roads by distribution line construction activities shall affect normal traffic situation. The occurrence of traffic accident is also expected during peak traffic hours particularly in morning and evening.
- In the target commune of Cam Hai Tay (K-3), the national road divides the water service area proposed in this project, and a distribution line crosses the national road. Traffic congestion might occur on the national roads in the stage of distribution pipe lying.

These impacts could be mitigated or minimized by the following countermeasures:

- The announcement and public notification concerning the construction of facilities and its schedule ahead of the start of construction.
- During the construction period, watchman or traffic control staffs will be deployed at the site to control the traffic.
- With careful attention to the fluctuation in traffic load, if necessary, increase of traffic control staff and arrangement of the staff should be considered.
- Temporary fences with appropriate warning signs should be used to isolate the construction site. Especially, construction sites in the vicinity of schools, and locations of public concentration should be strictly fenced.
- If blockages to roads and other services are unavoidable, such blockage areas should be identified well in advance and circulation should be distributed to public with appropriate details on maps.
- At present, a bridge construction work is undergoing on a national road in the study area. This construction is implemented applying single-sided lane regulation and one-way traffic regulation for large cars. As mitigation measures, the same method (performed by the bridge construction) is suitable for construction of the distribution line in the vicinity of national road of Cam Hai Tay (K-3).

During the construction stage, the project owner or building constructor should arrange an information desk and a person responsible at the construction site office.

## 5) Water usage or water rights and rights of common

Nine water supply systems are selected for the feasibility study, of which six systems utilize surface water as their raw water sources. (refer to **Table 5.6**) Especially, three systems receive surface water from irrigation reservoir.

In consideration of this situation, utilization of the surface water in six water supply systems was deliberated by DARD and DONRE which are agricultural water and river administrator.

From deliberation results, it is judged that water supply projects can obtain the raw water from rivers and reservoirs in dry season, and in addition, the existing water rights are not affected.

### 6) Groundwater

The influence on groundwater was considered in the Master Plan. The communes for which groundwater quality was observed to be not suitable as drinking water or in cases when volume of groundwater was not enough were excluded from the group of target communes for the feasibility study. From the results of the test borehole drilling survey, P-4, P-8 and K-1 communes were selected as the target systems in the feasibility study in consideration of groundwater quality and productivity of groundwater.

The characteristics of target aquifer of the boreholes in the water supply systems are quite different from the dug wells which most of villagers are using as source of water in present situation. Therefore, adverse impacts such as drawdown, seawater intrusion and so on seem to be negligible.

However, from a viewpoint of groundwater preservation, monitoring of groundwater quality and groundwater level is recommended. (See Table 17.2.9)

## 7) Flora, fauna and biodiversity

There are 19 nature conservation areas including six main conservation areas in four provinces of the Study area. Eight water supply system areas, except P-6 commune (system code: FPG-4), are at far distance from existing 19 nature conservation areas. Ea Cha Rang commune (P-6), as target commune for F/S, is located adjoining the nature conservation area (Krong Trai Special-use Forest). (refer to Table 17.2.6 and Table 17.2.7)

|     | Tuble 177210 Six Multi Conservation Theas in the Study fired |           |            |               |  |  |  |  |  |  |
|-----|--------------------------------------------------------------|-----------|------------|---------------|--|--|--|--|--|--|
| No. | Nature Conservation Area                                     | Area (ha) | Province   | District      |  |  |  |  |  |  |
| 1   | Krong Trai Special-use Forest                                | 13,392    | Phe Yen    | Son Hoa       |  |  |  |  |  |  |
| 2   | Deo Ca-Hon Nua Restricted Forest                             | 5,768     | Phu Yen    | Tuy Hoa       |  |  |  |  |  |  |
| 3   | Phuoc Binh National Park                                     | 19,814    | Ninh Thuan | Bac Ai        |  |  |  |  |  |  |
| 4   | Nui Chua National Park                                       | 22,513    | Ninh Thuan | Ninh Hai      |  |  |  |  |  |  |
| 5   | Ta Kou Special-use Forest                                    | 17,823    | Binh Thuan | Ham Thuan Nam |  |  |  |  |  |  |
| 6   | Nui Ong Special-use Forest                                   | 25,468    | Binh Thuan | Thanh Linh    |  |  |  |  |  |  |

Table 17.2.6Six Main Conservation Areas in the Study Area

| No. | Nature Conservation Area | Area (ha) | Province  | Categories       |
|-----|--------------------------|-----------|-----------|------------------|
| 7   | Cu Mong lagoon           | 3,000     | Phu Yen   | Category – A & B |
| 8   | Song Hinh lake           | 4,100     | Phu Yen   | Category – A     |
| 9   | Ba River estuary         | 1,000     | Phe Yen   | Category – A     |
| 10  | O Loan wetland           | 1,570     | Phu Yen   | Category – A & B |
| 11  | Ro lagoon                | -         | Phu Yen   | Category – A     |
| 12  | Trao lagoon              | 5,000     | Phu Yen   | Category – A     |
| 13  | Nha Phu – Hon Heo        | -         | Khanh Hoa | Category – B     |

| 14 | Hon Mun          | -     | Khanh Hoa  | Category – B     |
|----|------------------|-------|------------|------------------|
| 15 | Thuy Trieu       | -     | Khanh Hoa  | Category – B     |
| 16 | Nai wetland      | 700   | Ninh Thuan | Category – A & B |
| 17 | Ho Bien Lac      | 2,000 | Binh Thuan | Category – A     |
| 18 | Hon Cau-Vinh Hao | -     | Binh Thuan | Category – B     |
| 19 | Kalon Song Mao   | -     | Binh Thuan | -                |

Category-A: The important wetlands (MOSTE/NEA, 2000)

Category-B: This category is proposed marine protected areas by ADB (1999)

The water supply system (FPG-4) consists of three communes including Son Phuoc (P-5), Ea Cha Rang commune (P-6) and Suoi Bac (P-7). This planning area is located near the Krong Trai Special-use Forest, but, the Special-use Forest is not including the planning area. Furthermore, it was admitted by DARD and DONR in Phu Yen province that the water supply project does not influence Krong Trai Special-use Forest.

Therefore, it is expected that there is no adverse impacts on nature preserve area (Krong Trai Special-use Forest) by the water supply project. However, since Krong Trai Special-use Forest includes the partial administrative area of P-6 Ea Cha Rang commune, the outline of flora, fauna and biodiversity of Krong Trai Special-use Forest has been described below.

#### i) Topography and hydrology of the Krong Trai Special-use Forest

Krong Trai Nature Reserve is situated in the transition zone between the Central Highlands and the coastal zone of south-central Vietnam. The topography of the nature reserve consists of two types. The east and northeast of the nature reserve is characterized by low hills, including Ca Te (560 m), Hon Dat (590 m), Hon O (574 m) and others. The other area of the nature reserve is characterized by flat areas with some scattered low hills about 150 m in elevation.

Streams in the eastern part of the nature reserve feed the Cha Rang River. Streams in the western part feed the Lam and Ba rivers. Most streams within the nature reserve are dry during the dry season, except in a small swampy area in the southwest of the nature reserve.

#### ii) Flora, Fauna and Biodiversity of the Krong Trai Special-use Forest

Krong Trai Nature Reserve supports three main forest types: evergreen forest (1,003 ha), semi-deciduous forest (7,111 ha) and deciduous forest (7,891 ha). Other habitats present include grassland, scrub and swamp.

A field survey in 1990 recorded 236 vascular plant species. The families with the greatest number of species are the Euphorbiaceae, Caesalpiniaceae, Poaceae, Fabaceae and Moraceae. The nature reserve supports at least nine plant species listed in the Red Data Book of Vietnam, including Aquilaria crassna, Dalbergia bariensis, D. cochinchinensis, and D. annamensis; and a number of species with high economic value, such as rattan, palms and medicinal plants.

A total of 262 vertebrate species have been recorded at the nature reserve, comprising 50 mammal, 182 bird, 22 reptile and eight amphibian species. Species of particular conservation importance that have been recorded at Krong Trai include Banteng Bos javanicus, Gaur Bos gaurus, Green Peafowl

Pavo muticus and Crested Argus Rheinardia ocellata.

However, the current status of these species is unclear; Duckworth and Hedges (1998) reviewed the evidence of the continued occurrence of Gaur and Banteng at Krong Trai and concluded that it was 'provisional'. In the past, Krong Trai was renowned as a site for Siamese Crocodile Crocodylus siamensis (Vu Van Dung pers. comm.) but there is no evidence of the continued occurrence of this species at the site. (Source: Sourcebook of Existing and Proposed Protected Areas in Vietnam, 2001)

#### 8) Water pollution

By the implementation of water supply project, residents can receive sufficient water supply services in the dry season, and as a result it is expected that the volume of generated domestic wastewater in the dry season shall increase. If generated wastewater is discharged untreated into existing public water bodies, it may pollute these water bodies during dry season. Possibility of Water pollution in public water bodies of the target commune for F/S is discussed below.

For the items described below, the information is collected from the commune leader and through field survey of the central area of commune carried out in dry season. (It is assumed that the rainy season does not generate water pollution due to the dilution effect of rainwater compared to the dry season. Therefore, the survey is undertaken in the dry season when water quality tends to deteriorate by reduction of river flow.)

- (A) Situation of domestic wastewater disposal at household
- (B) Situation of drainage canal /ditch in dry season
- (C) Situation of water pollution in public water bodies

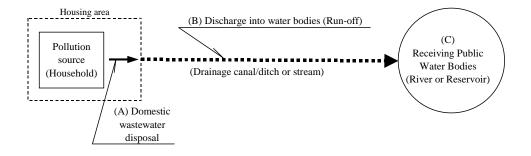



Figure 17.2.1 Water Pollution Mechanisms by Domestic Wastewater

Based on the results of the above survey, the salient features of wastewater disposal in the target communes have been identified. The features are listed below.

- Usually, villagers use water in the open air and wastewater is sprinkled over the yard.
- The entire study area has a soil characteristic with high permeability, and wastewater infiltrates easily into the ground.
- Rainwater drainage canals /ditches in the dry season are dried, and wastewater is not seen in most of the drainage canals. (No wastewater is discharged into public water bodies)

- There are no polluted water bodies by the domestic wastewater in the target communes throughout a year.

According to the water supply plan, unit water consumption in existing (2007) and future (2020) condition is same that is 60 lcd. Therefore, the amount of increase in domestic wastewater shall correspond to the increase in population. Growth rate of population served is shown in Table 17.2.8.

Considering that the water pollution of public water bodies is proportional to the amount of wastewater, it will be presumed that the water quality parameter values in 2020 increases about 1.5 times in N-6 commune, and 23% on average, if no wastewater treatment measures are adopted.

| Province     | System<br>Code | Commune<br>Code | Population ser<br>(a)<br>2006 | (b)<br>(b)<br>2020 | b/a  |
|--------------|----------------|-----------------|-------------------------------|--------------------|------|
|              | FPS-2          | P-2             | 5,964                         | 6,856              | 115% |
|              | FPS-3          | P-4             | 11,427                        | 13,256             | 116% |
| Phu Yen      |                | P-5             | 2,484                         | 3,101              | 125% |
| Phu Ten      | FPG-4          | P-6             | 2,206                         | 2,624              | 119% |
|              |                | P-7             | 5,626                         | 6,411              | 114% |
|              | FPS-5          | P-8             | 8,240                         | 9,292              | 113% |
| Khanh Hoa    | FKS-6          | K-1             | 5,011                         | 6,462              | 129% |
| Kilalili Hoa | FKS-8          | K-3             | 10,620                        | 12,840             | 121% |
| Ninh Thuan   | FNG-10         | N-5             | 12,881                        | 16,804             | 130% |
| Inini Inuan  |                | N-6             | 8,549                         | 12,911             | 151% |
|              | FBS-11         | B-1             | 5,977                         | 7,378              | 123% |
|              |                | B-3             | 10,192                        | 11,869             | 116% |
| Binh Thuan   | FBS-13         | B-5             | 13,250                        | 16,315             | 123% |
|              | 1.02-12        | B-6             | 8,175                         | 9,794              | 120% |
|              |                | B-7             | 11,436                        | 14,263             | 125% |
| Total        |                |                 | 122,038                       | 150,176            | 123% |

 Table 17.2.8
 Growth Rate of Population Served

From the existing disposal condition of domestic wastewater, additional impact caused by this project is negligible. Similarly, although the increase in the amount of domestic wastewater by increase in population can be considered, it is estimated that serious water pollution shall not be caused. However, installation of the simple treatment facilities (such as leaching pit) of domestic wastewater is recommended also from viewpoint of improvement of living environment in the future.

### i) Noise and vibration

During construction works in the project, some noise and vibration will be generated by heavy equipments for construction. At present, there is no hospital, school, and private house in around the proposed construction sites. Therefore, the influence of noise and vibration during construction work of the water supply facilities is minor or negligible.

If necessary, the following mitigation or reduction measures against the noise and vibration by the construction works can be proposed.

- Equipment maintenance should be strengthened to keep the noise level low.
- Construction activities should be strictly prohibited at night such as between 8:00pm to 06:00am in the residential areas. (Actual time should be determined by the result of the stakeholder meeting or based on instruction from CPC.)
- Polite operation and speed control are effective in reduction of the adverse impacts.
- If necessary, a sound isolation wall will be installed.

## 9) Land subsidence

The impact of groundwater withdrawal on land subsidence was checked in the Master Plan. Appropriate withdrawal volume is designed for the water supply facility based on the pumping test results in the test boreholes drilling survey, and the target aquifer is fissure or weathered basement rocks. Therefore, there is no possibility of land subsidence.

## 10) Accidents

During construction and operation stage of the water supply project, some accidents are expected.

## i) Construction stage (war residual substances)

War residual substances (dud bomb, mine, etc.) need to be eliminated before construction starts. The clearance of war residual substances should be carried out immediately after land acquisition in this project.

## ii) O/M stage (water pollution and contamination by accident)

For cases in which river water source is proposed to be utilized, neither serious water contamination nor water quality accident is reported at water intake points which are proposed in this project. However, raw surface water source of water supply may experience contamination by accident. For example, abandonment of the cyanide in illegal golden mining has been reported.

Especially, the contamination by substance which has influence on water use and human health should be considered. If such a situation occurs, measures have to be taken such that raw water bypass and operation stop immediately.

These impacts can be mitigated by adopting the following countermeasures:

- Implementation of regular water quality monitoring
- Installation of the monitoring instrument (aquarium) using a living nature such as fish is also effective.
- Establishment of urgent communication network with the river administrator and related organization. (If possible, the fishermen and farmer who work near the river will be included.)
- Preparation of the operations manual for emergency situation
- Training to the operation staff for the emergency situation and disaster management

The Preliminary monitoring programmes for regular water quality monitoring are summarized in Table 17.2.9. The sampling and water quality analysis of raw water and distributed water will be carried out to check the performance of treatment plant and safety of water supply services.

| Obje                                                     | ct                                         | Monitoring Point           | Parameters                                                                                                                                   | Frequency                                                      |
|----------------------------------------------------------|--------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Water Supply<br>System<br>(Water source:                 | Water quality<br>(Raw water)               | Water treatment plant      | Basic parameters (1):<br>Appearance, pH, EC, Turbidity                                                                                       | Daily for basic<br>parameters (1)                              |
| groundwater and<br>surface water)                        | Water quality<br>(Distributed<br>water)    | Water treatment plant      | Basic parameters (2):<br>Appearance, pH, EC, Turbidity,<br>Taste, Residual Chlorine                                                          | - Daily for basic parameters (2)                               |
|                                                          |                                            |                            | Basic parameters (3):<br>Escherichia Coli (E. Coli), Fe,<br>Mn, Hardness, etc.                                                               | - Three or four<br>times a year for<br>basic<br>parameters (3) |
|                                                          |                                            |                            | Hazardous substances and<br>Others:<br>The parameters and frequency<br>should be determined upon<br>consultation with Ministry of<br>Health. | - Once in a year<br>for hazardous<br>substance                 |
|                                                          | Water quality<br>and others<br>(Tap water) | Selected house connections | Water pressure, pH, Turbidity,<br>E. Coli, Residual Chlorine, etc.                                                                           | - Optional                                                     |
| Water Supply<br>System<br>(Water source:<br>groundwater) | Groundwater<br>level                       | Monitoring well            | Groundwater level                                                                                                                            | Daily                                                          |

 Table 17.2.9
 Preliminary Monitoring Programme

The result of IEE including adverse impacts and its mitigation or reduction measures for the environmental and social items is summarized in Table 17.2.10.

| No. | Environmental<br>Items                            | Duration           | Affected object          | Potential Adverse Impact                                                                                                                                                                                                                          | Policy of Mitigation or Reduction Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|---------------------------------------------------|--------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Involuntary<br>resettlement                       | _                  | -                        | No Adverse Impact<br>The location of the water supply facilities was decided<br>based on the water supply plan. The proposed project<br>sites are located in public or private land without<br>buildings.                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2   | Local economy                                     | Operation<br>stage | Water<br>venders         | Considering the existing activities of water venders,<br>adverse impacts to commercial activities of water<br>vender are expected by implementation of water supply<br>projects, and the business of water vender will be<br>affected negatively. | To minimize adverse impact of project implementation<br>on water venders in the target communes, proposed<br>countermeasures are described below.<br>1) Promotion of employment<br>Promotion of employment of water vender by providing<br>seasonal or part-time job by the public corporation for<br>O/M of water supply system is recommended.<br>2) Promotion of agricultural activity<br>It is recommended that water venders return back to<br>their original farming activities.<br>In recent years, the farmers in this area have increased<br>their income by retail sales of agricultural products.<br>Considering this point, instruction of agricultural<br>technology for cash crops is recommended. Since<br>fundamental conditions of retail sales system have been<br>already found, an increase in farmer's income can be<br>expected and it contributes to regional economic<br>development. |
| 3   | Land use and<br>utilization of<br>local resources | Permanent          | Residents<br>(Land user) | Some proposed sites are located in private agricultural<br>lands, and disappearance of productive agricultural land<br>is envisaged.                                                                                                              | <ul> <li>In Vietnam, compensation of land expropriation in public projects such as water supply project is clearly prescribed by the Law on Land and Decree as below.</li> <li>Persons whose land is acquired shall be compensated with new land that could be used for same purpose.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# Table 17.2.10 Summary of Adverse Impacts and Mitigation Measures

|    |                                                        |                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>If there is no land for compensation, they shall receive compensation equal to the land use right value at the time of issuance of the acquisition decisions.</li> <li>In case of compensation with new land or houses, if there is any difference in value, such difference shall be paid in cash.</li> <li>It is expected that proper and sufficient compensation including the grant of an alternative agricultural land is carried out based on the Vietnamese law and regulation, and it can be judged that the adverse impact on land users shall be mitigated or eliminated.</li> </ul>                                                                                                             |
|----|--------------------------------------------------------|-----------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | Existing social<br>infrastructures and<br>services     | Construction<br>stage | Residents<br>and<br>passing car | <ul> <li>Disruptions of vehicular and pedestrian traffic might occur during the construction stage of water supply system. Consideration is required about the following two points.</li> <li>The principal means of transportation in rural area of Vietnam is motorbike rather than vehicles. During construction stage, occupancy of roads by distribution line construction activities shall affect normal traffic condition, and occurrence of traffic accident is also expected in the peak traffic hours particularly in morning and evening.</li> <li>In the Cam Hai Tay (K-3), the national road divides the water service area proposed in this project, and a distribution line crosses the national roads in the stage of distribution line lying.</li> </ul> | <ul> <li>These impacts could be mitigated or minimized by the following countermeasures:</li> <li>The announcement and public notification</li> <li>Watchman or traffic control staffs will be deployed at the site to control the traffic.</li> <li>Temporary fences with appropriate warning signs should be used to isolate the construction site.</li> <li>As mitigation measures, applying single-sided lane regulation and one-way traffic regulation for large cars is suitable for construction of the distribution line in the national road of Cam Hai Tay (K-3).</li> <li>During the constructor should arrange an information desk and a person responsible at the construction site office.</li> </ul> |
| 10 | Water usage or<br>water rights and<br>rights of common | -                     | -                               | <b>No Adverse Impact</b><br>Of the nine systems selected in the feasibility study, six                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|    |                                  | systems utilize surface water as their water sources.<br>Especially, three systems receive surface water from<br>irrigation reservoir. Usually, the reservoir is highly<br>utilized in the dry season.<br>In consideration of this situation, utilization of the<br>surface water in six water supply systems was<br>deliberated by DARD and DONRE. Consequently,<br>they judged that water supply projects do not influence<br>the existing water rights and the water utilization from<br>the reservoir is possible even in the dry season.                                                                                                                                                                                                                                                                                                                                             |  |
|----|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 15 | Groundwater                      | <ul> <li>No Adverse Impact</li> <li>The influence on groundwater was considered in the Master Plan.</li> <li>The communes for which groundwater quality was observed to be not suitable as drinking water or in cases when yield of groundwater was not enough were excluded from the group of target communes for the feasibility study.</li> <li>From the results of the test borehole drilling survey, P-4, P-8 and K-1 communes were selected as the target systems in the feasibility study in consideration of groundwater quality and productivity of groundwater. The characteristics of target aquifer of the boreholes in the water supply systems are quite different from the dug wells which most of villagers are using as source of water presently.</li> <li>Therefore, adverse impacts such as drawdown, seawater intrusion and so on, seem to be negligible.</li> </ul> |  |
| 18 | Flora, fauna and<br>biodiversity | <br>No Adverse ImpactEa Cha Rang commune (P-6) of the water supply<br>system (FPG-4) is adjoining the Krong Trai Special-use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

The Study on Groundwater Development in the Rural Provinces of the Southern Coastal Zone in the Socialist Republic of Vietnam Final Report - Supporting - Chapter17 Environmental Consideration

|    |                        |                       |           | Forest.<br>Water supply plan of FPG-4 was explained to DARD<br>and DONRE in Phu Yen province. As a result, they<br>concluded that there is no influence to the Special-use<br>Forest by the construction of this water supply system.                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                   |
|----|------------------------|-----------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23 | Water pollution        | Operation<br>stage    | Residents | <ul> <li>No Adverse Impact</li> <li>From the results of investigation, additional impact caused by this project is negligible.</li> <li>Usually, villagers use water in the open air and wastewater is sprinkled over the yard.</li> <li>Rainwater drainage canals /ditches of the dry season are dried, and wastewater is not seen in most of the drainage canals. (No wastewater is discharged into public water bodies)</li> <li>There are no polluted water bodies by the domestic wastewater in the target communes.</li> </ul> | From the existing disposal condition of domestic<br>wastewater, additional impact caused by this project is<br>negligible. However, installation of the simple<br>treatment facilities (such as leaching pit) of domestic<br>wastewater is recommended also from viewpoint of<br>improvement of living environment in the future. |
| 26 | Noise and<br>vibration | Construction<br>stage | Residents | During construction works in the project, some noise<br>and vibration will be generated by heavy equipments<br>for construction. At present, there is no hospital,<br>school, and private house in and around the proposed<br>construction sites. Therefore, the influence of noise<br>and vibration during construction work of the water<br>supply facilities is minor or negligible.                                                                                                                                              | keep the noise level low.                                                                                                                                                                                                                                                                                                         |
| 27 | Land subsidence        | -                     | -         | No Adverse Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                   |
|    |                        |                       |           | The impact of groundwater withdrawal on land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                   |

|    |            |                       |                              | subsidence was checked in the Master Plan.<br>Appropriate withdrawal volume is designed for the<br>water supply facility based on the pumping test results<br>in the test boreholes drilling survey, and the target<br>aquifer is fissure or weathered basement rocks.<br>Therefore, there is no possibility of land subsidence. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----|------------|-----------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30 | Accidents: | Construction<br>stage | Residents<br>Others          | < War residual substance><br>War residual substances (dud bomb, mine, etc.) need to be<br>eliminated before construction starts.                                                                                                                                                                                                 | < War residual substance><br>As countermeasures, it is necessary to make sure that<br>clearance of war residual substances be carried out<br>after land acquisition in this project.                                                                                                                                                                                                                                                                                                                                 |
|    |            | Operation<br>stage    | Users of<br>water<br>service | < Contamination of raw water for water supply><br>Raw surface water source of water supply may be<br>contaminated by accident.                                                                                                                                                                                                   | <ul> <li>&lt; Contamination of raw water for water supply&gt;<br/>These impacts can be mitigated by adopting the<br/>following measures:</li> <li>Implementation of regular water quality<br/>monitoring</li> <li>Establishment of urgent communication network<br/>with the river administrator and related<br/>organization.</li> <li>Preparation of the operations manual for<br/>emergency situation</li> <li>Training to the operation staff for the emergency<br/>situation and disaster management</li> </ul> |

#### (4) Conclusion and Recommendation

Based on the findings of the IEE, the following items should be considered as mitigation measures for project implementation. However, the adverse impacts described below are minor, and if appropriate mitigation measures including proposed measures in this IEE are undertaken properly, these adverse impacts will be satisfactory controlled and mitigated.

#### Local economy (water vender)

The operating activities of water vender exist in five communes (total number of water vender is less than 30 persons) among 15 selected communes for F/S. All water vending activities are the side job of the farmer, and are commonly practiced only during the dry season. The cow carriages and vehicles, which are mainly used for agricultural works, are used for water conveyance, and large investment has not been made for water vender activities. Therefore, it can be judged that fundamental life economy is appropriated by the agricultural income.

To mitigate negative impact on these venders, it is proposed that they should be provided seasonal or part-time job by the water service corporation and they should be led to return to full time farming and household practices through agricultural promotion.

#### Land use and utilization of local resources (land acquisition for project sites)

Altogether 27 project sites are proposed for water supply project, and of these 27 sites, 19 sites include land owned by private owners. The land use situation of private land is upland field for cassava and sugarcane (five sites), paddy field (one site) and fallow land (13 sites).

In Vietnam, compensation of land expropriation in case of public projects such as water supply project is clearly prescribed by the Law on Land and Decree. In these water supply projects, it is expected that proper and sufficient compensation including grant of alternative agricultural land is carried out based on the Vietnamese Law and Regulation, and it can be judged that the adverse impact on land users shall be eliminated.

### Existing social infrastructures and services (disruptions of traffic situation)

In the rural area of Vietnam, prime means of transportation is motorbike rather than vehicles. Therefore, during construction stage of distribution lines, occupancy of roads by construction activities shall affect normal traffic situation, and occurrence of traffic accident is also expected during peak traffic hours specially in morning and evening.

In such cases, if appropriate countermeasures are not undertaken, it is expected that serious traffic disturbance will occur. However, these are short-term impacts, and these can be reduced by appropriate construction site management including appropriate announcement and traffic control.

#### Water pollution (water pollution by domestic wastewater)

Disposal and discharge situation of domestic wastewater and water pollution situation of public water bodies has also been studied through field survey. It is judged from the result that there is no

water pollution caused by implementation of water supply projects.

However, installation of the simple treatment facilities (such as leaching pit) of domestic wastewater is recommended also from viewpoint of improvement of living environment in the future.

### Accidents (war residual substances and water pollution and contamination by accident)

During construction and operation stage of the water supply project, some accidents by the war residual substance and hazardous substance outflow are expected. As countermeasures, clearance of war residual substances is required to avoid any accidents due to war residual dud bombs, mines, etc. To avoid accident by hazardous substances due to water contamination of source, water quality monitoring, establishment of an urgent communication network and preparation of the operations manual for emergency situation are proposed.