Chapter 9. **Non-Structural Flood Mitigation Plan**

9.1 **Overview of Eligible Measures**

As described in Chapter 7, the non-structural flood mitigation plan is one of the important compositions of the comprehensive flood mitigation plan and play an important role for flood mitigation as good as the structural plan. The non-structural measures are broadly classified into three categories according to the functions required of them (see Table R 9.1).

Eligible Non-Structural Flood Mitigation Measures Table R 9.1

	~
Classification	Measures
 Measures for Securing of Flow of Waterways (To maintain the flow capacity of river/drainage channel and safely convey the flood discharge to the sea.) 	Cleanup of WaterwayPrevention of encroachment to river area
(2) Measures for Retaining of Basin Runoff (To maintain the retention capacity of the river basin and stop the increment of basin peak flood runoff discharge.)	 Control of excessive land development Legal arrangement for introduction of on-site detention facility
(3) Measures for Flood Evacuation(To mitigate flood damage through capacity building for dealing with floods.)	 Establishment of flood warning/evacuation system and flood hazard map

The above non-structural measures could be attained only if the local governments and communities acknowledge the necessity of the measures and participate in the plan formulation, implementation and monitoring/evaluation of the measures. From this viewpoint, a variety of approaches to the local governments and communities are taken during the Master Plan Study such as opening of public consultation meetings/workshops, questionnaire surveys with the communities. As the result of these approaches, the plan for non-structural measures is proposed, as described below.

Plan for Cleanup of Waterways 9.2

9.2.1 **Plan for Regular Maintenance of Critical Bottlenecks**

The JICA Study Team had carried out field reconnaissance and interview surveys with the residents on the clogging of waterways by garbage and other drifting materials. As the result, it was clarified that most of the plastic and other garbage floating in the waterways tend to be flashed away during flood. However, there exist 14 critical bottleneck bridge sections and 6 drainage channels, which often cause river-overflow flood due to clogging by garbage, other drifting materials and sediment deposits (refer to Table R 9.2 and Fig. 9.1 attached).

other Drifting Materials				
Classification of River and Drainage Channel	Name of River/Municipality Number of Bridges and Drainage Channels			
	Imus River (Mainstream)	1		
	San Juan River (Mainstream)	1		
	Canas River (Mainstream)	1		
	Bacoor River (Tributary of Imus)	2		
Bottleneck Bridge Sections	Julian River (Tributary of Imus)	2		
	Malamok River (Tributary of San Juan)	4		
	Tirona River ((Tributary of Canas)	1		
	Others (Canal and Drainage Main)	2		
	Sub-total	14		
	Bacoor	1		
	Kawit	1		
Drainage Channels Habitually	Noveleta	1		
Clogged	Rosario	2		
	Tanza	1		
	Sub-total	6		
Total 20				

Table R 9.2	Number of Bottlenecks Clogged with Garbage and
	other Drifting Materials

As described in Subsection 6.4.2, the illegal garbage damping would be reduced by the operation of new provincial-wide solid waste disposal systems. Nevertheless, it is virtually difficult to eradicate such illegal garbage dumping due to the lax discipline and incomplete coverage of the public garbage collection system. Moreover, there is no sizable forest area in the Study Area, and driftwoods or plants could flow down from various bushes scattered therein. Due to such conditions, it is also virtually difficult to stamp out such driftwoods/plants by a certain measure for forest conservation and/or watershed management. Thus, it is indispensable to remove the garbage and drifting materials accumulated at the above bottlenecks before the occurrence of every flood. At the same time, the plan on reformation of the particular bottlenecks may be required to avoid the accumulation of garbage and drifting materials. From these points of view, the following works for the maintenance of waterways are proposed.

(1) Flood Mitigation Committee (FMC)

The Flood Mitigation Committee (FMC) as proposed in Section 11.4.2 should coordinate and supervise the entire programs prepared and the actual field works executions by the relevant members. The FMC should further coordinate and arrange the necessary annual budget for execution.

(2) **DPWH District-Office in Trece Martires**

The DPWH District-Office in Trece Martires as the member of FMC should undertake the monitoring and removal of garbage and driftwood at the bridge sections of the national road. At the same time, the DPWH is required to de-clog the drainage channels along the national road, which are habitually clogged up. The objective bridge sections and drainage channels are as enumerated in Tables R 9.3 and R 9.4.

	materia	10	
No.*	Name of Bridge	Name of Waterway	Municipality
1	Tejero Bridge	Canas River	General Trias
2	Ylang-Ylang Bridge	Sun Juan River	Noveleta
3	Imus Bridge	Imus River	Imus
5	Panapaan Bridge in Barangay Panapaan IV/VI	Bacoor River	Bacoor
9	Bridge in Barangay Marulas/Tramo Bantayan	Malamok River	Kawit
10	Bridge in Barangay Gahak/Medicion II-F	Malamok River	Kawit/Imus
11	Bridge in Barangay Gahak/Pag-AsaIII	Malamok River	Kawit/Imus
12	Bridge in Barangay Gahak & Tabon I	Tributary of Tirona	Kawit
13	Malimango Bridge in Barangay Salcedo II	Dr-8 Drainage Main	Noveleta

 Table R 9.3
 Objective Bridge Sections for Regular Removal of Garbage and Drifting

 Materials
 Materials

* The number. is the same as that indicated in the location map, Fig. 9.1 attached.

Table R 9.4Objective Drainage Channels for De-clogging

			<u> </u>
No.*	Name of Drainage Channel	Municipality	Barangay
17	Road Drainage along Tirona Highway	Bacoor	Mabolo II/Dulong Bayan
18	Road Drainage along Kawit Loop Road	Kawit	Marulas
19	Road Drainage along Manila-Cavite Road	Noveleta	San Rafael
20	Road Drainage along Noveleta-Naic-Tagaytay Road	Rosario	Silangan I

* The number is the same as that indicated in the location map, Fig. 9.1 attached.

The principal work items of the above objectives are as enumerated below.

- Annual implementation programs should be prepared and submitted to the FMC at the beginning of every fiscal year for approval.
- Accumulation of garbage, driftwoods and sediment deposits should be checked after every flood. Regular monitoring also should be made once a week during the rainy

season from May to October and once a month during the dry season from November to April.

- Once piling of garbage and driftwoods at the bridge sections and/or sediment deposit at the objective drainage channels are detected, their immediate removal is required. The Provincial Engineer's Office (PEO) may support, through coordination with FMC, the removal works, when heavy equipment such as backhoe and truck are required for the removal.
- Certain infrastructure measures for bridge substructure should be planned and adopted to prevent garbage and driftwoods from being entangled in the bridge piers.

(3) Cities/Municipalities and Barangays

Offices of City/Municipal Engineers (CEO or MEO) in collaboration with the barangays and communities should undertake monitoring and removal of garbage, driftwood and sediment deposits at the bottleneck sections and/or drainage channels in their own jurisdiction areas, as listed in Tables R 9.5 and R 9.6.

Table R 9.5Objective Culvert and Bridge Sections for Regular Removal of Garbage
and Drifting Materials

No.*	Name of Bridge	Name of Waterway	Municipality
4	Culvert in Barangay Habay II/ I	Tributary of Bacoor	Bacoor
6	Culvert in Barangay Mambog I	Bacoor River	Bacoor
7	Bridge in Barangay Taclong II-B/II-A	Julian River	Imus
8	Bridge in Barangay Medicion II-A & II-B	Julian River	Imus
14	Ligtong Bridge in Barangay Ligtong III	NIA Irrigation Canal	Rosario

 \ast The number is the same as that indicated in the location map, Fig. 9.1 attached.

Table R 9 6	Objective Drainage Channels for De-clogging
14010 K 9.0	Objective Dramage Chamilers for De-clogging

No.*	Name of Drainage Channel	Municipality	Barangay
15	Drainage Main in Barangay Sapa IV	Rosario	Sapa IV
16	Drainage Main in Barangay Julugan I	Tanza	Julugan I

* The number is the same as that indicted in the location map, Fig. 9.1 attached.

The principal work items of the above objectives are as enumerated below.

- Annual implementation programs should be prepared and submitted to the FMC at the beginning of every fiscal year for approval.
- The progress of accumulation of garbage, driftwoods and sediment deposits should be monitored after every flood. Regular monitoring also should be made once a week during the rainy season from May to October and once a month during the dry season from November to April. Once piling of garbage and driftwoods and/or sediment deposits is detected, their immediate removal is required.
- Installation of signboards and barriers/grills (strainers) should be considered as one of the eligible measures at points of intensive garbage dumping.
- Each barangay should organize a regular patrol team to check the intensive garbage dumping.

9.2.2 Plan for Information and Education Campaign on Cleanup of Waterway

According to the results of the "Flood Damage and Social Survey" in the Study, about 6% of the residents answered that they dump their garbage into the waterway, as reflected in the table below.

Table R 9.7 Garbage Disposar Fractices						
Corbogo Disposal Practices	Formal Residents		Informal Residents		Total	
Garbage Disposal Practices		Share	Persons	Share	Persons	Share
Follow the garbage collection rule	69	63.3%	31	42.5%	100	54.9%
Drop garbage at designated place but not on designated date	22	20.2%	21	28.8%	43	23.6%
Dump the garbage into the nearby the waterway		2.8%	8	11.0%	11	6.0%
Burn the garbage	12	11.0%	10	13.7%	22	12.1%
Bury the garbage	1	0.9%	1	1.4%	2	1.1%
Ask somebody to take the garbage	2	1.8%	2	2.7%	4	2.2%
Total	109	100.0%	73	100.0%	182	100.0%

Table R 9.7Garbage Disposal Practices

Source: Flood Damage and Social Survey made in the Study

Some reasons for the above garbage dumping into the waterways may be attributed to the inadequacy of public garbage collection system, while the others are due to the lax discipline of residents. In order to raise the awareness of residents on the necessity of cleanup of waterways, it is proposed to strengthen the Information and Education Campaign (IEC) based on the ongoing "Oplan Linis Cavite" and the other relevant programs undertaken by cities/municipalities and communities. The proposed programs should include the following contents:

(1) Themes of the IEC

The themes of the IEC should address the following items related to the cleanup of waterway and further reduction of household wastes:

- Introduction of evil instances caused by garbage dumping into waterway;
- Effects and necessity of cleanup of waterway;
- Methods of cleanup of waterway;
- Institutional setup required for cleanup of waterway;
- Present regulations and penalties on illegal garbage dumping; and
- Necessity and methods of segregation and recycling of household waste.

(2) Required Activities of the IEC

The Executive Committee and the Technical Working Groups of Oplan Linis Cavite have been organized at provincial and city/municipal levels. The City/Municipal Technical Working Group regularly executes several items of the IEC relevant to the cleanup drive through coordination and support from the Provincial Executive Committee.

The FMC should coordinate with the above Executive Committee of Oplan Linis Cavite in the planning of the annual programs of the IEC addressing particular issues on the cleanup of waterways. Based on the annual programs, the City/Municipal Technical Working Group of Oplan Linis Cavite in collaboration with FMC should undertake the following activities:

- Conduct of seminars and/or workshops
- Preparation and distribution of periodicals and publications
- Installation signs along the riverbanks; and
- Conduct of regular field practices on the cleaning of waterways, greening and planting along the riverbanks. (Involvement of academes, Rotary Clubs and other private resources should be attempted.)

In order to materialize the above activities and further strengthen the ongoing IEC, pilot projects will be undertaken in January to February 2008 as part of the scope of the Study in collaboration with the NGOs and the local government units. Details of the pilot project are as described in Subsection 9.2.5.

9.2.3 Plan for Capacity Development

One of the important issues on the cleanup of waterways and/or reduction of garbage dumping should be addressed to education of leaders and the spread of appropriate knowledge on the cleanup of waterways to the residents. From this point of view, the FMC in collaboration with the Executive Committee for Oplan Linis Cavite should undertake activities through support from the academes/research centers and/or external technical assistance, as follows:

- To organize seminars/workshops to disseminate appropriate knowledge on the cleanup of waterways;
- To prepare and distribute manuals on cleanup of waterways, which should contain procedures/methods and identification of relevant stakeholders on the cleanup of waterway; and
- To conduct pilot projects to initiate capacity development on the advanced technology of segregation and recycling of household wastes.

The De La Salle University-Dasmariñas has accumulated adequate knowledge on a variety of eco-environmental issues, and should be involved as trainer for the objective capacity development. The officials of Barangay Gahak in Kawit Municipality had already acquired basic knowledge through the transfer of technology on the segregation of biodegradable wastes from household wastes and refining them into organic fertilizer through the technical assistance from JICA, and such knowledge should be further spread in the whole province.

9.2.4 Issues and Recommendations on Strengthening of Provincial-wide Solid Waste Management System

The new solid waste disposal system described in Subsection 6.4.2 would bring about a dynamic improvement on the solid waste management system in Cavite Province, effectively reducing the practice of dumping garbage into the waterways.

The Provincial Government (PG-ENRO) estimated the provincial total of household wastes at about 1,420 tons, which is to be generated by the provincial population of about 2 million. On the other hand, the final disposal site to be completed in the new solid waste system has a capacity to dispose the inert solid waste of about 4.25 million m³, which could accommodate the said provincial total of household waste for more than a half century as listed below. Thus, the new solid waste disposable system possesses the adequate capacity for the whole house waste, which could be the major parts of the garbage damped into the river channels and/or the drainage channels.

Description	Estimated Volume	Remarks
(1) Provincial Total Weight of Household Waste	1,420 ton/day	Estimated by PG-ENRO
(2) Provincial Total Volume of Household Waste	947 m ³ /day	(1) / 1.5 ton/m3
(3) Volume of Waste Transported to Final Disposal Site	189 m ³ /day	(2) x 20%
(4) Disposal Capacity of Final Disposal Site	4,250,000 m ³	85ha (area) x10m (Depth) x 50%
(5) Term of Validity of Final Disposal Site	61 years	(4) / (3) /365 days

Table R 9.8 Estimated Term of Validity of Final Disposal Site under the New Solid Disposal System

The above new solid waste disposal system is, however, planned on the premise that the end collection of garbage is to be made by the present haulers operated by the cities and municipalities.

The volume of household wastes in the Study Area is estimated at about 1,080 ton/day assuming the population of 1.54 million in the Study Area and the per-head garbage volume of 700g/day/person. On the other hand, the number of haulers currently operated in the Study Area is only 75 units, so that one hauler needs to collect the household wastes of 14 ton/day (=1,080 ton divided by 75 units), which is considered to be beyond the capacity of the hauler1. Moreover, some of the municipalities such as Bacoor, Indang and Silang possess fewer haulers as compared to the daily volume of household wastes. Accordingly, it would be difficult to fully collect all household wastes and eradicate the present illegal

¹ The utmost hauling capacity of a 4-ton track is assumed at about 8 tons (=2ton/cycletime multiplied 5 times).

garbage damping in to the river channel and/or drainage channels unless the cities and municipalities increase the number of their operating haulers. Under the circumstances, therefore, the cities and municipalities would need to cope with their inadequate capacity on garbage collection, although it may not be easily made due to budgetary constraint. Measures such as the collection of fees for the collection of garbage from the residents may be considered.

	(1)	(2)*	(3)	(4)	(5)
City/ Municipality	Population (Thousand)	Daily Volume of Household Wastes (ton/day)	Number of Present Haulers of Garbage	(2)/(3) (ton/day/unit)	Frequency of Collection
Bacoor	306	214	6	36	Daily
Kawit	63	44	3	15	Daily
Noveleta	32	22	3	7	Daily
Rosario	74	52	3	17	Daily
Trece Martires	42	29	4	7	Daily
Dasmariñas	380	266	15	18	Once a week
Gen. Trias	108	76	9	8	Twice a week
Imus	195	137	14	10	Once a week
Tanza	111	78	15	5	Every other day
Amadeo	26	18	1	18	3 times a week
Indang	51	36	0	-	-
Silang	156	109	2	55	3 times a week
Total	1,543	1081	75	14	

 Table R 9.9
 Present Capacity for Garbage Collection by Cities/Municipalities

* (2) = (1) multiplied with 700g/day/person

Source (for (1), (3) and (5)): Provincial Government of Cavite

9.2.5 Plan for the Implementation of Pilot Project

In order to materialize the afore-said IEC and other activities relevant to the cleanup of waterways, two pilot projects are to be implemented through the Study for the period from January to February 2008. The expansion program for the pilot project would be further proposed in the Feasibility Study Stage in 2008. The details of the pilot project as well as the expansion plan are as described below.

(1) **Proposed Plan of Pilot Project for the Municipality of Imus**

As mentioned above, the Municipality of Imus had organized a team for the "Save Imus River Rehabilitation Project (SIRRP)" in 2005, and since then, various programs of IEC for the cleanup of Imus River have been carried out. The project team composed of the government and non-government members is headed by the Vice Mayor of Imus Municipality. The NGO named "Sagip-Ilog Cavite Council" acts as secretariat of the team.

In the Fist Phase of the SIRRP, the initial education campaign, socio-economic profiling, sedimentation and vegetation studies and water analysis have been accomplished. The Pilot Project supported by the JICA Study Team will form the second phase of SIRRP, which targets 29 barangays along the almost 20-km length of Imus River and include the following activities. The detailed schedule of the Pilot Project for Imus is as shown in Table 9.1 attached.

- The module materials on the river cleaning activities will be developed for future trainers. The materials aim at enhancing their capability to come up with more acceptable training materials, and they contain the knowledge on protection, conservation and preservation of the river.
- Indoor and field trainings on river cleaning will be undertaken for the above-mentioned 29 target barangays.
- Nursery planting will be undertaken along river banks based on the concept that it will serve as the buffer and natural riprap for the riverbank.

(2) Pilot Project for the Municipality of Kawit

The NGO named "The Kawit Sagip-Ilog & Anti Flood Group" is currently undertaking an IEC for the cleanup of waterways as well as actual field cleaning activities in the Municipality of Kawit. As the result of discussions between the NGO and the JICA Study Team, the execution of the following items is proposed as the programs of the Pilot Project. The detailed schedule of the Pilot Project for Kawit is as shown in Table 9.2 attached.

- Comic reading materials to promote the importance of river cleaning will be prepared and distributed to the residents of the 12 to 15 barangays along the river channel in Kawit.
- Seminars/workshops on river cleaning will be held about 10 times. Attendance in the seminars/workshops will involve both the formal and informal dwellers in the aforesaid barangays.

(3) Expansion of Community-Based Activities on Cleaning the Waterway

There are many municipalities in the Study Area where the cleaning of waterway is still not practiced. In this connection, an attempt will be made to expand the activities of the pilot projects. The target municipalities for the expansion of activities are preliminarily assumed as Rosario, Noveleta, General Trias, Tanza, Bacoor, Trece Martires, Dasmariñas and Silang.

9.3 **Prevention of Encroachment to River Area**

Presidential Decree No. 1067 prescribes that the water body of the river together with the river corridor within the distance of 3m in urban area, 20m in agricultural area and 40m in forest area from the edge of the water body should be designated as the river area, where nobody is allowed to reside. In spite of such prescription, there exist a large number of informal and formal settlers in the subject river areas. Moreover, the encroachment of houses on the riverside tends to be more intensive as the urban population increases. These houses are a great hindrance to flood flow in the river channel and at the same time, exposed to the high risk of floods, and no structural flood mitigation measure could be applied due to the topographic conditions as well as the legislative constraint. To cope with these issues, a plan for management of the river area, which would function to prevent further increment of illegal structures in the river area and create more appropriate environment of the river area, is proposed.

9.3.1 Proposed Boundary of River Area and Existing Houses in the Proposed River Area

There exist the arterial and/or secondary roads, which form the river dike along a part of the river sections of Imus, San Juan and Canas. Parapet walls of less than 1.5m in height were further constructed along a part of downstream stretch of the rivers. The riverine area confined by these roads and/or parapet wall could be defined as the river area.

However, a substantial part of the downstream sections of the rivers have no definite riverbank, and their flow widths largely change depending on the magnitude of discharge, which leads to the uncertainty on the river area's boundary. Accordingly, a clear definition of the river area and the delineation of boundaries of the river area would be essentially required for the no-riverbank sections in particular to cope with the encroachment of houses into the river area. From this viewpoint, the JICA Study Team preliminarily proposes that the river area should cover the water body and river corridor as defined by the following items (1) and (2) (refer to Figs. R 9.1):

- (1) The Water Body: the riverine area confined by the river dike/bank, if they exist, should be defined as the water body. In case of difficulties in recognizing the clear river dike/bank, the water body should be assumed as the potential waterway of floods with the recurrence probability of 2-year return period.
- (2) The River Corridor: In accordance with Presidential Decree No. 1067, the river corridor should have the widths of 3m in an urban area, 20m in an agricultural area and 40m in a forest area from the outward bound of the above water body.

The majority of houses in the river area as defined above concentrate along the downstream section of the river in the urban area shown in The majority of houses in the river area as defined above concentrate along the downstream section of the river in the urban area shown in attached Fig. 9.2 through the non-uniform calculation method assuming that the flood discharge is of 2-year return period.

Photo: Encroachment of Houses in River Area

9.3.2 Existing Houses in the River Area

The water body, a part of the river area, is the flow section of the river and no structural measure could protect the houses in the water body against flood. The river corridor, another part of the river area, is also necessary as the buffer for maintenance of the river channel. Accordingly, prevention of further increment of houses in the river area is firstly raised as one of the important issues on flood mitigation with non-structural measures.

The cities and municipalities are required to inventory the houses in the river area and refrain the further increment of houses in accordance with the relevant acts and regulations such as (1) the Urban Development and Housing Act of 1992; (2) the Implementation Rules and Regulations (IRR) Governing Summary Eviction, 1993; and (3) Executive Order No. 93, Series of 2007, Office of the Governor, Province of Cavite.

According to the above acts and regulations, the objective houses to be inventoried are classified into the following groups: (1) informal and formal dwellers according to ownership of land titles; and (2) beneficiaries and non-beneficiaries of the Social Housing Program. The inventory-survey of each group is required as the basis for management of river area, and the results of the inventory survey should preferably be compiled in the form of a digitized cadastral map so as to facilitate updating and administrating the progress of relocation.

9.3.3 Plan for Management of the River Area

Presidential Decree No. 1067 designated DPWH as the responsible agency to manage all rivers in the country. On the other hand, Republic Act 7160 (the Local Government Code-1991) allows the local government units to take part in flood mitigation projects, which may include the management of the river area. Furthermore, NIA implements flood control works to protect farmlands as well as irrigation facilities.

Thus, various national and local government units are currently engaged in the management of the river area, but no definite role and demarcation have been setup regarding management. In this connection, proposed are the following plans for management of the river area:

(1) Development and Updating of Database of the River Area

The database of the river area should be developed as the base of maintenance and management of river area. The objective of the database would need to cover the information on updated number and location of houses in the river area as well as the major river structures such as the river dike/revetment, river bridges and dams/weirs for irrigation intake.

Of these objectives, the major river structures have been inventoried through the Study. The cities and municipalities in the Study Area are also currently developing the inventory on informal dwellers in their jurisdiction for the sake of relocation. Based on the presently available information, the roles and authorities of the government agencies on the development of the database of the river area are preliminarily proposed as below:

- (a) The FMC should develop an integrated form for the development of database of the river area and further coordinate the works to be undertaken by the cities/municipalities as mentioned below.
- (b) The cities and municipalities should complete the objective database for each of their jurisdictions in accordance with the above integrated form of database. The objective database should be based on the presently available information and the results of the additional inventory survey on houses and landownership in the river area. The cities/municipalities are also required to update the database whenever a new river structure is constructed or relocation of houses from the river area has progressed.
- (c) The provincial offices of DPWH as well as NIA should provide the necessary information on their own river structures to the FMC to facilitate compilation of the objective database by the cities/municipalities.

(2) **Relocation of Informal Dwellers in River Area**

The task force named "Provincial Drive against Professional Squatting and Squatting Syndicates" headed by the Provincial Housing & Urban Development Office and the Provincial Legal Service Office shall prepare and execute the annual program for control of further encroachment of houses into the river area in collaboration with FMC.

(3) Land Zoning

The land zoning aims at establishing the proper land readjustment of the river area, which could promote public interest on the environment of the river area, ensuring the safe flow of river floods and preventing the re-occupancy of the river area after the relocation of houses. The land uses applicable as the objectives of the zoning plan shall be such as river parks, sports ground, river walk lanes, and biotope providing a living place for a specific assemblage of vegetations and animals. To achieve such land readjustment, the City/Municipal Planning and Development Office (CPDO/MPDO) shall undertake the following works:

- Integrate and appraise all land zoning plans prepared by the cities/municipalities for the river area cleanup; and
- Coordinate and arrange the necessary annual budget for implementation of the land-zoning plan for the river area.

(4) Maintenance of River Area

The works required of the relevant government and non-government entities are as described below.

- (a) The FMC shall undertake the following works through coordination with the city/municipal government, the provincial offices of DPWH and NIA, and other relevant government agencies, as follows:
 - Prepare the annual program of maintenance of river area for the entire Study Area based on those prepared by the city/municipal governments and the District Engineering Offices of DPWH and NIA;
 - Coordinate and arrange the necessary budget for undertakings scheduled in the above annual program; and
 - Supervise and coordinate the maintenance and management works undertaken by the cities/municipalities.
- (b) The cities and municipalities should undertake the following works through coordination with the barangays:
 - Prepare annual programs for maintenance and management of river area within the administrative boundary of each city/municipality including those for relocation of houses from the river area, land zoning of the river area and routine maintenance of the river area;
 - Supervise, administer and coordinate the routine maintenance of the river area to be undertaken barangays as mentioned in item (d) below;
 - Execute information and education campaign (IEC) to promote the proper maintenance of river area and the prohibition of illegal activities in the river area such as occupancy of land and garbage dumping; and
 - Organize working groups at the barangay level to execute maintenance works for the river area, as mentioned in item (d) below.
- (d) Each of the barangays shall organize a team for the maintenance of the river area with the following duties and responsibilities:
 - To execute river patrols to check and prevent re-occupancy of the river area by squatters, the illegal garbage dumping and other illegal activities made in the river area;
 - To report illegal activities detected through river patrol to the city or municipality concerned;
 - To remove weeds and/or trees in the river area once a year at the end of the dry season in April; and
 - To remove garbage and driftwood detected through the river patrols.
- (e) The provincial office of DPWH shall undertake the following works:
 - Conduct river longitudinal and cross sectional channel surveys along the downstream reaches of the Imus, San Juan and Canas rivers, as shown in the following table, which should preferably be made along the estuary once a year after every rainy season to monitor erosion and/or sedimentation of the river channel.

1aule K 9.10	Target Stretch for Terrodical Kiver Chainer Survey		
Name of Rivers	Length	Section	
Imus	13km	Stating from the river mouth	
Bacoor	8km	Stating from the confluence with Imus River	
San Juan (Downstream)	8km	Stating from the river mouth of diversion channel	
Ylang-Ylang (Middle)	4km	Starting from the confluence with San Juan River	
Canas	9km	Stating from the river mouth	
Total	42km		

Table R 9.10Target Stretch for Periodical River Channel Survey

- Monitor and rehabilitate damaged river structures such as river dike and revetment.
- (f) The provincial office of NIA shall undertake monitoring and rehabilitation of dams and weirs for irrigation.

9.4 Plan for Control of Land Development

9.4.1 Control of Excessive Land Development

As described in Chapter 4, the comprehensive land use plans (CLUPs) prepared by the cities/municipalities suggest that the future built-up area in the Study Area will increase from 24.5% to 65.2%. Such remarkably high built-up ratio projected in CLUP is, however, hardly possible in the Study Area due to the limited area of farmlands that could be converted to built-up areas in accordance with the HLURN regulations. Moreover, the projected built-up area could accommodate the population of about 3.5 million, while the future population in the Study Area in 2020 is estimated at only 2.4 million. Thus, the built-up area projected in CLUPs is deemed to be not realistic.

A higher ratio of built-up area would possibly cause more significant degradation of the living environment including the increment of peak flood runoff discharge. Accordingly, the expansion of built-up area should be properly controlled in due consideration of the reasonable projection of the trend of socio-economic conditions. From these points of view, the future increment of population was re-examined and the built-up ratio of 42.7% is newly proposed by the Study (refer to the foregoing Subsections 4.3 and 4.4). The principal issues and necessary measures to attain the proposed built-up ratio of 42.7% are as described below.

(1) Establishment of Provincial-wide Strategic Land Use Plan

The cities and municipalities could have developed their CLUPs independently with less coordination from the provincial government and/or other cities/municipalities. As the result, the CLUPs hardly reflect the socio-economic development of the entire province and, at the same time, the provincial policy on socio-economic development hardly reflects the CLUPs.

The development of residential subdivisions has been speculatively made concentrating on the municipalities adjacent to Metro Manila such as Bacoor, Imus and Dasmariñas. Such market-oriented land development has brought out the uneven provincial-wide distribution of population/population densities. Should the present excessive development of residential subdivisions be continued, serious overpopulation in urban centers and environmental deterioration would possibly occur in the Study Area. To cope with the issues, it is indispensable to build up a more coordinative capacity of the Provincial Government with the cities/ municipalities so as to attain the following approach and adjustment:

- More detailed approach to population projection based on more realistic socio-economic projections;
- Adjustment of population growth among the cities and municipalities taking necessary arrangements for provincial-wide migration, which aims at achieving a well-balanced population distribution; and
- Adjustment for the well-balanced distribution of the built-up area.

(2) Conversion of Farmland to Built-up Area

The present dynamic expansion of built-up areas causes the serious reduction of existing farmlands leading to the decline of agricultural production and the deterioration of natural environments. Accordingly, the Provincial Government as well as the city/municipalities will be required to conserve farmlands at the allowable level as guided by HLURN.

On the other hand, a part of the existing irrigation areas along Aguinaldo Highway and Governor's Drive in particular are currently designated as the Agrarian Reform Area that should not be converted to built-up area. Most of this area is, however, currently abandoned and remain as vacant land, while the potential for urban development of the farmlands is believed to be quite high. In due consideration of the over-incremental population, it is provisionally proposed in the Study that such abandoned farmlands should be converted to built-up areas so to accommodate the excessive future population increment of the municipalities in the Study. However, this issue requires further discussions with the municipalities concerned.

(3) Remarkable Increment of Built-up Area/Mixed Land Use

The CLUPs indicate a remarkable increase in the built-up/mixed-land use area (the area for mixed industrial, commercial, residential and institutional land use) from the present coverage rate of 0.1% to the projected ratio of 41.5%. This mixed-land use would conform to the conventional or historical lifestyles (live and work at same place) and flexibly deal with any type of land use; however, it contains the following potential problems, which will wipe out the said advantages and cause more serious adverse effects:

- Efficient public investment will hardly takes place.
- The existing farmlands would be fragmented, which would lead to difficulty in developing large-scale subdivisions in the remaining farmlands. At the same time, it also causes difficulty in effectively using the farmlands and attaining a high agricultural production.
- The natural landscape would be marred.
- Serious traffic congestion would occur.

From the above viewpoints, zoning of the mixed-land use is not recommended and instead, the concept of area division to separate urban growth centers and residential areas is provisionally proposed in the Study.

The urban zoning of areas needs autonomous review by the cities/municipalities. To share a common future urbanization image of Cavite, the effort to build consensus among stakeholders is important especially among the key coordinators and decision makers - MPDC, mayors, the Governor and other elected officials. Some municipalities, such as Indang, have developed a detailed zoning for the urban core. In other city/municipalities, urban areas shall be designated for detailed zoning.

(4) Development of Human Resources and Tools for Processing of Land Use Plan

The CLUPs are hardly integrated into a provincial-wide land use plan, which causes difficulty in grasping the provincial-wide future land use situation and in reflecting the policy/strategy on the provincial-wide land development in the CLUP. The principal cause of this problem could be the inadequate organizational set-up or the inadequate human resources and tools for processing the land use plan. From this point of view, the programs for developing the organizational setup, human resources and tools are proposed, and the initial relevant trainings were made through the Study as described in Appendix-2.

(5) Exclusion of Environmentally Critical Areas from Projected Built-up Area

For spatial distribution of the built-up area, exclusion of the following environmentally critical areas from the built-up area is proposed:

- Steep sloped areas (more than 15%);
- The area specified as the Strategic Agricultural and Fishery Development Zone (SAFDZ);
- The area specified in the Comprehensive Agrarian Reform Program (CARP);
- The NIA irrigated area; and
- Habitual flood inundation areas (the probable flood inundation area of 2-year return period with the probable inundation depth of more than 25cm).

9.4.2 Legal Arrangements for the Introduction of On-site Flood Regulation Pond

Preliminarily proposed in the Study is an ordinance that would make the installation of an on-site flood regulation pond mandatory for new subdivision development projects in Cavite. Details of the ordinance are as enumerated below:

- (1) Title of Ordinance: The title of the Draft Ordinance is "On-Site Flood Regulation Pond Requirement in a New Subdivision Project."
- (2) Effect of Ordinance: The ordinance is to take effect within the administrative boundary of Cavite Province. Accordingly, the ordinance will be promulgated by the Provincial Governor with the approval of the Sangguniang Panalawigan (the Legislative Council) of Cavite Province.
- (3) Objective Area for Application of the Ordinance: The on-site flood regulation pond is to be constructed at the downstream end of new subdivisions of more than 5ha, which shall be a tract or parcel of land registered under Act No. 496 and division partitioned primarily for residential purposes into individual lots with or without improvements thereon, and offered to the public for sale, in cash or in installment term. The requirement for on-site flood regulation pond shall include all residential, commercial, industrial and recreational areas as well as open spaces and other community and public areas in the project.
- (4) Procedure for Approval of Construction of On-site Regulation Pond: The design of the on-site regulation pond is to be reviewed by a licensed engineer and approved within the procedure of subdivision permit. The approval procedure shall be in accordance with the Revised Implementing Rules and Regulations of Presidential Decree No. 957 or the Revised Implementing Rules and Regulations of Batas Pambansa No. P220 (Republic Act No. P220).
- (5) Entity Responsible for the Maintenance of Regulation Pond: The owner or the owners' association shall conduct the maintenance work regularly to ensure the functions of the pond.
- (6) Minimum Space of On-site Flood Regulation Pond: On-site regulation ponds shall have an area equal to or larger than three (3) percent of the total area of subdivision. Allocation of land may be inclusive of the required minimum open space of 30%, which is as stipulated in PD957. When a part or all functions of basic utilities and other community facilities/services do not satisfy the standards because of the allocation of the on-site regulation pond, the developer shall provide an additional area in addition to the 30% open space requirement within the area of subdivision project.

The draft of the ordinance is still being discussed with the stakeholders, since the additional cost of the on-site regulation pond to the development of the subdivision may deteriorate the initial intent of providing economic housing. The way to deal with the development of small-scale subdivisions of less than 5ha needs further discussion. Another issue is how to deal with the on-site regulation pond requirement within the legal frame of the National Building Code and environmental regulation at the time of building construction. These issues will be discussed and clarified in the next stage of the Study.

9.5 Plan for Flood Warning and Evacuation System

A substantial part of the Study Area is currently exposed to the risk of river overflow even in the event of a probable flood of 2-year return period, as described in Subsection 2.3.3. On the other hand, since

flood is a natural phenomenon, any structure for flood mitigation could hardly stamp out the flood damage. Hence, flood warning and evacuation is highlighted as one of the eligible non-structural measures against floods that exceed the design capacity of the flood mitigation structure. As described above, however, there is no consistent flood warning and evacuation system in the Study Area.

An accident occurred during Typhoon Milenyo in 2006 where a dozen of residents at the riverbank watching the overflow on the dam crest died due to the collapse of footing of the riverbank. Such a tragic accident could have been avoided if the residents were well guided through a flood warning and evacuation system. Unless certain measures are taken, casualties by flood would further increase due to complex factors such as the expansion of urban population, the progress of encroachment to the flood hazard area, and the increment of peak discharge with the expansion of built-up area in the river basin. From this point of view, the plan for flood warning and evacuation system for the Study Area is proposed in consideration of the existing activities and resources of the disaster coordinating councils in the province, as well as the cities/municipalities and barangays in the Study Area.

9.5.1 Flood Risk Area

The extent and depth of potential flood risk have been simulated in the Study (refer to Chapter 5). As a result, it was clarified that the extent of flood risk area largely changes depending on the magnitude of flood. The recent Typhoon Milenyo in 2006 caused the flood area of about 60km², which covers a substantial part of the low-lying area of the Study Area. The recurrence probability of the flood caused by the typhoon is almost equivalent to a 100-year return period, while even the provable flood of 2-year return period could submerge the area of about 30km². It was further clarified that a part of the flood risk area would have the flood depth of more than 50cm, which could cause damage to household assets and/or injury to the residents.

Based on the above clarification, the flood risk areas are preliminarily assumed as those which may be submerged to a depth of more than 50cm by a probable flood of 100-year return period. The depth of 50 cm is adopted as the critical level to do the injury to a person and the probable flood of 100-year return period is also adopted as the recoded maximum flood in the Study Area (recoded in the Typhoon Milenyo in 2006). In accordance with this assumption, the flood risk area of 1,283 ha is delineated, as shown in Fig. 9.3. The flood risk area is further divided according to the administrative boundaries of the city and municipality as listed in Tables R 9.10 and R 9.11 (refer to Table 9.3). The CDCC/MDCC and BDCC are required to undertake the necessary activities of flood warning and evacuation for each of the flood risk areas located within their respective jurisdictions.

	Tuon	<u> </u>		<u>Million</u>	
Municipality		(Unit: ha)			
	Imus River	San Juan River	Canas River	Residual Rivers	Total
Bacoor	272	32	0	0	305
Imus	0	62	32	121	215
Kawit	99	30	0	29	158
Noveleta	58	154	0	64	276
Rosario	0	104	0	132	236
Tanza	0	58	13	0	71
G. Trias	0	0	23	0	23
Total	430	440	67	346	1,283

Table R 9.11 Proposed Flood Risk Area

Table R 9.12	Number of Barangays located in the Flood Risk Area
1	

Municipality	Number of Barangays in Flood Risk Area and in Each River Basin					
Municipanty	Imus River	San Juan River	Canas River	Residual Rivers	Total	
Bacoor	31	10	0	0	41	
Imus	0	3	4	14	21	
Kawit	31	10	0	4	45	
Noveleta	5	21	0	9	35	
Rosario	0	9	0	11	20	
Tanza	0	13	4	0	17	
G. Trias	0	0	5	0	5	
Total	67	66	13	38	184	

9.5.2 Step-wise Flood Warning and Evacuation Procedures

The information on flood warning and evacuation should be made based on evaluation of weather and hydrological conditions such as river water level and rainfall intensity. Earlier information may facilitate more effective flood evacuation for residents, but the early information may be more misleading in the determination of issuance of flood warning and evacuation. Frequent misleading information would decline the concern of residents on flood warning and evacuation. In order to release the earlier information for flood warning and evacuation and at the same time minimize the issuance of such misleading information, the stepwise flood warning and evacuation is proposed. The basic concept of stepwise flood warning and evacuation is as summarized below:

- (1) Step-1 (Standby): The members of PDCC, CDCC/MDCC and BDCC are convened for the execution of their respective assignments when PAGASA issues the Public Storm Warning Signal No. 1 over the entire province of Cavite.
- (2) Step-2 (Alert Stage): The available human resources, equipment and materials for flood warning and evacuation are checked, and the necessary river patrol would start.
- (3) Step-3 (Warning Stage): The flood warning is issued to the residents to prepare for flood evacuation.
- (4) Step-4 (Evacuation Stage): The order of flood evacuation is issued to the residents.

Further detailed activities required for each of the steps are proposed, as listed below:

Step	Required Actions
Step-1 (Standby)	 The head of PDCC convenes all members of PDCC, MDCCs and BDCCs to enter standby status. The PDCC orders the MDCCs in charge to start measurement of river water level and rainfall intensity in the Study Area and report to PDCC. The PDCC starts to communicate with PAGASA Synoptic Station at Sanglay Point to collect the weather conditions over the Cavite Province.
Step-2 (Alert Stage)	 All members of DCCs start to check available human resources, equipment and materials for flood evacuation. BDCC in collaboration with the communities start river patrol in accordance with the order from MDCC.
Step-3 (Warning Stage)	 The head of PDCC issues warning to the heads of MDCCs, whose jurisdiction is to be in danger of river overflow. BDCC in collaboration with the communities start dissemination of flood warning in accordance with the order from MDCC. The PDCC, MDCC and BDCC position the necessary equipment, material and personnel for flood evacuation.
Step-4 (Evacuation Stage)	 The head of PDCC issues order of flood evacuation to the heads of MDCCs, whose jurisdiction is to be in danger of river overflow The head of MDCC informs the BDCC to disseminate the order of evacuation among the residents and undertake the necessary guides/supports for residents to evacuate.

Table R 9.13Activities Required to Each of Steps for Flood Warning and Evacuation

9.5.3 Hydrometeorological Conditions for Initiation of Step-wise Flood Warning and Evacuation

The principal rivers of Imus, San Juan and Canas in the Study Area have the channel length of about 40 to 50km. Their middle and upstream channels have the rather steep channel slope of more than 1/200, while the downstream below the crossing with the existing NIA irrigation channel has the gentle channel slope of less than 1/500. The areas along the downstream channels are highly populated and subject to river-overflow flood. Thus, the major target of the flood warning and evacuation will be oriented to such low land areas.

According to the hydrological simulation of flood travel time on the above river channels, the target areas for flood warning and evacuation will receive the peak runoff discharge within about 30 to 100 minutes after the peak rainfall is observed in the river basin, as listed below.

River Basin	Point of Simulated Peak Discharge	Lag Time (Minutes)
Imus	Crossing of NIA Irrigation Canal (Sta. 12+850)	30
imus	River Mouth (Sta. 0+000)	40
San Juan	Crossing of NIA Irrigation Canal (Sta. 14+400)	50
	Diversion Point (Sta. 2+960)	100
Canas	Confluence with NIA Irrigation Canal (Sta. 10+450)	60
	River Mouth (Sta. 0+00)	100

Table R 9.14Lag Time between Peak Rainfall in the River Basin and
Peak Runoff Discharge in the Lower Reaches

Note: The simulation is made based on the probable flood of 2-year return period

In addition to the above flood travel time, a certain extent of spare time to predict flood risk will be availed through the public storm warning information given by PAGASA and the observation of incremental rate of river water level and/or the rainfall intensity in the river basin, as described below.

(1) Hydrometeorological Conditions for Actions of Step-1 (Stand-by)

Step-1 or the standby for flood warning and evacuation shall be put into effect once PAGASA releases "Public Storm Warning Signal No. 1," which indicates that a tropical cyclone with a wide velocity of 30 to 60km/hr would prevail over the Study Area within 36 hours.

(2) Hydrometeorological Conditions for Actions of Step-2 (Alert Stage)

Step-2 or the alert stage shall be put into effect when the weather conditions and/or river conditions reach any of the following critical levels:

- PAGASA releases "Public Storm Warning Signal No. 2", which indicates that a tropical cyclone with the wide velocity of 60 to 100km/hr would prevail over the Study Area within 24 hours.
- The accumulated rainfall for 5 minutes gauged in the Study Area reaches the probable rainfall intensity of 2-year return period.

This Step will start based on the accumulated rainfall for 5 minutes, while the next Step-3 (Warning Stage) is based on the accumulated rainfall for 30 minutes. Accordingly, the minimum time duration allowed for this Warning Stage is 25 minutes, which is ruled by such accumulated rainfalls. The detailed clarifications on the accumulated rainfall are as described in Subsection 9.4.4

(3) Hydrometeorological Conditions for Actions of Step-3 (Warning Stage)

Step-3 or the warning stage shall be put into effect when the weather conditions and/or river conditions reach any of the following critical levels:

- PAGASA releases "Public Storm Warning Signal No. 3," which indicates that a tropical cyclone with the wide velocity of 100 to 185km/hr would prevail over the Study Area within 18 hours.
- The river water levels at the designated locations reach the predetermined critical level, which indicates that the river channel would take the bank-full discharge within one hour.
- The accumulated rainfall within 30 minutes gauged in the Study Area reaches the probable rainfall intensity of 2-year return period.

The minimum time duration allowed for this Warning Stage is 30 minutes, which is ruled by the difference in gauging time for the accumulated rainfalls and river water levels in this stage and the next stage. The detailed clarifications on the accumulated rainfall and river water levels are as described in Subsection 9.4.4.

(4) Hydrometeorological Conditions for Actions of Step-4 (Evacuation Stage)

Step-4 or the evacuation stage shall be put into effect when the weather conditions and/or river conditions reach any of the following critical levels:

- PAGASA releases "Public Storm Warning Signal No. 4," which indicates that a tropical cyclone with the wide velocity of more than 185km/hr would prevail over the Study Area within 12 hours.
- The river water levels at the designated locations reach the predetermined critical level, which indicates that the river channel would take the bank-full discharge within 30 minutes.
- The accumulated rainfall within 60 minutes gauged in the Study Area reaches the probable rainfall intensity of 2-year return period.

The minimum time duration allowed for this Evacuation Stage is estimated at 30 minutes taking the aforesaid flood travel time into account. The details of the above river water levels and accumulated rainfall are as described in Subsection 9.4.4

9.5.4 Technical Specification for Gauging Accumulated Rainfall and River Water Level

As described above the accumulated rainfalls and the river water levels are proposed as the boundaries to initiate each of the steps for flood warning and evacuation. The details of these accumulated rainfall and river water levels are as described below.

(1) **River Water Level**

The river water level would be the most definite and simple indicator to judge the possibility of river overflow. Should the lower river water level be set as the boundary to initiate the actions for each step of flood warning and evacuation, the earlier actions could be made. However, the lower river water level would cause more frequent failures in prediction of river overflow. In order to compromise such dilemma, the following assumptions are made:

- The actions to be taken in Step 3 (the Warning Stage) and Step-4 (the Evacuation Stage) would require 30 minutes at least to spare. Based on this concept, the river water level, which would emerge one hour before the river channel reaches the bank-full state, is assumed as the critically necessary indicator to initiate Step 3 (the Warning Stage). The river water level, which would emerge 30 minutes before the bank-full state, is likewise assumed as the indicator for Step-4.
- The river overflow firstly emerges out at the bottleneck section, which possesses the smallest flow capacity along the river channel. Hence, the critical water levels are set as those that cause the river flow at the said bottleneck section.

• The river overflow could initially occur in the event of the probable flood of 2-year

return period in the Study Area. Taking such river channel flow capacity, the above river water levels are set based on the design hydrograph of 2-year return period.

The monitoring points for river water level shall be located in the target areas for flood warning and evacuation and at the same time, they should have easy accessibility during flood. From this point of view, several bridge sections are selected as monitoring points, and their critical water levels to initiate Steps-3 and 4 were estimated based on the aforesaid

Photo-1 Example of River Water Level Indicator for Flood Warning and Evacuation

assumptions. As the result, the following locations and their critical river water levels are proposed for the objective flood warning and evacuation.

	Location			Critical Water Level*		
River	Name of Bridge & Sta. No.	of Bridge & Sta. No. Barangay/Municipality		Step 4 (Evacuation)		
	Binakayan (Sta. 1+950)	Balsahan-Bisita, Kawit	3.5	3.4		
Imus	Isabel II (St. 4+940)	Palico I, Imus	2.2	0.8		
	Imus Isabel II (St. 4+940) Imus (Sta. 6+000) Imus (Sta. 6+000)	Imus	1.0	0.7		
	San Juan (Sta. 2+350)	San Juan I, Noveleta	4.0	3.2		
San Juan	Noveleta (Sta. 3+280)	Polacion, Noveleta	3.7**	2.9**		
	Ylang-Ylang (Sta. 4+480)	San Jose I, Noveleta	4.4**	3.3**		
Canas	Tejero (Sra. 2+700)	Tejero, General Trias	8.8	8.3		

Table R 9.15Proposed Monitoring Locations for River Water Level and Critical WaterLevels for Initiation of Steps 3 and 4 of Flood Warning and Evacuation

* Height below bridge road surface

** Height below the top of dike

(2) Short-Term Rainfall Intensity

As described above, rainfall intensities (i.e., the cumulative rainfall of short time durations of 5 to 60 minutes) are proposed in order to secure the time duration of 25 to 30 minutes to take the necessary actions for Step-2 to 4 for flood warning and evacuation. The recurrence probability of the objective rainfall intensities is assumed at 2-year return period, which almost corresponds to the minimum river channel flow capacity of the existing river channel. Taking this recurrence probability and the aforesaid durations of cumulative rainfall for each Step of flood warning and evacuation into account, the critical level of the rainfall intensities were estimated, as listed below.

Table R 9.16Critical Cumulative Rainfall Initiation of Steps 2, 3 and 4 of
Flood Warning and Evacuation

Step	Objectives of Rainfall Gauge	Critical Level to Initiate the Step		
Step 2 (Alert Stage)	Cumulative Rainfall in 5 min.	12.3 mm		
Step 3 (Warning Stage)	Cumulative Rainfall in 30 min.	38.8 mm		
Step 4 (Evacuation Stage)	Cumulative Rainfall in 60 min.	54.3 mm		

The rainfall gauging equipment needs to be the tipping bucket type in order to catch the above short-term rainfall intensities for 5 to 60-minute duration, but all of the existing rainfall gauging equipment in and around the Study Area are the storage indicator type. Due to the present condition of gauging, the installation of three new tipping bucket type rainfall gauging equipment is proposed at the locations listed in the table below. Steps 2 to 3 shall start when any of these three gauging stations reach the critical levels shown above.

 Table R 9.17
 Proposed Tipping Bucket Type of Rainfall Gauging Equipment

Location	Agency to be Maintained and Operated
PAGASA Climate Station in Amadeo	PAGASA
Provincial Office of Cavite in Trece Martires City	PDCC
Municipal Office of Dasmarinas	MDCC of Dasmarinas

9.5.5 Establishment of Disaster Operation Center

Disaster Operation Centers for PDCC, CDCC/MDCC and BDCC shall be established as proposed below:

The PDCC is required to newly set up its own operation center otherwise called the "Provincial Area Coordinating Center" as prescribed in Executive Order No. 97, 2007. It is indispensable to place the Center at or adjacent to the Provincial Office in Trece Martires City so as to facilitate effective communication among the members of PDCC.

The MDCC Operation Center has been established only for the three municipalities of Imus, Kawit and Tanza, and needs to be established for the other municipalities covered by the proposed flood risk

area which include Bacoor, Noveleta, Tanza and General Trias. The Operation Center should be preferably placed at the Municipal Hall because of easier communication with the members of MDCC, but an alternative building would be required should the Municipal Hall is situated in a habitual flood inundation area.

The existing barangay hall would be in general used as the BDCC Operation Center. However, should the barangay hall be located in the habitual flood inundation area, another building shall be selected as the alternative Operation Center.

9.5.6 Establishment of Evacuation Center

As described in the preceding subsection, the Provincial Government of Cavite had preliminarily identified the existing eight public places in and around the entire Study Area as definite evacuation centers and further conceived the public elementary/secondary schools as potential centers. However, details of these candidate evacuation centers have not yet been clarified. Moreover, most of the barangays as well as the municipalities other than Imus and Kawit in the Study Area have not yet designated any definite flood evacuation center in their respective jurisdictions.

Under the above current situations, each of the municipalities and the barangays are encourages to decide on their definite evacuation centers and disseminate the information among the residents taking the flood risk map proposed in the above Subsection 9.4.1 into account. The criteria for the selection of eligible evacuation centers are as enumerated below:

- (1) The evacuation center shall be located out of the flood risk area and preferably in an elevated place.
- (2) It shall be equipped with power and water supply systems and adequate toilet facilities together with the related waste disposal system.
- (3) It shall be preferably accessible by vehicle, which would facilitate easy evacuation for handicapped persons and/or effective conveyance of materials/equipment for evacuation.
- (4) It shall be preferably equipped with health facilities and communal kitchen.

9.5.7 Communication Network for Execution of Flood Warning and Evacuation

The eligible communication route among the government and non-government organizations relevant to flood waning and evacuation as well as the residents is proposed, as shown in Fig. R 9.2 taking the present disaster communication system as well as the necessary flow of information to achieve the aforesaid step-wise flood warning and evacuation into account. The principal points on the proposed communication flow are as described below.

(1) **Communication for DCC Operation Centers**

The PDCC, MDCC and Barangay Operation Centers shall take the following communications:

- The PDCC Operation Center shall receive all necessary hydrometeorological information including weather information from PAGASA, as well as the aforesaid river water level and cumulated rainfall observed in the Study Area.
- The above hydrometeorological information is step-wisely transmitted from PDCC to MDCC and from MDCC to BDCC.
- The river conditions in each jurisdiction area of BDCC are step-wisely transmitted from BDCC to MDCC and from MDCC to PDCC.
- Each of the operation centers shall advise their Chairman of DCC to release the orders on necessary actions for flood warning and evacuation.

(2) Communication for Chairman of DCC

The Chairmen of PDCC, MDCC and BDCC shall take the following communications:

- The Chairman of PDCC shall determine the provincial-wide actions necessary for flood warning and evacuation and transmits them to the chairman of MDCC. The Chairman of MDCC shall likewise determine the municipality-wide actions necessary for flood warning and evacuation and transmits them to the Barangay Captain. The Barangay Captain shall determine the necessary actions within his jurisdiction based on the information from the MDCC.
- The Chairmen of PDCC, MDCC and BDCC shall order their respective operation groups to execute the necessary actions for flood warning and evacuation.
- The Chairman of PDCC may communicate with the Chairman of NDCC and/or the RDCC to take the nationwide/ the regional-wide disaster management as required.

(3) **Operating Group of DCC**

The Operating Group of PDCC, MDCC and BDCC shall take the following communications:

- The Operating Groups shall take the necessary actions for residents including dissemination of flood warning/orders of flood evacuation, guidance to residents to the evacuation centers and all other necessary relief activities.
- The Operating Groups shall communicate with each other on the utmost utilization of human resources, equipment and materials necessary for flood warning and evacuation.

Fig. R 9.2 Communication Flow of the Flood Warning and Evacuation System

9.5.8 Equipment for Flood Warning and Evacuation

Equipment such vehicles and heavy construction equipment currently owned by the members of PDCC, MDCC and BDCC are in principle to be utilized in the flood warning and evacuation. Nevertheless, it is indispensable to newly procure the rainfall gauging equipment (tipping bucket type) mentioned above and the equipment for communication among PDCC, MDCC, and BDCC. The items to be procured are as described below.

(1) Rainfall Gauging Equipment

The tipping bucket type rainfall gauging equipment could be simply and easily installed and its procurement cost would be around 80,000 pesos/unit. The three rainfall gauging points mentioned above are preliminarily assumed as the minimum requirement to estimate the rainfall intensity influential to the flood runoff discharge in the lower reaches of the Study Area. It is recommended to initially operate these three gauging equipment and gradually add gauging points through the actual operation of the flood warning and evacuation system.

(2) Communication Equipment

The disaster coordinating councils from the province down to the Barangay level shall be provided with the necessary communication equipment such as VHF base radio sets, VHF hand-held radio sets and megaphone. The required number of communication equipment is as proposed below.

DCC	Office	VHF Base Radio Set	VHF Hand-Held Radio Set	Megaphone	
PDCC	Operation Center	1	1	0	
FDCC	Operating Group	0	30	0	
MDCC	Operation Center	9	9	0	
MDCC	Operating Group	0	45	0	
PDCC	Operation Center	0	60	0	
BDCC	Operating Group	0	0	180	
	Total	10	145	180	

Table R 9.18Number of Communication Equipment Required for
Flood Warning and Evacuation

9.5.9 Community-Based Flood Warning and Evacuation

Of the local government units from the provincial level to the barangay level, the barangay has the following particular characteristics:

- All members of the Barangay Assembly, which governs the barangay, are composed of the residents.
- The Barangay Captain, who is the head of the barangay, has to be a resident who has continued to reside in the barangay for more than six months.
- All members of the BDCC are composed of residents, and no government agency is involved in the BDCC.

The Barangay is defined as the smallest government administrative unit in the Philippines as mandated in Republic Act (RA) 7160 of 1991, and it is also regarded as the resident's self-governing body because of the above particular characteristics. Therefore, the strengthening of BDCCs could lead to the promotion of community-based flood warning and evacuation.

The reorganization of PDCCs and CDCCs/MDCCs together with the preparation of the disaster preparedness plan has been completed or is now in progress in the Study Area as described in the foregoing subsection. On the other hand, the institutional setup of BDCCs in the Study Area is left behind. As the result, the residents currently evacuate from floods based on their own experience/judgment and means of transportation.

The ultimate purpose of the proposed flood warning and evacuation system is to support the voluntary evacuation of residents from the risk of floods. However, the objective flood warning and evacuation would be hardly achieved unless the BDCC in particular could function based on its definite disaster preparedness plan. From this point of view, the following actions are preliminarily proposed:

(1) Organizational Setup and Tasks of BDCC

The organization structure of BDCCs shall be set with reference to the mandate in PD 1566 and in due consideration of the eligible human resources in each barangay. The major points on the organization setup are as described below:

- The Barangay Captain shall be the chairman of BDCC, and a vice-chairman may be selected to assist the Barangay Captain or to be the acting chairman in absence of the Barangay Captain. The existing Executive Officer of the Barangay Vigilance Committee (called "Barangay Tanod") may be preferably appointed as the vice-chairman, because of the roles of the Staff Team and the Operations Teams mentioned below.
- The Staff Team and the Operations Team need to be organized as the executing body of BDCCs on disaster management. The Operations Team shall undertake the actual field works of dissemination of flood warning and support of resident's evacuations, while the Staff Team shall undertake the necessary logistical support for the smooth execution of the Operations Team. The existing organizations of the barangay such as the aforesaid Barangay Tanod or the Mediation Committee (called "Lupong Tagapamayapa") could take the roles of the said Operation and Staff Team. The details of roles required of the Staff Team and the Operations Team and are as listed in Table 9.4.
- If the Barangay is too large having the plural "puroks" (the communal unit of barangay), the Operations Team may be organized for each of the "puroks."
- The disaster operation center (DOC) shall be established to provide the necessary information to all members of the BDCC, and the members of the above Staff Team shall operate the DOC.

(2) Required Activities to Heighten Public Awareness

It is indispensable to heighten the public awareness of residents on the necessity and procedures of the proposed flood warning and evacuation. In order to heighten public awareness, each BDCC shall undertake the following activities:

- To determine the eligibility of evacuation centers among those specified by the PDCC/MDCC or to set up alternative evacuation centers exclusively for the barangay, if all evacuation centers specified by PDCC or MDCC are not applicable;
- To select the available evacuation routes to approach the centers, as well as the pick-up points for physically handicapped persons;
- To clarify the extent of potential flood area in the jurisdiction of the BDCC based on the flood risk map developed in the Study;
- To develop the flood risk map, which presents the above extent of probable flood inundation area, the flood evacuation center, the flood evacuation routes and other relevant information such as location of hospitals and list of telephone numbers of government offices relevant to rescue of evacuees;
- To regularly open briefing sessions, consultation meetings and/or workshops to disseminate to the residents information on the flood risk map and the procedures of flood warning and evacuation and/or to obtain requests and/or comments from the residents; and

• To repeat the training drills on flood warning and evacuation by the BDCC in collaboration with the residents so as to make the members of BDCC and the residents proficient.

Chapter 10. Environmental and Social Considerations on the Alternative Flood Mitigation Plan

10.1 Introduction

10.1.1 Necessity of IEE

The studies on environmental and social considerations for the Project have to be conducted to meet the guidelines of the Government of the Philippines (GOP) and Japan International Cooperation agency (JICA) according to the Implementation Arrangement agreed upon between DPWH/Provincial Government of Cavite and JICA. Based on the guidelines of the GOP, both of EIA and IEE are not necessary for the master plan study. However, this Project is classified as Category A under the guidelines of JICA because the Project could possibly cause significant adverse impacts of land acquisition and relocation/resettlement of project-affected-persons (PAPs). Hence, the IEE is to be conducted as a strategic environmental assessment for the preparation of the master plan. For the legal framework of environmental and social considerations in the Philippines, refer to Appendix 4-1 in Vol.4.

10.1.2 Scope of Work of the IEE

The objective of the IEE study is to assist the Project Proponent in the preparation of the optimum master plan through a strategic environmental assessment on the proposed master plan. For this purpose, the IEE study will include the following items of work:

- (1) Identification, through scoping, of the environmental elements, which would receive significant adverse impacts with the implementation of the proposed projects;
- (2) Assessment of the impacts on the environmental elements identified by the scoping as those that might be subject to significant or moderate impacts by the proposed projects;
- (3) Identification of possible mitigation measures against the impacts where they exceed the allowable limit; and
- (4) Identification of the necessary monitoring items in the future.

10.1.3 Baseline Environmental Conditions

The existing environmental conditions are adopted as the baseline for the environmental assessment of the proposed projects. The existing environmental conditions of nature, socio-economy and public hazard of the project area are as described in Chapter 2 and Chapter 3.

10.1.4 Alternative Projects

The impact is to be assessed for all the proposed alternative projects together with the "without project" situation. Eight (8) alternative measures are proposed for the prevention of river-overflow flood of the Imus and San Juan rivers with the combination of various structural measures (river improvement, off-site flood retarding basin, flood diversion channel, on-site flood regulation pond). Further, each alternative will vary according to the design flood scales of 2-year, 5-year, 10-year and 20-year return period. Since the Canas River can carry a flood-flow with a 20-year probability without riverbank overflow, it is excluded from the study on alternatives. For inland drainage of the low coastal area, two (2) alternatives consisting of different component projects are proposed for the design flood scale of 2-year. Those are listed in Table R 8.7 and R 8.24. For details, see Chapter 8, Sections 8.1 and 8.2.

10.2 Identification of Environmental Elements for Assessment (Scoping)

10.2.1 Methodology

The environmental elements to be assessed are identified by the two-dimensional matrix method. Those environmental elements cover three categorized elements of social and natural environments and public hazard, which are further subdivided into several elements, respectively, as enumerated below.

- <u>Social Environmental Element</u> includes: (a) involuntary resettlement and land acquisition;
 (b) impact on livelihood and local economy; (c) change in land use; (d) social institution;
 (e) social service and infrastructure; (f) poverty, indigenous people and ethnic minority;
 (g) uneven distributed losses and benefits; (h) historical and archaeological site; (i) regional conflicts of interests; (j) water use; and (k) fishery.
- (2) <u>Natural Environmental Element</u> includes: (a) topography and geology; (b) groundwater; (c) soil erosion; (d) river flow regime; (e) seashore; (f) fauna, flora and ecological diversity; (g) landscape; and (h) global warming.
- (3) <u>Public Hazardous Element</u> includes: (a) air pollution; (b) water pollution; (c) soil pollution; (d) solid waste; (e) noise and vibration; (f) ground subsidence; and (j) odor.

The matrix is prepared for both construction and operation phases. The adverse impacts are evaluated in terms of: (1) magnitude/extent; (2) occurrence probability; and (3) duration. These are then scored from A to C; namely, (A) stands for large impact, (B) for medium impact, (C) for uncertain, and No Score for no or negligible impact. In this study, the following criteria are applied for A and B.

- A: Magnitude/extent of the impact is large and it continues for a long time or it will not recover.
- B: All impacts other than A. Even if the magnitude/extent of the impact is large, the impact is categorized as B when it is temporary and recovery is made in the near future.

10.2.2 Identified Environmental Elements

Anticipated adverse impacts by the proposed projects in construction and operation phases are as described below.

(1) **Pre-construction/Construction Phase**

- (a) The full-scale river improvement will cause a large number of house relocation.
- (b) The off-site retarding basin is proposed to minimize the house relocation, by which the full-scale river improvement is scaled down to partial improvement. The combination of partial river improvement and off-site retarding basin will largely decrease the number of house relocation. On the other hand, this will require a considerable land acquisition of farmland/grassland for the off-site retarding basin.
- (c) The diversion channel proposed for the San Juan River is an alternative of the off-site retarding basin. However, it will cause a moderate number of house relocation and a medium scale of land acquisition of farmland/grassland.
- (d) The proposed structures for the inland drainage will also require a certain extent of house relocation and land acquisition of farmland/grassland and fishpond.
- (e) Some people may lose their jobs due to house relocation, and tenant farmers and tenant fishpond operators may lose their jobs due to land acquisition of farmlands and fishponds.
- (f) Improvement of the San Juan River, construction of the San Juan diversion channel, and construction of the coastal dikes for the inland drainage may need to clear some existing mangrove in the river mouth and coastal areas. Further, the construction of off-site retarding basin will clear the existing mangroves in some places.
- (g) Excavation of the proposed off-site retarding basin and diversion channel might lower the groundwater table in the surrounding area, causing some adverse impacts on the existing well water uses. Further, the diversion channel will cause saline water intrusion in the new channel and it might affect the groundwater quality in the surrounding area in the future.
- (h) The proposed off-site retarding basin and diversion channel may intersect the existing roads and irrigation canals. Further, the proposed coastal dike may hamper the anchor of small fishing boats (banca) inside the canals of the dike.
- (i) The river improvement works will cause air pollution, water pollution and noise during the construction period. However, the off-site retarding, diversion channel and off-site

retention pond will cause less air pollution and noise during the construction stage, because their construction sites are rather far from the residential areas.

(j) The proposed on-site regulation pond for large industrial and housing development projects will require no land acquisition by the public sector. However, some governmental regulations are necessary to require the private sector to install such flood regulation ponds in their development projects.

(2) **Operation Phase**

- (a) Control of land development in the project area might curb industrial development, resulting in decrease of employment opportunity.
- (b) Control of land development in the project area might cause regional conflicts between the lower reaches as the beneficial area of flood mitigation and the upper reaches as the objective area for control of land development.
- (c) The improved river, off-site retarding basin, diversion channel, drainage facilities and on-site regulation pond might induce people's garbage dumping.
- (d) Wastewater from the surrounding areas might be discharged into the proposed off-site retarding basins, off-site retention pond and on-site regulation pond, resulting in emission of foul odor.

The identified environmental elements by the scoping on 10 alternatives are shown in Table 10.1 together with score of impact. For the detailed scoping matrixes, see Tables 1 to 3 of Appendix 4-2 in Vol.4.

10.3 Objective Environmental Elements of Impact Assessment

The environmental elements that will affect the proposed alternative projects of the master plan are identified through the scoping works described in the above Section 10.2. These elements are as summarized below.

(1) **Pre-construction/Construction Phase**

(1) Resettlement, (2) Land Acquisition, (3) Loss of Employment, (4) Disruption of Infrastructure, Water Use and Fishery, (5) Groundwater, (6) Mangrove, (7) Air Pollution, (8) Water Pollution, and (9) Noise

(2) **Operation Phase**

(1) Impact on Local Economy, (2) Regional Conflicts of Interest, (3) Solid Waste Disposal,(4) Water Pollution, and (5) Odor.

The impacts of the above elements are assessed for the proposed alternative projects as described below.

10.4 Impact Assessment and Possible Mitigation Measures for Proposed Projects

Adverse impacts of the above environmental elements on the river-overflow flood prevention project are assessed for the proposed eight alternatives with four design flood scales each, i.e., 2-year, 5-year, 10-year and 20-year (total cases: 32). Similarly, impacts on the inland drainage project are assessed for two alternatives with the fixed design flood scale of 2-year. Further, possible mitigation measures against the impacts are proposed when the impacts exceed the allowable limits.

10.4.1 Pre-construction/Construction Phase

(1) **Resettlement**

(a) Number of House Relocations

The full-scale river improvement will cause a large number of house relocation for the main rivers of Imus and San Juan. The tributary improvement of the Imus River (Bacoor and Julian rivers), the San Juan diversion channel and the ring/coastal dikes of the inland drainage will cause a considerable number of house relocation. The off-site

retarding basin and off-site retention pond will also cause a few number of house relocation.

The number of required house relocations in each alternative is shown in Table R 10.1 below. For the number of house relocations by each component project, refer to Table 10.2.

Alternatives Design Flood Scale Alternative 2-year 5-year 20-year 10-year **River-Overflow Flood Prevention** 1,080 1,350 1,480 1,610 FI-1 FI-2 270 275 275 275 275 FI-3 260 275 275 FS-1 250 330 460 650 FS-2 71 73 74 76 FS-3 192 285 513 152 FS-4 160 189 204 224 FS-5 60 185 74 75 **Inland Drainage** D-1 121 D-2 341

 Table R 10.1
 Number of House Relocation of Proposed

<u>Note</u>: The alternative FS-5 consists of sub-projects of partial river improvement, retarding basin, diversion channel and on-site regulation pond. In this alternative, the least cost combination of sub-projects varies depending on the design flood scale as follows: (i) partial river improvement + on-site regulation pond for 2-year flood, (ii) partial river improvement + diversion channel + on-site regulation pond for 5-year flood, and (iii) partial river improvement + retarding basin + on-site regulation pond for 10-year and 20-year floods. In this alternative, number of the house relocation for 10-year and 20-year floods are smaller than that for 5-year flood since the retarding basin requires a smaller number of house relocation than the diversion channel.

(b) Sampling Survey on Household Conditions of Riverbank Residents

The JICA study team had conducted a sampling interview survey on the household conditions of the residents (277 households) who are living along the Imus, San Juan and Canas rivers. In order to get a more representative sample of potential resettling households, only the survey results from would-be affected barangays within the proposed project areas and immediately surrounding areas were used. Those are 199 samples distributing in 11 barangays of 6 municipalities as shown in the below Table R10.2.

Table R 10.2Distribution of Surveyed Riverbank

	Residents
Municipality	No. of Surveyed Households by Barangay
Bacoor	Banalo: 10, Mabolo III: 9, Sineguelasan: 30
Kawit	Manggahan-Lawin: 19
Noveleta	San Juan II: 24, Santa Rosa I: 12, Santa Rosa II: 11
Rosario	Tejeros Convention: 14
General Trias	Tejero: 36
Tanza	Biwas: 16, Bucal: 18
Total	Barangay: 11, Households: 199

House relocation of the proposed alternatives is mostly caused by river and drainage channel improvement. The sampled households of 199 are all located on the riverbank areas which are affected by the proposed alternative projects. The sampled households are considered to be good representatives of the potential resettling households. Number of the sampled households is also considered sufficient, compared to the number of the house relocations in the proposed alternatives.

The survey results on the 199 households are summarized in Table 1 of Appendix 4-3 in Vol.4. The table presents the following conditions of each household: (i) location, (ii) family (size, respondent's sex/age/education and family head's sex/age), (iii) working family member (sex/age/job of each member), (iv) family income, (v) house/lot ownership and (vi) structure of house. Further, the survey inquired the perception for resettlement.

(c) Household Conditions

Household Population

Population of the 199 households distribute as shown in the below Table R 10.3 with an average of 5.69 persons per household.

Table R 10.3 Distribution of Household Population of Riverba	ank Residents
--	---------------

Population	1 - 3	4 - 6	7 - 9	10 <	No Data	Total
No. of Household	39 (20%)	93 (47%)	50 (25%)	15 (7%)	2 (1%)	199 (100%)

Gender and Age of Respondent/Family Head

To discuss the gender issue, sex of the family head should be confirmed. However, the head of each family was not identified through this interview. The respondents of the interview were not always the heads of family. They were mostly wives who were staying at home during the daytime.

On the other hand, income data of each working family member were obtained from most of the surveyed households. Hence, the biggest contributor to the family income is assumed to be the family head. In case the income data of each working family member are not available, the respondent is assumed to be the family head. Based on the above assumption, the family heads of 199 households were determined. Gender and age distribution of the respondents and family heads are summarized in the below Table R10.4.

Table R 10.4 Gender and Age Distribution of Respondent/Family Head of Riverbank Residents

	Ge	nder	Age Distribution						
Item	Male	Female	< 30	31 - 40	41 - 50	51 - 60	61 <	No Data	Total
Respondent	59	140	45	45	39	40	29	1	199
_	(30%)	(70%)	(23%)	(23%)	(20%)	(20%)	(14%)	(1%)	(100%)
Family Head	136	63	57	48	42	26	25	1	199
	(68%)	(32%)	(29%)	(24%)	(21%)	(13%)	(13%)	(1%)	(100%)

Income Sources

Total population of the responded 197 households is 1,120, averaging 5.69 persons per household. Among them, 367 persons are engaged in various kinds of jobs in the responded 193 households with an average of 1.90 persons per household. Their jobs are categorized as shown in the below Table 10.5.

Table R 10.5 Job of Famil	y Members of Riverbank Residents
---------------------------	----------------------------------

Category	Kind of Job	Number
Business/Sales	Buy and sell, store/shop, vendor, agent, goods production, rental, etc.	87 (24%)
Fishing/Farming	Fishing, farming	28 (8%)
Office Employee	Government/company office employee	30 (8%)
Technician	Mechanical/electrical technician	12 (3%)
Factory Worker	Factory/bakery/market worker	60 (16%)
Const. Worker	Carpenter, masonry, construction worker	18 (5%)
Driver	Car/jeepney/tricycle driver	31 (8%)
Health Care/Helper	Nurse, health care, maid, helper	14 (4%)
Sewing/Laundry	Sewing, laundry, manicure, etc.	22 (6%)
Others	Security guard, overseas worker, pension, small service worker, etc.	48 (13%)
No Data		17 (5%)
Total		367 (100%)

Income Level

Family income data are available for 186 households among the surveyed 199 households. With regard to the family income of woman-head households, data are available for 57 households among 63 woman-head households. Per capita monthly income distributions of the total households and woman-head households are shown in the below Table R10.6.

Income Range (P/month)	No. of Total Household	No. of Woman-head Household
< P 1,700	94 (51%)	32 (56%)
P 1,701 – P 3,000	60 (32%)	17 (30%)
P 3,001 – P 4,000	12 (6%)	3 (5%)
P 4,001 – P 5,000	9 (5%)	0
P 5,001 <	11 (6%)	5 (9%)
Total No. of Household	186 (100%)	57 (100%)
Ave. Per Capita Income (P/month)	P 2,158	P 2,080

 Table R 10.6
 Per Capita Monthly Income Distribution of Riverbank Residents

The National Statistical Coordination Board has estimated the annual per capita poverty threshold in Cavite Province at Php 14,965 for the year 2000. For the year 2007, it was estimated to be Php 20,952 by multiplying the price escalation rate of 1.4 during 2000-2007. Hence, the current monthly per capita poverty line in the project area is assumed at Php 1,700/person/month. (Source: National Statistical Coordination Board; NSCB Fact Sheet, January 2007.)

Fifty-one percent (51%) of the total households are considered to be below poverty line. With regard to the woman-head households, 56% are below poverty level. For details of the per capita family income distribution, see Table 2 of Appendix 4-3 in Vol.4.

Ownership of Lot/House and House Structure

Ownership of the housing lot and house building of the surveyed households are classified as shown in the following Table R 10.7.

	Lot		House			
Ownership	No. of	Remarks	Ownership	No. of	Remarks	
	Households			Households		
Own Lot	31 (16%)		Own House	127 (64%)		
Family	74 (37%)	Incl. parents/parents	Family	31 (16%)	Incl. parents/parents	
		in law and relatives			in law	
Private	33 (17%)		Relative	16 (8%)		
Government	35 (18%)	Informal occupation	Landlord	18 (9%)		
Others	21 (11%)		Others	7 (3%)		
No Data	5 (2%)		No Data	0		
Total	199 (100%)			199 (100%)		

 Table R 10.7
 Lot and House Ownership of Riverbank Residents

Among 199 households, 16% have own lot and 64% have own house. However, the households which have both own lot and own house is limited to 29 (15%). About 35 households (18%) informally occupy the government land.

The house structures are generally classified into the followings: (i) built by mostly scrap materials, (ii) built by semi-concrete, (iii) built by concrete and (iv) others. The 199 houses are classified as follows in terms of structure. Scrap material house: 50 (25%), semi-concrete house: 83 (42%), concrete house: 56 (28%), other houses: 8 (4%) and no data: 2 (1%).

The households living in scrap material houses are naturally considered that they do not own the housing lot and are below the poverty level in family income.

Educational Attainment

The data of educational attainment are available only for the respondents of the interview survey. The highest educational attainment of the 199 respondents are as follows: (i) less elementary school: 21 (10%); (ii) elementary school graduate: 40

(20%); (iii) less high school: 33 (17%); (iv) high school graduate: 63 (32%); (v) less college: 11 (6%); (vi) college graduate: 22 (11%); (vii) others (vocational school): 6 (3%) and (viii) no data: 3 (1%).

(d) Required Capacity of New Settlement

Table R 10.8

Usually, families who own both housing lot and house can find new settlements by themselves with the compensation money. However, the other families may need governmental assistance in resettlement. In this study, it is assumed that all of these families (85% of the affected families) will resettle in new settlements provided by the government. The required capacity of a new settlement has been estimated for all alternative projects, as shown in the following Table R 10.8.

Required New Settlement Capacity of

	Propo	sed Alternat	tives	1 5			
Alternative	Design Flood Scale						
Alternative	2-year 5-year 10-yea		10-year	20-year			
River-Overflow Flood Prevention							
FI-1	920	1,150	1,250	1,400			
FI-2	230	235	235	235			
FI-3	220	235	235	235			
FS-1	210	280	390	550			
FS-2	60	65	65	65			
FS-3	130	160	240	440			
FS-4	140	160	170	190			
FS-5	50	160	65	65			
Inland Drainage							
D-1	105	-	-	-			
D-2	290	-	-	-			

(e) Perception for Resettlement

Attitude on Relocation Issue

The interview survey involved 199 interviewees and their answers to the relocation issue are summarized as follows (some of them made multiple answers):

- (i) To ask the government to give them enough time to prepare for house relocation: 41%
- (ii) To coordinate with the barangay officials: 32%
- (iii) To join community discussions about the issue: 14%
- (iv) To oppose any relocation idea: 13%

Preferred Resettlement Area

As to the preferred resettlement area, the answer of all the 199 interviewees including those who oppose resettlement is as summarized in the following Table R 10.9.

|--|

Location	No. of Respondents	(%)
Cavite Province	161	81
Cavite Province (not specified)	55	28
Same/Near Place	16	8
Lower Area (Bacoor, Kawit, Noveleta, Rosario, Tanza)	43	22
Central Area (Imus, Dasmariñas, General Trias, Trece Martires)	34	17
Upper Area (Indang, Silang, Tagaytay)	10	5
Outside of the Basin (Naic, Alfonso)	3	1
Outside of Cavite Province	17	9
Others (Anywhere, Upland Area, Flood Free Area, etc.)	18	9
No Response	3	1
Total	199	100

(f) Possibility of Resettlement Problem Solution

The resettlement problems mentioned above could possibly be solved with no vital difficulty except the case of full-scale river improvement if the government takes appropriate mitigation measures, based on the following considerations:

- (i) The provincial government is planning to develop resettlement sites consisting of 267 ha in total with the capacity of about 32,000 families to boost the clearing of informal settlers living in danger areas or other public lands. The potential resettlement sites include Bacoor (150 ha), Dasmariñas (5 ha), Trece Martires (53 ha), General Trias (44 ha) and Kawit/Imus/Noveleta/Rosario/Tanza (15 ha or 3 ha each). For details, refer to Chapter 11. (Note: The standard accommodation capacity of low cost housing development is 120 families per ha.)
- (ii) The number of people who may oppose the house relocation is not large.
- (iii) The number of people who may insist to live in the present place or nearby places is not large.
- (iv) The government would formulate and execute a comprehensive resettlement program, which involves a variety of activities such as identification of the PAPs, appraisal of the necessary compensation/entitlement for the PAPs, and social/income restoration for the PAPs during the post-relocation stage. Details of the activities and arrangements required for the resettlement plan are as described in the under-mentioned subsections 11.5.

(2) Land Acquisition

(a) Land Area to be Acquired

The off-site retarding basin, diversion channel, off-site retention pond and coastal/ring dikes will require a considerable area of land. The existing use of the land is classified into active farmland, grassland (including idle/abandoned farmland, bush, etc.), active fishpond and abandoned fishpond. The land area to be acquired for each alternative is shown in the following Table R 10.10. For the land acquisition area of each component project, refer to Table 10.3. Table 10.3 excludes housing lot and public/government land. The land acquisition of housing lots is dealt together with house relocation in this study.

								•			•				(Unit	: ha)
		Design Flood Scale														
Alt.		2-у	ear			5-у	ear			10-	year			20-	year	
No.	F	7	(Ĵ	F.	Р	A	.Р	F	7	(j	F.	Р	A	.P
	F	G	F.P	A.P	F	G	F.P	A.P	F	G	F.P	A.P	F	G	F.P	A.P
River-C	River-Overflow Flood Prevention															
FI-1	0	0	0	4	0	0	0	4	0	0	0	4	0	0	0	4
FI-2	21	37	40	25	31	49	40	25	36	53	40	25	44	62	40	25
FI-3	0	12	40	25	28	43	40	25	31	46	40	25	39	54	40	25
FS-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FS-2	24	9	0	0	35	18	0	0	62	22	0	0	78	25	0	0
FS-3	0	1	0	5	0	1	0	7	0	2	0	9	0	2	0	12
FS-4	13	8	0	4	20	9	0	6	34	19	0	7	57	23	0	8
FS-5	0	0	0	0	0	1	0	6	58	22	0	0	76	24	0	0
Inland I	Inland Drainage															
D-1	20	24	9	8	-	-		-	-	-	-	-	-	-	-	-
D-2	20	24	10	8	-	-	-	-	-	-	-	-	-	-	-	-

Table R 10.10Land Area to be Acquired	for Proposed Alternatives
---------------------------------------	---------------------------

Note:

1) F: active farmland, G: grassland including idle/abandoned farm and bush, F.P: active fishpond, A.P: abandoned fishpond.

2) The above land acquisition area excludes housing lots and public/government land.

As shown the above table, the full-scale river improvement (FI_1 and FS_1) scarcely need to acquire farmland and fish pond. It is because the full-scale river improvements only widen the existing river channels, while both sides of the river channels to be improved are almost all built-up.

(b) Sampling Survey on Household Conditions of Tenant Farmers and Fishpond Operators

The JICA Study Team had conducted a sampling interview survey on the household conditions of tenant farmers and fishpond operators. The owner farmers and fishpond operators are excluded since the land acquisition will cause no significant social problems on them. The interview was conducted for 22 tenant farmers and 12 tenant fishpond operators distributing in the municipalities and barangays shown in the following Table R 10.11.

	Tenant Farmers	Tenant Fishpond Operator		
Municipality	No. of Surveyed Households by	Municipality	No. of Surveyed Households by	
Wanterpunty	Barangay		Barangay	
Imus	Anabu I-G (Ragatan): 2, Anab II-B:	Kawi	Kaingin: 4, Waks: 1	
	1, Malagasan: 14, Paliko: 1			
Kawit	Baton Dalig: 1	Noveleta	San Rafael III: 7	
General Trias	Bacao II: 3			
Total	Barangay: 6, Households: 22		Barangay: 3, Households: 12	

 Table R 10.11
 Distribution of Surveyed Farmers and Fishpond Operators

Sampling Adequacy of Farmers

As shown in Table 10.3, active farmland exists in only the retarding basins/retention ponds of I-1, J-1, J-2, S-1, Y-2, M-2 and E-2. These are all located in the downstream area of the Imus and San Juan rivers: along or between the both rivers. The sampling locations (barangays) are also all located in the same district/region. It is considered that the sampled farmers well represent the affected farmers by the proposed alternatives.

The maximum active farmland to be acquired among the proposed alternatives is approximately 140 ha. Number of the maximum affected farmers is roughly estimated to be 140 by assuming that (i) average farmland of one household is 2 ha and (ii) 50% of the farmland of each household is affected by the project on average. From the above discussions, number of the sampled farmers (22 farmers) is considered sufficient, compared to the number of affected farmers.

Note:

- (1) The above average farmland area of 2 ha is assumed, based on the provincial statistical data of 2006 for the lower basin area.
- (2) Some farmers are fully affected, while the others are partly affected. Hence, it is assumed that 50% of the farmland of each farmer is affected by the project on average.

Sampling Adequacy of Fishpond Operators

As shown in Table 10.3, active fishpond exists only in the retarding basins (B-1, B-2 and B-3), retention pond (K-1) and along the coastal dike. However, B-1, B-2, B-3 and K-1 are enclosed by housing areas, resulting in aggravation of the pond environments and probably decrease of fish production. Further, Bacoor Municipality has prepared a land use plan of its administrative area in which B-1, B-2 and B-3 are to be all reclaimed for urban use in the near future. Considering the above situation, the sample fishpond operators were selected from the typical fishpond areas of Kawi and Noveleta.

The maximum active fishpond area to be acquired among the proposed alternatives is approximately 50 ha. Number of the affected fishpond operators is roughly estimated to be 50, based on the same assumption as farmers that (i) average fishpond area of one household is 2 ha and (ii) 50% of the fishpond area of each household is affected by the project on average. From the above, number of the sampled fishpond operators (12 fishpond operators) is considered sufficient, compared to the number of the affected fishpond operators by the proposed alternatives.

<u>Note</u>: The above average fishpond area of 2 ha is assumed, based on the provincial statistical data of 2006 for the coastal basin area.

(c) Household Conditions

Based on the above sampling surveys, the household conditions of the tenant farmers and fishpond operators are summarized below. For the conditions of each household, see Table 3 and Table 4 of Appendix 4-3 in Vol.4.

Household Population

Household population of the surveyed farmers and fishpond operators distribute as shown in the below Table R 10.12 with an average of 4.41 persons per household and 5.08 persons per household, respectively.

Table R 10.12 Distribution of Household Population of Farmers/Fishpond Operators

Farmers/Fishpond Operators								
Household Population	1 - 3	4 - 6	7 - 9	Total				
No. of Farmer	8	10	4	22				
No. of Fishpond Operator	3	6	3	12				

Gender and Age Distribution of Family Head

Almost all the respondents of the interview survey are engaged in farming or fishpond operation as their main jobs. Hence, they are assumed as the family heads in this study.

Gender and age of the family heads of the surveyed farmers and fishpond operators distribute as shown in the below Table R10.13.

Table R 10.13 Gender and Age Distribution of Family Heads of Farmers / Fishpond Operators

Itam	Gender		Age Distribution						
Item	Male	Female	< 30	31 - 40	41 - 50	51 - 60	61 <	Total	
Farmer	16 (73%)	6 (27%)	3	3	4	6	6	22	
Fishpond- Operator	8 (67%)	4 (33%)	1	-	6	2	3	12	

Tenant Farmland and Fishpond Areas

The tenant farmland and fishpond areas of the surveyed households distribute as follows with an average of 2.38 ha and 1.81 ha, respectively.

	Table R 10.14	Distribution of Tenant Farmland/Fishpond Area
--	---------------	---

Farmland/Pond Area (ha)	< 1.00	1.01-2.00	2.01-3.00	3.01-4.00	4.01 <	Total
No. of Farmer	6	5	6	3	2	22
No. of Fishpond-Operator	6	4	1	-	1	12

Income Sources

The major cultivated crops are rice, vegetable and fruit. The major fish species are milkfish and prawn.

The surveyed households have various income sources in addition to farming or fish cultivation as shown in the below Table R 10.15

 Table R 10.15
 Other Income Sources than Farming/Fishpond Operation

Item	Farmer	Fishpond Operator		
No. of Responded Household	22	10		
No. of Family Member	97	47		
No. of Working Member ¹⁾	33 (tenant farming : 22, other	25 (tenant fishpond: 10, other		
	job: 11)	job: 15)		
Kind of Other Job than	Bakery, driver, retail seller,	Small storeowner, plumber,		
Farming/Fishpond Operation	factory worker, helper/maid,	janitor, factory worker, fisher		
	tenant, engineer, hospital	man, const worker, retail seller.		
	director.			

Note: ¹⁾: Number of working member for farming/fishpond operation is assumed to be one person per household.

Share of Farm/Fishpond Income to Total Family Income

The interview survey obtained the data of: (i) income of the respondent (consisting of harvested income and income from side job other than farming/fishpond operation), (ii) income of the other members who are working for other jobs than farming/fish cultivation and (iii) total family income (total income of respondent and other working members).

The shares of farm/fishpond income (harvested income) to total family income are distributed as shown in the below Table R 10.16. For the income data of each households, see Table 3 and Table 4 of Appendix 4-3 in Vol.4.

Table R 10.16 Distribution of Share of Farm/Fishpond Income to Total Family Income

Range of Income Ratio	< 0.20	0.21- 0.40	0.41- 0.60	0.61- 0.80	0.81- 1.00	No Data	Total	Ave. Ratio
No. of Farmer	10	2	2	2	5	1	22	0.42
No. of Fishpond-Operator	9	0	0	0	1	2	12	0.16

Income Level

Distribution of the per capita monthly income of the farmers and fishpond operators are shown in the below Table R10.17.

Table R 10.17 Per	Capita Monthly	y Income	Distribution of	Farmers/Fish	pond Operators
-------------------	----------------	----------	-----------------	--------------	----------------

1	J				
Income Range (P/n	nonth)	No. of Farmers	No. of Fi	shpond O	perators
< P 1,700		14		4	
P 1,701 – P 3,000		3		2	
P 3,001 – P 4,000		2		1	
P 4,001 – P 5,000		1		1	
P 5,001 <		1		2	
No Data		1		2	
Total No. of Household		22		12	
Average Per Capita Incom	e (P/month)	1,540		3,348	

Note: P 1,700 is assumed to be the poverty level although the above income may not include the value of the products for self consumption. For estimation of the poverty level, see the income level of riverbank residents.

Educational Attainment

The data of educational attainment are available only for the respondents (assumed as family head) of the interview survey. The highest educational attainment of the respondents of farmers and fishpond operators are shown in the following Table R 10.18.

School Level	L.E.S.	E.S.G.	L.H.G.	H.S.G.	L.C.	C.G.	V.S.G	Total
No. of Farmer	4	5	4	5	-	3	1	22
No. of Fishpond-Operator	4	5	1	2	-	-	-	12

Note: L.E.S.: less elementary school, E.S.G.: elementary school graduate, L.H.S. less high school, H.S.G.: high school graduate, J.C.: less college, C.G.: college graduate, V.S.G: vocational school graduate

(d) Number of Affected Tenant Farmers and Fishpond Operators

Some tenant farmers and fishpond operators will be fully affected, while the others will be partly affected by the project. The number of affected tenant farmers and fishpond operators in each alternative has been estimated as shown in Table R 10.19, assuming that an average of 50% of each farming/operating land area is acquired for the project.

Table R 10.19	Number of Affected Tenant Farmers/Fishpond Operators of Proposed
	Alternatives

							(Unit.	Housenoid)	
				Design Fl	Flood Scale				
Alter-	2-у	ear	5-у	ear	10-	year	20-	year	
native	Earman	Fishpond	Earman	Fishpond	Earman	Fishpond	Farmar	Fishpond	
	Farmer	Operator	Farmer	Operator	Farmer	Operator	Farmer	Operator	
River-overflow Flood Prevention									
FI-1	0	0	0	0	0	0	0	0	
FI-2	18	44	26	44	30	44	37	44	
FI-3	0	44	24	44	26	44	33	44	
FS-1	0	0	0	0	0	0	0	0	
FS-2	20	0	29	0	52	0	66	0	
FS-3	0	0	0	0	0	0	0	0	
FS-4	11	0	17	0	29	0	48	0	
FS-5	0	0	0	0	49	0	64	0	
Inland Drainage									
D-1	17	10	-	-	-	-	-	-	
D-2	17	11	-	-	-	-	-	-	

Note: The above figures were obtained by dividing the affected active farmland/fishpond areas by the average affected farmland/fishpond areas (50% of 2.38 ha per one farmer and 50% of 1.81ha per one fishpond operator)

(3) Loss of Employment

A considerable number of the relocated households may lose their jobs if they are resettled far away from their original place of residence. Besides, people with low educational attainment generally have difficulty in finding new jobs. According to the interview survey, about 50% of the respondents of riverbank residents are below less high school (including less high school).

The affected farmers may lose farming income more or less due to land acquisition. The impact on family income is considered significant because;

- (a) Farming income shares a considerable portion of total family income in many farmers (see, Table R 10.16).
- (b) Two thirds of the farmers are below poverty level in family income (see, Table R 10.17).

They may have to find new jobs to compensate for their income loss although it depends on the magnitude of land acquisition (ratio of acquired land to total land). In finding new jobs, they have the following negative and positive factors.

- (a) Educational attainment of the farmers is comparatively low. About 60% of the respondents are below less high school (see, Table R 10.18).
- (b) However, they are all living close to the urban area where employment opportunity is comparatively large.

Impact on the family income of fishpond operators is considered smaller than that of farmers from Table R 10.16 and Table R 10.17. However, a considerable number of fishpond operators may have to find new jobs to compensate for their income loss due to land acquisition. They have the same negative (low educational attainment) and positive (living close to the urban area) factors as farmers in finding new jobs.

Most (85% in area) of the active fishponds in the proposed alternatives are enclosed by housing area. The land use plans of the concerned municipalities (Bacoor and Kawit) propose to reclaim the ponds for urban use in the future. Unemployment problems of the fishpond operators shall be solved even if the flood mitigation project is not proposed.

To mitigate the unemployment problems, the government shall:

(a) Formulate the comprehensive resettlement plan to clarify the whole necessary procedures, strategies and measures to cope with the unemployment problems at the preparatory or pre-relocation stage, the actual relocation stage and the post-relocation stage,

- (b) Give special consideration on people who may lose their jobs in the allocation of resettlement sites so that they can resettle within the same municipality or in a nearby area,
- (c) Provide various vocational training courses to people who want to change their jobs,
- (d) Assist in creation/introduction of jobs in which people with low-level education can engage, and
- (e) Prepare and execute a practical income restoration program, which include the livelihood development and assistance for application of the micro-finance
- (f) Undertake all other activities scheduled in the comprehensive resettlement plan (refer to Subsection 11.5.7).

(4) Disruption of Infrastructure, Water Use and Fishery

(a) Road and Bridge

The Imus and San Juan River improvement works require the reconstruction of several bridges, which will cause traffic disturbances during the construction period. The diversion channel intersects the existing roads at four sites and this will disturb traffic during the construction period of new bridges. Further, three retarding basins intersect the existing roads and this will disturb traffic during the construction period as well. (Refer to Table R 10.20)

Alternative	Component	Disrupted Road/Bridge	Possible Mitigation Measures
FI-1	Full-scale river improvement	Imus Main: 3 bridges (L); Bacoor R.: 2 bridges (L), 8 bridges (S); Julian R: 5 bridges (S)	Reconstruction of bridges. Traffic will detour to neighboring roads during the construction period.
	Partial river improvement	Bacoor R.: 2 bridges (L), 8 bridges (S) Julian R: 1 bridge (S)	Reconstruction of bridges. Traffic will detour to neighboring roads during the construction period.
FI-2, FI-3	Retarding Basin	Bacoor R. (RB B4): 1 road (S) Julian R. (RB J1): 1 road (S) Julian R. (RB J2): 1 road (S)	RB B4: Reconstruction of the road. Traffic will detour to neighboring roads during the construction period. RB J1: Reconstruction of the road. Traffic will detour to neighboring roads during the construction period. RB J2: Construction of a new access road.
FS-1	Full-scale river improvement	San Juan Main: 4 bridges (L)	Reconstruction of the bridges. Traffic detour to neighboring roads during construction period.
FS-2, FS-4	Partial river improvement	San Juan Main: 1 bridge (L)	Reconstruction of the bridge. Traffic detour to neighboring roads during construction period.
FS-3, FS-5	Partial river improvement	San Juan Main: 1 bridge (L)	Reconstruction of the bridge. Traffic detour to neighboring roads during construction period.
	Diversion channel	Diversion channel: 4 roads (L)	Construction of new bridges and temporary roads to detour traffic during the construction period.

Table R 10.20 Disrupted Roads and Bridges during Improvements Works

Note: The above roads/bridges include only road/bridge used for automobile traffic. L: large road/bridge; S: small road/bridge

As shown in the table above, disruption of the national road is caused at two sites of the Bacoor River and two sites of the diversion channel. All the other disruptions concern the provincial/municipality road.

The above disruptions can be solved by the reconstruction of existing roads/bridges or construction of new road/bridges. Traffic disturbance during the construction period can be mitigated to an allowable level by detouring vehicles to neighboring roads or by
constructing temporary detour roads, because the existing traffic congestion will be largely alleviated after completion of the ongoing coastal highway project.

(b) Irrigation

Two irrigation canals will be intersected by the retarding basin (RB-J1) of the Julian River (tributary of the Imus River) proposed in alternatives FI-2 and FI-3. On the other hand, the San Juan diversion channel intersects no irrigation canal.

The existing function of the two irrigation canals intersected by the retarding basin (RB-J1) can be maintained by reconstructing them with no technical difficulty and at a low cost. Since the proposed retarding basin consists of two ponds separated by the existing road, uniting them and constructing a united canal on the shoulder of the road can maintain the function of the two intersected irrigation canals.

(c) Anchorage of Fishing Boat

As mentioned in Chapter 3, the sea fishery is divided into two types: commercial fishery and municipal fishery. Big boats that anchor in the fishery ports perform commercial fishery. On the other hand, small boats (banca) with engine or no engine that do not anchor in the fishery ports but on beaches, riverbanks or drainage canals perform the municipal fishery.

Coastal dikes covering the municipalities of Kawit, Noveleta and Rosario are proposed from the left bank of the Imus River to the right bank of the Canas River in Alternatives D-1 and D-2. (Note: In Alternative D-2, the ring dike in Kawit will substitute for part of the coastal dike.)

The coastal dikes are to be constructed just in front of the built-up area, i.e., between the fishponds and built-up areas in Kawit and Noveleta and on the coastal beach in Rosario. The coastal dikes will close the existing drainage canals to protect the built-up area from high tide and may hamper the boats from entering the inner area of the coastal dikes through the drainage canals. According to the interview survey with the Association of Fishermen, the anchorage places are as shown in Table R 10.21 below.

	hage I laces of	wiunicipai 143	sining Doats
Item	Kawit	Noveleta	Rosario
Number of Boats	645	62	913
Ratio of Anchorage Place	100	100	100
(1) Beach (%)	-	100	100
(2) Riverbank (%)	50	-	-
(3) Drainage Canal (%)	50	-	-

 Table R 10.21
 Anchorage Places of Municipal Fishing Boats

In Noveleta and Rosario, all fishing boats are anchored on the beach at present. The coastal dikes will not affect the anchorage of fishing boats since the boats can be anchored in front of the dikes.

In Kawit, 50% of the boats anchor in the river, which will not be closed by the dikes. However, the remaining 50% anchor in the inner area of the proposed dikes through the drainage canals and will be affected by the dikes. This adverse impact can be solved or mitigated by constructing simple locks on the dikes instead of gates, which will allow the fishing boats to go in and out through the locks even at high tide.

(5) Clearing of Mangroves

Some proposed structural projects would clear the existing mangrove in the coastal areas as mentioned below. Location of the existing mangrove forests and strips in the coastal area relative to the alignment of the proposed projects is as shown in Fig. R 10.1.

- (a) The river mouth widening of the San Juan River will clear the mangrove forests existing on both side riverbanks.
- (b) The diversion channel will clear the mangrove forests existing near its exit to the sea.

- (c) The Bacoor retarding basin project will convert the existing fishponds to the flood retarding pond, acquiring the land and clearing some existing mangrove.
- (d) The coastal dikes to protect Kawit area are proposed along the existing drainage channel running in the east-west direction in front of the built-up area. Mangroves exist inside and on both side banks of the channel. The mangrove is not of forest type but of strip type, and the coastal dike will clear a strip of mangrove in some locations.
- (e) The coastal dikes to protect Noveleta area are also proposed along the existing drainage channel. The mangrove is not of forest type but of strip type like that in Kawit area. However, the mangrove is mostly planted inside the channel. Clearing for the proposed dike is limited to some locations, since the coastal dikes are to be constructed outside the drainage channel.

The required clearing of mangroves has been estimated for each alternative as shown in Table R 10.22 below based on the aero-photo interpretation with field check.

			Cleared N	/langrove	
Alternative	Component	Location	Forest	Strip	Remarks
			(ha)	(km)	
FI-2, 3	Retarding basin (B1, B2, B3)	Bacoor (fishpond)	-	5.2	
FS-1	Full-scale river improvement	San Juan River mouth	2.0	-	
FS-2, 3, 4,	Partial river improvement	San Juan River mouth	2.0	-	
5	Diversion channel	Exit to sea	0.1	0.2	
	Coastal Dike	Kawit (fishpond)	-	1.1	Width: about 10 m
D-1, 2		Noveleta (fishpond)	-	0.5	Width: about 10 m
	Retention pond (K1)	Kawit (fishpond)	-	0.1	Width: about 10 m

 Table R 10.22
 Mangroves Cleared for the Proposed Structural Projects

Fig. R 10.1 Location of the Existing Mangrove Forests and Strips

In order to mitigate the negative impacts to the existing mangrove, the following measures are proposed:

(a) The project makes it a rule to adopt transplantation of the whole mangrove to be affected by implementation of the project.

- (b) The government shall conduct the following additional studies for conservation of the mangrove at the beginning of the project implementation:
 - To reconfirm the updated habit of mangrove, which would be affected by the project implementation,
 - To clarify the ecological system of the affected mangrove and judge whether the affected mangrove could be transplanted to the project site such as the area along the river channel improvement section and the area around the flood-retarding basin.
 - To specify and secure the area, where the mangrove could be regenerated, when the transplantation of mangrove is judged to be difficult.
 - To formulate the implementation plan for transplantation and/or regeneration of the mangrove.
- (c) The land ownership of the mangrove area is to be certified through the patents issued by DENR. There are, however, other legal documents, which may also certify the landownership such as "Tax Declaration" for levy on the subject land issued by the Provincial/Municipal Office, and "Ownership Certificate of Title" issued by the Department of Justice. These legal documents are sometimes inconsistent certifying the different land ownership for the same land. In order to validate the ownership of the land, the government (the project proponent) shall conduct, at the beginning of the project implementation, identification of the ownership of the mangrove area based on the ROW survey/parcellary mapping and coordinate with the agencies related to registration of land ownership as required (refer to subsection 11.5.7, Item (1) (b)).

(6) Groundwater

(a) Groundwater Lowering

Excavation of the proposed off-site retarding basins, off-site retention ponds and diversion channel will lower the groundwater table in their surrounding areas, more or less. It might affect the groundwater use of shallow wells if they are closely located near the retarding basins/retention ponds/diversion channel.

The JICA Study Team had surveyed 24 wells existing in the neighboring areas of the five representative retarding basins (I-1, S-1, Y-2, J-2, J-1), two representative retention ponds (P-1, E-2) and one diversion channel. They are all deep wells with well depths of approximately 20-100 m except one shallow well nearby the diversion channel. This shallow well is 10 m in well depth and 8.0 m in water level below the ground surface. Results of the sampling survey are shown in Table R 10.23 below.

On the other hand, the excavation depth of the retarding basins, retention ponds and diversion channel is 4-5 m, 2-3 m and 3-5 m, respectively. For location and main features of the above retarding basins, retention ponds and diversion channel, refer to Chapter 8.

From the above survey, it can be concluded that the proposed retarding basins, retention ponds and diversion channel will not affect the water level of the existing wells in the surrounding areas.

Droigot	Location	Well Depth	WL below	Salinity	Domonica
Project	(Barangay)	(m)	GS (m)	(g/kg)	Remarks
		No. 1: 30	-	0.3	Deep well
Imus DD (L 1)	Decens Dueve	No. 2: 24	-	-	Deep well
lillus KD (I-1)	Pasong Duaya	No. 3: 36	-	-	Deep well
		No. 4: 36	-	-	Deep well
Son Juan DD (C. 1)	Desena Comochilo	No. 1: 30	1.9	0.2	Deep well
Sali Juan KD (S-1)	Pasong Camachine	No. 2: 36	2.9	0.2	Deep well
Ylang-Ylang RB	Malagagang I C	No. 1: 36	4.0	0.3	Deep well
(Y-2)	Malagasang I-O	No. 2: 30	4.7	0.3	Deep well
Julian DD (L 1)	Calsadang Bago II	No. 1: >30	8.0	0.3	Deep well
Juliali KD (J-1)	Poblacion IV C	No. 2: 28	4.7	0.3	Deep well
Julian DD (I 2)	Bucandala I	No. 1: 30	4.7	0.3	Deep well
Julian KB (J-2)		No. 2: 24	5.2	0.3	Deep well
Panamitan RP (P-1)	Batong Dalig	No. 1: >30	2.6	1.3	Deep well
		No. 2: 28	4.8	0.3	Deep well
$EDZ \wedge DD (E 2)$	Bacao I	No. 1: >30	6.0	0.2	Deep well
EIZAKI (E-2)		No. 2: >30	5.8	0.3	Deep well
Diversion Channel		No. 1: 10	80	0.4	Possibly
(upper reaches)	Bacao II	10.1.10	8.0	0.4	shallow well
(upper reaches)		No. 2: 23	7.4	0.4	Deep well
	Salcado II	No. 1: 60	7.4	0.4	Deep well
	Salceuo II	No. 2: >30	7.7	0.5	Deep well
Diversion Channel	Calaada T	No. 1: 18	6.2	0.7	Deep well
(middle reaches)	Salceuo I	No. 2: 18	5.5	0.8	Deep well
	San Dafaal I	No. 1: 21	6.1	0.9	Deep well
	San Kafael I	No. 2: 100	5.8	12	Deen well

Table R 10.23 Well Inventory in the Neighboring Area of Proposed Projects

Note: WL: water level, GS: ground surface, RB: retarding basin, RP: retention pond, 0/00: g/kg

(b) Groundwater Saline Intrusion

The excavation depth of the diversion channel is between 3-5 m. The riverbed elevation of the proposed diversion channel varies from (-) 2.5 m MSL in the river mouth to 0.0 m MSL in the 1.5 km channel distance. The sea-water will intrude up to the 1.5 km distance of the new channel for a total distance of 2.4 km. For the design longitudinal profile of the diversion channel, refer to Chapter 8.

The JICA Study Team had surveyed the well depth and salinity content of the representative six wells existing along the middle reaches (built-up area) of the diversion channel. They are all deep wells with well depths of approximately 20-100 m, averaging 41 m. The salinity content of the wells varies from 0.4 g/kg to 1.2 g/kg or an average of 0.75 g/kg. Sea-water is considered to have already affected the well water to a little extent. For details, refer to the above Table R 10.23.

On the other hand, the geological stratums of the coastal area are roughly estimated as follows:

The existing deep wells mostly extract groundwater from the sand sub-layer of the second geological layer. It is considered that the diversion channel will not accelerate salinity intrusion into the second layer based on the following facts:

- (i) The built-up area (where groundwater is extracted) is located 1.0 km upstream from the river mouth. Hence, the riverbed elevation of the diversion channel at this location will become (-) 1.0 m.
- (ii) The surface layer (sand) below sea level is already affected by the lateral salinity intrusion of sea-water. The diversion channel will remove only the sand of the upper portion.
- (iii) The riverbed elevation of the San Juan River is (-) 2-3 m at the neighboring location of the built-up area of the diversion channel. This means that the salinity intrusion effect of the diversion channel is smaller than that of the existing San Juan River.

(7) Air Pollution

The earth works of all the alternatives including excavation, embankment and hauling will generate dust, which may affect the people in the surrounding areas. However, this impact can easily be mitigated by sprinkling the construction sites with water and by covering dump trucks with sheets as required.

(8) Water Pollution

Some earth works in the river channel will make the river water turbid, which might affect the river and sea-water uses in the downstream. Potential works which might cause such impacts are as shown in the below Table R 10.24. Soil excavation works in all other component projects such as retarding basin, retention pond and diversion channel will less affect the river water quality. It is because they are mostly dry works, which are to be performed outside the river channel.

10010 K 10.24	Kivel Dicugin	g works of r toposed m	ter nati ves
	Total Volume (m ³)	Location (River Distance)	Construction Period
Imus River			
Main River	120,000	0.0 – 3.0 km	10 years
Bacoor River	121,000	1.0 – 6.0 km	10 years
San Juan River	191,000	0.0 - 2.0 km	10 years

 Table R 10.24
 River Dredging Works of Proposed Alternatives

Note: River distance of the Bacoor River is measured from the river mouth to the sea.

There is no river water use in the downstream area of the river dredging sites. However, some shells (oyster and mussel) are cultivated in the offshore sites of the Cavite Bay all the year round. The sites are more than 300 m away from the coastal line.

On the other hand, DPWH had dredged the estuary part (river distance: 0.0 - 2.0 km) of the Imus Main and San Juan rivers once in every two to four years. The recent dredging volumes were 54,000 m³ for the Imus Main River in 2006 and 39,120 m³ for the San Juan River during 2005 to 2006.

The JICA Study Team had interviewed the Fishermen's Association in the project area concerning the impact on the shell cultivation, and they said that the shell cultivation has not suffered from damage by the dredging of DPWH. They further said that they have not been affected by the water pollution due to sediment run-off from the river during flood time.

From the above, the proposed dredging in the Imus and San Juan rivers is considered to cause no significant adverse impact on the shell cultivation as far as its implementation is not concentrated during a short period.

(9) Noise

The environmental standards of noise level of DENR are shown in Table R 10.25 below in comparison with those of Japan.

Area	Daytime	Nighttime
DENR		
Residential Area	55 dB	45 dB
Commercial Area	65 dB	55 dB
Japan		
Residential Area (exclusively)	55 dB (60 dB)	45 dB (55 dB)
Residential Area (mainly)	55 dB (65 dB)	45 dB (60 dB)
Commercial/Industrial Area*	60 dB (65 dB)	50 dB (65 dB)

Table R 10.25Standards of Noise Level

Note: *: Includes a considerable number of residential houses.

Figures in parentheses are standards for areas facing road.

There is no regulation for the noise generation of construction works in the Philippines. Hence, in this study, the regulation of Japan is applied for the impact assessment of noise generated by the proposed projects. The objective areas and noise standards of the regulation are determined for each city, depending on the environmental conditions of the city. Generally, the standard noise level is set at 85 dB at the boundary of construction site with the following conditions concerning the construction work plan:

(i) working time (starting and finishing time of works); (ii) total working hour per one day; (iii) continuous working days at one place; and (iv) prohibition of work on Sundays/holidays.

However, the construction works, which do not employ large equipment is exempted from the regulation.

The full-scale river improvement, retarding basin and diversion channel include a large earth works by bulldozer, shovel and other equipment, which may cause a high level of noise. The noise generated by bulldozer and shovel is about 105 dB (power level noise). However, the noise level decreases at a high rate according to the distance from the equipment site as estimated by the following equation.

 $L = Lo - 8 - 20 \log_{10} R$

Where, L (dB): noise level at the assessment point;

Lo (dB): power noise level of equipment; and

R (m): distance between the boundary of construction site and assessment point.

From the above equation, noise level corresponding to distance is calculated as follows:

R (m)	5	10	50	100
L (dB)	83	77	63	57

From the above discussions, the following can be concluded:

- (a) Noise impact of all the construction works may be less than 85 dB. Hence, they can be managed by applying proper mitigation measures, if necessary.
- (b) The major construction works of which site is closer than 50 m to the neighboring residential/commercial areas will cause significant impacts on the people. However, these impacts can be mitigated by paying such special considerations on the work plan as regulated in Japan.
- (c) The construction works of which site is far or more than 50 m from the neighboring residential/commercial areas will cause no significant impact on the people. No special mitigation measures of the impact are required. The construction works can be implemented in the ways normally adopted in Philippines.
- (d) Small-scale construction works will cause no significant impact on the neighboring residential/commercial areas even if the construction site is close to the neighboring residential/commercial area. No special mitigation measures against the impact are required. The construction works can be implemented in the ways normally adopted in Philippines.

The noise impacts of the proposed alternatives are shown in Table R 10.26 below.

Alt. No.	Component	Distance to Residential/Commercial	Noise Impact	Mitigation Measures
110.110.	Project	Area	(dB)	Wittigution Moustares
River-overfl	ow Flood Prevention	1		
FI-1	Full-scale R. Imp.	All construction sites: very close	65 <n< 85<="" td=""><td>Proper work plan</td></n<>	Proper work plan
FI-2	Partial R. Imp.	All construction sites: very close	65 <n< 85<="" td=""><td>Proper work plan</td></n<>	Proper work plan
	Retarding basin	(1) Const. site of 3 basins: <50 m	(1) 65 <n< 85<="" td=""><td>(1) Proper work plan</td></n<>	(1) Proper work plan
	(total: 7 basins)	(2) Const. site of 4 basins: >50 m	(2) 65 >N	(2) Not necessary
FS-1	Full-scale R. Imp.	 Const. site of river mouth imp.: >50 m Const. site of other works: very close 	(1) 65 >N (2) 65 <n< 85<="" td=""><td>(1) Not necessary(2) Proper work plan</td></n<>	(1) Not necessary(2) Proper work plan
FS–2, 3, 4, 5	Partial R. Imp.	 Const. site of river mouth imp.: >50 m Other works are very close but small in scale 	(1) 65 >N	(1) Not necessary(2) Not necessary
FS–2, 4,	Retarding basin (total: 3 basins)	All construction sites: >50 m	65 >N	Not necessary
FS-3, 4, 5	Diversion channel	 Const. site of middle part (300 m): very close Const. site of other part (2,100 m): >50 m 	(1) 65 <n< 85<br="">(2) 65 >N</n<>	(1) Proper work plan(2) Not necessary
Inland Drain	nage			
	Retention Pond	(1) Const. site of 2 ponds: <50 m	(1) 65 <n< 85<="" td=""><td>(1) Proper work plan</td></n<>	(1) Proper work plan
D 1 2	(total: 6 ponds)	(2) Const. site of 4 ponds: >50 m	(2) 65 >N	(2) Not necessary
D-1, 2	Other works	Other works are very close but small in scale		Not necessary

 Table R 10.26
 Noise Impact and Mitigation Measures of Proposed Alternatives

The proper work plan shall be prepared to mitigate the noise impact as mentioned in the above table. The plan will contain the regulation for (i) working time (starting and finishing time of works); (ii) total working hour per one day; (iii) continuous working days at one place; and (iv) no work on Sundays/holidays.

10.4.2 Operation Phase

(1) Regional Economic Impact of Land Development Control

The JICA Study Team projected that the population of the project area will have an increment of 1.3 million from 1.1 million in 2000 to 2.4 million in 2020. On the other hand, there is a large area of convertible agricultural land for urban development in the project area (9,212 ha estimated according to the Regulation of Land Conservation, MC No. 54). This convertible land area is enough to accommodate the incremental population of 1.331 million as a whole. However, the distribution of this convertible land is imbalanced among the city/municipalities. Bacoor, Imus and Dasmariñas are short of land. Hence, the future population of these municipalities is estimated by applying the following planning policies: (i) increase of population density and (ii) redistribution of excessive population to the other city/municipalities with a sufficient land area.

Thus, the future urban land development required to accommodate the distributed population mentioned above was estimated by each city/municipality. The total required built-up area of the project area in 2020 is estimated to be 17,413 ha with an incremental area of 7,392 ha during 2003–2020. As a result, the ratio of the built-up area to the total project area will increase from 24.6% in 2003 to 42.7% in 2020. For details of the above projections of population and built-up area, refer to Chapter 4.

The proposed regional distributions of population and built-up area mentioned above are considered moderate and realistic. Further, the proposed built-up area is enough to accommodate the increasing population and it can be developed within the convertible agricultural land. Hence, no special land development control is necessary.

The proposed urban land use plan includes a sufficient business area covering industrial, institutional and commercial areas. The business area will increase from 1,544 ha (1.39 ha/thousand population as calculated based on the population in 2000 and business area

in 2003) in 2003 to 2,852 ha (1.17 ha/thousand population) in 2020. It will not restrict the increase of employment opportunity in the project area.

(2) Regional Conflicts of Land Development Control

The project area is divided into three parts, lower area, central area and upper area, covering several city/municipalities, respectively, as shown below.

- Lower Area: Bacoor, Kawit, Noveleta, Rosario and Tanza
- Central Area: Imus, Dasmariñas, General Trias and Trece Martires
- Upper Area: Amadeo, Indang, Silang and Tagaytay

The JICA Study Team had estimated the future population and built-up area of the project area by city/municipality as described in Chapter 4. These are summarized in Table R 10.27 below.

1401	E K 10.27	ropulation	and Dunt-up	Alea by Reg	gion
Population		Total Area	Built-up	Area (ha)	
Alea	2000	2020	(ha)	Existing	2020
Lower Area	337,236	575,920	6,149	2,485	3,556
Central Area	678,789	1,673,080	22,966	6,441	11,901
Upper Area	96,417	194,937	11,628	1,096	1,959
Total	1,112,442	2,443,936	40,743	10,021	17,417

Table R 10.27Population and Built-up Area by Region

A total land of about 7,400 ha will be developed by the year of 2020 of which about 6,300 ha or 85% is located in the upper and central areas. The land developments in the upper and central areas will increase the flood peak of the rivers by approximately 30% for the Imus River, 10% for the San Juan River and 10% for the Canas River, resulting in the increase of flood damages in the lower area (for details, refer to Chapter 5). The flood peak of the rivers will continue increasing even after 2020 due to the lasting land development in the central/upper area.

The JICA Study Team proposes a flood control system to compensate for the increase of flood peak due to land development. It obligates the land developers to construct on-site flood regulation ponds within their developed land. Cost of the on-site flood regulation pond will be added to the land development cost, increasing the selling price. For details, refer to Chapter 8.

The above regional conflicts are as summarized below.

Case	Benefited People	Affected People
Without Land Davalonment Control	Land developer/user in the	People in the flooding area of
without Land Development Control	Upper/Central Area	Lower Area
With Land Davalonment Control	People in the flooding area of	Land developer/user in the
with Land Development Control	Lower Area	Upper/Central Area

As stated above, both of without- and with-land development control may possibly cause the regional conflicts. In case of with-land development control, however, the construction cost of the on-site flood regulation pond is limited to only 157 pesos/m², which is less than 1% of land price for sale by the lot. Moreover, the annual maintenance cost for the on-site flood regulation pond is also limited to 180pesos/house lot, which is about 0.1% of the national annual average income in Philippines. Judging of these rate of cost shared by the land developers /users, the expense added by construction of on-site flood regulation pond would be within the tolerable level. Accordingly, the anxiety to the regional conflicts would be groundless in case of with-land development control.

(3) Solid Waste Disposal

The present solid waste disposal in the project area is managed by each city/municipality, covering the whole system including collection, hauling and final disposal. The present performance of the system is insufficient due to lack of collection/hauling capacity and shortage of the capacity of final disposal sites as well as financial constraints. Hence, many

people illegally dump garbage into the nearby rivers, drainage channels and other public open spaces.

The provincial government has programmed a new integrated provincial wide solid waste management system in order to cope with the above present problems. Operation of the system is expected to start in the third quarter of 2008. For the new system, refer to Subsection 6.4.2.

The illegal garbage dumping will be reduced by operation of the new system. However, it is virtually difficult to eradicate such illegal garbage dumping due to lack of discipline and incomplete coverage of public garbage collection system.

The proposed river channel improvement, retarding basins, diversion channel and drainage structures including retention ponds, coastal dikes, etc. may induce the people to dump garbage when the sites are not kept clean. Further, the floodwater of the rivers and drainage channels carries garbage and other drifts into the retarding basins, diversion channel and retention ponds, leaving a portion of them on the sites.

These adverse effects can be mitigated by periodically cleaning the sites as one of the maintenance works of the river channels, retarding basins, diversion channel, retention ponds and other drainage structures. DPWH will be responsible for the maintenance of the river channels, retarding basins and diversion channel. On the other hand, each municipality will be responsible for that of the drainage system including retention ponds, coastal dikes, etc. in its jurisdiction. The above responsible organizations shall collect the garbage/drifts accumulated on the project sites and convey them a short distance to the nearby transfer station of garbage to take part in the new solid waste disposal system.

The proposed on-site regulation ponds may also induce the people to dump garbage when they are not kept clean. The resident association of each sub-division shall collect the accumulated garbage in their on-site regulation pond. They can treat the collected garbage by the new solid waste disposal system.

(4) Water Pollution and Odor

The proposed off-site retarding basins and off-site retention ponds receive only floodwater of the rivers. The entered floodwater is completely drained soon after the flood ends. No river water enters into the retarding basins and retention ponds at a dry time. The wastewater in the surrounding area is discharged into the nearby rivers through the existing drainage channels at present.

The retarding basins/retention ponds can be kept comparatively clean unless the new subdivisions connect the wastewater drainage pipes to the retarding basins/retention ponds for easy wastewater disposal. Such a wastewater disposal should be prohibited. The concerned municipalities should not permit the development of subdivisions with such an illegal wastewater drainage system.

The proposed on-site regulation ponds are constructed at the lowermost location of the respective subdivisions. The regulation ponds receive storm water run-off with a mixture of wastewater from the subdivisions. On the other hand, the wastewater will directly be drained into the neighboring rivers at a dry time through a detour wastewater drainage channel. Principally, the water pollution and odor emission problems of on-site regulation ponds will not be significant if the regulation ponds are designed in a proper way. No special mitigation measures are necessary.

10.4.3 Impact Assessment without Project

The project area is affected by frequent floods, which cause serious damages on the people's lives and properties. The flood damages will increase in the future according to the population growth in the flood prone areas. On the other hand, the land development in the central and upper areas will increase the flood peaks in the downstream reaches of the rivers, resulting in further aggravation of flood damages in the low land areas. The flood damages vary depending on the scales of flood. The future

flood damages without project are estimated as shown in the below Table R 10.28, comparing with the existing ones.

Food Type/Scale	Existing	Conditions	Future Conditions in 2020	
roou Type/Scale	Flooding Area (ha)	Damaged House (No.)	Flooding Area (ha)	Damaged Houses (No.)
River-Overflow				
Flood				
2-year	930	7,000	1,360	20,700
5-year	1,650	14,600	2,070	34,500
10-year	2,260	19,500	2,610	41,100
20-year	2,950	23,200	3,320	48,000
Inland Flood				
2-year	710	4,900	890	9,200

Table R 10.28Flood Damages without Project

Further, the road networks including the national roads are frequently inundated at many places at present. It causes not only traffic disturbance but also damages on the economic activities of the project area. At a big flood time, the road inundation makes it difficult for the people to commute to the factories/offices and the factories/offices are forced to cease business. These damages on the economic activities will become more intensive in the future.

10.5 Identification of Necessary Monitoring Items

The major objectives of the monitoring in the environmental assessment are: (1) to check whether the proposed mitigation measures of the adverse impacts function well as expected; (2) to check whether the predicted adverse impacts may not be much different from the actual ones; and (3) to revise the proposed management plan of adverse impacts as required. Usually, the detailed monitoring plan will be prepared in the Feasibility Study (F/S) stage and the monitoring will be conducted during the construction period and after the completion of proposed projects.

In this master plan stage, only the necessary monitoring items are identified. The identified major monitoring items are listed in Table R 10.29 below.

Table K 10.29 Necessary Monitoring Items				
Environmental Item	Monitoring Item	Description		
	(a) Resettlement Site	Whether the resettlement sites are provided with necessary public facilities as planned?		
(1) Resettlement	(b) Employment	Whether the resettled people are engaged in jobs?		
	(c) Vocational Training	Whether necessary vocational trainings are provided for the people who want to change their jobs?		
(2) Natural Environment	(a) Mangrove	Whether necessary re-planting of the cleared mangrove is implemented as planned?		
(3) Public Hazard	(a) Traffic Disturbance	Traffic disturbance due to the reconstruction of road/bridge		
during Construction	(b) River Water Turbidity	River water turbidity due to the river excavation.		
Period	(c) Noise	Noise due to the operation of construction equipment.		
(4) Public Hazard in	(a) Garbage Dumping	Illegal garbage dumping on the improved river channel, diversion channel, off-site retarding basin, off-site retention pond and on-site regulation pond.		
Operation Phase	(b) Wastewater Discharge	Illegal wastewater discharge into the off-site retarding basin and off-site retention pond.		

Table R 10.29Necessary Monitoring Items

10.6 Results of Stakeholder Meetings and Actions to be taken in the Study

In a series of three (3) stakeholder meetings, proposed alternative projects for the M/P have been introduced and discussed among stakeholders. The recognized awareness and concerns through such stakeholder meetings have been considered for impact assessment and generation of possible mitigation measures. Their results and consideration to be taken in the Study including engineering aspects as well as natural and social environmental considerations are summarized below and the minutes of meetings are attached as Appendix 9 in Volume IV.

	10	ible K 10.30 Summary 01 S	makemonuel wreetings heru m	WI/I Study				
No			Contents					
INO.	Item		Details					
	Date:	9:00~12:00, Aug.10, 2007						
	Venue:	Sangguniang Panlalawigan Hall						
	Participants:	Statesman/Administrators: 4	Provincial Officer: 17	LGU Officer: 17				
		National Gvrnmnt.: 16	Residents: 22	NGO/Academia: 11				
		Media: -	Study Team/Consultants/Staff: 13	<u>Total : 100</u>				
1st	Agenda:	Presentation of Applicable Flood	Mitigation Alternative to be consid	ered in the Study				
Stakeholder	Principle	A. Impact/Operation of on-going	projects against flood damage in th	ne Study area (Such as R-1				
Meeting	Queries/	project).						
	Comments	B. Concerns about illegal dumpin	g of garbage into river channel.					
	Action	(Actions for A): The Study has	been undertaken taking into cons	ideration on-going related				
	taken in the	projects and pro	ograms.					
	Study	(Actions for B): The Study has p	ursued garbage dumping problem a	as one of significant issues				
		of Non-structura	al measure for flood mitigation.					
	Date:	9:00~12:00 Oct. 01, 2007 and	9:00~12:00 Oct. 03, 2007					
	Venue:	Board Room, Bayview Hotel						
		Statesman/Administrators: -	Provincial Officer: 1	LGU Officer: -				
	Participants:	National Gvrnmnt.: 9	Residents: -	NGO/Academia: -				
		Media: -	Study Team/Consultants/Staff: 5	<u>Total : 15</u>				
		Statesman/Administrators: -	Provincial Officer: 2	LGU Officer: -				
		National Gvrnmnt.: 10	Residents: -	NGO/Academia: -				
2nd		Media: -	Study Team/Consultants/Staff: 9	<u>Total : 21</u>				
Stakeholder Meeting	Agenda:	Presentation of Alternatives for Structural Measures and Non-structural Measures and Progress of IEE Study						
Weeting	Principle	C. Reoccupation of informal settlers in the river area						
	Queries/ Comments	D. Securement of lands as the proposed sites for structural flood mitigation measure						
	Comments	(Actions for C): The Study has provided concepts on eligible measures for easements such						
	Action	securement and	designation of river area.	ares for cuscinents such us				
	taken in the	(Actions for D): The concepts to	revise land use plans of each munic	cipality have been prepared				
	Study	in collaboratior	with the Provincial Government	t including preparation of				
	2	provincial ordin	ances regarding land use control.					
	Date:	9:00~12:00, Nov.27, 2007						
	Venue:	Audio Visual Room, Municipal B	uilding, General Trias					
	Participants:	Statesman/Administrators: -	Provincial Officer: 3	LGU Officer: 10				
	1	National Gvrnmnt.: 1	Residents: 35	NGO/Academia: 2				
		Media: -	Study Team/Consultants/Staff: 5	<u>Total : 56</u>				
3rd	Agenda:	Presentation of Draft Master Plan	and the IEE Results					
Stakeholder	Principle	E. Further dissemination for publi	ic awareness of the flood mitigatior	n program.				
Meeting	Queries/	F. Conducting repetitive public he	earings, PCMs or stakeholder meet	ings for the projects before				
	Comments	the pursuance of the project.		C 1 5				
	Action	(Actions for E): Counterparts an	d Study Team has conducted and	enhanced IEC and Public				
	taken in the	Awareness Carr	paign such as preparation of leafly	ets and pilot project in the				
	Study	Study		•				
	-	(Actions for F): Provincial Gover	nment assured a succession of publ	ic hearings for the Project.				

Table R 10.30 Summary of Stakeholder Meetings held in M/P Study

Chapter 11. Formulation of the Comprehensive Flood Mitigation Plan

11.1 Selection of Optimum Flood Mitigation Plan

The alternative structural flood mitigation plans and the potential non-structural flood mitigation measures have been examined in Chapters 8 and 9. The socio-economic consideration on the structural and non-structural flood mitigation plans were further made in Chapter 10. Based on the results of those examinations, the optimum flood mitigation plan is as described in this Section.

11.1.1 Optimum Structural Flood Mitigation Plan

The alternative flood mitigation plans against both river-overflow and inland floods present great differences in their project costs, economic viabilities, number of house relocations and extents of land acquisition. On the other hand, the natural environmental impacts inflicted by each of the alternatives make little difference; besides, no fatal negative impact is anticipated (refer to Chapter 10).

As the results of clarification, the following contents are proposed as the optimum structural flood mitigation plan:

- Measures for Mitigation of River Overflow Flood: Of the alternatives, Alt. No. F_I.3 and Alt. No. F_S.5, both of which are composed of off-site flood retarding basin, partial river improvement and on-site flood regulation pond, are selected as the optimum plans for Imus River and San Juan River respectively.
- Measures for Mitigation of Inland Flood: Alt. No. D.1, which involves tidal gates without ring dikes for protection, is selected as the optimum plan. Instead of a full-scale plan for Alt. No. D.1, however, a partial-scale plan is proposed (refer to Section 8.2 in Chapter 8) due to necessity of curtailment of project cost. The part curtailed in the partial-scale plan involves the abandonment of improvement/construction of drainage networks and construction of coastal dikes except those for the Municipality of Kawit.
- **Design Scale for River Overflow Flood:** The design scale for the mitigation of river-overflow is proposed to correspond to the peak probable flood discharge of 10-year return period both for Imus and San Juan River. However, the design scale for two tributaries of Imus River; namely; Bacoor river and Julian river; is proposed to be 2 and 5-year return periods respectively. All design scales are subject to flood runoff conditions under the land use states in 2020.
- **Design Scale for Inland Flood:** The design scale of 2-year return period is applied against inland flood.

Details of clarification of the optimum plan are as described below.

(1) Selection of Optimum Plan against River Overflow in Each Design Scale

The optimum plan against river overflow in each design scale (2 to 20-year return period) was firstly selected through examination of the following items (a) to (c).

(a) Ruling-out of the Alternative of Full Scale River Improvement

Among the alternative plans, the "full-scale river improvement plan" (Alt. No. F_I.1 and F_S.1) requires river widening along the riverine area which is densely packed with houses, therefore, causing a remarkably larger number of house relocations as compared with those of other alternatives, as shown in Tables R 11.1.

Alt. No.	2-year return Period	5-year return Period	10-year return Period	20-year return Period
F_I.1	1,080	1,350	1,480	1,610
F_I.2	270	275	275	275
F_I.3	260	275	275	275
F_S.1	250	330	460	650
F_S.2	71	73	74	76
F_S.3	152	192	285	513
F_S.4	160	189	204	224
F_S.5	60	185 (D) ^{*2}	$74 (RB)^{*1}$	$75 (RB)^{*1}$
	Alt. No. F_I.1 F_I.2 F_S.1 F_S.2 F_S.3 F_S.4 F_S.5	$\begin{tabular}{ c c c c c c } \hline 2-year return \\ \hline $Period$ \\ \hline $Period$ \\ \hline $F_{I.1}$ & $1,080$ \\ \hline $F_{I.2}$ & 270 \\ \hline $F_{I.3}$ & 260 \\ \hline $F_{I.3}$ & 260 \\ \hline $F_{I.3}$ & 250 \\ \hline F_{I	Alt. No.2-year return Period5-year return PeriodF_I.11,0801,350F_I.2270275F_I.3260275F_S.1250330F_S.27173F_S.3152192F_S.4160189F_S.560185 (D)*2	Alt. No.2-year return Period5-year return Period10-year return PeriodF_I.11,0801,3501,480F_I.2270275275F_I.3260275275F_S.1250330460F_S.2717374F_S.3152192285F_S.4160189204F_S.560185 (D)*274 (RB)*1

Table R 11.1 Number of House Relocations Required in Each Alternative Plan

Note : $(RB)^{*1}$ (D)^{*2} : As the least cost, F_S.2 with On-site Regulation Pond is adopted as F_S.5.

: As the least cost, F_S.3 with On-site Regulation Pond is adopted as F_S.5.

In contrast to the full-scale river improvement plan, the alternatives supported by the off-site flood-retarding basin (Alt. Nos. F_I.2, F_I.2, F_S.2, F_S.4) require a rather large extent of land acquisition, which will cause a negative impact to the tenant farmers of more or less 100 families and the tenant fishing operators of 53 families [refer to item (3) in Subsection 10.4.1]. Nevertheless, losses of those tenant farmers and fishing operators due to land acquisition are limited to 23% and 10% of their whole income on average, and they are expected to recover through the provision of alternative vocational training courses given by the project proponent in the relocation stage [refer to item (4) in Subsection 10.4.1]. Thus, the negative impact of land acquisition for the retarding basin is smaller than the large number of house evacuation by full-scale river improvement.

The full-scale river improvement plan further requires a far larger project cost than the other alternatives, as shown in Table R 11.2. Due to these dominant disadvantages, this alternative is ruled out from the candidates for the optimum plan.

Objective	Alt. No.	2-year return	5-year return	10-year return	20-year return
KIVEI		Fellou	renou	Fellou	Fellou
Imus River	F_I.1	5,132	5,585	6,216	6,441
	F_I.2	3,047	3,208	3,267	3,458
	F_I.3	4,749	5,642	5,682	5,817
	F_S.1	894	1,083	1,704	2,695
Con Juan	F_S.2	1,000	1,232	1,582	1,779
San Juan River	F_S.3	838	1,064	1,515	2,319
	F_S.4	1,378	1,620	1,939	2,348
	F_S.5	1,811	2,369	2,951	3,162

Table R 11 2 Project Implementation Cost for Each Alternative

Note : Unit: million pesos

The costs above are exclusive of Price Contingency and On-site Regulation Pond

(b) Ruling-out of Alternatives not supported by On-Site Flood Regulation Pond

As the second step of screening, the importance of on-site flood regulation pond was examined. As the result, it was clarified that the alternatives supported by on-site flood regulation pond could bring about outstanding advantages in the aspects of affordability for project implementation, as well as economic viability and efficiency for flood mitigation [refer to item (ii) below]. Thus, the alternatives supported by the on-site flood regulation pond are selected as candidates for the optimum plan.

(i) Affordability

Project cost is divided into the cost for construction of large-scale infrastructures (such as river channel improvement, off-site flood retention pond and off-site flood retarding basin) and the cost for the on-site flood regulation pond. The cost for the construction of a large-scale infrastructure would be shouldered by the national government agency, DPWH, referring to the precedents of similar major flood mitigation projects. On the other hand, the land developers of new subdivisions would share the cost of on-site flood regulation pond. As described later, difficulty is foreseeable in the affordability of DPWH as to project cost; therefore, it would be preferable to share a part of the cost to the land developers. The anxiety is given to the decline of incentives to land development. However, the cost burden to each of the land developers is extremely small and, therefore, such an anxiety is groundless (refer to Subsection 8.4.2).

(ii) Economic Viability

Large-scale infrastructures (such as river channel improvement, off-site flood retention pond and off-site flood retarding basin) require a long construction period and during such construction period, the economic benefit (i.e. effect of flood mitigation) does not break out. On the other hand, the on-site flood regulation ponds could generate the economic benefit immediately after completion of land development of each subdivision. Due of these backgrounds, the alternatives supported by the on-site flood regulation pond could produce a far higher economic internal rate of return (EIRR) than the alternatives not supported by on-site flood regulation pond (refer to Section 8.5)

(iii) Efficiency

Large-scale infrastructures (such as river channel improvement, off-site flood retention pond and off-site flood retarding basin) need to be constructed in anticipation of the future progress of land development for subdivisions. Once the infrastructures are constructed, it is virtually difficult to adjust their structural size according to changes of the anticipated future land development. Accordingly, there is a risk that over or undersized infrastructures are constructed. On the other hand, the on-site flood regulation pond is constructed in accordance with the progress of land development, so that such risk could be avoided.

(c) Selection of Optimum Plan for Each Design Scale

As the third step of screening, the optimum plan for the mitigation of river overflow was selected based on the synthetic evaluation of project cost and the number of house evacuation among the alternatives with the exclusion of full-scale river improvement and inclusion of on-site flood regulation pond. As the result, the following alternatives are selected as the optimum plans for each of the design scales:

1000 K 11.5		Optimum I fan for Laen Design Seale				
Design	Alt.	No.	Components Meas	of Mitigation sures*	Project Cost (million pesos) ^{*3}	
Scale	Imus Divor	San Juan	Imus	San Juan	To be shouldered	To be shared by
	IIIus Kivei	River	River	River	by DPWH	land developers
2-year	F_I.3	F_S.5	RB, PRI	DC, PRI	2,225	4,335
5-year	F_I.3	F_S.5	RB, PRI	DC, PRI	3,677	4,335
10-year	F_I.3	F_S.5	RB, PRI	RB, PRI	4,299	4,335
20-year	F_I.3	F_S.5	RB, PRI	RB, PRI	4,644	4,335
3.7	DD OCC 1	ч 1 . 1 [.] .	· · DDI D ·	1	DO O I D	

Table R 11.3Optimum Plan for Each Design Scale

Note *1: RB = Off-site flood retarding basin, PRI=Partial river improvement, DC=San Juan Diversion Channel

- *2: Alt. F_S.5 is intended to have combination of off-site flood retarding basin and San Juan Diversion Channel. However, the project cost for combination is higher than the cost for single measure of either San Juan Diversion Channel or off-site flood retarding basin. Moreover, the least cost comes out in different component of the measures depending on the design scales. As the results, the optimum plan for San Juan has the different components of measures depending on the design scale.
- *3: The costs above are exclusive of Price Contingency.

(2) Selection of Optimum Plan against Inland Flood

The following two alternatives are proposed for the mitigation of inland flood, as described in Chapter 8:

(a) Alt. D_1, which applies the costal dike with tidal gate for the protection of the Municipality of Kawit against tidal flood; and

(b) Alt. D_2, which applies the ring dike without tidal gate for the protection.

Of these alternatives, Alt. D_1 requires a lower project cost as well as a less number of house relocation than Alt D_2, as shown in Table R 11.4. Moreover, there is no dominant difference in natural impacts inflicted by both alternatives (refer to Chapter 10). From these points of view, Alt. D_1 is proposed as the preferable plan.

11000							
Alternative Plan	Project Cost (million pesos)	Number of House Relocations					
Alt. D_1 without On-site	6,302	323					
Alt. D_2 without On-site	6,688	543					
Alt. D_1 with On-site	6,304	323					
Alt. D_2 with On-site	6,729	543					

Table R 11.4Project Cost and House Relocation for Alternative Plans against InlandFlood

Note: The costs above are exclusive of Price Contingency.

Alt. D_1 with on-site flood regulation pond requires a project cost of 6,304 million pesos even on the premise of design scale of 2-year return period. This project cost is divided into the cost of 5,927 million pesos for infrastructures (such as coastal dike, tidal gate and improvement/constriction of drainage networks) and 378 million pesos for the construction of on-site flood regulation pond.

The national budget, most probably the budget of DPWH will shoulder the above project cost of 5,927 million pesos for the infrastructures. However, the cost is deemed again to be hardly affordable in the same way as the cost of the plan against river overflow. Therefore, a certain part of the proposed flood mitigation measures needs to be curtailed [see details in the following item (3)].

Hence, instead of the full-scale flood mitigation plan for the design scale of 2-year return period, the partial-scale flood mitigation plan is proposed as the optimum plan (refer to Table R 8.2 and Fig.8.13 in Chapter 8).

		6	
	Project Cost	Number of House	
Alternative Plan	To be shouldered by DPWH	To be shared by land developers	Relocations
Alt D 1 with sut On site	2.921	(5	101
Alt. D_1 without On-site	2,831	60	121
Alt. D_2 without On-site	3,253	65	341
Alt. D_1 with On-site	2,559	378	121
Alt. D_2 with On-site	2,973 378		341
Note The costs ab	ove are exclusive of Price Co	ontingencies.	

Table R 11.5Project Cost and House Relocation for Alternative Plans
by Partial-Scale Protection against Inland Flood

The costs above are exclusive of Price Contingencies. Refer to Section 8.2 in Chapter 8

The parts curtailed in the partial-scale mitigation involve the abandonment of improvement/construction of drainage networks and construction of the coastal dikes except those for the Municipality of Kawit, which has an extremely low ground level of below EL. Om compared to the mean highest high tide (EL. 0.8m). Due to this abandonment of drainage facilities, a certain inundation by stagnant storm rainfall and tidal flood has to be tolerated (refer to Fig. 8.10 ~ 8.13 in Chapter 8). Nevertheless, the off-site flood retention pond, the coastal dike for the Municipality of Kawit and tidal gates/flap gates along coasts and estuary of river are secured as the minimum requirement to shut out serious tidal floods and flood runoff from a rather extensive catchment in the southern part of the Diversion Road.

(3) Selection of Overall Optimum Plan

As described above, DPWH is most likely to undertake project implementation for the proposed flood mitigation measures except construction of on-site flood regulation pond, which will be constructed by the land developer. DPWH currently undertakes nine major flood control projects in the country and the average investment cost for the projects is limited to about 4,287 million pesos (refer to Subsection 6.3.1).

Should the project cost drastically exceed the above average investment cost, the project would be hardly implemented. However, the maximum project cost to be shouldered by DPWH for the Study Area is estimated at 8,390 million pesos (i.e., 3,623 million pesos for mitigation of river overflow flood at the design scale of 20-year return period and 4,767 million pesos for full-scale mitigation of inland flood based on construction base cost and compensation cost).

In due consideration of the above affordability and the design scales for flood mitigation against river over flow and inland flood applied in other river basins, the optimum plan is finally proposed as listed in Table R 11.6, R 11.7, R 11.8, Table 11.1 and Table 11.2 and illustrated in Fig. 11.1 and Fig. 11.2. Fig.11.3 shows the discharge distribution under the optimum plan.

1001011110 10	Tuble It 1110 Total 110 jeet Costs for 110 posed O veran Optimum 1100a Hingation 1 fair						
Item		Cost (Million Peso)	Share				
(1) Construction Base	Cost	3,852	43.4%				
(2) Compensation Cos	t	1,476	16.6%				
(3) Engineering Service	e Cost	616	7.0%				
(4) Physical Continger	псу	297	3.4%				
(5) Price Contingency		1,866	21.0%				
(6) Administration		54	0.6%				
(7) Duty/Value Added	Tax	714	8.0%				
Tota	l	8,875	100.0%				
(8) On-site Regulation	Pond	4,007	66.9%				
(9) Physical Continger	псу	200	3.3%				
(10) Price Contingency		1,142	19.1%				
(11) Duty/Value Added	Tax	642	10.7%				
Tota		5,991	100.0%				

 Table R 11.6
 Total Project Costs for Proposed Overall Optimum Flood Mitigation Plan

The selected optimum plan has the following particular features:

- The project cost (sum of initial construction base cost and initial compensation cost exclusive of contingencies) would not drastically exceed the past average investment cost for major flood control projects in Philippines.
- The plan would take the highest or second highest EIRR among the alternatives.
- The plan would require the minimum number of house evacuations among the alternatives.
- The plan would not cause any fatal natural environmental impacts.

Classificatio n of Plan	Objective Area	Alt. No.	Design Scale (Return Period)	Project Cost(N Shouldered by DPWH	Million pesos) Shared by Developer	EIRR	No. of House Evacuation
Plan against River	Imus River Basin	F_I.3	10-year*	2,855 (3,619)	2,826 (3,593)	32.4%	275
Overflow Flood	San Juan River Basin	F_S.5	10-year	1,445 (1,863)	1,508 (1,918)	20.7%	74
Plan against Inland Flood	Entire drainage area	D-1 (Partial Scale)	2-year	2,560 (3,393)	378 (480)	8.1%	121
Total			6,860 (8,875)	4,712 (5,991)	22.2%	470	
Annual O&M Cost			35	36	-	-	

 Table R 11.7
 Proposed Overall Optimum Flood Mitigation Plan

Note: (*) The design scales of two tributaries of Imus namely Bacoor River and Jurian River are limited to 2year return period and 5-year return period. due to the limited available channel flow capacity of river channel.

The costs above are exclusive of Price Contingency, otherwise the costs in parentheses show total grand costs under all considerations. (See Table 11.2)

Description	Quantity
Against River Overflow Flood	
	10-year return period for mainstream for Imus and San Juan River
Design Scale	5-year return period for Jurian River
	2-year return period for Bacoor River
Officite Flood Paterding Pagin	7 retarding basins of 139 ha in Imus river basin
Offsite Flood Retaiding Basin	3 retarding basins of 80 ha in San Juan river basin
	Improvement length of 3.4km for Imus Main Stream
Partial Diver Improvement	Improvement length of 6.4km for Bacoor River
r artiar Kiver improvement	Improvement length of 9.0km for Jurian River
	Improvement length of 2.0km for San Juan River
Against Inland Flood	
Design Scale	2-year return period (Partial Protection)
Drainage System Improvement	Improvement length of 3.8km for Improvement of Existing Drainage Channel
	Improvement length of 2.6km for Construction of New Drainage Channel
	Improvement length of 4.4km for Construction of New Interceptor
	Improvement no. of 12 units for Tidal Gates
	Improvement no. of 18 units for Flap Gates
	5 retention ponds of 52ha in total

Table R 11.8Summary of Features of Proposed Overall Optimum Flood Mitigation Plan

11.1.2 Optimum Non-Structural Flood Mitigation Plan

The following five non-structural flood mitigation plans have been proposed in Chapter 9: (1) Cleanup of Waterway; (2) Prevention of encroachment to river area; (3) Control of excessive land development; (4) Legal arrangement for the introduction of on-site flood regulation pond; and (5) Establishment of flood warning/evacuation system and flood hazard map.

The above non-structural plans are not alternatives, and all of them take important roles in the different fields for flood mitigation. The local government units currently undertake the activities relevant to all of the plans except the above item (4), Legal arrangement for the introduction of on-site flood regulation pond, and therefore, the plans are highly realizable. The plan on item (4) is also indispensable to attain the full function of the afore-said structural flood mitigation plan.

From the above viewpoints, implementation of all of the non-structural plans for the above items (1) to (5) is proposed.

11.2 Selection of Priority Project

As described in Chapter 7, the afore-said optimum flood mitigation plan both for the structural and non-structural measures is classified into the short-term project and the long-term project. The short-term project is assumed to be urgently required as the priority project and at the same time expected to produce immediate flood mitigation effects within the rather short period. Based on this concept, the priority projects for the structural and non-structural flood mitigation measure are proposed, as described below.

11.2.1 Priority Project for Structural Flood Mitigation Measure

As described above, the optimum plan is broadly divided into three components; namely, (1) the plan against river overflow of Imus River; (2) the plan against river overflow of San Juan River; and (3) the plan for mitigation of inland flood. Each of these three plan components could independently effect flood mitigation. Of these three components, the plan against the river overflow of Imus River could relieve the largest number of houses and area, as listed in Table R 11.9. Moreover, the plan could generate the largest EIRR, as listed in the foregoing Table R 11.7. Judging from these flood mitigation effects and the economic viability, the plan against the overflow of Imus River shall take priority over all the other components of the proposed optimum plan.

Classification	Objective	Number of Houses to be relieved by the Optimum Plan			Area to be Relieved by the Optimum Plan (ha)		
of Plan	Area	2-year Return Flood	5-year Return Flood	10-year Return Flood	2-year Return Flood	5-year Return Flood	10-year Return Flood
Plan against River	Imus River Basin	6,911	10,356	10,500	839	1,000	1,056
Overflow Flood	San Juan River Basin	99	3,146	4,963	93	477	867
Plan against Inland Flood	Drainage Area	1,926	-	-	291	_	-

 Table R 11.9
 Number of Houses and Area to be relieved by the Optimum Flood Mitigation Plan

The plan against the river overflow of Imus River is further divided into three components, namely:

- (1) Construction of four upstream off-site flood-retarding basins; namely, Code Nos. RB-I1 and RB-B4 along Imus River and RB-J1 and RB-J2 along Jurian River, the tributary of Imus River (the locations of the proposed retarding basins are as shown in Fig. 11.1 attached).
- (2) Construction of three downstream off-site flood-retarding basins namely, Code Nos. RB-B1, RB-B2 and RB-B3 along Bacoor River, the tributary of Imus River.
- (3) Partial river improvement along the downstream sections of Imus River, Bacoor River and Jurian River (refer to Tables 11.1 and Fig. 11.1 attached).
- (4) Construction of on-site flood regulation pond to be implemented one after another development of new subdivision.

Of the above components, the upstream off-site flood-retarding basin rules the peak flood discharge flowing to the downstream damageable river stretches and, therefore, most influential to the flood mitigation of Imus River. Moreover, the proposed site for the upstream off-site flood-retarding basin is currently vacant land that would require only seven houses to be relocated. However, the site would be possibly occupied by houses and/or other structures unless the site is secured as a right-of-way for construction of the off-site flood-retarding basin. Thus, construction of the upstream retarding basin is urgently required. Moreover, because of the small number of house relocations, the implementation period for construction could be made shorter, leading to the immediate effect of flood mitigation.

Judging from the above flood mitigation efficiency, the urgent necessity of project implementation and the immediate effect of the flood mitigation, it is proposed that construction of the upstream off-site flood-retarding basins as described in the above item (1) shall be the priority project, and the further detailed study for this project should be made in the following Feasibility Study Stage.

11.2.2 Priority Project for Non-Structural Measure

The non-structural flood mitigation plans as described in Subsection 11.1.2 could take the important roles for flood mitigation in the different fields and could bring out the immediate flood mitigation effect. From these points of view, all components of the non-structural flood mitigation plan are assumed as the priority project, and the following undertakings by the JICA Study Team are scheduled during the following Feasibility Study Stage:

- (1) **Cleanup of Waterway:** In order to materialize the Information and Education Campaign (IEC) on the cleanup of the waterway, the two pilot projects shall be implemented through the Study for the period from January to February 2008. The expansion program for the pilot project shall be further proposed in the Feasibility Study Stage in 2008 (refer to Subsection 9.2.5).
- (2) **Prevention of Encroachment to River Area:** The ongoing demolition and development of relocation site for informal dwellers by the local government shall be monitored and more detailed clarification shall be made on relocation of the houses located in the designated river area.
- (3) **Control of Excessive Land Development:** Exchange of views on future land zoning in the Study Area shall be made between the JICA Study Team and the local government officials concerned so as to attain the appropriate revised plan of future land use.

- (4) **Legal Arrangement for Introduction of On-Site Flood Regulation Pond:** Effort shall be made to revise the draft of the ordinance on "On-Site Flood Regulation Pond Requirement in a New Subdivision Project" through discussions with the local government officials concerned, and to support enforcement of the ordinance.
- (5) **Establishment of Flood Warning/Evacuation System and Flood Hazard Map:** The prototype of the flood hazard map shall be developed in collaboration with the communities (the Barangay Disaster Coordinating Councils) and/or local government officials concerned. The Disaster Prevention Manual shall be further prepared.

11.3 Implementation Program

The proposed flood mitigation plan involves the structural project and non-structural project. The structural project is further divided into three packages; namely, (1) Package 1, for the project against river overflow flood of Imus River; (2) Package 2, for the project against river overflow flood of San Juan River; and (3) Package 3, for the drainage improvement project. Of these project packages, the priority of implementation shall be given to Package 1 because of the circumstances described in Subsection 11.2.1.

Package 1 for Imus River is proposed to commence in 2010, and the off-site flood retarding basins are scheduled to complete before the year of 2013 as the short-tem project, as shown in Table R 11.10. On the other hand, both of Packages 2 and 3 are assumed as the long-term projects to commence in 2011 and completed before the year 2020. The detailed implementation schedules for the structural projects of Packages 1 to 3 are as shown in Table 11.3 attached.

*			
Package	Component	Short Term	Long Term
	Upstream Off-Site Flood Retarding Basin	0	
Structural Project: Package 1 (Project against Overflow of Imus River)	Downstream Off-Site Flood Retarding Basin	0	
	Partial River Improvement		0
Structural Project: Package 2	Off-Site Flood Retarding Basin		0
(Project against Overflow of San Juan River)	Partial River Improvement		0
Structural Project: Package 3 (Drainage Improvement Project)	Whole component		0

 Table R 11.10
 Implementation Program for Structural Flood Mitigation Projects

Note: Detailed order of implementation is shown in Table 11.3 attached.

The non-structural project is divided into four components; namely, (1) Cleanup of waterway; (2) Prevention of encroachment to the river area; (3) Enforcement of ordinance on on-site flood regulation pond; and (4) Setup and execution of flood warning and evacuation system. Setting up of the entire non-structural project is proposed to commence even within the study period and complete before the year 2010. The detailed implementation schedule of the non-structural project is as shown in Table 11.4 attached.

11.4 Plan of Organizational Setup for the Implementation of Proposed Flood Mitigation Project

11.4.1 Proposed Execution Body for Each Project Component

The proposed flood mitigation project is divided into the structural and non-structural components, which are further divided into several sub-components. Taking the ongoing activities, budgetary affordability and available human resources into account, the organizations as described in the following items (1) to (7) are proposed as the eligible execution bodies for each of the project components. Of these organizations, those of items (3) to (7) are for the non-structural components and further detailed demarcations are proposed, as shown in Table 11.7 attached. As for items (1) and (2) and other related actions/implementation activities to be taken by each execution body regarding structural measures are tabulated in Table 11.5 and 11.6.

(1) **Construction of Structures**

The works for the structural project components as proposed in Chapter 8 are river channel improvement and the construction of flood retarding basin/diversion channel and coastal dike.

Development of these infrastructures would require the project cost of several billion pesos, and the eligible project implementation body for them has to be addressed solely to DPWH judging from budgetary affordability for such large-scale infrastructure projects (refer to Section 6.3).

DPWH shall undertake construction of all proposed flood mitigation structures except the on-site flood regulation pond, which shall be under the responsibility of the land developer. Undertakings of DPWH shall include, in principle, land acquisition and house relocation required for the construction works. As for the relocation of informal dwellers, however, the Provincial Housing and Urban Development Office shall undertake the necessary relevant works including preparation of relocation site and support of livelihood for them.

(2) **Operation and Maintenance of Structures**

Taking the work volume and required knowledge into account, the following entities are proposed to be responsible for the operation and maintenance of each of the structures:

(a) **River Structure**

DPWH shall undertake the following works through its district office in Cavite:

- Maintenance of river dike and revetment of Imus, San Juan and Canas rivers, including channel dredging.
- Maintenance of the proposed flood diversion channel for San Juan River and the flood retarding basins.

(b) Drainage Structures

Each of the municipalities of Bacoor, Imus, Kawit, Noveleta, Rosario, Tanza and General Trias shall undertake operation and maintenance of the drainage structures constructed in the concerned municipality's jurisdiction, including the coastal dike, drainage channel, tidal gate, flap gate and off-site flood retention pond.

(c) On-Site Flood Regulation Pond

Routine maintenance such as removal of weeds and garbage shall be entrusted either to the land developer if contracted by the resident associations or the resident associations themselves if the land developer is not contracted. Corrective maintenance such as rehabilitation of side slopes and repair of outlet pipes shall be under the responsibility of the concerned city/municipality.

(3) Cleanup of Waterway

The following organization shall undertake the relevant works with the coordination of the Flood Mitigation Committee, as described below:

(a) Removal of Drifting Material at Critical Bottlenecks

The DPWH District Office in Trece Martires and the Municipal Engineering Office (MEO) shall undertake the monitoring and removal of drifting materials and sediment deposits at 20 critical bottlenecks of river and drainage channel as proposed in Subsection 9.2.1.

(b) Information and Education Campaign (IEC)

The IEC on the cleanup of waterway shall be to the responsibility of the provincial/municipal executive committee and technical working group for the "Oplan Linis Cavite," which currently focuses on province-wide cleanup. The Provincial Environmental and National Resources Office (PG-ENRO) heads the provincial working group for Oplan Linis Cavite, and all cities and municipalities organized their own executive committees and technical working groups for actual execution of the cleaning works. Moreover, the Oplan Linis Cavite involves several NGOs such as Lallian Community Development Center and Sagip Ilog Cavite Group.

(4) **Relocation of Informal Dwellers in River Area and Prevention of Re-Encroachment**

The relocation of informal dwellers in river areas as proposed in Subsection 9.3.2 shall be undertaken by the Task Force against Professional Squatters and Squatting Syndicates (TFPSSS). The Provincial Housing and Urban Development Office and the Provincial Legal Service Office head the Task Force, which currently undertake relocation of informal dwellers. The Provincial Task Force headed by the Provincial Philippine National Police (PNP) shall also serve as the operational arm for the drive against professional squatters and squatting syndicates.

In parallel with the relocation works, the TFPSSS at the municipality level in collaboration with the City/Municipal Disaster Coordinating Council (CDCC/MDCC) shall setup the management system of the river area to prevent re-encroachment including the system of river patrol and installation of signboards. The City/Municipal Planning and Development Offices (CPDO/MPDO) in collaboration with CDCC/MDCC shall also prepare the land zoning map of the river area including those of river park and sports ground.

(5) Control of Excessive Land Development in River Basin

The Provincial Planning and Development Office (PPDO) headed by the Provincial Planning and Development Coordinator (PPDC) shall monitor and evaluate excessive land development and control it based on coordination and formulation of the provincial wide economic, social and infrastructure plans. At the same time, CPDO/MPDO shall control excessive land development in its jurisdiction through the formulation of a land use plan for its jurisdiction.

(6) Legislation on the Construction of On-Site Flood Regulation Pond in New Subdivisions

The Provincial Legislative Office in collaboration with PPDO shall prepare the draft of the ordinance on the construction of the on-site flood regulation pond proposed in the Study. The draft ordinance shall be evaluated and approved by the Legislative Council (Sangguniang Panlalawigan) and promulgated by the Provincial Governor.

(7) Flood Warning and Evacuation

The Disaster Coordinating Council (DCC) from the provincial to the barangay level shall undertake all necessary activities of the flood warning and evacuation proposed in Section 9.4.

11.4.2 Establishment of Flood Mitigation Committee (FMC)

(1) Background and Objectives of FMC

During the preparatory stage of the Study, the DPWH, the Provincial Government of Cavite and the JICA Preparatory Study Team agreed to organize the "Flood Mitigation Committee (hereinafter referred to as FMC)" at the local level (refer to "Minutes of Discussion on Implementation Agreement for the Study, Nov. 24, 2006"). The FMC is in line with the concept deliberated by the RBCO-DENR [refer to Subsection 6.2.3(2)].

The FMC needs to be set up during the study period so as to promote participation of the various stakeholders in the programs proposed in the Study and further, to facilitate execution of the pilot project to be undertaken by the JICA Study Team in collaboration with the NGOs/the local community. The FMC is also expected to function as the coordinating body for a variety of executing bodies for the proposed project components during and after the Study. From these points of view, the FMC shall have the following objectives:

- (a) To support the JICA Study Team in disseminating information and knowledge acquired through the Study to the stakeholders;
- (b) To reflect the comments, suggestions and recommendations of the stakeholders in the Study;
- (c) To coordinate and support execution of the proposed structural flood mitigation programs;

- (d) To coordinate and support execution of the ongoing and proposed non-structural flood mitigation programs including those for the community-based activities as well as enactment of an Ordinance/Regulation on land use control, which shall be proposed as one of the flood mitigation measures in the Study; and
- (e) To coordinate and support sustainable operation and maintenance of the existing and proposed flood mitigation facilities.

(2) Organizational Setup of FMC

The FMC shall ideally include all stakeholders at the local level such as the members of the provincial and city/municipal government units, educational institutions, the barangays, the NGOs and the communities relevant to the proposed project in the Study Area. However, there are an extremely large number of stakeholders, and it is virtually difficult to integrate all of them as members of FMC.

At the same time, the proposed structural and non-structural programs could be executed as the extension and/or part of the ongoing activities by the existing organizations described in Subsection 11.4.1 and therefore mandated to them. The required function of FMC shall be oriented to coordination with the organizations and monitoring of the activities performed by them. From this point of view, the members of the provincial government agencies involving the head of the organizations are as proposed in the following table.

Designation	Personnel ^(*) and Organization	Number of Personnel
Chairperson	Provincial Planning and Development Coordinator	1
Secretariat	Provincial Planning and Development Office (PPDO)	1
Vice-chairperson	District Engineer of DPWH in Tress Martires City	1
Member	Provincial Director of Philippine National Police (PNP)	1
Member	Head of PG-Environmental and natural Resources Office (PG-ENRO)	1
Member	Head of Provincial Housing and Urban Development Office	1
Member	Head of Provincial Engineering Office (POE)	1
Member	Representative from District Office of DENR in Tress Martires City	1
Member	Representative from District Office of NIA in Naic, Cavite	1
Total		9

	Fable R 11.11	Proposed Members of FMC
--	---------------	-------------------------

(*): To be selected by the routine system

(3) Roles Required of FMC

The FMC shall undertake the following works (refer to Fig. 11.4 attached):

(a) During the Study Period

(i) Operation, Monitoring and Evaluation

- Monitor and evaluate establishment of the new provincial wide solid waste management system (refer to Subsection 6.4.2).
- Collaborate with the JICA Study Team on the enactment of an ordinance/regulation on land use control, which is proposed as one of flood mitigation measures in the Study (refer to Section 9.5).
- Coordinate setup of the project implementation system.
- Setup the coordinating system with the relevant authorities, which may include: (i) DPWH as the execution body for construction of proposed flood mitigation structures, (ii) executing committee/technical working group of "Oplan Linis Cavite," (iii) task force for relocation of informal dwellers, (iv) CPDO/MPDO for formulation of land use plan, (v) the PDCC for establishment of flood warning and evacuation.

• Monitor and evaluate the reorganization of PDCC, CDCC/MDCC and BDCC, and the preparation of the "Calamities and Disaster Preparedness Plan" by each disaster coordinating council.

(ii) Public Information and Training

- Support the JICA Study Team in providing the stakeholders with information and knowledge acquired in the Study through workshops, stakeholder's meeting, public consultation meetings and other dialogs.
- Coordinate with the communities on the execution of the pilot projects for cleanup of waterway proposed in the Study (refer to Subsection 9.2.5).
- Support the JICA Study Team in developing the model flood risk map in collaboration with the municipal governments and the communities.

(b) After Completion of the Study

(i) Operation, Monitoring and Evaluation

- Set the boundary of the river area and inventory the informal dwellers in the river area in collaboration with the Provincial Housing and Urban Development Office.
- Monitor and evaluate land acquisition and house evacuation required for construction of the flood mitigation structures proposed in the Study.
- Monitor and evaluate relocation of informal dwellers in the river area as proposed in the Study in collaboration with the Provincial Housing and Urban Development Office and the Provincial Legal Service Office.
- Monitor and evaluate declogging of garbage at the 14 critical bottlenecks and dredging along 6 critical drainage channels identified in the Study (refer to Subsection 9.2.1).
- Monitor and evaluate re-encroachment of informal dwellers after their relocation in collaboration with the PNP.
- Monitor and evaluate development of the procedures for flood warning and evacuation based on the plan proposed in the Study.
- Coordinate with PDCC and CDCC/MDCC in establishing the disaster operation center and the disaster evacuation center.
- Support and coordinate with PDCC and CDCC/MDCC in procuring the necessary rainfall gauging equipment and communication equipment for flood warning and evacuation.
- Support the CDCCs/MDCCs and BDCCs in establishing their own flood risk maps and in distributing them to the residents.

(ii) **Public Information**

- Coordinate and support promotion of the IEC on cleanup of waterway in collaboration with the executive committee/technical working group for "Oplan Linis Cavite."
- Coordinate and support promotion of the IEC on regulations for maintenance and management of the river area in collaboration with the Provincial Offices of DPWH and DENR.
- Coordinate and support promotion of the necessity of control of excessive land development from the viewpoint of flood mitigation in collaboration with PPDO and CPDO/MPDO.

• Coordinate and support to promote on flood warning and evacuation system in collaboration with PDCC, CDCC/MDCC and BDCC.

(iii) Training, Research and Development

- Coordinate with the executive committee/technical working group of "Oplan Linis Cavite" in the execution of the following activities: (1) opening and organizing seminars/workshops and distribution of manuals on the cleanup of waterways; and (2) organizing community-based field practices on the cleanup of waterways.
- Coordinate with the CDCC/MDCC on the regular conduct of trainings/drills on flood warning and evacuation.

11.5 Preliminary Plan for Resettlement

11.5.1 Resettlement Policy

The basic national policy governing involuntary resettlement and land acquisition is enshrined in the Philippine Constitution. Article II, Section 9 of the Bill of Rights guarantees that in the State's exercise of eminent domain "no person shall be deprived of property except by competent authority and for public use and always upon payment of just compensation." Article III, Section 1 reiterates that in the pursuit of government development objectives "private property shall not be taken for public use without just compensation."

There are parallel operational directives, guidelines and checklists governing resettlement issued by international funding agencies such as the World Bank (WB), the Asian Development Bank (ADB), the Japan Bank for International Cooperation (JBIC) and the Japan International Cooperation Agency (JICA) in consideration of environmental and social dimensions. These issuances uphold in principle that:

- (1) Involuntary resettlement should be avoided or minimized where feasible by exploring all viable project options;
- (2) Displaced persons should be compensated for their losses at full replacement cost prior to actual relocation;
- (3) The absence of formal legal title to land by some affected groups should not be a bar to compensation;
- (4) Displaced persons should be assisted during relocation and should be supported during the transition period after relocation to help them re-establish their social and economic base;
- (5) The affected communities should be fully informed and consulted on resettlement and compensation options;
- (6) Particular attention should be paid to the needs of the poorest affected persons, including those without legal title to assets, female-headed households and other vulnerable groups; and
- (7) Involuntary resettlement should be conceived and executed as part of a development project and resettlement plans should be prepared with appropriate time-bound actions and budget.

In 1999, DPWH formulated a comprehensive *Land Acquisition, Resettlement and Rehabilitation Policy (LARRP)*, or simply the "Resettlement Policy," to govern all land acquisition, compensation, and resettlement of PAPs and vulnerable communities affected by the National Road Improvement Project (NRIMP). The Policy upholds the principle that PAPs should be provided with sufficient compensation for lost assets and resettlement to help them improve or at least maintain pre-project standards of living. Since then, the Resettlement Policy has undergone updating and revision, which finally lead to the adoption of the *Land Acquisition, Resettlement and Indigenous Peoples Policy* in 2006. The LARIPP now serves as the overall framework governing right-of-way (ROW) acquisition, payment of compensation and preparation of Land Acquisition, Resettlement and Indigenous People's Action Plans (LARIPAPs) for all types of DPWH projects.

11.5.2 Impacts of Resettlement

The implementation of this Master Plan would necessitate land acquisition in order to secure the right of way (ROW) of the potential flood control structures. This would likely create direct and indirect impacts, which could be significant in both social and economic terms. These impacts will affect not only the resettling communities but also on the host or receiving communities.

The adverse social impacts on resettling communities are likely to include loss of access to basic social infrastructures and services as well as the disintegration of social support systems and relationships. The significant economic impacts on would-be resettlers would likely include loss of assets (land, crops and structural improvements on land) and loss or diminution of income and economic opportunities.

On the other hand, the adverse impacts on the host communities are likely to include land speculation, increased population and in-migration, bigger administrative responsibilities for receiving LGUs, competition over limited resource, livelihood opportunities and existing social services.

In order to mitigate these potential impacts, JICA's Guidelines for Social and Environmental Consideration (2004) calls for resettlement to be undertaken as an integral component of the proposed interventions. With this end in view, resettlement concerns are examined in this early stage of project formulation. Care is taken in the course of selecting potential flood mitigation measures, to ensure that optimum benefits would be achieved while minimizing involuntary resettlement. Further, recommendations are put forward that will facilitate the Resettlement Action Plan (RAP) formulation and implementation in the succeeding stages of project development.

11.5.3 Scope of Resettlement

Preliminary investigation of the scope of potential resettlement was done using NAMRIA digital topographic maps (1990), time series SPOT and Quickbird satellite imageries (2002 to 2004) and JICA CALA Road Study (2003). These were further verified through field reconnaissance surveys. It is estimated that 470 houses/structures are likely to be affected by the proposed structural flood mitigation measures under the Master Plan.

The distribution of potential project-affected families (PAFs) is summarized in Table R 11.12.

	the Folential Flood Witigation Flojects under the Waster Flan											
	Total No.	No. of	Nun	nber of Houses/Structu	ures that may be Aff	ected by Potentia	l Projects					
Municipality	of	Barangays	River	Off-site	Off-site	Drainage	Coastal	T. (1				
	Barangays	Affected	Improvement	Retarding Basin	Retention Pond	Improvement	Dike	Iotal				
		11	120									
Bassan		6		30								
Dacool		1				10						
	73	18	120	30		10		160				
		26	80									
Imue		6		15								
mus		1				2						
	97	33	80	15		2		9 7				
		5	35									
Kowit		2				10						
Kawit		7					78					
	23	14	35			10	78	123				
Novoloto		3	55									
Noveleta	16	3	55					55				
		1			1							
Rosario		2				10						
	20	3			1	10		11				
		4		14								
Gen. Trias		1				10						
	33	5		14		10		24				
Tanza	41	0						0				
TOTAL	303	76	290	59	1	42	78	470				

Table R 11.12Estimated Number of Houses/Structures Affected by
the Potential Flood Mitigation Projects under the Master Plan

Source: JICA Study Team, 2007

At an average household size of 4.78 (the provincial average, NSO CY 2000), the total figure above readily translates to more than 2,200 potential project-affected persons (PAPs) who may need to be resettled when the Master Plan is implemented. It must be noted that from 2003-2005 the province posted a positive average annual population growth rate of 2.63 percent. This could mean that the number of potential PAPs may be more than 2,500 by the time the projects are undertaken.

The potential PAPs are distributed among 76 barangays within the jurisdiction of six municipalities; namely, Kawit, Noveleta, Rosario, Bacoor, Imus and General Trias. Some barangays will be affected by more than one of the proposed flood mitigation measures.

The most significant number of potential resettlers is from the municipality of Bacoor. This involves 18 barangays with 160 families. Kawit follows with 123 potential PAFs distributed in 14 barangays, then Imus with 97 potential PAFS distributed in 33 barangays. The municipality of Rosario would be least affected, since there are only 11 families from three barangays who may need to resettle.

11.5.4 Socio-Economic Conditions of Potential Resettlers

The Study Team conducted an interview survey among river residents and farm lot/fishpond occupants as part of the Initial Environmental Examination (IEE) Study. The sampled population represents the potential resettling families from barangays within and immediately surrounding the proposed project areas, as shown in Table R 11.13. The respondents included the following: (i) 199 river residents representing 11 barangays distributed in Bacoor, Kawit, Noveleta, Rosario, Gen. Trias and Tanza; (ii) 22 farm lot occupants (tenants) representing 6 barangays in Imus, Kawit and Gen. Trias; and (iii) 12 fishpond occupants (tenants) representing 3 coastal barangays in Kawit and Noveleta.

The survey results were supplemented with secondary information obtained from the official data banks of the LGUs and the National Statistics Coordination Board (NSCB) of the National Statistics Office (NSO). Together, the data sets were used to preliminarily profile and describe the socio-economic characteristics of the potential resettlers. A more detailed socio-economic analysis will be undertaken later to fully characterize the would-be affected families after they shall have been identified during the census-tagging activities, as explained in Section 11.5.7.

	River Bank Residents												
Municipality	Barangays Surveyed	No. of Respondents											
		_											
	3 Banalo	10											
Dagoor	Mabolo III	9											
Dacool	Sineguelasan	30											
	Sub-Total	49											
Kowit	1 Manggahan-Lawin	19											
Kawit	Sub-Total	19											
	3 San Juan II	24											
Noveleta	Santa Rosa I	12											
	Santa Rosa II	11											
	Sub-Total	47											
Deserie	1 Tejeros Convention	14											
Kosai lo	Sub-Total	14											
Con Triog	1 Taiana	26											
Gen. Irlas	I Iejelo Sub Total	30											
	Sub-Iotai	30											
Tonzo	2 Biwas Bugal	10											
Tanza	Ducal	18											
	SUD-Iotal	54											
TOTAL	11	199											

 Table R 11.13
 Distribution of Respondents of Social Survey

	Farm Land Occup	ants
Municipality	Barangays	No. of Respondents
	4 Anabu I-G (Ragatan)	2
	Anabu II-B	1
Imus	Malagasang	14
	Paliko	1
		18
Kowit	1 Batong Dalig	1
Kawit		1
Con Triog	1 Bacao	3
Gen. Irias		3
TOTAL	6	22

	Fishpond Occupants												
Municipality	Barangays	No. of Respondents											
	2 Kaingin	4											
Kawit	Wakas	1											
		5											
Novalata	1 San Rafael III	7											
Noveleta		7											
TOTAL	3	12											

Source: JICA IEE Study, 2007.

The socio-economic conditions of the families in the potential project areas and vicinities are described hereafter.

(1) **Population and Demographic Characteristics**

(a) Household Population/Size

Table R 11.14 shows the household size of potential resettlers. Among the riverbank residents, 80% of families have more than three children. The largest group (47%) has 4-6 members, 25% has 7-9 members and only 20% has 1-3 members. The biggest families belong to 8% of riverbank residents, from Bgy. Biwas (Tanza) and Bgy. Manggahan (Kawit), both of which have more than 20% of families with 10 or more members.

The condition is similar among farmland and fishpond residents, where 46% and 50% of the families, respectively, have 4-6 members and only 36% and 25% of the households, respectively, have 1-3 members.

The figures appear to be consistent with recent census data (NSCB, CY 2000), which puts the provincial average household size at 4.78 members per household.

Tuble I	Table K 11.14 Size of Households of Social Survey Respondents												
						House	ehold Size						
Municipality	1-3	%	4-6	4-6 % 7-9 % 10 & Above		%	NR* %		Total No. of Respondents				
				RIVE	ER BAN	K RESII	DENTS						
Bacoor	7	14%	20	41% 19		39%	3	6% 0		0%	49		
Kawit	5	26%	6	32%	4	21%	4	21%	0	0%	19		
Noveleta	8	17%	30	64%	7	15%	1	2%	1	2%	47		
Rosario	4	29%	5	36%	3	21%	2	14%	0	0%	14		
Gen. Trias	8	22%	18	50%	8	22%	1	3%	1	3%	36		
Tanza	7	21%	14	41%	9	26%	4	12%	0	0%	34		
TOTAL	39	20%	93	47%	50	25%	15	8%	2	1%	199		
				FAR	MLANE	OCCUI	PANTS						
Imus	7	39%	8	44%	3	17%					18		
Kawit	1	100%	0	0%	0	0%					1		
Gen. Trias	0	0%	2	67%	1	33%					3		
TOTAL	8	36%	10	46%	4	18%					22		
				FISH	HPOND	OCCUP.	ANTS						
Kawit	2	40%	2	40%	1	20%					5		
Noveleta	1	14%	4	57%	2	29%					7		
TOTAL	3	25%	6	50%	3	25%					12		

 Table R 11.14
 Size of Households of Social Survey Respondents

*NR = no response

Source: JICA IEE Study, 2007.

(b) Gender Distribution

The respondents of the surveyed riverbank households are not always the head of each family. They are mostly wives who are staying at home while the husband and other family members are at work during the day-time. As surveyed, the gender distributions of the respondents of the riverbank households (199) are as follows: male, 59 (30%) and female, 140 (70%).

However, gender of the household head is more useful for describing the characteristics of the severely vulnerable resettling families. The survey obtained data on gender, along with other socio-economic indicators such as age, livelihood occupation and income of each working family member from most of the surveyed households. Based on these data, the biggest contributor to family income is assumed to be the head of each household. When, the income data are not available, the respondents are assumed as the head of household.

Among the farm and fishpond tenants, almost all the respondents are engaged in farming or fishpond operation as their main occupation. They are assumed to be the head of household.

On the above assumptions, Table R 11.15 shows the gender distribution of the heads of surveyed households. Among the riverbank residents, 32% constitute the female household heads. Among farmland and fishpond occupants, the females constitute 27%

and 33% of the household heads, respectively.

Female-headed households would need extra help to get their social and economic base rehabilitated after involuntary displacement. This is because females rely heavily on social networks and institutional support in order to effectively carry out the dual function of caring for the children and providing for the family's basic needs. However, women have more limited access to economic opportunities compared to their male counterparts.

Municipality	Gender												
municipality	Male	%	Female	%	Total								
	RI	VERBANK RI	ESIDENTS										
Bacoor	40	82%	9	18%	49								
Kawit	15	79%	4	21%	19								
Noveleta	29	62%	18	38%	47								
Rosario	9	64%	5	36%	14								
Gen. Trias	20	56%	16	44%	36								
Tanza	23	68%	11	32%	34								
TOTAL	136	68%	63	32%	199								
	FA	ARMLAND RE	ESIDENTS										
Imus	12	67%	6	33%	18								
Kawit	1	100%	0	0%	1								
Gen. Trias	3	100%	0	0%	3								
TOTAL	16	73%	6	27%	22								
	F	ISHPOND RE	SIDENTS										
Kawit	5	100%	0	0%	5								
Noveleta	3	43%	4	57%	7								
TOTAL	8	67%	4	33%	12								
	-		Source: J.	ICA IEE Study,	2007.								

Table R 11.15Gender Distribution of Household Heads

(c) Age Structure

There are no data to show the age structure of would-be affected population. Table R 11.16 shows the age distribution of the household heads only. Poor households that are headed by the elderly are also extremely vulnerable to impoverishment as a result of involuntary displacement and will therefore need special attention.

	Age												
Municipality	30 yrs. Below	%	31-40	%	41-50	%	51-60	%	61 & Above	%	No Response	%	Total
				R	IVER	BANK	RESIDE	NTS					
Bacoor	12	24%	9	18%	17	35%	5	10%	6	12%	0	0%	49
Kawit	4	21%	8	42%	3	16%	2	11%	2	11%	0	0%	19
Noveleta	15	32%	10	21%	7	15%	10	21%	5	11%	0	0%	47
Rosario	3	21%	3	21%	2	14%	3	21%	3	21%	0	0%	14
Gen. Trias	12	33%	11	31%	7	19%	3	8%	3	8%	0	0%	36
Tanza	11	32%	7	21%	6	18%	3	9%	6	18%	1	3%	34
TOTAL 57 29% 48 24% 42 21% 26 13% 25 13% 1 1% 199													199
				F	ARMI	LAND	RESIDE	NTS					
Imus	3	17%	2	11%	3	17%	4	22%	6	33%	0	0%	18
Kawit	0	0%	0	0%	0	0%	1	100%	0	0%	0	0%	1
Gen. Trias	0	0%	1	33%	1	33%	1	33%	0	0%	0	0%	3
TOTAL	3	14%	3	14%	4	18%	6	27%	6	27%	0	0%	22
]	FISHP	OND I	RESIDEN	ITS					
Kawit	1	20%	0	0%	3	60%	0	0%	1	20%	0	0%	5
Noveleta	0	0%	0	0%	3	43%	2	29%	2	29%	0	0%	7
TOTAL	1	8%	0	0%	6	50%	2	17%	3	25%	0	0%	12

Table R 11.16Age Distribution of Household Heads

Source: JICA IEE Study, 2007

Among the river bank residents, 73% of the household heads are younger than 50 years old. The biggest age group (29%) belongs to household heads aged 30 years and below. Those aged 31-40 comprise 24% of the household heads, while those aged 41-50 comprise 21%. Only a few (13%) are senior citizens aged over 60 years old.

Farmland and fishpond household heads appear to be older in comparison to their riverbank counterparts. Among farm tenants, the senior citizens who are over 60 years of age comprise nearly a third (27%) of the family heads. Among fishpond tenants, the largest group (50%) belongs to the 41-50 age bracket. At least 25% of the household heads are senior citizens.

Overall, more than 70% of all household heads are still in their child bearing and economically productive years, i.e., below 60 years old. This could be indicative of an actively growing population, both in numerical and economic terms.

(2) Economic Conditions

(a) Livelihood and Income Sources

Table R11.17 shows the primary sources of income and livelihood of household heads among riverbank residents.

Table P	K 11.17 Timilary Sources of meome and Ervenhood of Household meads														15		
Munici-								Sou	rce of	Incom	ne						
pality	Α	%	В	%	С	%	D	%	Е	%	F	%	G	%	NR	%	Total
						RI	VERI	BANK I	RESI	DENTS	5						
Bacoor	9	18%	15	31%	13	27%	3	6%	4	8%	2	4%	1	2%	2	4%	49
Kawit	5	26%	7	37%	0	0%	4	21%	2	11%	1	5%	0	0%	0	0%	19
Noveleta	13	28%	19	40%	1	2%	9	19%	2	4%	1	2%	1	2%	1	2%	47
Rosario	4	29%	7	50%	0	0%	1	7%	0	0%	1	7%	0	0%	1	7%	14
Gen. Trias	4	11%	14	39%	0	0%	6	17%	1	3%	4	11%	0	0%	7	19%	36
Tanza	7	21%	17	50%	0	0%	6	18%	3	9%	0	0%	0	0%	1	3%	34
TOTAL	42	21%	79	40%	14	7%	29	15%	12	6%	9	5%	2	1%	12	6%	199
Note:	A	: Busin	ess / S	Sales				E:	Techi	nical/ M	Iachii	ne Worl	cs				
	B: Employment F: Odd Jobs																
	C:	Agric	ulture	(Farm	/ Fish	ing)		G:	G: Pension								
		:: No response Source: JICA IEE Study, 2007.															

Table R 11.17Primary Sources of Income and Livelihood of Household Heads

The largest group (40%) of the household heads among riverbank residents are employed as office worker, factory worker, skilled worker, construction worker, care/health worker, security guard, etc. A relatively large percentage (21%) engages in business/sales such as buy-and-sell, goods production, sales agent, small variety ("sari-sari") stores, food vending and house rental. About 15% derive their income from driving public transport vehicles and 7% from agricultural activities such as farming, fishing and poultry-raising. A smaller segment includes technicians/machine workers (6%), odd jobs (5%) and pensioners (1%). The odd jobs include such services as laundry, sewing and manicure.

If relocated off-site, most of these PAPs would probably spend more money in terms of transportation cost to and from their present work places. Many others would likely need help in terms of re-establishing their businesses or starting new ones, access to credit facilities, and capacity building in entrepreneurial skills. A few would need to relocate to other areas where they can re-engage in farming and fishing.

The household heads from the farmlands and fishpond areas are mostly tenants who engage in farming and aquaculture fisheries activities. Farmers engage in the production of rice, corn, vegetable, fruit trees and livestock (hogs, goats, chickens and ducks). Fishpond tenants engage in milkfish and shrimp culture, and salt production. These categories of PAFs may need assistance in terms of learning new livelihood skills, if not provided with similar income-earning opportunities in the new location.

(b) Income Levels

Table R 11.18 shows the per capita monthly income among the surveyed riverbank residents and farm and fishpond tenant-households. The data reflect incomes from both primary and secondary sources of the household heads, along with other economically active family members, who significantly contribute to the household's composite earnings.

Munici	Income per Capita														
pality	A	%	В	%	С	%	D	%	Е	%	F	%	NR	%	No. of Households
					F	RIVER	BANI	K RESI	IDEN	TS					
Bacoor	12	24%	13	27%	11	22%	3	6%	8	16%	1	2%	1	2%	49
Kawit	5	26%	3	16%	7	37%	0	0%	0	0%	1	5%	3	16%	19
Noveleta	11	23%	7	15%	17	36%	2	4%	1	2%	6	13%	3	6%	47
Rosario	5	36%	1	7%	4	29%	1	7%	0	0%	1	7%	2	14%	14
Gen. Trias	10	28%	6	17%	12	33%	4	11%	0	0%	1	3%	3	8%	36
Tanza	15	44%	6	18%	9	26%	2	6%	0	0%	1	3%	1	3%	34
TOTAL	58	29%	36	18%	60	30%	12	6%	9	5%	11	6%	13	7%	199
FARMLAND TENANTS															
Imus	10	56%	1	6%	3	17%	1	6%	1	6%	1	6%	1	6%	18
Kawit	1	100%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	1
Gen. Trias	1	33%	1	33%	0	0%	1	33%	0	0%	0	0%	0	0%	3
TOTAL	12	55%	2	9%	3	14%	2	9%	1	5%	1	5%	1	5%	22
						FISH	PONI	D TEN	ANT	S					
Kawit	2	40%	0	0%	0	0%	0	0%	0	0%	1	20%	2	40%	5
Noveleta	2	29%	0	0%	2	29%	1	14%	1	14%	1	14%	0	0%	7
TOTAL	4	33%	0	0%	2	17%	1	8%	1	8%	2	17%	2	17%	12
	Note:	A: Php	1,100) & Bel	ow	Ι): Php	3,001	l – 4,	000			NR: N	lo Resp	onse
		B: Php	1,101	- 1,70	0	I	E: Php	4,001	- 5,0	000					
		C: Php	1,701	- 3,00	0	I	: Php	5,000	& Al	oove					
										Sou	·co·	IICA IE	F Stu	dy 200	17

 Table R 11.18
 Per Capita Monthly Income among Riverbank Residents
 and Farm/Fishpond Tenant-Households

Source: JICA IEE Study, 2007. During the census year 2000, the annual per capita poverty threshold and per capita food threshold in the Province of Cavite was estimated at Php 14,965 and Php 9,457, respectively. For the year 2007, these were projected to be Php 20,952 and Php 13,240, respectively, by multiplying the price escalation rate of 1.4 during the period 2000-2007.

Hence, the current monthly per capita poverty threshold and per capita food threshold in the project area are estimated at Php 1,746 and Php 1,103, respectively. Based on these poverty indicators, a significant percentage (47%) of the riverbank

residents live below poverty level and about 29% can barely eat three decent meals a day. Moreover, the largest group (64%) of the farm tenant families live below poverty and 55% could hardly meet their food threshold level. Similarly, one-third of the fishpond tenant families also live below the poverty and food threshold levels.

The families just described are considered among the poorest of the poor. Without a sound livelihood development and income restoration program to rehabilitate them, these vulnerable families are prone to further impoverishment due to involuntary displacement as a result of the project.

(c) **Dependency**

The number of children below the age of 18 is shown in Table R 11.19. They comprise the economically dependent or non-earning members of the surveyed households.

The figures indicate that largest group of the families (56% of riverbank residents, 55% of farmland tenants and 42% of fishpond tenants) have only one to three dependent children. Still, a significant percentage has four or more dependent children. A few riverbank residents, in particular, have as many as 10 or more children.

The high economic dependency of non-working members of the family puts more pressure on the scarce family resources. The livelihood and income restoration efforts after resettlement should take this matter into consideration.

Mariai						Tota	l No.	of Depe	endent Chil	dren			
pality	None	%	1-3	%	4-6	%	7-9	%	10 & Above	%	NR*	%	No. of Households
						RIVER	BAN	K RESI	IDENTS				
Bacoor			24	60%	14	35%	2	5%	0	0%	9	0%	49
Kawit			9	47%	5	26%	4	21%	0	0%	1	5%	19
Noveleta			26	55%	12	26%	4	9%	1	2%	4	9%	47
Rosario			5	50%	3	30%	1	10%	1	10%	4	0%	14
Gen. Trias			19	61%	5	16%	7	23%	0	0%	5	0%	36
Tanza			14	50%	12	43%	0	0%	2	7%	6	0%	34
TOTAL	OTAL 97 56% 51 29% 18 10% 4 2% 5 3% 199										199		
						FARM	ALAN	D TEN	IANTS				
Imus			11	61%	4	22%	3	17%					18
Kawit			0	0%	1	100%	0	0%					1
Gen. Trias			1	33%	2	67%	0	0%					3
TOTAL			12	55%	7	32%	3	14%					22
						FISH	IPON	D TEN	ANTS				
Kawit	1	20%	2	40%	2	40%	0	0%					5
Noveleta	0	0%	3	43%	3	43%	1	14%					7
TOTAL	1	8%	5	42%	5	42%	1	8%					12
*ND - no r	acronca												

 Table R 11.19
 Number of Dependent/Non-earning Children

NR = no response

Source: JICA IEE Study, 2007

(d) Skills

According to Table R 11.20, most of the household heads of river bank residents appear to be skillful at business enterprise and home-based cottage industries. A considerable number possess technical skills for driving (15%), technical work, auto mechanic and welding (12%), factory work (13%), construction work, carpentry and masonry (3%), and vocational skills like sewing, manicure, health care and the like (16%). These skills may be enhanced to meet possible employment demands in related industries and factories that now operate in Cavite.

		Livelihood Skills																			
Munici- pality	А	%	В	%	С	%	D	%	Е	%	F	%	G	%	Н	%	I	%	NR	%	No. of HH Heads
										RIVE	RBAN	IK RH	ESIDI	ENTS							
Bacoor	9	18%	3	6%	13	27%	4	8%	1	2%	2	4%	5	10%	7	14%	2	4%	3	6%	49
Kawit	5	26%	4	21%	0	0%	4	21%	3	16%	0	0%	0	0%	2	11%	1	5%	0	0%	19
Noveleta	13	28%	9	19%	1	2%	6	13%	8	17%	1	2%	2	4%	4	9%	1	2%	2	4%	47
Rosario	4	29%	1	7%	0	0%	0	0%	2	14%	1	7%	2	14%	2	14%	1	7%	1	7%	14
Gen. Trias	4	11%	6	17%	0	0%	3	8%	6	17%	0	0%	3	8%	3	8%	4	11%	7	19%	36
Tanza	7	21%	6	18%	0	0%	6	18%	6	18%	2	6%	3	9%	3	9%	0	0%	1	3%	34
TOTAL	42	21%	29	15%	14	7%	23	12%	26	13%	6	3%	15	8%	21	11%	9	5%	14	7%	199
Note:	A: Business / Sales D: Technician / Skilled Wor										G: Off	fice Ei	nploy	/ee		NF	: No	respon	se incl	l. pens	ion
	B: D	Driver			E:	Factor	y Wor	ker			H: He	alth W	/orker	/ Secu	rity						
	C: Farming / Fishing F: Construction Worker I: Odd Jobs																				

Table R 11.20 Livelihood Skills of Household Heads

Source: JICA IEE Study, 2007

Nevertheless, a thorough skills assessment should be carried out in order to adequately profile the employment qualifications and income-earning skills of PAPs. This should be matched with the results of environmental scanning of the resource base, opportunities and support mechanisms available in the host communities. The process will help facilitate the identification of livelihood and vocational trainings necessary to equip the resettling families towards more sustainable economic activities after relocation.

(3) **Social Conditions**

Table R 11.21 shows the educational attainment of the survey respondents. There are no specific data to show educational attainment of other economically active members, especially household heads and other income-earners.

		Educational Attainment													
Municipality	A	%	В	%	С	%	D	%	Е	%	F	%	G	%	No. of Respondents
RIVERBANK RESIDENTS															
Bacoor	6	12%	6	12%	10	20%	15	31%	5	10%	7	14%	0	0%	49
Kawit	0	0%	3	16%	7	37%	5	26%	2	11%	1	5%	1	5%	19
Noveleta	6	13%	16	34%	7	15%	14	30%	0	0%	1	2%	3	6%	47
Rosario	1	7%	0	0%	3	21%	7	50%	1	7%	2	14%	0	0%	14
Gen. Trias	6	17%	8	22%	3	8%	8	22%	3	8%	3	8%	5	14%	36
Tanza	2	6%	7	21%	3	9%	14	41%	0	0%	8	24%	0	0%	34
TOTAL	21	11%	40	20%	33	17%	63	32%	11	6%	22	11%	9	5%	199
	FARMLAND RESIDENTS														
Imus	2	11%	5	28%	3	17%	4	22%	0	0%	3	17%	1	6%	18
Kawit	1	100%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	1
Gen. Trias	1	33%	0	0%	1	33%	1	33%	0	0%	0	0%	0	0%	3
TOTAL	4	18%	5	23%	4	18%	5	23%	0	0%	3	14%	1	5%	22
FISHPOND RESIDENTS															
Kawit	2	40%	2	40%	0	0%	1	20%	0	0%	0	0%	0	0%	5
Noveleta	2	29%	3	43%	1	14%	1	14%	0	0%	0	0%	0	0%	7
TOTAL	4	33%	5	42%	1	8%	2	17%	0	0%	0	0%	0	0%	12
Note :	A: Eler	nentary	School	Underg	raduate		D: High School Graduate G: Others / Vocational School					chool			

Educational Attainment of Social Survey Respondents Table R 11.21

B: Elementary School Graduate

C: High School Undergraduate

E: College Undergraduate F: College Graduate

Source: JICA IEE Study, 2007.

A large percentage (54%) of respondents among the riverbank residents are at least high school graduates. Of these about 20% of these have gone to college and 11% are college degree holders.. A smaller percentage (20%) finished basic elementary education only, while 11% reached elementary school level.

The respondents among farmland and fishpond residents have lower educational attainment. Among farmer-respondents, only 23% finished primary school only, while 42% attained high school and higher level tertiary and vocational education.

Fishpond tenants appear to have the lowest educational attainment; 42% of the respondents are elementary graduates only, while 33% did not finish even elementary education. Only 17% graduated in high school. In order that these PAFs will not be worse off after relocation, the kind of livelihood opportunities and resources available in their new location should at least match their present social realities and potentials.

Among the municipalities, Rosario has the most number of high school, vocational school and college graduates (71%), followed by Tanza (65%) and Bacoor (55%). Comparatively speaking, respondents from these municipalities may be better equipped to hurdle employments requiring technical, vocational and clerical skills, if displaced from their present sources of livelihood.

(4) **Tenurial Characteristics**

Experience in past interview surveys shows that potential resettlers tend to provide inconclusive answers when questioned about land tenure and ownership of property and improvements. The interview results presented below could only serve as preliminary information. It is crucial to ascertain the actual tenurial status of PAFs in order to determine their eligibility to receive compensation and other entitlements. Verification will be done during the master list preparation after the conduct of census/tagging (C/T) activities based on legal titles or claims to properties as presented by PAFs, or on official documents/records of the Municipal/Provincial Assessor, the Registry of Deeds and/or the DENR-Land Management Bureau (LMB). The PAF's eligibility to compensation will be discussed further in Section 11.5.7.

As a policy, DPWH provides cash compensation to legitimate owners of land, crops, structure and/or other improvement on affected real properties based on fair market value. Renters, sharers and rent-free occupants are only assisted financially or in kind during demolition, transfer and transition period in the new settlements. The compensation policy will be discussed more thoroughly in Section 11.5.7.

(a) Ownership of Lot

Table R 11.22 below shows the status of land ownership according to survey respondents.

								Lot O	wners	hip						
Municipality	A	%	В	%	С	%	D	%	Е	%	F	%	NR	%	No. of Respondents	
						RIVE	K RES	IDEN	TS							
Bacoor	3	6%	9	18%	21	43%	6	12%					10	20%	49	
Kawit	2	11%	8	42%	5	26%	2	11%					2	11%	19	
Noveleta	13	28%	8	17%	9	19%	8	17%					9	19%	47	
Rosario	0	0%	3	21%	8	57%	1	7%					2	14%	14	
Gen. Trias	3	8%	3	8%	27	75%	2	6%					1	3%	36	
Tanza	10	29%	4	12%	4	12%	14	41%					2	6%	34	
TOTAL	31	16%	35	18%	74	37%	33	17%					26	13%	199	
						FAR	MLAN	ND TE	NANT	S						
Imus	8	47%							0	0%	7	41%	2	12%	17	
Kawit	0	0%							0	0%	1	100%	0	0%	1	
Gen. Trias	2	67%							0	0%	1	33%	0	0%	3	
TOTAL	10	48%							0	0%	9	43%	2	9%	21	
						FIS	HPON	D TEN	IANTS	5						
Kawit	2	40%							0	0%	3	60%			5	
Noveleta	5	71%							1	14%	1	14%			7	
TOTAL	7	58%							1	8%	4	34%			12	
Note:	A: Ow	n Lot		C: R	C: Relatives			E: Rent			NR: Others / No Response					
	B: Government			D: Private			F	F: Rent-Free								

Table R 11.22Lot Ownership among Social Survey Respondents

Source: JICA IEE Study, 2007.

Among riverbank residents, only 16% of the respondents claim that the lots occupied by their residential structures belong to them. The largest group of the respondents admits that the land is owned by other family members/relatives (37%). Otherwise, the home lots are owned by the government (18%) or other private entities (17%).

In contrast, a significant percentage of farmland tenants (48%) and fishpond tenants (58%) claim that they own the land where they live. A relatively big segment of farm lot and fishpond tenants (43% and 34%, respectively) are rent-free occupants. The rest are either renting or presumably have other forms of arrangements with the landowner.

(b) Ownership of House

As to house ownership (Table R 11.23), a big majority of respondents (64% of riverbank residents, 73% of farm lot occupants and 58% of fishpond tenants, respectively) claim they own the house structures where they live. About 25% of riverbank residents say that their parents, relatives or employers own the structures. The rest are either renting (9%) or enjoy some other form of occupancy arrangement. Some fishpond tenants (33%) and farm tenants (18%) occupy their present dwelling units for free.

	House Ownership															
Municipality	А	%	В	%	С	%	D	%	Е	%	F	%	NR	%	No. of Respondents	
RIVERBANK RESIDENTS																
Bacoor	34	69%	7	14%	4	8%	4	8%	0	0%			0	0%	49	
Kawit	12	63%	3	16%	1	5%	3	16%	0	0%			0	0%	19	
Noveleta	30	64%	5	11%	5	11%	5	11%	1	2%			1	2%	47	
Rosario	9	64%	1	7%	3	21%	1	7%	0	0%			0	0%	14	
Gen. Trias	24	67%	6	17%	3	8%	1	3%	0	0%			2	6%	36	
Tanza	18	53%	9	26%	0	0%	4	12%	0	0%			3	9%	34	
TOTAL	127	64%	31	16%	16	8%	18	9%	1	1%			6	3%	199	
FARMLAND TENANTS																
Imus	14	78%					0	0%			2	11%	2	11%	18	
Kawit	0	0%					0	0%			1	100%	0	0%	1	
Gen. Trias	2	67%					0	0%			1	33%	0	0%	3	
TOTAL	16	73%					0	0%			4	18%	2	9%	22	
FISHPOND TENANTS																
Kawit	2	40%					0	0%			3	60%			5	
Noveleta	5	71%					1	14%			1	14%			7	
TOTAL	7	58%					1	8%			4	33%			12	
Note:	A: Ov	vn hou	se	C: Relatives E: En					nploye	oloyer NR: Others / No Response						
	B: Par	rents		D:	Rent			F: Rent-Free								
	Source: JICA IEE Study, 24									ıdy, 2007.						

Table R 11.23House Ownership among Social Survey Respondents

11.5.5 Housing Program of Cavite Province

The government housing initiative of Province of Cavite is still in its infancy, having been birthed only in January 2007. The overarching goal of the program is to provide adequate, decent and affordable housing to underprivileged and homeless Caviteños. Housing is now among the flagship programs of the province under the present administration.

The Provincial Housing Development and Management Office (PHDMO) is the executive arm tasked with the implementation of the housing and resettlement program of Cavite. Consistent with its mandate, the PHDMO prepared the blueprint of the Province's comprehensive shelter program. It includes plans to develop present and potential resettlement sites to address the province's housing backlog.

The PHDMO in coordination with the Urban Poor Affairs Office (UPAO) started taking census of informal settlers in 2007. Census survey and documentation is still in progress, with a view to prepare a comprehensive master list of potential beneficiaries of the province's housing program.

On this positive note, the Provincial Government is now poised to respond to the resettlement concerns vis-à-vis the eventual implementation of the Master Plan. It has started addressing the vicious cycle of squatting and its attendant social ills by waging a relentless campaign to weed out squatters and squatting syndicates throughout the province by year 2010 starting with the so-called "danger zones," including river banks.

According to PHDMO, the Provincial Task Force Against Professional Squatters and Squatting Syndicates (PTFAPSSS) began the demolition of house structures along the danger areas in September 2007. Todate most squatter shanties along the riverbanks and other danger areas in Dasmariñas and Trece Martires City have been removed. More shanties are scheduled for immediate demolition in Imus, Bacoor and Kawit.

Table R 11.24 shows the target beneficiaries of the province's shelter development program based on preliminary estimates by the PHDMO. As of 2007, there were 84,617 homeless families residing in 335 of the 830 barangays throughout the province. PHDMO envisions the resettlement of these families to proceed in several phases until all informal settlers shall have been fully resettled and rehabilitated.

	T-4-1 N6	No. of Barangays	ESTIMATED NO. OF FAMILIES (As of 2007)								
Municipality	Barangays	with Informal Settlers	Private Land	Public Land	Danger Zone	All					
1 Kawit	23	22	226	2,750	1,859	4,835					
2 Noveleta	16	9	268		646	914					
3 Rosario	20	20	8,270	5,075	1,037	14,382					
4 Cavite City	84	37	105		15,632	15,737					
5 Bacoor	73	59	10,675		10,310	20,985					
6 Imus	97	9			5,150	5,150					
7 Dasmariñas	73	14	234	1,264	635	2,133					
8 GMA	27	16	1,095	2,614		3,709					
9 Carmona	14	3			239	239					
10 Gen. Trias	33	17	663	263	778	1,704					
11 Tanza	41	8	135	320	190	645					
12 Trece Martirez City	13	6	3,107		498	3,605					
13 Silang	64	21	805	598		1,403					
14 Amadeo	26	4			13	13					
15 Tagaytay City	34	29	2,000			2,000					
16 Alfonso	32	8	121			121					
17 Indang	36	5			43	43					
18 Mendez	24	7	125		8	133					
19 Magallanes	16	0									
20 Maragondon	27	2			465	465					
21 Gen. Aguinaldo	17	0									
22 Ternate	10	10	345		428	773					
23 Naic	30	29	98	1,111	4,419	5,628					
Total (Province-wide)	830	335	28,272	13,995	42,350	84,617					
Total (Study Area)		68	60	120	290	470					

Table R 11.24Estimated Number of Informal Settlers subject to Resettlementunder the Housing Development Program of the Province of Cavite

Source: PHDMO, UPAO (Cavite Province), 2007

As already discussed in Sub-section 11.5.3, about 470 families are likely to be displaced by the proposed projects. These families are distributed in 76 barangays within six of the seven municipalities affected by the Master Plan. Of these, 290 families may likely be removed from riverbanks, which are proposed for river improvement. Some (120 families) may likely be removed from public lands that will be needed for drainage improvement and coastal dike. Others (60 families) may likely be removed from private lands that will be needed for off-site retarding basins and retention ponds.

The 470 potential resettlers owing to the proposed structural measures include both formal and informal settlers. This constitutes less than .05% of the total number of informal settlers who are subject to resettlement under the Province's housing development program.

11.5.6 Potential Resettlement Sites for the PAFs

More or less 5.0 hectares of land will be needed to provide a suitable resettlement site for the 470 potential PAFs. This area will include adequate spaces for socialized housing structures as well as basic support infrastructures such as roads, drainage, water supply and power lines. It may also include spaces for public schools, wet market, chapels, health care centers, materials recovery facility (MRF) and such other social facilities as may be necessary to help restore the social and economic base of PAFs.

DPWH as the proponent has an option to acquire land for resettlement site development through GOP funds. Otherwise, it may enter into a memorandum of understanding (MOU) with the Provincial government of Cavite in coordination with the municipal/city governments to develop existing or potential resettlement sites acquired by the LGUs. Either way, the development of resettlement sites may be financed with a component of the loan earmarked for implementing the Master Plan, subject to negotiation with JBIC or other funding agencies.

The Provincial government presently operates one existing resettlement and developing a new one. It also assists in the improvement and upgrading of other sites in coordination with the National Housing Authority (NHA), the municipal/city LGUs and non-government organizations (NGOs), as will be

discussed in more detail below. Meanwhile the PHDMO is actively pursuing land banking activities in anticipation of the full-scale implementation of the province's shelter development program. Plans are now in place for the acquisition of additional resettlement lands; some of these are proposed for inclusion in the 2009 budget of the province.

The province has also initiated dialogues with each municipal and city government to address the problem of squatting in a comprehensive manner. The ultimate plan is for each LGU to provide at least one resettlement site within the respective municipality/city to accommodate some of the informal settlers in the respective jurisdiction. Where the proposed projects under the Master Plan are concerned, on-site relocation of families within the respective municipalities would be more advantageous and preferable. This possibility should be explored as one of the best resettlement options to address the effects of project-induced displacement.

At least eleven existing and proposed resettlement sites within the vicinity of the projects areas were identified by the Study Team in consultation with different housing agencies in Cavite, including the PHMDO, NHA, concerned municipal/city LGUs and NGOs. All in all, the sites have an aggregate area of more than 122.0 hectares. If acquired and/or developed before the Master Plan is implemented, these resettlement sites could accommodate the influx of potential resettlers who will be displaced due to the proposed flood mitigation structures. Table 11.8 shows the availability and status of these resettlement sites. Fig. 11.5 shows the individual location. A description of the potential resettlement sites in each LGU is given below:

(1) Dasmariñas

There are two potential sites in the municipality of Dasmarinas. One is a 7.0 ha resettlement site located in Barangay Langkaan I and the other is a 5.0-ha lot proposed to be acquired in Bgy. Langkaan II. The one in Langkaan I is known as the "Abot-Kamay Hometown Village." This is the first fully operational resettlement site developed by the provincial government. It was initially established as a socialized housing village under the Community Mortgage Program (CMP) financed by the National Home Mortgage Finance Corporation (NHMFC). Some of the families affected by the first wave of demolition activities were moved to this site.

Due to the limited capacity, the present CMP site in Bgy. Langkaan I and the proposed site in Langkaan II may be able to accommodate only a few families, possibly the PAFs from Gen. Trias who will be displaced by the off-site retarding basin and/or drainage improvement works.

(2) General Trias

A 53-hectare land in Barangay Pasong Kawayan II, General Trias was acquired by the Province in early 2008 for its shelter program. Priority beneficiaries include qualified PAG_IBIG members from among the office and factory work force of the province. Land development works are currently in progress. The scale model and development plans of this resettlement site have been prepared. Housing development will include construction of economic structures (duplex units) for as many as 6,700 families.

According to PHDMO, some 25%-30% of the area will be earmarked to provide socialized housing to qualified informal settlers who were affected by demolition along the danger areas. Target beneficiaries include bona fide PAG-IBIG members who have the capacity to pay a reasonable monthly amortization so as to ensure recoupment of the development cost and to guarantee loan repayment.

The Pasong Kawayan II site has a good chance to accommodate most, if not all, 300 or so families from Bacoor, Kawit and Imus who will be displaced by the proposed river improvement, off-site retarding basin and drainage improvement in these areas.

Another relocation site will be developed as a sequel to the Bgy. Pasong Kawayan II Resettlement Site namely, a 44.0 ha lot in Bgy. Pasong Camachile. This site is also intended for informal settlers who will be displaced by the ongoing demolition operations. Depending on availability of slots by the time the projects are implemented, the site may be able to
accommodate PAFs from Bacoor, Kawit and Imus who will be displaced by the proposed river improvement, off-site retarding basin and drainage works.

(3) Imus

The Imus municipal government developed a 2.3 hectare land in Barangay Alapan II. The site used to be an abandoned municipal dumpsite. It is now known as "Pamayanang GK ng Imus" after Gawad-Kalinga, a shelter program sponsored by Couples for Christ, a church-based NGO, came in as a community development partner. GK provided material and financial support for construction of duplex housing units and socio-economic rehabilitation.

The current beneficiaries belong to the poorest of the poor coming from blighted areas of Imus. The first batch of resettlers consists of 32 households; the next batch is due to relocate before the end of 2008. Initial road networks, lighting system, water supply, pre-school facilities are already in place. The land is under a stewardship arrangement with the LGU; beneficiaries will neither pay a rent or own the lots.

About 1.5 ha of this area remain idle and could be developed to host all the PAFs from Imus. Negotiations with the municipal LGU should be initiated immediately to secure the remainder of the area for 97 or so families that may be displaced by the proposed river improvement, offsite retarding basin and drainage improvement works in the municipality.

(4) Kawit

The PHDMO plans to acquire a 1.3-ha resettlement site in Bgy. Toclong to accommodate resettling coastal communities and those affected by recent demolition activities within the Aguinaldo Shrine. Negotiations with the land owner is ongoing. At the same time, the municipal government of Kawit is also negotiating to acquire another 4.0 ha lot in the same barangay for other informal settlers from coastal and fishpond areas. Also, the municipal government of Bacoor has already identified and will soon negotiate with landowner to purchase another 2.0 ha land within this same barangay for the municipality's informal fishpond occupants. All in all, 7.3 ha of land may be developed separately as resettlement sites in Kawit.

Considering that Bacoor and Kawit are two of the municipalities with the most number of potential PAFs, these resettlement sites collectively will be an attractive option to host fisherfolk communities from Kawit and Bacoor who may be displaced by the proposed river improvement, drainage improvement and coastal dike structures.

(5) Bacoor

NHA has two resettlement sites in Barangay Pag-asa in Bacoor, namely St. Joseph Subdivision (3.0 ha) and San Lorenzo Ruiz Subdivision (4.0 ha). Both sites were donated by Ayala Land as compensation for squatter families that were displaced by the company's commercial expansion in Metro Manila during the 1990s. Operation and maintenance of these sites has been turned over to the LGU. Some vacant areas are still available and may be secured for the PAFs of Bacoor, subject to negotiation with the LGU.

However, it would still be best if the LGU could provide one resettlement for all 160 PAFs from Bacoor. As discussed above, the 2.0 ha-prospective resettlement site in Toclong, Kawit would be an ideal site to provide this option. Barangay Toclong is only about 5.0 km away from Bacoor town proper.

(6) Noveleta

The Couples for Christ, a church-based NGO, also developed a resettlement site known as Camp David GK Village in Bgy. Sta. Rosa I in Noveleta. The area (1.4 ha) was acquired from Caritas Foundation, a church-based NGO, by the squatter-families from different places in Metro Manila who used to informally occupy the area after being displaced by priority national government projects, fire and natural calamities. Couples for Christ, another church-based NGO developed the area in partnership with the municipal LGU, private individuals

and such institutions such as the Rotary Club and Meralco Foundation, The site now hosts 33 families and construction is on-going to provide 34 additional row houses for the next batch of beneficiaries. The site, however, can still accommodate 60 or so more families. Negotiations with the GK will help to secure the remaining slots for the 55 resettling PAFs from Noveleta who may be displaced by the proposed river improvement.

(7) Rosario

The Philippine National Oil Company donated a 1.2 ha government lot in Bgy. Ligtong III, Rosario to squatter families who have informally occupied the land. It is now known as the PNOC GK Village after Couples for Christ partnered with PNOC and private individuals to develop the area into a Gawad Kalinga resettlement site. Only 10 families presently occupy the area. It has enough room for 110 more housing units for Cavite's poorest of the poor.

Possible arrangements with the NGO, PNOC and the concerned private entities should be explored early on during the detailed design stage of the project in order to earmark this site for the potential PAFs from Rosario who are likely to be displaced by proposed drainage structures.

(8) Naic

In addition, the province foresees a need to purchase a property located in the coastal area to accommodate the fisher folks who will be affected by the ongoing demolition drive among coastal communities. A possible area being considered is a coastal area in Bgy. Halang in the Municipality of Naic. The municipality lies outside of the study area. Nevertheless, if the this plan materializes, this resettlement site could possibly include as potential beneficiaries the fishing communities from the coastal areas of Bacoor, Kawit, Noveleta and Rosario who will likely be displaced by the proposed river improvement, drainage and coastal structures.

(9) Other Sites

There are other existing resettlement sites, which can be explored as an alternative option for the potential PAFs. These sites now host squatter families who were displaced during the implementation of priority national government projects such as the Pasig River Rehabilitation Project, railway improvement, reclamation projects of the Public Estates Authority (PEA), the Ninoy Aquino International Airport and some private commercial and residential development such as the Ayala Land in Metro Manila.

The National Housing Authority through its project offices in GMA, General Trias and Dasmariñas, introduced an innovative approach to resettlement of these displaced families in Cavite. Beginning in the early 90's, NHA acquired house and lot units in subdivisions owned and operated by private land developers. These subdivisions, listed below, now host some 1.000 to 4,000 resettlers per site.

- Sunny Brooke Subdivision, Gen. Trias
- Southville Subdivision, Trece Martires City
- Summerville Subdivision, Trece Martires City
- Country Meadows Subdivision, Gen. Trias
- Tropical Village, Gen. Trias
- Belmont Subdivision, Gen. Trias
- Belvidere Subdivision, Gen. Trias

On inspection, the Study Team found many housing units still unoccupied after many long years since these have been awarded to intended beneficiaries. Negotiations with the NHA may be initiated for possible cancellation of the original award in favor of qualified PAFs from neaby municipalities who may opt to assume residence in the absence of the original awardee.

11.5.7 Procedures, Strategies and Measures for Resettlement

It will be necessary during the detailed design stages of the priority projects to formulate a full-scale resettlement action plan (RAP) to address the involuntary displacement of affected families. Consistent with the JICA's and other bilateral agencies' policy on involuntary resettlement, the overarching goal is to ensure that the social and economic base of PAFs is improved or, at the very least, restored to pre-project levels. The attached Fig. 11.6 is a strategic framework that would serve as a procedural guide for the preparation and implementation of the RAP during the subsequent stages of project development.

Resettlement is a process consisting of three stages: the preparatory or pre-relocation stage, the actual relocation stage and the post-relocation stage. Emphasis must be given to involving the PAFs during the RAP formulation and implementation processes. The pre-relocation stage is the preparation aimed at adequately preparing the PAPs physically, materially and psychologically for the impending relocation. During the relocation proper, the objective is to physically remove the PAPs from the project's right-of-way to preclude impediments to project implementation. Transport and movement of PAFs should be done in a step-wise manner, preferably in parallel with project time frames. During the post-relocation stage, the PAPs are assisted so that they can re-establish their social and economic base and not be worse off after relocation.

A detailed description of the activities and strategies/measures that would be involved in each stage of resettlement planning and implementation is found below.

(1) **Pre-Relocation Stage**

(a) Social Preparation

(i) Consultations and IEC Campaigns

Community consultation meetings and IEC activities are aimed at disseminating information and clarifying issues, particularly on the project context, ROW acquisition, clearing/demolition activities, entitlement, resettlement options, eligibility and target implementation, among others.

More importantly, reiterative consultation process is necessary to allow room for PAFs to meaningfully participate in consensus building and decision-making concerning the resettlement concerns and the options available to them.

(ii) Organization of Resettlement Task Force

The organization of an inter-agency resettlement task force (IRTAF) or RAP Implementation Committees (RIC), will ensure meaningful collaboration not only by concerned agencies but by the affected communities in all phases of resettlement planning and implementation.

The Provincial Housing Development and Management Office may be the lead agency of the RTAF/RIC. Membership of the IRTAF or RIC should be expanded to encourage close coordination with and active participation of the project implementing agency (DPWH), other supporting agencies (NHA, DSWD, TESDA, etc.), concerned municipal and barangay LGU representatives, non-government organizations (NGOs) and people's organizations (POs). In particular, the PAFs should be adequately represented and accorded the right to be heard and to decide on resettlement issues affecting them.

(iii) Grievance Redress and Arbitration

The PAFs' right to equal protection of the law shall be guaranteed through grievance redress procedures and mechanisms by which legitimate complaints could be heard and, particularly, conflicts over compensation and entitlements could be resolved.

The Provincial Housing Board is inherently mandated by virtue of local issuances to handle grievances related to the province's shelter program. The existing mechanism may be augmented with the creation of a Grievance Redress SubCommittee of the IRTAF or RIC, where PAFs would be represented with full voting powers.

(b) ROW Acquisition

(i) ROW Survey and Parcellary Mapping

The ROW survey will delineate the actual limits of the ROW based on the project design. Parcellary survey/mapping will delineate the actual extent of, and segregate from the adjacent lands, such private real property that would be acquired to secure the project's ROW. Where relocation site(s) need to be acquired under the project, the proposed relocation site(s) will also be subject to survey and parcellary mapping.

In the Philippines, conflicting land claims is not uncommon. This is because alienable and disposable (A&D) lands may be covered by tenurial instruments other than a Torrens title. A Torrens title is considered as the best evidence of ownership because "it is binding and indefeasible to the whole world." It takes the form of Original Certificate of Title (OCT), if it has not been conveyed to another party through sale, donation, inheritance and other legal means. Otherwise it is in the form of a Transfer Certificate Title (TCT).

However, "title" is a generic word meaning proof, evidence or monument of ownership. Thus, in lieu of a perfected Torrens title, privately owned real properties may be covered by other tenurial instruments such as Tax Declarations (TD), Real Property Tax Receipts (RPTR) and Deeds of Sale (DOS), Deeds of Donation (DOD) or, in case of agrarian lands, Certificate of Land Ownership Award (CLOA).

The following agencies are involved in the registration and validation of the tenurial status of private real properties that are subject to land acquisition, namely:

Department of Environment and Natural Resources (DENR) – Through its line agencies, namely: the Community/Provincial Environment and Natural Resource Office (CENRO/PENRO) at the local or provincial level and the Land Management Bureau/Services (LMB/LMS) at the regional level, these agencies, through channels, examine and approve the survey plans and issue the patents to land claimants for eventual registration with the local Registry of Deeds.

Provincial/Municipal Assessor's Office- The respective local offices issues a Tax Declaration (TD) on subject land after approval of survey plans and patents, for purposes of collection of real property tax, gains tax, transfer tax, inheritance tax and other related taxes by the local government units and the Bureau of Internal Revenue (BIR).

Land Registration Authority - The LRA, an agency attached to the Department of Justice (DOJ), through the provincial/city Registry of Deeds issues certificates of title (Ownership Certificates of Title (OCT) or Transfer Certificates of Title (TCT) and register documents, patents and other land transaction for the benefit of landowners. The LRA also resolves conflicting land claim cases elevated *en consulta* by or on appeal from decisions of Registrars of Deeds.

Department of Agriculture (DA) – The DA certifies as to the actual land use of agricultural lands, especially for purposes of conversion to other uses.

Department of Agrarian Reform (DAR) – In case of lands that are covered by the Comprehensive Agrarian Reform Program (CARP), the DAR issues certifications for agrarian reform beneficiaries. The claimant is issued an emancipation patent or a Certificate of Land Ownership Award (CLOA), which is also registered with the local Registry of Deeds.

Regional Trial Courts (RTC) and Municipal Trial Courts (MTC) – Determines the of validity of ownership claims in applications for original registration, judicial reconstitution of titles, and amendments to certificates.

(ii) Inventory and Appraisal of Affected Properties/Improvements

As soon as the limits of ROW have been delineated and the tenurial status and ownership of affected lands are ascertained, inventory will be conducted to identify the structures and improvements on affected lands, including trees, perennials and crops that may have to be removed from the ROW easement during project implementation. The objective is to determine the extent and effect of loss of property, identify the legitimate owners, occupants or cultivators, assess the present market value or replacement cost of the affected assets and determine the corresponding compensation and/or entitlement that will accrue to the PAPs.

An Appraisal Committee is usually created by the implementing agency (the DPWH). If no such body exists, the Provincial or Municipal Appraisal Committee (or a commissioned private appraiser) will undertake the inventory and appraisal of the market value of affected properties and improvements.

To determine the fair market value of properties, appraisers usually employ BIR zonal values, taxation ordinances, surrogate pricing and replacement cost techniques, considering such parameters as the following:

- Classification and use for which the property is suited;
- Development costs for improving the land;
- Value declared by the owner;
- Current selling price of similar lands in the vicinity;
- Reasonable disturbance compensation for the removal and/or demolition of certain improvements on the land and for the value of such improvements;
- Size, shape, location and zonal classification of the land;
- Price of land as manifested in the ocular findings, oral as well as documentary evidence presented; and
- Facts and events so as to enable the affected property owners to have sufficient funds to acquire similarly situated lands or lands of approximate areas as those required from them by the government, and thereby rehabilitate themselves as early as possible.

(iii) Compensation and Entitlement

Payment of compensation is agreed by negotiation between the Appraisal Committee and the owners as to the fair market value of affected properties and improvements. If negotiation fails, expropriation proceedings may be initiated. Where acquisition of relocation site(s) under the project is considered necessary, the lot owner of the proposed relocation site will also be entitled to compensation for land and improvements thereon.

The modes of compensation and eligibility criteria are to be described in a Compensation Matrix based on the impact on PAFs and their assets. Such compensation matrix will be subject to negotiation with and acceptable to PAFs. Table 11.9 shows the compensation matrix that governs land acquisition in DPWH projects in accordance with the LARRIP Policy. Among other things, it holds that PAFs are entitled to full compensation for the entire affected assets at replacement cost if they will lose all of their fixed assets or incur partial loss but the remaining assets are determined by competent authorities as no longer viable anymore for continued use. On the other hand, where the remaining affected assets are still viable for continued use, the PAFs will be compensated only for the affected portion of the assets.

The DPWH LARRIP Policy holds that only those PAPs residing, doing business, cultivating land or having rights over resources within the project area will be

eligible for compensation and/or other entitlement. As will be explained subsequently, the C/T survey date is usually set as the cut-off date by which eligibility of the PAPs is determined. On the other hand, the UDHA provides that owners of illegal structures built after the effectivity of RA 7279 are not eligible for resettlement assistance. Notwithstanding this provision, agencies tasked with resettlement are inclined to allow concessions on these policies for humanitarian reasons. The province of Cavite, for example, does not necessarily disqualify squatter families whose structures were built after 1992, unless identified as professional squatters or squatting syndicates. The number of houses/structures that are likely to be affected by the flood mitigation projects under the Master Plan is estimated at 470 (see Table R 11.24). There are no confirmed professional squatters or squatting syndicates among the potential PAFs; therefore, all of them would be eligible for resettlement assistance.

Other entitlements besides compensation are also subject of negotiations with PAPs who do not own the land. These include financial assistance to tenants and settlers, disturbance compensation to agricultural lessees, resettlement lot, inconvenience allowance, transportation, relocation assistance and rehabilitation package. Pursuant to Sec. 7 of Republic Act 6389 of 1971 (Code of Agrarian Reform), agricultural lessees are entitled to the payment of disturbance compensation equivalent to five times the average gross harvest in the last five years. Moreover, Sec. 18 of Executive Order 1035 of 1985 entitles displaced tenants/occupants of agricultural lands to financial assistance equivalent to the value of the gross harvest for one year, based on the average annual gross harvest for the last three preceding crop years, but in no case less that Php 15,000/ha.

(c) Census Survey and Tagging

(i) Census Survey and Tagging (C/T) Operation

The census survey will include 100% of the PAPs, both formal and informal settlers, who occupy the project's right of way. The census survey is a complete enumeration of all affected households and inventory of their affected assets and the tenurial status. The C/T results will: (1) establish the eligibility for entitlement; (2) determine the categories of entitlement; and (3) provide a basis for valuation and compensation. A simple survey instrument such as the one being used by the NHA would suffice for this purpose. NHA could provide technical assistance to conduct the C/T operations.

Structural mapping and tagging will be done simultaneously with the C/T operations. Tagging involves marking the affected structures and improvements to establish the identity of the eligible households. This will help prevent fraudulent claims by opportunists who may take advantage of the perceived benefits from resettlement.

The master list of PAPs will be prepared from the C/T survey results and will be validated by the LGU concerned in coordination with the PCUP to eliminate from the list "professional squatters," "squatting syndicates." Also excluded are non-eligible families who are already beneficiaries of CARP and other government housing programs. The final master list will serve as the basis for determining PAP category and their eligibility for compensation and entitlement.

(ii) Socio-Economic Survey

The socio-economic survey (SES) will be done to solicit a much wider range of information that was not captured during the Census Survey. In contrast to the census survey, it is usually done on a sample population, normally 20-25% of the PAFs who are included in the validated master list. Socio-economic survey should also include the host community. The SES results will be used to: (1) determine the demographic, economic and tenurial characteristics of PAPs; (2) assess their

incomes and productive base; (3) establish the use and value of affected assets; (4) identify particularly vulnerable groups (e.g., women-headed households, senior citizens living alone, poorest of the poor, etc.) who will require special rehabilitation assistance; and (5) craft appropriate plans for resettlement and socio-economic rehabilitation. A local consulting group, an NGO or an academic research institution may be commissioned to conduct the SES.

(d) Resettlement Site Development

In principle, the location of resettlement site should be acceptable to PAPs. Therefore, selection of sites should be discussed with them, with due consideration to: (1) proximity to origin; (2) proximity to employment and livelihood opportunities; (3) accessibility; (4) carrying capacity, in terms of population, services and environmental resources; (5) proximity to social infrastructure, especially schools and health clinics. As already mentioned, on-site resettlement within the respective LGUs is still the best option to avoid the impoverishment of vulnerable PAFs.

If acquired, new relocation sites should be equipped with basic infrastructure such as roads, water supply, power supply and drainage. These amenities shall conform to standards and criteria set forth in Batas Pambansa 220 for socialized and economic housing. An initial environmental examination (IEE) is necessary in order to secure the Environmental Compliance Certificate (ECC) before construction of resettlement sites with areas not exceeding 10.0 ha. Moreover, social facilities may need to be installed such as schools, health centers, day care centers, basketball courts and worship places.

As explained earlier, use of existing resettlement sites is a feasible alternative to acquiring new resettlement sites. Most of the existing resettlement sites in Cavite that were visited by the Study Team have adequate access to water supply (through the respective water districts) and power supply (through Meralco). Social facilities such as day care centers, primary and secondary schools, chapels, covered courts, wet markets, health centers and recreation halls are available. Invariably, LGUs have improved the main access roads and provided street lights to the relocation sites. In view of the anticipated influx of incoming resettlers, some facilities may need upgrading and improvement.

(e) Linkaging and Partnerships

DPWH, the PHDMO and municipal LGUs will benefit from technical and financial assistance from external institutions to ease the burden of providing livable resettlement sites and undertaking restoration activities. In Cavite's experience, the following linkages and partnership mechanisms have proved effective in addressing involuntary resettlement:

(i) Community Mortgage Program

The CMP is a low-income home financing program conceived by the National Housing Authority (NHA). It gives homeless low-income earners and informal settlers in blighted and priority development areas a chance to own homesteads. Under this program, several beneficiaries will organize themselves into a community association to be able to acquire an undivided privately owned tract of land through community mortgage or micro-financing scheme. A crucial requirement is the willingness of the owner/s of the proposed CMP site to put up the property for sale and the willingness of beneficiaries to corporately acquire the resettlement land.

The LGUs, the NHA, a private developer or an NGO may act as initiator of a CMP project on behalf of interested beneficiaries. A model CMP is a now a GK village called Barangay Aguado Neighborhood Association in Bgy. Aguado II, Trece Martires City. The site is a 1.63 ha privately owned property, which now hosts single detached economic housing units for 183 families who were

displaced by the Ninoy Aquino International Airport Project (NAIA) in 1995. The beneficiaries collectively pooled their financial compensation package in order to pay the down payment on the land. The municipal LGU assisted in securing guarantee for loan to pay the balance, which the homeowner's association continues to collect from the members until the full amount is paid. It also helped with land development and provision of good roads, individual water supply and electricity connections. The Gawad Kalinga adopted the association in 2000 and improved the community by donating materials for housing improvement, construction of alley pathways, street lights, a multi-purpose hall, a worship center, and a pre-school called "Sibol."Values formation education is at the core of the community's success.

A similar scheme was introduced in another relocation site called the Isaiah Village in Maragodon, Cavite. This time, the community partner is Habitat for Humanity, an international NGO through its local partner, the Naic Shoreline Kabalikat sa Kaunlaran Foundation The experience in these two sites may be worth replicating in addressing the involuntary resettlement of the PAFs identified in this Study.

(ii) **Private Developers**

Private land developers play an active role in the provision of shelter for the Cavitenos. Land development firms have the technical expertise and material, manpower and financial resources that may not be readily available to their government counterparts. The success of partnership with this interest group has been proven over time by the experience of NHA in their various housing projects in Cavite, as already explained. The provincial government plans to harness the strength of such partnership by inviting private developers to participate by way of socialized housing credits.

(iii) NGOs

Aside from model resettlement projects such as the GK and Habitat for Humanity, there are other interventions by international NGOs in partnership with local government and private entities to empower the poor Caviteños and uplif their social and economic conditions. World Vision works with two local NGOs, namely Children's Helper Project, Inc. and Community Economic Venture. CHPI has been helping poor communities in Noveleta, Cavite City, and Trece Martires City through environmental advocacy, children's sponsorship, education, livelihood development, micro-finance and provision of water supply facilities. CEV is involved primarily in providing micro-finance for livelihood and entrepreneurial development among the poorest of the poor in Cavite.

(iv) Private Financial Institutions

Some private financial institutions such as the Cavite City Rural Bank partners with church-based organizations and people's organizations to make credit windows available for micro-enterprise. CCRB loans out a 6-mo recyclable amount of Php 5,000 to Php 25,000 at very affordable interest rates. The loans support small-scale businesses involving buy and sell, direct selling, variety stores, backyard production and multi-purpose cooperatives, among others.

(2) **Relocation Stage**

(a) **Demolition**

The UDHA prescribes the guidelines and procedures by which demolition, eviction and physical movement should be done in a humane manner, starting with the proper planning and communication to PAFs of the relevant details before deployment of demolition and relocation teams. As far as possible, PAFs should be allowed to voluntarily dismantle their structures to ensure minimum damage and reuse of salvageable materials.

Summary eviction proceedings may be initiated against "professional squatters" or members of "squatting syndicates" without benefit of any resettlement assistance.

The RAP should incorporate measures to preclude future encroachment and reoccupation of cleared areas. In some cases, supporting ordinances and police powers may be needed at the municipal and barangay levels to strengthening their enforcement.

(b) Physical Relocation

(i) Transport and Movement of PAFs

Movement of PAFs should only be made when resettlement sites and basic amenities are ready. Details of the movement should be planned well ahead including schedules, logistics, identification and transportation of people and belongings, and arrangements for temporary services (food, water, emergency medical care, waste management, and other provisions) en route to, upon arrival and during transition period at the new site.

A contingency plan should be prepared, in anticipation of possible resistance to demolition and relocation by certain PAPs and nuisance groups. This should be closely coordinated with social workers, the local police force, and stand-by medical teams.

(ii) Beneficiary Selection and Lot Disposition

In accordance with the housing ordinance, the LGUs usually prescribe the manner and criteria by which beneficiaries of housing programs are selected and prioritized for distribution or assignment of lots, either by lottery or on a firstcome-first-served basis.

(3) **Post-Relocation Stage**

Project-induced displacement affects the social support systems and income earning capacities of PAFs. Often, financial compensation and resettlement assistance alone are not sufficient to re-establish them. Post-relocation strategies and measures are therefore meant to allow PAFs to share in project benefits through income and livelihood restoration and social re-integration programs.

In Cavite, most of the success stories in post-relocation restoration are often due to effective partnership and linkaging between theLGUs, national social support agencies, NGOs and the people's organizations. The implementation of the Master Plan projects will benefit by replicating or supporting these efforts.

(a) Social Rehabilitation

(i) Community Organization and Development

In most of the resettlements sites visited by the Study Team, the NGO programs such as the GK, Habitat for Humanity and World Vision stand worthy of emulation as models of holistic community shelter development work. Besides assisting communities in building houses and neighborhood facilities through sweat equity, resettling families are organized so they can re-build their lives with dignity around self-help initiatives and community-based undertakings. Once organized, homeowners' associations are encouraged to participate in neighborhood and civic activities such as values formation, women's/gender concerns, environmental advocacy, church activities, mother-and-child health care, parenting seminars, savings mobilization, ecological solid waste management, adult education programs, etc.

(ii) Social Integration

The holistic shelter development models just described all help to re-establish the

resettlers' sense of belonging and hasten the process of integrating the newcomers into the life of the community. However, the receiving LGUs/communities also have a role to play in faciliting this social rehabilitation process. Host barangays/municipal LGUs must be prepared to extend the social services to meet the added burden for health care, schools, sport/recreational activities as well as maintainance of peace and order, harmony and livability in the resettlement sites.

(b) Income Restoration

(i) Livelihood Development

Windows of economic and income-earning opportunities should be readily available and accessible such that the economic rehabilitation of PAFs will be hastened. Based on the initial profile, the extremely vulnerable PAFs include more than 50% of households that belong to the poorest of the poor; a third of the families that belong to the female-headed households, and more than 15% that are headed by senior citizens who are 60 years old and above and are beyond their economically productive years.

The poorest of the poor could benefit from the flagship livelihood programs of the province under the auspices of the Provincial Cooperative, Entrepreneurial and Livelihood Development Office (PCLEDO) in partnership with government support agencies (TESDA, DECS, DTI), the academe, financial institutions, industries and NGOs. Agri-aqua production, coined as Maliksing ISDA (Integrated Sustainable Development Aquaculture) are among these flagship programs, which introduces rice-and-tilapia culture, backyard fish farming, fresh and marine water fish caging. A variation of this program, "ISDABest" trains and loans out fishing boats, fishnets and other paraphernalia, and fish/prawn fingerlings to beneficiaries, which include poor farmers and fisherfolks. Some LGUs and NGOs conduct sewing classes, computer literacy, automotive mechanics and adult education programs for mothers and out-of-school youths.

The PCLEDO also regularly holds the Techno-Livelihood Caravan among poor communities, in coordination with the concerned municipal governments. Known as the "Pangkabuhayang Pagsasanay sa Pamayanan",the caravan serves as a convergence for cooperative, livelihood and entrepreneurial development. It showcases income-earning options available and the home-made products that low-income families can produce commercially in their backyards. The products include food items (chocolate, cold cuts, boneless bangus, tinapa, fish/squid balls, spicy dried anchovies, fish nuggets, *siomai, tahong chicharon,* crispy crustaceans and seaweeds snacks, fruit preserves, coated candies, etc.) and handicrafts or novelty items (decorative balloons, fashion accessories, flower arrangement, candle-making, liquid soap and conditioner, perfume, disinfectant, etc.).

Part of the Gender and Development Plan of the province for 2005-2010 is ensuring equal access by women to labor and employment opportunities through the promotion of self-employment and home-based entrepreneurial activities. Hands-on trainings are now being provided to organized women's groups through the initiative of the PCLEDO. There are also special livelihood and vocational programs for physically abused and battered women and children.

The menu of livelihood options presently available to female-headed households include micro-enterprise such as buy and sell, direct selling, sari-sari stores, and backyard production. More and more women are now earning through commercial production food products, handicrafts and novelty items, thanks to PCLEDO. NGO-supported livelihood in dried fish production, backyard gardening and vending are also potential sources of income for women. More women are also being equipped for employment in garment factories, microchips and IT industries that now abound in the industrial estates of Cavite.

There is a senior citizens' office established in each municipality as well as a

provincial office where the concerns of the elderly are addressed. Still in its infancy, the programs include health and medical assistance, discounts on fare, food, medicines and medical services, and adult literacy. Appropriate livelihood program for the elderly still need to be explored.

Moreover, there is still a need to conduct a more focused socio-economic survey among the identified PAFs to tailor-suit the livelihood options to their present occupations and skills, training and preference. At the same time, an environmental scanning of the host communities will give particular consideration to: (1) resources available in the resettlement area; (2) other relevant programs and projects of the different government and private institutions; (3) for landbased economic activities, availability and size of agricultural area; (4) population carrying capacity; and (5) proximity to urban centers and places of work, among others.

(ii) Cooperative Development

Through the PCLEDO, LGUs, DTI and partner NGOs, the cooperatives in Cavite can be further strengthened to provide more opportunities and capital for livelihood development. While much effort has been devoted to organizing and registering cooperatives, access by the poorest and women sectors to capital, livelihood and market opportunities should be improved.

(iii) Access to Micro-Finance

Similarly, access of the poor and women-headed households to public and private financing windows should be improved for capital generation and build-up. More financial institutions, through improved NGO-LGU partnerships, should invest in micro-credit financing, savings mobilization and other self-help, community-based fund-sourcing and capital build-up activities.

(iv) Skills Development

A more thorough skills inventory among PAFs could provide the basis for a more focused planning of skills development program to enhance the capability of PAFs to find employment and income-earning opportunities. In particular, there is a need to know the PAPs' specific conditions as to: (1) present livelihood activities and other income sources; (2) special skills, (3) livelihood skills/vocational trainings attended, (4) suitable additional livelihood skills/vocational trainings preferred, (5) natural resources (e.g., tenable land, fisheries and other environmental resources) and institutional support (e.g., microcredit, training facilities, social networks, etc.) available in the relocation site.

(c) Estate Management

(i) Housing Development

Low-cost housing is an incentive that would entice PAFs to relocate or move away from the project areas. To ease the financial burden that house construction entails, the LGU should tap all possible sources of funds for low-cost housing assistance and provide housing beneficiaries easier access to both individual and community-based arrangements to finance shelter development, as discussed earlier.

Shelter development plans should also consider PAF's preferences, affordability and willingness to pay. While it may be easier to provide a uniform package, some PAFs may prefer economic housing while the low-income groups may be able to afford the cheaper options such as socialized housing, lots only, lot/house rental, rent-to-own schemes, etc.

(ii) Lot Award and Disposition

The RAP should outline the manner and procedure by which the LGU will

dispose or award the lots and/or housing structures to qualified beneficiaries. The LGUs responsibility will also include securing the tenurial status of PAFs by way of delivery of titles and legal documents to prove ownership. At present, the shelter program in the province needs more teeth to address the vicious cycle of squatting. The practice by beneficiaries of selling their rights or titles to resettlement units only to end up squatting again continues to be a challenge even to experienced agencies such as the NHA.

(iii) Cost Recovery

The RAP should define the schemes and mechanisms by which the LGU expects to recover cost of investments for resettlement land and/or housing development will be recovered.

At present, shelter agencies have to grapple with the issue of sustainability owing to the difficulty in guaranteeing loan repayment by PAFs and the recoupment of cost of land/housing development. Such is the experience with the Bgy. Langkaan CMP. Poor repayment is also a problem in many NHA resettlement sites within private subdivisions.

(iv) Conservancy and Maintenance

The RAP should clarify agency responsibility for conservancy and maintenance of physical structures. As observed during the Study Team's site visits, basic infrastructure in many resettlement sites are in dire need of repair and maintenance. In contrast, sites under GK and Habitat for Humanity programs fare a lot better. This is because the communities themselves take responsibility for conservancy and maintenance, including beautification activities. This model approach should be replicated in future communities of PAFs to ensure the livability of the resettlement site and its surrounding environment.

(4) Monitoring and Evaluation

A Monitoring and Evaluation plan will be prepared as part of the RAP to ensure regular and periodic collection, analysis and reporting on the progress throughout the resettlement cycle. Monitoring will take place against the activities, entitlements, time frames, budget and target benefits. Specific indicators will be identified, which will be useful in assessing the extent to which resettlement objectives as set out in the RAP are achieved and making appropriate management decisions.

Tables

Name of		Sections	Flow	Capacity
Rivers	Sra. No.	Description	Discharge	Flood Scale
	Sta.0+000~ Sta.3+400	River mouth to Confluence Point with Julian River in town proper of Imus	100~500 m ³ /s	Less than 2-year
Imus	Sta.3+400~Sta.6+000	Downstream of Aguinaldo Highway	600~800 m ³ /s	5-year
	Sta.6+000~Sta.12+100	Aguinaldo Highway ~ Anabu Dam	400~1000 m ³ /s	5-year
	Sta.12+100~Sta.13+000	Anabu Dam to NIA Irrigation Canal	600 m ³ /s	More than 20-year
Dagoor.	Sta.0+000~ Sta.3+000	Fishpond area	$50 \text{ m}^3/\text{s}$	Less than 2-year
Bacool	Sta.3+000~	Town proper of Bacoor		Less than 2-year
Julian	Sta.0+000~ Sta.4+800	Confluence with Imus to Julian Dam	50~200 m ³ /s	Less than 2-year
Juliali	Sta.0+000~ Sta.10+000	Julian Dam to NIA Irrigation Canal	30~400 m ³ /s	Less than 2-year
Left Tribtry of Julian R.	Sta.0+000~ Sta.4+500	Confluence with Julian to Irrigation Drainage Beginning Point	$0 \sim 30 \text{ m}^3/\text{s}^{*1}$	Less than 2-year
	Rivermouth~Sta.2+000	Fishpond area	200 m ³ /s	Less than 2-year
San Juan	Sta.2+000~Sta.4+800	Branching point to Confluence with Ylang-Ylang	300 m ³ /s	2-year
Sali Juali	Sta.4+800 ~ Sta.10+500	Confluence Point to Bayan Dam	$300 \sim 400 \text{ m}^3/\text{s}$	5-year
	Sta.10+500.~Sta.12+000	Upstream of Bayan Dam	300 m ³ /s	5-year
	Sta.12+000~Sta.14+400	Downstream of NIA Irrigation Canal	$400 \text{ m}^3/\text{s}$	20-year
Ylang-	Sta.4+800 ~ Sta.8+000	Upstream from confluence with San Juan	400 m ³ /s	10-year
Ylang	Sta.8+000 ~ Sta.12+600	Downstream of NIA Irrigation Canal	600 m ³ /s	More than 20-year
Canas	Sta.0+000~Sta.9+150	More than $1000 \text{ m}^3/\text{s}$	More than 20-year	

Table 2.1 Estimated Channel Flow Capacities of the Main Rivers in Lowland Area

Note: Flow capacity depends on Backwater Stage from Imus and Julian Rivers.

Table2.2 Estimated Flow Ca	pacities of the Main Drainage Channels in Lowland Area
----------------------------	--

Name of	ID No. of		Flow	Capacity	Main Broblem on Channel
Drainage	ID NO. 01 Channal	Sections (Length)	Discharge	F1101-	Flow
Channel	Channel		(m3/s)	Flood Scale	FIOW
Malamok		Sta.0+000 - Sta. 1+000	26 to 56	Less than 2-year	Low land level
	Dr-1	Sta.1+000 - Sta. 1+650	60 too 68	3-year	Gentle Slope
		Sta.1+650 - Sta. 2+000	Less than 10	Less than 2-year	Low land level
	Dr-2	Sta.0+000 - Sta. 1+500	Less than 15	Less than 2-year	Low land level
Tirona		Sta.0+000 - Sta. 0+800	Less than 60	Less than 2-year	Low land level
	Dr 2	Sta.0+800 - Sta. 1+400	30 to 65	5-year	Low land level
	DI-5	Sta.1+400 - Sta. 2+000	0 to 60	Less than 2-year	Low land level
	• •	Sta.2+000 - Sta. 2+800	nil	Less than 2-year	Low land level
Branch Channel of	D. 1	Sta.0+000 - Sta. 2+600	Less than 65	Less than 2-year	Gentle Slope
San Juan River	Dr-4	Sta.2+600 - Sta. 4+000	35 to 80	Less than 2-year	Gentle Slope
Panamitan	D: 5	Sta.0+000 - Sta. 1+200	25 to 50	Less than 2-year	Gentle Slope
	Dr-5	Sta.1+200 - Sta. 2+200	10 to 20	3-year	Gentle Slope
	Dr-6	Sta.0+000 - Sta. 2+100	Less than 20	Less than 2-year	Low land level
Branch Canal of	Dr-7	Sta.0+000 - Sta. 0+800	Nil	Less than 2-year	Low land level
San Juan River		Sta.0+800 - Sta. 1+400	20 to 45	100-year	-
		Sta.1+400 - Sta. 1+600	2	Less than 2-year	Low land level
-	Dr-8	Sta.0+000 - Sta. 1+000	Less than 5	Less than 2-year	Gentle Slope
Malimango		Sta.0+000 - Sta.1+200	10 to 30	Less than 2-year	Gentle Slope
(EPZA)	D= 0	Sta.1+200 - Sta.1+800	10 to 15	Less than 2-year	Gentle Slope
	DI-9	Sta.1+800 - Sta.3+500	20 to 45	Less than 2-year	
		Sta.3+500 - Sta.4+200	10 to 20	5-year	Low land level
Tributaries of	Bacoor-2	Sta.0+000 - Sta.1+800	0 to 25	Less than 2-year	Low land level
Bacoor River	Bacoor-3	Sta.0+000 - Sta.1+700	0 to 55	Less than 2-year	Low land level
Tanza	CT 1	Sta.0+000 - Sta.1+550	160 to 880	100-year	-
	UI-I	Sta.1+550 - Sta.1+950	35 to 60	3-year	Low land level

Table 5.1 Existing Land Ose in the Study filed											
											(Unit: ha)
City/	Desidential	In deservised	Institutiona	Commencial	Built-up/	A	Grassland/	Tree	Water	Un alogaifie d	Tatal
Municipality	Residential	Industrial	1	Commercial	Mix Use	Agricultural	Open Area	Plantation	Bodies	Unclassified	Total
Amadeo	234	7	5	11	0	3,416	156	459	0	0	4,287
Bacoor	950	10	5	53	9	214	323	64	182	0	1,809
Dasmarinas	2,147	175	111	159	2	1,195	1,982	1,239	1	0	7,012
Gen. Trias	1,394	290	13	15	13	4,143	1,697	907	10	0	8,482
Imus	1,573	77	12	37	11	2,175	730	532	12	0	5,160
Indang	40	5	0	12	0	1,135	12	0	0	0	1,204
Kawit	361	0	1	13	0	585	15	85	488	0	1,548
Noveleta	239	1	6	0	1	115	27	14	182	0	585
Rosario	250	240	5	4	0	80	52	26	21	0	677
Silang	490	67	32	8	11	3,757	329	414	0	0	5,108
Tagaytay	75	0	1	100	0	696	61	77	0	20	1,029
Tanza	315	0	12	3	7	1,089	16	80	8	0	1,530
Trece Martires	353	42	6	8	3	436	878	586	0	0	2,313
Total	8,420	914	208	422	57	19,037	6,278	4,484	903	21	40,743
Share	20.7%	2.2%	0.5%	1.0%	0.1%	46.7%	15.4%	11.0%	2.2%	0.1%	100.0%

Table 3.1 Existing Land Use in the Study Area

											(2)
City/	D ocidential	Industrial	Institutiona	Commercial	Built-up/	Agricultura	Grassland/	Tree	Water	Unalossified	Total
Municipality	Residential	muusutai	1	Commerciai	Mix Use	1	Open Area	Plantation	Bodies	Unclassified	Total
Amadeo	858	0	0	372	0	2,809	0	249	0	0	4,287
Bacoor	1,657	8	2	143	0	0	0	0	0	0	1,809
Dasmarinas	2,648	33	37	110	2,908	1,174	102	0	0	0	7,012
Gen. Trias	0	0	0	375	4,201	3,225	680	0	0	0	8,482
Imus	0	1,043	0	119	2,965	1,004	29	0	0	0	5,160
Indang	0	0	0	0	123	1,082	0	0	0	0	1,204
Kawit	0	0	0	0	1,436	0	111	0	0	0	1,548
Noveleta	381	4	14	81	0	0	36	0	68	0	585
Rosario	393	233	11	34	0	0	6	0	0	0	677
Silang	0	562	0	0	2,374	2,172	0	0	0	0	5,108
Tagaytay	0	0	0	162	500	328	38	0	0	0	1,029
Tanza	22	0	0	0	442	1,066	0	0	0	0	1,530
Trece Martires	335	0	0	0	1,978	0	0	0	0	0	2,313
Total	6,294	1,883	64	1,395	16,926	12,861	1,004	249	68	1	40,743
Share	15.4%	4.6%	0.2%	3.4%	41.5%	31.6%	2.5%	0.6%	0.2%	0.0%	100.0%

Table 4.1 Land Use Plan Projected by Cities/Municipalities in Study Area

Table 4.2 Population Projection for Each City/Municipality in the Study Area

	rable 4.2 ropulation ribjection for Each City/Municipality in the Study Area													
			•				•				•	(U	nit: Thousand)	
<u><u> </u></u>				Total Po	pulation in the	he Whole Ci	ty/Municipa	lity Area			Study Area			
City/	Group ^{*1}		Num	ber of Popula	ation		Α	djustment to	Control To	tal	*2	2020 Pe	opulation	
Municipality	1	2000	2005	2010	2015	2020	2005	2010	2015	2020	Share -	Distribution	Adjustment*3	
Amadeo	L	26	29	32	34	36	29	30	31	33	100%	33	33	
Bacoor	Н	306	449	601	749	884	445	570	686	802	45%	359	351	
Dasmarinas	Н	380	558	746	930	1,098	552	708	852	996	93%	922	901	
Gen Trias	M	108	140	172	200	224	139	163	183	203	100%	203	203	
Imus	Н	195	287	384	479	565	284	365	439	513	100%	513	513	
Indang	L	51	58	64	68	72	57	60	63	65	13%	9	8	
Kawit	L	63	71	78	84	88	70	74	77	80	100%	80	80	
Noveleta	L	32	36	40	43	45	36	38	39	41	100%	41	41	
Rosario	L	74	83	91	98	103	83	87	90	94	100%	94	94	
Silang	М	156	204	249	289	324	202	236	265	294	38%	113	110	
Tagaytay City	М	45	59	72	84	94	58	68	77	85	9%	7	7	
Tanza	М	111	144	176	205	229	143	167	188	208	29%	60	59	
Trece Martines	М	42	54	66	77	86	54	63	71	78	58%	45	44	
Total	-	1,587	2,173	2,771	3,339	3,849	2,152	2,630	3,059	3,491	70%	2,479	2,444	

Note:

*1: The following increase ratios are applied

^{*1)} Increase Ratio Group	2000-05	2005-10	2010-15	2015-20
High (H)	8.00%	6.00%	4.50%	3.38%
Mid (M)	5.45%	4.09%	3.07%	2.30%
Low (L)	2.50%	1.88%	1.41%	1.05%

*2: $^{*2)}$ Share is the % of the population of the Study Area in the total population of each city/municipality in 2000

*3: Apply 0.977x number of population of Bacoor, Trece Martires, Dasmarinas, Tanza, Tagaytay, Indang, Silang for adjustment

		rabic -	t.J Lanc		пторо	scu m un	Study (1 car 20	20)		
											(unit: ha)
Land Use	Residential	Industrial	Institutional	Commercial	Built-up/ Mix Use	Agricultural	Grassland/ Open Area	Tree Plantation	Water Bodies	Unclassified	Total
Amadeo	263	11	10	26	0	3,371	154	453	0	0	4,287
Bacoor	1,181	16	9	127	0	130	196	39	110	0	1,809
Dasmarinas	3,842	274	202	442	0	609	1,011	632	0	0	7,012
Gen. Trias	3,011	440	25	37	0	3,047	1,248	667	7	0	8,482
Imus	2,759	120	23	90	0	1,367	458	334	8	0	5,160
Indang	28	8	5	28	0	1,123	12	0	0	0	1,204
Kawit	464	8	1	30	0	521	13	76	435	0	1,548
Noveleta	277	6	11	6	0	97	23	11	154	0	585
Rosario	173	360	11	10	0	55	36	18	14	0	677
Silang	1,151	104	63	19	0	3,148	276	347	0	0	5,108
Tagaytay	12	0	11	177	0	802	4	3	0	20	1,029
Tanza	716	15	24	7	0	701	11	51	5	0	1,530
Trece Martires	683	65	11	20	0	352	708	473	0	0	2,313
Total	14,561	1,426	407	1,019	0	15,323	4,149	3,105	733	21	40,743
Share	35.7%	3.5%	1.0%	2.5%	0.0%	37.6%	10.2%	7.6%	1.8%	0.1%	100.0%

Table 4.3 Land Use Plan Proposed in the Study (Year 2020)

Table 4.4 Built-up Area and Population Projected in the Study (Year 2020)

		Land Use		Built-up A	Area Ratio	Populatio	n Density		Population	
	Total Area	Built-up	Built-up	Existing	2020	Existing	2020	2000	2020	Incremental
City/ Municipality	Total Alea	Area(existin	Area(2020)	Existing	2020	Existing	2020	2000	2020	population
	(ha)	(ha)	(ha)	(%)	(%)	(per/ha)	(per/ha)	(person)	(person)	(person)
Amadeo	4,287	257	310	6.0%	7.2%	6.0	7.6	25,737	32,751	7,014
Bacoor	1,809	1,027	1,333	56.7%	73.7%	75.7	125.6	136,933	227,170	90,236
Dasmarinas	7,012	2,595	4,760	37.0%	67.9%	50.1	116.5	351,585	816,551	464,966
Gen. Trias	8,482	1,725	3,513	20.3%	41.4%	12.7	40.8	107,691	346,180	238,489
Imus	5,160	1,710	2,993	33.1%	58.0%	37.9	91.6	195,481	472,425	276,944
Indang	1,204	57	69	4.7%	5.7%	5.6	6.9	6,684	8,310	1,627
Kawit	1,548	375	503	24.2%	32.5%	40.5	51.6	62,751	79,852	17,101
Noveleta	585	247	300	42.2%	51.4%	54.7	69.6	31,959	40,668	8,709
Rosario	677	499	554	73.7%	81.7%	108.8	138.4	73,665	93,740	20,075
Silang	5,108	607	1,337	11.9%	26.2%	11.7	30.8	60,015	157,310	97,295
Tagaytay	1,029	175	200	17.0%	19.4%	3.9	7.1	3,981	7,323	3,342
Tanza	1,530	337	761	22.0%	49.8%	20.9	57.9	31,928	88,554	56,626
Trece Martires	2,313	412	780	17.8%	33.7%	10.4	31.6	24,032	73,102	49,070
Total	40,743	10,021	17,413	24.6%	42.7%	27.3	60.0	1,112,442	2,443,936	1,331,494

Detaitem	6-hourly	Daily rainfall								
Data item	rainfall		Within s	tudy area			Adjacent area	ı		
	Sangley	Sangley		5			2			
Year	Point	Point	Mabolo	Amadeo	Tagaytay	Port Area	San Pedro	Ambulong		
1051	Tomt	Tollit						Δ		
1951								<u>A</u>		
1952								A		
1955								A		
1934								A		
1955								A		
1930								A		
1957								A		
1958								A		
1959								A		
1960								A		
1961						A		A		
1962						A		A		
1963						A		A		
1964						A		A		
1965						A		A		
1966						A		A		
1967						A		A		
1968						Α		А		
1969						А		А		
1970						Р		А		
1971						А	Р	Р		
1972						А	А	А		
1973						А	А	А		
1974		Р				А	А	Р		
1975		А	Р			А	А	Р		
1976		А	А			Р	А	А		
1977		А	А			Р	Р	А		
1978	А	А	Р			Р	А	А		
1979	Р	Р	Р			Р	А	А		
1980	Р	Р	А				А	А		
1981	А	А	А			Р	А	А		
1982	А	А	А			А	А	А		
1983	А	А	А			Р	А	А		
1984	А	А	А			А	А	А		
1985	А	А	А	А		Р	А	А		
1986	А	А	А	А		А	А	А		
1987	Р	А	Р	Р		А	А	А		
1988	А	А	А	А		Р	А	А		
1989	А	А	А	А		А	А	А		
1990	A	A	A	A		A	P	A		
1991	A	A	A	A		A	-	A		
1992	A	A	A	A		A		A		
1993	A	A	A	A		A	Р	A		
1994	A	A	A	A	Р	A	A	A		
1995	A	A	A	A	P	A	P	A		
1996	Δ	Δ	Δ	Δ	P	Δ	P	Δ		
1997	Δ	Δ	Δ	P	P	Δ	Δ	Δ		
1008	Δ	Δ	Δ	P	Δ	Δ	P A	Δ		
1000	Λ Λ	Λ Λ	Λ Λ	Λ 1	P A	<u>л</u>	P I	<u>л</u>		
2000	A A	Λ Λ	P A	A A	r P	A A	r	A A		
2000	A	A	Г 	A	r P	A		A		
2001	A	A	A	A P	Г 	A		A		
2002	A	A	A		A	A		A		
2003	A	A	A		A	A		A		
2004	A	A	A	P	P	A		P		
2005	A	A	A	A	A	A		A		
2006	A	A	Р	A	A	A		A		

Table 5.1 Availability of Rainfall Data in and around the Study Area

A: Fully available P: Partially available

	2-year	3-year	5-year	10-year	20-year	30-year	50-year	100-year
T (hr)	mm/hr	mm/hr	mm/hr	mm/hr	mm/hr	mm/hr	mm/hr	mm/hr
0								
1	1.1	1.4	1.7	2.0	2.3	2.4	2.6	2.8
2	1.2	1.5	1.7	2.1	2.3	2.5	2.7	2.9
3	1.2	1.5	1.8	2.2	2.4	2.6	2.7	3.0
4	1.3	1.6	1.9	2.2	2.5	2.7	2.8	3.1
5	1.3	1.6	1.9	2.3	2.6	2.8	3.0	3.2
6	1.4	1.7	2.0	2.4	2.7	2.9	3.1	3.3
7	1.5	1.7	2.1	2.5	2.8	3.0	3.2	3.4
8	1.5	1.8	2.2	2.6	2.9	3.1	3.3	3.6
9	1.6	1.9	2.3	2.7	3.1	3.3	3.5	3.8
10	1.7	2.0	2.4	2.9	3.2	3.5	3.6	3.9
11	1.8	2.2	2.6	3.0	3.4	3.6	3.8	4.2
12	1.9	2.3	2.7	3.2	3.6	3.8	4.0	4.4
13	2.0	2.4	2.9	3.4	3.8	4.1	4.3	4.7
14	2.2	2.6	3.1	3.7	4.1	4.3	4.6	5.0
15	2.3	2.8	3.3	4.0	4.4	4.6	4.9	5.3
16	2.5	3.1	3.6	4.3	4.8	5.1	5.3	5.8
17	2.8	3.4	4.0	4.7	5.2	5.5	5.9	6.3
18	3.2	3.8	4.4	5.2	5.8	6.2	6.5	7.0
19	3.6	4.3	5.1	5.9	6.6	7.0	7.4	7.9
20	4.3	5.1	5.9	6.9	7.7	8.1	8.6	9.2
21	5.3	6.3	7.3	8.4	9.4	9.8	10.4	11.1
22	7.0	8.3	9.7	11.0	12.3	12.8	13.6	14.4
23	11.3	13.3	15.3	17.1	19.0	19.7	20.8	21.9
24	51.7	57.9	63.7	68.3	74.4	75.9	79.4	81.9
25	17.3	20.1	22.8	25.2	27.9	28.8	30.4	31.7
26	8.6	10.2	11.7	13.3	14.8	15.4	16.3	17.2
27	6.0	7.1	8.3	9.5	10.6	11.1	11.7	12.5
28	4.7	5.6	6.5	7.6	8.4	8.9	9.4	10.0
29	3.9	4.7	5.5	6.4	7.1	7.5	7.9	8.5
30	3.4	4.0	4.7	5.5	6.2	6.5	6.9	7.4
31	3.0	3.6	4.2	5.0	5.5	5.8	6.2	6.6
32	2.7	3.2	3.8	4.5	5.0	5.3	5.6	6.0
33	2.4	2.9	3.5	4.1	4.6	4.9	5.1	5.6
34	2.2	2.7	3.2	3.8	4.2	4.5	4.8	5.1
35	2.1	2.5	3.0	3.5	3.9	4.2	4.4	4.8
36	1.9	2.4	2.8	3.3	3.7	3.9	4.2	4.5
37	1.8	2.2	2.6	3.1	3.5	3.7	3.9	4.3
38	1.7	2.1	2.5	3.0	3.3	3.5	3.7	4.1
39	1.6	2.0	2.3	2.8	3.1	3.4	3.6	3.9
40	1.5	1.9	2.2	2.7	3.0	3.2	3.4	3.7
41	1.5	1.8	2.1	2.6	2.9	3.1	3.2	3.5
42	1.4	1.7	2.0	2.5	2.7	3.0	3.1	3.4
43	1.4	1.7	2.0	2.4	2.6	2.8	3.0	3.3
44	1.3	1.6	1.9	2.3	2.5	2.7	2.9	3.2
45	1.3	1.5	1.8	2.2	2.4	2.7	2.8	3.1
46	1.2	1.5	1.8	2.2	2.4	2.6	2.7	3.0
47	1.2	1.4	1.7	2.1	2.3	2.5	2.6	2.9
48	1.1	1.4	1.6	2.0	2.2	2.4	2.6	2.8
49								
Total								
(mm)	191	224	258	295	326	342	360	383

 Table 5.2 Design Storm of Long Duration Rainfall for Each Return Period

Time		Rainfall (mm)												
T (minute)	2-year	3-year	5-year	10-year	20-year	30-year	50-year	100-year						
0														
5	1.2	1.5	1.8	2.1	2.4	2.6	2.9	3.2						
10	1.3	1.6	1.9	2.2	2.6	2.8	3.0	3.4						
15	1.4	1.7	2.0	2.4	2.8	3.0	3.3	3.6						
20	1.6	1.9	2.2	2.6	3.0	3.3	3.5	3.9						
25	1.8	2.1	2.5	2.9	3.3	3.6	3.9	4.3						
30	2.0	2.3	2.7	3.2	3.7	3.9	4.3	4.7						
35	2.2	2.7	3.1	3.6	4.2	4.4	4.8	5.3						
40	2.6	3.1	3.6	4.2	4.8	5.1	5.6	6.1						
45	3.2	3.8	4.4	5.0	5.8	6.1	6.6	7.2						
50	4.1	4.8	5.5	6.3	7.3	7.7	8.3	9.0						
55	6.0	6.9	7.8	8.9	10.1	10.7	11.6	12.5						
60	12.3	13.8	15.5	17.8	19.8	21.1	22.6	24.7						
65	7.9	8.9	10.1	11.5	13.0	13.7	14.8	16.1						
70	4.9	5.6	6.5	7.4	8.4	8.9	9.6	10.5						
75	3.6	4.2	4.9	5.6	6.4	6.8	7.4	8.0						
80	2.9	3.4	4.0	4.6	5.3	5.6	6.1	6.6						
85	2.4	2.9	3.3	3.9	4.5	4.8	5.2	5.7						
90	2.1	2.5	2.9	3.4	3.9	4.2	4.6	5.0						
95	1.9	2.2	2.6	3.0	3.5	3.7	4.1	4.5						
100	1.7	2.0	2.3	2.7	3.2	3.4	3.7	4.1						
105	1.5	1.8	2.1	2.5	2.9	3.1	3.4	3.8						
110	1.4	1.7	2.0	2.3	2.7	2.9	3.2	3.5						
115	1.3	1.5	1.8	2.2	2.5	2.7	2.9	3.3						
120	1.2	1.4	1.7	2.0	2.4	2.5	2.8	3.1						
125														
Total	72.5	84.3	97.2	112.3	128.5	136.6	148.2	162.1						

 Table 5.3 Design Storm of Short Duration Rainfall for Each Return Period

Item	Re-classified from Original Plan	Official Land Use Plan		
Fishpond/Rice Field	Agricultural (Rice Field)*	Agricultural		
	Water Bodies/Fishpond	Fishpond, Water Body		
Forest	Tree Plantation	Forest/Trees/Brush, Reserved Forest, Tree Plantation		
Farm Land/Grassland/	Agricultural (Farm Land)*	Agricultural		
Open Area	Grassland/Open Area	Ecological Development Zone		
		Grassland, Open Area		
		Park and Recreational		
		Religious and Cemetery		
	Unclassified	Tourism Strip, Unclassified		
Urban Area	Industrial	Industrial Area		
	Built-up/Mix Use	Roads		
	Commercial	Commercial and Business		
		General Development Area, Primary Urban Core		
		Health and Welfare		
		Transport and Service Facility		
	Institutional	Educational and Cultural		
		Government and Quasi-Public		
	Residential	Residential Area		

Table 5.4 Land Use Items for Runoff Analysis

Note: *: Agricultural area is further classified into "Rice Field" and "Farm Land" in each municipality.

								Unit: %
Basin	Sub-Basin	Area	Fishpond/	Tree	Farm Land	Open Area/	Urban Area	Total
- Dubin	Die Dusii	(km2)	Rice Field	Plantation		Grassland	16.60	100
Imus	IM-01	13.96	0.14	14.14	65.10	3.94	16.68	100
	IM-02	18.60	5.13	12.13	12.35	20.34	50.06	100
	IM-03	8.68	3.42 13.44	13.00	17.88	<u> </u>	29.24	100
	IM-04 IM-05	0.00	10 55	13.03	3.01	14.01	22.80	100
	IM-05	3.09	6.84	5 64	1.04	9.04	77 44	100
	IM-07	9.43	3 90	7 99	6.05	26.89	55.16	100
	IM-08	7.22	12.61	7.29	2.77	12.36	64.97	100
	IM-09	3.13	38.82	5.75	8.52	8.17	38.74	100
	IM-10	0.60	16.15	4.90	0.00	9.62	69.32	100
	IM-11	0.71	34.99	1.41	0.00	5.76	57.84	100
	BC-01	7.45	10.05	8.17	1.04	23.03	57.71	100
	BC-02	8.21	15.31	2.66	0.76	22.86	58.40	100
	BC-03	1.14	49.45	0.00	0.00	2.20	48.35	100
	BC-04	2.33	32.48	1.87	1.53	6.01	58.11	100
	BC-05	0.47	57.94	0.00	0.00	0.00	42.06	100
Imus Sub-Total		115.49	11.77	10.93	15.11	21.49	40.70	100
San Juan	SJ-01	30.90	1.81	10.75	75.88	5.83	5.74	100
	SJ-02	9.27	5.33	17.37	18.17	24.69	34.43	100
	SJ-03	9.04	44.29	6.45	11.07	9.00	29.19	100
	SJ-04	9.07	65.23	9.09	16.31	0.72	8.64	100
	ST 06	10.22	45.52	8.90	11.35	10.42	23.82	100
	SJ-00 SI-07	4.89	30.37	<u> 8.83</u> 4 21	14.0/	0.21	20.52	100
	SI 08	11.32	9.23	4.31	30.72	0.21	14.44	100
	SI-08	1.02	55 36	0.00	9.47	1.86	33 32	100
	SI-10	1.02	72.48	1.24	1 18	4 37	20.74	100
San Juan Sub-T	otal	88.13	28.14	9.34	38.76	7.01	16.75	100
Ylang-Ylang	YY-01	32.63	2.38	16.35	39.96	20.97	20.34	100
	YY-02	15.10	3.66	18.48	43.72	9.36	24.78	100
	YY-03	3.19	35.51	13.17	10.14	13.33	27.86	100
	YY-04	2.52	61.78	21.77	14.23	0.00	2.21	100
	YY-05	4.93	72.92	7.48	18.23	0.00	1.37	100
	YY-06	0.20	44.55	16.15	19.05	0.00	20.24	100
Ylang-Ylang Su	ib-Total	58.56	13.15	16.21	36.30	14.82	19.52	100
Canas	CN-01	15.12	0.00	1.90	71.95	17.17	8.98	100
	CN-02	11.83	0.83	18.01	38.58	16.46	26.11	100
	CN-03	14.20	0.00	5.92	63.87	24.85	5.36	100
	CN-04	10.43	1.32	26.16	16.52	45.89	10.12	100
	CN-05	2.84	27.54	3.54	24.57	31.50	12.85	100
	CN-00	0.37	19.01	14.04	22.30	32.13	12.20	100
	CN-07	16.72	11.96	14 77	5 11	30.04	28.21	100
	CN-08	0.54	40.24	14.77	23 73	15.83	4 19	100
	CN-10	10.53	40.53	8.83	35.21	0.69	14.75	100
	CN-11	5.97	26.81	2.70	47.60	0.62	22.26	100
	CN-12	2.51	10.34	6.19	13.11	2.85	67.52	100
Canas Sub-Tota	1	112.31	9.47	10.31	40.99	22.62	16.60	100
Drainage Area	XX-01	2.23	2.81	5.96	0.00	14.91	76.32	100
	XX-02	6.42	26.86	1.04	11.98	2.23	57.88	100
	XX-03	0.17	10.93	0.00	0.00	0.00	89.07	100
	XX-04	3.15	50.33	0.96	30.38	2.24	16.10	100
	XX-05	1.65	50.64	4.53	0.00	6.54	38.29	100
	XX-06	1.07	99.96	0.00	0.00	0.00	0.04	100
	AA-0/	0.40	100.00	0.00	0.00	0.00	0.00	100
	AA-08 XX 00	1.03	32.72	1./9	0.00	2.31	03.18	100
	XX-10	0.98	10.51	1.2/	0.00	40.44	41.98	100
	XX-10	2.34	20.73	5.60	30.31	2.02	<u>41 24</u>	100
	XX-12	0.31	99.96	0.00	0.00	0.00	0.04	100
	XX-13	6.64	43.10	12.56	24.26	1.15	18.93	100
	XX-14	5.73	46.75	9.03	9.56	1.58	33.08	100
	XX-15	0.15	62.46	0.00	0.00	0.00	37.54	100
	XX-16	0.21	100.00	0.00	0.00	0.00	0.00	100
Drainage Area S	Sub-Total	32.92	40.55	5.51	13.86	3.91	36.16	100
Total		407.42	17.20	10.74	30.31	16.29	25.47	100

Table 5.5 Present Land Use Condition in Sub-basin

				, , , , , , , , , , , , , , , , , , , ,		,• •	Unit: %
SubDrainage	Area (ha)	Fishpond/ Rice Field	Tree Plantation	Farm Land	Open Area/ Grassland	Urban Area	Total
XX-01-S1	78.8	0.32	1.79	0.00	26.00	71.89	100
XX-01-S2	70.3	8.41	1.04	0.00	15.08	75.47	100
XX-01-S3	74.2	0.13	15.06	0.00	2.99	81.82	100
XX-02-S1	134.3	70.54	0.00	17.64	0.98	10.85	100
XX-02-S2	58.3	59.25	0.00	14.81	0.00	25.94	100
XX-02-S3	255.0	0.31	0.00	3.76	1.69	94.23	100
XX-02-S4	114.3	33.54	0.00	21.10	0.05	45.31	100
XX-02-S5	79.9	5.00	8.39	13.57	10.79	62.25	100
XX-04-S1	148.6	76.32	1.10	19.16	0.00	3.43	100
XX-04-S2	121.2	11.44	1.14	55.49	5.82	26.10	100
XX-04-S3	45.3	69.06	0.00	0.00	0.00	30.94	100
XX-11-S1	85.7	14.92	10.03	67.95	0.00	7.10	100
XX-11-S2	42.2	11.62	3.27	7.81	0.00	77.31	100
XX-11-S3	59.1	22.46	4.62	10.43	6.48	56.01	100
XX-11-S4	18.6	33.02	0.00	0.00	0.00	66.98	100
XX-11-S5	17.8	51.67	0.00	0.00	3.97	44.36	100
XX-13-S1	71.1	60.80	9.53	17.26	0.00	12.41	100
XX-13-S2	238.5	67.42	12.99	14.80	0.19	4.59	100
XX-13-S3	67.0	17.70	0.49	3.89	6.77	71.16	100
XX-13-S4	258.1	22.99	17.31	42.96	0.00	16.74	100
XX-13-S5	29.1	37.12	2.11	0.00	9.13	51.63	100
XX-14-S1	43.3	49.31	8.01	10.82	0.00	31.86	100
XX-14-S2	230.8	55.51	10.52	12.18	0.03	21.76	100
XX-14-S3	254.3	38.95	7.87	7.33	2.20	43.64	100
XX-14-S4	44.6	43.47	8.89	7.48	7.61	32.54	100
SJ-08L2	107.1	7.42	1.12	49.30	0.00	42.16	100
SJ-08R2	68.4	30.86	16.36	15.20	3.42	34.15	100
SJ-10L	86.7	59.44	2.16	0.00	7.64	30.76	100

 Table 5.6 Present Land Use Condition in Sub-drainage Area

								Unit: %
Basin	Sub-Basin	Area	Fishpond/	Tree	Farm Land	Open Area/	Urban Area	Total
Image	IM 01	(km2)	Rice Field	Plantation	52.64	Grassland	20.85	100
Imus	IM-01 IM-02	13.90	1.20	3.72	33.04	3.03	29.85	100
	IM-02 IM-03	19.00	3.03	7 54	11 42	20.23	57 79	100
	IM-04	8.68	30.65	8.29	7.23	9.29	44.54	100
	IM-05	10.74	0.91	15.00	0.49	36.39	47.21	100
	IM-06	3.09	0.42	0.00	0.00	0.00	99.58	100
	IM-07	9.43	0.47	1.04	1.50	1.51	95.47	100
	IM-08	7.22	0.96	1.88	0.21	0.00	96.95	100
	IM-09	3.13	12.21	0.06	2.68	0.00	85.05	100
	IM-10	0.60	11.10	0.05	0.00	8.47	80.38	100
	IM-11	0.71	29.94	1.41	0.00	5.76	62.89	100
	BC-01	7.45	1.77	4.75	0.13	14.70	78.64	100
	BC-02	8.21	8.81	1.70	0.41	14.88	74.20	100
	BC-03	1.14	44.40	0.00	0.00	2.20	53.40	100
	BC-04	2.33	/.86	0.50	0.03	3.25	88.35	100
Imus Sub Total	BC-05	0.47	52.89	6.00	0.00	10.76	47.11	100
San Juan	SI 01	30.90	1.50	10.75	9.94	5 37	07.84	100
Sali Juali	SI-02	9.27	4 17	9.47	14.26	3.37	68.63	100
	SJ-03	9.04	40.16	6 39	10.04	1 85	41 56	100
	SJ-04	9.07	59.80	7.14	14.95	0.48	17.63	100
	SJ-05	10.22	39.59	8.03	9.87	0.60	41.91	100
	SJ-06	4.89	52.32	8.82	13.07	0.03	25.76	100
	SJ-07	0.88	5.87	4.31	4.43	2.72	82.67	100
	SJ-08	11.32	36.71	3.61	31.62	0.02	28.04	100
	SJ-09	1.02	26.23	0.00	0.00	0.00	73.77	100
	SJ-10	1.51	67.50	1.24	1.10	4.37	25.79	100
San Juan Sub-To	otal	88.13	25.04	8.10	34.94	2.66	29.25	100
Ylang-Ylang	YY-01	32.63	2.09	13.76	34.51	14.91	34.73	100
	YY-02	15.10	3.04	13.53	26.30	1.17	55.97	100
	YY-03	3.19	30.97	13.17	/.61	13.33	34.91	100
	YY 05	2.52	57.07	21.77	13.29	0.00	6.42	100
	11-05 VV 06	4.93	41.01	16.15	17.22	0.00	25.30	100
Ylang-Ylang Su	h-Total	58.56	12.05	13.49	28 50	9 34	36.62	100
Canas	CN-01	15.12	0.00	1.90	70.07	17.02	11.01	100
	CN-02	11.83	0.69	9.66	37.12	7.97	44.56	100
	CN-03	14.20	0.00	5.69	61.56	24.02	8.72	100
	CN-04	10.43	1.31	20.60	16.48	34.84	26.76	100
	CN-05	2.84	24.21	3.54	18.64	31.50	22.12	100
	CN-06	6.57	18.99	11.04	21.30	25.26	23.41	100
	CN-07	15.05	0.20	5.07	64.75	17.24	12.74	100
	CN-08	16.72	8.62	6.72	4.09	15.68	64.88	100
	CN-09	0.54	40.24	16.01	23.73	15.83	4.19	100
	CN-10	10.53	35.84	8.21	27.02	0.52	28.40	100
	CN-11 CN-12	2.51	20.38	1.45	30.17	0.00	42.00	100
Canas Sub-Total	CIN-12	112 31	2.90	7.25	38.23	16.46	30.13	100
Drainage Area	XX-01	2.23	2.76	4.66	0.00	5.46	87.12	100
2 runninge / ned	XX-02	6.42	26.86	1.04	11.65	0.00	60.44	100
	XX-03	0.17	10.93	0.00	0.00	0.00	89.07	100
	XX-04	3.15	50.33	0.96	30.38	2.24	16.10	100
	XX-05	1.65	50.64	4.53	0.00	6.54	38.29	100
	XX-06	1.07	99.96	0.00	0.00	0.00	0.04	100
	XX-07	0.40	100.00	0.00	0.00	0.00	0.00	100
	XX-08	1.03	32.72	0.00	0.00	0.73	66.55	100
	XX-09	0.98	16.31	1.27	0.00	40.44	41.98	100
	XX-10	0.54	100.00	0.00	0.00	0.00	0.00	100
	XX-11	2.24	11.53	4.94	29.13	0.00	54.40	100
	ΔΔ-12 VV 12	0.31	99.96	0.00	0.00	0.00	0.04	100
	лл-13 XX-14	0.04 5.72	39.30	5 76	20.25	0.0/	53.27	100
	XX_15	0.15	55.90 67.27	0.00	7.00	0.13	33.21	100
	XX-16	0.15	100.00	0.00	0.00	0.00	0.00	100
Drainage Area S	ub-Total	32.92	36.93	4.25	12.46	2.18	44.18	100
Total		407.42	13.84	7.76	26.02	9.68	42.70	100

Table 5.7	Future Land	Use Condition	in Sub-basin
-----------	--------------------	----------------------	--------------

							Unit: %
SubDrainage	Area (ha)	Fishpond/ Rice Field	Tree Plantation	Farm Land	Open Area/ Grassland	Urban Area	Total
XX-01-S1	78.8	0.32	1.79	0.00	4.96	92.93	100
XX-01-S2	70.3	8.28	0.00	0.00	11.77	79.95	100
XX-01-S3	74.2	0.13	12.12	0.00	0.00	87.75	100
XX-02-S1	134.3	70.54	0.00	17.63	0.00	11.83	100
XX-02-S2	58.3	59.25	0.00	14.81	0.00	25.94	100
XX-02-S3	255.0	0.31	0.00	3.76	0.00	95.92	100
XX-02-S4	114.3	33.54	0.00	21.10	0.00	45.36	100
XX-02-S5	79.9	5.00	8.39	10.95	0.00	75.67	100
XX-04-S1	148.6	76.32	1.10	19.16	0.00	3.43	100
XX-04-S2	121.2	11.44	1.14	55.49	5.82	26.10	100
XX-04-S3	45.3	69.06	0.00	0.00	0.00	30.94	100
XX-11-S1	85.7	14.56	9.09	66.31	0.00	10.04	100
XX-11-S2	42.2	1.10	1.39	5.00	0.00	92.51	100
XX-11-S3	59.1	7.04	4.50	10.35	0.00	78.11	100
XX-11-S4	18.6	25.42	0.00	0.00	0.00	74.58	100
XX-11-S5	17.8	21.99	0.00	0.00	0.00	78.01	100
XX-13-S1	71.1	59.47	9.53	13.05	0.00	17.96	100
XX-13-S2	238.5	67.42	12.99	14.80	0.19	4.59	100
XX-13-S3	67.0	5.63	0.03	1.23	0.00	93.11	100
XX-13-S4	258.1	21.06	11.24	34.48	0.00	33.22	100
XX-13-S5	29.1	0.00	0.00	0.00	0.00	100.00	100
XX-14-S1	43.3	49.30	8.01	10.82	0.00	31.87	100
XX-14-S2	230.8	55.51	10.52	12.18	0.00	21.79	100
XX-14-S3	254.3	14.49	2.08	2.19	0.29	80.95	100
XX-14-S4	44.6	17.88	0.00	3.92	0.00	78.20	100
SJ-08L2	107.1	4.12	0.00	27.41	0.00	68.47	100
SJ-08R2	68.4	14.33	6.87	1.82	0.30	76.68	100
SJ-10L	86.7	59.44	2.16	0.00	7.64	30.76	100

 Table 5.8 Future Land Use Condition in Sub-drainage Area

							Unit: mm
No.	Time	Sangley Point	Tagaytay*	No.	Time	Sangley Point	Tagaytay*
1	2006/9/27 09:00		0.00	25	2006/9/28 09:00		15.04
2	2006/9/27 10:00		0.00	26	2006/9/28 10:00		38.59
3	2006/9/27 11:00		0.55	27	2006/9/28 11:00	9.7	77.17
4	2006/9/27 12:00		0.00	28	2006/9/28 12:00		53.63
5	2006/9/27 13:00		2.73	29	2006/9/28 13:00		28.78
6	2006/9/27 14:00	12.0	3.27	30	2006/9/28 14:00	14.3	3.27
7	2006/9/27 15:00		0.55	31	2006/9/28 15:00		1.96
8	2006/9/27 16:00		1.64	32	2006/9/28 16:00		7.85
9	2006/9/27 17:00	4.6	4.91	33	2006/9/28 17:00	45.8	0.00
10	2006/9/27 18:00		1.64	34	2006/9/28 18:00		0.00
11	2006/9/27 19:00		0.00	35	2006/9/28 19:00		0.00
12	2006/9/27 20:00	7.2	0.00	36	2006/9/28 20:00	0.0	0.00
13	2006/9/27 21:00		0.00	37	2006/9/28 21:00		0.00
14	2006/9/27 22:00		0.00	38	2006/9/28 22:00		0.00
15	2006/9/27 23:00	3.8	4.36	39	2006/9/28 23:00		0.65
16	2006/9/28 00:00		3.27	40	2006/9/29 00:00		0.00
17	2006/9/28 01:00		6.00	41	2006/9/29 01:00		0.00
18	2006/9/28 02:00	0.0	8.72	42	2006/9/29 02:00	0.0	0.00
19	2006/9/28 03:00		2.73	43	2006/9/29 03:00		0.65
20	2006/9/28 04:00		3.27	44	2006/9/29 04:00		0.00
21	2006/9/28 05:00		3.27	45	2006/9/29 05:00		0.00
22	2006/9/28 06:00		2.18	46	2006/9/29 06:00		0.00
23	2006/9/28 07:00		14.18	47	2006/9/29 07:00		0.00
24	2006/9/28 08:00	42.0	0.55	48	2006/9/29 08:00	0.0	0.00
	Sub-Total (Daily)	69.6	63.8		Sub-Total (Daily)	69.8	227.6
					Total (2-day)	139.4	291.4

 Table 5.9 Observed Rainfall during the Typhoon Milenyo in 2006

*Note: Values are based on daily rainfall observation records and temporal distribution of strip chart collected from PAGASA.

Table 5.10	Observed Tide	Level during the	he Typhoon	Milenyo in 2006
------------	----------------------	------------------	------------	-----------------

		Manila South				Manila South	
No	Timo	Harbor [A]	Cavite Harbor [B]*	No	Timo	Harbor [A]	Cavite Harbor [B]*
110.	TILLE	in meters above	Flm	110.	TILLE	in meters above	Flm
		MLLW	EA.III			MLLW	EAM
1	2006/9/27 09:00	0.38	-0.19	49	2006/9/29 09:00	0.36	-0.21
2	2006/9/27 10:00	0.44	-0.13	50	2006/9/29 10:00	0.28	-0.29
3	2006/9/27 11:00	0.52	-0.05	51	2006/9/29 11:00	0.25	-0.32
4	2006/9/27 12:00	0.61	0.04	52	2006/9/29 12:00	0.28	-0.29
5	2006/9/27 13:00	0.65	0.08	53	2006/9/29 13:00	0.41	-0.16
6	2006/9/27 14:00	0.67	0.10	54	2006/9/29 14:00	0.54	-0.03
7	2006/9/27 15:00	0.64	0.07	55	2006/9/29 15:00	0.60	0.03
8	2006/9/27 16:00	0.60	0.03	56	2006/9/29 16:00	0.58	0.01
9	2006/9/27 17:00	0.59	0.02	57	2006/9/29 17:00	0.56	-0.01
10	2006/9/27 18:00	0.63	0.06	58	2006/9/29 18:00	0.62	0.05
11	2006/9/27 19:00	0.71	0.14	59	2006/9/29 19:00	0.76	0.19
12	2006/9/27 20:00	0.86	0.29	60	2006/9/29 20:00	0.89	0.32
13	2006/9/27 21:00	1.01	0.44	61	2006/9/29 21:00	0.97	0.40
14	2006/9/27 22:00	1.14	0.57	62	2006/9/29 22:00	1.06	0.49
15	2006/9/27 23:00	1.25	0.68	63	2006/9/29 23:00	1.17	0.60
16	2006/9/28 00:00	1.27	0.70	64	2006/9/30 00:00	1.30	0.73
17	2006/9/28 01:00	1.24	0.67	65	2006/9/30 01:00	1.39	0.82
18	2006/9/28 02:00	1.16	0.59	66	2006/9/30 02:00	1.40	0.83
19	2006/9/28 03:00	1.00	0.43	67	2006/9/30 03:00	1.30	0.73
20	2006/9/28 04:00	0.83	0.26	68	2006/9/30 04:00	1.14	0.57
21	2006/9/28 05:00	0.65	0.08	69	2006/9/30 05:00	0.94	0.37
22	2006/9/28 06:00	0.50	-0.07	70	2006/9/30 06:00	0.78	0.21
23	2006/9/28 07:00	0.44	-0.13	71	2006/9/30 07:00	0.63	0.06
24	2006/9/28 08:00	0.38	-0.19	72	2006/9/30 08:00	0.48	-0.09
25	2006/9/28 09:00	0.37	-0.20	73	2006/9/30 09:00	0.29	-0.28
26	2006/9/28 10:00	0.44	-0.13	74	2006/9/30 10:00	0.17	-0.40
27	2006/9/28 11:00	0.51	-0.06	75	2006/9/30 11:00	0.13	-0.44
28	2006/9/28 12:00	0.56	-0.01	76	2006/9/30 12:00	0.16	-0.41
29	2006/9/28 13:00	0.55	-0.02	77	2006/9/30 13:00	0.23	-0.34
30	2006/9/28 14:00	0.66	0.09	78	2006/9/30 14:00	0.30	-0.27
31	2006/9/28 15:00	0.88	0.31	79	2006/9/30 15:00	0.33	-0.24
32	2006/9/28 16:00	0.99	0.42	80	2006/9/30 16:00	0.43	-0.14
33	2006/9/28 17:00	0.89	0.32	81	2006/9/30 17:00	0.51	-0.06
34	2006/9/28 18:00	0.56	-0.01	82	2006/9/30 18:00	0.60	0.03
35	2006/9/28 19:00	0.51	-0.06	83	2006/9/30 19:00	0.71	0.14
36	2006/9/28 20:00	0.78	0.21	84	2006/9/30 20:00	0.77	0.20
37	2006/9/28 21:00	1.19	0.62	85	2006/9/30 21:00	0.85	0.28
38	2006/9/28 22:00	1.35	0.78	86	2006/9/30 22:00	0.97	0.40
39	2006/9/28 23:00	1.28	0.71	87	2006/9/30 23:00	1.10	0.53
40	2006/9/29 00:00	1.19	0.62	88	2006/10/1 00:00	1.21	0.64
41	2006/9/29 01:00	1.19	0.62	89	2006/10/1 01:00	1.32	0.75
42	2006/9/29 02:00	1.29	0.72	90	2006/10/1 02:00	1.36	0.79
43	2006/9/29 03:00	1.29	0.72	91	2006/10/1 03:00	1.38	0.81
44	2006/9/29 04:00	1.09	0.52	92	2006/10/1 04:00	1.31	0.74
45	2006/9/29 05:00	0.80	0.23	93	2006/10/1 05:00	1.18	0.61
46	2006/9/29 06:00	0.55	-0.02	94	2006/10/1 06:00	1.03	0.46
47	2006/9/29 07:00	0.41	-0.16	95	2006/10/1 07:00	0.75	0.18
48	2006/9/29 08:00	0.41	-0.16	96	2006/10/1 08:00	0.58	0.01

Source: NAMRIA

*Note: [B] = [A] - 0.48 m (MSL) - 0.09 m (tidal difference between Manila South Harbor and Cavite Harbor)

	Drainage	Channel	Sub-	Drainage			Р	eak Disch	arge (m3/	(s)		
Code	Area Name	ID	Drainage	Area (ha)	2-year	3-vear	5-vear	10-vear	20-year	30-year	50-vear	100-vear
1	Sapa	-	-	74.2	9.0	10.1	11.3	12.8	14.4	14.9	15.8	16.4
2	Rosario	-										
	-Poblacion		-	70.3	8.1	9.1	10.2	11.7	13.3	13.7	14.5	15.0
3	Silangan	-	-	78.8	8.5	9.6	10.8	13.1	15.3	15.8	16.9	17.5
4	Malimango	Dr-9	S1	134.3	6.6	8.0	9.7	12.3	14.8	15.6	16.8	17.7
	Drainage		S2	58.3	4.1	4.9	5.6	6.8	7.9	8.2	8.8	9.1
	C		S 3	254.9	34.1	38.4	42.5	46.4	51.2	52.5	55.2	57.1
			S 4	114.3	9.5	10.9	12.5	15.2	17.7	18.4	19.7	20.6
			S5	79.9	7.8	8.8	10.1	12.5	14.7	15.4	16.4	17.1
			outlet	641.7	50.9	59.2	66.7	76.0	88.7	91.7	99.5	101.4
5	Ligtong	-		16.6	2.3	2.6	2.9	3.1	3.4	3.4	3.6	3.7
6	Bacao	Dr-8	S 1	148.6	6.0	7.6	9.4	12.3	15.0	15.9	17.2	18.3
			S2	121.2	6.3	7.3	9.1	14.7	19.3	20.7	22.8	24.1
			S 3	45.3	3.7	4.4	5.0	5.5	6.1	6.2	6.6	6.8
			outlet	315.1	9.5	11.0	13.0	17.3	22.4	23.7	26.1	27.3
7	San Rafael	-	-	165.4	12.8	14.9	17.1	19.6	22.4	23.2	24.7	25.8
8	Sta. Isabel	-	-	106.9	5.0	6.2	7.4	8.4	9.5	9.8	10.4	11.0
9	Wakas	-	-	39.5	2.3	2.8	3.3	3.7	4.2	4.3	4.6	4.8
10	Kawit	Dr-4										
	-Poblacion		-	54.0	2.9	3.6	4.2	4.8	5.4	5.5	5.9	6.2
11	Tirona	Dr-3	S 1	85.8	2.6	3.1	5.2	9.3	13.0	14.1	15.7	16.7
	River		S2	42.1	5.0	5.7	6.3	7.1	8.0	8.2	8.7	9.0
			S3	59.2	5.7	6.5	7.4	8.8	10.2	10.6	11.2	11.7
			S 4	18.6	2.3	2.6	2.8	3.1	3.4	3.4	3.6	3.7
			S5	17.8	1.8	2.1	2.3	2.6	2.9	3.0	3.1	3.2
			S 6	30.7	1.9	2.3	2.7	3.0	3.4	3.5	3.7	3.9
			outlet	254.2	16.1	17.3	21.0	26.8	33.0	34.5	37.0	39.8
12	Malamok	Dr-2	S 1	71.2	3.8	4.6	5.5	7.3	8.9	9.3	10.1	10.6
	River		S2	238.5	8.8	11.0	14.0	18.7	23.3	24.8	27.3	29.2
			S 3	66.8	7.6	8.6	9.6	10.9	12.2	12.6	13.3	13.7
			S 4	258.1	10.7	12.8	16.1	25.7	34.0	36.8	41.0	44.1
			S5	29.1	2.9	3.3	3.7	4.3	4.9	5.0	5.3	5.5
		Dr-1	S 6	43.3	3.3	3.9	4.5	5.5	6.3	6.6	7.0	7.3
			S 7	230.8	12.9	15.4	18.2	22.7	27.1	28.4	30.8	32.6
			S 8	254.5	20.1	23.3	26.6	31.2	35.9	37.3	39.9	41.9
			S9	44.6	3.4	4.0	4.6	5.8	6.8	7.1	7.6	7.9
			S10	15.3	1.5	1.7	1.9	2.1	2.3	2.4	2.5	2.6
			S11	21.4	1.4	1.7	1.9	2.2	2.4	2.5	2.6	2.8
			outlet	1,273.6	36.3	45.1	55.1	70.2	86.3	93.4	105.3	116.5
13	Binakayan	-	-	102.6	10.9	12.5	14.0	15.4	17.0	17.5	18.4	19.1
14	Sineguelasan	-	-	98.1	7.3	8.3	9.8	13.3	16.3	17.2	18.6	19.5
15	Calero River	Dr-7	-	86.6	6.5	7.6	8.8	10.2	11.6	12.0	12.7	13.3
16	Panamitan	Dr-5	<u>S1</u>	725.0	25.1	30.9	38.7	58.1	76.0	82.2	91.7	99.3
			<u>S2</u>	68.4	5.4	6.2	7.2	9.1	10.8	11.3	12.1	12.7
		Dr-6	<u>S3</u>	231.9	7.0	9.1	13.5	18.4	24.2	26.1	29.1	31.2
			<u>S4</u>	107.1	8.2	9.3	11.0	15.1	18.7	19.7	21.3	22.4
1-	D D		outlet	1132.4	30.1	39.9	56.0	73.5	96.0	104.0	114.0	124.3
17	Daan Bukid	Bacoor-2	-	1144	10.5	10.1	10 7	150	167	17 1	10.1	10.7
10	Creek			114.4	10.5	12.1	13.7	15.0	16.7	17.1	18.1	18.7
18	Salınas	Bacoor-3	-	233.0	22.4	25.6	28.9	32.5	36.6	31.7	39.9	41.6

Table 5.11 Probable Peak Discharge for Drainage Area (Present Land Use)

Peak discharges are calculated Peak discharges are calculated by Quasi-Linear Storage Type Model.

Baseflow is assumed as 0.01m. Baseflow is assumed as 0.01m3/s/ha.

	Drainage	Channel	Sub-	Drainage			P	eak Disch	arge (m3/	(s)		
Code	Area Name	ID	Drainage	Area (ha)	2-year	3-year	5-year	10-year	20-year	30-year	50-year	100-year
1	Sapa	-	-	74.2	9.5	10.7	11.9	13.2	14.7	15.1	15.9	16.5
2	Rosario	-		-								
	-Poblacion		-	70.3	8.4	9.5	10.6	12.0	13.5	13.8	14.6	15.1
3	Silangan	-	-	78.8	10.6	11.9	13.2	14.5	16.0	16.4	17.2	17.8
4	Malimango	Dr-9	S1	134.3	6.7	8.2	9.8	12.5	14.9	15.6	16.8	17.7
	Drainage		S2	58.3	4.1	4.9	5.6	6.8	7.9	8.2	8.8	9.1
	C		S 3	254.9	34.7	39.0	43.1	46.9	51.5	52.7	55.3	57.2
			S 4	114.3	9.5	10.9	12.6	15.2	17.7	18.4	19.7	20.6
			S5	79.9	9.2	10.3	11.6	13.4	15.2	15.7	16.7	17.3
			outlet	641.7	52.6	61.0	69.1	77.8	90.6	92.7	100.5	102.5
5	Ligtong	-		16.6	2.3	2.6	2.9	3.1	3.4	3.4	3.6	3.7
6	Bacao	Dr-8	S 1	148.6	6.0	7.6	9.4	12.3	15.0	15.9	17.2	18.3
			S2	121.2	6.3	7.3	9.1	14.7	19.3	20.7	22.8	24.1
			S 3	45.3	3.7	4.4	5.0	5.5	6.1	6.2	6.6	6.8
			outlet	315.1	9.5	11.0	13.0	17.3	22.4	23.7	26.1	27.3
7	San Rafael	-	-	165.4	12.8	14.9	17.1	19.6	22.4	23.2	24.7	25.8
8	Sta. Isabel	-	-	106.9	5.0	6.2	7.4	8.4	9.5	9.8	10.4	11.0
9	Wakas	-	-	39.5	2.3	2.8	3.3	3.7	4.2	4.3	4.6	4.8
10	Kawit	Dr-4										
	-Poblacion		-	54.0	2.9	3.6	4.2	4.8	5.4	5.5	5.9	6.2
11	Tirona	Dr-3	S 1	85.8	2.9	3.5	5.2	9.5	13.1	14.2	15.8	16.7
	River		S2	42.1	5.7	6.3	7.0	7.7	8.5	8.7	9.2	9.5
			S3	59.2	7.0	7.9	8.8	10.1	11.3	11.7	12.3	12.8
			S 4	18.6	2.4	2.7	3.0	3.2	3.5	3.6	3.7	3.9
			S5	17.8	2.3	2.6	2.9	3.1	3.4	3.4	3.6	3.7
			S 6	30.7	1.9	2.3	2.7	3.0	3.4	3.5	3.7	3.9
			outlet	254.2	18.0	19.1	22.5	28.1	34.3	35.5	37.8	40.3
12	Malamok	Dr-2	S 1	71.2	4.3	5.1	6.0	7.7	9.1	9.5	10.3	10.8
	River		S2	238.5	8.8	11.0	14.0	18.7	23.3	24.8	27.3	29.2
			S 3	66.8	9.1	10.3	11.3	12.2	13.4	13.7	14.3	14.8
			S 4	258.1	15.9	18.5	22.0	30.1	37.4	39.8	43.6	46.4
			S5	29.1	4.2	4.7	5.1	5.5	6.0	6.1	6.4	6.6
		Dr-1	S6	43.3	3.3	3.9	4.5	5.5	6.3	6.6	7.0	7.3
			S 7	230.8	12.9	15.4	18.2	22.7	27.1	28.5	30.8	32.6
			S 8	254.5	30.6	34.6	38.5	42.1	46.4	47.6	50.0	51.8
			S9	44.6	5.5	6.3	7.0	7.6	8.4	8.6	9.0	9.3
			S10	15.3	1.5	1.7	1.9	2.1	2.3	2.4	2.5	2.6
			S11	21.4	1.4	1.7	1.9	2.2	2.4	2.5	2.6	2.8
			outlet	1,273.6	70.0	84.4	99.5	117.1	138.8	146.5	161.4	169.8
13	Binakayan	-	-	102.6	11.4	13.0	14.5	15.7	17.3	17.7	18.5	19.2
14	Sineguelasan	-	-	98.1	7.3	8.3	9.8	13.3	16.3	17.2	18.6	19.5
15	Calero River	Dr-7	-	86.6	6.5	7.6	8.8	10.2	11.6	12.0	12.7	13.3
16	Panamitan	Dr-5	S1	725.0	34.6	41.3	49.6	67.2	83.9	89.6	98.6	105.7
			S2	68.4	8.1	9.2	10.2	11.3	12.6	12.9	13.6	14.1
		Dr-6	S3	231.9	9.0	11.1	13.9	20.5	26.2	28.1	31.1	33.2
			S4	107.1	11.1	12.6	14.2	17.2	20.1	20.9	22.3	23.2
			outlet	1132.4	42.8	52.8	64.2	82.2	105.2	113.2	123.9	132.6
17	Daan Bukid	Bacoor-2	-									
	Creek			114.4	10.5	12.1	13.7	15.0	16.7	17.1	18.1	18.7
18	Salinas	Bacoor-3	-	233.0	28.7	32.5	36.0	39.3	43.3	44.4	46.7	48.3

Table 5.12 Probable Peak Discharge for Drainage Area (Future Land Use)

Peak discharges are calculated Peak discharges are calculated by Quasi-Linear Storage Type Model.

Baseflow is assumed as 0.01m. Baseflow is assumed as 0.01m3/s/ha.

Table 5.13	Simulation	Result of Typhoon	Milenyo in 2006
------------	------------	--------------------------	-----------------

Under Present Land Use

		Number of Inundated Houses & Buildings				
Inundation Depth (m)		Canas	Imus	San Juan & Ylang-Ylang	Total	
0.15	-	0.49	645	10,950	6,765	18,360
0.50	-	0.99	304	7,720	5,201	13,225
1.00	-	1.99	239	3,186	1,180	4,605
2.00	-	2.99	109	22	105	236
	>=	3.00	34	0	28	62
	Total		1,331	21,878	13,279	36,488

Under Present Land Use

Unit: km²

Inundation Depth (m)		Extent of Inundation Area				
		Canaa	Imus	San Juan &	Total	
		Callas		Ylang-Ylang	Total	
0.01 -	0.24	2.15	12.32	12.58	27.04	
0.25 -	0.49	0.28	5.03	6.21	11.52	
0.50 -	0.99	0.43	4.62	5.65	10.70	
1.00 -	1.99	0.37	1.71	1.88	3.96	
2.00 -	2.99	0.13	0.02	0.17	0.32	
>=	3.00	0.03	0.00	0.03	0.06	
Total	l	3.38	23.71	26.51	53.60	

Under Present Land Use				Unit: km ²
Inundation Depth (m)		Inundation Area (2-	year return preriod)	
0.01 0.01	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	0.53	0.40	7.09	2 99
0.50 - 0.99	0.00	1.00	0.57	2.99
1.00 - 1.99	0.00	0.09	0.03	0.12
2.00 - 2.99	0.00	0.00	0.00	0.00
>= 3.00	0.00	0.00	0.00	0.00
Total	0.62	9.62	9.03	19.27
Inundation Donth (m)		Inundation Area (5-	-year return preriod)	
Inundation Depth (III)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	1.18	7.95	10.34	19.47
0.25 - 0.49	0.09	2.73	2.53	5.35
0.50 - 0.99	0.05	2.22	1.53	3.79
2.00 - 1.99	0.02	0.41	0.23	0.00
2.00 - 2.99	0.00	0.00	0.01	0.01
Total	1.34	13.31	14.63	29.28
		Inundation Area (10	year return preriod)	
Inundation Depth (m)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	1.36	9.09	12.61	23.07
0.25 - 0.49	0.14	3.16	3.14	6.44
0.50 - 0.99	0.07	2.65	2.42	5.14
1.00 - 1.99	0.02	0.68	0.39	1.09
2.00 - 2.99	0.00	0.00	0.03	0.03
>= 3.00	0.00	0.00	0.00	0.00
Total	1.59	15.59	18.60	35.78
Inundation Depth (m)	~	Inundation Area (20	-year return preriod)	
0.01 0.04	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	1.76	10.31	14.18	26.25
0.23 - 0.49	0.27	3.59	3.43	6.81
1.00 - 1.99	0.05	0.98	0.79	1.82
2.00 - 2.99	0.00	0.00	0.05	0.05
>= 3.00	0.00	0.00	0.02	0.02
Total	2.30	18.05	22.51	42.85
		Inundation Area (30	-year return preriod)	
Inundation Depth (m)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	1.81	10.66	13.97	26.44
0.25 - 0.49	0.26	3.84	4.51	8.61
0.50 - 0.99	0.27	3.30	3.79	7.36
1.00 - 1.99	0.11	1.21	0.87	2.19
2.00 - 2.99	0.02	0.00	0.03	0.07
Total	2.47	19.02	23.20	44.68
[Inundation Area (50	veer return preried)	
Inundation Depth (m)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	1.76	11.27	13.85	26.88
0.25 - 0.49	0.36	4.03	4.99	9.38
0.50 - 0.99	0.28	3.64	4.27	8.19
1.00 - 1.99	0.27	1.38	1.15	2.80
2.00 - 2.99	0.04	0.02	0.05	0.11
>= 3.00 Total	0.00	0.00	0.02	0.02
Total	2.71	20.30	24.32	47.38
Inundation Depth (m)	Carre	Inundation Area (100	U-year return preriod)	Tat-1
0.01 - 0.24	Canas 1 74	10 07	San Juan - Yiang-Yiang 13 20	10121
0.25 - 0.49	0.36	4 57	5 72	10.65
0.50 - 0.99	0.29	3.94	5.02	9.25
1.00 - 1.99	0.32	1.45	1.56	3.33
2.00 - 2.99	0.10	0.02	0.13	0.25
>= 3.00	0.03	0.00	0.03	0.06
Total	2.84	22.25	25.66	50.75

Table 5.14 (1/2) Simulation Result with Each Return Period

Table 5.14 (2/2) Simulation Result with Each Return Period

Under Present Land Use

In the Denth (m)	No	. of Inundated Houses and B	Buildings (2-year return preri	.od)
Inundation Depth (III)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.15 - 0.49	119	5,407	1,547	7,073
0.50 - 0.99	17	2,962	256	3,235
1.00 - 1.99	0	149	11	160
2.00 - 2.99	0	0	0	0
>= 3.00	0	0	0	0
Total	136	8,518	1,814	10,468
	No	of Inundated Houses and B		ad)
Inundation Depth (m)	Canac	Imus	San Juan - Vlang-Vlang	OU) Total
0.15 - 0.49	195	6 797	3 769	10 761
0.15 - 0.99	42	4 170	1 124	5 336
1.00 - 1.99	1	955	1,12	1 100
200 - 299		0	16	1,100
>= 3.00	0	0	0	0
Total	238	11.922	5.053	17.213
	 N	···,-=		
Inundation Depth (m)	NO.	of Inundated Houses and B	uildings (10-year return prer	iod)
0.15 0.40	Canas	Imus 7,572	San Juan - Ylang-Ylang	Total
0.15 - 0.49	5/2	1,572	5,277	13,221
0.50 - 0.99	45	5,061	1,827	6,933
1.00 - 1.99	1	1,429	234	1,004
2.00 - 2.99	0	0	45	45
>= 3.00 Total	U 419	14.002	0	0
Totai	418	14,002	/,383	21,803
Inundation Depth (m)	No.	of Inundated Houses and B	uildings (20-year return prer	iod)
Inundation Depth (iii)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.15 - 0.49	439	8,728	6,147	15,314
0.50 - 0.99	74	5,773	3,064	8,911
1.00 - 1.99	4	2,107	416	2,527
2.00 - 2.99	0	0	47	47
>= 3.00	0	0	2	2
Total	517	16,608	9,676	26,801
I J-ti-n Donth (m)	No.	of Inundated Houses and B	uildings (30-year return prer	iod)
Inundation Depth (III)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.15 - 0.49	431	9,171	6,662	16,264
0.50 - 0.99	106	6,040	3,404	9,550
1.00 - 1.99	9	2,389	455	2,853
2.00 - 2.99	3	0	47	50
>= 3.00	0	0	2	2
Total	549	17,600	10,570	28,719
	No.	of Inundated Houses and B	uildings (50-vear return prer	iod)
Inundation Depth (m)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.15 - 0.49	566	9,501	6,662	16,729
0.50 - 0.99	94	6,728	3,940	10,762
1.00 - 1.99	81	2,585	608	3,274
2.00 - 2.99	46	22	47	115
>= 3.00	0	0	2	2
Total	787	18,836	11,259	30,882
	No	of Inundated Houses and Bu	uildings (100-year return pre	riod)
Inundation Depth (m)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.15 - 0.49	555	10,125	6.719	17.399
0.50 - 0.99	182	7.003	4.698	11.883
1.00 - 1.99	54	2.741	1.069	3.864
2.00 - 2.99	79	22	84	185
>= 3.00	34	0	28	62
Total	904	19,891	12,598	33,393

Under Present Land Use				Unit: Km2
Inundation Depth (m)	~	Inundation Area (2-	-year return preriod)	
0.01 0.01	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	0.00	5.60	0.50	6.10
0.25 - 0.49	0.00	1.46	0.32	1.//
0.30 - 0.99	0.00	1.23	0.11	1.30
1.00 - 1.99	0.00	0.09	0.00	0.09
2.00 - 2.99	0.00	0.00	0.00	0.00
Ze 5.00 Total	0.00	8.30	0.00	0.00
	0.00	0.57	0.75	7.52
Inundation Depth (m)	G	Inundation Area (5-	-year return preriod)	T - 1
0.01 0.04	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	0.02	0.73	2.38	9.12
0.25 - 0.49	0.00	2.55	1.28	3.82
1.00 1.00	0.00	2.14	0.95	0.51
2.00 - 2.99	0.00	0.30	0.13	0.01
>- 3.00	0.00	0.00	0.01	0.01
Total	0.02	11.75	4 77	16 54
	0.02	T 1.2 4 (10	T.//	10.34
Inundation Depth (m)	Corre	Inundation Area (10	-year return preriod)	Te+-1
0.01 0.24	Canas	Imus	San Juan - Y lang-Y lang	1 otal 12.04
0.01 - 0.24	0.07	7.24	4.73	12.04
0.25 - 0.49	0.04	3.08	2.15	5.26
1.00 - 0.99	0.01	2.74	1.48	4.23
1.00 - 1.99	0.00	0.71	0.28	0.99
2.00 - 2.99	0.00	0.01	0.03	0.04
>= 5.00 Total	0.00	12.78	0.00	0.00
Total	0.12	15.78	8.07	22.30
Inundation Depth (m)		Inundation Area (20	-year return preriod)	
· · · · · · · · · · · · · · · · · · ·	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	0.15	7.87	7.51	15.53
0.25 - 0.49	0.18	3.54	2.93	6.65
0.50 - 0.99	0.15	3.17	2.33	5.65
1.00 - 1.99	0.03	1.01	0.59	1.63
2.00 - 2.99	0.00	0.00	0.05	0.05
>= 5.00 Total	0.00	15.50	12.42	20.52
Total	0.51	15.59	15.45	27.55
Inundation Depth (m)		Inundation Area (30	-year return preriod)	
	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	0.17	8.15	8.25	16.57
0.25 - 0.49	0.17	3.70	3.27	7.13
0.50 - 0.99	0.20	3.37	2.59	6.16
1.00 - 1.99	0.09	1.22	0.70	2.01
2.00 - 2.99	0.02	0.00	0.05	0.07
→= 5.00 Total	0.00	16.42	14.00	21.07
Total	0.00	10.45	14.88	51.97
Inundation Depth (m)		Inundation Area (50	-year return preriod)	
0.01	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	0.14	8.50	8.45	17.09
0.25 - 0.49	0.18	3.89	3.87	7.94
1.00 - 0.99	0.25	3./6	3.02	/.04
2.00 - 2.00	0.23	1.28	0.94	2.40
>= 3.00	0.04	0.02	0.03	0.03
Total	0.84	17 46	16.36	34.66
- 500	0.04	I 1.1	10.50	5 1.00
Inundation Depth (m)		Inundation Area (100	D-year return preriod)	TT (1
0.01 0.01	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	0.14	9.67	8.67	18.4/
0.25 - 0.49	0.19	4.34	4.59	9.13
1.00 - 0.99	0.24	4.13	3.30	7.87
2.00 - 2.00	0.30	0.02	0.12	2.80
~ 3.00	0.10	0.02	0.12	0.24
7 - 5.00 Total	0.99	19.64	17.93	38.57
Total	0		- / / / /	2 310 /

Table 5.15 (1/4) Simulation Result of the Flood Caused by River Overflow

Table 5.15 (2/4) Simulation Result of the Flood Caused by River Overflow

Under	Drocont	Land	Hee
Under	Present	Land	Use

Inundation Donth (m)	No	. of Inundated Houses and E	Buildings (2-year return preri	od)
mundation Depth (III)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.15 - 0.49	0	4,706	88	4,794
0.50 - 0.99	0	2,138	11	2,149
1.00 - 1.99	0	67	0	67
2.00 - 2.99	0	0	0	0
>= 3.00	0	0	0	0
Total	0	6.911	99	7 010
Totui	0	0,711		7,010
Inundation Depth (m)	No	of Inundated Houses and E	Buildings (5-year return preri	od)
inundution Deptil (iii)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.15 - 0.49	23	6,777	2,352	9,152
0.50 - 0.99	0	3,943	680	4,623
1.00 - 1.99	0	739	98	837
2.00 - 2.99	0	0	16	16
>= 3.00	0	0	0	0
Total	23	11,459	3,146	14,628
	N-	-f I d-t- d II d D		·
Inundation Depth (m)	No.	or munuated Houses and B	Gran Jurean X ¹ X ¹	T- (1
0.15 0.40	Canas	Imus	San Juan - Y lang-Y lang	I otal
0.15 - 0.49	36	7,691	3,657	11,384
0.50 - 0.99	0	5,151	1,130	6,281
1.00 - 1.99	0	1,659	131	1,790
2.00 - 2.99	0	33	45	78
>= 3.00	0	0	0	0
Total	36	14,534	4,963	19,533
	No	of Inundated Houses and B	uildings (20-year return prer	(boi
Inundation Depth (m)	Canas	Imus	San Juan - Vlang-Vlang	Total
0.15 - 0.49	78	8 330	1 / 121	12 838
0.10 - 0.99	29	5 777	1 861	7 667
1.00 1.00	2)	2,777	227	2,507
1.00 - 1.99	3	2,237	337	2,397
2.00 - 2.99	0	0	47	47
>= 3.00	0	0	2	2 22 151
Totai	110	16,373	0,008	23,151
Inundation Danth (m)	No.	of Inundated Houses and B	uildings (30-year return prer	iod)
mundation Depth (m)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.15 - 0.49	70	8,573	4,634	13,277
0.50 - 0.99	61	5,852	2,148	8,061
1.00 - 1.99	8	2,588	397	2,993
2.00 - 2.99	3	0	47	50
>= 3.00	0	0	2	2
Total	142	17.013	7.228	24,383
	NT		111 (50 (• 1)
Inundation Depth (m)	No.	of Inundated Houses and B	ulidings (50-year return prer	100)
0.15 0.40	Canas	Imus	San Juan - Y lang-Y lang	I otal
0.15 - 0.49	171	8,643	5,702	14,516
0.50 - 0.99	49	6,721	2,386	9,156
1.00 - 1.99	80	2,621	542	3,243
2.00 - 2.99	46	22	47	115
>= 3.00	0	0	2	2
Total	346	18,007	8,679	27,032
T 1d D d ()	No.	of Inundated Houses and Bu	uildings (100-year return pre	riod)
Inundation Depth (m)	Carran	Imus	San Juan - Ylang-Ylang	Total
	Canas			
0.15 - 0.49	Canas 116	9.289	6.190	15.595
0.15 - 0.49 0.50 - 0.99	116	9,289	6,190 2,678	15,595 9 950
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	116 135	9,289 7,137 3,016	6,190 2,678 638	15,595 9,950 3 707
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	116 135 53 70	9,289 7,137 3,016 22	6,190 2,678 638 84	15,595 9,950 3,707
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	116 135 53 79 34	9,289 7,137 3,016 22	6,190 2,678 638 84 28	15,595 9,950 3,707 185 62
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	116 135 53 79 34	9,289 7,137 3,016 22 0	6,190 2,678 638 84 28	15,595 9,950 3,707 185 62 29,400

Under 2020 Land Use				Unit: Km2
Inundation Depth (m)		Inundation Area (2-	year return preriod)	
	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	0.01	7.18	1.03	8.21
0.25 - 0.49	0.00	2.29	0.70	2.99
0.50 - 0.99	0.00	1.82	0.35	2.17
1.00 - 1.99	0.00	0.22	0.03	0.25
2.00 - 2.99	0.00	0.00	0.00	0.00
>= 5.00 Total	0.00	0.00	0.00	0.00
Totai	0.01	11.30	2.11	15.02
Inundation Depth (m)		Inundation Area (5-	-year return preriod)	
	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	0.04	7.84	3.15	11.03
0.25 - 0.49	0.00	3.42	1.54	4.96
0.50 - 0.99	0.00	2.66	1.10	3.76
1.00 - 1.99	0.00	0.76	0.14	0.90
2.00 - 2.99	0.00	0.00	0.02	0.02
>= 3.00 Total	0.00	0.00	0.00	0.00
Total	0.04	14.6/	5.95	20.66
Inundation Depth (m)		Inundation Area (10	-year return preriod)	
mundation Depth (m)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	0.08	8.58	5.06	13.72
0.25 - 0.49	0.04	3.88	2.32	6.24
0.50 - 0.99	0.01	3.09	1.69	4.79
1.00 - 1.99	0.00	0.99	0.30	1.29
2.00 - 2.99	0.00	0.02	0.05	0.07
>= 3.00	0.00	0.00	0.02	0.02
Total	0.13	16.57	9.44	26.13
		Inundation Area (20	-year return preriod)	
Inundation Depth (m)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	0.17	8.59	8.34	17.09
0.25 - 0.49	0.16	4.47	3.13	7.77
0.50 - 0.99	0.15	3.70	2.45	6.30
1.00 - 1.99	0.03	1.26	0.64	1.93
2.00 - 2.99	0.00	0.03	0.05	0.08
>= 3.00	0.00	0.00	0.02	0.02
Total	0.51	18.05	14.63	33.19
		Inundation Area (30	-year return preriod)	
Inundation Depth (m)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	0.18	8.70	8.46	17.34
0.25 - 0.49	0.16	4.33	3.43	7.92
0.50 - 0.99	0.21	4.04	2.71	6.96
1.00 - 1.99	0.08	1.36	0.83	2.28
2.00 - 2.99	0.02	0.03	0.05	0.10
>= 3.00	0.00	0.00	0.02	0.02
Total	0.66	18.46	15.50	34.62
		Inundation Area (50	-year return preriod)	
Inundation Depth (m)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	0.17	9.59	8.74	18.49
0.25 - 0.49	0.17	4.62	4.06	8.85
0.50 - 0.99	0.24	4.31	3.21	7.76
1.00 - 1.99	0.04	1.44	0.92	2.41
2.00 - 2.99	0.02	0.03	0.08	0.13
>= 3.00	0.00	0.00	0.02	0.02
Total	0.65	19.98	17.03	37.66
		Inundation Area (100)-vear return preriod)	
Inundation Depth (m)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.01 - 0.24	0.17	9.67	9.23	19.06
0.25 - 0.49	0.18	4 94	4 81	9.93
	5.10	4.56	3.67	8.49
0.50 - 0.99	0.25	4.001		0.17
0.50 - 0.99 1.00 - 1.99	0.25	4.56	1.02	3.05
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.25 0.30 0.10	4.36 1.74 0.03	1.02 0.14	3.05 0.27
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.25 0.30 0.10 0.03	4.30 1.74 0.03 0.00	1.02 0.14 0.03	3.05 0.27 0.06

Table 5.15 (3/4) Simulation Result of the Flood Caused by River Overflow

Table 5.15 (4/4) Simulation Result of the Flood Caused by River Overflow

Under 2020 Land Use

Inundation Donth (m)	No	. of Inundated Houses and B	uildings (2-year return preri	iod)
mundation Depth (iii)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.15 - 0.49	0	12,574	742	13,316
0.50 - 0.99	0	6,572	184	6,756
1.00 - 1.99	0	554	53	607
2.00 - 2.99	0	0	0	0
≥ 3.00	0	0	0	0
Total	0	19 701	979	20.680
Total	0	17,701)1)	20,000
Inundation Depth (m)	No	. of Inundated Houses and B	uildings (5-year return preri	iod)
munduuon Depui (iii)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.15 - 0.49	33	17,271	3,730	21,034
0.50 - 0.99	0	9,344	1,050	10,394
1.00 - 1.99	0	2,962	92	3,054
2.00 - 2.99	0	0	53	53
>= 3.00	0	0	0	0
Total	33	29.577	4.925	34,536
	ŊŢ		111 (10	. 1)
Inundation Depth (m)	N0.	of Inundated Houses and Bu	uildings (10-year return prei	100)
	Canas	Imus	San Juan - Ylang-Ylang	Total
0.15 - 0.49	50	18,194	6,136	24,380
0.50 - 0.99	0	10,477	1,770	12,247
1.00 - 1.99	0	4,144	238	4,382
2.00 - 2.99	0	50	63	113
>= 3.00	0	0	6	6
Total	50	32,866	8,211	41,127
	No	of Inundated Houses and Bi	uildings (20-year return pret	(bor
Inundation Depth (m)	Canas	Imus	Son Juan Vlana Vlana	Total
0.15 0.40	Callas	10 5 4 5	San Juan - Thang-Thang	10181
0.13 - 0.49	125	19,343	7,234	20,924
0.50 - 0.99	54	12,130	5,299	15,488
1.00 - 1.99	8	4,817	582	5,407
2.00 - 2.99	0	91	63	154
>= 3.00	0	0	6	6
Total	187	36,588	11,203	47,978
	No.	of Inundated Houses and Bu	uildings (30-year return prei	iod)
Inundation Depth (m)	Canas	Imus	San Juan - Ylang-Ylang	Total
0.15 - 0.49	188	19,599	8.076	27.863
0.50 - 0.99	99	13.080	3.443	16.621
1.00 - 1.99	16	5,174	782	5.972
200 - 299	8	91	63	161
>- 3.00	0	0	6	6
Total	311	37 9/3	12 369	50.623
Total	511	57,945	12,509	50,025
Inundation Depth (m)	No.	of Inundated Houses and Bu	uildings (50-year return prei	riod)
	Canas	Imus	San Juan - Ylang-Ylang	Total
0.15 - 0.49	111	20,043	8,719	28,873
0.50 - 0.99	110	13,738	4,007	17,854
1.00 - 1.99	5	5,568	1,078	6,651
2.00 - 2.99	8	91	70	169
>= 3.00	0	0	6	6
Total	234	39,439	13,879	53,552
	No	of Inundated Houses and Du	ildings (100 year rature are	riod)
Inundation Depth (m)	INO.	Imma	Son Juon Vlana Vlana	Total
0.15 0.40	Canas	Imus	San Juan - Y lang-Y lang	10(2)
0.15 - 0.49	216	20,673	9,547	30,436
0.50 - 0.99	237	14,906	4,633	19,776
1.00 - 1.99	112	6,113	1,340	7,564
2.00 - 2.99	202	91	168	461
>= 3.00	85	0	83	167
Total	851	41,782	15,771	58,403
Table 5.16 (1/2) Simulation Result of Inland Flood

Inundation Depth (m)		Number of Inundated Houses & Buildings							
		Canas	Imus	San Juan & Ylang-Ylang	Total				
0.15	-	0.49	102	2,054	1,470	3,626			
0.50	-	0.99	16	919	232	1,167			
1.00	-	1.99	0	74	17	91			
2.00	-	2.99	0	0	0	0			
	>=	3.00	0	0	0	0			
	Total		118	3,047	1,719	4,884			

Without Project under Present Land Use

Unit: km²

Inundation Depth (m)			Extent of Inundation Area						
		Canas	Imus	San Juan & Ylang-Ylang	Total				
0.01 -	0.24	0.31	1.02	4.16	5.49				
0.25 -	0.49	0.04	0.59	0.48	1.11				
0.50 -	0.99	0.02	0.27	0.17	0.45				
1.00 -	1.99	0.00	0.02	0.01	0.03				
2.00 -	2.99	0.00	0.00	0.00	0.00				
>=	3.00	0.00	0.00	0.00	0.00				
Tota	1	0.37	1.90	4.82	7.09				

Partial Protection under Present Land Use

	1	Number of Inundated	l Houses & Building	gs
Inundation Depth (1	Canas	Imus	San Juan & Ylang-Ylang	Total
0.15 - 0.49	102	265	1,292	1,659
0.50 - 0.99	16	0	251	267
1.00 - 1.9	0	0	0	0
2.00 - 2.9	0	0	0	0
>= 3.0	0	0	0	0
Total	118	265	1,543	1,926

Unit: km²

Inundation Depth (m)			Extent of Inu	ndation Area	
		Canas	Imus	San Juan & Ylang-Ylang	Total
0.01 -	0.24	0.31	0.42	1.47	2.21
0.25 -	0.49	0.04	0.07	0.40	0.50
0.50 -	0.99	0.02	0.00	0.18	0.20
1.00 -	1.99	0.00	0.00	0.00	0.00
2.00 -	2.99	0.00	0.00	0.00	0.00
>= 3.00		0.00	0.00	0.00	0.00
Total		0.37	0.49	2.05	2.91

Table 5.16 (2/2) Simulation Result of Inland Flood

Inundation Depth (m)		Number of Inundated Houses & Buildings						
		Canas	Imus	San Juan & Ylang-Ylang	Total			
0.15	-	0.49	185	4,501	2,094	6,780		
0.50	-	0.99	53	1,786	339	2,178		
1.00	-	1.99	0	235	22	257		
2.00	-	2.99	0	0	0	0		
	>=	3.00	0	0	0	0		
	Total		238	6,523	2,454	9,215		

Without Project under 2020 Land Use

Unit: km²

Inundation Depth (m)		Extent of Inundation Area						
		Canas	Imus	San Juan & Ylang-Ylang	Total			
0.01 -	0.24	0.48	1.67	4.69	6.84			
0.25 -	0.49	0.04	0.84	0.55	1.43			
0.50 -	0.99	0.04	0.35	0.20	0.58			
1.00 -	1.99	0.00	0.04	0.01	0.05			
2.00 -	2.99	0.00	0.00	0.00	0.00			
>:	= 3.00	0.00	0.00	0.00	0.00			
To	tal	0.56	2.89	5.45	8.90			

Partial Protection under 2020 Land Use

	N	Number of Inundated	l Houses & Building	<u></u> gs
Inundation Depth (m)	Canas	Imus	San Juan & Ylang-Ylang	Total
0.15 - 0.49	127	369	1,913	2,409
0.50 - 0.99	20	102	303	425
1.00 - 1.99	0	0	32	32
2.00 - 2.99	0	0	0	0
>= 3.00	0	0	0	0
Total	147	471	2,247	2,865

Unit: km²

Inundation Depth (m)			Extent of Inu	ndation Area	
		Canas	Imus	San Juan & Ylang-Ylang	Total
0.01 -	0.24	0.31	0.44	1.44	2.20
0.25 -	0.49	0.04	0.05	0.42	0.50
0.50 -	0.99	0.02	0.02	0.17	0.21
1.00 -	1.99	0.00	0.00	0.01	0.01
2.00 -	2.99	0.00	0.00	0.00	0.00
>=	3.00	0.00	0.00	0.00	0.00
Total		0.37	0.51	2.04	2.92

			C .
Year	Project Title (Target)	Work Quantity	(pesos)
2000-2001	Regular Infra Program	5 projects, 2,122km	9,200,000
2000 2001	Flood Control and Drainage under APP2000	14 projects, 3,17km	13,750,000
	Flood Control and Drainage under APP 2001	1 project 1.850.3m	10.000.000
	Regular Maintenance	17 projects, 2.058.32m	5.625.000
	Total	<u>, r</u> . <u>J</u> , ,	38,575,000
2002	Regular Infra Program	2 projects, 81.20m	1,250,000
	Upper House Funded Project (Improvement of river/drainage channel)	3 projects, 3,467.97m	21,200,000
	PDAF (Improvement of drainage channel)	2 projects, 1,243.27m	7,600,000
	EL Nino Prpject (Desilting and cleaning of drainage channel)	1 project	4,000,000
	Regular Maintenance	10 projects, 2,236.44m	5,306,000
	Total		39,356,000
2003	Regular Infra Program for Flood Control	1 project	1,000,000
	Upper House Funded Project (Widening/construction of drainage channel)	1 project	7,500,000
	Project under VILP CY2003 (Const//Rehab of drainage system)	4 projects	5,250,000
	Project under VILP CY2003 (Const//Rehab of drainage system)	10 projects	5,725,000
	Regular Maintenance (Flood Control)	1 project	667,000
	Total		20,142,000
2004	Upper House Funded Project (River Side Riprap)	1 project	1,000,000
	Lower House Funded Project (River Side Ripalap)	3 projects	6,000,000
	Total		7,000,000
2005	Earmark for this Year		16,700,000
	(To help address the problem of flooding, DPWH Cavite District		
	Office has pinpointed high risk areas. Earmarked for flood control		
	and drainage this year is P16.70 Million for construction of flood control and dredging works.)		
2006	Office of the President Funded Project (Cleaning Canal Activity along National Road)	1 project	13,800,000
	Upper House Funded Project (River Dredging)	3 projects	40,000,000
	Total		53,800,000

Table 6.1 Flood Mitigation Works undertaken by DPWH Cavite District Office

	compara	chon of field Drunnage und interceptors		
Objective			Number	of House
Drainage Area	Structure	Name of Structure*	Reloc	cation
(Municipality)			2-year	5-year
	Channel Improvement	Bacoor-3 (L=0.3km)	10	10
Bacoor	Drainage Main	BM-1. (L=0.5km, Box Culvert)	2	20
	Tidal Gate	Outlet of BM-1	-	-
Imus	Channel Improvement	Dr-1 (Malamok Drainage Canal, L=1.2km)	80	105
mus	Interceptor	I-IT-2 (L=0.25km, Box Culvert)	-	25
	Channel Improvement	Dr-5 (Panamitan Drainage Canal) (L=2.3km)	35	55
	Drainaga Main	KDM-1 (L=0.7km)	2	2
	Dramage Main	KDM-2 (L=1.5km)	2	
		Outlet of Tirona Drainage Canal		
Kowit	Tidal Cata	Outlet of Dr-5		
Kawn	Tidal Gale	Inlet Point of Branch of San Juan,		-
		Outlet of KDM-1		
		I-Dr-5 (L=0.7km)		
	Interceptor	I-Dr-6-1 (L=1.5km, Box Culvert)	4	10
		I-Dr-6-2 (L=1.2km, Box Culvert)		
	Channel Improvement	Dr-8 (L=1.0km)	1	3
Novalata	Drainage Main	NDM-1 (L=1.1km, Box Culvert)	10	20
Noveleta	Tidal Cata	Outlets of Dr-8		
	Tidal Gale	Outlet of NDM-1	-	-
	Channel Improvement	Dr-9 (Malimango Drainage Canal. L=1.4km)	30	65
Rosario	Drainage Main	RDM-1,2,3 and 4 (L=3.5km in total, Box Culvert)	-	140
	Tidal Gate	Outlet of RDM-1,2 and 3	-	-
Gen. Trias	Interceptor	I-Dr-9 (L=1.9km, B.C.)	10	20
Tanza	Drainage Main	TDM-1 (L=0.4km)	-	-
		Total	184	475

Table 8.1Proposed Tidal Gates, Improvement of Existing Drainage Main and
Construction of New Drainage and Interceptors

Note: *: Refer to Fig. 8.11 (Alternative_D-1)

			year return	n periou / 1		otteth	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	It	em			House Re	elocation	Land Ac	quisition
Area	Measure	Target	Description		D-1	D-2	D-1	D-2
	Exist. Drainage Imp.	Bacoor-3	P.W L=0.3km		10	10	0.1	0.1
	Drainage Main	BM-1	B.C: L=0.5km, Bx	H=3.0x2.5m	2	2	0.0	0.0
	Flap Gate		8 places					
	Subtotal				12	12	0.1	0.1
Bacoor				Total				
Buttoor			Widening/Dike I -	-1.2km				
	Exist Drainaga Imp	Dr 1	with T G	-1.2Km	80	80	0.5	0.5
	Exist. Drainage mip.		D C: L =0.25lvm D	wII_2 7w2 4m	80	80	0.5	0.5
	Detention Dand	1-11-2 M2	D.C. L=0.23KIII, D	xn=2.7x2.4Ⅲ	0	0	11	11
	Retention Pond	ML2	A=11na, v=0.2/m	icm	0	0	11	11
	Subtotal				80	80	11.5	11.5
Imus				Total				
		Dr-2	Widening/Dike L=	=1.4km	20	20	0.1	0.1
		Dr-3	Dredging T.G wit	h Lock	10	10	0.6	0.6
		Dr-4	Dredging T.G wit	h Lock	5	5	1.0	1.0
	Exist. Drainage Imp.	Dr-5	Widening/Dike L=	=2.3km	0	0	1.0	1.0
	0 1	KDM-1	B=6m, L=1.5km v	vith T.G	2	2	0.8	0.8
	Drainage Main	KDM-2	B.C: L=0.65km, B	xH=3.0x2.5m	0	0	0.0	0.0
		I-Dr-5	B.C: L=0.7km, Bx	H=3.0x2.5mx2	3	3	0.2	0.2
		I-Dr-6-1	BC: L=1.5km, Bx	H=3.0x2.5mx2	0	0	0.5	0.5
	Interceptor	I-Dr-6-2	BC:L=1.2km Bx	H=3.0x2.5mx2	1	1	0.3	0.3
	merceptor	M1	A-4ha V-0.08mc	m	0	0	4.0	4.0
		K1	A = 4ha, V = 0.00mc	m	0	0	4.0	4.0
	Retention Pond	P1	$A=16h_{2}$ V=0.20mc	ocm	0	0	16.0	16.0
	Retention I ond	CD 1	I =0.5km Earth D	ika Tuna	12	12	10.0	10.0
		CD-1	L=0.5km, Earth D	ike Type	12	12	2.1	2.1
	Canatal Dilya	CD-2	L=1.5KIII, Earth D	ike Type	10	10	2.4	2.4
	Coastal Dike	CD-3	L=2.1km, Earth D	ike Type	50	100	5.4	5.4
		RD-1	L=5.2km, Earth D	ike Type	0	100	0.0	2.5
	D' D'I	RD-2	L=5.9km, Earth D	іке Туре	0	/0	0.0	3.5
	Ring Dike	RD-3	L=4.0km, Earth D	ike Type	0	50	0.0	2.6
	Flap Gate		D-1: 2 places D-2	:8places				
	Subtotal				119	339	36.2	44.8
Kawit				Total				
	Exist. Drainage Imp.	Dr-8	Widening/Dike L=	=1.0km with T.G	1	1	0.8	0.8
			B.C: L=1.1km, Bx	H=2.7x2.4m				
	Drainage Main	NDM-1	with T.G		10	10	0.1	0.1
	Coastal Dike	CD-4	L=3.2km, Concret	e Dike Type	20	20	6.2	6.2
	Flap Gate	1	1 place	¥1				
	Subtotal		*		31	31	7.1	7.1
Noveleta	Subtour			Total	51	51	/.1	7.1
Noveleta				Totai				
	Exist Drainaga Imp	Dr 0	Widening/Dike I -	-1.2km with T.G	20	20	1.6	1.6
	Exist. Drainage mip.	DI-9	$\frac{BC \cdot I}{20 \text{ km Br}}$	H=3.0x2.5m	50	50	1.0	1.0
			D.C. $L=2.0$ km, DA	11-3.0x2.5m				
			\mathbf{D} .C: L=1.5KIII, \mathbf{D} X	H=5.0x2.5IIIx2				
			P.C: L=0.15km 9	10mm dia.				
	Drainage Main	RDM-1-4	with 2-T.G		0	0	0.1	0.1
	Retention Pond	E1	A=3ha, V=0.1mcn	n	0	0	3.0	3.0
	Coastal Dike	CD-5&6	L=4.7km, Concret	e Dike Type	40	40	4.9	4.9
	Flap Gate		5 places					
	Subtotal				70	70	9.6	9.6
Rosario				Total				
	Interceptor	I-Dr-9	B.C: L=2.9km, Bx	H=2.7x2.4m	10	10	0.5	0.5
	Retention Pond	E2	A=3ha, V=0.1mcm	n	1	1	14	14
	Subtotal				11	11	14.5	14.5
Con Tri-	~ dototuli			Tote ¹	11	11	17.5	14.5
Gen. Trias		1		Total	1			
	Coastal Dike	CD-7	L=0.5km, Concret	e Dike Type	0	0	0.7	0.7
	Flap Gate		2 places					
	Subtotal							
Tanza				Total				
	Measure		D1	D2	D1	D2	D1	D2
	Exist Drainage Imp		L=2.6km	L=2.6km	156	156	1.6	1.6
	Daviases M		L=2.0Kiii	L=2.0KIII	150	150	1.0	1.0
	Drainage Main		L=10.4Km	L=10.4Km	14	14	1.0	1.0
	Interceptor		L=6.3km	L=6.3km	14	14	1.5	1.5
	Retention Pond		A=52hectares	A=52hectares	1	1	52.0	52.0
	Coastal Dike		L=12.5km	L=12.5km	138	138	195	195
	Ding Dike		2 12.5 km	I =0.0km	150	100	17.5	17.5
			-	L=9.0KM	0	220	0.0	8.6
	Tidal Gate		n:11	n : 9				
	Flap G.		n : 18	n:24				
Total			Total		323	543	75.6	84.2

Table 8.2 Structural Features for Inland Drainagewith On-site (2-year return period / Full Protection)

	Ite	em			House Relocation		Land Acquisition	
Area	Measure	Target	Description		D-1	D-2	D-1	D-2
	Exist. Drainage Imp.	Bacoor-3	P.W L=0.3km		10	10	0.1	0.1
	Flap Gate	ш	8 places					
	Subtotal				10	10	0.1	0.1
Bacoor				Total				
	Exist. Drainage Imp.	Dr-1	Tidal Gate	e with Lock	10	10	0.2	0.2
	Interceptor	I-IT-2	B.C: L=0.25km	n, BxH=2.7x2.4m	0	0	0	0
	Retention Pond	M2	A=11ha, V	/=0.27mcm	0	0	11	11
	Subtotal				10	10	11.2	11.2
Imus				Total				
		Dr-3	Tidal Gate	e with Lock				
		Dr-4	Tidal Gat	e with Lock				
	Exist. Drainage Imp.	Dr-5	Widening/D	Dike L=2.3km	0	0	1.0	1.0
	Drainage Main	KDM-1	B=6m, L=1.	5km with T.G	2	2	0.8	0.8
	Interceptor	I-Dr-6-1	B.C: L=1.5km,	BxH=3.0x2.5mx2	0	0	0.5	0.5
		MI K1	A=4na, v	=0.08 mcm T=0.20 mcm	0	0	4.0	4.0
	Retention Pond	P1	A=16ba V	/=0.45mcm	0	0	4.0 16.0	4.0
	Retention Fond	CD-1	L=0.5km Ea	orth Dike Type	12	12	10.0	10.0
		CD-2	L=1.5km, Ea	arth Dike Type	16	16	3.1	3.1
	Coastal Dike	CD-3	L=2.1km, Ea	arth Dike Type	50	50	3.4	3.4
		RD-1	L=3.2km, Ea	arth Dike Type	0	100	0.0	2.5
		RD-2	L=5.9km, Ea	arth Dike Type	0	70	0.0	3.5
	Ring Dike	RD-3	L=4.0km, Ea	arth Dike Type	0	50	0.0	2.6
	Flan Gate		D-1: 2 place	s D-2:8places				
	Subtotal		D 1. 2 place	5 D 2.0piaces	80	300	34	42.6
Kawit	Subtotui			Total	00	500	51	12.0
Ruwit	Exist, Drainage Imp.	Dr-8	Tida	1 Gate				
	Drainage Main	NDM-1	Tida	l Gate	0	0	0	0
	Flap Gate	1	1 p	blace				
	Subtotal				0	0	0	0
Noveleta				Total				
	Exist. Drainage Imp.	Dr-9	Tida	l Gate	10	10	0.5	0.5
		RDM-1-4	Tida	l Gate				
	Retention Pond	E1	A=3ha, V	/=0.1mcm	0	0	3.0	3.0
	Flap Gate	÷	5 p	laces				
	Subtotal				10	10	3.5	3.5
Rosario				Total				
			Widening/Dike L=	=1.2km				
	Interceptor	I-Dr-9	with T.G		10	10	0.5	0.5
	Retention Pond	E2	A=3ha, V	/=0.1mcm	1	1	14	14
	Subtotal				11	11	14.5	14.5
Gen. Trias				Total				
π.	Flap Gate		2 places	1				
Tanza	Total		DI	D2				
	Measure		DI	D2				
	Exist. Drainage Imp.		L=7.5km	L=7.5km	30	30	1.8	1.8
	Drainage Main		L=1.5km	L=1.5km	2	2	0.8	0.8
	Interceptor		L=2.7km	L=2.7km	10	10	1.0	1.0
	Retention Pond		A=52hectares	A=52hectares	1	1	52.0	52.0
	Coastal Dike		L=4.1km	L=4.1km	78	78	7.7	7.7
	Ring Dike		-	L=9.0km	0	220	0.0	8.6
	Tidal Gate		n : 9	n : 8				
	Flap G.		n : 18	n : 24				
Total	<u> </u>	Та	otal	1	121	341	63.3	71.9

Table 8.3Structural Features for Inland Drainagewith On-site (2-year return period / Partial Protection)

	It	em	e e e e e e e e e e e e e e e e e e e	-	House R	elocation	Land Ac	auisition
Area	Measure	Target	Description		D-1	D-2	D-1	D-2
- nou	Exist Drainage Imp	Bacoor-3	PWL=03km		10	10	01	01
	Drainage Main	BM-1	BC:L=0.5km B	xH=3.0x2.5m	2	2	0.0	0.0
	Flap Gate	2001	8 places		_	-	0.0	0.0
	Subtotal		- 1		12	12	0.1	0.1
Bacoor				Total				0.12
Bucool			Widening/Dike L	=1.2km				
	Exist Drainage Imp	Dr-1	with T G	-1.2km	80	80	0.5	0.5
	Interceptor	LIT_2	B C · I –0 25km I	RxH-2.7x2.4m	0	0	0.5	0.5
	Retention Pond	M2	A=11ha V=0.27r	ncm	0	0	11	11
	Subtotal		11 11111, 1 012/1		80	80	11.5	11.5
Imus	Subtotui			Total	00	00	11.5	11.5
mus		Dr 2	Widening/Dike I	_1 4km	20	20	0.1	0.1
		Dr-2 Dr-3	Dredging T G wi	th Lock	10	10	0.1	0.1
		Dr-4	Dredging T.G wi	th Lock	5	5	1.0	1.0
	Exist. Drainage Imp.	Dr-5	Widening/Dike L	=2.3km	0	0	1.0	1.0
	8	KDM-1	B=6m, L=1.5km	with T.G	2	2	0.8	0.8
	Drainage Main	KDM-2	B.C: L=0.65km, I	BxH=3.0x2.5m	0	0	0.0	0.0
		I-Dr-5	B.C: L=0.7km, B	xH=3.0x2.5mx2	3	3	0.2	0.2
		I-Dr-6-1	B.C: L=1.5km, B	xH=3.0x2.5mx2	0	0	0.5	0.5
	Interceptor	I-Dr-6-2	B.C: L=1.2km, B	xH=3.0x2.5mx2	1	1	0.3	0.3
		M1	A=6ha, V=0.12m	cm	0	0	6.0	6.0
		K1	A=7ha, V=0.33m	cm	0	0	7.0	7.0
	Retention Pond	P1	A=20ha, V=0.55r	ncm	0	0	20.0	20.0
		CD-1	L=0.5km, Earth I	Dike Type	12	12	1.2	1.2
		CD-2	L=1.5km, Earth E	Dike Type	16	16	3.1	3.1
	Coastal Dike	CD-3	L=2.1km, Earth I	Dike Type	50	50	3.4	3.4
		RD-1	L=3.2km, Earth I	Dike Type	0	100	0.0	2.5
	D' D'I	RD-2	L=5.9km, Earth L	Dike Type	0	70	0.0	3.5
	Ring Dike	RD-3	L=4.0km, Earth L	Dike Type	0	50	0.0	2.6
		Т	D-1: 2 places D-	2:8places	110	220	45.0	52.0
 .	Subtotal				119	339	45.2	53.8
Kawit		1		Total	1			
	Enit Duringer Inc.	D. 9	Widoning/Diko I	-1 0km with T C	1	1	0.0	0.0
	Exist. Drainage Imp.	Dr-8	B C: I =1 1km B	=1.0 km with 1.0 \times H=2.7x2.4m	1	1	0.8	0.8
	Drainaga Main	NDM 1	with T G	AII=2.7 A2.4III	10	10	0.1	0.1
	Coastal Dike	NDM-1	I =3 2km Concre	ta Dika Tuna	20	20	6.2	6.2
	Flan Gate	CD-4	1 place	te Dike Type	20	20	0.2	0.2
	Subtotal	1	1 place		31	31	7.1	7.1
Novalata	Subiotai			Total	51	51	7.1	/.1
Noveleta			Widening/Dike I	-1.2km				
	Exist Drainaga Imn	Dr 0	with T G	-1.2KIII	20	20	1.6	16
	Exist. Drainage imp.	DI-9	B.C: L=2.0km, BxH=3.0x2.5m		30	50	1.0	1.0
			B.C: L=2.0km, BxH=3.0x2.5m B C: L=1.3km BxH=3.0x2.5mx2					
			$P C \cdot L = 0.15 \text{ km}$	10mm dia				
	Drainage Main	RDM-1-4	with 2-T G	Tomm dia.	0	0	0.1	0.1
	Retention Pond	F1	A-3ha V-0.1mc	m	0	0	3.0	3.0
	Coastal Dike	CD-5&6	L=4.7km. Concre	te Dike Type	40	40	4.9	4.9
	Flap Gate		5 places					,
	Subtotal				70	70	9.6	9.6
Rosario				Total				
Roburio	Interceptor	I-Dr-9	B.C: L=2.9km, B	xH=2.7x2.4m	10	10	0.5	0.5
	Retention Pond	E2	A=3ha, V=0.1mc	m	1	1	14	14
	Subtotal				11	11	14.5	14.5
Gen Trias				Total				
oom mas	Coastal Dika	CD 7	I =0.5km Concre	ta Dika Tuna	0	0	0.7	0.7
	Flan Gate	CD-7	2 places	te Dike Type	0	0	0.7	0.7
	Subtotal		- piaces					
Tanza	Sabtoun			Total				
1 aliza	Measure		D1	10tai				
	Exist Drainage Imp		L=2.6km	L=2.6km	156	156	16	16
	Drainage Main		L=10.4km	L=10.4km	130	130	1.0	1.0
	Interceptor		L=6.3km	L=6.3km	14	14	1.5	1.5
	Retention Pond		A=61hectares	A=61hectares	1	1	61.0	61.0
	Coastal Dike		L=12.5km	L=12.5km	138	138	19.5	19.5
	Ring Dike		-	L=9.0km	0	220	0.0	8.6
	Tidal Gate		n:11	n : 9				
	Flap G.		n : 18	n:24				
Total			Total		323	5/13	84.6	03.2

Table 8.4Structural Features for Inland Drainagewithout On-site (2-year return period / Full Protection)

Table 8.5Structural Features for Inland Drainagewithout On-site (2-year return period / Partial Protection)

	It	em			House Re	location	Land Ac	quisition
Area	Measure	Target	Description		D-1	D-2	D-1	D-2
	Exist. Drainage Imp.	Bacoor-3	P.W L=0.3km		10	10	0.1	0.1
	Flap Gate		8 places					
	Subtotal				10	10	0.1	0.1
Bacoor				Total			0.12	0.12
Daeooi	Exist Drainage Imp	Dr-1	Tidal Gate with L	nck	10	10	0.2	0.2
	Interceptor	LIT_2	B C: I = 0.25 km B	$xH = 2.7x^2 / m$	10	10	0.2	0.2
	Retention Pond	M2	$\Delta = 11$ ha V=0.27 m	ocm	0	0	11	11
	California California	1012	A=111a, v=0.2711		10	10	11.0	11.2
-	Subtotal				10	10	11.2	11.2
Imus		D 2	T:110 / 34 I	Total				
		Dr-3	Tidal Gate with Lo	OCK				
		Dr-4	Tidal Gate with Lo	ock				
	Exist. Drainage Imp.	Dr-5	Widening/Dike L=	=2.3km	0	0	1.0	1.0
	Drainage Main	KDM-1	B=6m, L=1.5km v	vith T.G	2	2	0.8	0.8
	Interceptor	I-Dr-6-1	B.C: L=1.5km, Bx	H=3.0x2.5mx2	0	0	0.5	0.5
	-	M1	A=6ha, V=0.12mc	em	0	0	6.0	6.0
		K1	A=7ha, V=0.33mc	em	0	0	7.0	7.0
	Retention Pond	P1	A=20ha, V=0.55m	ncm	0	0	20.0	20.0
		CD-1	L=0.5km, Earth D	ike Type	12	12	1.2	1.2
		CD-2	L=1.5km, Earth D	ike Type	16	16	3.1	3.1
	Coastal Dike	CD-3	L=2.1km, Earth D	ike Type	50	50	3.4	3.4
		RD-1	L=3.2km, Earth D	ike Type	0	100	0.0	2.5
		RD-2	L=5.9km Earth D	ike Type	0	70	0.0	35
	Dina Dilya	DD 2	L=4.0km, Earth D	ike Type	0	50	0.0	2.6
	King Dike	KD-5	L=4.0km, Earth D	ike Type	0	30	0.0	2.0
	Flap Gate		D-1: 2 places D-2	:8places				
	Subtotal				80	300	43.0	51.6
Kawit				Total				
	Exist. Drainage Imp.	Dr-8	Tidal Gate					
	Drainage Main	NDM-1	Tidal Gate		0	0	0	0
	Flap Gate		1 place					
	Subtotal				0	0	0	0
Noveleta				Total				
	Exist. Drainage Imp.	Dr-9	Tidal Gate		10	10	0.5	0.5
	U	RDM-1-4	Tidal Gate					
	Retention Pond	F1	A=3ha, V=0.1mcm		0	0	3.0	3.0
	Flan Gate	121	5 places		0	0	5.0	5.0
	Fubtotal		5 places		10	10	2.5	2.5
р	Subtotal			T (1	10	10	5.5	5.5
Kosario			Widoning/Dil I	1 otal	1			
	_		widening/Dike L=	=1.2KM				
	Interceptor	I-Dr-9	with T.G		10	10	0.5	0.5
	Retention Pond	E2	A=3ha, V=0.1mcr	n	1	1	14	14
	Subtotal				11	11	14.5	14.5
Gen. Trias				Total				
	Flap Gate		2 places					
Tanza	Total							
	Measure	1	D1	D2	1			
	Exist. Drainage Imp.		L=7.5km	L=7.5km	30	30	1.8	1.8
	Drainage Main		L=1.5km	L=1.5km	2	2	0.8	0.8
	Interceptor		L=2.7km	L=2.7km	10	10	1.0	1.0
	Retention Pond		A=61hectares	A=61hectares	1	1	61.0	61.0
	Coastal Dike		L=4.1km	L=4.1km	78	78	7.7	7.7
	Ring Dike		-	L=9.0km	0	220	0.0	8.6
	Tidal Gate		n : 9	n : 8				
	Flap G.		n : 18	n : 24				
Total	-	Та	otal		121	341	72.3	80.9
	1				-			

tor 3 hectares/		Equipr	nent	Mater	e	labo	ř		Eauin	ment	Mate	lai	lah	or		
Item	Unit	L/C	F/C	L/C	F/C	L/C	F/C	Quantity	L/C	F/C	L/C	F/C	L/C	F/C	Total	Remarks
reparatory Work	L.S.	-	-	-	-	1	-	1	61,617	97,498	112,663	205,133	86,570	10,200	573,682	2 Mobilization and etc.
xcavation	m3	29	60	0	0	7	1	4,500	132,333	271,505	299	1,196	33,585	4,073	442,992	2
mbakment	m3	43	88	0	0	7	-	925	39,643	81,362	26	103	6,730	816	128,679	0
Retaining Wall	m3	531	688	2,195	2,339	1,257	151	254	134,761	174,871	557,590	594,107	319,153	38,330	1,818,813	m
encing Work	٤.	219	263	470	1,568	1,920	226	120	26,333	31,564	56,351	188,200	230,359	27,097	559,904	4 incl. CHB Wall
Dutlet Sluice	, is							i								· · · · · · · · · · · · · · · · · · ·
Concrete	m3	1,714	2,383	2,775	9,467	2,091	224	20	85,711	119,149	138,733	473,330	104,541	11,180	932,644	4 incl. Re-bar, Forming/False Works
Gate	sou .	29,929	30,404	27,044	243,394	1,352	164		29,929	30,404	27,044	243,394	1,352	164	332,287	/ B × H : 1.0m × 1.0m
Spillway and Others	Ľ.	111,443	177,494	244,169	364,518	91,283	11,069	-	111,443	177,494	244,169	364,518	91,283	11,069	999,975	9
emporary works	°8	10%	10%	10%	10%	10%	10%		56,015	88,635	102,421	186,485	/8,/00	9,273	521,530	
			Tota	_					677,786	1,072,482	1,239,296	2,256,465	952,275	112,203	6,310,507	7
								Say	678,000	1,073,000	1,240,000	2,257,000	953,000	113,000	7,000,000	0
			Pervent	tage					10.7%	17.0%	19.6%	35.7%	15.1%	1.8%	100%	28
								Say	10%	17%	20%	36%	15%	2%	100%	8
for 20 hectares)																
		Equipr	nent	Mater	a	Labc	۲		Equip	ment	Mate	rial	Lab	or		
Item	Unit	۲/C	F/C	L/C	F/C	L/C	F/C	Quantity	L/0	F/C	L/C	F/C	L/C	F/C	Total	Remarks
reparatory Work	L.S.	-	-	-	-	-	-	1	154,053	256,182	246,567	416,810	229,110	27.036	1,329,759	9 Mobilization and etc.
xcavation	m3	29	60	0	0	7	-	18,000	529,333	1,086,022	1,196	4,784	134,341	16,291	1,771,967	
mbakment	m3	43	88	0	0	7	-	2.500	107.143	219,896	69	277	18.190	2.206	347.781	
tetaining Wall	m3	531	688	2.195	2.339	1.257	151	685	363,431	471,601	1.503.738	1.602.219	860,709	103,369	4,905,067	
encing Work	E	219	263	470	1.568	1.920	226	400	87.777	105,213	187,837	627,332	767,864	90,325	1,866,348	8 incl. CHB Wall
Utlet Sluice	Ľ.S.	-														
Concrete	m3	1,714	2,383	2,775	9,467	2,091	224	100	171,421	238,298	277,466	946,660	209,083	22,361	1,865,285	9∣incl. Re−bar, Forming∕False Works
Gate	sou	29,929	30,404	27,044	243,394	1,352	164	1	29,929	30,404	27,044	243,394	1,352	164	332,287	7 B × H : 1.0m × 1.0m
Other Facilities	Ľ.	111,443	177,494	244,169	364,518	91,283	11,069	- ·	111,443	177,494	244,169	364,518	91,283	11,069	999,975	
emporary works	%	10%	10%	10%	10%	10%	10%	1	140,048	232,893	224,152	378,918	208,282	24,578	1,208,871	1
			Tota												14,627,345	10
								Say							15,000,000	0
tost Estimation Formura													5	nas nas	7,000,000	18
													23	ao		10
$y = 600,000 \cdot x + 4,000,000$	~														- (14 $y = 0.6x + 4$
Vhere.																12
v · Area of Sub-division ()	hectares	Ģ														
Within and familie																
y: Construction base Cost	of On-	site Re gula	tion Pond													
vverage Area of New Sub-	-divisior	ι Applied :	8 h	tectares												0
																4
lence, Construction Base Cos	t of 8he	sctare-Sub-	-division													2
		ЧНЧ	8,800,	8												0 5 10 15 20 25
					Table C	ost Estima	te of Com	pensation C	ost for On	-Site (for O	ne Sub-divi	ision of 8 H	ectares)			
		Equipr	nent	Mater	a	Labo	٦٢		Equip	ment	Mate	erial	Lab	or		
Item	Unit	L/C	F/C	L/C	F/C	L/C	F/C	Quantity	L/C	F/C	L/C	F/C	L/C	F/C	Total	Remarks
Land to be occupied	m2	0	0	3000	0	0	0	800	0	0	2.400.000	0	0	0	2.400.000	exclusive of Communal Area as park and Paround in the Pond
			-								1	-	-			

Table 8.6 Cost Estimate for On-site Regulation Pond

T - 8 - 6

Table 8.7 Cost Estimate of On-site Regulation Pond and the Collateral Cost in the Study Area

Consideration on On-site Retention Facilities
 1. Comparative Calculation of the Costs between On-site Regulation Pond and Off-site Retarding Basin/Retention Pond

 Average Area of New Sub-division Applied
 8 hectares

	ion Cost (y)	Construct		4
	120.15 km²	0	8 hectares	a x o.omii.r / area
	173.97 km²	53.82 km ²	burden for	5,920 mil.P
ctare-Sub-division	sting (2007) 29.49 % of Total Area	Expected Development Area during 2007–202	The Cost that Developer should shoulder the preparation of On-site Regulation Pond	00.02(Km / X 100(na/Km / / 0(nectare/are
8,800,000 /1sub-division(8has)	iture (2020) 42.7 % of Total Area	Average Area of a new development Activity		=
Hence, Construction Base Cost of 8he PHF	Built-up Area in the Study Area: Exis Fu	Cost of On-site Regulation Pond:	1	

Collateral Cost of Off-site Retarding Basin corresponding to Construction of On-site Regulation Pond:

		Total	200	54	55	120	28	457
st (Mil.P)	rainage	mp. *1	200	54	55	120	28	457
tional Cos	asin Dı	and I						0
Addi	Retarding B	Const. L						0
Related	Retarding Basin /	Retention Pond	I-1	S-1	Y-1 and Y-2	0-1	M-1&2, P-1, K-1, E-1	I
Collateral	Volume for	RB (m ³)	2,121,940	573,973	582,470	1,271,672	293,453 N	4,843,816
Assumed	No. of	Sub-div.	295	80	81	177	41	674
	nce	rea (has)	2,358	638	647	1,413	326	5,382
	Differe	% A	23.27	8.24	12.60	14.34	11.32	13.21
Future	2020	%	67.96	26.19	34.16	32.61	47.82	42.7
ng	2007	%	44.69	17.95	21.56	18.27	36.50	29.49
Existi	2003	%	40.7	16.57	19.52	16.60	36.16	24.6
	Area	(km²)	115.50	88.20	58.56	112.32	32.84	407.42
		River	Imus	San Juan	Ylang-Ylang	Canas	Others	Total

In this connection, the additional costs of wet stone masonry works $(700m^2)$ are added per a sub-division construction as an additional cost.

Table 8.8 Annual Disbursement Schedule for River Overflow Flood (10-year Protection) & Inland Drainage Improvement (2-year Partial Protection) (with On-site)

, ,		Amount		200	8	2009		2010		2011		2012		2013	2	014	201	15	2016		2017		2018		2019	
Cost Item	F.C.	L.C.	Total	F.C.	L.C.	F.C.	L.C.	F.C.	L.C.	^E .C. L	.C. F.C	C. L.C	. F.C.	L.C.	. F.C.	L.C.	F.C.	L.C.	F.C.	L.C.	F.C.	L.C.	F.C.	L.C. I	E.C. L	ÿ
Construction Base Cost																										
1. Construction Base Cost (CBC)	2,472	1,552	1,691	'	•		'	209	142	433	283 3	69 22	27 53.	4 33.	2 420	264	384	240	86	46	37	19				'
1.1 Package 1.1 (Imus R.)(10-year)	259	167	425	•	•			73	51	73	51	23	13 5	10 5.		'	'	•	•	•						•
1.2 Package 1.2 (Bacoor R.)(2-year)	461	266	727					113	78	113	78	47 2	22 7	70 3.	3 71	33	47	22	•							1
1.3 Package 1.3 (Julian)(5-year)	243	147	391									6 <i>I</i> 4	42 6	il 4.			24	13	19	32	37	19				
1.4 Package 2 (San Juan) (10-year)	474	315	790					23	13	57	32	34	19 16	38 Z.	5 144	100	108	75								
1.5 Package 3 (Inland Drainage)	1,035	657	169'1	,	,	,	,		,	161	121 2	205 I:	30 26	15 13.	0 205	130	205	130	25	15	,	,	,	,	,	•
3. Physical Contingency for CBC	124	78	201	'	,	,	,	10	7	22	14	18 1	11 2	7 1	7 21	13	19	12	4	7	6	-	,	,	,	'
Subtotal (1+2+3)	2,595	1,630	1,892	0	0	0	0	219	149	455	297 3;	87 23	18 56.	1 34	9 441	277	404	252	90	49	39	20	0	0	0	•
Compensation Cost																										l
1.1 Compensation Cost (CC)	0	687	687	,	,		119	,	119	,	104	- 10	4	- 10	°	39	'	52	,	43	,	,	,	,	,	1
1.2 Compensation Cost (CC)	0	354	354	•	•		7		28	,	142	- 12	51	- S		1	1	,	,	,			,	,	,	1
1.3 Compensation Cost (CC)	0	444	444 444				,		4		99	ر. -	<u>5</u> 6	- 8	8	88	'	92	'	,		,	,	,	,	'
3. Physical Contingency for CC	0	74	74	'	'	•	9		10		16	-	15	-		9	'	7	'	2	•					1
Subtotal (1+3)	0	518	518	0	0	•	9	0	54	0	82	0	31	0 10	•	94	0	66	0	7	0	0	0	0	•	0
Administration Cost Cost																										
1.1 Administration Cost (AC)	0	156	156	'	,	,	×	,	30	,	29		22	- 3.	- 2	10	'	11	,	6	,	4	,	,	,	'
1.2 Administration Cost (AC)	0	80	80	'	,	,	0	,	4	,	16	-	12	-		17	'	13	,	,	,	,	,	,	,	ł
1.3 Administration Cost (AC)	0	313	313		,		,		28		55	4	46	9	7	54		50		6		4		,		ł
Subtotal (1)	0	313	313	0	0	0	6	0	62	0	100	0 8	108	0 11(5 0	81	0	74	0	19	0	8	0	0	0	0
Engineering Service Cost																										
1.1 Engineering Service Cost (ESC)	154	93	247	'	•	29	17	39	23	14	6	14	9	4	9 14	6	14	6	10	9	5	3				ľ
1.2 Engineering Service Cost (ESC)	76	50	126	'	'	14	6	19	13	7	5	6	9	6	6 7	5	7	5	7	0	'	,	,	,	,	'
1.3 Engineering Service Cost (ESC)	166	105	271	'	'	31	20	41	26	16	10	16 1	10	6 1	0 16	10	16	10	10	7	5	ŝ	,	,	,	'
3. Physical Contingency for ESC	20	12	32	'	,	4	2	5	ŝ	7	-	2	1	5	1	-	7	-	-	-	0	0	,	,	,	'
Subtotal (1+3)	185	117	303	0	0	78	49	104	65	39	24	41 2	26 4.	1 24	\$ 39	24	39	24	23	15	10	9	0	0	0	•
tal (A+B+C+D)	2,781	2,578	3,026	•		78	64	323	330	494	503 4.	129 42	25 60	2 59.	1 479	477	443	450	114	84	49	34				$\left \cdot \right $
Value added Tax for Components	0	588	588				15		64		98	3	33	11	7	94		86		21		6				1
tal (A+B+C+D+E)	2,781	3,166	3,614	0	0	78	64	323	395	494	601 4.	29 50	18 60	2 708	3 479	570	443	536	114	105	49	43	0	0	0	•
Construction of On-site Reg. Pond				¢	c		t	10.	t										00.			t	101	t	101	Ş
1.1 Construction Base Cost (Reg.P.)	1,522	1,082	2,404	0	0	100	8	901 1	8	132	108	152	1 N	11 - 22 -	15. I.S.	108	152	108	152	108	901	8	100	/8	100	8
1.2 Construction Base Cost (Reg.P.)	705	577	1,282	0	0	56	46	56	46	71	58	71	58	; [1	1 28	58	71	58	71	58	56	46	56	46	56	46
1.3 Construction Base Cost (Reg.P.)	176	4	321	0	0	14	12	14	12	18	14	18	14	18	1.	8 14	18	14	18	14	14	12	14	12	14	12
Physical Contingency for Reg.P	126	128	255	•	•	6	×	6	×	12	Ξ	12 1	12 1	2 1.	2 13	13	13	13	13	14	Ξ	12	Ξ	12	Ξ	13
Subtotal (1+3)	303	273	575	0	0	23	20	23	20	30	25	30 2	26 31	0 2′.	7 30	27	30	28	31	28	25	23	25	24	25	25
Value added Tax for Components	0	69	69				5		5		7		7		7	7		7		7		9		9		9
rand Total (A+B+C+D+E+F+G)	3,083	3,508	4,259	0	0	101	104	346	420	523	633 4.	58 54	10 63.	2 74.	2 510	604	473	571	145	141	74	72	25	30	25	31
																										I

Notes: *1 It is estimated based on the work quantities. *2 1.95 % of all costs in foreign currency portion and 5.07 % of all costs in local currency portion *3 Physical Contingency: 5 % of the sum of construction base cost, compensation cost and engineering service cost

*B Land acquisition and house evacuation cost *C Project owner's expense for the management of the project, 7 % of the sum of construction cost and compensation cost *D Cost for the construction supervision and etc. (D/D: 6% of CBC, S/V: 10% of CBC)

*E 12 % of the sum of construction base cost and engineering service cost

Price Level as of October 31, 2007
 Conversion Rate US\$ 1.00 = PhP. 43.95 = JpY. 114.67, JpY 1.00 = PhP. 0.3834

Cost Item		Amount		2005	~	2009		2010		2011	2	012	201	3	2014		2015		2016		2017		2018	201	
	F.C.	L.C.	Total	F.C.	L.C.	F.C.	L.C. 1	.C.	Ċ.	.C. L.(C. F.C.	L.C.	F.C.	L.C.	F.C.	L.C.	F.C. 1	C.	C. L	.C. F.	C.	C. F.C.	L.C.	F.C.	L.C.
A. Construction Base Cost		022 1	1021					000	ç	3C	020	5	103	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	007	100	Fac	010	20	1	Ę	9			
1. Construction base cost (CDC)	7/1:1	700'1	1/0/1					607 61	11	4		1	t 8	766	074	5	100	047	00	2	10	-			
1.1 Package 1.1 (Imus K.)(10-year)	138	701 796	C24 707					() 112	10	5/ 12	-7 IC	5 5 5	06 55	70	- 02		- 17	' ;							
1.2 I utvage 1.2 (Ducor) I.(/2-)eur) 1.2 Dachaga 1.3 (Lilian V.S. yane)	104	LV1	301					611	P,		4 V 0/	77 Ç	2 19	ç ç	2	3	ìč	13	19	5.2	37	01			
1.2 I uckuge 1.5 (Junu/) yeur) 14 Dackaae 2 (San Juan) (10-year)	PLF	315	160					- 26	13	- 22		77 10	108	12	144	001	108	5 X	5 '	4 '	'n '				
1.4 Lackage 2 (San Juan) (10-year)	+/+ .	516	06/					C7	CI		.c 20	A .	007	C/ ;	# 20	007	001	C							
1.5 Package 3 (Intand Dramage)	1,055	/00	160,1					' <u>-</u>	' ;	1 161	-07 I7	130	507	130	c07	150	507	130	Q 2	3	' a	' <u>-</u>			
2. Price Escalation for CBC	667	070	079					17	5 2	د ب د	70 70	t ç	80 60	<u> </u>	10	601	5 5	11/	10	07 6	κį	71 2		'	'
Subtotal (1+2)	2,771	2,0/8	/10.2	'	•			177	C01	468 3	400	067	009	44/	480	3/3	449	105	102	77	6	51			
3. Physical Contingency for CBC	139	104	242					= ;	× į	23	17 20	15	30	52	24	19	52	18	5	4	61 j	61		'	'
Subtotal (1+2+3)	2,910	2,182	2,759	•	•	•		232	173	491 3.	52 426	305	630	469	504	391	471	374	108	76	47	33		•	•
B. Compensation Cost																									
1.1 Compensation Cost (CC)	0	687	687	•	,	,	119	,	119	- 1	4	. 104	'	108	,	39	,	52	,	43	,			'	1
1.2 Compensation Cost (CC)	0	354	354	•	'		7	,	28	-	- 12	- 121	'	57	•									'	'
1.3 Compensation Cost (CC)	0	444	444	•	'				44		- 95	. 66	'	88	'	88		92						'	1
Price Escalation for CC	0	427	427	•	•		13		31	,	. 86			87	•	53		70		24				'	'
Subtotal (1+2)	0	1,912	1,912	'	'		139	,	221	ب ب	. 05	372	'	340	'	180		213	,	67				'	'
3. Physical Contingency for CC	0	96	96	•	'		7		=		- 61	. 19	'	17	'	6		Ξ		3				'	'
Subtotal (1+2+3)	0	2,008	2,008	•	•	•	146	•	232		•	391	•	357	•	189	•	224		70				•	•
C. Administration Cost Cost																									
1.1 Administration Cost (AC)	0	156	156	•	,		8	,	30	1	- 62	22	'	32		10		11	,	6	,	4			1
1.2 Administration Cost (AC)	0	80	80	•	,		0		4		- 91	. 12	'	17	•	17		13						1	1
1.3 Administration Cost (AC)	0	313	313		'		,		28		55	46		67		54		50		6		4	'		'
2. Price Escalation for AC	0	180	180	'	'	,	-	,	10		- 22	. 23	'	40	'	34	,	36	,	=		5		'	'
Subtotal (1+2)	0	729	729	•	•		10		72	. 1	22	. 103	•	155	•	115		110		29		13	·	•	•
D. Engineering Service Cost							ļ			:			:		;	¢	:								
1.1 Engineering Service Cost (ESC)	154	93	247			29	17	39	23	14	9 I4	6	14	6	14	6	14	6	10	9	2	ŝ			1
1.2 Engineering Service Cost (ESC)	9/	50	126			14	6 6	19	13		5 i	9	6	9	L .	ŝ	L .	S i	7	61 1		.,			'
1.3 Engineering Service Cost (ESC)	166	105	1/2	•	•	31	50	41	26	16 î	10 - 16	2 ' 2	16	10	16	01 ;	16 1	2 :	10		n (ю.		'	'
2. Price Escalation for ESC	65	68	107		•	N	۰ :	9	9 I	τ Γ	0 i 4 i	- :	۰ :	6	n i	9	9	= ;	4 ;	× i	7 ;	4		'	'
Subtotal (1+2)	434 434	316	16/				، کا	د01 ء	71	0 ⁴ c	27 57 57 57 57 57 57 57 57 57 57 57 57 57	27	4,	<u></u> З (47 7	ŝ	ξ 1 ζ	ç, ç	17	77.	- 17	0 -			'
5. Fulsical Commignity for ESC	77 VEK	33, 10	100			+ 2	۰ ۲	0 110 0 110	† 7	۰ ڊ	7 V 1 V	7 8	1 Ę	7 2	1 4	7 2	14	35	- 6	- "	- 5				•
Total (A+B+C+D)	3,366	5.251	6.284	.	.	5	210	342	553	10 753	2 472	32	929	1.016	540	729	517	745	136	80	20	26			1
E Value added Tay for Components	C	706	706			5	16	!	11			10		147		117		E		36		12			1
Total (A+B+C+D+E)	3.366	5.957	6.990	ŀ	ŀ	81	226	342	624	534 1.02	3 472	929	676	1.158	549	846	517	856	136	226	59	. 89	ľ	•	ľ
F. Construction of On-site Reg. Pond																									
1.1 Construction Base Cost (Reg.P.)	1,322	1,082	2,404	0	0	106	87	106	87	132 1	08 13.	2 108	132	108	132	108	132	108	132	108	106	87 10	6 87	106	87
1.2 Construction Base Cost (Reg.P.)	705	577	1,282	0	0	56	46	56	46	71	58 7.	1 58	71	58	71	58	71	58	71	58	56	46 5	6 46	56	46
1.3 Construction Base Cost (Reg.P.)	176	144	321	0	0	14	12	14	12	18	14 1;	8 14	18	14	18	14	18	14	18	14	14	12 1	4	14	12
2. Price Escalation for CBC	320	767	1,087	0	0	٢	15	Π	23	18	39 2.	2 51	27	62	32	75	37	88	42	101	38	92 4	2 104	46	117
Subtotal (1+2)	2,524	2,570	5,094	'	'	183	159	187	167	238 2.	20 243	231	247	243	252	255	257	268	262	281 2	14 2	37 21:	3 249	222	261
3. Physical Contingency for Reg.P	126	128	255	'	ŀ	6	8	6	8	12	11 12	12	12	12	13	13	13	13	13	14	11	12 1	1 12	Π	13
Subtotal (1+2+3)	2,651	2,698	5,349		•	192	167	196	176	250 2	31 255	242	260	255	265	268	270	281	275	295 2	25 2	48 22	261	233	274
G. Value added Tax for Components	0	642	642		•		43		45	~	58	60		62		64		66		68		57	59		61
Grand Total (A+B+C+D+E+F+G)	6,016	9,297	12,981	0	0	273	436	538	844	784 1,3.	2 727	1,231	936	1,475	814	1.178	787 1.	203	411 :	5 <u>90</u> 2	84 3	74 22	320	233	335

Table 8.9 Annual Disbursement Schedule including Price Contingency for River Overflow Flood (10-year Protection) & Inland Drainage Improvement (2-year Partial Protection) (with On-site)

Notes : *1 It is estimated based on the work quantities.
*2 1.95 % of all costs in foreign currency portion and 5.07 % of all costs in local currency portion
*3 Physical Contingency: 5 % of the sum of construction base cost, compensation cost and engineering service cost

*B Land acquisition and house evacuation cost *C Project owner's expense for the management of the project, 7% of the sum of construction cost and compensation cost *D Cost for the construction supervision and etc. (D/D: 6% of CBC, S/V: 10% of CBC) *E 12% of the sum of construction base cost and engineering service cost

Price Level as of October 31, 2007
 Conversion Rate US\$ 1.00 = PhP. 43.95 = JpY. 114.67, JpY 1.00 = PhP. 0.3834

			(mil	lion Pesos)
Type of Buildings	Damages	Damages	Damages to	Total
Type of Bundnings	Buildings	Assets	H.Effects/	Total
	8-		Inv. Stocks	
<u>A. Imus River Basin</u>				
1. Residence	951		1,318	2,269
a. Residential Unit	951		1,318	2,269
2. Industrial, Educational and Medical Facilities	1,080	278	610	1,969
a. Manufacturing	4	39	30	73
b. Wholesale & Retail Trade	5	37	283	325
c. Hotels & Restaurants	660	1	98	758
d. Real Estate & Business Activities	151	0	155	307
e. Education	131	97	8	235
f. Health & Social Work	130	103	38	271
Total	2,031	278	1,929	4,238
B. San-Juan - Ylang-Ylang River Basins	540			1 00 4
1. Residence	549		115	1,324
a. Residential Unit	549	1.61	115	1,324
2. Industrial, Educational and Medical Facilities	624	161	347	1,132
a. Manufacturing	2	23	1/	42
b. wholesale & Retail Irade	3	21	101	185
c. Hotels & Restaurants	381 97	1	20	437
d. Real Estate & Business Activities	87	56	00	1/0
f Health & Social Work	70	50	4 21	150
Total	1 174	161	1 122	2 457
C. Canas River Basin	1,174	101	1,122	2,437
1. Residence	74		96	170
a. Residential Unit	74		96	170
2. Industrial, Educational and Medical Facilities	84	19	46	149
a. Manufacturing	0	3	2	5
b. Wholesale & Retail Trade	0	3	21	24
c. Hotels & Restaurants	51	0	7	59
d. Real Estate & Business Activities	12	0	12	23
e. Education	10	7	1	17
f. Health & Social Work	10	7	3	20
Total	158	19	142	319
D. Whole the River Basins				
1. Residence	1,574	0	2,189	3,763
a. Residential Unit	1,574	0	2,189	3,763
2. Industrial, Educational and Medical Facilities	1,789	458	1,004	3,250
a. Manufacturing	6	65	49	120
b. Wholesale & Retail Trade	8	61	465	534
c. Hotels & Restaurants	1,092	2	161	1,255
d. Real Estate & Business Activities	251	1	255	506
e. Education	216	159	12	388
f. Health & Social Work	215	170	62	448
Total	3,363	458	3,193	7,013

Table 8.10 Estimated Damages to Buildings and Household Effects, Durable Assets
and Inventories Caused by 2006-Flood

Location of Survey Point	Motor- cycle	Tricycle	Jeepney	Minibus	Standard Bus	Taxi/ HOV Taxi	Sedan/ Jeep	Utility Vehicle	Truck/ Trailer	Others	Total	Estimated 24 Hours- Persons
Manila-Cavite Highway: Boundary of Manila and Cavite	242	52	5,770	570	3,866	5,267	18,586	23,068	3,451	113	60,985	395,735
Aguinaldo Highway: Barangai Real, Bacoor	3,309	538	8,243	85	2,168	1,939	10,194	12,160	3,618	543	42,797	217,494
Aguinaldo Highway: Barangai Anabu 2, Imus	1,973	128	8,360	58	2,185	709	7,444	8,818	2,579	155	32,409	182,499
Governor Drive: Barangai San Francisco, General Trias	1,951	771	5,067	115	702	148	5,803	6,842	2,294	244	23,937	113,727
Governor Drive: Barangai Paliparan, Dasmarinas	2,070	3,854	3,454	38	301	289	5,641	9,696	2,986	524	28,853	100,236
Amadeo-General Trias Road: Barangai Tapia, General Trias	738	1,600	172	29	35	15	1,219	2,060	481	134	6,483	16,282
Aguinaldo Highway: Barangai Zapote II, Bacoor	4,531	1,514	10,950	1,768	67	985	3,380	4,122	1,198	2,849	31,364	128,496
Tirona Highway: Barangai Marulas, Kawit	1,492	1,351	942	2,510	344	239	2,605	2,733	284	566	13,066	92,508
Molino Road: Barangai Molino IV, Bacoor	2,501	981	4,506	16	30	1,017	4,663	7,731	1,153	567	23,165	92,764
Daan Hari Road: Barangai Molino IV, Bacoor	1,222	92	70	17	10	316	4,756	6,275	608	415	13,781	27,475
Salawag-Salitran Road: Barangai Jose Abad Santosa, Dasmarinas	982	3,921	220	10	16	136	3,100	4,306	578	222	13,491	27,110
Don P Campos Avenue: Dasmarinas (Provincial Road)	1,080	5,560	1,850	7	<i>L</i> 6 <i>L</i>	82	2,153	2,357	226	386	14,498	52,729
Tanza-Trece Martires Road-Indang Road: Barangai Sanja Mayor, Tanza	2,881	4,736	1,632	41	16	61	1,640	2,209	523	493	14,232	43,907
Noveleta-Tanza-Naic Road: Barangai Capipisa, Tanza	1,271	658	407	1,668	172	127	866	1,470	409	41	7,089	41,197
Governor Drive: Barangai Cabuco, Trece Martires	369	490	200	7	6	15	627	939	327	38	3,016	111,111
Aguinaldo Highway: Barangai Biga II, Silang	821	192	2,771	23	733	82	3,593	5,173	978	166	14,532	92,998
Carmona National Road: Barangai Madoya, Carmona	1,903	1,163	4,617	34	810	140	3,061	4,227	1,398	692	18,045	108,610
Manila South Road: Barangai Tunasan, Muntinlupa	3,956	1,531	7,148	38	1,318	570	3,703	5,448	1,376	1,294	26,382	187,732
Sta Rosa-Tagaytay Road: Barangai Sto Domingo, Sta Rosa	842	348	587	33	141	64	2,503	4,186	795	99	9,565	43,436
Total	34,134	29,480	66,966	7,062	13,720	12,201	85,537	113,820	25,262	9,508	397,690	1,976,046
Source: CALA Report.												

Table 8.11 Traffic Volume by Type of Vehicles and Estimated 24 Hour-Persons in Cavite Province

Without Pro	oject						(mil	lion Pesos)
		Direct Dam	ages		Indi	rect Damages		
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultura l Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business <u>Suspension</u> 6.10%	Total	Damages in Grand Total
2-year	1,046	66	1	1,113	114	68	182	1,296
5-year	1,945	128	1	2,074	208	127	335	2,408
10-year	2,698	156	2	2,856	284	174	458	3,314
20-year	3,128	190	2	3,319	327	203	530	3,849
30-year	3,305	216	2	3,523	345	215	560	4,083
50-year	3,521	262	2	3,785	367	231	598	4,383
100-year	3,845	263	3	4,111	400	251	651	4,762
With Projec	t							
2-year	0	0	0	0	0	0	0	0
5-year	33	0	0	33	4	2	6	39
10-year	219	0	0	220	25	13	38	258
20-year	484	0	1	486	54	30	83	569
30-year	828	68	1	897	91	55	145	1,043
50-year	1,371	83	1	1,455	149	89	238	1,693
100-year	1,957	100	2	2,058	209	126	335	2,393

Table 8.12(1/6) Total Damages in Imus River in Case of Works for 5-Year Flood Damage Mitigation under Present Land Use Status

 Table 8.12(2/6) Total Damages in Imus River in Case of Works for 10

 Year Flood Damage Mitigation under Present Land Use Status

 Without Project
 (million Pesos)

-		Direct Dan	nages		- Indii	ect Damages		
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultura l Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business Suspension 6.10%	Total	Damages in Grand Total
2-year	1,046	66	1	1,113	114	68	182	1,296
5-year	1,945	128	1	2,074	208	127	335	2,408
10-year	2,698	156	2	2,856	284	174	458	3,314
20-year	3,128	190	2	3,319	327	203	530	3,849
30-year	3,305	216	2	3,523	345	215	560	4,083
50-year	3,521	262	2	3,785	367	231	598	4,383
100-year	3,845	263	3	4,111	400	251	651	4,762
With Project								
2-year	0	0	0	0	0	0	0	0
5-year	33	0	0	33	4	2	6	39
10-year	218	0	0	218	24	13	38	256
20-year	441	0	1	442	49	27	76	518
30-year	776	54	1	831	85	51	136	967
50-year	1,355	83	1	1,439	147	88	235	1,674
100-year	1,951	100	2	2,053	208	125	334	2,386

Without Pro	oject						(mil	lion Pesos)
		Direct Dan	nages		- Indii	ect Damages		
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultura 1 Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business <u>Suspension</u> 6.10%	Total	Damages in Grand Total
2-year	1,046	66	1	1,113	114	68	182	1,296
5-year	1,945	128	1	2,074	208	127	335	2,408
10-year	2,698	156	2	2,856	284	174	458	3,314
20-year	3,128	190	2	3,319	327	203	530	3,849
30-year	3,305	216	2	3,523	345	215	560	4,083
50-year	3,521	262	2	3,785	367	231	598	4,383
100-year	3,845	263	3	4,111	400	251	651	4,762
With Projec	t							
2-year	0	0	0	0	0	0	0	0
5-year	33	0	0	33	4	2	6	39
10-year	218	0	0	218	24	13	38	256
20-year	441	0	1	442	49	27	76	518
30-year	776	54	1	831	85	51	136	967
50-year	1,355	83	1	1,439	147	88	235	1,674
100-year	1,951	100	2	2,053	208	125	334	2,386

Table 8.12(3/6) Total Damages in Imus River in Case of Works for 20-Year Flood Damage Mitigation under Present Land Use Status

Table 8.12(4/6) Total Damages in Imus River in Case of Works for 5 Year Flood Damage Mitigation under Future Land Use Status Without Project (million Pesos)

-		Direct Dan	nages		Indirect Damages			
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultura l Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business Suspension 6.10%	Total	Damages in Grand Total
2-year	3,125	469	1	3,594	339	219	558	4,153
5-year	5,245	904	1	6,150	556	375	931	7,081
10-year	6,101	1,124	1	7,225	642	441	1,082	8,308
20-year	6,906	1,316	1	8,223	725	502	1,226	9,450
30-year	7,252	1,393	1	8,645	759	527	1,287	9,932
50-year	7,601	1,486	1	9,088	795	554	1,349	10,437
100-year	8,140	1,642	1	9,783	850	597	1,446	11,230
With Project								
2-year	0	0	0	0	0	0	0	0
5-year	135	18	0	153	15	9	25	178
10-year	540	48	0	588	60	36	96	684
20-year	1,231	209	1	1,440	136	88	224	1,664
30-year	3,043	659	1	3,703	331	226	556	4,260
50-year	4,220	948	1	5,169	453	315	768	5,937
100-year	5,375	1,129	1	6,505	569	397	966	7,471

Without Pro	oject						(mil	lion Pesos)
		Direct Dan	ages		- Indii			
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultura 1 Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business <u>Suspension</u> 6.10%	Total	Damages in Grand Total
2-year	3,125	469	1	3,594	339	219	558	4,153
5-year	5,245	904	1	6,150	556	375	931	7,081
10-year	6,101	1,124	1	7,225	642	441	1,082	8,308
20-year	6,906	1,316	1	8,223	725	502	1,226	9,450
30-year	7,252	1,393	1	8,645	759	527	1,287	9,932
50-year	7,601	1,486	1	9,088	795	554	1,349	10,437
100-year	8,140	1,642	1	9,783	850	597	1,446	11,230
With Projec	t							
2-year	0	0	0	0	0	0	0	0
5-year	135	18	0	153	15	9	25	178
10-year	540	48	0	588	60	36	96	684
20-year	1,231	209	1	1,440	136	88	224	1,664
30-year	3,043	659	1	3,703	331	226	556	4,260
50-year	4,220	948	1	5,169	453	315	768	5,937
100-year	5,375	1,129	1	6,505	569	397	966	7,471

Table 8.12(5/6) Total Damages in Imus River in Case of Works for 10 Year Flood Damage Mitigation under Future Land Use Status Without Project

Table 8.12(6/6) Total Damages in Imus River in Case of Works for 20-Year Flood Damage Mitigation under Future Land Use StatusWithout Project(million Pesos)

-		Direct Dam	nages		Indirect Damages			
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultura l Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business Suspension 6.10%	Total	Damages in Grand Total
2-year	3,125	469	1	3,594	339	219	558	4,153
5-year	5,245	904	1	6,150	556	375	931	7,081
10-year	6,101	1,124	1	7,225	642	441	1,082	8,308
20-year	6,906	1,316	1	8,223	725	502	1,226	9,450
30-year	7,252	1,393	1	8,645	759	527	1,287	9,932
50-year	7,601	1,486	1	9,088	795	554	1,349	10,437
100-year	8,140	1,642	1	9,783	850	597	1,446	11,230
With Project								
2-year	0	0	0	0	0	0	0	0
5-year	135	18	0	153	15	9	25	178
10-year	540	48	0	588	60	36	96	684
20-year	1,231	209	1	1,440	136	88	224	1,664
30-year	3,043	659	1	3,703	331	226	556	4,260
50-year	4,220	948	1	5,169	453	315	768	5,937
100-year	5,375	1,129	1	6,505	569	397	966	7,471

Table 8.13(1/6) Annual Average Damages and Annual Average Expected Damages to Be Mitigated in Imus River in Case of Works for 5

Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	
2-year	0.5000	0.5000	1,296	648	324	324	
5-year	0.2000	0.3000	2,408	1,852	556	880	
10-year	0.1000	0.1000	3,314	2,861	286	1,166	
20-year	0.0500	0.0500	3,849	3,582	179	1,345	
30-year	0.0333	0.0167	4,083	3,966	66	1,411	
50-year	0.0200	0.0133	4,383	4,233	56	1,467	
100-year	0.0100	0.0100	4,762	4,573	46	1,513	
B. In Case	e of With-Pro	oject					(million Pesos)
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	324
5-year	0.2000	0.3000	39	19	6	6	874
10-year	0.1000	0.1000	258	148	15	21	1,145
20-year	0.0500	0.0500	569	413	21	41	1,304
30-year	0.0333	0.0167	1,043	806	13	55	1,356
50-year	0.0200	0.0133	1,693	1,368	18	73	1,394
100-year	0.0100	0.0100	2,393	2,043	20	93	1,420
							(A D)

Year Flood Damage Mitigation under Present Land Use Status A. In Case of Without-Project (million Pesos)

(= A - B) Table 8.13(2/6) Annual Average Damages and Annual Average Expected Damages to Be Mitigated in Imus River in Case of Works for 10-Year Flood Damage Mitigation under Present Land Use Status

I cal Flood Dallage Miligation	unuel l'resent Lanu Use Statt
A. In Case of Without-Project	(million Pesos)

Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	
2-year	0.5000	0.5000	1,296	648	324	324	
5-year	0.2000	0.3000	2,408	1,852	556	880	
10-year	0.1000	0.1000	3,314	2,861	286	1,166	
20-year	0.0500	0.0500	3,849	3,582	179	1,345	
30-year	0.0333	0.0167	4,083	3,966	66	1,411	
50-year	0.0200	0.0133	4,383	4,233	56	1,467	
100-year	0.0100	0.0100	4,762	4,573	46	1,513	
B. In Case	of With-Pro	oject					(million Pesos)
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	324
5-year	0.2000	0.3000	39	19	6	6	874
10-year	0.1000	0.1000	256	147	15	21	1,145
20-year	0.0500	0.0500	518	387	19	40	1,305
30-year	0.0333	0.0167	967	742	12	52	1,359
50-year	0.0200	0.0133	1,674	1,320	18	70	1,398
100-year	0.0100	0.0100	2,386	2,030	20	90	1,423

 Table 8.13(3/6)
 Annual Average Damages and Annual Average Expected Damages to Be
 Mitigated in Imus River in Case of Works for 20-Year Flood Damage Mitigation under Present Land Use Status

. In Case		Project			(mi		
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	
2-year	0.5000	0.5000	1,296	648	324	324	
5-year	0.2000	0.3000	2,408	1,852	556	880	
10-year	0.1000	0.1000	3,314	2,861	286	1,166	
20-year	0.0500	0.0500	3,849	3,582	179	1,345	
30-year	0.0333	0.0167	4,083	3,966	66	1,411	
50-year	0.0200	0.0133	4,383	4,233	56	1,467	
100-year	0.0100	0.0100	4,762	4,573	46	1,513	
. In Case	of With-Pro	oject					(million Pesos)
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	324
5-year	0.2000	0.3000	39	19	6	6	874
10-year	0.1000	0.1000	256	147	15	21	1,145
20-year	0.0500	0.0500	518	387	19	40	1,305
30-year	0.0222	0.0167	967	742	12	52	1,359
	0.0555	0.0107	207				
50-year	0.0333	0.0107	1,674	1,320	18	70	1,398

(= A - B) Table 8.13(4/6) Annual Average Damages and Annual Average Expected Damages to Be Mitigated in Imus River in Case of Works for 5-Year Flood Damage Mitigation under Future Land Use Status

A. In Case	e of without-	-Project					
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	
2-year	0.5000	0.5000	4,153	2,076	1,038	1,038	
5-year	0.2000	0.3000	7,081	5,617	1,685	2,723	
10-year	0.1000	0.1000	8,308	7,695	769	3,493	
20-year	0.0500	0.0500	9,450	8,879	444	3,937	
30-year	0.0333	0.0167	9,932	9,691	162	4,098	
50-year	0.0200	0.0133	10,437	10,185	136	4,234	
100-year	0.0100	0.0100	11,230	10,834	108	4,342	
B. In Case	e of With-Pro	oject					(million Pesos)
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	1,038
5-year	0.2000	0.3000	178	89	27	27	2,696
10-year	0.1000	0.1000	684	431	43	70	3,423
20-year	0.0500	0.0500	1,664	1,174	59	129	3,808
30-year	0.0333	0.0167	4,260	2,962	49	178	3,920
50-year	0.0200	0.0133	5,937	5,098	68	246	3,988
100-year	0.0100	0.0100	7,471	6,704	67	313	4,029
							(1 D)

 Table 8.13(5/6)
 Annual Average Damages and Annual Average Expected Damages to Be
 Mitigated in Imus River in Case of Works for 10-Year Flood Damage Mitigation under **Future Land Use Status**

A. In Case of Without-Project (million Peso						llion Pesos)	
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	
2-year	0.5000	0.5000	4,153	2,076	1,038	1,038	
5-year	0.2000	0.3000	7,081	5,617	1,685	2,723	
10-year	0.1000	0.1000	8,308	7,695	769	3,493	
20-year	0.0500	0.0500	9,450	8,879	444	3,937	
30-year	0.0333	0.0167	9,932	9,691	162	4,098	
50-year	0.0200	0.0133	10,437	10,185	136	4,234	
100-year	0.0100	0.0100	11,230	10,834	108	4,342	
B. In Case	e of With-Pro	oject					(million Pesos)
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	1,038
5-year	0.2000	0.3000	178	89	27	27	2,696
10-year	0.1000	0.1000	684	431	43	70	3,423
20-year	0.0500	0.0500	1,664	1,174	59	129	3,808
30-year	0.0333	0.0167	4,260	2,962	49	178	3,920
50-year	0.0200	0.0133	5,937	5,098	68	246	3,988
100-year	0.0100	0.0100	7,471	6,704	67	313	4,029
							$(- \Lambda \mathbf{D})$

(= A - B) Table 8.13(6/6) Annual Average Damages and Annual Average Expected Damages to Be Mitigated in Imus River in Case of Works for 20-Year Flood Damage Mitigation under Future Land Use Status

A. In Case	e of Without	-Project					
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	
2-year	0.5000	0.5000	4,153	2,076	1,038	1,038	
5-year	0.2000	0.3000	7,081	5,617	1,685	2,723	
10-year	0.1000	0.1000	8,308	7,695	769	3,493	
20-year	0.0500	0.0500	9,450	8,879	444	3,937	
30-year	0.0333	0.0167	9,932	9,691	162	4,098	
50-year	0.0200	0.0133	10,437	10,185	136	4,234	
100-year	0.0100	0.0100	11,230	10,834	108	4,342	
B. In Case	e of With-Pro	oject					(million Pesos)
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	1,038
5-year	0.2000	0.3000	178	89	27	27	2,696
10-year	0.1000	0.1000	684	431	43	70	3,423
20-year	0.0500	0.0500	1,664	1,174	59	129	3,808
30-year	0.0333	0.0167	4,260	2,962	49	178	3,920
50-year	0.0200	0.0133	5,937	5,098	68	246	3,988
100-year	0.0100	0.0100	7,471	6,704	67	313	4,029
							$(-\Lambda \mathbf{D})$

Table 8.14(1/6)Total Damages in San-Juan and Ylang-Ylang Rivers in Case of Works for 5-YearFlood Damage Mitigation under Present Land Use Status – Diversion Plan

Without Pro	ject							(million Pesos)
		Direct Da	amages		— I:	ndirect Damages		
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultural Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business Suspension 6.10%	Total	Damages in Grand Total
2-year	13	0	0	13	1	1	2	15
5-year	479	39	0	518	52	32	84	602
10-year	763	73	1	837	83	51	134	971
20-year	1,093	240	2	1,335	118	81	199	1,535
30-year	1,203	240	2	1,445	129	88	217	1,663
50-year	1,441	415	3	1,859	155	113	268	2,127
100-year	1,633	693	3	2,329	174	142	316	2,645
With Project	t							
2-year	0	0	0	0	0	0	0	0
5-year	0	0	0	0	0	0	0	0
10-year	64	31	1	96	7	6	13	109
20-year	259	56	2	317	28	19	47	364
30-year	305	153	2	460	33	28	61	521
50-year	460	224	3	687	49	42	91	778
100-year	606	398	3	1,007	64	61	125	1,132

Table 8.14(2/6)Total Damages in San-Juan and Ylang-Ylang Rivers in Case of Works for 5-YearFlood Damage Mitigation under Present Land Use Status – Retarding Basin Plan

Without Pro	oject							(million Pesos)	
		Direct D	amages		— I	- Indirect Damages			
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultural Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business Suspension	Total	Damages in Grand Total	
2 year	13	0	0	13	1	6.10%	2	15	
2-year	479	39	0	518	52	32	84	602	
10-vear	763	73	1	837	83	51	134	971	
20-year	1,093	240	2	1,335	118	81	199	1,535	
30-year	1,203	240	2	1,445	129	88	217	1,663	
50-year	1,441	415	3	1,859	155	113	268	2,127	
100-year	1,633	693	3	2,329	174	142	316	2,645	
With Project	t								
2-year	0	0	0	0	0	0	0	0	
5-year	0	0	0	0	0	0	0	0	
10-year	13	0	0	13	1	1	2	15	
20-year	262	18	0	281	29	17	46	327	
30-year	385	25	0	410	42	25	67	477	
50-year	522	40	0	562	57	34	92	654	
100-year	629	42	1	671	69	41	110	781	

Year Flood Damage Mitigation under Present Land Use Status – Diversion Plan

Without Pro	ject							(million Pesos)	
		Direct D	amages		- I	- Indirect Damages			
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultural Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business Suspension 6.10%	Total	Damages in Grand Total	
2-year	13	0	0	13	1	1	2	15	
5-year	479	39	0	518	52	32	84	602	
10-year	763	73	1	837	83	51	134	971	
20-year	1,093	240	2	1,335	118	81	199	1,535	
30-year	1,203	240	2	1,445	129	88	217	1,663	
50-year	1,441	415	3	1,859	155	113	268	2,127	
100-year	1,633	693	3	2,329	174	142	316	2,645	
With Project	t								
2-year	0	0	0	0	0	0	0	0	
5-year	0	0	0	0	0	0	0	0	
10-year	0	0	0	0	0	0	0	0	
20-year	178	33	2	213	19	13	32	244	
30-year	241	34	2	277	25	17	42	319	
50-year	361	120	2	484	38	30	68	552	
100-year	460	224	3	687	49	42	91	778	

Table 8.14(3/6) Total Damages in San-Juan and Ylang-Ylang Rivers in Case of Works for 10-

Table 8.14(4/6) Total Damages in San-Juan and Ylang-Ylang Rivers in Case of Works for 10-Year Flood Damage Mitigation under Present Land Use Status - Retarding Basin Plan

Without Pro	oject							(million Pesos)
		Direct D	amages		— II			
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultural Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business Suspension	Total	Damages in Grand Total
2-year	13	0	0	13	1	0.10%	2	15
5-year	479	39	0	518	52	32	84	602
10-year	763	73	1	837	83	51	134	971
20-year	1,093	240	2	1,335	118	81	199	1,535
30-year	1,203	240	2	1,445	129	88	217	1,663
50-year	1,441	415	3	1,859	155	113	268	2,127
100-year	1,633	693	3	2,329	174	142	316	2,645
With Projec	t							
2-year	0	0	0	0	0	0	0	0
5-year	0	0	0	0	0	0	0	0
10-year	0	0	0	0	0	0	0	0
20-year	174	3	0	177	19	11	30	207
30-year	288	25	0	313	32	19	51	364
50-year	423	40	0	463	46	28	74	537
100-year	528	42	0	570	58	35	93	663

Table 8.14(5/6)Total Damages in San-Juan and Ylang-Ylang Rivers in Case of Works for 20-
Year Flood Damage Mitigation under Present Land Use Status – Diversion Plan

Without	Droject
without	Protect

(million Pesos)

-		Direct D	amages		Indirect Damages			
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultural Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business Suspension 6.10%	Total	Damages in Grand Total
2-year	13	0	0	13	1	1	2	15
5-year	479	39	0	518	52	32	84	602
10-year	763	73	1	837	83	51	134	971
20-year	1,093	240	2	1,335	118	81	199	1,535
30-year	1,203	240	2	1,445	129	88	217	1,663
50-year	1,441	415	3	1,859	155	113	268	2,127
100-year	1,633	693	3	2,329	174	142	316	2,645
With Project								
2-year	0	0	0	0	0	0	0	0
5-year	0	0	0	0	0	0	0	0
10-year	0	0	0	0	0	0	0	0
20-year	0	0	0	0	0	0	0	0
30-year	241	34	2	277	25	17	42	319
50-year	361	120	2	484	38	30	68	552
100-year	460	224	3	687	49	42	91	778

Table 8.14(6/6)Total Damages in San-Juan and Ylang-Ylang Rivers in Case of Works for 20-Year Flood Damage Mitigation under Present Land Use Status – Retarding Basin Plan

Without Pro	ject							(million Pesos)
		Direct D	amages		— II	ndirect Damages		
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultural Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business Suspension 6.10%	Total	Damages in Grand Total
2-year	13	0	0	13	1	1	2	15
5-year	479	39	0	518	52	32	84	602
10-year	763	73	1	837	83	51	134	971
20-year	1,093	240	2	1,335	118	81	199	1,535
30-year	1,203	240	2	1,445	129	88	217	1,663
50-year	1,441	415	3	1,859	155	113	268	2,127
100-year	1,633	693	3	2,329	174	142	316	2,645
With Project	t							
2-year	0	0	0	0	0	0	0	0
5-year	0	0	0	0	0	0	0	0
10-year	0	0	0	0	0	0	0	0
20-year	0	0	0	0	0	0	0	0
30-year	288	25	0	313	32	19	51	364
50-year	423	40	0	463	46	28	74	537
100-year	528	42	0	570	58	35	93	663

Table 8.15(1/6) Annual Average Damages and Annual Average Expected Damages to Be Mitigated in San-Juan and Ylang-Ylang Rivers in Case of Works for 5-Year Flood Damage Mitigation under Present Land Use Status – Diversion Plan

			-				
A. In Case o	of Without-Pr	oject				(million Pesos)	-
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	
2-year	0.5000	0.5000	15	8	4	4	-
5-year	0.2000	0.3000	602	308	93	96	
10-year	0.1000	0.1000	971	786	79	175	
20-year	0.0500	0.0500	1,535	1,253	63	238	
30-year	0.0333	0.0167	1,663	1,599	27	264	
50-year	0.0200	0.0133	2,127	1,895	25	290	
100-year	0.0100	0.0100	2,645	2,386	24	313	_
B. In Case o	of With-Proje	ct					(million Pesos)
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	4
5-year	0.2000	0.3000	0	0	0	0	96
10-year	0.1000	0.1000	109	54	5	5	170
20-year	0.0500	0.0500	364	236	12	17	220
30-year	0.0333	0.0167	521	442	7	25	240
50-year	0.0200	0.0133	778	650	9	33	256
100-year	0.0100	0.0100	1,132	955	10	43	271
							(= A - B)

Table 8.15(2/6) Annual Average Damages and Annual Average Expected Damages to Be Mitigated in San-Juan and Ylang-Ylang Rivers in Case of Works for 5-Year Flood Damage Mitigation under Present Land Use Status – Retarding Basin Plan

A. In Case o	f Without-Pro	oject					
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	
2-year	0.5000	0.5000	15	8	4	4	
5-year	0.2000	0.3000	602	308	93	96	
10-year	0.1000	0.1000	971	786	79	175	
20-year	0.0500	0.0500	1,535	1,253	63	238	
30-year	0.0333	0.0167	1,663	1,599	27	264	
50-year	0.0200	0.0133	2,127	1,895	25	290	
100-year	0.0100	0.0100	2,645	2,386	24	313	
3. In Case o	f With-Projec	t					(million I

Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	4
5-year	0.2000	0.3000	0	0	0	0	96
10-year	0.1000	0.1000	15	8	1	1	174
20-year	0.0500	0.0500	327	171	9	9	228
30-year	0.0333	0.0167	477	402	7	16	248
50-year	0.0200	0.0133	654	566	8	24	266
100-year	0.0100	0.0100	781	718	7	31	283
							(= A - B)

Table 8.15(3/6) Annual Average Damages and Annual Average Expected Damages to Be Mitigated in San-Juan and Ylang-Ylang Rivers in Case of Works for 10-Year Flood Damage Mitigation under Present Land Use Status – Diversion Plan

			DIVERS	ion i iun			
A. In Case o	of Without-Pro	oject				(million Pesos)	<u>.</u>
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	
2-year	0.5000	0.5000	15	8	4	4	-
5-year	0.2000	0.3000	602	308	93	96	
10-year	0.1000	0.1000	971	786	79	175	
20-year	0.0500	0.0500	1,535	1,253	63	238	
30-year	0.0333	0.0167	1,663	1,599	27	264	
50-year	0.0200	0.0133	2,127	1,895	25	290	
100-year	0.0100	0.0100	2,645	2,386	24	313	_
B. In Case o	of With-Projec	t					(million Pesos)
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	4
5-year	0.2000	0.3000	0	0	0	0	96
10-year	0.1000	0.1000	0	0	0	0	175
20-year	0.0500	0.0500	244	122	6	6	232
30-year	0.0333	0.0167	319	282	5	11	254
50-year	0.0200	0.0133	552	435	6	17	273
100-year	0.0100	0.0100	778	665	7	23	290
							(= A - B)

Table 8.15(4/6) Annual Average Damages and Annual Average Expected Damages to Be Mitigated in San-Juan and Ylang-Ylang Rivers in Case of Works for 10-Year Flood Damage Mitigation under Present Land Use Status – Retarding Basin Plan

A. In Case o	f Without-Pr	oject							
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages			
2-year	0.5000	0.5000	15	8	4	4			
5-year	0.2000	0.3000	602	308	93	96			
10-year	0.1000	0.1000	971	786	79	175			
20-year	0.0500	0.0500	1,535	1,253	63	238			
30-year	0.0333	0.0167	1,663	1,599	27	264			
50-year	0.0200	0.0133	2,127	1,895	25	290			
100-year	0.0100	0.0100	2,645	2,386	24	313			
B. In Case of With-Project									

Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	4
5-year	0.2000	0.3000	0	0	0	0	96
10-year	0.1000	0.1000	0	0	0	0	175
20-year	0.0500	0.0500	207	104	5	5	232
30-year	0.0333	0.0167	364	286	5	10	254
50-year	0.0200	0.0133	537	451	6	16	274
100-year	0.0100	0.0100	663	600	6	22	291

Table 8.15(5/6) Annual Average Damages and Annual Average Expected Damages to Be Mitigated in San-Juan and Ylang-Ylang Rivers in Case of Works for 20-Year Flood Damage Mitigation under Present Land Use Status – Diversion Plan

			DIVERS	ion i iun			
A. In Case o	of Without-Pro	oject				(million Pesos)	-
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	
2-year	0.5000	0.5000	15	8	4	4	•
5-year	0.2000	0.3000	602	308	93	96	
10-year	0.1000	0.1000	971	786	79	175	
20-year	0.0500	0.0500	1,535	1,253	63	238	
30-year	0.0333	0.0167	1,663	1,599	27	264	
50-year	0.0200	0.0133	2,127	1,895	25	290	
100-year	0.0100	0.0100	2,645	2,386	24	313	_
B. In Case o	of With-Projec	t					(million Pesos)
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	4
5-year	0.2000	0.3000	0	0	0	0	96
10-year	0.1000	0.1000	0	0	0	0	175
20-year	0.0500	0.0500	0	0	0	0	238
30-year	0.0333	0.0167	319	160	3	3	262
50-year	0.0200	0.0133	552	435	6	8	281
100-year	0.0100	0.0100	778	665	7	15	298
							(= A - B)

Table 8.15(6/6) Annual Average Damages and Annual Average Expected Damages to Be Mitigated in San-Juan and Ylang-Ylang Rivers in Case of Works for 20-Year Flood Damage Mitigation under Present Land Use Status – Retarding Basin Plan

A. In Case o	f Without-Pr	oject							
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages			
2-year	0.5000	0.5000	15	8	4	4			
5-year	0.2000	0.3000	602	308	93	96			
10-year	0.1000	0.1000	971	786	79	175			
20-year	0.0500	0.0500	1,535	1,253	63	238			
30-year	0.0333	0.0167	1,663	1,599	27	264			
50-year	0.0200	0.0133	2,127	1,895	25	290			
100-year	0.0100	0.0100	2,645	2,386	24	313			
B. In Case of With-Project									

Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	4
5-year	0.2000	0.3000	0	0	0	0	96
10-year	0.1000	0.1000	0	0	0	0	175
20-year	0.0500	0.0500	0	0	0	0	238
30-year	0.0333	0.0167	364	182	3	3	261
50-year	0.0200	0.0133	537	451	6	9	281
100-year	0.0100	0.0100	663	600	6	15	298

Table 8.16(1/6)	Total Damages in San-Juan and Ylang-Ylang Rivers in Case of Works for 5-Year
Flo	od Damage Mitigation under Future Land Use Status – Diversion Plan

Without Pro	ject							(million Pesos)
		Direct D	amages		— II	ndirect Damages		
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory	Damages to Industrial Estate	Damages to Agricultural Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business Suspension	Total	Damages in Grand Total
2	150	11	0	161	16	6.10%	26	197
2-year	745	121	0	866	82	10 53	134	1.000
5-year	1 255	201	0	1 557	02	55	134	1,000
10-year	1,255	501	1	1,557	137	95	232	1,789
20-year	1,847	603	2	2,453	199	150	348	2,801
30-year	2,059	710	2	2,771	221	169	390	3,161
50-year	2,378	927	3	3,308	254	202	456	3,764
100-year	2,803	1,288	4	4,095	296	250	546	4,641
With Projec	t							
2-year	0	0	0	0	0	0	0	0
5-year	0	0	0	0	0	0	0	0
10-year	163	64	1	228	18	14	32	260
20-year	646	205	2	852	69	52	121	974
30-year	802	374	2	1,179	86	72	158	1,336
50-vear	1,105	488	3	1,596	117	97	214	1,810
100-year	1,436	710	3	2,149	149	131	280	2,429

Table 8.16(2/6)Total Damages in San-Juan and Ylang-Ylang Rivers in Case of Works for 5-YearFlood Damage Mitigation under Future Land Use Status – Retarding Basin Plan

Without Pro	oject							(million Pesos)
		Direct D	amages		— I	ndirect Damages		
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultural Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business Suspension	Total	Damages in Grand Total
2 year	150	11	0	161	16	6.10%	26	187
2-year	745	121	0	866	82	53	134	1.000
10-year	1.255	301	1	1.557	137	95	232	1,789
20-year	1,847	603	2	2,453	199	150	348	2,801
30-year	2,059	710	2	2,771	221	169	390	3,161
50-vear	2,378	927	3	3,308	254	202	456	3,764
100-year	2,803	1,288	4	4,095	296	250	546	4,641
With Projec	t							
2-year	0	0	0	0	0	0	0	0
5-year	0	0	0	0	0	0	0	0
10-year	16	7	0	24	2	1	3	27
20-year	342	53	0	395	38	24	62	458
30-year	508	83	0	591	56	36	92	684
50-year	689	131	0	820	76	50	126	946
100-year	835	202	1	1,038	91	63	155	1,192

Table 8.16(3/6)) Total Damages in San-Juan and Ylang-Ylang Rivers in Case of Works for 10-
Year Fl	ood Damage Mitigation under Future Land Use Status – Diversion Plan

Without Pro	oject							(million Pesos)
		Direct D	amages		— II	Indirect Damages		
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultural Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business Suspension 6.10%	Total	Damages in Grand Total
2-year	150	11	0	161	16	10	26	187
5-year	745	121	0	866	82	53	134	1,000
10-year	1,255	301	1	1,557	137	95	232	1,789
20-year	1,847	603	2	2,453	199	150	348	2,801
30-year	2,059	710	2	2,771	221	169	390	3,161
50-year	2,378	927	3	3,308	254	202	456	3,764
100-year	2,803	1,288	4	4,095	296	250	546	4,641
With Projec	t							
2-year	0	0	0	0	0	0	0	0
5-year	0	0	0	0	0	0	0	0
10-year	0	0	0	0	0	0	0	0
20-year	462	147	2	611	48	37	85	696
30-year	648	209	2	859	68	52	120	979
50-year	924	361	2	1,288	97	79	175	1,463
100-year	1,151	497	3	1,651	121	101	222	1,873

Table 8.16(4/6)Total Damages in San-Juan and Ylang-Ylang Rivers in Case of Works for 10-
Year Flood Damage Mitigation under Future Land Use Status – Retarding Basin Plan

Without Pro	oject							(million Pesos)
		Direct D	amages		_ I	ndirect Damages		
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory	Damages to Industrial Estate	Damages to Agricultural Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business Suspension	Total	Damages in Grand Total
	150	11	0	161	16	6.10%	26	107
2-year	150	11	0	101	10	10	20	187
5-year	/45	121	0	800	82	53	134	1,000
10-year	1,255	301	1	1,557	137	95	232	1,789
20-year	1,847	603	2	2,453	199	150	348	2,801
30-year	2,059	710	2	2,771	221	169	390	3,161
50-year	2,378	927	3	3,308	254	202	456	3,764
100-year	2,803	1,288	4	4,095	296	250	546	4,641
With Projec	t							
2-year	0	0	0	0	0	0	0	0
5-year	0	0	0	0	0	0	0	0
10-year	0	0	0	0	0	0	0	0
20-year	279	48	0	328	31	20	51	379
30-vear	464	107	0	571	51	35	86	656
50-vear	613	142	0	756	67	46	113	869
100-year	815	195	1	1,011	89	62	151	1,162

Without Pro	ject							(million Pesos)
		Direct D	amages		— II	ndirect Damages		
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultural Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business Suspension 6.10%	Total	Damages in Grand Total
2-year	150	11	0	161	16	10	26	187
5-year	745	121	0	866	82	53	134	1,000
10-year	1,255	301	1	1,557	137	95	232	1,789
20-year	1,847	603	2	2,453	199	150	348	2,801
30-year	2,059	710	2	2,771	221	169	390	3,161
50-year	2,378	927	3	3,308	254	202	456	3,764
100-year	2,803	1,288	4	4,095	296	250	546	4,641
With Project	t							
2-year	0	0	0	0	0	0	0	0
5-year	0	0	0	0	0	0	0	0
10-year	0	0	0	0	0	0	0	0
20-year	0	0	0	0	0	0	0	0
30-year	648	209	2	859	68	52	120	979
50-year	924	361	2	1,288	97	79	175	1,463
100-vear	1.151	497	3	1.651	121	101	222	1.873

Table 8.16(5/6)Total Damages in San-Juan and Ylang-Ylang Rivers in Case of Works for 20-
Year Flood Damage Mitigation under Future Land Use Status – Diversion Plan

Table 8.16(6/6)Total Damages in San-Juan and Ylang-Ylang Rivers in Case of Works for 20-
Year Flood Damage Mitigation under Future Land Use Status – Retarding Basin Plan

Without Pro	ject							(million Pesos)	
		Direct D	amages		— II	- Indirect Damages			
Return Period	Buildings together with HH Effects, Durable Assets and Inventory Goods		Damages to Agricultural Total Crops		Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business Suspension	Total	Damages in Grand Total	
2-vear	150	11	0	161	16	6.10% 10	26	187	
5-year	745	121	0	866	82	53	134	1.000	
10-year	1,255	301	1	1,557	137	95	232	1,789	
20-year	1,847	603	2	2,453	199	150	348	2,801	
30-year	2,059	710	2	2,771	221	169	390	3,161	
50-year	2,378	927	3	3,308	254	202	456	3,764	
100-year	2,803	1,288	4	4,095	296	250	546	4,641	
With Project	t								
2-year	0	0	0	0	0	0	0	0	
5-year	0	0	0	0	0	0	0	0	
10-year	0	0	0	0	0	0	0	0	
20-year	0	0	0	0	0	0	0	0	
30-year	464	107	0	571	51	35	86	656	
50-year	613	142	0	756	67	46	113	869	
100-year	815	195	1	1,011	89	62	151	1,162	

Table 8.17(1/6) Annual Average Damages and Annual Average Expected Damages to Be Mitigated in San-Juan and Ylang-Ylang Rivers in Case of Works for 5-Year Flood Damage Mitigation under Future Land Use Status – Diversion Plan

A. In Case of	of Without-Pro	oject				(million Pesos)	_
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	
2-year	0.5000	0.5000	187	94	47	47	
5-year	0.2000	0.3000	1,000	594	178	225	
10-year	0.1000	0.1000	1,789	1,395	139	364	
20-year	0.0500	0.0500	2,801	2,295	115	479	
30-year	0.0333	0.0167	3,161	2,981	50	529	
50-year	0.0200	0.0133	3,764	3,462	46	575	
100-year	0.0100	0.0100	4,641	4,203	42	617	
B. In Case o	of With-Projec	ct					(million Pesos)
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	47
5-year	0.2000	0.3000	0	0	0	0	225
10-year	0.1000	0.1000	260	130	13	13	351
20-year	0.0500	0.0500	974	617	31	44	435
30-year	0.0333	0.0167	1,336	1,155	19	63	466
50-year	0.0200	0.0133	1,810	1,573	21	84	491
100-year	0.0100	0.0100	2,429	2,120	21	105	512
							(= A - B)

Table 8.17(2/6) Annual Average Damages and Annual Average Expected Damages to Be Mitigated in San-Juan and Ylang-Ylang Rivers in Case of Works for 5-Year Flood Damage Mitigation under Future Land Use Status – Retarding Basin Plan

A. In Case o	f Without-Pro	oject							
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages			
2-year	0.5000	0.5000	187	94	47	47			
5-year	0.2000	0.3000	1,000	594	178	225			
10-year	0.1000	0.1000	1,789	1,395	139	364			
20-year	0.0500	0.0500	2,801	2,295	115	479			
30-year	0.0333	0.0167	3,161	2,981	50	529			
50-year	0.0200	0.0133	3,764	3,462	46	575			
100-year	0.0100	0.0100	4,641	4,203	42	617			
B. In Case of With-Project									

Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	47
5-year	0.2000	0.3000	0	0	0	0	225
10-year	0.1000	0.1000	27	13	1	1	363
20-year	0.0500	0.0500	458	242	12	13	466
30-year	0.0333	0.0167	684	571	10	23	506
50-year	0.0200	0.0133	946	815	11	34	541
100-year	0.0100	0.0100	1,192	1,069	11	45	572

Table 8.17(3/6) Annual Average Damages and Annual Average Expected Damages to Be Mitigated in San-Juan and Ylang-Ylang Rivers in Case of Works for 10-Year Flood Damage Mitigation under Future Land Use Status – Diversion Plan

A. In Case o	f Without-Pr	oject			(million Pesos)		
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	
2-year	0.5000	0.5000	187	94	47	47	
5-year	0.2000	0.3000	1,000	594	178	225	
10-year	0.1000	0.1000	1,789	1,395	139	364	
20-year	0.0500	0.0500	2,801	2,295	115	479	
30-year	0.0333	0.0167	3,161	2,981	50	529	
50-year	0.0200	0.0133	3,764	3,462	46	575	
100-year	0.0100	0.0100	4,641	4,203	42	617	
B. In Case o	f With-Proje	ct					(million Pesos)
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	47
5-year	0.2000	0.3000	0	0	0	0	225
10-year	0.1000	0.1000	0	0	0	0	364
20-year	0.0500	0.0500	696	348	17	17	462
30-year	0.0333	0.0167	979	838	14	31	497
50-year	0.0200	0.0133	1,463	1,221	16	48	527
100-year	0.0100	0.0100	1,873	1,668	17	64	553
							(= A - B)

Table 8.17(4/6) Annual Average Damages and Annual Average Expected Damages to Be Mitigated in San-Juan and Ylang-Ylang Rivers in Case of Works for 10-Year Flood Damage Mitigation under Future Land Use Status – Retarding Basin Plan

A. In Case o	f Without-Pro	oject							
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages			
2-year	0.5000	0.5000	187	94	47	47			
5-year	0.2000	0.3000	1,000	594	178	225			
10-year	0.1000	0.1000	1,789	1,395	139	364			
20-year	0.0500	0.0500	2,801	2,295	115	479			
30-year	0.0333	0.0167	3,161	2,981	50	529			
50-year	0.0200	0.0133	3,764	3,462	46	575			
100-year	0.0100	0.0100	4,641	4,203	42	617			
B. In Case of With-Project									

2-year 0.5000 0.5000 0 0 0 0 47 5-year 0.2000 0.3000 0 0 0 0 225 10-year 0.1000 0.1000 0 0 0 364 20-year 0.0500 0.0500 379 189 9 9 470 30-year 0.0333 0.0167 656 518 9 18 511 50-year 0.0200 0.0133 869 763 10 28 547 100-year 0.0100 1,162 1,015 10 38 579	Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
5-year 0.2000 0.3000 0 0 0 0 225 10-year 0.1000 0.1000 0 0 0 0 364 20-year 0.0500 0.0500 379 189 9 9 470 30-year 0.0333 0.0167 656 518 9 18 511 50-year 0.0200 0.0133 869 763 10 28 547 100-year 0.0100 1,162 1,015 10 38 579	2-year	0.5000	0.5000	0	0	0	0	47
10-year 0.1000 0.1000 0 0 0 364 20-year 0.0500 0.0500 379 189 9 9 470 30-year 0.0333 0.0167 656 518 9 18 511 50-year 0.0200 0.0133 869 763 10 28 547 100-year 0.0100 1,162 1,015 10 38 579	5-year	0.2000	0.3000	0	0	0	0	225
20-year 0.0500 0.0500 379 189 9 9 470 30-year 0.0333 0.0167 656 518 9 18 511 50-year 0.0200 0.0133 869 763 10 28 547 100-year 0.0100 1,162 1,015 10 38 579	10-year	0.1000	0.1000	0	0	0	0	364
30-year 0.0333 0.0167 656 518 9 18 511 50-year 0.0200 0.0133 869 763 10 28 547 100-year 0.0100 1,162 1,015 10 38 579	20-year	0.0500	0.0500	379	189	9	9	470
50-year 0.0200 0.0133 869 763 10 28 547 100-year 0.0100 1,162 1,015 10 38 579	30-year	0.0333	0.0167	656	518	9	18	511
100-year 0.0100 0.0100 1,162 1,015 10 38 579	50-year	0.0200	0.0133	869	763	10	28	547
	100-year	0.0100	0.0100	1,162	1,015	10	38	579

Table 8.17(5/6) Annual Average Damages and Annual Average Expected Damages to Be Mitigated in San-Juan and Ylang-Ylang Rivers in Case of Works for 20-Year Flood Damage Mitigation under Future Land Use Status – Diversion Plan

A. In Case o	f Without-Pr	oject		(million Pesos)			
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	
2-year	0.5000	0.5000	187	94	47	47	-
5-year	0.2000	0.3000	1,000	594	178	225	
10-year	0.1000	0.1000	1,789	1,395	139	364	
20-year	0.0500	0.0500	2,801	2,295	115	479	
30-year	0.0333	0.0167	3,161	2,981	50	529	
50-year	0.0200	0.0133	3,764	3,462	46	575	
100-year	0.0100	0.0100	4,641	4,203	42	617	
B. In Case o	f With-Proje	ct					(million Pesos)
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	47
5-year	0.2000	0.3000	0	0	0	0	225
10-year	0.1000	0.1000	0	0	0	0	364
20-year	0.0500	0.0500	0	0	0	0	479
30-year	0.0333	0.0167	979	489	8	8	521
50-year	0.0200	0.0133	1,463	1,221	16	24	551
100-year	0.0100	0.0100	1,873	1,668	17	41	576
							(= A - B)

Table 8.17(6/6) Annual Average Damages and Annual Average Expected Damages to Be Mitigated in San-Juan and Ylang-Ylang Rivers in Case of Works for 20-Year Flood Damage Mitigation under Future Land Use Status – Retarding Basin Plan

A. In Case o	f Without-Pro	oject						
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages		
2-year	0.5000	0.5000	187	94	47	47		
5-year	0.2000	0.3000	1,000	594	178	225		
10-year	0.1000	0.1000	1,789	1,395	139	364		
20-year	0.0500	0.0500	2,801	2,295	115	479		
30-year	0.0333	0.0167	3,161	2,981	50	529		
50-year	0.0200	0.0133	3,764	3,462	46	575		
100-year	0.0100	0.0100	4,641	4,203	42	617		
B. In Case of With-Project								

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
5-year 0.2000 0.3000 0 0 0 0 225 10-year 0.1000 0.1000 0 0 0 0 364 20-year 0.0500 0.0500 0 0 0 479 30-year 0.0333 0.0167 656 328 5 523 50-year 0.0200 0.0133 869 763 10 16 559 100-year 0.0100 1,162 1,015 10 26 591	2-year	0.5000	0.5000	0	0	0	0	47
10-year 0.1000 0.1000 0 0 0 364 20-year 0.0500 0.0500 0 0 0 479 30-year 0.0333 0.0167 656 328 5 523 50-year 0.0200 0.0133 869 763 10 16 559 100-year 0.0100 1,162 1,015 10 26 591	5-year	0.2000	0.3000	0	0	0	0	225
20-year 0.0500 0.0500 0 0 0 479 30-year 0.0333 0.0167 656 328 5 5 523 50-year 0.0200 0.0133 869 763 10 16 559 100-year 0.0100 1,162 1,015 10 26 591	10-year	0.1000	0.1000	0	0	0	0	364
30-year 0.0333 0.0167 656 328 5 523 50-year 0.0200 0.0133 869 763 10 16 559 100-year 0.0100 1,162 1,015 10 26 591	20-year	0.0500	0.0500	0	0	0	0	479
50-year 0.0200 0.0133 869 763 10 16 559 100-year 0.0100 1,162 1,015 10 26 591	30-year	0.0333	0.0167	656	328	5	5	523
100-year 0.0100 0.0100 1,162 1,015 10 26 591	50-year	0.0200	0.0133	869	763	10	16	559
	100-year	0.0100	0.0100	1,162	1,015	10	26	591

Table 8.18(1/4) Total Damages in Full Scale Case of Inland Drainage Improvement Works in Case of Works for 2-Year Flood Damage Mitigation under Present Land Use Status

								(million Pesos)
		Direct Dan	ages		- Iı	ndirect Damages		
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultura l Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business <u>Suspension</u> 6.10%	Total	Damages in Grand Total
Without P	roject							
2-year	723	34	1	757	79	46	126	883
With Proje	ect							
2-year	0	0	0	0	0	0	0	0

Table 8.18(2/4) Total Damages in Full Scale Case of Inland Drainage Improvement Works in Case of Works for 2-Year Flood Damage Mitigation under Future Land Use Status

				USC D	latus			(million Pesos)
		Direct Dan	nages		T.	dim et Demesere		
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultura l Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business <u>Suspension</u> 6.10%	Total	Damages in Grand Total
Without F	Project							
2-year	723	34	1	757	79	46	126	883
With Proj	ect							
2-year	259	18	0	277	29	17	46	323

Table 8.18(3/4) Total Damages in Partial Scale Case of Inland Drainage Improvement Works in Case of Works for 2-Year Flood Damage Mitigation under Present Land Use Status

			riesen	Lan	u Use Statu	5		(million Pesos)
		Direct Dam	ages			direct Demogra		
Return Period	Damages to Buildings together with HH Effects, Durable Assets and Inventory Goods	Damages to Industrial Estate	Damages to Agricultura l Crops	Total	Income Losses Due to Cleaning of Buildings and of Business Suspension	Other Indirect Damages excl. Income Losses and Business <u>Suspension</u> 6.10%	Total	Damages in Grand Total
Without P	roject							
2-year	1,265	176	1	1,442	139	88	227	1,668
With Proje	ect							
2-year	0	0	0	0	0	0	0	0

Table 8.18(4/4)Total Damages in Partial Scale Case of Inland DrainageImprovement Works in Case of Works for 2-Year Flood Damage Mitigation under
Future Land Use Status

						-		(million Pesos)
Return Period	Damages to Buildings together with HH Effects, Durable Assets and	Direct Dan Damages to Industrial Estate	Damages to Agricultura l Crops	Total	- In Income Losses Due to Cleaning of Buildings and of Business	ndirect Damages Other Indirect Damages excl. Income Losses and Business	Total	Damages in Grand Total
	Goods				Suspension	Suspension 6.10%		
Without P	<u>roject</u>							
2-year	1,265	176	1	1,442	139	88	227	1,668
With Proje	ect							
2-year	396	150	0	547	44	33	77	624

Table 8.19(1/4)Annual Average Damages and Annual Average Expected Damages to BeMitigated in Full Scale Case of Inland Drainage Improvement Works in Case of Works for 2-
Year Flood Damage Mitigation under Present Land Use Status

A. In Case	of Without-P	oject		((million Pesos)		
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	
2-year	0.5000	0.5000	883	441	221	221	
B. In Case	of With-Proje	ct					(million Pesos)
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	221
							(= A - B)

Table 8.19(2/4)Annual Average Damages and Annual Average Expected Damages to BeMitigated in Full Scale Case of Inland Drainage Improvement Works in Case of Works for 2-
Year Flood Damage Mitigation under Present Land Use Status

A. In Case	of Without-P	roject					
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	
2-year	0.5000	0.5000	883	441	221	221	
B. In Case	of With-Proje	ct					(million Pesos)
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	323	161	81	81	140
							(= A - B)

Table 8.19(3/4)Annual Average Damages and Annual Average Expected Damages to BeMitigated in Partial Scale Case of Inland Drainage Improvement Works in Case of Works for
2-Year Flood Damage Mitigation under Present Land Use Status

A. In Case	of Without-P	roject					
Return Period	Annual Average Probability of Exceedance	Probability of GCcurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	
2-year	0.5000	0.5000	1,668	834	417	417	
B. In Case	of With-Proje	ect					(million Pesos)
Return Period	Annual Average Probability of Exceedance	Probability of GOccurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	0	0	0	0	417
							(= A - B)

Table 8.19(4/4)Annual Average Damages and Annual Average Expected Damages to BeMitigated in Partial Scale Case of Inland Drainage Improvement Works in Case of Works for
2-Year Flood Damage Mitigation under Future Land Use Status

A. In Case	of Without-P	roject	(
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	
2-year	0.5000	0.5000	1,668	834	417	417	
B. In Case	of With-Proje	ct					(million Pesos)
Return Period	Annual Average Probability of Exceedance	Probability of Occurrence	Flood Damages by Return Period	Average Amount of Assumed Damages	Average Annual Amount of Probable Damages	Accumu- lated Amount of Probable Damages	Annual Average Mitigated Damages to Be Expected (may be converted into E. Benefit)
2-year	0.5000	0.5000	624	312	156	156	261
							(= A - B)

ıl Average Expected Damages od Regulation Pond	(sc	.	of u-	8	8	8	1		(million Pesos)		Annual	u- Average	Mitugated	e Exnected (may	ss he converted	into E. Benefit)	0 288	0 728	0 898	0 967	(= A - B)
	llion Pesc		Accum lated Amount Probabl Damage	28	72	89	96			Accumu lated Amount Probabl Damage											
	(mi	A	Average Annual Amount of Probable Damages	288	440	170	69					Average	Annual Amount of	Amount of Probable Damages				0	0	0	
ind Annu n-Site Flo			Average Amount of Assumed Damages	576	1,468	1,697	1,389			Average Amount of Assumed Damages						0	0	0	0		
amages a Case of Or			Flood Damages by Return Period	1,152	1,783	1,611	1,166			Flood Damages / by Return Period					C	0	0	0			
Average L igated in (Project		Probability of Occurrence	0.5000	0.3000	0.1000	0.0500		ject				Probability	u Occurrence			0.5000	0.3000	0.1000	0.0500	
1. Annual to Be Miti	of Without-	1 A	Annuar Average Probability of Exceedance	0.5000	0.2000	0.1000	0.0500		of With-Pro			Annual	Average Dechobility	riouaumy	Exceedance		0.5000	0.2000	0.1000	0.0500	
Table 8.2	A. In Case		Return Period	2-year	5-year	10-year	20-year		B. In Case				Return	Period			7-vear	5-vear	10-vear	20-year	
q	out Project		Damages in Grand Total					1,152	1,783	1,611	1,166		0	0	0	0					
on Pon	With		e Total	_		1		147	220	193	140		0	0	0	0					
l Regulati		ect Damage	Other Other Indirect Damages excl. Incom	Rusiness	Suspensior	6.10%		61	95	87	63		0	0	0	0					
-Site Flood		Indir	Income Losses Due to Cleaning of Buildings	and of	Business	Suspension		86	125	107	78		0	0	0	0					
e of On			Total					1,005	1,563	1,418	1,025		0	0	0	0					
ble 8.20 Total Damages in Case		lages	Damages to Agricultura	1 Crops			Pond	0	0	0	0	<u>nd</u>	0	0	0	0					
		Direct Dam	Damages to Industrial	Estate			Regulation	197	380	385	281	<u>gulation Po</u>	0	0	0	0					
			Damages to Buildings together with HH Effects, Durable	Assets and	Inventory	Goods	n-Site Flood	807	1,183	1,033	743	ite Flood Re	0	0	0	0					
Ta			Return Period				Without Or	2-year	5-year	10-year	20-year	With On-Si	2-year	5-year	10-year	20-year					
Table 8.22(1/3)Summary of Project Cost Disbursement in Financial Terms and EconomicTerms for Imus River Channel Improvement

A.1.1 Imus River	with On-Si	ite Worl	ks on M	easure	for 5-Ye	ar Flood	ł					(million	Pesos)
Cost	Total					1	Annual D	bisbursen	ent					
Cost	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	5,646	0	407	808	811	686	867	486	504	469	309	231	232	0
Economic Cost	4,307	0	278	605	605	504	651	364	374	348	236	172	172	0

A.1.2 Imus River without On-Site Works on Measure for 5-Year Flood

Cost	Total -						Annual D	oisbursen	nent					
Cost	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	3,341	0	205	656	587	457	639	236	254	207	99	0	0	0
Economic Cost	2,474	0	124	491	439	335	482	179	189	154	81	0	0	0

A.2.1 Imus River with On-Site Works on Measure for 10-Year Flood

Cost	Total						Annual E	Disbursen	nent					
Cost	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	5,682	0	414	825	821	687	867	486	504	469	309	231	232	0
Economic Cost	4,331	0	282	616	613	504	651	364	374	348	236	172	172	0

A.2.2 Imus River without On-Site Works on Measure for 10-Year Flood

Cost	Total						Annual D	Disbursen	nent					
Cost	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	3,393	0	206	670	600	462	643	241	258	210	102	0	0	0
Economic Cost	2,516	0	125	503	450	338	485	183	193	156	83	0	0	0

A.3.1 Imus River with On-Site Works on Measure for 20-Year Flood

Cost	Total -						Annual D	isbursen	ent					
Cost	Total -	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	6,117	0	457	945	899	689	869	489	506	471	310	241	241	0
Economic Cost	4,528	0	305	702	676	506	652	366	376	349	236	180	180	0

A.3.2 Imus River without On-Site Works on Measure for 20-Year Flood

Cost	Total						Annual D	Disbursen	nent					
Cost	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	3,600	0	250	764	651	465	647	244	262	213	104	0	0	0
Economic Cost	2,661	0	148	567	491	341	488	186	196	158	85	0	0	0

Table 8.22(2/3)Summary of Project Cost Disbursement in Financial Terms
and Economic Terms for San-Juan and Ylang-Ylang Rivers Channel

Improvement

B.1.1 (1) San-Juan - Ylang-Ylang Rivers with On-Site Works on Measure for 5-Year Flood - Diversion Plan

.,	-	•										(mi	illion F	Pesos)
Cost	Total					A	nnual E	Disburse	ement					
COSt	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	2,441	0	145	218	376	311	269	332	264	156	123	123	124	0
Economic Cost	1,793	0	107	160	263	217	196	259	203	115	91	91	91	0

B.1.1 (2) San-Juan - Ylang-Ylang Rivers with On-Site Works on Measure for 5-Year Flood - Retarding Basin Plan

Cost	Total					A	nnual E	Disburse	ement					
Cost	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	2,691	0	151	227	378	310	369	389	333	161	127	123	124	0
Economic Cost	2,017	0	114	168	267	219	279	307	262	121	95	93	93	0

B.1.2 (1) San-Juan - Ylang-Ylang Rivers without On-Site Works on Measure for 5-Year Flood - Diversion Plan

Cost	Total					A	nnual L	nsburse	ement					
COSt	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	1,135	0	29	110	236	175	156	254	160	10	6	0	0	0
Economic Cost	844	0	22	81	159	117	115	207	131	8	5	0	0	0

B.1.2 (2) San-Juan - Ylang-Ylang Rivers without On-Site Works on Measure for 5-Year Flood - Retarding Basin Plan

Cost	Total					A	nnual E	Disburse	ement					
Cost	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	1,313	0	33	115	244	183	250	266	205	10	6	0	0	0
Economic Cost	983	0	25	85	164	122	191	216	167	8	5	0	0	0

B.2.1 (1) San-Juan - Ylang-Ylang Rivers with On-Site Works on Measure for 10-Year Flood - Diversion Plan

Cost	Total					Aı	nnual E	Disburse	ement					
Cost	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	2,823	0	155	265	473	376	311	407	310	157	123	123	124	0
Economic Cost	2,265	0	129	209	352	282	246	338	259	135	105	105	106	0

B.2.1 (2) San-Juan - Ylang-Ylang Rivers with On-Site Works on Measure for 10-Year Flood - Retarding Basin Plan

Cost	Total					A	nnual E	Disburse	ement					
Cost	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	2,951	0	157	234	435	372	463	472	396	158	123	123	124	0
Economic Cost	2,263	0	117	173	296	252	347	373	311	118	92	92	92	0

B.2.2 (1) San-Juan - Ylang-Ylang Rivers without On-Site Works on Measure for 10-Year Flood - Diversion Plan

Cost	Total					A	nnual E	Disburse	ement					
Cost	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	1,643	0	41	136	299	235	247	404	255	16	11	0	0	0
Economic Cost	1,215	0	30	99	194	151	182	329	208	13	9	0	0	0

B.2.2 (2) San-Juan - Ylang-Ylang Rivers without On-Site Works on Measure for 10-Year Flood - Retarding Basin Plan

Cost	Total					A	nnual E	Disburse	ement					
Cost	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	1,669	0	38	121	294	242	338	344	266	16	11	0	0	0
Economic Cost	1,239	0	29	92	191	154	255	280	217	13	9	0	0	0

B.3.1 (1) San-Juan - Ylang-Ylang Rivers with On-Site Works on Measure for 20-Year Flood - Diversion Plan

Cost	Total .					A	innuar L	rsourse	ment					
COSt	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	3,593	0	196	322	530	624	542	488	362	160	123	123	124	0
Economic Cost	2,647	0	140	208	352	464	420	387	284	119	91	91	91	0

B.3.1 (2) San-Juan - Ylang-Ylang Rivers with On-Site Works on Measure for 20-Year Flood - Retarding Basin Plan

Cost	Total					A	nnual E	Disburse	ement					
Cost	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	3,248	0	159	193	403	451	576	511	425	158	123	123	124	0
Economic Cost	2,389	0	119	140	259	305	434	405	335	118	91	91	92	0

B.3.2 (1) San-Juan - Ylang-Ylang Rivers without On-Site Works on Measure for 20-Year Flood - Diversion Plan

Cost	Total					A	nnual E	Disburse	ement					
Cost	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	2,468	0	54	151	388	335	409	676	423	21	14	0	0	0
Economic Cost	1,830	0	42	114	242	206	301	551	345	17	11	0	0	0

B.3.2 (2) San-Juan - Ylang-Ylang Rivers without On-Site Works on Measure for 20-Year Flood - Retarding Basin Plan

Cost	Total					A	nnual L	JISDUISE	ment					
Cost	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	2,357	0	54	151	343	290	513	549	423	21	14	0	0	0
Economic Cost	1,773	0	42	114	220	184	393	448	345	17	11	0	0	0

Table 8.22(3/3) Summary of Project Cost Disbursement in Financial Terms and Economic Terms for Inland Drainage Improvement

C.1.1 Full Scale Inland Drainage Improvement Works with On-Site Works on Measure for 2-Year Flood

													(million	Pesos)
Cost	Total						Annual l	Disburseı	nent					
Cost	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	6,718	0	172	272	839	1,168	1,195	1,195	1,200	515	54	54	54	0
Economic Cost	5,314	0	142	209	660	927	941	941	944	420	44	44	44	0

C.1.2 Full Scale Inland Drainage Improvement Works without On-Site Works on Measure for 2-Year Flood

Cost	Total						Annual l	Disbursei	ment					
Cost	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	6,359	0	142	251	809	1,141	1,168	1,167	1,172	481	27	0	0	0
Economic Cost	5,023	0	119	191	635	905	919	918	921	393	23	0	0	0

C.2.1 Partial Scale Inland Drainage Improvement Works with On-Site Works on Measure for 2-Year Flood

Cost	Total						Annual D	Disbursen	nent					
Cost	Total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	2,937	0	89	148	506	535	555	555	559	107	40	31	31	0
Economic Cost	2,435	0	72	108	393	416	426	426	429	86	32	24	24	0

C.2.2 Partial Scale Inland Drainage Improvement Works without On-Site Works on Measure for 2-Year Flood

Cost	Total						Annual E	Disbursen	nent					
Cost	Total -	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Financial Cost	2,704	0	61	129	217	513	543	542	546	327	45	0	0	0
Economic Cost	2,255	0	51	93	158	398	417	416	418	267	37	0	0	0

Table 8.23 Summary of Economic Evaluation Result

		Imus F	River	Sai	n-Juan - Ylan	g-Ylang Rive	SIG	Inl	and Drainag	e Improveme	It
Flood Damage Mitigation M	leasures		**** * **211	With On-	Site Flood on Pond	Without On Regulation	Site Flood	Full S	cale	Partial	Scale
		With On-	W1IIIOUI	INGUIAU		INUGUIAU			Witthout		W/54b 04
		Site Works	Works	Diversion Plan	Retarding Basin Plan	Diversion Plan	Retarding Basin Plan	With On- Site Works	Works Works	With On- Site Works	W1unout On-Site Works
Alternative No.		$F_{-}I.3$	$F_{-}I.2$	F_S.5D	F_S.5R	$F_S.3$	$F_S.2$				
Measures for 2-Year Flood	NPV	I	I	ı	ı	I	I	-1,200	-1,190	-253	-429
	EIRR	I	I	ı	ı	I	ı	5.43%	5.16%	8.13%	7.98%
	B/C	I	ı	ı	ı	I	I	0.53	0.56	0.72	0.49
Measures for 5-Year Flood	NPV	11,437	7,829	1,035	922	305	1,101	I	ı	ı	ı
	EIRR	28.57%	28.47%	19.37%	17.63%	14.15%	20.40%	ı	ı	·	ı
	B/C	4.95	6.43	2.12	1.88	1.65	3.02	ı	ı	·	ı
Measures for 10-Year Flood	NPV	12,110	10,303	1,535	1,547	591	578	ŗ	·		ı
	EIRR	32.38%	31.32%	20.24%	20.69%	15.51%	15.33%	ı	·		ı
	B/C	6.20	8.02	2.30	2.32	1.89	1.85	ı	ı	ı	ı
Measures for 20-Year Flood	ΝΡV	13,512	11,533	1,822	1,998	668	696				
	EIRR	32.84%	31.67%	19.87%	22.73%	14.47%	14.74%	ı	,		·
	B/C	6.50	8.37	2.29	2.62	1.68	1.73	I		I	
(Note) NPVs are expressed	by milli	on Pesos.									

Table 8.24 Economic Evaluation in Case of Overall Project in Combination of **Optimum Flood Mitigation Plans**

		-	
(mil	lion	Pesos)	

				Economic	Cost					Benefit to	o Be De	erived			
		Co	onstructio	n Base Cos	st			Benefit	to Be De	rived from	Bene	fit from	On-Site		
									the Proje	ect	Flood	Regula	tion Pond		
C-1	V		ST 10	~					ST 10	~		SJ-10 Voor	Partial	F	
dor	in	T 10	Year	Partial		OM		I 10	Year	Partial	Imus-	With	Scale	Econo-	Cash
uai Vear	Order	Imus-10	With On-	Scale		Cost	Total	Imus-10	With On-	Scale	10 V	On-	Inland	Popofit	Balance
i cai	oruci	Y ear	Site,	Droinogo	Total	Cost		Y ear With	Site,	Drainaga	With	Site,	Drain-	in Total	
		On-Site	Retardin	Plan With				On-Site	Retardin	Plan With	On-	Retardi	age Plan	in rotar	
		Oll-Site	g Basin	On-Site				Oll-Site	g Basin	On-Site	Site	ng	With		
			Plan	on she					Plan	on bhe	bite	Basin Plan	On-Site		
2003	-4						0	0	0	0	0	0	0		0
2004	-3						0	0	0	0	0	0	0		0
2005	-2 -1						0	0	0	0	0	0	0		0
2007	0						Õ	Õ	Õ	Õ	Õ	Õ	Õ	0	Õ
2008	1	0^{282}	0	0_{72}	0		0	0	0	0	0	$0 \\ 24$	$0 \\ 2$	0	$0 \\ 471$
2009	$\frac{2}{3}$	616	173	108	898		898	0	0	0	90	48	4	0	-471
2011	4	613	296	393	1,301		1,301	0	0	0	135	72	6	0	-1301
2012	5 6	504 651	252 347	416 426	1,172		1,172	0	0	0	180 225	96 120	8 10	0	-11/2 -1424
2014	7	364	373	426	1,163		1,163	ŏ	ŏ	ŏ	269	144	12	ŏ	-1163
2015	8	374	311	429	1,114		1,114	0	0	0	314	168	13	0	-1114
2010	10	236	92	32	359		359	0	0	232	404	216	13	869	510
2018	11	172	92	24	287	35	322	2,905	314	242	449	239	19	4,169	3847
2019	12	172	92 92	24 24	288 288	35 35	322 322	3,158	339 364	251 261	494 539	263 287	21	4,527 4,898	4205 4575
2021	14					35	35	3,423	364	261	539	287	23	4,898	4863
2022	15					35 35	35 35	3,423	364 364	261 261	539 539	287 287	23	4,898	4863 4863
2023	17					35	35	3,423	364	261	539	287	23	4,898	4863
2025	18					35	35	3,423	364	261	539	287	23	4,898	4863
2026	20					35 35	35 35	3,423 3,423	364 364	261	539 539	287	23 23	4,898	4863
2028	21					35	35	3,423	364	261	539	287	23	4,898	4863
2029	22					35 35	35 35	3,423	364 364	261 261	539 539	287 287	23	4,898	4863 4863
2030	23					35	35	3,423	364	261	539	287	23	4,898	4863
2032	25					35	35	3,423	364	261	539	287	23	4,898	4863
2033	26 27					35 35	35 35	3,423 3,423	364 364	261	539 539	287	23 23	4,898	4863
2035	28					35	35	3,423	364	261	539	287	23	4,898	4863
2036	29 30					35	35	3,423	364 364	261 261	539	287	23 23	4,898 4 898	4863 4863
2038	31					35	35	3,423	364	261	539	287	23	4,898	4863
2039	32					35	35 35	3,423	364 364	261	539 530	287	23	4,898	4863
2040	33					35	35	3,423	364	261	539	287	23	4,898	4863
2042	35					35	35	3,423	364	261	539	287	23	4,898	4863
2043	36 37					35 35	35 35	3,423 3,423	364 364	261	539 539	287	23	4,898 4,898	4863 4863
2045	38					35	35	3,423	364	261	539	287	23	4,898	4863
2046	39 40					35 35	35 35	3,423	364 364	261 261	539 539	287 287	23 23	4,898 4 898	4863 4863
2047	41					35	35	3,423	364	261	539	287	23	4,898	4863
2049	42					35	35	3,423	364	261	539	287	23	4,898	4863
2050	44					35	35	3,423	364	261	539	287	23	4,898	4863
2052	45					35	35	3,423	364	261	539	287	23	4,898	4863
2055	40 47					35 35	35 35	3,423 3,423	364 364	261	539 539	287	23 23	4,898	4863
2055	48					35	35	3,423	364	261	539	287	23	4,898	4863
2056	49 50					35 35	35 35	3,423	364 364	261 261	539 539	287 287	23 23	4,898 4 898	4863 4863
2058	51					35	35	3,423	364	261	539	287	23	4,898	4863
2059	52					35	35	3,423	364	261	539	287	23	4,898	4863
2060 2061	53 54					35 35	35 35	3,423 3,423	364 364	261	539 539	287 287	23 23	4,898 4,898	4863 4863
2062	55					35	35	3,423	364	261	539	287	23	4,898	4863
2063 2064	56 57					35	35	3,423 3,423	364 364	261 261	539 539	287 287	23 23	4,898 4 898	4863 4863
2065	58					35	35	3,423	364	261	539	287	23	4,898	4863
2066	59 60					35	35	3,423	364	261	539	287	23	4,898	4863
2067	61					35	35	3,423	364	261	539	287	23	4,898	4863
2069	62	4 502	2 255	2 450		35	35	3,423	364	261	539	287	23	4,898	4863
Applie	d Disc	4,503 ount Rate	<u>2,335</u> e: 10 % ad	2,459 cording to	a regula	1,802 tion of	the nation	1	10,8/3						243,011
NPV				0.020	.,		4,817							17,010	12,193
B/C				9,030 288											22.19% 3.53

Imus	
ject in	
lot Pro	
for Pi	
hedule	
ork Sc	
utive W	
l Tenta	
Table 9.1	

-
•
2
3
~
•
~

SIRP Save Imus River Project SCC Sagip-ilog Cavite Council CCK C. C. Keiyo JICA Japan International Cooperation Agency Study Team LGU Local Government Unit

No. Activities/Projects	Resp.	Schedule	Oct 07	Nov 07	Dec 07	Jan 08								Ľ.	ebrua	ary 2(800										
							FS	S	∠	/ TH	с,	s S	Μ	Μ.	ΗĻ	S L	S	Σ	>	/ TH	Ŀ.	s S	Σ	-	⊢ ∧	ш	
							1 2	4	5 6	7	8	10	11 12	2 13	14 1	15 16	3 17	18 1	9 20	21	22 2	3 24	25	26 2	7 28	\$ 29	
1 Preparation of Module for Trainers' Training		Oct-07																									
1.1 Draft Module & Seminar Material Preparation	KSI	1-10 Oct '07																									
1.2 Review of Draft Module & Seminar Material	SICC	11-20 Oct '07														_						_					
1.3 Finalization of Module/Seminar material	KSI	21-31 Oct '07																							_	_	
1.4 Progress Monitoring	cck	Oct-07																	_			_			_		
											_		-			_		_	-	_		_			-	_	
2 Preparation of Comic Reading Materials																											
2.1 Draft Design & Layout preparation	KSI	Nov. 2007																									
2.2 Review of Draft Design/Layout	SICC	Nov. 2007																									
2.3 Sample printing	KSI	Dec. 2007																									
2.4 Review of Sample Prints	SICC	Dec. 2007																									
2.5 Progress Monitoring	cck	Nov/Dec 07		< <	_																						
3 Printing of Comics Reading materials	KSI/JICA	Jan-08																									
- Progress Monitoring	сск									_						-			_			_			-	_	
A Training	101	Nov Ico OB								_						-						-		+	+	_	
	2							-		_				_								-		╈	-	_	
	700																										
	55									-					_				-	-		_		1		-	
5 Printing of Materials for Seminar Workshop	KSI/JICA	.lan-08									_		-					_		-		-			_	-	
- Drodrace Monitorino																						-		+	+	-	
	200					4				_																_	
6 Workshop/Seminar	KSI	Feb-08																		_							
- Assistance/Monitoring	SICC/CCK																			_							. <u> </u>
February 4 - Marulas		Monday																									,
February 7 - Kaingen and Poblacion		Thursday					_			_	_		-	_		-				_		_		+	-	_	
																										-	
February 11 - Wakas 1 & Wakas 2		Monday																									
February 14 - Sta. Isabel		Thursday																									,
Echnical 40 December		Mondour					-			_			+	_					_	_		_		+	-	_	
reoruary 18 - Panamilan		Monday					_	_						_						_		-		+	-	_	
February 21 - Gahak		Thursday																									
February 25 - Tabon 1 2 & 3		Mondav						_		_	-			_		-			_			_			-	_	
		6																					ĺ			-	
February 28 - Binakayan		Thursday																									
7 Distribution of Comics reading Materials	KSI	Feb-08																I	╢					間	卝	椙	
- Distribution Monitoring	cck																										,
				_			_					_						_				_	-		_		

Table 9.2 Tentative Work Schedule for Pilot Project in Kawit

KSI Kawit Sagip Ilog SICC Sagip Ilog Cavite Council CCK C. C. Keiyo JICA Japan International Cooperation Agency Study Team

T - 9 - 2

Municipality	River			Barangay		
		Tabing Dagat	Sineguelasan	Salinas I	Alima	Banalo
		Campo Santo	Daang Bukid	Digman	Dulong Bayan	Habay I
		Habay II	Kaingin (Pob.)	Mabolo I	Mabolo II	Mabolo III
		Maliksi I	Maliksi II	Mambog I	Mambog II	Mambog III
Bacoor	Imus	Mambog V	Niog I	Niog II	Niog III	Panapaan I
		Panapaan II	Panapaan III	Panapaan IV	Panapaan VI	Panapaan VII
		Real II	Tabing Dagat	Sineguelasan	Maliksi III	Maliksi II
		Maliksi I	Kaingin (Pob.)	Digman	Campo Santo	Banalo
		Alima				
	Canas	Pinagtipunan	San Juan I	San Juan II	Таріа	
		Navarro	Bacao I	Vibora Pob.	Таріа	Santa Clara
General Trais	Con Ivan	San Gabriel Pob	Prinza Pob.	Pinagtipunan	Pasong Camachile	Navarro
	Sali Juan	Dulong Bayan Po	Bacao II	Bacao I	Arnaldo Pob.	Tejero
		Bacao II	Bacao I			
		Toclong II-B	Toclong II-A	Toclong I-C	Toclong I-B	Toclong I-A
		Tanzang Luma VI	Palico IV	Medicion II-D	Medicion II-C	Medicion II-B
		Medicion II-A	Medicion I-D	Medicion I-C	Medicion I-A	Malagasang I-E
	Imus	Malagasang I-D	Malagasang I-C	Malagasang I-B	Carsadang Bago	Bucandala I
Imile		Bayan Luma VI	Bayan Luma V	Bayan Luma IX	Bayan Luma III	Anabu II-C
Illius		Anabu II-A	Anabu I-G	Anabu I-D	Anabu I-C	Anabu I-B
		Anabu I-A				
		Alapan II-B	Alapan II-A	Alapan II-B	Alapan II-A	Toclong II-B
	San Juan	Pag-Asa III	Pag-Asa II	Medicion II-F	Medicion II-E	Medicion II-D
		Medicion II-C	Medicion II-B	Medicion II-A	Carsadang Bago	
	Imus	Samala-Marquez	Pulvorista	Manggahan-Lawin	Congbalay-Legas	Balsahan-Bisita
		Wakas II	Wakas I	Santa Isabel	San Sebastian	Poblacion
		Panamitan	Magdalo (Putol)	Kaingen	Batong Dalig	Wakas II
Kawit	Can Juan	Wakas I	Tramo-Bantayan	Toclong	Tabon III	Tabon II
	Sali Juan	Tabon I	Santa Isabel	Samala-Marquez	Pulvorista	Poblacion
		Panamitan	Marulas	Manggahan-Lawin	Kaingen	Gahak
		Congbalay-Legas	Binakayan-Kanluran	Binakayan-Aplaya	Batong Dalig	Balsahan-Bisita
	\Box	Santa Rosa II	Santa Rosa I	San Rafael IV	San Rafael III	San Rafael II
Noveleta	San Juan	San Juan II	San Juan I	San Jose II	San Jose I	San Antonio II
110701014	San suan	San Antonio I	Santa Rosa II	Santa Rosa I	San Rafael IV	San Rafael III
		San Rafael II	San Rafael I	Salcedo II	Salcedo I	Poblacion
	Canas	Tejeros Convent	Wawa I	Wawa II	Wawa III	
Rosario		Wawa II	Tejeros Convent	Silangan I	Sapa III	Sapa II
KUSuito	San Juan	Sapa I	Poblacion	Ligtong IV	Ligtong III	Ligtong II
		Ligtong I	Kanluran	Bagbag I		
Tanza	Santol	Santol	Julugan II	Julugan I	Bunga	Biwas

Table 9.3Barangays Located in Flood Risk Area

Table 9.4Members of Barangay Disaster Coordinating Council and
Required Tasks for Each of Members

Members of BDCC	Tasks to Be Undertaken
BDCC Chairman/	Convenes the BDCC and activate Disaster Operation Center
Vice-Chairman	• Identifies and designates a Barangay Disaster Operation Center.
	Maintains liaison with the Municipal Disaster Coordinating Council Chairman.
	• Initiates and conducts training courses for disaster management activities.
	• Coordinates arrangement for and directs all drills and exercises.
	• Exercises the activities programmed in the Barangay Disaster Preparedness Plan.
	• Arranges for and supervises the storage and disposition of required supplies and equipment.
Staff Team (1) for	• Organizes and activates the security functions of the BDCC so as to augment the force of PNP.
Security	 Secures evacuees and properties in the areas of operations.
5	Checks unauthorized person in the cordoned areas.
	• Checks suspicious activities and reports them to higher authorities concerned
	• Performs escort duties in the transport of persons, supplies, and equipment.
Staff Team (2) for	Arranges and supervises the storage and disposition of required supplies and equipment
Supply	 Identifies the sources of supplies as may be needed
Staff Team (3) for	 Inventories available vehicles for use of flood warning and evacuation
Transportation	 Prenositions vehicles at nick-up points for a physically handicapped person
mansportation	 Supports the transportation needs for flood warning and evacuation
Staff Team (4) for	Keen contact with MDCC communication teams to undate the relevant information
Communication	Keep condict with WDee communication teams to update the relevant information.
Operating Team (1)	Monitors the river conditions
for Warning	 Reports the river conditions to RDCC chairman for transmittal to higher DCCs.
for warning	Advises the PDCC chairman about necessity of emergency evecuation of the residents
	 Advices the bDCC chainman about necessity of emergency evacuation of the residents Discominates the information on warning and evacuation among the residents
Operating Team (2)	Disseminates the information of warning and evacuation among the residents.
for Rescue	Organizes and trains rescue service teams
101 Rescue	Coordinates with the higher DCCs for training support. Dequests hydrest engenemication to support training requirements
	Requests budget appropriation to support training requirements.
	Conducts search, rescue and recovery operation in case of mass casualty incident.
Operating Team (2)	Cooldmates for emergency venicles assistance, as required
for Evacuation	 Develops and reviews evacuation plan Dependence the evacuation contents in accordination with the Department of Education and other
101 Evacuation	• Prepares the evacuation centers in coordination with the Department. of Education and other relevant agencies
	• Determines safe execution route in coordination with the aforesaid Staff Team (4) for
	• Determines sale evacuation route in coordination with the atoresaid Stati realit (4) for transportation
	Provides mannower support to the MDCC evacuation committee
Operating Team (4)	Coordinate with Municipal Social Welfare & Development Office for relief assistance
for Relief	Propages and distributes relief goods
	Receives relief donations required
	 Prenares relief status and reports them to MDCC
Operating Team (5)	Prepares medical kit/resources for health of evacuees
for Medical	Provides memower support to the MDCC medical committee
Tor mealeur	 Directs the first aid and medical self help operations
	 Maintains adequate sanitation hygienic standards, and other matters related to emergency health
	hypiene and medical activities within the harangay during evacuation
	• Ensures safety of the storage, handling of food and available drinking water in evacuation areas
Operating Team (6)	Develops damage control plans
for Damage	 Deploys nersonnel after any flood disaster to correct the utilities damaged by the flood and to
Control	report conditions that require assistance.
	 Conducts road clearing after the calamity.
	 Conducts clearing of canals and waterways of with accumulated trashes or junks
	• Installs warning signs on open manholes and dangerous structures/facilities.

		,											
Env	irronmental Element/Alternative Proiect	A sumi	Prevention	0W F1000	San J	uan River-	overflow F	lood Preve	ntion	Inland I)rainage	Without	
		FI-1	FI-2	FI-3	FS-1	FS-2	FS-3	FS-4	FS-5	D-1	D-2	Project	
1. Con	Istruction Phase												
1.1	Social Environment												
(1)) Involuntary Resettlement and Land Acquisition	Α	в	В	A	В	В	В	в	В	в		
(2)) Impact on Livelihood and Local Economy (unemployment)	Α	В	В	A	В	В	В	в	В	В	А	
(3)) Infrastructure (road/bridge)	B*	В	В	B*	В	в	В	В			A	-
(4)	Poverty	A	В	В	A	В	В	В	В	В	в		
(5)	Water Use (irrigation)		в	В		в	в	В	В				-
(9)) Fishery (boat anchorage)									В	в		
1.2	Natural Environment												
(E)) Groundwater		в	В		в	в	В	В	В	в		
(2)) Flora (mangrove)		В	В	в	в	в	В	в	в	В		
1.3	Public Hazard										3		
E	h Air Pollution (dust)	B*	B*	B*	B*	B*	B*	B*	B*	B*	B*		
(2)	Water Pollution (turbidity)	B*	B*	B*	B*	B*	B*	B*	æ		2		
(3)	Noise/Vibration	B*	B*	B*	B*	B*	B*	B*	B*	B*	B*		
2. Ope	tration Phase												
2.1	Social Environment												
(1)) Impact on Livelihood and Local Economy (due to land development control)	B	В	В	в	В	В	в	в		4		
(2)) Regional Conflicts of Interests (due to land development control)	В	в	В	в	в	в	в	в		0		
2.2	Natural Environment												
(1)	No notable element												
2.3	Public Hazard										-2		
(E)) Solid Waste	C	ບ	C	J	J	J	C	J	C	ບ		
(2)) Water Pollution		ບ	U		J		C	J	J	J		
(3)) Odor		ບ 	U		ပ		ပ	C	J	ပ		
Note	: (1) A: significant impact, B: moderate it	mpact, C: 1	incertain, B	lank: no imp	oact,								

 Table 10.1
 Score of Environmental Impacts of Alternative Plans for Flood Mitigation

j nupac (1) A: significant impact, B: model(2) * during construction period

Alt. No.	Component Project		Design Fl	ood Scale	Int. nousenoid)
		2-year	5-year	10-year	20-year
River-ove	erflow Flood Prevention of Imus River		-	-	
	Full-scale River Improvement				
	Main River	400	520	650	780
F I-1	Bacoor River	330	330	330	330
	Julian River	350	500	500	500
	Total	1,180	1,350	1,480	1,610
	Partial River Improvement				
	Main River	90	90	90	90
	Bacoor River	60	60	60	60
	Julian River	80	80	80	80
F I-2	Off-site Retarding Basin				
	Main River (1 basin: I 1)	7	10	10	10
	Bacoor River (4 basins: B 1, B 2, B 3, B 4)	30	30	30	30
	Julian River (2 basins: J 1, J 2)	3	5	5	5
	Total	270	275	275	275
	Partial River Improvement				
	Main River	90	90	90	90
	Bacoor River	60	60	60	60
	Julian River	80	80	80	80
F I-3	Off-site Retarding Basin				
	Main River (1 basin: I 1)	0	10	10	10
	Bacoor River (4 basins: B 1, B 2, B 3, B 4)	30	30	30	30
	Julian River (2 basins: J 1, J 2)	0	5	5	5
	Total	260	275	275	275
River-ove	erflow Flood Prevention of San Juan River				
F S-1	Full-scale River Improvement	250	330	460	650
	Partial River Improvement	60	60	60	60
FS-2	Retarding Basin (S 1, Y 1, Y 2)	11	13	14	16
	Total	71	73	74	76
	Partial River Improvement	60	87	150	260
F S-3	Diversion Channel	92	105	135	253
	Total	152	192	285	513
	Partial River Improvement	60	77	87	100
F S-4	Retarding Basin (S 1, Y 1, Y 2)	10	11	12	14
	Diversion Channel	90	101	105	110
	Total	160	189	204	224
	Partial River Improvement	60	85	60	60
F S-5	Retarding Basin (S 1, Y 1, Y 2)	0	0	14	15
	Diversion Channel	0	100	0	0
	Total	60	185	74	75
Inland D	rainage	1			
	Coastal Dike	78	-	-	-
D-1	Retention Pond (M 1, M 2, K 1, P 1, E 1, E 2)	1	-	-	-
	Drainage Channel Improvement and Others	42	-	-	-
	Total	121	-	-	-
	Coastal Dike	78	-	-	-
	Ring Dike	220	-	-	-
D-2	Retention Pond (M 1, M 2, K 1, P 1, E 1, E 2)	1	-	-	-
	Drainage Channel Improvement and Others	42	-	-	-
	Total	341	-	-	-

Table 10.2 Number of House Relocation by Each Component Project (Unit: household)

<u>Note</u>: The alternative FS-5 consists of sub-projects of partial river improvement, retarding basin, diversion channel and on-site regulation pond. In this alternative, the least cost combination of sub-projects varies depending on the design flood scale as follows: (i) partial river improvement + on-site regulation pond for 2-year flood, (ii) partial river improvement + diversion channel + on-site regulation pond for 5-year flood, and (iii) partial river improvement + retarding basin + on-site regulation pond for 10-year and 20-year floods. In this alternative, number of the house relocation for 10-year and 20-year flood since the retarding basin requires a smaller number of house relocation than the diversion channel.

 Table 10.3 (1/3)
 Land Acquisition Area by Each Component Project (River-over flow Flood Prevention of Imus River)

Alt.	Flood Scale			2-year				S	-year				10-y	ear		-		20-ye	ar		Ì
No.	Project/Land Use	F	IJ	F.P	A.P	Total	F	G	F.P /	LP TC	tal I	2	G F.	P A.	P To	tal F	G	F.F	A.F	Tot	tal
	Full-scale R. Improvement																				
	Main River	I			I	0	I	'	ı	'	0	1	1	1	1	0	1	'	1	1	0
FI-1	Bacoor River	-			4	4	I	I	I	4	4	I	I	I	4	4	-	I	1	4	4
	Julian River	Ī			1	0	I	T	I	ı	0	I	I	ı	T	0	I	I	I	I	0
	Total	0	0	0	4	4	0	0	0	4	4	0	0	0	4	4	0	0	0	4	4
	Partial River Improvement																				
	Main River	-			-	0	I	1	I	1	0	I	1	1	-	0	1	-	1	1	0
	Bacoor River	I			3	3	I	I	I	3	3	I	I	I	3	3	I	I	I	3	б
	Julian River	Ī			1	0	I	T	I	ı	0	I	I	ı	T	0	I	I	I	I	0
	Retarding Basin																				
	Main River (I 1)	13	12		1	25	18	18	I	ı	36	23	22	ı	T	45	31	31	I	I	62
	Bacoor River																				
FI-2	B 1	I		5	33	8	I	I	5	3	8	I	ı	5	3	8	ı	1	5	3	8
	B 2	I		14	8	22	I	I	14	8	22	I	I	14	8	22	I	I	14	8	22
	B 3	I	1	21	11	32	I	I	21	11	32	I	ı	21	11	32	ı	1	21	11	32
	B 4	I	15		1	15	I	15	I	ı	15	I	15	I	I	15	I	15	I	I	15
	Julian River																				
	J 1	4	3		-	7	8	8	1	1	16	8	8	1	1	16	8	8	I	I	16
	J 2	4	L		I	11	5	8	I	I	13	5	8	I	I	13	5	8	I	I	13
	Total	21	37	40	25	123	31	49	40	25	145	36	53	40	25	154	44	62	40	25 1	171
	Partial River Improvement																				
	Main River	I			1	0	I	I	I	ı	0	I	I	I	I	0	I	I	I	I	0
	Bacoor River	-			3	3	1	-	1	3	3	I	1	1	3	3	1	-	1	3	3
	Julian River	-	I	-	-	0	1	-	I	-	0	-	-	1	1	0	-	1	1	1	0
	Retarding Basin																				
	Main River (I 1)	I	ı	-	I	0	17	17	ı	-	34	20	20	ı	ı	40	28	28	I	ı	56
	Bacoor River																				
FI-3	B 1	I		5	33	8	I	I	5	3	8	I	1	5	3	8	T	I	5	3	8
	B 2	-		14	8	22	I	1	14	8	22	I	1	14	8	22	1	-	14	8	22
	B 3	I	1	21	11	32		I	21	11	32		ı	21	11	32		1	21	11	32
	B 4	-	12		1	12	I	12	I	-	12	I	12	1	-	12	1	12	1	1	12
	Julian River																				
	J 1	-			-	0	7	7	1	-	14	7	7	-	-	14	7	7	1	-	14
	J 2	-			-	0	4	7	I	-	11	4	7	1	-1	11	4	7	I	1	11
	Total	0	12	40	25	LL	28	43	40	25	136	31	46	40	25	142	39	54	40	25 1	158
Note:	1) F: active farmland, G: gras	ssland in	cludes a	ibandone	ed farm/t	msh. F.F	: active f	shnond.	A P. ahar	doned fi	hnond '	The a	hove land	acomist	tion are	a exclud	es housin	o lots an	d nublic	land	

 Table 10.3 (2/3)
 Land Acquisition Area by Each Component Project (River-over flow Flood Prevention of San Juan River)

<u>па</u>)	tal	0	0		58	13	32	103	0	14	14	0		42	13	23	10	88	0		56	13	31	0	100	L
	T_0		1			-	1	0		2	2	-		1	-		8	8	1		1				0	r land
	A.P									1	1															d mubli
20-year	F.P	I	I		1	1	1	0	I	I	0	1		1	1	I	1	0	-		1	-	I	-	0	lote on
	IJ	I	I		12	13	I	25	I	2	2	1		8	13	I	2	23	I		11	13	I	T	24	v u iono
	Ц	I	I		46	I	32	78	I	I	0	1		34	I	23	1	57	I		45	I	31	1	76	d och u
	al	0	0		45	13	26	84	0	11	11	0		24	13	15	8	60	0		43	13	24	0	80	0.000
	Tot	I	I		1	I	1	0	I	6	6	1		1	I	I	7	7	I			1	I	1	0	
L	A.P							0			((_					_	(
10-yea	F.P)))	
	IJ	I	1		6	13	1	22	I	2	2	-		5	13	I	1	19	1		6	13	I	I	22	I H
	ц	I	I		36	I	26	62	I	I	0	1		19	I	15	1	34	I		34	I	24	1	58	
	otal	0	0		24	13	16	53	0	8	8	0		15	5	8	7	35	0		0	0	0	7	7	Corpost .
	P T(I	I		1	I	I	0	I	L	7	1		I	I	I	9	9	I		I	ı	I	9	9	
ar	A.	I	I		1	I	1	0	I	I	0	1		1	I	I	1	0	I		1	1	I	1	0	-1-
5-ye	F.P	1	1		5		1	x	1	1	1	1		3	5	1	1	6	1		1	1	1	1	1	V [
	IJ					1		1																		
	ц	I	I		19	I	16	35	I	I	0	1		12	I	8	1	20	1		1	1	I	I	0	4
	Fotal	0	0		19	5	6	33	0	9	9	0		10	5	5	5	25	0		0	0	0	0	0	F
	A.P	I	I		ı	I	ı	0	I	5	5	1		ı	I	I	4	4	I		ı	ı	I	1	0	V J L
ear	.P /	I	I		ı	I	I	0	I	I	0	ı		I	I	I	ı	0	I		I	I	I	T	0	
2-y	н	I	I		4	5	I	6	I	1	1	1		2	5	I	1	8	I		I	I	I	1	0	1 1
	IJ	I	I		5	I	6	4	I	I	0	1		8	I	5	1	3	I		1	1	I	-	0	
	Ч	I	1		1			0	1			1						1	1							
Flood Scale	roject/Land Use	scale R. Improveme	al River Improveme	ding Basin	S 1	Υ1	Y 2		al River Improveme	sion Channel		al River Improveme	ding Basin	S 1	Υ1	Υ 2	sion Channel		al River Improveme	ding Basin	S 1	Υ1	Υ 2	sion Channel		- U F I J
	P	Full-s	Partia	Retar				Total	Partia	Diver	Total	Partia	Retar				Diver	Total	Partia	Retar				Diver	Total	1 1 1 1
Alt.	No.	FS-1			с ЭД	7-01				FS-3					FS-4							FS-5				1-4-1

		Total	8	1		4	11	4	16	3	14	1	62
		A.P	I	I		4	I	3	1	1	I	1	8
D 2	2-year	F.P	8	1		I	I	1	I	I	I	I	10
		IJ	1	I		I	I	I	16	3	5	I	24
		F	1	1		I	11	I	1	1	6	I	20
		Total	8	I		4	11	4	16	3	14	1	61
		A.P	I	I		4	I	3	1	1	I	1	8
D 1	2-year	F.P	8	1		I	I	1	I	I	I	I	6
		Ð	I	1		I	I	I	16	3	5	I	24
		F	1	I		I	11	1	-	-	6	1	20
Alternative No.	Flood Scale	Project/Land Use	oastal Dike	ing Dike	etention Pond	M 1	M 2	K 1	P 1	E 1	E 2	rainage Channel Imp.	otal

Table 10.3 (3/3) Land Acquisition Area by Each Component Project (Inland Drainage)

: 1) \mathbf{r} : active farmiand, \mathbf{G} : grassiand includes abandoned farm/bush, \mathbf{r} . \mathbf{r} : active fishpond, 2) The above land acquisition area excludes housing lots and public land.

Table 11.1 Features of Structures/Improvement for Proposed	Overall
Comprehensive Flood Mitigation Plan	

C.			Comprehensive Flood Witigatio		E/C
Co	ontents/Items of		Scale	Remarks	F/S
For	r River Over-Flo	DW			
P	rotection Level				
	Imus River Bas	sin			
		Imus River	: 10-year return period		
		Bacoor River	: 2-year return period		
		Julian River	: 5-year return period	Incl. Left Tributary	
	San Juan River	Basin			
		San Juan River	: 10-year return period	Incl. Ylang-Ylang River	
I	ength of Partial	River Improvem	ent		
	Imus River	3.4km	(Rivermouth ~	Dredging, Dike and Etc	
			Confluence point with Julian River)		
	Bacoor River	6.4km	(Confluence point with Imus River ~	At designated and scattered sections	
	L 1' D'	0.01	B4 Retarding Basin)		
	Julian River	9.0km	(Confluence point with Imus River ~	At designated and scattered sections and incl.	
	San Juan River	2.0km	(Rivermouth \sim Diversion point with a	a Dredging Widening Dike and Etc	
_	Total	20.8km	Revenue Diversion point with t	Dicagning, Wildenning, Dirke and Ele	
-					
E	xtent of Off-Sit	e Retarding Basii	<u>1</u>		
	Imus River Bas	Sin	11 401		
		Imus River	11 : 40ha	Storage Capacity : Approx. 1.72 MCM	
		Bacoor River	B1 : 8ha		
			B2 : 22ha	Storage Capacity : Approx. 0.39 MCM	
			B3 : 32ha		
ΙT			B4 : 12ha	Storage Capacity : Approx. 0.45 MCM	
		Julian River	J1 : 14ha	Storage Capacity : Approx. 0.31 MCM	~
			J2 : 11ha	Storage Capacity : Approx. 0.48 MCM	~
		Sub-total RB(1)	139 ha		
	San Juan River	Basin			
	Sui Vuui Iu Voi	San Juan River	S1 : 43ha	Storage Capacity : Approx. 0.66 MCM	
		Ylang-Ylang River	Y1 · 13ha	Storage Capacity : Approx 1 28 MCM	
		Thing Thing Hirter	Y2 · 24ha	Storage Capacity : Approx 2.18 MCM	
		Sub tatal DD(2)	80ba	Storage Capacity : Approx. 2.10 Meth	
_		Sub-total KB(2)	oona		
	Total (RB)	219 lla			
For	r Inland Draina	ge			
P	rotection Level		[
	Inland Drainage	Inland Area	: 2-year return period	Partial Protection	
L	ength of Draina	ge Channel Impr	ovement		
	Bacoor	Tributary of Bacoor	B3 : 0.3km	Parapet Wall and Dike	
	Kawit	Malamok River	Dr_1 : 1.2km	Widening and Dike	
	Kawit	Panamitan River	Dr_5 : 2.3km	Widening and Dike	
	Total (CI)	3.8 km			
F	xtent of Off-Sit	e Retention Pond	1		1
	Imus (Dr 1)	Malamok River	M2: 11ha	Storage Capacity : Approx. 0.3 MCM	
\vdash	Kawit (Dr. 1)	Malamok River	M1 · 4ha		
	Kawit (Dr. 2)	Tirona Divor	K1 · Aba		
⊢⊢	Kawit (Dr. 5)	Donomiter D	D1 . 16ba		
\vdash	Kawit (Dr_5)	Panamitan River			
	Kosario (Dr_9)	Maiimango River			
	Gen Trias (Dr_9)	Malimango River	E2 : 14ha		
	Total (RP)	52 ha			
I	ength of New D	Prainage Main			
	Kawit	Binakayan	L=1.5km, B=6m	Concrete Lining Channel	
	Novereta	San Rafael	L=1.1km, Box Culvert Type	2.7m x 2.4m x 1Barrel	
	Total (DM)	2.6 km			1
T	ength of New I	iterceptor	1		1
	Kawit (Dr. 5)	Panamitan River	I=1.5km Box Culvert Type	3 0m x 2 5m x 2Barrels	
\vdash	Gen Trias (Dr. 0)	Malimango Divor	I -2 9km Box Culvert Type	2 7m x 2 4m x 1Barral	
\vdash	Territation	A 41	L-2.7KIII, BOX CUIVEIT Type	2.7111 X 2.4111 X 1Dällel	
	Total (IC)	4.4km			
L	ength of Coasta	<u>I Dike</u>			
	Total (CD)	4.1km			
I	nstallation of Ti	dal Gate (Slide G	ate Type)		
	Total (TG)	12 Gates			
I	nstallation of Fla	ap Gate			
	Total (FG)	18 Gates			

Note : Items/Components marked in Column "FS" are selected as Priority Projects and Feasibility Study will be Conducted.

Table 11.2 Total Project Costs for Proposed Overall Optimum Flood Mitigation Plan

Imus River Basin	Initial	Physical	Price	То	otal	Remarks
Item	(1)	(2)	(3)	(1)+(2)	(1)+(2)+(3)	
Construction Base Cost	1,543	35	402 259	728	2,022	
Subtotal_(a)	2,236	112	661	2,348	3,009	
Engineering S.C.	247	12	43	259	302	
Subtotal_(b)	2,483	124	704	2,607	3,311	(a)+Engineering S.C.
Administration Cost	22	0	7	22	29	
Subtotal (c)	2,505	124	711	2,629	3,340	(b)+Administration Cost
Duties and Taxes	215	11	53	226	279	
Subtotal (d)	2.720	135	764	2.855	3.619	(c)+Duties and Taxes
On-site	2.404	120	685	2.524	3.209	
Duties and Taxes	288	14	82	302	384	
Total	5,412	269	1,531	5,682	7,212	(d)+OnSite+Duties and Taxes
San Juan River Basin	Initial	Physical	Price	То	otal	Remarks
Item	(1)	(2)	(3)	(1)+(2)	(1)+(2)+(3)	
Construction Base Cost	789	40	233	829	1,062	
Subtotal (a)	1.128	57	363	1.185	1.548	
Engineering S C	126	6	21	132	153	
Cubertal (b)	1.054	60	21	1 017	1 701	
	1,204	03	304	1,317	1,701	(a)+Engineering 3.C.
	1.000	0	4	1 2 000	1 7 1 7	
Subtotal_(c)	1,200	63	388	1,329	1,/1/	(b)+Administration Cost
Duties and Taxes	110	6	30	116	146	
Subtotal_(d)	1,376	69	418	1,445	1,863	(c)+Duties and Taxes
On-site Duties and Taxes	1,282 154	64 8	366 44	1,346	1,712	
Total	2 812	141	828	2 951	3 781	(d)+OnSite+Duties and Taxes
Total	2,012	141	020	2,501	0,701	(d) Onone Duties and Taxes
Inland Partial	Initial	Physical	Price	To	otal	Remarks
Inland Partial Item Construction Base Cost	Initial (1) 1.520	Physical (2) 76	Price (3) 502	Ta (1)+(2) 1.596	otal (1)+(2)+(3) 2 098	Remarks
Inland Partial Item Construction Base Cost <u>Compensation Cost</u>	Initial (1) 1,520 444	Physical (2) 76 22	Price (3) 502 209	To (1)+(2) 1,596 466	otal (1)+(2)+(3) 2,098 675	Remarks
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a)	Initial (1) 1,520 <u>444</u> 1,964	Physical (2) 76 22 98	Price (3) 502 209 711	Ta (1)+(2) 1,596 <u>466</u> 2,062	otal (1)+(2)+(3) 2,098 <u>675</u> 2,773	Remarks
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C.	Initial (1) 1,520 444 1,964 243	Physical (2) 76 22 98 12	Price (3) 502 209 711 48	To (1)+(2) 1,596 466 2,062 255	otal (1)+(2)+(3) 2,098 <u>675</u> 2,773 303	Remarks
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b)	Initial (1) 1,520 444 1,964 243 2,207	Physical (2) 76 22 98 12 110	Price (3) 502 209 711 48 759	To (1)+(2) 1,596 466 2,062 255 2,317	otal (1)+(2)+(3) 2,098 675 2,773 303 3,076	Remarks (a)+Engineering S.C.
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost	Initial (1) 1,520 444 1,964 243 2,207 20	Physical (2) 76 22 98 12 110 0	Price (3) 502 209 711 48 759 8	(1)+(2) 1,596 466 2,062 255 2,317 20	otal (1)+(2)+(3) 2,098 <u>675</u> 2,773 303 3,076 28	Remarks (a)+Engineering S.C.
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c)	Initial (1) 1,520 444 1,964 243 2,207 20 2,227	Physical (2) 76 22 98 12 110 0 110	Price (3) 502 209 711 48 759 8 767	(1)+(2) 1,596 466 2,062 255 2,317 20 2,337	otal (1)+(2)+(3) 2,098 <u>675</u> 2,773 303 3,076 28 3,104	Remarks (a)+Engineering S.C. (b)+Administration Cost
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes	Initial (1) 1,520 444 1,964 243 2,207 20 2,227 212	Physical (2) 76 22 98 12 110 0 110 11	Price (3) 502 209 711 48 759 8 767 66	(1)+(2) 1,596 <u>466</u> 2,062 255 2,317 20 2,337 223	otal (1)+(2)+(3) 2,098 675 2,773 303 3,076 28 3,104 289	Remarks (a)+Engineering S.C. (b)+Administration Cost
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d)	Initial (1) 1,520 444 243 2,207 20 2,227 212 2,439	Physical (2) 76 22 98 12 110 0 110 111 121	Price (3) 502 209 711 48 759 8 767 66 833	(1)+(2) 1,596 466 2,062 255 2,317 20 2,337 223 2,559	otal (1)+(2)+(3) 2,098 <u>675</u> 2,773 303 3,076 28 3,104 289 3,393	Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d) On-site	Initial (1) 1,520 444 243 2,207 20 2,227 212 2,439 321	Physical (2) 76 22 98 12 110 0 110 111 121 16	Price (3) 502 209 711 48 759 8 767 66 833 91	Tc (1)+(2) 1,596 466 2,062 255 2,317 20 2,337 223 2,559 337	otal (1)+(2)+(3) 2,098 675 2,773 303 3,076 28 3,104 289 3,393 428	Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d) On-site Duties and Taxes	Initial (1) 1,520 444 243 2,207 20 2,227 212 2,439 321 39	Physical (2) 76 22 98 12 110 0 110 111 121 16 2	Price (3) 502 209 711 48 759 8 767 66 833 91 11	To (1)+(2) 1,596 2,062 255 2,317 20 2,337 223 2,559 337 41	otal (1)+(2)+(3) 2,098 675 2,773 303 3,076 28 3,104 289 3,393 428 52	Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d) On-site Duties and Taxes Total	Initial (1) 1,520 444 243 2,207 20 2,227 212 2,439 321 39 2,799	Physical (2) 76 22 98 12 110 0 110 111 121 121 16 2 139	Price (3) 502 209 711 48 759 8 767 66 833 91 11 935	Tc (1)+(2) 1,596 466 2,062 255 2,317 20 2,337 223 2,559 337 41 2,937	otal (1)+(2)+(3) 2,098 675 2,773 303 3,076 28 3,104 289 3,393 428 52 3,873	Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes (d)+OnSite+Duties and Taxes
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d) On-site <u>Duties and Taxes</u> Total Grand Total	Initial (1) 1,520 444 243 2,207 20 2,227 212 2,439 321 39 2,799 Initial	Physical (2) 76 22 98 12 110 0 110 111 121 16 2 139 Physical	Price (3) 502 209 711 48 759 8 767 66 833 91 11 935 Price	To (1)+(2) 1,596 466 2,062 255 2,317 20 2,337 223 2,559 337 41 2,937 To	otal (1)+(2)+(3) 2,098 675 2,773 303 3,076 28 3,104 289 3,393 428 52 3,873 otal	Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes (d)+OnSite+Duties and Taxes Remarks
Inland Partial Item Construction Base Cost Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d) On-site Duties and Taxes Total Grand Total Item Construction Base Cost	Initial (1) 1,520 444 243 2,207 20 2,227 212 2,439 321 39 2,799 Initial (1) 3,852	Physical (2) 76 22 98 12 110 0 110 111 121 16 2 139 Physical (2) (2) 193	Price (3) 502 209 711 48 759 8 767 66 833 91 11 935 Price (3) 1137	Tc (1)+(2) 1,596 466 2,062 255 2,317 20 2,337 223 2,559 337 41 2,937 Tc (1)+(2) 4,045	otal (1)+(2)+(3) 2,098 675 2,773 303 3,076 28 3,076 28 3,104 289 3,393 428 52 3,873 otal (1)+(2)+(3) 5,182	Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes (d)+OnSite+Duties and Taxes Remarks
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d) On-site Duties and Taxes Total Grand Total Item Construction Base Cost Compensation Cost	Initial (1) 1,520 444 243 2,207 20 2,227 212 2,439 321 39 2,799 Initial (1) 3,852 1,476	Physical (2) 76 22 98 12 110 0 110 111 121 16 2 139 Physical (2) 193 74	Price (3) 502 209 711 48 759 8 767 66 833 91 11 935 Price (3) 1,137 598	Tc (1)+(2) 1,596 466 2,062 255 2,317 20 2,337 223 2,559 337 41 2,937 Tc (1)+(2) 4,045 1,550	otal (1)+(2)+(3) 2,098 675 2,773 303 3,076 28 3,076 28 3,104 289 3,393 428 52 3,873 0tal (1)+(2)+(3) 5,182 2,148	Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes (d)+OnSite+Duties and Taxes Remarks
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d) On-site Duties and Taxes Total Grand Total Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a)	Initial (1) 1,520 444 243 2,207 20 2,227 212 2,439 321 39 2,799 Initial (1) 3,852 1,476 5,328	Physical (2) 76 22 98 12 110 0 110 111 121 16 2 139 Physical (2) 193 74 267	Price (3) 209 711 48 759 8 767 66 833 91 11 935 Price (3) 1,137 598 1,735	Tc (1)+(2) 1,596 466 2,062 255 2,317 20 2,337 223 2,559 337 41 2,937 (1)+(2) 4,045 1,550 5,595	otal (1)+(2)+(3) 2,098 675 2,773 303 3,076 28 3,104 289 3,393 428 52 3,873 (1)+(2)+(3) 5,182 2,148 7,330	Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes (d)+OnSite+Duties and Taxes Remarks
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d) On-site Duties and Taxes Total Grand Total Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C.	Initial (1) 1,520 444 243 2,207 20 2,227 212 2,439 321 39 2,799 Initial (1) 3,852 1,476 5,328 616	Physical (2) 76 22 98 12 110 0 110 111 121 16 2 139 Physical (2) 193 74 267 30	Price (3) 502 209 711 48 759 8 767 66 833 91 11 935 Price (3) 1,137 598 1,735 112	Tc (1)+(2) 1,596 466 2,062 255 2,317 20 2,337 223 2,559 337 41 2,937 (1)+(2) 4,045 1,550 5,595 646	otal (1)+(2)+(3) 2,098 <u>675</u> 2,773 303 3,076 28 3,104 289 3,393 428 52 3,873 0tal (1)+(2)+(3) 5,182 2,148 7,330 758	Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes (d)+OnSite+Duties and Taxes Remarks
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d) On-site <u>Duties and Taxes</u> Total Grand Total Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b)	Initial (1) 1,520 444 243 2,207 20 2,227 212 2,439 321 39 2,799 Initial (1) 3,852 1,476 5,328 616 5,944	Physical (2) 76 22 98 12 110 0 110 111 121 16 2 139 Physical (2) 193 74 267 30	Price (3) 502 209 711 48 759 8 767 66 833 91 11 935 Price (3) 1,137 598 1,735 112 1,847	Tc (1)+(2) 1,596 466 2,062 255 2,317 20 2,337 223 2,559 337 41 2,937 C (1)+(2) 4,045 1,550 5,595 646 6,241	otal (1)+(2)+(3) 2,098 675 2,773 303 3,076 28 3,104 289 3,393 428 52 3,873 (1)+(2)+(3) 5,182 2,148 7,330 758 8,088	Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes (d)+OnSite+Duties and Taxes Remarks (a)+Engineering S.C.
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d) On-site <u>Duties and Taxes</u> Total Grand Total Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost	Initial (1) 1,520 444 243 2,207 20 2,227 212 2,439 321 39 2,799 Initial (1) 3,852 1,476 5,328 616 5,944 54	Physical (2) 76 22 98 12 110 0 110 111 121 16 2 139 Physical (2) 193 74 267 30 297 0	Price (3) 502 209 711 48 759 8 767 66 833 91 11 935 Price (3) 1,137 598 1,735 1,12 1,847 19	Tc (1)+(2) 1,596 466 2,062 255 2,317 20 2,337 223 2,559 337 41 2,937 Tc (1)+(2) 4,045 1,550 5,595 646 6,241 54	otal (1)+(2)+(3) 2,098 675 2,773 303 3,076 28 3,076 28 3,104 289 3,393 428 52 3,873 (1)+(2)+(3) 5,182 2,148 7,330 758 8,088 73	Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes (d)+OnSite+Duties and Taxes Remarks (a)+Engineering S.C.
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d) On-site Duties and Taxes Total Grand Total Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost	Initial (1) 1,520 444 243 2,207 20 2,227 212 2,439 321 39 2,799 Initial (1) 3,552 1,476 5,328 616 5,944 5,998	Physical (2) 76 22 98 12 110 0 110 111 121 16 2 139 Physical (2) 193 74 267 30 297	Price (3) 502 209 711 48 759 8 767 66 833 91 11 935 91 11 935 (3) 1,137 598 1,735 112 1,847 19 1,866	Tc (1)+(2) 1,596 466 2,062 255 2,317 20 2,337 223 2,559 337 41 2,937 41 2,937 (1)+(2) 4,045 1,550 5,595 646 6,241 54 6,295	otal (1)+(2)+(3) 2,098 675 2,773 303 3,076 28 3,104 289 3,393 428 52 3,873 428 52 3,873 (1)+(2)+(3) 5,182 2,148 7,330 758 8,088 73 8,088	Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes (d)+OnSite+Duties and Taxes Remarks (a)+Engineering S.C. (b)+Administration Cost
Inland Partial Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d) On-site Duties and Taxes Total Grand Total Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes	Initial (1) 1,520 444 243 2,207 20 2,227 212 2,439 321 39 2,799 Initial (1) 3,852 1,476 5,328 616 5,944 54 5,998 537	Physical (2) 76 22 98 12 110 0 110 111 121 16 2 139 Physical (2) 193 74 267 30 297 0 297 28	Price (3) 502 209 711 48 759 8 767 66 833 91 11 935 Price (3) 1,137 598 1,735 112 1,847 19 1,866 149	Tc (1)+(2) 1,596 466 2,062 255 2,317 20 2,337 223 2,559 337 41 2,937 41 2,937 (1)+(2) 4,045 1,550 5,595 646 6,241 54 6,295 565	otal (1)+(2)+(3) 2,098 675 2,773 303 3,076 28 3,104 289 3,393 428 52 3,873 (1)+(2)+(3) 5,182 2,148 7,330 758 8,088 73 8,088 73	Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes (d)+OnSite+Duties and Taxes Remarks (a)+Engineering S.C. (b)+Administration Cost
Inland Partial Item Construction Base Cost Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d) On-site Duties and Taxes Total Grand Total Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(c)	Initial (1) 1,520 444 243 2,207 20 2,227 212 2,439 321 39 2,799 Initial (1) 3,852 1,476 5,328 616 5,944 5,998 537 6,535	Physical (2) 76 22 98 12 110 0 110 111 121 16 2 139 Physical (2) 193 74 267 30 297 30 297 0 0 297 28	Price (3) 502 209 711 48 759 8 767 66 833 91 11 935 Price (3) 1,137 598 1,735 112 1,847 19 1,846 149 2,015	Trac (1)+(2) 1,596 466 2,062 255 2,317 20 2,337 223 2,559 337 41 2,937 41 2,937 (1)+(2) 4,045 1,550 5,595 646 6,241 54 6,295 565 565	otal (1)+(2)+(3) 2,098 675 2,773 303 3,076 28 3,104 289 3,393 428 52 3,873 (1)+(2)+(3) 5,182 2,148 (1)+(2)+(3) 5,182 2,148 7,330 758 8,088 8,088 73 8,161 714 8,875	Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes (d)+OnSite+Duties and Taxes Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes
Inland Partial Item Construction Base Cost Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d) On-site Duties and Taxes Total Grand Total Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d) On-site	Initial (1) 1,520 444 243 2,207 20 2,227 212 2,439 321 39 2,799 Initial (1) 3,852 1,476 5,328 616 5,944 54 5,998 537 6,535 4,007	Physical (2) 76 22 98 12 110 0 110 111 121 16 2 139 Physical (2) 193 74 267 30 297 30 297 28 325 200	Price (3) 502 209 711 48 759 8 767 66 833 91 11 935 Price (3) 1,137 598 1,735 112 1,847 19 1,866 149 2,015 1,142	Tc (1)+(2) 1,596 466 2,062 255 2,317 20 2,337 223 2,559 337 41 2,937 Tc (1)+(2) 4,045 1,550 5,595 646 6,241 5,595 646 6,241 54 6,295 565 6,860 4,207	otal (1)+(2)+(3) 2,098 675 2,773 303 3,076 28 3,076 28 3,104 289 3,393 428 52 3,873 (1)+(2)+(3) 5,182 2,148 7,330 758 8,088 73 8,161 714 8,875 5,349	Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes (d)+OnSite+Duties and Taxes Remarks (a)+Engineering S.C. (b)+Administration Cost (b)+Administration Cost (c)+Duties and Taxes
Inland Partial Item Construction Base Cost Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d) On-site Duties and Taxes Total Grand Total Item Construction Base Cost <u>Compensation Cost</u> Subtotal_(a) Engineering S.C. Subtotal_(b) Administration Cost Subtotal_(c) Duties and Taxes Subtotal_(d) On-site Duties and Taxes	Initial (1) 1,520 444 243 2,207 20 2,227 212 2,439 321 39 2,799 Initial (1) 3,852 1,476 5,328 616 5,944 5,998 5,377 6,535 4,007 481	Physical (2) 76 22 98 12 110 0 110 111 121 16 2 139 Physical (2) 193 74 267 30 297 28 297 28 200 24	Price (3) 502 209 711 48 759 8 767 66 833 91 11 935 Price (3) 1,137 598 1,735 112 1,847 19 1,866 149 2,015 1,142 137	Tc (1)+(2) 1,596 466 2,062 255 2,317 20 2,337 223 2,559 337 41 2,937 Tc (1)+(2) 4,045 1,550 5,595 646 6,241 5,595 646 6,241 54 6,295 565 6,860 4,207 5,055	otal (1)+(2)+(3) 2,098 675 2,773 303 3,076 28 3,303 428 52 3,393 428 52 3,393 428 52 3,873 (1)+(2)+(3) 5,182 2,148 7,330 758 8,088 73 8,088 73 8,161 714 8,875 5,349 642	Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes (d)+OnSite+Duties and Taxes Remarks (a)+Engineering S.C. (b)+Administration Cost (c)+Duties and Taxes

							r ear					
Component	Description	2009	2010	2011	2012	2013 2014	2015	2016	2017	2018	2019	2020
Structural Project: Package 1 (Project ag	gainst Overflow of Imus River,											
Imus River Improvement (10-year Protect	tion)											
Imus River Channel Improvemen	_=3.4km					River-3						
Retarding Basin (1-1)	A=40ha	* ²⁾ River-1										
Bacoor River Improvement (2-year Protec	ction))											
Bacoor River Channel Improvement	_=6.4km					River-3						
Retarding Basin (B-1, 2 & 3) A	A=58ha				River-2							
Retarding Basin (B-4)	A=12ha	River-1										
Julian River Improvement (5-year Protect	tion)											
Julian River Channel Improvement	_=9.0km					River-3						
Retarding Basin (J-1 & 2)	A=25ha	River-1										
Structural Project: Package 2 (Project ag	ainst Overflow of San Juan River,											
San Juan/Ylang-Ylang River Improvemen	it (10-year Protection)											
San Juan River Channel Improvemen	_=2.0km					River-	4					
Retarding Basin (S-1 and Y-1&2) A	A=80ha							River-5			I	
Structural Project: Package 3 (Drainage I	Improvement Project,											
Inland Drainage Improvement (2-year Im	provement)											
Bacoor Area *1)	ď							Dra	ainage-3			
Imus Area	C, RP	^{*2)} Dr	ainage-1									
Kawit Area	CI, DM, CD, IC, RP, TD, RP, FP	5	ainage-1									
Noveleta Area	TD, FP				<u> </u>	ainage-2						
Rosario Area	TD, RP, FP				- Ğ	ainage-2						
General Trias Area	C, RP				- È	ainage-2						
Tanza Area	TD, CD, RP, FP							_Dra	ainage-3			
Compensation	and Acquisition, House Relocation		for Short	Term Proj	ect							
				for Long J	erm Proj	ect						
		•		Short-	Term	Ť	-	T			Com	pletion
			•	-				ng-Ierm				
Note: *1) <abbrevi< td=""><td>iation> FP: Flap Gate, IC: Interceptor, R</td><td>Retentio</td><td>on Pond, C</td><td>I: Channel</td><td>Improvem</td><td>ent (existing), DM</td><td>: Drainage I</td><td>Main (new),</td><td>CD: Coa</td><td>stal Dike, ⁷</td><td>rD: Tidal I</td><td>Dik</td></abbrevi<>	iation> FP: Flap Gate, IC: Interceptor, R	Retentio	on Pond, C	I: Channel	Improvem	ent (existing), DM	: Drainage I	Main (new),	CD: Coa	stal Dike, ⁷	rD: Tidal I	Dik
*2) The num:	lbers attached on bar (River- $1 \sim 5$, Draina	ge-1~3) inte	end orderin	ng of priori	ty for impl	ementation. Small	er number h	las higher pri	iority			

Table 11.3 Implementation Schedule of Structural Measures

		Year		
W OFK ITEM	2007	2008	2009	2010
1. IEC on Cleanup of Water Way				
(1) Pilot Project				
(2) Expansion Program				
2. Prevention of Encroachment to River Area				
(1) Establishment of Boundary for River Area				
(2) Development of Database of River Area				
(3) Formulation and Execution of Management Plan				
3. Land Use Control				
(1) Legislation of Ordinances for Land Use Control				
(2) Review of CLUP and PPP				
(3) Organization and Human Resources Development				
4. Setup and execution of Flood Warning and Evacuation				
(1) Setup of Local Disaster Coordinating Committee				
(2) Formulation of Calamities and Disaster Prevention Plan				
(3) Establishment of Disaster Operation/Evacuation Center				
(4) Development of Flood Hazard Map				
(5) Development of Hydrological Gauging Network				
(6) Training for Flood Warning and Evacuation				

Table 11.4 Implementation Schedule for Setup of Non-structural Flood Mitigation Program

T - 11 - 4

			Execution Bodi	es and the Roles	
Term	Item	DPWH	Cavite (LGUs)	DENR	NEDA
eriod	ECC	Preparation Submission	Support	Issuance	
n Pe	Project	Preparation			Evaluation
atio	Approval	Document (e	e.g. ICC-CC)		Approval
repara	Budgetary	Conclusio	on of MOA	-	Approval
- L	Arrangement		Loan Agreer	ment (if Any)	
	Detailed Design and Bidding	Execution	-	-	-
n	Resettlement Action Plan (RAP)	-	Preparation	Evaluaiton Monitoring	-
ructioi n Peri	Development of Resettlement Site	-	Execution	-	-
onstra and ction	House Relocation	-	Execution	Monitoring	-
Pre-Cc onstrue	Land Acquisition of Project Site	Execution	-	-	-
Ŭ	Construction	Undertaking	-	Monitoring	-
	O&M	Preparation of Budgetary Arragement	Preparation of Budgetary Arragement	-	-
Operation and Maintenance Period	O&M	Responsible for River Structures thru District Office	Responsible for Drainage Structures, Retarding Basins, and other structures incl. On-site regulation ponds	Monitoring	-

Table 11.6 Execution Body and the Roles for Structural Measures

Note : ECC : Environmental Compliance Certificate

ICC-CC : the Investment Coordination Committee-Cabinet Committee

Table 11.7	Executing	Bodies for	Proposed	Non-structural	Flood	Mitigation	Programs
-------------------	-----------	-------------------	----------	----------------	-------	------------	----------

West	Enconstinue De des
work item	Executing Body
1. Cleanup of Water Way	
(1) Setup of system for declogging at critical bottlenecks	DPWH, Municipality and Community (Barangay)
(2) Setup of system for IEC	Members of Oplan Linis Cavite
(3) Setup of system for capacity development	Members of Oplan Linis Cavite
(4) Development of materials for IEC and capacity development	Members of Oplan Linis Cavite
(5) Open of seminar for IEC and capacity development	Members of Oplan Linis Cavite
(6) Installation of signboard	Members of Oplan Linis Cavite
2. Prevention of Encroachment to River Area	
(1) Setup of boundary of river area	TFPSSS at Provincial and Municipality Level
(2) Development of inventory on dwellers in the river area	TFAPSSS at Provincial and Municipality Level
(3) Relocation of dwellers in the river area	TFAPSSS at Provincial and Municipality Level
(4) Setup of management system of the river area	TFPSSS at Municipal Level and MDCC
(5) Land zoning in the river area	MPDO and MDCC
3. Enactment of ordinance for construction of on-site flood regulation ponc	
(1) Preparation of draft of ordinance	Office of Legislative Council, PPDO and MPDO
(2) Evaluation and approval of the draft by Legislative Council	Legislative Council (Sangguang Panalawigan)
(3) Promulgation of the ordinance	Provincial Governor
4. Setup and execution of Flood Warning and Evacuation	
(1) Reorganization of PDCC and MDCC	Existing PDCC and MDCC
(2) Setup of BDCC (community-based flood warning and evacuation system)	Existing BDCC
(3) Development of flood risk map	MDCC and BDCC
(4) Setup of stepwise flood warning and evacuation procedures	PDCC, CDCC, MDCC and BDCC
(5) Establishment of hydrological gauging system	PDCC, CDCC, MDCC and BDCC
(6) Establishment of operation center	PDCC, CDCC, MDCC and BDCC
(7) Establishment of evacuation center	PDCC, CDCC, MDCC and BDCC
(8) Establishment of communication system	PDCC, CDCC, MDCC and BDCC
(9) Setup of system for IEC	PDCC, CDCC, MDCC and BDCC

Note (1): All works by the executing bodies are subject to coordination by the newly proposed Flood Mitigation Committee (FMC)

Note (2): TFPSSS = Task Force against Proffesional Squatters and Squatting Syndicates headed by Provincial Houseing and Urban Development Officer PPDO = Provincial Planning and Development Office

CPDO = City Planning and Development Officw

MPDO = Municipal Planning and Development Office

PDCC = Provincial Disaster Coordinating Council

CDCC = City Disaster Coordinating Council

MDCC = Municipal Disaster Coordinating Council

BDCC = Barangay Disaster Coordinating Council

		Itebee	fement i rograms wit	min the I to the of Cutit	
	Location	Area (ha)	Beneficiaries	Status	Remarks
1	Bgy. Langkaan I, Dasmarinas	7.0	 (1) Families affected by on- going demolition from danger areas and other public lands (2) Homeless teachers and 	Acquired through community ownership scheme under the CMP; Phased site development and improvement is in progress; financed	Limited capacity; may accommo- date a few PAFs from Gen. Trias who will be affected by off-site retarding basin and drainage
			other national or provincial	acting as guarantor.	improvement
2	Bgy. Langkaan II, Dasmarinas	5.0	Families who will be affected by the subsequent wave of anti-squatting drive.	For future acquisition, out of the proceeds from amortization for the Bgy. Osorio resettlement site.	May accommodate PAFs from Gen. Trias who will be affected by off-site retarding basin and drainage improvement
3	Bgy. Pasong Kawayan II, Gen. Trias	53.0	Homeless government employees, factory workers and minimum wage earners who are PAG-IBIG members	Inaugurated in early 2008 after successful loan negotiation with a government bank. Land development is now in progress through a private developer. 25%-30% of the area is planned as socialized housing for informal settlers.	May accommmodate PAFs from Bacoor, Kawit and Imus who will be displaced by river improvement, off-site retarding basin and drainage works
4	Bgy. Pasong Camachile, Gen. Trias	44.0	Families affected by the on- going demolition from danger areas and other public lands	For future acquisition, out of the proceeds from amortization for the Bgy. Osorio resettlement site.	May accommodate PAFs from Gen. Trias who will be displaced by off-site retarding basin
5.	Pamayanang GK ng Imus, Bgy. Alapan II, Imus	2.3	Poorest of the poor families in Imus	First batch of resettlers (32 HH) already in place; seond batch (32 HH) to be relocated before the end of 2008.	1.5 ha available for development as resettlement site for the PAFs from Imus who will be displaced by river improvement works.
6	Bgy. Toclong, Kawit	7.3	Fisherfolks and coastal communities affected by recent demolition in danger areas, fishpond areas for priority development and areas around the Aguinaldo Shrine	The province has initiated dialogues with the LGUs for the purpose. PHDMO is presently ngotiating with landowner to purchase a 1.3 ha area in Toclong; Bacoor has identified another 2.0 ha lot in Toclong for Bacoor PAFs and will negotatiate with owner soon; Kawit municipality is negotiating with an owner of a 4.0 ha land within this same barangay	May accommodate fisherfolks, fishpond tenants and other residents from Kawit and Bacoor who will be affected by river improvement, retarding basin and coastal dike. This may be the best resettlement option for PAFs of Kawit and Bacoor.
7.	Bgy. Sta. Isabel, Kawit	1.0	Informals settlers from fishponds and coastal areas affected by recent demolition activities	Kawit municipality acquired this site but land development and basic infrastructure are still lacking; 20 families now occupy the site	Slots will be allotted by LGU to accommodate PAFs who will be affected by dike construction
8.	Camp David GK Village Pabahay Site, Bgy. Sta Rosa I, Noveleta	1.4	Squatter families who were displaced by priority national government railway project and natural calamities	Presently occupied by 33 families; 34 more units are under construction for the next batch of beneficiaries. The site is good for 150 households	May accommodate up to 90 PAFs from Noveleta who will be displaced by river and drainage improvement
9.	PNOC GK Village, Bgy. Ligtong III, Rosario	1.2	Families now informally occupying PNOC land	On-site resettlement for 10 squatter families. The site could accommodate 120 households.	May accommodate PAFs from Rosario who will be affected by drainage improvement
10	Bgy. Halang, Naic	No data	For fisherfolks who will be displaced by clearing of danger areas along the coast	Site still to be identified	May accommodate PAFs fishing communities from Bacoor, Kawit, Noveleta and Rosario who will be displaced by river improvement, drainage and coastal structures
11	NHA Resettlement Sites (private subdivisions)	No data	Squatter families who were displaced by priority national government projects and private land developments in Metro Manila and suburbs	Some units are not yet occupied; other units have serious default problems on loan repayment and may be re-possessed	Subject to negotiations with NHA, some units may be awarded to potential PAFs who are qualified PAG-IBIG members, if cancellation of award to original absentee awardees is feasible
	Total	122.2			

Table 11.8 Existing and Potential Sites identified for Ongoing and Future Resettlement Programs within the Province of Cavite

 Iotal
 122.2+

 -IBIGSource: PHDMO, 2007; NHA,2008; LGU-MPDCs, 2008

Table 11.9 DPWH Resettlement Policy Compensation Mat
--

Type of Loss	Application	Entitled Person	Compensation / Entitlements
LAND	More then 20% of the total landholding lost or where less than 20% lost but the remaining landholding becomes economically unviable	PAF with TCT or Tax Declaration (Tax Declaration can be legalized to full title)	 PAFs will be entitled to: + Cash compensation for loss of land at 100% replacement cost at the informed request of PAFs + If feasible, land for land will provided in terms of a new parcel of equivalent productivity, at a location acceptable to PAFs, or + Holders of free or homestead patents and CLOAs under CA 141 (Public Land Act) will be compensated on land improvements only. + Holders of Certificate of Land Ownership Award (CLOA) granted under the Comprehensive Agrarian Reform Act shall be compensated for the land of zonal value. + Cash compensation for damaged crops at market value at the time of taking. + Rehabilitation assistance in the form of skills training equivalent to the amount of P15, 0000.00 per family, if the present means of livelihood is no longer viable and the PAF will have to engage in a new income-earning activity.
(Classified as Agricultural, Residential, Commercial or Institutional)		PAF without TCT	 + Cash compensation for damaged crops at market value at the time of taking. + Agricultural lessor are entitled to disturbance compensation equivalent to five times the average of the gross harvest for the past 3 years but not less than PhP15, 000.00.
	Less than 20% of the total landholding lost or where less than 20% lost or where the remaining landholding still viable for continued use	PAF with TCT or Tax Declaration (Tax Declaration can be legalized to full title)	PAF will be entitled to: + Cash compensation for lost of land at 100% replacement cost at the informed request of PAFs + Holders of free or homestead patents and CLOAs under CA 141. (Public Lands Act) shall be compensated on land improvements only. + Holders of Certificate of Land Ownership Award (CLOA) granted under the Comprehensive Agrarian Reform Act shall be compensated for the land at zonal value. + Cash compensation for damaged crops at market value at the time of taking.
		PAF without TCT	 + Cash compensation for damage crops at market value at the time of taking. + Agricultural lessor are entitled to disturbance compensation equivalent to five times the average of the gross harvest for the past 3 years but not less than PhP15, 000.00.
	More than 20% of the total landholding lost or where less than 20% lost but the remaining structures no longer function as intended or no longer viable for continued use	PAF with TCT or Tax Declaration (Tax Declaration can be legalized to full title)	 PAF will be entitled to: + Cash compensation for entire structure at 100% replacement cost. + Rental subsidy for the time between the submission of complete documents and the release of payment on land.
STRUCTURES (Classified as Residential, Commercial or Industrial)		PAF without TCT	PAF will be entitled to: + Cash compensation for entire structure at 100% replacement cost + Rental subsidy for the time between the submission of complete documents and the release of payment on land.
musulai)	Less than 20% of the total land holding lost where the remaining structure is still viable for continued use	PAF with TCT or Tax Declaration (Tax Declaration can be legalized into full title) PAF without TCT	 + Compensation for affected portion of the structure. + Compensation for affected portion of the structure.
IMPROVE- MENTS	Severely or marginally affected	PAF with or without TCT, tax declaration, etc.	PAF will be entitled to: + Cash compensation for the affected improvements at replacement cost.
CROPS, TREES, PERENNIALS			PAF will be entitled to: + Cash compensation for crops, tress, and perennials at current market value as prescribed by the concerned LGUs and DENR