#### 3.3 Risk Assessment of Road Slope Disasters

#### 3.3.1 Outline of Risk Assessment

Road slope disaster risk is evaluated using two risk indicators in this report. One is the frequency of road closure disaster of a site (FRCDp) while the other is potential annual loss of the site (ALp).

Relation of FRCDp and ALp is shown in Figure 3.3.1 below.



RCD: Road closure disaster

#### Figure 3.3.1 Relation of Risk Indicators

In general, risk is considered as the product of frequency and magnitude. FRCDp is an index which only shows the frequency element of risk. ALp is the overall index which is the product of frequency and the magnitude of risk, evaluated as monetary loss.

#### (1) Potential Frequency of Road Closure Disaster of a site (FRCDp)

Estimated structure of FRCDp is shown in Figure 3.3.2.



Figure 3.3.2 Estimation Structure of FRCDp

Geometry, surface situation and disturbance are FRCDp factors in the absence of existing

measures (FRCDpom). On the other hand, effect of existing structural measures is defined as the coefficient of effectiveness of existing structural measures (CEM). FRCDp is estimated as the product of FRCDpom and CEM.

#### (2) Potential Annual Loss of a Site (ALp)

Estimation structure of FRCDp is shown in Figure 3.3.3.



Figure 3.3.3 Estimation Structure of Annual Losses

ALp is the product of FRCDp and potential loss of a site (Lp) as previously mentioned. Lp is composed of four elements consisting of reopening cost, human lives loss, vehicle loss, and suspension loss. Suspension loss is caused by impassable road site, which is composed of losses of waiting, detour, and cancellation.

#### 3.3.2 Workflow

Figure 3.3.4 shows flow of assessment of risk and feasibility of structural measures on N-M Highway.

| Data Collectio                 | n<br>Data C                                             | ollection                             |                               |
|--------------------------------|---------------------------------------------------------|---------------------------------------|-------------------------------|
| Preparation of                 |                                                         |                                       |                               |
| Preliminary Ha                 | zard Map                                                | · · · · · · · · · · · · · · · · · · · |                               |
|                                | Analysis of Road Disaster in<br>2003 Disaster           | Photo Interpret<br>on Slope E         | tation Map<br>Disaster        |
|                                |                                                         | *                                     |                               |
|                                | - Classification of H                                   | lazard Type (Draft)                   |                               |
|                                | - Slope Inventory F                                     | ormat (Draft)                         | Lacand for Harner Man (Draft) |
|                                | OUTPUT Preliminary                                      | ◆<br>Hazard Map                       |                               |
|                                |                                                         |                                       | Work in Japan                 |
| <b>-</b> · <b></b> · <b></b> · | <u> </u>                                                | ⊢ · — · —                             | Field Survey                  |
| Formulation of                 | Hazard Man                                              |                                       |                               |
|                                | 18 Diald Summer (Summer for                             | ★                                     |                               |
|                                | 1 <sup></sup> Fleid Survey (Survey for                  |                                       | d map)                        |
| ſ                              | +                                                       | Tristribution N                       | fan an Slama                  |
|                                | Geological Map                                          | Distribution M                        | ster                          |
|                                |                                                         | ¥                                     |                               |
|                                | Reclassification                                        | ı of Hazard Type —                    | •                             |
|                                |                                                         | ¥                                     | Legend for Hazard Map         |
|                                |                                                         | rd Map 🖌                              |                               |
|                                |                                                         |                                       | Lind of AUG 2007              |
| Risk Assessme                  | ent of Sites                                            | ★                                     |                               |
|                                | 2 <sup>nd</sup> Field Survey (Risk Assessme<br>Crossing | nt Survey for All Roa<br>Streams)     | d Slopes and                  |
|                                | crossing                                                | ▼                                     |                               |
|                                | - Road Slope Asse                                       | ssment Sheet 1 to (                   | 3                             |
|                                |                                                         |                                       |                               |
|                                |                                                         | T                                     |                               |
| Feasibility Ass                | essment of                                              |                                       |                               |
| Structural Mea                 | sures                                                   |                                       |                               |
|                                | 3rd Field Survey (Structural Meas                       | sure Planning Survey (                | of High Risk                  |
|                                | Si                                                      | tes)<br>1                             |                               |
|                                |                                                         | <b>v</b>                              |                               |
|                                | Road Slope Ass                                          | sessment Sheet 4                      | End of FEB 2008               |
|                                |                                                         |                                       |                               |

Figure 3.3.4 Flow of Road Slope Assessment on N-M Highway

Hazard map is used as part of input information for risk assessment of sites (road slopes and road crossing streams).

#### 3.3.3 Road Slope Assessment Sheet

#### (1) Outline

Assessment sheet for risk & feasibility of structural measures (excel spread sheets) are prepared. Figure 3.3.5 shows the flowchart of road slope assessment sheet. Table 3.3.1 shows items required for the assessment of risk and feasibility of structural measures.





| Sheet No. Name             | Description/data                                                                 |
|----------------------------|----------------------------------------------------------------------------------|
| (contents of work)         |                                                                                  |
|                            | Risk Assessment of Sites                                                         |
| Sheet 1.                   | - Location of site (km post, right/left of road, expected hazard type)           |
| General Information        | - Photographs of site (slope/stream) situation                                   |
| (Screening/                | - FRCDa: Actual frequency of RCD of a site [RCD/ year]                           |
| identification of sites to | -FRCDabm: Actual frequency of RCD before structural measures of a site           |
| be surveyed)               | [RCD/year]                                                                       |
| Sheet 2.                   | - Check sheet of hazardous factor items and their categories (item groups are    |
| Potential Frequency of     | geometry, surface situation, and disturbance), and existing structural measures. |
| RCD (FRCDp)                | - Evaluation results of disaster frequency                                       |
| (Disaster frequency        | FRCDpom: FRCDp without existing structural measures [RCD/year]                   |
| assessment)                | CEM: Coefficient of Effectiveness of structural Measures [ratio]                 |
|                            | FRCDp: Potential Frequency of RCD [RCD/year]                                     |
|                            | = FRCDpom x CEM                                                                  |
| Sheet 3.                   | - Sketch of hazard situation and risk object                                     |
| Potential Disaster         | - Evaluation of disaster magnitude                                               |
| Magnitude and Annual       | LRCpoF: potential Length of Road Closure section of Full width [m]               |
| Loss                       | LRCpoP: potential Length of Road Closure section of Partial width [m]            |
| (Disaster magnitude        | - Evaluation of annual losses                                                    |
| identification and risk    | RCp: potential reopening cost of a RCD                                           |
| estimation)                | HLLp: potential value of human lives loss of a RCD                               |
|                            | VLp: potential value of vehicles loss of a RCD                                   |
|                            | LTSp: Potential Value of Losses of Traffic Suspension of a RCD                   |
|                            | Lp: potential loss of a RCD                                                      |
|                            | ALp: potential annual loss of a site                                             |
|                            | Feasibility Assessment of Structural Measures of Sites                           |
| Sheet 4                    | - Plane layout of structural measures                                            |
| Planning of Structural     | - Section layout of structural measures                                          |
| Measures                   | - Cost                                                                           |
| (planning of structural    | C: cost estimation with 20 years maintenance [Rs]                                |
| measure and feasibility    |                                                                                  |
| assessment)                | - Benefit /outcome                                                               |
| 4-1 Alternative I          | RRR: risk reduction ratio in RCD due to structural measures [Ratio]              |
| High risk reduction        | DAL: Decrease in annual loss due to structural measures [Rs/year]                |
|                            | FRCDpwm: Potential frequency of road closure disaster with structural            |
| 4-2 Alternative II         | measures [RCD/year]                                                              |
| Medium risk reduction      |                                                                                  |
|                            | -Feasibility Indicators                                                          |
| 4-3 Alternative III        | BCR: Benefit/cost ratio at 12% discount rate [ ratio]                            |
| Low risk reduction         | ENPV: Economic net present value at 12% discount rate [Rs]                       |
|                            | EIRR: Economic internal rate of return [percent]                                 |
|                            | Disaster Record                                                                  |
| Sheet 5                    | - Disaster occurrence date                                                       |
| Disaster Record            | - Disaster magnitude                                                             |
| (records of when           | - Damage: road closure days, reopening cost, human loss if any, vehicle loss if  |
| disasters occur after the  | any                                                                              |
| Inventory Survey)          | - Existing countermeasures                                                       |

RCD: Road closure disaster

From results of risk assessment survey, high risk sites (road slopes/crossing streams) were selected as priority sites for structural measures. Feasibility assessment of the planned structural measures were done (layout and cost estimate).

#### (2) Road Slope Assessment Sheet 1: General Information

First of all, the sites where the assessment should be done were specified. Road slope is divided into three slope types (mountainside slope, crossing stream, and riverside slope). Road slope types and their screening criteria for risk assessment are shown in Table 3.3.2.

| Slope Type         | Screening Criteria                                              |
|--------------------|-----------------------------------------------------------------|
| Mountainside slope | Gradient of mountainside slope $> 10^{\circ}$                   |
|                    | And                                                             |
|                    | Distance from road to toe of mountainside slope $< 10$ m        |
| Crossing stream    | Wide of crossing stream $< 3 \text{ m}$                         |
| Riverside slope    | Gradient of mountainside slope $> 10^{\circ}$                   |
|                    | And                                                             |
|                    | Distance from road to toe of mountainside slope $< 5 \text{ m}$ |

In 'Sheet 1 General information', following data were arranged.

- Location of site (km post, right/left of road, slope type, expected hazard type)

- Slope type
- Photographs of site situation
- FRCDa: Actual frequency of RCD of a site [RCD/year]

-FRCDabm: Actual frequency of RCD before structural measure of a site [RCD/year]

FRCDa is a current state value (if structural measure is constructed, FRCDa is value of after construction term).

Figure 3.3.6 shows example of road slope assessment sheet 1: general information.



Figure 3.3.6 Example of Assessment Sheet1 General Information

## (3) Road Slope Assessment Sheet 2: Potential Frequency of RCD

(a) Calculation Method of Potential Frequency of RCD

'Sheet 2 Potential Frequency of RCD' was prepared on three different formats for (1) Mountainside Slope, (2) Crossing Stream and (3) Road and Riverside Slopes.

The road slope inventory survey can provide FRCDp as a risk level indicator as shown in Figure 3.3.7. FRCDp is calculated using the following formula.

FRCDp = FRCDpom x CEM

FRCDpom =  $\sum$  FS

Where:

FRCDp = Potential frequency of Road Closure Disaster of a site [RCD per year]

FRCDpom = FRCDp of a site without structural measures [RCD per year]

CEM = Coefficient of effectiveness of structural measures effectiveness for FRCDp [coefficient]

FS= Frequency score for FRCDp (FS is assigned to each factor category of each factor item for FRCDp) [RCD per year]

Factor items for FRCDp are set with all considerable factors; factor categories are set from 2 to 4 categories, by referring Japanese road slope inspection manual (Ministry of Construction Japan 1996).

The Study on Disaster Risk Management for Narayangharh-Mugling Highway

Main Report

| Potential frequency of PCD                                           | (FPCDn)                      | ĺ                                 | FS: I<br>item                  | Frequency sc                           | ore of the factor            |                                                                                                                                                                                            |                      |
|----------------------------------------------------------------------|------------------------------|-----------------------------------|--------------------------------|----------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                                                      | (FKCDp)                      | ·                                 |                                |                                        | ······                       |                                                                                                                                                                                            |                      |
| Factor items for FRCDp                                               | Factor categorie             | es for FRCDp                      | Fitted                         | category                               |                              | Frequen<br>score fo                                                                                                                                                                        | r<br>r               |
|                                                                      |                              |                                   |                                |                                        |                              | ctor<br>Frequenc<br>score for<br>FRCDp<br>RCD/ye<br>FS1<br>A<br>FS2<br>FS3<br>FS4<br>FS5<br>FS6<br>FS6<br>FS6<br>FS7<br>FS7<br>FS7<br>FS8<br>FS8<br>FS8<br>FS8<br>FS8<br>FS8<br>FS8<br>FS8 | ear]                 |
|                                                                      |                              | Geometry                          |                                |                                        |                              |                                                                                                                                                                                            |                      |
| Wide of stream: W<br>Frequency score for FRCDp<br>[RCD/year]         | 3≥W<br>0.06                  | 5≥W                               | 0.00                           | 10≥W>5<br>0.00                         | W>10<br>0.00                 | FS1                                                                                                                                                                                        | ▶ 0.00               |
|                                                                      | 0                            | 0                                 |                                | 1                                      | 0                            |                                                                                                                                                                                            |                      |
| Area of drainage basin: A<br>Frequency score for FRCDp<br>[RCD/year] | A≥0.5km <sup>2</sup><br>0.00 | 0.5km <sup>2</sup>                | >A≥0.1<br>-0.05                | 5km <sup>2</sup>                       | -0.07                        | FS2 >                                                                                                                                                                                      | -0.05                |
|                                                                      | 0                            |                                   | 1                              |                                        | 0                            |                                                                                                                                                                                            |                      |
| Area of drainage basin: A<br>Frequency score for FRCDp<br>[RCD/year] |                              |                                   |                                |                                        |                              | FS3<br>FS4<br>FS5                                                                                                                                                                          | 0.04<br>0.05<br>0.03 |
|                                                                      | Su                           | rface situation                   | 1                              |                                        |                              |                                                                                                                                                                                            |                      |
| Dominant vegetation of drainage<br>area<br>Frequency score for FRCDp | Bare<br>0.20                 | Grasses<br>0.09                   |                                | Trees<br>0.09                          | Unknown<br>0.07              |                                                                                                                                                                                            | 0.09                 |
| [RCD/year]                                                           | 0                            | 0                                 |                                | 1                                      | 0                            |                                                                                                                                                                                            |                      |
| Dominant materials of stream                                         | Gravel                       | U<br>Sand                         |                                | 1<br>ht:::Charg                        | Bedrock                      |                                                                                                                                                                                            |                      |
| Frequency score for FRCDp<br>[RCD/year]                              | 0.13                         | 0.01                              | 51                             | 0.01                                   | 0.01                         | FS7 >                                                                                                                                                                                      | 0.13                 |
|                                                                      | 1                            | 0                                 |                                | 0                                      | 0                            |                                                                                                                                                                                            |                      |
|                                                                      |                              | Disturbance                       |                                |                                        |                              |                                                                                                                                                                                            |                      |
| Slope failure situation in drainage                                  | Newly-for                    | Newly-fo                          |                                | Newly-for                              | Newly-for                    |                                                                                                                                                                                            |                      |
| area                                                                 | med                          | rmed                              | 1                              | med                                    | med                          |                                                                                                                                                                                            |                      |
|                                                                      | are                          | are                               |                                | are                                    | are existing                 |                                                                                                                                                                                            |                      |
| Frequency score for FRCDp [Nos. of                                   | existing in                  | existing                          |                                | existing                               | only in                      |                                                                                                                                                                                            |                      |
| RCD/year]                                                            | main                         | only in                           | (                              | only in                                | branch                       | FS8                                                                                                                                                                                        | 0.05                 |
|                                                                      | valley and                   | main                              | 1                              | branch                                 | valleys                      |                                                                                                                                                                                            |                      |
|                                                                      | branch                       | valley                            |                                | valleys                                |                              |                                                                                                                                                                                            |                      |
|                                                                      | valleys                      | 0.07                              |                                |                                        | 0.07                         | ······                                                                                                                                                                                     | ···· <b>&gt;</b>     |
|                                                                      | 0.06                         | 0.06                              |                                | 0.05                                   | 0                            |                                                                                                                                                                                            |                      |
| Trace of debris on or baside the read                                | U<br>Trace of dobri          | 0                                 |                                | 1                                      | 0                            |                                                                                                                                                                                            |                      |
| Frequency score for FRCDp [Nos. of RCD/year]                         | the r                        | s on or beside<br>oad             |                                | If there ar categories, Faitem is 0.00 | e no fitted<br>S of a factor | F<br>                                                                                                                                                                                      | 0.00                 |
|                                                                      |                              | 0                                 | ····.                          |                                        |                              |                                                                                                                                                                                            |                      |
|                                                                      |                              | FRCDpom: F                        | RCDp                           | without exis                           | ting countermeas             | ure [RCD                                                                                                                                                                                   | / year]              |
|                                                                      |                              |                                   |                                | F                                      | $racDpom = \sum (FS)$        | 1:FS9)                                                                                                                                                                                     | 0.34                 |
| Existing structure                                                   | l measure-type (I            | Description)                      |                                |                                        | CEM: Coe                     | efficient o<br>of struct                                                                                                                                                                   | of<br>ural           |
| Small about dam (5 m haight v 2 nos.)                                | Center Cem                   | is input by o<br>lering predictiv | engineer<br><del>/e haza</del> | ing judgmen<br><del>rd magnitude</del> | mea                          | sure                                                                                                                                                                                       |                      |
| Sman check dam (5 m height x 2 hos.)                                 | , Causeway and en            | xisting structure'                | 's situatio                    | on                                     | CEM                          |                                                                                                                                                                                            | 0.<br>04             |
|                                                                      |                              |                                   |                                | FRCDp                                  | of survey site [nos          | s. of RCD                                                                                                                                                                                  | / year]              |
|                                                                      |                              |                                   |                                | FRO                                    | CDp = FRCDpom                | x CEM                                                                                                                                                                                      | 0.01                 |

#### Figure 3.3.7 Calculation Procedure for FRCDp in Road Slope Assessment Sheet 2

#### (b) Calculation Method

The most suitable frequency scores (FSs) were analyzed by multivariate statistical analysis : minimizing the residual sum of squares between actual value (FRCDabm) and the predicted value (FRCDpom), as shown in figure 3.3.8 and Appendix 3.

Where:

FRCDabm= Actual frequency of RCD of a slope before structural measure is installed [no. of RCD per year]

FRCDpom= potential frequency of RCD of a slope without structural measures [RCD /year]



FRCDabm (Actual Frequency of Road Closure Disaster before structural [RCD/year]

Figure 3.3.8 Illustration for Searching Most Suitable Frequency Scores

The analyzed frequency scores are shown in Figure 3.3.9, 3.3.10, 3.3.11.

The bigger factor scores are relatively dangerous factor categories in specific factor item.

Score range is difference between maximum and minimum frequency score of factor categories in specific factor item. A bigger score range shows that a factor item has relatively big affection on RCD occurrence.

Table 3.3.3 summarized highly affecting factor items for RCD of each slope types (mountainside slope, riverside slope, and crossing streams).

|                           | 8,                    | 8                        |                     |
|---------------------------|-----------------------|--------------------------|---------------------|
| Order of top three highly | Mountain side slope   | Crossing stream          | River side slope    |
| affecting factor items    |                       |                          |                     |
| 1                         | - Distance from road  | - Height from stream     | - Distance from     |
|                           | to mountainside slope | bottom to road           | road to toe of      |
|                           |                       |                          | mountain side slope |
| 2                         | - Gradient of slope   | - Dominant vegetation of | - Gradient of slope |
|                           |                       | drainage area            |                     |
| 3                         | - Road section length | - Dominant materials of  | - Road section      |
|                           | of survey slope       | stream sediment at road  | length of survey    |
|                           |                       | crossing                 | slope               |

 Table 3.3.3 Highly Affecting Factor Items for RCD

|            | Factor Items                         |                                        | Frequence     | y Score (1 | RCD/year)                        |          | Scor | e Range (RCD) | /year)                                |      |
|------------|--------------------------------------|----------------------------------------|---------------|------------|----------------------------------|----------|------|---------------|---------------------------------------|------|
|            |                                      |                                        |               | -0.05      | 0.00                             | 0,05     |      | 0.00          | 0.05                                  | 0,10 |
|            |                                      |                                        |               |            |                                  |          |      |               |                                       |      |
|            | Geometry: Factor Item Gro            | ups l                                  | Score for yes |            |                                  |          |      |               |                                       |      |
|            | <b>Boad section length of summer</b> | $L \ge 300 \text{ m}$                  | 0.07          |            |                                  |          |      |               |                                       |      |
|            | slope: L                             | $200 \text{m} \ge L \ge 200 \text{ m}$ | -0.02         |            |                                  |          | 0.09 |               |                                       |      |
|            | anope. E                             | 100m > L                               | -0.02         |            |                                  |          |      |               |                                       |      |
|            |                                      | $H \ge 90 \ m$                         | 0.05          |            |                                  |          |      |               |                                       |      |
|            | Height of mountain side slope: H     | $90m \ge H \ge 60 m$                   | 0.04          |            |                                  |          | 0.03 |               |                                       |      |
|            | · · ·                                | $60m > H \ge 30m$                      | 0.03          |            |                                  |          |      |               |                                       |      |
|            |                                      | $G \ge 60^{\circ}$                     | 0.02          |            |                                  |          |      |               |                                       |      |
|            | Cradient of slopes C                 | $60^\circ > G \ge 40^\circ$            | 0.00          |            | Accord 1146 cold and a cold 1146 |          | 0.10 |               |                                       |      |
|            | Gradient of slope: G                 | $40^\circ > G\!\!\geq 20^\circ$        | -0.05         |            |                                  |          | 0.10 |               |                                       |      |
|            |                                      | $20^\circ > G$                         | -0.05         |            |                                  |          |      |               |                                       |      |
| ice        | Distance from road to toe of         | IM > D<br>3m > D > 1m                  | 0.07          |            |                                  |          |      |               |                                       |      |
| cho        | mountainside slope : D               | $5m \ge D > 3m$<br>$5m \ge D > 3m$     | -0.04         |            |                                  |          | 0.11 |               |                                       |      |
| â          | -                                    | D > 5 m                                | -0.04         |            |                                  |          |      |               |                                       |      |
| 049        | Surface situation: Factor Ite        | em Groups II                           | Score for yes |            |                                  |          |      |               |                                       |      |
| cat        |                                      | Valley type<br>Straight type           | 0.02          |            |                                  |          |      |               |                                       |      |
| ne         | Slope shape                          | Ridge type                             | 0.05          |            |                                  |          | 0.03 |               |                                       |      |
| 0          |                                      | Combined type                          | -0.01         |            |                                  |          |      |               |                                       |      |
|            |                                      | Bare                                   | 0.07          |            |                                  |          |      |               |                                       |      |
|            | Dominant vegetation                  | Grasses                                | 0.03          |            |                                  |          | 0.07 |               |                                       |      |
|            | Dominant vegetation                  | Surface protection                     | 0.03          |            |                                  |          | 0.01 |               |                                       |      |
|            |                                      | bv                                     | 0.00          |            |                                  |          |      |               |                                       |      |
|            |                                      | Silt, Clay                             | 0.02          |            |                                  |          |      |               |                                       |      |
|            |                                      | Sand                                   | 0.02          |            |                                  |          |      |               |                                       |      |
|            | Dominant materials of slope          | Cobbles, or                            | -0.03         |            |                                  |          | 0.07 |               |                                       |      |
|            | surface                              | Fractured rock                         | 0.03          |            |                                  |          | 0.07 |               |                                       |      |
|            |                                      | Weathered rock                         | 0.03          |            |                                  |          |      |               |                                       |      |
|            |                                      | Soft fresh rock                        | 0.02          |            |                                  |          |      |               |                                       |      |
|            | a                                    | Yes                                    | 0.04          |            |                                  |          | 0.02 |               |                                       |      |
|            | Spring is present                    | No                                     | 0.00          |            |                                  |          | 0.03 |               |                                       |      |
|            | Surface water is present             | Yes                                    | 0.02          |            |                                  |          | 0.02 |               |                                       |      |
|            |                                      | No                                     | 0.00          |            |                                  |          |      |               |                                       |      |
|            | Erosion is present                   | No                                     | 0.02          |            | NCCC200111188                    |          | 0.02 |               |                                       |      |
|            | Slide configuration is lapping       | Yes                                    | 0.02          |            |                                  |          | 0.02 |               |                                       |      |
|            | over the road                        | No                                     | 0.00          |            |                                  |          | 0.02 |               |                                       |      |
|            | Disturbance: Factor Item G           | Vac                                    | Score for yes |            |                                  | <u>.</u> |      |               |                                       |      |
|            | Collapse/ Fall                       | No                                     | 0.00          |            |                                  |          | 0.01 |               |                                       |      |
|            | Continuous Cracks (more than 5       | Yes                                    | 0.01          |            |                                  |          | 0.01 |               |                                       |      |
| ice        | meter), Crevices on Slope            | No                                     | 0.00          |            |                                  |          | 0.01 |               |                                       |      |
| 1040       | Fallen/ Inclined trees               | Yes                                    | 0.07          |            |                                  |          | 0.07 |               |                                       |      |
| 10         | 0 h                                  | Yes                                    | 0.00          |            |                                  |          | 0.01 |               |                                       |      |
| 2          | Open cracks below an over hang       | No                                     | 0.00          |            |                                  |          | 0.01 |               |                                       |      |
| ese        | Open cracks by toppling              | Yes                                    | 0.02          |            |                                  |          | 0.02 |               |                                       |      |
| <u>م</u> ا | Cross open cracks to cause           | Yes                                    | 0.00          |            |                                  |          |      |               |                                       |      |
|            | wedge shape slide                    | No                                     | 0.00          |            |                                  |          | 0.01 |               |                                       |      |
|            | Sliding direction open cracks        | Yes                                    | 0.01          |            |                                  |          | 0.01 |               |                                       |      |
|            | Vertical Crakes on Retaining         | No                                     | 0.00          | + + + +    |                                  |          |      |               |                                       |      |
|            | Wall                                 | No                                     | 0.07          |            |                                  |          | 0.07 |               |                                       |      |
|            | Continuous Cracks (more than 5       | Yes                                    | 0.03          |            |                                  |          | 0.02 |               |                                       |      |
|            | meter), Crevices on Road             | No                                     | 0.00          |            |                                  |          | 0.03 |               |                                       |      |
|            | Continuous Cracks retaining          | Yes                                    | 0.02          |            |                                  |          | 0.02 |               |                                       |      |
|            | wall and Road                        | No                                     | 0.00          |            |                                  |          |      |               | · · · · · · · · · · · · · · · · · · · |      |
|            | Upheaval on Road                     | No                                     | 0.02          |            |                                  |          | 0.02 |               |                                       |      |

### Figure 3.3.9 Frequency Scores of Mountainside Slope

|          | Factor Items                |                                                     | Frequenc      | y S | Sc | ore | (Re | CD/y  | /ea   | ar)  |          |       |      |      |         | Sco   | re l | R٤ | ing | ge ( | R  | CD               | )/y     | ear | )   |    |     |    |
|----------|-----------------------------|-----------------------------------------------------|---------------|-----|----|-----|-----|-------|-------|------|----------|-------|------|------|---------|-------|------|----|-----|------|----|------------------|---------|-----|-----|----|-----|----|
|          |                             |                                                     |               |     |    | -0, | 20  | -0, 1 | 0     | (    | ),0(     | )     | (    | ).10 |         |       | 0.0  | 0  | 0.  | 05   | 0. | 10               | 0.      | 15  | 0.2 | 20 | 0.2 | 25 |
|          | Geometry: Factor Ite        | em Groups I                                         | Score for yes |     |    |     |     |       |       |      |          |       |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
|          |                             | $3 m \geq W$                                        | 0.06          |     |    |     |     |       |       |      |          |       |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
|          | Width of stream: W          | $5 \text{ m} \ge W \ge 3 \text{ m}$                 | 0.00          |     |    |     |     |       |       |      |          |       |      |      |         | 0.06  |      |    |     |      |    |                  |         |     |     |    |     |    |
|          |                             | $5 \text{ m} \ge W \ge 3 \text{ m}$                 | 0.00          |     |    |     |     |       |       |      |          |       |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
|          |                             | W > 10 m                                            | 0.00          |     |    |     |     |       | 1     |      |          | .     |      |      |         |       |      |    |     |      |    |                  | ++      |     |     |    | !   |    |
|          | Area of drainage basin:     | $A \ge 0.5 \text{ km}^2$                            | 0.00          |     |    |     |     |       |       |      |          |       |      |      |         | 0.07  |      |    |     |      |    |                  |         |     |     |    |     |    |
|          | Α                           | $0.5 \text{ km}^2 > \text{A} \ge 0.15 \text{ km}^2$ | -0.05         |     |    |     |     |       |       |      |          |       |      |      |         | 0.07  |      |    |     |      |    |                  |         |     |     |    |     |    |
|          |                             | 0.5  km > A                                         | -0.07         |     |    |     |     |       | +     |      |          |       |      | +    |         |       |      |    |     |      | ++ | $\left  \right $ | +       |     | +   |    |     |    |
|          | Gradient of stream at       | $0 \ge 20$<br>$20^\circ > C > 15^\circ$             | 0.07          |     |    |     |     |       |       |      |          | 1     |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
|          | road crossing: G            | $15^{\circ} > G \ge 10^{\circ}$                     | 0.05          |     |    |     |     |       |       |      |          |       |      |      |         | 0.03  |      |    |     |      |    |                  |         |     |     |    |     |    |
|          | roud crossing. o            | $10^\circ > G$                                      | 0.04          |     |    |     |     |       |       |      |          | Ş.    |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
|          |                             | $G \ge 40^{\circ}$                                  | 0.00          |     |    |     | 1   | 1     | 1     | - 69 |          | 1     |      |      |         |       |      |    |     |      |    |                  | $^{++}$ |     |     |    |     |    |
|          | Steepest gradient of        | $40^\circ > G \ge 30^\circ$                         | -0.03         |     |    |     |     |       |       |      |          |       |      |      |         | 0.04  |      |    |     |      |    |                  |         |     |     |    |     |    |
|          | stream : G                  | $30^\circ > G \ge 15^\circ$                         | -0.03         |     |    |     |     |       |       |      |          |       |      |      |         | 10.00 |      |    |     |      |    |                  |         |     |     |    |     |    |
|          |                             | $15^{\circ} > G$                                    | -0.06         |     |    |     |     |       |       |      |          |       |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
|          |                             | $I m \ge H$                                         | 0.02          |     |    |     |     |       |       |      | 101105   |       |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
| ice      | Height from stream          | $2 m \ge H > 1 m$                                   | 0.02          |     |    |     |     |       |       | -    | 1980BE   |       |      |      |         | 0 30  |      |    |     |      |    |                  | į.      |     |     |    |     |    |
| $o_{i}$  | bottom to road : H          | $5 m \ge H \ge 2 m$                                 | -0.01         |     |    |     | Ш., |       |       |      |          |       |      |      |         | 0.00  |      |    |     |      |    |                  |         |     |     |    |     |    |
| $r_{c}$  |                             | H > 5 m                                             | -0.28         | Ш   |    |     |     |       |       |      |          |       |      |      | Ш.      |       |      |    |     |      |    |                  |         |     |     |    |     |    |
| 102      | Surface situation: Fa       | ctor Item Groups II                                 | Score for yes |     |    |     | 1   |       |       |      | SERT     | aene  | 1003 | 1000 | 1636166 |       |      |    |     |      |    |                  | +       |     |     |    | ĺ   |    |
| tte      | <b>D</b> 1 <i>i i i i i</i> | Bare                                                | 0.20          |     |    |     |     |       |       |      |          | 1     | 11   |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
| 50       | Dominant vegetation of      | Grasses                                             | 0.09          |     |    |     |     |       |       |      |          |       |      |      |         | 0.13  |      |    |     |      |    |                  |         |     |     |    |     |    |
| )ne      | uramage area                | Hinknown                                            | 0.09          |     |    |     |     |       |       |      |          |       |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
| <u> </u> |                             | Boulders Cobbles                                    | 0.07          |     |    | +++ |     | 1     | +     |      |          |       | 1    | 841  |         |       |      |    |     |      |    |                  | +       |     | +   |    |     |    |
|          | Dominant materials of       | Sands                                               | 0.01          |     |    |     |     |       |       |      | 350)<br> |       |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
|          | stream sediment at road     | Silt. Clay                                          | 0.01          |     |    |     |     |       |       |      |          |       |      |      |         | 0,13  |      |    |     |      |    |                  |         |     |     |    |     |    |
|          | crossing                    | Bedrock                                             | 0.00          |     |    |     |     |       |       | #*   |          |       |      |      |         |       |      |    |     |      | Ì  |                  |         |     |     |    | I.  |    |
|          | Disturbance: Factor         | Item Groups III                                     | Score for yes | 1   |    | T   | 1   | 1     | 1     | 1    |          | 1     |      |      |         |       | 1    |    |     |      |    |                  | T       |     | 1   |    | 1   |    |
|          |                             | Newly-formed collapse                               |               |     |    |     |     |       |       | l.   |          |       |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
|          |                             | are existing in main                                | 0.06          |     |    |     |     |       |       | 1    |          | ł     |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
|          |                             | valley and branch valleys                           |               |     |    |     |     |       |       |      |          | ÷.    |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
|          |                             | Newly-formed collapses                              |               |     |    |     |     |       |       |      |          |       |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
|          |                             | are existing only in main                           | 0.06          |     |    |     |     |       |       | 1    |          | 111   |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
|          | Slope failure situation     | valley                                              |               |     |    |     |     |       |       |      |          | t i   |      |      |         | 0.07  |      |    |     |      |    |                  |         |     |     |    |     |    |
|          | lm drainage area            | Newly-formed collapses                              |               |     |    |     |     |       |       |      |          |       |      |      |         | 10.07 |      |    |     |      |    |                  |         |     |     |    |     |    |
|          |                             | are existing only in                                | 0.05          |     |    |     |     |       |       |      |          | 10001 |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
|          |                             | branch valleys                                      |               |     |    |     |     |       |       |      |          |       |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
|          |                             | Marily formed collenses                             |               |     |    |     |     |       |       |      |          |       |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
|          |                             | newly-formed conapses                               | -0.01         |     |    |     |     |       |       |      |          |       |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
|          |                             | are not recognized                                  |               |     |    |     |     |       |       |      |          |       |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
| ce.      |                             |                                                     |               | T   |    |     |     |       | $\Pi$ |      |          |       |      |      | Π       |       |      | Π  | T   |      | T  |                  | T       |     | T   |    |     |    |
| loi      |                             | Yes                                                 | 0.01          |     |    |     |     |       |       | 1000 |          |       |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
| 2        | Trace of debits on or       |                                                     |               |     |    |     |     |       |       |      |          |       |      |      |         | 0.07  |      |    |     |      |    |                  |         |     |     |    |     |    |
| $N_{c}$  | beside the road             |                                                     |               |     |    |     |     |       |       | 8    |          |       |      |      |         | 0.01  |      |    |     |      |    |                  |         |     |     |    |     |    |
| 2        |                             | No                                                  | 0.00          |     |    |     |     |       |       |      |          |       |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
| 'es      |                             | NU                                                  | 0.00          |     |    |     |     |       |       |      |          |       |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |
| $\sim$   |                             |                                                     |               |     |    |     |     | 11    |       |      |          |       |      |      |         |       |      |    |     |      |    |                  |         |     |     |    |     |    |

Figure 3.3.10 Frequency Scores of Crossing Stream

|            | Factor Items                                                                 |                                                                                                                                                                                                                                                                         | Frequenc                                                                      | y Score ( | RCD/yea | r)                          | Score Range (RCI | D/year) |      |
|------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------|---------|-----------------------------|------------------|---------|------|
|            |                                                                              |                                                                                                                                                                                                                                                                         |                                                                               | -0.10     | -0.05   | 0.00 0.05                   | 0.00             | 0.05    | 0.10 |
|            | Geometry: Factor Item Grou                                                   | os I                                                                                                                                                                                                                                                                    | Score for yes                                                                 |           |         |                             |                  |         |      |
|            | Road section length of survey<br>slope: L                                    | $L \ge 300 \text{ m}$<br>$300\text{m} > L \ge 200 \text{ m}$<br>$200\text{m} > L \ge 100 \text{ m}$<br>100m > L                                                                                                                                                         | 0.01<br>0.01<br>0.00                                                          |           |         |                             | 0.01             |         |      |
|            | Height of Valley side slope: H                                               | $H \ge 90 \text{ m}$<br>$90\text{m} > H \ge 60 \text{ m}$<br>$60\text{m} > H \ge 30 \text{ m}$<br>$30\text{m} \ge H$                                                                                                                                                    | 0.05<br>0.05<br>0.04<br>0.03                                                  |           |         |                             | 0.02             |         |      |
|            | Gradient of valley side slope                                                | $ \begin{array}{l} \mathbf{G} \geq \mathbf{60^\circ} \\ \mathbf{G} \geq \mathbf{60^\circ} \\ \mathbf{60^\circ} \geq \mathbf{G} \geq \mathbf{40^\circ} \\ \mathbf{40^\circ} \geq \mathbf{G} \geq \mathbf{20^\circ} \\ \mathbf{20^\circ} \geq \mathbf{G} \\ \end{array} $ | 0.02<br>0.02<br>0.00<br>0.00                                                  |           |         |                             | 0.02             |         |      |
|            | Distance from road to head of<br>river side slope                            | $\begin{array}{l} 1 \ m \geq D \\ 3m \ \geq \ D \geq \ 1m \\ 5m \ \geq \ D \geq \ 3m \\ D \geq \ 5 \ m \end{array}$                                                                                                                                                     | 0.00<br>-0.01<br>-0.06<br>-0.10                                               |           |         |                             | 0.10             |         |      |
| 9          | Distance from low water of river<br>to road: D                               | $\begin{array}{l} 0.5 \ m \geq D \\ 1.0m \ \geq D > \ 0.5m \\ 2.0m \ \geq D > \ 1.0m \\ D > \ 1.0m \\ D > \ 2.0m \end{array}$                                                                                                                                           | 0.00<br>0.00<br>0.00<br>0.00                                                  |           |         |                             | 0.00             |         |      |
| gory choic | Height from high water of road to<br>road surface or head of<br>revetment: H | $0.0m \ge H$<br>$1.0m \ge H \ge 0.0m$<br>$2.0m \ge H \ge 1.0m$<br>$H \ge 2m$                                                                                                                                                                                            | 0.03<br>0.03<br>0.03<br>0.00                                                  |           |         |                             | 0.03             |         |      |
| One cate   | Slope shape                                                                  | Valley type<br>Straight type<br>Ridge type<br>Combined type                                                                                                                                                                                                             | 0.03<br>0.03<br>0.03<br>0.04                                                  |           |         |                             | 0.01             |         |      |
|            | Surface situation: Factor Iten                                               | n Groups II                                                                                                                                                                                                                                                             | Score for yes                                                                 |           |         |                             |                  |         |      |
|            |                                                                              | Grasses                                                                                                                                                                                                                                                                 | -0.01                                                                         |           |         |                             |                  |         |      |
|            | Dominant vegetation                                                          | Trees<br>Surface protection by<br>concrete/stone/block                                                                                                                                                                                                                  | -0.07<br>-0.07                                                                |           |         |                             | 0.06             |         |      |
|            | Sløpe typer                                                                  | Embankment slope<br>Combined or unknown                                                                                                                                                                                                                                 | 0.10                                                                          |           |         |                             | 0.08             |         |      |
|            |                                                                              | Natural slope                                                                                                                                                                                                                                                           | 0.02                                                                          |           |         |                             |                  |         |      |
|            | Dominant materials of slope<br>surface                                       | Silt, Clay<br>Sand<br>Gravels<br>Cobbles, or Boulders<br>Fractured rock<br>Weathered rock<br>Soft fresh rock<br>Hard fresh rock<br>Surface protection by<br>concretestone-block                                                                                         | -0.01<br>-0.01<br>-0.04<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06 |           |         |                             | 0.05             |         |      |
| $\vdash$   | Dip slope structure (bedding                                                 | Yes                                                                                                                                                                                                                                                                     | 0.05                                                                          |           |         |                             | 0,05             |         |      |
|            | Soil covering impervious bedrock                                             | Yes                                                                                                                                                                                                                                                                     | 0.05                                                                          |           |         |                             | 0.05             |         |      |
|            | The rocks are hard at upper part<br>and soft at foot part                    | Yes                                                                                                                                                                                                                                                                     | 0.00                                                                          |           |         |                             | 0.00             |         |      |
|            | The rocks are soft at upper part<br>and hard at foot part                    | Yes                                                                                                                                                                                                                                                                     | 0.03                                                                          |           |         |                             | 0.03             |         |      |
|            | Spring is present                                                            | Yes<br>No                                                                                                                                                                                                                                                               | 0.07                                                                          |           |         |                             | 0.07             |         |      |
|            | Surface water is present                                                     | Yes<br>No                                                                                                                                                                                                                                                               | 0.00                                                                          |           |         |                             | 0.00             |         |      |
|            | Rainwater flow from road to<br>valley side is present                        | Yes<br>No                                                                                                                                                                                                                                                               | 0.02                                                                          |           |         |                             | 0.02             |         |      |
| ice        | Slide configuration is lapping over                                          | Yes                                                                                                                                                                                                                                                                     | 0.05                                                                          |           |         |                             | 0.05             |         |      |
| Cho        | Disturbance: Factor Item Gro                                                 |                                                                                                                                                                                                                                                                         | 0.00<br>Score for ves                                                         |           |         |                             |                  | ***     |      |
| No         | Erosion is present                                                           | Yes                                                                                                                                                                                                                                                                     | 0.01                                                                          |           |         |                             | 0.01             |         |      |
| ss or      | Piping hole is present                                                       | Yes                                                                                                                                                                                                                                                                     | 0.00                                                                          |           |         |                             | 0.00             |         |      |
| ľ          | Fall Channels and the l                                                      | No<br>Yes                                                                                                                                                                                                                                                               | 0.00                                                                          |           |         |                             | 0.05             |         |      |
|            | Fail, Slump in riverside slope                                               | No<br>Yes                                                                                                                                                                                                                                                               | 0.00                                                                          |           |         |                             | 0.05             |         |      |
|            | Depression on road                                                           | No                                                                                                                                                                                                                                                                      | 0.00                                                                          |           |         |                             | 0.05             |         |      |
|            | Cracks/Crevices on road                                                      | No                                                                                                                                                                                                                                                                      | 0.00                                                                          |           |         | per l'And Edd (1991) BERNER | 0.05             |         |      |

Figure 3.3.11 Frequency Scores of Riverside Slope

#### (c) Coefficient of Effectiveness of Structural Measures (CEM)

The assessment surveyor evaluated the effect of the measures on FRCDp as CEM. CEM is coefficient for calculation of FRCDp as shown in the expression given below.

where

FRCDp = FRCDpom x CEM

FRCDp = Potential frequency of RCD [RCD/year]

FRCD = Potential frequency of RCD without countermeasures [RCD/year]

CEM = Coefficient of effectiveness of structural measures

Table 3.3.4 shows average CEM of Philippines national highway as a reference.

CEM is not set by measure-type. It is differs with strength, scale of structural measures and magnitude of hazard. CEM was set by engineering judgment of assessment surveyor. CEM for multiple measure-types, it is also evaluated by engineering judgment considering compound effect.

| Structural measure type        | CEM | Structural measure type               | CEM  |
|--------------------------------|-----|---------------------------------------|------|
| Mountainside slope             |     | Crossing stream                       |      |
| Catch wall                     | 0.2 | Small sabo dam (less than 10 m height | 0.2  |
| Retaining wall                 | 0.1 | Riverside slope                       |      |
| Slope protection by vegetation | 0.4 | Road drainage                         | 0.05 |
| (countries)                    |     | Retaining<br>wall/Revetment           | 0.05 |

 Table 3.3.4 Example of Average CEM (Philippines National Highway)

#### (d) Format of Road Slope Assessment Sheet 2: Potential Frequency of RCD

Three different formats of road slope assessment sheet 2: were used for assessment of potential frequency of RCD by slope types (mountainside slope, crossing stream and riverside slope) and are shown in Figure 3.3.9, 3.3.10, and 3.3.11.

Narayangharh-Mugling Highway

Road Name

| Left side of road                                                     | Km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dn)                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Factor categories for                                                 | r FRCDp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Frequency sc.<br>[RCI                                                                                                                                                                                               | ore for FRCD<br>/year]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                       | Geometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| L ≥ 300 m<br>0.07                                                     | 300 m > L ≥ 200 m<br>0.02<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200 m > L ≥ 100 m<br>-0.02<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100 m > L.<br>-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FSI                                                                                                                                                                                                                 | (0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $H \ge 90 \text{ m}$<br>0.05                                          | $90 \text{ m} > \text{H} \ge 60 \text{ m}$<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60 m ≥ H ≥ 30 m<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 m > H<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FS2                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $G \ge 60^{\circ}$<br>0.05                                            | $60^{\circ} \ge G \ge 40^{\circ}$<br>-0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40° > G≥ 20°<br>-0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20° > G<br>-0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FS3                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 m > D<br>0.07                                                       | 3 m ≥ D> 1m<br>0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 m ≥ D > 3 m<br>-0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D > 5 m<br>-0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FS4                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Valley type<br>0.02                                                   | 0<br>Straight type<br>0.03<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ridge type<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Combined type<br>-0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FS5                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                                                                     | Surface situa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bare 0.07                                                             | Grasses<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Trees 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Surface protection by<br>concrete/stone/block<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FS6                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Silt, Clay                                                            | Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gravels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cobbles, or Boulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.02                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ES7                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Fractured rock                                                        | Weathered rock<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Soft fresh rock<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hard fresh rock<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ulders           -0.03           0           FS7           ock           0.04           0           soft at           hard           rt           0.03           0           ration           er the           0.02 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dip slope structure<br>(bedding plane) is<br>present<br>0.05          | Soil covering<br>impervious bedrock<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The rocks are hard at<br>upper part and soft at<br>foot part<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The rocks are soft at<br>upper part and hard<br>at foot part<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FS8                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0<br>Spring is Present<br>0.03                                        | Surface Water is<br>Present<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Erosion is Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>Slide Configuration<br>is lapping over the<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FS9                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Collapse/ Fall<br>0.01                                                | Continuous Cracks<br>(more than 5 meter),<br>Crevices on Slope<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e<br>Fallen/ Ino<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | clined trees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0<br>Open cracks below<br>an over hang<br>0.01                        | Open cracks by<br>toppling<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cross open cracks to<br>cause wedge shape<br>slide<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>Sliding direction<br>open cracks<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FS10                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0<br>Vertical Crakes on<br>Retaining Wall                             | Continuous Cracks<br>(more than 5 m),<br>Crevices on Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Continuous Cracks<br>retaining wall and<br>Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>Depression/<br>Upheaval <b>on Road</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.07                                                                  | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                       | FRCDpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m: FRCDp withou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | it existing structur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | al measure                                                                                                                                                                                                          | [RCD/year]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FRCDpom = $\Sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (FSI:FSI0)                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (Description)                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CEM. Coe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | struct<br>CEM                                                                                                                                                                                                       | ural measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FRCDp = FRCDp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FRCDp:                                                                                                                                                                                                              | [RCD/year]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ] 1 should be input to<br>] 1 should be input w<br>Numerical value or | selected category's ce<br>hen corresponding to<br>term is automatically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ll.<br>situation.<br>input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                       | Left side of road<br>Total State of Pactor Categories for<br>Eactor categories for<br>$L \ge 300 \text{ m}$<br>0.07<br>0.07<br>0<br>$H \ge 90 \text{ m}$<br>0.05<br>0<br>$G \ge 60^{\circ}$<br>0.07<br>0<br>1  m > D<br>0.07<br>0<br>0.07<br>0<br>0.07<br>0<br>0.07<br>0<br>0.07<br>0<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.05<br>0.03<br>0.03<br>0.05<br>0.05<br>0.03<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | Left side of road <b>Geometry Geometry</b> L $\geq$ 300 m       300 m > L $\geq$ 200 m         0       0       0.02         0       90 m > H $\geq$ 60 m       0.04         0       0       0       0         H $\geq$ 90 m       90 m > H $\geq$ 60 m       0.04         0       0       0       0         G $\geq$ 60°       60° > G $\geq$ 40°       0.05       -0.05         0       0       3 m $\geq$ D > 1 m       0.07       0.00         0       0       3 m $\geq$ D > 1 m       0.07       0.00         0       0       3 m $\geq$ D > 1 m       0.07       0.00         0       0       0       0       0       0         Valley type       0.02       0.03       0       0         0       0.07       0.03       0       0       0         Stilt. Clay       Sand       0.02       0.03       0       0       0         Fractured rock       Weathered rock       0.03       0.03       0       0       0       0       0       0       0       0       0       0       0       0       0 <td>Left side of road         Geometry         Geometry         L <math>\geq 300 \text{ m}</math>       300 m &gt; L <math>\geq 200 \text{ m}</math>       200 m &gt; L <math>\geq 100 \text{ m}</math>         0.07       0.02       0.02         0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0       0         0       0       0       0       0       0       0</td> <td>Tert side of road</td> <td>Tech sade of road       Frequency see [RCT         Frequency see [RCT         Commetry         L <math>\geq 300 m</math> <math>300 m &gt; L \ge 200</math> <math>200 m &gt; L \ge 100 m</math> <math>100 m &gt; L</math> <math>-0.02</math>       [FS1]         H <math>\ge 90 m</math> <math>90 m &gt; H \ge 20 m</math> <math>60 m &gt; H \ge 30 m</math> <math>30 m &gt; L</math> <math>-0.02</math>       [FS1]         H <math>\ge 90 m</math> <math>90 m &gt; H \ge 00 m</math> <math>60 m &gt; H \ge 30 m</math> <math>30 m &gt; L</math> <math>-0.02</math>       [FS3]         G <math>\ge 20^{0}</math> <math>60^{0} \Rightarrow -6 \ 2 \ 40^{0}</math> <math>40^{0} \Rightarrow (22 \ 20^{0} &gt; 6</math> <math>20^{0} \Rightarrow 6</math> <math>00^{0}</math> <math>00^{0} = 0^{0} 0^{0} = 0^{0} 0^{0}</math> <math>00^{0} = 0^{0} 0^{0} = 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} </math></td> | Left side of road         Geometry         Geometry         L $\geq 300 \text{ m}$ 300 m > L $\geq 200 \text{ m}$ 200 m > L $\geq 100 \text{ m}$ 0.07       0.02       0.02         0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0       0         0       0       0       0       0       0       0 | Tert side of road                                                                                                                                                                                                   | Tech sade of road       Frequency see [RCT         Frequency see [RCT         Commetry         L $\geq 300 m$ $300 m > L \ge 200$ $200 m > L \ge 100 m$ $100 m > L$ $-0.02$ [FS1]         H $\ge 90 m$ $90 m > H \ge 20 m$ $60 m > H \ge 30 m$ $30 m > L$ $-0.02$ [FS1]         H $\ge 90 m$ $90 m > H \ge 00 m$ $60 m > H \ge 30 m$ $30 m > L$ $-0.02$ [FS3]         G $\ge 20^{0}$ $60^{0} \Rightarrow -6 \ 2 \ 40^{0}$ $40^{0} \Rightarrow (22 \ 20^{0} > 6$ $20^{0} \Rightarrow 6$ $00^{0}$ $00^{0} = 0^{0} 0^{0} = 0^{0} 0^{0}$ $00^{0} = 0^{0} 0^{0} = 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} 0^{0} $ |

Road Slope Assessment Sheet 2-1: Potential Frequency of RCD (Mountainside Slope)

Figure 3.3.12 Road Slope Assessment Sheet 2-1: Potential Frequency of RCD (Mountainside Slope)

| Road name                                                                      | Narayangharh-Mug                                                             | gling Highway                                                                                |                                                                                                         | luis.                                           |                                  |                        |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|------------------------|
| Side of the site                                                               | Left side of road                                                            |                                                                                              |                                                                                                         |                                                 |                                  |                        |
| Potential frequency of RCD (FRC                                                | Dn)                                                                          |                                                                                              |                                                                                                         |                                                 |                                  |                        |
| Factor items for FRCDp                                                         | tor items for FRCDp Factor categories for FRCDp                              |                                                                                              |                                                                                                         |                                                 | FS: Frequency score for<br>FRCDp |                        |
|                                                                                |                                                                              | Geometry                                                                                     |                                                                                                         |                                                 | IN                               | conjean                |
| Width of stream: W                                                             | $3 m \ge W$                                                                  | $5 \text{ m} \ge \text{W} > 3 \text{ m}$                                                     | $10 \text{ m} \ge \text{W} > 5 \text{ m}$                                                               | W > 10 m                                        |                                  | Jan                    |
| Frequency score for FRCDp [RCD year]                                           | 0.06                                                                         | 0.00                                                                                         | 0.00                                                                                                    | 0.00                                            | FS1                              | 0.06                   |
| Area of drainage basin : A<br>Frequency score for FRCDp [RCD year]             | $A \ge 0.5 \text{ km}^2$<br>0.00                                             | 0.5 km <sup>2</sup> > A<br>-0                                                                | $\begin{array}{c c} 0 & 0 \\ \hline 0 & 0 \\ 0 & 0.15 \text{ km}^2 \\ 0.5 & -0.07 \\ 0 & 0 \end{array}$ |                                                 | FS2                              | 0.00                   |
| Gradient of stream at road crossing: G<br>Frequency score for FRCDp [RCD year] | G ≥ 20 °<br>0.07                                                             | $20^{\circ} > G \ge 15^{\circ}$<br>0.06                                                      | $15^{\circ} > G \ge 10^{\circ}$<br>0.05                                                                 | 10° > G<br>0.04                                 | FS3                              | 0.00                   |
| Steepest gradient of stream: G<br>Frequency score for FRCDp [RCD year]         | G ≥ 40 °<br>0.00<br>0                                                        | 40° > G ≥ 30 °<br>-0.03                                                                      | 30° > G ≥ 15 °<br>-0.03<br>0                                                                            | 15°>G<br>-0.06                                  | FS4                              | 0.00                   |
| Height from stream bottom to road: H<br>Frequency score for FRCDp [RCD year]   | 1 m ≥ H<br>0,02                                                              | $2 \text{ m} \ge \text{H} > 1 \text{ m}$<br>0.02                                             | $5 \text{ m} \ge \text{H} > 2 \text{ m}$<br>-0.01                                                       | H > 5 m<br>-0.28                                | FS5                              | 0.00                   |
|                                                                                | 0                                                                            | Surface situati                                                                              | on                                                                                                      | 0                                               | -                                |                        |
| Dominant vegetation of drainage area<br>Frequency score for FRCDp [RCD/year]   | Bare<br>0.20                                                                 | Grasses<br>0.09                                                                              | Trees<br>0.09                                                                                           | Unknown<br>0.07                                 | FS6                              | 0.00                   |
| Dominant materials of stream<br>sediment at road crossing                      | Cobbles, Boulders, Gravel                                                    | Sand                                                                                         | Silt, Clay                                                                                              | Bedrock                                         |                                  |                        |
| Frequency score for FRCDp [RCD year]                                           | 0,13                                                                         | 0.01                                                                                         | 0.01                                                                                                    | 0,00                                            | FS7                              | 0.00                   |
|                                                                                | 0                                                                            | 0                                                                                            | 0                                                                                                       | 0                                               | _                                |                        |
|                                                                                | No. 1. Consul                                                                | Disturbance                                                                                  |                                                                                                         |                                                 |                                  |                        |
| Slope failure situation in drainage area                                       | collapses are<br>existing in main<br>valley and branch<br>valleys            | Newly-formed<br>collapses are<br>existing only in<br>main valley                             | Newly-formed<br>collapses are<br>existing only in<br>branch valleys                                     | Newly-formed<br>collapses are not<br>recognized | FS8                              | 0.00                   |
| Frequency score for FRCDp [RCD/year]                                           | 0.06                                                                         | 0,06                                                                                         | 0.05                                                                                                    | -0.01                                           | 0                                |                        |
| Trace of debris on or beside the road                                          | Trace of debris                                                              | on or beside the                                                                             | -                                                                                                       |                                                 |                                  |                        |
| Frequency score for FRCDp [RCD year]                                           | rc<br>0.                                                                     | 0<br>0<br>0<br>0                                                                             |                                                                                                         |                                                 | FS9                              | 0.00                   |
|                                                                                |                                                                              |                                                                                              |                                                                                                         |                                                 |                                  | 1                      |
|                                                                                |                                                                              |                                                                                              |                                                                                                         | FRCDpom = $\Sigma$ (F                           | S1:FS9)                          | 0.06                   |
| Existing structural measure-type (                                             | Description)                                                                 |                                                                                              |                                                                                                         | CEM: Coefficie<br>structu                       | ent of eff<br>iral mea           | fectiveness of<br>sure |
|                                                                                |                                                                              |                                                                                              |                                                                                                         |                                                 | CEM                              | IDCD/www.l             |
|                                                                                |                                                                              |                                                                                              | FR                                                                                                      | CDn = FRCDnom                                   | x CEM                            | [KCD/year]             |
|                                                                                |                                                                              |                                                                                              | TR                                                                                                      | ebp - ricebpoin                                 | ACLIVI                           | 0.00                   |
| Note                                                                           | 1 should be input<br>1 should be input<br>Numerical value<br>Numerical value | to selected category<br>when corresponding<br>or term is automatica<br>should be input (by e | 's cell.<br>g to situation.<br>ally input.<br>engineering judgmen                                       | 0.                                              |                                  |                        |

#### Road Slope Assessment Sheet 2-2: Potential Frequency of RCD (Crossing Stream)

Disturbance: deformation and collapses that do not close the road is not included in RCD and are called 'disturbance'.

# Figure 3.3.13Road Slope Assessment Sheet 2-2: Potential Frequency of RCD (Crossing Stream)

| Road Name                                                                                                         | Narayangharh-Mugling                                                                                                  | g Highway                                                                                                     |                                                                   |                                                         |                  |                                |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------|------------------|--------------------------------|
| Station from<br>Side of Survey                                                                                    | Left side of road                                                                                                     | km                                                                                                            | .2                                                                | m                                                       |                  | _                              |
| Potential frequency of BCD (EDC                                                                                   | Do)                                                                                                                   |                                                                                                               |                                                                   |                                                         |                  |                                |
| Factor items for FRCDp                                                                                            | Factor categories for                                                                                                 | FRCDp                                                                                                         |                                                                   |                                                         | Frequen<br>FF    | cy score for<br>CDp<br>D/yearl |
|                                                                                                                   |                                                                                                                       | Geometry                                                                                                      |                                                                   | 1                                                       |                  | 27 Jean                        |
| Road section length of survey slope: L<br>Frequency score for FRCDp [RCD year]                                    | L. ≥300 m<br>0.01<br>0                                                                                                | 300m > L ≥ 200 m<br>0.01<br>0                                                                                 | 200m > L ≥100 m<br>0.00<br>0                                      | 100m > L<br>0.00                                        | FS1              | 0.00                           |
| Height of Valley side slope: H<br>Frequency score for FRCDp [RCD year]                                            | H≥90 m<br>0.05                                                                                                        | 90m > H ≥ 60 m<br>0.05<br>0                                                                                   | 60m > H ≥ 30 m<br>0.04<br>0                                       | 30m > H<br>0.03                                         | FS2              | 0.00                           |
| Gradient of river side slope<br>Frequency score for FRCDp [RCD year]                                              | $G \ge 60^{\circ}$<br>0.02                                                                                            | $60^{\circ} > G \ge 40^{\circ}$<br>0.02                                                                       | $40^{\circ} > G \ge 20^{\circ}$<br>0.00                           | 20° > G<br>0.00                                         | F\$3             | 0,00                           |
| Distance from road to head of river side<br>slone<br>Frequency score for FRCDp [RCD year]                         | 1 m ≥ D<br>0.00                                                                                                       | 3m ≥ D > 1m<br>-0.01                                                                                          | 5m ≥ D > 3m<br>-0.06                                              | D > 5m<br>-0.10                                         | FS4              | 0.00                           |
| Distance from low water of river to<br>road: D<br>Frequency score for FRCDp [RCD year]                            | 0.5 m ≥ D<br>0.00                                                                                                     | 1.0m ≥ D > 0.5m<br>0.00                                                                                       | 2,0m ≥ D > 1.0m<br>0,00                                           | D > 2.0m                                                | FS5              | 0.00                           |
| Height from high water of road to road<br>surface or head of revetment: H<br>Frequency score for FRCDp [RCD year] | 0.0m ≥ H<br>0.03                                                                                                      | 0<br>1.0m ≥ H > 0.0m<br>0.03                                                                                  | 0<br>2.0m >H≥ 1.0m<br>0.03                                        | H> 2m                                                   | FS6              | 0.00                           |
| Slope shape<br>Frequency score for FRCDp [RCD year]                                                               | Valley type<br>0.03<br>0                                                                                              | Straight type<br>0.03<br>0                                                                                    | Ridge type<br>0.03<br>0                                           | Combined type<br>0.04<br>0                              | FS7              | 0.00                           |
|                                                                                                                   |                                                                                                                       | Surface situation                                                                                             | on                                                                |                                                         |                  |                                |
| Dominant vegetation<br>Frequency score for FRCDp [RCD year]                                                       | Bare -0.01                                                                                                            | Grasses<br>-0.05                                                                                              | Trees -0.07                                                       | Surface protection by<br>concrete/stone/block<br>-0.07  | FS8              | 0.00                           |
| Slope type<br>Frequency score for FRCDp [RCD year]                                                                | Embankment slope<br>0.10                                                                                              | Combined or unknown<br>0.02                                                                                   | Natural slope<br>0.02                                             |                                                         | FS9              | 0,00                           |
| Dominant materials of slope surface<br>Frequency score for FRCDp [RCD year]                                       | Silt, Clay<br>-0.01<br>0<br>Eractured rock                                                                            | Sand<br>-0.01<br>0<br>Soft fresh rock                                                                         | Gravels, Cobbles, or<br>Boulders<br>-0.04<br>0<br>Hard fresh rock | Weathered rock<br>-0.06<br>0<br>Surface protection by   | FS10             | 0.00                           |
| Frequency score for FRCDp [RCD year]                                                                              | -0.06<br>0                                                                                                            | -0,06                                                                                                         | -0.06                                                             | concrete/stone/block<br>-0.06<br>0                      |                  | _                              |
| Spring/ Surface water /Rainwater<br>flows/<br>Frequency score for FRCDp [RCD year]                                | Spring is present<br>0,07                                                                                             | Surface water is<br>present<br>0.00                                                                           | Rainwater flow from<br>road to valley side is<br>present<br>0,02  | Slide configuration is<br>lapping over the road<br>0.05 | FS11             | 0.00                           |
|                                                                                                                   |                                                                                                                       | Disturbance                                                                                                   |                                                                   |                                                         |                  |                                |
| Erosion in valley side slope<br>Frequency score for FRCDp [RCD year]                                              | Erosion is present<br>0,01<br>0                                                                                       | Piping hole is present<br>0.00<br>0                                                                           |                                                                   |                                                         | FS12             | 0.00                           |
| Deformation/ Collapse on the slope<br>Frequency score for FRCDp [RCD year]                                        | Fall, Slump in 0.                                                                                                     | river side slope<br>05<br>0                                                                                   | Depression on road<br>0,05<br>0                                   | Cracks/Crevices on road<br>0,05<br>0                    | FS13             | 0.00                           |
|                                                                                                                   |                                                                                                                       | FRCDpom                                                                                                       | : FRCDp without                                                   | existing structural                                     | measure          | RCD/year                       |
|                                                                                                                   |                                                                                                                       |                                                                                                               |                                                                   | FRCDpom = $\Sigma$ (F                                   | S1:FS13)         | 0.00                           |
| Existing structural measure-type (                                                                                | (Description)                                                                                                         |                                                                                                               |                                                                   | structur                                                | al measur<br>CEM | e                              |
|                                                                                                                   |                                                                                                                       |                                                                                                               |                                                                   | ERCDa = ERCD                                            | RCDp:            | RCD/year]                      |
| Note                                                                                                              | I should be input to s<br>I should be input wh<br>Numerical value or to<br>Numerical value shou<br>Torme chould be in | selected category's cell.<br>en corresponding to situ<br>rrm is automatically inp<br>uld be input (by engined | uation.<br>ut.<br>rring judgment).                                |                                                         | III A CEIVI      | 0,00                           |
| Disturbance: deformation and collapses t                                                                          | Terms should be input<br>hat do not close the road                                                                    | it.<br>I is not included in RCI                                                                               | D and are called                                                  |                                                         |                  |                                |

#### Road Slope Assessment Sheet 2-3: Potential Frequency of RCD (Riverside Slope)

Figure 3.3.14 Road Slope Assessment Sheet 2-3: Potential Frequency of RCD (Riverside Slope)

# (4) Road slope Assessment Sheet 3: Potential Disaster Magnitude and Annual Loss(a) Calculation Procedure of Disaster Magnitude and Annual Loss of a Site

Risk is defined as a multiplication of disaster frequency and magnitude. In the assessment sheet 3, risk is assessed as annual loss, which is multiplication of FRCDp (disaster frequency) and Lp (disaster magnitude).

Where

FRCDp = potential frequency of RCD of a site [RCD/year]

Lp = potential loss of a RCD [Rs/RCD]

The calculation procedure of annual loss is shown in Figure 3.3.15 and example of the assessment sheet is presented in Figure 3.3.16.



#### Figure 3.3.15 Calculation Procedure of Potential Annual Loss



Road Slope Assessment Sheet 3: Potential Disaster Magnitude and Annual Loss



#### (b) Potential Disaster Magnitude

#### 1) Potential Length of Road Closure Section of a RCD

As shown in Figure 3.3.17, at first, the disaster magnitude is evaluated by potential length of road closure section. The definition of length of road closure section of a RCD, which is estimated by a site investigator based on the hazard situation and disaster records in analogous slopes is shown in table 3.3.5.

| Item                                                               | Symbol | Unit | Definition                           |
|--------------------------------------------------------------------|--------|------|--------------------------------------|
| Potential length of road closure section of full width of a RCD    | LRCpoF | m    | No traffic lane is secured           |
| Potential length of road closure section of partial width of a RCD | LRCpoP | m    | At least one traffic lane is secured |

| Table 3 | 3.3.5 | Definition | of length | of road | closure | section of | a RCD |
|---------|-------|------------|-----------|---------|---------|------------|-------|
|---------|-------|------------|-----------|---------|---------|------------|-------|

Assessment surveyors evaluated the length of road closure section by observing hazard condition and referring to past disaster magnitude of similar slopes.

#### 2) Potential Loss of a RCD (Lp)

#### a) General

Potential loss of a RCD (Lp) is automatically calculated when the length of road closure section is input in the road slope assessment sheet 3. Lp is a function of nos. of RCD and length of road closure section. And Lp is evaluated at 2007 value.

The unit values or formulas for potential loss calculation is determined using statistical data, existing studies reports of roads in Nepal, and passengers interview surveys including origin-destination surveys conducted in September 2007 under this study. These analyses detail are shown in Appendix 4. The analyzed results are summarized and presented.

Potential loss (Lp) is calculated by summing up four components as shown in Table 3.3.6.

| Lp=Potential Loss of a    | RCp =Potential Reopening Cost of a RCD           |
|---------------------------|--------------------------------------------------|
| RCD                       | [Rs/RCD]                                         |
| [Rs/ RCD]                 | HLLp=Potential value of Human Life Loss of a RCD |
|                           | [Rs/RCD]                                         |
|                           | VLp=Potential value of Vehicle Loss of a RCD     |
| I n = PCn + HI I n + VI n | [Rs/RCD]                                         |
| Lp = KCp + HLLp + VLp     | LTSp=Potential Losses of Traffic Suspension      |
| +LTSp                     | (detour/waiting/cancellation) of a RCD           |
|                           | [Rs/RCD]                                         |

#### b) RCp: Potential Reopening Cost per RCD [Rs/RCD]

Formulas and unit cost for potential reopening cost estimation is shown in Table 3.3.7.

Unit cost is derived from the past costs data of N-M Highway.

The fixed cost (FCR) comprises the loader operator's salary and allowances, depreciation of loader and overhead costs for operation of site office.

Variable reopening cost of a RCD are unit reopening cost per one meter length of full width road closure (URCpMoF) or Unit reopening cost per one meter length of partial width road closure (URCpMoP). The variable cost comprises the costs of fuel and oil consumptions and cost of labours, and is calculated by assuming the typical road closure disaster debris accumulation volumes of full width or partial width road closure.

| Formula for Loss Estimate                                                                                                                               | Unit          | Unit cost at 2007 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| RCp=FCR + LRCpoF x URCpMoF + LRCpoP x URCpMoP                                                                                                           |               |                   |
| Where                                                                                                                                                   |               |                   |
| RCp: potential reopening cost                                                                                                                           | [Rs/RCD]      |                   |
| FCR: Fixed cost for reopening per RCD                                                                                                                   | [Rs/RCD]      | 31,412            |
| LRCpoF: Potential length of road closure section of full width<br>URCpMoF: Unit reopening cost per one mater length of full width<br>road closure       | [m]<br>[Rs/m] | 870               |
| LRCpoP: Potential length of road closure section of partial width<br>URCpMoP: Unit reopening cost per one meter length of partial<br>width road closure | [m]<br>[Rs/m] | 218               |

#### Table 3.3.7 Formula and Unit Cost for Potential Reopening Cost

#### c) HLLp: Potential Values of Human Lives Lost per RCD [Rs/RCD]

Formulas and unit value for potential values of human lives lost is shown in Table 3.3.8.

#### ANHD: Average Number of Human Deaths per RCD [persons/RCD]

ANHD in past 10 years (1997 to 2006) is 1/308 (one dead person divided by 308 RCD) [persons/RCD]

Number of RCD is evaluated by the road slope assessment surveys conducted in 2007 under this study, which was based on interviews of DOR staffs and inhabitants along the road.

There were no human lives lost in 10 years, however, in 2003 a truck was buried in the debris at 21 km and the truck driver was badly injured but could escape. The badly injured

driver is considered as a dead person in the calculation.

ANHD should be increased promotionally by traffic volume. Traffic volume at 2007 is evaluated about 1.5 times than that of past 10 years, based on the traffic increase of 80% in 10 years (6% per year) of DOR estimation in 2006. Hence, ANHD at 2007 is evaluated as 1.5/308 [persons/RCD].

#### UHL: Unit Value of Human Life Lost [Rs/person]

The two main components in determining UHL consists of:

- The number of years/days of work lost due to death, and
- The average annual income of dead person

| Table 5.5.6 Formula and Onte value for Fotential value of Human Lives Lost |                |                    |  |  |  |
|----------------------------------------------------------------------------|----------------|--------------------|--|--|--|
| Formula for Loss Estimate                                                  | Unit           | Unit value at 2007 |  |  |  |
| HLLp=ANHD x UHL                                                            | [Rs/RCD]       | 3,282              |  |  |  |
| Where                                                                      |                |                    |  |  |  |
| HLLp: Potential value of human lives lost                                  |                |                    |  |  |  |
| ANHD: Average number of human deaths per PCD                               | [persons/PCD]  | 1 5/308            |  |  |  |
| ANHD. Average number of numan deaths per KCD                               | [persons/ KCD] | 1.3/308            |  |  |  |
| UHL: Unit Value of Human Life Lost                                         | [Rs/person]    | 674,000            |  |  |  |

#### Table 3.3.8 Formula and Unit Value for Potential value of Human Lives Lost

#### d) VLp: Potential Value of Vehicle Loss of a RCD [Rs/RCD]

Formulas and unit value for potential values of vehicle loss is shown in Table 3.3.9.

#### ANVL: Average Number of Vehicle Lost per RCD [vehicles/RCD]

ANVL in past 10 years (1997 to 2006) is 1/308 (one vehicle lost divided by 308 RCD) [vehicles/RCD].

Numbers of RCD is evaluated by the road slope assessment survey conducted in 2007 under this study, based on interviews of DOR staffs and inhabitants along the road.

One vehicle lost case is in 2003, a truck was buried in the debris at 21 km.

ANVL should be increased promotionally by traffic volume. Traffic volume at 2007 is evaluated about 1.5 times than that of past 10 years, based on the traffic increase of 80% in 10 years (6% per year) of DOR estimation in 2006. Hence, ANVL at 2007 is evaluated as 1.5/308 [vehicles/RCD].

#### UVL: Unit Value of Vehicle Loss [Rs/vehicle]

The net vehicle damage cost incurred in road accidents is estimated by using following relationship:

Net vehicle damage cost = Average vehicle repair cost

- Custom duties and VAT on spare parts and any salvage

+ Insurance excess (insured vehicles only)

+ Survey fees of accident (insured vehicles only – 10% vehicles)

+ Lost business (commercial vehicles only)

| Formula for Loss Estimate                    | Unit           | Unit value at 2007 |
|----------------------------------------------|----------------|--------------------|
| VLp=ANVL x UVL                               | [Rs/RCD]       |                    |
| Where                                        |                |                    |
| VLp: Potential value of vehicle lost         |                |                    |
|                                              |                |                    |
| ANVL: Average Number of Vehicle Loss per RCD | [vehicles/RCD] | 1.5/308            |
|                                              |                |                    |
| UVL: Unit Value of Vehicle Lost              | [Rs/vehicle]   | 147,669            |

#### e) Potential Loss of Traffic Suspension of a RCD (LTSp) [Rs/RCD]

Formulas and unit value for potential values of vehicle loss of a RCD is shown in Table 3.3.10.

| Formula for Loss Estimate                                                                         | Unit           | Unit value at 2007 |
|---------------------------------------------------------------------------------------------------|----------------|--------------------|
| $LTSp = AADT \times NCDp \times ASLoV$                                                            | [Rs/RCD]       |                    |
| Where                                                                                             |                |                    |
| LTSp: Potential losses of traffic suspension of a RCD                                             |                |                    |
| AADT: Annual average daily traffic                                                                | [vehicles/day] | 3,225              |
|                                                                                                   |                |                    |
| NCDp: Nos. of predicted closure days of the whole width of<br>the road on the survey site per RCD | [days]         | Parameter          |
| NCDp= 1+ LRCpoP/0.86/24<br>LRCpoF: Potential length of road closure section of full<br>width [m]  |                |                    |
| ASLpV : Average suspension loss per vehicles                                                      | [Rs/vehicle]   |                    |
| If NCDp $< 0.1$ ,                                                                                 |                |                    |
| ASLpV = 1,580  x NCDp;                                                                            |                |                    |
| If $0.1 \leq \text{NCDp} < 5.6$ ,                                                                 |                |                    |
| ASLpV = 693  x  Ln(NCDp) + 1,810;                                                                 |                |                    |
| If $5.6 \le \text{NCDp}$ , ASLoV = 3,030                                                          |                |                    |

#### AADT: Annual Average Daily Traffic [vehicles/day]

The value of AADT is presented in the report of DOR Feasibility Study Report of N-M Highway prepared in March 2007. The AADT of 2 ways of N-M highway at 2006 is 3041 vehicles/day. In the report, the traffic volume increase is predicted as 6% per year. Therefore, AADT in 2007 is estimated 3,225 vehicles per day.

## NCDp: Nos. of predicted closure days of the whole width of the road on the survey site per RCD [day]

NCDp is determined by using following past data on N-M highway.

ARToDV: average reopening time per debris volume = 0.0258 hr/m<sup>3</sup>

Meanwhile,

TVDoF: Typical volume of accumulated debris of one meter length of full width =  $33.47 \text{ m}^3/\text{m}$ .

Actual reopening hour per one meter length full width road closure is

ARToDV x TVDoF = 0.0258 hr/m3 x 33.47 m3/m  $\approx 0.86$  hr/m

Being the full width road closure is a significant disaster; one day should be added for preparation work and security assurance.

Therefore,

NCDp= 1+ LRCpoP/0.86/24

Where

LRCpoF: Potential length of road closure section of full width [m].

#### ASLoV : Average Suspension Loss per Vehicle [Rs/vehicle]

Average suspension loss per vehicle (ASLoV) is calculated by summing up three components as shown in Table 3.3.11.

| ASLpV=Average       | AWLpV = Average waiting loss per vehicle     |
|---------------------|----------------------------------------------|
| Suspension Loss per | [Rs/vehicle]                                 |
| vehicle             | ADLpV = Average detour loss per vehicle      |
| [Rs/vehicle]        | [Rs/vehicle]                                 |
| ASLpV=AWLpV+        | ACLpV= Average cancellation loss per vehicle |
|                     | [Rs/vehicle]                                 |
| ADLpv + ACLpv       |                                              |

 Table 3.3.11 Composition of Average Suspension Loss per Vehicle

The road users select the option of detour, waiting, or cancellation according to the road closure days. The option is changed by suspension days. In this study the option proposition is determined by passenger interview surveys conducted in September and shown in Figure 3.3.17.



| CpoWTP300  | Cancellation percentage willing to pay up to Rs 300 instead of waiting (5.0% of non waiting) |
|------------|----------------------------------------------------------------------------------------------|
| CpoWTP150  | Cancellation percentage, willingness to pay up to Rs 150 instead of                          |
|            | waiting (17.0% of non waiting)                                                               |
| CpoWTP<150 | Cancellation percentage willingness to pay under Rs 150 instead of                           |
|            | waiting (42.9% of non waiting)                                                               |
| DPdPB      | Detour percentage divert to Pokhara-Butawal (10.8% of no waiting)                            |
| DPdNH      | Detour percentage divert to Naubise-Hetauda (24.3% of no waiting)                            |
| WP         | Waiting percentage                                                                           |

#### Figure 3.3.17 Option Selection Proportion to N-M Highway Road Closure of Full Width

Formulas and unit value for average waiting loss per vehicle (AWLpV) is shown in Table 3.3.12.

| Formula for Loss Estimate                                                                      | Unit                  | Unit value at 2007                               |
|------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------|
| $AWLpV = \int NCDp/2 x 24 x WP x AVTT$                                                         |                       | Variable by NCDp                                 |
| Where                                                                                          |                       |                                                  |
| AWLpV: Average waiting loss per vehicle                                                        | [Rs/vehicle]          |                                                  |
| NCDp: Nos. of predicted closure days of the whole width of the road on the survey site per RCD | [days]                | Parameter                                        |
| WP: Waiting percentage                                                                         | [%]                   | Variable by NCDp<br>as shown in Figure<br>3.3.17 |
| UVTT: Unit value of traffic time of a vehicle of N-M highway                                   | [Rs/vehicle/ho<br>ur] | 130                                              |
| (waited by vehicle-type proportion of N-M Highway                                              | w.]                   |                                                  |
| based on unit value of traffic time of each vehicle-type                                       |                       |                                                  |
| of study on North-South Fast track linking Katmandu to                                         |                       |                                                  |
| Terai 2007 by DOR)                                                                             |                       |                                                  |

Formulas and unit value for average detour loss per vehicle (ADLpV) is shown in Table 3.3.13.

| Formula for Loss Estimate                                                                                                                                                                                                                  | Unit                  | Unit value at 200              | 7  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------|----|
| ADLpV = DPdNH x UDLdNH +DPdPB x UDLdPB                                                                                                                                                                                                     |                       | Variable by NCD                | р  |
| Where                                                                                                                                                                                                                                      |                       |                                |    |
| ADLpV: Average detour loss per vehicle                                                                                                                                                                                                     | [Rs/vehicle]          |                                |    |
| DPdNH: Detour parentage of divert to Naubise or<br>Hetauda (24.3% of no waiting)                                                                                                                                                           | [%]                   | Variable by NCD<br>as shown in | р  |
| DPdPB: Detour parentage of divert to Pokhara-Butawal (10.8% of no waiting)                                                                                                                                                                 | [%]                   | Figure 3.3.17                  |    |
| UDLdNH: Unit detour loss of a vehicle when divert to<br>Naubise or Hetauda                                                                                                                                                                 | [Rs/vehicle]          | 2,4                            | 00 |
| UDLdPB: Unit detour loss of a vehicle when divert to<br>Pokhara or Butawal                                                                                                                                                                 | [Rs/vehicle]          | 5,10                           | 00 |
| <ul> <li>Difference of vehicle operation cost and M-H<br/>highway and detour and;</li> </ul>                                                                                                                                               |                       |                                |    |
| - Multiplication of travel time increase and UVTT                                                                                                                                                                                          |                       |                                |    |
| NCDp: Nos. of predicted closure days of the whole width of the road on the survey site per RCD                                                                                                                                             | [days]                | Parameter                      |    |
| UVTT: Unit value of traffic time of a vehicle of N-M<br>highway<br>(waited by vehicle-type proportion of N-M highway<br>based on unit value of traffic time of each vehicle-type of<br>study on North-South Fast track linking Katmandu to | [Rs/vehicle/ho<br>ur] | 1.                             | 30 |
| Terai 2007 by DOR)                                                                                                                                                                                                                         |                       |                                |    |

#### Table 3.3.13 Formula and Unit Value for Average Detour Loss per Vehicle

Formulas and unit value for average cancellation loss per vehicle (ACLpV) is shown in Table 3.3.14.

| Formula for Loss Estimate                                                                                               | Unit         | Unit value at 2007                 |
|-------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------|
| ACLpV = CPoWTP<150 x 75 + CPoWTP150 x 150 +<br>CPoWTP300 x 300                                                          |              | Variable by<br>NCDp                |
| Where ACLpV: Average cancellation loss per vehicle                                                                      | [Rs/vehicle] |                                    |
| CPoWTP<150 : Cancellation percentage, willingness to<br>pay under Rs 150 instead of canceling (42.9%<br>of non waiting) | [%]          | Variable by<br>NCDp as<br>shown in |
| CPoWTP150 : Cancellation percentage, willingness to<br>pay up to Rs 150 instead of canceling (17.0% of<br>non waiting)  | [%]          | Figure 3.3.17                      |
| CPoWTP300 : Cancellation percentage, willingness to<br>pay up to Rs 300 instead of canceling (15.0% of<br>non waiting)  | [%]          |                                    |
| NCDp: Nos. of predicted closure days of the whole width of the road on the survey site per RCD                          | [days]       | Parameter                          |

| Table 3.3.14 Formula and Unit | Value for Average | <b>Cancellation</b> Los | s ner Vehicle |
|-------------------------------|-------------------|-------------------------|---------------|
| Table 5.5.14 Pormula and Onic | value for Average | Cancenation Los         | s per vennere |

As above mentioned, calculation of average traffic suspension loss per vehicle (ASLpV) is done by given formula.

If NCDp < 0.1,

 $ASLpV = 1,580 \times NCDp;$ 

If  $0.1 \le \text{NCDp} < 5.6$ ,

 $ASLpV = 693 \times Ln(NCDp) + 1,810;$ 

If  $5.6 \leq$  NCDp, ASLoV = 3,030

Where

ASLpV: Average traffic suspension loss per vehicle [Rs/vehicle]

NCDp: Nos. of predicted closure days of the whole width of the road on the survey site per RCD [day]

The proportion of three components of ASLpV is shown in Figure 3.3.18.

NIPPON KOEI CO., LTD.



# Figure 3.3.18 Proportion of Three components of Average Traffic suspension Loss per vehicle [Rs/vehicle]

#### (5) Road slope Assessment Sheet 4: Structural Measures Feasibility

The sheet 4: structural measures feasibility is described in Chapter 8.

#### (6) Road slope Assessment Sheet 5: Disasters Record

The sheet 5: disasters record is prepared for outcome evaluation and precision risk assessment for next stage which is shown in Figure 3.3.19.

| tation from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 960         | m           | Side of      | survey Left s                                       | side of    | road   |       |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|--------------|-----------------------------------------------------|------------|--------|-------|------|
| ame of inspector for disaster record, sheet 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            | Date   | Month | Year |
| ame of surveyor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |             | 1            | Survey date (d                                      | im/y)      |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date        | Month       | Vear         | Disaster Ty                                         | pe         |        |       |      |
| isaster Occurrence Date, Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Long        | Monan       | 144          | (Select from dra                                    | p down     |        |       |      |
| meth of road closure site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Road clo    | ore hore i  | Tall width/  | At least one lone is                                | mound      | -      |       |      |
| angui of road closure she                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Parts Close | size type ( | Full WHERE.  | At reast one take is                                | sectero)   | -      |       | _    |
| eopen Date, Hour at least one lane is secured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Linte       | Monus       | Year         | Number of days of full<br>width road closure (days) |            | (deve) |       |      |
| constant stations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Im          | -           | m            | until                                               | km         | -      |       | -    |
| atal reapening cost (Rs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -           |             |              | Actual                                              | Killi      | -      | 101   |      |
| conening method (Select from drop down list)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Soll Rock remo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | wal by ma   | muni labo   | ur           | Treater                                             |            |        |       |      |
| imber of dead persons due to disaster (persons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Construction of the local of th |             | Number      | of injured a | ersons by the disa                                  | ster (pers | (eno   |       |      |
| amber of broken vehicles due to disaster (vehicles)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
| Countermeasure type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              | Station                                             | _          | _      | _     | _    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | km          |             | m            | until                                               | km         |        | in    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | km          |             | m            | until                                               | km         |        | m     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | km          |             | m            | imtil                                               | km         |        | m     |      |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | km          |             | m            | linu                                                | km         |        | m     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | km          |             | m            | until                                               | km         | -      | m     |      |
| And the second sec | from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | km          |             | m            | untit                                               | km         |        | m     |      |
| chabilitation plan (planned, not yet planned)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Outline o   | d the plan  | 1            |                                                     | -          | -      | -     | -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |              |                                                     |            |        |       |      |

#### Road Slope Assessment Sheet 5: Disaster Record

Figure 3.3.19 Road Slope Assessment Sheet 5: Disasters Record [Rs/vehicle]

#### 3.4 Results of Risk Assessment

#### 3.4.1 Narayangharh-Mugling Highway

#### (1) Risk Level of Sites

The Team carried out road slope disaster risk assessment survey along N-M highway in August 2007 with the local staff of DWIDP and DOR. The risk of 305 sites (134 mountainside slopes, 78 crossing streams, and 93 riverside slopes) were assessed using the road slope disaster assessment sheets, mentioned in section 3.3. Risk level indicators for the assessment are as follows:

- Potential frequency of RCD of a site (FRCDp) [RCD/year]

- Potential annual loss of a site (ALp) [Rs/year]

Generally, risk is indicated as multiplication of frequency and magnitude of disaster. FRCDp indicates only the frequency component of risk. The ALp is multiplication result of frequency and monetary magnitude of RCD; therefore it can be considered as a comprehensive risk level indicator of RCD.

Figure 3.4.1 Shows categorized FRCDp levels of sites on hazard map.

Figure 3.4.2 Shows categorized ALp levels of sites on hazard map.

Potential disaster sites are distributed along chainage 10 km to 36 km (26 km length section) of the N-M highway. High risk level sites (FRCDp is over 0.1 RCD/year, or ALp is over 1.0 million Rs/year) are scattered entirely along the 26 km stretch of the highway. Among the three slope-types (mountainside slope, crossing stream slope, and riverside slopes), the mountainside slope has the most risky.



Figure 3.4.1 Potential Frequency of RCD of a site (FRCDp) with Hazard



Figure 3.4.2 Potential Annual Loss of a site (ALp) with Hazard

#### (2) Total Risk of Narayangharh-Mugling Highway

The highway section which has risk of RCD is between CH 10 km and 36 km of N-M Highway.

Figure 3.4.3 shows summary of potential annual loss (ALp) of the N-M Highway. A total of 106.1 million Rs/year of annual loss is predicted based on 2007 market value. Proportions of the ALp by slope-type are: 65.9% of mountainside slope, 32.1% of crossing stream and 2.1% of riverside slope.



#### Figure 3.4.3 Potential Annual Loss (ALp) on N-M Highway by Slope Type at 2007 Value

Proportion of the ALp by loss component which is described in section 3.3.3 is shown in Figure 3.4.4. Potential annual loss caused by traffic suspension (ASLp) has big proportion with 99% of the total ALp.



Figure 3.4.4 Potential Annual Loss (ALp) on N-M Highway by Loss Component at 2007 Value

#### (3) Effectiveness of Existing Structural Measures

Road slope disaster risk estimate results show both potential annual loss (ALp) in 2007 and potential annual loss without structural measure (ALpom). Relation of ALp and ALpom is as shown below, and is described in section 3.3 in detail.

ALp = CEM x ALpom;

Where

ALp: potential annual loss [Rs/year]

CEM: coefficient of effectiveness of structural measures

ALpom: potential annual loss without structural measure [Rs/year]

Table 3.4.1 is the summary of ALp and ALpom of the N-M highway at 2007 value, and Figure 3.4.4 is the diagram of it.

Almost all the structural measures were installed after 2003 disaster. Therefore, ALpom indicates the risk time point in 2003 by 2007 value.

Existing structural measures have decreased 45 % potential annual loss i.e. from ALpom: 194 million Rs/year to ALp: 106 million Rs/year. They decreased high risk sites where annual loss are over 1.0 million Rs/year from 58 sites to 12 sites. Still there are 12 sites having high risk of slope disaster, they are: six (6) mountainside slopes and six (6) riverside slopes.



| ALp or    | ALpom of a site          | Numbers of site                 |                       |  |  |  |  |
|-----------|--------------------------|---------------------------------|-----------------------|--|--|--|--|
| (RS/year) |                          | ALpom: Potential annual         | ALp: Potential annual |  |  |  |  |
|           |                          | loss without structural measure | loss                  |  |  |  |  |
|           | Bigger than 1.0 million  | 58                              | 12                    |  |  |  |  |
|           | 0.1 – 1.0<br>million     | 70                              | 91                    |  |  |  |  |
|           | Smaller than 0.1 million | 177                             | 202                   |  |  |  |  |

#### Figure 3.4.5 Risk Reduction by Existing Structural Measure

|                                                                                               | M                   | lountainside S                   | lope                              | (-1)                | Crossing Stream                  |                                |                     | Riverside Slope                  |                                |                     | Total                            |                                |  |
|-----------------------------------------------------------------------------------------------|---------------------|----------------------------------|-----------------------------------|---------------------|----------------------------------|--------------------------------|---------------------|----------------------------------|--------------------------------|---------------------|----------------------------------|--------------------------------|--|
| Categories of<br>Potential Annual<br>Loss (ALp)<br>Rs/year                                    | Nos.<br>of<br>Sites | Sub Total of<br>ALp<br>Rs/year   | Percent<br>age to<br>the<br>Total | Nos.<br>of<br>Sites | Sub Total<br>of ALp<br>Rs/year   | Percenta<br>ge to the<br>Total | Nos.<br>of<br>Sites | Sub Total<br>of ALp<br>Rs/year   | Percenta<br>ge to the<br>Total | Nos.<br>of<br>Sites | Sub Total of<br>ALp<br>Rs/year   | Percenta<br>ge to the<br>Total |  |
| ALp <100,000                                                                                  | 61                  | 449,453                          | 1%                                | 54                  | 414,240                          | 1%                             | 87                  | 41,900                           | 2%                             | 202                 | 905,594                          | 1%                             |  |
| 100,000 ≤ ALp <<br>1,000,000                                                                  | 67                  | 41,616,513                       | 60%                               | 18                  | 11,131,404                       | 33%                            | 6                   | 2,083,521                        | 98%                            | 91                  | 54,831,438                       | 52%                            |  |
| 1000,000 ≤ ALp                                                                                | 6                   | 27,871,818                       | 40%                               | 6                   | 22,495,336                       | 66%                            | 0                   | 0                                | 0%                             | 12                  | 50,367,154                       | 47%                            |  |
| Total                                                                                         | 134                 | 69,937,784                       | 100%                              | 78                  | 34,040,981                       | 100%                           | 93                  | 2,125,422                        | 100%                           | 305                 | 106,104,186                      | 100%                           |  |
| Categories of                                                                                 | Mountainside Slope  |                                  |                                   | Crossing Stream     |                                  |                                | Riverside Slope     |                                  |                                | Total               |                                  |                                |  |
| Categories of<br>Potential Annual<br>Loss without<br>structural measure<br>(ALpom)<br>Rs/year | Nos.<br>of<br>Sites | Sub Total of<br>ALpom<br>Rs/year | Percent<br>age to<br>the<br>Total | Nos.<br>of<br>Sites | Sub Total<br>of ALpom<br>Rs/year | Percenta<br>ge to the<br>Total | Nos.<br>of<br>Sites | Sub Total<br>of ALpom<br>Rs/year | Percenta<br>ge to the<br>Total | Nos.<br>of<br>Sites | Sub Total of<br>ALpom<br>Rs/year | Percenta<br>ge to the<br>Total |  |
| ALpom <100,000                                                                                | 60                  | 462,732                          | 0%                                | 51                  | 209,036                          | 0%                             | 66                  | 115,677                          | 0%                             | 177                 | 787,445                          | 0%                             |  |
| 100,000 ≤ ALpom<br>< 1000,000                                                                 | 45                  | 25,988,458                       | 24%                               | 12                  | 6,786,916                        | 13%                            | 13                  | 6,983,301                        | 22%                            | 70                  | 39,758,675                       | 21%                            |  |
| 1000,000 ≤ ALpom                                                                              | 29                  | 81,421,819                       | 75%                               | 15                  | 47,228,078                       | 87%                            | 14                  | 24,355,134                       | 77%                            | 58                  | 153,005,031                      | 79%                            |  |
| Total                                                                                         | 134                 | 107,873,009                      | 100%                              | 78                  | 54,224,030                       | 100%                           | 93                  | 31,454,111                       | 100%                           | 305                 | 193,551,151                      | 100%                           |  |

## Table 3.4.1 Summary of Potential annual Loss (ALp) and ALp without Structural Measures (ALpom)

#### (4) High Risk 12 Sites

The risk level of slopes and stream are classified into three categories, using ALp ranking as indicator Table 3.4.2 shows 12 high risk sites where ALp is over 1.0 million per year. Figure 3.4.6 shows location of six (6) high risk mountainside slopes. Figure 3.4.7 shows location of six (6) high risk crossing streams. Table 3.4.2 List of 12 high risk sites where ALp is over 1.0 million.

| Chainage of        | Slope type                 | Disaster Type               | FRCDp      | ALp            |
|--------------------|----------------------------|-----------------------------|------------|----------------|
| starting side      | Stope-type                 | Disaster Type               | (RCD/year) | (mil. Rs/year) |
| 11 km 280 m        | Crossing stream            | Debris flow                 | 0.25       | 5.8            |
| (Kahale Kola)      |                            |                             |            |                |
| 11 km+500 m        | Crossing stream            | Slope failure & debris flow | 0.26       | 2.1            |
| 12 km+600 m        | Crossing stream            | Debris flow                 | 0.39       | 7.7            |
| (Das Kola)         |                            |                             |            |                |
| 21 km+200 m        | Crossing stream            | Slope failure & debris flow | 0.34       | 2.7            |
| 21 km+560 m        | Crossing stream            | Debris flow                 | 0.13       | 1.3            |
| 21 km+610 m        | Mountainside slope         | Slide                       | 0.15       | 2.9            |
| 23 km+510 m        | Mountainside slope         | Slide & slope failure       | 0.24       | 3.5            |
| 23 km+930 m        | Crossing stream            | Debris flow                 | 0.23       | 2.3            |
| 23 km+960 m        | Mountainside slope         | Slide                       | 0.24       | 13.7           |
| 24 km+235 m        | Mountainside slope         | Slide & slope failure       | 0.19       | 1.5            |
| 30 km+690 m        | Mountainside slope         | Slope failure               | 0.24       | 1.9            |
| 34 km+200 m        | Mountainside slope         | Rock fall                   | 0.55       | 4.3            |
| Total of 12 sites  |                            | 3.21                        | 50.4       |                |
| Percentage divid   | ed by total of all 305 sit | tes                         | 15%        | 47%            |
| Total of all 305 s | ites                       |                             | 22.02      | 106.1          |







The Study on Disaster Risk Management for Narayangharh-Mugling Highway

Main Report

#### (5) Risk Level of Road Section for Every Kilometer

#### (a) General

For determining high risk road sections, risk level indicators for a site was processed for every kilometer of the road section as shown in Figure 3.4.8



#### Figure 3.4.8 Processing of Risk Level Indicators of a Road Section

#### (b) Potential Intensity of Road Closure Disaster of a Road Section (IRCDp)

The IRCD of a road section is calculated by the following formula.

$$IRCDp = \sum FRCDp/LS$$

Where:

IRCDp: Potential intensity of RCD of a road section [RCD/ year/km]

 $\sum$  FRCDp: Total FRCDp of a road section [RCD/year]

LS : Length of a road section [km]

(c) Potential Intensity of Annual Loss of a Road Section (IALp) The IALp is calculated by the following formula.

 $IALp = \sum IALp/LS$ 

NIPPON KOEI CO., LTD.

Where:

IALp: Potential intensity of annual loss of a road section [Rs/year/km]

 $\sum$  IALp: Total ALp of a road section [Rs/year]

LS : Length of a road section [km]

the risk of a one (1) km road section is assessed, based on the results of field survey.

#### (d) Risk Revel of One km Road Sections

Risk level indicators of road section at each kilometer are shown in Table 3.4.3, Figure 3.4.9 and 3.4.10.

High disaster frequency road sections, where IRCDp exceeds 1.0 [Nos. of RCD /year/ km] are: km 11-12, km 13-15, km 17-18, km 27-28, and km 34-35. High annual loss road sections, where IALp is higher than 10 million Rs/ km /year are: km 11-13, and km 23-25.

| km Section |    |   |    |      | IRCDp: Potential<br>Intensity of RCD of a<br>section | IALp: Potential<br>Intensity of<br>Annual Loss of a<br>section | Top 12 ALp Sites |
|------------|----|---|----|------|------------------------------------------------------|----------------------------------------------------------------|------------------|
|            |    |   |    |      | RCD/km                                               | Rs/km/year                                                     |                  |
| km         | 10 | - | km | 11   | 0.20                                                 | 636,349                                                        |                  |
| km         | 11 | - | km | 12   | 1.28                                                 | 12,553,071                                                     | 2 sites          |
| km         | 12 | - | km | 13   | 0.90                                                 | 11,596,374                                                     | 1 site           |
| km         | 13 | - | km | 14   | 1.28                                                 | 5,532,572                                                      |                  |
| km         | 14 | - | km | 15   | 1.26                                                 | 3,907,911                                                      |                  |
| km         | 15 | - | km | 16   | 0.73                                                 | 2,629,073                                                      |                  |
| km         | 16 | - | km | 17   | 0.93                                                 | 2,509,015                                                      |                  |
| km         | 17 | - | km | 18   | 1.76                                                 | 6,125,221                                                      |                  |
| km         | 18 | - | km | 19   | 0.49                                                 | 2,560,350                                                      |                  |
| km         | 19 | - | km | 20   | 0.62                                                 | 3,139,973                                                      |                  |
| km         | 20 | - | km | 21   | 0.84                                                 | 2,878,446                                                      |                  |
| km         | 21 | - | km | 22   | 0.84                                                 | 8,443,483                                                      | 3 sites          |
| km         | 22 | - | km | 23   | 0.43                                                 | 768,427                                                        |                  |
| km         | 23 | - | km | 24   | 0.94                                                 | 11,427,335                                                     | 3 sites          |
| km         | 24 | - | km | 25   | 0.93                                                 | 14,584,536                                                     | 1 site           |
| km         | 25 | - | km | 26   | 0.55                                                 | 1,578,079                                                      |                  |
| km         | 26 | - | km | 27   | 0.55                                                 | 2,228,505                                                      |                  |
| km         | 27 | - | km | 28   | 1.38                                                 | 1,295,980                                                      |                  |
| km         | 28 | - | km | 29   | 0.75                                                 | 488,570                                                        |                  |
| km         | 29 | - | km | 30   | 0.50                                                 | 18,536                                                         |                  |
| km         | 30 | - | km | 31   | 0.63                                                 | 2,787,817                                                      | 1site            |
| km         | 31 | - | km | 32   | 0.91                                                 | 3,025,898                                                      |                  |
| km         | 32 | - | km | 33   | 0.85                                                 | 304,143                                                        |                  |
| km         | 33 | - | km | 34   | 0.73                                                 | 28,870                                                         |                  |
| km         | 34 | - | km | 35   | 1.07                                                 | 4,369,938                                                      | 1site            |
| km         | 35 | - | km | 36   | 0.66                                                 | 685,373                                                        |                  |
| km         | 36 | - | km | 36.1 | 0.09                                                 | 3,417                                                          |                  |
| Average    |    |   |    |      | 0.84                                                 | 4,065,294                                                      |                  |

Table 3.4.3 Outline of Risk along N-M Highway







Figure 3.4.10 Intensity of Annual Loss (IALP)

Main Report

#### 3.4.2 Ruwa Khola/ Marsyangdi Hydro Power Plant

#### (1) Policy and Flow of Risk Assessment

Hazard with same magnitude has occurred on 31st July 2003, the only one scenario which can be utilized to estimate values of frequency and magnitude of disaster. Consequently, risk is estimated based on this scenario in this study. Flow of risk assessment is shown in Figure 3.4.11.

#### Risk estimation without existing structural measure

The potential frequency of the disaster is evaluated as the same value of return period of rainfall amount of the disaster on  $31^{st}$  July 2003.

The potential disaster magnitude/potential loss without existing structural measure is estimated as 2007 price of the same damage level in 31<sup>st</sup> July 2003 disaster, because existing structural measures are installed after 2006 disaster.

Risk is multiplication of the potential frequency and magnitude of disaster.

#### Risk estimation with existing structural measure

Risk with existing structural measure is evaluated by multiplication of the 'risk without existing measure' and 'coefficient of effectiveness of structural measure for disaster frequency (CEM)'.

#### Risk without existing structural measure

= Potential disaster frequency x Potential disaster magnitude [Rs/year]

Potential disaster frequency: same as return period of rainfall amount (24 hour rainfall amount) [disasters/year]

Potential disaster magnitude: same as loss by 31st July disaster in 2007 price [Rs]

#### Risk with existing structural measure

= Risk without existing measure x CEM [Rs/year]

CEM: Coefficient of effectiveness of structural measure for disaster frequency [no unit]

#### Figure 3.4.11 Flow of Risk Estimation for Ruwa Khola/ Marsyangdi Hydro Power Plant

#### (2) Disaster Frequency without Existing Structural Measure

The frequency of the disaster is evaluated as the same value of the return period which 16 years of 24 hour rainfall amount, hence, frequency is 1/16 [disasters/year] as per Devghat rainfall gauge station. If the other calculation method of rainfall amount is selected such as the "modified rainfall amount of 6, 12, 24 hour half value", a smaller return period (refer chapter 3) will be obtained. The 24-hour rainfall amount is therefore adapted as most conservative for the return period.

#### (3) Disaster Magnitude without Existing Structural Measure

Magnitude of monetary loss during the disaster that occurred on 31st July 2003 is estimated based on results of questionnaire survey on Mugling – Pokhara road conducted on February 2008 (national statistical data, and data form DOR and NER).

Results of monetary loss estimation are tentatively summarized in Table 3.4.4. The monetary losses are finalized and shown in the draft final report prepared on June 2008.

| Items                                                             | Loss (Rs)   |
|-------------------------------------------------------------------|-------------|
| Reopening cost (tentative detour road)                            | 40,000      |
| Loss of road and power plant                                      | 58,350,000  |
| Loss of vehicle                                                   | 40,000      |
| Loss of power plant electricity                                   | 87,700,000  |
| Loss by traffic Suspension<br>(waiting, detour, and cancellation) | 9310,000    |
| Total                                                             | 155,440,000 |

 Table 3.4.4 Loss by disaster on 31<sup>st</sup> July in 2007 Price (Tentative)

### (4) Risk without Existing Structural Measure

Risk: Potential annual loss without existing structural measure is estimated by multiplying the disaster frequency with the disaster magnitude as follows:

Potential annual loss without existing structural measure

= Potential disaster frequency x Potential disaster magnitude [Rs/year]

where;

Potential disaster frequency: same as return period of rainfall amount (24 hour rainfall amount) [disasters/year] = 1/16

Potential disaster magnitude: same as loss by 31st July disaster in 2007 price [Rs]

= 155,440,000 [Rs/disaster] x 1/16 [disasters/year]

As a result, potential annual loss without existing structural measure is estimated as 9,715 Rs/year.

#### (5) Risk with Existing Structural Measure

Risk causing Potential annual loss with existing structural measure is estimated by multiplying of "potential annual loss without existing structural measure" and "coefficient of effectiveness of structural measure for disaster frequency (CEM)" as follows:

Potential annual loss with existing structural measure

= Risk without existing measure x CEM [Rs/year]

Where;

CEM: coefficient of effectiveness of structural measure for disaster frequency [no unit]

Existing sabo dams have effectiveness of retaining the same scale debris flow of the hazard on 31st July 2003. But, in this site, the volume of debris generated due to slope failure is more than debris control volume of sabo-dams, while a part of existing flow sections is less than the flow section based on the rainfall intensity in 2003. Apart from this, the effectiveness of retaining debris in the sabo dams is reduced by the considerable volume of unstable debris deposited above these dams. Taking these things into consideration, CEM is set as "0.5".

= 9,715,000 [Rs/year] x 0.5 = 4,875,000 [Rs/year]

Potential annual loss with existing structural measure is estimated

4,875,000 [Rs/year].