Supporting Report E FACILITIES DESIGN AND COST ESTIMATE

THE STUDY ON INTEGRATED BASIN MANAGEMENT FOCUSED ON FLOOD CONTROL IN MEJERDA RIVER IN THE REPUBLIC OF TUNISIA

FINAL REPORT

Supporting Report E : Facilities Design and Cost Estimate

Table of Contents

Page

Chapter	E1 BA	SIC CONDITIONS OF FACILITIES DESIGN	E1-1
E1.1	Principl	e of Facilities Design	E1-1
E1.2	Zoning	E1-1	
E1.3	Design	Flood Discharge for River Improvement	E1-2
E1.4	Survey	Data Utilized for Facilities Design	E1-3
E1.5	Design	Standard and Criteria	E1-10
Chapter	·E2 ST	RUCTURAL DESIGN	E2-1
E2.1	Flood (Control Structures	E2-1
	E2.1.1	River Channel Improvement Works	E2-1
	E2.1.2	Bypass Channels	E2-1
	E2.1.3	Retarding Basin	E2-3
	E2.1.4	Parapet Wall and Retaining Wall	E2-6
	E2.1.5	Detachable Stop Log Structure	E2-6
E2.2	Structu	res for Channel Stabilization	E2-6
	E2.2.1	Revetment for Slope Protection	E2-6
	E2.2.2	Ground Sill	E2-7
E2.3	Draina	ge Structures	E2-7
E2.4	Levee	on Major Tributaries	E2-8
E2.5	Bridge	s	E2-8
E2.6	Treatme	ent Measures of Thick Trees "Tamarix" in River Channels	E2-9
	E2.6.1	Clearing and Grubbing of "Tamarix"	E2-9
	E2.6.2	Recycling of "Tamarix"	E2-10
E2.7	Salient	Features of Proposed Structures	E2-11

Chapter 1	E3 CALCULATION OF WORK QUANTITIES AND COST ESTIMATE I	E 3-1
E3.1	Basic Conditions for Calculation of Work Quantities	E3-1
E3.2	Work Quantities	E3-2
E3.3	Unit Cost	E3-3
E3.4	Direct Construction Cost	E3-4
E3.5	Land Acquisition Cost	E3-5
Chapter 1	E4 MAINTENANCE WORKS OF RIVER CHANNEL I	E 4-1

List of Tables

Page

2 E1-1	Quantity and Direct Construction Cost of Zone D2	Table $E3.4.1$
1ET-2	Quantity and Direct Construction Cost of Zone D1	Table E3.4.2
2 ET-3	Quantity and Direct Construction Cost of Zone U2	Table E3.4.3
1 ET-4	Quantity and Direct Construction Cost of Zone U1	Table E3.4.4
ET-5	Quantity and Direct Construction Cost of Zone M	Table E3.4.5

List of Figures

Page

Figure E1.2.1	General Plan Project Area of Downstream Reach of Sidi Salem Dam	.EF-1
Figure E1.2.2	General Plan Project Area of Upstream Reach of Sidi Salem Dam	.EF-2
Figure E2.1.1	Mejez El Bab Bypass Channel (Zone D1) Plan	.EF-3
Figure E2.1.2	Mejez El Bab Bypass Channel (Zone D1) Typical Sections of Bypass Channel	.EF-4
Figure E2.1.3	Mejez El Bab Bypass Channel (Zone D1) Inlet Structure of Bypass Channel	.EF-5
Figure E2.1.4	Mejez El Bab Bypass Channel (Zone D1) Plan of Outlet Structure	.EF-6
Figure E2.1.5	Mejez El Bab Bypass Channel (Zone D1) Typical Design of Ground Sill	.EF-7
Figure E2.1.6	Bou Salem Bypass Channel (Zone U2) Plan and Profile	.EF-8
Figure E2.1.7	Bou Salem Bypass Channel (Zone U2) Typical Section of Bypass Channel	.EF-9
Figure E2.1.8	Bou Salem Bypass Channel (Zone U2) Inlet Structure - Plan	EF-10
Figure E2.1.9	Bou Salem Bypass Channel (Zone U2) Outlet Structure - Plan	EF-11
Figure E2.1.10	El Mabtouh Retarding Basin (Zone D2) General Layout	EF-12
Figure E2.1.11	El Mabtouh Retarding Basin (Zone D2) Inlet Structure of Retarding Basin-Overflow Dike with Stop Log Typical Sections for Earth Works	EF-13
Figure E2.1.12	2 El Mabtouh Retarding Basin (Zone D2) Inlet Structure of Retarding Basin-Overflow Dike with Stop Log Plan	EF-14

Figure E2.1.13	El Mabtouh Retarding Basin (Zone D2) Inlet Structure of Retarding
	Basin-Overflow Dike with Stop Log Profile EF-15
Figure E2.1.14	El Mabtouh Retarding Basin (Zone D2) Inlet Structure of Retarding
	Basin-Overflow Dike with Stop Log Cross Sections (1/2- 2/2) EF-16
Figure E2.2.1	Slope Protection Works (Zone D1) Revetment for Jedeida City - Plan EF-18
Figure E2.2.2	Slope Protection Works (Zone U2) Revetment for Bou Salem City - Plan EF-19

List of Related Data Contained in Data Book

		Page
Data E1	Drawings of River Facilities	DE1-1
Data E2	Unit Price for Cost Estimate	DE2-1

CHAPTER E1 BASIC CONDITIONS OF FACILITIES DESIGN

E1.1 Principle of Facilities Design

The principle of facilities design for river improvement works in the Mejerda River comprises following two ideas:

- (1) From a technical viewpoint, river channel improvement includes levee embankment, channel excavation/dredging and construction of retarding basins to utilise the in-channel flow capacity up to its maximum which is to be prioritized than other structural measures.
- No relocation of household/building is allowed so as to minimize social (2)Therefore, it is assured that the least numbers of environmental impact. people will be affected by implementation of river improvement works, since relocation of a large number of households and buildings makes the project implementation difficult. If enough spaces for construction of levee embankment/channel widening is not obtained, masonry/concrete parapet walls or retaining walls are employed instead of earth works as levee embankment and channel widening. Further, if it is still insufficient even after employing leave embankment, masonry/concrete walls and channel excavation/dredging to increase flow capacity up to the design flood discharge, the following two measures are incorporated to fill the gap of the shortage of river channel capacity:
- (1) Bypass Channel

A bypass channel has a function to divert excess flood discharge over the capacity of river channel. The excess discharge is detoured through the bypass channel and merged to the same river at the downstream stretch having a enough flow capacity. This structure does not have the function of retarding effect.

(2) Retarding Basin

A retarding basin is effective to mitigate the load of flood to safely convey the flood discharge along a river channel. A part of flood discharge is diverted into the retarding basin in which the excess discharge is once stored until the water level in the downstream river channel goes down to a certain level. Then, stored water will be released safely. This structure has a function to decrease the flood discharge at the downstream area.

E1.2 Zoning for River Improvement Plan

For the study of flood protection level over the Mejerda River basin in Tunisia, the river stretches subject to improvement are divided into five zones as follows:

Zone	River Stretches		Cross * Section No.	Channel Length (m)	Flood Protection Level (Return Period)
D2	D/S of Sidi	River Mouth to Larrousia Dam	MD447 to MD252	64,980	10 year
D1	Salem Dam	Larrousia Dam to Sidi Salem Dam	MD252 to MD1	83,560	10 year
U2	U/S of Sidi	Upstream end of reservoir of Sidi Salem Dam to Confluence with Mellegue River	MU1 to MU164	63,890	20 year
U1	Salein Dain	Confluence with Mellegue River to Ghardimaou City	MU164 to MU360	94,420	10 year
М	Mellegue River (tributary)		MG1 to MG160	45,043	10 year

Principal Features of Five Zones

Note: * see Section E1.4

Source: the Study Team

The target year for formulation of the Master Plan is set at the year 2030. Considering the long stretches of the Mejerda River with more than 300 km, appropriate sequence of construction works to complete the improvement project until the year 2030 is essential. The five zones were considered as divided elements for construction sequence. Therefore, the quantity and the associated costs of river improvement works are individually compiled by each zone. Zoning is shown in the attached **Figures E1.2.1** and E1.2.2.

E1.3 Design Flood Discharge for River Improvement

The river improvement as the structural measures of flood control adopted for the Study includes, (1) river channel improvement consisting of channel excavation/widening and levee embankment, and (2) construction of new bypass channels and one new retarding basin. Distribution of design flood discharge for the river improvement is shown in the diagram below with the boundaries of zone. The design discharge for the river improvement is based on the results of hydrological analyses, discussed in Supporting Report A.

Shortcutting of river channel, as a measure of river improvement, is not applied in the proposed Master Plan. Normally, a sudden change of longitudinal gradient of river bed often makes serious adverse impact to the other adjacent stretches, like acceleration of longitudinal and lateral erosion. However, it might be advantageous and considerable at meandering portions to lower the upstream water level and stabilize the channel regime. In the subsequent feasibility study stage, it shall be further examined based on the detailed hydraulic analysis and land use conditions in the vicinity.

Source: the Study Team

E1.4 Survey Data Utilized for Facilities Design

Following survey results, which were obtained through the current Study, were utilized for facilities design. A series of topographic map with scales of 1:25000 and 1:50000 and aero-photos prepared by MARH were also referred to. Earth work quantity, such as levee embankment, river channel excavation and clearing and grubbing, were calculated based on the designed cross sections. Field reconnaissance was conducted as well to supplement and confirm the survey results and further details.

		·	0	
Majarda Diwar	Upstream	Profile and cross section	L=158.306 km	360 sections
Mejerua River	Downstream	Profile and cross section	L=148.537 km	447 sections
Chaffrou River		Cross section survey	L=2.0 km	8 sections
Lahmer River		Cross section survey	L=2.0 km	8 sections
Kallied River		Cross section survey	L=2.0 km	8 sections
Siliana River		Cross section survey	L=2.0 km	8 sections
Kesseb River		Profile and cross section	L=20.375 km	86 sections
Bou Heurtma River		Profile and cross section	L=17.334 km	79 sections
Tessa River		Profile and cross section	L=20.285 km	87 sections
Mellegue River		Profile and cross section	L=45.044 km	160 sections
El Mabtouh	Inlet to outlet channel	Profile and cross section	L=29.793 km	9 sections
Ketaluling Dashi	Reservoir	Cross section		7 sections
Mejez El Bab Bypass		Profile and cross section	L=4.512 km	14 sections
Bou Salem Bypass		Profile	L=7.736 km	
Bridges for reconstruction		Cross section		6 sections

List of Survey Data Utilized for Facilities Design

Source: the Study Team

E1.5 Design Standard and Criteria

(1) General

National Institute for Standardization and Industrial Property (INNORPI) has provided the general Tunisian standards and other related standards such as ISO, Norme Francaise, etc. However, technical guidelines for river improvement have not been established in Tunisia. Design standard and criteria for river structures have been usually prepared or a project basis in general.

In the Study, since it was judged that the Japanese standards and criterion could be referred to as the result of ocular inspection of the site situations and existing structures through field reconnaissance, those were referred to decide the dimensions of river structures. The standards, which are normally applied in Japan, provide the minimum requirement under the ordinary design conditions of subsoil capacity, loading and hydraulic condition, etc.

(2) Levee Embankment and channel geometry

The crest width and freeboard of levee embankment and river channel cited from the standards are as shown below.

Category No.	1	2	3	4	5	6
Design Discharge Q	0 < 200	$200 \le Q <$	$500 \le Q$	$2000 \le Q$	$5000 \le Q$	$10000 \leq$
(m^{3}/s)	Q < 200	500	< 2000	< 5000	< 10000	Q
Free Board (m)	0.6	0.8	1.0	1.2	1.5	2.0
Crest width of levee (m)	3	.0	4.0	5.0	6.0	7.0

Design Criteria for Levee Embankment and River Channel

Source: the Study Team

The side slope of levee embankment shall be equal to or gentler than 1:2.0. The design discharge of river channel based on the hydrological analysis varies between 570 m³/s and 1,860 m³/s in the Study Area. In accordance with the table above, a standard section of levee embankment is set in the Mejerda River as follows:

- (a) Crest width : 4.0 m wide(b) Freeboard : 1.0m high
- (c) Side slope : 1:2.0

Dimension of Channel Excavation and Levee Embankment

Typical sections of river channel improvement are shown in **Sheet Nos. 21 to 27 of Data E1 in the Data Book**. In the detailed design stage of the proposed project, the stability analysis shall be conducted to check the appropriateness in dimension.

As for river channel excavation in the Mejerda River, the side slope is decided based on the following reasons:

- (a) The design slope must be gentler than the present bank slope for stability against sliding.
- (b) The slope must be gentle enough for maintenance work of river channel.

CHAPTER E2 STRUCTURAL DESIGN

E2.1 Flood Control Structures

E2.1.1 River Channel Improvement Works

River channel improvement works for the Mejerda River is designed with combination of following three measures:

- (a) Channel excavation/dredging and widening,
- (b) Levee embankment, and
- (c) Reservation of storage area.

In the course of flood analysis, considering land use, topography and hydraulic condition, the combination of those measures through the whole stretch of the Mejerda River is studied till optimum case is found. The longitudinal profile along the lowest river bed based on hydraulic analysis is shown in the drawings **Sheet Nos. E-3 to E-20 of Data E1 in Data Book.** Further, cross sections are shown in **Sheet Nos. E-21 to E-27 of Data E1 e1 oinData Book.**

The river stretches of MD29 to MD24, MU 53 to MU 79 and MU207 to MU304 are reserved for storage of flood discharge so as to lessen the peak and volume of flood discharge in their downstream river channels.

The current flow capacity versus design flood discharge is shown as below:

River Stretches	Flow Capacity (m ³ /s)			
Mejerda River	Current Flow Capacity	Design Flood Discharge		
Ghardimaou – confluence with Rarai R.	250	250		
Confluence with Rarai R. – Jendouba	400	790		
Jendouba – Confluence with Mellegue R.		520		
Confluence with Mellegue R. – Confluence with Tessa R.	250	1480		
Confluence with Tessa R. – Bou Salem	400	1840 (1140)		
Bou Salem – U/S end of Sidi Salem Reservoir	300~350	1840		
Sidi Salem Dam – Slouguia	250~500	410~700		
Slouguia – Mejez El Bab	600	700 (500)		
Mejez El Bab – Laroussia Dam	250	760		

Current Flow Capacity and Design Flood by River Stretches

Source: the Study Team

E2.1.2 Bypass Channels

With consideration of present insufficient flow capacity and difficulty of widening, El Battane, Mejez El Bab, Bou Salem and Jendouba, which are made up on the Mejerda River, were examined on necessity of bypass channel. Hydraulic study was further carried out and results are overlaid on its topography and land use. The final conclusion was obtained that bypass channels for Mejez El Bab City and Bou Salem City must be required to cope with the design flood discharge.

In the case of Mejez El Bab City, the river section of historical old bridge (Andarrous Bridge) is a critical bottle neck. However, the bridge shall be conserved as it is without removal in accordance with the request of the Tunisian side.

Bou Salem City is developed on both sides of the Mejerda River. The available space for river improvement works between both banks is quite limited. Almost whole Bou Salem City is located in flood prone area along the Mejerda River. The bypass channel is an effective measure to lower the risk of flood from the topographic point of view.

Ground sills are provided to stabilize the channel bed and alignment of bypass channel. The inlet and outlet of bypass channel are reinforced with the ground sills and revetment so as to assure diversion of flood discharge. Bridges are also provided at the existing roads, which cross over the bypass channel. A 500m long of transition is also provided from just downstream of junction of the bypass channel with the Mejerda River to mitigate the turbulence flow. And the structural design of Mejez El Bab Bypass Channel and Bou Salem Bypass Channel is shown in **Figures E2.1.6 to E2.1.9** respectively. They are shown in **Data E1 of Data Book as drawing Sheet No.36 to 46** and **drawing Sheet No.47 to 58** respectively. Salient feature is shown in the table below:

Me	jez El Bab Bypass Channel		Q'ty	Unit
(1)	Bypass channel			
	Length		4,512	m
	Channel bottom width		15.00	m
	Discharge	Mejerda River	Q = 450	m ³ /s
		Bypass Channel	Q = 250	m ³ /s
		Side Slope	1:2.0	
(2)	Inlet structure		1	Set
(3)	Outlet structure		1	Set
(4)	Ground sill		3	Locations
(5)	Bridge			
	$30m \ge 2 \text{ spans} = 60m$	Two-lane-type	4	Locations
(6)	Drain inlet		1	Set
(7)	Slope protection			
	Stone pitching	1 location	1,200	m
Bou	Salem Bypass Channel			
(1)	Bypass channel			
	Length		7,736	m
	Channel bottom width		25.00	m
	Discharge	Mejerda River	Q = 1,140	m ³ /s
		Bypass Channel	Q = 500	m³/s
		Side Slope	1:2.0	
(2)	Inlet structure		1	Set
(3)	Outlet structure		1	Set
(4)	Ground sill		8	Locations
(5)	Bridge			
	$30m \ge 2 \text{ spans} = 60m$	Two-lane-type	5	Locations
(6)	Drain inlet		1	Set
(7)	Slope protection			
	Stone pitching	3 locations, total length	1,500	m
	Source: the Study Team			

Salient Features of Bypass Channel

E2.1.3 Retarding Basin

(1) Basic Concept and General Layout

Two candidate sites of retarding basin upstream of Jendouba City and at the El Mabtouh plain in the lower area of the Mejerda River basin, were initially examined in the Framework Plan Study. The retarding basin is effective to mitigate flood peak discharge into the river channel. Since the viability of retarding basin depending largely on topographic condition, the natural topography is important to meet the physical requirement of low ground elevation, enough storage capacity, and access from the river channel, etc. If not. technical and cost performance become low. Although the construction of retarding basin upstream of Jendouba City was attractive for its favourable location to protect the urban area, unsuitable topography required high closing dike (15m to 20m high) to assure the enough storage capacity, which might require intensive quality control and maintenance works as same as a large dam. It does not seem to be practical as a retarding basin. In addition, failure due to lack of proper maintenance would bring crucial damage on the downstream residential area.

On the other hand, in the El Mabtouh plain, circumstances are very advantageous for creating a retarding basin. In fact, there exists an abandoned old retarding system. The structures can be replaced by means of renewal and upgrading of existing ones. The land acquisition can be minimized. The inlet channel will be renewed and the surrounding dike will be upgraded. The outlet channel will be usable after dredging and widening. Instead, the inlet structure will be completely newly provided. The existing bridges on inlet channel must be renewed and existing sluice/drain inlets along the inlet and outlet channels must be renewed as well. A general layout of the El Mabtouh Retarding Basin is shown in the figure below:

Source: the Study Team

General Layout of El Mabtouh Retarding Basin

(2) Hydraulic Conditions

A maximum discharge of 200 m^3 /s is planned to be diverted to the retarding basin out of 860 m^3/s of peak discharge at the upstream side of the inlet structure in the Mejerda Therefore, 660 m³/s will pass toward downstream after diversion. The inlet River. structure is designed as an unmanned operating overflow dike lined with concrete. The overflow dike is equipped with stop logs of concrete board for an emergency case of closure. The river discharge to start the diversion is set at 515 m^3/s , which corresponds with the river flow capacity at the crest elevation of dike. The crest elevation is 1.2 m lower than the design water level in the Mejerda River. The design flood hydrograph at the inlet structure is shown in the graphic below. An total volume of 14 million m³ is diverted to the retarding basin. The capacity of retarding basin is about 50 million m³ including an sediment volume and the runoff inflowing from its own catchment. A 10 million m^3 of sediment storage volume is considered in the design, which is almost free from maintenance dredging for the project life of the structure. The inflow from the own catchment is estimated at about 10 million m³. A elevation-area-storage curve is as presented below. The layout and facility design is shown in Figure E2.1.10 to Figure E2.1.15 and drawings Sheet Nos. E-28 to E-35 of Data E1 in Data Book.

Source: the Study Team

Design Flood Hydrograph at Inlet Structure of El Mabtouh Retarding Basin

Source: Prepared by the Study Team based on topographic survey results in the Study

Elevation - Area - Storage Curve of El Mabtouh Retarding Basin

(3) Salient Features

The salient features of the El Mabtouh Retarding Basin are tabulated as follows:

Salient Features of El Madtoun Ketarding Basir	Salient Features	of El Mabtouh	Retarding Basin
--	-------------------------	---------------	------------------------

(1)	Inlet channel			
	Construction of earth canal,			
	Improvement of existing channel		9,130	m
	New construction		2,770	m
(2)	Outlet channel			
	Dredging of existing canal		7,780	m
(3)	Retarding basin			
	Surrounding dike		10,100	m
	Design storage capacity		50	mil. m ³
(4)	Outlet structure			
	Sluice, roller gate	Design discharge	Q=50	m ³ /s max
		Size	3.00x3.00x3	nos.
(5)	Inlet structure			
	Overflow dike with stop log	Design discharge	Q=200	m ³ /s
		Crest length of overflow dike	80	m
(6)	Bridge			
	Renewal of existing bridge			
	$25m \ge 2 \text{ spans} = 50m$	One-lane-type	6	locations
		Two-lane-type	1	location
(7)	Sluice gate			
	Flap gate		5	locations
(8)	Drain inlet			
	Flap gate		23	locations
S	ource: the Study Team			

E2.1.4 Parapet Wall and Retaining Wall

The levee is basically constructed with earth material. When the available land is limited in residential areas for construction of levee, a parapet wall of concrete/masonry is an alternative solution to avoid relocation of people. An low water channel is also formed with concrete retaining wall to maximize the flow area in narrow section. Drawings with **Sheet No.E-59 to E-64 of Data E1 in Data Book** show the design of the structures to be provided in Judaida City and El Battane City.

E2.1.5 Detachable Stop Log Structure

Although this is not a preferable measure, this might be one of simple solutions for closing to avoid inundation where the bridge is submerged under the design water level. Both banks of historical Anderrous Bridge in Majez El Bab and ancient El Battane Weir, are in such situation as shown in the figure below. Therefore, the stop log will be placed at the approach roads of bridges in between discontinued part of levee. This structure is made of detachable posts with stop log slots and movable steel stop log leaves. Actual operation should be related with the warning system, because the stop log must be installed timely otherwise spilled water flows into the residential area. The drawing with Sheet No.E-69 in Data Book shows typical design for this structure.

Source: the Study Team

Typical Section of Stop Log Structure at Historical Bridge Site

E2.2 Structures for Channel Stabilization

E2.2.1 Revetment for Slope Protection

Nominal river bank protection works have been carried out on the Mejerda River. Erosion has been progressing at most of meandering portions (refer to Plan and Profile of Mejerda River in Data Book). Following criteria for provision of slope protection adjacent to the structures shall be applied:

- (1) Dense housing area at the risk of damage due to erosion,
- (2) Pubic properties such as a national road, a railway and trunk structures as lifeline close to eroded river bank, and
- (3) Upstream side and downstream side of structures, (if necessary).

As for the agricultural land areas, requirement of revetment will be substantiated in the maintenance period based on the actual erosion conditions.

Following three types of revetment for bank protection are proposed with design particulars:

(1) Concrete frame / wet cobble masonry

This is a solid structure and to be applied to dense residential areas, such as Bou Salem City, Jedeida City and so on.

(2) Gabion / stone pitching

This will be applied to transition between a solid structure and earth material.

(3) Fascine mattress / fascine hurdle

This is applied to protection for the public and/or private properties that are close to the eroded bank. This issue is discussed in Section E2.5.

Drawings with Sheet No.E-65 to E-68 of Data E1 in Data Book show the design of concrete frame type revetment for Bou Salem City. Typical design of fascine mattress / fascine hurdle is shown in Drawings with Sheet No.E-70 and E-71 of Data E1 in Data Book.

E2.2.2 Ground Sill

Ground sill is a measure to stabilize the riverbed in a river channel regime. The proposed scheme of river improvement excludes short-cut channel so that the gradient of present riverbed profile is not drastically changed before and after improvement works. The present riverbed is anticipated to rise up due to sedimentation. Consequently, it is judged that ground sill is not necessary on the Mejerda River except special cases, which are in the bypass channels, at inlet and outlet structures and at the inlet of El Mabtouh Retarding Basin.

E2.3 Drainage Structures

The construction of levee interrupts the existing continuous draining system connecting to the river. It is obliged that sluices shall be properly provided at the crossing point of levee and drainage canals to the Mejerda River. Most of the structures are located at remote areas. Due to the situation, the structure shall be generally unmanned operation type. The gate must react with water level fluctuation inside and outside. Therefore, a flap gate is adapted. The number, type and size of sluiceway is counted and shown in the table below. Actually without detailed topographic maps, it is difficult to determine the right places of these structures. This is preliminary estimation based on the available aerial photos. The typical design of sluiceway is shown in **drawings Sheet No.E-79 to E-88 of Data E1 in Data Book**.

Salient reatures of Sinceway					
Zone D2	Type	Dimensions		Q'ty	Unit
Mejerda River Channe	1				
Sluiceway	Flap gate	2.00x2.00x2 barrels to 2.50x2.50x3 barrels	1	9	Nos.
	Flap gate	2.00x2.00x1 barrel to 1.50x1.50x1 barrel		21	Nos.
	Flap gate	1.00x1.00x1barrel		17	Nos.
El Babtouh Retarding	pond				
Outlet structure	Roller gate	3.00x3.00x3 barrels		1	No.
Sluice gate	Flap gate	2.50x2.50x3 barrels		5	Nos.
Drain inlet	Flap gate	1.00x1.00x1 barrel		23	Nos.
			Total	76	

Salient Features of Sluiceway

Zone D1				
Sluiceway	Flap gate	2.00x2.00x2 barrels to 2.50x2.50x3 barrels	11	Nos.
	Flap gate	2.00x2.00x1 barrel to 1.50x1.50x1 barrel	27	Nos.
	Flap gate	1.00x1.00x1barrel	34	Nos.
		Total	72	
Zone U2				
Sluiceway	Flap gate	2.00x2.00x2 barrels to 2.50x2.50x3 barrels	6	Nos.
	Flap gate	2.00x2.00x1 barrel to 1.50x1.50x1 barrel	16	Nos.
	Flap gate	1.00x1.00x1barrel	20	Nos.
		Total	42	
Zone U1				
Sluiceway	Flap gate	1.00x1.00x1barrel	3	Nos.
Zone M				
3) Sluiceway	Flap gate	1.00x1.00x1barrel	3	Nos.

E2.4 Levee on Major Tributaries

As treatment of major tributaries connected with the Mejerda mainstream, those must be opened as it is considering difficulties of operation and maintenance of gate structures at their lower ends. In other words, construction of large size gated structure at the confluence with the Mejerda River is not practical. Construction of levee embankment on tributaries with continuation of the one along the mainstream to prevent the backflow from the Mejerda is rather reasonable instead of gated structures. This levee, which works to prevent backwater invasion from the Mejerda mainstream, is to be placed in six tributaries, i.e. the Chaffrou, the Larmer, the Kasseb, the Bou Heurtma , the Tessa and the Mellegue Rivers.

E.2.5 Bridges

Based on the hydraulic analysis with the latest river cross sections, it was clarified that four road bridges, one aqueduct with a foot path and two railway bridges would be affected. The elevations of these superstructures are lower than the design high water levels. The railway bridge at Sidi Ismail (Zone U2) seems that the superstructure can be heightened by jacking with placement of additional concrete on the top of substructure. The other six bridges should be replaced with new bridges. In Tunisia, road bridges are managed by the Ministry of Equipment and railway bridges are managed by SNCFT separately.

A 100 year return period flood discharge shall be applied to the design of the bridges in the current Study. Existing bridges subject to reconstruction are listed as below. Cross sections of these structures are shown in attached **drawing Sheet No.72 to E-78 of Data E1 in Data Book**.

	-	-	=		
Nama of Zona	Cotogomy	Location		Length	
Name of Zone	Category	Reconstruction	Heightening	(m)	
	Road bridge	MD436		140	
Zona D2	Road bridge	MD406		160	
Zolle D2	Road bridge	MD401		140	
	Railway bridge		MD338	75	
Zone D1	Aqueduct with foot bridge	MD134		110	
Zona U2	Railway bridge	MU40		110	
Zolle 02	Road bridge	MU153		100	

List of Bridges aff	fected by Proposed	River Imn	rovement
List of Dridges and	icitica by 1 toposca	i Miver Imp	10vcmcm

Source: the Study Team

E2.6 Treatment Measures of Thick Trees "Tamarix" in River Channels

E2.6.1 Clearing and Grubbing of "Tamarix"

The thick bush prevailing in the high water channel mainly consists of a kind tree so-called "Tamarix" can be seen almost all stretches along the Mejerda River. Particularly, they narrow the flow area and hinder the smooth flow in the river channel. This is a serious problem to cope with flood prevention. On the contrary, it is observed that they are somewhat contributing in prevention of river bank erosion.

After the devastated flood of January to February 2003, each CRDA recognized the importance of removal of Tamarix. In fact, the CRDAs provided budget to remove Tamarix from the river channel and those have been once cleared by means of cutting down the trunks and burned afterward. However, a problem that the remained stubs and roots quickly branched off and they grew 3 to 4 m high within only 2 to 3 years according to the interview at CRDA Manouba. The prepared budget was too small to remove all from the subject river stretches.

Tamarix can spread both roots or submerged stems and by seeds. If the root is not removed, they will recover to former conditions quickly. The photo shows a high water channel widely covered with Tamarix, which had been cleared by cutting down only two years before. They seem to have already recovered completely.

Therefore, it is concluded that the Tamarix must be cleared by means of grubbing the root. However, roots must

grubbing the root. However, roots must **Current Condition at Downstream of Jedeida** be intentionally left in a range of 5.0 m from shoulder of channel section for the purpose of prevention against bank erosion as shown in the figure below:

Source: the Study Team

Area of Tamarix to be Left for Bank Protection (Tentative)

According to the information from CRDA, Tamarix started to prevail in the high water channel after construction of the Sidi Salem Dam. This information proves that the Tamarix can grow fast on the silted surface with sediment.

E2.6.2 Recycling of "Tamarix"

According to the information collected by the Study Team, Tamarix is not so attractive for practical use compared as other dominant trees such as "Eucalyptus", etc. Tamarix is not suitable for charcoal or fire wood either because of the smell when burned. It is somewhat usable as raw material of plywood processing, but demand is very limited and no factory is operated in the project area. The disposal cost

Branches of Tamarix

is not negligible and disposal by burning seems to be negative to the environment impact.

On the other hand, there is a kind of construction method for the slope protection made of wood materials, which is widely adopted as a traditional way of river bank protection in Japan. This construction method seems to be applicable to the Mejerda River by using Tamarix. There are requests at many places about bank protection according to interview at site. If this method is effectively applicable with cut Tamarix, the cost of slope protection in the maintenance period can be reduced. Inhabitants, who want to protect their land from erosion, will be able to make the protection with Tamarix by them, if they know the technique how to make it. No heavy machinery is needed.

Therefore, maintenance works of river channel might be possible by participatory approach by the local people on some extent, if a certain mechanism is created between CRDAs and cities/villages concerned. This method will contribute to save the limited maintenance budget of the local government. The photo above shows the branches of Tamarix that seems to be usable for fascine mattress.

However, at any rate, as long as the efficiency and applicability of this method shall be confirmed through a Pilot Project, this method can not be directly introduced to construction. A kind of typical design of Japanese traditional slope protection works made of wood logs and branches is shown in the figure below. Drawings is also attached in **Sheet No.E-70 and E-71 of Data E1 in Data Boo**k.

Typical Cross Section of Slope Protection (Traditional Type in Japan)

E2.7 Salient Features of Proposed Structures

Based on the structural design works as explained, design drawings were prepared. The salient features of major structures proposed in the Master Plan is summarised by each zone in table below:

Salient Features of Major Structures

Zo	Zone D2			
I. N	Iejerda River			
1)	River channel length			
	MD447 to MD252	0.00m to 64974.36 m	64,974	m
2)	Scope of construction boundary of levee emban	kment (Left bank and right bank))	
	MD434 to MD252	4667.73m to 64974.36 m	60,307	m
	(Heightening of existing levee)	4667.73m to 24943.85 m	(20,280)	m
	Actual construction length	(Left bank)	29,365	m
		(Right bank)	26,478	m
		Total	55,843	m

3)	Low water channel excavation	on			
	MD447 to MD356, B=25	m	0.00 m to 31306.69 m	31,307	m
	MD356 to MD329, B=35	m	31306.69 m to 40801.18 m	9,494	m
	MD329 to MD290, B=20	m	40801.18 m to 51912.36 m	11,111	m
	MD290 to MD285, No ex	cavation	51912.36 m to 53110.71 m		
	MD285 to MD252, B=25	m	53110.71m to 64974.36 m	11,864	m
	To	otal length of River	channel excavation	63,776	m
4)	Sluice gate				
	2.00x2.00x2 barrels to 2.5	50x2.50x3 barrels		9	Nos.
	2.00x2.00x1 barrel to 1.5	0x1.50x1 barrel		21	Nos.
	1.00x1.00x1barrel			17	Nos.
5)	Slope protection				
	(Concrete frame	Jedeida city (Left bank)	1,000	m
			Jedeida city (Right bank)	1,000	m
			El Battane city (Left bank)	100	m
			El Battane city (Left bank)	100	m
	S	Stone pitching		10,000	m ³
	Ι	Fascine mattress		72,000	m^2
6)	Reconstruction of existing by	ridge			
,	MD 434	6	Road bridge, L=140 m	1	Site
	MD 406		Road bridge, L=160 m	1	Site
	MD 401		Road bridge, L=140 m	1	Site
7)	Heightening of existing raily	vav bridge			
.,	MD 338		L=90 m	1	Site
8)	Heightening of existing road	I	_ / * ***	_	
0)	Length of heightening		Bituminous pavement	4 600	m
п	El Mahtouh Retarding Basir	n	Ditaininous puvenient	1,000	
1)	Inlet channel				
1)	Construction of earth can	ลไ			
	I construction of cartin cart	(mprovement of exi	sting channel	9 130	m
	ו	New construction	isting channel	2 770	m
2)	Outlet channel	New construction		2,770	111
2)	Dredging of existing cana	1		7 780	m
3)	Pasarvoir	11		7,780	111
3)	Surrounding dike			10 100	
	Design store as semasity			50,000,000	m^{3}/a
4)	Outlet structure			50,000,000	111 / S
4)	Shrice roller gate		Design discharge	0-50	1 set $m^3/c max$
	Siuce, ionei gate		Design discharge	Q=30	III /S IIIAX
5)	Inlat atmusture		5126	5.00x5.00x51108	•
3)		la	Design discharge	0, 200	
	Overnow dike with stop i	log	Design discharge	Q=200	m/s
0	ו' ת		Crest length of overflow dike	80	т
6)	Bridge				
	Renewal of existing bridg	ge			G .,
	$25m \ge 2 \text{ spans} = 50m$		One-lane-type	6	Sites
-	01		I wo-lane-type	1	Sites
/)	Since gate			-	C.
C `	Flap gate			5	Sites
8)	Drain inlet			22	.
	Flap gate			23	Sites

III. Chaffrou River

1)	Levee length (Left bank and right bank)
	CH0 to CH8

2,000 0.00 m to 2,000 m m Zone D1 I. Mejerda River 1) River channel length MD252 to MD1 64974.36 m to 148537.42 83,563.06 m 2) Scope of construction boundary of levee embankment (Left bank and right bank) MD251 to MD29 67312.99 m to 139335.82 72,022.83 m MD24 to MD0 141007.44 m to 148537.42 7,529.98 m Total 79,552.81 m Actual construction length (Left bank) 36,671 m (Right bank) 33,909 m 70,580 Total m 3) Low water channel excavation MD251 to MD135, B=25 m 67312.99 m to 105317.25 38,004 MD251 to MD1, B=20 m 105317.25 m to 148537.42 43,220 m Total 81,224 4) Sluice gate 2.00x2.00x2 barrels to 2.50x2.50x3 barrels 11 Nos. 2.00x2.00x1 barrel to 1.50x1.50x1 barrel 27 Nos. 1.00x1.00x1barrel 34 Nos. 5) Slope protection Concrete frame 1,000 m m³ Stone pitching 10,000 Fascine mattress 81,000 m^2 Renewal of existing bridge 6) MD 134 Road bridge, L=140 m 1 LS 7) Stop log at Mejez El Bab old bridge 2 Sets II. Majez El Bab Bypass Channel 1) Bypass channel Length 4512 m 15.00 Channel bottom width m Q = 450 m^3/s Discharge Mejerda River Bypass Channel Q = 250 m³/s side slope 1:2.02) Inlet structure 1 Set 3) Outlet structure 1 Set 4) Ground sill 3 Sites 5) Bridge $30m \ge 2 \text{ spans} = 60m$ Two-lane-type 4 Sites 6) Drain inlet 1 Set Slope protection 7) Stone pitching 1 location 1,200 m **III. Lahmar River** 1) Levee length (Left bank and right bank) LA0 to LA8 0.00 m to 2,000 m 2,000 m

Zone U2

I. N	/lejerda River				
1)	River channel length				
	MU1 to MU164		0.00 m to 63889.42 m	63,88	9 m
2)	Scope of construction bou	ndary of levee emban	kment (Left bank and right	bank)	
	MU1 to MU53		0.00 m to 21159.41 m	21,15	9
	MU79 to MU172		30077.29 m to 63889.42 m	n 33,81	2 m
			r	Гotal 54,97	2
	Actual	l construction length	(Left bank)	34,83	3 m
			(Right bank)	32,66	6 m
				Fotal 67,49	9 m
3)	Low water channel excava	ation			
	MU53 to MU129, B=5	0 m	21159.41 m to 50385.72 m	n 29,22	.6
	MU129 to MU164, B=	40 m	50385.72 m to 63889.42 m	n 13,50	4
			r.	Fotal 42,73	0
4)	Sluice gate				
	2.00x2.00x2 barrels to	2.50x2.50x3 barrels			6 Nos.
	2.00x2.00x1 barrel to 1	.50x1.50x1 barrel		1	6 Nos.
	1.00x1.00x1barrel			2	0 Nos.
5)	Slope protection				
		Concrete frame		1,00	0 m
		Stone pitching		10,00	$0 m^3$
		Fascine mattress		99,00	$0 m^2$
6)	Renewal of existing aqued	luct with foot bridge			
	MD 134	To be improved to	Road bridge, L=110 m		1
II.	Bou Salem Bypass Channe	el			
1)	Bypass channel				
	Length			7,73	6 m
	Channel bottom width			25.0	0 m
	Discharge	Mejerda River		Q = 114	$0 m^3/s$
		Bypass Channel		$\mathbf{Q} = 70$	0 m ³ /s
		side slope		1:2	0
2)	Inlet structure				1 Set
3)	Outlet structure				1 Set
4)	Ground sill				8 Sites
5)	Bridge				
	$30m \ge 2 \text{ spans} = 60m$		Two-lane-type		5 Sites
6)	Drain inlet				1 Set
7)	Slope protection				
	Stone pitching		3 locations, total length	1,50	0 m
III.	Bou Heurtma River		-		
1)	Levee length (Left bank a	nd right bank)			
	BH0 to BH32	0	0.00 m to 6,742.34 m	6,742.3	4 m
IV.	Tessa River			,	
1)	Lavaa langth (Laft hank a	1 1 1 (1 - 1)			
	Levee length (Left bank a	nd right bank)			
	TS0 to TS24	nd right bank)	0.00 m to 4,348.24 m	4,348.2	4 m

m

V. Kasseb River

- Levee length (Left bank and right bank) KS0 to KS11
- 0.00 m to 3,056.98m

3,056.98

Zo	one U1			
I. N	/lejerda River			
1)	River length			
	MU164 to MU360	63889.42 m to 158306.49m	94,417.07	m
2)	Scope of construction boundary of levee emban	kment (Left bank and right bank)		
	MU164 to MU172	63889.42 m to 67610.96m	3,721.54	m
	Actual construction length	(Left bank)	2,264	m
		(Right bank)	2,860	m
		Total	5,124.00	m
3)	Low water channel excavation			
	MU164 to MU208, B=10 m	63889.42 m to 79550.78 m	15,661	m
	MU208 to MU248, B=15 m	79550.78 m to 99714.35 m	20,164	m
	MU208 to MU248, No excavation		0	m
	MU305 to MU329, B=10 m	128913.2 m to 141842.33 m	12,929	m
		Total	48,754	m
4)	Sluice gate			
	1.00x1.00x1barrel		3	Nos.
5)	Slope protection			
	Stone pitching		5,000	m^3
	Fascine mattress		45,000	m^2

Zone M

_					
I. N	I. Mellegue River				
1)	River length for study				
	MG1 to MU114	63889.42 m to 158306.49m	158,306.00	m	
2)	Scope of construction boundary of levee emban	kment (Left bank and right bank)			
	MG1 to MG35	0.00 m to 8895.23m	8,895.23	m	
	Actual construction length	(Left bank)			
		(Right bank)			
2)	Low water channel excavation				
	MG1 to MG52	0.00 m to 12871.42 m	12,871	m	
3)	Sluice gate				
	1.00x1.00x1barrel		3	Nos.	

Source: the Study Team

CHAPTER E3 CALCULATION OF WORK QUANTITIES AND COST ESTIMATE

E3.1 Basic Conditions for Calculation of Work Quantities

Work quantities of the river improvement works are calculated based on the preliminary design drawings. Work quantities of earth works for river channel improvement are calculated based on the rive cross sections from field survey data. Following assumptions, which supplement incomplete information, are also applied to the quantity calculation.

Clearing and disposing of surface vegetation in the high water channel and construction site is divided into three work items as follows:

Code No.

A1. Clearing and grubbing (Dense bush)

A2. Clearing and grubbing (Thin bush)

A3. Stripping

"A3. Stripping" is defined as clearing of land on which weeds only grow without trees and bushes.

Since above three items are not separately shown on the cross section design, with the judgment by site inspection, it is assumed that the total quantity (A1, A2 and A3 together) measured in CAD is distributed in a proportion of A1:A2:A3=3:2:5.

Further, two items for disposal of excavated material are provided as follows:

Code No.

A14. Disposal of excavated material, without haul

A15. Disposal of excavated material, with average hauling distance of 2.0 km

As it is mentioned below, an average hauling distance for disposal of material is assumed to be 2.0 km. However, since some of excavation sites are very close to spoil bank/stock yards, hauling of the disposing material is not required. Therefore, a proportion of A14: A15 with 2:8 was applied

.Costs of earth works are generally dominated by transportation cost. The channel excavation is major earth work of the proposed river improvement works. In particular, the excavation volume has a lot of surplus over the embankment volume. Even though majority of embankment works are done with excavated material without using borrow material, a large amount of excavated materials must be disposed by a proper manner.

Source: the Study Team

Layout Plan of Potential Spoil Bank Sites of Excavated Material

Under this situation, the project cost will be affected by the price of disposing of excess materials. Its unit cost is affected by hauling distance. The location of spoil bank is the key factor to lower the construction cost of earth works. The areas hatched shown in the figure above are promising sites for spoil banks. Generally, the elevations of lands inside of meanders are lower than the opposite sites. The low land of especially wheat field is once employed for the spoil bank and the land is backfilled with spoil materials up to proper elevation. Subsequently the land can be turned to wheat field again. In cost estimate of the current Study, a hauling distance to the spoil bank is assumed to be 2.0 km on an average.

E3.2 Work Quantities

The work quantities of major structures are summarized as follows:

Summary of Work Quantities

Works of river channel improvement in Zone D2

(1)	River channel length		64,974m
(2)	Levee embankment	Left bank	29,365m
		Right bank	26,478m
		Total	55,843m
(3)	Low water channel excavation		63,776m
Works of	river channel improvement in	n Zone D1	
(1)	River channel length		83,563m
(2)	Levee embankment	Left bank	36,671m
		Right bank	33,909m
		Total	70,580m
(3)	Low water channel excavation		81,224m
Works of	river channel improvement in	n Zone U2	
(1)	River channel length		63,889m
(2)	Levee embankment	Left bank	34,833m
		Right bank	32,666m
		Total	67,499m
(3)	Low water channel excavation		42,730m

Works of	river channel improvement in	Zone U1	
(1)	River channel length		94,417m
(2)	Levee embankment	Left bank	2,264m
		Right bank	2,860m
		Total	5,124m
(3)	Low water channel excavation		48,754m
Works of	river channel improvement in	Zone M	158 306m
(1)	L evee embankment	Left bank	4 195m
(2)		Right bank Total	3,210m 7,405m
(3)	Low water channel excavation		12,871m
Source: th	e Study Team		

E3.3 Unit Cost

The unit cost finally applied for the cost estimate is summarized as follows:

Summary of Unit Cost for Cost Estimate

No.	Work Item Description		Unit	Unit price (TND)
	EARTH WORKS			(11(2)
A1	Clearing and grubbing (Dense bush)	with average hauling distance of 1.00 km	m ²	2.267
A2	Clearing and grubbing (Thin bush)	with average hauling distance of 1.00 km	m ²	1.491
A3	Stripping	with average hauling distance of 1.00 km	m ²	0.267
A4	Excavation for river channel, common soil	with average hauling distance of 0.50 km	m ³	2.300
A5	Excavation for river channel, indurated	with average hauling distance of 0.50 km	m ³	3.840
A6	Excavation for river channel, rock	with average hauling distance of 0.50 km	m ³	8.180
A7	Excavation for Bypass channel, common soil	with average hauling distance of 1.00 km	m ³	2.414
A8	Excavation for structures	0 0	m ³	3.580
A9	Embankment v	with average hauling distance of 2.00 km	m ³	3.759
A10	Embankment I	Directly from excavation site	m ³	2.039
A11	Backfill to structures w/o haul	×	m ³	4.160
A12	Gravel metalling for inspection roads		m ³	27.310
A13	One-way hauling distance per 1.00 km		m ³	0.477
A14	Disposal of excavated materials I	Directly from excavation site	m ³	0.250
A15	Disposal of excavated materials	with average hauling distance of 2.00 km	m ³	1.220
	CONCRETE WORKS			
B1	Lean concrete (32/10)	0.1 m ² of form included	m ³	82.000
B2	Concrete Type A (63/17), Plain concrete (0.5 m ² of form included	m ³	114.000
B3	Concrete Type B (32/26), Reinforced concrete 2	2.5 m ² of form included	m ³	173.545
B4	Concrete Type C (16/26), Reinforced concrete 4	4.0 m ² of form included	m ³	215.846
B5	Reinforcement - plain round bar		kg	1.791
B6	Reinforcement - deformed bar		kg	1.791
B7	Stone masonry Type A, with 1:3 mortar		m ³	75.386
	STONE WORKS			
C1	Gabion mattress		m ³	94.225
C2	Stone pitching (Rough finishing)		m ³	26.822
C3	Stone pitching (Fine finishing)		m ³	42.862
C4	Fascine mattress		m ²	17.907
C5	Cobble stone fill		m ³	16.360
C6	Graded sand and gravel filter		m ³	16.360
C7	Demolition and disposal of existing masonry and c	concrete	m ³	155.720
C8	Asphalt concrete			250.000
	OTHER MAJOR WORKS			
D1	Prestressed concrete beam L=30m		Unit	26,300.000
D2	Prestressed concrete beam L=25m		Unit	20,300.000
D3	Prestressed concrete beam L=20m		Unit	12,700.000
D4	Cast-in place concrete pile with steel pipe pile casin	ng	Unit	6,900.000
D5	Steel sheet pile (Permanent cutoff)		m ²	46.610
D6	Heightening and removal of existing railway		m	400.000

<u>Metal Works</u>

E1	Slide gate (Manual operation hoist), Max size $W = 1.50m$, $H = 1.50m$	kg	4.680
E2	Slide gate/Roller gate (Electric driven hoist), larger than W = 2.00m, H = 2.00m	kg	6.240
E3	Other metal works	kg	3.230
	Miscellaneous		
F1	Restoration of affected existing structures, etc.	%	3.000
F2	Miscellaneous works such as drainage crossing, inspection road, Accessories of bridge, Sod facing, etc.	%	7.000

Source: the Study Team

The unit costs for each work items are calculated based mainly on bid prices of the past executed projects issued by MARH. The unit costs have been converted to the price level of June 2008 and the conversion rate applied to unit cost estimation is as follows (source: INS). The major items are selected to simplify the estimation of cost considering the requirement of master plan study level. The items and unit price applied to the cost estimate is shown in table below. Detailed background data are also attached in Data Book.

Adjustment of Unit Cost

Date for Calculation of Unit Price in Documents of Past Projects	Date of Prices to be Converted	Nos of Reference Project	Rate of Price Escalation	
June 2003		3	20.544 %	
June 2004	to June 2008	1	14.830 %	
November 2006		1	7.083 %	

Source: National Statistics Office in Tunisia

For the crosschecking purpose, the unit costs of selected work Items dominantly affecting to the project cost, such as clearing and grubbing, embankment, excavation, disposal of waste material, concrete, gabion mattress, stone pitching and fascine mattress are estimated by preparing breakdown based on market prices in Tunisia. The breakdown is attached in **Data E2 of the Data Book**.

E3.4 Direct Construction Cost

The summary of direct construction cost estimated based on the work quantities and unit costs is shown in the table below:

		-				
Work Item			Zone	(Uni	(Unit: 1,000 TND)	
WOIK Itelli	Zone D2	Zone D1	Zone U2	Zone U1	Zone M	
Earth works	43,244	49,203	54,093	15,427	2,352	
Concrete works	9,937	641	7,038	52	52	
Stone works	4,656	5,524	7,160	1,182	28	
Other major works	4,273	1,466	3,553	7	7	
Metal Works	229	128	90	2	2	
Miscellaneous	6,234	5,996	7,193	1,667	244	
Total	68,572	65,958	79,127	18,337	2,685	
Total of all zones						

Summary of Direct Construction Cost

Source: the Study Team

Work quantities and direct construction costs of each zone is shown in attached **Tables E3.4.1 to E3.4.5**.

Using the costs breakdown of excavation, embankment, stone pitching and concrete, a rough estimation on the ratio of foreign and local currency portions is made. Following proportion between foreign and local currency portions is applied in the current Study:

Zone	Proportion				
Zone	Foreign currency	Local currency			
D2	0.40	0.60			
D1	0.45	0.55			
U2	0.45	0.55			
U1	0.50	0.50			
М	0.50	0.50			

Proportion of Foreign and Local Currency Portions

Source: the Study Team

E3.5 Land Acquisition Cost

The Mejerda River basin spreads over rich farming lands. The lands are greatly productive in agriculture. Mostly the farm land is developed almost up to the shoulder of river bank, which are provided with public irrigation facilities or private irrigation facilities.

According to the interview with CRDA Jendouba, 95% of land along the Mejerda River is possessed by private owners. The estimate of necessary area for land acquisition was made and then the associated cost was estimated on the premises that the lands are 100 % privately owned. Applied unit costs are obtained from interview at site or information from CRDA. The necessary area of land acquisition is shown in figure below. The total amount of land acquisition area is shown in the table below:

The price of land acquisition is assumed as follows based on the interviews with CRDAs:

Zone
D1

Μ

Work Item		Area subject to land acquisition (ha)							
work item	Zone D2	Zone D1	Zone U2	Zone U1	Zone M				
Mejerda River improvement and	263.2	260.5	570.0	118.3					
El Mabtouh retarding basin	203.2	200.5	579.0	118.5					
Chaffrou River improvement	1.5								
Lahmar River improvement		9.3							
Siliana River improvement									
Khalled River improvement									
Kasseb River improvement			18.2						
Bou Heurtma River improvement			35.8						
Tessa River improvement			25.4						
Mellegue River improvement					36.7				
Bou Salem Bypass			48.5						
Mejez El Bab Bypass		32.8							
Total Area (ha)	264.7	302.6	706.9	118.3	36.7				
Unit Price of Land (TND/ha)	35,000	22,000	18,000	18,000	18,000				
Total Cost for Land Acquisition	9,264,500	6,657,200	12,724,200	2,129,400	660,600				

Land Acquisition Cost

Source: the Study Team

CHAPTER E4 MAINTENANCE WORKS OF RIVER CHANNEL

In order to conduct proper maintenance of the Mejerda River, grubbing the roots of Tamarix in all stretch at the high water channel between the levee except around the shoulder portion of river bank will be quite crucial. A manner of the grubbing shall be appropriately applied. In general, where the roots of Tamarix are removed, the growth of young Tamarix thereafter is relatively detained. For the purpose of keeping ideal condition of river channel, the regular maintenance activities to clean the river channel are very important. When Tamarix grows up to 3.0 m to 4.0 m in height with trunks of 2 to 3 cm or more in diameter, the portable grass cutter won't be applicable anymore and the cost of removal of Tamarix becomes considerably high.

Combination of following two maintenance methods is recommended so as to keep the river channel in good condition within an affordable budget. The necessary range to be cleaned in the river section is shown in a sketch as below:

Required range for Clearing and Grubbing of Tamarix

(1) Annual maintenance work

Vegetation in the channel shall be cleared by using a portable grass cutter. This is manual work. No heavy equipment is needed. The cut vegetation is just wasted in the site. The area where clearing is required shall be selected based on the rate of growth of vegetation. Some of lands might be still kept as they are with bare surface, which are not subject to clearing soon. Thus, the area to be cleared within one year is assumed to be 50 % of all areas. The unit cost of this wok is estimated to be 0.07 TND/m^2 .

(2) 5-year periodical maintenance work

This work needs heavy equipment to extract the roots. Even the annual maintenance is carried out, the Tamarix might be left grown in overlooked areas. If the Tamarix continues to grow, maintenance of river channel becomes more difficult year by year and the maintenance schedule might deteriorate eventually. The bulldozer with a rake or a ripper, an excavator is to be applied to this work. As long as the annual maintenance is regularly carried out, the target areas of this work is limited and it is assumed that 20 % of the annual maintenance area is probably enough for this work. The unit cost of this work is estimated to be 0.267 TND/m^2 .

The total maintenance cost for grubbing/clearing of river channel is estimated as shown in the table below:

	Total	Annual maintenance			Periodical maintenance ⁽¹			
Zone	area (m²)	Target area $(m^2)^{(2)}$	Unit rate (TND/m ²)	Amount (TND x1,000)	Target area $(m^2)^{(3)}$	Unit rate (TND/m ²)	Amount (TND 1,000) ⁽⁴	
U1	294063	147032	0.070	10.3	29,406	0.267	7.9	
U2	6827696	3413848	0.070	239.0	682,770	0.267	182.3	
М	36300	18150	0.070	1.3	3,630	0.267	1.0	
D1	4230650	2115325	0.070	148.1	423,065	0.267	113.0	
D2	3871191	1935596	0.070	135.5	387,119	0.267	103.4	
	Total	7629951		534.1			407.4	
Note:	:: (1, Assumed once in every 5 years Source: the Study Team						: the Study Team	

(1, Assumed once in every 5 years
(2, Assumed 50% of total area
(3, Assumed 20% of target area for annual maintenance
(4, Incremental cost to annual maintenance

Tables

Na	Work More	Description	T1	Orrentiter	То	tal
190.	work item	Description	Umt	Quantity	Unit price (TND)	Amount (TND)
	EARTH WORKS					
A1	Clearing and grubbing (Dense bush)	with average hauling distance of 1.00 km	m ²	1,152,387	2.267	2,612,462
A2	Clearing and grubbing (Thin bush)	with average hauling distance of 1.00 km	m ²	768,258	1.491	1,145,473
A3	Stripping	with average hauling distance of 1.00 km	m ²	1,950,546	0.267	520,796
A4	Excavation for river channel, common soil	with average hauling distance of 0.50 km	m ³	9,216,281	2.300	21,197,446
A5	Excavation for river channel, indurated	with average hauling distance of 0.50 km	m ³	659,047	3.840	2,530,741
A6	Excavation for river channel, rock	with average hauling distance of 0.50 km	m	164,762	8.180	1,347,752
A7	Excavation for Bypass channel, common soil	with average hauling distance of 1.00 km	m		2.414	251 0 12
A8	Excavation for structures		m ³	98,308	3.580	351,943
A9	Embankment	with average hauling distance of 2.00 km	m ³	160,740	3.759	604,222
A10	Embankment	Directly from excavation site	m ³	1,5/4,660	2.039	3,210,732
AII	Backfill to structures w/o haul		m ⁵	/6,450	4.160	318,032
A12	Gravel metalling for inspection roads		m ³	10.000	27.310	4 770
A13	Disposal of avapuated materials	Directly from execution site	3	1 577 286	0.477	4,770
A14	Disposal of excevated materials	with average heating distance of 2.00 km	3	7 281 002	0.230	0.004.822
AIS	Disposal of excavated materials	with average nauning distance of 2.00 km	m	7,581,002	1.220	9,004,822
	CONCRETE WORKS				Subtotai	45,245,512
B1	Lean concrete (32/10)	0.1 m ² of form included	m ³	1 250	82 000	102 483
B2	Concrete Type A (63/17) Plain concrete	0.5 m2 of form included	m ³	2 580	114 000	294 171
B3	Concrete Type B (32/26) Reinforced concrete	2.5 m2 of form included	m ³	24,500	173 545	4 184 994
B4	Concrete Type C (16/26) Reinforced concrete	4.0 m2 of form included	m ³	1 688	215 846	364 380
B5	Reinforcement - plain round bar		kg	1,000	1.791	501,500
B6	Reinforcement - deformed bar		kg	2.131.758	1.791	3.817.978
B7	Stone masonry Type A, with 1:3 mortar		m ³	15.554	75.386	1.172.562
				-)	Subtotal	9,936,570
	STONE WORKS					
C1	Gabion mattress		m ³	9,494	94.225	894,525
C2	Stone pitching (Rough finishing)		m ³	36,528	26.822	979,744
C3	Stone pitching (Fine finishing)		m ³	10,000	42.862	428,620
C4	Fascine mattress		m^2	72,000	17.907	1,289,304
C5	Cobble stone fill		m^3	8,064	16.360	131,927
C6	Graded sand and gravel filter		m ³	21,833	16.360	357,185
C7	Demolition and disposal of existing masonry and cond	crete	m^3	2,008	155.720	312,686
C8	Asphalt concrete		m^3	1,050	250.000	262,500
					Subtotal	4,656,491
	OTHER MAJOR WORKS					
D1	Prestressed concrete beam L=30m		Unit	40	26,300.000	1,052,000
D2	Prestressed concrete beam L=25m		Unit	60	20,300.000	1,218,000
D3	Prestressed concrete beam L=20m		Unit	20	12,700.000	254,000
D4	Cast-in place concrete pile with steel pipe pile casing		Unit	140	6,900.000	966,000
D5	Steel sheet pile (Permanent cutoff)		m ²	6,500	46.610	302,965
D6	Heightening and removal of existing railway		m	1,200	400.000	480,000
					Subtotal	4,272,965
	Metal Works					
E1	Slide gate (Manual operation hoist), Max size $W = 1.5$	50m, H = 1.50m	kg	34,529	4.680	161,596
E2	Slide gate/Roller gate (Electric driven hoist), larger th	an W = $2.00m$, H = $2.00m$	kg	10,800	6.240	67,392
E3	Other metal works		kg		3.230	·
					Subtotal	228,988
	<u>Miscellaneous</u>					
F1	Restoration of affected existing structures, etc.		%	3.000	62,338,525.309	1,870,156
F2	Miscellaneous works such as drainage crossing, inspe-	ction road, Accessories of bridge, Sod facing etc.	%	7.000	62,338,525.309	4,363,697
					Subtotal	6,233,853

Total of Direct Construction Cost of Zone D2 68,572,378

Table E3.4.2 Quantity and Direct Construction Cost of Zone D1

No	Work Item	Description	Unit	Quantity	Tot	al
110.		Description	om	Quantity	Unit price (TND)	Amount (TND)
	EARTH WORKS		2			
AI	Clearing and grubbing (Dense bush)	with average hauling distance of 1.00 km	m ²	1,259,835	2.267	2,856,046
A2	Clearing and grubbing (Thin bush)	with average hauling distance of 1.00 km	m ²	855,490	1.491	1,2/5,536
A3		with average hauling distance of 1.00 km	m ²	2,115,325	0.267	564,792
A4	Excavation for river channel, common soli	with average hauling distance of 0.50 km	m [°]	8,489,729	2.300	19,526,376
AS	Excavation for river channel, indurated	with average hauling distance of 0.50 km	m	/54,643	3.840	2,897,827
A6	Excavation for fiver channel, rock	with average hauling distance of 0.50 km	m ³	188,001	8.180	1,543,244
A/	Excavation for Bypass channel, common son	with average nauning distance of 1.00 km	3	2,047,844	2.414	0,391,895
A8	Excavation for structures	with success have list a distance of 2,00 how	3	40,200	3.580	143,916
A9	Embankment	Directly from exception site	m 	25,800	2 020	90,982
A10	Backfill to structures w/o baul	Directly noin excavation site	m m ³	14 950	4 160	62 192
A12	Gravel matelling for inspection roads		m 	07 500	27.210	2 662 725
A12	One way having distance per 1.00 km		m ³	97,300	0.477	2,002,723
A13	Disposal of avapuated materials	Directly from exceptation site	m 	4 400 080	0.477	1 100 020
A14	Disposal of excavated materials	with average bauling distance of 2.00 km	m 	6 888 346	1 220	8 402 782
AIJ	Disposal of excavated materials	with average nauning distance of 2.00 km	m	0,000,340	1.220 Subtotal	40 202 616
	CONCRETE WORKS				Subiotai	49,202,010
R1	Lean concrete (32/10)	0.1 m ² of form included	m ³		82 000	
B2	Concrete Type A (63/17) Plain concrete	0.5 m2 of form included	m ³	1 408	114.000	160 494
B2	Concrete Type B (32/26) Reinforced concrete	2.5 m2 of form included	m ³	11 519	173 545	1 998 978
B4	Concrete Type C $(16/26)$, Reinforced concrete	4.0 m ² of form included	m ³	855	215 846	1,558,578
B5	Reinforcement - plain round har		hr ko	055	1 791	101,010
	Reinforcement - deformed bar		ka	724 240	1 791	1 297 114
B7	Stone masonry Type A with 1:3 mortar		m ³	721,210	75 386	1,297,111
					Subtotal	3.641.134
	STONE WORKS					-,,
C1	Gabion mattress		m ³	11,226	94.225	1,057,770
C2	Stone pitching (Rough finishing)		m ³	63,738	26.822	1,709,567
C3	Stone pitching (Fine finishing)		m ³	10,000	42.862	428,620
C4	Fascine mattress		m ²	81,000	17.907	1,450,467
C5	Cobble stone fill		m ³		16.360	
C6	Graded sand and gravel filter		m ³	6,075	16.360	99,387
C7	Demolition and disposal of existing masonry and con	crete	m ³	5,000	155.720	778,600
C8	Asphalt concrete		m ³		250.000	
					Subtotal	5,524,411
	OTHER MAJOR WORKS					
D1	Prestressed concrete beam L=30m		Unit	24	26,300.000	631,200
D2	Prestressed concrete beam L=25m		Unit	24	20,300.000	487,200
D3	Prestressed concrete beam L=20m		Unit		12,700.000	
D4	Cast-in place concrete pile with steel pipe pile casing		Unit	30	6,900.000	207,000
D5	Steel sheet pile (Permanent cutoff)		m^2	3,010	46.610	140,296
D6	Heightening and removal of existing railway		m		400.000	
					Subtotal	1,465,696
	Metal Works					
E1	Slide gate (Manual operation hoist), Max size W = 1.	50m, H = 1.50m	kg	24,710	4.680	115,643
E2	Slide gate/Roller gate (Electric driven hoist), larger th	an W = 2.00m, H = 2.00m	kg	2,000	6.240	12,480
E3	Other metal works		kg		3.230	
					Subtotal	128,123
	Miscellaneous					
F1	Restoration of affected existing structures, etc.		%	3.000	59,961,979.641	1,798,859
F2	Miscellaneous works such as drainage crossing, inspe-	ection road, Accessories of bridge, Sod facing etc	. %	7.000	59,961,979.641	4,197,339
					Subtotal	5,996,198

Total of Direct Construction Cost of Zone D1 65,958,178

Table E3.4.3 Quantity and Direct Construction Cost of Zone U2

No	Work Itom	Description	T	Orrestites	Total	
190.	work item	Description	Umt	Quantity	Unit price (TND)	Amount (TND)
	EARTH WORKS					
A1	Clearing and grubbing (Dense bush)	with average hauling distance of 1.00 km	m ²	1,847,132	2.267	4,187,449
A2	Clearing and grubbing (Thin bush)	with average hauling distance of 1.00 km	m ²	1,230,755	1.491	1,835,056
A3	Stripping	with average hauling distance of 1.00 km	m ²	3,562,887	0.267	951,291
A4	Excavation for river channel, common soil	with average hauling distance of 0.50 km	m ³	8,628,281	2.300	19,845,045
A5	Excavation for river channel, indurated	with average hauling distance of 0.50 km	m ³	766,216	3.840	2,942,269
A6	Excavation for river channel, rock	with average hauling distance of 0.50 km	m ³	191,554	8.180	1,566,912
A7	Excavation for Bypass channel, common soil	with average hauling distance of 1.00 km	m^3	3,205,040	2.414	7,736,967
A8	Excavation for structures		m^3	57,400	3.580	205,492
A9	Embankment	with average hauling distance of 2.00 km	m^3	556,288	3.759	2,091,085
A10	Embankment	Directly from excavation site	m ³	2,838,939	2.039	5,788,597
A11	Backfill to structures w/o haul		m ³	17,220	4.160	71,635
A12	Gravel metalling for inspection roads		m ³		27.310	
A13	One-way hauling distance per 1.00 km		m ³	1,000,000	0.477	477,000
A14	Disposal of excavated materials	Directly from excavation site	m ³	4,313,835	0.250	1,078,459
A15	Disposal of excavated materials	with average hauling distance of 2.00 km	m ³	4,356,937	1.220	5,315,463
					Subtotal	54,092,719
	CONCRETE WORKS					
B1	Lean concrete (32/10)	0.1 m2 of form included	m ³	422	82.000	34,612
B2	Concrete Type A (63/17), Plain concrete	0.5 m2 of form included	m ³	4,422	114.000	504,097
B3	Concrete Type B (32/26), Reinforced concrete	2.5 m2 of form included	m ³	18,554	173.545	3,219,954
B4	Concrete Type C (16/26), Reinforced concrete	4.0 m2 of form included	m ³	544	215.846	117,420
B5	Reinforcement - plain round bar		kg		1.791	
B6	Reinforcement - deformed bar		kg	1.441.880	1.791	2.582.407
B7	Stone masonry Type A. with 1:3 mortar		m ³	7.686	75.386	579.417
				.,	Subtotal	7.037.907
	STONE WORKS					.,,.
C1	Gabion mattress		m ³	18.445	94.225	1.737.980
C2	Stone pitching (Rough finishing)		m ³	86,705	26.822	2,325,602
C3	Stone pitching (Fine finishing)		m ³	16.451	42.862	705.131
C4	Fascine mattress		m ²	99.000	17.907	1.772.793
C5	Cobble stone fill		m ³	,	16.360	,,
C6	Graded sand and gravel filter		m ³	28.311	16.360	463.161
C7	Demolition and disposal of existing masonry and cor	crete	m ³	1.000	155.720	155.720
C8	Asphalt concrete		m ³	-,	250,000	
			m		Subtotal	7 160 387
	OTHER MAJOR WORKS				Buotoun	,,100,007
D1	Prestressed concrete beam L=30m		Unit	56	26 300 000	1 472 800
D2	Prestressed concrete beam L=25m		Unit	8	20,300.000	162 400
D3	Prestressed concrete beam L=20m		Unit	8	12 700 000	102,400
D4	Cast_in place concrete pile with steel pipe pile casing		Unit	72	6 900 000	496 800
D4	Steal sheet nile (Permanent cutoff)	·	m ²	2 560	46.610	110 322
D6	Heightening and removal of existing reilway		m	2,500	400,000	1 200 000
D0	Theightening and tenioval of existing failway		III	3,000	Subtotal	3 552 022
	Matel Wester				Subiotai	5,552,922
E1	<u>Metar works</u>	50m H 150m	1	10 200	4 (90	20.956
EI	Side gate (Poller gate (Electric driven hoist), larger than $W = 2.00m$ U = 2.00m			19,200	4.680	89,856
E2	Side gate/Roller gate (Electric driven holst), larger th	an w = 2.00m, H = 2.00m	ĸg		6.240	
E3	Other metal works		кg		3.230	00.054
	M [*] and the second				Subtotal	89,856
F 1	Miscellaneous		0/	2.000	71 022 700 414	0.150.01.1
FI	Restoration of affected existing structures, etc.		%	3.000	/1,933,/90.416	2,158,014
F2	Miscellaneous works such as drainage crossing, insp	ection road, Accessories of bridge, Sod facing etc	. %	7.000	/1,933,790.416	5,035,365
					Subtotal	7,193,379

Total of Direct Construction Cost of Zone U2 79,127,169
Table E3.4.4 Quantity and Direct Construction Cost of Zone U1

No.	Work Item	Description	Unit	Ouantity	Tot	al
	EADTH WODEC	x • •		C ¹¹	Unit price (TND)	Amount (TND)
A 1	EARTH WORKS	with avarage having distance of 1.00 km	2	20 406	2 267	
	Clearing and grubbing (Dense bush)	with average hauling distance of 1.00 km	m m ²	58 813	1 491	87 690
A3	Strinning	with average hauling distance of 1.00 km	m ²	205 844	0.267	54 960
A4	Excavation for river channel, common soil	with average hauling distance of 0.50 km	m ³	3 810 168	2 300	8 763 386
A5	Excavation for river channel, indurated	with average hauling distance of 0.50 km	m ³	338 682	3 840	1 300 537
A6	Excavation for river channel, induitied	with average hauling distance of 0.50 km	m ³	84 670	8 180	692,604
A7	Excavation for Bypass channel, common soil	with average hauling distance of 1.00 km	m ³	01,070	2.414	0,2,001
A8	Excavation for structures		m ³	900	3.580	3.222
A9	Embankment	with average hauling distance of 2.00 km	m ³	8.780	3.759	33.004
A10	Embankment	Directly from excavation site	m ³	79,020	2.039	161,122
A11	Backfill to structures w/o haul		m ³	300	4.160	1,248
A12	Gravel metalling for inspection roads		m ³		27.310	
A13	One-way hauling distance per 1.00 km		m ³		0.477	
A14	Disposal of excavated materials	Directly from excavation site	m ³	831,500	0.250	207,875
A15	Disposal of excavated materials	with average hauling distance of 2.00 km	m ³	3,323,600	1.220	4,054,792
	1			- , ,	Subtotal	15,427,104
	CONCRETE WORKS					-, ., -
B1	Lean concrete (32/10)	0.1 m2 of form included	m ³		82.000	
B2	Concrete Type A (63/17), Plain concrete	0.5 m2 of form included	m ³		114.000	
B3	Concrete Type B (32/26), Reinforced concrete	2.5 m2 of form included	m ³	164	173.545	28,513
B4	Concrete Type C (16/26). Reinforced concrete	4.0 m2 of form included	m ³		215.846	
B5	Reinforcement - plain round bar		kg		1.791	
B6	Reinforcement - deformed bar		kg	13.144	1.791	23.540
B7	Stone masonry Type A. with 1:3 mortar		m ³		75.386	
					Subtotal	52,053
	STONE WORKS					
C1	Gabion mattress		m ³	162	94.225	15,264
C2	Stone pitching (Rough finishing)		m ³	5,469	26.822	146,700
C3	Stone pitching (Fine finishing)		m ³	5,000	42.862	214,310
C4	Fascine mattress		m ²	45,000	17.907	805,815
C5	Cobble stone fill		m ³		16.360	
C6	Graded sand and gravel filter		m ³		16.360	
C7	Demolition and disposal of existing masonry and cor	icrete	m ³		155.720	
C8	Asphalt concrete		m ³		250.000	
					Subtotal	1,182,089
	OTHER MAJOR WORKS					
D1	Prestressed concrete beam L=30m		Unit		26,300.000	
D2	Prestressed concrete beam L=25m		Unit		20,300.000	
D3	Prestressed concrete beam L=20m		Unit		12,700.000	
D4	Cast-in place concrete pile with steel pipe pile casing		Unit		6,900.000	
D5	Steel sheet pile (Permanent cutoff)		m ²	150	46.610	6,992
D6	Heightening and removal of existing railway		m		400.000	
					Subtotal	6,992
	Metal Works					
E1	Slide gate (Manual operation hoist), Max size W = 1.	50m, H = 1.50m	kg	390	4.680	1,825
E2	Slide gate/Roller gate (Electric driven hoist), larger th	han $W = 2.00m$, $H = 2.00m$	kg		6.240	
E3	Other metal works		kg		3.230	
					Subtotal	1,825
	Miscellaneous					
F1	Restoration of affected existing structures, etc.		%	3.000	16,670,063.083	500,102
F2	Miscellaneous works such as drainage crossing, insp	ection road, Accessories of bridge, Sod facing etc	c. %	7.000	16,670,063.083	1,166,904
					Subtotal	1,667,006

Total of Direct Construction Cost of Zone U1 18,337,069

Table E3.4.5 Quantity and Direct Construction Cost of Zone M

No	Work Item	Work Item Description		Quantity	Total	
110.	work item	Description	Um	Quantity	Unit price (TND)	Amount (TND)
	EARTH WORKS					
A1	Clearing and grubbing (Dense bush)	with average hauling distance of 1.00 km	m ²	11,000	2.267	24,937
A2	Clearing and grubbing (Thin bush)	with average hauling distance of 1.00 km	m ²	7,300	1.491	10,884
A3	Stripping	with average hauling distance of 1.00 km	m ²	18,000	0.267	4,806
A4	Excavation for river channel, common soil	with average hauling distance of 0.50 km	m³	575,550	2.300	1,323,765
A5	Excavation for river channel, indurated	with average hauling distance of 0.50 km	m ³	51,160	3.840	196,454
A6	Excavation for river channel, rock	with average hauling distance of 0.50 km	m ³	12,790	8.180	104,622
A7	Excavation for Bypass channel, common soil	with average hauling distance of 1.00 km	m ³		2.414	
A8	Excavation for structures		m³	15,100	3.580	54,058
A9	Embankment	with average hauling distance of 2.00 km	m ³	127,800	3.759	480,400
A10	Embankment	Directly from excavation site	m ³		2.039	
A11	Backfill to structures w/o haul		m ³	300	4.160	1,248
A12	Gravel metalling for inspection roads		m ³		27.310	
A13	One-way hauling distance per 1.00 km		m ³	102,340	0.477	48,816
A14	Disposal of excavated materials	Directly from excavation site	m ³	409,960	0.250	102,490
A15	Disposal of excavated materials	with average hauling distance of 2.00 km	m ³		1.220	
					Subtotal	2,352,481
	CONCRETE WORKS					
B1	Lean concrete (32/10)	0.1 m2 of form included	m ³		82.000	
B2	Concrete Type A (63/17), Plain concrete	0.5 m2 of form included	m ³		114.000	
B3	Concrete Type B (32/26), Reinforced concrete	2.5 m2 of form included	m ³	164	173.545	28,513
B4	Concrete Type C (16/26), Reinforced concrete	4.0 m2 of form included	m ³		215.846	
B5	Reinforcement - plain round bar		kg		1.791	
B6	Reinforcement - deformed bar		kg	13,144	1.791	23,540
B7	Stone masonry Type A, with 1:3 mortar		m ³		75.386	
					Subtotal	52,053
	STONE WORKS					
C1	Gabion mattress		m ³	162	94.225	15,264
C2	Stone pitching (Rough finishing)		m ³	469	26.822	12,590
C3	Stone pitching (Fine finishing)		m ³		42.862	
C4	Fascine mattress		m ²		17.907	
C5	Cobble stone fill		m ³		16.360	
C6	Graded sand and gravel filter		m^3		16.360	
C7	Demolition and disposal of existing masonry and con-	crete	m ³		155.720	
C8	Asphalt concrete		m ³		250.000	
					Subtotal	27,854
	OTHER MAJOR WORKS					
D1	Prestressed concrete beam L=30m		Unit		26,300.000	
D2	Prestressed concrete beam L=25m		Unit		20,300.000	
D3	Prestressed concrete beam L=20m		Unit		12,700.000	
D4	Cast-in place concrete pile with steel pipe pile casing		Unit		6,900.000	
D5	Steel sheet pile (Permanent cutoff)		m^2	150	46.610	6,992
D6	Heightening and removal of existing railway		m		400.000	
					Subtotal	6,992
	Metal Works					
E1	Slide gate (Manual operation hoist), Max size W = 1.	50m, H = 1.50m	kg	390	4.680	1,825
E2	Slide gate/Roller gate (Electric driven hoist), larger th	nan W = 2.00m, H = 2.00m	kg		6.240	
E3	Other metal works		kg		3.230	
					Subtotal	1,825
	Miscellaneous					
F1	Restoration of affected existing structures, etc.		%	3.000	2,441,204.904	73,236
F2	Miscellaneous works such as drainage crossing, inspe	ection road, Accessories of bridge, Sod facing etc.	%	7.000	2,441,204.904	170,884
					Subtotal	244,120
			a		4 677 M	A (05 345

Total of Direct Construction Cost of Zone M 2,685,325

Figures

EF-6

EF-7

Stop Log 400 300 1500 1000 700 1000 1000 3850 WL18.03 100 WL 16.05 17 V DWL 15.79 E) 15 79 EL15.29 FLOW Flow 813.2 10 0 790 Stone pitching 0.12.29 Mejerda River Perforated drain pipe 2421-24 1000 8239 1000 Concrete frome Inlet channel D.16.54 V7 DWL 15.79 Lo -0.1 9 1.01 Flow 0 1.20 1.2.0 1-1/2000 EI.10.30 0 EL 10934 10 6 END SLL SECTION OF OVERFLOW DIKE (X-X) 1200 1600 2000 cm 800 400 SCALE REPUBLIC OF TUNISIA MINISTRY OF ADRICUTURE AND WATER RESOURCES DEPARTMENT OF DAMS AND LARDE HYDRAULIC WORKS JAPAN INTERNATIONAL COOPERATION AGENCY THE STUDY ON INTEGRATED BASIN MANAGEMENT Figure E2.1.13 El Mabtouh Retarding Basin (Zone D2) FOCUSED ON FLOOD CONTROL IN MEJERDA RIVER Inlet Structure of Retarding Basin-Overflow Dike with Stop Log DRAWING TITLE EL MABTOUR RETARDING BASIN (ZONE 02) INLET STRUCTURE OF RETARDING BASIN - OVERFLOW DIKE WITH STOP LOG PROFILE SHEET NO. Profile NIPPON KOEL Co., LM.

Supporting Report F BASIN PRESERVATION

THE STUDY ON INTEGRATED BASIN MANAGEMENT FOCUSED ON FLOOD CONTROL IN MEJERDA RIVER IN THE REPUBLIC OF TUNISIA

FINAL REPORT

Supporting Report F : Basin Preservation

Table of Contents

Chapter I	71	INTRODUCTI	ON	•••••		••••••	•••••	••••••	. F1-1
Chapter I	72	SEDIMENT YI	IELD II	N THE BA	ASIN	•••••	••••••	••••••	. F2-1
Chapter I	73	CORRELATIONS	ON BE	TWEEN	SEDIMEN	NT YIEI	D AND	BASIN	. F3-1
F3.1	Sedi	iment Yield and I	Land Su	rface Slop	e				F3-1
F3.2	Sedi	iment Yield and I	Land Us	e					F3-2
F3.3	Imp	act of Riverbank	Failure	Erosion of	n Sediment	Yield		•••••	F3-2
Chapter I	74	MEASURES PRESERVATIO	ON ON	EROSI	ON CO	NTROL	FOR	BASIN	. F4-1

List of Tables

		Page
Table F2.1.1	Calculation of Denudation Rate	FT-1

List of Figures

		Page
Figure F2.1.1	Locations of Sub-catchments in Mejerda River Basin	FF-1

CHAPTER F1 INTRODUCTION

In Tunisia, surface soil erosion resulting from land destruction which is attributable to agricultural and grazing activities has caused not only long-term declination of crop productivity but also detrimental reservoir sedimentation in parallel with progression of natural resources degradation. Therefore, it is pressing to prepare a new national strategy for the sectors related to natural resources management, such as "effective water resources use", "forest and pasture lands" and "water and land conservation", during the period of 2002 to 2011 assigned for the Tenth and Eleventh National Development Plans.

Under such situation, the following are pointed out in the Mejerda River basin.

- (1) In the northwestern region, where Jendouba and Beja Governorates are located, over deforestation resulting from land reclamation for expansion of farming, forest grazing and disorderly lumbering through carbonization for domestic use and illegal business has led to acceleration of surface soil erosion and destruction of vegetation.
- (2) In the south areas of Le Kef and Siliana Governorates, mechanized large-scale farmlands and small-scale lands cultivated by peasants are coexisting, and most of the peasants have cultivated cereals leasing small lands on the steep slope of clayey soil. The cultivated slope lands are forced to be vulnerable to rain erosion and eventually subjected to serious gully erosion.

Such surface soil erosion has brought about sedimentation in rivers and reservoirs, causing significant decrease in flow capacity of river and water supply capacity of reservoir, as exemplified below:

(a) Decrease of flow capacity in rivers

At the national road bridge in the Bou Salem City, crossing the Mejerda mainstream upstream of the Sidi Salem Dam, the cross-sectional flow area (699 m^2) in the year 2000 was found to have decrease by 16% from the area (837 m^2) in the year 1969 owing to considerable sedimentation. In the Mejez El Bab City downstream of the Sidi Salem Dam, furthermore, the present flow capacity of the Mejerda River has been drastically reduced to about 200 m³/s, which was estimated at more than 1,000 m³/s before the construction of the dam in 1981. In addition, it is reported that the flow capacity at the Bizerte Bridge in the Mejerda lower reaches has decreased to as much as 45%, compared to that in the 1980s.

(b) Reservoir sedimentation

Sedimentation has been in progress at the existing reservoirs in the Mejerda River basin with terrible high rates, as shown below.

Name of reservoir	Catchment area (km ²)	Initial storage volume at NWL: A (mil. m ³)	Sedimentation rate: B (mil. m ³ /year)	A/B (years)
Sidi Salem	18,191	762	4.5	169
Mellegue	10,309	182	2.8	65
Siliana	1,040	70	1.1	64

In the case of the Sidi Salem Dam, the initial storage volume is feared to be filled with sediment to 60% in 100 years after construction and the storage volumes at other two dams to be filled with sedimentation completely in 60 to 65 years.

In view of the above sedimentation related problems, some measures of erosion control are indispensable for basin preservation so as to realize sustainable use of rivers and reservoirs by properly preserving their capacities in the Mejerda River basin.

CHAPTER F2 SEDIMENT YIELD IN THE BASIN

In order to quantitatively grasp the current progression of erosion in the Mejerda River basin, the sediment yields in several sub-basins are examined based on reservoir sediment data at seven (7) dams reported in "Le Transport Solide des Oueds en Tunisie, Apr 2001". These dams are the Sidi Salem, Mellegue, Bou Heurtma, Ben Metir, Kasseb, Lakhmes, and Siliana Dams, which have data on sediment volumes regularly surveyed in the reservoirs. Their locations are shown in **Figure F2.1.1**.

The sediment yield in a sub-basin at a dam is calculated by adding the sediment trapped in the reservoir and the sediment released from the dam.

 $\begin{array}{rcl} Md = (1 - v/100) \ x \ Md' \ (M \ m^3/y) & (Eq.-F2.1) \\ where, & Md & = & net \ annual \ sediment \ volume \ trapped \ in \ reservoir \ (M \ m^3/y) \\ & v & = & porosity \ of \ sediment \ in \ reservoir \ (35\%) \\ & Md' & = & annual \ sediment \ volume \ measured \ in \ reservoir \ (M \ m^3/y) \\ \end{array}$

(2) Sediment released from dam

The sediment released from a dam is estimated based on the water released from the dam during desilting operation and also floods by using the following equation:

$$\begin{aligned} Ms &= Ma \ x \ (Wm-Ww)/(Ws-Ww) & (Eq.-F2.2) \\ where, & Ms &= annual sediment volume released from the dam (M m3/y) \\ Ma &= annual amount of water released from the dam (M m3/y) \\ Wm &= unit weight of water released from the dam (t/ m3) \\ Ww &= unit weight of water (1 t/ m3) \\ Ws &= unit weight of sediment material (2.65 t/ m3) \end{aligned}$$

However, Wm is usually nearly equal to 1 t/m^3 according to the actually measured records on dam released water, as exemplified below, and therefore this study applies Ms=0 since it is considered that the sediment released from the dam is negligibly small, compared to Md, based on the above equation (Eq.-F2.2).

Dam Name	Nibutani Dam	Miwa Dam	Wonogiri Dam
	(Japan)	(Japan)	(Indonesia)
SS (mg/L, Max)	5,930*	16,900*	1,524
Wm (t/m^3)	1.00	1.01	1.00

Note: * maximum SS during past serious flood

The sediment yield in a sub-basin at a dam is converted to a denudation rate using the following equation:

Denudation Rate (mm/yr) = M / As $\times 10^3$ (Eq-F2.3) where, M = annual sediment yield in sub-basin (M m³/y) = Md + Ms - Mi Mi = annual sediment volume released from the dam(s) located upstream of the dam (M m³/y) As = catchment area of the dam (km²)

Although there are several dams located upstream of the Sidi Salem, Bou Heurtma and Siliana Dams as shown below, Mi is to be 0 since the sediment released from a dam is negligibly small as mentioned above.

Dam	Upstream dams
Sidi Salem	Mellegue, Bou Heurtma, Kasseb
Bou Heurtma	Ben Metir
Siliana	Lakhmes

The computation results of denudation rate in the sub-basins at the 7 dams are compiled as referred to in **Table F2.1.1** and summarized below:

	Dam	Catchment area (km ²)	Denudation rate (mm/yr)
1	Sidi Salem	18,191	0.2
2	Mellegue	10,309	0.2
3	Bou Heurtma	390	0.2
5	Ben Metir	103	0.8
6	Kasseb	101	1.0
7	Lekhmes	127	0.2
8	Siliana	1,040	0.4

CHAPTER F3 CORRELATION BETWEEN SEDIMENT YIELD AND BASIN CONDITIONS

The correlation between the sediment yield and basin conditions is examined selecting three conditions of the basin, such as distribution of land surface slope, land use and riverbank erosion, because the data on the conditions are available in this study.

It is noted that the drainage basins of the Sidi Salem and Mellegue Dams are dropped from clarifying the correlation of sediment yield with land surface slope and land use because of their huge catchment areas which might be unsuitable for specifying the basin conditions.

F3.1 Sediment Yield and Land Surface Slope

The distribution of land surface slope in the sub-basins of 5 dams based on GIS data is as shown in the next two figures. From both figures the following are found.

- (a) The trend in distribution of land surface slope in the basins of three dams, namely the Bou Heurtma, Ben Metir and the Kasseb Dams located in the north of the Mejerda River, is different from that in the basins of two dams of Lakhmes and Silian Dams in the south of the Mejerd River. In other words, the basins in the north reveals a trend for the percentage of steep slope land to be higher, while that of moderate slope land is higher in the southern basins.
- (b) The next figure presents the relation of the denudation rates with percentages of lands having slopes of less than 1.7° and more than 14.0°. There is a trend shown in the figure that the higher the percentage of lands with slopes of less than 1.7° are, the smaller the denudation rate is, and on the contrary the higher the percentage of lands with slopes of

more than 14.0°, the higher the denudation rate is, which means that the denudation rate in the basin having a higher percentage of steep slope lands tends to become higher.

F3.2 Sediment Yield and Land Use

The next figure shows the distribution ratios of land use which is classified into four categories of forest land, agricultural land, naked land and urbanized area. As illustrated in the figure, ninety five percent of the drainage basin is occupied at each dam by forest and agricultural lands. The areas of forest and agricultural land with surface slopes of less than 1.7° and more than 14.0° are shown in the next figure, which manifests the following.

(a) Comparing the basins of the Ben Metir and Kasseb Dams in the north of the Mejerda River, the Kasseb basin has more agricultural lands in the " $14.0^{\circ} < \theta$ " areas than those of the Ben Metir Dam and a higher denudation rate of 1.0 (mm/y) than 0.8 (mm/y) of Ben

Metir Dam. Furthermore, in comparison of the denudation rates of 0.2 (mm/y) and 0.4 (m/y) in the basins of the Lakhmes and Siliana Dams respectively, the basin with a higher percentage of agricultural lands in the "14.0° < θ " areas has a higher denudation rate. The findings suggest that some measures for erosion control are to be taken in the case where steep slope lands are used as agricultural land.

- (b) Although most of the Ben Metir Dam basin is occupied by forest lands, the basin has a higher denudation rate of 0.8 (mm/y), compured to 0.2 (mm/y) of the Bou Heurtma Dam basin wherein rather wide areas are used as agricultural land. This suggests that some measures for erosion control are to be taken even in the case of forest land, if the low layer vegitation expanding on and near the ground is poor.
- (c) In case of the basoins of the Lakhmes and Siliana Dams, both are mostly occupid by agricultural lands in the " $\theta < 1.7$ °" areas. However, the Siliana Dam basin in which agricultural lands widely expand in the " $\theta < 1.7$ °" areas has a higher denudation rate of 0.4 (mm/y) than 0.2 (mm/y) of the Lakhmes Dam basin and then it is considered that some measures are to be taken for erosion control also in the case of the agricultural lands in moderate slope areas.

F3.3 Impact of Riverbank Failure/Erosion on Sediment Yield

The riverbank failure and erosion particularly during floods also affects the sediment yield to some extent. In the field reconnaissance of the Majerda River basin it was found through ocular inspection that in the most stretches of the Majerda mainstream and its tributaries the riverbank materials are clayey and silty soil, and hence the estimation of sediment volume due to the riverbank failure/erosion is made by applying 1:08 to 1:1.0 as

a stable slope of the riverbank. In other words, the amount of sediment produced in the river is computed on the assumption that the portions above the stable slope fail and/or are eroded, as illustrated in the right figure.

On the above assumption, the total

sediment volume produced in the river is computed at 0.314 Mm^3 (= 0.19 Mm^3 from the main stream + 0.124 Mm^3 from major 7 tributaries) and the sediment volume is compared to the reservoir sediment at the Sidi Salem Dam, as tabulated below:

Time of reservoir sediment survey at Sidi Salem	June 1987	Aug. 1989	Mar. 1991	Oct. 1998
Dam				
Sediment volume in Sidi Salem reservoir (Mm ³)	30.6	47.0	52.0	87.5
Period of sedimentation at Sidi Salem reservoir: A	6.0	8.0	10.0	17.0
(yrs)				
Annual sediment volume at Sidi Salem reservoir: B	5.1	5.9	5.2	5.1
(Mm ³ /yr)				
Annual sediment volume from riverbank (Mm ³ /yr)	0.052	0.039	0.031	0.018
(C)*				
Ratio (= C/B×100) (%)	1.0	0.7	0.6	0.4

Note: $C = 0.314 (Mm^3)/A (years)$

The ratio (=C/B) in the above table shows the percentage of sediment due to the riverbank failure/erosion to the sediment trapped in the Sidi Salem reservoir, on the assumption that the total sediment of 0.314 Mm^3 from the riverbank is produced in each period (A years).

As shown in the table, the ratios are as small as less than 1 %, which means that the impact of the sediment due to the riverbank failure/erosion on sedimentation in the Sidi Salem Reservoir would be rather small. Therefore, the measures are considered to be more important to minimize the sediment yield due to rain erosion in the basin.

CHAPTER F4 MEASURES OF EROSION CONTROL FOR BASIN PRESERVATON

The impacts of surface soil erosion recognized in the Mejerda River basin are characterized by the following points, as discussed in Chapter F3:

- (a) The higher percentage of steep slope lands a basin has, the more sediment yield has been experienced by the basin; and
- (b) There is a need to take measures of erosion control in the following lands:
 - Forest lands wherein the low lying vegetation on and near the ground is poor, and
 - Farmlands with steep and even moderate slopes.

In due consideration of (a) and (b) above, the following land use classifications are selected as the objective areas of erosion control, particularly in the light of susceptibility to rain erosion,

Land category	Land use classification
(a) Forest	1) Deforested/waste land
	2) Grazing land
(b) Farmland	1) Cereal field
	2) Fallow
	3) Olive groves
	4) Arboricultural land

Furthermore, the measures applicable to the selected land use classifications for erosion control are examined, on the premise that the measures are to be taken under implementation of a proper management plan/system of forest and farmland resources to prevent sediment related problems, such as disorderly reclamation of land and illegal lumbering.

The measures are identified as compiled below, placing great importance on:

- 1) The measures have a superior durability against erosive action,
- 2) The measures are technically and economically suited also to extensive lands, and
- 3) The works of the measures are easily realized.

Land category	Land use classification	Applicable Measures
Forest	Deforested/waste land	reforestation
	Grazing land	Materialization of proper management program
		on grazing in forest under closed coordination
		among governmental organizations concerned, the
		people and other stakeholders including NGOs
Farmland	Cereal field and fallow	adoption of crop rotation method under horizontal
		land zoning system and construction of dray stone
		wall/sill along contour lines aiming to moderate
		steep slope surfaces
	Olive groves and	introduction of ground cover to improve poor low
	arboricultural land	lying vegetation

The table below shows the areas of the said classifications distributed in the Mejerda River basin (only in Tunisia territory), which are tentatively estimated based on the GIS data obtained in the Study.

Forest	Farmland		Tatal	
Deforested/waste land	Cereal field/fallow	Olive groves/arboricultural land	Total	
500 (ha)	774,695 (ha)	117,811 (ha)	893,006 (ha)	

The cereal field and fallow has a large occupation in the Mejerda River basin and hence it is essential to formulate an erosion control scheme giving careful attention to cereal field and fallow.

Tables

Table F2.1.1 Calculation of Denudation Rate

	Name of Dam	ne of Dam Sidi Salem						
	Capacity at Normal Water Level (Mm ³)	814.0	Date of Measure	Jun-87	Aug-89	Mar-91	Oct-98	
1	Catchment Area As(km ²)	18191	Period of Time t(year)	6.0	8.0	10.0	17.0	
	Date of Service Start	1981	Sediment Volume (Mm ³)	30.6	47.0	52.0	87.5	
			Annual Sediment Volume Md'(Mm ³ /yr)	5.1	5.9	5.2	5.1	
			Annual Net Swdiment Volume Md(Mm ³ /yr)	3.3	3.8	3.4	3.3	
	Data Source	12	Denudation Rate (mm/yr)	0.2	0.2	0.2	0.2	
	Name of Dam	Mellegue						
	Capacity at Normal Water Level (Mm ³)	270.0	Date of Measure	Jun-75	May-80	Dec-91	Jun-00	
	Catchment Area As(km ²)	10309	Period of Time t(year)	21.0	26.0	37.5	46.0	
2	Date of Service Start	1954	Sediment Volume (Mm ³)	54.5	90.0	142.0	179.0	
			Annual Sediment Volume Md'(Mm ³ /yr)	2.6	3.5	3.8	3.9	
			Annual Net Swdiment Volume Md(Mm ³ /yr)	1.7	2.3	2.5	2.5	
	Data Source ①②		Denudation Rate (mm/yr)	0.2	0.2	0.2	0.2	
	Name of Dam	Bou Heurtm		14 00				
	Capacity at Normal Water Level (Mm [°])	117.5		Mar-93				
2	Catchment Area As(km ⁻)	390	Period of Time t(year)	16.0				
3	Date of Service Start	1976	Sediment Volume (Mm [°])	2.0				
			Annual Sediment Volume Md'(Mm [*] /yr)	0.1				
			Annual Net Swdiment Volume Md(Mm [×] /yr)	0.1				
	Data Source	Dan Matir	Denudation Rate (mm/yr)	0.2				
		62.0	Data of Magguro	1096				
4	Capacity at Normal Water Level (Mm)	102.0	Date of Measure	1900				
	Date of Sonvice Start	105/	Cardianant Values (Mas ³)	32.0				
	Date of Service Start	1554	Appuel Sediment Volume (Mm)	4.0				
			Annual Sediment Volume Mid (Mm / yr)	0.1				
	Data Source	12	Depudation Rate (mm/yr)	0.1				
	Name of Dam Kasseb							
	Capacity at Normal Water Level (Mm ³)	82.0	Date of Measure	1986				
	Catchment Area As(km ²)	101	Period of Time t(year)	18.0				
5	Date of Service Start	1968	Sediment Volume (Mm ³)	2.8				
		•	Annual Sediment Volume Md'(Mm ³ /vr)	0.2				
			Annual Net Swdiment Volume $Md(Mm^3/vr)$	0.1				
	Data Source	12	Denudation Rate (mm/yr)	1.0				
	Name of Dam Lakhmes							
	Capacity at Normal Water Level (Mm ³)	8	Date of Measure	1975	1991	Jun-00		
	Catchment Area As(km ²)	127	Period of Time t(year)	9.0	25.0	34.0		
6	Date of Service Start	Apr-66	Sediment Volume (Mm ³)	2.0	1.2	1.0		
			Annual Sediment Volume Md'(Mm³/yr)	0.2	0.0	0.0		
			Annual Net Swdiment Volume Md(Mm ³ /yr)	0.1	0.0	0.0		
	Data Source	12	Denudation Rate (mm/yr)	1.1	0.2	0.2		
	Name of Dam Siliana							
7	Capacity at Normal Water Level (Mm ³)	70.0	Date of Measure	May-94				
	Catchment Area As(km²)	1,040	Period of Time t(year)	7.0				
	Date of Service Start	Dec-87	Sediment Volume (Mm ³)	4.1				
			Annual Sediment Volume Md'(Mm³/yr)	0.6				
			Annual Net Swdiment Volume Md(Mm ³ /yr)	0.4				
	Data Source	(1)(2)	Denudation Rate (mm/yr)	0.4				

 Data Source

 ①Let Transport Solide des Oueds en Tunisie, Apr 2001 (The Strong Transportation of the Wadis in Tunisia, Apr 2001)

 ②Monthly data of dams

 Image: The original data are questionable.

Figures

Figure F2.1.1 Locations of Sub-catchments in Mejerda River Basin

Supporting Report G FFWS AND EVACUATION/ FLOOD FIGHTING

THE STUDY ON INTEGRATED BASIN MANAGEMENT FOCUSED ON FLOOD CONTROL IN MEJERDA RIVER IN THE REPUBLIC OF TUNISIA

FINAL REPORT

Supporting Report G: FFWS and Evacuation/Flood Fighting

Table of Contents

|--|

Chapter C	G1 INT	TRODUCTION	G1-1
Chapter C	52 FL	OOD FORECASTING AND WARNING SYSTEM	G2-1
G2 1	Identific	eations and Study of Problems / Issues on Current FFWS	G2-1
02.1	$G_{2,1,1}$	Overview of FEWS in Mejorda Diver Besin	G2 1
	$G_{2.1.1}$	Observation System	
	G2.1.2	Observation System	
	G2.1.3	Data Transmission System	G2-2
	G2.1.4	Analysis System	G2-2
	G2.1.5	Warning Dissemination System	G2-4
G2.2	Alternat	ive Plans for FFWS	
	G2.2.1	Overview of Basic Conditions for Flood Forecasting and Warning	G2 5
	\mathbf{C}	Bosnonsible Institutions for EEWS	02-5 C2 6
	02.2.2		
	G2.2.3	Recommended Plan for Observation System	G2-6
	G2.2.4	Recommended Plan for Data Transmission System	G2-10
	G2.2.5	Recommended Plan for Analysis System	G2-11
	G2.2.6	Recommended Plan for Warning Dissemination System	G2-13
	G2.2.7	Cost Estimate	G2-13
Chapter C	53 EV.	ACUATION / FLOOD FIGHTING SYSTEM	G3-1
G3.1	Identific	ations and Study of Problems / Issues on Current Evacuation / Flood	
	Fighting	System	G3-1
	G3.1.1	Institutional Arrangements	G3-1
	G3.1.2	Status of Existing Regional Disaster Management Plan	G3-3
	G3.1.3	Issues in Current Evacuation / Flood Fighting System	G3-4

G3.2	Alternat	ative Plans for Evacuation / Flood Fighting System		
	G3.2.1	Recommended Development and Improvement Plan for Evacuation /		
		Flood Fighting	G3-5	
	G3.2.2	Preparation of Evacuation Map	G3-7	

List of Tables

		Page
Table G2.1.1	List of Telemetry Gauging Stations in Mejerda River Basin	GT-1
Table G2.2.1	List of Stations Used for Analysis on Number of Rainfall Gauge	GT-2
Table G2.2.2	Error of Estimated Daily Rainfall	GT-3
Table G2.2.3	Cost Estimate for Improvement of FFWS in the Mejerda River Basin	GT-4

List of Figures

		Page
Figure G2.1.1	Overall FFWS in the Mejerda River Basin	.GF-1
Figure G2.1.2	Propagation Time for Mejerda River Basin	.GF-2
Figure G2.2.1	Proposed Additional Installation of Telemetric Gauging Stations	.GF-3
Figure G2.2.2	Relationship between the Number of Selected Stations and Correlation Coefficient	GF-4
Figure G2.2.3	Correlation between True Values (Ro) and Estimated Values (Rs) of Basin Average Rainfall	GF-5
Figure G3.2.1	Evacuation Map for Jedeida Delegation	GF-6

CHAPTER G1 INTRODUCTION

In the Mejerda River basin, it is basically expected that floods are controlled by all possible structural measures. However, flood is a natural phenomenon, and hence extraordinary floods exceeding a planning/design level may probably occur. A flood forecasting and warning system (FFWS) and an evacuation / flood fighting system are categorized into effective non-structural measures to mitigate the loss of life and property in vulnerable areas to flooding, in particular the extraordinary floods.

In this study, alternative plans for FFWS and evacuation / flood fighting system were elaborated from the following viewpoints in due consideration of the important elements for formulating a master plan on integrated basin management focused on flood control in the Mejerda River:

- 1) As immediate measures to minimize the risk of and mitigate flood damage before completion of structural measures;
- 2) As measures to minimize the risk of and mitigate damage due to extraordinary floods exceeding a planning/design level of structural measures; and
- 3) As measures to contribute to coordinated operation of dams by providing hydrological information timely and accurately.

This **Supporting Report G** pertains to the flood forecasting and warning system, and evacuation / flood fighting system, with the following contents:

Chapter G2: Flood forecasting and warning system

Problems / issues on the existing FFWS were identified and studied based on the information obtained from the institutions concerned and through interviews with them. Based on the identified problems/issues, alternative plans addressing them were formulated for each sub-system consisting the FFWS.

Chapter G3: Evacuation / flood fighting system

Problems / issues on the existing evacuation / flood fighting system were identified based on the information obtained from the institutions concerned and through interviews with them. Based on the identified problems/issues, alternative plans addressing them were formulated.

CHAPTER G2 FLOOD FORECASTING AND WARNING SYSTEM

G2.1 Identifications and Study of Problems / Issues on Current FFWS

- G2.1.1 Overview of FFWS in Mejerda River Basin
 - (1) Background

As for the flood forecasting and warning system (the FFWS) in the Mejerda River basin, an installation of telemetry system has been developed through the technical and financial assistance of AFD (l'Agence Française de Développement)¹ in the program of PISEAU (Projet d'Investissement dans le Secteur de l'Eau)² since this basin seriously suffered from large floods in 2002/2003.

(2) Installation of the existing telemetry system

The installation of the existing telemetry system, which covers the whole Tunisian territory, was completed at 75 gauging stations in August 2007 and 55 gauging stations in January 2008, and it commenced experimental operation immediately after the respective completion. Out of 130 stations in total, 57 stations exist in the Mejerda River basin.

(3) Coordination and reporting of FFWS

The flow chart of coordination and reporting of the FFWS is shown in **Figure G2.1.1**. The major agencies concerned to flood forecasting are DGRE, DGBGTH, IRESA and CRDAs, which are organized under the authority of the Ministry of Agriculture and Water Resources (MARH). Also, the major agencies concerned to the warning system are governorate offices, the Civil Protection, the National Security, the National Guard, the police and their regional offices at the governorate level, which are under the authority of the Ministry of Interior.

Although more than two Ministries are concerned to the overall missions of the FFWS, the respective agencies cooperate through the contribution of the National and Regional Disaster Commissions, which consist of representatives from Ministries.

- G2.1.2 Observation System
 - (1) Responsible institutions

DGRE is responsible for observation and data management of rainfall and water level at the respective gauging stations in corporation with CRDA offices.

(2) Gauging stations

As shown in **Table G2.1.1**, there are 57 gauging stations in the Mejerda River basin, including 19 rainfall gauging stations, 18 water level gauging stations and 20 rainfall and water level gauging stations. Out of 57 stations, 8 stations are located at dam sites.

¹ French Development Agency

² Water Sector Investment Project

(3) Observation frequency

Observation for data recording is made every 15 minutes at any condition; namely, normal condition and flooding condition. Also, the monitoring displays in the call center in DGRE can show real-time water level data per second.

(4) Issues identified

Regarding the observation system, the following issues were identified:

- i) No operation manual for the telemetry system has been prepared.
- ii) A piezo meter type gauge, which is used at the most water level gauging stations, is likely to be affected by scouring during floods and sedimentation after floods. In view of reliable data observation, a radar type one is recommendable though its cost is higher than a piezo type gauge.
- iii) The observation area is currently limited to the Tunisian territory. In future, it is preferable to obtain rainfall data for the upstream area in Algeria through satellite measurement such as GEOSS (Global Earth Observation System of Systems).
- G2.1.3 Data Transmission System
 - (1) Flow of data

The observed data at the respective gauging stations are automatically transmitted to the call center in DGRE via the GSM network system as shown in **Figure G2.1.1**. Those data are stored in the database managed by IRESA, which is a research institution of MARH and is responsible for data management and security management in the telemetry system under instruction of DGRE.

(2) Transmission frequency

Data transmission is made once a day at 6:00 in normal condition, and at anytime on a request basis in flooding condition. Data observed every 15 minutes are stored in memory devices in the gauging stations for 24 hours until the data is transmitted to the call center at 6:00.

Memory Device at Gauging Stations

(3) Issues identified

As to the data transmission system, the following issues were identified:

- i) Sometimes observed data are not properly transmitted to the call center because of malfunction of the GSM telecommunication system.
- ii) The access speed in AGRINET is too slow to obtain data for timely analysis.
- G2.1.4 Analysis System
 - (1) Hydrograph forecasting

In a flooding condition, hydrograph forecasting is made by DGRE and DGBGTH cooperatively. They forecast hydrographs of inflows into each dam based on discharge at upper stream stations by using MS-Excel. Currently, there is no runoff analysis system developed based on rainfall data.

(2) Setting of alert level

In the telemetry system, alert and overflow levels are set as shown in the table below. Once a water level reaches the alert level, an alert message is automatically sent to mobile phones of pre-selected persons in charge, who mostly belong to DGRE or DGBGTH, by SMS (Short Message Service) in order to commence actions against flooding.

				Alert	Level	Overflow Level	
CRDA	No.	Station Name	River	Water level	Discharge (m^{3}/a)	Water level	Discharge (m^{3}/a)
	2	AP DT BIZEDTE MEI	Majarda	(CIII) 600	(III /8)	750	(III /S) 266
Ariana	4	AR-I I DIZEKTE-MEJ-	Mejerda	500	140	604	200
	4	AR-IODIAS MEJ-	Mejerda	390	20	500	100
	0	DJ-EL HERRI-MEJ-	Lohmor	450	50	390	199
	0	BLIDLLAQUELSI	Siliana	200	17		5
	9	DJ-JDL LAUUEJ-SI-	Silialia	200	17	720	200
D.: -	10	BJ-MJZ GP5-MEJ-	Mejerda	670	149	/30	200
веја	11	BJ-MJZ MORADI-MJ	Mejerda	800		860	
	12	BJ-PT BEJA-BEJ-	Beja				
	14	BJ-SLOUGHIA-MEJ-	Mejerda	450	109	750	274
	17	BJ-KALED AVL-KH	Khalled	350			
	18	BJ-MKHACHBIA-AVAL	Mekhashiba	178			
	20	JD-BOUSALEM-MEJ-	Mejerda	900	351	1,077	684
	22	JD-GARDIMAOU-MEJ-	Mejerda	400	153	650	1,560
	24	JD-JENDOUBA-MEJ-	Mejerda	900	227	1,050	400
Jendouba	26	JD-PLAINE RAGHAI-	Raghai	1,800	10	2,300	242
	27	JD-PT GP17 MLG-	Mellegue	500		820	
	28	JD-PT GP6 MLZ-	Mliz	500		850	
	29	JD-S/ABID TSA-	Tessa	300		450	
	31	KF-HAIDRA SRT-	Sarrat	200		599	
	32	KF-K13 MLG-	Mellegue	350			
El Vof	36	KF-PT ROUTE RMEL-	Rmel	450			
LIKEI	37	KF-PT RTE SARRAT-	Sarrat	400		700	
	39	KF-S/MEDIEN TSA-	Tessa	505			
	40	KF-SERS VILLE-TSA-	Tessa	100			
	44	MN-BJ TOUMI-MEJ-	Mejerda	400		500	
	45	MN-CHAFROU-	Chafrou				
Manouba	46	MN-JEDEIDA-MEJ-	Mejerda	750		820	
	48	MN-LAROUSIA AVAL-	Mejerda	190			
0:1:	51	SL-M12 OSAFA-SIL-	Siliana	300		400	
Siliana	52	SL-PT ROUTE-SIL-	Siliana	519	101	800	385

Source: DGRE

However, the above alert and overflow levels have been provided by trial and error, and those levels do not correspond to the ground elevation system.

(3) Propagation time

Propagation times for the Mejerda River and its tributaries are provided based on the past floods as shown in **Figure G2.1.2**. It covers 23 major gauging stations including those located upstream and downstream of the Sidi Salem Dam. Propagation times between some major stations are shown in the table below:

			-			
Statio	ons	Distance (km)	Minimum Time (hr)	Maximum Time (hr)		
From Ghardimaou	To Bou Salem	112	17	22		
From Bou Salem	To Sidi Salem Dam	55	14	16		
From Sidi Salem Dam	To Jedeida	108	26	33		
Source: DGRE	Source: DGRF					

Propagation Time between the Major Stations

(4) Dam release calculation

The inflow volume and hydrograph at each dam site in a flooding condition are estimated by DGBGTH. Each dam office calculates released discharge separately depending on the information given by DGBGTH.

(5) Issues identified

Regarding the analysis system, the following issues were identified:

- i) No reliable runoff analysis system has been developed yet.
- ii) Setting of the alert and overflow levels at the respective gauging stations are still at a try-and-error stage.
- iii) No inundation analysis model has been developed.
- iv) Coordinated operation of dams has not been made.
- G2.1.5 Warning Dissemination System
 - (1) Dissemination steps

There are three steps to disseminate a flood warning from the central government to terminal destinations, namely residents living near rivers.

In the first step, as shown in the figure below, the National Disaster Commission chaired by the Minister of Interior announces a flood warning to the Governor, the chairman of the Regional Disaster Commission.

In the second step, the Governor transmits the warning to the concerned agencies at the regional level, namely the Civil Protection, the National Guard, the Police and CRDAs.

In the third step, the regional Civil Protection announces the warning to residents through patrol around river areas or directly visiting residents' houses to advise evacuation.

Source: Interviews with MARH

Warning Dissemination System

(2) Issues identified

As to the warning dissemination system, the following issues were identified:

- i) A flood warning is not reached to some residents, or is reached out of time because a forecasting time is not enough.
- ii) A dam release warning is not given to downstream residents.

G2.2 Alternative Plans for FFWS

- G2.2.1 Overview of Basic Conditions for Flood Forecasting and Warning System
 - (1) Basic composition of FFWS

The FFWS in the Mejerda River basin is composed of four sub-systems, namely a) observation, b) data transmission, c) analysis, and d) warning dissemination systems. The recommended development and improvement plans for each sub-system are discussed in Sub-sections G2.2.3 to G2.2.6.

(2) Objectives of FFWS

The objectives of FFWS in the Mejerda River basin are:

- i) To provide hydrological information in order to conduct integrated management of river structures including coordinated operation of dams, which would contribute to mitigation of inundation areas, and
- ii) To provide hydrological information in order to make decisions of required actions for evacuation / flood fighting system.
- (3) Areas to be covered by FFWS

The objective areas of the FFWS are defined such cities and towns as Jendouba, Bou Salem, Sidi Smail, Slouguia, Medjez El Bab, El Herri, Tebourba, El Battan, Jedeida, El Henna, and El Mabtou, which have been seriously damaged by past significant floods.

(4) Required and possible lead time

There are 4 kinds of lead time defined, as follows, in relation to FFWS.

Lead time

A lead time is defined as the difference between the time when the possible phenomenon of flood is recognized in the field and the time when the flood phenomenon reaches to the objective place concerned.

Required lead time

A required lead time is defined as the time necessary to complete activities after flood phenomenon is recognized. Based on the interviews with the institutions responsible for the respective response activities, necessary times for the activities were preliminarily established as follows in this study:

`			
Response Activity	Responsible Necessary T		Time for of Activity
	monution	completion	orrieuvity
Hydraulic analysis and decision making for	DGRE/DGBGTH/	15 hours	
issuance of flood warning	National Commission	1.5 nours	2.0.1
Warning dissemination to residents	Civil Protection	0.5 hours	3.0 nour
Evacuation with minimum necessary belongings	Civil Protection	1.0 hour	
Evacuation of livestock	Civil Protection	1.5 hours	1.5 hours

Necessary Time by Response Activity

Source: Interview with DGRE, DGBGTH and Civil Protection Manouba

Possible lead time

This lead time is defined as the time available for activities between recognition of flood

phenomenon in upstream and occurrence of flood in objective area under the current condition. The possible lead time differs throughout the river basin according to the local hydrological and structural conditions. The following table shows the minimum and maximum possible lead time based on the propagation times of the past floods. The gauging stations have been set, as compiled below, to recognize a flood phenomenon, namely a water level or a reservoir outflow, for each objective area.

Ohio stirus Arros	Gauging Station	Possible Lead Time under the Current Condition		
Objective Area	To Recognize Flood Phenomenon	Minimum	Maximum	
Jendouba	Ghardimaou	10 hours	13 hours	
Bou Salem	Bou Heurtma Dam	7 hours	9 hours	
Sidi Smail	Ghardimaou	at least 17 hours	at least 22 hours	
Slouguia	Sidi Salem Dam	4 hours	6 hours	
Medjez El Bab	Sidi Salem Dam	8 hours	11 hours	
El Herri	Sidi Salem Dam	14 hours	18 hours	
Tebourba	Sidi Salem Dam	at least 14 hours	at least 18 hours	
El Battan	Sidi Salem Dam	23 hours	29 hours	
Jedeida	Sidi Salem Dam	26 hours	33 hours	
El Henna	Sidi Salem Dam	at least 26 hours	at least 33 hours	
El Mabtou	Sidi Salem Dam	at least 26 hours	at least 33 hours	

Possible	Lead '	Time hv	Object Area	s (Example)
I USSIDIC	Luau .	I mic Dy	Object Area	s (Example)

Source: Propagation time provided by DGRE

Note: "At least" denotes that the possible lead times were set with reference to the upper stream gauging stations because those propagation times have not been exactly provided.

Target lead time

The target lead time is defined as the time necessary to protect the objects, which are set to be human lives in this study. Based on the required lead time from the viewpoint of the recipients of flood warning, target lead time to be provided by this FFWS is estimated at 3.0 hours. To ensure this target lead time, it is necessary to acquire the hydrometeorological information in the upstream basin.

G2.2.2 Responsible Institutions for FFWS

The major institutions concerned with flood forecasting are DGRE, DGBGTH, IRESA and CRDAs, which are organized under the authority of MARH. The Minister of Interior is responsible for issuance of flood warning based on the hydrological information provided by MARH. The flood warning is finally disseminated to residents by Civil Protection offices.

- G2.2.3 Recommended Plan for Observation System
 - (1) Additional installation of telemetric rainfall gauges

The number of rainfall gauges, particularly in southern part of the Mejerda River basin, seems to be insufficient in the light of its large catchment area. In this study, the suitable number of stations was statistically analyzed by using average basin rainfall data estimated by the representative coefficient method. This analysis focused on only large scale floods in view of the large damages in the past floods. The procedure is as follows:

i) Division into sub-basins

This analysis was made for each sub-basin because the whole catchment area is too large and each sub-basin would have different characteristic of rainfall. The whole basin was divided into eight sub-basins taking into consideration the division for runoff analysis in this study. The sub-basin areas are shown in **Figure G2.2.1**.

ii) Selection of data on subject floods

In the analysis, important rainfall data which caused the past significant floods shall be selected as representative rainstorm events in perspective in view of seasonal characteristics.

In general, rainfall types are classified by its origin into: (a) orographic rain, (b) convective rain, and (c) frontal or cyclonic rain. According to the participant in the steering committee meeting for Progress Report (1) and complemental interviews with DGBGTH, there are mainly two kinds of rainfall origin which have caused large floods in the Mejerda River basin as tabulated below:

	Type-1	Туре-2
Origin of rainfall	Convective rain	Cyclonic rain
		(Perturbation coming from the
		north that bring cyclonic rains)
Main season	Sep and Oct	Dec, Jan and Feb
Extent of rainy area	Localized torrential rain	Wide range
Regional characteristic	Southern part of Mejerda basin	Whole area of Mejerda basin
Rainfall duration	Very repetitive rains	Continuous rains

Origin and Characteristics of Rainfall in the Mejerda River Basin

Source: Minutes of the steering committee meeting on Progress Report (1) on March 6, 2007 in Tunis

Taking into account the origins of rainfall, the data on subject floods should cover from the beginning to the end of rainy season so as to include all types of origin. In this analysis, four floods were selected from the past significant floods, namely, May 22-27 in 2000, Jan 8-13 in 2003, Jan 22-27 in 2003, and Dec 8-13 in 2004.

Among 175 existing stations equipped with manual rainfall gauges in the Mejerda River basin, 142 stations were selected in consideration of availability of daily rainfall data in view of missing period and reliability analysis on daily rainfall data during the above four floods. The 142 stations are listed in **Table G2.2.1**.

iii) True value of basin average rainfall

True value (a virtual true value) of basin average rainfall is necessary for consideration of representative rainfall stations. Judging from the number of gauging stations and its distribution obtained through the rainfall gauging information, the true value was estimated by "arithmetic mean method".

iv) Selection of representative rainfall gauging stations

Through the following procedure, minimum numbers of representative rainfall gauging stations were selected so as to be able to estimate sub-basin average rainfall with an acceptable observation error of less than 10%. In order to evaluate observation errors in views of both temporal distribution of rainfall and total rainfall

volume during one flood, the following indexes were applied to every one continuous rainfall:

- Standard error :
$$E1 = \sqrt{\frac{\sum \left(\frac{R_o - R_s}{\max R_o}\right)^2}{N}}$$

- Error of total rainfall : $E2 = \frac{\sum R_o - \sum R_s}{\sum R_s}$

Where, R_0 : True value of basin average rainfall (mm/day)

maxR₀: Maximum true value of basin average rainfall (mm/day)

- R_s : Estimated value of basin average rainfall (mm/day)
- N : Number of rainfall sample
- ΣR_0 : Total volume of true value of one continuous rainfall (mm)
- ΣR_{S} : Total volume of estimated value of one continuous rainfall (mm)

Candidate sites of representative rainfall gauging stations were selected based on the rainfall data prepared in the above mentioned ii), by the following procedures:

a) A combination group of random gauging stations selected from the existing ones in each sub-basin was made, and sub-basin average rainfall of those stations was estimated by using "representative coefficient method" with the following formula:

$$Rs = \Sigma (Ai \times Ri) + B$$

Where, Rs : Estimated value of basin rainfall (mm/day)

Ri : Point rainfall at each station of the group (mm/day)

The parameters, Ai and B, are basin-specific constant values, which vary depending on a combination group of the stations, and those constant values are determined by multiple regression analysis of "a true value of basin average rainfall" and point rainfall at each station of the group.

Further, the following matters were taken into consideration in selecting the candidate sites of the representative stations:

- Characteristics of spatial and temporal distribution variation of the subject floods selected in the above ii) do not always correspond with possible heavy rainfall in the future.
- 2) For daily rainfall data, eventuality and complexity of spatial and temporal distribution variation of actual heavy rainfall are averaged at some level.
- 3) In view of the above 1) and 2), in principle, representative stations should be distributed evenly in each sub-basin.
- 4) It is necessary to allocate telemetric rainfall stations in consideration of easy and assure operation and maintenance after installation.
- 5) There have been 39 existing stations equipped with telemetric rainfall gauges in total in the Mejerda River basin, and those stations shall be selected preferentially.
- b) An estimate accuracy of basin average rainfall estimated by "representative

coefficient method" is generally improved as the number of stations increase. In this analysis, this estimate accuracy shall be represented as the index r: correlation coefficient between true values of basin average rainfall (Ro) and estimated values of basin average rainfall (Rs). Relationship between the number of stations and estimate accuracy are shown in **Figure G2.2.2**.

- c) As shown in **Figure G2.2.2**, despite increase of the number of stations, there is a point which remarkably decrease improvement of the estimate accuracy (correlation coefficient: r), which is regarded as an inflection point. This means that improvement of estimate accuracy cannot be expected even if another station is added to the combination group which causes the inflection point. Thus, the combination group which causes this inflection point could be selected as candidate sites of the representative stations under the condition of correlation coefficient: r 0.9.
- v) Verification of representativeness

It was verified that the selected stations were appropriate as representative stations for telemetric rainfall gauging stations by confirming that acceptable error is less than 10% for both standard error and total volume error of rainfall, which were calculated by the estimated basin average rainfall of the stations selected in the above iv). The both error values are shown in **Table G2.2.2**. Also, **Figure G2.2.3** represents correlation between true values of basin average rainfall (Ro) and estimated values of basin average rainfall (Rs).

iv) Result of analysis

The result of the analysis indicates that 37 gauging stations in total are required in the whole basin in the Tunisian Territory including existing 23 stations and proposed 14 stations as shown the table below: The exact locations are shown in **Figure 2.2.1**.

Sub-basin		Required Stations								
(Group)	Number	Sta	tion ID	No. *1 (Existing) *4			Station ID No. *1 (Proposed)			
G1: Lower Reach	5	50692	51552	52905	56670	57122				
G2: Sidi Salem	5	51403	51672	52864	57018	57643				
G3: Bou Heurtma	1	51403								
G4: DS of Siliana	6	55080	56757	57558	57646		50568	50591		
G5: US of Siliana	6	54102	56757				53446	54671	56764	56906
G6: Tessa	4	53778	58272				50421	55888		
G7: Mellegue	6	53525	53605	55483	55502		56595	57328		
G8: Sarrath	6	55991	57678				50522	53046	53311	53508
Total	$37 *^2$		23	stations	*2			14 stat	tions*3	

Required Number and ID No. of Telemetric Rainfall Gauging Stations

Source: the Study Team

Note *1: The stations ID Numbers denote only 4th digit (basin name) and 5th to 8th digit (ID number for stations)

- *²: Station ID No. 51403 and 56757 are incorporated into two groups, but they are counted as one station in calculating the total numbers.
- *³: Station ID No. 53311 represents the Sarrath proposed dam site, and it will also be reviewed in the following clause (2) as a station to be equipped with both rainfall and water level gauges.
- *⁴: "Existing" means that there already exist telemetric rainfall gauges.

v) Handling of existing telemetric stations which were not selected

In view of forecasting large scale floods, the above 37 specific rainfall gauges have almost the same level of functions as the case with using all the 144 existing manual gauges. Some existing telemetric gauges were not incorporated into the 37 stations. However, the un-selected existing telemetric gauges are recommended to be continuously used because those gauges might be necessary for forecasting small to middle scale floods and decision for water use control in the dry season.

Besides, the required number of rainfall gauges for forecasting small to middle scale floods shall be examined at the next project stage.

(2) Additional installation of telemetric water level gauges

In view of reservoir operations, water level gauges, particularly upstream of Sidi Salem Dam, play important roles. Also, water level gauges in and just upstream of objective areas where water level forecast is required by the FFWS need to indicate criterial water levels to decide commencement of evacuation and flood fighting activities.

Judging from the above two aspects, additional installation of telemetric water level gauges are recommended as shown below. The exact locations are shown in **Figure G2.2.1**.

Proposed Additional Installation of Telemetric Water Level Gauging Stations

No.	Location	Reason for additional installation
1	Near the border on the Mellegue River	For reservoir operation
2	Sidi Smail	For judging of flood risk at Sidi Smail Town
3	Sarrath Dam *	For reservoir operation
4	Tessa Dam *	For reservoir operation

Source: the Study Team

(3) Incorporation of reservoir outflow data to existing telemetry system

In view of coordinated operation of dams, information about reservoir outflow is essential for operation of the dam which is located on the downstream side. The outflow information could be incorporated into the FFWS by means of the following two options.

- i) Reservoir outflows based on dam operation records are to be manually input into the telemetry system by the staff at a dam control office.
- ii) Reservoir outflows are calculated based on gate openings and change of reservoir water levels. It could be automatically input into the telemetry system.

All reservoir outflow data of dams that could be selected for optimized reservoir operations should be incorporated into the telemetry system.

- G2.2.4 Recommended Plan for Data Transmission System
 - (1) Settlement of GSM telecommunication trouble

The system has sometimes failed to transmit observed data to the call center in DGRE because of GSM telecommunication troubles. In the current test operation, the GSM

Note: * Stations at the dam sites shall be equipped with both rainfall and water level gauges in view of its manageability and availability for normal dam operation as well.

provider, namely Tunisiana, is trying to settle this problem by installing new antennas or moving existing antennas, and such troubles are being improved step by step.

However, inextricable telecommunication troubles should be covered by some conventional manual transmission means of telephone, facsimile, radio transmission, etc.

It is technically possible to use another provider, Tunisie Telecom, in parallel; however it is inadvisable because of its limited service extent as well as double maintenance cost.

(2) Improvement of AGRINET network

Currently, the telemetry system has not fulfilled its tasks because of limited function of AGRINET. The telemetry system should be effectively utilized through the following improvements:

i) Expansion of the network

A coordinated operation system of dams could be established based on the premise that all dam control offices are able to access AGRINET in order to obtain hydrological information timely. All dam control offices that will be selected for optimized reservoir operations should be added to the network.

ii) Accretion of access speed

The access speed in the network is too slow to be utilized for analysis in the case of a flood event. At least 2.0 Gbps is required for timely analysis.

G2.2.5 Recommended Plan for Analysis System

Even if the information gathering system of hydrological data is improved, the FFWS cannot effectively function without an appropriate analysis system. Thus, it is recommended to establish the following system in order to make hydrology related decisions timely and accurately.

(1) Flood forecasting model/system

The flood forecasting model/system for each area of the basin is recommended to be developed by development term as stated below:

i) Upstream of Sidi Salem Dam

Short term development

For the time being, flood forecasting shall be made by using "river water stage correlation method" based on water level at upstream gauging stations because development of flood runoff analysis models requires substantial time through a trial and error process which is essential for the model development. The development of flood runoff analysis model needs to be carefully coped with because the methods which are to be based on rainfall data include uncertain factors, which may impair forecasting accuracy.

Middle term development (the development by the target year 2030)

By the target year of the M/P, namely 2030, flood runoff analysis models based on telemetric rainfall data in the Tunisian territory shall be developed.

In this Study, a flood runoff analysis model has been developed for the Tunisian territory of the Mejerda River basin. Although the model is rather simplified in due consideration of the requirements for it, it might be effectively used for the purpose of flood forecasting through improving basin division and so on.

Long term development

As a longer term concept, a flood runoff analysis model based on rainfall data which are to be obtained through satellite measurement, including also the Algerian territory of the Mejerda River basin, shall be developed. In case further longer lead time is required, an examination on applicability of rainfall forecasting would be necessary.

Currently, GEOSS (Global Earth Observation System of Systems) are being developed under the collaboration and coordination among the concerned research institutes in the world. This system is expected to contribute to the acquisition of rainfall data in any area with no rainfall gauge in the future.

In a related matter, flood analysis systems with using satellite measured rainfall data such as GFAS (Global Flood Alert System) and IFAS (Integrated Flood Analysis System) are also being developed and under test operation.

Detailed applicability of satellite measurement system and analysis system using those data shall be examined in view of its observation time-interval, resolution and accuracy.

ii) Downstream of Sidi Salem Dam

Flood forecasting for the downstream areas shall be made by "river water stage correlation method" based on reservoir outflows from the Sidi Salem Dam and the Siliana Dam, and river water levels in consideration of flood runoff in the downstream sub-catchment areas.

As for only people's evacuation as discussed in Sub-section G2.2.1, this method could provide a necessary lead time though outflows from the Sidi Salem Dam may reach to Slouguia in a very short time.

In addition, in the middle and long term, it will be necessary to develop a flood runoff analysis model as well.

- (2) Setting of alert levels in the telemetry system
 - i) Purpose of alert level setting

The purpose of alert level setting at the major water level gauging stations is to indicate criterial water levels for commencement of each step related to required actions, such as reservoir operations, evacuation activities and flood fighting activities.

In the current system, alert and overflow water levels are determined based on the experience. However, in view of the above-mentioned purpose, it is necessary to set step-wise water levels before reaching to the overflow level.

ii) Classification and setting criteria

Classification of water levels and setting criteria of alert levels with their indications are provided as below:

Step	Water Level	Setting Criteria
1st	Advisory water level	• Water level based on which flood fighting units start preparation for
		mobilization
2nd	Warning water level	Possible water level that causes flooding
		• Water level based on which evacuation announcement is issued and
		flood fighting units mobilize
3rd	Bankful water level	Possible water level above which flood overtopping occur
		• Water level determined based on design high water level with
		consideration of field conditions

AIGHT WATCH LEVELS AND Setting Dasis

Source: Ministry of Land, Infrastructure and Transport, Japan

- (3) System of coordinated operation of dams
 - i) Telemetric hydrological data to be shared for coordinated dam operations

The following telemetric hydrological data shall be shared among respective dam control offices in order to grasp overall coordination of dams.

- Discharge/water level at each gauging station
- Operation status of other dams to be coordinated (including inflow and outflow data)

In this relation, it is also recommended that all dam control offices should access AGRINET as discussed in the above clause (2) in Sub-section G2.2.4.

ii) Necessary lead time for dam operations

It would be necessary to acquire hydrological information at least 24 hours in advance for optimization analysis on reservoir operation.

iii) Fundamental rules for operation

Coordinated operation of dams with a purpose of optimized reservoir operation should be supervised and instructed by the central control office, which would have all necessary information gathered through the telemetry system.

G2.2.6 Recommended Plan for Warning Dissemination System

Flood warning is issued by the Minister of Interior. Once the Regional Commission has been established, communication at the regional level shall be made by all available means such as telephone, facsimile, mobile phone, radio transmission, etc. in line with the organization structure fixed by the regional disaster management plan.

The dissemination to the residents is discussed in Section G2.3 considering that its primary purpose is evacuation.

G2.2.7 Cost Estimate

The total cost is estimated at 149,500 Euro considering of the equipment cost as tabulated in **TableG 2.2.3**. This cost estimate in this study is limited to the cost of the additional

installation of telemetric gauges and incorporation of dam release discharge data into the existing telemetry system.

CHAPTER G3 EVACUATION / FLOOD FIGHTING SYSTEM

G3.1 Identifications and Study of Problems / Issues on Current Evacuation / Flood Fighting System

- G3.1.1 Institutional Arrangements
 - (1) Legal documents

Institutional arrangements regarding disaster management is based mainly on the following legal documents:

a) Law No.39-1991 on disaster management and organization (June 8, 1991)

The law stipulates 16 articles; 1) definition of disaster, 2) national and regional disaster management plans, 3) national and regional disaster commissions, 4) coordination between the Minister of Interior and the respective Governors, 5) comprehensive statistics of equipments and human resources available for disaster management activities, 6) instruction to implement the national and regional disaster management plans, 7 to 15) requisition of equipments and human resources in times of disaster, and 16) repeal of previous provisions.

 b) Decree No.942-1993 on national and regional disaster management plans and the commission (April 26, 1993) and Decree No.2723-2004 on the modification of the Decree No. 942-1993 (December 21, 2004)

These Decrees stipulate 16 articles; 1) means of implementing the national and regional disaster management plans and the commissions, 2) consideration matters in formulating plans, 3) drafting and approval of the plans, 4) orientation of regional plan in national plan, 5) approval of regional plan and submission to National Disaster Commission, 6) intended disaster, 7) specific gradual operations, 8) commencement of implementation, 9) holding of prior meetings with special officers, 10) empowerment of orders, 11) order of working termination, 12) members of National Disaster Commission, 13) meeting of National Disaster Commission, 14) members of Regional Disaster Commission, and 16) implementation of this decree.

(2) Disaster Management Commission

According to the Law No.39-1991 on disaster management and organization, the National and Regional Commissions for disaster management shall be established under the chairmanship of the Minister of Interior and the Governor, respectively.

The Civil Protection assures the functions of permanent secretariat of these commissions and assures the coordination between the different intervening parts.

1) National Disaster Commission

According to the Decree No.942-1993 and No.2723-2004 described above, the National Disaster Commission is the supreme organ of the country for disaster

management and is chaired by the Minister of Interior.

The Commission consists of the chairman and 18 representatives selected from the concerned Ministries; however representatives are selected in each case depending on the type of disaster.

2) Regional Disaster Commission

According to the Decree No.942-1993 and No.2723-2004 described above, the Regional Disaster Commission is the supreme organ of the respective governorate for disaster management and is chaired by the Governor.

The Commission consists of the chairman and 17 representatives selected from the regional offices of the concerned Ministries; however representatives are selected in each case depending on the type of disaster.

- (3) Responsible institutions
 - 1) Civil Protection

The regional Civil Protection office is responsible for evacuation and flood fighting activities in cooperation with the National Guard, the police and the military at the regional level as shown in the photos below:

Source: CRDA Manouba

These agencies except the military belong to the Ministry of Interior as shown in the figure below, and the military belongs to the Ministry of National Defense.

Source: Interviews with MARH

Agencies Concerned to Flood Fighting

2) Civil volunteers

Besides the Civil Protection, civil volunteers assist flood fighting activities.

According to the Decree No.2428-1999 on regulations of civil volunteers' involvement in disaster management activities (November 1, 1999), any citizen who passes an examination for a civil volunteer can register as a member of civil volunteers. They are summoned by the regional Civil Protection in times of disaster.

(4) Regional disaster management plan

Based on the Law No.39-1991 and the Decree No.942-1993, the plan is drafted by the Regional Disaster Commission in cooperation with the regional Civil Protection. Each regional plan is examined by the National Disaster Commission before being approved by the Governor.

Governorate-specific plans of evacuation / flood fighting system are defined in the regional disaster management plan, which name is ORSEC.

G3.1.2 Status of the Existing Regional Disaster Management Plan

(1) General

The plans formulated in respective Governorates are based on the Guideline³ so as to standardize the implementation structure and the procedures that will be used in the case of a disaster event, while governorate-specific items are characteristically elaborated.

(2) Composition of plan

The plan is composed of the main part containing common terms applied to all kinds of disasters and four annexes specified for the following disasters:

- The red plan: events engendering a large number of injured people and victims
- The blue plan: floods, drowning and sea pollutions
- The green plan: forest and plantation fires
- The yellow plan: technological or chemical accidents
- (3) Update of plan

The blue plan concerning flood disaster is updated before every rainy season in response to natural and/or artificial changes in the field environment that are identified through regular field reconnaissance to be carried out by the regional Civil Protection.

(4) Contents of plan

Through the cooperation with the regional Civil Protection in Manouba Governorate, the plan ORSEC for Manouba Governorate and its appertaining information were disclosed to the JICA Study Team. The plan mainly contains the following:

- The legal references
- Organization structure
- Roles and responsibilities for each organization
- Flow chart of coordination, communication and reporting system
- Requisition order of rescue service to be provided by individuals and/or collective

³ The guideline for the Governors on preparation of regional disaster management and rescuing

- Technical rescue plans and evacuation drill program
- Fiscal plan of the rescue activities
- Various sorts of maps
- (5) Organization structure for the Blue Plan

The physical evacuation component of the plan is implemented by four operational units under the instruction of the mobile command center.

Source: The guideline for the Governors on preparation of regional disaster management and rescuing Structure of Implementation Units (Blue Plan)

G3.1.3 Issues in the Current Evacuation / Flood Fighting System

(1) Nondisclosure of disaster management plan and evacuation map

The formulated disaster management plans and evacuation maps are closed in the very limited institutions. Even the members of the National and Regional Disaster Commissions cannot obtain the plan; needless to say, most of the public don't even know its existence. According to the results of flood inundation and damage survey⁴, around 80% of the respondents recognize necessity of appropriate evacuation plan for securing their properties.

(2) Imprecise commencement criteria of evacuation and flood fighting activities

In the current system, criteria for mobilization of flood fighting operational units or timing of warning/announcement dissemination to residents are not precisely provided.

⁴ The survey was conducted between December 2006 and March 2007 by ECO Ressources International.

(3) Incomplete communication between institutions concerned and residents

According to the results of flood inundation and damage survey, 67% of farmers decided whether to evacuate or not by their own judgment in the past floods because they couldn't receive any flood warning or evacuation announcement in spite of mass media's broadcasting and calling behavior made by the Civil Protection.

In several cases, such reactions might indicate that residents couldn't judge actions to be done because of incomprehensible information rather than incomplete dissemination.

(4) Ineffective use of evacuation maps

Each Regional Commission has prepared an evacuation map as internal information; however, some necessary information is not indicated on the map.

G3.2 Alternative Plans for Evacuation / Flood Fighting System

- G3.2.1 Recommended Development and Improvement Plan for Evacuation / Flood Fighting
 - (1) Planning basis

In due consideration of the above-mentioned current status, evacuation / flood fighting system should be reconsidered from the following two viewpoints:

- i) In order to decide well-timed commencement of evacuation / flood fighting activities, it is important to clarify precise commencement criteria.
- ii) Since understanding and cooperation of the public and their communities are indispensable for evacuation activities, raising of peoples' awareness of disaster mitigation is essential.

This chapter describes proposed development and improvement plans of the existing evacuation and flood fighting system.

(2) Formulation of information sharing system

Sharing of information and recognition among the concerned people including both the governments and the public is essential for evacuation system.

In order to raise people's awareness of disaster mitigation, the public should be informed of at least the following information in advance and in the case of a flood event:

- Warning/announcement dissemination method and route
- The nearest or available evacuation spaces in their area
- Key contact address, which will be able to provide assistance to the residents who desire information

The above information could be shown on an evacuation map, and the evacuation map shall be distributed to houses in expected inundation areas or displayed in prominent places such as administrative offices and public meeting places.

Besides, in long-term viewpoint, establishment of information sharing system using GIS could contribute to communication between central and local governments as well as information disclosure to the public through website.

(3) Clarification of commencement criteria for required activities

For the purpose of smooth commencement of required activities for evacuation and/or flood fighting, the Governor shall issue evacuation announcements and flood fighting warnings in a stepwise fashion as follows:

i) Classification of evacuation announcements

Announcements shall be classified into three steps, namely 1st) evacuation preparation, 2nd) evacuation advisory, and 3rd) evacuation order, based on water levels at key gauging stations and condition of flood control structures.

ii) Classification of flood fighting warnings

Warnings for flood fighting shall be classified into four steps, namely 1st) standby, 2nd) preparation, 3rd) mobilization, and 4th) continuous caution, based on water levels, including bankful water levels, at key gauging stations.

The criterial water levels at the respective key gauging stations for each step shall be determined based on bankful water levels to be provided by DGRE.

(4) Development of evacuation procedures

It is necessary to develop readily understandable evacuation procedures for both rescuing team and the public from the following three viewpoints:

Assured dissemination method:

- Through mass media under an agreement with media organization
- By any available methods such as a vehicle equipped with a loudspeaker, etc. by efforts of Civil Protection in cooperation with concerned institutions
- Over communication networks of Imada, that is a minimum unit of local community under delegation

Understandable announcements:

- Issuer of evacuation advisory/order
- Reason of evacuation advisory/order
- Target area of evacuation advisory/order
- Evacuation space and suitable route to the evacuation space

Systematic evacuation confirmation system:

- Using leadership capacity of the Omda, a head of Imada, who is the most familiar with residents living in his/her Imada
- Checking of evacuees with using name lists at checkpoints installed inside or on the way to the evacuation spaces

Those activities depend on residents' self-initiative and communities' cooperativeness. Detail evacuation plan for each Governorate shall be formulated in consideration of involvement of the public and possible community-based activities.

G3.2.2 Preparation of Evacuation Map

(1) General

An evacuation map covering the settlement area of Jedeida, as a model area, was prepared in this study through the cooperation with Civil Protection Manouba. Evacuation maps for the other objective areas should be prepared by each Governorate in the same manner.

(2) Technical approaches

The basic technical approaches applied to this preparation are as follows:

1) Estimation of maximum extent of flood inundation

In this preparation, the result of inundation analysis for the case of 20-year probable flood, which almost corresponds to the flood in January 2003, was used. The analysis was conducted under the condition of "without proposed structures" from the viewpoint of its utilization for the case of a flood event before implementation of the structural measures.

2) Selection of evacuation spaces and evacuation routes

The eligible spaces were selected from the viewpoints of a) public space located out of probable inundation area, b) capacity and facilities of the space, c) distance from probable inundation area, and d) accessibility.

3) Clarification of supplementary information

The supplementary information listed and plotted on the map was selected, which are to be a) communication routes for evacuation announcement, b) medical facilities, and c) local government offices concerned to evacuation / flood fighting activities.

4) Finalization of evacuation map

The draft of evacuation map was finalized on the base topographic map with a scale of 1/25,000 because desirable scale maps, namely 1/10,000 to 1/15,000, were not available in this preparation.

Figure G3.2.1 shows the evacuation map prepared in this study.

Tables

CDDA	N				Coor	dinate	т	D' N
CRDA	No.	Station Name	Station ID No.	Dam ID No.	X UTM	Y UTM	Type	River Name
Ariana	1	AR-KLT ANDALUS-	1485352022		601350	4104063	\$P\$	
	2	AR-PT BIZERTE-MEI-	1485900188		593922	4094878	\$H\$	Meierda
	3	AR-S/THABET-	1485667322		592603	4084391	\$P\$	
	4	AR-TOBIAS MEI-	1485900187		595185	4097334	\$HP\$	Meierda
Beia	5	BI-BEIA-	1485082302		515424	4062936	\$P\$	
Doju	6	BI-EL HERRI-MEI-	1485900141		559662	4064020	\$HP\$	Meierda
	7	BI-GOUBELAT-	1485290202		559123	4043858	\$P\$	
	8	BI-GP5 I HR-	1485802270		565269	4053786	\$H\$	Lahmar
	9	BI-IBL LAOUFI-SI-	1485501635		538469	4042093	\$HP\$	Siliana
	10	BI-MIZ GP5-MFI-	1485900139		554456	4055112	\$HP\$	Meierda
	11	BI-MIZ MORADI-MI	1485900140		554206	4055584	\$H\$	Mejerda
	12	BLPT BEIA-BEI-	1485602240		519966	4065646	\$H\$	Reia
	12	BLS/SALEM-BGE-	1485900129	54B0101	535406	4049475	\$HP\$	<u>Deja</u>
	14	BI-SLOUGHIA-MEL	1/85900120	5400101	546374	4049473	¢ III ¢ \$HP\$	Meierda
	14	BI-TEBOURSOUK-	1485755802		522330	4048708	\$D\$	wiejerua
	15	BLTESTOUR-	1485764602		539225	40/35//	\$P\$	
	17	BLKALED AVL-KH	1/85801800		535783	4043544	ф1ф \$H\$	Khalled
	17	BI MKHACURIA AVAI	1485703050		535881	4044018	9115 9119	Makhashiba
Iendouba	10	ID-BNIMTIR-BGE	1485400178	53B3502	477075	4004403	\$115 \$412\$	WICKHASHIDA
Jendouba	20	ID BOUSALEM MEL	1485400178	5505502	477073	4050563	¢ III \$	Majarda
	20	ID DAP FATMA	1405400100		473204	4056375	φΠ1φ \$D\$	Wiejerua
	21	ID GARDIMAOU MEI	1485400110		473204	4030375	¢ LID¢	Majarda
	22	ID IENDOURA	1485608801		449439	4033723	¢ III ¢ ¢ D¢	Mejerua
	23	ID IENDOUBA MEI	1485400160		480808	4039439	фгф ФЦФ	Majarda
	24	ID VASSED DCE	1485205020	52P0101	500427	4039331	¢11¢	Mejerua
	25	ID DI AINE PACHAI	1485001160	3360101	158855	4007808	опго СПС	Paghai
	20	ID PT GP17 ML G	1485101211		438833	4037331	¢11¢	Mallagua
	27	ID PT CP6 ML 7	1405101211		4/1/23	4026382	φΠ1φ ΦUΦ	Mia
	20	ID-S/ABID TSA	1485504670		401190	4033273	\$115 \$H\$	Tessa
	30	ID-BOUHERTMA-BGE	1485400179	53B3501	10 data 181205	4058259	¢HD¢	10354
El Kef	31	KE-HAIDRA SRT-	1485106125	5555501	458425	39/0535	ф III ф \$Ц\$	Sarrat
	32	KF-K13 MLG-	1485100123		454661	30060/6	¢HD¢	Mellegue
	32	KE-KEE-	1/85361003		434001	4003817	\$11 \$D\$	wienegue
	33	KE KI T SENAN	1485352503		4/4402	3057008	φ1φ \$D\$	
	34	KE-MELLEGUE-BGE-	1485101200	51B1201	440330	4018524	۵۱۵ ۲۹۲۶	
	35	KE DT DOUTE DMEI	1485101207	51111201	475215	3006500	ф ПТф ФЦФ	Pmal
	27	VE DT DTE SADDAT	1485104580		407410	2062224	¢11¢	Sorrot
	37	KI-I I KIE SAKKAI-	1485500103		462050	3955240	¢ III ¢ ¢ D¢	Sallat
	30	KES/MEDIEN TSA	1485399103		402030	4017508	φιφ ¢ud¢	Тоссо
	40	KE SEDS VILLE TSA	1485201333		503341	3001048	ф ПТФ ФЦФ	Tessa
	40	VE SKT S/VOUSE	1485201330		441020	4000720	¢D¢	1055a
	41	KF-SKI 5/100SF-	1485204100	no data	441929	4009730	οΓφ ¢ud¢	
	42	KE ZOUADINE GADE	1485827203	no uata	497330	3086360	¢ III ¢ ¢ D¢	
Manouha	43	MN BITOUMI MEI	1485000147		564001	4066252	φ1φ Φ ΠΦ	Majarda
Wallouba	44	MN-CHAEROU-	1/85802580		585708	4066434	\$115 \$H\$	Chafrou
	43	MN IEDEIDA MEI	1485000170		583708	4000434	\$11\$ \$U\$	Majarda
	40		1485753024		575504	4076335	\$11\$ \$D\$	Wiejerua
	47	MN-LAPOUSIA AVAL	1/85900150		568915	4070555	¢ I¢ \$UD\$	Meierda
	40	MN-MORNAGULA	1483700130		588122	4072002	\$11 \$D\$	wiejerua
Siliana	50	SI_KRIB_	1485377604		512352	4007208	\$P\$	
Sillalla	51	SL-M12 OSAFA-SIL-	1485504870		538776	3979309	\$H\$	Siliana
	52	SL-PT POLITE-SIL-	1485501610		534960	3992704	ФПФ 2Н2	Siliana
	52	SL-SILIANA.	1485676304		535244	3992016	\$D\$	Jinana
	53	SL-SILIANA-RGE	1485501600	55R1601	531/70	4001000	φιφ \$UD\$	
	55	SL-MAKTHAR-	1485410304	5561001	518/130	3967398	\$P\$	
	56	SL-RMIL-BGF	1485505080	55B5001	545066	4017607	\$HP\$	
Kasserine	57	KS-TALLA	1485767800	5565001	470375	3935599	\$P\$	
masserine	51	110 1/1LL/1	1703/07009	1	T10313	5755577	ψιψ	

Table G2.1.1 List of Telemetry Gauging Stations in Mejerda River Basin

Type shows that P=Raindall, H=Water Level, and HP=Rainfall and Water Level. DGRE Note:

Source:

Table G2.2.1 List of Stations Used for Analysis on Number of Rainfall Gauge

No.	Sation Name	ID No.		1	Sub	-ba	sin	No			No.	Sation Name	ID No.		S	Sub	-ba	sin	No.		
1	AIN BEYA OUED RHEZALA	50078			3						72	KOUDIAT INRAT	53754		2						-
2	AIN DEBBA	50138			3						73	KRIB FERME COSSEM	53778						6	\uparrow	
3	AIN IEMMALA	50177			-	4					74	KSAR BOU KHRIS	53797				4				
4	AIN GUESI	50244	++			· 4					75	KSAR BOU KI FIA	53803		2		····				
5		50260			3	<u>ا</u>					76	KSAR HDID	53810		2					-+	
6	AIN KERMA 1	50276							7		70	KSOUR ECOLE	53830						6	+	
7		50270		2							79	KSOUR LEOLL	52975	1							
0		50421		-				6			70	LADAD ECOLE SEDS	52022	1					6	+	
0		50421		2	2							LABAR LCOLL SERS	52064						6	+	
		50422		4	3			_			00		53904							-+-	
10		50467				4		0			81		54102	1				5			
11	AIN TOUNGA SE	50511				4					82	MEJEZ EL BAB PF	54292	1							
12	AIN ZARGA RETENUE	50522								8	83	MEJEZ EL BAB PV	54297	_						+	
13	AIN ZARGA RUINE ROMAINE	50523						6		8	84	MEHRINE CRA	54345	1						_	
14	AIN ZANA	50535		2	3						85	MONTARNAUD 1	54524	1					_	\perp	
15	AIN ZEBDA	50543		2							86	MUNCHAR ECOLE	54611		2						
16	AIN ZELIGUA	50553						6			87	NEBEUR DELEGATION	54639							7	
17	AKHOUAT GARE	50591				4					88	NMAIRIA	54671					5			
18	AMDOUN CTV	50630			3						89	OUED EL LEBEN	54900		2						
19	AROUSSIA BARRAGE	50692	1								90	OUED MLIZ INRAT	54981		2						
20	BADROUNA BOUSALEM	50738		2							91	OUED MELLEGUE K 13	54990							7	
21	BALTA CTV	50752		2							92	OUED RMIL	55053				4				
22	BARRAGE KASSEB	50764		2							93	OUED TINE	55080				4			Τ	
23	BARRAGE LAKHMES	50767					5				94	OUED ZARGA 12 MAI	55086		2						
24	BARRAGE SIDI SALEM	50772				4					95	OUED ZARGA RHAYET	55087		2						
25	BATANE ECOLE	50791	1								96	OUED ZARGA EX FME RURAL	55089			3				T	
26	BATANE OMVVM	50792	1								97	OUED ZARGA FME DENGUEZLI	55091		2				-	+	
27	BEAUCE TUNISIENNE	50799	-	2							98	OUED ZARGA CTV	55095		2					+	
28	BORIELAMRI	51009	1	-		-					99	FL OUATIA HIR FL BEHI	55135	1	2				+	+	
20	BORI EL AIFA	51103	1	2							100	PORTO FARINA GHAR FL MELEH	55193	1						+	
20		51122		$\frac{2}{2}$							100	PACHAY SUDEDIEUD	55799		 ?					-+-	
21	DUTOUMI STE DADAK	51100	1	- 2							101	DEDAIED	55225	1							
22	DEN METID 2 SM	51269	1	-	2						102	KEDAIED	55192	1				_	-	-	
32	DOLLHEUDTMA DCE	51402		2	2						105	SADINE RESERVE	55502							<u>_</u>	
	BOU HEURIMA BGE	51403	-	2	3						104	SAKIET SIDI YOUSSEF SM	55502						_	4	
34	CHAOUACH	51552	1								105	SERS AGRICULE	55887						0	+	
35	CHAOUAT	51559	1								106	SERS DELEGATION	55888						6	+	_
36	CHEMTOU RAOUDET SM	51608		2							107	SIDI AHMED SALAH CRA	55991							+	8
37	CHEMTOU FERME	51609		2							108	SIDI BOU ROUIS SM	56250						6		
38	CHERFECH CRGR	51616	1								109	SIDI BOUROUIS DELEG	56257						6		
39	CITE DU MELLEGUE SM	51672		2]	7		110	SIDI SAHBI ABIDA	56595]		7	
40	DAOUESS FERME UCP	51786		2							111	SIDI THABET DOMAINE HARAS	56670	1							
41	JANTOURA	51856			3						112	SIDI THABET OMVVM	56673	1						_	
42	JEBEL KBOUCH	51934		2							113	SILIANA BARRAGE	56757				4	5			
43	DJEDEIDA CTV	51967	1								114	SILIANA II SM	56763					5			
44	DJERISSA DELEGATION	52041								8	115	SILIANA AGRICOLE	56764					5			
45	DEHMANI MUNICIPALITE	52510						6			116	SILIANA LAOUJ	56765				4				
46	EL ALIA SERS UCP	52521						6			117	SKHIRA BOU SALEM	56804		2					Τ	
47	EL GUANTRA	52545					5				118	SLOUGUIA	56832	1						Τ	
48	FATH TESSA	52603						6			119	SODGA	56906					5		T	
49	FEJ KHEMAKHEM	52619	1								120	SK EL ARBA(JENDOUBA)SE	56988		2					T	
50	FERNANA	52659			3		\square				121	SK EL ARBA(JENDOUBA)SM	56990		2					T	
51	FEIJA EL SM	52665		2							122	BOU SALEM DRE	57018		2					1	
52	GAAFOUR DELEG	52783				4					123	SK EL KHEMIS B.S.CFPA	57022		2					1	
53	GARDIMAOU DRE	52864	1	2							124	SOUK ESSEBT	57030		2				\neg	+	
54	GHAR EL MELH NOUVEAU SM	52872	1	-							125	MORNAGUIA EX SI CYPRIEN	57122	1	-					+	
55	GHANIMA TESTOUR	52874	+ ·	-		4					126	TAJEROUINE AIN ZOUAGHA	57328	-						7	
56	GOUBELLAT	52905	1	-	\square	ŀ					127	TAJEROUINE Fme D'ETAT	57332							7	-
57	HAIDRA RE	53046	+	-						8	128		57339							$\frac{1}{7}$	8
50	ΗΔΜΜΔΜ ΒΑΥΑΡΗΑ SUP	52057		2							120	TEROURBA	57520	1						÷ť	
50		52007		4							129		57559							+	
 		52007	1	2							121		57642		2		4				
00		5309/		2					<u> </u>		131		57643							+	
61		53311							4	8	132	TALASM	5/646				4				
62	HAUUD	53430	$\left - \right $						1		133	TALA SM	5/678							+	8
63	JAMA DRE	53446		<u> </u>		4	5				134	THIBAR SM	57690		2					+	
64	KALAA KHASBA DELEGATION	53508								8	135	TOUNGAR CRA	57731	1						_	
65	KALAAT ANDALOUS	53520	1	ļ		ļ	ļ				136	TOUIREF CTV	57742							7	
66	KALAAT ESSENAM DELEGATION	53525	 	ļ					7		137	TOUKEBER	57752	1							
67	KHARROUBA	53554				4					138	UTIQUE OMVVM	57966	1							
68	KEF EN NESOUR	53603		2							139	ZAAFRANE UCP	58059		2						
69	KEF.B.I.R.H	53605							7		140	ZEBIDA UCP ENNAJAT	58090							7	
70	KEF HELIOPOLIS	53612							7		141	ZAOUEM SM	58158		2						
71	KEF CMA	53619		L		L		_	7	_1	142	ZOUARINE GARE	58272						6	_[_
C	DODE		-					_	_	_	-			_			_	_			_

Source: DGRE Note: The stations ID Numbers denote only 4th digit (basin name) and 5th to 8th digit (ID number for stations

Sub-basin No.	Period of Subject Flood	Number of Samples	Standard Error	Total Volume Error
1	May 22-27, 2000	24	0.35%	9.15%
	Jan 8-13, 2003	24	0.68%	2.30%
	Jan 22-27, 2003	24	2.09%	8.55%
	Dec 8-13, 2004	24	0.32%	2.17%
		Average	0.86%	5.54%
2	May 22-27, 2000	24	1.22%	3.25%
	Jan 8-13, 2003	24	1.59%	0.66%
	Jan 22-27, 2003	24	3.61%	4.11%
	Dec 8-13, 2004	24	0.62%	9.94%
		Average	1.76%	4.49%
3	May 22-27, 2000	24	1.73%	7.33%
	Jan 8-13, 2003	24	3.19%	4.90%
	Jan 22-27, 2003	24	2.17%	6.26%
	Dec 8-13, 2004	24	0.43%	4.02%
		Average	1.88%	5.63%
4	May 22-27, 2000	24	1.53%	4.78%
	Jan 8-13, 2003	24	0.50%	2.56%
	Jan 22-27, 2003	24	0.88%	0.38%
	Dec 8-13, 2004	24	0.46%	2.37%
		Average	0.84%	2.52%
5	May 22-27, 2000	24	0.34%	8.52%
	Jan 8-13, 2003	24	0.24%	0.65%
	Jan 22-27, 2003	24	0.20%	3.01%
	Dec 8-13, 2004	24	0.18%	7.93%
		Average	0.24%	5.03%
6	May 22-27, 2000	24	2.50%	6.87%
	Jan 8-13, 2003	24	2.00%	6.71%
	Jan 22-27, 2003	24	1.27%	0.92%
	Dec 8-13, 2004	24	0.91%	0.34%
		Average	1.67%	3.71%
7	May 22-27, 2000	24	0.24%	0.67%
	Jan 8-13, 2003	24	1.43%	2.67%
	Jan 22-27, 2003	24	1.05%	4.68%
	Dec 8-13, 2004	24	1.42%	0.28%
		Average	1.04%	2.07%
8	May 22-27, 2000	24	0.36%	1.90%
	Jan 8-13, 2003	24	0.74%	1.21%
	Jan 22-27, 2003	24	1.30%	5.71%
	Dec 8-13, 2004	24	1.09%	1.09%
		Average	0.87%	2.48%

 Table G2.2.2
 Error of Estimated Daily Rainfall

Table G2.2.3 Cost Estimate for Improvement of FFWS in the Mejerda River Basin

No.	Item	Unit Price	Quantity	Amount (EUR) *1
Ι	Installation of Telemetric Rainfall Gauge			
	Rainfall Gauging Station	5,000 EUR/station	13 stations	65,000
II	Installation of Telemetric Water Level Gauge			
	Water Level Gauging Station	6,500 EUR/station	2 stations	13,000
III	Installation of Telemetric Rainfall and Water Level Gauge*4			
	Rainfall and Water Level Gauging Station	7,000 EUR/station	2 stations	14,000
IV * ²	Incorporation of Dam Release Discharge Data into the Telemetry System			
	Dams to Be Incorporated	6,500 EUR/station	7 dams	45,500
	1. Sidi Salem Dam	1,000 EUR/gate	3 gates	3,000
	2. Mellegue Dam	1,000 EUR/gate	3 gates	3,000
	3. Bou Heurtma Dam	1,000 EUR/gate	1 gate * ³	1,000
	4. Siliana Dam	1,000 EUR/gate	2 gates $*^3$	2,000
	5. Mellegue 2 Dam (planned)	1,000 EUR/gate	1 gate *4	1,000
	6. Sarrath Dam (planned)	1,000 EUR/gate	1 gate $*^3$	1,000
	7. Tessa Dam (planned)	1,000 EUR/gate	1 gate * ³	1,000
	Total			149,500

Source: C2MS (the company which installed the existing telemetry system)

Notes: 1. The above cost does not include maintenance and communication cost, which are estimated at about EUR1,250 /station/year.

2. Item No.IV represents the case of an automatic calculation based on gate opening heights and change of reservoir water levels.

3. In the case of spillway without any gate, the numbers of spillway are counted in calculating the item No.IV.

4. Sarrath and Tessa Dam sites

Figures

Figure G2.1.1 Overall FFWS in the Mejerda River Basin

	Ghardi- maou		
Jendouba	72 10 13	Jendouba	
Bou Salem	112 17 22	40 6 9	Bou Salem
Sidi Salem	167 20	95 20	55 14
Dam	38	25	16

Sidi Salem

Dam

22

4

6

38

8

Slouguia

Mejez El

Bab Pont

Tributaries Upstream of Sidi Salem Dam

	Mellegue Dam		
K13	45 4 5	Sidi Medien	Bou Heurtma Dam
	71	32	31
Bou Salem	10	7	7
	12	9	9
Sidi Salem	98	87	85
Dom	23	20	21
Dam	28	25	25

Mejerda River Downstream of Sidi Salem Dam Tributaries Downstream of Sidi Salem Dam

Slouguia

19

4

Mejez El

Bab Pont

12 80 28	9
Slouguia 3 18 7	2
4 22 8	3

Tributaries Downstream of Sidi Salem Dam

GP5	11	6	GP5							
Mejez El	39	20	1	Mejez El]				Labmar	
Bab Pont	9	4	0:30	Bab Pont					CP5	
Andalous	11	6	0:30	Andalous					GFJ	
	62	43	24	23					30	
El Herri	14	9	5	5	El Herri			El Herri	6	
	18	12	7	7					8	
	74	55	36	35	12					
Borj Toumi	17	12	8	8	3	Borj Toumi				
	22	16	11	10	4	1				
Laroussia	83	66	47	46	23	11	Laroussia			
Dam	18	14	10	10	5	2:30	Dam			
Dam	25	20	14	14	7	3:30	Dan			
	97	78	59	58	35	23	12			
El Battane	23	17	13	13	7	5	3	El Battane		
	29	23	17	17	10	7	4			
	106	89	70	69	46	34	23	11		
Jedeida	26	20	15	15	10	7	5	2:30	Jedeida	
	33	26	20	20	14	10	8	3:30		
Pt de	132	116	97	96	73	61	50	38	28	Pt de
Bizerte	31	26	22	22	16	13	11	8	6	Bizerte
GP8	44	34	28	28	21	18	16	11	8	GP8
Tobias	135	119	100	99	76	64	53	41	31	3
Dam	32	27	23	23	17	14	12	9	7	1
Dam	42	35	29	29	22	19	16	12	10	1
EGEND	-	1								
	Sidi Salem									

	LEGEND		
		Sidi Salem Dam	
	Slouguia	18 km	Distance between Slouguia and Sidi Salem Dam (km)
		4 h	Minimum propagation time (hr)
		6 h	Maximum propagation time (hr)

Figure G2.2.1 Proposed Additional Installation of Telemetric Gauging Stations

Required number of stations: 6

Source: the Study Team

Correlation coefficient = 0.997

Correlation coefficient = 0.999

Correlation coefficient = 0.992

Source: the Study Team

Source: the Study Team, and interview with Civil Protection Manouba

